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ABSTRACT 

D E T E C T I O N O F M O R T A L I T Y IN T R O P I C A L F O R E S T S U S I N G R E M O T E S E N S I N G : 

F R O M T R E E F A L L G A P S T O L A R G E D I S T U R B A N C E S 

by 

Fernando Del Bon Espirito-Santo 
University of New Hampshire, December, 2011 

The frequency, severity, and intensity of natural disturbances in tropical forests continu­

ally re-shape forest structure. At small scale, branch or tree-falls gaps and subsequent recov­

ery are important mechanisms for carbon cycling. At landscape scale, large disturbances 

(blow-downs) may also play a role on the structure and composition of tropical forests. 

Quantitative studies of natural disturbances across the occurrence spectrum (branch fall-

gaps to blow-downs) are rare for the Amazon. Remote sensing coupled with intense field 

work data collection provides the means to analyze the dynamic of tropical forests at mul­

tiple scales. In this dissertation three aspects of natural disturbances were examined: (1) 

formation and detection of small scale disturbances investigated in the field and with high 

resolution remote sensing; (2) mapping and spatial analysis of large disturbances (blow­

downs) caused by convective cloud drafts; and (3) a quantitative characterization of the 

large spectrum of natural disturbances in tropical ecosystems. For small scale disturbances, 

two large plots of 114 and 53 ha were established and surveyed in unmanaged tropical 

forest of the Amazon. Data of gap area, canopy openness (CO), leaf area index (LAI), 

coarse woody debris (CWD) and tree mortality were collected in both plots. The relation 

between CO and LAI of gaps coupled with high resolution satellite images IKONOS-2 was 

investigated using gcostatistics. Based on field plot measurements, tree-fall gaps account 

xv 



only about 30% of the flux of annual tree mortality Most mortality does not result in 

gap formation On average, gap formation accounted for a minor proportion of the stocks 

(about 5% of the total fallen CWD) and fluxes (about 23%) of CWD carbon There was 

no significant correlation between remote sensing products and variables of CO and LAI 

in both large plots, probably due to high shadow fraction in high-resolution images For 

large scale disturbances, a spatial pattern analysis of blow-downs apparently caused by se­

vere storms was discovered using 27 Landsat images and daily precipitation from NOAA 

satellite data In this image mosaic hom 1999 to 2000, there are 279 patches (from 5 ha 

to 2,223 ha) characteristic of blow-downs A total of 21,931 ha of forest were disturbed 

There was a strong correlation between occurrence of blow-downs and frequency of heavy 

rainfall (Spearman's rank, i 2 =0 84, p<0 0003) We provided the first spectrum analysis of 

disturbances, at several scales of severity by combining data collected for this dissertation 

with previously published information from a variety of sources (1) Large plot surveys, 

(2) mapped blow-downs, (3) RAINFOR permanent plots, (4) historical blow-downs > 30 

ha, and (5) the published mean above-ground biomass map of the Amazon We found 

two disjointed disturbance regimes - small-scale tree-fall gaps and larger-scale blow-down 

disturbances - suggesting that there may be othei missed disturbance mechanisms in the 

Amazon may also play a role in the dynamics of tropical forest ecosystems 

xvi 



CHAPTER 1 

INTRODUCTION 

1.1 Natural Disturbances in Tropical Forests 

Tropical forests account for 40% of carbon stored globally in terrestrial vegetation and con­

tribute as much as 36% of the net exchange between atmosphere and terrestrial vegetation 

[Melillo et al., 1993]. The Amazon basin forests may contribute substantially to observed 

inter-annual variations in the global carbon cycle [Chambers et al., 2001]. Changing dy­

namics in tropical forests influence inter-annual and long term variations in the tropical 

forest carbon cycling [Malhi and Wright, 2004]. 

While it may be convenient to consider old-growth tropical forests to be in steady-state, 

recent studies suggest that they may be changing rapidly. Phillips and Gentry [1994] and 

Phillips et al. [1998] observed an increased turnover of trees and carbon uptake (between 0.1 

to 0.5 MgC h a - 1 yr_ 1) through time in many permanent plots of neotropical and paleotrop-

ical forests. This increased turnover may be associated with the increase of atmospheric 

CO2 [Phillips and Gentry, 1994] and with an observed increase in the growth of lianas 

[Phillips et ah, 1998]. In addition, micrometeorological techniques and inverse modeling of 

atmosphere also suggest accumulation rate of biomass associated with the hypotheses of 

CO2 enrichment [Grace et ah, 1995] in South American forests of 0-3 PgC yr _ 1 [Malhi and 

Grace, 2000]. However, recent study with biometric measurements and eddy covariance at 

the central East Amazon has shown a reduction of carbon sequestration (lower biomass 

accumulation) with substantial contributions to ecosystem respiration by large stocks of 
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coarse woody debris (CWD) likely because of recent episodic disturbances or tree mortality 

[Saleska et a l , 2003] 

The amount of carbon held in the tropical ecosystems varies spatially and temporally 

as a result of natural and human activities [Houghton et al , 2000] Much attention has 

been focused recently on human-induced changes in the vegetation cover of the Amazon 

such as deforestation [Skole and Tucker, 1993], selective logging [Souza and Barreto, 2000, 

Asnei et al , 2005] and fires [Cochrane, 2003] Human activities are directly responsible 

for the losses of biomass and consequentially for the alteration of terrestrial caibon stocks 

[Houghton, 2005] Small natural disturbances due to mortality of trees, on the other hand, 

are an important dynamic component of carbon cycle [Shugart, 1984] Tree mortality 

reduces the stock of aboveground biomass and the resulting necromass is re-mineralized 

leading to carbon dioxide emission to the atmosphere [Saleska et al , 2003, Rice et al , 

2004] In addition, tree mortality changes the structure of the canopy through the creation 

of gaps [Hubbell et al , 1999] Gaps increase the spatial heterogeneity of light conditions 

in the undei story [Denslow, 1987] and alter the interaction between vegetation and the 

atmosphere turbulent exchanges [Bolzan et al , 2002] In addition to small gaps, large 

natural disturbances (e g blow-downs) have been detected in intact Amazon forests [Nelson 

et a l , 1994] 

Modal rates of tree mortality in old-growth tropical forests range from 0 5 to 2% per year 

[Lieberman et al , 1985, Denslow, 1987, Phillips and Gentry, 1994] Permanent plot data 

on tree mortality has been used to estimate stand turnover rates However, existing forest 

inventory plots in old-growth neotropical forests are few in number, limited in size, almost 

always sited in a non-random fashion with little or no replication, and they do not document 

spatial dependencies of vegetation elements across the entire landscape [Clark et al , 2004a] 

Most of the permanent plots m tropical forest were not designed to study carbon budgets 
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[Rice et al , 2004] The interpretation of plot data provokes numerous ecological debates 

[Phillips and Gentry, 1994, Sheil et al , 1995, Clark, 2002, Phillips et al , 2002] 

At the plot scale, tropical forest dynamics aie governed by occurrences of small gaps 

[Denslow, 1987] A study in 50 ha plot of old-growth moist forest on Barro Colorado Island 

(BCI), Panama, where all plants with stem diameter bigger than 1 cm were measured, 

found 1284 gaps across a range of gap sizes 25-49 m2 (n=894), 50-99 m2 (n=283), 100-199 

m2 (n=65), 200-399 m2 (n=33), and >400 m2 (n=9) Most the disturbances in the BCI 

forest (894 gaps of 25-49 m2) were produced by the death of one to several trees [Hubbell 

et al , 1999] However, the high frequency these of small gaps produced a total disturbance 

area of 22,350 m2 or 2 2 ha of 50 ha forest plot over a 13-year penod Estimates of tree 

mortality from permanent plot studies differ from estimates made from gap formation rates 

For example, a snapped-off tree may not die even though most of its biomass would be lost 

Forest turnover rates based on tree mortality can be about half those based on gap dynamics 

in the same area [Leigh, 1975, Lieberman et al , 1985] Consequently, use of permanent plot 

data for the estimation of regional carbon dynamics may lead to biases at sub-decadal 

time-scale 

Large natural disturbances m old-giowth tropical forests (area > 1 ha) are caused by 

a variety of mechanisms such as landslides [Walker et al 1996], floods [Wittmann, Anhuf, 

and Junk, 2002], fires [Cochrane, 2003], wind [Nelson et al , 1994], and cyclonic storms 

[Lugo, 1995] Forest disturbance caused by hurricanes (powerful tropical cyclonic storms in 

the Atlantic) are very common in tropical forest of the Caribbean islands and coastal areas 

in the region of 10°- 20° [Lugo, 1995] In these regions, catastrophic forest disturbances are 

common, usually in the form of large storms that damage hundreds of square kilometers 

[Vandermeer et al , 2000] Consequently, kilometers of tree-fall areas are created and easily 

detect by satellite images [Ramsey III et al , 2001] In continental regions of tropical forests 
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such as huge areas of Brazilian Amazon, hurricanes do not occur However, using Landsat 

TM images across of the Amazon Nelson et al [1994] detected large natural gaps greater 

than 30 hectares with fan-shape form (blow-downs) produced by high-velocity downburst 

winds [Garstang et al , 1998] Nelson et al [1994] evaluated Landsat data covering most 

of the Brazilian Amazon and found that the TM scene with the greatest total blow-down-

aflected area contained 16 blow-downs totaling 8,600 ha or 0 31% of the scene area The 

largest single blow-down covered 3,370 ha, with the most frequent size classes falling between 

30 and 100 ha These blow-down events occurred pieferentially in the central portion of the 

Brazilian Amazon 

1.2 Problem Definition 

Natural disturbances in tropical forests are dynamic and complex Understanding these 

phenomena is difficult because of the unpredictability of these events in time and space 

Natural disturbances across of the Amazon landscape range in size from single tree fall 

gaps [Hubbell et al , 1999] to large disturbances [Nelson et al , 1994] Quantitative studies 

of natural disturbances in the Amazon are rare Remote sensing provides a means to analyze 

disturbances and to study the dynamics of tropical forests at multiple scales In this thesis, 

I study natuial disturbances and then effects on caibon cycling in tropical forests using 

remote sensing, spatial statistical modeling and field work 

I propose the following general questions to guide the thesis work The questions deal 

with two scales of disturbance that I have identified as related to landscapes and regions 

Disturbance processes cross these scales and the differentiation is based on practical concerns 

for analysis 

4 



1.2.1 Landscape Scale Questions 

At the local landscape scale and in the domain of gap sizes of square meters to hectares, what 

is the mean coarse woody debris (CWD) or biomass change and tree mortality observed in 

small and large scale disturbances? What is the pattern of CWD observed across several 

disturbances size classes and its implication for the carbon cycling? Can one analyze forest 

dynamics by observation of gap formation instead of a conventional analysis of individual 

tree mortality? What remote sensing sensors and digital processing techniques can be used 

to detect and to monitor gap creating disturbances in tropical forest? 

Mortality of individual trees has been related to the creation of new necromass pools. 

However, substantial biomass loss can also be caused by sub-lethal disturbances [Lieberman 

et ah, 1985]. What elements of the carbon stock (tree, branch or litterfall) lost to the 

necromass flux can be detected by remote sensing? Can high spatial and spectral resolution 

satellite images improve the understanding of gap formation in tropical forests? 

1.2.2 Regional Scale Questions 

At the regional scale, in the domain of thousands of square kilometers, what remote sens­

ing approaches can be applied to detect large disturbances, especially blow-downs in the 

Amazon? Can temporal information improve traditional multi-spectral remote sensing clas­

sification? How does the frequency of these events vary across the Amazon landscape? What 

is the effect of blow-downs on carbon flux in the Amazon? 

Although the occurrence of blow-downs has already been analyzed [Nelson et al., 1994], 

a multi-spectral analysis of remote sensing involving modern techniques of image processing 

has not been developed to improve the detection of theses disturbances. Current digital 

image processing techniques would allow us to reduce the minimum spatial dimension of a 

blow-down disturbance below the 30 ha threshold used by Nelson et al. [1994]. 
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1.2.3 Relation of Forest Disturbance to Carbon Cycling 

What is the relative importance of disturbance at the local landscape scale versus distur­

bance at the regional scale to the dynamics of the carbon cycle in the Amazon? Is there 

some mechanistic process that can explain the variation and the frequency of these dis­

turbances at local and regional scales? How can we reduce the uncertainties in carbon 

budgets by improvement of our knowledge of the rate of formation of small gaps and large 

disturbances in Amazon forests? 

1.3 Objectives 

The availability of published studies quantifying the rates of natural disturbances in tropical 

forests is limited. Only a small portion of that literature has incorporated remote sensing 

techniques. Limited knowledge of the mechanisms for large scale disturbances makes it 

difficult to model their occurrence. Much of our knowledge of tropical forest dynamics 

comes from studies conducted in permanent plots in Panama [Condit et a l , 2004], Costa 

Rica [Clark and Clark, 1996], Puerto Rico [Lugo and Helmer, 2004], Guiana Shield [ter 

Steege and Hammond, 2001], Borneo [van Nieuwstadt and Sheil, 2005] and other areas of 

Asia [Baxter and Getz, 2005]. In the Amazon few studies with permanent plots have been 

developed [Malhi et al., 2002]. Permanent plots and networks of plots provide valuable 

information. However, in the Amazon where plots are extremely scarce, it is difficult to 

scale from plot work to the regional scale. The goal of this thesis is to examine and to 

quantify the dynamic processes of forest disturbances in the Brazilian Amazon by use of 

remote sensing and field work information coupled with a spectrum analysis of the frequency 

distribution of disturbances from branch-fall to landscape blow-downs. 
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1.4 Scope and Organization 

Although much of this research work will involve remote sensing image processing, this thesis 

will be fundamentally concerned with developing new data analysis methods to improve the 

estimation of rates of disturbance in Amazon forests. Use of remote sensing data can provide 

information of forest dynamics across Amazon landscapes and regions. With spatial and 

temporal infoimation of forest disturbances at different levels, it will be possible to improve 

terrestrial ecosystem modeling to understand the carbon cycle in the Amazon. 

The proposed thesis will be divided into in five chapters that are directly linked. Across 

all chapters, the central topic of disturbances in tropical forest will be studied in different 

contexts and at different scales. A short overview of each chapter is presented in the 

following paragraphs. A schematic outline of the steps towards completion of this study is 

illustrated in the Fig. 1-1. 

Chapter 1. Introduction, concerns and importance of the study of Tree Mortality in 

Tropical Forests: From Tree-fall Gaps to Landscape Changes. This introductory chapter 

provides a review of approaches of tree mortality studies in tropical forests including remote 

sensing and field work across the Amazon, and identifies the research questions. 

Chapter 2. Gap Formation and Carbon Cycling in the Brazilian Amazon: Measurement 

Using High Resolution Optical Remote Sensing and Studies in Large Forest Plots. This 

chapter will focus on the use of high resolution spatial remote sensing (IKONOS-2 satellite 

images) to identify and quantify canopy opening at tropical forest sites. Few studies, if any, 

have attempted to relate the occurrence of natural disturbances with production of CWD 

which contributes a large pool of carbon [Denslow, 1987]. In this study we present the survey 

results of two large forest inventory plots of 114 and 53 ha installed in unmanaged tropical 

forest of the Amazon. In those plots all gaps were mapped and light availability (canopy 
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openness and leaf area index) were collected with a very intense protocol of collections. 

Moreover, all coarse woody debris (CWD) and tree mortality in each ground gap was 

measured. This chapter will provide the first quantitative estimation of the relation between 

the gaps area with the amount of CWD produced by natural tree or branch fall disturbances 

in two large plots installed and surveyed in the central Amazon. 

Chap te r 3. Storm Intensity and Old-Growth Forest Disturbances in the Amazon Region. 

The occurrence of blow-downs have been associated with heavy rain are relatively frequent 

in the Amazon. Nelson et al. [1994] used a historical series of Landsat image to register and 

quantify these events. However, the blow-down classification map was restricted to 30 ha 

and a single time slices. At that time, Nelson et al. [1994] carried out a visual classification 

of the blow-down phenomenon. Since then, no study has been conducted to follow up on 

this work on the Amazon landscape. This chapter will focus on the use of remote sensing 

classification techniques to improve the estimation of blow-downs in the Amazon central. 

To evaluate the relation between severe storms and large disturbances in the Amazon, two 

regional data sets will be integrated: (1) a multitemporal data set of Real-Time Rainfall 

(RTR) of the north continental area of South America, and (2) a mosaic of ETM+ Landsat 

images covering the precipitation gradient east to west across the Amazon basin. 

Chap te r 4. Pan Amazon Forest Disturbance Spectrum and Implications for the Tropical 

Old-Growth Carbon Sink. The dynamic processes of biomass accumulation [Malhi et al., 

2002] and forest turnover [Phillips and Gentry, 1994; Phillips et al., 1998] have already 

been developed for small plots. Despite the critical importance of disturbances in forests, 

a complete characterization and understanding of the spectrum of natural disturbances in 

tropical ecosystems is missing. Indeed, natural disturbances across of the Amazon landscape 

have a range of scales from tree-fall gaps [Brokaw, 1982; Denslow, 1987] to large blow-downs 
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areas [Nelson et al , 1994, Garstang et al , 1998] The goal of this chapter is produce a 

spectrum analysis of different size class areas of disturbances (from tree-fall gaps to blow­

downs) and its relation with carbon cycling To provide this spectrum analysis, data will be 

integrated from different sources of field work and remote sensing (1) several RAINFOR 

permanent plots over the Amazon basm [Phillips and Gentry, 1994, Phillips et al , 1998, 

Lewis et al , 2004, Malhi et al , 2006], (2) two large plots surveyed in this study (Chapter 

2), (3) data sets of blow-downs with class size > 5 ha covering the central Amazon region 

(Chapter 3), (4) original historical raw dataset of blow-downs > 30 ha provided by Dr 

Bruce Nelson [Nelson et al , 1994], and (5) the mean above-ground biomass over the South 

America continental area [Saatchi et al , 2007, 2011] 

Chapter 5. Conclusions This chapter will provide an overview of the balance of natural 

disturbance processes in the Amazon The overall relation between severity (area) and 

intensity (change in aboveground biomass) of disturbances from small tiee fall-gaps to blow­

downs will be presented and discussed Moreover, limitation and future work of natural 

disturbances will be addressed regarding its importance for the carbon cycling 
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Main Objective: to quantify the dynamic processes of forest distur­
bances in the Brazilian Amazon using remote sensing coupled with 
field work information; 

[Chapter 1] 

" 

Local Scale: to produce the first statistic of 
the relation between gap area and coarse 
woody debris coupled with remote sensing 
measurements at the canopy level; 

[Chapter 2 ] 

< r 

' ' 

' 

Regional Scale: to develop a strategy of remote 
sensing image processing of large disturbances 
(blow-downs) integrated with a large available 
data of precipitation over the Amazon region; 

[Chapter 3] 

' 

Spectrum Analysis of Disturbances: to quantify several 
scales of forest disturbances using different sources of 
field work data (permanent plots) and remote sensing 
disturbances areas (gaps and blow-downs) and severity; 

[Chapter 4] 

'' > ' 
Conclusions: to describe the balance of natural disturbances in the 
Amazon ; to compare small and large disturbances regarding its 
severity; to highlight limitations and future work on natural distur­
bances for carbon cycling studies in the tropics; 

[Chapter 5] 

Figure 1-1: Schematic outlines of the main processing steps carried out in this thesis to 
achieve main objectives. 
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CHAPTER 2 

G A P FORMATION AND CARBON 

CYCLING IN THE BRAZILIAN AMAZON: 

MEASUREMENT USING 

HIGH-RESOLUTION OPTICAL R E M O T E 

SENSING AND STUDIES IN LARGE 

F O R E S T P L O T S 

Dissertation chapter in preparation for Journal of Geophysical Research - Biosgeociences 
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2.1 Introduction 

The formation of gaps in tropical forests continually re-shapes forest structure [Whitmore, 

1989, Brokaw and Schemer, 1989, Shugart, 2000] and is considered an important mechanism 

foi the maintenance of biodiversity [Denslow, 1987, Whitmore, 1989, Brokaw and Schemer, 

1989, Hubbell et al , 1999] Gaps produced by tree-falls and subsequent regrowth create 

the patchwork structure characteristic of all old-growth tropical forests [Brokaw, 1982, Uhl 

et al , 1988] and are important to forest dynamics and carbon cycling [Shugart, 1984] The 

impact of gap formation on tropical forest carbon cycling can be measured by tree mortality 

at the plot level [Phillips et al , 1998, 2004, Clark and Clark, 2000, Laurance et al , 2004], 

by measurement of the stocks of coarse woody debris (CWD) [Delaney et al , 1997, Clark 

et al , 2002, Rice et al , 2004, Keller et al 2004, Baker et al , 2004, Chambers et al , 2004, 

Palace et al , 2007] or more rarely by measurement of the flux of CWD [Palace et al , 2008] 

Gap size and frequency varies across the tropical forest landscape [Clark and Clark, 

2000] In a 50 ha area of old-growth tropical forest m Panama, censused in 1982, 1985, 

1990, and 1995, only 9 of the 1284 gaps were larger than 400 m2 [Hubbell et al , 1999] In 

contrast, at La Selva in Costa Rica, a substantial portion of total gaps registered [>21%) 

had areas greater than 400 m2 [Denslow, 1987] The average area of gaps at La Selva was 

reported to be of 0 01 to 0 02 ha [Clark and Clark, 2000], with only 23% of the gaps exceeding 

200 m2 [Sanford, Braker, and Hartshorn, 1986] The size and frequency of tree-fall gaps is 

one of the causes of the high variance in biomass estimates at small plot sizes [Shugart, 1984, 

Bormann and Likens, 1994] At La Selva, the mter-sample variance in biomass estimates 

began to stabilize for plots sizes above 0 25 ha, about 18 times greater than the estimated 

median gap size, or 6 times larger than the estimated size of the largest gap class (0 04 ha) 

in that reserve area of only about 1,000 ha of old growth forest [Clark and Clark, 2000] 

Few studies of canopy dynamics have attempted to map the distribution of small gaps 
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in tropical forests [Hubbell et al., 1999] and few, if any, have attempted to relate the 

occurrence of natural disturbances with production of CWD which contributes a large pool 

of carbon [Denslow, 1987; Clark et al., 2002; Rice et al., 2004; Keller et al., 2004; Chambers 

et al., 2004; Palace et al., 2007] and nutrients [Clark et al., 2002]. We are unaware of 

any study in the tropical forest literature that estimates the relation between the area of 

gaps (area, perimeter or any gap geometry) with the amount of CWD produced by natural 

tree or branch fall disturbances. Relations between disturbance area and its biophysical 

consequences (e.g. CWD or tree mortality) are valuable for the quantification of the effects 

of disturbance on carbon cycling in forest ecosystems [Turner, 2010]. 

Forest disturbances caused by tree-falls and or branch-falls can be described either in 

terms of the numbers of dead trees or with regard to the sizes and rates that canopy gaps 

are produced [Van der Meer and Bongers, 1996]. Physically, gaps have been defined in many 

ways but wc find that these divide into two categories: (1) gap-formation at the canopy 

top level; and (2) gap-formation at the ground level. The first definition describes gaps 

as a vertical hole in the forest canopy defined by a plumb line extending from the foliage 

at the gap edge down to a selected height above ground (e.g. 2 m) [Brokaw, 1982]. The 

second defines a gap as the ground area under a canopy opening extending to the bases 

of the surrounding the canopy trees, with a minimum trunk diameter (e.g. 20 cm) and 

height (e.g. 10 to 20 m) [Runkle, 1981]. The definition of Runkle [1981] includes areas 

directly and indirectly affected by the canopy opening by light enhancement at the forest 

floor. Depending on the definition used, the area measured can easily vary by a factor of 

2. This frustrates interpretation of data on tree fall disturbance regimes not accompanied 

by a clear gap definition [Brokaw, 1982]. Although gaps can be detected and mapped using 

these definitions, Lieberman and Lieberman [1989] have argued that disaggregating forest 

environments into gap and non-gap is unrealistic and difficult to implement with rigor and 
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consistency. Instead, they argue that the forest light environments should be treated as a 

continuum. 

In order to evaluate the role of Amazon forest dynamics in relation to the global carbon 

budget, it is necessary to understand the effects of natural disturbances at regional scale. 

Natural disturbances such as large wind-throw or blow-downs caused by convective cloud 

downdrafts [Gaitang et al., 1998] have been studied for threshold areas greater than 30 ha 

[Nelson et al.. 1994] and 5 ha [Espirito-Santo et al., 2010] based on studies that interpreted 

3.9 x 106 km2 and 0.75 x 106 km2 of Landsat imagery respectively. Recently. Negron-

Juarez et al. [2010] estimated that a single large stoini that propagated acioss the Amazon 

may have killed 542 million trees. They based their finding on the direct interpretation of 

only 0.034 x 106 km2 of satellite imagery in one contiguous region (0.8% of the total study 

area) and extrapolated to the larger region based on meteorological data, indicating that 

4.5 x 106 km2 were potentially affected by squall lines. 

Remote sensing provides a means to analyze gap-formation at multiple scales. Data from 

high-spatial-resolution sensors such as IKONOS (GeoEye Inc.) have been used in tropical 

forests to measure tree crown sizes [Asner et al., 2002; Clark et al., 2004b], to estimate 

mortality in dominant trees [Clark et al., 2004a], to detect the effects of selective logging 

[Read et al., 2003] and in other ecological applications [Hurtt et al., 2003]. However, high-

resolution images have rarely been used to estimate gap-formation or natural disturbances 

in tropical forests, with the exception of demographics studies of emergent tree mortality 

in Costa Rica [Read et ah, 2003; Clark et al., 2004b,a]. 

The aim of this study is to improve the quantification of the area affected by, and 

the carbon cycle effects of, natural gap-phase disturbances in a tropical forest of Brazilian 

Amazon. We link gap-formation with carbon cycling through analysis of the coarse woody 

debris (CWD) within gaps and link gap area measurement to the quantity of CWD. Working 
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in a large contiguous plot, we investigate how remote sensing can be used to estimate tree-fall 

and/or branch-fall disturbances and attempt to establish the limits of detection of small 

disturbances using high resolution satellite imagery We compare the detection of gaps 

using high-resolution remote sensing and detailed ground-based forest survey supplemented 

by instrumental measurements of light penetration 

2.2 Material and Methods 

2.2.1 Study Area and Large Forest Survey Plots 

The study was conducted m the area of Tapajos National Forest (TNF) Para State (Brazil), 

between the coordinates 2°32' and 4° 18' S and 54°30' and 55°29' W (Fig 2-la-c) According 

to Koppen classification, the climate in the region is predominantly AmW type [Eidt, 1968] 

with a mean annual temperature of 25°C From the historical data (1950-2000) of the 

Belterra weather station located at the km 20 of BR-163 Highway, the TNF and region has 

two well defined seasons The wet season occurs from January through May with 70% of the 

annual rainfall The TNF region is characterized by two geomorphological units the Low 

Plateau of the Amazon (LPA) and the Tapajos-Xmgu Plateau (TXP) [RADAMBRASIL, 

1976] The LPA presents dissected relief and a mean elevation around of 100 m The TXP, 

where our studies were conducted, occurs m flat relief and with elevations from 120 to 170 

m Two kinds of soil are common for these geomorphological classes One is the dystrophic 

yellow latossol with clay and medium clay (Oxisol) characteristic of the TXP [Silver et al , 

2000] The other is clay red-yellow podzohc soil (Ultisol) that characterizes the LPA 

We installed and surveyed two large forest inventory plots of 114 and 53 ha, m unman-

aged forest area at the TNF (Fig 2-la-g) The 114 ha plot was installed between August 

and September of 2008 and the 53 ha plot between August and October of 2009 In both 

plots the design and the measurement approach was inspired by tropical tree demography 
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studies of the Center of Tropical Forest Science (CTFS), Smithsonian Institutition, which 

has installed large plots between 25 and 100 ha around the world [Ashton, 1995; Condit 

et ah, 1996; Hubbell et al., 1999; Nascimento et al., 2005; Baltzcr et ah, 2007]. 

We modified the concept of those large field surveys to focus on natural disturbances 

and their connection with the carbon cycle. Our design anticipated up-scaling. All ground 

measurements were used to calibrate high-resolution satellite images (IKONOS-2) acquired 

within 2 months of the field campaigns. We adopted an intense protocol of ground measure­

ments of gap-formation and canopy openness and we related those areas with the amount 

of CWD measured in each gap. 

2.2.2 Gap-Formation and Canopy Openness 

We mapped all gaps in both large plots using the gap definition of Runkle [1981] that in­

cludes areas directly and indirectly affected by the canopy opening. Runkle's gap definition 

includes all gap areas that experience significant forest floor light enhancement, accounts for 

the direct ecological impact of gap-formation, and is practical to implement. Nonetheless, 

we recognize that the constraint of any binary definition (gap vs non-gap, c.f. Lieberman 

and Lieberman [1989]) is unrealistic, so we collected data on light availability (canopy open­

ness) and estimated leaf area index (LAI) for the whole large plot area. We collected the 

following information for each gap: (1) mode of formation, (2) disturbance age, (3) gap area 

and perimeter at the ground level, (4) proportion of canopy openness (CO) and (5) LAI. 

We defined the modes of gap-formation based on the type of disturbance: (a) partial 

or complete crown-fall (from either live or dead standing trees), (b) snapped bole-fall, and 

(c) uprooted tree-fall. We classified all gaps into two age classes: (a) < 1 year, for gaps 

caused by recent disturbances, and (b) > 1 year. For each gap identified in the field we 

collected a central GPS coordinate using an average of 53 way-points (collection time of 
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Figure 2-1: Large plot of 53 ha (white box) overlapped in an IKONOS-2 image of 8 August 
2009 (a). Location of Tapajos National Forest (TNF) in a TM Landsat 30 July 2001 of 
Para State, Brazil (b) and the overlapped IKONOS-2 images. Large plot of 114 ha (white 
box) overlapped in the IKONOS-2 of 23 June 2008 (b). Forest canopy details of the 114 ha 
plot survey in the 4 meters multispectral IKONOS-2 bands (d). Ground collections of gaps 
(n=55, Runkle's gap definition), hemispherical photos (n=110, two photos per gap) and 
biophysical data of canopy openness (CO) and leaf area index (LAI) collected with LAI-
2000 plant canopy analyzer (n=980) in 114 ha overlapped in a 4 m multispectral IKONOS-2 
image (e). Forest canopy details of the 53 ha plot survey in IKONOS-2 multispectral images 
(f). Ground collections of gaps (n=41), hemispherical photos (n=82), LAI-2000 (n=2315) 
in 53 ha overlapped in a visible multispectral band composition of IKONOS-2 images (g). 
Color compositions of Landsat image at full-width wavelength for the three bands are: 
(3) Red 0.63-0.69 /xm; (4) Near IR 0.76-0.90 /mi; and (5) Mid-IR 1.55-1.75 /an. For the 
IKONOS2 image the wavelength bands are: (1) blue 0.45-0.52 /xm; (2) green 0.51-0.60 /mi; 
(3) red 0.63-0.70 /mi; and (4) NIR: 0.76-0.85 /mi. 
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about 2 minutes) with a GPS receiver (GPSMAP 76CSx). From the center of each gap 

we estimated the distance and the azimuth of each large tree (DBH > 20 cm) along the 

gap edge. The distance and the azimuth were collected using a laser rangefinder (Impulse-

200LR, Laser Technology Corp.) and magnetic compass, respectively, where the temporal 

magnetic declination of our compasses were corrected using the geomagnetic database model 

of NOAA [NOAA, 2010]. We collected at least 8 points of the edge of each gap to delimit 

the gap ground area, according with the geometry and the size of canopy opening. Large 

gaps required more edge points. 

We quantified the CO and LAI for each gap using indirect measmements of hemispher­

ical photographs. We also examined the spatial distribution of sky opening for the whole 

large plots using diffuse non-intercept ance (DIFN) canopy and LAI estimates produced by 

the LAI-2000 [LI-COR, 1992] plant canopy analyzer (PCA). According to Frazer et al. [2000 

and personal communication] the measurements are not exactly the same for hemispherical 

photos and PCA, considering that LAI-2000 has a limited field of view and different sine 

weightings. However, in both instruments, the CO is a sine-weighted measure that repre­

sents to the relative amount of sky that is unobstructed (open) from a point beneath the 

forest canopy [Frazer et al., 2000, 2001]. Two photos were taken at the center of each gap, 

1.5 m above of the forest floor, with a true color digital camera Nikon Coolpix 950 and FC-

E8 sheye lens (180°field of view). The photographs were taken using a tripod and collected 

in the early morning, and/or late afternoon, or when clouds eclipsed the sun [Rich, 1989]. 

The lens was facing skyward and camera body was oriented with magnetic north, allowing 

superposition of solar tracks. The CO of the photos was analyzed using the image process­

ing software Gap Light Analyzer (GLA), version 2 [Frazer, Canham, and Lertzman, 1999]. 

Considering the substantial color blurring or chromatic aberration associated with digital 

cameras [Frazer et ah, 2001], we used an automatic threshold algorithm for hemispherical 
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canopy-photographs based on edge detection [Nobis and Hunziker, 2005] to separate canopy 

and sky elements, producing a binary black and white image. The automatic threshold was 

applied to all images using the edge value mode [Nobis and Hunziker, 2005]. All pho­

tographs were saved in gray scale (BMP format) and CO was extracted following ?. In 

order to reduce the artifact of image processing and sky condition, we averaged the CO of 

the two photos collected in each gap. 

Using the LiCor PCA, we estimated the CO and LAI in both plots where the CO 

represents values of DIFN collected with LAI-2000 PCA at a height of 1.5 m. We used two 

intercalibrated LAI-2000 PCA sensors; one sensor was installed in an open area without 

obstruction close of the experiment area (above unit) to measure the instantaneous diffuse 

solar radiation and the other was used to collect the data along the forest transects (below 

unit) [Welles and Norman, 1991; LI-COR, 1992]. Both sensors were oriented in the same 

direction, pointed away from the sun with a compass. The measurements were done in the 

early morning (5:30 AM) or late afternoon (5:30 PM) to minimize the incidence of direct 

sun on the sensor. We omitted ring 5 measurements of the LAI-2000 because of the large 

variability in measurements introduced by that ring because of the potential for exaggerated 

influence of understory plants near the sensor. 

In the 114 ha plot the LAI and CO measurements were made along 21 transects of 1 

km length with a separation of 50 m. Along each 1 km line we collected biophysical data 

from the LAI-2000 and GPS coordinates at points separated by approximately 15 m along 

the transect to produce a grid of CO and LAI data with ~15x50 m spatial resolution. We 

used this data to map all gaps by light availability near the forest floor. For the 53 ha 

plot we adopted a more intensive data collections of light availability. There measurements 

were made along 41 transects of 0.5 km length with a separation between lines of 25 meters 

(double the density of the 114 ha plot). Along each 0.5 km line we collected data of LAI-2000 
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and it GPS coordinates points separated by approximately 15 m along the transects In both 

large plots for cases where the gaps occurred between the lines, we explicitly collected ground 

data of LAI-2000 at the center and edge of these gaps in order to obtain the maximum spatial 

variance of CO and LAI In total, 21 days were needed in each plot to measure the DIFN 

by LAI 2000 PCA considering the small temporal collection window of this instrument 

For the 114 ha plot we collected 980 measurements of DIFN data from LAI-2000 plant 

canopy analyzer for the whole aiea (Fig 2-le) However, from the 980 samples, only 731 

ground data were used for the geostatistical analysis of canopy openness (CO) and LAI in 

the 114 ha We eliminated 249 points with DIFN=0 where inspection of the data revealed 

that the LAI-2000 devices failed producing large number of consecutive zero values These 

249 samples represent all of 1 5 transect lines and a few points with DIFN=0 in the darkest 

regions of the forest plot Along those 1 5 transect lines we have only 3 small and old 

gaps (> 1 year old) that have a minor impact on our analysis of light variability at this 

plot In the 53 ha plot we applied a more intensive LAI-2000 data collections with 2315 

measurements for the total plot area and no data were excluded (Fig 2-lg) 

2.2.3 Geostatistics Analysis of Light Environments 

We interpolated all collections of CO and LAI from LAI-2000 PCA of the two large plots 

using Kriging [Knge, 1951, Journel, 1986, Cressie, 1993] The difference between neigh­

borhood values (semivariances) is used to represent the spatial autocorrelation structure of 

the variable [Journel, 1986, Cressie, 1993] We used a semivanogram j(h) to calculate the 

kriging weights of CO ground collections, given by 

l(h) = ^Var[z(Si + h) - z(s,)] (2 1) 

where j(h) is a estimated semivanance value given a lag (h) considering a variable 
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with the spatial location z{si) and its neighboring at distance st + h . All the geostatistical 

analyses were executed using geoR [Ribeiro and Diggle, 2001] and Fields [Fields-Team, 2006] 

packages of R language [R-Team, 2005]. 

We fit several theoretical semivariogram models (linear, spherical, exponential, Gaussian 

and power) using the weighted least squares method and we selected the model with smallest 

RMSE and the best correlation. Three parameters were used to fit the semivariogram: (1) 

range equal to the maximum distance of spatial dependence of a variable; (2) sill a variance 

related to the spatial structure of the data; and (3) nugget equal to the residual variation 

at the shortest sampling interval. Finally, we used the following ordinary kriging estimator 

(Z) of a number of measurements of CO and LAI (ZJ) and its corresponding weightings (wt) 

to predict the spatial distribution of CO over the sample areas: 

n 

Z(x,y) = J2wiZi (2-2) 

i=i 

Considering the skewed frequency distribution of DIFN, we applied a square root trans­

formation on the raw data of CO in both large forest inventory plots. No transformation was 

applied to LAI because the square root transformation did not markedly affect its skewness 

(see Sup. Material, B2-3). 

2.2.4 Coarse Woody Debris (CWD) of the Tree-Fall Gaps 

We measured the volume of all CWD in each ground gap. CWD were separated into 

categories of complete dead trees or wood pieces. For snapped bole-falls and uprooted 

tree-falls, dead trees with diameter > 10 cm were recorded for diameter. For complete 

crown-falls only crown-fall trunks were recorded; measuring all fallen branches would have 

been exceedingly time consuming. The majority of CWD production in this area was 

caused by single or multiple tree-falls. We used the allometric equation developed by ? as 
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approximation of wood biomass losses by fresh treefalls and snapped bole falls For gaps 

with partial crown-fall we recorded the diameters of all wood pieces greater than 10 cm 

(the end diameters of the logs) and length of the woody material CWD in the gaps were 

classified according to its decomposition status [Harmon et al , 1995] into five classes from 

freshest (class 1) to most rotten (class 5) [Keller et al , 2004, Palace et al , 2007, 2008] We 

used an average of wood density measuied foi each decay class specifically developed for 

this site [Keller et al , 2004] We calculated the sectional volume of each segment of CWD 

using Smahan's equation, cross-sectional average areas from the ends of the segment 

Vs = h(AL + AU)/2 (2 3) 

where Vs is the segment volume (m3) of a CWD, is the segment length (m), AL is the 

cross-sectional area at lower end section (large diameter) and AU is the cross-sectional area 

at the upper end section (small end diameter) 

The mass of section of CWD (Mt) was determined from the product of the volume of 

material (Vz) and the respective density for the material class (pt) [Keller et al , 2004, Palace 

et a l , 2007, 2008] 

Mt = plVl (2 4) 

2.2.5 R e m o t e Sensing Image Process ing 

We investigated the relation between CO and LAI of gaps and remote sensing data of 114 

and 53 ha plots installed in 2008 and 2009, respectively Two images of the commercial 

satellite IKOrsOS-2 were acquned ovei field plots The first acquisition was m June 23, 

2008 (~ 2 months before of the field work campaign) with a nominal collection elevation 

and sun angle elevation of 66 77°and 56 81°, respectively The second acquisition was in 
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August 11, 2009 (at the same period of field work activities) with a nominal collection 

elevation and sun angle elevation of 66.74°and 54.49°, respectively. IKONOS-2 is a satellite 

sensor that produces 11-bit radiometric images in panchromatic (PAN) and multi-spectral 

(MS) with 1 and 4 m spatial resolution, respectively [Goward et al., 2003; Dial et al., 2003]. 

The PAN image uses a wide portion of visible and near-infrared electromagnetic spectrum 

(0.45-0.90 /xm). The multispectral wavelength bands at full-width and half-maximum are: 

blue (0.445-0.516 tim), green (0.506-0.595 /mi), red (0.632-0.698 /xm) and NIR (0.757-0.853 

/mi). The image was radiometrically transformed from digital numbers (DN) to in-band 

radiance physical units (mW cm"2 sr"1). Subsequently the image in radiance was corrected 

to the top-atmosphere or apparent reflectance (pa) using the mean solar exoatmospheric 

irradiance and the post-calibration gain and off-set of the IKONOS sensor [Taylor, 2009], 

by application of Markham and Barker [1987] algorithm: 

LX = LmmX + (Ln""\~LmniX) QCAL (2.5) 

where L\ is spectral radiance, Lmm\ is minimum spectral radiance, Lmax\ is maximum 

spectral radiance, QCALmax\ is digital number range, and QCAL is digital number. 

The apparent reflectance (pa) is calculated by: 

Esum\C0s9s 

where L\ is spectral radiance (mW cm~2 sr~l nm~l), d is Sun-Earth distance in astro­

nomical units, Esum\ is exoatmospheric average spectral radiance (mWcm~2/xm_1) and is 

Sun zenith angle. 

We ortho-rectified the IKONOS images using an empirical 3-D rational function model 

[Toutin, 2001, 2004] over the rational polynomial coefficients (RPCs) from satellite ephemeris 
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and altitude data (Geo-Eye product). The rational polynomial method is similar to a sim­

ple polynomial method, except that it involves a ratio of polynomial transformations and it 

also takes ground elevation into consideration. RPCs reduce the numbers of ground control 

points (GCPs) needed for the ortho-rectification [Fraser et ah, 2001; Dial and Grodecki, 

2005]. We extracted the Z-terms related to the third dimension of the terrain from an 

available DEM extracted from the Shuttle Radar Terrain Mission (SRTM) for the region. 

Although the spatial resolution of SRTM [Smith and Sandwell, 2003] is relatively coarse 

(~ 90 m for South America) for high-resolution satellite images, this has a minimal effect 

in our flat study area. In addition we used highly accurate GCPs with differential GPS 

collected in the field to check and improve the ortho-rectification quality. A cross-check of 

GCPs revealed a root mean square (RMS) error ~ 4 meters after the ortho-rectification 

process (see Sup. Material, B-l). 

We applied a spectral mixture analysis (SMA) using a linear mixture model [Shimabukuro 

and Smith, 1991] in all 4 IKONOS MS bands of both images to produce fractional images 

base on three end-members: green vegetation (GV), nonphotosynthetic vegetation (NPV), 

and shade (SD). The spectral pure end-members (GV, NPV and SD) were determined using 

pure end-members as determined using the pure pixel index (PPI) [Boardman, 1993; Board-

man et ah, 1995]. A spectral library was then built to estimate the fractional proportions 

(NPV, GV and SD) of each pixel [Shimabukuro and Smith, 1991]. Considering the high 

percentage of shadow in high resolution forest canopy images [Asner and Warner, 2003] we 

also produced simple Normalized Difference Vegetation Index (NDVI) [Tucker, 1979] from 

the IKONOS bands red (0.632-0.698 /xm) and NIR (0.757-0.853 /xm) for both images. 
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2.2.6 Linking Ground Disturbance to Satellite Image 

We applied an ordinary least square (OLS) regression to assess the relationship between 

canopy openness (disturbances) and a high-resolution satellite image The continuous vari­

ables of CO and LAI interpolated by krigmg (114 and 53 ha plot areas) were used to evaluate 

the remote sensing IKONOS-2 products, fractions (NPV, GV and SD) and NDVI images 

For the 114 ha plots we used a total interpolated grid of 71 416 pixels of 4 meters (the same 

spatial resolution of IKONOS 2 multispectral bands) of CO and LAI to evaluate patterns 

of disturbance signals of ground remote sensing in the satellite image products of 2008 In 

the 53 ha plot a total grid of with 33,020 pixels of 4 meters were used to detect disturbances 

of tree fall-gaps over the satellite image products of 2009 Following the regression analyses 

we determined the best remote sensing threshold from IKONOS-2 image to quantify the 

disturbances at the plot scale and for the whole image In total we statistically tested 16 

variables where four are ground remote sensing data (grids of CO and LAI for both plots) 

and four are satellite products (NPV, GV, SD and NDVI) We also applied a secondary 

approach to detect areas with a high density of ground disturbances Using the interpolated 

grids of CO and LAI from both plots, we selected ground thresholds from those variables 

that were found to cover all mapped polygons of tree-fall gaps The selected grid pixels of 

4 meters from those thresholds were then submitted to analysis of regression with remote 

sensing products We empirically estimated the amount of CWD produced by small scale 

of disturbances based on this derivative remote sensing threshold and on the relation be­

tween biophysical canopy gap (CO and LAI) and CWD Our methodological approach is 

summarized m Figure 2-2 
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Figure 2-2: Diagram summarizing methods for ground gap-CWD survey and remote sensing, 
geostatistics, image processing and data integration applied in this study. 
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2.3 Results 

2.3.1 Gap Geometry, CWD and Tree Mortality 

In two large forest inventory plots (114 and 53 ha) we found 96 gaps We removed 4 samples 

(outliers) reducing our total sample to n=92 (Tabic 2 1) Outhcis were identified as samples 

with large differences from the mean, high variability of residuals when the variables were 

plotted in stepwise scatter plot pairs and high scores of level age (the impact on the fitted 

values when ith cases is dropped from the regression models) [Crawley, 2007] These 4 

outliers had high amount of CWD and number of dead trees for a small proportion of opened 

area The correlation between CWD and gap area increased from r=0 61 to r=0 73 with 

the exclusion of outliers Also, removing these outliers increased the correlation between 

number of dead trees and gap area from r=0 69 to r=0 75 

For the total areas of the two plots (167 ha) we found 16 gaps produced by partial or 

complete crown-fall (from either live or dead standing trees), 44 by snapped bole-fall and 

32 by uprooted tree-fall (Table 2 1) In total those disturbances represented a sum area of 

2 37 ha or 1 42% of the total plot Only 1 36 ha oi 0 81% of the plots was affected by recent 

disturbances < 1 yr old The recurrence interval or turnover for these events is about 123 

years for all gap-formation types The mean gap size was 257 m2 (95% confidence limit 

between 219 and 294 m2) The minimum gap size is 32 m2 (crown-fall) and the maximum 

1,313 m2 (uprooted tree-fall) The average length of these gaps is 26 m where the geometry 

of uprooted gaps had the largest length (81 m) and consequently the largest disturbance 

area (1,313 m2) 

Coarse woody debris amounts depended of the type of gap formation, crown-falls con-

tamed 0 11 Mg C ha^1 of CWD, snapped tree falls 0 65 MgC h a - 1 and uprooted tree falls 

0 70 MgC ha^1 In total, all 92 gaps contained a stock of 1 45 MgC h a - 1 of necromass for 

the study area The flux of CWD caused by the gaps is 0 76 MgC h a - 1 y _ 1 All those 
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natural disturbances accounted for a mortality average of 6.47 trees (DBH > 10 cm) per 

gap or a sum of 596 individual trees (3.57 ha - 1 ; > 10 cm DBH) for the total 167 ha plot 

area. From those total dead trees contained in the gaps of all ages, we estimated a mean 

annual tree mortality of 2.38 trees h a - 1 y - 1 (Table 2.1). 

2.3.2 Linking Gap Geometry and Light Penetration to C stocks 

A section of reported values of C stocks by different gap-formation mode is listed in Table 

2.1 and summarized in Fig. 2-3. There is a strong correlation between production of CWD 

and gap geometry (r=0.73 for area, r=0.80 for perimeter and r=0.78 for length) (Fig. 2-3 

and Sup. Material B-16). Gap area and perimeter both correlated even more strongly 

(r=0.75 and 0.77, respectively) with the number of dead trees (Fig. 2-3 and Sup. Material 

B-17). 

A total of 184 hemispherical photos where collected (2 for each gap) and analyzed 

with GLA [Frazer, Canham and Lertzman, 1999] to estimate CO (n=92) and LAI (n=92) 

for each gap. We found a weak correlation between CWD and ground hemispherical photo 

measurements of CO and LAI (r=0.22 and r=0.12, respectively). Slightly higher correlation 

was found between the number dead trees and the same variables (r=0.57 for CO and r=0.41 

for LAI) 

2.3.3 Remote Sensing and Forest Light Environments 

Based on the high resolution multispectral bands of the IKONOS-2 acquired close to the 

dates of our forest surveys we produced the remote sensing products NDVI and spectral 

unmixing fractions images (GV, NPV and SD) for the 114 (Fig. 2-4) and 53 ha (Fig. 2-5) 

large plots. 

Geostatistical analysis of CO and LAI in the 114 ha plot (n=731) revealed a spatial 

auto-correlation of both variables (Fig. 2-6) to a range of 56 and 71 meters for CO and 
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Table 2 1 Geometric characteristics of ground tropical canopy gaps (n=92) and biophysical 
responses of those disturbances m two larges plot (114 and 53 ha) forest surveys at Tapajos 
National Forest (PA), Brazil 

Gap Mode Foimations 
Gap Parameters Crown-Fall Snapped Uprooted All Gaps Types 
Ft equency of gap foi mation mode 16 44 32 92 
Piopoition of gap foimation mode* 
Gap aiea (ha) 0 26 1 18 0 93 2 37 
Piopoition of aiea undei gap piocess"* 0 15% 0 71% 0 56% 1 42% 
Gap aiea (ha) with < 1 yi old in 167 ha 0 14 0 90 0 32 1 36 
Piopoition of area undei gaps < 1 yi old 0 08% 0 54% 0 19% 0 81% 
Fi equency of gaps > 500 m2 0 4 2 6 
Max gap size (m2) 266 658 1313 1313 
Mm gap size (m2) 32 92 100 32 
Mean gap size (m2) 160 268 290 257 
Median gap size (m2) 187 233 252 221 
Standaid deviation gap size (m2) 67 6 146 8 243 0 182 1 
Max gap penmeter (m) 72 123 192 192 
Mm gap penmetei (m) 22 37 40 22 
Mean gap penmetei (m) 50 69 74 67 
Median gap penmetei (m) 54 62 70 65 
Standaid deviation of gap penmetei (m) 13 9 21 9 31 8 25 9 
Max gap length (m) 32 49 82 82 
Mm gap length (m) 7 13 15 7 
Mean gap length (m) 19 25 31 26 

16 
17% 
0 26 

0 15% 
0 14 

0 08% 
0 

266 
32 
160 
187 
67 6 
72 
22 
50 
54 

13 9 
32 
7 
19 
19 
6 

18 5 
4 4 
12 
13 
3 9 

2 85 
0 06 
1 12 
1 18 
0 74 
0 11 
0 00 
10 
0 

2 7 
1 5 

2 65 
0 3 
0 2 

44 
48% 
1 18 

0 71% 
0 90 

0 54% 
4 

658 
92 
268 
233 

146 8 
123 
37 
69 
62 

219 
49 
13 
25 
24 
9 

29 0 
72 
14 
14 
4 4 

8 79 
0 14 
2 45 
1 46 
2 23 
0 65 
0 00 
24 
1 

7 8 
6 5 
5 87 
2 0 
1 7 

32 
35% 
0 93 

0 56% 
0 32 

0 19% 
2 

1313 
100 
290 
252 

243 0 
192 
40 
74 
70 

318 
82 
15 
31 
27 
15 

33 0 
6 1 
13 
13 
56 

17 55 
0 40 
3 63 
2 94 
3 47 
0 70 
0 00 
26 
1 

66 
50 

6 03 
1 3 
0 5 

Median gap length (m) 19 24 27 24 
Standaid deviation of gap length (m) 6 9 15 12 
Max gap width (m) 18 5 29 0 33 0 33 0 
Mm gap width (m) 4 4 7 2 6 1 4 4 
Mean gap width (m) 12 14 13 13 
Median gap width (m) 13 14 13 13 
Standard deviation of gap width (m) 3 9 4 4 56 4 8 
Max CWD per gap (Mg C)f 2 85 8 79 17 55 17 55 
Mm CWD pei gap (Mg C)t 0 06 0 14 0 40 0 06 
Mean CWD pei gap (Mg C)t 1 12 2 45 3 63 2 63 
Median CWD per gap (Mg C)T 1 18 1 46 2 94 1 61 
Standard deviation of CWD pei gap (Mg C)f 0 74 2 23 3 47 2 70 
CWD m gaps (Mg C ha 2)f 0 11 0 65 0 70 1 45 
CWD Hux m gaps (Mg C ha" 1 y " l ) t f 0 00 0 00 0 00 0 01 
Max numbei of dead tiees pei gapj 10 24 26 26 
Mm numbei of dead tiees pei gap:]: 0 1 1 0 
Mean numbei of dead tiees pei gap! 2 7 7 8 66 6 5 
Median numbei of dead tiees pei gapl. 15 6 5 50 5 0 
Standaid deviation of dead trees per gapf 2 65 5 87 6 03 5 77 
Dead tiees in the gaps pei hectaiej 0 3 2 0 1 3 3 6 
Annual tiee moitahty pei hectaiett 0 2 17 0 5 2 4 

* Proportion = (sum area of gaps in all ages — by total plot area) x 100%, ** Proportion 
= (sum area of gaps < 1 yr old — by total plot area) x 100%, tOnly pieces of CWD > 10 
cm of diameter were measured in gaps area of all ages, ttOnly pieces of CWD > 10 cm of 
diameter were measured in gaps area < 1 yr old, |Only dead trees > 10 cm of diameter 
at breast height were measured m the gap area of all ages, ttOnly dead trees > 10 cm of 
diameter at breast height were measured m the gap area < 1 yr old 
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Figure 2-3: Bivariate Pearson correlation coefficients (r) between pairs of ground gap pa­
rameters (CWD, number of dead trees > 10 cm of DBH, gap area in m2, gap length in m, 
gap width in m, CO proportion of canopy openness and LAI leaf area index) of gap survey 
(n=92) in two large forest plot areas (114 and 53 ha). The upper half of the graphs gives 
the linear correlation coefficients and the lower half graphs are scatter plots fitted with a 
non-linear parametric smoothing function. 
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Figure 2-4: IKONOS-2 image processing of 114 ha plot at Tapajos National Forest (Brazil). 
Normalized Vegetation Index (a) and unmixing fraction images of vegetation (b), nonpho-
tosynthetic vegetation (c) and shade (d). Ground gaps (n=55) are overlaid in red. 
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Figure 2-5 IKONOS-2 image processing of 53 ha plot at Tapajos National Forest (Brazil) 
Normalized Vegetation Index (a) and unmixing fraction images of vegetation (b), nonpho-
tosynthetic vegetation (c) and shade (d) Ground gaps (n=41) are overlaid in red 
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LAI, respectively (Fig. 2-6a-b). For the 53 ha plot (n=2315) a stronger pattern of spatial 

auto-correlation was found to a range of 57 and 60 meters for CO and LAI, respectively 

(Fig. 2-6c-d). We found a spatial trend in both CO and LAI for the data of 114 ha plot 

probably related with the dissected relief, but no spatial trend of (CO and LAI) for the 53 

ha plot (see Sup. Material, B-4-9). Experimental semivariograms of the data of both large 

plots showed a periodic variance every 50 meters (see Sup. Material, B10-11) aliasing the 

spacing between transects. Based on the smallest RMSE for both types of data we selected 

and fitted an isotropic exponential semivariogram model j(h) = co[l — exp( — h/ao)], where 

~y(h) is the semivariance at the lag h, CQ is the variance asymptote, and OQ a lag distance or 

range. 

A clear pattern of light penetration was found around of the ground gaps of the large plot 

of 114 ha (Fig. 2-7a,f) and 53 ha (Fig. 2-8a,f), although high uncertainty of interpolation 

was found at the 114 ha plot considering the smaller number of data collection parts in 

that plot (see Sup. Material, B-13 and B-14). The geostatistical interpolation of canopy 

openness (square root of CO) and LAI clearly showed that the occurrence of gaps increases 

light penetration on the foiest floor in both plots (Fig. 2-7a and Fig. 2-8a). Tree fall gaps 

increased the amount of opened sky and inversely reduced total LAI (Fig. 2-7f and Fig. 

2-8f). We found that most gaps are in areas with CO > 0.25 and LAI < 4 indexes in both 

plots. 

We were unable to find any significant correlation between remote sensing spectral prod­

ucts (NDVI and GV, NPV and SD unmixing images) and the continuous biophysical vari­

ables of CO (Fig. 2-7b-e) and LAI (Fig. 2-7g-j) of 114 ha plot (total grid with n=71,416 

pixels of 4 meters). The same lack of correlation was also found for remote sensing products 

and CO (Fig. 2-8b-e) and LAI (Fig. 2-8g-j) for 53 ha plot area (total grid with n=33,020 

pixels of 4 meters). Also we were unable to find any significant correlation between same 
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Figure 2-6 Empirical and fitted exponential semivariogram models for canopy openness 
- CO (a) and leaf area index - LAI (b) for the 114 ha plot (n=731) For the 53 ha plot 
(n=2315) a fitted exponential semivanogiam models was also applied for CO (c) and LAI 
(d) Krigmg parameters used to interpolate CO and LAI in 114 ha plot were, respectively 
direction (isotropy in both), nugget (0 0055 and 0 4586), sill (0 0103 and 1 603) and range 
(56 1 and 71 16) For the 53 ha krigmg plots of CO and LAI we used direction (isotropy 
in both), nugget (0 0026 and 0 3922), sill (0 0028 and 0 7507) and range (57 26 and 60 26) 
A square root transformation was applied for the raw data of CO or (DIFN) to reduce its 
skewed frequency distribution in both plots 
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Figure 2-7 Interpolated ground collections (n=731) of canopy openness (square root of 
CO) (a) and leaf area index (LAI) (f) in 114 ha forest area (4 meter grid plot) using 
krigmg with an exponential semivariogram model Gaps (black polygons) are present in 
areas of high CO (a) and low leaf area index (f) Scatter plots of canopy openness grid 
and remote sensing products (4 m spatial resolution) NDVI (b), green vegetation (c), 
nonphotosynthetic vegetation (d) and shade (e) For LAI grid plot the scatter plots with 
the same remote sensing products are NDVI (g), green vegetation (h), nonphotosynthetic 
vegetation (l) and shade (j) 
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Figure 2-8 Interpolated ground collections (n=2315) of canopy openness (square root of 
CO) (a) and leaf area index (LAI) (f) m 53 ha forest area (4 meter grid plot) using krigmg 
with an exponential semivariogram model Gaps (black polygons) are present in areas of 
high opened sky (a) and low leaf area index (f) Scatter plots of canopy openness grid 
and remote sensing products (4 m spatial resolution) NDVI (b), green vegetation (c), 
nonphotosynthetic vegetation (d) and shade (e) For LAI grid plot the scatter plots with 
the same remote sensing products are NDVI (g), green vegetation (h), nonphotosynthetic 
vegetation (I) and shade (j) 
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remote sensing products and raw ground data points (CO and LAI) in 114 ha (n=731) and 

53 ha (n=2315) (data not shown). 

Gaps produced high variability of light environments, so thresholds of CO and LAI 

were selected for both large grids to test for covariation with remote sensing products. For 

114 ha plot the comparison between CO > 0.30 areas (Sup. Material, B-14a) and remote 

sensing products also showed no correlation (Sup. Material, B-14b-e). The same lack of 

correlation was found between LAI < 4 (Sup. Material, B-14f) and remote sensing products 

(Sup. Material, B-14g-j). For 53 ha plot the regression analysis between CO > 0.23 areas 

(Sup. Material, B-15a) and remote sensing products also showed also no correlation (Sup. 

Material, B-15b-e). The same lack of correlation was again found between LAI < 5 (Sup. 

Material, B-14f) and remote sensing products (Sup. Material, B-14g-j). 

The overlay of the ground gaps of 114 ha plot over the 1 m spatial resolution pan­

chromatic IKONOS-2 image (Fig. 2-9a,c) and its 4-m multispectral unmixing images of 

VG, NPV and SD (Fig. 2-9b,d) revealed that most of the ground gaps are located in areas 

high fraction of shade fraction (SD) (Fig 2-9d). Conversely, shade areas are not uniquely 

associated with gaps because of the complex structure of this old growth forest. Emergent 

trees produce shade even where there is no canopy gap. We found the same pattern of high 

proportion of shadow component in areas of tree-fall gaps over the second high-resolution 

image of the 53 ha plot (Figure not shown). 

2.4 Discussion 

The interaction between atmosphere and forest canopy reshapes the structure of forests 

[Lawton and Putz, 1988; Garstang et al., 1998; Turner, 2010]. In the Tapajos National 

Forest the major mode of gap-formation was snapped bole tree fall (Table. 2.1, n=44 from 

total 92 gaps) suggesting that tall trees of the forest canopy were killed by winds associated 
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Figure 2-9. Distribution of ground gaps (n=55) over 1 m spatial resolution pan-chromatic 
IKONOS-2 image of 23 June 2008 with full-width wavelength 0.45-0.90 /mi (a) and RGB 
color composition of the unmixing images of green vegetation, nonphotosynthetic vegeta­
tion and shade (b), respectively. Spatial details of ground gaps in the pan-chromatic high 
resolution image (c) and spectral details of the gaps m the unmxmg images (d) 

38 



with the ramy season [Garstang et al , 1998] or the low-level winds driven by the mesoscale 

circulations of the Amazon and Tapajos rivers [Lu et al , 2005] Several large trees (DBH > 

50 cm) had their trunks broken at the height around of 5 to 8 meters, which suggest strong 

patterns of wind gusts at forest canopy 

The effects of natural disturbances on carbon cycle have not being quantified because 

of the diversity of scales and severity or intensity of natural processes [Turner, 2010] In 

tropical regions the impact of large scales regional disturbances e g hurricanes [Lugo et al , 

1983, Whigham et al , 1991, Chambers et al , 2007b] or and blow-downs [Nelson et al , 

1994, Garstang et al , 1998, Chambers et al , 2009b, Espinto-Santo et al , 2010, Negion-

Juarez et al , 2010] have received some attention At a fine scale - ~ 100 m or tree-fall 

disturbances - few studies monitored gap dynamics [Hubbell et al , 1999] and related fine 

scale disturbances to carbon cycling through (tree mortality and fluxes of CWD) In our 

study of two large plots of 114 and 53 ha, we found tree mortality depended upon the gap 

size and the mode of gap formation From the sample of 92 gaps only 16 disturbances 

had downed a single tree Most of the gaps had multiple fallen trees with an average 

mortality of 6 47 trees (> 10 cm DBH) per gap (Tab 2 1) As expected, more fallen trees 

produced larger gaps We found a high correlation between number of dead trees and gap 

area (r=0 75) or gap perimeter (r=0 77) (Fig 2-3 and Sup Material B-17) The recurrence 

interval or turnover for these events is about 123 years for all gap-formation types, closely of 

the average range of 100-125 years of others studies [Denslow, 1987, Brokaw, 1982, Van der 

Meer et al , 1994] depending of the gap definition 

We provide the first statistics of CWD production based on gap size and mode of gap 

formation in the tropical forest literature and we estimate an empirical relation between 

the production of CWD and gap size (Fig 2-3 and Sup Material B-16) Gap formation 

as result of uprooted tree-falls produced 1 5 more CWD than snapped trees and 3 times 
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more than crown-falls. Uprooted tree falls disturbed larger gap areas (average ~ 290 m2) 

than the other types of gap formation. Estimates of carbon fluxes based on tree mortality 

from permanent plot studies differ from estimates made from gap-formation rates [Leigh, 

1975], For example, a snapped-off tree may not die even when much of its biomass lost. 

Conversely, a tree that dies standing may not ever form a gap. We compared our results 

to permanent forest plots [Pyle et al., 2008] for tree mortality measurements and repetitive 

line intercept transects for monitoring of CWD flux [Palace et al., 2008] in the Tapajos 

National Forest. In our study plots gap disturbances accounted for a mortality average of 

6.47 stems (DBH > 10 cm) per gap or mean tree mortality of 2.38 stems h a - 1 y _ 1 . In 

comparison, Pyle et al. [2008] found about mortality of 8.38 stems ha - 1 . The total stock 

of CWD in gaps represents between 4.9% and 5.8% of the total stock fallen CWD, when 

compared with Palace et al. [2008] and Pyle et al. [2008], respectively. The production of 

CWD in the recent gaps 0.76 Mg C h a - 1 y _ 1 by our measurements of gaps less than one 

year old, was only 29% as large as the flux of carbon from annual tree mortality measured 

by Pyle et al. [2008] or 23% of the total flux of CWD. 

Optical remote sensing data have been used to estimate large areas of tropical forest 

disturbance [Nelson et ah, 1994; Chambers et ah, 2007b, 2009b; Espirito-Santo et al., 2010] 

than its biophysical responses (e.g. amount of CWD or tree mortality). The strong corre­

lation between gap area and its disturbance responses found in this study may be useful 

to relate disturbance areas detected by satellites to carbon emissions from CWD and tree 

mortality at large scales [Chambers et al., 2007b]. However, we caution that only about 

30% of normal mortality created gap conditions that could be measured on the ground. 

While a great deal of research on canopy disturbance regimes and responses of individual 

species to gap has been documented, there has been little research on the nature of forest 

regimes in and around gaps [Canham et a l , 1990]. In our study we quantified the regimes 
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of light penetration in and around of gaps of the understory forest floor and found that gaps 

played a role on the dynamics of light environments of tropical forests, rarely quantified at 

large scales. Despite the differences of sample design between plots (50 x 15 m vs. 25x 15 m) 

and number of data points (n=731 vs. n=2315), the geostatistical interpolation of canopy 

openness (square root of CO) and LAI revealed that occurrence of tree-fall gaps increased 

the amount of opened sky (Fig. 2-7a and Fig 2-8a) and reduced the total LAI (Fig. 2-7f 

and Fig. 2-8f). Most gaps are present in areas with CO > 0.23 and LAI < 4 thresholds 

(Sup. Material, B-14 and B-15). 

The ecologically altered area at the forest floor is often larger than the size of the gap 

at the forest canopy level [Popma et al., 1988]. Runkle's gap size is normally assumed to be 

a reasonable measure of the gap size on the forest floor and Brokaw's gap size is used for 

the forest canopy [Clark. 1990]. It is normally assumed that gap from Brokaw definition is 

between 2 and 3 smaller than Runkle's gap area [van der Meer et al., 1994]. Comparing our 

instrumental measurement of light penetration and the definition of ground gaps of Runkle 

[1981], which theoretically includes areas directly and indirectly affected by the canopy 

opening by light enhancement at the forest floor, we found that the area measured by LAI-

2000 PCA are twice as large as the areas defined by Runkle's or as much as a factor of 4 

using the conservative gap definition of Brokaw [1982]. Over the 167 ha area of our study 

plots, 1.42% of this plot is in gap phase process (Tab. 2.1). Using the empirical threshold 

of light penetration of CO > 0.30 (114 ha plot) and CO > 0.23 (53 ha plot) where most 

the gaps are geographically located (Sup. Material B-14a and B-15a), the total area in gap 

phase process is 2.57 and 3.33% for 114 and 53 ha plot, respectively. We favor the opinion 

of Lieberman and Lieberman [1989] that the dichotomous definition of forest environments 

into gap and non-gap is unrealistic and difficult to implement with rigor and consistency. 

Our ground measurements of understory light regimes and responses of gap tree-fall 
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disturbances not only raises the question of the importance of gap area definition [Clark, 

1990], but also provide a methodological opportunity for the future studies of light regimes 

coupled with important elements of the carbon cycle process (tree mortality and CWD) 

m other forest areas The recent use of the LiDAR technology to detect and understand 

forest gap dynamics in the tropics seems promising [Kellner and Asner, 2009] considering 

the direct evaluation of the canopy height However, given that LiDAR returns waveforms 

signals into a zenith projection [Parker et al , 2004, Lefsky et al , 2005], light penetration 

can go further than the vertical hole at the gap edge to a given distance Consequently, 

measurements of light enhancements at the foiest flooi estimated by LiDAR mstiuments 

will tend to follow the gap definition of Biokaw [1982] or much bigger if a given tiee height 

threshold is used as cut off [Kellner and Asner, 2009] Our spatially explicit exploration of 

light environments emphasized the need to understand the dynamics of light penetration 

as a continuum 

One of the mam goals of this study was to compare high resolution satellite images 

(Fig 2-3 and 2-4) with ground-based light measurements to detect patterns of tree-fall 

gap mortality As expected NDVI and GV have similar biophysical propriety to monitor 

changes of canopy green vegetation [Hall, Shimabukuro, and Huemmnch, 1995] and NPV 

is potential useful to detect patterns of CWD changes of non-vegetation components of the 

foiests [Asnei, Wessman, and Schunel, 1998] However, we were not able to find significant 

correlations between those ground remote sensing measurements and satellite images in 

both large grids plots of CO and LAI (Fig 2-7 and 2-8) Moreover we found no correlation 

between remote sensing products (NDVI, GV, NPV and SD) even in regions of the plot 

with high fraction of CO or opened sky and low LAI where most of the ground gaps 

were found in the plot (Sup Material B-14 and B-15) The lack of correlation between 

ground measurements from LAI 2000 plant canopy analyzer (PCA) and remote sensing 
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has been pointed out as a problem of signal saturation of optical remote sensing in high 

biomass forests [Toan et al., 2004; Aragao et al., 2005]. Moreover this problem raises others 

questions: if the index saturation of the biophysical variables (CO and LAI) exists, was 

it the result of saturation of the remote sensing spectral products (NDVI and GV), PCA 

ground measurements or both? We expected to find some useful signal of recent disturbances 

between ground data and remote sensing products in those areas, but we were unable to 

detect it (Sup. Material B-14 and B-15). 

We believe that, for this area of the Amazon with high canopy density, the lack of corre­

lations between ground measurements of PCA and remote sensing products (16 covariates) 

was caused because of the high shadow fraction in the high resolution images caused by 

stratified tropical vegetation (Fig. 2-9). Tropical forest shadow fractions represent roughly 

30% (± 10% SD) and so they exert a major control over spatial variability in canopy re­

flectance at both the local and regional levels [Asner and Warner, 2003] Considering that 

in our large experimental plots most of the gaps were present in areas of high proportion 

of shadow (Fig. 2-9), it was not possible to uniquely detect gaps using the high resolution 

IKONOS-2 images. Shadows are also abundant in non-gap areas of the heterogeneous forest 

canopy. 

We note that IKONOS-1 images have been used to detect and map recent man-made 

canopy gaps caused by reduced-impact selective logging activities by application of NDVI 

thresholds and visual interpretation [Miller et al., 2007]. Despite the recognition that NDVI 

is an effective index to reduce remote sensing artifacts (from solar geometry effects, acquisi­

tion image angles, noise and atmosphere contaminations, shadow and topography [Tucker, 

1979], we still found that NDVI filtering alone was insufficient to enable gap detection. It 

is possible that some areas mapped from the simple IKONOS thresholds (NDVI < 0.4) in 

Miller et al. [2007] are artifacts or pixels of shadow components. 
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Our spectral approach to image interpretation may not be the only approach to ex­

tracting information on gaps from the high-resolution images. Modern techniques of image 

processing or computer vision using textural metrics [Kayitakire, Hamel, and Defourny, 

2006; Malhi and Roman-Cuesta, 2008] currently available could be very useful do detect 

patters of disturbances in high resolution satellite images [Malhi and Roman-Cuesta, 2008]. 

2.5 Conclusion 

The dynamics of gaps play a role in the regimes of tree mortality, production of CWD 

and light variability on the understory forest floor. In surveys of two large plots (114 and 

53 ha) of an Amazon tropical forest, we found clear patterns of tree mortality and CWD 

production dependent upon the gap size, geometry and the mode of gap formation (crown-

fall, snapped trunks, and uprooted trees) Tree-fall gaps caused only about 30% of the flux 

of annual tree mortality. Most mortality does not result in gap formation. On average, 

gap formation accounted for a minor proportion of the stocks (between 4.9% and 5.8% of 

the total fallen CWD) and fluxes (about 23%) of CWD carbon. We caution that even if 

adequate remote sensing measurements are developed to detect gaps, gap detection alone 

appears insufficient to provide reliable measurements of tree mortality. 

The forest understory light environment was shaped by the occurrence of tree-fall gaps. 

From the 96 ground mapped disturbances, tree-fall gaps increased light on the forest floor 

and reduced total leaf area index. Quantitative light penetration thresholds of CO > 0.23 

and LAI < 4 closely matched disturbances found in the ground. Accepting thresholds of 

CO > 0.30 for 114 ha plot and CO > 0.23 for 53 ha plot, light penetration by our ground-

based measurements suggests that gap influences are twice as large as the areas measured 

by Runkle's gap definition. From a remote sensing prospective, small changes in canopy 

structure (e.g. defoliation) are detected in ground measurements of CO or LAI. LAI-2000 
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biophysical data are likely be more related to recent changes in forest canopy than Runkle's 

gap definition 

We found little correlation between spectral remote sensing products (NDVI and GV, 

NPV and SD) and ground-based measurements of CO and LAI Probably, the high propor­

tion of shadow in high-resolution images renders effective gap detection impossible using 

spectral approaches While textural approaches using passive optical high-resolution sen­

sors oi active sensors (e g LiDAR, RADAR) may provide more effective approaches to 

measurement gap formation, our studies suggests that remote sensing estimates of mortal­

ity and the caibon flux that lesults from mortality leinams a challenge m the tropical forest 

environment because only a small proportion of mortality and associated carbon fluxes (~ 

30%) are linked to gap formation 
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3.1 Introduction 

Are old-growth tropical forests in steady-state? Recent studies of permanent tree plots 

suggest that tropical forests are changing rapidly. Increases in the rate of turnover of trees 

and increasing carbon uptake (between 0.1 and 0.5 MgC ha^1 y - 1 ) have been observed 

in permanent plots of neotropical and paleotropical forests [Phillips and Gentry, 1994]. 

There is accumulating evidence that old-growth tropical forests may be growing faster, 

experiencing changing patterns of recruitment and mortality [Phillips and Gentry, 1994], 

and increasing their stock of above-ground biomass [Malhi et al., 2006]. 

Local openings in the forest canopy (± 100 m2) are widely recognized as an important 

factor affecting the dynamics of tropical forests [Hubbell et al , 1999]. Larger disturbances 

caused by cyclonic storms (hurricanes) also change the structure of tropical forests, dam­

aging up to hundreds of square kilometers [Lugo et al., 1983; Lugo, 1995]. In continental 

equatorial regions of the Amazon, hurricane damage does not occur. However, Nelson et al. 

[1994] used Landsat images of the Brazilian Amazon to detect large natural gaps (> 30 ha) 

with fan-shape forms (blow-downs), probably caused by high-velocity wet downburst winds 

[Garstang et al., 1998]. Nelson et al. [1994] identified 330 blow-downs in 137 Landsat TM 

between 1987 and 1989 of the Amazon, with a total disturbed area of 90,000 ha. The TM 

scene with the greatest total disturbance affected area had 16 blow-downs totaling 8,600 

ha or 0.31% of the scene. The largest single blow-down covered 3,370 ha, with the most 

frequent size classes falling between 30 and 100 ha. Most of these large blow-down areas 

(> 30 ha) occurred in the west-central basin of the Amazon, where annual precipitation is 

high. 

Forest damage by storms is most often associated with the intensity of wind gusts [Lugo 

et al., 1983]. In the Amazon region wind gusts greater than 10 m s _ 1 accompanied by rain­

fall have been recorded [Garstang et al., 1998]. Heavy rainfall caused by convective storms 
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ought to correlate with strong winds and microbursts [Fujita, 1985] In this study, we ex­

amine a regional mosaic of Landsat images and estimates of daily precipitation retrieved 

from satellite images to determine if there is a coherent spatial relation between heavy pre­

cipitation and large disturbances in old-growth forest in the Amazon Earlier work [Nelson 

et al , 1994, Chambers et al , 2009b] strongly suggests that severe convective storm activity 

associated with heavy rams causes intense winds that in turn lead to forest disturbance 

through blow-downs We hypothesize that the weather patterns that cause blow-downs m 

the Amazon lead to different rates of forest turnover in the eastern and western Amazon 

basm 

3.2 Methods 

3.2.1 Data and Study Area 

To evaluate the relation between severe storms and large disturbances in the Amazon, two 

regional data sets were integrated (1) a multitemporal data set of Real-Time Rainfall 

(RTR) of the north continental area of South America, and (2) a mosaic of ETM+ Landsat 

images [TRFIC, 2001] covering the precipitation gradient east to west across the Amazon 

basm from the east (2°13'S and 51°51'W) to west (6°29'S and 66°49'W) Using these two 

data sets we applied several steps of remote sensing image processing and spatial statistical 

analysis (Fig 3-1) 

3.2.2 Severe Storms in the Amazon Region 

The frequency of severe storms was determined by the integration of the RTR daily images 

produced by geosynchronous NOAA (National Oceanic and Atmospheric Administration) 

satellites [Vicente et al , 1998] RTR estimates are produced at 4 km spatial resolution using 

10 7 mm band data from NOAA 8 satellites with adjustment for cloud top temperature 
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search. Top numbes from 1 to 5 are the main objectives for each sequence of steps. 
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gradients and moistuie regimes using fields of piecipitable water and relative humidity 

generated by the National Centers for Environmental Prediction ETA Model [Vicente et al , 

1998] RTR daily images were obtained from 01 February to 31 December 1999 No data 

were obtained during January 1999 because of operational problems We defined heavy 

rainfall as days with precipitation 20 mm d _ 1 

3.2.3 Digital Classification of the Blow-downs 

Wc have classified large disturbances as blow-downs based on spectral characteristics and 

spatial patterns identified previously [Nelson et al , 1994, Chambers et al , 2009b] The 

number and area of large blow-downs m the Amazon were quantified using digital classifi­

cation of 27 Landsat ETM+ images from 1999 to 2001 with low cloud cover (< 20%) and 

spatial resolution of ~ 28 5 m All images were orthorectified with a spatial accuracy of ~ 

15 m [?] A relative atmospheric correction was applied to the Landsat images using the 

Markham and Barker [1987] algorithm 

We applied a spectral mixture analysis (SMA) [Shimabukuro and Smith, 1991] using all 

six original ETM+ spectral bands to produce fraction images based on three end-members 

green vegetation (GV), nonphotosynthetic vegetation (NPV) and shade (SD) Spectrally 

pure end members were determined using the pure pixel index (PPI) [Boardman et al , 

1995, Boardman, 1993] 

A semi-automated classification was applied to identify and to classify all blow-down 

events on the Landsat images A pixel by pixel classification was developed using six bands 

(GV, NPV and SD, plus the original bands 3, 4 and 5) The pixel groups were labeled using 

an unsupervised classification of Euclidean distance [Schowengerdt, 1997] 

We identified blow-downs when a cluster of more than 55 labeled pixels was observed 

m old growth forest with no sign of anthropogenic activity in the region Clusters were 
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generally fan-shaped [Nelson et al., 1994]. Areas of anthropogenic disturbances (agriculture, 

pastures, secondary forests, roads and cities) or naturally exposed soils (patches of savanna 

shrubs and trees, savanna herbs, open vegetation on white sand and dry river borders) were 

excluded from our analysis. The blow-downs were also classified into two age classes (old 

> 2 y and new < 2 y) according to the relative proportions of GV and NPV. 

We used general categories for anthropogenic disturbances and naturally exposed soils 

in order to avoid confusion of natural and anthropogenic disturbances. The application of 

these generic land-cover categories allowed us to separate areas of natural forests with high 

confidence. Using these broad classes, we reduced the thematic classification uncertainty -

normally very high for some land-use types in the Amazon - especially among agriculture, 

pastures and initial regeneration [Numata et al., 2003]. 

3.2.4 Land Cover Mapping of the Undisturbed Amazon Forest 

We used an unsupervised classification of Euclidean distance [Schowengerdt, 1997] of un­

mixing fraction images [Shimabukuro and Smith, 1991] plus the original bands 3, 4 and 5 

to separate natural forests from other land cover classes. Our classification included five 

categories: natural forests, anthropogenic disturbances, natural exposed soils, water and 

cloud cover. The anthropogenic disturbances class included agriculture, pasture, secondary 

forest, roads and urban areas. Selectively logged areas were not included in this land-cover 

map because of the small proportion of logging in this region, except in limited areas around 

the Tapajos National Forest (TNF) in Para State and areas near of Manaus city. Most selec­

tive logging occurs in South Para and Amazonas States and throughout the States of Mato 

Grosso and Rondonia [Asner et al., 2005]. Naturally exposed soils occurred in patches of 

savanna shrubs and trees, savanna herbs, capinaranas and dry river borders observed in the 

Landsat images, without any sign of anthropogenic disturbances. After the automatic clas-
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sification, all images were carefully inspected to correct possible mistakes of the automatic 

classification. 

3.2.5 Modeling Spatial Point Patterns of Blow-downs 

Are large disturbances clustered spatially? Do the blow-downs present a homogeneous 

spatial pattern or do they vary from region to region of Amazon forest (inhomogeneous 

distribution)? Considering that most of blow-downs occurred in the Western Amazon, is 

there any spatial auto-correlation of these events? To address these questions we carried 

out a spatial point patterns analysis (SPA) [Ripley, 1981]. A SPA normally includes the 

assumption that all events with small area dimension can be analyzed as a single point in 

space. In this study the blow-downs were treated as a single spatial point (the centroid of 

each classified blow-down) in the domain of 793,076 km2 of Amazon forest. We investigated 

the spatial distribution of blow-downs using the SPA approach implemented in the spatstat 

package [Baddeley and Turner, 2005] of the R language [R-Team, 2005]. A SPA consists 

of a set of points (si, S2, etc.) in a defined study region (A) divided into sub-regions (B). 

Y(B) is the number of events that occurred in sub-region B. In a spatial context, the 

number of points can be estimated by use of their expected value ~E(Y(B)), and covariance 

COV(Y(Bi), Y(Bj)), given that Y is the number of events in the areas B% and B3. The 

intensity of an event (s) is the frequency of points of a specific location s, where ds is the 

area of this region. The intensity of events or in our case, blow-downs, can be represented 

as: 

ds^o { ds J 

We used a Gaussian smoothing algorithm named kernel to explore the intensity distri­

bution of the blow-downs (first order property). We tested bandwidths between 25 and 
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100 km to produce the spatial clusters of blow-downs and a probability density function k 

[Ripley, 1981] to examine the spatial dependence of these events. If a set of points TV are 

uniformly distributed, then for any sub-region B, the expected number of points in B is 

proportional to the area B for a point process X. 

E[N(XnB)]=XB (3.2) 

If X is homogeneous, the constant A can be estimated as number of points divided by the 

total window area B or formally A = N(X)/B, where the unit for A is number of points per 

area [Baddeley and Turner, 2006]. Using this approach we found that the density of blow-

down occurrence is small (0.000365 per km2 for the entire region). However, considering 

that the intensity of points varies location to location, we used two others well known 

approaches to estimate its intensity: quadratic counting and kernel smoothing [Ripley, 

1981; Diggle, 1983]. In the quadratic counting, the total window area is divided into sub-

regions ('quadrats') and the numbers of points falling in each quadrate are counted. We 

divided the total studied area by sub-regions of 10 km x 5 km to estimate the intensity 

of blow-downs. In kernel smoothing, the intensity of points is estimated by a probability 

distribution function, the kernel function [Bailey and Gatrell, 1995]. The intensity of points 

or blow-downs will vary from region to region, but with kernel smoothing it will follow 

the assumption that the expected number of points that falling a small region of area du 

around a location u is equal to X(u)du where X(u) is the intensity function for the region B 

[Baddeley and Turner, 2006]. The expectation of the region B can be represented as: 

E[N(X C\R)]= f \(u)du (3.3) 
JB 

To test the spatial auto-correlation of blow-downs or second property of SPA, we used 
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the K-function of Ripley [1981]. Compared to neighbor distance methods that consider only 

the closest points, the K-function provides a summary of spatial dependence of events over 

a wider range of scales. Following Bailey and Gatrell [1995] the K-function (k) is a function 

where the intensity (A) or mean number of events per unit of area is equal to the expectated 

(E) number (#) of points at an arbitrary radious (r) or formally: 

Xk(r) = E(#(events)) (3.4) 

Following the definition of K-function, if A is the area of B then the expected number 

of events in B is A A and the expectation of ordered pair of events at the distance at most 

h apart in B will be A2Ak(r). The K-function can be re-written as: 

where dtJ is the distance between the tth and 3th observed event in B and Ir is an 

indication function which is 1 if dl} < r and 0 otherwise. The ordered par of events is 

Xn^j S Ir(dij) a nd W%3 is an empirical edge correction or a proportion of the circumference 

around of each point near of the border of B. 

We explored the K-function to detect whether clustering or regularity is present in the 

spatial distribution of blow-downs in the Amazon. Under regularity, following a homoge­

neous Poisson process, the expected number of points falling in B is A7rr2 [Ripley, 1981]. 

In a regular pattern values of k(r) <wr2 and under clustering pattern k(r) >irr2 [Bailey 

and Gatrell, 1995]. Thus, a frequent way to have a graphic idea of the K-function is to 

transform it to a straight line (L-function) which transforms the Poison K function to the 

straight line L(r) = r: 
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L(r) = ^ (3 6) 

A common approach to test the K-function under the null hypothesis of Complete Spatial 

Randomness (CSR) could be done using the Monte Carlo test [Ripley, 1981]. In a CSR 

model the total number of events are independently and uniformly distributed in B. The 

CRS model could be tested using upper U(r) and lower L(r) simulation envelopes. Under a 

CSR model the number of independent simulation m of n events could be constructed as: 

U(r) = max L(r) (3.7) 

L(r) = mm L(r) (3.8) 

We used 100 Monte Carlo simulations to test the distribution of blow-downs in the 

Amazon under a CRS model. 

3.2.6 Recurrence Intervals of B low-downs 

We used the following assumptions to calculate the recurrence intervals of the large distur­

bances detected in the Amazon: (i) only new blow-downs up to 2 years old were used to 

calculate the recurrence time, considering that probability of detection decreases with age 

of the regrowth in older patches; and (ii) disturbances occurred at a constant rate during 

the two years of detection. The recurrence interval (T) was calculated as: 

T = ^o r e 6 t , where DAR is: (3.9a) 
F>AR 

DAR = y (3.9b) 
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where Aforest is the total area of forest, D^R is the disturbance rate and Y is 2 (estimated 

time in years of blow-down recovery). DAR is estimated from the total area of new blow­

downs (Auow-downs) during the time interval (maximum interval of detection equal to 2 

years). Thus, the recurrence interval can be rewritten as: 

T= Aforest =2( Afrorest ) (3.10) 
y-^-new—blowdown/ ^) \ •^•new—blowdown / 

3.3 Results 

3.3.1 Size Class Distribution of Large Disturbances 

In 27 Landsat images, we mapped 279 patches as large disturbances that we refer to as 

blow-downs, accounting for a total of 21,931 ha. Of that area, 17,822 ha (189 patches) were 

old blow-downs (> 2 years old), and 4,109 ha (90 patches) were recent blow-downs. The 

largest blow-down covered 2,223 contiguous hectares. The smallest blow-down observed 

was 5 ha based on the minimum threshold of blow-down detection of ~ 55 pixels. Blow­

downs smaller than 50 ha were most frequent (Fig. 3-2a). Blow-downs greater than 101 

ha, although rare, accounted for 61.6% of total blow-down disturbance area of this region 

(Fig. 3-2b). 

3.3.2 Unmixing Spectral Properties of Blow-downs 

Based on spectral unmixing of each Landsat image (Fig. 3-3a), new blow-downs (Fig. 3-3b 

and c) had on average 28% of NPV (±10.20% sd), 54% of GV (±9.53% sd) and 17% of SD 

(±6.20% sd) (Fig. 3-3f). Old blow-downs (Fig. 3-3d and e) had 1 % of NPV (±1.34% sd), 

94 % of GV (±5.46% sd) and 5% of SD (±4.75% sd) (Fig. 3-3f). 
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Figure 3-2: Frequency distribution of the 279 classified blow-downs (a) and their corre­
sponding disturbed areas (b) classified in 27 Landsat images of an east-west transect of the 
Amazon. 
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Figure 3-3: Unmixing Landsat image in color composition NPV (R), GV (G) and SD (B) 
showing the spatial distribution of several blow-downs (a). Close-up view of new blow­
downs with probable age < 2 yrs (b and c) and old blow-downs likely >2 yrs old (d and 
e). In (f), general fraction image proportions of new (n—3539 pixels) and old blow-downs 
(n=1869 pixels), sampled from the correspondent unmixed Landsat image (a). Vertices of 
the ternary diagram (clockwise from top) represent 100% of GV, NPV and SD fraction 
images. 
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3.3.3 Mask of the Antropogenic Disturbances 

Land cover maps for the Amazon are currently available from the Brazilian deforestation 

project PRODES [INPE, 1998]. These maps do not provide information about natural 

disturbances. Unfortunately, we could not use the land cover map provide by PRODES as 

a basis for comparison for our natural disturbance studies because of the temporal mismatch 

between the PRODES images and the images selected for this studies. By performing our 

own simple classification, we also avoid sources of error from conversions of cartographic 

projections, image processing algorithms, and mismatches in the definitions of land-cover 

types. 

Our digital classification of the 27 Landsat scenes in the study area resulted in 88.32% of 

natural forests, 2.29% of anthropogenic disturbances, 0.51% of naturally exposed soils, 5% 

of water and 3.83% of cloud cover. By contrast, natural blow-down disturbances represented 

only 0.02% of the total area (Fig. 3-4). 

Legend: • New Blowdowns (< 2 years old) m Natural Forests • Naturally Exposed Soils 
D Old Blow-downs (> 2 years old) a Anthropogenic Disturbances • Water • Cloud 

Figure 3-4: Land-cover map and occurrences of large disturbances (blow-downs) in the 
study region. TNF is the Tapajos National Forest. BR 63 and 230 are major highways that 
are foci for active land use change. 
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3.3.4 East-West Distribution of Disturbances and Severe Storms 

The occurrence of blow-downs (>5 ha) over the Amazon region investigated is not homo­

geneous in the east-west direction and there is a complete absence of blow-downs in some 

regions of eastern Amazon (Fig. 3-5). The Gaussian smoothing kernel test for the three 

bandwidths (25, 50 and 100 km) produced three different spatial patterns maps of blow-

down densities (Fig. 3-6). The 25 km of bandwidth (Fig. 3-6a) produced too much local 

variations of blow-down densities. Using 100 km overly-smoothed the variation of point 

densities (Fig. 3-6c). We found that a band with of 50 km (Fig. 3-6b) produced a rea­

sonable estimation of intensity of blow-downs, although the choice of optimal bandwidth is 

still questionable. 
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Figure 3-5: Complete spatial randomness tests for large disturbances in Amazon. Intensity 
of blow-downs estimated by quadratic counting (a) and kernel smoothing with bandwidth of 
50 km (b). An east-west perspective graphic of the intensity of blow-downs in the Amazon 
produced by a smoothing kernel (c). 

Despite the bandwidth empirically selected, the 100 Monte Carlo simulation under a 
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Figure 3-6: Intensity of blow-downs occurrences using a Gaussian smoothing kernel with 
bandwidth of (a) 25, (b) 50 and (c) 100 km. 

CRS model suggested that the occurrence of blow-downs in the Amazon follow a clustering 

spatial pattern, since the K-function lies well outside the upper simulation envelop (Fig. 

3-7). 

Most of these large disturbances occurred between 58°00'W and 66°49'W (Fig. 3-8a). 

Several clusters of blow-downs were detected in the western Amazon (Fig. 3-8b). Blow­

downs were infrequent in the eastern basin (51°51'W to 58°00'W). The greatest area dis­

turbed by blow-downs occurred between the longitudes 62°and 63.99°, where ~5,000 ha 

of old growth forest were disturbed by 40 large blow-downs (Fig. 3-8c). Old and new 

blow-downs had similar spatial distributions (Fig. 3-8a,b). 

We provide a quantitative linkage between blow-down occurrence and the frequency 

of heavy daily rainfall in the Amazon region associated with severe convective activity 

[Garstang et ah, 1998]. Blow-down occurrence frequency and the associated disturbance 

area were greater where severe storms occurred more frequently (Fig. 3-9). 
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Figure 3-7 K-function and simulated envelopes of the spatial distribution of blow-downs in 
the Amazon The black line is the original K-function and the colored lines are the upper 
and lower envelopes 

The simplest test of normality ('quantile-quantile plot') reveled that a slight S-shape 

distribution of occunence blow-downs and storms which suggests evidence of non-normality 

(Fig 3-10) The quantile-quantile plot ranks samples from our data distribution against 

a similar munber of ranked quantiles taken from a normal distribution [Crawley, 2007] If 

the occurrence of stoms and blow-downs are normally distributed the line will be straight 

The relation between storm frequency and blow-down occurrence in the east-west bins is 

non-lmear (Fig 3-11) Non-linearity in this case is not a surprising considering that the data 

comes from different spatial scales and also there is some tempoial mismatch of the data 

(Real-Time Rainfall NOAA daily images from 1999 and Landsat ETM± images from 1999 

to 2001) Because of the non-linearity, we used the Spearmans rank correlation to test the 

relation between the two variables We found a strong rank correlation between frequency 

of storms and blow-down occurrence (Spearman's rank, r2=0 84, p<0 0003 Storms may 

not be the only independent variable that explains the occurrence of blow-downs in the 

Amazon (e g distribution of soil types may be important) Future research exploring new 

explanatory variables is still necessary 
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Figure 3-8 Spatial distribution of the 279 blow-down disturbances >5 ha (a) and their 
spatial clustering (b) observed in the east-west image transect of the Amazon In (c), 
east-west distribution of blow-down frequency and area 
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Figure 3-9: Annual frequency of intense storms in the Amazon (number of days with > 
20 mm of rain) produced by 313 RTR daily images of the year 1999 (a). Clusters of large 
disturbances coincide with areas of more high-intensity storms (b). Frequency of the annual 
average of storms (c) and blow-downs (d) taken from one degree of longitude bins. 
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Figure 3-10: Number of events, frequency and quantile-quantile plot test of normality for 
blow-downs (a, b and c) and estimated storms in the Amazon (d, e and f), respectively. 
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Figure 3-11: Scatter plot of storm frequency and blow-down occurrence in taken from one 
degree of longitude bins. 

3.4 Estimate of Return Frequency of Large Disturbances 

A comparison of the eastern and western portions of our study region (Fig. 3-8) shows a 

strong contrast in the blow-down recurrence intervals. Based on the occurrence of new blow­

downs and the assumption of a constant disturbance rate (see section 3.2.6), we estimated 

the recurrence interval for blow-downs in the eastern region is 90,000 yr while it is only 

27,000 yr for the western region (Table 3.1). 

3.5 Discussion 

We confirm the conclusions of the earlier study by Nelson et al. [1994] and expand on 

their work by using semi-automatic digital classification for detection and mapping of blow­

downs in the Amazon and a satellite proxy measurement for convective storm events. In 

the study by Nelson et al. [1994], the threshold minimum area of disturbance was 30 ha. 

By using spectral unmixing and pixel by pixel classification of Landsat images we reduced 
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Table 3 1 Frequency, disturbed area and recurrence interval (T, in years) of blow downs 

Domain 
Full 

Eastern* 
Western § 

Landsat 
scenes 

27 
12 
15 

Forest 
km2 

793076 
339579 
453497 

all blow downs 
numbers km2 proportion! 

279 219 0 03% 
21 18 5 0 01% 

258 201 0 04% 

new blow downs 
numbers km2 proportion! 

90 41 1 0 01% 
13 7 51 0 00% 
77 33 6 0 01%nn 

TT 

yr (10a) 
39 
90 
27 

*Eastern domain 51°51'22"W to 57°25'18"W, 
§Western domain 57°25/18"W to 66°49'04"W, 
^Proportion is (blow down area — by total area of forest) x 100%, 
t Assumes a constant disturbance rate and detectabihty of 2 years T = forest area — (new 
blow-down area — detectabihty interval) See section 3 2 6 

the threshold of detection for blow downs to about 5 ha (~55 pixels) Both studies found 

that new plus old blow-down disturbances represented a small fraction of the entire studied 

area of undisturbed forests (~0 02%) Through digital processing, we were able to not only 

improve the spatial resolution but also improve the temporal resolution with important 

implications that we discuss below 

We found strong indication that the occurrence of large disturbances over the Amazon 

region are clustered However, the selection of an appropriate bandwidth is a critical step to 

detect spatial patterns distributions of these events It is well known that the appropriate 

size of bandwidth is more important than the choice of many possible kernel functions 

[Bailey and Gatrell, 1995] In general, a large bandwidth will result in a large amount of 

smoothing and low density values, producing a generalized map On the other hand, a 

small bandwidth will result in less smoothing, producing a map with local variations in 

point densities [Bailey and Gatrell, 1995] We recognize that the choice of bandwidth in 

SPA is subjective and future studies are needed 

The frequency distribution of storms and frequency of blow downs suggest a nonlinear 

relationship, which is not entirely surprising, considering that cloud top temperature is only 

a proxy of storm severity, and considering the spatial and temporal mismatches between 
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recorded blow-downs and the RTR data set The RTR rainfall data set used provides 

increased spatial resolution (4 km) and higher frequency compared to earlier climatologies 

to isolate the importance of severe storm events Closer linkage of blow-down events to 

storm conditions will require high-frequency observations of rainfall (now available) and 

high-frequency ground-based records of disturbance over wide areas (currently unavailable) 

Although the disturbance lates are certainly higher in the Western Amazon, the estimate 

of recurrence interval for blow-downs remains highly uncertain Estimating a millennial-

scale recunence interval fiom two years of observations (the period of detection), depends 

on the assumption that disturbance rates during those two years are representative of this 

disturbance piocess over millennia Nonetheless, the east-west asymmetry in the frequency 

distribution of blow-downs is consistent with the geographic distribution of disturbance-

adapted tree genera [ter Steege et al , 2006], suggesting that, over the long term, distur­

bance events are less frequent in eastern compared to western Amazon However long-term 

changes of climate [Mayle and Power, 2008] and patterns of soil fertility [Malhi et al , 2006] 

and geology [Rossetti, Toledo, and Goes, 2005] would be much more important environ­

mental factors affecting the distribution of plant species and plant functional types 

Assuming that the blow-down damages all the trees and considering the average range 

of biomass for the Amazon is between 150 and 350 Mg h a - 1 [Houghton et al , 2000], we 

estimate that carbon emission caused by blow-down mortality (area of blow-downs x range 

of mean biomass) would contribute at most only 0 3 to 2 Tg C y " 1 for the 27 Landsat 

images analyzed, although, it will be compensated by the regrowth of secondary forests 

Given that net deforestation releases between 200 and 300 Tg C y _ 1 [Houghton et al , 2000] 

in the Amazon, blow-down disturbance events do not make an important direct contribution 

to carbon dioxide emissions or even for the overall forest succession process in the tropics 

While the contemporary effect of large blow-downs is small with regard to carbon and 
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nutrient cycling, oui study raises the question of the possible importance of convective 

storm activity as a control over the rate of forest disturbance in general across the Amazon 

If convective activity is also responsible for smaller scale disturbances, this process may help 

explain some of the asymmetry in tree mortality and turnover rates found for the Eastern 

and Western areas of the Amazon forest [Phillips and Gentry, 1994] 

3.6 Conclusions 

The occurrences of large disturbances in the Amazon is still an ongoing natural phenomenon 

Our recent analyses, ~10 years after the previous study of Nelson et al [1994] confirmed 

the same general patterns of size classe frequency and spatial distribution of blow-downs in 

the Amazon In 27 Landsat ETM+ images hom 1999 to 2001 large disturbances impacted 

a total of 21,931 ha of undisturbed old-growth forest The lagest event covered 2,223 ha of 

contiguous area and blow-downs smaller than 50 ha were most frequent 

There is clear spatial association between patterns of blow-downs occurrences and high 

frequency of rainfall In the Amazon most of these large disturbances occurred between 

58°00'W and 66°49'W, likely associated with severe convective activity Blow-downs were 

infrequent in the eastern Amazon basin (51°51'W to 58°00'W) Considering the east-west 

differences on the spatial patterns and frequency distribution of blow-downs in Amazon the 

turnover of blow-downs in the eastern region is 90,000 yr while it is only 27,000 yr for the 

western region 

Blow-down disturbance events do not have an important direct contribution to carbon 

dioxide emissions process in the Amazon, given the small fraction area covered by these 

events (0 03%) when compared with the total undisturbed forest region Moreover, it 

probably is compensated by the regrowth of secondary forests around of land-use areas 

of the deforestation However, considering the east-west asymmetry in tree mortality and 
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turnover in the Amazon, our work may also explain part of the spatial patterns of forest 

dynamics in the tropics. 
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CHAPTER 4 

PAN AMAZON F O R E S T DISTURBANCE 

SPECTRUM AND IMPLICATIONS FOR 

THE TROPICAL O L D - G R O W T H F O R E S T 
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4.1 Introduction 

There is strong evidence for a global land sink implied by the global atmospheric CO2 

record, fossil fuel emissions and estimates of ocean carbon uptake based on ocean surveys 

of dissolved inorganic carbon and water mass tracers such as chlorofluorocarbon gases [?]. 

Tropical forests may account for a substantial portion of the global terrestrial carbon sink 

[Phillips et al., 1998, 2008; Lewis et al., 2009]. The Amazon basin forest contains a large 

carbon pool (~100 PgC aboveground biomass [Malhi et ah, 2006; Baker et al., 2004; Saatchi 

et al., 2007, 2011] that could be released rapidly to the atmosphere and thus substantially 

enhance greenhouse warming (e.g. Schimel et al. [2001]; Friedlingsteinet al. [2003]). Because 

of its vast size the Amazon forest also has the potential to moderate global warming through 

enhanced carbon uptake due to growth stimulation caused by increases in atmospheric 

CO2 [Grace et al., 1995; Cox et ah, 2000]. Evidence from a tropical forest plot network 

(RAINFOR) indicates that old-growth Amazon forests have gained carbon over the last 

decades [Phillips et al., 1998, 2008; Lewis et ah, 2009]. The RAINFOR plots (mostly lha 

in size) are distributed in several South American countries and in some cases provide data 

back three decades. Biometric measurements track the forest dynamics of growth and death 

of individual trees [Malhi et al., 2002]. 

While the old-growth forest estimates based on regular forests censuses [Phillips et ah, 

1998] reveal, on average, biomass gains for the lha plots surveyed, it is unclear to what 

extent these biomass gains indicate a true basin-wide trend. We ask whether the biomass 

gains may be an artifact of the small plots and small area sampled. Most forest stands 

gain biomass over decades to centuries and biomass gain is reversed only when severe dis­

turbances kill large forest areas rapidly [Frelich, 2002]. Such severe disturbance events will 

release large amounts of carbon to the atmosphere over years following the event [Korner, 

2004]. A sparse forest census network may not capture rare disturbance events. In that case, 
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the interpretation of the reported growth rate trends as a substantial carbon sink may rep­

resent a sampling bias [Fisher et al , 2008] In this paper, we assess whether the frequency 

spectrum (distribution) of forest disturbances versus disturbance severity, or equivalently 

the distribution of severity of disturbance versus its return time, for the Amazon Basm is 

sufficient to either validate or invalidate conclusions of carbon uptake based on the RAIN­

FOR results 

Understanding the role of forest disturbance in regional carbon budgets requires quan­

tification of the frequency distribution of forest disturbance severity in terms of the amount 

of biomass lost Natural disturbances across the Amazon landscape range in size from tree-

fall gaps on the order of 0 01 ha [Brokaw, 1982, Denslow, 1987] to blow-downs as large as 

2,200 ha [Nelson et al , 1994, Garstang et al , 1998, Chambers et al , 2009b, Espinto-Santo 

et al , 2010, Negron-Juarez et al , 2010] A complete characterization and understanding 

of this spectrum of natural disturbances in tropical ecosystems is missing [Chambers et al , 

2009b, Frolkmg et al , 2009] To date, carbon loss in tropical forests have been estimated 

based mainly on biometric data of individual trees from small plots [Pyle et al , 2008, Gloor 

et al , 2009] Some attempts have been made to estimate disturbance areas for tree-fall 

gaps [Van der Meer et al , 1994], blow-downs [Nelson et al , 1994, Espinto-Santo et al , 

2010, Negron-Juarez et al , 2010] and hurricanes [Whitmore, 1989] 

We present a first synthesis of existing and new basm-wide disturbance observations 

and chaiacteri7e their spatial distribution and temporal frequency We define disturbance 

broadly as all plant mortality that liberates carbon Because of the uncertainties associated 

with below-ground biomass, we discuss carbon losses only in terms of above-ground biomass 

(AGB) which probably accounts for more than 80% of biomass m Amazon Basm forests 

[Houghton, 2005, Malhi et al , 2006, Saatchi et al , 2007] We use records of biomass changes 

from a spatially distributed forest census network in the Amazon [Phillips et al , 1998, Malhi 
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and Roman-Cuesta, 2008; Gloor et al., 2009] supplemented by two large forest plot surveys 

from central Eastern Amazon and an analysis of multiple satellite images to map, detect 

and estimate the severity of large disturbances (blow-downs). We reanalyze records of 

blow-downs likely caused by downdrafts associated with convective clouds [Garstang et al., 

1998] covering the entire Brazilian Amazon forests using historical Landsat satellite images 

[Nelson et al., 1994] and a more recent East-West mosaic of Landsat scenes covering the 

Amazon [Espi'rito-Santo et al., 2010]. We combine the spatial records of blow-downs with 

an aboveground map of biomass developed recently for the tropics [Saatchi et al., 2007, 

2011]. We analyze information on the spectrum of disturbances with an ensemble of growth 

rates from forests censuses using a simple stochastic forest simulator. From this analysis 

we seek to infer the potential effects of the observed spectrum of disturbances on estimates 

of forest carbon uptake. 

4.2 Methods 

4.2.1 Forest Inventories and Remote Sensing 

The detection of forest disturbance and tree mortality that releases carbon depends upon 

spatial and temporal scales and observational methods. We combine data from forest cen­

suses and the analysis of Landsat images permitting us effectively to sample disturbances 

across nearly all scales (Fig. 4-1 and Tab. 4.1). 

For disturbances that affect less than about 0.1 ha, we combine two spatial and temporal 

sources of data: (1) 151 ~ l h a forest inventory plots from the RAINFOR covering 45 Amazon 

regions [Gloor et al., 2009]; and (2) losses of biomass in areas of branch or tree-fall gaps 

of two plots of 53 and 114 ha from central Eastern Amazonia. For disturbances at a 

landscape scale (disturbance size > 5 ha) we combine three remote sensing data sets: (1) a 

spatially extensive record of large disturbances from blow-downs > 30 ha from 136 Landsat 
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Figure 4-1: Spatial distribution of censuses RAINFOR plots (n=151), inspected Landsat 
images (n=137) with occurrences of large blow-down disturbances > 30 ha (n=330 blow­
downs) and > 5 ha (n=279 blow-downs) overlapped on an aboveground biomass map of the 
Amazon (a). Large forest inventory plot of 114 ha with canopy gaps (n=55) overlapped on 
a high resolution IKONOS-2 image acquired in 2008 in the Eastern Amazon (b). Large plot 
of 53 ha with canopy gaps (n=51) over a second high resolution IKONOS-2 image acquired 
in 2009. Digitally classified blow-downs in an East-West mosaic of Landsat image from 
central Amazon (d). Areas of blow-downs > 30 ha mapped by Landsat images (disturbance 
areas are proportional to the size of the circles) 
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scenes of the Brazilian Amazon [Nelson et al., 1994] - 8 scenes are outside of the Brazilian 

geographic border; (2) a high resolution mapping of blow-downs > 5ha using 27 Landsat 

scenes on an east-west transect in the central Amazon [Espi'rito-Santo et al., 2010]; and 

(3) a multi-sensor remote sensing product of aboveground biomass for the tropics [Saatchi 

et al., 2007, 2011], For all disturbances we estimate areas and severity defined as changes 

in above-ground biomass (AGB) stocks (Supplementary C-1). Disturbances in field plots 

were accessed from the observation of net allometric AGB changes [Gloor et al., 2009] 

and allometric AGB estimates in opened canopy gaps. For large disturbances [Nelson 

et al., 1994; Espinto-Santo et al., 2010] we estimated severity based on the area of blow­

downs multiplied by a geographic biomass mean using a carbon stock map of the Amazon 

[Saatchi et ah, 2007, 2011] assuming an upper bound on mortality rate of 100% in areas 

of blow-downs [Nelson et ah, 1994; Chambers et al., 2009b] (See Supplementary Material 

for Chapter 4). This upper bound of mortality rate is an overestimate that provides a 

conservative estimate for assessment of the significance of natural disturbance to old-growth 

forest carbon accumulation rates. 

Table 4.1: Statistical summary of the four data sets: 151 lha plots distributed over the 
Amazon, 96 tree-fall gaps of 167 ha plot in East central Amazon, 278 blow-downs > 5 ha 
detected in 27 Landsat scenes and 330 large disturbances > 30 ha inspected in 137 Landsat 
scenes. 

Statistic summary RAINFOR 167 ha plot Blow-downs m 27 images Blow-downs in 136 images 
Raw data 
Mm disturbance area (ha) 
Max disturbance aiea (ha) 
Mean disturbance area (ha) 
Median disturbance area (ha) 
SD of disturbance area (ha) 
Sum of disturbance area (ha) 
Mm biomass change (Mg) 
Max biomass change (Mg) 
Mean biomass change (Mg) 
Median biomass change (Mg) 
SD of biomass change (Mg) 
Sum of biomass change (Mg) 

151 
0 0003 

0 09 

0 016 

0 014 

0 013 

2 49 

0 11 

23 38 

5 02 

4 37 

3 57 

758 27 

96 
0 003 

0 13 

0 026 

0.022 

0 018 

2 51 

0 12 

39 81 

6 11 

3 27 

7 23 

587.35 

279 
5 

2,223 

79 
37 
179 

21,931 

649 
778,263 

24,183 

10,478 

62,694 

6,747,201 

330 
30 

2,651 

213 
123 
279 

70,421 

6,136 

927,752 

60,395 

35,343 

85,787 

19,930,460 
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4.2.2 Spatial Distribution of Large Disturbances 

We reanalyzed the original data from Nelson et al. [1994] using a spatial point analysis 

(SPA) to quantify the clustering of disturbances (Chapter 3, subsection 3.2.5 Modeling 

Spatial Point Patterns of Blow-downs) over the Amazon domain [Espi'rito-Santo et al., 

2010]. A SPA [Ripley, 1981] consists of a set of points (s\, S2, etc.) in a defined study 

region (B) divided into sub-regions (AB). Y(A) is the number of events that occurred in 

sub-region A. In a spatial context, the number of points can be estimated by use of their 

expected value E(Y(A)), and covariance COV(Y(Al), Y(A3)), given that Y is the event 

number in areas At and A3. The intensity of an event (s) is the frequency of points of a 

specific location s, where ds is the area of this region. The intensity of events, or, in our 

case, number of blow-downs per Landsat image, can be represented as: 

A ( s ) = l i m / i r a (4i) 
ds-s-o { ds j 

Because SPA only requires the spatial location of each event, we used the centroid of 

each classified blow-down in the Landsat images. We used a Gaussian smoothing algorithm 

(kernel) with a bandwidth of 50 km to determine the spatial clustering of blow-downs and 

a probability density function k [Ripley, 1981] to examine the spatial dependence of these 

events [Espirito-Santo et al., 2010]. 

Previous spatial analysis of large disturbances in the Amazon showed that blow-downs 

are extremely rare in the Eastern Amazon region [Nelson et ah, 1994: Espirito-Santo et al., 

2010]. To account the spatial variability of large disturbance in the Amazon we used this 

re-analyzed map of blow-downs to infer the return time and severity of large disturbances 

over the basin. 
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4.2.3 Return Time versus Disturbance Severity 

Disturbance severity (x) has been scaled as if x obeys a power law p(x)a x~a drawn from a 

probability distribution, normally area, where a is a constant exponent or scaling parameter 

[Fisher et al., 2008; Chambers et al., 2009b; Negron-Juarez et ah, 2010]. However, observed 

quantities (x) rarely follow a power law distribution [Clauset et al., 2009]. An alternative 

approach to quantify disturbance regimes by class size area is to consider the distribution of 

return times versus severity of disturbances, inverting an empirical cumulative probability 

density function (PDF). From our data we can infer the relation of return time versus 

disturbance severity [Gloor et al., 2009], if we assuming that we may interchange time with 

space. The empirical probability density p(A) that a fixed location is hit by a disturbance 

of area A during one year is given by: 

p(A)AA=(( Y, A')/AAmazon) (4.2) 

A'e{A,A+&A) 

where AAmazon = 8 x 106fcm2 (INPE Pan-Amazonia project, unpublished data) is the 

total forested area of the Amazon. The probability for the occurrence of a disturbance event 

per year with area loss larger than A at a fixed location is then: 

co A distrbd A 

P(X > A) = £ p(A')AA' = tot - ]T p(A')AA' (4.3) 
A'>A ^Amazon A,=Q 

using the indenty: 

oo -i \ distrbd 

Y^P(A)AA=- ]TA = —-**- (4.4) 
. n si Amazon si Amazon 

A=0 i 

where A ls
t^t = ^2 A is the total annually disturbed forest area in the Ama-

all—disturbances 

zon. Therefore an estimate for the return time T(X > A) of a disturbance event X with 
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forest area lost larger than A at a fixed location is given by the inverse of the cumulative 

PDF 

T{x-A) = p(xl>A) = ^ ^ : ( 4 5 ) 

P(X > A) ^ _ _ ZA_oP(A')AA> 
^Amazon ™ ^ 

An analogous equation holds for return time with respect to biomass lost associated 

with a disturbance event 

4.2.4 Forest A b o v e g r o u n d Biomass Simulat ion 

Once the disturbance spectrum of aboveground biomass loss is defined we can then mfei the 

variance introduced into an ensemble of growth rates from forests censuses using a simple 

stochastic forest simulator dM = growth xdt — Mortality x dt with dM aboveground forest 

biomass change per area, dt a time interval, here one year, and Growth and Mortality 

stochastic variables distributed according to the observed frequency distributions of tree 

growth and mortality (Fisher et al 2008, Gloor et al 2009) We used as input parameters 

growth from the 151 annually-censused plots (Gloor et al 2009) and mortality (aboveground 

biomass loss) horn om new disturbance spectrum analysis Moreovei, differently fiom the 

previous analysis of the aboveground biomass carbon sink over the Amazon (Gloor et al 

2009) we incorporate new observed forest mortality data of tree-fall gaps (167 ha plot) and 

intermediate sizes of blow-down disturbances > 5 ha (Esprito-Santo et al 2010) Analysis of 

the biomass variance trajectory over the time allows us to assess the statistical significance 

of a carbon sink m old-growth forests (Gloor et al , 2009) 
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4.3 Results and Discussion 

4.3.1 Size Frequency and Spatial Clustering 

In the entire forested Brazilian Amazon (3 9x 106 km2) Nelson et al (1994) found 330 blow­

downs > 30 ha distributed in 72 Landsat scenes from the total 137 scenes (Supplementary 

C-3) acquired between 1988 and 1991 The total area of the 330 disturbed patches was ~ 

90xl0 3 ha [Nelson et al , 1994] Companson of the results of Espi'rito-Santo et al [2010] 

and Nelson et al [1994] revealed that across the Amazon there are a substantial number of 

intermediate sized blow-downs (5-30 ha) While high resolution data of blow-downs > 5 ha 

are not available for the entire Amazon, we reanalyzed the data of Nelson et al [1994] using 

a kernel Gaussian smoothing algorithm for cluster analysis (SPA) of large disturbances The 

analysis reveals clear clustering pattern of large forest disturbances in the western Amazon 

basm (Fig 4-2) west of 58° W independently of the bandwidth size used for the analysis 

(Supplementary C-4 and C-5) The large disturbances cover about \ of the aiea of the 

Brazilian Amazon These results are consistent with the findings of Espirito-Santo et al 

[2010] who found that disturbances > 5 ha were 12 times frequent more west of 58° W 

compared to the area studied to the east 

4.3.2 Occurrence spectrum and return time 

Our data permit us to determine the frequency spectrum of forest disturbances in the 

Amazon basm by scaling them using frequency distribution of area to the basm Scaling 

by aboveground biomass losses we found two disjoint size and severity domains (Fig 4-3) 

There is a lack of information on the mid-range of the spectrum in between small gap-phase 

disturbances and landscape scale blow-downs (Fig 4-3) 

Combined data of small disturbances (RAINFOR and two larges plots) over the Amazon 

region (8xl06 km2) indicate that branch or tree-fall gaps occur at the return time between 
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Figure 4-2: Intensity maps of blow-downs of Brazilian Amazon using a Gaussian smoothing 
kernel with bandwidth of 50 (a), 100 (b), 150 (c) and 200 km (d) modeled from 330 large 
disturbances > 30 ha [Nelson et ah, 1994] detected in 137 Landsat images over the basin. 
Color bar is the intensity of large disturbances in the Amazon (number of blow-downs per 
km2). 
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Figure 4-3: Natural forest disturbance spectrum from the Amazon basin. Number of dis­
turbances per year (a) and return time (b) associated with area of events from tree-fall to 
blow-downs. Number of disturbances per year (c) and return time (d) compared to the 
severity of disturbances (biomass loss). 
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0 and 100 yrs which corroborates observed annual tree-fall disturbances rate of 1% (gap 

creation) from several studies in tropical forests [Van der Meer et al., 1994; Fraver et al., 

1998]. The return time of large blow-downs is very rare over the Amazon region ranging 

from 4x l0 4 y to greater than 106 y dependent upon size. This is consistent with previous 

findings of forest turnover estimated by the sum of all recent blow-downs in just one Landsat 

image which is around 5xl0 3y [Nelson et al., 1994] or 3.9xl04 y using the forested area of 

27 Landsat images [Espirito-Santo et ah, 2010]. 

4.3.3 Implications on Basin-Wide Old-growth Forest Carbon Sink 

Having established an empirical Amazon basin-wide forest disturbance spectrum we assess 

its implications on the old-growth forest sink claim based on the RAINFOR forest census 

plot of Phillips et al. [1998, 2008]; Baker et al. [2004]; Lewis et al. [2009] following the simple 

stochastic simulator of aboveground biomass approach of Gloor et al. [2009]. 

The total area of the disturbances (mortality) of all classes for the Amazon region 

forest (8xl0 6 km2) is estimated to in 1.86xl07 ha y r - 1 which represents a committed 

emission of 2.53xl09 Mg C yr - 1 . Total area disturbed and carbon released by small tree 

fall-gaps 1.86xl07 ha y r - 1 and 2.52xl09 Mg C yr - 1 . Intermediate and large blow-downs 

with total area of only 4.19xl04 ha y r - 1 and estimated severity of 6.1xl06 Mg C y r - 1 

are essentially insignificant in budgetary terms although they have important local effects. 

Over the Amazon biome tree-fall gaps and tree mortality represent 99.7% of all carbon loss 

due to all natural mortality. Large disturbances although impressive are extremely rare 

(Fig. 4-3) and therefore unlikely to have a significant contribution of carbon emission at 

the Amazon basin confirming the view of Espirito-Santo et al. [2010]. 

Using the simple stochastic forest simulator framework described above how we analyze 

the likelihood that the basin-wide old-growth forests growth trends reported by Phillips et al. 
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[1998], Lewis et al [2009] are a sampling artifact caused by under-sampling of intermediate 

and large blow-down disturbances The forests simulator results reveal that blow-downs are 

too rare to invalidate the conclusions of these studies The variance in growth rates caused 

by blow-downs alone is much smaller than the forest census plot mean growth rate This 

may also be inferred roughly from the return time versus disturbance severity distribution 

(Fig 3d) Biomass losses per year due to blow-downs is on the order of 10~5 yr 1 x 103 Mg 

yr~x h a - 1 = 10~2 Mg ha^1 which is much smaller than the observed growth trend (Phillips 

et al 2009) 

4.4 Concluding Remarks 

The spatial concentration of blow-down disturbances observed calls into question the ex­

trapolation of results m a recent study that estimated that a single cross-basm squall line 

event propagating across the Western Amazon coming from the South was responsible for a 

widespread Amazon forest mortality of 542 million trees or a total biomass loss of 128 Gg C 

[Negron-Juarez et al , 2010] These authois based their finding on the image classification of 

only 0 034 x 106 km2 of high resolution Landsat image and extrapolated to the larger region 

(4 5 x 106 km2) based on meteorological data (~ 10 km resolution) showing the complete 

extent of a piopagatmg squall line [Negron-Juarez et al , 2010] While blow-down distur­

bances are extremely rare m the Eastern Amazon, Negron-Juarez et al [2010] extrapolated 

uniformly across the squall line areas without regard to geography At the ground level, 

forest inventories over the basm have also documented a clear difference in tree mortality 

and turnover rates for the Eastern versus Western areas of the Amazon forest [Phillips and 

Gentry, 1994, Phillips et al , 1998, Lewis et al , 2004, ter Steege et al , 2006] associated in 

part with soil depth and texture [Quesada et ah, 2009] 

There is a lack of quantification for disturbances horn 0 13 to 5 ha (Tab 4 1) m our spec-
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trum analysis of disturbances for the Amazon While our data suggest two clear extreme 

regimes of disturbances, we cannot conclude that there is not a continuous regime of dis­

turbance in tropical forests Currently we lack data to investigate this range of disturbance 

sizes Disturbances in the 0 1 to 5 ha range would be difficult to detect with traditional 

forest inventory because they are probably very rare and would require extremely exten­

sive smvcys Recently Kellnei and Asnei [2009] showed quantified gap frequencies from 5 

areas of 1 km2 m tropical forests in Costa Rica and Hawaii using airborne LiDAR technol­

ogy Chambers et al [2009b] characterized vegetation recovery in blow-downs using satellite 

boine hyperspectial data (Hypenon) Given sufficient resources, eithei of these technologies 

should be useful for quantification of disturbances in the range of 0 1 to 5 ha Our spectrum 

analysis (Fig 4-3b) suggests that a 1 ha disturbance may have a return time on the order of 

104 years In order to observe a reasonable number of 1 ha events, we would probably need 

over 105 ha of spatially distributed airborne LiDAR or satellite hyperspectral collections 

In summary, the probability of large severe disturbances is very small As an upper 

bound on the effects of such disturbances we may simply estimate a mortality based carbon 

flux from the piobabihty of that disturbance P (severe disturbance) x M (mass of the 

severe disturbance) Even this approach suggests that severe disturbances contribute less 

than 6 x 10 - 3 Pg C y _ 1 Our findings strongly contradict the results of Fisher et al [2008] 

and Chambers et al [2009a] who denied the finding of an observed old-growth forest carbon 

sink in the Amazon of ~0 5 Pg C y r - 1 over the last decades [Phillips et al , 1998, Lewis 

et a l , 2009] 
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CHAPTER 5 

CONCLUSIONS 

5.1 The Balance of Natural Disturbances Processes in the 

Amazon 

Above-ground biomass losses from natural disturbance processes aie poorly understood 

and quantified in tropical forest areas [Uhl et al , 1988] Natural disturbances across of 

the Amazon landscape have occurrence ranges from branch or tree-fall gaps of 0 0 1 ha 

[Brokaw, 1982, Denslow, 1987] to large blow-downs areas of 5 - 3,000 ha [Nelson et al , 1994, 

Garstang et al , 1998, Chambers et al , 2009b, Espirito-Santo et al , 2010] At the plot scale 

tropical forest dynamics are governed by occurrences of small tree-fall gaps [Denslow, 1987] 

between 0 025 and 0 4 ha [Hubbell et al , 1999] In the Amazon region blow-downs greater 

than 30 ha [Nelson et al , 1994] produced by high-velocity downburst winds [Garstang et al , 

1998] have been detected in satellite images [Nelson et al , 1994] The largest single blow-

down covered 3,370 ha, with the most frequent size classes falling between 30 and 100 ha 

[Nelson et al , 1994] 

The following questions motivated this dissertation What is the mean coarse woody 

debris (CWD) or biomass change and tree mortality observed in small and large scale 

disturbances7 What is the link between CWD observed of the several disturbances size 

class area and its implication for the carbon cycling7 What remote sensing approaches 

can be applied to detect large disturbances especially blow-downs in the Amazon7 How 
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does the turnover of these events vary across the Amazon landscape? What is the effect of 

blow-downs on carbon flux in the Amazon? What is the relative importance of disturbance 

at the local landscape scale versus disturbance at the regional scale to the dynamics of 

the carbon cycle in the Amazon? Is there some mechanistic process that can explain the 

variation and the intensity of these disturbances at local and regional scales? How can we 

reduce the uncertainties in carbon budgets by improvement of our knowledge of the rate of 

formation of small gaps and large disturbances in Amazon forests? 

In this dissertation natural disturbances were examined in three ways: (1) Formation and 

detection of small scale disturbances was investigated in the field and with high resolution 

remote sensing; (2) I mapped and analyzed the spatial distribution of large disturbances 

(blow-downs) caused by convective cloud drafts; and (3) I characterized the spectrum of 

natural disturbances in tropical ecosystems. 

As part of this dissertation, I showed [Espi'rito-Santo et al., 2010] that using digital 

classification of recent Landsat images enables detection of disturbances as small as 5 ha 

forest. These canopy disturbances revealed similar patterns of the frequency area distribu­

tions of disturbances previously registered by Nelson et al. [1994] over the Western Amazon. 

Blow-downs greater than 101 ha, although rare, accounted for 61.6% of total disturbance 

area of this region. Despite the large scale differences of area from tree-gaps to landscape 

blow-downs, the severity of disturbances (losses of above-ground biomass or necromass) has 

been rarely quantified [Frolking et al., 2009]. Quantitative studies of natural disturbances 

uniting all severity scales of disturbance in the Amazon were non-existent [Chambers et al., 

2007a; Frolking et ah, 2009] prior to my compilation achieved in Chapter 4. 

In the Chapter 2 of this dissertation I documented the installation and survey of two 

large forest inventory plots of 114 and 53 ha in unmanaged tropical forest of the Tapajos 

National Forest. I mapped all gaps and collected data of coarse woody debris (CWD) 
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and tree mortality in both plots. I found 96 gaps in these plots and discovered that most 

mortality did not result in gap formation. Only about one-third of all tree mortality results 

in gap formation, and the carbon flux based on necromass in gaps is only about one part in 

six of the total CWD flux comparing with nearby permanent plots [Pyle et al., 2008; Palace 

et al., 2008]. On average, gap formation accounted for a minor proportion of the stocks 

(about 5% of the total fallen CWD) and fluxes (about 23%) of CWD caibon. 

In Chapter 3, I analyzed 27 Landsat images to map large scale disturbances over the 

Amazon basin (canopy disturbance areas > 5 ha) and applied a spatial pattern analysis of 

blow-downs apparently caused by severe storms. I found 279 patches (from 5 ha to 2,223 ha) 

characteristic of blow-downs and quantified that 21.931 ha of forest were disturbed in the 

total analsys. I found a strong correlation between occurrence of blow-downs and frequency 

of heavy rainfall (Spearmans rank, r2=0.84, p<0.0003). The return time of blow-downs in 

the Amazon is about 40 thousand years. I concluded that blow-downs make an insignificant 

contribution to carbon cycling. 

I analyzed the spectrum of disturbances in Chapter 4. I used historical data of the 

RAINFOR plots net-work in the Amazon [Phillips and Gentry, 1994; Phillips et ah, 1998; 

Gloor et al., 2009], data from the large plots surveyed for Chapter 2, and a multi-sensor 

satellite image approach to study the frequency and extent of natural disturbances across the 

Amazon region. This study integrated the disturbance areas from small-scale (branch and 

tree falls) to large-scale disturbances. Assuming an upper bound of 100% of tree mortality 

in large disturbances and using the aboveground biomass x area based on existing maps 

[Saatchi et al., 2007, 2011], I was able to estimate the severity of disturbances over the 

Amazon (Fig. 5-1) in carbon units. The total area of the disturbances of all classes for the 

Amazon region (8xl0 6 km2) was 1.86xl07 ha y r - 1 which represents a committed emission 

of 2.53 Pg C yr - 1 . Total area disturbed and carbon released by small tree fall-gaps 1.86 x 

87 



107 ha y r - 1 and 2.52 Pg C y r - 1 , respectively, is much bigger than large blow-downs with 

total area of only 4.19 x 104 ha y r - 1 and estimated severity of 0.00006 Pg C yr - 1 . The 

number of small disturbances is about 108 y r - 1 , which suggests that over the Amazon biome 

tree-fall gaps and tree mortality represent 99% of all carbon loss due to natural mortality. 

Figure 5-1: Data gathered in this dissertation or integrated into analyses for this dissertation 
include: The spatial distribution of RAINFOR plots of lha (n=151), 137 Landsat images 
with occurrences of large blow-downs > 30 ha (n=330 blow-downs in 72 scenes) and > 5 
ha (n=279 events in 27 Landsat scenes discussed in Chapter 3) superimposed on a map 
of aboveground biomass in the Amazon (a); a large forest inventory plot of 114 ha with 
canopy gaps (n=55) shown superimposed on a high resolution IKONOS-2 imaged (2008) in 
the Tapajos National Forest (Chapter 2) (b): a large plot of 53 ha with canopy gaps (n=51) 
over a second high resolution IKONOS-2 image (2009) in the Tapajos National Forest 
(Chapter 2); a digital classification of blow-downs in an East-West mosaic of Landsat images 
from central Amazon (Chapter 3)(d); and the spatial distribution of blow-downs (size of the 
circles proportional to the disturbance area) detected in 129 images inside of the Brazilian 
Amazon. 
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5.2 Open Questions on Disturbance Area and Severity 

The severity of natural disturbances defined as the change in aboveground biomass may be 

estimated using forest distui banco areas times a mean aboveground biomass stock [Espirito-

Santo et al., 2010; Negron-Juarez et al., 2010] from a nearby stand source [Phillips and 

Gentry, 1994; Phillips et ah, 1998, 2004; Gloor et a l , 2009] or a data-product of above-

ground biomass [Saatchi et al., 2007, 2011]. However the contribution of mortality to 

carbon loss in each event normaly is unknown [Nelson et al., 1994; Frolking et al., 2009] 

and therfore there is a large souce of uncertainty in severity data sets of natural distur­

bances. My analysis of mass loss used in Chapter 4 was based on the conservative as­

sumption of a direct proportionality between carbon loss and mortality scaled to plot areas 

{mean biomass of the plot (Mg ha"1)} -=- {aboveground biomass loss of a event (Mg)}. 

Based on this assumption, the relation between disturbance area (ha) and severity (Mg) 

is linear. However, direct measurements of the correlation between disturbance area and 

severity in the two large plots with a total area of 167 ha (Fig. 5-2, see Chapter 2) suggests 

that the relation between area and severity is subject to uncertainty (r=0.71, p<0.001). 

Estimates of biomass loss assuming 100% mortality within the blow-downs fall within 

the 95% of confidence interval limits of this regression However, I caution that this ex­

trapolation is hazardous. First, the logarithmic equation is well outside of the data set for 

which it was fit and second because large blow-downs do not result in 100% mortality (M. 

Keller personal observation; [Nelson et al., 1994; Chambers et al., 2009b]). Defining the 

relation between disturbance area and mortality remains a research challenge. 
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Figure 5-2: Logarithmic graph of empiral relation between disturbance area (ha) and 
aboveground biomass loss (Mg) for 96 tree-branch fall disturbances from 167 ha plot of 
forest disturbances in the Amazon. Data sets combined cover scales from branch falls 
to landscape blow-downs. A regression based on data from 96 tree-fall gaps (0.003 -
1.3 ha) where both area and aboveground biomass were measured at the same time was 
Lnbiomass=6.2102+1.29(Ln area) (r2 = 0.71). 
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5.3 An Equation to Relate Disturbance Area and Biomass 

Loss 

Few studies of canopy dynamics have attempted to map the distribution of small, frequent 

gaps in tropical forest [Hubbell et al , 1999] and few, if any, have attempted to relate the 

occurrence of natural disturbances with production of CWD which generates a large pool 

of carbon [Denslow, 1987, Clark et al , 2002, Rice et al , 2004, Keller et al , 2004, Chambers 

et al , 2004, Palace et al , 2007] and nutrients [Clark et al , 2002] In Chapter 2, I discovered 

that no study in the tropical forest literature estimated the relation between the area of 

gaps (area, perimeter or any gap geometry) and the amount of CWD produced by natural 

tree or branch fall disturbances I developed the fiist equation to relate the severity of 

canopy disturbances to carbon loss by mortality However, considering the high diversity 

of forests in the Amazon, this equation may be valid for only a limited area of the central 

Amazon area More data of gap geometry and coarse woody debris for several regions are 

necessary 

5.4 Limitations and Future Work on Natural Disturbances 

for Carbon Cycling 

Large natural disturbances in old-growth tropical forests (area > 1 ha) are caused by a 

variety of mechanisms such as landslides [Walker et a l , 1996], floods [Wittmann et al , 

2002], fires [Cochrane, 2003], wind [Nelson et al , 1994], and cyclonic storms [Lugo, 1995] 

Chapter 4 points out that there is a lack of quantification for disturbances from 0 13 to 

5 ha in the spectrum analysis of disturbances for the Amazon While our data looks at 

the extremes of the disturbance regimes, we cannot conclude that there is not a continuous 

regime of disturbance in tropical forests if we do not have a method to investigate the gap 
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m our data Intermediate disturbance class sizes (0 1 to 5 ha) are difficult to detect with 

traditional forest inventory methods because of the large areas that would be required to 

be surveyed on the ground 

As a first guess, my spectrum analysis suggests that a 2 ha disturbance may has a return 

time on the order of 103 years In order to observe a reasonable number of 1 ha events, we 

would probably need over 105 ha of survey Recently Kellner and Asner [2009] examined 

the spectrum of gap frequency using airborne LiDAR remote sensing Their analysis of 

100 ha areas of 5 forests m Costa Rica and Hawaii As a result, they had a cut-off in 

detected gap size of 0 01 to 0 1 ha, dependent upon their gap definition Collection of laigei 

airborne LiDAR data sets is feasible but currently costly Such collections would be useful 

to quantify intermediate scale disturbances 

One of the mam questions of this dissertation was Can one analyze forest dynamics by 

observation of gap formation instead of a conventional analysis of individual tree mortality7 

From my results in Chapter 3, I learned that gap forming disturbances only account ~ 30% 

of the total flux of CWD carbon This result suggests that even a highly accurate system 

to monitor forest disturbances in the tropics (e g airborne LiDAR) there is a substantial 

amount of tree mortally that may not be observed The monitoring of large forest areas m 

the tropics remains a challenge for tropical ecologists 
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APPENDIX A 

FREQUENTLY USED ABBREVIATIONS 

CSR 

CHM 

CO 

CWD 

ETM+ 

GF 

GV 

INPE 

LAI 

LBA 

MS 

NASA 

NESSF 

NDVI 

NPV 

PAN 

PRODES 

RS 

RTR 

SD 

SMA 

SPA 

Complete Spatial Randomness 

Canopy Height Model 

Canopy Openness 

Coarse Woody Debris 

The Enhanced Thematic Mapper Plus 

Gap Fraction 

Green Vegetation 

Brazilian National Institute for Space Research 

Leaf Area Index 

Large Scale Biosphere-Atmosphere Experiment in the Amazon 

Multi-Spectral Image 

US National Aeronautics and Space Administration 

NASA Earth System Science Fellowship 

Normalized Difference Vegetation Index 

Nonphotosynthetic Vegetation 

Panchromatic Image 

Brazilian Deforestation Project 

Remote Sensing 

Real-Time Rainfall 

Shade 

Spectral Mixture Analysis 

Spatial Point Patterns Analysis 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR 

C H A P T E R 2 

Figure B-l GPS ground validation (red dots) of the ortorectification IKONOS image 
Building construction objects (a) were used as target for GPS measurements (b). Roofs of 
houses (c) were used only for a general check of the ground validation. 
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Figure B-2: Frequency distributions of ground collection of LAI-2000 PCA in the 114 ha 
plot (n=731). Positive skewed frequency distribution of diffuse non-interceptance (DIFN) 
light or canopy openness (CO) (a). Square root transformation of CO to reduce the skewed 
data distribution (b). Negative skewed data distribution of LAI (c) and its square root 
transformation (d). 
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Figure B-3: Frequency distributions of ground collection of LAI-2000 PCA in the 53 ha 
plot (n=2315). Positive skewed frequency distribution of diffuse non-intercept ance (DIFN) 
light or canopy openness (CO) (a). Square root transformation of CO to reduce the skewed 
data distribution (b). Negative skewed data distribution of LAI (c) and its square root 
transformation (d). 
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Figure B-4: Spatial distribution of gap fraction (n=731) in the 114 ha plot (a), scatter plot 
between data and spatial coordinates Y (b) and X (c) and frequency distribution of gap 
fraction data (d). 

Figure B-5: Spatial distribution of gap fraction (n=731) in the 114 ha plot (a), scatter plot 
between data and removed spatial trends of the coordinates Y (b) and X (c) and frequency 
distribution of gap fraction residuals (d). The global spatial trend was removed from the 
original data (square root of gap fraction) by polynomial linear model (Spatial trend = X 
+ Y + Y2) where the regression between the two variable reveled a trend of r2 = 0.12. 
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Figure B-6: Spatial distribution of leaf area index (n=731) in the 114 ha plot (a), scatter 
plot between data and spatial coordinates Y (b) and X (c) and frequency distribution of 
leaf area index data (d). 
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Figure B-7: Spatial distribution of leaf area index (n=731) in the 114 ha plot (a), scatter plot 
between data and removed spatial trends of the coordinates Y (b) and X (c) and frequency 
distribution of leaf area index residuals (d). The global spatial trend was removed from the 
original data (leaf area index) by polynomial linear model (Spatial trend = X + Y + Y2) 
where the regression between the two variable reveled a trend of r2 = 0.17. 
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Figure B-8: Spatial distribution of gap fraction (n=2315) in the 53 ha plot (a), scatter plot 
between data and spatial coordinates Y (b) and X (c) and frequency distribution of gap 
fraction data (d). 
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Figure B-9: Spatial distribution of leaf area index (n=2315) in the 53 ha plot (a), scatter 
plot between data and spatial coordinates Y (b) and X (c) and frequency distribution of 
leaf area index data (d). 
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Figure B-10: Geostatists analysis of ground remote sensing collections of 114 ha plot. Exper­
imental semivariograms of canopy openness (square root of CO): unidirectional (a), multi­
directional (b) and modeled exponential semivariogram (c). Experimental semivariograms 
for LAI: unidirectional (d), multi-directional (e) and modeled exponential semivariogram 
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Figure B-12 Interpolated canopy openness (square root of CO) (a) and leaf area index 
(LAI) (b) in 100 ha plot (n=731) using an exponential semivariogram model The same 
maps of canopy openness (square root of CO) (c) and leaf area index (LAI) (d) in other 
large forest inventory plot of 53 ha (n=2315) Gap areas (black polygons) are present in 
areas of high fraction of canopy openness for both plots (a and c) The leaf area index drop 
considerably (2 to 4) around of tree fall gaps (b and d) 
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Figure B-13 Interpolation uncertainty (standard error) of canopy openness (a) and LAI 
(b) of the 114 ha plot (n=731) The same maps of uncertainties of canopy openness (c) and 
LAI (d) but for 53 ha plot (n=2315) 
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Figure B 14 Contour map of canopy openness (square root of CO) in 114 ha forest area 
(4 meter grid plot) showing increasing of CO > 0 3 (yellow grid spots) in areas of tree 
fall gaps (red polygons) Regression analysis of the between grid areas with CO > 0 3 
(square root) or 0 09 CO and remote sensing products (n=1817 pixels of 4 m) NDVI (b), 
green vegetation (c), nonphotosynthetic vegetation (d) and shade (e) Contour map of 
geostatistics interpolation of LAI showing decreasing of leaf area index < 4 (dark blue grid 
spots) m regions of tree-fall gaps (white polygons) Cross correlation analysis between areas 
with LAI < 4 and remote sensing products (n—1869 pixels of 4 m) and cross correlation 
with NDVI (g), green vegetation (h), nonphotosynthetic vegetation (l) and shade (j) 
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Leaf Area Index 

Figuie B-15 Contour map of canopy openness (square root of CO) in 53 ha forest area (4 
meter grid plot) showing increasing of CO > 0 23 (yellow grid spots) in areas of tree fall 
gaps (red polygons) Regression analysis of the between grid areas with CO > 0 23 (squaie 
root) and remote sensing products (n=1102 pixels of 4 m) NDVI (b), green vegetation (c), 
nonphotosynthetic vegetation (d) and shade (e) Contour map of geostatistics interpolation 
of LAI showing decreasing of leaf area index < 4 (light blue grid spots) in regions of tree-
fall gaps (white polygons) Cross correlation analysis between areas with LAI < 5 and 
remote sensing products (n=3764 pixels of 4 m) and cross correlation with NDVI (g), 
green vegetation (h), nonphotosynthetic vegetation (l) and shade (j) 
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Figure B-16 Linear regression analysis between gap size area (m2) and coarse woody debris 
CWD (Mg C) of two large plots (167 ha and n=92) (a) Log log graph of gap area and 
CWD (b) Diagnostic regression analysis tests of residuals (c) and its theoretical normalized 
quantiles (d) Pearson correlation r=0 72, fitted adjusted regression model R2=0 53 and 
p-value<0 01 Intercept and slop are respectively, 0 1551 and 0 0108 
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Figure B-17: Linear regression analysis between gap size area (m2) and number of dead trees 
of two large plots (167 ha and n=92) (a). Square root transformation graph of gap area 
and number of dead trees (b). Diagnostic regression analysis tests of residuals (c) and its 
theoretical normalized quantiles (d). Pearson correlation r=0.74, fitted adjusted regression 
model R2=0.56 and p-value<0.01. Intercept and slop are respectively, 0.3485 and 0.0238. 
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR 

C H A P T E R 4 

C.l Data Integration 

We used the extensive historical data set of the RAINFOR plots [Phillips et al., 2004] based 
on net changes in biomass (t h a - 1 y r - 1 ) which account two above-ground biomass terms: 
biomass gain (from tree growth and recruitment) and biomass losses (from tree mortality). 
The biomass losses from these plots were assessed to provide information of tree mortality 
across the Amazon basin. Those plots are typically 1 ha in size and measurements details 
have been described elsewhere [Phillips et al., 2004; Baker et al., 2004; Lewis et al., 2004]. 
All plots (n=151) cover a total area of 226.2 ha with a mean census interval of 3.2 years. 
We used 151 plots with census interval between 0.5 and 1.5 years to estimate tree mortality 
over the Amazon (Fig. 4-1). All trees with diameter larger than 10 cm have been moni­
tored over a mean period of 11.3 years. Above-ground biomass was estimated by allometric 
equations [Chambers et a l , 2001]. Mortality rate have been corrected for census-interval 
effects [Malhi and Wright, 2004] 

RAINFOR data do not account for biomass losses (disturbances) that do not result 
in complete tree mortality (e.g. CWD produced by partial crown-falls). To evaluate car­
bon losses, we installed and surveyed two large forest inventory plots of 114 and 53 ha, in 
unmanaged forest area in the eastern central Amazon (Tapajos National Forest) (Supple­
mentary C-1). The first plot was installed in 2008 and the second in 2009 We adopted an 
intense protocol of ground measurements of gap-formation and related those areas with the 
amount of CWD measured in each gap. We mapped all gaps in both large plots using the 
gap definition of Runkle (1981) that includes areas directly and indirectly affected by the 
canopy opening. We defined the modes of gap-formation based on the type of disturbance: 
(a) partial or complete crown-fall (from either live or dead standing trees), (b) snapped 
bole-fall, and (c) uprooted tree-fall We classified all gaps within two age classes: (a) < 1 
year, for gaps caused by recent disturbances, and (b) > 1 year. For each gap identified in 
the field we measured the volume of all CWD in each ground gap. CWD were separated 
into categories of complete dead trees or wood pieces. For snapped bole-falls and uprooted 
tree-falls, dead trees with diameter > 10 cm were recorded for diameter. For complete 
crown-falls only crown-fall trunks were recorded. The majority of CWD production in this 
area was caused by single or multiple tree-falls. We used the allometric equation [Brown, 
1997] as approximation of woody biomass losses by fresh treefalls and snapped bole falls. 
For gaps with partial crown-fall we recorded the diameters of all wood pieces greater than 
10 cm (the end diameters of the logs) and length of the woody material. CWD in the gaps 
was classified according to its decomposition status [Harmon et ah, 1995] into five classes 
from freshest (class 1) to most rotten (class 5) [Keller et al., 2004; Palace et al., 2007, 2008]. 
We used an average of wood density measured for each decay class specifically developed for 
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this site [Keller et al , 2004] We calculated the sectional volume of each segment of CWD 
and the mass of section of CWD was determined from the product of the volume of material 
and the lespective density for the material class [Keller et al , 2004, Palace et al , 2007, 2008] 

We developed a spatially explicit analysis of large disturbances (blow-downs) m the 
Brazilian Amazon tropical forest biome based on extensive samples of Landsat satellite im­
ages (30 m) We assessed the occurrence of 330 events of large disturbances or blow-downs 
(> 30 ha) during the period from 1986 to 1989 of the 135 Landsat images (Supplemen­
tary C-3) using the original raw data from the first study that described the occurrence of 
blow-downs in the Amazon [Nelson et al , 1994] We also analyzed the pattern of 278 large 
forest disturbances (> 5 ha) from 1999 to 2001 apparently caused by severe storms in a 
mostly unmanaged portion of the Brazilian Amazon using 27 Landsat images and modern 
techniques of digital image processing (Espirito-Santo et al [2010] Chapter 2) For each 
blow-down event, we estimated the biomass loss using the area of each disturbances and its 
respective mean above-ground biomass extracted horn the regional map of biomass stock of 
the Amazon region (Fig 4-1) (n=578, sum of blow-down records from Nelson et al [1994] 
and Espinto-Santo et al [2010] From tree-fall gaps to landscape blow-downs we character­
ized the size-area distribution (Supplementary C-6), biomass losses (Supplementary C-7) 
and relation between disturbance area and severity (Supplementary C-8) 
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- o - RAINFOR (151 censused plots of 1 ha) 
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-e— Blow-downs from Espirito-Santo et al 2010 
- « - Blow-downs from Nelson et al 1994 

Ln disturbance area (ha) 

Figure C-1: Relation between disturbance area and severity (change in aboveground 
biomass) of forest disturbances in the Amazon. Data sets combined from several studies 
of disturbances across the Amazon, from branch and tree falls to landscape scale blow­
downs. Small disturbances: (1) in red, forest plot inventories (n=151 lha plot, Gloor et 
al. 1999) distributed over the Amazon and (2) in black, 96 tree-fall gaps (Chapter 2) from 
two large forest inventory plots (total area 167 ha) in the Tapajs National Forest. Large 
disturbances: (3) in blue, 279 blow-downs bigger than 5 ha from a East-West mosaic of 
27 Landsat scenes of the Amazon; and (4) in green, 330 blow-downs greater than 30 ha 
from 136 Landsat scenes in the Brazilian Amazon. A relation between area and severity 
of disturbances (Mg aboveground biomass loss) was tested from 96 tree-fall gaps (0.003 -
0.13 ha) where both area and aboveground biomass were measured. A regression fit is Ln 
biomass=6.2102+1.29(Ln area), for biomass change in Mg and disturbance area in ha). 
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(1) Large plots of 167 ha 

Ground gap area Coarse Woody Debris 
(Runkle, 1981) (CWD) at gap unities 

(2) Rainfor plots 

Rainfor data 
{1 year census) 

(3) Blow-downs from 
Nelson et al. (1994) 

Original raw 
data (non-digital) 

Data normalization 
of units of (Mg/ha) 

Regression analysis 
- ^ - of disturbance seventy 

(distubance area vs biomass) 

Statistical analysis 
of Prob Dist Functions 

(4) Blow-downs data from 
Espi'rito-Santo et al. (2010) 

Original raw 
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Return time and number 
—• of events per year based 

on cumulative PDF 

Figure C-2: Schematic outline of the main processing steps carried out to integrate several 
sources of disturbance data over the Amazon basin. 

n„a 

Figure C-3: Spatial distribution of 72 Landsat scenes with the occurrence of blow-down 
from the total 136 scenes inspected by Nelson et al. (1994) for the Brazilian Amazon (a). 
The area of blow-downs disturbance is proportional to the size of the circles (b). Landsat 
images with blow-downs outside of the Brazilian Amazon border were omitted from the 
spatial point analysis. 
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Bandwidth x 

Figure C-4: Mean square error (MSE) of the Gaussian kernel smoothing algorithm (a) from 
the spatial distribution of 330 blow-downs from Nelson et al. (1994). The bandwidth with 
smaller MSE around 150 km (b) is the less biased bandwidth for this spatial data. East-
West perspective graph of the intensity of blow-downs in the Amazon (c) produced by a 
smoothing kernel interpolation. 

° H 1 i i i i i H i 1 1 1 1 r~ 
0 100 200 300 400 500 600 0 100 200 300 400 500 600 

r(km) r (km) 

Figure C-5: K-function (a) and simulated envelops of the spatial distribution of 330 blow­
downs from Nelson et al. (1994) (a). Monte Carlo simulation (T=1000) of the K-function 
(b). Black line is the original K-function and the colored lines are the upper and lower 
envelops. Graphic shows that for all situations the occurrences of blow-downs are clustered. 
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Figure C-6: Frequency, probability density function (PDF) and cumulative PDF of area 
from four sources of natural disturbances data sets. Small disturbances: (1) in red, RAIN­
FOR 151 lha plots (a-c); and (2) in black, 96 tree-branch fall disturbances from 167 ha plot 
(d-f). Large disturbances: (3) in blue, 279 blow-downs bigger than 5 ha from Esprito-Santo 
et al. (2010) (g-i); and (4) in green, 330 blow-downs greater than 30 ha from Nelson et al. 
(1994) (j-1). 
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Figure C-7: Frequency, probability density function (PDF) and cumulative P D F of severity 
(change in aboveground biomass) from four sources of natural disturbances da ta sets. Small 
disturbances: (1) in red, RAINFOR 151 l h a plots (a-c); and (2) in black, 96 tree-branch 
fall disturbances from 167 ha plot (d-f). Large disturbances: (3) in blue, 279 blow-downs 
bigger than 5 ha from Esprito-Santo et al. (2010) (g-i); and (4) in green, 330 blow-downs 
greater than 30 ha from Nelson et al. (1994) (j-1). 

113 



0 00 0 04 0 08 

Disturbance area (ha) 

(d) 

i—i—i—i—i—i—i—i 
0 00 0 04 0 08 0 12 

Disturbance area (ha) 

L: 
I — i — i — i — i 
0 500 1500 Disturbance area (ha) 

(J) 

i — i — i — i — r 
0 1000 2000 

Disturbance area (ha) 

0 5 10 15 20 

Biomass change (Mg) 

10 20 30 40 

Biomass change (Mg) 

(h) 

Biomass change (Mg) 

>, 
r 
<i> 
a 

o 
CD -

O O + 
o 

(k) 

i i i i i i 

0e+00 4e+05 8e+05 

Biomass change (Mg) 

Ln disturbance area (ha) 

D) 

a 
en 
c 
to 
o 
o 

XI 
c 

CO -

<M -

o -

OJ _ 

°o o 
a&DJ$/° 

/ o o 

</ ° (f) 
" o ~i r 

-5 -4 -3 -2 

Ln disturbance area (ha) 

1 2 3 4 5 6 7 

Ln disturbance area (ha) 

4 5 6 7 

Ln disturbance area (ha) 

Figure C-8: Probability density function (PDF) for area and severity from four sources 
of natural disturbances data sets. Small disturbances: (1) in red, RAINFOR 151 lha 
plots (a-c); and (2) in black, 96 tree-branch fall disturbances from 167 ha plot (d-f). Large 
disturbances: (3) in blue, 279 blow-downs bigger than 5 ha from Esprito-Santo et al. (2010) 
(g-i); and (4) in green, 330 blow-downs greater than 30 ha from Nelson et al. (1994) (j-1). 
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APPENDIX D 

D O C T O R PUBLICATIONS (2005 - 2011) 

D.l Articles in Preparation 

Espirito-Santo, F.D.B, Keller, M., Linder, E., Oliveira Junior, R.C., Pereira, C , Oliveira, 
G.C., Yuan, C. (2011) Gap formation in large forest plots of Brazilian Amazon: Effects on 
carbon cycling and measurement using high resolution optical remote sensing. Journal of 
Geophysical Research - Biosgeociences. 

Espi'rito-Santo, F.D.B, Gloor, M., Keller, M., Phillips, O. and RAINFOR Group. (2011) 
First Pan Amazon forest disturbance spectrum and implications on the tropical old-growth 
carbon sink. Nature Geoscience. 

D.2 Articles Submitted Recently 

Adami M., Bernardes, S., Arai E., Miura A.K., Freitas R.M., Shimabukuro Y., Espi'rito-
Santo F.D.B., Moreira M.A., & Rudorff B.F. (2010) Vegetation seasonality over several 
terrestrial regions of South America. Journal of Environmental Management. 

Espirito-Santo F.D.B., Shimabukuro Y.E., Santos J.R., Kuplich T.M. & Aragao, L.E.O.C. 
(2010) Age and aboveground biomass accumulation of secondary forest in Amazon: an ex­
plicit semi-automatic classification of multitemporal satellite images. Remote Sensing of 
Environment. 

D.3 Peer-Reviewed Journal Articles 

Espi'rito-Santo F.D.B, Keller M., Braswell B., Nelson B.W., Frolking S., & Vicente G. 
(2010) Storm intensity and old-growth forest disturbances in the Amazon region. Geophys­
ical Research Letters 37: L11403 [doi:10.1029/2010GL043146]. 

Chambers J.Q., Asner G.P., Morton D.C., Anderson L.O., Saatchi S.S., Espirito-Santo 
F.D.B., Palace M., & Souza C. (2006) Regional ecosystem structure and function: ecological 
insights from remote sensing of tropical forests. Trends in Ecology and Evolution 22: 414-
423. 

Morton CD. , DeFries R.S., Shimabukuro Y.E., Anderson L.O., Arai E., Espi'rito-Santo 
F.D.B., Freitas R., & Morisette J. (2006) Cropland expansion changes deforestation dy­
namics in the southern Brazilian Amazon. The Proceedings of the National Academy of 
Sciences 103: 1463714641. 

Morton D.C., Defries R.S., Shimabukuro Y.E., Anderson L.O., Espi'rito-Santo F.D.B., 
Hansen M., & Carroll M. (2005) Rapid Assessment of Annual Deforestation in the Brazilian 
Amazon Using MODIS Data. Earth Interactions 9: 1-22. 
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Espi'rito-Santo F.D.B., Shimabukuro Y.E., & Kuplich T.M. (2005) Mapping forest suc-
cessional stages following deforestation in Brazilian Amazonia using multi-temporal Landsat 
images. International Journal of Remote Sensing 26: 635-642. 

Espirito-Santo F.D.B., Shimabukuro Y.E., Aragao L.E.O.C., & Machado E.L.M. (2005) 
Analysis of the floristic and phytosociologic composition of Tapajos National Forest with 
geographic support of satellite images. ActaAmazonica 35: 167-185. 

Espi'rito-Santo F.D.B. & Shimabukuro Y.E. (2005) Validation of tropical forest area 
mapping using aerial videography images and data from field work survey. Revista Arvore 
29: 227-239. 

Aragao L.E.O.C., Shimabukuro Y.E., Espirito-Santo F.D.B., & Williams M. (2005) 
Landscape pattern and spatial variability of leaf arean index in Eastern Amazonia. Forest 
Ecology and Management 211: 240-256. 

Aragao L.E.O.C., Shimabukuro Y.E., Espi'rito-Santo F.D.B., & Willians M. (2005) Spa­
tial Validation of the Collection 4 MODIS LAI Product in Eastern Amazonia. IEEE Trans­
actions on Geosciences and Remote Sensing 43: 2526-2973. 

Lefsky M.A., Harding D.J., Keller M., Cohen W.B., Carabajal C.C., Espi'rito-Santo 
F.D.B., Hunter M.O., Oliveira R., & Camargo P.B. (2005) Estimates of forest canopy 
height and aboveground biomass using ICESat. Geophysical Research Letters 32: L22S02. 
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