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ABSTRACT 

A C O M P U T A T I O N A L F L U I D D Y N A M I C S S T U D Y OF T W O - P H A S E 

F L O W S I N T H E P R E S E N C E OF S U R F A C T A N T S 

by 

Yuanyuan Cui 
University of New Hampshire, December, 2011 

Drop formation in co-flowing fluids and drops rising in a tube are important in appli

cations such as microencapsulation and enhanced oil recovery. A hybrid volume-of-fluid 

method with a front-tracking scheme is developed to study two-phase flows in the presence 

of surfactants at finite Reynolds numbers. Both fluids can be Newtonian or shear-thinning, 

and surfactants are soluble in the adsorption-desorption limit. A drop in the co-flowing 

geometry typically breaks up at the primary neck. The drop breaks faster with smaller 

volumes as the outer flow rate increases or the drop viscosity decreases. When surfactants 

are present, they accumulate in the neck region resulting in Marangoni stresses that slow 

down the neck thinning rate. This results in longer breakup times with larger drop vol

umes. At high surfactant coverages, the primary neck formation slows down enough and 

breakup occurs at the secondary neck. Increasing outer co-flowing flow weakens the re

tarding effect of the high surfactant coverage leading to breakup again at the primary neck. 

The adsorption-desorption kinetics also affects the neck breakup position, and the primary 

drop volume and breakup time depend non-linearly on the Biot number. The presence of 

a confining wall may lower the value of the critical equilibrium fractional coverage required 

for the drop to enter the no-necking regime. As the drop becomes more shear-thinning, 

the drop breaks up faster with a shorter remnant drop length. Multiple satellite drops are 

observed at breakup with strongly shear-thinning drop fluid at high coverage of soluble sur-

facants. The buoyancy-driven motion of drops in a tube is investigated by determining the 
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steady shapes and velocities of the drops as a function of the drop size. Higher buoyancy 

force leads to larger deformation of drops and increased terminal velocities. Higher inertia 

increases the terminal velocity of drops and results in the development of negative curva

tures at the rear of the drop. The non-uniform distribution of surfactants at the interface 

gives rise to Marangoni stresses that retard the drop motion though the drop shapes remain 

unaffected. 
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Chapter 1 

Introduction 

1.1 Two-Phase Flows in Nature and Industry 

Two-phase flows involving drops and bubbles are encountered in a number of natural 

and industrial processes such as rainfall, boiling, inkjet printing, and enhanced oil 

recovery. In processes such as microencapsulation, inkjet printing, and spray coating, 

generation of droplets of controllable size is crucial. Several strategies are used to 

generate monodisperse drops in an immiscible ambient fluid such as a co-flowing or 

flow focusing geometry [8, 9]. Once generated, the motion and deformation of drops 

and bubbles in confined geometries is important in applications such as oil recovery, 

solvent extraction, and polymer processing. It has also been used as a pore-scale 

model for understanding the dynamics of two-phase flows in porous media [92] and as 

a model for blood flow in capillaries [114]. Determining the interplay of interfacial, 

viscous, inertial, and gravitational forces on the formation, deformation, and mobility 

of drops and bubbles is key to understanding and optimizing processes involving two-

phase flows. 

Surface active agents or surfactants are amphiphiles that adsorb at the interface 

and can critically affect the dynamics of two-phase flow systems [28, 118]. In several 

processes, surfactants are typically present either naturally or as impurities that are 
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difficult to remove. For example, in the pulmonary system, surfactants play a vital 

role in reducing the work required to expand lungs with each breath by reducing the 

surface tension of the liquid lining alveoli and airways. A lack of pulmonary sur

factant causes respiratory distress syndrome in premature neonates [6]. Surfactants 

are sometimes deliberately added to two-phase systems as stabilizers or emulsifiers 

[31, 66, 67, 129, 150]. In recent microfluidic applications, surfactants have been used 

to manipulate drops and bubbles in microchannels [119] and to synthesize monodis-

perse drops and bubbles [3]. When surfactants accumulate at the interface, drop 

coalescence can be inhibited, which is essential for the long-term stability of monodis-

perse emulsions [11]. This benefits industrial operations where drop coalescence is 

undesirable such as a gas-liquid reaction where drop coalescence can reduce the overall 

interfacial area and lower the reactor efficiency. Surfactants are also used to suppress 

the occurrence of satellite drops during the drop formation process [31, 66]. This is 

useful in applications such as inkjet printing where satellite drops can blur the image 

during printing. A thorough understanding of how surfactants affect drop break up 

and deformation can therefore help in improving process and device design. 

In applications such as printing, coating, polymer processing, and biomedical mi-

crodevices, the fluids of interest may be non-Newtonian. Early rheology experiments 

done by Pangalos et al. [97] showed that several ink formulations were shear-thinning, 

that is, their viscosity decreased with increasing shear stress. Recent work by Fer

nandez et al. [46] reported that highly pigmented inks exhibited shear-thinning as 

well as viscoelastic properties. Various types of polymers such as polymer suspen

sions, melts, and blends used in paint and coating industry exhibit shear-thinning 

or viscoelastic behavior [13, 133, 127]. Biological fluids such as blood and DNA 

solutions used in biomedical microdevices also show shear-thinning or viscoelastic 

behavior [51, 113, 114]. It is well-known that non-Newtonian liquids respond to an 
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applied stress field dramatically differently than Newtonian liquids. Therefore, deter

mining the effect of non-Newtonian rheology on the drop formation, deformation and 

mobility in two-phase flows will improve our understanding of two-phase processes 

involving inks, paint, and biofluids. 

1.2 Surfactants at Interfaces 

Drops and bubbles in two-phase flows show interesting dynamics compared to solid 

particles due to their deformable interface [28, 73]. The deformable interface between 

two fluids is actually a thin layer which is a few molecular dimensions thick. The 

thickness is not well defined since the physical properties of the fluid vary rapidly 

but continuously in the interfacial region from the values of one bulk phase to that 

of the other. Due to lack of appropriate molecular theories to describe the interface, 

it is treated as a massless and zero-thickness boundary where the fluid properties are 

maintained at the bulk values on either side of the interface and change discontinu-

ously at the interface. The interface is characterized by the interfacial tension, a, 

which depends on its local thermodynamic state such as temperature, pressure, and 

the concentration of any solutes such as surfactants and charged particles, but is not 

dependent on whether the interface is undergoing deformation or any macroscopic 

motion [73]. Interfacial tension can be viewed as the net inward force of molecular 

attraction per unit length experienced by fluid molecules at the interface that mini

mizes its interfacial area. It can also be interpreted as the work done to generate a 

unit area of new interface. 

Surfactants have an amphiphilic molecular structure consisting of a hydrophilic 

(water-loving) head and a hydrophobic (water-repelling) tail. The hydrophobic tail 

is usually a long-chain hydrocarbon and the hydrophilic head is usually a highly po-
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lar or ionic group. Depending on the nature of the hydrophilic head, surfactants 

can be classified as: nonionic, anionic, cationic, or zwitterionic [108]. Detergent is 

one familiar example of surfactants, but many substances including salts and fatty 

acids and even polymers can act as surfactants. When surfactants are dissolved in 

water, the hydrophobic group may distort the structure of water and increase the 

free energy of the system. The system responds by expelling the surfactant molecule 

to the interface to minimize contact between the hydrophobic group and water and 

reduce the free energy of the system. As a result, the interface becomes covered with 

surfactant molecules with their hydrophobic tails pointing into non-aqueous phase 

(air or oil) while keeping their hydrophilic heads in the water phase to decrease the 

dissimilarity of the two phases contacting each other at the interface. The adsorp

tion of surfactants at the interface can lower the energy of the interface resulting in 

a reduction in the interfacial tension. Consider an air-water or an oil-water interface 

with a clean interfacial tension, a0, created suddenly in the presence of surfactants as 

shown in Fig. 1-1. If the surfactants have enough time to adsorb onto the interface 

and reach an equilibrium, the interfacial tension reduces to its equilibrium value, aeg, 

which is less than a0 . The equilibrium interfacial tension, aeq, depends on the bulk 

concentration of surfactants. If experiments are conducted to determine the equi

librium interfacial tension for varying bulk surfactant concentrations, a plot similar 

to Fig. 1-2 is obtained. For small bulk surfactant concentrations, the equilibrium 

interfacial tension remains nearly identical to the clean interfacial tension. With 

increasing bulk concentration of surfactants, the equilibrium interfacial tension de

creases until it reaches a plateau value at a certain critical concentration known as the 

critical micelle concentration (CMC). Beyond CMC, surfactants start to aggregate 

and form micelles inside the bulk solution resulting in a nearly constant interfacial 

tension [108]. As this dissertation is concerned with only non-miceilar surfactant 
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Figure 1-1: Schematic of equilibrium behavior of surfactant molecules at the interface. 

solution, the following discussion assumes that the bulk concentration is less than 

CMC. 

In dynamic flow situations, equilibrium conditions are usually not achieved along 

the interface. The reduction in interfacial tension by surfactants can alter the stress 

conditions along the interface and eventually alter the interfacial hydrodynamics [73]. 

Since the interface is viewed as a massless and zero-thickness boundary, the volume 

of any segment of the interface is zero, and the net force acting on the interface must 

also be zero. Two types of forces act on any segment of the interface: the bulk 

pressure and stresses acting on the faces of the interface element proportional to the 

interfacial area and a tensile force due to the interfacial tension acting in the plane of 

the interface at the edges of the interface element. A force balance at the interface 

is given in the following mathematical form [73]: 
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Figure 1-2: Schematic of equilibrium interfacial tension as a function of bulk surfac
tant concentration. 

(pi - p2) n + (T2 - Ti) • n = an (V • n) - Vsa, (1.1) 

where the subscripts 1 and 2 denotes the two phases, Pi and Tj (i = 1 or 2) are the 

actual total pressure and the deviatoric stress tensor exerted on the fluids, and n is the 

outward pointing unit normal from phase 1 into phase 2. Eq. 1.1 shows that the force 

balance across the interface requires that the total stress across the interface undergo 

a jump. The normal stress jump across the interface is given by the product of the 

interfacial tension and the mean curvature of the interface while the tangential stress 

jump across the interface is given by the gradient of interfacial tension. Surfactants 

adsorbed at a drop or bubble interface alter the stress jump balance shown in Eq. 1.1 

in two ways. First, a local accumulation of surfactants along the interface lowers the 

interfacial tension there. To balance the normal stress jump across the interface, the 

interface in these low interfacial tension regions deforms to produce a larger curvature 

as seen in Fig. l-3(a). This affects the deformation of drops and bubbles in the 
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Figure 1-3: Schematic of the effect of non-uniform distribution of surfactants on the 
dynamics of interface based on (a) normal stress balance and (b) tangential stress 
balance. 

presence of surfactants, which in turn affects its mobility. Second, if a non-uniform 

distribution of surfactants is generated along the interface due to a stagnation point 

in the flow, a non-uniform interfacial tension along the interface results. As shown in 

Fig. l-3(b), a gradient in interfacial tension generates additional tangential stresses 

known as Marangoni stresses which reduce the tangential velocity of the interface. 

This affects the mobility of drops and bubbles in the presence of surfactants. 

The non-uniform distribution of surfactants at the interface depends on the rel

ative time scales of diffusion, convection, and adsorption-desorption in the problem. 

While surfactants are convected and diffuse along the interface, they are also trans

ported by adsorption-desorption and diffusion between the interface and the bulk. 

Fig. 1-4 presents a schematic of different timescales at play for the non-equilibrium 

behavior of surfactants at the interface with interfacial flow. Convection at the inter

face leads to a local accumulation of surfactants at stagnation points represented by a 
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"dot" at the interface in Fig. 1-4. The timescale for surface convection, TSC, depends 

on the tangential velocity at the interface. The timescale of mass transport of surfac

tants between the interface and the bulk solution, TMT, depends on the timescale of 

adsorption and desorption of surfactants between the sublayer and the interface, TAD, 

and the timescale of bulk diffusion of surfactants between the bulk and the sublayer, 

TD- If TMT *C TSC, the interface gets replenished with surfactants very quickly to 

achieve a uniform reduction of interfacial tension along the interface. If on the other 

hand, TMT 3> Tsc, there is almost no exchange of surfactants between the bulk and 

the interface and the surfactants are essentially insoluble. If TMT ~ Tsc, the relative 

magnitudes of TAD and rp determines the behavior of the surfactants. For exam

ple, in the adsorption-desorption limit, TAD 3> To, and the sublayer concentration of 

surfactants is equal to the bulk surfactant concentration. In the diffusion-controlled 

limit, TAD "C TD , and there will be a surfactant concentration gradient between the 

bulk and the sublayer. The same surfactant two-phase system may behave differently 

depending on the surfactant concentration and flow conditions. 

1.3 Non-Newtonian Rheology Effect 

The viscosity of a Newtonian fluid is independent of the shear rate, and depends 

only on temperature, pressure, and the chemical composition of the fluid. In several 

industries such as food, cosmetics, biomedical, and polymer processing, the fluids 

exhibit non-Newtonian behavior. Unlike a Newtonian fluid, the viscosity of a non-

Newtonian fluid changes with shear rate or even shear rate history. Non-Newtonian 

fluids are generally classified into three categories: purely viscous time-independent 

or generalized Newtonian fluids (GNF), time-dependent fluids, and viscoelastic fluids 

[26]. For time-independent fluids, the shear rate only depends on the current value of 
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Figure 1-4: Schematic of non-equilibrium behavior of surfactant molecules at the 
interface. 
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Figure 1-5: Schematic of (a) the "bead-on-string" pattern observed during in a vis-
coelastic drop formed into a quiescent air[143] and (b) the cusp formation seen during 
a bubble rising in a quiescent viscoelastic fluid [80]. 
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the shear stress. If the apparent viscosity defined as the shear stress divided by shear 

rate for a fluid decreases with increasing shear rate, it is classified as a shear-thinning 

or pseudoplastic fluid. If its apparent viscosity increases with increasing shear rate 

it is termed as a shear-thickening or dilatant fluid. For time-dependent fluids, shear 

stress depends on shear rate, the duration of shearing, the previous kinematic his

tory and so on. A thixotropic fluid shows decreased apparent viscosity with time 

when sheared at a constant shear rate, whereas a rheopectic fluid shows a increased 

apparent viscosity with the duration of shearing. For viscoelastic fluids, materials 

exhibit combined characteristics of both a viscous fluid and an elastic solid showing 

partial elastic and recoil recovery after deformation. Rod climbing and die-swelling 

phenomena are examples of peculiar behavior of viscoelastic fluids due to extra nor

mal stresses generated in the fluids. Several interesting two-phase dynamics such 

as "bead-on-a-string" structure and cusp formation are seen in viscoelastic liquids 

(see Fig. 1-5). During the thinning of a viscoelastic thread, the competition of elas

tic, capillary, and inertial forces leads to the formation of a periodic array of beads 

connected by axially uniform ligaments known as "bead-on-a-string" [77, 94, 143]. 

Formation of a cusp is seen at the rear stagnation point of bubbles rising in a qui

escent viscoelastic fluid due to large normal stresses when the interfacial forces are 

weak [80]. Most real materials often display a combination of two or even all the 

three types of non-Newtonian characteristic. For example, a variety of polymer so

lutions such as Xanthan gum, sodium acrylate, polyacrylamide, and carboxymethyl 

cellulose solutions exhibit both shear-thinning and viscoelastic behaviors. For di

luted polymer solutions, viscoelasticity can sometimes be neglected and solutions are 

only considered as shear-thinning fluids. At low shear rates, the viscosity reaches 

a limiting value referred to as the zero shear-rate viscosity followed by a region of 

shear-thinning behavior. 
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1.4 Research Objectives 

The aim of this work is to further our understanding of the dynamics of two-phase 

flows in confined domains in the presence of surfactant and non-Newtonian effects. 

The main goals are to 

• develop a numerical model to simulate two-phase flows with a rapidly deforming 

interface, 

• study the interplay of interfacial, viscous, inertial, and gravitational forces in 

the presence of confining walls on the dynamics of the two-phase interface, 

• determine how surfactants adsorbed at the two-phase interface affect the dy

namics of the interface, and 

• investigate the effect of fluid rheology on the dynamics of the two-phase inter

face. 

To achieve these goals, a numerical algorithm based on a hybrid Volume-of-Fluid 

(VOF) method is developed to study strongly deforming interfaces. The numeri

cal model uses a VOF method combined with a front-tracking scheme to accurately 

describe the deforming interface in the presence of surfactants. The model is im

plemented on two different flow problems encountered in a variety of two-phase ap

plications. The first problem is the formation of a drop at the tip of a needle in 

the presence of a co-flowing stream. The second problem is a drop rising in a tube 

filled with an immiscible fluid. Both processes are considered isothermal. Nonionic 

surfactants in non-micellar bulk solutions, that is, the surfactant concentration is be

low CMC, are chosen for the investigation of surfactant effects on these two-phase 

flow problems. Surfactants are considered soluble with adsorption-desorption as the 
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rate-limiting step. In addition, either the drop fluid or the bulk fluid may exhibit 

non-Newtonian shear-thinning behavior. The mathematical models for two-phase 

flows, surfactants, and non-Newtonian rheology are discussed in Chapter 2. Various 

numerical techniques used for two-phase flows and the numerical algorithm used in 

this work are presented in Chapter 3. The detailed problem description and results 

for drop formation in a co-flowing fluid stream and drops rising in a tube are pre

sented in Chapters 4 and 5, respectively. Chapter 6 summarizes the conclusions of 

this work and presents some suggestions for future work on the subject. 
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Chapter 2 

Mathematical Formulation 

2.1 Modeling Two-phase Flows 

A two-phase interface S separates the drop phase 1 from the bulk phase 2 as shown 

in Fig. 2-1. The outward pointing unit normal from the drop phase to the bulk 

phase is denoted by n and t is the unit tangent vector at the interface. Both phases 

are treated as isothermal and incompressible. Applying the continuum hypothesis 

that describes the motion of the fluid on a much coarser scale of resolution than the 

molecular scale [14, 73], the continuity and the equations of motion for both phases 

are given by 

V* • < = 0, (2.1) 

P^ ( f £ + < • V X * ) = - V * ^ + V* • T,\ (2.2) 

The superscript * denotes dimensional quantities and the subscript i represents the 

drop phase for i = 1 or the bulk phase for i = 2. The fluid velocity and the modified 

pressure in phase i are represented by u* and P*, respectively. The modified pressure 

is defined as P* = p*% — ptg • x* where x* is the axial location vector. The deviatoric 

stress tensor in phase i is represented by r* and is given by 

T% =fr (VX) + (VX)T • (2-3) 

13 



* 

p* 
2 Bulk 

n phase 2 

\ 
Interface s 

x* i0,* Drop 

phase 1 

Figure 2-1: Schematic of a two-phase interface separating the drop phase from the 
bulk phase. 

The viscosity of phase i, //,, is either constant for a Newtonian fluid or variable for a 

non-Newtonian fluid. 

The governing equations in Eq.s 2.1 - 2.3 are solved with initial conditions and 

boundary conditions imposed at the fluid boundaries and the two-phase interface. 

The boundary conditions imposed at the flow domain boundary depends on the flow 

problem considered. Here, the three boundary conditions imposed at the two-phase 

interface are discussed. First, the velocity at the interface S is required to be contin

uous and equal to the interface velocity, that is, 

ul = u; = uj. (2.4) 

Here, u* = u*nn + u*tt is the interfacial velocity and u*n and u^ are the normal and 

tangential components. Second, the force balance at the interface results in a stress 

jump across the interface described by 

(P* - P;) n + (r* - r*) • n = a*n (V* • n) - V ^ * + (p2 - P l ) (g • x*) n. (2.5) 
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Here, a* is the interfacial tension, V* = (I — nn) • V* is the surface gradient operator, 

and V* • n is the mean curvature of the interface. Since modified pressure is used 

in this formulation, the hydrostatic pressure term appears on the right hand side 

of the stress jump balance instead of the governing equations. Eq. 2.5 shows that 

the normal stress jump is balanced by the Laplace pressure, <r*n (V* • n), normal to 

the interface, while the tangential stress jump is balanced by the Marangoni stress, 

—V*<7*, tangent to the interface. Finally, the interface evolution is governed by the 

kinematic condition 
dx* 
?*• = < (2-6) 
dt* s y ' 

where x* is the location of the interface. 

2.1.1 Dimensionless Governing Equations 

Eqs. 2.1 to 2.5 are nondimensionalized with the characteristic length, lc, velocity, 

uc, and time, lc/uc, which depend on the flow problem considered. A viscous scale 

is chosen as the characteristic pressure, that is, Pc = /z2uc/4- The characteristic 

interfacial tension, ac is chosen as the clean interfacial tension, a0 for the surfactant-

free simulations and as the equilibrium interfacial tension, aeq for simulations for 

the surfactant-laden systems. The dimensionless forms of the continuity and the 

equations of motion then become 

V • u2 = 0, (2.7) 

~PlRe (j± + u, • Vu, J = - V P , + V • r,. (2.8) 

(Vu,) + (Vu,)T 
rep-Px represents the dimensionless modified pressure and TX — \xx 

resents the dimensionless deviatoric stress tensor. The dimensionless fluid properties 

are defined as pz = 1 + (x — l)5u and \x% = 1 + (A — l)Su. The ratio of density of 
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the drop phase to the bulk phase is given by x = P1/P2 and A = /Z1/V2 represents the 

ratio of drop phase viscosity to the bulk phase viscosity. For shear-thinning fluids, 

the zero-shear viscosity is used to calculate the viscosity ratio. Eq. 2.8 introduces 

the Reynolds number, Re, which represents relative importance of inertial forces to 

viscous forces and is defined as 

Re = ™±. (2.9) 

The dimensionless forms of the continuity of velocity, the stress jump condition, 

and the kinematic condition at the two-phase interface are given by 

ui = u2 = us , (2.10) 

(Pi - P2) n + (r2 - n ) • n = ^ - [an (V • n) - X7sa - Bozn) , (2.11) 
Ly Ob 

£ = «.. (2.12) 

The last term in Eq. 2.11 is obtained by assuming that gravity points in the negative 

z—direction. The interfacial boundary conditions introduce the capillary number, 

Ca, which gives the relative importance of viscous forces to interfacial forces and the 

Bond number, Bo, gives the relative significance of gravitational forces to interfacial 

forces. The capillary and Bond numbers are defined as 

Ca = ^ , (2.13) 
o-c 

B o = > - P i ) g £ . ( 2 .1 4 ) 

2.2 Modeling Surfactants 

In the absence of bulk fluid motion, surfactants adsorb at a two-phase interface to 

reach an interfacial concentration, T*eq, which is in equilibrium with the bulk sur

factant concentration C^. In the presence of bulk fluid motion, the equilibrium is 
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disturbed due to convection, diffusion, and transport of surfactants from the bulk re

sulting in a surfactant concentration distribution, T* along the interface. To use the 

interfacial tension, a* in Eq. 2.5, two pieces of information are needed. First, how 

the interfacial tension, a* is related to the interfacial concentration, T* and second, 

how the interfacial concentration distribution, T* is evolving with time. The surface 

equation of state describes the relationship between a* and T* and the surface mass 

balance equation describes surfactant transport at the interface. 

2.2.1 Surface Equation of State 

A surface equation of state describes the relationship between the interfacial tension 

<7*, and the surfactant concentration at the interface T*. In the limit of low sur

factant concentrations, a linear equation of state can be assumed. However, as the 

interface gets saturated with surfactants, the finite size of the surfactant restricts the 

maximum amount of surfactant that can be packed at the interface. This maximum 

surface packing limit is given by T^ which affects how surface tension changes with 

surfactant concentration. In addition, surfactants can interact either cohesively or 

repulsively, which further affects the form of the equation of state. For this study, 

the simplest non-linear equation of state accounting for surface saturation effects but 

no interactions between surfactant molecules, namely, the Langmuir equation of state 

is chosen. 

Assuming that the surfactant is bulk soluble, the surfactant partitions between 

the interface and the bulk based on an adsorption isotherm. The Langmuir isotherm 

assumes that surfactant molecules are non-interacting and pack at the interface in 

a monolayer. The surfactant adsorption rate to the interface is linear in the bulk 

concentration, C^, and slows as the interfacial concentration approaches the maxi-
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mum packing limit, F ^ . The desorption rate is assumed to be linear in surfactant 

concentration at the interface. Thus, the net adsorptive-desorptive flux to and from 

the interface, j * • n, is given by 

j*-n = / 3 s c 0 0 ( r 0 O - r ) - a 8 r . (2.15) 

Here, as and j3s are the desorption and adsorption kinetic rate constants, respectively. 

At equilibrium, j * • n = 0, and T* can be solved from Eq. 2.15 as 

The Langmuir equilibrium adsorption constant, KL = f3s/as. 

The appropriate surface equation of state can then be derived from the adsorp

tion isotherm using interfacial thermodynamics. The Gibbs adsorption equation at 

constant temperature T is given by 

da* = -RTT*d (InC^). (2.17) 

Integrating the Gibbs adsorption equation with the Langmuir adsorption isotherm 

gives the relationship between the interfacial tension, a*, and the surfactant concen

tration at the interface, T*, as 

a* = a0 + RTT^ln M - - L j , (2.18) 

where a0 is the interfacial tension of the clean interface. Eq. 2.18 is known as the 

Langmuir equation of state. It has been shown as a good fit to experimental data for 

a variety of two-phase flow systems with surfactant concentrations up to the critical 

micelle concetration where the integrity of the surfactant monolayer is about to be 

compromised [23]. Thus, the Langmuir equation of state is chosen in this work to 

describe the adsorption kinetics of the nonionic surfactants in a non-micellar solution. 
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The Langmuir equation of state is derived using the Gibbs adsorption equation 

which holds at equilibrium. However, it is assumed to be valid for systems with 

surfactant under flow, with T* and a* representing local values and Coo representing 

the limit of the bulk concentration as the same point on the interface is approached 

[73]. In the dilute surfactant limit (r*/Too <C 1), the Langmuir equation of state 

reduces to a linear equation of state, a* = a0 — RTF*, indicating that the interfacial 

tension decreases linearly with surfactant concentration at the interface. At high sur

factant concentrations, the Langmuir equation of state captures important nonlinear 

behavior of surfactants. This is clearly seen in Fig. 2-2 where the interfacial tension, 

a*, decreases sharply as the interfacial concentration of surfactants, T*, approaches 

the maximum packing limit, F^, from below. The Marangoni stress corresponding 

to Eq. 2.18 is given by 

VV* = V T * — = V T * . (2.19) 

At low surfactant concentrations, T* <C T^, the coupling between the interfacial 

tension and surfactant concentration is weak. Large gradients in surfactant concen

tration are needed to see small Marangoni stresses. At high surfactant concentrations 

when T* approaches the maximum packing limit, Too, from below, large Marangoni 

stresses are expected for perturbative gradients in surfactant concentrations [43]. 

2.2.2 Surface Mass Balance 

While surfactants are transferred by convection and diffusion along the interface, they 

are also transported by adsorption-desorption and diffusion between the interface and 

the bulk as shown in Fig. 1-4. The surfactant concentration at the interface F* varies 

along the interface and also changes with time under flow. It is governed by the 
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Figure 2-2: Schematic of nonlinear behavior of the Langmuir equation of state. 

unsteady convective-diffusion equation [73, 117, 137] given by 

F)V* 

— + v:• (r<t) + r*(v*• n)<-D svfr = he,(r«,-r)-asr*, (2.20) 

where D s denotes the interfacial diffusivity of surfactants, and f3s and as are the 

kinetic constants for adsorption and desorption, respectively. The surfactant con

centration, T* at any point along the interface changes due to convection due to the 

local tangential velocity given by V* • (T*u^t). Local changes in interfacial area 

result in a "dilution" effect which is evaluated by the term F* (V* • n) u*n. The sur

factant redistributes along the interface due to an interfacial diffusion flux given by 

—DSV*S
2T*. Finally, the interface concentration also changes due to the adsorption-

desorption flux between the interface and the bulk given by the right hand side of 

Eq. 2.20. The rate of desorption of surfactants from the interface depends on the 

surfactant concentration at the interface, T*. This form of the adsorption flux of 

surfactants assumes that the adsorption rate is directly proportional to the space 

available on the interface given by (Foe — T*), and the surfactant concentration in the 
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sublayer immediately adjacent to the interface, Cs. The sublayer concentration is 

determined by solving the bulk convective-diffusion equation to determine the bulk 

concentration of surfactant everywhere in the fluid domain. 

The relative timescales of the various transport processes of surfactants give rise to 

different asymptotic solutions to the problem. Three different asymptotic solutions 

are considered in this study to understand the effect of surfactant mass transfer on 

the drop formation and drop rising processes. First, if mass transport of surfactants 

to the interface is much faster than interfacial convection, the adsorptive-desorptive 

flux to the interface is very large. Thus, the interface is continuously replenished 

with surfactants and the surfactant concentration at the interface always remains 

at the equilibrium concentration. This results in a uniform reduction in interfacial 

tension along the interface. The surface mass balance in Eq. 2.20 is not applied 

and r* = Teq. Second, if surfactant mass transfer to the interface is much slower 

than interfacial convection, the adsorptive-desorptive flux to the interface is nearly 

zero. Thus, the surfactant essentially behaves as an insoluble surfactant which cannot 

adsorb or desorb from the interface. In this case, the surface mass balance equation 

in Eq. 2.20 reduces to 

3T* 
— + v: • (r*«*t) + r (v* • n)< - Dsvfr* = o, (2.21) 

Finally, if surfactant mass transport to the interface is comparable to interfacial con

vection, the surfactant behaves as a soluble surfactant. Furthermore, if the bulk 

diffusion of surfactants is fast compared to adsorption/desorption to the interface, 

the sublayer concentration is always maintained at the bulk concentration value, Coo-

A solution for the surfactant concentration in the bulk is not needed and the sur

factant mass transfer is said to be adsorption-desorption limited. The surface mass 
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balance then becomes 

BT* 
— + v ; • (r*u*tt) + r*(v* • n ) < - D s v f r * = fac^(rM - r* ) - « s r . (2.22) 

2.2.3 Dimensionless Surfactant Equations 

To recast the interfacial mass balance in Eq. 2.22 and the Langmuir equation of state 

in Eq. 2.18 in dimensionless form, the characteristic quantities lc, uc, and lc/uc are 

used to scale the length, velocity, and time. The equilibrium interfacial tension, aeq, 

and the equilibrium surfactant concentration at the interface, Teq, are chosen to scale 

the interfacial tension and surfactant concentration at the interface, respectively. The 

dimensionless Langmuir interfacial equation of state is given by 

1+Eln(l-XF) 
l + Eln{l-x) y ' 

The elasticity parameter, E, represents the sensitivity of the interfacial tension to the 

surfactant concentration, and is given by 

E = ^ - I ^ . (2.24) 
Co 

The elasticity parameter for typical surfactants are found to be much less than unity 

[43]. The equilibrium coverage of surfactants at the interface, x, is given by 

* = £ * • (2-25) 

Assuming a soluble surfactant in the adsorption-desorption limit, the dimension

less surface mass balance at the interface is then written as 

^ + v s • (rntt) + r (v • n) Un - j^v2
sr = ̂ - (i - r ) . (2.26) 

The interfacial Peclet number, Pes represents the ratio of the interfacial convection 

rate to the interfacial diffusion rate, and is given by 

Pes = ̂ . (2.27) 
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In general, the rate of diffusion is much slower than the rate of convection and for 

most practical systems Pes >• 1. The Biot number, Bi, represents the ratio of the 

surfactant desorption rate to the interfacial convection rate, and is given by 

Bi = — . (2.28) 
uc 

For insoluble surfactants, the transport to and from the interface is negligible and 

Bi « 0 and the surface mass balance in Eq. 2.26 reduces to 

BY 1 

— + vs • (ixt) + r (v • n) un - ^ v * r = o. (2.29) 

When surfactant transport to the interface is very fast, that is, Bi —> oo, the interfa

cial surfactant concentration remains at its equilibrium value, T = 1. 

2.3 Modeling Shear-thinning Fluids 

Eq. 2.3 describes the deviatoric stress tensor for the fluid used in the momentum 

equation, Eq. 2.2. For a Newtonian fluid, the viscosity of phase i, /i4 is constant. 

The subscript i = 1, 2 depending on whether the drop fluid or bulk fluid is considered. 

However, for a shear-thinning fluid, fa decreases with increasing shear rate and an 

appropriate rheological model is needed to describe it. The simplest model for 

shear-thinning fluids is the power-law rheological model [14] giving the deformation-

rate-dependent viscosity function as 

H = Kt(i;r-1. (2.30) 

Here, K% is the flow consistency index which is a measure of average viscosity and n% is 

the power law exponent which is a measure of deviation from a Newtonian fluid. For 

shear-thinning fluids nx has a value less than 1. 7* is the shear rate or the magnitude 

of the rate of strain tensor 7* which is given by 

7 : = V X + ( V X ) T - (2.31) 
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Thus, the shear rate 7* is given by 

7; = \J\a: ••!:)• (2.32) 

The power-law model is often an inadequate viscosity model since it cannot repre

sent the viscosity for the entire range of shear rates. For example, at zero shear rate, 

the power-law model predicts an infinite value for viscosity. A group of Carreau-type 

models have been developed to describe shear-thinning fluids that are capable of pre

dicting the viscosity accurately [21, 29, 61]. In this work, the Carreau model which 

was first proposed by Pierre Carreau and his coworker [21] will be applied: 

n , - l 

/4 (i*) = (/Ao - Â oo) [ l + [oititf] 2 + A*ioo- (2.33) 

Here, //zo is the zero shear-rate viscosity and //loo is the infinite shear-rate viscosity. 

at is the Carreau time constant and l /a4 gives the characteristic shear rate at which 

the fluid transitions from behaving as a Newtonian fluid to a pseudoplastic fluid. At 

low shear rate (7* <C l/at), the Carreau fluid behaves as a Newtonian fluid, whereas 

at high shear rate (7 / S> l/at), the fluid behaves as a power-law fluid. The Carreau 

power-law index, nr takes on values less than 1 for shear-thinning fluids. The Carreau 

model in Eq. 2.33 can be nondimensionalized by the zero shear-rate viscosity of the 

bulk fluid, //2o: 

lh = P*> (1 - A) [1 + (<*,7.)2] ̂  + ihoPi- (2-34) 

Here, p,%o = 1 + (Ao — 1) <5u and A0 = ^10/^20 gives the zero shear-rate viscosity ratio 

of drop to bulk fluids. For shear-thinning drop and bulk phases A = A0. /3t = /x4(X>//4o 

gives the ratio of the infinite shear-rate viscosity to the zero shear-rate viscosity for 

fluid phase 1. a% and n% are the Carreau time constant and the Carreau power-law 

index, respectively. Eq. 2.34 reduces to a Newtonian fluid with /j,t = /XJO if otz = 0 or 

ft = 0 or n, = 1. For nt < 1, the fluid is shear-thinning or pseudoplastic while for 

n4 > 1, the fluid is shear-thickening or dilatant. 
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To guide the choice of the Carreau model parameters used in this study, the effect 

of changing nt, p\, and a, on the viscosity of the resulting fluid is investigated. The 

zero shear viscosity is set to /2JO = 0.9. The effect of changing the power-law index, nz, 

on the apparent fluid viscosity while keeping p\ = 0.2 and at = 0.5 is seen in Fig. 2-3. 

nt = 1 corresponds to a Newtonian fluid with a constant viscosity. For nx values of 0.5 

and 0.3, the fluid exhibits shear-thinning behavior with apparent viscosity decreasing 

with increasing shear rate as seen in Fig. 2-3. The apparent viscosity decreases 

more quickly with increasing shear rate as the power-law index decreases from 1 to 

0.3 even though eventually both shear-thinning fluids reach the same infinite-shear 

viscosity. The effect of changing p\ on the apparent viscosity while keeping n% = 0.5 

and az = 0.5 is seen in Fig. 2-4. Decreasing p\ reduces the ratio of the infinite shear-

rate viscosity to the zero shear-rate viscosity. p\ = 1 corresponds to a Newtonian 

fluid as the zero-shear viscosity is the same as the infinite-shear viscosity. With a 

lower p\, the apparent viscosity of the fluid is lower for the same applied shear rate 

as seen in Fig. 2-4. Finally, the effect of changing az from 0 to 10 on the apparent 

viscosity while keeping nr = 0.5 and p\ = 0.2 is seen in Fig. 2-5. The Carreau time 

constant at changes the characteristic deformation rate at which the fluid transitions 

from a Newtonian to a pseudoplastic behavior, a = 0 indicates a Newtonian fluid 

and as az increases, the transition to shear-thinning behavior occurs at lower shear 

rates as seen in Fig. 2-5. As a consequence, for the same shear rate, the viscosity of 

the shear-thinning fluid with a higher at is lower than that of a fluid with a higher 

ojj even though both fluids reach the same infinite-shear viscosity (same p\). Based 

on these observations, two different shear-thinning fluids will be compared to the 

Newtonian fluid results - a weakly shear-thinning fluid with at = 0.5, p\ = 0.5, and 

n% = 0.5 and strongly shear-thinning fluid with a% = 10, p\ = 0.002, and n% = 0.3. 

The viscosity of the shear-thinning fluid as a function of the shear rate for Newtonian, 
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Figure 2-3: Effect of the power-law index n* on the shear-thinning behavior while 
keeping fy = 0.2 and at = 0.5. 

weakly shear-thinning, and strongly shear-thinning fluids is shown in Fig. 2-6. 
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Figure 2-4: Effect of the ratio of the infinite shear-rate viscosity to the zero shear-rate 
viscosity /?$ on the shear-thinning behavior while keeping n, = 0.5 and on = 0.5. 
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Figure 2-5: Effect of the ratio of the Carreau time constant a* on the shear-thinning 
behavior while keeping n* — 0.5 and f3x = 0.2. 
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Figure 2-6: The characteristic viscosity as a function of shear rate based on the 
Carreau model for Newtonian (n4 = 1), weakly shear-thinning (a8 = 0.5, (5t = 0.5, 
and n% = 0.5), and strongly shear-thinning fluids (a% = 10, (3t = 0.002, and nt = 0.3). 
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Chapter 3 

Numerical Method 

Numerical modeling of free surface flows is a challenging task as the location of the 

interface is not known a priori and must be calculated as part of the solution. When 

surfactants are present in the system, the problem becomes more complex as the 

flow field affects the distribution of surfactants, which in turn alters the interfacial 

tension and thus alters the flow field. Numerical modeling is a powerful tool to 

understand problems with complex effects as it allows one to isolate and explore each 

effect individually and determine quantities that may be difficult to measure experi

mentally. For example, the surfactant concentration on an evolving drop interface is 

challenging to measure experimentally, but can be easily visualized in the analysis of 

numerical simulation results. The interaction between the flow field and surfactants 

is highly non-linear and a robust numerical method is needed to accurately repre

sent the interfacial forces on a rapidly expanding deformable interface in the presence 

surfactants. 

3.1 Numerical Methods for Free Surface Flows 

Two numerical strategies have been developed to study free boundary problems, 

moving-grid methods and fixed-grid methods as sketched in Fig. 3-1. In moving-

grid methods such as boundary-fitted method, the two fluid phases are discretized 
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separately and the interface is tracked explicitly as a boundary between two subdo-

mains of the grid. This treatment tracks the exact position of the interface with 

accurate representation of normals and curvatures at the interface. However, when 

the interface undergoes large and rapid deformation, this method becomes inefficient 

and inaccurate. As seen in Fig. 3-1 (a), it can give rise to highly distorted element 

shapes near the highly deformed interface and frequent remeshing is required [111]. 

In the fixed-grid methods, the grid is predefined and does not move with the inter

face, and the entire domain is discretized as a single fluid. As seen in Fig. 3-1(b), 

the interface lies somewhere inside this grid and the position of the interface needs 

to be determined at every time step. Implementation of the governing equations is 

straightforward on the fixed grid but strategies are needed to represent the deforming 

interface. The interface can be represented either by implicitly tracking the location 

of the interface, also known as front-capturing, or explicitly tracking the location 

of the interface, also known as front-tracking. Front-capturing schemes allow large 

deformation but often give inaccurate normals and curvatures since tracking of the 

interface is not explicit. Front-tracking schemes are more complex to implement 

but provide accurate descriptions of the interface topology as the interface is tracked 

explicitly. 

Two front-capturing methods, level-set [122] and volume-of-fluid (VOF) [60] meth

ods are most commonly used to implicitly track the interface. The level-set method 

defines a signed distance function from the interface called the level-set function. The 

normal and curvature can be readily estimated from the level-set function. An advec-

tion scheme is developed for the evolution of the level set function to track the location 

of the evolving interface. The level-set method has good capability of handling large 

topology changes of the interface for two-phase flows [121]. The method, however, 

does not conserve mass well, and the loss of mass gets worse as the simulation time 
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(a) (b) 

Figure 3-1: Schematic of (a) the moving grid method and (b) the fixed grid method 
for modeling deformable interface. 

proceeds [95]. The VOF method also defines a color function in each cell of the 

flow domain based on the fraction of the cell occupied by one phase. Knowing only 

the volume fraction in all the cells in the flow domain, a reconstruction technique is 

needed to determine the location of the interface [111]. The simplest reconstruction 

technique is the simple line interface calculation (SLIC) which is a first-order accurate 

method [87] as seen in Fig. 3-2(a). A more accurate reconstruction technique is the 

piecewise linear interface construction (PLIC) which is second-order accurate [4] and 

is seen in Fig. 3-2(b). Again an advection scheme is developed for the evolution 

of the color function to locate the evolving interface. The main advantage of the 

VOF method is good mass conservation. It preserves mass in a natural way as a 

direct result of the development of transport equation of VOF function based on the 

mass conservation law [111]. It is robust when the curvature is small. For rapidly 

deforming interfaces, accurate normals and curvature are obtained only for very fine 

discretization due to the smeared interface reconstruction. 
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Figure 3-2: Schematic of (a) the first-order or the simple line interface calculation 
(SLIC) and (b) the second-order or the piecewise linear interface construction. 

Tracking methods can be further divided into volume tracking and surface track

ing. In volume tracking methods, a representation of the interface is not stored but 

can be reconstructed as needed. The marker-and-cell method is the simplest form 

of volume tracking [41]. In this method, massless marker particles identify differ

ent fluids and the interface is considered to be somewhere inside a cell that contains 

marker particles of both fluids. The marker-and-cell method does not determine the 

location, orientation, normals, or curvature of the interface. In the diffuse-interface 

method [40] and the immersed boundary method [99], the sharp interface is treated 

as a smeared interface with nonzero width which has continuous variations of pa

rameters such as density. The surface tracking methods employ interfacial markers 

to track the location and shape of the interface explicitly [100, 130]. Even though 

they require larger data storage, they can resolve features of the interface that are 

smaller than the cell spacing of the fixed grid. Therefore, they can describe the lo

cation, orientation, normals, and curvatures of the interface and the interfacial forces 
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accurately. The immersed interface method [75] is an improvement on the immersed 

boundary method which enforces the discontinuities or the jump conditions exactly 

or approximately near the interface. It combines with some interface tracking / cap

turing methods such as surface tracking method and level-set method to describe the 

information of the interface. A standard finite difference or finite element method is 

used in discretizing the governing equations away from the interface while the numer

ical methods are modified according to the jump conditions only on the grid points 

or elements near or on the interface [78]. 

3.2 Hybrid VOF Numerical Method 

For this work, a hybrid numerical methods based on a volume-of-fluid (VOF) method 

[54] with a front-tracking scheme [100] is implemented. It combines the mass con

servation properties of the VOF method with the accuracy of defining the interface 

topology and stresses of the front-tracking method. The details of the numerical 

method for a 3D-axisymmetric cylindrical co-ordinate system are described in the 

following sections. 

3.2.1 Computational Grids 

In this scheme, two computational grids are defined. The Navier-Stokes equations 

are solved using a VOF method on a fixed Eulerian grid and the interface is tracked by 

a moving Lagrangian grid as shown in Fig. 3-3. The physical domain is discretized 

into cells of size Ar and Az in the r— and z— directions, respectively. In the 

fixed Eulerian grid, there are two common choices for variable arrangement on each 

cell: the colocated arrangement and the staggered arrangement. For a colocated 

arrangement, the pressure and velocities are defined at the center of the cell. For the 
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staggered arrangement, the pressure and velocities are defined at the center and the 

walls of the cell. A staggered arrangement of the pressure and velocity components 

on a single cell is shown in Fig. 3-4. The pressure, P is defined at the center of the 

cell, but the radial component of velocity, ur and the axial component of velocity, uz 

are defined along the cell boundary faces. The discretized forms of the governing 

equations are then implemented on different control volumes as shown in Figs. 3-4 (a-

c) depending on whether the equations are used for the evolution of pressure or the 

velocity components. For example, the z—component of the momentum equation is 

discretized on a control volume centered on uz shown as the shaded region in Fig. 3-

4(b). In this research, a staggered arrangement of the velocity and pressure fields is 

adopted because it prevents the occurrence of oscillations observed in the colocated 

arrangement. 

The interface is represented by Lagrangian marker particles with a parametric 

representation (rs (s), za (s)) where s is the arc length starting from the apex of the 

drop. The outward pointing unit normal and unit tangent to the interface and the 

curvature of the interface at any location on the interface are then given by 

n = -z'ser + r'sez, (3.1) 

t = r'ser + z'sez, (3.2) 

z" z' 
V . n = - 4 - ^ , (3.3) 

where r's and z's represent the first derivatives of rs and zs with respect to the arclength 

s while z"s represents the second derivative of zs with respect to s. 

3.2.2 Single-fluid VOF Formulation 

By applying the idea of the VOF method, the two fluids with different densities and 

viscosities are treated as a single fluid with varying density p and viscosity /2. The 
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Figure 3-3: Schematic of the fixed Eulerian grid and the moving Lagrangian grid for 
solving two-phase free boundary problems. 
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Figure 3-4: Schematic of the staggered arrangement on a grid cell, and the control 
volumes used for implementing the governing equations for (a) pressure, (b) axial 
velocity, and (c) radial velocity. 

method keeps track of the fluid properties by using a VOF function, 4>, which gives 

the volume fraction of drop phase in the grid cell shown in Fig. 3-5. If the cell is 

completely in the drop phase, the VOF function has a value of 1 and if the cell is 

completely in the bulk phase, the VOF function has a value of 0. For a cell with 

a two-phase interface, the VOF function has a value between 0 and 1 depending on 

how much fraction of the cell is occupied by the drop phase. A continuous surface 

force (CSF) method [19] is adopted to express the interfacial stress jump with an 

interfacial delta function, 6S, which takes the value 1 at the interface and 0 everywhere 

else. The CSF method treats interfacial tension as a continuous, three-dimensional 

effect across the interface, instead of a boundary condition at the interface. In this 

way, the interfacial boundary condition in Eq. 2.5 is incorporated into the momentum 

equation, Eq. 2.2 to obtain the single-fluid VOF. A detailed derivation of the single-

fluid VOF formulation in dimensionless form is shown in Appendix A and the final 

-• • 
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Figure 3-5: Schematic of the volume-of-fluid (VOF) function <f> with an interface 
represented by moving Lagrangian markers is across the fixed Eulerian grid. 

form is shown here: 

V - u = 0, (3-4) 

pRe (~ + u • Vu J = - V P + V • (ji [(Vu) + (Vu)T]) 

+7T I v ^ - o-n (V • n) + Bozn] 8a. (3.5) 

Here, p = 1 — (1 — \) </> a nd M = 1 — (1 ~ ty 4>i with x = P1/P2 and A = //i//x2 

representing the density and viscosity ratio of drop to bulk fluids, respectively. 

3.2.3 Solution of the Governing Equations 

Several techniques have been developed to solve the continuity and momentum equa

tions. In this study of unsteady flow problems, a time-splitting method is imple

mented to solve the incompressible mass and momentum equations for velocity and 

pressure fields. It introduces an intermediate velocity field, u**, that does not have 
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to be divergence-free. The single-fluid VOF formulation in Eq. 3.5 is split into two 

equations to solve for the velocity, u™+1, and pressure, Pn+1, at the new time step 

n+ 1 as 

pRe (U**A """) = -pRe (un+1 • Vu"+ 1) + V • (M [ ( V U R + 1 ) + (Vu" + 1 ) T ] ) 

+ c b ^VsCT" ~ aHn (v • n ) + B o z n ^ Ss> (3-6) 

PRe(Un+1
At

U**)=-VPn+1- (3-7) 

To ensure that u™+1 is divergence-free, that is, V • u n + 1 = 0, taking the divergence of 

Eq. 3.7 gives the pressure Poisson equation, 

pRe (^T") = -v2pn+1- (3-8) 
Here, the superscripts n and n + 1 refer to the successive time steps. The velocity 

field at the nth time step, un , is used to solve for the intermediate velocity, u** from 

Eq. 3.6. Then the pressure Poisson equation, Eq. 3.8, is solved to get pressure field 

at the (n + l)st time step. Finally, the divergence-free velocity field at the (n + l)s* 

time step, u n + 1 is obtained from Eq. 3.7. Eqs. 3.6 - 3.8 are solved iteratively at each 

time step to solve for un + 1 and Pn+l. 

3.2.4 Differencing Scheme 

To solve for the pressure and velocity fields at each time step, the differential equations 

in Eqs. 3.6 - 3.8 are discretized in the computational domain. In this study, the 

governing equations are discretized using a finite volume method, which has first-order 

accuracy in time and second-order accuracy in space on the fixed Eulerian grid. For 

the temporal discretization, a first-order backward Euler differencing scheme is used 

in the time-splitting method. In the finite volume method, the governing equations 

are integrated over control volumes around the computational nodes and time [47]. 
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For example, the r— component of Eq. 3.6 would be integrated on a control volume 

between the co-ordinates, r and r + Ar and z and z + Az and times t and t + At as 

/

t+At pr+Ar rz+Az Q 

/ / {pRe~}27rrdrdzdt 
rt+At rr+Ar ,z+Az Q^ Q^ Q , - g X 

= Jt l J, {-pReU^-pReU^ + Wr\rrWr{rUr)) 
+~ (/x^p1 ) + —- [Vso- - an (V • n) + Bozn] eT5s}2irrdrdzdt. (3.9) 

(7*2 y OZ J \yd 

where ^ p is discretized as " r
A^" r. The first-order partial derivatives with respect 

to spatial coordinate r ox z are estimated by the central differencing scheme with 

second-order accuracy. For example, 

9 * = ur(i + l,j)^ur(i-l,j) + Q ( ( A r ) 2 ) _ ( 3 1Q) 

Here, i and j denote the indices for r— and z— directions, Ar is the unit discretization 

length for r— direction, and O ((Ar) ) is the second-order truncation error. Simi

larly, the second-order partial derivatives with respect to r or z are estimated by the 

differencing scheme with second-order accuracy. For example, 

d2ur _ ur(i,j+ l)-2ur(i,j) + ur(i,j - 1) | ^ffA ^ 

where Az is the unit discretization length for z— direction. Sometimes an average 

operation is needed to estimate quantities at the specific point using the corresponding 

values in the surrounding cells. 

3.2.5 Interfacial Stress Term 

Accurate evaluation of the interfacial stress term, the last term of Eq. 3.9, is critical 

for the success of the proposed numerical method. To compute this term on a 

computational cell containing the interface as seen in Fig. 3-6, the volume integral 

39 



with respect to r and z is first converted into a surface integral with respect to 

arclength s as 

ft+dt rr+dr rz+dz 

2irrdrdzdt 
/

t+dt rr+ar rz+az i 

/ / *Co ^VsfJ - a n (V ' n) + B°Zn\ er^i 
rt+dt t-SB 1 

= / / {—[Vsa-an(V-n) + Bozn]er}2irrdsdt. (3.12) 

Here, SA and s^ represent the arclengths of the start and end points of the interface 

that cross a cell as shown in Fig. 3-6. Since the interface is represented by Lagrangian 

marker particles with parametric representation, (rs,zs), the normal, tangent, and 

curvature of the interface are known along the interface. In surfactant-free systems, 

the interfacial tension along the interface is 1 and the Marangoni stress term, Vscr 

is zero. In surfactant-laden systems, a parametric representation of the interfacial 

tension, a(s) can also be written such that VSCT = a't, where a' is the first derivative 

of a with respect to the arc length, s. Eq. 3.12 can then be further reduced to 

rt+dt /•t+dt I-SB I 

/ / {TT [Vser - crn (V • n) + Bozn] e r} 2-nrdsdt 
Jt JSA ^ a 

rsB 
\ {a'rsr's + arsr" - a (z's)

2 - Borszsz's}ds. (3.13) 
J SA 

It J SA 

2nAt fSB 

Ca ,SA 

3.2.6 Solution of Discretized Equat ions 

Discretization of the governing equations on the computational cells results in a sys

tem of linear equations. For example, when discretizing the pressure Poisson equation 

(Eq. 3.8) on a single cell centered around PhJ using a central difference scheme can 

be rearranged to give 

AfP^-i + A^Pt.h3 + A^PhJ + A?Pl+1J + A*Ptt3+1 = Q". (3 14) 

These equations for all i and j can be written as a system of linear equations of 

the form A P = Q to solve for the pressure solution vector, P . The sparse square 
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z + A z 

Figure 3-6: Schematic of the Lagrangian grid intersecting the Eulerian grid at points 
A and B. 

coefficient matrix A has non-zero elements only on the main diagonal, the two neigh

boring diagonals, and the two other diagonals removed by N positions from the main 

diagonal where N is the number of computational nodes in one direction. Q is the 

discretized right-hand side of Eq. 3.8. A successive over-relaxation (SOR) scheme is 

employed to solve for pressure field. The SOR method is an accelerated version of 

the Gauss-Seidel method developed for solving linear sparse large systems [47]. The 

iterative SOR structure of Eq. 3.14 can be written as 

DhJ _ M,3 pk+l _ Ai,3 pk+l _ Ai,] pk _ Ai,j pk 

Ptfl=u- ' ' J ~ 1 W - ^ n hJ+l e l+h3+(l-u)Pl
k
J, (3.15) 

Ap 

where k and k + 1 are successive iterative steps, to is the over-relaxation factor such 

that if u = 1, the SOR method is reduced to the Gauss-Seidel method. 
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3.3 Interface Tracking 

The velocity field calculated on the Eulerian grid is used to advect the marker particles 

on the Lagrangian interfacial grid. The location of the drop interface is given by (rs, 

z3), parameterized by the arclength s measured from the drop apex. The marker 

particles are advected as material particles based on the kinematic condition shown 

in dimensionless form as 

f=u„ (3.16) 

where x s is the location of the interface and u s is the interfacial velocity which can 

be expressed as 

x s = rser + zsez, (3.17) 

u s = itSirer + MS)Zez = unn + utt, (3.18) 

where un and ut are the normal and tangential components. The velocities of the 

marker particles on the moving grid (usr, usz) at the interface can be determined by 

employing a bilinear interpolation based on the velocity fields obtained on the fixed 

grid (ur, uz). The bilinear interpolation is a 2D extension of linear interpolation 

for interpolating functions of two variables. For example, to estimate the velocities 

of the mth marker on the moving grid at (rSjm, 2S)TO) which is to be determined, the 

bilinear interpolation formulation is as below: 

[J"i+l,j Ts,m) \zi,]+l zs,m) ? Vs,m ^i,]) Vzi,}+1 zs,m) <• 

l^I+lj ' " i j / V^J + 1 Zl,]) V l+ l j ^1;]) \^IJ+1 Z1;] ) 

. (rs,m ~ ri,]) {zs,m ~~ zi,j) t . \ri+l,] ~ rs,m) \zs,m ~~ zi,]> f / n i n \ 
+ (V -r -)(? n _ - W«+iJ+i + (r , _ r w - " 1 7 T / ' J + i > (d-iy) 

where gs represents the velocity of the marker particle, usr or usz and / represents 

the corresponding velocity of the surrounding Eulerian grid nodes, ur or uz. 

Next, the normal and tangential velocities of the interface, un and ut for any 
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Figure 3-7: Schematic of advection of the interface marker particles to the new loca
tions and the updated interface shape with the updated <f> field. 

marker particle can be calculated by 

un = us • n = -z'auStT + r'suStZ, (3.20) 

ut = us • t = -r'su,r + z'sus,. (3.21) 

Finally, the new interface location (r"+1, z^+1) at the (n + l)st time step can be 

determined based on the old interface location (r™, z™) and normal and tangential 

velocities at the nth time step. This is done using the kinematic conditions in Eq. 3.16 

and Eq. 3.18 and an explicit Euler scheme, 

r:+1=r^ + At(r'sut-Z'sun)
n, 

z:+1 = z: + At(r'sun + z'sut)
n. 

(3.22) 

(3.23) 

This is schematically shown in Fig. 3-7. 
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3.3.1 Remeshing the Interface 

As the simulation proceeds, marker particles come close together in regions where 

the interface is contracting and move very far apart where the interface is expanding. 

Furthermore, for processes such as drop formation, the interface is rapidly expanding 

and the initial number of marker particles is not sufficient. To keep the discretiza

tion of the interface relatively uniform throughout the evolution of the interface, the 

interface is remeshed at each time step and marker particles are added or deleted 

to maintain the same level of discretization As. To do this the interface locations 

(ra(s),zs(s)) are represented by cubic spline functions, 

rs (s) = ar (1) s3 + ar (2) s2 + ar (3) s + ar (4), (3.24) 

zs (s) = az (1) s3 + az (2) s2 + az (3) s + az (4), (3.25) 

where ar(i) and az{i) are the constant polynomial coefficients for rs and zs, respec

tively. Using cublic spline interpolation, the marker particles can be added or re

distributed to maintain a homogeneous distribution of marker particles along the 

interface. The cubic splines are also used to accurately determine the first and sec

ond derivatives of rs and zs along the interface to calculate the normals, tangents, 

and curvatures [101]. 

3.3.2 Surfactant Systems 

In the presence of surfactants, the interfacial surfactant concentration T(s) and the 

interfacial tension a(s) are also determined along the interface. The surfactant mass 

balance in Eq. 2.26 is used to update the surfactant concentration T(s) and interfacial 

tension a(s) is determined using the Langmuir equation of state in Eq. 2.23. Similar 

to Eq. 3.24 and Eq. 3.25 at a certain time t, T and a are also represented by cubic 
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splines as 

T (s) = ag (1) s3 + ag (2) s2 + ag (3) s + ag (4), (3.26) 

a (s) = as (1) s3 + as (2) s2 + as (3) s + as (4), (3.27) 

where ag(i) and as{i) are the constant polynomial coefficients for T and a, respec

tively. The surfactant mass balance equation in Eq. 2.26 can be discretized along the 

interface using a finite difference formulation. The temporal term is discretized using 

backward Euler differencing scheme while second-order accurate central differencing 

schemes are used for the spatial discretizations. The partial differential equation in 

Eq. 2.26 is then converted into algebraic equations that can be written in a general 

tri-diagonal matrix form after rearrangement as 

a ^ 1 + b ^ 1 + c r f t 1 = C (3.28) 

where a, b, and c denote the elements of the sub-diagonal, diagonal and super-

diagonal. This matrix is solved using the tri-diagonal matrix algorithm [101]. The 

initial dimensionless surfactant concentration at any Lagrangian marker along the 

interface is set to be 1, that is, the initial dimensional surfactant concentration is 

equal to the equilibrium surfactant concentration. At the first and last marker par

ticles, dF/ds = 0 are applied as the boundary conditions to solve the surfactant mass 

balance equation at each time step. 

3.3.3 Shear-thinning Fluids 

If either of the phases is shear-thinning, the Carreau model is used to describe the 

viscosity of the fluid. Both drop and bulk phases in the two-phase flows can be 

treated as Carreau shear-thinning fluids with the viscosities expressed by Eq. 2.34. 
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In the cylindrical co-ordinate system, the dimensionless shear rate, j t is expressed as 

The first derivatives are estimated using a second-order accurate differencing scheme. 

3.4 Solution Algorithm 

An iterative procedure is used to simulate two-phase flow problems using the hybrid 

VOF technique. 

1. A fixed Eulerian grid is generated for the complete flow domain. 

2. An initial drop shape is assumed and the interface is represented by Lagrangian 

marker particles. The initial volume of function, (ft is calculated based on the 

initial interface shape. 

3. The interfacial stress terms acting on the cells containing the interface are calcu

lated using Eq. 3.13. For the shear-thinning case, the viscosities in the domain 

are updated using the Carreau model. 

4. The velocity and pressure on the fixed grid are solved at the given time step 

based on the discretized form of the single-fluid VOF formulation using the 

time-splitting method, Eqs. 3.6 to 3.8. 

5. The marker particles are advected with the velocities interpolated from the ve

locity field on the fixed grid. The shape is updated and the new VOF function, 

<f> is calculated for the new shape. If surfactants are present, the surfactant 

concentration and the surface tension are updated using the surfactant mass 

balance and the equation of state. 
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6. The interface is remeshed to maintain the same level of discretization. 

7. Steps 3 to 6 are repeated until the end of simulation is reached, that is, the 

drop breaks for the drop formation process or the drop reaches a steady state 

for the drop rising process. 

The Eulerian and Lagrangian mesh sizes and time step are chosen to ensure conver

gence of drop shape, velocity and pressure fields for a chosen set of dimensionless 

parameters. For most of the simulation results presented in this study, a mesh size 

of at least 0.025 and a time step of at least 10~4 are used. Smaller mesh sizes and 

time steps are sometimes needed to obtain a converged solution. 
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Chapter 4 

Drop Formation in Co-flowing 

Fluids 

Microfluidic devices are miniaturized systems which consume very small quantities 

of samples/reagents, require much less time for operation, and are easier to auto

mate and control. Several applications of microfluidic technology such as inkjet 

printing, microcapsule fabrication, microarraying, and screening and diagnosis re

quire generation and dispensing of drops of controlled size [123]. Several strategies 

have been developed using microfluidics to generate monodisperse drops in an im

miscible ambient fluid [9]. The simplest way to generate uniform drops involves 

injecting a liquid at a constant flow rate through an orifice [37, 66, 67, 81] or a 

needle [88, 138, 139, 147] into a quiescent fluid. A co-flowing stream of immisci

ble fluid at a constant flow rate is often used to generate smaller monodisperse drops 

[22, 30, 55, 62, 63, 64, 65, 82, 88, 120, 129, 131, 132, 134, 147, 149]. Further reduction 

in drop size can be achieved by flow focusing where an orifice is placed downstream of 

the co-flowing geometry [2, 48, 49]. As the co-flowing geometry is easy to build and 

implement for drop formation with far-reaching impact in microfluidics technology, 

it is a good flow type to choose for this study. 
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4.1 Model Problem 

The co-flowing system of two immiscible viscous fluids is illustrated in Fig. 4-1. An 

axisymmetric drop of density pi and viscosity pi is formed at the tip of an inner tube 

of inner radius Ri with the inner fluid flowing at a constant flow rate Qi- The outer 

fluid of density pi and viscosity //2 flows at a constant flow rate Q2 in a concentric 

cylindrical tube of inner radius R2- The length and width of the inner tube are 

represented by Ln and Wn respectively. The subscripts 1 and 2 are used to denote 

parameters corresponding to the inner and outer fluids/tubes, respectively. Both 

phases are treated as incompressible Newtonian fluids. The flow field is described 

in a cylindrical coordinate system (r*, z*). The location of the drop interface is 

parameterized by the arc length s* measured from the drop apex. The gravitational 

vector g = — gez, points in the negative z—direction. It is assumed that both the 

inner and outer fluids flow in at the inlet (z* — 0) with fully developed laminar flow 

profiles. 

The numerical model presented in Chapters 2 and 3 are implemented to study 

the process of drop formation at the tip of a needle in the presence of a co-flowing 

stream. Specifically, the numerical model will be used to: 

• predict the effect of fluid properties, geometry, and flow conditions on drop size 

at breakup and the breakup time, 

• determine how surfactants adsorbed at the drop interface affect the drop for

mation process by investigating the effects of surfactant mass transfer, the equi

librium interfacial coverage, and the adsorption-desorption kinetics, and 

• investigate the effects of a shear-thinning drop fluid rheology on the drop for

mation process in co-flowing fluids. 
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Figure 4-1: Schematic of the drop formation process from the tip of an inner tube in 
an immiscible co-flowing outer fluid. 
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In Section 4.1, the modification to the mathematical formulation presented in Chapter 

2 to solve the drop formation problem is discussed. The numerical algorithm used 

to obtain the solution is presented in Section 4.3. The current state of knowledge for 

the co-flowing flow problem is discussed in Section 4.4 and the results of this work 

are presented in Section 4.5. 

4.2 Mathematical Formulation 

As seen in Fig. 4-1, the flow domain is axisymmetric about the z—axis and the 

solution is obtained for the fluid on one rz—plane with the bounds 0 < r* < R2 

and 0 < z* < Zmax. Zmax is chosen such that the axial length of the simulation 

domain does not affect the results. The two-phase flow is governed by the mass 

and momentum conservation equations given by Eqs. 2.1 - 2.3. If either phase is 

non-Newtonian, the Carreau model in Eq. 2.33 is used to describe the viscosity of the 

shear-thinning fluid. In the presence of surfactants, the Langmuir interfacial equation 

of state in Eq. 2.18 is applied to describe the relationship between the local interfacial 

tension a* and local surfactant interfacial concentration Y*. The convective-diffusion 

equation in Eq. 2.22 is used to solve for the local surfactant concentration r*. The 

governing equations are solved subject to initial conditions and boundary conditions 

prescribed at the fluid domain boundaries and the two-phase interface. Initially, 

the drop is described by a hemispherical interface at the tip of the inner tube. If 

surfactants are present, the initial surfactant concentration at the interface is set 

equal to the equilibrium interfacial concentration, that is, V* = Teq along the drop 

interface. 

The boundary conditions imposed at the two-phase interface are described in 

Eqs. 2.4 - 2.6. In addition, boundary conditions at the flow domain boundaries are 
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needed. It is assumed that the drop fluid entering the inner tube at z* = 0 is laminar 

and fully developed given by 

u*lr = 0 

1 (n 
\Ri 

v 
RiJ 

at z* = 0 , 0 < r * < Ri. (4.1) 

Similarly, a fully developed laminar flow is assumed for the outer bulk phase in the 

outer tube at the tube entrance, that is, 

u*2r = 0 

y-lAr*) 2Q2 l - ( £ ) 2 + ^ % f " ( Rij 

n(l&-l8) i i Hi l-(fii/fi;>) : 

V 2 ^ 1 + f l 2 (n(H 2 /« l ) 

At z* = 0, zero pressure gradient is prescribed, 

dP* 

• at z* = 0,i?i < r * < i?2- (4.2) 

dz* 
= 0. (4.3) 

At the solid tube walls, no-slip and impermeable boundary conditions are applied, 

< = 0, 

dP* dP* 
= 0. 

(4.4) 

(4.5) 
dr* dz* 

The contact line is assumed to be pinned at the inner edge of the inner tube. Along 

the central axis (r* = 0), a symmetry boundary condition is applied along the central 

axis giving 

dr* 
dP* 
dr* 

= 0, 

= 0. 

(4.6) 

(4.7) 

Finally, far downstream at z* = Zmaxj zero gradients of velocity and pressure are 

prescribed, that is, 

£ = "• <«> 
dP* 
dz* 

= 0. (4.9) 
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For non-dimensionalizing the governing equations, the inner tube radius Ri is cho

sen for lc and the average velocity of the inner flow Ui = Qi/nRf is chosen for uc. The 

clean interfacial tension, a0, in the surfactant-free case or the equilibrium interfacial 

tension, aeq, for the surfactant-laden case is chosen for crc. The dimensionless gov

erning equations are then given by Eqs. 2.7 and 2.8 defined between 0 < r < R2/R1 

and 0 < z < Zmax/R\. The dimensionless interfacial boundary conditions are given 

by Eq.s 2.10 - 2.12. The Reynolds, capillary, and Bond numbers are then defined as 

Re = p2UlRl/fi2, (4.10) 

Ca = frUi/ac, (4.11) 

Bo=(p2-Pl)gRl/ac. (4.12) 

If either phase is non-Newtonian, the dimensionless Carreau model in Eq. 2.34 is used 

to describe the viscosity of the shear-thinning fluid. In the presence of surfactants, 

Eqs. 2.26 and 2.23 are applied to determine the local interfacial tension along the 

interface, I \ The surface Peclet number and the Biot number are then defined as 

Pes = ^ , (4.13) 

Bi = ̂ . (4.14) 

The elasticity number and equilibrium surface coverage have the same definition as 

Eqs. 2.24 and 2.25. 

The dimensionless velocity boundary conditions at the entrance of the inner and 

outer tubes at z = 0 are given by 

U\r = 0 

ulz (r) = 2 ( 1 - rf 
>at 2 = 0,0 < r < 1, (4.15) 
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u2r = 0 

„ (V\ _ 9 f Q2 \ 1 1 r \R2) + ln(R2/R1) "TU2JJ 
U2z [T) - 4 y Q l ) {R2/Rlf-l R, l-(RWR?)2 H R 1 l-W/fl2)2 

At the solid tube walls, 

Far downstream at z = Zmax/Ri, 

At the symmetry axis at r = 0, 

u = 0, 

9 P 9 P 
9r dz 

du 
dz 
dP Q 

dz 

— = 0, 
9r 

9r 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

4.3 Solution Procedure 

The hybrid VOF technique discussed in Chapter 3 is now modified and applied to solve 

the problem of drop formation in co-flowing fluids. An initially hemispherical drop 

shape is assumed at the needle tip with an equilibrium concentration of surfactant, 

r = 1. The interface is represented by moving Lagrangian marker particles with a 

parameter representation (r (s), z (s)) where s is the arc length starting from the apex 

of the drop. The VOF function <fi, the volume fraction of the drop phase occupied 

in a cell presented in Fig. 3-5, is calculated based on the initial drop shape on the 

fixed Eulerian grid. Then the time-splitting method in Eqs. 3.6 to 3.8 is applied to 

solve the single-fluid VOF formulation (Eqs. 3.4 and 3.5) for the velocity and pressure 

fields on the fixed grid. The velocities of the marker particles on the moving grid 
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at the interface are determined by employing a bilinear interpolation presented in 

Eq. 3.19 based on the velocity fields obtained on the fixed grid. The marker particles 

are advected as material particles based on the kinematic condition in Eq. 3.16 to 

determine the new interface location using an explicit Euler scheme. As the interface 

is continuously expanding, marker particles are added at each time step to maintain 

the same level of discretization. Once the updated drop shape is obtained, a new 

(f> field is calculated for next time step. For the surfactant cases, the surfactant 

concentration at the interface and interfacial tension are updated using Eqs. 2.23 and 

2.26. The surfactant mass balance Eq. 2.26 is discretized using a finite difference 

formulation into the form of Eq. 3.28 and solved for the surfactant concentration at 

the interface. For the cases with shear-thinning drop fluid, the viscosities are updated 

via the Carreau model for the drop phase in Eq. 2.34. This algorithm is repeated 

until the neck radius that forms beneath the primary drop is smaller than 0.01. The 

mesh sizes of the fixed Eulerian grid and the moving Lagrangian grid and the time 

step are chosen to ensure convergence of drop shape, velocity and pressure fields for a 

chosen set of non-dimensional parameters. A mesh size of at least 0.025 and a time 

step of at least 10~4 is used. 

4.4 Literature Review 

Drop formation in co-flowing fluid streams has been studied experimentally [22, 30, 

55, 65, 82, 88, 129, 131, 132, 147, 149], as well as numerically using boundary inte

gral methods [147], finite element methods [120], volume-of-fluid and front-tracking 

methods [62, 64, 149], and FLUENT [63, 134]. Two modes of drop formation have 

been observed experimentally in co-flowing systems, namely, dripping and jetting 

[22, 30, 55, 65, 82, 131, 132, 149], and have been simulated numerically [62, 63, 64]. 
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In the dripping mode, drops breakup close to the capillary tube while in the jetting 

mode, drop detachment takes place at the end of long threads. A third mode of 

break-up was numerically predicted by Suryo and Basaran [120] in the Stokes flow 

limit where the drop fluid took on a conical shape and a thin fluid jet emanated 

from the conical tip shedding drops. They referred to this mode of breakup as 

tip-streaming. Recently, Marin et al. [82] have observed the tip-streaming in their 

experiments. Prediction of drop size at the breakup and the breakup pattern is 

critical in a variety of applications mentioned in Chapter 1. The drop size and 

breakup pattern depend on flow rates, fluid viscosities, and interfacial tension which 

is captured by the Bond number and the capillary number which give the relative 

significance of viscous forces and gravitational forces as compared to interfacial forces 

respectively. 

Most of studies above investigated the effect of the flow rates of the outer and 

inner fluids on the drop size [30, 62, 63, 64, 88, 120, 147, 149], the drop breakup time 

[30], and the dripping-jetting transition [30, 62, 63, 64, 132, 149]. Smaller primary 

drop (detaching drop) and longer detachment length are seen with co-flowing flows 

even in the absence of a confining wall [30, 88, 147]. As the flow rate of the outer 

fluid increases compared to the inner fluid flow rate, the viscous shear stress on 

the inner drop fluid increases. This reduces the primary drop size and the time 

required for the drop to break up [30, 63, 64, 120, 147, 149]. Oguz and Prosperetti 

[88] used a boundary integral method to study the dynamics of bubble growth and 

detachment from a submerged needle. They assumed the flow was inviscid and 

irrotational, and there was no confining wall around. In the last part of their study, 

they introduced an outer fluid flowing parallel to the needle and showed that bubble 

formation in a co-flowing outer liquid with a considerably smaller bubble size and less 

breakup time than in a quiescent liquid. Motivated by Oguz and Prosperetti's work, 

56 



Zhang and Stone [147] also applied the boundary integral method to study a drop 

dripping from the tip of a vertical circular capillary tube into an outer co-flowing 

immiscible fluid still in the absence of a confining wall but extended to viscous flows 

in the creeping flow limit (low Reynolds number). They studied the impact of the 

outer viscous flow on the drop size and showed that the volume of the primary drop 

reduced as the velocity of the outer fluid increased due to the higher drag force. 

Later, Zhang [149] conducted both experimental and numerical work to study the 

formation of a viscous liquid drop growing upwards at the tip of a vertical circular 

inner tube into an ambient viscous fluid in another cylindrical tube. Zhang developed 

a numerical model to predict the evolution of the drop shape and its breakup using the 

volume-of-fluid/continuum-surface-force (VOF/CSF) method. Two coaxially aligned 

cylindrical tubes were set up in the simulations. The Navier-Stokes equations were 

fully solved by applying a finite difference formulation on a fixed Eulerian grid. In 

order to verify the numerical results, Zhang also designed experiments to observe 

the dynamics of drop formation of a liquid-liquid system of 2-ethyl-l-hexanol (2EH) 

drops breaking into distilled water and compared the experimental measurements with 

the numerical results. Zhang's numerical work accounted for the effects of inertia, 

capillary, viscous, and gravitational forces as well as the confining wall effect on the 

drop formation and satellite drop generation in a quiescent or flowing ambient fluid. 

It showed that the introduction of an external flow led to a decrease in the drop size 

but an increase in the limiting length of drop (the length of the drop from its apex to 

the tube exit at breakup) at a low Reynolds number in the presence of confining wall 

[149]. Cramer et al. [30] systematically conducted experiments to study the dynamics 

of drops expanding at a capillary tip and dripping into a co-flowing ambient fluid. 

A cylindrical capillary was placed inside a much larger outer rectangular channel, 

so the wall effect of outer channel can be neglected. The outer fluid was sunflower 
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oil, and the inner fluid was K-Carrageenan solution which was a shear-thinning fluid. 

They assumed the shear-thinning behavior had no impact on the drop formation. 

A discontinuity in drop size was found when increasing the velocity of the outer 

flow showing two distinct modes: dripping and jetting. Then they only focused on 

dripping, and showed the effects of the flow rates of the continuous and the disperse 

phases, drop viscosity, and interfacial tension on drop formation and satellite drop 

generation. As the velocity of the continuous phase increased, the primary drop size 

and the drop formation time both decreased, but the satellite drop size increased. As 

the velocity of the dispersed phase increased, the drop size slightly increased but the 

drop formation time slightly decreased. More numerical work on the drop formation 

in co-flowing fluids has been done since then. Suryo and Basaran [120] used the 

Galerkin/fmite element method to numerically demonstrate the dynamics of drop 

formation downwards into a co-flowing ambient fluid under creeping flow condition. 

Two coaxially aligned cylindrical tubes were set up in the simulations with the radius 

ratio of outer to inner tubes of 2. They focused on the effect of the flow rate ratio 

of outer fluid to inner fluid (Q2/Q1) on the drop formation when viscosity ratio was 

set to 1 and capillary number was fixed at 0.01. They identified three flow regimes, 

namely, slug flow, dripping, and tip streaming while increasing Q2JQ\- The slug flow 

occurred when Q2/Q1 was small where the primary drop in this region was elongated 

axially and tended to occupy the entire cross section of the outer tube, so its aspect 

ratio Lp/Dp (defined as the ratio of its axial length to its maximum diameter) ^> 1. 

As Q2/Q1 increased, the dynamics showed a transition to dripping regime, where the 

aspect ratio was close to 1. As Q2/Q1 increased, the importance of viscous drag force 

by the outer fluid to the surface tension increased, resulting in the increasing limiting 

length Ld (measured from the tube exit to the drop tip at breakup) while the primary 

drop volume Vp decreased. As Q2/Q1 further increased, the viscous stress became so 
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large that tip streaming occurred. Hua et al. [64] numerically studied drop formation 

in co-flowing immiscible liquids in a microchannel with negligible gravitational effects 

using front tracking/finite volume method. Two coaxially aligned cylindrical tubes 

with the radius ratio of outer to inner tubes of 3 were set up in the simulations. They 

investigated the effects of the outer continuous phase flow speed, viscosity, and the 

interfacial tension on the droplet size with Re\ defined as piU\R\/ p\ and P2/P1 fixed 

to 0.1 and 0.8, respectively. For the parameters they studied, they observed the 

drop size decreased with the increase of the continuous phase flow rate and viscosity, 

and with the decrease of the interfacial tension. For the effect of the flow rate of the 

continuous liquid phase, they observed the sharp transition of dripping to jetting with 

a sudden drop of the drop size, and drew two main correlations of the drop size with 

the continuous phase flow parameters for dripping and jetting from a scaling analysis. 

Their results indicated that drop formation in a co-flowing system depended on the 

balance between the viscous shear force from the outer fluid and interfacial tension 

on the droplet. Hong and Wang [63] numerically studied the flow rate effect on 

drop formation in a co-flowing microfluidic device by FLUENT simulation software. 

They set up two coaxially aligned cylindrical tubes with the radius ratio of outer to 

inner tubes of 2 in the simulations, and assumed the inertia and gravitation effects 

could be neglected. For the flow rate ratio of outer to inner fluids (Q2/Q1) smaller 

than 10, drop size seemed approximately independent of the flow rate ratio and drop 

size decreased almost linearly with the increase of capillary number of the outer 

fluid (Ca,2 = liqUi/a). For the flow rate ratio larger than 10, four drop patterns 

were observed: laminar flow, polydisperse, and monodisperse with larger and smaller 

drops compared to the tip size. Four corresponding demarcated regions indicated 

that polydisperse pattern could be avoided by selecting Ca2 < 0.177, and laminar 

flow pattern could be avoided by selecting Ca2 < 0.133. Recently, Homma et al. [62] 
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employed a front-tracking/finite difference method to numerical simulate the jet and 

drop formation in co-flowing streams. Two coaxially aligned cylindrical tubes with 

the radius ratio of outer to inner tubes of 3 were set up in the simulations, and also the 

inertia and gravitational effects were neglected. For density ratio and viscosity ratio 

of outer to inner fluids set to 0.8 and 1.5, Reynolds and Weber numbers of inner fluid 

as 0.2 and 0.002, respectively, they showed drop diameter decreased as the velocity 

of ambient fluid increased. A jump in drop diameter was observed indicating a 

dripping to jetting transition. This result was consistent with the numerical results 

of Huaet al. [64]. 

Several studies have investigated the influence of fluid viscosities and interfacial 

tension captured by the Bond number and the capillary number on the drop formation 

process in a quiescent or a co-flowing outer fluid. Even without the outer co-flowing 

fluid, the viscosity of the drop phase plays a very important role in stabilizing an 

expanding drop by damping interfacial oscillations resulting in increasing length of the 

liquid thread with increased drop viscosity, but has no obvious effect on the size of the 

primary drop [147, 149, 150]. Zhang and Basaran [150] conducted a comprehensive 

experimental study on the dynamics of a viscous drop dripping into ambient quiescent 

air. The effects of the thickness of the tube wall, the flow rate of the drop phase, and 

the physical properties of the drop phase on the primary drop volume and limiting 

length and the creation of the satellite drops were investigated in detail. Water and 

glycerol solutions were selected for different viscosities of the drop phase. It was found 

that larger variations in viscosity could result in significant differences in evolution of 

the drop shapes. The capillary number describes the relative importance of viscous 

forces to interfacial forces. Larger capillary number indicating larger drop viscosity 

and lower interfacial tension gave rise to longer liquid thread at breakup [150]. Most 

of their work focused on the study of dynamics of drops dripping into a quiescent 
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ambient fluid at low Reynolds number in the absence of a confining wall. They 

investigated the effects of the viscosity ratio of inner to outer fluids, the Bond number 

and the capillary number on the volume of the primary drop and the fluid column 

length at breakup by changing one dimensionless number while keeping the other two 

dimensionless parameters. It was shown that the viscosity ratio had a much larger 

impact on liquid thread length than on the drop size. Drops with larger viscosity ratio 

showed longer liquid thread lengths at breakup. As the Bond number increased, the 

volume of the primary drop reduced and the remaining liquid thread changed from 

convex to narrow tapered due to the increasing pulling force by gravitation relative 

to interfacial tension. With the increasing capillary number, drops took longer time 

to break up with a larger volume of primary drop and longer liquid thread length. 

Similarly, Zhang's numerical work [149] which applied VOF-CSF method mentioned 

in the last paragraph also concentrated on the drop formation upwards into another 

quiescent immiscible fluid filled in the outer tube. Zhang investigated the interplay 

between the effect of inertial, capillary, viscous, and gravitational forces and confining 

wall effect in the absence of outer flow. The length of the thread and the primary 

drop size decreased with decreased Reynolds number and capillary number, and with 

increased Bond number in a quiescent ambient fluid. The drop size showed a slight 

increase and then decreased when increasing the viscosity ratio of inner to outer fluids. 

The confinement effect of outer tube wall on drop formation in the absence of outer 

flow resulted in larger detaching drop volumes and shorter thread length [149]. In 

the presence of co-flowing fluid, drop fluid resisted the squeezing and shearing of the 

outer fluid resulting in larger drops with longer remnant drop lengths as the viscosity 

of the drop phase increased [30, 64]. The experimental work done by Cramer et 

al. [30] also confirmed that the drop viscosity had no obvious impact on the drop 

size, but did affect the length of liquid thread for co-flowing fluid systems. Higher 

61 



viscosity of the disperse phase gave a longer thread between the capillary tip and the 

drop because the viscous pressure in the thread opposed to the capillary pressure. 

The extended thread enhanced the satellite drop generation. The interfacial tension 

also played an important role. Smaller drops were generated for the system having 

lower interfacial tension. In the numerical work done by Hua et al. [64], they also 

observed that the drop size decreased with increasing viscosity of continuous phase 

and decreasing interfacial tension. 

Surfactants are present or added intentionally to a variety of applications involving 

emulsions and drop formation to facilitate breakup, influence the sizes of detached and 

satellite drops, and prevent their coalescence after formation. Soluble surfactants are 

transported to the interface by bulk diffusion and interface adsorption/desorption and 

distribute along the interface by interfacial convection and diffusion. At equilibrium 

in the absence of flow, surfactant molecules adsorb on the fluid interface establishing 

an equilibrium surfactant concentration resulting in an equilibrium interfacial tension 

that is lower than the clean interfacial tension. Non-uniform surfactant distributions 

result in the presence of imposed flow when surfactant mass transfer from the interface 

is slow compared to the interfacial convective flux. Local variation of interfacial 

tension along the interface alters the normal and tangential stress balances at the 

interface. Marangoni stresses due to the non-uniform surfactant distributions result 

in a flow that opposes the flow driving the local variation in interfacial concentration. 

Both experimental [150] and numerical [66, 67, 140] work has been done to study 

the drop formation in a quiescent ambient fluid in the presence of surfactants. Zhang 

and Basaran [150] conducted experiments on the dynamics of a viscous drop drip

ping into ambient quiescent air in the presence of surfactants. To investigate the 

surfactant effects on the drop formation dynamics, they used a water-soluble surfac

tant Triton X-100 while keeping drop viscosity and density unchanged. The surface 
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tension that affected the drop formation became dynamic and locally related to ac

cumulation and distribution of surfactants on an expanding and stretching surface. 

Marangoni stresses generated by the surface tension gradients could alter the drop 

deformation and breakup. With slow expansion of the drop surface at low flow rates 

of the drop phase, the surfactants had enough time to transport to the surface and 

lower the surface tension until equilibrium, so the primary drop volume and the lim

iting length decreased as surfactant concentration increased. With fast expansion of 

the surface at high flow rates, the surfactants were highly diluted so the reduction of 

the primary drop volume and the limiting length became much less with the same 

increase of surfactant concentration. The volume of the satellite drops generated by 

the breakup of the liquid thread increased with increasing surfactant concentration 

because the presence of surfactants stabilized the thread and increased the volume of 

the liquid thread. In the presence of surfactants, the drop necking process can be very 

complex [66, 67, 140]. Jin et al. [66] numerically studied the effects of adsorption-

desorption controlled soluble surfactants on a buoyant viscous drop injected into a 

quiescent viscous ambient fluid through an orifice by a front-tracking scheme. The in

compressible Navier-Stokes equations for both inner and outer fluids were fully solved 

using the continuum surface force (CSF) method. They used finite-difference method 

to discretize the computational domain into a fixed, uniform staggered grid. They 

studied the effects of the equilibrium surface coverage (0 < x < 0.9) and adsorption-

desorption kinetics reflected by the Biot number (0 < Bi < 10) on necking dynamics. 

Surfactants accumulated just above the neck where the interface contraction was the 

fastest. For low surface coverage (x < 0.3), a weak Marangoni flow was generated, 

and the primary neck was still the detachment point. As x increased (0.3 < x < 0.5), 

the primary neck first formed but slowed down by an increasing Marangoni flow, and 

the secondary neck formed later at a faster rate, thus a symmetric neck shape was 
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achieved. As they further increased x to 0.6, the thinning rate of the secondary neck 

became dominant since the primary neck was suppressed by the accumulation of sur

factants above the neck. An inverted neck shape was formed and the drop detached 

at the secondary neck. Finally when they increased x to a sufficiently high value of 

0.9, a strong Marangoni flow inhibited the necking and the drop failed to neck. They 

also investigated the importance of Bi on necking dynamics at a high surface coverage 

of x = 0.9. If the sorption kinetics were very slow (Bi = 0), the surfactants were 

highly diluted as the drop expanded, and the drop broke at the primary neck. As 

Bi increased, the sorption kinetics became faster and more surfactants accumulated 

onto the expanding interface, the neck shapes changed from breaking at the primary 

neck (Bi = 10~4), to approximately symmetric necks (Bi = 10~3), and to inverted 

necks (0.01 < Bi < 0.05) until the necks failed to thin (0.1 < Bi < 0.2). As Bi 

further increased, the sorption kinetics were faster than the dilatation rate, thus the 

necks experienced the inverted shape, the symmetric shape, and then the thinning of 

the primary neck again. Later, Jin and Stebe [67] presented a numerical study of 

the effects of diffusion controlled soluble surfactants (where diffusion became the lim

iting step instead of adsorption-desorption) on a buoyant viscous drop injected into 

a quiescent viscous ambient fluid through an orifice. They studied the necking dy

namics and drop formation for equilibrium surface coverage ranging from 0.5 to 0.95 

(0.5 < x < 0.95) as a function of \I>, the ratio of surfactant diffusion rate between the 

interface and the bulk to the surface contraction/convection rate. The drop evolved 

starting from a planar interface, followed by expansion and the neck formation. The 

surfactant interfacial concentration became above its equilibrium value when the in

terface contracted fast above the neck. Then the surfactant started to desorb into 

the region near the interface having few surfactants. The rapid diffusion fluxes from 

the neck to the bulk thus created, removed the surfactant effectively from the neck 
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region and avoided the strongly non-equilibrium effects (local strong reduction in the 

surface tension). Thus, even up to high surface coverages of a; = 0.9, neck dynamics 

were still altered weakly. Only for very high surface coverages close to the maxi

mum packing (x = 0.92) and for slow diffusion fluxes, strong non-equilibrium effects 

could develop to alter the neck dynamics and even lead to the failure of the necking. 

Various neck shapes and regimes where drops failed to detach were observed while 

tuning the ratio of surfactant diffusion rate (between the interface and the bulk) to 

the rate of interface contraction. Xu et al. [140] raised a question if surfactant could 

be present at pinch-off of a liquid filament, and analyzed the dynamics of a filament 

loaded with a monolayer of insoluble surfactant in a quiescent ambient gas using the

ory and simulation by finite element method. The amount of surfactant remaining 

at the location where a filament broke up related to the Peclet number, the ratio of 

convection to diffusion between the interface and the bulk, since the Peclet number 

was proportional to the filament radius. Thus, it was customary to think that almost 

no surfactant would be present when a macroscale filament broke. In their work, Xu 

et al. showed that the surfactant concentration at breakup is not zero but uniform 

on the filament when the Peclet number is very small or the diffusion rate is much 

faster then the convection rate. 

Limited work has been conducted to study the surfactant effect on drop formation 

in a co-flowing system [129, 132]. Utada et al. [132] experimentally investigated the 

dripping-to-jetting transitions in co-flowing liquid streams. Coaxially aligned capil

lary tubes were used: an inner cylindrical tube with a tapered tip and an outer square 

tube (a second cylindrical tube was placed inside the square tube and surrounded the 

inner tip when high velocity was needed). The inertial, gravitational and outer tube 

wall effects could be neglected. They observed two classes of dripping-to-jetting 

transitions indicating two different mechanisms controlling drop size. The first tran-
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sition to thinning (or narrowing) jetting was driven by the flow rate of the outer fluid. 

The viscous shear stresses on the drop was balanced by surface tension where the jets 

became thinner. The capillary number of the outer fluid Caout, dictated this balance. 

The second transition to widening jetting was driven by the flow rate of the inner 

fluid. The inertial forces of inner fluid were balanced by the surface tension where 

the jets became wider. The Weber number of the inner fluid, Wem, dictated this 

balance. Thus, the dripping-to-jetting transition could be characterized in a state 

diagram as a function of Caout and Wem. They added surfactant sodium dodecyl 

sulfate (SDS) to the continuous phase to lower the surface tension, but did not look at 

the surfactant effects on drop breakup dynamics in detail. Umbanhowar et al. [129] 

developed an experimental technique to produce highly monodisperse emulsions via 

drop formation at the end of a tapered capillary tube in a co-flowing stream. They 

focused on dripping with negligible inertial and gravitational effects. The viscous 

drag was balanced by surface tension, so drops would detach when the drag exceeded 

the surface tension. They added surfactant sodium dodecyl sulfate (SDS) to the con

tinuous phase to lower the surface tension to prevent droplet coalescence and form 

stable emulsions. For the parameters they studied, they showed the drop diameter 

was a decreasing function of the outer flow velocity in the presence of SDS. Control 

of the velocity of outer flow allowed precise selection of drop size. They were only 

interested in how the surfactants stabilized the emulsion, but did not further their 

research about how surfactants affected drop breakup dynamics. 

In recent years several studies have been conducted to determine the effect of 

non-Newtonian rheology on the drop formation process by adding polymers into so

lutions. Polymeric solutions can exhibit various non-Newtonian behavior such as 

shear-thinning, flow history dependence as well as elastic stresses [13]. Most of the 

previous studies with non-Newtonian fluids deal with drop formation in a quiescent 
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ambient fluid [27, 38, 39, 115, 143], and more recently have been extended to the 

co-flowing system [61]. The presence of polymers in Newtonian solvents can exhibit 

viscoelastic property. Even adding a small amounts of polymers can have a signifi

cant impact on the behavior of two-phase systems especially in extension-dominated 

flows shown in some recent experimental work [27, 115]. Shore and Harrison [115] 

used a high-speed camera to observe the formation of low viscosity elastic drops from 

a nozzle into quiescent air to study the effect of elasticity on the on-demand drop 

formation process. They observed that the drop fluids containing polymers (PEO) 

had a longer thread, a longer time to separation, and a lower velocity but suppressed 

satellite drops (with sufficient polymers) compared to the Newtonian drop fluids with 

similar shear viscosity. Clasen et al [27] experimentally studied the breakup of cap

illary jets of dilute polymer solutions into quiescent air and the dripping to jetting 

transition. They found that the interplay of gravity, inertial forces, and surface 

tension mainly determined the dynamics of the terminal drop growth and trajectory, 

while the thinning process of viscoelastic ligaments controlled drop breakup by a 

constant axial force driven by surface tension and resisted by the viscoelasticity of 

polymer molecules. 

Stiffer polymer molecules (ideally like rods) in solution have diminishing mem

ory effects [42] like a simple case of 'generalized Newtonian liquid' described by the 

Carreau model in Eq. 2.33. If n < 1, the liquid behaves shear-thinning such as 

the Xanthan gum solution. Since the viscosity decreases as pinching progresses, the 

breakup of the shear-thinning liquid is expected to speed up. Davidson and Cooper-

White conducted numerical studies to predict the dynamics of shear-thinning drops 

dripping into a quiescent air from a circular orifice using a VOF method [38, 39]. 

The shear-thinning drop fluid was described by the Carreau model. They validated 

their numerical method by comparing their results of the breakup of a Newtonian 
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drop (milli-Q water at 21°C) between experiments and numerical calculations. For 

the parameters they studied, they showed a more rapid breakup and less secondary 

drops and the drop limiting length was reduced with increasing shear-thinning. The 

shear-thinning effect on the reduction of drop length was shown more obvious with 

a high drop viscosity than a low drop viscosity. Yildirim and Basaran [143] compu

tationally studied the dynamics of non-Newtonian drops dripping into quiescent air. 

They employed the Carreau-type models which accounted for both shear-thinning 

and shear-thickening for the drop fluids and solved the slender-jet equations using 

Galerkin/finite element method. They suggested that the shear-thickening effect 

built in the model could mimic the behavior expected in viscoelastic fluids in an ex-

tensional flow though the viscoelastic effects were not account for in the model. Their 

results indicated that the effect of shear-thickening contributed to the observed bead-

on-string patterns along the threads close to breakup which were typically attributed 

to viscoelastic effects, while the effect of shear-thinning contributed to reduced thread 

length. 

Homma et al. [61] numerically studied the breakup of a laminar jet into drops in a 

co-flowing shear-thinning liquid-liquid system using a front-tracking/finite difference 

method. They used the Carreau-Yasuda model [59, 142] to describe the shear-

thinning viscosities. This model just replaced both 2 in the indices in Eq. 2.33 

by a general parameter x which was usually 2 but sometimes was adjusted to fit 

specific experimental data [52]. They validated their method by computing a steady 

flow in a circular tube for a single-phase shear-thinning fluid with same parameters 

and compared the numerical results with experimental data [52]. They set the 

velocities of inner and outer fluids to be the same for the co-flowing condition. Their 

results showed that the breakup length of the jet became larger when shear-thinning 

occurred inside the jet, while the jet became shorter when shear-thinning occurred in 
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the continuous phase. 

The only study of the drop formation process in a non-Newtonian two-phase sys

tem in the presence of surfactants was the numerical study conducted by Xue et al. 

[141]. They used a finite element method on the capillary breakup of shear-thinning 

liquid jets with soluble surfactants. They applied the Carreau model to simulate the 

shear-thinning drop liquid which was surrounded by an inert gas, and a nonlinear 

equation of state to describe the surfactants. Their results indicated that a strong 

synergistic interaction between shear-thinning rheology and surfactant parameters 

played a critical role in the formation of satellite drops. They showed a satellite drop 

could be present during breakup when the drop was shear-thinning and coated with 

insoluble surfactant for a set of Carreau parameters /? = 0.002 and a = 10 whereas no 

satellite drop formed when either only the drop was shear-thinning or only insoluble 

surfactant was present. 

4.5 Results and Discussion 

In this section, the numerical results for the surfactant-free and surfactant-laden 

Newtonian [33, 34] as well as the shear-thinning fluids are presented. In all the 

simulations, the needle geometry is set to Ln/Ri = 2 and Wn/R\ = 0.1. Studies 

were conducted for varying needle lengths to establish that for Ln/Ri > 2 the drop 

evolution was independent of the needle length. First, a typical surfactant-free case 

of drop formation in co-flowing Newtonian fluids is presented in Fig. 4-2. The stages 

of drop formation in a surfactant-free system for R2/R1 = 3, x = A = 0.1, Re = 10, 

Ca = 0.1, Bo = 1 and Q2/Q1 = 10 are shown in Fig. 4-2(a). The normal and 

tangential velocities along the drop for the drop shape close to breakup is shown in 

Fig. 4-2 (b). The drop starts with an initially hemispherical shape and then distends 
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due to gravity and outer fluid flow and eventually necks and breaks. The detaching 

drop is defined as the primary drop and the cone (or thread) behind the breakup 

point is defined as the remnant drop. As the drop enters a necking regime, two neck 

regions appear as shown in the expanded view in Fig. 4-2(a). The neck closest 

to the detaching drop is designated as the primary neck which thins the fastest and 

is typically the point of detachment in experiments. The normal and tangential 

interfacial velocities are also highest in the vicinity of the primary neck region as seen 

in Fig. 4-2(b). The secondary neck appears as an inflection above the remnant drop. 

The effect of dimensionless parameters on the drop formation process is quantified by 

comparing the time for breakup, t^, and the volume of the primary drop at breakup, 

Vp. Results are also presented in terms of the length of the remnant drop at breakup, 

Lr, and the limiting length, La, which is defined as the length of the drop from its 

apex to the tube exit at the time of breakup [120] as show in the schematic in Fig. 4-3. 

4.5.1 Validation of Numerical Method 

In order to validate the numerical method, the numerical results from this study are 

compared with the experimental results of Zhang [149]. In Zhang's experiments, 2-

ethyl-1-hexanol (2EH) drops were formed at the tip of a capillary tube submerged in 

a container of distilled water. Wall effects were neglected as the container was large 

compared to the capillary tube radius. The viscosity and density of the drop phase 

and the bulk phase were 8.9 cP and 0.83 g/cm3 and 1 cP and 1.0 g/cm3, respectively 

with an interfacial tension of 13.2 dynes/cm. Since Zhang reported dimensional time 

and it was not clear what the initial interface shape was, the following procedure is 

used to compare the numerical results to their experimental shapes. The experi

mental time before breakup is defined as r = (t* — t*b) where t* and t*b = 1.2712s are 

the dimensional time and breakup time reported by Zhang [149]. The experimental 
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Figure 4-2: (a) Drop formation dynamics for a surfactant-free system with an ex
panded view of the primary and secondary necks and (b) interface velocity as a 
function of arc length at t = 3 for R2/R1 = 3, \ = A = 0.1, Re = 10, Ca = 0.1, 
Bo = 1, and Q2/Q1 = 5. Shapes at every dimensionless time of 1 along with the 
final shape are shown. 
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Figure 4-3: The schematic of characteristic parameters for the description of the drop 
shapes at breakup time, £&• 
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T = -0.672 s T=-0 .362 s z=- 0.062 s r = - 0.022 s r = -0.002 s r = 0 s 

Figure 4-4: The comparison of drop evolution observed in Zhang's [149] experimental 
work (left half) and predicted in our numerical simulation (right half). 

shapes observed by Zhang at different times between r = —0.672s and r = Os are 

shown on the left half of the comparisons in Fig. 4-4. Based on Zhang's experimental 

data, the non-dimensional parameters for the numerical simulations are chosen as 

X = 0.832, A = 8.9, Re = 16.53, Ca = 7.85 x 10~4, and Bo = 0.317. Since there is 

no outer flow, Q2/Q1 is set to 0 in the simulations. R2/R1 is set to 6 to eliminate the 

effect of confining wall and the needle dimensions as WnjR\ = 0 . 1 and LnjR\ = 2. 

Numerical simulations are conducted using the set parameters till the drop breaks 

up at tf, = 5.62. Then the numerical drop shapes are determined corresponding 

to the dimensional times r shown in Fig. 4-4 by defining r = (t — tb) x tc where 

tc = R\/U{ = 0.154s is the characteristic time scale based on Zhang's experimental 

data. The numerical drop shapes obtained by this procedure are shown on the right 

half of Fig. 4-4. As is seen in Fig. 4-4, the numerical simulations agree well with 

the experimental results of Zhang [149] for drop formation in a quiescent fluid in the 

absence of wall effects. 
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4.5.2 Surfactant-free Results for Newtonian Fluids 

In this section, the results for drop formation in co-flowing Newtonian fluids are 

presented. The effects of the confining wall of outer tube, the flow rate ratio Q2/Q1, 

the viscosity ratio A, the Bond number Bo, and the capillary number Ca on the drop 

formation process are discussed. For these simulations, the density ratio is set to 

X = 0.1 and the Reynolds number is set to Re = 10. Even in the absence of an outer 

flow, the presence of a solid wall near the evolving drop affects the drop breakup 

dynamics. Fig. 4-5(a) shows the effect of changing the diameter of the outer wall 

on the stages of drop evolution for % = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, and 

Q2/Q1 = 0. As the diameter of outer tube (or R2/R\) is reduced, the additional wall 

shear results in more prolate shapes for the evolving drop which take longer to break, 

and the primary drop volume increases consistent with the numerical simulations 

by Zhang [149]. In the absence of the outer flow, the remnant drop appears to 

be unaffected by the presence of the wall. When the outer co-flowing fluid with 

Q2/Q1 = 5 is applied, the confinement effect of outer wall enhances the impact of the 

outer flow on the drop formation process. With decreasing diameter of outer tube, 

increasing viscous shear stresses are applied on the inner fluid and make it break up 

sooner with smaller drop volumes as shown in Fig. 4-5(b). 

To investigate the effect of the outer co-flowing flow on the drop formation process, 

the flow rate ratio Q2/Q1 is changed from 0 to 20 for R2/R1 = 3, x = A = 0.1, 

Re = 10, Ca = 0.1, and Bo = 1. The effect of increasing the outer fluid flow on 

the primary drop volume at breakup and the time required for breakup are shown in 

Fig. 4-6(a). For Q2/Q1 = 0, 5, 15, and 20, the interface shape at breakup is also shown 

as insets in Fig. 4-6(a). As the flow rate of outer flow increases (i.e. Q2/Q1 increases), 

the outer fluid applies increasing viscous shear stress on the inner fluid and results 
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Figure 4-5: The effect of outer tube diameter on drop evolution dynamics in the 
surfactant-free system for % = A = 0.1, Re = 10, Ca = 0.1, and Bo = 1 (a) without 
outer flow, Q2/Q1 = 0, and (b) with outer flow, Q2/Q1 = 5. Shapes at every 
dimensionless time of 2 along with the final shape are shown. 
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in more prolate drop shapes and longer remnant drop shapes underneath the neck 

region. As a result, the time for breakup reduces and the volume of the primary drop 

at breakup is smaller. This result is consistent with the existing experimental and 

numerical co-flowing studies in the absence of surfactants [30, 63, 120, 129, 147, 149]. 

For flow rate ratios above 17, the breakup time decreases but the primary drop volume 

remains almost unchanged. The limiting drop length and the length of the remnant 

drop first increases as developing a jetting thread and then decreases at the higher 

flow rate ratios due to the strong and fast squeezing of the outer flow. This is clearly 

seen in Fig. 4-6 (b) where the limiting drop length, L^ and the length of the remnant 

drop, Lr are plotted as a function of the flow rate ratio. 

The viscosity ratio A gives the ratio of viscosities of the inner drop fluid to the 

outer bulk fluid. Numerical simulations were conducted for A ranging from 0.03 

to 1 for R2/R1 = 3, x = 0.1, Re = 10,Ca = O.l.Bo = 1, and Q2/Q1 = 5. The 

breakup time and volume of the drop as a function of A and the interface shape of 

drops at breakup for A = 0.03, 0.1, 0.5, and 1 are presented in Fig. 4-7(a). The 

viscosity ratio plays an important role in the dynamic process of drop formation 

by resisting the shearing and squeezing of the outer fluid. As the viscosity of the 

drop phase increases (i.e. A increases), the drop necking process slows down to cause 

the remnant drop to form long threads as seen in Fig. 4-7(b). The drop dynamics 

again shows a transition from dripping to jetting, and the drop becomes oblate before 

breaking up with larger volumes. These results are consistent with drop formation 

in a quiescent or co-flowing ambient viscous liquid [120, 149]. 

The Bond number, Bo, represents the importance of gravitational forces relative to 

capillary forces. The effect of Bo on the drop formation for R2/R1 = 3, x = A = 0.1, 

Re = 10, Ca = 0.1, and Q2/Q1 = 5 is investigated. Larger Bo indicates larger 

gravitational forces compared to interfacial tension exerted on the drop to dislodge 
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Figure 4-6: The effect of flow rate ratio on the (a) primary drop volume, breakup 
time, (b) remnant drop length, and limiting drop length at breakup for R2/R1 = 3, 
x = \ = 0.1, Re = 10, Ca = 0.1, and Bo = 1. 
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Figure 4-7: The effect of viscosity ratio on the (a) primary drop volume, breakup 
time, (b) remnant drop length, and limiting drop length at breakup for R2/R1 = 3, 
x = 0.1, Re = 10, Ca = 0.1, Bo = 1, and Q2/Q1 = 5. 
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the drop from the inner tube. Hence, drops breakup faster with smaller primary 

drop volumes and shorter and sharper remnant drop shapes. This is clearly seen in 

Fig. 4-8(a) where primary drop volume at breakup and breakup time are plotted as 

a function of Bo. Below a Bond number of 3, the primary drop volume at breakup, 

Vp and breakup time, 4 decline rapidly with increasing Bond number. However, for 

Bo > 3, Vp and tb remain nearly unchanged for increasing Bond number values. The 

interface shapes at drop breakup for drops with Bo = 0.05, 1, 2, and 3 are shown as 

insets in Fig. 4-8(a). For small Bond numbers, the remnant drop has a more convex 

shape as more drop fluid is pumped into it while the drop takes longer to break. 

As Bo increases, the remnant drop becomes shorter but more tapered due to larger 

driving force to pull the drop liquid out of the tube and reduce the liquid volume 

remaining on the tube [147, 149]. The numerical simulations show that drops with 

a negative curvature in the rear are observed for Bo > 3. Such mushroom-shaped 

drops were also observed by Zhang [149] for Bo > 10 in the absence of outer co-

flowing fluid. The length of the remnant drop and the limiting drop length are also 

plotted as a function of Bo in Fig. 4-8(b). As expected, both curves show that the 

remnant drop length and the limiting drop length reduces as Bo increases. 

The effect of capillary number, Ca, on the drop breakup time, primary drop 

volume, remnant drop length, and limiting drop length at breakup are shown in 

Fig. 4-9 for R2/Ri = 3, x = A = 0.1, Re = 10, Bo = 1, and Q2/Q1 = 5. Interface 

drop shapes at breakup for Ca = 0.01, 0.1, 0.3, and 0.5 are also shown in Fig. 4-9(a). 

As Ca increases, viscous forces become more dominant as compared to interfacial 

forces. As seen in Fig. 4-9 drop breakup slows down as Ca increases resulting in 

long remnant drop shapes. For larger Ca values, capillary forces are small enough 

to make more oblate detached drops with larger volumes. The dripping and jetting 

modes are clearly seen in Fig. 4-9(a). These results are consistent with the drop 
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Figure 4-8: The effect of Bond number on the (a) primary drop volume, breakup 
time, (b) remnant drop length, and limiting drop length at breakup for R2/R1 = 3, 
x = A = 0.1, Re = 10, Ca = 0.1, and Q2/Q1 = 5. 
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shapes observed for drop formation into a quiescent liquid [147, 149]. The remnant 

drop length and limiting drop length increase almost linearly with increasing Ca as 

seen in Fig. 4-9(b). 

4.5.3 Surfactant Results for Newtonian Fluids 

In this section, the effect of surfactants on the drop breakup and necking dynamics 

will be discussed. The density and viscosity ratios are set to ^ = A = 0.1, the 

Reynolds number is set to Re = 10, the capillary number is set to Ca = 0.1, and 

the Bond number is set to Bo = 1 in all the simulations. The elasticity number is 

set to E = 0.164 as the typical value is much less than 1 and the interfacial Peclet 

number to Pes = 10 in the simulations in the presence of surfactants. The effects of 

surfactant mass transfer, the flow rate ratio, Q2/Q1, the proximity of confining walls, 

R2/R1, the equilibrium surfactant coverage, x, and the Biot number, Bi, on the drop 

breakup and necking dynamics are investigated. 

Surfactant mass transfer plays an important role in the necking and breakup pro

cess [66]. When mass transport of surfactants to the interface is much faster than 

interfacial convection, the surfactant concentration at the interface remains almost at 

the equilibrium concentration and results in a uniform reduction in interfacial tension. 

This scenario is designated as 'uniform a' for which a = 1. For soluble surfactants in 

the adsorption-desorption limit, the rate of the surfactant mass transport to the in

terface is comparable to the interfacial convection rate and the adsorption/desorption 

rate of surfactants is much slower than the bulk diffusion rate. This scenario is des

ignated as 'non-uniform <r' and a comparison of the drop evolution with the 'uniform 

<j' case is shown in Fig. 4-10. For this comparison, \ — A = 0.1, Re = 10, Ca = 0.1, 

Bo — 1, and Q2/Q1 = 5. For the 'non-uniform <r' case, Pes = 10, x — 0.667, 
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Figure 4-9: The effect of capillary number on the (a) primary drop volume, breakup 
time, (b) remnant drop length, and limiting drop length at breakup for R2/R1 = 3, 
x = A = 0.1, Re = 10, Bo = 1, and Q2/Q1 = 5. 
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and Bi = 0.1. In both cases, the drop starts with an initially hemispherical shape 

and then distends due to the buoyancy force and the outer fluid flow. As the drop 

enters a necking regime, similar to the surfactant-free case, the primary neck and the 

secondary necks appear as shown in the expanded view in Fig. 4-10. The surface 

contraction is fastest in the vicinity of the neck as the normal velocity in this region is 

strongly negative and the tangential flow above the neck region is slower as is shown 

in Fig. 4-2(b) and by Jin et al. [66]. This causes the surfactants to accumulate just 

above the primary neck as shown in Fig. 4-11. For this case the maximum packing 

limit of surfactants is Too = 1/x = 1.5. The surfactant concentration just above 

the primary neck approaches this limit from below. When surfactant concentration 

approaches the maximum packing limit, very small gradients in surfactant concen

tration result in large gradients in interfacial tension as seen in Fig. 4-11. As a 

result large Marangoni stresses are expected for perturbative gradients in surfactant 

concentrations [43]. 

The presence of surfactants just above the primary neck affects the rate of thinning 

of the primary neck [66, 67]. The primary neck radius versus time left to breakup is 

shown in Fig. 4-12 to compare the primary neck thinning process between the 'uniform 

a1 and the 'non-uniform <r' cases for the drop shape evolution shown in Fig. 4-10. The 

zoomed-in view close to breakup shown as an inset in Fig. 4-12 clearly indicates that 

with interfacial tension variation along the interface, the rate at which the primary 

neck forms slows down as the drop approaches breakup. The slowing down of the 

primary neck thinning rate has two consequences. First, it increases the time required 

for breakup of the primary drop in the presence of surfactants. Second, as the drop 

fluid is flowing at a constant flow rate, it increases the volume of the primary drop due 

to the increased time for breakup. It should be noted that in the above comparison 

both drops have the same equilibrium interfacial tension. For a clean drop in the 
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Vp=S 68 V=9 19 

Figure 4-10: Comparison of drop shape evolution for (a) uniform a and (b) non
uniform a with Pes = 10, x = 0.667, and Bi = 0.1 is shown with an expanded view 
of the primary and secondary necks. R2/R1 = 3, x = ^ — 0-1, Re = 10, Ca = 0.1, 
Bo = 1, and Q2/Q1 = 5. Shapes at every dimensionless time of 1 along with the 
final shape are shown. 

arc length s 

Figure 4-11: Drop shape, interfacial concentration, and interfacial tension as a func
tion of arc length at breakup (t = 3.54) for R2/R1 = 3, x = ^ = 0-1; Re = 10; 
Ca = 0.1, Bo = 1, Q2/Q1 = 5, Pes = 10, x = 0.667 and Bi = 0.1. The maximum 
packing limit is F^ = 1.5. 
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Figure 4-12: Primary neck radius versus time left to break up for the surfactant-free 
case and soluble surfactant case for R2/R1 = 3, % = A = 0.1, Re = 10, Ca = 0.1, 
Bo = 1, Q2/Q1 = 5, Pes = 10, x = 0.667, and Bi = 0.1 (the last three parameters 
are for the soluble surfactant case). 

absence of surfactants, the clean interfacial tension would be higher with Bo = 0.82 

and Ca = 0.08 and the primary drop volume, Vp = 9.87 as well as the drop breakup 

time, tf, = 3.64 would be higher than the surfactant-laden drops. 

To investigate the effect of the outer co-flowing flow on the drop formation process 

in the presence of soluble surfactants in the adsorption-desorption limit, the flow rate 

ratio Q2/Q1 is changed from 0 to 20 for R2/Ri = 3, x = A = 0.1, Re = 10, Ca = 0.1, 

Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1. The effect of increasing the outer 

fluid flow on the volume of the primary drop, breakup time, remnant drop length, 

and limiting drop length at breakup for the 'uniform <r' and 'non-uniform a' cases 

are shown in Figs. 4-13 and 4-14. For Q2/Q1 = 0, 5, 15, and 20, the interface 

shapes at breakup for the 'non-uniform a"1 case are also shown as insets in Fig. 4-

13(a). The interface for the 'uniform er' case at breakup are qualitatively similar to 

the corresponding 'non-uniform <r' shapes presented in Fig. 4-13(a). Similar to the 

85 



surfactant-free results explained earlier, the outer co-flowing fluid applies increasing 

viscous shear stress on the inner fluid as the flow rate ratio increases. As a result, 

drops breakup faster with primary drops of smaller size as seen in Fig. 4-13 and 

longer lengths of remnant drop shapes which first increase and then decrease as seen 

in Fig. 4-14. 

The presence of Marangoni stresses slows down the primary neck formation and 

causes the time for breakup to increase for all flow rate ratios studied as seen in 

Fig. 4-13. However, as the outer flow rate is increased, the retardation of drop break 

up caused by surfactants reduces. As the flow rate ratio increases, the stronger outer 

flow pulls more of the surfactants away from the neck region as seen in Fig. 4-15 

where the surfactant concentration along the interface at breakup is compared for 

Q2/Q1 = 0 and 15. For Q2/Q1 = 15, the surfactants accumulate at the apex of 

the drop and not nearly as much near the neck region compared to the drop with 

no co-flowing flow. The increased breakup time for the 'non-uniform <r' case results 

in larger primary drop volumes for all the flow rate ratios studied. The increase 

in primary drop volume due to the surfactant mass transfer effect reduces as the 

flow rate ratio increases with the primary drop volume being nearly identical for the 

'uniform a' and 'non-uniform cr' cases for Q2/Q1 = 20. The limiting drop length and 

the length of remnant drop at breakup is also higher for the 'non-uniform a' case and 

the difference is more pronounced for Q2/Q1 > 15. 

Next, the equilibrium fractional coverage of the surfactants is increased from 

x = 0.1 to x = 0.9 to determine its effect on the drop and necking dynamics. In 

this comparison, while the equilibrium fractional coverage changes, the equilibrium 

interfacial tension for all the drops is the same. This implies that the drop with 

the higher equilibrium fractional coverage, say x = 0.9, has a higher clean interfacial 

tension (erc = 1.61) while a drop with a lower equilibrium fractional coverage, say 
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Figure 4-13: The effect of flow rate ratio on the (a) primary drop volume and (b) 
breakup time for R2/R1 = 3, x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, Pe s = 10, 
x = 0.667, and Bi = 0.1 (the last three parameters are for the soluble surfactant 
case). 
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Figure 4-14: The effect of flow rate ratio on the (a) length of remnant drop and (b) 
limiting drop length at breakup for R2/R1 = 3, x = A = 0.1, Re = 10, Ca = 0.1, 
Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1 (the last three parameters are for the 
soluble surfactant case). 
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Figure 4-15: The surfactant concentration along the interface at breakup for Q2/Q1 — 
0 and Q2/Q1 = 15 for R2/R1 = 3, x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, Pes = 10, 
x = 0.667 and S i = 0.1. 

x = 0.4 has a lower clean interfacial tension (<rc = 1.09). Since the surfactants get 

washed away from the apex of the drop and accumulate in the neck region, the av

erage interfacial tension of the drop with x = 0.9 is higher than that of a drop with 

x = 0.4. This is seen more clearly in Fig. 4-16 where the interfacial tension along the 

interface at breakup is plotted for two drops with equilibrium interfacial coverages of 

0.4 and 0.9. The average interfacial tension for the drops with x = 0.4 and 0.9 at 

breakup are 1.06 and 1.11 respectively. The effect of increasing the equilibrium frac

tional coverage, x on the drop volume and breakup time are shown in Fig. 4-17 and 

the limiting length and length of remnant drop are shown in Fig. 4-18 for R2/R1 = 3, 

x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1 Pes = 10 and Bi = 0.1. The results are 

shown in the absence (Q2/Q1 = 0) and presence (Q2/Q1 = 5) of co-flowing flow. The 

corresponding drop shapes at breakup are also shown as insets in Fig. 4-17(a). Due 

to the higher average interfacial tension at higher fractional coverages it is seen that 

as x increases, the primary drops are larger with more convex remnant drops and 
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Figure 4-16: The interfacial tension along the interface at breakup for x = 0.4 and 
x = 0.9. Here, R2/Rx = 3, Q2/Qi = 0, x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, 
Pes = 10, and Bi = 0.1. 

longer breakup times. The remnant drop length at breakup increases till x = 0.667 

and then decreases. The limiting drop length at breakup increases for all coverages 

studied. Even though the trends for Vp, tb, Lr, and L^ are similar in the absence 

and presence of outer co-flowing flow, the effect of equilibrium interfacial coverage is 

more pronounced in the absence of outer flow 

As surfactants accumulate near the primary neck region, Marangoni flow slows 

down the necking rate of the primary neck as seen in Fig. 4-12. The secondary neck 

is also a site of fast interface contraction where surfactants will accumulate as can be 

seen in Fig. 4-11. This site, however, develops later, is much weaker with a lower 

surfactant accumulation than the primary neck region. As the primary neck thinning 

rate slows down close to breakup, the secondary neck formation catches up and the 

drop can now break either at the primary or the secondary neck. For a high enough 

equilibrium fractional coverage, the primary neck is completely suppressed and the 

drop breaks at the secondary neck [66]. It is observed that the breakup position 
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Figure 4-17: The effect of initial surface coverage on the (a) primary drop volume 
and (b) breakup time for R2/R1 = 3, % = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, 
Pe s = 10, and Bi = 0.1 in the absence (Q2/Q1 = 0) and presence (Q2/Q1 = 5) of 
outer co-flowing fluids. 
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Figure 4-18: The effect of initial coverage on the (a) length of the remnant drop 
and (b) limiting drop length at breakup for R2/R1 = 3, x = A = 0.1, i?e = 10, 
Ca = 0.1, Bo = 1, Pes = 10, and Bi = 0.1 in the absence (Q2/Q1 = 0) and presence 
(Q2/Q1 = 5) of outer co-flowing fluids. 
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can be changed from the primary neck to the secondary neck when increasing x from 

0.4 to 0.9 while keeping Q2/Q1 = 0 as seen in Fig. 4-19(a). As x increases from 

0.4 to 0.9, more surfactants adsorb above the primary neck reducing the interfacial 

tension near the primary neck region. This can be seen in the large region near the 

primary neck with the lowest interfacial tension for x = 0.9 in Fig. 4-16. Larger 

Marangoni stresses at x = 0.9 retard the drop breakup, slow down the necking rate 

of the primary neck, and allow the secondary neck to develop more rapidly. As a 

result, the drop breaks at the primary neck for x = 0.4 and at the secondary neck 

for x = 0.9. Breakup of drop at the secondary neck turns out to be beneficial in 

suppressing satellite drop formation [66, 149]. As seen earlier, the outer co-flowing 

flow washes away surfactants from the neck region, weakening the Marangoni stresses. 

At the high fractional coverage of x = 0.9, if an outer co-flowing fluid is introduced, 

the break up position for the drop can be changed back from the secondary neck to 

the primary neck. This can be seen in Fig. 4-19(b) where starting with the case of 

x = 0.9 and Q2/Q1 = 0, the outer flow rate ratio is increased to Q2/Q1 = 10. 

The impact of adsorption-desorption kinetics of soluble surfactants on the drop 

shape and necking process is investigated by varying Bi from 0.0001 to 5 while keeping 

the equilibrium surface coverage, x = 0.9. For these drops, the clean interfacial 

tension in the absence of surfactants is 1.61. The primary drop volume at breakup 

and the breakup time as a function of Bi for both Q2/Q1 = 0 and 5 are shown 

in Fig. 4-20. The dashed lines in Fig. 4-20 show the values of the limiting cases. 

The insoluble surfactant limit corresponds to Bi = 0 and Bi = 00 corresponds to 

the 'uniform a1 case. The interface shapes at breakup for small (Bi = 0.0001), 

moderate (Bi = 0.1) and high (Bi = 5) Biot numbers are shown as insets in Fig. 4-

20. In the insoluble limit (Bi = 0), no surfactant can be added to the drop after 

time t = 0. As the drop evolves, its surface area increases several-fold while the 
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Figure 4-19: Neck formation modes are affected by (a) the interfacial coverage x and 
(b) the flow rate ratio Q2/Qi- for R2/Ri = 3, x = A = 0.1, Re = 10, Ca = 0.1, 
Bo = 1, Pes = 10, and Bi = 0.1. 
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total amount of surfactant remains the same. Hence, the average interfacial tension 

for this drop is close to the clean interfacial tension everywhere except in the neck 

region where the surfactants accumulate. As the Biot number increases, the rate 

of adsorption-desorption to the interface increases and the average interfacial tension 

of the interface reduces leading to smaller primary drop volumes. In Fig. 4-20, for 

small to moderate Biot numbers, the primary drop volume decreases marginally with 

increasing Bi and decreases more rapidly for Bi > 0.05. On the other hand, the 

breakup time increases marginally with Biot number for Bi < 0.05 and decreases 

more rapidly for Bi > 0.05. The trends are similar in the absence (Q2/Q1 = 0) and 

presence (Q2/Q1 = 5) of co-flowing outer flow. However, the effect of Biot number 

is more pronounced in the absence of the outer co-flowing flow. This is due to the 

weakening effect of the co-flowing fluid on the surfactant distribution in the neck 

region. 

For the range of parameters considered in this study, the effect of changing the 

adsorption-desorption kinetics has a stronger effect on the necking process. The 

length of the remnant drop and the limiting drop length at breakup as a function 

of Biot number are seen in Fig. 4-21 in the absence (Q2/Q1 = 0) and presence 

(Q2/Q1 = 5) of outer co-flowing flow. In the absence of outer flow, the remnant drop 

length decreases with Biot number till Bi = 0.1 and then increases with increasing 

Biot number. The limiting drop length on the other hand increases marginally 

with Biot number for Bi < 0.1 and then decreases more rapidly with Biot number. 

For Bi < 0.05 and Bi > 0.5, the drops break at the primary neck whereas for 

0.05 < Bi < 0.5, the drops break at the secondary neck. This transition from 

primary to secondary to primary neck is seen clearly in the neck profiles at breakup 

shown for Bi = 0.0001, 0.1, and 5 in Fig. 4-22 for R2/Ri = 3, x = A = 0.1, Re = 10, 

Ca = 0.1, Bo = 1, Q2/Q1 = 0, Pes — 10, and x = 0.9. This trend was also observed 
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Figure 4-20: The effect of Biot number on the (a) primary drop volume and (b) 
breakup time for R2/Ri = 3, x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, Pes = 10, 
and x = 0.9 in the absence and presence of outer co-flowing fluids. The dashed lines 
show the values for the 'uniform <r' limit (Bi = oo) and insoluble limit (Bi = 0). 
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in the recent work on the effect of adsorption-desorption kinetics of soluble surfactants 

on the drop necking in a quiescent liquid [66]. In the presence of outer co-flowing 

flow, the Marangoni stresses are diluted and all the drops break at the primary neck. 

The remnant drop length at breakup first increases with Biot number for Bi < 1 and 

then decreases with Biot number. The limiting drop length at breakup also increases 

with Biot number for Bi < 0.1 and then decreases with Biot number. 

Surfactants can also completely suppress the formation of a neck. Jin et al. 

[66] developed a phase diagram for the no-necking regime as a function of fractional 

coverage of surfactant, x versus the Biot number, Bi. For any given Bi value, 

a critical fractional coverage exists beyond which the drop dynamics enters a no-

necking regime. Here it is shown that the phase diagram can be shifted to lower 

coverage, x values by confining the flow between walls even in the absence of outer 

co-flowing flow. Fig. 4-23 shows the effect of the outer tube diameter on the drop 

evolution for drops with X = ^ = 0-l> Re = 10; Ca = 0.1, Bo = 1, Q2/Q1 = 0, 

Pes = 10, x = 0.667, and Bi = 0.1. As the diameter of the outer tube is reduced 

from R2/R1 — 5 to R2/R1 = 3, the additional wall shear results in a more prolate 

primary drop and a more convex remnant drop. The drop takes longer to break 

and the primary drop volume increases consistent with the numerical simulations by 

Zhang [149]. If the diameter of the outer tube further is decreased to R2/R\ = 2, the 

formation of the neck is completely suppressed. This is more clearly seen in the plot 

of neck radius as a function of time for R2/R1 = 2, \ = A = 0.1, Re = 10, Ca = 0.1, 

Bo = 1 Q2/Q1 = 0, Pes = 10, x = 0.667 and Bi = 0.1 in Fig. 4-24 where the neck 

starts to form at t 6.5, t 9.5, and t 12.5 but eventually fails. The simulations were 

stopped at t = 14 as it was certain that the drop would not break. As the outer 

co-flowing fluid has the effect of weakening Marangoni stresses, it is expected that as 

the flow rate ratio increases, the critical equilibrium coverage at which the drop fails 
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Figure 4-21: The effect of Biot number on the (a) length of the remnant drop and 
(b) limiting drop length for R2/Ri = 3, x = A = 0.1, Re = 10, Ca = 0.1, Bo = 1, 
Pes = 10, and x = 0.9 in the absence and presence of outer co-flowing fluids. 
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Figure 4-22: Necking dynamics is affected by Bi for R2/R1 = 3, % = A = 0.1, 
Re = 10, Ca = 0.1, Bo = 1, Q2/Q1 = 0, Pes = 10, and x = 0.9. 

to neck increases. 

4.5.4 Results for Shear-thinning Fluids 

While the numerical code developed can be used to simulate situations where either 

drop or bulk or both phases are shear-thinning, here results are presented for the 

formation of a shear-thinning drop in a co-flowing Newtonian fluid. The apparent 

drop viscosity as a function of shear rate is described by the Carreau model Eq. 2.34. 

The effect of a shear-thinning drop phase is discussed by considering three sets of 

Carreau model parameters as described in Section 2.3. First, a Newtonian drop 

fluid with n\ = 1 is considered. Second, a weakly shear-thinning drop fluid with 

a?i = 0.5,/3i = 0.5, and rii = 0.5 is considered. Finally, a strongly shear-thinning 

drop fluid with ot\ = 10,/?i = 0.002, and m = 0.3 is considered. The apparent 

viscosity as a function of shear rate for these three fluids is shown in Fig. 2-6. The 

effect of surfactants and the flow rate ratio Q2/Q1 on the drop formation dynamics 

for these three fluid types is presented and discussed. For these simulation results, 

density ratio, x = 0.1, viscosity ratio, A0 = 1, Reynolds number, Re = 10, capillary 

number, Ca = 0.1, Bond number, Bo = 1, and R2/R1 = 3. For surfactant systems, 

the elasticity number, E = 0.164, and surface Peclet number, Pes = 10. 
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Figure 4-23: The effect of outer tube diameter on drop evolution dynamics in the 
surfactant-laden system for % = A = 0.1, i?e = 10, Ca = 0.1,Bo = 1, Pes = 10, 
x = 0.667, Bi = 0.1, and Q2/Q1 = 0. Shapes at every dimensionless time of 5 along 
with the final shape are shown. 

Figure 4-24: Neck radius as a function of time for R2/R1 = 2, % = A = 0.1, Re = 10, 
Ca = 0.1, Bo = 1, Q2/Q1 = 0, Pes = 10, x = 0.667, and Bi = 0.1. 
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In the absence of surfactants, the evolution of drop shapes for the Newtonian, 

weakly shear-thinning, and strongly shear-thinning drop fluids is shown in Fig. 4-25 

for Q2/Q1 = 5 . In the absence of surfactants, the highly viscous Newtonian drop 

breaks with a long thread as shown in Fig. 4-7(a). For a weakly shear-thinning drop 

fluid, the drop breaks faster and the length of the thread is reduced. This result is 

consistent with the Newtonian results about the viscosity ratio effect shown in Fig. 4-

7(a). It has also been observed in previous studies on drop formation in the absence 

of outer co-flowing fluid [39, 38, 143]. As the drop phase becomes strongly shear-

thinning, the drop breaks even faster with a much shorter thread. The viscosity 

distribution inside the drop for the strongly shear-thinning drop is also shown on 

the right of the result in Fig. 4-7(c). Blue color for viscosity indicates regions of 

low viscosity and red color indicates regions of high viscosity. As expected, near 

the centerline of the inner tube, the shear rate is the smallest and the corresponding 

viscosity is the largest. For the bulk of the drop, the viscosity is very low, //1 < 0.1 

while the viscosity of the bulk fluid is 1. The drop phase is unable to resist the 

shearing of the outer fluid causing it to break easily. 

Effect of surfactants on the drop formation process for Newtonian, weakly shear-

thinning, and strongly shear-thinning drops are presented in Fig. 4-26 and Table 4.1. 

Similar to the Newtonian results, two scenarios are considered. If the mass transport 

of surfactants to the interface is fast compared to convection, the surfactant concen

tration remains constant with a = 1, defined earlier as the 'uniform <r' case. When 

the surfactant transport is slow as compared to surface convection, the 'non-uniform 

a' case is realized. For these results, R2/R1 = 3, x = 0.1, Ao = 1, Re = 10, Ca = 0.1, 

Bo = 1, Q2/Q1 = 5, Pes = 10, x = 0.667, and Bi = 0.1. The comparison of shapes 

at breakup between the 'uniform <r' case and the 'non-uniform <T' case in Fig. 4-26 

shows that surfactants in general have a retarding effect on the drop formation pro-
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Figure 4-25: The shapes at breakup for Newtonian (ni = 1), weakly shear-thinning 
(m = 0.5, p\ = 0.5, and a1 = 0.5), and strongly shear-thinning (ni = 0.3, (5\ — 0.002, 
and «! = 10) drops for R2/Ri = 3, x = 0.1, A0 = 1, Re = 10, Ca = 0.1, Bo = 1, 
and Q2/Q1 = 5. The contour plot of viscosity is also shown on the right hand of the 
third shape. 

102 



tb - 6 74 

' A - 6 . 1 7 

uniform o 

non-uniform a 

th~ 3.38 

Newtonian 

o-i D • l - o - l 

Figure 4-26: The comparison of shapes at breakup between the'uniform a-1 case 
and the 'non-uniform <r' case for Newtonian, weakly shear-thinning, strongly shear-
thinning drops for R2/R1 = 3, x = 0.1, Ao = 1, Re = 10, Ca = 0.1, Bo = 1, 
Pe s = 10, x = 0.667, and Bi — 0.1 (the last three parameters are for the soluble 
surfactant case). The solid line indicates the 'non-uniform er' case, and the dash line 
indicates the 'uniform a' case. 

cess. This retardation effect of non-uniform distribution of soluble surfactants on 

the breakup is also seen clearly in the comparison of tb, Vp, Lr, and L4 in Table 4.1. 

Only for weakly shear-thinning drop phase, the length of remnant drop is slightly 

shorter for 'non-uniform CT' case than 'uniform <r' case. The retarding effect is most 

pronounced for the strongly shear-thinning drop fluid as seen in Fig. 4-26 and only 

these drop fluids are considered for studying the effect of flow rate ratio. 

The effect of the outer co-flowing flow on the drop formation process is presented 

for the'uniform a' and the 'non-uniform a' case for flow rate ratio Q2/Q1 from 0.1 to 

15. The effect of increasing the outer fluid flow on the primary drop volume, breakup 

time, remnant drop length, and limiting drop length at breakup for the 'uniform a' 

and 'non-uniform a' cases is shown in Figs. 4-27 and Fig. 4-28. For Q2/Q1 = 0.1, 
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Table 4.1: The effect of shear-thinning drop rheology on the primary drop vol
ume, breakup time, length of remnant drop, and limiting drop length at breakup 
for R2/R1 = 3, x = 0.1, A0 = 1, Re = 10, Ca = 0.1, Bo = 1, Pes = 10, x = 0.667, 
and Bi — 0.1 (the last three parameters are for the soluble surfactant case). 

Newtonian 

Weakly shear-thinning 

(n, =O5,p, = 05 ,a , = O5) 

Strongly shear-thinning 

(n, = 0 3, (3, =0 002, a, = 10) 

uniform a 

non-uniform a 

uniform a 

non-uniform a 

uniform a 

non-uniform a 

h 

6 39 

6 74 

5 94 

6 17 

3 11 

3 38 

K 
10 55 

10 94 

10 44 

10 81 

881 

931 

K 
8 405 

8 408 

7 557 

7415 

2713 

3 034 

Ld 

10 687 

10 926 

9 904 

9 963 

5 492 

5 754 

5, and 15, the interface shapes at breakup for the 'non-uniform a' case are also 

shown as insets in Fig. 4-27(a). The interface for the 'uniform er' case at breakup 

are qualitatively similar to the corresponding 'non-uniform <r' shapes presented in 

Fig. 4-27(a) In the absence of surfactants, the shear stress caused by increasing 

the outer flow increases and drops break faster with smaller drop sizes as seen in 

Fig. 4-27. Due to the squeezing action of the outer flow, remnant drop length and 

limiting drop length at breakup also increase with increasing outer flow as seen in 

Fig. 4-28. When surfactants are present, they retard the thinning of the primary neck 

leading to longer breakup times and larger drop volumes as seen in Newtonian fluids. 

Furthermore, as the outer flow is increased, surfactants are washed away from the neck 

region reducing the Marangoni stresses at higher flow rate ratios. This is confirmed 

by Fig. 4-29 where the surfactant distribution on the drop interface at breakup is 

plotted for Q2/Q1 = 0 . 1 and Q2/Q1 — 15. The retardation effect of surfactants is 

diminished at higher flow rate ratios as the difference between the 'uniform a'' and 

'non-uniform a' results decreases for Q2/Q1 = 15 compared to Q2/Q1 = 0.1. 

Finally, the shear-thinning drop rheology also affects necking dynamics for drops. 
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Figure 4-27: The effect of flow rate ratio on the (a) primary drop volume and (b) 
breakup time for the formation of the strongly shear-thinning drops in a Newtonian 
co-flowing fluid with m = 0.3, ft = 0.002 and c^ = 10, R2/Ri = 3, x = 0.1, A0 = 1, 
Re = 10, Ca = 0.1, Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1 (the last three 
parameters are for the soluble surfactant case). 
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Figure 4-28: The effect of flow rate ratio on the (a) length of remnant drop and (b) 
limiting drop length at breakupfor the formation of the strongly shear-thinning drops 
(nj = 0.3, Pi = 0.002 and a\ = 10) in a Newtonian co-flowing fluid with R2/R1 = 3, 
x = 0.1, A0 = 1, Re = 10, Ca = 0.1, Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1 (the 
last three parameters are for the soluble surfactant case). 
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Figure 4-29: The surfactant concentration along the interface at breakup of strongly 
shear-thinning drops (ni = 0.3, /?i = 0.002 and at = 10) for Q2/Q1 — 0.1 and 
Q2/Q1 = 15 for Ri/Ri = 3, x = 0-1, A0 = 1, Re = 10, Ca = 0.1, Bo = 1, Pes = 10, 
z = 0.667, and Bi = 0.1. 

The drop interface shape and the surfactant distribution on the drop surface at 

breakup for a Newtonian and a strongly shear-thinning drop is shown in Fig. 4-

30. For this result, the drop viscosity is small compared to the bulk phase viscosity, 

A0 = 0.1. In addition, R2/Rx = 3, x = 0.1, Re = 10, Ca = 0.1, Bo = 1, Q2/Q1 = 5, 

Pes = 10, x = 0.9, and Bi = 0.1. The Newtonian drop in this case breaks at the 

primary neck as seen in the expanded view of the neck region in Fig. 4-30. For the 

strongly shear-thinning drop fluid, the neck not only shows breakup at the secondary 

neck but shows the formation of multiple satellite drops as seen in the expanded view 

of the neck region in Fig. 4-30. This shows that breakup at the secondary neck does 

not always help in suppressing satellite drop formation. 
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Figure 4-30: The comparison of shapes and necks at breakup between the Newtonian 
drop formation and the strongly shear-thinning drop (ni = 0.3, (3\ = 0.002 and 
a.\ = 10) formation in to a Newtonian co-flowing fluid with Q2/Q1 = 5 in the presence 
of soluble surfactants in the adsorption-desorption limit with interfacial coverage of 
x = 0.9 for Ri/Rx = 3, x = 0.1, A0 = 0.1, Re = 10, Ca = 0.1, Bo = 1, Q2/Q1 = 5, 
Pes = 10, x = 0.9, and Bi = 0.1. The surfactant concentration along the interface at 
breakup is shown as the contour plot inside the drop shape with red indicating the 
high surfactant concentration while blue indicating the low surfactant concentration. 
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Chapter 5 

Drops Rising in a Tube 

The motion of deformable drops through a tube is important in a number of natural 

and industrial processes such as enhanced oil recovery. During primary oil recovery, 

the natural pressure in the oil well is sufficient to drive the oil out of the reservoir. 

As the reservoir depletes in time, secondary recovery techniques are employed where 

fluids are injected to displace the oil out of unsaturated fractures in oil reservoirs. 

When both of them fail to bring the oil out from the depleted reservoir, tertiary or 

enhanced oil recovery techniques are used to mobilize the oil droplets lodged inside the 

reservoir pores [10, 57]. One enhanced oil recovery technique is surfactant-flooding 

where surfactant solutions are injected into the reservoir to force out the oil trapped in 

depleted oil reservoirs by capillary and viscous forces. Understanding the interplay of 

interfacial, viscous, inertial, and gravitational forces as well as the confinement of the 

fracture walls on the motion and deformation of oil droplets can provide important 

clues for improved oil recovery [71]. 

5.1 Model Problem 

The system consists of an axisymmetric viscous drop of density pi and viscosity p,\ 

rising through a quiescent immiscible viscous liquid of density p2 and viscosity fj® 
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R, 

Figure 5-1: Schematic of the drop rising process through a quiescent immiscible 
viscous liquid. 

in a cylindrical tube of radius Rt as shown in Fig. 5-1. Both phases are treated as 

incompressible fluids. The gravitational vector g = — gez, points in the negative 

z—direction. The drop migration velocity is denoted as U} along the axis of the 

channel. In the following mathematical description, the reference frame is attached 

to the center of mass of the rising drop so that the tube wall moves downwards 

relative to drop with the drop migration velocity. The drop size is characterized by 

the radius of a spherical drop, a, of the same volume as seen by the dashed line in 

Fig. 5-1. Therefore, a = (3Vd/4-7r) ' where Vd is the volume of the drop. 

The numerical model presented in Chapters 2 and 3 are implemented to study the 

process of drops rising in a tube as shown in Fig. 5-1. Specifically, the numerical 

model will be used to: 
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• identify parameters governing the steady shapes and terminal velocities for 

drops rising in a confined tube, 

• determine how surfactants adsorbed at the drop interface affect the mobility 

and deformation of the rising drop, and 

• investigate the effects of a shear-thinning drop or bulk rheology on the dynamics 

of rising drops in a quiescent fluid in a confined tube. 

In Section 5.2, the modification to the mathematical formulation presented in Chapter 

2 to solve the drop rising problem is discussed. The numerical algorithm used to 

obtain the solution is presented in Section 5.3. The current state of knowledge for 

the drop rising problem is discussed in Section 5.4 and the results of this work are 

presented in Section 5.5. 

5.2 Mathematical Formulation 

As seen in Fig. 5-1, the flow domain is axisymmetric about the z* —axis and the 

solution is obtained for the fluid on one rz—plane with the bounds 0 < r* < Rt and 

—Zmax < z* < Zmax. Zmax is chosen such that the axial length of the simulation 

domain does not affect the steady shape and mobility of the drops. A non-inertial 

reference frame attached to the center of mass of the rising drop is employed for the 

drop rising problem so that the tube wall moves in the opposite direction relative to 

drop with the drop migration velocity. Under the non-inertial reference frame, the 

two-phase flow is governed by the mass and momentum conservation equations in the 

same forms as Eqs. 2.1 - 2.3, but the modified pressure is expressed as 

rlJT* rlJT* 
P% = P , - P t g - x +Px-i-fk-x =pl+plgz -Pt-JLZ, (5.1) 
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where U£ is the migration velocity or terminal velocity of the drop, and k is the unit 

vector pointing in the direction of gravity. dU^/dt* gives the acceleration of the 

reference frame. If either phase is non-Newtonian, the Carreau model in Eq. 2.33 is 

used to describe the viscosity of the shear-thinning fluid. In the presence of surfac

tants, the Langmuir interfacial equation of state in Eq. 2.18 is applied to describe the 

relationship between the local interfacial tension, a* and the local surfactant concen

tration, T*. The surfactant mass balance equation in Eq. 2.22 is used to solve for 

the local surfactant concentration T*. The governing equations are solved subject to 

initial and boundary conditions prescribed at the fluid domain boundaries and the 

two-phase interface. The initial guess for the drop interface depends on the drop size, 

a. If a/Rt < 0.9, a spherical drop interface is assumed as the initial drop shape while 

a cylinder with two hemispherical caps is assumed as the initial shape for large drops 

with a/Rt > 0.9. If surfactants are present, the initial surfactant concentration at 

the interface is set equal to the equilibrium interfacial concentration, that is, T* = Teq 

along the drop interface. 

The boundary conditions imposed at the two-phase interface are described in 

Eqs. 2.4 and 2.6, and due to the non-inertial frame of reference, the stress jump 

across the interface is given as 

(P* _ P*) n + (r* _ r*) .n = a*n (V* • n) 

dU*T 
- VSV* + (p2 - P l ) (g • x*) n - (p2 - Pl) -^- (k • x*) n. (5.2) 

In addition, boundary conditions at the flow domain boundaries are needed. No-slip 

and impermeable boundary conditions are imposed at the solid tube walls as 

U*2r = 0 

^ = -m 
^ = 0 
dr' u 

> at r* = Rt. (5.3) 
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The symmetry boundary condition is applied along the central axis as 

du. 
dr 

dr* 

^ = 0 

= 0 
at r* = 0. (5.4) 

At the far-field boundaries zero gradients of velocity and pressure are applied, 

dz* ~ u 

SJTJ Z i t ^ T Y 

OP, 
dz 

(5.5) 
r = 0 

For non-dimensionalizing the governing equations, the tube radius Rt is chosen 

as the characteristic length, the buoyancy velocity (p2 — p\)gR\j p2 is chosen as the 

characteristic velocity, and the pressure is scaled with {p2—pi)gRt- The dimensionless 

drop size is defined as, K = a/Rt. The clean interfacial tension a0 for the surfactant-

free simulations or the equilibrium interfacial tension aeq for the surfactant-laden 

simulations is chosen as the characteristic interfacial tension. The dimensionless 

governing equations defined between 0 < r < 1 and —Zmax/Rt < z < Zmax/Rt are 

then given by 

V • u = 0, (5.6) 

pRe (^ + u-Vu\= - V P + V • (p [(Vu) + ( V u f ] ) 

+ — [Vsa - an (V • n)] 5S + 
DO 

l-(l-x)^Re 
dt 

zn5s, (5.7) 

where the dimensionless modified pressure is defined as 

Pi = Pi + P%gz - Pi{dUT/dt)z. (5.8) 

The dimensionless interfacial boundary conditions are given by Eqs. 2.10 and 2.12, 

and the stress jump reduces to 

( P 1 - P 2 ) n + ( r 2 - r i ) . n = 

1 

Bo 
[an (V • n) - Vsa] 

, dUr „ 

i-u-ri-a-jfe 
zn. (5.9) 
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Due to the choice of the characteristic velocity, the capillary number reduces to the 

Bond number and only two dimensionless groups, namely, the Reynolds number and 

the Bond number are defined as 

Re = p2~U1R\/iJa, 

Bo = (p2 - pi)gR2Jac. 

(5.10) 

(5.11) 

If either phase is non-Newtonian, the dimensionless Carreau model in Eq. 2.34 is used 

to describe the viscosity of the shear-thinning fluid. In the presence of surfactants, 

Eqs. 2.26 and 2.23 are applied to determine the local interfacial tension along the 

interface, Y. The surface Peclet number and the Biot number are then defined as 

Bi 

(p2 - pi)gRt 
PiDs 

OisPl 

(5.12) 

(5.13) 
{pi- p\)gRt 

The elasticity number and equilibrium surface coverage have the same definition as 

Eqs. 2.24 and 2.25. 

The dimensionless boundary conditions at the solid tube wall, 

u2r = 0 

u2z --

1 ^ 0 

[JT > at r = 1 (5.14) 

and symmetry boundary conditions and far-field boundary conditions are imposed as 

dr 

dP,. 
dr 

^ = 0 

= 0 

= 0 
at r = 0, 

at z — ±Zmax/Rt. 

(5.15) 

(5.16) 
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5.3 Solution procedure 

The hybrid VOF technique discussed in Chapter 3 is now modified and applied to 

solve the problem of drop rising in a tube via the single-fluid VOF formulation under 

the non-inertial reference frame as 

V* • u* = 0, (5.17) 

p (^r + u* • V*u* J = -V*P* + V* • (p [(V*U*) + (V*u*)Tl) 

+ 
dU* 

V > * - a*n (V* • n) - (p2 - Pl) g • x*n + (p2 - P l ) -^k • x*n 

The dimensionless form is given by 

8S. (5.18) 

V - u = 0, (5.19) 

pRe ( — + u • Vu V F + V- (ji (Vu) + (Vu 

+ — [Vs(7 - a n (V • n)] Ss + 
DO 

i - < l - x ) f * zn5s, (5.20) 

where p = 1 — (1 — x) <fi a n d p. — 1 — (1 — A) 0 and 4> is the VOF function, which 

takes the value 1 for the drop phase and 0 for the bulk phase. 

The interface is represented by Lagrangian marker particles with a parameter 

representation (rs (s), zs (s)) where s is the arc length starting from the apex of the 

drop. The initial shape of the drop is assumed to be spherical if the drop size K < 0.9 

and a cylinder with two hemispherical end caps otherwise. The VOF function <f> and 

the continuous surface force are calculated in the entire domain. The velocity and 

pressure fields on the fixed grid are solved using Eqs. 5.19 and 5.20. Note that 

the terminal velocity of the drop, UT is a variable that is solved for as part of the 

solution. The velocities of the marker particles on the moving grid at the interface are 
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determined by employing a linear interpolation based on the velocity fields obtained 

on the fixed grid. The marker particles are advected as material particles based 

on the kinematic condition to determine the new interface location using an explicit 

Euler scheme. As the interface continuously deforms, marker particles are added or 

removed at each time step to maintain the same level of discretization. A volume 

correction technique proposed by Ryskin and Leal [109] is adopted to preserve the 

drop volume. A scaling factor j3v = Vn/V° is used where Vn denotes the drop 

volume updated according to the kinematic condition at the nth time step and V° 

denotes the initial drop volume. Once the updated drop shape is obtained, the new 

4> field can be calculated for the next time step. For surfactant systems, starting 

with an equilibrium concentration of surfactants, T = 1, the surfactant concentration 

and interfacial tension are updated using Eqs. 2.23 and 2.26. The surface mass 

balance, Eq. 2.26, is solved using a finite difference formulation. For the cases with 

shear-thinning drop or bulk fluid, the viscosities are updated via the Carreau model 

in Eq. 2.34. This algorithm is repeated until drop shape and terminal velocity reach 

a steady state. The Eulerian and Lagrangian mesh sizes and time steps are chosen 

to ensure convergence of drop shape, velocity, and pressure fields for a chosen set of 

dimensionless parameters. A mesh size of at least 0.025 and a time step of at least 

10~4 is used. 

5.4 Literature Review 

Most of previous work has been done to study the buoyancy-driven motion of drops 

and bubbles in confined domains under creeping flow conditions where inertial effects 

can be neglected, that is, Re <C 1. Bretherton studied the motion of a long air 

bubble in a cylindrical tube using asymptotic analysis at small Reynolds and capillary 
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numbers [20]. For the case of buoyancy-driven motion of a long bubble, he found the 

drop would rise only if Bond number, Bo = (ApgR^/a, was greater than 0.842, where 

Ap was the difference in density between the two fluids, Rt was the tube radius, and 

a was the interfacial tension between the two fluids. He also found that the rise 

velocity of the long bubbles, U, was independent of bubble size, which was described 

2 1 

by Bo — 0.842 = 1.25Ca9 + 2.24Ca5. Here, Ca was the capillary number defined as 

Ca = /iU/a where p, was the viscosity of the ambient fluid. He also showed the film 
2 

thickness was proportional to Ca$, and there was a wave-like appearance (bulge) at 

the rear meniscus. Bretherton's analysis, however, was limited to vanishing values of 

Ca with the error of about 10% for Ca — 8 x 10~5. The analysis was confirmed and 

extended to larger values of Ca for 0.0001 < Ca < 0.1 by Reinelt's numerical work 

[103] on a finger rising in a vertical cylindrical tube under the effect of gravity. He used 

a finite difference method in the creeping flow limit to obtain a relationship between 

the Bond number and the capillary number and compared it with Bretherton's results. 

In the limit of Ca —>• 0, the numerical solution matched the asymptotic solution of 

Bretherton. Borhan and Pallinti [16] experimentally investigated the buoyancy-

driven motion of viscous drops through vertical cylindrical capillaries under creeping 

flow conditions for a wide range of viscosity ratios, density ratios, Bond numbers, 

capillary numbers as well as drop sizes. They investigated the effects of the Bond 

number and the viscosity ratio on the drop shape and terminal velocity. As the 

Bond number increased, the drop became elongated, and the film thickness increased 

to a plateau value. Furthermore, the film thickness seemed independent of the 

viscosity ratio and agreed with the predictions by Bretherton [20] and Reinelt [103]. 

The retarding effect of the capillary wall was found to decrease as the Bond number 

increased, or as the viscosity ratio of drop phase to bulk phase decreased. For a given 

viscosity ratio, there was a limiting value of the Bond number beyond which the film 
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thickness reached a plateau value indicating that wall effect remained unchanged with 

further increase in the Bond number. For small Bond numbers, the terminal velocity 

as a function of drop size showed a local maxima due to the wall effect. For large 

Bond numbers, the terminal velocity seemed to increase monotonically with drop size. 

For both cases, the terminal velocity for large enough drop became independent of 

drop size. They also showed that the numerical solutions using the boundary integral 

method were in good agreement with the experimental measurements. They observed 

tip-streaming for large Bond numbers and at vanishing values of drop fluid viscosity 

compared to the bulk fluid viscosity due to the presence of surface-active impurities. 

Some recent studies have considered the effect of inertia on the buoyancy-driven 

motion of drops and bubbles through a vertical tube at finite Reynolds numbers. 

Bozzi et al. [18] numerically studied the buoyancy-driven motion of deformable 

drops falling or rising in a cylindrical tube at intermediate Reynolds numbers us

ing a Galerkin finite-element method. The radius of the tube was set to twice the 

radius of a sphere having the same drop volume. The drop and bulk fluids had the 

same viscosities. The density ratios were also close to unity, so similar results for 

falling or rising drops were expected. For capillary numbers ranging from 0.005 to 1, 

they found that the drops became oblate and even lost the rear convexity as inertia 

was increased by increasing Reynolds or Weber number. They observed novel hat-

shaped drops. For the cases with capillary numbers less than 0.6, they plotted the 

streamlines for different Reynolds numbers and found that the disjoint recirculation 

zone with front and rear stagnation points grew, approached the drop from the rear, 

and eventually crossed the drop interface with increasing Reynolds number. Viana 

et al. [135] presented universal correlations to predict the terminal velocity of long 

bubbles in round pipes based on experimental data for wide ranges of tube buoyancy 

Reynolds numbers, RBB = (D3g(pi — pg)pi)1/2/p and Eotvos numbers, Eo = gpiD2/a, 
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where D is the pipe diameter, and pi and pg are densities of liquid and gas phases. 

The normalized terminal velocity were formulated as functions of ReB and Eo for 

large ReB > 200, small ReB < 10, and a transition region, 10 < Res < 200. It 

was found that long bubble terminal velocity was independent of bubble volume. 

Taha and Cui presented numerical studies to investigate the buoyancy-driven and 

pressure-driven motion of single Taylor bubbles (long bubbles) in vertical cylindrical 

tubes [124] as well as in rectangular channels [125] using FLUENT software imple

mented with volume-of-fluid (VOF) method. They showed the bubble shape profile 

and wall stress distribution along the axis. The bubble shape was found to be de

pendent upon ambient liquid viscosity and surface tension but not on the bubble size. 

Mukundakrishnan et al. [85] numerically studied the wall effects on buoyant bubble 

rise in a finite cylinder filled with a viscous liquid by employing a front tracking finite 

difference method coupled with a level contour reconstruction of the front. They 

presented results of how bubbles with different shapes in infinite medium changed 

when applying the wall confinement. For a fixed volume of the bubble, rear recir-

culatory wakes would form in large cylindrical tubes resulting in lateral bulging and 

skirt formation in drop shape. When cylinder radius was reduced, the wake effects 

on bubble rise were reduced and elongated bubbles occurred with retarded motion 

due to increased drag. Li et al. [76] experimentally studied the buoyancy-driven 

motion of bubbles in circular and square channels over a range of Reynolds numbers 

at moderate capillary and Bond numbers. The steady shapes and terminal velocities 

of the bubbles as a function of the bubble size were determined. Bubbles in a circu

lar channel were more prolate and rose slower than bubbles in a square channel with 

the same hydraulic diameter. As the Weber number increased, the bubble showed 

bubbles with a negative curvature at the rear of the bubble due to the increasing 

inertial effects. Feng used a Galerkin finite-element method with a boundary-fitted 
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mesh to study the buoyancy-driven motion of a bubble [45] in a round tube filled 

with a viscous liquid. Small bubbles exhibited similar behavior to bubbles moving 

in an infinite liquid and developed a spherical-cap when the Reynolds number was 

increased and the capillary number was not too small. Long bubbles exhibited a 

prolate nose-like shape with various tail shapes which could be adjusted by changing 

the Reynolds number and the Weber number. At a large Weber numbers, We > 10, 

the long bubble formed a concave profile with a "cup" at small Reynolds number and 

a "skirt" with sharply curved rims at larger Reynolds number. For Weber numbers 

less than 1, the bubble tail appeared rounded without large local curvatures though 

a slightly concave tail developed at larger Reynolds numbers. Non-uniform annular 

film with a bulge forming at the rim of the bubble tail was observed for small Weber 

numbers suggesting the surface tension effect could play a role. 

Surfactant effects on the motion of fluid particles has been restricted to the mo

tion of long bubbles under creeping flow conditions. Bretherton's theoretical work 

showed that the thickness of the liquid film separating the rising long bubble from 

the tube wall was proportional to Ca2^3 [20]. However, the film thickness obtained 

experimentally was found significantly larger than theoretical values. He speculated 

that the film-thickening phenomena might be caused by small amount of surface im

purities present at the bubble-liquid interface. The effect of surfactants on the liquid 

film thickness was studied theoretically (asymptotically) [36, 53, 98, 102, 116], numer

ically [50], as well as experimentally [112]. Compared to the surfactant-free case, both 

film-thinning and film-thickening were observed when surfactants were present. The 

film-thinning occurred when the mass transfer of surfactants was sorption-controlled 

at small bulk surfactant concentration [50, 53]. The film-thickening occurred when 

surfactant transport was controlled by bulk diffusion at small bulk surfactant con

centrations [102] or when surfactant transport was controlled by sorption kinetics at 
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elevated bulk surfactant concentrations [116]. For large bubbles of a finite length, 

the film-thickening would be observed in diffusion-controlled regime only when the 

bubble length was larger than a critical value [98, 112]. The effect of surfactants 

on the shape and motion of bubbles and drops through a tube has been reported 

at small Reynolds numbers. Borhan and Pallinti [17] experimentally examined the 

shape and breakup of air bubbles and viscous drops translating through vertical cylin

drical capillaries under the action of pressure and/or buoyancy forces in the creeping 

flow regime over a wide range of particle sizes and capillary number in various two-

phase systems. They identified four distinct breakup modes: formation and growth 

of capillary waves at the interface, continuous stretching in the axial direction, tail-

streaming, and penetration of a re-entrant cavity at the trailing end of the particle. 

They also determined the critical conditions for the onset of different modes. For 

all four breakup modes, the critical capillary number was found to be a decreasing 

function of particle size. It was also found that buoyancy forces could have a sta

bilizing effect on the breakup mechanism observed by Olbricht and Kung [93] for 

low viscosity-ratio drops, where a growing indentation at the trailing end of the drop 

developed into a penetrating jet of outer phase fluid. Almatroushi and Borhan [1] 

added various amounts of sodium dodecyl sulfate (SDS) into two specific gas-liquid 

and liquid-liquid systems in the bubble/drop rising experiments to study the effect 

of surfactant concentration of SDS on the buoyancy-driven motion of bubbles/drops 

in a cylindrical tube at low Reynolds numbers (Re < 0.1). For air bubbles, the 

presence of surfactants retarded the motion of small bubbles due to the develop

ment of adverse Marangoni stresses, while enhanced the motion of large bubbles by 

allowing them to deform away from the wall more easily. For viscous drops, the 

enhancement of mobility for large drops became more pronounced when increasing 

the surfactant concentration. Borhan and Mao [15] used a boundary integral method 
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in conjunction with a convective-diffusion equation to numerical study the effect of 

insoluble surfactants on the motion and deformation of viscous drops in Poiseuille 

flow through circular tubes at low Reynolds number. Surfactant concentration at 

the interface was described by a linear equation of state, which is typically valid in 

the dilute regime. While the drop shape was slightly affected by the presence of 

surfactants, more significant effects were found for the droplet velocity. They found 

large variations in surfactant concentration were produced across the interface of the 

drop and the resulting interfacial tension gradients led to Marangoni stresses that 

opposed surface convection and retarded the motion of the drop when surface Peclet 

number was increased. For large surface Peclet numbers, large Marangoni stresses 

immobilized the drop interface, and large deformations were required to satisfy the 

normal stress balance. Johnson and Borhan [68] extended Borhan and Mao's work 

[15] to numerically investigated the nondilute concentrations of insoluble surfactants 

on the drop shape and motion in Poiseuille flow through circular tubes in creeping 

flow. They still used the boundary integral method, but they applied the Frumkin 

adsorption framework which was able to describe the monolayer saturation and non-

ideal surfactant interactions in the limit of high surface coverage instead of using a 

linear equation of state. Later, they extended their numerical work to study the 

effects of surfactant solubility [69]. It was found that the mechanism by which drop 

mobility was reduced changed from uniform retardation at low surface coverage to 

the formation of a stagnant cap at high surface coverage as the equilibrium surface 

coverage was increased. For large capillary numbers, they observed the destabilizing 

effect on transient drop shapes by accelerating the formation and development of the 

penetrating viscous jet that led to drop breakup, or by continuous elongation and 

pinch-off of a tail at the rear stagnation point. None of these studies considered the 

effect of inertia on the shape and motion of bubbles and drops translating in a tube 
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in the presence of surfactants. 

In an unbounded domain, an increase in inertia leads to strong shape deformation 

of bubble/drop from a spherical shape to an oblate-ellipsoid to a spherical cap shape 

accompanying flow separation and wake formation at the rear stagnation point even 

without surfactants [35, 110] as well as with surfactants [128, 136]. In the presence of 

insoluble surfactants, the interface can be substantially retarded due to accumulation 

of surfactants at the rear stagnation point. When surfactants are bulk soluble, 

the surfactant gradients along the interface reduce making the interface more mobile 

[84, 136]. The surfactant concentration can be used to control the formation, size, 

and the ultimate disappearance of the wake [136]. Research has been conducted 

on the effect of surfactants on the flow around a spherical bubble/drop at finite 

Reynolds number in an unbounded domain, that is, bubble/drop size is sufficiently 

small compared to the tube diameter, where bubble/drop deformation is not very 

important [32, 44, 79, 83, 96, 126, 136, 151, 152]. Several studies assumed the 

bubble to be spherical that would not deform in the flow field [32, 44, 96, 126, 136, 

151, 152] while others considered the deformation of bubbles/drops [79, 83]. Three 

regimes of surfactant transport were identified in the theoretical work: stagnant cap 

regime, uniformly retarded regime, and remobilization regime. Most of studies have 

focused on the stagnant cap regime where the interfacial convection dominated the 

bulk diffusion or kinetic fluxes [32, 44, 79, 83, 96, 126, 151, 152]. This regime 

commonly occurred when surfactant bulk concentration was low. To leading order, 

adsorbed surfactants behaved as if they were insoluble and swept to the back end of 

the particles where stagnant caps developed. Finite rates of both kinetic exchange 

and diffusive transport of surfactants were taken into account in the studies of this 

regime, and the relationship between surfactant concentration and cap angle were 

explored [32, 79, 96, 126]. Measurements of the terminal velocities of bubbles showed 
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a decrease in the terminal velocity with increasing bulk concentration of surfactants 

[44, 96, 151, 152]. In the other limit where the bulk concentration of surfactants was 

large, and the kinetic and bulk diffusive exchange were much faster than convection, 

this regime was called as remobilization regime since the distribution of surfactants 

at the interface tended to be uniform and Marangoni stresses tended to disappear 

[126, 136]. The regime in between when the rates of bulk diffusion and kinetic 

exchange of the surfactants were of the same order as the interfacial convection was 

named as uniformly retarded regime because the bubble surface became uniformly 

retarded [24, 25]. 

Numerical schemes have been developed to describe the surfactant effect on the 

motion and shapes of buoyancy-driven bubbles/drops through a tube in the presence 

of soluble surfactants at finite Reynolds numbers [7, 86, 148]. Ayyaswamy's group 

developed a front-tracking scheme and their numerical results showed that the bulk 

fluid in the vicinity of the interface might become depleted of surfactant when the 

location of the adsorptive interface got closer to the tube wall [7, 148]. Tasoglu et al. 

[128] pointed out the confinement effect of tube wall on the motion of buoyancy-driven 

bubbles in the presence of soluble surfactants at finite Reynolds numbers using a finite-

different/front-tracking method developed by Muradoglu and Tryggvason [86]. They 

compared their numerical results for contaminated bubbles with the experimental 

results for solid sphere done by Clift et al. [28] for different tube wall radii, and showed 

the retardation effect of surfactants that make the contaminated bubble behavior more 

like a solid sphere. They also found that the wall had a considerable effect on the 

interfacial surfactant concentration when the ratios of tube radius to bubble radius 

was less than 2.5. However, most of these results were obtained in an unbounded 

domain. They recovered the stagnant cap regime for the bubble with oblate-ellipsoid 

shape at low elasticity and high interfacial Peclet numbers. 
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A number of studies were conducted to investigate the bubble motion in a quiescent 

viscoelastic fluid [5, 12, 74, 80, 56, 58, 105, 106, 107, 145]. Interesting phenomena 

such as cusp-formation [5, 80], velocity discontinuity [5, 58, 74, 80], and negative-

wake formation [56, 58] were observed in viscoelastic fluid systems experimentally. A 

stability analysis of bubbles in viscoelastic flows was done by You et al. [145] using 

asymptotic and numerical techniques. They used the finitely extensible nonlinear 

elastic Chilcott-Rallison (FENE-CR) model to describe the viscoelastic fluids. They 

confirmed a cusp did form during bubble rising in a viscoelastic fluid. Moreover, the 

cusp formation and the velocity discontinuity for rising bubbles were also observed 

in viscoelastic solutions in the presence of surfactants such as surfactant micellar 

solutions in Belmonte's experiments [12], and surfactants can alter the conditions 

for the onset of the discontinuity of terminal velocity of rising bubbles shown in the 

experiments of Rodrigue and co-workers [105, 106, 107]. 

You et al. [144] developed a numerical method for simulating the drop motion in 

a viscoelastic two-phase system using a finite-volume formulation. The FENE-CR 

model was applied to described the viscoelastic phase. They applied this numerical 

method on a drop rising in a quiescent ambient fluid in a confined cylindrical tube 

[146]. They studied a Newtonian drop rising in a Newtonian suspending fluid, and 

showed a slightly negative curvature developed at the drop rear for larger Reynolds 

number and capillary numbers based on the terminal velocity of the drop. They then 

investigated both a Newtonian drop rising in a viscoelastic suspending fluid and a 

viscoelastic drop rising in a Newtonian suspending fluid. A cusp could be formed at 

the rear of the rising Newtonian drop in a viscoelastic fluid. They generally concluded 

that a prolate shape would be developed for a Newtonian drop rising in a viscoelastic 

fluid whereas an oblate shape would be developed for a viscoelastic drop rising in a 

Newtonian fluid. Researchers have attempted to isolate the shear-thinning effect in 
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viscoelastic fluids by preparing dilute solutions with low zero shear-rate viscosity in 

their experiments [89, 90, 91, 104] or modeling purely shear-thinning fluid in their 

simulations [89, 90, 91] to simplify the complex two-phase problems. Ohta et al. 

[89, 90, 91] conducted numerical simulations and experiments to study the dynamics 

of a Newtonian drop rising through a quiescent shear-thinning liquids. They first 

ignored the deformation of the drop shape and only consider a spherical drop rising 

in a cylindrical tube [89]. In their experiments, silicone oil drops were injected into 

diluted aqueous carboxymethyl cellulose (CMC) sodium salt and sodium acrylate 

polymer (SAP) solutions as weakly and strongly shear-thinning continuous phase 

liquids. They applied VOF/CSF method to numerically simulate the two-phase 

flow and the generalized Cross-Carreau model to describe the shear-thinning fluids. 

They showed that strongly shear-thinning liquid affected the flow field around a small 

spherical drop more strongly than the weakly shear-thinning liquid. Ohta et al. [90] 

extended their experiments and numerical model to account for the deformation of 

the drop. They showed that the deformable drop could greatly affect the local 

viscosity changes, and the stagnant flow field behind the drop induced a much higher 

viscosity region at the drop rear. Later, they extended their numerical work from 

two-dimensions to three-dimensions using a coupled level-set/volume-of-fluid method 

to simulate a deformable Newtonian drop rising through a quiescent shear-thinning 

liquids in a rectangular channel [91]. Their simulation reproduced the dynamics of 

drop rising well including the nonlinear wobbling effects associate with a sufficiently 

high Reynolds number. Rodrigue [104] conducted experiments to investigate the 

effect of surfactants on the deformation of non-Newtonian drops falling in a quiescent 

Newtonian liquid in a unconfined domain. They used corn oil as the Newtonian outer 

fluid, and polyacrylamide dissolved in aqueous glycerine as the shear-thinning drop 

fluid described by a power-law model. Different concentration of sodium dodecyl 
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sulphate (SDS) were introduced into this two-phase flow system, and the effect of 

SDS on rheological parameters of shear-thinning fluids could be neglected for their 

range of shear rates (1 — 15s_1). They showed that the drop was more elongated 

when the concentration of the surfactant SDS was increased or the concentration of 

PAA was increased. They, however, pointed out that drop formation was mainly 

controlled by viscous and interfacial tension forces and the effects of shear-thinning 

and inertia were negligible. 

5.5 Results and Discussion 

The drop rising process is studied by running the simulations for the complete range of 

drop sizes, K, for a specified set of dimensionless parameters such as Reynolds number, 

Bond number and so on. The simulations are run till a steady drop shape and the 

terminal velocity, UT, is obtained. The terminal velocity, UT, as a function of drop 

size, K, is used to compare the results. In addition, the drop shape is quantified by 

the length of the drop, L, the width of the drop, B, and the deformation parameter, 

A. The length and the width of the drop are defined as the maximum axial and 

radial dimension of the drop at steady state. The deformation parameter is defined 

as 

Eq. 5.21 indicates that the drop shape is spherical when A = 0, that is L = B. The 

drop is elongated in the direction of flow or prolate when A > 0, that is L > B. 

Finally, an oblate or a drop elongated perpendicular to the direction of flow has 

L < B and A < 0. For the case of long drops, only the central region is chosen 

to measure the maximum radial length. Results are also presented in terms of the 

film thickness, S, defined as the dimensionless minimum distance between the drop 
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interface and the capillary wall. For the case of long drops, film thickness in the 

central uniform region is reported. 

5.5.1 Validation of numerical method 

In order to validate the numerical scheme for drops rising in a confined tube, the 

numerical results in this study are compared with the experimental results of Borhan 

and Pallinti [16] where a viscous drop rises in a vertical precision-bore glass capillary. 

The experimental results used for comparison were for a suspending fluid of 84.2 wt % 

glycerol-water mixture with the density and viscosity of 1212 kg/m3 and 80 mPa • s, 

respectively. The drop fluid was a Dow Corning silicone fluid (DC510-100) with a 

density and viscosity of 990 kg/m3 and 105 mPa • s, respectively. The interfacial 

tension between the two phases was 26.8 x 10~3 N/m. Based on Borhan and Pallinti's 

experimental data, the dimensionless parameters for the numerical simulations are 

chosen as x — 0.82, A = 1.3, Re = 26, and Bo = 1.3. Comparisons of steady shapes 

and terminal velocities for drop size of K = 0.58,0.73,0.92,1.15, and 1.32 are shown 

in Fig. 5-2 and Fig. 5-3, respectively. There is good qualitative agreement between 

the numerical results and the experimental results. 

5.5.2 Surfactant-free results for Newtonian fluids 

For the surfactant-free results presented in this section, the density ratio x — 0-1 a n d 

the effect of viscosity ratio, A, Reynolds number, Re, and Bond number, Bo, on the 

steady drop deformation and mobility is presented. First, a typical velocity volume 

curve for a system with x = A = 0.1, i?e = 10, and Bo = 1 is shown in Fig. 5-4. The 

drop shapes for some of the drop sizes are shown as insets in Fig. 5-4. The terminal 

velocity of the smallest drop of size K = 0.1 is also compared with the Hadamard-
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Figure 5-2: Comparison of steady drop shapes observed in Borhan and Pallinti's 
experimental work (top) and predicted in our numerical simulation (bottom). 
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Figure 5-3: Comparison of terminal velocity as a function of drop size observed in 
Borhan and Pallinti's experimental work (triangle) and predicted in our numerical 
simulation (circle). 

Rybczinki velocity shown as an open circle in Fig. 5-4. The Hadamard-Rybczinki 

equation gives the terminal velocity of a spherical drop rising through an ambient 

fluid in an unbounded domain and is given in dimensionless form as 

u»*=l(M)^ <5-22) 
For a drop size of K = 0.1, the presence of the tube wall does not affect the drop 

mobility and the Hadamard-Rybczinki velocity is recovered. As the drop size in

creases, the terminal velocity first increases due to predominantly buoyancy effects. 

As the drop size becomes comparable to the tube size, the terminal velocity decreases 

due to the increased wall drag and it eventually reaches a constant value which is 

independent of the drop size. This is expected as shown in Bretherton's work [20]. 

To quantify the drop deformation, the drop width as a function of drop length, 

and the deformation parameter as a function of drop size are also plotted in Fig. 5-5 

and Fig. 5-6, respectively. Dash lines in both figures, L = B, and A — 0 correspond 

X 
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Figure 5-4: Typical plot of terminal velocity of the drop as a function of drop size for 
x = \ = 0.1, Re = 10, and Bo = 1. 

to spherical drop shapes. Additionally, the film thickness as a function of drop size 

is shown in Fig. 5-7. For small drops, the drop length and width increase almost 

linearly with drop size and the drop stays nearly spherical for K < 0.9. As drop 

size becomes comparable to the tube size, the width of the drop approaches an upper 

bound and does not change much for any further increase in the drop size as seen 

in Fig. 5-5. Correspondingly, the film thickness first reduces linearly as the drop 

size increases and eventually appears to reach a constant value for long drops as seen 

in Fig. 5-7. The length of the drop, on the other hand, increases much faster with 

increasing drop size and become more and more prolate when K > 0.9. These results 

are consistent with the experimental observations of Li et al. [76] for steady bubbles 

rising in tubes and channels. 

The effect of viscosity ratio of inner to outer fluid on drops rising in a tube is 

investigated by changing A from 0.1 to 1 while keeping \ = 0.1, Re = 10, and 

Bo = 1. A comparison of terminal velocity of the drop as a function of drop size for 
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Figure 5-5: Typical plot of the width versus the length of the rising drop at steady 
state for x = A = 0.1, Re = 10, and Bo = 1. The dashed line represents L = B 
curve. 

Figure 5-6: Typical plot of the deformation parameter of the rising drop at steady 
state as a function of drop size for \ — ̂  = 0.1, Re = 10, and Bo = 1. The dashed 
line represents L = B curve. 
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Figure 5-7: Typical plot of film thickness of the drop as a function of drop size for 
x = \ = 0.1, Re = 10, and Bo = 1. 

A = 0.1 and A = 1 is presented in Fig. 5-8. As the viscosity ratio increases, that is the 

drop viscosity increases, the terminal velocity for each size of drops decreases since 

the increasing resistance of drop to the ambient fluid reduces the interfacial velocity 

of the drop. At smaller drop sizes, the retardation effect is more pronounced and for 

long bubbles the terminal velocities are nearly independent of A. It should be noted 

that the results presented in Fig. 5-8 show the dimensionless terminal velocity, non-

dimensionalized with the buoyancy velocity which is inversely related to the viscosity 

of the bulk phase. The dimensional velocities for drops rising in a low viscosity bulk 

phase will be much higher than the dimensional velocities for drops rising in a higher 

viscosity fluid. A comparison of the deformation parameter for rising drops as a 

function of drop size for A = 0.1 and A = 1 shows that the drop shape is insensitive 

to A as seen in Fig. 5-9. The only difference between the two case is drops change 

from spherical to oblate to prolate for A = 1 whereas drops change from spherical to 

prolate for A = 0.1. without first becoming oblate. The film thickness is also found 

to be insensitive to the variation of viscosity ratio for the range of drop sizes studied 
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Figure 5-8: Comparison of terminal velocity of the drop as a function of drop size 
between viscosity ratio A = 0.1 and 1 for x = 0.1, Re = 10, and Bo = 1. 

as seen in Fig.5-10. These results are consistent with the experimental observations 

of Borhan and Pallinti [16]. 

Bond number Bo — (p2 — p\)gR%/o~c gives the relative significance of gravitational 

forces to interfacial forces. The effect of Bond number on the steady drop velocity as 

a function of drop size for % = A = 0.1 and Re = 10 is seen in Fig. 5-11. The results 

for Bo = 1 are identical to those presented in Fig. 5-4. For the simulations of drop 

with Bo = 10, the terminal velocities of drops with drop size K < 0.6 show a maxima 

in the terminal velocity at K = 0.5 similar to the Bo = 1 curve but with smaller 

terminal velocities. For drop sizes K > 0.6, the terminal velocities start to increase 

again reaching a plateau value much higher than Bo = 1 drops. The steady drop 

shapes for K = 0.3, 0.5, 0.7 and 0.9 at Bo = 1 and Bo = 10 are shown in Fig. 5-12. 

The comparisons of the deformation parameter and the film thickness of the rising 

drops for Bo = 1 and Bo = 10 are shown in Figs. 5-13 and 5-14, respectively. For 

small drop sizes, K < 0.6, with negligible wall effect at Bo = 10, the drop shapes are 
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Figure 5-9: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between viscosity ratio A = 0.1 and 1 for % = 0.1, 
Re = 10, and Bo = 1. The dashed line represents L = B curve. 

+ 
' 

• 

" 

e 
e 

© 

© 

© 

© 

© 

6 
© 

+ k=0.1 
o X=l 

+ 
00 02 04 06 08 10 12 14 

Figure 5-10: Comparison of film thickness of the drop as a function of drop size 
between viscosity ratio A = 0.1 and 1 for x = 0.1, Re = 10, and Bo = 1. 
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Figure 5-11: Comparison of terminal velocity of the drop as a function of drop size 
between Bo = 0.1 and 1 for x = A = 0.1 and Re — 10. 

nearly spherical but lose fore and aft symmetry as seen in Fig. 5-12. For larger drops 

with K > 0.6, the drops are more prolate for larger Bond numbers. A larger Bond 

number indicates lower interfacial tension since the density ratio is held constant at 

X = 0.1 giving the same buoyancy force. The shear stress applied by outer liquid 

around the drop tends to deform the drop while the interfacial forces oppose this 

deformation. Hence, drops with a larger Bond number are more deformed in the 

direction of flow resulting in a larger film thicknesses as seen in Fig. 5-14. The 

more prolate shape of the drops at higher Bond numbers results in larger terminal 

velocities. 

The inertial effect is captured by the Weber number, Wex, which is defined as 

Wer = pU^Rt/(Tc and is a measure of the inertial force as compared to the interfacial 

force. The steady shapes of drops for both small drop size (K = 0.5) and large drop 

size (K = 1) for various Weber numbers is shown in Fig. 5-15 for x = A = 0.1. The 

Weber number is varied by changing the Reynolds and Bond numbers simultaneously 

136 



B o = l 

o 
K = 0.3 K = 0.5 K = 0.7 

Bo =10 

K = 0.3 K = 0.5 K = 0.7 

Figure 5-12: The steady drop shapes for K = 0.3, 0.5, 0.7 and 
Bo = 1 when x = A = 0.1 and Re = 10. 
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Figure 5-13: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between Bo = 0.1 and 1 for ^ = A = 0.1 and Re = 10. 
The dashed line represents L = B curve. 

Figure 5-14: Comparison of film thickness of the drop as a function of drop size 
between Bo = 0.1 and 1 for x = A = 0.1 and Re = 10. 
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Figure 5-15: The steady drop shapes for both small drop size (K = 0.5) and large 
drop size (K = 1) for various Weber number when ^ = A = 0.1, and Re/Bo = 10. 

while keeping the ratio of Re/Bo = 10. As the Weber number is increased, drop 

deforms, becomes flat and eventually develops a negative curvature at the rear. The 

flattening and development of negative curvature at the drop rear have been observed 

for both small and large drops with increasing weber numbers in the experimental 

work by Li et al. [76]. 
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5.5.3 Surfactant results for Newtonian fluids 

The effect of the equilibrium surfactant coverage, x, and surfactant mass transfer on 

the drop dynamics is discussed in this section for % = A = 0.1, Re = 10, Bo = 1, and 

E = 0.164. A comparison of terminal velocity as a function of drop size for x = 0 

and x = 0.667 for drops rising in a tube is shown in Fig. 5-16. As the equilibrium 

fractional coverage is increased, the terminal velocities for drops of all sizes reduce 

but follow a similar trend as the surfactant-free cases. With increasing drop size, 

the terminal velocities of drops with x = 0.667 first increase up to a maximum values 

at K = 0.5, and then decrease to a constant plateau values indicating the terminal 

velocity is independent of drop size for large drops. Previous studies have shown the 

retardation effect of surfactants on rising drops/bubbles in a confined capillary [1, 15] 

as well as for rising bubbles in an unbounded domain [44, 96, 151, 152], and a decrease 

in the terminal velocity of bubbles with increasing bulk concentration of surfactants 

[44, 96, 151, 152]. The retarded mobility of drops in the presence of surfactants is due 

to Marangoni stresses generated at the interface which oppose the flow. As shown 

in Fig. 5-17, the interfacial tension for x = 0 is uniform along the length of the drop 

while for x = 0.667, the interfacial tension at the rear of the drop is lower than the 

front of the drop due to accumulation of soluble surfactants at the rear of the drop. 

In this comparison, while the equilibrium fractional coverage changes, the equilibrium 

interfacial tension for the two cases is the same. The interfacial tension gradient due 

to the non-uniform distribution of soluble surfactants gives rise to Marangoni stresses 

that opposes the flow and hence retards the drop motion. 

The comparisons of deformation parameter of the rising drops at steady state 

and the film thickness for x = 0 and x = 0.667 are shown in Figs. 5-18 and 5-19, 

respectively. Both figures indicate that the drop shapes are not very sensitive to 
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Figure 5-16: Comparison of terminal velocity as a function of drop size among soluble 
surfactant cases of x = 0 and 0.667 for \' = A = 0.1, Re = 10, Bo = 1, Bi = 0.1, and 
Pes = 10. 

arc length s 

Figure 5-17: Comparison of interfacial tension along the interface at steady state 
among soluble surfacant cases of re = 0 and 0.667, in the adsorption-desorption limit 
for K = 0.7, x = A = 0.1, Re = 10, Bo = 1, Bi = 0.1, and Pes = 10. 
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Figure 5-18: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between x = 0 and 0.667 for x = A = 0.1, Re — 10, 
Bo = 1, Bi = 0.1, and Pes = 10. The dashed line represents L = B curve. 

the presence of surfactants especially for small drops. A comparison of steady drop 

shapes for x = 0 and x = 0.667 for K = 0.5, 0.7, 0.9, 1.1, and 1.3 is shown in 

Fig. 5-20. The drop shapes with surfactant coverage of x = 0.667 are similar to 

the surfactant-free drops in that they stay spherical for small drops (n < 0.7) but 

become more prolate for large drops (K > 0.7). This is seen in Fig. 5-18 as well 

as in Fig. 5-20 and is consistent with the experimental observations of Almatroushi 

and Borhan [1]. As a consequence, the film thickness for large drops (K > 0.7) with 

soluble surfactants are higher than the corresponding film thickness in the absence 

of surfactants seen in Fig. 5-19 [98, 102]. For a long drop of size K = 1.3, the film 

thickness in the central region is 0.04 for a surfactant-free system while it is 0.09 for 

the soluble surfactant system where the surfactant transport is controlled by sorption 

kinetics. The apparent film-thickening phenomenon is expected for long bubbles in 

the presence of soluble surfactants in the adsorption-desorption limit [116]. 

Surfactant mass transfer plays an important role in drop dynamics [96, 116]. 
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Figure 5-19: Comparison of film thickness of the drop as a function of drop size 
between x = 0 and 0.667 for X = A = 0.1, Re = 10, Bo = 1, Bi = 0.1, and Pe s = 10. 

When the mass transport of surfactants to the interface is much faster than interfacial 

convection, the surfactant concentration at the interface remains almost at the equi

librium concentration and results in a uniform reduction in interfacial tension. It is 

actually the 'clean' case with lower interfacial tension. This scenario is designated as 

Case I for a = 1. It corresponds to the surfactant case with Bi —> oo. When surfac

tant mass transfer to the interface is much slower than surface convection, surfactants 

cannot adsorb/desorb from the interface and behave as insoluble surfactants. This 

scenario is designated as Case II for which Bi = 0. Finally, Case III refers to soluble 

surfactants in the adsorption-desorption limit when the rate of the surfactant mass 

transport to the interface is comparable to the interfacial convection rate and the 

adsorption/desorption rate of surfactants is much slower than the bulk diffusion rate. 

In this case, the Biot number Bi is set to 0.1. A comparison of terminal velocity 

as a function of drop size for these three cases for x — A = 0.1, Re = 10, Bo = 1, 

x = 0.667, and Pes = 10 is shown in Fig. 5-21. For Case I, the plot of terminal 

velocity as a function of drop size is similar to Fig. 5-4. In the presence of insoluble 
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Figure 5-20: The steady drop shapes for K = 0.5, 0.7, 0.9, 1.1 and 1.3 at x = 0 and 
x = 0.667 for x = A = 0.1, Re = 10, Bo = 1, Bi = 0.1, and Pes = 10. 
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Figure 5-21: Comparison of terminal velocity as a function of drop size among cases 
of 'clean' (Case I), insoluble surfactants (Case II), and soluble surfactants (Case III) 
in the adsorption-desorption limit for x = A = 0.1, Re = 10, Bo = 1, x = 0.667, and 
Pes = 10. 

surfactants, the mobility of drops of all sizes is retarded compared to Case I. In the 

presence of soluble surfactants, the drops of all sizes become remobilized compared 

to the insoluble surfactant case. The comparisons of deformation parameters of the 

rising drops at steady state and the film thickness between insoluble surfactant case 

(Case II) and soluble surfactant case (Case III) are shown in Fig. 5-22 and Fig. 5-

23, respectively. Both figures indicate that the drop shapes are insensitive to the 

surfactant mass transfer effect except at very large drop sizes. 

The effect of surfactant mass transfer can be better understood by comparing the 

interfacial tension as a function of the arc length for the three cases for a drop size 

K = 0.7 as seen in Fig. 5-24. The interfacial tension in Case I is uniform along 

the length of the drop. In Case II, the surfactants are insoluble and not allowed to 

transport between the interface and the bulk. The interfacial tension at the rear 

of the drop is much lower than the front of the drop indicating the accumulation of 
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Figure 5-22: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between insoluble surfactant case (Case II) and soluble 
surfactant case (Case III) for x = A = 0.1, Re = 10, Bo = 1, x = 0.667, and Pes = 10. 
The dashed line represents L = B curve. 
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Figure 5-23: Comparison of film thickness of the drop as a function of drop size 
between insoluble surfactant case (Case II) and soluble surfactant case (Case III) for 
x = A = 0.1, Re = 10, Bo=l,x = 0.667, and Pes = 10. 
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Figure 5-24: Comparison of interfacial tension along the interface at steady state 
among cases of 'clean', insoluble surfactants, and soluble surfactants in the adsorption-
desorption limit for K = 0.7, x — ̂  = 0.1, Re = 10, Bo = 1, x = 0.667, and Pes = 10. 

surfactants at the rear of the drop due to the interfacial flow moving towards the end 

of the drop. The large variation of interfacial tension along the interface gives rise 

to Marangoni stresses that oppose the flow and hence retard the drop motion. That 

is why the terminal velocities for drops of all sizes are reduced in Fig. 5-21. If mass 

transfer is allowed to take place as in Case III, surfactants will desorb from the rear 

of the drop where surfactant concentration is higher while surfactants will adsorb at 

the front of the drop. Thus the interfacial tension gradient between the front and 

the rear of the drop will reduce as is shown in Fig. 5-24, and so will the Marangoni 

stresses. The reduced Marangoni stresses in the case of soluble surfactants result 

in an increased drop mobility as shown in Fig. 5-21. The remobilization due to the 

reduced Marangoni stresses has also been observed when the exchange of surfactants 

between the interface and the bulk increases [126, 136]. 

147 



5.5.4 Results for Shear-thinning Fluids 

In the last section, the effects of the fluid rheology on the mobility and deformation 

of drops rising in a tube in the presence of soluble surfactants in the adsorption-

desorption limit are investigated. For the results presented in this section, X = ^ = 

0.1, Re = 10, and Bo = 1, and for surfactant systems, E = 0.164, Pes = 10, x = 

0.667, and Bi = 0.1. In order to study the effect of the drop rheology, both Newtonian 

(m = 1) and strongly shear-thinning {n\ = 0.3, j3\ = 0.002, and a\ = 10) drops rising 

in a Newtonian quiescent bulk fluid are considered. The comparisons of the terminal 

velocity, the deformation parameter, and the film thickness of steady rising drops 

as a function of drop size between Newtonian drop case and strongly shear-thinning 

drop case are shown in Fig. 5-25, Fig. 5-26, and Fig. 5-27, respectively. There 

are no significant differences for the terminal velocities, the deformation parameters, 

and the film thickness of the rising drop at steady state between Newtonian drop 

case and strongly shear-thinning drop case with surfactant coverage of 0.667. Since 

A = 0.1, the zero-shear viscosity of the drop phase is only one-tenth of the bulk phase 

viscosity. Even for a strongly shear-thinning drop phase, the drop viscosity does not 

reduce significantly to cause a change in the drop deformation and mobility. 

To study the effect of bulk rheology, Newtonian drops rising in both Newtonian 

(n2 = 1) and strongly shear-thinning (n2 = 0.3, /32 = 0.002, and a2 = 10) quiescent 

bulk fluids are considered. The comparisons of the terminal velocity, the deformation 

parameter, and the film thickness of steady rising drops as a function of drop size 

between Newtonian bulk case and strongly shear-thinning bulk case are shown in 

Fig. 5-28, Fig. 5-29, and Fig. 5-30, respectively. As the bulk phase becomes strongly 

shear-thinning, drop mobility increases compared to the Newtonian bulk case as seen 

in Fig. 5-28. The larger shear rate near the rising drop results in a lower viscosity of 
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Figure 5-25: Comparison of terminal velocity as a function of drop size between 
Newtonian drop case {n\ = 1) and strongly shear-thinning drop case (n\ = 0.3, 
j3\ = 0.002, and a\ = 10) in the presence of soluble surfactants in the adsorption-
desorption limit for x = ^ = 0.1, Re — 10, Bo = 1, Pes = 10, x = 0.667, and 
Bi = 0.1. 
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Figure 5-26: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between Newtonian drop case (ni = 1) and strongly 
shear-thinning drop case (ni = 0.3, /^ = 0.002, and a,\ = 10) in the presence of 
soluble surfactants in the adsorption-desorption limit for x = ^ = 0.1, Re = 10, 
Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1. The dashed line represents L = B curve. 

149 



+ Newtonian drop 
O Strongly shear-thinning drop 

e 

® 

+ 
u i 1 1 1 1 1 

00 02 04 06 08 10 12 14 
K 

Figure 5-27: Comparison of film thickness of the drop as a function of drop size 
between Newtonian drop case (ji\ = 1) and strongly shear-thinning drop case (n\ = 
0.3, Pi = 0.002, and ai = 10) in the presence of soluble surfactants in the adsorption-
desorption limit for x — ^ — 0.1, Re = 10, Bo = 1, Pes = 10, x = 0.667, and 
Bi = 0.1. 

the strongly shear-thinning bulk phase. The resistance from the bulk for the rising 

drop is reduced and the drop mobility increases when the drop rises in a strongly 

shear-thinning bulk phase. Both Fig. 5-29 and Fig. 5-30 indicate that the bulk 

rheology has a minimal impact on the drop shape. 
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Figure 5-28: Comparison of terminal velocity as a function of drop size between 
Newtonian bulk case (n2 = 1) and strongly shear-thinning bulk case (n2 = 0.3, 
fa = 0.002, and a2 = 10) in the presence of soluble surfactants in the adsorption-
desorption limit for x = ^ = 0.1, Re = 10, Bo = 1, Pes = 10, x = 0.667, and 
Bi = 0.1. 
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Figure 5-29: Comparison of the deformation parameter of the rising drop at steady 
state as a function of drop size between Newtonian bulk case (712 = 1) and strongly 
shear-thinning bulk case (n2 = 0.3, fa — 0.002, and a2 = 10) in the presence of 
soluble surfactants in the adsorption-desorption limit for ^ = A = 0.1, Re = 10, 
Bo = 1, Pes = 10, x = 0.667, and Bi = 0.1. The dashed line represents L = B curve. 
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Figure 5-30: Comparison of film thickness of the drop as a function of drop size 
between Newtonian bulk case (n2 = 1) and strongly shear-thinning bulk case (n2 — 
0.3, 02 = 0.002, and a2 = 10) in the presence of soluble surfactants in the adsorption-
desorption limit for x = A = 0.1, ite = 10, Bo = 1, Pes = 10, x = 0.667, and 
£ i = 0.1. 
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Chapter 6 

Summary and Future Work 

A robust hybrid Volume-of-Fluid (VOF) numerical model was developed, which com

bined the mass conservation properties of the VOF method with the accuracy of the 

front-tracking scheme to study strongly deforming interface. The numerical method 

was used to study the drop formation process in co-flowing fluids and the motion of 

drops rising in a confined tube with inertia, surfactants, and shear-thinning fluid rhe-

ology effects. In the numerical simulations, the motion of the incompressible drop 

and bulk fluids were described by the continuity and momentum equations. The 

surfactant-free numerical models were validated by comparing with previously pub

lished experimental data. Surfactants were modeled using a Langmuir adsorption 

framework and considered soluble with adsorption-desorption as the rate-limiting 

step. The non-Newtonian shear-thinning behavior was described by the Carreau 

model. 

For drop formation process, the effects of the ratio of outer flow rate to inner flow 

rate, ratio of drop viscosity to bulk viscosity, Bond number, and capillary number 

on the drop size was investigated for Newtonian systems. The simulation results 

indicated that the drop size decreased by decreasing the viscosity ratio, decreasing 

the capillary number, increasing the flow rate ratio, or increasing the Bond number. 

Jetting mode was observed at higher flow rate ratios, viscosity ratios, and capillary 
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numbers. At higher Bond numbers, Bo > 3, a negative curvature was observed at 

the rear of the drop resulting in a mushroom shape. When surfactants were present 

in the system, they were swept from the apex of the drop and accumulated in the 

neck region slowing down the break up of the primary neck. This resulted in larger 

primary drop volumes and longer break up times. The outer co-flowing flow washed 

the surfactants away from the neck region and weakened the effect of Marangoni 

stresses. At high equilibrium interfacial coverages, larger Marangoni stresses resulted 

in substantial retardation of the primary neck formation and the drops broke at the 

secondary neck. By increasing the outer co-flowing flow, surfactant gradients were 

reduced weakening the Marangoni stresses. Drop breakup was then reverted back to 

the primary neck. The adsorption-desorption rate characterized by the Biot number 

also affected the neck breakup location. The primary drop volume and breakup 

time showed non-linear behavior with Biot number in the absence and presence of 

an outer co-flowing flow. As the confining walls moved closer, the formation of the 

neck could be completely suppressed. The geometry and flow rate of the outer fluid 

in a co-flowing system thus provided further control in dispensing fluids of desired 

drop sizes in the presence of surfactants. Shear-thinning rheology of the drop fluid 

also affected the drop formation process. As the drop became more shear-thinning, 

the drop broke up faster with a shorter remnant drop length. Retardation of drop 

breakup in the presence of soluble surfactants were seen for shear-thinning drops as 

well. In the presence of soluble surfactant with high equilibrium interfacial coverage, 

shear-thinning drop rheology caused the drop break up at the secondary neck with 

multiple satellite drop formation. 

The hybrid VOF numerical method was also implemented on the buoyancy-driven 

rise of drops in a tube filled with a quiescent immiscible fluid in the presence of sur

factants at finite Reynolds numbers. The steady drop shape and size, drop terminal 
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velocity, film thickness, and deformation parameter were analyzed from the simu

lation results. For the surfactant-free Newtonian system, the effect of the tube 

confinement, viscosity ratio of drop to bulk fluids, Bond number, and Weber number 

on the steady drop motion and shape were investigated for drops of different sizes. It 

was shown that for small drop sizes, the terminal velocity of the drops increased with 

the drop size. As the drop size became comparable to the tube size, the increased 

wall drag reduced the velocity of the drops. Beyond a critical drop size, the drop 

terminal velocity was independent of the drop size. As the viscosity of drop phase 

was increased, the terminal velocity for drops of all sizes were reduced due to the 

increasing resistance to the outer fluid. As the Bond number was increased, small 

drops (K < 0.6) lost fore and aft symmetry and their mobility was retarded due to 

shear stresses applied by the outer fluid. Large drops (K > 0.6), on the other hand, 

were more elongated in the axial direction due to the confining wall and their mo

bility increased. The increasing inertial effect indicated by the Weber number could 

increase the terminal velocity of drops and resulted in deformation such as flattening 

and negative curvatures at the rear of the drop. For the surfactant systems, the 

effect of the equilibrium coverage of soluble surfactants in the adsorption-desorption 

limit and surfactant mass transfer on the drop mobility were also determined. The 

simulation results showed that non-uniform distribution of surfactants along the in

terface gave rise to Marangoni stresses that opposed the interfacial flow and retarded 

the drop motion. Larger Marangoni stresses generated in the presence of insolu

ble surfactants compared to soluble surfactants, or with higher equilibrium coverage 

of soluble surfactants led to larger retardation effects on buoyancy-driven motion of 

drops. For the range of parameters studied, the shear-thinning drop rheology had a 

negligible effect on the deformation and mobility of the drop. For a strongly shear-

thinning bulk fluid, the drop mobility increased though the drop deformation showed 
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no significant change compared to a Newtonian bulk phase. 

Two-phase flow problems are of great interest in a variety of applications such 

as microencapsulation, enhanced oil recovery, and microfluidics. The results of this 

work are a first attempt at implementing the developed numerical model to study 

drop formation in co-flowing fluids and the drop motion in a confined domain with 

the effects of surfactants and non-Newtonian rheology at finite Reynolds numbers. 

In the future, the numerical model presented in this work can be extended to 

• include more complex non-Newtonian rheologies such as viscoelastic rheology, 

• consider effect of soluble surfactants where the adsorption-desorption rate is 

comparable to the diffusion rate, 

• incorporate the effects of the geometry of the confining wall into rectangular 

channels or more complex geometries. 
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Appendix A 

Derivation of the Single-fluid VOF 

Formulation 

Start from the linear momentum balance for a control volume containing a singular 
interface which separates the two phases 1 and 2 [70, 73] sketched in Fig. A-l: 

D 
Dt 

Iff pu*dV = ffn • U*ds + f a*mdl - ff (p2 -pi)g- x*nds. (A.l) 

s c 
Here II* = — P*I + r* is the modified stress tensor expressed in term of the modified 
pressure P*, and p is p\ or p2 for drop or bulk phase. Seen in Fig. A-l, V = V\ + V2 
denotes the total control volume, S = S\ + S2 denotes the total area of the control 
volume, C denotes the perimeter of the interface, and m = t x n is a unit vector 
which lies in Sint and is normal to the curve C. 

Next, each term in Eq. A.l must be converted into the volume integral. Surface 
integrals can be converted into volume integrals via the Gauss divergence theorem, 
and the line integrals can be converted into surface integrals via the Stokes' theorem 
[72] as below: 

ffn-U*ds= fffv*-U*dV, (A.2) 

s v 

f a*mdl = ff [V>* - a*n (V* • n)] ds, (A.3) 

c s 

-ill 
J J [ V >* - a*n (V* • n) - (p2 - p1) g • x*n] ds 

[V>* - a*n (V* • n) - (p2 - P l ) g • x*n] S*sdV. (A.4) 

The term on the left hand side of Eq. A.l can be treated by the Reynolds transport 
theorem [72] after applying the continuity equation as: 

JJh~dV=JfJ^dV (A5) 
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s2 

»• m 

Figure A-1: Schematic of a control volume containing a singular interface which 
separates the two phases 1 and 2. 

Thus, after removing volume integrals, Eq. A.l becomes 

p (j£ + u* • V*u*) = V*IT + [VaV* - a*n (V* • n) - (p2 - Pl) g • x*n] 8*s. (A.6) 

Then, by substituting II* = -P*I + r* into Eq. A.6, the single-fluid VOF formulation 
in the dimensional form is obtained: 

p (^ + u* • V*u* J = -V*P* + V* • (p [(V*u*) + (V*u*)Tl) 

+ [V>* - <x*n (V* • n) - (p2 - Pl) g • x*n] 6*, (A.7) 

where p, is //i or p2 for drop or bulk phase. 

Finally, the single-fluid VOF formulation in the dimensionless form via nondimen-
sonalizing with lc, uc, tc = lc/uc, Pc = p2Uc/lc, and ac is given by 

pRe (^ + u • Vu J = - V P + V • [p [(Vu) + (Vu)T ] ) 

+7=r [V8or - crn (V • n) + Bozn] <5S. (A.8) 

Here, p = 1 — (1 — x) <f> and // = 1 — (1 — A) </), with x = Pi/Pi and A = p\/P2 
representing the density and viscosity ratio of drop to bulk fluids, respectively. 
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