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ABSTRACT 

MODELS AND METHODS FOR COMPUTATIONALLY 

EFFICIENT ANALYSIS OF LARGE SPATIAL AND 

SPATIO-TEMPORAL DATA 

by 

Chengwei Yuan 

University of New Hampshire, May 2011 

Advisor: Dr. Ernst Linder 

With the development of technology, massive amounts of data are often ob­

served at a large number of spatial locations (n). However, statistical analysis is 

usually not feasible or not computationally efficient for such large dataset. This is 

the so-called "big n problem". 

The goal of this dissertation is to contribute solutions to the "big n problem". 

The dissertation is devoted to computationally efficient methods and models for 

large spatial and spatio-temporal data. Several approximation methods to "the 

big n problem" are reviewed, and an extended autoregressive model, called the 

EAR model, is proposed as a parsimonious model that accounts for smoothness 

of a process collected over space. It is an extension of the Pettitt et ah as well as 

Czado and Prokopenko parameterizations of the spatial conditional autoregressive 

(CAR) model. To complement the computational advantage, a structure removing 
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orthonormal transformation named "pre-whitening" is described. This transfor­

mation is based on a singular value decomposition and results in the removal of 

spatial structure from the data. Circulant embedding technique further simplifies 

the calculation of eigenvalues and eigenvectors for the "pre-whitening" procedure. 

The EAR model is studied to have connections to the Matern class covariance 

structure in geostatistics as well as the integrated nested Laplace approximation 

(INLA) approach that is based on a stochastic partial differential equation (SPDE) 

framework. To model geostatistical data, a latent spatial Gaussian Markov random 

field (GMRF) with an EAR model prior is applied. The GMRF is defined on a 

fine grid and thus enables the posterior precision matrix to be diagonal through 

introducing a missing data scheme. This results in parameter estimation and 

spatial interpolation simultaneously under the Bayesian Markov chain Monte Carlo 

(MCMC) framework. 

The EAR model is naturally extended to spatio-temporal models. In particu­

lar, a spatio-temporal model with spatially varying temporal trend parameters is 

discussed. 
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INTRODUCTION 

In the past few decades, researchers in diverse fields such as climate, ecology 

and epidemiology, have been facing the task of analyzing data that are both spa­

tially and temporally correlated. In most cases, spatial patterns at locations with 

short distances from each other are similar, so are the trends over short times. Lo­

cations nearby are called "neighbors". Similarities for those neighbors thus can be 

explained by the correlations in space and time, which can be statistically modeled. 

Since the milestone work by Cressie (1993), spatial and spatio-temporal statistical 

models have been investigated that can be used for such complex data. Also, ad­

vances in Geographical Information Systems (GIS) and remote sensing (satellites, 

Lidar, etc.) have enabled accurate geocoding and the collection of large amounts of 

scientific data. This has also generated considerable interest in statistical modeling 

for location-referenced spatial data. 

Recent developments in Markov chain Monte Carlo (MCMC) procedures such 

as the Gibbs sampler, Metropolis-Hastings algorithm, or a combination thereof 

(Gelman et ah, 2003) now allow Bayesian analyses of sophisticated multilevel mod­

els for complex spatial data. However, the number of locations yielding observa­

tions is often too large for fitting desired hierarchical spatial models using MCMC 

methods, which are iterative and computationally intensive. This computational 

burden is exacerbated in multivariate settings with several spatially dependent re-
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sponse variables as well as when spatial data are collected over time, such as with 

spatio-temporal data. This is the so-called "big n problem" in spatial statistics that 

relates to the inversion of the covariance matrix and its determinant calculation. 

The computational burden of statistical estimation for large spatio-temporal 

data is a topic of great current interest. On the one hand, several approximation 

methods and models have been studied for geo-referenced data, for example, 

Cholesky decomposition, covariance tapering (Wendland 1998; Furrer et al. 2006; 

Kaufman et al. 2008), convolution methods (Higdon 1998,2002; Higdon et al. 2003; 

Lemos and Sanso, 2009) and spectral domain approximations (Wikle 2002; Paciorek 

2007). On the other hand, one of the most popular spatial interaction models for 

lattice data - data that has been aggregated over fixed areas - is the conditional 

autoregressive model (CAR) and Markov random fields (MRF) (Besag, 1974; Rue 

and Held, 2005). Here, the data at one location (area) is modeled conditionally 

on the data collected at neighboring locations. Lattice analysis is favored from 

a computational point of view because it directly models the sparse precision 

matrix Q which is the matrix inverse of the variance-covariance matrix L of the 

data. In geo-referenced data analysis Q needs to be calculated from L, which is 

computationally taxing. Since Q is sparse, it helps to achieve fast computation. 

Since Gaussian MRF models can serve as computationally efficient alternatives 

to Gaussian point-referenced, or geostatistical models (GGM), their relationships 

are of general interest. Rue and Tjelmeland (2002) examined the Gaussian process 

approximation with MRF. Lindstrom and Lindgren (2008) and Lindgren, Lindstrom 

and Rue (2010) applied finite element method to solving stochastic partial differ-
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ential equations to bridge the Gaussian fields and Gaussian MRF. Song et al. (2008) 

conducted an empirical comparison between GGM and GMRF. Rue, Martino, and 

Chopin (2009) used Integrated Nested Laplace Approximations (INLA package) to 

numerically integrate out covariance "nuisance" parameters. 

In this dissertation, the interest is to modify and extend existing procedures 

to allow for fast, computationally efficient estimation of parameters and also to 

provide a better model to represent extremely smooth spatial processes. Results 

in Linder (2001) and in Hupper (2005) are extended in several ways. First, an 

extended autoregressive (EAR) model is modified from a previous version along 

the lines of Czado and Prokopenko (2008) which improves identifiability. Second, 

the EAR model is investigated in detail and its Markov random field properties 

are derived. Third, connections are developed between the EAR model and the 

popular Matern class of geostatistical models, as well as the new INLA approach. 

Next, we develop the framework for applying the EAR model for spatially irregular 

point-referenced, or, geostatistical, data. Here a latent process representation over 

a large fine grid is proposed combined with a missing data imputation. Finally, we 

discuss the application of the EAR model for spatio-temporal data. 

The dissertation's chapters are arranged as follows. Chapters I-IV are reviews of 

spatial data, spatial models, approximation methods to "the big n problem", and 

the Bayesian parameter estimations in a hierarchical paradigm. Chapters V-VII 

are the main contributions of my dissertation. In Chapter I, a brief introduction 

to spatial data is discussed. In Chapter II, Gaussian spatial processes as well as 

both geostatistical models and conditional autoregressive models (CAR) will be 
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discussed. The Pettitt, Weir, and Hart (2002) and Czado and Prokopenko (2008) 

parameterizations of the CAR model are also explored here because of their com­

putational efficiency properties. Chapter III introduces "the big n problem" and 

reviews several approximation methods. Topics covered in Chapter IV will involve 

Bayesian parameter estimations that rely on Markov chain Monte Carlo methods. 

An orthogonal data transformation procedure called "pre-whitening" that removes 

the correlation structure is also examined. In Chapter V, the CAR model is expanded 

to include a smoothness parameter that is capable to better describe smooth spatial 

processes. Relationship of this extended autoregressive (EAR) model to ordinary 

CAR models with higher order neighbor structures will be determined. A circulant 

embedding technique is discussed. Connections between the EAR model and the 

Matern class covariance function as well as the INLA will also be presented here. 

In Chapter VI, application of the EAR model to geostatistics is studied. Chapter 

VII will introduce a spatio-temporal hierarchical structure that can model spatially 

varying temporal trends simultaneously. Conclusions and suggestions for future 

work are provided in Chapter VIII. 
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CHAPTER I 

Spatial Data 

In this chapter, types of spatial data are introduced. In particular, geostatistical 

data and lattice data are reviewed. In general, a spatial process in d dimensions 

can be expressed as 

{z(s) : s e D c Rd}. 

Here z denotes the observations, for example, precipitation, ozone values, or the 

average SAT scores. The location at which z is observed is s, a d x 1 vector of 

coordinates. In most of cases, researchers and scientists take much interests in 

processes in two-dimensional space, d = 2, and s = (sx,sy)' are the Cartesian or 

longitude-latitude coordinates. Spatial data types are characterized by the domain 

D. In this dissertation, our interests are focused on two most common spatial data 

types: geostatistical data and lattice data. 

1.1 Geostatistical Data 

If the domain D is a continuous and fixed set, then we say the data is a "geo­

statistical data", also called "point-referenced data". The continuity here means 

z(s) can be observed at any location s within domain D. By fixed we mean that the 

points in D are non-stochastic. Theoretically, z(s) could be collected at an infinite set 
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of locations, however, in practice, they cannot be observed exhaustively due to cost 

or other considerations. For instance, Figure 1 shows 513 indexed measurements 

of the seasonal (April -August) average of surface ozone data in 1999 in Eastern US. 

It is impossible for us to detect ozone data at all locations. Therefore, an important 

task in the analysis of geostatistical data is the reconstruction of the surface of z 

over the entire domain. Typically two steps are involved: one is the estimation of 

unknown parameters, the other is statistical prediction of z(s) over a fine grid of 

locations, which is called "kriging" in geostatistics, see Krige (1951). 

Seasonal Mean Ozone Data in Year 1999 

Figure 1: Example of geostatistical data: seasonal (April-August) average of surface ozone data in 
1999 in Eastern US (from UCAR) 

1.2 Lattice Data 

Lattice data are spatial data where the domain D is fixed and discrete, and 

typically in R2 defined by areas, which means it is not random and it is countable. 
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Examples include observations collected by town, ZIP code or remote sensing data 

reported by pixels. Spatial locations with lattice data are often referred to as sites 

or regions. Two types of lattice data that are usually discussed are regular lattice 

data and irregular lattice data, as shown in Figure 2. 

Regular Lattice 
Irregular Lattice 

Figure 2: Left: A generic regular lattice; Right: Irregular lattice for southern New Hampshire 
towns 

To statistically model the lattice data, we need to spatially index the areas in 

order to develop measures of spatial dependence. For example, we could utilize the 

distance between the centroids of any two areas, or we could pose an association 

between two areas that share a common border. One thing worthy to mention 

here is: in most of cases, due to the confidentiality and other considerations, for 

example, individual cancer information, lattice data are spatially aggregated over 

some areal regions A,, and thus the notation z(A,) is usually used. Due to the 

discrete nature of space in lattice data analysis, spatial interpolation which is a 

major goal of geostatistics is not possible. Instead, the goal of lattice analysis is 

typically to explain uncertainty via a latent smooth process, as well as by assessing 
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the relationship between observations and other covariates. Examples are land 

cover classifications (Lunetta and Lyon, 2004), spatial disease mapping (Lawson, 

2008), and regional climate model output (Sain, Furrer and Cressie, 2007). 
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CHAPTER II 

Modeling Spatial Data 

In this chapter, we review several statistical models for spatial data. Geosta-

tistical models are usually used for point-referenced data and conditional autore-

gressive (CAR) models are preferred for lattice data. Two parameterizations of 

modified CAR models are also reviewed. 

With the assumption of spatial dependence among responses of z(s), spatial 

models are in some way an extension of statistical models for repeated measure­

ment data and longitudinal data. Spatial statistical models are usually formulated 

as regression models. However, the assumption of independent and identically 

distributed (i.i.d.) residuals is violated. In the last 30 years, researchers have 

taken great interest in modeling "correlated" data, the correlation of which are of­

ten captured by unknown parameters. In order to estimate parameters efficiently 

and accurately, one would like to capture the correlation structure with only few 

parameters. 

2.1 Spatial Gaussian Process 

The Gaussian assumption is always favorable because of its convenient properties, 

especially those related to linearity. Following the regression paradigm we model 

the response variables with a trend (mean) structure and an additive stochastic 
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structure describing variation and covariation among the responses. Thus a spatial 

regression model can be written as 

z(s) = X/S + e(s), 

where the trend structure is XjS with anxp covariate matrix X and p x 1 vector (3 of 

regression parameters. e(s) captures the correlation structure for the response z(s). 

Adding the Gaussian assumption we then write 

e(s)~N(O,a2L(0)). 

Here, 0 is a vector of unknown correlation parameters that will be specified by 

particular models, and o2L(0) is the variance-covariance matrix that determines 

the dependency among responses. Therefore, 

z(s)~N(X/?,a2Z:(£>)). 

A primary goal is to perform parameter estimation for /?, 0 and a2. The likeli­

hood function of these parameters can be written as 

w- »• "2> - wrmeriexp {-^<z(s)" *¥ ," ' ( ! ( ! )" X/S)) • 

In the frequentist framework, since the likelihood function is nonlinear in the 

parameters, the method of choice is maximum likelihood estimation. Here, we will 
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attempt to find the set of parameter values that minimizes -2 * log-likelihood: 

-21ogLQ3,0,a2) = C + nlog(a2) + log(|L(0)|) + ^(z(s) - X p f W ^ s ) - XjS), 

where C is a constant term. There are two computationally "expensive" parts: 

the determinant |L(0)| and the inverse L(0)_1. For large data sets (large n), the 

computation time required can be overwhelming to the typical computer. This 

issue will be discussed in Chapter III. 

2.2 Geostatistical Models 

Geostatistical models for point-referenced spatial data have been widely studied 

in the past few decades. Here, since the popularization of the seminal work 

of Matheron (Matheron, 1963), the variance-covariance matrix o2l.(0) is directly 

modeled by a covariance function C(h) = cr2p(h; 0) (h is the lag-vector) that has 

only few parameters and is assumed to be second-order stationary. One fact worthy 

of mentioning here is: for a covariance function C(h) to be valid for a second-order 

stationary spatial process, C must satisfy the positive-definite condition 

n n 

V / , fl,-flyC(s,- - Sy) > 0 
i=l /=1 

for any set of locations and real numbers a,, a;. 

Among the most referred to one-parameter correlation functions with range 

parameters 6 > 0 are Exponential, Spherical and Gaussian, where 6 is the range 

parameter. Probably the most important and rich class of two-parameter corre-
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Table 1: Examples of spatial correlation functions that define vanance-covariance matrices 

Exponential p{h) - e x p ( - | ) 
Spherical p(h) = ! - § * + \{^f 

ft2-

h>0 
0<h<6 

Gaussian p(h) = e x p ( - ^ ) h > 0 
Matern p(/z) = 2 ^ • (^fhf • <KV (^fh) h>0,6>0,v>0, fl"v():the modified 

Bessel function of order v 

One-parameter correlation function Matern Class with nu = 0.5,1,1.5,4, rho = 4 

A o 

o 

distance 

v = 0 5, p = 4 
v = 1,p = 4 
v= 1 5, p = 4 
v = 4, p = 4 

~i r 

8 10 

distance 

Figure 3: Left panel: Exponential, Spherical, Gaussian correlation functions with parameters 9 = 
0.2, 0.6, and 0.6/ V3, respectively; Right panel: Matern class of correlation functions with range 
parameter 0 = 4 and smoothness parameter v = 0.5,1,1.5, and 4. 

lation function is the Matern class. These functions are listed in Table 1, and 

corresponding correlation graphs are shown in Figure 3. 

2.3 Autoregressive Models 

Autoregressive models are popular in time series analysis and are denoted as, 

AR(p), where p is the order. The AR(p) model for a time series x(t), t = 1,2,... can 

be written as 
v 

xt = c + 2 ^ (piXt-i + £t, 
1=1 
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where cp\,...,(pv are the autoregressive parameters of the model, c is a constant and 

et is white noise. 

In spatial statistics, particularly for lattice data, a spatial neighbor structure in 

fact introduces a local ordering which then allows us to introduce autoregressive 

and moving average (ARMA) models analogous to similar models in time series 

analysis. While autoregression ideas are similar in both spatial statistics and time 

series analysis, they still have a key difference. In regularly spaced time series data, 

the time index t, since it is 1-dimensional, naturally provides a higher order "neigh­

bor" structure: first order (t, t - 1), second order (t, t - 2) and so on. With irregular 

spatial lattices, one rarely considers higher order neighbor stuctures. However a 

weighting scheme (using cot] distance based weights, say) would implicitly provide 

higher order neighbors, 

Li VrjZ, 
Zt = - = • 

However, the choice of weight functions can be arbitrary and somewhat subjective. 

2.3.1 Conditional Autoregressive Model (CAR) 

One of the most popular spatial autoregressive models is the conditional autoregres­

sive or CAR model (Besag, 1974). Here, "conditional" means: data observed at one 

location is modeled conditionally on the data collected at neighboring locations. 

Let z = (zi,••• ,zn)
T be the observations taken over a spatial lattice at locations 

(si, • • • , s„). The full conditional distributions of the zt given all other values are 

assumed to only depend on the values z; at the neighboring sites ; of z; in which 
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case we write j ~ N(i). For Gaussian spatial processes, we set 

z,|z_, ~ N 
,j~N(i) 

The condition that z, given all others z_, only depends on the neighbors of location 

sr is specified under the Markov random field (MRF) paradigm (Besag, 1974; Rue 

and Held, 2005). Through Brooks' Lemma we can obtain the joint distribution from 

all full conditional distributions, as 

z - N ^ Q " 1 ) , 

where Q = M_1(I - B), B = (by) and M = diag(if), i = 1, • • • , n. 

Various parameterizations for the bl} have been suggested. The most parsi­

monious parameterization of the GMRF assumes a variance parameter a2/fc, = \ , 

where kt is the number of neighbors of location st, and an interaction parameter <p 

such that B = (pC, where C is the weight matrix defined by one of the weight func­

tions suggested by Pettitt, Weir,and Hart (2002) (ie: linear, uniform, or reciprocal). 

This will result in the CAR conditional representation 

z,|z_, ~ N 
, V"1 Ci), . O2 

,,~N(i) 
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and the joint representation z ~ N(n, Q 1) / where 

«4 a"-

h 0 

0 k2 

0 

0 

1 -(pcu/h ••• -<j)Cin/h 

-(pcii/k2 1 ••• -4>c2n/k2 
^(K-c^C) . 
a-

0 0 ••• k„ II -(pcnl/kn -c()cn2/kn 

Note that the most popular neighbor structure defined by a lattice can be expressed 

through a neighbor incidence matrix C, the elements of which are determined by 

Cij = < 

1, if site i is a neighbor of site / 

0, otherwise . 

The above C is the first-order structure. The weight matrix K is required to ensure 

that Q is symmetric and positive definite. Another difficulty with this parameter­

ization is that the parameter space for the spatial interaction term, (p, is restricted 

and its range depends on the eigenvalues of Q for the same reason (Rue and Held, 

2005, Chapter 2). 

It has been noted that for an underlying smooth process, a Markov random 

field can incorporate a higher order structure for a regular lattice data, while a 

distance-based weight function can be assumed for non-regular lattice data. For 

example, a higher order structure was considered in Rue and Held, 2005, Chapter 

5, where the conditional expectation of E(z,;|z_,;) is parameterized with multiple 
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parameters: 

1 
E(z,;|z_y) = - — 

fo 
llh€N('j) l2]2^N(l]) 13J3<EN(IJ) 

The zJi;i are the first-order neighbors of z,;, z!2;2 the second-order neighbors, 

and so on. Taking a square lattice as an example, the east-west and north-south 

neighbors are referred to as first-order neighbors while the four nearest diagonal 

locations are called second-order neighbors. Figure 4 shows the first three order 

structures. 

o o o o o o o o o o o o • o o 

o o • o o o • o • o o o o o o 

o • + • o o o + o o • o + o • 

o o • o o o • o • o o o o o o 

o o o o o o o o o o o o • o o 

Figure 4: Higher-order structure for a square lattice. The left graph shows the first-order neighbors 
for a site labeled as +; the middle graph shows the second-order neighbors; the right graph shows 
the third-order neighbors. 

The parameters (6Q, Q\, QI, • • •) define the higher-order spatial associations. The 

higher-order CAR model can be treated as an extension to the first-order CAR 

model. If the underlying process is very smooth, higher-order parameters will be 

significantly different from zero, while when the process is coarse, most higher-

order parameters can be assumed to be equal zero. One difficulty for this higher-

order CAR model is the parameter estimation. On the one hand, it is very subjective 

to determine how many higher-order neighbors we need to include in the model. 

On the other hand, as more neighbors are included in the model, the accuracy of 

parameter estimation will be decreased. 
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As an alternative to a higher order neighbor structure, a distance-based weight 

function can be assumed for any location {sr : i = 1,2, • • • , n) that is surrounded by 

its neighbors. Sites s, and s; are neighbors if and only if they lie within some critical 

distance 5 > 0 of each other. Let dtJ denote the Euclidean distance between sites 

i and / and let y : [0, oo] —> [0, oo] be continuous and non-increasing on [0,<5) and 

zero on [5, oo). A n x n matrix y = [yt]] can be defined by 

7'i 

y{dt]), i±j 

0, i = j 

Three distance-based functions for yt], uniform, linear, and reciprocal, are suggested 

by Pettitt, Weir, and Hart (2002). In the CAR model, using different weighting 

schemes, the C matrix will be replaced by a matrix y defined by functions such as 

those listed in Table 2. 

Table 2: Examples of distance-based weight functions : Uniform, Linear and Reciprocal 

1, 0 < dt} < 5 
Uniform y(du) = I 

' ' 0, dl}>5 

[ 1 - %, 0 < dl} < 5 
Linear y(dtJ) = < 

{ 0, dl} > 6 

( £ - 1, 0 < dtJ < 5 
Reciprocal y(dtl) = < '' 

[ 0, dtl > 5 
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2.3.2 Simultaneous Autoregressive Model (SAR) 

For a Gaussian spatial process z(s), instead of modeling z, as conditionally depen­

dent on its neighbors zJrj e N(i), we model each zt as a linear combination of all 

other Zj, j + i, where the coefficients of the linear combination are denoted by b,j 

(Note that by definition bu = 0). Then we can write 

z> = X,b')z) + e" i = 1/2,• • • ,n, 

where e, ~ N(0, of). In matrix form, let z = I Zl, z2, • • • , zn ) / e = i£i> e2, • • • , £n)T, 

B = (bl}), and D = diag[o\,••• ,o2\ then 

(I - B)z = e. 

If I - B is full rank, we can write z = (I - B)_1e, and thus can obtain 

z ~ N (0, (I - B)-aD((I - B)"1)'). 

In a regression context, the SAR model is applied to model the residuals U = 

z-X/?, rather than z itself. This imitates the first order autoregressive model (AR(1)) 

in time series modeling of the residuals from a linear regression trend. The model 

now can be written as 
U = z - Xp 

U = BU + e . 
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Substituting U from the first into the second equation, we obtain an attractive form 

z = Bz + (I - B)Xj8 + e. 

The expression above shows that z can be viewed as a weighted average of its own 

(neighboring) values and the trend (regression) function. If B is the zero matrix, we 

obtain an OLS regression; if B = I, we obtain a purely spatial model. Note that the 

SAR model representation will break down for non-Gaussian data, hence the SAR 

model is not used for generalized linear models (GLM) with say Poisson counts or 

with binary response data. 

One important thing to note here is that SAR models are well suited to maximum 

likelihood estimation but not at all for MCMC fitting of Bayesian models. That is, 

the -21og-likelihood function is 

£ logfa) - logfll - B|) + (z - X£)T(I - B)D"1(I - B)T(z - X/J). 
i 

Since there is no matrix inversion required, computing the determinant is relatively 

quickly. Note that the process is usually accelerated by using diagonally dominant, 

sparse matrix approximations. Thus, iterative maximization is commonly quite 

efficient in terms of computer time. However, unlike the CAR random effects that 

are defined through full conditional distributions, the full conditional distribution 

for the SAR effects have no convenient form. As a result in Bayesian hierarchical 

model with large n, the computation of such distributions will be expensive. 
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2.3.3 Comparison of CAR and SAR Models 

Cressie (1993) shows that any SAR model can be represented as a CAR model, 

but gives a counterexample to prove that the converse is not true. Both CAR and 

SAR models incorporate spatial dependence parameters, say, pc and ps respectively 

for CAR and SAR. Both parameters have restrictions which are controlled by the 

eigenvalues of the lattice neighbor matrices. In addition, Wall (2004) shows as 

the pc and ps increase from zero to the upper end of the parameter space, the 

implied correlations between all sites monotonically increase. However, when 

pc, ps < 0, the correlations are not monotone, which gives another reason to avoid 

negative spatial correlation parameters. Moreover, the ranking of the implied 

correlations from largest to smallest is not consistent as ps and pc change. For 

example, under the first-order neighbor structure of the 48 contiguous U.S. states 

lattice, she models the statewide average SAT verbal scores and finds that when 

pc = .49 the Corr(Alabama; Florida)= .20 and the Corr(Alabama; Georgia)= .16. 

But, when pc = .975 the correlation between Alabama and Georgia is greater than 

the correlation between Alabama and Florida. 

2.3.4 The Pettitt et al. Parameterization of the CAR Model 

The likelihood for a spatial autoregressive Gaussian process z ~ N(Xj8, o2Q(6)~1) is 

m e' °2) = (wpexp {~h(z(s) -X/?)T Q{0) (z(s) ~X ( 5 )) • 
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Both CAR and SAR models are computationally more efficient than geostatistical 

models since no repeated inversions of the variance-covariance matrix are needed 

when likelihood methods are performed. However, the issue of finding the deter­

minant in the likelihood remains. There are several methods that can be used to 

attempt this, but most are cumbersome for large data sets. This issue is addressed 

in a paper by Pettitt, Weir, and Hart (2002), and many other papers. 

Pettitt, Weir, and Hart (2002) propose a particular parameterization of the or­

dinary CAR model that proves to be computationally efficient. In this model, the 

precision matrix is created in such a way that the determinant is computed easily 

and in closed form. It also lends itself to the addition of covariates without compli­

cating the model. This computational efficiency is particularly advantageous for 

large irregular lattices and weighting schemes applied to continuous space data. 

Recall that z is a realization from a conditional autoregressive Gaussian process 

given by 

z - N ^ a ^ I - Q ^ M ) , 

where C = (c,;) is a matrix that has zeros along its main diagonal and M = 

diag(raii,ra22,• • • ,mnn) is a diagonal matrix chosen so that the matrix Q"1 = (I -

C)_1M is symmetric and positive-definite. Pettitt, Weir, and Hart use the matrix y 

(the elements of which are defined in Table 2), together with a spatial dependence 

parameter, <p, to construct the precision matrix, that is, the inverse of the variance-

covariance matrix (if it is non-singular). The matrices M and C are defined so that 
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the terms of the matrix C are 

(pYii 

0, j = i 

and the terms of the matrix D are 

m„ 1 + 101 LkeNit) 7'* 
, i = 1,2,- •• , n , 

and thus the matrix Q = M l (I - C) is symmetric with 

Qu = 
i + l̂ l E y*, i = j 

keN(i) 

-$YiV i* j , 

and it is also positive definite since it is a symmetric diagonally dominant matrix for 

all-oo < (p < oo. Therefore, the precision matrix is symmetric and positive-definite, 

making it a valid precision matrix. 

The three conditional moments, the mean, the variance and the covariance can 

be written as 

E(Zl|z_o = n, + iml^Ytk E y,,(z, - n,). 
,eN(i) 

§Yn 

Var(zJz_,) = u , , , ° , 

2„Z, Z_|,,i) = . = 

Without the addition of the unit in the denominator of the definitions of ctJ and mn 

we would have a familiar intrinsic CAR model (Besag and Kooperberg, 1995) with 
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<ft > 0. The parameter (ft measures the strength of the spatial dependency. There is 

no spatial dependency, if (ft = 0. This corresponds to unstructured random effects. 

As \(ft\ —> oo while other parameters remain fixed, Pettitt et al. state that |<^r1Q tends 

to an intrinsic CAR model, 

lim I^I^Q 
L 7ik, 

k£N(i) 
1 = ] 

-sign((|>)y,7, i±j 

In contrast to the intrinsic CAR, the joint distribution of z is a proper distribution, 

which leads to a proper posterior when this model is used as a prior distribution 

in a Bayesian analysis. 

The determinant of the precision matrix Q can now be solved through a reason­

ably efficient numerical technique as follows. Define 

D = diag ^ yik, i = 1,2,-•• ,n 

and y be the matrix with diagonal equal to zero and off-diagonal equal to y!;, then, 

Q can be written in the form 

Q = I + |0|D-(/>y 

I - ^ ( y - D ) , 0 > O 

I, 0 = 0 

l-cft(y + D), cft<0 
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If {A1 : i = 1,2, • • • , n) are the eigenvalues of y - D and {Â  : i = 1,2, • • • , n) are 

the eigenvalues of y + D, then the eigenvalues {£, : i = 1,2, • • • , n] of Q can be 

determined by 

l-(pA], (p>0 

& = •! 1, (p = 0 

1 - c/>Af, (/>< 0 . 

The determinant of Q can now be obtained by taking the product of the appropriate 

set of eigenvalues, 

n(i-<K)' 4>>0 

IQI = \ i , </> = o 

1 1 ( 1 - K ) , c/><0 . 

Therefore, once the eigenvalues of y - D and y + D are known, the determinant of 

Q may be computed quickly for any value of (p. 

In this dissertation, we will restrict <p to only have positive values, as discussed 

in section 2.3.3. Thus, in order to calculate the determinant of Q, we only need to 

find the eigenvalues of y - D. A singular value decomposition (SVD) of y - D will 

result in the desired eigenvalues and eigenvectors. Assume the decomposition 

FT(y - D)F = A 

exists with A = diag{At : i = 1,2, • • • , n), where At is the ?'-th eigenvalue of y - D. 

The columns of F contain the corresponding eigenvectors. Once the eigenvalues 
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are found, the eigenvalues of Q can be expressed as 

£, = 1-#A„ z = l,2,--- ,n 

and the determinant of Q can be easily computed as 

|Q| = [](1-(K), <£>0-

2.3.5 The Czado's Parameterization of CAR Model 

It can be noted that when d> —> oo, the conditional variance Var(z,|z_.) = •,_,,,,£ 

decreases to zero, which is restrictive. Czado and Prokopenko (2008) propose a 

modified Pettitt's model, where the full conditional distribution for z is given as 

follows 

{ <\> X - ( 1 + | ( />I )T 2 

z,|z_, ~ N fi, + v > yl)(z1 - n,), . . , 1 , 1 V 

The only difference to Pettitt's model is the conditional variance. In Czado's model, 

the asymptotic conditional variance 

(1 + W)T2 T2 

-, as \<p\ -^ oo. 1 + 101 LkeN(i) Yik TjkeN(i) 7tk 

The intrinsic CAR model still arises in the limit, when \<p\ —» oo. This model has the 

same behavior as Pettitt's CAR parameterization when \(p\ goes to zero (no spatial 

dependency), and all partial correlations between z; and z; given all the other sites 
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are the same. Further, Czado's CAR model has larger conditional and marginal 

variance for z, than the original Pettitt's model for <p > 0, thus allowing for a larger 

variability. 

Czado's CAR model parameterization will result in 

Z - N ^ Q - 1 ) , 

where Q = M 1(I - C). The diagonal elements of M are 

m„ 
1 + 101 

1 + \<P\ EteN(i) 7ik 
, i = 1,2,• • - ,n 

and elements ct) of matrix C are defined exactly the same as Pettitt's model, 

Cij = < 

0, ; = i 

Thus, 

Q.> 

1 + 101 Lkem,)7,k _ , W / y . , -IN • _ • 
i+k 

~i+w>|}V i ± j 

Now, define 

D = diag ^ y * - l , i = 1,2,-•• ,n 
UeN(i) 

and 

^ 1 + |(/)|' 
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Following a similar approach in Pettitt's CAR model, we can get 

Q = I + IVID - xfry, 

and if [A] : i = 1,2, • • • , n] are the eigenvalues of y - D and {A? : z = 1,2, • • • , n\ are 

the eigenvalues of y + D, then the determinant of Q is 

IQI 

ri(i-iK), ^>o 

i, v = o 

na-^A?), v<o 

which can be computed quickly for any value of xp. Also, we will restrict xp > 0, 

and in this case, the range of \\> will be [0,1]. xp = 0 indicates no spatial dependency 

and xp = 1 denotes the intrinsic CAR model. 
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CHAPTER III 

Computational Efficiency: The Big n Problem 

3.1 The Big n Problem 

As discussed in Chapter II, the parameter estimation procedures require the 

minimization of -21og-likelihood function for a Gaussian process (n denotes the 

sample size): 

-21ogL(/J, d,o2) = C + nlog(a2) + log(|Z(0)|) + ^(z(s) - Xp)TL(dy\z(s) - X0). 

Commonly the Gaussian elimination and LU decomposition are used to obtain 

the determinant and the inverse of a general square matrix. Both algorithms are 

numerically equivalent to an order 0(n3). Here, the order 0(n3) of the "FLOPS" 

(FLoating point OPerations per Second) measures the computational complexity 

of mathematical operations in relation to the matrix size n. For large n, the eval­

uation procedure of the likelihood function will be computationally expensive for 

repetitive evaluations of the determinant \L{0)\ and the inverse £(0)_1, either under 

the iterative numerical maximization for maximum likelihood estimation (MLE) 

or under the iterative Markov chain Monte Carlo evaluation for estimation of a 

Bayesian posterior distribution. This is called "the big n problem" in spatial statis-
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tics. When models are extended to multivariate models, say, with m measurements, 

at a location or extended to spatio-temporal models with spatial time series at T 

time points, they will respectively lead to larger matrices: nm x nm matrix and 

nT xnT . The problem gets worse as n gets larger. The objective of this Chapter 

is to review some suggestions and approximations for handling spatial process 

models in this case. 

3.2 Approximation Methods to the Big n Problem 

3.2.1 Cholesky Decomposition 

Researchers have proposed several approximation methods that relate to the variance-

covariance matrices. Since these matrices are symmetric and positive definite, they 

have a special decomposition, called the Cholesky decomposition. A matrix A can be 

written as A = FTF, where F is an upper triangular matrix and is called the "square 

root" of the matrix A (if it is real). It can be clearly seen by applying the LDU 

decomposition to A. Since A is symmetric, we can obtain A = LDLT, where L is 

unit lower triangular and D is a diagonal matrix with all entries positive. Then, we 

can write FT = LD1/2 to get the Cholesky root. 

The Cholesky algorithm can be expressed as follows: for i = 1,2, • • • , n 

fti=(all-mg'2 

< 

fji =
 a,rI^fikk,j = i + l,---,n . 
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While the Cholesky algorithm reduces the operation count to n3/6, however, it is 

still a 0(n3) algorithm. Hence, when n is large, "the big n problem" still persist. 

3.2.2 Covariance Tapering 

In geostatistics, correlation functions determine variance-covariance matrices. The 

typical spatial autocovariance is assumed to be nonzero for any finite distance. 

Thus, these matrices have nonzero elements everywhere. For "the big n problem" 

issue, the parameter estimation would be extremely slow and even unfeasible. This 

represents a major disadvantage for geostatistical methods where distance based 

models are assumed for the spatial correlation L(d). 

Sparse representations are sometimes useful to speed up matrix inversion 

and/or determinant calculation. One idea is to force a variance matrix to be sparse 

(with many zeros), in order to attain matrix operational efficiency. However, one 

must maintain positive definiteness of any sparse modification of the variance-

covariance matrix. The Covariance tapering method was proposed and studied by 

Wendland (1998), Furrer et al. (2006), and Kaufman et al. (2008). Let C(h; 6) be the 

original covariance function, and suppose the C§{h) is a covariance function that is 

identically zero outside a particular range described by (p. Now consider a tapered 

covariance that is the elementwise product of C^{h) and C(h; 6): 

Clav(h; (/), 6) = C(h; 60°q,(/z). 

The approximation will be obtained by replacing the covariance matrices C(h; 6) 

30 



by those defined by Ctap(h;(f),6). The product Ctap(h;(p,9) preserves some of the 

shape of C(h; 6) but its values are identical to zero outside of a fixed location distance 

range, controlled by (p. Of equal importance, Ctav(h; <p, 6) is a valid covariance, since 

the elementwise product of two positive definite matrices is again positive definite 

(Horn and Johnson, 1994, Theorem 5.2.1). As an example of tapering covariance 

functions, a spherical covariance and two of the Wendland tapers are considered 

here. They are all valid covariances in R3. The functions are plotted in Figure 5 

and summarized in Table 3. Based on the theory (Furrer et ol. 2006, section 2) 

with respect to the Matern smoothness parameter, the spherical covariance will be 

used as a taper for the Matern covariance with its smoothness parameter v < 0.5, 

Wendlandl for v < 1.5 and Wendland2 for v < 2.5. 

Table 3: Examples of taper covariance functions: Spherical, Wendlandl, and Wendland2 (x+ = 
max{0, x}) 

Spherical C(fe;tf>) = (1 - £)2
+(l + ^ ) hTT 

Wendlandl C(h; (p) = (1 - | )* (1 + 4J) h > 0 

Wendland2 C(h;<t>) = (1 - |)6
+(1 + 6% + f g ) h > 0 

One issue involved in this approach is how to determine the "best" distance 

maximum for the taper which would optimize estimation accuracy and computa­

tional efficiency. Generally the "cut-off" is selected by subjective choice, but this 

issue needs further investigation. 
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Figure 5: Spherical, Wendlandl, Wendland2 taper covariance functions with taper length 1 

3.2.3 Dimension Reduction 

The dimension reduction approach (Higdon 1998,2002; Higdon et al. 2003; Lemos 

and Sanso, 2009) is another strategy for "the big n problem". This is also known 

as the kernel convolution method with a latent process. The kernel convolution 

method has been widely and successfully applied in density estimation and regres­

sion modeling. An attractive way of using kernel convolution in spatial statistics 

is to reduce the dimension of variance-covariance matrices, and also to introduce a 

more general nonstationary spatial process while retaining clear interpretation and 

permitting analytical calculations. Suppose the process z(s) = (z(si), • • • ,z(s„))T can 

be represented by 

z(s)= ffc(s-s')o;(s')ds'. 

The corresponding finite approximation will be 

m 
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where w(s) is a stationary latent spatial process, k is a kernel function such as, for 

instance, the popular bivariate Gaussian kernel in the form of 

fc(s - s') = exp{-^(s - s') ri:(s - s')}. 

One natural choice of L would be a diagonal but allowing for componentwise 

scaling to the separation vector s - s'. Figure 6 shows the ideas of the latent process 
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Figure 6: Convolution method with latent process applied to ozone data. The "+" signs denote 
spatial locations of the underlying grid process w(s). The ellipse shows the kernel function. 

approximation method. Note that, the kernel function fc(-) might be parametric, say 

with parameters that determine the smoothness of the process, or might be spatially 

or temporally varying, which allows to capture the local anisotropy and lends itself 

to specifying models with non-stationary dependence structure (Higdon, 1998). 
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The finite approximation shows that given the kernel k(-), the process {z(Sj), i = 

1,2, • • • , n) in the region can be expressed as a linear combination of the set {w(s;), / = 

1, • • • , m\. Therefore, no matter how large n is, working with the latent process w(s), 

we only need to consider amxm matrix calculations, where m <§c n. This will make 

the computation more efficient. 

However, two issues have been raised with regards to this method. First, the 

computational efficiency depends on the size of the grid of the underlying process. 

For example, the Gaussian kernel allows for a rather coarse representation of the 

underlying grid process without any appreciable bias, and thus its computations 

will be fast. However, specifying k(-) to have the form of a Gaussian density 

dictates the smoothness of z(s). As Higdon (1998) points out any choice of kernel 

k that allows less smooth realizations of z(s) will generally require a finer grid 

for the latent process, but this will hinder the computation efficiency. So, how to 

determine the number of the js*}? The second issue is how sensitive the inference 

will be to the choice of {s*}? These two issues are still under discussion as shown 

in Lemos and Sanso (2009). 

3.2.4 Spectral Basis Representation 

Similar to Higdon's convolution methods, Wikle (2002) and Paciorek (2007) sug­

gest using a Fourier basis function to spectrally represent a stationary Gaussian 

process. However, rather than to specify a coarse (at least not very fine) grid in 

the convolution method, their model requires a fine grid but the computation of 

matrix inverses is made more efficient by use of the Fast Fourier Transform (FFT). 
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Suppose we have an isotropic Gaussian process z(s) = (z(si), • • • ,z(s„))T, then it 

can be represented by 

z(s) = Kw(s*) + e(s). 

The key idea is to approximate w(s*) on a grid s*, of size M = Mi x M2, where 

Mi and M2 are powers of two. The K is an incidence matrix, which maps each 

observation location to the nearest grid location in Euclidean space. Evaluated at 

the grid points, the vector of w(s*) can be written as 

w(s*) = Wu, 

where W is a matrix of orthogonal spectral basis functions, and u is a vector of 

complex-valued basis coefficient, um = am + bmi,m = 1, • • • ,M. To approximate the 

mean zero stationary isotropic Gaussian process, the basis coefficients have the 

prior distribution, 
/ \ 

a 

b 
N(O,L0), 

where £e is a diagonal matrix, parameterized by 0. The conditional variance of u 

given the observed data will then be 

Var(u|z,...) = (0VTKTKV + E"1) ^. 

The sampling scheme requires calculation of WTKTKVF, which is not feasible for 

large number of grid points. Wikle and Paciorek's idea is to assume no more than 
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one observation per grid cell, so that K = I can be achieved using a missing data 

scheme (see Appendix A.2, Paciorek, 2007). Since W is an orthogonal matrix, then 

the conditional variance will become 

Var(u|z,...) = ( a + L-1)"1, 

which is a diagonal matrix. This will result in a computationally efficient approxi­

mation to a Gaussian process. 
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CHAPTER IV 

Bayesian Parameter Estimation Using MCMC 

This chapter reviews Bayesian approaches for parameter estimations under the 

hierarchical Markov chain Monte Carlo paradigm. Bayesian methods, which have 

been largely applied in parameter estimation and statistical inference, serve as an 

alternative approach to the maximum likelihood estimation method. By modeling 

both the observed data and any unknown parameters as random variables, it 

provides a cohesive framework for combining complex data models and external 

knowledge or expert opinion. In this approach, in addition to specifying the 

distribution model, let it be f(y\0) for the observed data y = (yi, • • • ,yn) given a 

vector of unknown parameters 0 = (G\, • • • , 9k), we suppose that 0 is a random 

vector from a prior distribution n(0, A), where A is a vector of hyperparameters. If 

A are known, inference concerning 0 is based on the posterior distribution, 

p(0\y, A) = — = — oc f(y\0)n(0\A). 
p{y\A) f f(y\0)n(0\A)d0 

Notice the contribution of both the likelihood of data and the external knowledge 

to the posterior. In practice, A will not be known, a second stage distribution (called 
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hyperprior) n(A) will often be required. Thus, we have the posterior 

p(0|y)oc/(y|0)7i(0|A)7i(A). 

A computational challenge in applying Bayesian methods is that for most real­

istic problems, the integrations required to do inference in p(d\y, A) are generally 

not tractable in closed form, and thus must be approximated numerically. In some 

cases, the posterior distribution can be expressed as a closed form solution, such 

as when conjugate priors are assumed for unknown parameters. However, due to 

the presence of unknown quantities, some intractable integrations remain. Markov 

chain Monte Carlo (MCMC) integration methods, thus, have been developed and 

serve as the most popular tools in Bayesian practice. In this dissertation, we will 

introduce the two most popular MCMC algorithms, the Gibbs sampler and the 

Metropolis-Hastings algorithm. 

4.1 Gibbs Sampler 

Suppose our model contains k parameters, 0 - (6\,••• ,6k)''. To implement the 

Gibbs sampler, we must assume that samples can be generated from each of the 

full conditional distributions 

P(0i\0j,j*i,y), i = 1,2, •••,*. 

Such samples might be available directly, say, the posterior distributions are normal 

or gamma; or indirectly, say using rejection sampling approach. In this latter case, 
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two popular alternatives are the adaptive rejection sampling, and the Metropolis 

algorithm described in the next section. In both cases, the collection of full condi­

tional distributions uniquely determine the joint posterior distribution, p(0|y). 

Given an arbitrary set of starting value {62 ,0^ ,••• ,Of ], the algorithm pro­

ceeds as follows: 

Gibbs Sampler: For t e 1 : T, repeat: 

• Step 1: Sample Of from p(0i|^_ 1 ) , 0<[-1), • • • , 0f_1),y) 

• Step 2: Sample df from p(62\df, e£_1)', • • • , 0j_1) , y) 

• Step k: Sample ef fromp{0k\9f,0<°,••• ,df_vy). 

Notice that for any sample {6\,i = 1, • • • , k, t = 1, • • • , T}, its conditional distribution 

always uses the most updated parameters. The parameters obtained at iteration 

t, (df,••• ,Q(f}), converge in distribution to a draw from the true joint posterior 

distribution p(G\, • • • , 0jt|y). This means that for t sufficiently large, say t > T0, 

{0(t), t = T0 +1, • • • , T} is a sample from the true posterior, from which any posterior 

quantities of interest may be estimated. For example, we may use a sample mean 

to estimate the posterior mean, i.e., 

1 T 

£(0» = —-— £ ef, t=T0+l 

and use an empirical sample 95% interval as a credible interval for any 6„i = 

1, • • • , k, etc. The time in range t e {0,1, • • • , T0] is commonly known as the burn-in 
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period. This is used to ensure the convergence, and thus minimize the bias of 

posterior inferences. In practice, we may actually run m (instead of 1, say m = 3) 

parallel Gibbs sampling chains with m different initial values. This technique is 

applied to assess sampler convergence, and can be produced with no extra time on 

multiprocessor computer. In this case, we would again discard all samples from 

the burn-in period, and obtain the posterior mean estimate, 

m T 
(t) 

v u /
 ; = i t=To+l 

The above Gibbs sampler draws samples of k scalar parameters one by one. 

Block schemes, which allow for updating an entire subvector of 0(t) = (df, • • • , df) 

are also possible. As a footnote, recall that the CAR model defines the joint distri­

bution of all data in terms of its full conditional distributions, and thus the Gibbs 

sampler arises as a natural scheme for simulation based inference. 

4.2 The Metropolis-Hastings Algorithm 

The Gibbs sampler is easy to understand and implement, but requires the full 

conditional distributions to be known. Unfortunately, when the prior distribution 

p(0) and the likelihood f(y\6) are not a conjugate pair, one or more of these full 

conditionals may not be available in closed form. Even in this setting, however, 

p(0!|0W5tJ,y) will be available up to a proportionality constant, since it is propor­

tional to the portion of f(y\6)p(0) that involves 0,. 

The Metropolis or Metropolis-Hastings algorithm is a rejection algorithm that 

deals precisely with this problem, since it requires only a function proportional 
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to the distribution to be sampled, at the cost of requiring a rejection step from a 

particular proposal density. Due to its flexibility and easy implementation, the 

Metropolis-Hastings (Hastings, 1970) algorithm has become the most commonly 

used MCMC techniques for finding posterior distributions. Suppose we wish to 

generate samples from a joint posterior distribution p(0\y) °c g(0) = /(y|0)p(0), we 

begin by specifying a proposal density /(0*|0(t_1)) that is a valid density function 

for every possible value of the conditioning variable 0(f_1), and satisfies 

J(0*|e(t-1)) = j{o(t-l)\e*), 

which denotes that / is symmetric. Given a starting value 0(o', the algorithm 

proceeds as follows. 

Metropolis Algorithm: For t € 1 : T, repeat: 

• Step 1: Sample 0* from ]{6*\d(t-l)) 

• Step 2: Compute the ratio r = ^ S j = exp[ log£(0*) - logg(0(f_1))] 

• Step 3: If r > 1, set 6{t) = 0*; 

6*, with probability r 
If r < 1, set 6(t) = I 

0(t_1), with probability 1 - r . 

The Metropolis algorithm offers substantial flexibility to choose the proposal 

density /. Theoretically, we can choose an ideal "good" density which will result 

in adequate proposed 0* to be accepted. An usual selection would be normal 
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distribution 

j(e*\elt-1)) = N(et\eit-1),L), 

since it obviously satisfies the symmetry property. The acceptance ratio will then 

depend on L. Different choices of L could result in very high acceptance ratio 

(say, 1) or very low ratio (say, 0.01). On the one hand, an overly narrow proposal 

density proposes values around the parameter space with small steps, leading 

to high acceptance ratio, and high autocorrelation in the sampled chain; on the 

other hand, an overly wide proposal density will propose values far away from 

the majority of the posterior's support, leading to high rejection, and also, high 

autocorrelation. Gelman et al. (2003) proposed that an acceptance ratio between 

25% and 40% is optimal, but also varies with the dimension and true posterior 

correlation structure 6. In this sense, acceptance ratio is always tuned by L, which 

is called tuning parameter. 

In practice, the Metropolis algorithm often serves as a substep in a larger Gibbs 

sampling algorithm framework, in which not all parameters posterior distributions 

have closed-form solutions, or some of them are awkward full conditionals. This 

is called "Metropolis within Gibbs" or "Metropolis substeps". 

Sometimes, we may encounter situations with restrictions to parameters, for 

instance, 0 > 0. In this case, Gaussian proposals will not be appropriate. The 

Metropolis-Hastings algorithm (Hastings, 1970) was proposed to resolve this issue. 

It does not require the symmetry property for proposal density. There is only a 

small difference to the Metropolis algorithm in Step 2. 
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Metropolis-Hastings Algorithm : Replace r in Step 2 in the Metropolis algo­

rithm by 

gid^jme^) ' 

4.3 Bayesian Hierarchical Models 

Bayesian techniques assume parameters in the model to be random variables, 

and assign prior distributions to them assuming prior information. Combining the 

likelihood of parameters and the prior distributions, posterior probability densities 

for each parameter can be determined. However, when more than one level of 

priors and parameters are needed, a hierarchical model can be applied. 

Assume that z(s) is an underlying spatial process that follows the traditional 

CAR model. Let y(s) be one realization of this process. Then, one can express the 

data vector y(s) in terms of the process z(s) as 

y(s) = z(s) + e(s), 

where the vector e(s) consists of identically independent normally distributed white 

noise components with mean zero and variance a2, and is assumed independent 

of z(s). Thus, the joint distribution of the data conditional given the process can be 

written as 

y(s)|z(s),crJ~N(z(s),oJl). 

To fully describe the distribution of the data, one needs to specify the distri­

butions of both the spatial process and the variability in the data. As is common 
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practice in Bayesian Gaussian linear models, the variance, ay , is assumed to follow 

an inverse gamma prior distribution with parameters ay and jSy/ which is a conju­

gate prior. The mean of the gamma distribution is j - . Since the spatial process is 

assumed to follow a Gaussian CAR model, its distribution is 

where Q is the rescaled precision matrix as defined for the computer efficient CAR, 

X/J allows for a linear trend over some set of independent explanatory variables, 

and <p is the spatial interaction (dependence) parameter. 

The introduction of additional parameters in the prior distributions, so-called 

hyperparameters, requires another level of priors. Here, the distribution of /?, a\ 

and <p need to be specified. A convenient prior distribution for /? is 

In most cases, (5Q is just the zero vector as is tested against in regression analysis, 

although it can be chosen to be some other p x 1 vector. The variance covariance ma­

trix Lpo can be simplified to be a diagonal matrix a? I where the constant o\ is usually 

chosen based on past experience or some other knowledge, or is noninformative 

as a sufficiently large value. 

As with the variance constant for the data, the variance for the spatial process, 

o\ , is assumed to follow an inverse gamma distribution with parameters az and 
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Bz. In both cases, if no strong prior information is available, the parameters for the 

inverse gamma distribution are chosen constants that result in relatively flat priors, 

which is achieved by selecting very small values for both az and jSz. The log normal 

distribution is chosen for the spatial interaction parameter (p . This implies that the 

values of <p are always positive, since to have negative spatial association implies 

that measurements at locations close together have opposite signs, something that 

tends not to occur in applications. Thus, 

n = log((p)~N(^,ol). 

The hierarchical model structure is listed in Table 4. 

Table 4: Hierarchical model structure for a spatial process 

(1) Data process y(s)|z(s), oy ~ N (z(s), oyY\ y(s) is observed data 
z(s) is the latent process 

(2) Latent process z(s)\p,o2
z,(p ~ N(xpro

2
zQ~l) Xp is the spatial trend 

Q"1 is the variance-covariance matrix 
defined by CAR model 

(3) Priors p\po, LPo ~ N(/?0, LPo) po, LPo, ay/ py, az, jSz, \i$, a2 are constants 

oy ~ InverseGamma(ay, py) LPo is generally chosen to be diagonal 

a\ ~ InverseGamma(az, j3z) 

7i = log(</>)~N(^ /c^) 

4.4 Precision Matrix Diagonalization 

It can be noted that the precision matrix Q in the latent process in Table 4 can be 

expressed in different ways, as discussed in section 2.3. The log likelihood function 
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for the latent process is: 

loglik(Z/ $, o2
z) = ~ log(27iaz

2) + i log |Q| - ^ ( z - X/?)TQ(z - X/3), 

where |Q| denotes the determinant. Despite the fact that the parameters in the 

CAR model proposed by Pettitt, Weir, and Hart (2002) were chosen in such a way 

as to make parameter estimation more computationally efficient, the data values 

are still correlated over space which can be computationally demanding for |Q| 

when many repeated calculations are required such as in maximum likelihood 

and MCMC based estimation. Rue (2001) recommends reordering the sites so 

that Q becomes a sparse band matrix and subsequent application of the Cholesky 

factorization. 

In this section, we use a precision matrix diagonalization approach that results 

in a process that is uncorrelated over space. Due to the particular parameterization 

we find a diagonalization of Q that is free of the parameters, hence it needs to 

be performed only once and can be done prior to estimation. This approach is 

thus also called a "pre-whitening" method. Thus, the process variance contains 

no covariance component, resulting in full conditional posterior distributions that 

are easier to calculate and have a simpler form. After transformation calculation of 

determinant and matrix inversion are simple arithmetic operations with diagonal 

matrices and do not pose any computational challenge even for large data. 

An alternative and an enhancement to this data transformation for gridded data 

is to do circulant embedding. That is, by enclosing the original lattice from which 
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the data is collected in a grid that is wrapped around a torus, all observed locations 

would have the same number of neighbors (4 neighbors). This creates a weight 

matrix that allows for easy computing of eigenvalues and eigenvectors, the most 

computationally taxing part of parameter estimation. 

In the following, to clarify our diagonalization approach, we will assume the 

spatial interaction parameter to be 0 < i/> = ^ < 1 based on Czado's CAR model, 

which is a realistic assumption since negative interactions are unlikely. When 

\p > 0, Q can be written as 

Q = I- i />(y-D). 

As discussed in section 3.2, the eigenvalues of Q are rjt• = 1 - i/>A,- where A, are 

the eigenvalues of y — D. Note that y — D is completely determined by the given 

lattice, and does not depend on the model parameters. This can be utilized for 

calculation of |Q|. The eigenvalue calculation of A, needs to be done only once, and 

IQI = Il"=i(l _ iM>) f° r a n updated value of i/> requires only a simple calculation. 

We can now write the eigenvector based diagonalization as follows, 

FT(y - D)F = A , 

where A = diag(Aj) and F is the orthonormal matrix consisting of the unit length 

eigenvectors of y - D as columns. Note that by the properties of orthonormal 

vectors, FTF = FFr = I. Thus, F r = F_1, and it can be shown that Q and Q"1 can be 
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expressed as 

Q = Fdiag(l - i/,A,)Fr 

and 

By transforming the data and the process by way of the eigenvectors, the terms 

in the resulting hierarchical model are related to the original model such that 

y* = FTy, 

z* = FTz, 

X* = FTX . 

Hence, the hierarchical model for the transformed data is identical to the structure 

in the original model. The only difference is that the z* are uncorrelated with new 

variance matrix 

Parameter estimation is done using these transformed values and the back trans­

formation, z = Fz*, is used after the parameter estimation is complete to obtain the 

original process estimates. 

4.5 Posterior Distributions for Unknown Parameters 

With the transformed hierarchical model structure listed in Table 5, we can now 

ease the computation for parameter estimations in MCMC procedure. Full con­

ditional distribution for some parameters can be found using Bayesian methods, 
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Table 5: Hierarchical model structure for a transformed spatial process, the precision matrix of 
which has been diagonalized. 

(1) Data process y*(s)|z*(s), oy ~ N (z*(s), oyl\ y*(s) = FTy(s) is the transformed data 
z*(s) = FTz(s) is the transformed 
latent process 

(2) Latent process z*(s)|j3, a\, ip 

- N ^ / S ^ d i a g ^ ) ) 

(3) Priors 

X*p = TTXp is the transformed 

spatial trend 

P0, Lpo, ayi py, az/ pz, dip, by are constants 

dy ~ InverseGamma{ay, jSy) Lp0 is generally chosen to be diagonal 

a\ ~ InverseGamma(aZ/ j32) 

Wv*h~WvW 

or xp = ^r ~ Beta(ay, by) 

while others have no closed-form representation, and thus need a Metropolis step 

to update those parameters. Below we will calculate and list the available full 

conditional distributions. 

Recall the fact for the Gaussian conditional distributions. Suppose the joint 

Gaussian distribution for (Xi,X2)' is 

/ \ 
Xi 

UJ 
~N 

/ > 

Mi 

UJ 

( 

r 

\ 

2-ii 2-i2 

E2i £22 

Then, the conditional distribution of X2|Xi is: 

x2|Xi ~ N(|U2 + z21ir1l{xl - ^ ) , L 2 2 - LnL^Ll2). 
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4.5.1 Posterior Distribution for Latent Spatial Process 

Let 

T}i = l - rpk, 

where, {A,, i — 1, • • • , n) are the eigenvalues of matrix y — D, here, y is defined by a 

distance based weight matrix by Pettitt et a/\(2002), D is a diagonal matrix with the 

z'th element corresponding to the z-th row summation of y minus 1, and 

COi 
ol + o2 

ym 

The joint distribution of y* and z* is determined by 

y* 

z 

N 

t \ 

X*B 

a2diag( J) + a]\ a2diag(J) 

a2
2diag(l) az

2diag(l) J 

where the variance of y* is: 

Var(y*) = Var(z* + e) = a^diag(-) + oil 
rji 

and the covariance of y and z is: 

1 
Cov(y*,z*) = Cov(z* + e,z) - Var(z*) = afdiag^) 
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Therefore, the conditional distribution of p(z*\y*, a\, ay, /?, ip) is: 

zV,a z ^, /^~N0v£ z | y ) , 

where, 

Mz,y = X ^ + a2
2diag(i)(a2

2diag(i) + a2
yl) (y-Xfi) 

= X*/? + diag(^)(y -X*)8) 

and 

1 1 / 1 \ l 1 
Lz,y = a2diag(-) - a2diag(-) a2diag(-) + oyl\ a2diag(-) 

•]i ill \ T\i I Hi 

= ^diag 

4.5.2 Posterior Distribution for Variance Parameters 

The posterior full distribution p(oy\y*, z*, o\, (2, xp) for data variance will involve data 

likelihood p(y*|z*, a\, oy,p, ip) and its prior p(oy). In our case, the prior distribution 

is inverse gamma with known shape parameter ay and scale parameter f$y, which 

is 

p(cy)«{oyY^exV(-pyloy) . 
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The data likelihood p(y*|z*, a\, o2
yl /?, ip) is proportional to 

V{f\z*rol,o],M) a ^ e x p | - ^ ^ ( y ; - z ; ) 2 | . 

Therefore, the posterior distribution of oy given all other parameters will be: 

= IG{ay(p0st), Pytyost)) i 

where, 

n 
ay(post) = 0ty + — 

and 

Now, let us consider the posterior distribution for latent process variance a\. The 

posterior full distribution p(al\y*, z*, ay, /?, \p) will involve the product of three items: 

data likelihood p(y*|z*, ay, a\, f$, i/>), the latent process likelihood p(z*\oy, a\, /?, i/>) and 

its prior p(o\). However, notice that the data process only involves the latent process 

with parameters /? and oy, it has no contribution to the posterior distributions of 

a\, which therefore only depends on its prior and latent process likelihood. In our 

case, the prior distribution is inverse gamma with known shape parameter az and 
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scale parameter j32, which is 

p(a2
z)a(a

2
zr^exp(-^/al) 

The latent process likelihood for z* is: 

p(z\ai o2
rfS, VO cc _ ^ _ exp j - ^ L £ ^( Z ; _ X;/?)2 j . 

Therefore, the posterior distribution of a\ given all other parameters will be: 

V{p\\f ,z ,a\,W) a ^ e x p j - ^ ^ ^ ^ - X ^ U ^ r ^ e x p ^ / ^ ) 

= IG(az(post)/fiztyost)) i 

where, 

n 
&z(post) = az + ^ 

and 

1 " 
Pzipost) = jSz + ^ L ^ - - ^ 2 

1=1 

1 " 
= jS2 + - V T],e2, where, el = z*- X*/S is the residual. 

2 . i 
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4.5.3 Posterior Distribution for Trend Parameters 

The prior distribution for fi is 

pW = N{p0lLh). 

Then, the joint distribution of (/S, z') is: 

z* 

,e, 
N 

( \ 

'o 

{ ft 

^diag(J-) + XS„aX
T XEft 

\ \ 

£ « X L/i 

Therefore, the conditional distribution p(/?|y*, z*, o ,̂ o\, t/>) is 

p(/?|y*, z*, ffz/ az, i/>) = NQig, t)f L p i p o s t ) ) , piposty 

where, 

and 

/ W ) =^o + ^0XJ (^diag(^) + X^oXJj (z*-X^0) 

E««0 = Eft - ^0XJ (^diag(- ) + X£ftX' ) XEft 

4.5.4 Non-closed-form Posterior Distributions 

Some parameters do not have closed-form posterior full conditional distributions, 

and thus cannot use Gibbs sampler to update them in MCMC. For example, in 

our case here, parameter if; £ (0,1) cannot be written in an explicit solution. What 
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we will do is to provide a proposal distribution for ip, say, uniform distribution 

between 0 and 1, and then use "Metropolis within Gibbs" to update parameter ip. 

A similar situation will also happen later for our proposed new model, and thus 

we will use a similar estimation scheme. 
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CHAPTER V 

An Extended Spatial Autoregressive Model 

Geostatistical models and spatial autoregressive models as well as Gaussian 

Markov random fields (GMRF) are discussed in the previous chapters. The con­

ditional autoregressive (CAR) model is also expanded to Pettitt's or Czado's pa-

rameterizations which are computer efficient models that allow for direct and 

computationally fast calculation of the precision matrix. 

However, CAR models are somehow too limited in practice to be suitable for a 

underlying smooth latent process. CAR models with a defined low order neighbor 

structure are not capable of modeling an underlying smooth random field. It has 

been noted that a CAR model assumes a single interaction parameter between first 

order neighbors which produces rough spatial surfaces. Griffith et at. (1996) show 

heuristically that the CAR model corresponds approximately to an exponentially 

decaying correlation structure over a large lattice ignoring the subtleties of the 

edge effects. It is well known that random fields with an exponential correlation 

structure are not differentiable hence they are not smooth. High order neighbor 

structures may be specified to capture the smoothness of an underlying process. 

Rue and Tjelmeland (2002), and Rue and Held (2005, Chapter 5), provide a more 

general correspondence whereby the degree of smoothness is increased by increas-
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ing the order of the neighborhood which they apply to Gaussian Markov random 

fields (GMRF) over regular lattices. They recommend up to at least five orders 

of neighbors which requires at least 6 interaction parameters in the isotropic case. 

While this approximation is excellent it may be difficult to implement such higher 

order neighbor structures on irregular lattices. Even on regular lattices, the re­

quired large number of parameters may be a burden for model fitting. Further, 

Rue and Held (2005) note that the estimated parameter values typically have al­

ternating signs and are not particularly insightful with respect to the underlying 

model structure. 

In this chapter, we will propose a parsimonious model with two parameters for 

the spatial dependence structure that is suitable for estimation where the under­

lying spatial random field can have any degree of smoothness. Our model is an 

extension of the one-parameter Czado's CAR model (or modified Pettitt's model). 

51 Model Extension; The EAR Model 

We now utilize the diagonalization (section 4.4) to define a new extended model 

by introducing a parameter 6 > 0 that describes the smoothness of the underlying 

random field. We call this the extended autoregression model, or abbreviated: the 

"EAR" model. 

Recall that the computer efficient Czado's CAR model for a spatial process z 

can be written as 

z - N O i V Q " 1 ) , 
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where, for 0 < xp < 1 and with eigenvalues {Alf i = 1, • • • , n] of matrix y - D in 

section 2.3.5 

Q = Fdiag(l - t/;A,)FT . 

Now, let us define and specify our EAR model as follows. 

Definition 5.1 (EAR Model) A spatial process z defined over a lattice with neighbor 

index matrix y follows the EAR model with parameters {[i, a1, xp, 8) if 

z - N ^ Q - 1 ) 

with Q defined by 

Q = Ydiag{\ - ^A;)
eFT , 

where F is the eigenvector matrix ofy-~D and D is the diagonal matrix of the row sums 

ofy minus 1, and {At, i = 1, • • • , n} are eigenvalues ofy-D. 

Alternatively we can write: 

A spatial random field z is EAR(^, o2, \\>, 6) if its transformed process z* follows 

x = FTz ~ N 
, 1 ^ 

FT/i, cr2 diag 
1-iM,/ J 

Notice that like the Czado et al. parameterization, the spatial interaction param­

eter ip takes any value between (0,1). When i/> = 0, the process is independent, and 

the smooth parameter will take no effect; while when ip = 1, spatial realizations are 

highly correlated. The parameter 6 governs the smoothness of the random field, 
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and is specified to be strictly larger than zero. 

As an illustration, a 30 x 30 grid has been created representing a spatial random 

field following the extended model. The values for each grid cell are generated from 

the EAR model with mean p = 0, o2 = 1 and different smoothness parameters 9 = 

1,2,3,4,6,9, and fixed interaction parameter ip = 0.75. The simulation procedure 

follows Chapter 2 in Rue and Held (2005) as listed in Table 6. 

Table 6: An algorithm to simulate a Gaussian random spatial process from EAR model 

Algorithm : Sampling z ~ EARj^i, a2, \p, 9) = N(ji, a2Qr6), Q = I - ipjy - D) 

1. Compute the eigendecomposition of matrix y - D, y — D = FAFT, 
where, A = diag(A„i - 1,• • • ,ri) 

2. Calculate L? = Fdiag (jz^;) F r 

3. Sample x ~ N(0,1) 

4. Compute y = H5x 

5. Compute z = y + \L 
6. Return 

Figure 7 shows simulations of z for various values of 6, illustrating how it is 

related to smoothness. Note that we used the same x for each realization. From the 

graphs, we can obviously detect the smoothness pattern as 0 varies. The larger 6 

is, the smoother the random field. This thus allows for the modeling of a spatial 

random field with any level of smoothness. Notice that when 9 = 1, our model 

reduces to the CAR model. 

5.2 Circulant Embedding 

It has been noted that GMRF are not stationary even on a regular lattice because 

of the differing neighbor structure along the boundaries of the lattice. This is the 
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Figure 7: Simulated random fields with mean 0 of the EAR model with xp = 0.75 for 6 = 1,2,3,4,6, 
and 9, respectively, and a2 = 1. Note the same x was used for each realization. 

well known edge effect problem. This problem is resolved if one assumes that 

the lattice is wrapped around onto a torus, which in effect removes any edges and 

provides for a uniform neighbor structure throughout the spatial domain. 

What's more, estimation with Gaussian spatial data has been limited to mod­

erately sized data because of the computationally demanding operations of matrix 

inversion and determinant calculation, as discussed in the "big n problem". The 

number of floating point operations on a computer for these operations is typically 

of order 0(n3). For regular lattices one can take advantage of the regular structure 
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in Q and thus accelerate the computation. It has been noted that a further gain in 

computation can be achieved if the spatial domain is a regular torus. 

A torus can be viewed as a regular lattice with cyclical boundary conditions. 

Figure 8 illustrates the form of a torus (or donut). More precisely if the x and y 

coordinates of a regular lattice are ordered from 0 to n\ - 1, and from 0 to n2 - 1, 

respectively then the torus implies a cyclical extension of the numbering where in 

the x direction sites are numbered mod n.\ and in the y direction sites are numbered 

mod n2. For example site (2,5) equals site (ri\ - 2,5) and site (4, n2) equals site (4,0), 

and so on. Such a cyclical extension removes any boundaries and the assumed 

neighbor structure is identical at any point on the torus. 

Figure 8: Torus - an illustration of a two-dimensional lattice with cyclic boundary conditions 

A GMRF defined on a torus will then result in a circulant precision matrix 

Q. Circulant matrices have the property that their eigenvalues and eigenvectors 

are related to the discrete Fourier transform. This allows for fast algorithms for 

common matrix operation such as obtaining inverse, determinant, and so on. Below 

we will provide some details about circulant matrices. 
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c = \f-j-i mod n) 

Definition 5.2 (Circulant matrix) An nxn matrix C is circulant if and only if it has 

the form 
i \ 

Co C\ Ci ••• C„_i 

C„_i Co C\ ••• Cn-2 

Cn-2 Cn-\ Co ••• Cn-3 

C\ C2 C3 ••• C0 
V / 

for some vector c = (c0/ C\,--- , c„_i)T. The vector c is called the base ofC 

A circulant matrix is fully specified by only one column or one row. Let co 

V-T, then the ;th eigenvalues can be found by 

n-l 
Ay = / , ct exp(-2ncoij/n), 

i'=0 

and the ;th eigenvector is 

•\/n 

exp (-2ncoj/n) 

exp (-2ncoj2/n) 

exp (-2ncoj(n - I)In) 
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Now, the eigenvector matrix can be defined by, 

(e0|ei| • • • |e„_i) 

1 1 

1 

-\/n 

1 p1 

1 p* 

1 p n _ 1 n2^n~V> 

1 

p»-l 

n2(«-l) 

,(n-l)(»-l) 

where p = exp (-Inco/ri). Note that F does not depend on c. 

A natural generalization of circulant matrices are block-circulant matrices. They 

share the same properties as circulant matrices. The block-circulant matrix can be 

defined as, 

Definition 5.3 (Block-circulant matrix) An Nn x Nn matrix C is block circulant if and 

only if it has the form 

C = 

Co Ci C2 • • • Cjv-i 

Qv_l Co Ci • • • C]V_2 

Qv_2 Q\r_i Co • • • Qv_3 

Q C2 C3 • • • Co 

\\-j-i mod N) 

where, Q is a circulant nxn matrix with base Q 
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When considering data collected on a rectangular lattice, either regular in 

boundary shape or not, it can be wrapped onto a torus directly. Another ap­

proach is to use a slightly larger regular rectangular lattice to enclose the original 

irregular lattice, and then wrap it onto a torus. Thus, this embedding scheme 

becomes circulant in nature. The fact that the region is expanded indicates that the 

original lattice on which the observations are taken is minimally affected by the 

"additional" neighbors. Using this type of embedding creates a y matrix and thus 

a Q matrix that is not only sparse but also symmetric block circulant, which looks 

like 

Q = 

<\n-\ <7o q\ <]n-2 

<]n-2 <\n-\ tf\ " " ^n-3 

<7l <?2 <?3 <?0 

W;-imodnJ 
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Taking a 3 x 3 regular lattice wrapped onto a torus as an example, the first-order 

neighbor indicator matrix is 

/ \ 
0 

1 

0 

1 

0 

1 

0 

1 

, 0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

0 

1 

0 , 

and y is sparse and has four neighbors for each site. 

It is well known that the eigenvalues of Q are the discrete Fourier transform 

of any row of Q, whereas the eigenvectors are the corresponding Fourier bases of 

size n (Brockwell and Davis, 1987). Note that the eigenvectors are constants hence 

they do not depend on Q except for its size n. These calculations are of order 

0(n log n) and thus are possible for large n. The eigenvectors and eigenvalues are 

used in the obvious way for calculating the determinant of Q and for generating 

draws from a model with precision Q. Note that for a non-isotropic model that has 

different interaction parameters in the x and the y directions, Q is a block circulant 

matrix, and the eigenvector / eigenvalue calculations involve the two-dimensional 

discrete Fourier transform (see Rue and Held, 2005, for details). For our model 

when applied on a torus we will apply the Fourier transform to one row of the 

matrix y - D. 
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In order for this type of embedding to be valid for use in CAR and EAR models, 

the precision matrix, Q = I - ip(y - D), needs to be symmetric positive definite. For 

now, consider only the uniform weight system described by 

y, 

( 

1, ;'eN(i) 

0, j*N(i). 

For any order of neighbors considered, this results in a sparse symmetric matrix. 

In the circulant embedding scheme, matrix y is circulant, and the elements of D 

represent the number of neighbors for each spatial location minus 1. This number 

is constant and thus can be written as D = d\. Since y is symmetric and both D and 

I are diagonal, Q is symmetric. In addition, the Q matrix can be expressed as 

Q.. 
1 + dip, i = j 

-ipy,,, i±j. 

Recall that a matrix A = [atJ] is said to be diagonally dominant if \a„\ > YJ^I \ai]\ for 

all i. Since uniform weights are assumed, there are (d + 1) off diagonal elements 

that are equal to one and the rest are zero. Becasue 0 < xp < 1, we get 

\Qll\ = l+dip>Yjn!\ = dip + ip, Vf. 

Therefore, Q is diagonally dominant. From Theorem 12.2.16 in Graybill (1983), 

Q is positive definite. Therefore, the precision matrix with uniform weights is 

symmetric positive definite. The proof follows for other weight systems. That is, 
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for any valid Q, circulant embedding creates another valid Q. 

5.3 Is the EAR Model a Markov Random Field? 

Through the definition, it is not clear whether the EAR model is in general 

a Markov random field. That is, the conditional distributions of one realization 

from the process given all other locations, p(Zi\z-j) cannot be determined using 

only the neighbors of that location. In our case, p(z,-|z_,-) also depends upon the 

smoothing parameter 6. Recall that this is important because in order to use the 

Gibbs sampler for estimation, it is necessary that when values are simulated from 

the joint distribution, that this distribution is both stationary and unique. It will 

be shown in the following text that under some conditions, the EAR model is 

equivalent to a higher order CAR model which is a Markov random field. Rue 

and Tjemeland (2002) have shown a similar correspondence between geostatistical 

models and Markov random fields. 

In this section we show that for a regular square lattice embedded onto a 

torus the (isotropic) EAR model is for integer values of 6 a Markov random field 

with higher order neighbor structure, and that for other values of 6 it can be 

approximated by such a model. 

The following are some obvious facts of neighbor indicator matrices defined 

over a torus. We denote the neighbor indicator matrices by y, or y.. For instance, 

when j = 1, y1 denotes the first-order neighbor indicator matrix; when j = 2, y2 

denotes the second-order neighbor indicator matrix, etc. They are assumed to be 

circulant. For non-isotropic models similar results (but more complex though) can 
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be derived; but here the y matrices are block circulant. We use D or D ; to denote 

the row sum diagonal matrices of the form diag I ]T yik - 1 \. Matrices y • and D ; 

can be treated as a pair for each ;-th order neighbor structure. In this section we 

assume throughout that a = 1. The generalization to a ^ 1 is trivial. 

Fact 1: Let A, be eigenvalues of (y - D) = (y - dl), where d denotes the number 

of neighbors minus 1 of any site on the torus. Then A, = 5, - d, where 5, are the 

eigenvalues of y. 

Fact 2: To consider a higher order CAR model, it is necessary to separate y to 

distinguish the order of the neighbors being considered. Then, let yv y2, •• • , yk be 

a set of indicator neighbor matrices where the subscript i indicates the order of the 

neighbors, 

y = Y\ + r2 + • • • + n 

where 

Elements of y • = < 

t 

1, if S{ is a ;-th order neighbor 

0, otherwise . 

Using the Czado et al. parameterization where \p > 0, Q = I - xp(y - D). In the case 

where one is only interested in the first order neighbors, y -yv and so 

Q = i - ^(n - DO , 
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where xpi is the spatial interaction using first order neighbors. Similarly, considering 

both first and second order neighbors results in y = y1 + yv and 

Q = I - iMri - Di) - MY2 - D2) • 

Then for the combined higher order neighbor structure y1 + y2 + • • • + yk, the 

following is a /c-parameter CAR precision matrix: 

Q = I - ^(Yl - DO - i[>2(y2 - D2) V*(ft " D ^ • 

It is easily established that Q is symmetric and positive definite for any values of 

the i/> (positive) parameters, as shown in section 5.2. 

Fact 3: Since in the above representation all y • are circulant and all D ; are 

D ; = djl, the eigenvalues of Q are given by: 

1 - Vi(6i,; _ rfi) _ ^2(52,i - d 2 ) 4>k{£>h,i - dk) 

for i = 1, • • • , n, and where bjj are the eigenvalues of y . 

Fact 4: Since all v have the same eigenvector matrix F (defined with columns 

as eigenvectors) we can represent the precision matrix Q as follows: 

Q = Fdiag (1 - \pi(6u - d{) - i^2(52/i - d2) xpk(5Ki - dk)) F
T . 
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Since the Q in Fact 4 is the precision matrix of a higher order GMRF we now 

attempt to show when this Q is equal or a close approximation to an EAR model. To 

demonstrate the connections between the EAR model and a higher order Markov 

random field, consider the first order EAR model with precision matrix 

Q = Fdiag(l - ^A ;)
eFr . 

Assuming a normal distribution, 

z ~ M M ( / j , E = Q"1) 

and 

FTz ~ MVN FTjii, diag 

We use the diagonal matrix of the representation in Fact 4 to match the diagonal 

matrix of the EAR model by pointwise Taylor series expansion. Recall that any 

function can be approximated by a Taylor series expansion as follows, 

fix)=f(Xo)+f(x0)(x - xo)+/"(*0)^4r-+/'"(*°)^4r^~+ 

where x0 is any constant. Thus, with x0 = 0, via a Taylor series approximation, each 

element (1 - t/>A,)e can be written as, 

A2 A3 

(1 - ipAf = MA,-) = HO) + h'(0)A, + h"(0)-£ + h'"{0)-£ + • • • , 
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where 

ft'(O) = 0(1 - i M , ) 9 - 1 ^ ) U,=o= -ye 

/i"(0) = 6(6 - 1)(1 - VA,)0"2^2 U=o= i W ? " 1) 

fc"'(0) = 6(6 - 1)(0 - 2)(1 - VA,)0-^-^3) |A _o= -i/>30(6> - 1)(0 - 2) 

^W(O) = (-l)mi/>m0(0 - 1) • • • (6 - m + 1), 

and so on. It is obvious that if 6 is an integer, say 6 = p > 0, then /z(p+(f)(0) = 0 for 

q > 1. In this case we have an exact expansion as follows: 

2^2 

(i - w = i - p<M. + P(P -1)%^ + 
;=0 p! 

V 

K> , 

M 

Fact 5: An EAR model over a regular torus (isotropic) that has an integer valued 

smoothness parameter 6 = p has the following representation of the precision 

matrix. Let W = diag(l - i/'A,), and let Q ; denote the precision matrix of an EAR 

model with 6 = j for ;' = 1, • • • , p. Note that Qi denotes the first-order precision 

matrix. 

Qp = Fdiag(l - ^A^F1" = FI^FT = F W r F W T FW T = Q̂  . 

The expansion of Fact 4 can now directly be performed on the Q matrix which 

provides a mechanism to translate the parameters of an EAR model to those of 

a higher order CAR model. In order to simplify the matrix expansion we define 

the order of regular lattice neighbors in a slightly non-standard way. Define the 
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following neighbor incidence matrices ordered by distance: 

y{\), y{l, 1}, y{2], y{\, 2), y[2, 1}, y{2,2}, y{3}, y{l, 3}, y{3,1}, y{2,3}, y{3,2}, y {4}, 

y{\, 4}, y{4, I), y{3,3}, y{2,4}, y{4,2), y{5}, y{4,3}, y {3,4}, • • • 

Here y {i} denotes the neighbor incidence matrix for a set of neighbors in the primary 

directions (east, north, west, and south) at distance i. y{k, 1} denotes the indicator 

matrix of a set of neighbors in the "diagonal" directions obtained by moving k 

nodes in a forward direction and / nodes turning left starting in any of a all four 

primary directions. Obviously each y{k, 1} corresponds to a set of 4 neighbors at 

each node of the torus embedded lattice. Further the distance associated with 

these neighbors is d{k, 1} = (k2 + l2)1/2 . Note that in this notation we can also define 

y{0} = y{0,0} = I (the identity matrix) and y{i,0} = y{0,i} = y{i). 

Fact 6: The powers of a first order neighbor incidence matrix y{l\ over a torus 

are given as follows: 

y{l}2 = y[2} + 2y{l,l} + 22y{0} 

y{l}3 = y{3\ + 3y{2,1} + 3y{l,2} + 32y{l} 

y{l}4 = y{4} + 4y{3,1} + 6y{2,2} + 4y{l, 3} + 4[4y{2} + 6y{l, 1}] + 62y{0} 

y{l}5 = y{5} + 5y{4,1} + 10y{3,2} + 10y{2,3} + 5y{l, 4} 

+ 5[5y{3} + 10y{2,1} + 10y{l, 2}] + 102y{i) 

y{l}6 = y{6} + 6y{5,1} + 15y{4,2} + 20y{3,3} + 15y{2,4} + 6y{l, 5} 

+ 6[6y{4} + 15y{3,1} + 20y{2,2} 

+ 15y{l, 3}] + 15[15y{2} + 20y{l, 1}] + 202y{0}. 
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The pattern of these multiplications is more clearly illustrated by the graphs 

given in Figure 9. 

2 2 
1 4 1 

2 2 
1 

0 2 4 

3 3 

3 9 3 
1 9 9 1 

3 9 3 
3 3 

1 

6 16 6 
4 24 24 

1 16 36 16 
4 24 24 

6 16 6 
4 4 

0 2 4 0 2 4 6 

Figure 9: Patterns of neighbor weights corresponding to powers of the first order incidence matrix 

Yv 
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These equations can be programmed using the following: 

f = y{ir = 
k-1 

£y{*-///} + 
;=0 

k 

1 
^ ) 

k-2 

L 
/=i 

( \ 
k 

J , 
y{k-j-l,j-l} 

+ 
2 v / 

k-3 

L 
;=2 

+ 
[m] 

t \ 

v ' v 

k 

[m] 

y{k-j-2,j-2} + 

y{k - 2[m],k - 2[m]} 

[m] 

-L 
i=0 

y \ 
k 

i 
A V 

max(A:-l-!,!) 

;=i 

/ \ 
k 

J, 
y[k-]- i, j - i) 

where [m] is the largest integer < k/2. 

Fact 7: Consider a CAR model on a torus. Then in our representation: 

Let A = diag(A0 = diag(eigenvalues o f ^ -dil)) = ¥T(y1-diI)¥ = FTyaF-diI 

A - di I; where A = diag(6,) = diag(eigenvalues(y1)). 

Fact 7a: For the first-order precision matrix Qa = I - ip(y1 - Di), Di = d\\ 

(4 - 1)1 = 31. Using the letter K instead of \p, Qi turns out to be 

Ch = (3i/> + 1)1 - i//y2 = wl- wxy1 = 1 _ 3 (I - Kya) 
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where, K = J^T and w = ^4^. Notice that as the range of i/> varies from 0 < xp < 1 

the range of K is 0 < K < \ . Further, it follows that 

Qi = F(I - ^A)FT = F(I - i//(A - 3I))Fr = F ( j ^ ( I - KA)) F T . 

Therefore, using Fact 5: Qp = Fdiag(l - i/>A,)pF = Q^ for some positive integer p; 

and hence: 

!=0 

V 

I 
v / 

(-K)'yi • 

The equation above indicates that, on a regular torus with inter-node distance= 

1, the precision matrix of the isotropic EAR model with an integer smoothness 

parameter 6 = p > 0 is a linear combination of neighbor incidence matrices (in­

cluding the identity matrix) of neighbors up to including a distance of p. Such a 

linear combination defines a higher order CAR model. 

When the smoothness parameter 9 in the EAR model is not an integer, the 

explicit connections between EAR and higher-order CAR model is not available. 

However, 6 still governs the smoothness of the spatial process, and can be inter­

preted as a smoothness parameter in the EAR model. Through the matrix logarithm 

and exponential, we will demonstrate that when 6 is not an integer, the Q matrix 

in the EAR is still valid. 
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Recall that the exponential of a n x n matrix X can be written as 

^ = I + ix + Ix 2 + ̂ x3 + ---, 
1! 2! 3! 

and the logarithm of I + X is 

Y2 V3 V4 
ln(I + X) = X - ^ + ^ - - ^ + v ' 2 3 4 

The precision matrix Q in the EAR model can be expressed as 

Q = Q̂  = [l-^(y1-D1)f . 

Let F and A be matrices of eigenvectors and eigenvalues of y1 —D\, then, 

FTQF 

= F ^ e x p j e i o g C I - ^ ^ - D O ) } ^ 

F J - e x p ^ ( - V > ( y 1 - D 1 ) - | - ( y 1 - D 1 ) 2 - | - ( y 1 - D 0 3 + 

Note that for any square, positive definite matrices A and B, we have 

FT [AB] F = FTAF FTBF . 
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So, 

F T QF = F V e , W r i ~ D l ) F • F V 9 ^ (n-Di)2p . p T g - e ^ - ^ - D ^ p 

For any order fc, the exponential of e°^^ Dl^ (c is a constant) can be written as, 

gC^-D,)* = ! + i . [ c ( y i _ D i )fcj + i . [ c ( y i _ D i ) k ] 2 + i . [ c ( y i _ D i ) * j 3 + . 

Thus, 

FT. ec( y i-D l) \F = I + i . [ c ( A ^ ] + i . [ c ( A ) ^ + i . [ c ( A ) . ] 3 + 

cA* 

= e 

Therefore, 

FTQF = 6 - ¥ . £ X A 2 . e - ^ ! . . . . 

= expj-0h/;A + y A 2 + ^-A3 + 

= exp{01og(I-i^A)} 

= ( I - M ) S • 

Note that when 9 is not an integer, the precision matrix can be treated as an 

exponential and logarithm of the weighted combination of infinite neighbor ma­

trices coefficients. In fact, as the neighbor distance d gets larger, the corresponding 
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contribution of those neighbors with distance d to the conditional mean quickly 

approaches zero, since the weight 

[e(if>m/m)]k 

— > 0, as m —> oo k —> oo, 
K\ 

where, m and k correspond to the m-th and k—th. expansion of logarithm and 

exponential, respectively. 

5.4 Connections to the Matern Class of Covariance Matrices 

One of the most popular covariance structures in spatial statistics is the Matern 

class which provides a family of covariance functions with two parameters, 

where d is distance, o2 is the variance of the process, p is the range parameter, 

and <KV{-) is the modified Bessel function of the second kind, whose order is the 

differentiability parameter, v > 0 (see Stein, 1999). This covariance function has 

the desirable property that sample functions of Gaussian processes parameterized 

with the covariance are \v -1] times differentiable, where f-1 is the ceiling function. 

When v - 0.5, the Matern reduces to the exponential covariance function; when 

v = 1.5, the Matern class is the same as Whittle's covariance function, and when 

v —> oo, it has the form of Gaussian covariance structure. 
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The spectral density of the Matern covariance, evaluated at spectral frequency, 

co, is 

2r(v + g)(4vp / 4v r r (v+f ) 

f{co;p,v) = oA — - • - — - + co1co\ 
n^T(v)(np)2v \(np)2 ) 

where D is the dimension of the space. Generally, D = 2 for two-dimensional space. 

In this section we provide a motivation for the particular form of the EAR 

model given in Definition 1. The connection is illustrated by the fact that the 

spectral density function of the Matern class has the same general form as the EAR 

Fourier transformed covariance matrix, and that the smoothness parameter in the 

Matern class has the same role as the exponent parameter 6 in the EAR model. 

To build the connections between the Matern spectral density function and 

the EAR Fourier transformed covariance matrix, we use one of the Matern class 

parameterization leading to the following spectral density function (SPD) (see eg. 

Schabenberger & Gotway, 2005): 

f{w'ay)=Ti^A^) 
Here a plays the role of a decay parameter of the covariance function, or equiva-

lently, 1/a represents a range parameter and D denotes the space dimension, usually 

D = 2. Through the comparison between f(cv;p,v) and f(co;a,v*), we note that v 

and v* are exactly the same, and 

2Vv 
a — 

np 
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and T* is a multiple of the variance parameter as follows: 

r(v + f) 
T' = O V

 V 2 

T(v)n 2 

Comparing this to the EAR Fourier transformed covariance matrix 

"""Mî ) -

we can connect these two models via 

g 2 d i a g | i , , J =a2diag = S? d i a g l - V A f ;
 0 \ l / ^ + (-Ai)/ ^ ° \ l / ^ + (-A0 

Hence the interaction parameter i/> in the EAR model corresponds to (1/fl2) in the 

Matern representation, and 9 = v* + 1 for spatial data in a two-dimensional space. 

To illustrate our connections between the Matern class covariance function 

under geostatistical modeling and the EAR representation under Gaussian Markov 

random field, and in addition, to explore the linear or nonlinear relations between 

parameters in both structures, we will generate data on a 30 x 30 regular lattice, as 

shown in Figure 10. Note that the four corners only have two first-order neighbors 

(distance = 1), and edge locations have three neighbors. They have fewer neighbors 

than these sites inside, which is the famous "edge problem" that we mentioned in 

the very beginning of the dissertation. Define the first-order precision matrix 

Qa = I - Vfa - Dx), 
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Figure 10: An illustration of regular 30 X 30 grids 

where, yx is the first-order neighbor matrix using the uniform function proposed 

by Pettittetal. (2002)/andD1 = d i a g [ L y . y - l j . 

The matrix diagonalization procedure will be applied to yx - Dx to obtain its 

eigenvalues \\{,i = 1, ••• ,n\ and eigenvectors F. Recall that the EAR model is 

specified via the precision matrix, 

Q = —Fdiag(l 6T:T 
W F 

or via its covariance matrix, 

W F , M T ^ J F I 
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In our illustration, o2 is fixed to be 1, and various values of i/> and 6 will be 

assigned. Therefore, we can obtain the covariance matrix £ easily. Each row of 

the covariance matrix will then be divided by its diagonal element to obtain the 

correlation matrix R. The connections shown above indicate that this correlation 

matrix is, in some ways, connected to a Ma tern correlation function with parameters 

p and v. Our strategy here is to estimate p and v in Matern from the correlation 

matrix R in EAR, and once p and v are estimated, relations between (p, v) and (i/>, 9) 

can be further examined. We will calculate all correlation values in the matrix R for 

all locations at the regular grid distances 0,1, V2,2, • • • up to a maximal distance 

rfmax, here we choose dmax = 15. Collecting all correlation values of R into a column 

vector y and letting g(d; p, v) be a column consisting of correlation values from 

Matern class with distances d, we will minimize the sum of square errors, 

arg min {(g(d; p, v) - y)T(g(d; p, v) - y)} , 

and obtain parameter estimates for p and v using nlminb of the software R. 

Figure 11 presents an example of Matern fitting based on EAR correlation speci­

fication. In the EAR model, parameters are fixed to i/> = 0.8, and 0 = 3. Notice that, 

vertical grey points are correlation values corresponding to distances 0,1, V2,2, • • • 

uo to 15 from the matrix R in the EAR model, the black line connects all average 

correlations in each group of distances. The red line is the fitted Matern correlation 

function using the grey points. Estimated parameters for Matern class are p = 5.60 

and v - 1.73, respectively. It can be clearly identified that black and red lines are 
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almost surely overlapped. This shows that the Matern correlation function can 

almost perfectly be fitted to these correlation values from the EAR model. In other 

words, the Matern correlation structure and the EAR model specification are well 

connected. Smoothness parameters for both 6 and v have the same function and 

interpretation: they represent the smoothness of the spatial process. The parame­

ters p and <p, although defined in different ways, they both quantify the association 

between locations within certain distances. 

EAR model parameters psi = 0.8, theta = 3 

00 

d 

c o 
o 
TO 
0 

O 

d 

o 
d 

Average correlation values (EAR) 
Fitted correlation values (Matern) 

10 15 

Figure 11: Fitted Matern correlation function resulting estimated parameters p = 5.60 and 
v = 1.73. The grey points are correlation values from correlation matrix in EAR(\p = 0.8,6 = 3) 
model; the black line connects the average correlation values in each distance group; the red line is 
the fitted Matern correlation function. 
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To explore the possible relationships between parameters in the EAR model and 

in the Matern correlation function, we estimate and fit parameters p and v given 

different values of xp and 6. Figure 12 shows the Matern class fit with EAR model 

parameters \p = 0.6 fixed and various integer values of 6 = 1,2, • • • , 20. The Matern 

correlation functions provide nearly perfect fits. Notice that as 6 goes larger, the 

Matern class also goes smoother. 

Matern correlation fit with fixed psi and various theta in EAR 

10 15 

d 

Figure 12: Matern class fit for various smoothness parameters 6 and fixed correlation parameter 
ip = 0.6 in the EAR model. Grey points denote the average correlation values at each distance. 
Lines with different colors are fitted Matern functions. 

Table 7 presents the fitted values for parameters v and p in Matern function. 

Figure 13 shows the visualization of fitted p and v versus 9. An exponential pattern 
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for v versus 9 can be clearly detected, and so do the square relationship between p 

and 9. We thus take an exponential fit for v and 6 as 

£(log(v)) = 80+^9 

and take a square fit for p and 9 as 

where E(-) is the expectation, Bo and jSi are regression parameters. Table 8 presents 

the estimated coefficients for each fitting. Note that as the smoothness parameter 

9 in the EAR increases (especially > 15), the smoothness parameter v in the Matern 

class increases exponentially. One possible reason is due to the restrictions of grids. 

The lattice here is a 30 x 30 regular grid, which has been fixed. As 9 increases, more 

and more neighbors will be included to serve as conditional weights, which may 

cover all grid points, and thus results in a process that is too smooth. We do 

expect that if our grids is wrapped onto a torus, or the grids is dynamic (infinite), 

the relationship between v and 9 could be linear. Moreover, note that the range 

parameter p also increases when 9 increases. This in another way reflects the 

famous estimation issue for the Matern class, in which not all parameters can be 

estimated consistently, but one property can (Zhang, 2004). 

Another interest is to explore the relations between spatial correlation parameter 

i// in the EAR model and the parameters p and v in the Matern class when the 
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Table 8: Parameter estimates of exponential fitting for v and 6, and square fitting for p and 6. 

Model fitting 
Exponential 
Square 

ft) ft 
-0.508 0.272 
-1.400 3.087 

where £(•) is the expectation, f50 and /3i are regression parameters. Table 8 presents 

the estimated coefficients for each fitting. Note that as the smoothness parameter 

6 in the EAR increases (especially > 15), the smoothness parameter v in the Matern 

class increases exponentially. One possible reason is due to the restrictions of grids. 

The lattice here is a 30 x 30 regular grid, which has been fixed. As 6 increases, more 

and more neighbors will be included to serve as conditional weights, which may 

cover all grid points, and thus results in a process that is too smooth. We do 

expect that if our grids is wrapped onto a torus, or the grids is dynamic (infinite), 

the relationship between v and 6 could be linear. Moreover, note that the range 

parameter p also increases when 0 increases. This in another way reflects the 

famous estimation issue for the Matern class, in which not all parameters can be 

estimated consistently, but one property can (Zhang, 2004). 

Another interest is to explore the relations between spatial correlation parameter 

ip in the EAR model and the parameters p and v in the Matern class when the 

smoothness parameter 6 is fixed. Figure 14 shows the Matern class fit for fixed 

6 - 3 and twenty various \p ranging from 0.1 to 0.99. The fit still is excellent. 

However, we notice in Figure 15, when i/> is near the boundaries 0 or 1, the fitted p 

appears unstable. It decreases as i/> changes from 0.01 to 0.3, and increases with xp 

from 0.3 to 0.94, and then decreases again. We can detect a nearly perfect pattern 

86 



Matern correlation fit with fixed theta and various psi in EAR 
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Figure 14: Matern class fit for various correlation parameters ip and fixed smoothness parameter 
6 -3 in the EAR model. Grey points denote the average correlation values at each distance. Lines 
with different colors are fitted Matern functions. 

only for a limited range of i/> values; probably it is due to the fixed grid problem 

we discussed above. 

As discussed in section 5.3, when the smoothness parameter 9 is an integer 

value p, the precision matrix Qj can be expressed as a linear combination of different 

orders of incidence matrices, 
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Figure 15: Fitted values ofv and p in the Matern class versus xj) in the EAR model (9 is fixed). 

!=0 

V 
(-K)'yi 

Note that the signs of the coefficients are fixed and are the same for all values of p 

where they are overlapping. The relative values of these coefficients corresponding 

to Q™../Q™.. are shown in Figure 16. There is an interesting pattern emerging that 

is related to the Matern class correspondence. The envelope constructed for the 

absolute values of the weights corresponds roughly to a Matern correlation function 

for the corresponding value of 6 . Surprisingly this envelope function is relatively 

stable for changing values of ip , which may be explained by the fact that we used 

relative weights. Nevertheless the correspondence between the EAR weights and 

the Matern correlation function is not exact. In particular for small values of 6 and 

ip , there is a slight difference. However for practical purposes these differences 
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may be irrelevant. Note that for Figure 16 once can find by trial that a range 

parameter of cr1 = 0.36 in the Matern correlation function produces the closest 

correspondence between the Matern class and the EAR weights. We suspect that 

this particular value arises due to the particular parameterization chosen for the 

Matern class. 

psi = 0.29 , theta = 2 psi = 0.67, theta = 2 psi = 0.91, theta = 2 

psi = 0.29, theta = 8 

psi = 0.29, theta = 24 

psi = 0.67, theta = 8 

psi = 0.67, theta = 24 

-

-

\ 

I 
0 

I 

^ 

]fcw~ w* 
0 

i i i i i 

psi = 0.91, theta = 8 

psi = 0.91, theta = 24 

0 2 4 6 

Figure 16: Calculations of the higher order Markov random field coefficients (weights) as a function 
of neighbor distance that correspond to an EAR model with 9, for various values of 9 (theta) and 
ip (psi). Note we plot the relative weights: Qij/Qu • Also drawn as a smooth line is the Matern 
correlation function with v* = 9 - land range parameter a'1 = 0.36. 
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5.5 Connections to the INLA 

A recent increasingly popular stochastic method to geostatistical modeling 

is the integrated nested Laplace approximation (INLA) that was developed us­

ing a stochastic partial differential equations (SPDE) approach (Rue, Martino and 

Chopin, 2009; Lindgren, Lindstrom and Rue, 2010). It provides an explicit bridge 

between Gaussian fields and Gaussian Markov random fields. To briefly explain 

their method, we use the parameterization of the Matern function as follows, 

Cov(d) = a2^(K||d|irKv(K||d||), 

where K > 0 is the scale parameter and v > 0 is the smoothness/shape parameter. 

It is known that on infinite lattices, fields with Matern covariances are solutions 

to an SPDE(Whittle, 1954) based on the Laplacian, A = VTV, 

(K2 - A)a/2x(s) = e(s), a = v + D/2, 

where e(s) is spatial Gaussian white noise, D is the dimension. 

A finite element method is used to represent 

x(u) = ^ ipk(u)wk 

k=l 
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for basis functions {ipk} and Gaussian weights {wk}. Note that a stochastic weak 

formulation of the SPDE states that 

(<{>k,(K
2-A)a/2x) = (<pk,e), k=l,2,-.-

for all test functions {<pk}, where (f, g) is defined by J f(s)g(s)ds. Lindgren, Lindstrom 

and Rue (2010) show that when a = 1, then 

fa = (K2 - A ) 1 / 2 ^ , 

and when a = 2, then 

<pk = i/'* • 

They then construct the precision matrices Q for integers of a = 1,2, • • •, with Q 

specified by, 

Q l K = K 2 C + G 

Q2/K = KC XK 

where, 

Qa,x - KC Qa-2,KC K , 

Qj = (<pi, (pj), i * ;' 

Cu = <(/),, 1) 

K = K 2 C + G . 
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Taking a regular lattice as an example, the explicit solution to Q is expressed in 

the following format, when a = 2(or v = 1), see Rue (2009), 

1 

2 -2(4 + K2) 2 

- 2 ( 4 + K2) 4 + (4 + K2)2 -2(4 + K2) 1 

2 -2(4 + K2) 2 

1 

, - 2 

Q = t e x 

Recall that the EAR model is also shown to be connected to the Matern class. 

Notice that in the INLA, the smoothness parameter a = v + D/2 functions similarly 

to the parameter 6 in the EAR. Below we will show that when the EAR model is 

wrapped onto a torus, both precision matrices Q exhibits similar patterns. 

Consider a two dimensional regular lattice (D = 2) with 6 = v + 1 = 2. When 

the EAR model is embedded onto a torus, we know the first-order precision matrix 

is 

Qa = (3V + 1)1 - ipy, 

Let r\ = 3 + ^, then 

= ip2 (rfl - 2rjy1 + y2) . 
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From the powers of first-order incidence matrices in Figure 9, we can clearly see 

the weights for y1 and y\, which result in 

Q = xp2x 

2 -2(3 + 1) 2 

-2(3 + 1) 4 + (3 + i ) 2 -2(3 + 1) 1 

2 -2(3 + 1) 2 

The INLA approach and the EAR model do have identical pattern for the 

precision matrix with the relation 

1 1 
4 + K2 = 3 + - = > 1 + K2 = - . 

When applied to geostatistical data, both of the methods can be applied to do 

kriging with Gaussian Markov random fields paradigm. For instance, suppose the 

observation model is 

y ~ N ( K x , 2 : ) , 

and the prior distribution model of x is 

x - N Q ^ Q - 1 ) . 
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The posterior density p(x|y) oc p(y\x)p(x) is also a GMRF, with precision 

Qx,y = Q + Kr2;K, 

and expectation 

^ = QJ(QM + K7'E-Iy)-

Notice that in the INLA method, a lattice is constructed via triangulations to 

construct the precision matrix; while in the EAR model, a regular grid is created and 

the first-order neighbor incidence matrix is used to generate a precision matrix. For 

the EAR model, a dense grid will be created to conduct kriging, the idea of which 

is based on the Paciorek's method (2007) as discussed in section 3.2.4. Application 

of the EAR model in geostatistics will be later discussed in Chapter 6. 

5.6 Identifiability Issue: the Intrinsic EAR Model 

Both Czado's and Pettitt's versions of the CAR model have the intrinsic CAR in 

the limit, when ip —> l(or <p —* oo), and the conditional variance of z,|z_, decreases 

to o2/Nj. When xp goes to zero (no spatial dependency), all partial correlations 

between z; and z; given all the other sites are the same. In the EAR model, the 

spatial interaction parameter ip and the smoothness parameter 6 are both included 

and need to be estimated. It has been shown that the parameters xp and 6 are 

somehow corresponding to the range and smoothness parameters in the Matern 

class covariance functions, given the variance terms o2 are equal to 1. Zhang (2004) 

showed non-consistency in parameter estimation for the Matern class of geosta-
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tistical models indicating an identifiability problem. Similar parameter estimation 

non-consistency and identifiability issues also exisit in the EAR model. As an illus­

tration, Figure 17 shows the simulated Gaussian random fields with mean 0 and 

EAR specification with parameters xp = 0.1,0.6 and 0.9, and 0 = 1,4 and 10. The 

a2 is assumed to be 1. It can be noted that random fields in the upper right corner 

and in the lower left corner appear to have similar smoothness and patterns. Their 

corresponding parameters are xp - .1,0 = 10 and xp = 0.9,0 = 1, respectively. This, 

in some sense, points to the identifiability issue of the EAR model: The situation 

of a high value of the smoothness parameter 0 with a low value of the interaction 

parameter xp can not clearly be distinguished by data from the situation of a low 

0 value with a high xp value. The distance between grid points in a regular lattice 

represents a maximal resolution, and intuitively it is understandable that strong 

spatial interaction cannot objectively be distinguished from smoothness. 

Figure 18 shows the image plot for the -21oglikelihood for various parameter 

values of xp and 0. The data is simulated on a regular 30 x 30 lattice from the EAR 

model with values of parameters xp = 0.5, 0 = 4 and o2 = 1. The same values of 

the likelihood are clearly noticeable in the dark blue area. The likelihood for the 

small xp and large 0 (say, xp - 0.2,0 = 8) is quite close to that for the large value of 

xp and small value of 0 (say, xp = 0.8,0 = 3) . The likelihood appears to be roughly 

constant along curves from top left to bottom right. 

The remedy of the identifiability issues can be proposed by using an intrinsic 

version of the EAR model for spatial data. When the EAR model is applied to a 

spatio-temporal process, repeated measurements for each location at different times 
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Figure 17: Simulated random fields with mean 0 of the EAR model with x\> = 0.1,0.6 and 0.9 for 
6 = 1,4 and 10, and a2 = 1. The same x was used for each realization. 

provide sufficient information and thus can resolve the identifiability issue. Recall 

that the intrinsic CAR model has been widely used in application, for instance, 

disease mapping, image analysis etc, since the work by Besag, York, and Mollie 

(1991). Intrinsic CAR models are rank deficient versions of the CAR model that are 

invariant with respect to linear contrasts. They are not proper models but suitable 

as prior models where linear contrasts are required. The popular rank n -1 intrinsic 

CAR model is used widely as a spatial random effects prior i.e. a spatial a random 

field z, where the defining contrast is £ z, = 0. Specification of such an intrinsic 

CAR model is equivalent to specifying that the conditional means are averages of 
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Figure 18: The profile log likelihood of EAR model to the simulated data in a regular 30 x 30 grids 
with parameters ip = 0.5,0 = 4 and a2 = 1. 

the neighboring values. More specifically if we assume that 

zt\zi ~ N i + k E fa-ti'k 
j:jeN(i) 

Ni 
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then z is said to follow an intrinsic CAR model with corresponding precision matrix 

Q = 
l 

Ni 0 • 

0 N2 

0 0 • 

• 0 

0 

• N„ 
) 

1 

-721 /N 2 

^ -ym/N„ 

-yn/Ni • • 

1 

-yn2/N„ • • 

• -yin/Ni 

-y2n/N2 

1 

0' 
( D - y ) 

Here, y!; is defined as y!; = 1 if ;' is a neighboring site of i, and equals 0 

otherwise. Recall that in the Czado's CAR model, when xfj —> 1, the conditional 

variance reduces to CT2/NJ, resulting in the intrinsic CAR model. Therefore, we can 

define an intrinsic EAR model as follows, 

Definition 5.4 (Intrinsic EAR Model) A spatial process z defined over a lattice with 

neighbor index matrix y follows the intrinsic EAR model with parameters (/i, a1,9) if 

z - N ^ Q - 1 ) 

with Q defined by 

Q = fdiag(l - AifT1 

where F is the eigenvector matrix ofy-D and D is the diagonal matrix of the row sums 

ofy minus 1, and {A,, i = 1, • • • , n\ are eigenvalues ofy - D. 

Equivalently, the precision matrix can be expressed as: 

Q = Fdiag(£)wFJ , 
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where F is the eigenvector matrix of D - y and D is the diagonal matrix of the row 

sums of y, and {£;, i - 1, • • • , n) are eigenvalues of D - y. 

The intrinsic EAR model will be used in parameter estimation and spatial 

interpolation in Chapter VI. 
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CHAPTER VI 

EAR Model in Geostatistics 

In this chapter we develop the framework for applying the EAR model for pos­

sibly irregular point-referenced data, i.e. geostatistical data. We adopt a fine grid 

latent process representation similar to Paciorek (2007) and provide the full condi­

tional distribution required for MCMC estimation. We conclude with a simulation 

example. 

As discussed in Chapter II, the most important task in analyzing geostatistical 

data is the spatial prediction or the interpolation. One of the most widely used 

methods for interpolation of spatial data is "kriging", named after Krige (1951) and 

popularised when Matheron (1963) applied linear interpolation in a geostatistical 

context. The kriging predictor is a linear combination of observations; and thus 

suitable for Gaussian data, or data that is Gaussian after appropriate transformation 

(Box & Cox, 1964). The kriging weights in the linear combination depend on the 

estimated mean and covariance structure of the data. 

Diggle et al. (1998) formalized the idea of generalized geostatistical models, 

with a latent Gaussian spatial process, as the natural extension of kriging models 

to an exponential family of responses. They used Bayesian estimation, suggesting 

a Metropolis-Hastings implementation, with the spatial function sampled sequen-
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tially at each observation location at each MCMC iteration. However, as we men­

tioned in Chapter III, this implementation is slow to converge and mix, as well as 

being computationally inefficient. Paciorek (2007) focuses on a spectral represen­

tation via a particular parameterized prior structure that approximates stationary 

Gaussian processes on a regular grid. In his approach, the latent grids are specified 

to be fine enough so that the process at the observation locations can be calculated 

through an incidence matrix, which maps each observation location to only one 

nearest latent grid location in Euclidean space. Rue and Tjelmeland (2002) provide 

a link between GMRFs and kriging by showing that a GMRF on a rectangular grid 

in R2 can be used to approximate fields with a wide class of covariance functions. 

As pointed out in their paper, a problem with defining the field on a rectangular 

grid is that observations seldom fall on the grid points. However, this can be reme­

died either by assigning each observation to the closest grid point or by letting 

values at the observations points to be some linear interpolation of the values at 

nearby grid points. 

In this Chapter, we will apply the EAR model as a latent process in rectangular 

grids to approximate geostatistical data. The grids will be defined fine enough to 

ensure that each observation only be associated with its most closest grid point. A 

natural Bayesian model will be considered and specified later. Parameter estima­

tion and interpolation are performed using a MCMC approach. 

Suppose the observed geostatistical data are y(s), s = (si,--- ,sn)
T. For simplicity, 

we assume E(y) = 0. This can be easily extended to the general case of £(y) = 

X(3 with regression terms. The data is modeled by a latent process z(w),w = 
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(w-i, • • • , WN)T through an incidence matrix K. In our approach, the grids are defined 

fine enough which indicates that n <N. 

The observation model can be written as 

v nx l = KnX2vZNxi + £«xl / 

with, 

enxl~N{0,T-y
l\), 

where ry is the precision parameter for data y. With the assumption of y following 

the Gaussian process, we can write 

The prior distribution model for z is, 

z ~ N(0, Q"1), which is an EAR model. 

Let F and {A;, i = 1, • • • ,N] be the eigenvectors and eigenvalues, respectively, of 

the matrix y - D (see Section 5.1). Then through the pre-whitening procedure, we 

define z* = FTz, and obtain 

z*~N '°-^by! 
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where TZ is the precision parameter for the latent process, 0 < i/> < 1 is the spatial 

interaction parameter, and 6 is the smoothness parameter. 

Rewrite z = Fz*, the observation model can be written as, 

where K* = KF. 

Given the prior distributions for Ty, TZ, t/> and 9, we can get the closed-form 

conditional posterior distributions for Ty\..., T2|... and z*|..., but not for xp and 6. 

Typically gamma priors will be assigned for precision parameters, and thus 

n(zy) ~ T(ay, by) 

TI(TZ) ~ T(az, bz). 

Since i/' is in the range of (0,1), a uniform prior or more generally a beta prior can 

be used. The beta distribution is preferred here since we can tune its parameters 

to achieve a desired acceptance ratio in the Metropolis posterior sampling. The 

parameter 0 is greater than zero, and thus a log-normal prior will be suitable, 

v = \og(d)~N(LL9,o
2

e)-
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Therefore, the posterior distribution of TZ(Z*, TV, T2, ip, 6\y) is: 

7l(z*, Ty / Tz, t/>, 0 |y ) = 7l(y|z*, Ty) • 7I(Z*|T2/ T/;, 0 ) • 7l(Ty) • 7l(T2) • TT(^) • 71(0) 

ex T f exp {-^ry(y - KV)T(y - KV)} 

xxf2 [ ] ( 1 + VAOe/2 exp | - - r z • z*Tdiag(l + ^A,) V J 

XT? * exp{-fcyTy} • T? X exp{-b2T2} • 7l(l/>) • 7l(0) . 

Recall that in Rue and Held (2005), a Gaussian Markov random field x with 

expectation \i and precision matrix Q can be defined via the density 

"(x) = (2^ e x ph ( x-^ ) T Q ( x-^) 

and its corresponding canonical form is 

7i(x) OC exp l--xTQx + bTx] , 

where the mean \i can be expressed as \i - Q Jb. 

Let A = diag(l + t/vl,)e, then the full conditional distributions for z*, %y, TZ are: 

z*\... ~N((xyK*TK* + T^TyK^y^TyK^K* + T.A)-1) 

Ty|... ~ T(ay + lby + 0.5(y - K*z*)T(y - KV)) 

T2|... ~ T(fl2 + %,bz + 0.5z*TAz*). 
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Notice that this sampling scheme requires calculation of the inverse of the 

posterior conditional variance matrix (ryK*TK* + T2A)_1, which will not be feasible 

for large number of grids points. However, since F is an orthogonal matrix, if KTK 

were the identity matrix with dimension N, then, 

r*T 
K1 K* = (KF)J KF = FJ KJ KF = I 

This simplifies the variance matrix, 

(ry ieT ie + T.A)-1 = (Tyi + T.A)-1 , 

which is a diagonal matrix, and would be easy to calculate. As discussed in Paciorek 

(2007), assuming no more than one observation per grid cell, KTK = I can be 

achieved using a missing data scheme by introducing latent pseudo-observations 

for all grid cells without any associated data. To illustrate this idea, we simply 

assume 3 observations y = (1/1,y-i, y?)T with 6 latent grid cells z = (zi,z2, • • • ,z6)
T, 

and suppose y\ is associated with z-i, y2 with z$, and 1/3 with z\, then this association 

can be denoted as 

( \ ( \ 
yi 

V2 

ys 

= 

0 1 0 0 0 0 

0 0 0 0 1 0 

1 0 0 0 0 0 

/ \ 
Z\ 

Zi 

Z3 

z4 

Z5 

z6 
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Through introducing pseudo-observations #4,1/5, i/6, which are associated to 23,24,26, 

we get 

y = 

yi 

V2 

ys 

y4 

ys 

^ #6 > 

= 

0 

0 

1 

0 

0 

, 0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 0 

0 1 

0 0 

0 0 

1 0 

0 0 

0 

0 

0 

0 

0 

1, 

Zl 

z2 

Z3 

24 

25 

V 2 6 ) 

Kz. 

It is obvious that K rK = I. 

Collecting pseudo-observations into a vector, y, they can be sampled within the 

MCMC using a Gibbs step as 

y - M V N ^ K F ^ T " 1 ! ) , 

where the matrix K functions as a bridge to connect grid cells with no associated 

data to pseudo-observations. For instance, in our example above, 

0 0 1 0 0 0 

K = 0 0 0 1 0 0 

0 0 0 0 0 1 

Now, the "observation data" y is augmented on the full latent grids, y = (y0bs/ f), 

which combines the actual observations with pseudo-observations. Using the 

MCMC approach, the posterior samples of z*, xy, T2 can be drawn via the Gibbs 

sampler, and those of ip and 6 can be drawn by the Metropolis algorithm. 
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As an example of applying the EAR model as a latent process for geostatistical 

data, we simulated a Matern process with mean 0 and true variance, smoothness 

and range parameters a2 = 1, v = 2 and p = 3, respectively. The observations 

are then generated with added random Gaussian noise with mean 0 and standard 

deviation 0.5. The total number of 238 geostatistical locations are uniformly dis­

tributed in a [1,30] x [1,30] square panel. The intrinsic EAR model (i/> = 1) is then 

applied to serve as latent process in a 60 x 60 lattice, where spatial interpolations 

are carried out. Figure 19 shows the simulated observations (left panel) and spatial 

interpolations (right panel). With regard to the parameter estimation consistency 

and accuracy, Zhang (2004) found that parameters in the Matern class cannot be 

consistently estimated, and we also have had difficulty in achieving reasonable 

mixing for two variance components a\ and o2
y as well as the smoothness parame­

ter 6 in the EAR model, as shown in Figure 20. It is in fact that the signal to noise 

ratio is confounded with the process smoothness. This leads to the slow mixing for 

posterior sampling. 
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Figure 19: An illustration of the EAR latent process to geostatistical data. Left: simulated 
observations from Matern process with o2 = 1, v = 2 (smoothness) and p = 3 (range) added 
Gaussian noise with mean 0 and variance 0.5. Right: Spatial interpolation on a 60 X 60 grid 
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Figure 20: Posterior samples for the data variance parameter ay (sigmaly), latent EAR process 
variance parameter a\ (sigmalz) and its smoothness parameter 6 (theta) 

108 



CHAPTER VII 

Spatio-Temporal Model 

In this chapter, we formalize the EAR model representation for spatio-temporal 

data. First we give a very brief review of autoregressive time series models, and 

then provide calculations for separable space-time processes as well as for spatially 

varying parameter models. We give details of the steps required for estimation. 

In addition to spatial-only models, it is often of great interest to incorporate 

temporal trends into spatial models, hence, the spatio-temporal model. This type 

of model arises when repeated measurements are collected over time as well as 

across space. For instance, total yearly precipitation observed at various weather 

stations over the African Sahel from year 1982 to 1996 (Lindstrom J., and Lindgren, 

F., 2008). In this case, the data analysis has to take account of spatial dependence 

among the stations, but also that the observations at each station typically are not 

independent but form a time series. In other words, one must take account of 

temporal correlations as well as spatial correlations. Therefore, the linear trend pa­

rameters, the spatial interaction parameter and the temporal interaction parameter, 

are all incorporated in the distribution of the data to represent linear trend, spatial 

interaction, and temporal autoregressive behavior, respectively. 
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To model data collected over both space and time, the computer efficient CAR 

model of Pettitt, Weir, and Hart (2002) as well as Czado and Prokopenko (2008) 

described for analyzing spatial data can be modified to incorporate not only spatial 

interaction, but temporal dependencies as well, as in the space-time hierarchical 

model of Wikle, Berliner, and Cressie (1998). In this model, it is assumed that 

the data at each location come from a normal distribution with errors that could 

contain spatial or temporal correlations. If the data do not come from a normal 

distribution, an appropriate transformation can be made so that the transformed 

data is Gaussian. The purpose here is to estimate simultaneously linear regression 

trend as well as spatial and temporal structure in the residuals. 

7.1 Autoregression in Time Series 

Consider a time series data {xt, t - 1,2, • • • , T} collected over time. Without loss 

of generality, we assume E(xt) = jU is a constant. One approach in modeling this 

type of data is to use an autoregressive model of order p, or an AR(p) model. That 

is, 

xt-\i- fli(xt_i - \i) + a2(xt-2 - JU) + • • • + ap(xt-p - p) + et, 

where fly,;' = 1, • • • , p are the autocorrelation parameters and are related to so-called 

partial autocorrelations: 

fly = corr(xt,Xf+; | others). 

The ranges of fly are restricted so that roots of the associated polynomial lie outside 

the unit circle. Typically the ranges are contained in [-1,1] (see Shumway and 
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Stoffer, Chapter 3, 2006). et is assumed to be the Gaussian error term, that is, 

et~N(0,o2). 

In spatial-temporal models, since in most cases, the process is only related to 

what happened in the previous time, AR(1) structure between consecutive times 

for the field is typically assumed, which is 

xt-fi = a(xt-\ -n) + et, 

or it can be written as 

(1 - aB)(xt -y) = et, 

where B is the backshift operator such that Bxt = xt-\. Then, xt can be solven as 

xt = ji + et + aet-\ + a2£t-2 H • 

Therefore, 

E(xt) = ju 

and 

a2 

Var(x() = o2(l +a2 +a4+ •••) = 
\—a~ 

and 

Cov(xt,xt--) = a2Y~Z' ; = 1/• • • / ( T - 1) • 
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Let X = (xi, x2, • • • , xT)' be the T x l vector of all the data, the joint distribution 

can be written as 

X~N(0 ,a 2 Q^) , 

where the variance-covariance matrix Q^1 is 

Qr1 = 

1 a a2 a3 

a 1 a a1 

a2 a 1 a 

„T-1 

,T-2 

,T-3 

a7-1 aT~2 a2 a 1 

Thus, the precision matrix QT is a tri-diagonal matrix, 

1 -a 0 

-a 1 + a2 -a 0 

0 -a 1 + a2 -a 0 

0 -a 1 + a2 -a 

QT = 

0 -fl 1 

From the appendix of Lindstrom J., and Lindgren, F. (2008), we know that the 

determinant \QT\ = 1 - a2. Refer to Shumway and Stoffer (2006) for more about 

time series analysis. 
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7.2 Separable Spatio-temporal Model 

Recall that the theory of Gaussian Markov random fields is used in the spatial 

model setting. Letting zt, (t = 1, • • • , T) denote the n-by-1 column vector represent­

ing the GMRF at each time point, then the spatio-temporal field can be represented 

as 

Z = [Zj, , Zj\ . 

From the section 7.1, assuming an AR(1) structure between consecutive times 

and a mean field, ^i(s), that is constant in time, the field z, can be modeled as 

(zf - y) = a(zt_! -y) + et, 

where et are independent in time but spatially correlated, 

where, Qs denotes the precision matrix for the spatial dependence. The term 

separability refers to the covariance matrix. Naturally it implies that both spatial 

dependence does not change over time, and temporal dependence does not change 

in space. Further we take yi ~ N(y, y^jQg1), and thus can get the distribution for 

the spatio-temporal GMRF, 

y - N ^ ^ Q T ^ Q s ) - 1 ) , 
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where, QT is give in section 7.1, 1 denotes unity (column) vectors and ® is the 

Kronecker product. Note that the separable space-time covariance matrix (Qr ® 

Qs)-1 is convenient in terms of computational efficiency. Qs can be as defined for 

the computer efficient spatial CAR model, or be simply a diagonal matrix indicating 

the lack of spatial structure in the residuals. QT here has been set to AR(1) model for 

computational efficiency, or be a diagonal matrix indicating no temporal structure 

in the residuals. In addition, |Qr<S>Qsl = IQrriQsT = (l-a2)n|QslT, since |QT| = 1-a2. 

In a hierarchical modeling, Gaussian observations are assumed as noisy versions 

of an underlying latent GMRF. Stacking all the observations in a nT-by-1 vector y, it 

now can be written as a sum of the unknown GMRF z with additive, independent 

Gaussian errors e ~ N(Q, o2
y\), 

y = z + e . 

The distribution of the data given the random fields is, 

y\z~N(z,o2
ylnT). 

A general class prior distribution of the underlying GMRF z is 

z\o2
zr^,a~N(X/?,o2

z(QT®Qs)"1) , 

where, X is a known matrix of regression basis vectors and /? contains the unknown 

regression parameters, xp is a spatial interaction parameter, and a is a temporal 

correlation parameter. 
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If we assume an EAR model structure for Qs, then an additional smoothness 

parameter 6 will be incorporated, 

z\o2
z,xp,6,a~N(x/3,o2

z{QT®Qs)"1) . 

To complete the hierarchical model, the prior distributions need to be spec­

ified for all parameters a1, o2, xp, 6 and a. As in the spatial hierarchical model, 

both variance parameters are conventionally assumed to have an inverse Gamma 

distribution. So, the prior distribution for the measurement error is 

a2 ~ lnvGamma(ay, i3y), 

and the prior distribution for the error in the process is 

a2 ~ lnvGamma{az, jSz). 

As in the spatial hierarchical model, the inverse gamma parameters are chosen 

constants. 

Recall that a is the AR(1) parameter representing temporal structure. It is 

assumed that - 1 < a < 1 in temporal autoregressive processes. Since it is unknown 

which values of a are more likely, the prior distribution for a is assumed to be 

uniform(-l, 1). As in the spatial hierarchical setup, xp is the spatial interaction 

parameter and assumed to be 0 < xp < 1, a uniform(0,1) prior or beta distribution 
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can be assigned, that is, 

\p ~ Beta(a^, fa), 

where a^ and jŜ , are chosen constants. The distribution of 6 > 0 is chosen to be 

lognormal, that is 

v = log(0)~N(fie,a
2

9), 

where \IQ and o2
e are chosen constants. The priors for regression parameters /S are 

conventionally normal distributions, 

In many cases, the mean vector /?0 is chosen to be the zero vector. 

7.3 Spatio-temporal Model with Spatially Varying Parameters 

As discussed in section 7.2, the EAR model can be extended in a straightforward 

manner for spatio-temporal data. Of one particular interest are the spatio-temporal 

models with several parameters that are spatially varying. Typical choices for 

spatially varying parameters are the mean and the temporal trend. That is, for 

different spatial locations, temporal trends have various intercepts and slopes. In 

the general formulation we assume q spatially varying parameters. Now the data 

model is, 

y\z,o2
v~N(z,02

ylnT), 
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and the underlying process z is as follows, 

( ^ ^ 

fc=l 

z\p,o2
z,ip,0,a~N 

We denote the spatially varying parameters by afc and assume they have an EAR 

process prior, and thus 

where 

Q* = [ i - i M y - D ) ] 0 t . 

As in the computer efficient CAR model, y is the neighbor weight matrix and D is 

the diagonal matrix containing the row sums of y minus 1. 

Recall that the spatial structure can be removed using a "pre-whitening" method 

involving the singular value decomposition (SVD) of the y - D within the precision 

matrix. If F is the matrix containing the eigenvectors of y - D and A is the diagonal 

matrix containing the eigenvalues of y - D , then the spatial precision matrix Qa 

can be rewritten as 

Qa = Fdiag(l - i//AOeF , 

and the process variance-covariance structure is 

^ Q - l = o 2 F < U a g | _ ; ^ _ | F 
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To apply the transformation to the vector of observations, y, 

yi 

V 2 

v ^ / 

we apply the trasnformation to each component of the data vector, and obtain 

F'yi 

F y 2 

v F ^ , 

(IT <g> F')y 

Similarly, we obtain, 

F z i 

F z 2 

F z T 
V ) 

( I T ® F ' ) Z , 

and also apply the transformation to the fixed effects X, 

X* = 

FXi 

FX 2 

F'XT v ) 

(IT ® F)X 
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By applying the transformation to the space-varying random effects and their 

corresponding regressor matrices, the result is 

<? 

^ ( I T O F ' ) U t a f c . 
k=l 

The constant matrices Uk take on special forms for spatially varying mean and 

spatially varying temporal trend that are particularly easy to work with. For the 

mean, Ujt = (IT ® In), and its pre-whitening is as follows: 

(I r ® F)Ukak = (IT ® F')(1T ® I„)ak = (Ir ® F')«k = ( IT ® I„)F'afc = UkFak. 

For the temporal trend, U^ = (vtime <g> I„), and its pre-whiteing is, 

(IT ® F')Ufcajt = (I r ® F')(vh-me ® I„)a:jt = (v«me ® F')a* = (ytime ® I„)F'afc = UfcF'o* . 

Thus, for the random effects, the regressors remain unchanged while the effects are 

transformed as 

a\ = F'ftjt 
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Applying the transformation to the process precision matrix QT ® Qs results in 

(Ir®F')(QT®Qs)(lT®F) = (ITQT ® F'QS)(IT ® F) 

= ITQTI r®F'QsF 

= Q T ® F ' Q S F . 

In the case of Qs = In, the transformed space-time precision matrix becomes 

Q T ® In • 

Spatio-temporal full conditional distributions with spatially varying EAR processes 

can then be specified given priors as discussed in section 7.2. 
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CHAPTER VIII 

Conclusions and Future Work 

8.1 Conclusions 

In this dissertation, several approximation methods to "the big n problem" are re­

viewed, and methods for improving computational efficiency in estimating spatial 

parameters of a large dataset are proposed. In particular, the Pettitt et al. as well 

as Czado and Prokopenko parameterizations for the CAR model are discussed. 

Both parameterizations result in a sparse symmetric neighbor weight matrix that 

is relatively easy to work with, but still uses a considerable amount of computation 

time when working with very large data. To complement the computationally ad­

vantageous parameterization, a structure removing orthonormal transformation 

named "pre-whitening" is described. This transformation is based on a singular 

value decomposition and results in the removal of spatial structure from the data. 

Iterative computations can then be performed much faster in transformed space. 

The circulant embedding technique is also discussed as a method to decrease 

computation time for very large data sets. Here, a smaller regular lattice structure 

is embedded within a larger rectangular grid and wrapped around onto a torus. 

On the torus, each location has exactly the same number of neighbors. This results 
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in a block circulant neighbor-weight matrix for which the calculation of eigenval­

ues and eigenvectors for the "pre-whitening" procedure are much faster, of order 

0(n log(n)) as opposed to the typical 0(n3). 

The EAR model is proposed as a parsimonious extension to the autoregres-

sive model that accounts for smoothness of a spatial process. In particular, it is 

an extension of the Czado and Prokopenko parameterization of the CAR model 

on a regular lattice or a torus, when the smoothness parameter 6 takes integer 

values, the EAR model is shown to be equivalent to higher order CAR models 

when uniform weights are used; while when 0 is not an integer, it can be treated 

as an exponential and logarithm of the weighted combination of infinite higher 

order neighbor matrices. However, as the neighbor distance d increases, the corre­

sponding contribution of those neighbors with distance d to the conditional mean 

approaches zero at a fast rate. Thus, to model extremely smooth processes in space, 

use of the EAR model provides a more efficient analysis and accurate parameer 

estimation since it reduces the number of parameters needed in the model. 

The EAR model structure is shown to have connections with the Matern class 

in geostatistics. The smoothness parameter 6 in the EAR and v in the Matern 

correlation function behave similarly, while they have theoretically relationship of 

0 = v+1 on a torus. A simulation study shows a deviation of this lienar relationship 

between 9 and v towards an exponential relationship for large 6, possibly due to 

the edge effect in finite lattices. The study also shows a quadratic pattern between 

6 and p, where p is the range parameter in the Matern class. Our model is also 

connected to INLA, which uses a finite method for solving SPDE. If wrapped onto 
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a torus, both models result in identical patterns of precision matrices, that only 

differ in their parameterizations. 

In addition to applying the EAR model for lattice data, a latent GMRF with 

EAR model prior is proposed to model geostatistical data. A latent fine grid is 

created to ensure no more than one observation per grid cell. A missing data 

scheme by introducing latent pseudo-observations for all grid cells without any 

associated data is also used. This thus enables the posterior precision matrix to 

be diagonal, which does not require time-consuming inversion and determinant 

calculation. Parameter estimation and spatial kriging can be done simultaneously 

under MCMC iterations. An intrinsic EAR model is also proposed due to the 

identifiability issue between the smoothness parameter and the spatial interaction 

parameter. 

Finally, the EAR model is used as the prior for spatio-temporal models. Of par­

ticular interest is the non-separable spatio-temporal model with spatially varying 

parameters. 

8.2 Future Work 

Two major areas of future work may involve: (1) the weighting scheme of the 

EAR model and (2) the application of the EAR model in geostatistics. First, in the 

EAR model in my dissertation, only uniform weights are assumed and used. Pettitt 

at el. (2002) proposed two other weighting functions: reciprocal and linear. The 

difficulty in using the linear or reciprocal weighting scheme is to determine the best 

cut-off distance rmax beyond which the interaction between two locations is zero. 
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The incorporation of the smoothness parameter 9 in the EAR model exacerbates 

this problem, since the smoothness parameter and the rmax are confounded, that 

is, the larger the rmax/ the larger the 6. Second, when applying the EAR model in 

geostatistics, we might consider using other association matrices K that connect 

observations with a latent process. In this dissertation, we use an incidence matrix 

K to associate an observation to its closest grid point. We may define other K such 

that values at the observations points are some linear interpolation of the values at 

nearby latent grids. However, computation efficiency still needs to be achieved. 

124 



REFERENCES 

Banerjee, S., Carlin, B.R, and Gelfand, A.E. (2004). Hierarchical Modeling and 
Analysis for Spatial Data. New York: Chapman & Hall/CRC Press. 

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice sys­
tems (with discussion). Journal of the Royal Statistical Society B, 36,192-236. 

Besag, J. and Kooperberg, C. (1995). On conditional and intrinsic autoregres-
sions. Biometrika, 82,4, 733-46. 

Besag, J., York, J. and Mollie, A. (1991). Bayesian image restoration, with two 
applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 
43,1-59. 

Box, George E.P. and Cox, D.R. (1964). An analysis of transformations. Journal 
of the Royal Statistical Society, Series B, 26(2), 211-252. 

Brockwell, P.J. and Davis, R.A. (2003). Introduction to Time Series and Forecast­
ing: Second Edition. New York: Springer Verlag. 

Cliff, A.D. and Ord, J.K. (1981). Spatial Pocesses: Models and Applications. 
London: Pion Limited. 

Cressie, N. (1991). Statistics for Spatial Data. New York: Wiley. 

Czado C. and Prokopenko S. (2008). Modelling transport mode decisions 
using hierarchical logistic regression models with spatial and cluster effects. 
Statistical Modelling, 8,4, 315-345. 

Diggle, P.J., Tawn, J.A., and Moyeed, R.A. (1998). Model-based geostatistics 
(with discussion). Applied Statistics, 47,299-350. 

Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for 
interpolation of large spatial datasets. Journal of Computational and Graphical 
Statistics, 15(3), 502-523. 

Gaudard, M., Karson, M., Linder, E. and Sinha, D. (1999). Bayesian spatial 
prediction. Environmental and Ecological Statistics, 6,147-182. 

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2003). Bayesian Data 
Analysis: Second Edition New York: Chapman & Hall / CRC Press. 

Graybill, F.A. (1983). Matrices with Applications in Statistics. Belmont, CA: 
Wadsworth Publishing. 

125 



[15] Griffith, D. A., Layne, L.J., and Doyle, RG. (1996). Further explorations of 
relationships between semi-variogram and spatial autoregressive models. 
General Technical Report RM-GTR-277, United States Department of Agri­
culture. 

[16] Handcock, M.S. and Wallis, J. R. (1994). An approach to statistical spatial-
temporal modeling of meteorological fields. Journal of the American Statistical 
Association, 89, 426, 368-378. 

[17] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains 
and their applications. Biometrika, 57 (1): 97-109. 

[18] Higdon D. (1998). A process-convolution approach to modelling tempera­
tures in the North Atlantic Ocean. Environmental and Ecological Statistics, 5, 
173-190. 

[19] Higdon D. (2002). Space and space-time modeling using process convolu­
tions. In Quantitative Methods for Current Environmental Issues, eds. C. An­
derson, V. Barnett, P.C. Chatwin, and A.H. El-Shaarawi. London: Springer-
Verlag, pp. 37-56. 

[20] Higdon D., Lee, H. and Holloman, C. (2003). Markov chain Monte Carlo-
based approaches for inference in computationally intensive inverse prob­
lems (with discussion). Bayesian Statistics 7. Proceedings of the Seventh Valencia 
International Meeting, 181-197. 

[21] Hjort, N.L. and Omre, H. (1994). Topics in spatial statistics. Scandinavian 
Journal of Statistics, 21, 289-357. 

[22] Horn, R. A. and Johnson, C. R. (1994). Topics in Matrix Analysis. Cambridge 
University Press, Cambridge. 

[23] Hrafnkelsson, B. and Cressie, N. (2003). Hierarchical modeling of count data 
with application to nuclear fall-out. Environmental Ecological Statistics, 10, 
197-200. 

[24] Hupper, V.P. (2005). Contributions to modeling and computer efficient esti­
mation for Gaussian space-time processes. PhD Dissertation. 

[25] Kaufman, C , Schervish, M., and Nychka, D. (2008). Covariance tapering for 
likelihood based estimation in large spatial datasets. Journal of the American 
Statistical Association, 103,1545-1555. 

[26] Krige, D.G. (1951). A statistical approach to some basic mine valuation prob­
lems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining 
Society of South Africa, 52, 6,119C139. 

[27] Lawson A. (2008). Bayesian Disease Mapping: Hierarchical Modeling in Spatial 
Epidemiology. New York: Chapman & Hall / CRC Press. 

126 



[28] Lemos, R.T., Sanso, B. (2009). A spatio-temporal model for mean, anomaly 
and trend fields of North Atlantic sea surface temperature (with discussion). 
Journal of the American Statistical Association, 104, 5-18. 

[29] Linder, E. (2001). Computer-efficient spatial estimation and interpolation 
based on conditional Gaussian autoregressive models. Proceedings: Joint 
Statistical Meetings. 2001. American Statistical Association. Alexandria, VA. 

[30] Lindgren, R, Lindstrom, J., and Rue, H. (2010). An explicit link between 
Gaussian fields and Gaussian Markov random fields: The SPDE approach. 
Technical report. 

[31] Lindstrom J., and Lindgren, R (2008). A Gaussian Markov random field 
model for total yearly precipitation over the Afircan Sahel. Preprints in Math­
ematical Sciences, 2008:8. 

[32] Lunetta S.R., Lyon, G.J. (2004). Remote Sensing and GIS Accuracy Assessment. 
New York: Chapman & Hall / CRC Press. 

[33] Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246-
1266. 

[34] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, 
E. (1953). Equations of state calculations by fast computing machines. Journal 
of Chemical Physics, 21,1087-1092. 

[35] Ord, K. (1975). Estimation methods for models of spatial interaction. Journal 
of the American Statistical Association, 70,120-126. 

[36] Pace, R.K. and Barry, R. (1996). Sparse spatial autoregressions. Statistics and 
Probability Letters, 2158. 

[37] Paciorek, J.C. (2007a). Computational techniques for spatial logistic regres­
sion with large data set. Computational Statistics and Data Analysis, 51, 3631-
3653. 

[38] Paciorek, J.C. (2007b). Bayesian smoothing with Gaussian processes using 
Fourier basis functions in the spectralGP package. Journal of Statistical Soft­
ware, volumn 19, issue 2. 

[39] Pettitt, A.N., Weir, I.S., and Hart, A.G. (2002). A conditional autoregressive 
Gaussian process for irregularly spaced multivariate data with application 
to modeling large sets of binary Data. Statistics and Computing, 12, 353-367. 

[40] Rue, H. (2001). Fast sampling of Gaussian Markov random fields. Journal of 
the Royal Statistical Society, 63, part 2, 325-338. 

[41] Rue, H. (2009). Spatial modeling and inference using SPDEs. SAMSI Opening 
Workshop, September 13-16. 

127 



Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and 
Applications. New York: Chapman & Hall / CRC Press. 

Rue, H., Martino, S., Chopin, N. (2009). Approximate Bayesian inference 
for latent Gaussian models using integrated nested Laplace approximations 
(with discussion). Journal of the Royal Statistical Society, Series B, 71, 319-392. 

Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields 
to Gaussian fields. Scandinavian Journal of Statistics, 29, 31 - 49. 

Sain, S.R., Furrer, R., Cressie, N. (2007). Combining regional climate model 
output via a multivariate Markov random field model. In: 56th Session of 
the International Statistical Institute, Lisbon, Portugal. 

Schabenberger, O. and Gotway C.A. (2005). Statistical Methods for Spatial Data 
Analysis. Chapman & Hall/CRC. 

Shumway, R. and Stoffer, D. (2006). Time Series Analysis and Its Applications 
with R Examples. New York: Springer Verlag. 

Song H.R., Fuentes,M., and Ghosh S. (2008). A comparative study of Gaussian 
geostatistical models and Gaussian Markov random field models. Journal of 
Multivariate Analysis, 99,1681-1697. 

Stein, M.L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. 
Springer-Verlag, New York. 

Wall, M.M. (2004). A close look at the spatial structure implied by the CAR 
and SAR models. Journal of Statistical Planning and Inference, 121, 311-324. 

Wendland, H. (1998). Error estimates for interpolation by compactly sup­
ported radial basis functions of minimal degree. Advances in Computational 
Mathematics, 93, 258-272. 

Wikle, C.K., (2002). Spatial modeling of count data: A case study in mod­
elling breeding bird survey data on large spatial domains. In Spatial Cluster 
Modelling, A. Lawson and D. Denison, eds. Chapman and Hall, 199-209. 

Wikle, C.K., Berliner, L.M., and Cressie, N. (1998). Hierarchical Bayesian 
space-time models. Environmental and Ecological Statistics, 5,117-154. 

Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41,434-449. 

Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpo­
lations in model-based geostatistics. Journal of the American Statistical Associ­
ation, 99, 250-261. 

128 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2011

	Models and methods for computationally efficient analysis of large spatial and spatio-temporal data
	Chengwei Yuan
	Recommended Citation


	ProQuest Dissertations

