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ABSTRACT

In recent decades, a vehicle has become the most popular transportation mech-

anism in the world. High accuracy and success rate are key factors in automatic

vehicle detection and identification. As the most important label on vehicles, the

license plate serves as a mean of public identification for them. However, it can be

stolen and affixed to different vehicles by criminals to conceal their identities. Fur-

thermore, in some cases, the plate numbers can be the same for two vehicles coming

from different countries. In this thesis, we propose a new vehicle identification sys-

tem that provides high degree of accuracy and success rates. The proposed system

consists of four stages: license plate detection, license plate recognition, license plate

province detection and vehicle shape detection. In the proposed system, the features

are converted into local binary pattern (LBP) and histogram of oriented gradients

(HOG) as training dataset. To reach high accuracy in real-time application, a novel

method is used to update the system. Meanwhile, via the proposed system, we can

store the vehicles features and information in the database. Additionally, with the

database, the procedure can automatically detect any discrepancy between license

plate and vehicles.
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CHAPTER 1

Introduction

In recent years, the transportation complexity has increased dramatically with the

increase of the population in the world. Consequently, there is mountainous traffic

work for different agencies due to the rise of vehicular movement. These organizations,

for example, law enforcement agencies, who are responsible for monitoring each vehicle

and arresting the illegal vehicles, need to do a lot of work such as checking if the

license plate is registered. However, a huge number of vehicles in the street makes

the work harder. Hence it is necessary to recognize the vehicles using machine learning

techniques, and automatic vehicle identification has become an essential stage in the

modern traffic system.

1.1 Automatic vehicle Identification system

Automatic vehicle identification and recognition system [41] is an autonomous tech-

nique applied in traffic system including electronic toll collection, border and customs

checkpoints, etc. With hardware like camera, the system can recognize each unique

vehicle correctly and quickly. As the most important part, automatic license plate

recognition (ALPR)[12] is one form of the vehicle identification. It is an image pro-

cess technology used to identify vehicles by reading the vehicle registration plates. It

plays a significant role in a modern intelligent transport system. It can be used to

enforce traffic bylaws, collect tolls on bridges and identify a person of interest to law

enforcement. Figure 1 shows an example of ALPR application in Law enforcement

With ALPR system, we can recognize each car with high accuracy and efficiency.

1



1. INTRODUCTION

Figure 1: ALPR applied in Law enforcement [13]

1.2 Research Motivation

In 2016, there were over 33.7 million registered vehicles in Canada [4], compared with

2009 stats [28] which had nearly 20.5 million. This fact reflects that there was a

dramatic increase during about seven years. This significant increase enforced mod-

ern transportation system to promote the performance of traffic controlling system.

Therefore, in order to maintain the traffic effectively and safely, automation and arti-

ficial intelligence have become the mainstream in modern times. Numerous methods

involving Machine learning have been invoked in the systems, which can monitor and

control the transportation via identification and recognition. Additionally, the inno-

vative technology will be applied in other systems, such as toll collection and parking

lot access control. Application in these systems can satisfy great needs of our real

life.

With the growing speed of registered vehicles, more and more ALPR algorithms

have been proposed in recent years. However, the results, which are derived from

these algorithms, are highly dependent on the camera or image quality. Additionally,

2



1. INTRODUCTION

complex lighting conditions and noise of the images make success rate and accuracy

of these procedures unsatisfying. This means that the vehicle to be identified must

be photographed many times until the set of hardware can recognize it successfully,

which will cost much time and energy. Hence, it is extremely convenient to develop

or modify one ALPR program that can work efficiently and accurately.

Unfortunately, in some cases, there are variant illumination, perspective distortion

and interference characters due to the quality of the camera or the condition of the

weather. As a result,the accuracy is very low, which can lead to huge cost of human

labor. In addition, plates on the vehicle can be stolen and affixed on different cars.

Therefore, license plate number cannot be the only information to detect and identify

the vehicle. We need to identify one unique with more information such as the

province of the plate and the type of the vehicle. Hence, we have developed a system

to identify and recognize the vehicle efficiently and with high accuracy.

1.3 Problem Restatement

With the development of the nowadays technology and the rise of the number of

vehicles all over the world, the intelligent traffic system more highly depend on the

automatic vehicle recognition system. Hence the vehicle detection and recognition

system must have a good performance in both accuracy and time complexity. There

are some tips we need to focus on.

1. For development in real-time application, in each phase of the system, the test-

ing image should be modified for next procedure.

2. Feature extracting and selection are important. Model of the program should

be rebuilt to obtain more useful features, with which the procedure can detect

and recognize the license plate accurately.

3. For security and accuracy, more features obtained from the vehicle should be

used in the system.

3



1. INTRODUCTION

1.4 ALPR system

Generally, ALPR system consist a series of methods [16], which are associated with

some important techniques. These approaches come from some areas such as machine

learning, pattern recognition and computer vision. Hence, algorithm selection and

modification become the crucial parts of the procedure. Based on that, what we do

is to design a excellent system to reach the ultimate purpose of the system, which is

to get the license plate number from the images captured by the camera.

Basically, the system consists of six steps. The Figure 2 shows the steps of ALPR

system.

1. Image capture

• It is a hardware based process, which is affected by the quality and type

of camera, lighting strength, illumination and weather conditions. As a

result, an image file is collected.

2. Plate detection and localization [19].

• This stage is responsible for finding and isolating the plate on the image,

which involves the search, segmentation and transformation of the plate in

the file obtained from the previous stage.

3. Image binarization and normalization.

• Binarization is the process of converting a pixel image to a binary image

[38]. The threshold value of the image can be derived in different bina-

rization methods. This includes global thresholding [34], adaptive method

[30], Niblack’s Algorithm [27], etc. These methods can separate the fore-

ground from the background. Consequently, this technique can give us the

foreground text in white and background in black.

• Normalization consists of serval detection methods for noise reduction,

image smoothing and image orientation.

4



1. INTRODUCTION

Figure 2: A simple flowchart of ALPR

4. Character segmentation.

• Character segmentation is a critical area of character processing and an

important preprocess for character recognition. With previous steps, plate

has been extracted. To identify each character, individual characters must

be detected in the image. Several approaches have been proposed such

as projection, connected components or morphology. As a result, each

character is extracted.

5. Character recognition.

• Optical character recognition(OCR) is the main stage in ALPR [42]. Input

characters may be noisy or broken. OCR techniques must be able to

tolerate these cases, and derive a result with a high accuracy.

1.5 License plate province detection

In some cases, plates on the vehicle can be stolen and affixed on different cars. There-

fore, license plate number cannot be the only information to detect and identify the

5



1. INTRODUCTION

Figure 3: License plate samples from different provinces in Canada [43]

vehicle. We need to identify one unique vehicle with more information such as the

province of the plate and the type of the vehicle.

Figure 3 shows some sample license plates from different provinces in Canada.

From that we can see the province characters in Canadian license plate are mostly

on the top of the numbers, and are smaller than the numbers. Consequently, it is

extremely hard to recognize them using OCR. Therefore, the best way to detect the

province is using feature matching. It takes the descriptor of one feature in the first

set and is matched with all other features in the second set using Euclidean distance

[10].

1.6 Vehicle shape detection and recognition

The goal of this stage is to detect the type of the vehicle. It can be seen as a task for

image classification. In this procedure, each input image is classified with its features.

6



1. INTRODUCTION

The features determine the type of the image. Therefore, in classification, if we desire

to get true type of the vehicle in the image, the type of classifier and features should

be detected. In the proposed system, there are some types which can be classified,

namely:

1. Sedan and sports car: Sedan is a passenger car with an enclosed automobile

body having two or four doors and seating four or more persons on two full-

width seats.

2. Hatchback: Hatchback car is a kind of car, in the ending of which there is a

single door that is lifted to open. And the car body is usually for cargo storage.

3. Sport utility vehicle(SUV): SUV is a vehicle classified as a light truck, which is

similar to a station wagon.

4. Pickup: Pickup truck is a light truck having an enclosed cab and an open body

with low sides and tailgate.

5. Cube van: “Cube van is a van with a cube-shaped storage compartment that

is wider and taller than the front of the vehicle” [11].

7



1. INTRODUCTION

Figure 4: Classification of vehicles [23]

1.7 Thesis Contributions

In our proposed system, we has developed a novel method for detecting the license

plate. Many useful features are extracted from the images which serve as the classi-

fication vectors. For high performance in classification, an adaptive classification is

8



1. INTRODUCTION

employed to detect the license plate. For deriving result with high accuracy in charac-

ter recognition, there are many image preprocessing programs in our system such as

image orientation, image binarization, character segmentation, etc. Our license plate

recognition model has a good performance both in success rate and time complexity.

We have also developed a method to detect province from the license plate. To make

the security of the system high, we use a neural network model to recognize the shape

of the vehicles. The license plate recognition, province detection and vehicle shape

recognition make our system reliable for application in an intelligent transportation

system.

9



CHAPTER 2

Literature Review

This chapter provides a brief reviews of the previous research on license plate detection

and recognition using machine learning and computing vision methods.

2.1 Edge-based method for license plate detection

An edge based multi-stage approach of license plate localization was proposed by

Satadal Saha et al [37]. In this paper, license plate image is extracted from original

image by edge detection. Localization of plate is undoubtedly a challenging task

since there are significant variations in plate size, color, lighting condition and spatial

orientations of license plate in images. In this work, at preprocessing stage, three

steps are employed.

1. Gray scale conversion

• By the following formula, the 24-bit color image can be converted into

8-bit gray image.

Gray = 0.59×R + 0.30×G+ 0.11×B (1)

2. Median filtering

• As one of non-linear filter, it can calculate the median of the gray values of a

pixels neighbors. In this stage, they use 3×3 masks to get eight surrounding

neighbors gray value and replace the pixel value with the median value. As

a result, the function could remove salt-and-peeper noise from the image.

10



2. LITERATURE REVIEW

3. Contrast enhancement

• Histogram equalization technique is invoked to enhance contrast of the

images. In the procedure of the conversion, the total number of pixels in

the image is N and the number of pixels with the gray level k is nk. Then

the stretched gray level Sk is calculated by he following formula.

Sk =
k∑
j=0

nj
N
× 255 (2)

After that, edge detection is implemented with Sobel edge operator. Via prominent

vertical edges, they develop several stages to localize the plate.

1. Minimum and maximum threshold value is derived from the dataset. Then the

image is scanned to get mean value and variance value of each edge pixel posi-

tions. Compared with the threshold values, potential band of rows is identified.

2. For each band, diagonal corners are detected by calculating the minimum and

maximum values of the edge gradient value. With these two points, the maxi-

mum area of the license plate are indicated.

3. The minimum value of height Hmin is dependent on the height of the characters

in the character set. It is obtained by getting the average value of the vertical

edges in the bounding box which derived from the second stage. Among theses

new bounding boxes, the overlapped or very closed boxes were merged.

4. From the generated dataset, the procedure obtained the average value of aspect

ration and the area, by which noise boxes are removed.

In this experiment, 500 images with the resolution 704 × 576 pixels are selected

as training dataset. Meanwhile, another 500 images are used for the test. In the

result, the false negative was only 8%, which meant that there were 40 samples in

which true license plates were not found or false location were detected as license

plate. If the false negative cases were just considered as wrong cases, the accuracy of

this license detection technique could reach to 89%. This proposed program shows a

11



2. LITERATURE REVIEW

good performance in different lighting conditions, shadows and complicated scenes.

However, the main limitation of the system is that it will not be good if the image

are more noisy.

2.2 ALPR based on fuzzy maps

Shyang-Lih Chang et al. [7] proposed a license plate image technique consisting of

two main models: a license plate locating model and a license number identification

module. Specifically, the license plate candidates extracted from the first model are

examined in the identification model to reduce the error rate. In the first model,

several features such as color are taken into consideration to determine the license

plate region. Initially, they use color edge detection to compute edge map E which

contains three types edge (i.e., black-white, red-white and green-white edges) due to

the fact that there are just four kinds of color(white, black, red and green) for the plate

and character in Taiwan. To detect the color edges, these three kinds of edges are

taken into consideration. The RGB color differences (4r,4g,4b) can be calculated

to find the edge. Next, with unique formulas, the program can transform RGB space

into HSI space that denote (red, green, blue) and (hue, saturation, intensity) values

of an image pixel, respectively. The transform formula is as below.

I =
(r + g + b)

3

S = 1− min{r, g, b}
I

H = cos−1

{
(r − g) + (r − b)

2[(r − g)2 + (r − b)(g − b)] 12

} (3)

Besides, from given four maps E, H, S and I the stage can derive four fuzzy maps

Ê, Ĥ, Ŝ and Î based on the idea that the entry of any cell in the map expresses the

degree of the cell possessing the property due to the fact that each map can encode

some features about the scene. Moreover, two fuzzy aggregators will be employed to

integrate the map. As a result, the license plate candidates are then extracted.

12



2. LITERATURE REVIEW

The identification module consists of two main stages, preprocessing and recogni-

tion. The preprocessing stage contains three tasks, namely, binarization, connected

component labelling and noise removal. After these processes, segmentation and

recognition will be invoked sequentially. In the segmentation procedure, three func-

tions (delete, merge and split) is applied to the surviving components until no charac-

ter can be extracted. The character recognition is composed of three steps which are

character categorization, topological sorting and self-organizing recognition. First

step is that input character is distinguished as numerical or alphabetical by com-

positional semantics of license numbers. Next, topological features of characters is

calculated and compared with stored templates. Finally, a test will be formed, where

the template that best matches the input character is detected. This proposed work is

much less restrictive compared to most of the other work that restricted their working

conditions and still has a high success rate. However, the identification model takes

about two seconds to recognize the numbers, which means it take much time and the

complex program need to be modified.

2.3 Character recognition with visual features

Salah Al-Shami et al. [1] proposed a new feature extraction method for license plate

number recognition which focus on the character recognition. Some approaches to

recognize characters is usually taking lines as features. Here, the algorithm they devel-

oped searches for the line containing a feature or a group of combined features. Each

line of character is selected manually by the process. These features are extracted

from horizontal lines and vertical lines. In the horizontal lines feature extraction,

three types of features are employed, which are presented as following lists.

• Feature 1: the number of transitions is counted in each horizontal line by the

program.

• Feature 2: the percentage of white pixels is calculated in each horizontal line

from the binarization image

13



2. LITERATURE REVIEW

• Feature 3: the image is divided into 3 identical regions vertically, which are left,

middle and right. The feature is 0 or 1 in each region, which depends on the

occurrence of transitions in each region.

Next, these three features are modified into five features.

• Feature 1: Transition features are stored in the database as an integer number.

• Feature 2: the percentage-of-white features are float number. And quantization

process is applied. The formula is showed below, in which the value Q could

range between 2 and 100.

Percentage of White(Q) = d(Percentage of White ∗Q)e (4)

• Feature 3: Position-of-transition features are stored as a code of three binary

bits. For example, if the original feature is “left=1, middle=0, right=”, it will

be stored as “100”.

• Feature 4: This feature will be derived by combining Feature 1 and 2 in a

decimal format. For example, the value of Feature 4 may be 16.3, which means

that the value of Feature 2 is 16 and the value of Feature 1 is 3.

• Feature 5: It is grouped by combining the first 3 features together in a decimal

format. If the value of Feature 5 is 8.3111, it means that the Feature 2 is 8, and

the Feature 1 is 3 and the Feature 3 is coded as “111”.

Then, classification model will be invoked after feature selection, in which a cube

constructed from the lines is composed of horizontal lines and vertical lines. Addi-

tionally, there are three dimensions.

• Dimension 1: 5 features discussed above

• Dimension 2: The set of horizontal lines

• Dimension 3: The set of 10 classes from 0 to 9.
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In the third dimension, the set of 10 classes is used for labelling the character.

After construction, feature selection is employed in the program, which can search

for dissimilarity of features. From the modified model, the recognition tree can be

built to recognize the numbers on the plate. The tests are performed on the real

KSA (Kingdom Of Saudi Arabia) license plate. Consequently, experimental results

implemented using MATLAB, showed the efficient and productive way of the system

with an over 95% accuracy.

2.4 Character recognition based on Template Match-

ing

A modified template matching Correlation algorithm has been proposed by Ali Farhat

et al. in [14]. Numeric ALPR systems in the past, have faced different kinds of

challenges for character recognition. Some of the methods used extensive calculations

which could slow down the operation. Hence, they have developed four algorithms

to overcome the limitations: Vector crossing, zoning and combined zoning-vector and

template matching correlation. First three algorithms are based on feature extraction

techniques and the last one is application of correlation technique.

To distinguish numbers, three vectors are used in vector crossing process. The

three vectors are vertical vector, horizontal vector at one-third of image and horizontal

vector at two-third of the image. Then with counting numbers of the vectors, the ten

characters(0− 9) are distinguished except the characters “2”, “3” and “5” since they

have the same number of the vectors. Table 1 presents the result of this approach.

Figure 5: The zones of each image

Due to the same number of vectors for “2”, “3” and “5”, the second method
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Table 1: Vector crossing using three vectors

Digits Crossing
Vector Crossing

0 1 2 3 4 5 6 7 8 9

Vertical Vector 2 1 3 3 3 2 3 2 2 3

Horizontal Vector1 2 2 1 1 1 1 1 1 2 2

Horizontal Vector2 2 1 1 1 2 1 2 1 2 1

Zoning has been employed. Here, each character image will be divided into four zones

as the Figure 5. Densities of the image in each zone are derived by the algorithm to

determine the characters. The third approach is the combination of the previous two

methods. In that, density of the image is calculated. Meanwhile, the method will

take one or two vector crossing into account to reduce the error rate and increase the

probability of correct character recognition. However, the three algorithms cannot

determine a noise in the image. Hence, they develop a system based on template

matching. In this system, correlations of two images is evaluated by the following

expression.

r =

∑
m

∑
n(Anm − Ā) · (Bnm − B̄)√

(
∑

m

∑
n(Anm − Ā)2) · (

∑
m

∑
n(Bnm − B̄)2)

(5)

After that, threshold value is set to be 0.45 to detect the noise. Additionally, the

value or r will tend to 1 if the images match.

This system, which implemented and tested with 2790 characters, has the ex-

tremely recognition rate at 99.5% and takes 1.95 ms to precess an image. However,

the limitations of the approach is that it just can recognize 10 numbers instead of the

alphabet. If more templates are added to the system, the success rate may decline

since some characters share the same density and vector.
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2.5 Character recognition based on Neural Net-

work

Christos-Nikolaos Anagnostopoulos et al. [2] proposed a new algorithm for license

plate identification. For faster detection of regions of license plate, they developed

a novel method called sliding concentric windows(SCW), which can describe the ir-

regularity in the image based on image statistics. The SCW segmentation algorithm

involes following steps.

1. Two concentric windows A and B were created for the upper left corner pixel

of the image.

2. Mean value were obtained from both of the windows.

In the program, the RoI(Region of Interest) will be detected if the ratio of the

statistical measurements in the couple of windows reaches a threshold. The formula

is as below.

RoI =

0 if MB

MA
≤ T

1 if MB

MA
> T

(6)

where M is the mean value of the two windows and T was set manually. Next,

image masking, binarization with Sauvola[38] and connected components analysis

(CCA) are employed in sequence. In the image masking phase, the output of the

SCW method are viewed as the mask, which is used in the AND masking operation.

After that, Sauvola method is invoked to binarize the image. The threshold value is

derived by the following equation.

T (x, y) = m(x, y) + [1 + 0.5 ∗ (
σ(x, y)

128
− 1)] (7)

where m(i, j) and σ(i, j) are the sample mean and variance, respectively. In next

stage, CCA is applied in the binarization to scan the image and label its pixels into

components based on pixel connectivity. As a result, license plate region is detected
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successfully.

In license plate processing stage, they create an approach to segment characters,

in which bounding box of characters are determined using column and row standard

deviation criterion. Then, probabilistic neural network(PNN) is invoked to recognize

the characters. The process takes individual character image(9X12) pixels value as

the input feature vector, which means the input layer consists of 108 nodes. Besides,

the pattern layer takes 5 image patterns of every character as nodes to organize the

training set. As a result, possible character is determined in the output layer. The

proposed system relies highly on the lighting condition and the physical appearance of

the plates. In some cases, the program cannot detect the plate due to the illumination

condition or the quality of the plates.

2.6 Optical character recognition for handwritten

English

Vijay Patil and Sanjay Shimpi [32] proposed a Character Recognition System for

handwritten English. “It is extremely difficult to recognize the handwritten characters

since there is a great variation of writing style, different font size and orientation angle

of the characters” [32]. In their sytem, each character is represented by a character

matrix with the size 8× 5. If the size of the character matrix is too small, the letters

may not be presented properly. If the size of the matrix is too big, the train process

will take more time. Hence, size 8 × 5 is good for the system. In the matrix, black

stands the vector of 1 and white stands for 0. The Figure 6 shows three matrices

for character “A”, “B” and “C”. In the architecture of the neural network, there are

40(= 5×8) inputs, 26 neurons in its output layer and 5 neurons in hidden layer. The

log-sigmoid transfer function is used in tow-layer network. The weights of the neural

network is updated by calculating the error between actual output and the target

output. In training process, the network on ideal samples and noisy samples. The

procedure is illustrated below:
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Figure 6: Character matrices for character “A”, “B” and “C”

1. The dataset is split into two sets: a training set and a test set. The target

output is normalized to the range (0, 1).

2. All weights and biases are initialized to random values from −1 to +1.

3. Each neuron sums the weighted input. The forward propagation of first input

pattern passes weighted input through the nonlinearity and the sum is sent to

next layer.

4. Difference between the actual output and target result is derived.

5. The difference update each weight by using Back propagation rule.

6. Forward propagation is invoked in the next input pattern.

7. Step 3-7 is repeated until the error falls below a threshold value.

There are some learning factors that can affect the performance of the neural

network, such as the number of hidden neurons and the number of hidden layers.

“The dimension n of the input vector and the number of separable regions in n

dimensional Euclidean input space can detect the number of hidden neurons” [32].

In the test, there are 5 neurons in hidden layers and 22 hidden layer neurons.

The experiment gets an accuracy of more than 70%. In the handwritten recognition

problem, the result is not so bad. However, the accuracy is extremely important to

the license plate recognition system. And the features they used are very simple.
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Though the training of the system is fast, the features sometimes may provide wrong

information for training system.

2.7 Vehicle detection and classification based on

HOG

A vehicle shape classification model has been presented by Zezhi Chen and Tim Ellis

[8]. Vehicle classification is a crucial stage in Intelligent Transportation System (ITS).

Most of the classification task is done by human, which has a bad performance in time

complexity. However, an automatic system can provide a more accurate and lower

cost solution. Classification model contains two parts: feature extraction and classifier

selection. In their approach, measurement-based features (MBP) and the histogram

of orientation gradients (HOG) features are used to classify the road vehicles into four

categories: car, van, bus, and motorcycle. In MBP features, there are serval different

measurements shown below to make up the feature vector including perimeter, width

and height of the bounding box, convex area and so on.

In camera calibration process, to compute the transformation between 2D image

points and 3D world points, four systems need to be determined: world, camera,

camera sensor plane and image plate. For implementations of camera calibration, they

used Google Earth as the tool to provide a plane view. As a result, the car wireframe

model is projected into the image. This model is used in model-based classification.

In this method, “the vehicle silhouettes are matched against 2D projections of the 3D

models” [8]. The best 3D model can be found to match the original vehicle model.

For classification, two classifiers are used, which are Random Forest (RF) and

Support Vector Machines (SVM). Due to the multiple classification problems, they

decided to use one-vs-all strategy. In the phase, one of the four classes is considered

as one group and the others are seen as another group. Then, after finding the

hyperplane between two groups, the classifier RF or SVM is repeated for the group

which has more than 1 class until each object is classified. From the results, they
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concluded that SVM is better than RF in the system. The true positive rate reaches

to 0.9911. The model they have presented is a novel vehicle type classification, which

provides an accurate and reliable performance. However, the models among the

four vehicle types are very different. Sometimes 3D models of two vehicles such as

hatchback and SUV, may be similar. In this case, this system may be hard to detect

the type.
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CHAPTER 3

Material and Methodology

3.1 Overview of our approach

In this chapter, we will propose three systems for vehicle detection and recognition,

which are automatic license plate recognition, province detection and vehicle shape

detection and recognition respectively. Figure 7 shows the flowchart of the proposed

system. In the system, ALPR and vehicle shape classification are individual. There-

fore, they can be executed at the same time. Additionally, after plate detection, plate

recognition and province detection can also run at the same time. This design can

reduce much time for application in real-time system.

The recognition program is based on the Canadian vehicles. Hence, the data set

that we tests are from the Canada. The approach we developed consists of four main

stages:

1. License plate detection and localization

2. Processing with licence plate image

3. Character segmentation

4. Character recognition

These four stages are sequential. The result derived from an earlier stage provides

an input to the next stage.
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Figure 7: Flowchart of the proposed model
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3.2 Automatic license plate recognition (ALPR)

3.2.1 License plate detection and localization

License plate localization is a crucial stage in the system. The result derived from the

stage will affect directly the performance of the recognition system. From literature

review, we know that some approaches for localization are more productive, such as

edge-based detection and fuzzy detection. However, these methods are restricted by

lighting conditions, which motivate us to develop a system that can overcome these

restrictions. To detect the license plate efficiently, we take feature description as

our target, which means that if we learn about the features that can describe the

number plates, we can extract them. Meanwhile, local binary pattern (LBP) [18]

and histogram of oriented gradients (HOG) [9] are texture visual descriptors used

for classification, of which the important properties are the tolerance against the

illumination changes.

The basic idea of this phase is based on multi-stage structure, which is a kind

of cascade classifiers. Figure 8 shows an overview of Plate detection procedure. The

architecture is improved from [45] [26]. Instead of applying all features on one window,

the program groups the LBP and HOG features into different stages. In the sequential

stages, positive results from the previous stage will trigger the next stage classifiers,

which uses the LBP and HOG features. The negative results are rejected immediately.

Using this approach, we can detect the license plate image rapidly and accurately.

Histogram of oriented gradients(HOG)

The histogram of oriented gradients (HOG) is a feature descriptor employed in object

detection program. It provides excellent performance in human detection [9]. The

HOG feature descriptor is invariant to geometric and photometric transformations

because it operates on cells in the image. And magnitude of gradients is large around

edges and corners, which can pack in much information about object shape. The

following list shows the procedure of HOG calculating. Figure 9 presents one HOG

image.
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Figure 8: Overview of the License plate detection

Figure 9: Converting the image into HOG image

1. Global image normalisation

• To reduce the effects of local shadowing and illumination variations, gamma

compression (correction) [17] is used. It can be described with a simple

25



3. MATERIAL AND METHODOLOGY

point-wise correction of the form [15]:

g(u) = u
1
γ , (1)

where u ∈ [0, 1] denotes the image pixel intensity. In our system, γ is set

to 1.5, which can make the output image lighter than the original. When

γ is set to be smaller than 1.5, images from our dataset are a little darker.

When it set to be more than 1.5, the output image too light. Figure 10

shows the result of gamma compression.

Figure 10: Example of gamma compression

2. Calculating the gradient image in x and y.

• Horizontal and vertical gradients can be calculated by Sobel operator [20],

the operator is as below formula. Then, magnitude and angle can be

calculated.

g =
√
gx2 + gy2 (2)

θ = arctan
gy
gx

(3)

3. Orientation binning

• The cell histograms is created in this step. Each pixel within the cell casts

a weighted vote for an orientation-based histogram channel based on the

values found in the gradient computation. The cells themselves can either
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be rectangular or radial in shape, and the histogram channels are evenly

spread over 0 to 180 degrees or 0 to 360 degrees, depending on whether

the gradient is unsigned or signed [9].

4. Block normalization

• The normalization factor can be derived by the L2 − nrom as following

formula:

f =
v√

‖v‖2
2 + e2

(4)

5. Calculating the HOG feature vector

Local binary pattern(LBP)

LBP computes a local representation of texture. This local representation is con-

structed by comparing each pixel with its surrounding neighborhood. Initially, the

input RGB colorful image will be converted into grayscaling one by the following

formula [29]

Gray = 0.299×R + 0.587×G+ 0.114×B (5)

where R, G and B are the image color channels’ value, which red, green and blue

respectively.

Next, each pixel of the image is labelled by LBP operator via thresholding 3× 3

neighborhood of each pixel with the center pixel value. As a result, binary number

is extracted as a LBP code. For each pixel in the grayscaling image, we select a

neighborhood of size r surrounding the center pixel. A LBP value is then calculated

for this center pixel and stored in the output 2D array with the same width and

height as the input image. Then, we can calculate the LBP value for the center pixel.

We can start from any neighboring pixel and work our way clockwise or counter-

clockwise, but the ordering must be kept consistent for all pixels in the image and for

all images in the dataset. Consequently, this process of thresholding, accumulating

binary strings, and storing the output decimal value in the LBP array is then repeated

for each pixel in the input image. The last step is to compute a histogram over the
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output LBP array. Since a 3× 3 neighborhood has 256(= 28) possible patterns, our

LBP 2D array thus has a minimum value of 0 and a maximum value of 255, allowing

us to construct a 256-bin histogram of LBP codes as our final feature vector.



193 151 172

095 150 142

117 120 143


→



1 1 1

0 P 0

0 0 0


→ (11000001)2 (6)

Figure 11 shows example results with black (or white) representing pixels that are

less (or more) intense than the central pixel. When surrounding pixels are all black

or all white, then that image region is spot or flat.

Figure 11: Example results of LBP [40]

Learning classification

Given a training dataset of positive and negative images, serval machine learning

methods can be used as a classification function. In our proposed approach, Gentle

AdaBoost is invoked to select the features and to train the classifier. Generally,

AdaBoost is a form of learning algorithm which is used to promote the classification

performance of a weak learning algorithm. It can provide strong guarantees in the

procedure. It is proved in [24] that the training error of the strong classifier can

almost reach to 0. The following figure is the steps of the AdaBoost [24].

In addition, the weak learning function is employed to select the license plate

features or LBP histogram bin which can separate the positive and negative samples

28



3. MATERIAL AND METHODOLOGY

Algorithm 1 Gentle AdaBoost

1. Given N examples, (x1, y1), . . . , (xN , yN) with yi ∈ [−1, 1]

2. Start with wi = 1
N
, i = 1, 2, . . . , N

3. Repeat for m = 1, . . . ,M

(a) Fit the regression function fm(x) by weighted least-squares of yi to xi with
weight

(b) Set wi ← wi · exp(−yi · fm(xi)), i = 1, . . . , N, and renormalize weights so
that

∑
iwi = 1

4. Output the classifier sign[
∑M

m=1 fm(x)]

the best. Specifically, for each feature, the weak algorithm can detect the threshold

function, which can make the number of misclassified examples minimum. The weak

classification function fj(x) is composed of a feature fj denoting the LBP histogram

bin, a threshold value j and a parity pj indicating the direction of the inequality sign.

The formula is as the following.

fi(x) =

1 if pifi(x) ≤ piθ

0 otherwise

(7)

Cascade classifiers

For detection of the license plate in the sub-image, a cascade of classifiers is used,

which can boost the detection performance while reducing the time complexity of

the procedure. A cascade of classifiers is constructed like a degenerated tree, in

which at each step, a classifier is trained to detect the license plate and to reject

the majority of sub-windows where there is no any license plate. Specifically, Gentle

AdaBoost is used as training classifiers in stages of the cascade and threshold value

is adjusted to minimize false negatives. In the construction of the cascade classifiers,

the previous strong classifier can derive a positive result. Then, the result can rigger

the next classifier which is adjusted to get a higher detection rate than the last one.

Conversely, a negative sample is instantly rejected at any stage of the procedure as
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shown in Figure 12.

Figure 12: Flowchart of cascade model [44]

Generally, a lower threshold value results in higher detection rates and higher

false positive rates [24]. Therefore, the threshold value can be adjusted to detect the

license plate with high accuracy.

The proposed system has a good performance in detecting license plates on images

with various types of illumination. Figure 13 and Figure 14 illustrate two examples

of detection on the images with illumination. In the first case, there is a cover on

the license plate. However, its LBP and HOG features still can be extracted and

detected. In the second case, the noise does not affect the detection result. Both of

them are detected successfully.

3.2.2 Processing with license plate recognition

The preprocessing stage consists of three stages, which are plate orientation, image

binarization and character bounding box detection respectively.
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Figure 13: Detection on an image with the covered plate

Figure 14: Detection on an image with noise

Plate orientation

In most cases, the camera capturing the vehicle image is not just directly in front of

the vehicle, which means that there will be an angle with degree between the camera

and the vehicle. Figure 15 shows the positions of camera and vehicle when the vehicle

is in the test area. And Figure 16 is the real image which is captured by the camera.
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From the image, we can see that the camera is in front of the vehicle at the right

hand side.

Figure 15: There is an angle between camera and vehicle
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Figure 16: Vehicle image captured by the camera

From the related work, the edge-based detection gives us an idea to process with

the plate image. With the image extracted from the previous step, we can detect the

lines of the plate via Canny edge detection, which is a multi-stage algorithm to detect

the edge of objects. The algorithm below shows the edge detection steps.
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Algorithm 2 Canny edge detection

1. Use the Gaussian filter G(m,n) to smooth out the image f(m,n).

g(m,n) = G(m,n) ∗ f(m,n) (8)

where G(m,n) = 1√
2πσ2

exp (−m2+n2

2σ2 )

2. Compute gradient of g(m,n) using any of gradient operators to reach

M(m,n) =
√
gm2(m,n) + gn2(m,n) (9)

θ(m,n) = tan−1[gn(m,n)/gm(m,n)] (10)

The gradient operator can be Soble operator.

gm(m,n) =


+1 0 −1

+2 0 −2

+1 0 −1

 ∗ f(m,n) (11)

gn(m,n) =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ f(m,n) (12)

3. Threshold M is given as:

MT (m,n) =

{
M(m,n) if M(m,n) > T

0 otherwise
(13)

After computing the threshold value M, we can derive the four edges of the license

plate. Whereas, four corners of the plate are extracted from the four edges. It does

not matter whether the region we extracted is rectangle. Because the four corners

can be taken as four corresponding points. At the same time, the four target points

are the four corners of one rectangle shape. We can calculate a perspective transform

from these four points. This transform operator can convert the image into the ideal
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one for recognition. The transformation is:

p̃′ = Hp̃, (14)

where H is a 3 × 3 transformation matrix, p̃ is the coordinate of the corresponding

quadrangle vertices in the destination image, p̃ is the coordinate of quadrangle vertices

in the source image. To obtain an inhomogeneous result p, coordinates are normalized

by the following formula.

px =
h00x+ h01y + h02
h20x+ h21y + h22

, py =
h10x+ h11y + h12
h20x+ h21y + h22

(15)

With this formula, we can project the source image into a destination image in

a two-dimensional space. For testing the limitation of the program, we tested the

image with the degree ranging from 30◦ to 75◦. Figure 17 shows an example of this

procedure. From the results, we can see that when the degree reach to around 75◦,

the result image become blurry and the characters are extremely hard to recognize

by the program.

Image binarization

Image normalization, also known as the image binarization, is one processing stage

for character recognition, and also can separate foreground from the background [6].

An ideal text image can be extracted through the binarization procedure, in which

the characters are in white, and background with complicated objects is in black.

Numerous binarization methods have been proposed over past ten years or so. Among

them, there are four methods, which can obtain a good result for recognition.

1. Adaptive method. In this algorithm, threshold value is calculated for a small re-

gions of the image. Different regions has different threshold values. “Threshold

value is the weighted sum of neighbourhood values where weights are a gaussian

window.” [30]

2. Niblack’s Algorithm [27]. This algorithm “calculates a pixel-wise threshold by
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(a)

(b)

(c)

Figure 17: Comparison of transformation procedure with different degrees, 30◦, 60◦

and 75◦
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sliding a rectangular window over the gray level image.” [21] The computation

is given by the equation below:

TNiblack = m+ 0.2 ∗
√

1

NP

∑
(pi −m)2 (16)

where m is mean value of the pixels pi, NP is the number of pixels in the image.

3. Sauvola’s Algorithm [39]. It is modified algorithm from Niblack’s Algorithm.

TSauvola = m ∗ (1− 0.5 ∗ (1− s

128
)) (17)

where m is mean value of the pixels, and s is the standard deviation.

4. Wolf’s Algorithm [47].

Twolf = (1− k) ∗m+ k ∗M +
k ∗ s
R

(m−M) (18)

where k is set to 0.5 by authors in [wolf2004extraction], m is the mean value

of the image, M is the minimum gray value of the image and R is set to the

maximum gray value. Standard deviation is obtained over all the local neigh-

borhoods.

Figure 18 is an original license plate image for binarization used in our test.

Figure 19 is the comparison of four binarization methods. From the results, we

cannot find which method is the best since the image we captured is good in quality.

However, when we select a blurred or low quality license plate image, we can see

that the results. Figure 20 is the original image. Figure 21 is the comparison of four

binarization methods with a blurred image. From our experiments, we conclude that

the Wolf algorithm is better than the other three approaches. Hence, from previous

work [21] and our own tests, the Wolf Algorithm appears to be the best approach for

our system.
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Figure 18: A clear original License plate image

Figure 19: Comparison of different binarization methods on a clear image

Figure 20: An original blurred License plate image

38



3. MATERIAL AND METHODOLOGY

Figure 21: Comparison of different binarization methods on a blurred image

Character bounding box detection

To obtain a better result for recognition, the province label before the characters

and the tag line after it should be removed from the processed license image from

the previous step. Therefore, with the binarization image extracted, we can detect

contours which can be explained simply as a curve joining all the continuous points

(along the boundary), having same color or intensity [31] . Our procedure takes

contours as one tool for character analysis and text line detection. The following

Figure 22 is an example of contours detection. In this phase, all contours in the

license plate image are detected by the system. However, the contours that we need

is those around the characters. Therefore, the small contours above the numbers and

below numbers are filtered through one method. In this method, bounding rectangle

algorithm [36] can be used to find minimal up-right rectangle for the specified point

set. For computing the minimum height of the rectangle, we find a relationship

between character height and plate size from our dataset:

0.3 ∗Hplate < Hcharacter < 0.9 ∗Hplate (19)
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Figure 22: Procedure for contours detection

Figure 23: Procedure for contours filter and text line detection

where Hplate is the height of the license plate and Hcharacter is the height of the

characters. Hence, if the height of bounding rectangle is smaller than Hplate, all the

contours in it will be removed. Consequently, a couple of text lines are determined by

the program. The Figure 23 presents the example of text line detection procedure.

3.2.3 Character segmentation

Character segmentation is an operation that attempts to decompose an image of

a sequence of characters into individual ones [5]. As one preprocess of character

recognition, its result can highly affect the performance of recognition. In this stage,

characters separation method is used in the image extracted from previous stage. As

a result, the individual character are obtained from character segmentation phase to

carry out the process of identification.

In our system, to isolate all the characters, histogram calculation is used to find

gaps in the plate characters. Histogram is a plot which can describe the intensity

distribution of an image, in which X-axis denote the column of the image which is

from 1 to the width of the image, and Y-axis represent number of the pixel which

is not 0 in the current column. With the histogram obtained, the gaps between
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Figure 24: Procedure for character segmentation

characters are detected, which determine the bounding box for each symbol in the

license plate. Figure 24 is an example of character segmentation procedure.

3.2.4 Character recognition

Character recognition, popularly referred as Optical Character Recognition(OCR) is

a very important stage in the proposed system. OCR is the automatic process of

converting typed, handwritten, or printed text to machine-encoded text that we can

access and manipulate via a string variable. In recent decades, with the development

of the computer vision techniques, the OCR has been one of the challenging and

popular fields of research in pattern recognition. Serval methods have been proposed,

such as template-matching and structure analysis method.

Nevertheless, we can take OCR as one of the classification problem in the image

processing step, since the most crucial step in OCR is identifying characters as one

of 36 symbols (A-Z and 0-9). Therefore, for classification, we need to extract visual

features from individual character image.Then, character can be classified with these

features using machine learning. The most effective way for now is OCR-tesseract,

which is originally developed by Hewlett Packard in the 1980s. It is one of the

most accurate open source OCR engines currently available. As other traditional

procedures, this processing follow a step by step approach. As the most important

part, recognition consists of two stages, which are adaptive classification and repeating

recognition, respectively. In the first stage, each character is recognized sequentially.

Additionally, the symbol that is classified is stored by the adaptive classifier as the

training data. Then, the adaptive classifier will learn the information that classified

characters provide, from which the characters that are not recognized in first step will
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Figure 25: Flowchart of OCR process

be classified again. This two-stage process make this method accurate and efficient.

The Figure 25 is the flowchart of the OCR approach.

Finally, the above five main stages build up our proposed ALPR system. However,

as we discussed before, only license plate information cannot correctly detect and

identify the vehicle. Hence, in next two parts, we introduce the province detecting

system and vehicle type classification system.
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3.3 Province detection

In most provinces in Canada, there are tag lines to describe the province on the

license plate. In contour detection phase, we use a filter function to discard the small

contours, which may be in the tag lines. Therefore, in this processing, what we need

to test is the plate extracted just from the license plate detection procedure. Since

the character of the province name is too small to recognize in the license plate image,

the features of the symbol of the province need to be taken into consideration.

A feature is a piece of information that can describe the image, such as edges,

corners, blobs and ridges. Generally, features are used as a starting phase for may

computer vision algorithms, which is known as feature detection. Feature detection is

a procedure for determining whether the given image features can be found in other

images. Hence, the detected features become a key to find other images which have

the same features.

In our proposed system, the character area has been detected by the contours

detection phase, which stands below the tag lines. Therefore, the tag lines can be

determined, which is located in the top or the bottom of the plate. Next, to detect

the feature, FAST (Features from Accelerated Segment Test) algorithm [35]will be

used. Other detectors do well in performance, such as SIFT (Scale-Invariant Feature

Transform) [25] and SURF (Speeded-Up Robust Features) [3]. However, in a real-

time application, time complexity is one of key point which need to be taken into

consideration. FAST, which keeps good performance in detecting features, is several

times faster than other existing feature detectors. The following lists the steps of the

feature detection.

1. Select a pixel p from the province area and its intensity IP

2. Threshold value t will be set manually. In our system, the value is chosen as 5,

which can make the program more sensitive to the corners in a image.

3. 16 Surrounding pixels are determined as one set G.

4. If there is a set of more than 11 contiguous pixels in G which are all brighter
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than IP + 5 or all darker than IP − 5, p is determined as a corner.

5. Among the 16 pixels, four of them are tested, which are above, below, left and

right the pixel, respectively. If p is a corner, then at least three of these must

all be brighter than IP + 5 or darker than IP − 5. If neither of these is the case,

then p can not be the corner.

The limitation of the program is that the algorithm is not robust if there exist

high levels of noise in the image. Additionally, the threshold can not be determined

automatically, which means, inappropriate threshold value will lead to slow speed and

poor performance in the test.

After that, with the extracted features, we need to use one approach to match the

image that we test. Hence, Brute-Force Matcher is used to match the features between

training dataset and testing images. Initially, the matcher will store the features of

training images into one dataset. Then, the descriptor of one feature is matched with

the test image via distance calculation. Finally, the name of the province is obtained

by searching the smallest distance value.

3.4 Vehicle shape detection and recognition

In our system, the camera is active when the vehicle come to the monitoring area

such as entry lane of the parking facility. To detect the vehicle, LBP, HOG, and

Cascading classifiers are employed as the same way for the plate detection.

In this phase, the result that we want to derive is the type of the vehicle, such as

SUV, pickup or sedan. Therefore, the task can be considered as image classification,

which assigns an input image one label from a fixed set of categories. In machin-

ing learning, extracting features of the object are indispensable part of procedure.

However, in vehicle categorization program, it is extremely hard to get useful fea-

tures without noise from the image with various illumination. Histogram of oriented

gradients (HOG), Region-based Shape Descriptor (RSD), Edge Histogram Descriptor

(EHD) can be used as the feature descriptors to detect object instead of classification
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(a)

(b)

(c)

Figure 26: Feature matching examples

because similar objects have so closed feature descriptors that normal classification

cannot classify them with high accuracy. Therefore, Neural Networks are employed

in the procedure, which can progressively improve performance by considering ex-

amples. Additionally, among them, convolutional neural network (CNN) is the best

approach in image processing application.

CNN, which is very similar to ordinary Neural Network, consists of a serval neurons

that have learnable weights and biases. In the procedure, each neuron receives some

inputs, performs a dot product and follows it with a nonlinearity. Meanwhile, unlike

regular neural networks, the layers of CNN have neurons arranged in 3 dimensions:
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Figure 27: Camera position for vehicle shape recognition

width, height, depth. Therefore, in our system, the vehicle image of side view captured

from the camera, its width and height would be the dimension of the image, and the

depth would be 3 (Red, Green and Blue). In CNN architecture, four layers are

employed for training data and performing a test. Fig28 shows the classification

result of CNN.

1. Convolutional layer. Each neuron in it computes a dot product between and a

small region of the vehicle image

2. Rectified Linear Units (RELU) Layer. It will apply a thresholding function.

3. Pool layer. Pool layer will perform a down-sampling operation.
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4. Fully Connected (FC) Layer. It will compute the class score.

Figure 28: Result of classification using CNN

After vehicle detection and recognition, the system can identify the vehicle along

with the license plate number and province information. In detail, when the license

plate number is derived by ALPR system, the machine will search the database with

the number to get the information of the vehicle. The information is the license

plate’s registration province and the vehicle’s shape type. Comparing the informa-

tion with the result computed from province detection procedure and vehicle shape

detection and recognition procedure, we can find whether the vehicle is legal or not

and determine whether the plate is affixed on another vehicle.

3.5 Evaluation

To evaluate the results of our system, accuracy will be set to the benchmark. It can

be calculated by following formula:

accuracy =
TP + TN

TP + TN + FP + FN
, (20)

where TP is the number of true positive samples and ALL is the number of all samples,

TN is the number of true negative samples. TP and TN are the number of samples

which are classified correctly by some methods. False positive and false negative are

the number of samples which are classified incorrectly.
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Specifically, in license plate detection system, there are no negative samples in the

dataset, which means every image contains a license plate. Hence, the accuracy of

the detection system should be calculated by following formula:

Detection accuracy =
The number of detected license plates

The number of all license plates
(21)

In recognition system, accuracy for character recognition is calculated by below

formula:

Recognition accuracy =
ncr

N
(22)

where ncr is the number of characters which are recognized correctly. N is the number

of all characters in the dataset.

The accuracy of the whole system is derived by following formula:

Recognition accuracy =
ncp

Ni

(23)

where ncp is the number of the image, in which the license plate is detected and each

character is recognized correctly. Ni is the number of all images in the dataset.

In license plate detection and vehicle shape detection and recognition, Cross-

validation[22] is used to evaluate the methods. It is a model validation for estimating

how good a classification model will perform in practice. In our system, 10-fold cross

validation is considered as the main function for evaluation. In the method, our image

dataset is divided randomly into 10 disjoint sets of equal size. Next, our classifier is

trained 10 times. At each time, one of the 10 groups is left out for testing. The other

9 sets are used for training. Finally, we can derive 10 error rates. Mean error rate is

computed by below formula:

er =
e1 + e2 + e3 + · · ·+ e10

10
, (24)

where er the mean error rate and ei is the error rate obtained by each training

procedure.
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CHAPTER 4

Result and discussion

4.1 Platform and hardware

1. Developing language: python with OpenCV,

2. Operation system: ubuntu 16.04 LTS

3. CPU: 1.6GHZ Inter Core i5

4. Memory: 4GB, 1333MHz DDR3

4.2 Input

For evaluation of the our system and comparison with other approaches, vehicle im-

ages captured by the entrance of a public parking garage are used both for training

and testing. The dataset contains 500 images of resolution 1280 × 720. We have

extracted license plate image from the each image. Then the program extracts LBP

and HOG features from the them, which are for detection. For vehicle shape clas-

sification, cars dataset from [23] are used as training image dataset of CNN. In the

dataset, we group all of the images into four classes, which are sedan, SUV, pickup

and hatchback. With the four groups, we build a model to recognize the type of

vehicles. For testing, a collection side-view images from a parking garage are used.
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4.3 Procedure of system

The images given below provide the screenshots of the proposed scheme methodology

and results simulated by ALPR system, province detection system and vehicle shape

detection and recognition system. Figure 29 shows a testing image from the dataset.

As can be observed, the image is captured in angle and as a result, license plate is

not straight.

When the vehicle come to the entrance of parking lot, the camera activate to

capture the front plate of the vehicle. Figure 30 - Figure 34 present the procedure of

license plate detection and extraction.

Figure 29: Input image captured in a Parking lot
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Figure 30: Gray scale conversion of the captured image

Figure 31: HOG conversion of the gray image
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Figure 32: LBP conversion of the gray image
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Figure 33: Histogram of LBP image
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Figure 34: License plate extraction from the image

Figure 35: License plate image binarization
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Figure 36: Contours filter and text line detection

Figure 37: License plate orientation
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Figure 38: Processing of plate image

Figure 39: Character segmentation
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4.4 Evaluation and comparison

Table 2: Part of results derived by the system

No Input licnese plate number Plate detection Result PROVINCE

1 BFNR598 Yes BFNR598 Ontario

2 AZHB448 Yes AZHB448 Ontario

3 BSNC953 Yes BSNC953 Ontario

4 BAMP606 Yes BAMP606 Ontario

5 BEMR927 Yes BEMR927 Ontario

6 BVMC396 Yes BVMC396 Ontario

7 AKRS042 yes AKRS04 Ontario

8 BSYF779 Yes BSYF779 Ontario

9 BSYN873 Yes BSYN873 Ontario

10 BVBJ301 Yes BVBJ301 Ontario

11 BVLV755 Yes BVLV755 Ontario

12 ATEP757 Yes ATEP757 Ontario

13 BYWC112 Yes BYWC112 Ontario

14 ASAH185 Yes ASAH185 Ontario

15 BLHB815 Yes BLHB815 Ontario

16 WZ1100 Yes HZ1100(wrong) Ontario

17 BKWW841 Yes BKWW841 Ontario

18 BVNK986 Yes BVNK986 Ontario

19 BNTC360 Yes BNTC360 Ontario

20 BHHK873 Yes BHHK873 Ontario

The Table 2 shows some of the results that come from our ALPR system and province

detection system. From the table, there is a sample in which the system get a wrong
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result of character recognition. The original image Figure 40 is showed below. There

is a shadow region in the license plate of the image. Hence, the character “W” is

recognized as “H”.

Figure 40: The characters of the license plate is recognized incorrectly

With the same dataset, we use other three approaches to detect the license plate

from test images. 10-fold cross validation is employed to derived the success rate of

each method. The Figure 41 presents the results of each algorithm.

The comparison illustrates that our approach, in which LBP and HOG are ex-

tracted features and AdaBoost is the classifier, is better than other approaches. Ad-

ditionally, from Table 3, we can see the required time of our approach is very close

to LBP+Cascade. But the accuracy of our approach is higher than LBP+Cascade.

Figure 42 illustrates the accuracy of OCR for all characters in 500 images. Figure 43

shows the final result of the automatic license plate recognition system. In these 500

images, there are 10 images in which the license plates are not detected. Meanwhile,

there are 17 images in which some characters are recognized incorrectly. Hence, the

accuracy of the proposed system is 94.6%.

58



4. RESULT AND DISCUSSION

Figure 41: Comparison of detection methods

Table 3: A comparison of the time required

Approach Time

HOG+SVM[9] 0.923sec

LBP+HOG+SVM[46] 0.987sec

LBP+Cascade[48] 0.335sec

Proposed approach 0.343sec
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Figure 42: Comparison of OCR methods

Figure 43: Result of the proposed system

In most cases, the proposed system can detect the license plate and recognize

the characters correctly. In Figure 44, there is a background in one Michigan license

plate, which may affect the performance of the recognition. However, this system can

recognize all characters on the license plate successfully. Actually, the binarization

60



4. RESULT AND DISCUSSION

method can remove the background image without any affection for the characters.

In another case, we add a noise line on the license plate. The Figure 45 shows the

procedure of the recognition. The proposed system can detect the plate and can

recognize each character correctly.

Figure 44: The license plate with a background
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Figure 45: The license plate with a noise line

The Table 4 and Figure 46 presents the result of CNN classification. The number

of input images is 200. In the test, only 6 Hatchbacks are classified as SUV or sedan.

The accuracy of the system is 97%. The outline of a Hatchback sometimes is similar

to the sedan or SUV. Figure 47 shows an error example. From the image, we can

observe, the scores of sedan, SUV and hatchback are extremely closed. Actually, the

training dataset for CNN should be large enough for learning and training. However,

The dataset of the proposed system is not that large, which could affect the result

score of each vehicle type. In the future, any input image can be added into the

training dataset for improving the accuracy of the system.
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Figure 46: vehicle shape classification

Figure 47: A hatchback misclassified as SUV
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Table 4: Vehicle shape classification

Vehicle type input output

Sedan 97 101

SUV 40 42

Pickup 15 15

Hatchback 38 32

Truck 10 10
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Conclusion

We proposed a new feature-based method to recognize license plate number with

high accuracy. To extract features from the image, we convert it into LBP and HOG.

It is extremely effective to detect the license plate due to the high accuracy in our

test. The cascade methods are employed to speed up to localize the license plate in

the original image. Some preprocessing approaches such as image orientation, image

character analysis and image binarization are undoubtedly good for the performance

of character segmentation and recognition. As the most crucial part, character recog-

nition with adaptive classifier, is organized and modified in our system. Therefore,

the procedure are more efficient and accurate.

Another contribution of this research is to find a strategy to detect the province

and vehicle shape from the image. Character recognition cannot be used to recognize

the province label and character since they are too small. Feature matching methods

are employed to match the testing image contours with other images in the database.

This enhances the overall performance of the detection.

After getting all the results, we find that the performance of our approach is

better than others. Using feature matching to detect province is the best choice. In

vehicle shape detection and recognition, the accuracy of CNN is relatively higher in

most conditions. However, there are some cases where the vehicle shape are very

hard to recognize. For example, shapes of some hatchbacks are very closed to those

of SUV. Hence, the size of training dataset play an important role in the system.

The proposed system is designed and tested for the front license plates of vehicles.

However, in serval states and provinces in USA and Canada like Delaware, Florida,
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Georgia, Alabama, Arizona, Michigan and so on, putting a license plate on the front

bumper is illegal [33]. Consequently, the proposed system cannot be used for vehicles

from these states or provinces. Hence, in the future, to modify the system, we can

add another camera for capturing the back license plates.
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