University of New Hampshire

University of New Hampshire Scholars’ Repository

Doctoral Dissertations Student Scholarship

Fall 2011

On decompositions and Connes's embedding
problem of finite von Neumann algebras

Jinsong Wu
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Wu, Jinsong, "On decompositions and Connes's embedding problem of finite von Neumann algebras" (2011). Doctoral Dissertations.
630.
https://scholars.unh.edu/dissertation/630

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more

information, please contact nicole hentz@unh.edu.


https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/630?utm_source=scholars.unh.edu%2Fdissertation%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

ON DECOMPOSITIONS AND CONNES’S
EMBEDDING PROBLEM OF FINITE VON NEUMANN
ALGEBRAS

BY

JINSONG WU

B.S., Peking University, 2004
DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy
in

Mathematics

September 2011



UMI Number: 3488796

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3488796
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ALL RIGHTS RESERVED
©2011
Jinsong Wu



This dissertation has been examined and approved.

V)
Dissertation Director, Liming Ge

Profe ;@‘r of Mathematics

"1 A

J 11\19’a0 Shen

Associate Professor of Mathematics
il

o]

Lo f) 5 | fr

¢ Eric Nordgren /

Professor of Mathematics

J N
)L PRRS G W E

David Feldman

Associate Professor of Mathematics

Yitang Zhang

Lecturer ;; 5:7//{/‘5/_ (_/7/ ?/-
oy




DEDICATION

I dedicate to my parents and my wife, without whose caring support, this thesis would not

have been possible to be done.

v



ACKNOWLEDGEMENTS

I would like to thank my advisor Ge Liming for the suggestion of the project. Special
thanks to Prof. Shen Junhao for his time and patience and advice. His viewpoint was
very helpful to this dissertation. Many thanks to Prof. Don Hadwin for advice whenever I
needed it. Thanks to Matthew Morena for reviewing the thesis. I also would like to thank
my friends Wei Yuan, Qihui Li, Weihua Li, Junsheng Fang, Mohan Ravichandran, Zhe Liu,

Zhengwei Liu, Yannni Chen, and Lei Gao.



TABLE OF CONTENTS

DEDICATION . . .. i ittt it ittt ittt i ettt e e nnoenns iv
ACKNOWLEDGEMENTS . . . . . . it i it i ittt et e s o e s v
ABSTRACT . . . . it it i ittt it ettt et aneseas viii
1 INTRODUCTION . . ... ittt ittt st e s ennons 1
1.1 Background . . .. .. .. ... . ... e 1

1.2 Preliminaries . . . . . . . . o v i it e e e e e e e e e 3
Von Neumann Algebras . . . . . . . . . .. ... o . 5

Special Mappings . . . . . . . ... e 11
TwoProducts . . . .. ... .. ... e 13
DirectIntegrals . . . . . . .. .. ... L e 15

Jones Basic Construction . . . . . . . ... ..o 16

2 DECOMPOSITIONS OF FINITE VON NEUMANN ALGEBRAS ... ... 18
21 T-Thin . . .. . o e 24
22 StronglyI-Thin . . . . . . . ... ... e 26

23 WeaklyI-Thin . .. ... ... ... ... ... . . . .. 28
24 Singly Generated . . . ... .. ... e 29

25 Cohomology . . . . . .. . . . e 29

3 FREEENTROPY . . ...t ittt ittt ittt tnneeennses 34
3.1 BasicNotation. . . . . .. . . .. ... e 34

vi



3.2 Free Orbit-DIimension . . . . . . . v v v v e e e e e e e e e e e e 38

3.3 The Estimate of Free Entropies . . . . . .. .. ... ... .. ....... 41
4 CONNES’SEMBEDDINGPROBLEM ..............0c00... 49
4.1 Ultrapower of von Neumann Algebras . . . . .. .. ... ... ...... 49
4.2 Embeddings into Ultrapower . . . . .. ... ... ... ... ... 61
4.3 Hyperlinear Groups . . . . . . . ... oL 66
4.4 Co-amenability of von Neumann subalgebras . . . . . ... ... ... .. 69
4.5 Similarity Property . . . . . ... . e 76
BIBLIOGRAPHY . . . . . .t it ittt ittt e et i e e s s anosan 80

vii



ABSTRACT

ON DECOMPOSITIONS AND CONNES’S EMBEDDING PROBLEM OF FINITE
VON NEUMANN ALGEBRAS
by
Jinsong Wu

University of New Hampshire, September 2011

A longstanding open question of Connes asks whether every finite von Neumann algebra
embeds into an ultraproduct of finite-dimensional matrix algebras. As of yet, algebras
verified to satisfy Connes’s embedding property belong to just a few special classes (e.g.
amenable algebras and free group factors). In this dissertation we establish Connes’s em-
bedding property for von Neumann algebras satisfying Popa’s co-amenability condition.
Some decomposition properties of finite von Neumann algebras are also investigated.

Chapter 1 reviews von Neumann algebras, completely bounded mappings, conditional
expectations, tensor products, crossed products, direct integrals, and Jones basic construc-
tion.

Chapter 2 introduces new decompositions of finite von Neumann algebras which we
call I'-thin, strongly I'-thin, and weakly I'-thin, etc. We also consider the singly-generated
problem, and compute the cohomology in such decompositions of finite von Neumann
algebras.

In Chapter 3 we show by estimation of free entropy that free group factors lack the type
of decompositions discussed in Chapter 2.

In Chapter 4 we investigate co-amenability and Connes’s embedding problem.

viii



1X



CHAPTER 1

INTRODUCTION

1.1 Background

EJ. Murray and J. von Neumann [Von30, MV36, MV37, Von40, MV43] introduced and
studied “rings of operators,” which were later renamed “von Neumann algebras” by J. Dixmier
in 1957. Von Neumann algebras are strong-operator closed self-adjoint subalgebras of the
algebra of all bounded linear transformations on a Hilbert space. One calls a von Neu-
mann algebra whose center consists of scalar multiplies of the identity a factor. Every von
Neumann algebra has structure equal to a direct integral of factors. This makes factors the
building blocks for all von Neumann algebras.

Murray and von Neumann [MV36] classified factors by means of their relative dimen-
sion functions. Finite factors have dimension functions with finite range. (More generally,
one calls a von Neumann algebra finite if it admits a faithful normal trace.) The dimension
function of a finite factor gives rise to a (unique, when normalized) tracial state.

Finite-dimensional finite factors are full matrix algebras M, (C),n = 1,2,....

Infinite-dimensional finite factors are called factors of type II;, sometimes described
as continuous matrix algebras. A factor is hAyperfinite if it can be weakly approximated
by finite-dimensional matrix algebras. In [MV37], Murray and von Neumann provided the
first two examples of non-isomorphic factors of type II;, the two-generator free group factor

and the permutation group factor. They also established the uniqueness of the hyperfinite



factor R of type II;. The permutation group factor is the hyperfinite factor R of type II;. The
hyperfinite factor of type II; occurs as a subfactor in every factor of type II;. A. Connes
[Con76] famously showed that every subfactor of R is hyperfinite. Embeddings into an
ultrapower of R plays a key role in his proof. Accordingly, Connes asks whether every
factor of type II; with a separable predual embeds into some ultrapower of R; this is known
as Connes’s embedding problem.

In this thesis, we will study Connes’s embedding problem for finite von Neumann al-
gebras satisfying Popa’s co-amenability [PMO03] and show that a new class of finite von
Neumann algebras can be embedded into an ultrapower of R. F. Radulescu [Ra02] calls a
discrete group hyperlinear if it faithfully embeds into the unitary group of an ultrapower of
R. For group von Neumann algebras, Connes’s embedding problem reduces to whether any
discrete countable group is hyperlinear. We will show that any group with a hyperlinear
co-amenable subgroup is itself hyperlinear.

Gromov [Gro99] introduced sofic groups, easily seen to be hyperlinear. In fact, many
groups [EISz05, Pe08] are known to be sofic, but whether every group is sofic, or even just
whether every hyperlinear group is sofic, remains open.

The other factor of type II; introduced in [MV37] is the free group factor. Much about
free group factors remains unknown. Despite much attention, the question of isomorphism
between the two-generator free group factor and the three-generator free group factor re-
mains open. Attacking on this problem, D. Voiculescu [VDN92] introduced free proba-
bility theory which included many tools such as free entropy. In the framework of free
probability theory, Connes’s embedding problem is equivalent to the emptiness of a certain
set connected with the definition of free entropy. In [GeP098], L. Ge and S. Popa intro-
duced a new type of decomposition for factors of type II;. They expressed a factor of type
II, as the weak-operator closure of the linear span of a product of abelian von Neumann
subalgebras and the hyperfinite subfactors of type II;. This decomposition provides a tool
to study free group factors. Ge and Popa showed that many factors of type Il; are thin; i.e.
equal to the weak-operator closure of the linear span of a product of two hyperfinite von

Neumann subalgebras. In contrast, by estimating the free entropy of a finite generating set



in a thin factor, Ge and Popa showed that free group factors are not thin. Hyperfinite von
Neumann algebras and abelian von Neumann algebras (i.e. type I; von Neumann algebras)
are building blocks for the decomposition of von Neumann algebras. More building blocks
such as property I factors could be used.

We extend the decomposition defined in [GePo98] and introduce new decompositions
that we call I'-thin, strongly I'-thin, and weakly-thin etc. We show that the free group

factors do not have this type of decompositions either.

1.2 Preliminaries

Throughout this thesis, we always denote by C (R, Z, and N respectively) the complex
number field (the real number field, the group of all integers, the set of all positive integers
respectively).

Let HH be a Hilbert space over C with an inner product (-, -): H x H +— C satisfying:
(1) (a1 + bér,m) = al6r,m) + b&a, ),
i) €m) = (1, 8),

(iii) (£,€) 2 0,
(1v) (¢,€) = 0 only when £ = 0,
whenever £,,&,,&,n are in H, and a, b are in C. The norm || - || on the Hilbert space H

induced by the inner product -, -) is then defined by ||¢]| = (£, £)V/2, whenever & € H.
Now let T : H +— H be a linear operator acting on the space H as above, whose

operator norm is given by
7]l = sup{lITéll : & € H, |IEll < 1}

We say T is a bounded operator if ||T|| < oo. The adjoint of T on the Hilbert space H,
denoted by 7, can be defined as follows:

<T§’ m = &, T*77>,

whenever &, are in . From now on, we always consider T as a bounded operator on 7,

unless otherwise stated.



Below are several properties that the bounded operators enjoy.

Lemma 1 For all bounded operators T, S on a Hilbert space H and a,b € C, we have

that
1. (aT +bS)" = aT* + bS”,
2. (IS)y =S8°T",
3T =T,
4.7\ = ITI

We say T is normal if TT* = T"T; is self-adjoint if T* = T'; is unitary f TT* =TT =
I, where I is the identity on H. Actually, self-adjoint operators and unitary operators are
normal operators, while it is not true vice versa.

Let us recall more types of bounded operators. We say T is positive if (T¢, &) > 0 for
any &€ in H; T is a(n) (orthogonal) projection if T* = T = T?. Projections are positive and
positive operators are self-adjoint.

Now let B(H) be the algebra of all bounded operators acting on the Hilbert space H.
Although there are many topologies on B(H), we will focus on the following three topolo-
gies: norm topology, strong-operator topology, and weak-operator topology. Suppose {7},
is a net of operators on H. We say T, is convergent to T in norm topology if ||T, — T|| is
convergent to 0; in strong-operator topology if ||(T, — T)E|| is convergent to O for all £ in
H; in weak-operator topology if (T,&, 1) is convergent to (T&, i) for all €, 77 in H.

Finally, we can successfully give the definition of C* algebra, which is important to von
Neumann algebras introduced in the following section. An algebra %A € B(H) over C is
called a *-algebra if T € Wimplies T* € A. We say U is a C" algebra if the *-algebra A is
closed in norm topology.

There is also an alternative way to define a C* algebra. Suppose U is a Banach algebra
over C. Let * : A — A" be an involution from U onto A for all A € A satisfying that, for all
T,SinAand a,bin C,



1. (aT +bS)* = aT* + bS*,
2. (TS) = S§*T",
3. (T*Y =T.

Then, a Banach algebra 2 with an involution * is a C* algebra if the additional equation

IT*T|| = ||IT}|* holds for any T in .

Von Neumann Algebras

A *-algebra M c B(H) is a von Neumann algebra if M is closed in weak-operator topol-
ogy. Denote the commutant of M acting on a Hilbert space H by M’, and the center of M
by € (M). Any projection in the center of M is called a central projection in M. Accord-
ing to the double commutant theorem for von Neumann algebras, a *-algebra M c B(H)
is von Neumann algebra if M = (M’)’(= M"). All von Neumann algebras are C* algebras.
A von Neumann algebra M is a factor if the center of M consists of only scalar multiplies
of the identity; i.e. M N M’ = CI. In particular, B(H) is a factor. Each von Neumann
algebra is a direct integral of factors.

Let M be a von Neumann algebra described as above, and let E, F be projections in M.
We say that E is equivalent to F in M, denoted by E ~ F(M), if there exists an element
V in M such that V'V = E and VV* = F. Here V is called a partial isometry from the
range E(H) of E onto the range F(H) of F. The central carrier P of an element A in M
is the central projection P satisfying P = I — V, P, for any central projection P, in M with
P,A=0.

A projection E in a von Neumann algebra M is said to be infinite relative to M when-
ever E ~ Ey < E for some projection Ey in M. Otherwise E is called finite relative to M.
A projection E is a minimal projection (or an atom) in a von Neumann algebra M if E is
non zero and contains no non zero proper subprojections in M. A von Neumann algebra
M is finite if the identity [ is finite; M is semi-finite if there is a finite projection E € M

whose central carrier is the identity /.



Now let us focus on the case when M is a factor. We say M is a factor of type 1 if
M contains a minimal projection — of type 1, if the identity 7 is the sum of n equivalent
minimal projections. All n X n full matrix algebras are factors of type I, for n € N. An
example of a factor of type I, is B(H). A factor M is of type II if M has no minimal
projections but has a finite projection — of fype I1; if I is finite — of type Il if 1 is infinite.
Each factor of type Il is a tensor product of a factor of type II; and a factor of type I.
A factor M is of type III if M contains no finite projections. According to [Tak73], every
factor of type III is a continuous crossed product of a factor of type Il by the real line R.

As an example, see the following:

Example 2 Let G be a discrete group with a unit e, and I*(G) be the Hilbert space spanned
by the elements in G with inner product -, -) given by
<Z A8, Z:ugg> = Z Aghy-
2€G g€G ¢€G

Denote by L the von Neumann algebra generated by L, forall g in G, i.e. Lo =1{L;:g €
GY' € B(IX(G)), where L, is the shift operator on I*(G) satisfying L,h = gh, for any hin G.
A discrete group G is infinite-conjugacy-class (1.C.C.) if the conjugacy class of g is infinite
for all g € G but unit e. One result showed in [KR] claims that G is I.C.C. if and only if Lg
is a factor of type II.

More precisely, consider the case when G is the non-abelian free group F, on two
generators, which is 1.C.C.. The result above tells us that the corresponding group von
Neumann algebra Lg, is a factor of type 1I,. Another example is the permutation group II.
Suppose 11, n € N, is the group of all permutations on the set {-n,...,—1,0,1,...,n}, II,
embeds into 11,1 naturally and the permutation group I1 = U,I1,. Then the permutation
group 11 is an 1L.C.C. group and the permutation group von Neumann algebra Ln is a
Jactor of type II;. Moreover, Murray and von Neumann proved that Ly, and L are not

isomorphic (see [KR], Chapter 6).

To proceed with our arguments, we need to recall a few basic facts about GNS con-

struction.



Let M be a von Neumann algebra and p : M — C be a linear functional on M. The

norm of the linear functional p on M is defined by
lloll = sup{lo(T)| : T € M,||IT]| < 1},

and p is bounded if ||p|] < 0. A bounded linear functional p is normal if it is weak-operator
continuous on the closed unit ball (M); of M; is faithful if p(A*A) = 0 implies A = 0, for
all A in M; is positive if p(I) = ||p||; is a state if p(I) = 1 = ||p||; is a tracial state if p is a
state and p(TS) = p(ST),VT,S € M. In [MV36], Murray and von Neumann proved that
only factors of type I, and I, have tracial states, where n € N.

The linear space of all bounded linear functionals on M forms the dual of M, denoted
by M*. The linear space of all normal linear functionals on M, denoted by My, is a Banach
space. The space My is a predual of M; i.e. (Mg)* = M. It is well-known that the predual
M. of M is weak* dense in M.

In order to establish the GNS construction, we still need to introduce two notations.

A representation ¢ of a C™ algebra U on a Hilbert space H is a *-homomorphism from
A into B(H). For each unit vector € in H, i.e. [|£]l = 1, a linear functional w; = {-£,£) on

B(H) is called a vector state.

Theorem 3 (GNS Construction, see [KR], Theorem 4.5.2) Ifp is a state on a C algebra
U, then there exists a representation nt, of A on a Hilbert space H, and a vector &, € H,
such that p = wg, °© 7, i.e.

P(A) = (mp(A)p- €p),

whenever A € .

Proof. Let
% ={AeU:pA"A) =0}

Since p(B*A) = 0forall A € %, Be U, ., is a closed left ideal of A. The equation

(A+ %, B+ %) = p(B'A)



gives an inner product (-, -) on A/.Z,. Denote by H, the completion of A/_Z, relative to the
inner product ¢:, -). Therefore H,, is a Hilbert space.
For all A, B in %, we define

n(AYB + %,) = AB + %,
and so 7(A) is a linear operator on A/.Z,. For all A, Bin ¥,

IAIPIB + LI = lin(A)B + Z,)IP

IAIPIB + I - IIAB + LI

AI*(B + %, B+ %) —{AB + £, AB+ %))

lAIPp(B"B) — p(B*A"AB)

p(B"(IAI’I - A"A)B) 2 0,

hence |[r(A)ll < ||Al| and 7(A) is bounded. Consequently it can be extended to a bounded
operator on H,,, denoted by 7,(A). We now show that 7,(A) is a representation of A¥When

A = I, my(]) is the identity on H,. Clearly, for all A, B,Cin ¥, a,b in C,

m,(aA + bB)(C + %) (amp(A) + b, (B))(C + 24),

.(AB)(C + %) 7 (A)m,(B)(C + £,),

(m(A)B+ Z,),C+ %) (B+ %, ny(A")(C + £)).

Moreover, since UA/_Z, is dense in H,, we have

T(aA +bB) = an,(A) + br,(B),
m,(AB) = m,(Am,(B),
(A = mp(AT).

This proves that 7, is a representation of W on H,,. Let &, = I + %, € A/ %,. Then
T (A, = A+ L VA € L.
Therefore, 7,(MWé,(= A/ %) is dense in H,, and hence, for all A in A
(Tp(A)ep, &p) = (A + L5, 1 + Z5) = p(A).

8



Remark 1 If p is faithful, then %, = O, and thus the Hilbert space H, is the completion
of N/ £, (= W) relative to the inner product given by (A, B) = p(B*A), for all A, B in U,
The space H,, is also denoted by L*(U, p), which will be used frequently in the following

sections.

Theorem 3 focuses on the case when p is bounded. Actually, it can also be extended to
the case when p is a weight, which is an unbounded linear functional.

Now let us recall the definition of a weight. For a von Neumann algebra % ¢ B(H), let
A* be the set of all positive elements in A. A linear mapping p : A* i [0, oo] is called a

weight on A if
p(H + K) = p(H) + p(K), p(aH) = ap(H),VH,K ¢ A",0<a €R

Let

X

{A€U: p(A*A) < o),

=
I

{AeU:pA*A) =0},

F, = {Aeq" :p(A) < o},

EN

span{A : A € F,}.

A weight p is faithful if N, = {0}; p is semi-finite if .#, is weak-operator dense in M; p
is normal if there is a family of positive normal linear functionals {0, }, such that p(H) =
Y.e Po(H) for any H in F,; p is a tracial weight on U if p(AA™) = p(A"A), for all A in .
Since ., is the linear span of F,, the weight p can be extended to a linear functional on
M, denoted by p again.

To see the GNS construction induced from a weight, we refer to the textbooks such as
[KR] for a much more complete analysis.

In ending this section, we will show that for a fixed tracial weight on a semi-finite

von Neumann algebra, there exists a simple relation between any normal state on the von



Neumann algebra and a positive unbounded operator. Before this, we would like to recall
some notations about unbounded operators.

An (unbounded) operator T on a Hilbert space H is closed if the graph {(£, T¢) : & € H}
of T is closed under the norm given by ||(£, TE)|| = ||€]] + [|IT€|} for any ¢ € H. We say T
is densely defined if its domain is dense in H. In particular, every bounded operator is
closed and densely defined. A closed, densely defined operator T is affiliated with a von
Neumann algebra M on H, denoted by TyM, if UTU* = T for any unitary operator U in
M. For more about unbounded operators, we refer to [KR]. To state an important result
about unbounded operators, we denote by |T'| the absolute value of T for any operator T';
i.e. |T| = (I"T)Y2. Then the result [KR] is that a closed, densely defined T has a polar
decomposition T = V|T|, where V is a partial isometry from the range of 7" onto the range

of T. Moreover, if TnM, then |TipM.

Lemma 4 Suppose M is a semi-finite von Neumann algebra with a separable predual
and a faithful normal tracial weight Tr. Then for any normal state ¢ on M, there is
a(n) (unbounded) positive operator H affiliated with M such that ¢(X) = Tr(HX) for any
XeM

Proof. Let {E; .}, be an orthogonal family of projections in M maximal with respect to the
property ¢(E1 o) > Tr(E,,) and E; = I — 3, E1,. By induction, for n € N, let {E, g}z be
an orthogonal family of projections in (I — E,—))M(I — E,-1) maximal with respect to the
property ¢(E,p) > nTr(E,p). Let E, = I—- 3,5 E, 5. Then E, < E,,| and E, must converges

to I in the strong-operator topology. Otherwise, we take E = I — lim, E,,. Then
¢(E) =lim¢(I — E,) 2 limnTr(I - E,) 2 imaTr(E) > 0,

and ¢(E) goes to oo as n goes to oo which leads a contradiction. Since M is semi-finite and
separable, there exists a sequence {F,}, of projections such that lim, F, = I, F, are finite
and F, < E,. Then for ¢|r mp, < nTrlr mr,, there exists a positive element K, in the unit

ball (F,MF,), of F, MF, such that ¢(F,XF,) = nTr(K,X) for all X € M. Let K,, = nK.

10
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Since

Tr(Kn+1FnXFn) = ¢(Fn+1FnXFnFn+l) = Tr(KnX)

for all X € M, we have F,K,.1F, = K,. Let K be the least upper bound of {K,}. By [KR]
Chapter 5, K is positive, KpMand Tr(K) = 1. Wepick Has K. m

Special Mappings

In this section, I will mainly introduce two mappings: norm one projection and conditional
expectation. The relationships between these two mappings is also discussed.

Let N € M be a von Neumann subalgebra of a von Neumann algebra M. A linear
mapping ¥ : M — N is a norm one projection if [[¥(X)I| < [[X|, VX € M, and ¥(Y) =
VY eN.

A linear mapping @ : M — N is a conditional expectation if, for any X in M, Y1, >

in NV, we have
1. (X) > 0when X > 0,
2. () =1,
3. ®(Y1XY;) = 1O(X)Y,.

There is a well-known result showing that the two mappings described above are actu-

ally equivalent (see [Tak] for reference). More precisely,

Proposition 5 Let N € M be an inclusion of von Neumann algebras, © a linear map-
ping from M onto N. Then ® is a norm one projection if and only if ® is a conditional

expectation.

Proof. First, we assume that @ is a norm one projection from M onto N and X is a
positive element in M. For any state p on N, we have that p o @ is a state on M since

Po®@)I) =1 = |ljpo @|. If ®(X) is not positive, then there exists a state p such that

11



(p o ®)(X) is negative or an imaginary number, this contradicts the positivity of p o ®@. Thus

® is positive. For any projection E in N, X in (M);, we shall prove
O(XE) = ®(XE)E, EP(EX) = D(EX).

We assume that M acts on a Hilbert space H and consider operator ®(XE)(I — E) in N

with 4 in R. Then, we have that

IA®(XE)I - E) + XE|]? (I — EY®(XE)" + EX*|]?

sup AU — E)YDXE)'¢ + EX €|
[I€ll<1

= sup A — EYO(XEY &> + |EX €|
<1

2| - EYOXEY' | + |IEX"|?

IA

IA

A ®XEYI - E)|? + 1.
On the other side, we obtain that

[AQXE)I - E)+ XEll 2 ||®(APXE)I - E)+ XE)|

[ PAPXEYI — E) + D(XE)|

[P((1 + DYP(XEXI - E) + P(XE)E]|

> [|((1 + HOXEXI — E)|l-
Combining the above two equations, we get for 4 € R,
P|OXEYI - B + 12 (1 +’OXE)I - E)|*

Then we have

24 Q(XEXI - E)l < 1 - |®(XE)I — E)||-

If A is large enough, the left-hand side of the equation go to co and the right-hand side is a
constant, then the contradiction yields ®(XE)(I-E) = 0. Symmetrically, (/- E)P(EX) = 0,

and thus
®(XE) = D(XE)E + O(XEYI — E) = D(XE)E = P(XE)E + ®(X(I - E))E = D(X)E.
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Similarly, ®(EX) = E®(X). According to the spectral theorem (for example, [KR], The-
orem 5.2.2), and the fact that any element can be written as a linear combination of self-

adjoint elements, we have

O(Y1XY,) = N O(X)Y>,

whenever Y1, Y, are in N. Hence @ is a conditional expectation from M onto N.
In the other direction, we assume that @ is a conditional expectation from M onto N.
By the definition of conditional expectations, we have ®(Y) = Y for any Y in N. Since ®

is positive, we have
0 < O((X — (X)) (X — 2(X))) = DX"X) — OX")D(X),

and then
BX|? = |OXHPX)| < [PX* X < IIX*X]| = |1X]]

Thus @ is a norm one projection from M onto N. ®

There are still some more mappings we would like to mention here as they will be
discussed later. Suppose M, N are von Neumann (or C*) algebras. A linear mapping
Y : M — N is positive if ¥(X) > 0 for all X > 0. A linear mapping ¥ : M —» N is
completely positive if for any n € N, the linear mapping ¥, : M,,(M) — M,(N) is positive,
where ¥, is given by ‘I‘,,([X,-j]zjzl) = [‘I’(X,-,-)]ijl,Xij e M, [Xij); o0 € M,(M). A linear

mapping ¥ : M — N is completely bounded if

IM¥llcs = sup [[¥,]| < oo,

n21
where

1,1l = sup{||¥,.(X)Il : X € M,(M), |IXIl < 1}.

Finally, a linear mapping ¥ : M+ N is completely contractive if |[¥|], < 1.

Two Products

In our main work, we shall frequently use two products for von Neumann algebras: the

tensor product and the crossed product.
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First, let us recall the tensor product. Suppose M, N are von Neumann algebras acting
on Hilbert spaces H and K respectively. Let H ® K be the Hilbert space tensor product of
H and K. For any A € B(H) and B € B(K), a simple tensor product A® B is the bounded
linear operator on H ® K given by A B¢ ®n) = A6 ® Bpforallé € H,n € K. Then
the von Neumann algebra tensor product M@N of M and N acting on the Hilbert space
H ® K is the von Neumann algebra {A® B: A € M, Be N}’ € B(H @ K).

The following theorem is very important, and will be used in the sections below from

time to time. For the proof and more details, we refer to [KR, Tak].

Theorem 6 Let M, N be von Neumann algebras acting on Hilbert spaces H and K re-
spectively. The commutant (MON) of MN on H & K is isomorphic to M'ON".

Crossed products are used mainly for studying properties of von Neumann algebras
that are invariant under *-isomorphisms. Suppose M is a von Neumann algebra acting on
L*(M, 1) with a faithful normal tracial state 7. Let G be a discrete group with a unit e and
o : G — Aut(M) be a trace-preserving group homomorphism. Thatis oo, = 7, for any g
in G. The crossed product of a von Neumann algebra M by the discrete group G, denoted
by M >, G, can be described as below.

Denote by | - ||, the tracial norm of M given by ||X|}, = 7(X*X)"/2, VX € M. Since o,
is an automorphism of M and 7 = 7 o o, for any g in G, we have [|X]l, = |log(X)||> for
any X in M and g in G. Then we can define a unitary operator V, on L*(M, ) such that
VX = oi(Y) for any g in G, X in M, where X, is a vector in L2(M, 7) corresponding to X.

Let K = ®,ecH,, where H, is a copy of L*(M, 7). For any T in B(K), its corresponding
matrix form is [T, ], 4ec satisfying T, € B(L*(M, 7). We embed M into B(K) such that
X has matrix form [X0,,,],4ec in B(K) for any X € M, where 6,, =0if p £ ;6,4 = 1
if p = q. Let U, be the element in B(K) whose corresponding matrix form is [6,,,,V],
where V, is the unitary operator described above.

‘Finally, the crossed product M »s G of M by G is the von Neumann algebra

MG ={X,U, : X € M, g € G}’ € B(K).

14



All elements in the crossed product have form 3. . X, U,, where X, € M. The trace 7; on

M=, G is given by

T [Z X, Ug] = 7(X,).

2eG
Direct Integrals

Let X be a o-compact, locally compact (Borel measure) space, ¢ be the completion of a
Borel measure on X, and let {#,}, be a family of separable Hilbert spaces indexed by the
points p of X. We say that a separable Hilbert space H is the direct integral of {H,}, over
(X, 1) (we write H = fxeﬂpd,u(p)) when, for each & € H, there exists a corresponding
function p — &(p) such that £(p) € H, for each p and

(1) p > (E(p), n(p)), for all €, € H is p-integrable,

&y = fx ED) (P)u(p)

(i) if u, € H for all p € X and p — (u,, &(p)) is integrable for all £ € #, then there is a
u in H such that u(p) = u, for almost every p € X.

We say that f(\, @Wpdu(p) and p — &(p) are the (direct integral) decompositions of H and
& € H respectively.

If H is the direct integral of {H,}, over (X, u), an operator T in B(H) is said to be
decomposable when there is a function p — T(p) on X such that T(p) € B(H,) and, for
each & € H, T(p)é(p) = (TE)(p) for almost every p. If, in addition, T(p) = f(p)I,, where
I, is the identity operator on H,, we say T is diagonalizable. In general, a (separable)
Hilbert space H has direct integral decomposition relative to an abelian von Neumann

algebra A on H. We state some related theorem as follows.

Theorem 7 (See [KR]) If A is an abelian von Neumann algebra on the separable Hilbert
space H there is a (locally compact complete separable metric) measure space (X, i) such

that H is (unitarily equivalent to) the direct integral of Hilbert spaces {H,}, over (X, u)
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and A is (unitarily equivalent to) the algebra of diagonalizable operators relative to this

decomposition.

If H is the direct integral of Hilbert spaces {#H,} over (X, u), a representation ¢ of a
C* algebra U on the Hilbert space H is said to be decomposable over (X, ), when there
exists a representation ¢, of & on H, such that for any A € %, ¢(A) is decomposable and
#(A)(p) = ¢,(A),a.e. A von Neumann algebra M is decomposable on H with p > M,,
if M contains a norm separable C* subalgebra U strong-operator dense in M such that the
identity representation / of U is decomposable and [,(¥) is strong-operator dense in M.
We state the following theorem to indicate that every von Neumann algebra has the direct

integral decomposition relative to its center.

Theorem 8 (See [KR]) If o is an abelian von Neumann subalgebra of the center C of a
von Neumann algebra M on a separable Hilbert space H and {H,} is the direct integral
decomposition of H relative to &/, then C, is the center of M, almost everywhere. In

particular, M, is a factor a.e. if and only if &7 = C.

A state ¢ of a von Neumann algebra M could be decomposable according to Theorem

9 below.

Theorem 9 (See [KR]) If H is a direct integral of Hilbert spaces {H,} over (X,u), M
is a decomposable von Neumann algebra on H, ¢ is a normal state on M. Then there
is a mapping p > ¢,, where ¢, is positive normal linear functional on M, and ¢(A) =

[ Bo(A@)dp(p), VA € M.

Jones Basic Construction

In 1983, V. R. Jones introduced a new construction for von Neumann algebras, which is
known as Jones basic construction. It has many applications, especially in the index theory

of subfactors, some of whose basic definitions will be introduced at the end of this section.
Suppose B C N is an inclusion of von Neumann algebras with a faithful normal tracial

state 7. Let Eg be the trace-preserving conditional expectation from N onto B. Let N
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act on L*(N, 1) which is the Hilbert space from the GNS construction induced by 7 ( refer
to section 1.2.2). We identify L*(8B, ) as a Hilbert subspace of L*(N, 7). For any X in
N, denote by X the vector of L2(N, 7) corresponding to X. Let Eg be the projection from
LA(N, ) onto LX(B, 7) with EgX = Eg(X) for any X in A and J the conjugation on L2(N, 7)
given by JX = X* for any X in V. Denote by (N, B) the von Neumann algebra {N, Eg}” C
B(L*(N, 7)) generated by N, Eg and one has that (N, B) = JB'J.

The (Jones) basic construction for 8 C N is then defined to be the inclusions B ¢ N C
(N, B) (see [Jon83]). The following property of Jones basic construction is very important

to our work, see [SMO8] for its complete proof and analysis.

Theorem 10 Let B be a von Neumann subalgebra of a finite von Neumann algebra N with
a faithful normal tracial state v. There exists a unique normal semi-finite faithful tracial

weight Tr on (N, B) satisfying Tr(XEgY) = 7(XY), for X, Y in N.

Now let us recall some basic concepts from the index theory of subfactors, which will
be required later. Let M be a finite factor with the trace T acting on a Hilbert space 7.
Suppose the commutant M’ of M is finite and its trace is denoted by 7’. Then the coupling
constant dimp(H) of M is defined as 7(E pvz)/ 7 (Epe), Where € is a non zero vector in
H and E is the projection onto the closure of the subspace A¢. This definition, due to
Murray and von Neumann [MV37], is independent of £. If N is a subfactor of M, the index
of N in M, denoted by [M : N1, is defined as dima(H)/dimp(9H). This definition, due to
Jones [Jon83], is independent of H. If H = L>(M, 1), then [M : N] = dimn(L*(M, 7))

The remarkable result in [Jon83] is that, the set of all possible values of index is given by

{4dcos’m/nn = 3,4,...) U {r e Rlr> 4} U {oo).
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CHAPTER 2

DECOMPOSITIONS OF FINITE VON
NEUMANN ALGEBRAS

In this chapter, we begin with some definitions of building blocks for decompositions of
finite von Neumann algebras. A factor is hyperfinite if it contains an ascending sequence
of full matrix algebras weak-operator dense in itself. For instance, 8(H) is a hyperfinite
factor of type I,, where H is a Hilbert space with dimension n € N U {oo}, while the
permutation group factor (See Chapter 1, section 1.2.1) is a hyperfinite factor of type II;.
The hyperfinite factor of type II; is known to be unique (see [KR], chapter 12).

Let M be a factor of type II; with the trace 7. The type II; factor M is said to have
property I' if for any finitely many elements X;,..., X, in M and € > 0, there exists a

unitary element U in M with 7(U) = 0 such that
||Xl'U— UX,”z <ei=12,...,n

An alternative formulation is that for any finitely many elements X,,..., X, in M, there

exists a sequence {U};?, of trace zero unitary elements in M satisfying
]}gg ”X,Uk - UkXiIIZ =0,i=12,...,n

For a free ultrafilter w on N, a sequence {X,}, of elements in M is an w-central sequence
of M if lim, ., |X, X — XX, |l = O for any X in M and sup,{||X.ll} < oo (for more details

see Chapter 4). All w-central sequences of M form a finite von Neumann algebra, denoted
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by M., which is also called a w-central sequence algebra of M. The hyperfinite factor of
type II; has property I' (for example, see [KR]). Moreover, D. McDuff [Mc70] proved that
if the w-central sequence algebra of a separable factor M of type II; is not abelian, then M
is (isomorphic to) the tensor product of the hyperfinite factors of type II; and itself. In this
case, M is called a McDuff factor.

A von Neumann algebra M is said to have property T if there exists € > 0, Xj,..., X,
in M such that for any M — M bimodule H and any vector £ in H, with ||¢]| = 1 and
1X:i& — EXi| < efori = 1,...,n, there exists a vector n in H, n # 0 which is central:
Xn = nX for all X € M. Recall the definition of Kazhdan’s property T for group: a
countable discrete group G has property T of Kazhdan if there exists an € > 0 and a
compact subset K of G such that every unitary representation 7 : G — B(H) of G on a
Hilbert space H having a non zero vector € in H with ||r(g)é —£&]| < € for all g in K also has
a non zero invariant vector. In [CoJ85], Connes and Jones proved that a countable discrete
group has property T of Kazhdan if and only if its corresponding group von Neumann
algebra has property T. For example, the linear group PS L,(Z) of all n X n matrices with
entries in Z with determinant one module {+/} whenn > 4 isevenand SL,(Z) of all n X n
matrices with entries in Z with determinant one when n > 3 is odd have property T and then

group von Neumann algebras Lpsy, z), # 2 4 even and Ls; (z), n = 3 odd, have property T.

Definition 11 A factor M of type II; with the trace T acting on the Hilbert space L*(M,T)

is I'-thin if there are two subfactors N1, N> with property I in M such that
M = ﬁN} N2’

in the sense of weak-operator topology on B(L*(M, T)). Similarly, one can define a series
of “thin” factors. If N1, N> are subfactors with property T, M then is called T-thin; if N;
is property I subfactor and N, is property T subfactor, M is called I'-T-thin.

If Ni, N, are replaced by hyperfinite von Neumann subalgebras of M in the definition

above, the factor M is called thin factor as defined in [GePo98]. If one of Nj, N, is an
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abelian von Neumann algebra or a hyperfinite von Neumann subalgebras of M, we have

a.I'-thin factors, h.I'-thin factors etc.

Definition 12 A type II; factor M with the trace T acting on the Hilbert space L>(M, 1) is
strongly I'-thin if there are property I" subfactors N1, N, of M such that

SPNiEN, = LM, 7)

for every non zero vector & in L* (M, 7). If N1, N, are property T subfactors, M then is
called strongly T-thin; if Ny is property I subfactor and N, is property T subfactor, M is
called strongly T'-T-thin factor.

If N1, N, are replaced by hyperfinite von Neumann subalgebras of M in the definition
above, the factor M is called strongly thin factor as defined in [GeP098]. If one of Ni, N,
is an abelian von Neumann subalgebra or a hyperfinite von Neumann subalgebra, we have

strongly a.I'-thin factors, strongly h.I'-thin factors.

Definition 13 A factor M of type II; with the trace T acting on the Hilbert space L*(M, T)
is m-weakly I'-thin if there are two property I subfactors N1, N> of M and vectors &y, ..., &,
in LM, 1) such that

LZ(M, T) = spNi{é1s - - . EmINL

If N1, N, are property T subfactors, we say M is m-weakly T-thin; if Ny is property T
subfactor and N, is property T subfactor, we say M is m-weakly I'-T-thin.

If N1, N, are replaced by hyperfinite von Neumann subalgebras of M in the definition
above, the factor M is called weakly thin factor as defined in [GeP0o98]. If one of Nj, NV,
are an abelian von Neumann subalgebra or a hyperfinite von Neumann subalgebra, we have
n-weakly a.I'-thin factors, n-weakly h.I'-thin factors.

In the other words,

’strongly I'-thin = I'-thin = weakly I'-thin”.
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Lemma 14 Let M be a property T factor of type I, with the trace T and P a non zero
projection of M. Then PMP has propertyI.

Proof. By a result of Connes ([Con76], Theorem 2.1), M has property I' if and only if
the C* algebra C*(M, M’) generated by M and M’ in L*(M, 7)(= H) contains no nonzero
compact operator; i.e. C*(M, M) N K(H) = {0}. Since P is a non zero projection in M,
we have

C'(PMP, M P)NK(PH) = {0}

and hence PMP has property I'. &

Lemma 15 a) Let M be a type 11, factor and P a non zero projection in M with % <
T(P) < lel for some positive integer k. If M is n-weakly T-thin, then PMP is nk*-weakly
I-thin, if PMP is n-weakly I'-thin, then M is 4n-weakly I'-thin.

a’) Let M be a type 11, factor and P a non zero projection in M. Then M is strongly I'-thin
if and only if PMP is.

b) Let N ¢ M be an inclusion of type Il factors with k — 1 < [M, N] < k for some k.
If M is n-weakly T-thin, then N is nk*>-weakly T-thin; if N is n-weakly T-thin, then M is
4n-weakly I'-thin.

c )M @ M, (C) is (n-weakly, strongly) I'-thin if M is.

Proof. a)We assume that M is n-weakly I'-thin. Then there are vectors &i,...,&, in
L*(M, 7) and property I subfactors N; and N, of M such that L2 (M, ) = SpN {1, - - -, EnINo.
Up to unitary conjugations, we may assume that P € N; N N,. Because M is a factor of
type II;, there are unitary elements U, V in M such that UPU" in N; and VPV” in N,.
Then we may replace Ny by UN U, N, by VA,V* and £; by U&;V*. Since 1/k < 7(P),

we can choose a matrix unit system {Ej, j,/ = 1, ..., k} for some matrix subalgebra of N;
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such that Ey; < P. Similarly, we have {F ],}’; =1 for N3 and Fy; < P. Thus we have that

L*(PMP,tp) = SpPNi{éy, ..., E NP
= SpPNi(Q  ElEr - &) F NP
J J

= SPPNiQ EpEnEy)r, - &3O FFiiFi))NoP
J J

= SpPNEWE & Fn, ... EEFn, j1=1,..., k() FuNo P

= SpPN\P{E\;&iFn, ..., E 6uFn, ,1=1,...,k}PN,P,

where 7p = 7/7(P). Since PN P and PN, P are type II; factors with property I', we have
that PMP is nk?-weakly I'-thin. If PMP is n-weakly I'-thin, then we pick a subprojection
E of P with trace 1/k. Since 7(E)/T(P) 2 k;kl > 1/2 and the argument above can be applied
to subfactor EME of PMP, EME is 4n-weakly I'-thin. Let EME = spNz{n1, ..., N} N4
where N, N, are subfactors of EME and 7y, ...,74, are in LX(EME, g). Since E is a

projection with trace 1/k in M, we know that M ~ M;(C) ® EME. Then

LX(M, 1) L>(Mi(C)® EME,7)

SPIMUCO)RN3{1®1y, ..., 1 @ N4, )M (C)® N,

where 1 is the identity of M;(C). By [SMO0S8], Theorem 13.4.5, we know that M (C) ® N3
and M,;(C) ® N, have property I'. Hence M is 4n-weakly I'-thin.

a’) follows from a).

b) We assume that M is n-weakly I'-thin. Then there are vectors &, ..., &, in L2(M, 1)
and property I' subfactors N; and N, of M such that L2(M, ) = SpNitéL, - - - EN,.
Suppose E is the projection from L>(M, 7) onto L>(N,T). Let P be a projection in M
such that there exists unitary element W in (M, N) on L2(M,7) with WPW* = E, and
7(P) = [M : N]! = 1(Ey), where 7 is the normalized trace on (M, N) extending the
trace T on M. Up to unitary conjugations, we may assume that P € N; N N,. Because
M is a factor of type II;, there are unitary elements U,V in M such that UPU* in N,
and VPV* in N,. Then we may replace N; by UN,U", N, by VN,V* and &, by U¢,V*.

Since 1/k < 7(P), we can choose a matrix unit system {E;, j, = 1,..., k} for some matrix
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subalgebra of N such that Eq; < P. Similarly, we have {F J,}’; =1 for N3 and Fy; < P. Thus

we have that

LX(PMP,1p) = SpPNiéL,.. .. ENLP
= SPPN1(Q E ), &) F))N:P
J J

= EﬁPNl(Z E EnE D, .. ,fn}(Z FyFuFi)N>P
J J
= spPNiEW{Ei & Fn, ..., EqnFn, jl=1,..., K} FuN>P

= EﬁPNlP{Eljlell,'"’El‘]anll’ j,l= 1,,k}PN2P

Since PN, P and PN,P are type II; factors with property I', we have that PMP is nk>-
weakly I'-thin. Then WPMPW* is nk?>-weakly I'-thin. Since

WPMPW™ = WPW'WMW* WPW* = E\WMW'Ey € NEy,

WPMPW* is a subfactor of NEy. But L2 (WPMPW*) = WL (PMP) = ExL*(M) =
IX(EyMEyN) = L*(NEy), and we obtain that WPMPW* = NEy. Therefore NEy is
also nk?>-weakly I'-thin. Since NEy acting on L2 (N Ey) is unitarily equivalent to N acting
on LX(N), N is nk*-weakly I'-thin. If N is n-weakly I'-thin, NEy is n-weakly I'-thin
and PMP is n-weakly I'-thin, then we pick a subprojection E of P with trace 1/k. Since
T(E)/T(P) > ";kl > 1/2 and the argument above can be applied to subfactor EME of
PMP, EME is 4n-weakly I'-thin. Since E is a projection with trace 1/k in M, we know
that M ~ M (C) ® EME. Hence M is 4n-weakly I'-thin.

c) We assume that M is n-weakly I'-thin. Then there are vectors 7y, . .., 7, in L*(M, 7)

and property I subfactors N; and N, of M such that L*(M, T) = SpN1{01s - - -, MaINo.
LXM® M(C),7) = SpN1® MC)m ®1,...,7,® 1}N; ® Mi(C)

where 1 is the identity of M(C). By [SMOS8], Theorem 13.4.5, we know that N; ® M,(C)
and N; ® M;(C) have property I'. Hence M ® M, (C) is n-weakly I'-thin. m
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2.1 TI'-Thin

We begin with the simplest decomposition “a.a.-thin”. The hyperfinite factor R of type II;
is a.a.-thin. To see this, given an irrational number 8, suppose Ay is the reduced C* algebra
generated by two unitary operators, U and V, satisfying the twisted commutation relation
UV = exp(2nif)VU with the trace T given by 7(2;, ,A4,UVY) = Agp, where 4,, € C,
2 ,4,U'V/ isin Ap. Let (H:, -, &;) be the triple from the GNS construction induced by
7. Then the weak-operator closure of the representation 7, of Ay induced by the trace 7
is the hyperfinite factor R of type II;. Let Ay be the abelian von Neumann subalgebra
generated by 7,(U), Ay the abelian von Neumann subalgebra generated by 7.(V). We
obtain that R = sp Ay Ay.

If factors of type I are considered in this decomposition, we have that all (weakly)
separable factors of type I are a.a.-“thin”.

Suppose H is a n-dimensional Hilbert space with an orthogonal normal basis &5, &,
...,&,, where n € N. Define unitary operators U and V on H such that U¢, = eZulng , for
j=1...,nand V& = & fork =1,...,n—1, V&, = &. Let {Ejk}'],k=1 be a system of
matrix units for B(H) such that E 4& = &, for jk = 1,...,n. Since 2 377 (g7 2/ y)k-1 =
Ejgford = 1,...,n, and E;V¥! = E4; ford,l = 1,...,n, then the algebra generated
by U,U", V, V* contains all matrix units {E ;},x of B(H), and hence it is B(F) which is
isomorphic to M,(C). Moreover, UV = eZ"VU. Let Ay be the abelian von Neumann
subalgebra generated by U, Ay the abelian von Neumann subalgebra generated by V. We
obtain that M,(C) = sp Ay Ay.

Suppose H is a countably infinite dimensional Hilbert space with an orthogonal normal
basis {¢,} z. Define unitary operators U and V on ‘H such that U¢, = ¢*#¢, for j € Z and
V& = & for k € Z, where 6 is an irrational number. Let {E i}, 4z be a system of matrix
units of B(H). Since 6 is an irrational number, {mf + n : m, n € Z} is dense in the real line
R. Let p > 2 be a natural number. Then there exist sequences {m;}; and {n;}; of integers
such that limy m;0 + n;, = %. Therefore, limi o yme = y »» where U, is a unitary operator

on H such that U,é, = e*/7¢, for jin Z. Since L 57 J U} = 31z Epyp)(= Ep), we have
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that Eg = lim, H‘;’:z E; in strong-operator topology. Let Ay be the abelian von Neumann
algebra generated by U, U”, and Ay be the abelian von Neumann algebra generated by
V, V*. Thus Ey is in the von Neumann algebra Ay generated by U, U”. If we replace U by
e 2™ for k € Z, then we get that Ey is in Ay. Moreover, E;V©? = Ej; for I, d € Z. Thus
we have that U, V generate B(7) as a von Neumann algebra and UV = ¢®VU. Finally,
we obtain that B(H) = spAyAy.

Now we state a theorem in [GePo98] proved by L. Ge and S. Popa to give an example
of an a.I'-thin factor. Let G be a discrete group with unit e and o : G > Aut(8B) a group
action of G on a von Neumann algebra 8. We say that o acts ergodically on M if the
following condition is satisfied: if X € M and U, XU, = X for each g € G, then X is
a scalar multiple of /; and that o is properly outer when 0 ,(X)Xy = XoX for all X in B
implies that g = e or Xy = 0. It is known that the properly outerness of o is equivalent to

the condition B’ N (B =, G) = €(B), where € (B) is the center of B.

Theorem 16 (See [GeP098]) Let B be a finite von Neumann algebra with no atoms and
with a faithful normal trace 1. Let G be a countable discrete group and o a T-preserving,
properly outer action of G on B. Denote by M = B >, G the crossed product of B by o.
Then there exist an abelian subalgebra A of B and a unitary element U € M such that
M ="spBUA = spBUAU".

Corollary 17 Let B,0,G be given as in Theorem 16. Assume that o acts ergodically on

the center of B and B is a property I or T factor. Then M is a.I'-thin or a.T-thin.

In theorem 16, if B is an abelian von Neumann algebra, then we have that M = B>, G

which is a.a.-thin. Let Z? be the group {(m, n) : m, n € Z} with addition (m,, n,) + (my, ny) =
a

b
(my + my, ny + ny) for my, my, ny, ny, € Z. For any element (= g) in SLy(Z), the
c

] = (am + cn, bm + dn), for any (m, n) € Z2.
c

a
action & of g on Z? is given by (m, n)[

The group action a acts ergodically on Z?. In fact, if (m, n)g = (m, n) for any g € S L,(Z),
we see that (m, n) = (0,0). Then the crossed product Lz =, S L,(Z) is a factor of type II;
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(See [KR] Chapter 8 for more details). But it is not the hyperfinite factor of type II; since
it contains a free group subfactor Ls;,z). The crossed product Lz > S L,(Z) is a.a.-thin
by the corollary above.

In [CoJ85], Connes and Jones showed that a type II; factor with property T is not a
subfactor of the free group factor L, where n > 2. This indicates that the free group
factor is not a.T-thin, I'-T-thin, T-thin.

If the conditions on the group action are removed, i.e. M », G for any group action
a : G = Aut(M), we have M <, G = spML;. Therefore if M has property I and group
G has property T, M >, G is I'-T thin.

Any tensor product of two type II; factors is I'-thin or McDuff-thin provided that we
use McDuff factors as building blocks in the corresponding decompositions. That is, if
M = M{®M,, where M;, M, are factors of type II; and let R; and R, be hyperfinite

subfactors in M; and M, respectively, then
M= E(Mlgﬂz)(ﬂ1§/\42).

Hyperfinite length £,(M) = min{xn|there are hyperfinite subalgebras R;, ..., R, of M
such that spR;---R, = M]} for a given type II; factor M was defined in [GeP098] and
they proved that property I' factors have hyperfinite length < 2 and any tensor product of
two type II; factors has hyperfinite length < 3. It has been proved in [GeP098] that a factor
of type II; with property I is thin factor. We see that I'-thin factors have hyperfinite length
< 4. Similarly, length £,(M) = min{n|there are abelian *-subalgebras Ay, ..., A, of M
such that spA; --- A, = M} for a given type II; factor M could be defined. If factor A
of type Il is I'-thin, £,(M) < 8.

2.2 Strongly I'-Thin

Proposition 18 There is no strongly a.a.-thin factor of type 1.

Proof. Suppose M is a strongly a.a.-thin factor of type II; with the trace 7 and L> (M, 7) =
SPAEA, for all nonzero vector & € L2(M, 7), where A;, A, are MASAs in M. Let P be
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a projection in A; such that P # 0, and Q a projection in A, such that Q ~ P(M). Then
there is a unitary operator U in M such that Q = UPU". Since L*(M, 1) = spA£A, for

all nonzero vector £ € L2(M, 7), we have
LX(M, 1) = SpAEDNU AU

for all non zero vector & € L2(M, 7). We note that P € AN U*A,U. Let & be U* the vector
in L2(M, 7) corresponding to a unitary operator U*. Then SPATU AU = LA(M, 1), ie.
A VU AU = Mand A\ NUA,U = M’, where AV B means the von Neumann algebra
generated by A and B. Since P € AN U AU, we have P € A N U AU = M’ and
P is in the center of M. But M is a factor, so P must be 0 or /. This is a contradiction.
Therefore there is no strongly a.a.-thin factor of type II;. m

All non prime factors of type II; are strongly I'-thin. Suppose M = M;®M, is a non
prime factor, where M, and M, are factors of type II;, and R; is an irreducible hyperfinite
subfactor in M; fori = 1, 2 (See [SMO08], Theorem 13.2.3). Then from M;®R, NR®M; =
Ri®R, and (R®R,) N M;®@M, = CI, by [GeP0o98] Proposition 2.2, we get that M is

strongly I'-thin. For convenience, we quote the proposition as follows:

Proposition 19 (See [GeP098],Proposition 2.2) Assume that Ny and N, are subfactors
of a type 11, factor M such that spNoN1 = Mand (NgNN1) "M = C. Then spNoéEN =
L*(M, 1), for any non zero & in L*(M, 7). Equivalently, NoV JN1J = B(L*(M, 1)), or also,
NN (M, Ny =CL

In [GePo98], S. Popa and L. Ge formed a strongly thin factor by using symmetric
enveloping type II; factor. Now we shall use a similar process to form a strongly I'-thin
factor.

Let @ C P be an inclusion of factors of type II; with Jones index [P : Q] < oo. Let
T be the trace on M. Assume that the inclusion @ C P is extremal, i.e. [PPP,QP] =
7(P)?[P : Q] for any projection P € @ NP. Let eq denote the Jones’s projection for Q € P
and P ®,, P°7 be the symmetric enveloping type II; factor associated with Q C P (See

[GeP098, Po99] for more details). We describe P B,, P°7 as follows.
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If Sg = C*(P, eq, JPJ) is the C* algebra generated by P, eq and JPJ on L*(P, 1), then
Sy has a unique positive normalized trace, denoted by 7 once again. Sy can be generated
by its * algebra |J,(JPNHP(JPJ), where {P,},»1 is the Jones tower for @ C P in the
representation on L*(P, 7) given by some choice of the tunnel P > Q> Q; O -+ -, i.e. P,
is, by definition, equal to (JQ,-1J)’, n > 1. One then defines P ®,, $°? to be the type II;
factor {m:(Sp)}’(= S), where 7, is the GNS representation for (Syp, 7). We identify P, P,
and eg with their images via 7, and denote by °? the anti-automorphism, implemented
by X > JX*J on L*(®P,7). Then P NS = P°?, (P?Y NS = P and more generally
PnS=QF,@Q%)YNS = P, Moreover, denote RY = (U,(Q, N Pn))”, the weak-
operator closure of |,(@,NP,,) form =0, 1,2, ... where Py = P and R} = R¥, and denote
P = (U, Pn)"(C S). Then we have (R*)?? C P, P = spR7Q, and spP,(R")? C P,
for each n. So we have |, sp(PPP,PF) C spPPP,. Thus, S = spP°PP,.. If Q has
property I' and [P : Q] < oo, P has property I' by [PoPi], and P, has property I' from
the definition of property I' von Neumann algebra, then P ®,, $°7 is I'-thin. Finally, by
[GePo098], Proposition 2.2 and [Po99], one obtains that P ®,, $°7 is strongly I'-thin.

2.3 Weakly I'-Thin

Let N C M be an irreducible inclusion of type II; factors. Denote by
GNMN) = {X € MAXy, ..., X, € Msuchthat XN € »° NX;and NX € Y XiN)}.
i=1 i=1
We call gNp(N) the quasi-normalizer of A in M. A is said to be quasi-regular in M, if
gNMNY" =M.
Now we state a proposition from [GePo98] to show an example of a weakly a.I'-thin

factor.

Proposition 20 (See [GeP098]) Assume that N € M is an irreducible inclusion of type
11, factors with N quasi-regular in M. Then there are an abelian subalgebra A in N and
a vector & in L* (M, T) such that sSpAEN = L2 (M, 7).
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Corollary 21 Let N be given as in Proposition 20. Assume that N has propertyl” or T

etc. Then M is weakly a.I'-thin or weakly a.T-thin etc.

In [P099], S. Popa showed that if N' € M is an extremal inclusion of type II; factors,
then M v M is quasi-regular in symmetric enveloping type II; factor M ®,,, M°P. This

is to say M ®,,, M°P is weakly a.I'-thin if A has property I.

2.4 Singly Generated

In [GeP098], L. Ge and S. Popa pointed out that many factors of type II; are singly gen-
erated such as property I' factors, strongly thin factors, non prime factors, and n-weakly
thin factors etc. With new definitions given in the chapter, we could add some more singly

generated factors as follows:

Theorem 22 Suppose M is a factor of type II, satisfying one of the following properties:
a) M has a quasi-regular subalgebra B C M with property I with B " M C B;

b) Mis strongly I'-thin.

Then M is singly generated.

Proof. a) If B is quasi-regular in M then PBP is quasi-regular in PMP for any projection
P € B. Also, (PBPY N PMP < PBP. PMP is aI weakly thin by Corollary 21, in
particular it is generated by 5 self-adjoint elements. Taking P of trace %, it follows that M
can be generated by two self-adjoint elements by [GePo98], Lemma 6.3.

b) By Lemma 15, if M is strongly I'-thin then PMP is strongly I'-thin for any non zero
projection P € M and then [GeP0o98] Lemma 6.3 applies. ®

2.5 Cohomology

In [GeP098], S. Popa and L. Ge claimed that if a type II; factor M is n-weakly a.h.-thin
for some n € N, then H*(M, M) = 0. Here we fill the details of the proof.
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Let A be a C* algebra acting on a Hilbert space H and V a two-sided U-bimodule A
or B(H). For any n > 1, A" will denote the n-fold Cartesian product of copies of A. The
space of bounded n-linear maps ¢ : A" — V will be denoted by L*(U, V). Forn = 0,
we let £° be V. The coboundary map 8 : LU, V) — LYW, V) is defined as follows.
For n = 0, 0V is the derivation X > XV - VX, X € A. Whenn > 1 and ¢ € LU, V),
¢ € LU, V) is defined by

6¢(X1’ v Xny1) = X1¢(X29 e X)

n—1
+ D DB Kt XKt Kor - Xo)

=1

+(_1)n¢(X1’ R Xn)Xn+1
for X, € W, 1 < i < n+ 1. Itis known that 3 = 0. Thus the image of 8 : LU, V)
LU, V), denoted by Imd, is contained in the kernel of 4 : L*(U, V) — LWL V),

denoted by Kerd. Then the n-th Hochschild cohomology group H*(%, V) is the quotient
of the two vector spaces, i.e. H"(W, V) = Kerd/Imo.

Theorem 23 (See also [CPSS97]) Suppose M < B(H) is a factor of type II;, A is a
subalgebra of M. B is a fixed abelian C* subalgebra of M'. Let ¢ : M+ B’ be a bounded
A-bimodule map. Then ¢ has a norm preserving extension to C*(A, B)-bimodule map

Y :C'M,B)— C(F, B).

Proof. Since M is a factor, the multiplication map m ® m’ — mm’ on the algebraic tensor

product M ® M’ is a monomorphism. This allows us to define a C* norm on M © M’ by

1D me@mlly =1 ) mml.
1 1

Denote by M ®; M’ the completion of M © M’ with respect to norm || - ||;. There is a
unique C* norm on the tensor product of two C* algebras whenever one is abelian and so
the restriction of || - [I; to M ®; B must equal to the spatial C* norm || - ||;,q. Therefore the
multiplication map p : MOB — C*"(M, B) given by p(m®b) = mb extends to an isometric
isomorphism between M ®,,,, B and C"(M, B).
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Let Q be the maximal ideal space of 8. Then B and C(QQ) are isomorphic, and we
regard an element b € B as a continuous function b(w) on Q. Then, for any C* algebra
D, D ®nin B may be identified with the algebra of P-valued continuous functions on €.

Replacing D by M and B’, we obtain

1D 60m) @ billwn = supll ), plmi)bi]

weld
= ,-biw < su ,‘b,‘
3‘28"¢(Zm @)l n¢||m€g||§i]m I

= 16l D 71 ® il
i

for m; € M, b; € B. Thus there is a bounded map ¢ & I : M@, B — B’ @, B defined on

elementary tensors by
@ ND(Mb)=¢p(m)®b, meMbeB,

and [|¢ ® I|l < |l¢]l. Since B is an abelian C* subalgebra, we can define an isometric,

7: B ®B s C(B,B), by n(l/ ®b) = b'b. Then we obtain
C' M, B) L M®,; BE5 B @,y B> B

Define ¢ = p™! o (¢ ® I) o 7. Then ¥(m) = ¢(m) for all m € M and Y (mb) = n(¢(m) ® b) =
¢(m)b = Yy(m)b for all m € M and b € B. Furthermore, for ay,a, € A, b, by, b, € B, and
me M,

Y(a1by(mb)ayby) = Y(aymaybibb,) = ¢(aimay)b1bb,
a1¢(m)ab1bb, = ab1¢(m)ba,b,

a1by(mb)ayb,.
Thus ¢ is a C*(A, B)-bimodule map. =

Theorem 24 (See [SiSm98]) Suppose & € B(H) is a C* algebra, A C & is C* subalgebra
with cyclic vector &, and A-module map ¢ : & — B(H) is bounded. Then ¢ is completely
bounded and ||¢||., = |1
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Proof. Without loss of generality, we assume that ||¢|| = 1 and assume that for some

n € N, the norm of ¢, : M, (E) — M,(B(H)) exceeds one. Then there exists an element

&1 Ut
(E,)) € M,(E) of unit norm such that ||¢(E,)|| > 1. Then vectors | : |, | : | maybe
&n T
&1 m
chosen from the unit ball of H & - - - @ H such that (¢(E,,) , ) > 1. Since A
&n T
has cyclic vector, we may choose elements a,, b, € A such that ||la& - &l and [|b€ — 1.l
aé b a§ bi&
are so small that || : [ILIl] : |l <landK¢(E,)| : || : PI> 1. Weshall

assume temporarily that a = X}, aa, and b = },, b’b, are invertible elements, and remove
this restriction at the end of the proof.
Letij = a'/?¢,& = b'2¢, ¢, = a,a™V? and d, = b,b™V/?. Then c¢,i} = a& and d€ = b& and
KX, ¢(c: E,,d,)¢, )| > 1 by using the module properties of ¢. Now, ||E||> = (b'/%¢, b'/?¢) =
bié

lf : {Nl<1land2, c E,d, may be expressed as

b

dy
(i) (E)
dy

which has norm at most one. It follows that ||¢|| > 1 and the desired contradiction is
reached.

A modification is necessary if either 3, a’a, or 2, b’ b, fails to be invertible. We replace

aé bi¢
a& bi¢ . .
(E,;) € My(E) by (E,)®0 € M,,1(E) and vectors | : |[,| : |by ,
an b.&
ak 3
24 €&
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respectively for some sufficiently small € > 0. Note that the new vector will still have

norms less than 1. The argument above can be applied again to complete the proof. m

Corollary 25 Suppose M is an n-weakly a.h.-thin factor of type II, with the trace T and
E_p-ﬂl {§17 e §n}ﬂ2 = Lz(M9 T),

where &,,...,&, € LA (M, 1), A, is an abelian von Neumann subalgebra of M and R, is
a hyperfinite von Neumann subalgebras= of M. Let J be the canonical conjugation of
M on L*(M, 1) and B = JA,J. Then every bounded R,-bimodule map ¢ : M+ B’ is
completely bounded.

Proof. Let D = B ® CI, where I, is the identity of M,(C). Then ¢, : M ® M,(C)

B ® M,(C) = D is a R, ® M,(C)-bimodule map. By Theorem 23, there is a bounded

C'(Ry ® M,(C), D)-bimodule map ¥ : C"(M® M,(C), D) —» C(D', D) and ||¥]| = |l¢.ll.
&

Since SpA{EL, .. ., &Ry = L2(M, T), C*(R; ® M,(C), D) has a cyclic vector| : |. By

&En

Theorem 24, ¥ is completely bounded, therefore ¢, is completely bounded and hence ¢ is

completely bounded. m

Theorem 26 Suppose M is an n-weakly a.h.-thin factor of type I, and sp Ay, . .., &R =
LAM, 7Y with &y, ..., &, € L*(M, 7). Then HX (M, M) = 0.

Proof. Suppose 6 : M X M — M is a 2-cocycle on M, i.e. 30 = 0. We shall construct
a bounded map o : M — M such that 6 = Ja, showing that all such 2-cocycles are
coboundaries. We may restrict attention to 2-cocycles which are R-multimodular. Let J
be the canonical conjugation of M and 8 = JAJ. By [KR71], there is a bounded map
¢ : M > B such that 6 = d¢. By Corollary 25, ¢ is completely bounded, and since 6 is a
completely bounded 2-cocycle, there exists a completely bounded map @ : M +— M such
that @ = 0a. m

We would like to point out that H*(M, M) = 0 holds for n-weakly a.h.-thin factor, M
(More details see [CPSS97]).
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CHAPTER 3

FREE ENTROPY

Free entropy was introduced by Voiculescu[Vo94] in the free probability theory in 1994.
Due to its discovery, several longstanding problems in finite von Neumann algebras were
answered. The free entropy is also a powerful tool for studying factors of type II;. The
purpose of this chapter is to borrow the idea of the free entropy to propose that there are

factors of type II; which are not weakly I'-thin, strongly I'-thin, or I'-thin etc.

3.1 Basic Notation

In this section, we shall recall some basic notations in the free probability theory.

Let (U, ¢) be a C* algebra with a state ¢. This pair (2, ¢) is a so-called C* probability
space. A family {2,},c; of unital (*-)subalgebras of U is called (*-)free if ¢(a1a,---a,) =0
whenevera, € U, I} # L, # -+ ,# I, and ¢(a;) = 0, Vj. A family {S,},c; of subsets of
(U, @) is free if the family {2} of (*-)subalgebra is (*-)free, where ¥, is the (*-) algebra
generated by §,.

Let C(X,|i € I) be the noncommutative polynomial ring with an identity 1 and (%, ¢)
be as above. If (A,),; is a family of elements in U, then the joint distribution of (A,).;
isu : &Xli € I) » C given by u(P) = ¢(h(P)), where h : C(X,li € I) — is an
algebraic unital homomorphism with A(X,) = A,,Vi € I, P € C(X)|i € I). In particular,
when the cardinality of index set [ is 1, the distribution of A in Y is 1 : C(X) — C given by
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H(P) = ¢(P(A)), for any P € C(X).
As is well known, the Gaussian law plays a key role in the probability theory. In the free
probability theory, the Gaussian law is replaced by the semicircle law. It can be described

as the distribution v, , : C(X) — C given by
2 a+r
Ya,r(tk) = f FAr? - (t— a)zdt.
r a=r

A self-adjoint element A € U having semicircle law is called semicircular element. A
unitary element U in U is Haar unitary if ¢(U*) = 0,k € Z, k # 0.

In order to discuss our work in chapter 4 better, here we would like to recall some
concepts such as limit distribution, asymptotically free, and von Neumann algebra free
product.

For each n € N, let (Tl(”)),el be a family of noncommutative random variables in C*
algebra U, with a state ¢,. Then the sequence of joint distributions u, of (T’ l(")),el converges

as n — oo if there exists a distribution g such that
HUn(P) > u(P);n — o0

for every P € C(X,|i € I). We call u the limit distribution of the sequence and write i, — p.

Now, let I = U, be a partition of I. A sequence of families ({Tl(")li € I,}) ey of sets
of noncommutative random variables is said to be asymptotically free as n — oo if it has
a limit distribution u# and if {X,|i € I,},c; is a free family of sets of random variables in
(&Xli € D), p).

Suppose M;, M, are finite von Neumann algebras with faithful normal tracial states
71, T, acting on the Hilbert spaces L*(M,, T,) respectively . Let H, = L*(M,, 7,) and let &,
be a distinguished unit vector [ in 7, corresponding to the identity 7 in M, fori = 1, 2.
Then their Hilbert space free product (H, 1)(H, &) * (Ha, &) is given by

H=cle P P H, o 0H,)

n=l y#n #,

where H, = H, © C¢,, is the orthocomplement of C¢, in H,, fori = 1, 2.
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Denote

Ho=Clo (D H,o oH,)
n>1 i1¢f’2;i¢"n

and define unitary operator V; : H; @ H(i) — H, for i = 1, 2, as follows:
E®@1T B> 1,
Hol = H,,
§l®(%1®®7-{ln) = 7-{11®®7‘{1na
H®(H, 0 - 0H,) > HoH, o - oH,

Let 4; be the representation of M; on H given by
Ai(A) = Vi(A® Inp)V;,
whenever A € M, for i = 1, 2. Then the von Neumann algebra free product M; * M, is
{4(A1), 12(Ay) t A e M;,i = 1,2} € B(H)

whose trace T = 7 * T, given by 7(A) = (A1, 1), VA € M; * M,.

At the end of this section, we will state some lemmas which will be used to prove
one of my work in the following section (Theorem 30). We omit its proofs and refer to
[Ge97, Ge98] for complete analysis. To state lemmas, we need some more notations.

Let C(Xy, ..., X, X, . .., X}) be the noncommutative polynomial ring with involution *
satisfying (X, - -~ X; )" = X;fg e X;‘.l. In the chapter, we will use C(Xj, ..., X;) to denote the
x-ring C(Xy, ..., X;, X7, .. ., X]) and write ¢(X;, . . ., X;) instead of ¢(Xj, ..., X, X7, .-, X])
for ¢ € C(Xy,...,X,). Let M;(C) be the k X & full matrix algebra with entries in C, and 7,
be the normalized trace on M (C); i.e. 7 = %Trk, where T'r; is the usual trace on M (C).
Let U(k) denote the group of all unitary matrices in M;(C). Let M(C)" be the direct sum
of n copies of M;(C) and let (M) be the closed ball of the kX k matrix algebra M;(C) with
radius R under its operator norm and M;? the set of all self-adjoint k X k matrices. Let || - [,

denote the trace norm induced by 7, on M, (C)", i.e.,
1AL A3 = Ti(ATAL) + -+ + TALA,)
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for all (Ay,...,A,) in M (C)". Finally, let || - || denote the euclidean norm on M, (C)", i.e.,
(A1 -, Al = TriATAY) + - -+ + Tri(AA,)
for ail (Ay,...,A,) in M(C)".
Lemma 27 Define the mapping
D (WL, W, ..., W)= (0(Wh,. .., W), 0, (W, ., W)

Sfrom ((My)1) into M (C), where @1, ..., ¢, € C(Xq, ..., X;). Then there is a constant D(®)
(independent of k) such that

”(I)(Wl’ e Wt) - (D(W{’ R ] th)“e < D((I))”(Wl’ ey Wt) - (W{’ sees Wt,)”e

forany (Wi, ..., W) and (Wi, ..., W)) in (My),)". Note that the constant D(®) may depend
t

on t. All the above is true when || - ||, is replaced by || - ||;.

Lemma 28 For every 6 > 0, there is an 0 < € < 6, such that for every finite factor M with

trace T, if A is an element in the unit ball of M such that
IA’A—AA", <€, |I-AA"|p<e€
then there is a unitary U in M such that ||A — U||; < 6.

Lemma 29 Let B(r) be a ball of radius r in R*. For any 6 in (0, r), if {B(0)}ses is a 0-net

for B(r) with the minimal cardinality, then
r 3r
=Y <8l < (=)

where [S| is the cardinality of S. Similar upper bound holds for any convex bodies euclidean

spaces where the radius r is replaced by the diameter of the convex body.
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3.2 Free Orbit-Dimension

In [HadSh], Shen and Hadwin introduced the concept of a free orbit-dimension. It simpli-
fied the computation of Voiculescu’s free entropy dimension. In this section, we shall dis-
cuss, briefly, the concepts of free entropy, free entropy dimension and free orbit-dimension.

For every w > 0, the w-orbit-ball U(By, ..., B,;w) centered at (By, ..., B,) in M(C)"
is the subset of M;(C)" consisting of all (Ay, ..., A,) in M;(C)" such that there exists some

unitary matrix W in U(k) satisfying
(A, ..., A) — (WBW™, ..., WB,W)|l, < w.

For every R > 0, (M (C)")g is the subset of M (C)" consisting of all these (Ay,...,A,)
in M(C)" such that max<j<, [l4,l < R. Note that (M(C)")r = (M)r)".
Let M be a von Neumann algebra with a faithful normal tracial state 7, and Xj, ..., X,
be self-adjoint elements in M. For any positive Rand €, and any m, kin N, letI'x(X, ..., X,; m, k, €)
be the subset of (M;*)" consisting of all (Ay, ..., A,) in (M;?)" such that (A4, ..., A,) is con-
tained in (M (C)")g, and

[Ti(As - Ay) — T(X, - X ) < €,

forall 1 <iy,...,i; < n,and all g with 1 < g < m. Let A be Lebesgue measure on (M;*)"
corresponding to the euclidean norm || - ..

Now we define, successively,

Xr(X1s ..., Xpsm, k, €)

10g A(FR(Xla seey Xna m, k, 6)),

Xr(X1,..., X,;m, €) lim sup(k_z/\(R(Xl, s Xyymk€) + g log k),

k—co

XR(XI’-”an) = inf{XR(Xl,...,Xn;m,E) tmeN, e> 0},

X(Xl»' . -,Xn) = SngR(Xl,. ’Xn)
R>

We call (X, ..., X,) the free entropy of (Xy, ..., X},).
For technical reasons, Voiculescu introduced a "modified” free entropy in [Vo96]. Let

Xis--- X, Y15, Ypon 2 1, p 2 O be self-adjoint random variables in a finite von Neumann
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algebra M with a faithful normal tracial state 7, and I'p(X3,..., X, : Y1,...,Y,;m, k, €) be
the image of the projection of I'x(X, ..., X;, Y1, ..., Y,; m, k, €) onto the first n components,
in another words, (A1, ...,A,) isinr(Xy,..., X, : Y1,..., Y,;m, k, €) if there are elements
Bi,...,B,in M}® such that (A,,...,A,, By, ..., By)isinp(Xy, .. .. X0, Yo .0, Yy mu ks €).

We can define similarly,

XR(le--’Xn . Yl,...,Yp;m,k,E)
= logAQr(Xy,.... X : Y1,..., Ypym, k, €)),
XR(X17'--’Xn : Yl,...,Yp;m,e)

= limsup(K 2y r(X1, .- X 2 Y1, ..., Yy k €) + g log k),

k—o0

XR(Xl,--an:Yla---,Yp)
= inf{yg(X1,..., Xp: Y1,...,Y,;m€) :m e N, e > 0},
X(Xl,...,Xn:YI,...,YP)

= sup(Xp,.-., Xp 1 Yi,..0, Y)p)
R>0

We call x(Xi,...,X, : Y1,...,Y,) the modified free entropy of X, ..., X, in presence of
Yi,..., Y.

Although the free entropy is defined for self-adjoint elements, for modified free entropy
xXi,..., X, 1 Y1,...,Y,), we need not assume that Y3, ..., Y, are self-adjoint elements.
Instead we may write x(X1,-... X, : Y1,....Y,) as x(Xi,---. Xy : Ays-- - Ap. Bis. -5 Bp)
where A; = Y; + Y} and B; = —i(Y; — Y?) for each j.

The (modified) free entropy dimension 6(Xj,..., X, : ¥3,..., Y,) 1s defined by

6(Xis.o s Xp 1 Y1500, 1)
_ n+limsupX(X1 +€S- . Xy +€8, 58S YL 0 YY)

€0 |log €]

where {S,...,S,}is a semicircular family and {X1, ..., Xy, Y1, .-, Y} and {Sy, ..., S, } are

free.
For w > 0, the w-orbit covering number v(I'x(X1, ..., X,; m, k, €), w) is the minimal
number of w-orbit-balls that cover I'x(Xj, . .., X,;; m, k, €) with the centers of these w-orbit-

balls in (Mk(C)n)R
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Now we define

log(V(FR(Xla sy Xn; m, k7 6)9 (1)))

]fXq,..., X 0,R) = melﬁl%&() hrkri il)lp K logw
KXy, ..., Xpyw) = supK(Xy,..., Xy w,R),
R>0
81Xy, ..., X,) = limsup KX, ..., X, w),
w—0
RZ(X]?"”XH) = sup R(Xl,...,Xn;(J)),
O<w<1

where 8(Xy,...,X,) is the free orbit-dimension of Xi,..., X, and R,(X,,..., X,) is the
upper free orbit-dimension of Xi, ..., X,,.
The relation between free entropy dimension and free orbit dimension was derived in

[HadSh] as:
6(X1,...,Xn) < RI(Xl,...,Xn)'f' 1 SRz(Xl,...,Xn)‘i' 1.

Suppose M is a finitely generated von Neumann algebra with a faithful normal tracial

state 7. Then the free orbit-dimension & (M) of M is

KIM) = sup{& (X1, ..., X,) : Xy, ..., X, generate M},
while the upper free orbit-dimension K,(M) of M is defined as

Ko(M) = sup{Ka(Xy, ..., Xp) : X1» -+ ., X, generate M}.

If M is a von Neumann algebra with a faithful normal tracial state 7 and &,(M) = 0,
then K;(M @ M,(C)) = 0.
In [HadSh], Hadwin and Shen showed that the class of finite von Neumann algebra M

with upper free orbit dimension K&,(M) = 0 is closed under the following three operations:
(1) Suppose K;(N1) = 9(N;) = 0 and N7 N N, is diffused. Then K;({N; U N>}’ = 0.

(2) Suppose M = {N, U}”, where N is a von Neumann subalgebra of M with K;(N) =
0 and U is a unitary element in M satisfying, for a sequence {V,} of Haar unitary
elements in N, disty,(UV,U*, N) = 0. Then K,(M) = 0.
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(3) Suppose {N,}7, is an ascending sequence of von Neumann subalgebras of M such

that R(N,) = O forall i > 1, and M = UN, . Then Ky(M) = 0.

Many factors of type II;, such as property I' factors, have upper free orbit dimension zero.

3.3 The Estimate of Free Entropies

One of my main results in this thesis is to estimate the free entropy of any generating subset

of m-weakly I'-thin factor. More precisely,

Theorem 30 Let (M, 1) be a von Neumann algebra with a faithful normal tracial state
7, X1, - . -, X, self-adjoint elements in M such that Xy, ..., X, generate M as a von Neu-
mann algebra. Suppose there are subfactors N1, Ny C M with property T', operators
Yi,...., Y, in M such that the trace-norm distance from each X, to the linear span of
(WY W' : W e UND, W € UN,),i = 1,...,q} is less than w(< 1). Let a be the

constant maxi<<{lX,|l2 + 1}. Then we have that
xXXp,.... X)) < Cn,ga)y+(n—2g—2—-w)logw,
where C(n, g, a) is a constant depending on n, q and a.

Proof. From our assumptions in the theorem, there are unitary operators Uy, ..., U, in
N1, Vis..., Vy in N, and constants A(j, 5, G s;l) where s, € {1,..., p}, s;l ef{l,...,p},

gp€{l,....q}i=1,...,i for some integer i, dependent on j, j = 1, ..., n, such that

L
”Xj - Z /1(.]9 S G s S;I)Usﬁ Yqﬁ Vs-’ﬂ”2 <w
=1

Let

()DJ(UI""’Up7 Vl""’Vp” Yl""’Yq)

2]
- Z AGy Sy @y SOU Y Vs j=1...,n

=1

!
Jt
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Here ¢; will be viewed as a noncommutative polynomial with variables in Uy,..., U,
Vieeors Vi
Suppose @ : (Uk))P*? — (M,)" is the mapping given by

(Wb Tees Wp+p’) = (‘)DI(Wb LR Wp+p’)v cees Son(Wl, R Wp+p’))7
for each (Wy,..., W, ) in (U(k))P*" . There is a positive constant D such that

ID(Wi ..., W) = OWS, ., Wi )l

< D”(Wls seey Wp+p’) - (W{’ ey WI,H‘P’)”e

for (Wi, ..., Wpap) and (Wi,..., W, ) in (U(K)P*?". Here (U(K))*7" is naturally imbed-
ded in (Mp)P*"'.

Since D is a constant and p, p’ are given, there is a n; in N such that (D /p + p’)®*?/m0 <
2. We may assume that ng > L:;L In Lemma 28, take § = #m. Then thereis € < §
such that if the condition in Lemma 28 is satisfied, the results will follow. Since Nj, N,
have property I' [Dix69], there are mutually orthogonal family of projections {P,};°, with

equal trace T(P;) = % in NVq and {P}}}?, with equal trace T(Plf)n—l0 in N, such that

no
El _
M;P,-UtPi— Ulb< t=1....p

and

no
€
”ZPII’V’P;_Vt”2<'Zl t=1,...,p.
i=1

In the following, we shall estimate
X(Xl" . ',Xn : Ul’ cees Up’ Vl, cees fo, Yl,. Ces Yq, {Pi}:gl’ {P:}:l:l .
We begin by describing elements in

FR(XI""?Xm UI"' ) Up9 V17---7 Vp’a Yl""a an {Pi}?gl’ {P:}:lgl,m,k,f)

for some large R in R, large m, k in N and small €. To simplify our estimates, we assume

that % is an integer. By a standard argument, one obtains that there are a positive € and
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my, ko in N such that, if 0 < € < &, m > my, k > ko and
A1,....A,,...)

GFR(XI,...,X,” U],...,Vl,...,Vpr,Up,Tl,.. {P}l 1,{P’}l 1 m k, 6)

then there exists a mutually orthogonal family of projections {Q,}"?, with equal trace (cor-
responding to {P,}:’gl), { Q:}:’ with equal trace (corresponding to {P’} 1), unitary elements
Gy, ..., G, (corresponding to Uy, ..., U,), unitary elements Hy, ..., H,(corresponding to

Vi,..., Vy), and elements T1, ... T, (corresponding to Yi,. . ., ¥,) such that

1A, ~¢,Grs - s G Hys oo Hy Ty, T <@, j=1,...,n

no
€
MEQ,G,Q,—G,HZ <g 1=Llop

||ZQHtQ Hlp <3 1=1l..p.

For each large k (with assumption that 1s an integer), decompose M; into a tensor
product M,,,® M £ andlet{E, : s,t=1,..., no} be a given matrix unit system for M,,,® Cl.
Then there are unitary matrices W and W’ in U(k) such that WQ,W™ = E,, and W Q'W
E,fori=1,...,ny. Thus for each WG,W", let D, = ¥"°, E,ZWG,W'E,,t = 1,..., p and
D, = E.WGW'E,,i=1,...,ny. we thus have

ID;D, ~ D.D}Ib < €. |1~ DD}l <&, t=1,....p

and

||D;Dtl DnD ”2 < €, ”I thD ”2 < €1, i= 1’ ---5sHg

and therefore there are £ x £ unlt matrices G(l) ...,G("O) in M« such that
ng ary ! ngy

IGY — DI, <

D‘(})ﬁ,tz 1,...,p,i: 1,._.,’10
D~ Gl € ——=,1=1,...p
D+/p
X 2w
WGW -Gl £ ——=, t=1,...,p,

D+\p’
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where G, = 3 E; ® G). Similarly, for W H,W", we obtain < x £ unitary matrices
HY, ..., H™ such that

2w

D\p’

\WHW"* - H|, < t=1,...,p,

where H, = . ° E; ® H,(i).

We also know that there is a o-net (U]),esy in U(k) with respect to the uniform norm
such that [S(k)| < (C/ 0')"2 for each k in N, where C is a universal constant. We choose o to
be w/2a. Hence there is a U}, U/, in U(k) such that |[W - Ul < o, [WW* - ULl < 0o. It
follows that

|U/A;UF — WA Wl € w

and

NWUAU — o (WG W, ..., WG,W",
WHW, . . WH,W  WTLW*,.. . WT,W)WW|, < 2w

for j=1,...,n. Since

lp (WGW*,..., WG, W', WH,W",...,WH,W"

WIW™, .., WT, W)l < llAjll: + w < a
we have

IUA; U — o (WG\W*, ..., WG,W",
WHW”, ... . WH,W WTLiW"*,...,WT,W"U.|, < 3w

forj=1,...,n

We also know that there is a -net (Wy)sern/n,) With respect to the Euclidean metric
such that [T(k/no)| < (C Vk/no/6)¥ /", where C is a universal constant and 8 is an arbitrary
constant in (0, \/ITno].

Thus there are W, ..., Wi,or Sto -5 Sprp € T(k/ny) and W;,l,...,W;;MO, Spreees s;,no €
T(k/ng) such that

”Wsj _ G(i mod no)”e <0, j=1,...,pn

[21+1
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W, —H, "l <6, j=1....p'n

[£141

for j=1,...,pand WO = 3" E, @ W, for j

(- Dng+

Let WO = 3™ E, @ W,

(= Dng+t

1,...,p.
Let B,(s, ', ) be o, (WD, .. WO, WD W WTW*,...,WT,W"U. for j

1,...,n. Now, we have

IUA,U; = By(s, 8", 7).
< UAUS -, (WGW*,...,WG,W , WHW",...,WH,W",
WTW™,...,WT,W")U.|. +
e (WGLW*, ..., WG, W'\ WHW",...,WH, W WT'W*,...,WT,W") -
9 (Gls-. G Hy, oo Hy, WIW L W, W), +
+le, (G, ..., Hy, oo Hy, WEW™, L, WT, W)

—p (WO, . WO WD W W W, WT,W ),
1/20)

DNp T

< 3k12w+DA+p+p + DA+/p+ p'é.

kl/Zw
Let € be Dy Then

(U/A,U" = B,(s, 5", ©)lle < 6w Vk,
Define a linear mapping ¢ : (M)? s (M;*)" as follows:

P(S1,---58,)
]. ’ ’ ’
= (Eth(W(l),...,W(P),W(l),...,WQ’),Sl,...,Sq)Ur,

1 4 ! ’
+SUPg WD, W, W(l),...,W(P),Sl,...,Sq)) :
=1 .n

Let 7 be the range of ¢ in (M;?)". It is easy to see that 7~ is a real linear subspace of (M;*)"
whose real dimension is not greater than 2gk®. By adjoining linearly independent elements
of (M;*)", if necessary, we may assume that the real dimension of 7 is precisely 2gk?. Let

7 be the orthogonal complement of 7~ in (M;?)". Then 7 has real dimension (n — 2q)k>.
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Now let B(s, s, ) be the ball of radius (nk)!?a in 7 and B'(s, s’, ') be the ball of

radius 6(nk)/?w in 7~ with respect to Euclidean norms. The volumes of the two balls are
1
24T + §2qk2)_1(nka2)%zqk2

and

1
A22RT(] 4 S - 29)K?) ! (36nkw?)3 020K

Let (By,...,B,) in 7 be the image of (U/A\U”, ..., U'A,U") under the orthogonal

projection from (M;*)" onto 7. Since
ITAU; . ... U AU < (nk) 2 (a— 1),
we have ||(By, ..., B)ll. < (nk)'?(a— 1) and (By, ..., B,) € B'(s, s’, ). Since
(Bi(s, 8", 7)., By(s, 5, 7)) €T

and
ULALUL, .. UAUS) = (Bi(s, 857, -, Bu(ss 8/ )l < 6(nk) 0,
we know that (UjAlU;*, . U;A,,U;*) — (By,..., B,) is both orthogonal to 7 and lies in
B’(s, s’, r"). Thus
(UAU,...,UAU) eB(s, 5, r)OB (s, 5, 7).

We have proved that, if m > myg, k > ko and 0 < € < &y, then

I'p(Xis-- .5 X1 ... ;mk, €) C
U U @mse s e s

5 spnoeT(k/no) rr' eSk)
s’l x}moe'][‘(k/no)
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where (U))® is (U’, ..., U?). Thus

ATr(Xy,.... X, :...;mk, €)

< Tk/no) TSP AB(s, ', ')A (s, 5, 7))

< (CVRBRT (Clo Rt + %quz)'ll"(l + —%(n — 2k
(n k)zlnkz 2% (6 w)(n—Zq)kz

= (CNPEDERE IO 4 L2gRy T+ (0 - 20K

. (Ylk) —é—nk2 a2qk2 (6(4‘))(n—2q)k2

As before, D is a constant and it follows that (D /p + p)@*?Vm < 2 py > %"— and the

fact that I'(1 + x) > x"e™* (Stirling’s formula), we have

AT (X, . Xt s muk, €))
< (g)k2w2k2(2ic_)2k2n.%nkz(12qk2)—%2qk2
w w 2
(%(}’l _ 2q)k2)—%(n—2q)kze%nk2(nk)%nk2a2qk2(6w)(n—2q)k2.

Hence

XXisoo 0 X)) =x X5 Xt 20)
< limsup(k?log ACr(X1, .. » X, .. osm k €) + g log k)

k—o0

2 1 1
= limsup(w log ¢, log2 + 2logic — glog gk* — =(n— 2g) log = (n — 2q)k*
w w 2 82

k—o0

1 1
+—2-n + Enlog nk + 2qloga+ (n — 2q)log 6w + g logk)

-2 -2
< log2C +2log2aC — qlogq - I 5 qlogn 3 q+g+
+glogn+2qloga+(n—2q)log6+(n—2q—2—a))logw

= Cn,g,a)+(n—29-2-w)logw.

Corollary 31 The free group factor Lr, when n > 2q + 2 is not g-weakly I'-thin.
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In Theorem 30, the subfactors with property I' in M can be replaced by subfactors
having Cartan subalgebras. In [HadSh], D. Hadwin and J. Shen prove a more general case

by using the idea of free orbit-dimension. We state the theorem below:

Theorem 32 (See [HadSh]) Suppose M is a type II; factor with the trace T and there
exist von Neumann subalgebras N1 and N, of M with 8,(N1) = K,(N,) = 0 and vectors
&1 & in LXOM, T) such that

P PNVEL - END = LM, T)

Then &1 (M) < 1+ 2n and 6(M) < 2 + 2n. Thus M is not *-isomorphic to Ly, for

m>2+2n.

In the theorem above, when &, = X, and X, is self-adjoint in M, we have that (M) <
1 + n and 6(M) < 2 + n from the proof of the theorem above, where M is given as in
the theorem. Therefore the free group factor Ly, , for m > 3, is not I'-thin, all free group
factors are not strongly I'-thin, .L# for m > 4 is not 1-weakly I'-thin.

In [HadSh], they also applied the theorem above to the case when a factor of type II;
contains a subfactor with a finite index and the subfactor has upper free orbit-dimension
zero. Suppose N € M is an inclusion of factors of type II; and [M : N] = r < oo. If
K(N) =0, then &1(M) < 2[r] + 3 and (M) < 2[r] + 4, where [r] is the integer part of r.
The result is rough in some sense, as you can see that the estimation depends on index r.

Actually, we can improve the result as follows.

Corollary 33 Suppose N C M is an inclusion of factors of type II, and [M : N] = r < oo.
If &(N) =0, then 5(M) < 3.

Proof. By [Po86], there exists a MASA A in M that is also a MASA in (M, N); i.e.
A NMN) = A Consequently AV JNJ = A and M = spAN. Thus, we have

6(M) < 3 in view of the theorem above. ®
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CHAPTER 4

CONNES’S EMBEDDING PROBLEM

In Quantum Physics, observed quantities are described by operators while researchers use
large matrices to replace operators for the sake of convenience of computation. In general,
this method is not correct in mathematics, but it is reasonable to ask when operators can
be approximated by matrices. Similarly, for von Neumann algebras, researchers could
ask whether any separable factor of type II; can be asymptotically embedded into matrix
algebras. In the language of ultrapower of von Neumann algebras, this problem can be
rephrased as whether any separable factor of type II; can be embedded into the ultrapower
R? of the hyperfinite factor R of type II;. This is the Connes’s embedding problem. It was
first proposed by A. Connes [Con76] in 1976.

4.1 Ultrapower of von Neumann Algebras

We begin with the definition of an ultrafilter. An ultrafilter w on N is a collection of subsets

of N such that
1. the empty set 0 ¢ w,
2. foranyA,Be w,ANB€cw,

3. foranyACN,A € worN\A € w.
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An example of an ultrafilter is obtained by choosing an element g € N and letting w be the
collection of all subsets of N that contain a. Such ultrafilters are called principal ultrafilters;
Ultrafilters not of this form are called free. Free ultrafilters on N can be identified as points
in B(N)\N, where S(N) is the Stone-Céch compactification of N. In addition, N can be
replaced by any infinite set.

Suppose S is another set, f : N +— S is a mapping and E C S. Then f(n) is eventually
in E along w if fY(E) = {n € N : f(n) € E} € w. If S is a topological space, then f(n)
converges to s € S along w, denoted by lim,_,, f(n) = s, if f(n) is eventually in each
neighborhood of s. It is known that if S is a compact Hausdorff space, then lim,_,, f(n)
always exists in S for every f : N — S and every ultrafilter w on N.

Regarding an ultrafilter as a topological space, one can define a product of ultrafilter.
Let a, @’ be two ultrafilters on infinite sets / and J respectively. The tensor product @ ® o’

is the ultrafilter defined by setting
Seavwa' oficl:{jeJ: (G, j)eSlea’}ea.
Lemma 34 Let {x!} exs be a bounded subset of C. Then
}I_I»B Jlgg X = G ])l-i—)rtl;}@af’ X/

Proof. Let x = lim;_,, lim, .- /. Fixing € > 0, we obtain A = {i € [ : |lim o x —x <

€/2Yeaand A, = {j € J : |/ ~ lim,_q x'| < €/2}. Then
X={Gj)eIxJ:icA jeA)C{GHelIXJ:|x—x<e)

Since X € @ ® a’ and € is arbitrary, the equation follows. =
Suppose M is a factor of type II; with a separable predual and the trace 7. Let w be any

free ultrafilter on N. Let &, M be the direct sum of a countable number of copies of M i.e.
DM = {{XW}" 1 X® e M, sup [|IX®|| < oo},

and

I,= {{X‘”)}n € @ M : lim (X" X" = 0}.
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It is well known that 7, is a maximal ideal in &, M. The quotient &, M/1,, which is
called an ultrapower of M, is a C* algebra, denoted by M. The linear functional 7, on
M defined by 7,(X) = lim,_,, 7(X™),¥X = {X®}, + I, € ®, M/ I, is a trace on M".
The center-valued function T defined by T(X) = {r(X")}, VX = {X™}, € @, M is a center-
valued trace from &, M to £ = {{a,} : a, € C,sup,|a,| < oo}. The center-valued norm
| - g is given by || Xllr = T(X*X)V2,¥X € &, M. By the theory of abelian C* algebras,
we identify ¢ as C(8N). Let X = {X®™}, + I, € M“. {X™}, represents X and without
confusion, we write X = {X™},,.

Denote by M,, the relative commutant of M in M“; i.e. M, = M’ N M?. Now we

will give some basic properties of an ultrapower of factor M of type II;.

Lemma 35 Suppose M is a factor of type II,. Then M® is a non-separable factor of type
I1;.

Proof. We shall split the proof into three steps. First, we shall prove M” is a von Neumann
algebra. Second, that M* is a II; factor. And last, we shall show that it is not separable
under trace norm.

Step 1. To show M is a von Neumann algebra, it is suffice to show that the close unit
ball of M* is complete in the || - |l;-norm induced by 7,,, denoted by || - ||,,. Let {As}x be a
sequence in the unit ball of M“ with ||Ax,; — Aglle < 27% for all k > 1. By [KR], Lemma
10.1.6, for each Ay, there exist By in @, M such that ||Aillypw = |IBll and Ag = By + 1.

By induction on k, we shall choose a sequence Cy in @, M with property that C, = B,
Ay =Cr+ 1, and

Chr1 = Cillr < 27 Lk > 1.

Suppose that Cy, . .., C; have been chosen for some k > 1.

IBis1 — Cellr(@) = T((Bie1 — C) (Bia1 — C)V ()
T((Bis1 — Ci)* (Bis1 — Co)(w))"?

kst — Asllo < 27
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Let ¥ = {s € BN : ||Bis1 — Cillr(s) < 27%1). Then ¥ is a open neighborhood of w in
the compact Hausdorff space SN. So by the Urysohn’s lemma, there is a Z € C(BN) such
that 0 < Z < 1, Z(w) = 1 and Z(s) = O for all s € BN/¥. Let Cryq = ZByy1 + (I — Z)Ch.

Therefore

|1Bk+1 = Cr+illo = [|1Brs1 — Creillr(w) = (I = D(Bis1 — Co)llr(w) = 0

and

IChst = Cillr = 1Z(Bier = Collr = ZI(Brar — Cllr < 2741,

which completes the induction. {Cy} is a || - [|,-Cauchy sequence in the unit ball of ®., M

and converges to C in this unit ball. Let A = C + 1,.

A=Al = IIC— Cillr(w)
< limsup|max||C; — Cllr|
j—oo
1
< limsup|max ) [|Css1 = Cill*
Jjooo ik

Jj-1

Z 9=i < 9kt

i=k

IA

Therefore M® is a von Neumann algebra.

Step II. Suppose the center of M® does not consist of scalars multiplies of the identity.
Let P = {P™}, be a center projection in M® with trace A, where P ¢ {0, I} and suppose
P™ are projections in M with the same trace as P in M“. For each P™, there is a unitary
element U™ in M such that |P™ — UPPWU®*||, > VA — A2 — 1/n, otherwise by the

Dixmier approximation thereom ([KR] Thereom 8.3.5) we would have
VA= 22 = |P? = 7(PP)|l, < VA- A2~ 1/n.

Let U = {U™},. Then |[UP — PU||, = VA — 42, U does not commute with P and hence
M is a factor. Since M ¢ M® and 1, is a trace on M, M is a factor of type II;.

Alternatively, observing that any two projections with the same trace in M“ are equivalent

in M“, M" is a factor.
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Step III. Embed ®°M>(C) ~ R into M as a subfactor. Define U,; € M»(C) as I'if t; = 0;

01
[ ]if t; = 1. For any sequence ¢t = (¢;) € {0, 1}, define U, = {®;¥=1U,j},, e M. If
10

s,t € {0, 1} are not equal at some jj, then T(®;?=1Usj)(®;f=1U,j) = 0,Vn > jo. Therefore

7 ,(UU;) = 0 and {U, : t € {0,1}*} is an orthogonal set in L*(M®). Thus M is not
separable under the trace norm. m

In particular, for the hyperfinite factor R of type II;, the ultrapower R of R is a non-
separable factor of type II;.

What we would like to mention here is that if we replace each summand of &, M by
a finite factor with its trace, one can get a finite factor again. For example, for any free
ultrafilter w on N, M, (C)* = M,(C). Suppose {n;}; is a increasing sequence of natural

numbers and ny — oo as k — oco. The ultraproduct M, (C)* of matrix algebras given by
M, (C)* = &2 M, (C)/1.,,

where

I = {{X(")}k € ©, My, (©)  lim 1, (X" X®) = 0},
—w

and try, is the normalized trace on M, (C). Moreover M,, (C)“ is a factor of type II;.

Without specification, throughout this section, w will denote a free ultrafilter on N.

Theorem 36 ([GeHO01, Con75, SM08]) Let M be a separable factor of type II;, M* an
ultrapower of M, M,, the relative commutant of M in M®.

1) Any self-adjoint, positive, unitary element or projection A € M* or M., can be repre-
sented by a sequence {A™} of self-adjoint, positive, unitary elements or projections in M.
2) Let E, F be equivalent projections in M* or M,,; ie. E X F. V has a representing
sequence of partial isometries in M.

3) Any p X p matrix units in M® or M,, can be represented by a sequence of p X p matrix

units in M.

Proof. The details of the proof can be found in [GeHO1, Con75, SM08]. =
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With the continuum hypothesis, Ge and Hadwin [GeHO1] proved the following amaz-

ing theorem:

Theorem 37 ((GeHO1]) Assume the continuum hypothesis. Suppose M is a finite von
Neumann algebra with a faithful normal trace t. If M is trace-norm separable, then M*
and MY are *-isomorphic von Neumann algebras for any free ultrafilters w and w’ on N.

Moreover, the relative commutant of M in M is *-isomorphic to that of M in M“'.

It is known that property I' of factors of type II; can distinct free group factors and the
hyperfinite factor. Recall that a factor M of type II; has property I if for any given n € N,
finitely many elements X, ..., X, in M and € > 0, there exists trace-zero unitary element
U € M such that ||UX; — X;Ul|; < e fori = 1,...,n. In 1943, Murray and von Neumann
[MV43] proved that R has property I" and so does R”. In general, we have

Proposition 38 Suppose M is a factor of type II,. M has property I if and only if M® has

property I.

Proof. Suppose M has property I'. For m in N, Ay,..., A, in M®, write A, = {A;")},,,
k=1,...,m. For AY,1 <k < m, 1< j < n, there exists unitary element U™ € M with
trace zero such that [UPAY — AYU®|| < 1/n. Let U = (U®)}. Then |UA; — AUllw = 0
and UA; = A U.

Suppose M* has property I'. For any A;,..., A, € M,m>1,m e N, € > 0, and since
Aq,..., A, can be viewed as elements in M®, there is a unitary element U in M* such
that |[UAx — AUl < €/2. Writing U = {U™},,, we see there is a U® in {U®™} such that
IU™A, — AU, < €. m

A factor M of type II; is a prime factor if M is not (isomorphic to) a tensor product
of two factors of type II;. S. Popa and L. Ge etc show that for any factor M of type I,
M? is a prime factor and has no Cartan subalgebras [FGLO06]. Let 3¢ be the set of all
self-adjoint elements in M;(C), and % (I}?) be the set of all unitary elements in 7.
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Lemma 39 (See [Vo94], lemma 4.3) Given € > O there is N € N and 6 > 0, so that for
allk € N, A,B € ME, ||All < 1 if Ti(AP) = 7i(BP)| < 6 for 1 < p < N, then there is
U € % (M), so that T((B— UAU*)?) < e.

Lemma 40 (See [Po83]) Suppose M is a factor of type 1I; and w a free ultrafilter on N.
Let M® be the ultrapower of M and A,, A, be two non-atomic abelian von Neumann
subalgebras of M® with separable preduals. Then there is a unitary element U in M”
such that U* AU = As.

Proof. Since A;, A, are non-atomic abelian von Neumann algebras with separable pred-
uals, they are isomorphic to L*[0, 1]. Suppose ‘A; and A, are generated by Haar unitary
elements U; and U, respectively. Write U; = { U§")}n and U, = {U(")}n for U(”) and U, )
in M. We may assume that Uﬁ”) lies in a finite dimensional abelian subalgebra of A (oth-
erwise, replace Uﬁ") by such an element close to it in trace norm). Since U; and U, are
Haar unitary elements, we may assume that U i") and U;") have the same distribution by
Lemma 39 and U = J IAJE(”) Ul = o AJFE") for E®,...,E and F, ..., F? in
M such that T(E(")) = 7(F, @y, Z‘" E(") s" L F ™ = J. From [KR],Lemma 12.2.5, there
is a unitary element U™ in M such that (U(”)) E(") U® = F, ® forall j = 1,...,s, Then
Uy UPU® = U, Let U = (U™}, in M*. Then U*U U = U, and U AU = A,. B

Lemma 41 (See [Po83]) Suppose w is a free ultrafilter on N. Let A, A, be two non-
atomic abelian von Neumann subalgebras of R,, with separable preduals. Then there is a

unitary element U in R, such that U AU = A,.

Proof. The proof of this lemma is similar to Lemma 40. The only difference is that the
resulting unitary element U lies in R,,. Since R is hyperfinite, we may choose full matrix
subalgebras My (C) © My(C) such that U2 Mx(C) is weak-operator dense in R. once
more A; and A, are isomorphic to L*[0, 1]. Suppose A;, A, are generated by Haar
unitary elements U; and U, respectively. Write U; = {U i")} and U, = { U;")} for U i") and
U;") in R. Since U;, U, commute with R, we may assume that Ui") and U;”) commute

with M (C)(C R). We may also assume that US") lies in a finite dimensional abelian
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subalgebra of M,.(C) N R for j = 1,2. Since U; and U, are Haar unitary elements,
we may assume that U ™ and U(”) have the same distribution by Lemma 39 and U Y’) =
TR LED, UP = g0 A FY for EP,...,EY and F,..., F in My(CY N R such
that 7(E”) = 7(F™), 3%, E(") PO F(") = [. From [KR], Lemma 12.2.5, there is a
unitary element U™ in M».(C)’ N R such that (U™)* E(”) u® =F, ® forall j = 1,.

Then (U)* UPU® = UY. Let U = (U™}, in R®. Then U € R,, U'U,U = U, and
UAU=A,. n

Lemma 42 (See [Po83]) Suppose B is a von Neumann subalgebra of M, where M is a
type II; von Neumann algebra with a trace 7. Let U be a unitary operator in M such that
for any € > 0, there is a finite dimensional abelian von Neumann algebra A of B such
that T(E) < € for all minimal projections E in Ae, and UAU" and B are orthogonal
with respect to T, then U is orthogonal to the set of normalizers {V ¢ M : VBV* =
B,V unitary } of B in M, denoted by N (B). In particular, U is orthogonal to B and
BnNM

Proof. Let Ey, . . ., E, be minimal projections in A, and ), E, = I. Then for any V € A4 (B)

and € > 0, we have
T(UE,U'V'E,V) = 7(UE,UT(V*E,V) = 7(E,)*, Vi
This implies:

lT(VU)P

IN

IVUI; = lEanm(VOI;
I ) EVUE): = ) IEVUEJ;

> H(VUEU'VE)= Y t(E) <

Therefore 7(VU) = 0. Since B is the span of A4 (B) and forany T € B’ N M,
@O < IITUIR = IEanmT V)|

1Y, ETUEJ} = ) IETUE}

D TTUEUT E) < IITI ) m(E) < IT|Pe.

1 4
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Then 7(TU) = 0,YT € BN Mand U is orthogonalto Band B N M. m
A subalgebra B of a von Neumann algebra M is a Cartan subalgebra if span.4(B) =
M.

Theorem 43 (See [FGL06, Po83]) M is prime and has no Cartan subalgebras. More-

over, R, is also a prime factor of type Il; and has no Cartan subalgebras.

Proof. Suppose M® = M;®M, for some factors M; and M, of type II;. Choose non-
atomic abelian subalgebras A; of M; and A, of M, such that A;, A, are weak-operator
separable. From Lemma 40, there is a unitary element U in M® such that U* A, U = A,
which is orthogonal to M; ® CI. From Lemma 42, U is orthogonal to the normalizers of
M; in M®. But the normalizers of M; generate M” as a von Neumann algebra. This
contradicts the assumption that U lies in M“. Therefore M” is prime. Similarly, using
Lemma 41, we can show that R, is also prime.

Suppose A is a MASA in M”. Let B be a separable diffuse abelian von Neumann
subalgebra of A. Then B is isomorphic to L*[0, 1] and suppose B is generated by a Haar
unitary U. Write U = {U®™},, we may assume that U™ lies in a finite dimensional algebra
and U® = 37 LED, where {Eg’)}x" , is a self-adjoint system of matrix units. Let V™ =

i Lj=
#'E® +E, ;and V = {V®}. Then V is a Haar unitary and C = {V}" is orthogonal to
B and B’ N M®. By Lemma 40, there exists W such that WBW" = C. Then by Lemma 42
W is orthogonal to A and .4 (A)”. Therefore A is not a Cartan subalgebra. Similarly, by

Lemma 41, R, has no Cartan subalgebras. ®

Lemma 44 (See [FGLO06]) Suppose M is a subfactor of R with a separable predual.

Then M’ N R® contains a 2 X 2 full matrix algebra.

Proof. Suppose A;, A,, ... are in the unit ball of M so that they are ultraweakly dense in
the ball. Write A; = {Ai.")},, with A§") in R. For any given n and {Agk) : 1 <k, 1< n}, there is
a 2 X 2 matrix unit system {Eg’)}irzl in R such that [[APEY - E®P AW, < 1forl<kl<n

and1 < s5,t<2. LetE, = {EE’,’)},, in R”. Then {Est}it:l commutes with A;, Ay, ...,and is a

2 X 2 matrix unit system in R“. W
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Let N be a von Neumann subalgebra of M. Since
@N + 1)1y = (@®N)(@N)NT,,
N can be embedded into M® as a von Neumann subalgebra.
Lemma 45 For any € > 0 and A € M, there is unitary element U such that
IUA - AUl; 2 [|A = Exyam(@)ll2 — €,
where Bnrnp is the trace preserving conditional expectation from M onto N' N M.
Proof. Suppose that
IlUA - AU, = IUAU™ - Allz < lA = Exrom(A)ll2 — (= @)

for all unitary elements U in N. Let Co{lUAU" : U € N} be the minimal convex set
containing all UAU™ with U a unitary in N. For any X € Co{UAU" : U € N}, we have
X = All, < @. But Exrqm(A) lies in the weak-operator closure of Co{UAU™ : U € N} and

we shall have contradiction ||[Exvapm(A) — A|l2 £ @. The lemma follows.
Lemma 46 (N“)Y N M® = (N’ n M)*.

Proof. From @.,(N’ N M) = (@ N") N (@, M), we obtain (N’ N M)® € (N*Y N M®. For
any X = (X} € (N®) N M?, we see {Exram(X™)} is in (N’ N M)“. For X™ € M, there

exists unitary element U® € N such that
JUPX® - XPUP|, 2 [IX® - EpomX )2 — 1/n.
Let U = (U™} € N“. Then
IUX = XUllo 2 11X = {EpamX®)los

but UX = XU, therefore X = {(Exrom(X™)} e N'NM. =
Let {N,} be a sequence of von Neumann subalgebras of M. Let N* = @ N, + 1,/ 1.

By the proof of the lemma above, we actually have
N,y N M = (N, n M)”.
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Proposition 47 Suppose {A,} is a sequence of MASAs of M. Then AY is a MASA in M*.

Proof. From A, = A, N M, we get

A = (A, NM* =(A) N M.

Problem 48 Are these all the MASAs of M®? If not, what is a counterexample?
Proposition 49 (See [Po81]) No MASA of M is separable.

Proof. Suppose A is a separable MASA of M“. Then A can be generated by a positive
element A = {A™}, where A™ are positive elements. Let A, € M be a MASA in M such
that A® € A,. Then &...A, + I,/ is abelian and contains A, so it is A. Since M* is
continuous and A is separable and maximal abelian, one can find projections {Ey ,} sk C

A such that
1) span*{Ey,} = A;
2) To(Erp) =2"1<k<L2,n20;
3) Ex-1n+ Epn = Egp-1-

One can choose by induction over n, k, sequence (E,(:,’l))m in @A such that

1) spanw{E,(:",'l)} = A,
2) T(EM)=2"1<k<2%n20;

3) E)

(m) _ p(m)
sketn T Egen = E

kn—1°

Take E™ = Y2, Eg;:lm and let E = {E™)}. Then E € A and 7,(E) = 1/2. Moreover
Tw(EEL,) = 1/27,(Ey,) for all k, n so that 7,(EX) = 1/27,(X) for all X € A. In particular

T,(E) = 74(E - E) = 1/4 which is a contradiction. ®
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Lemma 50 Suppose w, w’ are free ultrafilters on N. Then
( Mw)w’ - Mw@w’.

Proof. Any X = (M“)“" may be represented by a with representing sequence {X,}, € M“.
Similarly, write X, = {X®};, where X* e M. Therefore X = {X®};, and {X"}., could be
viewed as elements in M@, By Lemma 34, the lemma holds. m

Let M be a factor of type II; with the trace 7 acting on the Hilbert space H = L*(M, 7).
Let H* be the ultraproduct of copies of H, which is the Hilbert space of all the equivalence
classes of elements in @.,7{ with respect to equivalence relation that (£®) ~ (™) if and
only if lim,, €™ — ™| = 0. H“ is a Hilbert space with inner product {({£™}, {n™}) =
lim, (€™, ™). In general, M® does not act on H*. However M® acts on a subspace of

He.

Proposition 51 (See [Con76]) Let H,, be the set of & = {£™} € H® which satisfy that for

any € > 0, there exists a > 0 such that

31_1)2 E 6,00y (€PDIEPI] < €.

where E ., (I€™)) is the spectral projection of €™| corresponding to (a, ). Then H,, is
a closed subspace of H* and M® acts on H,, in a standard way with the vector I = {I}
as cyclic and separating trace vector and the map {E®Y > {JEDY as canonical involution,

where J is involution of M.

Proof. We have to check that 74, is the closure in H* of the set of vectors {x™}, ||x™|s
bounded. Assume that & = {{™} € H, and let € > 0. Then for some a > 0 one has
LMy o0 I€4 E .00y I€xlll < € so that the vector 7 = [k, e = (I — Ep00))IEr] is at less than €
of ¢ and satisfies |||l < a for all kK € N. Conversely, let € € (0, 1) and a > 0 and assume
that ||&ll < 1, |Ix™ — &™), < € for all k, where ||x™||, < a for all k € N. By inequality

(see[Con76],Proposition 1.2.1)
1Al = 1BII3 < 1A = |BPHl; < lA = BlL(llAll, + l|Bll2), YA, B € M,
[I1X®] = [€™|[l, < (3€)"/ and then [II€™|E ) (E™DIl2 < 2(3€)/2. =
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4.2 Embeddings into Ultrapower

Let M be a finite von Neumann algebra with a separable predual and a faithful normal
tracial state 7, and let M, be the set of all self-adjoint elements in M. For all n in N and
Xi,...,Xpin Mwith X; = Xiforj=1,....n, finite set S = {X1, Xp, ..., X,} € M,, has
matricial microstates if for every m in N and every € > 0 there are k € N and & X k matrices

Aj, ..., A, such that whenever 1 < p<mandii,...,i, €{l,...,n}, we have
|trk(Ai1Ai2 e Aip) - T(Xi1Xi2 e Xip)l <E€

where tr; is the normalized trace on M (C).
A von Neumann algebra M with a separable predual and a faithful normal tracial state
T is embeddable into R* if there is a *-isomorphism @ of M into an ultrapower R of R

witht, o ® =T1.

Proposition 52 Suppose M is a von Neumann algebra with a separable predual and a
faithful normal tracial state T. Then the following are equivalent:

1) (M, 1) is embeddable into R*

2) Any finite subset S ¢ M, has matricial microstates.

3)If Sy € M, is a generating set for M (i.e. the von Neumann algebra generated by S,

is M), then any finite subset S of Sy has matricial microstates.

Proof. 1) = 2): Vm € N, let Xj,...,X,, be any self-adjoint elements in M. Since M
can be embedded into R”, we identify M as a von Neumann subalgebra of R”. Then
T = Ty X; = {X"}, and X{” € R for j = 1,...,n. By [KR], Theorem 12.2.2, for
€ > 0 and X;”), j = 1,...,nthere is a finite type I subfactor N of R isomorphic to M;(C)
for some k € N and Ai.") € N,j = 1,....,m such that IIXﬁ.") - A§”)||2 < €. Assume that
Xj."), j = 1,...,mlies in the same finite type I subfactor. Since forany /[ e N, 1 < p <
Livooosip€{l,..omh, X; -+ X = {Xfl”) x -Xl.(;’)},,, for any € > 0, there is an integer N > 0
such that |7,(X;, -+ X; ) — TR(Xfl”) . -XEI’)’))[ < € when n > N. Since M is a subfactor of R

and N is a subfactor of R, we have that 7 = 7,5 and the trace 7y is Tg|y. If we identify
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N as M(C), then Ty = try. Therefore |[7(X;, -+ X;,)— trk(Xfl") .- Xf:))l <eand {Xy,..., X}
has matricial microstates.
2) = 3): 3) follows directly from 2).

3) = 1): Suppose Xi, X, . .. is a generating set for M whose elements are self-adjoint.

For any integer m > 1, {Xy,...,X,,} is a finite subset of the generating set. Then there
are k,, € N and &, X k,, matrices AE.’"), j = 1,...,m such that whenever 1 < p < m and
it,.--,ip €{1,...,m}, we have

[Tk, (ALPALY -+ AT = T(X, X -+ X)) < 1/m,
where 7y, is the normalized trace on M, (C). Let A; = {Ai.””}m eR¥ j=1,.... Then
Ta)(AilAiz Tt Aip) = T(Xi1Xi2 ot Xip)

it,.-.,i, € {1,2,...}. We define a homomorphism ¥ from the the algebra generated
by Xj,..., Xy, ... to the algebra generated by Ay,...,A4,,... such that ¥(X;) = A;,j =
1,...,n,.... By the equation above, we can obtain 7, o¥ = 7, ¥ is well-defined and more-
over ¥ can be extended to be a *-isomorphism of M. Therefore (M, 7) can be embedded
intoR“. m

In the proof of the above proposition, we have that (M, 7) is embeddable into R* if and
only if (M, 1) is embeddable into M, (C);, for some increasing sequence {n;} of natural
numbers.

For each n € N, let #, be the free group on »n generators gi,...,g,. Form € F, let
the length of m be the sum of the absolute values of the exponents of the g; in the reduced
form of m. For operators Xj, ... X, in von Neumann algebra M, let X(mm) be the operator
obtained in replacing each g; by the corresponding X;, g;' by X; and finding the product in
M. So m + X(m) is the map of F, in M such that X% = X;, Xf"Tl =X, X=Xp-0 X))

Let (k) be the set of all words m € ¥, whose length is less than or equal to k. In
general, a finite set S = {X;, X5, ..., X,,} € M has matricial microstates if for every k € N,

m € F(k), and € > O there are k' € N and k&’ X kK’ matrices Ay, ..., A, such that
ltre(A(m)) — T(X(m))| < €,
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where try is the normalized trace on the k&’ X k" matrix algebra M, (C).
Throughout this section, M, N will be considered the von Neumann algebras with
separable preduals and faithful normal tracial states 744 and 7 respectively and suppose

(M, T and (N, T5) are embeddable into R”.

Lemma 53 Suppose (M, Tpy) is embeddable into R*, P is a nonzero projection in M and
Tp = Tpm/TMm(P) is a faithful normal tracial state on PMP. Then (PMP, 7p) is embeddable

into R“.

Proof. Since (M, 7) is embeddable into R*, view M as a subfactor of M, (C); for some
increasing sequence {n;}; C N, then P has a representing sequence {P™}, where P™, n > 1
are projections in M, (C). Form € N, X;,...,X,, € PMP, since PX;P = X; and X; =
{Xl.(")},,, i=1,...,m, {P(")Xl.(")P(”)},, represents X; too. Therefore (PMP, Tp) is embeddable
into (P®M,, (C)PP)¢ and then R*. m

In [FGLO06], Fang, Ge and Li proved an interesting result on embedding. We state it

below and include its proof.

Proposition 54 (See [FGL06]) Let R be the hyperfinite factor of type 1I; and w a free
ultrafilter on N. Then ultrapower R” can be embedded into R,,.

Proof. Since R = ®°R, we shall show that R can be embedded into (®°R),. For any
A = {A,}, in R¥ with A, in R, define ¢(A) to be an element in (®]°R)“ corresponding to the
sequence A; @ IQI®--- ,I®A,®I®---,--- in (®TR)”. ¢(A) is a central sequence and

thus ¢ induces an embedding from R* into (®]'R),. ®

Proposition 55 Suppose that (M, Tpq) and (N, Tx) are von Neumann algebras with faith-
ful normal traces T, Ty and separable preduals embeddable into R”. The von Neumann

algebra tensor product (MON, T ® Ty) is embeddable into R®.

Proof. We shall show that for any p,n € N, unitary elements X, ..., X, € M&N, € > 0,

there exist k € N and k X k matrices Cy, ..., C, such that for m € F(p)
ITm ® TA(X(m)) — tri(C(m))| < €.
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The algebraic tensor product of M and A is trace-norm dense in M®N and so by the
Kaplansky density theorem, there exist positive integers I, ..., 1, and ¥, D e M, Zf’) eEN,
j=1,...,1,i=1,...,nsuch that [|IX, - Z?:l ij) ®Zf’)|[2 < €/p and ||Zi':1 Yf]) ® Zl(j)” <
1. Since (M, 7y and (N, Ty) are embeddable into R, for p and Yl(]) e M, ij) e N,
j=1,...,0,i=1,...,n, there exist k1, k, € N, k; X k; matrices Af’), and k, X k, matrices

BYeN,j=1,....0,i=1,...,nsuch that

e m(F(m)) = tr, Al < ——
pll ... ln

ITn(Z(m)) = tri, (Bm))ll < .
pll T ln

Combining the two inequalities above, we obtain,
T pm ® TA(X(m)) — tri(Cm))l2 < €,

where C, = Zi‘zl Afj) ® Bf’), and k = kik,. This proves the proposition. m
In particular, for any k € N, (M ® M;(C), Ty ® tr;) is embeddable into R*.

Lemma 56 If any von Neumann algebra with a separable predual and a faithful normal
tracial state generated by two self-adjoint elements is embeddable into R, then any finite
von Neumann algebra M with a separable predual and a faithful normal tracial state is

embeddable into R”.

Proof. Suppose M is generated by countably many self-adjoint elements A;, Ay, ... in
its unit ball. Let Av] = a,A, +B,1, «,3, € R, and choose proper «, and B, such that
% <Al < 2}(}“) Replace A, by A,. Suppose R = _ M™(C) is the hyperfinite II

factor. Let {E(") tz _, be the 2X2 system of matrix units of the nth copy of matrix algebra.

We shall show that M ® R can be generated by two self-adjoint elements. Let

0 J-1
S1=A®EY + 4, ENED +--- = > (4,0 (| | EDEY)
J=1 =1

1 NERE
Sy=(ED+ED)+ — > —EDE? + ED) + Z = 1_[ EQEY + E).
J=1 1=1
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By the function calculus for C* algebras to S, we have []f:ll E;’;Eﬁ) are in {S1}”. From
the construction of S,, R C {S;1,S,)” and so M®R C {S1,S5,}”. But§;,5, € M® R,
and thus M ® R can be generated by two self-adjoint elements. By assumption, (M, 7) is
embeddable into R“. =

In 1987, D. Voiculescu introduced the free probability theory and found that the free
independence in noncommutative probability space can be approximated by the indepen-
dence of Gaussian random matrices. More details can be find in [VDN92] but here we
shall show that the von Neumann algebra free product of two embeddable von Neumann

algebras is embeddable into RY.

Lemma 57 Let T4 be the vector tracial state on Lz. Suppose (M, T ) is embeddable into

R“. The von Neumann algebra free product (M % Lz, T p % T7) is embeddable into R”.

Proof. Suppose M can be generated by two self-adjoint elements X;, X in its unit ball,
(otherwise consider M®R) and M c R”. Let X; = {Xﬁ.")},,, Xﬁ.”) € R, and assume that
X;”), J = 1,2 lies in the same type I subfactor My, (C) of R for some positive integer N(n)
dependent on n. Then by [VDN92], Theorem 4.2.2, and the fact that (®,,L*[0, 1])® M,5(C)
is a von Neumann subalgebra of R, there exists Guassian random matrices Y(m, N(n)) €
(®xL7[0, 1) ® M,n()(C), m > 1 such that (Y(m, N(n)), I ® My,,(C) ® I)) is asymptotically
free as m — oo, where Y(m, N(n)) is given as in [VDN92] theorem 4.1.2. Let X;. ={I®
Xﬁ.") @I}, j=1,2and Y = {Y(n, N(n))},. Then X;.,j =1,21is free from Yin R” and Y is a

semicircle element. Therefore (M * Lz, Ty * Tz) is embeddable into R”. m

Proposition 58 Let (M, 7)) and (N, Tx) be von Neumann algebras with separable pre-
duals and faithful normal tracial states Ty and Ty respectively. Suppose (M, Tp) and
(N, tn) are embeddable into R®. Let T be the trace T * Ty on the von Neumann algebra

free product M= N. Then (M = N, 7) is embeddable into R”.

Proof. We only have to show M * N can be embedded into (M ® N) = L,. Let U be the
Haar unitary that generates L. Since M is free from UNU", we have M= N is a subfactor

of (M ® N) * £, and is thus embeddable into R with its tracial state. m
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It is known that any separable finite von Neumann algebra of type 1 is embeddable
into the hyperfinite factor R and also into an ultrapower R”. By the proposition 58 and
[VDN92], Theorem 2.6.2, we have that free group factors is embeddable into R“.

In 1993, D. Voiculescu [Vo93, Vo94, Vo96] developed the free probability theory and
introduced the free entropy for factors of type II;. From the definition of free entry, we see
that the Connes’s embedding problem is equivalent to whether free entropy is well-defined

on a separable factor of type II;.

4.3 Hyperlinear Groups

One important example of von Neumann algebras introduced by Murray and von Neumann
is the group von Neumann algebra arising from the left (or right) regular representation
of an infinite countable (discrete) group. F. Radulescu found that whether a group von
Neumann algebras is embeddable into R” only depends on the property of the group itself.
Hence he [Ra02] introduced the hyperlinearity of group in 2002.

A group G is hyperlinear ([Ra02, CP09)) if G embeds faithfully into U(R*). By
[Ra02], Proposition 2.5, a countably discrete group G is hyperlinear if and only if the
group von Neumann algebra (L, 7.) is embeddable into R“, where 7, is the tracial vector
state on L given by 7,(X) = (Xe, ¢) for all X € L. Moreover, F. Radulescu showed that
any non-residually finite Baumslag group (a, blab®a™! = b?) is hyperlinear.

A group G (with unit e) is residually finite if for every nontrivial element g € G, there

is a homomorphism 7 from G to a finite group such that n(g) # e.
Lemma 59 A residually finite discrete countable group G with unit e is hyperlinear.

Proof. Let {e, g1, g2, - ..} be an enumeration of G and p, be a group homomorphism of G
into a finite group F, such that p,(g,) # e. For any integer n > 1, since [[}., pi(g)) # e
forl=1,....nlet U” = Lip_ py € BETjzy Fo)- Define U, = (U}, 1 = 1,2,...,
where Ul(") = [ if | < n. By the definition of U™, we have that the group generated by
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LU,l=1,2,...isisomorphic to G. Then G can be faithfully embedded into Z/(R*), and
therefore L; can be embedded into R“. =

For any integer n > 2, SL,(Z) is a linear group with matrix multiplication given by
n X n matrices with entries in Z and determinant equal to 1. For any element g in S L,(Z),
suppose p is a prime number larger than any entry of g and x is a group homomorphism
from S L,(Z) to S L,(Z,) such that it maps each entry a to a + pZ in Z,. Since S L,(Z,) is
a finite group, S L,(Z) is residually finite, and L (z) is embeddable into R by the lemma

above.

Lemma 60 Any non-abelian free group ¥, on m generators, 2 < m € N orm = R, is

residually finite.

- El . & .
Proof. Suppose ¥, is a free group on m generators g1, ..., g, and g; --- g, is a reduced
word in F,,, where iy # L #... # iy € {1,...,m}and €,... € € Z\{0}, n = I;'=1 lejl. We
shall construct a homomorphism 7 from %, into [],..1, the permutation group on {1, ..., n+

1}, such that n(gfl‘ . --gf:) # 1. Let f; = n(g;), fori = 1,...,m. If the generator g; is not
in the reduced word g;' -~ g7, let fi = e. Letn; = I lel for j = 1,...,k Define

h;, = T i for j=2,....,kand h; = n . Let
ni-1 - opi—1 n+l1 1 -+~ m—1

fi =TIk, ij = i}, where 5; = 1if €; > 0y 5; = —=1if € < 0. Since iy # i # ... # iy, f;
is well-defined when g; is in the reduced word. Moreover 4;, - - - b; (n + 1) = 1, and hence
hi, -+ h; # eand f:‘ e fli" # e. This proves that ¥, is residually finite. ®

As a corollary of the above lemma, we see that a free group factor Lz, ,2 < m € N is
embeddable into R”. K. Dykema [Dyk94] and F. Radulescu [Ra%94] introduced, indepen-
dently, the interpolated free group factor Ly, t > 1. These factors can be obtained from
the free group factors by suitable compression with projections. Note that the embeddable
property is preserved by the compression with a projection in a factor. Thus, we have that
Lg, t > 1is embeddable into R”.

A group is locally embeddable into finite groups (an LEF group, for short) if for every

finite subset F C G, there is a partially defined monomorphism ; of F into a finite group,i.e
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i(xy) = i(x)i(y) for any x, y € F. By the definition, a residually finite group is LEF from the
definition.

A notion similar to a hyperlinear group in group theory is a sofic group. The sofic
group was first defined by Gromov [Gro99]. A group G is sofic if for every finite F C G
and every € > 0, there exists n € N and an (F, €)-almost homomorphism j : F — [],.
An (F, €)-almost homomorphism j is a map with the property: if g,h € F and gh € F,
then dpamm(j(2)j(h), j(gh)) < € and if e € F, then dyamm(j(e), Id) < €, which is uniformly
injective: dpamm(j(g), j(h)) = 1/4 whenever g, h € F, g # h. From this definition, a sofic
group is hyperlinear. Unfortunately it is unknown whether a hyperlinear group is sofic.

A discrete group G with unit e is amenable if G admits a left invariant mean. A positive
linear functional ¢ : [*°(G) — C is an invariant mean if ¢(e) = 1 and ¢ is invariant under
left translations. Alternatively, a discrete group G is amenable if for every finite subset
F < G and € > 0, there is a finite subset A C G (A is called a Fglner set for F and €) such
that for each g € F, |gAAA| < €|A]. This is known as Fglner condition.

A group G (with unit e) is residually amenable if for every nontrivial element g € G,
there is a homomorphism 7 from G to an amenable group such that 7(g) # e. By this
definition, every amenable group is residually amenable.

A group G is initially subamenable if every finite subset F € G admits an (F, 0)-almost
monomorphism into an amenable group I'. It is clear that every residually amenable group
is initially subamenable and every initially subamenable group is sofic from the definition.

In particular, every amenable group is sofic. The following diagram summarizes these
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properties.

Propert T

Factorization Property = Residually Finite
N 7
Y Residually Amenable un (fp)
i fp)
U Initially S ubamenable < LEF
U
Hyperlinear &= Sofic

4.4 Co-amenability of von Neumann subalgebras

Co-amenability was first raised in the group theory, but Co-amenability of von Neumann
subalgebras was introduced by S. Popa in [Po86, Po99, PMO03].

Let A be a finite von Neumann algebra with a separable predual and a faithful normal
tracial state T and 8 ¢ N a von Neumann subalgebra. The subalgebra 8 is co-amenable
in N if there exists a norm one projection ¥ of (N, B) onto N. One also says that N is
amenable relative to B.

We present an important property of co-amenability of von Neumann subalgebras as

follows and omit its proof.

Proposition 61 (See [PMO03], Proposition 5) With the notation as above. B is co-amenable
in N if and only if there exists a state Y on (N, B) extending the tracial state T on N with
Y(UXU™) = y(X) forall X € (N, B), U € UN).

In [PMO3], N. Monoid and S. Popa pointed out that co-amenability of a von Neumann
subalgebra is equivalent to a kind of Fglner type condition. Inspired by this, we show the

following main theorem of this section.

Theorem 62 (Main Theorem) Let N be a von Neumann algebra with a separable predual

and a faithful normal trace T. Suppose B is a von Neumann subalgebra co-amenable in N
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and (B, 7) is embeddable into an ultrapower R of the hyperfinite II, factor R. Then (N, T)

is embeddable into R“.

To prepare the proof of the main theorem, we review some notations and results of
direct integrals.

Let M be a von Neumann algebra with a faithful normal tracial state T acting on a
separable Hilbert space .5#, and M’ be the commutant of M on S, and C = M N M’
their center. By [KR], Charper 14, there is a (locally compact complete separable met-
ric) measure space (X, ) such that J# is (unitarily equivalent to) the direct integral of
Hilbert spaces {J£,} over (X, u); i.e € = fx J,du(p). Moreover, M, M’, T have direct
integral decomposition relative to C; i.e. M = fXM(p)du(p), M = fXM’(p)d/t(p),
T = fxﬂrpd,u(p) where M(p), M’(p) are factors acting on %7, a.e., T, is the trace on M(p)
a.e. and M(p) = M'(p) on JZ, a.e. In addition, if M’ has faithful normal tracial state 7/,
then 7’ has direct integral decomposition relative to C too, i.e. 7/ = fx 7,du(p), where 7, is
the trace on M'(p) a.e.

Recall the Lance’s weak expectation property (WEP) for C* algebra and quotient C*
algebra of a C* algebra with WEP:

A C” algebra U has the weak expectation property (WEP) (or is "WEP”) if there exist
a Hilbert space ¢ and completely positive and complete contractions T : B(H) > A
and T, : A > ZB(S#) such that the inclusion map iy : A — WU satisfies T\ T, = iy. A
C” algebra B is a quotient C* algebra of a C* algebra with WEP (i.e. QWEDP) if there exist
WEP C” algebra A and *-homomorphism 7 from U onto B.

To complete the proof the main theorem, we need the following four lemmas.

Lemma 63 Suppose M is a von Neumann algebra with a separable predual and a faithful
normal tracial state T. Let C be the center of M. Then ¥n € N, given X;, ..., X, € M and
€ > 0, there exist finite subset F C U(M) and 0 < 6 < € such that for any normal state
Y € Mywith |[lUYU* —yll <6 forall U € F and Tlc = Y|, we have W (X;))—T(X))| < €, j =

1,...,n.
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Proof. Assume that for any finite subset F € U (M) and 0 < § < €, there exists a normal
state Y s with || U rsU* —yrsll < 6 forall U € F and Ypgle = le, while [ z6(X;)—7(X;)| >
€ for some j € {1,...,n}. Let S = (Y5 : F € U(M) is finite,0 < 6 < €}. Then S is a net
with order (F,0) < (F’,¢") given by F C F’, 6§ > ¢’. By weak™ compactness of the state
space of M, there is an accumulation point ¢ of § in M* which commutes with U for all
U e UM), Ylc = Tlc, and Y(X;) — 7(X;)| > € for some j. Therefore y is a different tracial

state on M with y|c = 7|c which is not possible. ®

Lemma 64 Suppose M is a von Neumann algebra with a faithful normal tracial state T
acting on a separable Hilbert space € and the commutant M’ of M on S is finite. Let
T’ be a faithful normal tracial state on M'. Then (M, 1) is embeddable into R* if and only
if (M, 1) is embeddable into R®.

Proof. By [Kir93], Corollary 3.8, Mis QWEP if and only if M’ is QWEP. Then by [Kir93],
Theorem 4.1, (M, 7) is embeddable into R* if and only if M is QWEP and (M, 7’) is
embeddable into R” if and only if M’ is QWEP. Therefore, (M, 7) is embeddable into R“
if and only if (M, 7’) is embeddable into R*. =

Lemma 65 With the notations in the theorem. Let C be the center of N. Then N, 8
and T have unique direct integral decomposition relative to C over some (locally compact

complete separable) measure space (X, i) i.e.

N = f N(p)du(p), B = f Bp)du(p), 7 = f o du(p).
X X X

(N(p), 7p) is embeddable into R” a.e. if and only if (N, T) is embeddable into R*.

Proof. By [KR], Charpter 14, we have that N, 8 and 7 have unique direct integral decom-
position relative to C over some (locally compact complete separable) measure space (X, ()
and N(p) is factor a.e. Suppose L?(N, 7) is the direct integral of Hilbert spaces {L%(N, T),},
over (X, ). Let J(p) be an operator on L*(N, T), such that J(p)T(p)f(p) = T*(p)f (p) ae.
where T = [ T(p)du(p) € N, I is the identity on L*(N,7), and [ = [, I(p)du(p). Let J
be the canonical conjugation on the Hilbert space L2(N, ) such that JTI = T*I for any
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T € N. Since J(p) is the canonical conjugation on the Hilbert space L*(N, T)p, We have

J = [, J(p)du(p) and
(N(p), B(p)) = J(p)B(p) J(p) a.e.

Now we shall show
fx (N(P). B(p))du(p) = C' 0 (N, B.

Forany T € C'N{N, B), wehave T = j;\, T (p)du(p). Since (N(p), B(p)) = J(p)B(p)' J(p),
toshow T € fX(N (p), B(p))du(p), we only have to show T'(p) commutes with J(p)B(p)J(p);
ie.

T(p)J(p)B(p)J(p) = J(p)B(p)J(P)T(p), a.eVB e B
This implies TJBJ = JBJT,VB € B. But T is in JB'J = (N, B), the commutant of JBJ.
Therefore

L (N(p). B(p)du(p) > C" N (N, B).

On the other hand, if T € fX(N (p), B(p))du(p), then T commutes with C and T € (N, B)
and hence

j}; (N(p). B(p)du(p) € C" N (N, B).

Therefore [(N(p), B(p))du(p) = C' N (N, B).

By [Kir93], Corollary 3.7, we have N(p) is QWEP a.e. if and only if NV is QWEP. By
[Kir93], we have that (N, 7) is embeddable into R* if and only N is QWEP; (N(p), 7,) is
embeddable into R” a.e. if and only if N(p) is QWEP a.e. Therefore (N, 7) is embeddable
into R* if and only if (N(p), 7)) is embeddable into R”. =

Lemma 66 With the notations in the theorem. If (B, 7) is embeddable into R” and E is non-
zero projection in {N, B) with Tr(E) < . Then (E{N, B)E, Tr/Tr(E)) is embeddable into
RY.

Proof. Since (B, 7) is embeddable into R”, (JBJ, JtJ) is embeddable into R*, where J7.J
is the tracial state on JBJ given by JTJ(Y) = 7(JYJ), for all Y € JBJ. Let Cg be the
central support of E in (N, 8). Then Cg € JBJ and by Lemma 53, (JBJCg, JtJ/T(JCgJ))
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is embeddable into R*. Since JBJE is *-isomorphic to JBJCg and the tracial state 7; on
JBJE induced by JrJ/1(JCgJ) 1s given by 7\(YE) = v(JYJ)/7(JCgJ) for all Y € JBJCg,
(JBJ, 1) is embeddable into R”. By Lemma 64, (EJB'JE, Tr/Tr(E)) is embeddable into
R m
Now we begin the proof of the Main Theorem:

Proof. For k € N, let (k) be the set of all words m € ¥, whose length is less than %.
Let C be the center of N. By results of Kirchberg [Kir93], whether N is embeddable into
R* is independent of the choice of the faithful normal tracial state 7. We assume that 7
is multiplicative. To prove N can be embedded into R“, we shall show that for unitary
operators Uy, ..., U, € N, € > 0, k € N, there exists ‘k’ € N and k¥’ X k¥’ matrices Vi,...,V,
such that

Ir(U(m)) — tre(V(m))| < €, Ym € F (k). “4.1)

Let S = {U(m) : m € F(k)}. By Lemma 63, there exists fintie subset Fo, C U(N) such that
for any normal state ¥ € Ny with [[UyU* || < 6 for all U € Fy, we have W (X)—7(X)| < €
forall X € S. Let F = FoUS = {Xi,..., X,}, where p is the cardinality of F.

Next, we shall use Day’s convexity trick. Let (N, 8): be the predual of (N, B) and
(N, B)} be the Banach space (N, B); with norm [|(¢1,...,¢,)ll = X [I4,ll. Then

D 6T = G118 (Vs X))

identifies the product von Neumann algebra (N, 8)? with the dual of (N, B);.
Let
G={W—XyX,....y - X YX )l is a normal state on (N, B)}.

Then G is a convex subset of (N, B)g and its weak and norm closure coincide. Since B is
co-amenable in N, by Proposition 61, there is a state ¢ on (N, B) invariant under Ad(U)
for all U € F. Since the set of normal states is weakly dense in the state space of (N, B),
there is a net of normal states converging weakly to the state ¢. So the weak, and hence

norm, closure of G contains (0, ..., 0). Then let ¥ be a normal state on (N, B) with

l — UpU*|| < (6/24pk)'®, YU € F.
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For the normal state ¥, there exists a positive element Hp{N, B) with Tr(H?) = 1 such
that Y(X) = Tr(HXH), then

WUHAU* — H|lv7r < (6/24pk) S| H 1.7+

for all U € F. By adjusting ¢, we could assume that H is a bounded positive operator in
(N, B).
By Powers-Stgrmer inequality (See [PS70, Haa75]),

N\UHU* - Hlo.1, < (6/24pk)¥|Hllp.1,, YU € F

By [Con76], Theorem 1.2.2, for set {H, UHU"|U € F}, there exists a projection E €
(N, B) with Tr(E) < oo such that

IWUEU" - El1, = IIE = U"EUllp.1, < 6/4KI|Ell 1+,

forall U € F and ||H — EHll,.1, < 6/4k||H]|l».7,.
Let o be the normal state on N defined by ¥o(X) = THEXE)/Tr(E) for all X € N.
Since

Yo(UYU™) = THEUYUE)/Tr(E) = Tr(UEUY)/Tr(E),
for any Y in (N)y,
Wo(Y) = o(UYU)|TH(E)
= |THEY)-TrUEUY)|
= |Tr((E-UEU)Y)| =|Tr(|E - U'EU|V'Y),

Tr(E - U'EU)*Tr(E ~ U'EU|"*V'YY'VIE — U"EU|"»'?,

IA

IA

Tr(E - UEU) < E = U"EUlb.r (|Ell2r, + U EUlo.10),

< §/2KIER .

where |E — U"EU|V” is the polar decomposition of E — U"EU. Then we obtain |jo —
UyoU™|| £6/2k < 6/4forall U € Fy C F and k > 2. Since Tr(CE) = 7(C)Tr(E) for all
C € C, ¥ylc = Tle. By Lemma 63, we have for all m € F(k),

\Tr(EU(m)E)/Tr(E) = T(U(m))| = Wo(U(m)) — T(U(m))| < €/4. 4.2)
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Now for unitary operators Uy, ..., U, € N, e > 0,k € N, let
W, =EUE,..., W,=EU,E € E(N, B)E.
Then

\Tr({Um)/Tr(E) = Tr(W(m))/Tr(E)| < length(m)s/4k
< 6/4<e€/4,VYm € F (k).

Hence, Ym € F (k)
\TrH(U(@m))/Tr(E) — Tr(W(m))/Tr(E)| < €/4. (4.3)

Since (B, 7) is embeddable into R“, by Lemma 66, (E(N, B)E, Tr/Tr(E)) is also embed-
dable into R”. Then by Proposition 52, there exist ¥’ € N and £’ X k¥’ matrices Vi,...,V,
such that

\Tr(W(m))/Tr(E) = tri(V(m))| < €/2,Ym € F(k), (4.4)

where try is the normalized trace on M (C). Then combining equations (4.2), (4.3), and

(4.4), we reach our goal (see equation 4.1) and have
[r(U(m)) ~ tri(V(m))| < €

and (N, 7) is embeddable into R”. &
A subgroup H of a group G is called co-amenable in G if there exists a G-invariant

mean on the space [*(G/H).

Corollary 67 Suppose By is a finite von Neumann algebra with a separable predual and
a faithful normal tracial state 7y and G is a countably discrete group with unit e. Let
o : G b Aut(By) be a trace-preserving cocycle action on (By, To). Let N = By > G be the
corresponding crossed product von Neumann algebra with faithful normal tracial state T
given by T(X . ByU,) = To(B,), where B, € By, g € G. Suppose H is a subgroup of G co-
amenable in G and (B(= By = H), T) is embeddable into R”. Then (N, T) is embeddable

into R”.
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Proof. By [PM03], Proposition 6, 8 is co-amenable in N if and only if the group H is co-
amenable in G. Since (B, 7) is embeddable into R, by Theorem 62, (N, 7) is embeddable
into R*. m

In the above corollary, let B, be CI, we have following corollary.

Corollary 68 Let G be a countable (discrete) group. Suppose H is a hyperlinear subgroup

co-amenable in G. Then G is hyperlinear.

Proof. Since H is hyperlinear, (L, 7.) is embeddable into R”. By [PMO03], Corollary
7, Ly is co-amenable in L, since H is co-amenable in G. By Theorem 62, (L, 7.) is
embeddable into R”. Therefore G is hyperlinear. =

Let H be any group and 8 : H — H an injective homomorphism. Denote by G = Hxg

the corresponding HNN-extension, i.e.
G = (H, t|tht"! = 6(h),Yh € H).

By [PMO03], Proposition 2, H is co-amenable in G. Then the HNN-extension of a hyperlin-
ear group is a hyperlinear group again.

In Corollary 67, if H is {¢} C G, then G is an amenable group and we have:

Corollary 69 Suppose B is finite von Neumann algebra with a separable predual and
a faithful normal tracial state T and G is an amenable countably discrete group. Let
o : G — Aut(B) be a trace-preserving cocycle action on (B,7). Let By 2 G be the
corresponding crossed product von Neumann algebra with faithful normal tracial state T
given by T(X,eq ByUy) = To(B.), where B; € By, g € G. Then (8 %y G, T) is embeddable

into R”.

4.5 Similarity Property

Let us recall Kadison’s similarity problem [Ka55]. Let A be a unital C* algebraand ¢ : A —

B(H) a unital homomorphism. Kadison’s similarity problem is whether the condition that
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¢ is bounded implies that ¢ is similar to a *-homomorphism, i.e. S : H +— H is invertible
such that ¢5 : X — S !¢(X)S is a *-homomorphism. In [Haa75], Haagerup proved that ¢

is similar to a *-homomorphism if and only if ¢ is completely bounded and
ellee = inf{IS ISl : ¢s is *-homomorphism.}

An operator algebra A C B(H) is said to be of length < d if there is a constant X such
that, for any » and any X in M, (), there is an integer N = N(n, X) and scalar matrices
ay € M, N(C), a1 € MN(C), ..., a4 € My(C), ay € My,(C) together with diagonal

matrices Dy, ..., Dy in My() satisfying

X =agDya1Dy--- Dyay
121l T4 1Dl < KIIXI)

Denote by £(2) the length of U; i.e the smallest d for which the two equations above holds.
Let
d(W) = inf{a > 0|AK, V¢, [I#lls < KlglI*},

where ¢ denotes an arbitrary unital homomorphism from U to B(H).
G. Pisier [Pi99, Pi00, Pi] showed that £(A) = d(A) for any unital operator algebra A

which is the similarity degree of .

Proposition 70 Let G be a discrete group, (By, To) a finite von Neumann algebra with a
normal faithful tracial state and o : G — Aut(By, Ty) a trace preserving cocycle action
of G on (By, 79). Let N = By », G be the corresponding crossed product von Neumann
algebra with its normal faithful tracial state given by T(Y e bgity) = To(b,). Let H < G
be a subgroup co-amenable in G and B = By = H. If N is a factor and B has similarity

degree d, then N has similarity degree of at most 9d + 8.

Proof. Suppose ¢ is a unital bounded representation of A on a Hilbert space H such that
spd(NYH = H. Then ¢|g is a bounded representation of B, and so there is an invertible
operator So on H such that S ¢#|5S " is a *-representation of B and [IS ;' |IIISoll < K|l#|s|l°.

Let g9 = So¢S;!. Then ¢ is a bounded representation of . We have to estimate the
0
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complete bounded norm of ¢y. To do this, we may and will assume that the representation
has an at most countable cyclic set. In this case [Ch81] there is a *-representation 7 of
N on H such that for any vector ¢ in H, there exists a bounded injective operator X with

dense range and a vector 7 satisfying
VY € N : ¢o(1)X = Xn(Y); X1l < 2ligol*s Xn = &; linll < 1€

The first property admits a homomorphism ¢ of 7(N) into B(H) by A XAX!and Wl =
[I@oll, whereas the second shows that i is ultrastrongly continuous since Y(A)¢ = XAn. We
will denote by ¢ again the extension of ¢ to the von Neumann algebra generated by m(N).
In this algebra we will let F denote the maximal finite central projection and let D be a
copy of the compact operators placed inside (I — F)n(N), such that / — F belongs to the
weak closure of D. Then D + CF is a nuclear C* algebra, by [Ch81], we can perturb ¢
with a Z in GL(H) such that Ad(Z) o ¥ is trivial on D & CF and ||Z"I1Z]| < |l¢ol>. The
new homomorphism Ad(Z) o ¥ decomposes naturally into an orthogonal direct sum. The
restriction to the properly infinite part is by construction completely bounded with complete
bounded norm less than ||¢o||>. The restriction 1o the finite part yields homomorphisms 7

and A of the finite von Neumann algebra A into B(F7H) given by
7p(Y) = 7(Y)|rp and AQY) = (ZX)Frp(Y)(ZX) " |pp-

Since a finite representation of a finite representation of a finite factor is ultrastrongly con-
tinuous because of the uniqueness of the trace, we see that A is ultrastrongly continuous.
Let F,, / G/H be a net of finite Fglner sets, which we identify with some sets of
representatives F,, C G. Since A is unital bounded, the set |F,|™! 2iser, AU A(Uy) in the
von Neumann algebra generated by A(N) has a strong-operator accumulation point. The

accumulation point is positive. So let S be the square root of it. We have

.1
IS 17 = lim

m e D I

seF,

and hence, ||A["! < § < ||A]|. For any unitary element U in By, let V, = U,UU? in By.
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Then

) 1 )
S’AUX = lim IF”%A(US) AU)AUH

= lim— " AU AV,U)¢

o |Fy seFy,

— tim— 3 AWAUY AU

n anl seF,

= AU)S?%.

For any unitary element U,, g € Gin N, let hys” = sg if sg is in F,. Since F, is a Fglner

set and A(U,,) is a unitary, we have that

. 1 *
S’AUPE = lim ;F,,A(US) AU

1
= lim
n |Fn|

D AU AU

seF,

AU,)S*.

Let Ny be the *-subalgebra in N generated by By and U,, g € G. For any element A in
No, we have SZA(A)é = A(Ag)S?, for all ¢ € H. By the Kaplansky density theorem, for
any A in the unit ball of N, there is a net of {A,} in the unit ball of N, convergent to A in
the strong-operator topology.

Since A is strong-operator continuous, A(A,) converges to A(A), then [[Ad(S)o Al < 1

and A is completely bounded with completely bounded norm ||A]], < |A||%. Thus

18llce < 1S5 IS olllicolles
Kl 1ZINZ Ao

Kligl*ligol*li¢oll®
K2liglP*®,

IA

IA

IA

since ||S 5"l oll < Kliglsll < KIBINZINZT] < ligol* < (Kligll**1)* and AN < [IZIIIZlligoll <
lioll>. m
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