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A streamlined synthetic pathway to target the core of plakortether B through a 

zinc-mediated homologation-aldol reaction has been developed. This chemistry was 

performed on a chiral P-keto amide, which was synthesized in a few steps. In a one-pot 

reaction the P-keto amide could be converted into a furanyl-ketal with high stereocontrol 

at two chiral centers. The homologation-aldol reaction was followed by a cyclization-

allylation to obtain the plakortether backbone. 

During the synthesis of plakortether B, a serendipitous byproduct was identified 

as a [3.1.0] bicyclic lactone. The lactone was seen as a precursor to a peptidomimetic 

that would contain an embedded hydroxycyclopropyl moiety. The formation of the 

bicyclic lactones was proposed to involve a cascade of homologation-cyclopropanation-
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rearrangement-lactonization reactions. Amino acid-derived P-keto imides were 

synthesized in order to enhance the stereocontrol of the tandem lactonization reaction. 

The use of amino acid derived P-keto imides was beneficial in two ways; first it 

incorporates an amino acid directly into the peptide isotere and influences the 

diastereocontrol. 

The homologation-cyclization-rearrangement-lactonization reaction of P-keto 

imides has proven to be successful for the formation of [3.1.0] bicyclic lactones as 

precursors to peptide isosteres. 
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CHAPTER I 

INTRODUCTION 

Isosteric peptides for enzyme inhibition 

Since 1995, Saquinavir, the first FDA approved apartyl protease inhibitor, has 

been utilized to combat the Human Immunodeficiency Virus (HIV), a retro virus that 

directly leads to Acquired Immunodeficiency Syndrome (AIDS).1 Effective 

pharmacological medications for inhibition of HIV have been derived from peptide 

isosteres. Use of structure activity relationships (SAR) along with peptide isosteres 

helped pave the way for an emergence of aspartyl protease inhibitors. 

Implementation of classical isostere nomenclature was first proposed by 

Langmuir2 to describe molecules that contain the same number of atoms and valence 

electrons. In medicinal chemistry, bioisosteres are defined as molecules that have the 

same general structure as the parent biological pharmacophore but differ in one or two 

atoms.3 
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Bioisosteric backbones that mimic natural peptides are depicted in Figure 1. 

Peptide isostere 1 contains a ketomethylene moiety which mimics the amide bond, but 

this isostere can withstand the hydrolytic cleavage by an aspartic protease. Another 

peptide mimic is the hydroxyethylene isostere (2), which mimics the tetrahedral 

intermediate (Figure 2) formed during the cleavage of an amide bond, but this isostere is 

also not susceptible to hydrolysis. Another peptide mimic developed for viral inhibition 

is a p-substituted hydroxyethylene isostere (3). Due to the mutation of the virus, HIV 

infected patients need to continuously change the drug "cocktail" throughout the rest of 

their lives to maintain homeostasis.4 Hence, the ability to systematically change the lead 

compound is a major advantage during drug design. 

Peptide Backbone 

Figure 1. Representation of a peptide and peptide isosteres 
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The use of peptide isosteres for protease inhibition is extremely effective, but 

there are few direct ways to incorporate the ketomethylene group into a peptidic system. 

A variety of synthetic methods are reported in literature to incorporate ketomethylene 

functionalities into a peptide backbone, but these methods require numerous steps and 

most suffer from poor stereocontrol. 

: ) 
H °-H 

O-
a 

Asp ° 

Hydiol>zed into essential ammo acids 

;6 " -OH •> j % 

HO„ 

Knn Indiolj/ahlc h.lialicAtA\ int nmcdi He 

Figure 2. Aspartic Protease: Mimicry of tetrahedral intermediate 

To fully utilize ketomethylene peptide isosteres as potential protease inhibitors, an 

efficient and direct methodology for their synthesis would be advantagous. Some initial 

methods described in literature include the use of a Grignard reagent (Scheme l),5 

3 



utilization of a modified Claisen condensation (Scheme 2),6 use of a-nitrocycloalkanones 

(Scheme 3),7 and, lastly, a p-keto sulfone reaction (Scheme 4).8 These synthetic 

pathways leading to peptide isosteres can be lengthy and circuitous; furthermore, the 

approaches typically proceed with poor stereocontrol. Some of these methods that have 

been used for ketomethylene isostere formation are described below. 

1)Rk..A M 

Mg° i (^^1 H 4 0 
B r ^ ^ ^ O . ^ ^ " B r M g ^ k . 0 

1)H2/Pd 
H ? I f l 2)PCC ^ H O 

2) [O] 

R . - N ^ ^ / V / 0 ^ ^ / ' R - N ^ ^ ^ ^ 0 H 

R 0 

H O • R" 

R O 

Scheme 1. Harbeson's approach to ketomethylene peptide isosteres 

Harbeson reported a sequence in which an amino aldehyde 4 is reacted 

with a Grignard.5 The amino aldehyde has the potential for epimerization of the a-carbon 

stereocenter, which would make this route unattractive due to the required separation of 

diastereomers. It is preferred to obtain enantio-pure peptide mimics to establish an 

explicit pharmacokinetic/pharmacodynamics (PK/PD) profile. 
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Cbz. OH a) CDI 

b,VK 
-*. Cbz. 

1) NaH, BrCH2COOEt 
2) Trifluoacetic acid 
3) LiOH 

O 

Cbz. 

Li 

EDC, HOBT 
0 ^ 0 . 

OH 
-*• Cbz. 

O N 

-NH 

Scheme 2. Hoffman's approach to peptide isosteres 

Hoffman reported a mixed Claisen condensation reaction to afford ketomethylene 

isosteres. A potential racemization of the amino acid stereocenter during the CDI/lithium 

enolate step could occur, hindering the overall method. After condensation, alkylation, 

and saponification, a coupling step is required. Another disadvantage of Hoffman's 

method is that stereocontroUed incorporation of the amides a-stereocenter is only 

possible through use of enantiopure a-bromo esters, of which few are commercially 

available. 

NO, 

Ph3P, MeOH 

R 

NO, 

KMn04 

MgS04 

KOH/MeOH 
Reflux 
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Scheme 3. Ballini's approach 

Ballini and coworkers approach to y-keto esters offers a unique approach to obtain 

ketomethylene peptide mimics in a one-pot reaction. Michael addition of a a-

nitrocycloalkanone into a a, P-unsaturated ketone followed by ring opening and oxidation 

affords the y-keto esters in adequate yields. The major limitation to this pathway is the 

inability to incorporate amino acid functionality, which minimize the value of the overall 

synthetic method. Also, many functional groups would not be able to tolerate the harsh 

reaction conditions employed. 

O R' 
O 

R Ph-S-CR 2 R 

O _ f p H o 

H 0
 H S d7 ph K 2 C ° 3 

Scheme 4. Rudd's p-Keto Sulfone approach 

Rudd's method to synthesize ketomethylene isosteres has the same drawback as 

the previous methods described. During the addition of the stongly basic sulfone anion, 

racemization of the amino acid stereocenter can occur. The major shortcoming to the 
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synthetic pathway is that incorporation of a-substituents with stereocontrol is not 

possible. 

An alternative synthetic method to peptide isosteres would be homologation 

reactions that yield y-keto esters. In contrast to the traditional approach of bringing the 

ketone and ester functionality together through a condensation reaction similar to the 

Hoffman and Rudd approaches,9'10 fragmentation of a suitably substituted metal 

cyclopropoxide intermediate 5 (Figure 3) would provide an alternate method for y-keto 

ester formation. Approaches of this type have been reported by Bieraugel,11 Saigo,1213 

and Dowd.14'15'16'17 The Bieraugel and Saigo methods reported the conversion of P-keto 

ester derivatives into their y-keto ester counterparts by treatment with carbene 

equivalents. The Dowd method also utilized a P-keto ester starting material, but applies a 

radical mediated approach to the formation of the intermediate cyclopropoxide 5. 

r-'-o 

R H 

5 

M = Transition metal 

Figure 3. Zinc cyclopropoxide intermediate 

A complimentary approach to cyclopropoxide 5 formation involves 

cyclopropanation of a ketone enolate derivative was reported by Reissig.18 Reissig 

coined the term "donor-acceptor" cyclopropane to describe intermediate 5 (Scheme 5). 
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The "donor-acceptor" cyclopropane could be fragmented with aqueous acid or a fluoride 

source to yield corresponding y-keto esters. 

O 

O v C02Me 
TMSO H N2 X P o r H + 

\ = / — »- R*y_A 
R H Cu(acac)2 TMSO 

O 

Scheme 5. Reissig's approach to y-keto esters 

Bieraugel, Saigo, and Dowd's homologation of p-keto esters are all believed to 

involve a "donor-acceptor" cyclopropane intermediate 5. These methods require initial 

formation of an enamine or enolate equivalent, which can be time consuming and 

inefficient for the conversion to a y-keto ester. A method developed in the Zercher 

laboratory has demonstrated that derivatization is not required, and that one-pot 

homologation of P-keto esters is possible. 

Zinc Carbenoid-Mediated Homologation 

A novel variation of the carbenoid-mediated homologation of p-keto esters was 

first reported by Brogan and Zercher in 1997.19 This reaction (Scheme 6) was discovered 

during an attempt to cyclopropanate two olefins of P-keto ester 6. Brogan employed a 
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one-to-one mixture of diethyl zinc and diiodomethane in dichloromethane to form the 

Furukawa-modified Simmons-Smith carbenoid, which is reported in literature to readily 

cyclopropanate olefins.20 Treatment of 6 with ethyl(iodomethyl)zinc carbenoid was 

expected to yield p-keto ester 7, but when analyzed by *H and 13C NMR spectroscopy the 

cyclopropanated y-keto ester 8 was identified as the product. 

O O 

o o 
0 ' 

Et2Zn/CH2l2 

\ o o 

V 

o o 

V 

o o 

Scheme 6. Zercher and Brogan's homologation discovery 

Once y-keto ester 8 was identified as the product, the one-pot reaction was 

performed with a plethora of p-keto esters, all resulting in one-pot homologation to the y-

keto ester. This simple, yet efficient homologation is applicable to a variety of substrates, 

such as P-keto esters (9),19 P-keto amides (10),21 P-keto phosphonates (ll),22 P-keto 

imides (12),23 a-carboxyester imides (13),24 and a-carboxydiimides (14)25 Substrates 
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9-14 (Scheme 7) are cleanly converted to their y-keto/carboxyimide counterparts 15-20 in 

one pot within 30-60 minutes. 

O O Et2Zn/CH2l2 O 

NH4CI(aq) 

15 

O O Et2Zn/CH2l2 O R" 

, ^ N - R ' 
N. 

* ' ^ V NH4Ci(aq) R' ^ T R' 
10 R " 

0 ° Et2Zn/CH2l2 ° R ' ^ 0 

R ^ ^ O ' R ' " R ^ - ^ P ^ R ' 
R I / ° NH4CI(aq) Q 

11 17 

RV 

M U Jl Et2Zn/CH2l2 ° V ^ _ 

W NH4CI(aq) 0 0 

R'* 
12 18 

0 0 O Et2Zn/CH2l2 0
 R ' \ _ x 

}—' o o 
R'* 19 

13 1M 

R1 

O O O O Et2Zn/CH2l2 0 O N—v 

x—\ )—' \ - \ o o 
R R'* R 

14 20 

Scheme 7. P-Dicarbonyls exposed to ethyl(iodomethyl)zinc carbenoid 
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A multi-step mechanism has been proposed (Scheme 8).18 The P-keto ester 21 is 

deprotonated by ethyl(iodomethyl)zinc to provide a zinc-complexed enolate (22). The 

enolate (22) is alkylated by another equivalent of ethyl(iodomethyl)zinc, which is 

followed by an intramolecular nucleophilic attack of the keto functionality to render the 

"donor-acceptor" cyclopropane (23). Due to ring strain, the cyclopropane fragments to 

provide a latent enolate (24). Intermediate 24, when quenched with a mild acid, affords 

the y-keto ester (25). Computational investigations offer support to the proposed 

mechanism.26 

O O Et2Zn/CH2l2 

21 

0 0 

n\^o'» 
XZrf 

0 Zn X 

°-R' 
L- OA - 1 

X 
I 

Zn 
O vo 

R ..R' 

22 

X 
i 

Zn 
O' O 

II .R' 

23 

NH4CI(aq) 

O. 
R' 

O 

25 

EtZnCH2l 

Scheme 8. Proposed homologation mechanism of a P-keto ester 
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Structure 24 has been shown to exist as a Reformatsky-like intermediate.27'28 The 

Reformatsky reaction (Scheme 9), developed in 1887, is a reaction which condenses 

aldehydes with a-halo esters in the presence of metallic zinc to yield p-hydroxy esters.29 

The organometallic intermediate, known as the Reformatsky intermediate, is prepared by 

treating a a-halo ester with dry, finely ground zinc dust. When an aldehyde or ketone is 

added to the solution of the Reformatsky intermediate, an aldol product is formed. 

Unlike the usual base-promoted reactions, the Reformatsky reaction utilizes a metal-

halogen redox reaction to form the zinc enolate. 

R'-O R 

> 
Zn-0 

l 

O 
11 

R " ^ " H R " O-ZnO 

1,3-Metallotropy 

OH O 

* R-^YV"' 
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,R' 
Zn 

R ' - -0 R 

O ^ Z n 

1,3-Metallotropy 

R'-O 

> 
Zn -0 R 

O 

R„ pfznp 
« \ ^ - ^ £ - 0 . 

H 
R' 

OH O 

R H A J A O ^ ' 
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Scheme 9. Reformatsky Reaction 

Since the discovery of the Reformatsky reaction, other metals have been used 

with similar results.30 One drawback to the Reformatsky reaction is its moderate 

diastereoselectivity. On average, the ratio of diastereomers with aldehydes is 3:1 under 

kinetically-controlled conditions.31 The poor diastereoselectivity is most likely caused by 

an equilibrium involving a 1,3-metallotropy (Scheme 9),32 which forms both the E-

enolate and the Z-enolate. Higher diastereoselectivity in the reaction has been observed 

when one of the substrates is chiral.33 

Tandem Zinc Carbenoid-Mediated Homologation Reaction 

Using the hypothesis that the zinc-mediated chain extension proceeds through a 

nucleophilic zinc-organometallic intermediate (24), one-pot tandem reactions were 

developed in order to form a-substituted y-keto esters. This method is referred to as the 

tandem chain extension (TCE). A variety of electrophiles can be used in order to quench 

the organometallic intermediate, such as excess carbenoid,34 imines,35 aldehydes,36 

ketones,37 and iminium ions.37 The TCE reaction can be applied to different substrates 

such as p-keto amides,38 and P-keto imides (Scheme 10).38 When the electrophile is h, 

the reaction generates a-iodinated products, which can be isolated or induced to undergo 

elimination in the presence of a base to yield a, P-unsaturated compounds. These three 
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steps can be carried out in one-pot and have been coined tandem chain extension-

oxidation-elimination. 39 

Treatment of P-keto esters with excess Furukawa reagent followed by the 

exposure to a catalytic amount of trimethylsilyl chloride provides access to an ester 

homoenolate.40 This reaction was discovered serendipitously through the study of 

counter ion effects. Formation of the P-keto ester enolates by treatment with KHMDS 

resulted in the formation of a-methylated-y-keto ester products. The identical product 

was observed when treating the intermediate organometallic with HMDS, the methylation 

event was attributed to the presence of the TMS group. Subsequently it was discovered 

that treatment of the enolate with catalytic TMS-Cl provided access to the ester 

homoenolate. When the homoenolate is quenched with a proton, the a-methylation is the 

major product. In order to determine that anionic character is present at the newly formed 

a-methyl group a quench was performed using D2O, which yielded a deuterated a-

methyl moiety. Treatment of the homoenolate with iodine provided access to a-

iodomethyl substituents (Scheme 10).41 
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Scheme 10. Electrophiles for TCE 

The reaction between intermediate 26 and aldehydes has been studied extensively 

in order to determine the diastereoselectivity of the reaction (Scheme 11). Syn.anti 

terminology will be utilized in order to communicate and characterize the 

diastereoselectivity of the reactions.42 All of the reactions were carried out at 0°C, using 

5 equivalents of ethyl(iodomethyl)zinc carbenoid formed from a 1:1 mixture of diethyl 

zinc and methylene iodide. The aldehyde was used in excess (1.5 equivalents) in 

comparison with the starting substrate. Using these conditions the TCE-aldol reaction of 

P-keto esters was shown to have a average syn:anti ratio of 9:1. When the temperature of 

the reaction was lowered to -78 °C, the ratio of syn:anti was increased to >20:1, 

suggesting that the homologation-aldol reaction operates under kinetic control. 
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Syn Anti 

OH o' 
O O a) CH2l2/Et2Zn T 1 

b) R ' ^ H R 

c)NH4CI(aq) 

Scheme 11. Depiction of aldol stereochemistry 

A Zimmerman-Traxler transition state model can be used to rationalize the 

selectivity of the tandem homologation-aldol reaction.43 This transition state model is 

utilized for aldol reactions that are believed to proceed via a closed transition state. The 

aldol reaction is believed to proceed through a closed transition state with the aid of zinc 

(II).44 A chair-like transition state was supported by Dewar's calculations on the 

Reformatsky reaction.45 The similarity of the intermediate in the tandem chain extension-

aldol (TCEA) reaction and the Reformatsky intermediate suggests common reaction 

pathways. Therefore, a closed transition state is appropriate to consider in the TCEA 

reactions. 

Two enolates (Z (27) and E (28)) are possible intermediates in the aldol reaction. 

The Z-enolate (27) is postulated to be the dominant isomer in solution due to the potential 

chelation of the zinc by the ketone and the ester enolate (Scheme 12). When undergoing 

an aldol reaction through a closed transition state, the aldehyde can be oriented in two 

ways. The first involves positioning of the aldehydic R group in the pseudo-equatorial 
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position (29), which would react with the Z-enolate to afford the syn-a\do\ product (30). 

The second involves the orientation of the aldehydic R group in the pseudo-axial position 

(31), giving rise to the anti-aldol product (32) when reacted with the Z-enolate. 

X 
i 

Zn. 

O 

OR' 

27 

OH O .R' 

V 
30 

OH O' 

Scheme 12. Zimmerman-Traxler model of the Z-enolate 

Zinc chelation by the keto functionality is extremely important for the 

enhancement of diastereocontrol. Experiments run by Karelle Aiken clearly demonstrate 

that the presence of the keto moiety is necessary to obtain a high ^^-selectivity.28 The 

chelation of the keto functionality to zinc (II), which leads to the Z-enolate is proposed to 

be responsible for the ^-selectivity. While pseudo-axial approach (31) could be 

responsible for formation of the anti-aldol product, another possibility for the formation 
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of the minor anti-aldol product would be an aldol reaction involving an £-enolate (28) 

(Scheme 13). 

OZnX 

R10 

OR' 
O^ 

-0 

I H 
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t 

R"' 
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OH O 
R' 

OH O 
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R „ / ^ ^o 
o> v 

R 

Scheme 13. Zimmerman-Traxler model of the is-enolate 

The syn-aldol product is the major product for P-keto ester or p-keto amide 

substrates. This is confirmed by experimental results46 and rationalized through the use 

of the Zimmerman-Traxler models. However, when the substrate is switched to a p-keto 

imide, the diastereoselectivity is switched to favor formation of the anti-aldol isomer.47 

Heathkock reported a similar change in diastereocontrol with enolate of acylated 

oxazolidinones when excess Lewis base was present in the reaction mixture.48 

Heathkock reported that one equivalent of Lewis acid led to the syn-aldol product, but 

two equivalents of Lewis acid reversed the stereochemistry to the anti-aldol product. 
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Heathkock proposed that the aldol reaction takes place via a closed transition state when 

one equivalent of Lewis acid was used, but through an open transition state when two 

equivalents of Lewis acid were used. When two equivalents of a Lewis acid are used, the 

first would complex to the enolate and the second would aid in the activation of the 

aldehyde. 

This hypothesis can be applied to the tandem homologation-aldol reaction of p-

keto imides. The two imide carbonyl functionalities can chelate to zinc in solution, 

which would provide a more reactive nucleophile in comparison to the organometallic 

reagent. It is not known whether the imide derived intermediate exists as an enolate or as 

a Reformatsky-like organometallic species, but the imide enolate-equivalent has been 

shown to be more reactive than the corresponding ester or amide derived enolate 

equivalent. Since the chain extension reaction requires multiple equivalents of diethyl 

zinc, excess zinc (II) is present in solution. The excess zinc can serve as a Lewis acid to 

activate the aldehyde through an open transition state. The selective formation of anti-

aldol products in the TCEA reaction are, therefore, rationalized to arise from an open 

transition state (Scheme 14). 

Steric considerations must also be taken into account when analyzing the open 

transition state. To obtain the anti-aldol (33) isomer, R" and the imide moiety must be 

oriented in a pseudo-trans position in the transition state (34). The syn-aldol isomer (35) 

would require that the R" and imide moieties be oriented in a pseuo-syrc position creating 

unfavorable steric interactions in the transition state (36). When utilizing p-keto imides 

in the homologation-aldol reaction, the ^-enolate can be disregarded due to the steric 
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interactions between the keto side chain and the oxazolidinone Z-enolate (37) is used in 

the model (Scheme 14). 

Zn 
X 

37 

O x 
R ,""^H 
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R"" 

OH O o 
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R 

35 

OH O 

34 

R 

33 

Scheme 14. Open Transition State of Z-Imide Enolate 

The diastereoselectivity in the tandem homologation-aldol reaction with p-keto 

esters, amides, and imides can be difficult to quantify because hemi-ketals (38, 39, 40, 

and 41) are in equilibrium with their corresponding open isomers (42 and 43) (Scheme 

15). The syn isomer (42) exists predominantly as a closed hemi-ketals (38 and 39), a 

larger contribution of open form is observed for the anti isomer. This diastereomerically 

dependent equilibrium is likely dependent upon steric interactions between the ester and 

R" moieties. 
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Scheme 15. Equilibrium of open chain and closed hemi-ketal isomers 

The hemi-ketals (38 - 41) can be manipulated to facilitate assignment of stereochemistry 

of each individual isomer. One method, discovered by Lin, transforms hemi-ketals into 

substituted y-lactones (Scheme 16) via an oxidative cleavage with the use of eerie 

ammonium nitrate (CAN).49 

1)a)Et2Zn/CH2l2 

b) Paraformaldehyde 
c) NH4CI(aq) 

2) CAN 

Scheme 16. CAN-mediated oxidative cleavage 
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Jacobine performed additional studies of the homologation-aldol reaction 

followed by the CAN-mediated oxidative cleavage. Substituted carbenoids were used to 

investigate the stereoselectivity of the homologation-aldol reaction in which a y-

heteroatom substituted P-keto ester (44) was used as the starting material. When a 

methyl-substituted carbenoid was used in combination with hexanal in the TCEA 

reaction, CAN oxidation provided the cis, cw-phaseolinic acid derivative (45) (Scheme 

17). Through comparison to the literature,50 Jacobine determined that the aldol-reaction 

of substrate 44 proceeded with anti selectivity (46) (Scheme 17). With the relative 

stereochemistry controlled, Jenn Mazzone studied the absolute stereochemical control of 

the homologation reaction with a methyl-substituted carbenoid through use of serine 

derived p-keto esters (Scheme 18).51 The serine backbone has induced high 

diastereoselectivity (>15:1) in the incorporation of the P-methyl substituent. 

O O 

.»AA0. 
a) Et2Zn/CH3CHI2 

b) Hexanal 

c) NH4CI(aq) 

44 

Scheme 17. Synthesis of cis, c/s-phaseolinic acid derivative 
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Scheme 18. Use of a Serine derived P-keto ester 

Jacobine also studied the use of an activated imine (47) as an electrophile in a 

tandem homologation reaction sequence. The imine-capture reaction ultimately led to the 

formation of P-proline derivatives through deprotection and reduction (Scheme 19). 

Jacobine observed that the homologation-imine capture reaction gave anti isomer as the 

major diastereomer when using a ^-butyl carboxy-protected imine. 

O O 
a) Et2Zn/CH2l2 

b) 
N 

Boc 

f-Bu 

47 

c) NH4CI(aq) 

Scheme 19. Homologation-imine capture 

Homologation for the formation of natural products and peptide isosteres 

The zinc-carbenoid mediated homologation has been employed in the Zercher 

group as an efficient tool in the synthesis of natural products. The HIV-1 reverse 
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transcriptase inhibitors (+)-patulolide A (48) and (±)-patulolide B (49) were synthesized 

by Ronsheim through application of the chain extension oxidation-elimination 

methodology (Scheme 20).52 The cyclic lactone (50) was homologated and the latent 

enolate was trapped with iodine to yield two diastereomers (51 and 52). When 51 and 52 

were treated with excess DBU under thermodynamically-controlled conditions, (±)-

patulolide B (49) was produced. Control of temperature, time, and equivalents during the 

elimination of the iodide produced (+)-patulolide A (48) as the sole product (Scheme 20). 

DBU (1 eq) 

xo 
a) Et2Zn/CH2l2 | o 1 5 °C 

b)l2 \_J( 
c) Na2S203 °^y °y* 

DBU (Excess) 
50 51 + 52 

49 

Scheme 20. Synthetic route to (+)-patulolide A (48) and (±)-patulolide B (49)54 

Lin synthesized a bicyclic vasorelaxant,53 brefeldin A, exploiting the 

homologation-iodination-elimination methodology.54 Once bicyclic lactone 53 was 

synthesized, a stoichiometrically-controlled homologation-iodination-elimination 

reaction sequence provided a methoxymethyl-protected E, ^-bicyclic lactone (54) 
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(Scheme 21). Reduction of the ketone and removal of the methoxymethyl protecting 

group has been reported by Kim,55 therefore the preparation of 54 constituted a formal 

synthesis of brefeldin A. 

O 

MOMO" -oX° 
53 

a) Et2Zn/CH2l2 (5 eq) 
b) Et2Zn (2.5 eq) 
c) CH2I2 (2.5 eq) 

d) l2(14eq, 10min.) 
e) Na2S203 

f)DBU 

* . MOMO'-

54 

Scheme 21. Homologation-iodination-elimination reaction yielding a precursor to 

Brefeldin A 

As mentioned earlier, preparation of ketomethylene-containing peptide isosteres 

has been a focal point in the Zercher research group.4123 Utilizing an amino acid-derived 

P-keto ester or imide, ketomethylene peptide isosteres can be accessed through the zinc-

mediated homologation reaction. The ability to perform an aldol reaction in situ provides 

versatility and a wide range of functionality within the peptidomimetic backbone. In the 

process of studying the stereocontroUed a-functionalization, Lin23 and Pu41 

serendipitously discovered a cyclopropanated byproduct (55) that was formed during the 

homologation reaction when utilizing p-keto imides as the starting material (Figure 4). 

More details will be discussed in chapter 3. 
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Figure 4. Cyclopropanated byproduct 
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CHAPTER II 

PROGRESS TOWARD THE SYNTHESIS OF PLAKORTETHER B THROUGH 

A ZINC MEDIATED HOMOLOGATION 

Plakortether B 

The Caribbean specimen, Plakortis simplex, contain a rich variety of 

pharmacologically active metabolites. The marine sponges are the main source of a 

number of related natural products (Figure 5) (56-63) with an embedded 

tetrahydrofuranyl backbone. These natural products exhibit several interesting biological 

activities, such as antibacterial,56 antimalarial,57 and antitumor.58 The lipid-soluble 

metabolites are derived from the cyclic peroxide, plakortin (56). This primary metabolite 

has been shown to inhibit the growth of Escherichia coli and play a major role in the 

inhibition of Plasmodium falciparum, a parasite that initiates malaria.56 
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Figure 5. Plakortin and Plakortether A, B, C, D, E, F and G respectively 
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Syntheses of 62 and 63 have been accomplished through a lengthy series of basic 

chemical reactions. Novikov and co-workers utilized a C2-symmetric diiodide followed 

by an asymmetric alkylation reaction and an acid mediated lactonization to afford the 

plakortether backbone (Scheme 22).59 The acid-mediated cyclization was poorly 

diastereoselective in the formation of the backbone of 62 or 63. The homologation 

methodology developed in the Zercher group allows for the formation of an advanced 

intermediate with an embedded tetrahydrofuranyl backbone in a few simple steps. The 

tandem homologation-aldol reaction also provides high syn-aldol selectivity, required for 

plakortether B, which was determined through NMR analysis and X-ray crystallography, 

and will be discussed later in this chapter. 

O O 

N^O + I 
\_7 

LiOH, H202 

THF-H20 

NaHMDS, -18 °C 

TFA 

1.5:1 o'-^o OH 

Scheme 22. Novikov's synthetic pathway to the backbone of plakortethers F and G 

Incorporation of the tandem homologation-aldol 

A variety of homologation reactions have been performed in the Zercher research 

group with numerous p-keto carboxy groups. Two different starting substrates were 
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utilized in the initial study of the tandem homologation-aldol reaction, methyl 

pivaloylacetate (64) and methyl acetoacetate (65). Both of these substrates exhibited 

similar results in the tandem homologation-aldol reaction, although methyl acetoacetate 

was the required starting material to access the plakortether backbone (66). Many 

different electrophiles have been utilized in the tandem homologation-aldol reaction, such 

as acetone, benzaldehyde, and butyraldehyde (67). An electrophile of prime interest is 

butyraldehyde (67), due to the potential for approaching the substitution patterns of the 

natural product plakortether B (58). 

A retrosynthetic analysis of Plakortether B is illustrated in Scheme 23. 

Plakortether B (58) can come from the stereoselective chiral hydroboration-oxidation of 

the tri-substituted olefin of 68. Compound 68 would be formed by use of a Wittig 

reaction followed by a selective reduction of the mono-substituted alkene on 69. 

Aldehyde 69 would arise from a selective amide reduction on compound 70. Attachment 

of the methyl ester containing side chain to the furanyl ring would come about from 

allylation of the Lewis acid mediated oxocarbenium ion formed from compound 66. Use 

of the homologation-aldol reaction upon a chiral P-keto amide (71) would afford a 

diastereoselective route for the synthesis of the backbone of plakortether B (Scheme 23). 
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Scheme 23. Retrosynthetic analysis for the synthesis of plakortether B 

The plakortether backbone (66) was viewed as being accessible through the use of 

the tandem homologation reaction utilizing butyraldehyde (67) as the electrophile 

(Scheme 24). Formation of the syn aldol isomer would give the desired trans 

stereochemistry in the tetrahydro furanyl ring. While the aldol product was formed in a 

9:1 ratio in 50% yield, rigorous determination of the stereochemistry of the major isomer 

was required. Stereochemical assignment at this stage was difficult and further reactions 

were necessary to determine which is the syn (72) and anti (73) isomer. 

NMR spectroscopy was the first tool employed in an effort to determine the 

stereochemistry of the aldol products. After the homologation-aldol reaction with 

butyraldehyde, the two diastereomers were separated via column chromatography. The 

lH NMR spectrum for the major isomer was extremely complex due to the formation of 

two epimeric hemi-ketals (74 and 75) (Scheme 24). The same challenge was 

encountered with the minor diastereomer, even though the two closed hemi-ketals (76 
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and 77) (Scheme 24) were not as prominent in the 13C NMR spectrum. A greater amount 

of open form (73) has been reported to occur for the anti-aldol isomer (73) then for the 

syn-aldol form (72).46 This is presumably due to the observation that the minor isomer 

possessed more open-chain form supported the assumption that the anti isomer (73) was 

the minor product (Scheme 24). 

a) Et2Zn/CH2l2 /Ao--\^°\" H 0 

O O b) Butyraldehyde (67) T V ° \ 
A A0^ c )N H4C'(ag) 72+ O 74 S 

65 
1 r " 1 

O . — 

75 O 

73 O 76 O 77 O 

Scheme 24. Depiction of hemi-ketals from the tandem homologation-aldol 

reaction 

Another attempt at assigning stereochemistry of the syn (72) and anti (73) 

isomers, involved use of crotonaldehyde (78) as the electrophile in the tandem 

homologation-aldol reaction. Vicinal coupling constants of the open chain form have 

been useful in the identification of the syn and anti aldol isomers. The presence of the 

diastereotopic protons on the butyraldehyde side chain led to difficulty in determining the 

vicinal coupling constant. Crotonaldehyde was selected in order to simplify the coupling 

patterns in the lH NMR spectra of the aldol product. However, the use of crotonaldehyde 
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ended up complicating the spectra due to the reaction of excess zinc carbenoid with the 

allylic alkoxy moiety generated in situ thereby forming a cyclopropane ring (80) 

(Scheme 25). The use of crotonaldehyde as the electrophile was thus terminated. 

a) Ef2Zn/CH2I2 

n _ b) Crotonaldehyde (78) 
V jf c) NH4CI 

^ V ^ A . 0 ^ _ 
m 

> ^ oV O H 

Scheme 25. Use of crotonaldehyde in the tandem homologation-aldol reaction 

Cyclization-allylation 

The stereochemistries of 72 and 73 were eventually elucidated by performing 

subsequent chemistry on the corresponding hemi-ketals (81 and 82). We anticipated that 

cyclization and allylation of the aldol products should enable the stereochemical 

determination of both isomers. Additionally, development of the allylation methodology 

was viewed as a key step in the synthesis of the plakortether backbone. The cyclization-

allylation reaction (Scheme 26) of 81 and 82 was performed using allyltrimethylsilane 

and a Lewis acid.60'61 The allylation reaction proceeds through a Lewis acid generated, 

sp2-hybridized planar oxocarbenium ion (83) (Figure 6). Due to the planarity of the 
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intermediate, the allylation-cyclization reaction should have significant facial 

discrimination when performed on the anti aldol product (82), while the syn aldol isomer 

(81) would be expected to be less discriminatory. 

HO 

81 

^ ^ / T M S 

"Y--0 Lewis Acid 

O 

»<>y .TMS 

\ ^ 0 \ Lewis Acid 
82 J 84 O 

Scheme 26. Allylation of hemi-ketals 

Other research groups have studied the stereoselective addition of nucleophiles 

into oxocarbenium ions (83). Reissig and coworkers have also reported the synthesis of 

substituted tetrahydrofurans from corresponding hemi-ketals (y-lactols).62 

Hydroxyalkylation of enolates generated from a siloxycyclopropylcarboxylate followed 

by fluoride-induced ring opening yielded their y-lactols. Under the influence of BF3-Et20 

these y-lactols were reacted with a range of silated nucleophiles. The anomeric hydroxyl 

group can be substituted with a cyano, allyl, or allenyl unit to yield a highly substituted 

tetrahydrofuran derivative.62 A variety of studies have been performed in efforts to 

understand the diastereocontrol in these additions. For example, Woerpel and coworkers 
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studied the electronic effects of five-membered ring oxocarbenium ions (Figure 6).63 The 

research group determined that the C-3 alkoxy group in a pseudoaxial orientation 

maximizes the electrostatic effects. In all cases, the major product was formed by a 

stereocontroUed inside attack on the lowest energy conformer (Figure 6). Systematically 

varying the substitution of the ribose-derived acetal, the Worpel group determined that 

the alkoxy group at C-3 principally governs the selectivity. 

Bz' 

"•trans (+) 

i RcisV 
83 Nu 

Figure 6. Five membered furanyl oxocarbenium ion 

Through use of the cyclization-allylation reaction, the anti aldol product (82) was 

determined to be the minor product in the tandem homologation-aldol reaction. When 

the minor diastereomer was subjected to allytrimethylsilane and boron trifluoride 

(BF3-Et20), a single stereoisomer (84) was observed by *H NMR. The high 

stereoselectivity can be rationalized by steric encumbrance associated with the propyl and 

methyl ester moieties in the 2 and 3 positions on the furanyl oxocarbenium ion (Scheme 

26). 
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The cyclization-allylation reaction also allowed for the assignment of the syn 

aldol isomer (81) as being the major product in the tandem homologation-aldol reaction. 

The syn isomer (81) produced two diastereomers in the allylation reaction. Studies by *H 

NMR showed the two isomers, (85) and (86), to be present in an approximate 1:1 ratio 

when BF3-Et20 was used as a Lewis acid. The temperature of the reaction was lowered 

in an attempt to improve the diastereoselectivity of the cyclization-allylation reaction 

involving the syn-aldol isomer. The optimal temperature determined for promoting 

diastereoselectivity was -78 °C; however, only a minor increase in diastereoselectivity 

was observed (Table 1). 

Another aspect of the cyclization-allylation reaction that was studied was the 

performance of different Lewis acids. Three different Lewis acids were studied: 

BF3-Et20, titanium tetrachloride (TiCU), and tin tetrabromide (SnBr4). The Lewis acid, 

BF3-Et20, yielded the two diastereomers in an approximate 1:1 ratio. When TiCU was 

used, neither starting material nor products were obtained. This suggests that TiCU 

causes decomposition of the starting hemi-ketal. When SnBr4 was used, the two 

diastereomers were present in about a 2:1 ratio, suggesting SnBr4 to be the Lewis acid of 

choice for further allylation-cyclization reactions (Table 1). 
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"v°\ V°s 
81 /' X 87 // t-Bu 

Lewis Acid 

BF3 

BF3 

BF3 

BF3 

TiCl4 

TiCl4 

TiCl4 

TiCl4 

SnBr4 

SnBr4 

SnBr4 

Substrate 

81 

81 

87 

87 

81 

81 

87 

87 

81 

81 

87 

Temperature 

-78°C-25°C 

-78 °C 

-78°C-25°C 

-78 °C 

-78°C-25°C 

-78 °C 

-78°C-25°C 

-78 °C 

-78°C-25°C 

-78 °C 

-78°C-25°C 

Product Ratio 

1:1 

1:1.2 

Elimination 

Elimination 

NA 

NA 

NA 

NA 

1:1.5 

1:2 

Elimination 

Table 1. Lewis acid mediated allylation, varied conditions 

The use of different starting materials in the tandem homologation and the 

allylation-cylization reactions was studied in an effort to understand diastereoselectivity. 

When /-butyl acetoacetate was used, the tandem homologation reaction proceeded with 

the anticipated syn selectivity to produce hemiketal 87. When exposed to the allylation-

cyclization step, the acid sensitive /-butyl ester was eliminated. Decomposition was 

observed with both Lewis acids, BF3-Et20 and SnBr4. 
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Substituted Allyl Silane 

A direct approach to the diastereoselective formation of the plakortether skeleton 

would involve convergency. A substituted allylsilane (88), with increased steric bulk, may 

aid in diastereoselective addition to the oxocarbenium ion. Furthermore, the substituted 

allylsilane (88) would offer the advantage of convergency. The targeted substituted 

allylsilane can be formed two different ways from simple starting materials. 

The first method involves deprotonation of an acetylenic silane (89) and bubbling 

in formaldehyde gas, formed from cracking paraformaldehyde.65 Nucleophilic attack by 

an ethyl moiety on the propargyl alcohol (90) will provide a tri-substituted vinylsilane 

(91).66 This alkene can then participate in a Claisen rearrangement with an orthoester to 

provide the targeted substituted allyl silane (88) (Scheme 27). 

The second approach would intiate with the deprotonation of an acetylenic silane 

(89) and addition of an ethyl halide. This product (92) could react with a borane reagent, 

which would be followed by carbene insertion and oxidation to provide the targeted 

vinylsilane (91).64 This substrate can then undergo a Claisen rearrangement in the 

presence of an orthoester to yield a substituted allylsilane (88) (Scheme 27). 
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Scheme 27. Retrosynthetic analysis of a substituted allylsilane 

Trimethyacetylene (89) was deprotonated and exposed to formaldehyde, produced 

by cracking paraformaldehyde, which afforded hydroxymethyl-substituted 

trimethylsilylacetylene (93) (Scheme 28).65 The next step utilizes an ethyl-substituted 

organocuprate, which is reported to add in a syn fashion to the carbon-carbon triple 

bond.66 The first time the reaction was run only starting material was obtained. A soxhlet 

extraction was employed to purify the copper (I) iodide using dry THF to leach out iodine 

and water impurities.67 After the purification of copper (I) iodide, the organocuprate 

reaction was performed again, and starting material was obtained once again. This 

synthetic pathway was abandoned as a route to the vinyl silane (91). 

39 



n-BuLi 
TMS = H 

89 

TMS = Li 
M 

T M S ^ — / 

93 

OH 

a) Mg°, Etl 
b ) Q u l ^ TMS / - O H 

91 

Scheme 28. First synthetic approach to a vinyl silane 

Concomitantly, a literature search identified a pathway to directly synthesize a 

vinylsilane in a single step via silylcupration of acetylenes.68 Silylmetalation of multiple 

bonds is an attractive and efficient strategy to gain access to vinyl and allyl silanes.69 

This metallation provided an easy entry to the synthesis of vinylsilanes, since it allows 

the introduction of two substituents across a carbon-carbon triple bond. The regio- and 

stereoselectivity of this process has been exhaustively studied and is exceedingly well 

established.70 Silylcupration of alkynes involves a syn-addiXion of the silylcuprate, where 

the silicon is bonded to the less-substituted carbon.71 Numerous electrophiles can be 

reacted with the vinyl metal intermediate to produce the vinylsilane skeleton. 

The first silylcupration control study used 1-hexyne (94) and paraformaldehyde 

(Scheme 29). Paraformaldehyde was not reported as an electrophile in the literature 

procedure, but was essential for the formation of 95. Trimethylsilyl chloride would be 

the least expensive silyl reagent to use in the transformation, but literature reports have 

shown that the use of trimethylsilyl chloride led to extremely low yields or no conversion 
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to product.68 Instead of using trimethylsilyl chloride as the silane precursor, the reaction 

required the use of dimethylphenylsilyl chloride (96). 

\ Li° \ CuCN 
Ph-Si-CI Ph-Si-Li +• (Me2PhSi)2CuLi.LiCN 

/ / 

96 96a 97 

\ Ph 
(Cu) s i ^ M 

95 

Scheme 29. Silylcupration of 1 -hexyne 

The reaction started with the formation of lithiated dimethylphenylsilane (96a), 

which was carried out by addition of lithium wire to a solution of 

dimethylphenylsilylchloride (96) in THF at 0 °C. Once the THF solution turned reddish-

brown it was time to form the silylcuprate (97). The solution of the lithiated silane was 

transferred by cannula to a THF solution of dry copper (I) cyanide at 0 °C. After twenty 

minutes, 1-hexyne (94) was added in one portion. Formaldehyde was generated (via 

cracking paraformaldehyde under high temperatures) and bubbled through the solution at 
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0 °C (Scheme 29). Upon work up and column chromatography the vinyl silane (95) was 

isolated in 40 - 60 % yields. 

In order to obtain the vinylsilane (98) of interest, use of 1-butyne (99) as the 

alkyne and paraformaldehyde as the electrophile must be integrated into the 

silylcupration reaction. Use of 1-butyne (99) was not reported in the methodology study, 

likely due to the fact that 1-butyne (b.p. = 8.08 °C) is a gas at room temperature. When 

performing the silylcupration, 1-butyne had to be condensed into a glass vessel that was 

kept at -78 °C and added via syringe promptly to the silylcuprate (97). After 

paraformaldehyde was bubbled through the solution, the vinylsilane (98) was obtained 

and purified (Scheme 30). 

\ Li° \ CuCN 
Ph-Si-CI •- Ph-Si-Li >• (Me2PhSi)2CuLi.|_iCN 

/ / 

96 96a 97 

99 

-78 °C 

\ Ph 
(Cu) sf^ K>„ HO 

\ Ph 
Si '^ 

98 

Scheme 30. Silylcupration of 1-butyne 
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With the successful preparation of vinylsilanes (95 and 98), the formation of an 

allyl silane appropriate for the plakortether side chain was now in reach. A Johnson-

Claisen rearrangement, which utilizes an orthoester and catalytic propionic acid, was 

anticipated to afford a substituted vinylsilane.72 This reaction was carried out separately 

with 95 and 98, which underwent a [3+3] sigmatropic rearrangement to yield the 

allylsilanes (100 and 101) (Scheme 31). When the crude allylsilanes (100 and 101) were 

purified on silica, the respective acetoxyvinylsilane (102 and 103) would co-elute with 

the corresponding allylsilanes (100 and 101). The yield of the reaction was also 

extremely low, so variations were considered in order to obtain the pure allylsilane and in 

high yields. 

O A c R = Methyl (102) 

\ . O E t ( P h M e 2 ) S i ^ - ^ R R = p r o p y | ( 1 0 3 ) 

H n \ ,Ph EtO*"NOEt 
H O ^ Si - -

O 

R = Methyl (98) 0 H ' R e f l u x ' 3 d o ^ S i ^ R = Methyl (100) 

R = Propyl (95) EtO ^ ^ > f R R = ProPy' 0 0 1 ) 

Scheme 31. Conventional Johnson-Claisen rearrangement 

For a wide variety of reactions, microwave irradiation has been shown to provide 

more efficient reaction times while reducing the amount of byproducts.73 Microwave-
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induced Johnson-Claisen rearrangements have been reported in literature.74 When 

substrates 98 and 95, montmorillonite KSF, and triethylorthoacetate in DMF were 

subjected to microwave irradiation, the reaction yielded quantitative amounts of the 

corresponding allylsilanes (100 and 101) (Scheme 32). 

\ .Ph N<r 0 B Ph 
H 0 ~ W S i ^ EtO^OEt o S i ' 

R Montmorillonite KSF, EtO 
Microwave, 10 min 

R = Methyl (98) R = Methyl (100) 

R = Propyl (95) R = Propyl (101) 

Scheme 32. Microwave mediated Johnson-Claisen rearrangement 

A test reaction was performed with hemiketal 81 and allyl silane 101 in the 

presence of SnBr4 to yield the substituted tetrahydrofuran 104 (Scheme 33). With the 

added steric bulk of the substituted allylsilane (101), modification of the diastereomeric 

ratio was expected. Analysis of the allylation reaction suggested that one diastereomer 

was formed in excess. Anchimeric assistance of the tetrahydrofuranyl's ester moiety 

would serve to block one face of the furanyl system. If anchiomeric assistance is 

operative the major product of the allylation reaction would be predicted to be the 

necessary stereochemistry for formation of the plakortether core (Scheme 33). 
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Scheme 33. Control allylation study 

Now that formation and addition of the substituted allysilane (101) was 

demonstrated, control of the absolute stereochemistry was essential for the tandem 

homologation-aldol reaction. Chiral P-keto imides have been utilized in the tandem 

homologation-aldol reaction to control the absolute stereochemistry. Synthesis of the P-

keto imide (105) was possible through a route involving diketene and a chiral 

oxazolidinone (106). The oxazolidinone (106) was formed by reduction of L-valine 

(107) with lithium aluminum hydride (LAH), followed by cyclizing the amino alcohol 

(108) with dimethylcarbonate in the presence of potassium carbonate (Scheme 34). After 

formation of the chiral oxazolidinone (106), the addition of diketene at -78 °C resulted in 

the corresponding P-keto imide (105) (Scheme 34). 
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The P-keto imide (105) was then subjected to the tandem homologation-aldol 

reaction and the two diastereomers of product were separated on silica (Scheme 34). The 

use of aliphatic aldehydes as electrophiles in the tandem homologation-aldol reaction of 

P-keto imides has not been studied. Lai had reported anti-aldol selectivity when using 

benzaldehyde as the electrophile, but the a«/7-selectivity reported by Heathcock in a 

study of aldol reactions has focused on the importance of Lewis-basic (aromatic) 

aldehydes.46 The role of an aliphatic aldehyde would play in the diastereoselection was 

unclear. The major aldol diastereomer of the tandem homologation-aldol reaction was 

subjected to BF3-Et20 and trimethylallylsilane, and a single tetrahydrofuranyl product 

(109) was isolated. Based on this selectivity, the anti-aldol isomer (110) was assigned as 

the major product in the tandem homologation-aldol reaction. Therefore, the use of a 

chiral P-keto imide was not viable for the synthesis of the plakortether backbone. 
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Scheme 34. Formation, homologation-aldol, and allylation of a chiral P-keto imide 

Even though the reaction was viewed as unsuitable for an approach to the 

plakortether core, the anti-aldol product (110) was reacted with the substituted allylsilane 

(100). Initial reactions resulted in protodesilation of the silane (100) and a return of the 

aldol-derived starting material. Water, or some other proton source, must have been 

introduced to the reaction. Tin (IV) bromide was determined to be the source of water 

contamination. Fresh, dry tin (IV) bromide was used and the reaction resulted in the 

addition of the allylsilane (100) to the oxocarbenium ion yielding 111 (Scheme 35). 
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Scheme 35. Use of anti-aldol product (110) with the substituted allylsilane (100) 

In order to provide absolute stereocontrol in a syn-aldol reaction, a different chiral 

starting material was needed. Since the P-keto imide did not result in the syn isomer as 

the major diastereomer, use of a P-keto amide was the next substrate to be studied in the 

homologation-aldol reaction. Lin had reported the use of proline methyl ester as the 

stereocontrolling element in a .sy^-selective tandem homologation-aldol reaction. The 

decision was to use the proline skeleton, but to modify the ester functionality. An 

Organic Syntheses preparation was employed to form the chiral amine.75 Reduction of L-

proline (112) with LAH provided the 2-(hydroxymethyl)pyrrolidine (113), which was 

protected as the formamide (114) to allow for the synthesis of a methyl ether (115). 

Potassium hydroxide was used to liberate the formamide and generate the free amine 

(116) (Scheme 36). 

The next step was to acetoacylate the chiral auxiliary with diketene. 

Unfortunately, diketene was no longer commercially available and another reagent was 

needed to acylate the chiral amine. The acetone adduct of diketene was commercially 
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available and has been reported to acetoacylate alcohols to provide P-keto esters.76 The 

diketene adduct was added to the chiral amine (116) in refluxing toluene, yet none of the 

P-keto amide (117) was formed. Many different reaction conditions were attempted to 

form 117, including running the reaction at room temperature, refluxing in toluene with 

triethylamine, and microwave irradiation. All of these conditions returned the starting 

amine (116) and produced decomposition byproducts. In an effort to minimize loss of the 

chiral auxiliary, the test reaction with the acetone-adduct of diketene were performed 

with L-proline methyl ester (118). 

H, O 
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b) 

X = n-BuLi, -78 °C 
= n-BuLi, 23 °C 
= Et3N, 110°C 
= Et3N, Microwave, 178 °C 

Scheme 36. Attempts to synthesize a chiral P-keto amide 
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The methyl ester of L-proline (118) was obtained via an acid catalyzed 

esterification of L-proline (112) in methanol.77 The methyl ester of L-proline (118) was 

produced as the HCl salt and was liberated to the freebase with potassium carbonate. The 

freebase was added to the diketene acetone adduct and refluxed in toluene for three days 

(Scheme 37). Column chromatography was used to isolate the P-keto amide (119) in low 

yields. The p-keto amide (119) was used in the tandem homologation-aldol reaction 

(Scheme 37). After the two aldol diastereomers were separated by column 

chromatography, the major isomer (120) solidified. Utilization of a diffusion chamber 

(methylene chloride: pentane) allowed for the formation of an X-ray quality crystal. The 

crystal structure of the major isomer revealed the homologation-aldol reaction of P-keto 

amides to be syn-selective (Figure 7). Even though the L-proline induced stereocontrol 

provided the incorrect absolute configuration for the formation of the naturally occurring 

plakortether B, subsequent model studies could still be performed. 
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Scheme 37. Synthesis and use of a chiral P-keto amide 

Figure 7. Crystal structure of 120 
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Once the stereocontrol of the proline-derived auxiliary was established, allylation 

of the hemi-ketal (120) was studied. Removal of the amide moiety would simplify the *H 

NMR spectra through elimination of rotameric forms and would eventually be required 

for completion of the synthesis of plakortether B. The decision of keeping the amide 

moiety, however, was to provide steric bulk and the potential for anchiomeric assistance 

during the allylation reaction. Both features would favor addition of the allylsilane to the 

desired face of the tetrahydrofuran ring. Hemi-ketal (120) was introduced to a solution of 

trimethylallylsilane and BF3-Et20. The reaction solution was stirred for twelve hours, 

which yielded 121 (Scheme 38). The stereochemistry of 121 could not be established by 

!H NMR due to the rotameric forms in solution. Functional group transformation of the 

amide moiety at this stage would be beneficial for simplification of the spectra and for 

progress toward plakortether B. 

120 121 

Scheme 38. Reductive-allylation of hemi-ketal 120 

The reductive allylation of the enantiopure hemi-ketal (120), exploiting the 

substituted allylsilane (100) and BF3-Et20, was used to form an advanced intermediate 
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(122) related to the plakortether backbone (Scheme 39). The product (122) contained 

many moieties that require functional group interconversion. Selective alteration of the 

amide functionality is key in order to maintain the integrity of the molecule as a whole. 

Of particular concern were the ester and alkene functionalities introduced in the allylation 

reaction. Most reagents used to reduce an amide bond, including borane and aluminum 

hydrides, are commonly used to react with esters and amides but have little functional 

group tolerance. The use of zirconocene hydrochloride (123) (Schwartz reagent),78 

which has been shown to reduce tertiary amides to form an aldehyde. 78 

\ .o. 

120 

Ph 

o ^sr 

EtO 
100 

Dry SnBr4 

122 

Scheme 39. Reductive-allylation of 120 with substituted allylsilane 100 

The Schwartz reagent has been utilized in organic synthesis to selectively reduce alkenes 

and alkynes.79 The Schwartz reagent was formed by the reduction of zirconocene 

dichloride (124) in the presence of stoichiometric lithium aluminum hydride (LAH). 

This reduction forms zirconocene dihydride, which upon addition of methylene chloride 

generates the Schwartz reagent in near quantitative yields (Scheme 40).80 
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Scheme 40. Formation of the Schwartz reagent (123) 

The Schwartz reagent was tested on 121 in order to determine the stability of the 

alkene under the reductive reaction conditions (Scheme 41). When the reaction was 

worked up, only starting material (121) was isolated. This failed reduction was thought 

to be due to the poor quality of the Schwartz reagent. N, iV-Diethyl-m-toluamide (125) 

(DEET) was used as a test reagent to determine the integrity of the Schwartz reagent. 

Under the same reaction conditions, the reduction of DEET to its aldehydic counterpart 

(126) proceeded cleanly and in high yield, indicating that the Schwartz reagent was 

active. The reaction of 121 and the Schwartz reagent was then allowed to proceed for 

twelve hours and still no reduction was observed. The reduction of 122 with the 

Schwartz reagent was also studied (Scheme 41). As with 121, no reduction was detected, 

and the !H NMR showed decomposition of the starting material (122). 

54 



V - , n 
CpoZr(H)CI •>2(-<\y 

V-, .0. 

CpaZr(H)CI 

Cp2Zr(H)CI 

125 126 

Scheme 41. Attempted reduction of amides with Swartz reagent 

Investigation into the synthesis of plakortether B utilizing the tandem 

homologation-aldol reaction as the key step has resulted in the identification of a 

diastereoselective approach to the hemi-ketal (120). Hemi-ketal (120) can be modified to 

yield a highly substituted tetrahydrofuran (122), providing a scaffold to perform chemical 

transformations in order to synthesize plakortether B. The plakortether backbone can be 

synthesized in three steps with every carbon incorporated except one from the starting P-

keto amide (119). If the amide moiety of 122 can be reduced chemoselectively, the use of 
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a Wittig reaction followed by a selective reduction of the terminal alkene would afford 

the ethyl moiety embedded in the natural product (58). The final step that would need to 

be performed would be a diastereoselective hydroboration-oxidation of the tri-substituted 

alkene to render the enantiomer of plakortether B. Depending on the geometry of the 

alkene in 68 an inversion of the alcohol functional group might be nessissary. To 

synthesize the correct enantiomer, a P-keto amide derived from D-proline would have to 

be utilized in the tandem homologation-aldol reaction. 
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CHAPTER III 

SYNTHESIS OF NOVEL HYDROXY-CYCLOPROPYL PEPTIDE ISOSTERES 

FOR ASPARTYL PROTEASE INHIBITION 

Peptide Isosteric Replacements 

Peptide isosteres are useful tools to probe enzyme-substrate interactions for the 

design of pharmacophores.81 A challenge in bioorganic chemistry is to determine the 

three-dimensional structure details of the peptide and the active site of a receptor. The 

replacement of the peptide bond with nonhydrolyzable functionality has been a crucial 

design principle in medicinal chemistry.82 For example, Wipf and Xiao have transformed 

trisubstituted (£)-alkenylpeptidomimetics (127) to their corresponding cyclopropyl (128) 

replacement (Figure 8). Their rational for using the cyclopropyl moiety was that the 

alkenyl functionality is susceptible to isomerization, oxidation, and general chemical 

lability.83 Peptide isosteric replacements have been extensively used toward recognition 

and inhibition of aspartyl proteases. 
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Figure 8. Synthesis of cyclopropyl peptidomimetics 

Human immunodeficiency virus (HIV) is a crucial and complex target for the 

medicinal chemistry community. The drug arsenal that is currently used for HIV therapy 

consists of twenty-five approved therapeutics that act as inhibitors.84 These drugs are 

separated into six classes that act as aspartyl protease inhibitors or non-nucleoside reverse 

transcriptase inhibitors.85 

Martin and co-workers targeted the aspartic protease of HIV-1 with 

cyclopropanated peptidomimetics.86 The use of topographical probes, such as a rigid 

cyclopropane moiety, provides insights into the biologically active conformation. Martin 

and co-workers have successfully synthesized a d symmetric dicyclopropanated 

peptidomimetic (129) that is selective for HIV-1 protease (KiS 0.16-0.21) (Figure 9). 

Peptide isostere 129 was also bound to HIV-1 protease and the bound conformation was 

determined through X-ray analysis. 
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Figure 9. Peptidomimetic 129 

Botta and coworkers synthesized two novel reverse transcriptase inhibitors that 

were highly selective in cell assays.87 The group utilized simple chemical 

transformations along with SAR studies mimicking known therapeutics to afford potent 

HIV inhibitors 130 and 131 (Figure 10). The incorporation of two stereoisomers 

dramatically lowered the ID50 (mean infectious dose) in the cell culture assays when 

compared to known HIV inhibitors. The incorporation of a cyclopropyl moiety was the 

most effective and showed the lowest concentration for complete inhibition. 

130 131 

Figure 10. HIV-1 reverse transcriptase inhibitors 130 and 131 
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Many of the aspartyl protease inhibitors are derived from peptide isosteres that are 

unable to be hydrolyzed into essential amino acids. Many of the therapeutics for aspartyl 

proteases are designed to mimic intermediates within HIV's aspartyl protease. This 

design model is depicted in the approved drug Indinavir (132), (Figure 11) with the H-

bonding and sp3 hybridization of the hydroxyethylene unit. The use of mimics in 

protease inhibition are often limited by low protein/receptor selectivity arid low IC50.88 

Rationales offered for the poor binding and selectivity is due to the free rotation around 

the isosteric carbon-carbon bond and loss of Coulombic interactions within the bound 

substrate.89 The successful combination of design principle that maximize selectivity 

through reducing bond rotation and maintaining Coulombic interactions is key to future 

success. 

Co-
132 

Figure 11. Indinavir 
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Previous work within the Zercher group has resulted in the development of a one-

pot method for the formation of ketomethylene isosteres.23 Formation of ketomethylene-

containing isosteres by previous methods had been tedious and lengthy. Lin, however, 

was able to synthesize 133 as a single diastereomer, by application of a zinc-mediated 

homologation reaction (Figure 12). Peptide isostere 133 was non-hydrolyzable, but free 

rotation around the carbon-carbon isosteric replacement was believed to have negatively 

impacted the binding efficiency.90 

Bn 

O 

133 

Figure 12. Ketomethylene isostere 

A new principle for the design of peptide isosteres that are non-hydrolizable, 

provide restricted rotation, and mimic the aspartyl protease hydrolysis intermediate has 

been developed. The principle is based on incorporation of a hydroxy cyclopropyl 

moiety that would satisfy the above conditions. Another important application is the 

ability to selectively functionalize individual carbons in a stereoselective fashion to 

provide inhibitors that may be less vulnerable to mutation-resistance of an aspartyl 

protease. 

Boc. 
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In the study reported herein, a tandem reaction sequence has been utilized to form 

bicyclic lactones, which upon opening, provide peptide isosteres that contain a 

cyclopropanol moiety. This functionality possesses restricted rotation around the carbon-

carbon bond as well as H-bonding capabilities (Figure 13). The cyclopropyl moiety can 

be seen as an isosteric replacement for carbon-carbon double bonds and is more stable to 

hepatic oxidation than that of an alkene.91 

Restricted rotation 
/ / / 

R J O 

/ N ^ N ^ N \ 
H ^OH R' H 

H-bond donor/acceptor 

134 

Figure 13. Novel peptide isostere 

A method that can be readily utilized for selecting bioactive pseudopeptides to 

their cooresponding target is the use of Ramachandran plots. Gupta and Payne have 

shown that through simple conformational analysis a Ramachandran plot can be obtained 

to depict the relative Boltzmann distributions of a select isostere. This plot can show the 

relative conformation of the isostere in a beta-sheet, alpha helix, or left-handed helix.92 

With the aid of X-ray crystallography a bound substrate can be selectively removed from 

the protein and determined its overall conformation. With novel peptide isosteres the 
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described computational tool can allow prediction of all possible conformations possible 

to better analyze the binding potential of the substrate. 

y-Hydroxyhutyrate (GHB YAnalogs 

The endogenous neurotransmitter y-hydroxybutyrate (135) (Figure 14) is utilized 

for the treatment of cataplexy associated with narcolepsy and has displayed therapeutic 

potential for treating drug dependence.93'94 The exact mechanism of action for GHB is 

unknown, but a structurally similar compound y-aminobutyric acid (136) (GABA) 

(Figure 14) has been shown to be a major inhibitor of dopamine in the central nervous 

system.95 Modulation of the GABA receptors is known to produce anxiolytic responses 

and allows patients with numerous disorders to live a stable life. 

0 0 O 

135 136 

Figure 14. GHB (135) and GABA (136) 

The GABA receptors are ligand-gated chloride ion channels comprised of five 

transmembrane subunits that mediate the expression of dopamine.96 These ion channels 

are also the sites at which benzodiazepines bind and exert their anxiolytic effects. 

Benzodiazepine agonists have an extremely high efficacy, but display no selectivity 

within the GABA subunits.97 Each of these subunits displays differing efficological 
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effects upon the central nervous system. GHB itself has low affinity for the GABA 

receptors, but recently there has been evidence of a GHB receptor, which has been 

postulated to cause many of the pharmacological effects associated with the drug.98 

Therefore, treatment of anxiety and cataplexy has been extensively studied with GHB 

and analogous compounds to selectively bind to an individual subunit (GABA and/or 

GHB receptors). 

Clausen and coworkers have studied the basic structure activity relationships 

(SAR) on GHB in order to selectively determine the binding affinities through 

hydrophobic/hydrophilic interactions.99 Adding aryl moieties to the 4-position of GHB 

was determined to drastically lower the Ki values, which gave insight to the binding 

mode. They hypothesized a hydrophobic pocket within the GABA receptors aid in the 

high affinity associated with their aryl analogs. When they eliminated the hydroxyl 

group at the 4-position of GHB and the respective analogs, the inhibition constants were 

raised ten fold. This indicated that the hydroxyl moiety is necessary for efficient binding 

to the receptors through the use of H-bonding interactions. 

The ability to generate cyclopropanated lactones provides the means to produce 

cyclopropanated analogues of GHB. The bicyclic lactone (137) can be synthesized in 

one pot and hydrolyzed with a base such as sodium hydroxide to obtain sodium salts of 

the GHB analogs (Scheme 42). Another advantage to the homologation-

cyclopropanation methodology is that the starting substrates can easily be modified to 

address the H-bonding, Coulombic, and hydrophobic/hydrophilic interactions via 
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appropriate selection of starting material. The 4-hydroxyl moiety can be seen as being 

embedded within the bicyclic lactone (137), which is a necessity for efficient binding. 

O 

137 138 

Scheme 42. Proposed opening of the bicyclic lactone (137) to form GHB analogs (138) 

Serendipitous discovery of hicvclic lactones 

Previous Zercher group members performing the tandem homologation-aldol or 

tandem homologation-homoenolate formation of a P-keto imides have isolated a 

cyclopropanol byproduct in minute amounts.41104 During a homologation-aldol reaction 

performed with a p-keto imide (105) to approach the plakortether backbone, the 

cyclopropanol byproduct (139) was also isolated in small quantities (Scheme 43). Based 

on an understanding of the proposed homologation mechanism, the cyclopropanol 

byproduct (139) could be envisioned as forming through a homoenolate, which performs 

an intramolecular cyclization into the imide carbonyl (Scheme 43). 
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Scheme 43. Serendipitous discovery of a cyclopropanol (139) derivative 
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Scheme 44. Proposed mechanism for the formation of 139 

Upon isolation of 139, a variety of potential applications of the cyclopropanol 

could be envisioned. Access to enantiopure homoenolates constituted one potential 

application. Reduction of the hydroxyl functionality, followed by reduction of the imide, 
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could provide access to enantiopure cyclopropyl amines. The unique cyclopropanol 

motif provided the possibility for many chemical transformations to afford access to 

enantiopure reagents that would be further utilized in separate chemical reactions. 

One chemical reaction performed on the cyclopropyl alcohol (139) was a 

reduction using triethylsilane and boron trifluoride. When the lH NMR of the crude 

reaction mixture was analyzed, two cyclopropylfuranyl diastereomers (140 and 141) were 

observed (Scheme 45). The two diastereomers (140 and 141) were separated via flash 

chromatography and 140 was determined to be the major isomer through an NOE 

experiment. 

I] Et3SiH 
^ S OH o BF3Et20 

^ N O E V ^ y*H 

139 140 141 
Major 

Scheme 45. Silane reduction of 139 

Many attempts were made to increase the yield of the cyclopropanol derivative 

(139); however, most of these attempts resulted in the formation of only a small quantity 

of product (139) or no cyclopropane-containing product. A key observation reported by 

Hilgenkamp was that a-alkylation of the homologated P-keto ester was enhanced via use 
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of a TMS-Cl.21 The use of a TMS-Cl was hypothesized to break up the zinc bound 

oligomer and produced a more reactive enolate equivalent (142) (Scheme 46). The more 

reactive enolate would then be capable of reacting with the zinc carbenoid to form the 

homoenolate. 

a) Et2Zn/CH2l2 

JJ^ R b) TMS-Cl 

TMS" 
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EtZnCH2l 
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150 

Scheme 46. Use of TMS-Cl as a Lewis acid 

Utilization of TMS-Cl in catalytic amounts (0.1 mol equivalents) in the reaction 

of a P-keto ester has been shown to be effective for alkylation at the alpha carbon with 

the electrophilic carbenoid. The time course of the TMS-Cl catalyzed tandem 

homologation-homoenolate formation reaction was essential for a-methylation. 

Hilgenkamp reported the exposure of five equivalent excess of ethyl(iodomethyl)zinc to 

P-keto ester for a thirty minute reaction period, followed by the addition of TMS-Cl and 

68 



another thirty minute reaction period resulted in a -70% yield of the a-methyl y-keto 

ester. 

In an attempt to use a p-keto ester (methyl acetoacetate (45)) as a starting 

substrate use of catalytic TMS-Cl (0.1 mol equivalents) and five equivalents ethyl 

(iodomethyl)zinc were employed. The one difference from Higenkamp's method was 

that the reaction time was extended to twenty-four hours. The resulting product was the 

homologated y-keto ester (143) (Scheme 47). The next variation was the use of 

stoichiometric amounts of TMS-Cl with excess ethyl(iodomethyl)zinc. After column 

chromatography, small amounts of a product, initially predicted to be a cyclopropyl 

mixed-acetal (144) were isolated. Analysis by 13C NMR revealed that the only carbonyl 

resonance in the spectrum was in the range of an ester moiety, which led to the 

assignment of the cyclopropyl silyl ether (145) as the structure. 
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Scheme 47. Homologation-cyclopropanation conditions 

In the homologation-cyclopropanation reaction of methyl acetoacetate (45), a 

latent zinc enolate is generated alpha to the ester moiety. The addition of TMS-Cl is 

proposed to disrupt the oligomeric species, thereby enabling alkylation with an equivalent 

of the electrophilic carbenoid, to form a zinc homoenolate. If this homoenolate were to 

undergo an intramolecular cyclization into the ester carbonyl, followed by trapping with 

the stoichiometric amount of TMS-Cl, a mixed acetal would be produced (144) (Scheme 

48). The isolation of this mixed acetal 144 has never been observed in the reaction of P-

keto esters. 
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Scheme 48. Mechanistic prediction of the homologation-cyclopropanation 

Saigo's reported studies of a homologation reaction in which TMS-enol ether 

(145) derived from a P-keto ester, was subjected to the Simmons-Smith carbenoid.100 

Along with isolation of the anticipated y-keto ester, a p-methylated y-keto ester (146), and 

a 5-keto ester (147) were also observed. Saigo proposed that anionic character alpha to 

the keto moiety was generated. Reaction with excess zinc carbenoid would provide a 

homoenolate (148). The homoenolate (148) could undergo an intramolecular cyclization 

to form a zinc cyclopropoxide (149). Addition of a proton and fragmentation the 

cyclopropoxide would afford the p-methylated y-keto ester (146) or the 8-keto ester (147) 

in small amounts (Scheme 49). 
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Scheme 49. Saigo's isolated by-products 146 and 147 

Based upon the formation of the cyclopropyl silyl ether (145) and the results from 

Saigo's homologation reaction, a mechanism was proposed for the twenty-four hour 

TMS-promoted homologation-alkylation of P-keto esters with the Furukawa reagent. 

After the initial homologation the latent silyl-enol ether (150) is reacted with another 

equivalent of zinc carbenoid in solution to render a homoenolate. Homoenolate 151 can 

then undergo an intramolecular cyclization into the ester carbonyl to afford a cyclopropyl 

silyl enol ether (152) that can rearrange to form another cyclopropyl silyl enol ether (153) 

with the keto moiety (Scheme 50). Based on this mechanistic proposal, incorporation of 

72 



steric bulk adjacent to the ketone could facilitate formation of the silyl mixed acetal and 

prevent rearrangement to the isomeric cyclopropane. 

O O 

AA 

a) Et2Zn/CH2l2 

b) TMS-Cl 
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Scheme 50. Proposed rearrangement during the TMS-promoted homologation-alkylation 

For this reason, methyl pivaloylacetate (154) was studied in the homologation-

cyclopropanation reaction. The synthesis of methyl pivaloylacetate (154) was 

straightforward and was performed on a multigram scale.101 Refluxing sodium hydride, 

pinacolone (155), and dimethyl carbonate in dioxane afforded methyl pivaloylacetate 

(154) in a 66% yield (Scheme 51). The homologation-cyclopropanation reaction was 

performed on substrate 154 to determine if steric hindrance could play a role and favor 
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formation of the mixed acetal. Even with the added steric bulk, the product was the 

cyclopropyl silyl ether (156) (Scheme 51). 
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Scheme 51. Use of a sterically hindered P-keto ester (154) 

The cyclopropylsilyl ether (156) was subjected to a a-iodination-elimination 

reaction to yield (£)-methyl 6,6-dimethyl-5-oxohept-2-enoate (157) (Scheme 51).102 

Product 157 underwent a minor isomerization to (£)-methyl 6,6-dimethyl-5-oxohept-3-

enoate (158) when the reaction was quenched with concentrated hydrochloric acid. 

Formation of 157 was consistent with the major product from the homologation-

cyclopropanation reaction being the cyclopropylsilyl ether (156). 

The cyclopropylsilyl ether (145) was introduced to a Lewis acid-mediated 

cyclization reaction (Scheme 52).103 This reaction produced a bicyclic lactone (159) in 

near quantitative yield. The bicyclic lactone (159) underwent a ring opening with the 
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addition of benzyl amine, forming iV-benzyl-2-(2-(tert-butyl)-2-hydroxycyclopropyl) 

acetamide (160). This constituted the first compound that could be manipulated into a 

peptide isostere that would contain the hydroxy-cyclopropanol functionality. 

OTMS 3 ) B F 3 ' E t 2 ° U 
U I M b b)NH4CI(aq) A n BnNH2 O. 
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145 159 

OH 
NHBn 
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160 

Scheme 52. Reductive cyclization followed by ring opening 

A drawback to the formation of the cyclopropanol isostere was that the 

stereochemistry was not controlled. To gain access to an enantiopure bicyclic lactone, a 

chiral p-dicarbonyl starting substrate would need to be synthesized. The second 

limitation was that the homologation-cyclopropanation-silation reaction was extremely 

low yielding. The low yield was later attributed to deprotection of the silyl ether from the 

slightly acidic silica gel used to purify 145 via flash chromatography. This was 

confirmed through the use of 2D thin layer chromatography (Figure 15). 
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Figure 15. 2D TLC plate to confirm decomposition of 145 

With low yields and instability of the P-keto ester-derived cyclopropyl silyl ether 

145, use of another starting P-keto substrate was explored. p-Keto imides have shown to 

cyclopropanate in the absence of TMS-Cl which made them attractive targets.41 

Preparation of a P-keto imide through the use of diketene has been performed in the past. 

23 Due to the discontinuation of commercially available diketene a new route was 

required to obtain a P-keto imide. 

Acetoacvlation via Meldrum's acid 

An acetoacylation reaction with the acetone adduct of diketene was proposed to 

afford the P-keto imide in a similar fashion to diketene. This reaction, though direct, was 

extremely poor yielding and cumbersome. Acylated Meldrum's acid has been reported to 

acetoacylate alcohols and amines, resulting in the formation of P-keto esters and amides, 

respectively.104 Meldrum's acid (161) was synthesized in gram quantities from malonic 
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acid, acetic anhydride, acetone, and catalytic sulfuric acid.104 After recrystalization from 

ethanol, Meldrum's acid was subjected to acetyl chloride and pyridine to yield the 

acylated Meldrum's acid adduct (162) in quantitative yield.104 To test the acetoacylation 

reaction, Meldrum's acid adduct (162) was refluxed in toluene with 2-oxazolidone (163), 

which gave l-(2-oxooxazolidin-3-yl)butane-l,3-dione (164) in 89% yield (Scheme 53). 
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Scheme 53. Formation of a p-keto imide 

Tandem homologation-alkvlation-cvcli/ation-lactoiii/ation 

To test the homologation-cyclization reaction, the achiral P-keto imide (164) was 

introduced to three equivalents of the ethyl(iodomethyl)zinc carbenoid and catalytic 

amounts of TMS-Cl (Scheme 54). Quin-Ling Pu has shown that catalytic amounts of 

TMS-Cl in the presence of P-keto imides promoted formation of a homoenolate, which 

was postulated to cyclize to the cyclopropane after a period of time. When the 
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homologation-cyclization reaction was performed on 164, the product that was isolated 

after a twelve hour reaction period was not the predicted cyclopropanol. A bicyclic 

lactone (159) was isolated in a 12% yield (Scheme 54). Two other products, identified 

by JH NMR analysis of the crude reaction mixture, were determined to be starting 

material (164) and the homologated y-keto imide (165). The next step in the study was to 

optimize the yield and diminish the amount of unreacted starting material. 

a) Et2Zn/CH2l2 0 

O O O b) TMS-Cl II O O O O r—\ 
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Scheme 54. Homologation-Cyclopropanation 

TMS-Cl was theorized to contain some HCl, which would be expected to quench 

some of the carbenoid. When TMS-Cl was omitted from the reaction, the yield of the 

bicyclic lactone (159) slightly increased to 15%. The continued presence of starting 

material, even in the presence of a large excess of carbenoid, was troubling. If a 

byproduct generated in the reaction were capable of destroying the carbenoid, this could 

account for the continued presence of starting material. During the lactonization step, 

expulsion of an oxazolidone anion (166) occurs in the formation of the bicyclic lactone 

(159) (Scheme 55). If this anion could react with the remaining carbenoid, the continued 

presence of unreacted starting material could be rationalized. 

78 



OZnX 

^ r 

o 

e N A 0 

166 

159 

Scheme 55. Mechanistic proposal of the homologation-cyclopropanation 

A control study was performed with 2-oxazolidone and ethyl(iodomethyl)zinc to 

determine if it acts as a carbenoid scavenger. The Furukawa reagent (1 equivalent) was 

stirred for twelve hours with 2-oxazolidone (1 equivalent). Upon work up, both the 

starting 2-oxazolidone and TV-methylated 2-oxazolidone were identified via !H NMR. 

Based on this evidence, five equivalents of the ethyl(iodomethyl)zinc were used in 

subsequent homologation reactions in an effort to compensate for the carbenoid 

decomposition caused by the oxazolidone anion (166). When the reaction was performed 

with five equivalents of the Furukawa reagent, all of the starting P-keto imide was 

consumed but the bicyclic lactone (159) co-eluted off of the chromatograph column with 

another lactonized product. The impurity was identified as a-methyl-y-valerolactone 

(167). This byproduct could be generated by an intramolecular or intermolecular 

Meerwein-Ponndorf-Verley-like reduction (Scheme 56).105 
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Scheme 56. Intramolecular Meerwein-Ponndorf-Verley like reduction 

One method envisioned to prevent a Meerwein-Ponndorf-Verley-like reduction 

involved removal of the ethyl ligand on the Furukawa-modified zinc carbenoid. 

Exchange of the carbenoid's ethyl ligand for a trifluoroacetoxy moiety has been reported, 

and this modified carbenoid has proven effective in the homologation of P-dicarbonyl 

substrates.106 Another variation on the carbenoid involves the use of a 2:1 mixture of 

diiodomethane and diethylzinc, which produces an ambiphilic bis(iodomethyl)zinc 

carbenoid.107 This latter variation offers two advantages: first, the electronic nature of the 

carbenoid is similar to the Furukawa-modified carbenoid and second, the absence of the 

ethyl ligand prevents the possibility of a Meerwein-Ponndorf-Verley-like-reduction. 

Utilization of the bis(iodomethyl)zinc carbenoid in the homologation-lactonization 

reaction on substrate # resulted in an increased yield of the bicyclic lactone (159) and no 

indication of a Meerwein-Ponndorf-Verley like reduction. With the yield of the bicyclic 

lactone (159) at approximately 50 %, an enantiopure P-keto imide was utilized to 

determine if a chiral oxazolidinone could be used to control absolute stereochemistry 

within the tandem homologation-cyclization reaction. 
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Chiral p-keto imides have been used in the Zercher research group to control the 

stereochemistry in the tandem homologation-aldol reaction.23 The availability of gram 

quantities of P-keto imides was necessary in order to perform the full complement of 

studies. Reduction of an amino acid to the corresponding amino alcohol can be achieved 

in high yields through the use of lithium aluminum hydride (LAH) or through a borane 

reduction.108'109 Closure of the amino alcohol to the respective oxazolidinone has been 

performed with triphosgene or diethyl carbonate.110 Use of these methods have major 

drawbacks and limitations. Triphosgene is a potentially hazardous reagent (formation of 

phosgene in the course of the reaction) and the diethyl carbonate method results in poor 

yields of the oxazolidinone (106). More recently, the synthesis of chiral oxazolidinone 

(106) has been reported to proceed in high yields through the formation of a carbamate, 

followed by a base-catalyzed intramolecular cyclization (Scheme 57) . m 
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Scheme 57. Formation of chiral oxazolidones 106 and 106a 
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Amino alcohols (108 and 168) derived from L-valine and L-phenylalanine were 

both converted to their respective chiral oxazolidinones (106 and 106a) utilizing the 

procedure developed by Wu and coworkers. First, the amino alcohol was acylated with 

ethyl choroformate in the presence of potassium carbonate to obtain a hydroxy-carbamate 

(106' and 106a'), which was treated with catalytic amounts of potassium carbonate under 

vacuum (40 mmHg) at 125 °C until gas evolution ceased. After simple column 

chromatography the pure oxazolidone was obtained in high yield. 

The two chiral oxazolidinones (106 and 106a) were then subjected to the acylated 

Meldrum's acid (162) in refluxing toluene to afford the acetoacylated oxazolidinones 

(105 and 169) (Scheme 58). The P-keto imides (105 and 169) were then subjected to the 

homologation-lactonization reaction in the presence of five equivalents of bis 

(iodomethyl)zinc (Scheme 58). The bicyclic lactone (159) was isolated in roughly 50% 

yield. Optical rotation measurements was then performed on 159 to determine if the 

absolute stereochemistry of the oxazolidinone was transferred to the bicyclic lactone. 

The results were inconclusive, since the low concentration of the bicyclic lactone in 

solution provided a miniscule and irreproducible optical rotation. 
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Scheme 58. Use of a Chiral P-keto imide to control absolute stereochemistry 

Another method to analyze the enantio selectivity of the homologation-

lactonization reaction on substrates 105 and 169 involved chemical modification of the 

lactone (159). As reported in Scheme 58, bicyclic lactone 159 could be opened through 

the use of benzylamine. Use of an enantio-pure chiral amine to open up a lactone (159) 

would yield two diastereomers that could be quantified in the lH NMR spectrum of the 

crude reaction mixture. Use of a-(methyl)benzyl amine (170) as the chiral reagent 

provided two diastereomers (171 and 172) in a 2.3:1 ratio, as determined by JH NMR 

(Figure 16). From this ratio, the enantioselectivity of the homologation-lactonization 

reaction could be traced back to provide a 2.3:1 ee. 
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Figure 16. Line fit in MNOVA to determine the diastereoselectivity 

Different P-keto imides were then synthesized by changing the functionality 

adjacent to the ketone moiety to build a library of similar compounds. The first 

derivative to be studied was l-(2-oxooxazolidin-3-yl)pentane-l,3-dione (173), which was 

produced by acylating Meldrum's acid with propionyl chloride to form 5-(l-

hydroxypropylidene)-2,2-dimethyl-l,3-dioxane-4,6-dione (174),104 followed by treatment 

with 2-oxazolidone in refluxing toluene. The P-keto imide (173) was produced in high 

yield (Scheme 59). The next derivative that was synthesized was 4,4-dimethyl-l-(2-

oxooxazolidin-3-yl)pentane-l,3-dione (175). Synthesis of compound 175 was first 

attempted through the Meldrum's acid route. Efforts to acylate Meldrum's acid with 

pivaloyl chloride were unsuccessful and returned the starting Meldrum's acid. The 
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targeted compound (175) was eventually generated through a mixed Claisen reaction. 

Acylation of 2-oxazolidinone was achieved by refluxing pyridine and acetyl chloride for 

twelve hours (Scheme 59). Deprotonation of the acetylated oxazolidinone with LDA 

produced an enolate, which was transferred by cannula into a solution of THF and 

pivaloyl chloride. The P-keto imide (175) was generated in moderate yields (Scheme 59). 

The last derivative to be added to the library was an aryl functionalized P-keto 

imide. Again, formation of this substrate was attempted through the Meldrum's acid 

route by using benzoyl chloride as the electrophile, although this was unsuccessful. 

Unreacted Meldrum's acid and acetophenone, which was postulated to arise from the 

decomposition of the acylated Meldrum's acid, were the major components of the 

reaction mixture. Once again, use of a mixed Claisen route was successful in the 

formation of the aryl P-keto imide (176) (Scheme 59). The major drawback to the mixed 

Claisen route is the necessity of using excess acylated oxazolidinone (177). 
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Scheme 59. Synthesis of P-keto imide analogs 

The P-keto imide analogs (173, 175, and 176) were all subjected to the 

homologation-lactonization reaction with the use of bis(iodomethyl)zinc. Substrates 173 

and 175 gave modest yields of their corresponding bicyclic lactones (178 and 179) 

(Scheme 60). Reaction of P-keto imide 176 led to a surprisingly low yield of the bicyclic 

lactone 180, which was also difficult to purify and required two separate flash 

chromatography columns. 
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Scheme 60. Bicyclic lactone derivatives 

One reason that 176 reacts inefficiently to provide the lactone may be related to 

the decreased efficiency in the homologation of ethyl benzoylacetate. When zinc 

homoenolate (181) cyclizes, the resonance stability between the aryl group and the keto 

moiety will be reduced (Scheme 61). The !H NMR of the crude reaction mixture showed 

presence of a a-methylated P-keto imide (182), which suggests that slow intramolecular 
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cyclization of the homoenolate derived from aryl p-keto imides was partially responsible 

for the decreased yield of lactone (180). 
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Scheme 61. Slow homologation using aryl ketones 

The use of a modified zinc carbenoid to convert 1,3-diketones into their 

corresponding 1,2-disubstituted cyclopropanols was reported by Xue.112 A combination 

of aryl and aliphatic ketones were used in numerous substrates. Two different 

constitutional isomers could be produced for non-symmetrical diketones, yet in all cases 

with an aryl and aliphatic diketone, the major cyclopropanol isomer was formed adjacent 

to the aliphatic moiety (Table 2). 
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a) Et2Zn (4 eq) 
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Entry 

183a 
183b 
183c 
183d 
183e 

R' 

C6H5 

/?-MeOC6H4 

/>C1C6H4 

jp-MeOC6H4 

C6H5 

R" 

Me 
Me 
Me 

CH3CH2CH2 
CH3CH2CH2 

% 184a-e 

93 
95 
70 
94 
45 

% 185a-e 

0 
0 
14 
0 
12 

Table 2. Homologation-cyclopropanation of 1,3-diketones112 

Illustrated in Scheme 62 are the two proposed routes to the synthesis of 

cyclopropanols 184a and 185a. Formation of the major cyclopropanol product is 

depicted to form through route A (Scheme 62). The donor-acceptor cyclopropoxide 186 

required for the formation of the major product would result from cyclization on the aryl 

ketone. This process would sacrifice the resonance energy between the aryl and keto 

moieties, and earlier studies point to the inefficiency of this route.19 

The donor-acceptor cyclopropoxide (187) formed in Route B would result from 

cyclization into the more electrophilic aliphatic ketone. Basic principle suggest that the 

zinc homoenolate should preferentially cyclize into this carbonyl (Scheme 62). When 

187 opens to afford the enolate (188), the product should be the aryl cyclopropanol 185a. 
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The examples in Table 2 show the major products to be the aliphatic cyclopropanols 

(184a-e). In other words, the major cyclopropanol product appears to result from 

formation of the donor-acceptor cyclopropane that is least likely to form. 

The major cyclopropanol products (184a-e) possess resonance stabilized ketones 

and possess the 5y«-orientation between the alkyl-ketone and hydroxyl substituents. A 

thermodynamically-driven equilibrium was proposed for this homologation-

cyclopropanation reaction. If the two possible products exist in equilibrium, this would 

explain the formation of the more stable product. 
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Scheme 62. Two possible pathways for the formation of a cyclopropanol 

A chemical test to probe the hydroxy-cyclopropane rearrangement of compounds 

generated from non-symmetric 1,3-diketones was undertaken. Xue and co-workers had 

reported that l-(4-chlorophenyl)butane-l,3-dione (183c) gave a 70:14 constitutional 

isomeric ratio when treated with an electrophilic zinc carbenoid (CF3COOZnCH2l) 

(Table 2), so this substrate was selected for our studies.112 P-Diketone 183c was 

synthesized through a mixed Claisen reaction between acetone (189) and/>-chlorobenzoyl 

chloride (190) in a 38% yield (Scheme 63). When 183c was subjected to bis 

(iodomethyl)zinc, the major (184c) and minor (185c) cyclopropanols, which were present 

in the crude reaction mixture in a 7:1 ratio, were separated via flash chromatography. 

Pure compound 184c (major isomer) was reexposed to bis(iodomethyl)zinc and the lH 

NMR of the reaction product showed a mixture of the major (184c) and minor (185c) 
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cyclopropanol isomers (Scheme 64). In order to probe the reversibility of the 

rearrangement, it was necessary to take the minor isomer (185c) and demonstrate its 

conversion to the major isomer (184c). When pure 185c (minor isomer) was introduced 

to bis(iodomethyl)zinc and the reaction worked up, cyclopropanol isomer 184c was the 

major product, as determined by analysis of the crude •H NMR spectrum (Scheme 64).113 

This further established the likelihood that a rearrangement was occurring during the 

homologation-cyclopropanation reaction. 

a) LDA 
b) p-chlorobenzoyl 

chloride (190) 
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Scheme 63. Synthesis of 183c followed by homologation-cyclopropanation 
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Scheme 64. Additional exposure to bis(iodomethyl)zinc 

Employment of a O symmetric 1,3-diketone and deuterium labeling would help 

provide further evidence of a possible rearrangement within the homologation-

cyclopropanation reaction. A mixed Claisen reaction was the quickest route for the 

preparation of dibenzoylmethane (191). Acetophenone was deprotonated with LDA and 

transferred by cannula into a solution of benzoyl chloride and THF to obtain a 40% yield 

of dibenzoylmethane (191) (Scheme 65). Dibenzoylmethane (191) was then subjected to 

bis(iodomethyl)zinc and upon purification, a 67% yield of the 1,1,2-trisubstituted 

cyclopropanol was obtained (192) (Scheme 65). The cyclopropanol (192) was then 

added to a solution of sodium methoxide in deuterium oxide in an effort to exchange 

deuterium for hydrogen and to determine if base would catalyze the rearrangement. 

When analyzing the lH NMR spectra of the crude reaction mixture, the cyclopropyl 

(methylene) resonances, as well as the alpha proton resonances were diminished. The 

multiplicities of both resonances were also increased in complexity. This provided 

verification that deuterium was incorporated at both sites, which was consistent with the 

rearrangement proposed for the 1,3-diketone systems. 
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Scheme 65. Deuterium labeled control study 

The results of the previous studies were used as a mechanistic guide for the 

homologation-lactonization reaction performed with bis(iodomethyl)zinc and P-keto 

imides. With the possibility that equilibration plays a role in the homologation-

cyclopropanation reaction of diketones, we proposed that a similar rearrangement may 

also be involved in the reaction that leads to lactone formation. The mechanism is similar 

to that described for the p-diketone substrates, but incorporates a cyclopropoxide 

rearrangement involving the keto and imide moieties (Scheme 66). The reaction was 

then classified as a cascade-like reaction and was coined as the homologation-

cyclopropanation-rearrangement-lactonization (HCRL) reaction. 
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Scheme 66. Proposed mechanism of the homologation-cyclopropanation-rearrangement-

lactonization 

In an effort to explore the hypothesis that rearrangement of cyclopropanes plays a 

role in the HCRL reaction, the intermediate cyclopropane (193) was trapped. Enolate 

facial selectivity in the formation of the homoenolate and in the addition to the imide 

carbonyl would expected to be influenced by the chiral oxazolidinone. Stoichiometric 

amounts of TMS-Cl were added to the HCRL reaction in order to trap the cyclopropoxide 

(Scheme 67). When attempting to purify the putative TMS-cyclopropyl ether (193) on a 

column, acid-catalyzed desilation occurred and the bicyclic lactone 179 was generated, 

possibly through rearrangement of cyclopropoxides (Scheme 67). Only 2% of the TMS-

cyclopropyl ether 193 was isolated. When the TMS-intermediate was subjected to 2D 

TLC on silica, decomposition was confirmed to be problematic. The formation of 193 

was performed again, and the silica used for column chromatography was basified with 
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treatment of 5 % triethylamine in ethyl acetate. When the reaction mixture was purified 

using the deactivated silica, the TMS-cyclopropyl ether (193) was isolated in a 44% 

yield. 

a) Et2Zn/2 CH2I2 (5 eqiv) 
b) TMS-Cl (1 eqiv) 

A A A 1 ^ . ,-BAO™SO 
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• \ / P h . „ \ 

194 193 p h 

Silica 

Scheme 67. Decomposition of the putative TMS-cyclopropyl ether 193 

Upon 'H NMR analysis of the crude reaction mixture of silylcyclopropyl ether 193 only 

one diastereomer was observed. After column chromatography, 193 was subjected to a 

pentane diffusion chamber and a single crystal was grown and analyzed by X-ray 

diffraction (Figure 17). Analysis of the crystal structure revealed that diastereomer 193 

was preferentially formed, consistent with the enolate facial selectivity reported by Lin 

and Lai.46-47 
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Figure 17. X-ray crystal structure depicting the absolute stereochemistry of the TMS-

cyclopropyl ether 193 

Use of the sterochemical information provided by the X-ray structure (Figure 17) 

a mechanism was proposed (Scheme 68). The starting chiral P-keto imide 194 was 

homologated in accordance with the previous mechanism (Scheme 44). The Z-enolate 

(195) would be predicted to form due to 1,3-allylic strain of the ^-enolate. The 

diastereoselective alkylation to form the zinc homoenolate (196) would be directed by the 

chirality of the imide functionality. Chelation of zinc (II) by the imide carbonyls would 

increase the electrophilicity of the imide carbonyl, which would be suitable for the 

homoenolate (196) attack. The cyclopropyl alkoxide (197) could O-silate with TMS-Cl 

in solution to yield the TMS protected cyclopropanol (198). Alternatively, the TMS-

group could be complexed with the carbonyl prior to cyclopropanation. 
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Scheme 68. Proposed diastereoselective mechanism for the formation of 198 

In an effort to generate the free alcohol, treatment of 193 with trifluoroacetic acid 

(TFA) resulted in decomposition of 193 presumably by decomposition of the 

cyclopropane. However, use of tetramethylammonium fluoride (TMAF) as a desilating 

agent did remove the TMS group and produced the bicyclic lactone 179 (Scheme 69). 

Production of a naked anion was followed by rearrangement and lactonization. To test 

the stereochemical fidelity of the resulting bicyclic lactone (179), a-(methyl)benzyl 

amine was employed. The diastereomeric ratio of the opened bicyclic lactones (199 and 

200) was determined to be -2.3:1. Therefore, even when the first alkylation-

cyclopropanation was controlled, the resulting lactone 179 stereochemical fidelity was 

compromised. 
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Scheme 69. TMAF induced Desilation-rearrangement-lactonization 

The chirality within the oxazolidone moiety of the P-keto imide provided minor 

stereocontrol in the HCRL reaction. Jennifer Mazzone, a research student in the Zercher 

laboratory, has developed a methodology by which to control P-stereochemistry when 

using a methyl substituted zinc carbenoid in the homologation of p-keto esters. Although 

incorporation of a phenylalanine or valine stereocenter adjacent to the ketone provided 

modest diastereocontrol, serine-derived substrates were quite effective.114 Using this 

result as a guide, the next target was the synthesis of an amino acid-derived p-keto imide. 

Synthesis of amino acid-derived p-keto imides 

Amino acid derived P-keto imides have been synthesized by previous Zercher 

members.115 The researchers used a mixed Claisen reaction, which was often quite 
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challenging. Drawbacks to the mixed Claisen include difficulty in reproducibility, the 

necessity of using excess starting enolate, expense, and difficulty in purification. The 

reaction was, however, direct and would give the desired amino acid-derived P-keto 

imide. A test reaction was conducted with L-proline (112), in which L-proline (112) was 

protected as the benzyl carbamate (201) in order to facilitate conversion to the P-keto 

imide (202) (Scheme 70). Acylated 2-oxazolidinone (177) was slowly added to a 

solution of LDA, which was then quickly transferred by cannula to a flask that contained 

carbonyl diimidizole (CDI)-activated Cbz-proline (203). The resulting solution was 

stirred at room temperature for thirty minutes and quenched with 1 N HCl. Upon 

purification, starting material, Cbz-proline (201), and l-(2-oxooxazolidin-3-yl) 

butane-1,3-dione (164) were isolated as the major products. The desired product, (S)-

benzyl-2-(3-oxo-3-(2-oxooxazolidin-3-yl)propanoyl)pyrrolidine-l -carboxylate (202) was 

isolated in a 23 %> yield (Scheme 70). The low yields and necessity of using three 

equivalents of acylated 2-oxazolidinone made this route very unattractive. 
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Scheme 70. Cbz-protection of L-proline followed by a mixed Claisen reaction 

When consulting the literature for additional methods for synthesizing 202, a 

reaction that used Meldrum's acid adducts was found to provide enantioselective tetramic 

acid derivatives from amino acids.116-117 Jouin's protocol starts with ,/V-protected amino 

acids and uses A/,iV-dimethylaminopyridine (DMAP) and ./V,JV'-dicyclohexylcarbodiimide 

(DCC) under neutral conditions to acylate Meldrum's acid. Thermolysis results in 

intramolecular cyclization that leads to the corresponding tetramic acid in quantitative 

yield. In order to prevent tetramic acid formation, amino acid substrates must not possess 

a free N-H. Double protection of amino acids or use of a mono-protected proline residue 

would allow use of this method without concern of tetramic acid formation. The 

procedure reported by Jouin and co-workers for the coupling and isolation of the Boc-

proline functionalized Meldrum's acid adduct was employed; however, upon analysis of 
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the lH NMR spectrum of the crude reaction mixture, only starting material was observed 

(Scheme 71). 
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Scheme 71. Initial coupling attempt 

Several research groups have reported the use of acylated Meldrum's acid 

produced from carboxylic acids, but these substances are primarily noncharacterized 

intermediates that are used for the preparation of P-keto esters and amides.118119 N-

Hydroxysuccinimide has also been reported to be an efficient substitute for DMAP in the 

acylation of Meldrum's acid with DCC.120 The reaction was performed using JV-hydroxy 

succinimide and the resulting lH NMR showed evidence of acylated Boc-proline (205), 

which indicated that Meldrum's acid was being acylated, but addition of water was 

followed by loss of two equivalents of carbon dioxide and acetone was providing the 

methyl ketone (205) (Scheme 72). The same reaction was carried out using N-

102 



hydroxybenzotriazole as the nucleophilic additive, but when the reaction was worked up 

under neutral aqueous conditions the decomposition was still observed. The formation of 

acylated Boc-proline derivative (205) appeared to be occurring, although decomposition 

of the Meldrum's acid adduct appeared to be unavoidable. 

a) DCC 
b) Meldrum's Acid 

Boc o c) A/-hydroxy succinimide (12 h) Boc o 

^vA***? . ^ 
204 205 

Scheme 72. Use of JV-hydroxy succinimide as a nucleophilic additive 

Lastly, Raillard and co-workers reported the mild coupling of carboxylic acids to 

Meldrum's acid, in which they reported that the conventional aqueous work-up of the 

Meldrum's adduct results in decomposition of product.121 Their use of DMAP provided 

the DMAP salt of the Meldrum's acid adduct, which was shown to have high stability. 

Raillard reported that the DMAP-Meldrum's acid salts could be suspended in deuterated 

chloroform at room temperature for six months with only 10 % decomposition. Raillard 

treated the salt with an acidic polymeric residue to generate the free Meldrum's acid 

adduct, which was then refluxed in toluene with dibenzylamine to afford the 

corresponding amino acid-derived P-keto amide. 

Using Raillard's methodology, activation of Boc-proline (204) with stoichiometric 

amounts of DCC, and displacement of the cyclohexylurea by Meldrum's acid followed 
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by addition of DMAP resulted in the clean formation of the DMAP salt of the Boc-

proline-Meldrum's acid adduct (206) in 89% yield. Use of DOWEX® 50W-X2 ion 

exchange resin released the free acid of Boc-proline-Meldrum's Acid (207), which was 

immediately exposed to 2-oxazolidone in toluene. The reaction mixture was heated to 

reflux for one hour, which yielded Boc-proline derived P-keto imide (208) (Scheme 73). 

The Meldrum's acid coupling route was run on a larger scale to obtain gram quantities of 

208. 

a) DCC 
Boc o b) Meldrum's Acid 
N i l ^ c) DMAP (12 h) 

OH 

204 

Boc OH O 
O 

X 
HN O 

PhMe, Reflux 

Boc O 
N 

Q >A^A 
U 7 

207 208 

Dowex50W-X2 
CH2CI2 

Scheme 73. Meldrum's acid coupling 

P-Keto imide 208 was subjected to the HCRL reaction in the presence of bis 

(iodomethyl)zinc in an effort to form the Boc-proline-derived bicyclic lactone (209) 

(Scheme 74); however, no bicyclic lactone was isolated. From analysis of the !H NMR 
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of the crude reaction mixture, the Boc moiety seemed to have been lost, and a complex 

mixture of products were formed. 

BOCO O O a)Et,Zn/2CH2l2(5eq) J 

^ A ^^—. 6r 
208 209 

Scheme 74. HCRL of P-keto imide 208 

Since loss of the ^-butyl carbamate had occurred, possibly due to the Lewis acidity 

of the zinc (II) salts,122 the use of a benzylcarboxy (Cbz) moiety as an alternative 

protecting group was explored. Protection of L-proline (112) with Cbz-Cl resulted in the 

formation of iV-Cbz-proline (201) (Scheme 75). Upon addition of DCC, Meldrum's acid, 

and DMAP the resulting DMAP salt (210) was isolated in 89%) yield. The salt was 

exposed to Dowex® 50W-X2 ion exchange resin to release the free acid (211) (Scheme 

75). Upon refluxing with toluene in the presence of 2-oxazolidone, the Cbz-proline 

derived P-keto imide (202) was isolated in 82% yield (Scheme 75). P-Keto imide 202 

was subjected to the HCRL reaction in the presence of bis(iodomethyl)zinc to generate 

the Cbz-proline-derived bicyclic lactone (212) (Scheme 75). 
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- v , z _, „ „ Cbz o b) Meldrum's Acid 
% L A © c) 1 N HCl ^ I c) DMAP (12 h) 

ij ° C/ OH 

112 201 

" N X 

.0 Cbz O w O * K*,-^ Dowex50W-X2 Cbz OH O . « , A _ 

PhMe, Reflux 

a) Et2Zn/2 CH2l2 (5 eq) 
C b z o O O b)NH4CI(aq) 
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Scheme 75. Use of the Cbz-carbamate to form an amino acid derived bicyclic lactone 

With successful optimization of the formation of the proline-derived P-keto imide 

(202), various amino acid derived p-keto imide analogs could be synthesized by 

application of the same approach. The next amino acid to be taken through to the 

Meldrum's acid coupling scheme was L-valine (107), which has a primary amine that 

required diprotection in order to prevent formation of tetramic acids. The use of p-

methoxybenzyl (PMB) as a protecting group in the zinc homologation reactions has 

proven to be quite effective. A PMB group was incorporated via a reductive amination 
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with anisaldehyde and L-valine (107). PMB-valine (213) was then subjected to sodium 

hydroxide and Cbz-Cl which afforded the diprotected amino acid (214) in an overall 91 

% yield (Scheme 76). 

When crude 214 was subjected to the Meldrum's acid coupling procedure 

followed by nucleophilic addition with 2-oxazolidone, the isolated yield of imide (216) 

was low and numerous by-products were observed via TLC (Scheme 76). When 

repeating the di-protection of L-valine (107) (Scheme 76), benzyl alcohol was observed 

as a byproduct. Alcohols and amines act as nucleophiles during the ring opening of 

Meldrum's acid adducts.104 If benzyl alcohol were in solution with 2-oxazolidone during 

the reflux of 216 in toluene, this would help explain the presence of additional by­

products. 
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Scheme 76. Problematic synthesis of 215 
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To remove the benzyl alcohol contaminat from the iV,7V-PMB-Cbz-valine (214), a 

short silica plug was employed to afford pure 214 in 79 % yield (Scheme 77). Exposure 

of 214 to the Meldrum's acid coupling reaction, was followed by and ring opening with 

2-oxazolidone. Clean formation of the AfTV-PMB-Cbz-valine P-keto imide (216) 

(Scheme 77) was observed in high yield. This procedure was repeated with 

phenylalanine to obtain the iVjTV-PMB-Cbz-phenylalanine p-keto imide (218) (Scheme 

77). 
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Scheme 77. Clean synthesis of p-keto imides 215 and 218 
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The three P-keto imides (202, 215, and 218) were subjected to the HCRL reaction 

and the bicyclic lactones (224-229) were isolated in good yields (Scheme 78). These 

bicyclic lactones are formed as mixtures of diastereomers. The determination of the 

cyclopropane diastereomeric ratio should be available from the lH NMR of the crude 

reaction mixture after the HCRL reaction. Unfortunately, analysis of the proline-derived 

bicyclic lactones 224 and 225 were complicated by rotomeric forms and by-products, 

therefore no definitive resonances could be identified for quantitatively assessing the 

diastereomeric ratio. This was also the case with the valine and phenylalanine adducts 

(226-229). The two diastereomers of the phenylalanine adduct (228 and 229) could be 

separated by column chromatography, which provided the two diastereomers in a 6:1 

ratio. 
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Scheme 78. HCRL on amino acid derived P-keto imides 

Determination of the major hicvclic lactone 

In an attempt to determine the major diastereomer isolated from the HCAL 

reaction many methods were utilized. The first was to subject the proline-derived lactone 

212 to a hydrogenolysis reaction to remove the benzyl carboxy protecting group (Scheme 

79). The removal took place in thirty minutes with hydrogen/palladium on carbon in a 94 

% yield. After concentration the pyrrolidine lactone (230) was observed as an oily solid. 

When 230 was placed into a diffusion chamber (benzene/pentane) decomposition was 
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observed after twelve hours, presumably due to the free amine present within lactone 

230. 

H2/Pd/C 
»» 

212 230 

Scheme 79. Hydrogenolosis of bicyclic lactone 212 

With decomposition in a short period of time, formation of a single packed crystal 

was going to be complicated and demanding. The free amine was thought to contribute 

to the decomposition of the bicyclic lactone 230. A hydrogenolysis of 212 performed in 

the presence of /?-toluenesulfonic acid would trap the free amine as the ammonium salt. 

After the reaction was performed, decomposition of the cyclopropyl resonances in the 

crude lH NMR were observed and no product was formed. 

Deprotection of the benzyl carbamate on 231 followed by an intramolecular 

cyclization to afford oxazolidone 233 was thought to provide rigidity and allow for NOE 

studies (Scheme 80). After hydrogenolysis of 231, triphosgene was used in an effort to 

form 233. After a neutral work up decomposition of starting compound 232 was 

observed through !H NMR. This approach was then terminated due to the reactivity of 

triphosgene. 
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Scheme 80. Attempt at an oxazolidinone formation for NOE studies 

After deprotection of lactone 212, the free amine was subjected to p-

toluenesufonyl chloride in the presence of triethylamine. This again resulted in 

decomposition and complete loss of the pyrrolidine lactone 230. Another strategy was to 

incorporate a sulfonamide functionality prior to formation of the p-keto imide and 

homologation. This was performed by protecting L-proline with j>-toluenesufonyl 

chloride in aqueous sodium hydroxide as the sulfonamide (234).123 Tosyl-proline (234) 

was then subjected to a coupling conditions to form an acylated Meldrum's acid adduct 

(235) as the DMAP salt. Removal of the DMAP salt to form the free acid (236) was done 

with dry j^-toluenesulfonic acid. The free acid 236 and 2-oxazolidone were refiuxed in 
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toluene to afford the sulfonamide-derived P-keto imide (237) in a 50% overall yield 

(Scheme 81). 

• x . 
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Scheme 81. Formation of sulfonamide-derived P-keto imide 237 

P-keto imide 237 was then subjected to the HCRL reaction conditions to obtain to 

bicyclic lactones 238 and 239 that coeluted together off of the column. The 

diastereomeric mixture was concentrated down to afford the lactones (238 and 239) as 

white solids (Scheme 82). Opening the lactones with neat benzylamine provided the JV-

tosylated cyclopropanols (240 and 241) in 90%> yield (Scheme 82). The diastereomers 

were separated through flash chromatography to afford the minor diastereomer as a white 

solid and the major as a clear oil. 
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Scheme 82. Formation of bicyclic lactones 238 and 239 followed by ring opening 

Alkylation and opening of bicyclic lactones 

Functionalizing the a-carbon of bicyclic lactones would be necessary to 

demonstrate the ability to incorporate substituents that would mimic amino acid side 

chains in the peptide isostere. The lactone 159 provided a suitable template for 

incorporating the side chain by alkylation of an enoloate. Bicyclic lactone 159 was 

exposed to LDA and benzyl bromide as a test reaction (Scheme 83). 

a) LDA 
b)BnBr 

O c) 1 N HCl 

159 

NOE 

242 243 

Scheme 83. Alkylation of 159 
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Analysis of the 'H NMR of the crude reaction mixture revealed that two diastereomers 

(242 and 243) were produced in a 5:1 ratio (Scheme 83). The major diastereomer was 

determined to be 242 through the use of NOE experiments (Scheme 83). Diastereomer 

242 was formed by approach of the electrophile opposite to the sterically-encumbering 

cyclopropane fused to the lactone (Scheme 84). 

159 

LDA 

© 

\ OLi 

Scheme 84. Cyclopropane influenced stereocontrol 
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The amino acid derived bicyclic lactones can be transformed into structures that 

may have utility as peptide isosteres. An efficient method for the opening of the lactones 

was through exposure to neat benzylamine. This procedure was mild and high yielding, 

and did not result in the decomposition of the hydroxy-cyclopropyl moiety (Scheme 85). 

With the ability to open the bicyclic lactones simply and efficiently, most primary and 

secondary amines could be incorporated as part of the amide functionality. Use of these 

amine residues could help establish a library of peptide isosteres that would help 

determine the optimal binding mode for a select aspartyl protease. 

PKT 9 b z
 O H

 H 

O Yb z BnNH2 -'- • N, 
Bn 

O 

212 231 

Scheme 85. Hydroxy-cyclopropyl isostere 

Future Work 

The hydroxy-cyclopropyl moiety provides structurally unique characteristics that 

may be useful in viral inhibition. One major limitation to many peptide amide isosteres is 

their ability to freely rotate, which is believed to compromise selectivity and binding. 

Also, the loss of hydrogen bond donor/acceptor interactions within the active site can 
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cause the peptide isosteres to exhibit a high Ki. Successful inhibition of HIV protease has 

been accomplished with only one of those features satisfied. For example, Indinavir 

(132) is a hydroxyethylene containing isostere, which functions as an effective inhibitor 

even though free rotation about the carbon-carbon bond is possible.124 Use of the 

hydroxy-cyclopropyl motif embedded within a selective peptide could provide low Ki 

with the ability to easily modify any amino acid within the sequence of the peptide 

(Scheme 86). 

Chemical modification of a protease inhibitor is extremely important with respect 

to the viron HIV. The mutation of HIV's protease causes many of the pharmaceutical 

medications to become inactive and, therefore, of no use to the patient. Mutation of one 

amino acid within the viron's aspartyl protease can cause enough distortion within the 

binding site to make a therapeutic agent inactive. The ability to modify amino acid 

residues to include the hydroxy-cyclopropyl peptide isostere provides the opportunity to 

explore a family of potential protease inhibitors. There is the possibility of 

functionalizing the carbon adjacent to the cyclopropyl moiety allowing for the simple 

derivatization to satisfy different modes of binding within the protease's binding pocket 

(Scheme 86). 

Ft". ,.FT 
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Scheme 86. Chemical modifications 
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Another tactic that is being pursued in the Zercher research group is to synthesize 

a symmetric amino acid derived p-diketone 244 and to subject it to the homologation-

alkylation-cyclopropanation reaction (Scheme 87). P-Diketones have been shown to 

homologate and form cyclopropanol analogs.106 Incorporation of symmetry within the 

scaffold of the HIV protease inhibitors has proven to be an effective approach due to the 

symmetric nature of the HIV protease (Scheme 87).125 The homologation-alkylation-

cyclopropanation reaction as performed on the amino acid-derived symmetric P-diketone 

would provide a one step method to form unusual cyclopropanol analogs (245). 

"•'<\. .J J 

PG O O PG a) Et2Zn/2 CH2I2 (5 eq) PQ QH 
i 

N b) NH4CI{3q| 

244 245 

Scheme 87. HIV's symmetric aspartyl protease and a one step synthesis toward peptide 

isosteres 
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Another strategy that could be employed when opening the bicyclic lactone 

derivatives is the use of an amino acid residue. Nucleophilic addition of an amino acid to 

the bicyclic lactone would diversify the derivatization process and provide an expanded 

library of these novel isosteres. If a cyclopropyl isostere displays a reasonable efficacy 

(Emax), adding an amino acid tethered polyethylene glycol (PEG) unit to the amino 

terminous could aid in the allosteric modulation of an aspartyl protease. Using a 

PEGylated cyclopropanol isostere with high affinity to the known binding site in an 

aspartyl protease would probe the possible allosteric sites within the proximity to help 

establish a new tactic in aspartyl protease inhibition (Scheme 88). 
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Scheme 88. Allosteric modulation design 

The use of the HCRL methodology with P-keto substrates provides the synthetic 

chemist with a plethora of routes to obtain potential peptide mimics. The ability to 

manipulate and derivatize a lead compound is a crucial element of designing 

pharmaceutical compounds. The HCRL methodology developed in the Zercher lab 

allows for the functionalization of all of the substituents attached to the hydroxy-

cyclopropyl backbone. 
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CHAPTER IV 

EXPERIMENTAL SECTION 

Solvents 

Anhydrous solvents were obtained from an Innovative Technology Inc. Solvent Delivery 

System prior to use. 

Reagents 

Unless otherwise noted, all reagents were obtained from commercial sources and were 

used as received. Aldehydes and amines were dried and distilled prior to use. 

Chromatography 

Column chromatography was accomplished through use of Silica-P Flash Silica Gel with 

40 - 63 um particle size. Mobile phases were prepared as described in the detailed 

experimentals. TLC analysis was conducted on glass-backed TLC plates and visualized 
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under UV light, phosphomolybdic acid stain, anisaldehyde stain, or an iodine chamber. 

TLC solvent systems were identical to the mobile phase use for column chromatography, 

unless otherwise noted. 

Spectroscopy 

NMR spectroscopy was conducted using a Varian Mercury spectrometer, which operated 

at 400 MHz for *H and at 100 MHz for 13C analysis. All carbon spectra were proton 

decoupled. All shifts reported downfield relative to TMS, which was assigned 0.00 ppm 

for both lH and 13C NMR analysis. 

DETAILED EXPERIMENTAL SECTION 

(25',3^)-Methyl 5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-carboxylate (72) 

CA UTION! Neat diethylzinc will ignite on exposure to air and reacts violently with water. 

It must be handled and reacted under nitrogen. The reaction solvents must be dried and 

distilled prior to use and all glassware and syringes must be thoroughly dried. 

An oven-dried, 100-mL single-necked, round-bottomed flask equipped with a stir bar was 

charged with 30 mL of dry methylene chloride and capped with a septum. The solution 

was stirred under an inert atmosphere of nitrogen, which was provided through a needle 

inserted into the septum. The solution was cooled to 0°C (ice bath temperature) and neat 

diethylzinc (0.67 mL, 6.6 mmol) was added slowly by syringe over a period of 5 min. 
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Methylene iodide (0.53 mL, 6.6 mmol) was added by syringe dropwise. The mixture was 

allowed to stir for 10 min and methyl acetoacetate (0.32 mL, 3 mmol) was added in one 

portion by syringe. The p-keto ester was stirred in the carbenoid for 30 min, at which 

time butyraldehyde (0.27 mL, 3 mmol) was added by syringe. The reaction was allowed 

to proceed for 15 min and then quenched with a saturated solution of ammonium chloride 

and allowed to warm to room temperature by removal of the ice bath. The quenched 

reaction mixture was extracted with diethyl ether (3 x 30 mL). The ethereal extracts were 

dried over magnesium sulfate {ca. 10 g), filtered and evaporated affording 72 as a bright 

yellow oil. After column chromatography (hexane:ethyl acetate 1:15, R/= 0.3) 0.45 g 

(75%) of (2S,3i?)-methyl 5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-carboxylate 

(72) was isolated as a pale yellow oil. lH NMR (400 MHz, CDC13) 5 4.29 (q, J = 5.6, 

2H), 4.19 (ddd,, J= 11.5, 9.5, 3.1, 2H), 3.92 (m, 1H), 3.74 (s, 3 H), 3.70 (s, 3H), 2.5 (m, 

3H), 2.09 (s, 3H), 1.54 (s, 3H), 1.53 (s, 3H), 1.44 (m, 7 H), 0.96 ( t , J= 7.2, 3H). 13C 

NMR (101 MHz, CDCI3) 5 207.46, 176.81, 174.74, 173.97, 105.05, 105.00, 82.75, 82.66, 

81.19, 81.16, 77.62, 77.30, 76.98, 71.47, 71.32, 52.76, 52.58, 52.26, 52.07, 49.09, 48.84, 

48.73, 46.22, 42.81, 41.65, 41.53, 41.41, 40.21, 39.49, 38.01, 37.15, 27.88, 27.32, 26.59, 

26.55, 19.35, 19.22, 18.90, 14.17, 14.08. IR (neat) v 3345, 2900, 2255, 1701, 1423, 1333, 

1202,1195 cm"1. 

Methyl 5-allyl-tetrahydro-5-methyl-2-propylfuran-3-carboxylate (85 and 86) 

An oven-dried, 50-mL, one-necked, round-bottomed flask equipped with a magnetic 

stiring bar was charged with dry methylene chloride (20 ml, 20 mL/mmol). The neck of 
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the round-bottomed was fitted with a septum and equipped with a gas inlet adapter 

attached to a nitrogen source. Methyl 3-hydroxy-2-(propyl-2-one)-hexanoate (3) (0.17g, 

0.86 mmol) was added to the solution of methylene chloride via syringe. Allyl 

trimethylsilane (0.27 mL, 1.72 mmol) was added to the solution via syringe. This 

solution was then cooled down to -78°C with a dry ice acetone bath. Once the reaction 

reached -78 °C, BF3'Et20 (0.324 mL, 2.58 mmol) drop wise to the solution and allowed 

to stir at -78 °C for 12 h. The solution was then allowed to warm to room temperature 

and was quenched with water (5 mL, 5mL/mmol), at which time the reaction mixture was 

transferred to a separatory funnel. The lower organic layer was withdrawn and placed in 

an Erlenmeyer flask. The aqueous washing was extracted with diethyl ether (3x30 mL) 

and the combined organic layers are dried over 20 g of anhydrous magnesium sulfate and 

filtered prior to concentration under reduced pressure. This gave 0.131 g. of 85 and 86, 

in a 75.5% yield as a clear oil with a diastereomeric ratio of 2:1.5 determined from !H 

NMR of the crude reaction material. lR NMR (400 MHz, CDC13) 6: (85) 0.91 (t, 3 H, J = 

7.3), 1.19 (s, 3 H), 1.62-1.30 (m, 2 H), 2.78 (q, 1 H, J = 9.1), 3.69 (s, 3 H), 4.05 (m, 1 H), 

5.07 (m, 2 H), 5.82 (m, 1 H). (86) 0.918 (t, 3 H, J = 7.2), 1.26 (s, 3 H), 1.62-1.30 (m, 2 

H), 2.70 (q, 2 H, J = 9.2), 3.68 (s, 3 H), 4.05 (m, 1H), 5.07 (m, 2 H), 5.82 (m, 1H). 13C 

NMR (101 MHz, CDCI3) 5: 174.07, 134.63, 134.56, 118.07, 118.01, 82.23, 81.12, 80.92, 

80.85, 80.63, 80.44, 77.57, 77.25, 76.93, 52.06, 52.02, 50.20, 50.01, 49.78, 49.71, 49.65, 

49.02, 48.28, 46.79, 45.74, 45.53, 44.95, 41.39, 40.97, 40.02, 37.86, 37.57, 37.45, 37.33, 

29.08, 27.43, 26.84, 19.61, 19.52, 19.48, 19.14, 14.32. . IR (neat) v 3114, 3100, 2998, 

2870, 1738, 1278 cm"1. 
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(25,35,55)-Methyl5-allyl-5-methyl-2-propyItetrahydrofuran-3-carboxylate (84) 

An oven-dried, 50-mL, one-necked, round-bottomed flask equipped with a magnetic 

stiring bar was charged with dry methylene chloride (20 ml, 20 mL/mmol). The neck of 

the round-bottomed flask was fitted with a septum and equipped with a gas inlet adapter 

attached to a nitrogen source. Methyl 3-hydroxy-2-(propyl-2-one)-hexanoate (82) (0.17 g, 

0.86 mmol) was added to the solution of methylene chloride via syringe. Allyl 

trimethylsilane (0.27 ml, 1.72 mmol) was added to the solution via syringe. This solution 

was then cooled down to -78°C with a dry ice acetone bath. Once the reaction reached 

-78 °C, BF3-Et20 (0.324 mL, 2.58 mmol) was added drop wise to the solution and 

allowed to stir at -78 °C for 12 h. The solution was then allowed to warm to room 

temperature and was quenched with water (5 mL, 5 mL/mmol), at which time the 

reaction mixture was transferred to a separatory funnel. The lower organic layer was 

withdrawn and placed in an Erlenmeyer flask. The aqueous washing was extracted with 

diethyl ether (3 x 30 mL) and the combined organic layers were dried over ca. 10 g of 

anhydrous magnesium sulfate and filtered prior to concentration under reduced pressure. 

The viscous yellow oil was subjected to column chromatography (hexane:ethylacetate 

10:1, R/= 0.6) and 0.145 g (79 %) of 84 was isolated as a clear oil. lH NMR (400 MHz, 

CDC13) 5: 5.84 - 5.62 (m, 1H), 5.11 - 4.89 (m, 2H), 4.19 - 3.98 (m, 1H), 3.61 (s, 3H), 

3.21 - 3.07 (m, 1H), 2.16 (qd, J = 13.7, 7.3 Hz, 2H), 1.98 (dd, J= 13.0, 7.9 Hz, 2H), 1.50 

- 1.32 (m, 2H), 1.30 (s, 4H), 1.01 - 0.64 (m, 3H). 13C NMR (101 MHz, CDCI3) 8: 
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173.49, 134.72, 117.96, 82.43, 79.18, 51.75, 48.33, 45.75, 38.95, 34.52, 27.38, 19.82, 

14.25. IR (neat) v 3014, 3001, 2988, 2846, 1730, 1223 cm"1. 

(2S,3R)-tert-butyl 3-hydroxy-2-(2-oxopropyl)hexanoate (87) 

CAUTION! Neat diethylzinc will ignite on exposure to air and reacts violently with water. 

It must be handled and reacted under nitrogen. The reaction solvents must be dried and 

distilled prior to use and all glassware and syringes must be thoroughly dried. 

An oven-dried, 100-mL single-necked, round-bottomed flask equipped with a stir bar was 

charged with 30 mL of dry methylene chloride and capped with a septum. The solution 

was stirred under an inert atmosphere of nitrogen, which was provided through a needle 

inserted into the septum. The solution was cooled to 0°C (ice bath temperature) and neat 

diethylzinc (0.67 mL, 6.6 mmol) was added slowly by syringe over a period of 5 min. 

Methylene iodide (0.53 mL, 6.6 mmol) was added by syringe dropwise over 5 min. The 

mixture was allowed to stir for 10 min and ^-butyl acetoacetate (0.50 mL, 3 mmol) was 

added in one portion by syringe. The P-keto ester was stirred in the carbenoid for 30 min, 

at which time butyraldehyde (0.27 mL, 3 mmol) was added by syringe. The reaction was 

allowed to proceed for 15 min and then quenched with a saturated solution of ammonium 

chloride and allowed to warm to room temperature by removal of the ice bath. The 

quenched reaction mixture was extracted with diethyl ether (3 x 30 mL). The ethereal 

extracts were dried over magnesium sulfate (ca. 10 g), filtered and evaporated affording 

0.550 g (75 %) of (2S,3R)-tert-bu\yl 3-hydroxy-2-(2-oxopropyl)hexanoate in equilibrium 

with two closed hemiketals as a pale yellow oil after column chromatography 
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(hexane:ethyl acetate, 5:1, R/= 0.3). lH NMR (400 MHz, CDC13) 5: 4.15 (dd, J= 11.5, 

6.3 Hz, 1H), 4.11 - 4.03 (m, 1H), 3.81 (ddd, J= 12.3, 8.3, 4.2 Hz, 0.49H), 2.97 - 2.90 

(m, 1H), 2.89 (d, J= 1.7 Hz, 1H), 2.85 - 2.76 (m, 1H), 2.67 - 2.60 (m, 1H), 2.60 - 2.50 

(m, 1H), 2.28 - 2.10 (m, 3H), 2.09 - 1.97 (m, 2H), 1.65 - 1.50 (m, 3H), 1.46 (d, J = 4.2 

Hz, 6H), 1.41 (s, 9H), 1.39 (d, J= 1.7 Hz, 9H), 1.86 (dd, J= 7.6, 4.3 Hz, 6H). 13C NMR 

(101 MHz, CDCI3) 6: 207.56, 176.29, 173.52, 172.69, 105.06, 104.95, 82.68, 82.11, 

81.49, 80.97, 71.60, 50.23, 50.00, 47.13, 42.75, 41.44, 40.57, 39.59, 38.21, 37.12, 30.35, 

28.18, 28.09, 27.37, 26.29, 19.31, 19.17, 18.79, 14.19, 14.14. IR (neat) v 3300, 2998, 

2133, 1714, 1433, 1378, 1225, 1098 cm"1. 

3-(Trimethylsilyl)prop-2-yn-l-ol(93) 

A 100-mL, round-bottomed flask, equipped with a magnetic stir bar and nitrogen inlet, 

was charged with diethyl ether (20 mL) and ethynyltrimethylsilane (2.12 mL, 15.0 mmol) 

and cooled to -78 °C in a dry ice/acetone bath. The solution was allowed to stir for 10 

min at -78 °C then n-butyl lithium (4 mL, 2.5 M in hexanes, 10 mmol) was carefully 

syringed dropwise over 15 min into the flask. The reaction was allowed to warm to room 

temperature over a 30 min period. Paraformaldehyde (1.5 g) was cracked (60 °C) in a 

separate 20-mL round-bottomed flask and was bubbled into the reaction mixture. The 

reaction was allowed to stir for 30 min, at which time the reaction cooled to 0 °C and 

quenched with saturated ammonium chloride (10 mL). The solution was filtered and the 

aqueous layer was washed with ethyl acetate (3x10 mL). The combined organic layers 

were dried with magnesium sulfate (ca. 10 g) and concentrated in vacuo. The resulting 
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oil was distilled to obtain 1.67 g (87 %) of 93 as a clear oil. JH NMR (400 MHz, CDC13) 

5: 4.20 (d,J= 6.6 Hz, 2H), 0.18 (s, 9H). 13C NMR (101 MHz, CDCI3) 5: 104.00, 91.13, 

51.91, -0.00. 13C NMR (101 MHz, CDCI3) 8 104.00, 91.29, 51.91, 0.00. IR (neat) v 3601, 

2888, 2755, 2225, 1200 cm"1. 

(Z)-2-((Dimethyl(phenyl)silyl)methylene)hexan-l-ol(95) 

Dimethylsilyl choride (0.8 mL, 5 mmol) was stirred in a 100-mL, round-bottomed flask, 

equipped with a septum and a nitrogen inlet in THF (20 mL) and cooled in an ice bath. 

Lithium wire (0.104 g, 15 mmol) was added and stirred for 36 h. The formation of the 

silylcuprate was performed by cannulation of dimethylpenylsilyl lithium into a second 

round-bottomed flask containing THF (20mL) and dry copper cyanide (223.5 mg mL, 2.5 

mmol) in an ice bath. This was stirred for 20 min and 1-hexyne (0.3 ml, 2.5 mmol) was 

then added and stirred for 20 min. Paraformaldehyde (1 g) in a 100-mL round-bottomed 

flask was then cracked via heating mantle, bubbled into the solution and allowed to stir 

for 1 h. The reaction was then quenched with saturated ammonium choride (10 mL) and 

filtered. The filtrate was extracted with diethyl ether (3 x 30 mL), the combined organic 

layers were dried over magnesium sulfate (ca. 10 g), filtered and concentrated under 

vacuum (25 mmHg) to give (Z)-2-((dimethyl(phenyl)silyl)methylene)hexan-l-ol as a 

yellow viscous oil. This was further purified by column chromatography (hexane:ethyl 

acetate, 15:1, R/= 0.2) to give 0.341 (55 %) of 95 as a clear oil as a mixture of E and Z 

isomers. lH NMR (400 MHz, CDCI3) 6: 7.67 - 7.47 (m, 2H), 7.42 - 7.32 (m, 3H), 5.57 

(s, 1H), 4.00 (t, J= 8.4 Hz, 2H), 2.31 - 2.11 (m, 2H), 1.46 (ddd, J= 11.8, 8.4, 5.9 Hz, 
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2H), 1.34 (dq, J= 11.7, 7.0 Hz, 2H), 0.92 (t, J= 7.3 Hz, 3H), 0.38 (s, 6H). 13C NMR (400 

MHz, CDC13) 5: 162.93, 158.03, 142.18, 141.77, 135.67, 135.52, 135.45, 135.01, 134.97, 

131.52, 131.48, 131.22, 130.92, 130.65, 129.95, 129.85, 129.77, 129.68, 124.73, 123.01, 

117.33,67.16,66.96,31.58,31.13, 14.39, 14.27,2.84,2.70, 1.46, 1.44. IR (neat) v 3598, 

3014, 2859, 2822, 1628, 1228 cm"1. 

(Z)-2-((Dimethyl(phenyl)silyl)methylene)butan-l-ol(98) 

Dimethylphenylsilyl choride (0.8 mL, 5 mmol) was stirred in a 100-mL round-bottomed 

flask equipped with a septum and a nitrogen inlet in THF (20 mL) and the flask lowered 

into an ice bath. Lithium wire (0.104 g, 15 mmol) was added and stirred for 36 h (dark 

red solution). The formation of the silylcuprate was performed by cannulation of 

dimethylpenylsilyl lithium into an ice cooled second 100 mL round-bottomed flask 

containing THF (20mL) and dry copper cyanide (223.5 mg, 2.5 mmol). The solution was 

stirred for 20 min and 1-butyne (collected in a test tube cooled in a dry ice/acetone bath) 

(0.2 mL, 2.5 mmol) was then added quickly and stirred for 20 min at 0 °C. 

Paraformaldehyde (1 g) in a separate 100-mL round-bottomed flask was then cracked via 

heating mantle, bubbled into the solution and allowed to stir for 1 h. The reaction was 

quenched with saturated ammonium chloride (10 mL) and filtered. The filtrate was 

extracted with diethyl ether (3 x 30 mL) and dried over magnesium sulfate. The solution 

was then filtered and concentrated under vacuum (30 °C, 25 mmHg) to give (Z)-2-

((dimethyl(phenyl)silyl)methylene)butan-l-ol as a yellow viscous oil. This was further 

purified by column chromatography (hexane:ethyl acetate, 15:1, R/= 0.1) to give 0.281 g 
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(51 %) of 98 as a clear oil. >H NMR (400 MHz, CDC13) 5: 7.56 - 7.49 (m, 2H), 7.40 -

7.33 (m, 3H), 5.57 (t, J= 1.4 Hz, 1H), 4.02 (d, J= 6.0 Hz, 2H), 2.24 (qd, J= 7.4, 1.4, 

2H), 1.08 (t, J = 7.4 Hz, 3H), 0.38 (s, 3H). 13C NMR (101 MHz, CDCb) 6: 161.56, 

140.78, 134.09, 129.49, 128.51, 123.34, 65.80, 30.18, 12.96, 0.01. IR (neat) v 3522, 

3021, 2891, 2827, 1677, 1272, 1229 cm"1. 

Ethyl 3-(dimethyl(phenyl)silyl)-4-methyleneoctanoate (101) 

A flame-dried 10-mL microwave vessel was charged with montmorillonite KSF clay 

(0.05 g), dry dimethylformamide (2 mL), triethyl orthoacetate (1.28 mL, 7.02 mmol), and 

(Z)-2-((dimethyl(phenyl)silyl)methylene)hexan-l-ol (95) (0.248 g, 1.00 mmol). The 

vessel was capped and exposed to microwave irradiation (Power: 200 MHz, Temperature: 

153 °C, Ramp: 5 min., Hold: 5 min). The reaction mixture was allowed to cool to room 

temperature and saturated ammonium chloride (30 mL) was added and the aqueous layer 

was extracted with diethyl ether (3 x 30 mL) and concentrated in vacuo (25 mmHg) to 

give a yellowish oil. This was then further purified via column chromatography 

(hexane:ethyl acetate, 20:1, R/ = 0.3) affording 0.300 g (98 %) of ethyl 3-(dimethyl 

(phenyl)silyl)-4-methylenehexanoate (101) as a clear oil. !H NMR (400 MHz, CDCI3) 8: 

7.46 - 7.33 (m, 2H), 7.30 - 7.16 (m, 3H), 4.63 (d, J= 1.1 Hz, 1H), 4.42 (s, 1H), 4.05 -

3.75 (m, 2H), 2.35 (ddd, J= 20.4, 15.8, 8.2 Hz, 2H), 2.19 - 2.03 (m, 1H), 1.77 - 1.65 (m, 

2H), 1.38 - 1.25 (m, 1H), 1.24-1.11 (m, 3H), 1.07 (t, J= 7.1 Hz, 3H) 0.74 (t, J= 7.2 Hz, 

3H), 0.25 (s, 3H), 0.16 (s, 3H). 13C NMR (101 MHz, CDCI3) 8: 178.26, 155.49, 142.32, 
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139.01, 134.23, 132.75, 111.69, 65.22, 43.03, 40.06, 36.89, 34.66, 27.58, 19.25, 19.01, 

0.95, -0.01. IR (neat) v 3590, 3096, 3091, 2987, 2859, 1740, 1463, 1105 cm"1. 

Ethyl 3-(dimethyl(phenyl)silyl)-4-methylenehexanoate (100) 

A flame-dried, 10-mL microwave vessel was charged with montmorillonite KSF clay 

(0.05 g), dry dimethylformamide (2 mL), triethyl orthoacetate (2.2 mL, 1.69 mmol), and 

(Z)-2-((dimethyl(phenyl)silyl)methylene)butan-l-ol (98) (0.3732 g, 1.69 mmol). The 

vessel was sealed with a Teflon cap and exposed to microwave irradiation (Power: 200 

MHz, Temperature: 153 °C, Ramp: 5 min., Hold: 5 min). The reaction was allowed to 

cool to room temperature and saturated ammonium chloride (30 mL) was added and the 

aqueous layer was extracted with diethyl ether (3 x 30 mL) and the organic extracts were 

concentrated in vacuo (25 mmHg) to affford a yellowish oil. The oil was further purified 

via column chromatography (hexane:ethyl acetate, 20:1, R/= 0.3) yielding 0.486 g (99 

%>) of ethyl 3-(dimethyl(phenyl)silyl)-4-methylenehexanoate 100 as a clear oil. :H NMR 

(400 MHz, CDC13) 6: 7.52 - 7.46 (m, 2H), 7.41 - 7.31 (m, 3H), 4.75 (s, 1H), 4.52 (s, 

1H), 4.03 (q, J= 7.1 Hz, 2H), 2.46 (ddd, J= 20.3, 15.9, 8.3 Hz, 2H), 2.25 - 2.16 (m, 1H), 

1.86 (q, J= 7.3 Hz, 2H), 1.18 (dd, J= 9.1, 5.1, 3H), 0.95 (t, J= 7.0 Hz, 3H), 0.31 (s, 3H), 

0.29 (s, 3H). 13C (101 MHz, CDCI3) 5: 178.45, 156.96, 142.41, 139.10, 134.67, 132.94, 

111.01, 82.46, 82.14, 81.83, 65.35, 40.19, 37.08, 36.02, 19.34, 17.00, 1.06, -0.01. IR 

(neat) v 3471, 3072, 3061,2887,2859, 1731, 1463, 1105, 1004,996 cm"1. 
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(25,3^»55')-Methyl-5-(2-(3-ethoxy-3-oxopropylidene)hexyl)-5-methyl-2-

propyltetrahydrofuran-3-carboxylate (104) 

An oven-dried, 20-mL, one-necked, round-bottomed flask equipped with a magnetic 

stirring bar was charged with dry methylene chloride (10 ml, 20 mL/mmol). The neck of 

the round-bottomed was fitted with a septum and equipped with a gas inlet adapter 

attached to a nitrogen source. Methyl 3-hydroxy-2-(propyl-2-one)-hexanoate (81) (0.10 g, 

0.50 mmol) was added to the solution of methylene chloride via syringe. Ethyl 3-

(dimethyl(phenyl)silyl)-4-methyleneoctanoate (101) (0.32 g, 1.00 mmol) was added to 

the solution via syringe. This solution was then cooled down to -78 °C with a dry ice 

acetone bath. Once the reaction is at -78 °C, addition of SnBr4 (0.66 g, 1.50 mmol) was 

added in one portion to the solution and allowed to stir at -78 °C for 12 hours. The 

solution was then allowed to warm to room temperature and was quenched with water (5 

mL, 5mL/mmol), at which time the reaction mixture was transferred to a separatory 

funnel. The lower organic layer was withdrawn and placed in an Erlenmeyer flask. The 

aqueous washing was extracted with diethyl ether (3 x 30 mL) and the combined organic 

layers were dried over 10 g of anhydrous magnesium sulfate and filtered prior to 

concentration under reduced pressure to afford a yellow oil. After column 

chromatography (hexane:ethyl acetate 15:1, R/= 0.2) 0.158g (43 %) of 104 was isolated 

as a clear oil. m NMR (400 MHz, CDC13) 8: 5.29 (t, J= 7.2 Hz, 1H), 4.11 - 4.02 (m, 

2H), 3.99 - 3.87 (m, 1H), 3.62 (s, 3H), 3.00 (d, J = 7.2 Hz, 2H), 2.66 (dd, J= 18.6, 9.5 

Hz, 1H), 2.36 (dd, J= 15.0, 8.9 Hz, 1H), 2.21 - 2.02 (m, 4H), 2.01 - 1.82 (m, 1H), 1.60 -

1.34 (m, 3H), 1.31 - 1.22 (m, 5H), 1.21 - 1.15 (m, 4H), 1.09 (s, 2H), 0.89-0.77 (m, 6H). 
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13C N M R (101 MHz, CDCb) 8: 173.96, 172.43, 140.87, 120.35, 82.95, 80.92, 60.61, 

51.98, 49.76, 47.07, 42.81, 37.57, 33.84, 30.83, 30.60, 27.58, 22.97, 19.46, 14.38, 14.28, 

14.20. IR(neat) v 3011, 2998, 2911, 1745, 1733, 1028, 1011, 983, 958 cm"1. 

(S)-2-Amino-3-methylbutan-l-ol(108) 

A 250-mL, three-necked, round-bottomed flask was equipped with a magnetic stir bar, a 

nitrogen inlet, condenser, and a pressure equalizing drop funnel was charged with L-

valine (11.86 g, 0.10 mol) and tetrahydrofuran (100 mL). Boron trifluoroetherate (13.0 

mL, 0.11 mol) was added drop wise over a 30 min period and the reaction was refluxed 

for 15 min via heating mantle. The reaction mixture was allowed to cool to room 

temperature and borane dimethylsulfide (11.0 mL, 0.12 mol) was added drop wise over a 

1 h period. The reaction was then allowed to reflux for 12 h. Tetrahydrofuran/water (50 

mL, 1/1) was added drop wise over 15 min, followed by the addition of sodium 

hydroxide (30.0 mL, 10 M) over a 15 min period. The solution was refluxed for an 

additional 2 h then cooled down and filtered through celite. The ethereal layer was 

evaporated via rotary evaporation, and the aqueous layer was extracted with ethyl acetate 

(3 x 40 mL). The combined organic layers were dried with sodium sulfate and 

concentrated in vacuo to give 8.97 g (87 %) of 108 as a clear oil. !H NMR (400 MHz, 

CDCb) 8: 4.92 - 4.74 (m, 1H), 3.36 - 3.22 (m, 1H), 2.56 (ddd, J= 8.8, 6.4, 3.9 Hz, 1H), 

1.66 - 1.49 (m, 1H), 1.23 - 0.56 (m, 6H). 13C NMR (101 MHz, CDCb) 8: 64.23, 58.79, 

31.28, 19.38, 18.70. IR (neat) v 3610, 3500, 2987, 2930, 2614, 1477, 13,81, 1777, 1356, 

1320,1064,990,770 cm"1. 
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(S)-4-Isopropyloxazolidin-2-one (106) 

A dry 250-mL round-bottomed flask equipped with a Dean Stark trap was charged with 

potassium carbonate (0.667 g, 4.83 mmol), (S)-2-amino-3-methylbutan-l-ol (108) (4.801 

g, 46.5 mmol), and diethyl carbonate (113 mL, 933 mmol). The mixture was lowered 

into an oil bath (135 °C). After 10 mL of ethanol was collected in the trap the flask was 

removed from the oil bath and cooled down to room temperature. Diethyl carbonate was 

removed in vacuo (5 mm Hg, 30 °C), at which time methylene chloride (60mL) was 

added. The solution was washed with 1M sodium hydroxide (2 x 20 mL), water (20 mL), 

and brine (20 mL). The organic layer was dried over magnesium sulfate and 

concentrated in vacuo to afford a yellow oil. Hexanes (20 mL) were then added and 

stored at -5 °C for 12 h to produce 1.80 g (30 %>) of (S)-4-isopropyloxazolidin-2-one 

(106) as white shards. MP = 67 - 70 °C (Lit. 65 - 68 °C)126. lH NMR (400 MHz, CDCb) 

5: 6.00 (s, 1H), 4.45 (t, J= 8.6 Hz, 1H), 4.10 (dd, J= 8.7, 6.3 Hz, 1H), 3.61 (dd, J= 15.2, 

6.7 Hz, 1H), 1.73 (qd, J= 13.5, 6.7 Hz, 1H), 0.97 (d, J= 6.1 Hz, 3H), 0.90 (d, J = 6.7, 

3H). 13C NMR (101 MHz, CDCb) 8: 160.8, 68.8, 58.5, 32.9, 18.2, 17.9. IR (neat) v 

3258, 3199, 2971, 2844, 1738, 1705, 1480, 1440, 1367, 1242 cm4. 

(5)-l-(4-isopropyl-2-oxooxazolidin-3-yl)butane-l,3-dione(105) 

A 50-mL round-bottomed flask equipped with a magnetic stir bar, septum, and a nitrogen 

inlet, was charged with THF (10 mL) and (5)-4-isopropyloxazolidin-2-one (106) (0.13 g, 

135 



1.00 mmol) and cooled to -78 °C. To this solution rc-butyl lithium (0.44 mL, 2.5 M, 1.10 

mmol) was added dropwise over 15 min. The flask was allowed to warm to room 

temperature for 15 min and cooled back down to -78 °C. Diketene (0.10 mL, 1.10 mmol) 

was added dropwise over 5 min and allowed to stir for 30 min at -78 °C. Then the 

reaction was allowed to stir for 2 h at room temperature, after which the solution was 

quenched with saturated ammonium chloride (10 mL). The mixture was taken up in 

methylene chloride (50 mL) and washed with saturated sodium bicarbonate (20 mL), 

water (20 mL), and brine (20 mL). The organic layer was dried over sodium sulfate and 

concentrated in vacuo to give a brown viscous oil. After column chromatography 

(hexane:ethyl acetate, 1:1, R/= 0.8) 0.089 g (42 %) of compound 105 was obtained as a 

light yellow solid. MP = 54 - 55 °C (Lit. 53 - 55 °C)127. 'H NMR (400 MHz, CDCb) 

major tautomer 8: 4.51 - 4.43 (m, 1H), 4.38 - 4.19 (m, 2H), 4.14 - 3.92 (m, 2H), 2.36 -

2.21 (m, 1H), 2.10 - 1.98 (s, 3H), 1.04 - 0.82 (m, 6H). 13C NMR (101 MHz, CDCb) keto 

and enol tautomers 8: 201.19, 166.56, 154.51, 89.99, 63.83, 63.56, 63.45, 63.21, 60.58, 

59.49, 58.60, 58.20, 51.68, 30.27, 29.33, 28.94, 28.50, 18.20, 18.12, 14.94, 14.88, 14.71, 

14.44, 14.40. IR (neat) v 2936, 2899, 1722, 1712, 1569, 1432, 1351, 1311, 1129, 1061, 

901,883 cm-1. 

(45')-3-((2iS',3»S')-5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-carbonyl)-4-

isopropyloxazolidin-2-one (110) 
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CA UTION! Neat diethylzinc will ignite on exposure to air and reacts violently with water. 

It must be handled and reacted under nitrogen. The reaction solvents must be dried and 

distilled prior to use and all glassware and syringes must be thoroughly dried. 

A 100-mL round-bottomed flask equipped with a septum, mechanical stir bar, and a 

nitrogen inlet was charged with methylene chloride (30 mL) and cooled to 0 °C. Diethyl 

zinc (0.56 mL, 5.4 mmol) was added and methylene iodide (0.44 mL, 5.4 mmol) was 

added dropwise over 5 min. This was allowed to react for 15 min, at which time (5)-l-(4-

isopropyl-2-oxooxazolidin-3-yl)butane-l,3-dione (105) (0.384 g, 1.801 mmol) in 

methylene chloride (5 mL) was quickly added. The solution was allowed to stir for 0.5 h, 

after which butyraldehyde (0.2 ml, 2.16 mmol) was added and allowed to stir for 15 min. 

This was then quenched with saturated ammonium chloride (20 mL). The organic layer 

was extracted with methylene chloride (2x30 mL). The combined organic extracts were 

dried over sodium sulfate, and concentrated in vacuo to yield a yellow oil. The oil was 

further purified by column chromatography (hexane:ethyl acetate, 15:1, R/= 0.5) to give 

0.367 g (68 %>) of (41S)-3-(5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-carbonyl)-4-

isopropyloxazolidin-2-one 110 as a clear oil. 'H NMR (400 MHz, CDCb) 8: 4.53 (td, J = 

1.6, 5.1 Hz, 1H), 4.47 - 4.38 (m, 1H), 4.34 - 4.16 (m, 2H), 3.87 - 3.70 (m, 0.5H), 3.57 -

3.31 (m, 1H), 2.52-2.23 (m,2H), 2.18-1.99 (m, 1H), 1.78 - 1.28 (m, 16H), 1.03-0.80 

(m, 9H). 13C NMR (101 MHz, CDCb) 8: 201.34, 166.58, 105.26, 105.08, 82.77, 81.50, 

77.66, 77.34, 77.03, 63.83, 63.61, 63.45, 59.24, 58.92, 58.85, 58.54, 51.64, 47.64, 47.41, 

43.92, 42.45, 41.69, 37.94, 37.88, 30.24, 29.10, 28.53, 28.46, 26.96, 26.88, 19.39, 19.35, 
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19.00, 18.89, 18.15, 18.07, 14.85, 14.67, 14.49, 14.17, 14.11. IR (neat) v 3249, 2943, 

2231, 1711, 1429, 1325, 1255, 1195, 1090, 985 cm"1. 

(5)-3-((25',35',55')-5-allyl-5-methyl-2-propyltetrahydrofuran-3-carbonyl)-4-

isopropyloxazolidin-2-one (109) 

An oven dried, 50mL, one neck, round-bottom flask equipped with a magnetic stiring bar 

was charged with dry methylene chloride (20ml, 20mL/mmol). The neck of the round 

bottom was fitted with a septum and equipped with a gas inlet adapter attached to a 

n i t rogen source. Addi t ion of (45 ')-3-((25' ,35 ')-5-hydroxy-5-methyl-2-

propyltetrahydrofuran-3-carbonyl)-4-isopropyloxazolidin-2-one (110) (0.1223 g, 0.410 

mmol) was added to the solution of methylene chloride via syringe. Allyl trimethylsilane 

(0.13 ml, 0.82 mmol) was added to the solution via syringe. This solution was then 

cooled down to -78°C with a dry ice acetone bath. Once the reaction is at -78 °C, 

addition of BF3-Et20 ( 0.0.15 mL, 1.23 mmol) drop wise to the solution and allowed to 

stir at -78 °C for 12 hours. The solution was then allowed to warm to room temperature 

and was quenched with water (5 mL, 5mL/mmol), at which time the reaction mixture was 

transferred to a separatory funnel. The lower organic layer was withdrawn and placed in 

an Erlenmeyer flask. The aqueous washing was extracted with diethyl ether (3 x 30 mL) 

and the combined organic layers are dried over 10 g of anhydrous magnesium sulfate and 

filtered prior to concentration under reduced pressure to give 0.114 g (86 %>) of 109 as a 

clear viscous oil. lH NMR (400 MHz, CDCb) 8: 5.92 - 5.75 (m, 1H), 5.18 - 4.99 (m, 

2H), 4.49 - 4.39 (m, 1H), 4.33 - 4.22 (m, 3H), 4.14 - 4.00 (m, 1H), 2.47 - 2.07 (m, 5H), 
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2.06 - 1.89 (m, 1H), 1.85 - 1.46 (m, 3H), 1.34 - 1.23 (m, 3H), 0.94 - 0.87 (m, 9H). 13C 

NMR (101 MHz, CDCb) 8: 173.80, 172.50, 153.86, 134.69, 118.20,82.67,81.01,63.30, 

58.73, 48.23, 45.95, 41.98, 37.19, 35.31, 29.02, 27.43, 19.98, 18.18, 14.77. IR (neat) v 

3201, 2921, 2211, 1702, 1399, 1322, 1201, 1149, 1008, 927 cm"1. 

Ethyl-4-(((2i?,45',55)-4-((5)-4-isopropyl-2-oxooxazolidine-3-carbonyl)-2-methyl-5-

propyItetrahydrofuran-2-yl)methyl)hex-3-enoate (111) 

An oven-dried, 50-mL, one-necked, round-bottomed flask equipped with a magnetic 

stirring bar was charged with dry methylene chloride (20 ml, 20 mL/mmol). The neck of 

the round bottom was fitted with a septum and a needle attached to a nitrogen source. 

Addition of (45)-3-((25',3S)-5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-yl)-4-

isopropyloxazolidin-2-one 110 (0.277 g, 0.410 mmol) was added to the solution of 

methylene chloride via syringe. Ethyl 3-(dimethyl(phenyl)silyl)-4-methylenehexanoate 

(100) (0.277 g, 0.94 mmol) was suspended in methylene chloride (3 mL) was added to 

the solution via syringe. This solution was then cooled down to -78 °C through use of a 

dry ice/acetone bath. Once the reaction was at -78 °C, addition of tin (IV) bromide 

(0.627 g, 1.410 mmol) was added in one portion to the solution and the solution was 

allowed to stir at -78 °C for 12 h. The reaction was then allowed to warm to room 

temperature and was quenched with water (5 mL, 5mL/mmol), at which time the reaction 

mixture was transferred to a separatory funnel. The lower organic layer was withdrawn 

and placed in an Erlenmeyer flask. The aqueous layer was extracted with diethyl ether (3 

x 30 mL). The combined organic layers were dried over 10 g of anhydrous magnesium 
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sulfate and filtered prior to concentration under reduced pressure to give a yellow oil. 

After column chromatography (hexane:ethyl acetate 10:1, R/= 0.2) 0.154 (86 %) of 111 

was isolated as a clear viscous oil as a mixture of E and Z isomers. !H NMR (400 MHz, 

CDCb) 8: 5.34 (dd, J = 16.1, 8.8 Hz, 1H), 4.44 (dt, J = 8.3, 3.5 Hz, 1H), 4.28 (ddd, J = 

15.6, 8.6, 5.2 Hz, 3H), 4.18 - 4.08 (m, 3H), 4.04 - 3.94 (m, 1H), 3.09 (t, J = 7.2 Hz, 3H), 

2.47 - 2.31 (m, 3H), 2.18 (ddd, J = 13.5, 10.6, 6.6 Hz, 3H), 1.82 (dd, J = 12.3, 9.1 Hz, 

1H), 1.71 - 1.34 (m, 7H), 1.30 - 1.21 (m, 10H), 0.99 - 0.86 (m, 15H). 13C NMR (101 

MHz, CDCb) 8: 120.08, 83.52, 81.03, 63.25, 60.64, 58.76, 48.61, 47.87, 42.91, 37.23, 

33.73, 28.59, 26.95, 24.42, 19.66, 18.18, 14.79, 14.41, 14.37, 13.12. IR (neat) v 3022, 

3010, 2961, 2899, 1784, 1257, 1198, 942 cm"1. 

(S)-pyrrolidin-2-ylmethanol (113) 

A 250-mL, three-necked round-bottomed flask equipped with a magnetic stir bar, a 

nitrogen inlet, condenser, and a pressure equalizing drop funnel was charged with L-

proline (11.62 g, 0.10 mol) and tetrahydrofuran (100 mL). Boron trifluoroetherate (13.0 

mL, 0.11 mol) was added dropwise over a 30 min period and the reaction was refluxed 

for 15 min. The reaction mixture was cooled to room temperature and boran 

dimethylsulfide (11.0 mL, 0.12 mol) was added dropwise over a 1 h period after which 

time the reaction was refluxed for 12 h. Tetrahydrofuran/water (50 mL, 1/1) was added 

dropwise over 15 min, followed by the addition of sodium hydroxide (30.0 mL, 10 M) 

over a 15 min period. The reaction was refluxed for an additional 2 h, then cooled down 

in an ice bath and filtered through celite. The ethereal component of the mixture was 
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evaporated via rotary evaporation, and the aqueous layer was extracted with ethyl acetate 

(3 x 40 mL). The combined organic layers were dried with sodium sulfate and 

concentrated in vacuo to give 7.89 g (78 %) of 113 as a clear oil. Carried on without 

NMR analysis. 

(5)-2-(hydroxymethyl)pyrrolidine-l-carbaldehyde (114) 

A 250-mL round-bottomed flask containing (i?)-pyrrolidin-2-ylmethanol 113 (10.216 g, 

0.101 mol) equipped with a pressure equalizing drop funnel and a magnetic stir bar was 

cooled down to 0 °C. Ethyl formate (10.6 mL, 0.131 mol) was added over 20 min and 

stirred for 30 min at 0 °C to give a green colored solution. Excess ethyl formate was 

evaporated in vacuo (10 mmHg, 30 °C). The reaction was then taken up in 

dichloromethane (60 mL) and dried by stirring with sodium carbonate for 30 min. The 

drying agent was filtered off and the final product was concentrated in vacuo to yield 

11.34 g (87 %) of (i?)-2-(hydroxymethyl)pyrrolidine-l-carbaldehyde 114 as a clear oil. 'H 

NMR (400 MHz, CDCb) major rotomeric form 8: 8.28 (s, 1H), 4.17 - 4.02 (m, 2H), 3.78 

- 3.31 (m, 3H), 2.22 - 1.75 (m, 2H), 1.72 - 1.49 (m, 2H). 13C NMR (101 MHz, CDCb) 

8: 163.12, 162.09, 66.79, 65.16, 60.46, 59.14, 47.87, 43.87, 28.61, 27.48, 24.18, 22.96. IR 

(neat) v 3540, 2983, 1703, 1251, 1014, 1009, 942, 841 cm"1. 

(S)-2-(methoxymethyl)pyrrolidine (116) ~* 

A 100-mL round-bottomed flask equipped with a magnetic stir bar and septum was 

charged with water (15 mL), (i?)-2-(methoxymethyl)pyrrolidine-l-carbaldehyde 115 
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(2.184 g, 0.0169 mol), and potassium hydroxide (3.033 g, 0.054 mol) stirred under a 

blanket of nitrogen for 12 h. Saturated potassium carbonate (10 mL) caused the reaction 

to precipitate the potassium salts, which were then filtered away. The filtrate was then 

washed with ether (3 x 30 mL), dried with sodium sulfate and concentrated in vacuo to 

give 1.79 g (92 %) of 116 as a clear viscous oil. lYl NMR (400 MHz, CDCb) 8: 3.36 (s, 

3H), 3.35 - 3.32 (m, 1H), 3.30 - 3.24 (m, 3H), 2.99 - 2.96 (m, 1H), 2.92 - 2.83 (m, 1H), 

1.85 - 1.80 (m, 1H), 1.76 - 1.68 (m, 2H), 1.44 - 1.35 (m, 1H). 13C NMR (101 MHz, 

CDCb) 8: 76.60, 59.19, 57.95, 46.72, 28.11, 25.54 cm"1. 

L-Proline methylester hydrochloride salt (118 HCl) 

A 500-mL round-bottomed flask equipped with a pressure-equalizing droping funnel, 

magnetic stir bar, and a calcium chloride drying tube was charged with L-proline (11.51 

g, 100 mmol) in methanol (100 mL) and then lowered into an ice bath. Thionyl chloride 

(8.0 mL, 110 mmol) was added to the pressure-equalizing droping funnel and added 

slowly to the flask over 0.5 h. The reaction mixture was allowed to warm to room 

temperature and stirred for 24 h. The solvent was removed under vacuum (25 mmHg) 

and then dried further on a high vacuum pump (1 mmHg). This procedure provided 

15.73 g (95 %) of L-proline methyl ester hydrochloride salt (118 HCl). JH NMR (400 

MHz, D20) 8 4.37 (t, J= 8.0 Hz, 1H), 3.72 (s, 3H), 3.40-3.22 (m, 2H), 2.32 (ddd, J = 

15.2, 13.5, 6.8 Hz, 1H), 2.05 (tt, J= 15.5, 7.9 Hz, 1H), 1.99-1.89 (m, 2H). 13CNMR(101 

MHz, D2O) 6 170.59, 59.66, 53.91, 46.71, 28.21, 23.42. IR (neat) v 3330, 3022, 2993, 

2974, 1783, 1104, 1048, 974 cm"1. 

142 



L-Proline methylester (118) 

L-Proline methylester hydrochloride salt (118 HCl) (10 g, 77.4 mmol) was dissolved in 

saturated sodium bicarbonate (100 mL) and extracted with ethyl acetate (3 x 30 mL) to 

afford 6.89 g (69 %) of 118 as a clear oil. lU NMR (400 MHz, CDCb) 8: 3.79 (dd, J = 

8.6, 5.7 Hz, 1 H), 3.74 (s, 3H), 3.11 - 3.06 (m, IH), 2.96 - 2.91 (m, IH), 2.26 - 2.10 (m, 

3H), 1.90 - 1.82 (m, IH), 1.81 - 1.75 (m, 2H). 13C NMR (101 MHz, CDCb) 8: 176.00, 

59.74, 52.32, 47.12, 30.41, 25.69. IR (neat) v 3250, 3199, 2981, 2849, 1738, 1110, 1022, 

839 cm"1. 

(S)-Methyl l-(3-oxobutanoyl)pyrrolidine-2-carboxylate (119) 

Diketene acetone adduct # (0.13 mL, 1.00 mmol) was mixed with proline methyl ester 

(118) (0.39 g, 1.00 mmol) in a 10 mL pyrex microwave vessel sealed with a Teflon cap. 

The solution was subjected to microwave irradiation (Time: 2 min, Power: 200 Watt, 

Temperature: 178 °C). The resulting brown solution was taken up in ethyl acetate (30 

mL) and washed with water (10 mL), HCl (1 M, 10 mL), and brine (10 mL). The organic 

solution was dried with sodium sulfate and concentrated in vacuo. After column 

chromatography (hexane:ethyl acetate 1:8, R/= 0.6) 0.043 g (20 %>) 119 was obtained as 

a clear, viscous oil as a mixture of keto and enol forms, with the appearance of amide 

rotomeric forms. lH NMR (400 MHz, CDCb) major tautomer 8: 4.56 - 4.49 (m, IH), 

3.74 (s, 3H), 3.67 - 3.53 (m, 2H), 3.44 - 3.33 (m, 2H), 2.31 (s, 3H), 2.25 - 2.16 (m, 2H), 

2.04 - 1.87 (m, 2H). 13C NMR (101 MHz, CDCb) keto and enol tautomers 8: 202.06, 
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172.38, 165.30, 88.60, 77.34, 77.02, 76.70, 59.89, 58.80, 58.06, 52.28, 51.39, 51.06, 

47.64, 46.53, 31.22, 30.09, 29.29, 24.75, 24.45, 22.63, 21.77. IR (neat) v 2913, 2822, 

1704, 1700, 1569, 1399, 1345, 1303, 1109, 1027, 984, 881 cm"1. 

Methyl-l-((2i?,3'5,?55r)-5-hydroxy-5-methyl-2-propyltetrahydrofuran-3-carbonyl) 

pyrrolidine-2-carboxylate (120) 

CA UTION! Neat diethylzinc will ignite on exposure to air and reacts violently with water. 

It must be handled and reacted under nitrogen. The reaction solvents must be dried and 

distilled prior to use and all glassware and syringes must be thoroughly dried. 

A 100-mL round-bottomed flask equipped with a septum, mechanical stir bar, and a 

nitrogen inlet was charged with methylene chloride (50 mL) and cooled to 0 °C. Diethyl 

zinc (0.92 mL, 8.82 mmol) was added and methylene iodide (0.73 mL, 8.82 mmol) was 

added dropwise over 5 min. These reagents were allowed to react for 15 min at which 

time (5)-methyl l-(3-oxobutanoyl)pyrrolidine-2-carboxylate (119) (0.627 g, 2.94 mmol) 

in methyene chloride (5mL) was added in one portion. The reaction was allowed to stir 

for 0.5 h, at which time butyraldehyde (0.32 ml, 3.53 mmol) was added and the solution 

was allowed to stir for 15 min. The reaction was quenched with saturated ammonium 

chloride (20 mL). The biphasic solution was extracted with methylene chloride (2 x 30 

mL). The combined organic layers were dried over sodium sulfate and concentrated in 

vacuo to yield a yellow oil. The oil was further purified by column chromatography 

(hexane:ethyl acetate, 15:1, R/= 0.4) to give 0.634 g (72 %) of 120 as a clear oily-solid. 

The product exists as a mixture of open chain and hemi-ketal forms as well as rotomeric 
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forms. lH NMR (400 MHz, CDCb) 8: 6.75 (s, IH), 6.56 (s, 3H), 6.48 (s, IH), 4.54 (dd, J 

= 8.7, 4.1 Hz, 3H), 4.63 - 4.42 (m, 6H), 4.37 - 4.18 (m, 5H), 3.87 - 3.53 (m, 6H), 3.18 -

3.07 (m, 3H), 3.06 - 2.97 (m, 3H), 2.31 - 2.17 (m, 7H), 2.17 - 1.88 (m, 30H), 1.70 - 1.56 

(m, 8H), 1.55 - 1.30 (m, 26H), 1.02 - 0.79 (m, 6H). 13C NMR (101 MHz, CDCb) 8 

208.23, 175.63, 173.97, 172.22, 105.00, 104.91, 104.81, 83.68, 81.88, 81.60, 77.64, 

77.32, 77.00, 71.31, 60.53, 60.18, 59.28, 59.11, 58.92, 53.05, 52.54, 52.39, 48.36, 48.21, 

48.01, 47.81, 47.66, 47.52, 47.38, 47.21, 43.53, 43.26, 42.24, 41.74, 40.98, 39.02, 38.83, 

36.40, 31.57, 30.18, 29.34, 29.26, 27.47, 25.88, 25.56, 25.05, 24.97, 24.84, 22.79, 21.20, 

19.42, 19.22, 19.11, 18.96, 14.36, 14.23. IR (neat) v 3449, 2991, 2159, 1759, 1700, 1498, 

1398, 1222, 1110 cm-1. 

(5)-Methyl-l-((2/?,35,51S)-5-allyl-5-methyl-2-propyltetrahydrofuran-3-carbonyl) 

pyrrolidine-2-carboxylate (121) 

To a solution of the y-lactol (120) (0.093 g, 0.310 mmol) in dry methylene chloride (10 

mL) was added allyltrimethylsilane (0.10 mL, 0.620 mmol) and the solution was cooled 

to -78 °C. To this solution was added dry SnBr4 (0.299 g, 0.682 mmol) in one portion 

and the solution stirred at -78 °C for 12 h. The reaction was quenched with saturated 

ammonium chloride (10 mL) and the aqueous layer was extracted with methylene 

chloride (3 x 10 mL) and dried over magnesium sulfate and concentrated in vacuo to 

afford a yellow, viscous oil. After column chromatography (hexane:ethyl acetate, 5:1, R/ 

= 0.3) 0.067 g (67 %) of 121 was isolated as a clear oil. Compound 121 exists in two 

rotomeric forms. lH NMR (400 MHz, CDCb) major rotamer 8: 5.92 - 5.75 (m, IH), 5.15 
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- 5.01 (m, 2H), 4.49 - 4.40 (m, IH), 4.34 - 4.24 (m, IH), 4.17 - 4.02 (m, IH), 3.71 (s, 

3H), 3.61-3.50 (m, IH), 2.93-2.70 (m, IH), 2.27-2.14 (m, 4H), 2.05 - 1.89 (m, IH), 

1.84 - 1.48 (m, 6H), 1.37 - 1.22 (m, 3H), 0.95 - 0.88 (m, 3H). 13C NMR (101 MHz, 

CDCb) 8: 172.77, 171.84, 153.86, 134.72, 117.97, 82.00, 81.89, 81.38, 81.09, 59.06, 

52.33, 49.45, 49.26, 49.01, 47.29, 46.87, 45.06, 44.01, 42.00, 37.06, 36.90, 29.36, 27.68, 

26.88, 25.01, 19.46, 17.98, 14.81, 14.54. IR (neat) v 3099, 3072, 2907, 2144, 1751, 

1692, 1459, 1341, 1288, 1109, 1016, 975, 841 cm"1. 

(5)-methyl-l-((2/?,3^55)-5-allyl-5-methyl-2-propyltetrahydrofuran-3-carbonyI) 

pyrrolidine-2-carboxylate (122) 

A 50-mL round-bottomed flask was charged with y-lactol 120 (0.093 g, 0.310 mmol) in 

dry methylene chloride (10 mL) ethyl 3-(dimethyl(phenyl)silyl)-4-methylenehexanoate 

(100) (0.180 g, 0.620 mmol) was added in one portion and the solution was cooled to -78 

°C. To this solution was added dry SnBu (0.299 g, 0.682 mmol) in one portion and the 

solution was stirred at -78 °C for 12 h. The reaction was quenched with saturated 

ammonium chloride (10 mL) and the aqueous layer was extracted with methylene 

chloride ( 3 x 1 0 mL). The combined organic layers were dried over magnesium sulfate, 

filtered, and concentrated in vacuo to afford a yellow, viscous oil. After column 

chromatography (hexane:ethyl acetate 5:1, R/= 0.2) 0.100 g (37 %) of 122 was isolated 

as a clear oil and exists in two rotomeric forms. !H NMR (400 MHz, CDCb) 8: 5.41 -

5.26 (m, IH), 4.18 - 4.07 (m, 2H), 3.58 - 3.43 (m, 2H), 3.40 - 3.29 (m, 2H), 3.08 (d, J = 

7.1 Hz, IH), 2.31 - 1.82 (m, 9H), 1.59 - 1.37 (m, 4H), 1.36 - 1.21 (m, 9H), 1.05 - 0.82 
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(m, 8H). 13C NMR (101 MHz, CDCb) 8: 172.26,171.39, 142.87, 119.40, 83.03, 81.50, 

72.47, 59.93, 59.14, 56.81, 49.80, 47.76, 46.32, 45.53, 41.54, 41.19, 37.28, 33.73, 30.28, 

27.66, 24.37, 19.70, 14.55, 13.02. IR (neat) v 3011, 2965, 2111, 1759, 1685, 1471, 1342, 

1299,1123,1009,948,871cm-1. 

(4iS)-3-(l-Hydroxy-2-(2-oxopropyl)cyclopropyl)-4-isopropyloxazolidin-2-one (139) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, nitrogen inlet, and 

septum, was charged with methylene chloride (30.0 mL) and placed in an ice bath (0 °C). 

Diethylzinc (0.5 mL, 5.0 mmol) was added to the flask and allowed to stir for 15 min. 

Methylene iodide (0.4 mL, 5.0 mmol) was added drop-wise over 5 min and allowed to 

stir for 15 min at 0 °C. To the milky white solution (5)-l-(4-isopropyl-2-

oxooxazolidin-3-yl)butane-l,3-dione (105) (0.21 g, 1.00 mmol) in methylene chloride 

(5.0 mL) was added in one portion. The reaction was stirred for 1 h at 0 °C and quenched 

with saturated ammonium chloride (15.0 mL) and the aqueous layer was washed with 

methylene chloride (3 x 10 mL), dried with magnesium sulfate (ca. 5 g), filtered, and 

concentrated in vacuo to give a viscous yellow oil. After column chromatography 

(hexanes:ethylacetate 5:1, R/= 0.1) 0.053 g (22 %) of 139 was isolated as a viscous clear 

oil. iH NMR (400 MHz, CDCb) 8 4.60 - 4.40 (m, IH), 4.24 - 4.02 (m, 2H), 4.02 - 3.81 

(m, IH), 2.72 (ddd, J= 26.2, 18.2, 6.7 Hz, 2H), 2.44-2.24 (m, IH), 2.22 (d, J= 13.2 Hz, 

2H), 1.46 (tt, J= 10.3, 6.7 Hz, IH), 1.35 (dd, J= 10.1, 5.8 Hz, IH), 1.23 (dd, J= 16.7, 

9.6 Hz, IH), 1.06 - 0.72 (m, 6H). 13C NMR (101 MHz, CDCb) 8 208.42, 158.24, 64.58, 
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63.64, 60.72, 42.07, 30.18, 29.26, 22.11, 19.62, 18.20, 14.50. IR (neat) v 3622, 2851, 

2772, 1722, 1678, 1222, 1105, 880, 792 cm"1. 

(5)-4-Isopropyl-3-((15',3^,5/?)-3-methyl-2-oxabicyclo[3.1.0]hexan-l-yl)oxazolidin-2-

one (140) 

A 25-mL round-bottomed flask, equipped with a septum, nitrogen inlet, and a magnetic 

stir bar, was charged with methylene chloride (10 mL) and cyclopropanol 139 (0.04 g, 

0.18 mmol). The solution was cooled to -78 °C and triethylsilane (0.06 mL, 0.35 mmol) 

was added in one portion. This was followed by the addition of boron trifluoride etherate 

(0.04 mL, 0.35 mmol) and the reaction was allowed to stir for 12 h. The reaction was 

quenched with saturated sodium bicarbonate (10 mL) and the aqueous was layer was 

extracted with methylene chloride ( 3 x 5 mL), the combined organic layers were dried 

with sodium sulfate (3 g) and concentrated in vacuo to afford a yellow oil. Title 

compound 140 was separated via flash chromatography (hexane:ethyl acetate 5:1, R/ = 

0.2) to obtain 0.024 g (60 %) as a clear oil. 'H NMR (400 MHz, CDCb) 8 4.84 - 4.71 (m, 

IH), 4.26 - 4.18 (m, IH), 4.06 - 3.99 (m, 2H), 2.67 - 2.54 (m, IH), 2.28 (dtd, J= 13.9, 

6.9, 3.1 Hz, IH), 2.09 - 2.00 (m, IH), 1.44 (ddd, J= 12.7, 8.9, 2.0 Hz, IH), 1.34 (ddd, J 

= 9.6, 5.6, 0.6 Hz, IH), 1.14 (d,J= 6.2 Hz, 3H), 1.05 (t, J= 5.5 Hz, IH), 0.91 (d, J= 7.1 

Hz, 3H), 0.87 (d, J= 6.8 Hz, 3H). 13C NMR (101 MHz, CDCb) 8 158.69, 84.26, 76.17, 

62.77, 60.66, 38.80, 28.99, 27.78, 23.17, 21.87, 18.28, 14.20. IR (neat) v 2980, 2877, 

1723, 1105, 1098, 922, 781 cm"1. 
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Methyl 2-(2-methyl-2-((trimethylsilyl)oxy)cyclopropyI)acetate (145) 

A 100-mL, round-bottomed flask equipped with a magnetic stir bar, nitrogen inlet, and 

septum was charged with methylene chloride (30.0 mL) and cooled to 0 °C in an ice bath. 

Diethylzinc (0.5 mL, 5.0 mmol) was added to the flask and allowed to stir for 15 min. 

Methylene iodide (0.4 mL, 5.0 mmol) was added drop-wise over 5 min and allowed to 

stir for 15 min at 0 °C. Methyl acetoacetate (0.1 mL, 1 mmol) and trimethylsilyl chloride 

(0.2 mL, 1.5 mmol) were added to the milky white solution respectively. This mixture 

was stirred for 12 h at 24 °C and quenched with saturated ammonium chloride (15.0 mL), 

the aqueous layer was washed with methylene chloride (3 x 10 mL), dried with 

magnesium sulfate (ca. 5 g), filtered, and concentrated in vacuo to give a viscous yellow 

oil. After column chromatography (hexanes:ethylacetate 15:1, R/= 0.1) 0.041 g (19 %) 

of 145 was isolated as a viscous clear oil. !H NMR (400 MHz, CDCb) 8 3.54 (s, 3H), 

2.39 (dt, J= 16.6, 8.3 Hz, IH), 2.19 - 2.11 (m, IH), 1.26 (s, 3H), 0.83 - 0.74 (m, IH), 

0.54 (dd, J= 9.3, 5.7 Hz, IH), 0.31 (t, J= 5.9 Hz, IH), 0.05 - -0.03 (m, 9H). 13C NMR 

(101 MHz, CDCb) 8 172.93, 54.74, 50.24, 40.64, 31.87, 24.74, 18.32, 0.00. IR (neat) v 

2956, 2943, 2877, 1749, 1234, 1185, 849, 766 cm"1. 

Methyl pivaloylacetate (154) 

Into a three-necked, round-bottomed flask, equipped with a pressure-equalizing dropping 

funnel, stir bar, condenser, and a nitrogen inlet, a solution of pinacolone (1.2 mL, 10 

mmol) in dry dioxane (15 mL) was added drop-wise over 3 h to a stirred solution of 

prewashed (hexanes: 3x10 mL) sodium hydride dispersion (0.842 g, 20 mmol), dimethyl 
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carbonate (8 mL, 95.0 mmol), and dioxane (20 mL) at an oil bath temperature of 85 °C. 

After the release of hydrogen gas (~ 30 min) the reaction was allowed to reflux for an 

additional 2 h. The solution was then cooled to room temperature and neutralized with 

acetic acid (pH ~ 7). The solution was extracted with diethyl ether (3 x 30 mL), the 

combined organic layers dried with magnesium sulfate (ca. 20 g), and concentrated in 

vacuo. The resulting oil was distilled (91 - 95 °C) under reduced pressure (20 mmHg) to 

give 1.20 g (76 %) of 154 as a clear oil. lH NMR (400 MHz, CDCb) major tautomer 8 

3.73 (s, 3H), 3.57 (s, 2H), 1.16 (s, 9H). 13C NMR (101 MHz, CDCb) 8 186.23, 168.40, 

85.41, 52.45, 51.30, 44.99, 43.91, 36.79, 27.89, 27.81, 27.65, 26.27, 26.08. IR (neat) v 

3201, 3004, 2774, 1791, 1772, 1703, 1195, 1108, 951, 831 cm"1. 

Methyl 2-(2-(fert-butyl)-2-((trimethylsilyl)oxy)cyclopropyl)acetate (156) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, nitrogen inlet, and 

septum, was charged with methylene chloride (30 mL) and placed in an ice bath (0 °C). 

Diethylzinc (0.5 mL, 5.0 mmol) was added to the flask and allowed to stir for 15 min. 

Methylene iodide (0.4 mL, 5.0 mmol) was added dropwise over 5 min and allowed to stir 

for 15 min at 0 °C. Methyl pivaloylacetate 154 (0.1 mL, 1 mmol) and trimethylsilyl 

chloride (0.2 mL, 1.5 mmol) were added to the milky white solution. This mixture was 

stirred for 12 h at 24 °C and quenched with saturated ammonium chloride (15.0 mL), the 

aqueous layer was washed with methylene chloride ( 3 x 1 0 mL), the combined organic 

layers were dried with magnesium sulfate (ca. 10 g), filtered, and concentrated in vacuo 

to give a viscous yellow oil. After column chromatography (hexanes:ethylacetate 15:1, 
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R/ = 0.2) 0.062 (24 %) of 156 was isolated as a viscous clear oil. *H NMR (400 MHz, 

CDCb) 8 3.69 (s, 3H), 2.49 - 2.30 (m, 2H), 1.14 (tt, J= 11.0, 4.1 Hz, IH), 0.94 (dd, J = 

12.2, 5.8 Hz, IH), 0.87 (s, 9H), 0.37 (t, J= 6.4 Hz, IH), 0.15 (s, 9H). 13C NMR (101 

MHz, CDCb) 8 174.44, 66.65, 51.58, 35.01, 33.05, 26.97, 15.76, 14.47, 1.99. IR (neat) v 

2984, 2779, 1743, 1299, 1183, 1021, 836, 760 cm"1. 

(£)-Methyl 6,6-dimethyl-5-oxohept-2-enoate (157) 

A 50-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a nitrogen 

inlet, was charged with THF (15 mL) and cooled to -78 °C. Diisopropylamine (0.3 mL, 

1.91 mmol) was added followed by drop-wise addition of n-butyllithium (0.8 mL, 2.5 M, 

1.91 mmol) and the solution stirred for 20 min. To this solution 156 (0.494 g, 1.91 

mmol) in THF (5 mL) was added and the solution was allowed to warm to room 

temperature. Iodine (0.58 g, 2.29 mmol) in THF (5 mL) was added to a second 50 mL 

round-bottomed flask and this solution was lowed to -78 °C. The first round-bottomed 

flask was transferred by cannula to the iodine in THF solution and the reaction was 

allowed to warm to room temperature. Once at room temperature the reaction was 

quenched with concentrated hydrochloric acid (0.3 mL) and water (5 mL). The aqueous 

layer was extacted with diethyl ether (3 x 20 mL) and the ethereal washes were washed 

with saturated sodium thiosulfate ( 2 x 5 mL). The combined organic layers were dried 

with magnesium sulfate (ca. lOg) and concentrated in vacuo to give 0.260 g (74 %>) of 

157 as a clear oil. JH NMR (400 MHz, CDCb) 8 7.09 - 6.84 (m, IH), 5.93 - 5.75 (m, 

IH), 3.65 (s, 3H), 3.38 (d, J= 1.5 Hz, IH), 3.36 (d, J= 1.2 Hz, IH), 1.10 (m, 9H). 13C 
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NMR (101 MHz, CDCb) 8 211.68, 166.39, 141.92, 124.08, 51.67, 44.70, 39.63, 26.33. 

IR (neat) v 2955, 2900, 2818, 1723, 1737, 1221, 892, 739, 663 cm"1. 

1 -Methy 1-2-oxabicyclo[3.1.0]hexan-3-one (159) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (20 mL) and 145 (0.577 g, 2.23 

mmol) and lowered into a dry ice/acetone bath. Triethylsilane (0.7 mL, 4.46 mmol) was 

added followed by boron trifluoride etherate (0.6 mL, 4.46 mmol) and allowed to stir for 

12 h. The reaction was then quenched with saturated ammonium chloride (10 mL) and 

extracted with methylene chloride (3x10 mL). The combined organic layers were dried 

with sodium sulfate (ca. 15 g) and concentrated in vacuo to afford a red viscous oil. After 

column chromatography (hexanes:ethyl acetate 15:1, R/= 0.1) 0.218 g (87 %>) of 159 was 

isolated as a clear oil. lK NMR (400 MHz, CDCb) 8 2.97 - 2.88 (m, IH), 2.58 - 2.50 (m, 

IH), 1.66 (s, 3H), 1.53 - 1.47 (m, IH), 0.93 - 0.87 (m, IH), 0.64 (dd, J = 7.0, 4.9 Hz, 

IH). 13C NMR (101 MHz, CDCb) 8 176.68, 65.03, 34.66, 20.20, 18.57, 15.76. IR (neat) 

v 3620, 2990, 2911, 2029, 1770, 1486, 1163, 983, 873, 801 cm"1. 

JV-Benzyl-2-(2-hydroxy-2-methylcyclopropyi)acetamide (160) 

A 10-mL round-bottomed flask, equipped with a septum, nitrogen inlet, and a magnetic 

stir bar, was charged with 159 (0.384 g, 3.42 mmol) and benzylamine (1.9 mL, 17.1 

mmol) and stirred at room temperature for 3 d. Ethyl acetate (30 mL) was added and the 

solution was washed with 3 N hydrochloric acid (3 x 15 mL), the combined organic 
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layers were dried with sodium sulfate (ca. 15 g) and concentrated in vacuo to give a, 

yellow oil. After column chromatography (hexanes:ethyl acetate 1:1, R/ = 0.25) 0.689 g 

(92 %) of 160 was isolated as a clear viscous oil. •H NMR (400 MHz, CDCb) 8 7.43 -

7.17 (m, 5H), 6.34 (s, IH), 4.56 - 4.32 (m, 2H), 3.86 (s, IH), 2.59 (dt, J= 13.6, 6.8 Hz, 

IH), 2.26 (dd, J= 14.8, 10.6 Hz, IH), 1.40 (s, 3H), 0.88 (dddd, J= 10.6, 9.1, 5.8, 4.7 Hz, 

IH), 0.71 (dd, J= 9.0, 5.5 Hz, IH), 0.52 (t, J= 5.7 Hz, IH). 13C NMR (101 MHz, CDCb) 

8 173.85, 138.34, 128.94, 127.91, 127.74, 54.43, 43.88, 36.99, 26.01, 22.04, 21.22. IR 

(neat) v 3499, 3200, 2993, 2811, 1672, 1559, 1222, 954 cm"1. 

5-(l-Hydroxyethylidene)-2,2-dimethyl-l,3-dioxane-4,6-dione (162) 

A 250-mL round-bottomed flask, equipped with a pressure-equalizing addition funnel 

with septum, magnetic stir bar, and a nitrogen inlet, was charged with methylene chloride 

(30 mL) and Meldrum's acid (8.1 g, 56.2 mmol). The solution was cooled to 0 °C and 

pyridine (11.4 mL, 140.6 mmol) was added dropwise over 30 min. Acetyl chloride (3.96 

mL, 56.2 mmol) in methylene chloride (20 mL) was added to the addition funnel and 

added over 2 h. The solution was allowed to warm to room temperature and stir for 12 h. 

The reaction was diluted with methylene chloride (30 mL), poured over crushed ice and 2 

N hydrochloric acid (30 mL). The aqueous phase was extracted with methylene chloride 

(2 x 20 mL). The combined organic layers were washed with 2 N hydrochloric acid (2 x 

30 mL), brine (20 mL), dried with magnesium sulfate (ca. 30 g) and concentrated in 

vacuo to yield 8.16 g (78 %) of 162 as a light brown solid. MP = 81 - 83 °C (Lit. 82 - 85 

°C)128. !H NMR (400 MHz, CDCb) 8 2.69 (s, 3H), 1.74 (s, 6H). 13C NMR (101 MHz, 
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CDCb) 8 194.83, 170.41, 160.68, 105.14, 92.06, 27.36, 27.07, 23.73. IR (neat) v 3372, 

2954, 2766, 1750, 1722, 1245, 1110, 912, 766 cm"1. 

l-(2-Oxo-oxazolidin-3-yl)butane-l,3-dione (164) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and condenser with a 

calcium sulfate drying tube, was charged with toluene (40 mL), acylated Meldrum's acid 

(162) (2.36 g, 13 mmol), and 2-oxazolidone (0.871 g, 10 mmol) and refluxed for 2 h. 

The solution was then concentrated in vacuo and diluted with ethyl acetate (50 mL). The 

ethyl acetate was washed with water (20 mL), brine (20 mL), dried with magnesium 

sulfate (ca. 15 g) and concentrated in vacuo to give a bright orange solid. After column 

chromatography (hexane:ethyl acetate 1:1, R/= 0.6) 1.60 g (72 %) of 164 was isolated in 

as a light yellow solid. MP = 53 - 55 °C (Lit. 61 -63 °C)129. :H NMR (400 MHz, CDCb) 

8 4.45 (t, J= 8.1 Hz, 2H), 4.11 - 4.02 (m, 4H), 2.28 (s, 3H). 13C NMR (101 MHz, CDCb) 

8 201.10, 166.66, 153.94, 62.48, 51.21, 42.36, 30.31. IR (neat) v 3001, 2904, 2855, 1741, 

1700, 1525, 1477, 1422, 1396, 1362, 1014, 962, 880 cm"1. 

(5)-2-Amino-3-phenylpropan-l-ol (168) 

A 3-necked round-bottomed flask, equipped with a mechanical stir rod, condenser, and a 

nitrogen inlet, was charged with THF (250 mL). The flask was then lowered into an ice 

bath and lithium aluminum hydride (5.90 g, 156.0 mmol) was added slowly over 10 min. 

The solution was then refluxed for 15 min then the heating mantle was removed and the 

solution was allowed to cool to room temperature. Once the solution was at room 
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tempurature L-phenylalanine (16.519 g, 100 mmol) was added slowly to maintain a 

gentle reflux. After all of the L-phenylalanine was added the reaction was refluxed for 1 

h. The reaction was allowed to cool to room temperature and the excess lithium 

aluminum hydride was quenched with potassium hydroxide (2.800 g, 12 mL water) 

through a pressure-equilizing drop funnel. After the addition was complete the solution 

was refluxed for 15 min and filtered through a Buchner funnel and concentrated in vacuo 

affording 14.36 g (95 %) of (5)-2-amino-3-phenylpropan-l-ol (168) as a clear, viscous 

oil. lH NMR (400 MHz, CDCb) 8 7.39 - 7.08 (m, 5H), 3.64 (dd, J = 10.6, 3.9 Hz, IH), 

3.38 (dd, J= 10.6, 7.2 Hz, IH), 3.16 - 3.09 (m, IH), 2.80 (dd, J= 13.4, 5.2 Hz, IH), 2.53 

(dd, J = 13.5, 8.6 Hz, IH). 13C NMR (101 MHz, CDCb) 8 138.91, 129.42, 128.79, 

126.63, 66.64, 54.38, 41.24. IR (neat) v 3365, 3299, 3122, 3110, 2941, 2919, 2876, 1606, 

1494, 1090, 994, 964, 704 cm"1. 

Ethyl (5)-(l-hydroxy-3-phenylpropan-2-yl)carbamate (106a') 

A 250-mL round-bottomed flask equipped with a septum and a magnetic stir bar was 

charged with water (35 mL), 168 (3.02 g, 20.0 mmol), sodium bicarbonate (8.4 g, 100 

mmol), ethyl chloroformate (2.0 mL, 21.0 mmol) and stirred for 1.5 h. The solution was 

extracted with ethyl acetate (3 x 25 mL) and the organic layer was washed with brine (15 

mL), dried with sodium sulfate, filtered, and concentrated in vacuo to afford 4.11 g (92 

%) 106a' as a clear viscous oil. :H NMR (400 MHz, CDCb) 8 7.45 - 7.07 (m, 5H), 5.09 

(s, IH), 4.22 - 4.01 (m, 2H), 3.92 (s, IH), 3.72 - 3.43 (m, 2H), 2.91 - 2.76 (m, 2H), 1.21 

(t, J= 7.1 Hz, 3H). 13C NMR (101 MHz, CDCb) 8 157.04, 137.96, 129.50, 128.77, 
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126.77, 64.10, 61.20, 54.22, 37.58, 14.77. IR (neat) v 3310, 3102, 3001, 2911, 1701, 

1129, 1009,991,710 cm"1. 

(iS)-4-Benzyloxazolidin-2-one (106a) 

A 100-mL round-bottomed flask, equipped with a gas inlet adapter, was charged with 

106a' (4.465 g, 20.0 mmol) and potassium carbonate (0.138 g, 1.0 mmol). The pressure 

was lowered in the flask to 40 mmHg using a vacuum pump. The flask was then placed 

in a 125 °C oil bath and maintained at this temperature for 1.5 h. The reaction was then 

allowed to warm to room temperature and the pressure was released. The mixture was 

diluted with dichloromethane and washed with 1 N HCl (10 mL), water (10 mL), and 

brine (10 mL). The organic layer was dried with magnesium sulfate (ca. 5 g) and 

concentrated in vacuo to afford 3.66 g (82 %>) of 106a as a light yellow solid. MP = 86 -

88 °C (Lit. 89 °C)130. lU NMR (400 MHz, CDCb) 8 7.40 - 7.10 (m, 5H), 6.05 (s, IH), 

4.42 (t, J = 8.1 Hz, IH), 4.16 - 4.05 (m, 2H), 2.88 (qd, J = 13.6, 6.6 Hz, 2H). 13C NMR 

(101 MHz, CDCb) 8 159.80, 136.16, 129.26, 129.20, 127.44, 69.80, 54.01, 41.61. IR 

(KBr disc) v 3274, 3055, 2946, 2925, 1766, 1710, 1324, 1096, 1022, 943, 777 cm"1. 

(5)-l-(4-Benzyl-2-oxooxazolidin-3-yl)butane-l,3-dione (169) 

A 250-mL round-bottomed flask, equipped with a magnetic stir bar and reflux condenser, 

was charged with toluene (100 mL), acyl Meldrum's acid (162) (11.76 g, 62.2 mmol), 

and 106a (8.80 g, 49.8 mmol). The condenser was equipped with a calcium chloride 

drying tube and the solution was refluxed for 2 h. The reaction was then cooled to room 
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temperature, washed with water (2 x 30 mL), dried with sodium sulfate (ca. 20 g), and 

concentrated in vacuo. The resulting orange solid was recrystallized from diethyl ether to 

afford 10.80 g (83 %) of 169 as a light yellow solid. MP = 98 - 99 °C (Lit. 98 - 99 °C)90. 

•H NMR (400 MHz, CDCb) 8 7.43 - 7.16 (m, 5H), 4.76 - 4.67 (m, IH), 4.25 - 4.14 (m, 

2H), 4.06 (s, 2H), 3.36 (dd, 7 = 13.5, 3.4 Hz, IH), 2.84 - 2.78 (m, IH), 2.28 (s, 3H). 13C 

NMR (101 MHz, CDCb) 8 201.22, 166.62, 153.93, 135.36, 129.68, 129.17, 127.55, 

66.61, 55.14, 51.58, 37.84, 30.37, 25.23. IR(neat) v 3321, 3102, 3002, 2986, 2911, 1725, 

1699, 1645, 1294, 1109, 1005, 923, 800, 722 cm"1. 

2-(2-Hydroxy-2-methylcyclopropyl)-Ar-((/?)-l-phenylethyl)acetamide (171 and 172) 

A 100-mL round-bottomed flask, equipped with a septum and a magnetic stir bar, was 

charged with 159 (0.112 g, 1.00 mmol) and (i?)-l-phenylethanamine (6 mL, 47.0 mmol) 

and stirred at room temperature for 3 d. The reaction was then diluted with ethyl acetate 

(25 mL) and washed with 3 N hydrochloric acid ( 3 x 1 0 mL), dried with sodium sulfate 

(ca. 10 g), and concentrated in vacuo to yield 0.208 g (89 %) of 171 and 172 as a light 

yellow oil. lH NMR (400 MHz, CDCb) 8 7.36 - 7.23 (m, 5H), 6.49 - 6.42 (m, IH), 5.16 

- 5.05 (m, IH), 4.01 - 3.97 (m, IH), 2.62 - 2.53 (m, IH), 2.25 - 2.16 (m, IH), 1.50 -

1.46 (m, 3H), 1.40 - 1.37 (m, 3H), 0.89 - 0.81 (m, IH), 0.72 - 0.67 (m, IH), 0.52 - 0.48 

(m, IH). 13C NMR (101 MHz, CDCb) 8 173.08, 143.47, 128.87, 127.54, 126.26, 54.39, 

49.00, 37.15, 26.00, 22.25, 22.08, 21.21 cm"1. 

5-(l-Hydroxypropylidene)-2,2-dimethyl-l,3-dioxane-4,6-dione (174) 
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A 250-mL round-bottomed flask, equipped with a pressure-equalizing addition funnel 

with septum, magnetic stirbar, and a nitrogen inlet, was charged with methylene chloride 

(30 mL) and Meldrum's acid (161) (3.00 g, 20.8 mmol). The solution was cooled to 0 °C 

and pyridine (3.4 mL, 41.9 mmol) was added dropwise over 30 min. Propionyl chloride 

(1.8 mL, 20.8 mmol) in methylene chloride (10 mL) was added to the addition funnel and 

added to the solution over 2 h. The solution was allowed to warm to room temperature 

and stir for 12 h. The reaction was then diluted with methylene chloride (30 mL) and 

poured over crushed ice and 2 N hydrochloric acid (15 mL). The aqueous phase was 

extracted with methylene chloride (2 x 20 mL). The combined organic layers were 

washed with 2 N hydrochloric acid ( 2 x 1 5 mL), brine (10 mL), dried with magnesium 

sulfate (ca. 20 g), and concentrated in vacuo to yield 174 as a light yellow solid. The 

product was recrystallized from diethyl ether to give 3.41 g (82 %) of compound 174 as a 

white solid. MP = 43 - 47 °C (Lit. 48 - 49 °C)131. [H NMR (400 MHz, CDCb) major 

tautomer 8 3.01 (q, J = 7.4 Hz, 2H), 1.64 (s, 6H), 1.15 (t, J = 7.4 Hz, 3H). 13C NMR (101 

MHz, CDCb) 8 199.00, 170.74, 104.94, 91.07, 29.57, 26.88, 9.81. IR (neat) v 3002, 

2983, 2931, 1799, 1754, 1456, 1423, 1300, 1230, 1167, 1085, 979, 932, 839 cm"1. 

l-(2-Oxooxazolidin-3-yl)pentane-l,3-dione (173) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and condenser with a 

calcium sulfate drying tube, was charged with toluene (40 mL), acylated Meldrum's acid 

174 (2.56 g, 12.8 mmol), and 2-oxazolidone (1.11 g, 12.8 mmol) and refluxed for 4 h. 

The solution was then concentrated in vacuo and diluted with ethyl acetate (50 mL). The 
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ethyl acetate was washed with water (20 mL), brine (20 mL), dried with magnesium 

sulfate (ca. 20 g) and concentrated in vacuo to give a bright orange solid. After column 

chromatography (hexane:ethyl acetate 1:1, R/= 0.6) 1.71 g (72 %) of 173 was isolated as 

a light yellow solid. MP = 59 - 61 °C. *H NMR (400 MHz, CDCb) major tautomer 8 

4.58 - 4.30 (m, 2H), 4.23 - 3.92 (m, 4H), 2.59 (qd, J= 7.3, 2.6 Hz, 2H), 1.10 (td, J= 7.3, 

2.7 Hz, 3H). 13C NMR (101 MHz, CDCb) 8 203.97, 166.95, 153.94, 62.47, 50.16, 42.40, 

36.36, 7.69. IR (neat) v 3024, 2974, 2888, 1750, 1705, 1519, 1427, 1401, 1345, 1011, 

901,880 cm"1. 

3-Acetyloxazolidin-2-one (177) 

A dry 25-mL, 2-necked round-bottomed flask, equipped with a glass stopper, magnetic 

stir bar, and a condenser with a calcium chloride drying tube, was charged with acetyl 

chloride (4.9 mL, 69.0 mmol) and 2-oxazolidone (2.0 g, 23.0 mmol). The solution was 

cooled in an ice bath and pyridine (1.9 mL, 23 mmol) was added over a 1 h period. Once 

all of the pyridine was added, the reaction was gently refluxed for 10 h. The reaction was 

cooled down and diluted with methylene chloride (100 mL) and washed with 5 % 

hydrochloric acid (20 mL), saturated sodium bicarbonate (20 mL), water (20 mL), and 

brine (20 mL). The organic layer was dried with magnesium sulfate (ca. 15 g) and 

concentrated in vacuo. The solid was washed with diethyl ether and dried to afford 2.33 

g (90%) of 177 as a light yellow solid. MP = 64 - 65 °C (Lit. 63 - 64 °C)132. lU NMR 

(400 MHz, CDCb) 8 4.42 (t, J = 8.1 Hz, 2H), 4.13-3.97 (m, 2H), 2.53 (s, 3H). 13C NMR 

(101 MHz, CDCb) 8 170.68, 153.93, 62.17, 42.57, 23.45 cm"1. 
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4,4-Dimethyl-l-(2-oxooxazolidin-3-yl)pentane-l,3-dione (175) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and a nitrogen inlet, 

was charged with THF (50 mL) and cooled in an ice bath. Diisopropylamine (0.6 mL, 

4.0 mmol) was added followed by dropwise addition of ra-butyllithium (1.5 mL, 2.6 M, 

4.0 mmol) and allowed to warm to room temperature. Then the solution was cooled to 

-78 °C followed by the addition of acyl oxazolidinone (177) (0.516 g, 4.0 mmol) in THF 

(10 mL) over a 1 h perioid. After which, pivaloyl chloride (0.241 g, 2.0 mmol) was 

added to the solution and stirred for 12 h. The reaction was quenched with saturated 

ammonium chloride (20 mL) and the reaction was concentrated to half of the volume 

under reduced pressure (25 mmHg, 30 °C). The aqueous layer was extracted with 

methylene chloride (3 x 25 mL), the combined organic layers were dried with magnesium 

sulfate (ca. 10 g) and concentrated in vacuo to give a viscous yellow oil. After column 

chromatography (hexane:ethyl acetate 10:1, R/= 0.2) 0.401 g (47 %) of 175 was isolated 

as a clear oil. •H NMR (400 MHz, CDCb) major tautomer 8 4.46 - 4.37 (m, 2H), 4.16 (s, 

2H), 4.10 - 4.00 (m, 2H), 1.17 (s, 9H). 13C NMR (101 MHz, CDCb) 8 209.45, 167.94, 

153.81, 85.63, 77.59, 77.27, 76.96, 62.38, 62.11, 45.70, 44.65, 42.47, 42.31, 27.74, 26.73. 

IR (neat) v 3000, 2905, 2783, 1764, 1721, 1525, 1437, 1417, 1384, 1291, 1012, 962, 880 

cm-1. 

l-(2-oxooxazolidin-3-yl)-3-phenylpropane-l,3-dione (176) 
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A 1 OO-mL round-bottomed flask, equipped with a magnetic stir bar and a nitrogen inlet, 

was charged with THF (50 mL) and cooled in an ice bath. Diisopropylamine (0.6 mL, 

4.0 mmol) was added followed by dropwise addition of rc-butyllithium (1.5 mL, 2.6 M, 

4.0 mmol) and allowed to warm to room temperature. Then the solution was cooled to 

-78 °C followed by the addition of acyl oxazolidinone (177) (0.516 g, 4.0 mmol) in THF 

(10 mL) over a 1 h perioid. After which, benzoyl chloride (0.28 g, 2.0 mmol) was added 

to the solution and stirred for 12 h. The reaction was quenched with saturated ammonium 

chloride (20 mL) and the reaction was concentrated to half of the volume under reduced 

pressure (25 mmHg, 30 °C). The aqueous layer was extracted with methylene chloride (3 

x 25 mL), the combined organic layers were dried with magnesium sulfate (ca. 10 g) and 

concentrated in vacuo to give a viscous yellow oil. After column chromatography 

(hexane:ethyl acetate 10:1, R/= 0.2) 0.438 g (47 %) of 176 was isolated as a clear oil. •H 

NMR (400 MHz, CDCb) major tautomer 8 8.00 - 7.85 (m, 2H), 7.64 - 7.55 (m, 1), 7.55 

- 7.38 (m, 2H), 4.62 (s, 2H), 4.47 (t, 7 = 8.1 Hz, 2H), 4.14 (t, J = 8.1 Hz, 2H). 13C NMR 

(101 MHz, CDCb) 8 193.51, 174.99, 171.11, 167.48, 153.94, 136.07, 133.98, 132.15, 

128.99, 128.46, 126.79, 87.05, 62.53, 62.26, 53.76, 47.09, 42.50, 34.05. IR (neat) v 3022, 

2955, 2701, 1756, 1700, 1529, 1517, 1400, 1390, 1239, 1005, 930, 897 cm"1. 

l-Ethyl-2-oxabicyclo[3.1.0]hexan-3-one (178) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (40 mL) and cooled in an ice bath. 

Diethylzinc (1.0 mL, 10 mmol) was added to the flask and stirred for 10 min at which 
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time methylene iodide (1.6 mL, 20 mmol) was added dropwise over 5 min. The reaction 

was allowed to stir for 20 min followed by addition of P-keto imide 173 (0.37 g, 2 

mmol). The mixture was allowed to stir for 24 h at room temperature and quenched with 

saturated ammonium chloride (20 mL). The aqueous layer was extracted with methylene 

chloride (2 x 20 mL), the combined organic layers were washed with brine (2 x 20 mL), 

dried with sodium sulfate (ca. 5 g), filtered, and concentrated in vacuo to give a yellow 

viscous oil. After column chromatography (hexane:ethyl acetate 10:1, R/= 0.2) 0.106 g 

(42 %) 178 was isolated as a clear oil. lK NMR (400 MHz, CDCb) 8 2.90 (ddd, 7 = 18.8, 

6.8, 0.9 Hz, IH), 2.55 (d, 7= 18.8 Hz, IH), 2.00 - 1.78 (m, 2H), 1.50 (dddd, 7 = 8.8, 6.8, 

4.9, 0.7 Hz, IH), 1.06 (t, 7 = 7.4 Hz, 3H), 0.92 (ddd, 7= 8.8, 7.0, 1.0 Hz, IH), 0.63 (dd, 7 

= 7.0, 4.9 Hz, IH). 13C NMR (101 MHz, CDCb) 8 176.79, 69.79, 34.63, 25.56, 18.97, 

14.47, 10.29. IR (neat) v 2958, 2884, 1722, 1462, 1294, 1171, 921, 900, 884, 728 cm"1. 

1 -(tert-Butyl)-2-oxabicyclo [3.1.0] hexan-3-one (179) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (40 mL) and cooled in an ice bath. 

Diethylzinc (1.0 mL, 10 mmol) was added to the flask and stirred for 10 min at which 

time methylene iodide (1.6 mL, 20 mmol) was added dropwise over 5 min. The reaction 

was allowed to stir for 20 min followed by addition of P-keto imide 175 (0.43 g, 2 

mmol). The mixture was allowed to stir for 24 h at room temperature and quenched with 

saturated ammonium chloride (20 mL). The aqueous layer was extracted with methylene 

chloride (2 x 20 mL), the combined organic layers were washed with brine (2 x 20 mL), 
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dried with sodium sulfate (ca. 5 g), filtered, and concentrated in vacuo to give a yellow 

viscous oil. After column chromatography (hexane:ethyl acetate 10:1, R/= 0.2) 0.163 g 

(53 %) of compound 179 was isolated as a clear oil. !H NMR (400 MHz, CDCb) 8 2.86 

(dd, 7 = 18.8, 6.6 Hz, IH), 2.57 (d, 7= 18.8 Hz, IH), 1.59 (dddd, 7 = 9.0, 6.6, 5.0, 0.7 Hz, 

IH), 1.11 (ddd, 7 = 9.0, 7.1, 0.9 Hz, IH), 1.00 (s, 9H), 0.50 (dd, 7 = 7.1, 5.0 Hz, IH). 13C 

NMR (101 MHz, CDCb) 8 176.72, 76.28, 34.58, 31.70, 26.38, 16.44, 12.72. IR (neat) v 

2911, 2760, 1739, 1349, 1254, 1041, 997, 934, 809, 779 cm"1. 

1-pheny 1-2-oxabicyclo[3.1.0]hexan-3-one (180) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (40 mL) and cooled in an ice bath. 

Diethylzinc (1.0 mL, 10 mmol) was added to the flask and stirred for 10 min at which 

time methylene iodide (1.6 mL, 20 mmol) was added dropwise over 5 min. The reaction 

was allowed to stir for 20 min followed by addition of P-keto imide 176 (0.47 g, 2 

mmol). The mixture was allowed to stir for 24 h at room temperature and quenched with 

saturated ammonium chloride (20 mL). The aqueous layer was extracted with methylene 

chloride (2 x 20 mL), the combined organic layers were washed with brine (2 x 20 mL), 

dried with sodium sulfate (ca. 5 g), filtered, and concentrated in vacuo to give a yellow 

viscous oil. After column chromatography (hexane:ethyl acetate 10:1, R/= 0.2) 0.146 g 

(42 %) compound 180 was isolated as a clear oil. !H NMR (400 MHz, CDCb) 8 7.42 -

7.34 (m, 2H), 7.33 - 7.24 (m, 3H), 3.07 (dd, 7 = 18.8, 6.8 Hz, IH), 2.71 (d, 7 = 18.8 Hz, 

IH), 1.98 (dt, 7 = 8.9, 6.1 Hz, IH), 1.62 - 1.54 (m, IH), 1.14 (dd, 7 = 7.3, 5.6 Hz, IH). 
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13C NMR (101 MHz, CDCb) 8 176.04, 136.95, 128.82, 127.84, 124.67, 68.53, 34.44, 

22.80, 19.88. IR (neat) v 2984, 2778, 1722, 1301, 1253, 1032, 997, 909, 811, 702 cm"1. 

l,3-Diphenylpropane-l,3-dione (191) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and a nitrogen inlet, 

was charged with THF (50 mL) and cooled in an ice bath. Diisopropylamine (0.6 mL, 

4.0 mmol) was added followed by drop-wise addition of ft-butyllithium (1.5 mL, 2.6 M, 

4.0 mmol), after which the solution was allowed to warm to room temperature. Then the 

solution was cooled to -78 °C followed by the addition of acetophenone (0.481 g, 4.0 

mmol) in THF (10 mL) over a 1 h perioid. Benzoyl chloride (0.2 mL, 2.0 mmol) was 

then added to the solution, which was stirred for 12 h. The reaction was quenched with 

saturated ammonium chloride (20 mL) and the reaction was concentrated to half of the 

volume under reduced pressure (25 mmHg, 30 °C). The solution was extracted with 

methylene chloride (3 x 25 mL) and the combined organic layers were dried with 

magnesium sulfate (ca. 10 g) and concentrated in vacuo to give a bright yellow solid. 

After column chromatography (hexane:ethyl acetate 10:1, R/= 0.1) 0.439 g (49 %) of 191 

was isolated as a white solid. MP = 77 - 79 °C (Lit. 79 °C)133. JH NMR (400 MHz, 

CDCb) major isomer 8 7.98 (d, 7 = 7.8 Hz, 4H), 7.57 - 7.51 (m, 2H), 7.47 (t, 7 = 7.4 Hz, 

4H), 6.85 (s, IH). 13C NMR (101 MHz, CDCb) 8 185.98, 135.76, 132.70, 128.92, 

127.41, 93.38. IR (neat) v 3066, 3048, 1963, 1900, 1810, 1603, 1561, 1029, 1001, 964, 

506 cm"1. 
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2-((lJ?,2/f)-2-Hydroxy-2-phenylcyclopropyl)-l-phenylethanone (192) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (40 mL) and cooled in an ice bath. 

Diethylzinc (1.0 mL, 10 mmol) was added to the flask and stirred for 10 min, at which 

time methylene iodide (1.6 mL, 20 mmol) was added drop-wise over 5 min. The reaction 

was allowed to stir for 20 min followed by addition of dibenzoylmethane (191) (0.45 g, 2 

mmol). The mixture was allowed to stir for 24 h at room temperature and quenched with 

saturated ammonium chloride (20 mL). The aqueous layer was extracted with methylene 

chloride (2 x 20 mL), the combined organic layers were washed with brine (2 x 20 mL), 

dried with sodium sulfate (ca. 10 g), filtered, and concentrated in vacuo to give a yellow 

viscous oil. After column chromatography (hexane:ethyl acetate 10:1, R/= 0.1) 0.262 g 

(52 %) of 192 was isolated as a clear oil. lU NMR (400 MHz, CDCb) 8 8.05 - 7.96 (m, 

2H), 7.66 - 7.14 (m, 8H), 3.69 (dd, 7= 17.1, 5.2 Hz, IH), 3.18 (s, IH), 3.01 (dd, 7= 17.2, 

8.9 Hz, IH), 1.55 (tdd, 7 = 9.0, 6.7, 5.2 Hz, IH), 1.34 (dd, 7 = 9.5, 5.8 Hz, IH), 1.08 -

1.02 (m, IH). 13C NMR (101 MHz, CDCb) 8 201.41, 144.68, 136.93, 133.62, 128.91, 

128.60, 128.52, 126.86, 125.36, 59.03, 37.99, 23.70, 22.58. IR (neat) v 3302, 3009, 2911, 

1733, 1608, 1109,1004, 992, 821 cm"1. 

192(D) 

A 50-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a nitrogen 

inlet, was charged with D2O (10 mL) and sodium methoxide (0.019 g, 0.35 mmol) 

followed by addition of 192 (0.22 g, 0.87 mmol) in D2O (5 mL). The reaction was 
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allowed to stir at room temperature for 5 h, at which time ethyl acetate (10 mL) and 1 N 

HCl (5mL) were added. The organic phase was separated, washed with water (10 mL), 

brine (10 mL), dried with sodium sulfate (ca. 10 g), and concentrated in vacuo to afford 

0.199 g of 192(D) as a clear viscous oil. JH NMR (400 MHz, CDCb) 8 8.10 - 7.86 (m, 

4H), 7.62 - 7.38 (m, 6H), 4.33 - 3.93 (m, IH), 3.73 (t, 7 = 6.7 Hz, IH), 3.08 (dd, 7 = 

12.3, 6.8 Hz, IH), 2.14 (s, IH), 1.38 - 1.12 (m, IH), 1.00 - 0.76 (m, IH). 13C NMR (101 

MHz, CDCb) 8 200.21, 137.03, 133.31, 128.83, 128.73, 128.55, 128.50, 128.29, 53.70, 

37.70, 37.54, 37.35, 37.19, 37.01, 36.82, 29.93, 23.48, 18.63, 18.43, 18.23. IR (neat) v 

3122, 3001, 2930, 2899, 1701, 1661, 1199, 1009, 905, 821 cm"1. 

(5)-l-(4-Benzyl-2-oxooxazolidin-3-yl)-4,4-dimethylpentane-l,3-dione (194) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and a nitrogen inlet, 

was charged with THF (50 mL) and cooled in an ice bath. Diisopropylamine (0.6 mL, 

4.0 mmol) was added followed by dropwise addition of n-butyllithium (1.5 mL, 2.6 M, 

4.0 mmol) and the solution allowed to warm to room temperature. The solution was 

cooled to -78 °C followed by the addition of acyl oxazolidone (177) (0.876 g, 4.0 mmol) 

in THF (10 mL) over a 1 h perioid. Pivaloyl chloride (0.241 g, 2.0 mmol) was then 

added to the solution and stirred for 12 h. The reaction was quenched with saturated 

ammonium chloride (20 mL) and the mixture was concentrated to half of the volume 

under reduced pressure (25 mmHg, 30 °C). The solution was extracted with methylene 

chloride (3 x 25 mL), the combined organic layers were dried with magnesium sulfate 

(ca. 10 g) and concentrated in vacuo to give a viscous yellow oil. After column 
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chromatography (hexane:ethyl acetate 10:1, R/= 0.3) 0.461 g (38 %) of 194 was isolated 

as a clear oil. *H NMR (400 MHz, CDCb) major tautomer 8 7.29 (ddd, 7 = 15.6, 12.9, 

6.9 Hz, 5H), 4.73 (ddd, 7 = 13.5, 7.1, 3.3 Hz, IH), 4.31 - 4.01 (m, 4H), 3.43 (dd, 7 = 

13.5, 3.2 Hz, IH), 2.79 (dd, 7 = 13.5, 10.0 Hz, IH), 1.22 (s, 9H). 13C NMR (101 MHz, 

CDCb) 8 209.57, 167.88, 153.77, 135.56, 129.66, 129.17, 127.51, 66.50, 55.34, 46.04, 

44.71, 37.95, 27.79, 26.77. IR (neat) v 3321, 3001, 2974, 2944, 1722, 1701, 1190, 1009, 

1000,918,782 cm-1. 

(S)-4-Benzyl-3-((l£,2S)-2-(3,3-dimethyl-2-oxobutyl)-l-((trimethylsiIyl)oxy) 

cyclopropyl)oxazolidin-2-one (193) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (40 mL) and cooled in an ice bath. 

Diethylzinc (1.0 mL, 10.0 mmol) was added to the flask and stirred for 10 min at which 

time methylene iodide (1.6 mL, 20.0 mmol) was added dropwise over 5 min. The 

reaction was allowed to stir for 20 min followed by addition of P-keto imide 194 (0.61 g, 

2.0 mmol) and trimethylsilyl chloride (0.3 mL, 2.2 mmol). The mixture was allowed to 

stir for 24 h at room temperature and quenched with saturated ammonium chloride (20 

mL). The aqueous layer was extracted with methylene chloride (2 x 20 mL), the 

combined organic layers were washed with brine (2 x 20 mL), dried with sodium sulfate 

(ca. 10 g), filtered, and concentrated in vacuo to give a yellow viscous oil. After column 

chromatography (hexane:ethyl acetate 10:1, R/= 0.4) 0.315 g (39 %) of compound 193 

was isolated as an oily clear solid. 'H NMR (400 MHz, CDCb) 8 7.46 (d, 7 = 7.2 Hz, 
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3H), 7.36 (dd, 7 = 10.3, 4.8 Hz, 2H), 4.31 (ddd, 7 = 11.5, 8.0, 3.9 Hz, IH), 4.08 - 3.91 

(m, 2H), 3.44 (dd, 7 = 13.0, 3.6 Hz, IH), 2.76 (dd, 7 = 18.5, 3.3 Hz, IH), 2.61 (d, J = 9.9 

Hz, IH), 1.60 (dd,7= 10.2, 6.5 Hz, IH), 1.18 (s, 9H), 0.92 (t ,7= 6.4 Hz, IH), 0.51 (dd,7 

= 7.2, 5.1 Hz, IH), 0.21 (s, 9H). 13C NMR (101 MHz, CDCb) 8 214.25, 172.56, 153.77, 

135.50, 129.68, 129.14, 127.51, 66.44, 55.30, 53.67, 44.17, 37.98, 30.91, 29.97, 26.84. IR 

(neat) v 3321, 3199, 2900, 2298, 1782, 1701, 1300, 1127,734 cm"1. 

2-(2-(tert-Butyl)-2-hydroxycyclopropyl)-./V-((i?)-l-phenylethyl)acetamide (199 and 

200) 

A 100-mL round-bottomed flask, equipped with a septum and a magnetic stir bar, was 

charged with bicyclic lactone 179 (0.154 g, 1.00 mmol) and (i?)-l-phenylethanamine (6 

mL, 47.0 mmol) and stirred at room temperature for 3 d. The reaction solution was then 

diluted with ethyl acetate (25 mL) and washed with 3 N hydrochloric acid (3x10 mL), 

dried with sodium sulfate (ca. 5 g), and concentrated in vacuo to yield 0.242 g (88 %>) of 

199 and 200 as a light yellow oil. 'H NMR analysis used for diastereoselectivity. 

(S)-l-((Benzyloxy)carbonyl)pyrrolidine-2-carboxylic acid (201) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and a septum, was 

charged with water (50 mL), sodium hydroxide (1.6 g, 40 mmol), and L-proline (2.32, 20 

mmol) in the indicated order. The mixture was cooled in an ice bath and Cbz-Cl (3.5 mL, 

25 mmol) was added over a 0.5 h period. The reaction was allowed to stir vigorously for 

4 h and then poured into a separatory funnel. The un-reacted Cbz-Cl was extracted with 
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diethyl ether (3 x 20 mL). The aqueous phase was acidified to pH ~ 2 and extracted with 

ethyl acetate (3 x 25 mL). The combined organic layers were dried with sodium sulfate 

(ca. 20 g) and concentrated in vacuo to afford 5.23 g (84 %) 201 as a clear oil. *H NMR 

(400 MHz, CDCb) major rotameric form 8 9.02 (s, IH), 7.57 - 7.12 (m, 5H), 5.34 - 5.02 

(m, 2H), 4.51 - 4.31 (m, IH), 3.65-3.44 (m, 2H), 2.38 - 1.75 (m, 4H). 13C NMR (101 

MHz, CDCb) 8 178.41, 176.57, 156.08, 154.64, 136.69, 136.50, 128.95, 128.74, 128.63, 

128.37, 128.18, 128.12, 127.89, 127.26, 67.77, 67.37, 59.52, 58.85, 47.16, 46.89, 31.13, 

29.55, 24.53, 23.69. IR (neat) v 3411, 3011, 2991, 1688, 1005, 981, 881, 770 cm"1. 

(S)-Benzyl 2-(3-oxo-3-(2-oxooxazolidin-3-yl)propanoyl)pyrrolidine-l-carboxylate 

(202) 

A dry, 250-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with THF (100 mL) and placed in an ice bath. A separate 

250-mL round-bottomed flask equipped with a magnetic stir bar, septum, and a nitrogen 

inlet was charged with THF (50 mL), Cbz-proline 201 (1.71 g, 6.85 mmol), and carbonyl 

diimidizole (1.22 g, 7.54 mmol). Diisopropylamine (3.8 mL, 27.4 mmol) was added to 

the first round-bottomed flask followed by «-butyllithium (11.0 mL, 2.5 M, 6.85 mmol) 

and the solution was allowed to stir at 0 °C for 10 min, at which time the flask was placed 

in a dry ice/acetone bath. To this flask, acyl oxazolidone 177 (3.54 g, 6.85 mmol) in THF 

(20 mL) was slowly added via a syringe pump over a 1 h period. This solution was then 

allowed to warm to room temperature and the second round-bottomed flask was placed 

into a dry ice/acetone. The contents of the first flask was added to the second flask via 
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cannula and the resulting solution was allowed to stir for 2 h at -78 °C. The reaction was 

allowed to warm to room temperature and quenched with 1 N HCl (20 mL). The reaction 

mixture was then concentrated to half of its volume and extracted with ethyl acetate (3 x 

30 mL). The combined organic layers were dried with sodium sulfate (ca. 20 g) and 

concentrated in vacuo to afford a yellow oil. After column chromatography 

(hexanes:ethyl acetate 5:1, R/= 0.1) 0.790 g (32 %>) of compound 202 was isolated as a 

clear viscous oil. JH NMR (500 MHz, CDCb) 8 •H NMR (400 MHz, CDCb) 8 7.48 -

7.15 (m, 5H), 5.22 - 5.05 (m, 2H), 4.54 - 4.35 (m, 3H), 4.31 - 4.13 (m, 2H), 4.12 - 3.96 

(m, 2H), 3.68 - 3.43 (m, 2H), 2.33 - 1.82 (m, 4H). 13C NMR (126 MHz, CDCb) 8 

203.18, 203.10, 166.49, 166.27, 155.28, 153.72, 136.61, 128.56, 128.51, 128.22, 127.86, 

67.39, 67.18, 65.28, 65.07, 62.29, 62.27, 48.02, 47.38, 47.35, 46.86, 42.27, 29.61, 28.44, 

24.39, 23.55. IR (neat) v 3321, 3001, 2974, 2944, 1722, 1701, 1190, 1009, 1000, 918, 

782 cm"1. 

(S)-l-(terf-ButoxycarbonyI)pyrrolidine-2-carboxylic acid (204) 

A 250-mL round-bottomed flask, equipped with a magnetic stir bar and a nitrogen inlet, 

was charged with dioxane (40 mL), water (40 mL), sodium hydroxide (0.8 g, 20 mmol), 

and L-proline (2.32 g, 20 mmol) in the indicated order. This solution was stirred for 15 

min and then cooled in an ice bath. Y)'\-tert-bvXyl dicarbonate (4.8 g, 22 mmol) was added 

and the mixture was stirred for 12 h, then the solution was washed with diethyl ether (3 x 

20 mL). The aqueous layer was then acidified to pH ~ 3 and extracted with ethyl acetate 

(3 x 30 mL). The organic layer was dried with magnesium sulfate (ca. 20 g), and 
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concentrated in vacuo to afford 3.14 g (73 %>) of 204 as a white solid. MP = 133 - 136 °C 

(Lit. 133-136 °C)134. *H NMR (500 MHz, CDCb) 8 8.41 (s, IH), 4.39 - 4.22 (m, IH), 

3.62 - 3.33 (m, 2H), 2.36 - 2.18 (m, IH), 2.16 - 2.02 (m, IH), 2.02 - 1.83 (m, 2H), 1.70 

- 1.17 (m, 9H). 13C NMR (126 MHz, CDCb) 8 178.64, 175.69, 156.01, 153.96, 81.12, 

80.38, 59.03, 58.96, 46.92, 46.35, 30.84, 28.94, 28.93, 28.40, 28.27, 24.31, 23.65. IR 

(neat) v 3309, 3005, 2901, 2880, 1700, 1632, 1007, 991, 829 cm"1. 

(S^-tert-Butyl-2-((2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl) 

pyrrolidine-1-carboxylate DMAP salt (206) 

A 100-mL round-bottomed flask, equipped with a septum, maganetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (10 mL) and lowered into an ice 

bath. Boc-proline (204) (1.04 g, 4.86 mmol) in methylene chloride (5 mL) was added 

followed by dicyclohexylcarbodiimide (1.00 g, 4.86 mmol), Meldrum's acid (0.70 g, 4.86 

mmol), and N, TV-dimethyl aminopyridine (0.59 g, 4.86 mmol) in the indicated order. The 

solution was allowed to stir at room temperature for 12 h, at which time the 

dicyclohexylurea was removed by filtration and the filtrate was concentrated in vacuo to 

afford 1.93 g (86 %) of 206 as a white oily solid. lH NMR (400 MHz, CDCb) 8 8.52 -

8.17 (m, 2H), 6.90 - 6.45 (m, 2H), 5.69 - 5.34 (m, IH), 3.80 - 3.36 (m, 2H), 3.21 (s, 6H), 

2.68 - 2.22 (m, IH), 2.02 - 1.87 (m, IH), 1.82 - 1.72 (m, 2H), 1.70 - 1.34 (m, 9H), 1.29 

(s, 6H). 13CNMR(101 MHz, CDCb) 8 197.31, 166.50, 157.16, 155.40, 141.68, 106.54, 

101.16, 87.10, 78.57, 64.54, 47.44, 40.15, 31.66, 28.91, 28.61, 26.59, 26.50, 23.23. IR 

(neat) v 3201, 3019, 2900, 2811, 1770, 1633, 1142, 910, 729 cm"1. 
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(£)-tert-butyl-2-((2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl) 

pyrrolidine-1-carboxylate (207) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (10 mL), (S)-tert-butyl 2-((2,2-

dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl)pyrrolidine-l-carboxylate 

DMAP salt 206 (0.46 g, 1 mmol), and anhydrous Dowex 50W-X2 (1.5 g) ion exchange 

resin. The solution was stirred for 20 min. The resin was removed by filtration and the 

filtrate concentrated in vacuo to give 0.314 g (92 %) of 207 as a yellow, viscous oil. lH 

NMR (400 MHz, CDCb) 8 5.56 (dd, J= 9.0, 4.5 Hz, IH), 3.64 - 3.48 (m, 2H), 2.64 -

2.48 (m, IH), 2.12 - 1.83 (m, 4H), 1.74 (dd, 7 = 8.2, 4.0 Hz, 6H), 1.48 - 1.36 (m, 9H). 

13CNMR(101 MHz, CDCb) 8 198.65, 197.81, 170.92, 159.98, 154.39, 153.60, 105.67, 

105.55, 90.63, 89.90, 80.26, 80.15, 59.45, 59.34, 47.58, 47.31, 36.38, 32.57, 31.62, 28.64, 

28.51, 27.82, 27.28, 26.90, 26.67, 26.15, 24.78, 24.59, 23.84. IR (neat) v 3211, 3033, 

2900, 1722, 1630, 1002, 981, 810 cm"1. 

(S)-tert-Buty\ 2-(3-oxo-3-(2-oxooxazolidin-3-yl)propanoyl)pyrrolidine-l-carboxylate 

(208) 

A 100-mL round-bottomed flask, equipped with a condenser fitted with a drying tube and 

a magnetic stir bar, was charged with toluene (20 mL), 2-oxazolidone (0.09 g, 1.00 

mmol), and (S)-tert-butyl 2-((2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy) 

methyl)pyrrolidine-1 -carboxylate 207 (0.34 g, 1.00 mmol) and refluxed for 5 h. The 
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reaction was then allowed to cool to room temperature and the mixture was washed with 

water (10 mL), brine (10 mL), and the organic layer was dried with sodium sulfate (ca. 

10 g) and concentrated in vacuo to afford a yellow, viscous oil. After column 

chromatography (hexane:ethyl acetate 1:1, R/= 0.3) 0.267 g (82 %>) of compound 208 

was isolated as a clear oil. ^ NMR (400 MHz, CDCb) 8 6.87 - 6.21 (m, IH), 4.56 -

4.31 (m, 2H), 4.34 - 4.01 (m, 4H), 3.68 - 3.35 (m, 2H), 2.32 - 2.09 (m, 2H), 2.09 - 1.81 

(m, 2H), 1.76 - 1.10 (m, 9H). 13C NMR (101 MHz, CDCb) 8 203.84, 166.83, 154.05, 

153.83, 80.98, 80.25, 80.11, 65.65, 65.06, 62.45, 47.99, 47.18, 47.09, 46.98, 46.86, 42.46, 

29.80, 28.60, 28.44, 24.60, 23.94. IR (neat) v 3299, 3110, 3007, 2901, 1702, 1609, 1114, 

991,880 cm-1. 

(5')-Benzyl-2-((2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl) 

pyrrolidine-1-carboxylate DMAP salt (210) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (10 mL) and lowered into an ice 

bath. Cbz-proline 112 (1.21 g, 4.86 mmol) in methylene chloride (5 mL) was added 

followed by dicyclohexylcarbodiimide (1.00 g, 4.86 mmol), Meldrum's acid (0.70 g, 4.86 

mmol), and N, JV-dimethyl aminopyridine (0.59 g, 4.86 mmol) in the indicated order. 

This solution was allowed to stir at room temperature for 12 h, at which time the 

dicyclohexylurea was filtered off and the solution was concentrated in vacuo to afford 

1.95 g (81 %) of 210 as a white oily solid. •H NMR (400 MHz, CDCb) 8 8.36 - 8.02 (m, 

2H), 7.42 - 6.99 (m, 5H), 6.56 (dd, 7 = 5.9, 1.5 Hz, 2H), 5.60 (dd, 7 = 8.9, 3.3 Hz, IH), 
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5.37 - 4.84 (m, 4H), 3.77 - 3.40 (m, 2H), 3.20 - 3.12 (m, 6H), 2.61 - 2.10 (m, IH), 2.08 -

1.80 (m, 3H), 1.75 - 1.55 (m, 6H). 13C NMR (101 MHz, CDCb) 8 196.45, 166.45, 

157.09, 155.60, 141.27, 137.46, 128.58, 128.32, 127.93, 127.60, 127.54, 127.36, 127.31, 

127.17, 106.47, 101.24, 87.35, 66.15, 64.56, 48.08, 40.12, 31.83, 27.77, 26.59, 26.56, 

26.46, 23.14. IR (neat) v 3211, 3000, 2929, 2901, 1711, 1605, 1105, 940, 710 cm"1. 

(S)-Benzyl-2-((2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl) 

pyrrolidine-1-carboxylate (211) 

A 100-mL round-botttomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (10 mL), (5)-benzyl 2-((2,2-

dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)(hydroxy)methyl)pyrrolidine-l-carboxylate 

DMAP salt 210 (0.49 g, 1.00 mmol), and anhydrous Dowex 50W-X2 (1.5 g) ion 

exchange resin. This solution was stirred for 20 min. The resin was removed by 

filtration and the filtrate concentrated in vacuo to give 0.338 g (90 %) of 211 as a yellow, 

viscous oil. iH NMR (400 MHz, CDCb) major tautomer 8 7.46 - 7.23 (m, 5H), 5.63 -

5.56 (m, IH), 5.33 - 4.85 (m, 2H), 3.79 - 3.56 (m, 2H), 2.12 - 1.89 (m, 4H), 1.80 - 1.66 

(m, 6H). 13C NMR (126 MHz, CDCb) 8 196.88, 196.51, 170.47, 162.85, 159.82, 154.69, 

153.96, 136.55, 136.24, 128.57, 128.53, 128.47, 128.41, 128.32, 128.23, 128.14, 128.11, 

128.07, 127.97, 127.88, 127.80, 127.76, 106.26, 105.62, 105.40, 90.86, 90.29, 67.31, 

67.14, 59.51, 58.94, 47.78, 47.28, 36.19, 32.32, 31.34, 27.64, 27.17, 27.03, 26.00, 24.49, 

23.68. IR (neat) v 3300, 3211, 3002, 2991, 2971, 1701, 1682, 1102, 991, 837 cm"1. 
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(5)-Benzyl 2-(3-oxo-3-(2-oxooxazolidin-3-yl)propanoyl)pyrrolidine-l-carboxylate 

(202) 

A 100-mL round-bottomed flask, equipped with a condenser fitted with a drying tube 

(cacium sulfate) and a magnetic stir bar, was charged with toluene (20 mL), 2-

oxazolidone (0.09 g, 1.00 mmol), and (5)-benzyl 2-((2,2-dimethyl-4,6-dioxo-l,3-

dioxan-5-ylidene)(hydroxy)methyl)pyrrolidine-l-carboxylate 211 (0.38 g, 1.00 mmol) 

and refluxed for 5 h. The reaction was then allowed to cool to room temperature and the 

toluene mixture was washed with water (10 mL) and brine (10 mL). The organic layer 

was dried with sodium sulfate (ca. 10 g) and concentrated in vacuo to afford a yellow, 

viscous oil. After column chromatography (hexane:ethyl acetate 1:1, R/= 0.3) 0.281 g 

(78 %) of compound 202 was isolated as a clear oil. 'H NMR (400 MHz, CDCb) 8 7.51 -

7.18 (m, 5H), 5.31 - 5.01 (m, 2H), 4.60 - 4.37 (m, 3H), 4.27 - 4.12 (m, 2H), 4.10 - 3.97 

(m, 2H), 3.64 - 3.44 (m, 2H), 2.35 - 1.79 (m, 4H). 13C NMR (126 MHz, CDCb) 8 

196.88, 196.51, 170.47, 162.85, 159.82, 154.69, 153.96, 136.55, 136.24, 128.57, 128.53, 

128.47, 128.41, 128.32, 128.23, 128.14, 128.11, 128.07, 127.97, 127.88, 127.80, 127.76, 

106.26, 105.62, 105.40, 90.86, 90.29, 67.31, 67.14, 59.51, 58.94, 47.78, 47.28, 36.19, 

32.32, 31.34, 27.64, 27.17, 27.03, 26.00, 24.49, 23.68. IR (neat) v 3321, 3001, 2974, 

2944, 1722, 1701, 1190, 1009, 1000, 918, 782 cm"1. 

(25)-Benzyl2-(3-oxo-2-oxabicyclo[3.1.0]hexan-l-yl)pyrrolidine-l-carboxylate (212) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged methylene chloride (30 mL) and cooled in an ice bath. 

175 



Diethylzinc (0.5 mL, 5.00 mmol) was added and allowed to stir at 0 °C for 5 min. 

Methylene iodide (0.8 mL, 10.0 mmol) was added to the flask dropwise over 5 min and 

the solution was allowed to stir for 20 min. P-Keto imide 202 (0.36 g, 1.00 mmol) in 

methylene chloride (5 mL) was then syringed into the milky white mixture and allowed 

to stir at room temperature for 24 h. The reaction was then cooled down in an ice bath 

and saturated ammonium chloride (20 mL) was added slowly. The organic phase was 

separated, washed with water (10 mL), brine (10 mL), dried with sodium sulfate (ca. 10 

g), and concentrated in vacuo to obtain a viscous, yellow oil. After column 

chromatography (hexane:ethyl acetate 5:1) two diastereomers were separated. Major: 

(Hexane:ethyl acetate 1:1, R/ = 0.5) 0.096 g (32 %) of 212 as a clear oil. Minor: 

(Hexane:ethyl acetate 1:1, R /= 0.4) 0.067 g (22 %) of 212 as a clear oil. Major 

diastereomer: 'H NMR (400 MHz, CDCb) 8 7.31 (m, 5H), 5.41 - 4.83 (m, 2H), 3.75 (d, 

7 = 7.3 Hz, IH), 3.51 (s, 2H), 3.14 - 2.68 (m, IH), 2.61 - 2.38 (m, IH), 2.33 - 2.00 (m, 

3H), 1.98 - 1.72 (m, IH), 0.99 (t, 7 = 7.8 Hz, IH), 0.61 (t, 7 = 7.6 Hz, IH). 13C NMR 

(101 MHz, CDCb) 8 176.81, 155.60, 137.01, 128.88, 128.72, 128.15, 127.76, 70.05, 

67.39, 66.97, 59.97, 58.84, 48.01, 47.60, 34.01, 33.69, 30.68, 29.69, 24.24, 23.42, 17.68, 

17.16, 16.78. IR(neat) v 3002, 2981, 2881, 1701, 1119, 990, 877 cm-1. 

(5)-2-(((BenzyIoxy)carbonyl)(4-methoxybenzyl)amino)-3-methyIbutanoic acid (214) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and septum, was 

charged with water (50 mL), sodium hydroxide (1.6 g, 40.0 mmol), and PMB-valine 213 

(4.75, 20 mmol) in the indicated order. The mixture was cooled in an ice bath and Cbz-
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CI (3.5 mL, 25 mmol) was added over a 0.5 h period. The reaction was allowed to stir 

vigorously for 4 h and then poured into a separatory funnel. The un-reacted Cbz-Cl was 

extracted with diethyl ether (3 x 20 mL). The aqueous phase was acidified to pH ~ 2 (3 

N HCl) and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were 

dried with sodium sulfate (ca. 25 g) and concentrated in vacuo to afford 5.87 g (79 %) of 

214 as a clear oil. •H NMR (500 MHz, CDCb) 8 9.95 (s, IH), 7.79 - 6.53 (m, 9H), 5.39 -

5.01 (m, 2H), 4.27 (d, 7 = 71.2 Hz, IH), 4.02 - 3.47 (m, 2H), 2.22 (s, IH), 1.31 - 0.55 

(m, 6H). 13C NMR (126 MHz, CDCb) 8 175.44, 155.40, 135.07, 129.93, 128.75, 128.68, 

127.66, 127.51, 127.43, 127.40, 127.34, 127.22, 127.10, 126.24, 112.67, 112.58, 109.31, 

109.22, 66.17, 65.37, 57.83, 54.29, 54.16, 34.05, 33.98, 30.01, 19.97, 17.96, 16.31. IR 

(neat) v 3401, 3119, 2991, 2899, 1659, 1200, 1008, 980, 770 cm'1. 

( iS')-Benzyl-(l-(2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-

methylbutan-2-yl)(4-methoxybenzyl)carbamate DMAP salt (217) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet was charged with methylene chloride (10 mL) and cooled in an ice bath. 

N,N-?MB-Cbz-Valine (214) (1.81 g, 4.86 mmol) in methylene chloride (5 mL) was added 

followed by dicyclohexylcarbodiimide (1.00 g, 4.86 mmol), Meldrum's acid (0.70 g, 4.86 

mmol), and N, iV-dimethyl aminopyridine (0.59 g, 4.86 mmol) in the indicated order. 

This solution was allowed to stir at room temperature for 12 h, at which time the 

dicyclohexylurea was removed by filtration. The solution was concentrated in vacuo to 

afford 2.44 g (81 %) of compound 217 as a white oily solid. The product was carried on 
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to the next step without purification. lH NMR (500 MHz, CDCb) 8 8.00 (d, 7 = 7.1 Hz, 

2H), 7.47 - 6.90 (m, 9H), 6.65 (d„7= 11.6 Hz, 2H), 5.20 - 4.99 (m, 2H), 4.62 - 4.20 (m, 

2H), 3.74 - 3.62 (m, 3H), 3.08 (s, 6H), 2.32 (qd, 7 = 13.2, 6.6 Hz, IH), 1.64 (s, 6H), 0.91 

- 0.67 (m, 6H). 13C NMR (126 MHz, CDCb) 8 170.38, 167.58, 158.62, 156.57, 156.36, 

142.00, 136.32, 135.43, 129.62, 113.51, 106.78, 103.13, 67.48, 66.46, 64.81, 55.65, 

55.15, 55.13, 39.69, 34.90, 33.85, 28.08, 26.28, 26.21, 25.41, 25.04, 24.61, 18.93. IR 

(neat) v 3329, 3019, 2993, 2834, 1722, 1700, 1603, 1189, 1006, 925, 729 cm"1. 

(S')-benzyl (l-(2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-

methylbutan-2-yl)(4-methoxybenzyl)carbamate (216) 

A 100-mL round-botttomed, flask equipped with a magnetic stir bar, septum, and a 

nitrogen inlet was charged with methylene chloride (10 mL), (5)-benzyl (l-(2,2-

dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-methylbutan-2-yl)(4-

methoxybenzyl)carbamate DMAP salt (217) (0.62 g, 1 mmol), and anhydrous Dowex 

50W-X2 (1.5 g) ion exchange resin. The solution was stirred for 20 min, then filtered 

and concentrated in vacuo to give 0.458 g (92 %>) of compound 216 as a yellow, viscous 

oil. Compound 216 was carried along without further purification. !H NMR (400 MHz, 

CDCb) 8 7.60 - 6.56 (m, 9H), 6.02 (d, J= 10.4 Hz, IH), 5.21 (dt, 7 = 31.0, 9.9 Hz, 2H), 

4.69 - 4.26 (m, 2H), 3.86 - 3.53 (m, 3H), 2.34 - 2.01 (m, IH), 1.88 - 1.48 (m, 6H), 1.23 

- 0.57 (m, 6H). 13C NMR (101 MHz, CDCb) 8 193.30, 163.07, 158.80, 136.57, 130.76, 

129.88, 129.57, 128.80, 113.84, 106.48, 105.17, 67.45, 55.45, 36.64, 31.87, 28.22, 27.84, 
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27.22, 27.09, 26.61, 19.90, 19.06, 17.48. IR (neat) v 3314, 3091, 2900, 2805, 1730, 1692, 

1301, 1108, 1005, 921, 888, 729 cm"1. 

(5)-Benzyl 4-methoxybenzyl(2-methyl-4,6-dioxo-6-(2-oxooxazolidin-3-yl)hexan-3-yl) 

carbamate (215) 

A 100-mL round-bottomed flask, equipped with a condenser fitted with a drying tube, 

and a magnetic stir bar, was charged with toluene (20 mL), 2-oxazolidone (0.09 g, 1.00 

mmol), and (5)-benzyl (l-(2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-

methylbutan-2-yl)(4-methoxybenzyl)carbamate (216) (0.50 g, 1.00 mmol). The solution 

was heated to reflux for 5 h. The reaction was allowed to cool to room temperature and 

the toluene solution was washed with water (10 mL) and brine (10 mL). The organic 

layer was dried with sodium sulfate (ca. 20 g) and concentrated in vacuo to afford a 

yellow, viscous oil. After column chromatography (hexane:ethyl acetate 1:1, R/= 0.3) 

0.347 g (72 %) of compound 215 was isolated as a clear oil. lU NMR (400 MHz, CDCb) 

major tautomer 8 7.57 - 6.57 (m, 9H), 5.43 - 5.03 (m, 2H), 4.82 (d, 7 = 14.4 Hz, IH), 

4.52 (dd, 7 = 25.4, 17.5 Hz, IH), 4.38 - 4.08 (m, 4H), 4.05 - 3.85 (m, 3H), 3.76 (s, 3H), 

3.54 (d, 7 = 16.8 Hz, IH), 3.28 (d, 7 = 16.7 Hz, IH), 2.49 - 2.34 (m, IH), 0.96 (dd, 7 = 

11.3, 6.5 Hz, 3H), 0.77 (dd, 7= 21.6, 6.9 Hz, 3H). 13C NMR (101 MHz, CDCb) 8 200.19, 

200.01, 177.97, 170.79, 170.60, 166.97, 166.91, 159.45, 159.26, 156.67, 156.39, 153.69, 

153.64, 136.41, 136.12, 131.04, 130.39, 129.58, 129.47, 128.77, 128.72, 128.44, 128.40, 
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128.37, 114.18, 114.04, 113.66, 70.91, 70.35, 68.16, 68.12, 62.41, 62.20, 55.43, 50.12, 

48.65, 47.97, 42.54, 42.31, 42.22, 27.29, 27.18, 26.66, 23.40, 21.55, 20.84, 19.10. IR 

(neat) v 3203, 3009, 2931, 2870, 1790; 1702, 1629, 1104, 1003, 930, 901, 832 cm"1. 

(5')-Benzyl-(3,5-dioxo-5-(2-oxooxazolidin-3-yl)-l-phenylpentan-2-yl)(4-

methoxybenzyl)carbamate (221) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar and septum was 

charged with water (50 mL), sodium hydroxide (1.6 g, 40 mmol), and PMB-

phenylalanine (220) (7.71 g, 20 mmol) in the indicated order. The mixture was cooled in 

an ice bath and Cbz-Cl (3.5 mL, 25 mmol) was added over a 0.5 h period. The reaction 

was allowed to stir for 4 h and then the solution was poured into a separatory funnel. The 

un-reacted Cbz-Cl was extracted with diethyl ether (3 x 20 mL). The aqueous phase was 

acidified to pH ~ 2 (3 N HCl) and extracted with ethyl acetate (3 x 25 mL). The 

combined organic layers were dried with sodium sulfate (ca. 30 g) and concentrated in 

vacuo to afford 7.05 g (84 %) of 221 as a clear oil. !H NMR (400 MHz, CDCb) major 

rotameric form 8 7.40 - 7.10 (m, 14H), 5.33 - 5.06 (m, 2H), 4.80 - 4.37 (m, 2H), 3.76 (s, 

3H), 3.70 - 3.56 (m, IH), 3.34 - 3.15 (m, 2H). 13C NMR (101 MHz, CDCb) 8 176.43, 

175.55, 159.20, 156.48, 156.04, 137.82, 136.49, 135.71, 130.37, 129.67, 129.57, 129.47, 

128.90, 128.76, 128.54, 128.45, 128.39, 128.33, 128.20, 127.45, 126.89, 114.02, 68.13, 

67.92, 67.35, 62.06, 60.61, 55.46, 54.81, 52.17, 37.96, 36.47, 35.28. IR (neat) v 3309, 

3011, 2922, 2881, 1711, 1633, 1110, 1000, 933, 782 cm"1. 
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(iS')-Benzyl-(l-(2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-

phenylpropan-2-yl)(4-methoxybenzyl)carbamate DMAP salt (222) 

A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (10 mL) and cooled in an ice bath. 

JV,JV-PMB-Cbz-Phenylalanine (221) (2.03 g, 4.86 mmol) in methylene chloride (5 mL) 

was added followed by dicyclohexyl carbodiimide (1.00 g, 4.86 mmol), Meldrum's acid 

(0.70 g, 4.86 mmol), and N, iV-dimethylaminopyridine (0.59 g, 4.86 mmol) in the 

indicated order. The solution was allowed to stir at room temperature for 12 h, at which 

time the dicyclohexylurea was removed by filtration. The filtrate was concentrated in 

vacuo to afford 2.60 g (80 %>) of 222 as a yellow oily solid. Compound 222 was carried 

on without further purification. lK NMR (400 MHz, CDCb) major tautomer and 

rotomer 8 8.13 (dd, 7 = 5.7, 1.5 Hz, 2H), 7.83 - 6.60 (m, 9H), 6.52 (d, 7 = 1.5 Hz, 2H), 

5.36 - 4.90 (m, 2H), 4.75 - 4.04 (m, 2H), 3.89 - 3.66 (m, 2H), 3.51 - 3.23 (m, 2H), 3.10 

(s, 6H), 1.79 - 1.64 (m, 6H). 13C NMR (101 MHz, CDCb) 8 195.09, 194.84, 170.58, 

167.02, 166.66, 166.42, 165.34, 156.30, 143.61, 130.33, 129.62, 129.49, 129.23, 128.95, 

128.72, 128.64, 128.45, 128.25, 128.14, 127.85, 127.61, 127.24, 125.88, 113.80, 113.54, 

106.64, 101.24, 87.59, 67.13, 67.01, 55.96, 55.39, 39.86, 35.14, 34.15, 33.58, 27.15, 

26.62, 26.48, 26.32, 25.87, 25.66, 25.48, 25.22, 24.90, 24.43. IR (neat) v 3356, 3119, 

3009, 2922, 2900, 1739, 1700, 1109, 1018, 892, 754 cm"1. 

(5')-Benzyl-(l-(2,2-dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-

phenylpropan-2-yl)(4-methoxybenzyl)carbamate (223) 
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A 100-mL round-botttomed, flask equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (10 mL), (5)-benzyl (l-(2,2-

dimethyl-4,6-dioxo-l,3-dioxan-5-ylidene)-l-hydroxy-3-phenylpropan-2-yl)(4-

methoxybenzyl)carbamate DMAP salt (222) (0.67 g, 1.00 mmol), and anhydrous Dowex 

50W-X2 (1.5 g) ion exchange resin. The solution was stirred for 20 min. The resin was 

removed by filtration and the filtrate was concentrated in vacuo to give 0.491 g (90 %>) of 

223 as a yellow, viscous oil. Compound 223 was carried on without further purification. 

lU NMR (400 MHz, CDCb) major tautomer and rotomer 8 7.55 - 6.48 (m, 14H), 5.37 -

4.94 (m, 4H), 4.69 - 4.51 (m, IH), 3.76 (s, 3H), 3.41 - 2.78 (m, 2H), 1.96 - 1.36 (m, 6H). 

13CNMR(101 MHz, CDCb) 8 194.44, 170.86, 159.81, 158.96, 136.43, 135.58, 129.58, 

129.46, 128.97, 128.76, 128.69, 128.63, 128.47, 128.31, 127.57, 126.99, 114.53, 113.96, 

105.33, 67.38, 55.45, 38.96, 27.84, 27.10, 26.80. IR (neat) v 3398, 3002, 2991, 2983, 

1798, 1708, 1679, 1102, 981, 770 cm"1. 

(S)-Benzyl-(3,5-dioxo-5-(2-oxooxazoIidin-3-yl)- l-phenylpentan-2-yl)(4-

methoxybenzyl)carbamate (218) 

A 100-mL round-bottomed flask, equipped with a condenser fitted with a drying tube 

(calcium sulfate) and a magnetic stir bar, was charged with toluene (20 mL), 2-

oxazolidone (0.09 g, 1.00 mmol), and (5)-benzyl (l-(2,2-dimethyl-4,6-dioxo-l,3-

dioxan-5-ylidene)-l-hydroxy-3-phenylpropan-2-yl)(4-methoxybenzyl)carbamate (223) 
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(0.55 g, 1.00 mmol). The solution was refluxed for 5 h. The reaction was allowed to 

cool to room temperature and the toluene was washed with water (10 mL) and brine (10 

mL). The organic layer was dried with sodium sulfate (ca. 10 g) and concentrated in 

vacuo to afford a yellow, viscous oil. After column chromatography (hexane:ethyl 

acetate 1:1, R/= 0.3) 0.382 g (72 %>) of compound 218 was isolated as a clear oil. *H 

NMR (400 MHz, CDCb) 8 7.62 - 6.56 (m, 14H), 5.52 - 4.99 (m, 2H), 4.62 (dd, 7 = 75.0, 

14.9 Hz, IH), 4.43 - 4.26 (m, 2H), 3.98 - 3.83 (m, 2H), 3.75 (s, 3H), 3.53 (dd, 7 = 41.1, 

16.7 Hz, IH), 3.41 - 3.21 (m, 2H), 3.16 - 2.81 (m, 2H). 13C NMR (101 MHz, CDCb) 8 

200.37, 200.20, 167.17, 166.96, 159.44, 159.32, 155.92, 155.77, 153.74, 153.62, 138.41, 

138.14, 136.52, 135.88, 130.91, 130.43, 129.56, 129.49, 129.24, 129.10, 129.00, 128.87, 

128.74, 128.66, 128.57, 128.39, 128.27, 126.85, 126.73, 114.26, 114.18, 68.31, 68.25, 

68.06, 67.86, 62.44, 55.47, 52.87, 52.26, 47.12, 46.90, 42.30, 34.87, 33.74. IR (neat) v 

3229, 3100, 2998, 1781, 1704, 1683, 1109, 1006, 996, 701 cm"1. 

Benzyl-4-methoxybenzyl((lS)-2-methyl-l-(3-oxo-2-oxabicyclo[3.1.0]hexan-l-yl) 

propyl)carbamate (226 and 227) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (30 mL) and cooled in an ice bath. 

Diethylzinc (0.5 mL, 5.00 mmol) was added and the solution was allowed to stir at 0 °C 

for 5 min. Methylene iodide (0.8 mL, 10.0 mmol) was added to the flask drop-wise over 

5 min and the reaction allowed to stir for 20 min. P-Keto imide 215 (0.48 g, 1.00 mmol) 

in methylene chloride (5 mL) was then added by syringe in one portion to the milky 
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white mixture. The solution was allowed to stir at room temperature for 24 h. After the 

reaction was cooled down in an ice bath, saturated ammonium chloride (20 mL) was 

added slowly. The organic phase was separated, washed with water (10 mL) and brine 

(10 mL), dried with sodium sulfate (ca. 10 g), and concentrated in vacuo to obtain a 

viscous, yellow oil. After column chromatography (hexane:ethyl acetate 5:1) two 

diastereomers were separated. 

Major: (hexane:ethyl acetate 1:1, R/= 0.5) 0.123 g (29 %) as a clear oil. !H NMR (400 

MHz, CDCb) major rotomeric form 8 7.50 - 6.57 (m, 9H), 5.40 - 5.07 (m, 2H), 4.82 (d, 

7 = 16.4 Hz, IH), 4.14 (d, J= 16.4 Hz, IH), 3.84 (d, 7 = 11.0 Hz, IH), 3.79 (s, 3H), 2.57-

2.40 (m, IH), 2.02 (d,7= 17.7 Hz, IH), 1.63 (s, IH), 1.49 - 1.33 (m, IH), 1.17 (d, J= 6.5 

Hz, 3H), 1.12 (dd, 7 = 14.3, 7.9 Hz, IH), 0.92 (d, 7 = 6.7 Hz, 2H), 0.63 (dd, 7 = 6.6, 5.0 

Hz, IH). 13C NMR (101 MHz, CDCb) 8 175.89, 158.89, 157.72, 136.53, 130.58, 129.19, 

128.79, 128.68, 128.58, 128.48, 128.34, 114.06, 68.82, 67.83, 64.84, 55.55, 45.88, 33.50, 

29.03, 24.50, 20.29, 20.03, 13.81. IR (neat) v 3092, 2901, 2883, 1709, 1123, 1085, 934, 

769 cm-1. 

Minor: (hexane:ethyl acetate 1:1, R/= 0.4) 0.085 g (20 %) as a clear oil. >H NMR (400 

MHz, CDCb) major rotomeric form 8 7.55 - 7.17 (m, 7H), 6.83 - 6.73 (m, 3H), 5.33 -

5.07 (m, 2H), 4.53 (q, 7 = 15.6 Hz, 2H), 3.76 (s, 3H), 2.95 - 2.67 (m, IH), 2.51 - 2.42 (m, 

IH), 2.23 (tt, 7= 12.3, 6.2 Hz, IH), 1.21 - 1.08 (m, IH), 0.94 (d, 7= 6.6 Hz, 3H), 0.84 (d, 

7= 6.7 Hz, 3H), 0.83 - 0.73 (m, IH), 0.36 - 0.27 (m, IH). 13C NMR (101 MHz, CDCb) 8 

176.42, 158.69, 157.61, 136.75, 136.60, 131.15, 130.00, 129.28, 128.76, 128.68, 128.63, 

128.58, 128.34, 128.22, 128.18, 114.06, 113.58, 68.98, 68.82, 67.83, 67.75, 66.20, 64.84, 
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55.54, 55.44, 46.96, 45.88, 33.50, 33.31, 29.03, 28.21, 24.50, 20.30, 20.17, 20.05, 19.92, 

19.71, 19.56, 18.26, 13.81. IR (neat) v 3009, 2909, 2899, 1722, 1359, 1099, 992, 747 

cm-1. 

Benzyl-4-methoxybenzyl((15')-l-(3-oxo-2-oxabicyclo [3.1.0] hexan-l-yl)-2-

phenylethyl)carbamate (228 and 229) 

A 100-mL round-bottomed flask equipped with a magnetic stir bar, septum, and a 

nitrogen inlet was charged with methylene chloride (30 mL) and lowered into an ice bath. 

Diethylzinc (0.5 mL, 5.00 mmol) was added and the solution was allowed to stir at 0 °C 

for 5 min. Methylene iodide (0.8 mL, 10.0 mmol) was added to the flask dropwise over 5 

min and the solution was allowed to stir for 20 min. P-Keto imide 218 (0.47 g, 1.00 

mmol) in methylene chloride (5 mL) was then added by syringe into the milky white 

mixture and allowed to stir at room temperature for 24 h. The reaction was cooled down 

in an ice bath and saturated ammonium chloride (20 mL) was added slowly. The organic 

phase was separated, washed with water (10 mL) and brine (10 mL), dried with sodium 

sulfate, and concentrated in vacuo to obtain a viscous, yellow oil. After column 

chromatography (Hexane:ethyl acetate 5:1) two diastereomers were separated. 

Major: (Hexane:ethyl acetate 1:1, R/= 0.5) 0.146 g (31 %) as a clear oil. !H NMR (400 

MHz, CDCb) 8 7.47 - 6.63 (m, 14H), 5.21 - 4.97 (m, 2H), 4.54 - 4.33 (m, 2H), 3.78 (s, 

3H), 3.27 (dd, 7 = 13.4, 9.1 Hz, IH), 3.12 (dd, J= 12.9, 7.5 Hz, IH), 2.21 - 1.93 (m, IH), 

1.88 - 1.62 (m, IH), 1.34 - 1.16 (m, IH), 0.65 (t, 7 = 7.8 Hz, IH), 0.42 - 0.26 (m, IH). 

13CNMR(101 MHz, CDCb) 8 175.75, 158.88, 157.03, 137.62, 136.54, 130.64, 129.56, 

T 
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128.67, 128.57, 128.19, 126.82, 114.06, 69.05, 67.68, 60.06, 55.55, 46.75, 36.73, 33.62, 

22.39, 14.13. IR (neat) v 3019, 2980, 2835, 1719, 1333, 1009, 901, 832 cm"1. 

Minor: (Hexane:ethyl acetate 1:1, R/= 0.4) 0.104 g (22 %) as a clear oil. 'H NMR (400 

MHz, CDCb) major rotomeric form 8 7.52 - 6.66 (m, 14H), 5.25 - 5.05 (m, 2H), 4.69 (q, 

7 = 16.6 Hz, 2H), 4.53 (t, 7 = 8.4 Hz, IH), 3.78 (s, 3H), 3.09 - 2.89 (m, 2H), 2.08 (d, 7 = 

18.7 Hz, IH), 1.81 (dd, 7 = 18.9, 6.1 Hz, IH), 1.12 - 0.64 (m, 2H), 0.26 - 0.21 (m, IH). 

13CNMR(101 MHz, CDCb) 8 176.90, 158.73, 156.96, 137.58, 136.54, 131.43, 129.44, 

129.27, 128.89, 128.68, 128.54, 128.38, 128.26, 128.16, 126.97, 113.80, 68.09, 67.79, 

61.75, 55.47, 47.09, 36.54, 33.08, 19.02, 17.98. IR (neat) v 3063, 2992, 2849, 1731, 

1394, 1006, 943, 928 cm"1. 

(2S)-benzyl 2-(2-(2-(benzylamino)-2-oxoethyl)-l-hydroxycyclopropyl)pyrrolidine-l-

carboxylate (230) 

A 100-mL round-bottomed flask, equipped with a septum and a magnetic stir bar, was 

charged with bicyclic lactone 212 (0.301 g, 1.00 mmol) and benzylamine (6 mL, 54.9 

mmol) and stirred at room temperature for 3 d. The reaction solution was then diluted 

with ethyl acetate (25 mL) and washed with 3 N hydrochloric acid (3 x 10 mL), dried 

with sodium sulfate (ca. 5 g), and concentrated in vacuo to yield 0.359 g (88 %>) of 230 as 

a light yellow oil. [H NMR (400 MHz, CDCb) 8 7.50 - 7.02 (m, 10H), 5.17 - 4.87 (m, 

2H), 4.64 - 4.24 (m, 2H), 3.75 - 3.25 (m, 3H), 2.65 (dd, 7= 15.4, 3.9 Hz, IH), 2.27 (dd, 7 

= 15.2, 11.1 Hz, IH), 2.08 - 1.81 (m, 3H), 1.74 (dt, 7= 12.5, 6.5 Hz, IH), 1.56 - 1.36 (m, 

IH), 0.72 (dd, 7= 9.4, 5.9 Hz, IH), 0.49 (t, 7= 6.0 Hz, IH). 13C NMR (101 MHz, CDCb) 
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8 173.64, 156.61, 138.83, 136.88, 128.81, 128.68, 128.17, 127.86, 127.74, 127.47, 67.05, 

65.02, 59.90, 48.14, 43.52, 36.66, 29.20, 24.44, 21.89, 17.19. IR (neat) v 3277, 3113, 

3001, 2940, 1733, 1300, 1021, 991 cm"1. 

(S)-l-tosylpyrrolidine-2-carboxylic acid (234) 

A 250-mL round bottomed flask, equipped with a septum and a magnetic stir bar, was 

charged with L-proline (5.76 g, 50 mmol) and 2M sodium hydroxide (50 mL, 100 mmol) 

and cooled in an ice bath. />-Toluenesulfonyl chloride (9.53 g, 50 mmol) in diethyl ether 

(20 mL) was added dropwise to the solution over 4 h. The ethereal solution was then 

separated and the aqueous solution was acidified to pH ~2 with 3N hydrochloric acid. 

The aqueous layer was extracted with ethylacetate (3 x 30 mL), dried with magnesium 

sulfate (ca. 15 g), and concentrated in vacuo to afford 12.52 g (93 %) of 234 as a clear 

oil. lK NMR (400 MHz, CDCb) 8 11.45 (s, IH), 7.71 (d, 7= 8.1 Hz, 2H), 7.47 - 7.19 (m, 

2H), 4.41 - 4.11 (m, IH), 3.58 - 3.35 (m, IH), 3.21 (dd, 7 = 16.6, 7.2 Hz, IH), 2.38 (s, 

3H), 2.16 - 1.86 (m, 3H), 1.78 - 1.53 (m, IH). 13C NMR (101 MHz, CDCb) 8 177.63, 

144.25, 134.59, 130.07, 127.70, 60.56, 48.93, 31.02, 24.85, 21.75. IR (neat) v 3544, 

3214, 2982, 2880, 2642, 1730, 1597, 1491, 1012, 818, 703 cm'1. 

(5)-5-(hydroxy(l-tosylpyrrolidin-2-yl)methylene)-2,2-dimethyl-l,3-dioxane-4,6-dione 

DMAP salt (235) 
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A 100-mL round-bottomed flask, equipped with a septum, magnetic stir bar, and a 

nitrogen inlet, was charged with methylene chloride (10 mL) and cooled in an ice bath. 

Compound 234 (1.31 g, 4.86 mmol) in methylene chloride (5 mL) was added followed by 

dicyclohexyl carbodiimide (1.00 g, 4.86 mmol), Meldrum's acid (0.70 g, 4.86 mmol), and 

N iV-dimethylaminopyridine (0.59 g, 4.86 mmol) in the indicated order. The solution 

was allowed to stir at room temperature for 12 h, at which time the dicyclohexylurea was 

removed by filtration. The filtrate was concentrated in vacuo to afford 2.01 g (80 %) of 

235 as a yellow oily solid. Compound 235 was carried on without further purification 

and directly subjected to acidification without spectroscopic analysis. 

(5)-5-(hydroxy(l-tosylpyrrolidin-2-yl)methylene)-2,2-dimethyl-l,3-dioxane-4,6-dione 

(236) 

A 100-mL round-botttomed, flask equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (10 mL), (S)-5-(hydroxy(l-

tosylpyrrolidin-2-yl)methylene)-2,2-dimethyl-l,3-dioxane-4,6-dione DMAP salt (235) 

(0.67 g, 1.00 mmol), and anhydrous Dowex 50W-X2 (1.5 g) ion exchange resin. The 

solution was stirred for 20 min. The resin was removed by filtration and the filtrate was 

concentrated in vacuo to give 0.356 (90 %) of 236 as a yellow, viscous oil. Compound 

236 was carried on without further purification and directly subjected to ring opening. 

(5)-l-(2-oxooxazolidin-3-yl)-3-(l-tosylpyrroIidin-2-yl)propane-l,3-dione(237) 
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A 100-mL round-bottomed flask, equipped with a condenser fitted with a drying tube 

(calcium sulfate) and a magnetic stir bar, was charged with toluene (20 mL), 2-

oxazolidone (0.09 g, 1.00 mmol), and (5')-5-(hydroxy(l-tosylpyrrolidin-2-yl) 

methylene)-2,2-dimethyl-l,3-dioxane-4,6-dione (236) (0.381 g, 1.00 mmol). The 

solution was refluxed for 5 h. The reaction was allowed to cool to room temperature and 

the toluene was washed with water (10 mL) and brine (10 mL). The organic layer was 

dried with sodium sulfate (ca. 10 g) and concentrated in vacuo to afford a yellow, viscous 

oil. After column chromatography (hexane:ethyl acetate 1:1, R/= 0.3) 0.270 g (71 %) of 

compound 237 was isolated as a clear oil. *H NMR (400 MHz, CDCb) 8 7.74 (dd, 7 = 

13.4, 8.2 Hz, 2H), 7.33 (dd, 7 = 16.4, 9.4 Hz, 2H), 4.62 - 4.32 (m, 4H), 4.16 (dt, 7 = 7.3, 

3.6 Hz, IH), 4.13 - 4.02 (m, 2H), 3.61 - 3.43 (m, IH), 3.33 - 3.18 (m, IH), 2.44 (s, 3H), 

2.30 - 2.16 (m, IH), 1.98 - 1.81 (m, IH), 1.76 - 1.59 (m, IH), 1.58 - 1.50 (m, IH). 13C 

NMR (101 MHz, CDCb) 8 204.21, 167.06, 154.02, 144.44, 133.58, 130.17, 129.99, 

127.92, 67.49, 62.58, 49.72, 48.19, 42.52, 29.14, 24.77, 21.78. IR (neat) v 3532, 3290, 

2977, 2809, 2691, 1722, 1701, 1555, 1489, 1071, 883, 729 cm"1. 

l-((S>l-tosylpyrrolidin-2-yl)-2-oxabicyclo[3.1.0]hexan-3-one (238) and (239) 

A 100-mL round-bottomed flask, equipped with a magnetic stir bar, septum, and a 

nitrogen inlet, was charged with methylene chloride (30 mL) and cooled in an ice bath. 

Diethylzinc (0.5 mL, 5.00 mmol) was added and the solution was allowed to stir at 0 °C 

for 5 min. Methylene iodide (0.8 mL, 10.0 mmol) was added to the flask drop-wise over 

5 min and the reaction allowed to stir for 20 min. P-Keto imide 238 (0.28 g, 1.00 mmol) 
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in methylene chloride (5 mL) was then added by syringe in one portion to the milky 

white mixture. The solution was allowed to stir at room temperature for 24 h. After the 

reaction was cooled down in an ice bath, saturated ammonium chloride (20 mL) was 

added slowly. The organic phase was separated, washed with water (10 mL) and brine 

(10 mL), dried with sodium sulfate (ca. 10 g), and concentrated in vacuo to obtain a 

viscous, yellow oil. After column chromatography (hexane:ethyl acetate 5:1, R/= 0.2) 

0.189 g (59 %) of 238 and 239 co-eluted together off of the column as a white solid. MP 

= 149- 151 °C. 

Major: •H NMR (400 MHz, CDCb) 8 7.68 (d, 7 = 8.3 Hz, 2H), 7.32 (d, 7= 8.0 Hz, 2H), 

3.64 (dd, 7 = 8.7, 3.3 Hz, IH), 3.53 - 3.47 (m, IH), 3.38 - 3.29 (m, IH), 2.73 (dd, 7 = 

18.7, 6.8 Hz, IH), 2.47 (d, 7 = 19.5 Hz, IH), 2.44 (s, 3H), 2.19 - 1.92 (m, 2H), 1.88 -

1.77 (m, IH), 1.68-1.55 (m, 2H), 1.16-1.11 (m, IH), 0.69 (dd,7= 6.7, 4.9 Hz, IH). 

Minor: lH NMR (400 MHz, CDCb) 8 7.72 (d, 7 = 8.3 Hz, 2H), 7.34 (d, 7= 7.0 Hz, 2H), 

4.18 - 4.09 (m, IH), 3.43 - 3.14 (m, 2H), 2.98 (dd, 7 = 19.0, 7.0 Hz, IH), 2.64 - 2.53 (m, 

IH), 2.44 (s, 3H), 2.18-1.94 (m, 2H), 1.85 - 1.82 (m, 2H), 1.65 - 1.58 (m, IH), 1.30 -

1.25 (m, IH), 0.64 (dd, 7= 7.0, 5.3 Hz, IH). 

Major and Minor: 13C NMR (101 MHz, CDCb) 8 176.39, 144.15, 143.93, 135.56, 

130.08, 127.80, 127.41, 70.73, 70.13, 61.74, 59.75, 50.19, 49.73, 34.09, 33.98, 30.20, 

30.04, 24.72, 24.50, 21.75, 18.63, 17.42, 16.38, 13.82. IR (neat) v 3109, 3001, 2919, 

2771, 2589, 1709, 1681, 1459, 1306, 1001, 845, 701 cm"1. 

(15',45',55)-4-benzyl-l-methyl-2-oxabicycIo[3.1.0]hexan-3-one(242) 
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A 250-mL, round-bottomed flask, equipped with a nitrogen inlet, septum, and a magnetic 

stir bar, was charged with dry THF (60 mL) and rc-butyllithium (1.6 mL, 2.5 M, 3.97 

mmol) and the solution was cooled to 0 °C. Diisopropylamine (0.56 mL, 3.97 mmol) 

was added dropwise over 10 min, after which the reaction was stirred for 0.5 h at room 

temperature (23 °C). The round-bottomed flask was cooled to -78 °C in a dry ice/acetone 

bath and bicyclic lactone 159 (0.40 g, 3.61 mmol) in dry THF (10 mL) was added over a 

45 min period via syringe pump. The reaction was allowed to warm to room temperature, 

at which point it was allowed to stir for 30 min. The solution was then cooled to -78 °C 

in a dry ice/acetone bath and benzyl bromide (0.47 mL, 3.61 mmol) was added in one 

portion. The reaction was allowed to warm to room temperature and stir for 60 min. The 

reaction was quenched with 1 N HCl (30 mL), and the biphasic solution was reduced to 

half its volume via rotary evaporation. This solution was extracted with ethyl acetate (3 x 

30 mL), and the combined organic layers were dried with magnesium sulfate and 

concentrated in vacuo to afford a viscous yellow oil. The major diastereomer (lS^S1, 

55)-4-benzyl-l-methyl-2-oxabicyclo[3.1.0]hexan-3-one (242) was isolated as a clear oil 

via column chromatography (hexane:ethyl acetate 5:1, R/= 0.5) to give 0.328 g (45 %). 

m NMR (400 MHz, CDCb) 8 7.36 - 7.29 (m, 2H), 7.28 - 7.17 (m, 3H), 3.12 (dd, 7 = 

13.6, 4.7 Hz, IH), 3.01 (dd, 7 = 13.6, 7.3 Hz, IH), 2.93 (dd, 7 = 7.3, 4.7 Hz, IH), 1.39 -

1.15 (m, 4H), 0.81 (dd, 7 = 8.9, 7.0 Hz, IH), 0.63 (dd, 7 = 7.0, 5.0 Hz, IH). 13C NMR 

(101 MHz, CDCb) 8 178.79, 137.73, 129.44, 128.83, 127.13, 64.40, 48.05, 37.97, 20.18, 

20.13, 18.20. IR (neat) v 3014, 2991, 2871, 1703, 1638, 1148, 1092, 8821, 765 cm"1. 
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