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ABSTRACT 

ASPECTS OF STRING COMPACTIFICATION 

by 

Guoqin Ren 

University of New Hampshire, September, 2011 

This dissertation addresses some interesting problems in string compactification rel­

evant to phenomenology, especially cosmological models derived from string theory. 

Most attention is drawn to stabilizing the moduli and discussing the cosmology solu­

tions given the effective potential obtained from string theory. We first discuss compact­

ification of type IIB string theory in the presence of flux. With the moduli stabilized, we 

obtain the effective potential in the large volume limit. We then focus on getting the 

vacua of the potential and solving the cosmology equations. Finally we compare the 

solutions with observations in cosmology. 
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Chapter 1 

Introduction 

1.1 Why String Compactification 

The Standard Model of particle physics together with general relativity in 3 + 1 di­

mensions have been proved to be a very successful low energy effective field theory 

of nature. The predictions of the Standard Model and general relativity up to energy 

scales of 100 GeV have been tested by numerous high energy physics experiments as 

well as some of the cosmological observations which showed good agreement between 

the data and the predictions. However, the Standard Model Lagrangian consists of 

free parameters (the coupling constants, mixing angles, etc) which cannot not be de­

fined/constrained by the theory. To be compatible with the observation results, those 

free parameters need to be fine tuned extensively which makes the theory less satisfac­

tory from the phenomenological point of view. Moreover, the Standard Model is not a 

complete fundamental theory in the sense that it does not include quantum gravity into 

its framework. The quantization of general relativity perturbatively at high energies 

is a nontrivial task due to the non-renormalizable nature of the infinities (divergences) 

encountered in the procedure. 

There are many extensions to the Standard Model such as Minimal Supersymmetric 

Standard Model (MSSM) and the Grand Unified Theories (GUT). However, those ex-

1 



CHAPTER 1 INTRODUCTION 2 

tensions usually introduce new structures and parameters which make the theory even 

more complicated This is not satisfactory since any truly fundamental theory should 

be able to explain the source of the parameters and include all the fundamental interac­

tions (gravity, etc) m its framework 

String theory, on the other hand, is a unified and consistent theory which can solve 

the divergence problem at high energy scales and unifies the elements in quantum field 

theory, including gravity In string theory, the fundamental objects in nature are not 

point particles but one-dimensional strings (perturbative) and higher dimensional ob­

jects like the branes which characterize the nonperturbative regime String theory also 

lives in more than 3+1 dimensions The critical dimension of (supersymmetric) string 

theory is 10 (or 11 for M-theory) If strmg theory is correct, the low energy effective 

perturbative descriptions of string theory should be equivalent to general relativity and 

quantum field theory m 3 + 1 dimensions 

To derive the 3+1 dimensional physics from the ten-dimensional string theory, we 

need to do dimensional reduction, I e , via string compactifications, over the extra six 

dimensions Those extra dimensions are often called the internal space The param­

eters which characterize the internal space, like the length and the volume, a k a the 

moduli, provide an intrinsic explanation for the origin of the parameters in the Stan­

dard Model physics The procedure of dimensional reduction involves stabilizing the 

moduli and quantizing the background flux (nonvanishing tensor fields, quantization 

of F^ of electromagnetism, in the internal space) In this dissertation, we will focus on 

string compactifications on six-dimentional Calabi-Yau manifolds 

The study of string compactification can lead to better understanding of both practi­

cal problems, such as the driving force behind the formation of cosmological structure, 

and theoretical problems, such as how to constrain/define string theory beyond per­

turbation theory Phenomenologically, for our purpose in this dissertation, the effective 

action contams a Calabi-Yau sector and a Standard Model sector 
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1.2 Cosmology From String Theory 

The major goal of this dissertation is to use the result from string compactification to 

study perhaps the most fundamental subject in modern cosmology the early universe 

Most theories/models used in studying the early universe are based on assumptions 

and fine runnings due to the extreme aspects (the energy scale, etc) of the universe 

String theory can provide us with a powerful tool for exploring the origin and evolution 

of the universe Due to the large number of choices for the fluxes in string theory, the 

result is that there are a large number of vacua The spectrum of these vacua is called 

the string landscape Because the number of the vacua is so huge, it is almost unrealistic 

to find the right vacuum for our universe by studying each individual vacuum which is 

known as the strmg landscape problem As a result, we can say that string theory is not 

really a single theory but rather a large set of theories describing different universes 

Without a sampling mechanism for the strmg landscape, it is hard to figure out the 

correct theory for our universe To work around this problem, we often use moduli 

stabilization with flux to get some realistic models by requiring the resulting low energy 

effective theory being consistent with the four-dimensional Standard Model physics To 

guide for model building, the statistical approach, the study of the overall distribution 

of the vacua, are often used (1) (2) (3) 

The advantage of a strmg inspired or derived inflationary model is that the low 

energy effective theory comes directly from a unified theory (string theory) Thus it 

enables us to connect strmg theory with observations in cosmology, from which one 

can test or constram parameters in string theory Since the string energy scale is usually 

much higher than the energy scale in particle physics, it is almost impossible to find 

the fingerprint of string theory m current high energy physics experiment The early 

universe, on the other hand, involves processesat or near the string scale, and thus 

becomes an ideal test ground for theories beyond the Standard Model physics such as 

string theory 
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1.3 Dissertation Structure 

The dissertation consists of two parts: string compactifications and string cosmology. 

Starting from an introduction to complex geometry in Chaper 2, we present some basic 

concepts and results for Calabi-Yau manifolds as well as compactifications of type IIB 

theory on Calabi-Yau orientifolds. In Chapter 3, we briefly discuss flux compactifica­

tions and demonstrate the procedure of moduli stabilization in type IIB thoery. Then 

in Chapter 4, we show the standard scalar field theory and the solutions in cosmology. 

We derive the effective action from string compactifcation based on the previous chap­

ters in Chapter 5 and use it to build an inflationary model. In Chaper 6, we calculate the 

non-gaussianity for our inflationary model using both analytical method and numerical 

simulation. We summarize the dissertation in Chapter 7. Finally, the appendix contains 

both the Mathematica codes and the analytic detail that we used to solve the equations 

of motion in Chapter 4. The diagram below gives the main structure of this dissertation: 
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String Theory/M-theory 

Dimensional Reduction 
& Moduli Stabilization 

Effective Poten­
tial / tagrangian,. 

Cosmology Ep««|-
tions & SolutiiSs 

Summary 

Figure 1.1: The main structure of the thesis. 



Chapter 2 

String Compactification -

Mathematical Preliminary 

2.1 A First View on Extra Dimensions 

2.1.1 The Mathematical Nature 

It looks obvious that the world we live in is a (3+1) dimensional spacetime. However, it 

is possible that there might be much more information which are hidden from our sight 

in some invisible extra dimensions. In fact, if we are relocated to a three-dimensional 

hypersphere of some higher-dimension space we may not notice the difference from 

our own space. 

Mathematics tell us that the geometry in higher dimensions are startlingly differ­

ent from that in lower dimensions. For example, as shown, the two linked rings in 

Figure 2.1 are not separable without breaking one or the other. However, in a four-

dimensional space, these seemingly inseparable rings in three dimensions can be nat­

urally separated via continuous deformation. It is those mathematical properties that 

give unique physical characteristics can be used to explain important ideas in physics. 

Since we do not have the ability to visualize higher than three-dimensions, it might 

be hard for us accept the possibility that we might indeed live in such a world. The 

6 
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Figure 2.1: Two linked rings in three dimensions. Computer generated. 

spatial intuition people have is based on the three-dimensional image of the world that 

is projected onto their brain. On the other hand, a blind person's spatial intuition is 

primarily the result of tactile experience which may turn out to be deeper. Studies show 

that people who were born blind but gained sight afterward usually have a hard time 

distinguishing a square object from a circle during their first few days after gaining 

vision (via medical treatment). In contrast, they can immediately tell that a torus is 

different from a sphere (4). In mathematics, we know that topological structures like 

a square and a circle are topologically equivalent, while a torus and a sphere are not. 

It seems that our belief that what we see are the absolute truth sometimes limit our 

perception of the world. In this sense, mathematics provides us with the ultimate tool 

for exploring the nature beyond the reaches of our intuition. In string theory, we try to 

build a single, consistent mathematical frame work that can describe the fundamental 

interactions in nature. 

2.1.2 Physics Beyond Three-Dimensions 

People have been considering the possible existence of extra spatial dimensions beyond 

three for many years. In the 1920's, Kaluza (5) and Klein (6) first studied the case that 

electromagnetism and gravity in a five-dimensional spacetime where the fifth dimen-
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sion is curled up in a tiny circle Despite of their failure to derive any realistic four-

dimensional theory from this consideration, the Kaluza-Klein theory is very inspiring 

Since then, people have been developing and using the dimensional reduction tech­

niques to study problems involving extra-dimensions which later on became one of the 

fundamental ingredients for strmg theory (7) 

In Kaluza-Klem (KK) theory, the massless free particle, graviton, lives in a flat R3+1 x 

S1 spacetime The circle S1 is the compact fifth dimension which is curled up, such that 

the coordinate is periodic 

%i ~ %4 + 27rZ (2 1) 

The metric for this configuration is 

ds2 = ri^dx^dx" + dx4
2 (2 2) 

where the index /i, v label the coordinates of the four dimensional spacetime and I de­

note the radius of S1 Under the assumption, the Porncare invariance ISO(l, 4) is bro­

ken down to IS0{1,3) x (7(1) 

A generalization of the KK theory is the case where the n-dimensional spacetime 

is decomposed to a (n — 1)-dimensional spacetime and a circle S1 via the dimensional 

reduction techniques developed by Scherk and Schwarz (8) 

In strmg theory, the fundamental objects of nature are not zero-dimensional point 

particles but are one-dimensional strings as well as higher dimensional branes The 

idea of extra dimensions or compactified spaces plays an important/essential role in the 

theory It is often assumed that the sizes of the compactified spaces are small enough 

(usually considered as the size of the order of the Planck length) that makes them remain 

hidden from to observations However, the large extra dimensions m string theory are 

also being actively studied (9) One of the most recent development is the accessibility 

of extra dimensions at the LHC(the Large Hadron Collider) regarding which studies 

show that a rather low energy scale (strmg tension) seems to be particularly compatible 
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with the existence of large extra dimensions which might leave signatures in LHC (10) 

By studying the string dynamics, the goal is to derive the low energy effective the­

ory quantum field theory m four dimensions, I e , the Standard Model physics 

2.2 Compactification in String Theory 

Unlike many non-string phenomenological studies that have been done, which are often 

based on standard field theory models that are built upon a bottom-up approach, we 

will derive the effective field theory from string theory via compactification To make 

contact between ten-dimensional string theory and the f our-dimensional physics, which 

is usually called dimension reduction in string theory, we need to study what happens 

to the extra six dimensions 

Throughout this thesis, we will consider the six internal dimensions to be a Calabi-

Yau space of complex dimension three The reason behind this choice is that we want 

the resultmg 3+1 dimensional theory to possess N = 1 supersymmetry For this to hap­

pen, it was shown that the mternal space must be Ricci-flat and Kahler (11) One can 

also show that if the internal dimensions possess SU(3) holonomy, the D=3+l theory 

which results from M = 1, D = 10 string theory will have precisely N = I supersym­

metry1 Since Calabi-Yau manifold is Ricci-flat and Kahler and Calabi-Yau three-folds 

have SU{2>) holonomy, it satisfies the above consistency requirements 

A full discussion of the mathematics regarding the Calabi-Yau manifolds is far be­

yond the scope of this thesis The following section introduces some basic concepts 

of the Calabi-Yau manifold which is useful for later discussion For a comprehensive 

discussion on Calabi-Yau manifolds, we refer to (12) (13) 

1M = 1 supersymmetry arises when the ten-dimensional strmg theory is the heterotic strmg compacti­
fied on a Calabi-Yau manifold or type II compactifications on Calabi-Yau orientifolds 
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2.2.1 Some Geometry 

This section we will briefly review the basic concepts and results in complex manifold, 

which can be found in various textbooks of complex manifold, such as (14) (15). 

Differential Manifold An m-dimensional differential manifold M satisfies 

• M is a topological space; 

• M is endowed with a topology which consists of open subsets {[/,} which covers 

M; 

• Let the homeomorphism from Ut to an open subset U[ of Rm be 4>t. The map 

il)l3 = 0j o (f>~1 is infinitely differentiable. 

From the definition, we can assign a coordinate representation to the function / M —> 

R via the map / o <j)~l : <pz([/,)—>• R which is a map from Rm —>• R. The differentiability 

of / can be analyzed using multi-variable calculus. For the overlap of two subsets: U%3 = 

Ul n Uj, the differentiability of / is the same for both of the coordinate representation 

/ o <j)~l and / o <f)~l. And we have the relation: 

/ » C ' = / o ^ o ^ (2.3) 

where ^>y = <f>j o <f>~1 is called the transition function. 

Analysis on Differential Manifold On a manifold M, a vector is defined to be a tan­

gent vector to a curve in M. Let 0 £ (a, b), a curve c : (a, b) —> M, and a function 

/ : M —» K. A tangent vector on a manifold M at c(0) G M is a directional derivative of 

the function f(c(t)) along the curve c(t) at t = 0. In terms of local coordinate: 

v dx»{c(t)), 8 _ d 
x ~ dt lt=0d^ ~ x dx^ 

df(c(t)). _ df 
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where 
df J ( / o f ' W ) 

dxf dxv 

and 

/(p) = / o f 1 ( i ) , 4>{jp) = x, forpeM 

Complex Manifold The next concept is the notion of a complex manifold M is a com­

plex manifold if 

• M is a differential manifold, 

• the transition function i\)v is holomorphic 

A holomorphic function / Cm —> C is a complex valued function /(z) = u + iv 

which satisfies the Cauchy-Riemann relations for each z^ = x*1 + ly^ 

du dv dv du 
IfxM- ~ dyi*' dx^ ~ ~d~%f 

Complex Structure On a complex manifold M, the complex structure is defined as a 

linear map Jp between two complex vector space, Jv TPM -> TpM, by 

Jp\dx»)~dy^ p\dy»)~~ dx» ( ' 

or equivalently, 

Jp\dz»)~ldz»> Jp\dz»)~ ldz» ( 2 6 ) 

Note that Jp is a type (1,1) tensor and satisfies Jp = - 1 It takes the form 

Jv} 

\ 

J 
(2 7) 

with respect to the basis 

/ A A A I t ,28. 
Xdx1' ' dxm) dy1' ' dymi K ' 
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Equavalently, on the (anti)holomorphic bases 

ilm 0 
JP=\ I (29) 

0 -il„ 

which when written m tensor form is 

d d 
Jp = idz>* ® idz^ ® -7— (2 10) 

Kahler manifolds and Holonomy group A Riemannian metric g of a complex mani­

fold M is called a Hermitian metric if 

g(JpX,JpY)=g(X,Y) (211) 

for any X,Y £ TPM 

We further define a Kahler form fi of a Hermitian metric giiCl satisfies 

tt{X,Y)=g(JpX,Y), X,Y£TPM (212) 

We apply the metric compatibility condition on the Hermitian manifold One get 

the covanant derivatives of the complex structure. 

VK J = VK J = 0 (2 13) 

From the metric compatibility requirement, one can derive the connection coeffi­

cients 

T%l = <r\dKgl*, r L = 5
A ^ K ^ (2.14) 

The Riemann curvature tensor R is 

ft(X,y)Z = ( V x V y - V y V x - V [ x y ] ) z T (215) 
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where X, Y, Z 6 TPM and V is the covanant derivative 

One can show that the only Riemann tensor is 

AV = - c ^ l o g G (2 16) 

where G = det(g^) And hence the Ricci form 

K = iTZ^dz^ A dzv = -iddlogG (2 17) 

A Hermitian manifold M is a Kahler manifold if its Kahler form is closed 

dfl = 0, (2 18) 

where the Kahler form is a real two-form, defined by 

n = ig„vdz>* A dzv (2 19) 

A little algebra reveals that, to satisfy (2 18), the Kahler metric g^ must have the 

following properties 

dg^v = dgXv dg^ = dg^x 

8zx dz» ' <9zA dzv K ' 

Clearly, any g^ that given by 

<W = d»dvK(z, z) (2 21) 

satisfies (2 20), where K is a scalar function on the Kahler manifold It can be shown that 

any Kahler metric can be written as (2 21) The function K is called the Kahler potential 

of the Kahler manifold The Kahler potential is locally a real function in any coordmate 

chart on the manifold The Kahler metric can be globally defined by imposing the Kahler 
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tranformations on the Kahler potential 

K(z,z)~K(z,z) + h(z) + h{z) (2 22) 

The holonomy groups of Kahler manifold We now take a brief look at the holonomy 

groups of Kahler manifold which is the last element we need to introduce before dis­

cussing the Calabi-Yau manifold Consider a loop C which begins and ends at a point p 

on a Hermitian manifold (M, g) with complex dimension m M is equiped with a metric 

connection T Parallel transport a vector X £ TPM along the loop C The orientation of 

the new vector X' after the parallel transportation will generally end up being different 

fromX's Let 

X' = hX (2 23) 

where h turns out to be an U(m) transformation We find that U(m) is decomposed mto 

SU(m) x £7(1) For the Ricci-flat metric, this means that the parallel transportation group 

is contained in SU(m) Repeating the procedure by parallel transportmg the vector 

along all possible loops at p, we get a collection of h £ SU(m) The group regardmg the 

change of the orientations after these parallel transportations is called the holonomy of 

M, which is a subgroup of SU(m) 

2.2.2 Calabi-Yau Manifold 

A Calabi-Yau manifold is a compact Kahler manifold with a vanishing first Chern class 

(16) 

Cl 
2^ 

0 (2 24) 

where g is the metric for the manifold which is thus flat It was proven by Yau that a 

compact Kahler manifold with vanishing first Chern class adimits a Ricci-flat metric 

The r-th Chern class of a manifold M is defined as of cr(M) = H2r(M), r = 1, , m It 

can be obtained from the expansion 
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c(M) = 1 + J2 c3 ( M ) = ! + tr(n) + tr(K A Tl - 2(tr{TZ))2) + (2 25) 
3 

where Tl is the curvature two-form Thus the first Chern class is equal to the trace of the 

curvature two-form 

For n = 1 ( complex dimension) the only Calabi-Yau manifold (denoted as CY\) is 

the torus T, for n = 2 we have the K^ manifold For n < 3 there are more than one 

Calabi-Yau manifold The n = 3 case is the main focus of this chapter 

The Calabi-Yau 3-fold We are interested in Calabi-Yau manifolds of 3 (complex) di­

mensions One such example is the qumtic hypersurface on P4, the 4 dimensional com­

plex projective plane, with homogeneous coordinate (z\, ,z$) It satisfies the follow 

polynomial equation 

P(zi, ,zs)=0 (2 26) 

where P is some homogeneous polynomial of degree five 

One can show that the expansion of (2 25) takes the form (12) 

c(M) = ̂  = 1 + ± (n Il) {-qr-r (2 27) 
1+qJ 

fc=0 

where n is the dimension of P4, q is the degree of the quitic polynomial and J is Kahler 

form on Pn As expected, ci vanishes for n = 4, q = 5 here 

Hodge numbers of the Calabi-Yau 3-fold The Betti number bp of the de Rham Coho-

mology group HP(M) of the Kahler manifold M is a sum of the Hodge numbers 

3 

b3=YlhP3-P <228) 

Any Calabi-Yau orbifold can be characterized by its Hodge numbers Because the coho-

mology group HP(M) is isomorphic to Hm~p(M), where m is the dimension of M, the 
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Hodge numbers satisfy the following relation 

llpfi — h"m—p,0 (2.29) 

There are two additional duality relations 

^p,q — "'QiP' P><? — "'m—q,m~p (2.30) 

In the case of a Calabi-Yau 3-fold, we have 

^o,o — 1J h\o = hoi = 0 

Thus we have the following Hodge diamond 

d=3 

0 0 

0 hhi 0 

1 h2,i hi>2 1 

0 / i M 0 

0 0 

1 

The Eular number of the Calabi-Yau 3-fold is 

2m 2 3 

X = £ ( - I ) P 6 P = £ ( - ! ) % = 2(ft1'1 - h2'1) 
p=0 p=0 

which can also be obtained by the index theorem (17) (18): 

(2.31) 

X = £(-l) r + Sftr (2.32) 
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Example of Calabi-Yau Manifold Let us consider the most popular and simplest CY 

manifold the quintic hypersurface in P4 given by the solutions which satisfy the ho­

mogeneous polynomial equation 

Q{z) = J2 c(n0,n1,n2,n3,rH)z^z^z^z^z24=0 (2 33) 

This equation contains 5u(5+5Ii)-5y = 126 (complex) coefficients c(no, ni, n2, n^, 774) 

(19) Restraining the coordinates in GL(5), the number is reduced to 126 — 25 = 101 

The number of independent coefficients of the quintic polynomial then gives the num­

ber of complex structure deformations, 1 e , h2 1 As a Kahler manifold, it has one Kahler 

deformations, le hi 1 = 1, which is inherited from the fact that CP4 is a Kahler defor­

mation 

2.2.3 Type IIB Compactifications On Calabi-Yau Threefold 

There are many ways to obtain an N = 1 supersymmetnc theory in 4-dimensions from 

10-dimensional string theory type IIA/B on Calabi-Yau onentifolds, orbifold compact­

ifications of the heterotic string, F-theory on Calabi-Yau four-fold, as well as M-theory 

on manifolds of G2 holonomy (20) (21) In this thesis, we choose to focus on type IIB 

theory compactification with branes and fluxes There is a reason why we choose type 

IIB instead of type IIA Firstly, type IIB compactifications on Calabi-Yau three-fold, in 

appropriate limit, is equivalent to F-theory compactified on Calabi-Yau four-folds (22) 

2 Secondly, the nontnvial warp factor (see Chapter 3) indicates that the manifold is 

not exactly a Calabi-Yau manifold, which will make the problem more complicated 

However, in type IIB compactification the underlying manifold can be approximately 

treated as a Calabi-Yau manifold when the volume of which is large and the warp factor 

only introduces a small perturbation This is not the case in type IIA compactification 

(23) On the other hand, due to mirror symmetry between type IIA and type IIB onen-

2More generally, there is a limit, m which type IIB compactifications on Calabi-Yau n-fold after orien-
tifolding is equivalent to F-theory compactified on Calabi-Yau (n + l)-folds 
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tifolds, both compactifications on Calabi-Yau three-fold can be shown to be equivalent 

(23) Therefor, for the sake of simplicity we focus the discussion in this thesis to type IIB 

onentifolds 

Compactifications of type II strmg theory on Calabi-Yau three-fold gives an N = 2 

theory in four dimensions The massless bosonic spectrum3 of type IIB string theory in 

D =10 dimensions consists of the metric g, the dilaton 4> and the axion I, a two-form B2 

m the NS-NS sector, a two form C2 and a four form C± m the R-R sector (24) 

The textbook D=10 low energy effective action from type IIB theory is given by 

SflB = " /" (\R+ \d^ A *d,£ + \e~*H3 A *H3 

• I (e^dl A *dl + e^F3 A *F3 + fracl2F5 A *F5\ 

C4 A ff3 A F3, (2 34) 

1 
~ 4 

1 
~ 4 

where the field strengths are 

H3 = dB2, F3 = dC2 - ldB2, 

F5 = dCA - ^dB2 A C2 + ^B2 A dC2 (2 35) 

Choose the coordmates such that the metric after compactification is block diagonal, 

i e , 

ds2 = g^dx^dx" + gI]dy1dy] (2 36) 

where xM are the Minkowski spacetime coordinates and y1 are the coordmates of the 

Calabi-Yau manifold 

The Kahler form after deformation is given by (24) 

J = igIJdyIdyJ = v(x)A03A, A =1,2, ,/1(11), 

3 We will marnly focus on the non-frerrmomc degrees of freedom 
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where the v(x)A are ft/1'1) scalar fields and the (l,l)-forms us A form a basis of the coho-

mology group H^1'^ on the Calabi-Yau threefold. 

The deformations corresponding to the (2,l)-forms are (25) 

% J = P f | 2 ^ ( X B ) / 7 j f i j , B = l, ,h^ (2.37) 

where the product of the the holomorphic (3,0)-form 

\\n\\2 = ^nIJKnIJK (2.38) 

and XB form a basis of H^-'2\ 

Similarly, B2, C2 and C4 can be expanded in terms of the harmonic forms 

B2 = B2{x) + bA{x)uA, A =1 ,2 , , / i ( M ) , 

C2 = C2{X) + CA{X)UJA, A =1 ,2 , ,/i (1 '1), 

Ci = D2
A{x) AuA + VB(x)AaB-UB(x) A PB + PA(X)CJA, B = 1, ,/i1-2. (2.39) 

where QA are harmonic (2,2)-forms and as , PB are harmonic three-forms. 

In the end, the N = 2 massless spectrum consists of the gravity multiplet (g^, V°), 

the vector multiplets (VB, zB), the hypermultiplets (vA, bA, cA,pA) and a double-tensor 

multiplet (B2,C2, <j>,l) (24): 

gravity multiplet 

vector multiplets 

hypermultiplets 

double-tensor multiplet 

1 I ( < V ^ ° ) 

ft(2,l) | ( y B j Z B ) 

/A1) | (vA,bA,cA,pA) 

1 | (B2,C2,t,l) 

Figure 2.2: j\f = 2 multiplets for type IIB compactification on Calabi-Yau manifolds. 
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One can insert the harmonic forms defined above into (2.34) and obtain the N = 

2, D = 4 low energy effective action (for details of the calculation, see (26))' 

SW = J ^R+l-ReMKLFKAFL + hmMkiF
KA*FL-GKLdzKA*dzL~habdqaA*dqb, 

(2.40) 

where FK = dVk and 

FK = f Q A aK, XK = / nAPK, FKL = dFK/dXL 

JCY JCY 
(2.41) 

Here MKL IS the gauge kinetic metric which can be expressed in terms of FKL and 

XK qa denotes all h^l, 1) + 1 hypermultiplets and hab is a quatermonic metric 

Now we have briefly reviewed the N = 2 low effective action from type IIB com­

pactification. One thing to note is that here the potential is flat, I e., the supergravity 

potential vanishes, and none of the moduli are stabilized In the next chapter we will 

focus on deriving the N = 1 effective action by imposing the orientifold projections. 



Chapter 3 

Flux Compactifications and Moduli 

Stabilization 

In this chapter, we will discuss the D = 4 dimensional, N = 1 supersymmetnc low 

energy effective action for strmg compactifications on Calabi-Yau onentifolds in the 

presence of background fluxes Type IIB compactifications on Calabi-Yau threefold re­

sult in an N = 2 theory in four dimensions However, by adding D-branes/orientifold 

planes, the amount of supersymmetry is broken and we get an N = 1 theory which is 

phenomenologically of the most interest 

In what follows, we will consider type IIB strmg theory compactification on Calabi-

Yau three-fold in the presence of 0 3 / 0 7 orientifold planes in the manifold This, m an 

appropriate limit, is equivalent to F-theory compactification on an elliptically fibered 

Calabi-Yau 4-fold (22) (27) The 0 3 / 0 7 planes are considered in order to further ensure 

the stabilization of the D-brane configuration1 For comprehensive reviews, see (28) (29) 

(30) 

'We do not consider the 0 5 / 0 9 planes, not only because no 5-form flux is mcluded m our configuration 
but because there is no equivalent F-theory counterpart for the 0 5 / 0 9 case 

21 
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3.1 Flux Compactifications 

A non-trivial scalar potential will lead to the stabilization of moduli The scalar potential 

arises due to the non-trivial fluxes or branes Consider a warped geometry where the 

associated fluxes threading cycles of the internal manifold are non-vanishing An (n + 

l)-form field strength F = DA, where A is an n-form potential, generates a magnetic 

flux 

F (31) 

where S„+i is a nontnvial cycle of the Calabi-Yau manifold 

The same field also generates an electric flux 

*F (3 2) 
D/n+l) S"( 

in -D-dimensions, where * is the Hodge dual operator 

By Bianchi identity (28), any flux (NS or RR) should satisfy 

\=— f F £ Z (3 3) 
(27rVo7)n 7s„+1 

for any n + 1-cycle , which only depends on the homological properties of the cycle 

3.2 Type IIB Flux Compactifications On Calabi-Yau 03 /07 Ori­

entifold Planes 

We start from type IIB theory compactified on a Calabi-Yau threefold The string world-

sheet parity operator flp only acts on the internal manifold while keeping the four di­

mensional Minkowski spacetime untouched By definition Up swaps the left- and ngth-

movmg sectors of the closed strmg and flips the two end points of the open string via 
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(31) 

Closed: 0P : (ai,a2) —> (27r — ai,a2); 

Open: 0 p : (T, a) -> (T,W - a). (3.4) 

where a is a discrete holomorphic isometry which leaves both the metric and complex 

structure (and hence the Kahler form) invariant. The combination of flp and a forms the 

orientation projection. 

Note that £lp and a are both of order two and commute 

ft2 = a2 = 1 (3.5) 

Introduce the the spacetime fermion number in the left-moving sector, FL. We are 

free to choose two different orientation projections 

a*n = -n, o = (-i)FLnpa* 

or 

a*Q = n, 0 = flpa* 

(3.6) 

where Q is the holomorphic three-from and a* is the pull-back of a. Here O is a symme­

try operator. The first choice leads to 0 3 / 0 7 orientifold planes while the second choice 

gives 0 5 / 0 9 planes. We will focus on the former in what follows. 

As discussed in the previous section, if we choose the orientation projections 

a*Q = - Q (3.7) 

it will lead to Calabi-Yau orientifolds with 0 3 / 0 7 planes. 

There holomorphic groups H^p'qS> split into two (even and odd) eigenspaces under 
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the action of a* 

H(Pi) = H(pq)(BH(p<i) (3 8) 

each havmg h+ and h_ dimensions, respectively 

Omittmg the details (32), we give the N = 1 spectrum of the 0 3 / 0 7 orientifold 

compactifications 

gravity multiplet 

vector multiplets 

chiral multiplet (1) 

chiral multiplet (2) 

chiral multiplet (3) 

chiral/linear multiplets 

i 1 (g^v0) 

h(2D\ yk 

h{2l)\ Zk 

i | r>,o 

h{ll) (ba,ca) 

h{+1] | (Va,pa) 

Figure 3 1 N = 1 multiplets of 0 3 / 0 7 orientifold compactification 

Compared to Figure 2 2 we notice that the h^2 ̂  vector multiplets in the M = 2 

(2 I) (2 I) 

theory are decomposed into hy
+ ' vector multiplets and h_ ' chiral multiplet m the 

JV = 1 theory 

Before deriving the effective action m type IIB compactifications, we need to con­

sider the background three-form fluxes H3 and F3 on Calabi-Yau manifold Defme the 

complex flux 

G3 = F3-TH3, T = Z + ie-* (3 9) 

Due to the fluxes, the metric in (2 36) is rendered to 

ds2 = e2AMglu/dxi1dxv + e-2AMgIJdyIdyJ (310) 

where A(y) is called the warp factor and x and y are the coordmates of the Minkowski 

and internal manifold (Calabi-Yau) respectively 
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If no brane sources are included, the fluxes and the warp factor A(y) will turn out 

to be trivial (otherwise the equation of motion cannot be satisfied) in the supergravity 

approximation due to the no-go theorem (33) This will rule out the warped compactifi­

cations of string theory to a Minkowski or de Sitter spacetime To circumvent the no-go 

theorem, it is necessary to include brane sources to cancel the undesired contribution 

m the equation of motion from the warp factor and fluxes (34) In general, Dn-branes 

are used to cancel the contributions from n-form fluxes Fn This leads to the so called 

tadpole-cancellation condition which determines the charge of the branes In the case of 

the D3-brane and the three-form flux F3, the tadpole-cancellation condition reads (35) 

^ 2 T 3 JA 
H3AF3 + Q3=0 (311) 

M 

where Q3 is the total charge carried by the D3-brane2 

Without discussmg the details, we give the effective action of the 0 3 / 0 7 flux com­

pactification (24) 

/ ? 
JM31

 L 

S03/07 ~ 2R~V 

+ ^KeMkiF
k AFk + hmMkiF

k A *Fl + terms of multiplets (3 12) 

where the rest are the terms generated by the various multiplets which we do not write 

down explicitly here 

Our goal is to find the j\f = 1 D = 4 low energy effective action for the compactifi­

cation In j\f = 1 supergravity, the standard F-term scalar potential can be expressed m 

Actually, there are other object which can also give contributions to Q3 
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terms of a Kahler potential K, and a holomorphic superpotential W by (39) 

V = eK (gl~WlWDJW - 3WW) (3.13) 

DZW = dtW + Wd%K (3.14) 

Q- = 9,^/C (3.15) 

where the superpotential and the scalar potential have a natural interpretation in the 

context of complex manifold. In order to generate the scalar potential in (3.12), it can be 

shown (40) that the classical superpotential is given by the following expression 

W= ( ft AG3. (3.16) 
JCY 

3.3 Moduli Stabilization In Type IIB String Theory 

The key in string phenomenology is to obtain realistic vacua from string theory. Moduli 

stabilization is a necessary step to obtain stabilized vacua from string compactifications. 

These moduli usually include the complex structure moduli and Kahler moduli. We 

will discuss two types of model in moduli stabilization: the KKLT (36)3 method and the 

Large Volume Scenario (LVS) (41), with the latter as the main focus of this chapter. 

KKLT 

Let's briefly review the KKLT method. In the KKLT set-up, all moduli are stabilized on 

a Calabi-Yau 0 3 / 0 7 orientifold to obtain metastable de Sitter vacua in type IIB theory, 

when anti-D branes have been added, by considering nontrivial NS and RR three-form 

fluxes (36). 

Start from F-theory compactification on an elliptic Calabi-Yau fourfold. The tadpole 

3Stands for the four authors: Kachru, Kallosh, Linde and Trivedi. 
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condition is 

X{X) 
~2T-1"u^2^f:. ND3 + 77T5-T / #3 A F3 P 17) 

where ND3 is the number difference between the D3 branes and anti-D3 branes and 

x{X) is Euler characteristic of the underlying fourfold X 

The three-form fluxes generates a Gukov-Vafa-Witten (42) superpotential for the 

complex structure moduli 

W = 9,AG3 (318) 
JM 

where G3 = F3 — TH3 and Q is the holomorphic three-form of the Calabi-Yau manifold 

T is the type IIB axio-dilaton 

The Kahler potential at tree level reads (43)4 

/C = -31n[-?(T - f)] - \n[-i(r - f)] - In (-i f QA Qj (3 19) 

The first term depends only on the radius modulus, and the second and the third term 

depend on the dilaton and compplex structure moduli, respectively 

The scalar potential is given by the standard supergravity fomula (3 13) 

V = eK (QIJDiWDjW - 2>WW\ = eK (G^DtWD}W\ (3 20) 

where / , J run over all moduli, while i,j only run over the complex structure and the 

dilaton The potential is thus mdependent of the volume modulus T, due to the special 

form of (3 19)5 

The presence of Euclidean D3-brane instantons leads to non-perturbative correction 

to the superpotentail and hence the scalar potential Considermg the leading order 

4For simplicity, we consider the case where hi i = 1, and hence there is a single Kahler modulus that 
determines the volume of the Calabi-Yau manifold 

5When ftn > 1 the potential is still mdependent of all the Kahler moduli 
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corrections from instantons, the superpotentail (3.19) becomes 

W = Wo + J2 Aie~a%T' (3-21) 

where the Kahler moduli T2 = rt + ibt with T% and bt being the four cycle volume around 

which the D3 brane wraps and the axion, respectively. The parameter At's depend only 

on the complex structure moduli. The non-perturbative corrections thus make the scalar 

potential depend on the Kahler moduli. 

The condition 

DtW = 0, (3.22) 

where the derivatives are along the complex structure moduli and dilaton, defines the 

supersymmetric vacua which turns out to be anti de Sitter. 

Large Volume Scenario 

The KKLT scenario discussed in the previous section has some limitations such as nar­

rowly allowed parameter space which are often not desirable in building realistic mod­

els. The LVS improves the idea of KKLT and eliminates many restrictions of the KKLT 

scenario. 

In the LVS, the Kahler potential is given by 

K. = - 2 In I V + ^ % - ln(- i(r - f)) - In ( -i f ft A ft (3.23) 

Here gs is the string coupling, ls is the string length, ft is the holomorphic three-form on 

the Calabi-Yau manifold M, G3 is the background field (flux) that is chosen to thread 

3-cycles in M. V is the Calabi-Yau volume and 

C(3)X(M) 
4 2(2TT)3 ^ ' Z 4 j 
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where x is the Euler number of M. 

The axion-dilaton field is r = Co + i e~^, and the integrals involving ft are implicitly 

functions of the complex structure moduli. The fields Tt = T% + ibt are the complexified 

Kahler moduli where T, is a 4-cycle volume (of the divisor Dt £ H^M, Z)) and b% is 

its axionic partner arising ultimately from the 4-form field. Here a, = 2ir/Nl for some 

integer Nlr for each field, that is determined by the dynamical origin of the exponentials 

in the superpotential (AT, = 1 for brane instanton contributions, AT, > 1 for gaugino 

condensates). Finally, V is the dimensionless classical volume of the compactification 

manifold M (in Einstein frame, but measured in units of the string length). In terms of 

the Kahler class J = Y^ t%Dt (by Poincare duality Dt £ H2(M, Z)), with the tl measuring 

the areas of 2-cycles, Cu 

V = f J3 = l-Kl2kt
ltHk , (3.25) 

JM 6 

where Kl3k are the intersection numbers of the manifold. V should be understood as an 

implicit function of the complexified 4-cycle moduli Tk via the relation 

n = dtlV = \Kl]ktH
k (3.26) 

The first term in the Kahler potential comes from the a' correction (35). It can be 

expanded in inverse powers of the volume V. 

Similar to the KKLT scenario (3.21), the superpotential takes the form 

W= f G3An + J^Aie-a'T> (3.27) 
JM <-? 

Again, the second term comes from the non-perturbative correction 

wnp = j2A*e~~aiT* (3-28) 

We have assumed that all of the Kahler moduli Tt appear in the superpotential (see 

(44) for examples) and that we use a basis of 4-cycles such that the exponential terms in 
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W take the form e_a*T*. As these exponentials arise from an instanton expansion, in or­

der to only keep the first term as we have done, the 4-cycle volumes must be sufficiently 

large to ensure that Re(alTl) 3> 1. 

The scalar potential has the following form (41) 

V = Vnpi + Vnp2 + Va, (3.29) 

where 

Vnpi = eK{GfldlW^ch]Wnp) (3.30) 

Vnp2 = eK{G^dlW^d-K{Wo + Wnp) + dtK(W0 + Wnp)d-0Wnp} (3.31) 

and 

Vc/ = {G»d%Kd-3K - 2>)\W\2 (3.32) 

To write down the explicit expression of the potential, we need to obtain the metric 

G13 of which the full analytic form has been calculated in (27). In the large volume limit, 

Gy can be expanded in terms of the inverse of the volume. Keeping only the first few 

terms in the expansion will result in a much simpler expression. The same approxi­

mation can be applied to the potential. Unlike the KKLT scenario where the resulting 

vacua are supersymmetric AdS, in the LVS the vacua obtained are non-supersymmetric 

AdS. 

Finally, to obtain dS vacua, we need some uplifting mechanism to uplift the minima 

of potential to positive values. To do this, a uplifting term Vup\m is added to the scalar 

potential. The form of the term VUpiift in (3.13) depends on the kind of supersymmetry 

breaking effects that arise from other sectors of the theory. We take 

Uplift - y2 
(3.33) 
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which will describe the energy of a space-filling antibrane (36), fluxes of gauge fields 

living on D7-branes (45), or the F-term due to a non-supersymmetric solution for the 

complex structure/axion-dilaton moduli (72) 

The assumption is that the complex structure moduli and the axion-dilaton acquire 

heavy masses without the uplift contribution and they are then decoupled from the low-

energy theory Thus their contributions to K. and W are constants for our purposes6 

K = - 2 1 n ( V + 2)" l n © + / C 0 ' 
W = -^L I Wo + J2 Ae""'r- J , (3 34) 

where KQ (WO) IS the complex structure Kahler potential (superpotential), evaluated 

at the locations where the complex structure moduli have been fixed It was shown 

m (41) that, when the Euler number, x < 0/ f° r generic values of W0 (and hence of the 

background fluxes G3), the scalar potential for the Kahler moduli has a minimum where 

the volume V of the Calabi-Yau manifold M is very large - the associated energy scale 

is a few orders of magnitude lower than the GUT scale Furthermore, in these Large 

Volume Scenarios there is a natural hierarchy - one of the Kahler moduli is much larger 

than the others and dominates the volume of the manifold For our purposes they are 

also attractive because the scalar potential admits an expansion in inverse powers of 

the large volume V This will allow us to carry out analytical calculations of inflation 

arising from Kahler moduli rolling towards the large volume minimum of the potential, 

see chapter 5 & 6 

The condition that the volume is large enough translates into a special choice of the 

Calabi-Yau manifold since the volume is explicitly determined by the geometry of the 

four-cycle (3 25) To further simplify the problem, we usually choose a particular type 

of manifold where there is one big four-cycle and all others are relatively small This 

6tn the case of the F-term breaking due to the complex structure/axion-dilaton moduli (72), the con­
tribution of the complex structure and axion-dilaton moduli to the scalar potential does depend on the 
volume (3 33) 
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will give rise to a volume of the form 

V oc Airf72 - ] T \3T]12 ~ \ir\12 (3.35) 

where TI denotes the big four-cycle. 

In the next chapter, we will use the result from the LVS discussed above to obtain 

our effective action for string cosmology. 



Chapter 4 

String Cosmology 

4.1 Probems in The Big Bang Model 

In the standard Big Bang model the universe is described by different stages with either 

radiation or matter domination. The evolution of the universe in the theory is a process 

of decelerated expansion. However, this theory runs into several problems which can­

not be solved unless we assume that the universe undergoes an epoch of accelerated 

expansion, i.e., inflation, in the early universe (46). 

The backbone of the conventional Big Bang model is Einstein's theory of general 

relativity 

GM„ = 8nGT^ - Ag^ (4.1) 

where G^„, T^, A and G are the Einstein tensor, the energy-momentum tensor, the cos­

mological constant and the gravitational constant. Hereafter we set the units h = c = 1. 

The observations tell us that the universe is extremely isotropic and homogeneous 

on large scales. The natural choice for the metric is the Friedmann-Robertson-Walker 

(FRW) metric 
dr2 

ds2 = ~dt2 + a2{t)[ + r2(d62 + sin29d<j)2)} (4.2) 
1 — rZT 

With a positive cosmological constant (which has been confirmed by observations) 

33 
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the Emstem equation (41) yields 

where p is the energy density of the universe This is the so called Friedmarm equation 

in cosmology 

Define the critical density 
3H2M2 

p° = -&r> (44) 

and (4 3) can be written as 

o _ i = _ 
2JJ2 

where ft = £• Thus, for t (present stage) and to (initial stage) 

ft(t0) - 1 _ a2(t) 
ft(t) - 1 ~ a2(to) 

" - 1 = 3 ^ 2 (45) 

(4 6) 

In the standard Big Bang model, a is decreasing and this ratio is extremely small (~ 

10~56) Smce we know from observations that the present ft(t) is very close to unity, the 

initial condition ft (to) must be fine tuned extremely close to unity in order to satisfy the 

Fnedmann equation This fine tunning problem is usually called the flatness problem 

There is another initial condition problem, called the horizon problem In the conven­

tional Big Bang model, the very early universe consists of many causally-disconnected 

bubbles(regions) During the expansion those bubbles remain and become more causally-

disconnected(acausal) On the other hand, we know that the universe today is very ho­

mogeneous (meaning that the properties in different regions are extremely similar) It is 

difficult to explain why regions that are not in causal contact (I e , outside each other's 

horizon, hence the name "horizon problem") can have almost identical properties 

To solve these problems, one may either claim that the initial universe is unnat­

ural, l e , born with extremely fine tuned initial conditions, or modify the theory to 

make it be compatible with the most generic (natural) initial conditions In physics we 
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tend to favor the theory from a natural choice of initial conditions. The most successful 

such theory is the inflation paradigm which is the main subject that will be discussed 

throughout this chapter. 

4.2 The Idea of Inflation 

The observation tells us that the universe on large scales is extremely homogeneous and 

isotropic. We are interested in studying the physics laws and initial conditions in the 

very early universe which can lead to such a homogeneous and isotropic universe. In 

the last section, we show that there are problems in Big Bang theory which prevent it 

from becoming a consistent theory of the universe. Inflation provides an robotic mech­

anism which solves many of the problems appears in the standard Big Bang universe. 

And the predictions of inflation are strikingly accurate when compared to the observa­

tion data, such as the Cosmic Microwave Background (Figure 4.2 ). 

In the standard Big Bang model, the Hubble radius (aH)*1 is increasing. We find 

that the initial problems discussed in the previous section can be easily solved by as­

suming that the Hubble radius is decreasing rapidly in the early stage of the universe. 

Consequently, the scale factor a is increasing exponentially, causing a dramatic inflation 

of the universe. The condition which defines inflation is 

i^-l = wy<Q> (47) 

i.e., 

a > 0. (4.8) 

Equivalently, the following important parameter 

e = - ^ = 1 - ^ < 1 ' (49> 

which is the condition for inflation. In the so called slow-roll paradigm, e < 1 which 
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Figure 4.1: The Cosmic Microwave Background (CMB) measured by the Wilkinson Microwave 
Anisotropy Probe (WMAP). Inflation is believed to be a key part of the evolution of the uni­
verse when comes to study the fundamental microphysical nature of the CMB origin. Credit: 
NASA/WMAP team. 
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usually indicates that the associated potential in the model is very flat, e can be ex­

pressed in terms of the kinetic energy and the potential using the Friedmarm equation 

which will be discussed in the next section. 

4.3 The Scalar Field Theory 

As we have discussed in the previous chapter, there are many scalar fields arising from 

flux compactifications. The general study of scalar field in cosmology theory will be 

performed within the current section. The content of this section can also be found in 

(83). In the next chapter, we will focus on a specific class of models coming from flux 

compactifications. 

4.3.1 The Background Equations of Motion 

Assuming that we get an effective Lagrangian from string theory, the next step is to 

derive the equations of motion in cosmology and obtain the solutions. It is natural 

to split the spacetime metric into two parts: the exact homogeneous background metric 

and the small inhomogeneous deviations from the background metric. The line element 

reads 

ds2 = (<$ + Sg^dx^dx" (4.10) 

where we can choose the background metric to be the Friedmann-Robertson-Walker 

(FRW) metric 

g{°J=Sij[l + 4kr2}-2. (4.11) 

We will work in the flat universe in which k = 0 

(4.12) 

u 
0 

0 

i o 

0 

a2(t) 

0 

0 

0 

0 

a2(t) 

0 

0 \ 

0 

0 

a2(t), 
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The line element for the background becomes 

ds2 = -dt2 + ^{tjg^dx'dx3 = a2(r)){-dr)2 + g^dx'dx3) (4.13) 

where rj is the conformal time: dr\ = *. 

We start with the scalar field theory for a general form of Lagrangian. The action in 

which the scalar fields <f> are minimally coupled to gravity: 

S = J d^V^gi^ - \habg»vd^adv4:b - V (</>)] (4.14) 

where hab is the metric on the space of fields, </>°-space. We work in units where K2 = 

8irGN = Mp~
2 = 1. Mp is the Planck mass, ~ 2.4 x 1018 Gev. 

The background metric and fields, <?M„ and cf)a, satisfy the usual equations of motion 

obtained by varying the action S (4.14). This gives rise to the following field equations 

for the background fields 4>a, 

[ ^ + ^ = = ( ^ 7 = 2 ) ] W " U / + Va = 0 , (4.15) 

where gj2_ j s the covariant derivative. For flat space, g = —a6, and assuming that the 

fields are homogeneous, 4>a — 4>a{t), Eq. (4.15) becomes 

+ iZAr^ + 3H^- + h^-jr = 0, (4.16) 
dt2 lbc dt dt dt 

where 7^, is the Christoffel connection on the space of fields. 

Introduce the notation 

d<f>b •• D 
(4.17) 

where £ denotes the covariant derivative on the coordinate space, while V^ is the co-

variant derivative on the field space (labeled by b). 
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The field equations for <f>a can be simplified 

4>a + iH(j}a + V a = 0 (4 18) 

Varying S with respect to the spacetime metric gives the Einstein equations 

3H2=^a + V, (419) 

H = - ^ d > a (4 20) 

The background equations determine the evolution of the mflaton and how long 

inflation will last, the e-foldmg time, AT In most cases, the light fields and the heavy 

fields1 are decoupled, l e , the heavy fields remain constant most of the time when the 

light fields is rolling Thus, the inflaton is always one, or a subset, of the light fields 

which controls the dynamics of mflation However, m what follows, we will not make 

any assumptions about which fields are froz:en and which are dynamic, but rather es­

tablish this fact as part of the calculation 

4.3.2 Perturbations 

In general, the metric perturbation Sg^ has three different types of components scalar, 

vector and tensor, classified by the way in which each component transforms under 

coordmate transformations In what follows, we will focus on the scalar perturbation 

which is responsible for the existence of mhomogeneities in the universe 

The most general scalar perturbations on the background spacetime metric is (53) 

(54) 

ds2 = - ( 1 + 2A)dt2 + 2aBtdxldt + a2[(l - 2ip)8lJ + 2En\dxldx3 (4 21) 

where A,B,E are scalar functions of spacetime coordmates 

Now we have the freedom to choose a gauge such that two of the metric perturba-

'The "light" fields have effective masses less than the Hubble parameter, m\ = Vn < V ~ H2, while 
the "heavy" fields are heavier than the Hubble parameter 
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tions in (2.10), (A, B, ip, E), vanish. Throughout this paper, we will apply the following 

gauge conditions 

B = ^ = 0 (4.22) 

There are also other gauge choices, such as the longitudinal gauge defined by B = 

E = 0 and the synchronous gauge in which A = B = 0. There is a nice discussion of 

different gauge choices given by Hu (117). For the sake of simplifying the equations of 

motion, we find it most convenient to use the gauge (4.22). 

The perturbative Einstein equations are 

5G°o = STg, 5G° = ST? (4.23) 

where G„ is the Einstein tensor and Tjf is the stress tensor: 

7? = hab9pp4>adu<Pb - <tf (^ W 1 ^ " ^ 6 - V) (4.24) 

Under the gauge (4.22), the metric perturbations are (55) 

Sgoo = -5g00 = 2,4, Sg0l = 6g°* = 0. (4.25) 

Let 4>a and their perturbations, 84>a, be evaluated at a particular (comoving) wavenum-

ber k, i.e., 

(j)a = <f,%{t)= I' d3x<j>a{x,t)elkx (4.26) 

0O(x,t) = wr I' d3k<t>k^e~lkx' (4-27) 

and similar for the perturbations. In what follows, unless otherwise stated, we will omit 

k in 4>% f° r simplification. 



CHAPTER 4 STRING COSMOLOGY 41 

The perturbative Einstein equations become 

6H2A-2k2HE = -A4>a(t)a + $aj5<t)a (4 28) 

2HA = 4>aS<j)a (4 29) 

Combine these equations with (4 18) to get 

A + k2E = 5rjt(^\ (4 30) 

Consider the metric perturbation in (4 15), we get the following equation 

^Scf>a+3H jtS^a+Ra
cbd^

d^b+^Sr+S4>bV ab = {A+k2E)^a+2A{<t>a+2,H<j>a) (4 31) 

Note that the scalar potential A and the distortion E on the right hand side can be 

eliminated using utilizing(4 29) and (4 30) 

{A + k2E)<j>a + 2A((f)a + m^a) = Scj>ajt ( ^ U a + ^4>a4>bS4>h + Wa<t>bS<t>b 

a3 dt[HV V J 

Finally, the equation of motion for the perturbed fields are (55) 

^5</>a + 3Hjt5<t>a + Ra
M^4>Hb + ^S<t>a + SfoV ab = ^ £ [ ^ 0 6 ] (4 32) 

where the covariant derivatives and the Riemann curvature tensor are all evaluated in 

the field (<f>) space 

To simplify the problem of solving the equations of motion for the perturbations, we 

work with the canonical field-space metric2 m the spatially flat gauge Eq (4 32) then 

2In general, the moduli space metric, hab is neither canorucally normalized nor field independent How­
ever, we show that in the class of models we are considermg it is possible to make a field-dependent held 
redefinition such that the metric remains (approximately) flat throughout and after the inflationary period 



CHAPTER 4 STRING COSMOLOGY 42 

becomes (53) 

80 + 3W + ̂  + jyi - ^TJt^M]^ = 0 (4 33) 

To solve this equation, we use the conformal time r = f a_1dt instead of the cosmic time 

t 

D __ 1D_ 

dt a dr 

— - - — (-—)-- — — — — (434) 
dt2 a dr adr a2 dr a2 dr2 

where ' denotes differentiation with respect to r and denotes differentiation with re­

spect to t Then, by makmg the change of variables, 5(f)1 = \m, where the superscripts 

get changed to subscripts for later convenience, we have 

j U( uia u/ uia 

a a2 a2 a2 

XAI Ul oUia ( nUia2 U i a UI" Q a ' , ( ^ a ^ (A nz\ 

S<p' = 2—5- + 2 ; — = —^ 3^5-W/ + (2^T T:)U1 (4 35) 
a az a? ar aA a6 a6 a-* 

We also use the slow-roll approximation du rmg inflation, 

H2 

and integrate the conformal time by parts (56) (57), 

1 + e . ~, 2N r ^ - - - - + 0(e2) (4 37) 

Thus, in terms of the conformal time (4 37), Eq (4 33) becomes 

u'i + (k2 - - | ) U / = A J2 Muuj (4 38) 
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where the mass matrix MJJ is given componentwisely by 

Mu = eSu + 2eu - VlJ - \eu{—7 + ^7) + \^u + 0(e2) (4 39) 
" (f)1 <f>J •> 

and the multi-field slow-roll parameters are defined as follows 

\6l63 

^ = TW (440) 

= 1 d2V = Vu 
VIJ V d^dcpJ V 

Note that the last term, fee/j, is second order in slow-roll parameters and may be 

ignored The forth term m (4 39) can also be treated as a second order term for the 

light fields For the heavy fields, this term may be a first order term, ~ 0(l)eu For 

completeness sake, we will keep all the terms m our analysis throughout this paper 

To solve (4 38), we have to decouple the equations by making a rotation U such that 

U^MU = diagiM} , (4 41) 

where A/ are the eigenvalues of M And U is given by the similarity transformation 

U=(yg-ig-2 < f „ ) , (4 42) 

where g% are the eigenvectors of of M 

Thus, by introducing the new fields, vi, 

ui = UIJVJ , or vi = Ufjuj , (4 43) 

we get that Eq (4 38) is decoupled 

v'i + (k2-!^P-)vi = 0, (4 44) 
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where 

W
2 = J + 3A/ (4 45) 

Now we want a solution satisfymg the Minkowski-like vacuum initial conditions 

(47) when kr% > 1 {k » aH) 
e-ikrt 

vi ~ , (4 46) 

y/2k 

The solution is 

vi = ^ e l k 4 ^ ( - T ) l f f W ( - f c r ) e / ( f c ) , (4 47) 

where er are the normalized Gaussian variables3, satisfying (53) (58) (59) 

(e/(fc)) = 0 (4 48) 

{ei(k)e}(k')) = SuS
3(k - k1) (4 49) 

4.3.3 The Asymptotic Solution 

We are mainly interested m the solution after Hubble exit when k < aH or kr —r 0 

For small A/,4 

Eq (4 47) becomes 

A*/ = g + A-f + ° ( A / 2 ) . f o r A/ < ! 

i f A/ (l-r-GA/)^=(-fcT)-1-A/e /(/fc), fo r f c r^O, (4 50) 
/2fc 

where C = 2 — log2 — 7 (7 is the Euler-Mascheroni constant) 
3The fluctuation can be treated as a random field which is a Gaussian process The homogeneous universe 

can be divided into a set of sample space with different values of random fields mapped on it 
4These solutions correspond to the light fields Recalling (4 39), all the components in Mu related to 

the light helds are hrst order in slow-roll parameter Thus the correspondmg eigenvalues \i are small, too 
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For large and negative A/,5 the order pj is complex (with a large imaginary part) and 

\pi\ » 1 We need to expand the Hankel function of large complex order (For more 

details, see Appendix A) 

Recall (4 45), when Aj is large and negative, 

W = \ 7 + 3 A ' = ± W . Pi > 0. Iwl » 1> (4 51) 

which is purely imaginary. Using (A.6), the solution (4 47) becomes 

vI~^=(-T)*(l+p2
I)-*e1+(a-V'"e,*uIeI(k) (4 52) 

v2 

where' 

W/ = e-p/'rrly-v/e
i(f-pj'+p/(osv1+''/) — (l)v/e-*(f-p/+p/'°9V1+P/) (4 53) 

and 2 = — kr . 

Note that for large pi, 

|w / |
2 = 1 + 2 cos P(z)e-pi* + e~2pin w 1 (4 54) 

where j3(z) is some function of z = —kr according to (4 53) As we can see, the depen­

dence on k for \uij\2 (and hence the power spectrum), mainly given by the second term 

in (4 54), is exponentially suppressed In the limit pi —• oo 

V! oc ( - r )3( l + p2
)- ie1+(«-f)« "!±? ( - r ) * - ^ , (4.55) 

and the solution for large pi is suppressed by a factor of -A= ~ - ^ 

5 These solutions correspond to the heavy fields For the heavy fields, the relevant components in 
Mi j(and thus A/) are dommated by the diagonal elements of the matrix (Mu) which are the curvature of 

v m2 

the potential, ~ — ^ cc — jji 
6The dimension of (4 52) is | r | 3 , while the dimension of (4 50) is |fc|~5 They are the same smce kr is 

dimensionless 
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This asymptotic solution can also be partially obtained from the following consider­

ation. Consider the perturbation equation (4.44) when pj is large and negative and kr 

is small. It is approximate to the equation 

«7 + ( - ^ ) « / = 0, 

where we change the variable r —> z = — kr. The solution of this equation is 

Vl(z) OC 22 Z V 4 ^ / 

which behaves similarly as (4.52). 

In summary, the perturbation solutions are 

vj{-kT) ~ 
e*f A '(l + CXj^i-kT^-^e^k), \\j\ « 1 : 

I V2 
s H 5 ( l + /r})-iei+(«-!We'iW;e;(fc), -A j > 1, 

where p J = v / - ( | + 3 A J ) . 

4.4 Perturbation Spectrum 

4.4.1 The n-point function 

The statistical properties of the primordial perturbation from inflation is characterized 

by the spectrum. The power spectrum of the perturbation is defined as the two-point 

function of the perturbed field 0(a;)(where we omit the 5): 

(<&<&>) = 5l3P(k)(2n)3S3{k + k') (4.56) 

where (j>k is the Fourier coefficient of <j>{x): 

/

dsk 
4>{x)—T (4.57) 

(2TT)2 
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Thus the two-point function is just the expectation value of the product of Fourier 

coefficients with respect to some distribution function, which are assumed to be mostly 

Gaussian in inflation. The three-point and four-point (and higher) functions of the fields 

characterize the non-Gaussian effect. For purely Gaussian distribution, the odd n-point 

functions vanish and only the even n-point functions remain. Because we are also in­

terested in non-Gaussian effects, we will not make the assumption that the distribution 

is purely Gaussian. In multi-field theory, the primordial curvature perturbation reads (86) 

(87) (88) 

C(x) = SN = NM1 + ^ < 5 < W + ^N^S^S^S^ + ... (4.58) 

where AT,, N%3,... are derivatives of the e-folds with respect to the fields <j>1. 5(j)1 are eval­

uated on the initial (flat) slice while the derivatives of N are evaluated on the unper­

turbed trajectory with respect to the unperturbed fields at Hubble crossing (89). In the 

later sections, we will use * to denote Hubble crossing. 

We are interested in the n-point functions of the primordial curvature perturbation 

£, which can be connected to observations. They can be calculated using the Feymann 

diagrams, following the usual Feymann rules. 

At the tree level, the two-point function, three-point function and four-point func­

tion of the primordial curvature perturbation read (86) 

(CM = KN> (f^) (4-59) 

(CfciCfaCfe) = NtN,Nkl ( ( & ! < ) ( « ) + 2permutations) (4.60) 

(CfciCfcCfcsCfeJ = NxN3NkN
lmn ( ( ^ f c l 4 2 ) ( < C ) ( 4 ^ ) + 3permutations) 

(4.61) 

+NlN3N
kNmn ( ( & , < ) (KK) ( < 4 ^ ) + 11 permutations) (4.62) 

where again we go to the Fourier space. Note that we have used the assumption 

(C) = <>') = 0 (4.63) 
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We will continue the discussion on n-point functions in the section of non-Gaussianity. 

At the moment we focus on calculating the power spectrum, i.e., \4>\^k ) o r J^(^)-

4.4.2 The Curvature and Isocurvature Perturbations 

It is convenient to decompose the scalar field perturbations into adiabatic perturbation''(parallel 

to the background trajectory) and entropy perturbation8 (orthogonal to the background 

trajectory). We then define the adiabatic component 

(4.64) 

and the non -adiabatic 

So-

component 

,5s2 = 

= £<% 
I 

cos6»J 

-5a2, 

with 

m s ti1 = _ 

(4.65) 

Ql <t)I ^I IA CC\ 

cos 0 = —. = — (4.66) 

and 

5<t>! = -Uuvj (4.67) 
a 

Note that in (4.67), the sum over the vj is for the light solutions only, since the perturba­

tions of the heavy fields are strongly suppressed due to the expand of the universe (see 

the discussion in Section 4.4.3 for more details). 

By definition, the two-point correlation functions (i.e., power spectra) are given by 

Cxy5\k - k') = _<x(*)j/*(fc')> (4.68) 

7Also called curvature perturbations 
8Also called non-adiabatic perturbations or isocurvature perturbations 
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where x,y = 5a,5s For example, 

C^{k)53{k - k') = A_ (5a*5a) 

k3 

— 2 2_, {°~4>*id4>j)cos Q1 c o s ^ 2vr2 

/J 

= ^ ^ ^ cos 0' cos 9JUIpUJp (v*pvp) (4 69) 
Up 

We next turn to the calculation of the power spectra usmg these correlation func­

tions The comovmg9 curvature perturbation is defined by 

K = ip + —5a (4 70) 
a 

In spatially flat gauge (ip = 0), the curvature perturbations become (47) (53) 

11 = —5a (4 71) 
a 

In multi-field inflation, in addition to the curvature perturbation, the isocurvature 

perturbations arise from the fluctuations orthogonal to the background trajectory 

S = —5s (4 72) 
a 

The power spectrum of H is defined as the expectation value of the Fourier compo­

nents, which is just the ensemble average of the perturbations 

2TT2 

(ft*?**'). = -pPn(k)6(k-k')\. (4 73) 

Pn(k)* = ^Ca„{k)\* (4 74) 

Because of slow-roll approximation, the spectrum is usually calculated at Hubble cross-

9Comoving means absent of pecuhar motion Comovmg observers, such as large galaxies and galaxy 
clusters, measure zero momentum density at their own positions (38) Their position, x, is fame-
independent in the unperturbed universe Their physical coordmate is a(t)x 



CHAPTER 4. STRING COSMOLOGY 50 

ing, denoted by ». In practice, Hubble crossing is often taken to be 50 or 60 e-foldings 

before the end of inflation (60) (61). Due to the presence of isocurvature perturbation, 

the spectrum can change after Hubble crossing, which will be discussed in the following 

section. 

The power spectrum can be expanded around some fco (62) (63) 

P7i(k)=Pn(ko)(hMko)-1+^<, 
«o 

where 
... 1 dlnP^k) 

ns(k) - 1 = ,. , , a • 
dn° 

(4.75) 

(4.76) 
dlnfc dink 

We have assumed that the momentum dependence of the running, a, can be neglected. 

In addition, a itself is of second order in slow-roll and should be small. We next turn to 

the power spectrum of the isocurvature fluctuation, P$, and the correlation power spec­

trum, P-JIS- The power spectrum of the isocurvature fluctuation, Pg, and the correlation 

power spectrum, P-ns, can be obtained in a similar way to the curvature perturbations. 

The non-adiabatic components have the general form 

5s^ = B^Sfa, i = l,2,...,n-l (4.77) 

where n is the number of the fields. And 

/ 5a \ 

5s (i) 
Q (4.78) 

\SS(n-l)) \S4>n) 

where the rotation matrix Q s SO(n). For example, in a four-field model containing 



CHAPTER 4. STRING COSMOLOGY 51 

two heavy fields (fa, fa) and two light fields (fa, fa), 

p!
{l) = (i,o,o,o),p{2) = (o,i,o,o),^3) = (0,0, - cos e\ cos e3) 

where 

oi Vi cos 9 = — 

In a three field model, where there are two heavy fields (fa, fa) and one light fields fa, 

p(±) = (1,0,0), p(2) = (0,1,0) 

For the decoupled case, as will be discussed in section 4.4.3, we can totally ignore 

the heavy fields, and the coefficients reduce to the simpler forms 

tf. « 

(0, 0,0,0), (0,0,0,0), (0,0, - cos 94, cos 93) 

(0,0,0), (0,0,0). 

for the four- and three-field models respectively. 

The perturbations are then given by 

bi = —UIJVJ, summed over the light v/s , (4.79) 

from which the correlation functions follow 

(68*5s) = E ( H ) H ) ) = ^ E ^ ( V w ^ ^ < ^ > (4'8°) 

(5a*5s) = J2(S°*5sb)) = ^ZZCOS9I^)U'PUJP(V>P) (4"81) 

As before, the heavy vp's are ignored in the calculation. 

Thus, the power spectrum of the isocurvature fluctuation, Ps, and the correlation 
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power spectrum, PRS, at Hubble crossing are given by 

Ps(k)* = ^-C„(fc) | , (4 82) 

Cns(k)* = ^Cas(k)U (4 83) 

where the two-point functions are given by 

Css(k)53(k-k') = ^(Ss*5s) (4 84) 

Cas(k)53(k-k') = ^(5a*5s) (4 85) 

For future reference, it is convenient to define a dimensionless measure of the correla­

tion angle between the power spectra (53), 

cos A = C ^ 1 (4 86) 

4.4.3 The Evolution of Perturbations After Hubble Exit 

For purely adiabatic perturbations, the curvature perturbation is a constant on super-

horizon scales durmg the primordial era10 (38) (47) In this case, the observable pertur­

bations are calculated at horizon crossing However, as Wands et al have pointed out 

(53) (64) (65), the presence of entropy perturbations can change the curvature perturba­

tion In general, the time dependence of the curvature and isocurvature perturbation 

has the following form (65) (66) 

TL = aHS (4 87) 

S = fiHS (4 88) 
10The primordial era is denned as the period between Hubble exit and Hubble entry when the comovmg 

scale, equals the Hubble scale, f = j j 
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or in terms of the transfer functions 

(R) - f' H fR) (4.»» 
\Sj \0 Tss) \S*J 

The curvature perturbation on super-horizon scales is conserved if the perturba­

tions are purely adiabatic or if the non-adiabatic perturbation is negligible. This general 

conclusion does not even depend on the slow-roll approximation or the form of the 

gravitational field equations (the specific theory of gravity) (64). 

As we can see from the solutions of the perturbation equations (4.50) and (4.52), for 

each scale (1/k), the spectrum of the perturbations with —\j > 1 decay rapidly as the 

universe expands, (;j?M2) ~ -\- The spectrum of the perturbations with |Aj| << 1, on 

the other hand, changes slowly, ( ^ > | 2 } ~ (^M2)„, [l + 0(e) + 0 ( ^ ) ] , to leading order 

in the slow-roll parameters and the masses of the light fields over Hubble parameter. 

Thus we can ignore the contributions from the former and simplify the calculation. 

Recall (4.43) or 

5 fa- = -Uuvj 
a 

where UJJ is the transfer matrix determined by the mass matrix M of (4.39). If we 

assume that the heavy fields and the light fields are decoupled in such a way that the 

cross components MJJ (or Mjf), with / and J identified as light fields and heavy fields 

respectively, are subdominant compare to the non-cross components, then 

5(j)h RS -UI^VJ, , II&LJI denote the light fields, (4.90) 

and 

Sfarh « ~UihjhvJh, IhkJh denote the heavy fields. (4.91) 

This is true for most inflationary models encountered so far. For counterexamples, one 

has to use the full transfer matrix as in (4.43). Under the above assumption, the pertur-
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bations of the light fields,(|^/,|2) ~ ( l ^ i j 2 ) , [1 + 0(e) + 0(^)}, decay much slower 

than the perturbations of the heavy fields, (Sfa-h\
2) ~ ^ Therefore, in this case, one 

can neglect the contributions from the heavy fields when we calculate the curvature 

and isocurvature perturbations smce the fluctuations m the heavy fields are strongly 

suppressed11 

If there is a smgle light field (with all other fields bemg heavy), the perturbations 

are purely adiabatic and the comovmg curvature perturbation remains constant during 

inflation If there is more than one light field, the cosmological inflation is driven by 

all the light fields In addition to the adiabatic perturbation, they also produce entropy 

perturbation orthogonal to the background trajectory In this case, the curvature pertur­

bation is no longer a constant on super-horizon scales during inflation The coupling 

between the entropy perturbation and the adiabatic perturbation, given by the (4 87) 

and (4 88), determines the evolution of the perturbations durmg and after inflation 

In a typical two light field inflationary model, for example, with arbitrary potential 

and arbitrary background trajectory, it was shown (53) (65) that the scale-dependence 

of the observable spectra is determmed by the slow-roll parameters at Hubble exit and 

the current observable cross-correlation The amplitude of the power spectra are deter­

mined by the power spectra calculated at Hubble exit and the transfer functions which 

parameterize the detailed physics after Hubble exit until the end of reheatmg, given 

by (4 89) (65) 

Pz = (l+ Tls)Pn* + 2TnsCus* 

Ps = T$SPS, 

Cus = TssCns* + T-RSTSSPS* (4 92) 

11 We can always do this unless the amplitude of the non-adiabatic fluctuation is greatly amplified at the 
end of mflation in the preheating stage (64) (68) (69) 
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Inflation in Flux Compactifications 

5.1 String Theory in Cosmological Inflation: Motivation 

There are several motivations to incorporate string theory into the study of cosmology 

The field theory method in the frame work of quantum field theory and general rela­

tivity becomes invalid m the regime in the very early universe where the energy scale 

is extremely high Secondly, strmg theory may provide an explanation for the cosmo­

logical singularity which cannot be reached using the standard field theory method 

Also, cosmology can be an ideal place for concrete tests of string theory Not only the 

low energy effective theory derived from string theory can be tested by cosmological 

observations, some topological effects such as the cosmic strings may also be tested in 

cosmology 

The key step m string cosmology is to identify the low energy effective theory from 

string theory via dimension reduction No total success has been achieved so far in 

deriving the four-dimensional effective Lagrangian from strmg compactification How­

ever, a lot of progress has been made in the direction To accomplish the task, one would 

like to specify the local sources (such as the D-branes, orientifold planes), turn on the 

flux, invoke moduli stabilization and include the quantum corrections (such as a' and 

gs corrections) There are usually many moduli, the internal degrees of freedom, m-
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volved in string compactification, which in principle are all necessary for determining 

the four-dimensional Lagrangian. For example, in Calabi-Yau compactifications, there 

are Kahler moduli, complex structure moduli and the dilaton. We will briefly discuss 

the method we used in this dissertation, which was originally proposed by Conlon and 

Quevedo (49). 

5.2 Kahler Moduli Inflation Model 

In what follows we focus on a particularly inflationary model derived from string the­

ory consisting of multiple Kahler moduli, in the large volume limit (also known as the 

Large Volume Scenario) (41) (67). We adopt the model originally proposed by Conlon 

and Quevedo in (49) and subsequently studied in (50) (51). For more details, and in 

particular the conventions, see Chapter 2 and Chapter 4 as well as (67). 

In Chapter 3, we demonstrated how to stabilize the moduli in the LVS case. In 

addition, in Chapter 4, we introduced the Kahler moduli inflationary model and studied 

the solutions from scalar field theory cosmology. We now explicitly construct a practical 

model which shows interesting results compared with observations. 

Focusing on the dynamics of the scalar fields relevant for inflation, the supergravity 

action is (we will work in the Einstein frame, and in units where Mp = 1) 

" / 
5/V=i = / d x^g X-R- Q-p^faD^fa - V(fa, fa) (5.1) 

In the Conlon-Quevedo model, one aims to construct a scalar potential of the fol­

lowing form 

V = V0 (1 - Ae~T + 0(e~2T)) (5.2) 

where T is some filed. This simple type of potential has a flat direction along r which 

only appears exponentially in the potential. It can be shown in field theory cosmology 

that this type of potential naturally generates the desired slow-roll inflation. 
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To get such a potential, we start from the superpotential W by considering nonper­

turbative effects, i.e., (3.27) in Chapter 3. These nonperturbative effects may come from, 

for example, instantons arising from D3-branes wrapping four-cycles. At tree-level, we 

can approximate the superpotential as (see (3.21)) 

W KWO + Y, A*e~a*Tl (5-3) 
i 

The scalar potential becomes 

V = eKRV \atAlaJA]e-a'T'~a^ - (d^ • WaJA:ie-a'T> + c.c.)l (5.4) 

Note that Tz only appear in the exponent and are our candidates for inflaton which 

is defined in the next section. 

An uplifting term may arise from, for example, the D3 brane (36) 

^uplift ~ y a ~ ^ 2 (5-5) 

There may exist other sources which give contributions to the uplifting term, result­

ing in 
1 4 

Kiput ~ ^ , - < a < 2. (5.6) 

where V is the Calabi-Yau volume. Here we only consider the case where a = 2. 

After uplifting, the effective potential should look like (a denotes the moduli field) 

5.3 Explicit Setups 

Several previous works have considered inflation in the large volume setting, e.g., (49; 

73; 74; 75). Here we include all Kahler moduli, and not just the light modes. Although 

we find that the heavy modes, corresponding to Kahler moduli that are stabilized before 

inflation takes, do not affect the dynamics during inflation in the models that we have 
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a 

Figure 5.1: The effective potential with positive vacuum energy. 

studied, these modes do change after inflation has ended. 

Slow roll inflation can occur in a region of the field space where the potential is 

positive and very flat. We will look for this in the Large Volume Scenarios described 

above, where, at the minimum of the scalar potential, there is a hierarchy amongst the 

Kahler moduli 

n » r 2 , T 3 , r 4 . . . (5.7) 

which we will use to simplify the effective potential. 

For transparency of the equations, we will assume that the intersection numbers kl3k 

are such that in the basis of 4-cycles, TU the volume takes the diagonal form (67) 

V = a ( n i - ^ A , T » 2 ) = -a^ZA : 

i = 2 = i 

(5.8) 

where Ai = — 1, and \ , i > 2 are usually positive. 

With the volume taking the above form we can explicitly compute the metric on the 

moduli space, Ql3 = dld-JK,, which is needed both for the metric, hl}, and for the scalar 

potential, V, appearing in the four dimensional action (4.14). By expanding in inverse 

powers of V, keeping terms to 0(V~2), we obtain 

n 3aAt 
l3~ 8(V+l)rX 

9a2AiAJX/7yfJ 

8 ( V + | ) 2 
(5.9) 
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With the axions minimized in the potential, the effective potential then becomes (49) 

^ 8 K A ) 2 ^ 2o,r, y 4a,AWQT, 3 ^ 0
2
 7 ^ Q 2 , _ m 

V " 2 ^ Q V \ «- 2 ^ V2 e + 4V3 + V2 ' P 1 U ; 3VA,a ^ V2 4V3 V2 

i=2 l i=2 

where we have assumed that JCQ can be chosen such that the overall scale of the poten­

tial is simplified, l e , overall factors of gs and 2TT are not present, see (3 34) Here we 

have expanded V to 0(V~3) to include the leading a'-corrections, 3^J° , as well as the 

uplift term, ^ The parameters m the potential can be chosen and tuned under certain 

constraints (73) (74) (76) 

To determine the local minimum (vacuum) of the potential we need to solve the 

equations 
dV 
^-=0 (511) 

While it is difficult to get the analytical results1, these equations can always be solved 

numerically 

It is more convenient to work in the canonical frame, rather than the form taken 

by the supergravity metric m Eq (5 9), since we have already solved the perturbation 

equations m the canonical frame2 Although it is difficult to fmd the exact transforma­

tions which can diagonalize the metric, we do fmd a canonical frame which is a good 

approximation as long as TI » TU of which the field space transformations are 

A l _ , / 3 A l ( l + 3 A l ) M n ) ( 5 1 2 ) 

iX'Tti,i>2 (513) 
3TI2 

Durmg, as well as after mflation, the metric, m terms of the above redefined fields, 

fa, remains canonically normalized, to leading order m mverse powers of the volume 

1 Although one can make approximations to solve the minimum equations analytically as m (49) and 
(50), it is desirable to solve them numerically As we can show by numerical analysis, the analytical solu­
tions after approximation will likely spoil the results 

2Note that comparing the kinetic energy terms in the actions (4 14) and (5 1), respectively, we find that 
htJ = 2Qt], with g given m (5 9) 
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Considering that the origmal metric, <5,, is a Kahler metric which neither is field inde­

pendent nor diagonal, this result is somewhat surprising 

5.4 Model Study 

In general, a multi-field inflationary model should contam both the heavy fields and 

the light fields3 To obtam inflation we choose the initial conditions such that the light 

fields are displaced away from the local minimum and the heavy fields are at the corre­

sponding local mmimum once the initial values of the light fields are chosen We expect 

that the heavy fields will be frozen as the light fields approach the mmimum As we 

will see later m the numerical analysis, the light fields carry all the kinetic energy and 

are responsible for the creation of inflation The number of e-foldmgs or the duration 

of inflation is determmed by how far away the light fields are displaced from the min­

imum The heavy fields will only begin to move and oscillate together with the light 

fields around the local minimum shortly after the end of inflation 

In what follows, we will discuss two example models based on the discussion in 

the previous section In both cases there are two heavy fields/moduli The former has a 

single light field (inflaton) and the latter has two By assigning appropriate values to the 

parameters in the effective potential, we solve the background equations of motion nu­

merically Next, we perform the field transformation (5 12), (5 13) to get the the kinetic 

energy in its canonical form Then we use the perturbation solutions(hght) to compute 

the curvature and isocurvature perturbations Finally, we calculate the spectra and tilts 

at Hubble exit Our models can be easily reduced or generalized 

Let us construct an inflationary model with two heavy moduli, ri and r2, and two 

light modulus, T3 and TA This is essentially the Conlon-Quevedo model (49) However, 

we do not assume that the initial values of the heavy moduli are the same as the final 

values after inflation 
3As has been shown m (51), the fields that are heavy (light) durmg inflation may become light (heavy) 

after inflation ends So the heavmess (or the lightness) of a field is determmed not only by the correspond­
mg parameters, but to a large extent also by its position/value m the field space 
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The parameters in the effective potential (5.10) are set to be 

1 2ir 2ir 
a = 9 7 2 ' a 2 = 3^ ' a 3 = T 0 0 ' ^ = a 2 ' A 3 = 0-001^4 = 0 0 0 1 

Ax = - 1 , A2 = 0.1, A3 = 0.005, A4 = 0.005, W = 500, £ = 40,7 = 9.75 x 10 -

Tim,n = 62100.7, r 2 m m = 234.1, r3mm = 69 0202 

The initial conditions are 

n(0) = 76212.1, r2(0) = 246.99, T3(0) = 472 ,T 3 (0) = 492, 

fi(0) = T 2 ( 0 ) = 0,f3(0) = -1 .72x 10~1M,f4(0) = -1.5 x 10 -19 

In the Appendix, we show the numerical codes used to solve the equations of mo­

tion. The results can be summarized as follows: 

Figure 5.2: a) The slow-roll parameter e. b) The potential V. 

The generated inflation lasts about Ntot ~ 66. In this example, strictly speaking, 

inflation does not end initially when the inflaton(T3) begins to oscillate. It ends when 

other fields also begin to oscillate. 
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Figure 5.3: Evolution of the heavy fields in the last few e-foldings. a) TX. b) T^. 
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Figure 5.4: Evolution of the light fields in the last few e-foldings. a) r3. b) r4. 

The spectral indices at JV* = 60 e-foldings before the end of inflation are found to be 

n-R.. = 0.9639 (a K =4.69 x 10~5), 

ns, = 0.9879 (<5S=4.85 x 10 - 5 ) , 

cos A* = -0.00501, e=1.44 x 10"1 3 . 

(5.14) 

(5.15) 

(5.16) 

The correlation angle cos A* is very small, consistent with (53) where 

cos A* ~ -2CVas, = -2C cos 9Ij3J^-\ -0.00507 

We can study more cases with different number of fields involved. As expected, 

we find that there is successful inflation if the parameters in the potential are chosen 

appropriately. For example, the following plot shows the evolution of the light field in 
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Figure 5.5: Evolution of the light field r3 in the last few e-foldings. 

a three-field case containing two heavy fields: 

5.5 Discussion 

The specific class of models from string compactification we used shows some promis­

ing results. The potential has a nice shape which is ideal for generating slow-roll infla­

tion. Along the path of the light fields (those with A/ < 1) the potential s very flat, and 

the light fields will slowly roll to their local potential minimum during inflation. Our 

calculation shows that their perturbations are almost invariant and only decay slowly 

as the universe expands. The resulting power spectrum of the curvature perturbation 

is almost scale invariant due to the small A/. The heavy fields (those with —A/ > 1), on 

the other hand, are frozen during inflation, until shortly after the end of inflation when 

they start to move from the initial location to the final minimum. Their perturbations 

decay rapidly as the universe expands, which can be neglected. 

It is also quite easy to get desired number of e-folds before the end of inflation by 

adjusting the parameters in the effective potential. Calculations show that the spectral 

indexes, ns, corresponding to N* = 60 e-folds duration of inflation are 0.956 (single 

field) and 0.962-0.964 (multi-field), which agrees very well with current observations: 

ns = 0.968 ± 0.012 (68% CL)(62). 



Chapter 6 

Non-gaussianities 

Gaussian fluctuations are described by the two-point function and the corresponding 

power spectrum. Non-gaussianity is a measure of the deviation from Gaussianity. It 

is usually represented by the nonlinear parameter /NL which is roughly the ratio be­

tween the bispectrum and the square of the spectrum (see the Section 6.1). The current 

observation (WMAP) shows that -10 < /N L < 74 (95 % CL)(62). Future experiments 

such as the Planck Satellite should be able to give more accurate measurements (~ 5) 

(61). The amount of Non-gaussianity theory has a profound impact on the investigation 

of the early universe. For example, any observation of /NL ~ 0(1) or higher will rule 

out the single field inflation. It is therefore important to study the non-linear effects in 

inflationary models that can can give rise to non-gaussian fluctuations. 

In single field inflationary case, the non-linear parameters /NL and g^L, which char­

acterize the size of non-gaussianity, can be calculated in terms of the slow-roll param­

eters (84) (85). The result is generally small, of the order of slow-roll parameters. In 

multi-field models, there are usually both heavy fields and light fields. The light fields 

are believed to drive inflation and heavy fields are frozen during inflation. It is often 

assumed that the dominate contribution to non-gaussianity comes from the inflaton. 

However, for an arbitrary scalar potential, it is not clear that whether the other (non-

inflaton) fields have any sizable contribution to non-gaussinity. We would like to ad-
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dress this issue, at least for the model studied in this paper. 

In the inflaton scenario in which the primordial curvature perturbation originates 

from the inflaton, other light fields only play a role in assisting with stabilizing the po­

tential. In the curvaton scenario, however, the curvaton (light, non-inflaton field) may 

have significant contribution to the primordial perturbation if its energy density grows 

large enough at a later time after inflation but before it decays into radiation. We ex­

plore the possibility of a curvaton scenario and compute the amount of non-gaussianity 

generated by the curvaton. 

We focus on a string inspired model based on the large volume scenario (41) (67) (49) 

(similar to what have been discussed in the previous chapter). We study different con­

figurations of the model with different numbers of scalar fields(moduli) and with vari­

ous values of the volume of the Calabi-Yau to provide hints of the microscopic physics 

by connecting non-gaussianity (if observable) with the model parameters (moduli, the 

volume, etc). 

The outline of the chapter, which mostly follows the work done in (79), is as follows. 

We first review the non-gaussian perturbations and the SN formalism in Section 6.1. In 

Section 6.2, we introduce the scalar potential arising in the large volume scenario of 

type IIB string compactifications. We then apply the separable potential method to the 

above multi-field inflationary model in Section 6.3. In Section 6.4, a numerical analysis 

is carried out that extends the previous analytical study beyond slow-roll. Comparing 

the two methods, we find a good agreement in the regions where they overlap. Finally, 

in Section 6.5 we study under what conditions a curvaton may exist after the end of in­

flation in this type of model derived from string theory, and calculate the contributions 

to fNL. 
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6.1 Non-gaussian perturbations and the SN formalism 

In the following, we briefly review some general facts about the non-gaussian perturba­

tion and 5N formalism which is a powerful tool to calculate non-gaussian effects. (For 

more detailed discussions, see eg (84) (86).) 

Let us define the e-folds time 

7V= J" Hdt (6.1) 
Jt, 

where t* is usually chosen to be some time during inflation (the initial flat slice) and 

tc is some epoch later with constant curvature perturbation (the final slice of uniform 

density). In multi-field theory, the primordial curvature perturbation reads (86) (87) 

(88) 

£(x) = 5N = Nt5fa + l^SfaSfa + ^kSfaSfaS^ + ... (6.2) 

where Nu Nv,... are derivatives of the e-folds with respect to the fields fa. 5<j)1 are eval­

uated on the initial (flat) slice while the derivatives of N are evaluated on the unper­

turbed trajectory with respect to the unperturbed fields at Hubble crossing (89). In the 

later sections, we will use * to denote Hubble crossing. 

All the higher n-point functions can be evaluated using Feynman diagram under the 

usual diagram rules (86). For example, the Feynman diagram for the connected 3-point 

function and 4-point function at tree level look like1: 

The result for three-point correlation function of non-gaussianity is 

(CklCk2Ck3) = (27r)353(k1 + k2+k3)B(:(ki,k2,k3) (6.3) 

where Cki are the Fourier coefficients of C(x)- If slow-roll is satisfied, the bispectrum is 

'These figures were drawn using JaxoDraw. 
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Figure 6.1: The 3-point function at tree level. 
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Figure 6.2: The 4-point function at tree level. 
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completely specified by the non-linear parameter fNL(ki,k2, k3) (90) (92): 

Bc(ki,k2, k3) = ~fNL(ki,k2, k3)[Pc(k1)Pi(k2) + cyclic permutations] (6.4) 

where Pc(k%) is the power spectrum. 

Using the SN formula, the non-linear parameter /JVL is given by (93) (94) (95) 

6f ii, v ^ fc3fc2
3fcf B((ki,k2,k3) E , j ^N3Nn 

^NdkiMM) = fc3 + fc|^3 4 , 4 P 2 = >EiN2 +0(r) (6.5) 

where r is the tensor to scalar ratio. The correction 0(r) is a fc,-dependent geometric 

term (95) (96). In standard slow-roll inflation, 

1 V.V 
r ~ 1 6 e , e ~ - - i = - « l (6.6) 

Thus 0(r) is much less than unity due to slow-roll condition and observation con­

straints on r (97) (98). From now on we focus on the first term in (6.5) and redefine 

the momentum-independent non-linear parameter 

. 5^NtN3N3t 
fNL = 6 ( M 2 ) 2 (67) 

The four-point function has the form 

<CklCk2CksCk4) = (2ir)353(ki + k 2 + k3)r c(k1 ,k2 ,k3,k4) (6.8) 

Neglecting corrections of the order of the slow-roll parameters, the trispectrum T^ reads 

(84) (90) (91) 

T c (k i ,k 2 ,k 3 ,k 4 ) =rNL[Pc(ki)Pc(k2)Pc(ku) + 11 permutations] 

54 
+ ^gNL[Pc(k2)Pc{k3)Pc(k4) + 3 permutations] 
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where ku = |ki — k4|. Note that, unlike the bispectrum, the trispectrum depends on the 

directions of fc/s. The parameters, when corrections of slow-roll order are neglected, 

are given by (88) 
Nl3W

kWNk 

™L = ( J W ) 3 ( 6 ' 9 ) 

25Nt}kN*N'Nk 

9NL = 54 (N^r ( 6-1 0 ) 

Applying the Cauchy-Schwarz inequality to (6.7) and (6.9), we get the following relation 

(99) 

TNL > | / ^ L (6.11) 

Again, we adopt the potential (5.10), which we for convenience repeat below, 

A 8(alAl)
2^n _2atTt " 4ffl,AWbr, _atTt 3£W0

2 jW^ 
2-- 3VA,a e 2_, v2 4V3 V2 ' 
i=2 i=2 

Recall that that the axions are minimized, and we have assumed that ICo can be chosen 

such that the overall scale of the potential is simplified, i.e., overall factors of gs and 2n 

are not present, see (3.34). Here we have expanded V to 0(V~3) to include the leading 

a'-corrections, 3^$ , as well as the uplift term, ^ . The parameters in the potential can 

be chosen and tuned under certain constraints (73; 74; 75; 76). 

To canonically normalize the metric, we can apply the field transformations dis­

cussed in chapter 5, 

3Ai(l + 3Ai) , 
-A log(Ti) (6.12) 

4A 3 
— \ r ^ , i > 2 (6.13) 
3 n 2 

by keeping terms to leading order in the expansion of inverse powers of the volume, 

and in the large volume scenario 

V w a n f . (6.14) 
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This field redefinition results in a good approximation to the canonical metric. After 

canonical normalization, the equations of motion read 

dV 
fa + 3Hfa + —=0, i = l , . . , n . (6.15) 

To get successful inflation, we take the following steps (for more detail, see (83)). First, 

find the global min imum of the potential by 

dV 
— = 0, i = l,...,n. (6.16) 
dr. 

Written explicitly, 
dV 
dV=° ^ 

3aA,Tv" 1 - arT% . 
V = - — — j sjr%e Q*T% i = 2,...,n. (6.18) AalAl i — a,T, i 'i 

where (6.17) is obtained by 

„ dV dV dV „ „ ^ 
0 = d7i = dVdVi> ( 6 ' 1 9 ) 

and we apply (6.14) 

dV 
7 j - = 0 , i>2 (6.20) 
drt 

to get (6.18). To have a small but positive cosmological constant, we also require that 

Knm > 0 (6.21) 

In practice we want a%r% » 1 so that all higher order non-perturbative corrections of the 

form e~
ma'Tt, with integer m > 1, in the scalar potential are negligible and the effective 

potential (5.10) becomes a valid approximation. We find that the global min imum of the 

potential only exist with the parameters lying in certain regions of the parameter space. 
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Let the global minimum be 

We have 

where 

and 

(6.22) 

W2 Pit (6-23) 

P = - y £ ^ (InV - lnC,)§ + | + 7V (6.24) 
i=2 a? 

Ct=**™ (6.25) 
4a,5 A 

Then, for inflation to start, we displace the fields away from the global minimum 

along the flat direction of the potential, and find the corresponding local minimum. 

Denote the values of the fields at the local minimum by 

(6.26) 

which are the initial conditions of the model. By solving the equation of motion (6.15), 

we should get successful inflation in which the fields evolve slowly toward the global 

minimum (rimm). 

6.2 The Inflaton Scenario 

6.2.1 Separable Potential Method 

In order to use the <5./V-formalism, we need to calculate the derivatives of the number 

of e-folds, N, with respect to the fields. For an arbitrarily shaped potential, this can be 

done using numerical method which will be discussed in the next section, while the 

analytic treatment of non-gaussianity is known for being difficult. If the potential sat­

isfies certain criteria ((95), (100), for example), the e-folds can be obtained by analytical 
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mtegration In the model introduced in Section 5 3, it has been shown (51) (83) that the 

non-mflaton (or heavy) fields are frozen before the end of mflation and only the light 

fields evolve during inflation Thus, before the end of inflation, we can ignore the de­

pendence of the potential on the heavy fields and treat the potential as a function of the 

light fields only Assume that we have a volume modulus, TI, a heavy modulus, T2, and 

two light moduli, T3 and T4 (as in (83)), corresponding to the canomcally normalized 

fields (5 12)-(5 13), fa and fa, Suppose n and T2 are frozen during inflation, the poten­

tial (5 10) can be seperated as two functions each depending only on one of the light 

fields (fa, fa) 

V = U(fa) + W(fa) (6 27) 

The terms which contam the frozen fields have been absorbed into U(fa) and W(fa) 

Next we will follow the separable potential method developed by Vermzzi and Wands (95) 

to calculate the derivatives of the e-folds In the canonical frame, assuming the back­

ground fields only have time dependence, the background equations of motion read 

fa + 3Hfa + Va = 0, a = 3,4 (6 28) 

where 

dV \u'> a = 3> 
y° = — = I 

dfa | , 

\W, a = 4 

And the Einstein field equations are2 

3H2 = \g»vd»fadvfa + V 

H=-\g^vdl_lfad,fa 

2Again we set the planck mass Mpi = 1 

(6 29) 

(6 30) 

(6 31) 
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Using the slow-roll approximation, we have 

ff2~ 

1 ^ 
H ~ 

V 

3fa ^ 
U' 

3fa 
W 

(6.32) 

(6.33) 

By integrating (6.33) we then get 

fdfa 
J V w + c (6.34) 

The number of e-folds becomes 

JV = -dt 

w_ 
3lr 

dt 

W_ 
VK7' 

(6.35) 

Here * and c denote the time at Hubble exit and some time after Hubble exit, respec­

tively. We usually choose the latter as the time, tc, for some constant Hubble parameter 

(uniform energy density hypersuface), Hc. Then we let t» vary and compute the deriva­

tive of N with respect to the initial fields at t*. The results, derived by Vernizizi and 

David (95), are, with Nu = dN/dfa\t=u, 

N4t = 

1 U» + Zc 

1 W»-Zc 

/2eZ K 

"33. = ! - ^ ^ + 
1 dZc 

Nu* = 1 

^ 3 4 * 

2e3* V* V,V2e3* <9<?!>3*' 
m* W* - Zc _ 1 dZc 

2e4* V, Viv
/2e4* &fa*' 

1 dZc 1 dZc 

V* \/2£3* dfa* V* v
/2e4* 03* 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 
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where 

and 

1 (Va\ Vaa We3 - UeA 

9ZC dZc foirVc2 e3c£4c A £4c??3c + £3c^4c \ , , .-> 
/e3*-^T~ = - V ^ T T ^ = - v 2 v ; - T 2 - — r ^ - ( i — ~ — , , >2 ) (6-42) 903* <904* V* £3c + £4c V (£3c + £4c) 

Note that this method relies on the slow-roll approximation (6.32). It requires that 

the final slice at tc must lie within the slow-roll regime. To calculate the amount of 

non-gaussianity generated near and after the end of inflation, one needs to find an al­

ternative method valid beyond slow-roll. For example, the authors of (100) proposed 

an analytic method, valid for certain classes of inflation models with separable Hubble 

functions, which can be used to study non-gaussianity after inflation ends. Although 

their analysis applies to certain types of potentials with exponential terms, the detailed 

conditions are not satisfied for the scalar potential (5.10). In section 5, we present a 

numerical analysis valid beyond the slow-roll regime. 

6.2.2 Estimate of /, NL 

Two light fields case: In the model discussed in Section 5.3, the two light fields (fa, fa) 

serve as candidates for inflaton. We know make a rough estimate of JNL in this case. 

Let us assume that fa is the assisting field and thus lighter than the inflaton fa. During 

slow-roll we would then expect that 

e4 < £3 < 1, Vi < m < 1, Vi > ei, i = 3,4 (6.43) 

since it follows that Vlt » Vl from the flatness of the potential (5.10) and the fact that 

both fields are light, ^ = ^ <C 1. Let 

\W(fa)\=p\U(fa)\, p>0, (6.44) 
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e4 = se3, 0 < s < 1, (6.45) 

and 

Vi = QV3, 0<q<l. (6.46) 

Although, in general, p, s, q are functions of time, they are not expected to change dra­

matically in the slow-roll regime. In particular, we can treat p as a constant due to the 

flatness of the potential. Using the separable potential method introduced in the previ­

ous section, we get 

^ 3 , = - ^ = - ^ - , JV4. = -^=JV3 . (6.47) 
V^E3* J- + sc V s * 

N ~ 1 P V3* sc(sc + qc) y3c 

A 3 3 * w 1 - — h —7— = (6.48) 
1 + sc 2e3* (1 + scy e3* 

scq* p V3* sc sc(sc + qc) iq3c 

s* 1 + sc 2e3* s* (1 + sc)
3 e3* 

A44* « 1 -— ———-— h — ,,, , , 3 — (6.49) 

^ L Sc(gc + ge) V3c ( 6 5 Q ) 

^/s7 (1 + Sc)3 £3* 

The non-linear parameter fNL, defined by (6.7) and evaluated at i* for a fixed tc, then 

becomes 

INL « XV3* + y£3* (6.51) 

where the coefficients are 

1 , . s 

2 (l + sc)2 

* ^ i + r 2 3 1 Se(ge + gc)<,1 Sc^2Tj3c 1 + S e n , Sc 

n,^ ; r l , t J i ^ i + g * „ j 
p 2 ( l + Sc) s * %* P s 2 . 

y~ 2 ,2 
P2 1 + Ss-

both of which are of 0 ( A ) because of the slowly changing s and q. 

Mixed case: Consider a model in which there are two heavy fields, fa and fa, and one 

light field fa (inflaton). As usual, fa corresponds to the volume modulus and is frozen 

during inflation. But we drop the constrain that the heavy field fa is frozen. We want 
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to see how much the heavy field contributes to the non-gaussianity. The potential (5.10) 

can be separated as 

V = U(fa) + W(fa) (6.52) 

where 
2̂ 

rj(fa) = 8 ^ 2 ) V y - * ™ _ i ^ e - « " (6.53) 
3VA2o: Vz 

W(fa) = 8 ( a 3 ± ) 2 ^ V 2 ^ s _ 4«3y0r3e_Q3T3 

First, since 02 is heavy and fa is light, 

^ 2 2 ,-.,.. , , ^ 3 3 „ T 

-Tr- ~ 0 (1 Km = -T7- < 1; % = - ^ r ~ 0 ( l ) , % = - ^ r « 1 ; £ 2 < e 3 (6.55) 

Because the inflaton fa is usually displaced far away along the flat direction of the 

potential, we would expect that 

W(fa) < U(fa) (6.56) 

In addition, we assume that during slow-roll 

£c ~ £*, Vc ~ ??* (6.57) 

We then have from (6.36) and (6.37) 

Â 2* - — , ^3* ~ -£= (6.58) 
£3* \/£3* 

Since fa is heavy and fa is light it follows from (6.55) that 

N3* » N2* (6.59) 
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and (6.42) can be written 

dZc _.y£2£J?2c_) ^ l ^ y ^ J ^ ( 6 .6 0 ) 

t>2* £3c V£2* 0<p3* e3c y£3* 

Using these results we can estimate the expressions for Nt3, and (6.38-6.40) becomes 

JV22*~0(1), A T 3 3 ~ - ^ , N 2 3 ^ ^ - ^ = (6.61) 
£3* £3c V£2*£3* 

from which it follows that 

W 3 3 . ~ — J — N 2 3 * (6.62) 
V2c V £2c 

By assumption, (6.55), the slow-roll factors satisfy 

^ » 1 , A / ^ » l , — » 1 , — - 0 ( 1 ) , (6.63) 
£2c V £ 2* £2c ??2c 

Using (6.63) in (6.62) we then arrive at the following hierarchy among the NlJt 

N33* » 7V23* » N22* (6.64) 

Therefore, 

, $Y?^N*N3NJX 5N33 
fNL = 6 (^N2)2 * 6 Af ~ ° M « X ( 6-6 5 ) 

with the dominant contribution coming from the light field fa. 

In summary, both examples discussed in this section yield JNL ~ 0(rj) + O(e) -c 1 

(where ij, e are the slow-roll parameters for the inflaton). The result is similar to that of 

the standard slow-roll inflation, see for example, (84). 

6.2.3 Explicit Setups 

Example 1 Let's choose the parameters in the potential(5.10) as 

Q = ^ ' a 2 = olu'a3=il)'a4=rlA2 = 0'2^3 = 0-001^4 = 0'001-
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Ai = - 1 , A2 = 0 1, A3 = 0 005, A4 = 0 005, W = 500, £ = 40,7 = 9 75 x 10 - 6 

To calculate ea,rja, Z, etc, we need to solve the equation of motion for the background 

fields which can usually be done numerically Choose the initial conditions to be 

TI(0) = 76212 l,r2(0) = 246 99,r3(0) = 472 42,r3(0) = 491 54, 

n(0) = T2(0) = 0,T3(0) = - 1 72 x 10-19,r4(0) = - 1 5 x MT19 

The volume in this setup is V ~ 106 which is within a reasonable range 103 — 10s (101) 

This will give 60 e-folds before the end of inflation The nonlmear coefficients are 3 

N(HC) 

INL 

TNL 

A=20 

0 0146 

0 000308 

A=30 

0 0147 

0 000312 

iV=40 

0 0147 

0 000312 

A=50 

0 0147 

0 000311 

N=55 

0 0147 

0 000311 

A=59 

0 0147 

0 000311 

Example 2 As a second example, we choose the parameters such that the volume is 

relatively small, V ~ 103 

1 27T 27T 

01 = 971'a 2 = 80' f l 3 = ^ ' ^ = 0 04, A3 = 1 2 x HT4, AA = 1 2 x 10 '4 

Ai = - 1 , A2 = 1, A3 = 0 01, A4 = 0 01, W = 1, £ = 35,7 = 2 65 x 10~3 

n(0) = 1781 356,r2(0) = 51 039,r3(0) = 282,r3(0) = 285, 

n(0) = r2(0) = 0,r3(0) = - 1 40948 x 10_9,r4(0) = - 1 21344 x 10"9 

The mflation lasts for N = 62 5 e-folds 
3The different values of JV are computed at correspondingly different, constant, values of the Hubble 

parameter, Hc 
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N(HC) 

INL 

TNL 

N=20 

0.0171 

0.000423 

iV=30 

0.0167 

0.000429 

iV=40 

0.0148 

0.000465 

A=50 

0.0108 

0.000464 

JV=55 

0.0121 

0.000333 

A=59 

0.0170 

0.000423 

One can check that the above explicit results are consistent with the conclusion in 

section (4.2) and (4.3) that fNL ~ 0(rj) + O(e). 

6.3 Numerical Methods 

6.3.1 The Finite Difference Method 

Numerically it is straightforward to solve the equations of motion for the background 

fields without applying slow-roll approximation (83). The advantage of the numerical 

method is that we do not need to rely on slow-roll approximation (although we still 

need to assume slow-roll at Hubble exit (95)) and no assumption about the shape of the 

potential is needed. 

We will use the finite difference method (102) to calculate the derivatives of N = 

N(fa,..., fa; Hc)
4 up to the second order beyond the slow-roll regime. 

First Order derivative The finite difference method gives 

Ni = 27r [ A r ( 0 1 ' - ' ^ + h u "4n) ~ N^u •••' ^ ~hu " ^ n ) ] + ° ^ (6-66) 

Second Order derivative When i = j , 

N„ = -j[N(fa, ...,fa + ht, ...fa)-2N(fa, ...,fa) + N(fa,..., fa-hz, ...fa)] + 0(h2) (6.67) 

4 Here cj>% are understood to be the field values at the Hubble exit. 
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and when J / J ; 

Nl3 = [N(fa, ,fa + K, ,fa+h3, fa)-N(fa, ,fa + ht, ,fa-h3, fa) 

-N(fa, ,fa-ht, ,fa+h3, fa)+N(fa, ,fa-hu ,4>3-h3, fa)} + 0(h2) 

(6 68) 

Once we get JV,'s and Nl3's, we are ready to calculate the non-gaussianity usmg the 

(5 A-formalism discussed previously5 

6.3.2 Example 

We numerically solve the background equations of motion for the model introduced 

in Section 5 3 Then we use the 5N formalism to calculate the non-linear parameters 

/JVL and TNL The parameters in the potential(5 10) and initial conditions are chosen the 

same as in Section 6 2 3, Example 1 

N(HC) 

INL 

TNL 

A=20 

0 00874 

0 000300 

A=30 

0 0125 

0 000274 

A=40 

0 0142 

0 000292 

A=50 

0 0143 

0 000295 

A=55 

0 0143 

0 000296 

A=59 

0 0143 

0 000362 

A=60 4 

0 0143 

0 000346 

These are very close to the results obtained by the analytical method in Section 6 2 3 

Remarkably, notice that the values of the nonlinear parameters does not change much 

near (N = 59) and after (N = 60 4) the end of mflation when slow-roll condition breaks 

down It is reasonable to suspect that the non-gaussianity evolves very slowly through 

mflation and even preheatmg era In practice, we may just use the separable potential 

method to compute non-gaussianity under slow-roll condition and use the result as an 

approximation to those in regimes beyond slow-roll 

5We do not compute the third order derivative of N, and thus gNL, smce the term containing it is 
proporbonal to 0(h3) which is very small and the error bars can be relatively huge 
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6.4 Curvaton Scenario 

So far we have only considered the mflationary scenario in which we assume that the 

non-gaussianity is generated by the inflaton However, it is necessary to mvestigate the 

possibility of a curvaton scenario which does not effect the dynamics during inflation 

but may play a major role in the oscillation stage 

6.4.1 Curvaton evolution 

In a multi-field inflationary model, there will in general be several light fields, with one 

of them, called inflaton, dominating the dynamics of mflation Other light fields, on the 

other hand, have very little effect durmg inflation and are usually neglected However, 

under certain circumstances, a light field other than the inflaton may be identified as the 

curvaton (103) (104), a, which sometimes generates significant non-gaussianity after the 

end of mflation 

After the end of inflation, the inflaton quickly starts to oscillate about its potential 

minimum It then decays into radiation (photon) when its decay rate Tmf — H, where 

the decay rate Tmj can be calculated once the coupled Lagrangian is given During the 

oscillation process, if rmf > Fa, the inflaton will decay first, leaving the curvaton as 

the only light field6 Right after the inflaton decays into radiation, the curvaton energy 

density is still subdominant However, the massless radiation decreases faster, ~ \ , 

than the massive particles associated with the curvaton, ~ \ , as the universe expands 

Thus the relative energy density of the non-relativistic curvaton may increase until it 

decays into radiation, at which point it may even dominate the total energy density 

6.4.2 The existence of the curvaton 

For simplicity, we assume that during inflation all the fields, except fa and fa, stay close 

to their VEVs and are thus heavy We can write the potential as 

6We assume that there are no other fields, such as those associated with cold dark matter, etc 
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V~Vo + Vi + Vn (6.69) 

where Vi and Vn are potentials for fa and fa, and VQ is the (almost) constant part of the 

potential due to the (almost) frozen fa, with 1 < i < n. 

If the curvaton exists, its mass must be less than the Hubble parameter. Thus the 

quadratic potential V*i should be small compare to VQ. The inflaton fa is displaced far 

away from its VEV, and its potential is suppressed by orders of y 

_ 8(anAn)
2
y^ 2anTn _ 4anAnWorn J__ 

Vn~ 3VXna
 € V2 6 V3+P' P>^ [bV) 

negligible if compared to VQ. 

As a result, (6.69) is dominated by VQ 

W2 

V~V0 = P0^ (6.71) 

where 

po = - \ E aA» <T*> f + h + ^ v (6-72) 
i=2 

(r4) ~ a"1 (InV - lnOO (6.73) 

where (r,) is the value of the ith moduli at its minimum and the uplifting parameter 

7V~0( l ) ( see Section 5.3). 

Near the potential minimum, the masses of the canonicalized fields, fa and 4>t,i>2, 

given by (5.12) and (5.13) are 

W2 

m2 = O i y f , (6.74) 

W2 
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The coefficients 

h = " f X>M^) f + f£ + 67V <6"76) 
i=2 

?. = - ! + 4a,"1 fa) + 4 < 2 fa)2 (6.77) 

and 

Ct = 3-^ (6.78) 

4a? ,4, 

As expected, the fields fa, 2 < i < n — 1 are heavier than the Hubble parameter in 

the large volume limit 

m2-^>H2^ l-Vo ~ ^ (6.79) 

by (6.23). 

Since the field fa is our candidate for the curvaton field, it should be lighter than the 

Hubble parameter, i.e., 

0 < Qx < \Po, (6.80) 

More explicitly, 

^ f > A , (r,)t + \a\n (r„)i > ^ £ + ^ 7 V (6.81) 
i=2 

| ^ a A l ( r l ) i < y ^ + 67V (6.82) 
i=2 

From (6.81) and (6.82) it then follows that 

aA„(r„)f > ^ - f l V (6.83) 

In the simplest setup where all the fields fa,i > 2 are identical in parameters(A,, alr 

etc), we get from (6.81) and (6.82) 

n < 1 55 (6.84) 
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which is not possible since the integer n has to be at least 2. Hence a different setup than 

the simplest one is needed to satisfy the curvaton condition. 

Equation (6.81) and (6.82) are the necessary conditions for the existence of the cur­

vaton scenario. They are very restrictive, however, as shown by the simple example 

above, and will require some fine tuning to make them be satisfied. 

6.4.3 The decay rate 

Consider the Lagrangian of the scalars coupled to the gauge field (photon) of the form 

C9 = - ^ T F ^ (6.85) 

where AT is the coupling for the modulus field r which can only be the small four-cycle 

(the inflaton) (105). 

The other parts of the Lagrangian can obtained by quadratic expansion around the 

potential minimum. By canonically normalizing the kinetic terms and diagonalizing 

the mass matrix terms 

Co = -Vmm + \d^d^ - imfy,^* (6.86) 

where fa are the canonically normalized fields and also eigenfunctions of the mass ma­

trix. 

In what follows, we consider a model consisting of multiple moduli: TI,T2, ...,rn, 

where TI is the large four-cycle and all other moduli are small. Typically, most of the 

small cycles are close to their vevs and thus are heavy during inflation. Only the inflaton 

is displaced far from its vev. Let the inflaton be rn. So the relevent moduli here will be 

Ti and rn and other moduli play the role of stabilizing the potential. Starting from the 

Lagrangian in (4.14), it is possible to simultaneously diagonalize the kinetic terms and 

the mass matrix terms under the assumption that the mass matrix is independent of 

the fields, which is a good approximation close to the minimum of the potential. For 
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simplicity, let us first diagonalize the kinetic terms using the field transformations (5.12) 

and (5.13). The Lagrangian reads 

1 „ r ~,, r . 1 „ , - „ , . .- 1 9 r 2 1 , ,- 2 
2f Co = - Vmm + -d^fad^fa + -dfj.fad^fa - -m\fa - -m2

nfa - m2
lnfa<j 

where 
d2V Wn

2 

Qi,n^r (6-87) Hafa V2 

g 1 , „~ -3 v
/ 2aA n a r l (T n ) J , (6.88) 

and the effective fields fa = fa — (fa) represent the oscillation amplitude of the field 

about its potential minimum. 

From now on we omit the hat over <j). Following (106), we calculate the eigenvalues 

and eigenvectors of the mass metrix 

\ 
M2 = | 

mln ml J 
(6.89) 

M2vl = elvl, i = 1,2. (6.90) 

where the eigenvectors vz are normalized such that vjv3 = 5l3. 

The transformation takes the form 

1 " = ( vi ) fa + [ v2 ) ik (6-91) 

In the large volume limit, we find that 

fa~fa+o(y-^fa~fa (6.92) 

fa~o(y-^fa + fa~fa (6.93) 
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which means that we can approximate the Lagrangian by 

Co * -Knin + ^fad^fa + \dvfadVfa - ^mlfai - \m2
nfan (6.94) 

Rewrite the Lagrangian for the gauge sector (105) 

—TF F^ = — 
4MPi ^ AMpi' 

C9 = -TH-rF^ = -TTTT.fan + fa))F^F^ (6.95) 

where A; is a normalization factor. We can set T = rn since the D7 branes only wrap the 

small four-cycle T„ (101). 

In terms of the (approximately) canonicalized fields fa, the gauge field (radiation) 

Lagrangian takes the form 

4, = ->^-£z^w^ 4MP, 

which corresponds to 

(6.96) 

k = (T^-1 , (6.97) 

A*=^, ^=(£A*fa«)-*- (^8) 

The complete Lagrangian reads 

C = - Vmin + \d^<h^<k + \d»fad»fa - \m\fa[ - \vn2
nfa\ 

I F PM" - ^ - ^ F F^V -
4 ^ 4M P , 0 1 "" 4MPi 

V " " 7£-*iF^ - -t:faF^ (6.99) 

From the Lagrangian (6.99), it is straightforward to get the decay rates 

T^=iMP-l
 (6-ioo) 

file:///dvfadVfa
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i e , 
_ 3W3 | 1 

r ^ ^ - 1 2 8 7 M | 7 g i ^ | ( 6 1 0 1 ) 

3jy0
3 / Q n \ f 1 

r ^ — " 256.M|aA„ (, ( r ^ J V^ ( 6 1 0 2 ) 

Thus, 

^ ~ - 1 - « T„ ~ -L (6 103) 
V5 V2 

This indicates that the curvaton fa decay mdeed occurs some time after decay of the 

inflaton The amount of non-gaussianity generated by the curvaton is determined by 

its relative energy at the time of decay, which will be shown in the next section 

6.4.4 The nonlinear parameter 

The curvaton starts to decay when the Hubble parameter drops below the decay rate of 

the curvaton 7 

H ~ rCT_^77 (6 104) 

Using the sudden decay approximation (assuming the decay happens instantaneously), 

the nonlinear parameter of the curvaton perturbation can be shown to be (94) (107) 

_5_ (. ql\ _ 5 _ 5rd_e 

4rdec V 912 ) 3 6 fNL = 77— ( 1 + ^2 1 " o " H P (6 1 0 5) 

where the dimensionless ratio 

r d e c = q
 3 P l d e ; (6106) 

and pudec and p7dec are the energy density for the curvaton and radiation at the time 

when the curvaton decays, respectively 

The function g characterizes the dependence of the curvaton, a(= fa), at the begm-

7In what follows, the curvaton in our scenario, <f>\, is relabeled u to conform with previous work on 
curvatons in the literature 



CHAPTER 6. NON-GAUSSIANITIES 88 

ning of its oscillation, on its value at Hubble crossing, a%, i.e., a = g(a*) . Assuming the 

absence of the nonlinear evolution of the curvaton, we have g" = 0 and 

fNL = ~ - - \ - ^ (6.107) 
4rdec 3 6 

If the curvaton energy density dominates the total energy density when it decays, 

the corresponding nonlinear parameter is 

fNL ~ - \ (6.108) 

On the other hand, if rdec <C 1, then /JVL ~> 1. Note that if r^ec ~ 0.58, JML ~ 0. 

The initial energy density of the curvaton a, when it begins to oscillate, is 

Pa ~ \m\a2 (6.109) 

where a is the oscillation amplitude of the curvaton. To estimate its value, we use the 

arguments similar to (101) (108). Analogous to the Hawking radiation in black holes, 

the quantum fluctuation 5a of the light field a during inflation in de Sitter space has the 

power spectrum (109) 
/M \ 2 

| 2 \ _ / n* \ _ rp2 P5a = (\Sa\2) = ( J ^ j =T2
H (6.110) 

where T# is the Hawking temperature and the label * denotes the Hubble exit; and 

9 1 WZ 

Hi ~ -P0^ (6.111) 

by (6.71). It indicates that the amplitude of quantum fluctuation 

5a~TH=1^ (6.112) 
Z7T 

The amount of quantum fluctuation is comparable to the classical (slow roll) motion 
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when 

5a ~ aSU ~ ^fH~l (6.113) 
H* 

where the slow-roll condition of the light field a has been used, and St* = H~l is the 

change in time during one e-fold. We view the onset of the quantum regime as the 

time when the oscillation takes place. The typical (initial) value of a constraint by the 

quantum fluctuations thus satisfies the conditon 

dV , 
- ^ ^ H3, (6.114) 

Since the potential is quadratic under assumption, the value of a reads 

a - A , (6.115) 

where V* = V0 ~ 3H2. 

The initial ratio between the curvaton energy density and the total energy density is 

*» = — - 4 S = A (6-116) 
Ptot 3H?M* 6mi 

where 

and we set Mpi = 1 as usual. 

Since 

we have 

ffin = ma (6.117) 

w 2 

ml = m2 = Qi^r, (6.118) 

^ = ^ i (6-119) 6Q2 V3 

only lasts 

We should have fijr, <§C e~Aiv < 1. Then, under the sudden decay approximation, the 

Now assume that the oscillation stage only lasts for a few e-folds (AJV = J^60 Hdt). 
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ratio rdec of Eq. (6.106) can be related to fim by (110) 

O / TT 

3 
n„ m 
/6VP0

3W0
2 1 

V2 Of 
(6.120) 

In terms of if*, 

f d e c - W , , 1 - ^ (6.121) 
Mpl 

where we temporarily restore the Planck mass. Notice that the Hubble parameter dur­

ing inflation is generally much smaller than the Planck mass. Given the fact that Wo 

should not be very large, the ratio rdec can be quite small. By (6.107), this will give rise 

to a large positive /NL > 1/ see also (101). 

6.5 Discussion 

In the inflaton scenario, the analytical method (i.e., the separable potential method) and 

the numerical method give very similar result for the specific class of string models in­

troduced in the previous chapter, even though the analytical method is only valid in 

the slow-roll regime. The nonlinear parameter we get is very small which is typical for 

slow-roll inflation models. One thing to note is that the result does not vary much for 

different CY volume, as long as the volume is reasonably large. As has been shown, 

the nonlinear parameter is mostly determined by the slow-roll parameters which them­

selves are usually very small. The amount of non-gaussianity are unlikely to be detected 

by the current cosmology experiments. However, it has been argued that certain types 

of experiments which can detect such small amount of non-gaussianity (113). 

The curvaton scenario, on the other hand, if exists, can give rise to sufficiently large 

amount of non-gaussianity. As shown by calculation, the condition for existence of the 
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curvaton scenario is very restrictive. To satisfy those very restrictive conditions, the 

parameters need to be fine tuned appropriately. The resulting non-gaussianity is de­

termined by the potential and the CY volume. These large non-gaussianity effects in 

curvaton scenarios have also been computed in closely related type IIB flux compactifi­

cations (101). 



Chapter 7 

Summary 

7.1 Conclusions 

Throughout this thesis we discussed several aspects of string compactifications, includ­

ing the extra dimensions, type IIB theory on Calabi-Yau manifolds and 0 3 / 0 7 planes, 

moduli stabilizations and particular models including the KKLT and LVS. We also stud­

ied the cosmological equations and solutions and computed the observable results for 

inflation scenario. 

As an important part of the thesis, the main focus of the moduli stabilization section 

is on KKLT type model and its extension, LVS. In KKLT model, the no-scale structure is 

broken by the non-perturbative effect (D-brane instantons) which helps to stabilize the 

moduli. The uplifting mechanism, by breaking the supersymmetry via adding anti-D3 

branes or D7-brane flux, turns the already stabilized supersymmetric AdS minimum 

into a positive dS minimum. The LVS emphasizes on the perturbative a' correction to 

the Kahler potential which leads to the existence of non-supersymmetric Ads vacua in 

the large volume limit. There are, however, as has been pointed out by (114), some open 

problems which need to be addressed in the future: certain fluxes may alter the correc­

tions, open string moduli are largely ignored, the uncertainty of direct supersymmetry 

breaking in string theory, etc. At present, the assumption is that these problems will not 

92 
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affect the mam results we get from LVS 

The effective potential we get is a function of scalar moduli which is desirable from 

a phenomenological point of view as the equations of motion can be solved analytically 

following the standard treatment of the scalar field theory in cosmology There is an 

important result from the solution the distinction between the light field and the heavy 

fields The perturbations of the the light fields change very slowly, while the perturba­

tions of the heavy fields decay rapidly due to the expansion of the universe As a result, 

the power spectrum is completely determined by the light fields in the Lagrangian The 

heavy fields has no contribution to the power spectrum but are necessary in stabiliz­

ing the mmimum of the potential The fact that there often exist many moduli fields 

after moduli stabilization gives rise to many possibilities to the cosmological mflation 

scenario There could be more than one light fields and the task of fmding the inflaton 

path is not straightforward as in the single light field case One often needs numerical 

computations to identify along which path inflation evolves Luckily there is a lot of 

freedom in tuning the parameters m our potential, which will allow us to get the de­

sired vacua And these parameters are mostly calculable or at least can be constramed 

Moreover, many necessary approximations are made in order to simplify the calcula­

tion 

An interesting fact worth mentioning here, which has been discussed in (51), is that 

the Calabi-Yau volume (as long as it is large enough) almost does not affect the spectral 

index ns In fact, we fmd ns is always close to 0 96 which is well within the observed 

value 0 963 ± 0 012 (115) An earlier estimate (49) shows that for this type of models 

ns ~ 1 — 2/N where N, usually taken as 50-60, is the e-folds mflation lasts 

The power spectrum contams the information regarding the evolution of the energy 

density of inflation Non-gaussianity, on the other hand, is a good measure for the inter­

action between the fields which is not sensitive to the power spectrum The correlations 

of the three-point and four-pomt functions tells the departure from a Gaussian distribu­

tion So any large non-gaussianity if detected will rule out many mflation models and 
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put constrains on the field composition Non-gaussianity can even be a powerful probe 

of other scenarios than inflation since a small non-gaussianity (FNL < 1) will m princi­

ple rule out all the alternative scenarios proposed so far other than inflation (116) So far 

the detection of non-gaussianity is not very satisfatory due to the huge error bar The 

up and comming experiments like the Planck satellite (61) can measure non-gaussianity 

at a more accurate level and will put tighter constrams on the value of non-gaussianity 

We made an important step toward strmg phenomenology by utilizing the results 

from string compactifications to solve cosmological problems Deriving the low energy 

effective theory from string theory is a nontrivial task Many parts of string compactifi­

cations are still far from being full understood This is also the reason why we focus on 

some specific ideas (KKLT, LVS) instead of deriving the result from a more theoretical 

perspective Nevertheless, the present work sheds some light on constructing realistic 

models from string compactification via moduli stabilization 

The mechanisms in string compactification such as moduli stabilization lead to an 

effective theory which otherwise is impossible to obtam using non-string methods The 

observations, such as the measure of the spectrum index and the amount of the non-

gaussianity, can then pin down the values of the strmg related parameters, such as the 

shape and the size of the mternal space, and provide a way to somewhat reveal the exact 

form of string theory Looking into the future, the steady development in cosmological 

observations and strmg theory will surely yield more interesting connections between 

the two and will most likely sharpen our understandmg of the nature of string theory 

7.2 Future Research 

In the cosmological model we constructed, the volume of the Calabi-Yau has always be 

assumed to be large This allows us to ignore higher order terms in the expansion in 

terms of the inverse power of the volume This not only simplifies the scalar potentail, 

but also makes it flat enough which is ideal for generatmg slow-roll inflation One may 
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wonder, instead of imposing the "uplifting" mechanism, if the LVS assumption can be 

used to construct models with different mechanisms of obtaining dS vacua At the same 

time, the future experiments such as the Planck satellite will generates new and more 

accurate data There will be a new wave of interaction between the phenomenological 

models from string theory and the observations 

In Chapter 2, we explained the reason behmd our choice of type IIB theory instead 

of other types of string compactification type IIA, heterotic, M-theory on G2 manifold, 

etc Different types of stirng theories are connected by dualities At the level of effective 

action in certain limits1, these different compactifications are equivalent So m princi­

ple, other types of strmg compactification may also lead to interesting models that can 

be connected with observations In fact, there are many works on these models from 

different string theories It would be more interesting to compare the results between 

these models 

Again, as has been emphasized earlier, we have only looked in a small region of 

the allowed configuration space The models have been shown so far are only specific 

examples which are relatively easy to access with our current knowledge of string com­

pactification And we are far from the goal of fully solvmg the moduli problem and 

computing all the parameters Even more, without a practical screening mechanism for 

the string landscape, fmdmg the physically relevant string vacua is a formidable task 

We hope, by further studying the connections between the phenomenology (such as 

strmg cosmology) and strmg compactification, we could gain a better understanding of 

the structure and solutions of string theory 

aFor example, m the large wolume/complex structure limit for type IIA and type IIB 
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Appendix to Chapter 4 

A.l The Hankel Function of Large Complex Order 

Eq. (4.47) are the solutions for the equation of motion 

VI = ^^^(-T^H^-kT^ik) . 

To get an approximation (and simplified) expression for the case where A/ is large 

and negative, we first use the Frobenius expansion of the Bessel function around the 

origin 

J M ( Z ) = V 2 7 [rOu + 1) ~ T(p + 2)\2) + 2!F(^ + 3) \2) 

To the lowest order, 

_ [z/2Y „J£/2)-M „. ,A9, 

So 
- . u * r f ^ r f ^ r - " ' ( z / 2 ) " - ( * / 2 ) ~ * fl-W(z) = e w ^ ( ^ ) ~ •/-*.(*) _ e r(i+„) r(i-M) ( A 3 ) 

^ — isinnp —is'mnp 
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Stirling's formula for large v approximation of the Gamma function gives 

/27r\ 1 1 
r(«/) = vve-\\^\l + - i - + - ^ + °(^"3)]' W\ > L largM! < * - e (A-4) 

where e is any small positive number. 

Let ^ = 1 ± ip where p > 1, to lowest order, 

r(i ± i P )» (i ±ip)1±lpe-
l^pJ-2n 

± ip 

= (1 ± ip)(l ± i p ^ e ^ e ^ v ^ r e
T l f 

( l+p 2 )4 

= v/2^f(l + p 2 )4e-^ a "e ± l ( f - P + P ^ S V W ) (A.5) 

where 1 ± ip = \ / l + p2e±tQ. 

So for p > 1, the Hankel function is 

(i + P
2)-h1+ap< P = IP 

# « ( * ) « _ (A.6) 
l(l + p2)-\e1+^-^Puj, p = -ip 

where 

-plT(^\-ip l(^-p+plog^/l+p2) _ (Zyp - l ( | _ p + p / i 0 g x / l + p 2 ) 
w = e-pTc_y-jpeH-2-p+PI0sv J-+P ) _ (_ype-Hf-p+p/'ogv i+p ; (A.7) 

A.2 Solving the equation of motion using Mathematica 

Here is the Mathematica codes used in Chapter 5 for solving the equations of motion 

(4.16). The example contains two heavy fields, TI and T2, and two light fields, T4 and T5. 

The last few plots shows the evolution of these fields and the slow-roll parameters e. 
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V 1 2 

; 6 l [ t ] = - d o t a 2 ; 
3 - - dota 2 2 

2 

ilmin = 76212.0966316556" ; t2min = 246. 98550953829155' ; t30 = 471; t40 = 473; 
dt30 = -D[Log[V] , t 3 [ t ] ] / . { r l [ t ] -• t lmin, t 2 [ t ] -> t2min, t 3 [ t ] -> t30, t 4 [ t ] -» t40}; 
dt40 = -D[Log[V] , r 4 [ t ] ] / . { t l [ t ] -» tlmin, t 2 [ t ] -> t2min, t 3 [ t ] -» t30 , t 4 [ t ] -> t40}; 

. . t l ' ' [ t ] + g t t l VI t2 ' ' [ t ] + g t t2 V2 
s4 = NDSolve 1 + t l ' [ t ] = , + t2 ' [ t ] == , 

U 3- i dota2 v 3- i dota2 V 
2 2 

t3 • ' [t] + gtt3 V3 t4 ' ' [t] + gtt4 V4 
+ t3' [t] == , + t4' [t] == , zl [0] == tlmin, i2 [0] == t2min, 

3- i dota2 v 3- - dota2 V 
2 2 

r3[0] == t30, t4[0] = = t40, zl ' [0] = = 0, t2 ' [0] == 0, t3 ' [0] == dt30, t4 ' [0] == dt40J, 

{ t l [ t ] , t 2 [ t ] , t 3 [ t ] , t 4 [ t ] } , { t , 0, 200}, MaxSteps -> 500 000, AccuracyGoal -» 4] 
NDSolve: :mxst: Maximum number of 500000 steps reached at the point t == 62.6763959712055". » 
{{rl [ t ] -» I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>] [ t ] , 

t2 [ t] -> I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>) [ t ] , 
t3 [ t ] -» I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>] [ t ] , 
t4 [ t ] -> I n t e r p o l a t m g F u n c t i o n [{{0. , 62. 67 64}}, <>] [ t] }} 

r , t l ' ' [ t ] + g t t l VI t 2 , , [ t ] + g t i 2 V2 
s4prime = NDSolve \ + t l ' [ t ] ~ , + t2' [ t ] == , 
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2 2 
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t3[0] == t30, t4[0] == t40, i l ' [0] == 0, t2 ' [0] == 0, t3 ' [0] == dt30, t4 ' [0] == d t4o ] , 

{ t l ' [ t ] , t2 ' [ t ] , t3 ' [ t ] , t4 ' [ t ] } , { t , 0, 200}, MaxSteps -» 500 000, AccuracyGoal -» 4] 

NDSolve::mxst: Maximum number of 500000 steps reached at the point t== 62,6763959712055". » 

{ { t l ' [ t ] -» I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>] [ t ] , 
r2' [ t] -» I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>] [ t ] , 
t 3 ' [ t] -» I n t e r p o l a t m g F u n c t i o n [{{0. , 62.6764}}, <>] [ t ] , 
t4 ' [ t] -» I n t e r p o l a t m g F u n c t i o n [ {{0. , 62 . 67 64} }, <>] [ t] }} 

t f = Extract [Head [Extract [ t l [ t ] / . s4 , { 1 } ] ] , {1, 1, 2}] 

6 2 . 6 7 6 4 
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Plot [Evaluate [ (el [t] /. s4) /. s4prime] , {t, 0, tf}] 
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P l o t [ E v a l u a t e ! ( e l [ t ] /• s4) / . s4prime], { t , 62 .8 , t f } ] 
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Plot [Evaluate [ (tl[t] /. s4) /. s4prime] , {t, 0, tf}] 
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Plot [Evaluate [ (t2 [t] /. s4) /. s4prime] , {t, 62.78, tf}] 

Plot [Evaluate [ (t3[t] / . s4) /. s4prime] , {t, 62.5, tf}] 
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Plot [Evaluate [(t4[t] /. s4) /. s4prime] , {t, 62.5, tf}] 
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Plot [Evaluate [ (HA 2 / . s4) / s4pnme] , {t, 62.5, tf}] 

Plot [Evaluate [ (V / . s4) /. s4prime] , {t, 60, tf}] 
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Plot [Evaluate [ (HA 2 /. s4) /. s4prime] , {t, 60, tf}] 
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Evaluate P lo t Evaluate 
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