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ABSTRACT 

THE EFFECTS OF DIDEMNUM VEXILLUM OVERGROWTH ON MYTILUS 

EDULIS BIOLOGY AND ECOLOGY 

by 

Linda Ann Auker 

University of New Hampshire, May, 20'10 

Didemnum vexillum is an invasive colonial ascidian in the Gulf of Maine 

that readily colonizes hard substrates. These substrates include hard-shelled 

organisms, such as the common blue mussel Mytilus edulis. Preliminary 

observations and short-term studies showed potential effects of epibiosis on M. 

edulis growth, specifically lip thickness and tissue index. This dissertation study 

further examined the effects of D. vexillum on growth and reproduction of, and 

predation on, M. edulis. Shell thickness index, tissue index, shell mass to tissue 

mass ratio, lip thickness and mussel length were measured throughout a 12-

month period in control and overgrown mussels. Additionally, histological 

preparations of the mussels were used to determine reproductive condition of the 

mussels in each of these treatments. These variables were measured every 

three months (November 2008, February 2009, May 2009, and August 2009). 

Laboratory choice and consumption experiments examined the effects of 

overgrowth of the ascidian on predation by Carcinus maenas. Finally, mussel 

primary settlement was measured from summer 2008 through summer 2009 and 
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compared to historical data. This settlement was also correlated with the 

abundance of neighboring D. vexillum. 

Overgrowth had a negative impact on mussel growth. Tissue index and lip 

thickness were negatively affected as the mussel lip margin was overgrown. 

Overall mussel growth was significantly higher in control mussels by the end of 

the experiment. The pattern of spawning and gonad development was reversed 

in overgrown male mussels from the control mussels. Predation studies showed 

a potential positive effect for the mussel, as crabs consumed more control 

mussels than overgrown mussels in both a choice study and a consumption 

study. Finally, winter mussel settlement in 2008-2009 was lower than historical 

1980-1981 settlement, and there was a decrease in mussel plantigrades with D. 

vexillum recruits. These studies show tradeoffs in the effects of overgrowth by D. 

vexillum; growth and reproduction are inhibited, while predation is decreased. As 

mussels are an important source of food and habitat for other Gulf of Maine 

organisms, overgrowth by D. vexillum has the potential to change ecosystem 

dynamics. 
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General Introduction 

Epibiosis is the phenomenon in which an organism (the epibiont), whether 

plant (epiphyte) or animal (epizooan), overgrows a living substrate (basibiont). 

Epibiosis is a competitive strategy to use available open space in benthic marine 

habitats, where space is limited (Wahl, 1989). Successful competitors possess 

many common traits; they often exhibit fast growth rates and expand laterally 

along a substrate (Jackson, 1977; Greene et al., 1983; Paine and Suchanek, 

1983; Zajac et al., 1989; Ricciardi et al., 1995). Because they typically possess 

the above traits, and are not susceptible to fouling by other settlers, most colonial 

organisms compete successfully against, and commonly overgrow, solitary 

organisms (Jackson, 1977; Kay and Keough, 1981; Russ, 1982; Ricciardi et al., 

1995). 

A comprehensive review has been published by Wahl (1989) on the 

advantages and disadvantages of epibiosis. Since Wahl's review, many 

additional papers have explored the effects of epibionts on their basibionts, 

including some invasive epibionts. Herein, the literature on epibiosis since Wahl 

(1989) will be discussed, with an emphasis on the effects on the basibiont. 

Possible effects of Didemnum vexillum, an introduced colonial ascidian, on the 

common blue mussel Mytilus edulis will be suggested, and research questions 

will be posed that will be addressed in this dissertation to further understand this 

epibiotic relationship. 

Wahl's 1989 review characterized epibiosis as generally advantageous for 
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the epibiont and harmful to the basibiont, though there are a few exceptions. 

Basibionts suffer from increased weight and resultant drag, smothering, 

decreased or diminished mobility, decreased or diminished feeding, or changes 

to surface pH (Wahl, 1989). Epibionts benefit from having more substrate on 

which to grow. They also benefit from being in a position in which they may 

escape benthic predation and heavy sediment deposition (Burns and Bingham, 

2002). This relatively exposed position may also aid them in filtering food from 

the water column (Gutt and Schickan, 1998). Epibionts may also compete 

directly with their basibiont host for food (Dittman and Robles, 1991). 

Effects of epibionts on basibionts 

Epibionts will often increase a basibiont species' mortality (Haag et al., 

1993; Ricciardi et al., 1995; Burlakova et al., 2000; Thieltges, 2005). 

Occasionally, this increase in mortality is associated with increased predation on 

the host due to the presence of the epibiont (Enderlein et al., 2003; Buschbaum 

et al., 2007). This may occur in a "shared doom" scenario in which the epibiont is 

attractive to a potential predator, increasing the probability that the epibiont and, 

consequently, the basibiont, will be consumed (Wahl et al., 1997). Species that 

rely on transparency to avoid predation (e.g. Daphnia spp.) are more likely to be 

consumed when overgrown with visible euglenoid flagellates (Willey et al., 1990). 

This overgrowth may also decrease sinking rates of zooplankton (e.g. Daphnia 

spp. and Acartia hudsonica), causing inefficient escape from potential predators 

(Willey et al., 1990; Weissman et al. 1993). Non-predation mortality may be 

attributed to smothering of basibiont species, which may interfere with feeding 
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and/or respiration such as occurs in freshwater unionids overgrown with 

Dreissena spp (Ricciardi et al., 1995), or by causing a "lethal burden" to the 

basibiont by forcing it to reallocate energy from normal growth functions to 

compensate for overgrowth (Haag et al., 1993; Thieltges, 2005). Daphnia spp. 

overgrown with algal epibionts have a higher mortality due to physiological 

stress; the epibiont load causes greater sinking and filtering rates in the 

cladoceran (Allen et al., 1993). 

Basibionts that survive epibiosis may show a decrease in growth (Wahl, 

1997; Buschbaum and Saier, 2001; Thieltges, 2005). For example, Thieltges and 

Buschbaum (2007) confirmed that Mytilus edulis overgrown by Crepidula 

fornicata doubles its byssal thread output, to compensate for the increased 

weight of the epibiont. Witman and Suchanek (1984) measured flow forces two to 

six times greater on kelp-overgrown mussels, and noted that this presented an 

increased risk of dislodgement for the mussel. Wahl (1997) surmised that snails 

suffer from increased drag when covered by an artificial epibiont, and likely 

expend extra energy for locomotion and attachment to substrate, causing a 

decrease in growth rate. Wahl's study also suggests that trophic competition is 

not a factor in decreased growth, because he used an artificial epibiont, which 

did not affect food availability for the snail. Page (2009) found potentially negative 

impacts (decreased tissue weight, grazing rates, movement rates, and habitat 

selection) of a concrete-like calcareous alga overgrowing the snail Littorina 

littorea and surmised that these impacts would be further pronounced when the 

snail is subject to additional stresses (e.g. trematode infection). 
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Basibiont reproduction is also negatively affected by epibiosis (Petersen, 

1984; Wahl, 1989; Dittman and Robles, 1991; Haag et al, 1993; Weissman et al., 

1993; Buschbaum and Reise, 1999; Cerrano et al., 2001; Dobretsov and Wahl, 

2001; Damiani, 2003; Saier and Chapman, 2004; Chan and Chan, 2005; 

Thieltges and Buschbaum, 2007). This effect can range from decreased 

reproductive fitness in a parent to decreased settlement of juveniles. Epibiosis 

may result in reduced reproductive tissue (Dittman and Robles, 1991; Chan and 

Chan, 2005) caused by reallocation of energy from reproduction to compensating 

for epibiosis (Wahl, 1989). Decreased egg load occurs in copepods overgrown by 

peritrich ciliates in Long Island Sound; this effect increases as epibiont load 

increases (Weismann et al., 1993). Epibionts may also inhibit copulation in motile 

species (Damiani, 2003; Chan and Chan, 2005), while release points for 

gametes may be covered over in sessile species (Saier and Chapman, 2004). 

Recruitment and settlement onto adults may be affected negatively by chemical 

cues produced by the epibiont (Cerrano et al., 2001; Dobretsov and Wahl, 2001), 

or by physical deterrence, such as nematocysts discharged by epibiotic 

Hydractinia spp (Brooks and Mariscal, 1986). 

One notable positive epibiotic interaction occurs when the presence of an 

epibiont inhibits predation on the basibiont or when an epibiont is used as 

camouflage against would-be predators (Wahl and Hay, 1995). For example, 

epibionts mask the clam Chama pellucida from a sea star predator (Vance, 

1978), and sponge epibionts keep Coscinasterias calamaria from both detecting 

and adhering to the scallop Chlamys asperrima (Bloom, 1975; Pitcher and Butler, 
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1987). Also, Thornber (2007) found that Pisaster sea stars consumed three times 

as many clean Tegula brunnea snails than those overgrown with Peyssonelia 

meridonalis, a crustose alga. Additionally, Pycnopodia sea stars consumed four 

times more clean snails than those covered with a crustose coralline algae 

(Thornber, 2007). O'Connor et al. (2006) point out that these interactions typically 

occur when heavy predation pressure occurs in "top-down" situations. 

Determining whether an epibiotic relationship is positive or negative 

depends on the specific epibiont studied. In a study by Wahl et al. (1997), 

filamentous algal epibionts had no effect on Carcinus maenas predation on 

Mytilus edulis, whereas barnacles on M. edulis increased predation and hydroids 

lowered predation. In another study, barnacle-encrusted scallops are preferred 

by the sea star Pycnopodia helianthoides over both cleaned and sponge-

encrusted scallops (Farren and Donovan, 2007). During a third study, Laudien 

and Wahl (2004) found that Asterias rubens preferred extracts of barnacles over 

those of the hydrozoan Laomeda flexuosa, though the sea star most readily fed 

on cleaned mussels. In the same study Asteriais rubens indiscriminately fed on 

both clean mussels and those with "dummy" epibiont structures containing no 

chemical cue. Feeding preferences of the sea urchin Arbacia punctulata were 

also both negatively and positively affected, depending on the species of epibiont 

(Wahl and Hay, 1995; Wahl et al., 1997). An epibiont can either mask or enhance 

the basibiont's own chemical cues, or they repel the contacting predator through 

tactile interference or some form of defense (Wahl et al., 1997); a well-studied 

example of the latter occurs when sea anemones colonize the shell of the hermit 
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crab, protecting the crab from predation (Ross, 1971; Hazlett, 1981). 

Mytilus edulis as a basibiont 

This dissertation study focused on the effects of epibiosis on the common 

blue mussel Mytilus edulis 'm the Gulf of Maine. This species is important to its 

local ecosystem, as it forms large, highly productive assemblages (Gosling, 

1992). For example, in the Bay of Fundy, historic mussel populations range from 

700 to 4,000 individuals per square meter (Newcombe, 1935). In Narragansett 

Bay, Rhode Island, Nixon et al. (1971) found that 77% of a mussel bed 

community's total weight was comprised of the mussels themselves, and 82% of 

the total community tissue was comprised of mussel tissue. Total thickness of 

mussel beds can range from 10 cm for intertidal beds (Nixon et al., 1971) to 120 

cm for subtidal beds (Simpson, 1977), with associated fauna diversity increasing 

with this thickness (Tsuchiya and Nishihira, 1986). The biological community 

associated with mussel beds includes diverse species living on and among the 

mussels (Seed, 1979). 

Mussels grow either subtidally or intertidally and the conditions of these 

respective environments affect the growth and reproduction of the mussel. While 

subtidal mussels may grow 60 to 80 mm in two years, with optimal environmental 

conditions (i.e. food availability, temperature, and salinity), intertidal mussels 

grow only 20 to 30 mm in 20 years (Seed, 1976). Since intertidal mussels cannot 

constantly filter water like their subtidal counterparts due to long periods of 

exposure to air, reproduction may be affected. Pieters et al. (1980) and Newell et 

al. (1982) each found a positive relationship between food availability and 
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reproductive output in mussels. When food availability is altered, so is the 

nutrient storage cycle, thus the gametogenic cycle is affected (Newell et al., 

1982). 

The reproductive cycle of Mytilus edulis has long been known (Field, 

1922). Mussels are gonochoristic broadcast spawners. Male and female gonads 

are distributed uniformly throughout the mantle tissue. Gametes are released via 

spawning at varying times of the year depending on location, but typically in 

temperatures ranging from 5 to 22BC and salinities from 15-40%o (Seed, 1976). 

One hour after fertilization, the zygote undergoes its first cleavage. After 24-48 

hours, the zygote becomes a ciliated trochophore larva. Shortly after this stage, it 

develops into a D-stage veliger when it lays down its first larval shell, the 

prodissoconch I. Immediately after this stage, at about 120 |im shell length, the 

larva will lay down a second larval shell, the prodissoconch II and stay in this 

veliger stage until it reaches about 250 nm shell length. During this time 

(between 195-210 |im shell length), it develops a pedal organ and is called a 

pediveliger (Seed, 1969). The pelagic stage ends at the first secretion of a byssal 

thread, three to five weeks after fertilization occurs (Seed, 1969). This occurs 

when the larvae reach suitable environmental conditions, come in contact with 

areas favorable for settlement, or find an adequate food supply (Chipperfield, 

1953; Bayne, 1976). Metamorphosis from the pelagic stage coincides with the 

subsequent deposition of the adult dissoconch shell (Bayne, 1965). At this stage 

the larvae locate a filamentous substrate on which to settle and are referred to as 

postlarval mussels, or plantigrades. The mussels continue to grow for about four 
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weeks and may reattach to intermediate substrates several times before they 

finally arrive on adult mussel beds (Bayne, 1964; Seed, 1969). 

Several external factors may affect mussel reproduction. Temperature 

changes dictate the rate of gametogenesis (Bayne, 1976). Mechanical 

disturbance of the shell or byssus threads has been shown to stimulate spawning 

(Bayne, 1976). Salinity changes and the presence of chemical cues (e.g. 

gamones and algal extracts) may affect spawning in a population (Bayne, 1976). 

Gamete production and gametogenic cycle timing may be affected by food 

availability (Bayne and Worrall, 1980; Newell et al., 1982; Ross and Nisbet, 

1990). Predation pressure may also affect fecundity; mussels in areas with low 

predation pressure do not have to allocate energy to increased growth to escape 

from predation and instead may use this energy for reproduction (Kautsky, et al., 

1990). 

Mussels are increasingly important aquaculture species. In 2007, world 

aquaculture production of all species of mussels was 1,630,795 tons, at a value 

of US $1,609,108,000 (FAO.org, 2010). In the same year, M. edulis production 

was 204,414 tons (12.5% total mussel production; FAO.org, 2010). This value is 

over four times that of 1950 mussel production (48,973 tons) and has steadily 

increased since then (FAO.org, 2010). 

Study epibiont species 

The study in this dissertation focused on the ascidian Didemnum vexillum 

as an epibiont. Ascidians are typically strong competitors. They overgrow and 

inhibit settlement of other species and create dense monospecific aggregations 
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(G. Lambert, 2005). Ascidians from the family Didemnidae often use asexual 

reproduction and fusion with other colonies to create large mat-like formations 

(G. Lambert, 2005). For example, in Diplosoma listerianum, colonies fuse 

together forming chimeras of multiple genotypes, which can potentially interbreed 

(Bishop and Sommerfeldt, 1999). This growth is often not controlled by predation 

because tunicates possess several anti-predator defense mechanisms, including 

formation of secondary metabolites and sequestration of inorganic acids (G. 

Lambert, 2005). 

The colonial ascidian Didemnum vexillum has been documented as a pest 

species in the Gulf of Maine for over 20 years (USGS, 2010) and concern about 

its appearance in important fishing and aquaculture locations has increased 

greatly in the past decade (Coutts, 2002; Bullard et al., 2007; Valentine et al., 

2007). D. vexillum likely came from Asia as an epibiont on Japanese oysters 

(Crassostrea gigas) in the 1970s, which were imported to the Damariscotta 

Estuary (Maine) for aquaculture purposes (Dijkstra et al., 2007; Stefaniak et al., 

2009). The ascidian was first documented in this estuary in 1993, though its 

presence has been observed since the late 1970s (USGS, 2010; L. Harris, 

University of New Hampshire, personal communication). D. vexillum was first 

found in the Cape Cod, MA region in 2000 during a rapid assessment survey and 

then discovered in Portsmouth Harbor in the winter of 2000 - 2001 (Pederson, 

2000; L. Harris, University of New Hampshire, personal communication). The 

following year, over 26 tons of the ascidian were reported covering the bottom of 

a barge in New Zealand, and D. vexillum subsequently spread to the seabed 
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below the barge and, soon after, nearby moored vessels, mussel farms and fish 

cages (Coutts, 2002; Coutts and Forrest, 2007). In 2003, 40 km2 of Georges 

Bank, including the cobble bottom and hard-shelled organisms, was found 

covered in the ascidian; this number has since increased to over 200 km2 

(USGS, 2010; Valentine et al., 2007). 

D. vexillum may reproduce sexually and asexually and, along the 

northeastern coast of the United States, is sexually reproductive from summer 

through late fall (Auker and Oviatt, 2008; Dijkstra et al., 2007), after which it 

regresses into a senescent state with little to no metabolic activity (Bullard et al., 

2007; USGS, 2010). Summer and fall recruitment can be correlated with 

temperature (Auker and Oviatt, 2008). Furthermore, the abundance of new 

recruits during the late summer appears to increase when the previous winter 

has had mild temperatures (Stachowicz et al., 2002; Auker, unpublished data). 

Sexual reproduction of D. vexillum, like all aplousobranch ascidians, 

occurs when male gametes are taken into the incurrent siphons of nearby zooids, 

and eggs are fertilized internally (Phillippi et al., 2004). The larvae are brooded 

inside the tunic matrix and released upon maturity, where they spend a short time 

(minutes to hours) in the water column before they settle onto a suitable 

substrate (Lambert, 1968; Lambert et al., 1995; C. Lambert, 2005). One colony 

begins with a sexually produced tadpole larva that settles onto a hard substrate 

and metamorphoses into an adult zooid (Millar, 1971; Lambert and Lambert, 

2003; Pechenik, 2005). Zooids reproduce asexually by budding new zooids; this 

causes the colony to become larger, spreading over its substrate, and sometimes 



forming three-dimensional colonies with ropelike morphology (Kott, 2002). D. 

vexillum typically recruits and grows.on subtidal hard substrates where it grows 

into large mats with the aforementioned ropes, but will also colonize intertidal 

hard substrates, where it appears patchy and two-dimensional (personal 

observation; W. Lambert, Framingham State University, personal 

communication). Ascidian abundance is especially great in areas of artificial 

substrate (Auker, 2006; Auker and Oviatt, 2007; personal observation). 

Potential effects of P. vexillum epibiosis on M. edulis 

The ascidian also readily colonizes hard-shelled invertebrates, including 

the common blue mussel M. edulis, though its effects on mussels are not well 

understood outside of preliminary studies and observations (Auker, 2006; Auker 

and Oviatt, 2007; Bullard et al., 2007). It is possible to predict what effects D. 

vexillum may have on the mussel, using what is already known about the 

ascidian. Growth of M. edulis may decrease when overgrown by D. vexillum 

because the ascidian often smothers the mussel (Auker, 2006; Bullard et al., 

2007); mussels with complete overgrowth have high mortality (personal 

observations). The heavy weight of the ascidian epibiont is known to cause 

mussels to fall from aquaculture lines, creating concern for mussel farmers (Kott, 

2002; A. Coutts, Cawthron Institute, personal communication). D. vexillum may 

also affect reproduction and recruitment of mussels by causing them to reallocate 

energy from reproduction, growing over gamete release points (siphons), or 

inhibiting settlement of new mussel recruits onto overgrown adult mussels, due to 

a low surface pH (Bullard et al., 2007; Dijkstra et al., 2007). 
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D. vexillum may decrease predation on its basibiont. The ascidian 

contains allelochemicals which have been shown to alter predator-prey 

interactions (Joullie et al., 2003). In addition, D. vexillum often exhibits a low 

surface pH 2) (S. Bullard, University of Hartford, personal communication). 

Some predation does take place on D. vexillum, but usually only if other prey 

options are low and in situ predation rates are not high enough to control the 

ascidian population (Carman et al., 2009; Epelbaum et al., 2009). Much of this 

predation has been observed when D. vexillum is in its winter senescent state 

(USGS, 2010). 

Despite the potential impacts of these effects on M. edulis biology and 

ecology of M. edulis beds, few studies have quantitatively tested the impacts of 

D. vexillum on mussels. In this dissertation, studies will be presented that are 
p 

designed to meet the following goals: 

1. To determine the effects of D. vexillum overgrowth on M. edulis growth, 

shell thickness, lip thickness and tissue production (Chapter I); 

2. To analyze the effects of D. vexillum on M. edulis as prey of a common 

crab and a common sea star (Chapter II); and, 

3. To quantify effects of D. vexillum on M. edulis reproduction and settlement 

(Chapter III). 
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CHAPTER I 

EFFECTS OF DiDEMNUM VEXILLUM EPIBIOSIS ON GROWTH OF MYTILUS 
EDULIS IN NEW CASTLE, NH 

Introduction 

Mussel shells are commonly used as hard substrate by many sessile 

marine species (Suchanek 1979; Paine and Suchanek 1983; O'Connor et al. 

2006). One aggressive colonizer of mussels is Didemnum vexillum, a species of 

colonial ascidian that has recently invaded the Gulf of Maine (Figure 1.1). D. 

vexillum is currently found on the east coast of North America from the Bay of 

Fundy to Long Island Sound, as well as other temperate locations throughout the 

world (Bullard et al., 2007). The ascidian frequently covers the entire shell of the 

blue mussel, Mytilus edulis (Auker, personal observation). Heavy colonization of 

Mytilus edulis could mean a significant decrease in growth for the mussel, as its 

food intake is likely limited (Seed, 1976). Slowed mussel growth could also be 

caused by the mussel compensating for increased weight brought on by D. 

vexillum epibiosis by producing more byssal threads and reallocating energy 

away from biological functions such as growth and reproduction (Buschbaum and 

Saier 2001). 

Previous studies on other mytilid mussel epibionts have shown negative 

effects on mussel growth. Mussels overgrown by the invasive Crepidula fornicata 

in northern Europe have a growth rate three to five times less than that of 
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unfouled mussels (Thieltges, 2005). Dittman and Robels (1991) found that 

fouling by red algal epibionts decreases growth in Mytilus californianus, and 

lowered mussel survivorship and reproduction rates. De Sa et al. (2007) found 

that general fouling on Perna perna mussels reduces the rate of mussel 

development and increases the time needed for farmed mussels to reach 

commercial size. When M. edulis are covered with barnacles (Semibalanus 

balanoides and Balanus crenatus), their growth rates decrease (Buschbaum and 

Saier, 2001). 

Initial observations indicate that D. vexillum epibiosis produces some 

negative effects on mytilid mussels. In the field, both M. edulis and the green-

lipped mussel Perna canaliculus were found to have more brittle shells when 

overgrown by the ascidian (personal observation; G. Hopkins and B. Forrest, 

Cawthron Institute, personal communication). The mussels lip margin also 

appears thinner in overgrown M. edulis individuals (M. Carman, WHOI, personal 

communication). Completely overgrown mussels have a higher mortality rate 

than partially overgrown and clean individuals (personal observation). However, 

as all of the above are qualitative observations, quantitative studies are needed 

to confirm these impacts and assess their effects on mussels. 

In the austral winter of 2007, I conducted a pilot study on D. vexillum 

overgrowth on P. canaliculus in New Zealand. The results from the two-week 

study showed shell thickness was not significantly different between groups of 

clean and overgrown mussels. However, there was a significantly lower tissue to 

shell volume ratio and reduced lip thickness for overgrown mussels (Auker, 



2007). A caveat of this study was that the mussels used were collected with D. 

vexillum already overgrowing them, and therefore it was not possible to know 

how long they were overgrown and whether the differences could be attributed to 

another factor. 

The purpose of the current study is to answer the question: Do mussels 

overgrown with D. vexillum exhibit differences in growth (shell thickness, lip 

thickness, tissue growth, shell mass to tissue mass) compared to mussels free 

of the ascidian? This study focused on M. edulis, a species that is common in the 

Gulf of Maine. As my null hypothesis, I propose that there will be no difference 

between these aspects in mussels free of an epibiont and those covered with D. 

vexillum. 
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Figure 1.1: Three examples of Didemnum vexillum overgrowing mussels: 
A. D. vexillum covers pier pilings and mussels in Narragansett, Rhode Island 
during a heavy colonization period in 2002. Note the overgrowth on both the 
pilings and on the rock in the foreground. Photo credit: Christopher Deacutis 
B. D. vexillum covers a colony of Mytilus edulis and Perna canaliculus on a barge 
chain in Marlborough Sound, New Zealand. Photo credit: Linda Auker. 
C. D. vexillum completely covers a bed of blue mussels in Eastport, Maine, USA. 
Photo credit: Larry Harris. 
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Methods 

Thirty epibiont-free mussels ranging in size from 20-30 mm, collected from 

floats in New Castle, NH, were added to each of 24 plastic-wire mesh envelopes 

(22 cm x 12.5 cm; 0.2 cm2 mesh size). Three envelopes were zip-tied together; 

each set of three envelopes constituted a cage and contained one treatment of 

mussels (Figure 1.2). A total of eight cages were deployed (two per sampling 

period: one control and one treatment). 

The cages were divided into two treatments: control and overgrown. In the 

control group, no epibionts were added, and all conspicuous epibionts were 

removed from the cages every two weeks. For the overgrown treatment, a 

handful (approximately 10 g) of D. vexillum was added to each of the envelopes. 

All conspicuous non-D. vexillum epibionts were removed from the mussels and, 

monthly, from the envelopes. All envelopes were deployed off the end of the 

University of New Hampshire floating dock in Newcastle, NH in August 2008 

(Figures 1.3 and 1.4). One cage for each treatment was retrieved after 3 months 

(November 2008), 6 months (February 2009), 9 months (May 2009) and 12 

months (August 2009), and brought back to UNH for processing. 

Thirty mussels per treatment were randomly removed to measure growth. 

The number of dead mussels were also counted. For each mussel, shell length 

(L), width (W), height (H), and lip thickness were measured to the nearest 0.01 

mm with digital calipers (Figure 1.5). All tissue from each mussel was then 

removed and both the tissue and shells were dried at 60 <€ for at least 24 hours 

in a drying oven. The tissue and shells were weighed on a Mettler AC100 
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electronic balance. 

Using the measurements above, shell thickness index (STI), tissue index 

(Tl), and the ratio of shell mass to tissue mass (SM: TM) were calculated. Shell 

thickness index is a ratio of the dry shell weight to the shell surface area (STI = 

1000*dry shell weight/[L*(H2+ W2) °-5*tt/2]; Smith and Jennings, 2000). Tissue 

index is a ratio of dry tissue weight to the shell volume (Tl = dry tissue weight/ 

(L*W*H*0.3819); Reimer and Tedengren, 1996). For each sampling time, a 

paired Mest was conducted between the two treatments for each STI, lip 

thickness, Tl, SM:TM, and mussel length. 

18 



Figure 1.2: Plastic-coated wire mesh cages. Top shows one of the three 
envelopes used to make the complete sampling cage (below). Each envelope 
measured 22 cm long by 12.5 cm high and had a mesh size of 0.2 cm2. Each 
cage (3 envelopes) contained one treatment per sampling period. In total there 
were eight cages deployed for the entire experiment. 
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Figure 1.3: Map of experiment location. The cages were deployed off of the 
University of New Hampshire pier in New Castle, New Hampshire. 
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Figure 1.4: This diagram shows the arrangement of cages at the end of the UNH 
pier floating dock. The cages were hung approximately 1 meter apart, alternating 
control and overgrown treatments. Each cage was suspended approximately 1 
meter underwater. 
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Length 

Figure 1.5: Measurements taken of each mussel are shown in this diagram. 
A. The shell height was measured dorsoventrally at the thickest part of the 
mussel. The lip thickness was measured 1 mm from the posterior end of the 
mussel (as shown in B). 
B. Length and width, as measured for the experiment. 
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Results 

Preliminary Results from Maine and New Zealand 

Preliminary studies conducted in May (spring) and December (late fall -

early winter) 2007 on mussels collected from a floating dock in Eastport, ME and 

in July 2007 (winter) on mussels collected from mussel farm lines in Queen 

Charlotte Sound, New Zealand revealed that Tl and lip thickness were factors 

most affected by D. vexillum epibiosis. Mussels (M. edulis in Maine; Perna 

canaliculus in NZ) already overgrown with the ascidian D. vexillum were collected 

and compared to mussels free of the epibiont. STI, Tl and lip thicknesses were 

calculated as discussed in the Methods section; Table 1.1 shows the results. 

Didemnum vexillum survival observations 

Figure 1.6 summarizes D. vexillum growth in the cages. D. vexillum was 

still alive and thriving in the November 2008 cages. When cages were removed 

in February 2009, there were no ascidians on the mussels, indicating that the 

ascidian entered a senescent state. In May 2009, there were very few small 

colonies of D. vexillum on the mussels. In August 2009, there were healthy 

colonies of D. vexillum in the cages, but they were not as abundant as in 

November 2008 (Figure 1.7). 

Shell Thickness Index 

Shell thickness index (STI) was only significantly different in the samples 

collected in May 2009 (p < 0.01). Clean mussels had thicker shells (STI = 1.26 ± 

0.02) than their D.vexillum-overgrown counterparts (STI = 1.16 ± 0.02). At the 

other three sampling times, the thicknesses were similar in the control and 
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overgrown treatments (February: control and overgrown STI = 1.03 ± 0.02), 

though clean mussels were slightly thicker in November 2008 (control STI = 0.92 

± 0.02; overgrown STI = 0.91 ± 0.02) and in August 2009 (control STI = 1.60 ± 

0.04; overgrown STI = 1.55 ± 0.02). Both sets of mussels increased in shell 

thickness throughout the 12-month period (Figure 1.8). 

Lip Thickness 

Significant differences in lip thickness between control and overgrown 

mussels were evident in November 2008 (p < 0.01). At this time, lip thicknesses 

of control mussels were significantly greater than overgrown mussels (control = 

1.42 ± 0.08 mm; overgrown = 0.78 ± 0.04 mm). In August 2009, overgrown 

mussels had a noticeably (but not significantly) greater lip thickness than control 

mussels (control = 2.35 ± 0.08 mm; overgrown = 2.65 ± 0.09 mm). Mussel lip 

thicknesses for both groups increased throughout the 12-month sampling period 

(Figure 1.9). 

Tissue Index 

The tissue index (Tl) of control mussels was generally greater than that of 

D. vexillum-covered mussels, except in February 2009 when Tl for both 

treatments was equal (control Tl = 0.04 ± 0.001 mm; overgrown Tl = 0.04 + 

0.004 mm). The values were significantly different between treatments in 

November 2008 (control Tl = 0.19 ± 0.01 mm; overgrown Tl = 0.13 ± 0.01 mm) 

and August 2009 (control Tl = 0.07 ± 0.004 mm; overgrown Tl = 0.04 ± 0.003 

mm) (p < 0.01). The greatest tissue index for both treatments was three months 

after the start of the experiment (November 2008). Tl then dropped sharply 



throughout the winter into the spring, somewhat increasing in late summer 

(Figure 1.10). 

Shell mass to tissue mass ratio 

The ratio of shell mass to tissue mass was always greater in D. vexillum-

covered mussels, with significant differences evident in November 2008 and 

August 2009 (p s 0.01). The ratio was smallest in mussels collected in 

November. This ratio then increased nearly five-fold 6 months into the 

experiment. It then decreased to an 8:1 ratio in May, where the clean mussels 

continued to remain after August, though the overgrown mussels increased to 

14:1 shell to tissue ratio at that time (Figure 1.11). 

Average length over time 

In August 2008 the mussels ranged between 20-30 mm in length. When 

the last set of mussels were analyzed in August 2009, the lengths of the control 

mussels ranged from 32 mm to 53.7 mm (n=30); the Didemnum-covered 

mussels ranged from 34.1 mm to 48.6 mm (n=30). Control mussels had 

significantly greater shell lengths than overgrown mussels in August 2009 (p s 

0.01). Logarithmic regression lines plotted for both treatments show a higher 

growth rate for control mussels than for overgrown mussels (Figure 1.12). 

Mortality 

Mortality in the mussels was relatively low. In November, 6.7% mussels 

died in both control and overgrown mussel treatments. No mortality occurred in 

either treatment for February 2009 and May 2009. In August 2009, 1.1% (n=1) 

control mussels died and 6.7% (n=6) of the overgrown mussels died. 



Table 1.1: Results of preliminary mussels measurements in Eastport, ME and 
Queen Charlotte Sound, NZ. Mytilus mussels were collected from the Heritage 
Salmon Farm floating docks in Maine; Perna canaliculus was collected from 
mussel farm longlines in NZ. Shaded cells show values with significant 
differences between treatments (p < 0.05). 

Sample Eastport - May '07 New Zealand - July 
'07 

Eastport - Dec '07 

Treatment Control Over-
grown 

Control Over-
grown 

Control Over-
grown 

STI 1.12 ± 
0.45 

1.35 ±0.6 1.25 ± 
0.17 

1.33 ± 
0.25 

1.45 ± 
0.27 

1.47 ±0.4 

Tl NA NA 0.04 ± 
0.01 

0.03 ± 
0.01 

NA NA 

Lip NA NA 0.03 ± 
0.02 

0.02 ± 
0.01 

NA NA 
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Didemnum presence 
November 2008 

(+3 months) 

Didemnum abundant, 
smothering valves 

August 2009 
(+12 months) 

Didemnum abundant, not 
yet smothering valves, but 

overgrowing cage mesh 

No visible Didemnum 
(senescent period) 

February 2009 
(+6 months) 

Virtually no Didemnum, though 
small colonies may be present 

May 2009 
(+9 months) 

Figure 1.6: The pattern of D. vexillum abundance in the cages was 
representative of its natural occurrence. In the late fall (November 2008), D. 
vexillum was most abundant, smothering the valves of some of the mussels in 
the study. In February 2009, no D. vexillum was present, most likely due to the 
ascidian entering a senescent period. In May 2009, very small colonies were 
present on the treatment mussels. When the cages were examined in August 
2009, D. vexillum had returned, overgrowing mussels (though no valve margins 
were covered) and the cage mesh. 
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Shell Thickness Index 
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Figure 1.8: Shell thickness index for the control and overgrown mussels from 
November 2008 - August 2009. Sample size for each treatment at each month 
was n=30 mussels. Significant differences in STI between treatments only 
occurred in May (p ^ 0.01). Error bars represent standard error. Asterisk (*) 
indicates values that are significantly different. 
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Lip Thickness 

2.5 

E 
E, 
g 1-5 
CD C ^ 
o 
1c 
H 1 

0.5 

* 
• Control 
• Didemnum 

Nov Feb May 

Sample Month 

Aug 

Figure 1.9: Lip thickness for the control and overgrown mussels from November 
2008 - August 2009. Sample size for each treatment at each month was n=30 
mussels. Significant differences in lip thickness between treatments occurred in 
November where control mussels had thicker lip margins (p < 0.01). Error bars 
represent standard error. Asterisk (*) indicates values that are significantly 
different. 
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Tissue Index 
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Figure 1.10: Tissue index for the control and overgrown mussels from November 
2008 - August 2009. Sample size for each treatment at each month was n=30 
mussels. Significant differences in tissue index between treatments occurred in 
November and August (p ^ 0.01). Error bars represent standard error. Asterisks 
(*) indicate values that are significantly different. 
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Shell mass to tissue mass ratio 
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Figure 1.11: Shell mass to tissue mass ratio for the control and overgrown 
mussels from November 2008 - August 2009. Sample size for each treatment at 
each month was n=30 mussels. Significant differences in the ratio between 
treatments occurred in November and August (p s 0.01). Error bars represent 
standard error. Asterisks (*) indicate values that are significantly different. 
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Length of Mussel Shell 
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Figure 1.12: Average mussel shell length for control and overgrown mussels from 
November 2008 - August 2009. Sample size for each treatment at each month 
was n=30 mussels, except for August 2008 (n=150). Significant differences in the 
ratio between treatments occurred in August 2009 (p ^ 0.01). The logarithmic 
regression lines show a higher growth rate for control mussels (R2 = 0.98) than 
D/demnt/m-overgrown mussels (R2 = 0.95). Error bars represent standard error. 
Asterisk (*) indicates values that are significantly different. 
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Discussion 

The response of mussels to overgrowth by D. vexillum varied throughout 

the 12-month sampling period and mostly correlated with the growth cycle of D. 

vexillum (Figure 1.13). 

November 2008 

In the fall, D. vexillum is at its peak abundance in the Gulf of Maine 

(Dijkstra, 2007). The ascidian overgrew some mussel valves within treatment 

cages, and the overgrowth of this specific part of the mussel shell likely caused a 

decrease in food uptake by the mussels. The low tissue index and the high shell 

mass to tissue mass ratio found in this study is similar to effects shown by 

intertidal mussels that are subject to periodic exposure to air and resultant 

starvation (Fox and Coe, 1943; Baird and Drinnan, 1957). During starvation, 

mussels continue to accrete shell, but do not experience somatic growth (Orton, 

1925; Fox and Coe, 1943; Rao, 1953; Baird and Drinnan, 1957). Seawater is the 

source of calcium for mussel shell formation, and as long as there is ample 

calcium in the surrounding water, and water is able to pass over the gill surface 

of the mussel, shell may be formed (Rao, 1953). These factors may also explain 

the decreased lip thickness in overgrown mussels. These mussels were unable 

to filter water efficiently enough to both feed and take up the necessary amounts 

of calcium, so that the area of new growth, the lip margin, was thinner in 

overgrown mussels. 

February 2009 

In February, there were no differences in any of the indices measured. 
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During this time in the Gulf of Maine, D. vexillum is in a senescent period and 

shrinks back to basal colonies (personal observations; L. Harris, UNH, personal 

communication; Dijkstra, 2007). It no longer acts as an epibiont at this time; this 

was confirmed by observing the February treatment sample, which appeared free 

of the ascidian. Both control and treatment mussels had very low tissue indices. 

During this time, food is very limited, with chlorophyll a in low abundance (1 to 2 

|jg/L) in the Gulf of Maine (GoMOOS.org, 2009). During the winter, Widdows et 

al. (1979) found that only 5% of material mussels ingested was actual food 

content, whereas in spring and summer it was about 25% of ingested material. 

May 2009 

In May, D. vexillum colonies in the field begin to spread from regressed 

winter colonies and have become metabolically active. The species is not yet 

reproductive, so there is no recruitment. At this time, there were few, tiny visible 

colonies of the ascidian in the cages. The only significant difference found in the 

May sample was a greater shell thickness in control mussels. Treatment mussels 

may have been thinner in previously overgrown mussels due to the thinner lip 

margin in November 2008. The mussel lengths in this group were also noticeably 

smaller than in control specimens. The overgrowth from November seemed to 

have created a growth deficit in the mussels, even though D. vexillum was not 

visibly present. 

August 2009 

D. vexillum is abundant and typically begins to recruit in late summer 

(personal observation). In the cages, few mussels were completely smothered, 



though the ascidian was abundant. Control mussels had a significantly greater 

tissue index and a greater shell length (Figures 1.10 and 1.12). Even if the 

mussels were not directly smothered, the tunicates were still covering the mesh 

of the cage, blocking water flow and decreasing food availability (Figure 1.7). 

Lodeiros and Himmelman (1996) found reduced growth of scallops in cages 

covered by an epibiont; this is likely the case in this study. Mussels in the 

overgrown cages had a signficantly higher shell mass to tissue mass ratio, 

thereby indicating that the mussels continued to take up calcium ions and accrete 

shell, though food intake was limited. 

Lip thickness was noticeably higher in the treatment mussels than the 

control mussels in August 2009 (Figure 1.9). While this seems to contradict the 

findings in November, several reasons may account for this. Calcium carbonate 

may be secreted in varying amounts throughout a mussel shell, causing 

variations in shell thickness (Lutz and Rhoads, 1980). Only parts of the mussels 

were beginning to be covered with D. vexillum, but the mussel was not yet 

completely overgrown, so the mantle may have been free to take up calcium 

ions. Lip margins may also be thicker in shells responding to chemical cues from 

either predators or injured or stressed conspecifics (Leonard et al., 1999). At the 

time the cages were removed from the water, no predators were found in the 

cages. However, some mortality had taken place in both sets of cages. As the 

mesh of the treatment cages was partially blocked by D. vexillum overgrowth, 

chemical cues would not be flushed so easily out of the cage, thereby creating a 

signal to which the mussels might have responded via lip margin thickening. 



Comparison to Preliminary Studies in Maine and New Zealand 

Shell thickness. Because D. vexillum contains sulfuric acid within its tunic, 

it was possible that this would cause a thinning of the mussel shell by dissolving 

some of the calcium carbonate. However, it is likely that the acid is released only 

when the ascidian is disturbed and the ascidian matrix is broken (S. Bullard, 

University of Hartford, personal communication). The study cages used in the 

New Castle experiments kept out most predators, so this disturbance probably 

did not occur. Additionally, the May decrease in STI can be attributed to an earlier 

decrease in lip thickness, causing a decreased mussel shell mass over time. In 

both the Maine and NZ studies, no differences in STI were evident. 

Lip Thickness. A difference in lip thickness was apparent in New Zealand 

mussels, as well as in the current study. Mussels collected in NZ were completely 

covered with D. vexillum, even in the austral winter. In Queen Charlotte Sound, 

NZ, temperatures never reached below lO'C (G. Hopkins, Cawthron Institute, 

personal communication); D. vexillum overgrew mussels in this area all year 

around, allowing the ascidian time to completely cover the mussels, restricting 

the amount of time that the lip margins were exposed to seawater, and thereby 

decreasing uptake of calcium. 

Tissue Index. In New Zealand, the Tl was significantly lower in overgrown 

P. canaliculus. As in the late summer and late fall samples in New Castle, D. 

vexillum was abundant and overgrew the NZ mussels completely. This consistent 

pattern of limited tissue growth during periods of great D. vexillum abundance, 

especially during periods of valve coverage, supports the idea that the main form 



of competition between ascidians and mussels is interference, rather than direct 

competition for food. This is further supported in a study by Lesser et al. (1992), 

who measured mussel clearance rates and particle preference. In this study, M. 

edulis has higher clearance rates than any would-be epibiont competitor, and 

feed on plankton and other particles ^ 3 |jm. Colonial tunicates feed on particles 

ranging in size from bacteria to very small plankton (Bak et al., 1996). With a 

wider range of filterable particles and a faster clearance rate, it appears that M. 

edulis would be a stronger trophic competitor. However, D. vexillum's ability to 

quickly grow and spread over hard substrates, including living individuals like M. 

edulis, gives it a better spatial advantage. 

Evaluation of the New Castle Study 

While the study at New Castle indicates some important ways D. vexillum 

epibiosis affects M. edulis growth, it could have been improved. In this study, 

discrete points (separate cages) were used to discover effects of D. vexillum over 

a continuous time cycle. I assumed that the same effects that occurred in cages 

collected in November 2008 also occurred in May 2009, for instance, in the 

above discussion about STI (Figure 1.8). The main reason for using separate 

cages was to eliminate any density-dependent effects on growth in mussels (e.g. 

Okamura 1986) that may occur as mussels were removed for study. These cages 

were designed to minimize mussels clumping in large groups, resulting in uniform 

growth throughout each envelope (Okamura, 1986). Additionally, the cages were 

continuously submerged which has shown to have no negative effects on mussel 

growth by Harger (1970), and may actually cause faster growth in mussels (e.g. 



Barkai and Branch, 1989). The cages contained D. vexillum abundances that 

were expected at each respective sampling time and so the effects of D. vexillum 

overgrowth are likely to be consistent throughout the time of the experiment. All 

cages were placed to receive the same tidal flow of seawater and the envelopes 

were attached so that the same water flow would reach each one as the cage 

rotated with water movement. To prevent pseudoreplication, a future 

improvement for this study would be to increase the number of separate 

envelopes and intersperse them along the dock and collect at least three or more 

envelopes per sampling month and treatment. 

A main concern of mussel farmers who use longlines is the loss of mussel 

crop when overgrown by a heavy epibiont, like D. vexillum (A. Coutts, Cawthron 

Institute, personal communication). While caging the mussels prevented this loss 

and allowed me to measure all of the mussels with which I had begun the 

experiment, other effects of D. vexillum epibiosis may occur on long-line mussels 

that did not occur in experimental cages (e.g., more byssal thread production). A 

future study comparing effects of D. vexillum on varying mussel growth 

techniques may prove useful. 

It might have been interesting to conduct another measurement that was 

highlighted in Bayne (1973). He measured the ratio of oxygen to nitrogen in 

Mytilus edulis to determine nutritive stress levels in the mussels. This may be a 

useful quantitative measurement to determine if epibiosis by D. vexillum caused 

more stress to the mussel (which I assume it does due to the decrease in tissue 

evident in this study). One could measure this ratio in mussels grown with 



different methods (cages vs. long-lines, for example) to determine if epibiosis 

exacerbates stress in a given environment. One may also correlate the stress 

with tissue indices or reproductive yield in the overgrown mussels. 

Implications of the Study 

The extent of overgrowth of D. vexillum on M. edulis will likely vary with 

location of M. edulis habitat, specifically between intertidal and subtidal 

environments. In intertidal areas, D. vexillum is slow-growing and patchy, 

typically maintaining a two-dimensional morphology and overgrowing few 

organisms (personal observations). No observations have yet been made on 

significant overgrowth of D. vexillum on intertidal mussels. However, dramatic 

overgrowth of organisms occurs in subtidal areas where D. vexillum is dominant, 

including mussels on the benthos or on vertical substrata (personal 

observations). Therefore, the effects of such overgrowth is dependent on the 

habitat of M. edulis and D. vexillum. 

Mussels are important members of marine benthic communities. Any 

negative impact on mussels will indirectly, but probably greatly, affect the 

surrounding community. They provide a significant contribution to community 

production (Nixon et al., 1971). This contribution declines as tissue growth 

decreases due to ascidian overgrowth. Additionally, mussels are ecosystem 

engineers that provide substrate and structural complexity in a habitat (e.g. 

Commito et al., 2005). As overgrowth from D. vexillum becomes more prevalent, 

it creates a monospecific substrate on which few species will settle (Valentine et 

al., 2007). This has implications for predators (see Chapter II) and settling larvae 
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(see Chapter III). 

D. vexillum likely inhibits mussel feeding when it covers lip margins and 

siphons, and therefore prevents uptake of suspended particles; this would likely 

increase turbidity of the water column because mussels are highly efficient filter 

feeders and are known to alter their environment in this manner (Fox and Coe, 

1943). Increased turbidity may decrease feeding ability in visual predators (e.g. 

Miner and Stein, 1993; Grecay and Targett, 1996). Such an increase is also 

correlated with a decreased photic zone leading to decreased phytoplankton 

productivity, especially in estuarine locations (Cloern, 1987). However, because 

fewer planktonic organisms are taken in by mussels with limited filtration, the 

potential net affect on productivity is not immediately clear. 

For mussel farmers, the prevalence of D. vexillum on mussel long-lines or 

socks could be detrimental to their crop. Even if mussels remain on the lines, 

slower growth means a longer time for the mussel to reach market size (Waugh 

1966; de Sa et al., 2007). D. vexillum has a negative effect on tissue index in 

both P. canaliculus (Auker, unpublished data) and M. edulis (this study); this 

poses a problem for mussel crop production in New Zealand, where D. vexillum 

is abundant and readily overgrows mussel lines, and in Prince Edward Island 

(PEI), Canada, where it has not yet colonized, but is expected to arrive (L. Harris, 

University of New Hampshire, personal communication). In PEI, solitary 

ascidians already pose problems with mussel harvesting and processing. 

Although Perna mussels freed of their epibionts were found to have no better 

growth rates than when they were fouled (Metri et al., 2002), in a study on M. 



edulis, cleaned mussels grew faster than fouled mussels (Dittman and Robles, 

1991). The effect on cleaning the mussels is likely epibiont-dependent. Cost-

benefit analyses should be conducted to determine if the cost of removing 

ascidians, specifically D. vexillum, outweighs the negative effects of its fouling 

the mussels. 

Conclusions 

Overall, a negative impact of D. vexillum overgrowth on M. edulis growth 

has been quantified. This impact appears to be due to an indirect competitive 

relationship as the ascidian benefits from increased substrate, while the mussel 

suffers from lower tissue growth and decreased growth rate. Food is the most 

important factor limiting mussel growth (Seed, 1976), and coverage of a mussel's 

valve may cause death, dislodgement, and lowered fitness (Seed and Suchanek, 

1992) as well as decrease in mussel growth (this study). Thus, this epibiotic 

relationship is detrimental to the mussel, and becomes even more negative when 

the ascidian becomes more abundant. 
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Figure 1.13: Cycle of Didemnum vexillum may affect mussel growth. Inside the 
circle are descriptions of D. vexillum abundance (from personal observations; L. 
Harris, University of New Hampshire, personal communication; and Dijkstra, 
2007). Outside the circle are the differences from the control in measured 
parameters observed in the overgrown mussels for this study. The question mark 
refers to the possibility of the cycle continuing, but as the experiment ended in 
August, 2009, I cannot be certain that this occurs. 
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CHAPTER II 

EFFECTS OF DIDEMNUM VEXILLUM EPIBIOSIS ON THE SUSCEPTIBILITY 
OF MYTILUS EDULIS TO PREDATORS: PREDATOR CHOICE AND PLASTIC 

RESPONSE 

Introduction 

Epibionts alter predator-prey relationships by creating a "new interface" on 

the prey (Wahl et al., 1997). When epibiosis changes predator response, it does 

so through one of two ways: associational resistance or shared doom (Wahl and 

Hay, 1995). Associational resistance occurs when an epibiont deters predation 

on both the host and itself (Vance, 1978; Wahl and Hay, 1995; Laudien and Wahl, 

1999; Marin and Belluga, 2005; Thieltges, 2005; Thornber, 2007). This typically 

occurs when epibiont species mask the chemical cues of the basibiont (Wahl et 

al., 1997), or when the epibiont repels the predators through chemical deterrence 

(Wahl et al., 1997; Laudien and Wahl, 2004). Shared doom occurs when 

predators prefer the epibiont as prey, thereby increasing its preference for the 

host (Wahl and Hay, 1995; Wahl et al., 1997; Enderlein et al., 2003; Buschbaum 

et al., 2007; Farren and Donovan, 2007). In the case of shared doom, epibionts 

may enhance excitatory chemical cues (Wahl et al., 1997) or improve prey 

handling (Enderlein et al., 2003). 

Didemnum vexillum, the epibiont in this study, is from a family of ascidians 

(Didemnidae) that are known to possess antipredator chemical defenses, either 

in the form of secondary metabolites (Lindquist et al., 1992; Vervoort et al., 1998; 
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Prado et al., 2004; Blunt et al., 2006) or inorganic acids (Stoecker, 1978; 

Stoecker, 1980; but see Parry, 1984). As a result, fouling by D. vexillum may 

reduce predation on Mytilus edulis. In this study, I ask the question: what are the 

effects of D. vexillum overgrowth on predator choice, handling and consumption 

of M. edulis? 

Mussels have been shown to elicit a response to predation, in which they 

thicken their shell (Reimer and Tedengren, 1996; Leonard et al., 1999; Smith and 

Jennings, 2000; Caro and Castilla, 2004; Freeman and Byers, 2006; Freeman, 

2007) increase adductor muscle mass (Reimer and Tedengren, 1996; Freeman, 

2007), or increase reproductive tissue mass (Reimer, 1999). No previous studies 

have assessed how epibionts affect mussels' plastic response to predators. If the 

epibiont plays a role in masking or enhancing chemical cues of the basibiont 

(Wahl et al., 1997), perhaps it can mask or enhance chemical cues from the 

predator. Such effects on these cues could either depress or enhance plasticity in 

mussels. In this study, I also explore potential effects (shell and lip thickening and 

changes in tissue mass) that may occur in control and overgrown mussels 

exposed to common Gulf of Maine predators, Carcinus maenas, an invasive 

shore crab that has inhabited the Gulf of Maine since the early 1800s (Carlton 

and Cohen, 2003), and Asterias rubens, a native sea star (Wares, 2001). Both 

species have been shown to elicit a plastic response in mussels (Freeman, 2007) 

and share habitat with mussels overgrown by D. vexillum (personal 

observations). 
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My null hypotheses are: 

1. There is no significant difference in handling time or consumption of 

clean mussels versus mussels overgrown with D. vexillum by Carcinus maenas. 

2. There is no significant difference in shell thickness, tissue index, or lip 

thickness among the following groups: clean mussels alone, those with predators 

nearby, overgrown mussels alone, and those with predators nearby. 

46 



Methods 

For both predation and plasticity experiments, Mytilus edulis (length 

ranges = 16.0 mm - 40.0 mm; mean = 26.35 mm) and Didemnum vexillum were 

collected from floating docks in New Castle, NH. Carcinus maenas (carapace 

width ranges = 28 mm to 61 mm; mean = 37.14 mm) were collected from 

intertidal areas in New Hampshire and Rhode Island. Asterias rubens (diameter 

90-150 mm) were collected from under the University of New Hampshire pier in 

New Castle, NH by SCUBA divers. All animals, except for D. vexillum, were kept 

in a closed, temperature-controlled (15^ ) system at UNH. The sea stars and 

crabs were fed mussels every two to three days, up to one week before feeding 

experiments, after which they were starved. Due to the difficulty of maintaining it 

in closed systems, D. vexillum was collected immediately before all experiments. 

Predation Experiments 

Handling Time and Choice. For each trial, a large basin (34 cm wide x 43 

cm long x 11.5 cm deep) was filled with sea water. A Sony® Handycam DCR-

SR47 digital video camera, placed on a tripod (55.5 cm high to base of camera), 

was aimed at the basin. One overgrown and one control mussel were placed on 

opposite corners at the far end of the basin from the camera (Figure 2.1). The 

video camera was set to record as soon as a crab was placed in the basin. The 

set-up was left undisturbed for at least 30 minutes after the addition of the crab. 

After the trial ended (after 30 minutes of videotaping), the type of mussel 

ultimately consumed was noted. A total of 29 trials were recorded. 

Videos were played back in VLC Media Player (VideoLAN, 2009) and the 
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following was calculated: (1) handling time for each control mussel, each 

overgrown mussel, and D. vexillum; (2) initial choice of mussel (indicated by first 

approach); and, (3) final choice of mussel (indicated by consumption). A one-way 

ANOVA and multiple comparison analysis were conducted in MATLAB to 

determine if significant differences were apparent, and, if so, between which 

groups. 

Consumption. For each trial, two 10-gallon aquaria were filled with sea 

water. The control aquarium contained 30 control mussels. The overgrown 

treatment aquarium contained 30 overgrown mussels. Six crabs were added to 

each aquarium and left undisturbed for 24 hours at 15°C. After 24 hours, the 

crabs were removed and isolated in their respective groups, and the mussels 

consumed were counted in each aquarium, and then replenished to the original 

30 individuals. In order to determine if the crabs limited feeding due to satiation 

or because they were deterred by the overgrowth of D. vexillum, the crabs were 

swapped to feed again, but on opposite treatments (control crabs were placed 

with overgrown mussels, and vice versa) (Figure 2.2). These were left for another 

24 hours, and at the end of this period, the mussels consumed were again 

counted. This experiment was repeated for five trials. A Mest was conducted on 

the proportion of mussels consumed before the switch, and the proportion 

consumed afterwards. 

The same experiment was also conducted with sea stars (Asterias rubens) 

(ten total trials). The sea stars were starved for 1-2 weeks and left in the tanks for 

48 total hours for the first five trials, then 96 hours for the next five trials. 
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Plasticity Experiments 

2008. Nine plastic-coated wire mesh cages (0.2 cm2 mesh size), were built 

after those in Reimer and Tedengren (1996) (See Figure 2.3). Each cage was 

one replicate and contained 30 mussels per cage. There were a total of three 

replicates of three treatments: control (no predator), clean mussels with predator 

(in this case, 3 C. maenas per cage), and overgrown mussels With predator. The 

cages were suspended from the UNH pier in New Castle, NH (Figure 2.4). The 

cages were left suspended for five weeks (35 days). Every week, the predators 

were fed mussels and the cages were cleared of visible epibionts. After the five-

week period, the cages were retrieved and ten mussels from each cage were 

measured for shell thickness index (STI), tissue index (Tl), and lip thickness 

calculations (see Chapter 1 Methods). A one-way ANOVA was calculated in 

MATLAB to determine whether any significant differences existed among 

treatments. 

2009. The above experiment was repeated in 2009 with several 

modifications. First, cages were modified to bring mussels into closer range of 

the predators, so the cages were built with an inner cage that contained the 

predator and an outer cage surrounding it that contained the mussels (Figure 

2.5). Second, an additional treatment was added: overgrown mussels without 

predators (see Figure 2.6 for set-up). Third, the experiment was extended to 6 

weeks (42 days). The experiment was conducted once with Carcinus maenas as 

the predator (n=3 per cage), and once with Asterias rubens as the predator (n=3 

per cage). The measurements and analysis were the same as in 2008. 



Figure 2.1: Screenshot showing mussel placement in choice trials, 
is on the left, and overgrown mussel is on the right. 
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Figure 2.2: Diagram showing set-up and method overview of consumption 
experiment. Crab marked with 'x' represents group of crabs initially placed in 
overgrown mussel tank. 
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Figure 2.3: 2008 cages for plasticity experiment. Experimental mussels were 
placed in bottom section. Crabs were placed on top and were fed with additional 
mussels. Lid was fastened with cable ties. 
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Figure 2.4: Diagram of UNH floating dock where cages were suspended from 
side of dock. Black squares represent control cages; dark gray, clean mussels 
with predators; and light gray, overgrown mussels with predators. 
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Inner cage: 
Width: 17 cm 

Figure 2.5: New cages built for 2009 studies. Mussels were placed closer to 
predator in outer cage. Inner cage was reserved for predator and food mussels. 
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Figure 2.6: Diagram showing UNH pier and plasticity set-up in 2009. Gap 
between dark gray and white cages represent area of dock taken up by fish 
pens. Black cages represent control cages; dark gray, clean and predators; 
white, overgrown only; and light gray, overgrown and predators. 
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Results 

Predation 

Handling Time and Choice. In 13 trials (44.8%), the overgrown mussel 

was approached first, and in eight (27.6%) trials, the clean mussel was 

approached first (Figure 2.7). Of the 29 trials, five crabs (17.2%) tasted D. 

vexillum without choosing a mussel and four crabs did not attempt any attacks on 

mussels or the ascidian. In total, nine (31.0%) clean mussels were consumed 

and five (17.2%) initially overgrown mussels were consumed (Figure 2.7). 

There was a significant difference in handling time between both mussel 

groups and the ascidian itself. In several of the trials, the crab picked off the D. 

vexillum, tasted it, put it down, then moved on to one of the two mussels. In some 

cases, the crab removed all of the D. vexillum, essentially turning the overgrown 

mussel into a control mussel. Figure 2.8 shows the average time crabs spent 

handling the mussels (control and overgrown) and D. vexillum (p=0.0059; 

handling time for clean mussels and the ascidian were significantly 

different).There was no difference in handling time of clean versus overgrown 

mussels, though there is a trend for lower handling time for mussels initially 

covered by the ascidian. 

Crabs responded similarly to control and overgrown mussels in trials 

where the crabs actively chose and consumed one of the mussels. When 

approaching an overgrown mussel, the crab usually picked off most of the D. 

vexillum. The crabs were not deterred from picking up D. vexillum. In fact, the 

time a crab spent handling the ascidian varied from 12 seconds to 301 seconds 
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(Figure 2.9). In some cases, the crab attempted to consume the ascidian, but 

would then push it aside. Usually, the crab chose either the clean or the initially-

overgrown, but now clean, mussel and consumed it. 

Consumption. Figure 2.10 shows the proportion of mussels consumed in 

the consumption experimental trials in the initial 24-hour feeding period. A Mest 

indicated a significant difference between the treatments (p = 0.05). Control 

crabs consumed more mussels before they were swapped into the overgrown 

tanks. In the next 24 hours, treatment crabs consumed significantly more clean 

mussels (p = 0.02; Figure 2.10). 

The sea stars showed little interest in any of the mussels, overgrown or 

clean. Only one clean mussel was consumed in all 10 trials of the entire 

experiment. No overgrown mussels were consumed. 

Plasticity 

D. vexillum in the cages stayed healthy throughout all three experiments. 

The ascidian colonies, however, did not completely overgrow the mussels in any 

of the cages (Figure 2.11). 

Shell Thickness Index. There was no significant difference in shell 

thickness index among mussel groups for either the 2008 group with crab 

predators (p = 0.80) or the 2009 groups with crab or sea star predators (p = 0.67 

for crabs; p = 0.39 for sea stars). The 2008 mussels showed a pattern of 

depressed shell thickness in groups with crab predators (Figure 2.12); but the 

2009 mussels (also with crab predators) showed an opposite pattern (Figure 

2.13). While STI did not differ significantly in response to A. rubens, STI was 



similar in all groups, except for the overgrown mussels and predator group where 

it was decreased (Figure 2.14). 

Lip Thickness. Lip thickness in 2008 was greatest in the clean mussel and 

predator group (Figure 2.15). There was a significant difference in lip thickness 

for the 2009 group with crabs, with clean mussels and crabs having the greatest 

average lip thickness (p = 0.04; Figure 2.16). Lip thickness between both groups 

with no sea stars and both groups with sea stars was also significantly different; 

groups with predators had higher lip thicknesses than those without predators (p 

< 0.01; Figure 2.17). 

Tissue Index. In 2008 mussels, tissue index was greatest in the control 

group, and least in the overgrown mussel and predator group (Figure 2.18); but 

again, the 2009 mussels (with crabs) showed the opposite pattern (Figure 2.19). 

However, in the 2009 sea star experiment, the Tl between control-only mussels 

and overgrown-only mussels was significantly different (p < 0.01) (Figure 2.20). 

Overgrown-only mussels had the lowest Tl (Figure 2.20). 
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Mussels first approached by crabs 
Out of 29 trials 

• Clean 
mussels 

• Overgrow n 
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• None 

B 
Mussels consumed by crabs 

Out of 29 trials 
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mussels 

B Overgrow n 
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• None 

Figure 2.7: A shows the number of mussels of each type initially approached by 
the crab in each of the 29 trials. More overgrown mussels (n=13) were 
approached first than clean mussels (n=8). B shows the number of mussels of 
each type consumed in the trials. More clean mussels (n=9) were consumed 
than overgrown mussels (n=5). In 18 trials, no mussels were consumed; in five 
of these trials, D. vexillum was sampled. 
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Figure 2.8: Average percent handling time of clean and overgrown mussels, as 
well as D. vexillum, in videotaped choice experiments. Handling time is the 
percentage of time spent holding and opening each mussel and holding and 
tasting, if applicable, the D. vexillum. There is a significant difference between the 
first two groups and the last group (p =0.0059). The error bars represent 
standard error. 
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Figure 2.9: A screenshot showing C. maenas sampling D. vexillum that it had 
pulled from the overgrown mussel. 
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C o n s u m p t i o n : 

Mussels consumed by crabs after first 24 hours 
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Figure 2.10 Top: The proportion of mussels consumed in the consumption 
experiment after the initial 24 hours. There was a significant difference between 
the treatments (p = 0.05). Bottom: The proportion of mussels consumed in the 
consumption experiment after the tank switch. There was a significant difference 
between the treatments (p = 0.02). The values shown here are the number of 
mussels consumed in 24 hours after the switch. The error bars represent 
standard error. White bars are clean mussels; gray bars are overgrown mussels. 
Crabs marked by the 'x' are those that were initially placed with overgrown 
mussels at the start of the experiment. Asterisks (*) indicate values that are 
significantly different. 
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Figure 2.12: Mussel shell thicknesses of the three treatments in the 2008 crab 
plasticity experiment showed no significant differences (p = 0.75). Error bars 
represent +/-1 standard error of the mean. 
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Figure 2.13: Shell thicknesses compared among the four treatments in the 2009 
crab plasticity experiments showed no significant differences (p = 0.67). Error 
bars represent +/-1 standard error of the mean. 
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Figure 2.14: Shell thicknesses compared among four treatments in the 2009 sea 
star plasticity experiment show no significant differences (p = 0.39). Error bars 
represent +/-1 standard error of the mean. 
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Figure 2.15: Lip thicknesses compared among the three treatments for 2008 crab 
plasticity experiments showed no significant differences (p = 0.38). However, the 
trend indicates that mussels without predators had lower lip thicknesses than 
those with predators. Error bars represent +/-1 standard error of the mean. 
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Figure 2.16: Lip thicknesses compared among four treatments in the 2009 crab 
plasticity experiment showed a significant difference between groups 2 and 4 
(clean mussels + predators and overgrown mussels + predators, respectively) (p 
= 0.04). Error bars represent +/- 1 standard error of the mean.. 
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Figure 2.17: Lip thicknesses of groups with no predators are significantly different 
than those in groups with predators (p ^ 0.01) in the 2009 sea star plasticity 
experiment. Error bars represent +/- 1 standard error of the mean. 
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Figure 2.18: Tissue index compared among the three treatments in the 2008 crab 
plasticity experiment showed no significant differences (p = 0.75). Error bars 
represent +/-1 standard error of the mean. 
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Figure 2.19: Tissue index compared among the four treatments in the 2009 crab 
plasticity experiments showed no significant differences (p = 0.55). These 
patterns are opposite those from 2008. Error bars represent +/-1 standard error 
of the mean. 
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Figure 2.20: Tissue indices compared among four treatments in the 2009 sea 
star plasticity experiment. There was a significant difference in tissue index 
between groups 1 and 3 (clean mussels and overgrown mussels, respectively) in 
the 2009 sea star plasticity experiment (p 2 0.01). Error bars represent +/-1 
standard error of the mean. 
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Discussion 

Predation 

Crabs consumed fewer overgrown mussels than control mussels, 

suggesting an associational resistance effect of D. vexillum epibiosis on the 

mussels. Wahl et al. (1997) identified four stages of predation: encounter, 

recognition, capture-handling, and consumption. They surmise that epibiosis only 

effects recognition and capture-handling. In this study, more overgrown mussels 

than control mussels were approached first, so the ascidian did not instantly 

repel the predator. Therefore, encounter was not affected. However, as more 

clean mussels than overgrown mussels were consumed during the consumption 

assay, there was a preference for clean mussels. 

Epibiosis by D. vexillum appeared to diminish both recognition of the 

mussels as a potential food source and handling mussels. C. maenas primarily 

uses chemical and tactile cues to determine prey choice (Elner and Hughes, 

1978). Chemical cues of the mussels and D. vexillum were mixed in the test 

basin, and so the crabs appeared to rely on tactile cues for identifying potential 

food sources. The initial investigation of D. vexillum as a potential prey could 

indicate that the crab mistook the ascidian as mussel tissue, which is readily 

consumed by crabs (personal observation), or that the crabs were more attracted 

to the conspicuous light color of D. vexillum tissue. When crabs further inspected 

the ascidian tissue, they dropped it and selected one of the mussels. 

In the consumption experiments, crabs that were placed in tanks with 

control mussels ate more mussels than crabs placed in tanks with overgrown 
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mussels. This proved true both for crabs that were initially placed with clean 

mussels and for crabs that were initially placed with overgrown mussels then 

swapped to the clean mussel tank. In all trials, the presence of D. vexillum 

reduced mussel consumption. This supports earlier studies that have shown that 

extracts from members of the family Didemnidae contain predator deterrents 

(Lindquist et al., 1992; Vervoort et al., 1998; Wright et al., 2002; Prado et al., 

2004; Blunt et al., 2006). 

Mechanisms of predator deterrence. The choice and consumption studies 

show that mussels overgrown with D. vexillum had some deterrence to crab 

predation. This indicates that D. vexillum provides an associational resistance to 

predation, a positive aspect for the mussel. Wahl et al. (1997) found that 

associational resistance occurs when the epibiont masks chemical cues, or 

directly repels the predator. Epibionts may also affect prey handling (Enderlein et 

al., 2003), though chemical aspects play a larger role in associational resistance 

(Laudien and Wahl, 2004). It is unclear what specifically deterred predation as D. 

vexillum possesses an acidic tunic, and may possess chemical defenses. With 

disturbance of D. vexillum's tunic, surface test cells lyse, and acid release occurs 

(S. Bullard, University of Hartford, pers. comm.), though Parry (1984) believes 

that the acid is quickly neutralized by calcium carbonate spicules or is buffered 

by seawater. The crabs in the choice experiment picked up and handled D. 

vexillum, some for a significant amount of time, so it is unclear if the crab was 

affected by the release of acid. The ascidian is believed not to harbor any 

bioactive compounds, like those found in its tropical relatives (B. Copp, University 



of Auckland, pers. comm.). 

The anti-predator resistance provided by D. vexillum to mussels may vary 

with time of year. For the current studies, D. vexillum and mussels covered with 

the ascidian that were collected within one to two days of the feeding trials were 

used. The experiments all took place from late summer and to mid-autumn when 

D. vexillum is metabolically and reproductive^ active in the Gulf of Maine 

(Dijkstra, 2007). During the winter months, the ascidian senesces and several 

species of potential predator have been observed feeding on the ascidian 

(USGS, 2010). At this time, D. vexillum may not provide any resistance to 

potential predators of mussels; the ascidian may even provide an additional 

source of food for predators, potentially resulting in a "shared doom" scenario for 

mussels (Wahl et al.,1997). 

Plasticity 

Shell thickness. Field observations in New Zealand showed Perna 

canaliculus shells to be brittle and easily crushed when heavily overgrown with 

D. vexillum (personal observation). It is possible that presence of a predator 

would be able to cause thickening of the mussel shell when mussels are 

overgrown. In all of the plasticity trials, mussel shell thickness was not 

significantly affected by either predator presence, injured conspecifics, or D. 

vexillum overgrowth. It is possible that the length of time that the experiment was 

run was not long enough to elicit a response in our system, even though in an 

earlier experiment, four weeks was a long enough period to show shell thickening 

in M. edulis in the field (Reimer and Tedengren, 1996). Freeman and Byers 



(2006) found that Carcinus maenas caused thickened shells in mussels in the 

Gulf of Maine. However, they performed their experiment in a closed laboratory 

system where mussels were exposed to concentrated chemical cues from the 

predators; this was necessary for the scope of their experiment as they were 

testing whether a new invasive predator (Hemigrapsus sanguineus) could elicit a 

response in native mussels. Unfortunately, the difficulty of maintaining D. 

vexillum in the laboratory did not allow for replicating the current experiments in 

the laboratory facilities and the seawater system at the CML where Freeman and 

Byers (2006) had conducted their studies was not available due to renovations. 

Lip thickness. Groups with predators, regardless of whether D. vexillum 

was present as an epibiont, had consistently higher lip thicknesses than control 

groups in 2009. Because differences in lip thickness were apparent in both 2009 

trials but not in 2008, I suspect that the change in cage design is the most likely 

factor. In 2009, mussels were placed much closer to the predator than in 2008. 

For both crabs and sea stars in 2009, predator presence (and likely injured 

conspecifics) affected lip thickness in both clean and overgrown mussels. Smith 

and Jennings (2000) found increased lip thickness in mussels exposed to C. 

maenas and to the snail Nucella lapillus. Reimer and Tedengren (1996) have 

seen thicker shells in response to A. rubens, but they did not specifically measure 

lip thickness. This study suggests that lip thickness is also affected by sea stars 

(Figure 2.21). 

D. vexillum overgrowth did not play a role in lip thickness change. I had 

expected that since chemical cues induce a plastic response in mussels 



(Leonard et al., 1999), that overgrowth may mask these cues and cause a 

decrease in these responses. However, in the current study, the tunicates did not 

completely overgrow the mussels (Figure 2.11). The mussels were still able to 

feed and absorb calcium ions and sense chemical cues, and presumably, to 

thicken their lip margins. 

Tissue index. No changes in tissue index were evident in any crab trial. 

For sea stars, the presence of predators did not affect the tissue index, though 

overgrown mussels without predators had significantly lower tissue index values 

than in clean mussels without predators. The lower tissue index in overgrown 

mussels echoes the results seen in Chapter I. This change occurred in a shorter 

amount of time (6 weeks) than was evident in growth experiments (3 months). 

Tissue index trends were reversed from the 2008 and 2009 mussels with crabs. 

The necessary change in cage placement on the floating dock to make room for 

an additional treatment and to place cages to avoid fish pens installed on the 

floating dock, may have been a variable in this trend reversal. 

Evaluation of the Study 

These predation studies provide valuable clues about how D. vexillum 

affects C. maenas predation on M. edulis. Additional work could add to this 

knowledge. The current predation studies were conducted in the laboratory only 

and not in the field. While laboratory studies are suitable for C. maenas because 

it is a gregarious animal even in laboratory situations, they may not be for other 

species. Similar experiments with A. rubens were not successful. No mussels 

were consumed, except for one clean mussel. The sea stars had been starved 



for the same time as the crabs or longer (up to 2 weeks), and they still did not eat 

in the experimental setting. Using cages in the field would be a better choice for 

testing sea stars, as they readily fed in the plasticity field studies. The 

experiments could also be continued with other predators (e.g. Cancer irroratus, 

C. borealis, Nucella lapillus, and Hemigrapsus sanguineus). If choice or 

consumption varies among predators, then effects of D. vexillum overgrowth on 

mussel mortality via predation may depend on the dominant predator in a specific 

area. 

The plasticity studies were designed to examine the potential effects of 

epibiosis on inducible defenses, an area of study that has been rarely explored to 

date. No effects of D. vexillum overgrowth on phenotypic plasticity in the mussels 

were found; however, like the predation studies, it would be worth conducting 

additional studies with additional predators. Smith and Jennings (2000) and 

Freeman (2007) both found that a mussel's response to predation was predator-

dependent. As was found in Chapter 1, D. vexillum overgrowth affected only 

specific aspects of mussel growth (tissue, lip thickness, and length); perhaps, it 

only affects specific defense mechanisms. 

Experimental cages were readily fouled by non-D. vexillum epibionts. The 

weekly effort of cleaning cages and removing the epibionts could not prevent 

heavy fouling by hydroids (seen in Figure 2.11). The same epibionts were 

prevalent on all cages, so this did not seem to be a variable among the 

treatments. However, to corroborate plasticity data with laboratory studies in a 

flow-through system would ensure that the changes seen were caused by 



chemical cues from the predator and D. vexillum. 

Implications 

Mussel populations are controlled by several predators in the Gulf of 

Maine, including Nucella lapillus, Asterias rubens, Cancer irroratus, Cancer 

borealis, and Carcinus maenas (Seed and Suchanek, 1992), and increasingly by 

Hemigrapsus sanguineus (Bordeau and O'Connor, 2003). D. vexillum has been 

increasing in abundance throughout the Gulf for the past ten years, forming large 

mat-like growths on mussel colonies that cover individual mussels completely (L. 

Harris, UNH, personal communication; personal observation). If D. vexillum 

inhibits, or at least minimizes predation on mussels through associational 

resistance (as indicated in these studies), several predatory species will be 

negatively affected. In the top-down predator-controlled systems seen in our 

study area (Donahue et al., 2009), community dynamics could be affected by this 

associational resistance (Wahl et al., 1997) This would likely occur as predators 

consume fewer mussels when the latter are overgrown, and resort to other 

species for food, or the predators may decrease in population due to lack of food. 

This may occur most dramatically in areas like the portion of Georges Bank sea 

floor that is colonized by over 200 square kilometers by D. vexillum (Valentine et 

al., 2007). 

As for the individual mussel, the associational resistance effect from 

overgrowth provides a trade-off for the negative effects on growth found in 

Chapter I. The mussel may not grow as quickly when overgrown, but will likely be 

protected from predation; this is especially true for mussels that colonize the 



benthos and have both benthic (e.g. sea stars and crabs) and pelagic (cunner 

and other fish species) predators. While Laudien and Wahl (2004) predict that the 

decrease in growth of M. edulis caused by an epibiont may prolong its 

susceptibility to predation, because smaller mussels are preferred over larger 

mussels (e.g. Murray et al., 2007), this study suggests otherwise. Because of D. 

vexillum's mat-like morphology, which tends to cover mussels completely, and 

the ascidian's deterrence to predators, smaller mussels (less than 5 centimeters) 

are still protected from predation; in this study, mussels used were all less than 4 

centimeters, and those overgrown were consumed less often. 

Conclusions 

Overall, the results from these assays suggest that D. vexillum has a 

positive effect on M. edulis by providing an anti-predator defense for C. maenas 

and, potentially, A. rubens, two common predators in the Gulf of Maine. The 

mussel appeared to be not only protected from predation when overgrown, but its 

induced response to predation was not suppressed. This interaction could have a 

negative effect for predators in areas with heavy D. vexillum colonization, which 

may alter community dynamics (as suggested in Wahl et al., 1997). 
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CHAPTER III 

THE EFFECTS OF DIDEMNUM VEXILLUM OVERGROWTH ON MYTILUS 
EDULIS REPRODUCTION AND SETTLEMENT 

Introduction 

Overgrowth has been shown to affect reproduction of, and settlement 

onto, basibionts (Bayne, 1964; Dittman and Robles, 1991; Wahl, 1997; 

Buschbaum and Reise, 1999; Cerrano et al., 2001; Chan and Chan, 2005). The 

additional weight of epibionts causes stress and increased drag to epibionts, 

which may result in decreased egg production (Buschbaum and Reise, 1999; 

Chan and Chan, 2005). In motile organisms, epibionts may be physical 

deterrents to copulation (Damiani, 2003; Chan and Chan, 2005). Epibiosis may 

also negatively affect settlement of juveniles basibionts; this is especially the 

case when the epibiont produces deterrent chemicals (Bayne, 1964; Cerrano et 

al., 2001; Toth and Lindeborg, 2008). 

Mytilus edulis reproductive output 

Mussel reproductive output is measured in a number of ways, including 

both quantitative and qualitative methods. Seed (1976) employed the use of a 

subjective gonad ripeness index that assigned a stage of ripeness based on 

gamete abundance and development in tissue samples. More quantitative 

measurements were employed by Bayne et al. (1978) who used gamete volume 

fraction (a method modified from Weibel et al.,1966). This is a simple method of 
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using point-count analysis to determine what fraction of points overlaid on a slide, 

or photograph of a slide, are occupied by gametes. This provides a reliable 

estimate to determine mussel gamete development over time. Another proxy for 

mussel reproductive output is the ratio of dry mantle tissue weight to shell length 

(Bayne and Worrall, 1980). This has been specifically used as a proxy in 

determining effects of epibiosis on mussel reproduction (Dittman and Robles, 

1991). 

Settlement 

Didemnid species contain various secondary metabolites, as well as acids 

(Stoecker, 1978, 1980), that are thought to deter settlement of other species (e.g. 

bacteria in Wahl et al., 1994). D. vexillum has been shown to negatively affect 

larval bay scallop (Argopecten irradians) settlement (Morris et al., 2009). Thus, 

Didemnum vexillum presence may also affect the settlement of M. edulis larvae. 

Purpose of study 

The purpose of this study is to examine the effects of D. vexillum 

overgrowth on Mytilus edulis reproduction and postlarval primary settlement. 

Recent observations in the Gulf of Maine have found a decrease in mussel 

abundance where they were once common (L. Harris, University of New 

Hampshire, personal communication). Conversely, there has been a drastic 

increase of invasive ascidian abundance over the past 30 years, including the 

recent invader D. vexillum (Dijkstra, 2007). Whether the observed decrease in 

mussels may be attributed to overgrowth by tunicates remains to be seen. 

I will first examine the effects of D. vexillum overgrowth on M. edulis gonad 
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index, dry gonad weight:shell length relationship, and gonad volume fraction 

(GVF). Mussels were taken from the same cages as in Chapter 1 and so these 

effects will be discussed at the same four sampling times from Chapter 1: 

November 2008, February 2009, May 2009, and August 2009. The null 

hypothesis is that there are no significant differences in the above parameters at 

each sampling time between control and overgrown mussels. 

I will then examine the potential effects of D. vexillum on M. edulis 

settlement. First, I will assess mussel settlement in 2008-2009 and compare it to 

M. edulis settlement data in 1980-1981 from Dutch et al. (1983). I will then 

discuss a brief experiment conducted on postlarval mussel settlement in 

response to varying amounts of D. vexillum on adjacent panels to test the null 

hypothesis that there is no difference between settlement abundances on panels 

adjacent to D. vexillum colonization and on panels with no ascidians. 
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Methods 

Reproduction 

The mussels for this experiment were taken from the cages described in 

Chapter 1. Mussels not used for growth experiments were used for reproduction 

studies (n=5 per sex per treatment for gonad weight measurements; n=3 per sex 

per treatment for histology studies). Sex was determined initially by color in the 

first set of samples, and verified by viewing mantle tissue under the microscope 

in all samples thereafter, because it was determined that color of gonads was not 

reliable in determining sex after the first set of histology slides were reviewed 

(confirmed in Petes et al., 2008). 

Mussels were measured for length with digital calipers. Mantle tissue was 

removed from the right valve of each mussel and placed in a drying oven at 60°C 

for 24 hours. This tissue was then weighed on a CAHN C-31 microbalance. 

Additional mantle tissue was removed from the left valve of three mussels of 

each sex per treatment and placed in cassettes for histological study. Cassettes 

were labeled and fixed in 10% neutral buffered formalin in preparation for 

histology processing by the UNH Veterinary Diagnostic Laboratory, where they 

were stained with hematoxylin and eosin, embedded in paraffin, thin sliced in 6-

micrometer (pm) sections and mounted onto slides for analysis. 

Gamete volume fraction. Slides were photographed with an Olympus 

DP25 microscope camera at 100x magnification. Images were uploaded into 

Image J software and analyzed for GVF (as described in Bayne et al., 1978). For 

each slide photograph, a grid of 108 points was applied from ImageJ's "Grid" 
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plugin. Point count analysis was used with each point categorized as "ripe egg," 

"developing egg," "empty follicle," or "connective tissue" for the points that 

occupied the mantle section on the female slides. The male slides included 

follicle, connective tissue, and "sperm" categories. A GVF value for each slide 

was assessed using a simple ratio of number of points occupied by gametes 

divided by total points (Weibel et al., 1966; Bayne et al., 1978). At-test was 

conducted on the arcsine-transformed proportions for each of the categories 

between clean and overgrown mussels for each sampling month. 

Gamete mass and weight-length relationship. The mass of the dry mantle 

was multiplied by the GVF for each mussel to determine the approximate mass 

of gametes. These values were averaged for each treatment per month. The 

mantle weight-to-shell-length relationship was calculated by dividing the weight of 

the dry mantle tissue from the right valve by the shell length of each mussel. 

Gamete mass values and the mantle weight:shell length relationships were 

compared between the control and treatment at each month with a t-test. 

Gonad index. The gonad index was determined by visual observation of 

the slides using the criteria in Table 3.1. These criteria are adapted from Seed 

(1976). 
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Table 3.1: Criteria for assigning gonad indices to mussels in this study (adapted 
from Seed, 1976). 

Stage Criteria 
0 Resting or spent gonad. No reproductive tissue. 
1 No ripe gametes visible, though gametogenesis has begun, or the 

mussel has spawned. 
2 Ripe gametes appear. Follicles are approximately 1/3 total size. 
3 Follicle is about half that of a fully ripe gonad. About half ripe and half 

developing gametes present. 
4 Gonad is two-thirds or more final size. Follicles contain mostly ripe 

gametes. 
5 Fully ripe gonad and gametes. 
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Settlement 

Settlement panels were constructed from 100 cm2 panels of artificial 

grass. Similar panels have been previously used in the Gulf of Maine, to assess 

settlement of sea urchins (Strongylocentrotus droebachiensis) and green crabs 

(Carcinus maenas) (Harris and Chester, 1996; Tyrrell, 2002). The panels 

approximate the filamentous substrate which postlarval mussels use for primary 

settlement (Bayne, 1964). 

For general mussel settlement, four panels were attached to plasticized 

wire mesh and suspended 100 cm below the water surface at the UNH Coastal 

Marine Lab floating dock. These panels were retrieved and replaced biweekly 

from June 2008 - November 2009, with the exception of December 2008 when a 

severe ice storm prevented collection. The panels were stored in labeled Ziploc® 

bags with 95% ethanol until they were analyzed. 

Experimental settlement. A brief experiment was also conducted on effects 

of D. vexillum presence on primary settlement of mussels. Experimental turf 

panels were cut into four smaller panels of 25 cm2 area. Three acrylic panels of 

equal size were placed in the water at CML in late August 2009 to collect D. 

vexillum recruits. At the start of the experiment, each turf panel was added to 

these three acrylic panels and then were attached to a square of plasticized wire 

mesh (Figure 3.1). This constituted one replicate unit. Four replicates (per 

treatment of varying amounts of D. vexillum) were attached to a longer piece of 

plasticized mesh and suspended from the UNH floating dock. Initially, I used 

large colonies of D. vexillum collected from the field and cable-tied them to the 
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acrylic panels to cover each acrylic treatment panel completely. After the first 

trial, D. vexillum was beginning to recruit onto the panels, so I removed non-D. 

vexillum recruits, and then counted the number of D. vexillum recruits on the 

panels in the field with a hand lens and used that value for my D. vexillum 

coverage. The treatments were as follows: control (no epibionts on the panels), 

low coverage (1/3 acrylic panels covered with D. vexillum), medium coverage 

(2/3 acrylic panels covered), and high coverage (3/3 acrylic panels covered) 

(Figure 3.2). 

The experimental panels were left for four week periods, with weekly 

gardening of non-D. vexillum epibionts, from October 12 to November 9 for the 

first assay and repeated from November 9 to November 30 for the second assay. 

D. vexillum is known to recruit abundantly through this time and M. edulis settled 

through November in 2008. When retrieved, the turf panels were removed and 

placed in labeled Ziploc® bags with 95% ethanol. 

For analysis of both general settlement and experimental panels, each 

panel was removed from its bag and rinsed at least three times with tap water 

into a small container. To contain any settlers that might have fallen off into it, the 

bag was also thoroughly rinsed. The panel was then brushed with a toothbrush 

and both were rinsed until all visible settlers were removed. The water in the 

container was sieved through a fine 100 micrometer mesh. The biota caught in 

the mesh were rinsed into, and distributed as evenly as possible throughout, a 

square gridded dish, then analyzed under a dissecting microscope. All post-larval 

mussels were counted. This was repeated for all replicates in each set, then 



averaged. In the case of especially heavy mussel settlement, ten squares on the 

grid were randomly chosen as quadrats, and the mussels within were counted. 

These values were averaged and then extrapolated (by multiplying the average 

number of mussels/grid by the number of grids) to represent the mussel 

abundance in the entire dish. 

For each trial, to determine differences among the treatments, a one-way 

ANOVA and Multiple Comparisons Analysis were conducted in MATLAB. A f-test 

was also performed between the control and the three pooled treatments to see if 

the presence of D. vexillum caused a difference in mussel settlement. 
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Figure 3.1: Photograph of control experimental panels. The highlighted and 
outlined area shows one.replicate unit containing three acrylic panels for D. 
vexillum coverage and settlement (in the treatment panels) and one turf panel for 
collection of postlarval M. edulis recruitment. 
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Bare acrylic panel 

Acrylic panel with D. vexillum epibionts 

Turf panel 

Figure 3.2: Schematic of each treatment set-up. In the first trial, the epibionts 
were approximated with D. vexillum adult colonies collected from the field. In 
November, D. vexillum recruitment was observed and the experiment was 
repeated with the recruits as primary epibiont coverage. 
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Results 

As mentioned in Chapter 1, Didemnum vexillum overgrowth varied 

throughout the year in the cages (Figure 1.6). In November 2008, there was 

complete overgrowth, with lips of the mussels partially covered by the ascidian. 

In February 2009, there was no visible growth of the ascidian among the 

mussels. There were very few tiny colonies in May 2009. In August 2009, there 

was some ascidian growth, evidence that D. vexillum returned from its winter 

senescent state. This growth was not as heavy as in November 2008. 

Histology: Females 

The histology study found marked differences between the control and 

overgrown groups in both male and female mussels throughout the 12-month 

period (Table 3.2). Figure 3.3 shows representative histological slides and Figure 

3.4 shows the mean percentage of mantle tissue occupied by each gamete type 

(ripe and developing), connective tissue, and empty follicle. No significant 

differences (p>0.05) were found between control and overgrown female mussels 

for any sampling periods. 

There were no significant differences in gamete mass (p>0.05), though 

trends shown in Figure 3.5 are striking. In November 2008 and February 2009, 

gamete mass of the control and treatments were nearly identical, whereas in May 

2009 and August 2009, the control had a higher mass than the overgrown 

mussels. 
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Table 3.2: Summary of qualitative observations and gonad indices of female 
mussels. 

Female Control Overgrown 
Month Stage Description Stage Description 
November 

3 

Mantle tissue consisted 
primarily of large 
follicles containing a 
nearly equal portion of 
mature and developing 
eggs. 

2 

Low GVF, with small 
follicles, few mature ova 
and a large amount of 
connective tissue. Many 
more developing ova 
than ripe ova. 

February 
1 

Low GVF, small follicles 
that contained few if 
any developing eggs. 

1 
Same as Control for this 
month. 

May 
4 

Mantle tissue full of 
mature ova. 1 

Mantle tissue composed 
mostly of connective 
tissue and few eggs. 

August 

3 

Many mature ova, 
though a significant 
amount of connective 
tissue is present. 

2 

Fewer developed 
gametes and smaller 
follicles than control. 
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Figure 3.3: Histology slides showing gonad development in control and 
overgrown mussels throughout the sampling period. R = ripe egg; D = developing 
egg; C = connective tissue; F = empty follicle. Area of slide shown in photographs 
is 0.591 mm2. 
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Figure 3.4: Average percentages of mantle tissue occupied by gametes and non-
gamete tissue for female mussels. Percent of tissue was calculated from point-
count analysis. Note that for all months, the percent tissue occupied by gametes 
are greater in control mussels than in overgrown mussels. There were no 
significant differences for any of the tissue types between control and overgrown 
mussels at each month (p>0.05). 
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Figure 3.5: This figure shows the dry mass of gametes in females throughout the 
year. In November 2008, control mussels had only slightly higher gamete mass 
(9.2 mg) than overgrown (7.55 mg). In February 2009, they were very similar 
(0.14 mg for control; 0 mg for overgrown). In May 2009, control values were 
greater (17.78 mg) than overgrown (0.98 mg), but not significant. In August 2009, 
this trend continued, though it was still not significant (31.49 mg for control; 11.62 
mg for overgrown). 
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Histology: Males 

The gonad indices and qualitative descriptions for the male mussels are 

summarized in Table 3.3. In all times throughout the year, except for February 

2009, the control mussels were more developed than the overgrown mussels 

(Figures 3.6 and 3.7). No significant differences (p>0.05) were found between 

control and overgrown male mussels for any of the sampling periods. 

The gamete masses were significantly lower for overgrown mussels in 

August 2009 (p = 0.01). Gamete mass for control mussels decreased from 

November to February, and then increased from May 2009 to August 2009, 

whereas in overgrown mussels the opposite occurred (Figure 3.8). 
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Table 3.3: Summary of qualitative observations and gonad indices of male 
mussels. 

Male Control Overgrown 

Month Stage Description Stage Description 

November 
5 

Large follicles filled with 
sperm 4 

In the process of 
spawning, with areas of 
empty follicles present. 

February 

3 

Follicles were small but 
full of sperm. Appear to 
be in the process of 
developing sperm. 
Nearly equal proportion 
of developing and ripe 
sperm. 

4 

Follicles larger than in 
control and full of 
sperm. 

May 

3 

Large follicles of sperm, 
with minor evidence of 
spawning. Gonads half 
the size of full gonads. 

3 

Similar to Control. 

August 4 Empty areas of follicles 
present. 3 Similar to control, but 

with smaller follicles. 
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Figure 3.6: Histology slides showing gonad development in control and 
overgrown males throughout the sampling period. S=sperm, C=connective 
tissue; F = empty follicle tissue. Area of slide in photographs is 0.591 mm2. 
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Figure 3.7: Average percentage of mantle tissue occupied by gametes and non-
gamete tissue for male mussels. Percent of tissue was calculated from point-
count analysis. Note that for all months, the percent tissue occupied by gametes 
are greater in control in mussels than in overgrown mussels, with the exception 
of February where overgrown mussels have a greater percentage of sperm. 
There were no significant differences for any of the tissue types between control 
and overgrown mussels at each month (p>0.05). 
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Figure 3.8: This figure shows the dry mass of gametes in males throughout the 
year. In November, control mussels were greater (11.94 mg) than overgrown 
mussels (3.4 mg). In February, the values were similar (7.95 mg for control; 8.45 
mg for overgrown). Control values were greater in May (11.6 mg for control; 
10.14 mg for overgrown) and even more so in August (28.17 mg for control; 4.7 
mg for overgrown). Asterisk (*) indicates values that are significantly different. 
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Combined male and female data 

Dry Mantle Weight - Shell Length Ratio. The ratio of dry mantle mass to 

shell length was consistently (though not significantly) higher in control mussels 

for all four months. The ratio was highest in August 2009 (control mean = 1.42 

mg/mm, overgrown mean = 1.16 mg/mm) and lowest in February 2009 (control 

mean = 0.53 mg/mm, overgrown mean = 0.42 mg/mm) for both treatments 

(Figure 3.9). 

Gamete mass. In Figure 3.10, I compared the gamete mass values 

throughout the year for female and male mussels. For control mussels, males 

matched the females' declines and increases in gamete mass throughout the 

year. Overgrown males, however, increased in gamete mass while overgrown 

females were decreasing, and vice versa. Their gonad development and 

spawning cycles were not in sync. 
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Figure 3.9: The ratio of dry mantle to shell length for control and overgrown 
mussels throughout the year. The trends were similar for both, with overgrown 
mussels consistently lower. 
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Figure 3.10: Gamete mass values grouped by treatment to show similar trends in 
gamete development in males and females for the control group (top graph). The 
bottom graph shows overgrown male mussels having opposite spawning and 
developing gamete cycles than their female counterparts. 
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Settlement 

Long term comparison. Peaks were evident during the summer of both 

years, with a peak of 1490 postlarvae/100 cm2 in 2008 and a peak of 1983 

postlarvae/100 cm2 in 2009 (Figure 3.11). The peak in 2009 occurred earlier than 

in 2008. The gap that exists in the figure occurred during an ice storm (December 

2008) that prevented data collection. When compared to primary settlement data 

on artificial turf substrate from the Coastal Marine Laboratory area by Dutch et al. 

(1983), a trend of winter settlement is observed with settlement less in 2008-

2009 than in 1980-1981 (Figure 3.12). However, these differences were not 

significant (p = 0.08). 

Experimental. In Trial 1 (October to November 2009), D. vexillum attached 

to the panels did not survive the month (Figure 3.13). However, at the end of the 

first trial, I noted the first appearance of D. vexillum settlement on the acrylic 

panels (November 9, 2009). Table 3.4 shows the number of D. vexillum recruits 

per panel and total number per treatment counted each week. Recruits did not 

cover their respective panels completely as the size of each of the new colonies 

was rather small. Mussel settlement did not vary significantly among treatments 

in October 2009 (p = 0.67), but did show some difference in November 2009, 

with there being a significant difference between the control and treatment for 

panels with 2/3 Didemnum coverage (p = 0.0165). There was a negative 

correlation when the total number of mussel postlarvae that settled during 

November was correlated with the number of D. vexillum recruits on each 

treatment (Figure 3.14). However, when settlement in the controls was compared 
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to settlement in the pooled treatments of Didemnum presence, there was no 

significant difference for either October or November (p = 0.51 and p = 0.06, 

respectively). 
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Figure 3.11: Settlement of mussel plantigrades at CML during 2008-2009. 
Dashed line indicates January 1, 2009. 
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Figure 3.12: A post-hoc comparison of 2008-2009 winter settlement data to that 
in 1980-1981 at CML. Total number of settlers for each period in 2008-2009 
compared to the total number of settlers on artificial turf panels during the same 
periods in 1980-1981 (from data obtained by Dutch et al.,1983). 
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Figure 3.13: These treatment panels (3/3 group) were photographed at the end 
of the first trial on November 9th. One can see recruits on the acrylic panels (one 
indicated by the white arrow). Most of the adult D. vexillum colonies did not 
survive from the October trial. 
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Table 3.4: Didemnum vexillum recruitment on experimental acrylic panels in 
November 2009. 

Date Average 
D. vexillum 

recruits/panel 

Total recruits 
on 3-panel 
treatment 

Total recruits on 
2-panel 

treatment 

Total recruits on 
1 -panel 

treatment 
11/09/09 1.42 5 7 5 
11/16/09 3.5 19 15 8 
11/23/09 7.56 44 29 17 

11/30/09 5.5 25 22 19 
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Figure 3.14: A negative correlation exists between D. vexillum recruits and M. 
edulis settlers. The number of D. vexillum recruits are total recruits counted that 
month on the panels per treatment. The number of M. edulis settlers are 
averaged for each treatment. 
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Discussion 

Reproduction 

Didemnum vexillum affected M. edulis gonad ripeness. In months where 

D. vexillum was abundant, there was a marked difference in both qualitative 

observations and in quantitative measures, with a trend towards lower values for 

overgrown mussels. The fact that these values were not statistically significant is 

likely an artifact of a low sample size. 

There are two ways to interpret lower gonad mass and ripeness in one 

treatment versus the other. Overgrown mussels may have spawned earlier than 

the clean mussels. The gonad indices used in this study were designed by Seed 

(1976) to describe both developing and spawning gonads (i.e. a stage 2 gonad 

refers to both those that are in the process of growing to one-third its potential 

size and those that have shrunk to that size). However, the consistency in lower 

quantitative values for overgrown mussels throughout the year, with the 

exception of more sperm in overgrown mussels in February (a time with no D. 

vexillum present), suggests that the lowered values are attributed to reduced 

reproductive productivity. This supports data that epibiosis negatively affects 

reproduction in mussels (Dittman and Robles, 1991; Thieltges and Buschbaum, 

2007). 

It is also very interesting to note the lack of synchronization in gamete 

mass apparent in Figure 3.10 (bottom graph). Control mussels showed a similar 

pattern in increase and decrease of gametes in males and females, which likely 

indicates synchronization in development and spawning. However, overgrown 
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male mussels showed a very different pattern in months with high D. vexillum 

abundance. While overgrown females maintained a similar but decreased pattern 

of gamete mass to clean females, males had opposite patterns of gamete 

ripeness. For successful external fertilization, males and females should follow 

similar cycles of gamete release. However, overgrowth by D. vexillum appears to 

change this synchronization and negatively affects fertilization in areas of high 

ascidian abundance. 

In Chapter I, it was determined that the decrease of growth in overgrown 

mussels was partially, if not completely, due to the difficulty of obtaining food due 

to interference from the epibiont ascidian. This is also likely the reason that 

reproductive output (i.e. mantle weight and gamete mass) were lower in 

overgrown mussels than in clean mussels. Food limitation has been shown to 

reduce both growth and fecundity in Musculista senhousia by Allen and Williams 

(2003). Variation in food quality, in addition to food limitation, play a major role in 

Mytilus gametogenic cycles (Newell et al., 1982). 

Decreased reproductive output may also be caused by a trade-off from 

allocation of energy to other biological processes (Thieltges and Buschbaum, 

2007). Mussels burdened with epibionts may have less energy to devote to 

reproduction (Thieltges, 2005; Thieltges and Buschbaum, 2007). Byssal thread 

production was not considered in this study so it is unclear to what extent the 

byssal thread production was affected. However, epibionts have been shown to 

increase byssal thread production in mussels in high-energy environments 

(O'Connor et al., 2006). In the current experiment, the mussels were in cages; 
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thus the drag forces on the mussels were decreased and, in turn, decreased the 

need for the mussels to hold on to a substrate for survival. In habitats where 

mussels are relying on their attachment strength for survival (i.e. in high energy 

areas or on longlines), epibiosis from D. vexillum may further affect reproduction. 

Settlement 

The 2008-2009 winter settlement of M. edulis was lower than settlement 

during the 1980s. Since the 1980s, the benthic habitat at the Coastal Marine 

Laboratory has changed from one dominated by hard-shelled native species, 

particularly M. edulis, to one dominated by non-native tunicates (Dijkstra, 2007). 

The number of mussels observed on the floating dock at this site has been 

greatly reduced in the past few years compared to historical observations (L. 

Harris, UNH, personal communication). 

While the experimental studies show little evidence of D. vexillum affecting 

primary postlarval M. edulis settlement, there are examples in the literature that 

indicate that overgrowth and dominance of M. edulis by D. vexillum may be a 

problem for larval settlement. For example, bay scallop (Argopecten irradians) 

larvae avoid settling on D. vexillum (Morris et al., 2009), possibly due to the low 

pH of the ascidian's surface. However, larvae may also detect chemical cues 

dissolved in the water column (Turner et al., 1994). The proximity of D. vexillum 

to my panels still allowed for settlement of mussels, though the number of 

settlers seemed to decrease as the number of new D. vexillum recruits 

increased. However, mussel settlement was only significantly different from the 

control in the treatment when 2/3 panels were covered in D. vexillum. It is unclear 
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why there was a difference with this treatment as the number of recruits per 

panel were not significantly more than the other two treatments; as other non-D. 

vexillum epibionts had been removed from the panels, the composition of the 

settlers on the 2/3 panel set was not strikingly different from those on the other 

panel treatments. 

As D. vexillum did not survive on the artificial turf used in my studies 

(personal observations; though it has been noted to grow on the same turf at the 

Isles of Shoals (L. Harris, UNH, personal communication)), I directed my study to 

counting mussels on panels adjacent to those with D. vexillum present. While D. 

vexillum prefers hard substrate for settlement (Bullard et al., 2007), it has been 

observed to colonize eelgrass beds (Carman and Grunden, in press), stipes and 

blades of algae (personal observations), and hydroid stalks (L. Harris, UNH, 

personal communication). Thus D. vexillum is very likely to colonize near, or on, 

areas that postlarval mussels use as primary substrate. My experiment focused 

on primary settlement of mussel postlarvae and did not address the potential 

effects of D. vexillum on secondary settlement (Bayne, 1964). However, at CML 

where D. vexillum is ubiquitous in the late summer and fall when the highest 

peak of primary settlement occurs, D. vexillum overgrowth could serve as a 

major obstacle for mussel populations (personal observations; L. Harris, UNH, 

personal communication; Dijkstra, 2007). In fact, there have been no observed 

mussel beds established on the new CML floating dock in the past two years (L. 

Harris, UNH, personal communication; personal observations). 
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Evaluation of the Study 

There were a few improvements that could be made in this chapter's 

studies. The number of samples used for histology was limited by cost. However, 

the resulting slides have shown interesting differences between the treatments 

and serve a starting point for further investigations into reproductive effects of 

overgrowth by D. vexillum on the blue mussel. Such investigations should include 

more frequent sampling of the mussel gonads with more replicates, in order to 

capture the complete reproductive process. 

In the experimental settlement study, the coverage of the acrylic panels by 

D. vexillum proved troublesome as the attached colonies did not survive well. 

The first D. vexillum recruits observed arrived in early November. This provided 

D. vexillum through the November trial and allowed for some correlation with 

mussel settlement that was not evident with colonies cable-tied to the panels. 

Implications 

When coupled with results from Chapters I and II, the reproduction and 

settlement results in this study have important implications for M. edulis 

populations (summarized in Table 3.5). During periods of abundant D. vexillum 

overgrowth (August 2009), M. edulis had slowed growth, but also decreased 

reproductive output. However, during this time, the mussel was likely protected 

from predation by its ascidian epibiont. On the other hand, when D. vexillum 

regresses into a senescent state, predation is likely to increase on the mussel as 

its epibiont has virtually disappeared. 

Historically, M. edulis has two spawning peaks, one in the late winter to 
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early spring and a smaller one in late summer to early fall (Seed, 1976). In this 

study, a significant peak in settlement was seen only during the summer, though 

gaps in data collection likely affected the results (Figure 3.11). However, mussel 

settlement did occur in the winter in this study, though this is lower than the 

historic data (Dutch et al., 1983), and examination of mussel gonads show that 

spawning had occurred in the winter (between November 2008 and February 

2009). D. vexillum is most abundant in the late summer through early winter 

(Dijkstra, 2007; personal observation) in the Gulf of Maine, just as M. edulis is 

spawning for the second time of the year. D. vexillum is not abundant during the 

earlier M. edulis spawning period (due to the ascidian's senescent state). 

However, as this winter settlement period declines in mussels, this may decrease 

the window of opportunity the mussels have to spawn and settle without spatial 

competition from D. vexillum. 

The results in these studies indicate that mussel populations are likely 

negatively affected in areas of D. vexillum dominance. In the Gulf of Maine, the 

senescent period allows an opportunity for overgrown mussels to feed more 

freely, though in the winter, food concentrations are relatively low (GoMOOS, 

2010). In areas where D. vexillum does not regress, like Queen Charlotte Sound 

in New Zealand, mussels do not benefit from an epibiont-free period. This is 

especially significant for mussel farmers in this area, as tissue growth and 

reproduction are likely suppressed by constant yearlong epibiosis. 
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Table 3.5: Overall effects of D. vexillum overgrowth on M. edulis biology and 
ecology, from this dissertation's studies. D. vexillum presence is represented as 
high (+++), medium (++), low (+), or nonexistent (0). The effects are represented 
as decreased (-) or nonexistent (0). Orange values represent those perceived to 
be a negative impact on mussels, and blue is a positive impact for mussels. 
Effects marked with an asterisk(*) are assumed from the results of their 
respective study. Most negative effects occur during times of high abundances of 
D. vexillum (November 2008 and August 2009). Interestingly, these times were 
the only ones in which a positive effect of epibiosis, predation, applied. 

Nov 2008 Feb. 2009 May 2009 Aug. 2009 
D. vexillum presence + + + 0 + + + 

Predation on mussel* Likely low Not affected Not likely affected 1 ikely low 
Tissue growth - 0 0 
Lip thickness - 0 0 0 
Shell thickness 0 0 0 
Length 0 0 0 

....... 

Reproduction 0 0 0 - (males) 
Larval Settlement* Possibly inhibited Not affected Not likely affected Possibly inhibited 
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Conclusions 

The results of the studies in this chapter imply that D. vexillum may have a 

profound negative effect on mussel populations in areas with abundant ascidian 

growth. Mussels appear to be reduced in number. This is reflected in the 

decreased reproductive tissue seen in overgrown mussels. While the 

experimental settlement did not indicate any significant effects of D. vexillum 

presence on nearby mussel settlers, the comparison of 2008-2009 winter 

settlement data to that in 1980-1981 suggests a long-term decrease in mussel 

populations. With peaks in primary settlement occurring in summer 2008 and 

2009, coinciding with the peak and start of sexual reproduction in D. vexillum, it is 

possible that secondary settlement in the mussel may be inhibited. However this 

warrants further study that can quantify the impact of this invasive species on M. 

edulis secondary settlement. 
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