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ABSTRACT 

IN-SITU EARLY DETECTION OF METAL CORROSION 

VIA "TURN-ON" FLUORESCENCE IN "SMART" EPOXY COATINGS 

by 

Anita Augustyniak 

University of New Hampshire, September, 2011 

Organic coatings (e.g., epoxy coatings) have been widely used to protect metal and metal 

alloys against corrosion. However protective coating fails with time, leading to corrosion 

of the metal substrate. When localized corrosion occurs, without being detected, it can 

result in disastrous failure of the metal structure. The purpose of this thesis is to develop a 

"smart" epoxy coating system that detects early stages of metal corrosion via indicators 

molecules embedded in the coating that fluoresce when triggered by ions liberated from 

corrosion. This fluorescence can be easily and non-destructively detected and thus further 

material damage can be prevented by providing necessary maintenance. In this thesis a 

spiro lactam, [ 1 H-iso indo le-1,9'- [9H]xanthen] -3 (2H)-one, 3', 6 '-bis(diethy lamino)-2- [(1 

methylethylidene) amino] (FDl), was successfully used to sense early stages of metal 

corrosion, when embedded in the epoxy coating, via "turn-on" fluorescence. Despite that 

we unambiguously confirmed that FDl forms a fluorescent complex with Fe3+ in a 

nonaqueous solution by using electrospray ionization mass spectrometry (ESI-MS), the 

predominant mechanism that FDl is capable of detecting early metal corrosion is due to 

its acid-catalyzed hydrolysis to fluorescent protonated Rhodamine B hydrazide, as the 

xv 



consequence of the local pH decrease at the anodic sites of both steel and aluminum 

corrosion (water is always present). The "turn-on" FDl fluorescence was easily, non-

destructively detected under UV light before any visible sign of corrosion appeared. In 

addition, only a low FDl concentration (0.5 wt%) in the coating was needed for effective 

corrosion detection. FDl did not prematurely interact with the coating formulation 

components and was able to "report" early corrosion even when embedded in the filled 

epoxy coating in the presence of pigments. 
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CHAPTER 1 

INTRODUCTION 

Summary. In the introduction of this thesis, the corrosion process is explained with focus 

on steel and aluminum. A general description of corrosion protection via organic coatings 

is presented including coating failure mechanisms that result in corrosion of the 

underlying metal. A short introduction to "smart" polymeric coatings for corrosion 

protection is given. Early corrosion detection methods, including in-situ early corrosion 

detection via indicator molecules, and their significance are then discussed. Finally an 

overview of the content of this thesis is presented. 
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1.1 Background of Corrosion and its Consequences 

Corrosion is a chemical or electrochemical reaction between a metal or metal alloy and 

its environment (ex. oxygen or water) that produces deterioration of the material and its 

properties. As a result of this reaction various corrosion products are formed that are in 

fact similar or identical to the minerals that the metal was extracted from in the first place 

(ex. oxides) [1, 2]. Corrosion, when undetected and untreated, can cause serious metal 

failure and can result in economic and safety implications. In 2001 CC Technologies 

Laboratories, Inc. with support from the U.S. Federal Highway Administration (FHWA) 

and NACE estimated that direct cost of losses due to corrosion is $276 billion annually 

[3]. For the Navy, the maintenance cost related to corrosion was estimated to be $6.14 

billion/year in 2006 [4]. 

In general electrochemical corrosion reactions can be described using iron as an example. 

An iron (or steel) corrosion cell (i.e. region where corrosion occurs) is schematically 

illustrated in Figure 1 and described below. It includes four essential components: 

1. An anode, where metal is oxidized and dissolved (Equation 1): 

Fe -»• Fe2+ + 2e" (1) 

2. An electrolyte solution (such as salt water), where oxidized metal is dissolved and 

where the transport of ions between anode and cathode occurs. This transport is 

2 



necessary to maintain electroneutrality in the cell so no charge is accumulated by 

corroding metal 

3. A cathode, where reduction reactions take place. The main reaction for any type 

of atmospheric corrosion in neutral and acidic solution is reduction of dissolved 

oxygen (Equation 2): 

0 2 + 2H20 + 4e" -> 40H" (2) 

4. A path for electron conduction between the anode and the cathode (through the 

conducting metal) [1,5] 

Figure 1. Scheme of iron corrosion. 

The electrons liberated by the anodic reaction are consumed at the cathode as shown in 

Equation 1 and Equation 2. The driving force for the reactions described above is 

potential difference between anode and cathode which may arise from differences in the 

constituent phases of the metal itself, from variations in surface deposits or coatings on 

the metal, or from variations in the electrolyte or oxygen concentrations (different 

aeration cells are formed). The anode and the cathode can be located physically close to 

each other or at distant sites in the same metal. In some cases the anode can be the 
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surface of one component (metal) and the cathode can be the surface of another 

component in contact with it, as in the case of galvanic corrosion. All metals are arranged 

in the galvanic series (or electropotential series) with the noblest metals (least easily 

oxidized), that serve as a cathode, at one end and easily oxidized, active metals that form 

an anode and corrode preferentially, at the other end. A galvanic series applies to a 

particular electrolyte solution (e.g. seawater) thus for each specific solution it will have a 

different order [1,6]. 

The corrosion process can be stopped by eliminating any of the four corrosion cell 

components mentioned above [5]. 

Corrosion is influenced by many factors such as: 

Alloy composition (due to possibility of galvanic corrosion between two 

dissimilar metals with different corrosion potential) 

Electrolyte chemistry (e.g. chloride ions or oxidizing agents in water accelerate 

corrosion) 

pH (acidic pH accelerates corrosion by supplying hydrogen ions that react with 

electrons at the cathode) 

Temperature (in general corrosion rate increases with increasing temperature) 

Oxygen content (water with high oxygen content tends to be more corrosive) 

Presence of biological organisms (that can accumulate at the metal surface and 

accelerate crevice attack) [1,2]. 
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1.1.1 Types of corrosion 

Corrosion can be classified based on these three factors [2]: 

1. Nature of the corrodent: 

- "wet" corrosion where a liquid or moisture is necessary 

- or "dry" corrosion involving reaction with high-temperature gases 

2. Mechanism of corrosion: 

electrochemical 

or direct chemical reactions 

3. Appearance of the corroded metal: 

- uniform, when metal corrodes at the same rate over the whole surface 

or localized when only small areas are affected 

Based on the appearance of the corroded metal, eight forms of wet corrosion can be 

distinguished [2]: 

uniform or general corrosion 

- pitting corrosion 

crevice corrosion that includes corrosion under tubercles or deposits, filiform 

corrosion, and poultice corrosion 

galvanic corrosion 

erosion-corrosion that includes cavitation erosion and fretting corrosion 

intergranular corrosion that includes sensitization and exfoliation 
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dealloying that includes dezincification and graphitic corrosion 

environmentally assisted cracking, including stress-corrosion cracking (SCC), 

corrosion fatigue, and hydrogen damage 

Some of the most common types of corrosion are schematically illustrated in Figure 2 [2, 

6]. 

uniform pitting crevice 

erosion corrosion intergranular exfoliation dealloying 
(selective leaching) 

corrosion fatigue stress corrosion 
cracking 

Figure 2. Schematic illustration of the common forms of corrosion [2, 6]. 

Localized corrosion can be divided into two groups: 

Microscopic local attack where visible metal damage is minute and the 

considerable corrosion can occur before it is observed by the naked eye, and 

- Macroscopic form of corrosion that affects larger areas and is generally 

visible to the naked eye [2] 
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This division is illustrated in Figure 3. 
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Figure 3. Forms of localized corrosion [2]. 

It has been reported that localized corrosion mechanisms are responsible for about two 

thirds of all structural failures, while uniform corrosion is responsible for less than one 

fourth. A large fraction of the localized corrosion failures occurs by pitting [7]. Pitting 

(Figure 2) is one of the most dangerous types of localized corrosion. It is hard to detect 

by visual inspection since the pits and cavities formed during the process propagate deep 

into the metal causing rapid metal dissolution without significant changes observable on 

the surface and with only a small percent weight loss of the entire structure. Additionally, 

pits can act as notches or cracks and trigger more damage when the metal structure is 

under stress (fatigue and stress corrosion cracking (SCC) can initiate at the base of 

corrosion pits). Therefore pitting corrosion usually leads to replacement of the entire 



structure [1, 2]. Marine environment is the most favorable for pitting corrosion. For 

pitting to occur, the metal has to be in a passive form (i.e. an oxide film being present on 

the surface). Engineering alloys such as aluminum or stainless steel form passive films, 

which makes them highly resistant to uniform corrosion. However when the passive film 

is damaged metals become prone to pitting [2]. 

1.1.2 Marine Corrosion 

Seawater, which covers 70% of earth's surface, is known to be quite corrosive due to the 

high concentration of chloride ions (almost 55% of total dissolved solids) that make sea 

water a very efficient electrolyte. Chloride is also the most aggressive ion in sea water 

because it can penetrate and destroy the passive oxide surface of metals and accelerate 

their corrosion. Other factors contributing to high corrosion rates in coastal and ocean 

seawater are variable temperatures, dissolved oxygen contents, biological organisms and 

pollutants [1, 8]. At a NaCl concentration of around 3.5%, the corrosion rate of iron in an 

aerated solution was found to be at its maximum due to high conductivity of water and 

sufficient solubility of dissolved oxygen [1]. At a higher dissolved salt concentration 

solubility of dissolved oxygen is decreased and the corrosion rate subsequently decreases. 

For this reason 3.5% NaCl solution is often used to simulate seawater in laboratory. Since 

seawater is considered a very aggressive environment, a material exhibiting a satisfactory 

corrosion resistance in seawater is considered sufficient for major industrial applications 

and water transportations systems [8]. 
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1.1.3 Corrosion of Construction Metals and Alloys 

Iron and steel are the most widespread materials for construction applications. However 

their usefulness is not due to their corrosion resistance but due to their availability, 

mechanical properties, low price and ease of fabrication. Carbon steel is the most 

commonly used material for service in seawater. It is used in vast applications in ships 

and shipping industry [8]. Carbon steels are alloys of iron and 0.05-1% carbon, as a main 

constituent added as a strengthening element, and other alloying elements such as copper, 

nickel or chromium [1, 8]. Cast irons include a large family of ferrous alloys. Their 

carbon content is between 2 and 4 % and silicon content (for better corrosion resistance) 

1% or more. Iron and steel corrode in many media including most outdoor atmospheres. 

Different kinds of steel corrode at different rates depending on their composition and on 

the presence of mechanical stresses. Iron corrodes uniformly over its entire outside 

surface (general corrosion). To prevent these materials from corroding, protective 

coatings are applied. However, their failure can lead to localized or undercoating steel 

corrosion (as described in section 1.2.2). Stainless steels on the other hand are generally 

very corrosion-resistant in corrosive media at atmospheric and elevated temperatures due 

to a protective passive oxide layer. This layer is formed on the surface in oxidizing 

atmospheres. However it shows susceptibility to pitting and crevice corrosion and stress-

corrosion cracking in seawater and similar environments containing aggressive chloride 

ions that can penetrate the passivated layer. Stainless steel is an iron-based alloy 

containing at least 12% chromium for better corrosion resistance (forms protective 
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chromium oxide). There are 5 main types of stainless steel: ferritic, martensitic, 

austenitic, precipitation hardening and duplex [1, 8]. 

Aluminum and its alloys are another extremely useful and abundant group of materials. 

They are used extensively for architectural trim and window and door hardware, 

automotive trim [1], sidings and other building materials. Due to its light weight, 

aluminum and its higher-strength alloys are also widely used for structural components in 

aircrafts and aerospace vehicles [1, 8]. Aluminum is a very thermodynamically active 

metal, however this reactivity provides its natural corrosion resistivity. Similarly to 

stainless steel, a dense, inert protective aluminum oxide layer forms rapidly when the 

metal is exposed to an oxygen-containing environment (e.g. air, water) and protects the 

metal surface from corroding since it is more thermodynamically inactive. Even when the 

oxide layer is damaged (e.g. by a scratch), new oxide forms immediately on the bare 

metal [1,9]. However the protective oxide film can be destabilized and thereby corrosion 

can occur. The oxide is not stable in acidic (pH<4) or alkaline (pH<9) solutions or in the 

presence of aggressive ions (such as chlorides, fluorides) that might locally attack the 

oxide and cause pitting [1]. Corrosion resistance of aluminum alloys varies depending 

on alloying components. Most of the alloying elements decrease corrosion resistance and 

improve mechanical properties. Corrosion on aluminum alloys is essentially a 

microgalvanic process between intermetallic phases and the matrix alloy due to the 

difference in their potential. Each alloy class is specified by the first of a four-digit 

designation. Alloys within each class are specified by the other three digits (xxx) [1]. The 

lxxx alloys consist of commercially pure aluminum with only residual impurities and 
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alloying elements that gives them excellent corrosion resistance but generally low 

strength. Thus, these alloys have limited commercial use. The 2xxx series (such as Al 

2024-T3) contain copper as the main alloying element. Because of their high strength and 

low density they are extensively used in aerospace and other industrial applications. 

However, they are the least corrosion resistant of all aluminum alloys and usually are 

used only when protected by alclading or painting (e.g. with epoxy coatings). Since 

copper is more noble in the galvanic series (less active) that aluminum it serves as a 

cathode and the surrounding aluminum matrix serves as an anode and undergoes 

localized attack when the protective oxide is attacked by aggressive chloride ions; in this 

situation pitting might occur. Pits are initiated at weak sites in the oxide and propagate 

according to the anodic reactions: 

Al^Al 3 + +3e - (3) 

Al3+ + 3H20 -> Al(OH)3 + 3H+ (4) 

The cathodic reactions involve reduction of dissolved oxygen at the intermetallic 

particles according to Equation 2 and hydrogen evolution (in the absence of all other 

reduction reactions) (Equation 5): 

2H+ + 2e~->H2 (5) 

During pit propagation, pH inside the pit decreases according to Equation 4. Also 

chloride ions will migrate to the pit to balance the positive charge. As a result HCl is 
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formed that further dissolves the metal and accelerates pit propagation [1, 8]. The pH in 

the pit can be as low as 3.5 [10]. Around the cathodic intermetallic particles an alkaline 

environment is formed due to OH" formation (reduction reaction) and an oxide layer that 

is not stable in this environment will dissolve in that area forming alkaline pits. These 

processes are described in Figure 4 [9]. 
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Figure 4. Pitting corrosion on aluminum alloys [9] 

Other aluminum alloys contain various alloying elements, such as manganese, 

magnesium, chromium, silicon or zinc. Their corrosion resistance and strength depends 

on the composition. 

1.2 Corrosion Protection by Organic Coatings 

One of the oldest and most convenient ways to protect metal surfaces from aqueous 

corrosion is the application of a protective organic coating. This coating serves not only 
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as a physical barrier against aggressive species present in the metal environment (such as 

oxygen or protons and chloride ions) but more importantly inhibits the formation of an 

electrolytic path, one of the corrosion cell's components necessary for the corrosion 

process to occur [11, 12, 13]. This barrier can be simply due to properties of the polymer 

(i.e. low electrical conductivity) or due to the presence of inert pigments that increase the 

diffusion path through the coating [13]. 

1.2.1 Corrosion Protection by Epoxy Coatings 

One of the most widely used protective coatings on metal surfaces are epoxy coatings due 

to their exceptional adhesion to metal surfaces, excellent chemical, acid and water 

resistance, better alkali resistance than most other types of polymeric paints, dielectric 

and insulation properties, low shrinkage at cure, thermal stability and superior 

mechanical strength [14, 15, 16]. Epoxies are cured products of an epoxy resin and a 

curing agent (sometimes called hardener). Diglycidyl ether of bisphenol-A (DGEBA, 

DGEBPA or BADGE) is a typical commercial epoxy resin. It is formed by the 

condensation polymerization (step-growth polymerization) of epichlorohydrin and 

bisphenol A (or rather its sodium salt) that produces a linear prepolymer with an epoxide 

group at each end (Figure 5) [17]. 
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Figure 5. Condensation polymerization of epichlorohydrin and bisphenol A [17]. 

The molecular weight of DGEBA is controlled and liquid (with degree of polymerization, 

n=l) or solid (2< n <30) prepolymers are formed. Epichlorohydrin can also be prereacted 

with a variety of hydroxyl, carboxy and amino compounds, to form monomers with two 

or more epoxide groups, before reacting with bisphenol A. Various coreactants are used 

to cure epoxy resins either through the epoxide or hydroxyl groups. Polyamines are the 

most common curing agents. The curing reaction involves ring-opening addition of the 

amine to the epoxy [17]. Both more reactive primary and less reactive secondary amines 

are used. A variety of multifunctional amines (i.e. containing multiple nitrogen-hydrogen 

reactive bonds) are used as crosslinking agents including diethylene triamine, triethylene 

tertamine and polyaminoamides (e.g. the diamide formed from diethylene triamine and a 

dimerized or trimerized fatty acid) [17]. The curing reaction between an epoxy and a 

tertrafimctional diamine is shown in Figure 6. As a result of this reaction a crosslinked 

network is formed. 
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Figure 6. Curing of epoxy resin with tetrafunctional primary amine [18]. 

Other curing agents such as polythiols, dicyandiamide and phenolic prepolymers have 

also been used to cure epoxy resins via the epoxide group. Some of these compounds 

require weak bases (e.g. tertiary amines or imidazole derivatives) to accelerate the curing 

reaction. If the prepolymers have low epoxide group content then crosslinking can also be 

accomplished through hydroxyl groups of the repeat unit. The most common curing agent 

used in this case is phthalic anhydride. Another way to cure epoxy resin is by ring-

opening polymerization of epoxide groups using Lewis acids or Lewis bases. 

Most epoxy coating formulations contain various additives such as diluents, 

reinforcement materials, fillers and pigments, and toughening agents [17]. 
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1.2.2 Protective Coating Failure Mechanisms and Corrosion of Coated Metals 

All organic coatings are water permeable to some extent and over time their 

protectiveness can decrease due to prolonged exposure to the environment or mechanical 

damage. The corrosive species (electrolytes) can eventually penetrate the coating, 

accessing the metal surface, and undercoating corrosion can take place. Also the presence 

of the inevitable microscopic or macroscopic defect in the protective film (such as 

pinholes, voids, and mechanical scrapes and scratches) allows the environment to reach 

the metal faster [1, 19]. There are a few steps that lead to coating degradation (Figure 7) 

and failure that result in exposing the metal to corrosive environment. In the case of a 

defect-free coating, first the conductive pathway has to be formed. Hydrophilic regions in 

the coating allow water uptake and interconnection of these regions (Figure 7a). When 

defects are present, such as air bubbles, poor wetting between pigment and binder, or 

mechanical damage, these connections are formed easier. After the pathway is formed 

water, oxygen and ions can be transported to the metal surface from the environment 

(Figure 7b). When soluble materials such as salts are present on the metal surface water 

uptake can be increased due to osmosis and blisters can form under the coating. In this 

case, corrosion is accelerated since all the corrosion parameters are present [19]. 
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Figure 7. Stages of coating degradation and undercoating corrosion (adapted from [19]). 

In the next step, the corrosion cell is formed near the conductive pathway or defect 

(Figure 7c). The anode forms at the bare metal at the base of the pathway. Due to 

hydrolysis of metal ions produced at the anodic site, a decrease in local pH is observed 

(iron used as an example) (Equation 6). 

,2+ Fez (aq) + 2H20 — Fe(OH)2(s) + 2H (aq) (6) 

In the marine environment also aggressive ions such as CI" will flow to the anode (i.e. 

corrosion initiation site) to preserve electroneutrality (Equation 7): 

J.+ Fe (aq) + 2H20 + 2 d - -> Fe(OH)2(s) + 2HC1 (7) 

This reaction starts pitting corrosion that develops when the anodic area is small relative 

to cathodic area (Figure 7d). As a result of reduction in pH, autocatalytic mechanism of 
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pit growth is created where HCl solution in the pit accelerates anodic metal dissolution 

and increases chloride concentration in the pit. Insoluble loose porous hydrated iron(III) 

oxide (Fe(OH)3) forms at the pit mouth when OH" from the cathodic site combines with 

ferric ions that are formed when ferrous ions diffuse out of the acid pit interior and 

further react with hydrogen ion from water and dissolved oxygen and are oxidized 

(Equation 8) . 

4Fe2+
(aq) + 4H+

(aq) + 0 2 (aq) - • 4Fe3+
(aq) + 2H20(1) (8) 

Fe(OH)3 slowly transforms into red-brown Fe203-H20, commonly known as "rust". In the 

same time, the cathode is formed under the coating near the defect or conductive pathway 

(Figure 7c). As shown in Equation 2 electrons produced at the anodic site are consumed 

at the cathode which results in formation of hydroxyl ions [1,2]. OH", besides combining 

with metal ions, can also react with cations that diffused through the coating (such as Na+ 

from the salt water) and increase in local pH is produced. In case of a degraded or not 

well adhered coating, the pathways of ion exchange between cathode and anode are 

formed more easily and corrosion rates are higher. The increase in pH together with 

osmotic forces reduces bonding between the metal and the organic coating. As a result 

the coating is disbonded at its interface with the metal (Figure 7d). Two main reasons 

why this alkalinity causes such failure are saponification of the coating (for coating 

formulations containing ester bonds) and dissolution of the oxide layer at the interface 

that is responsible for metal/coating adhesion [13, 19]. In some coatings blisters are 

formed that can grow in size and eventually coalesce resulting in total delamination that 
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exposes metal to its environment and corrosion can progresses in an uninhibited way [1, 

19]. This coating degradation mechanism is called cathodic disbondment or cathodic 

delamination and usually applies to steel substrates [20]. 

Anodic undermining is another mechanism for propagation of undercoating corrosion. 

Aluminum substrates are especially susceptible to anodic undermining. In this case loss 

of adhesion between the metal substrate and organic coating is caused by anodic 

dissolution of the metal or its oxide [19, 21]. Unlike in cathodic delamination mechanism, 

the anodic reactions in this case happen at the blister edge. Anodic undermining can be 

caused by coating defects such as scratches but in most cases it relates to a corrosion 

sensitive area under the coating such as from impurities from cleaning or blasting 

procedures [20, 21]. Once the corrosive environment has penetrated to the metal surface 

this area becomes active and metal corrodes. Initially the corrosion rate is low but an 

osmotic pressure, caused by buildup of soluble corrosion products, encourages blister 

growth. From then on the blister grows due to an anodic crevice corrosion mechanism. 

The basic driving force for crevice corrosion is a differential aeration cell (Figure 8) 

(corrosion is driven by potential differences between the aerated and oxygen depleted 

regions). As the amount of liquid in the blister increases, local conditions cause an 

imbalance in the oxygen. The diffusion of oxygen into the cavities at the edge of the 

blister is impeded and results in these areas becoming anodic. The surrounding metal that 

has an easy access to oxygen becomes the cathode. Metal ions formed in these cavities 

migrate outside to react with the hydroxide ions at the cathode and corrosion products are 
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formed at the mouth of the cavity. As the process progresses metal corrodes away and 

detaches from the coating that is pushed up by forming corrosion products. 

blister 
crevice 

(limited 0 2 access) 

corrosion products 

Figure 8. Crevice corrosion of the metal substrate under the protective coating. 

The mechanism of crevice corrosion is similar to pitting corrosion and in the presence of 

CI" has autocatalytic character. As a result filiform corrosion can occur that represents a 

specialized form of anodic undermining [19, 20]. Filiform corrosion has been observed 

under thin organic coatings on steel, aluminum, magnesium and zinc (coated on steel) [1, 

20]. This type of corrosion propagates from the initiation site (edge of the blister) as 

narrow 0.05-3 mm-wide thread-like filaments under the coating (right image in Figure 9). 

Filiform corrosion penetrates the metal only superficially and causes mainly a cosmetic 

problem [1]. The filaments consist of actively corroding anodic head and inactive 

cathodic tail filled with corrosion products (left image in Figure 9). 
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Figure 9. Corrosion filament (left image) [22] and filiform corrosion on aluminum panel coated with 
polyester paint (right image) [23]. 

Due to metal dissolution followed by hydrolysis and H+ liberation (Equation 6) pH as low 

as 1 is generated at the head. Atmospheric constituents such as soluble chlorides or 

sulfides ions assist acidification and speed up the corrosion rate [1, 20]. Delamination of 

the coating takes place at the active head. As the head moves, the filiform grows in 

length. 

1.2.3 "Smart Polymeric Coatings" for Corrosion Protection 

Polymeric coatings, in addition to their passive protecting and aesthetic functions, are 

increasingly being designed to serve active roles in response to internal/external stimuli 

as so-called "smart coatings" [24]. One widely studied application of these types of 

materials is in metal-corrosion protection. Autonomous self-healing films, for example, 

have received great attention recently [24, 25, 26], where physical damage in a coating is 

self repaired to recover barrier properties before metal corrosion occurs. Another stimuli-

responsive approach is the use of inhibitors incorporated within the coating that are 

released "on demand" when corrosion occurs [27, 28, 29, 30], to effectively halt further 
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damage. The two approaches described above function to extend the useful lifetime of the 

coating by attempting to prevent or minimize the impact of the corrosion reaction. 

However, one strategy of particular significance that has not yet been adequately 

addressed, especially for epoxy-based coatings on metal, is the ability for a coating to 

detect and report early stage of metal corrosion under the coating or at the coating's 

defects before any visible sign of it can be seen. A coating that reports the onset of 

corrosion could, consequently, signal when maintenance should be performed to prevent 

further metal damage. 

1.3 Early Corrosion Detection Methods and its Significance 

Obvious results of metal corrosion (e.g. rust), than can be easily observed after the 

coating fails (e. g. blistered, cracked or chipped coating,) are the latter stage of a complex 

and dynamic process that begins at the microscopic level under the coating or in the 

flawed areas of the coating. One of the ways to prevent catastrophic failure of the 

material and to increase the lifetime of the structures made of this material is to assess the 

early stages of corrosion. Therefore corrosion progress can be monitored and further 

material damage prevented by providing maintenance on a needs basis when it is 

relatively inexpensive. 

Many methods have been used to detect undercoating metal corrosion before it becomes 

severe. Especially desired ones are so called "nondestructive testing and evaluation 

methods (NDT&E)" that do not require removing the coating from the metallic surface as 
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opposed to "tear down" inspections. Both microwave [31] and millimeter wave [32, 33] 

nondestructive methods were used successfully to detect both steel and aluminum 

corrosion under the paint by sensing the differences in dielectric properties of the coating 

when corrosion layer is present at the metal/coating interface. Also infrared 

thermography method [34] was applied using infrared camera to detect carbon steel 

corrosion by monitoring the temperature differences at the surface after heating the metal 

plate. Another NDT&E method to detect aluminum undercoating corrosion is eddy 

current testing [32] that uses electromagnetic induction to detect cracks, discontinuities or 

pits in the metal. For steel surfaces also X-ray techniques [35] were applied to evaluate 

corrosion beneath the organic coating by detecting and indentifying corrosion products. 

Even though all these methods were successfully applied to assess undercoating 

corrosion in a practical application they all require the detecting systems to be 

"delivered" to the inspected areas. Desired corrosion detection system then should 

incorporate both NDT&E methods with in-situ detection. 

1.3.1 In-situ Early Corrosion Detection Methods 

Fiber optics were used as an example of in-situ non-destructive technique for monitoring 

steel corrosion in concrete [36]. In this case fiber optics bundles were simply detecting 

the brown color of rust formed on steel, which is formed in a later stage of corrosion. 

Another method involves use of small piezoelectric wafer active sensors (PWAS) [37] 

that can record and monitor corrosion in aluminum pipelines. Even though the above 

mentioned in-situ sensors can be potentially embedded in the coating, they require 
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positioning them in the right spot otherwise corrosion can be missed since undercoating 

corrosion tends to be localized. In addition, all the NDT&E methods stated above require 

the use of often complex and expensive equipment and hardware. Another challenging 

matter when using these sensing systems involves proper and fast data interpretation. 

1.3.1.1 In-situ Early Corrosion Detection via Indicator Molecules Embedded in 

Protective Organic Coating 

A perfect corrosion sensing method will be both non-destructive and in-situ detection 

where the sensor is incorporated into the whole coating or the coating itself serves as a 

sensor and data output is easy to interpret and analyze. This can be realized by 

incorporating indicator molecules into coating formulations that detect the onset of 

corrosion because of their interaction with ions generated during corrosion reactions. As 

a result of this interaction, the color or fluorescence change of the indicator can be 

observed or recorded. A simple detection method based on this concept was reported by 

Zhang and Frankel [38] utilizing high pH-sensitive compounds in an acrylic coating 

applied on an aluminum substrate, which change their color or fluorescence as a result of 

an increase in the pH at cathodic areas of corrosion. A similar approach was also reported 

by Calle and Li [27], in which they used pH responsive microcapsules that release an 

indicator in polyurethane coatings at the alkaline cathodic areas of corrosion. For metal 

substrates, however, the widely used protective coatings are epoxy-based. Although the 

alkaline pH-sensing approach seemed to work well in acrylic and polyurethane coating 

systems, it proves to be very challenging in epoxy coatings. Johnson and Agarwala 
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attempted the use of fluorescein in an epoxy primer coating applied onto an aluminum 

plate and reported that the indicator became "prematurely fluorescent" in the epoxy 

coating [39]. If alkaline pH-sensitive compounds can be ionized prematurely by coating 

formulation components (such as the alkaline amine hardener in epoxy coatings) they 

will not be able to sense corrosion by the same trigger mechanism. An alternative 

corrosion-sensing approach involves the interaction of an indicator with metal ions 

liberated during the corrosion reaction or low pH at the anodic site of corrosion, where 

actual metal dissolution happens, resulting in a change in the fluorescence of the probe. 

By using a fluorescent indicator, better sensitivity can be achieved since the detection 

limits in solution for fluorescence are lower by factors of 102-104 than for color changing 

species [40]. Different compounds, that change their fluorescent characteristics 

depending on pH or upon interaction with metal ions, have been attempted for corrosion 

detection on aluminum substrates [39, 40, 41, 42]. Although success of various extents 

was reported in the detection of aluminum corrosion, no success has been reported, to the 

best of our knowledge, describing such an indicator in an epoxy coating detecting steel 

corrosion. 

1.3.1.2 The Ideal In-situ Corrosion Indicator 

A desired fluorescent probe for corrosion detection should interact with ions liberated 

during corrosion (OH7H+ or metal ions) resulting in "turn-on" fluorescence, in contrast to 

quenching reactions that are more common with fluorescence probes. The "turn-on" 

approach is more practical and useful since it is simply easier to see small areas that 
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fluoresce (when the background does not) than to see a slight decrease in overall 

fluorescence as in case of quenching reactions. The initially nonfiuorescent indicator, 

after incorporated into the epoxy coating, would ideally become highly fluorescent in 

areas where corrosion occurs before any obvious sign of metal damage can be observed 

by the naked eye. Also, an ideal fluorescent indicator suitable for epoxy coatings should 

not become prematurely fluorescent when mixed with precursor components (i.e. epoxy 

resin or hardener) during the preparation of the coating. 

1.4 Objective and Outline of this Thesis 

The objective of this thesis is to design a smart indicator/epoxy coating system to detect 

early stages of metal corrosion. This smart coating, in addition to its passive protecting 

function, would serve an active role and in-situ detect early stages of metal corrosion via 

the indicator molecules embedded in the coating. These sensing molecules would become 

fluorescent, due to their interaction with ions released at the corrosion site, and their 

"turn-on" fluorescent response would be easily and nondestructively detected. 

In chapter 2, the possibility of using acid-based indicators, embedded in the epoxy 

coating, to sense increase in local pH at the cathodic site of corrosion is explored. It is 

shown that these types of molecules are challenging to utilize as corrosion sensors in the 

epoxy coating due to their interaction with the matrix components and the possibility of 

premature indicator response. Chapter 3 describes the use of the FDl molecule as a steel 

corrosion sensor due to its ability to selectively sense Fe3+ ions. This molecule, when 
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embedded in the epoxy coating, has proven to be an effective early corrosion indicator 

for steel. In chapter 4 the stability of FDl in the epoxy matrix is explored. It is shown 

that FDl is slightly sensitive to photooxidation but does not prematurely interact with 

epoxy components. It will also be illustrated that FDl embedded in the epoxy matrix is 

capable of sensing corrosion even after prolonged exposure to an aqueous solution. 

Chapter 5 focuses on the FDl sensing mechanism. FDl is shown to form a fluorescent 

complex with Fe3+ ions in non-aqueous solution, however in an aqueous solution of Fe3+ 

the low pH of the ferric salt solution will be shown to be responsible for FDl "turn-on" 

fluorescence. In chapter 6, FDl is explored as an early corrosion indicator for aluminum 

due to its sensitivity to low pH. The effectiveness of FDl as an aluminum corrosion 

sensing molecule in an epoxy matrix will be shown. In chapter 7, overall conclusions 

from the work comprising this thesis are described and a future outlook will be presented. 
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CHAPTER 2 

CORROSION DETECTION BASED ON HIGH pH SENSING 

Summary. In this chapter, the possibility of using acid-base indicators embedded in an 

epoxy matrix to sense increase in local pH at the cathodic site of corrosion is described. 

The behavior of two different chromophoric acid-base indicators, phenolphthalein and 

Alizarin Yellow R sodium salt, in an epoxy matrix (both commercial and model) was 

explored. These types of indicators were found to be prematurely activated by the epoxy 

components during coating formulation. As a result of this interaction, the indicator color 

changes and it is not able to respond to alkaline pH. More importantly, after the color of 

the indicator fades with time, the epoxy matrix is no longer responsive to high pH. Due 

to the high reactivity of both components of the matrix (epoxy resin and amine hardener), 

and the possibility of premature response, these type of molecules are excluded from 

further investigation as corrosion sensors when embedded in epoxy based coatings. 
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2.1 Introduction and Literature Review 

2.1.1 Phenolphthalein as a Chromophoric Acid-Base Indicator for Detection of 

Cathodic Corrosion Reaction 

As described in chapter 1 (section 1.2), at the cathodic site of a corrosion cell, due to 

reduction of dissolved oxygen, OH" ions are produced according to Equation 9: 

0 2 + 2H20 + 4e" -»• 40H" (9) 

As a result of this reaction an increase in the local pH occurs. An acid-base indicator, for 

example phenolphthalein, with pKa 9.3, is often used to observe this change in pH on 

metal surfaces [43]. This chromophore in its undissociated, protonated form is colorless. 

In pH solutions higher than 8, phenolphthalein changes color to bright pink (magenta) 

due to deprotonation and derealization of electrons in the whole molecule (longer 

wavelength of light can be absorbed). If the pink solution of phenolphthalein is allowed 

to stand in the presence of excess base, the color gradually disappears [44]. These 

changes in the molecule's structure are illustrated in Figure 10. Color change for 

phenolphthalein depending on pH is shown in Figure 11. 
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Figure 10. Different forms of dissociation of phenolphthalein [44]. 

Figure 11. Change in color of phenolphthalein in different pH solutions. 

A mixture of phenolphthalein together with K3[Fe(CN)6] (potassium ferricyanide) is 

known as a ferroxyl indicator and is often used in simple school experiments to show iron 

corrosion [43, 45]. An iron nail is immersed in a solution of water or neutral electrolyte 

(e.g. NaCl), an indicator and a stiffening agent (such as gelatin or agar to minimize ion 

diffusion and preserve the colors formed). When the corrosion starts potassium 

ferricyanide reacts with Fe ions in acid solution producing insoluble blue pigment, 

Prussian blue, indicating metal dissolution at the anodic sites. At the same time, 

phenolphthalein turns pink at the cathodic sites of corrosion where the metal remains 

intact (Figure 12). 
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Figure 12. Corrosion of iron nails immersed in agar containing ferroxyl indicator [46]. 

2.1.2 Fluorescent Acid-Base Indicators 

Alkaline pH at the cathodic site of corrosion can also be sensed using fluorescent 

compounds. Fluorescent molecules tend to be organic molecules with a rigid structure 

and delocalized electrons. These molecules after reaching an excited state, due to the 

absorption of energy of a specific wavelength, are able to re-emit some of the absorbed 

energy at a different (but equally specific) wavelength and return to its ground state. 

Since the emitted photon has lower energy than the absorbed photon the emission 

wavelength is longer than the absorption wavelength. This energy difference is called the 

Stokes shift [47, 48]. The emission spectrum is usually a mirror image of the absorption 

spectrum. Fluorophores absorb a range of wavelength of light energy and also emit a 

range of wavelength. Within these ranges are excitation maximum (lex,max) and emission 

maximum (or wavelength of maximum fluorescent intensity; Aem,max). /lem,max can shift to a 

shorter wavelength (blue-shifting) or a longer wavelength (red-shifting) depending on the 

environment. The other important experimental parameters describing fluorescent 

materials are the fluorescent emission intensity at a particular wavelength, the fluorescent 

quantum yield and the fluorescent lifetime. Quantum yield describes the emission 
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efficiency of a given fluorescent material and can be defined as the ratio of photons 

emitted over photons absorbed through fluorescence. Fluorescent lifetime is a measure of 

the lifetime of the excited state (i.e. it is the average time the molecule stays in the 

excited state before emitting a photon and returning to the ground state). Fluorescent 

emission intensity, quantum yield and fluorescent lifetime can be altered depending on 

the local environment [47, 48]. 

The advantage of using fluorescent species, over chromophores, to sense alkaline pH at 

the cathodic site of corrosion, is that they show better sensitivity [40]. Similar to 

chromophores, pH-sensitive fluorescent compounds show different fluorescent intensity 

depending on their ionization state. As an example of this type of molecule, fluorescein is 

shown in Figure 13. The deprotonated form of fluorescein (at high pH) exhibits 

fluorescence (middle and right structures in Figure 13), while the protonated species does 

not (left structure in Figure 13) [49]. 

""trTr • 

Neutral Molecule Monoanion Dianion 

Figure 13. Different ionic forms of fluorescein occurring in aqueous solution at pH's exceeding 3.3. The 
dianion is highly fluorescent [49]. 

pH-sensitive fluorescent dyes such as -methylumbelliferone, -naphthol and fluorescein 

were applied directly on aluminum- and gold- metalized integrated circuit (IC) devices to 
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detect pH changes associated with corrosion reaction [50]. Solution of fluorescein was 

also applied directly on aluminum alloys (6061 and 2024) to indicate pH changes and 

surface chemistry over and around corrosion active sites [51]. These experiments were 

performed to investigate localized corrosion directly on metal surfaces. 

2.1.3 In-situ Early Corrosion Detection at Cathodic Site of Corrosion via Indicators 

Embedded in Protective Organic Coating 

Since it was proved that pH-sensitive chromophores and fluorophores can be successfully 

used to sense the cathodic site of corrosion, there were also a few attempts to use them as 

in-situ early corrosion indicators by incorporating them into protective organic coatings. 

Frankel et al. [38] incorporated pH sensitive chromophores (phenolphthalein and 

bromothymol blue) and fluorophores (7-hydroxycoumarin and coumarin) into a clear 

acrylic coating to sense corrosion. These indicators were chosen because they change 

color (chromophores) or become fluorescent (fluorophores) in alkaline pH. The 

indicating paint mixed with phenolphthalein (2.4 wt%) was coated on the surface of 

aluminum alloy samples (Al 2024-T3) and subsequently immersed in a corrosive 1.0 M 

NaCl solution. After only 4 h of immersion red-colored spots appeared in the sample. 

After 9 h, pits developed in the vicinity of the red-colored areas (Figure 14) proving that 

the acrylic-phenolphthalein coating can sense localized increase in pH that accompanies 

pitting corrosion. This sensing system was also successful in detecting crevice corrosion 

[38]. Frankel et al. also were able to detect corrosion via fluorescing compounds at at 
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least an order of magnitude lower concentration compared to the color responding 

indicator. 

Figure 14. Optical micrograph of Al 2024-T3 coated with acrylic-phenolphthalein (2.4 wt%) after 
immersion in 1 M NaCl for 9 hrs [38]. 

Phenolphthalein was also used in a system where it could be released from pH-sensitive 

microcapsules embedded in a clear or light-colored polyurethane coating, at the cathodic 

site of localized corrosion [27]. Although use of pH-sensitive compounds in different 

clear or lightly colored organic coatings has been proposed to detect increase in local pH 

at the cathodic site of corrosion, no reports of successful use of these compounds in 

epoxy coatings can be found. 

Johnson and Agarwala [39] attempted the use of pH-sensitive fluorescein in an epoxy 

primer coating applied onto an aluminum plate and reported that the indicator became 

"prematurely fluorescent". This phenomenon can be ascribed to the premature chemical 

reaction between fluorescein and the reactive components of the epoxy coating itself. If 

pH-sensitive molecules can be ionized prematurely by coating components they will not 

be able to sense corrosion by the same trigger mechanism. 
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2.2 Objectives of this Chapter 

In this chapter the possibility of using pH indicators in epoxy based coatings to sense 

cathodic reactions of metal corrosion was investigated. The amines used as hardeners in 

epoxy coating formulations are bases with pKa values in the 9-11 range. Thus the 

potential interaction between hardener and the indicator that will result in color change of 

the indicator was expected when formulating the coating. However once the epoxy is 

fully cured, the assumption is that the pH of the matrix will have dropped below the pKa 

of the indicator as the amine groups will have been reacted. A question is, at this lower 

matrix pH, how long will the initial premature response of the indicator persist before 

returning to its protonated/colorless state? How will the rigidity of the now cured matrix 

impact the indicator's ability to return to the protonated state? Once incorporated in the 

cured epoxy and back in the protonated state, will the indicator be able to be ionized 

again in a new alkaline environment and return to the colored state to report corrosive 

conditions? The work described in this chapter attempts to answer these questions. 

In the preliminary experiments of this chapter chromophoric acid-base indicators were 

used since their response is easier to observe by the naked eye, especially when 

embedded in a clear matrix, as compared to changes in fluorescence. Ultimately, the use 

of pH-sensitive fluorophores, due to their higher sensitivity, was planned. 
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2.3 Experimental Section 

2.3.1 Reagents and Materials 

Phenolphthalein was purchased from Acros Organics. Alizarine Yellow R, sodium salt 

(AYR), 96%o, pure, was purchased from Sigma-Aldrich. Commercial Clear Epoxy-

Polyamide coating, MIL-DTL-24441C, type III, was purchased from NCS Coatings, Inc. 

D.E.R.™ 332 Epoxy Resin (high purity diglycidyl ether of bisphenol A, DGEBA) was 

purchased from The Dow Chemical Company. 2,2'-(ethylenedioxy)bis(ethylamine), 

97% (EBE) was purchased from Alfa Aesar. Triethanolamine (TEA), 99% was purchased 

from Pfaltz&Bauer. Sodium hydroxide (NaOH), reagent ACS, pellets, 97+% was 

purchased from Acros Organics. Solutions with different pH (9 and 10) were prepared by 

dissolving appropriate amount of NaOH pellets in DI water. Ethyl alcohol (ethanol), 

95%), ACS/USP grade, was purchased from Pharmco-AAPER and commercial alcohols. 

2.3.2 General Sample Preparation in this Chapter 

In the experiments with the commercial clear Epoxy-Polyamide coating (AAl-06), 

component A (hardener) and component B (epoxy resin) were mixed as suggested by the 

producer (1:1 volume ratio). The indicator was first mixed with component A and 

component B was subsequently added. Phenolphthalein content was 1 wt% based on the 

whole mixture. In the experiments with the model clear epoxy coating (AA1-16B, AA1-
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17B, AA1-18B, AAl, AA1-39A, AA1-39B, AAl-20, AAl-21 and AAl-22) the 

indicators were first mixed with EBE (phenolphthalein content was 1 wt% and AYR was 

0.06 wt% based on the whole mixture) and then DGEBA was added to the mixture. To 

obtain different matrix rigidity (by crosslinking), the ratio of epoxy groups (from 

DGEBA) to hydrogen from amine (EBE) varied depending on the sample. Additional 

details on other experiments are shown in the text. 

2.4 Characterization Methods 

Glass transition temperature (7^) was determined using differential scanning calorimetry 

(TA Instruments Q2000 temperature-modulated DSC) with an overall heating rate of 

3 C/min, an amplitude of+/-2 C, and a period of 60 s. Samples were first pre-heated in 

the DSC to 110 C to produce stable and uniform contact of the sample with the DSC 

pan. The temperature range of data collection was from 10 C to 120 C and two cycles 

were recorded for each sample. 

Visual color change of the samples with time after mixing with the matrix coating was 

monitored with the naked eye. The pictures of the samples were taken with a digital 

camera. 
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2.5 Results and Discussion 

2.5.1 Experiments with Phenolphthalein 

The first choice for testing the concept of using an acid-base indicator in the epoxy 

matrix to sense cathodic corrosion reaction was a chromophore, phenolphthalein. This 

indicator was chosen because its color change (from colorless to magenta) occurs at 

alkaline pH as shown in Figure 11. 

2.5.1.1 Experiments with Phenolphthalein in Clear Commercial Epoxy Matrix 

In my first experiment (AA1-06) I mixed phenolphthalein (1 wt%) with commercial clear 

epoxy coating (MIL-DTL-24441C, type III). This coating consists of two components: 

component A (amidoamine resin in 1-buthanol with additives) and component B (epoxy 

resin with additives). After mixing of all of the components, the color of phenolphthalein 

in the epoxy matrix changed with time as shown in Figure 15. 

t=0 t=3hr t=l day t=9 days t=7 months 

Figure 15. Color change of commercial clear epoxy coatmg with 1 wt% phenolphthalein (AAl-06) 
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Initially, the cloudy yellow mixture changed color to pink-red after 3 h (system not fully 

cured, Figure 15B). Then the color become more intense after 1 day (system fully cured, 

Figure 15C) and subsequently slightly faded with time (Figure 15E). Thus it is obvious 

that phenolphthalein after embedding in a commercial epoxy matrix cannot sense high 

pH related to corrosion because of its premature response and color change to magenta, 

followed by a very slow fading of that color. A further question was, in the case that the 

initial color would eventually fade, whether the indicator's ability to sense a new increase 

in pH would be recovered. To confirm that the color change of the indicator is due to the 

basic character of the hardener, component A (amidoamine resin) was mixed with 

phenolphthalein. Initial color of this mixture was slightly pink but changed to a more 

intense hue after 1 day as seen in Figure 16A and B. Surprisingly however, the intensity 

of the color was not as high as in the case where both components were mixed with the 

indicator (Figure 15C), even though the concentration of phenolphthalein was the same in 

both cases. This fact would suggest that the epoxy resin itself influences the indicator's 

response as well. After 9 days color seemed to fade and changed to orange (Figure 16C). 

This color change can be ascribed to the fact that phenolphthalein color fades when it is 

allowed to stand in the presence of excess base for an extended period of time [44]. This 

fading did not occur in the cured matrix as fast probably due to the fact that there is no 

base excess present in the system anymore after the coating is cured. 
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t=l day t=2 days t=9 days 

Figure 16. Color change of component A of commercial clear epoxy coating after mixing with 1 wt% 
phenolphthalein. 

When the component B (epoxy resin) was mixed with phenolphthalein no color change 

was observed. Thus it was concluded that not only the component A causes indicators 

color change, as expected, but also the component B influences phenolphthalein's 

chromophoric response, but only when in the mixture with the component A. This 

finding required further investigation. In order to understand the interactions between the 

indicator and both of the epoxy coating components at different matrix rigidity we chose 

to move to a model epoxy system. 

2.5.1.2 Experiments with Phenolphthalein in Clear Model Epoxy Matrix 

In order to more systematically evaluate the mechanism of color change of pH responsive 

indicators in an clear epoxy matrix, and to assess their ability to be reprotonated to a 

colorless form in that polymeric environment, I decided to move to a simple model 

epoxide/amine system without any additives that could potentially influence the color 

response. For the model epoxy system, diglycidyl ether of bisphenol A (DGEBA) was 

chosen as an epoxy resin and 2,2'-(ethylenedioxy)bis(ethylamine) (EBE) as the amine 

hardener. Chemical structures of these compounds are shown in Figure 17. 
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DGEBA C H 3 EBE 

Figure 17. Chemical structures of DGEBA and EBE. 

EBE has only 4 hydrogen atoms able to react with DGEBA which results in less 

crosslinked structure of the matrix (lower glass transition temperature, Tg) and thus 

diffusion of the molecules and their interactions are expected to occur faster than in the 

case of the commercial system. The reduction in amine groups usually increases 

hydrophobicity of the system. However for the indicator to work and to sense increase in 

pH, coating has to absorb some water, thus the two ether groups in the amine structure 

will help increase the hydrophilicity and by that plasticize the epoxy. Thus by using EBE, 

both reduction in the matrix rigidity and satisfactory hydrophilicity of the system can be 

accomplished. 

To systematically study the effect of matrix rigidity as well as relative component 

concentrations of reactants on the indictor's color change, I prepared samples with 

different ratios of epoxide ring from DGEBA to hydrogen from the EBE ( V N H ) . The 

phenolphthalein content was 1 wt% in all cases. Sample AA1-16B was the most rigid 

one since V N H ratio was 1:1 (fully cured, T% = 75°C). Sample AA1-17B was softer 

( V N H ratio of 3:2, Tg= 40.5°C) and AA1-18B was the softest epoxy matrix ( V N H 

ratio of 2:1, Tg = 28°C). First EBE was mixed with phenolphthalein resulting in 

appearance of the light pink color. Then DGEBA was added and color became clear after 
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mixing all of the components. However with time a pink color with different intensity 

developed again in all samples. The color change of the samples is shown Figure 18. 

10 days 7 weeks 3 months 
Figure 18. Color change of clear model epoxy matrix with different rigidity mixed with 1 wt% of 

phenolphthalein. 

As it can be seen in the Figure 18 color of the softest sample (AA1-18B) developed the 

fastest but then faded with time. This proved that the color change is diffusion controlled 

process and depends on the matrix rigidity. This finding was confirmed when the samples 

were placed at elevated temperature (60°C, experiments AAl-31 and AAl-32). In case of 

the more rigid AA1-16B sample, color became more intense with time at 60°C but did 

not fade even after 1 month. This lack of fading can be explained by the fact that there is 

not enough mobility in this rigid matrix even at elevated temperatures to complete the 

reactions between the matrix and the indicator. In case of the medium rigidity AA1-17B, 

color developed to bright pink only after 15 minutes at 60°C and then faded to colorless 

after 2 days. The least rigid AA1-18B became colorless after only 2 hr in the oven. The 
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ability of the AA1-18B sample to sense alkaline pH after the indicator's color fading was 

examined by putting it in an aqueous NaOH solution (pH 9.5). Color of the solution 

turned light pink probably due to leaching of the unreacted phenolphthalein and its 

ionization in alkaline solution. However color of the sample did not return to pink even 

after 3 weeks at both, room temperature and elevated temperature, in NaOH solution. 

This experiment proved that phenolphthalein when embedded in epoxy matrix is not able 

to sense increase in pH after its initial color disappearance. 

As mentioned above, just mixing phenolphthalein with EBE resulted in the appearance of 

a slight pink color. However when water was added to that mixture, bright magenta color 

appeared since more phenolphthalein was deprotonated. Thus the change in color 

intensity in AA1-16B, AA1-17B and AA1-18B samples with time could be explained by 

the fact that water is absorbed more rapidly in the softer matrices (AA1-17B and AA1-

18B) and thus the intense color in less rigid samples appears faster due to ionization of 

the indicator by the amine. However the softer matrices had an excess of DGEBA that 

should cause full EBE conversion to a tertiary amine. I investigated the ability of the 

cured matrix (after 1 month of curing) to change color of the phenolphthalein in 

experiment AAl-30; sample without the indicator but with the same DGEBA-EBE 

content as in AA1-18B (sample AA1-18A) was placed in water-ethanol solution of 

phenolphthalein at 60°C (to speed up the indicator diffusion into the matrix). Color 

change of the sample to magenta was observed especially at the edges of the sample after 

only 15 minutes. This color was persistent even after 1 month in solution. At this point all 

EBE in this sample should be reacted to tertiary amine. Thus the color response of the 

43 



indicator can be explained only by 1) its interaction with tertiary amine that is present 

after and during the curing reaction, or by 2) the reaction between the indicator's phenol 

group and DGEBA's epoxide ring in the presence of the tertiary amine. However the 

color of the indicator did not fade with time as in case of AA1-17B and AA1-18B 

samples. Perhaps at this point the matrix is cured to the point where molecular mobility 

(diffusion) is restricted and the reactions and thus fading can not be completed. 

Yet if the color change from magenta to colorless (as observed in AA1-17B and AA1-

18B samples) is only due to indicator being exposed for extended period of time to 

excess of amine, then when the faded sample is placed in low pH solution it should be 

able to slowly reprotonate to magenta color (as shown in Figure 10). In experiment AA1-

38 I placed a piece of faded, colorless AA1-18B sample in aqueous solution of HCl (pH 

1) at 60°C. Color of the sample remained clear even after 4 hr in this low pH solution 

which indicates that the indicator was not reprotonated to its pink form. Thus it was 

concluded that the indicator fading must be due to reaction with DGEBA in the presence 

of tertiary amine. This reaction is possible because phenolphthalein (similarly to other 

acid-base indicators) has phenol group with active hydrogen that is able to react with the 

epoxy ring in the presence of a weak base such as tertiary amine [17]. The magenta color 

appears because the indicator is ionized in the first stage of the reaction. Then color goes 

away as the indicator molecule is built into the DGEBA structure and the derealization 

of electrons in the whole molecule (that is responsible for the chromophoric response) is 

not possible any more. This explanation of the indicator's response in the epoxy matrix 

was confirmed in experiment AAl-40. In this experiment DGEBA was mixed with 
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phenolphthalein and a drop of triethanolamine (tertiary amine) in a capped vial (colorless 

mixture). The mixture was placed in the oven at 70°C to speed up molecular diffusion. 

No water absorption was possible since the sample was in a sealed container. Initially 

colorless mixture turned into light magenta after 2 hr and then to bright magenta after 6 

hr. After 1 day this color disappeared. These color changes are illustrated in Figure 19, 

vial 3. It was also clearly seen that the viscosity of the sample changed significantly due 

to polymerization of DGEBA. It was clearly evident that phenolphthalein reacts with 

DGEBA in the presence of a tertiary amine causing color change to magenta, since 

DGEBA mixed with the indicator separately does not change its color (Figure 19, vial 2). 

Also phenolphthalein mixed with triethanolamine results only in a very light pink color 

that does not change to colorless even after 24 hr in 70°C (Figure 19, vial 1). 

Figure 19. Color change of: TEA and phenolphthalein (vial 1), DGEBA and phenolphthalein (vial 2) and 
DGEBA with phenolphthalein and a drop of TEA (vial 3) with time at 70°C. 

When I added NaOH solution to the faded DGEBA- phenolphthalein- TEA mixture (pH 

10), color did not change similarly to the AA1-18B sample after fading. When DGEBA-

phenolphthalein mixture was placed in the same NaOH solution, bright pink color 

appeared instantly in the solution. 

To further confirm that DGEBA is the main component responsible for phenolphthalein 

color change in the epoxy matrix two samples of DGEBA-EBE-phenolphthalein mixtures 
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were prepared, but this time with the amine in excess; sample AAl-39A (^7 N H ratio 

was 2:3) and AA1-39B (S7 N H ratio was 1:2). After mixing, color of the samples was 

clear and after 7 days only AA1-39B changed to very light pink (AA1-39A remained 

clear). In both samples after curing, all epoxy rings should be reacted with the amine 

excess and not able to react with phenolphthalein. Thus it is expected for samples with 

larger amine excess (AA1-39B) to have more intense color just due to the presence of the 

amine. Both samples were placed in NaOH solution (pH 9) for 4 days to test the 

indicator's ability to sense alkaline pH. AA1-39B changed its color immediately to bright 

pink and sample AAl-39A became slightly pink after some time. Also color of the 

solutions changed to light pink. This difference in the color response could be due to the 

rigidity of the matrix (sample AA1-39A is much softer thus diffusion occurs faster). 

Similar response was observed when samples were placed in DI water due to the further 

indicator ionization. Even though in these epoxy systems the indicator was able to 

respond to high pH, they cannot be used in practical applications since they are not fully 

cured. 

Overall response of all model clear epoxy systems with the indicator (EBE + DGEBA+ 

phenolphthalein) to high pH is shown in (Figure 20). The chromophoric response of the 

indicator embedded in the epoxy matrix to alkaline pH was only possible in the lightly 

colored samples (AA1-17B, AA1-16B, AA1-39A and AA1-39B) that did not fade. 

Sample AAl -18B did not respond to high pH after its color faded. However in the case of 

the samples with amine excess (AA1-39A and AA1-39B) similar response was observed 

also in neutral water due to the further indicator ionization after water absorption. 
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V-NH 

Figure 20. Response of clear model epoxy coatings with phenolphthalein to pH 9 solution. 

The overall conclusion from this series of experiments is that phenolphthalein simply 

mixed with an epoxy coating cannot be used as an alkaline pH-sensing system because 

both components (primary amine and DGEBA) can react with the indicator causing its 

color change (indicator is "prematurely activated"). Moreover, even when the color of the 

indicator fades with time in the soft epoxy matrix, the coating is not able to sense alkaline 

pH any more. The degree of the interaction between phenolphthalein and the epoxy 

coating components (and thus a chromophoric response) depends on the formulation, 

temperature and time (diffusion controlled process). 

47 



2.5.2 Experiments with Alizarin Yellow R 

To further explore the interactions between acid-base indicators and an epoxy matrix I 

decided to use a different indicator with a higher pKa for color change than 

phenolphthalein. These experiments were performed to examine whether any pH 

sensitive indicator would have the potential for interacting with the epoxy matrix 

preventing them from being used in this type of coating without some sort of protection 

(e.g. encapsulation). I chose Alizarin Yellow R (AYR) (Figure 21) since its pH range for 

color change is 10.1-12.0 (Figure 22). 

Figure 21. Chemical structure of Alizarin Yellow R sodium salt. 

rr,"""fir r i — i — r ^ y * " " i — i — i — r 
0 1 2 3 4 5 6 7 8 8 10 11 12 13 14 

Figure 22. Change in color of Alizarin Yellow R in different pH solutions. 

It was expected that AYR would not change to red color when reacted with EBE due to 

its high pKa, thus will still be able to sense high pH after the coating is formed and in 

response to alkaline corrosion sites, in the case where the color change of the indicator 

happens only due to reaction with the amine. 
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2.5.2.1 Experiments with Alizarin Yellow R in Clear Model Epoxy Matrix 

AYR in the solid state is in a form of rusty-orange crystals. When mixed with EBE it 

gave orange color proving that EBE itself does not ionize this indicator. However after 

water addition, color of this mixture changed to bloody red. 

Similarly to the experiments with phenolphthalein I also prepared samples with different 

ratios of epoxide ring from DGEBA to hydrogen from the EBE (VJ N H ) (samples AA1-

20, AAl-21 and AAl-22 with the V ; N H ratios identical as in AA1-16B, AA1-17B and 

AA1-18B respectively). The AYR content was 0.06 wt% (based on the whole mixture) 

for all the samples. The results were identical to those obtained when phenolphthalein 

was used as an indicator. Instantly after mixing all of the samples had a bright orange 

color that developed to red after different times depending on the matrix rigidity (Tg). 

Also the softest matrix color (sample AAl-22) faded with time from dark red (after 1 

month) to orange-red (after 3 months). The changes in the color of the samples are shown 

in Figure 23. 
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Figure 23. Color change of clear model epoxy matrix with different rigidity mixed with 0.06 wt% of 
Alizarin Yellow R. 

2.6 Conclusions 

The experiments involving acid-base indicators, phenolphthalein and AYR, embedded in 

the commercial (phenolphthalein) and model (phenolphthalein and AYR) epoxy systems, 

proved that independent of the pKa of the indicator there is a possibility of its interaction 

with an epoxy matrix. As a result of this interaction, the indicator is prematurely activated 

and thus not able to respond, at least with the same sensitivity, to alkaline pH. More 

importantly, when the color of the indicator fades with time, the epoxy matrix is no 

longer responsive to high pH. Unexpectedly, not only the amine hardener is responsible 

for the color change of the indicator, but also epoxy rings from the epoxy resin, in the 
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presence of a weak base (such as tertiary amine), can react with the phenol groups of the 

sensing molecule. The most probable scenario explaining these interactions is that: 

First, the weak base opens the epoxy ring. 

The ion formed this way is able to abstract active hydrogen from the phenol group 

of the indicator which causes its ionization (magenta color appears for 

phenolphthalein and red color for AYR). 

Then the ionized indicator is built into the structure of DGEBA through an ether 

bond. 

That causes changes in the indicator's molecule form to the unionized state 

(colorless for phenolphthalein and yellow for AYR). 

Since in the commercial epoxy coatings tertiary amines are always present, either 

added to the formulation as an accelerators (or catalysts) or produced on 

consumption of the primary and secondary amine, there is always a potential for 

pre-mature color change of the indicator. 

Thus, it was concluded that acid-base indicators should be excluded from further 

investigation as corrosion sensors when embedded in epoxy based coatings due to the 

high reactivity of both components of the matrix (epoxy resin and amine hardener) and 

the possibility of premature indicator response and in some cases inability of the indicator 

to re-respond after fading of the premature response. 
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CHAPTER 3 

EARLY DETECTION OF STEEL CORROSION* 

Summary. In this chapter, the successful application of spiro[1/f-isoindole-1,9'-

[9#]xanfhen]-3(2//)-one, 3',6'- bis(diethylamino)-2-[(l-methylethylidene)amino] 

("FDl") as a smart indicator in epoxy-based coatings for the early detection of steel 

corrosion is described. This indicator was chosen as a corrosion sensing molecule due to 

its claimed ability to selectively sense Fe3+ ions (that are produced at the anodic site of 

steel corrosion) and its desirable chemical structure that assures no interaction with the 

epoxy matrix. The molecule was synthesized in our lab and its response to FeCl3 was 

explored. FDl, in solution and embedded in epoxy coating, showed "turn-on" 

fluorescence upon addition of FeCi3 solution. Moreover it was successfully utilized as an 

early steel corrosion detector in model (clear) epoxy coating and more importantly in 

commercial (filled) epoxy coatings in the presence of pigments. The "turn-on" 

fluorescence was observed, even at low FDl concentration (0.5 wt%o), by confocal 

fluorescent microscope and by, more conveniently, an optical microscope with UV light, 

Portions of this chapter have been published: Augustyniak, A.; Tsavalas, J.; Ming, W. 
Early detection of steel corrosion via "turn-On" fluorescence in smart epoxy coatings. 
ACS Applied Mater. Interface 2009, 1(11), 2618-2623 (DOI: 10.1021/am900527s). That 
publication was highlighted by Chemical & Engineering News (American Chemical 
Society weekly magazine) in the October 26, 2009 issue, and was also highlighted in 
Tribology & Lubrication Technology in the February 2010 issue. 
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which allows easy and non-destructive early corrosion detection of steel before any 

visible sign of corrosion appears. 
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3.1 Introduction and Literature Review 

3.1.1 New Requirements for an Ideal In-situ Corrosion Indicator in Epoxy Based 

Coatings 

Since the acid-base indicators were excluded as potential corrosion sensors when 

embedded in an epoxy coating matrix, efforts were shifted to look for a new potential 

sensing molecule candidate with an appropriate chemical structure. This time, the search 

was focused on a molecule that is able to sense metal ions (i.e. ferrous/ferric and 

aluminum ions) produced at the anodic site of corrosion where metals are dissolved 

according to the following reactions (Equations 9, 10 and 11): 

Fe -> Fe2+ + 2e" (9) 

4Fe2+
(aq) + 4H+

(aq) + 0 2 (aq) - • 4Fe3+
(aq) + 2H2O0) (10) 

Al-^Al3 ++3e" (11) 

Besides the requirements regarding the ideal in-situ corrosion indicator for an epoxy 

coating discussed in section 1.3.1.2 of chapter 1 (i.e. corrosion sensing via "turn-on" 

fluorescence), several additional requirements have to be fulfilled to obtain a robust smart 

corrosion-sensing indicator epoxy system (i.e. an indicator that can be incorporated into 
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any type of epoxy system independent of formulation). Namely, the new corrosion 

indicator cannot possess any functional groups that can be ionized by epoxy components 

(as in the case of acid-base indicators as described chapter 2) or any other reactive groups 

(such as -NH2) able to be built into the epoxy structure during curing. Thus there would 

be no risk of altering the indicator molecule's fluorescence behavior after mixing with 

epoxy components or interfering with the curing of epoxy coatings. 

3.1.2 In-situ Fluorescent Aluminum Corrosion Sensing via Complexation with 

Al3+ 

Different fluorescent compounds have been attempted for corrosion detection on 

aluminum substrates due to increase in their fluorescence upon complexation with metal 

ions. Upon this interaction, chelation enhanced fluorescence (CHEF) effect is produced 

[40]. As an example, lumogallion (shown in Figure 24) was used to detect Al3+ ions 

during aluminum corrosion [40]. 

Figure 24. Structure of lumogallion [42]. 

This probe was mixed with an epoxy/polyamide coating and applied onto a 2024-T3 

aluminum alloy to sense Al3+ ions [42]. The coating showed some initial blue 

fluorescence background when illuminated by UV light. With time of exposure to 0.5 M 
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NaCl solution, white spots were observed on the epoxy primer surface. After longer 

exposure to the corrosive solution, dark spots or circles appeared in the bright area. The 

authors ascribed these changes in fluorescence to the corrosion process on the aluminum 

alloy surface [42]. 

Another fluorescent probe, showing CHEF when complexing with Al3+, morin (Figure 25 

[52]), was proposed as a corrosion sensor for 7075 aluminum panels [39]. 

Figure 25. Morin complexation with Al3+ [52]. 

Epoxy coated aluminum coupons were aged in a 1 wt% NaCl solution and then placed in 

the 4 ppm morin solution. The coupons were photographed in UV light showing strong 

fluorescence. The authors claimed that morin combined with aluminum from corrosion 

and produced a fluorescent complex. However in this case the indicator was not further 

explored for its effectiveness to sense aluminum corrosion when embedded in the 

protective coating [39]. 

Bryant et al. [40] also reported using a CHEF fluorescent probe, 8-hydroxyquinoline-5-

sulfonic acid (Figure 26), for sensing aluminum corrosion. The solution of this Al3+ 

complexing agent was directly deposited as a primer layer on the aluminum test panels 
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and after drying the epoxy coating was applied on top of this sensing primer layer. The 

coating was scored by a scalpel and exposed to a salt spray. The corrosion indicated by 

fluorescence was observed on the panel under UV light where the coating had been 

scored and where bubbles were present in the coating. These authors however tended to 

deposit a solution with sensing compound directly onto the metal surface. That elongates 

the coating application process and might have an influence on adhesion between the 

metal surface and the protective coating. The sensing molecule was also not explored by 

directly embedding it into the main epoxy coating as a smart corrosion-sensing system. 

Since this fluorescent probe contains functional group with active hydrogen (phenol 

group) it can potentially interact with the epoxy components and change its fluorescent 

properties. 

Figure 26. Chemical structure of 8-hydroxyquinoline-5-sulfonic acid hydrate [40]. 

3.1.3 "Turn- on" Fluorescent Sensing via Complexation with Fe2+/Fe3+ 

Although success of various extents was reported in the detection of aluminum corrosion 

via fluorescent sensor molecules (section 3.1.2), no success has been reported, to the best 
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of my knowledge, describing such an indicator detecting steel corrosion by sensing ferric 

or/and ferric ions. 

Most of the known sensors for iron ions, which could be potentially used as corrosion 

indicators, are based on a chelation enhanced fluorescence quenching mechanism 

(CHEQ). Ferric and ferrous ions act as efficient fluorescence quenchers due to their 

paramagnetic nature [53, 40]. However, in recent years, many studies have focused on 

the development of "turn-on" Fe3+ sensing molecules due to the biological and 

environmental importance of this heavy metal ion [54]. Many of these chemosensors are 

derived from RJiodamine B. This fluorescent dye is widely used as a fluorescent labeling 

agent due to its excellent photophysical properties [55]. Kim et al. [56] recently published 

a review describing the application of rhodamine derivatives in sensing heavy metal ions 

such as lead, mercury, copper and ferric ions as well as acidic solution. These derivatives 

are non-fluorescent and colorless in their ring-closed, spirocyclic form. Yet acidic 

solution or the presence of metal ions causes the opening of the spirocyclic ring and, as a 

result, strong orange fluorescent emission occurs together with pink or red color as seen 

in Figure 27. 
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Figure 27. Spirolactam ring-opening reaction of a rhodamine derivative [56]. 

Some of the rhodamine derivatives were claimed to be selective "turn-on" chemosensors 

to ferric ions [53, 57, 58, 59], which makes them very attractive as potential steel 

corrosion sensors, and others were shown to also sense other transition metal ions such as 

Zn2+, Fe2+, Pb2+, Hg2+ [60] along with Fe3+. Even though some of the molecules were 

claimed to be "turn-on" sensors for Fe3+ ions, only one inorganic/organic polymer hybrid 

system was shown to be highly selective to Fe2+ ions so far [61]. However since this 

sensing system includes a polymeric molecule it would be undesirable to incorporate it 

into the sensing epoxy matrix since it could potentially influence the coating properties. 

3.1.4 Rational for choice of FDl as a Steel corrosion Indicator 

After investigating potential candidates for sensing iron ions at the anodic site of steel 

corrosion, when embedded in an epoxy based matrix, spiro[lH-isoindole-l,9'-

[9H]xanthen]-3(2H)-one, 3',6'-bis(diethylamino)-2-[(l mefhylethylidene) amino] (FDl) 

molecule described by Zhang et al. [57] was selected for preliminary experiments. This 
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rhodamine derived molecule was claimed to be a highly selective and sensitive "turn-on" 

fluorescent sensor for Fe +. 

The fluorescent response of FDl (10 uM) to various amounts of Fe3+ (from an aqueous 

solution of FeCLO were investigated by Zhang et al. [57] under excitation at A,ex=510nm 

(Figure 28). Each fluorescent emission spectrum was obtained in a CH3CN solution 

diluted 20 times with HEPES buffer (20 mM, pH 7) after Fe3+ addition for 5 minutes. No 

obvious fluorescent emission was observed in the FDl solution in the absence of Fe3+. 

When Fe3+ (0-80 uM) was introduced into the FDl solution, an obvious visible 

fluorescence peak and red-orange color were observed and also enhanced upon further 

addition of Fe3+[57]. 

100 

590 COO 650 700 
Wavelength (ran) 

780 

Figure 28. Fluorescence response of FDl (10 M) upon the addition of Fe3+ at 25°C [57]. 

This increase in fluorescence of FDl upon addition of ferric ion solution, according to 

Zhang et al. [57], was due to formation of the fluorescent ring opened form of FDl upon 

o_i_ 

coordination with Fe as illustrated in Figure 29 [52]. 
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non-fluorescent spirocyclic form fluorescent open-ring form 

Figure 29. Proposed coordination between FDl and Fe3+ ion resulting in the fluorescence enhancement 
[57]. 

The 'Selectivity of FDl to Fe sensing was proved by performing the selective 

coordination studies with heavy, transition, and main group metal ions in aqueous 

solutions by fluorescence spectroscopy. Upon the addition of excess of metal ions, a very 

mild fluorescence enhancement in FDl solution was observed only for Cu2+, while Na+, 

K+, Cu+, Ag+, Ca2+, Cd2+, Co2+, Cr2+, Zn2+, Mg2+, Mn2+, Ni2+, Pb2+, and Fe2+ showed very 

weak response [57]. 

Additionally, FDl does not posses any reactive functional groups that can potentially 

interact with the epoxy matrix when embedded in the coating to sense steel corrosion. 

The molecule can be synthesized from commercially available Rhodamine B Base 

(Figure 30). Moreover FDl can also be easily synthesized from Rhodamine B Hydrazide, 

that is also commercially available, and in doing so the use of toxic POCI3 can be 

omitted. Thus this selective, "turn-on" chemosensor for Fe3+ appeared to be a good 

candidate as an indicator for the detection of steel corrosion at the anodic site. 
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Figure 30. Synthesis of FDl [57]. 

3.2 Objectives of this Chapter 

In this chapter the experiments utilizing FDl as a corrosion sensor for steel, due to its 

ability to bind Fe3+ ions that are produced at the anodic site of corrosion, will be shown. 

Since FDl is not commercially available it had to first be synthesized in our lab. The 

sensing molecule's ability to respond to Fe3+ (as claimed by Zhang et al. [57]) when in 

solution also had to be confirmed. Given that FDl was chosen to serve as a corrosion 

indicator for epoxy based coatings, the following questions had to be addressed: 1) is 

FDl effective as a Fe3+ sensor when embedded in the epoxy matrix (both clear and filled, 

where pigments are present and could potentially dampen the FDl fluorescent response) 

and 2) is FDl a sensitive enough sensor to be able to detect early stages of steel corrosion 

(when the ferric ions are produced at the cathodic site of corrosion at the metal/coating 

interface)? It also had to be confirmed that FDl does not prematurely interact with the 

epoxy coating components as predicted due to its structure. 
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3.3 Experimental Section 

3.3.1 Reagents and Materials 

FDl was synthesized from Rhodamine B Hydrazide (purchased from Fluka Chemical 

Corp. or synthesized in our lab). Acetone (HPLC grade), acetonitrile (HPLC grade), 

tetrahydrofuran (THF) (HPLC grade), methanol (HPLC grade), dichloromethane, ethyl 

acetate, sodium chloride (NaCl), ferric chloride, anhydrous (FeCU), anhydrous sodium 

sulfate and hydrochloric acid (ACS grade, 36.5-38.0%) were purchased from EMD 

chemicals. Ferric chloride hexahydrate (FeC^xfEbO^) was purchased from 

Mallinckrodt. Acetic acid (glacial, ACS grade) was purchased from VWR Scientific 

Products. Rhodamine B Hydrazide was synthesized from Rhodamine B Base (purchased 

from Aldrich) or from Rhodamine B (pure, purchased from Acros Organic) in our lab. 

Ethyl alcohol (ethanol), 190 proof, 95%, ACS/USP grade, was purchased from Pharmco-

AAPER and commercial alcohols. Hydrazine Hydrate 100% (Hydrazine, 64%) was 

purchased from Acros Organic. Sodium hydroxides (NaOH), reagent ACS, pellets, 97+% 

and potassium phosphate, monobasic (KH2PO4) were purchased from Acros Organics. 

Commercial Epoxy-Polyamide coatings: clear MIL-DTL-24441C, type III and Haze 

Gray MIL-DTL-24441C, type III, Formula 151, were purchased fromNCS Coatings, Inc. 

Carbon steel coupons (AISI 1018 grade, edge ground and sand blasted to SPPC SP-5) 

with dimensions: 9.7 cm x 15 cm x 0.3 cm were purchased from KTA-Tator Inc. 

Tefraethylenepentarnine (TEPA), technical grade, was purchased from Acros Organics. 
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D.E.R.™ 332 Epoxy Resin (high purity bisphenol A diglycidylether, DGEBA) was 

purchased from The Dow Chemical Company. 

3.3.2 Sample Preparation 

3.3.2.1 FDl Synthesis 

* 

FDl was synthesized first from Rhodamine B hydrazide (RBH) (experiment AA1-49). 

0.1 g of RBH was dissolved in 15 ml of acetone. The orange-pink mixture was refluxed 

for 1.5 hr. After that time solvent was evaporated with a rotary evaporator. The remaining 

residue had an orange color. The starting material and the, product were analyzed with 

thin layer chromatography (TLC) (dichloromethane/methanol 5:1, v/v). There was no 

difference between the two materials thus the reaction was performed again (AAl-50) but 

this time a drop of hydrochloric acid was added as a catalyst after the reflux. Also, in this 

second method, there was no difference between the starting material and the product. 

The synthesis was performed in a third manner with acetic acid as a catalyst (AA1-51 and 

AA1-70). RBH (0.1 g) was dissolved in 12.5 ml of acetone. A trace amount of acetic 

acid was added as a catalyst and the whole mixture was refluxed for 5 h. After solvent 

removal under reduced pressure, the residue was redissolved in chloroform. The 

chloroform solution was washed with DI water and dried over anhydrous sodium sulfate. 

After chloroform was removed under reduced pressure, the light orange-pink obtained 

residue was recrystallized from ethanol to give an almost colorless powder. This time 

TLC showed that the product was synthesized successfully; Yield: 0.0835 g (83.5%). The 
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product was characterized with !H-NMR and 13C-NMR (in CDCI3) and matched that 

reported by Zhang et al. [57]. FDl was also synthesized in the same way as described 

above from RBH synthesized in our lab (experiments described below) in experiment 

AA1-92 and AA2-26. Also in experiment AA2-27, FDl was synthesized by simply 

placing RBH (synthesized in experiment AA2-25) in a solution of acetone for 3 days 

under argon atmosphere and in the dark at room temperature. After washing the residue 

with acetone and filtration, the light orange crystals were dried in air; Yield 73%. 'H-

NMR (in CDCI3) matched that reported by Zhang et al. [57] 

3.3.2.2 Rhodamine B Hydrazide (RBH) Synthesis 

RBH was first synthesized from Rnodamine B base (RBB) according to the modified 

reference [62] (AAl-72). 1 g of RBB was dissolved in 25 mL of ethanol. Then 0.16 g of 

hydrazine hydrate was added (1:1.5 excess). The mixture was refluxed for 24 hr. Then 1 

M HCl solution was added to remove the residual hydrazide followed by 1M NaOH 

solution to bring the pH back up to 9-10. The solvent was evaporated with a rotary 

evaporator. The residue had a pink color. TLC showed that the product was synthesized 

successfully. 'H-NMR (in CDC13) matched that reported by Soh et al. [62]. RBH was 

synthesized again according to the reference [63] from Rhodamine B (RB) (experiments 

AAl-85, AAl-90, AAl-94 and AA2-25). 1 g of RB was dissolved in 37.5 ml of 

methanol. Then 1.25 ml of hydrazine hydrate was added and the mixture was refluxed 

until the pink color disappeared (24 hr). After reflux, the solution had an orange-red 

color. The cooled reaction solution was poured into DI water and extracted with ethyl 
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acetate. Then the combined extracts were dried with sodium sulfate anhydrous, filtered 

and solvents evaporated with a rotary evaporator. The product was in a form of orange 

crystals. TLC (ethanol/dichloromethane 0.1:9.9 v/v) showed that the product was 

successfully synthesized. 'H-NMR (in CDCI3) matched that reported by Yang et al. [63]. 

3.3.3 FDl Response to Fe3+ in Solution. 

AA1-66A; 0.2 ml of FDl in CH3CN solution (0.0014 M) was diluted with 2.5 ml of 

NaOH/KH2P04 buffer solution (pH 7). Solution of FeCl3 (in DI water, 0.003 M) was 

added dropwise to the solution of FDl. AA1-66B; Similar to AA1-66A, solution of FeCL: 

(in DI water, 0.003 M) was titrated to a solution of FDl in CH3CN. AA2-19: 3 ml of FDl 

solution in CH3CN (20 M) was titrated with FeCl3 (in CH3CN, 0.004 M). The changes 

in solution fluorescence were observed on a spectrofluorometer with excitation 510 ran. 

3.3.4 Preparation of FDl-Embedded Clear-Epoxy Fe3+-Sensing Films (AA1-62) 

A Fe3+-sensing clear epoxy film (free from any substrate) was prepared in order to test 

the efficacy of the indicator within a clear epoxy matrix. 0.0032 g of FDl was first 

dissolved in THF and then combined with both components of a clear commercial epoxy-

polyamide coating (MIL-DTL-24441C, 2.14 g). FDl content was 1.5 wt% based on the 

wet coating (before solvent evaporation). After mixing, the whole mixture was poured 

into a rectangular shaped silicone mold and cured at room temperature under nitrogen 
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atmosphere for a few days. After 7 months a small piece of the sample was cut off and 

placed in an aqueous FeCU solution for 24 hr. The fluorescent response of FDl in the 

freestanding clear epoxy matrix to Fe ions from the solution was observed with a 

confocal microscope with an excitation wavelength of 514 ran. The sample was also 

examined under UV light from handheld UV lamp. 

3.3.5 Preparation of FDl-Embedded FiUed-Epoxv Fe3+-Sensing Films (AA1-84A) 

A Fe -sensing filled epoxy film (free from any substrate) was prepared in order to test 

the efficacy of the indicator within an epoxy matrix in the presence of filler pigments. 

The coating was prepared by mixing both the amine and epoxide components of 

commercially available MIL-DTL-24441C, Haze Gray Epoxy Polyamide coating with 

1.5 wt% of FDl (based on dry coating). To aid in uniform mixing with the epoxy 

components, FDl was first dissolved in toluene. After mixing, the resin solution was 

poured into a rectangular shaped silicone mold and cured at room temperature for one 

week. After curing, the film specimen was cut into a 5.5 cm 1 cm 0.05 cm piece and 

placed in a vial with 0.002 M FeCb (H20)6 aqueous solution, so that half of the specimen 

was immersed in the solution. Fluorescent response of FDl in the neat (no metal 

substrate) epoxy matrix to Fe3+ ions from the solution was observed with the confocal 

microscope with an excitation wavelength of 514 ran. 
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3.3.6 Preparation of Steel Coupons Coated with Fe +-sensing Clear Model Epoxy 

Coating 

Samples AA1-71A and AA1-71B were prepared by mixing tetraethylenepentamine 

(TEPA, amine hardener) and epoxy resin (DGEBA) (at an NH/epoxy molar ratio of 1:0.8 

to obtain full curing) with FDl (1 wt%) and spraying this mixture (with an airbrush) onto 

carbon steel coupons cut into dimensions 5.3 cm x 7.3 cm x 0.3 cm. After cutting the 

steel samples, edges were smoothened to avoid edge effects during coating application. 

To aid in uniform mixing with the epoxy components, FDl was first dissolved in toluene. 

Before coating application, the steel surface was washed with acetone. The back of the 

specimen and its edges were painted using a brush applicator with MIL-DTL-24441C, 

Haze Gray Epoxy Polyamide coating without FDl. The panels were cured at room 

temperature in a nitrogen purged atmosphere for one week. The coating thickness was 

approximately 50 urn for AAl-71 A and 30 urn for AA1-71B. To observe the response of 

FDl in the clear model epoxy coating to steel corrosion, sample AA1-71A was scribed 

using a razor (scribe length 1.3 mm) and partially dipped into a 0.5 M NaCl solution so 

the scribed area was exposed to the corrosive environment. Three different areas in the 

coating surface were monitored with time for changes in fluorescence intensity with the 

confocal microscope with an excitation wavelength of 514 ran; AREA1 was not exposed 

to NaCl solution, AREA2 was exposed to NaCl solution but not scribed and AREA3 was 

both exposed to NaCl solution and scribed to expose the steel surface and facilitate 

corrosion. Also pictures of the sample surface under UV light were taken using a digital 

camera placed on the microscope eyepiece. Sample AAl-7IB was not exposed to NaCl 
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solution and was used as a reference. Similarly to AAl-71 A and AA1-71B, sample AA2-

48A2 was prepared but in this case only 0.5 wt% of FDl was used. The mixture of 

TEPA/DGEBA and FDl was applied on steel coupons using a drawdown bar at wet 

thickness 250 um. The samples were placed in an oven to cure (70°C) overnight. After 

drying, many defects were present in the coating most likely due to fast solvent 

evaporation (toluene was used to dissolve FDl). The dry coating thickness was not 

uniform (from 30 um to 130 um). An open-ended glass cylinder filled with a 3.5% NaCl 

solution was affixed and sealed to the coated sample to expose only the contained area to 

the corrosive environment. 

3.3.7 Preparation of Steel Coupons Coated with Fe3+-sensing Filled Commercial 

Epoxy Coating 

Sample AA1-71D was prepared in a similar way to samples AA1-71A and AA1-71B but 

in this case the filled Haze Gray Epoxy Polyamide coating (MIL-DTL-24441C, Type III) 

was used as an epoxy matrix for FDl (1.5 wt% based on dry coating). The mixture of 

FDl and the epoxy was applied on steel coupons using a brush applicator and cured at 

room temperature for 6 weeks. The coating thickness was approximately 40 um. To 

observe the response of FDl in the coating to steel corrosion, the coated steel panels were 

scribed using a razor (scribe length 1.3 mm) and placed horizontally on top of a beaker 

containing a 0.5 M NaCl solution, exposing their scribed surface to the water vapor. After 

40 h, the sample was subsequently placed in DI water for 22 h and was then submerged 

in a 0.5 M NaCl solution for 30 min to speed up the corrosion process. The area on the 
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coating surface surrounding the scribe was monitored with time for changes in 

fluorescence intensity with a confocal microscope with an excitation wavelength of 514 

ran. Images of the sample surface under UV light were taken using a digital camera 

placed on the microscope eyepiece. 

3.3.8 Preparation of Undercoating Corrosion-Sensing Panels 

Special panels were also prepared to simulate delamination to test the efficacy of the 

FDl-containing epoxy coating for sensing undercoating steel corrosion (AA1-96A). The 

coatings on the steel coupons were prepared by mixing MIL-DTL-24441C, Haze Gray 

Epoxy Polyamide coating with 0.5 wt% of FDl (based on dry coating). Prior to mixing 

with the epoxy components, FDl was first dissolved in toluene. Before applying the 

coatings in this case, the steel coupons (ANSI 1018 grade, edge ground and sand blasted, 

with dimensions 5.3 cm 7.3 cm 0.3 cm) were treated with 10% phosphoric acid to 

remove any possible corrosion products (pickling process), washed a few times with 

acetone and then dried with compressed air. To mimic a coating defect, a small drop of 

silicone oil was applied onto the steel surface (to deteriorate coating adhesion to the metal 

surface and induce a weak point that is susceptible to undercoating corrosion). The filled 

epoxy coating containing FDl was then applied onto the steel coupon using an air brush 

applicator. The panel was cured at room temperature for one week. The coating thickness 

was approximately 30 um. To initiate the undercoating corrosion, an open-ended glass 

cylinder was affixed and sealed to the part of the coated panel containing defects. The 

cylinder was filled with a 5 wt% NaCl solution so only this circular portion of the sample 
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was exposed to the corrosive environment. The surface of the defect area was monitored 

with the confocal microscope at different times and temperatures of exposure to the NaCl 

solution for changes in fluorescence intensity. Also pictures of the sample surface under 

UV light were taken using a digital camera placed on the microscope eyepiece. 

3.4 Characterization Methods 

*H NMR spectra were recorded on a Varian Mercury 400 MHz NMR with autosampling 

capabilities. Fluorescence emission spectra were obtained with a Cary Eclipse 

fluorescence spectrofluorometer with an excitation wavelength of 510 nm. The examined 

solutions were placed in a 3 ml quartz cuvette. Fluorescence imaging was conducted on a 

Zeiss LSM 510 Meta Laser Scanning Confocal Microscope with an Axio Imager Ml 

platform. In all experiments, a 514 nm ArMultiLine laser was used as the excitation 

source. An EC Plan-Neofluar 10 /0.30 M27 objective was used to observe the sample 

surface. The fluorescent emission wavelength was obtained from the lambda mode 

function (using Meta detector with selected emitted fluorescence range 520-660 nm with 

10.7 nm step). To compare the laser excited images to those obtained by more practical 

end-use conditions, the confocal microscope's 100 W mercury lamp was used as a broad 

wavelength UV light source. Visual inspection of the samples was also performed under 

UV light using a handheld UV lamp (Model UVGL-25, MINERALIGHT®) with an 

excitation wavelength of 365 nm. The coating thickness was measured with a CHECK-

LINE® coating thickness tester, model DAC-1KS. 
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3.5 Results and Discussion 

3.5.1 FDl and Rhodamine B Hydrazide Synthesis 

FDl synthesis was first attempted by performing only the second step of the reaction 

shown in Figure 30 since Rhodamine B hydrazide (RBH) was commercially available. 

By synthesizing FDl directly from RBH, the usage of toxic phosphoryl chloride (POCI3) 

was avoided. However when RBH was simply refluxed in acetone, FDl was not properly 

synthesized. This probably happened because there was no acid catalyst in this system 

that might be necessary for this nucleophilic addition reaction to take place. In reference 

[57], traces of acid were probably still present from the previous reaction steps which 

allowed FDl synthesis. When a catalytic amount of acetic acid was introduced to the 

RBH/acetone mixture, FDl was successfully obtained (AA1-51); (see section 3.3.2.1). 

RBH was also synthesized in our lab (since it was no longer commercially available) 

utilizing two methods, described in reference 62 and 63 from Rhodamine B base (RBB) 

and Rhodamine B (RB) respectively. Neither of these methods required usage of POCI3 

but only hydrazide. Moreover FDl was also simply synthesized in high yield (73%) by 

placing RBH in acetone (AA2-27) for 3 days in the case when RBH is synthesized from 

RB (AA2-25) since traces of acid (from RB) were probably still present in the system. 

Thus use of acetic acid as a catalyst was not necessary. 

72 



3.5.2 FDl Response to Fe^+ in Solution 

In order to confirm that FDl forms a fluorescent complex due to binding with Fe as 

claimed by Zhang et al. [57] series of experiments were performed. 

In experiment AAl-66A, when a solution of FDl in CH3CN (0.0014 M, clear solution) 

was diluted 12.5 times with pH 7 buffer (NaOH/KH2P04) a white precipitate was formed. 

The pH 7 buffer was used to mimic the conditions in the experiment with FDl performed 

by Zhang et al. [57]. The precipitation was probably formed because FDl does not 

dissolve in water and addition of a large amount of aqueous solution caused FDl 

precipitation. This solution showed no fluorescence when excited at 510 nm. FeCl3 

aqueous solution was used as Fe source similarly to the Zhang et al. experiment [57]. 

When a drop of FeCL; aqueous solution (0.003 M) was added to the FDl-buffer solution 

no increase in fluorescence was observed. Also further FeCIj addition did not change the 

fluorescence of the solution. This is not surprising, since as mentioned above, FDl 

probably precipitated out of solution and was not able to sense Fe3+. To prevent FDl 

precipitation, the experiment was repeated (AA1-66B) but no aqueous buffer was added 

to the FDl solution. Initially, the solution of FDl in CH3CN showed almost no 

fluorescence. However, the addition of only one drop of FeCL; caused a pink-red color to 

appear. In addition, the high intensity fluorescence was observed to peak at 583 nm. 

Further FeCl3 addition caused an increase in the fluorescence intensity. This experiment 

proved that FDl was able to sense Fe3+ in solution. A more careful experiment was 

subsequently performed with known concentration of FDl and Fe3+ (AA2-19). The 
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fluorescent emission spectrum of the 20 M solution of FDl in CH3CN upon addition of 

6 equivalents of Fe3+from FeCh (in CH3CN) is shown in Figure 31. 

Figure 31. Fluorescent response of FDl (solution in CH3CN, 20 uM) to FeCl3 solution in CH3CN (0 to 6 
equiv.) (lex =510 nm). Right: color change of FDl in CH3CN on FeCl3 addition under UV and visible light. 

The initially colorless and non-fluorescent solution of FDl changed to bright pink-red 

and fluorescent orange (under UV) with FeCL; addition (inset in Figure 31). As can be 

seen in Figure 31, the maximum fluorescent intensity (Aem,max) was shifting from 580 nm 

at lower intensities to 582 nm (3 Fe equivalents) and reached a maximum of 586 nm at 

6.3 Fe3+ equivalents (red-shifting). After addition of higher Fe3+ equivalents fluorescent 

intensity was over ranged. 
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These preliminary experiments proved that FDl is able to sense FeCL. in solution as 

claimed by Zhang et al. However in my experiments when buffered solution was used 

(pH 7) no fluorescence was observed upon FeCl3 addition. This is further explored in 

chapter 5 of this thesis where the FDl sensing mechanism will be discussed in detail. 

3.5.3 FDl Ability to Sense Fe3+ when Embedded in Commercial Clear Epoxy 

Matrix 

The ability of FDl (1.5 wt% based on wet coating) to respond to FeCL solution when 

embedded in a clear epoxy coating (MIL-DTL-24441C, type III) was examined in 

experiment AAl-62. A piece of the FDl-epoxy sensing film was placed in aqueous FeCL. 

solution for 24 h. After this time orange color was observed under a UV lamp (smaller 

piece in the middle image in Figure 32). The broader range of excitation wavelengths 

from the UV source does not excite FDl at its maximum (maximum excitation 

wavelength for FDl/FeCL; solution in CH3CN is 510 nm), yet the fluorescence emission 

is still visible by eye (at a lower intensity). Using a handheld UV lamp to excite the FDl 

fluorescence allows easy and fast examination of the samples and can be conveniently 

utilized in a practical field application. Under visible light the color change was not seen 

(left image in Figure 32). This proves that the fluorescent response can be observed much 

earlier than the chromophoric response. 
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Figure 32. Fluorescent response of FDl embedded in the clear commercial epoxy coating (AA1-62) to 
aqueous FeCl3 solution after 24 h of immersion (smaller piece of film in the left and the middle images). 

The large piece was not immersed in FeCl3, for comparison. Far right: fluorescent emission intensity of the 
small piece immersed in FeCl3 solution for 24 h (data transformed from the lambda mode). 

The sample was also investigated with a confocal microscope when excited with a 514 

nm ArMultiLine laser (2.ex), which is essentially the maximum excitation wavelength for 

FDl/ FeCL. mixture (510 nm). The confocal microscope images allow quantification of 

the response by lambda mode analysis (e.g. maximum emission wavelength; Aem,max)- The 

sample piece not exposed to FeCL; showed no fluorescence characteristic of FDl. The 

piece immersed in FeC^ for 24 h showed high intensity fluorescence with /Um,max =580 

nm (right plot in Figure 32). This value was slightly lower than the maximum emission 

wavelength in the FDl/FeCL mixture in a CH3CN solution (Figure 31). However, the 

confocal microscope lambda mode collects emission spectra in 10.7 nm steps therefore 

the actual >iem,max is in the ±5 nm error range. Thus the 580 nm maximum fluorescent 

emission can be confidently assigned to FDl fluorescence. These results suggested that 

FDl can sense Fe ions from the solution when embedded in a clear model epoxy film. 

As a result of this interaction, fluorescence is observed in the sample. It is also important 

to note that the sensor does not show fluorescence characteristic of FDl when simply 

76 



embedded in the clear epoxy coating (and not exposed to FeCL; solution) even after 7 

months (no premature response). 

3.5.4 FDl Ability to Sense Fe3+ when Embedded in Commercial Filled Epoxy 

Matrix 

The ability of FDl (1.5 wt% based on dry coating) to respond to FeCh solution when 

embedded in a filled epoxy coating (Haze Gray MIL-DTL-24441C, type III) was proved 

in experiment AAl-84A. In this system, pigments, that could dampen FDl fluorescent 

response, are present. The fluorescent response of FDl-epoxy film to Fe3+ from FeCL; 

aqueous solution was monitored by confocal microscopy. Initially no fluorescence 

emission of the epoxy film was observed when excited at 514 nm. After the sample film 

was immersed in FeCL; aqueous solution for 24 h, a significant increase in the 

fluorescence emission was observed. From the confocal microscope's lambda mode 

function it can be seen that the maximum fluorescence emission was at 580 nm (Figure 

33) 
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Figure 33.Change in fluorescent emission intensity of filled FDl-epoxy sensing film in FeCl3 aqueous 
solution (XeX = 514 nm) at time 0 and after 24 h (data was transformed from lambda mode). 

Also after 2 months of immersion in FeCL; the color of the sample changed from gray to 

slightly pinkish in visible light and orange under UV light. It can thus be concluded that 

FDl when embedded in a filled epoxy film (i.e. in the presence of pigments) can respond 

to Fe3+ from solution by formation of a fluorescent molecule. Additionally, pink color 

was not observed in the FeCL; solution suggesting that FDl did not leach out of the 

matrix during this period of time. 

3.5.5 Fluorescent Emission Response of FDl in Fe^-sensing Clear Model Epoxy 

Coating on Steel Coupons 

Since it was proved in the previously discussed experiments that FDl can sense Fe3+ ions 

from a solution of FeCL when embedded in both clear and filled epoxy coatings, it was 

necessary to also determine if FDl is able to sense Fe3+ released at the anodic site of steel 

corrosion when embedded in the epoxy matrix. First, FDl (1 wt%) was embedded in a 
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model clear epoxy coating consisting of a mixture of bisphenol A diglycidylether 

(DGEBA, epoxy resin) and tetraethylenepentamine (TEPA, amine hardener) (at an 

epoxy/NH molar ratio of 0.8:1 to obtain full curing) (samples AA1-71A and AA1-71B). 

Sample AAl-71 A was exposed to 0.5M NaCl solution to induce corrosion. Sample AA1-

71B was used as a reference and was not exposed to the corrosive NaCl environment. 

This model epoxy system is a purposely designed "bad coating" which means that 

corrosion is expected to occur rapidly in the samples due to the poor anticorrosion 

properties of this coating. Three areas in the sample AAl-71A were examined by the 

confocal microscope (keX = 514 nm) in order to observe the fluorescent response of FDl 

to early corrosion. Initially no significant fluorescence was observed in AREA1 that was 

not exposed to the corrosive environment, in AREA2 exposed to 0.5M NaCl solution, 

and as well as in AREA3 that was exposed to NaCl and additionally scribed to expose 

metal surface. However after 2 h of exposure to NaCl solution, AREA2 showed some 

fluorescence around the defects that resemble air bubbles in the coating (indicated by red 

arrows in the bottom left image in Figure 34). Fluorescent emission recorded from the 

confocal microscope's X mode function showed than the maximum fluorescence emission 

was between 570 and 580 nm depending on the area examined, which clearly indicates 

FDl fluorescence. After 9 h of exposure to NaCl an obvious corrosion spots appeared in 

the middle of the areas where fluorescence was observed previously (indicated by red 

arrows in the top right image in Figure 34). This indicated that FDl detected the early 

stages of steel corrosion before any obvious visual indicator (i.e. rust) was observed. 
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Figure 34. AREA2 in Fe +-sensing clear model epoxy coating on steel substrate (AA1-71A) after exposure 
to 0.5M NaCl solution. Top row: digital camera images taken through the microscope eye-piece under UV 

light; bottom row: fluorescent images, of the same area, taken with the confocal microscope. 

A similar result was observed in AREA3 after 2 h of immersion in NaCl. In the same 

areas where fluorescence was observed by the confocal microscope (left image in Figure 

35), a pale orange-pink color was also observed under UV light (right image in Figure 

35) indicating fluorescent as well as chromophoric FDl response. 
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Figure 35. AREA3 in Fe +-sensing clear model epoxy coating on steel substrate (AA1-71A) after exposure 
to 0.5M NaCl solution for 2 h. Left: fluorescent image taken with a confocal microscope; right: digital 

camera image, of the same area, taken through the microscope eye-piece under UV light. 

After 9 h of exposure to NaCl, corrosion was easily noticeable in the scribed areas and 

where the previously fluorescent spots were. AREA1 (not exposed to NaCl) showed 

some lower intensity fluorescent spots around the air bubbles after 9 h. With time these 

areas had slowly developed into small rusty spots. Even the AAl-7IB reference sample 

(exposed only to air for 11 months) showed the same fluorescence with maximum 

emission peaking at 570 nm and 580 nm depending on the area examined (left image in 

Figure 36). Under UV light the same areas appeared light orange-pink (middle image in 

Figure 36) and rusty in visible light (right image in Figure 36). The appearance of 

corrosion in these areas is not surprising even though the sample was not exposed to the 

corrosive environment. The model coating probably absorbed water from air and with 

time it reached the metal surface. The water diffusion was further enhanced in the areas 

where the air bubbles were present in the coating (defects) thus corrosion occurred in 

these defected areas over time. 
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Figure 36. FDl in model clear epoxy matrix after 11 months of exposure to air (AAl-7 IB, reference 
sample). Left: fluorescent image taken with the confocal microscope; middle: digital camera image, of the 
same area, taken through the microscope eye-piece under UV light; right digital image taken through the 

microscope eye-piece under visible light. 

Similar to AAl-71 A, sample AA2-48A2 was prepared in order to determine the FDl 

response to steel corrosion at lower indicator concentration (0.5 wt%). Also this time the 

sample was observed after exposure to NaCl. After 6 h bright orange areas (under UV) 

appeared around the areas where air bubbles were present in the coating (top left image in 

Figure 37). At this time rust was also already present in the middle of these areas as can 

be seen in the bottom left image in Figure 37. Fluorescent emission recorded from the 

confocal microscope's A mode function showed that the maximum fluorescence emission 

was at 580 nm. 
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Figure 37. FDl in model clear epoxy matrix after exposure to 3.5% NaCl solution (AA2-48A2) Top row: 
digital camera images taken through the microscope eye-piece under UV light; bottom row: digital camera 

images, of the same area, taken through the microscope eye-piece under visible light. 

These results confirmed the previous conclusions that FDl molecules embedded in a 

clear epoxy coating can sense steel corrosion by appearance of "turn-on" fluorescence in 

the corroded areas. 

3.5.6 Fluorescent emission response of FDl in Fe3+-sensing filled commercial 

epoxy coating on steel coupons 

In the previous section it was proven that FDl can serve as an early steel corrosion sensor 

when embedded in the model clear epoxy coating. To explore the practical use of FDl 

and its ability to sense early stages of corrosion in a commercial coating system, the 

indicator (1.5 wt% of FDl based on dry coating) was incorporated into a filled, grey 
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commercial epoxy coating (MIL-DTL-24441C, Type III) and applied onto steel coupons 

(AAl-7ID). After curing the coating was scribed to expose the metal surface and 

facilitate corrosion attack. Figure 38 shows the fluorescence images of the scribed area on 

the Fe3+-sensing epoxy coating on a steel coupon. The images were recorded at different 

times of exposure to a corrosive environment. The coated coupon was first suspended 

above a beaker containing a 0.5 M NaCl solution (sample not immersed in the solution) 

to observe slow corrosion of the scribed area due to water vapor. Initially no significant 

fluorescence was observed by the confocal microscope (Figure 38a, top row). Similarly 

under UV light, the area around the scribe looked no different from the rest of the sample 

(Figure 38a, bottom row). After 40 h, bright areas appeared around the scribe (Figure 

38b, top row). From the lambda mode it was seen that the maximum fluorescence 

intensity (Aem,max) of these bright areas was at 570 nm and 580 nm depending on the area 

examined. To speed up the corrosion process, the coated coupon was then half-immersed 

in a beaker with DI water (images c and d in Figure 38). Finally, Figure 38e shows the 

sample after 30 min of immersion in the original 0.5 M NaCl solution. The FDl indicator 

was reporting the onset of corrosion by the bright yellow area in the fluorescence images 

and the yellow-orange areas in the UV images (Figure 38b-e). 
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a) t ime=0 b) 40 h c) 30min in H20 d) 22 h in H,0 e) 30 min in NaCl 
solution 
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with 0.5 M NaCl 
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with DI water beaker with 0.5 NaCl 

Figure 38. Scribed area on the coated steel coupon (AAl-7 ID) after various times of exposure to different 
corrosive environments: sample placed on a beaker with 0.5 M NaCl solution (a) at time 0 and (b) after 40 
h, sample placed in the beaker with DI water after (c) 30 min and (d) 22 h, and (e) sample placed in 0.5 M 

NaCl solution after 30 min. Top row: fluorescent images taken on confocal microscope; bottom row: digital 
camera images of the same area, taken through the microscope eye-piece under UV light. 

When compared however to the 30-rnin optical microscope image (Figure 39a), in which 

the onset of corrosion was not discernible at all to the naked eye, it was clearly evident in 

the FDl fluorescence response in Figure 38e. After 2 h of immersion in NaCl solution, 

corrosion was finally visible to the naked eye (Figure 39b). This is very promising data 

indicating that the FDl is indeed functioning as an early-detection indicator for corrosion. 

Moreover these promising results were obtained in commercial pigmented coating which 

potentially could have reduced the observable fluorescence response from FDl. 
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Figure 39. Optical images of the scribed area of the corrosion-sensing panel (AA1-71D) after (a) 30 min 
and (b) 2 h of immersion in 0.5 M NaCl. Images taken through the microscope eye-piece. 

3.5.7 Undercoating steel corrosion sensing in a filled commercial epoxy coating 

In experiment AAl-7ID the coating was scribed in order to expose the metal surface and 

initiate corrosion. However this mechanical damage can be also easily observed by the 

naked eye and thus corrosion is expected to happen in this defected area. A more 

important function of an effective corrosion indicator is to sense undercoating corrosion 

(described in chapter 1, section 1.2.2) that can cause major metal damage before it 

becomes obvious (i.e. coating delaminates occurs). 

Sample AAl-96A was prepared to examine whether FDl is able to sense undercoating 

corrosion in a filled epoxy coating. In order to mimic an undercoating defect, a small 

drop of silicone oil was applied onto the steel surface (to deteriorate coating adhesion to 

the metal surface and induce a weak point that is susceptible to undercoating corrosion) 

prior to coating with the filled epoxy containing FDl (0.5 wt% based on dry coating). 

The application of the silicone oil drop caused visible crater-like defects to appear in the 

coating surface immediately after coating application. The defective areas are the weak 
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points in the coating. Undercoating corrosion can initiate from these weak spots and 

develop into blisters (as a result of osmotic action and coating delamination). Blistering is 

usually the first visual indication of coating failure [19]. 

Initially, two areas were marked on the panel surface shown in Figure 40a: AREA1 

(where silicone oil was initially applied, area exposed to NaCl solution is indicated by the 

blue circle) and AREA2 (where no defects were observed, area not exposed to NaCl). 

After the coating was cured, and before the panel was exposed to the corrosive 

environment, no initial fluorescent emission was observed in the coating as viewed under 

the confocal microscope in both of the marked areas (excitation wavelength Aex=514 nm). 

After one day of exposure to a 5% NaCl solution, a crater-like blister appeared (3 mm in 

diameter) in one of the defective areas, indicated by the red circle in Figure 40a. 

Nonetheless, the coating remained intact and there was no visible sign of any corrosion. 

When the fluorescence measurement was performed on this panel using the confocal 

microscope, a bright spot in the middle of the blister (Figure 40b) was observed. From 

the lambda mode function, we observed that the maximum fluorescence intensity in this 

spot was between 580 and 585 nm (Figure 40c), as expected. Also, under UV light, the 

same spot appeared to be bright orange. These observations clearly pointed to the 

undercoating corrosion that had occurred after one-day immersion in the NaCl solution. 
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Figure 40. (a) Undercoating corrosion sensing panel (AA1-96A) after 1 day of exposure to 5% NaCl 
solution. Blue circle and red circle represent areas exposed to NaCl and a blister, respectively. "1" and "2" 

represent areas exposed to NaCl solution where silicone oil was applied and area not exposed to NaCl 
solution, respectively; (b) fluorescence image of the area in the red circle taken on the confocal microscope 

and (c) the lambda mode of the same area. 

After 2 days of exposure to the 5wt% NaCl solution, other bright areas appeared within 

the blister (Figure 41a, top row). It is important to note that in the same area, under the 

microscope, in natural light, no visible signs of corrosion were observed (Figure 41a, 

bottom row). After 3 days, small dark spots started to appear in the bright area (Figure 

41b, top row) under UV light. In natural light the same dark spot had a rusty color 

(Figure 41b, bottom row). After 16 days of exposure, both the dark spot (in UV light) and 

the rusty area (in natural light) slightly increased in size (Figure 41c). Also from lambda 

mode we observed a corresponding decrease in the fluorescence intensity in those areas, 

likely due to deposition of the corrosion products (rust). To facilitate the diffusion of the 

corrosive solution to the metal/coating interface the coated panel was then placed in an 

oven at 60 °C. After 17 h at 60 °C (and in the 5% NaCl solution) more dark precipitation 

was observed in the previously bright area (Figure 4Id, top row). At the same time under 
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natural light, the rusty spot was easily observable in the same area (Figure 4Id, bottom 

row). After 7 more days in the NaCl solution at 60 °C, the rusty areas were significantly 

larger and could be easily seen under both UV and natural light (Figure 41e). The coated 

panel was then subsequently placed at a higher temperature (70 °C) for another 5 days. 

After that time further increase in the size of the rusty areas in the blister was observed 

under the microscope (Figure 4If, bottom row). By this time, the rusty spot could also be 

seen by the naked eye without a microscope. Also throughout the blister some bright 

yellow-orange spots (under UV light) appeared. The maximum fluorescence intensity of 

these bright spots was the same as in the initial bright areas in the blister. Those areas are 

potentially new onsets of corrosion. It should also be noted that the whole area 

investigated under UV light (which was the same in size as the blister area) changed 

color intensity from bright blue to a more faded purple-blue over time during the testing. 

This color change might be explained by prolonged exposure to high power UV light 

during the imaging. This phenomenon is further investigated in the following chapter of 

this thesis. Over the course of this experiment, no fluorescence was observed in AREA2, 

as expected, confirming that corrosion only occurred in areas in contact with NaCl 

solution. 
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Figure 41. Images of the blister in the undercoating corrosion sensing panel (AAl-96 A) after immersion in 
a 5% NaCl solution. Top row: images taken through the microscope eye-piece under UV light; bottom row: 

images taken through the microscope eye-piece under natural light. 

This experiment proved that FDl in the filled epoxy coating was able to sense 

undercoating corrosion, before any obvious sign of metal damage was observable, due to 

its reaction with ions produced at the anodic site where metal dissolution takes place. The 

probable scenario is that: 1) the ions produced at the anodic site of corrosion diffuse 

through the coating causing the appearance of intense FDl fluorescence (Figure 41a), 2) 

then with time OH" ions produced at the cathodic site combine with the metal ions from 

the anodic site causing the insoluble corrosion products built up, 3) the corrosion product 

accumulation causes coating delamination (coating breaks) and rust can be visible on the 

coating surface (Figure 41b-d). At the same time accumulated rust decreases the 

observable FDl fluorescence (Figure 41b-d). At the end of this experiment the coating 

was peeled off in the blistered area revealing the rusted surface of the metal substrate 

(Figure 42) proving that extensive corrosion took place under the coating. 
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Figure 42. Rusted metal under the blistered area in AAl -96A sample. 

3.6 Conclusions 

FDl, initially proposed as a Fe3+ chemosensor for biological applications [57], was easily 

and efficiently synthesized in our lab. FDl solution (in CH3CN) showed "turn-on" 

fluorescence when titrated with FeCVC^CN solution. The indicator also showed 

fluorescent response to FeCL. aqueous solution when embedded in both clear and filled 

commercial epoxy coating. Moreover it was successfully utilized as an early steel 

corrosion detector in both model (clear) and commercial (filled) epoxy coatings. FDl 

was very effective for indicating early corrosion of steel covered with an epoxy coating, 

both for areas damaged through to the substrate (scribed areas) and areas without 

exposure of the substrate {undercoating corrosion). The "turn-on" FDl fluorescence was 

captured not only by confocal fluorescent microscope but also by, more conveniently, an 

optical microscope with UV light, which allows easy and non-destructive early corrosion 

detection of steel before any visible sign of corrosion appears. In addition, only a low 

FDl concentration (0.5 wt%) in the coating is needed. FDl does not prematurely interact 

with coating formulation components, and FDl can "report" early corrosion even in the 

presence of pigments. 
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CHAPTER 4 

FDl STABILITY IN AN EPOXY COATING 

Summary. This chapter deals with the stability of the FDl sensing molecule in an epoxy 

matrix over time in order to establish the robustness of the indicator in a practical 

application. It is shown that the FDl molecule itself is slightly sensitive to 

photooxidation, which results in change of the color of the indicator to pink and for 

fluorescence to appear. Nevertheless, when embedded in the clear epoxy matrix (both 

model and commercial epoxy system) FDl showed stability to photooxidation over time 

and lack of interaction with the epoxy components. Interestingly however, a slight 

increase in the FDl fluorescence over time was observed when the indicator was 

embedded in the filled commercial epoxy coating, only when the coating was scratched. 

This change in FDl fluorescence was ascribed to the presence of the various additives in 

the filled coating (such as Ti02), which can facilitate photooxidation of an indicator. FDl 

proved to be a robust corrosion indicator, when embedded in epoxy coatings, capable of 

sensing corrosion even after prolonged exposure (28 months) to an aqueous solution. 
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4.1 Introduction and Objectives of this Chapter 

FDl, in order to serve as a robust corrosion indicator in a practical application, must 

maintain its ability to respond to the metal corrosion throughout the coating lifetime, 

which often means 10-15 years. Most of the anticorrosion coatings are applied to protect 

metal surfaces from aqueous solution (e.g. salt water) thus the FDl molecules must reside 

in the epoxy matrix even after prolonged exposure to the aqueous environment to serve as 

an effective corrosion indicator (i.e. it should not leach out of the coating matrix). During 

the course of experiments, it was observed that FDl does not dissolve in water thus it is 

not expected to readily leach out of the matrix when placed in the aqueous environment. 

However this statement has to be confirmed experimentally. 

Another issue that had to be addressed in order to confirm FDl effectiveness as a 

corrosion sensor when embedded in the epoxy matrix over time, was its sensitivity to 

oxidation or/and photooxidation that can change the indicator's fluorescent 

characteristics and cause undesired premature response. Since FDl was introduced in the 

literature, these properties have not yet been reported for the molecule. 

Thus the purpose of this chapter is to examine FDl long-term stability and its ability to 

serve as a corrosion sensor in the epoxy coating over prolonged periods of time. 
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4.2 Experimental Section 

4.2.1 Reagents and Materials 

All the reagents and materials used in this chapter are described in section 3.3.1 of 

chapter 3. Additionally, deuterated tetrahydrofuran (THF-dg) was purchased from 

Cambridge Isotope Laboratories, Inc. Titanium dioxide (Ti02, Aeroxide® P25) was 

purchased from Evonik Industries. 

4.2.2 Sample Preparation and Characterization 

4.2.2.1 Measurement of FDl Sensitivity to UV Light in a Filled Coating 

FDl sensitivity to UV light in a filled commercial epoxy coating (Haze Gray MIL-DTL-

24441C, type III, Formula 151) (sample AA1-96A described in section 3.3.8 of chapter 

3) was observed on a Zeiss LSM 510 Meta Laser Scanning Confocal Microscope with an 

Axio Imager Ml platform. An EC Plan-Neofluar 10 /0.30 M27 objective and the 

microscope's 100 W mercury lamp was used as a UV light source to observe the sample 

surface. The fluorescent emission wavelength was obtained from the lambda mode 

function (using Meta detector with selected emitted fluorescence range 520-660 nm with 

10.7 nm step) when a 514 nm ArMultiLine laser was used as the excitation source. The 
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pictures of the coating surface were taken with a digital camera through the microscope's 

eye-piece. 

4.2.2.2 Measurement of FDl Sensitivity to UV Light in the Solid State 

To determine FDl sensitivity to UV light in the solid state, FDl (AA2-27; synthesis 

described in section 3.3.2.1) in the form of almost colorless crystals was placed on a glass 

slide, covered with a cover glass and subsequently exposed to high power UV light from 

the 100 W mercury lamp from the Zeiss LSM 510 Meta Laser Scanning Confocal 

Microscope. The change in color under UV was observed through the microscope's eye­

piece and the pictures were taken with a digital camera. The sensitivity and fluorescent 

response of the color changed FDl (AAl-70, after 10 months) to FeCL/CHsCN solution 

was tested on Cary Eclipse fluorescence spectrofluorometer with an excitation 

wavelength of 510 nm (experiment AA2-28). The examined solution was placed in a 3 

ml quartz cuvette. The results from this experiment (AA2-28) were compared with the 

experiment AA2-19 (described in section 3.3.3). 

4.2.2.3 FDl Sensitivity to UV Light in Solution 

To determine FDl sensitivity to UV light in a solution, experiment AA2-56 was 

performed. A few crystals of FDl were dissolved in 2 ml of CH3CN and the whole 

solution was placed in a 3 ml quartz cuvette. The solution was then exposed to UV light 

(excitation wavelength 254 nm) for different periods of time by placing a handheld UV 
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lamp (Model UVGL-25, MINERALIGHT®) 5 cm from the cuvette containing the 

solution. The change in FDl fluorescence upon exposure to UV light was monitored on 

Cary Eclipse fluorescence spectrofluorometer with an excitation wavelength of 510 nm. 

To observe the change in the chemical structure of FDl when exposed to UV light, 

experiment AA2-59 was performed. A concentrated solution of FDl in deuterated 

tetrahydrofuran (THF-dg) was prepared. The solution was placed in a 3 ml quartz cuvette 

and then exposed to UV light (excitation wavelength 254 nm) for different periods of 

time. The changes in the structure of FDl were examined using lH NMR (Varian 

Mercury 400 MHz NMR with autosampler capabilities). The fluorescence intensity 

change with time of exposure to UV light was monitored with the fluorescence 

spectrofluorometer with an excitation wavelength of 510 nm. 

The influence of oxygen on FDl UV sensitivity was determined in experiment AA2-60. 

A solution of FDl in CH3CN (1.42xl0"2 M) was placed in four 4 ml vials. Two of the 

vials were purged with argon (to remove oxygen) and the remaining two were not. All the 

vials were capped and sealed with paraffin film. Then one vial purged with argon and one 

not purged were exposed to UV light (254 nm) from handheld UV lamp for total time of 

8 days. The two remaining vials were wrapped in aluminum foil to protect them from 

light (not exposed to UV light). The color change of the solutions with exposure to UV 

light was observed. 
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4.2.2.4 Investigation of FDl Fluorescence Gradient across the Filled Epoxy 

Coating 

Preparation of samples AA1-71D and AA1-96A was described in sections 3.3.7 and 3.3.8 

of chapter 3, respectively. Sample AA1-96B was prepared in the same way as sample 

AAl-96A. However in this case, the coating with FDl was applied on both sides of the 

sample. During preparation of this sample, a 10 wt% phosphoric acid solution was 

accidently spilled on the back of the sample immediately after coating application 

causing the appearance of a pink color (this accident inspired some of the interpretation 

of other results in this chapter). AA1-96B sample was used as a reference sample (it was 

not exposed to NaCl solution but left exposed to air and sunlight). Sample AA2-01 was 

prepared by mixing FDl (0.5 wt% based on the dry coating) with both components of 

commercial epoxy-polyamide coating (Haze Gray MIL-DTL-24441C, type III, Formula 

151). FDl was dissolved in toluene prior mixing. After mixing, the resin solution was 

poured into a rectangular shaped silicone mold and cured at room temperature for one 

week. After curing the specimen thickness was 1.8 mm. 

Surfaces of the samples: AA1-96A, AA1-96B, AA1-71D, AA2-01, AAl- 62 (FDl in 

clear commercial coating, described in section 3.3.4) and AA1-48A (FDl in model clear 

epoxy coating applied on steel surface, described in section 3.3.6) were scribed with a 

metal razor blade. The samples were then investigated with the confocal microscope 

under UV light. 
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To investigate if FDl can be photoxidized on the surface of titanium dioxide (Ti02) 

particles, 1 mg of the Ti02 pigment was dispersed in a solution of FDl in THF (19.5 M) 

(experiment AA3-36). The mixture was exposed to 356 nm UV light from a handheld 

UV lamp for 1.5 h. Color of the initially white dispersion changed to slightly pink after 

the UV exposure. When the solution was left to evaporate for 20 h (not exposed to UV) 

the color of the particles changed to bright pink. 

To observe FDl fluorescence gradient across the filled coating thickness, small pieces 

(with dimensions 1 cm x 1.5 cm) were cut from the corners of samples AA1-71D and 

AA1-96B using a diamond saw (experiment AAl-06) and mounted in a clear epoxy resin 

in such a way that the metal/coating cross-sections were viewed from above after the 

resin was cured. After curing for 1 day, the epoxy discs (with the embedded cross-

sectioned pieces) were polished with different grading steps sand papers (starting from 

180 grit and finishing with 600 grit) and aluminum oxide as a final polishing step to 

obtain smooth metal/coating cross-sections. The cross-sections were examined under the 

confocal microscope with 20x magnification (compared to all other experiments where 

10x magnification was used). 

4.2.2.5 FDl Leaching Tests 

AA2-87A; TEPA (amine hardener) and DGEBA (epoxy resin) (at a NH/epoxy molar 

ratio of 1.0:0.8 to obtain full conversion of epoxy) were mixed with FDl (0.5 wt%, 

previously dissolved in toluene). After curing for 1 week at room temperature, the sample 
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was placed in an aqueous solution of FeCl3 (0.125 M) for 6 months. To determine if FDl 

leached out of the epoxy matrix to the aqueous solution after this time, 0.5 ml of the 

FeCL; solution from this experiment was mixed with 0.5 ml THF (to fully dissolve FDl 

that potentially leached out of the matrix) and placed in a 3 ml quartz cuvette (experiment 

AA3-38A). The solution's fluorescence was examined on an AMINCO-Bowman Series 2 

(AB2) spectrofluorometer with an excitation wavelength of 510 nm. 

The FDl leaching after prolonged exposure to aqueous solution was also determined in 

experiment AA3-38B. After 28 months of immersion, 0.5 ml of the FeCL: solution from 

experiment AA1-84A (described in section 3.3.5; FDl (1.5 wt% based on dry coating) in 

the filled epoxy coating, free of substrate immersed in FeC^ aqueous solution) was 

mixed with 0.5 ml of THF and placed in a 3 ml quartz cuvette. The fluorescence of this 

solution was determined as described in the previous experiment. 

4.3 Results and Discussion 

4.3.1 FDl Sensitivity to UV Light 

4.3.1.1 FDl Sensitivity to UV Light in a Filled Coating 

During the experiment testing the ability of FDl to sense undercoating steel corrosion 

when embedded in the filled commercial epoxy coating (described in section 3.3.8, 

Figure 41) it was observed that the areas examined for a prolonged time under UV light 
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changed their color from bright blue to grayish-blue. These areas included the area in the 

blister (Figure 4If) and AREA 1 (left image in Figure 43). However AREA 2, which was 

not examined under UV as often, kept its original bright blue color (under UV light) as 

shown in the right image of Figure 43. 

FDl Sensitivity to UV Light 

Figure 43. Areas in sample AAl-96 A exposed to UV for a prolonged period of time (left image) and not 
exposed to UV (right image). Pictures were taken through microscope eye-piece under UV light. 

Also, a slight fluorescence, with maximum emission (/Lem;max) at 570, was observed by the 

confocal microscope in areas exposed to UV light for longer periods of time. The color 

change might be explained by prolonged exposure of the coating to high power UV light 

during the imaging. However the fluorescence that appeared with time of exposure to UV 

was characteristic to FDl. Thus it apperas that this increase in fluorescence must be 

related to FDl sensitivity to UV light that results in a slight increase in its fluorescence 

intensity. 

100 



4.3.1.2 FDl Sensitivity to UV Light in the Solid State 

FDl was observed to change its color (which also corresponds to an increase in 

fluorescence) from slightly orange-pink to bright pink when stored in a capped clear glass 

vial over time (Figure 44). 

timeO after 10 months after 2.5 years 

Figure 44. FDl (AAl-70) color change over time. 

This color change could suggest that FDl is sensitive to oxidation or photooxidation 

(since the indicator was exposed to light). This finding was confirmed in experiment 

AA2-58 when a high power UV lamp with maximum excitation wavelength at 350 nm 

(from the confocal microscope) was used to induce photooxidation of solid FDl (in 

powder form). In this case, color change was observed much faster as seen in Figure 45. 

Under visible light (after 16 min of exposure to UV light) it was obvious that FDl 

crystals changed color from almost colorless to light pink. 

timeO lrrtin 6min 16 min 16 min 

Figure 45.Color change of FDl crystals upon exposure to UV light (350nm) (AA2-58). 
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It is important to note that even after the color of FDl changed to pink after 10 months 

(middle image in Figure 44) the indicator's sensitivity (when dissolved in CH3CN) to 

FeCLVCHsCN (AA2-28) was not changed as proved by comparison of the fluorescent 

emission spectra to that of experiment AA2-19. 

4.3.1.3 FDl Sensitivity to UV Light in Solution 

The FDl sensitivity to UV light when in solution was investigated in experiment AA2-

56. Solution of FDl in CH3CN was exposed to UV light (254 nm) for a total time of 71 h. 

The fluorescent emission of the solution at 580 nm (when excited with 510 nm) was 

found to increase with time of exposure to UV as shown on the graph in Figure 46. In 

addition, the color of the solution changed from colorless to slightly orange-pink and 

more intense orange-pink with longer exposure time (right images in Figure 46). 

0 20 40 60 80 
time of exposure to UV light (254 nm) [h] 

Figure 46.Change in the fluorescent intensity at 580 nm (left) and color (right) of FDl in CH3CN upon 
exposure to 254 nm UV light (AA2-56). 

This experiment confirmed that FDl fluorescence (and color) increases slightly when the 

molecule is exposed to UV light. 
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To determine how and to what extent UV influences the chemical structure of FDl, 

experiment AA2-59 was performed. A concentrated solution of FDl in THF-ds was 

prepared and examined using *H NMR after different times of exposure to UV light (254 

nm for 8 days and 354 nm for additional 13 days). The total exposure time was 21 days. 

In this case THF was used to dissolve FDl to facilitate higher concentrations more suited 

to higher resolution !H NMR spectra (THF is a better solvent than CH3CN). Even though 

the color of the solution changed with UV exposure from colorless to pink-red (and its 

fluorescent intensity with maximum emission at 583 nm increased) no significant 

changes in the *H NMR spectra were observed even after 21 days of exposure to UV 

light. This result suggested that even minute changes in the chemical structure of FDl 

(not detected by !H NMR) due to prolonged exposure to UV light can noticeably change 

the molecule's fluorescent (and chromophoric) behavior. 

The influence of oxygen on UV sensitivity (sensitivity to photooxidation) of FDl 

solution in CH3CN was determined in experiment AA2-60. As can be seen in Figure 47, 

samples not exposed to light (vials 3 and 4) remained colorless over time. The sample 

exposed to both oxygen and UV light (254 nm) changed color to light pink after only 24 

h (vial 1 in the left image in Figure 47). The intensity of the color increased with UV 

exposure and reached pink-red after 8 days (vial 1 in the right image in Figure 47). The 

sample exposed to only UV light (and not to oxygen) also showed change in color from 

faint pink (vial 2 in the left image in Figure 47) to more intense pink-red (vial 2 in the 

right image in Figure 47). This could be caused by the oxygen eventually reaching the 
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sample causing slow color change. This change however was much slower than observed 

for vial 1. Both solutions (vial 1 and 2) that showed color change in visible light were 

also fluorescent orange under UV light. 

UV light dark UV light dark UV light dark 
air Ar air Ar air Ar air Ar air Ar air Ar 

24 h 4 days 8 days 

Figure 47. Sensitivity of FDl in CH3CN to UV light and oxygen. 

The results of this experiment showed that the color change of FDl (and its fluorescence) 

is influenced by both oxygen and UV light suggesting that FDl is sensitive to 

photooxidation. However only prolonged exposure to UV light and oxygen caused color 

change of the FDl solution. This finding was confirmed by observation of the FDl 

solutions during storage. The solution of FDl (in THF or CH3CN) exposed only to 

sunlight showed no color change even after months of storage in a glass vial (non-

permeable to oxygen). On the other hand when the FDl solution (in CH3CN) was stored 

in polyethylene bottles (that allow oxygen diffusion) the pink color (and low intensity 

fluorescence) appeared in the solution after a few months of storage. However FDl 

embedded in the highly crosslinked epoxy coating is expected to be significantly more 

resistant to photooxidation due to slower oxygen diffusion in the crosslinked matrix than 

in solution. Thus the sensitivity of FDl to photooxidation might not be an issue in a 
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practical application where the molecule is used as a corrosion sensor when embedded in 

the epoxy coating. This topic is addressed in the next section of this chapter. 

4.3.2 FDl Stability in the Epoxv Coating 

4.3.2.1 Fluorescence of FDl in Epoxv Coating when Scratched 

Even though FDl seemed not to interact with the clear commercial epoxy coating (as 

shown in section 3.5.3), and did not change its fluorescence as a result of this interaction, 

a puzzling phenomenon was observed when FDl was embedded in the filled commercial 

epoxy coating (Haze Gray MIL-DTL-24441C). In the AA1-96A sample (described in 

section 3.5.7) in AREA2 (not exposed to NaCl solution) the surface of the filled coating 

with embedded FDl applied on steel showed no significant fluorescence, as observed by 

the confocal microscope under UV light (left image in Figure 43), even after a few 

months after coating application. However, when the coating surface was slightly 

scratched with a razor, some low intensity fluorescence was revealed with maximum 

emission at 570 nm (left image in Figure 48). 
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Figure 48. Scratched rilled epoxy coating (AA1-96A, AREA2) 

This value is lower than the value reported for areas where early corrosion was detected 

(580 and 585 nm, section 3.5.7). The lower wavelength could suggest that the 

fluorescence is much less intense in the scratched area (as described in section 3.5.2 at 

lower emission intensities the wavelength at which the maximum emission is observed 

shifts to a lower value). Similar phenomenon was observed in the samples: AAl-7ID 

(FDl in filled epoxy coating applied on the steel surface; described in section 3.5.6), 

AA1-96B (prepared in the same way as AAl-96A but not exposed to NaCl; used as a 

reference) and in sample AA2-01 (free standing filled epoxy film with FDl, not applied 

on a metal surface); the coating revealed some low intensity fluorescence when 

scratched. As an example, the scratch on sample AAl-7ID is shown in the left image in 

Figure 49. 

When the coating was scratched deeper to the metal surface in samples AAl-96A and 

AA1-96B, even more intense orange fluorescence was observed (right image in Figure 

48) with /iem,max = 580 and 585 nm. However that was not the case for samples AA1-71D 

(right image in Figure 49) and AA2-01 in which the fluorescence was the same even 

when the scratch was much deeper. 
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Figure 49. Scratched filled epoxy coating (AAl-7ID) 

These results suggested that there is some FDl fluorescence gradient through the coating 

thickness for all of the samples (i.e. fluorescence is not observed on the top of the coating 

but only when scratched) in which the indicator is embedded in the filled coating. This 

fluorescence gradient was investigated and will be described in more detail in the next 

section of this chapter. 

The surprising fact was that only samples AA1-96A and AA1-96B showed significant 

increase in the fluorescent intensity when the coating was scratched deeper to the metal 

surface and that this fluorescence was not observed on the top of the sample. However it 

was proven (in section 3.5.7 of the previous chapter) that FDl in the filled coating was 

able to sense undercoating corrosion and its fluorescent response to the early corrosion 

was easily observable when the top of the coating was examined under UV (Figure 41). 

Perhaps in the case when high intensity fluorescence occurs only close to the 

metal/coating interface (as shown when AA1-96A and AA1-96B was scratched deeper to 

the metal surface), and not in the other parts of the coating closer to the top, it is not 

strong enough to be detected on the top of the coating. This dampening of the 
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fluorescence can be caused by 1) excitation light cannot reach that deep into the filled 

coating (i.e. the pigments in the coating can absorb the light so it does not reach the 

fluorescent molecule at the interface) or 2) emitted light of the excited fluorophores can 

not reach the top of the coating (for the same reasons). 

In the case when corrosion occurs under the coating, the ions released during the process 

can diffuse into the coating and interact with FDl causing its fluorescence to appear in 

the coating layers closer to the top. For this reason the light emitted by the sensor can be 

seen on the top of the coating. Thus the coating thickness seems to play a big role in the 

detection of fluorescence in the case of filled coating and this factor has to be included in 

the design of the corrosion sensing systems. 

When the same "scratch" experiment was performed for clear epoxy coatings with 

embedded FDl (samples in AAl- 62; FDl in clear commercial coating, described in 

section 3.3.4 and sample AA1-48A; FDl in model clear epoxy coating applied on steel 

surface, described in section 3.3.6) no fluorescence was revealed even months after 

sample preparation. These results suggested that FDl shows slight fluorescence only in 

the deeper layers of the filled coating. This could be caused by the pigments (e.g. 

titanium dioxide, Ti02) and other additives that are present in this commercial coating 

that might influence the fluorescent behavior of FDl (e.g. facilitate its photooxidation). 

The photoactivity of Ti02 pigment has been reported since the early 20th century. UV 

absorption of Ti02 produces active oxygen species on the pigment's surface [64]. These 

active species could oxidize FDl (also absorbed on the surface) causing its fluorescence. 
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Since the clear coatings do not contain this pigment (or any other pigments) the change in 

FDl fluorescence over time was not observed in the case where FDl was embedded in 

the clear coating. In this case, the photooxidation was significantly slowed down due to 

the highly crosslinked epoxy matrix, thus the change in color and fluorescence did not 

take place in these systems. 

The ability of Ti02 to photooxidize FDl was tested in experiment AA3-36. In this 

experiment, a solution of FDl in THF was mixed with Ti02 powder and exposed to UV 

light (365 nm) for 1.5 h. After this short time of UV exposure an obvious light pink color 

was observed in the powder. When the mixture was left for 20 h to evaporate the solvent, 

a bright pink color appeared in the powder proving that FDl was photooxidized to its 

fluorescent form. The actual product of FDl photooxidation was not detennined at this 

time since it was out of the scope of the current study 

4.3.2.2 Change in FDl Fluorescence across the Coating Thickness 

To investigate the change of FDl fluorescence across the coating thickness, experiment 

AAl-06 was performed. The cross-sections of samples AA1-96B, AA1-71D and AA2-02 

were investigated by confocal microscope (with 20x magnification for samples AA1-

96B, AAl-7ID and 10x magnification for sample AA2-01). Surprisingly the cross-

section of sample AAl-7ID showed no fluorescence gradient across the coating 

thickness (as seen in the left image in Figure 50). It is worth mentioning however that one 

area at the metal/coating interface showed some indication of superficial corrosion. In 
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addition, fluorescence was observed near this area under UV (orange color as seen in the 

bottom left image in Figure 50) and on the fluorescent image from the confocal 

microscope's lambda mode (yellow areas in the inset of the bottom left image in Figure 

50 with /Lem,max at 580 and 585 nm). At this point, early corrosion stages were missed 

(since the rust can be already seen) however FDl was still fluorescent near the corroded 

area proving its ability to sense corrosion. In this case, the sample was not exposed to the 

corrosive environment (i.e. NaCl solution) however uncoated steel corrodes readily even 

when only exposed to air. Thus the occurrence of the corrosion was not surprising since 

the metal was unprotected. 

Unlike AAl-7ID, the front of the reference sample AA1-96B (not exposed to NaCl) 

showed variations in the fluorescence across the coating thickness. Some bright orange 

fluorescent areas (under UV, bottom middle image in Figure 50) were observed across 

the whole metal/coating interface. They showed /lem,max at 580 and 585 nm (yellow areas 

in the inset of the bottom middle image in Figure 50). However no indication of corrosion 

was observed near these areas. Also the back of the sample was investigated. The top 

layer of the coating appeared slightly pink under natural light (top right image in Figure 

50) and bright orange under UV (bottom right image in Figure 50). 
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metal surface not treated metal surface treated 
with H3P04 with H3PG4 

Figure 50. Cross-sections showing metal/coating interface of samples AA1-71D (not treated with H3PO4 
before coating application) and AA1-96B (front and back of the sample, treated with H3P04 before coating 
application). Top row: images taken through the confocal microscope eye-piece (20 x magnification) under 

natural light; bottom row: images taken through the microscope eye-piece under UV light. Insets in the 
bottom row pictures show the fluorescent images obtained from the confocal microscope's lambda mode. 

The fluorescence in the top bright layer (in Figure 46, bottom right) was identical to the 

one for the bright areas at the metal/coating interface. The pink color on the back of the 

AA1-96B sample was observed even before the sample was examined on the confocal 

microscope. It appeared when a solution of 10 wt% phosphoric acid (H3PO4) was 

accidently spilled on the sample right after the coating application. This occurrence 

suggested that the steel surface pre-treatment with H3PO4 (to remove any impurities and 

corrosion products from the substrate surface) before epoxy coating could have also 

influenced the fluorescent areas at the metal/coating interface; the pre-treatment was 

performed on both samples AA1-96A and AA1-96B. In closer inspection of the work by 

Zhang et al. [57] (that originally proposed the FDl molecule as a Fe3+ chemosensor), the 

supporting information reported that FDl is also sensitive to changes in pH and becomes 

fluorescent with decreasing pH. The fact that the maximum fluorescent intensity was the 
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same in both the top surface and at the metal/coating interface suggested that the bright 

spots at the metal/coating interface were probably due to residual H3PO4 that was used to 

clean the steel surface. As a result, the FDl corrosion sensing mechanism and its 

response to acidic solution was more closely investigated and will be described in detail 

in the following chapter of this thesis. 

With this result, it was then clear as to the reason the deeper scratch revealed brighter 

fluorescence in the samples AAl-96A (Figure 48) and AA1-96B (steel surface treated 

with H3PO4 before coating application) and not in the sample AAl-7ID (Figure 49, steel 

surface not treated with H3PO4 before coating application). However the cross-section 

experiment did not explain why low intensity fluorescence was only observed when the 

coating was scratched and not from the top of the coating. Perhaps the coating was too 

thin to be able to observe this subtle change in fluorescence. Thus the thicker (1.8 mm) 

free standing sample of filled commercial epoxy coating with embedded FDl (0.5 wt% 

based on the dry coating) was prepared (AA2-01) and observed under the confocal 

microscope after 1 year after curing. Before scratching the coating no fluorescence 

characteristic for FDl was observed. When the coating was scratched, low intensity 

fluorescence (/lem,max = 570 and 580 nm) and light orange color (under UV light) were 

revealed (top left image in Figure 51). When the cross-section of this coating was 

examined, it was clear that there is a fluorescence gradient across the coating thickness 

(as seen in the bottom left image in Figure 51). The outer layer of the sample showed no 

significant fluorescence. However, deeper in the sample some light orange spots were 
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clearly seen indicating low intensity FDl fluorescence. This observation explained why 

the fluorescence was observed only when the coating was scratched. 

Figure 51. FDl in filled epoxy coating (AA2-01). Top row: top view of the coating with the scratch before 
and after immersion in HCl (left and right image respectively). Bottom row: cross-section of the coating 

before and after immersion in HCl (left and right image respectively). Images taken through the microscope 
eye-piece under UV light. 

This gradient in fluorescence across the coating thickness was even more obvious when 

the sample was immersed in a 0.1 M HCl solution for 1 day (as indicated above, it was 

known by this point that FDl responds to low pH) (right images in Figure 51). Thus it 

was concluded that FDl appears to stay away from the coating/air interface. The 

underlying reason could be the difference in surface energy between FDl and epoxy 

components. FDl may not have a higher surface energy than the amine hardener, but its 

surface energy is very likely higher than the epoxy component, which is why FDl tends 

to "shy away" from the top surface. This may explain why fluorescence of FDl is 

revealed only when the coating is scratched. This experiment also proved that slightly 

fluorescent FDl (after being embedded in the filled coating for 1 year) can still be highly 

responsive to low pH. 
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4.3.2.3 FDl Leaching Test 

To determine if FDl leached out of the epoxy matrix after 6 months of immersion in the 

aqueous solution, experiment AA3-38A was performed. FDl was embedded in the clear 

model DGEBA-TEPA coating (0.5 wt%) (sample AA2-87A). After curing, the sample 

was placed in an aqueous solution of FeCL (0.125 M) for 6 months. The bright pink color 

and fluorescence (under UV light) of the sample was easily observed after this immersion 

time. The solution from this experiment was collected after 6 months and mixed with 

THF to fully dissolve FDl that potentially leached out of the matrix (1:1 v/v). If there 

was any FDl present in that mixture it should give a fluorescent response upon reaction 

with FeCb. When this mixture was examined by a spectrofluorometer with an excitation 

wavelength of 510 nm, no fluorescence was observed (red curve in the spectra in Figure 

52) proving that FDl did not leach out of the epoxy matrix after 6 months of immersion 

in the aqueous solution. 

A similar experiment was performed to determine if FDl would leach out from the epoxy 

matrix after prolonged exposure to an aqueous solution (experiment AA3-38B). FDl 

embedded in the filled epoxy coating (1.5 wt% based on dry coating; experiment AA1-

84A described in section 3.3.5) was immersed in the FeCb aqueous solution for 28 

months. After this time, 0.5 ml of the FeCL solution from this experiment was mixed 

with 0.5 ml of THF. This mixture showed some low intensity fluorescence when 

examined by a spectrofluorometer with an excitation wavelength of 510 nm (blue curve 
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in the spectra in Figure 52). However the maximum emission intensity (2em>max) was 

observed at around 570 nm which indicates that the intensity of this fluorescence was 

very low (maximum emission intensity for highly fluorescent FDl species is at 580 nm 

and higher). This experiment showed that a minute amount of FDl eventually diffused 

out of the epoxy matrix to the aqueous environment after prolonged time of 28 months. It 

is worth mentioning however that the sample AAl-84A after immersion in the FeCl3 

aqueous solution for 28 months still showed pink color and fluorescence (as examined 

under UV light) proving that the remaining FDl in the sample was still responsive to 

FeCi3 solution. 
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Figure 52. Fluorescent spectra of the FeCl3/THF solutions from experiments AA3-38A and AA3-38B (after 
6 and 28 months of sample immersion in FeCl3 solution respectively). /LeX =510 nm. 

4.4 Conclusions 

FDl in the solid state, as well as in solution, showed a slight sensitivity to 

photooxidation. However, only prolonged exposure to UV light and oxygen caused 
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significant color and fluorescence of the indicator to appear. Even after color change to 

pink, due to photooxidation, FDl was still highly responsive to a FeCL/CHsCN solution. 

Moreover, FDl, when embedded in the clear epoxy matrix (both model and commercial 

epoxy system), even months after sample preparation, showed no change in its 

fluorescence proving its stability to photooxidation in the epoxy matrix over time and 

lack of interaction with the epoxy components. Interestingly when the indicator was 

embedded in the filled commercial epoxy coating, over time a slight increase in the FDl 

fluorescence was observed when the coating was scratched. This change was most likely 

caused by the presence of the various additives in the coating, such as Ti02 (that itself 

can facilitate FDl photooxidation). FDl did not leach out of the epoxy matrix after 

immersion in the aqueous FeCL; solution for 6 months. After 28 months however, some 

minute traces of FDl were detected in the aqueous solution indicating that FDl slowly 

diffused out of the epoxy matrix. The remaining FDl was still responsive to FeCb 

proving that even after prolonged exposure to the aqueous solution enough FDl is still in 

the coating to be capable of sensing corrosion. 

116 



CHAPTER 5 

EXPLORATION OF FDl SENSING MECHANISMt 

Summary. In this chapter, the ability and mechanism of FDl sensing early stages of steel 

corrosion via "turn-on" fluorescence is explored. Three potential mechanisms causing 

FDl fluorescent response due to corrosion are considered: namely, FD1/Fe3+ 

complexation, FDl oxidation to a fluorescent form, and FDl sensitivity to acidic pH. It is 

shown that at low pH (which is observed at the anodic site of corrosion) FDl undergoes 

hydrolysis, catalyzed by acid, to fluorescent protonated Rhodamine B hydrazide (RBH). 

It has been also confirmed that FDl forms a fluorescent FD1/Fe3+ complex in a non­

aqueous solution. However when an aqueous solution of ferric salt is titrated to the FDl 

solution, the "turn-on" fluorescence is due to acidity of the solution and not due to the 

FD1/Fe3+ complex formation. It is also proposed to explore RBH itself as a corrosion 

indicator due to its "turn-on" fluorescence at low pH and due to the fact that it can be 

covalently bonded to a polymeric network without losing its responsiveness to low pH, 

which eliminates the possibility of the molecule leaching out of the epoxy matrix. 

' Portions of this chapter have been published: Augustyniak, A.; Ming, W. Early 
detection of aluminum corrosion via "turn-on" fluorescence in smart coatings. Prog. Org. 
Coat. 2011, 71, 406-412 (doi: 10.1016/j.porgcoat.2011.04.013). 
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5.1 Introduction and Objectives of this Chapter 

In sections 3.5.5, 3.5.6 and 3.5.7 of chapter 3, the FDl molecule was proved to sense 

early stages of steel corrosion when incorporated into an epoxy matrix via "turn-on" 

fluorescence. 

This molecule was chosen as a corrosion indicator due to its ability to selectively sense 

Fe3+ ions, as claimed by Zhang et al. [57]. Those authors used FDl for sensing metal 

concentrations within living cells for bio imaging. Here in the work of this thesis, the FDl 

molecule was chosen to sense Fe3+ ions that are produced during the corrosion of steel. 

Even though the structure of a potential FD1-Fe3+ fluorescent complex was proposed by 

Zhang el al. (Figure 29), no experimental evidence confirming the actual chemical 

structure of the complex formed was shown in their manuscript. Other authors also 

claimed the discovery of the molecule forming fluorescent complexes with Fe [54], but 

similarly did not demonstrate any conclusive evidence for the complex formation. 

It was also observed in section 4.2.2.3 that the FDl indicator became slightly fluorescent 

with time due to oxidation. Additionally, during the course of the experiments with FDl 

as a potential corrosion sensor, it was shown that FDl was sensitive to low pH (i.e. 

fluorescence appeared under acidic conditions as described in section 4.3.2.2). This 

sensitivity was also mentioned in the supplementary data of the publication by Zhang et 

al. [57], however the authors only showed the change in FDl fluorescence (at 583 ran, Xex 
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=510 nm) as a function of pH (Figure 53), without detailed mechanistic understanding of 

this phenomenon. 
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Figure 53. FDl fluorescence (at 583 nm) as a function of pH; 2ex =510 nm [57]. 

FDl sensitivity to acidic pH however is an additional advantage, when using the 

molecule as a corrosion sensor, since at the anodic sites of localized corrosion not only 

iron ions are produced but also a decrease in pH is observed (as described in sections 

1.2.2). This could possibly expand the application of FDl as a corrosion indicator in 

smart epoxy coatings to other important metals such as aluminum (since acidic pH is also 

observed at the anodic site of aluminum corrosion as described in section 1.1.3). 

Thus three mechanisms can be considered as possible explanations for FDl's ability to 

sense steel corrosion via "turn-on" fluorescence: 

1. FDl binds Fe3+ produced at the anodic site of corrosion forming a fluorescent 

complex (as claimed by Zhang et al. [57]) 

2. FDl is oxidized by Fe3+ ions to a fluorescent form (Fe3+ reduces itself to Fe2+) 

119 



3. FDl becomes fluorescent upon reaction with H (under acidic pH) 

Since an aqueous solution of FeCL is highly acidic (pH ~ 2) and also acts as a strong 

oxidizer, all the mechanisms mentioned above can explain the fluorescent response of 

FDl (when embedded in an epoxy coating; experiments described in sections 3.3.4 and 

3.3.5) to the FeCL: aqueous solutions. Even in the experiment AA2-19, where 

FDI/CH3CN solution was titrated with FeCL/CH3CN solution, since a trace amount of 

water is present in the system (CH3CN contains 0.01% of water and additionally 

anhydrous FeCL used for this experiment readily absorbs water from air), the reason for 

FDl fluorescence can be explained by mechanism number 3. 

In order to determine if the FDl-epoxy smart coating systems can be used to sense 

corrosion of metals, other than steel, the detailed understanding of the FDl corrosion 

sensing mechanism was necessary. Thus the purpose of this chapter is to determine which 

of the mechanisms mentioned above are responsible for the appearance of FDl 

fluorescence due to corrosion. 

5.2 Experimental Section 

5.2.1 Reagents and Materials 

FDl was synthesized in our lab as described in section 3.3.2.1. Acetonitrile (CH3CN, 

HPLC grade), tetrahydrofuran (THF) (HPLC grade), water (HPLC grade), xylenes (ACS 

grade), ferric chloride, anhydrous (FeCL), hydrochloric acid (ACS grade, 36.5-38.0%) 
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and molecular sieve (0.4 nm) were purchased from EMD chemicals. Sodium hydroxide 

(NaOH) (ACS reagent, pellets, 97+ %), cyclen (97 %), potassium phosphate, monobasic 

(KH2PO4) and sodium phosphate, dibasic (Na2HP04) were purchased from Acros 

Organics. The pH 7 and pH 12 buffers were prepared by mixing appropriate mounts of 

KH2PO4 and Na2HP04 respectively with NaOH in DI water. HEPES buffer (4-(2-

hydroxyethyl)-l-piperazineethanesulfonic acid, SigmaUltra,>99.5% titration) was 

purchased from Sigma-Aldrich. Ferric ammonium citrate, purified brown pearls, was 

purchased from Mallinckrodt. Triethanolamine (TEA, 99 %) was purchased from 

Pfaltz&Bauer. Deuterated solvents (water (D2O), chloroform (CDCI3), tetrahydrofuran 

(THF-dg) and toluene-dg) were supplied by Cambridge Isotope Laboratories, Inc. Gallium 

nitrate hydrate (Ga(N03)3«xH20), 99.9 % was purchased from Alfa Aesar. Sulfuric acid 

(ACS reagent) was purchased from Fisher Scientific. Rhodamine b hydrazide (RBH, 

AA2-80) was synthesized in our lab as described in section 3.3.2.2. D.E.R.™ 332 Epoxy 

Resin (high purity bisphenol A diglycidylether, DGEBA) was purchased from The Dow 

Chemical Company. Tetraethylenepentamine (TEPA, technical grade) was purchased 

from Acros Organics 

121 



5.2.2 Sample Preparation 

5.2.2.1 Experiments proving FDl-Fe Complexation & FDl Hydrolysis in 

Acidic pH 

AA2-17; 2xl0"5 M solution of FDl in CH3CN was diluted twice with NaOH/KH2P04 

buffer solution (pH 7). 3 ml of this mixture was titrated with 4xl0"3 M solution of FeCL; 

in CH3CN. Each drop of FeCL solution (0.02 ml) was equal to one Fe3+/ FDl equivalent. 

The solution was titrated up to 80 Fe3+/ FDl equivalents. The fluorescence response of 

FDl to FeCL; was recorded on the spectrofluorometer. 

AA2-19; Experiment was described in section 3.3.3. 

AA2-76; Experiment was performed as described by Zhang et al. [57]; HEPES buffer 

was prepared by adjusting the pH of a 20 mM aqueous solution of HEPES to pH 7 with 

NaOH. 10 M solution of FDl in CH3CN was diluted 20 times with HEPES buffer and 

titrated with aqueous solution of FeCL; (0.001 M). Each addition of FeCL solution (0.01 

ml) was equal to 0.66 Fe3+/ FDl equivalents. The solution was titrated up to 7 Fe3+/ 

FDl equivalents. Then 0.5 M aqueous FeCl3 solution was added to the mixture. The pH of 

this solution was checked with a pH-indicator strip. The fluorescence response of FDl to 

FeCb was recorded on the spectrofluorometer. 
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AA2-45; The fluorescence of 2 ml of the solution of FDl in THF (3x10° M) was 

examined on the spectrofluorometer (lex =510 nm) before and after addition of Fe3+ from 

Fe(acac)3 in THF (3xl0"2 M, orange solution). Each addition of 0.05 ml of Fe(acac)3/THF 

solution was equal to 0.5 Fe3+/FD1 equivalent. 

AA2-75; FDl solution in CH3CN (1.9X10"4 M) was titrated with yellow-brown solution 

of ferric ammonium citrate (FAC). The FAC used in this experiment was a mixture of 

FAC Brown (16.5-18.5 % iron) and FAC Green (14.5-16 % iron). The pH of FAC 

aqueous solution was measured using pH-indicator strips. 2 1 of 1.3 % solution of FAC 

in HPLC water added to 0.5 ml of FD1/CH3CN was calculated to be 1 Fe3+/FD1 

equivalent. The fluorescence of the FDI/CH3CN solution upon addition of FAC was 

monitored on the spectrofluorometer (Aex =510 nm). 

AA2-74; A few drops of triethanolamine (TEA) were added to 0.5 ml of an aqueous 

solution of FeCL (7.2x10"4 M). The pH of this solution was measured with the pH-

indicator strips. Then the mixture was diluted 5 times with the Na2HP04/NaOH buffer 

solution (pH 12). The solution of FDl in CH3CN (1.9xl04 M) was titrated with the 

FeCVTEA/buffer mixture. The fluorescence of the FDl solution (1 ml) upon dropwise 

addition of FeCLVTEA/buffer was monitored on the spectrofluorometer (Xex =510 nm). 

AA3-39; 3 ml of the FDl in THF solution (20 M) was titrated separately with FeCL; in 

THF (0.01 M) and FeCl3 in H20 (0.01 M). The change in FDl fluorescence was 

monitored on the spectrophotometer (2ex =510 nm) after each addition of Fe3+ solution. 
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Each drop (1.2 1) was equal to 0.2 Fe /FDl equivalents. After reaching one Fe /FDl 

equivalent the amount of FeCL solution added was increased to 2.4 1 each time (0.4 

Fe3+/FD1 equivalents). The solutions were allowed to equilibrate for one minute after 

each FeCb addition. Both FeCL solutions were titrated to the point where no more 

increase in fluorescent emission was observed (3 and 5.8 Fe3+/FD1 equivalents for FeCb 

in H2O and for FeCb in THF respectively). 

AA3-40; Identical to experiment AA3-39, the FD1/THF solution was titrated with FeCl3 

in THF (0.01 M) and FeCL. in H20 (0.01 M) but in this case the UV-vis absorption of the 

solution was recorded. Each addition (2.4 1) was equal to 0.4 Fe3+/FD1 equivalents. The 

solutions were allowed to equilibrate for one minute after each FeCl3 addition. Both 

FeCl3 solutions were titrated to the point where no more increase in absorption was 

observed (3.2 and 6 Fe3+/FD1 equivalents for FeCL: in H2O and for FeCl3 in THF 

respectively). 

AA3-42A; 0.1 ml of FDl solution in anhydrous THF (8 mM) was diluted with 0.9 ml 

THF. The solution was examined by ESI-MS. 

AA3-42B; 0.1 ml of FDl solution in anhydrous THF (8 mM) was mixed with 0.2 ml of 

FeCl3 solution in anhydrous THF (4 mM) to obtain 1 Fe3+/FD1 equivalent. The whole 

mixture was then diluted with 0.7 ml THF. Once FDl was mixed with FeCU, the color of 

the mixed solution turned bright magenta. The solution was examined by ESI-MS. 
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AA3-42C; 0.1 ml of FDl solution in anhydrous THF (8 mM) was mixed with 0.6 ml of 

FeCL: solution in anhydrous THF (4 mM) to obtain 3 Fe3+/FD1 equivalents. The whole 

mixture was then diluted with 0.3 ml THF. Once FDl was mixed with FeC^, the color of 

the mixed solution turned bright magenta. The solution was examined by ESI-MS. 

AA2-44; FDl was dissolved in THF-ds (dried overnight with 0.4 nm molecular sieve). 

The *H NMR spectra were collected. Then excess of FeCl3 in THF-dg was added. The 

color of the solution turned from colorless to dark magenta. The *H NMR spectra were 

collected again. Then excess of cyclen (metal chelator) was added to the solution to 

remove Fe3+. The solution became clear but orange precipitate appeared. The next day the 

precipitate was filtrated on 0.45 m filter. Deuterated chloroform (CDCL) was added to 

the supernatant and the solution was investigated again by *H NMR. 

AA2-81B; 0.1 ml of FDl solution in THF (8 mM) was mixed with 0.1 ml of FeCl3 

aqueous solution (8 mM) to obtain 1 Fe /FDl equivalent. The whole mixture was then 

diluted with 0.8 ml of water/THF mixture (1:1 by volume). Once FDl was mixed with 

FeCi3, the color of the mixed solution turned bright pink. The solution was examined by 

ESI-MS. 

AA2-81E; 0.1 ml of FDl solution in THF (8 mM) was mixed with 0.6 ml of FeCl3 

aqueous solution (8 mM) to obtain 6 Fe /FDl equivalent. The whole mixture was then 

diluted with 7 ml of water/THF mixture (1:1 by volume). Once FDl was mixed with 
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FeCh, the color of the mixed solution turned bright pink. This solution was left at 

ambient temperature for 48 h before ESI-MS measurement. 

AA2-39; Excess of gallium nitrate (Ga(N03)3 xH20) was dissolved in D20 and added to 

the FDl/THF-dg solution. The solution before and after Ga3+ addition was investigated by 

'HNMR 

AA2-92A and AA2-92B; Solutions of FDl (AA2-92A) and RBH (AA2-92B) (20 M in 

CH3CN) were examined on the spectrofluorometer before and after addition of HCl 

solution (0.01 M). Each HCl addition (1.2 1) was equal to 0.2 H+/FD1 equivalents. For 

both solutions the acid was added up to the point were no more significant increase in the 

fluorescent emission was observed (around 2 H+/FD1 equivalents in both cases). 

AA2-47; FDl was dissolved in THF-dg and investigated by *H NMR. Then a large excess 

of H2SO4 (dissolved in D2O) was added to the solution causing the appearance of a bright 

pink color and some pink precipitation. To dissolve this precipitate more D2O was added. 

*H NMR spectrum was collected again. Then the excess of NaOH (in D2O) was added 

dropwise until the pink color disappeared. The mixture was investigated by !H NMR. 

AA2-81D; 0.1 ml of FDl solution in THF (8 mM) was mixed with 0.3 ml of HCl 

aqueous solution (8 mM) to obtain 3 H+/FD1 equivalent. The whole mixture was then 

diluted with 0.6 ml of water/THF mixture (1:1 by volume). Once FDl was mixed with 
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HCl, the color of the mixed solution turned bright pink. The solution was examined by 

ESI-MS. 

AA2-81F; FDl was dissolved in THF (8 mM) before the measurement. To examine the 

effect of low pH on FDl, 0.1 ml of the FDl solution was mixed with 0.6 ml of HCl 

solution (8 mM), leading to a 1:6 FDl/HCl molar ratio, and then diluted with 0.3 ml of 

water /THF mixture. The color of the FDl solution turned bright pink instantly after HCl 

addition. This solution was left at ambient temperature for 48 h before ESI-MS 

measurement. 

AA3-24; To compare response of FDl and RBH (Rhodamine B hydrazide) to low pH, 

solutions of FDl and RBH were prepared by dissolving both chemicals in THF-dg (~ 8 

mM) and then 6 molar excess of HCl solution in D2O was added to both solutions. The 

change in chemical structure upon addition of acid was examined on !H NMR. 

5.2.2.2 Experiments Exploring RBH as a Potential Early Corrosion Indicator 

AA2-94; Solutions of DGEBA and RBH in toluene-dg were investigated by ]H NMR 

separately. Peak for toluene was used as an internal reference (7.09 ppm) in all spectra. 

Then RBH was added to the solution of DGEBA in toluene-dg (~ 1 RBH/DGEBA 

equivalent which is also 1:1 V5NH r a t i0) . This slightly red mixture (due to RBH) was 

placed in the oven at 70°C. !H NMR spectra were collected at time=0 and after 24 h and 

3 days. Then more toluene-dg was added and the solution was placed in a 25 ml round 
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bottom flask and refluxed at 155°C for 2 h. After that another lH NMR spectrum was 

collected. The solvent was evaporated and 0.125 M aqueous FeCL: solution was added to 

see if RBH was able to sense low pH after reaction with DGEBA. After 1 h the FeCL̂  

solution changed color to purple and after longer time the precipitate also became dark 

magenta. 

AA3-25; RBH and DGEBA (5 DGEBA/RBH equivalents) were dissolved in xylenes and 

placed in the oven at 123°C for 44 h. Color of the solution changed from slightly yellow 

to dark dirty yellow after this time. Then slight tetraethylenepentamine (TEPA) excess 

was added to the RBH/DGEBA solution to fully cure the epoxy resin and the whole 

mixture was poured onto an aluminum pan and placed in the oven at 80°C for 20 h to 

facilitate the curing reaction. After curing, a hard yellow film was formed. Then the 

aluminum pan with the film adhered to it was placed in a cellulose extraction thimble for 

Soxhlet extraction. THF was used as the solvent during Soxhlet extraction, refluxed at 

70°C for 12 h. The purpose of this extraction was to remove any unreacted RBH from 

the cured film. To make sure that all unreacted RBH was removed from the epoxy film, 

the aluminum pan with the epoxy coating was cut into small pieces, placed in a glass jar 

with THF and stirred with the magnetic stirrer for another 3 days. After that time the THF 

solution was examined on a UV-vis spectrophotometer. The resulting spectrum was 

compared with the spectra for RBH and DGEBA in THF. The piece of the epoxy coating 

(after extraction and washing with THF) was then placed in 0.1 M HCl solution. Pink 

color at the edges of the epoxy film appeared after a few seconds and after 1 h a deep 
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pink color was observed in the whole film. Also under UV light (365 nm) from a 

handheld UV lamp the epoxy film appeared bright orange. 

5.2.3 Characterization Methods 

Fluorescence emission spectra in experiments AA2-17, AA2-19, AA2-74, AA2-75, AA2-

76 were obtained with a Cary Eclipse fluorescence spectrofluorometer with an excitation 

wavelength of 510 nm. The examined solutions were placed in a 3 ml quartz cuvette. 

Fluorescence emission spectra in experiments AA2-45, AA2-75, AA2-74, AA3-39, AA2-

92A and AA2-92B were obtained with an AMFNCO-Bowman Series 2 (AB2) 

spectrofluorometer with an excitation wavelength of 510 nm. The examined solutions 

were placed in a 3 ml quartz cuvette. The fluorescent response of the samples to UV light 

was recorded using a handheld UV lamp with excitation 365 nm (model UVGL-25, 

MINERALIGHT®). UV-vis absorption spectra in experiment AA3-40 and AA3-25 were 

obtained on ISS-UV-VIS spectrophotometer from Ocean Optics Inc. The examined 

solutions were placed in a 3 ml quartz cuvette. All *H NMR spectra were collected on a 

Varian Mercury 400 MHz NMR with autosampler capabilities. In cases when THF-dg 

was used as a solvent, peaks for THF-dg were used as an internal reference (1.73 and 3.58 

ppm) since this solvent does not include tetramethylsilane (TMS) as internal standard. 

Electrospray ionization mass spectrometry (ESI-MS) (experiments: AA2-81B, AA2-81C, 

AA2-81D, AA2-81E and AA2-81F) spectra were recorded on an LCQ Fleet instrument 

(Thermo Finnigan, San Jose, CA) equipped with an ion trap in the positive ion mode. 

Sample solutions were infused at a flow rate of 10 p.l/min. ESI-MS spectra in experiment 
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AA3-42 were recorded on an LCQ Deca instrument (Thermo Finnigan, San Jose, CA) 

equipped with an ion trap in the positive ion mode. Sample solutions were infused at a 

flow rate of 10 (xl/min. Simulations of the isotopic distribution were obtained using the 

Isopro 3 program. 

5.3 Results and Discussion 

5.3.1 FDl Corrosion Sensing Mechanism Based on Complexation with Fe3+ 

Zhang et al. [57] reported that a solution of FDl in CH3CN was able to sense Fe3+ ions 

(from an aqueous solution of FeCLJ when diluted with HEPES buffer at pH 7. However 

this result seemed to be surprising since it is known that soluble Fe3+ ions exist only in 

very acid solutions (pH = 0-2). An increase in pH to 2-4 causes ion hydrolysis and 

precipitation of the insoluble ferric hydroxide Fe(OH)3 [65], and thus Fe3+ is no longer 

available for complexation in that pH range. A similar experiment to that of Zhang et al. 

[57] was performed to ensure that FDl was able to detect Fe at pH 7 (experiment AA2-

17); FDl was dissolved in CH3CN (2xl0"5 M) and then diluted two times with 

NaOH/KH2P04 buffer solution (pH 7). The fluorescent response of this solution to Fe3+ 

was recorded on the spectrofluorometer (Xex =510 nm) after addition of FeCl3 solution 

(4xl0"3 M in CH3CN). No fluorescence was observed even after addition of excess of 

Fe3+ (80 Fe3+/FD1 equivalents). At 20 Fe3+/FD1 equivalents a slightly yellow 

precipitation appeared (probably Fe(OH)3). However when the experiment was 
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performed without the buffer solution (experiment AA2-19 described in section 3.3.3 of 

chapter 3) the results were similar to the ones reported by Zhang et al. [57]. It was then 

concluded that HEPES buffer could have some influence on the results of the 

experiments. HEPES is a common buffer used in biochemical and psychological studies 

due to its biocompatibility and pKa value that is close to the psychological pH of 7.4 

[66]. Even though it was considered a non-coordinating buffer (i.e. it does not form 

complexes with metal ions) for a long time, it was recently reported to weakly chelate 

copper [66] and uranium [67] ions in some systems. Thus there was a possibility for 

HEPES to coordinate with Fe3+ and keep the ion in solution, available for FDl to 

complex with. The experiment described by Zhang et al. [57] was repeated using HEPES 

as a buffer (experiment AA2-76); 10 M solution of FDl in CH3CN was diluted 20 times 

with HEPES buffer (20 mM, pH 7) and titrated with aqueous solution of FeC^. The 

fluorescent response of FDl was recorded on the spectrofluorometer (2ex =510 nm). The 

addition of Fe3+ (0.3 to 5 Fe3+/FD1 equivalents) again did not cause any fluorescence 

increase. Also with increasing amount of FeCL;, a yellowish precipitate was observed. 

Only when a drop of concentrated FeCL̂  solution (0.5 M) was added the fluorescence 

with maximum emission at 583 nm was recorded. However, at this point, the pH of the 

mixture was around 3 (as checked by pH-indicator strips) which indicated that the buffer 

capacity was overcome. This result suggested that the fluorescent response of FDl in this 

system could only be due to acidic pH of the solution (as shown before in Figure 53, FDl 

fluorescence increases with decreasing pH). Since no other experimental evidence 

(besides the fluorescent and absorbance spectra) was shown by Zhang et al. [57], to 

confirm that FDl can form a fluorescent complex with Fe3+, we had reasons to doubt the 
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actual complex formation. Even though, in experiment AA2-19 (FDl in CH3CN titrated 

with FeCL in CH3CN) the fluorescence was recorded upon titration with FeCb solution, 

some traces of water were still present in the system indicating that the low pH could be 

the reason for the increase in fluorescence. Therefore the FDl/Fe complexation was not 

unquestionably proved as the sensing mechanism. 

Thus it was necessary to demonstrate that FDl fluorescence could be caused by the 

complexation with Fe3+ and not only by the low pH. The following experiments were 

designed to examine whether FDl was able to form a fluorescent complex with Fe3+. 

Since most of the aqueous solutions of ferric salts are acidic (e.g. FeCL: aqueous solution 

has pH around 2) it was challenging to determine if the FDl fluorescence is caused by the 

acidity of the added solution or by complexation with Fe3+. In experiment AA2-45, iron 

(III) acetylacetonate (Fe(acac)3, Figure 54) was used as a source of Fe3+ ions. Since this 

ferric coordination complex is not soluble in water, no low pH issue exists in the system 

even when trace amounts of water are present. 

0 0' 

0" Fe++T0 
0 0" 

Figure 54. Chemical structure of iron (III) acetylacetonate 

The fluorescence of the solution of FDl in THF (3x10" M) was examined on 

spectrofluorometer (Aex =510 nm) before and after addition of Fe3+ from Fe(acac)3 in THF 
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(3xl0"2 M, orange solution). FD1/THF solution showed only weak fluorescence with 

maximum fluorescent emission (lem,max) around 570 nm. After addition of 0.5 Fe3+/FD1 

equivalents the color of the mixture was yellow-orange (due to the color of Fe(acac)3 

solution) but no pink-red color was observed (as in case of titration with FeC^). Also no 

increase in fluorescence was recorded on spectrofluorometer. Even addition of 4 

Fe3+/FD1 equivalents (large Fe3+ excess) did not enhance the fluorescence intensity of 

FDl. This experiment proved that Fe3+ from Fe(acac)3 does not complex with FDl 

causing the increase in its fluorescence. However the lack of fluorescence emission from 

FDl could be the result of strong acetylacetonate coordination with Fe3+ (i.e. 

Fe3+/acetylacetonate binding constant is much higher than the binding constant for 

potential Fe3+/FD1 complex). Thus the FDl ability to form a fluorescent complex with 

ferric ion could not yet be excluded at this point. 

A similar experiment to AA2-45 was performed with ferric ammonium citrate (FAC) as a 

Fe3+ source (Figure 55). The pH of the solution of this ferric salt in water is between 6 

and 8 depending on the concentration [68]. Since the 1.3 wt% solution of FAC in water 

was pH 6 (as measured with the pH-indicator strips) there was no acidic pH issue when 

this solution was added to the solution of FDl in CH3CN (1.9X10"4 M). The color and 

fluorescence (as measured on the spectrofluorometer) of the FDI/CH3CN was not 

changed even after addition of excess of Fe from FAC solution. 
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Figure 55. Chemical structure of ferric ammonium citrate 

This experiment proved that FDl could not sense Fe3+ from FAC aqueous solution. 

However, similarly to the experiment with Fe(acac)3, Fe3+ in FAC salt can be chelated by 

citrate [69] which could make ferric ions unavailable for complexation with FDl. FDl 

would have to be a much stronger chelating agent than citrate (i.e. FDl/Fe binding 

constant many orders of magnitude larger than citrate/Fe3+ binding constant) to be able to 

remove the Fe3+ ions from the citrate chelation. Thus again, FD1/Fe3+ complexation 

could not be excluded at this point. 

.3+ To ensure that FDl can form a fluorescent complex due to its binding with Fe (after 

addition of FeCL to the FDl solution) and not due to the low pH caused by addition of 

acidic aqueous solution of FeC^, auxiliary complexing agents (ACA) can be utilized. 

These agents are often used to prevent the precipitation of heavy metals as hydroxides or 

basic salts in higher pH [69]. Their metal complexes are soluble in water so the metal 

stays in solution and can continue to react. The most common ACAs are ammonia, citrate 

and triethanolamine. In the experiment AA2-74, triethanolamine (TEA) was used as an 

ACA. Several drops of TEA were added to the aqueous FeCU solution (7.2X10"4 M). The 

pH of this mixture was around 9 but no Fe(OH)3 precipitate was observed proving that 

TEA formed a soluble complex with Fe3+. Even after dilution with Na2HP04/NaOH 

buffer solution (pH 12) no precipitation was present. One drop of the FeC^/TEA/buffer 
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mixture was added to the solution of FDl in CH3CN (1.9X10"4 M) however no pink color 

or fluorescence appeared (unlike the case when FeCL: was added to this solution) even 

after addition of excess of Fe3+. This suggested that FDl did not form a fluorescent 

complex after addition of Fe3+ at high pH. Again the formation of the FD1/Fe3+ complex 

could not be excluded at this point since FDl could simply be a weaker complexing agent 

than TEA, not able to remove Fe3+ from the Fe3+/TEA complex. 

Another way to prove that FDl becomes fluorescent due to complexation with Fe3+, and 

not due to low pH, was to perform the experiments in a non-aqueous environment where 

no water is present and thus no acidic pH issue exists. To observe FDl fluorescent 

response to Fe3+ in non-aqueous solution and also to observe the difference in the FDl 

fluorescent response upon addition of Fe3+ (from FeCL) in non-aqueous and aqueous 

solution, experiment AA3-39 was performed. The fluorescence of FDl in THF (20 M) 

upon addition of FeCL: in THF (0.01 M) and FeCL- in aqueous solution (0.01 M) was 

compared on the spectrofluorometer when excited with 510 nm (Figure 56). If FDl was 

able to bind Fe + in both aqueous and non-aqueous solutions its fluorescence response 

should be identical for both solutions since the Fe3+ concentration was the same (0.01 M). 

However, as seen in Figure 56, the fluorescent intensity of FDl solution, upon addition of 

Fe3+/H20, was increasing only up to 1.8 Fe3+/FD1 equivalents (left plot in Figure 56), 

where upon addition of Fe3+/THF it was increasing up to 5.8 Fe3+/FD1 equivalents (right 

plot in Figure 56). Further addition of the Fe3+ solutions did not cause increase in the 

fluorescent emission intensity for both solutions. 
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Figure 56. Fluorescent emission spectra of FD1/THF solution (20 M) titrated with FeCl3/H20 solution 
(left) and with FeCl3/THF solution (right). lex =510 nm. 

This result proved that FDl fluorescent response differs when titrated with the aqueous 

versus non-aqueous Fe3+ solution. It is also worth mentioning that the fluorescent 

intensity and Aem,max were the same for both solutions at 2.2 Fe3+/FD1 equivalents (2.5 a. 

u. and 583 nm respectively), however the color of the solutions differed significantly as 

seen in Figure 57. The FDl solution titrated with FeC^/^O showed only light pink color 

(left image in FeCL- in Figure 57), where the solution titrated with FeC^/THF solution 

had much more intense magenta color (right image in FeC^ in Figure 57). 

Figure 57. Difference in color of the FD1/THF solutions upon addition of 2.2 Fe3+/FD1 equivalents from 
FeCl3 in water (left image) and in TF1F (right image). 
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To investigate this difference in the color response, experiment AA3-40 was performed. 

Again FD1/THF solution (20 M) was titrated separately with FeCl3/THF (0.01 M) and 

FeCU^O (0.01 M). The change in UV-vis absorption was recorded each time after 

addition of 0.4 Fe3+/FD1 equivalents. The collected absorption spectra (Figure 58) proved 

that the fluorescent emission at 583 nm corresponds to the absorption at 560 nm (as also 

shown by Zhang et al. [57] when FDl solution in CH3CN was titrated with FeCL-

solution). As seen on the left plot in Figure 58, the absorption at 560 nm, for FD1/THF 

solution titrated with FeCLV^O, reached maximum at around 2 Fe3+/FD1 equivalents 

similar to the value at which the highest fluorescent emission was obtained in experiment 

AA3-39 (left plot in Figure 56). Also for the FD1/THF solution titrated with FeCl3/THF 

(right plot in Figure 58) the absorption at 560 nm reached the maximum at the Fe3+/FD1 

equivalent value close to the one at which the highest fluorescent emission was recorded 

in experiment AA3-39 (left plot in Figure 56). Also, similarly to the experiment AA3-39, 

the absorption at 560 nm was the same for both solutions at around 2.4 Fe /FDl 

equivalents confirming that the fluorescence emission at 583 nm corresponds to 

absorption at 560 nm. Thus the difference in color of the solutions shown in Figure 57 

could not be related to the absorption at 560 nm. It must be then caused by the slight 

differences in the absorption spectra in the UV and near visible range (240-440 nm) as 

shown in Figure 58. This change in absorption could be related to the presence of iron in 

the fluorescent FD1/Fe3+ complex for FeCLVTHF solution (as will be verified by ESI-MS 

below), compared to the mixture in a water solution. 
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Figure 58. UV-vis absorption spectra of FD1/THF solution (20 M) titrated with FeCl3/H20 solution (left) 
and with FeClyTFIF solution (right). 

This experiment has demonstrated that in a non-aqueous solution (where the pH issue is 

excluded) a fluorescent Fe3+/FD1 complex may be formed. Also the fluorescent response 

•5 i 

of the FDl/THF solution to Fe from the non-aqueous solution reached a much higher 
•5_i_ 

maximum fluorescence than Fe from an aqueous solution. The highest fluorescent 

intensity and absorbance was reached after addition of around 6 Fe3+/FD1 equivalents 
• "-1+ • 

suggestmg that the large Fe excess is required to push the equilibrium into the complex 

formation since FDl seemed to be a weak complexing agent. This finding is consistent 

with the results from experiments AA2-45, AA2-75 and AA2-74, described at the 

beginning of this section, in which FDl was not able to capture ferric ions from stronger 

complexing agents (acetylacetonate, citrate and ethanolamine respectively). 

• J i 

FDl/THF solution, upon addition of Fe from aqueous solution, reached its maximum 

fluorescence (and absorption at 560 nm) much faster (only after about 2 Fe3+/FD1 

equivalents). However the intensity was much lower when compared to the maximum 

fluorescence (and absorption at 560 nm) after addition of Fe3+ from non-aqueous solution 

(Figure 56 and Figure 58). This could suggest that in this case the pH (and not binding 
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with ferric ions) is responsible for the appearance of fluorescence. The FDl fluorescence 

due to the acidic pH is described in the following section of this chapter (section 5.3.2). 

To observe if FD1/Fe3+ complex is indeed formed in non-aqueous solution, the mass 

spectra of the solution of FDl in THF before (experiment AA3-42A) and after addition of 

FeCL: (also in THF, 1 Fe3+/FD1 equivalent, experiment AA3-42B) were collected with 

the electrospray ionization technique (ESI-MS) as shown in Figure 59 and Figure 60 

respectively. This method was used previously to show the structures of Fe3+ complexes 

[70, 71]. 
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Figure 59. ESI-MS spectrum of FDl in THF. 

Two major peaks were observed for FDl (Figure 59): the peak at m/z = 497.26 can be 

assigned as [FD1+H]+ (since MFDI = 496.61 g/mol) and the peak at m/z = 519.18 is due to 

[FD1+Na]+. Also, a smaller peak at m/z = 1015.44 was present corresponding to the 

cluster [2FD1+Na]+, as confirmed by the MS2 technique. 
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When FeCLVTHF was added to FDl/THF, the magenta color appeared instantly in the 

previously colorless solution. Several new peaks appeared at m/z =622.05, 730.92, and 

1280.77, along with the two peaks characteristic for FDl (m/z = 497.25 and m/z = 

519.19) (Figure 60). 
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Figure 60. ESI-MS spectrum of FDl/FeCl3 solution in THF (1 Fe3+/FD1 equivalent). 

The large peak at m/z = 622.05 appeared to be due to the complex [FDl+Fe(III)+2Cl]+. 

The determination of this complex structure was unambiguously confirmed by the perfect 

agreement between the experimental and simulated isotopic distribution shown in Figure 

61, characteristic of a species containing both Fe and CI. 
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The presence of the Fe(III)-FDl complex was further corroborated by the peak at m/z = 

1280.77, which was attributed to the cluster [2*(FDl+Fe(III)+2Cl)+Cl]+, as again 

confirmed by the isotopic distribution (Figure 62). 
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Figure 61. Enlarged area around the m/z = 622.05 peak from the Figure 60 (top spectrum). Bottom 
spectrum shows the simulated isotopic distribution of [FDl+Fe(III)+2Cl]+ 
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Figure 62. Enlarged area around the m/z = 1280.77 peak from Figure 59 (top spectrum). Bottom spectrum 
shows simulated isotopic distribution of [2*(FDl+Fe(III)+2Cl)+Cl]+ cluster. 

The peak at m/z = 730.92 appeared to be due to a compound containing both Fe and CI 

(isotopic distribution shown in Figure 63). The m/z value suggested the complex had a 

possible formula [(FDl+Fe(III)+2Cl) + (Fe+Cl+0)]+; the precise structure of this 

complex was not determined. 
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Experimental 

Figure 63. Enlarged area around the m/z = 730.92 peak from the Figure 59 (top spectrum). Bottom 
spectrum shows the simulated isotopic distribution of [(FDl+Fe(III)+2Cl) + (Fe+Cl+0)]+. 

Other peaks at m/z = 587.14, 802.61, and 1227.08 were difficult to identify at this point 

but did not show isotopic distribution characteristic of Fe. 

Similar spectra were also obtained in experiment AA3-42C where 3 Fe3+/FD1 

equivalents were used. 
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The presented results from ESI-MS clearly confirmed that the FDl/Fe complex was 

formed in a non-aqueous solution. 

The reversibility of the FD1/Fe3+ complex was examined in experiment AA2-44. FDl 

was first dissolved in THF-ds (dried over night with 0.4 nm molecular sieve to remove 

traces of water). The lU NMR spectrum of this solution is shown in spectrum A of Figure 

64. Addition of an excess of anhydrous FeCL (in THF-ds) to that solution caused color 

change from colorless to dark magenta proving the FD1/Fe3+ complexation. As can be 

seen in the spectra B in Figure 64 the addition of paramagnetic Fe3+ caused broadening of 

the peaks. Then, cyclen (a metal chelator) was added to the solution to remove Fe3+. The 

solution became clear but orange precipitate appeared. This precipitate was probably due 

to formation of the THF-insoluble cyclen/Fe3+ complex. After the precipitate was filtrated 

off, deuterated chloroform (CDCI3) was added to the supernatant (to increase the volume 

to the desired level for NMR measurement after THF evaporation). As can be seen in 

spectrum C of Figure 64 the original structure of FDl was restored after cyclen addition. 

The only differences, when comparing with spectrum A, are the appearance of new peaks 

for cyclen (at 2.9 ppm), CDCI3 (at 7.7 ppm) and a small peak for acetone (at 2.1 ppm). 

Traces of acetone could be present in the solution since it was used to clean the NMR 

tubes. Also peak C (in spectrum A) split into two peaks (in spectrum C). This is however 

not surprising since 6 protons, labeled C, appear as two singlets with integration 3H each 

[57] (as in case of spectrum C in Figure 64) when FDl is dissolved in CDCI3, and they 

collapse into one doublet with integration of 6H (spectrum A in Figure 64) when FDl is 

dissolved in THF-dg. 

144 



ffU y^ 

J ' k 
U,K 

D-G 1 

* H . I l l 

(A) 

i 

c 
THF 

R 

1 

A 

THF 

h 1 J. . . . 
- i 1 1 1 • 1 1 

(B) 

—>X_A/V_ lA_ JJ Ll 

(C) 
CHCI3 

JJJL 
8 5 4 

ppm 
2 

Figure 64. 'H NMR spectra of (A) FDl in THF- d8, (B) solution from spectrum A upon addition of FeCl3 in 
THF and (C) solution from spectrum B upon addition of cyclen (in mixed solvent system THF-d8/CDCl3). 

To detennine if the FD1/Fe3+ complex is also formed in an aqueous system, the mass 

spectra of a solution of FDl in THF upon addition of aqueous FeCL (1 Fe3+/FD1 

equivalent) were collected with ESI-MS (experiment AA2-81). The addition of FeCL: 

caused the appearance of bright pink color and orange fluorescence (under UV light). As 

shown in Figure 65, besides the two peaks characteristic for FDl (m/z = 497.4 and m/z = 

249.3 assigned to [FD1+2H]2+), new peaks emerged at m/z = 229.3, m/z = 457.5, m/z = 

935.4 and m/z = 975.3. It turned out that, after careful calculation, these peaks were all 

related to Rhodamine B hydrazide (RBH, MRBH = 456.8 g/mol): the peak at 457.5 can be 

assigned to [RBH+H]+, while the peaks at 229.3 and 935.4 can be assigned to 
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[RBH+2H]2+ and [2RBH+Na]+, respectively. The peak at 975.3 is due to the 

[RBH+FD1+Na]+ cluster. These ESI-MS results suggested that FDl, upon addition of 

acidic aqueous FeCi3, is hydrolyzed to RBH. This process is described in detail in the 

following section of this chapter. It is important to note that no isotopic distribution 

characteristic of iron was found in the spectra (unlike in experiment AA3-42 where Fe3+ 

in non-aqueous solution was used) suggesting that the FD1/Fe3+ complex is not formed 

when Fe3+ from aqueous solution is added to the FDl solution. 
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Figure 65. ESI-MS spectrum of FD1/THF upon addition of aqueous FeCl3 solution (1 Fe3+/FD1 

equivalent). 
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,3+ ,3+/ This finding was also confirmed when a large Fe excess (6 Fe /FDl equivalents) was 

added to the FDl/THF solution and the mixture was allowed to react for 48 hr (Figure 

66). 
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Figure 66. ESI-MS spectrum of FDl/THF upon addition of aqueous FeCl3 solution (6 Fe3+/FD1 

equivalents). 

In this case all the peaks characteristic for FDl were completely vanished. The presence 

of the peaks characteristic for RBH (m/z = 229.3 and m/z ~ 457.4) indicated that 

hydrolysis took place. New peaks at m/z = 425.4, 443.4, 589.5, 645.5, 659.4 also 

appeared. These peaks could not be identified at this time. However none of them showed 

the isotope distribution characteristic of iron, confirming again that in an aqueous 
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environment the complexation between FDl and Fe does not take place and that the 

acid catalyzed hydrolysis is the prevalent mechanism for the appearance of fluorescence. 

This finding was also confirmed in the experiment AA2-39. In this experiment however, 

the changes in the FDl structures were monitored with *H NMR after addition of Ga3+ (in 

the form of an aqueous solution of gallium nitrate hydrate), and not Fe3+ (from aqueous 

solution of FeCh). Ga3+ is a redox inactive analogue of Fe3+ and is often used as the ferric 

ion substitute [72]. It is a diamagnetic metal ion (unlike paramagnetic Fe3+) thus it does 

not cause peak broadening in NMR spectra. This property of Ga3+ allowed the accurate 

examination of the changes in the FDl chemical structure upon addition of this metal ion 

without the necessity of removing it from the system (as would be the case for Fe3+) in 

order to obtain good quality spectra. Similarly to FeCL, the aqueous solution of this metal 

salt is acidic (pH around 4). The addition of an excess of aqueous Ga(N03) solution to 

the solution of FDl/THF-dg caused the instant appearance of pink color. The changes in 

the FDl structure upon addition of Ga(N03) were monitored after a few days of reaction. 

The peak C (present in spectrum A in Figure 67) disappeared completely after addition of 

excess of Ga3+ as can be seen in spectrum B in Figure 67. Also the peak B shifted from 

3.3 to 3.55 ppm and the peaks corresponding to aromatic protons (I, J, and K) shifted to 

lower fields. The down-fie Id shifts of peaks B, I-K were probably due to the formation of 

the highly conjugated structure of the protonated, fluorescent RBH, as a result of acid 

catalyzed FDl hydrolysis. 

148 



E D 

THF 

(A) 

(B) water 

J A OJL 
— i — • — i — 

p p m 

THF 

-u I A. 

A 

Figure 67. lR NMR spectra of (A) FDl in THF-d8, and (B) the mixture of FDl/Ga(N03)3 xH20. 

Overall it was concluded, from the experiments described in this section, that 1) ferric ion 

(from FeCy forms a fluorescent complex with FDl only in a non-aqueous solution (i.e. 

in our case THF) and 2) in the aqueous solutions the prevalent reason for the fluorescence 

to appear upon addition of FeCl3 (or any other acid salt such as gallium nitrate) is acid 

catalyzed hydrolysis of FDl to protonated RBH due to the acidity of the ferric salt. A 

detailed description of this process is described in the following section of this chapter. 

From a practical point of view, however, this distinction does not matter when FDl is 

used as a corrosion sensor since in a corrosion cell water will always be present. 
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5.3.2 FDl Corrosion Sensing Mechanism Based on Acid Catalyzed Hydrolysis 

FDl sensitivity to low pH reported by Zhang at el. [57] (Figure 53) and also observed in 

the previous experiments (Section 4.3.2.2) was investigated and is described in this 

section. FDl fluorescent response to acidic solution was monitored in experiment AA2-

92A. As shown in the plot in Figure 68, the fluorescence intensity of FDl (in CH3CN) 

upon addition of HCl kept increasing (up to 1.8 H+/FD1 equivalents), with maximum 

fluorescence emission (<lem,max) shifting slightly from 582 to 585 nm. A color change from 

colorless to pink under visible light and to orange under UV was also clearly observed 

(inset in Figure 68). 
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Figure 68. Fluorescent emission of FDl solution in CH3CN (20 uM) upon addition of HCl solution (up to 
1.8 H7 FDl equivalents) when excited at 510 nm. Right: color change of FDl in CH3CN upon addition of 

HCl under UV and visible light. 

The initial conclusion from this experiment was that the FDl became fluorescent simply 

due to the protonation of the molecule and ring-opening as illustrated in Figure 69. 
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Figure 69. Proposed FDl structure upon addition of acid (protonation). 

However the results from the following experiment (AA2-47) proved that this conclusion 

was incorrect. FDl dissolved in THF-dg was examined by lH NMR before (spectrum A 

in Figure 70) and after addition of molar excess of sulfuric acid (H2SO4) (spectrum B in 

Figure 70). The acid addition caused the pink color to appear instantly. As it can be seen 

in spectrum B of Figure 70, peak C, characteristic for FDl, disappeared almost 

completely. Instead, a peak at 2.08 appeared (labeled X) probably due to the acetone (that 

could be a byproduct of the acid-catalyzed FDl hydrolysis as described later in this 

section). Also the peak B shifted from 3.3 to 3.55 ppm and the peaks corresponding to 

aromatic protons (I, J, and K) shifted to lower fields. The down-field shifts of peaks B, I-

K were probably due to the formation of the highly conjugated structure. These changes 

were very similar to the changes observed in the FDl structure upon addition of the 

acidic Ga3+ salt (spectrum B in Figure 67). 
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Figure 70. 'H NMR spectra of (A) FDl in THF-d8, as well as the mixtures of (B) FD1/H2S04 and (C) 
FDl/H2S04/NaOH in THF-d8/D20 mixed solvents. 

To investigate if the pH increase will deprotonate the molecule back to its original 

structure (under the hypothesis that the protonation was the reason for the appearance of 

fluorescence as shown in Figure 69) excess of sodium hydroxide was added to the 

FDI/H2SO4 mixture causing the pink color to disappear. As seen in spectrum C of Figure 

70, peaks B and I-K shifted back to the higher fields. Peak X disappeared almost 

completely probably because acetone had evaporated. However peak C was not restored. 

This proved that the closed ring form of the molecule was brought back (since the pink 

color disappeared) but the chemical structure of FDl was changed irreversibly. 

152 



To examine the possible species formed upon addition of acidic solution to FDl, the 

experiment AA2-81D was performed. ESI-MS spectra were collected for FDl/THF 

solution upon addition of hydrochloric acid (HCl) (3 H+/FD1 equivalents). The color of 

the solution turned bright pink after acid addition indicating the formation of a 

fluorescent molecule. Besides the peaks characteristic for FDl (at m/z = 249.3 and 

497.4), peaks indicating the formation of RBH (at m/z = 229.3, 457.5, 935.4 and 975) 

also appeared. This spectrum was almost identical to the spectrum in Figure 65 where an 

aqueous solution of FeCL was added to FDl/THF, proving that the mechanism for 

fluorescence was identical in both cases. When an excess of acid (6 H+/FD1 equivalents) 

was used in experiment AA2-81F, and the FD1/THF/HC1 mixture was allowed to react 

for 48 hr, the peak corresponding to FDl disappeared completely (Figure 71). Only the 

peaks characteristic for RBH (at m/z = 229.3, 457.4, and 935.4) were still present. This 

ESI-MS finding suggested that the fluorescence of FDl under acidic pH is due to the 

formation of a fluorescent species related to RBH via an acid induced hydrolysis process 

(Figure 72). 
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Figure 71. ESI-MS spectrum of FD1/THF upon addition of aqueous HCl solution (6 Ff/FDl equivalents). 

RBH itself is a non-fluorescent molecule, however its protonated, ring-opened form is 

fluorescent (Figure 72) [73]. Thus it was concluded that the fluorescence observed when 

FDl was mixed with HCl (or with aqueous solution of FeCb, as shown in the previous 

section of this chapter) was due to the formation of fluorescent, protonated RBH. 
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Figure 72. Proposed mechanism of FDl fluorescence at low pH. 
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Since it was proposed that FDl is hydrolyzed (via acid-catalyzed hydrolysis) into RBH, 

the final FD1+HC1 structure should be identical to RBH+HC1 structure. This finding was 

confirmed in experiment AA3-24. The changes in FDl and RBH chemical structures 

upon addition of excess of HCl (6 H+/FD1 equivalents) were investigated by ^-NMR. 

The spectra of FDl and RBH are shown in Figure 73 a and Figure 73 b, respectively, with 

their characteristic peaks indicated; a major difference between FDl and RBH lies in the 

peak C at 1.8 ppm. Upon addition of HCl, there were a few major changes for the 

spectrum of FDl (Figure 73c): (1) the peak C in Figure 73a disappeared completely, and 

a new peak X at 2.08 ppm emerged; (2) the peak B shifted from 3.3 to 3.55 ppm; and (3) 

the peaks corresponding to aromatic protons (I, J, and K) also shifted to lower fields. 

These changes were very similar to the changes observed in experiment AA2-39 and 

AA2-47 where acidic Ga3+ salt and H2SO4 were added to the FDl/THF-dg solutions 

respectively. It was then very interesting to notice that the mixture of RBH and HCl 

demonstrated an essentially identical spectrum (Figure 73 d) to the FDl/HCl mixture 

except for peak X. It turned out that the peak X was due to acetone, which was the 

byproduct from the acid-induced hydrolysis of FDl to RBH (Figure 72). The down-field 

shifts of peaks B, I-K were apparently due to the formation of the highly conjugated 

protonated RBH. This experiment confirmed that the fluorescence of FDl at low pH is 

due to its acid-catalyzed hydrolysis to RBH that is subsequently protonated and becomes 

highly fluorescent. 
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Figure 73. *H NMR spectra of (a) FDl and (b) RBH in THF-d8, as well as the mixtures of (c) FDl/HCl and 
(d) RBH/HCl in THF-d8/D20 mixed solvents. The huge water peak in (c, d) was due to HCl. 
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Since FDl fluorescence, upon addition of acidic solution, was proved to occur due to its 

hydrolysis to RBH (and then RBH protonation), it was expected that RBH fluorescent 

response to HCl would be identical to the FDl response. Interestingly however, in 

experiment AA2-81B, where RBH was titrated with HCl in the same way as in 

experiment AA2-81A (Figure 74), it was noticed that RBH fluorescent emission intensity 

was about 5 times lower than in the case for FDl (when the fluorescent intensity in 

Figure 74 was compared to the one in Figure 68). After some time however both 

solutions faded to colorless and almost non-fluorescent probably due to the equilibration 

of the solutions towards the ring-closed RBH structure. Only the addition of large HCl 

excess caused a pink color and fluorescence (almost identical for both FDl/HCl and 

RBH/HCl solutions) to persist. The acid excess was probably necessary to push the 

reaction equilibrium to the protonated fluorescent RBH. 
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Figure 74. Fluorescent emission of RBH solution in CH3CN (20 uM) upon addition of HCl solution (up to 
2.4 FT7 FDl equivalents) when excited at 510 nm. 

It was then postulated that the higher FDl sensitivity to acidic solution could be caused 

by the formation of a non-stable intermediate of protonated FDl (Figure 69) that 
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eventually hydrolyzes to RBH. This intermediate structure could modify the fluorescence 

efficiency of the molecule resulting in a fluorescence emission more intense than in the 

case of protonated RBH. 

5.3.3 RBH as a Potential Early Corrosion Indicator 

At first FDl was proposed to be utilized as an early corrosion indicator for steel not only 

due to its claimed sensitivity and selectivity towards Fe3+ [57] but also due to the desired 

chemical structure that would guarantee no chemical reaction with the epoxy matrix (as 

described in section 3.1.4). This lack of interaction was important to ensure that the 

chemical structure of the molecule will remain unchanged when mixed with the epoxy 

coating and thus its fluorescent response to corrosion. However the potential 

disadvantage of the indicator not being chemically bound to the coating is the possibility 

of the molecule to slowly diffuse through the epoxy matrix with time and eventually 

leach out (as it was shown for FDl in section 4.3.2.3 of chapter 4) 

Given that protonated, ring-opened and fluorescent RBH is a product of acid-catalyzed 

FDl hydrolysis, and it is responsible for FDl's ability to sense corrosion (as shown in the 

previous section of this chapter), it was then considered to use RBH itself as an early 

corrosion indicator to sense the decrease in pH at the anodic site of corrosion when 

embedded in the epoxy matrix. The disadvantage of using RBH as an indicator, when 

compared to FDl, is its sensitivity to oxidation with time that showed to be more 

prevalent than for FDl (i.e. the color of RBH in a solid state turned pink when expose to 
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light). It was also noted by others [73], and during the course of this work, that RBH is 

very sensitive to UV light. The molecule changed its color to pink even after only a few 

seconds of exposure to UV light from the confocal microscope. However a big advantage 

of RBH is that it possesses a -NH2 group in its structure and could potentially act as a 

curing agent and react with the epoxy ring, as shown in Figure 75. 
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Figure 75. Potential reaction between RBH and epoxy ring from DGEBA. 

This reaction should not cause the molecule to prematurely fluoresce since the RBH ring-

closed structure is preserved. The covalent bonding to the epoxy resin would significantly 

reduce the molecule's diffusion through the epoxy matrix and as a result eliminate the 

possibility of the indicator leaching out of the coating with time. This chemical bonding 

however is only desired if the molecule's ability to respond to low pH is preserved and 

unaffected after the chemical reaction. 
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The following experiments were designed to investigate if RBH 1) is able to react and 

bind to the epoxy resin and 2) is able to respond to acidic pH after reaction with the 

epoxide ring. 

In experiment AA2-94 the potential reaction between epoxy resin (DGEBA) and RBH 

was investigated by lH NMR. RBH was mixed with DGEBA in toluene-dg (~ 1 

RBH/DGEBA equivalent which is also 1:1 V?NH r a t i 0 ) forming a slightly red solution 

(due to RBH) and heated to 70°C to allow the reaction between the - M L group from 

RBH and the epoxide ring from DGEBA. The spectrum C in Figure 76 represents the 

DGEBA/RBH mixture instantly after mixing (and before placing it at the elevated 

temperature). After heating of the mixture the reaction between RBH and DGEBA 

(resulting in the opening of the epoxide ring) was expected to be represented by the shifts 

in peaks marked E, F and G in spectrum B in Figure 76 and disappearance of peak C in 

spectrum A in Figure 76. Surprisingly however, the *H NMR spectrum collected after 3 

days at 70°C was no different (as shown the spectrum C in Figure 76). 
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Figure 76. !H NMR spectra of (A) RBH, (B) DGEBA, (C) mixture of RBH/DGEBA and (D) mixture of 
RBH/DGEBA after 2 h reflux at 115°C. Letter T represents peaks for toluene-dg. 

Only when the DGEBA/RBH mixture was refluxed at 115°C for 2 h were the changes in 

the !H NMR spectrum easily observed. Some rearrangements were observed for the 

aromatic peaks. All the peaks representing the epoxy ring (peaks E-H) shifted to lower 

field. Also peak C, representing protons of the - M L group in RBH, (previously at 3.47 

ppm) disappeared. These changes could indicate that the epoxy ring was opened due to 

the reaction with RBH at this high temperature. This suggests that RBH could serve as a 

latent curing agent (i.e. cures only at highly elevated temperatures). 
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To make sure that the chemically bound RBH was still able to respond to low pH, the 

solvent was evaporated from the DGEBA/RBH mixture and an acidic aqueous solution of 

FeCl3 was added. After 1 h the FeCl3 solution changed color to purple and after longer 

time the precipitate also become dark magenta proving that RBH responded to the low 

pH. However there was no solid proof that the color response to FeCl3 was not due to the 

"free" RBH that did not covalently bind to DGEBA. 

To ensure that RBH, when covalently bound to the epoxy, is able to sense low pH, 

experiment AA3-25 was performed. The solution of RBH and DGEBA (5 DGEBA/RBH 

equivalents) in xylenes was placed at 123°C for 44 h to facilitate the reaction between the 

reagents. Tetraethylenepentamine (TEPA) in slight excess was then added to the 

RBH/DGEBA solution to totally cure DGEBA and form a highly crosslinked epoxy 

coating. After 20 h at 80°C, a hard yellow epoxy film was formed. To remove all 

unreacted RBH (that did not build into the crosslinked structure after curing) the Soxhlet 

extraction method was used. After extraction for 12 h, the remaining epoxy film was 

again placed in a new THF wash solution and stirred for 3 days to make sure that all 

unreacted RBH was removed. That THF, which was collected after stirring, was 

characterized by UV-vis spectroscopy and showed that RBH was not present in the 

solvent (Figure 77) proving that all the unreacted RBH has been effectively removed. 
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Figure 77. UV-vis absorption of the solutions of RBH and DGEBA in THF and the THF solution after 
extraction and wash of the cured RBH/DGEBA/TEPA sample. 

When the remaining piece of the epoxy film (after extraction and wash in THF) was 

placed in 0.1 M HCl solution, pink color at the edges of the film appeared almost 

instantly. After 1 h, a deep pink color was observed in the whole film. Also under UV 

light (365 nm) the epoxy film appeared bright orange. This experiment proved that RBH 

built into the crosslinked epoxy matrix was still able to sense low pH. This result 

indicated that RBH is a very promising corrosion indicator and is not only highly 

sensitive to acid pH but also can be easily immobilized in the epoxy matrix. This 

chemical binding with the epoxy eliminates the possibility of the indicator leaching out of 

the matrix and as a result extends the lifetime of the smart epoxy-indicator system. 

5.4 Conclusions 

FDl ability to sense corrosion of steel (as shown in chapter 3) at the anodic site (where 

the acidic pH is observed) was proved to be due to its acid-catalyzed hydrolysis to RBH. 
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The protonated, ring-opened RBH is a fluorescent molecule and it is believed to be 

responsible for the observed fluorescence when FDl is used as a corrosion indicator for 

steel. FDl was also shown to be a "turn-on" fluorescent sensor for Fe3+ ions in non­

aqueous solution. In this environment, the fluorescent FD1/Fe3+ complex is formed. 

However FDl "turn-on" fluorescence due to addition of an aqueous solution of ferric salt 

is caused by the acidity of the solution and not by the FD1/Fe3+ complex formation. This 

FDl sensitivity to acidic pH advantageously extends its application as a corrosion 

indicator to other important metals such as aluminum. RBH was also proposed as a 

corrosion indicator due to its "turn-on" fluorescence at low pH and due to the fact that it 

can be covalently bonded to a polymeric network without losing its responsiveness to low 

pH. This eliminates the possibility of the molecule to leach out of the epoxy matrix with 

time and makes RBH a very promising early corrosion indicator. 
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CHAPTER 6 

FDl AS AN INDICATOR FOR EARLY DETECTION 

OF ALUMINUM CORROSION1 

Summary. Since FDl response to acidic pH results in "turn-on" fluorescence, this 

molecule was explored in this chapter as a corrosion sensor for aluminum when 

embedded in both model (clear) and commercial (filled) epoxy coatings. FDl was 

proved to be an effective early corrosion indicator for both Al 1052 and Al 2024-T3 

aluminum alloys even in the presence of pigments. Both clear and filled, FDl-containing 

smart epoxy coatings were capable of sensing acidic pH, produced at the anodic site of 

localized aluminum corrosion, at a low indicator concentration (0.5 wt %), as 

demonstrated by the fluorescent, bright-orange areas corresponding to localized pitting 

corrosion of the aluminum substrate under a handheld UV lamp. Therefore, early 

corrosion of aluminum can be easily and nondestructively detected via this "turn-on" 

fluorescence strategy. 

* Portions of this chapter have been published: Augustyniak, A.; Ming, W. Early 
detection of aluminum corrosion via "turn-on" fluorescence in smart coatings. Prog. Org. 
Coat. 2011, 71, 406-412 (doi:10.1016/j.porgcoat.2011.04.013). 
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6.1 Introduction and the Objectives of this Chapter 

In the previous chapter (section 5.3.2) it was proved that FDl shows "turn-on" 

fluorescence upon addition of acidic solutions. This responsiveness to low pH made the 

FDl molecule an attractive candidate for sensing early corrosion of important metals, 

other than steel, such as aluminum. As described in section 1.1.3, at the anodic site of 

aluminum corrosion metal dissolution and subsequently metal ion hydrolysis takes place 

according to reactions (Equations 12 and 13): 

A l^Al 3 + +3e" (12) 

Al3+ + 3H20 -»Al(OH)3 + 3H+ (13) 

As a result of the hydrolysis, a decrease in the local pH is observed. This change in pH 

could thus be detected by FDl embedded in the epoxy coating. 

Various fluorescent molecules were previously utilized to sense aluminum corrosion 

when embedded in an organic coating. As described in section 1.3.1.1 Zhang and Frankel 

[38] used acid-base fluorescent indicators, embedded in a clear acrylic coating, to sense 

increase in local pH at the cathodic site of aluminum corrosion (where reduction 

reactions take place). To sense the metal ions produced at the anodic site of corrosion a 
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variety of sensing molecules incorporated into the protective coating were used that show 

chelation enhanced fluorescence (CHEF) upon complexation with the Al ion, as 

described in section 3.1.2. Additionally Liu and Wheat [41] exploited coumarin 120, 

incorporated in an epoxy primer coating, to sense the acidic pH associated with the 

anodic site of corrosion. The fluorescence of this indicator is quenched in acidic pH 

below 4. Therefore the sensing coating was initially fluorescent and its fluorescence 

decreased upon exposure to corrosive environment, making it very difficult to judge the 

onset of the corrosion due to lack of sharp contrast. 

However no molecule has been utilized so far as an indicator for early corrosion detection 

of aluminum, which 1) can sense the decrease in pH at the anodic site when incorporated 

in the epoxy coating and 2) shows "turn-on" fluorescence. The purpose of this chapter 

was to investigate FDl ability to sense corrosion of different aluminum alloys when 

embedded in both clear and filled epoxy coatings. 

6.2 Experimental Section 

6.2.1 Reagents and Materials 

FDl was synthesized in our lab as described in section 3.3.2.1 (sample AA2-27). 

Tetraethylenepentamine (TEPA, technical grade) was purchased from Acros Organics. 

D.E.R.™ 332 Epoxy Resin (high purity bisphenol A diglycidylether, DGEBA) was 

purchased from The Dow Chemical Company. Haze Gray Epoxy Polyamide coating, 

MIL-DTL-24441C, type III, Formula 151, was purchased from NCS Coatings, Inc. 
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Acetone (ACS grade) was purchased from PHMARCO-AAPER. Hexanes (HPLC grade) 

and sodium chloride (NaCl) were purchased from EMD chemicals. Toluene (ACS grade) 

was purchased from Fisher Scientific. All reagents were used as received. Al 2024-T3 

panels with original dimensions: 2.54 cm x 10.16 cm x 0.16 cm were purchased from Q-

Lab Corporation, and Al 1052 alloy was obtained from Hydro Aluminium Deutschland 

GmbH. 

6.2.2 Sample preparation 

6.2.2.1 Preparation of Al 1052 Panel Coated with FDl-containing Clear Epoxv 

Coating (AA2-54) 

Corrosion sensing panels were prepared by applying the low-pH-sensing clear model 

epoxy coating onto an Al 1052 alloy panel cut to dimensions 5.0 cm x 2.5 cm x 0.03 cm. 

Before coating application, the panel was polished with 600-grit sandpaper and then 

washed with hexane and dried with argon. The low-pH-sensing coating was prepared by 

mixing TEPA (amine hardener) and DGEBA (epoxy resin) (at a NH/epoxy molar ratio of 

1.0:0.8 to obtain full curing) with 0.5 wt% FDl. To aid in uniform mixing with the two 

other components, FDl was first dissolved in toluene (0.1 wt% FDl). After mixing, the 

coating was applied onto Al 1052 panels using a drawdown bar. The coating was cured at 

70 °C overnight and then at room temperature for another 2 days. Many defects in the 

form of air bubbles were present in the coating. The coating thickness was approximately 

40 um. To observe the response of FDl in the clear epoxy coating to low pH at the 
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anodic site of aluminum corrosion, an open-ended glass cylinder was affixed and sealed 

to a part of the coated panel. The cylinder was then filled with a 3.5% NaCl solution so 

that only this circular portion of the sample was exposed to the corrosive environment. 

The surface of the area exposed to NaCl was monitored with a confocal microscope at 

different times of exposure to the NaCl solution for changes in the fluorescence intensity. 

Also, pictures of the sample surface under both UV and visible light were taken using a 

digital camera placed on the microscope eyepiece. 

6.2.2.2 Preparation of Al 2024-T3 Panel Coated with FDl-containing Filled 

Epoxy Coating (AA3-06F) 

Another series of corrosion-sensing panels were prepared by applying FDl-containing, 

filled epoxy coating onto the Al 2024-T3 alloy panel cut to dimensions 2.5 cm x 2.5 cm x 

0.16 cm. The aluminum panel edges were smoothened after cutting to avoid edge effects 

during coating application. Before coating application, the panels were polished with 

600-grit sandpaper and then washed with acetone. The epoxy coating was prepared by 

mixing both components of commercially available filled Haze Gray Epoxy Polyamide 

coating (MIL-DTL-24441C) with 0.5 wt% FDl (first dissolved in toluene at 0.1 wt%). 

After mixing, the coating was applied onto Al 2024-T3 alloy panels using a spin coater to 

obtain uniform thickness. The back of the sample was also coated with the Haze Gray 

Epoxy Polyamide coating since these panels were designed to be immersed into a 

corrosive solution. The coated sample was cured at 125°C for 24 h and then at room 

temperature for another 2 days. The coating thickness was approximately 23 um. Coating 

169 



defects were present especially at the sample edges (due to poor coating coverage) and 

would be potential areas prone to corrosion. To observe the response of FDl in the filled 

epoxy coating to low pH at the anodic site of aluminum corrosion, the sample was 

immersed in a 3.5% NaCl solution and placed in an oven at 70°C to increase the diffusion 

of corrosive solution through the coating and facilitate corrosion. The surface of the 

sample was monitored with the confocal microscope at different times of exposure to the 

NaCl solution for changes in the fluorescence intensity. Also, pictures of the sample 

surface under both UV and visible light were taken using a digital camera placed on the 

microscope eyepiece. 

6.2.3 Characterization Methods 

Preliminary examination of fluorescence was performed using a handheld UV lamp 

(Model UVGL-25, MINERALIGHT®) with an excitation wavelength of 365 nm. 

Fluorescence imaging was conducted on a Zeiss LSM 510 Meta laser scanning confocal 

microscope with an Axio Imager Ml platform. In both experiments, a 514 nm 

ArMultiLine laser was used as the excitation source. An EC Plan- Neofluar 1 Ox/0.30 

M27 objective was used to observe the sample surface. The fluorescent emission 

wavelength was obtained from the mode function (using a Meta detector with a 

selected emitted fluorescence range of 520-700 nm with a 10.7 nm step). To compare the 

laser-excited images to those obtained by more practical end-use conditions, the confocal 

microscope's 100 W mercury lamp was used as a UV light source. Coating in experiment 

AA3-06F was applied using a P-6000 spin coater from Specialty Coating Systems, Inc. 
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The coating's thickness was measured with a CHECK-LINE coating thickness tester 

(model DAC-IKS). 

6.3 Results and Discussion 

6.3.1 FDl as a Corrosion Sensor in Clear Model Epoxy Coating on Al 1052 Alloy 

To examine if FDl, when embedded in a clear epoxy coating, is able to sense low pH at 

the anodic site of aluminum corrosion, an Al 1052 aluminum alloy coated with the model 

clear epoxy system (TEPA-DGEBA) was exposed to a corrosive environment of 3.5 % 

NaCl solution. Initially no fluorescence characteristic of FDl was observed in the coating 

under UV light from a handheld lamp. However, after only 2 days of exposure, a small (1 

mm in diameter) bright orange circular spot was easily observed under UV light by the 

naked eye (Figure 78a). This bright area most likely indicates the formation of a shallow 

pit. Figure 78a, top row, shows a close view of this area under UV light as observed 

under the confocal microscope. Also under visible light a slightly pink color was seen 

(Figure 78a, bottom row). The color and fluorescence was especially bright around air 

bubble defects, which is not surprising since corrosion occurred much faster in these 

defected areas due to faster diffusion of corrosive solution to these areas [19]. The 

fluorescent emission recorded from the confocal microscope's mode function showed 

that the maximum fluorescence emission (lem,max) was at 583 nm, which was in 

accordance with the maximum fluorescent emission of FDl in CH3CN solution upon 
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addition of H+ (Figure 68). Thus the fluorescent emission observed here was attributed to 

the low pH at the anodic site of aluminum corrosion, which may reach as low as 3.5 [10]. 

Figure 78. Images of Al 1052 coated with a FDl-containing, clear epoxy coating (AA2-54) after (a) 2 days 
and (b) 3 days of exposure to 3.5 % NaCl solution. Top row: digital camera images taken through the 

confocal microscope eyepiece under UV light. Bottom row: images of the same areas taken through the 
confocal microscope eyepiece under natural light. 

After 3 days of exposure, two new bright orange circular spots (under UV) were seen 

next to the initial bright spot, which itself became less intense in fluorescence and color 

(Figure 78b, top row). Some white residue also built up in the form of a ring around the 

initial bright area (Figure 78b, bottom row), which were most likely aluminum corrosion 

products that formed after OH" from the cathodic site of corrosion combined with Al3+ 

produced at the anodic site. OH" ions can also be responsible for the decrease of the 

initial indicator fluorescence since RBH is not fluorescent when the highly conjugated 

structure (the right structure, Figure 72) is deprotonated by OH" to the middle structure in 

Figure 72. A blister was also formed in this area; this is usually the early stage of coating 
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degradation and formed when water uptake increases due to osmosis when metal salts are 

present on the surface under the coating [19]. With longer time of exposure to the NaCl 

solution, two new blisters were also formed in the areas where fluorescence was observed 

previously. This experiment has demonstrated that FDl embedded in a clear epoxy 

coating can successfully sense low pH generated at the anodic site during the early stages 

of aluminum corrosion before obvious corrosion and coating degradation (i.e. blisters) 

becomes evident. 

6.3.2 FDl as a Corrosion Sensor in Filled Epoxv Coating on Al 2024-T3 alloy 

The FDl ability (when embedded in the filled epoxy coating in the presence of filler 

pigments) to detect corrosion of Al 2024-T3 aluminum alloy, a widely used material in 

aerospace and other industrial application [8] but at the same time highly susceptible to 

pitting corrosion [74], was demonstrated in experiment AA3-06F. The Al 2024-T3 alloy 

coated with the filled epoxy coating (MIL-DTL-24441C, type III, Formula 151), 

containing 0.5 wt% FDl, was exposed to a corrosive environment of 3.5 % NaCl solution 

at an elevated temperature (70 °C). Due to the excellent anticorrosion properties of the 

commercial epoxy coating used in this experiment, extended exposure to NaCl and 

higher temperature was required to initiate corrosion reactions in a short period of time. 

After 21 days of exposure to 3.5% NaCl, a few small areas at the edges of the sample, 

where corrosion was expected to happen due to defects in the coating, showed orange 

fluorescence when excited with a handheld UV lamp. When these areas were examined 

closely under the confocal microscope it became obvious that the bright areas were 
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mostly in the shape of a ring (Figure 79a in AREA 1 and 2, top row, circular areas 

marked with arrows). These rings are most likely related to the anodic sites of corrosion, 

where the local pH is expected to decrease, around the cathodic intermetallic particles 

[74]. 

AREA1 AREA 2 

(a) 21 days in NaCl (b) 27 days in NaCl (a) 21 days in NaCl (b) 27 days in Nad 

Figure 79. Images of Al 2024-T3 coated with FDl-containing filled epoxy coating (AA3-06F) after (a) 21 
days and (b) 27 days of exposure to 3 5 % NaCl solution at 70 °C. Top row: digital camera images taken 
through the confocal microscope eyepiece under UV light. Bottom row: images of the same areas taken 

through the confocal microscope eyepiece under natural light. 

Fluorescent emission recorded from the confocal microscope's mode function showed 

than the maximum fluorescence emission (/Um.max) was between 575 and 580 nm 

depending on the area examined, which clearly indicated that FDl was capable of sensing 

the low pH in this filled coating system. The /Lem,max was slightly lower than the maximum 

emission wavelength at 583 nm in the FDl/HCl mixture in a CH3CN solution (Figure 

68), which might be due to the low intensity of the spectra from the solid state. The 

effectiveness of the corrosion-sensing filled epoxy coating in detecting early stages of 

corrosion was confirmed after 6 more days of exposure to corrosive environment at 70 
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°C; the initially bright areas faded and rusty spots appeared in the same place where 

fluorescence was observed previously under UV light. These changes are marked with 

the arrows in the bottom row of Figure 79b, in both AREA 1 and 2 and are evidence that 

FDl was an effective corrosion indicator for Al 2024-T3 aluminum alloy when 

embedded in the filled epoxy coating. 

6.4 Conclusions 

FDl was proved to be an effective early corrosion indicator for both Al 1052 and Al 

2024-T3 aluminum alloys in both model (clear) and commercial (filled) epoxy coatings. 

The results, when using FDl to sense aluminum corrosion, are similar to the ones 

obtained for steel corrosion and described in the conclusions of chapter 3. The "turn-on" 

FDl fluorescence was easily and non-destructively detected under UV light before any 

visible sign of corrosion appeared. In addition, only a low FDl concentration (0.5 wt%) 

in the coating was needed for successful indication. FDl does not prematurely interact 

with coating formulation components, and FDl can "report" early aluminum corrosion 

even in the presence of pigments. 
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CHAPTER 7 

CONCLUSIONS AND OUTLOOK 

The successful development of a smart epoxy/indicator system to sense early stages of 

metal corrosion has been described in this thesis. 

Since the experiments described in this thesis showed that using acid-base indicators, to 

sense increase in local pH at the cathodic site of corrosion, in the epoxy coating can be 

challenging due to the possibility of the indicator to interact with the coating components 

(both amine hardener and the epoxy resin) and to be prematurely activated, a new 

corrosion indicator, FDl, was proposed to be utilized in an epoxy matrix. This molecule, 

initially proposed as a Fe3+ chemosensor for biological applications [57], was proven to 

report early stages of steel corrosion, via "turn-on" fluorescence, when embedded in both 

model (clear) and commercial (filled) epoxy coating (in the presence of pigments). 

FDl/epoxy smart system was very effective for indicating early corrosion of steel, both 

for areas damaged through to the substrate (scribed areas) and areas without exposure of 

the substrate (undercoating corrosion). The "turn-on" FDl fluorescence was easily non-

destructively detected under UV light before any visible sign of corrosion appeared. In 
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addition, only a low FDl concentration (0.5 wt%) in the coating was needed for effective 

corrosion detection. 

FDl showed a slight sensitivity to photooxidation which resulted in a small increase in 

the molecule's fluorescence. Yet when embedded in the clear epoxy matrix (both model 

and commercial epoxy system) the indicator showed no change in its fluorescence over 

time proving its stability to photooxidation in the epoxy matrix and lack of interaction 

with the epoxy components. However, a slight increase in the FDl fluorescence over 

time was observed when the indicator was embedded in the filled commercial epoxy 

coating, only when the coating was scratched. This change was most likely due to the 

presence of coating additives, for example Ti02, which could facilitate FDl 

photooxidation. 

FDl has proven to be a robust corrosion indicator, when embedded in the epoxy coatings, 

capable of sensing corrosion even after prolonged exposure (28 months) to the aqueous 

solution. 

FDl ability to sense corrosion of steel at the anodic site (where the acidic pH is observed 

and Fe ions are produced) was proved to be due to its acid-catalyzed hydrolysis to 

fluorescent protonated RBH. FDl was also shown to form a fluorescent complex with 

Fe3+ in a non-aqueous solution. However, FDl "turn-on" fluorescence upon addition of 

an aqueous solution of ferric salt is caused by the acidity of the solution and not by the 

FDl/Fe complex formation. RBH was also proven to be a very promising "turn-on" 
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early corrosion indicator due to its fluorescence at low pH and due to the fact that it can 

be covalently bonded to a polymeric network without losing its responsiveness to low 

pH. This eliminates the possibility of the molecule to leach out of the epoxy matrix with 

time. 

Since FDl showed "turn-on" fluorescence upon addition of acidic pH, it was also utilized 

to sense decrease in local pH at the anodic sites of aluminum corrosion. FDl was proved 

to be an effective early corrosion indicator for aluminum alloys in both model (clear) and 

commercial (filled) epoxy coatings. 

FDl was explored as a corrosion sensor in an epoxy coating due to the reactivness of this 

type of polymeric matrix. However this molecule (and potentially also RBH) can be 

easily applied to other types of protective polymeric coatings, such as acrylic or 

polyurethane. 

To fully explore the practical aspects of using FDl, and perhaps also RBH, in the 

protective coatings as early corrosion indicators, further experiments could be performed. 

The maximum thickness of the filled coating, at which the indicator fluorescent response 

is still observable, could be investigated. Also the influence of the corrosion sensing 

molecules on the coating protectiveness could be assessed. Quantitative experiments 

exploring the lower limit of FDl concentration in the polymeric matrix, able to 

effectively sense corrosion, could be performed as well. 
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Also in this thesis it was proved that fluorescent Fe /FDl complex is formed in non­

aqueous environment. Fluorescent "turn-on" ferric ion sensors are highly desirable due to 

the importance of this heavy metal ion in biological and environmental processes. Thus to 

fully evaluate FDl as a Fe3+ chemosensor, further experiments, such as assessment of the 

FD1/Fe3+ complex binding constant, fluorescent quantum yield and Selectivity over other 

metal ions, would be important to consider for the future. 
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