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ABSTRACT 
High Lundquist Number Simulations of Parker 's Model of Coronal 
Heating: Scaling and Current Sheet Statistics Using Heterogeneous 

Computing Architectures 
by 

LiWei Lin 
University of New Hampshire, December, 2011 

Parker's model [Parker, Astrophys. J., 174, 499 (1972)] is one of the most discussed 

mechanisms for coronal heating and has generated much debate. We have recently ob

tained new scaling results for a 2D version of this problem suggesting that the heating rate 

becomes independent of resistivity in a statistical steady state [Ng and Bhattacharjee, As

trophys. J., 675, 899 (2008)]. Our numerical work has now been extended to 3D using high 

resolution MHD numerical simulations. Random photospheric footpoint motion is applied 

for a time much longer than the correlation time of the motion to obtain converged average 

coronal heating rates. Simulations are done for different values of the Lundquist number 

to determine scaling. In the high-Lundquist number limit (S > 1000), the coronal heating 

rate obtained is consistent with a trend that is independent of the Lundquist number, as 

predicted by previous analysis and 2D simulations. We will present scaling analysis show

ing that when the dissipation time is comparable or larger than the correlation time of 

the random footpoint motion, the heating rate tends to become independent of Lundquist 

number, and that the magnetic energy production is also reduced significantly. We also 

present a comprehensive reprogramming of our simulation code to run on NVidia graphics 

processing units using the Compute Unified Device Architecture (CUDA) and report code 

performance on several large scale heterogenous machines. 

xi 



CHAPTER 1 

INTRODUCTION 

1.1 Coronal Heating 

The enormous energy content of high-beta photospheric plasma flows has long been 

suggested as the source of energy that ultimately heats the million degree solar corona. 

Unambiguously identifying the exact mechanisms that transfer this kinetic energy into the 

overlying solar atmosphere and the exact nature of how the coronal magnetic field responds 

and converts this energy into heat remains one of the longest standing issues in astrophysics. 

In this disseration we investigate an idealized model of the corona proposed by Parker 

(1972) which applies to closed magnetic field structures whose field lines are embedded at 

both ends in the solar surface. The corona is modeled in Cartesian geometry where an 

initially uniform magnetic field along the ez direction is "line tied" at z = 0 and z = L 

in perfectly conducting end-plates representing the photosphere. Parker suggests that slow 

and continuous random shuffling of the footpoints at these end-plates, representing the 

turbulent buffeting of the coronal field embedded in the convecting photosphere, can tangle 

the field into a braided structure of sufficient complexity such that it cannot settle into 

a continuous smooth equilibrium, but rather necessarily evolves to one with tangential 

discontinuities. Whether or not true current singularities (as opposed to current layers 

with finite thickness) can form in this scenario and whether or not continuous footpoint 

mappings necessarily imply a non-smooth topology has been the subject of intense debate 

in the decades that have passed since Parker's seminal proposal. Extended discussion of this 

matter is beyond the scope of the present analysis, but it is appropriate to reiterate here 

(c.f. Ng k, Bhattacharjee 1998) that this question is not merely of academic interest. That 

the plasma gradients will tend towards singularities has important bearing on the physics 

of magnetic reconnection and turbulence dynamics in the corona. The interested reader is 
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referred to Ng & Bhattacharjee (1998), Low (2010), Huang et al. (2010), Janse et al. (2010) 

and references therein. 

In a process Parker calls "topological dissipation", it is at these tangential discontinuities 

where the corona's small but ultimately finite resistivity induces the formation of current 

sheets where magnetic energy is dissipated to heat the coronal plasma, and where magnetic 

reconnection proceeds to reduce the topological complexity of the coronal magnetic field. 

This essential concept was further developed in a series of studies (Parker 1979, 1983a,b, 

1988, 1994) and has become known colloquially in the field as the "nanoflare model" of 

coronal heating. The appellation derives from the isolation of 1023 erg flares as the consti

tutive energy release events which occur in "storms" of sufficient ferocity to heat the corona 

and adequately account for observed conductive and radiative losses. While the concept of 

topological dissipation can be seen as the prototypical "DC" mechanism for coronal heating 

(c.f. Klimchuk 2006; Aschwanden 2004), the solar atmosphere surely admits more complex 

magnetic topology than is treated by the Parker model. In fact, many investigators have 

pursued reconnection based heating mechanisms using geometries that include separators, 

separatrices and magnetic-nulls (see Priest et al. 2005, and references therein), and more 

recently by analyzing the magnetic topology of active regions observed by TRACE (Lee 

et al., 2010). It remains clear however, that coronal loops are the basic building block 

of the solar corona, and their examination first as isolated entities is crucial in laying the 

foundations for a broader understanding of the corona and its activity (see Reale 2010 for 

a recent review). 

The work we present in this dissertation is motivated by a recent study (Ng &, Bhat

tacharjee, 2008) which developed a simplified version of the Parker scenario. The random 

braiding at the line tied ends was restricted to depend on only one coordinate transverse 

to the initial magnetic field. This strong assumption enables us to describe the complete 

dynamics of the system by a simple set of differential equations which are easily amenable 

to analytical and numerical solutions for prescribed footpoint motion. The geometric con

straints imposed by our assumption preclude the occurrence of non-linear effects, such as 

reconnection and secondary instabilities, but enables us to follow for long times the dissipa-
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tion of energy due to the effects of resistivity and viscosity. Using this model, it was shown 

both numerically and by scaling analysis that as long as the correlation time of turbulent 

photospheric flow (rc) is much smaller than the characteristic resistive time-scales (TR), 

ohmic dissipation becomes independent of resistivity (77). The absence of non-linear effects 

in this model allows the perpendicular magnetic field (B±) to grow to un-physically large 

vales and is found to scale as rf1!"1. It was further shown by a simple analytical argument 

that even in the presence of reconnection and secondary instabilities, the heating rate would 

remain insensitive to resistivity. It is this conjecture that we examine for this dissertation 

using three-dimensional hydromagnetic simulations. 

1.2 Structure of this Thesis 

In Chapter 2 we introduce the numerical scheme and simulation codes used for our coro

nal heating experiments (Section 2.2). We also motivate our adoption of GPU acceleration 

on heterogeneous architectures and give an account of our reprogramming experience (Sec

tion 2.3). We will report code performance using the latest generation Nvidia architectures 

on dedicated GPU workstations as well as several distributed memory GPU accelerated 

machines (Section 2.4). 

In Chapter 3 we present a careful analysis of the three-dimensional hydromagnetic sim

ulations and examine these, observing the conjecture put forth by Ng & Bhattacharjee 

(2008). We provide a detailed comparison of our results to those of Longcope k, Sudan 

(1994) who conducted a scaling study of Parker's model with Lundquist numbers spanning 

one order of magnitude. In this range they found that both heating rate and perpendicular 

field production scale as T? - 1 / 3 . These numerical results agreed with analysis based on the 

Sweet-Parker reconnection theory and measurements of current sheet statistics. We will 

show that we have recovered the scalings for heating rates and B± of Longcope & Sudan 

(1994) in the range they examined, and extending to lower 77, we will show results that sup

port a slower growth of B± which roughly scales as r/-1'5 and a heating rate that becomes 

insensitive to 77. We also demonstrate by simple scaling analysis that the transition between 

these scaling behaviors results from the diminishing effects of random photospheric motion 
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as the energy dissipation time-scale (TE) becomes much smaller than the correlation time 

(TC), in accordance with Ng & Bhattacharjee (2008). Section 3.2 describes the properties of 

the Parker model as it evolves in a statistical steady state. Section 3.3 gives the details of 

the simulation results and Lundquist number scaling. Section 3.4 presents a scaling analysis 

describing the transition in scaling behavior we observe. Chapter 4 describes preliminary 

results of an effort to detect and characterize dissipative structures in our hydromagnetic 

simulations of coronal heating. This analysis provides justification for assumptions made 

previously in the scaling analysis of Chapter 3. In Section 4.2, we describe an ad-hoc algo

rithm for current sheet detection which is robust to periodic boundaries and also introduce 

a procedure to measure sheet parameters in two dimensions. In Section 4.3, we present 

scaling analysis in support of the theory developed in Chapter 3. In sections 4.4 and 4.5, 

we briefly introduce the extension of the analysis to three dimensions and future prospects 

for investigating this aspect of the Parker model. 

We conclude the document by briefly motivating two new lines of investigation that 

will benefit from the theory and tools this dissertation develops. In Section 5.1.1, we intro

duce a possible mechanism for self-consistent generation of turbulent reconnection in high 

Lundquist number simulations of coronal loops and report initial proof-of-concept results. 

In Section 5.1.2 we discuss a possible extension of our analysis to include comparisons to 

flare frequency distributions and models of self-organized criticality. 

Before proceeding with the body of this thesis, the reader is encouraged to review the 

two papers mentioned above that provide the primary motivation and background for the 

current analysis. These are Ng & Bhattacharjee (2008) and Longcope &; Sudan (1994). 

Both can be considered required reading for a full appreciation of the work presented here. 



CHAPTER 2 

REDUCED MAGNETOHYDRODYNAMICS ON HETEROGENEOUS 
COMPUTING ARCHITECTURES 

2.1 Background 

The past few years have seen the rapid emergence of graphics processing units as hard

ware accelerators for general purpose computation and high performance computing. Com

putational scientists have benefited from GPUs in fields as diverse as geology, molecular 

biology, weather prediction, high energy nuclear physics (lattice QCD), quantum chemistry, 

finance and oil exploration. To understand the sudden popularity of the graphics processors 

for scientific computing, one can begin by distinguishing their development as throughput 

(tasks per fixed time) rather than latency (time per fixed task) driven architectures Garland 

k, Kirk (2010). Consider the problem of rendering a three dimensional object modeled as 

a polygon mesh (unstructured grid) in real time, where the smoothness of movement relies 

on a rendering speed that can match the human eye's refresh rate, and where the number 

of vertices defines the model's visual fidelity. The GPU is specialized for this, having been 

designed to render millions of pixels, performing several simple and identical operations for 

millions of vertices at a time. This is achieved by sacrificing traditionally latency oriented 

modules on the chips (out of order execution, sophisticated memory, caches, speculative 

execution), making space on the silicon die for a large number of relatively simple execution 

cores. 

The NVidia Fermi GTX 480 GPU for example fits up to 480 "shader cores" on a chip 

grouped into 15 "streaming multiprocessors" and clocked at 700 MHz. With a single clock 

cycle accounting for 2 floating point operations, this amounts to 1344.96 Gflops (Giga 

Floating Point Operations per Second) in single precision. Contrast this to an Intel Xeon 
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X5550 Nehalem 2.66GHz Quad Core CPU, which has a theoretical peak in single precision 

of 170.6 Gflops. 

Clearly there is enormous potential here from the raw number of floating point opera

tions available for the GPU. Problems that most benefit from GPU acceleration are those 

that exhibit a large level of data parallelism as one finds when rendering graphics. Al

gorithms exhibit data parallelism when a large set of data can be operated on by one or 

more operations simultaneously and are abundant in the fields of science and engineering. 

(This is as opposed to task parallelism, where distinct operations or sets of operations are 

performed on a set of data, same or not, in parallel.) 

Two important issues must be considered when deciding whether or not to pursue GPU 

acceleration. The first is that GPUs are connected to a CPU via the PCI Express (PCIe) 

BUS. PCIe is a widely supported expansion card standard that allows GPU cards (amongst 

many other types of cards e.g. high speed network cards, sound cards, TV cards, high speed 

solid-state hard disks etc.) to be connected to the computer's CPU via the PCIe BUS. (a 

BUS is a general term for circuits on a motherboard that connect computer components 

together ). While PCIe BUS speeds are typically much faster than typical computer network 

or Hard Disk access speeds, they are typically much slower than the speeds at which a CPU 

can access RAM memory. For this reason, for a code to see a significant advantage from 

GPU acceleration, one must be able to perform a large number of operations for each data 

transfer performed through the PCIe Bus. The ratio of number of operations performed 

for each word of data transferred is called arithmetic intensity. Maximizing it is one of 

the principal challenges of GPU coding, and for many problems, data transfers will simply 

be too costly for any significant acceleration to be seen. What's more, the on-board GPU 

memory is restricted to typically less than 2 GB for consumer grade graphics cards and 3-6 

GB for more costly dedicated research grade GPUs. For very large problems then, one may 

typically not be able to simply shuffle the entire problem onto the GPU card, but rather 

feed the GPU data parallel portions of a code piecemeal. 

A second important consideration is the cost of reprogramming the code. In the early 

years of GPGPU, programmers had to re-cast their science codes in terms of operations 
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Architecture (Model) 
G80(C870) 
GT200(C1060) 
GF100(C2070) 

GHz 
600 
600 
575 

Cores 
128 
240 
480 

Gflops SP(DP) 
518.4(0) 

933.12(77.76) 
1288(515.2) 

GB/s 
76.8 
102.4 
144 

Mem(Gb) 
1.5 
4 
6 

Table 2.1 Specifications for representative models for three NVidia GPU architectures. 
Gflops and GB/s are theoretical peak values. Note GF100 is the Fermi architecture. 

native to graphics APIs such as OpenGL, Cg, or DirectX9. While many researchers were 

successful in accelerating their applications (Owens et al., 2007), such specialized knowledge 

of graphics languages and the hardware they support proved a significant enough barrier to 

prevent more widespread adoption. 

Seeing the potential of general purpose GPU computing, NVidia released the first version 

of the Compute Unified Device Architecture (CUDA) in May 2007. CUDA is a parallel com

puting engine developed specifically for general purpose applications using NVidia GPUs. 

The architecture allows users to leverage the high throughput power by programming in 

the familiar ANSI C language rather than reverse engineer graphics languages. The CUDA 

programming model allows programmers to delegate serial tasks required by the CPU by 

usual C code while extensions to C are provided for programming GPUs to exploit data 

parallelism. CUDA (now version 4.0 as of this writing) provides libraries for basic linear al

gebra (CUBLAS), sparse matrices (CUSPARSE), random number generation (CURAND), 

standard templates (THRUST), and fast Fourier transforms (CUFFT) as well as tools for 

profiling (Compute Visual Profiler) and debugging (CUDA-gdb). 

CUDA has been supported on almost all NVidia GPUs shipped since its initial release. 

The three latest generations of NVidia GPU architecture have had variants that targeted 

the general purpose computing specifically, where video output modules (VGA out and 

DVI out ports) of graphics cards are replaced with additional on board memory. Together 

with the widespread availability of NVidia GPUs, the relative familiarity of the CUDA 

C programming interface, and the availability of these HPC targeted devices, the CUDA 

programming model has garnered a widespread following. It is currently taught at hundreds 

of universities around the world, and the HPC scholarly literature is now saturated with 

papers reporting GPU acceleration results. 
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Numerous widely used scientific codes have been ported to CUDA. These include for 

example S3D (combustion physics), CHROMA, MILC (lattice QCD), AMBER, NAMD, 

GROMACS (molecular biology). Currently, three of the five most powerful machines in the 

current Top 500 list (http://www.top500.org/, November 2011) are accelerated by GPUs 

and most HPC hardware vendors now carry NVidia GPU accelerated solutions. 

In computational plasma astrophysics, several groups have reported progress using GPU 

acceleration for magnetohydrodynamics (MHD) (Wong et al., 2009; Wang et al., 2010; Zink, 

2011), astrophysical gyro-kinetics (Madduri et al., 2011), and particle-in-cell simulations 

(Stantchev et al., 2008). The work we describe here is closest akin to that of Stantchev 

et al. (2009) and we were in fact initially motivated by their results. Using a G80 genera

tion NVidia GPU, compared with a single 3.0 GHz Intel Xeon using 10242 perpendicular 

resolution, they report an up to 14 x speedup for a Hasegawa-Mima equation solver and 

25-30 x speedup for a pseudo-spectral RMHD code in single precision and two dimensions. 

We describe in this chapter a full fledged three dimensional reduced MHD double-precision 

production code. 

In Section 2.2 we describe the reduced MHD approximation and the numerical scheme 

used to apply it to the Parker model. In Section 2.3 we motivate and present the compre

hensive reprogramming of this code for GPU acceleration on heterogenous architectures. 

In Section 2.4 we report code performance using the latest generation NVidia architectures 

on dedicated GPU workstations as well as several distributed memory GPU accelerated 

machines. The work we present in this chapter forms the basis of a refereed journal article 

(Lin et al. 2011). 

2.2 Reduced Magnetohydrodynamics and the Parallel Numerical Scheme 

The RMHD equations are a simplified version of MHD applicable to systems where 

the plasma is dominated by a strong guide field such that the timescales of interest are 

slow compared with the characteristic Alfven timescale (TA)- These restrictions also imply 

incompressibility (V • V = 0) and the exclusion of magnetosonic modes (leaving only the 

shear Alfven modes propagating parallel to the guide field in e2). The RMHD equations 

http://www.top500.org/
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were first derived for the study of tokamak plasmas by Kadomtsev k Pogutse (1974) and 

Strauss (1976). They can be written in dimensionless form as 

^ + [*,Sl] = g + [A,J]+1A72
1Sl (2.1) 

g + lM] = g + , V M (2.2) 

where A is the flux function so that the magnetic field is expressed as B = ez + B i = 

ez + Vj_^4 x ez; 4> is the stream function so that the fluid velocity field is expressed as 

v = V±4> x ez; Q, = — V2
L4> is the z-component of the vorticity; J = — V\A is the z-

component of the current density; and the bracketed terms are Poisson brackets such that, 

for example, [0, ̂ 4] = c/)yAx — 4>xAy with subscripts here denoting partial derivatives. The 

normalized viscosity (u) is the inverse of the Reynolds number (Rv), and resistivity (77) is 

the inverse of the Lundquist number (5). The normalization adopted in equations (2.1) 

and (2.2) is such that the magnetic field is in the unit of Bz (assumed to be a constant in 

RMHD); velocity is in the unit of VA = -Bz/(47rp)1/'2 with a constant density (p); length is 

in the unit of the transverse length scale Lj_; time t is in the unit of L±/VA', V is in the unit 

of 4-KVAL±/C2; and v is in the unit of PVAL±. 

Reduced magnetohydrodynamics has continued to see widespread use in the numerical 

investigations of astrophysical MHD turbulence (e.g. Miiller k Grappin 2005; Perez k 

Boldyrev 2010; Beresnyak 2011), and magnetic reconnection (e.g. Loureiro et al. 2009). 

They also form the basis of nearly all numerical simulations of the Parker scenario of coronal 

heating (see Rappazzo et al. 2010; Ng et al. 2011a, and references therein), and notably, 

recently extended for a density stratified treatment of coronal loops (van Ballegooijen et al., 

2011). 

The numerical scheme we employ in this work was adapted from Longcope k Sudan 

(1994) and Longcope (1993). The simulation domain is a rectangular Cartesian box of 

[Lz x L± x LjJ, permeated by guide-field Bz line-tied at both ends representing the pho

tosphere. Time integration is performed with a second-order predictor-corrector method. 

Perpendicular dimensions are bi-periodic for a pseudo-spectral scheme using standard two-
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Figure 2-1 The simulation domain is divided in to sub-cubes of size Ns = Nz/Np where Np 

is the number of MPI processors used. 

thirds rule de-aliasing, and in the parallel dimension, a second-order finite difference method 

is used. Using a scheme developed in Longcope (1993), randomized boundary motions are 

applied at both line-tied ends to mimic turbulent photospheric flows. Convergence analysis 

and accuracy as compared to finite difference schemes of an equivalent 2D pseudo-spectral 

scheme to the one used here are reported in Ng et al. (2008) and Ng et al. (2011b). 

The original code was written in Fortran, and parallelization is accomplished by domain 

decomposition in ez using Message Passing Interface (MPI) as shown in Figure 2-1. A 

simulation domain of resolution Nx x Ny x Nz is evenly divided into sub-cubes of size 

Nx x Ny x Ns where Ns = Nz/Np, Np being the number of MPI processors. In this 

scheme, the maximum number or processors is NP=NZ. The package is named the Reduced 

Magnetohydrodynamics Coronal Tectonics (RMCT) code following the language adopted 

by (Ng k Bhattacharjee, 2008). 

Typical resolutions used for our coronal heating scaling study range from 642 x 32 up 

to 10242 x 128 and as with many pseudo-spectral schemes, the 2D FFTs dominate the 

computational burden typically consuming between 60% and 90% of computation time for 

the resolutions we target. Figure 2-2 shows profiling results of a run with perpendicular 
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84 047% | B | a H B B | | a s g g ^ ^ ^ ^ 2 ^ ^ ^ S E ^ ^ H FOUR2 [{rmct2 f} {2549,7} {2640,9}] 
2 767% H REALF2 |{rmct2 f} {2420 7}-{2547,9}] 
1 967% i MPI_SendO 
1 857% 1 FXY [{rmct2f} {2710 7}-{2748.9}) 
1 421% I WPA[{rmct2f} {2781 7}-{2939,9}] 

1 29% Q RMCT2 NP [{rmct2f} {2,7}-{1116,9}] 
1 101% Q MPI_Ba?ner() 
1 083% 0 MPI_FinahzeO 
0 976% fl COLOF1 [{rmct2f} {2673,7}-{2708,9}] 

0 87% I TIMESI |{rmct2f} {2384 7}-{2418,9}] 
0 749% I AVG2 [{rmct2f} {2750,7}-{2779,9}] 
0 499% I COLOF [{rmct2 f} {2642,7}-{2671,9}] 

0 
0 202% 
0 197% 
0 191% 
0 116% 
0 072% 
0 072% 
0 054% 
0 054% 
0 046% 

MAX3Q |{rmct2f} {2063,7}-{2325 9}] 
MAXB [{rmct2f} {2357,7}-{2382,9}] 
MPIJnitO 
MPIRecvO 
ST1ME3 [{rmct2f} {1614,7}-{1638,9}] 
TOTALCE [{rmct2f} {1807,7}-{1842,9}] 
TOTALME [{rmct2.f} {1687,7}-{1723,9}] 
TOTALKE [{rmct2f} {1725,7}-{1765,9}] 
TOTALOE [{rmct2f} {1767,7}-{1805,9}] 
MPI Bcastf) 

Figure 2-2 TAU Profiling of original RMCT Fortran code at 1024 x 1024. 

resolution of 10242 using the TAU profiling suite (Shende k Malony, 2006), where the 

profiling is exclusive, meaning the timing of a particular routine does not include the time 

consumed by subroutines it calls. The FFT subroutine FOUR2 and its wrapper REALF2 

together occupy 86.8% of total runtime. 

For RMCT, we are most interested in the performance of the CUDA FFT library 

(CUFFT) compared to our original implementation. At the time of its writing, the origi

nal two dimensional FFT subroutine based on Numerical Recipes (Press et al., 1992) was 

comparable in performance to the industry standard FFTW (Frigo k Johnson, 2005) for 

the resolutions being considered. Subsequent releases of FFTW have featured the use of 

Streaming SIMD Extensions 2(SSE2), multi-threading (through Pthreads), and MPI for 

distributed memory parallelization. 

In Figure 2-3 (a) we compare the end to end speed of several FFTW implementations 

for two dimensional out-of-place, real-to-complex transforms to CUFFT. The comparisons 

were performed using FFTW 3.3 (released July 2011) on an Intel Nehalem 2.67 GHz quad-

core compiled with GCC 4.3.2 and CUFFT on a NVidia C2070 compiled with CUDA 4.0. 

Speeds were measured for resolutions ranging from 64 x 64 up to 4096 x 4096 by averaging 

over 512 individual FFT invocations for each resolution. 
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Figure 2-3 GPU (CUFFT) vs CPU (FFTW) comparison for real-to-complex 2-D FFTs. 

2.3 GPU implementation 

The choice of FFT program to adopt was mediated not only by considering overall 

speedup but also by considering ease of programming (the project was to be completed 

within a graduate student dissertation time-line). With relative ease, the RMCT code 

is adaptable to use the FFTW SSE2 implementation, and we use this as the basis for 

comparison in Figure 2-3 (b). Evidently this latest version will give a factor 5 improvement 

over our hand optimized Numerical Recipes subroutines, while going to 4 cores using a multi

threaded scheme (blue) yields an additional factor 2 to 3 for the two highest resolutions 

(while only marginal at lower resolutions). The CUFFT measurements are plotted both 

including PCIe memory transfer (purple) and without (green). The former yields roughly an 

order of magnitude improvement while the latter yields an approximately 20 x improvement 

over the base FFTW implementation and nearly two orders of magnitude improvement over 

our original subroutines. Also included here for completeness is Figure 2-4, which shows 

similar results but for complex-to-complex transforms (except for our original Numerical 

Recipes based subroutines). At the beginning of our re-programming effort, real-to-complex 

transforms were not yet implemented in CUDA, and the performance observed in Figure 2-3 

is what partially motivated us. We forgo any further discussion as the real-to-complex FFT 

performance is what is most relevant now. 
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Figure 2-4 GPU (CUFFT) vs CPU (FFTW) comparison for complex-to-complex 2-D FFTs. 

Given these remarkable speedups, we must also consider the limitations of Amdahl's law 

(Amdahl, 1967), which models the theoretical maximum code speedup given a projected 

improvement of a portion of a code (typically achieved through parallelization). In our 

code the FFTs typically consume 60 — 90% of total computation time. For 90% and a 

factor 10 improvement in FFT performance, the resulting overall ideal speedup would be a 

around a factor 5. For 60%, only optimizing the FFT kernel would yield roughly a factor 2 

improvement overall. 

The advantage of the CUDA approach is then evident, not only does it admit a pathway 

for vast improvement with FFTs, the MHD algorithm is otherwise dominated by point-wise 

arithmetic perfectly suited to the high-throughput GPU architecture. While vectorization 

via SSE2 on x86 architectures can potentially yield around a factor two improvement for 

typical kernels (take for example the computation of the Poisson Bracket), a relatively 

trivial CUDA port yields around a factor 20 improvement. 

Given these considerations, our strategy for a comprehensive reprogramming consists of 

the following: 

(a) Minimize the number of memory transfers and maximize the ratio of the number of 

FFT invocations and point-wise arithmetic kernel invocations per transfer. As evident 

in Figure 2-3 (b), simply replacing the FFTs in the original code with wrappers to 
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CUFFT invocations would yield a speedup of the order of what FFTW would give. 

Doing likewise for point-wise arithmetic would either not yield an improvement and 

might actually be detrimental in some cases. 

(b) Recycle memory of intermediate quantities. There is limited memory available on the 

GPU board so one must adequately budget memory allocated on board in such a manner 

as to observe (a). Herein is where much of the difficulty in the reprogramming endevour 

lies. The task is to identify where in the code there exist substantial computing pathways 

dependent on only a small set of allocated arrays. In practice, what was done was an 

initial allocation of a set of arrays (auxl, aux2,..., auxlO) which would, during the course 

of the algorithm, each sequentially embody the memory of several quantities, auxl 

would for example take on quantities a, b, and c which were never needed for the same 

kernel. Also, if a, for example, is not a derived quantity but rather one that is transferred 

from main memory, optimally, auxVs re-incarnation as b would not be done until a has 

completed its full life cycle (thus not requiring a subsequent transfer). Ultimately, this 

is a constrained optimization problem where the constraint is the memory available on 

the GPU and one tries to minimize the absolute number of transfers, maximize the 

number of kernel invocations per transfer, and maximize the number of incarnations 

an allocated portion of memory inhabits during a full computation cycle. Abstracting 

the problem to such a level where one could actually plug this into an optimization 

algorithm perhaps merits further investigation. However, we have taken instead the 

"artistic route" and leave optimization to the coder's insight and skill (or lack thereof). 

(c) Write simple kernels for point-wise arithmetic. Point-wise arithmetic is the bread and 

butter of stencil-operation based MHD codes, and CUDA implementations of such codes 

have been published (Wong et al. 2009; Wang et al. 2010; Zink 2011). It is tempting to 

say that such operations take a back seat in the current pseudo-spectral application to 

FFTs, but as we have seen Amdahl's law would require that these kernels also see full 

consideration. 
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(d) Preserve the underlying MPI decomposition. We are dealing here with two levels of par-

allelization, the first being the domain decomposition in z and the second through the 

many-core GPUs. The wide availability of multi-GPU workstations and GPU acceler

ated distributed memory machines warrants the pursuit of both parallelization methods 

in tandem. For this code, we pair one CPU core to one GPU, each core responsible for 

one sub-cube in the the z domain decomposition scheme. As mentioned in the preced

ing section, the extent of the decomposition is naturally limited in this scheme (as it 

stands) to Np = Nz. Further parallelization is certainly possible, but we defer this to 

future investigation as discussed in the chapter conclusion. 

Substantially more detailed discussion would not be helpful beyond examining the code 

itself. It suffices here to describe the result of porting a subroutine colofQ which calculates 

Fourier coefficients of the Poisson brackets by the collocation method and involves both 

point-wise arithmetic as well as an FFT invocation. The original Fortran subroutines is as 

follows: 

c 
subroutine colof(t1,t2,t3,t4,bpa,rt) 

real bpa(nln2),tl(nln2),t2(nln2),t3(nln2),t4(nln2),rt(nln2) 
integer i 

bpa » t2*t3 - tl*t4 
call realf2(bpa,l) 

c 
c transform back to Fourier space 
c 

bpa = bpa*rt 
return 
end 

c 

For the test case of 1024 x 1024 resolution, the colofQ subroutine typically consumes 

1.095 seconds per call inclusively (including the FFT subroutines realf2(), and 0.079 sec

onds per call exclusively, when counting only the point-wise arithmetic operations. The first 

t2*t3 — tl* £4 calculates the Poisson bracket in real space while the second bpa = bpa * rt 

applies a standards two-thirds de-aliasing mask once the array is taken to Fourier space. 
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Unsurprisingly the FFTs dominate, archetypal of the RMCT code profile as a whole. The 

equivalent code written in CUDA looks like the following: 

void colofC Real* tl_d, Real* t2_d, Real* t3_d, Real* t4_d, \ 
int NX, int NY, int NXNY, Real* rt, Real *aux, Complex *bpa,\ 

cufftHandle plan) 
•C 

int blocksize = bksze; 
int grid = NXNY/blocksize + (NXNY'/.blocksize==0?0:l) ; 
realComm_g<« grid, blocksize >»(tl_d,t2_d,t3_d,t4_d,NXNY,aux); 
cf ftf_w(bpa,plan) ; 
complexPtwsMlt_g«< grid,blocksize >»(bpa,NXNY,rt) ; 

} 

The subroutine is broken down into three CUDA kernel calls for realComm-g, cfftf-w, 

and complexPtwsMlt-g. realComm_g calculates the Poisson Bracket, cfftf-W is a wrap

per that invokes CUFFT kernels. Wrapping is done here both to simplify the syntax and 

legibility of the code as well as to provide instrumentation targets for the TAU profiling 

tools. complexPtwsMlt-g performs point-wise multiplication operations and is called here 

to apply the de-aliasing mask. The point-wise arithmetic kernels are written simply as 

follows: 

static device host inline Real realComm(Real al, Real a2, \ 
Real a3, Real a4) 

{ 
Real r; 
r=(a2*a3)-(al*a4); 
return r; 

} 
static device host inline Complex complexScaleCComplex a, Real s) 
{ 
Complex c; 
c.x = s * a.x; 
c.y = s * a.y; 
return c; 

} 
static global void realComm_g(Real* al, Real* a2, Real* a3, Real* a4, \ 
int size, Real *aux) 

{ 
const int numThreads = blockDim.x * gridDim.x; 
const int threadID = blockldx.x * blockDim.x + threadldx.x; 
for (int i = threadID; i < size; i += numThreads) { 

aux[i] = realComm(al[i] ,a2[i] ,a3[i] ,a4[i]) ; 
} 

} 
static global void complexPtwsMlt_g(Complex* aa, int size, Real* scale) 
{ 

const int numThreads = blockDim.x * gridDim.x; 
const int threadID = blockldx.x * blockDim.x + threadldx.x; 
for (int i = threadID; i< size; i += numThreads) { 

aa[i] = complexScale(aa[i] , scale[i] ) ; 
} 

} 
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It is not the goal here to provide a tutorial on CUDA programming, but rather to 

just give a flavor of what the equivalent syntax looks like and how the general code re

programming task is conducted. A useful introduction to CUDA programming would un

necessarily add several dozen pages to this document which would largely re-iterate the 

myriad of excellent programming guides available online and in print. Given the widespread 

access to the world wide web, self-containment of this document is not relevant. The 

interested reader is referred to Kirk k Hwu (2010) for a good starting point. We focus on 

performance here as compared to the original Fortran subroutine. 

The re-written colof function consumes 5109/us per call inclusively giving an over all 

factor 239 speedup over the original implementation. The real-to-complex CUFFT kernel 

is measured at 1748/iS per call. (This is somewhat slower than what is reported for this 

resolution in Figure 2-3 because the measurement was made using CUDA 3.1, while sub

stantial improvements have since been implemented as of CUDA 4.0.) There are two things 

to note here. 

Firstly, for this example, the FFT portion of the routine is sped up by two orders of mag

nitude. If one were only to re-implement the FFTs in CUDA, the resulting speedup factor 

for the entire routine would be roughly a factor 12.4. It is the additional re-implementation 

of the point-wise arithmetic that adds another factor 20 improvement. 

Secondly, if two orders of magnitude speedups are measured for this subroutine, archety

pal of the program as a whole, then are we to expect such amazing results for the end to 

end production code? As mentioned earlier in this chapter, and as in fact this short exam

ple illustrates, Amdahl's law ultimately prevails. Even if one portion of the code is made 

infinitely faster, the remainder of the code restricts the overall speedup factor. Most impor

tantly for our application, we have not considered here either CPU to GPU communication 

or inter-rank MPI communication overhead. 

As this example shows, the reprogramming of individual subroutines is fairly straight

forward. The true difficulty for this reprogramming task has been the budgeting of the 

limited on GPU memory in minute detail and the careful management of transfers between 

main memory and GPU memory, taking care to preserve a beneficial arithmetic intensity. 
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The fully re-programmed code is a mix of Fortran with MPI, C and CUDA. It is called 

from BASH shell scripts which coordinate runs and manage file storage and compression. 

Runs are broken up into sub-runs where a full data cube is written out at a prescribed 

cadence. Time-series of various quantities (total magnetic energy , kinetic energy, maximum 

current density, maximum vorticity etc.) are written out to file at a much higher cadence. 

Restarts are then possible from any of these sub-runs. Visualization and post-processing 

are carried out in IDL and VisIT. 

The re-programming effort has undergone several phases roughly in correspondence to 

new releases of the Compute Unified Device Architecture as well as NVidia GPU models. 

The first preliminary re-programming was conducted using CUDA 2.3 which was the first 

release to feature double-precision accelerated kernels in the CUFFT library. This re

programming was undertaken during a summer term (roughly 4 months). The results of 

this first port were rather encouraging as the code running on 2 GT200 series GPUs was 

able to match the performance of 16 nodes (32 AMD Athlon cores) of the Zaphod Beowulf 

cluster at the University of New Hampshire Space Science Center. Two major revisions of 

the code have since been undertaken. The first major revision (hereafter called Revision 

1) was done to reduce the on GPU memory footprint. At a resolution of 5122 x 32 , the 

entire problem fits on 2 GPUs each bearing 1.4 Gb. For each predictor step for example, 

half of the simulation domain (5122 x 16) would be uploaded at the start of the program 

and processed before the entire half domain is offloaded again for exchanging of ghost cells 

after which a similar process is done for the corrector step. Such a strategy was clearly not 

possible on two GPUs when going to a resolutions of 10242 x 128 or higher. The general 

strategy was to shuffle the Nz/Ns layers of each sub-domain individually to and from the 

GPUs rather than as an entire block for each predictor or corrector step. We reduced the 

GPU memory footpoint to be able to fit 20482 on a Tesla C1060 card (4 Gb). This required 

not just individual transfers at the start and end of a predictor or corrector step, but also 

careful coordination to refill memory buffers once quantities had reached their useful life 

cycle as described above. This resulted in various data shuffles and recycled memory buffers 
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rank=np-l 

Figure 2-5 This flow chart shows the general structure of the RMCT CUDA package 

within the main body of the code. Implementing this scheme while maximizing arithmetic 

intensity was the principle challenge of the effort. 

A second major revision (Revision 2) was undertaken after the release of CUDA 3.2 

which featured real-to-complex transforms in CUFFT. The initial CUDA 2.3 release fea

tured only complex-to-complex transforms while two subsequent releases featured real-to-

complex transforms as only wrappers to complex-to-complex transforms. CUDA 3.2 fully 

exploits the roughly factor 2 reduction in both computation and storage cost of considering 

hermitian symmetry of real transforms. The revision not only accommodated the use of 

real-to-complex transforms but also allowed further optimization of the data shuffling and 

memory recycling scheme. The additional memory savings were tuned so that perpendicular 

resolutions of 40962 could fit on the 5.25 Gb available on NVidia C2070 GPUs. 

Figure 2-5 shows a flow-chart of the general scheme of the code package. The flow

chart is a hybrid schematic which shows both the general life-cycle of the simulation (white 

arrows) as well as memory transfers (green arrows). Dotted green arrows show intra-rank 
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void cffti_wlComplex *, cufftHandle) C [{rmct2-aux-w.c} { 260 ,1 } - {263 ,1 } ] 
RMCT2_PRED_W [{ rmct2. f } {36B6 ,7 } - {3727 ,9 } ] 
void cmcpyon_w(Real *, Real *, int) C [{rmct2-aux-w.c} { 266 ,1 } - {269 ,1 } ] 
void cfftf_w(Complex *, cufftHandle) C [{rmct2-aux-w.c} { 253 ,1 } - {256 ,1 } ] 
RMCT2_CORR_W [{ rmct2. f } { 3733 ,7 } - {3773 ,9 } ] 
MPI_Bcast() 
void ltransfon_w(Real (*)[134348832], Int, int, Real *, Real *, Complex* cu 
void cmcpyoff_w(Real *, Real *, int) C [{rmct2-aux-w.c} { 272 ,1 } - {275 ,1 } ] 
MPI_Waitall() 
RMCT2_NP [ { rmct2. f } { 2 , 7 } - { 1546 ,9 } ] 
void ltransfoff_w(Real (*)[134348832], int, int, Real *, Real *, Complex *, cu 
WPA[ { rmct2 . f } {3231 ,7 } - {3389 ,9 } ] 
READM [ { rmct2. f } {1947 ,7 } - {1996 ,9 } ] 
MPI_Finalize() 
void r2c wtReal *, Complex *, int, int, int) C |{rmct2-aux^w.c} {278 ,1 } - {281 
MPIJnitO 
void fxywfComplex *, Complex *, Real *, Real *, Real *, Real *, int, int, int, c 
void complexPtwsMlto_w(Complex *, Complex *, int, Real *) C | {rmct2-aux-w 
void calc_pc_w(Complex *, Complex *, Complex *, Real *, Complex *, Real *, 
MPIJsendO 
void tot fejw(Real !* ) [134348832], Real (*) [134348832], Real *, Complex », 
KXKYK2 ! { rmct2. f } {2078 ,7 } - {2123 .9 } ] 
MPI_Reduce() 
MPI_Comm_createO 
MPIJrecvO 
GETNF [ { rmct2. f } {1635 ,7 } - {1664 ,9 } ] 
MPI_Comm_group() 
MPI_Group_range_incK) 
MPI_Comm_rank() 
MPI_Comm_size() 
GDT [ { rmct2. f } {1606 ,7 } - {1633 ,9 } ] 
CN [ { rmct2. f } { 3605 ,7 } - {3628 ,9 } ] 

Figure 2-6 TAU Profiling of CUDA RMCT port for resolution 1024 x 1024. 

memory transfers while thick green arrows show inter-rank transfers. Note, these are not 

individual transfer events, but rather ensembles of transfers just represented schematically. 

A full description would render this chart even more illegible. White arrows begin and 

end in code blocks which are color coded according to the language they are written in 

(Brown=Bash, Violet=Fortran, Green=MPI, and Orange=CUDA). The green arrows begin 

and end in blue columns each representing each type of memory (Hard Disk, Main Memory 

(RAM), and GPU Memory). 

Writing out full data cubes to the Hard Disk is actually the most expensive single task 

in the program, however, this is only executed at a prescribed cadence typically of the 

order of 1 full output for every 1000-10000 time-steps. Given that the CFL condition limits 

the time-steps to much smaller than the dynamical time-scales of interest, the cadence is 

largely at the discretion of the user. Setting this cadence is important when considering 

for example: rendering visual animations, job-queuing on large scale parallel machines, 

and post processing tasks like current sheet characterization which we describe in detail in 

Chapter 4. Writing time series data to disk is relatively cheap and done at a much higher 

cadence, typically once every 50 to 100 time steps. 
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Figure 2-6 shows profiling results (exclusive) for the code after the first major revi

sion. The profile is no longer completely dominated by the FFTs (Figure 2-2), but rather 

they occupy less than a third of total run time (summing cfftf.w and cfftijw). CPU -

GPU transfers (cmcpy-on and cmcpy-off) occupy roughly 25% of total time while MPI 

communication takes less than 15%. The remaining GPU tasks (mostly dominated by point-

wise arithmetic kernels) are included in RMCT.PREDJV and RMCTJJORR-W totaling 

roughly 22%. The remainder here are I/O tasks and initialization overhead which can be 

rendered essentially negligible choosing an adequate sub-run cadence as just discussed. 

This new rough equipartition in computing budget makes it possible to achieve a useful 

optimization to the code from a variety of perspectives now. It is no longer the case that 

only upgrading the FFT implementation would give a useful speedup. Rather, addressing 

any one of these code aspects merits consideration, be it through new hardware (faster CPU-

GPU bus speed, faster interconnect, more powerful GPU) or further re-coding (further MPI 

decomposition, optimizing the arithmetic kernels, asynchronous GPU transfers, intra-GPU 

transfers, concurrent kernels etc.) Before further discussion of future code enhancements, 

we first present end-to-end code performance of current production versions of the RMCT 

CUDA code on a variety of hardware configurations. 

2.4 Code Performance and Scaling 

The effective equivalence of 2 GT200 generation NVidia GPUs with 32 AMD Athlon 

cores measured with the preliminary version of the CUDA RMCT port set an encouraging 

precedent for what we could expect from further development. Plotted in Figure 2-7 are 

wall clock timings for full production versions of RMCT at three resolutions: 5122 x 64, 

10242 x 128, and 20482 x 256. These measurements exclude I/O tasks and were measured 

by manually instrumenting the code with built-in GCC timing tools in Fortran. 

Measurements were made for each of five machines whose relevant specifications are sum

marized in Table 2.2. For a base-line comparison we use Carver, an IBM iDataplex tradi

tional CPU cluster at the National Energy Research Scientific Computing Center (NERSC) 

on which we have achieved the best performance thus far with the original version of the 
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code. Carver hosts a GPU testbed cluster named Dirac which accelerates each of 44 nodes 

with a single NVidia C2050 GPU. A larger dedicated GPU production cluster at the Na

tional Center for Supercomputing Applications (NCSA) was available through TeraGrid, 

and paired 96 S2070s (4 GT200 GPU module) with 192 nodes. A dedicated GPU accel

erated desktop workstation was acquired for this project and is running at the University 

of Alaska Fairbanks with four C2050 GPUs. The most powerful machine on which we 

have tested is the Keeneland Initial Delivery System hosted at the National Institute for 

Computational Science (NICS) and Georgia Tech. It features 120 nodes each accelerated 

by 3 C2070s , and is to be expanded to a full production system for TeraGrid (now called 

XSEDE) using next generation NVidia GPUs in the coming year. 

In Figure 2-7, Carver measurements are plotted with horizontal dashed lines labeled with 

the number of cores used for the run. The labels are color coded to indicate resolutions: 

5122 x 64 (Green), 10242 x 128 (Blue), 20482 x 256 (Red). A similar color scheme is employed 

for the GPU machine scaling results. Increasing the resolution here from 5122 x 64 to 

10242 x 128 we see that we get a factor ~7.6 increase in time per simulation step and 

another factor ~6.3 going up to 20482 x 256. As we have described above, the original code 

scales up to Np = Nz. 

Using Revision 1 of the CUDA code (memory optimized) measurements were made for 

NCSA/Lincoln. On this machine, the code scales reasonably well up to 128 GPUs (64 for 

the smallest resolution case). Using Revision 2 of the CUDA code (memory optimized + 

real-to-complex CUFFTs) we have measurements for the UAF workstation (open circles) 

with 4 GPUS, NERSC/Dirac up to 32 GPUs, and up to 264 GPUs for NICS/Keeneland. 

Note we have used slightly larger grids for Keeneland to accommodate for the 3 GPUs per 

node configuration. With this version we have the remarkable result of being able to match 

or exceed the performance of NCSA/Carver at full scale at the three resolutions considered 

(up to 256 cores using the highest resolution) using a 4 GPU desktop workstation. 

It is important to consider here that this original Fortran implementation does not 

employ parallel FFTs and does not use the industry standard FFTW package. Therefore, 

at a resolution of 10242 x 128 for example, the code will scale at most to 128 CPU cores given 
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Figure 2-7 Strong scaling of RMCT CUDA on various large scale distrubuted memory 
machines. Horizontal lines correspond to the best performance of the original Fortran/MPI 
code on NERSC/Carver. Open circles show measurements on the 4 GPU workstation at 
the University of Alaska Fairbanks Geophysical Institute. 

the simple domain decomposition scheme. We have admittedly not exhausted all avenues 

for further optimization. As evident in Section 2.3 significant speedups may be pursued 

by using SSE and multi-threading enabled FFTW with the latest release (FFTW 3.3 July 

2011). Exploiting SSE2 for the remaining computational code also merits consideration. 

The same however, can be said of the CUDA implementation. The Fermi architecture 

enables concurrent kernel execution admitting a further pathway to on GPU parallelization. 

Significant savings can also be made by combining simple point-wise arithmetic into more 

complex kernels minimizing thread launching overheads. Several third-party GPU FFT 

implementations exist which report improvements in speed for large transform sizes. With 

CUDA 3.2 (November 2010), the CURAND library allows for on GPU random number 

generation, precluding the need of the Fortran based serial CPU generator. In fact, a 
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Name 
Carver/NERSC 
Lincoln/NCSA 
Dirac/NERSC 
UAF Workstation 
Keeneland/NICS 

CPU 
Nehalem(8 core)2.67 GHz 

Harpertown(4 core)2.33GHz 
Nehalem(8 core)2.67 GHz 
Gulftown(12 core)2.8 GHz 
Westmere(6 core)2.67 GHz 

Nodes 
400 
192 
44 
1 

120 

GPUs 
None 

96 x S1070 
44 x C2050 
4 x C2050 

360 x C2070 

Network 
QDR 
SDR 
QDR 

-
QDR 

Table 2.2 Specifications for Carver/NERSC and several GPU accelerated machines. 

complete re-write of the Fortran/MPI portion of the code into C/MPI would itself prove 

beneficial. Although virtually no overhead is incurred by calling C from Fortran, the CUDA 

porting was done in such a way as to preserve the original MPI implementation as well as 

I/O interface. Because of this the predictor corrector steps were coded as separate C-

functions which would each re-initialize several values and re-transfer certain quantities for 

each time-step. These extraneous re-initializations and transfers actually account for about 

25% of all transfers. CUDA 4.0 (May 2011) also features GPU-to-GPU transfers, which 

would preclude then need for CPU-GPU transfers for exchanging ghost cells altogether. 

With these caveats stated we can make general qualified statements that directly com

pare the CPU only and CPU-GPU codes. As the codes currently stand, the CUDA port 

on Lincoln/NCSA at full scale is able to achieve roughly an order of magnitude speedup 

compared with Carver. Considering the performance of the code on the UAF workstation, 

the chip-to-chip equivalence is roughly 4, 8, and 16. As expected, the possibility of exposing 

maximal fine-grained parallelism given finer grids improves the potential for increasing this 

equivalence ratio. Actually observing an increase in this ratio then attests to the quality of 

the re-coding effort. At full scale on Keeneland, using the Fermi class GPUs and Revision 

2, the code is able to achieve up to a 30 x speedup beyond what was previously achieved on 

Carver. 

2.5 Current Status and Future Work 

Reporting on code performance when going to new computing architecture as we just 

have is a thorny issue. Given the significant cost of acquiring and operating computing 

hardware, be it for a small academic research group or at large scale for a government 
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research lab, together with the significant time investment required to re-program large 

production codes, it is necessarily contentious. The sunk costs and opportunity costs for the 

programmer who has invested substantial effort in a recoding project can illicit a somewhat 

protective response to criticism of optimization results, and at worst a subjective reporting 

of code performance. 

This has been an issue since the early days of high performance computing on large 

scale distributed memory architectures. A classic paper in the field (Bailey, 1991) is en

titled "Twelve Ways to Fool the Masses When Giving Performance Results on Parallel 

Computers." Of the twelve ways stated, we are in the most danger of being guilty of two. 

"2. Measure parallel run times on a dedicated system, but measure conventional run times 

in a busy environment." We have given results for the dedicated 4 GPU workstation at 

UAF and compared them to measurements on Carver which during the timing runs was 

in full production. It could be argued however, that this is in fact a deserved advantage 

of the GPU approach, where a large part of the motivation to purchase such a dedicated 

machine is to in fact avoid contention with other jobs be it during queuing or during run

time. "6. Compare your results against scalar, unoptimized code on Crays." In a modern 

interpretation, we are comparing our GPU results to a not fully optimized traditional par

allel implementation. As just stated in the previous section, neither code is fully optimized 

for their target architecture. A recent paper by researchers at the Intel corporation "De

bunking the 100X GPU vs. CPU myth: an evaluation of throughput computing" on CPU 

and GPU" addresses this exact issue, claiming that in light of the PCIe memory transfer 

overhead, most applications would see a roughly 2.5x improvement in performance and at 

most a factor 14x improvement. NVidia researchers responded in kind with a short online 

public relations article entitled "GPUs are only up to 14 times faster than CPUs says Intel" 

(Keane, 2010) which then proceeded to list 9 research papers reporting greater than 100X 

speedups. We will take no sides here or beleaguer the points any further but rather just 

refer the reader to Bailey (2009) and Hager (2010) which both give updated versions of the 

classic Bailey paper which consider the current surge of interest in heterogenous high per-
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formance computing. They delineate guide-lines to prevent abuse and misleading reporting 

of code performance in light of GPU hardware acceleration. 

While we cannot give definitive numbers regarding chip-to-chip comparisons, what we 

do report here is a comparison of currently practically deployable codes. The coronal 

heating scaling experiment presented in the next chapter was largely undertaken using 

the original Fortran code on conventional hardware. The computational campaign was 

completed roughly over the course of a year and a half at two academic computing clusters, 

Midnight at the Arctic Region Supercomputing Center and Zaphod at the University of New 

Hampshire Space Science Center. The reprogramming of the code for CUDA was conducted 

while this computational campaign was well underway. It has since been deployed for 

production on two machines presented in this chapter UAF workstation and NCSA/Lincoln, 

running at the highest resolution 10242 x 128 to be included in the coronal heating study. 

NCSA/Lincoln was made available through a TeraGrid allocation of 500,000 SUs of which 

two-thirds were consumed before the machine was retired in April 2011. A renewal allocation 

of 600,000 SUs has been awarded on NCSA/Forge which features 38 nodes each equipped 

with 8 M2070 GPUs and replaced NCSA/Lincoln during Summer 2011. The renewal request 

focuses on a novel application of the RMCT CUDA code, self-consistent generation of MHD 

turbulence in high Lundquist number coalescing flux tubes. Because we target 20482 x 256 

for this project the issue of data management and post processing requires attention given 

that a single sub-run for this project can require 30 GB storage. In the closing chapter of 

this document, we provide brief discussion of preliminary results of this project as well as a 

novel strategy of run-time post processing, where other-wise fallow CPU-cores are used to 

perform post processing tasks while co-processing GPUs are in production. 

Currently, code development is being performed on the Keeneland Initial Delivery Sys

tem with a program director discretionary allocation. This machine is set to be substantially 

expanded in early 2012 and integrated into TeraGrid (now called XSEDE) for production 

allocations. A projected 10-20 Petaflop class GPU accelerated machine named Titan will be

gin to come online in the same time-frame at Oak Ridge National Laboratory. The machine 

will be an upgrade of Jaguar (currently # 3 on the Top 500 list) and likely be accelerated by 
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Nvidia's forthcoming Kepler series GPU, which will feature three times the double-precision 

performance per watt of the current NVidia Fermi architecture. Depending on budgeting 

considerations currently being deliberated, Titan might allow the United States to regain 

the top spot in the Top 500 list. The machine is to be made available through the De

partment of Energy Novel Computational Impact on Theory and Experiment (INCITE) 

program. 



CHAPTER 3 

HIGH LUNDQUIST NUMBER SCALING IN THE PARKER 
SCENARIO 

3.1 Introduction 

The work we present in this chapter is motivated by a recent study (Ng k Bhattachar

jee, 2008) which developed a simplified version of the Parker scenario for coronal heating 

(Parker, 1972). As we discussed in the introductory chapter, Parker's model applies to 

closed magnetic field structures whose field lines are embedded at both ends in the solar 

surface. The corona is modeled in Cartesian geometry where an initially uniform mag

netic field along the ez direction is "line tied" at z = 0 and z = L in perfectly conducting 

end-plates representing the photosphere. Parker suggests that slow and continuous random 

shuffling of the footpoints at these end-plates, representing the turbulent buffeting of the 

coronal field embedded in the convecting photosphere, can tangle the field into a braided 

structure of sufficient complexity such that it cannot settle into a continuous smooth equi

librium, but rather necessarily evolves to one with tangential discontinuities. It is at these 

discontinuities where current sheets form to heat the plasma ohmically, and where magnetic 

reconnection proceeds to reduce the topological complexity of the magnetic field. 

Ng k Bhattacharjee (2008) simplify this model by restricting the random braiding at the 

line tied ends to depend on only one coordinate transverse to the initial magnetic field. This 

strong assumption enables a description of the complete dynamics of the system by a simple 

set of differential equations which is easily amenable to analytical and numerical solutions for 

prescribed footpoint motion. The geometric constraints imposed by the assumption preclude 

the occurrence of non-linear effects, such as reconnection and secondary instabilities, but 

enables us to follow for long times the dissipation of energy due to the effects of resistivity 

and viscosity. Using this model, Ng k Bhattacharjee (2008) show both numerically and by 

28 
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scaling analysis that as long as the correlation time of turbulent photospheric flow (rc) is 

much smaller than the characteristic resistive time-scales (TR), ohmic dissipation becomes 

independent of resistivity (77). The absence of non-linear effects in this model allows the 

perpendicular magnetic field (B±) to grow to un-physically large vales and is found to scale 

as rf1'2. It was further shown by a simple analytical argument that even in the presence 

of reconnection and secondary instabilities, the heating rate would remain insensitive to 

resistivity. It is this conjecture that we examine here using three-dimensional hydromagnetic 

simulations. 

The Parker model has been studied extensively using three-dimensional MHD numerical 

simulations (Mikic et al. 1989; Longcope k Sudan 1994; Einaudi et al. 1996; Hendrix et al. 

1996; Galsgaard k Nordlund 1996; Dmitruk et al. 1998; Gomez et al. 2000; Rappazzo et al. 

2008, 2010 amongst others). Here, we are interested in the precise scaling of dissipation 

with respect to plasma resistivity. Our study is most similar in design to that of Longcope k 

Sudan (1994) who used reduced MHD to simulate Parker's model with Lundquist numbers 

spanning one order of magnitude. In this range they found that both heating rate and 

perpendicular field production scale as v^1^. These numerical results agreed with analysis 

based on the Sweet-Parker reconnection theory and measurements of current sheet statistics. 

In this chapter, we will show that we have recovered the scalings for heating rate and 

B± of Longcope k Sudan (1994) in the range they examined. Also, when extending to 

lower 77, we will show results that support a slower growth of B±, which roughly scales as 

77"""1/5, and a heating rate with a much weaker dependence on 77. 

We also demonstrate by simple scaling analysis that the transition between these scaling 

behaviors results from the diminishing effects of random photospheric motion as the energy 

dissipation time-scale TE becomes much smaller than the correlation time rc, in accordance 

with Ng k Bhattacharjee (2008). 

The chapter is organized as follows. Section 3.2 describes the properties of the Parker 

model as it evolves in a statistical steady state. Section 3.3 gives the details of the simulation 

results and Lundquist number scaling. Section 3.4 presents a scaling analysis describing the 

transition in scaling behavior we observe. 
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3.2 Statistical Steady State 

Our principal aim is a continuation of Ng k Bhattacharjee (2008) who conjecture that 

for sufficiently small rcoh compared with TR , regardless of the specific saturation level of 

B± of the mechanism causing the saturation, the ohmic dissipation will become insensitive 

to resistivity. The numerical code described in Section 2.2 was run in a range of 77 spanning 

two orders of magnitude. The basic parameters and results in this scaling analysis are 

summarized in Table 3.1. It is crucial to the scaling study that we obtain good statistics 

when averaging over time evolution in statistical steady state. As with previous long time 

integration studies of the Parker model, the runs are started with a vacuum potential field 

(just a uniform guide field in ez). After a time of the order of the resistive diffusion time, 

the system will evolve to a statistical steady state. 

Figure 3-1 shows the intermittent nature of various quantities in time for runs R5(Blue) 

and R12(Red) (see Table 3.1). Figure 3-1 shows total magnetic energy (a), maximum 

current density (b), ohmic dissipation (c), and B± (d). In each of these quantities, we see 

that the lower 77 case (R5) saturates to larger levels. These figures are discussed at length 

in the next section. For brevity, we only summarize some salient properties of this steady 

state already discussed extensively by previous investigators : 

1. Energy conservation: The Poynting flux injected at the photosphere is eventually 

accounted for completely by either numerical or explicit dissipation (both resistive 

and viscous) (Longcope 1993; Longcope k Sudan 1994; Rappazzo et al. 2008; Hendrix 

et al. 1996; Galsgaard k Nordlund 1996; Rappazzo et al. 2010). Note that in these 

simulations, energy essentially disappears in the system once dissipated. No energy 

term or transport equations are included. This is perhaps the primary weakness of 

this model, as it prevents the model from predicting temperature and density profiles, 

which can be directly compared with observations. Energy is dissipated impulsively, 

as Poynting flux injection progressively braids the fields, energy is built up until 

an instability drives current sheet formation and reconnection, after which energy is 

released in a short time. 
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2. Partition of Energy: Most energy is not kinetic but rather contained in the magnetic 

field and most energy is lost via ohmic dissipation. 

3. Not a Markovian process: Both Longcope (1993) and Hendrix et al. (1996) showed 

that singular current layers do not form directly at the sites of (and as a result of) 

footpoint displacements, but it is rather the ensuing dynamics of the tangled magnetic 

field that ultimately gives rise to current sheets. 

4. Turbulence has been studied in various numerical experiments of Parker's model (Hen

drix et al. 1996; Dmitruk et al. 1998; Rappazzo et al. 2008). As with Hendrix et al. 

(1996), energy spectra in our simulations are largely exponential during relatively 

quiescent periods with little or no impulsive energy release, but become progressively 

shallow power laws during particularly intense current sheet disruption events. Similar 

to their study however, computation grid resolutions available up to now only allow 

us to resolve a few decades of the developing energy cascade. The latter two studies 

used continuous boundary flows, which induced persistent turbulent states. While it 

seems that turbulence plays just a minor role in our present analysis, it is believed 

by many investigators to have a crucial role in determining the speed of magnetic 

reconnection. We discuss this further in Section 3.5. 

3.3 Scaling Measurements 

We have performed a series of simulations using our 3D RMHD code described in Sec

tion 2.2, using a range of 77 spanning two orders of magnitude to study scaling laws. Ex

tending the range in 77 by an order of magnitude beyond what was studied by Longcope 

k Sudan (1994) poses a significant challenge. As the dissipation coefficients (77 and u) get 

smaller, higher resolutions have to be used to resolve smaller scales. 

The range of 77 has been extended to lower values (with rc = 10 <S r r) for about an order 

of magnitude as compared with the study in (Longcope k Sudan, 1994), which stopped at 

77 ~ 10~3. This extension, of course, requires significant increase in resolution, with our 

highest resolution case at 10242 x 128 so far, as compared with 482 x 10 in (Longcope k 
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Figure 3-1 Plots (a),(b),(c) (d) and, (f) show time series of various quantities for runs 
R5 (Blue) and R12 (Red). In (a), green and orange corresponds to EK for R5 and R12 
respectively while blue and red show EM- For plot (d), solid lines show W and dotted 
lines show I. For run R3 (e), shows -W = -(Wv + W„) (Blue), / (Pink), d(EM + EK)/dt 
(Purple), and the difference between the right and left hand sides of Eq. 3.1 (Green). 
Parameters used for these runs can be found in Table 3.1. 
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Figure 3-2 3D iso-surfaces of J at a time taken from the R7 run. Both figures are from the 
same time sample for the R7 run. The left panel shows iso-surfaces at J = —60, —24,24,60 
while the right panel shows iso-surfaces at J = —36, —12,12,36. Blue and green iso-surfaces 
are made semi-transparent for greater visibility. 

Sudan, 1994). The main difficulty in performing these simulations is the requirement to run 

up to hundreds or even thousands of Alfven times in order to obtain good statistics of the 

average quantities under the driving of random boundary flow. The basic parameters and 

results in this scaling analysis are summarized in Table 3.1. 

It is crucial to the scaling study that we obtain good statistics averaging over time 

evolution in statistical steady state. As with previous long time integration studies of 

the Parker model, the runs are started with a vacuum potential field in ez. After initial 

transients, the system will evolve to a statistical steady state. As mentioned above, thin 

current layers are formed and dissipated repeatedly during this statistical steady state. 

Figure 3-2 shows 3D iso-surfaces of J at a time taken from the R5 run, when there is 

a larger number of current sheets. This process is repeated indefinitely as the random 
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boundary flows keep twisting the magnetic fields. The energy of the system is dissipated 

impulsively. As Poynting flux injection progressively braids the fields, energy is built up 

until an instability drives current sheet formation and reconnection, after which energy 

is released in a short time. This is a major characteristic of the statistical steady state. 

Figure 3-1 shows the intermittent nature of various quantities in time in the unit of the 

Alfven time TA, (the time it takes for Alfven waves travel the distance of L = 1 between 

the two boundary plates along z) for runs R5(Blue) and R12(Red) (see Table 3.1). 

Figure 3-1 (a) shows the total magnetic energy EM — fT5\d3x, as well as total kinetic 

energy EK = fv^d^x, where the integration is over the 3D simulation box. Note that 

the magnetic energy does not include the contribution from the Bz component, which is 

constant in the RMHD model. Since the applied photospheric flow is chosen to be small 

(less than one tenth) compared with the Alfven speed (with rc = lOr^), the magnetic field 

configuration maintains quasi-equilibrium for most of the time, excpet when strong current 

sheets episodically form and induce instabilities and strong dissipation. Therefore, EM is 

usually much larger than EK- Figure 3-1 (b) shows the maximum current density Jmax 

over the whole 3D volume. Jmax increases over an order of magnitude on average in R5 

compared with R12, and also fluctuates in time over a much larger amplitude. Observing 

Figures 3-l(a) and 3-l(b), note that the ratio of the increase in Jmax is much larger than 

the ratios of the increases of both EM and EK as 77 decreases. 

Figure 3-1 (c) shows the Ohmic dissipation Wv = 77 J J2d3x. Similarly, there is also 

energy dissipated by the viscous effect, with a rate of Wu = v fQ^d^x (not shown). For 

the same reason that EK is much smaller than EM, the viscous dissipation is much smaller 

than the Ohmic dissipation if we choose numerically v = 77 (Prandtl number equal to unity), 

which holds for most of our simulations. The total energy dissipation rate (heating rate) 

in this case is dominated by Ohmic dissipation. If we use v values much greater than 

77 however, as we have in some of our trial runs, viscous dissipation can become a more 

significant fraction of the Ohmic dissipation. From the plot of Wv, we see that it fluctuates 

a lot in time. However, we can also see that it is fluctuating around a certain level, which 

is a little higher for R5 than R12 due to smaller resistivity. 
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Table 3.1. Summary of Numerical Runs 

Run 

RO 
R l 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
RIO 
R l l 
R12 
R13 
R14 
R15 
R16 
R17 

V 

0.00015625 
0.00015625 
0.00015625 
0.00015625 
0.00031250 
0.00031250 
0.00031250 
0.00062500 
0.00062500 
0.0012500 
0.0012500 
0.0025000 
0.0050000 
0.0100000 
0.020000 
0.040000 
0.080000 
0.000078135 

V 

0.00015625 
0.00015625 
0.00062500 
0.00062500 
0.00031250 
0.00031250 
0.00062500 
0.00062500 
0.00062500 
0.0012500 
0.0012500 
0.0025000 
0.0050000 
0.0100000 
0.020000 
0.040000 
0.080000 
0.000078135 

B_L 

0.540 
0.537 
0.610 
0.614 
0.492 
0.503 
0.502 
0.449 
0.448 
0.372 
0.371 
0.279 
0.183 
0.103 
0.0547 
0.0307 
0.0197 
0.537 

s± 

3450 
3440 
3900 
3930 
1570 
1610 
1610 
718 
717 
298 
297 
112 
36.7 
10.3 
2.73 
0.767 
0.246 
6880 

w„ 
0.0444 
0.0468 
0.0513 
0.0498 
0.0433 
0.0452 
0.0431 
0.0416 
0.0399 
0.0370 
0.0373 
0.0299 
0.0215 
0.0132 
0.00822 
0.00623 
0.00550 
0.0467 

wu 

0.0102 
0.0127 
0.0283 
0.0275 
0.00792 
0.00941 
0.0111 
0.00540 
0.00502 
0.00332 
0.00336 
0.00272 
0.00317 
0.00394 
0.00511 
0.00544 
0.00612 
0.0158 

Poynting 

0.0586 
0.0546 
0.0519 
0.0458 
0.0491 
0.0478 
0.0467 
0.0427 
0.0401 
0.0385 
0.0411 
0.0311 
0.0252 
0.0168 
0.0123 
0.0113 
0.0105 
0.0472 

T / T A 

301.345 
487.252 
245.546 
77.0269 
857.407 
9321.75 
2032.02 
19342.8 
820.339 
11668.2 
706.141 
1317.70 
2566.96 
5209.60 
10245.4 
10240.3 
10240.5 
128.496 

Resolution 

10242xl28 
5122x64 
5122x32 
5122x32 
5122x64 
2562x32 
2562x32 
1282x32 
1282x32 
1282x32 
6 4 2 x l 6 
6 4 2 x l 6 
6 4 2 x l 6 
642 x 16 
6 4 2 x l 6 
32 2x64 
32 2x64 
10242xl28 

Ntot 

1330 

2047 

3509 

6947 
2086 
2129 

To give a better measure of the level of energy dissipation, we can calculate the time 

averaged energy dissipation rates, e.g., Wv = [JQ Wndt']/t, and similarly for Wv. The total 

energy dissipation rate is then W = Wv + W„, which is plotted on Figure 3-1 (d). Our 

physical assumption here is that such averaged quantities will tend to saturated levels as t 

tends to infinity. In practice, since we can only simulate for a finite amount of time, such 

saturated levels are found at a time t » rc » TA, when these time averaged values are not 

fluctuating too much. We do see from this plot that W is saturating at a rather constant 

level after a time much larger than TA-

Also plotted on Figure 3-1 (d) is the time averaged Poynting flux I, where I = Bz Jv • 

~Bd?x, integrated over the top and bottom boundary surfaces with v = up, the random 

photospheric flow. Note that i" is not positive definite due to the fact that it involves the 

dot product between the velocity and magnetic field vectors and thus can be either positive 

or negative. However, the time averaged / i s almost always positive due to two factors. First, 

due to Ohmic and viscous dissipation of energy into heat, if the total energy of the system is 

at a statistically steady level, there must be energy input from the boundary to provide this 

dissipation loss. Secondly, even when there is not much energy dissipation during a certain 

period, magnetic energy EM generally increases, since the magnetic footpoints at the two 
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boundaries connected to the same magnetic field line will move apart from each other in 

a random walk fashion due to random photospheric motion. Therefore, a typical magnetic 

field line will generally be stretched by the separation of the footpoints, and the magnetic 

energy of the system increases. This increase in the magnetic energy must come from the 

Poynting flux. We see from Figure 3-1 (d) that I also saturates at a rather constant level in 

the long time limit, i.e. a level close to that of W. In principle, these two rates should be the 

same, since the time averaged total energy also tends to a constant level. Numerically there 

is a slight difference between the two. Convergence studies show that this is mainly due to 

inaccuracy from finite resolution, and thus the difference decreases when higher resolutions, 

especially in the parallel direction, are used. 

Another measure of the accuracy is to test the energy balance equation, 

d(EM + EK)_ = I_WTI_WU ( 3 1 ) 

dt 

Figure 3-1 (e) shows / as a function of time in pink for the run R5, d(EM + E^K)/dt (cal

culated by taking finite difference in time) in purple, — Wv — Wv in blue, and the difference 

between the right and left hand sides of Eq. 3.1 in green. We do see that the residual power 

due to numerical inaccuracy is generally small compared with other terms. While accuracy 

can be improved by running at higher resolutions, doing so would require much longer run 

times and ultimately limit the highest Lundquist numbers that can be simulated. In the 

context of energy balance in our simulations, we remark that the energy dissipated due 

to Ohmic or viscous terms is essentially converted into thermal energy. No energy term 

or transport equations are included. This is perhaps the primary weakness of this model, 

as it prevents us from predicting temperature and density profiles which can be directly 

compared with observations (See Dahlburg et al. 2009). However, the heating rate required 

to maintain observed coronal temperatures can indeed be estimated as has been done in, 

e.g., (Priest et al., 2002). Ng k Bhattacharjee (2008) followed this practice and found that 

the heating rate determined from 2D simulations is consistent with such estimation, if the 

energy dissipation does turn into heat as assumed. Readers should compare similarities 
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and differences between this treatment with those used in other studies (Longcope 1993; 

Longcope k Sudan 1994; Rappazzo et al. 2008; Hendrix k van Hoven 1996; Hendrix et al. 

1996; Galsgaard k Nordlund 1996; Rappazzo et al. 2010). 

Figure 3-1 (f) shows Bj_ as a function of time. B± is defined as a root-mean-square 

value of the magnetic field strength, and so is effectively the square root of EM per unit 

volume. Similar to other time-averaged quantities, B± also saturates at a rather constant 

level in later time. We note here that these saturated levels in the 3D runs are already 

much more reasonable than those in the 2D runs that were found to have a scaling of 

B± <x 77-1/2, which can be much larger than unity (the value of the constant Bz used in 

the simulations). Therefore, including 3D effects can reduce B± back to reasonable values 

that are less than Bz. These effects include the formation of thin current layers, onset 

of instabilities, and subsequent reconnection and enhanced energy dissipation. All these 

effects are more prominent when B± is larger, effectively limiting the growth of B±. Thus, 

these 3D effects can self-regulate the level of B± that can be built up when subjected to 

the driving of the random footpoint motion. 

Because we are injecting energy into the system through random photospheric footpoint 

motion, a natural question to ask is whether this would induce other random processes, 

such as a turbulent cascade of energy that contributes to the heating of the corona. Indeed, 

turbulence has been studied in various numerical experiments of Parker's model (Hendrix 

et al. 1996; Dmitruk et al. 1998; Rappazzo et al. 2008). However, as mentioned in the above 

discussion, we are driving with slow boundary flows (less than 1/10 of the Alfven speed) 

with rc 3> TA, and thus the magnetic field configuration maintains quasi equilibrium most 

of the time. Moreover, we apply random boundary flows, instead of constant motion as in, 

e.g., Rappazzo et al. (2008), so that energy injection is much slower due to the fact that 

magnetic field lines are stretched in a random walk fashion rather than at a constant rate. 

As a result, we have EK *C EM, which is not consistent with quasi equipartition of energy in 

Alfven wave turbulence. Similar to Hendrix et al. (1996), energy spectra in our simulations 

are largely exponential (not shown here) during relatively quiescent periods, with little or no 

impulsive energy release, but become progressively shallow power laws during particularly 
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Figure 3-3 (a) Average energy dissipation rate for different values of 77. A is Ohmic dissi
pation, 0 is viscous dissipation, * is the total of the two, and o is the footpoint Poynting 
flux, (b) Average perpendicular magnetic field strength for different values of 77. 

intense current sheet disruption events, with possible excitation of more Alfven waves for 

a short duration. As in their study however, computation grid resolutions available up to 

now only allow us to resolve less than a decade of the inertial range of energy cascade. 

While it seems that turbulence plays just a minor role in our present analysis, whether 

it plays a crucial role in determining the speed of magnetic reconnection has attracted a 

number of recent investigations (e.g. Lazarian k Vishniac 1999; Smith et al. 2004; Fan 

et al. 2004; Loureiro et al. 2007; Bhattacharjee et al. 2009; Loureiro et al. 2009; Kowal et al. 

2009; Kulpa-Dybel et al. 2009). It is evident that there is a surge of interest in numerical 

experiments concerning turbulent reconnection, and that much has yet to be settled. It 

would be interesting to see if any insights can be gleaned from our own data. As mentioned 

above, the presence of turbulence seems to be intermittent in our simulations, presenting 

mainly during intense impulsive current sheet disruption events. Of crucial importance is 

how well resolved we can be and how extensive an inertial range we can identify. This will 

depend on how low a value of 77 (and thus how high a Lundquist number 5) we can simulate 

in 3D, as well as how important physical properties scale with 77 or S. To this we turn our 

attention to now. 

Fig. 3-3 shows some of the scaling results we have obtained so far. In Fig. 3-3 (a), the 

time-averaged Ohmic dissipation rate Wn (at the saturated level), for different 77 for the runs 
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listed in Table 3.1 is plotted in triangles, while the viscous dissipation rate Wu is plotted 

in squares. As pointed out above, Wv -C Wv in general, and thus the total dissipation rate 

(heating rate) W = Wv + Wv (plotted in asterisks), is very close to Wv, except in the large 

resistivity limit, which is not the focus of the current study but is included for completeness. 

The time-averaged Poynting flux / is also plotted in the same graph in circles. It is supposed 

to be of the same value as W theoretically, and we do see that the differences between these 

two quantities are generally small in our numerical results, indicating acceptable accuracy. 

From this plot, we see that W actually only changes within an order of magnitude, 

and levels off at both the large and small 77 limit. This has important implications for the 

coronal heating problem, since the Lundquist number (on the order of the inverse of the 

normalized 77 in our simulations), can be as high as 1014 in the solar corona. Therefore, the 

leveling off of W at the small 77 limit is especially important, and is in fact predicted by Ng 

k Bhattacharjee (2008) based on 2D simulations and theoretical arguments. As mentioned 

above, this level of W was shown in Ng k Bhattacharjee (2008) to be independent of the 

dissipation mechanism provided that the correlation time TC is small compared with the 

time over which magnetic energy is accumulated. It was also estimated that this level of 

heating rate can give the same order of magnitude required for realistic coronal heating, 

following similar considerations in Priest et al. (2002). However, the amount of magnetic 

energy built up in this process does depend on the dissipation mechanism and becomes 

un-physically large in 2D simulations in the small 77 limit (with B± scales as r / - 1 ' 2 ) . We 

will now show that this scaling becomes much weaker in 3D. 

Fig. 3-3 (a) shows the time-averaged B± (at the saturated level) for different 77. This is 

a measure of the magnetic field (or magnetic energy) production at the statistical steady 

state due to the applied random photospheric motion. Unlike W, B± production changes 

over an order of magnitude from large to small 77. This is because in the high resistivity 

limit, magnetic field produced is quickly dissipated and can only reach a low magnitude, 

while the dissipation rate does not decrease that much. At the small resistivity limit, the 

increase of B± slows down significantly. 
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Because we are doing high resolution 3D simulations and need to simulate for a long time 

to obtain good statistics, so far we have only been able to extend the value of 77 to about an 

order of magnitude lower, as compared with similar studies in (Longcope k Sudan, 1994). 

Nevertheless, we can see already that below 77 ~ 10~3, there is a significant deviation from 

the scalings obtained in (Longcope k Sudan, 1994), who showed by numerical results and 

scaling analysis that both W and B± should scale with T? - 1 / 3 in the small 77 limit. We have 

added dotted lines in Fig. 3-3 (a) and (b) showing the rfx^ scaling. We see that the portion 

of the data in a range close to 77 ~ 10 - 3 is indeed consistent with a r\~^'3 scaling. However, 

as described above, both W and B± increase much slower with the decrease of 77 for even 

smaller 77. This result has important implications on the solar coronal heating problem, 

since the Lundquist number in the solar corona is so high, and thus we most likely need to 

have a mechanism to provide coronal heating that is independent of the Lundquist number 

in order to get physically reasonable heating rate. At the same time, the magnetic field 

energy production should not increase to unreasonable levels compared with observations. 

In addition to this numerical evidence, we will provide our own scaling analysis to make 

sense of these results, as well as compared with results in (Longcope &: Sudan, 1994). 

3.4 Transition in Scaling Behavior 

We have shown an initial confirmation of the hypothesis of Ng k Bhattacharjee (2008), 

but as an additional goal we would like to understand the exact mechanism giving rise to 

saturation. Their conjecture made clear that the insensitivity to 77 holds true no matter what 

the saturation mechanism is. In order to provide a more complete numerical confirmation of 

their conjecture, it becomes necessary to identify the possible physical mechanisms behind 

saturation. 

A natural place to begin would be to examine the results of Longcope (1993) and 

Longcope k Sudan (1994) who derived scaling laws based on Sweet-Parker reconnection 

theory and analyzed a range in 77 which we have covered in our own study. By looking 

at where their scaling behavior or where their assumptions might be failing in our own 

numerical results, we might gain some insight into the physics occurring at even lower 77. 



41 

The reader is referred to these papers for a detailed review of their scaling arguments. Here, 

we will only discuss their assumptions and results briefly. 

They assumed Sweet-Parker theory is valid in the sense that when looking at only the 

current sheet region that forms between two coalescing islands (flux tubes), the reconnection 

can be treated as a steady process in resistive MHD, which results in the classic Sweet-Parker 

scaling relating the width 5 and length A of a reconnecting current sheet: 

6/A ~ S2l/2 (3.2) 

Here, S± = B±w/rj is the perpendicular Lundquist number, with w being the perpendicular 

length scale of the reconnecting islands, and so w ~ VPTC with vp being the root-mean-square 

value of the random photospheric flow velocity. They also observed that both the number of 

current sheets N in the simulation box and the length of the current sheets A are relatively 

insensitive to resistivity. We follow these assumptions as a starting point of our discussion, 

although we recognize that some of them need to be re-examined more carefully. We revisit 

this issue in some detail in Chapter 4. 

The Sweet-Parker reconnection theory should apply only to higher Lundquist number 

(smaller 77) cases, in which the energy dissipation is dominated by the reconnection process. 

Therefore, the scaling analysis presented here should not work for larger 77 (i.e. 77 > 0.01 

here), which is actually not within the focus of our studies here. When the energy dissipation 

is mainly from the Sweet-Parker current sheets, the dissipation rate can be estimated by 

R 2 r>2 T T2 

W ~ 77ATAL^ ~ ^ ^ (3.3) 
0 TE 

where we have used the estimation that the current density of the current sheet is given by 

J ~ B±/S and that the volume of the simulation box is LL2^. The energy dissipation time 

scale TE in Eq. (3.3) can then be solved as 

TE ~ L2
±/N(r]wB±)1/2 (3.4) 
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where we have used the Sweet-Parker scaling in Eq. (3.2). In a statistical steady state, the 

energy dissipation by Eq. (3.3) has to be replenished by the production of magnetic field 

energy due to the footpoint motion within the same amount of time TE-

In the studies of Longcope (1993) and Longcope k Sudan (1994), although random 

photospheric motion was used in the simulations, the effects due to such random flows were 

not taken into account in their scaling analysis. This can be justified if rc is much larger 

than the energy dissipation time TE- In this case, the magnetic field strength production is 

given by 

B± ~ B?&-
Bzvp\ L]_ 

1/3 

(3.5) 
LN J wq 

where we have used Eq. (3.4) and solved for B±. Putting back Eq. (3.5) into Eq. (3.4) 

results in 

\NlwBzvpr)J 

and so the energy dissipation rate becomes 

- (LfBl4\U3 , , 
w~[m**£) (3'7) 

after putting Eqs. (3.5) and (3.6) into Eq. (3.3). Note that all three of these quantities, B±, 

TE, and W scale with rj~l'z, and thus we have recovered scaling laws derived in Longcope 

(1993) and Longcope k Sudan (1994), but using a slightly different approach. 

We may now put reasonable numbers into Eqs. (3.5) to (3.7) and compare with our 

simulation results. Our simulations are set up to use L = L± — Bz = 1. The root-

mean-square photospheric flow velocity is measured numerically to be vp ~ 0.075, and thus 

w ~ VPTC = 0.75. The average number of current sheets N is more difficult to determine 

and is subject to some uncertainties. A preliminary analysis of our simulations for different 

77 gives N ~ 7 numerically in the small 77 limit. This seems to be somewhat higher than 

expected from the number of reconnecting islands (flux tubes). However, it is actually quite 

common to see multiple current sheets in a simulation output, as shown in Figure 3-2. We 

discuss this in more detail in Chapter 4 
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Based on these values, we have TE ~ O.7I/771/3, and so TE ~ 7.1 for 77 = 10 - 3 . At the 

same time we get B± ~ 0.53 from Eq. (3.5), and W ~ 0.04 from Eq. (3.7) at the same 

77. Both of these are close enough to the values found in Fig. 3-3 (a) and (b), and so it is 

an indication that our parameters used in these estimates are consistent with simulations. 

Compared with the value of rc = 10, we see that although TE is still smaller than rc, it is 

getting to about the same level and thus Eq. (3.5) is only marginally justified. For larger 

77, TE is smaller, e.g., TE ~ 3.3 for 77 = 0.01 and thus is much smaller than rc so that the 

random effect is not as important. This qualitatively explains why we see from Fig. 3-3 (a) 

and (b) that there is a range roughly around 77 ~ 0.01 to 0.001 where both W and B± scale 

approximately as 77-1 '3, as indicated by the two dotted lines in the two plots. However, 

for smaller 77, TE becomes larger, e.g., TE ~ 15 for 77 = 10 - 4 (neglecting that this estimate 

might be no longer valid) and thus it is larger than rc such that the random effect should 

be important. This explains the deviation from the 77-1/3 scaling for both W and B± for 77 

smaller than around 10~3. 

Now, taking into account the effect of random boundary flow, which makes the footpoints 

move in a random walk fashion as argued in Ng k Bhattacharjee (2008), the estimate for 

magnetic field production must be changed from Eq. (3.5) to 

j>x~B , '*<™>"' 
BzvpL±\ T* 

N2wr] 
(3.8) 

where we have again used Eq. (3.4) and solved for B±. Substituting Eq. (3.8) back into 

Eq. (3.4) results in 

TE 
L\ ( L 

N4TC \wBzvpr] 

and so the energy dissipation rate becomes 

1/5 

(3.9) 

2 
W ~ ^B2V2TC (3.10) 

after putting Eqs. (3.8) and (3.9) into Eq. (3.3), and thus it is independent of 77. Note that 

Eq. (3.10) is exactly the same as found in Ng k Bhattacharjee (2008) for systems regardless 
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of dissipation mechanism, and is estimated to give the same order of heating consistent with 

observations. 

Using the same values of L, L±, Bz, rc, vp, w, and N, Eq. (3.9) becomes TE ~ 0.42/rj2/5, 

and thus TE ~ 6.7 for 77 = 10~3, if we could apply this equation. This turns out to be very 

close to TE ~ 7.1 estimated above using Eq. (3.6), which indicates that the transition point 

between these two regimes of scalings is around 77 = 10~3 in our simulations. For 77 = 10 - 4 , 

Eq. (3.9) gives TE ~ 17, which is significantly larger than rc, and so these scalings based on 

random walk of footpoints are justified. 

Based on this set of parameters, Eq. (3.10) predicts W ~ 0.056 (independent of 77), 

which is close to the asymptotic values found in Fig. 3-3 (a) in the small 77 limit. We do 

see from this plot that W indeed does not increase as fast when 77 is below 10~3, and is 

consistent with a trend to a constant level in small 77, although we still only have a limited 

range of 77 that we can simulate. At the same time, Eq. (3.8) gives a value of B± ~ 0.97, 

which is somewhat larger than expected from Fig. 3-3 (b), although we do need to recognize 

that there are uncertainties in these scaling estimates. 

A better test of Eq. (3.8) would be the scaling with 77 in the small 77 limit. In Fig. 3-3 

(b), we have also plotted a dashed line indicating the scaling of rj~1'5. We do see that this 

seems to be consistent with a portion of the data of B± below 77 ~ 10~3. However, we 

cannot rule out the possibility that Bx. is actually increasing slower than 77-1 '5, possibly 

due to a modification of the Sweet-Parker reconnection scalings, e.g., Eq. (3.2). We will 

further discuss this possibility in the next section. 

3.5 Discussion and Conclusions 

In this chapter we have presented an analysis of Lundquist number scaling of ohmic 

dissipation and perpendicular field production based on numerical simulations of a 3D 

RMHD model of solar coronal heating with random photospheric motion. These simulations 

were performed over a period of more than two years, and numerical results have been 

verified carefully to eliminate possible errors. So far, we have been able to simulate cases 

with 77 about one order of magnitude smaller than those presented in similar studies in 
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Longcope (1993) and Longcope k Sudan (1994). While this extension seems modest, it 

actually requires much more computational efforts due to the increase in resolution and 

running time required, as well as the decrease of time-step for numerical stability. To be 

able to achieve that, we have been running our simulations in parallel computers, as well 

as using GPU acceleration as described in Chapter 2. 

Moreover, we have shown that the extension of this scaling study towards smaller 77 

turns out to have very important physical consequences. Numerically, we have shown 

that the scaling laws (with W and B± scale with 77""1/3) found in Longcope (1993) and 

Longcope k Sudan (1994) become invalid for 77 smaller than what was used in their studies 

(around 77 ~ 10 - 3 ) . Both W and B\_ are now found to be increasing much slower for 

smaller 77, with W possibly leveling off to an asymptotic value. We have presented our 

own scaling analysis to justify our numerical results. By following similar assumptions as 

in Longcope (1993) and Longcope k Sudan (1994), e.g., using Sweet-Parker scalings, we 

have been able to recover their ?7_1'3 scaling laws for a range of 77 larger than 10~3. We 

have demonstrated that the transition between scaling behaviors derives from the fact that 

the effects of random photospheric motion are not important in the larger 77 range where 

the energy dissipation time TE is smaller than the correlation time rc of the random flow. 

For 77 smaller than around 10 - 3 , TE becomes comparable or even larger than rc. In this 

range, an analysis based on the random walk of photospheric footpoint motion predicts the 

insensitivity to 77 we observe, further substantiating the results found in Ng k Bhattacharjee 

(2008), which were based on 2D simulations and more general theoretical considerations. 

This is important to the problem of coronal heating since this heating rate has been shown 

to be consistent with the requirements for coronal heating (Ng k Bhattacharjee, 2008). 

This result shows that random photospheric motion is indeed important in simulations of 

the coronal heating process. Therefore, our results are significantly different from those 

simulations using photospheric motion that is steady in time, (e.g., Rappazzo et al. (2008)). 

We have also shown that now B± has a much weaker scaling with 77, i.e., 77-1/5 instead. 

This is much better than the 77-1/2 scaling in 2D simulations, as well as weaker than the 

77-1 '3 scaling found in Longcope (1993) and Longcope k Sudan (1994). This scaling predicts 
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a more physically realistic level of magnetic field as compared with observations. However, 

because the Lundquist number (~ inverse of 77) in the solar corona can be very high (up to 

1012 to 1014), even a rj-1'5 scaling would result in an unrealistically large magnetic field, 

despite a much weaker dependence. The reason behind this is the fact that the Sweet-Parker 

reconnection rate, which scales with 771/2 is too slow for high Lundquist numbers. 

One solution for this problem is the possibility of a higher rate of magnetic reconnection 

even under resistive MHD. This possibility has attracted a number of recent investigations, 

(e.g. Lazarian k Vishniac 1999; Smith et al. 2004; Fan et al. 2004; Loureiro et al. 2007; 

Bhattacharjee et al. 2009; Loureiro et al. 2009; Kowal et al. 2009; Kulpa-Dybel et al. 2009). 

Many of these studies fall within the scope of turbulent reconnection. While there are some 

indications that B± found in our simulations might actually scale weaker than even rj^1'5, 

we still have not been able to simulate even smaller 77 to confirm this definitively. Moreover, 

the effects due to turbulence are still too difficult to study using our currently achievable 

resolutions. However, this question is important enough that we are trying different ways 

to extend our range of 77 to even smaller values to study these effects. 

In summary, by simulating with 77 about one order of magnitude smaller than previous 

studies, we have been able to find new physical effects due to the random photospheric 

flows and thus new scalings with Lundquist number. We are pushing our simulations with 

even smaller 77, and are expecting that another order of magnitude decrease of 77 would get 

us to another regime with new physical effects, possibly due to turbulence and turbulent 

reconnection. 



C H A P T E R 4 

C U R R E N T SHEET STATISTICS: LOCATION AND 
CHARACTERIZATION OF DISSIPATIVE STRUCTURES IN 

CORONAL LOOP SIMULATIONS 

4.1 Introduct ion 

In Chapter 3, we made passing reference to current sheet detection and characterization 

when discussing details of the Lundquist number scaling of coronal heating rate and per

pendicular field production in three dimensional numerical simulations of coronal heating. 

More specifically, the average number of current sheets appearing as the model evolves in 

statistical steady state (N ~ 7) was invoked in support of scaling analysis describing the 

transition in scaling behavior of the coronal heating rate and perpendicular magnetic field 

production (see the discussion immediately following Eq. 3.7). 

In this short chapter we describe in some detail the method used to arrive at such a 

value. Devoting an entire chapter in explication of one estimate, which seemingly may 

simply be done by eye (this approach is what was in fact employed by Longcope 1993), may 

seem unnecessarily laborious. As will become evident however, this estimate actually results 

from a broader effort to fully characterize the dissipative structures in Parker's model. In the 

analysis supporting the coronal heating simulations, Sweet-Parker reconnection was invoked 

without explicit justification. Longcope k Sudan (1994) devised a robust measure of current 

sheet widths that began with the observation that the root-mean square of the perpendicular 

Fourier (x-y plane) modes of current density varied exponentially with corresponding wave 

vectors. Exponential fits yielded coefficients to the exponent giving a correlation length for 

the current density, which was taken as a measure of current sheet thickness S. Together 

with the observation that current sheet lengths did not vary substantially in the Lundquist 

number range they examined, these measurements were shown to be consistent with Sweet-

Parker scaling (c.f. Eq. 3.2). 

47 



48 

In the present analysis, because we extend our simulations of coronal loops one order of 

magnitude beyond the Lundquist numbers they examined, it would prove beneficial to apply 

a method to characterize current sheets for their lengths and widths. The task is formidable 

for the following reasons: (1) Given the stochastic nature of the imposed photospheric 

boundary driving, current sheet orientations are random. (2) We are dealing with tens of 

thousands of individual instances of current sheets forming during steady state evolution 

of the Parker model, for which we have data cubes saved at a prescribed cadence. (3) We 

use periodic boundary conditions in which current sheets often traverse the edges. (4) In 

three dimensions, current sheets appear to branch out, so a structure appearing as a single 

current layer in one specific cross-section of the loop might appear as several in a different 

cross-section at a location further along the loop, possibly with different characteristics. 

Figure 3-2 attests to each of these issues. 

In Section 4.2, we describe an ad-hoc algorithm for current sheet detection robust to 

periodic boundary conditions, together with a procedure to measure sheet parameters in two 

dimensions. In Section 4.3, we present scaling analysis in support of the theory developed 

in Chapter 3. In sections 4.4 and 4.5, we briefly introduce the extension of the analysis to 

three dimensions and future prospects for investigating this aspect of the Parker model. 

4.2 Current Sheet Detection and Fitting: Method and Caveats 

For the present analysis, we take a particularly straightforward approach to current sheet 

characterization, which consists of two steps. First, an ad-hoc thresholding algorithm iden

tifies current sheet candidates by simply taking all pixels in \J\ above a predefined fraction 

of |«/|maa: a n d testing for contiguity of the selected regions. This is done in two-dimensional 

cross-sections of the loop simulations, and the algorithm is robust to the periodic boundary 

conditions required by the pseudo-spectral RMHD scheme. By this we mean that a current 

sheet that appears at a border of the simulation box will appear at the other border (or at 

up to 4 edges if it appears at a corner), but will be identified by the algorithm as only one 

occurrence. This feature is crucial, considering that we are automating this procedure to 

analyze tens of thousands of simulation sub-runs and the likelihood of current sheets ap-
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(c) (<0 

Figure 4-1 Plot (a) shows a contour plot of current density calculated at T/TA = 1932.82 
at z = 5 for R4 (see Table 3.1 for parameters of this run). Bracketed green numbers mark 
current sheets identified by the thresholding algorithm described in Appendix A. After 
identification, current sheets are fit with bi-variate Gaussian. The three other plots show 
one such fit for the current sheet labeled [9]. A surface plot shows | J\ in the region where 
current sheet [9] resides in plot (b). Plot(c) shows the bi-variate Gaussian fit and (d) shows 
the residual. 

pearing at domain edges is quite high. Figure 4-1 (a) shows contour plots of current density 

for one time-slice of run R4 (see Table 3.1). Current sheet candidates identified by the rou

tine are labeled by green bracketed numbers. Sheets labeled [1] and [6], for example, appear 

at edges but are uniquely identified. The algorithm is described in detail in Appendix A 

where an implementation in Interactive Data Language (IDL) is included. 

After current sheet candidates are identified they are morphologically examined by an

other automated algorithm, which performs least-square fitting with a bi-variate Gaussian. 

The automated algorithm is implemented using fitting and parameter constraining tools 

found in the Package for the Interactive Analysis of Line Emission (PINTofALE, Kashyap 

k Drake 2000). The resulting IDL software chain is similar in spirit to those used to gener

ate rasterized images from coronal imaging spectrographs, such as the Coronal Diagnostic 
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Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO). Together, 

these two algorithms yield current sheet orientations with respect to the axes (9), number 

of current sheets present (N), local Jmax, together with asmau and oiarge, which serve as 

proxies for current sheet width (A) and current sheet length (A), respectively. The reader 

is referred to Figure 4-1 for an appreciation of the quality of this process. The primary 

shortfalls of this approach can be summarized as follows: 

(a) Many current sheets are not well approximated by bi-variate Gaussians. Profiles are 

often asymmetric, and the 2-D support of the current sheet structures is often bow-

shaped rather than linear. In Figure 4-2, we report weighted average quantities, where 

we use goodness-of-fit as the weighting factor. By construction, these averages will be 

biased towards current sheets particularly well fit by Gaussians. The justification to use 

Gaussians can only be given as a subjective observation that most can be qualitatively 

viewed as such. 

(b) Because we are taking only discrete samples in time (full data cubes are saved at 

a predetermined cadence during simulations runs), the measurements will be biased 

towards current sheet structure that is most long-lived during the lifetime of the sheets. 

It might be argued that this is actually a feature of the algorithm, but because we 

seek to ultimately characterize the dissipation scaling of the model, we should not just 

assume most dissipation occurs during any one phase of current sheet lifetime (See e.g., 

Wang et al. 1996). 

(c) The identification algorithm itself, although robust for its purpose, admits a certain 

subjectiveness as the threshold for identification is set by the investigator. In the current 

analysis, the threshold is set at 10% of maximum \J\ (as measured in each time step). 

Additionally, false positives are a serious issue here. The only quality control measure 

we can impose is the subsequent fitting, whereby we are able to select structures whose 

shapes (aspect ratios) are not current sheet-like. Again, some measure of subjectiveness 

is imposed here. 
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Figure 4-2 Plots (a) and (b) show weighted average values for current sheet widths and 
lengths from runs R2, R6, R8, RIO, R l l , and R12 against Sj_. Plot (c) demonstrates good 
agreement with Sweet-Parker scaling (note that S± =B±/r]). Plot (d) shows the number of 
current sheets averaged over all post-processed time slices. Also note that all lines drawn 
are fiducial lines only, not least squares fits. 

4.3 Current Sheet Statistics: Lundquist Number Scaling 

With caveats of our current sheet detection and fitting method stated in the previous 

section, we can proceed to describe some preliminary results, keeping in mind that there 

is much room for improvement in our algorithms. The automated routines were applied to 

runs R2, R6, R8, RIO, R l l , and R12 for a subset of available time samples, and for the 

mid-z level cross-section in the simulation domain. The total sample size (Ntot) of current 

sheets measured for each of these runs is listed in the last column of Table 3.1. 

We compare them first to the scaling analysis of Longcope k Sudan (1994). They 

are summarized in Figure 4-2. In plots (a) and (b) weighted average widths and lengths 

2/3 1/3 
are shown as a function of S± where we recover scalings of A oc S± and A oc S± . 

Comparing to the results of Longcope k Sudan (1994) we are well below the A oc S 
-1/2 
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Figure 4-3 This plot compares the resistive dissipation computed using measured < Bn > 
(shown in Figure 3-3(b)), A (figure 4-2(a)), A ( figure 4-2(b)), and N (figure 4-2(d)) to ohmic 
dissipation shown in Figure 3-3 (a) for the cases where current sheet fitting was performed. 

they find, and clearly, A is sensitive to 77, contrary to the observations they made in the 

range they were able to resolve. Even with these disparities, we do still see a Sweet-Parker 

scaling as evident in plot (c). It is rather encouraging that in spite of the shortcomings 

of the analysis algorithms stated above, we do recover the well established classical Sweet-

Parker scaling. However, when we impose a threshold on the current sheet aspect ratios of 

A/A > 4 (in the interest of quality control), we see A/vA <x Sj_ . Sample sizes after this 

threshold are included as the last column in Table 3.1. In Figure 4-2 we see the average 

number of sheets saturating at about N = 7 iov at 5j_ > 300 showing a stronger dependence 

below that. 

So aside from being able to recover the Sweet-Parker result averaging over all samples, 

the scalings of current sheet parameters we measure on the whole disagree with those 

observed by Longcope k Sudan (1994). As a final sanity check for these measurements, 

we compute < Wv >= r)fJ2d3x by approximating Jmax ~ B±/5 and computing Wv — 

r)NLAX(B±/5)2. Figure 4-3 compares this calculation to the time series average < Wv > 

where we see broad agreement at the low 77 end and a poor estimate for the two largest 77. 

0.10 

0.01 
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4.4 Current Sheet Parameters in the Parallel Dimension 

The analysis has also been extended to include all z cross-sections to examine sub

structure along the parallel dimension. The same algorithm performed for the mid-z plane as 

in the previous section was applied to each cross-section along the entire domain. Figure 4-4 

shows current sheet widths (left panel) and lengths (right panel) as a function of position 

along z for runs (c.f. Table 3.1) Rl , R6, R8, RIO, R l l , R12, and R13 (bottom to top). From 

the left panel, it is clear that significant dependence on the parallel dimension does exist, 

and that the character of this dependence shifts according to Lundquist number. At the 

lower Lundquist number end (in green hues), the current sheet widths are generally thinner 

towards the line-tied ends. This behavior changes as one goes to larger Lundquist numbers 

(bluer hues), where the opposite becomes true. Current sheets become thinner towards the 

mid-z plane. Current sheet length measurements (right panel) show a similar behavior at 

low Lundquist numbers, however, z dependence is much less pronounced or absent altogether 

at the other end. Particularly striking is that the transition in the character of the current 

sheets in the parallel dimensions appear to change in the same regime where the transitions 

in heating rate and perpendicular magnetic field production were observed in Chapter 3 

(c.f. Figure 3-3). This hints at the possibility that these qualitative observations might be 

understood with similar analytical arguments, where the random walk nature of boundary 

driving plays a pivotal role. 

4.5 Current Status and Future Work 

It is difficult to provide any conclusions with just the preliminary observations we have 

presented in this chapter. We will postpone any more discussion until more data can be 

incorporated into the statistics. These are results from only a subset of the available time 

series data for a subset of the runs shown in Table 3.1. We are lacking in good statistics 

particularly at the low 77 regime. It is rather worrisome that the lowest 77 (largest S±) 

—2/3 case seems to depart slightly from the otherwise rather clean A oc Sx scaling we showed 

in Figure 4-1 (a) (see also Figure 4-1(c)). Post processing of the full data set is currently 

underway, and an interpretation of the substructure found in the parallel dimension is 
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Figure 4-4 The left panel shows average current sheet widths as a function of position along 
z for runs Rl, R6, R8, RIO, R l l , R12, and R13 (bottom to top). The right panel shows 
average current sheet lengths as a function of position along z for the same runs (bottom 
to top). 

being developed. It is also worth noting here that the topic of systematic characterization of 

dissipative structures in MHD has received quite a lot of attention in recent years both in two 

dimensions (Servidio et al. 2009; Zhdankin et al. 2010) and three dimensions (Yoshimatsu 

et al. 2009; Uritsky et al. 2010) mostly in the context of MHD turbulence. In carrying out 

our current analysis, we are mindful of these recent results, from which we may attempt to 

draw further insights into the Parker model. 



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Future Work 

5.1.1 Self-Consistent Turbulent Magnetic Reconnection in Corona Loops 

In closing Chapter3, we mentioned several recent studies based on numerical simula

tions that suggest a fast magnetic reconnection rate is obtainable in the presence of MHD 

turbulence (e.g. Smith et al. 2004; Fan et al. 2004; Kowal et al. 2009; Loureiro et al. 2009). 

However, invariably in all these these studies, turbulence is imposed externally rather than 

from self-consistent evolution of a prescribed magnetic configuration. While such artificial 

generation of turbulence allows for the evaluation of its effects on magnetic reconnection 

with precise control, whether such situations are realizable in physical systems is still an 

open question. It is therefore important to consider the problem of turbulent reconnection 

together with the problem of MHD turbulence excitation within a common configuration. 

In an XSEDE (Extreme Science and Engineering Discovery Environment, successor to Ter

aGrid) allocation request for time on NCSA/Forge, we have proposed simulations which 

will use RMCT-CUDA to study a configuration of coronal loops within the framework of 

Parker's coronal heating model where turbulent reconnection can appear self-consistently. 

The proposed configuration is essentially a three-dimensional generalization of the well 

studied 2D magnetic island coalescence instability problem (see e.g. Knoll k Chacon 2006 

and references therein). Coalescing magnetic islands can be regarded as a cross section of 

coronal loops, such as those obtained in the Parker model from random photospheric motion. 

If the magnetic field energy injected from footpoint motions is larger than a certain limit, 

such configurations in 3D will become unstable Longcope k Sudan (1994). Magnetic islands 

(or flux-tubes in three dimensions) with the same sign of current will attract as shown in 

Figure 5-1. This is a 2D simulation using a resolution of 2562 with 77 = v = 1 x 10~3 

55 



56 

00 02 04 x 06 08 10 00 02 04 x 06 08 10 

Figure 5-1 2D run at 2562 with 77 = v = 1 x 10 - 3 . The left panel shows contour plots of 
the initial flux function A. Non-negative contours are solid and negative contours broken. 
Contour levels range from -0.4 to 0.4 with increments of 0.025. The right panels shows 
contours at a subsequent time t = l where the coalescence of the two islands has begun. 

(S = 103). Normalizations are chosen so that magnetic field strength, length scale, and 

Alfven speed are all of the order unity. Due to the coalescence instability, the two island 

have begun to merge with each other at t = l . At this relatively small Lundquist number, 

the reconnection rate is large enough to reconnect the flux from the incoming coalescing 

islands at a current sheet which forms at the center of the simulation domain. At larger 

Lundquist numbers however, relatively slow reconnection rates are not able to reconnect 

the incoming flux fast enough, causing a flux-pileup, and subsequent back reaction. At 

Lundquist numbers around 104 or higher, the two islands will bounce back and forth several 

times as reconnection completes. Figure 5-2 shows such a case with S = 5 x 104 (77 = v = 

2 x 10 - 5) at a resolution of 40962. The O-points are observed to slosh with a period of the 

order of the Alfven time scale, and the corresponding O-point velocities are also a fraction 

(up to 0.3) of the Alfven speed. 

If such large scale motions with fast oscillations were to happen in the cross-sections of 

coronal loops, it is very possible that Alfven waves are excited , considering the field lines 

near the photospheric boundaries do not move as fast due to line-tying. This launching 

of large amplitude Alfven waves will result in partial reflection at the photospheric bound

aries, thus leading to a situation where counter-propagating waves interact. This kind of 
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Figure 5-2 2D run at 40962 with 77 = v = 2 x 10~5. The left panel shows Distance R between 
O-point of a merging island to the center as a function of time for the case with S=5 x 104. 
The right panel shows the velocity of the merging island. 

interaction is exactly the basic process responsible for cascading energy down to smaller 

spacial scales, especially perpendicular to the large-scale magnetic field, and the generation 

of MHD turbulence (e.g. Ng k Bhattacharjee 1996, 1997). 

This possible mechanism for producing MHD turbulence in line-tied flux tubes can then 

provide a self-consistent way to investigate if the presence of turbulence can increase re

connection rates. If so, this possibility indicates a self-consistent, self-regulated process, in 

which the slow Sweet-Parker reconnection rate allows the build-up and storage of magnetic 

energy, so that large-scale motions between flux tubes proceed to generate waves and tur

bulence. This in turn induces fast turbulent reconnection, which impulsively releases the 

stored energy. This self-consistent mechanism, if indeed shown to work well, can potentially 

contribute to different energetic processes, such as solar flares, coronal mass ejections, and 

coronal heating due to nanoflares. 

What is crucial here then, is the ability, to simulate a 3D line-tied coronal loop at 

sufficiently large Lundquist number, at sufficiently high resolution, and for long enough 

in order to correctly resolve such a self-regulated turbulent reconnection process. This is 

precisely the capability afforded by the GPU accelerated RMCT code. Figure 5-3 shows a 

preliminary 3D flux tube oscillation run performed on NICS/KIDS using 77 = v = 1 x 10 - 4 

at 10242 x 128. O-point locations are plotted for several slices at different positions along the 
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Figure 5-3 O-point locations for different positions along z in a line-tied flux tube coalescence 
simulation at high Lundquist number (77 = v — 1 x 10~4 at 10242 x 128). 

loop. The onset of sloshing is clearly evident. Isosurface plots of current density threading 

two dimensional cross-sections of flux function for two times in this simulation are shown 

in Figure 5-4. 

For the XSEDE allocation, the proposed production runs consist of two types. We 

proposed 3 runs for the flux tube coalescence problem at 20482 x 256. These will be run 

on a range of Lundquist numbers spanning the transition from the quasi-laminar case to 

the expected violently sloshing regime. A set of 10 runs were proposed at 10242 x 128, 

each using as an initial condition a data-cube obtained from R0 (c.f. Table 3.1). It is 

not uncommon for Parker's model to be dominated by several large flux tubes resembling 

the 'artificial' setup in the standard coalescence problem. Restarting at sub-runs preceding 

large dissipation events and writing data cubes out at higher cadence, we will search for 

evidence of sloshing and a possible transition to turbulence. 

5.1.2 Flare Frequency Distributions and Self-Organized Criticality 

We have not discussed in this dissertation any attempt at comparisons of our simulations 

of coronal loops to solar observations. Parker's nanoflare heating concept was originally mo

tivated by the balloon borne observations of Lin et al. (1984), in which hard X-ray (> 12 

keV) bursts were observed at energies much smaller (1027 ergs) than the largest solar flares 

(1033 ergs). Lin et al. (1984) suggested that averaged over time these microflares could sig-
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Figure 5-4 Iso-surface plots of current density threading 2D cross-sections of flux function for 
two times in a line-tied flux tube coalescence simulation (77 = v = 1 x 10 - 4 at 10242 x 128). 
The left panel corresponds to t = 0 while the right panel corresponds to t = 3.4. 

nificantly contribute to coronal heating. Parker (1988) envisioned that flares smaller still, 

would exist beyond their instrumental cutoff and that flares and microflares were made of 

ensembles of nanoflares. He also suggested that swarms of these small impulsive events 

occurred as a result of reconnection, driven by photospheric footpoint motions, comple

menting the idea of topological dissipation (Parker, 1972). The viability of this mechanism 

of coronal heating crucially relies on the occurrence rate of such small scale nanoflares. 

Flare frequency distributions (normally of peak flux or integrated flux) are generally found 

to behave as power laws, and have been used as a standard gauge by which to assess the 

nanoflare theory. The number of flares N is distributed as dN/dE = aE~a where E is 

the flare energy with normalization a and power law index a. Hudson (1991) identified 

that a < 2 would indicate flare distributions in which the largest flare events would domi

nate the total energy release. Larger indices (a > 2) would indicate that small scale events 
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would dominate instead and that microflares and nanoflares play a significant role in coronal 

heating. 

Establishing the power laws governing the low energy flare regime has been a long stand

ing goal in observational solar physics. Flare frequency distributions of solar observations 

ranging from EUV to Hard X-rays have been widely reported in the literature for a variety 

of solar observatories and report a range of power law indices on both sides of the a = 2 

threshold (e.g. Lin et al. 1984 [balloon a = 2)]; Dennis 1985 [OSO V a = 1.9]; Biesecker 

1994 [CGRO-BATSE a = 1.7]; Shimizu 1995 [YOHKOH a = 1.5 - 1.6]; Benz k Krucker 

1998 [SOHO-EIT a = 2.3 - 2.6]; Parnell k Jupp 2000 [TRACE a = 2.0 - 2.6]; Veronig 

et al. 2002 [GOES-XRS a = 2.03 ±0.09]; Christe et al. 2008 [RHESSI a = 1.5 - 1.58]) and 

have also been measured for stellar corona (e.g. Kashyap et al. 2002 [EUVE a > 2]). A 

host of issues make the unambiguous determination of a scaling law difficult. These include 

differences in indices for quiet sun and active region, temperature biases, selection effects, 

variations with solar cycle and variations of scaling with energy. The reader is referred 

to Hannah et al. (2011) for a recent comprehensive review (See also Biesecker 1994 for 

an extensive compilation). This review concludes that observational evidence as a whole 

currently does not support significant heating by small scale events and that higher fidelity 

observations and more sophisticated modeling efforts are required for a definitive verdict. 

What can numerical simulations such as those we have undertaken in this dissertation 

contribute to our understanding of flare distributions? Identifying energy release events in 

time series of magnetic energy dissipation in our MHD simulations of coronal loops (e.g. 

Figure 3-1) is not unlike the analysis performed for real observational data in the studies 

just mentioned, and in fact suffer from similar selection effects and biases (Buchlin et al., 

2005). Such an exercise has been carried out by Dmitruk k Gomez (1997) who find from 

a 2D externally driven RMHD model of coronal heating that energy release events take a 

power law form with a = 1.5. Galsgaard k Nordlund (1996) also constructed power law 

distributions in Joule dissipation for fixed times in 3D MHD coronal simulations with foot-

point driving finding a — 1.55 — 1.75. Many investigators significantly simplify simulations 

by adopting models based on cellular automata. Rather than relying on computationally 
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expensive direct numerical MHD simulations, such models construct discretized systems 

governed by physically motivated binary occurrence criteria evaluated according to nearest-

neighbor states to exploit the hypothesized self-similar behavior of constitutive events (see 

e.g. Krasnoselskikh et al. 2002; Podladchikova k Lefebvre 2006; Morales &; Charbonneau 

2010). These studies generally follow Lu k Hamilton (1991), who first cast the problem 

in terms of self-organized criticality (SOC) (Bak et al., 1987). SOC systems consist of 

scale-invariant ensembles of minimally stable states. Such systems self-organize into critical 

states in which small purtubations of the system will lead to relaxation cascades with power 

law character. The relaxation events can be as small as a single minimally stable state and 

up to cascades the size of the entire system. A classic example of SOC is a sand pile which 

is built by consecutive depositions of sand grains. After sufficient sand accumulates, the 

system settles into a pile with characteristic slope. Any further deviations from the slope 

will be relaxed by avalanches whose sizes are distributed as power laws. In the context 

of flaring plasma in the solar corona, magnetic flux progressively injected by photospheric 

motion plays the role of sand grains, and flare ensembles with power law character take the 

role of avalanches. 

In Chapter 4 we described the development of algorithms for the detection and charac

terization of dissipative structures in our coronal loop simulations. It is then possible that 

a detailed analysis of current sheet statistics may complement an analysis of the energy 

dissipation event distribution like the one carried out by Dmitruk k Gomez (1997). The 

new tools we have developed can for example identify individual events that may constitute 

an apparently larger monolithic event when observed in time series of ohmic dissipation. 

We see for example in the left panel of Figure 3-2, three dominant dissipative structures 

(two yellow iso-surfaces and one red one), which would appear as one strong dissipation 

event in a time series plot. A study of this kind would of course be initially limited by 

the cadence at which we output full data cubes on which we can subsequently perform 

the feature recognition and modeling exercise. However, as we mention in the preceding 

section, we can restart our simulations with any one full cube of data, thus allowing for 

higher temporal resolution to follow the full lifetimes of dissipative structures. 
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Such an analysis could also be synergistic with a search for signatures of self-organized 

criticality in our coronal loop numerical experiments. Few studies of SOC in MHD direct 

numerical simulations exist. One of these is a recent paper by Uritsky et al. (2010) who 

find initial evidence for SOC in 3D direct numerical simulations of MHD turbulence. As 

they discuss, having a means to characterize both the spatial size and energy of dissipation 

structures, as well as individual event life-times is a crucial first step towards assessing 

the presence of SOC. This is exactly the kind of capability afforded by the current sheet 

analysis tools we have developed. Extending our algorithms to be aware of spatial extent 

and connectivity in the parallel dimension, and to track dissipative structures temporally 

might merit further development effort. 

5.2 Conclusions 

This dissertation has examined three distinct but related aspects of the Parker model 

of coronal heating. In Chapter 2, we described a port of a reduced MHD code tailored 

for the simulation of Parker's model for hardware acceleration using GPUs with NVidia 

CUDA. The reprogrammed code is now in production on a dedicated GPU workstation 

at the University of Alaska Fairbanks, on Forge at NCSA, and on the Keeneland Initial 

Delivery System at NICS. For the highest resolution considered,(20482 x 256) the GPU 

workstation is able to match the performance of 256 CPU cores on NERSC/Carver with 

4 C2050 NVidia GPUs. When scaling up to 264 GPUs on Keeneland, we effectively have 

a 30 fold speedup beyond what was previously possible. These performance results do not 

represent a full assessment of what is possible on either CPU or GPU architectures, but 

rather compare two currently deployable codes, which are both in production in support of 

our computational study. Finer resolutions might be possible on larger machines, such as 

Tian-he 1A and the forthcoming ORNL/Titan. This will likely require further refinements 

of the code as we have described in some detail in Section 2.3. The GPU code is currently 

running the highest resolution cases for the three dimensional coronal heating scaling study. 

In Chapter 3, we have reported our results to date for a computational campaign con

ducted over the course of nearly two years. With the results of this campaign, we showed 
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that we have recovered the scalings for heating rates and B± of Longcope k Sudan (1994) 

in the range they examined, and extending to lower 77, we presented results that support a 

slower growth of B±, which roughly scales as 77"1'5, and a heating rate that becomes in

sensitive to 77. We also demonstrated by simple scaling analysis that the transition between 

these scaling behaviors results from the diminishing effects of random photospheric motion 

as the energy dissipation time-scale TE becomes much smaller than the correlation time rc, 

in accordance with Ng k Bhattacharjee (2008). As described in the preceding section, the 

data sets acquired from this scaling study may be used as a starting point from which to 

conduct targeted numerical simulations, which would search for evidence of self-consistent 

turbulent reconnection. Extending the scaling study to even higher Lundquist numbers 

is extremely challenging even using GPUs, but might be possible with larger hardware 

commissions and further code refinement as just discussed. 

In Chapter 4 we developed a novel approach to the problem of identification and char

acterization of dissipative structures in loop simulations. We applied these methods to the 

mid-loop cross-sections, and unambiguously recovered the classical Sweet-Parker reconnec

tion scaling, thereby justifying its use for the analysis performed in Chapter 3. We also 

extended the analysis to three dimensions and identified as of yet un-explained substructure 

whose character varies with Lundquist number. Further analysis of these observations are 

currently underway. 
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APPENDIX 

CURRENT SHEET IDENTIFICATION 

A.l Ad-Hoc Thresholding Algorithm 
The absolute efficiency of this algorithm is questionable as it loops through invididual 

pixels to ascertain sorting group memberships. An extra step is included which resamples 
to a coarser grid to drastically reduce the number of pixels the algorithm loops through. 
This step reduces the required run-time by orders of magnitude and does not significantly 
change the resulting identifications. The resampling IDL routine used is rebinxQ included 
in Package for the INTeractive Analysis of Line Emission (PINTofALE) Kashyap k Drake 
(2000). The thresholding algorithm can be stated in five simple steps: 

1. Construct auxiliary array BB which is essentially 0 0 tiled 9-fold in larger square. 
The Center square is our original square. 

2. Search for all pixels in 0 0 which are above threshold and hold in array ngO. Search 
for all pixels in BB which are above threshold and hold in array ngB. 

3. If first iteration, identify lower leftmost sheet pixel in ngO as centroid and mark this 
pixel. Leftmost takes precedence. 

By " mark" I mean change its value to an arbitrary value below threshold which iden
tifies the sheet. 
Example: For first sheet use mrk=l and 00[ngb(some-ndx)]=mrk*(ld-23) For sec
ond sheed use mrk=2 and 00[ngb(some-ndx)]=mrk*(ld-23) 

We need to check of course that no other pixels share this value, if so, set them to 
oblivion: OO [offending pixels]=Id-123 

Now map this centroid pixel in 0 0 to a centroid pixel in BB and mark. 

4. Identify which pixels in BB eq mrk. Loop through these and search for all surroud-
ing pixels which also meet threshold and compile into array NHBD. Sort NHBD for 
uniqeness and mark them. 

5. Repeat (4) until search fails. If it does go to (6) 

6. Increment mrk. Repeat (2) > (5). When search in (2) fails end program. 

A.2 IDL Impelementation 

function thrshid, 00, nx, ny, thrsh = thrsh, verbose = verbose, $ 

periodic = periodic, rbn = rbn, _extra = e 

function thrshid 

Purpose: given 2-d ar ray 00 of s ize [nx.ny] , msheetO w i l l f ind 
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and enumerate all contigous structures whose value in 00 are greater 
than the threshold 

Ad-hoc threshold ID algorithm (assume periodic here, if non-periodic just 

ignore all mention of BB array) : 

(0) Construct auxiliary array BB which is essentially 00 tiled 9-fold in 

larger square. THE CENTER SQUARE IS OUR ORIGINAL SQUARE. 

(1) Search for all pixels in 00 which are above threshold and hold in array ngO. 

Search for all pixels in BB which are above threshold and hold in array ngB. 

(2) If first iteration, identify lower leftmost sheet pixel in ngO as 

centroid and mark this pixel. Leftmost takes precedence. 

By "mark" I mean change its value to an arbitrary value below threshold 

which identifies the sheet. 

Example: For first sheet use mrk=l and 00[ngb(some-ndx)]=mrk*(ld-23) 

For second sheed use mrk=2 and 00[ngb(some-ndx)]=mrk*(ld-23) 

We need to check of course that no other pixels share this value, if so, 

set them to oblivion: 00[offending pixels]=ld-123 

Now map this centroid pixel in 00 to a centroid pixel in BB and mark 

(3) Identify which pixels in BB eq mrk. 

Loop through these and search for all surrouding pixels which also meet 

threshold and compile into array NHBD. Sort NHBD for uniqeness and mark 

them. 

(4) Repeat (3) until search fails. If it does go to (5) 

(5) Increment mrk. Repeat (1)—>(4). When search in (1) fails end program. 

(6) Optionally: Loop through mrk sheets and begin: 

(a) compute total flux contribution 

(b) compute percent flux contribution 

(c) do linear fit to estimate orientation, length, width 

Try polynomial fit later to investigate shape parameters. 

(d) summarize all in IDL sructure 

Some details: 

keep two sets of coordinates: 

occ= original coordinates in [0] 

bcc= big box coordinates in [B] 

schmeatically: If we represent 2-d original box by : [0] 

[0] [0] [0] 

Then big box [B] will be: [0] [0 [ [0] 

[0] [0] [0] 

occ for bookeeping to see if all relevant pixels counted/sorted 

bcc for the actual counting and sorting and marking, 

convert bcc to occ coordinates like this: 

occ= [bcc(O) mod nx, bcc(l) mod ny] 

convert occ to bcc coordinates like this: 

bcc= [ occ(0)+nx, occ(l)+ny ] 

mirror the marking of to other panes bcc corrdinates like this: 

if one marks : 00[occ(0),occ(l)]=12345d-14 

then one should mark: 

BB[occ(0),occ(l)]=12345d-14 

BB[occ(0)+0*nx,occ(l)+ny]=12345d-13 

BB[occ(0)+l*nx,occ(l)+ny]=12345d-13 
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BB [occ(0)+2*nx,occ(1)+ny]=12345d-13 
BB[occ(0)+nx,occ(l)+0*ny]=12345d-13 
BB[occ(0)+nx,occ(l)+l*ny]=12345d-13 
BB[occ(0)+nx,occ(l)+2*ny]=12345d-13 
BB[occ(0)+2*nx,occ(l)+2*ny]=12345d-13 
BB[occ(0)+3*nx,occ(l)+3*ny]=12345d-13 

inputs 

outputs 

IDL subroutines: min() , uniqO , keyword_set(), whereO 

10/22/09 LiWei Lin 
04/29/11 LL add keyword rbn 

if not keyword_set(thrsh) then thrsh = 0.90*max(abs(00)) 
; else thrsh=thrsh*max(abs(00)) 
if not keyword_set(verbose) then verbose = 10 

000 = 00 
onx = nx 
ony = ny 

if keyword_set( rbn ) then begin 
00 = rebinx( 000, findgen(nx), rbn*findgen(nx / rbn), Xindex=0 ) 
00 = rebinx( 00, findgen(ny), rbn*findgen(ny / rbn), Xindex=l ) 
nx = nx / rbn 
ny = ny / rbn 

endif 

if verbose gt 10 then begin 
window, 1 ,xsize = 64 * 6, ysize = 64 * 6, xpos = 1200 + 50, ypos = 580 + 50 

endif 

;(0) Construct auxiliary array BB which is essentially 00 tiled 9-fold in 
; larger square. THE CENTER SQUARE IS OUR ORIGINAL SQUARE. 
BB = [[00, 00, 00], [00, 00, 00], [00, 00, 00]] 
nx = float(nx) 
ny = float(ny) 
nbx = nx * 3. 
nby = ny * 3. 

;(1) Search for all pixels in 00 which are above threshold and hold in array ngO. 
; Search for all pixels in BB which are above threshold and hold in array ngB. 
ngO = where(abs(00) gt thrsh) 
ngB = where(abs(BB) gt thrsh) 
nngO = n_elements(ng0) 
mrkb = 0 ; initialize id number for pixel marking 

; initialize sanity count 

sane = 1.0 
;print, nx*ny 

if ng0(0) ge 0 then begin 

; ensure that our pixel marker values aren't already present 
mrkb = mrkb + 1.0 
mrk = mrkb * le-23 
jnk = where(00 eq mrkb) 
if jnk(0) ne -1 then 00(jnk)=ld-26 
jnk = where(BB eq mrkb) 
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if jnk(O) ne -1 then BB(jnk)=ld-26 
npix =0.0 
while ngO(O) ge 0 do begin ; relaxing instilled aversion to while loops 

sane = sane + 1.0 
; get full array of thresholded coordinates for both 00 and BB 
xndxB = ngB mod long(nx*3) 
yndxB = ngB / (long(nx*3)) 

if npix eq 0 then begin 
print, 'npixloop' 

(2) If first iteration, identify lower leftmost sheet pixel in ngO as centroid and mark this 
pixel. Leftmost takes precedence. 

1x0 = min(ngO) mod long(nx) 
lyO = min(ngO) / long(nx) 
lxB = 1x0 + nx 
lyB = lyO + ny 
00(1x0, lyO) = mrk 
; need to mark all corresponding pixels in BB 
; This initialized the sheet marking loop 
BB(lx0, lyO) = mrk 
BB(lx0 + nx, lyO) = mrk 
BBUxO + 2. * nx, lyO) = mrk 

BBdxO, lyO + ny) = mrk 
BB(lx0 + nx, lyO + ny) = mrk 
BB(lx0 + 2. * nx, lyO + ny) = mrk 

BB(lx0, lyO + ny * 2.0) = mrk 
BB(lx0 + nx, lyO + ny * 2.0) = mrk 
BBdxO + 2. * nx, lyO + ny * 2.0) = mrk 

npix = npix + 1.0 
endif else begin ; if not the first pixel in sheet 

(3) Identify which pixels in BB eq mrk. 
Loop through these and search for all surrouding pixels which also meet 
threshold and compile into array IBn. Sort IBn for uniqeness and mark them. 

(a) search for all pixels whose value eqals mrk in BB 
IBm = where(BB eq mrk) 
lBmx = IBm mod long(nbx) 
lBmy = IBm / long(nbx) 
nlBm = n_elements(lBm) 
stop 
(b) loop through the IBm pixels and search for surrounding pixels 
which meet threshold criteria, pixels which meet criteria are 
already held in xndxB and yndxB which will be updated below. 

IBn = [-1] 

for j = 0L, nlBm - IL do begin ; loop through IBm pixels and search for bordering positives 
IBn = [IBn, where((abs(xndxB - lBmx(j)) le 1) and (abs(yndxB - lBmy(j)) le 1))] 

endfor 

if sft(0) gt 0 then begin; if there are bordering positives mark them 
(4) Repeat (3) until search fails. If it does go to (5) 

lBn=lBn(sft) 
nlBn=n_elements(IBn) 

tmp = ngbdbn(sft)) 
tmp = tmp[uniq(tmp, sort(tmp))] 

xtmp = tmp mod long(nx * 3) 
ytmp = tmp / long(nx * 3) 
ntmp = n_elements(tmp) 
for j = 0, ntmp-1 do begin 
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txx = xtmp(j) 
tyy = ytmp(j) 

txx « txx mod long(nx) 
tyy = tyy mod long(nx) 

00(txx,tyy) = mrk 

BB(txx,tyy) = mrk 
BB(txx + nx, tyy) = mrk 
BB(txx + 2. * nx, tyy) = mrk 

BB(txx ,tyy + ny) = mrk 
BB(txx + nx, tyy + ny) = mrk 
BB(txx + 2 * nx, tyy + ny) = mrk 

BB(txx, tyy + 2. * ny) = mrk 
BB(txx + nx, tyy + 2. * ny) = mrk 
BB(txx + 2 * nx, tyy + 2 * ny) = mrk 

endfor 
npix = npix + n_elements(tmp) 
ngO = where(abs(00) gt thrsh) 
ngB = where(abs(BB) gt thrsh) 
xndxB = ngB mod long(nx*3) 
yndxB = ngB / (long(nx*3)) 

endif else begin 
;(5) Increment mrk. Repeat (1)—>(4). When search in (1) fails end program. 

ngO = where(abs(00) gt thrsh) 
ngB = where(abs(BB) gt thrsh) 
nngo = n_elements(ngO) 
mrkb = mrkb + 1.0 
mrk = mrkb * le-23 
npix =0.0 

endelse ; if all pixel sheets seem to be marked 
endelse ; if not the first pixel in sheet 

if sane gt nx*ny then begin 
print, "Error, while loop fails...", sane 
return, 0 

endif 
; print, 'sane',sane, ngO(0), nngo, mrk,npix,mrkb 

endwhile 
endif else begin 

print, "Error: No pixels above threshold" 
str = create_struct('N', -1, 'Index', -1) 
return, str 

endelse 

N = mrkb;(mrkb-1) > 1 

Ns = [-1] 
for j = 0, N-l do begin 

mrk = (j + 1) * le-23 
cc = where(oo eq mrk) 
ncc = n_elements(cc) 
Ns = [Ns, ncc] 

endfor 
Ns = Ns[l: *] 
mNs = max(Ns) 
tmpal = fltarr(mNs) - 1 

tmpa2 = tmpal 
cc = where(oo eq le-23) 
if keyword_set(rbn) then begin 

fx = rbn*rbn*floor(cc/nx) 
fy = rbn*(cc mod ny) 



cc = fx*nx+fy 
endif 
mrk » j * le-23 
tmpa2[0: Ns(0) -1 ] = cc 
cc = where(oo eq mrk) 
ncc = n_elements(cc) 
str = create_struct('N', Ns(0),'Index', tmpa2) 

for j = 1, N - 1 do begin 
tmpa2 = tmpal 
mrk = (j + 1) * le-23 
cc = where(oo eq mrk) 
if keyword_set(rbn) then begin 

; cc = cc * rbn 
fx = rbn*rbn*floor(cc/nx) 
fy = rbn*(cc mod ny) 
cc = fx*nx+fy 

endif 
ncc = n_elements(cc) 
tmpa2[0: Ns(j) - 1] = cc 
tmp = c r e a t e _ s t r u c t ( ' N ' , Ns ( j ) , ' I n d e x ' , tmpa2) 
s t r = [ s t r , tmp] 

endfor 

00 = 000 
nx = onx 
ny = ony 

r e t u r n , s t r 
end 
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