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ABSTRACT 

ON DECOMPOSITIONS AND CONNES'S EMBEDDING PROBLEM OF FINITE 

VON NEUMANN ALGEBRAS 

by 

Jinsong Wu 

University of New Hampshire, September 2011 

A longstanding open question of Connes asks whether every finite von Neumann algebra 

embeds into an ultraproduct of finite-dimensional matrix algebras. As of yet, algebras 

verified to satisfy Connes's embedding property belong to just a few special classes (e.g. 

amenable algebras and free group factors). In this dissertation we establish Connes's em­

bedding property for von Neumann algebras satisfying Popa's co-amenability condition. 

Some decomposition properties of finite von Neumann algebras are also investigated. 

Chapter 1 reviews von Neumann algebras, completely bounded mappings, conditional 

expectations, tensor products, crossed products, direct integrals, and Jones basic construc­

tion. 

Chapter 2 introduces new decompositions of finite von Neumann algebras which we 

call T-thin, strongly T-thin, and weakly T-thin, etc. We also consider the singly-generated 

problem, and compute the cohomology in such decompositions of finite von Neumann 

algebras. 

In Chapter 3 we show by estimation of free entropy that free group factors lack the type 

of decompositions discussed in Chapter 2. 

In Chapter 4 we investigate co-amenability and Connes's embedding problem. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

F.J. Murray and J. von Neumann [Von30, MV36, MV37, Von40, MV43] introduced and 

studied "rings of operators," which were later renamed "von Neumann algebras" by J. Dixmier 

in 1957. Von Neumann algebras are strong-operator closed self-adjoint subalgebras of the 

algebra of all bounded linear transformations on a Hilbert space. One calls a von Neu­

mann algebra whose center consists of scalar multiplies of the identity a. factor. Every von 

Neumann algebra has structure equal to a direct integral of factors. This makes factors the 

building blocks for all von Neumann algebras. 

Murray and von Neumann [MV36] classified factors by means of their relative dimen­

sion functions. Finite factors have dimension functions with finite range. (More generally, 

one calls a von Neumann algebra finite if it admits a faithful normal trace.) The dimension 

function of a finite factor gives rise to a (unique, when normalized) tracial state. 

Finite-dimensional finite factors are full matrix algebras M„(C), n = 1, 2, 

Infinite-dimensional finite factors are called factors of type II1; sometimes described 

as continuous matrix algebras. A factor is hyperfinite if it can be weakly approximated 

by finite-dimensional matrix algebras. In [MV37], Murray and von Neumann provided the 

first two examples of non-isomorphic factors of type IIl5 the two-generator free group factor 

and the permutation group factor. They also established the uniqueness of the hyperfinite 
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factor % of type Hi. The permutation group factor is the hyperfinite factor ft. of type Hi. The 

hyperfinite factor of type II x occurs as a subfactor in every factor of type Hi. A. Connes 

[Con76] famously showed that every subfactor of % is hyperfinite. Embeddings into an 

ultrapower of 'R plays a key role in his proof. Accordingly, Connes asks whether every 

factor of type Hi with a separable predual embeds into some ultrapower of %\ this is known 

as Connes's embedding problem. 

In this thesis, we will study Connes's embedding problem for finite von Neumann al­

gebras satisfying Popa's co-amenability [PM03] and show that a new class of finite von 

Neumann algebras can be embedded into an ultrapower of K. F. RSdulescu [Ra02] calls a 

discrete group hyperlinear if it faithfully embeds into the unitary group of an ultrapower of 

%. For group von Neumann algebras, Connes's embedding problem reduces to whether any 

discrete countable group is hyperlinear. We will show that any group with a hyperlinear 

co-amenable subgroup is itself hyperlinear. 

Gromov [Gro99] introduced sofic groups, easily seen to be hyperlinear. In fact, many 

groups [ElSz05, Pe08] are known to be sofic, but whether every group is sofic, or even just 

whether every hyperlinear group is sofic, remains open. 

The other factor of type Hi introduced in [MV37] is the free group factor. Much about 

free group factors remains unknown. Despite much attention, the question of isomorphism 

between the two-generator free group factor and the three-generator free group factor re­

mains open. Attacking on this problem, D. Voiculescu [VDN92] introduced free proba­

bility theory which included many tools such as free entropy. In the framework of free 

probability theory, Connes's embedding problem is equivalent to the emptiness of a certain 

set connected with the definition of free entropy. In [GePo98], L. Ge and S. Popa intro­

duced a new type of decomposition for factors of type IIj. They expressed a factor of type 

Hi as the weak-operator closure of the linear span of a product of abelian von Neumann 

subalgebras and the hyperfinite subfactors of type 11^ This decomposition provides a tool 

to study free group factors. Ge and Popa showed that many factors of type Hi are thin; i.e. 

equal to the weak-operator closure of the linear span of a product of two hyperfinite von 

Neumann subalgebras. In contrast, by estimating the free entropy of a finite generating set 
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in a thin factor, Ge and Popa showed that free group factors are not thin. Hyperfinite von 

Neumann algebras and abelian von Neumann algebras (i.e. type Ii von Neumann algebras) 

are building blocks for the decomposition of von Neumann algebras. More building blocks 

such as property T factors could be used. 

We extend the decomposition defined in [GePo98] and introduce new decompositions 

that we call T-thin, strongly T-thin, and weakly-thin etc. We show that the free group 

factors do not have this type of decompositions either. 

1.2 Preliminaries 

Throughout this thesis, we always denote by C (R, Z, and N respectively) the complex 

number field (the real number field, the group of all integers, the set of all positive integers 

respectively). 

Let *H be a Hilbert space over C with an inner product { • . • ) : ' H X ' K H C satisfying: 

(i) <a£i + bfr, 7> = atfu rf) + b{£2, n), 

(ii)<£*7> = fo?>, 

(iii)<££>>0, 

(iv) <££) = 0 only when <f = 0, 

whenever ^ j , ^ ^ * ? are in "K, and a, b are in C The norm || • || on the Hilbert space 'H 

induced by the inner product (•, •> is then defined by ||£|| = (£,£>1/2, whenever £ e <H. 

Now let T : *H H-» "H be a linear operator acting on the space TH as above, whose 

operator norm is given by 

iini = sup{ira:£€w,i£ii<i}. 

We say T is a bounded operator if ||r|| < oo. The adjoint of T on the Hilbert space fH, 

denoted by T*, can be defined as follows: 

whenever £, TJ are in <H. From now on, we always consider T as a bounded operator on Ti, 

unless otherwise stated. 
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Below are several properties that the bounded operators enjoy. 

Lemma 1 For all bounded operators T,S on a Hilbert space *H and a, b e C, we have 

that 

1. (aT + bS)* =aT* + bS\ 

2. (TS)* =S*T*, 

3. (T*)* = T, 

4. urn = imp. 

We say T is normal if TT* = T*T; is self-adjoint if T* = T; is unitary if TT* = T*T = 

I, where / is the identity on "H. Actually, self-adjoint operators and unitary operators are 

normal operators, while it is not true vice versa. 

Let us recall more types of bounded operators. We say T is positive if (T%, £;) > 0 for 

any £ in *K; T is a(n) (orthogonal) projection ]fT* = T = T2. Projections are positive and 

positive operators are self-adjoint. 

Now let SfH) be the algebra of all bounded operators acting on the Hilbert space <H. 

Although there are many topologies on S(*K), we will focus on the following three topolo­

gies: norm topology, strong-operator topology, and weak-operator topology. Suppose {Ta}a 

is a net of operators on <H. We say Ta is convergent to T in norm topology if \\Ta - T\\ is 

convergent to 0; in strong-operator topology if \\{Ta - T)£\\ is convergent to 0 for all £ in 

*H; in weak-operator topology if (Ta^, r/) is convergent to {T£, TJ) for all £, rj in 'H. 

Finally, we can successfully give the definition of C* algebra, which is important to von 

Neumann algebras introduced in the following section. An algebra 21 c S('K) over C is 

called a *-algebra if T e 21 implies T* e 31. We say 21 is a C* algebra if the *-algebra 21 is 

closed in norm topology. 

There is also an alternative way to define a C* algebra. Suppose 21 is a Banach algebra 

over C. Let * : A i-» A* be an involution from 21 onto 21 for all A £ 21 satisfying that, for all 

T, S in 21 and a, b in C, 

4 



1. (aT + bS)* = aT*+bS*, 

2. (TS)* = S*T*, 

3. (T*)* = T. 

Then, a Banach algebra 21 with an involution * is a C* algebra if the additional equation 

| | r 7|| = \\T\\2 holds for any T in 21. 

Von Neumann Algebras 

A *-algebra Al c S(9I) is a von Neumann algebra if At is closed in weak-operator topol­

ogy. Denote the commutant of At acting on a Hilbert space "K by At', and the center of At 

by ^(Al). Any projection in the center of At is called a central projection in At. Accord­

ing to the double commutant theorem for von Neumann algebras, a *-algebra At c S{^H) 

is von Neumann algebra if At = (At')'(= At"). All von Neumann algebras are C* algebras. 

A von Neumann algebra At is a factor if the center of At consists of only scalar multiplies 

of the identity; i.e. At n At' = CI. In particular, S(*H) is a factor. Each von Neumann 

algebra is a direct integral of factors. 

Let Al be a von Neumann algebra described as above, and let E, F be projections in At. 

We say that E is equivalent to F in At, denoted by E ~ F(Al), if there exists an element 

V in At such that V*V = E and VV* = F. Here V is called a partial isometry from the 

range E^H) of E onto the range FQH) of F. The central carrier P of an element A in At 

is the central projection P satisfying P = I- VaPa for any central projection Pa in Al with 

PaA = 0. 

A projection E in a von Neumann algebra Al is said to be infinite relative to At when­

ever E ~ EQ < E for some projection E0 in Al. Otherwise E is called finite relative to Al. 

A projection E is a minimal projection (or an atom) in a von Neumann algebra Al if E is 

non zero and contains no non zero proper subprojections in Al. A von Neumann algebra 

At is finite if the identity I is finite; At is semi-finite if there is a finite projection E e Al 

whose central carrier is the identity I. 

5 



Now let us focus on the case when Al is a factor. We say Al is a factor of type I if 

At contains a minimal projection — of type ln if the identity I is the sum of n equivalent 

minimal projections. All n x n full matrix algebras are factors of type I„ for n e N. An 

example of a factor of type IM is S(*K). A factor Al is of type II if Al has no minimal 

projections but has a finite projection — of type Hi if I is finite — of type W^ if I is infinite. 

Each factor of type 11^ is a tensor product of a factor of type II x and a factor of type ITC. 

A factor Al is of type III if Al contains no finite projections. According to [Tak73], every 

factor of type III is a continuous crossed product of a factor of type IIoo by the real line R. 

As an example, see the following: 

Example 2 Let Gbe a discrete group with a unit e, and l2(G) be the Hilbert space spanned 

by the elements in G with inner product (•, •> given by 

\geG geG ' g£G 

Denote by £,G the von Neumann algebra generated by Lgfor all g in G, i.e. XG = {Lg '• g € 

G}" c S(f(G)), where Lg is the shift: operator on l2(G) satisfying Lgh = gh,for any h in G. 

A discrete group G is infinite-conjugacy-class (I.C.C.) if the conjugacy class of g is infinite 

for all g e G but unit e. One result showed in [KR] claims that G is I. C. C. if and only if JLG 

is a factor of type II\. 

More precisely, consider the case when G is the non-abelian free group T^ on two 

generators, which is I.C.C.. The result above tells us that the corresponding group von 

Neumann algebra Xr2 is a factor of type II\. Another example is the permutation group n . 

Suppose n„, n e N , is the group of all permutations on the set [—n,..., - 1 , 0 , 1 , . . . , n}, Tln 

embeds into n„+1 naturally and the permutation group n = U„n„. Then the permutation 

group II is an I.C.C. group and the permutation group von Neumann algebra Xn is a 

factor of type II\. Moreover, Murray and von Neumann proved that Xr2
 and Xn are not 

isomorphic (see [KR], Chapter 6). 

To proceed with our arguments, we need to recall a few basic facts about GNS con­

struction. 
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Let Al be a von Neumann algebra and p : Al H-» C be a linear functional on Al. The 

norm of the linear functional p on Al is defined by 

IH = sup{|p(r)|:reAiimi<l}, 

and p is bounded if ||p|| < oo. A bounded linear functional p is normal if it is weak-operator 

continuous on the closed unit ball (Al)i of Al; is faithful if p(A*A) = 0 implies A = 0, for 

all A in Al; is positive if p(I) = |[p||; is a state if p(/) = 1 = ||p||; is a tracial state if p is a 

state and p(rS) = p(ST), V7\ S e Al. In [MV36], Murray and von Neumann proved that 

only factors of type I„ and Hi have tracial states, where n e N. 

The linear space of all bounded linear functionals on Al forms the dual of Al, denoted 

by At*. The linear space of all normal linear functionals on Al, denoted by Al#, is a Banach 

space. The space Al# is a predual of At; i.e. (Al#)# = Al. It is well-known that the predual 

At# of At is weak* dense in At*. 

In order to establish the GNS construction, we still need to introduce two notations. 

A representation <p of a C* algebra 21 on a Hilbert space Ii is a *-homomorphism from 

21 into B(<H). For each unit vector £ in *H, i.e. ||£|| = 1, a linear functional a>^ = <•£, £) on 

S(9i) is called a vector state. 

Theorem 3 (GNS Construction, see [KR], Theorem 4.5.2) Ifp is a state onaC algebra 

21, then there exists a representation np of W. on a Hilbert space lip and a vector %p € lip 

such thatp = o)£p o np, i.e. 

P(A) = (7Tp(A^p^p), 

whenever A e 21. 

Proof. Let 

ifp = {A € 21: p(A*A) = 0}. 

Since p(B*A) = 0 for all A e ££p, B e 21, Jzfp is a closed left ideal of 21. The equation 

(A + ^fp,B + Sep) = P(B*A) 
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gives an inner product <•, •) on 21/J2fp. Denote by 'Tip the completion of 2I/Jzfp relative to the 

inner product (•, •>. Therefore lip is a Hilbert space. 

For all A, B in 21, we define 

n(A)(B + %p) =AB + :%, 

and so 7r(A) is a linear operator on 2I/Jzfp. For all A, B in 21, 

\\A\\2\\B + J?p\\2-\\n(A)(B + £>p)\\2 

= \\A\\2\\B + J?p\\2-\\AB + J?p\\2 

= \\A\\2(B + ^P,B + Sep) - (AB + J§£, AB + 2>p) 

= \\A\\2p(B*B)-p{B*A*AB) 

= p(B*(\\A\\2I-A*A)B)>0, 

hence \\TT(A)\\ < ||A|| and 7r(A) is bounded. Consequently it can be extended to a bounded 

operator on 9ip, denoted by 7ip(A). We now show that np(A) is a representation of 2IWhen 

A = I, np(I) is the identity on *HP. Clearly, for all A, B, C in 21, a, b in C, 

7Tp(aA + bB)(C + £fp) = (anp(A) + bnp(B))(C + &p), 

np(AB)(C + &p) = np{A)np(B)(C + Jz?p), 

{np(A)(B + Jzfp), C + Jgfp> = (B + Jfp,np(A*XC + ^p)). 

Moreover, since 2I/Jz?p is dense in 9ip, we have 

7rp(aA + bB) = anp(A) + bnp(B), 

7Tp(AB) = 7Tp(A)7Tp(B), 

np(A)* = TTP(A*). 

This proves that np is a representation of 21 on fHp. Let %p = I + ££p e 2I/«ifp. Then 

np(A)tp = A + i?p, VA e 21. 

Therefore, 7rp(2I)£p(= 2I/Jzfp) is dense in 9ip, and hence, for all A in 21 

<7rp(A)fp, £P> = (A + J*fp, / + S?p) = p(A). 
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• 

Remark 1 If p is faithful, then Jz?p = 0, and thus the Hilbert space Up is the completion 

of 21/J*fp(= 21) relative to the inner product given by {A, B) = p(B*A), for all A, B in 21. 

The space lip is also denoted by L2(2I,p), which will be used frequently in the following 

sections. 

Theorem 3 focuses on the case when p is bounded. Actually, it can also be extended to 

the case when p is a weight, which is an unbounded linear functional. 

Now let us recall the definition of a weight. For a von Neumann algebra 21 c SCJi), let 

2l+ be the set of all positive elements in 21. A linear mapping p : 2I+ i-> [0, oo] is called a 

weight on 21 if 

p(H + K)= p(H) + p(K),p(aH) = ap(H), VH, K G 2I+, 0 < a G R 

Let 

JVP = {A G 21: p(A*A) < oo}, 

Np = {A G 21: p(A*A) = 0}, 

Fp = {A G 2I+ : p(A) < oo}, 

^ p = span{A : A e Fp). 

A weight p is faithful if Np = {0}; p is semi-finite if Mp is weak-operator dense in Al; p 

is normal if there is a family of positive normal linear functionals {pa}a such thatp(Tf) = 

T,aP<*(H) for any H in Fp; p is a tracial weight on 21 if p(AA*) = p(A*A), for all A in 21. 

Since ^p is the linear span of Fp, the weight p can be extended to a linear functional on 

JZp, denoted by p again. 

To see the GNS construction induced from a weight, we refer to the textbooks such as 

[KR] for a much more complete analysis. 

In ending this section, we will show that for a fixed tracial weight on a semi-finite 

von Neumann algebra, there exists a simple relation between any normal state on the von 
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Neumann algebra and a positive unbounded operator. Before this, we would like to recall 

some notations about unbounded operators. 

An (unbounded) operator T on a Hilbert space H is closed if the graph {(£, T%) : £ e 9i} 

of T is closed under the norm given by ||(£ Tf)\\ = ||£|| + \\Tij\\ for any f e "H. We say 7/ 

is densely defined if its domain is dense in 9i. In particular, every bounded operator is 

closed and densely defined. A closed, densely defined operator T is affiliated with a von 

Neumann algebra At on 9i, denoted by TijM, if UTU* = T for any unitary operator U in 

At'. For more about unbounded operators, we refer to [KR]. To state an important result 

about unbounded operators, we denote by \T\ the absolute value of T for any operator T; 

i.e. \T\ = (T*T)m. Then the result [KR] is that a closed, densely defined T has a polar 

decomposition T = V\T\, where V is a partial isometry from the range of T* onto the range 

of T. Moreover, if TT]M, then \T\rjM. 

Lemma 4 Suppose Al is a semi-finite von Neumann algebra with a separable predual 

and a faithful normal tracial weight Tr. Then for any normal state (p on Al, there is 

a(n) (unbounded) positive operator H affiliated with At such that <p(X) = Tr(HX)for any 

X G At. 

Proof. Let {Ei,a}a be an orthogonal family of projections in Al maximal with respect to the 

property <p(Ei,a) > Tr(E\,a) and E\ = I - zZa E\,a. By induction, for n G N, let {E„j}}p be 

an orthogonal family of projections in (I - En-i)M(I - En-{) maximal with respect to the 

property <p(.En,p) > nTr(En^). Let En- 7 - D/? En$. Then En < En+\ and En must converges 

to I in the strong-operator topology. Otherwise, we take E = I - lim„ En. Then 

<f>(E) = lim0(7 - En) > limnTr(I - En) > UmnTr(E) > 0, 
n n n 

and <f>(E) goes to oo as n goes to oo which leads a contradiction. Since Al is semi-finite and 

separable, there exists a sequence {Fn}n of projections such that lim„ Fn = I, Fn are finite 

and Fn < En. Then for 4>\F„MF„ ^ riTr\FnMFn, there exists a positive element K'n in the unit 

ball (FnMFn)x of FnMFn such that <f>(FnXFn) = nTr(K'nX) for all X e At. Let Kn = nK'n. 

10 
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Since 

Tr(Kn+lFnXFn) = <f>(Fn+1FnXFnFn+1) = Tr(KnX) 

for all X G At, we have FnKn+xFn = Kn. Let K be the least upper bound of {Kn}. By [KR] 

Chapter 5, K is positive, #77Al and Tr(K) = 1. We pick H as K. • 

Special Mappings 

In this section, I will mainly introduce two mappings: norm one projection and conditional 

expectation. The relationships between these two mappings is also discussed. 

Let N c Al be a von Neumann subalgebra of a von Neumann algebra Al. A linear 

mapping Y : At i-» N is a norm one projection if |PF(X)|| < ||X||, VX G At, and T(F) = 

F, VF G N. 

A linear mapping O : Al H-» Af is a conditional expectation if, for any X in Al, Fi, F2 

in A/", we have 

1. O(X) > 0 when X > 0, 

2. $(7) = 7, 

3. O ^ X F O = Fi<D(X)F2. 

There is a well-known result showing that the two mappings described above are actu­

ally equivalent (see [Tak] for reference). More precisely, 

Proposition 5 Let N c Al be an inclusion of von Neumann algebras, <E> a linear map­

ping from Al onto N. Then O is a norm one projection if and only if O is a conditional 

expectation. 

Proof. First, we assume that <I> is a norm one projection from Al onto N and X is a 

positive element in Al. For any state p on N, we have that p o O is a state on At since 

(p o 0)(7) = 1 = ||p ° OH. If O(X) is not positive, then there exists a state p such that 
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(p o 0)(X) is negative or an imaginary number, this contradicts the positivity of p o <D. Thus 

O is positive. For any projection E in N, X in (At)i, we shall prove 

<S>(XE) = ®(XE)E, E®(EX) = <D(£X). 

We assume that Al acts on a Hilbert space 9i and consider operator <J>(X£X7 - E) in N 

with A in R. Then, we have that 

\\A®(XE)(I - E) + XE\\2 = P(7-£)0(X£)*+£X*[ | 2 

= sup pa - mixETt + Era2 

= sup p(7 - E)®(XEyz\\2 + \\EX*£\\2 

IKII<1 

< ^2||(7 - £)<D(X£)*||2 + \\EX*\\2 

< / l 2 | |$(X£)(7-£) | | 2+l. 

On the other side, we obtain that 

P0(XE)(7 - E) + XE\\ > \\®(A.<P(XE)(I - E) + XE)\\ 

= \\<S>(A®(XE)(I -E) + ®(XE)\\ 

= ||<D((1 + A)®(XE)(I -E) + Q>(XE)E\\ 

> m+A)®(XE)(I - m 

Combining the above two equations, we get for i e R , 

A2\\<S>(XE)(I - E)\\2 + 1 > (1 + A)2\\^(XE)(I - E)\\2. 

Then we have 

2A\\®(XE)(I- E)\\ < 1 - \\®(XE)(I- E)\\. 

If A is large enough, the left-hand side of the equation go to oo and the right-hand side is a 

constant, then the contradiction yields ®(XE)(I-E) = 0. Symmetrically, (I-E)®(EX) = 0, 

and thus 

<I>(X£) = ®(XE)E + 0(X£)(7 -E) = <&(XE)E = ®(XE)E + 0(X(7 - E))E = 0(X)£. 
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Similarly, O(EX) = EQ>(X). According to the spectral theorem (for example, [KR], The­

orem 5.2.2), and the fact that any element can be written as a linear combination of self-

adjoint elements, we have 

<D(F!XF2) = F!<D(X)F2, 

whenever Y\, F2 are in N. Hence O is a conditional expectation from At onto N. 

In the other direction, we assume that O is a conditional expectation from Al onto N. 

By the definition of conditional expectations, we have <t>(F) = F for any F in N. Since O 

is positive, we have 

0 < 0((X - $(X))*(X - <X>(X))) = <D(X*X) - 0(X*)0(X), 

and then 

HO(x)ii2 = no(r)0(x)ii < no(rx)ii < \\rx\\ = \\x\\2. 

Thus O is a norm one projection from Al onto N. • 

There are still some more mappings we would like to mention here as they will be 

discussed later. Suppose Al, Af are von Neumann (or C*) algebras. A linear mapping 

Y : Al i-» N is positive if Y(X) > 0 for all X > 0. A linear mapping T : At i-> N is 

completely positive if for any n G N, the linear mapping Y„ : M„(Al) i-> M„(N) is positive, 

where T„ is given by ^ ( [X , - , ] ^ ) = [Y(X!7)]^.=1,X!7 e Al, [X,7]^.=1 e M„(Al). A linear 

mapping Y : Al •-» N is completely bounded if 

imU = SUp||^| |<oo, 
n>l 

where 

ll^nll = sup{||TH(X)|| : X G M„(Al), ||X|| < 1}. 

Finally, a linear mapping *F : Al •-» N is completely contractive if H^IU < 1. 

Two Products 

In our main work, we shall frequently use two products for von Neumann algebras: the 

tensor product and the crossed product. 
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First, let us recall the tensor product. Suppose Al, N are von Neumann algebras acting 

on Hilbert spaces *K and 7C respectively. Let <H ® 'K be the Hilbert space tensor product of 

Ii and *K. For any A G !B(9i) and B e B(%), a simple tensor product A® Bis the bounded 

linear operator on 9i <S> % given by A ® 7?(£ ® 77) = A£,®Bn for all £ G 7Y, 77 G 7C. Then 

the von Neumann algebra tensor product M<Z>N of At and N acting on the Hilbert space 

<H®<K is the von Neumann algebra {A ® B : A G Al, B e AT}" c S(7Y ® *7C). 

The following theorem is very important, and will be used in the sections below from 

time to time. For the proof and more details, we refer to [KR, Tak]. 

Theorem 6 Let At, N be von Neumann algebras acting on Hilbert spaces Ii and % re­

spectively. The commutant (M®N)' of M®N onfi <8> TC is isomorphic to M'®N'. 

Crossed products are used mainly for studying properties of von Neumann algebras 

that are invariant under *-isomorphisms. Suppose At is a von Neumann algebra acting on 

L2(Al, T) with a faithful normal tracial state r. Let G be a discrete group with a unit e and 

cr : G H-» Aut(M) be a trace-preserving group homomorphism. That is r o o~g = r, for any g 

in G. The crossed product of a von Neumann algebra Al by the discrete group G, denoted 

by Al >v G, can be described as below. 

Denote by || • ||2 the tracial norm of Al given by ||X||2 = r(X*X)1/2, VX e Al. Since crg 

is an automorphism of Al and r = r o o~g for any g in G, we have ||X||2 = ||crg(X)||2 for 

any X in Al and g in G. Then we can define a unitary operator Vg on L2(Al, r) such that 

VgX = crg(X) for any g in G, X in Al, where X, is a vector in L2(Al, r) corresponding to X. 

Let 9C = ®geG7ig, where 7 ^ is a copy of L2(Al, r). For any 71 in S(7C), its corresponding 

matrix form is [TM~\Pyq&G satisfying Tp,q G S(L2(M, r)). We embed Al into S(7C) such that 

X has matrix form [X5M~\p>qeG in &CK) for any X G Al, where 6p,q = 0 if p ± q; 6p<q = 1 

if p = q. Let Ug be the element in S(7C) whose corresponding matrix form is [SpygqVg], 

where Vg is the unitary operator described above. 

Finally, the crossed product Al >v G of At by G is the von Neumann algebra 

Al >v G = {X, Ug : X G Al,g e G}" c £(<K). 
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All elements in the crossed product have form Zg€G -̂ ĝ g> where Xg G Al. The trace T\ on 

A l x"cr G is given by 

T\ 

( \ 
= T(Xe). Tu*gUg 

VgeG 

Direct Integrals 

Let A" be a cr-compact, locally compact (Borel measure) space, p be the completion of a 

Borel measure on X, and let {9ip}p be a family of separable Hilbert spaces indexed by the 

points p of A". We say that a separable Hilbert space 7/ is the direct integral of {77p}p over 

(A\p) (we write Hi = f ®7ipdp(p)) when, for each £ G "77, there exists a corresponding 

function p i-» £(p) such that g(p) e <HP for each p and 

(i) p H-» (£(p), 77(p)>, for all £, 77 G Hi is p-integrable, 

<£»7>= f (t(p)Mp)W(p)-

(ii) if up£
(H for all p G A" and p i-> (MP, £(p)) is integrable for all £ G 77, then there is a 

M in 77 such that w(p) = wp for almost every p £ X. 

We say that J ®<Hpdp(p) and p H-> £(p) are the (direct integral) decompositions of "77 and 

£ G 77 respectively. 

If 77 is the direct integral of {77p}p over (A\p), an operator 7 in S(77) is said to be 

decomposable when there is a function p H» T(p) on X such that T(p) e S(77p) and, for 

each £ G 77, T(p)t;(p) = (Tt;)(p) for almost every p. If, in addition, T(p) = f(p)Ip, where 

7p is the identity operator on 77p, we say T is diagonalizable. In general, a (separable) 

Hilbert space 77 has direct integral decomposition relative to an abelian von Neumann 

algebra Jl on 77. We state some related theorem as follows. 

Theorem 7 (See [KR]) IfJ{ is an abelian von Neumann algebra on the separable Hilbert 

space 77 there is a (locally compact complete separable metric) measure space (A\p) such 

that 77 is (unitarily equivalent to) the direct integral of Hilbert spaces [1ip}p over (A*,p) 
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and {ft is (unitarily equivalent to) the algebra of diagonalizable operators relative to this 

decomposition. 

If 77 is the direct integral of Hilbert spaces {77̂ } over (A\p), a representation <p of a 

C* algebra 21 on the Hilbert space 77 is said to be decomposable over (A\p), when there 

exists a representation <pp of 21 on 77p such that for any A £ 21, (p(A) is decomposable and 

(p(A)(p) = (pp(A), a.e. A von Neumann algebra Al is decomposable on 77 with p f-» Mp, 

if Al contains a norm separable C* subalgebra 21 strong-operator dense in Al such that the 

identity representation / of 21 is decomposable and /P(2I) is strong-operator dense in Al. 

We state the following theorem to indicate that every von Neumann algebra has the direct 

integral decomposition relative to its center. 

Theorem 8 (See [KR]) If s^ is an abelian von Neumann subalgebra of the center C of a 

von Neumann algebra Al on a separable Hilbert space 77 and {7ip} is the direct integral 

decomposition of 77 relative to srf, then Cp is the center of Alp almost everywhere. In 

particular, Mp is a factor a.e. if and only if' srf-C 

A state (p of a von Neumann algebra Al could be decomposable according to Theorem 

9 below. 

Theorem 9 (See [KR]) Ifliisa direct integral of Hilbert spaces {Tip} over (X,p), Al 

is a decomposable von Neumann algebra on 77, <p is a normal state on Al. Then there 

is a mapping p \-* (pp, where <pp is positive normal linear functional on Alp and <p(A) = 

^<pp(A(p))dp(p),MA 6 Al. 

Jones Basic Construction 

In 1983, V. R. Jones introduced a new construction for von Neumann algebras, which is 

known as Jones basic construction. It has many applications, especially in the index theory 

of subfactors, some of whose basic definitions will be introduced at the end of this section. 

Suppose & c N is an inclusion of von Neumann algebras with a faithful normal tracial 

state T. Let E s be the trace-preserving conditional expectation from N onto <B. Let N 
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act on L2(N, T) which is the Hilbert space from the GNS construction induced by r (refer 

to section 1.2.2). We identify L2(S,r) as a Hilbert subspace of L2(N,r). For any X in 

N, denote by X the vector of L2(N, r) corresponding to X. Let Es be the projection from 

L2(N, r) onto L2(S, r) with ESX = E^(X) for any X in N and J the conjugation on L2(N, r) 

given by 7X = X* for any X in N. Denote by (N, S) the von Neumann algebra {N, Es}" c 

S(L2(N, r)) generated by N, Es and one has that (N, S) = JS'J. 

The (Jones) basic construction for !B c N is then defined to be the inclusions S c J V c 

(N, S) (see [Jon83]). The following property of Jones basic construction is very important 

to our work, see [SM08] for its complete proof and analysis. 

Theorem 10 Let Sbe a von Neumann subalgebra of a finite von Neumann algebra N with 

a faithful normal tracial state r. There exists a unique normal semi-finite faithful tracial 

weight Tr on (N, <B) satisfying Tr(XEsY) = r(XY), for X, F in N. 

Now let us recall some basic concepts from the index theory of subfactors, which will 

be required later. Let At be a finite factor with the trace r acting on a Hilbert space 77. 

Suppose the commutant At' of Al is finite and its trace is denoted by r'. Then the coupling 

constant dim^tf-i) of At is defined as T(EM^)/T'(E/^), where £, is a non zero vector in 

77 and E^ is the projection onto the closure of the subspace Jig. This definition, due to 

Murray and von Neumann [MV37], is independent of £. If N is a subfactor of At, the index 

of N in Al, denoted by [Al: N], is defined as dimN(^i)ldimM(^i). This definition, due to 

Jones [Jon83], is independent of 77. If 77 = L2(Al, r), then [Al : N] = dimN(L2(M, r)). 

The remarkable result in [Jon83] is that, the set of all possible values of index is given by 

{4 cos2 n/n\n = 3,4,...} U {r £ R|r > 4} U {oo}. 
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CHAPTER 2 

DECOMPOSITIONS OF FINITE VON 

NEUMANN ALGEBRAS 

In this chapter, we begin with some definitions of building blocks for decompositions of 

finite von Neumann algebras. A factor is hyperfinite if it contains an ascending sequence 

of full matrix algebras weak-operator dense in itself. For instance, S(77) is a hyperfinite 

factor of type In, where 77 is a Hilbert space with dimension n £ N U {oo}, while the 

permutation group factor (See Chapter 1, section 1.2.1) is a hyperfinite factor of type IIX. 

The hyperfinite factor of type II t is known to be unique (see [KR], chapter 12). 

Let Al be a factor of type Hi with the trace T. The type Hi factor Al is said to have 

property T if for any finitely many elements Xi , . . . , Xn in Al and e > 0, there exists a 

unitary element U in Al with T(U) = 0 such that 

\\XiU-UXi\\2<e,i= 1,2,..., n. 

An alternative formulation is that for any finitely many elements X\,...,Xn in Al, there 

exists a sequence {Uk}™=1 of trace zero unitary elements in Al satisfying 

lim \\XiUk - UkXi\\2 = 0, i = 1,2,..., n. 
k—>oo 

For a free ultrafilter a> on N, a sequence {Xn}„ of elements in At is an o»-central sequence 

of Al if l i n v ^ ||X„X - XX„||2 = 0 for any X in Al and supn{||X„||} < oo (for more details 

see Chapter 4). All a>-central sequences of Al form a finite von Neumann algebra, denoted 
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by Ma, which is also called a o»-central sequence algebra of Al. The hyperfinite factor of 

type Hi has property T (for example, see [KR]). Moreover, D. McDuff [Mc70] proved that 

if the o>-central sequence algebra of a separable factor Al of type Hi is not abelian, then Al 

is (isomorphic to) the tensor product of the hyperfinite factors of type Hi and itself. In this 

case, Al is called a McDuff factor. 

A von Neumann algebra At is said to have property T if there exists e > 0, X 1 ; . . . , X„ 

in Al such that for any At - At bimodule 77 and any vector £ in 77, with ||f || = 1 and 

||X,£ - £X,|| < e for i = l,...,n, there exists a vector 77 in 77, 77 # 0 which is central: 

X77 = 77X for all X G At. Recall the definition of Kazhdan's property T for group: a 

countable discrete group G has property T of Kazhdan if there exists an e > 0 and a 

compact subset K of G such that every unitary representation n : G H-> S(77) of G on a 

Hilbert space 77 having a non zero vector £ in 77 with \\n(g)g -£ | | < e for all g in K also has 

a non zero invariant vector. In [CoJ85], Connes and Jones proved that a countable discrete 

group has property T of Kazhdan if and only if its corresponding group von Neumann 

algebra has property T. For example, the linear group PSLn(Z) of all n x n matrices with 

entries in Z with determinant one module {+/} when n > 4 is even and SLn(Z) of all n x n 

matrices with entries in Z with determinant one when n > 3 is odd have property T and then 

group von Neumann algebras XPSL„(Z), " > 4 even and £SL„(Z), n> 3 odd, have property T. 

Definition 11 A factor Al of type II\ with the trace r acting on the Hilbert space L2(Al, T) 

is T-thin if there are two subfactors N\, N2 with property T in Al such that 

Al = ~spNiN2, 

in the sense of weak-operator topology on S(L2(M, r)). Similarly, one can define a series 

of "thin" factors. If N\, Ni are subf actors with property T, Al then is called T-thin; if N\ 

is property T subfactor and A/2 is property T subfactor, Al is called T-T-thin. 

If A/'i, Af2 are replaced by hyperfinite von Neumann subalgebras of At in the definition 

above, the factor Al is called thin factor as defined in [GePo98]. If one of A/'i, A/"2 is an 
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abelian von Neumann algebra or a hyperfinite von Neumann subalgebras of Al, we have 

a.T-thin factors, h.T-thin factors etc. 

Definition 12 A type ll\ factor Al with the trace r acting on the Hilbert space L2(Al, r) is 

strongly T-thin if there are property T subfactors N\, N2 of Al such that 

lpN^N2 = L2(M,T) 

for every non zero vector </ in L2(Al, r). If N\,N2 are property T subfactors, Al then is 

called strongly T-thin; if N\ is property T subfactor and N2 is property T subfactor, Al is 

called strongly T-T-thin factor. 

If A/'i, N2 are replaced by hyperfinite von Neumann subalgebras of At in the definition 

above, the factor Al is called strongly thin factor as defined in [GePo98]. If one of M\, N2 

is an abelian von Neumann subalgebra or a hyperfinite von Neumann subalgebra, we have 

strongly aX-thin factors, strongly hX-thin factors. 

Definition 13 A factor Al of type II\ with the trace r acting on the Hilbert space L2(At T) 

is m-weakly T-thin if there are two property T subfactors A/'i, N2 of Ai and vectors <f i , . . . , £m 

in L2(Al, T) such that 

L2(Ai,T)=-spNAtu---,UN2. 

If A/'i, N2 are property T subfactors, we say At is m-weakly T-thin; if N\ is property T 

subfactor and N2 is property T subfactor, we say Al is m-weakly T-T-thin. 

If N\, N2 are replaced by hyperfinite von Neumann subalgebras of Al in the definition 

above, the factor Al is called weakly thin factor as defined in [GePo98]. If one of A/'i, N2 

are an abelian von Neumann subalgebra or a hyperfinite von Neumann subalgebra, we have 

n-weakly aX-thin factors, n-weakly hX-thin factors. 

In the other words, 

"strongly T-thin => T-thin => weakly T-thin". 
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Lemma 14 Let Mbe a property T factor of type II\ with the trace T and P a non zero 

projection of AX. Then PAIP has property T. 

Proof. By a result of Connes ([Con76], Theorem 2.1), Al has property T if and only if 

the C* algebra C*(Al, At') generated by Al and At' in L2(Al, r)(= 77) contains no nonzero 

compact operator; i.e. C*(Al, At') n tK('Ji) = {0}. Since P is a non zero projection in Al, 

we have 

C*(PMP, MP) n 7C(P77) = {0} 

and hence PAIP has property T. • 

Lemma 15 a) Let At be a type II\ factor and P a non zero projection in Al with j < 

T(P) < -j^ifor some positive integer k. If Al is n-weakly T-thin, then PAIP is nk2-weakly 

T-thin; if PAIP is n-weakly T-thin, then AX is An-weakly T-thin. 

a') Let AX be a type II\ factor and P a non zero projection in AX. Then AX is strongly T-thin 

if and only if PAIP is. 

b) Let N c At be an inclusion of type II\ factors with k — 1 < [At, N] < kfor some k. 

If AX is n-weakly T-thin, then N is nk2-weakly T-thin; if N is n-weakly T-thin, then AX is 

An-weakly T-thin. 

c)AX ® M„(C) is (n-weakly, strongly) T-thin if AX is. 

Proof, a)We assume that Al is n-weakly T-thin. Then there are vectors £ i , . . . ,£„ in 

L2(Al, r) and property T subfactors N\ and N2 of At such that L2(At, r) = JpNi {£i,..., %„\N2. 

Up to unitary conjugations, we may assume that P £ N\ n N2. Because Al is a factor of 

type Hi, there are unitary elements U, V in Al such that UPU* in A/'i and VPV* in N2. 

Then we may replace M by UNiU*, N2 by VN2V* and £7 by UgjV*. Since l/k < r(P), 

we can choose a matrix unit system {Eji, j,l = 1, . . . ,£} for some matrix subalgebra of A/'i 
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such that En ^ P- Similarly, we have {Fji}k
l=l for N2 and Fu < P. Thus we have that 

L\PAXP,TP) = JpPN1{Z1,...,fn}N2P 

= ^pPNi(YJEn){^...^n\(YjF^N^P 

J J 

= IpPNiiJ] EjiEnEijm,.. . ,£ ,}(£ FjiFiiFij)N2P 
J J 

= JpPNiEnlEijtiFn,..., Eij£nFn, j,l=l,..., k}FnN2P 

= lpPNiP{Ei^iFn,..., Ei^nFlh j,l=\,..., k}PN2P 

where TP = T/T(P). Since PNiP and PN2P are type Hi factors with property T, we have 

that PAXP is n£2-weakly T-thin. If PAIP is n-weakly T-thin, then we pick a subprojection 

EofP with trace 1 Ik. Since T(E)/T(P) > ^ - > 1/2 and the argument above can be applied 

to subfactor EAXE of PAIP, EME is 4n-weakly T-thin. Let EAIE = TpNArji,..., r]An}N4 

where A/3, A/4 are subfactors of EAXE and 771,..., 77̂  are in L2(EAXE, rE). Since E is a 

projection with trace l/k in Al, we know that Al ^ Mk(C) ® EAXE. Then 

L2(Al,r) = L2(Mk(C)®EME,r) 

= JpMk(C) ® N3{ 1 <8> 771,..., 1 ® r]4n}Mk(C) <S> N4 

where 1 is the identity of Mk(C). By [SM08], Theorem 13.4.5, we know that Mk(C) <8> N3 

and Mk(C) ® NA have property T. Hence Al is 4n-weakly T-thin. 

a') follows from a). 

b) We assume that Al is n-weakly T-thin. Then there are vectors fi, . . . ,£„ in L2(Al, r) 

and property T subfactors M and Af2 of Al such that L2(Al, r) = s p M ^ i , • • • ,^n)M-

Suppose EN is the projection from L2(Al, T) onto L2(N,T). Let P be a projection in At 

such that there exists unitary element W in (Al, N) on L2(Al, T) with WPW* = EN and 

T(P) - [At : A/"]-1 = T(EN), where r is the normalized trace on (Al, N) extending the 

trace r on Al. Up to unitary conjugations, we may assume that P £ A/'i Pi N2. Because 

Al is a factor of type II1, there are unitary elements U, V in At such that UPU* in A/\ 

and VPV* in N2. Then we may replace Nx by UNXU*, N2 by VN2V* and ̂  by U%}V*. 

Since l/k < r(P), we can choose a matrix unit system {Ejh j,l= 1, . . . , k] for some matrix 
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subalgebra of A/'i such that En < P. Similarly, we have {Fji)k
l=l for N2 and Fu < P. Thus 

we have that 

L2(PAIP,TP) = TpPNAti,...,UN2P 

= spPNi(YJEJJ){fl,...,fn}(£dFjj)M2P 
j J 

= JpPNdJ] EjiEnEij)^,... ,&}(£ FflFuFumP 
j J 

= spPNiEu{Eij^iFn,...,EijgnFn, j,I = 1,...,k}FnN2P 

= JpPNiPiEutiFn,..., EijtnFn, j,l=l,..., k}PN2P 

Since PNiP and PN2P are type Hi factors with property T, we have that PAIP is nk2-

weakly T-thin. Then WPAIPW* is n£2-weakly T-thin. Since 

WPAIPW* = WPW*WAIW*WPW* = ENWAXW*EN c NEN, 

WPMPW* is a subfactor of NEN. But L2(WPAIPW*) = WL2(PAIP) = ENL2(AX) = 

L\ENMEN) = L2(NEN), and we obtain that WPMPW* = NEN. Therefore NEN is 

also n£2-weakly T-thin. Since NEN acting on L2(NEN) is unitarily equivalent to N acting 

on L2(N), N is n£2-weakly T-thin. If N is n-weakly T-thin, ATE/v is n-weakly T-thin 

and PAIP is n-weakly T-thin, then we pick a subprojection E of P with trace l/k. Since 

T(E)/T(P) > ^Y > 1/2 and the argument above can be applied to subfactor EAXE of 

PAIP, EAXE is 4n-weakly T-thin. Since E is a projection with trace l/k in Al, we know 

that Al =* Mk(C) ® EAXE. Hence At is 4n-weakly T-thin. 

c) We assume that At is n-weakly T-thin. Then there are vectors r)i,...,nn in L2(Ai r) 

and property T subfactors Afi and N2 of At such that L2(Al, T) = ~spNi {771,..., rjn}N2. 

L2(AX®Mk(C),T) = ~s~p~Ni®Mk(C){r]i® h-• • ,rjn® 1}N2® Mk(C) 

where 1 is the identity of Mk(C). By [SM08], Theorem 13.4.5, we know that A/i ® Mk(C) 

and N2 ® Mk(C) have property T. Hence At ® Mk(C) is n-weakly T-thin. • 

23 



2.1 T-Thin 

We begin with the simplest decomposition "a.a.-thin". The hyperfinite factor 'R of type Hi 

is a.a.-thin. To see this, given an irrational number 8, suppose Jig is the reduced C* algebra 

generated by two unitary operators, U and V, satisfying the twisted commutation relation 

UV - exp(27n'6>)V£/ with the trace r given by T(ZUJ AltJU
lVJ) = AQt0, where Ah] £ C, 

Zi,; \jU'VJ is in 3KQ. Let (77,-, nT, <fT) be the triple from the GNS construction induced by 

r. Then the weak-operator closure of the representation nT of Jle induced by the trace r 

is the hyperfinite factor K of type Hi. Let JXy be the abelian von Neumann subalgebra 

generated by nr(U), Jlv the abelian von Neumann subalgebra generated by nT(V). We 

obtain that % = IpJlvMy 

If factors of type I are considered in this decomposition, we have that all (weakly) 

separable factors of type I are a.a.-"thin". 

Suppose 77 is a n-dimensional Hilbert space with an orthogonal normal basis £i,£2, 

. . . ,£„, where n e N. Define unitary operators U and V on 77 such that t/£, = e2niJ,n^J for 

j = 1, . . . , n and V^k = &+i for k = 1, . . . , n - 1, V£n = ft. Let {Ejk}
n

jk=l be a system of 

matrix units for £(77) such that Ejk£k = ^ for ;, Jfc = 1, . . . , n. Since J 2^o( e _ a " d / " t / )^ 1 = 

Ed,d ford = 1, . . . , n, and EdV
d~l = £ ,̂/ for d,l = 1, . . . , n, then the algebra generated 

by U, U*, V, V* contains all matrix units {Ejk}Jtk of £(77), and hence it is £(77) which is 

isomorphic to M„(C). Moreover, t/V = e^llnVU. Let J?l[/ be the abelian von Neumann 

subalgebra generated by U, Jlv the abelian von Neumann subalgebra generated by V. We 

obtain that M„(C) = spJlvJlv. 

Suppose 77 is a countably infinite dimensional Hilbert space with an orthogonal normal 

basis {%j}jSz- Define unitary operators U and V on 77 such that £/£, = el7Tlj9^J for j e Z and 

V£k = &+i for k £ Z, where 0 is an irrational number. Let {Ejk}j,keZ be a system of matrix 

units of £(77). Since 9 is an irrational number, {mQ + n : m, n G Z} is dense in the real line 

R. Let p > 2 be a natural number. Then there exist sequences {m^ and {n̂ }̂  of integers 

such that lim^m^ + nk = -. Therefore, lim£or Umk = Up, where Up is a unitary operator 

on 77 such that Up^ = e^'^j for j in Z. Since J £ j 2 f7£ = Z j e Z ^ P > W ( = £/>), w e have 
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that £00 = lircv llP
= 2 Ej m strong-operator topology. Let 3Xu be the abelian von Neumann 

algebra generated by U, U*, and 3XV be the abelian von Neumann algebra generated by 

V, V*. Thus EQQ is in the von Neumann algebra JXV generated by U, U*. If we replace U by 

e--ixu>u for keZ, then we get that Ekk is in ft.v. Moreover, EuV
l~d = EM for l,d£Z. Thus 

we have that U, V generate £(77) as a von Neumann algebra and UV = e^^VU. Finally, 

we obtain that £(77) = JpMu^lv. 

Now we state a theorem in [GePo98] proved by L. Ge and S. Popa to give an example 

of an aX-thin factor. Let G be a discrete group with unit e and cr : G i-» Aut(S) a group 

action of G on a von Neumann algebra £. We say that cr acts ergodically on Al if the 

following condition is satisfied: if X G Al and UgXU* = X for each g £ G, then X is 

a scalar multiple of I; and that cr is properly outer when crg(X)Xo = X0X for all X in £ 

implies that g = e or X0 = 0. It is known that the properly outerness of <x is equivalent to 

the condition £ ' n (£ >v G) = <tf(E), where %?(£) is the center of £ . 

Theorem 16 (See [GePo98]) Let S be a finite von Neumann algebra with no atoms and 

with a faithful normal trace r. Let G be a countable discrete group and cr a r-preserving, 

properly outer action ofG on £ Denote by AX = £ >v G the crossed product ofB by cr. 

Then there exist an abelian subalgebra J{ of £ and a unitary element U £ AX such that 

Al = JpSUtf. = JpSUJlU*. 

Corollary 17 Let £ , cr, G be given as in Theorem 16. Assume that cr acts ergodically on 

the center of!B and £ is a property T or T factor. Then AX is aX-thin or a. T-thin. 

In theorem 16, if £ is an abelian von Neumann algebra, then we have that Al = £ >v G 

which is a.a.-thin. Let Z2 be the group {(m, n) : m, n G Z} with addition (mi, n0 + (m2, n2) = 

(mi + m2, ni + n2) for mi, m2, nx,n2 £ Z. For any element 
a b 

(= g) in SLzCZ), the 

action a of g on Z2 is given by (m, n) 
a b 

c d 
\ / 

= (am + en, bm + dn), for any (m, n) £ Z2. 
c d 

The group action a acts ergodically on Z2. In fact, if (m, n)g = (m, n) for any g £ SL2(Z), 

we see that (m, n) = (0,0). Then the crossed product £,Z2 xa SZ^fZ) is a factor of type Hi 
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(See [KR] Chapter 8 for more details). But it is not the hyperfinite factor of type IIi since 

it contains a free group subfactor £SL2(Z)- The crossed product £,zi »a SLqf^Z) is a.a.-thin 

by the corollary above. 

In [CoJ85], Connes and Jones showed that a type Hi factor with property T is not a 

subfactor of the free group factor £r„, where n > 2. This indicates that the free group 

factor is not a.T-thin, T-T-thin, T-thin. 

If the conditions on the group action are removed, i.e. At xa G for any group action 

a : G H-> Aut(AX), we have Al »a G = SPAL/JG- Therefore if Al has property T and group 

G has property T, At xa G is T-T thin. 

Any tensor product of two type Hi factors is T-thin or McDuff-thin provided that we 

use McDuff factors as building blocks in the corresponding decompositions. That is, if 

At = Ali®Al2, where All, Al2 are factors of type Hi and let <RX and %2 be hyperfinite 

subfactors in All and Al2 respectively, then 

At = ~sp(AXi®'R2)('Ri®AX2). 

Hyperfinite length ^(At) = min{n|there are hyperfinite subalgebras Ri,..., Rn of Al 

such that UpRi •••<Rn - M) for a given type Hi factor Al was defined in [GePo98] and 

they proved that property T factors have hyperfinite length < 2 and any tensor product of 

two type Hi factors has hyperfinite length < 3. It has been proved in [GePo98] that a factor 

of type Hi with property T is thin factor. We see that T-thin factors have hyperfinite length 

< 4. Similarly, length ^a(Al) = min{n|there are abelian *-subalgebras ^ t l 5 . . . , Jln of At 

such that IpJXi •••^Xn = At} for a given type Hi factor Al could be defined. If factor At 

of type Hi is T-thin, €a(M) < 8. 

2.2 Strongly T-Thin 

Proposition 18 There is no strongly a. a.-thin factor of type Hi. 

Proof. Suppose Al is a strongly a.a.-thin factor of type Hi with the trace r and L2(Al, r) = 

Tp~3lii;3l2 for all nonzero vector £ G L2(Al, r), where &li, J{2 are MASAs in At. Let P be 
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a projection in J?li such that P ^ 0,1 and Q a projection in 3K2 such that Q ~ P(Al). Then 

there is a unitary operator U in Al such that Q = UPU*. Since L2(At,r) = Tp3li%3{2 for 

all nonzero vector £ e L2(At, r), we have 

L 2 (A( ,T ) = ipftifguyu* 3\.2u 

for all non zero vector f G L2(Al, r). We note that P G J*l n U*Jl2U. Let £ be £/* the vector 

in L2(Al,r) corresponding to a unitary operator U*. Then TpJliIU* Jl2U = L2(Al, r), i.e. 

J?li V U*Jl2 U = Al and Ji\ n £/*JTT̂  ̂  = M', where JH V £ means the von Neumann algebra 

generated by JH and £ . Since P e ^ l n U*Jl2U, we have P G JV n ITj^C/ = At' and 

P is in the center of Al. But At is a factor, so P must be 0 or I. This is a contradiction. 

Therefore there is no strongly a.a.-thin factor of type II]. • 

All non prime factors of type Hi are strongly T-thin. Suppose At = Ali<8>Al2 is a non 

prime factor, where All and Al2 are factors of type Hi, and % is an irreducible hyperfinite 

subfactor in At, for i = 1,2 (See [SM08], Theorem 13.2.3). Then from Ali®R2C\(Ri®AX2 = 

7?i®ft2 and (Ri®R2Y n Ati®Al2 = CI, by [GePo98] Proposition 2.2, we get that Al is 

strongly T-thin. For convenience, we quote the proposition as follows: 

Proposition 19 (See [GePo98],Proposition 2.2) Assume that A/o and A/'i are subfactors 

of a type Hi factor At such that IpNoNi = AX and (A/o n A/'i)' n Al = C. Then IpN^Ni -

L2(Al, T),for any non zero // in L2(AX, r). Equivalently, A/o V 77Vi7 = £(L2(Al, T)), or also, 

A ^ n ( A l , M ) = C/. 

In [GePo98], S. Popa and L. Ge formed a strongly thin factor by using symmetric 

enveloping type Hi factor. Now we shall use a similar process to form a strongly T-thin 

factor. 

Let Q c V be an inclusion of factors of type Hi with Jones index [P : Q] < oo. Let 

r be the trace on Al. Assume that the inclusion Q c P is extremal, i.e. [PPP, QP] = 

r(P)2[P : Q] for any projection P £Q' C\P. Let eQ denote the Jones's projection for Q c P 

and P aeQ P°p be the symmetric enveloping type Hi factor associated with Q c P (See 

[GePo98, Po99] for more details). We describe P HeQ P°P as follows. 
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If So = C*(P, eQ, JPJ) is the C* algebra generated by P, eQ and JPJ on L2(P, r), then 

So has a unique positive normalized trace, denoted by T once again. *S0 can be generated 

by its * algebra \Jn(JPJ)Pn(JPJ), where {Pn)n>i is the Jones tower for Q c P in the 

representation on L2(P, r) given by some choice of the tunnel P D Q D QI D • • •, i.e. Pn 

is, by definition, equal to (jQn_xJ)', n > 1. One then defines P HeQ P°p to be the type Hi 

factor {nT(So)}"(= S), where nT is the GNS representation for (So, r). We identify P, Pn, 

and eQ with their images via nr and denote by op the anti-automorphism, implemented 

by X>-> JX*J on L2(P,T). Then P' D S = P°p, (P°p)' n S = P and more generally 

? ; n 5 = 3 ^ , ( Q ^ ) ' n 5 = P„. Moreover, denote K£ = (U„(<3; n Pm))~, the weak-

operator closure of {Jn(Q'nC\Pm) for m = 0,1,2, . . . where P0 = P and ^ = 7^, and denote 

Poo = ( U ^ K H C S). Then we have ( W c f m P = spft*f<Q„ and spPn(R
st)op c PM , 

for each n. So we have U„ sp(P°pPnP°p) c spP0^^. Thus, 5 = lpP°pPx. If <3 has 

property T and [P : Q] < oo, p has property T by [PoPi], and Poo has property T from 

the definition of property T von Neumann algebra, then P ®eQ P°p is T-thin. Finally, by 

[GePo98], Proposition 2.2 and [Po99], one obtains that P®eaP°p is strongly T-thin. 

2.3 Weakly T-Thin 

Let N c At be an irreducible inclusion of type Hi factors. Denote by 

n n 

qNM(N) = {X£ AtpXi , . . . , X„ G At such that XN c ^ MXt and NX c ]T XtN}. 
i=\ i=\ 

We call qN^iN) the quasi-normalizer of N in Al. N is said to be quasi-regular in Al, if 

qNM{N)" = At. 

Now we state a proposition from [GePo98] to show an example of a weakly a.T-thin 

factor. 

Proposition 20 (See [GePo98]) Assume that N c Al is an irreducible inclusion of type 

Hi factors with N quasi-regular in AX. Then there are an abelian subalgebra SI in N and 

a vector £ in L2(AX, r) such that JpJlgN = L2(Al, T). 
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Corollary 21 Let N be given as in Proposition 20. Assume that N has property T or T 

etc. Then AX is weakly a.T-thin or weakly a.T-thin etc. 

In [Po99], S. Popa showed that if N c Al is an extremal inclusion of type Hi factors, 

then Al V AT'' is quasi-regular in symmetric enveloping type Hi factor Al Beyv AT''. This 

is to say Al &eN AXop is weakly aX-thin if N has property T. 

2.4 Singly Generated 

In [GePo98], L. Ge and S. Popa pointed out that many factors of type Hi are singly gen­

erated such as property T factors, strongly thin factors, non prime factors, and n-weakly 

thin factors etc. With new definitions given in the chapter, we could add some more singly 

generated factors as follows: 

Theorem 22 Suppose AX is a factor of type Hi satisfying one of the following properties: 

a) AX has a quasi-regular subalgebra £ c Al with property T with £ ' n Al c £ ; 

b) AX is strongly T-thin. 

Then AX is singly generated. 

Proof, a) If £ is quasi-regular in Al then PSP is quasi-regular in PAIP for any projection 

P G £. Also, (PSP)' n PAIP c PSP. PAXP is aX weakly thin by Corollary 21, in 

particular it is generated by 5 self-adjoint elements. Taking P of trace ^, it follows that Al 

can be generated by two self-adjoint elements by [GePo98], Lemma 6.3. 

b) By Lemma 15, if Al is strongly T-thin then PAIP is strongly T-thin for any non zero 

projection P G Al and then [GePo98] Lemma 6.3 applies. • 

2.5 Cohomology 

In [GePo98], S. Popa and L. Ge claimed that if a type Hi factor Al is n-weakly a.h.-thin 

for some n G N, then i72(Al, At) = 0. Here we fill the details of the proof. 
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Let 21 be a C* algebra acting on a Hilbert space 77 and 'V a two-sided 5I-bimodule 91 

or £(77). For any n > 1, %n will denote the n-fold Cartesian product of copies of 21. The 

space of bounded n-linear maps (/> : %n H-> *y will be denoted by X"(9I, "V). For n = 0, 

we let £° be «V. The coboundary map d : £"(% «V) H+ £"+1(2I, <V) is defined as follows. 

For n = 0, dV is the derivation X H> XV - VX, X G 31. When n > 1 and 0 e £"(2t, T ) , 

<90 G £n+1(2I, «V) is defined by 

cty(Xi,...,Xn+i) = X^(X2 , . . . ,X„) 
n-1 

+ /_J<~ 1)^(^1, • • • , ^i-l» ^i-^i+1, ^(+2, • • • , XJ) 
i = l 

+(-l)V(Xi,...,X„)X„+i 

for X, G SL 1 < i < n + 1. It is known that dd = 0. Thus the image of d : £n~\% <V) *-» 

£"(31,^), denoted by Imd, is contained in the kernel of d : £n(%'V) i-> -CB+1(2L'V), 

denoted by ^Terd. Then the n-th Hochschild cohomology group Hn(% 'V) is the quotient 

of the two vector spaces, i.e. H"(% *V) = Kerd/Imd. 

Theorem 23 (See also [CPSS97]) Suppose AX c £(77) is a factor of type IIh SI is a 

subalgebra of AX. £ is a fixed abelian C* subalgebra of Al'. Let<p : Al i-» £ ' be a bounded 

Sl-bimodule map. Then <f> has a norm preserving extension to C* (3\, (B)-bimodule map 

i/f.C*(Ai,S)^C*(S',B). 

Proof. Since At is a factor, the multiplication map m®m'\-+ mm' on the algebraic tensor 

product Al O At' is a monomorphism. This allows us to define a C* norm on Al O At' by 

ii 2 ] m« ® m«'i i i= II zli w'miH-

Denote by At <8>i Al' the completion of Al 0 At' with respect to norm || • Hi. There is a 

unique C* norm on the tensor product of two C* algebras whenever one is abelian and so 

the restriction of || • Hi to At <8>i £ must equal to the spatial C* norm II • Hmm- Therefore the 

multiplication mapp : At©£ i-» C*(Al, £) given by p(m®b) = mb extends to an isometric 

isomorphism between Al ®imD £ and C*(Al, £). 
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Let Q be the maximal ideal space of £ . Then £ and C(Q) are isomorphic, and we 

regard an element b £ £ as a continuous function b(a>) on CI. Then, for any C* algebra 

D, T> ®min £ may be identified with the algebra of D-valued continuous functions on CI. 

Replacing D by Al and £ ' , we obtain 

|| T (p(md ® bi\\min = sup || V (p(mi)bi\\ 
i " e " i 

= sup \\(f>( V mibi(a>))\\ < \\<p\\ sup || V m,7>,|| 
weQ ^ wen ^ 

= Il0llll2m'0^ll™'"' 
i 

for m, G At, bt £ £ . Thus there is a bounded map 0 ® I: AX ®^ £ i-> £ ' ®rain £ defined on 

elementary tensors by 

(</> ® I)(m ®b) = <p(m) ®b, m £ At, b £ £, 

and ||0 ® I\\ < \\<p\\. Since £ is an abelian C* subalgebra, we can define an isometric, 

n : £ ' <8> £ H* C*(£', £), by 7r(b' <g> 6) = fc'fc. Then we obtain 

C*(Al, £) ^ AX ®min £ ^ i £ ' 0m/„ £ ^U £ ' 

Define t̂  = p_ 1 o ((/> <g> /) o n. Then î (m) = 0(m) for all m £ AX and if/(mb) = n(<p(m) ®b) = 

<p(m)b = i//(m)b for all m G Al and b £ S. Furthermore, for ai, a2 G Jl, b, bi, b2 £ £ , and 

m G At, 

i//(aibi(mb)a2b2) = t/f(aima2bibb2) = (p(aima2)bibb2 

= ai<p(m)a2bibb2 = aibi<f>(m)ba2b2 

= aibii//(mb)a2b2. 

Thus iff is a C*(J?l, £)-bimodule map. • 

Theorem 24 (See [SiSm98]) Suppose £ c £(77) is a C algebra, Wc&isC subalgebra 

with cyclic vector £,, and 3\-module map <f> : S i-> £(77) w bounded. Then <p is completely 

bounded and ||^|U = ||0||. 
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Proof. Without loss of generality, we assume that \\(p\\ = 1 and assume that for some 

n G N, the norm of <pn : Mn(S) \-> M„(£(77)) exceeds one. Then there exists an element 
( . \ 

(EtJ) £ Mn(S) of unit norm such that ||0(£,,)|| > 1. Then vectors 

fi 

t „ ~\ 

chosen from the unit ball of 77 0 • • • 0 77 such that \(<p(EtJ) 

i 

?n) 

K b n / 

( \ 
V Vn ) 

maybe 

l, Tin 

)| > 1. Since SI 

has cyclic vector, we may choose elements a„b, £ 31 such that ||a,£ - £,|| and \\b£ - TJ,\\ 

are so small that 

«i£ 

k «n£ 

bit 

, bn% 

< 1 and \(<KEtJ) 

flif 

v Vr£ 

b& 

\ Kt 

)| > 1. We shall 

assume temporarily that a = £ , a*at and b = X, b*b, are invertible elements, and remove 

this restriction at the end of the proof. 

Let 77 = a1/2£, f = b1/2£, c, = a.a'1'2 and d, = b.b'1'2. Then eft = a£ and dg = b£ and 

KZ„0(c* £,/*,)£ 7)1 > 1 by using the module properties of <p. Now, |||||2 = </31/2£, bm%) = 

f b i ^ 

\ bnt j 

|| < 1 and zZ,j c*lEl]d] may be expressed as 

(c\ • • • c*n) (E,j) 

di 

< "" / 

which has norm at most one. It follows that ||0|| > 1 and the desired contradiction is 

reached. 

A modification is necessary if either £ , a*at or zZt b*b, fails to be invertible. We replace 

(EtJ) £ M„(£) by (EtJ) © 0 G Af„+i(6) and vectors 

b£ 

bn% ) 

by 

«i£ 

I 4) 

l b l ^ 

b„t 

* ) 

32 



respectively for some sufficiently small e > 0. Note that the new vector will still have 

norms less than 1. The argument above can be applied again to complete the proof. • 

Corollary 25 Suppose Al is an n-weakly a. h.-thin factor of type II\ with the trace r and 

^ t i {£ i , . . . , £ J7? 2 = L2(Al,T), 

where </i,... ,£„ G L2(Al, T), JHI is an abelian von Neumann subalgebra of Ai and <R2 is 

a hyperfinite von Neumann subalgebras^ of AX. Let J be the canonical conjugation of 

AX on L2(AX,T) and £ = JJliJ. Then every bounded ^-bimodule map (f> : AX \-* £ ' is 

completely bounded. 

Proof. Let D = £ ® C/„ where /„ is the identity of Mn(C). Then (pn : Al ® Af„(C) H» 

£ ' ® Mn(C) = V is a R2 ® M„(C)-bimodule map. By Theorem 23, there is a bounded 

C*(Ki 0 M„(C),£>)-bimodule map if/ : C*(AX ® Mn(C), D) ^ C*(V, £>) and ||^|| = \\<f)n\\. 

'fS 
Since sp^li {&,..., £,}K2 = LZ(M,T), C*(JRI ® Mn(C),D) has a cyclic vector By 

Theorem 24, iff is completely bounded, therefore (pn is completely bounded and hence <f> is 

completely bounded. • 

Theorem 26 Suppose AX is an n-weakly a.h.-thin factor of type Hi and~sp3\{$;i,..., £,nYR — 

L2(Ai, T) with £i,..., £, G L2(At, r). Pnen /72(A(, At) = 0. 

Proof. Suppose # : A ( x A l i - > A l i s a 2-cocycle on At, i.e. 80 = 0. We shall construct 

a bounded map a : Al H-> At such that 0 = 5a, showing that all such 2-cocycles are 

coboundaries. We may restrict attention to 2-cocycles which are !R-multimodular. Let J 

be the canonical conjugation of Al and £ = JJIJ. By [KR71], there is a bounded map 

<p : Al t-» £ ' such that # = d<p. By Corollary 25, 4> is completely bounded, and since 9 is a 

completely bounded 2-cocycle, there exists a completely bounded map a : AX i-» Al such 

that 9 = da. m 

We would like to point out that Z73(Al, Al) = 0 holds for n-weakly a.h.-thin factor, At 

(More details see [CPSS97]). 
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CHAPTER 3 

FREE ENTROPY 

Free entropy was introduced by Voiculescu[Vo94] in the free probability theory in 1994. 

Due to its discovery, several longstanding problems in finite von Neumann algebras were 

answered. The free entropy is also a powerful tool for studying factors of type II i. The 

purpose of this chapter is to borrow the idea of the free entropy to propose that there are 

factors of type IIX which are not weakly T-thin, strongly T-thin, or T-thin etc. 

3.1 Basic Notation 

In this section, we shall recall some basic notations in the free probability theory. 

Let (91, (p) be a C* algebra with a state (p. This pair (9t, <p) is a so-called C probability 

space. A family {%}l€i of unital (*-)subalgebras of 91 is called (*-)free if(p(aia2 • • • an) = 0 

whenever a} £ %t, lx ± l2 ± • •• ,± ln and <p(ai) = 0, Vj. A family {5,}(€/ of subsets of 

(%<p) is free if the family {91,} of (*-)subalgebra is (*-)free, where 91, is the (*-) algebra 

generated by St. 

Let C(X,|z G I) be the noncommutative polynomial ring with an identity 1 and (%<p) 

be as above. If (A,),e/ is a family of elements in 91, then the joint distribution of (A,),e/ 

is p : C(X,|z G I) i-> C given by p(P) = <p(h(P)), where h : C<X,|z £ I) i-> 91 is an 

algebraic unital homomorphism with n(X,) = A„ Vz £ I, P £ C(X,\i £ I). In particular, 

when the cardinality of index set I is 1, the distribution of A in 91 is p : C(X) i-» C given by 
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p(P) = <p(P(A)\ for any P G C(X>. 

As is well known, the Gaussian law plays a key role in the probability theory. In the free 

probability theory, the Gaussian law is replaced by the semicircle law. It can be described 

as the distribution ya,r : C(X) i=» C given by 

r\ pa+r 

7aAh = — t ^r2-(t-a)2dt. 
nr2 Ja-r 

A self-adjoint element A £ 91 having semicircle law is called semicircular element. A 

unitary element U in 91 is Haar unitary if <p(Uk) = 0, k £ Z, k ± 0. 

In order to discuss our work in chapter 4 better, here we would like to recall some 

concepts such as limit distribution, asymptotically free, and von Neumann algebra free 

product. 

For each n G N, let (T^)l€l be a family of noncommutative random variables in C* 

algebra 9I„ with a state <pn. Then the sequence of joint distributions p„ of (P,(n)),e/ converges 

as n —> oo if there exists a distribution p such that 

Mn(P) •-» M-P), n-> oo 

for every P e C(X,|z G I). We callp the limit distribution of the sequence and write p„ —»p. 

Now, let I = Uj£jlj be a partition of I. A sequence of families ({r(w)|z G IJ})J£J of sets 

of noncommutative random variables is said to be asymptotically free as n —» oo if it has 

a limit distribution p and if {X,|z G IJ}JSJ is a free family of sets of random variables in 

(C(X,|zG/>,p). 

Suppose Ali, At2 are finite von Neumann algebras with faithful normal tracial states 

Ti, r2 acting on the Hilbert spaces L2(Al„ r,) respectively . Let 77, = L2(Al„ T,) and let £, 

be a distinguished unit vector / in 77, corresponding to the identity I in At, for i = 1,2. 

Then their Hilbert space free product (77, l)(77i, £i) * (772, £2) is given by 

77 = C 1 © 0 ( 0 77(1®---®77,„), 

o 

where 77, = 77, © C£„ is the orthocomplement of C£, in 77,, for z = 1,2. 
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Denote 

77(z) = C l 0 0 ( 0 77;i®---®77,„) 
«>1 ilM2-*i„ 

inl­

and define unitary operator V; : 77, ® 9i(i) H* 77, for z = 1,2, as follows: 

£ ® 1 ^ 1, 

H ® 1 H 77,„, 

ft ® (77,-, ® • • • ® Hn) ^ <Hh®---®<Hin, 
0 0 o 0 0 o 

77,1® (%! ® • • • ® %n) •-» 7/,-® 7 4 ® • • • ® 77,„ 

Let i , be the representation of At, on 77 given by 

AI-(A) = V / (A®/« (o) v;, 

whenever A £ At, for z = 1, 2. Then the von Neumann algebra free product Ati * Al2 is 

{*i(Ai), A2(A2): At £ Mi, i = 1,2}" c £(77) 

whose trace r = Ti * r2 given by T(A) = (Al, 1), VA G All * At2. 

At the end of this section, we will state some lemmas which will be used to prove 

one of my work in the following section (Theorem 30). We omit its proofs and refer to 

[Ge97, Ge98] for complete analysis. To state lemmas, we need some more notations. 

Let C(Xi,..., X„ X j , . . . , X*) be the noncommutative polynomial ring with involution * 

satisfying (X,-, • • • Xjg)* = X* ••• X*h. In the chapter, we will use C(Xi,.. . , Xt) to denote the 

*-ring C<Xi,..., Xt, X*v ..., Xf*> and write v?(Xj,..., Xt) instead of <p(Xit..., Xt, X*v..., Tt) 

for <p £ C(Xi,..., X,). Let Mk(C) be the k x k full matrix algebra with entries in C, and rk 

be the normalized trace on Mk(C); i.e. rk = jTrk, where Trk is the usual trace on Mk(C). 

Let 1A(k) denote the group of all unitary matrices in Mk(C). Let Mk(C)n be the direct sum 

of n copies of Mk(C) and let (Mk)R be the closed ball of the k x k matrix algebra Mk(C) with 

radius R under its operator norm and Ms
k
a the set of all self-adjoint k x k matrices. Let || • ||2 

denote the trace norm induced by Tk on Mk(C)n, i.e., 

| |(Ai,..., An)\\
2 = T , (A;AI) + • • • + rk(A*nAn) 
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for all (Ai,. . . , A„) in Mk(C)n. Finally, let || • ||e denote the euclidean norm on Mk(C)n, i.e., 

||(Ai,..., A„)||e
2 = Trk(A\Ai) + • • • + Trk(A*nAn) 

forml(Ai,...,An)mMk(C)n. 

Lemma 27 Define the mapping 

<D : (Wu W2,..., Wt) » (<pi(Wi,..., Wt\ ..., ipr(Wu ..., Wt)) 

from ((Mk)i)' into Mk(C)r, where <fi,..., <pr £ C(Xi,. . . , Xt). Then there is a constant D(<f>) 

(independent ofk) such that 

\mWi, ...,Wt)~ ®(W{,..., W't)\\e < Dm\\(Wi, ...,Wt)~ (W[,..., W't)\\e 

for any (Wi,..., Wt) and (W[,..., W't) in ((Mk)i)'. Note that the constant D(O) may depend 

on t. All the above is true when \\ • \\e is replaced by \\ • \\2. 

Lemma 28 For every 6 > 0, there is anO < e < 6, such that for every finite factor AX with 

trace T, if A is an element in the unit ball of AX such that 

||A*A-AA*||2<e, | | / -AA*| | 2<e 

then there is a unitary U in At such that \\A— U\\2 < 5. 

Lemma 29 Let B(r) be a ball of radius r in Rn. For any 8 in (0, r), if{Bs(6)}seS is a 5-net 

for B(r) with the minimal cardinality, then 

(£r ̂  ISI < ( f r, 

where |S| is the cardinality ofS. Similar upper bound holds for any convex bodies euclidean 

spaces where the radius r is replaced by the diameter of the convex body. 

37 



3.2 Free Orbit-Dimension 

In [HadSh], Shen and Hadwin introduced the concept of a free orbit-dimension. It simpli­

fied the computation of Voiculescu's free entropy dimension. In this section, we shall dis­

cuss, briefly, the concepts of free entropy, free entropy dimension and free orbit-dimension. 

For every co > 0, the <x»-orbit-ball 7/(2?i, ...,Bn\cS) centered at (Bi,..., Bn) in Mk(C)n 

is the subset of Mk(C)n consisting of all (Ai, . . . , A„) in Mk(C)n such that there exists some 

unitary matrix W in 1i(k) satisfying 

||(Ai,..., A„) - (WBX W*,..., WBnW*)\\2 < to. 

For every R > 0, (Mk(C)")R is the subset of Mk(C)n consisting of all these (Ai,. . . , An) 

in Mk(C)n such that maxi<;<„ ||A,|| < R. Note that (Mk(C)n)R = ((Mk)R)n. 

Let Al be a von Neumann algebra with a faithful normal tracial state r, and Xi , . . . , X„ 

be self-adjoint elements in Al. For any positive R and e, and any m, k in N, let TR(Xi,..., X„; m, k, e) 

be the subset of (M™)" consisting of all (Ai, . . . , A„) in (Ms
k
a)n such that (Ai,. . . , A„) is con­

tained in (Mk(C)n)R, and 

\Tk(Ah---Aiq)-T(Xh---Xiq)\<e, 

for all 1 < z'i,..., iq < n, and all q with 1 < q < m. Let A be Lebesgue measure on (Ms
k
a)n 

corresponding to the euclidean norm || • IU 

Now we define, successively, 

XR(XU . . . , X„; m, k, e) = log A(rR(Xi,. . . , X„; m, k, e)), 

_9 n 
XR(XI, . . . , X„; m, e) = lim sup(^ XR(%U • • •, Xn; m, k, e) + - log k), 

k—*oo £ 

XR(XI,...,X„) = infftfl(Xi,...,X„;m,e) : m G N , e > 0}, 

^(Xi,...,X„) = SUPXR(XI,...,X„). 
R>0 

We call^-(Xi,..., Xn) the free entropy of (Xi,. . . , X„). 

For technical reasons, Voiculescu introduced a "modified" free entropy in [Vo96]. Let 

Xi, . . . X„, Y\,...,Yp,n> 1, p > 0 be self-adjoint random variables in a finite von Neumann 
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algebra At with a faithful normal tracial state r , and r R ( X i , . . . , X„ : Yit..., Yp\ m, k, e) be 

the image of the projection of TR(Xi,..., X„, Yi,..., Yp; m, k, e) onto the first n components, 

in another words, (A i , . . . , An) is in TR(Xi,..., Xn : Yi,...,Yp;m,k, e) if there are elements 

Bi,...,Bp in M f such that (Ai, . . .,An,Bu..., Bp) is in T R (Xi , . . . , X„, Yu ..., Yp; m, k, e). 

We can define similarly, 

XR(XU ...,Xn:Yi,...,Yp;m,k, e) 

= log A(TR(XU ...,Xn:Yi,...,Yp;m,k, e)), 

XR(XU ...,Xn:Yi,...,Yp;m,e) 

= lim sup(/c XR(XI, ..., Xn : Yx,..., Yp; m, k, e) + - log k), 

XR(%U • • • jXn : Yi,..., Yp) 

= mf\xR(Xi,...,Xn : Yi,...,Yp;m,e) : m G N , e > 0}, 

X(Xi,. • •, X„ : Yi,..., Yp) 

= sup(Xi, . . . ,X„ : Yi,...,Yp). 
R>O 

We call x(Xi, • • •, X„ : F i , . . . , Yp) the modified free entropy of X i , . . . , X„ in presence of 

Yi, . . ., Yp. 

Although the free entropy is defined for self-adjoint elements, for modified free entropy 

X(Xi, • • •, X„ : Yi,..., Yp), we need not assume that Yi,...,Yp are self-adjoint elements. 

Instead we may write ^ ( X i ; . . . , Xn : Yu..., Yp) as ^r(Xi, . . . , X„ : Ah..., Ap, Bi,..., Bp) 

where Aj = Yj + Y* and Bj = -i(Yj - Y*) for each ; . 

The (modified) free entropy dimension 6(Xi, ...,Xn : Yi,..., Yp) is defined by 

8(Xi,...,X„ : Yi,..., Yp) 

,. ^(Xi + eSi, • • •,Xn + eSn : Si, • • • ,Sn, Yh ..., Yp) 
= n + lim sup • 

e^o I log e| 

where {S l s . . . , Sn} is a semicircular family and {Xi, . . . , X„, F i , . . . , Yp] and {S i , . . . , Sn} are 

free. 

For co > 0, the w-orbit covering number v(r^(Xi, •••,Xn;m,k, e), co) is the minimal 

number of a»-orbit-balls that cover TR(Xi,..., X„; m, k, e) with the centers of these a»-orbit-

balls in (Mk(C)n)R. 
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Now we define 

a , v v m • f y log(v(rR(Xi, ...,Xn;m,k, e), (o)) 
ft(Xi,...,Xn;(o,R) = inf hmsup — , 

meN,e>0 k^00 -k^lOgiO 

&(Xi,...,Xn;co) - sup5l(Xi,...,Xn;(o,R), 
R>0 

Ri(Xi,...,X„) = limsup5l(Xi,...,Xn;a>), 
w->0 

ft2(X],..., X„) = sup 5l(Xi, ...,Xn; co), 
0<w<l 

where Ri(Xi,... , X„) is the free orbit-dimension of X\,..., X„ and St2(Xi,..., Xn) is the 

upper free orbit-dimension of Xi , . . . , Xn. 

The relation between free entropy dimension and free orbit dimension was derived in 

[HadSh] as: 

<S(Xi,... ,X„) < Ri(Xi,... ,Xn) + 1 < 5l2(Xi,... ,X„) + 1. 

Suppose Al is a finitely generated von Neumann algebra with a faithful normal tracial 

state T. Then the free orbit-dimension fti(Al) of Al is 

fti(Al) = sup{5li(Xi,..., X„) : Xi , . . . , X„ generate At}, 

while the upper free orbit-dimension ft2(Al) of Al is defined as 

5l2(Al) = sup{R2(X!,..., X„) : Xi , . . . , Xn generate Al}. 

If At is a von Neumann algebra with a faithful normal tracial state r and 5l2(Al) = 0, 

then R2(Al ® Af„(C)) = 0. 

In [HadSh], Hadwin and Shen showed that the class of finite von Neumann algebra At 

with upper free orbit dimension 5l2(Al) = 0 is closed under the following three operations: 

(1) Suppose 5t2(M) = 9*2(^2) = 0 and Nx n N2 is diffused. Then &2({M U N2}") = 0. 

(2) Suppose At = {N, U}", where AT is a von Neumann subalgebra of Al with R2(N) = 

0 and U is a unitary element in At satisfying, for a sequence {Vn} of Haar unitary 

elements in N, distHl(UVnU*, N) -* 0. Then ft2(Al) = 0. 
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(3) Suppose {A/y}"j is an ascending sequence of von Neumann subalgebras of Al such 
SOT 

that MK) = 0 for all z > 1, and At = U,N, . Then R2(AX) = 0. 

Many factors of type Hi, such as property T factors, have upper free orbit dimension zero. 

3.3 The Estimate of Free Entropies 

One of my main results in this thesis is to estimate the free entropy of any generating subset 

of m-weakly T-thin factor. More precisely, 

Theorem 30 Let (AX, r) be a von Neumann algebra with a faithful normal tracial state 

T, Xi , . . . , X„ self-adjoint elements in Al such that Xi,...,Xn generate AX as a von Neu­

mann algebra. Suppose there are subfactors Ni, N2 c Al with property T, operators 

Yi,...,Yq in AX such that the trace-norm distance from each X, to the linear span of 

{WY,W' : W £ W(Ni),W £ W(N2),i = l,...,q} is less than co(< 1). Let a be the 

constant maxi<;<„{||X7||2 + 1}. Then we have that 

X(XU ...,Xn)< C(n, q,a) + (n-2q-2-(o) logco, 

where C(n, q, a) is a constant depending on n, q and a. 

Proof. From our assumptions in the theorem, there are unitary operators Ui,--.,UP in 

Ni, Vi, • • •, Vp> in N2 and constants A(j, s}l, q]t, s'}l) where s}l £ {1 , . . . , p}, s'JI £ {1 , . . . , p'}, 

qfl£{l,...,q},i= 1 , . . . , ij for some integer i} dependent on j , j = 1, . . . , n, such that 

h 

WXj - 2 ^ V «*> ^WSjYqjlVs'J\2 < u 

Let 

<p](Ui,...,Up,Vi,...,Vp„Yi,...,Yq) 
h 

= YJ
 A(J> SJ» 3 V SJ>>USJ<YIJ>VS'JS j=l,--,n 

i=i 
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Here <pj will be viewed as a noncommutative polynomial with variables in Ui,..., Up, 

Vi,...,Vp, 

Suppose O : (14(k))p+p' i-» (Mk)
n is the mapping given by 

(Wu • • •, WW) ^ (^i(Wi,..., WW). • • •, ¥>„(Wi, • • •, WW)), 

for each (Wi,.. . , Wp+P>) in ((U(k))p+p'. There is a positive constant D such that 

yo(Wi,..., ww) - o(w;,..., ww)lle 

< DIKWI, ..., ^ w ) - (w{,..., ww)ll« 

for (Wi,.. . , WW) and (W(,..., W;+p,) in (Oi(k))p+p'. Here (W(k))p+P' is naturally imbed­

ded in (M^)^ ' . 

Since Z) is a constant and p, p ' are given, there is a n0 in N such that (D yp~Tp7)(i'+;/)/'!o < 

2. We may assume that n0 > £ i£-. In Lemma 28, take 8 = —, w Then there is £i < (5 
J °> D^(p+p')n0 

such that if the condition in Lemma 28 is satisfied, the results will follow. Since Mi, N2 

have property T [Dix69], there are mutually orthogonal family of projections {P,}"°j with 

equal trace T(Pt) = — in A/\ and [P-}"°j with equal trace 'r(P-)^" m M such that 
no 

| l2p,[/ fP,-/7, | |2<^ f=l, . . . ,p, 
! = 1 

^ 6, 

and 

i=\ 

In the following, we shall estimate 

X(XX, ...,Xn:Ui,...,Up,Vi,...,Vp„Yi,...,Yg, {P,}^, {P'^). 

We begin by describing elements in 

TR(Xi,...,Xn,Ui,...,Up,Vi,...,Vp,,Yi,...,Yq,{Pi}Zv{P'i}Zi;m,k,e) 

for some large R in R, large m, k in N and small 6. To simplify our estimates, we assume 

that — is an integer. By a standard argument, one obtains that there are a positive e0 and 
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m0, k0 in N such that, if 0 < e < e0, m > m0, k> k0 and 

(Ai,...,A„,...) 

G TR(Xi, ...,Xn,Ui,...,Vi,...,Vp>, Up, Tu ..., Tq, {PX°=V {P'Xli; m, k, e), 

then there exists a mutually orthogonal family of projections {(2J"=i with equal trace (cor­

responding to {P,}"^), {<2[}"=i with equal trace (corresponding to {P^}"^), unitary elements 

Gi,...,Gp (corresponding to Ui,...,Up), unitary elements Hi,...,Hp>(corresponding to 

Vi,...,VP'), and elements Ti,...Tq (corresponding \.oYx,...,Yq) such that 

||A, - cp}(Gi,..., Gp, Hi,..., Hp, : Tu..., Tq)\\2 < co, j=l,...,n 

"° 
\\YJQlGtQl-Gt\\2<^, t=l,...,p, 

1=1 

, V . ,„ ~, TT „ „ 61 
I I2 J 2;^G;-^II 2 <^, t = i,...,P'. 

1=1 

For each large k (with assumption that ^ is an integer), decompose Mk into a tensor 

product Mna®Mk_ and let {Est: s, t = 1, . . . , n0} be a given matrix unit system for Mn ®CI. 
"0 

Then there are unitary matrices W and W' in 17(£) such that WQtW* = Eu, and W'Q^W'* = 

E„ for z = l , . . . , n0. Thus for each WGtW*, let A = £"=°i £„ WGfW*£„, ? = l , . . . , p and 

Dtl = EuWGtW*Eu, i- l , . . . , no. we thus have 

HD;A-A£>; i i 2 <ei , i i / -A^; i i2<ei . t= i , . . . , p 

and 

||£>;,A, - DtlD*tl\\2 < eu \\I - DtlD*tl\\2 < ex, i = l , . . . , n0 

and therefore there are — x — unitary matrices Gf\ ..., G "̂o) in M±_ such that 
n0 no "0 

\\G?-Dtl\\2<—^=,t=l,...,p,i=l,...,no 
£>ypn0 

I I A - G ; I I 2 < - ^ : , ? = I , . . . P 
£>VP 

||WGtW* - G't\\2 < - ^ = , t=l,...,p, 
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where G't - ZZi Ea ® Gt • Similarly, for W'HtW'*, we obtain f- x ^ unitary matrices 

Hf\..., Hfo) such that 

\\W'HtW* - H't\\2 < - ^ - , t=l,...,p, 
Z>VP 

where H't = YZiEa® Hf-

We also know that there is a cr-net (U't)r€s(k) in 14(k) with respect to the uniform norm 

such that \&(k)\ < (C/cfy for each k in N, where C is a universal constant. We choose cr to 

be co/2a. Hence there is a U'r, U'r, in 77(/c) such that ||W - U'r\\ < cr, ||WW* - U'^W < cr. It 

follows that 

WAlf; - WA;W*||2 < co 

and 

WU'rAjU'; - cpj(WGiW*,..., WGpW*, 

W'Hi W'*,..., W'Hp, W \ W7\ W \ . . . , WTqW'*)W'W*\\2 < 2co 

for j = l,...,n. Since 

l|cpy(WGiW*,..., WGpW*, W'Hi W'*,..., W'Hp>W'* 

WTiW*,..., WTqW*)\\2 < ||A;||2 + co < a 

we have 

WU'rAjlf; - <Pj(WGiW*,..., WGpW*, 

W'Hi W'\ . . . , W'Hp. W'*, WPiW'*,..., WP9W'*)^ll2 < 3w 

for j = l,...,n. 

We also know that there is a #-net (WAeiWno) w i m respect to the Euclidean metric 

such that |T(£/no)| < (C V&Mo7#) °, where C is a universal constant and 9 is an arbitrary 

constant in (0, ^fk/no]. 

Thus there are W^,. . . , WSpnQ, sx,..., spno £ T(k/n0) and W's,,..., W^ , ^ , . . . , s'p,no £ 

T(k/n0) such that 

\\WSj-G
{j modno\<9, j=l,...,Pn0 
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\\W's,-HiJ.m°dno)\\e<9, /= l , . . . , p ' n 0 

Let W« = Zr=i En ® WV1)no+, for ; = 1,... ,p and W« = Z* £„ ® W ^ ^ ^ for 7 

l , . . . , p ' . 

Let Bj(s, s', r') be ^ ( W ( 1 ) , . . . , Wip\ W'{1),..., W ^ , WTiW*,..., WTqW*)U'r, for j 

1 , . . . , n. Now, we have 

-' ^ | | « \\U'rA}U;-B]{s,s,y 

< WU'rAjU'; - ifj(WGi W*,. . . , WG^W*, W'/fi W'*,..., W'HP,W'*, 

WTXW *,...,WTqW*)U'r,\\e + 

\\<Pj(WGiW*,..., WGpW*, W'Hi W*, •. -, W'Hpl W*, WTXW'*,..., WTqW'*) 

-<Pj(G'v ...,G'p,H[,..., H'p„ WTiW*,..., WTqW'*)\\e + 

+ | | ^ ( G ; , . . . , G'p, H[,..., H'p„ WTiW'*,..., WTqW'*) 

-<^(w(1),..., w{p\ w'(1),..., w'{p'\ WTiW'*,..., wr9w'*)||e 

2kl/2 
CO 

< 3k1,2co + D VpTp7 , + D VP + P'9. 

L e t 6 > b e 7 ^ % . T h e n 

WAl/; - Bj(s, s', r')\\e < 6co <k, 

Define a linear mapping cp : (Mk)
q H» (Ms

k
a)n as follows: 

cp(Si,...,Sq) 

= (\<Pj(W{l\..., W w , W' ( 1 ) , . . . , W,{p), Si,..., Sq)U'r, 

+ ^ £ / > * ( W ( 1 ) , . . . , w*\ w ' ( 1 ) , . . . , W'{p\ Si,..., Sq)\ 

Let T be the range of cp in (Ms
k
a)n. It is easy to see that T is a real linear subspace of (Ms

k
a)n 

whose real dimension is not greater than 2qk2. By adjoining linearly independent elements 

of (Ms
k
a)n, if necessary, we may assume that the real dimension of 7~ is precisely 2qk2. Let 

T ' be the orthogonal complement of T in (Ms
k
a)n. Then T' has real dimension (n - 2q)k2. 
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Now let B(s, s', r') be the ball of radius (nk)l/2a in T and B'(s, s', r') be the ball of 

radius 6(nk)l,2co in T' with respect to Euclidean norms. The volumes of the two balls are 

n^T(l + ^q^y^nka2)1^2 

and 

n2in-2q)k2T(l + ]-(n - 2q)k2)-\36nkco2)^n-2q)e 

Let (Bi,..., Bn) in T be the image of (U',Ai U'*,..., U'^U'*) under the orthogonal 

projection from (Ms
k
a)n onto T. Since 

||(C/^iU';,..., £/;A„C/;*)||e < (nk)l/2(a- 1), 

we have | |(fl l s..., Bn)\\e < (nk)1/2(a - I) and (Pi , . . . , Bn) £ B'(s, s', r'). Since 

(Bi(s,s',r'),...,Bn(s,s',r'))£T 

and 

||(C/;AI U';,..., U'^U';) - (Bi(s, S', r'),..., Bn(s, s', r'))\\e < 6(nk)mco, 

we know that (U',Ai U'*,..., U'^nU'*) - (P i , . . . , Bn) is both orthogonal to T and lies in 

B'(s, s', r'). Thus 

(U',AiU';, ..., U^Ur) £ B(S, s', /) © B'(S, s', /). 

We have proved that, if m > m0, k > k0 and 0 < e < e0, then 

TR(Xi,...,Xn : ...;m,k,e) c 

| J | J (U'r*){n)B(s,s',r')®B'(s,s',r')(U'r)
(n\ 

H spn0mkln0) r,r'£§(k) 
si sp«oeT(':/"o) 
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where (U'r)
{n) is (U'r,..., U'r). Thus 

A(TR(Xi,...,Xn : ...;m,k,e)) 

< \T(k/nQ)\(p+p')n°\$k\
2A(B(s, s', r'))A(B'(s, s', r')) 

< (C^^^'^(C/o-f^n^Td + l-2qk2ylT(l + ~(n - 2q)k2)~l 

•(nk)^a2q^(6(oin-2q)^ 

= (^^)^(^)2*V^F(1 + W)-r(i + kn - i4i*rl 

co co 2 2 
•(nk^a^CScof1-2^ 

As before, D is a constant and it follows that (D Vp + p'){p+p,)l"° < 2, n0 > ^f and 

fact that T(l + x) > xxe~x (Stirling's formula), we have 

A(T^(Xi , . . . ,X„ : ...;m,k,e)) 

< (£ )^2 i 2(—f^n^&qk2)-"2^ 
co co 2 

•(Un - 2q)k2)-'{n-2q^e^(nk)^k\2qk\6coyn-2q^. 

Hence 

X(Xi,...,Xn)=x(Xu...,Xn:...) 

_, n 
< lim sup(/c log A(Tfl(Xi, . . . , X„ : . . . , m, k, e)) + - log k) 

k—*oo ^ 

C 2aC 2 1 1 2 
= lim sup(a» log —I- log 2 + 2 log qlogqkr - - ( n - 2 g ) l o g - ( n - 2q)kr 

fc-»oo w co 2 2 
1 1 n 

+-n + -nlognk + 2qloga + (n- 2q)log6CL> + - logk) 
r.^ ~, ~ „ , n-2q, n-2q n 

< log2C + 2log2aC-qlogq ^ l o g — ^ + - + 
n 

+- logn + 2gloga + ( n - 2g)log6 + (n-2q- 2-co)\ogco 
= C(n, g, a) + (n - 2q - 2 - co) log co. 

Corollary 31 The free group factor XF„ when n > 2q + 2 is not q-weakly T-thin. 
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In Theorem 30, the subfactors with property T in Al can be replaced by subfactors 

having Cartan subalgebras. In [HadSh], D. Hadwin and J. Shen prove a more general case 

by using the idea of free orbit-dimension. We state the theorem below: 

Theorem 32 (See [HadSh]) Suppose Al is a type IIi factor with the trace r and there 

exist von Neumann subalgebras Mi and M2 of AX with &2(Mi) - R2(M2) = 0 and vectors 

£i, ...,£„ in L2(AX, T) such that 

!p"2Mi{tl,...,tnW2=L2(Al,T) 

Then Sli(Al) < 1 + 2n and 8(AX) < 2 + 2n. Thus AX is not ^-isomorphic to Ji^m for 

m > 2 + 2n. 

In the theorem above, when //„ = X„ and X„ is self-adjoint in Al, we have that fti(Al) < 

1 + n and 6(AX) < 2 + n from the proof of the theorem above, where At is given as in 

the theorem. Therefore the free group factor Lrm, for m > 3, is not T-thin, all free group 

factors are not strongly T-thin, £,fm for m > 4 is not 1-weakly T-thin. 

In [HadSh], they also applied the theorem above to the case when a factor of type Hi 

contains a subfactor with a finite index and the subfactor has upper free orbit-dimension 

zero. Suppose M c At is an inclusion of factors of type Hi and [Al : M] = r < oo. If 

R2(M) = 0, then 5*i(Al) < 2[r] + 3 and 6(AX) < 2[r] + A, where [r] is the integer part of r. 

The result is rough in some sense, as you can see that the estimation depends on index r. 

Actually, we can improve the result as follows. 

Corollary 33 Suppose M c At is an inclusion of factors of type IIi and [At : M] = r < oo. 

If MM) = 0, then 6(Al) < 3. 

Proof. By [Po86], there exists a MASA JX in At that is also a MASA in (At, AT); i.e. 

3\! n (At, M) = 3\. Consequently ft V JNJ = ft! and Al = JpftN. Thus, we have 

S(AX) < 3 in view of the theorem above. • 
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CHAPTER 4 

CONNES'S EMBEDDING PROBLEM 

In Quantum Physics, observed quantities are described by operators while researchers use 

large matrices to replace operators for the sake of convenience of computation. In general, 

this method is not correct in mathematics, but it is reasonable to ask when operators can 

be approximated by matrices. Similarly, for von Neumann algebras, researchers could 

ask whether any separable factor of type II] can be asymptotically embedded into matrix 

algebras. In the language of ultrapower of von Neumann algebras, this problem can be 

rephrased as whether any separable factor of type Hi can be embedded into the ultrapower 

ft" of the hyperfinite factor K of type Hi. This is the Connes's embedding problem. It was 

first proposed by A. Connes [Con76] in 1976. 

4.1 Ultrapower of von Neumann Algebras 

We begin with the definition of an ultrafilter. An ultrafilter co on N is a collection of subsets 

of N such that 

1. the empty set 0 g co, 

2. for any A, B £ co, A D B £ co, 

3. for any A c N, A £ co or N\A e co. 
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An example of an ultrafilter is obtained by choosing an element a £ N and letting co be the 

collection of all subsets of N that contain a. Such ultrafilters are called principal ultrafilters; 

Ultrafilters not of this form are called free. Free ultrafilters on N can be identified as points 

in yS(N)\N, where B(N) is the Stone-Cech compactification of N. In addition, N can be 

replaced by any infinite set. 

Suppose S is another set, / : N H» S is a mapping and E c S. Then f(n) is eventually 

in E along co if f~x(E) - {n £ N : f(n) £ E} £ co. If § is a topological space, then f(n) 

converges to s £ S along co, denoted by lim,,-^ f(n) = s, if f(n) is eventually in each 

neighborhood of s. It is known that if S is a compact Hausdorff space, then lim„^w f(n) 

always exists in S for every / : N H S and every ultrafilter co on N. 

Regarding an ultrafilter as a topological space, one can define a product of ultrafilter. 

Let a, a' be two ultrafilters on infinite sets / and J respectively. The tensor product a® a' 

is the ultrafilter defined by setting 

S £ a ® a' <& {i £ I: {j £ J : (i, j) £ S} £ a'} £ a. 

Lemma 34 Let {xJ
i}(Uj)€lxj be a bounded subset of C. Then 

lim lim xj = lim x]. 
i—»a j—>a' (i,j)->a®a' 

Proof. Let x = lim,^a l im^^ xj. Fixing e > 0, we obtain A = {i £ I : \ lirn,-^' xj - x\ < 

6/2} G a and A, = {;' G / : |JC/ - l i m , ^ x^l < e/2). Then 

X = {(i, j)£lxj-.i£A,j£ A,} c {(/, j) G I x J : ]JC/ - JC| < e). 

Since X G a ® a' and e is arbitrary, the equation follows. • 

Suppose Al is a factor of type Hi with a separable predual and the trace r. Let co be any 

free ultrafilter on N. Let ©«, Al be the direct sum of a countable number of copies of Al i.e. 

©ooAl = \{X(n\ : X(n) G At, sup HX ÎI < ool, 

Iw = \{X{n\ £ ©.oAl: lim r(X(n)*X(")) = o}. 

I. n—xo ) 
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It is well known that J w is a maximal ideal in ©ooAl. The quotient ®00Al/IC0, which is 

called an ultrapower of Al, is a C* algebra, denoted by Af". The linear functional rw on 

AT defined by TW(X) = l im„^ r(X(n)), VX = {X(n)}„ + Jw G ©^Al/ Jw is a trace on AT. 

The center-valued function T defined by T(X) = {r(X(n))}, VX = {X(n)}„ G ©^Al is a center-

valued trace from ©ooAl to €°° = {{an} : an £ C, sup„ |a„| < oo}. The center-valued norm 

|| • ||T is given by ||X||T = T(X*X)1/2, VX G ®„M. By the theory of abelian C* algebras, 

we identify (°° as C(BN). Let X = {X(n\ + Iw £ AT. {X{n\ represents X and without 

confusion, we write X = {X(n)}„. 

Denote by Alw the relative commutant of Al in AT; i.e. AL = At' n AT. Now we 

will give some basic properties of an ultrapower of factor Al of type Hi. 

Lemma 35 Suppose AX is a factor of type Hu Then AXW is a non-separable factor of type 

Hi-

Proof. We shall split the proof into three steps. First, we shall prove Af is a von Neumann 

algebra. Second, that Al" is a Hi factor. And last, we shall show that it is not separable 

under trace norm. 

Step I. To show Af is a von Neumann algebra, it is suffice to show that the close unit 

ball of A f is complete in the || • ||2-norm induced by rw, denoted by || • L . Let {Ak}k be a 

sequence in the unit ball of AT with \\Ak+i - Ak\\w < 2~k for all k > 1. By [KR], Lemma 

10.1.6, for each Ak, there exist Bk in ©^Al such that ||Afc||wr = \\Bk\\ and Ak = Bk + 1^. 

By induction on k, we shall choose a sequence Ck in ©coAt with property that Ci = Bi, 

Ak = Ck + IOJ and 

l |C,+ i-C f c | |T<2- f c + 1 / , / :>l. 

Suppose that Ci,...,Ck have been chosen for some k > 1. 

\\Bk+i-Ck\\T(co) = T((Bk+i-Ck)*(Bk+i-Ck))
m(co) 

= T((Bk+i - Ck)*(Bk+i - Ck)(co))m 

= | |A t + 1 -A J k L<2-* 
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Let V = [s £ BN : \\Bk+l - Ck\\T(s) < 2~k+i}. Then V is a open neighborhood of co in 

the compact Hausdorff space BN. So by the Urysohn's lemma, there is a Z G C(BN) such 

that 0 < Z < 1, Z(co) = 1 and Z(s) = 0 for all s £ BN/Y. Let Ck+i = ZBM + (I - Z)Ck. 

Therefore 

\\Bk+i - Ck+i\U = \\Bk+i - Ck+i\\T(co) = (I- Z)\\(Bk+i - Ck)\\t(co) = 0 

and 

HC*+i - Ct||T = \\Z(Bk+x - Ck)h = Z\\(Bk+i - Ck)\\T < 2-k+xI, 

which completes the induction. {Ck} is a || • ||2-Cauchy sequence in the unit ball of ©ooAl 

and converges to C in this unit ball. Let A = C + Iw. 

IIA-A.IL = IIC-GUTM 

< lim sup | max ||C; - C.||T| 

J - 1 

< lim sup | max ]T ||C,-+i - C.UTI2! 
j~*°° i=k 

7-1 

< V 2~l < 2~k+l 

i=k 

Therefore Alw is a von Neumann algebra. 

Step II. Suppose the center of AT does not consist of scalars multiplies of the identity. 

Let P = {P(n)}„ be a center projection in AT with trace A, where P g {0,1} and suppose 

P{n) are projections in Al with the same trace as P in Atw. For each P{n\ there is a unitary 

element U{n) in Al such that ||P("} - U(n)P{n)U{n)*\\2 > ^A-A2 - l/n, otherwise by the 

Dixmier approximation thereom ([KR] Thereom 8.3.5) we would have 

y/A-A2 = \\P{n) - T(P^)\\2 < V i - A 2 - l/n. 

Let U = {U{n\. Then \\UP - PU\\W > V^ - A2, U does not commute with P and hence 

AT is a factor. Since Al c Alw and rw is a trace on AT, AT is a factor of type IIi. 

Alternatively, observing that any two projections with the same trace in AT are equivalent 

in AT, AT is a factor. 
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Step III. Embed ®~M2(C) ^ ft into At as a subfactor. Define Ut. £ M2(C) as I if tj = 0; 

fo 0 
if ry = 1. For any sequence t = (tj) £ {0, l}00, define Ut = {®n

=1Ut.}n £ AT. If 
1 0 

s,t £ {0, l}00 are not equal at some j 0 , then T(® =̂1[/̂ .)(<g)̂ =1/7(;.) = 0, Vn > To. Therefore 

Tu>(UsUt) = 0 and {£/f : f G {0,1}°°} is an orthogonal set in L2(AT). Thus AT is not 

separable under the trace norm. • 

In particular, for the hyperfinite factor *R of type Hi, the ultrapower R? of R is a non-

separable factor of type II i. 

What we would like to mention here is that if we replace each summand of ©oo Al by 

a finite factor with its trace, one can get a finite factor again. For example, for any free 

ultrafilter co on N, Mn(C)w = Mn(C). Suppose {nk}k is a increasing sequence of natural 

numbers and nk —> oo as k —» oo. The ultraproduct Mnk(Cf of matrix algebras given by 

Mnk(Cf = ©r=iM„,(C)/J„, 

where 

7W = {{X{% £ ®r_iMn,(C) : limtrnk(X
{k)*X{k)) = o), 

and trnk is the normalized trace on Mnk(C). Moreover Mnt(C)w is a factor of type IIi. 

Without specification, throughout this section, co will denote a free ultrafilter on N. 

Theorem 36 ([GeHOl, Con75, SM08]) Let Ai be a separable factor of type IIh AT an 

ultrapower of AX, AL the relative commutant of AX in Af. 

1) Any self-adjoint, positive, unitary element or projection A £ Af or AL can be repre­

sented by a sequence {A^} of self-adjoint, positive, unitary elements or projections in AX. 

2) Let E,F be equivalent projections in Af or AL; i.e. E ~ F. V has a representing 

sequence of partial isometries in AX. 

3) Any p x p matrix units in Af or AL can be represented by a sequence of p x p matrix 

units in AX. 

Proof. The details of the proof can be found in [GeHOl, Con75, SM08]. • 
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With the continuum hypothesis, Ge and Hadwin [GeHOl] proved the following amaz­

ing theorem: 

Theorem 37 ([GeHOl]) Assume the continuum hypothesis. Suppose AX is a finite von 

Neumann algebra with a faithful normal trace r. If Al is trace-norm separable, then Af 

and Af' are ^-isomorphic von Neumann algebras for any free ultrafilters co andco' on N. 

Moreover, the relative commutant ofAX in Atw is ^-isomorphic to that of Al in Af'. 

It is known that property T of factors of type IIi can distinct free group factors and the 

hyperfinite factor. Recall that a factor At of type IIi has property T if for any given n G N, 

finitely many elements Xi , . . . , X„ in Al and e > 0, there exists trace-zero unitary element 

U £ Al such that \\UXt - X,/7||2 < e for i = 1, . . . , n. In 1943, Murray and von Neumann 

[MV43] proved that 'R has property T and so does K0. In general, we have 

Proposition 38 Suppose Al is a factor of type Hi. AX has property T if and only ifAf has 

property T. 

Proof. Suppose Al has property T. For m in N, Ai , . . . , Am in Af, write Ak = {Ak
n)}„, 

k = 1, . . . , m. For Af, 1 < k < m, 1 < j < n, there exists unitary element C/(n) G At with 

trace zero such that \\U{n)Af - Af t/(n)|| < l/n. Let U = {U(n)}. Then \\UAk - AkU\l, = 0 

and UAk = AkU. 

Suppose Af has property T. For any Ai,...,Am£ At, m > 1, m G N, e > 0, and since 

Ai,...,Am can be viewed as elements in AT, there is a unitary element U in AT such 

that \\UAk - AkU\\w < e/2. Writing U = {U(n\, we see there is a £/("o) in {U(n)} such that 

\\U^Ak-AkU
M\\2<e. • 

A factor Al of type Hi is a prime factor if Al is not (isomorphic to) a tensor product 

of two factors of type Hi. S. Popa and L. Ge etc show that for any factor Al of type Hi, 

Af is a prime factor and has no Cartan subalgebras [FGL06]. Let 9JI™ be the set of all 

self-adjoint elements in Mk(C), and ^(Wk
a) be the set of all unitary elements in Wk

a. 
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Lemma 39 (See [Vo94], lemma 4.3) Given e > 0 there is N £ N and 6 > 0, so that for 

all k £ N, A, B £ 2Rf, \\A\\ < 1 if \rk(A
p) - rk(B

p)\ < 6 for 1 < p < N, then there is 

U £ W(Wk
a), so thatrk((B - UAU*)2) < e. 

Lemma 40 (See [Po83]) Suppose At is a factor of type Hi and co a free ultrafilter on N. 

Let AX" be the ultrapower of AX and 3Xi, Ji2 be two non-atomic abelian von Neumann 

subalgebras of Af with separable preduals. Then there is a unitary element U in AT 

such that U*JXi U = JX2. 

Proof. Since JXu ^ 2 are non-atomic abelian von Neumann algebras with separable pred­

uals, they are isomorphic to L°°[0,1]. Suppose 3Xi and 3l2 are generated by Haar unitary 

elements Ui and U2 respectively. Write Ui = {U{"\ and U2 = {U{f}„ for U{"} and Uf 

in Al. We may assume that U(ri) lies in a finite dimensional abelian subalgebra of At (oth­

erwise, replace U'f' by such an element close to it in trace norm). Since Ui and U2 are 

Haar unitary elements, we may assume that lf^ and u!f have the same distribution by 

Lemma 39 and U™ = Zs;=l A3Ef, Uf = Z%i *]Ff for £ ( /° , . . . , E{£ and Ff,..., F{£ in 

Al such that T(E{"]) = r(Fjn)), £ * j E{"} = Z*"=1 Ff = I. From [KR],Lemma 12.2.5, there 

is a unitary element U{n) in At such that (U{n))*Ej]'U{n) = Fj] for all j = 1, . . . , sn. Then 

(j/(»))*t/(»){/(») = [/W. Let U = [U{n)}n in Af. Then U*UXU = U2 and ITftxU = 3X2. • 

Lemma 41 (See [Po83]) Suppose co is a free ultrafilter on N. Let Mi, Jl2 be two non-

atomic abelian von Neumann subalgebras ofRa> with separable preduals. Then there is a 

unitary element U in R^, such that U* 3li U = J?l2. 

Proof. The proof of this lemma is similar to Lemma 40. The only difference is that the 

resulting unitary element U lies in <RW. Since R is hyperfinite, we may choose full matrix 

subalgebras M2k(C) Q M2*+i(C) such that U£LjM2*(C) is weak-operator dense in R. once 

more J?Ti and Jl2 are isomorphic to L°°[0,1]. Suppose J?li, J{2 are generated by Haar 

unitary elements Ui and U2 respectively. Write Ux - {U{"}} and U2 = {Uf} for uf and 

U^ in R. Since Uu U2 commute with *R, we may assume that Uf* and U^ commute 

with M2«(C)(c K). We may also assume that U^ lies in a finite dimensional abelian 
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subalgebra of M2«(C)' n R. for j - 1,2. Since Ui and U2 are Haar unitary elements, 

we may assume that uf^ and uf have the same distribution by Lemma 39 and C/[n) = 

Z;ii A}E
{f, Uf = Z;ii A ,FJ° for Ef,..., E% and F?\ ..., F™ in M2„(C)' n 7? such 

that r(£jn)) = r(Fjn)), 2 ^ F j 0 = £*"=i F
{? = I. From [KR], Lemma 12.2.5, there is a 

unitary element U{n) in Af2-(C)' n ft such that (U{n)yE{fu{n) = F("} for all 7 = 1, . . . , j„. 

Then (U{n))*uf U{n) = uf. Let 1/ = {U(n)}n in ft". Then U £ Ru>, U*UXU = U2 and 

U*ftiU = Jl2. m 

Lemma 42 (See [Po83]) Suppose 3 is a von Neumann subalgebra of Al, where Al is a 

type Hi von Neumann algebra with a trace r. Let U be a unitary operator in AX such that 

for any e > 0, there is a finite dimensional abelian von Neumann algebra J?L of !B such 

that T(E) < € for all minimal projections E in Jle, and UJXeU* and 3 are orthogonal 

with respect to T, then U is orthogonal to the set of normalizers {V £ AX : V3V* = 

3, V unitary } of 3 in AX, denoted by ^yV(3). In particular, U is orthogonal to 3 and 

3'nAi. 

Proof. Let F i , . . . , F„ be minimal projections in Jle and £ , E, = I. Then for any V £ JV(3) 

and e > 0, we have 

r(UElU*V*E,V) = T(UEllTyr{y*El'V) = T(E,)2, Vz. 

This implies: 

\r(VU)\2 < \\VU\\l = \\E^nM(VU)\\2 

= \\YJE,VUEl\\l = YJ\\E,VUEt\\l 
1 1 

= YJT(VUElU*V*El) = Yjr(El)
2<e. 

1 1 

Therefore T(VU) = 0. Since 3 is the span of ^(3) and for any T £ 3' n At, 

\r(TU)\2 < \\TU\\2
2 = \\E^nM(TU)\\2

2 

= W^EJUEM^YJWEITUEMI 

= £ TiTUE.irrE,) < \\T\\2
 YJ T(E,)2 < \\T\\2e. 

I I 
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Then T(TU) = 0, VF G 3' n Al and U is orthogonal to £ and 3' n Al. • 

A subalgebra S of a von Neumann algebra Al is a Cartan subalgebra if span^V(S) = 

AX. 

Theorem 43 (See [FGL06, Po83]) At" is prime and has no Cartan subalgebras. More­

over, 'ROJ is also a prime factor of type Hi and has no Cartan subalgebras. 

Proof. Suppose Af - Ali®Al2 for some factors Ali and Al2 of type Hi. Choose non-

atomic abelian subalgebras 3Xi of Ali and J\2 of Al2 such that J?li, Jl2 are weak-operator 

separable. From Lemma 40, there is a unitary element U in AT such that U*3li U = J?T2 

which is orthogonal to Ali ® CI. From Lemma 42, U is orthogonal to the normalizers of 

Ali in Af. But the normalizers of Ali generate AT as a von Neumann algebra. This 

contradicts the assumption that U lies in Al". Therefore Al" is prime. Similarly, using 

Lemma 41, we can show that ft^, is also prime. 

Suppose 3X is a MASA in At". Let 3 be a separable diffuse abelian von Neumann 

subalgebra of JX. Then 3 is isomorphic to L°°[0,1] and suppose 3 is generated by a Haar 

unitary U. Write U = {U{n)}n, we may assume that U{n) lies in a finite dimensional algebra 

and U(n) = Z-"i hEf, where {F^ }*"=1 is a self-adjoint system of matrix units. Let V{n) = 

Zfi1 E\f+l + ESnA and V = {V{n)}. Then V is a Haar unitary and C = {V}" is orthogonal to 

3 and 3' n Al". By Lemma 40, there exists W such that W3W* = C. Then by Lemma 42 

W is orthogonal to J?l and JV(3\)". Therefore J?l is not a Cartan subalgebra. Similarly, by 

Lemma 41, ft^ has no Cartan subalgebras. • 

Lemma 44 (See [FGL06]) Suppose AX is a subfactor of ft" with a separable predual. 

Then AX n ft" contains a 2 X 2 full matrix algebra. 

Proof. Suppose Ai, A2 , . . . are in the unit ball of Al so that they are ultraweakly dense in 

the ball. Write Aj = {Aj\ with Aj] in ft. For any given n and {Af* :l<k,l<n}, there is 

a 2 x 2 matrix unit system {F^f}2
t=l in ft such that \\A(k)E(£ - E^A{k)\\2 < ^ for 1 <k,l< n 

and 1 < s, t < 2. Let Est = {E^n in ft". Then {Est}
2

st=x commutes with AUA2,..., and is a 

2 x 2 matrix unit system in ft". • 
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Let N be a von Neumann subalgebra of Al. Since 

(©ooA/ + I^/Io, =* (@ooM)/(®ooM) n I„ 

A/'" can be embedded into Al" as a von Neumann subalgebra. 

Lemma 45 For any e > 0 and A £ AX, there is unitary element U such that 

\\UA-AU\\2>\\A-EN,nM(A)\\2-e, 

where ~EwnM is the trace preserving conditional expectation from Al onto M' n Al. 

Proof. Suppose that 

\\UA - AU\\2 = \\UAU* - A\\2 < \\A - EN,nM(A)\\2 - e(= a) 

for all unitary elements U in M. Let Co{UAU* : U £ M} be the minimal convex set 

containing all UAU* with U a unitary in M. For any X G Co{UAU* : U £ M}, we have 

||X - A||2 < a. But EjvnA"i(A) lies in the weak-operator closure of Co{UAU* : U £ M} and 

we shall have contradiction ||E '̂n>u(A) - A||2 < a. The lemma follows. • 

Lemma 46 (AT)' n Al" = (M' n Al)". 

Proof. From « „ ( / / ' n Al) = (®„N') n (©ooAl), we obtain (AT' n At)" c (Mw)' n Al". For 

any X = {Xw} G (M'°)' n Al", we see {Eyv,nA1(X
("))} is in (AT' n Al)". For X(n) G At, there 

exists unitary element U{ri) £ N such that 

\\U(n)X{n) _ X(.n)Tj(n)^ > ||Z(„) _ E ^ n ^ ^ H a - l/n. 

Let U = {U{n)} £ AT". Then 

\\UX - XU\\W > ||X - {E^nM(X{n))}|U, 

but UX = XU, therefore X = {E^nwiC^)} eN'nM. • 

Let {Mn} be a sequence of von Neumann subalgebras of Al. Let Af" = ®ooM„ + Iw/Iw. 

By the proof of the lemma above, we actually have 

(AC)' n A f = (M'n n ATf. 
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Proposition 47 Suppose {ftn} is a sequence ofMASAs of AX. Then 3X™ is a MASA in At". 

Proof. From ftn = 3X'n n At, we get 

jfn = (ji'n n At)" = (&%)' n Af. 

• 

Problem 48 Are these all the MASAs of Af? If not, what is a counterexample? 

Proposition 49 (See [Po81]) No MASA of Af is separable. 

Proof. Suppose 31 is a separable MASA of At". Then 3X can be generated by a positive 

element A = {A(n)}, where A(n) are positive elements. Let JXn c At be a MASA in Al such 

that A(n) G JXn. Then ©oo^n + Fw /Jw is abelian and contains A, so it is JX. Since At" is 

continuous and 31 is separable and maximal abelian, one can find projections (Ffc„}i<*<2» c 
ri>0 

3X such that 

1) span^lF*,,,} = ft; 

2) rUEkn) = 2~n,l<k< 2" ,n>0; 

3) E2k-i>n + E2kn = Ek<n-i. 

One can choose by induction over n, &, sequence (Fj^)m in © ^ ^ such that 

1) sp&[E<g} = ft; 

2) TUE™) = 2-", 1 < k < 2", n > 0; 

D> ^Ik-hn "•" C2fcn ~ ^hn-V 

Take F(m) = j£x E(£_lm and let F = {F(m)}. Then F G ft and rw(£) = 1/2. Moreover 

rw(EEhn) = l/2rco(Ek,n) for all fc, n so that rw(EX) = l/2ra)(X) for all X G ft. In particular 

rw(F) = rw(F • F) = 1/4 which is a contradiction. • 

59 



Lemma 50 Suppose co, co' are free ultrafilters on N. Then 

(Al")"' = At"®"'. 

Proof. Any X = (At")"' may be represented by a with representing sequence {X„}„ c Al". 

Similarly, write Xn = {X(k\, where x f G Al. Therefore X = {Xf }k,n and {X(k\n could be 

viewed as elements in Al"®"'. By Lemma 34, the lemma holds. • 

Let At be a factor of type IIi with the trace r acting on the Hilbert space "77 = L2(At, r). 

Let "77" be the ultraproduct of copies of 77, which is the Hilbert space of all the equivalence 

classes of elements in ®00
<H with respect to equivalence relation that (£(n)) ~ (?7(n)) if and 

only if lim*, ||£(n) - ?7(n)|| = 0. 77" is a Hilbert space with inner product ({£w}, {?7(n)}> = 

limfa;(^
('!), rfn)). In general, Al" does not act on 77". However At" acts on a subspace of 

77". 

Proposition 51 (See [Con76]) Let 77w be the set oft; = {£(n)} G 77" which satisfy that for 

any e > 0, there exists a > 0 such that 

lim\\Eia,co)(\eWn)\\\2<e-
n—>tu 

where F(a>0o)(|̂ (n)|) is the spectral projection o/|£(n)| corresponding to (a, oo). Then IHco is 

a closed subspace of 77" and Af acts on 77w z'n a standard way with the vector I - {1} 

as cyclic and separating trace vector and the map {£(n)} •-» {7<f(ra)} as canonical involution, 

where J is involution of AX. 

Proof. We have to check that 77w is the closure in 77" of the set of vectors {x(n)}, Ibc^lL 

bounded. Assume that // = {//(n)} G 77w and let e > 0. Then for some a > 0 one has 

lim^oo ||&F(fl,oo)l&lll < e so that the vector 77 = {qk}k, J]k = &(/ - E{cuoo))]^k\ is at less than e 

of £ and satisfies ||77fc|L < a for all k £ N. Conversely, let e e (0,1) and a > 0 and assume 

that I&H2 < 1, ||xw - £(n)||2 < e for all k, where H^IL < a for all k £ N. By inequality 

(see [Con76],Proposition 1.2.1) 

|||A| - \B\\\2
2 < \\\A\2 - \B\\ < \\A - B\\2(\\A\\2 + \\B\\2), VA, B £ AX, 

|||XW| _ |^»)|||2 < (36)1/2 and then |||^(n)|F(a,co)(|^")|)||2 < 2(3e)1/2. • 
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4.2 Embeddings into Ultrapower 

Let Al be a finite von Neumann algebra with a separable predual and a faithful normal 

tracial state T, and let Al i a . be the set of all self-adjoint elements in Al. For all n in N and 

Xi , . . . , Xn in Al with X,- = X* for j = 1, . . . , n, finite set S = {Xi, X2 , . . . , Xn} c Af ̂  has 

matricial microstates if for every m in N and every e > 0 there are k £ N and k x k matrices 

Ai , . . . , A„ such that whenever 1 < p < m and z'i,..., ip £ {1 , . . . , n), we have 

\trk(AhAh • • • Aip) - r(XhXh • • • Xip)\ < e, 

where trk is the normalized trace on Mk(C). 

A von Neumann algebra Al with a separable predual and a faithful normal tracial state 

T is embeddable into ft" if there is a ^-isomorphism O of Al into an ultrapower ft" of ft 

with r u o $ = T. 

Proposition 52 Suppose Al is a von Neumann algebra with a separable predual and a 

faithful normal tracial state r. Then the following are equivalent: 

1) (At, T) is embeddable into ft" 

2) Any finite subset S c AXs.a. has matricial microstates. 

3) If So c At̂ .a. is a generating set for AX (i.e. the von Neumann algebra generated by So 

is AU then any finite subset S of So has matricial microstates. 

Proof. 1) => 2): Vm G N, let Xi, . . . ,Xm be any self-adjoint elements in Al. Since Al 

can be embedded into ft", we identify Al as a von Neumann subalgebra of ft". Then 

r = TU\M, XJ = {Xf}n and Xf £ ft for j = l , . . . ,n . By [KR], Theorem 12.2.2, for 

6 > 0 and X{"\ j = 1 , . . . , n there is a finite type I subfactor M of ft isomorphic to Mk(C) 

for some k £ N and A{f £ M,j = 1 , . . . , m such that WXf* - Af\\2 < e- Assume that 

X("), j = 1 , . . . , m lies in the same finite type I subfactor. Since for any / G N, 1 < p < 

l,ii, ...,ip£{l,...,m}, Xh • • • Xip = {X^ • • • Xjn)}„, for any e > 0, there is an integer N> 0 

such that MX,-, • • • Xip) - rK(Xj") • • • X\"})\ < e when n> N. Since At is a subfactor of ft" 

and M is a subfactor of ft, we have that r = T^M and the trace rN is TK\N. If we identify 
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Af as Mk(C), then rN = trk. Therefore \r(Xh • • • Xip) - trk(XJf • • • X™)\ < e and {Xi,..., XJ 

has matricial microstates. 

2) => 3): 3) follows directly from 2). 

3) => 1): Suppose Xl5 X2 , . . . is a generating set for At whose elements are self-adjoint. 

For any integer m > 1, {Xi,..., Xm} is a finite subset of the generating set. Then there 

are km £ N and km x km matrices A*-m), j = 1, . . . , m such that whenever 1 < p < m and 

z'i,..., ip £ {1 , . . . , m}, we have 

VkJ^A™ • • • A f ) - r(X,X, • • • X,,)| < 1/m, 

where rkm is the normalized trace on Mkm(C). Let Aj = {A^m)}m G ft", j = 1,.... Then 

^(A^A/j • • • Aip) — r(XilX;2 • • • Xip) 

ii,...,ip £ {1,2,...}. We define a homomorphism *F from the the algebra generated 

by Xi, . . . ,X„, . . . to the algebra generated by Ai , . . . , A„,... such that ^(Xy) = Aj, j = 

1, . . . , n, — By the equation above, we can obtain xw o *F = r, *F is well-defined and more­

over ¥ can be extended to be a *-isomorphism of Al. Therefore (Al, r) can be embedded 

into ft". • 

In the proof of the above proposition, we have that (At, r) is embeddable into ft" if and 

only if (Af,r) is embeddable into M„t(C)^, for some increasing sequence {nk} of natural 

numbers. 

For each n G N, let Tn be the free group on n generators gi,---,gn- For m G T„ let 

the length of m be the sum of the absolute values of the exponents of the g, in the reduced 

form of m. For operators X] , . . . X„ in von Neumann algebra Al, let X(m) be the operator 

obtained in replacing each g, by the corresponding X,, gjl by X* and finding the product in 

Al. So m H^ X(m) is the map of Tn in Al such that X« = X,-, Xf' =X*,X = (Xu..., Xn). 

Let T(k) be the set of all words m £ Tn whose length is less than or equal to k. In 

general, a finite set S = {Xh X2 , . . . , Xn} c Al has matricial microstates if for every k £N, 

m £ T(k), and e > 0 there are k! £ N and k! x k! matrices Ai,...,An such that 

\trk(A(mj) - r(X(m))\ < e, 
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where tr^ is the normalized trace on the k! x k! matrix algebra M^(C). 

Throughout this section, Al, M will be considered the von Neumann algebras with 

separable preduals and faithful normal tracial states 7>i and TN respectively and suppose 

(Af, rM) and (M, TN) are embeddable into ft". 

Lemma 53 Suppose (At, T^) is embeddable into ft", P is a nonzero projection in AX and 

TP = TM/TM(P) is a faithful normal tracial state on PAXP. Then (PAXP, rP) is embeddable 

into ft". 

Proof. Since (At,r) is embeddable into ft", view Af as a subfactor of M„t(C)£ for some 

increasing sequence {nk}k c N, then P has a representing sequence {P(n)}„ where P{n\ n > 1 

are projections in Mnk(C). For m G N, Xi , . . . ,Xm e PAIP, since PXtP - Xt and X,- = 

{X{"\, i = 1, . . . , m, {pWxJ")?W}„ represents Xt too. Therefore (PAIP, rP) is embeddable 

into (Pik)M„k(C)P(k))t
k
0 and then ft". • 

In [FGL06], Fang, Ge and Li proved an interesting result on embedding. We state it 

below and include its proof. 

Proposition 54 (See [FGL06]) Let ft be the hyperfinite factor of type IIX and co a free 

ultrafilter on N. Then ultrapower ft" can be embedded into ft^,. 

Proof. Since ft - <8>~ft, we shall show that ft" can be embedded into (®™R)W. For any 

A = {An}„ in ft" with An in ft, define cp(A) to be an element in (<8>™ft)" corresponding to the 

sequence Ai® I® I®- •• ,1® A2® I®-- • ,• •• in (®^"R)a). cp(A) is a central sequence and 

thus cp induces an embedding from ft" into (®^"R)0). • 

Proposition 55 Suppose that (Af, TM) and (M, TN) are von Neumann algebras with faith­

ful normal traces rM, TN and separable preduals embeddable into ft". The von Neumann 

algebra tensor product (AX®M, TM ® TN) is embeddable into ft". 

Proof. We shall show that for any p, n £ N, unitary elements Xi , . . . , X„ e AX®M, e > 0, 

there exist k £N and k x k matrices Ci , . . . , Cn such that for m £ T(p) 

\TM ® rN(X(m)) - trk(C(m))\ < e. 
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The algebraic tensor product of Al and M is trace-norm dense in Al®N and so by the 

Kaplansky density theorem, there exist positive integers lx,...,ln and Yf £ AX, zf £ M, 

j = I,..., l„ i = 1 , . . . , n such that ||X, - Y!']=l F
0 ) ® Z^\\2 < e/p and || Z}=1 ^ ® zf\\ < 

1. Since (AX,TM) and (M,TN) are embeddable into ft", for p and F;
0) G Al, zf G M, 

j = 1, . . . , /;, z = 1, . . . , n, there exist ki, k2 £ N, ki x kx matrices Af, and k2 x £2 matrices 

F;
0) £M, j = l,...,ll,i= l,...,n such that 

l|TAt(y(m)) - trh(A(m))\\2 < / 
Pk • • • In 

||7>(Z(m)) - trkl(B(m))\\2 < £ • 
P/ l • • • «n 

Combining the two inequalities above, we obtain, 

| |r^ ® TN(X(m)) - ^(C(m))||2 < e, 

where C, = YJ'=i Af ® Bf, and k = kik2. This proves the proposition. • 

In particular, for any k £ N, (Al ® Mk(C), TM ® trk) is embeddable into ft". 

Lemma 56 If any von Neumann algebra with a separable predual and a faithful normal 

tracial state generated by two self-adjoint elements is embeddable into ft", then any finite 

von Neumann algebra AX with a separable predual and a faithful normal tracial state is 

embeddable into ft". 

Proof. Suppose At is generated by countably many self-adjoint elements Ai,A2,... in 

its unit ball. Let A3 = a3A} + B}I, cxpB} £ R, and choose proper a3 and B} such that 

- < \\Aj\\ < j ^ _ . Replace A} by A,. Suppose ft = 0 M ^ f ( C ) is the hyperfinite Hi 

factor. Let {Ff
(")}2

i=1 be the 2x2 system of matrix units of the nth copy of matrix algebra. 

We shall show that Al <8> ft can be generated by two self-adjoint elements. Let 

00 ]-l 

S i = Ai ® Fff +A2® E™E™ + • • • = J](Aj® (Y\ E^)Ef) 
]=i i=i 

oo t J^l 

s2 = <Efs+4?) + jAWS + 4?) + • • • = Z j II £2(^» + *%> 
z ]=i J i=i 
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By the function calculus for C algebras to Si, we have Yljzl E{
22Ef are in {Si}". From 

the construction of S2, ft c {5i,52}" and so Al®ft c {Si,S2}". But SX,S2 £ AX ® ft, 

and thus Al ® ft can be generated by two self-adjoint elements. By assumption, (Al, r) is 

embeddable into ft". • 

In 1987, D. Voiculescu introduced the free probability theory and found that the free 

independence in noncommutative probability space can be approximated by the indepen­

dence of Gaussian random matrices. More details can be find in [VDN92] but here we 

shall show that the von Neumann algebra free product of two embeddable von Neumann 

algebras is embeddable into ft". 

Lemma 57 Let r z be the vector tracial state on £ z . Suppose (AX, T^) is embeddable into 

ft". The von Neumann algebra free product (AX * -£z, TM * rz) is embeddable into ft". 

Proof. Suppose At can be generated by two self-adjoint elements Xi, X2 in its unit ball, 

(otherwise consider At®ft) and Af c ft". Let X,- = {X^, X("} G ft, and assume that 
J J J 

Xf\ j = 1,2 lies in the same type I subfactor MN(„)(C) of ft for some positive integer 7Y(n) 

dependent on n. Then by [VDN92], Theorem 4.2.2, and the fact that (®ooL
oo[0, l])®MnN(C) 

is a von Neumann subalgebra of ft, there exists Guassian random matrices Y(m, N(n)) £ 

(®ooL
oo[0,1]) ® MmN{n)(C), m > 1 such that (Y(m, N(n)), I® MN{n)(C) ® I) is asymptotically 

free as m —» oo, where Y(m,N(n)) is given as in [VDN92] theorem 4.1.2. Let X'. = {I ® 

Xf ® I}, j = 1,2 and Y = {Y(n, N(n))}n. Then X], j = 1,2 is free from Y in ft" and Y is a 

semicircle element. Therefore (At * Xz, TM * Tz) is embeddable into ft". • 

Proposition 58 Let (AX, TM) and (M, TN) be von Neumann algebras with separable pre­

duals and faithful normal tracial states TM and rN respectively. Suppose (AX, TM) and 

(M, Tyv) are embeddable into ft". Let r be the trace rM * TN on the von Neumann algebra 

free product AX* M. Then (AX * M, r) is embeddable into ft". 

Proof. We only have to show At * N can be embedded into (Al ® M) * £z. Let U be the 

Haar unitary that generates £ z . Since At is free from UMU*, we have Al * M is a subfactor 

of (Al ® M) * -Cz and is thus embeddable into ft" with its tracial state. • 
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It is known that any separable finite von Neumann algebra of type I is embeddable 

into the hyperfinite factor ft and also into an ultrapower ft". By the proposition 58 and 

[VDN92], Theorem 2.6.2, we have that free group factors is embeddable into ft". 

In 1993, D. Voiculescu [Vo93, Vo94, Vo96] developed the free probability theory and 

introduced the free entropy for factors of type Hi. From the definition of free entry, we see 

that the Connes's embedding problem is equivalent to whether free entropy is well-defined 

on a separable factor of type Hi. 

4.3 Hyperlinear Groups 

One important example of von Neumann algebras introduced by Murray and von Neumann 

is the group von Neumann algebra arising from the left (or right) regular representation 

of an infinite countable (discrete) group. F. Radulescu found that whether a group von 

Neumann algebras is embeddable into ft" only depends on the property of the group itself. 

Hence he [Ra02] introduced the hyperlinearity of group in 2002. 

A group G is hyperlinear ([Ra02, CP09]) if G embeds faithfully into 77(ft"). By 

[Ra02], Proposition 2.5, a countably discrete group G is hyperlinear if and only if the 

group von Neumann algebra (£G, re) is embeddable into ft", where re is the tracial vector 

state on £G given by re(X) = (Xe, e) for all X £ £G. Moreover, F. Radulescu showed that 

any non-residually finite Baumslag group (a, b\ab3a~l = b2) is hyperlinear. 

A group G (with unit e) is residually finite if for every nontrivial element g £ G, there 

is a homomorphism n from G to a finite group such that 7r(g) # e. 

Lemma 59 A residually finite discrete countable group G with unit e is hyperlinear. 

Proof. Let {e, gi,g2, •. •} be an enumeration of G andpn be a group homomorphism of G 

into a finite group Fn such thatp„(g„) ± e. For any integer n > 1, since T\k=iPk(gi) ^ e 

for / = 1, . . . , n, let U\n) = LUUPk(gl) G ^ ( / 2 ( J X i Ek)). Define Ut = {U(f}n, / = 1,2,..., 

where Uf = I if I < n. By the definition of uf\ we have that the group generated by 
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I, Ui,l = 1,2,... is isomorphic to G. Then G can be faithfully embedded into ^/(ft"), and 

therefore XG can be embedded into ft". • 

For any integer n > 2, SLn(Z) is a linear group with matrix multiplication given by 

nxn matrices with entries in Z and determinant equal to 1. For any element g in SLn(Z), 

suppose p is a prime number larger than any entry of g and n is a group homomorphism 

from SLn(Z) to SLn(Zp) such that it maps each entry a to a + pZ in Zp. Since SLn(Zp) is 

a finite group, SLn(Z) is residually finite, and -CSL„(Z) is embeddable into ft" by the lemma 

above. 

Lemma 60 Any non-abelian free group Tm on m generators, 2 < m £ N or m = N0, is 

residually finite. 

Proof. Suppose Tm is a free group on m generators gi, • • •, gm and ĝ 1 • • • gfk is a reduced 

word in 7̂ n, where z'i =£ i2 ± ... ± ik £ ( 1 , . . . , m} and f i , . . . ek £ Z\{0}, n = £*=i If/I- We 

shall construct a homomorphism 7r from Tm into lln+i>the permutation group on {1 , . . . , n+ 

1}, such that 7r(g^ • • • g^) # 1. Let f = n(gt), fori = 1, . . . , m. If the generator g, is not 

in the reduced word ĝ 1 •' • g-", let ,/j- = e. Let 77̂  = £/=1 \
ei\ for 7 = 1, • • •, &• Define 

ij 

TJj-l + 1 ••• TJj 

{ T)j-i ••• TJj-I 
forj = 2,...,k and hix -

1 2 ••• 771 

n + 1 1 ••• r]i - 1 
Let 

/j- = n{fyJ> ij = i}, where ^ = 1 if e; > 0; 57 = - 1 if e; < 0. Since z'i ± i2 # . . . + ik, f 

is well-defined when g, is in the reduced word. Moreover hh • • • hik(n+ 1) = 1, and hence 

hh •••hik ± e and ff1 • • • jfk
k ± e. This proves that Tm is residually finite. • 

As a corollary of the above lemma, we see that a free group factor £Tm, 2 < m £ N is 

embeddable into ft". K. Dykema [Dyk94] and F. Radulescu [Ra94] introduced, indepen­

dently, the interpolated free group factor £ft, t > 1. These factors can be obtained from 

the free group factors by suitable compression with projections. Note that the embeddable 

property is preserved by the compression with a projection in a factor. Thus, we have that 

£<Ft, t > 1 is embeddable into ft". 

A group is locally embeddable into finite groups (an LEF group, for short) if for every 

finite subset F c G, there is a partially defined monomorphism / of F into a finite group,i.e 
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i(xy) = i(x)i(y) for any x,y £ F. By the definition, a residually finite group is LEF from the 

definition. 

A notion similar to a hyperlinear group in group theory is a sofic group. The sofic 

group was first defined by Gromov [Gro99]. A group G is sofic if for every finite F c G 

and every e > 0, there exists n G N and an (F, e)-almost homomorphism j : F H-> T\n. 

An (F, e)-almost homomorphism j is a map with the property: if g, n G F and gh £ F, 

then dhamm(j(g)j(h), j(gh)) < e and if e £ F, then 4ammO'(<0, W) < e, which is uniformly 

injective: dhamm(j(g), j(h)) > 1/4 whenever g, h £ F, g ± h. From this definition, a sofic 

group is hyperlinear. Unfortunately it is unknown whether a hyperlinear group is sofic. 

A discrete group G with unit e is amenable if G admits a left invariant mean. A positive 

linear functional cp : l°°(G) i-» C is an invariant mean if cp(e) - 1 and cp is invariant under 

left translations. Alternatively, a discrete group G is amenable if for every finite subset 

F c G and € > 0, there is a finite subset A c G (A is called a F0lner set for F and e) such 

that for each g £ F, |gAAA| < e|A|. This is known as F0lner condition. 

A group G (with unit e) is residually amenable if for every nontrivial element g £ G, 

there is a homomorphism n from G to an amenable group such that 7r(g) £ e. By this 

definition, every amenable group is residually amenable. 

A group G is initially subamenable if every finite subset F c G admits an (F, 0)-almost 

monomorphism into an amenable group T. It is clear that every residually amenable group 

is initially subamenable and every initially subamenable group is sofic from the definition. 

In particular, every amenable group is sofic. The following diagram summarizes these 
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properties. 

Propert T 

Factorization Property ==> Residually Finite 

% f 
JJ, Residually Amenable JLtT (f-P-) 

urr (f-P-) 
JJ. Initially S ubamenable <= LEF 

Hyperlinear <= S ofic 

4.4 Co-amenability of von Neumann subalgebras 

Co-amenability was first raised in the group theory, but Co-amenability of von Neumann 

subalgebras was introduced by S. Popa in [P086, Po99, PM03]. 

Let M be a finite von Neumann algebra with a separable predual and a faithful normal 

tracial state r and B c M a von Neumann subalgebra. The subalgebra !B is co-amenable 

in M if there exists a norm one projection *F of (M, S) onto M. One also says that M is 

amenable relative to !B. 

We present an important property of co-amenability of von Neumann subalgebras as 

follows and omit its proof. 

Proposition 61 (See [PM03], Proposition 5) With the notation as above. & is co-amenable 

in M if and only if there exists a state iff on (N, S) extending the tracial state r on M with 

i/f(UXU*) = iff(X) for all X£ (M,S), U £ <U(N). 

In [PM03], N. Monoid and S. Popa pointed out that co-amenability of a von Neumann 

subalgebra is equivalent to a kind of F0lner type condition. Inspired by this, we show the 

following main theorem of this section. 

Theorem 62 (Main Theorem) Let M bea von Neumann algebra with a separable predual 

and a faithful normal trace T. Suppose & is a von Neumann subalgebra co-amenable in M 
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and (S, T) is embeddable into an ultrapower ft" of the hyperfinite II\ factor ft. Then (M, r) 

is embeddable into ft". 

To prepare the proof of the main theorem, we review some notations and results of 

direct integrals. 

Let At be a von Neumann algebra with a faithful normal tracial state r acting on a 

separable Hilbert space J$f, and At' be the commutant of At on Jif, and C = Af D At' 

their center. By [KR], Charper 14, there is a (locally compact complete separable met­

ric) measure space (X,p) such that 34? is (unitarily equivalent to) the direct integral of 

Hilbert spaces {34?p} over (X,p); i.e 34? = fx34?pdp(p). Moreover, Af, At ' ,r have direct 

integral decomposition relative to C; i.e. At = fx Al(p)dp(p), At' = fxAX'(p)dp(p), 

r = f Tpdp(p) where Al(p), AX'(p) are factors acting on 34?p a.e., rp is the trace on At(p) 

a.e. and Ai(p)' = AX'(p) on 34?p a.e. In addition, if At' has faithful normal tracial state r ' , 

then T' has direct integral decomposition relative to C too, i.e. r ' = f r'pdp(p), where r'p is 

the trace on AX'(p) a.e. 

Recall the Lance's weak expectation property (WEP) for C* algebra and quotient C* 

algebra of a C* algebra with WEP: 

A C* algebra 91 has the weak expectation property (WEP) (or is "WEP") if there exist 

a Hilbert space 34? and completely positive and complete contractions Ti : £§(34?) H-> 21** 

and T2 : 91 i-> &(34?) such that the inclusion map i« : 21 t-> 21** satisfies T{T2 = iv. A 

C* algebra 23 is a quotient C* algebra of a C* algebra with WEP (i.e. QWEP) if there exist 

WEP C* algebra 21 and *-homomorphism n from 21 onto 23. 

To complete the proof the main theorem, we need the following four lemmas. 

Lemma 63 Suppose AX is a von Neumann algebra with a separable predual and a faithful 

normal tracial state r. Let C be the center of AX. Then Vn G N, given Xi , . . . , X„ G Af and 

e > 0, there exist finite subset F c 11 (AX) and 0 < 5 < e such that for any normal state 

iff £AX# with \\Ui/fU* - (All < 6 for all U £ F and T\C = t/f\c, we have W(Xf) - T(XJ)\ < e, j = 

70 



Proof. Assume that for any finite subset F c 1/(Af) and 0 < 6 < e, there exists a normal 

state iffFjS with \\UiffF6U*-ftF6\\ < S for all U £ F and ipF6\c = T\C, while \i/fFS(Xj)-r(Xj)\ > 

e for some j £ {1 , . . . , n}. Let S = {ipFS : F c 14(AX) is finite, 0 < 6 < e}. Then S is a net 

with order (F,6) < (F',6') given by F c F' , (5 > 5'. By weak* compactness of the state 

space of Af, there is an accumulation point i/f of S in Af* which commutes with U for all 

U £ 'W(Af), i/f\c = T|C, and |iA(X7) - T(XJ)\ > e for some j . Therefore i/f is a different tracial 

state on Al with i^|c = T|C which is not possible. • 

Lemma 64 Suppose Af is a von Neumann algebra with a faithful normal tracial state r 

acting on a separable Hilbert space 34? and the commutant AX' of AX on 34? is finite. Let 

T' be a faithful normal tracial state on AX'. Then (At, T) is embeddable into ft" if and only 

if (Al', T') is embeddable into ft". 

Proof. By [Kir93], Corollary 3.8, At is QWEP if and only if Af' is QWEP. Then by [Kir93], 

Theorem 4.1, (At,r) is embeddable into ft" if and only if At is QWEP and (At',r') is 

embeddable into ft" if and only if At' is QWEP. Therefore, (At, r) is embeddable into ft" 

if and only if (AC, T') is embeddable into ft". • 

Lemma 65 With the notations in the theorem. Let C be the center of N. Then N, & 

and T have unique direct integral decomposition relative to C over some (locally compact 

complete separable) measure space (X,p) i.e. 

M= f M(p)dp(p), £ = f S(p)dp(p), r = f rpdp(p). 
Jx -Jx Jx 

(N(p), Tp) is embeddable into ft" a.e. if and only if(M, r) is embeddable into ft". 

Proof. By [KR], Charpter 14, we have that M, S and r have unique direct integral decom­

position relative to C over some (locally compact complete separable) measure space (X,p) 

and M(p) is factor a.e. Suppose L2(M, r) is the direct integral of Hilbert spaces {L2(M, T)P}P 

over (X,p). Let J(p) be an operator on L2(M,T)P such that J(p)T(p)I(p) = T*(p)I(p) a.e. 

where T = Jx T(p)dp(p) £ M, I is the identity on L2(M,r), and / = fxI(p)dp(p). Let J 

be the canonical conjugation on the Hilbert space L2(M,T) such that JTI = T*I for any 
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T £ N. Since J(p) is the canonical conjugation on the Hilbert space L2(M, T)P, we have 

J = Jx J(p)dp(p) and 

(M(p),B(p)) = J(p)S(p)'J(p) a.e. 

Now we shall show 

f(M(p), B(p))dp(P) = C'n (M, £>. 
Jx 

For any T £ Cn{M, &), we have T = J^ T(p)dp(p). Since (M(p), S(p)) = J(p)S(p)'J(p), 

to show T £ L(N(p), B(p))dix(p), we only have to show T(p) commutes with J(p)!B(p)J(p); 

i.e. 

T(p)J(p)B(p)J(p) = J(p)B(p)J(p)T(p), a.eNB £ £ 

This implies TJBJ = JBJT, MB £ £. But T is in JB'J = (M, £), the commutant of JSJ. 

Therefore 

f<A/(p), B(P)W(P) 3 C ' n (M S>. 

On the other hand, if T £ fx(N(p), B(p))dp(p), then T commutes with C a n d l e (M, 3) 

and hence 

f(M(P), B(p)W(p) cC'n (M, S). 
Jx 

Therefore fx(N(p), £(p))dp(p) = C n (M, S). 

By [Kir93], Corollary 3.7, we have M(p) is QWEP a.e. if and only if M is QWEP. By 

[Kir93], we have that (N, r) is embeddable into ft" if and only M is QWEP; (M(p), rp) is 

embeddable into ft" a.e. if and only if M(p) is QWEP a.e. Therefore (M, r) is embeddable 

into ft" if and only if (M(p), rp) is embeddable into ft". • 

Lemma 66 With the notations in the theorem. If(£, T) is embeddable into ft" and E is non­

zero projection in {M, £) with Tr(E) < oo. Then (E(N, £)E, Tr/Tr(E)) is embeddable into 

ft". 

Proof. Since (S, r) is embeddable into ft", (JSJ, JTJ) is embeddable into ft", where JTJ 

is the tracial state on JSJ given by JTJ(Y) = T(JYJ), for all Y £ JSJ. Let CE be the 

central support of F in (M £). Then CE £ JSJ and by Lemma 53, (JSJCE, JTJ/T(JCEJ)) 
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is embeddable into ft". Since JSJE is ^-isomorphic to JBJCE and the tracial state TX on 

JSJE induced by JTJ/T(JCEJ) is given by TX(YE) = T(JYJ)/T(JCEJ) for all Y £ JBJCE, 

(JSJ,TI) is embeddable into ft". By Lemma 64, (EJB'JE, Tr/Tr(E)) is embeddable into 

ft". • 

Now we begin the proof of the Main Theorem: 

Proof. For k £ N, let T(k) be the set of all words m G fn whose length is less than k. 

Let C be the center of Af. By results of Kirchberg [Kir93], whether M is embeddable into 

ft" is independent of the choice of the faithful normal tracial state r. We assume that T\C 

is multiplicative. To prove N can be embedded into ft", we shall show that for unitary 

operators Ui,..., Un £ M, e > 0, k £ N, there exists k! £ N and k' x k! matrices Vi,...,V„ 

such that 

\T(U(m)) - trkr(V(m))\ <e,Mm£ T(k). (4.1) 

Let S = {U(m) : m £ T(k)}. By Lemma 63, there exists fintie subset F0 c U(M) such that 

for any normal state iff £ M# with \\UiffU* -i]s\\<6 for all U £ F0, we have \if/(X)- r(X)| < e 

for all X G S. Let F = F0 U S = {Xi,..., X ,̂}, where p is the cardinality of F. 

Next, we shall use Day's convexity trick. Let (M, B)# be the predual of (M, B) and 

(M, B)p
# be the Banach space (N, B)p

# with norm \\(cpx,..., cpp)\\ = £ \\cpj\\. Then 

X^(yy) = <^i'---'M(^---'^)> 

identifies the product von Neumann algebra (N, S)p with the dual of (N, S>#. 

Let 

Q = {(if/- XiipX\, ...,iff- XpiffX*p)\iff is a normal state on (N, £)}. 

Then Q is a convex subset of (A/, S)\ and its weak and norm closure coincide. Since B is 

co-amenable in N, by Proposition 61, there is a state cp on (A/", S) invariant under Ad(U) 

for all U £ F. Since the set of normal states is weakly dense in the state space of (N, B), 

there is a net of normal states converging weakly to the state cp. So the weak, and hence 

norm, closure of Q contains (0 , . . . , 0). Then let iff be a normal state on (N, B) with 

\\iff - UiffU*\\ < (6/2Apk)16, V/7 G F. 
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For the normal state iff, there exists a positive element HTJ{N, B) with Tr(H2) = 1 such 

that iff(X) = Tr(HXH), then 

\\UH2U* - H2\\i,Tr < (6/2Apk)l6\\H2\\i,Tr 

for all U £ F. By adjusting i]/, we could assume that H is a bounded positive operator in 

(N,B). 

By Powers-St0rmer inequality (See [PS70, Haa75]), 

\\UHU* - H\\2,Tr < (6/2Apk)s\\H\\2,Tr, VU£F 

By [Con76], Theorem 1.2.2, for set {H, UHU*\U £ F}, there exists a projection F G 

(Af, B) with Tr(E) < oo such that 

WUEIT - E\\2,Tr = ||F - U*EU\\2,Tr < 6/Ak\\E\\2,Tr, 

for all U £ F and \\H - EH\\ZTr < 6/Ak\\H\\2Jr. 

Let î o be the normal state on N defined by iff0(X) = Tr(EXE)/Tr(E) for all X G N. 

Since 

MUYU*) = Tr(EUYU*E)/Tr(E) = Tr(U*EUY)/Tr(E), 

for any Fin (Af)i, 

\iff0(Y)-iff0(UYU*)\Tr(E) 

= \Tr(EY)-Tr(U*EUY)\, 

= \Tr((E - U*EU)Y)\ = \Tr(\E - U*EU\V* Y)\, 

< Tr(\E - U*EU\)mTr(\E - U*EU\V2V*YY*V\E - U*EU\V2)m, 

< Tr(\E - U*EU\) < \\E - U*EU\\2,Tr(\\E\\ZTr + \\U*EU\\2,Tr), 

< 6/2k\\E\\lTr, 

where |F - U*EU\V* is the polar decomposition of F - U*EU. Then we obtain ||^0 ~ 

Uiff0U*\\ < 6/2k < 5/A for all U £ F0 c F and k > 2. Since Tr(CE) = T(C)Tr(E) for all 

C £C, ipo\c = T\c- By Lemma 63, we have for all m £ T(k), 

\Tr(EU(m)E)/Tr(E) - T(U(m))\ = \iff0(U(m)) - T(U(m))\ < e/A. (4.2) 
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Now for unitary operators Ui,..., Un £ N, e > 0, k £ N, let 

Wi = EUiE,..., Wn = EUnE £ E(N, B)E. 

Then 

\Tr(U(m))/Tr(E) - Tr(W(m))/Tr(E)\ < length(m)6/Ak 

< 6/A<e/A,Mm£T(k). 

Hence, Vm e T(k) 

\Tr(U(m))/Tr(E) - Tr(W(m))/Tr(E)\ < e/A. (4.3) 

Since (B,T) is embeddable into ft", by Lemma 66, (E(N, B)E, Tr/Tr(E)) is also embed­

dable into ft". Then by Proposition 52, there exist k' £ N and k! x k! matrices Vh ..., Vn 

such that 

\Tr(W(m))/Tr(E) - trt(V(m))\ < e/2, Mm £ T(k), (4.4) 

where trk, is the normalized trace on Mk>(C). Then combining equations (4.2), (4.3), and 

(4.4), we reach our goal (see equation 4.1) and have 

\T(U(m)) - trk,(V(m))\ < e 

and (N, T) is embeddable into ft". • 

A subgroup H of a group G is called co-amenable in G if there exists a G-invariant 

mean on the space l°°(G/H). 

Corollary 67 Suppose BQ is a finite von Neumann algebra with a separable predual and 

a faithful normal tracial state r0 and G is a countably discrete group with unit e. Let 

cr : G i-> Aut(Bo) be a trace-preserving cocycle action on (Bo, r0). Let N = So >v G be the 

corresponding crossed product von Neumann algebra with faithful normal tracial state T 

given by T(Xg€G BgUg) = T0(Be), where Bg £ Bo, g £ G. Suppose H is a subgroup ofG co-

amenable in G and (B(= Bo >V H), r) is embeddable into ft". Then (N, T) is embeddable 

into ft". 
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Proof. By [PM03], Proposition 6, B is co-amenable in N if and only if the group H is co-

amenable in G. Since (B, T) is embeddable into ft", by Theorem 62, (N, T) is embeddable 

into ft". • 

In the above corollary, let Bo be CI, we have following corollary. 

Corollary 68 Let G be a countable (discrete) group. Suppose H is a hyperlinear subgroup 

co-amenable in G. Then G is hyperlinear. 

Proof. Since H is hyperlinear, (-£tf,Te) is embeddable into ft". By [PM03], Corollary 

7, £H is co-amenable in LQ, since H is co-amenable in G. By Theorem 62, (£G,Te) is 

embeddable into ft". Therefore G is hyperlinear. • 

Let H be any group and 9 : H i-» H an injective homomorphism. Denote by G = H*g 

the corresponding HNN-extension, i.e. 

G = (H, t\thfl = 0(fc), Vn G #>. 

By [PM03], Proposition 2, 77 is co-amenable in G. Then the HNN-extension of a hyperlin­

ear group is a hyperlinear group again. 

In Corollary 67, if H is {e} c G, then G is an amenable group and we have: 

Corollary 69 Suppose B is finite von Neumann algebra with a separable predual and 

a faithful normal tracial state T and G is an amenable countably discrete group. Let 

cr : G H-» Aut(B) be a trace-preserving cocycle action on (B, r). Let Bo >v G be the 

corresponding crossed product von Neumann algebra with faithful normal tracial state T 

given by T(£gsGBgUg) - To(Fe), where Bg £ Bo,g £ G. Then (B >v G,T) is embeddable 

into ft". 

4.5 Similarity Property 

Let us recall Kadison's similarity problem [Ka55]. Let 21 be a unital C* algebra and cp : 21i-» 

B(H) a unital homomorphism. Kadison's similarity problem is whether the condition that 
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cb is bounded implies that cp is similar to a *-homomorphism, i.e. 35 : *77 i-» H is invertible 

such that cps : X i-» S~1cp(X)S is a *-homomorphism. In [Haa75], Haagerup proved that 0 

is similar to a *-homomorphism if and only if cp is completely bounded and 

\\cp\\cb = inf{||5_1||||5|| : cps is *-homomorphism.} 

An operator algebra 21 c S(77) is said to be of length < d if there is a constant K such 

that, for any n and any X in Mn(2I), there is an integer N = N(n, X) and scalar matrices 

a0 £ Mn<N(C), ai £ MN(C), ..., ad-i £ MN(C), ad £ MNr„(C) together with diagonal 

matrices Du..., Dd in MN(W) satisfying 

X = a0DiaiD2---Ddad 

k noiNiniiiAii<^imi. 

Denote by (̂21) the length of 21; i.e the smallest d for which the two equations above holds. 

Let 

J(2I) = inffa > 0\3K, Mcb, \\cb\\cb < K\Wl 

where cp denotes an arbitrary unital homomorphism from 21 to B(H). 

G. Pisier [Pi99, PiOO, Pi] showed that (̂21) = d(%) for any unital operator algebra 21 

which is the similarity degree of 21. 

Proposition 70 Let G be a discrete group, (Bo, T0) a finite von Neumann algebra with a 

normal faithful tracial state and cr : G H Aut(Bo, T0) a trace preserving cocycle action 

ofG on (Bo, T0). Let N = B0 ><o- G be the corresponding crossed product von Neumann 

algebra with its normal faithful tracial state given by T(Y,g£G bgug) = TQ(be). Let H < G 

be a subgroup co-amenable in G and B = Bo »o- H. If N is a factor and B has similarity 

degree d, then N has similarity degree of at most 9d + 8. 

Proof. Suppose cp is a unital bounded representation of N on a Hilbert space H such that 

~spcp(N)'H = H. Then cp\s is a bounded representation of B, and so there is an invertible 

operator 5 0 on 77 such that S0<P\SSQ1 is a *-representation of B and HS ÎIHSoll - ^ll^lsll^-

Let </>0 = SO^PSQ1. Then cp0 is a bounded representation of N. We have to estimate the 
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complete bounded norm of cpo- To do this, we may and will assume that the representation 

has an at most countable cyclic set. In this case [Ch81] there is a *-representation n of 

N on K such that for any vector £ in H, there exists a bounded injective operator X with 

dense range and a vector n satisfying 

MY£N: cPo(Y)X = Xn(Y); ||X|| < 2||0OU2;X?7 = £; IMI < UW-

The first property admits a homomorphism iff of n(N) into B(H) by A t-* XAX~l and | 

H ôll, whereas the second shows that iff is ultrastrongly continuous since iff(A)g = XAn. We 

will denote by iff again the extension of iff to the von Neumann algebra generated by n(N). 

In this algebra we will let F denote the maximal finite central projection and let £> be a 

copy of the compact operators placed inside (I - F)n(N), such that I - F belongs to the 

weak closure of D. Then D + CF is a nuclear C* algebra, by [Ch81], we can perturb iff 

with a Z in GL(H) such that Ad(Z) o </> is trivial on V © CF and IIZ-'IMZH < ll̂ oll2- The 

new homomorphism Ad(Z) o if/ decomposes naturally into an orthogonal direct sum. The 

restriction to the properly infinite part is by construction completely bounded with complete 

bounded norm less than |k*oll3- The restriction to the finite part yields homomorphisms nF 

and A of the finite von Neumann algebra N into B(FfH) given by 

nF(Y) = n(Y)\FH and A(F) = (ZX)FnF(Y)(ZX)~l\m. 

Since a finite representation of a finite representation of a finite factor is ultrastrongly con­

tinuous because of the uniqueness of the trace, we see that A is ultrastrongly continuous. 

Let F„ /* G/H be a net of finite F0lner sets, which we identify with some sets of 

representatives F„ c G. Since A is unital bounded, the set |F„|_1 Zi£F„ A(US)*A(US) in the 

von Neumann algebra generated by A(A0 has a strong-operator accumulation point. The 

accumulation point is positive. So let 5 be the square root of it. We have 

ra2 = n m - ^ - V | |A«7^||2 

and hence, ||AH-1 < 5 < ||A||. For any unitary element U in B0, let Vs = USUU*S in B0. 
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Then 

S2A(U)t = Um-^-yA(UsyHUs)A(U)^ 
n \Fn\ *-J 

= l im T ^y 'A(C/ )A( t / , rA(C/^ 

= A(£/)52<f. 

For any unitary element Ug, g £ G in N, let n^*' = sg if sg is in F„. Since F„ is a F0lner 

set and A(Uhs) is a unitary, we have that 

S2A(Ug)£ = lim-±-YA(UsyA(Us)A(Ug)t 

= l im^-^A(/7 , rA(f /^ 

= l i m ^ l X A(t/g)A(l/y)*A(^)f 

= A([/„)52f 

Let A/o be the *-subalgebra in N generated by Bo and Ug, g £ G. For any element A0 in 

No, we have 52A(A0)<f = A(A0)5
2<f, for all <f G 77. By the Kaplansky density theorem, for 

any A in the unit ball of N, there is a net of {Aa} in the unit ball of A/o convergent to A in 

the strong-operator topology. 

Since A is strong-operator continuous, A(Aa) converges to A(A), then ||A<i(5) ° A|| < 1 

and A is completely bounded with completely bounded norm ||A||c6 < ||A||2. Thus 

\\cp\\cb < HSo'llllSolllltfolL 

< ^ll^iniZIIIIZ-'llHAlU 

< WllllrfWoll6 

< K9\\cp\\9d+8, 

since I^^IHISoll < « | s l l < W\\ \\Z\\\\Z-'\\ < WM2 < (^||0||rf+1)2 and ||A|| < IIZIIIIZ"1!!!^!! ^ 

ll̂ oll3- • 
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