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ABSTRACT 

FACTORS REGULATING THE PRODUCTION OF 

STX-2 IN ESCHERICHIA COLI 0157:H7 

by 

Kate P. Stefani 

University of New Hampshire, May, 2010 

The severity of Escherichia coli 0157:H7 disease is due in part to a major 

virulence factor produced by the microbe, the shiga-like toxin 2 (Stx-2). Antibiotic 

treatment to reduce pathogen numbers is controversial, as it is thought that antibiotics 

may increase the levels of Stx-2 released from the pathogen. Currently, recommended 

treatment for E. coli 0157:H7 is palliative The purpose of this study was to examine 

three critical factors potentially important to disease outcomes, and to determine their 

effect on expression of the stx2 gene and on release of Stx-2 from the pathogen. Those 

factors selected for study were: i) various classes of antibiotics; ii) probiotic 

microorganisms; and iii) carbon source variation together with cAMP. Stx-2 was 

assessed using MTT cytotoxicity assays and ELISA analysis, while the expression of stx2 

was assessed using real time PCR. It was determined that antibiotics that affect microbial 

DNA increased stx2 expression and Stx-2 production, and this was linked to an 

upregulation in the SOS DNA repair response. A link was also observed between the 

upregulation of stxl and those antibiotics that disrupt cell membrane integrity. However, 

these antibiotics did not increase the overall levels of Stx-2 released from E. coli 
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0157:H7. The probiotic microorganisms Lactobacillus casei and L. plantarum were 

found to decrease both stx2 expression and Stx-2 release when grown in co-culture with 

E. coli 0157:H7 at greater or equal numbers to the pathogen. This reduction in Stx-2 was 

at least in part attributable to organic acids produced by the probiotics, but other 

unknown factors produced by the lactobacilli cannot be excluded. Finally, it was 

determined that growth of the pathogen in glucose-supplemented media yielded 

significantly more stx2 expression and Stx-2 production than growth in glycerol-

supplemented media. This observation was confirmed by a decrease in stx2 expression 

and Stx-2 production when exogenous cAMP was added to culture media. The 

examination of these three factors led to a clearer understanding of the intricacies 

involved in the regulation of stx2, and has demonstrated how such an apparently diverse 

group of external factors are interlinked through several complex mechanisms. 
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CHAPTER 1 

INTRODUCTION TO ESCHERICHIA COLI0151:K7 
AND THE SHIGA-LIKE TOXIN 2 

1. Historical perspective 

Escherichia coli 0157:H7 was first detected as a potential human pathogen in the 

summer of 1982 after a number of people fell ill following the consumption of 

contaminated hamburger (127, 170). During the course of this outbreak, a total of 47 

people in Oregon and Michigan had symptoms of hemorrhagic colitis; severe abdominal 

cramping and watery diarrhea that gave way to bloody diarrhea with little or no fever 

(127, 170). Laboratory testing at the time excluded enterotoxigenic E. coli (ETEC) or 

enteroinvasive E. coli (EIEC) as the causative pathogens (127, 170). Further testing 

revealed a serotype (E. coli 0157:H7) not yet associated with human disease but present 

in affected patients in 24 of 34 stools (103, 170). 

The cause of this outbreak was presumed to be undercooked ground beef. All 

patients reported to have eaten sandwiches at a fast food restaurant, with at least one of 

three items in common: ground beef patty, rehydrated onion, or pickles (127). 

Subsequent testing of ground beef samples held for examination revealed the presence of 

E. coli 0157:H7, confirming this as the causative agent (127). 

Two months later in November 1982, a second outbreak occurred in Ottawa, 

Canada in a nursing home (103). Of 353 residents, 31 became sick, 8 with diarrhea and 
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18 with hemorrhagic colitis (103). E. coli 0157:H7 was isolated from the stools of 17 of 

31 patients with isolation of this serotype more common from those with hemorrhagic 

colitis (103). Ground hamburger meat was again suspected as it had been served 

repeatedly during the time frame of the outbreak; however, no E. coli 0157:H7 was 

isolated from the suspected meat (103). 

The outbreak that brought E. coli 0157:H7 to public attention as a major 

pathogen was the widely-publicized outbreak at the fast food restaurant chain Jack-in-

the-Box in 1993 (8, 125). In the states of Washington, Idaho, California, and Nevada, 

there were more than 500 laboratory-reported cases and four deaths (125). Eventually 

these cases were directly linked to undercooked hamburger purchased at the Jack-in-the-

Box restaurants. In the wake of this outbreak, several recommendations were put forth 

from state and federal government agencies regarding E. coli 0157:H7 and other strains 

of enterohemorrhagic E. coli (EHEC) (26, 162). The following year E. coli 0157:H7 

infection became a nationally notifiable disease (125). That same year, the Council of 

State and Territorial Epidemiologists (CSTE) recommended that all bloody stools be 

screened for EHEC using growth on a sorbitol-MacConkey agar medium (26), as most 

EHEC strains are unable to ferment sorbitol, and are thus distinguished using this agar. 

Likewise, in the wake of this major outbreak, the United States Food and Drug 

Administration (FDA) released new guidelines for the cooking temperatures of ground 

beef (162). By 2000, 48 of 50 states required state-level notification of this pathogen 

(125). 
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2. The Organism 

2.1. Taxonomy and Nomenclature 

E. coli was first described by the German bacteriologist Theodore Escherich in 

1885. E. coli 0157:H7 belongs to the kingdom Bacteria, the phylum Proteobacteria, the 

class Gammaproteobacteria, the order Enterobacteriales, and the family 

Enterobacteriaceae. Both benign and human pathogenic serotypes are known to inhabit 

the normal intestinal tract of warm-blooded mammals (56). A variety of E. coli serotypes 

are found in the intestines of humans and are thought to contribute to intestinal health 

through the production of vitamin K, the digestion of food, and by offering passive 

immunity against other gastrointestinal pathogens (28, 45, 152). E. coli 0157:H7 is not 

found in healthy individuals but is transiently cultured from the guts of cattle, and this 

results in the incidence of this pathogen in ground beef (20, 58, 87). 

2.2. Phvsicochemical Properties 

E. coli organisms grow optimally at gut temperature in the human body, 37°C. 

Although this is the preferred temperature for E. coli, it is able to survive a much larger 

range, from 19°C to 46°C (89). The 0157:H7 serotype has a slightly narrower 

temperature range of approximately 19°C to 41°C (124). It is interesting to note that this 

serotype is unable to grow at 45°C, the temperature used to assess water samples for fecal 

coliform contamination (124), and therefore would not be detected by traditional fecal 

coliform assays. E. coli 0157:H7 can survive freezing when inoculated into ground beef 

and remain viable when the meat is thawed at a later date. When stored initially at -80°C 
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and held at -20°C, organisms remain viable for 9 months or more (96). 

Thermal inactivation of E. coli 0157:H7 occurs optimally at 155°F (68°C) and all 

organisms are killed within 15 sec at this temperature; indeed it shows no more tolerance 

to cooking temperatures than do salmonellae (89). The recommended internal 

temperature for ground beef is 160°F (71.2°C), which will kill all E. coli 0157:H7 (89). 

However, the 1997 Food and Drug Administration Food Code (96) requires a minimum 

internal temperature of 155°F (68.5°C) with a 15 second holding time (96). 

E. coli 0157:H7 has no growth factor requirements; metabolically it can utilize 

glucose as a sole carbon source to produce any macromolecular components necessary 

for growth of the cell (101). The organism is a facultative anaerobe; it is capable of 

growing aerobically, but also can grow anaerobically by using NO3, NO2 or fumarate as 

final electron acceptors (101). This ability allows E. coli to colonize the anaerobic lower 

colon. 

Although E. coli can survive at low pH, (as low as pH 2 for several hours), 

growth of these organisms is limited to a pH range of 4 to 9 (145). It is believed that the 

acid tolerance displayed by these organisms contributes to their low infectious dose 

(thought to be 10-100 organisms total ingested) (9, 51). Three general mechanisms have 

been proposed as to how E. coli can withstand such extreme pHs: i) a buffering due to the 

E. coli cell's cytoplasm, ii) low proton permeability of the bacterial membranes, and iii) 

the exclusion and excretion of protons from the bacterial cytoplasm by membrane-bound 

proton pumps (9). These theories are in part supported by the limited growth and 

survival of E. coli in low pH due to weak acids (133). In a study by Benjamin, et al., 

microbial growth was severely reduced in benzoic acid (9). Unlike a strong acid, which 
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is dissociated outside of the cell, weak acids enter cells in an undissociated state and 

dissociate within the microbe, releasing the proton and subsequently lowering 

cytoplasmic pH (60, 131, 133). In the case of the three suggested mechanisms for how E. 

coli tolerates low pH due to a strong acid, both ii) low proton permeability of the 

membrane, and iii) the exclusion and excretion of protons, are null in the case of a weak 

acid. The buffering capability of the cytoplasm (i) above) may not be sufficient on its 

own to withstand an extreme pH by weak acids. Of interest is the observation that once 

these acid resistance systems are turned on, they remain on for prolonged periods, 

particularly when the organisms are stored at cold temperatures (4°C) (96). This acid 

tolerance allows E. coli 0157:H7 organisms to grow in a variety of acidic foods, such as 

mayonnaise, apple cider and salami (96), all of which have been associated with 

outbreaks of disease due to this agent. 

In contrast to its relative tolerance to acidic conditions, E. coli 0157:H7 shows no 

outstanding tolerance to high sodium chloride concentrations. Unlike other food borne 

pathogens such as Listeria monocytogenes and Staphylococcus aureus, this pathogen 

cannot survive in more than 6.5% NaCl (96). 

2.3. Cultural and Morphological Characteristics 

E. coli 0157:H7 displays similar colony morphology to other strains of E. coli. 

Colonies readily appear after overnight growth at 37°C. On a standard medium such as 

Luria-Bertani (LB) agar, growth appears as slightly translucent, small to medium sized, 

off-white, convex, smooth colonies. On a slightly richer medium such as Mueller-Hinton 

agar or trypticase-soy agar, the morphological characteristics are identical but colonies 
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are usually somewhat larger. 

The cellular morphology of E. coli 0157:H7 is identical to non-pathogenic strains 

of E. coli. All are found as individual gram-negative cells in a classic coccobacilliary 

shape and divide by binary fission at the polar ends. Table 1.1 summarizes the cellular 

morphology of E. coli 0157:H7. The serotype 0157:H7 refers to the somatic (surface 

antigen) serotype number 157 and the flagellar antigen serotype number 7 (11, 71, 122). 

In the United States, the 0157:H7 serotype is the most prevalent and has attained the 

greatest notoriety, however, numerous other serotypes of EHEC are present, and these are 

often referred to as non-0157 isolates when citing incidence and outbreak details. These 

serotypes include (but are not limited to): 026:H11, 091:H21, 022:H8, O103:H2, 

04:NM, 05:NM, 0111:NM, and 0145:NM (where NM is non-motile) (96). 

E. coli 0157:H7 produces lipopolysaccharide (LPS) as part of its surface 

structure. LPS is highly antigenic to patients suffering from these infections, and often 

illicit a strong inflammation response. LPS triggers platelet activation, one of the 

hallmark features of the deadly complication, hemolytic uremic anemia (HUS) (149), as 

discussed later. 

2.4. Biochemical Properties 

The biochemical profile of E. coli 0157:H7 is similar to that of the commonly 

used laboratory strain E. coli K-12. Results are identical on eosin methylene blue (EMB) 

agar, MacConkey (MAC) agar, Hektoen enteric (HE) agar, triple sugar iron agar (TSI) 

slants, citrate (CIT) slants, motility-indole-ornithine (MIO) agar tubes, urea (URE) broth, 

as well as the oxidase (OX) test. The majority of E. coli 0157:H7 strains are unable 

6 



Table 1.1. Morphological Characteristics of E. coli 0157:H7 Cells 

Cell shape 

Cell arrangement 

Cell size 

Gram reaction 

Motility 

Attachment features 

Oxygen needs 

Coccobacillus, short bacillus 

Singular 

1.1 to 1.5 [im wide by 2.0 to 6.0 \im long 

Gram negative 

Yes, multiple polar flagella 

Fimbriae, intimin 

Facultative anaerobe 
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to ferment sorbitol, making sorbitol-MacConkey agar plates (sMAC) useful for the 

differentiation between 0157:H7 and nonpathogenic serotypes (52). Table 1.2 provides a 

summary of the biochemical properties of E. coli 0157:H7. 

2.5. Genetics of E. coli Q157:H7 

E. coli 0157:H7 has a single, circular chromosome with a genome size of 5.49 

Mb. This allows for 5361 protein coding genes, 104 tRNA genes and 22 rRNA genes. 

The genome has a G+C content of 50.53% (64). There is also a 92 kb plasmid, p0157, 

which codes for several virulence factors in the organism including espP (an extracellular 

serine protease-coding gene), hlyA (a hemolysin-coding gene), katP (a periplasmic 

catalase-coding gene), and toxB (a toxin gene, similar to one of Clostridium difficile) 

(18). Due to the number of virulence genes located on it, it is thought that this plasmid is 

crucial to the full pathogenicity of E. coli 0157:H7 (70). A particularly important 

bacterial feature on this plasmid is the gene for the production of fimbriae. These 

structures allow adherence of E. coli 0157:H7 to host cells, and in the absence of this 

plasmid, E. coli 0157:H7 has reduced virulence (70). 

2.6. Environmental Aspects 

E. coli 0157:H7 is a disease of the human gastrointestinal tract; however, it is 

rarely transmitted person-to-person. Most individuals contracting the disease do so 

through a non-human reservoir, usually food or beverages that have been contaminated 

by cow manure or pasture runoff (50). The organism is near ubiquitous in cattle farms 



Table 1.2. Biochemical Profile of E. coli 0157:H7 and E. coli K-12 

Medium/Test 

EMB 

MAC 

sMAC 

HE 

TSI 

err 
MIO 

URE 

ox 

E. coli 0157:H7 

Growth, Lac + 

Growth, Lac + 

Growth, Sor -

Growth, Lac/Suc/Sal + 

A/A, Gas+, H2S-

Cit-

Mot +, Ind +, Orn +/-

Ure-

Ox-

E. coli K-12 

Growth, Lac + 

Growth, Lac + 

Growth, Sor + 

Growth, Lac/Suc/Sal + 

A/A, Gas+, H2S-

Cit-

Mot +, Ind +, Orn +/-

Ure-

Ox-
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across the United States, with a positive carriage rate of 1-2% of animals on a farm or 

feedlot on average (some seasonal variability occurs with carriage rates higher in warmer 

weather) (50, 56, 126). Despite this high carriage rate, the organism is a transient 

member of the normal flora of the cattle (56). Sampling populations of cattle reveals a 

steady rate of carriage, although carriage by the individual animals varies with time. Put 

another way, although a constant rate of 1-2% of animals carry the organism on a 

particular farm, the individuals that make up that percentage varies with each sampling. 

Therefore, the microbe is quite mobile between animals living in close contact and 

sharing water and food troughs (56, 126). These organisms are not pathogenic to cattle, 

but rather act like any other nonpathogenic strain of E. coli with colonization coming and 

going with an average duration of two months (87). It should be noted that juvenile 

animals are normally more prone to carriage of E. coli 0157:H7, possibly due to a lower 

stability in their normal microbial gut flora (50). 

Because of the close association of EHEC infections with cattle runoff and ground 

beef, numerous models have been proposed for the control of this pathogen within cattle 

populations. Eradication is likely an unachievable goal as this organism is carried within 

environmental niches (such as contaminated food and water troughs) as well as in wild 

animal populations (56, 87). In addition, E. coli 0157:H7 has been found in sheep, dogs, 

horses and birds, and these may also serve as reservoirs for the pathogen (56, 87). 

Pre-slaughter testing of cattle for EHEC has been suggested, but this is also likely 

to prove unsuccessful. Indeed, current regulations state that a group of cattle must be 

rejected if any animal tests positive for EHEC. As most slaughter groups are greater than 

100 animals and with a 1-2% carriage rate, most groups would be rejected at slaughter 
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with huge economic losses. New guidelines are required before this type of pre-slaughter 

testing would become enforceable or even feasible (56). 

In order to reduce both the percent of animals carrying E. coli 0157:H7 and to 

reduce the number of E. coli 0157:H7 carried by a particular animal, several measures 

have been put in place. One practice suggested was the withholding of food before 

slaughter in order to reduce the amount of waste in the gut of the cattle, thereby lessening 

the chance of contamination of due to gastrointestinal puncture during the slaughter 

process. However, fasting decreases the stability of the normal flora within the animal, 

which increases both the likelihood of colonization by transient E. coli 0157:H7, and 

increases the amount of E. coli 0157:H7 organisms within already-colonized animals, 

due to the reduction of normal flora organisms (126). Another possibility is the 

purposeful colonization of the cattle gut with competing organisms. This strategy has 

been successfully applied in the broiler chicken industry to reduce contamination by 

species of Salmonella (107). This method may be of interest especially in the case of 

juvenile cattle in which it has been proposed to stabilize their intestinal flora with benign 

microbes, so that EHEC colonization would prove difficult. This proposal is referred to 

as competitive exclusion (20, 56). Competitive exclusion cultures can be made up of a 

single species or of many types of bacteria and are designed to compete against 

undesirable organisms. Three mechanisms are proposed by which these probiotics inhibit 

the colonization of pathogens: i) competition for nutrients; ii) competition for binding 

sites on the epithelium; and iii) production of various compounds that prove toxic to the 

invading organisms (20, 28, 107, 150). Studies are on-going to determine the efficacy of 

this approach. 
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3. Shiga-like toxin 2 

Although there are numerous virulence factors associated with E. coli 0157:H7 

that distinguish it from benign E. coli serotypes, the most notable and most deadly are the 

shiga-like toxins, Stx-1 and Stx-2. Stx-1 and Stx-2 are so named for their similarity to 

the closely related Shiga toxin (Stx) produced by Shigella dysenteriae serotype 1 (43). 

The most devastating of infections are usually associated with Stx-2-producing strains of 

EHEC, and it is these strains that are most often associated with the development of the 

life-threatening condition hemolytic uremic syndrome (HUS) (75,113). This research 

concentrates on the more deadly Stx-2. 

Although Stx is produced by S. dysenteriae, and Stx-1 and Stx-2 are produced by 

EHEC, Stx and Stx-1 are a relatively homologous group compared to Stx-2. In fact, the 

A subunit of Stx and Stx-1 differ only by one amino acid residue, with position 45 in Stx 

being serine while in Stx-1 it is threonine (5, 43). The A subunits of Stx-1 and Stx-2 

have only 55% similarity (5). Also of note is that while Stx-1 is homogenous, Stx-2 

exists as variants. Within the Stx-2 group are Stx-2c (63, 83), Stx-2d (115, 116, 119), 

Stx-2d-activable (115, 116, 119), Stx-2e (54, 91), and Stx-2f (49, 139). These variants 

are distinguishable by biological and immunological activity and each one binds unique 

receptors (80). It should be noted, however, that all Stx-2 and its variants preferentially 

bind the Gb3 receptor (Gall- 4Gall- 4glucosyl ceramide) (84, 163, 169). 

3.1. Structure of Stx-2 

The structure of Stx, Stx-1 and Stx-2 all conform to the classic AB5 toxin 

structure. The A subunit is responsible for the catalytic activity of the toxin, and thus the 
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damage it wreaks on target cells (43, 84, 136, 169). The A subunit is further divided into 

the Al and A2 fragments. The Al fragment, at 27.5 kDa, causes the enzymatic activity 

of the toxin while the A2 fragment, at 4.5 kDa, connects the A subunit to the B subunit 

pentamer. The five identical B subunits are responsible for binding to target cells, 

allowing entry of the toxin (43) (Figure 1.1.). 

Several key differences have been cited between the structures of Stx/Stx-1 and 

Stx-2. In Stx and Stx-1, the active site of the enzyme is blocked by the polypeptide A2 

fragment and remains so until the A subunit is cleaved from the B subunit during entry 

into a host cell (42). In Stx-2, the active site of the enzyme is active in the holotoxin. 

The increased availability of the Stx-2 active site may be a factor contributing to the 

greater pathogenic potential of Stx-2 and its documented links to the development of 

HUS (43). In addition, the conformational arrangement of the Stx-2 B subunit pentamer 

appears to be different from that of the Stx and Stx-1 B pentamers. These different 

conformational perspectives could explain the different binding affinities of these 

pentamers to the host cell Gb3 receptors (43). Likewise, the Al peptide of the A subunit 

in Stx-2 appears to bind, and therefore block, one of the receptor sites in Stx-2, reducing 

by one the number of available binding sites on the pentamer. This too could contribute 

to the different affinities of Stx-2 for Gb3 (43, 169). 

3.2. Mode of Action of Stx-2 

The AB5 toxin structure is essential to the mode of action of the toxin. In essence, 

toxins enter human intestinal cells by attachment of the B subunit to the Gb3 receptor, a 

globotriaosyl ceramide (Gala(l-4)-Gaip(l-4)-Glcpi-ceramide) receptor (84, 114, 163). 
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t >> 
Al 

Figure 1.1. Schematic Representation of Stx-2. Stx-2 is an AB5 toxin. The A subunit 
is comprised of two separate fragments, Al and A2. The Al fragment has the enzymatic 
activity of the toxin and the A2 fragment serves as a connector to the five identical B 
subunits. The B subunit pentamer binds the toxin to appropriate receptors on host cells. 
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The holotoxin is endocytosed and retrograde transported to the Golgi network and 

subsequently to the endoplasmic reticulum (95). At this post-endocytosis point, the A 

subunit is cleaved by furin, a membrane-bound protease similar to the enzyme trypsin, 

and this yields the Al and A2 fragments. The Al fragment then targets the ribosome 

(95). Al has RNA N-glycosidase activity that cleaves a specific N-glycosidic bond in the 

28S rRNA of the 60S ribosomal subunit, removing an adenine base. This base is an 

integral component of elongation factor binding to the ribosomal subunit, and therefore 

prevents the affected cell from carrying out protein synthesis (39, 114, 136, 144). Toxins 

may also enter the blood stream, travel to the kidneys, brain, and other organs, and cause 

extensive cell and tissue death leading to major organ failure and system collapse (71). 

3.3. Genetics of stx2 

The stx2 gene is located on a lambda-like bacteriophage (BP-933W) inserted as a 

prophage into the chromosome of E. coli 0157:H7. When the organism is metabolically 

stable, the prophage remains in a lysogenic state, leading to low or baseline level 

expression of stx2. However, when the E. coli 0157:H7 host bacterium is subjected to 

stress, the prophage converts to a lytic state and is excised from the chromosome (166). 

During excision, the stx2 gene is co-expressed with phage genes due to their proximity on 

the phage chromosome and this leads to an increase in toxin production (57, 78, 104, 

164). Upregulation of stx2 gene expression is believed to be the end result in a cascade 

pathway that begins with the activation of the RecA protein by damaged DNA (57, 164). 

The genetic system of the E. coli BP-933W bacteriophage is complex, self-

repressing, and self-regulating (Figure 1.2, 1.3). When the regulating proteins ell and 
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cIII are expressed at low levels they activate the repressor cl. CI in turn binds and 

represses the promoters, ProL and ProR, to stop transcription of a majority of the phage 

genome, including ell and cIII and the toxin gene, stxl (44, 86, 164). Thus, the system is 

self-repressing and self-regulating, i.e. it blocks transcription of the phage genome, 

maintaining the phage in a lysogenic state, unless a stress trigger interrupts the cycle. 

This interruption can occur following DNA damage, which leads to initiation of the SOS 

DNA repair system that in turn activates RecA. When the SOS response is initiated, 

activated RecA degrades the regulating protein, ell and hence the expression of cl is also 

arrested. Without expression of the cl repressor, the late phage genes are expressed, and 

these include stxl (44, 78, 104, 120, 164). Conversion to the lytic cycle is a 

bacteriophage survival mechanism effected when host DNA is compromised. The stxl 

gene is located between the late phage promoter and phage-excision genes and is co-

transcribed when host cell damage is sensed. Therefore, under DNA damaging 

conditions, induction of phage genes and stxl occur simultaneously (44, 74, 86, 164). 

4. Clinical and Epidemiological Findings 

4.1. Clinical Presentation 

E. coli 0157:H7 causes a variety of disease states, depending on the age and 

general health states of the infected individual, as well as the dose of organism ingested 

(123, 101, 127, 114). In its mildest form, the disease presents with symptoms of diarrhea 

and stomach cramping lasting up to five days. More severe cases often show 

hemorrhagic colitis (HC) or bloody diarrhea (Table 1.3.). In the most severe cases 
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(approximately 5% of patients) these gastrointestinal symptoms are followed by a 

complex presentation of symptoms culminating in hemolytic uremic syndrome (HUS) 

(114); an often fatal complication especially in children, the elderly, and the 

immunosuppressed. HUS is characterized by hemolytic anemia, thrombocytopenia, and 

renal failure. Hemolytic anemia results from the fragmentation of red blood cells as they 

pass through areas of thrombi in the small blood vessels. These sheared cells are 

characteristic of HUS during microscopic examination of patients suspected of having 

this condition. Low circulating platelet counts are a predictor, as platelets adhere to the 

damaged vascular endothelium and are removed from circulation. It has also been 

suggested, but not proven, that Stx-2 may interact directly with platelets, reducing their 

count (123). Renal damage occurs as these sheared red blood cells and platelets 

aggregate in the small blood vessels of the kidneys (123). 

In some cases there may be neurological involvement and a fluctuating fever. 

Often these neurological symptoms are associated with a distinct but very similar 

condition, thrombotic thrombocytopenia purpura (TTP) (101, 123, 130). Both TTP and 

HUS are microangiopathic disorders that are Characterized by abnormalities in the small 

blood vessels of the body. The key difference between these conditions is the location of 

the microvascular thromboses. In TTP they can be found in the brain leading to 

neurological symptoms, and also in the skin, intestines, skeletal muscle, pancreas, spleen, 

adrenal glands, and heart. In HUS, these microthrombi are confined to the kidneys (123) 

(Table 1.4). 
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Table 1.4. Comparison of HUS and TTP 

Age affected 
Microscopic examination of 
blood 
Peripheral smear 

Organs affected 

Treatment 

Prognosis 

HUS 

Children 
Anemia 

Microangiopathic 
hemolytic anemia 
Kidneys 

Palliative, dialysis, 
plasmapheresis 
Good 

TTP 

Adults 
Anemia and 
thrombocytopenia 
Microangiopathic 
hemolytic anemia 
Predominantly CNS, but 
also intestines, pancreas, 
skin, heart, spleen and 
others 
Palliative, plasmapheresis, 
steroids 
Poor 
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It is important to note that, as mentioned previously, HUS occurs considerably more 

often in children than in adults, and in fact is the most common cause of kidney failure in 

children in the United States (105). Indeed, in the United States, the average annual 

incidence is 2.65 cases per 100,000 individuals under 5 years old. In individuals 5-18 

years old the incidence is notably lower, 0.97 cases per 100,000 (123, 125). 

2.1. Pathology 

Symptoms of an E. coli 0157:H7 infection usually occur within 3-8 days of 

ingestion of the bacterium. The symptomatic phase of disease can be divided into two 

phases: 1) before blood is present in the stool, and 2) after blood is present in the stool 

(101, 123, 130). However, in approximately 10% of reported cases there is no 

progression beyond phase 1 (123). 

The first symptoms, preceding even the non-bloody diarrhea, include severe 

abdominal cramping and general irritability. These symptoms are often enough to induce 

a missed day of school or work, but do not often warrant a visit to the physician. After 

the onset of non-bloody diarrhea, an over-the-counter anti-diarrheal medication is often 

administered. Such treatments often include an antiperistalitic agent (101, 123, 130). In 

the case of EHEC infections, these medications are generally contra-indicated as they can 

slow the clearing of the organism from the body, allowing more time for colonization and 

toxin production (123, 130). Although most physicians are aware that antiperistalitic 

medications are detrimental in cases of EHEC infections, before the presence of blood in 

the stool there may be little or no reason to consider that an EHEC infection exists; non-

bloody diarrhea is a common enough event. Bloody diarrhea often occurs within 1-3 
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days of the non-bloody diarrhea, and in most cases prompts a visit to a physician (123). 

At this point an EHEC infection is usually suspected and can be confirmed through 

laboratory tests (52). Lastly, in 5-15% of EHEC cases, infections progress to HUS. Often 

the first clinical symptoms of HUS are a diminished platelet count, followed by 

hemolytic anemia (123). 

Hemolytic anemia is the cardinal feature of HUS; the patient may appear more 

pale than normal, and have abnormal swelling in the extremities. In blood smears, 

fragmented red blood cells are common. Thrombocytopenia occurs due to the increased 

clotting and destruction of platelets (123). Immunoglobulin G (IgG) concentrations in 

the blood serum decrease, while IgA and IgM elevate. Often IgM deposits are noted in 

the injured glomeruli of the kidneys (80, 123). In one-third of patients, blood pressure is 

elevated due to a combination of fluid replacement therapy and kidney dysfunction. This 

requires close monitoring to avoid harm to the patient. Urinalysis is abnormal with 

hematuria, proteinuria, and red blood cell cast-off cells (101). 

Commonly, hepatomegaly is a finding in cases of HUS due to fluid overload and 

hypoalbuminemia. Despite these symptoms, liver failure and long-term hepatic sequelae 

have not been reported. In 10-20% of HUS cases, the pancreas is affected, though 

clinical pancreatitis is unusual. In 4-15% of patients, insulin-dependent diabetes mellitus 

occurs due to islet cell necrosis (130). 

2.2. Pathogenesis and Virulence Factors 

The pathogenesis of EHEC infections begins shortly after ingestion of the 

bacterium. It is believed that the infectious dose of E. coli 0157:H7 may be as low as 10 
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to 100 organisms (81,114). These organisms are able to survive the acidity of the human 

stomach and proceed to colonize the lower gastrointestinal tract (82, 93, 133). E. coli 

0157:H7 is not considered invasive. That is, it does not burrow into the epithelial cell 

layer, as organisms like Shigella dysenteriae do. It does associate closely with the 

intestinal epithelial layer, resulting in the formation of attaching and effacing lesions (69, 

70,108,117,118). 

Attaching and effacing lesions are induced in part by the production of the 94 kDa 

to 97 kDa outer membrane protein intimin (69). Attaching and effacing lesions cause 

polymerization of actin filaments in the epithelial cells of the intestines, forming a 

characteristic pedestal that binds the E. coli 0157:H7 cell. The microvilli are effaced 

from the intestinal lining (69, 117, 118). The intimin protein is encoded by a gene, eae 

(E. coli attaching and effacing), which is located chromosomally on the 35 kb locus of 

enterocyte effacement (LEE) pathogenicity island (37, 38). Upstream of the eae gene is 

the tir gene, which encodes the translocated intimin receptor, or Tir protein. 

Interestingly, Tir becomes the receptor on the eukaryotic cell for intimin, but it is 

produced by the E. coli 0157:H7 cell. Tir is then shunted into the eukaryotic host cell 

through a type III secretion system. Once inside the host cell, Tir is phosphorylated and 

interacts with the host cytoskeleton and intimin (69). Intimin-independent adherence to 

host epithelial cells has been suggested through type 1 fimbriae, however, it should be 

noted that only a minority of E. coli 0157:H7 strains produce fimbriae in vitro, and that 

the role of fimbriae in E. coli 0157:H7 colonization is not established (159). For E. coli 

0157:H7, investigation of microbial adherence is problematic, as the toxins produced are 

often lethal to the host cells before adherence can be observed. 

24 



The LEE pathogenicity island (Figure 1.4.) is thought to have been horizontally 

transferred from another microorganism. The most striking proof of this is that the G+C 

content of the LEE pathogenicity island is 38.3%, compared to the 50.8% G+C content of 

the rest of the E. coli 0157:H7 chromosome (37). Besides eae and tir, other virulence 

genes are located on the LEE pathogenicity island. Upstream of eae and tir are numerous 

genes, including esc and sep, that encode the type III secretion system necessary to 

translocate Tir into the host epithelial cell. Downstream of eae are a number of esp 

genes, which encode proteins responsible for epithelial cell signaling in the formation of 

the attaching and effacing lesion. Overall, the LEE pathogenicity island encodes all the 

necessary proteins for the production of an attaching and effacing lesion (37). 

E. coli 0157:H7 has a unique iron scavenging system efficient enough to utilize 

heme or hemoglobin as an iron source. This 69 kDa outer membrane protein is encoded 

by the chuA gene, which is turned on in iron-limiting conditions (111). The lysis of red 

blood cells (a known symptom of HUS) could aid in the pathogenesis of E. coli 0157:H7 

through the release of hemoglobin thus increasing the amount of iron available to the 

pathogen. Likewise, E. coli 0157:H7 produces several hemolysins; the most 

characterized being the extracellular alpha-hemolysin (70, 140). Distinct from this is an 

enterohemolysin, named Ehyll, which is carried on the plasmid p0157. Although this 

phenotype is often lost quickly in vitro, anti-Ehyll IgG has been detected in patients 

recovering from HUS, suggesting its presence during EHEC infections (70). Also 

located on the p0157 plasmid is the gene katp, which encodes a catalase-peroxidase 

enzyme, KatP. This enzyme contains an amino-terminal signal peptide that suggests it is 

transported through the cytoplasmic membrane, and is mostly found in the periplasm. 
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KatP is deemed a bifunctional enzyme, possessing both catalase and peroxidase 

activities, making it a potent virulence factor when expressed inside the human host (70). 

The genes and the products they encode for the principal virulence factors of E. coli 

0157:H7 are outlined in Table 1.5. 

Once colonization of the pathogen is established (through the aid of intimin, Tir, 

attaching and effacing lesions and the other virulence factors), Stx-2, arguably the most 

important of the diverse virulence factors, is released from the E. coli 0157:H7. Stx-2 

molecules translocate across the epithelial layer using an energy-dependent process, 

though the mechanisms of this movement are not elucidated (62). What is clear, 

however, is that the toxin crosses the epithelial cell barrier in a transcellular pathway, as 

tight junctions between cells remain intact. Stx-2 appears to bind less tightly to epithelial 

cells than does Stx-1 and may allow a greater proportion of toxin to enter the blood 

stream from the intestines (62). This could offer, at least in part, a rationale for the higher 

virulence and greater severity of disease reported for Stx-2 producing strains. Data 

suggest that Stx-2 could stimulate the secretion of interleukin-8 (IL-8) by intestinal 

epithelial cells, resulting in neutrophil migration to that tissue. Neutrophils are possible 

carriers of Stx-2 to the various organs of the patient, including the kidneys (165). 

Once translocated across the epithelium, Stx-2 acts on endothelial cells and 

platelets in the microvascular network, leading to thromboses as seen in pathology 

studies. Endothelial cells are highly sensitive to Stx, and those of the microvascular 

endothelial cells are especially so (108). Such findings confirm the pathological data 
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Table 1.5. Virulence Factors of E. coli 0157:H7 

Gene 
stx2A 

stx2B 

eae 

tir 

esp 

esc 

sep 

chuA 
ehyll 
katP 
etpC-
etpO 

Location 
Chromosome, 
933-W phage 
Chromosome, 
933-W phage 
Chromosome, 
LEE island 
Chromosome, 
LEE island 
Chromosome, 
LEE island 
Chromosome, 
LEE island 
Chromosome, 
LEE island 
Chromosome 
p0157plasmid 
p0157plasmid 
pO!57 plasmid 

Gene product/function 
A subunit of Stx-2 

B subunits of Stx-2 

Intimin, A/E formation 

Tir, A/E formation 

Esp proteins, signal transduction for A/E 
formation 
Type III secretion for the Esp proteins 

Type III secretion for the Esp proteins 

Heme utilization, iron transport system 
hemolysin 
Catalase-peroxidase 
Type II secretion system 
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that show that the colonic, neural, pancreatic, pneumonic microvasculature are much 

involved in HUS and TTP (123). 

2.3. Epidemiology 

E. coli 0157:H7 causes 73,000 reported cases of disease in the US each year. 

Kidney damage and HUS occurs in 5-15% of cases. This condition usually occurs in 

children under 5 years old, and is the leading cause of acute kidney failure in children in 

the US (105). Annually approximately 60 of these illnesses result in death (125). 

E. coli 0157:H7 is usually foodborne or waterborne and a number of foods and 

beverages have served as the source of outbreaks. These include ground beef, lettuce, 

alfalfa sprouts, apple juice, and apple cider (50) (Figure 1.5). Many waterborne cases 

have also been reported from both drinking and recreational waters. Less commonly are 

outbreaks and sporadic cases caused by non-food and water sources, such as petting zoos 

and contact with farm animals. Person-to-person spread is rare (50, 125). 

A distinct seasonality of E. coli 0157:H7 is seen with warmer months having 

higher incidence, due possibly due to increased shedding by cattle coupled with increased 

consumption of ground beef and less careful food handling during barbeque season (40) 

(Figure 1.6). 

A number of risk factors may increase the likelihood and severity of the disease. 

Children under 5 years old are at the most risk and may develop HUS. It is unknown 

why children are so exquisitely susceptible to develop this condition although the 

relatively small size of children's blood vessels may facilitate easier damage by Stx-2 

(125). 
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Figure 1.5. Transmission Routes for E. coli 0157:H7. Note that the origin is 
invariably cattle (50). 
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To offer confirmatory evidence, even the smaller blood vessels of adults are more 

susceptible to damage by the toxin than are the large blood vessels. Damage to the 

kidneys is due largely to microthrombi leading to blockages in the microvasculature of 

these organs (125). It is possible that a smaller dose of toxin would cause greater damage 

overall to children than to adults. The less mature immune system of children further 

complicates this scenario. 

Other factors that increase the risk of E. coli 0157:H7 infection include unsafe 

handling of raw meats, as well as consumption of raw and undercooked meats, 

unpasteurized beverages (such as apple cider and milk), and contaminated produce. 

Gender does not appear to be a factor in the likelihood of contracting disease (40). 

As would be expected, the reported incidence of outbreaks increased after the first 

cases in 1982. However, such increase was likely due to a heightened awareness of the 

pathogen, and the mandatory reporting of cases of EHEC infections (Figure 1.7) (125). 

The trend in E. coli 0157:H7 infections has declined between 1996 and 2007 (Figure 1.8) 

(40). In 2003 and 2004, the lowest rates of infection were reported but these were 

followed by two years of higher incidence followed by a decrease again in 2007 (40). 

Hand-in-hand with the incidence of E. coli 0157:H7 disease is the incidence of HUS. 

Fortunately, the number of outbreak-associated HUS cases has declined since 1982, with 

a few spikes in frequency. The relative number of HUS cases also dropped in 2003 and 

2004, coinciding with the lower incidence of E. coli 0157:H7 cases (Figure 1.9) (40). 

Likewise, as can be seen in Figure 1.10, the number of HUS-associated deaths has 

declined since the 1982 outbreak (125). This is most likely due to greater awareness of 

the organism. 
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Figure 1.7. Reported Cases of E. coli 0157:H7 from 1982 to 2002. Note the dip in 
incidence in 1997 when PulseNet for E. coli 0157:H7 was implemented (125). 
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Figure 1.8. Relative Rates of K coli 0157:H7 Infection. The overall trend in disease is 
declining. The years of 2003-2004 had the lowest rates of infection, but were followed 
by two years of higher incidence before decreasing again in 2007 (40). 
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Figure 1.9. Relative Rates of 2?. coli 0157:H7-associated HUS. The relative number of 
HUS cases dropped dramatically in 2003 and 2004, coinciding with the lower incidence 
of E. coli 0157:H7 cases (40). 
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Figure 1.10. Number of Cases of HUS in Comparison to Case-fatality Rate. Overall, 
the number of cases of HUS has decreased, along with the proportion of fatal cases. This 
could be due to increased awareness of E. coli 0157.H7 infections and their association 
with HUS (125). 
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Disease prevention is the same as for any gastrointestinal illness. Ground beef 

should be cooked to a minimum of 160°F to kill all E. coli 0157:H7 (124).. It is also 

important to keep raw meats separate from ready-to-eat foods, or foods that will not be 

cooked. For example, knives and cutting boards should always be thoroughly washed if 

they have been in contact with raw meat before re-using for vegetables or other foods. 

Likewise, any fruits and vegetables should be washed thoroughly, particularly if they will 

not be cooked before consumption. Only pasteurized milk and juices should be 

consumed, to prevent the risk of ingesting E. coli 0157:H7 from these beverages. When 

swimming, care should be taken to avoid swallowing lake or pool water. People with 

diarrhea should not be allowed to partake in recreational water activities until approved 

by a physician. As with the prevention of any infectious disease, careful and thorough 

hand washing with soap and warm water can greatly reduce the risk of acquiring or 

passing on an infectious agent (125). 

2.1. Immune Response 

In patients with HUS, increased concentrations of IL-6, IL-8 and TNF-oc have 

been reported (80). These cytokines are produced by monocytes, which may be induced 

to release these inflammatory mediators by Stx-2. Likewise, a significant correlation 

exists between the neutrophil count in HUS patients and patients' outcomes. Children 

with poor outcomes (severe disease) had higher neutrophil counts on admission to the 

hospital. Similarly, patients who died of EHEC-associated HUS had significantly larger 

numbers of neutrophils in the renal glomeruli than in controls (80). These data add to the 
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suggestion that neutrophils are involved in Stx-2 carriage around the body during E. coli 

0157:H7 infections. 

2.4. Treatment and Palliative Measures 

Treatment of E. coli 0157:H7 infections poses a true dilemma for most 

physicians. Most often, the patient is a child whose parents insist on treatment, yet 

traditional treatments (such as anti-diarrheal agents and antibiotics) are contra-indicated 

(97, 132, 171). 

In the history of E. coli 0157:H7 infections, the use of antibiotics has been both 

variable and controversial. In the first report on E. coli 0157:H7 disease, two outbreaks 

were outlined. A total of 47 cases were identified and 23 patients had available treatment 

histories. Of those 23 patients, 11 were treated with antibiotics (8 with tetracycline and 3 

with erythromycin). None of the 47 cases (including the 11 treated with antibiotics) 

developed any complications (such as HUS) (127). This information indicates that 

antibiotics are not detrimental to the outcome of E. coli 0157:H7 infections. In a 

subsequent outbreak in a nursing home, 22% of the 55 affected patients developed HUS, 

and the mortality rate was 31%. Antibiotic therapy provided after onset was associated 

with increased fatalities (103). In this outbreak, the majority of patients were elderly, 

which may have contributed to the higher rate of complications and death. Nonetheless, 

this outbreak caused physicians and scientists to rethink the use of antibiotics for treating 

infections with this organism. A number of retrospective studies have been conducted on 

the efficacy of antibiotics in treatment protocols and this topic is a key component of this 

thesis. These details are discussed further in Chapter II. Currently, antibiotic treatment is 
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divisive (132). Although some physicians may continue to treat E. coli 0157:H7 

infections with antibiotics, a majority agrees that antibiotics are more harmful than 

helpful for combating this pathogen. Likewise, the use of antimotility agents (to reduce 

diarrhea symptoms) has been associated with a higher risk of developing HUS, and 

particularly HUS with central nervous system manifestations (97, 171). 

Treatment is mainly palliative. Careful monitoring and rehydration therapy is 

often used to replace fluids lost to vomiting (in some cases) and severe diarrhea in non-

HUS E. coli 0157:H7 cases. In cases of HUS, the amount of fluids must be monitored 

carefully as the kidneys may be under some considerable stress, and extremely high 

blood pressure can result. Dialysis is often implemented to support kidney function and 

in severe cases plasmapheresis may be required (123). In essence, the objective is to 

remove circulating Stx from the blood in the hopes of reducing the damage to the 

microvascular structure of affected organs (123). 
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CHAPTER 2 

THE EFFECTS OF SUB-INHIBITORY CONCENTRATIONS 
OF SELECTED ANTIBIOTICS ON THE PRODUCTION OF 

STX-2 BY ESCHERICHIA COLI 0157:H7 

1. Abstract 

Shiga toxin 2 (Stx-2) is a major virulence factor contributing to the pathogenesis 

of HUS and to overall E. coli 0157:H7 disease. The stx2 gene is located within the 

genome of a lambda-like prophage, 933-W, and thus the genetic and physiological 

mechanisms involved in the production of Stx-2 are complex and closely involve 

induction or repression of the prophage. It was hypothesized that growth of the E. coli 

0157:H7 in DNA-damaging antibiotics would increase stx2 expression and Stx-2 release 

by initiating the bacterial SOS DNA repair response. Likewise, it was hypothesized that 

growth of the pathogen in antibiotics that do not affect bacterial DNA (^-lactams, protein 

synthesis inhibitors, cell membrane disruptors, and transcription inhibitors) would not 

initiate the SOS DNA repair response, and therefore would not increase Stx-2 production. 

E. coli 0157:H7 was grown in 90% MIC-level antibiotics, and at 1 and 6 h post-

induction, the stx2 gene was assessed using quantitative Real-Time PCR. At 24 h post-

induction, the production of Stx-2 toxin was measured using a capture ELISA, as well as 

by MTT cytotoxicity assay. It was determined that stx2 expression and Stx-2 production 

increased following microbial exposure to the DNA-damaging antibiotics ciprofloxacin, 

norfloxacin, and trimethoprim, as well as with the positive control, mitomycin C. These 
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results were concurrent with an upregulation in the DNA damage inducible gene, dinD. 

No significant change was detected when the organism was grown in cefotaxime or 

chloramphenicol. Rifampin significantly decreased Stx-2 production and stx2 

expression. Gentamicin and polymyxin B increased stx2 expression but did not increase 

Stx-2 release, and this may be associated with the cell membrane-altering properties of 

both these antibiotics. These studies suggest that stx2 expression and subsequent release 

of Stx-2 are linked to the SOS DNA repair system, and that antibiotics that damage 

bacterial DNA should be avoided in clinical use for E. coli 0157:H7 infections. 

Rifampin may serve as a viable alternative for treating these infections given the decrease 

noted in the stx2 expression and Stx-2 release; however, the rapid development of 

resistance to this antibiotic may relegate it to a secondary role in combined therapy. 

2. Introduction 

Escherichia coli 0157:H7 is the causative agent of "hamburger disease", a severe 

type of food poisoning with symptoms ranging from profuse, watery diarrhea to the 

bloody diarrhea of hemorrhagic colitis (HC) (8, 103, 125, 127, 170). In 5-15% of cases, 

this disease escalates to HUS (75, 113), and unfortunately there is no curative treatment 

for these infections. In the past, antibiotics were prescribed to combat the bacterium but 

research has contra-indicated this approach (10, 97, 99, 109, 132, 156, 157, 171). Indeed, 

one study showed a 17x higher rate of HUS development in children treated with 

antibiotics compared to those not treated with antibiotics (171). Despite a wide range of 

studies on the pathogenesis of E. coli 0157:H7, specific treatments aimed at the source of 

the disease have not been forthcoming. Rather, most treatments are palliative, that is, 
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they are associated with treating symptoms rather than eradicating the etiological agent 

causing the disease. As such, research on the efficacy of antibiotic treatment of E. coli 

0157:H7 infections is of value. 

The principal virulence factors produced by E. coli 0157:H7 that initiate this 

disease are the Shiga-like toxins (Stx), including Stx-2 (12, 14). The stx2 gene is located 

on a lambda-like bacteriophage, BP-933-W, inserted as a prophage into the chromosome 

of E. coli 0157:H7. When the microorganism is metabolically stable, the prophage 

remains in a lysogenic state. However, if the E. coli host is subjected to stress, the 

prophage converts to a lytic state and is excised from the chromosome (104, 164). 

During excision, the stx2 gene is co-expressed with phage genes, leading to an increase in 

toxin production. Upregulation of stx2 gene expression is believed to be the end result in 

a cascade pathway that begins with the activation of the RecA protein by damaged DNA 

(74). When the regulating proteins ell and cIII are expressed at low levels they activate 

the repressor cl. cl in turn binds and represses the promoters, ProL and ProR, to stop 

transcription of the majority of the phage genome, including the toxin gene, stx2. In this 

manner, the system is self-repressing and self-regulating; it blocks transcription of the 

phage genome unless something interrupts the cycle. This interruption occurs when 

RecA becomes activated by DNA damage. RecA is a protein normally involved in 

recombination events, but when activated it becomes a cellular protease. RecA causes ell 

to be degraded and hence the expression of cl is arrested. Without expression of the cl 

repressor, the late phage genes are expressed, including stx2 (78, 120, 164). This 

conversion to the lytic cycle is a bacteriophage survival mechanism effected when host 

(E. coli 0157:H7) DNA is compromised. The stx2 gene is located between the late phage 
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promoter and phage-excision genes and is co-transcribed when host cell damage is 

sensed. Therefore, under DNA damaging conditions induction of phage genes and stx2 

occurs simultaneously (74, 86, 166). 

It was previously unknown if increased Stx-2 levels were due to an increase in 

stx2 expression, or if it were simply lysis of bacterial cells which released pre-formed, 

stored toxin. Kirnmit et al. provided convincing evidence that genuine toxin gene 

expression occurred in response to environmental stress (74). Specifically, Kimmit's 

research showed that DNA-damaging antibiotics such as the fluoroquinolones and folate 

synthesis inhibitors are the most potent inducers of the stx2 promoter (74). In a genome-

wide assay, Herold et al. demonstrated upregulation of a number of genes after treatment 

with sub-inhibitory concentrations of the DNA-damaging antibiotic norfloxacin (57). Of 

significance, their study yielded a 150-fold increase in stx2 expression in the presence of 

high levels of norfloxacin. They surmised that with very low concentrations of the 

antibiotic, E. coli was using an alternate RecA-independent DNA repair pathway. 

However, when high, near-inhibitory concentrations were employed, the "last-ditch" SOS 

response of the bacterium was activated which increased stx2 induction (57). 

In 2007, Ochoa et. al showed that the transcription-inhibitor rifaximin did not 

induce Stx-2 or 933-W phage release, as opposed to the DNA-damaging antibiotic 

ciprofloxacin, which increased Stx-2 production in 96% of strains evaluated (109). This 

confirmed previous hypotheses that DNA-damaging antibiotics lead to an increased 

production of Stx-2, and thus should be avoided in clinical situations involving E. coli 

0157:H7. However, whether all antibiotics or just those that affect bacterial DNA should 

be avoided as clinical treatment for these infections has yet to be elucidated. 
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In the current study, the production of Stx-2 and the activity of stx2 were 

measured when the organism E. coli 0157:H7 was grown in sub-inhibitory 

concentrations of various antibiotics. These were selected from a wide variety of 

antibiotic classes, and included a broad range of bacterial targets. Those antibiotics 

studied were: i) cefotaxime, a cell wall inhibitor; ii) ciprofloxacin, a DNA gyrase 

inhibitor; iii) chloramphenicol, a protein synthesis inhibitor; iv) gentamicin, a protein 

synthesis inhibitor; v) polymyxin B, a cell membrane inhibitor; vi) rifampicin, a 

transcription inhibitor; vii) norfloxacin, a DNA gyrase inhibitor; and viii) trimethoprim, a 

folate metabolism inhibitor. Mitomycin C was used as a positive control, as it has been 

shown to be a potent mutagen that upregulates Stx-2 production (138). These antibiotics 

were selected to comprise both DNA-affecting and non-DNA affecting drugs. Likewise, 

polymyxin B was included because of its cell-membrane affecting abilities; it has been 

suggested that Stx-2 is increased by some antibiotics simply due to bacteriolysis. 

Polymyxin B is known to cause bacteriolysis (137) and in that respect serves as a 

comparison control for other antibiotics. 

Stx-2 production was measured by both cytotoxicity assays and by enzyme-linked 

immunosorbent assay (ELISA). The expression of the stx2 gene was measured by 

quantitative Real Time PCR (q-PCR). In q-PCR studies, two additional genes were 

investigated, serC (serine synthase) and dinD (DNA-damage inducible). The serC gene 

was included because it is considered a "housekeeping gene"; it is constitutively 

transcribed despite growth conditions (57). All results were expressed as a function of 

serC activity to allow for differences in experimental techniques (efficacy of RNA 

extraction, cDNA synthesis, etc.). The dinD gene is expressed when DNA damage is 
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sensed within the E. coli 0157:H7 cell. If stx2 is upregulated because of damage to DNA 

then the dinD gene should also be upregulated. 

3. Hypothesis 

It was hypothesized that an upregulation in stx2 expression and an increase in Stx-

2 production would occur when the E. coli 0157:H7 was grown in DNA-damaging 

antibiotics. Conversely, growth of the pathogen in antibiotics that target other parts of 

the bacterial cell (excluding the DNA) were hypothesized to have no effect on stx2 

expression or Stx-2 production. 

4. Materials and Methods 

Media and reagent preparations are provided in detail in Appendix A. 

4.1. Bacterial Cultivation 

The E. coli 0157:H7 strains 90-2380 and 43888 stock cultures were acquired and 

maintained as described in Appendix B. Overnight and experimental cultures used in 

antibiotic experiments were grown on Mueller-Hinton (MH) agar plates, or in Mueller-

Hinton broths (MHB). All cultures were grown statically at 37°C. 

4.2. Vero Cell Growth and Maintenance 

African green monkey kidney (vero) cells were maintained as described in 

Appendix B. In preparation for cytotoxicity assays, vero cells were passaged into a 96-

well microtiter plate (Corning Life Science, Lowell, MA) as follows: Log-phase (60-
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70% confluent) vero cells in a T25 flask were rinsed twice with Hank's balanced salt 

solution-modified (HBSS-mod). Following thorough rinsing, trypsin-EDTA solution was 

added to the flask and allowed to incubate at room temperature for approximately three 

min. The cells were observed through an Olympus CK2 inverted phase-contrast 

microscope (Olympus, Center Valley, PA) for removal from the bottom of the flask. 

This was noted by the rounding up of cells as they released from the flask surface and 

became free-floating in the liquid. The action of the trypsin was ceased by the addition of 

five times the volume of Dulbecco's modified Eagle's minimal essential media (DMEM) 

with three percent bovine calf serum (BCS). This suspension of free-floating vero cells 

was centrifuged (IEC Centra, Waltham, MA) for five min at room temperature at 1000 

rpm to pellet the cells. The supernatant fluid was carefully removed and discarded, and 

the resulting pellet was resuspended in DMEM with 3% (v/v) BCS. A cell count was 

performed in a hemocytometer using a dilution in the viability stain, trypan blue. Vero 

cells were then seeded into the 96-well plates at a concentration of 10,000 cells/well. 

4.3. Minimum Inhibitory Concentration (MIC) Assays for Antibiotics 

A minimum inhibitory concentration (MIC) assay was performed for each 

antibiotic under investigation to determine the lowest concentration that could still inhibit 

the growth of E. coli 0157:H7 strain 90-2380. A microliter plate method was utilized 

(see Table 2.1), in which each row of the 96-well plate contained a 1:2 dilution of a 

specific antibiotic; the last two columns did not contain antibiotic. Column 11 was used 

as a no-antibiotic control and column 12 was a media-only control. The eight antibiotics 

were prepared as listed in Appendix A. A standardized suspension of E. coli 0157:H7 
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Table 2.1. MIC Plate Set Up. 

Columns 1-10 

A 

B 

C 

D 

E 

F 

G 

H 

Cefotaxime, 
1:2 dilution, 10 mg/mL to 19.5 |ig/mL 
Ciprofloxacin, 
1:2 dilution, 1 |j.g/mLto 1.95 ng/mL 
Chloramphenicol, 
1:2 dilution, 100 ng/mL to 195 ng/mL 
Gentamicin, 
1:2 dilution, 100 jig/mL to 195 ng/mL 
Polymyxin B 
1:2 dilution, 10u,g/mL to 19.5 ng/mL 
Rifampin, 
1:2 dilution, 100 [ig/mL to 195 ng/mL 
Norfloxacin, 
1:2 dilution, 1 (ig/mLto 1.95 rig/mL 
Trimethoprim, 
1:2 dilution, 10|ig/mL to 19.5 ng/mL 

('oliimn 11 i ( olumn 12 

E. coli only 
(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 

Media only 

Media only 

Media only 

Media only 

Media only 

Media only 

Media only 

Media only 
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strain 90-2380 was added to each well of the plate, except column 12, the media-only 

control column. The plate was incubated overnight at 37°C statically. Following 

incubation, the plate was visually observed for turbidity in each well. The plate was also 

assessed spectrophotometrically for absorbance values at 595 nm. The absorbance values 

were graphically represented to depict the lowest concentration of antibiotic that inhibited 

growth of the organism, as compared to the no-antibiotic control. 

4.4. Growth Curves of E. coli Q157:H7 in 90% MIC Antibiotics 

E. coli 0157:H7 strain 90-2380 was grown in stationary culture at 37°C overnight 

in MHB. The following day the culture was adjusted with pre-warmed MHB to give an 

optical density of 0.2 at 595 nm. This culture was grown for an additional 60 min at 37°C 

to achieve log phase of growth. The culture was then centrifuged at 4,000 rpm for 5 min 

(IEC Centra) and the pellet was resuspended in MHB media to the same volume as 

before centrifugation. The culture was then divided into 10 equal 5-mL aliquots. The 

eight antibiotics were added to each of the 5-mL aliquots to yield a final concentration 

equivalent to 90% of that antibiotic's MIC. A positive control containing 2.5 |ig/mL of 

mitomycin C-induced culture was included as the ninth sample, and the tenth sample was 

left uninduced. 

Three 200(j.L aliquots from each of these ten tubes were immediately removed 

and pipetted in triplicate into a sterile 96-well plate (Corning). The 96-well plate was 

inserted into a microplate reader (Tecan, Durham, NC) and maintained in static 

conditions at 37°C. Absorbance readings at 595 nm were taken every 5 to 15 min for 6 h 



and recorded into an Excel spreadsheet. The data were plotted to determine a growth 

curve for E. coli 0157:H7 in the presence of antibiotics at 90% of their MIC level. 

4.5. MTT Cytotoxicity Assay Standards 

A standard curve for the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide) was prepared by seeding vero cells in quadruplicate into each well 

of a 96-well plate to give a dilution series. This was achieved in a similar fashion to the 

passaging procedure described, except instead of seeding 10,000 cells/well, wells were 

seeded at the concentrations outlined in Table 2.2. Vero cells in each well were 

stabilized for 1 h at 37°C in 7% C02 (Airgas, Salem, NH) to allow cells to settle and 

attach to the microtiter plate. Following the 1 h incubation, 10|xL of MTT salt solution 

was added to each well and incubated for 3 h at 37°C in 7% CO2. During this incubation, 

viable vero cells converted the yellow MTT salt to insoluble purple formazan crystals. 

After incubation, 100 |iL MTT lysing solution was added to each well. This solution 

lysed the vero cells and dissolved the fomazan crystals to give a uniform shade of purple, 

which was evaluated in a Biorad 3550 spectrophotometer (BioRad, Hercules, CA). The 

absorbance data generated was graphically plotted in relation to the seeded number of 

vero cells, resulting in a linear equation over a particular concentration of vero cells. 

This standardization process allowed for unknown concentrations of vero cells to be 

enumerated based on a correlation to this standard. 
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Table 2.2. Vero Cell Seeding for MTT Standards. 

Coll 
0 cells 

Col 2 
5 x l 0 2 

cells 

Col 3 
l x l O 3 

cells 

Col 4 
2.5 x 10" 

cells 

Col 5 
5 x l 0 3 

cells 

Col 6 
l x l O 4 

cells 

Col 7 
2.5 x 

104 cells 

Col 8 
5 x l 0 4 

cells 

Col 9 
7.5 x 

104 cells 

Col 10 
l x l O 5 

cells 
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4.6. Induction of Stx-2 by Antibiotics for MTT Assay 

E. coli 0157:H7 strain 90-2380 was grown in static culture overnight in MHB at 

37°C. The following day the culture was adjusted with pre-warmed MHB to give an 

optical density of 0.2 at 595 nm. This culture was grown for an additional 60 min to 

stimulate the cells into log phase growth. This culture was centrifuged at 4,000 rpm for 5 

min (IEC Centra), the supernate was discarded, and the pellet was resuspended in the 

identical type and volume of media as before centrifugation. This served to remove 

residual toxin from the overnight growth so that only newly-formed toxin would be 

assayed. The culture was divided into 10 equal 5-mL aliquots. Each of the eight 

antibiotics was added to each 5-mL aliquot to yield an overall concentration equal to 90% 

of that antibiotic's MIC. This value was recorded as the sub-inhibitory concentration 

(SIC). A positive control of culture containing 2.5 |J.g/mL mitomycin C to induce DNA 

damage to organisms was included, along with a negative control of uninduced bacteria. 

The control cultures and the test cultures (grown in the SIC of each antibiotic) were 

incubated under static conditions for 24 h at 37°C. Immediately following incubation, the 

cultures were centrifuged at 4°C at 4,000 rpm for 10 min to pellet. The supernates were 

removed and filtered through a low-protein binding 0.2 iim filter (Pall, East Hills, NY) to 

give cell-free preparations. These supernates were stored at -20°C for use in MTT assays. 

4.7. Antibiotic-Induced MTT Assay 

Supernates from antibiotic-induced cultures were added in triplicate (10|J,L) to a 

100% confluent 96-well plate of vero cells. Controls (mitomycin C-induced and 

uninduced) were also added to the vero cell plate. The plate was incubated at 37°C in 7% 
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CO2 (Airgas) for 72 h. Following the 3-day incubation, 10 |0,L of MTT salt was added to 

each supernate-containing well. The plate was incubated for 3 h at 37°C in 7% CO2. 

After incubation, 100 |iL of MTT lysing solution was added to each well. This solution 

lysed the vero cells and dissolved the fomazan crystals to a uniform shade of purple, 

which was then read in a Biorad 3550 spectrophotometer (BioRad) and recorded. 

4.8. Induction of Stx-2 by Antibiotics for Real Time PCR and ELISA 

E. coli 0157:H7 was grown as static cultures overnight in MHB at 37°C. The 

following day the culture was adjusted with pre-warmed MHB to give an optical density 

of 0.2 at 595 nm. This culture was grown for an additional 60 min to stimulate the cells 

into log phase growth. This culture was centrifuged at 4,000 rpm for 5 min (IEC Centra) 

the supernate was discarded, and the pellet was resuspended in the identical type and 

volume of media as before centrifugation. This served to remove residual toxin from the 

overnight growth so that only newly-formed toxin would be assayed. The culture was 

divided into 10 equal 2-mL aliquots. Each of the eight antibiotics was added to each 2-

mL aliquot to yield an overall concentration equal to the SIC for each antibiotic. A 

positive control culture containing 2.5 |i,g/mL mitomycin C to induce DNA damage to 

organisms was included, along with a negative control of uninduced bacteria. The 

control cultures and the test cultures (grown in the SIC of each antibiotic) were incubated 

under static conditions for 1 h or 6 h at 37°C. Immediately following incubation, 100 \\L 

of each culture was removed to a sterile microcentrifuge tube and retained for RNA 

extraction, which was performed immediately. For the collection of supernates for 

ELISA analysis of Stx-2 concentration, the cultures were further incubated for a total of 
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24 h post-induction. The 2-mL cultures were then centrifuged at 4°C at 4,000 rpm for 10 

min to pellet the bacterial cells. The supernates were removed and filtered through a low-

protein binding 0.2 Jim filter (Pall) to give cell-free preparations. These supernates were 

stored at -20°C for use in ELISA assays. 

4.9. RNA Extraction and cDNA Synthesis 

Directly following antibiotic induction of the cultures, 500 îL of Bacterial RNA 

Protect™ (Qiagen, Valencia, CA) was added to each of the 100 \\L aliquots and 

incubated at room temperature for 15 min. The tubes were then centrifuged at 5400 rpm 

(Beckman, Center Valley, PA) for 5 min. RNA was collected using the Promega SV 

Total RNA Isolation System™ kit (Promega, Madison, WI), as follows. The supernates 

were discarded and the pellets resuspended in 100 \xL of tris-ethylene diamine tetra acetic 

acid (TE) buffer along with 2 \\L of lysozyme stock (20mg/mL,) and incubated at room 

temperature for 5 min. The cells were further lysed by the addition of 75 \xL of RNA 

Lysis Buffer (Promega), and 350 \\L of RNA dilution buffer (Promega). Nucleic acids 

were precipitated by the addition of 200 \xL 95% ethanol (Acros, Morris Plains, NJ). 

Each solution was transferred to a separate filter spin column provided in Promega kit 

and centrifuged at 10,000rpm for 1 min. The filtrates were discarded and 600 \\L of 

RNA wash solution were added to rinse remaining cellular debris from the columns. The 

tubes were re-centrifuged at 10,000 rpm for 1 min. DNA in each column was degraded 

by the addition of 40 (J.L yellow core buffer (Promega), 5 ixL of 0.09M MnCh (Promega), 

and 5 \\L DNase I enzyme (Promega). The DNase mixture was incubated at room 

temperature directly on the spin column membranes for 30 min. After incubation, 200|iL 
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of DNase stop solution (Promega) was added to the spin columns and centrifuged at 

10,000rpm for 1 min. The RNA was washed twice, first with 600 |0,L, then with 250 \xL, 

of RNA wash solution (Promega) to remove degraded DNA and residual buffer. The 

spin columns were transferred to elution tubes and 100 (iL of nuclease-free water was 

added to the membranes. The columns were centrifuged at 10,000 rpm for 1 min to elute 

the RNA. The spin columns were removed and discarded, and the eluted RNA was 

stored at -20°C for use in cDNA synthesis assays. 

The RNA was checked for DNA contamination by PCR. As PCR amplifies DNA 

only, this step was included to verify that there was no DNA contaminating the RNA 

samples. PCR was run in a thermocycler (Perkin-Elmer GeneAmp, Waltham, MA) with 

a 5 min, 94°C denaturation step, followed by 30 cycles of amplication. The amplification 

cycles were 94°C for 30 sec, 54°C for 30 sec, 72°C for 30 sec. The PCR run was 

terminated with a 7 min elongation step at 72°C. Purified E. coli 0157:H7 strain 90-2380 

DNA was used as the positive control. All PCR products were stored at -20°C for 

agarose gel electrophoresis purity analysis. 

A 2.5% agarose gel was made by melting 1.25 g of agarose (Omnipur, Lawrence, 

KS) in 50 mL of lx Tris-acetate-ethylene diamine tetraacetic acid (TAE). The gel 

solution was poured into the casting stand and allowed to solidify, during which time the 

samples were prepared by mixing 6 |J,L of the template (in this case, the PCR product of 

extracted RNA) with 2 |J,L 6x loading buffer (Promega) and 4 |iL d.H20. The solidified 

gel was placed into the electrophoresis apparatus (Biorad) and covered with lx TAE. 

Samples were loaded into the gel and run at approximately 100 volts (+/- 5 volts) until 

two-thirds of the way down the gel. A 1 kb ladder with 100 bp bands (New England 
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Biolabs, Ipswich, MA) was run simultaneously for band size comparisons. The gel was 

stained in ethidium bromide and visualized in an imaging system (Syngene Bio-Imaging, 

Frederick, MD). Samples that were DNA-free were deemed acceptable for cDNA 

synthesis. Any samples found to contain DNA were discarded. 

cDNA synthesis was performed using the Superscript HI cDNA synthesis kit™ 

(Invitrogen, Carlsbad, CA). In thin-walled PCR tubes, 6 (iL of RNA, 1 jj,L of 50 ng/|xL 

random hexamers (Invitrogen), and 1 |J,L annealing buffer (Invitrogen) were combined 

and collected by a brief, 3-second mini-centrifugation. The tubes were heated for 5 min 

at 65°C in a heating block (VWR, Westchester, PA) and immediately placed on ice for 1 

min. Following the ice-incubation, 10 |xL of 2x First-strand reaction mix (Invitrogen) 

was added to the tube with 2 îL of Superscript III/RNase Out enzyme mix (Invitrogen). 

The samples were thoroughly mixed and placed in the thermocycler with the following 

settings: 10 min at 25°C, 50 min at 50°C, 85°C for 5 min, followed by a 4°C hold period. 

cDNA samples were amplified through a second PCR and agarose gel to ensure proper 

reverse-transcription of RNA into cDNA was achieved. cDNA samples which amplified 

in a PCR reaction were deemed acceptable and were stored at -20°C until for use in Real 

Time PCR assays. 

4.10. Quantification of cDNA 

cDNA samples were quantified using the Qubit High Sensitivity (HS) DNA 

Quantification kit™ (Invitrogen) according to the manufacturer's instructions. In brief, 

the 200x concentrated analyzing reagent was diluted 1:200 in the supplied diluent to give 

a single strength analyzing reagent. cDNA samples were diluted 1:100 in the analyzing 
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reagent and were incubated at room temperature for three min, after which each sample 

of cDNA was assayed for fluorescence activity in the Qubit fluorometer. The 

fluorometer was calibrated prior to each use using the kit-supplied standards. 

4.11. cDNA standardization 

Antibiotic-induced cDNA samples were standardized to a 100 ng/mL 

concentration using nuclease-free water prior to use in Real Time PCR experiments. 

Standardized cDNA samples were stored at -20°C. 

4.12. Real Time Polymerase Chain Reaction 

Real Time PCR was performed using an AP 7300 Thermocycler and software 

(Applied Biosystems, Carlsbad, CA). PCR was performed using 200 nM of dual-labeled 

(FAM/TAMRA) fluorogenic probes (Appendix C), 500 nM of both forward and reverse 

primers (Appendix C), and a lx concentration of PCR enhancer (5Prime, Gaithersburg, 

MD) and a lx concentration of RealMasterMix with Rox (5Prime). The RealMasterMix 

with Rox contains 0.1 U/(iLTaq DNA Polymerase, 12.5 mM magnesium acetate, and 1.0 

mM dNTPs. A standard curve was performed with each Real Time PCR experiment, and 

each standard curve was constructed using highly-purified PCR product (see Appendix 

C) at a final concentration of 100 ng prepared in a 10-fold dilution to give a terminal 

concentration of 10 pg. 

Real Time PCR data were analyzed using the REST (Relative Expression 

Software Tool) program. The PCR efficiency for each Real Time PCR run was entered 

into the software program along with the cycle threshold values for each sample. The 
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program normalized each value to the supplied data for the serC housekeeping reference 

gene and to its PCR efficiency. Once normalized, the treated samples, consisting of the 

eight antibiotics and mitomycin C were compared against the untreated sample 

(uninduced) for up or down regulation in the genes of interest {stx2, dinD). 

4.13. Enzyme-linked Immunosorbent Assay 

ELISA was designed based after a protocol by Moody, 2003 (102). Murine anti-

Stx-2 subunit A (monoclonal IgG HE 10, Toxin Technology, Sarasota, FL) was 

employed as the primary antibody. This was diluted 1:250 to give a working stock IgG 

preparation in sterile lx PBS. This primary antibody was applied to the ELISA plate and 

incubated overnight on a plate rocker to allow the antibody to adhere to the wells of the 

microtiter plate. The following day, plates were drained and each well filled with 

blocking buffer containing 5% skim milk and allowed to rock at room temperature for 1 h 

to prevent subsequent non-specific binding. The plate was then emptied and rinsed three 

times with PBS. A ten-fold dilution series of purified Stx-2 (Toxin Technology) was 

applied in triplicate in order to derive a standard curve for the assay. The supertiates to 

be tested were also added in separate wells in the plate in triplicate. Any unused wells 

were filled with blocking buffer and the entire plate was incubated at room temperature 

for 2 h while rocking. The plate was then emptied and rinsed three times with PBS. The 

secondary antibody, monoclonal murine antibody specific to Stx-2 subunit A and 

conjugated to horseradish peroxidase (Toxin Technology), was added to each well and 

incubated at room temperature for 2 h while rocking. After incubation, the wells were 

thoroughly washed (five times) with PBS to remove all traces of unbound secondary 
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antibody. The horseradish peroxidase chromogenic substrate (2,2'-Azinobis [3-ethyl-

benzothiazoline-6-sulfonic acid]-diammonium salt, ABTS) solution (Pierce, Rockford, 

IL) was added to the wells and incubated for 1 h. The plate was spectrophotometrically 

analyzed at 405 nm and the data were recorded. 

5. Results 

Statistical significance was determined as described in Appendix B, Section 5. 

5.1. Minimum Inhibitory Concentration (MIC) Assay 

The MIC value for each antibiotic was determined to be the lowest concentration 

of antibiotic that still inhibited the growth of the E. coli 0157:H7. In all cases, the visual 

(Figure 2.1) and spectrophotometric (Figure 2.2) results for the MIC were in agreement. 

The sub-inhibitory concentration (SIC) was calculated as 90% of these derived MIC 

values (Table 2.3). 

MIC values were lowest for the DNA-damaging antibiotics ciprofloxacin and 

norfloxacin; a concentration of 31.25 ng/mL was sufficient to inhibit growth of the E. 

coli. Trimethoprim, an inhibitor of thymidine and uridine synthesis, and therefore 

involved in blocking the synthesis of DNA, was found to have an MIC value of 156.25 

ng/mL. The same MIC value was calculated for gentamicin, an aminoglycoside. 

Polymyxin B, a cell membrane disruptor, required 1.25 |ig/mL to inhibit growth of the 

microorganism. Cefotaxime, a beta lactam, and rifampin, an inhibitor of transcription 
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A) 

1 

2 

3 

4 

5 

6 

7 

8 

Columns 1-10 ^ 
Cefotaxime, 
1:2 dilution, 10 mg/mL to 19.5 |ig/mL 
Ciprofloxacin, 
1:2 dilution, 1 |ig/mLto 1.95 ng/mL 
Chloramphenicol, 
1:2 dilution, 100 ng/mL to 195 ng/mL 
Gentamicin, 
1:2 dilution, 100 [ig/mL to 195 ng/mL 
Polymyxin B 
1:2 dilution, lO^g/mL to 19.5 ng/mL 
Rifampin, 
1:2 dilution, 100 ng/mL to 195 ng/mL 
Norfloxacin, 
1:2 dilution, 1 |0,g/mLto 1.95 ng/mL 
Trimethoprim, 
1:2 dilution, 10|0,g/mL to 19.5 ng/mL 

Column 11 a 
£. co// only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 
E. coli only 

(no antibiotic) 

Column 12 
Media only 

Media only 

Media only 

Media only 

Media only 

Media only 

Media only 

Media only 

Figure 2.1. MIC Microliter Plate. A) Schematic set up of the MIC microtiter plate. 
Each row of the microtiter plate represents an antibiotic to be tested. The first, left-most 
column of the microtiter plate is the stock concentration of the antibiotic, and each 
subsequent column represents a 2-fold dilution of that antibiotic. Column 11 was the no-
antibiotic control (PBS only), and Column 12 was the no-is. coli control (PBS only). B) 
MIC plates were inspected visually for turbidity (opalescent) in a well, indicating growth. 
The lowest concentration of antibiotic that still inhibited growth was defined as the MIC. 
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Table 2.3. Determined MIC and Calculated SIC for E. coli 0157:H7 

Antibiotic 

Cefotaxime 
Ciprofloxacin 
Chloramphenicol 

Gentamicin 

PolymyxinB 

Rifampin 

Norfloxacin 
Trimethoprim 

Target 

Inhibits peptidoglycan synthesis 
Inhibits DNA gyrase 
Inhibits peptidyl transferase, 50S 
subunit 
Prevents formation of initiation 
complex with mRNA (30S 
subunit), Causes misreading of 
mRNA, possible other 
mechanisms. 
Detergent, interacts with 
phospholipids. 
Binds and inhibits RNA 
polymerase 
Inhibits DNA gyrase 
Inhibits de novo thymidine and 
uridine synthesis. 

MIC 

5.0 fig/mL 
31.25 ng/mL 
10 fig/mL 

156.25 ng/mL 

1.25 |ig/mL 

5 (ig/mL 

31.25 ng/mL 
156.25 ng/mL 

SIC 
(90% MIC) 

4.5 |ig/mL 
28.13 ng/mL 
9(ig/mL 

140.63 ng/mL 

1.13|ig/mL 

4.5 fig/mL 

28.13 ng/mL 
140.63 ng/mL 
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processes, both had calculated MIC values of 5|ig/mL. Chloramphenicol was found to 

have an MIC value of 10|ig/mL. 

5.2. Growth Curves of E. coli Q157:H7 in Antibiotics 

E. coli 0157:H7 strain 90-2380 was grown and induced with antibiotics in a 

fashion identical to that described for ELISA supernates and mRNA collection for Real 

Time PCR. Following induction, the cultures were measured for absorbance at 595nm 

every 5 to 15 min. The data were collected and used to generate a growth curve of the 

organism in the presence of the SIC of each antibiotic. As can be seen from Figure 2.3, 

no significant differences were detected between the growth of the organism in the SIC of 

each antibiotic, and in the uninduced control culture. 

5.3. MTT Cytotoxicity Assay 

An MTT cytotoxicity assay was developed to determine the effects on vero cells 

of the Stx-2-containing supernates. A standard control curve was developed for the MTT 

assay by seeding a 96-well plate with a known dilution of vero cells (without Stx-2) and 

comparing it to the absorbance created by those cells at the completion of the MTT test. 

The standard curve (Figure 2.4) showed excellent linearity between the number of vero 

cells and the absorbance value recorded by spectrophotometer. The correlation 

coefficient for the line was 0.9992. 

Once the standard curve had been established for the assay, vero cells were 

exposed to the various Stx-2-containing supernates collected from E. coli 0157:H7 strain 

90-2380 grown in each of the eight antibiotics. Data were normalized against the 

uninduced control. Supernates from the organism grown in mitomycin C were used as 
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-Cefotaxime 
-Ciprofloxacin 
-Chloramphenicol 
-Gentamicin 
-PolymyxinB 
-Rifampin 
-Norfloxacin 

—*—Trimethoprim 

MitomycinC 
^I^Uninduced 

150 180 210 

Minutes 

360 

Figure 2.3. Growth Curve of E. coli 0157:H7 strain 90-2380 in SIC-level Antibiotics 
Investigated. Note that growth curves of the organism in the antibiotics were similar to 
the uninduced controls. 
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5000 10000 15000 

Viable Vero Cells 

20000 30000 

Figure 2.4. MTT Cytotoxicity Assay Standard Curve. Vero cells were seeded at 
known number densities and then measured by MTT cytotoxicity assay to develop a 
standard curve. Correlation coefficient = 0.9992. 
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positive controls while supernates from the organism grown in uninduced MHB were 

used as negative controls (Fig 2.5). Supernates collected from E. coli grown with either 

DNA-damaging antibiotic, ciprofloxacin or norfloxacin reduced vero cell viability to 

70% and 85%, respectively. As predicted, the positive control supernates from growth in 

mitomycin C also decreased vero cell viability (75%). The average viability for the vero 

cells also declined when grown with supernates from trimethoprim-induced cultures, 

though this was not statistically significant. Vero cell viability increased to 125% of the 

uninduced control when the supernate from E. coli grown with polymyxin B was used. 

Treatment of E. coli with cefotaxime, chloramphenicol, gentamicin, or rifampin did not 

significantly alter the vero cell viability compared to the uninduced control. 

5.4. ELISA Analysis of Antibiotic Induced E. coli Q157:H7 

Following antibiotic-induction of the E. coli 0157:H7 strain 90-2380 cultures, 

supernates were assayed for Stx-2 concentration by ELISA. Dilutions of commercially 

obtained Stx-2 (Toxin Technology) were used to construct a standard curve for 

comparison (Figure 2.6). The standard curve showed exceptional linearity with a 

correlation coefficient of 0.9932. 

Samples of supernates from antibiotic-induced cultures were collected. All 

antibiotic-induced samples were normalized against the uninduced control, and data is 

shown as fold-increase in Figure 2.7. As expected, the positive control mitomycin C 

increased Stx-2 production by 2-fold compared to the uninduced control. Likewise, the 

three antibiotics that act on the DNA of bacterial cells, ciprofloxacin, norfloxacin, and 

trimethoprim, all increased Stx-2 by some degree. Ciprofloxacin surpassed the positive 
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Figure 2.5. MTT: Cytoxicity of E. coli 0157:H7 Supernates from Antibiotic-induced 
Cultures. All data were normalized against the uninduced control (white bar). Data for 
cefotaxime, chloramphenicol, gentamicin, rifampin, and trimethoprim (gray bars) show 
no significant change from the uninduced sample. Data for ciprofloxacin, norfloxacin 
and the positive control mitomycin C (black bars) show significant decreases in vero cell 
viability. Polymyxin B (hatched bar) showed a significant increase in viability compared 
to the uninduced sample. 
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Figure 2.6. Stx-2 Standard Curve: ELISA. Standard concentrations of commercially 
purchased Stx-2 were evaluated in an ELISA to obtain a standard curve. Correlation 
coefficient = 0.9932. A separate standard curve was prepared for each ELISA 
determination, each of which yielded results similar to this example. 
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Figure 2.7. ELISA: Increase in Stx-2 Concentration After 24 h Induction with 
Antibiotics. All antibiotic-induced samples were normalized against the uninduced 
control (white bar). Data are shown as fold-increase compared to the uninduced sample. 
For the antibiotics cefotaxime, chloramphenicol, gentamicin, no significant increase 
beyond the uninduced control was noted (gray bars). Ciprofloxacin, norfloxacin, 
trimethoprim, and the positive control mitomycin C (black bars) gave significantly higher 
values than the uninduced control. Polymyxin B and rifampin (hatched bars) showed 
significant decreases as compared to the controls. 
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control and increased Stx-2 by 2.25-fold. Stx-2 production by E. coli 0157:H7 increased 

to 1.65 times the uninduced control when treated with norfloxacin. Trimethoprim 

increased Stx-2 by 1.3-fold. Both polymyxin B (a cell membrane disruptor) and rifampin 

(a transcription inhibitor) decreased Stx-2 production to approximately 0.75% and 0.85% 

of the uninduced control. No significant change in Stx-2 production was seen when the 

pathogen was grown in the presence of cefotaxime, chloramphenicol, or gentamicin. 

5.5. Real Time PCR Analysis of E. coli Q157;H7 Transcripts 

At 1 hour after induction with the various antibiotics, a marked difference in stx2 

and dinD expression compared to the uninduced control was noted (Figure 2.8). dinD 

expression was increased by 5.7-fold when E. coli was grown with the positive control, 

mitomycin C. Norfloxacin and ciprofloxacin also increased dinD expression by 4.0-fold 

and 4.8-fold, respectively. These results were expected, as all three agents act on the 

DNA of bacterial cells, and dinD is highly expressed in the presence of DNA damage. 

Chloramphenicol also increased dinD expression, though to a lesser degree (2.2-fold). 

stx2 expression was increased by growth in mitomycin C (1.2-fold), ciprofloxacin (1.6-

fold), and polymyxin B (3.7-fold). Gentamicin reduced stx2 expression to 0.67-fold of 

the uninduced control. At 6 h of antibiotic induction, the profile of dinD and stx2 

expression changed slightly, as seen in Figure 2.9. dinD and stx2 expression were both 

still upregulated by ciprofloxacin (4.1-fold, 8.5-fold), norfloxacin (2.2-fold, 4.5-fold), and 

the positive control mitomycin C (2.6-fold, 5.4-fold). Interestingly, whereas no 

significant change in either gene was seen with a 1 h induction with trimethoprim, at 6 h 

post-induction, the expression of dinD and stx2 were both increased (1.9-fold, 2.4-fold). 
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Figure 2.8. stx2 and dinD Expression by Real Time PCR after 1 h Induction with 
Antibiotics. At one h post-induction, stx2 expression was upregulated by growth in 
ciprofloxacin, polymyxin B, and mitomycin C, while stx2 expression was downregulated 
in gentamicin. dinD expression was upregulated by growth in ciprofloxacin, 
chloramphenicol, norfloxacin, and the positive control, mitomycin C. 
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Figure 2.9. sfo2 and dinD Expression by Real Time PCR after 6 h Induction with 
Antibiotics. At 6 h post-induction, stx2 expression was upregulated by growth in 
ciprofloxacin, gentamicin, norfloxacin, trimethoprim and mitomycin C. stx2 expression 
was downregulated in polymyxin B, rifampin. dinD expression was upregulated by 
growth in ciprofloxacin, norfloxacin, trimethoprim, and mitomycin C. 
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Gentamicin, which was found to reduce stx2 expression at 1 h actually increased stx2 

expression to 2.6-fold greater than the uninduced control after 6 h of induction. stx2 

expression was downregulated by growth in polymyxin B and in rifampin, by 0.65 and 

0.83-fold, respectively. Table 2.4 summarizes the results of the MTT cytotoxicity assay, 

the ELIS A studies, and q-PCR studies at both 1 and 6 h antibiotic induction. 

6. Discussion 

Despite the major clinical problems associated with the disease, there is currently 

no accepted treatment for patients infected E. coli 0157:H7 (132). Retrospective studies 

have shown that treatment with antibiotics often worsened the course of disease, 

potentially leading to the deadly complication HUS (86, 171). Studies have reported that 

the principal virulence factor for this pathogen, the toxin Stx-2, is produced in greater 

concentrations when treated with DNA-damaging antibiotics (57, 74). It was originally 

hypothesized for the present studies that Stx-2 production and stx2 expression would be 

increased when E. coli 0157:H7 strain 90-2380 was grown in the SIC of each DNA-

damaging antibiotic. Although some variability was noted, the data from these assays 

confirmed the validity of this hypothesis. Because the location of the stx2 gene is within 

the phage structural genes, stx2 is co-expressed when these phage genes switch from 

lysogeny to lysis. It was thought that DNA-damaging antibiotics would "turn on" the 

SOS DNA repair system, which would in turn activate the RecA protein. Activated 

RecA normally recognizes and cleaves the protein LexA, but because of the structural 

similarity of LexA to the 933-W repressor cl, this repressor is also degraded by RecA 

(104, 164). These studies have shown that stx2 was indeed upregulated when this 
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toxigenic organism was grown in the DNA-damaging antibiotics, ciprofloxacin, 

norfloxacin, and trimethoprim, and that this upregulation coincided with an upregulation 

in the DNA damage inducible gene, dinD. Likewise, an increase in Stx-2 production was 

seen at 24 h post-induction with the same three antibiotics (ciprofloxacin, norfloxacin and 

trimethoprim), as assayed by ELISA. These data dovetailed closely with MTT 

cytotoxicity results, which showed an increase in vero cell death, presumably due to an 

increase in Stx-2, when vero cells were subjected to supernates from E. coli 0157:H7 

grown in either ciprofloxacin or norfloxacin. Supernates collected from E. coli 0157:H7 

trimethoprim induction also lowered vero cell viability, though not to a significant degree 

more than the uninduced control. Ciprofloxacin and norfloxacin are fluoroquinolones, 

and their mode of action is to bind to DNA gyrase and topoisomerase IV (59, 112). 

Through this binding, this class of antibiotics induces DNA breakages, which in turn 

induce the SOS DNA repair system in the microorganism (74). Trimethoprim affects 

DNA in a more indirect manner by binding to dihydrofolate reductase and inhibiting the 

formation of folic acid, a necessary precursor to nucleic acid bases (17). Although 

trimethoprim does not directly induce DNA damage, it has been shown to be a potent 

inducer of the SOS response (79). Growth of E. coli 0157:H7 strain 90-2380 in any of 

the three DNA-damaging, SOS response-inducing antibiotics tested led to an increase in 

stx2 gene expression and Stx-2 production. These studies confirmed the hypothesis that 

stx2 expression and Stx-2 production by E. coli 0157:H7 were increased by DNA 

damage and the SOS response. 

Unexpectedly, the 6 h treatment with gentamicin caused an upregulation in stx2 

expression by 2.67-fold; however this did not correlate with an increase in dinD 

74 



expression and these results were not confirmed in the ELISA or MTT cytotoxicity 

assays. In fact, gentamicin was seen to significantly decrease stx2 expression at 1 h by 

0.67-fold. It was not clear why gentamicin, an antibiotic that acts on the 30S ribosome to 

block the binding of formylmethyl transfer RNA to prevent the formation of initiation 

complexes at the early stage in bacterial protein synthesis (55), thus leading to nonsense 

peptides, caused an upregulation in stx2 at 6 h. However, the mode of action of the 

aminoglycosides such as gentamicin is complex, and it is possible that these observed 

results are due to other ill-defined action of the antibiotic on the pathogen. Indeed, 

gentamicin is known to be both bacteriostatic via the protein synthesis processes it 

induces, yet it has also been shown to be bactericidal by mechanisms not well defined. It 

is thought that gentamicin can increase bacterial membrane leakage, leading to cell death 

(66, 67). This additional mode of action may offer an explanation for the upregulation of 

stx2 seen at 6 h post-induction. As with gentamicin at 6 h, polymyxin B increased stx2 

expression at 1 h post induction but this was not seen at 6-h post induction. Like 

gentamicin, polymyxin B disrupts cell membranes through ionic interactions (137). It is 

possible that the disruption of the bacterial cell membranes caused an upregulation in 

stx2. For polymyxin B, this upregulation was seen at 1 h post induction, yet for 

gentamicin, this upregulation was only seen in the 6 h post induction experiments. 

Gentamicin may require more time (6 h as opposed to 1 h) for this upregulation in stx2 to 

be detectable. With increased cell membrane permeability would come an increase in 

diffusible bacterial signal molecules released by quorum sensing, which would then be 

better able to pass into the E. coli cells. Quorum sensing has been shown to be an 

upregulator of the several virulence genes in E. coli 0157:H7, including stx2 (3, 72, 147, 
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148). Further research into the effect of cell membrane disrupters on stx2 and on the 

uptake of quorum sensing molecules is needed to fully elucidate this upregulation in stx2. 

Although gentamicin at 6 h post-induction and polymyxin B at 1 h post-induction 

increased expression of stx2, these antibiotics did not ultimately result in an increase in 

Stx-2, as shown by ELISA and MTT cytotoxicity assay. Studies on pertussis toxin, 

another AB5 toxin with some similarities to Stx-2, have shown that polymyxin B 

inhibited the release of the pertussis toxin from the Bordatella pertussis cells (27). 

Pertussis toxin is assembled in the periplasm of the cell, and when polymyxin B is 

present, assembly and release of the toxin is inhibited (27). It is possible that a similar 

mechanism is engaged in E. coli 0157:H7, however, the means by which Stx-2 

molecules are secreted from the microbial cell are not fully elucidated (121). Despite the 

upregulation of stx2, these agents (gentamicin and polymyxin B) did not increase Stx-2 

production, and in the case of polymyxin B, actually decreased Stx-2 production overall. 

Of the eight antibiotics representing various classes of antibiotic groupings 

evaluated for their effects on stx2 expression and Stx-2 production, only rifampin 

consistently caused less stx2 expression and less Stx-2 production by E. coli 0157:H7. 

Rifampin binds to DNA-dependent RNA polymerase and inhibits transcription by 

blocking the synthesis of mRNA. Rifampin was able to reduce stx2 expression by 0.83-

fold at 6 h post-induction, although reduction at 1 h post-induction was not significant. 

Stx-2 release from the E. coli 0157:H7 cells was also reduced to 0.88-fold that of the 

uninduced control. Though not significant due to variations between trials, rifampin also 

increased vero cell survival to 110%, of the uninduced culture. In a study by Ochoa, et. 

Al (109), a related antibiotic, rifaximin was shown to not induce Stx-2 production or 
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phage release by E. coli 0157:H7. As the authors point out, in E. coli 0157:H7, sigma 

factor 70 (o70) and the antiterminator Q are involved in the expression of the lytic cycle 

of the phage; they allow the RNA polymerase to read-through a terminator, thereby 

allowing transcription of downstream genes, including stx. Rifampin and rifaximin 

inhibit a70 action (109), halting the transcription of stx, and this is likely the reason why 

stx2 expression and Stx-2 production were diminished when E. coli was grown in 

rifampin. Currently, antibiotic therapy for treating E. coli 0157:H7 infections is 

controversial due to possible exacerbation of disease resulting from increased output of 

Stx-2 (74, 132). However, these studies have shown that stx2 expression and Stx-2 

production are reduced by growth in rifampin compared to no antibiotic treatment, and 

therefore this antibiotic should not exacerbate disease by an increase in Stx-2. In a 

patient with an E. coli 0157:H7 infection, rifampin may reduce pathogen numbers 

without an increase in Stx-2 release, which is ultimately the goal of antibiotic treatment. 

Due to the relative ease with which microorganisms develop resistance to rifampin, this 

could prove problematic. However, these studies also showed no significant change in 

stx2 expression or Stx-2 release when E. coli 0157:H7 was grown in SICs of cefotaxime 

(a P-lactam). Synergy has been shown between rifampin and P-lactam antibiotics for 

treating difficult, resistant infections, such as those caused by Pseudomonas aeruginosa 

(41), Stenotrophomonas maltophilia (24), and methicillin-resistant Staphyloccoccus 

aureus (15, 41). Perhaps combined therapy of rifampin and a newer p-lactam may prove 

effective for treatment in E. coli 0157:H7 infections. It should be noted that not all 

antibiotics should be discounted as treatments for these infections, as not all antibiotic 

classes have been demonstrated to cause an increase in Stx-2. 
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CHAPTER 3 

LACTOBACILLI AND THEIR EFFECT ON 
THE PRODUCTION OF STX-2 BY ESCHERICHIA COLIO\51:Wl 

1. Abstract 

Previous research has shown that animals co-colonized with both E. coli 0157:H7 

and probiotics including various Lactobacillus species, had less severe courses of disease 

with decreased concentrations of Stx-2. Likewise, related studies have shown that other 

E. coli 0157:H7 virulence factors such as attaching and effacing lesions were reduced by 

co-cultivation with various lactobacilli, and that this reduction was not simply due to 

secreted molecules by the lactobacilli. In the present study, it was hypothesized that 

growth of the E. coli 0157:H7 in co-culture with Lactobacillus casei or Lactobacillus 

plantarum would reduce Stx-2 production and stx2 expression through direct cell-to-cell 

contact of the pathogen with the probiotic. It was thought that this reduction in virulence 

would be seen only when the E. coli and the lactobacilli were present in co-culture, and 

not when the pathogen was exposed to cell-free supernates from lactobacilli cultures. 

Results have indicated that indeed, Stx-2 production is reduced by direct co-culture with 

lactobacilli, but that reduction in Stx-2 was also caused in part by the production of 

organic acids by the lactobacilli. 
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2. Introduction 

Due to the lack of conventional antimicrobial therapies for E. coli 0157:H7 

infections, scientists and physicians have looked to novel therapeutic treatments, 

including probiotic microbes. Probiotics are beneficial microbes that are ingested as 

homeopathic medicines or through particular food products, such as yogurts, kefir, and 

cheese (28, 45, 143, 150). The role of normal microbial flora (NMF) and probiotic 

microbes in the fight against pathogens is a rapidly-expanding chapter of microbiology 

and infectious diseases. Beneficial gut microbes aid in digestion, produce vitamins, and 

stimulate the immune system. Development of lymphocytes, particularly in the gut-

associated lymphoid tissue (GALT), relies heavily on the presence of NMF (143, 135). 

Gnotobiotic animals, animals that possess no microorganisms whatsoever, display a 

much reduced immune system when left unchallenged by NMF (143). L. casei 

specifically has been shown to increase mucus-associated innate immunity in gnotobiotic 

mice (90). Probiotics have also been shown to promote gastrointestinal health by 

regulating cytokines, increasing the production of immunoglobulin A (IgA), and 

tightening intracellular junctions to inhibit pathogenic bacterial invasion. In this manner, 

probiotics act in a passive way to provide defense against pathogenic organisms by 

nutrient and space competition (143). 

Probiotics can also play a more active role in human intestinal health by reducing 

the numbers of pathogenic organisms, and through attenuation of virulence of these 

harmful organisms (31). Sherman, et. al in 2005 showed that Lactobacillus acidophilus, 

L. casei, and L. plantarum reduced the shedding of enterohemorrhagic E. coli (EHEC) by 

cattle, sheep, and rabbits (142). The authors proposed that this reduction in pathogen 
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shedding was due to a lowered pH in the guts of these animals because of lactic acid 

production by the probiotic organisms. However, upon closer inspection it was seen that 

the lactobacilli appeared to prevent virulence factor production in these animal models, 

with the result of reducing the amount of attaching and effacing lesions noted on the 

intestinal surfaces. This reduction required cell-to-cell contact by the lactobacilli, and 

was not merely a passive, pH-related response (142). 

In a study by Ogawa et. al (110), cultures of L. casei were fed to infant rabbits on 

the day of their birth. After allowing three days for colonization, the infant rabbits were 

fed shiga toxin-producing E. coli (STEC). The severity of disease was rated as "severe" 

in 77% of rabbits that were not pre-colonized with L. casei, whereas it was rated "severe" 

only in 16% of those rabbits that did receive L. casei on the day of their birth. Likewise, 

in the untreated group only 9% were rated as having no symptoms or "slight" disease, 

whereas in the L. casei-treated group, 68% had no or "slight" disease. This indicated that 

L. casei reduced the severity of STEC disease. The concentration of Stx-2 was reduced 

by more than 50% in the cecum and colon of rabbits that received the L. casei treatment, 

and histopathology showed less vacuolation, exfoliation and necrosis of gut epithelial 

cells (110). 

In the present study, E. coli 0157:H7 strain 90-2380 was grown in the presence of 

either L. casei or L. plantarum as probiotics prepared in ratios of 100:1, 1:1, and 1:100 of 

E. coli to probiotic. Control co-cultures contained only E. coli 0157:H7 with sterile 

media substituting for the corresponding volume of probiotic. The stx2 gene was 

measured for activity with and without the lactobacilli co-culture using q-PCR. Stx-2 

production was measured using ELISA and MTT cytotoxicity studies in vero cells. 
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Growth competition assays were employed to determine the extent that E. coli 0157:H7 

numbers are affected by co-culture with the two species of Lactobacillus. 

3. Hypothesis 

It was hypothesized that co-cultivation of E. coli 0157:H7 with L. plantarum or 

L. casei would reduce the expression of the stx2 gene, and would also reduce the 

production of Stx-2. These reductions were thought to be due to direct cell-to-cell 

contact of the pathogen with the probiotic, and that no reduction in stx2 expression or 

Stx-2 production would be seen if the E. coli 0157:H7 were grown with cell-free 

supernatant fluid collected from the probiotic cultures. 

4. Materials and Methods 

Media and reagent preparations are provided in detail in Appendix A. 

4.1. Bacterial Cultivation 

The E. coli 0157:H7 strain 90-2380 stock culture was maintained as described in 

Appendix B. Lactobacillus plantarum and Lactobacillus casei were acquired from 

Robert Mooney at the University of New Hampshire culture collection. Lactobacilli 

cultures were maintained similarly to E. coli cultures but were grown and stored on 

deMan-Rogosa-Sharpe (MRS) media. E. coli and lactobacilli cultures for co-culture 

experiments were grown in brain-heart infusion broth (BHIB) under static conditions at 

37°C. 



4.2. Vero Cell Growth and Maintenance 

African green monkey kidney (vero) cells were acquired and maintained as 

described in Appendix B. Vero cells were prepared for use in cytotoxicity studies as 

outlined in Chapter 2, section 4.2. In brief, vero cells were grown to log-phase 

confluency in a T25 flask and were then harvested and re-seeded into a 96-well plate at a 

concentration of 10,000 cells/well. 

4.3. MTT Cytotoxicity Assay Standards 

A standard curve for the MTT assay was constructed as outlined in Chapter 2, 

section 4.5. This standardization process allowed for unknown concentrations of vero 

cells to be enumerated based on a correlation to this standard. 

4.4. Growth of Lactobacilli and E. coli Q157;H7 Co-cultures for Growth 
Competitions 

E. coli 0157:H7 strain 90-2380 and L. plantarum and L. casei cultures were 

grown at 37°C in static culture in individual tubes overnight in BHD3. Cultures were 

standardized to an OD600 of 0.2 in pre-warmed BHIB. These were then grown for 1 h to 

stimulate the cells into log phase growth. Cultures were centrifuged at 4,000 rpm for 5 

min (IEC Centra) and the pellets resuspended in similar media and volume as before 

centrifugation. The cultures of E. coli and each of the lactobacilli were combined in the 

specific ratios outlined in Table 3.1, and the mixtures were incubated at 37°C for 24 h. 

Separate cultures of each of the lactobacilli and the E. coli were inoculated with pre-

warmed media and incubated to serve as controls. Following incubation, all cultures 

were plated in triplicate onto eosin methylene blue (EMB) agar plates to select for the 
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Table 3.1. Co-culture Ratios of Lactobacilli to E. coli 0157:H7 

Sample 

100:1 E. coli: L. casei 

1:1 E. coli: L. casei 

1:100 E. coli: L. casei 

100:1 E. coli control 

\:\E. coli control 

1:100 E.coli control 

E. coli 0157:H7 

1980|iL 

lOOOjiL 

20uL 

1980uL 

lOOOuL 

20uL 

Sample /:. coli 0157:117 
i 

100:1 E. coli: L. plantarum 

1:1 E. coli: L. plantarum 

1:100 E. coli: L. plantarum 
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E. coli 0157:H7. Colonies were enumerated to compare the number of colony forming 

units (CFU) of E. coli 0157:H7 that were present after growth in the presence or absence 

of the lactobacilli. 

4.5. Growth of Lactobacilli and E. coli Q157;H7 Co-cultures for MTT Assay 

E. coli 0157:H7 strain 90-2380 and L. plantarum and L. casei cultures were 

grown and prepared identically to that outlined in section 4.4 above and combined in the 

ratios shown in Table 3.1 (previous page). Co-cultures were incubated at 37°C for 24 h, 

and following incubation the cultures were centrifuged at 4,000 rpm for 10 min at 4°C to 

pellet the cells. The supernates were removed and sterile filtered through a low-protein 

binding 0.2|jm filter (Pall). Sterile cell-free supernates were stored at -20°C for use in 

MTT assays. 

4.6. Co-cultures MTT Assay 

Supernates (10|iL) from probiotic and E. coli co-cultures were added in triplicate 

to a confluent vero cell monolayer in 96-well plates. Controls of lactobacilli-only and E. 

coli-only cell-free culture filtrates were also added to the vero cell monolayers. Plates 

were incubated at 37°C in 7% CO2 for 72 h. Following the 3 day incubation, an MTT 

assay was performed on these vero cells as described in Chapter 2, section 4.7. This 

assay determined the extent of vero cell killing when subjected to Stx-2-containing 

supernate. 
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4.7. Growth of Lactobacillus and E. coli Q157:H7 Co-cultures for Real Time PCR 
and ELISA 

Co-cultures of E. coli 0157:H7 with each lactobacilli species were prepared 

exactly as described in the previous section and in the same ratios as seen in Table 3.1. 

Immediately following the 3 h co-culture incubation period, IOOJJL of each co-culture 

was removed to a sterile microfuge tube and retained for immediate RNA extraction. 

The remaining 2 mL cultures were incubated at 37°C for a total of 24 hours, after which 

time they were centrifuged at 4°C at 4,000rpm for 10 min to pellet the cells. The 

supernates were removed and sterile filtered through a low-protein binding 0.2|0.m filter 

(Pall). Sterile cell-free supernates were stored at -20°C for use in ELISA assays. 

4.8. Growth of E. coli Q157:H7 with Lactobacilli Supernates, Organic and 
Inorganic Acids 

Cultures of E. coli 0157:H7 strain 90-2380, L. casei, and L. plantarum were 

grown overnight in BHIB as described in sections 4.5-4.7. The lactobacilli cultures were 

centrifuged at 7,500 rpm (Beckman) to pellet the cells. The supernatant fluids were 

collected and filtered through a low protein binding membrane (0.2 jam) and retained. In 

this experiment, unlike previous experiments in these studies, the lactobacilli cells were 

discarded. The pH of each lactobacilli supernate was measured and recorded to be pH 

4.5. BHIB aliquots were lowered to pH 4.5 using either lactic acid, acetic acid or 

hydrochloric acid. The E. coli 0157:H7 culture was subsequently standardized to an 

OD600 of 0.2 and incubated at 37°C for an additional 1 h. The standardized culture of E. 

coli 0157:H7 was combined 1:1 with either lactobacilli supernate or an acidified 

medium, as defined in Table 3.2, and incubated at 37°C for 24 h. Following incubation, 
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Table 3.2. E. coli 0157:H7 Induction by Lactobacilli Supernates 

Sample 

A 

B 

C 

D 

E 

F 

/:. coli 0157:117 Induced W ith: 

L. plantarum cell-free supernate, pH 4.5 (in BHIB) 

L. casei cell-free supernate, pH 4.5 (in BHIB) 

BHIB control 

BHIB, pH 4.5 with acetic acid 

BHIB, pH 4.5 with lactic acid 

BHIB, pH 4.5 with HC1 
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all the E. coli cultures were sterile filtered and the supernates retained for analysis by 

ELISA. 

4.9. RNA Extraction and cDNA Synthesis 

Directly following induction of the cultures, Bacterial RNA protect (Qiagen) was 

added to each aliquot of co-culture to prevent further expression of genes, and to prevent 

degradation of the mRNA present. RNA was isolated in the same manner as described in 

Chapter 2, section 4.9. The RNA was checked for DNA contamination by PCR as 

described, and samples containing DNA were discarded. 

cDNA synthesis was performed using the Superscript HI cDNA synthesis kit 

(Invitrogen) exactly as described in Chapter 2, section 4.9. cDNA samples which 

amplified in a PCR reaction were deemed acceptable and were stored at -20°C until their 

use in Real Time PCR. 

4.10. Quantification of cDNA 

cDNA samples were quantified using the Qubit (Invitrogen) High Sensitivity 

(HS) DNA quantification kit™, according to the manufacturer's instructions. A brief 

description of this process is outlined in Chapter 2, section 4.10. 

4.11. cDNA standardization 

Co-culture-induced cDNA samples were standardized to a 50 ng/mL concentration using 

nuclease-free water prior to use in Real Time PCR experiments. Standardized cDNA 

samples were stored at -20°C. 
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4.12. Real Time Polymerase Chain Reaction 

Real Time PCR was performed using an Applied Biosystems 7300 Thermocycler 

and software, as described in Chapter 2, section 4.12. Primers and dual-labeled 

fluorescent probes were designed to specifically amplify the target gene, stx2, and the 

housekeeping gene, serC, within E. coli 0157:H7 without any nonspecific amplification 

of lactobacilli genes. These primers and probes are listed in Appendix C. Primers and 

probes were tested before this experimentation to be sure that no cross-amplification 

occurred when lactobacilli DNA was used as the template for a PCR reaction. 

4.13. Enzyme-linked Immunosorbent Assay 

The ELISA was designed based on a protocol by Krishna Moody (102), and was 

conducted as described in Chapter 2, section 4.13. 

5. Results 

Statistical significance was determined as described in Appendix B, Section 5. 

5.1. E. coli Q157:H7 and Lactobacilli Co-culture Growth Competitions 

E. coli 0157:H7 strain 90-2380 was cultured together with either L. plantarum or 

L. casei in a ratio of 100:1, 1:1 or 1:100 to determine the effect of co-culture with 

lactobacilli on the growth of E. coli 0157:H7. 

A dose-dependent response was seen in the recovery of E. coli 0157:H7 when 

grown with varying amounts of L. casei. An approximately 2.5-log reduction in E. coli 

0157:H7 numbers were seen when grown in a ratio of 1:100 L. casei, and a 2-log 
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reduction was seen when grown in a 1:1 ratio. A 1-log reduction in the amount of E. coli 

0157:H7 was seen when grown in a 100:1 ratio with L. casei. These data are represented 

graphically in Figure 3.1. 

Similar inhibition of E. coli 0157:H7 recovery was noted with L. plantarum co-

cultures (Figure 3.2). A slightly greater than 2-fold reduction in E. coli 0157:H7 was 

seen when grown in a 1:100 ratio with L. plantarum, and a 2-fold reduction was seen 

with a 1:1 ratio. This reduction was not as pronounced with approximately a 0.75-log 

reduction in E. coli 0157:H7, when it outnumbered the L. plantarum in a ratio of 100:1. 

5.2. MTT Cytotoxicity Assay 

An MTT cytotoxicty assay was employed to measure the effect of Stx-2-

containing supernates on vero cells. The MTT assay was standardized by seeding a 96-

well plate with a set number of vero cells (without Stx-2) and calculating the cell 

viability. A standard curve was established, as shown in Chapter 2, Figure 2.4. 

Vero cells were subjected to various Stx-2-containing supernates collected from 

E. coli 0157:H7 grown in co-culture with either L. casei or L. plantarum. As depicted in 

Figures 3.3 and 3.4, co-culture of the E. coli 0157:H7 with L. casei or L. plantarum in a 

ratio of 1:100 or 1:1 significantly increased vero cell survival compared to the controls 

(supernates from E. coli 0157:H7 grown without the lactobacilli). When E. coli 

0157:H7 outnumbered the lactobacilli in a ratio of 100:1, there was not a significant 

difference in vero cell survival with this superaate compared to its corresponding control 

of E. coli only. 
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Figure 3.1. The Effect of L. casei on the Growth of E. coli 0157:H7. 

^M Black bars = 1:100 E. coli to L. casei and corresponding control 

EZHZ3 Gray bars = 1:1 E. coli to L. casei and corresponding control 

1 I White bars = 100: 1 E. coli to L. casei and corresponding control 

Note that less E. coli was recovered from those cultures grown with L. casei than those 
grown in pure culture, and this reduction was dose-dependent on the amount of L. casei 
present in each co-culture. 
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Figure 3.2. The Effect of L. plantarum on the Growth of E. coli 0157:H7. 

HH Black bars = 1:100 E. coli to L. plantarum and corresponding control 

E D Gray bars = 1:1 E. coli to L. plantarum and corresponding control 

White bars = 100: 1 E. coli to L. plantarum and corresponding control 

As with the L. casei, less E. coli was recovered from those cultures grown with L. 
plantarum than those grown in pure culture. The dose-dependent fashion of this growth 
inhibition was seen with both species of Lactobacillus. 
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Figure 3.3. MTT Cytotoxicity Results: Co-Culture Induction with L. casei. 

H i Black bars = 1:100 E. coli to L. casei compared to corresponding control 

L U Gray bars = 1:1 E. coli to L. casei compared to corresponding control 

I 1 White bars = 100: 1 E. coli to L. casei compared to corresponding control 

Results are displayed as a percentage of remaining vero cells when subjected to 
supernates from co-cultures compared to supernates from the controls (no L. casei). In a 
ratio of 1:100 or 1:1 of E. coli to L. casei, the supernates from L. casd-containing 
cultures significantly increased vero cell survival compared to the supernates from E. coli 
control cultures. 

92 



180 
* = p < 0.05 

»» = p < 0.005 
* * * = p < 0.0005 

1:100 E. coli : L. plantarum 1:1 E. coli : L. plantarum 100: 1 E. coli : L. plantarum 

Figure 3.4. MTT Cytotoxicity Results: Co-Culture Induction with L. plantarum. 

I H Black bars = 1:100 E. coli to L. plantarum compared to corresponding control 

Gray bars =\:\ E. coli to L. plantarum compared to corresponding control 

I—I White bars = 100: 1 E. coli to L. plantarum compared to corresponding control 

In this figure, results are displayed as a percentage of remaining vero cells when 
subjected to supernates from co-cultures compared to supernates from the controls (no L. 
plantarum). As with L. casei, in a ratio of 1:100 or 1:1 of E. coli to L. plantarum, the 
supernates from L. plantarum-containing cultures significantly increased vero cell 
survival compared to the supernates from E. coli control cultures. 
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5.3. ELISA Analysis of E. coli Q157;H7 and Lactobacilli Co-Cultures. 

Dilutions of commercially prepared Stx-2 were used to construct a standard curve 

for comparison in ELISA analysis, as seen in Chapter 2, Figure 2.6. This standard curve 

provided a linear relationship between |ig of Stx-2 and absorbance. 

Supernates were collected from co-cultures of E. coli 0157:H7 grown with either 

L. casei or L. plantarum and assayed for Stx-2 concentration by ELISA. In a ratio of 

1:100 (E. coli: L. casei), L. casei significantly reduced the production of Stx-2 by E. coli 

0157:H7 when compared to the control. Approximately 5 |ig of Stx-2 was produced 

when co-cultured with the L. casei, compared to 14 |ig in the control culture. In a 1:1 

ratio, a smaller, but still significant, reduction of Stx-2 production was seen. When the 

pathogen outnumbered the L. casei in a ratio of 100:1, there was not a significant 

difference in Stx-2 production compared to the control. Figure 3.5 depicts the absolute 

concentrations of Stx-2 (|ig) produced for each of the co-cultures and their controls. 

Figure 3.6 represents the same data, but portrays the percentage of Stx-2 in the co-

cultures as compared to the controls. In this figure, it is clear that the reduction of Stx-2 

by the various amounts of L. casei occur in a dose-dependent manner. The concentration 

of Stx-2 was reduced to 37%, 67%, and 87% (not significant) of the corresponding 

controls for 1:100, 1:1 and 100:1 ratios, respectively. 

L. plantarum exerted similar pressure on E. coli 0157:H7 and its production of 

Stx-2, as seen in Figure 3.7. The 1:100 ratio co-culture of L. plantarum reduced Stx-2 

concentration from 16|ig to 3|_ig. The 1:1 ratio also significantly reduced Stx-2 

production, from 17|ig to 8.5|ig. When the E. coli was in a 100:1 ratio with the L. 

plantarum, no change in Stx-2 production was detectable. Figure 3.8 depicts the 
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Figure 3.5. ELISA: The Effect of L. casei on the Production of Stx-2 by E. coli 
0157:H7. In this figure, Stx-2 concentration from co-cultures are compared to pure 
culture E. coli Stx-2 production. Note that L. casei exerted a dose-dependent effect on the 
production of Stx-2 by E. coli 0157:H7. 
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Figure 3.6. ELISA: The Effect of L. casei on the Production of Stx-2 by E. coli 
0157:H7. Co-culture concentrations of Stx-2 are normalized against their corresponding 
controls. Results are displayed as a percentage of Stx-2 in co-cultures compared to the 
controls (no L. casei). In a ratio of 1:100 or 1:1 of E. coli to L. casei, the L. casei 
significantly reduced Stx-2 production by E. coli 0157:H7. No significant change was 
detected at a ratio of 100:1. 
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Figure 3.7. ELISA: The Effect of L. plantarum on the Production of Stx-2 by E. coli 
0157:H7. In this figure, Stx-2 concentration from co-cultures is compared to pure 
culture E. coli Stx-2 production. Note that L. plantarum exerted a dose-dependent effect 
on the production of Stx-2 by E. coli 0157:H7. 
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Figure 3.8. ELISA: The Effect of L. plantarum on the Production of Stx-2 by E. coli 
0157:H7. Results are displayed as a percentage of Stx-2 in co-cultures compared to the 
controls (no L. plantarum). As seen with L. casei, a ratio of 1:100 or 1:1 of E. coli to L. 
plantarum, the L. plantarum significantly reduced Stx-2 production by E. coli 0157:H7. 
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percentage of Stx-2 in the co-cultures compared to the control in these ELISA analyses. 

Stx-2 was reduced by 21% in the 1:100 co-culture, 49% in the 1:1 co-culture, and 98% in 

the 100:1 co-culture. As with the L. casei, the reduction in Stx-2 was dependent on the 

concentration of L. plantarum present in each co-culture. 

5.4. ELISA Analysis of E. coli Q157:H7 Supernates from Cultures Grown with 
Lactobacilli Supernates or Acidified Media 

Lactobacilli supernates and media that was acidified to pH 4.5 by an organic acid 

(acetic or lactic acid) significantly reduced the production of Stx-2 by E. coli 0157:H7. 

However, media that was acidified to the same pH but with hydrochloric acid, an 

inorganic acid, caused no significant change in Stx-2 production. Absolute 

concentrations of Stx-2 are shown in Figure 3.9. The control culture of E. coli 0157:H7 

produced just fewer than 16|ig of Stx-2. The cultures of E. coli 0157:H7 when grown 

with L. plantarum supernate, L. casei supernate, acetic acid-containing media, and lactic 

acid-containing media all produced approximately 12|j.g of Stx-2. Figure 3.10 depicts the 

concentration of each test sample as a percentage compared against the control. A 

significant reduction to 70-80% of the control was seen for all conditions except 

hydrochloric acid-containing media. 

5.5. Real Time PCR Analysis of E. coli Q157;H7 Transcripts. 

The expression of the stx2 gene in E. coli 0157:H7 was significantly reduced 

when grown in co-culture with L. casei and L. plantarum in a ratio of 1:100 or 1:1. 

Growth of the pathogen with either lactobacilli species in a ratio of 100:1 did not 

significantly alter stx2 expression. As shown in Figure 3.11, the 1:100 ratio of E. coli to 
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Figure 3.9. ELISA: The Effect of Lactobacilli Supernates or Acidified Media on the 
Production of Stx-2 by E. coli 0157:H7. E. coli 0157:H7 was grown with lactobacilli 
supernate or acidified BHIB, and Stx-2 concentration was assayed by ELISA. Both 
lactobacilli supernates and both organic acids (acetic acid and lactic acid) significantly 
reduced Stx-2 production by E. coli 0157:H7. However, hydrochloric acid, an inorganic 
acid, did not affect the production of Stx-2. 
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Figure 3.10. ELISA: The Effect of Lactobacilli Supernates or Acidified Media on the 
Production of Stx-2 by E. coli 0157:H7. Data are depicted as a percent Stx-2 
compared to the control (E. coli grown without supernate or acidified media). Growth of 
E. coli 0157:H7 with lactobacilli supernate, acetic acid, or lactic acid led to a 70-80% 
reduction in Stx-2 production compared to the control. 
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Figure 3.11. Real Time PCR Analysis of E. coli 0157:H7 and L. casei Co-Cultures. 
Note that both the 1:100 and 1:1 E. coli to L. casei ratio and the 1:100 E. coli to L. casei 
culture (solid gray bar, right) significantly reduced stx2 transcripts compared to the E. 
coli only controls. 
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L. casei decreased stx2 expression to 29% of the control. The 1:1 ratio reduced stx2 

expression to 40% of the control. L. plantarum co-cultures with E. coli 0157:H7 also 

reduced stx2 expression, though not to the degree that L. casei did. As seen in Figure 

3.12, L. plantarum co-cultures reduced stx2 expression to 55% and 75% of the control, 

for the 1:100 and 1:1 ratios, respectively. 

6. Discussion 

The study of probiotics, microbes that are beneficial for human consumption, is a 

rapidly-expanding subdiscipline of microbiology. Probiotics have been shown to reduce 

the shedding and severity of disease in various animal models of E. coli 0157:H7 

infections (23, 25, 142, 160, 175, 176). The reduction in disease can in part be attributed 

to the effects the probiotics have on the production of virulence factors by the pathogen. 

Animal model studies have shown that lactobacilli inhibit the formation of attaching and 

effacing lesions in the gut and that this response is due to direct cell-to-cell contact of 

lactobacilli and E. coli 0157:H7 (25, 142). Likewise, studies have shown that the in vivo 

production of Stx-2 by E. coli 0157:H7 is reduced in animals co-colonized with a 

probiotic organism (4, 30, 110, 141, 160, 176). 

In the present study, E. coli 0157:H7 was grown in co-culture with two 

probiotics, L. casei and L. plantarum, to determine the effect of the lactobacilli on the 

overall growth of E. coli 0157:H7 as well as on the expression of the stx2 gene, and the 

production of Stx-2. It was hypothesized that the lactobacilli would reduce stx2 

expression and Stx-2 production by the E. coli. It was similarly thought that co-culture of 

the E. coli with the probiotics would reduce the overall numbers of E. coli 0157:H7 cells 
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Figure 3.12. Real Time PCR Analysis of E. coli 0157:H7 and L. plantarum Co-
Cultures. Both the 1:100 and 1:1 E. coli to L. plantarum ratio significantly reduced stx2 
transcripts compared to the E. coli only controls. These results were similar to what was 
seen with L. casei co-cultures. 
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in culture when compared to growth of the pathogen in culture alone. It was indeed 

determined that growth of the E. coli 0157:H7 was reduced in co-culture with the 

lactobacilli, and this growth inhibition was related to the starting concentrations of both 

organisms. ELISA analysis confirmed that when the E. coli 0157:H7 started as either 

1% (1:100) or 50% (1:1) of the total number of cells in culture, then Stx-2 production 

was significantly reduced. When the E. coli outnumbered lactobacilli 100:1, no 

significant change in Stx-2 production was noted when compared to the control. Real 

Time PCR showed similar results for the toxin gene expression at these organism 

concentrations. It was clear that the mode of action of cell-to-cell contact of the 

lactobacilli on the virulence of E. coli 0157:H7 was complex, and involved a reduction in 

pathogen growth, stx2 expression, and toxin production. However, subsequent ELISA 

experiments with cell-free lactobacilli supernate and acidified media indicated that this 

reduction in Stx-2 was also due to secreted compounds from the lactobacilli. 

Cell-free supernates from the lactobacilli, and both organic acids, acetic acid and 

lactic acid, reduced Stx-2 production to 75-80% that normal (no supernate, not acidified) 

medium. This reduction in part accounts for the reduction of Stx-2 seen in co-culture 

models, but does not account for the full decrease in Stx-2 seen in these studies (as low as 

20% Stx-2 concentration compared to the pure culture supernate). The hypothesis that 

lactobacilli reduce Stx-2 production by cell-to-cell contact was not disproven by these 

studies. However, it was determined that the production of organic acids by these 

probiotics may also play a role. Interestingly, growth of the pathogen in media acidified 

to the same pH, but using an inorganic acid (HC1) showed no affect on the bacterial 

production of Stx-2. It has been shown that E. coli has various overlapping means of 
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inorganic acid resistance, but that these resistance mechanisms are not always as potent 

against organic acids (9, 51). Unlike inorganic acids, organic acids can enter the E. coli 

cell in an undissociated state and then dissociate. This results in a lowering of 

cytoplasmic pH, which can kill the E. coli cell, or alter its membrane composition (9, 34, 

51, 131). Indeed, Stx secretion is reduced when the lipid composition of the E. coli 

membrane is altered (60, 173). It appears likely that this mode of action of organic acids 

on E. coli 0157:H7 contributes to the reduction in Stx-2 seen when the pathogen was 

grown in lactobacilli supernates, or when it was grown in organic acid-containing media. 

Real Time PCR analysis of the stx2 gene provided additional insight into the 

mechanisms surrounding the effect of lactobacilli on Stx-2 production. These studies 

showed that the lactobacilli were able to alter the expression of stx2 gene in E. coli when 

they were in equal or greater numbers to the pathogen. It is possible that the presence of 

the lactobacilli disrupted E. coli cell-to-cell signaling, and therefore reduced stx2 

expression. Regulation of virulence by quorum sensing has been noted in numerous 

pathogens (98), and specifically studies have shown that quorum sensing molecules 

produced by both the pathogenic and benign strains of E. coli are able to upregulate stx2 

expression (47, 48, 147, 148). In a study by Medellin-Pena et. Al (94), probiotics were 

demonstrated to "quorum-quench" E. coli cell-to-cell communication, resulting in a 

reduction in the virulence of the organism. Stx-2 production was not significantly 

affected by the quorum-quenching in that study, however a different species of 

Lactobacillus was used than in the present study, which could account for the difference 

in observed results. 
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Probiotics have been demonstrated to reduce virulence of E. coli 0157:H7 in 

numerous other cases (4, 30, 73, 88, 142, 175, 176). Saccharomyces bouldarii was 

shown to reduce signaling in T84 cells that allows enterohemorrhagic E. coli to maintain 

adherence to the cells. Although S. bouldarii did not affect the number of E. coli cells, it 

did reduce the virulence of the pathogen by interfering with adhesion (30). Lactobacilli 

have specifically been shown to affect adherence of pathogenic strains of E. coli as well; 

in one study, the production of attaching and effacing lesions was significantly reduced in 

the presence of L. rhamnosus and L. acidophilus (142). Probiotics have even been 

suggested to cross-domain signal with intestinal cells, causing those cells to increase their 

production of mucus, which is inhibitory to pathogen adherence and persistence (88). 

Within the course of an infection in the human gastrointestinal tract, E. coli 

0157:H7 is exposed to numerous signaling molecules, all with the possibility of 

modulating virulence in some manner. Even human hormones such as epinephrine and 

norepinephrine have been shown to upregulate the virulence genes in enterohemorrhagic 

E. coli (7). It is possible that probiotics such as lactobacilli contribute to the mass of 

signaling that occurs in this complex environment, and that they ate able to alter cell-to-

cell communication of the E. coli 0157:H7 and thus reduce its ability to regulate the 

production of its virulence factors, including Stx-2. 
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CHAPTER 4 

IMPACTS OF GLUCOSE, GLYCEROL AND 
CYCLIC ADENOSINE MONOPHOSPHATE ON STX-2 PRODUCTION BY 

ESCHERICHIA COL7 0157:H7 

1. Abstract 

Previous research has shown that growth of lambda-infected non-pathogenic E. 

coli in the presence of glucose led to a significantly higher rate of induction of the lytic 

phase of lambda, whereas growth in glycerol resulted in phage lysogeny. In the present 

study, it was hypothesized that growth of E. coli 0157:H7 in glycerol would likewise 

maintain 933-W (a lambda-like phage harboring the stx2 gene) in a lysogenic state and 

therefore reduce the production of Stx-2. Likewise, increasing the availability of cAMP 

to the organism would decrease Stx-2 production by simulating intracellular low-glucose 

availability. E. coli 0157:H7 was grown in glucose or glycerol-supplemented minimal 

media, or in Luria Bertani (LB) broth supplemented with cAMP. The stx2 gene was 

assessed using q-PCR, and the production of Stx-2 toxin was measured using a capture 

ELISA as well as by MTT cytotoxicity assay. It was determined that Stx-2 production 

increased with increasing availability of glucose; indeed, cultures of the organism in 

minimal media with 1.0% glucose yielded 2-times higher concentrations of Stx-2 

compared to those grown in 0.04% glucose. Varying concentrations of glycerol had no 

effect on Stx-2 production. As predicted, increasing the concentrations of cAMP 

decreased the amount of Stx-2 produced. These studies suggest that glucose but not 
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glycerol stimulates Stx-2 expression by lambda-like phage 933-W carrying strains of E. 

coli 0157:H7. 

2. Introduction 

The stx2 gene is located on a lambda-like bacteriophage inserted as a prophage 

into the chromosome of E. coli 0157:H7. When the organism is metabolically stable, the 

prophage remains in a lysogenic state. However, if the E. coli host is subjected to stress, 

the prophage converts to a lytic state and is excised from the chromosome. During 

excision, the stx2 gene is co-expressed with phage genes, leading to an increase in toxin 

production (78, 104, 120, 164). Upregulation of stx2 gene expression is a consequence of 

activation of the previously-dormant prophage and the switch from a lysogenic state to a 

lytic state. Numerous factors have been cited as inducers of the bacteriophage (that is, 

factors that encourage the phage to convert from lysogeny to a lysis) (47, 57, 74, 71). 

In 2001 Czyz et. al (29) conducted a study on the rates of lysis and lysogeny by a 

lambda phage in a non-pathogenic E. coli strain. The purpose of the research was to 

determine whether the growth medium influenced the lytic cycle of lambda 

bacteriophages within E. coli. The authors concluded that lysis occurred more frequently 

in cultures of E. coli grown in minimal media (M9) with glucose than in cultures of E. 

coli grown in M9 with glycerol. Concentrations of glucose are inversely proportional to 

the concentrations of cyclic adenosine monophosphate (cAMP) in bacterial host cells. It 

was reasoned that because cAMP indirectly inhibits proteases that breakdown the ell 

protein, and because the protein ell is an integral part of the regulatory system that 
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encourages lambda lysogeny, by increasing glucose in the cell, and therefore lowering 

cAMP, lysis of the phage was promoted through the degradation of ell (29). 

It is possible that such conditions apply to the pathogenic E. coli 0157:H7 (EHEC 

strains) and the lambda-like 933-W prophage it carries. Indeed, the genetic system 

controlling lysogeny of the E. coli 0157:H7 BP-933W bacteriophage is similar to that of 

lambda in that it is a complex, self-repressing, and self-regulating system. When the 

regulatory proteins ell and cIII are expressed at low levels they activate the repressor cl. 

cl in turn binds and represses the promoters, ProL and ProR, to stop the transcription of 

the majority of the phage genome, including ell and cIII and thus the toxin gene, stxl (78, 

86, 164). In the case of reduced levels of cAMP (due to high levels of glucose), more 

cellular proteases are present, and the rate of ell degradation is increased. Without the ell 

protein, the expression of cl repressor is arrested, and the late phage genes are expressed 

including stxl. Because the stxl gene is located between the late phage promoter and 

phage-excision genes, it is co-transcribed when these genes become activated (86, 164). 

Therefore, it is possible that stxl is upregulated under conditions of high glucose 

availability. In conditions of low glucose availability and high cAMP concentrations, 

stxl may be downregulated. 

In the current study, the production of the toxin Stx-2 and the activity of the stxl 

gene were measured when the organism E. coli 0157:H7 was grown in M9 containing 

either 0.04%, 0.2% or 1.0% glucose, or 0.04%, 0.2% or 1.0% glycerol. Likewise, E. coli 

0157:H7 was grown in LB medium in the absence of exogenous cAMP or containing 

ImM or lOmM exogenous cAMP. Stx-2 production was measured by both cytotoxicity 

assays and by enzyme-linked immunosorbent assay (ELISA). The activity of the stxl 
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gene was measured by quantitative Real Time PCR, and for these investigations, the serC 

(serine synthase) was used as a housekeeping gene; it is constitutively transcribed despite 

growth conditions. All results were expressed as a function of serC activity to allow for 

differences in experimental techniques (efficacy of RNA extraction, cDNA synthesis, 

etc.). 

3. Hypothesis 

It was hypothesized that growth of the pathogenic E. coli 0157:H7 in glucose 

would lead to an increase in stx2 expression and Stx-2 production, compared to growth of 

the organism in glycerol. This upregulation in stx2 was believed to be linked to induction 

of the lytic phase of the 933-W phage that resides within the E. coli 0157:H7 

chromosome. Conversely, supplementation of a growth medium with exogenous cAMP 

was believed to inhibit the lytic phase of the 933-W phage, and therefore reduce both stx2 

expression and Stx-2 production. 

4. Materials and Methods 

Media and reagent preparations are provided in detail in Appendix A. 

4.1. Bacterial Cultivation 

The E. coli 0157:H7 strains 90-2380 and 43888 stock cultures were acquired and 

maintained as described in Appendix B. Overnight and experimental cultures used in 

these experiments were grown in Mueller-Hinton broths (MHB), or M9 minimal media 

supplemented with glucose or glycerol. All cultures were grown statically at 37°C. 
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4.2. Growth Curves of E. coli Q157;H7 in Glucose or Glycerol Supplemented 
Minimal Media 

E. coli 0157:H7 strain 90-2380 was inoculated into six separate broths: three 

cultures of M9 supplemented with 0.04%, 0.2%, or 1.0% glucose, and three cultures of 

M9 supplemented with 0.04%, 0.2%, or 1.0% glycerol, and incubated at 37°C overnight 

under static conditions. The following day the cultures were adjusted with pre-warmed 

media containing the same carbon source concentrations as they had been grown in to 

give an optical density of 0.2 at 600 nm. These cultures were grown for one additional 

hour to stimulate the cells into log phase growth and were the centrifuged at 4,000 rpm 

for 5 min (EEC Centra). Pellets were resuspended in the identical type and volume of 

media as before centrifugation. 

Three 200|J,L aliquots from each of these six tubes were immediately removed 

and pipetted in triplicate into a sterile 96-well plate (Corning). The plate was placed in a 

microplate reader (Tecan), and incubated at 37°C under static for 6 h. Absorbance 

readings at 600 nm were recorded every 15 min. These data were plotted to determine 

the growth curves for E. coli 0157:H7 when grown M9 media in the presence of the 

various concentrations of each of the two carbon sources. 

4.3. Growth Curves of E. coli Q157:H7 in cAMP Supplemented LB Media 

E. coli 0157:H7 was grown and prepared as described in the previous section. 

The culture was then divided into three equal 2-mL aliquots. Exogenous cAMP was 

added to the second and third aliquots of culture to yield 1 mM and 10 mM final 

concentrations, respectively. 
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Three 200 \iL aliquots from each of these three tubes were immediately removed 

and pipetted in triplicate into a sterile 96-well plate (Corning), and growth density was 

recorded over time, exactly as described in section 4.2. These data were plotted to 

determine a growth curve for E. coli 0157:H7 when grown in 0 mM cAMP-, 1 raM 

cAMP-, and 10 mM cAMP-supplemented LB. 

4.4. Vero Cell Growth and Maintenance 

African green monkey kidney (vero) cells were acquired and maintained as 

described in Appendix B. In preparation for cytotoxicity assays, log-phase vero cells 

were passaged into a 96-well microtiter plate (Corning) seeded into the 96-well plate at a 

concentration of 10,000 cells/well, as described in Chapter 2, section 4.2. 

4.5. MTT Cytotoxicity Assay Standards 

A MTT assay standard curve was prepared as described in Chapter 2, section 4.5. 

This standard curve was used in the analysis of subsequent MTT assays to determine the 

number of live vero cells remaining after treatment with Stx-2 containing media. 

4.6. Growth of E. coli Q157;H7 in M9 with Glucose or Glycerol for MTT Assay 

E. coli 0157:H7 strain 90-2380 was inoculated into six broths containing 0.04%, 

0.2% or 1.0% glucose, or 0.04%, 0.2% or 1.0% glycerol. Cultures were then grown 

overnight at 37°C under static conditions. The following day these cultures were adjusted 

to an optical density of 0.2 at 595 nm using pre-warmed media containing the same 

carbon source concentrations as they had been grown in previously. An additional one 
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hour incubation was used to stimulate the cells into log phase growth. These cultures 

were centrifuged at 4,000 rpm for 5 min (IEC Centra) and the pellets were resuspended in 

the identical type and volume of media as before centrifugation. This served to remove 

residual toxin formed during the overnight incubation so that only newly-formed toxin 

would be assayed. These cultures were incubated at 37°C for 24 h. Immediately 

following incubation, the cultures were centrifuged at 4,000 rpm at 4°C for 10 min to 

pellet the cells. The supernates were removed and sterile filtered through a low-protein 

binding 0.2 |0,m filter (Pall). Sterile cell-free supernates were stored at -20°C for use in 

MTT assays. 

4.7. Growth of E. coli Q157;H7 in cAMP-supplemented LB for MTT Assay 

E. coli 0157:H7 was grown and prepared as described in the previous section, 

except LB broth was used in place of M9 medium. The culture was then divided into 3 

equal 2-mL aliquots. cAMP was added to the second and third aliquots of culture to give 

1 mM and 10 mM final concentrations. Cultures were incubated at 37°C for 24 h at 

which time they were centrifuged at 4,000 rpm at 4°C for 10 min to pellet the cells. The 

supernates were removed and sterile filtered through a low-protein binding 0.2 |j,m filter 

(Pall). Sterile cell-free supernates were stored at -20°C for use in MTT assays. 

4.8. E. coli Q157;H7 Growth in M9 with Glucose or Glycerol MTT Assay 

Ten |iL each of supernates collected from the growth of E. coli 0157:H7 in 

glucose or glycerol containing media were added in triplicate to confluent vero cells in a 

96-well plate. The plate was incubated at 37°C in 7% CO2 (Airgas) for 72 h. Following 
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the 3-day incubation, an MTT assay was performed on the vero cells, as described in 

Chapter 2, section 4.7. This assay was used to determine the cytotoxicity supernates 

produced from E. coli 0157:H7 cultures grown in the various concentrations of either 

glucose or glycerol. 

4.9. E. coli Q157:H7 Growth in cAMP-Supplemented LB MTT Assay 

A similar MTT assay to that described in the previous section was performed on 

the supernatant fluid collected from the growth of E. coli 0157:H7 in cAMP-

supplemented LB medium. The purpose of this experiment was to determine the amount 

of Stx-2 in these supernates, to determine if cAMP has an effect on the production of the 

toxin by the pathogen. 

4.10. Growth of E. coli Q157:H7 in M9 with Glucose or Glycerol for Real Time 
PCR and ELISA 

E. coli 0157:H7 strain 90-2380 was grown in glucose- or glycerol-containing 

medium and prepared exactly as described in section 4.2. Immediately following 

incubation, 100 |JL of each culture was removed to a sterile microfuge tube and retained 

for RNA extraction, which was performed immediately. The remaining 2-mL cultures 

were incubated for a total of 24 h, followed by centrifugation and collection of the cell-

free supernate, as previously described. The supernates were sterile filtered through a 

low-protein binding 0.2 |im filter (Pall), and stored at -20°C for use in ELISA assays. 
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4.11. Growth of E. coli Q157:H7 in cAMP-Supplemented LB for Real Time PCR 
and ELISA 

E. coli 0157:H7 was grown in cAMP-supplemented LB medium as described in 

section 4.3. Immediately following incubation, 100 (0,L of each culture was removed to a 

sterile microfuge tube and RNA extraction was performed immediately. The remaining 

2-mL cultures were incubated for a total of 24 h, after which cell-free supernates were 

collected and stored at -20°C for use in ELISA assays. 

4.12. RNA Extraction and cDNA Synthesis 

Bacterial RNA protect (Qiagen) was added to each aliquot of culture to prevent 

degradation of mRNA and to halt all transcription within the E. coli cells. RNA was 

isolated in the same manner as described in Chapter 2, section 4.9. The RNA was 

assayed for contaminating genomic DNA by PCR, as described in Chapter 2, and 

samples containing DNA were discarded and the RNA extraction protocol was repeated 

on a freshly prepared culture. 

cDNA synthesis was performed using the Superscript III cDNA synthesis kit 

(Invitrogen) exactly as described in Chapter 2, section 4.9, and samples were tested in a 

standard PCR assay to ensure that the cDNA synthesis was successful. cDNA samples 

were stored at -20°C until their use in Real Time PCR studies. 

4.13. Quantification of cDNA 

cDNA samples were quantified using the Qubit (Invitrogen) High Sensitivity 

(HS) DNA quantification kit™, according to the manufacturer's instructions. A brief 
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explanation of the Quibit fluorometer quantification protocol is described in Chapter 2, 

section 4.10. 

4.14. cDNA standardization 

Carbon source-induced and cAMP-induced cDNA samples were standardized 

using nuclease-free water to give a concentration of 100 ng/mL prior to use in Real Time 

PCR experiments. Standardized cDNA samples were stored at -20°C. 

4.15. Real Time Polymerase Chain Reaction 

Real Time PCR was performed using an Applied Biosystems 7300 Thermocycler 

and software, as described in Chapter 2, section 4.12. The primers and dual-labeled 

probes used in this assay are described in Appendix C. 

4.16. Enzyme-linked Immunosorbent Assay 

Enyzme-linked Immunosorbent Assay (ELISA) was designed based a protocol by 

Krishna Moody (102), and is described in detail in Chapter 2, section 4.13. A dilution of 

purified Stx-2 (Toxin Technologies) was measured concurrently with the test samples for 

accurate quantification of Stx-2 in the E. coli 0157:H7 supernates. The microliter plate 

was read spectrophotometrically at 405 nm and the data were recorded. 
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5. Results 

Statistical significance was determined as described in Appendix B, Section 5. 

5.1. Growth Curves of E. coli Q157;H7 in Glucose or Glycerol Supplemented 
Minimal Media 

Several growth curves were constructed to show the growth E. coli 0157:H7 in 

glucose- or glycerol-supplemented M9 medium. These curves are shown in Figure 4.1 

and clearly show that the growth rate of E. coli 0157:H7 is not affected by the 

concentration or type of carbon-source used. 

5.2. Growth Curves of E. coli Q157:H7 in cAMP Supplemented LB 

A similar set of growth curves were constructed for the growth of E. coli 

0157:H7 in cAMP-supplemented LB medium (Figure 4.2). No significant change in the 

growth rate of the organism was seen, regardless of the concentration of exogenous 

cAMP. 

5.3. MTT Cytotoxicity Assay 

A MTT cytotoxicty was employed to measure the effect of Stx-2-containing 

supernates on vero cells. Supernates obtained from E. coli 0157:H7 grown in glucose-

containing media killed significantly more vero cells than those supernates obtained from 

E. coli 0157:H7 grown in glycerol-containing media (Figure 4.3). The amount of vero 

cells killed was proportional to the amount of glucose present in the growth medium used 

to grow the E. coli 0157:H7; higher concentrations of glucose yielded higher kill rates of 

vero cells. There was no significant change between varying concentrations of glycerol. 
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Figure 4.1. Growth Curve of E. coli 0157:H7 in M9 with Glucose or Glycerol. 
E. coli was grown in either glucose or glycerol supplemented M9 media. Note that 
growth rate of the organism was not impacted by the type or concentration of the 
medium. 
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Figure 4.2. Growth Curve of E. coli 0157:H7 in cAMP Supplemented LB. E. coli 
was grown in LB medium with either OmM, lmM or lOmM cAMP. No difference was 
seen in growth rate for those cultures grown with or without cAMP. 
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Figure 4.3. MTT Cytotoxicity Assay: The Effect of Glucose and Glycerol on Stx-2 
Production by E. coli 0157:H7. When grown in glucose-containing medium, the E. coli 
0157:H7 produces more cytotoxic compounds (likely Stx-2) than when grown in 
glycerol-containing media. Note that the cytotoxic affects increase with the 
concentration of glucose, yet no significant difference is seen between the different 
concentrations of glycerol. 

121 



The concentration of cAMP appeared to exert an inversely proportional reaction 

on the cytotoxicity of the E. coli 0157:H7 supernates, as seen in Figure 4.4. When 

cultured without cAMP, E. coli 0157:H7 supernate killed approximately 80% of the vero 

cell monolayer. The addition of 1 mM cAMP reduced the percentage of vero cell death 

to 70%, though this was not found to be statistically significant. However, E. coli 

0157:H7 grown with 10 mM cAMP reduced vero cell death to 37%. This was a 

considerable reduction in cytotoxicity. 

5.4. ELISA Analysis of E. coli Q157:H7 Grown with Carbon Source Variation. 

Supernates were collected from cultures of E. coli 0157:H7 grown in either M9 

with glucose, M9 with glycerol, or LB supplemented with cAMP. These supernates were 

assayed for Stx-2 concentration by ELISA, and compared to the previously-constructed 

standard curve (Figure 2.6). 

As depicted in Figure 4.5, when grown in 0.04% glucose, E. coli 0157:H7 

produced 1.9 |j,g of Stx-2. This increased to 3.1 [ig in 0.2% glucose, and to 3.8 |ig in 

1.0% glucose. In 0.04%, 0.2% or 1.0% glycerol, E. coli 0157:H7 produced 

approximately 0.5 to 0.8 (Xg of Stx-2. Growth in glucose-containing media produced 

significantly more Stx-2 than in the same concentration of glycerol. Likewise, 

production of Stx-2 was dose-dependent on glucose concentration; more Stx-2 was 

produced when more glucose was available to the microorganism during growth. The 

concentration of glycerol, however, did not significantly change the production of Stx-2. 

Production of Stx-2 by E. coli 0157:H7 was also affected by the concentration of 

exogeneous cAMP added to the growth medium. When no exogenous cAMP was added, 
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Figure 4.4. MTT Cytotoxicity Assay: The Effect of cAMP on Stx-2 Production by E. 
coli 0157:H7. Note that the supernates obtained from E. coli 0157:H7 grown in lOmM 
cAMP killed significantly less vero cells than those supernates obtained from E. coli 
0157:H7 grown in either OmM or ImM cAMP. 
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Figure 4.5. ELISA Analysis of the Effect of Glucose and Glycerol on the Production 
of Stx-2 by E. coli 0157:H7. Cultures grown in glucose-containing M9 produced 
significantly more Stx-2 than those grown in glycerol-containing M9. This response was 
dose-dependent for glucose but not for glycerol. Increased concentrations of glucose 
produced increased concentrations of Stx-2, however, varying the concentration of 
glycerol did not effect the production of Stx-2 in those cultures. 
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E. coli produced 10 |̂ g of Stx-2. The addition of ImM cAMP reduced this to 9 |ig of 

Stx-2, which was not statistically significant. However, the addition of 10 mM of cAMP 

reduced the production of Stx-2 to 6.5 p,g. This data is represented in Figure 4.6. 

5.5. Real Time PCR Analysis of £. coli Q157:H7 Transcripts. 

The cDNA collected from glucose and glycerol-induced cultures was used in Real 

Time PCR analysis. Two genes were assayed: serC and stx2. All data for stx2 was first 

normalized against serC. Once normalized, each glucose sample was compared directly 

to its glycerol counterpart for a change stx2 expression. As shown in Figure 4.7, all three 

concentrations of glucose resulted in increased stx2 expression when compared to the 

equal concentration of glycerol. Growth in 0.04% glucose resulted in 5.5-fold higher stx2 

expression than 0.04% glycerol. Likewise, 0.2% glucose and 1.0% glucose yielded 4.8-

fold and 4.5-fold higher stx2 expression than their glycerol counterparts. There was not, 

however, a significant difference in stx2 expression between the three concentrations of 

glucose (5.5-fold, 4.8-fold and 4.5-fold). 

Figure 4.8 depicts how cAMP appears to exert an opposite effect on stx2 

expression than did growth in glucose. In this analysis, the expression of stx2 in 0 mM 

cAMP is normalized to one, and the samples grown in 1 mM cAMP and 10 mM cAMP 

are compared against that control sample. These results indicate that both 1 mM and 10 

mM cAMP reduced stx2 expression to approximately 0.45- and 0.6-fold of the expression 

in the absence of cAMP. However, the concentration of cAMP (either 1 mM or 10 mM) 

was not statistically significant. 
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Figure 4.6. ELISA Analysis of the Effect of cAMP on the Production of Stx-2 by E. 
coli 0157:H7. Note that cultures grown in lOmM cAMP produced significantly less Stx-
2 than those grown in OmM cAMP. No significant change in Stx-2 production was seen 
when the pathogen was grown in ImM compared to OmM cAMP. 
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Figure 4.7. Real Time PCR Analysis of stx2 in E. coli 0157:H7 Grown in Glucose-
or Glycerol-Containing Media. Real Time PCR analysis was performed on the cDNA 
of samples grown in glucose or glycerol. Samples from glucose-containing media were 
compared to their glycerol counterparts for stx2 expression. Note that all cultures grown 
in glucose had significantly higher expression of stx2 than those grown in glycerol. 
However, no significant difference was noted between the various concentrations of 
glucose. 
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Figure 4.8. Real Time PCR Analysis of stx2 in E. coli 0157:H7 Grown in cAMP-
containing LB. Note that both ImM and lOmM cAMP decreased the amount of stx2 
transcripts produced by E. coli 0157:H7 when compared to growth in the absence of 
exogeneous cAMP. 
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6. Discussion 

Czyz et al (29) showed that in non-pathogenic E. coli, a lambda phage was more 

likely to stay in a lysogenic state when the E. coli was grown in glycerol compared to 

glucose. These findings were applied in the present study to the pathogenic E. coli 

0157:H7, which harbors a lambda-like phage, 933-W. In E. coli 0157:H7, the stx2 gene 

is located within the 933-W phage structural genes (49). It is expressed at low, baseline 

levels unless the phage switches from a lysogenic to a lytic state. When this switch 

occurs, the phage structural genes are transcribed, and the stx2 gene is consequently co-

transcribed (78, 104, 120, 164). It was hypothesized that this switch from lysogeny to 

lysis would occur more readily when the E. coli 0157:H7 was grown in glucose-

supplemented media compared to glycerol-supplemented media, and that this would be 

demonstrated by an increase in stx2 expression and Stx-2 production. Similarly, it was 

thought that this increase in stx2 expression and Stx-2 production in the presence of 

glucose would be inversely linked to a decrease in cAMP, and that increasing 

concentrations of cAMP could cause the lambda-like phage to remain lysogenic, thereby 

decreasing stx2 expression and Stx-2 production. 

These studies showed that indeed, growth of the E. coli 0157:H7 in glucose-

supplemented media increased stx2 expression and Stx-2 production compared to growth 

in glycerol-supplemented media. It is likely that high levels of glucose reduced the 

intracellular concentration of cAMP in E. coli 0157:H7. The presence of cAMP reduces 

the concentration of intracellular proteases, including those that degrade ell. The 

degradation of ell causes a reduction in the production of the repressor cl, which is 

responsible for repressing expression of the phage lysis genes, including stx2 (78). This 
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hypothesis is confirmed by the upregulation of stxl seen in the presence of glucose, and 

the opposite downregulation of stxl seen in the presence of cAMP. Higher 

concentrations of cAMP decreased overall Stx-2 production, and increasing 

concentrations of glucose caused the E. coli 0157:H7 to produce increasingly more Stx-

2, and also led to greater vero cell death in cytotoxicity assays. 

Interestingly, this dose-dependent response to glucose was not mimicked in stxl 

expression studies; all concentrations of glucose led to higher stxl expression than when 

grown in glycerol, but this upregulation was not significantly different between the 

various concentrations of glucose. It is possible that because the Real Time PCR studies 

were performed after only 1 h of growth that the differences between glucose 

concentrations were not as defined as after 24 h of growth, as in the ELISA and MTT 

assays. A similar pattern was detected in the cAMP-supplemented media studies. In 

Real Time PCR studies, cAMP decreased stxl expression, yet this decrease was not 

dependent on cAMP concentration (both ImM and lOmM cAMP decreased stxl 

expression), whereas in ELISA and MTT studies, the ImM cAMP concentration was not 

sufficient to cause a significant change from the OmM cAMP culture. It required lOmM 

cAMP to cause a significant decrease in Stx-2 production and a significant decrease in 

vero cell killing. 

The information obtained from these studies may be applied in a practical manner 

to the problem of E. coli 0157:H7 carriage in dairy and beef cattle. It has been 

demonstrated that the diet of feedlot cattle can also greatly affect the microbial ecology of 

the rumen and colon (22, 155, 154). Numerous studies have shown that the microbial 

makeup of the bovine digestive tract is drastically different when fed a grain (corn) diet 
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compared to a forage (hay, grass) diet (22, 33, 36, 77, 154, 155). Cattle are naturally 

accustomed to a forage diet, and have few of the pancreatic amylases that are essential for 

the proper digestion of the high concentration of starch found in grain diets (61). As 

such, undigested starch is often passed from the rumen through the small intestines into 

the colon of these cattle where it is fermented by microorganisms such as E. coli (61). 

This kind of diet has been correlated with increased E. coli 0157:H7 carriage and 

shedding by these feedlot cattle (6). In fact, 100-fold higher concentrations of E. coli 

populations (both benign and human pathogen strains) were recovered when the cattle 

were fed a corn and soybean (grain) diet compared to a high-quality hay diet (33). The 

fermentation of starch in the colon creates an increasingly acidic environment that allows 

these E. coli to become more acid-resistant (33, 82). In a study by Diez-Gonzalez et. al 

(33), grain-feeding of cattle increased the ability of E. coli to survive an artificial gastric 

shock (mimicking the conditions of the human stomach) by 1000-fold. However, when 

the researchers switched the cattle back to a hay diet, E. coli populations declined 1000-

fold, and the number of acid-resistant E. coli decreased by 100,000-fold in 5 days (33, 

22). It should be noted that in this study, no differentiation was made between 

populations of non-pathogenic E. coli and enterohemorrhagic E. coli. However, these 

nonpathogenic strains of E. coli have been shown to increase stx2 expression through 

quorum sensing, and thus may be significant (47, 48). Likewise, studies have shown that 

Stx-harboring phages released from enterohemorrhagic E. coli are able to infect 

nonpathogenic strains of E. coli, which subsequently become Stx-producing strains (46, 

48). 
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The microbial population of other microorganisms in the cattle digestive tract is 

also affected by a diet change (36, 77, 154, 155). In 2004, Elias (36) showed that cows 

fed an 85% molasses diet (extremely high in sucrose and glucose) had no populations of 

lactobacilli present. As previously demonstrated, lactobacilli may aid in the attenuation 

of virulence of some pathogens. Likewise, Gregory et. al (53) showed that a diet of hay 

increased enterococci populations in the cattle rumen, and that these enterococci were 

inhibitory to E. coli (53). It is possible that a high-glucose diet not only increases the 

pathogenicity and numbers of enterohemorrhagic strains of E. coli, but also decreases the 

probiotic organisms that are capable of diminishing its virulence. 

In the present study, glucose, present in much higher quantities in grain diets, was 

shown to increase the expression of stx2, and therefore increased the production of 933-

W phage. Cattle that are fed a high glucose diet have increased numbers of both 

pathogenic and nonpathogenic E. coli, and it is possible that this can lead to increased 

virulence in enterohemorrhagic E. coli strains (through upregulation of Stx-2 production 

and increased acid resistance) (33, 46, 48). Likewise, these grain-based diets diminish 

populations of beneficial microbes (36, 53), furthering the colonization of pathogenic 

organisms. A strong argument can be made that a grain diet leads to a greater likelihood 

of E. coli 0157:H7 contamination in human food products and should be evaluated 

further. 
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CHAPTER 5 

GENERAL DISCUSSION AND FUTURE STUDIES 

1. Discussion 

E. coli 0157:H7 is a food and water borne pathogen that causes symptoms 

ranging from mild diarrhea to severe hemorrhagic colitis (127). These infections can 

result in devastating sequealae and deadly complications such as HUS and TTP (13, 71, 

101, 123, 172). The severity of disease is linked intimately with the production of its 

principle virulence factor, Stx-2. Stx-2 is an AB5 toxin that inhibits cellular protein 

synthesis in affected cells (14). Currently, treatment for E. coli 0157:H7 is palliative; 

antibiotic treatment to reduce pathogen numbers is controversial, as it is believed that 

antibiotics may increase the release of Stx-2 from E. coli 0157:H7 (57, 74, 132). 

The purpose of this study was three-fold: i) to assess the effects of various classes 

of antibiotics on stx2 expression and Stx-2 production; ii) to assess the probiotic 

microorganisms L. casei and L. plantarum for their effects on the reduction of stx2 

expression and Stx-2 production; and iii) to analyze stx2 expression and Stx-2 production 

when E. coli 0157:H7 is grown with either glucose, glycerol, or in the presence of 

exogenous cAMP. These three facets were examined by MTT cytotoxicity assay, ELISA 

analysis and Real Time PCR. 



The present study elucidated a number of factors that regulate stx2 expression, 

including the impact of several classes of antibiotics, the effect of co-culture with 

lactobacilli, and the nature of growth substrates used for pathogen growth. These three 

seemingly disparate factors, however, appear to be more closely linked than previously 

appreciated. It was determined that DNA-affecting antibiotics increase stx2 expression 

and Stx-2 production, and this is linked to an upregulation in the SOS DNA repair 

response. Likewise, a connection was also observed between the upregulation of stx2 

and cell membrane integrity disrupting antibiotics, gentamicin and polymyxin B, though 

this was not tied to DNA damage, as the dinD gene was not upregulated concurrently 

with stx2. Ultimately, these antibiotics did not increase the overall Stx-2 released from E. 

coli 0157:H7. Interestingly, growth of E. coli 0157:H7 in organic acid-containing media 

(either artificially acidified, or acidified through the growth of lactobacilli) also inhibited 

the release of Stx-2. As with gentamicin and polymyxin B, organic acids are thought to 

disrupt the lipid composition and structure of bacterial cell membranes, which may 

interfer with the assembly or release of Stx-2 toxin molecules (66, 67, 131, 137, 173). It 

was clear that disruption of the bacterial cell membrane, either through the action of 

antibiotics or organic acid, interferes with the secretion of Stx-2. 

The reduction of Stx-2 seen by co-culture with probiotics was in part attributable 

to the production of organic acids, but was in part a response to mechanisms as yet 

unknown resulting from the lactobacilli. It appears from this research that cell-to-cell 

contact is required for full reduction in Stx-2 production; growth of the E. coli 0157:H7 

in co-culture with the probiotic microorganisms L. casei and L. plantarum were found to 

decrease Stx-2 release to a greater extent than organic acids alone. It is possible that 
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these probiotics interfer with the quorum sensing between E. coli 0157:H7 cells (94). 

Quorum sensing has been shown to play a role in the virulence of this and other 

pathogens (23, 31, 47, 98) and if the lactobacilli are quorum-quenching the E. coli 

signaling molecules, this could explain the reduction in stx2 expression and Stx-2 release. 

Interestingly, the microbial population (and therefore the quorum-sensing 

potential) in the bovine gut is greatly influenced by the diet of the animal (33, 36, 53, 

154, 155). Animals fed high-starch grain diets have increased populations of both benign 

and pathogenic E. coli, and decreased populations of probiotic microbes (33, 36, 77). 

Conversely, cattle fed a more natural hay-based diet had higher populations of 

microorganisms that are proven to inhibit E. coli populations (53). These grain-based 

diets contain more starch than the cattle are capable of digesting in the rumen, and 

therefore some undigested starch is passed to the colon of the animal where it aids in the 

proliferation of E. coli populations (53, 61). The present study has shown that 

concentrations of glucose increase the production of Stx-2, and likely the production of 

the 933-W phage. These Stx-carrying phage have the ability to infect other 

nonpathogenic strains of E. coli and confer Stx production upon them (48). It is possible' 

that a higher glucose, starch-based diet for cattle may contribute to the pathogenicity of 

E. coli 0157:H7, and increase the likelihood of contamination in human food products. 

The regulation of stx2 expression and the production of Stx-2 has been shown to 

be complex, involving a range of factors from the diet of the host animal, to the microbial 

population in that niche, to the treatment options used in human patients infected with 

this pathogen. In this research three unique factors, antibiotics, probiotics, and carbon 

source, have each been shown to play a role in this network of stx2 regulation, and further 
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research is needed to fully understand their connection to each other and the disease that 

results from E. coli 0157:H7 and Stx-2. 

2. Future Studies 

A multifaceted approach to understanding the regulation of stx2 in E. coli 

0157:H7 was implemented in this study. Numerous factors that either increase or 

decrease the expression of the stx2 gene, and alter the production of Stx-2 by the 

organism have been uncovered. Many interesting lines of work have developed from this 

work and warrant further investigation. 

2.1. Synergistic Treatment of E. coli Q157:H7 Infections with Rifampin and a 
Cephalosporin 

This research has shown that rifampin could be a viable treatment option for 

patients infected with E. coli 0157:H7, as it has been found to decrease stx2 expression. 

However, due to ease of resistance to rifampin, this drug is often used in synergy with 

other antibiotics. In particular, cephalosporins and rifampin have been used together in 

synergy for treatment of other infections (24), including difficult-to-treat infections, such 

as those caused by P. aeruginosa (41) and MRS A (15). In the current study, cefotaxime 

(a third-generation cephalosporin) was shown to not increase stx2 expression or Stx-2 

production more than the uninduced control. Future studies could examine the effect of a 

synergistic combination of rifampin and cefotaxime (or another cephalosporin) on the 

expression of stx2 and release of Stx-2 from E. coli 0157:H7 cells. This could lead to a 

viable treatment option for an infection that currently has no accepted curative treatment. 
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2.2. Cell Membrane Disrupting Compounds and Stx-2 Production 

Polymyxin B and gentamicin both have the ability to disrupt cell membranes (66, 

67, 137). In these studies, both of these antibiotics decreased Stx-2 production compared 

to the controls. Interestingly, organic acids were also demonstrated to reduce the 

production of Stx-2. Polymyxin B, gentamicin, and organic acids all alter the cell 

membrane of these microbes, and this is possible that disruption of the lipid composition 

of bacterial membranes affects secretion of the toxin, as it does in the case of pertussis 

toxin (131, 173). One study showed that the twin arginine translocation (TAT) system 

contributed to the secretion of Stx-2 (121), however, further research on the effect of 

membrane-altering compounds on the TAT system is necessary to completely understand 

how these compounds interfere with Stx-2 release from enterohemorrhagic E. coli. 

2.3. The Role of Quorum-sensing on stx2 Regulation 

Microbiology has realized the great effect that co-colonizing microbes play on 

one another through quorum sensing (98). Studies have shown that quorum sensing 

molecules produced by nonpathogenic E. coli can upregulate stx2 expression in E. coli 

0157:H7 (48). Conversely, in vivo co-culture of the pathogen with probiotic organisms, 

such as lactobacilli and species of Bifidobacterium, has been shown to decrease Stx-2 

expression in animal models (4, 110). This research demonstrated that cell-to-cell 

contact of lactobacilli with E. coli 0157:H7 was necessary for the full reduction in Stx-2 

production. It is possible that the probiotics actively released quorum sensing molecules 

that downregulated stx2 expression. Perhaps the lactobacilli played a more passive role; 

it is possible that the probiotics absorbed the quorum sensing molecules released by the 
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other E. coli, which in turn reduced the amount of molecules available for signaling the 

E. coli to upregulate its stx2 expression. Studies aimed at elucidating the role that 

quorum sensing of these lactobacilli play on the expression of stx2 would be beneficial to 

understanding how probiotics attenuate pathogen virulence. 

2.4. STEC in the Gut of Grain-Fed Cattle: stx2 Transduction 

Previous studies have implicated that nonpathogenic E. coli contribute to the 

virulence of enterohemorrhagic E. coli by upregulating stx2 expression (48). These 

nonpathogenic strains also have the ability to be infected by the Stx-carrying phage 

released by the pathogenic strains, and thereby become Stx-producing strains themselves 

(48). Grain-fed cattle have been shown to have increased populations of E. coli, and 

decreased concentrations of probiotic organisms (33, 36, 53, 77). Likewise, the present 

study has concluded that elevated concentrations of glucose lead to an increased release 

of Stx-2, and likely to an increased release in the 933-W phage. A study on the rate of 

stx2 transduction into previously-nonpathogenic E. coli within the gut of grain-fed cattle 

would provide valuable information as to the role of cattle diet on the prevalence of 

enterohemorrhagic strains of this pathogen. 
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APPENDIX A 

MEDIA AND REAGENTS 

1. Bacteriologic media 

1.1. Trypticase soy agar (TSA) plates 

Trypticase soy agar (TSA) plates were made for general growth purposes. This 

medium was purchased in dehydrated form from Difco and prepared according to the 

manufacturer's instructions (40.0g dehydrated media into 1.0L distilled H2O). The 

solution was autoclaved at 121.0°C for 20 min and dispensed into sterile Petri dishes. 

TSA plates were stored at 4°C. 

1.2. Trypticase soy broth (TSB) 

Trypticase soy broth (TSB) was made for general growth purposes. This medium 

was purchased in dehydrated form from Difco and prepared according to the 

manufacturer's instructions (30.0g dehydrated media into 1.0L distilled H2O). Fifty 

milliliters of the solution was dispensed into 250mL Erlenmeyer flasks and autoclaved at 

121.0°C for 20 min. Broths were stored at room temperature. 
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1.3. Luria-Bertani (LB) broth 

Luria-Bertani (LB) broth was made for general growth purposes. This medium 

was prepared according to the recipe below. Fifty milliliters of the solution was 

dispensed into 250mL Erlenmeyer flasks and autoclaved at 121.0°C for 20 min. Broths 

were stored at room temperature. 

Formulation for LB: 

20 g tryptone (Difco) 
lOg yeast extract (Difco) 
lOg NaCl (Sigma) 
2000mL d.H20 

1.4. Trypticase soy broth (TSB) with 15% glycerol 

Trypticase soy broth (TSB) with 15% glycerol was made for the cryopreservation 

of bacterial strains. The base of this medium (TSB) was purchased in dehydrated form 

from Difco and prepared according to the manufacturer's instructions (30.0g dehydrated 

media into 1.0L distilled H2O). Fifteen milliliters of glycerol (EM) was also added. The 

solution was transferred to a glass bottle and autoclaved at 121.0°C for 20 min. The broth 

was storedat room temperature. 

1.5. Mueller-Hinton (MH) agar plates 

Mueller-Hinton (MH) plates were made for general growth purposes and use in 

antibiotic studies. This medium was purchased in dehydrated form from Difco and 

prepared according to the manufacturer's instructions (30.0g dehydrated media into 1.0L 

distilled H2O). The solution was autoclaved at 121.0°C for 20 min and dispensed into 

sterile Petri dishes. MH plates were stored at 4°C. 
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1.6. Mueller-Hinton broth (MHB) 

Mueller-Hinton broth (MHB) was made for general growth purposes and for 

antibiotic studies. This medium was purchased in dehydrated form from Difco and 

prepared according to the manufacturer's instructions (22.0g dehydrated media into 1.0L 

distilled H2O). Fifty milliliters of the solution was dispensed into 250mL Erlenmeyer 

flasks and autoclaved at 121.0°C for 20 min. Broths were stored at room temperature. 

1.7. Brain-heart infusion (BHI) broth 

Brain-heart infusion (BHI) was made for growth of lactobacilli and lactobacilli 

co-cultures. This medium was purchased in dehydrated form from Difco and prepared 

according to the manufacturer's instructions (37.0g dehydrated media into 1.0L distilled 

H2O). Fifty milliliters of the solution was dispensed into 250mL Erlenmeyer flasks and 

autoclaved at 121.0°C for 20 min. Broths were stored at room temperature. 

1.8. deMan-Rogosa-Sharpe (MRS) broth 

The deMan-Rogosa-Sharpe (MRS) broth was purchased in dehydrated form from 

Acumedia. It was prepared according to the manufacturer's instructions: 55g was added 

into 1 liter of d. H2O. It was autoclaved at 121°C for 15 min to sterilize. The broth was 

stored at room temperature. 
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1.9. M9 lOx salts 

M9 minimal media base lOx salts were made according to the formulation below. 

The solution was autoclaved at 121°C for 20 min. 

Formulation for M9 lOx Salts: 

60 g Na2HP04 (Sigma) 
30 gKH2P04 (Sigma) 
5 g NaCl (VWR) 
10 g NH4C1 (Sigma) 
1000 mL d.H20 

1.10. M9 Base 

M9 base was made according to the formulation below. 

Formulation for M9 lOx Salts: 

100 mL lOx Salts 
10 mL lOmMCaCL. 
2 mL 1M MgS04 

2. Reagents 

2.1. 0.5M ethylene diamine tetraacetic acid (EDTA). pH 8.0 

Ethylene diamine tetraacetic acid (EDTA) was made at a concentration of 0.5M. 

The buffer was prepared according to the formulation below and adjusted to pH 8.0 with 

approximately 5 g of NaOH pellets (Sigma). The solution was autoclaved for 20 min at 

121.0°C and stored at room temperature. 

Formulation for 0.5M EDTA, pH 8.0 

46.5 g NaEDTA (Sigma) 
200 mL distilled H20 
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2.2. Tris-acetate-ethylene diamine tetraacetic acid (TAE) buffer, 50x 

Tris-acetate-ethylene diamine tetraacetic acid (TAE) buffer, 50x, was made as a 

concentrated buffer for agarose electrophoresis gels. The buffer was prepared according 

to the formulation below. The buffer stored at room temperature, and diluted to lx with 

distilled H2O for use. 

Formulation for TAE, 50x: 

242 g Tris base (Biorad) 
100 mL 0.5M EDTA 

57.1 mL Glacial acetic acid (Mallinckrodt) 

The solution was heated and mixed to dissolve the Tris base. The pH was 

adjusted to 8.5 with a few drops of glacial acetic acid. 

2.3. 1M Tris-hvdrochloride (Tris-HCl). pH 6.8 

Tris-hydrochloride (Tris-HCl) was made at a concentration of 1M according to 

the formulation below. The pH was adjusted to 6.8 by hydrochloric acid (VWR). It was 

stored at room temperature. 

Formulation for 1M Tris-HCl: 

15.76 g Tris-HCl (Research Organics) 
100 mL distilled H20 

2.4. 10% (w/v) Sodium dodecvl sulfate (SDS) 

A 10% solution of sodium dodecyl sulfate (SDS) was prepared by the recipe 

below. This solution was stored at room temperature. 

Formulation for 10% SDS: 

10 g SDS (Biorad) 
100 mL d.H20 
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2.5. Tris-ethvlene diamine tetraacetic acid (TE) buffer. ImM EDTA. lOmM Tris 

RNase-free TE buffer was prepared for use in RNA extractions. All weighing 

materials (weigh boat, spatulas) were soaked overnight in a 1% solution of 

diethylpyrocarbonate (DEPC) to inactivate any RNases. These materials were autoclaved 

to inactivate the DEPC. A 2mM EDTA solution, and a 20mM Tris solution were 

prepared separately according to the formulations below. The EDTA solution was 

autoclaved at 121°C for 15 min to inactivate the DEPC. The Tris solution was made with 

certified RNase-free Tris and DEPC-treated (inactivated) water, as Tris is sensitive to 

DEPC. They were combined in a ratio of 1:1 under sterile conditions to yield the final 

concentrations of ImM EDTA and lOmM Tris in the finished TE buffer. 

Formulation for 2mM EDTA solution: 

0.149 g EDTA (Sigma) 
200 mL d. H20 

2 mL DEPC (active) 

Formulation for 20mM Tris (Sigma) 

0.48 g Tris 
200 mL DEPC-treated d.H20 

2.6. ION Sodium hydroxide (NaOH) 

A ION solution of NaOH was made according to the recipe below. It was stored 

at room temperature. 

Formulation for ION NaOH: 

50.0 g NaOH pellets (J.T. Baker) 
125 mL d. H20 
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2.7. 1% (w/v) Sodium dodecvl sulfate (SDS) 

A 1% solution of sodium dodecyl sulfate (SDS) was prepared by the recipe 

below. This solution was stored at room temperature. 

Formulation for 1% SDS: 

1 g SDS (Biorad) 

100 mL d.H20 

2.8. MTT (3-(4.5-Dimethvlthiazol-2-vl)-2.5-diphenvltetrazolium bromide) 5 

mg/Ml 

A solution of MTT was made at a concentration of 5 mg/mL, according to the 

formulation below. The solution was sterile filtered through a 0.2|im filter (Pall) and 

stored at 4°C, protected from light. 

Formulation for MTT, 5 mg/mL: 

50 mg MTT (Sigma) 
10 mL d.H20 

2.9. MTT Lysine solution 

MTT lysing solution was prepared according to the formulation below. The final 

concentrations of the components were 20% SDS and 50% Dimethylformamide (DMF). 

This solution was stored at room temperature. 

Formulation for MTT lysing solution: 

8 g SDS (Biorad) 
20 mL DMF (Sigma) 
20 mL d.H20 
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2.10. Lysis Buffer 

Lysis buffer was formulated for the lysing of Gram negative bacteria using the 

recipe below. This buffer was stored at room temperature. 

Formulation for lysis buffer: 

250 |iL 10% SDS 
50 ^L ION NaOH 
9.7 mL d. H20 

2.11. Phosphate buffered saline (PBS) 

Phosphate buffered saline (PBS) was made using the recipe below. The pH was 

adjusted to 7.4 using hydrochloric acid. The solution was transferred to a glass bottle and 

autoclaved at 121.0°C for 20 min. The PBS was stored at room temperature. 

Formulation for lx PBS: 

1.44 g Sodium phosphate, dibasic (Na2HP04) 
8 g Sodium chloride (NaCl) 
0.2 g Potassium Chloride (KC1) 
0.24 g Potassium Phosphate, Monobasic (KH2PO4) 
1.0Ld.H2O 

2.12. Antibiotic preparations 

Antibiotics used in these studies were prepared to a stock concentration of 20 

mg/mL in an appropriate solvent, as seen in Table Bl below. Each antibiotic stock 

solution was sterile filtered using a 0.2ja,m (Pall), then serially diluted 1:10 in sterile 

d.H20 to 2|ig/mL. All dilutions of each antibiotic were stored at -20°C. 
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Table Bl. Antibiotic Preparations 

\ntibiotics 
Cefotaxime 

Ciprofloxacin 

Chloramphenicol 

Gentamicin 

Polymyxin B 

Rifampicin 

Norfloxacin 

Trimethoprim 

Manufacturer 
Sigma 

Cellgro 

Calbiochem 

Sigma 

Sigma 

Sigma 

Sigma 

Sigma 

SoUent 
Water 

O.lMNaOH to dissolve 

95% ethanol 

Water 

Water 

Methanol 

0.1M NaOH to dissolve 

0.1MHC1 to dissolve 
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2.13. lOOmM Magnesium sulfate (MgSOa) 

A lOOmM solution of magnesium sulfate was made according to the formulation 

below. It was sterile filtered through a 0.2}xm filer (Pall) and stored at room temperature. 

Formulation for lOOmM MgS04: 

1.204 g MgS04 (Mallinckrodt) 
100 mL d.H20 

2.14. lOmM Calcium chloride (CaCh) 

A lOmM solution of calcium chloride was made according to the formulation 

below. It was autoclaved at 121°C for 20 min and stored at room temperature. 

Formulation for lOmM CaCl2: 

0.111 gCaCl2 (J.T.Baker) 
100 mL d.H20 

2.15. 1M Magnesium sulfate (MgSO*) 

A 1M solution of magnesium sulfate was made according to the formulation 

below. It was sterile filtered through a 0.2|im filer (Pall) and stored at room temperature. 

Formulation for 1M MgSCU: 

12.04 g MgS04 (Mallinckrodt) 
100 mL d.H20 

2.16. 20% (w/v) Glucose 

A 20% glucose solution was prepared by adding 20 g of glucose (Sigma) to 100 

mL of d.H20. The solution was autoclaved at 121°C for 20 min. 
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2.17. 20% (\M Glycerol 

A 20% glycerol solution was prepared by adding 20 mL of glycerol (EM) to 100 

mL of d.HaO. The solution was autoclaved at 121°C for 20 min. 

2.18. ELISA Primary antibody (11E10) 

The murine primary antibody, STX2-11E10, was purchased from Toxin 

Technologies. It is specific to the A subunit of the Stx-2 toxin. It was diluted to lmg/mL 

in lx PBS for the stock solution, and a working solution was also made as a 1:250 

dilution. 

2.19. ELISA Blocking buffer 

Blocking buffer was made using a 5% dehydrated skim milk solution. 5.0 g of 

dehydrated milk (Difco) was added to 100 mL of lx PBS and mixed thoroughly. This 

solution was made fresh for each ELISA experiment to prevent contamination of the 

buffer. 

2.20. ELISA Secondary antibody 

The secondary antibody was STXPC-1, a pooled monoclonal IgG antibody 

specific to Stx. It was conjugated to horseradish peroxidase. This antibody was supplied 

from Toxin Technologies in liquid form. It was diluted 1:300 in blocking buffer for a 

working stock. It was stored at 4°C. 
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2.21. ELISA ABTS Peroxidase Substrate Buffer and Stop Solution 

The ELISA substrate buffer was purchase from Pierce. The concentrated 

substrate solution (lOx) was diluted in autoclaved d. H20 to lx stock. One tablet of the 

substrate was dissolved in the substrate buffer. A stop solution was also prepared as 1% 

SDS. 

3. Cell culture media and reagents 

3.1. Dulbecco's modified Eagle's minimal essential media (DMEM) with 3% 
bovine calf serum (BCS) 

Dulbecco's modified Eagle's minimal essential media (DMEM) was prepared for 

use in vero cell culture. The media was prepared using the formulation below. After 

each of the components were added, the media was adjusted to pH 7.2 with 5M HC1 

(VWR). The liquid was sterile filtered under vacuum using a 0.2|im filter (Nalgene). 

Two 1-liter bottles were autoclaved at 121°C for 20 min prior to the preparation of this 

media, and served to hold the filtered media. The medium was incubated at 37°C 

overnight to check for sterility. Following incubation, bovine calf serum (BCS) was 

added to a final concentration of 3%. A second overnight 37°C sterility check was 

performed before final storage at 4°C. 

Formulation for DMEM: 

2 bottles of pre-measured powdered DMEM-4.5, high glucose with L-glutamine, 
25mM HEPES buffer, without sodium pyruvate (Atlanta Biologicals) 

7.40 g sodium bicarbonate (Fisher) 
20 mL non-essential amino acids, lOOx (Sigma) 
2 L d.H20 
60 mL bovine calf serum (Sigma) 
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3.2. Hank's balanced salt solution-modified (HBSS-mod) 

Hank's balanced salt solution-modified (HBSS-mod) was prepared for use in vero 

cell culture. The media was prepared using the formulation below. After each of the 

components were added, the media was adjusted to pH 7.2 with 5M HC1 (VWR). The 

liquid was sterile filtered under vacuum using a 0.2(j,m filter (Nalgene). Two 1-liter 

bottles were autoclaved at 121°C for 20 min prior to the preparation of this media, and 

served to hold the filtered media. The medium was incubated at 37°C overnight to check 

for sterility before final storage at 4°C. 

Formulation for HBSS-mod: 

2 bottles of pre-measured powdered HBSS-modified (No Ca2+, no Mg2+) (Atlanta 
Biologicals) 
0.70 g sodium bicarbonate (Fisher) 
2 L d.H20 

3.3. Trypsin- ethylene diamine tetraacetic acid (trypsin-EDTA) 

A trypsin-ethylene diamine tetraacetic acid (trypsin-EDTA) solution was made 

according to the formulation below. The solution was sterile filtered using a low protein 

binding 0.2|0,m filter (Pall) and transferred into sterile 15-mL conical tubes. The aliquots 

were stored at -20°C. 

Formulation for trpysin-EDTA: 

0.5 g trypsin (Sigma) 
0.2 g EDTA (Sigma) 
1000 mL HBSS-mod 
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3.4. Trypan blue (0.4%) 

A solution of trypan blue was made in lx PBS according to the recipe below. The 

solution was sterile filtered using a low protein binding 0.2|0,m filter (Pall). The solution 

was stored at room temperature. 

Formulation for trypan blue solution: 

0.04g trypan blue (Sigma) 
100 mL lx PBS 

3.5. Mitomycin C (0.5|Ug/mL) 

A solution of mitomycin C was prepared to a concentration of 0.5}ig/mL. The 

solution was made according to the formulation below, and stored at 4°C, protected from 

light. 
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APPENDIX B 

ORGANISM ACQUISITION AND VERIFICATION 

1. Maintenance of Bacterial Strains 

Two fully virulent strains of E. coli 0157:H7 were used throughout the course of 

these experiments, and were acquired from Robert Mooney (UNH-Durham). Strain 

43888 originated from the American Type Culture Collection (ATCC) and does not 

contain the genes for stxl or stx2. Strain 90-2380 from the National Laboratories for 

Enteric Pathogens (NLEP) produces Stx-2 only (not Stx-1). 

Upon receipt, E. coli 0157:H7 strains 90-2380 and 43888 were streaked onto 

trypticase soy agar (TSA), and aliquots of bacteria were cryopreserved in trypticase soy 

broth (TSB) with 15% glycerol at -20°C and then transferred to -80°C for long term 

storage. After 1 week of storage, viability and purity were confirmed by macroscopic 

and microscopic examination of colonies grown on TSA from thawed vials. 

Stock cultures were streaked onto TSA slants from cryopreservation vials every 

four months. Each month, the TSA stock slant was used to streak two TSA plates for 

general use. This procedure was used to limit the amount of genetic variability caused by 

excess passaging of the organism. Due to the virulence of the organism and its toxin's 

classification as a Center for Disease Control and Prevention (CDC) Select Agent (in 

quantities greater than 100 mg), its growth and use in the laboratory was closely 

monitored, and toxin levels did not exceed 100 mg. 
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2. Verification of Strains by Biochemical Media and Tests 

E. coli strains 90-2380 and 43888 were plated onto various selective and 

differential mediums to ensure that they exhibited the appropriate biochemical profile of 

E. coli. Mediums used include: Eosin methylene blue (EMB) agar plates, MacConkey 

(MAC) agar plates, Hektoen enteric (HE) agar plates, triple sugar iron (TSI) agar slants, 

Simmon's citrate (CIT) agar slants, motility-indole-ornithine (MIO) tubes, urea (URE) 

broth. An oxidase (OX) test was performed using colonies from a TSA plate. All 

mediums were incubated at 37°C for 24 h and observed. 

The observed biochemical profiles of E. coli strains 90-2380 and 43888 are 

shown in Table Bl. The typical biochemical profile for E. coli is included as a reference. 

3. Verification of stx2 gene by Polymerase Chain Reaction 

In addition, the strains were tested to ensure that the designated toxin genes were 

present by way of Polymerase Chain Reaction (PCR) and agarose gel electrophoresis. 

PCR cycles consisted of an initial denaturation at 94°C for five min followed by 30 

cycles of 94°C for 30 sec, 54°C for 30 sec and 72°C for 30 sec. A final extension at 72°C 

for seven min completed the amplification. Primers previously described by Wang, et al. 

were utilized and are described in Table B2. Following amplification, a 2.5% agarose gel 

was run and amplicons were visualized by ethidium bromide staining. 
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Table Bl. Biochemical Profiles of E. coli Strains 

Medium/Test 
EMB 
MAC 
HE 
TSI 

err 
MIO 
URE 
OX 

E. coli 90-2380 
Growth, Lac + 
Growth, Lac + 
Growth, Lac/Suc/Sal + 
A/A, Gas+, H2S-
Cit-
Mot +, Ind +, Orn +/-
Ure-
Ox-

E. coli 43888 
Growth, Lac + 
Growth, Lac + 
Growth, Lac/Suc/Sal + 
A/A, Gas+, H2S-
Cit-
Mot +, Ind +, Orn +/-
Ure-
Ox-

Expected Result 
Growth, Lac + 
Growth, Lac + 
Growth, Lac/Suc/Sal + 
A/A, Gas+, H2S-
Cit-
Mot +, Ind +, Orn +/-
Ure-
Ox-
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Table B2. Primers used for stx gene detection. 

Gene to 
Amplify 
stxl 

stx2 

Primer Set 

Stx la: TCTCAGTGGGCGTTCTTATG 
Stx lb: TACCCCCTCAACTGCTAATA 
Stx2a: GCGGTTTTATTTGCATTAGC 
Stx2b: TCCCGTCAACCTTCACTGTA 

Amplicon 
Size 

338 bp 

115 bp 



3.1. Results of Verification of stx2 gene by Polymerase Chain Reaction 

Strain 90-2380 was verified to contain only the genes for stx2. Strain 43888 was 

shown to lack genes for either stxl or stx2. Results are shown in Figure B1. 

4. Eukaryotic Cell Cultures: Vero (African Green Monkey Kidney) Cells 

4.1. Vero Cell Growth and Cryopreservation 

African green monkey kidney (vero) cells were obtained from the American 

Tissue Culture Collection (ATCC) and are designated by number CCL-81. Vero cells are 

adherent epithelial cells and are extremely susceptible to Stx. Cellular morphology was 

observed to be consistent with vero cell morphology. 

Vero cells were maintained in Dulbecco's modified Eagle's modified minimal 

essential medium (DMEM) with high glucose, L-glutamine, 25mM hepes, sodium 

bicarbonate (3.7g/L), non-essential amino acids, 5% fetal bovine serum (FBS), and 

grown at 37°C in a 7% CO2 open system. Vero cells were passaged for 5 rounds before a 

new frozen aliquot was seeded as the new stock culture. 

Following initial propagation of the vero cells vero cells were diluted to lxlO6 

cells/mL in DMEM with 5% FBS. Cells were combined with 5% dimethylsulfoxide 

(DMSO) and lmL aliquots were cryopreserved in liquid nitrogen. 

4.2. Verification of Stx-2-mediated Toxicity on Vero Cells 

Verification of Stx-2 production was performed by observation of cytopathic 

effects on vero cells when subjected to Stx-2-containing supernate. E. coli 0157:H7 
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1 2 3 4 5 6 

Figure Bl„ PCR Products of Stx Gene Amplificatioiio 100 bp ladder, from 100 
to 1000 bp. Wells 1-2, strain 43888 with stxl and stxl primers, respectively. 
Wells 3-4, strain 90-2380 with stxl and stxl primers, respectively. Wells 5-6, 
negative control with stxl and stxl primers, respectively. Note that stxl was 
amplified by the stxl primers in strain 90-2380. No amplification occurred in 
strain 43888. 
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90-2380 and E. coli 0157:H7 43888 were grown overnight in TSB at 37°C while 

shaking. The cultures were centrifuged and the cells discarded. Supernates were sterile 

filtered (0.2(im low-protein bindingfilter, Pall) and applied to confluent vero cell 

monolayers in T25 flasks and in 96-well plates. Cytopathic effects were monitored over 

the course of 24 h. Blind assays were conducted in which toxin-containing supernate was 

applied randomly to wells of a 96-well plate and was identified at 6, 12 and 24 h. 

5. Statistics 

Each experiment was run three times in triplicate (N=3). Statistical significance was 

determined using the T-test. The T-test is appropriate for use when comparing a control 

group to the test group. In the case of these experiments, induced cultures were 

compared to their uninduced controls as follows: Antibiotic-induced samples were 

compared to the no-antibiotic control; E. coli 0157:H7 and lactobacilli co-culture were 

compared to the E. coli-only controls; Growth in glucose was compared to growth in 

glycerol; and growth with exogenous cAMP was compared to growth without additional 

cAMP. This test was employed for use in Real Time PCR assays, ELISA studies, MTT 

cytotoxicity assays, and the co-culture growth competition assays. Significance was 

rated on a one star (*) to three star (***) level (as indicated on each graph) with one star 

indicating a p value of less than 0.05, two stars indicating a p value of less than 0.005, 

and three stars indicating a p value of less than 0.0005. 
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APPENDIX C 

PRIMERS AND PROBES 

1. Maintenance of Oligonucleotide Primers 

1.1. Design of Oligonucleotide Primers 

Oligonucleotide primers and probes were designed using a combination of no-

cost, online software. First, the DNA sequence of the gene of interest was found either 

by a BlastN search on the website http://blast.ncbi.nlm.nih.gov/Blast.cgi, or by a gene 

search on the website http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi. Secondly, 

the software "GeneFisher" on the website http://bibiserv.techfak.uni-

bielefeld.de/genefisher2/, was used to find a preliminary set of possible primer sets. This 

software allows the user to input a DNA sequence and assign set parameters (primer 

length, amplicon length, melting temperature, etc.), and returns a list of possible primer 

sets. This program does not check for secondary structure of primers, so a third program 

was used to narrow the list of possible primers to the best set. Using the NetPrimer 

software on the website http://www.premierbiosoft.com/netprimer/index.html. the list of 

possible primers was checked for interfering structure until a satisfactory primer pair was 

discovered. 
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1.2. Acquisition of Oligonucleotide Primers 

All primers were ordered through http://www.idtdna.com. Standard desalting 

purification method was ordered for all primer sets. 

1.3. Resuspension of Oligonucleotide Primers 

Once received, each oligonucleotide was resuspended in nuclease-free, sterile 

water to a final concentration of lOOuM. This was deemed the main stock. That main 

stock was then diluted 1:5 in nuclease-free, sterile water to yield a 20uM working stock. 

1.4. Storage of Oligonucleotide Primers 

Resuspended oligonucleotides (both main and working stocks) were stored at -

20°C between uses. The main stock was only defrosted to make new working stocks. 

2. Primer Sets 

2.1. StxlA. StxlB 

StxlA and StxlB amplify a portion of the stxl gene in E. coli 0157:H7. These 

primers were used to verify the presence of the stxl gene in newly-acquired E. coli 

0157:H7 strains. 

Primer 

StxlA 

StxlB 

Sequence 5 'to 3 ' 

TCT CAG TGG GCG TTC TTA TG 

TAC CCC CTC AAC TGC TAA TA 

Tm 

54.4°C 

52.4°C 
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2.2. Stx2A. Stx2B 

Stx2A and Stx2B amplify a portion of the stx2 gene in E. coli 0157:H7. These 

primers were used to verify the presence of the stx2 gene in newly-acquired E. coli 

0157:H7 strains. They were also used to check for genomic DNA contamination in 

extracted RNA samples. 

Primer 

Stx2A 

Stx2B 

Sequence 5' to 3' 

GCG GTT TTA TTT GCA TTA GC 

TCC CGT CAA CCT TCA CTG TA 

Tm 

50.7°C 

52.6°C 

2.3. Stx2operon-F. Stx2operon-R 

Stx2operon-F and Stx2operon-R were designed based off primers by K. Moody 

(102). These primers were used to amplify a large portion (0.8kb) of the stx2 operon, 

which was subsequently sequenced. 

Primer 

Stx2operon-F 

Stx2operon-R 

Sequence 5' to 3' 

AGA ATT CAG AGC GGG CGT TTT GAG CAG A 

AAG GAT CCC CGG CCG GGA TAA TAT TGT GAG TA 

Tm 

63.8°C 

64.6°C 

2.4. BigPinP-F, BigPinP-R 

BigDinD-F and BigDinD-R were designed to amplify an approximately 0.8kb 

piece of DNA flanking the dinD gene in E. coli 0157:H7. They were specifically 
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designed to not amplify in L. plantarum or L. casei. This amplicon was further purified 

and used as a standard in Real Time PCR experiments. 

Primer 

BigDinD-F 

BigDinD-R 

Sequence 5' to 3' 

TGA ACG AAC ATC ATC AAC CTT T 

AGC GAT TTG TGC GTA TTG TCA 

Tm 

52.7°C 

55.2°C 

2.5. SerCBigPiecel-R 

SerCBigPiecel-F and SerCBigPiece2-R were designed to amplify an 

approximately 0.8kb piece of DNA flanking the sercC gene in E. coli 0157:H7. They 

were specifically designed to not amplify in L. plantarum or L. casei. This amplicon was 

further purified and used as a standard in Real Time PCR experiments. 

Primer 

SerCBigPiecel-F 

SerCBigPiece2-R 

Sequence 5'to 3' 

GGA CTA TGC CTG TAT TCG TT 

AAT CGG ACG GGA AAG AAT G 

Tm 

52.0°C 

52.6°C 

3. Dual-labeled Probes 

Dual-labeled probes were designed for use in Real Time PCR experiments. All 

probes were acquired, resuspended, and stored identically to oligonucleotide primers, as 

listed in this appendix. Probes were purchased already labeled with a 5' FAM 

fluorophore, and a 3' TAMRA quencher. 
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3.1. DinD Probe and Primers 

The DinD probe and primers were used to quantify transcripts of dinD during 

Real Time PCR assays. 

Probe 

DinD-RT-Probe 

DinD-F 

DinD-R 

Sequence 5' to 3' 

FAM-CAA GCG TGC GAA GCC AGC AAT-TAMRA 

GAA TTG GCA CCG TTA CTG GAT T 

CGA AAT GGT CAG ATG CAG CTT 

Tm 

61.4°C 

55.7°C 

55.8°C 

3.2. SerC Probe 

The SerC probe and primers were used to quantify transcripts of serC during Real 

Time PCR assays. 

•;:g';; Probe 

SerC-RT-Probe 

SerC-F 

SerC-R 

# Sequjence 5 ' to 3A 

FAM-CGT GTC CGT CGA TTC TGG ATT-TAMRA 

CGT CAT CGT CCG TGA AGA TTT 

CAT GGA GCC GTT ATC GTT GAG 

Tm 

57.3°C 

55.2°C 

55.8°C 
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3.3. Stx2 Probe 

The Stx2 probe and primers were used to quantify transcripts of stx2 during Real 

Time PCR assays. 

Probe 

Stx2-RT-Probe 

Stx2-F 

Stx2-R 

Sequence 5' to 3' 

FAM-TGG TTC AAA TCC AGC AAG GGC CA-TAMRA 

AGA GCG AGC GAC TCA TAA TCG 

CTA ATG GCG GTA TGT GAT ATG G 

Tm 

61.5°C 

56.6°C 

53.0°C 
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