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ABSTRACT 

Wireless Sensor Integrated Tool for Characterization of Machining Dynamics in Milling 

by 

Christopher Adam Suprock 

University of New Hampshire, May, 2011 

Degree Adviser: Barry Fussell 

A first step towards practical sensing in the machining environment is the 

development and use of low cost, reliable sensors. Historically, the ability to record in-

process data at an end mill tool tip has been limited by the sensor location. Often, these 

sensors are mounted on the material workpiece or the machine spindle at significant physical 

distance from the cutting process. Of specific interest are the problems of tool chatter which 

causes limitations to productivity and part quality. Although tool chatter is a substantial 

issue in machining, it remains an open research topic. In this research, a sensor integrated 

cutting tool holder is developed to specifically analyze the problems related to tool chatter. 

With the sensor integrated cutting tool holder, the signal to noise ratio is higher than 

traditional sensing methods. Because of the higher sensitivity, new data analysis methods 

can be explored. Specifically, the sensor is used in conjunction with a data dependent linear 

predictive coding algorithm to demonstrate effective prediction of chatter frequencies from 

stable cutting. 
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CHAPTER 1 

Introduction 

In order for a condition monitoring system to be widely accepted by industry the 

deployment onto shop floor machinery must be low cost, noninvasive, and cause no 

reduction of the machining envelope. A monitoring system typically requires data 

collection sensors to be located on the machine. In the case of a dynamics monitoring 

system, the sensors must be sampled at high speed and with a high signal to noise ratio. 

Unfortunately, many sensor types are high in cost, size, or are difficult to deploy. As a 

result, it is desirable for a machining dynamics monitoring system to take advantage of 

existing hardware infrastructure while using inexpensive sensors that have a low profile 

within the machine. 

One instance of a non-invasive sensor is a power monitor located on a spindle 

drive motor [1]. In this work, an example of combining mechanistic and geometric 

models with a spindle drive power monitor was discussed for end milling. Although non­

invasive and cost effective, data sources such as power monitoring do not provide 

sufficient bandwidth to capture many important details of the machining process. 

During operations such as end milling, it is necessary to capture a broad range of 

frequencies for analysis purposes. Currently, this can be achieved with a variety of sensor 

types including force dynamometers, accelerometers, acoustic emissions sensors, or 

contact microphones. A recent example can be seen in work by Byrne et al. [2] for 
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drilling and Pari [3] for end milling. In these studies, piezoelectric force sensors are 

integrated into the machine spindle. Although such devices are effective, machine tool 

manufacturers have yet to add sensor components to their products. 

From an industrial perspective, this is understandable. First, one can note the wide 

variety of sensor and signal processing combinations available [4]. Each technique is 

often coupled with a specific sensor type and is designed to solve a particular condition 

monitoring problem. Second, many condition monitoring techniques require sensors such 

as bed-type dynamometers which are largely impractical [5]. From a research 

perspective, these sensor types are necessary for the development and validation of robust 

system models. However, in application, the sensing approach should accommodate cost, 

ease of setup, and performance. 

Many modern numerical control (NC) machine systems are operated from a 

software interface located on a PC based platform. Due to the primitive level of NC 

control development, the majority of these systems rely on a variation of RS-274, the 

most common form of which is known as G-code. Because of the low overhead involved 

with running an NC machine, the PC platform has almost all of its system resources 

available for use. As a result, there is significant flexibility for on board data acquisition 

(DAQ), novel software, and emerging hardware applications. One such example can be 

seen in work by Jerard [6] where a PC based testbed is host to both data acquisition and 

software based model calibration. This vision for an expandable machining test bed has 

provided the foundation for the current work described herein. 

A first step towards practical sensing in the machining environment is the 
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development and use of low cost, yet reliable sensors. It is important to explore the use of 

a low cost accelerometers, novel strain sensing technologies, and the processes of 

embedding them in cutting tool hardware. 

Coupled with sensing technologies, wireless data transmission is starting to be 

widely used in industrial process control. For example, Callaway [12] discusses the 

application of wireless sensor networks for shop floor deployment. Wireless process 

control has numerous benefits including a low profile, ease of deployment, and the ability 

to monitor from a central location. Similarly, Sudararajan et al. [13] describe the potential 

of wireless monitoring specifically for machine tools. 

Historically, the ability to record in-process data at an end mill tool tip has been 

limited by the sensor location. Often, these sensors are mounted on the material 

workpiece or the machine spindle at significant physical distance from the cutting 

process. Recently, Wright et al. [14] took advantage of wireless transmission for 

measuring cutting tool temperature. In this work, resistive temperature detectors (RTDs) 

were placed on the backside of end-mill inserts. A primary goal of this research was to 

demonstrate the possibility for small form-factor wireless systems applied to tool 

condition monitoring. The success of this project is a promising exhibit of wireless 

applicability to end mill tool condition monitoring. 

Of specific interest are the problems of tool chatter. Although tool chatter is a 

substantial issue in machining, it remains an open research topic. Tool chatter presents 

limitations to productivity and part quality. The physical mechanisms of tool chatter are 

complex and influenced by a myriad of variables which make the controlled study of this 
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phenomenon difficult with traditional sensing technologies. Traditional sensors have 

problems with location and dynamics associated with distant measurement from the 

workpiece-tool interface. Another difficulty is the bandwidth and frequency response of 

data acquisition. 

End mill data contains a broad spectrum of useful information but requires 

significantly higher bandwidth than from a spindle motor power sensor. In an example by 

Dini et al. [15], close proximity wireless acquisition of cutting torque signals was 

conducted using a commercial rotating dynamometer. In this case, the dynamometer is 

directly placed between the spindle and tool. This method is excellent for capturing a 

torque signal, however, commercial dynamometers are high in cost and increase the 

spindle compliance. 

Vibration measured by spindle mounted sensors suffers from attenuation and 

noise introduced by spindle bearings, tool holder, and collet interfaces. Accurate 

measurement of in-process tool tip response is vital to the development of tool dynamic 

models. Cheng et al. [16], used receptance coupling substructure analysis (RCSA) to 

indirectly characterize tool tip dynamics during spindle rotation. Receptance coupling is 

the process of using an artifact (baseline tool assembly or blank) to characterize the 

spindle side response. The spindle response can be analyzed in series with different tools 

placed into the assembly so that the tool response can be considered in series 'coupled' 

with the response of the spindle. Although informative, these techniques require precision 

tool holding setups to mitigate clamping repeatability and tight coupling between the 

spindle and tool. Like any indirect estimation method, RCSA is not as effective as 
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measuring the signal at its source. 

A commercial product called the Harmonizer [53] relies on recording acoustic 

emissions from the cutting process and analyzing the frequency content to make manual 

adjustment to the cutting parameters. While this works to avoid chatter for steady state 

cutting and instances where compliance of the tool holder does not change, the method 

requires test cuts and manual setup of spindle speed parameters. 

By employing wireless techniques and embedded sensors, the tool-workpiece 

interactions can be more clearly observed. It should be possible to monitor the stability of 

the cut during changing cutting conditions and therefore improve cutting efficiency by 

avoiding chatter or forced vibrations during the cutting process. The sensor may also be 

useful for detecting undesirable tool eccentricity, i.e., runout. Moreover, it is possible to 

monitor these items on multiple machines from a control location without interfering with 

shop floor activity. 

Recent advances in wireless sensor technology have explored the use of single-

sensor integrated tooling for sampling tool tip conditions for vibration and temperature 

[13, 14, 26, 27]. Various sensor configurations can be used to collect information from 

the cutting process. Several sensing technologies are appropriate for dynamic sensing of 

frequency information to determine system state during the cutting process. Tool tip 

vibration data has been particularly useful for studying tool runout, chatter, and wear. The 

vibration amplitude is relative to the spindle speed and cutting geometry [26]. While 

vibration information is useful, it does not directly measure cutting forces or torque. In 

many cases, force or torque is not required (to at least partially characterize machine 
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dynamics). Cutting torque provides the actual magnitude of the tangential cutting force. A 

sensor technology must be chosen with the application in mind. Environmental variables 

also play a role in the selection of sensor technologies. For instance, vibration sensors 

using sealed electret condensers are susceptible to drift at elevated temperatures [28], and 

therefore can only be applied in cutting operations involving coolant or in locations 

where the temperature gradient is low. 

With multiple sensor options available for studying end milling cutting dynamics, 

it is desirable to standardize a transmitter design to sample a variety of sensors from a 

single receptacle located in the tool holder. In particular, the ability to simultaneously 

sample multiple sensors can improve resolution on the end milling system [29]. 

Therefore, a wireless data transmission method might be generalized to accept and 

simultaneously sample multiple sensors from within sensor integrated tooling. There 

have been no solutions that satisfy this need to this point. 

Commercial rotating sensor systems require slip rings or receivers in close contact 

proximity to the signal source [30]. This limits practical applications on the shop floor 

due to harsh environments, chip control, and fluid use. Slip rings are also an expensive 

addition to a sensor system. This method is excellent for capturing a torque signal in 

laboratory settings, however, in commercial settings dynamometers are rarely used due to 

high cost and an increase in the spindle compliance. In a practical application, the 

spindle stiffness must be maintained in order to hold surface tolerances and prevent 

conditions that may lead to tool chatter. In addition to increased compliance, the 

workspace envelope is reduced by placement of the commercial dynamometer between 
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the spindle and tool holder. Since the cutting energy provided by torque is of primary 

interest to end milling process modeling and control, it is important to develop more 

robust sensor methods. 

Due to the cost and limitations of current commercial sensor systems, machine 

tool manufacturers have been hesitant to accept sensor integration techniques. Although 

work such as Suprock [31] explores inexpensive machine tool sensor solutions, there are 

numerous factors beyond sensor cost and performance. For machine tool manufacturers, 

the scalability of sensor systems is a major concern. Since machine tools have a long 

operational lifespan, the sensor system must be reconfigurable and non-invasive to the 

machine tool platform. Simply, it must be fast and easy to upgrade when new sensing 

techniques become available or if the sensor system becomes damaged. For a wireless 

sensor integrated tooling system to be accepted by industry, the criteria listed in Table 1.1 

must be met. 

Table 1.1: Sensor Integrated Tooling System Criteria 

Does not increase the compliance of the cutting system 

Compatible with existing tool types 

Interchangeable sensor types 

Significant range and bandwidth while avoiding interference 

Inexpensive 

Easy to install, replace, and reconfigure 

Open for custom software development and controller integration 
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Figure 1.1: Embodiment of a Sensor Integrated Tool 

A system that meets these criteria can contribute to the evolution of NC machine 

tool control, cutting process monitoring, and accurate modeling of the cutting system. 

Figure 1.1 illustrates one embodiment to meet these criterion. 

1.1 Sensor Application for Characterization of Tool Chatter 

Regenerative chatter is a major limitation to the productivity and quality of 

machining operations due to the excessive rate of tool wear and scrap parts produced with 

poor surface quality. Tool chatter can be compared to a phonograph record that replays 

the surface finish on the previously cut workpiece material. Unlike a phonograph, the 

playback surface is being rewritten as it is being replayed. The surface waviness follows 

the dynamic deflection in the machining structure. When the peak deflections in the 

machine tool structure are out of phase with the previously cut surface waviness, the 

effect is considered regenerative since deflections compound over consecutive cycles. In 
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this scenario, peak deflection intersects with peak thickness in the surface causing high 

instantaneous forces. The surface profile is a feedback mechanism for instability when 

the surface profile and deflection are "regenerative". This leads to greater forces and 

greater deflections. Dynamic chip thickness and peak forces are affected leading to poor 

surface finish and possible machine tool damage. 

Figure 1.2: The role of phase shift in regenerative chatter 

Typical machining chatter analysis techniques examine the stability of a closed-

loop model (force process and machine tool-part structure) of the machining operation to 

determine the stable process parameter space. Almost all chatter analysis techniques 

assume a linear force process and are based on the concept of stability lobe diagrams 

[33]. Figure 1.3 shows the cutting system feedback loop from a controls perspective. 

The variables driving the system are the feed per tooth, h0, the cutting force model, F(s), 

(relating chip thickness to output force), and the system compliance model is G(s). The 

time delay is related to the period, T, of tooth passing. As shown in Figure 1.2, this the 

worst case is a phase shift causing the surface waviness to be intersected by deflections in 

the cutter. The worst case for regenerative instability occurs when the phase shift is 

around 270° (-90°). 
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Figure 1.3: Feedback loop with time delay 

Stability lobe diagrams, as shown in Figure 1.4, are plots revealing the acceptable 

axial depth of cut vs spindle speed (typically in RPM). The plots identify the axial cutting 

depth (biim) at which instability occurs given the forcing frequency applied to the system. 

For interrupted cutting, such as end milling, the forcing frequency is the tooth passing 

frequency of the cutting, which is the product of the tooth count and spindle speed. 

5000 
RPM 

10000 15000 

Figure 1.4: Stability Lobe Diagram for Axial Depth versus RPM 

Clearly, it is desirable to operate the cutting process in an area of high material 

removal rate that occurs within the stable zone. Theory and experimental verification 

have shown that the limiting stable axial depth of cut (for a given radial immersion, feed, 

and workpiece material) is highly dependent on the selected spindle speed and frequency 

response of the tool-spindle-workpiece system [34, 35]. The prediction of stable cutting 
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regions is a critical requirement for high-speed milling operations. However, significant 

changes in system dynamics occur during high-speed rotation. Such changes include 

thermal expansion, changing stiffness of elastohydrodynamic boundary layers in the 

bearings, and rotational inertia. These changes and others such as workpiece stiffness and 

machine stiffness make the chatter prediction process more difficult, since these variables 

affect the overall stiffness and damping of the dynamic system [34]. 

Although several analytical methods to predict stability lobes have been presented 

in recent literature [35, 36, 37], these models lack the ability to predict the changes in tool 

frequency response and chatter if cutting conditions or machine dynamics change. To 

account for these parameter variations, techniques such as the 'multifrequency solution' 

consider the harmonics of the tooth passing frequency and deviation in system response 

from the open loop transfer function of the tool/spindle at harmonics of the tooth passing 

frequencies [37]. Time domain simulations have also been investigated to account for 

nonlinear effects that are difficult to model analytically [38]. These new techniques give 

an accurate description of the problem for steady state cutting but still lack the ability to 

predict chatter if cutting conditions or machine dynamics are changing. 

Traditionally, stability lobes are calculated from the Frequency Response Function 

(FRF) of the end mill spindle [25]. The FRF, in the standard terminology of control 

engineering, is the transfer function of the system plant. Classical stability analysis treats 

the FRF as a linear time-invariant plant. One of the findings of the research described in 

this dissertation is the extent to which the FRF is not constant. For example, most 

methods used to generate the FRF do not include the effects of workpiece dynamics and 
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are deficient for short overhang stiff tools, where the spindle dynamics have a significant 

role in the chatter mode. Spindle dynamics are influenced by changes in the bearings 

during rotation and temperature effects. Since these effects are highly variable or difficult 

to directly measure, a method is designed in this research for in-cut stability estimation 

using a sensor integrated tool. Moreover, the tools used throughout this work have a short 

overhang from the tool holder. This means that the spindle dynamics have a higher 

influence on the chatter condition than with a slender tool. 

The methods developed in this research are capable of generating an experimental 

stability lobe diagram. In this way, it is possible to have a more accurate characterization 

of the milling system and how it changes as a function of cutting conditions. Additionally, 

the method can be used to find conditions for higher material removal rates. 

1.2 Research Goals 

The first research goal is consistently focused around developing embedded 

sensor instrumentation for cutting tools. This includes invention of sensors, evaluation of 

sensing technologies, and transmission methods. The hypothesis is that these instruments 

are useful research tools and industrial feedback for the study of machine dynamics, 

specifically tool chatter. The applications discussed in this dissertation focus on the use of 

sensor integrated tool holders to observe, quantify, and predict tool chatter. 

The second research goal is to use a sensor integrated tool holder for data 

dependent dynamic modeling of the machine tool system. This is done through the 

exploration of autoregressive model-based system identification techniques. The 

hypothesis is that chatter frequencies can be estimated in-process. 
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The third goal in this research is to understand the underlying physics of 

phenomenon observed with the sensor integrated tools. This is done through the 

application of mechanistic modeling in the form of a time domain model. 

The development and application sections have subdivisions based on the various 

sensing technologies explored while the mechanistic modeling sections are focused solely 

on the subject of tool chatter. The data dependent modeling combines application of a 

sensor integrated tool with model based prediction. 

The organization of this dissertation follows the paths and topics covered, why 

they are covered, and what contribution they serve to the field. 

1.3 Contributions of the Dissertation 

This work has resulted in several novel contributions to metal cutting research. 

- The sensor development has created a smart tool holder capable of recording 

information from the live cutting process. There is a substantial improvement over 

the traditional methods of using external sensors or force sensing based on bed 

dynamometer. Many problems with external sensing are circumvented by a smart 

tool holder and measurements are more direct. 

- Cutting dynamics have been observed from the tool holder. High signal-to-noise 

ratio enable clear observation of frequency content and how the cutting signal 

behaves throughout cutting. 

- Drift in the frequency content during cutting provides an explanation for the 

difficulty predicting stable cutting speeds from traditional methods (i.e. tap tests) 

and suggests that the system FRF may be changing during the cutting process. 
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- Chatter frequencies are observed in stable cuts before the onset of chatter. The 

closed loop frequency content of the system is of great importance to the 

optimization of cutting processes in real time. This is a significant advance to the 

state of the art, since it was previously very difficult to observe tool frequencies 

during live cutting. 

- The introduction of time domain models to replicate spindle speed sweep tests 

and capture the behavior observed during speeds sweeping experiments. Both 2 

degree of freedom and 4 degree of freedom models are explored. 

14 



CHAPTER 2 

Sensor Exploration and Preliminary Development 

2.1 Choosing Sensor Technologies for Characterizing Machining Dynamics 

Thoughtful selection of the proper sensing technology for a sensor integrated tool 

requires addressing the criteria outlined in the Introduction (see Table 1.1). Further 

considerations may include practical commercial availability of the sensing technology 

and its survivability in the machining environment. The tool holder is subjected to a wide 

and hostile range of environmental conditions. 

Therefore, significant effort has been given towards developing and evaluating a 

number of sensor options. The types of sensor explored are accelerometer, strain, and 

temperature. All of these sensors relate physically to the machining process and their 

specific applications will be discussed. Figure 2.1 gives a high level overview of these 

three sensing technologies and their applicability from the standpoint of a successful 

sensing product. It is critical to realize that each sensor type is categorized by its 

advantages and disadvantages and that it is not implied that one sensor type is superior or 

inferior to the others. Figure 2.1 approaches the subject from an objective of application 

based (laboratory or industrial) use. For controlled laboratory use, all of the sensors are 

applicable and can be effectively applied. 
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Figure 2.1: Sensor Classification Tree 
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There are four prototype smart tools discussed in this dissertation. Prototype 1 is an 

electret accelerometer based face mill with the sensors oriented tangentially. Prototype 2 

is an electret accelerometer based indexable end mill with a single axially oriented sensor. 

Prototype 3 is a torque sensing tool holder based on wire strain gages. Prototype 4 is a 

torque sensing tool holder based on semiconductor strain gages. For clarification and 

reference, Table 2.1 gives a list of the different tools and their features. 

Table 2.1: Smart Tool Prototype Names and Descriptions 

Tool Name 

Prototype 1 

Prototype 2 

Prototype 3 

Prototype 4 

Sensor Type 

Electret Accelerometer 

Electret Accelerometer 

Wire Strain Gauge 

Semiconductor Strain Gauge 

Description 

Orientation for torsional vibration 

Axial Orientation 

Torsional Strain on Tool Holder 

Torsional Strain on Tool Holder 

2.2 Tool Tip Accelerometer 

Acceleration data is useful for frequency analysis of cutting data in an end milling 

system. It is desirable to place an accelerometer at the tip of an end milling tool to avoid 

dynamics introduced between the tool tip and alternative sensing locations. Placing the 

sensor directly at the signal source also increases signal to noise ratio. In a traditional 

application, stationary accelerometers are located on the machine tool spindle. 

Unfortunately, it is difficult to estimate tool tip motion from a spindle mount sensor, as 

the estimation methods are fraught with error introduced by assumptions about the tool 

holder dynamics, spindle interface (clamping) behavior, and spindle dynamics. Although 

elegant mathematical solutions to this problem have been introduced [32], they are not 

widely adopted due to difficult setup and/or calibration. This placement of an 
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accelerometer bypasses the need for methods such as receptance coupling substructure 

analysis (RCSA) [32] and directly samples the frequency information from the source. 

This dissertation explores a different approach where the sensors are embedded into the 

cutting tools themselves. Figures 2.2 and 2.3 show an accelerometer integrated concept 

(Prototype 2). Appendix A documents the full development and calibration of the electret 

accelerometer technology. While promising for certain applications, as explained in 

Appendix A, the sensors described in the rest of this chapter were deemed more 

appropriate for the specific research goals of this dissertation. 

Figure 2.3: Accelerometer Integrated Indexable End Mill 

2.2.1 Feasibility of Wireless Sampling for the Electret Accelerometer 

The next step towards developing an end milling condition monitoring system 

involves installing these sensors within the tool holder. Given that the electret was shown 

to provide a repeatable and mappable signal (see Appendix A), it was the first sensor to 

be explored with a wireless interface. These sensors will directly record the tool response 

without the need for signal transfer through the spindle or workpiece. The sensors are 

embedded into the tool holder in close proximity to the cutting tool, and thus requires a 
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means of data transmission that does not rely on a physical connection to the sensor. 

Although a wireless data transmission method solves the physical problems involved 

with the integration of a sensor within the tool holder, the end milling environment 

presents additional challenges from the perspective of electromagnetic interference. 

Electric motors operate the machine spindle as well as the x, y, and z translation of the 

bed. The proximity of these motors to the wireless transmitter presents a problem due to 

the wide spectrum of electromagnetic interference generated during the cutting process. 

Moreover, these motors do not remain at a constant speed during cutting, resulting in the 

interference spectrum continually changing throughout the cutting process. 

An additional issue with using a wireless connection is that the bandwidth of the 

wireless interface must be able to capture a large frequency range from the electret 

accelerometer. As previously mentioned, the end milling system produces a wide 

spectrum of useful information and it must be captured with substantial resolution for 

analysis purposes. 

Upon investigation of existing commercial methods of wireless data transmission, it 

becomes evident that the majority of existing commercial methods have significant 

drawbacks relating to the challenges expressed above. For instance, an FM or AM 

interface is immediately eliminated by the expected high level of radio frequency noise. 

Other methods such as the 802.XX standards require a substantial power source and are 

not commercially offered in a form that is small enough to practicality position within a 

typical end milling tool holder. 

Although most existing wireless protocols are not ideal, the Bluetooth protocol was 
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found to answer the demands of tool holder placement, bandwidth, and motor 

interference. The Bluetooth wireless standard has been designed for implementation in 

devices such as wireless headsets, cellular telephones, and data transmission over 

Personal Area Networks. As a result, Bluetooth transmitters and receivers have been 

designed with physical size as a primary constraint, often being smaller than several 

centimeters in size. Since Bluetooth was developed for data transmission, the 2.0 version 

of the protocol reaches transmission rates of 2.1 Mbps, which is sufficient bandwidth to 

capture high resolution end milling data. Additionally, the upcoming version 3.0 is 

anticipated to reach transmission rates of 480Mbps. Manufacturers identify transmission 

range between 10 to 30 meters depending on interference, which is adequate for 

transmission out of the end mill (~2 meters). 

The Bluetooth standard was developed using spread-spectrum techniques [11] 

considering that the devices would be used in environments with a high level of 

electromagnetic interference across a broad spectrum. The standard uses the license-free 

ISM band at 2.4-2.4835 Ghz and is divided into 79 channels. These channels can be 

changed at up to 1600 times per second to actively avoid interference. As a result, the 

quality and continuity of transmission is high, even in noisy radio environments. 

The wireless response testing performed in this work was conducted on a shaker table 

with an electromagnetic motor. The field generated by this motor swept the test spectrum 

and did not appear to cause interruption of the Bluetooth transmitter. 

2.2.2 Bluetooth and the Electret Accelerometer 

Similar to the electret characterization work described in Appendix A, the Bluetooth 
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accelerometer interface was assessed by contrasting its frequency response with that of 

the piezoelectric accelerometer sampled through a traditional DAQ system. Figure 2.4 

details the shaker table and attached sensors. 

Figure 2.4: Bluetooth Test Interface 

A sinusoidal vibration input is generated using a shaker table. A single-axis PCB 

piezoelectric accelerometer (Model 320 C33, serial number 5901) is fixed to the table at 

the same reference point as the electret sensor. The output sensitivity of this piezoelectric 

accelerometer is lOOmV/g with a maximum range of 50g's. This piezoelectric 

accelerometer is amplified through a PCB charge amplifier. The corresponding voltage 

signal is monitored through a traditional DAQ system. The electret sensor is sampled by 

the Bluetooth transmitter and sent as a 16 bit digital signal to the PC's Bluetooth wireless 

receiver. Both the piezoelectric accelerometer and the Bluetooth electret accelerometer 

signals are sampled at 20 kHz. Figure 2.5 shows the response curves for the electret 

accelerometer sampled via the Bluetooth interface and the baseline piezoelectric 

21 



accelerometer. 

Response Spectra of Piezoelectric Accelerometer (Traditional DAQ) and Electret Accelerometer (Bluetooth Interface) 
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Figure 2.5: Response Spectra for Piezoelectric and Wireless Electret Accelerometers 

This calibration procedure is described in detail in Appendix A. The Bluetooth 

wireless interface produced a stable response between 100 and 3500 Hz. 

The results observed from the testing of the Bluetooth Wireless interface are 

promising and identify that the method is acceptable for transmitting high bandwidth 

acceleration data from the electret sensor. Due to the acceptable bandwidth, it is feasible 

to use the Bluetooth interface for application in a smart tool holder. 

2.2.3 Electret Accelerometer Prototypes 

Two prototypes were designed, built and tested based on the electret accelerometer 

described in Appendix A. Prototype 1 consists of a 76.2 mm (3") OD four insert 

facemilling tool holder. This platform was chosen for a first prototype since it provides 

sufficient room for sensor and transmitter placement without interfering with the cutting 

process. Figure 2.6 details the location of the tool holder within the mill. Placement of the 
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electret sensor is within 8 millimeters of the tool-workpiece interface. The sensor system 

has been integrated in a fatigue notch located behind/below the insert set bolt so that it 

does not impact the structural integrity of the tool holder. As a result, only a slight 

modification is required for sensor embedding. 

Placement of a sensor behind each insert cutter provides input from each individual 

tooth as it enters and exits the workpiece. Recalling that the sensors used in this device 

are linear impedance changing, the sensors are wired in series. Because the sensors are 

wired in series, the sensor system will be more sensitive to vibrations in the tangential 

direction (see figure 2.7) and should be relatively insensitive to vibrations in the X and Y 

direction. Specifically, the transistors inside the electret accelerometers are operating in 

the linear region and increase and decrease their resistance according to the voltage 

applied by the electret element. Since the configuration is in series, if an acceleration is 

applied in the XY plane, one accelerometer will increase resistance while the other will 

decrease by the same amount. This behavior negates inputs in the XY plane while 

enhancing tangential accelerations that cause all four accelerometers to change resistance 

in the same way. The only acceleration that causes all four accelerometers to respond 

similarly is torsional. Figures 2.6-2.8 detail the orientation and location of the 

accelerometers. 

Placement of the transmitter circuit and sensor wiring is facilitated by a shroud 

designed to mount onto the tool holder body. This shroud is fabricated from ABS plastic 

on a rapid prototyping machine. The shroud provides wire routes for the sensors in 

addition to protection from chips and cutting fluid. The transmitter is powered by a 
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rechargeable 3.7V lithium ion battery, also mounted within the protective shroud. For a 

video of fabricating the smart tool holder described in this section, refer to [41]. 

Figure 2.6: Face Mill 

Figure 2.7: Face Mill Accelerometer Orientation 
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Figure 2.8: Face Mill Accelerometer 
Leads 

For the electret accelerometer Prototype 2, a Sandvik 19.05 mm diameter helical two 

insert tool (RA390-019M19-11L Coromill 390) was selected. A helical insert tool was 

chosen since it is possible to embed the sensor and reuse the sensor integrated tool 

indefinitely, replacing failed inserts. The tool was modified with a 6mm axial hole for 

sensor placement and the sensor was embedded 5mm from the carbide cutting inserts. As 

shown in Figures 2.2 and 2.3, the sensor is oriented in the axial direction. The sensor is 

now oriented so that the cutting forces (in the XY plane) are perpendicular to the 

orientation of the sensor. Figure 2.3 presents a photograph of the sensor integrated tool 

with carbide cutters and sensor signal contact. An RCA type terminal contact was 

selected because it is axisymmetric and can easily mate with a counterpart terminal 

located in the tool holder. Figure 2.9 is representative of the second electret prototype tool 

body. 

Although a 19.05 mm (0.75") insert tool was selected for this study, this design can 

25 



accommodate any sensor integrated tool with a 19.05 mm shank. Designing the tool and 

tool holder as complimentary devices provides a system that is more resource-efficient 

and scalable. The ability to reconfigure the tool holder with any variety of sensor 

integrated tools increases convenience for both research and potential production 

purposes. 

Figure 2.9: Electret Sensor Prototype 2 Fixtured 
in Tool Holder 

2.3 Validating Bandwidth from Electret Accelerometer Prototypes 

It is important to understand the bandwidth and response of the Bluetooth Headset 

protocol used to transmit from the electret accelerometers. The first step in this process is 

evaluation of the sensor and transmitter from a shaker testbed. By doing so, the wireless 

transmitter system is compared to a known sensor on a wired system and conventional 

analog to digital converter. 

Two points are important in this test; First, the sensor/transmitter system should have 

a relatively flat response, as to not skew the magnitudes or cause poor coherence at 

frequencies of interest. The second is to evaluate frequency accuracy of the 

measurements, to determine the system's frequency resolution and correctness. Similar to 
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the shaker testing of the wired electret accelerometer described in Appendix A, the 

wireless transmitter is used as the interface during a set of frequency response tests. The 

results of these tests show that the transmitter correctly relays the sensor signal. This 

response can be compared to the wired electret corrected response in Appendix A. Figure 

2.10 shows the results of the wireless transmitter tests. 

An interesting observation is a reduced frequency bandwidth in the wireless 

transmission, due to an anti-aliasing filter before the ADC on the Bluetooth unit. 

Wireless Transmitter Response Spectrum 
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Figure 2.10: Electret Accelerometer/Wireless Transmitter Frequency Response 

Appendix A discusses calibration and response of the electret sensor in detail. The 

electret accelerometer is a new sensor and it is important to understand that the 

frequencies measured are correct, and not artifacts, of the measurement system. 

Frequency accuracy is evaluated most easily from cutting data bench marked against a 

bed dynamometer. Since the cutting signal is interrupted, there are harmonics that extend 

throughout the frequency domain from the tooth passing frequency. This gives multiple 

points of comparison between the known sensor and the electret accelerometer system. A 

merit to this approach is that the frequency accuracy is determined using the actual signal 
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source (cutting). It would be time consuming to test multiple discrete frequencies using a 

shaker table. Furthermore, the shaker table cannot produce an interrupted or non 

sinusoidal input which is an important difference in the frequency content of the shaker 

input as opposed to a cutting acceleration signal. 

One drawback to comparing the smart tool to the bed dynamometer is the bandwidth 

of the bed dynamometer is limited by ringing at frequencies close to the resonant 

frequency of the dynamometer. The resonant frequency of the dynamometer can be 

between 700-1000Hz depending on the mass of the workpiece. However, low frequencies 

such as tooth passing and subsequent harmonics can be observed with good precision. 

X Direction Force Spectrum and Smart Tool Holder Spectrum 
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Figure 2.11: Electret Accelerometer Frequency Accuracy 

In Figure 2.11, it is shown that the frequency content of the electret accelerometer 

system is aligned well with the force dynamometer. It is notable that there is little ringing 

on the acceleration signal, whereas the dynamometer frequency content becomes more 

affected with increasing frequency. 

Although the location of the harmonics is correct, the magnitude variations are 

different than shown on the force dynamometer. Also, it can be seen that the precision of 
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the frequencies is slightly less on the acceleration system (i.e. peak width). It is believed 

that the precision is an artifact of clock jitter on the transceiver device, but cannot be 

verified because the transceiver for these electret accelerometer prototypes is a 

commercially available Bluetooth headset module. The bluetooth module does not have a 

crystal. 

As shown, the magnitude information was not consistent, but the frequency content 

has a higher bandwidth and similar accuracy to the force dynamometer. Thus, frequency 

based analysis using the electret accelerometer shows promise. 

2.4 Wire Strain Gauges 

Force measurement is also desirable for determining the force magnitude, hence tool 

deflection, at specific frequencies. Prototype 3 uses wire strain gages to estimate force. 

The wire strain gauge is a well understood technology and does not require extensive 

testing to verify repeatable linear response characteristics. The wired strain gauge has a 

number of technical challenges associated with installation on a tool holder body. Unlike 

the tool tip accelerometer shown in Figures 2.2 and 2.3, the wired strain gauge must 

reside on the surface of the metal holder body, furthest away from the neutral axis of the 

tool holder body. The neutral axis of the tool is shown in Figure 2.12 below with the CL 

notation. Wire strain gauges have a typical gauge factor of between 2 and 3. 

The bridge circuit is located on the outer radius of the end mill cutting tool. This tool, 

Prototype 3, is used in chatter build up tests shown in Chapter 3. An indexable insert 

cutter, ISCAR HELI2000, was chosen. The HELI2000 is very similar to the Sandvik tool 

modified with the electret accelerometer. This cutter represents a 'worst case' scenario for 
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the measurement of strain. It is a short overhang tool with a 19.05 mm shank. However, it 

was estimated that wire gauges would provide sufficient sensitivity for a torsion 

measuring bridge. The relationship for sensitivity can be given as: 

V0 UTD0 

V 2InE 
(2.1) 

where V0 is the bridge output voltage, v is the excitation voltage, r/ is the gauge factor, 

E is the material modulus, D0 is the tool diameter, I0 is the area moment of inertia, 

and T is the applied torque. At a 3 volt excitation voltage, the sensitivity is expected to be 

approximately 4.3*10"5 V/(N*m). With a lOOx amplifier gain and a lOx software gain, 

the recorded voltage will reach ±1 volt when 23.2 N*m is applied to the tool. Figure 2.12 

shows the location of the wire gauges. 

Gages 2 and 4 

'Grid 

Figure 2.12: Wire Strain Gage Installation and Orientation, Prototype 3 

The tool used is a through-coolant design. The coolant channel provided a convenient 

route for the sensor signal wires without interrupting the cutting process or altering the 
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physical geometry of the tool holder. Figure 2.13 details the position of the mini DEN 

connector and strain gauge rosettes. Because of the prototype nature of this tool, the 

gauges and signal wires were protected by epoxy and not fully encased by a protective 

cover. The wire torque gauge is linear and can be understood by applying a static moment 

of different known values. The torque sensor is a full bridge shear arrangement to 

minimize temperature and shaft bending effects. The torque resolution is 16 bits sampled 

at 10 kHz. Figure 2.14 shows the calibration points of the torque sensor and linear data 

regression. The tool holder was calibrated with a constant torque wrench with a selectable 

torque limit. The error of the torque wrench is unknown, e.g. cross talk from bending, 

however it is assumed that the torque wrench calibration is sufficient for demonstrating 

that the tool had a linear relationship between applied torque and output. 

Figure 2.13: Torque Sensor Integrated Tool and Transmitter, Prototype 3 

31 



16i— 

1 4 - ' 

1 2 -

•10-

<D 8 

E" 
2 6 

4 

2 

0 

T r 
datal 

- linear 

y = -0069*bits + 18 

J L 
60 80 100 120 140 160 180 200 220 240 260 

16 Bit Resolution 

Figure 2.14: Wired Strain Gauge Calibration Curve 

Following a similar design scheme to the vibration sensor-integrated tooling systems 

described in [26], this high bandwidth stereo transmitter includes a printed circuit 

amplifier board, symmetric geometry for low eccentricity, and reduced wire routing for 

an improved signal to noise ratio. Prototype 3 is also waterproof for experimental testing 

with cutting fluid. Figure 2.13 shows a profile of the transmitter tool holder design 

featuring the amplifier circuit face. 

2.4.1 Signal Conditioning for the Wired Strain Gage 

The signal conditioning system is designed to support sensor integrated tooling on a 3 

volt supply. The tooling interface is made through a 6 contact male mini DIN connector 

on the top of the tooling unit. A counterpart mini DIN connector is located inside of the 

tool holder. Analog Devices 623 instrumentation amplifier chips were selected as gain 

multipliers. The gain was set to 100 to increase the signal from low level sensor output to 

the ±1 volt range required by the Bluetooth transmitter. 

Since this sensor system is designed to observe a dynamic process, capacitors were 
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included in series with the sensor signal leads to create a high pass filter that eliminates 

the low frequency components and DC under a corner of 10 Hz. The capacitors eliminate 

any temperature effects in the lead wires as well as reducing the power consumption of 

the sensors. 

To power both the signal conditioning system and the Bluetooth transmitter, current is 

supplied from a 3.7 volt lithium ion battery. The voltage to the signal conditioning circuit 

is regulated by an AN77L03 3 volt regulator. This component is critical to prevent gain 

drift in the amplifier circuit as the battery discharges. The battery power supply and 

charging circuit are located on the A2DP Bluetooth transmitter. Figure 2.15 details the 

signal conditioning circuit (located in the tool holder) and strain gauge bridges located 

(on the sensor integrated tool). The sensor integrated tooling designed to work with this 

amplifier-transmitter tool holder is not limited to strain bridge circuits. However, to test 

this prototype, a torque bridge was constructed. 

The bridges are located 
on the tool, In this case, 

only one bridge lor 
torsion is used The rest 

of the amplifier and 
transmitter circuit resides 

in the tool holder. 

Batt 
_J_ 

COM ONE AZDP BLUETOOTH 

0 
M3ncT 

Figure 2.15: Dual Strain Bridge and Amplifier Circuit 

The frequency response of the AD623 instrumentation amplifier is affected by 
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varying the gain resistor load. With a gain resistor of 1 kQ., the specified frequency 

response of this amplifier is 0 to approximately 10 kHz. Although the specified amplifier 

response is to 10 kHz, the observed response attenuates at approximately 17 kHz. With a 

frequency response of 0 to 10 kHz, this amplifier circuit is sufficient for conditioning 

signals of all end milling phenomenon. At 10 kHz, observation of the milling tooth 

passing frequency is possible up to a theoretical 300,000 RPM with a two flute tool. 

2.4.2 Bluetooth and The Wired Strain Gage 

As with the electret accelerometer, the data must be broadcast from the tool to a 

receiving location outside of the cutting process. This is again done with a Bluetooth 

transmitter, but a different type of transmitter is evaluated. The transmitter circuit is 

modified from a Com One A2DP stereo audio transmitter (retail cost approximately $40). 

This transmitter contains the necessary transceiver hardware and A/D circuit to transmit 

stereo voltage signals of ±1 volt. The A2DP transmitter conforms to the published 

specifications in [11] and is capable of sending a stereo audio signal to the Bluetooth 

receiver at 48.0 kHz. The analog signal conditioning circuit on this particular transmitter 

has a high frequency roll-off with a corner frequency of 20 kHz. This is observed in 

preliminary testing of the device and exists to prevent aliasing in the A/D. Tests are 

conducted on the device to verify expected specifications. The effective frequency 

bandwidth of this transmitter is approximately 10 Hz to 20 kHz. Figure 2.16 details the 

frequency response of the transmitting unit. The frequency response is shown as a 

transfer function between the input and transmitter responses. The input to generate this 

transfer function is a sine chirp from 0 to 20 kHz of input voltage conducted over a one 
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minute interval. This bandwidth is sufficient for observing high speed milling 

phenomena. For high clarity in common machining frequencies, the 0 to 2000 Hz band of 

the response has been characterized separately with a one minute 0 to 2 kHz chirp and is 

shown in Figure 2.17. Note: The response figures should not be confused with noise 

characteristics, which are shown separately. The response is input voltage/output voltage 

and should be close to a value of ~ 1 . Note that low frequency error is associated with data 

compression present in the A2DC standard. For this reason later prototypes (Prototype 4) 

used loss-less data transmission over a serial data link. The noise response is shown in a 

separate figure as a spectrum of the output data with no signal. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Frequency (Hz) x 10

4 

Figure 2.16: A2DP Transmitter Response Transfer Function (transmitter voltage input / 
receiver voltage output) 0 to 20 kHz 
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Figure 2.17: A2DP Transmitter Response Transfer Function (transmitter voltage input / 
receiver voltage output) 0 to 2 kHz 

The noise floor of the A2DP transmitter is also evaluated to understand the lower 

limits of transmission resolution and the input amplitudes required for sending high 

quality data signals through the system. Figure 2.18 shows the noise response spectrum 

of the transmitter. The noise introduced by the transmitter is found to be negligible and is 

on the order of 10"7 volts. 

0 02 04 06 

Figure 2.18: A2DP Transmitter Noise Response 
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2.5 Tool Torque Measurement with an AC Coupled Wire Strain Gage 

Experiments were conducted with AC coupling a wire strain gauge system. Although 

the slope of the DC calibration from the wired gauge tool still applies, the intercept value 

of the calibration curve is changed and centers around zero. 

To estimate the integrity of the torque signal acquired by the AC coupled sensor 

integrated tooling, the signal shape can be compared to the output of an analytical cutting 

force model discussed in [20]. Although contrasting the experimental torque to the output 

from an "ideal" model does not provide magnitude information, the signal shape of the 

experimental signal agrees well with the model signal characteristics. Figures 2.19 and 

2.20 show both the model and experimental torque plots. 
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Figure 2.19: AC Coupled Wire Torque Gage Experimental Plot 
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Figure 2.20: AC Coupled Torque Plot from Ideal Force Model 

The cutting parameters for this test are down milling, 3/4" cutter diameter, 1/8 inch 

axial engagement, 0.375" radial engagement, tooth passing speed of 3819 RPM, with an 

average chip thickness of 0.004" in 6061 Aluminum. The cutting force model used to 

help generate the simulated results is a validated mechanistic model detailed in [20]. 

It may be be noted that the experimental and model plots have 'negative' torque 

values. Recalling that the amplifier and transmitter circuitry is designed to pass a 

dynamic signal, the DC value is attenuated and high pass information remains. The same 

effect is recreated in the model output by passing a 4th order high pass Butterworth filter 

over the simulated torque data. As with the experimental signal, the model FIR filter was 

given a corner frequency of 10 Hz. In this way, the dynamic torque signal is found to be 

nearly identical in all features (with the exception of magnitude) to the simulated data set. 

To further evaluate the transmitter, tests are conducted with parameters similar to the 

model validation experiment. However, these tests were conducted with a bed mount 

dynamometer. Using the torque sensor integrated tool, a measured comparison can be 

made between the output of the transmitter and the force output of the bed dynamometer 

sampled at 20 kHz. Although the bed dynamometer does not provide a direct 
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measurement of torque, the force in X or Y directions can be used to calculate the 

moment supplied by the tool. This is done in a half-immersion cut where the tool 

completely exits the material and reengages the material with the cutting edge tangent in 

the X direction. The moment is then estimated by knowing the impact force in the X 

direction at the tool radius of 0.009525 m (0.375"). The impact torque from the integrated 

sensor system is measured as a voltage signal. By a ratio of this peak voltage signal to the 

peak estimated torque, the voltage signal can be scaled. Figure 2.21 shows the voltage 

signal from the sensor integrated tool after being scaled by this technique. This suggests 

that output from the wireless tool holder is reasonable and useful for observing the 

magnitude of dynamic torque. This agreement also supports the effectiveness of the bed 

dynamometer sensitivity analysis for approximating torque supplied by the tool. 

38.02 38.04 38.06 38.08 38.1 38.12 38.14 38.16 
Time (Seconds) 

Figure 2.21: Calibrated AC Coupled Wire Torque Gage Cutting Test 

Furthermore, a comparison can be made between the resolved XY bed force and the 

torque. This contrast confirms that the duration of engagement with the workpiece is 

correctly determined by the torque signal. Figure 2.22 illustrates the resolved bed force 
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and dynamic torque. Since the natural frequency of the bed dynamometer is 

approximately 1000 Hz, frequency content above 400 Hz has been attenuated in the 

signals shown in Figure 2.22. 

z 3 
to 

I 2 
I * 

I / 

33 01 38 02 38 03 38 04 38 05 38 06 38 07 38 08 38 09 38 1 
T me (Seconds) 

500 

* - • ' 

LL 

> £ 300 
£ 
•C 
<B 
f 200 
o 
i 
c 
Q 1 0 0 

CD 

I 
I 

- ? 

- I 

1 

( 

i 1 

\ I 1 
j 
j 

| 
i v 2 1 

1 

1 • 
1 II 1 

I 1 

) \ 
\ 1 1 

' s 
' - . , . , 1 , ' 

1 

f 

f, 
n 
1 

[ 

1 . 
l 
i 

! 1 

1 \ 
r , -J 

1 

( 
• 
1 

1 \ 

' 
1 f 

v J , * 

1 

1 

i 

[ 

1 
, J 

~ 

-
5 -
L 
i 

38 38 01 38 02 38 03 38 04 38 05 38 06 38 07 38 OS 38 09 38 1 
Time (Seconds) 

Figure 2.22: AC Coupled Torque (top) compared to Resolved Bed Force(bottom) 

In addition to collecting force values from the bed dynamometer, spindle power data 

was also collected at 20 kHz. Figure 2.23 shows output from both the wireless torque 

sensor and the spindle load cell. 
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Power vs Dynamic Torque Signals- Half Immersion Down Mill 
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Figure 2.23: Spindle Power compared to AC Coupled Torque 

It is immediately obvious that the power sensor has a lower dynamic bandwidth than 

the wireless torque sensor tool. The power sensor was over sampled to expose the large 

amount of high frequency noise present in the power signal. The superiority of the 

wireless torque signal to the power sensor is apparent in both resolution and signal to 

noise ratio. However, the power sensor specializes in sampling frequency content below 

the 10 Hz cut off of the dynamic torque signal, specifically, the DC component. 

2.6 Conclusions About the Wired Strain Gauge 

The methods of wireless transmission and feasibility of using the A2DP transmitter to 

send a signal from a sensor integrated tool was demonstrated. The results are encouraging 

and show that it is possible to record a torque signal with good signal to noise ratio. The 

Bluetooth A2DP audio profile is acceptable for transmitting end milling sensor data up to 

8.5kHz. The system has shown excellent response and bandwidth capabilities to 17 kHz, 

which exceeds the requirements for typical end milling sensor data. 
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2.7 Semiconductor Strain Gauges 

After discussions with engineers from industry, it was apparent that location of the 

strain gauge sensor on the tooling body was risky due to the abuse that the tools 

experience in the field. The presence of chip buildup and the need to use high pressure 

through coolant dictated the technical necessity for a relocation of the gauging. A 

resulting solution was to use to a semiconductor gauge technology with a gauge factor of 

150 instead of the gauge factor of 2 common to wire gauges. The gauges are located on 

the shank of the tool holder itself, where it is protected from the cutting process. Figures 

2.24 and 2.25 shows the location of semiconductor gauges on the tool holder for 

Prototype 4. 

Figure 2.24: Location of Semiconductor Gauges on Tool Holder Body, Prototype 4 
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Figure 2.25: Location of Semiconductor Gauges on Tool Holder Body, Prototype 4 

The V0 of the semiconductor gauges is calculated by the same method as the wire 

gauges on the tool body. The diameter and gauge factor are different, but otherwise 

Equation 2.1 applies. Measurement and instrumentation of the semiconductor strain 

gauges is similar to the methods applied to the wire gauges. A similar instrumentation 

amplifier and analog front end were used to AC couple the semiconductor gages. A 

different digial transmitter was used since the A2DP transmitter was replaced by a 

Bluetooth Serial transmitter implemented by Jeff Nichols, an ECE grad student [10]. The 

digital transmitter has no effect on the data once it has been sampled by the ADC and acts 

as an intermediary to the PC side. 

It was discovered that the semiconductor gauges are sensitive to light and 

temperature. Thus, it was necessary to shield the gauge installation from light exposure, 
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especially in the infrared spectrum. Limited testing was done with LEDs of various 

wavelengths and it was found that the infrared spectrum caused the most disturbance. 

Light emission below 300 wm was found to be most disturbing. The situation was easily 

corrected by the introduction of opaque epoxy to cover the gauge installation. 

Temperature drift is an issue only in an unmatched semiconductor gauge set. The 

installations done on the smart tools are AC coupled to mitigate this problem because it 

manifests at low frequencies and DC. Temperature changes are observed to occur over 

several seconds. Because temperature drift does not affect the linearity of the strain 

gages, it does not have an effect on the higher frequency data of interest. For aquiring DC 

information, Kyowa gauges with a temperature resistance coefficient matched to the 

thermal expansion coefficient of the steel substrate were evaluated, and is an area for 

future research beyond the scope of this thesis. A tool holder was constructed with these 

gauges but was not used for the dissertation work. 

Since the semiconductor gauges used were AC coupled to eliminate the temperature 

DC resistance change, calibration was more challenging than static loading. The 

performance characteristics that are needed for this tool are accurate frequency content 

from 10Hz to 4kHz. For the purpose of chatter frequency detection, gain information and 

cross talk are not critical features. However, it is important to understand what 

information the data contains and how it manifests in the signal. Since the equipment to 

do AC coupled cross talk and sensitivity tests is not typical, testing methods consist of 

cutting experiments and a test jig fabricated to apply dynamic bending loads from a 

materials testing machine. 
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2.8 Approximate Calibration from Cutting Data 

A preliminary calibration effort was made by running experimental cuts on the 

bed dynamometer and extracting forces from the impact of the tooth in a specific axis. A 

2nd order 50Hz Butterworth low pass filter was applied to the dynamometer data to 

attenuate ringing around the dynamometer natural frequency of 1kHz. This cutoff is valid 

for comparison because it is applied to both the dynamometer and smart tool data. A half 

immersion cut was performed so that the tooth entered fully engaged in the X direction. 

The impact force multiplied by the tool radius gave an approximation for the torque 

value. Time aligning the peaks of the smart tool data with the X direction dynamometer 

data allows a curve to be plotted for different feed rates (input force values). 

There are several sources of error in this calibration method. First the peak force 

must be determined from the load cell, which has an underdamped response. Second, 

cross talk effects on the tool holder body are not separated from the tool holder signal. 

Third, alignment of the cut must be precise half-immersion so that the cutting tool 

impacts in a vector tangential to its rotation. 

The first source of error when calibrating from cutting tests can be addressed by 

applying a low pass filter to both the load cell and tool holder data. The filter attenuates 

frequencies above the tooth passing frequency. This does an acceptable job eliminating 

ringing in the load cell, which is the primary cause of overshoot error when the tool 

impacts the workpiece. For instance, if the tooth passing frequency is 40Hz and the 

second order filter is set to -3dB of 50Hz, -40dB occurs before 500Hz and the ringing of 

the load cell can be controlled. The same filter must be applied to both the load cell and 
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tool holder data. 

The cross talk cannot be known from the data without extensive computations and 

knowledge of the rotational angle of the tool from which forces and their vector can be 

calculated. This work has been touched on, but is beyond the scope of this dissertation. 

The third source of error is the most minor, and is negligible due to the CNC 

movement of the bed after a cleaning cut is performed on the workpiece. A precise half-

immersion cut can be performed within the tolerance of the bed movement. 

To generate the calibration curve, a cut is repeated at different feed rates with a 

constant spindle speed. This creates different chip thickness and subsequently different 

forces from which a trend can be determined. Figure 2.26 shows an example of a torque 

versus the sensor output in bits. The force recorded on the load cell is multiplied by the 

cutting tool radius (in this case 0.375") to convert to a torque value. 

4 5 -

4 -
y = 0003*x-17 

640 650 660 670 680 690 700 710 720 
STH with Micron SSGH Full Bridge (Bits) 

Figure 2.26: Semiconductor Gage Peak Value Calibration (Prototype 4) 
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2.9 Test Setup for Evaluating Bending Cross Talk 

While the results of the cutting calibration were promising, there was no evaluation of 

potential cross talk present in the system. This addresses the weakness in the cutting test 

calibration (i.e. the inability to distinguish bending cross talk from cutting data). In this 

application, cross talk refers to the interference of bending strain with the proper 

detection of torsional strain in the tool holder body. 

For evaluating cross talk in the smart tool system, a special jig was constructed to 

mount onto a materials testing machine, see Figure 2.27. The Instron materials testing 

machine is capable of applying a position controlled oscillating input with a frequency up 

to 60 Hz. 

The test jig used for these experiments consisted of a fabricated aluminum C 

channel with a high bending stiffness. Steel bolts were used to affix the walls of the C 

channel to the base. The channel was anchored onto the Instron bottom platen with a 

1.25" threaded steel rod. The tool holder under test mounts into a pair of support clamps 

that compliment the CV40 taper geometry and render the tool in a bending configuration. 

Steel U bolts are used to retain the tool in the support clamps. Bending force is applied by 

the Instron upper platen through a load cell. 
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Figure 2.27: Semiconductor Smart Tool Testing Jig 

The tool and jig are preloaded to a static force value of lOOlbf, to eliminate slack in 

the linkages and clamping. After this preload is set, the oscillating force is applied. To 

obtain information on different input vectors, the tool is rotated using a reference line and 

360 degree protractor attached to the retaining bolt of the smart tool. This setup was 

accurate within a few degrees and was sufficient for evaluating the effect of cross talk at 

various rotation orientations. It is important to observe these effects at different rotations 

in order to accurately replicate the rotating radial force experienced in cutting. 

The bending cross talk is characterized by applying the curve fit from Figure 2.26 so 

that the influence on the torsion data can be evaluated. These tests were conducted at a 

peak of -20 lbf on an Instron materials testing machine. The influence of bending on 

torque data is approximated by applying the gage sensitivity (V/bit) to the RMS cross talk 
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bits recorded for each applied bending load. This gives the equivalent bending cross talk 

in units of Ft*lb. The influence of this cross talk is calculated by assuming the peak 

bending load was applied at the tool radius (in this case 0.375") and dividing the cross 

talk torque value by the actual torque value created at the applied force. 

Table 2.2: Influence of Cross Talk on Semiconductor Torque Data 

Angle (Degrees) 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

Peak Bending Load (lbf) 

~201bf 

19.8700 

19.8300 

20.0900 

19.8700 

20.3000 

20.7400 

20.5200 

19.7900 

20.2000 

20.3000 

RMS Cross Talk (Bits) 

18.3557 

16.5122 

11.8388 

9.8798 

6.5299 

6.9360 

7.3297 

7.8930 

10.4044 

6.3266 

RMS Cross Talk 

Equivalent Ft*lb 

0.0551 

0.0495 

0.0355 

0.0296 

0.0196 

0.0208 

0.0220 

0.0237 

0.0312 

0.0190 

Influence on Torque Data (0.375" radius) 

Ft*lb (cross talk)/ Ft*lb 

0.0551/(19.87/sqrt(2)*0.375/12)=12.5% 

11.30% 

7.99% 

6.74% 

4.37% 

4.59% 

4.85% 

5.42% 

6.98% 

4.24% 

The results indicate that significant cross talk does exist, but that does not render the data 

unusable for frequency analysis, particularly if the magnitude information is not essential. 

The objective is to acquire accurate system frequencies and not to calibrate cutting force 

models. For calibrating cutting force models, more precision is needed which could be 

obtained by creating a dynamic torsional testing jig, which is beyond the scope of this 

dissertation. Also, the need to AC calibrate may be obsolete by the introduction of DC 

capable semiconductor strain sensing. 

2.10 Validation of Strain Gage Location Considering Tool Dynamics 

Confidence in the measurements acquired by a sensor integrated tool requires a 
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fundamental understanding of how the instrument responds to physical stimulus under a 

variety of conditions. For an AC coupled sensor integrated tool, the DC effects of 

temperature and adhesive creep are mitigated by a first order high pass filter realized in 

the analog measurement system. The remaining concerns in this AC instrument are the 

cross talk and frequency response of the physical system. 

It is desirable to monitor torque during cutting since the torque signal is axis 

symmetric and can be related to instantaneous chip thickness without the need to resolve 

direction vectors from radial force. This reduces the sampling hardware complexity as 

well as computational burden. To measure torque, the sensor integrated tool obtains input 

from a strain gauge bridge oriented for sensitivity to torsional strain. A torsional 

configuration was implemented under the assumption that the torsional dynamics occur at 

much higher frequency than those experienced in the bending axes. However, it is 

necessary to confirm theoretically and with modeling techniques that the torsional 

dynamics can be neglected. Figure 2.24 shows the tool and location of the gages. 

Mechanics of materials and vibration theory offer a useful approach to modeling the 

frequency response. Since the tool holder is accurately approximated as an axissymmetric 

cylinder, the frequency response is modeled for two degrees of freedom (DOF), for radial 

and torsion (rotational) deflections. The first is the torsional DOF. Computing the natural 

frequency of the torsional DOF is similar to computing a linear spring constant such that: 

F = kx is analogous to T=K<p (2.1) 

Where T is torque in N/m, K is the torsional spring constant, and <p is the 

angular displacement in radians. The torsion relationship for a circular cross section is 
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given as: 

=̂¥ 
For the case of the cylindrical tool holder body, J is equal to the polar moment of 

inertia: 

J = ^ (2-3) 

where D is the cylindrical diameter of the holder body. The length of the tool holder, 

/ , is measured from the nose to the v-flange. From Equations 2.1 and 2.2, K can be 

defined in terms of 4> and T as: 

Evaluating Equation 2.4 for the tested tool length of 6" (0.1524 m), cylindrical diameter 

N/m 
of 1.75" (0.04445 m), and the shear modulus of steel 79.3 GPa, K= 199447—— . 

rad 

In order to compute the torsional natural frequency, another analogy can be made to 

linear natural frequency such that: 

o)„=il(—) is analogous to o ) 0 - J (—) (2.5) 

where J0 is the polar mass moment of inertia. The polar mass moment of inertia is 

computed by: 

_ plnD4 

° —32— *" ^ 

The inertial constant c relates the bulk mass of the cylindrical holder body, m , to 
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the inertial mass equivalent of the system. This inertial constant ranges between 1 for a 

solid cylinder and <0.5 for a thin walled cylinder. The density of steel, p , is 

approximately 8100 kg/m3. 

Evaluating equation 2.5 with the computed values of J0=4.73e-4 kgm and 

N/m 
K= 199447—— , the torsional natural frequency of the system co4>=20532rad/s 

or 3268 Hz. 

These results are promising since several conservative assumptions were made 

including an overestimation of the density, assumption of a solid cylinder, and neglect of 

the chamfer between the holder body and v-flange. A solid cylinder was assumed to 

compute the polar mass moment of inertia since the tool is located within the holder and 

fills a large portion of the inner volume of the overhang. In order to confirm these hand 

calculations with a more accurate representation of the physical system, finite element 

analysis is conducted using ANSYS to predict the fundamental torsional mode of the 

holder body. 

The Finite Element Analysis (FEA) model was configured using a solid model of a 

cutting tool body designed to house a future generation sensor-integrated tooling system. 

This cutting tool body is based on a Kennametal shrink fit geometry front-end, with very 

similar geometry to the assumptions made in the previous hand analysis of torsional 

vibration. The tapers, chamfers, and shank taper make this a more realistic representation 

of the actual system. FEA is the most accurate method by which to predict vibrational 

modes in complex elastic geometries. 
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Constraints for this model were a fixed boundary condition on the taper face, and 

axis-symmetric frictionless constraints to prevent bending deflection of the holder body. 

The torsional DOF was uninhibited and the model was run with a rotational displacement 

initial condition to simulate a torsional impulse from the cutting tool. 

This analysis was conducted for both a long-overhang tool (worst case scenario, 

Figure 2.28) and a short overhang tool (Figure 2.29). The results were similar in 

magnitude (different in value) to the hand calculation, but are more accurate since the 

geometry is not simplified and the materials properties are correctly modeled. This model 

demonstrates that the long overhang tool has a torsional fundamental mode of 

approximately 7000 Hz and the short overhang tool is approximately 13000 Hz. These 

results indicate that the hand analysis was 2 to 3 times lower, as a result of the 

assumptions. This is likely due to the use of a point mass assumption versus a distribution 

of mass used in the FEA. 
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Figure 2.28: Long Overhang Torsional Dynamics 
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Figure 2.29: Short Overhang Torsional Dynamics 
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Figure 2.30: Short Overhang Bending Dynamics 

The bending fundamental mode was also estimated using the FEA model. This was 

found to be significantly lower than the torsional modes, at around 950 Hz for the short 

overhang tool (Figure 2.30). This was anticipated based on the results of experimental 

tests. In experiments, the chatter frequency has been observed between 700 and 1000 Hz, 

depending on the tooling geometry. This means that the torsional natural frequency is 

around 13 times greater than the bending natural frequency for the short tool and 10 times 

greater for the long overhang tool. This is promising for the use of torque to monitor chip 

thickness during cutting. 

With a high natural frequency in the torsional DOF (with respect to bending 

dynamics), the dynamics introduced by torsional vibration can be neglected in a chatter 

model incorporating the smart tool instrument. Recalling that the instrument has a 

sampling bandwidth up to 10.24 kHz, the torsional dynamics are entirely attenuated by 
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the anti-aliasing filter (4.5kHz) on the analog subsystem. Confirming that torsional 

natural frequency is substantially higher than bending validates methods of frequency 

analysis that assume the torsional strain relates to the bending strain, coupled through 

cutting chip thickness, i.e. without considering the torsional dynamics. 

2.11 Chapter Summary 

A number of realistic sensor options were developed and evaluated for use in a sensor 

integrated tool holder. Signal conditioning and transmission methods were also developed 

for each sensing method. It was found that each sensing method had advantages and 

drawbacks for the specific environment however they all show potential for collecting 

meaningful data from the machine tool. In the case of the strain gauge applications, the 

tool holder dynamics are of significance since the location of the gauges is on the body of 

the tool holder. The accelerometer implementation is placed directly at the tool tip which 

makes it the most direct embodiment for sensing motion. The Bluetooth transmitter was 

introduced as the method for data transmission off the tool holder body. 

Calibration of the strain sensors identified that while cross talk from bending forces 

was present, it is not significant enough to corrupt the torque information while the tool is 

AC coupled. Calibration of the electret accelerometer was discussed, with detail 

referenced to Appendix A. A thermocouple tool core temperature sensor described and 

characterized in Appendix B corroborates the temperature stability of the electret 

accelerometer for dry cutting tests since there is a phase delay between core temperature 

and the onset of cutting. 

The acceleration and strain sensors coupled with various Bluetooth protocols have an 

56 



appropriate bandwidth (>3kHz) for observing dynamic phenomenon in the milling 

system. The sensitivity varies between the sensor and location, but is greater than 

lOOmV/g for the accelerometer and 4.3*10-5 V/(N*m) for torsional strain. Chapter 3 will 

discuss the applications of both acceleration and strain for quantifying tool dynamics and 

the cutting process. 

It is found that the scaled torque signal from the wired strain gauge sensor-integrated 

tool is in agreement with the magnitudes predicted by the cutting force model (see the 

above experimental and model plots). 
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CHAPTER 3 

Experimental Applications For Observation of Milling Phenomenon 

3.1 Electret Accelerometer Based Tool Tip Acceleration Measurements 

This chapter will demonstrate how the various sensors described in Chapter 2 and 

Appendix A can be used to detect the onset of chatter as explained in Chapter 1. Cutting 

tests were performed to investigate the correlation of the output signal with milling 

events. 

First, the electret accelerometer Prototype 1 was tested. The tests performed were 

75% immersion (57.15 mm radial immersion) linear upmill cuts through 6061 aluminum. 

The spindle speed for these tests was 800 RPM with a 2.54 mm axial depth and feed rate 

of 0.762 m/min. The cut length was 152.4 mm between workpiece entrance and exit. The 

output from the transmitter was recorded with a data acquisition PC sampling at 20 kHz. 

A plot of the recorded data is shown in Figure 3.1. The noise floor was very low, 

indicating that the transmitter effectively avoided motor noise and delivered an 

uninterrupted signal during the test. The low level of noise can be seen in Figure 3.1 

before and after the cutting starts. The spindle speed ramps can be seen before and after 

the cut. Also, the tool trailing edge exit can be observed between 15-17 seconds. The 

trailing edge takes time to exit the workpiece because of the large diameter face mill tool. 
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Smart Tool Holder Time Signal 
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Figure 3.1: Time Signal From the Face Mill Acceleration Sensors 

Entrance and exit effects are clear, with higher magnitudes occurring during 

workpiece penetration (at 4 to 5 seconds) and decaying magnitudes as the tool exits the 

material (at 14 to 15 seconds). Signal spikes are observed at 2.6 and 18.2 seconds, 

corresponding to the instant at which the bed started and stopped. The detection of bed 

movement is not expected because the orientation of the sensors was intended to cancel X 

and Y components of acceleration. Since the tool only moves in the Z direction it must 

either be a vibration transmitted from the bed to the tool via the machine structure, or an 

electrical artifact. Further investigation is warranted. 

Sensor data for three revolution of the tool is shown in Figure 3.2 The toothpass 

frequency of 53.33 Hz is apparent in the time data with a period of 0.0187 seconds 

between inserts. 
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Zoomed Smart Tool Holder Time Plot 
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Figure 3.2: Detailed Time Signal From the Face Mill Acceleration Sensors 

It is apparent that runout is present, with insert 1 producing a significantly larger 

vibration magnitude than inserts 2 through 4. The presence of runout was confirmed by 

physical measurement with a dial indicator showing a 0.23 mm difference between the 

high and low measurements. The recorded data correctly reflects the underlying physics. 

This is admittedly a rather large runout that would clearly have a negative effect on part 

accuracy and surface finish. We conjecture that the sensor would do an equally good job 

of detecting a broken tooth. 

Machining a different material than aluminum would produce higher force 

magnitudes but the expected patterns of acceleration would remain similar. The material 

will affect workpiece stiffness, damping, and cutting force. 
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Smart Tool Holder Time Plot- Single Tooth Pass 
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Figure 3.3: Single Tooth Pass Time Response 

The sensor signal is further expanded in Figure 3.3 to show the cutting action during 

the time when a single insert is in contact with the workpiece. 

To further expand on the information collected from Prototype 1, the axial electret 

Prototype 2 was used to further test the sensor output during a variety of cutting 

geometries and feed rates. Table 3.1 details the geometries of the tests conducted. 

Table 3.1: Electret Accelerometer Prototype Cutting Test Geometries 

Milling type Slot Down Up Down Up Down Up 
Radial 

Immersion 
Full 75% 75% 50% 50% 25% 25% 

Geometry of 

Immersion 

(Cross Section) 

s 

All application tests were operated at a constant spindle speed of 3819 RPM, axial 

depth of 5.08 mm, and followed a linear path in 6061 T6 Aluminum. A single insert was 

placed on the tool. The material removal rate was varied by changing the feed rate three 
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times during each geometry test. Table 3.2 provides the three feed rates used during each 

cutting geometry test. The feed rates presented in Table 3.2 were calculated to maintain a 

uniform average chip thickness for different cutting geometries. 

Table 3.2: Electret Accelerometer Prototype Cutting Test Feed Rates 

Feed 1 (in/min) 

Feed 2 (in/min) 

Feed 3 (in/min) 

Slot 

6.0 

24.0 

59.99 

75% 
Down 

5.33 

21.33 

53.32 

50% 
Down 

6.0 

24.0 

59.99 

25% 
Down 

8.0 

31.99 

79.99 

75% 
Up 

5.33 

21.33 

53.32 

50% 
Up 

6.0 

24.0 

59.99 

25% 
Up 

8.0 

31.99 

79.99 

During this test, we compared upmilling and downmilling cuts. While testing, it was 

noticeable that upmilling caused higher vibration magnitudes in the data. As expected, 

this is seen in the average vibration magnitudes shown in Table 3.3. The upmilling cuts 

are observed to have higher absolute magnitudes for all tests. Figure 3.4 shows a time 

plot of both half immersion upmill and downmill cuts. 

A positive acceleration bias was observed for up milling. A negative acceleration 

bias was observed for down milling. This was due to the orientation of the sensor sensing 

displacement of the tool tip when peak acceleration (tool impact) was causing either 

positive or negative acceleration on the sensor depending on how the tool was engaging 

the material. Figure 3.5 shows a plot of the data for a slot cut at the three feed rates 

shown in Table 3.2 
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Half Immersion Upmill 
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Figure 3.4: Half Immersion Upmill and Downmill Cuts 

Table 3.3: Electret Accelerometer Prototype Cutting Test Vibration Magnitudes 

Feedl (Volts) 

Feed 2 (Volts) 

Feed 3 (Volts) 

Slot 

0.0186 

0.0581 

0.1218 

75% 

Down 

0.0146 

0.0443 

0.0946 

50% 

Down 

0.0135 

0.0417 

0.0806 

25% 

Down 

0.0134 

0.0412 

0.0808 

75% 

Up 

0.0191 

0.0519 

0.1034 

50% 

Up 

0.0191 

0.0527 

0.1016 

25% 

Up 

0.0159 

0.0459 

0.0874 

Slot Cut 

0 

Figure 

5 10 15 
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3.5: Slot Cut Acceleration at Three Feed Rates 
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3.2 Observing Chatter with Electret Accelerometer Based Tool Holder 

Regenerative chatter was observed during a slot cut. Using Prototype 1, the electret 

accelerometer tool, 6061 T6 aluminum was cut at a spindle speed of 3819 RPM, an axial 

depth of 10.16 mm, and feed rate of 12.7mm/sec (0.762 m/minute). This depth of cut and 

feed rate at 3819 RPM induced a chatter condition. The spindle speed was held constant 

so that frequency analysis of the data could be directly compared to lighter axial depth 

slot cuts conducted at the same tooth pass frequency. 

Figure 3.6 shows the time response of the sensor during the development of chatter 

conditions. As expected, the vibration magnitude greatly increases as the chatter builds. 

Tool Tip Acceleration During the Development of Regenerative Chatter 

12 0 02 04 06 08 1 
Seconds 

Figure 3.6: Observing Tool Chatter with Electret Accelerometer 

To provide a visual interpretation of how the regenerative chatter begins, the 

acceleration data presented in Figure 3.7 is shown with a photograph of the workpiece 

slot cut during the development of instability. Figure 3.7 contains an overhead 

photograph of the slot cut accompanied by three acceleration frequency spectra. These 

three acceleration spectra are generated from the time data and are time-correlated to 
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Figure 3.7: Observation of Chatter Buildup Referenced to Workpiece 
Photo 

3.3 Chatter Prediction Using the Electret Sensor Integrated Tool 

The evolution of a chatter mode can also be observed in Figure 3.8 as a waterfall plot 

of frequency content over time (using Prototype 2). It is evident that the development of 

the chatter condition occurs over over a 1.2 second period in time, with rapid acceleration 

towards the onset of workpiece damage. However, during the early development period, 

the surface finish remains normal. Therefore, by tracking elevations in the chatter mode, 
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it may be possible to predict the onset of workpiece damage before it occurs. The ability 

to see the buildup of instability is crutial for control applications and chatter prediction 

possibilities. Observing the onset of regenerative chatter is possible because of the unique 

signal to noise ratio obtained from embedding sensors within the tooling body. 

Waterfall Plot of Chatter Development 

-900 Hz Chatter Mode 

Figure 3.8: Waterfall Plot of Chatter Development 

Alternative control methods such as the Harmonizer [53] product rely on inducing 

chatter and identifying the chatter frequency from an unstable cut; not during a cut or 

before chatter exists. 

It has been shown that the sensor integrated tool Prototype 2 is sensitive enough to 

detect precursors to the onset of chatter in end milling. This success is due to the high 

signal integrity attributed with placing the sensor directly within the cutting tool. This 

monitoring ability is valuable and provides insight into the mechanisms of chatter 

development. The evolution of a chatter mode can be observed in Figure 3.8 as a 

waterfall plot of frequency content over time. This test is a slot cut at 10.16 mm (0.4 

inch) axial depth, single insert cutter, a feed of 12.7 mm/sec (30 inches/minute), and 
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spindle speed of 3819 RPM (0.15 mm, 0.0039 inches, feed per tooth). Despite the 

aggressive cutting conditions used, chatter build-up is observed as early as 1.2 seconds 

before the onset of possible workpiece damage. Note that this buildup is specific to these 

cutting conditions and machining system, and may change for other cuts and other 

machines. 

Although observing the early onset of chatter is suitable for an in-process safety 

measure, relying on this capability does not help with process planning. Ideally, cutting 

engagements and speeds would be chosen with prior knowledge of unstable conditions. 

In this way, process efficiency can be increased in an intelligent manner. 

One goal of this work is to experimentally determine stable and unstable cutting 

speeds at various depths of cut. By doing so, it is possible to generate an experimental 

stability lobe diagram. A stability lobe diagram is a plot of spindle speed vs axial 

engagement, [25], that identifies depth and speeds at which regenerative tool chatter 

occurs. Figure 3.10 shows a typical stability lobe plot. In this work, we keep the 

geometry of the cut constant and sweep the spindle speed from low to high, causing the 

system to go in and out of chatter. In essence, we are locating the stability lobe points at 

a specific depth of cut. 
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Figure 3.9: A Typical Stability Lobe Diagram 

Stable and unstable cutting speeds can be determined using the vibration sensor 

integrated into the end milling tool. It is expected that this tool will provide sufficient 

resolution to detect the onset points of instability. The tests conducted are slot cuts in 

T6061 Aluminum with a 19.05 mm (3A inch) two flute tool. The range of spindle speeds 

is between 2501 and 7376 RPM for each depth of cut in order to examine the reduction in 

stability associated with increasing axial depth. Four axial depths of cut have been chosen 

for this experiment. 

From a practical perspective, it is necessary to consider the scope of testing a large 

number of spindle speeds. The maximum number of unique cuts required to fully 

determine stability fills a 4855 by 4 experimental matrix (corresponding to the number of 

spindle speeds and depths tested). Realistically, this number can be reduced, however the 

implication is an impractical number of cutting tests assuming each condition is to be 

tested individually. However, since it is desirable to maintain high resolution on the 

spindle speed, a solution is developed to minimize the number of cuts required, without 

68 



sacrificing resolution. 

This solution is similar to using a sine chirp technique to evaluate system frequency 

response. A cutting test is designed to increase spindle speed from 2501 to 7376 RPM in 

1 RPM increments, over the course of a 114.3 mm (4.5 inch) linear cut in the positive X 

direction. During this time, the material feed rate is also changed to maintain a constant 

feed per tooth of 0.0254 mm (0.001 inch). To avoid variations in cutting dynamics during 

material entrance and exit, the test is started and stopped while the tool is fully immersed 

in material. Specifically, in a 152.4 mm (6 inch) workpiece, the tool enters the material, 

travels 19.05 mm (0.75 inches) at 2501 RPM, the spindle speed is then swept until 133.35 

mm (5.25 inches) reaching 7376 RPM, and then exits the material at 7376 RPM. This 

spindle speed sweep is repeated for each axial depth condition, from 8.255 mm (0.325 

inches) to 10.16 mm (0.4 inches) in steps of 0.635 mm (0.025 inches). 

Preliminary test results show that the onset of instability can be clearly discerned 

from the tool tip vibration signal. This is superior to using a microphone since the signal 

to noise ratio is greater. The onset of chatter modes are seen as rapid increases in the time 

signal magnitude. This confirms the hypothesis that chatter rapidly grows at unstable 

spindle speeds. At each unstable mode, after the rapid onset of chatter, instability slowly 

attenuates in the direction of spindle speed change. For instance, if the spindle speed were 

increasing from low to high, the instability would quickly onset at a particular frequency 

and then proceeds to decay as the spindle speed increased into a stable frequency range. 

Figure 3.10 shows this phenomenon for increasing spindle speeds. The test shown in 

Figure 3.10 is conducted at the 8.89 mm (0.35 inches) axial depth. 
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The spindle sweep method makes the assumption that the sweep rate is slow enough 

that chatter has the opportunity to build. Recalling that it can take time in an unstable 

condition for the instability to grow (Figure 3.6), the spindle speed sweep must be 

conducted slowly. There is opportunity for future work to study the rate of chatter build 

up during unstable cutting conditions. 

Figure 3.10: Directional Chatter for Increasing Spindle Speed at 8.89mm Axial Depth 

Because of this observed effect, unstable spindle speeds can be recognized at their 

onset, but their trailing edge lacks definition as the spindle speed moves toward a more 

stable region. Therefore, it is necessary to reverse the change in spindle speed to see if 

this effect is related to increasing or decreasing the spindle speed sweep. It is found that 

the same effect is found to be true for the reversed spindle speed test. The direction of the 

spindle speed change (2501 to 7376 vs. 7376 to 2501) determines the persistence of 

instability after its onset. The 
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Figure 3.11: Directional Chatter for Decreasing Spindle Speed, AD=8.89mm 

The increasing spindle speed had a more pronounced effect of attenuating chatter into 

stable regions versus the decreasing speed. The attenuation happens with a faster slope in 

the increasing speed because more revolutions occur in a shorter time span (versus less 

when decreasing speed). Since chatter is replaying the surface finish, fewer tooth passes 

means a longer attenuation time. 

This phenomenon makes physical sense since regenerative chatter is a playback of the 

surface finish waviness from previous cutting. Once the surface finish is out of phase 

with the tool vibration, the surface finish continues to excite the tool at the chatter 

frequency until the unstable surface finish is attenuated. Since regenerative chatter is 

caused by the surface finish being out of phase with the tooth pass frequency, we refer to 

this phenomenon as directional chatter. Figure 3.11 shows a vibration plot of the 

reversed spindle speed test. The test shown in Figure 3.11 is conducted at the 8.89 mm 

axial depth. Later in this paper, modeling efforts are shown to identify and explain the 

observations made in these tests. 
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From these initial experiments, it is found that a spindle speed sweep test is capable 

of producing useful results that estimate the spindle speeds at which regenerative chatter 

occurs. However, it is necessary to repeat the test for both increasing and decreasing 

spindle speeds due to the directional dependence phenomenon. For the tests described 

earlier, the final experimental space for this technique is 4 axial depths and 2 spindle 

sweep directions (an experimental space of 4855 spindle speeds by 4 by 2). 

Although directional chatter occurs during the decay of instability, it is observed that 

the onset of chatter is sharply defined for both increasing and decreasing spindle speeds. 

These onset points identify the upper and lower bounds of the unstable modes. Because 

the test is conducted for both increasing and decreasing spindle speeds, the upper and 

lower boundaries of the unstable modes can be estimated. To test this hypothesis, stable 

and unstable spindle speeds were chosen based on the two tests. Figure 3.12 shows the 

absolute vibration magnitudes from both test types superimposed for clarity. The tests 

shown in Figure 3.10 and 3.11 are at an axial depth of 8.89 mm (0.35 inches). Recalling 

that the development of instability is a function of both depth and spindle speed, the plot 

in Figure 3.12 shows the instabilities that develop at the 8.89 mm inch depth. Vertical 

lines indicate the selected stable spindle speeds chosen for verification using constant 

spindle speed test cuts. Table 3.4 contains the selected stable speeds along with unstable 

speeds. 
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Figure 3.12: Superimposed Absolute Vibration Magnitudes from the Frequency 
Sweep Tests 

Table 3.4: Selected Stable and Unstable Spindle Speeds from Figure 3.12 

Stable 
(RPM) 
Unstable 
(RPM) 

Increasing speed 
Chatter Frequency 
(Hz) 
Decreasing speed 
Chatter Frequency 
(Hz) 

2867 

2748 

918 

887 

3197 

3063 

927 

886 

3616 

3485 

923 

892 

4153 

3850 

930 

891 

4891 

4758 

932 

896 

5808 

5340 

929 

890 

The spindle speeds in Table 3.4 are validated by steady state cutting tests. The spindle 

speed is held constant for each test while maintaining the same axial depth and 0.0254 

mm (0.001") feed per tooth as before. For all six stable conditions predicted, the cuts did 

not exhibit chatter. For all six unstable conditions predicted, chatter occurred. These tests 

were repeated three times with identical results. 

These tests indicate that it is feasible to predict stable spindle speeds using the sensor 
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integrated tool. By understanding where instability occurs, a more productive 

combination of feed and speed can be chosen to increase material removal rate. In the 

range tested, the material removal rate between the lowest and highest stable cutting 

condition can be doubled while maintaining stability. 

3.4 Chatter Frequency Using The Sensor Integrated Tool 

It is useful to identify the specific frequency at which chatter occurs. From the 

waterfall plot of chatter development (Figure 3.8), this frequency is shown to be 

approximately 900 Hz. Knowing the chatter frequency of the system, it is possible to 

predict stable and unstable spindle speeds [25]. The locations of these peaks should align 

with instabilities in the experimental data. By understanding the relationship between 

phase shift and spindle frequency, the locations of peak instability can be located 

according to the peak phase shift of the structural transfer function [25]. This phase shift 

can be calculated by : 

+ _,. sin((ocT) 
V = tan ' ( - ' ) (3.1) 

1- cos(o)cT) v ' 

Where T is the tooth passing period and a> c is the chatter frequency in rad/s. Evaluating 

this function over a range of spindle speeds identifies the least stable speeds when 

W—'Z • Table 3.5 shows the estimated unstable speeds using Equation 3.1, assuming a 

900 Hz chatter frequency. These values are estimated by a)c=2rr(900Hz) and 

evaluating the tooth passing period rover the range of the spindle speed test. 
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Table 3.5: Calculated Unstable Speeds 

Calculated Unstable (RPM) 
Observed Unstable From Table 3.4 

2700 
2748 

3000 
3063 

3375 
3485 

3860 
3850 

4500 
4758 

5400 
5340 

Using the peak phase angles to determine maximum instability corresponds strongly 

to the unstable conditions selected from the experimental data. Additionally, it is not 

necessary to know the FRF (frequency response function) to evaluate these conditions. 

Calculating W from Equation 3.1, it is feasible to compute the stable spindle speeds as 

well as the unstable speeds. A peak-trough plot of instability can be computed by [25]: 

|*r| = |tan(yO| = |tan(;r / 2 - cocT 12)| (3.2) 

where the absolute value is taken to observe the magnitude of the phase angle tangent as 

a function of tooth passing period. Equation 3.2 is calculated over the range of spindle 

speeds to produce the |*j versus RPM curve shown in Figure 3.13. The peaks of this plot 

occur when the spindle speed and surface waviness are 90 degrees out of phase. This 

method is similar to the relationship in [25] where theoretical stability lobes are generated 

as a function of K2 , a cutting force coefficient, and the dominant real system pole. 

Recall, this method is based on a 2nd order model and assumes there is a single real pole 

dominating the system. However, the absolute magnitude is sufficient to observe the peak 

unstable spindle speeds that occur at the asymptotes of |KJ . Figure 3.13 shows the tangent 

function in Equation 3.2 superimposed onto experimental vibration data. The tangent 

function plotted in Figure 3.13 is only to locate peak instability. While this is not a 

stability lobe diagram, it shows that the peak instabilities are close to those from the 
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experimental data. The stable spindle are listed in Table 3.6. The minima of this equation 

represent the most stable spindle speeds, and are shown in Fig 3.13. 

Table 3.6 shows the results of evaluating Equation 3.2 and locating stable spindle 

speeds at the minima of the function. As with the unstable speeds in Table 3.5, the 

predicted stable speeds are close to the experimentally observed speeds presented in 

Table 3.4. This clearly illustrates how knowing the chatter frequency can potentially 

assist in choosing stable spindle speeds. 

Table 3.6: Stable Speeds Predicted by the Phase Shift Tangent 

Calculated Stable (RPM) 
Observed Stable From Table 3.4 

2850 
2867 

3175 
3197 

3600 
3616 

4150 
4153 

4900 
4891 

6000 
5808 

3000 3500 4000 4500 5000 5500 6000 
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Figure 3.13: Phase Angle Tangent Magnitude vs Spindle Speed 

3.5 Frequency Based Observations and Experimental Stability Lobe Diagrams 

For use in theoretical models such as the best speeds equation [48], it is critical to 

understand the chatter frequency of the system. To observe this frequency, an FFT is 
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performed on the spindle speed sweep data from the accelerometer sensor as shown in 

Figure 3.10 and 3.11. The chatter frequency is determined to be 927 Hz for the spindle 

speed sweep tests with increasing spindle speed and 890 Hz for the tests with decreasing 

spindle speed. 
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Figure 3.14: Identifying Chatter Frequencies 

This is an unexpected result because increasing and decreasing speed tests are 

performed at identical feed rate and engagement. Moreover, the relative magnitude of the 

chatter frequency differs between increasing and decreasing spindle speeds. Although 

using the chatter frequency to predict stable speeds is convenient, the technique presumes 

the system response is repeatable. Since a change in the chatter frequency is observed for 

increasing vs. decreasing spindle speed, questions arise about the influence of cutting 

conditions on the chatter frequency. 

A simple experiment is designed to explore the difference in observed frequencies. 

Like the previous tests, this experiment consists of two cuts with increasing and 

decreasing spindle speeds. All conditions, including the workpiece and tool, are identical 
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to the initial experiments, except the feed direction is reversed from positive X to 

negative X. The tests were slot cuts to avoid problems with up versus down milling. 

Specifically, this is identical to the initial tests, with a reversed feed direction. If the 

system is linear, this should not affect the outcome since the transfer function in the X 

direction is assumed constant. However, it is clear from Table 3.7 that the dynamics of 

the system change by reversing the feed direction. This is evident from both the time 

magnitudes and the frequency content of the vibration signal. Table 3.7 shows the chatter 

frequencies comparing these cutting conditions. 

Table 3.7: Chatter Frequency Dependency on Cutting Direction 

Increasing/Decreasing 

Spindle Speed 
Increasing 
Decreasing 
Increasing 
Decreasing 

Feed Direction 

+ X 
+X 
-X 
-X 

Chatter Frequency 

(Hz) 
927 
890 
940 
910 

Because these cutting conditions are found to have a significant effect on the chatter 

frequency, it is possible that other cutting conditions such as engagements, feed rate, and 

workpiece geometry will also have an effect along with XYZ position of the machine 

tool. The observed difference in the chatter frequency cannot be explained by the simple 

models presented in the reviewed literature and will be the subject of further 

investigation. 

The tool tip vibration signal from the electret sensor contains information about the 

entire spectrum of the machine response, including that of the chatter frequency. It is 
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desirable to inspect information at the chatter frequency to clearly note the onset and 

growth of instability. To make a clear observation, other frequency content in the signal 

must be de-emphasized. This can be done by generating a waterfall series of FFT's (as 

shown in Figure 3.8), or the chatter frequency can be extracted from the time data using 

a bandpass filter. The filter is designed to attenuate all frequency content except for the 

band around the observed chatter mode. This is a different approach than using a comb 

filter to eliminate the tooth pass frequency and its harmonics (e.g. the Harmonizer 

method). The band pass filtering approach is implemented so the data can be processed 

easily in the time domain. Such an approach has been used with commercial systems 

such as the Harmonizer (53), discussed in the Chapter 1 introduction of this dissertation. 

The bandpass filter is rapid and more robust than the FFT. This is because it is 

computationally faster to implement the filter for streaming data, instead of waiting to 

collect segments of data for computing FFTs through time. The passband on this filter is 

defined as o c - 50 < o < (0 c + 50 where (0 c is the average chatter frequency of 900 Hz. A 

100 Hz passband is chosen since the chatter frequency is observed to shift with speed 

changes (discussed earlier). Phase shift in the filtered data is avoided by passing the data 

forward and backwards through the filter. This forward-backward filtering effectively 

increases the Butterworth to a 4th order roll off. Isolating the chatter frequency in the time 

domain data makes it easier to observe and denote the onset and growth of the chatter 

mode by counting zero crossings and picking peak amplitudes. This saves complication 

of transforming the data to the frequency domain to observe the same information. Figure 

3.15 shows a comparison of the unfiltered raw time data and the filtered chatter 
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frequency data for increasing spindle speed at the 8.89 mm axial depth of cut. After the 

data is filtered to isolate the chatter frequency range, it is easier to discern the onset 

points of instability. Filtering in this manner neglects other modes in the system and is 

used only to highlight changes in a specific frequency for this case. 

Figure 3.15: Bandpass Isolation of the Chatter Frequency 

With knowledge of unstable spindle speeds, it is possible to generate an experimental 

stability lobe diagram. To this point, chatter frequency has been discussed, however, it is 

also important to know the exact spindle speed, time correlated to the vibration data. For 

many NC milling machines, the spindle motor control operates in open loop with the 

controller. In typical processes, the spindle runs at steady state during cutting operations 

and the motor speed accurately reflects the amperage and frequency applied by the 

control system. However, the spindle speed sweep experiments conducted for this work 

are not steady state cutting conditions. For this reason, the true spindle speed must be 

known. The vibration signal from the tool tip sensor contains information about the 

frequency content of the cutting process, including the spindle frequency. Therefore, it is 
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possible to know the true spindle speed from the vibration signal by isolating the spindle 

frequency component of the vibration signal. It is desirable to use the vibration signal to 

estimate spindle speed directly to maintain time alignment between the instantaneous 

spindle speed and the data. 

Isolation of the spindle frequency is possible by defining a bandpass filter around the 

theoretical spindle speed designated by the controller. The theoretical speed is dictated by 

the G Code and is made in discrete steps as the cut progresses. These steps occur 

proportionally to the feed rate to maintain a constant feed per tooth of 0.0254 mm. In 

other words, the spindle speed is a function of feed rate to maintain a constant chip 

thickness and material removal rate. 

With knowledge of the theoretical (controller reported) spindle speed over time, a 

filter is designed to isolate the spindle frequency for each step through the dataset. This 

filter is a second order Butterworth bandpass filter. The passband on this filter is defined 

as OJ5*(0S< ft) < 1.25*6), where o s is the theoretical spindle frequency. This filter is 

designed to avoid the tooth pass frequency and allow for ±25% deviations from the 

theoretical spindle speed. This should be sufficient considering that the spindle speed is 

expected to be within a few percent. A two flute cutter is used for this work, however the 

technique is applicable to tools with any number of flutes. After this filter is applied, the 

period of the spindle waveform is measured directly from the time data. This is done by 

locating the zero-crossings of the filtered waveform. It is found that this technique is 

robust and computationally fast. 

A lag between the theoretical controller speed and the measured spindle speed is 
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observed as seen in Figure 3.16. Since the spindle controller operates in an open loop 

configuration, this is an expected outcome of continually changing the spindle speed. 

Although a lag is present during the spindle sweep, the controller is accurate within 1%-

3% during steady state cutting, depending on load. This is verified by conducting several 

tests at constant spindle speeds. By knowing the true spindle speed throughout the test, a 

more accurate stability lobe diagram can be created. Moreover, extracting the spindle 

speed from the vibration signal improves the potential to automate the process, requiring 

only the sensor integrated tool and no additional interface to a rotation sensor. 

Error in the spindle measured speed (shown in Figure 3.16) can be attributed to 

the method used to estimate the spindle speed from zero crossings in the data. During 

times of chatter, the zero crossings can be difficult to determine due to superposition of 

the chatter frequency in the data. Even though the bandpass filter attenuates the chatter 

frequency, it still has effect on the data. One method that can be investigated for future 

work is the use of hysteresis in the filtering method to make zero crossing estimation 

more accurate. 
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Figure 3.16: Theoretical vs Actual Spindle Speed 

After isolating the chatter frequency in the time data and determining the true spindle 

speed, it is possible to identify instability onset for a particular cutting condition at 

various axial depths using Equation 3.1. For the 8.255 mm (0.325 inch) axial depth, 

chatter is not observed during the increasing spindle speed test, but is encountered during 

the same conditions with decreasing spindle speed. Although the specific cause is 

unknown, this may be related to nonlinearities like those responsible for changing the 

chatter frequency, or to the rate of change of the spindle speed. Another hypothesis is that 

the change in bed location influences the chatter frequency. For axial engagements lower 

than 8.255 mm, chatter only occurs at constant spindle speeds. This outcome suggests 

that the maturation (build-up) rate of the chatter mode differs as a function of depth. 

Even though the 8.255 mm axial depth did not produce fully developed chatter during 

the spindle speed sweep, the higher axial depths provided clear onset points from both 

increasing and decreasing spindle speeds, from which an experimental stability lobe 

diagram can be created. These onset points define the upper and lower boundaries at 
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which instability occurs. Recalling the discussion of directional chatter, the upper 

boundaries are defined by the decreasing spindle speed sweep and the lower boundaries 

are defined by increasing spindle speed sweep. The experimental stability lobe diagram 

can be generated to 10.16 mm (0.4 inches) axial depth since this is the limit of the tool 

used for this investigation. Figure 3.17 shows the experimental stability lobe diagram 

plotted with the upper bounds represented by a downward pointing triangle (from the 

decreasing spindle speed tests) and lower bounds by an upward pointing triangle (from 

the increasing spindle speed tests). 

4000 4500 
Spindle Speed (RPM) 

Figure 3.17: Experimental Stability Lobes 

5500 6000 

The plot presented in Figure 3.17 is a curve fit to the experimental chatter onset 

points. It is found that a second order tetration (2x) function fit the data points well. For 

each unstable mode, the tetration [52] is computed over the interval 0 to 1 and scaled by 

the onset spindle speeds to fit the experimental data. Explicitly, this is defined as x(n)x(n) 

where x= [0,l/(ft)2 - ft)y),...,lj,ffl2is the upper bound of an unstable mode, and ft),is the 

lower bound of an unstable mode. Although this function fits the existing data reasonably 
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well there is no guarantee that the portion of the curve away from the data points is 

accurate and further testing is warranted. With this sensor, the onset of tool chatter may 

be detected before workpiece damage occurs. By observing the growth and frequency of 

the chatter mode before workpiece damage, adaptive chatter control of the spindle speed 

is a promising area of future investigation. 

Since chatter frequency changes with cutting conditions (i.e. increasing vs. decreasing 

spindle speed), questions emerge about chatter modeling techniques that assume the 

milling system plant to be repeatable. Future work will explore more advanced time 

domain simulation models, and adaptive control of the spindle speed using feedback from 

the sensor system to actively avoid chatter conditions. 

3.6 Tool Torque Measurement 

By comparing the peak torque values measured with Prototype 3, the distribution of 

material removal rate (MRR) can be approximated. Although this requires more 

verification and subsequent study, the results are important to touch on because of 

implications for feed rate override control and tool failure detection. During the case 

shown in Figure 3.19, insert 1 is contributing 27% of the MRR capacity while insert 2 is 

contributing 73% of the MRR. The average feed per tooth of this test was 0.122 

mm/tooth. As a result of insert run out, insert 1 cuts at an effective 0.0329 mm/tooth and 

insert 2 cuts at an effective 0.0891 mm/tooth. 
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Figure 3.18: Torque Signal Showing Insert Run Out 

A use of the torque sensor can be found in estimating tool run out. On a two insert 

cutting tool, the chip load is ideally distributed at 50% material removal rate (MRR) on 

each insert. Realistically, run out exists on the tools and it must be quantified. This 

eccentricity is expected on insert type tools and with set screw tool holding systems. The 

effect of run out is greatest after tool changes before the tools are 'broken in'. By knowing 

the torque, it is possible to understand the true distribution of MRR on the insert cutting 

tools. 

Possibly the most interesting application of this torque sensor integrated tooling 

system is the observation of tool tip dynamic effects. Previously the electret tool tip 

vibration sensor, Prototype 2, was used to observe the signal frequency content during 

regenerative tool chatter. Although vibration is a useful source of information to inspect 

frequency components of the cutting signal, it does not provide magnitude information. 

With the torque dynamometer integrated tool, a direct observation of the cutting torque 

during tool engagement is possible. Unlike commercial rotating dynamometers, this 
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sensor is integrated with a commercial cutting tool and the stiffness is not affected. Thus, 

modes are not artificially introduced into the cutting system. 

Since previous work investigated tool chatter with tool tip vibration (Prototype 2), a 

test is conducted to observe chatter with the torque sensor integrated tool (Prototype 3). A 

cut is conducted in tool steel with a 14.2875 mm radial engagement and 3.175 mm axial 

depth, using two inserts. At a spindle speed of 2500 RPM, a light chatter condition was 

encountered. Figure 3.19 shows a waterfall plot of this test. The evolution of the chatter 

mode supports the results found with the electret accelerometer. However, unlike 

previous vibration studies, the torque magnitude is measured. Over a time period of 

approximately 0.5 seconds, the amplitude of the chatter mode grows to about 0.5 

N*m/Hz. 

Figure 3.19: Torque Signal Showing Entrance Effects and Regenerative Tool Chatter 

In addition to tool chatter, torque during workpiece entrance and exit are shown. 

Specifically, when the milling tool initially contacts the workpiece, the behavior is 

notably different than during steady state cutting. Although this effect influences surface 

quality, the author is not aware of any literature thoroughly documenting the behavior of 
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the tool during this period of rapidly changing engagement. Figure 3.19 highlights the 

workpiece entrance effects at the beginning of the test. The frequency content of the 

torque data suggests that the response of the milling system experiences substantial 

changes during the entrance. It should be noted that Prototype 3 was not fully 

characterized for bending cross talk in the torque data. While this does not affect the 

frequency information, the effects of bending in the data are not explored with this tool. 

3.7 Chapter Summary 

The electret accelerometer based measurements were shown to capture features of 

the cutting process including tooth passing behavior, tool run out, and tool chatter. 

Instabilities in the system are detected before onset of chatter due to the signal to noise 

ratio of the sensors. The electret sensor integrated tools were found to identify build up of 

instabilities with significant time before escalation of the magnitude. The ability to see 

the buildup of instability is a significant step towards avoiding unstable conditions and 

taking corrective action with machine control. This would not be possible without a high 

signal to noise ratio of placing the sensor inside the tool holder. Spindle speed sweep 

testing, a novel experimental approach to evaluating stability, was designed for use with 

the sensor integrated tool holder. Using the electret accelerometer based tool holder, best 

speeds were predictable and experimental stability lobe diagrams could be created from 

the spindle speed sweep data. Interesting behavior was seen during the spindle speed 

sweeps regarding the onset of stability and the decay of unstable modes after the spindle 

speed has entered a stable condition. 
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Tool torque was monitored using strain gauge sensors. Torque data was compared 

to cutting force models as well as a bed dynamometer and power sensor. Similar behavior 

to the accelerometer tests was observed in the frequency content of the strain sensor 

signal. The buildup of an unstable condition was observed at high resolution. Entrance 

effects (when the tool enters the workpiece) were observed. The advantage of using 

torque over acceleration is a more direct sensing approach to monitor the strain of the 

material. Torque information is directly correlated to cutting force, thus, its magnitude is 

more meaningful than acceleration. Moreover, torque does not involve XYZ vector 

information because it is a couple around the axis of the tool holder. Similar to the 

acceleration tests, torque was shown to expose system instabilities before escalation to 

full blown chatter. 
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CHAPTER 4 

In situ Chatter Frequency Prediction Using Torque Data 

This chapter describes a method to extract chatter frequencies from stable (non-

chatter) cutting data by applying system identification methods used in speech 

recognition. Because the smart tools provide a high SNR, these closed loop frequencies 

can be estimated without encountering tool chatter. The method explored is called linear 

predictive coding (LPC) and is used to generate formant frequencies. LPC is an 

autoregressive technique that creates a simplified model of the data from which 

frequency tracking can be easily achieved. 

As applied to machine tool dynamics, the goal of frequency prediction and frequency 

tracking is to estimate chatter frequencies from the data before encountering an actual 

chatter condition. The torque data captured by the sensor integrated tool is proportional to 

the instantaneous chip thickness during cutting. The instantaneous chip thickness is 9 

function of both the nominal chip thickness and the machine tool system dynamics. The 

torque data can be approximated as the output from a LTI (linear time invariant) system 

with the time domain torque signal equal to the periodic chip thickness input signal 

convolved with the frequency response function (FRF) of the cutting system. This is 

defined in the time domain as: 
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At)=P{t)*f{t) (4.1) 

and in the Laplace domain as: 

T(s)=P(s)-F(s) (4.2) 

where/? is the instantaneous tooth passing chip thickness signal (input),/is the frequency 

response function, and x is the output torque signal from the sensor data. The cutting 

system is not the entire machining system and (in the system schematic, Figure 1.3) the 

smart tool is recording data between the force model and compliance model of the 

milling system. Linear Predictive Coding (LPC) methods are used to estimate the 

frequencies in F(s) which are a result of the entire machine dynamics acting on the chip 

thickness. While the cutting system transfer function F(s) could be determined using 

LPC if the input p(t) was white noise, it is a periodic signal at the tooth passing 

frequency. Further, the chip thickness signal is not recorded. Without the chip thickness 

signal, the major closed loop frequencies can be located, but it does not allow us to 

determine the transfer function. An important distinction is that LPC is being used to 

locate the closed loop frequencies during cutting. Since the chip thickness signal is not 

known, this method does not determine the tool holder, i.e. structure, or work piece FRF. 

4.1 Linear Predictive Coding and Formant Frequency Tracking 

Linear predictive coding is a method of creating a frequency spectrum from a model 

of the data to capture the spectral shape of a data set while disregarding detailed 

harmonic structures [44,45]. The harmonics of an input signal are not of interest and the 
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model intentionally lacks resolution on these features so that frequency tracking identifies 

system modes and not harmonics of the input signal. In a traditional example, it is used to 

estimate the formant frequencies of lung-mouth-nasal systems for human speech 

recognition. This technique has never before been applied to machining data. We propose 

to use the method to determine the dominant vibration modes in the torque signal 

obtained from the smart tool during a cut. In an end milling system, significant tooth 

passing harmonics exist throughout the torque spectrum T(s). LPC provides a method to 

distinguish the significant system frequencies from the harmonics of the tooth passing 

frequency. 

The autocorrelation method of LPC chosen for this work is detailed in [44]. Assuming 

for a given window of torque, x, and model order M, the present sample is predicted by 

autoregressing the historical samples of torque data: 

f —axT (« — !) + a2r(n — 2) + . ..+aMr(n — M) 
M 

= X* /T (/!-/') 
(4.3) 

;=1 

where x is the prediction of x(n), x (n-i) is the /'* step historical sample, and {a\j are linear 

coefficients. The sum of squared prediction error takes the form: 

E = Te(n)2=Z(T(n)-f(n)f (4.4) 
n n 

I M \2 

=H\'r(n)-^aiT{n-i)\ 

By minimizing the sum of squared error, E , it is feasible to solve for the prediction 

coefficients {a\j by setting the derivative of E with respect to {at} equal to zero: 
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M 

Y,2T{n-k) T ( / ! ) - 2 > / T ( „ - / ) =o (4.5) 

for k = \,2,...,M 

This form contains Munknowns and Mequations: 

2 T(«—fc)-r(«)=a, 2J T(«—£)T(«—1) + ... 

. . . + a 2 £ T{n-k)T{n-2)+...+auYd T ( H - * ) T ( W - M ) 
(4.6) 

Assuming that there is a finite number JV of discrete samples in the data window T , 

Equation 4.6 can be approximated in Yule Walker matrix form: 

r (0 ) r(\) 
r(\) r ( 0 ) 

r(M-2) r(M-3) 
r(M-\) r(M-2) 

r(M-2) r(M-\) 
r(M-i) r(M-2) 

r ( 0 ) 
r(\) 

r ( l ) 
r ( 0 ) 

a2 

r ( l ) 

r{2) 

r(M-l) 
r(M) 

(4.7) 

or Ra—r ; where {r(l)...r(M)j is an autocorrelation estimate for T : 

JV-l-t 

/•(*)= Z T(/!)T(» + * ) (4.8) 

The matrix form of Equation 4.7 is solved with the Levinson-Durbin recursive 

method to minimize the required computation to solve {ai}. This algorithm is described 

fully in [45, 46 ,47]. Once the coefficients {a\} are solved, the roots of the model can be 

found. The poles of the frequency response function, F(s), are estimated by treating the 

model as an all-pole (infinite impulse response) IIR filter: 

1 1 
F(z)--

A(z) l + a2z
 1 + ...+a„+1z " (4.9) 

The location of the LPC poles can be estimated in real time from a window of the 

experimental cutting torque data, x. The set of system poles, R, are found as the 
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polynomial roots of the filter denominator (Equation 4.9). Recall that the actual system 

poles can only be determined if p(t) were white noise. Our use of LPC is to find the 

dominant system frequencies, referred to as Formant Frequencies. 

Formant frequencies are calculated by the phase angle of the LPC poles and scaled by the 

discrete sampling frequency, Fs : 

Fr=2MFs/2) <4-10) 

where R are the LPC poles, Fs is the discrete sampling frequency of x, and Fr is in units 

of Hz. The phase angle is calculated by the arctan between the real and imaginary part of 

R. For further information, see the MATLAB function "angle" [54]. 

For the LPC method, it is important to note that we assume our data is both linear and 

time invariant over a short data window. However, a system that is not assumed to be 

time-invariant can be solved using other approaches such as the Green function method 

[47]. 

4.2 Impulse Response Testing 

Several experimental tests are presented to demonstrate the efficacy of the formant 

tracking method. The first experiment establishes the baseline "static" FRF of the end 

milling machine structure using the traditional 'hammer test' in X and Y linear directions. 

The impulse response is measured with a piezoelectric accelerometer mounted to the 

milling tool. Prototype 4 is struck by a modally tuned hammer and both input and output 

response is recorded, as detailed in [35-38]. The FRF is estimated as the transfer function 

between the input and output signals. Both X and Y axes are examined independently. 

It is important to have this baseline to validate and contrast estimated system 
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frequencies with those observed from the LPC method. Although it is not expected that 

these will exactly match the in-cut results, they should corroborate the number of system 

modes. Of course, this is dependent on the spindle speed since it is known that chatter 

frequencies can be different than the open loop natural frequencies of the system [48]. 

The baseline FRF's are a 'static' (non-rotating and non-cutting) representation of the tool, 

spindle and machine structure, without workpiece dynamics. Moreover, the spindle is 

treated as a cantilever, free from engagement with the workpiece material. Figures 4.1 

and 4.2 illustrate the baseline FRF for both X and Y directions. 
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Figure 4.1: Baseline X Direction Tap Test 
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Figure 4.2: Baseline YDirection Tap Test 
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From analyzing the baseline FRF's, two modes are observed that may be close to the 

actual chatter frequencies. At approximately 595 Hz, a natural frequency occurs in both X 

and Y directions. This mode is attributed to the cutting tool compliance which we 

anticipated to be the most compliant part of the machining system. The second mode may 

be the result of machine spindle dynamics. The second mode has slight variation between 

X and Y (2100 vs. 2240 Hz). Frequency content above 2500 Hz for the X direction, and 

3500 for Y, is not considered reliable since the input signal did not contain significant 

energy at these frequencies. A nylon tip was used on the impact hammer to concentrate 

energy at low frequencies and avoid double taps of the hammer. As a result, the 

magnitude of the FRF contains no coherent information at high frequencies. It should be 

noted that for short overhang tools where the spindle contributes substantial response, it 

is necessary to use a steel tip and supply an impulse that captures higher frequencies [25]. 

4.3 Application of LPC Methods to Estimate Chatter Frequencies 

A slot cutting test at 45 degrees in the X-Y plane is designed to excite the machine 

system in X and Y directions (see Figure 4.3). The chatter frequency (or frequencies) are 

expected to occur near the lowest modes of the system. Recalling that our goal is to 

estimate the system chatter frequencies from the torque data before encountering chatter, 

the test is run with a shallow axial engagement. Moreover, the test is conducted in a solid 

clamp-anchored workpiece to minimize the influence of workpiece dynamics. The test 

conditions are 2501 RPM, axial depth 3.81mm (0.15 inch), at a feed rate of 254 mm/min 

(10 ipm). The cutting tool selected for this test was a Kennametal Mill 1-10 with a 
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19.05mm (0.75 inch) cutting diameter and single insert. The material was 6061-T6 

aluminum alloy. 

»~x 

Figure 4.3: XY Slot Cutting Experimental Orientation 

The torque data collected for this test is shown in Figure 4.4. Prototype 4, the 

semiconductor based torque sensing smart tool (Prototype 4), was used in this application 

due to its high sensitivity. No chatter build up was encountered and the workpiece finish 

remained acceptable. The torque magnitudes are comparable to theoretical estimations 

from an infinitely stiff mechanistic cutting force model. It should be noted that no run out 

was present since a single insert cutter was used for the test. 

4 6 8 10 
Time (Seconds) 

Figure 4.4: Torque Plot from the XY Slot Cut 

12 14 16 
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This data is interesting, because the peak torque values increase for a period of time 

between 7 and 12 seconds. The increase in peak value is during the steady state part of 

the cut. The root mean square of this data does not change during the period, indicating 

that the material removal rate (average chip thickness) is unchanged. Peak torque (peak 

chip thickness) increases during this time suggesting that the system has changing 

response during the steady state cut. This is supporting evidence that the milling system 

can undergo changes during a steady state cut. From this torque data, Equations 4.3 

through 4.10 are used to generate a set of formant frequencies locating the peaks of the 

estimated LPC poles. Figure 4.5 shows Equation 4.9 evaluated for a 10 pole model (the 

four lower formant frequencies shown). These formant frequencies track possible chatter 

frequencies throughout the cutting process, updated at each window of T . Each window 

contains 1024 data points collected at 10.24 kHz. 0-4 Seconds and 12-16 seconds contain 

data from entrance/exit effects. 

y * ^*ty?$%$i#g&fylfigg''i$<tefyilF™^ ^ ^ ^ r V ^ \ ^ f c ^ J » / V \ ^ ™«f <^Ji/ **â%1** ^ a» * ^ t & 

Time (Seconds) 
Figure 4.5: Dominant Formant Frequencies of the XY Slot Cut 

Plots of the formant frequencies agree with the behavior discussed in page 204 of 

Schmitz/Smith [48], identify that multiple chatter frequencies exist at a given spindle 
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speed. Drawing a vertical line through the Schmitz plot at any spindle speed intersects 

multiple chatter frequencies similar to those identified by the LPC method. This plot also 

shows that chatter frequencies,/, are not always equal to the machine tap test FRF. 
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Figure 4.6: Multiple Chatter Frequencies (Schmitz/Smith [48] pp 205) 

The formant frequencies represent the peak magnitude locations in the LPC model 

frequency response. It is observed that the LPC dominant frequencies of F(z) , are 

different than the dominant modes in the baseline tap test FRF's (Figure 4.1-4.2). This is 

to be expected for several reasons. Most importantly, the LPC measures the dominant 

frequencies such as chatter frequencies, which are not the same as system natural 

frequencies. Appendix I expands some justification for tool-engaged boundary 

conditions that may also contribute to this effect. Figure 4.7 shows a 10th order (five 

pole) LPC model of the system, estimated from the cutting torque signal, T . Figure 4.7 

was generated with the MATLAB Filter Visualization Tool, treating the LPC model as an 

IIR (infinite impulse response) filter. 
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Magnitude Response (dB) 

Frequency (kHz) 

Figure 4.7: 10th Order Model Frequency Response From Cutting Torque Data 

A reader may question the validity of the 10th order model, without a discussion of 

minimally sufficient model order. Therefore, a 64th order LPC model is presented for the 

same data window and is shown in Figure 4.8. Based on this comparison, it is evident 

that there is no substantial improvement in frequency resolution of most modes. 

However, there is an arguable improvement on the resolution of the second dominant 

mode, recalling that there are two distinct frequencies for the X and Y transfer functions. 

It is important to use information from both X and Y directions to determine stability. 

Altintas [25] discusses the use of a resolved transfer function that combines both X and Y 

responses depending on the direction cosine of the forcing input. The 64th order model 

has much higher resolution on the system than the 10th order model, however this is not 

helpful since the higher order creates difficulties interpreting the data. One problem with 

using an extremely high model order is that the tooth passing frequency is captured in the 

LPC model and could lead to a false-positive identification of a chatter frequency. As the 

model order grows, the LPC model spectrum approaches the spectrum of the actual data 
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and no useful filtering of cutting frequencies and harmonics is achieved. It is found that 

using a minimum model order is preferable to intentionally ignore resolution on the tooth 

passing frequency and associated harmonics. 

Magnitude Response (dB) 

Frequency (kHz) 

Figure 4.8: 64th Order Model Frequency Response From Cutting Torque Data 

Figure 4.9 shows the power spectrum of the raw torque data, T , for the stable cut at 

3.81mm (0.15 inch) axial depth. Unlike the model spectrum, the raw spectrum is 

dominated by tooth passing harmonic frequencies and is difficult to interpret to determine 

the location of dominant system frequencies. By comparing Figure 4.7 to Figures 4.8 and 

4.9, it is clear that the LPC method is smoothing the frequency such that tooth passing 

harmonic frequencies are eliminated while preserving the system's overall response 

shape. Specifically, the system shape is not readily apparent in Figure 4.9 since the data is 

dominated with tooth passing harmonics. Removing the tooth passing frequency and its 

harmonics is the method used in applications such as the Harmonizer (53), however, 

knowledge of the tooth passing frequency is required. There are also hardware benefits to 

the LPC methods, since speech recognition has been optimized for use on 
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microprocessors with DSP functionality. Comb filters require reformulation for changes 

in spindle speed, which is slower than LPC methods which do not require updated filters 

in response to the input signal. In control applications, where time delay is critical, the 

LPC methods are preferable. 

Welch Power Spectral Density Estimate 

Figure 4.9: PSD of Stable (no chatter) Raw Torque Data 

4.4 Time Varying Effects on LPC Frequencies and Predicting Stable Cutting Speeds 

Because the LPC frequencies are estimated from the streaming torque data, time 

varying effects in the modes can be observed. An interesting phenomenon is drift 

captured in the formant frequencies during steady state cutting. This suggests that the 

chatter frequency, hence modes of the system, may be shifting throughout the cutting 

process. Figure 4.10 shows the lowest formant frequency from Figure 4.5, corresponding 

to the -650 Hz mode of the cutting tool. This frequency is observed to drift within a 15 

Hz envelope of its mean value. This effect is fascinating and warrants further 

investigation. This may occur due to changes in the XYZ position of the machine bed, 

changes in the workpiece location, and changes related to compliance from workpiece 

102 



clamping unit. 
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Figure 4.10: Drifting System Poles During Steady State Cutting 

The literature [48] describes difficulties in accurately predicting stable spindle speeds 

at low RPM. One cited cause is that bearing stiffness rapidly changes at low spindle 

speeds. An added issue is close lobe proximity at low spindle speed. The drift we observe 

in the LPC poles may reflect the bearing stiffness or machine position. 

At low spindle RPM, the stable parameter space is highly sensitive to small 

variations in the chatter frequency, <x>c . Thus, for closely spaced lobes a small change in 

the chatter frequency can indicate a large shift in stability (see Chapter 1 for a discussion 

of stability lobes). For this reason, estimating the LPC frequencies is critical to 

maintaining stability at low spindle speeds. 

4.5 Validating the LPC Frequencies by Inducing Chatter 

Finally, the validity of the LPC model is tested by conducting an identical cut at an 

increased axial depth of 7.62 mm (0.3 inches). By increasing the axial depth, chatter is 

induced and the actual chatter frequency can be observed. The true chatter frequency is 
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observed in the power spectrum of the raw torque data at 650±10 Hz, plotted in Figure 

4.11. 
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Figure 4.11: PSD of Raw Torque Data Under Induced Chatter 

Based on the experimentally obtained results, the LPC model low frequency mode of 

650 Hz matches the significant chatter frequency shown in Figure 4.11. The results of 

the tap tests, i.e. the baseline FRF's, give little indication of the actual chatter frequency. 

Obviously, because of the accurate chatter frequency prediction, the LPC model would 

give an estimation of stable spindle speeds for safe cutting when the formant frequencies 

are used to estimate best speeds. 

4.6 Changes in the LPC Frequencies as a Function of Spindle Speed 

With an in-process estimation of the LPC frequencies, a feedback control mechanism 

can be developed to adapt machine tool process parameters in response to predicted 

chatter conditions. For this reason, it is important to understand the effect of machine tool 

process parameters, most importantly spindle speed, on the accuracy of the LPC mode 
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estimation method. Because spindle speed is a control variable with respect to machine 

tool stability, its effect on the chatter frequency is important. To explore this, a suite of 

slot cutting tests is repeated at two axial depths of cut. The first depth, 2.54 mm (0.1 

inches), is intended to test the ability of the prediction method to forecast the chatter 

frequency without encountering a tool chatter condition. The second depth, 7.62 mm (0.3 

inches), is designed to induce regenerative chatter and validate the chatter frequency 

predictions made from the first depth. Figure 4.12 is a conceptual model of the 

experimental setup for this test. 

z 

I 

AI6061 

Figure 4.12: Multi-Depth Slot Cutting Experimental Orientation 

Table 4.1 shows the predictive (2.54 mm depth) versus the induced chatter 

frequencies as a function of spindle speed. The average chatter frequencies are shown. 

The drift present around the average frequencies is within a 15 Hz envelope of a 10 point 

moving average. The outcome of these tests further validates the ability of the LPC 

method to estimate the correct chatter frequency locations from the cutting torque data. In 

all cases, the chatter frequency is estimated as the lowest formant frequency from the 

LPC model. 

/ 
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Table 4.1: Predicted and Actual Chatter Frequencies as a Function of Spindle Speed for 

Slot Cuts 

Predicted (Hz) 

Actual (Hz) 

Spindle Speed (RPM) 

Axial Depth 

2.54 mm (0.1") 

7.62 mm (0.3") 

2501 2750 

649 664 

655 667 

3000 3250 3500 

673 675 678 

679 683 679 

4250 

686 

686 

4750 

693 

680 

The predicted versus actual chatter frequencies are consistent, acknowledging that 

these are average values and the actual values drift in an envelope (see Figure 4.10). 

Plotting the induced chatter frequencies over the range of spindle speeds produces a 

nonlinear relationship. This effect is documented in time domain simulations by Schmitz 

[48] where chatter frequency becomes a function of spindle speed. In their work, tap test 

data is used in the model but it has been shown by [49,50,51] that the spindle frequency 

response changes with spindle speed. This would change the chatter frequency prediction 

of the simulation. Although the change in chatter frequency is within 30 Hz, system 

stability is highly influenced by small changes at low spindle speeds. Figure 4.13 shows 

the relationship between observed chatter frequencies and spindle speed. The literature 

[49,50,51] documents that the tap test FRF does change as a function of spindle speed, 

affecting stability estimation and increasing the difficulty of selecting stable process 

parameters. Hence, there is need for an "in-process" estimation of the chatter frequencies 

to potentially update cutting parameters to reflect real conditions. 
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Figure 4.13: Chatter Frequencies vs. RPM 

4.7 Estimating Chatter Frequency with LPC during Partial Engagement Cutting 

To this point, we have discussed examples of estimating an in-process chatter 

frequency based on torque data from various slot cutting scenarios. It is also necessary to 

demonstrate the method for partial engagement cutting. To do so, partial radial immersion 

cuts in the X machine direction were conducted at 4.7625 mm (0.1875 inch) radial depth 

and 2501 RPM. Figure 4.14 is a conceptual model of the experimental setup for this test. 

Figure 4.15 shows the LPC model spectrum and peak formant frequencies for this test. 

AI6061 y^ 

Figure 4.14: Quarter Radial Immersion Experimental Orientation 
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For the % immersion cutting experiments, the model shows frequencies that are 

similar to those present in the baseline FRF (obtained by the hammer test). Unlike the slot 

cutting examples, this system does not chatter in radial immersions under 9.5250 mm, 

regardless of axial engagement. This was observed for both up milling and down milling 

experiments. However, despite the inability to produce chatter at light radial 

engagement, the estimated chatter frequencies correlate with those obtained from the slot 

cut. While chatter frequencies can be determined from the % immersion cut as shown in 

Figure 4.15, it is much more difficult to select a dominant chatter frequency. More 

experiments are needed to determine the cutting conditions necessary to accurately 

determine the dominant chatter frequencies. 

Magnitude Response (dB) 

Frequency (kHz) 

Figure 4.15: 64th Order Model Frequency Response From Quarter Radial Immersion 
Cutting Torque Data 

4.8 Chapter Summary 

The machining system chatter frequencies can be estimated from cutting torque data 

collected from a wireless sensor integrated end milling tool holder. Using LPC methods, 

the model frequencies, (i.e. chatter frequencies) can be estimated in real time from 

windows of cutting data, revealing the chatter frequencies during highly stable cutting 
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conditions. This is an exciting advance from traditional methods that estimate chatter 

from the impulse response (tap test) of the machine, particularly for low spindle speeds 

where stability becomes highly sensitive to small changes in the spindle speed. The 

traditional tap test method neglects aspects of the rotating/cutting system and gives a less 

accurate representation of the system frequencies. The ability to exploit formant 

frequency tracking to follow changes in the closed loop modes and hence chatter 

frequencies has also been demonstrated. The techniques are computationally efficient 

since low model orders provide sufficient system resolution, processing in under a 

millisecond per data window on a modest PC laptop. The ability to predict unstable 

frequencies from highly stable cuts is beneficial to ad hoc process planning and adaptive 

adjustment to the process parameters. 

LPC estimates the frequency response of the system assuming white noise input to 

the system. In this application, the closed-loop frequencies identified by the LPC 

method are not the same as the frequencies associated with the open-loop system 

poles. An LPC pole is located at a possible chatter frequency, not an actual open-loop 

system pole, as found by the traditional tap test. Thus, the LPC poles can be thought of as 

the closed-loop poles identified by chatter frequencies. Often, particularly for low cutting 

speeds, the chatter frequency is very close to the natural frequency of the system. 
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The LPC poles (i.e. chatter frequencies) are a function of both spindle speed and 

radial depth. Figures 4.15 and Figure 4.8 demonstrate the differences between two radial 

immersion cases. The prediction of varying chatter frequencies over spindle speed is 

documented in the literature [48], however, the effect of radial depth requires more 

investigation. This leads one to believe that axial depth may also have an effect on chatter 

frequency, another avenue for future work. Clearly, engagement has an effect and could 

be attributed to boundary conditions (discussed in Appendix I). 

Using the LPC method, there are a number of issues demonstrated with static tap tests 

regarding changing system response. The tap test is insufficient for selecting system 

conditions, particularly at low spindle speeds and can be assisted or improved by an 

online updating method such as LPC. 
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CHAPTER 5 

Predicting Chatter Frequency With Coupled Workpiece and Tool Holder Dynamics 

The machining of complex geometries, thin walls, and work holding arrangements 

leads to a complicated scenario of multiple natural frequencies contributed by different 

components of the machining system. The interaction between the dynamics of these 

different systems is difficult to predict. The smart tool holder can be used for frequency-

based analysis of a multiple compliance system to study the interaction between 

workpiece and tool holder dynamics. This is an extension and application of the Linear 

Predictive frequency based analysis presented in the previous chapter. By introducing 

multiple frequencies of interest, the value of the LPC techniques can be evaluated using a 

system with multiple feasible chatter frequencies. 

A series of experiments was conducted using the torque-measuring smart tool 

Prototype 4, a slender aluminum workpiece (cross section of 1.5" by 0.875"), and a bed 

vice clamp. The setup (see Figure 5.1) was designed to anchor the workpiece in a 

cantilever orientation, such that its natural frequency could be controlled based on 

overhang length. The test setup included slot cuts in the workpiece at a depth of 0.15" 

(3.81mm). Cuts were made in the Y direction starting at the top of the beam. This depth 
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was not sufficient to cause chatter, but was close to an unstable depth at longer workpiece 

overhang lengths. This depth was chosen from empirical observation. Material was 

removed from the workpiece after each test cut to clean the face of the workpiece. 

A second set of tests, discussed in Section 5.2, was run to evaluate chatter when the 

axial depth was increased to 0.175". 

Figure 5.1 shows the cantilever workpiece and bed vice. Before each test, a tap test 

was conducted using a National Instruments PXI data acquisition computer, impact 

hammer, and accelerometer fixed to the workpiece. The accelerometer setup can be seen 

in Figure 5.2. The vibration data collected from the tap tests gives an estimate of the 

cantilever's natural frequency at the various overhang lengths. 

Figure 5.1: Cantilever Workpiece and Tool Holder 

The parameters of these experiments are constant with the exception of cantilever 
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length. The feed rate was held at 10 ipm, spindle speed was held at 2501 RPM, a single 

tooth Sandvik R390-11 T3 08E-NL tool with 3/4" (19.05mm) cutter diameter was used. 

Table 5.1 identifies the cantilever lengths, in increments of 0.15" (3.81mm). The first 

fundamental frequency from the tap test data are also shown, for reference. No second 

fundamental frequency was observed. Figures 5.2 and 5.3 show example cantilever tap 

test data. 

Figure 5.2: Cantilever with Tap Test Accelerometer 
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Table 5.1: Cantilever Workpiece Lengths 

Bar Length (mm) 

55 37 

59.18 

62.99 

66.80 

70.61 

74 42 

78.23 

82.04 

85 85 

89.66 

93.47 

Bar Tap Test Frequency (Hz) 

3025 

2750 

2384 

2294 

1968 

1813 

1690 

1565 

1470 

1370 

1275 

Tool Tap 

(Hz) 

Test Frequency 

595 

1st LPC Frequency (Hz) 

651 

655 

653 

649 

664 

675 
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Figure 5.3: 85.85mm Cantilever Tap Test 
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Figure 5.4: 108.70mm Cantilever Tap Test 

5.1 Using the LPC Model as an Adaptive Filter 

The previous discussion of LPC focused strictly on tracking the frequency content of 

the torque signal through time. Though it is useful to predict the movement of a particular 

mode, the behavior of the entire system is not observed at a single frequency. A more 

comprehensive view of the dynamics is presented if the LPC coefficients are used to 

track the dominant frequencies through time. Evaluating the impulse response of 

Equation 4.9 produces the LPC model output, which can be tracked through time. 

Because the LPC model is recalculated at each time window of data, the time-updated 

model is representing the changing dynamics in the system. It is important to understand 

the validity of frequency analysis with the LPC methods is dependent on a small time 

window in which the assumption of linear time invariant data is valid. The LPC model is 

created from autoregression of the data over a small time window. The model assumes 

the torque signal is the output from a fictional system excited with white noise. The 

model represents the torque signal at a small instance in time and does not incorporate the 

time delay or feedback present in the real system. 

Because the LPC model is data dependent, it adapts to changes in the dynamic system 

due to variables in the cutting system. These variables include bed location, workpiece 
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fixturing, workpiece dynamics, and perturbations in the spindle speed. The LPC 

autoregressive technique assumes the system is linear and time invariant (LTI) with a 

white noise input and measured torque or vibration. Autoregression system identification 

techniques consider the data to be the output from a black box system with a white noise 

input. This modeling approach does not explicitly contain the time delay responsible for 

tool chatter, nor any feedback of the real system. However, the torque data output does 

contain the effects of the time delay. The LPC creates a linear model that is representative 

of the cutting torque signal at the time of data measurement. As cutting conditions 

change, the linear system model will change. For this reason the LPC model is updated 

continually through time so that each LPC model is an accurate model of the torque 

signal for the short time window being represented. The resulting LPC model can be 

thought of as an adaptive filter, since the frequencies of the LPC model change along 

with data from the cutting system. The LPC model captures the torque signal frequency, 

which result from both time delay and changing system dynamics. Tracking changes in 

the LPC model response through time shows that changes are occurring in the cutting 

system. It should be understood that these changes take place during 'steady state' cutting 

and unmeasured variables are changing during cutting. These variables may be as simple 

as XYZ stiffness, or more involved phenomenon such as built up edge, workpiece 

material variations, temperature effects, or system damping. 

Figure 5.5 shows the LPC model frequencies from a steady state cantilever cutting 

test at a workpiece length of 108.70mm. Recall that the workpiece tap test for this 

experiment identified a workpiece natural frequency of 1005 Hz. The cutting tool natural 
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frequency is approximately 595Hz as shown by the tap test. However, the cantilever 

cutting data shows the first dominant mode to be approximately 1500 Hz. The cutting 

force is being generated between two cantilevers, and can be modeled as a force applied 

to two springs in series. However, since two cantilevers (i.e. the workpiece and the tool) 

are in end contact through the cutting engagement, the real boundary conditions are more 

complicated. Appendix I expands the evidence for a change in frequency, according to 

the boundary conditions of cantilevers with different support types at the tool-workpiece 

interface. The frequency increase is too great to be explained simply by the change in 

boundary condition, particularly since the frequency is higher than slotting in a solid 

block. By no means is a full explanation offered, beyond postulating that boundary 

conditions need to be further explored as future work. This is a nonlinear system and 

would require modeling and simulation to predict the behavior. 

The most interesting effect that is observed from Figure 5.5 is the changing frequency 

and magnitudes estimated by the LPC method. If the cutting system variables were truly 

steady state, the frequency and magnitude would remain constant once entrance effects 

were completed. Instead, the modes are seen to shift in magnitude, peak location, and 

half-power points (the width of the modes changes through time). Again, this may be 

attributed to nonlinear effects in the system that could be the subject of future work. 
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Figure 5.5: LPC Predicted System Frequencies Throughout Cut (Cantilever 108.7mm) 

Similar results are observed on other cutting tests, Figure 5.6 is an example from a 

smaller cantilever workpiece overhang of 85.85mm. It was expected that the smaller 

cantilever length would produce a higher frequency response and this was confirmed by 

the LPC method. Note that the abrupt change in frequency shown in Table 5.1 is based on 

the system chatter frequency jumping from that of the workpiece to the tool holder 

system. Before this point, there was a consistent increase in system frequency as the 

cantilever was cut shorter. 
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Figure 5.6: LPC Predicted System Frequencies Throughout Cut (Cantilever 85.85mm) 

The frequencies predicted by LPC can be used to estimate an idealized linear system 

stiffness, given assumptions about the mass of the system. To make an estimate of 

stiffness, an LPC frequency is associated with a specific component in the system and the 

distributed mass of the component is used to approximate the stiffness value. This 

method assumes that the LPC frequency is close to the natural frequency of the 

mechanical system. It does not consider damping; the influence of damping is small and 

the approximation shows the behavior of the stiffness. The ideal linear stiffness predicted 

by the closed loop LPC frequency is approximately 5e6 N/m. The actual and linearized 

model stiffness may have significant differences as a result. 

For example, for the cantilever case of 85.85mm, the cantilever has a total mass of 

81gm (0.081kg). The dynamic mass is approximately 0.243 the total mass in a cantilever, 

0.0196 kg. For a derivation of dynamic mass, see Appendix I. The lowest LPC frequency 

observed in the 85.85mm cutting test is 2350 Hz. The natural frequency of the cantilever 

at 85.85mm is 1470Hz. Using the LPC frequency, the stiffness of the system is estimated 

at 4,360,000 N/m ( £ = ( 2 3 5 0 * 2 T T ) 2 * 0 . 0 1 9 6 ). Using the natural frequency of the 
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cantilever tap test, the stiffness is 1,706,000 N/m ( k=( 1470 *2rr)2* 0.0196 ). There is 

a significant difference between the stiffness estimated by the LPC frequency and the 

workpiece tap test frequency. A difference is expected, as the LPC frequency is the 

frequency of the lowest closed-loop mode. The workpiece tap test only estimates the 

open loop mode of the workpiece system. 

It is understood that the linearized stiffness estimated from the LPC frequency does 

not reflect the actual stiffness(es) in the real system. However, it has been computed to 

demonstrate a point regarding the statistical spread in system variables. Repeated 

calculation of the stiffness shows that there is a statistical distribution around the average 

stiffness in the cut. This corroborates with the data plotted in Figure 4.10 which shows 

drift in the predicted frequency. This is useful, for instance, in modeling the system and 

providing a way of increasing model accuracy. Figure 5.7 shows the distribution of 

estimated stiffness for constant cutting conditions. This is an important concept to 

digest, since the LPC model can be used to generate a distribution of stiffness values for a 

steady state cut. Hence, this information is used in the future work section to generate a 

statistical distribution of stability lobe diagrams. An example distribution of calculated 

stiffness is given in Figure 5.7 for the 85.85mm cantilever length. 
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Figure 5.7: Statistical Variation of Stiffness Estimated from Chatter Frequency 

5.2 Closed Loop Pole Magnitude and Bifurcation of the Chatter Frequency 

The results from the cantilever cutting test are intriguing, and show that there is an 

exchange of energy between workpiece and tool-based response favoring the most 

compliant mode. This jump in the lowest LPC frequency is evident from Table 5.1. 

Although this is intuitively true, the point at which this exchange happens could not be 

predicted. Specifically, the rotating stiffness of the tool holder/spindle cannot be 

measured accurately while rotating. Using frequency data from the smart tool holder, the 

observed chatter frequency can be recorded throughout cutting. It is then possible to 

determine which system (tool holder, or workpiece) is contributing the dominant chatter 

mode. 

An abrupt transition between workpiece-dominated and tool-dominated response can 

be seen when the cantilever workpiece has become short. This happens around 75mm in 

cantilever length. By applying position controlled force to the dynamometer, the static 

stiffness of the tool is measured to be 4,728,424 N/m in the X direction and 6,304,566 

N/m in the Y direction. The measurement of cantilever frequency suggests that the tool 
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and workpiece shows that the cantilever and tool have a natural frequency in the same 

order of magnitude. It is possible that a bifurcation of chatter frequency could occur at 

any point within this range. The rotating stiffness of the tool, as stated previously, is 

different than the static stiffness. The inability to measure the rotating stiffness of the tool 

makes it difficult to estimate the exact point where chatter frequency transitions from 

tool-dominant to a workpiece-dominant regime. 

To make sense of this transition/bifurcation, it is helpful to observe the behavior 

plotted on the same scale, vs. cantilever length. Prior information, collected from the 

workpiece tap tests, gives the trend in cantilever natural frequency. Cuts were conducted 

at an increased axial depth of 0.175" so that chatter was encountered. Torque information 

collected during the cut and processed with LPC shows the trend in the system 

frequencies. From a workpiece length of 100mm to 75mm, the workpiece chatter 

frequency follows the trend of workpiece natural frequency. Unlike the workpiece, the 

tool holder frequency is relatively consistent and does not exhibit large changes 

associated with changing length and mass. Once the chatter frequency transitions 

between workpiece and tool holder frequencies, the chatter frequency is shown to 

stabilize around that of the tool holder. The LPC pole magnitudes are plotted for both the 

tool holder and workpiece. Although the LPC magnitudes are relative, they can be 

compared to each other and their trend is helpful in determining the dominant mode in 

the system. The observed dominant chatter frequency can be superimposed onto this plot 

to highlight the point at which chatter jumps from workpiece-based to tool-based motion. 

The LPC frequency of highest magnitude is used to identify the "dominant" frequency. 
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Figure 5.8 shows this information plotted against cantilever length. 

Cantilever Length (mm) 

80 

Cantilever Length (mm) 

Figure 5.8: Transition between tool and workpiece chatter during cantilever cutting 
experiments 

5.3 Chapter Summary 

The system dynamics are evaluated in terms of the LPC model coefficients. A 

suite of cantilever cutting tests was performed to ensure that LPC was correctly following 

changes in the system frequencies resulting from the changes in the stiffness of the 

system. It was found that the coupled cantilever-tool LPC frequency was different than 

that of the tool or cantilever natural frequencies. Inducing chatter confirms that the LPC 

frequency is the observed chatter frequency. Chatter frequency versus LPC pole 

frequency and magnitude is presented to highlight the bifurcation between tool-based 

chatter and workpiece-based chatter frequencies over a changing workpiece stiffness. 
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CHAPTER 6 

Time Domain Modeling of Tool Chatter to Capture System Behavior 

6.1 Time Domain Cutting Tool 2DOF Model 

A time domain model was created to replicate the spindle speed sweep testing 

described in Chapter 3 and to investigate the phenomenon of phase hysteresis observed in 

the sweep experiments. In this model the workpiece is infinitely stiff. 

The model developed for this analysis is a second-order two degree of freedom 

system with unique directional properties for each axis and a delayed feedback of surface 

profile. The dynamic model is a spring-mass-damper in each axis, X and Y. The dynamics 

of each axis are coupled by the direction cosines of force input, the magnitude of which is 

a function of the instantaneous chip thickness. To simplify the model, it was restricted to 

a zero helix angle cutter with one or two teeth. This assumption is reasonable because the 

cutting tools used for experimental testing are steep angle insert cutters. However, 

assuming a straight flute introduces some error. 

The parameters for this system were measured from static tests conducted on the 

Fadal mill spindle. As a result, the physical parameters of stiffness and damping are 

presumably different from those during experimental tests when bearings are in motion 

and workpiece engagement occurs. Regardless, the static parameters have a sufficient 
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accuracy (similar order of magnitude) to produce a realistic simulation. The stiffness was 

measured by displacing the axes in small increments while the spindle was fixed against 

the bed dynamometer. The stiffness includes both the stiffness of the spindle and the tool 

holder fixed in the spindle. The stiffness was notably different in X versus Y directions, 

possibly due to the geometry of the spindle and the tool. The spindle is stiffer in the Y 

direction which can be understood by the way the spindle is supported in Y. This test was 

conducted for both X and Y axes to obtain force vs. displacement points to estimate the 

stiffness (Figured 6.1 and 6.2). 
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Nonlinearity in the response may be attributed to loading of the spindle bearing. 
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Figure 6.2: Spindle+Tool Stiffness YDirection 

Although stiffness can be directly measured, the effective mass in each axis must be 

estimated. To do so, the assumption is made that the first natural frequency of the system 

can be related to the stiffness through the approximation io=4kTm ; m — klco1 . 

The natural frequencies in both X and Y were similar and were estimated from impulse 

response testing of the cutting tool. Figure 6.3 shows the result of an impulse response on 

the mill spindle. 

0 005 0.01 0.015 
Time (Seconds) 

Figure 6.3: Impulse response of the tool and spindle 
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From the period of the impulse response, the natural frequency for both X and Y axes is 

found to be 1183 Hz. Given this frequency, the effective masses are estimated as 

mx=3.3787 and my=4.5049 kg. The damping was observed from log decrement 

of the tool response. This produced damping ratios, X>x—0.0625 and ^y—0.0488 . 

The damping ratio was used to estimate the damping coefficient, c, in units of kg/s, as 

c-2X^4hn , c,«500 , and cy~450 . 

The governing dynamic equations for this model are the differential equations of 

motion evaluated to solve for acceleration in the X and Y directions: 

-/ A Fx{n)-c*x{n)-kx*x{n) ..( x Fy{n)-c*'y{n)-k*y{n) 
x{n)= , y(n)=—1!- y- y- (6.1) 

mx my 

where n represents the current discrete time step in the model. 

To estimate the resulting displacement at the next time step as a function of the 

current deflection and current dynamics, these equations can be integrated two times 

using Euler integration: 

x(n+l)=x(n)+x{n)*dt , x(n+l)=x{n)+x{n)*dt (6.2) 

y{n + l) = y(n)+y{n)*dt , y(n + l)=y{n) + y{n)*dt (6.3) 

While Euler integration accumulates error through time steps, it is 

computationally simple and employed in this 2DOF model. A Runge-Kutta based 

integration method is used in the 4DOF model discussed in the next section. 

The radial displacement on every tooth is calculated by the sum of the projections 

of the displacements in x and y on the tooth radius 

z=x(w)*sin(0)+v(«)*cos(d)) (6.4) 
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Where 4> is the rotational angle of the cutter at iteration n. For an image of the rotation 

angle vs radial displacement, refer to [25]. Figure 6.4 shows a diagram of radial force, Fr, 

tangential force, F,, entrance angle, and exit angle. 

Figure 6.4: Geometry of Cutting Forces, Entrance, and Exit Angles 

Along with the equations of motion, the radial displacement is recalculated at every 

iteration, n. The tooth rotation is discretized into 160 time steps. Therefore, the 

instantaneous chip thickness is recalculated at each n as: 

/?=c*sin(0)-(z-zo W(«-16O)) (6.5) 

where 4>=n X ( TT /160) , c=feed per tooth. 
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This equation describes the interaction of the previous cutting engagement, at n-160, 

with the new chip thickness at time n. The first part of this equation is the non-dynamic 

instantaneous chip thickness which is approximated as a function of the feed per tooth c 

and the angle of engagement. If h is less than or equal to zero the tool deflection is 

outside the workpiece and the cutting force is set to zero. 

In order to simulate a spindle speed sweep, the time step was made a function of 

RPM. This was done to maintain the discretization resolution of 160 steps per tooth pass. 

The model is designed to accept a range of RPM values over which the sweep is 

computed. The RPM values are related to the time step as: 

60 

dt~ 320*RPM(n) ( 6 6 ) 

Where RPM is a function describing how the spindle speed changes as a function of the 

iteration n. The minimum dt is equal to the reciprocal of the simulated Nyquist 

frequency. For example, at 2500 RPM, the sampling frequency is l/7.5e-005, or 13.33 

kHz. In this case, the Nyquist frequency is 6.665 kHz. This method is sufficient for 

sampling because the sampling frequency is more than ten times the natural frequency of 

the simulated system (-1200 Hz). The reasoning behind this method of step calculation is 

the RPM values can be given as a vector of curve fit points based on the actual RPM of 

the experimental test (see Figure 3.17). There is no observed difference in the output of 

the model when the model is oversampled at 110 kHz (approximately 100 times the 

natural frequency of the system), however the computing time is significantly increased. 

Because of the way the model sampling period is designed (based on the RPM of 

the input spindle speed) the model is sufficient for testing at RPM values determined by 
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the number of sampling points allowed. Extremely low spindle speeds require a large 

number of sampling points. If the model were changed to not accept spindle speed 

sweeps, this could be altered. However, the model was written to reflect the spindle speed 

sweep range discussed in Chapter 3. 

The model is set up for slotting cuts, as done in the experimental tests. Axial depth 

is an input parameter in the model, alongside spindle speed sweep range and the number 

of time steps. The model has the option of applying "noise" perturbations to X and Y 

damping and stiffness, however for this dissertation this functionality is not explored. 

This is an interesting area for future work, since the additions of perturbations to the 

model parameters may replicate the drifting closed loop pole behavior observed in the 

LPC frequency tracking. Appendix C shows the model code, with a commented input 

example. Figures 6.5 and 6.6 show the results of radial displacement, z , from this 

model over a range of spindle speed from 500 to 7500 RPM at an axial depth of 10mm. 

The model was computed for both increasing and decreasing speeds and the effect of 

phase hysteresis is clearly observed and corroborates with the experimental tests. By 

sweeping the spindle speeds in the model, the experimental spindle speed sweeps are 

recreated, with greater control of parameters. 
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6.5: Simulated radial displacement observed for increasing spindle speed. 
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6.6: Simulated radial displacement observed for decreasing spindle speed. 
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In addition to the phase hysteresis effect, a number of features are observed in the 

model output that are similar to the experimental vibration data. At approximately 

5750RPM, there is an area responding to forced vibration. This area in the response does 

not behave with phase hysteresis because it is not caused by passing in and out of a 

stability lobe region. The presence of smaller "beat" instabilities are reflected by both the 

time simulation and experimental spindle speed sweeps. Figures 6.7-6.9 shows this effect 

in both simulated and experimental instabilities. The smaller instabilities are attributed to 

mode coupling between X and Y axes. This hypothesis is supported by inspecting the 

exchange of magnitude between forces in the X direction vs the Y direction coinciding 

with the peak of the beat instabilities. The model produces both X and Y force data for 

this comparison. In the figures, these are pointed out in the X direction to illustrate one of 

the degrees of freedom, the resolved displacement of the X and Y direction, and the 

experimental vibration data. 
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Figure 6.9: Instabilities for experimental data. 
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The model is also shown to reflect changes in the chip thickness over the spindle 

speed sweep. The dynamic effects contribute to higher chip thicknesses during areas of 

peak phase shift between the surface profile and tooth passing input force. It is useful to 

observe how the peak chip thickness reflects the the dynamics when the second term of 

Equation 6.5 is superimposed on the nominal chip thickness values. Figure 6.10 shows 

the chip thickness calculated by the simulation, highlighting the departure from nominal 

chip thickness with feed per tooth as a reference point. 

1000 2000 3000 4000 5000 6000 7000 
Spindle Speed (RPM) 

Figure 6.10: Simulated chip thickness 

It can be seen in Figure 6.10 that the areas of instability create peaks in the material 

removal rate above the nominal feed per tooth. Although the nominal feed per tooth 

remains constant, the peak material removal and subsequent forces are much greater 

during unstable conditions. 
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6.2 Conclusions about the Time Domain Cutting Tool 2DOF Model 

The time domain simulation was useful for identifying which variables were affecting 

the phase shift phenomenon and confirming that the chip thickness (i.e. surface finish) 

attenuated as the sweep changed from an unstable to stable mode. The presence of 

oscillations nested within instabilities was also observed in the simulation and 

corroborates the experimental tests. Although the physical parameters for the model were 

based on static tests of the actual system, the chatter modes were not similar in frequency 

to the experimental test. This is presumably due to the change in dynamics that are 

associated with static vs dynamic bearing stiffness, workpiece dynamics, and bed 

dynamics. At higher spindle speeds, the modes began to align with the experimental tests, 

but for low spindle speeds, the fit was poor. 

The results were satisfactory for describing the phenomenon of 'phase hysteresis'. 

The model demonstrated that this effect was dependent on the direction of spindle speed 

change. The hysteresis effect was captured in the model displacement as well as in the 

calculated chip thickness. By investigating the effects captured in this time domain 

model, the phase hysteresis phenomenon is confirmed to be the decay of surface 

waviness after the dynamics have entered a stable mode. Once the dynamic component of 

the model is in phase with the non-dynamic chip thickness, the instantaneous chip 

thickness attenuates. 

6.3 Time Domain Coupled Cutting Tool & Work Piece 4DOF Model 

The 2 DOF time domain model specified in the previous section was expanded by 
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the introduction of the workpiece compliance coupled through forcing interaction with 

the tool holder system. Similar to the 2 DOF model, the forcing behavior of the system is 

calculated from the equations of motion. The introduction of a second system requires 

added notation. The tool holder is the first system and its parameters are denoted by the 

subscript'1', such as x, , yl , cxl , cyl , kxl , etc. Likewise, the workpiece 

system is the second system and its parameters are denoted by the subscript '2'. Figure 

6.11 shows a drawing of the model, with a simplification of the forcing function linking 

the independent degrees of freedom. 

Worhiece 
Material 

Kn i 

I Cx2 

Figure 6.11: 4DOF System Model 

The equations of motion for these systems are related through equal and opposite forcing 

functions in each direction. 
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.. , x -Fx(n)-cx]*x]{n)-kxl*xl{n) 
xl{n) = (6.7) 

.. , , Fx{n)-cx2*x2{n)-kx2*x2{n) 
x2{n) = (6.8) 

m x2 

.. ( , ~F (n)-c j*yi(n)-kyl*y]{n) 
y1[n)= y- y- y- (6.9) 

.. ( x F {n)-c 2*y2{n)-k 2*y2{n) 
y2\n)=— ~ (6.10) 

As with the 2DOF model, integration is performed on these equations of motion to 

identify the position variable. However, for added accuracy, a 4th order Runga-Kutta 

integration technique was used to estimate the integration. To see example code for this 

integration routine, refer to Appendix E. For the sake of brevity, only the xx integration 

is shown in equations 6.11 and 6.12. 

X 1 («+ l ) = X ] ( « - l ) - r - ^ ( x 1 ( « - l ) + 4jC1(«) + X](«-r-l))/3 (6.11) 

xl(n+l) = x](n-l)+dt{x]{n-l) + 4x1(n)+xi(n+l))/3 (6.12) 

The chip thickness is calculated as a difference in the deflection of both systems in each 

degree of freedom. The difference is calculated since the deflections have the same sign 

but in opposite direction. For example, in the x direction, the total deflection between the 

cutting tool and workpiece is calculated as: 

^ X ( / I + 1 ) = J C 2 ( / I + 1 ) - J C , ( / I - I - 1 ) (6.13) 
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Ay(n + l) = y2(n + l)-y1{n+l) (6.14) 

Once this total deflection is calculated for both x and y directions, the procedure for 

calculating forces is the same as the method described in the 2DOF. After calculating the 

deflections, x(n) and y (n) are replaced with x (n +1) and v (n +1) .The chip 

thickness is formulated based on feed per tooth and delayed chip thickness. If the chip 

thickness is less than zero the tool is considered out of the workpiece and the force is set 

equal to zero. 

The results for this model reflects the input stiffness and mass for each degree of 

freedom. For example, the lowest stiffness and mass combination was 2.05e6 N/m and 

3.6 kg, giving a natural frequency of approximately 120 Hz. The model was run for 

similar conditions to the 2DOF model. While the behavior is similar, the results are 

different when the workpiece is compliant. 

The frequency content of the model can be evaluated by calculating the power 

spectral density (PSD) of the data. Peaks exist at locations of natural frequencies. 

There are interesting effects that can be observed in this model, namely the 

presence of other frequencies (for instance, at 500Hz in Figure 6.12) that may represent 

interaction between modes of the system. 
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Figure 6.12: 4DOF Model Frequency PSD 

This model also retains the ability developed in the 2DOF model to conduct frequency 

sweeps over a range of spindle speeds. The total deflection between the workpiece and 

the tool are plotted for a spindle speed sweep in Figure 6.13. The X and Y directions are 

related, but independent in their behavior, reflecting the different parameters for stiffness 

and mass entered in the model. 

3000 3500 4500 5000 5500 
Spindle Speed (RPM) 

6000 6500 7000 7500 

Figure 6.13: 4DOF Model Spindle Speed Sweep 
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The 4 DOF model shows significant difference in the chatter frequencies, while 

maintaining the natural frequency of the 2DOF system (which causes forced response 

around 5750 RPM). These results are similar to the cantilever experimental results, where 

the natural frequency of the tool and workpiece was lower than the observed chatter 

frequency. However, the models were not capable of replicating the same frequencies 

observed during the cutting tests without editing the model parameters for stiffness and 

mass. The static measurements of stiffness may not be sufficient as model inputs to 

accurately reproduce frequencies that occur during spindle rotation. 

There are both similarities and differences between the 2DOF and 4DOF models. 

A significant difference is the integration methods used in each. The 2DOF model uses 

Euler (rectangular) integration that is prone to error compounding over many time steps. 

In Euler integration, error approaches zero as the time steps approach zero, however it is 

not possible to achieve this case. The 4DOF model uses an integration based on Runge 

Kutta, which has error significantly less than the Euler method. Specifically the 

compounded error over a given number of time steps is worse for the polygonal 

approximation made at each step by the Euler first order integration. To compare the 

difference in the models, the 4DOF model can be made into a 2DOF model by setting the 

workpiece system to have infinite stiffness so that it does not have compliance 

contributing to the chip thickness. Conditions are chosen to compare the two models with 

the same input. An axial depth of 2mm, spindle speed sweep between 2500 to 7500 RPM, 

tool stiffness of kx=4Je6N/m ky=6.3e6 N/m , and tool mass of mx=3.3Skg 

my—4.5 kg . 2 Million data points were calculated for both models with an increasing 
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(upward) sweep direction. 

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 
Spindle Speed (RPM) 

Figure 6.14: 4 DOF Model with Infinitely Stiff Workpiece 

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 
Spindle Speed (RPM) 

Figure 6.15: 2DOF Model for Comparison to 4DOF Model 

Similarity between the model behavior was observed but the results were not identical. 

This is not surprising due to the significant difference in numerical error between the two 

solution methods. Considering numerical accuracy, the 4DOF model is superior to the 

2DOF model and thus is closer to representing a real system. However, the behavior 

exhibited in the real system is replicated by both models. The 4 DOF model can be 

evaluated with workpiece stiffness and gives significantly different results demonstrating 

the importance of modeling the workpiece interaction. It is important to model the 

workpiece compliance, particularly when the workpiece has a stiffness in the same order 

141 



of magnitude as the tool holder. 

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 
Spindle Speed (RPM) 

Figure 6.16: 4 DOF Model With Workpiece Compliance 

6.4 Replicating the Cantilever Cutting Test with the 4DOF Model 

The final application of the 4DOF model is to apply the model to inspect the 

results of the cantilever cutting tests. In particular, the model is shown to replicate the 

behavior in Figure 5.8 where chatter frequency jumps suddenly as the cantilever is cut 

shorter. 

A simulation is set up with a fixed tool holder mass of 4kg and stiffness of 5e6 

N/m. Both the X and Y directions of the tool holder are given the same stiffness and mass 

parameters to simply analysis. This model tool holder has a natural frequency of 178Hz. 

The cantilever system is given a varying mass and stiffness related to the length. This 

mass and stiffness are entered into the model and the model is re-run for each set of 

cantilever parameters. As with the actual cutting data, the chatter frequencies are 

determined by the dominant LPC frequency in the data. 
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Figure 6.17: 4DOF Model Changing Cantilever Length 

The results are encouraging, that the 4DOF model is capturing the behavior of the real 

system. The model does not replicate the exact points of the real system, but the behavior 

is similar. The chatter frequency changes from a workpiece based frequency to the tool 

holder frequency. 

6.5 Chapter Summary 

Time domain models were capable of replicating the spindle speed sweep 

experiments and recreating the phenomenon observed in the experimental cutting data. 

The spindle speed sweep simulations show that chatter has a rapid build up into an 

unstable region and dies out gradually once the tooth passing frequency has progressed 

into a stable regime. The sweep functionality was helpful in studying the die-out of the 

chatter frequency into a stable mode. It was found that the surface finish attenuates 

gradually as the phase between the surface finish and tool vibration enters a stable region. 

The two degree of freedom model was capable of replicating effects seen on the tool-

based chatter in a stiff workpiece. This model was found to exhibit beat frequency 

behavior between the X and Y degrees of freedom. The beating was compared to 

experimental data which shows similar behavior. Unlike the experimental data, the model 
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could be separated into X and Y coordinates separately to confirm that the beats were 

exchanges of energy between the X and Y systems. Resolving the model displacements 

into a single resultant produced displacement plots which were very similar to the 

experimental data. Although the 2DOF model was enlightening, it was not able to capture 

the behavior of a system with a compliant workpiece. 

A four degree of freedom model was made to address the behavior of a workpiece 

and tool with compliance in the X and Y directions. This model used an integration 

technique based on Runge Kutta instead of the Euler integration used on the 2DOF 

model. The benefit of this change was questionable for non-chattering simulations, since 

the error in rectangular integration is zero for periodic functions (such as slot cuts). 

However, the benefit exists to reduce error in non periodic simulations (i.e. when the 

simulation is chattering integration error is reduced). The workpiece and tool are coupled 

by the cutting force equal and opposite between the workpiece and tool. This model 

behaved with significant differences to the two degree of freedom model, identifying that 

the systems interact to produce different chatter frequencies than either individual system 

would experience without the interaction. This effect was observed during the 

experimental tests using a cantilever workpiece. 
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For both the 4DOF and 2DOF models, trends and behavior observed during the 

experimental tests are successfully reproduced. Although behavior was reproduced, the 

models did not match the specific frequencies of the experimental system. This was not 

of particular concern since differences between static and rotating stiffness are 

acknowledged and the point of the models was to reproduce phenomenon recorded in the 

physical experiments. The purpose of these models was not to predict specific 

frequencies, but to replicate the complex behavior that was observed during experimental 

spindle speed sweeps and cantilever cutting tests. 
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CHAPTER 7 

Conclusions 

7.1 Conclusions and Outcomes 

The development of smart tool holders can change the way cutting data is collected 

and observed. Cutting processes can be monitored in a non invasive way without 

compromising the stiffness of commercial tool holder bodies. No longer is it necessary 

to collect data from large and compliant bed mounted dynamometers. The bandwidth on 

the smart tool is mechanically superior to traditional dynamometer systems. While the 

bed dynamometer introduces its response into the cutting system, the smart tool does not 

add any additional dynamics to the standard tool holder system. The feedback from a tool 

holder-based sensor circumvents problems associated with spindle and motor power data; 

namely, the lack of bandwidth and susceptibility to changes in system efficiency over 

time. 

The smart tool holder is used to evaluate dynamic phenomenon of the end milling 

system. Specifically, tool chatter is observed and investigated using data collected from 

the smart tool. This data has given new insight to the development of tool chatter as well 

as the stochastic behavior of tool chatter during steady state cutting. 

Using an autoregressive technique called Linear Predicitive Coding, data from the 
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smart tool is analyzed. The output are formant frequencies associated with the closed-

loop poles. These frequencies are determined by calculation of formant frequencies from 

the LPC model, similar to the calculation of formant frequencies from speech recognition 

techniques. The formant frequencies are found to locate the frequency of tool chatter, 

from non-chattering stable cutting conditions. The smart tool high signal to noise ratio 

enables resolution sufficient for determination of the chatter frequencies before the onset 

of tool chatter. 

Four tooling prototypes were used during the course of this work. These prototypes 

consisted of two acceleration sensing tools and two torque based tools. Of the torque 

sensing tools, the fourth prototype (a semiconductor strain sensing tool) was used to 

explore the LPC method. The semiconductor tool was used due to its high signal to noise 

ratio. 

Although the semiconductor tool was set up to measure only torque, the tool also 

detected some bending strain. This is known as cross talk between the torsion and 

bending strains and is caused by alignment of the gages. The cross talk was measured and 

analyzed using a test jig on a force controlled input and determined to be worth noting for 

future development. In future iterations of the tool it will be critical to locate the gages in 

a position on the holder body that is less prevalent for bending strain. 

Using the smart tool holder a series of experiments were conducted to observe the 

buildup of chatter during cutting. These experiments were informative about the way in 

which chatter develops through time. With the high SNR of the smart tool, chatter was 
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observed building over time periods of up to 2 seconds. This is a positive result and 

opens the door for future work in control methodologies. 

In addition to studying the build up of tool chatter, experiments were designed to 

sweep the spindle speed during a cut to excite chatter across a range of spindle speeds. 

This technique was able to generate experimental stability lobe diagrams. Because of 

interesting behavior observed during the spindle speed sweeps, time domain models were 

the next area of focus (in order to explain observations). 

Modeling efforts have replicated behavior observed from the smart tool holder 

data. Two models were created to observe a tool holder dominated system with freedom 

in X and Y directions, and a tool holder system with a compliant workpiece with freedom 

in X and Y directions. These models were written with the capability of reproducing 

spindle speed sweep tests. The results of the models shows coherence to the behavior of 

the real system, however, the chatter frequencies did not match the real cutting system 

since static measurements of stiffness are not the same as the spindle stiffness during 

rotation. 

In summary, this work has resulted in several novel contributions to metal cutting 

research. 

- A smart tool holder was made for recording information from the live cutting 

process. There is a substantial improvement over the traditional methods of using 

external sensors or force sensing based on bed dynamometer. Problems with 

external sensing are circumvented because the measurements are more direct. 

- Cutting dynamics have been observed from the tool holder. High signal-to-noise 
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ratio enable clear observation of frequency content and how the cutting signal 

behaves throughout cutting. Drift in the frequency content during cutting provides 

an explanation for the difficulty predicting stable cutting speeds from traditional 

methods (i.e. tap tests). 

- Chatter frequencies are observed in stable cuts before the onset of chatter. The 

closed loop frequency content of the system is of great importance to the 

optimization of cutting processes in real time. This is a significant advance to the 

state of the art. 

- Time domain modeling efforts capture trends and behavior observed in the cutting 

system. 
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CHAPTER 8 

Future Work 

8.1 Suggested Directions and Topics for Future Work 

A probability distribution function can be based on the drifting system poles 

during steady state cutting. The variables affecting variation in the system can be 

investigated, according to the results of statistical changes in the probability distribution. 

For example, spindle bearings and bed ball screws can be replaced with higher precision 

components and the effect on the distribution of the estimated system poles can be 

quantified. Tool clamping and bed attachment can be analyzed. This is one proposed way 

to approach a sensitivity analysis of what causes the variation to occur in a "steady state" 

cutting experiment. 

A second area of promising future work is the investigation of boundary 

conditions and the forcing input between the cutting tool and workpiece during cutting. It 

is the opinion of the author that the cutting is introducing a boundary condition to the tool 

holder and workpiece which is not simply explained by a forcing function between two 

cantilever structures. The tool engagement may have an effect on the behavior of the 

system and has not been captured. It is likely that the boundary conditions and forcing 

could contain non linear behavior leading to some of the effects discussed in this 

dissertation. 
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A third area of future work is expanding the use of autoregressive system models 

to calculate FRF's. This work is initiated in the future work section of this dissertation 

when the LPC model is used to generate model FRFs and estimate a model stability lobe 

diagram. The benefit of using the LPC model information to generate stability lobe 

diagrams is parallel to the study of statistical distribution of drift around predicted chatter 

frequencies. Producing stability lobes is a subsequent step towards defining a "stable", 

"possibly stable", and "unstable" parameter space, with a distribution to define "possibly 

stable". 

The LPC model coefficients could be used to approximate the denominator of the 

system FRF under the assumption that wcwo)„ . For cases where w>c^°*n due to 

spindle speed, &)„ can be calculated with knowledge of the spindle speed and u>c . 

This method is an exploratory use of the LPC model method and has shown intriguing 

results that can be the framework for future work. Because the LPC model is updated 

through time, the model stability lobes can be regenerated at each time window to 

produce plots showing a distribution of stability lobes and what appears to be a 

probability distribution around the stable/unstable transition. Section 8.3 outlines a 

mathematical method to generate stability lobe diagrams from LPC information. 

8.2 Mathematical Method for Estimating Stability Lobes from LPC Model 

An extension of this work is to use the LPC model to approximate for the system 

poles and generate a stability lobe diagram. LPC has been experimentally shown to 

predict chatter frequencies. Thus, for cases where i'c
Ri«)B it is possible to generate 
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stability lobe diagrams using the LPC pole parameters to create a model FRF. For cases 

where wc^(vn due to spindle speed [48], to„ can be calculated with knowledge of 

the spindle speed and toc . For the discussion presented in this dissertation, it is 

assumed (vc^u)n . However, a worthwhile extension of this work is to apply the 

method to cases where w^ wn and ojn is calculated based on wc . 

Because the LPC generates an all pole model, parameters such as natural 

frequencies and damping (pole half power widths) can be acquired from inspection. 

However, since the LPC analysis does not correctly identify pole magnitude, the modal 

masses must be known before a complete FRF can be generated. 

For estimating FRFs, the system is split into two degrees of freedom. The system will 

have a unique FRF for each degree of freedom. All of these FRFs influence the stability 

of the system. Consider the example discussed previously for a cantilever workpiece and 

tool. This system has two compliant members, the tool and work piece, that have freedom 

in both X and Y direction; i.e., there are four degrees of freedom (xt00i, yt00i, xWOrkPiece, 

yworkpiecej. 

After the DOF's are identified, the modal mass must be known for each DOF. For a 

XY symmetrical cantilever, this is trivial and is approximately 0.243 times the 

overhanging mass of the cantilever tool (see Appendix I). Next, estimate stiffness from 

each DOF, based on the dominant pole location (frequency) and the estimated mass. 

(Note: an important assumption is made here that chatter occurs only around the 

dominant pole of a system. ) For our four DOF system, there will be 

^ xtool' ^ ytool' "~xwork piece ' "•y work piece a C C O m i n g tO: 
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kxx=u>nxxmxx (8.1) 

where the subscript 'xx' indicates that the computation is applicable for x tool, y tool, x 

work piece, and y workpiece. 

The above assumption about the chatter frequency and lowest pole dominating is 

typically acceptable. However, LPC will generate a number of poles specified by the 

user, giving a 4th order or higher system. The natural frequency, resonant frequency, and 

damping ratio apply to each pair of complex conjugate poles. Another (more involved) 

way to calculate both damping and stiffness without the above assumption, is to compute 

the eigenvalues. For reference, the MATLAB function "damp" can analyze the LPC all-

pole model as a transfer function and provide a list of eigenvalues. This is also a way to 

estimate damping for individual poles. The damping ratio is computed from each 

complex eigenvalue as the ratio of the real part over the magnitude of the eigenvalue: 

^xx~ lm TL2 j _ r n 2 ( 8 - 2 ) 

Once the stiffness and damping is calculated for each DOF, define the specific cutting 

force and the force angle using a cutting force model. It is appropriate to use a single 

coefficient model that defines specific cutting force in N/mm2 since other coefficients are 

not of interest to chatter modeling. Typical values for the specific force coefficient, Ks 

are 300-750 N/mm2, depending on the type of work piece material and tool type. The 

force angle, /? , is based on the tool geometry. Typical values for steep helical end 

mills are 60-80 degrees. 

The FRF is generated, normalized by the natural frequencies for each DOF. The FRF 
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will be computed using the normalized frequencies: 

rxx=™lwnxx (8.3) 

The real and imaginary parts of the FRF are generated by: 

*[FRFJ=^-- T^T ^ (8-4) 

3[FRFa]=^- 2 « l " 2 (8.5) 
kxx{l-rj + (2 £„#•„) 

There should be a FRF generated for each DOF in the system. After the FRFs are 

calculated, they must be weighted by a direction orientation coefficient. This is the 

direction cosine in the XY coordinate system, based on the direction that the cut is being 

made. For example, for a slot cut in the X direction, the orientation coefficients would be: 

ux=cos(Pn/l80) and uy=0 . 

The resultant FRF, or "oriented FRF", is given according to: 

X[FRForlmt]=ux<R[FRFx]+uyM[FRFy] (8.6) 

5[FRF0riJ=ux3[FRFx] + uy3[FRFy] (8.7) 

Bringing the derivation back to our tool and cantilever example, there will be a resultant 

FRF for the tool and a resultant FRF for the cantilever. For these FRFs, the range of 

frequencies in which chatter is possible corresponds to when $l[FRForient]<0 . Book 

keeping must be done at this point to relate the physical number of flutes on the tool, 

N , to the average number of flutes, Navg , immersed in the cut. This is based on the 

entrance and exit angles, 4>s and 4>e , for the cut. 
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^ = ^ ( < k - t f > J (8.8) 

For a slot cut, 4>s and 4>e are 0 and 180 degrees. At this point, there is enough 

information to calculate the stable depth limit for the stability lobe diagram, bhmit : 

" / • ™ , * — " 

1 
limit (8.9) 2KsK[FRForient]Navg 

The final steps are to generate the lobe shapes and determine the conglomerated 

shape of the stability lobe diagram. To do so, the phase angle of the oriented FRFs must 

be calculated: 

e=2*pi—2 tan 
3[FRFonenl] 

(8.10) 

From this angle, the spindle speeds can be calculated for each i* individual lobe: 

CO 

0= {2nN) where i=[0,l,...] 

(2rr) 

(8.12) 

The resulting union of the spindle speeds Q. , can be plotted to create the 

conglomerated stability lobe diagram. 

155 



The results from an example computation are shown below, with the multiple 

lobes superimposed on a single graph to form a stability diagram. 

10000 15000 
RPM 

Figure 8.1: Stability Lobe Diagram Generated From LPC Coefficients 

8.3 Variation in the Stability Lobes Throughout Cutting 

The continuous adaptation of the LPC model throughout the cutting enables an 

opportunity to update the stability lobe computation with data from cutting. Monitoring 

the changes in the stability lobe throughout steady state cutting provides a number of 

benefits for real-time application as well as offline process planning. From an offline 

perspective, understanding the distribution of the stability lobes superimposed through 

time is advantageous to predict stable, sometimes stable, and never stable regions of the 

lobe diagram. Section 5.1 discusses the adaptive change in the LPC model through time. 

The change in the LPC model is reflected in the stability diagram and can be similarly 

plotted through time. 

Using the method of section 5.3 to generate stability lobe diagrams, the diagrams 

can be recreated through time for sequential data windows. The effect is fascinating and 

corresponds to the observed change in LPC poles (shown in Figure 8.2). Thus, a 
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distribution of stability can be seen for a steady state cut. This information is useful for 

process planning since a specific workpiece/clamping/tool combination could be 

characterized and safety margins applied to the stability lobes. 
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Figure 8.2: Stability Lobe Distribution 
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8.4 Including Stochastic Noise Effects to Time Domain Models 

Another avenue for future work is exploring the addition of perturbations (both 

stochastic and deterministic) to the time domain models. Work was already done to add 

this functionality into the 2DOF model shown in Appendix C. This could help to capture 

effects from bed location and/or variation in the spindle system during cutting. 
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APPENDIX A 

Placement of an accelerometer at the tool tip requires a combination of size, low 

cost, and simplicity. At first, it was desirable to choose an off-the-shelf sensor to work 

with as this offered conveniences of calibration and data sheets. It was quickly realized 

that the tool tip environment was inappropriate for commercially offered acceleration 

sensors. Piezoelectric accelerometers offer satisfactory range, but have unacceptable size. 

Micro electrical mechanical (MEMs) accelerometers offer an acceptable size, but 

experience problems with saturation and ringing under the acceleration and frequencies 

encountered during cutting. For these reasons, alternatives were explored. It was 

discovered that an electret element microphone could be converted into an accelerometer 

with acceptable range and size characteristics. Development and evaluation of this sensor 

were conducted to satisfy questions about response and calibration. To do so correctly, a 

test bed was constructed and the sensors were developed on a wired connection outside of 

the cutting tool body. Because this sensor was developed as part of research, extensive 

evaluation was made to determine the true effectiveness of the sensor both for linearity 

and statistical variation. 

An electret condenser responds to vibration input by changing its capacitance. The 

electret used for this study is a Hosiden # KUB2823 and is characteristic of a 

commercially available electret condenser. This particular electret employs a diaphragm 

and is similar to the design detailed in Sessler et al., [7]. A 1/8" mono male connector is 

165 



used to connect to the microphone port and 3' of ground-shielded microphone cable is 

used to connect the electret. 

f—Signal 

4=- Ground 
Figure Al: Electret Condenser Microphone 

An electret condenser module contains a field effect transistor with an externally 

applied positive voltage bias. The resistor between this external voltage and the FET 

determines the gain impedance. The electret material contains a permanent electrostatic 

charge which applies a voltage to the FET as a function of proximity to a fixed ground 

plate. A capacitor is used to eliminate the DC offset within the output signal. 

The retail electret sensor components are, together, $1.10 USD in cost, which 

makes the electret accelerometer an attractive alternative to a piezoelectric sensor if the 

appropriate response characteristics are possible. 

Table Al: Electret Accelerometer Component Cost 

Component 

Hosiden#KUB2823 Electret 

3' Microphone Cable 

1/8" Mono Male Connector 

Cost (USD) 

$0.50 

$0.50 

$0.10 
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This electret sensor was sampled using a PC sound card and bench marked 

alongside a traditional piezoelectric accelerometer sampled on a NI PXI 1031 DAQ 

computer. The data sampling rate on a standard PC sound card reaches 192 kHz while the 

frequency response range is 20-20,000 Hz. The native A/D conversion resolution is 

commonly 16 bit over a 1 volt range. However, many newer cards are available with 24 

bit capability. Although the resolution of a PC sound card is sufficient to capture high 

bandwidth data, using the device for data acquisition on a machine tool system is futile 

without a robust sensor. Equally as important is the calibration of the sensor/sound card 

system. Questions such as "Is the system response linear?" and "Can the system replicate 

the performance of a traditional accelerometer/DAQ system?" must be answered before 

the sensor can be implemented for condition monitoring purposes. 

An example of the electret sensor assembly, similar to the one used in this study, 

is shown in Figure A2. The electret sensor housing used in this study is fabricated as a 

solid 6 mm cylindrical body with the electret unit located at the center of the device, 

oriented along the axis. The electret diaphragm is completely embedded within the 

epoxy such that no external acoustic signals can be received. Thermal-set epoxy is used 

to fabricate the sensor housing. The figure below shows the sensor assembly. 

Figure A2: Electret Accelerometer Assembly 
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After embedding the electret condenser into a solid assembly, the dynamics of the 

sensor are significantly altered from the manufacturer's specifications. Specifically, the 

electret diaphragm can no longer respond to air pressure fluctuations, but instead, 

responds mechanically to vibrations of the solid assembly. Therefore, it is necessary to 

explore the dynamic response of this new sensor assembly. 

To accomplish this, a sinusoidal vibration input is generated using a shaker table. 

A single-axis PCB piezoelectric accelerometer (Model 320 C33, serial number 5901) is 

fixed to the table at the same reference point as the electret sensor. The output sensitivity 

of this piezoelectric accelerometer is lOOmV/g with a maximum range of 50g's. This 

piezoelectric accelerometer is amplified through a PCB charge amplifier. The 

corresponding voltage signal is monitored through a traditional DAQ system. The electret 

sensor is sampled through the mono-channel microphone port on a PC laptop. Both the 

piezoelectric accelerometer and the electret sensor signals are sampled at 20 kHz. Figures 

A3 and A4 detail the shaker table and attached sensors and corresponding DUT block 

diagram. 

Electret -4. f <_ PiezoeleQtjic ~~ 
Accelerometer ;* * . Accelerome^r 

Figure A3: Electret Accelerometer Test 
Setup 
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Amplfier •• Shaker Table (Acceleration Input Signal) 

Electret AccelerometeT] 

Sound CardI A/D ] 

Piezo Accelerometer 

Charge Amplifier 

Traditional DAQ Card 

•* Data Recording -• 

PC 
Source Signal 

Figure A4: Block Diagram of Electret Test Setup 

The PCB accelerometer has a known flat frequency response to 4 kHz and provides 

the baseline from which the electret sensor is benchmarked. Consequently, the specific 

response of the shaker table system is not of interest, since the piezoelectric 

accelerometer acts as the reference signal. For this work, multiple shaker gains are used 

and are identified according to peak acceleration amplitude in Table Al. 

Table Al: Shaker Gains and Measured Acceleration 

% Shaker Gain 

100% 

80% 

60% 

40% 

20% 

Peak G's (x 9.81m/s2) 

6.56 

5.30 

3.91 

2.64 

1.31 
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A dynamic range of approximately 5.35g's, the limit of the shaker table, was investigated 

for this feasibility study. 

To test the frequency response of the electret sensor/sound card system, a sine 

sweep voltage was input to the shaker motor. The frequency of this signal varied from 0 

to 10 kHz in a linear sweep from 0 to 10 seconds. During this sweep, signal outputs from 

the electret sensor and piezoelectric accelerometer were recorded. The sensors were 

compared over 0 to 5kHz. 

After the data was acquired, an amplitude spectrum was generated for both sensor 

types (Figure A4). This spectrum was created using the fast Fourier transform such as 

detailed in [8]. As expected, the outcome of the test shows the stable frequency response 

of the commercial piezoelectric accelerometer. As can be seen, the electret accelerometer 

also produces a repeatable frequency response. 

Response Spectra of Piezoelectric and Electret Accelerometers 
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Figure A4 Response Spectra for Piezoelectric and Electret Accelerometers 
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Response Spectra of Piezoelectric and Electret Accelerometers (100 to 500 Hz) 
T 1 1 1 f 1 

T 
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Electret Accelerometer 
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Figure A5: Detail of 100 to 500 Hz Response Spectra 

As detailed in Figure A5, the response characteristics for both sensors show high 

similarity from 100 to 500 Hz. As a result of the electret relying on a mechanical 

diaphragm, it is anticipated that natural frequencies would exist as a function of the 

stiffness and mass of the diaphragm disk. For the 6 mm diameter electret tested, the 

diaphragm is small enough such that no natural frequencies are encountered within the 

observed range. Through an impulse test, the electret sensor's lowest natural frequency 

was determined to be 6800 Hz. 

To test the hypothesis that the frequency response spectrum of the electret sensor 

does not vary as a function of input magnitude, several tests are conducted at different 

shaker gain levels. It is observed that the electret accelerometer does not change the 

shape of its response spectrum as a function of input acceleration amplitude. Figure A6 

details five tests with the shaker gain set at 20, 40, 60, 80, and 100% respectively. 
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Spectra of Piezoelectric and Electret Accelerometers at Shaker Gains of 20, 40, 60, 80 and 100% 
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Figure A6: Linear Response of the Electret Accelerometer 
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Figure A7: Linear Response of the Electret Accelerometer at Specific Frequencies 

•Figure A7 illustrates confirmation that the output from the electret corresponds directly to 

the acceleration input measured by the piezoelectric accelerometer. The curves at various 
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frequencies vary linearly with respect to acceleration amplitude, indicating that the gain 

of the electret is constant at all frequencies of interest. 

After identifying that the electret accelerometer has a response that is linear with 

respect to input amplitude, the response repeatability was investigated. Fifteen tests were 

conducted at each shaker gain. As with the linearity response tests, a sine chirp was 

produced through the shaker motor. The resulting sensor spectra were observed for 

similarity. 

Figure A8 illustrates the repeatability tests at 100% shaker gain plotted for both the 

piezoelectric and electret accelerometers. 

I102 
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Figure A8: Electret Repeatability Tests at 100% Shaker Gain for 15 Tests 

From the outcome of these tests, it is evident that the response spectra of both 

sensors are nearly stationary over fifteen consecutive experiments. However, it is of 

interest to note that the spread seen in these spectra is a function of the number of 
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sequential tests performed. In particular, the amplifier and shaker motor produce a 

slightly different input amplitude as a function of operational temperature. This 

phenomenon was recorded by both the piezoelectric and electret accelerometers. 

In addition to confirming a robust response, these repeatability tests identify the 

lower limit of the sensor's response reliability. As with the Piezoelectric accelerometer, 

this limit occurs between 0 and 100 Hz. Figure A9 details the 100 to 500 Hz range. 
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Electret Repeatability Tests at 100% Shaker Gain (100 to 500 Hz) 
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Piezoelectric Repeatability Tests at 100% Shaker Gain (100 to 500 Hz) 
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Figure A9: Detail of 100 to 500 Hz Repeatability Tests at 100% Shaker Gain 

The final objective for the repeatability testing was to create a test-averaged response for 
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the electret accelerometer. This response represents the expected frequency spectrum of 

the sensor. Figure A10 shows the mean response of the sensor over all fifteen 

repeatability tests at 100% shaker gain. 

Average Electret Response at 100% Shaker Gain 
1 0 i 1 1 1 1 1 1 1 1 1 

i i i i i i i i i 
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Figure A10: Average Electret Response over 15 Repeatability Tests. 

Since the electret response spectrum is linear, the frequency response of the 

electret accelerometer can be mapped to the known flat response of the piezoelectric 

accelerometer. The objective of this process is to replicate the flat response of the 

piezoelectric sensor from the input signal of the electret accelerometer. This mapping 

assumes that the electret accelerometer response at each input frequency is equal to that 

of the input (piezoelectric) response scaled by a ratio. Using the measured electret 

response and piezoelectric response, this ratio can be derived as a function of frequency. 

Digital signal processing refers to the separation or combination of two signals in the 

frequency domain as convolution [9]. It is essentially a discrete transfer function between 
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one signal and the other. 

In addition to amplitude linearity, assumptions are made that the sensor system is 

stationary and that the system contains little noise. Both of these assumptions are valid 

since the sensor system response does not change as a function of time and the signal to 

noise ratio is over 58 dB for all frequencies of interest. 

First, the acquired time signals from both the electret and piezoelectric accelerometers 

are transformed into the frequency domain. The time signals are represented as eg and 

p g respectively. The subscript g represents the particular input gain level at which 

each data set was recorded. Specifically, this is the shaker table gain level. These signals 

are transformed according to the discrete Fourier transform as: 

~ / \ v / , \ ,—2ixikco. 
P„(<*>)= Z Pg(k)cxp( ) (Al) 

k=0 -W 

„ / \ v ,,\ ,—2nikco, 
£ > > ) = _ _ eg(k)exV( ) (A2) 

k=0 M 

where Eg and Pg are spectra of the time signals evaluated over co = 0,..., Nyquist . 

In the case of this experiment, the Nyquist frequency is 10 kHz since the time sampling 

rate was 20 kHz. However, the piezoelectric accelerometer bandwidth is 1 to 4000 Hz 

(±5%). Since this sensor acts as the baseline for benchmarking the electret accelerometer, 

the spectra are evaluated over the range oo=0,..., 5000 Hz . 

Recalling from the Linear Response section, the response of the electret 

accelerometer retained the same characteristics over multiple amplitude inputs. 

Therefore, the gain at any particular frequency is constant with respect to input 
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amplitude. Consequently, at any particular input gain level, there exists a ratio spectrum 

between the outputs of the electret and piezoelectric accelerometers. The ratio function is 

defined by: 

*»=^R <A 3> 
A mean frequency ratio function, R , can be defined over the different gain levels as: 

where G is the number of unique gain levels tested and g represents each single 

gain level. For the case presented in this work, gain levels of 20, 40, 60, 80, and 100% 

were observed. This represents G=5 and g = 1,..., 5 . 

Through the transformation by R , error is distributed evenly over the range of input 

gains tested and a constant transform error can be expected. Figure All shows R 

plotted with respect to frequency. 
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Amplitude Ratio Spectrum (Piezoelectric Response/Electret Response) 
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Figure All: Calibration Transfer Function, R 

After the derivation of R , any output signal, E , from the electret accelerometer can 

be mapped to the flat response of the piezoelectric accelerometer according to: 

E'(co) = R{co)E{co) (A5) 

where E'(co) is the corrected electret frequency response. However, the ideal 

corrected spectrum E ' does not reflect error present in the real system. 

Accounting for Electret Accelerometer Measurement Error 

Recalling that each of the five gain levels was tested fifteen times, the standard deviation 

in the piezoelectric and shaker table response can be assessed at each gain level g as: 

SP(w)= iZ(^M-^M)2 

Tt 
(A6) 
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where P'gM^X P'gt(M) , t represents the test repetition r=l,...,15 and T=15 . 

Similarly, the electret and shaker table response error, SEg , can also be computed 

through this method. 

After the error is known at each gain level, the error can be propagated to the ratio 

spectrum, R . Since the sensors were sampled on independent systems they have no 

covariance and the error propagation takes the form: 

SRl(a,)= SE2(w) 
EJw) 

SE » » 

f.(AM) 
\ 6PtM j 

or: 

SR(co) \sE^-\ ASP-1 
(A7) 

This error is computed for the highest gain value tested ( g=5 ; 6.56g's). Figure A12 

illustrates the ratio spectrum, R , along with its corresponding full-scale error bars 

R±S~R . 
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Frequency Ratio Spectrum (Piezoelectric Response/ Electret Response) With Error Margins 
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Figure A12: Calibration Transfer Function R , with Error Bounds R±SR . 

Similar to the ideal case (Equation A5), any electret accelerometer signal and it's 

associated error band, E±SE , can be mapped to the equivalent response of the 

piezoelectric accelerometer: 

E'{(JO)±SE'{(V) = R{W)E(CO) 

,l- (A8) 
±[{E{cv)SR{co)f+(R(cv)SE(cv))2]2 

Therefore, the relationship between the piezoelectric response and electret response 

(considerate of both sensor errors) is given as: 

P±PE**E'{co)±SE'{co) (A9) 

As calculated over the experimental tests, the corrected electret response spectrum has 

the highest spread at 5000 Hz during 100% shaker gain. Because the baseline 

piezoelectric sensor is stable to 4000 Hz, the error will be computed at this frequency. 

This value, £"(4000)±5£" , is 0.0755±0.0008 volts, corresponding to an error margin of 
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approximately 1% from the piezoelectric frequency response. This value includes 

variability from the electret sensor, piezoelectric accelerometer, and shaker table. As a 

result, this represents the error with respect to the piezoelectric sensor used as the 

reference source. 

Using the mean transfer function R as shown in equation A5, the corrected 

elecfret accelerometer response, E' , is highly similar to that of the piezoelectric 

accelerometer. Figures A13 through A15 show examples of the procedure applied at 

different shaker gain settings along with the piezoelectric response. The low frequency 

response of the sensor from 100 to 500 Hz is shown in Figure A16. 
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Figure Al3: Corrected Electret Response at 100% Shaker Gain 

The results at 100% shaker gain are representative of the results found over the other 

gains tested. Figures A15 and A16 show magnifications of both 80 and 20% gains 

respectively. 
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Corrected Electret and Piezoelectric Response at 100% Shaker Gain (100 to 500 Hz) 
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Figure A14: Corrected Electret Response at 100% Shaker Gain (100 to 500 Hz) 

500 

Corrected Electret and Piezoelectnc Response at 80% Shaker Gain (100 to 500 Hz) 
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Figure Al5: Corrected Electret Response at 80% Shaker Gain (100 to 500 Hz). 
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Corrected Electret and Piezoelectric Response at 20% Shaker Gain (100 to 500 Hz) 
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Figure Al 6: Corrected Electret Response at 20% Shaker Gain (100 to 500 Hz) 
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Since the response of a single electret is linear (Figure A7), the sensor must be tested 

for repeatability. Repeatability is investigated over a population of sensors from the same 

manufacturing batch. This shows how consistent the sensor response is between 

individual electret units. By repeating each individual sensor test multiple times, T , a 

mean ratio spectrum, R , is given by repeated testing of one sensor at full scale shaker 

gain: 

1 ^ Pt(u>) 
T /=1 Et(vo) 

(A10) 

This mean ratio spectrum is generated for repeated tests of each individual sensor in 

the population. Specifically, there is a unique R for each sensor tested. This is similar to 

Equation A4, but is performed over tests instead of gain settings. 

After the derivation of R , any output signal, E , from the electret accelerometer can 

be mapped to the equivalent response of the piezoelectric accelerometer according to: 

E'(ai) = R(to)E(w) (All) 

where E' (co) is the corrected electret frequency response. In this sense, R is the 
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calibration spectrum (gain ratios at discrete frequencies) that scales the spectrum of a 

particular electret sensor to the correct response shape. However, the ideal corrected 

spectrum E' does not reflect error or statistical deviation present in the system. 

The observation of statistical variability must consider both error present in the 

repeatability of each individual sensor and in the repeatability of the population. For this 

study, 12 electret accelerometers were fabricated and benchmarked against a single 

piezoelectric accelerometer. Each of the 12 individual sensors was tested 32 times. 

Because the electret sensors were benchmarked against an imperfect signal from a 

piezoelectric accelerometer, the error present in the piezoelectric signal must also be 

propagated to the resulting variability. Because the piezoelectric sensor is the baseline, it 

is necessary to consider the variability of the piezoelectric sensor to confidently estimate 

the error bounds on the elecfret accelerometer. Standard deviation is used to define 

population spread over identical repeated tests. For each individual sensor, the population 

of 32 repeated tests is assumed to be normally distributed. 

Step 1: Calibrate Sensor Population 

By conducting repeated response tests for each of the 12 electret sensors, Equation A3 

produced mean calibration spectra for the population. Recalling that each individual 

sensor was tested 32 times ( T~ 3 2 ), these mean ratio spectra,R , represent a population 

of tests for each sensor. Corresponding to these mean ratio spectra, a standard deviation 

spectrum was also calculated for each sensor (discussed in the following section). 

Although each calibration spectrum was slightly different, their trends were similar. 

Figure A17 shows a plot of the 12 ratio spectra, R , for this population of sensors. 
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Figure A17: Transfer Function, R , for the Population of Electret Sensors. 

As found, the gains for the elecfret accelerometers varied as a function of frequency. This 

was to be expected since variability is introduced by the manual fabrication process. 

Although there is a range in the magnitude of the gains, the ratio spectra exhibit a strong 

trend in behavior over all 12 sensors. 

Steps 2 and 3: Calculating the Standard Deviation Specfra of Individual Sensors 

Similar to the gain, the standard deviation for each individual sensor is treated as a 

function of frequency. This is done since, in a typical sensor system, variability is seen to 

change throughout the response spectrum. However, deviation in both the electret 

accelerometer and the source (piezoelectric) signal must be accounted for. Therefore, this 

process involves an error propagation based on the standard deviation spectra. 

The standard deviation present in the piezoelectric response can be represented as a 

function of discrete frequencies, co , as: 

SP((v) ±!(P,(<o)-P(<o)? 
1 t=\ 

(A12) 
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1 T 

where P(co)=—_] Pt{w) ,'represents the test repetitiont = l,...,32 a n_ 7=32 _ Since 

standard deviation is being used as the definition for spread, a significant population of 

32 repeat tests was performed. 

Likewise, the standard deviation of the electret sensor response spectrum is defined as: 

SE(u))= 
1 t=\ 

(A13) 

1 T 

where is(co)= —_] i?,(cu) ,(represents the test repetition t = \,..., 32 anc[ r = 32 . Figure 

A18 shows a plot of the uncorrected mean elecfret spectrum, E , and its corresponding 

standard deviation spectrum SE for an individual sensor over 32 tests. 

Uncahbrated Mean and Standard Deviation Spectrum for an Individual Sensor 
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Figure A18: Uncorrected Electret Spectrum and Corresponding Standard Deviation 
Spectrum. 

After these two standard deviation spectra are calculated, a ratio spectrum can be derived 

between that of the piezoelectric and electret accelerometers. This takes on a similar form 

to that of Equation A3: 
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SR(co)= 
SP{co) 

(A14) 
SE(co) 

However, this basic ratio is incorrect because SP(co) and SE(co) are error terms. 

The error propagation is properly: 

SR2(w)=SE2((v) 

IJPH\\ 
5[EM) 

\ SE{io) j 

2 

+SP2{w) 

j 
5 

(PH\\ 
\E((D)J 

\ 6P(io) J 

(A15) 

or: 

5K(co) = SEP.\ JSP^ 

Figure A19 illustrates a ratio spectrum, R, along with its corresponding error bars 

R±SR 

Frequency Ratio Spectrum (Piezoelectnc Response/ Electret Response) With Error Margins 
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Figure Al9: Amplitude Ratio Spectrum, R With Error Bounds R±SR . 

The example given in Figure A19 shows the error spectrum propagated to a mean 

ratio spectrum R for a single elecfret sensor. All 12 of the sensors in the population are 

processed by the same method. 

Step 4. Error Propagation through the Calibration Correction 
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Similar to the ideal case (Equation A4), any electret accelerometer signal and its 

associated error band, E±SE, can be mapped to the equivalent response of the 

piezoelectric accelerometer. This relationship represents error propagation between the 

piezoelectric and electret accelerometer: 

E'{w)±SE'{co)=R{co)E{(jo) 
I (A16) 

±[{E{co)SR{co))2+{R(cv)SE{co))2]2 

The second term in Equation A16 is the definition of error propagation for a product 

in which both terms contain an error term. The corrected error spectrum, E'±SE', is 

generated for each individual sensor and contains the error over 32 electret sensor tests as 

well as the error from the piezoelecfric accelerometer. There is a unique E±SE for each 

of the 12 sensors in the population. 

After this calibration correction has has been determined for each individual sensor, 

the corrected specfra can be compared between each other, over the population. This 

calibration step allows the population to be analyzed with a similar mean spectrum. The 

mean spectrum represents the mean of the piezoelectric signal to which the elecfret 

spectra were mapped. Figures A17-A19 are an example of this mapping, demonstrating 

the result of a corrected fit to the piezoelectric response. The frequency scale of this 

figure is reduced to show detail. 

Steps 5 and 6. Calculating a Mean Corrected Spectrum for the Population of Electret 

Sensors 

Once all 12 electret sensors are corrected by Equation A16, the equation can be 

shown as a single spectrum representative of the entire population. The first term in 

Equation A16 contains no deviation over the population since it is the ideal mapping of 
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each individual elecfret sensor to the mean piezoelectric response, P . After this mapping 

has occurred by each individual sensor's R, the first term of Equation A16 is nearly 

identical for all sensors. Recalling that the error present in this mapping is explained by 

the second term in Equation A16, these error spectra must be combined over all 12 

sensors. Once again, this takes the form of error propagation over the population of 

sensors. Without considering uncertainty, this ideal relationship is given as: 

E'(co)±SE'(co)=l-2Z [Rp(co)E(cv)} p 1—1 <- p^ ' p^ 

P "-1 i (A17) 
± ^ E [ [ ( £ > ) S K > ) ) 2 + ( * > ) S E > ) ) 2 

r P=i 

Where P = 12 representing the series of individual sensors tested. E'{co)±SE'(co) 

is the mean corrected response spectrum and corresponding error band for the population 

of sensors tested. 

However this relationship is incorrect without applying proper error propagation to 

the second term. The second term in this equation considers error propagation over the 

population according to the definition of uncertainty in a sum: 
A±B±C... = ̂ AA2+AB2+AC2... (A18) 

Recalling that the error of the first term (ideal E '(co)) is zero, the second term is now 

properly defined as: 

E'~(w)±SE7(co)=lj2Z [Rp(co)Ep(w)] 
p=j 

£ [(Ep(cv)SRp(co))2+(Rp(w)SEp(oo))2} 
(A19) 

Results of the Electret Accelerometer Statistical Analysis 

The outcome of studying the behavior of the response over a population of individual 
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sensors was insightful. As a result of performing repeated individual tests and 

propagating the error over a population of corrected sensor responses, a clear 

understanding of the sensor's performance characteristics are observed. Figure A20 shows 

E'{w)±SE'{co). 

Population Mean Corrected Sensor Response and Deviation 
10 r [ : 1 1 1 1 r 

500 1000 1500 2000 2500 3000 3500 4000 4500 
Frequency (Hz) 

Figure A20: Population Mean Response Spectrum Showing Error Bound 

It is observed that the error bounds for the sensor are higher in certain frequency 

ranges. The first natural frequency of the electret accelerometer diaphragm is known to 

be 6800 Hz. Therefore, the error peaks observed in Figure A20 may the outcome of 

nonlinearities in the shaker table system. Without a statistical observation of the 

individual sensors and propagating the error results over the population, these instances 

would go unnoticed. The tolerance of the elecfret accelerometer is within +-6%. Although 

some error was introduced by the piezoelectric sensor, this was unavoidable since the 

piezoelectric was used as the reference. These error bounds are for the population of 

elecfret sensors. Therefore, each individual sensor in the population falls within the error 

range of the calibration. 
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Temperature Effects on the Electret Accelerometer 

To test the temperature sensitivity, elecfret accelerometers (outside of a cutting 

tool body) are heated to a isothermal state. These sensors are embedded at the core of a 

thermal mass of 304 stainless steel and composite epoxy. The temperature is measured 

with a thermocouple and is considered accurate to +- 1 degree C. The heated electret 

sensors are removed from the heated environment, placed on a shaker, and a 0 to 10 kHz 

chirp is conducted (identical to the procedure for frequency response testing). Figure A21 

details the frequency response at various temperatures 

The spectrum response of the electret accelerometer is temperature 

dependent. Throughout the tests, increases in temperature lead to an increase in 

the amplitude over the stable region of the response. Throughout the three lower-

temperature tests (21°C, 32°C, and 43°C), the responses remained relatively 

consistent, only posting changes in amplitude. When examining the responses from the 

43 °C to the 54°C temperature tests, an apparent change occurred. This spectrum 

response may have been caused by a physical change of the electret diaphragm, thus 

providing a different spectrum. As the temperature increased from 54°C to 77°C, the 

change in response became even more apparent. The electret used in this research 

utilizes a Teflon polymer diaphragm, which may have undergone a physical 

transformation at the elevated temperatures. Moreover, the threshold temperature 

dependence of the field effect transistor (FET) affects both frequency response and gain 

[39]. Overall, the spectrum response of the elecfret accelerometer was dependent 

on the temperature at which operation occurred. Therefore, the effects of 
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temperature will have to be considered and will play an important role in the 

calibration of the elecfret accelerometer if the operation is not at room temperature. 

However, this does not eliminate the electret sensor from consideration in flood coolant 

operations or for operations requiring destructive placement of the sensor (where other 

sensors may be cost prohibitive). Furthermore, as discussed in Section 3.7, the tool core 

temperature has a significant phase lag and time constant. This fact renders a tool-core 

accelerometer effective for laboratory tests even at dry cutting conditions. 

, Single-Sided Amplitude Spectrum (21C, 32C, and 43C Tests) 

^Piezoelectric Tests 

Electret Tests 

1000 1500 2000 2500 3000 3500 
Frequency (Hz) 

Figure A21: Electret Temperature Response Spectra 

Given that the elecfret was shown to provide a repeatable and mappable signal, the 

next step towards developing an end milling condition monitoring systems involves 

installing these sensors within the tool holder. Development of a Smart Tool Holder will 

require the elecfret accelerometer to be located on a rotating tool. These sensors will 

directly record the tool response without the need for transfer through the spindle or 

workpiece. The sensor will be embedded into the tool holder in close proximity to the 
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cutting tool, and thus requires a means of data transmission that does not rely on a 

physical connection to the sensor. 

Wireless Data Transmission from the Electret Accelerometer 

Although a wireless data transmission method solves the physical problems involved 

with the integration of a sensor within the tool holder, the end milling environment 

presents additional challenges from the perspective of electromagnetic interference. 

Electric motors operate the machine spindle as well as the x, y, and z translation of the 

bed. The proximity of these motors to the wireless transmitter presents a problem due to 

the wide spectrum of electromagnetic interference generated during the cutting process. 

Moreover, these motors do not remain at a constant speed during cutting, resulting in the 

interference spectrum continually changing throughout the cutting process. 

An additional issue with using a wireless connection is that the bandwidth of the 

wireless interface must be able to capture a large frequency range from the electret 

accelerometer. As previously mentioned, the end milling system produces a wide 

spectrum of useful information and it must be captured with substantial resolution for 

analysis purposes. 

Upon investigation of existing commercial methods of wireless data transmission, it 

becomes evident that the majority of existing commercial methods have significant 

drawbacks relating to the challenges expressed above. For instance, an FM or AM 

interface is immediately eliminated by the expected high level of radio frequency noise. 

Other methods such as the 802.XX standards require a substantial power source and are 

not commercially offered in a form that is small enough to practicality position within a 
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typical end milling tool holder. 

Although most existing wireless protocols are not ideal, the Bluetooth protocol was 

found to answer the demands of tool holder placement, bandwidth, and motor 

interference. The Bluetooth wireless standard has been designed for implementation in 

devices such as wireless headsets, cellular telephones, and data transmission over 

Personal Area Networks. As a result, Bluetooth transmitters and receivers have been 

designed with physical size as a primary constraint, often being smaller than several 

centimeters in size. Since Bluetooth was developed for data transmission, the 2.0 version 

of the protocol reaches transmission rates of 2.1 Mbps, which is sufficient bandwidth to 

capture high resolution end milling data. Additionally, the upcoming version 3.0 is 

anticipated to reach transmission rates of 480Mbps. Manufacturers identify transmission 

range between 10 to 30 meters depending on interference, which is adequate for 

transmission out of the end mill (~2 meters). 

The Bluetooth standard was developed using spread-spectrum techniques [NTIA 

Manual] considering that the devices would be used in environments with a high level of 

electromagnetic interference across a broad spectrum. The standard uses the license-free 

ISM band at 2.4-2.4835 Ghz and is divided into 79 channels. These channels can be 

changed at up to 1600 times per second to actively avoid interference. As a result, the 

quality and continuity of transmission is high, even in noisy radio environments. 

The wireless response testing performed in this work was conducted on a shaker table 

with an electromagnetic motor. The field generated by this motor swept the test spectrum 

and did not appear to cause interruption of the Bluetooth transmitter. 

195 



Similar to the testing work performed with the electret accelerometer, the Bluetooth 

accelerometer interface was also assessed by contrasting its frequency response with that 

of the piezoelectric accelerometer sampled through a fraditional DAQ system. Figure A22 

details the shaker table and attached sensors and corresponding device under test (DUT) 

block diagram. 
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Figure A22: Bluetooth Test Interface 

As with the wired electret accelerometer discussed above, a sinusoidal vibration input 

is generated using a shaker table. A single-axis PCB piezoelecfric accelerometer (Model 

320 C33, serial number 5901) is fixed to the table at the same reference point as the 

elecfret sensor. The output sensitivity of this piezoelecfric accelerometer is lOOmV/g with 

a maximum range of 50g's. This piezoelecfric accelerometer is amplified through a PCB 

charge amplifier. The corresponding voltage signal is monitored through a fraditional 

DAQ system. The elecfret sensor is sampled by the Bluetooth transmitter and sent as a 16 

bit digital signal to the PC's Bluetooth wireless receiver. Both the piezoelectric 
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accelerometer and the Bluetooth elecfret accelerometer signals are sampled at 20 kHz. 

Figure A23 shows the response curves for the electret accelerometer sampled via the 

Bluetooth interface and the baseline piezoelectric accelerometer. 

Response Spectra of Piezoelectric Accelerometer (Traditional DAQ) and Electret Accelerometer (Bluetooth Interface) 
10 

w 

10"' 

10' 

10 

Piezoelectric Accelerometer 

Efectret Accelerometer (Via Bluetooth) 

500 1000 2500 3000 1500 2000 
Frequency (Hz) 

Figure A23: Response Spectra for Piezoelectric and Wireless Electret Accelerometers 

As with the wired elecfret accelerometer, the response can be mapped to the desired 

(piezoelectric) frequency response through a gain ratio function. This procedure is 

described in detail in the section "Linear Response and Calibration of the Electret 

Accelerometer". The Bluetooth wireless interface produced a stable response between 

100 and 3500 Hz. 

The results observed from the testing of the Bluetooth Wireless interface are 

promising and identify that the method is acceptable for transmitting high bandwidth 

acceleration data from the electret sensor. Due to the acceptable bandwidth, it is feasible 

to use the Bluetooth interface for application in a smart tool holder. 
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The electret accelerometer has demonstrated good robustness over a battery of tests 

including a population performance study. Based on the outcome of these tests, the 

elecfret accelerometer is a feasible alternative to a piezoelectric accelerometer for 

application in a Smart Tool Holder, under controlled temperatures. Performance is 

observed to be comparable to the piezoelecfric device, through minimal signal 

processing. 

The frequency response error throughout the population was estimated by 

propagating error observed in the individual sensors over the population. Although each 

individual sensor was tested for repeatability over 32 frequency response tests, the 

population exposed features of the response error spectrum that were not noticeable in the 

individual sensor repeatability tests. The outcome of the statistical population tests and 

error propagation is positive and identifies that the electret accelerometer has an 

acceptable expected error magnitude of+-6% over a spectrum of 100 to 4000 Hz. 

Furthermore, it is also shown that the Bluetooth wireless interface is capable of 

transmitting the acceleration signal from the electret accelerometer. The particular 

Bluetooth transmitter used with the electret accelerometers has a bandwidth comparable 

to the frequency response of the electret sensor, to approximately 4000Hz. The goal of 

identifying feasibility for this wireless method has been accomplished. 
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APPENDIX B 

Tool Tip Temperature Measurement 

A 12 bit thermocouple junction/sampler is used to capture temperature three times per 

second. The range of the temperature A/D is 0-1023.75 °C in steps of 0.25°C. The 

temperature sensor is embedded axially in the core of the 19.05 mm insert holder body. 

Therefore, it is necessary to determine how the sensor responds with respect to an applied 

temperature condition on the cutting edge of the tool. To do so, a temperature boundary 

condition is applied with a feedback controlled heating element. Figures Bl and B2 

show torque and temperature integrated smart tools. The temperature sensor is embedded 

at the core of the tool holder. 
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Figure Bl: Torque & Temperature Smart Tool 
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Figure B2: Torque Temperature Integrated Tools 

The temperature condition is applied to simulate a 0.254 cm (0.1 inch) axial 

engagement. All of the tools tested are commercial carbide cutting tools. A second 

research goal of this experiment is to determine if the insert coating type has a significant 

effect on the time constant, phase, and gain of the temperature signal. Two different 

uncoated tools, TiCN, and TiAIN coatings were compared. It was hypothesized that the 

coating plays a minimal effect on the heat transfer observed by the embedded 

thermocouple. However, this hypothesis needed to be confirmed to ensure proper sensor 

calibration. The thermal conductivity of tungsten carbide is approximately 84 W/m/K 

whereas the conductivity of thin coatings such as TiN is less than 20 W/m/K [41]. Figure 

B3 shows a picture of the temperature control setup in the milling machine and a thermal 
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resistance network. 
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Figure B3: Experimental Temperature Setup 

To test the performance of the temperature sensor and determine if insert coating has 

an effect on the sensor response, a Balanced Incomplete Block design was implemented. 

For each condition, the time constant and gain of the temperature signal was observed 

from the data. The coating materials inspected change their heat fransfer coefficients as a 

function of temperature. For example, the thermal conductivity of TiN is 28.84 W/m/K at 

25°C and changes to 16.72 W/m/K at 200°C [41]. Therefore, the block unit for this 

experiment is Temperature. The variation in the heat fransfer due to the applied 

temperature is not of interest. The comparison made between the coating types is 
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separated from the effect of temperature. Table 17 details the experimental design. 

Table Bl: Block Design of Temperature Tests 

Block Temperature °C 

150 

250 

350 

485 

Treatments (Insert Coating) 

Uncoated 1 

I Uncoated 1 

Uncoated 1 

TiN 

TiN 

TiN 

TiAlN 

TiAlN 

TiAlN 

Uncoated 2 

Uncoated 2 

Uncoated 2 

The observed temperature response shows an exponential approach to steady state. 

This agrees with the experimental setup of a RC thermal circuit. The data is fit with an 

exponential function to estimate the time constant. In addition to estimating the time 

constant, the gain between T'appUed and Tsemor can be given as a ratio: 

Gain = L^L (B1) 
•* applied 

where Tsemor is the steady state thermocouple temperature and Tapplied is the heating 

temperature. Figure B4 shows an example temperature response, estimated time constant, 

and gain. 
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Figure B4: Temperature Sensor Step Response 

350 400 450 500 

To observe if the coating value has an effect on the time constant or gain, the time 

constants and gain values were collected for all of the cases in Table Bl. These values 

were analyzed in the JMP statistical software package to determine if an effect existed as 

a function of temperature. A standard least squares model was used to estimate time 

constant as a function of coating. The temperature variable was modeled as a random 

effect nested with coating type. Figure B5 shows the least squares means for coating 

types with standard error. 
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Figure B5: Temperature Sensor Time Constant LS Means 

The overlapping standard errors shows that time constants have insignificant 

differences. Because the coatings are thin films and thermal resistance is a function of 

thickness, it is not surprising that the coating has a negligible effect on the time constant. 

Unlike time constant, the gain value is influenced by the tool type. Figure B6 shows a 

least squares mean plot of gain values with corresponding standard error. 

0 . 1 2 -

§ 0 . 1 1 3 -
iD 

^ 0 . 1 1 6 -
_ i 

1 0 . 1 1 4 -

0 . 1 1 2 -

0.11 -

: 

r X 

l 

V 

l \ 

, 

\ l 

I 

TiAlN TiN Uncoated 1 Uncoated 2 
Coating Type 

Figure B6 Temperature Sensor Gain LS Means 

The TiN coated tool appears to have a slightly higher gain value compared to the 

other tools tested. Since the standard errors do not overlap, this difference is significant. 

This is insightful, since the gain value relates the the thermal resistance of the coating 

plus the tool substrate. If the gain increases, the thermal resistance ( RCoatmg
+P-tooi ) 

between Tapplied and Tsensor decreases. However, there is no observed effect in the 
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time constant for the TiN coated tool. Thus, for the time constant, 

T = (Rcoating+Rtool) X C , to remain the same, the value of C must increase. 

This effect can be attributed to unknown substrate properties between the tool types 

tested. The experiment assumes that the carbide subsfrate is identical between tool types. 

It is likely that the substrate carbide for the different tools contains slightly different 

percentages of a binder material such as cobalt. 

From the experiments, the accuracy of the temperature sensor is related to the error of 

the gain. From equation Bl, the gain value is 0.115 with a standard deviation of 0.0036°C 

. Therefore, the resolution of the temperature sensor is ±3.64°C at full scale of 

1023.75°C. The time resolution can also be quantified from the experimental time 

constants and is 57.496±4.040 seconds. Changes of temperature less than 0.0028 Hz 

(changes in average temperature) can be resolved. For this sensor integrated tool, the 

expression for estimating mean temperature at the tool-workpiece interface is: 

T 
T -_• core fB2") 

interface O 1 1 S ' 

This expression is the fixed temperature sensor calibration for this tool geometry and 

sensor location. The temperature calibration experiment confirms that different tool 

coatings do not require recalibration of an embedded thermocouple sensor. This is useful 

in practice where different inserts may be deployed without modifying the sensor system. 

Furthermore, the time resolution of the sensor demonstrates that the tool-core location of 

the thermocouple is appropriate for estimating the mean temperature of the tool-

workpiece interface. 

Based on the calibration experiments for the embedded thermocouple, the 
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temperature sensor is limited to near steady state changes in cutting temperature. A cut is 

conducted at 2500 RPM in tool steel with 3.175 mm axial depth, 9.525 mm radial 

engagement (half immersion of a 19.05 mm tool), and a feed per tooth of 0.122 

mm/tooth. This test is designed to last 120 seconds~ 2 time constants. Figure B7 shows 

the tool core temperature calibrated according to Equation B7. At one time constant, the 

sensor temperature is 63.2% of the steady state value. Therefore the cutting interface is 

estimated at 989°C during this experiment. The result is encouraging since it agrees with 

feasible tool-workpiece interface temperatures [42]. 

i i i -

At one time constant, 
tip temperature is estimated _ 
at 625 C 

"-T20 -100 -80 -60 -40 -20 0 
Time (Seconds) 

Figure B7: Tool Tip Cutting Temperature Test 

On a number of smart tool versions, torque was measured simultaneously to 

temperature. This allowed interesting relationships to be observed between the sensors, 

specifically with time response and phase lag in the physical system. 
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Figure B8: Torque and Temperature Simultaneously Sampled 

Simultaneous sampling of both torque and temperature exposes the phase delay of the 

temperature sensor. This is expected since heat must fransfer through the thermal mass of 

the tool body (Figure B8). To quantify this value, a cutting test is conducted and the high 

bandwidth torque signal is used as a reference. This is evident in the plot of a cutting test, 

showing temperature time-aligned with the torque signal. 

Tool tip temperature measurement was shown successful in estimating the 

temperature at the tool-workpiece interface temperature. Although not directly related to 

dynamics, this information is helpful in evaluating the temperature conditions 

experienced by the dynamic sensors (i.e. elecfret accelerometer). The information is also 

useful for tool wear monitoring. 
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APPENDIX C 

2D0F Time Domain Model 

function [dRPM,x,y,Fx,Fy,t,sdt,hlhistorical]=millchatt(b,Nl,N2,M,sweep,yesrand) 

mx=3.3787; kx=4728424; my=4.5049; ky=6304566; ^physical constants 
C-.TX-3.3T87; kx-5.6355e+0CP; ny-4.5049; <y-7.51406+00"; "physical constants 
Ks=400; %Ks=1500; 400 for aluninun 6061, 1300 for gray cast iron n/irmA2 
cx=500; cy=450; 
c=0.0254; "material reiroval rate rur/tooth (feec. per tooth) 
oexanple: [aRPM,X,y,Fx,Fy,t,sat,hintstorreal'=mi_lchatt(2,500,7500,2000000,'up',0); 
dx=0; dy=0; i=0; 

dfi=pi/160; 'itmesteps per toothpass 
'at-60/ (32C*N) ; 

if(N1==N2) 
dRPM=ones([l M+1])*N1; 

else 
dRPM=[Nl:(N2-N1)/M:N2]; 

end 

if length(sweep)==4 
dRPM=f liplr (dRPM) ; -•, run the sweep backwards 

else 
osweep is up 

end 

if yesrand==l 
rnddamping=rand ( [1,M] ) *10; rsrnal. randoir perturbations to z... 
rnddamping=rnddamping-mean (rnddamping) ; :'nean subtract 
rndstif f=rand ( [1,M] ) *le6; -.small randon perturbations to z... 
rndstiff=rndstiff-mean(rndstiff); %nean subtract 

else 
rnddamping=zeros( [1,M] ) ; 
rndstif f=zeros ( [1,M] ) ; i.rrean subtract 
l'-rnanuir=zeros ( 1,M]); %Ko ranaom perturbations to z... 

end 

t=zeros([1 M]); 
Fx=zeros([1 M]); 
Fy=zeros([1 M]); 
x=zeros([1 M+l]); 
y=zeros([1 M+l]); 
zoldl=zeros([1 M]); 
hlhistorical=zeros([1 M]); 
sdt=t; 
for n=l:M 

dt=60/(320*dRPM(n)); 
t (n) = (n-l) *dt; 
fil=i*dfi; 
i=i+l; 
sdt (n)=dt; 
Rafter 160 steps the pcsitions of the teeth repeat 
if(i>160) 

i=0; 
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ena 
%radial displacement z on every tooth is obtained as the sun 
tof the projections of the displacements m x and y on the tooth radius 
othe factor 1000 _s used to obtain z m mm while x ana y are m ti 
zl=1000* (x(n)*sin(fil)+y (n) *cos (fil) ) ; 

if(n<=160) 
"formulating chip thickness 
hl=c*sin(fil)-zl; zoldl(n)=zl; 

else 
hl=c*sin(fil)-(zl-zoldl(n-160)); 

ena 
hlhistorical(n)=hl; 
°see if the tooth is stil_ _n the viorkpiece 
if(hl>0) 

Fl=Ks*b*hl; 
zoldl(n)=zl; 

else 
F1=0; 
zoldl(n)=zl+hl; 

ena 

-Fx ana Fy components 
Fx(n)=Fl*(cos(fil)+0.3*sin(fil)); 
Fy(n)=Fl*(sin(fil)-0.3*cos(fil)); 

"the accelerations in aax and ddy are proauced by forces Fx ana Fy and 
^d_sp_aceretns x and y are obtained by double integration 
ddx=(Fx(n)-(cx+rnddamping(n))*dx-(kx+rndstiff(n))*x(n))/mx; 
dx=dx+ddx*dt; 
x (n+l)=x(n)+dx*dt; 
ddy= (Fy (n) - (cy+rnddampmg (n) ) *dy- (ky+rndstif f (n) ) *y (n) ) /my; 
dy=dy+ddy*dt; 
y (n+l)=y (n) +dy*dt; 

~~ subplot (3,1,1) 
plot (t,x(2:ena) ) 
subplot(3,1,2) 

% plot (t, y (2 : end) ) 
subplot (3,1,3) 

--, plot (t, F_hyp) 
s pause(0.0001} 

if(rax(x)>2) 
o break 
j enl 
end 

?there have been M-i values of x ana y generated ana only K tor t, Fx, 
* Fx (M l)=Fx(M) ; 
5 ?y(M-l)=Fy(K); 
c, t (KH)=M*dt; 
°-x=x (1 :ena! ; 
Oy=y(1:ena); 
-subplot(2,1,1) 
°plot(aRPM, (x) ) .p-ot the a_.sj: Oacement _n x 
'• subplot (2,1,2) 
"plot (aRPM, ( (x . "'2 I y. A2) . AC . 5) ) "plot resolved displacement 
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APPENDIX D 

4D0F TIME DOMAIN MODEL 

function [xl,x2,yl,y2,delx,dely,Fs,dRPM]=mill_cant_RK_EU(b,Nl,N2,M, sweep) 

'cstif fness,mass, darping matrices 
mxl=3.3787; kxl=4728424; 
mx2=0.1; kx2=7e6; 
myl=4.5049; kyl=6304566; 
my2=0.1; ky2=7e6; 
cxl=450; cyl=450; 
cx2=450; cy2=450; 

tirx=3.3787; ,<x=3. €355e- 007; my=4.5049; -cy=7.5140e 007; J,phys..cal constants 
Ks=400; J-Ks=1500; 400 for aluminum 6061, 1500 for gray cast iron n/mm"2 

c=0.0254; 'omaterial removal rate mm/tooth (feed per tooth) 
'example: [xl, x2, yl, y2, aelx, dely, Fs, dRPK] -rnlichatt ̂ cantilever (2, 2501, 25C1, 2000000, ' up ' ) ; 
%in_tiai conait_cns 
dxl=0; dx2=0; dyl=0; dy2=0; i=0; 

dfi=pi/(2*160) ; itirresteps per toothpass --of-ANGLE HALVED FROM ORIGINAL 
°~dt=60/ (32C*K) ; 

if(N1==N2) 
dRPM=ones([l M+1])*N1; 

else 
dRPM=[Nl:(N2-N1)/M:N2]; 

end 

if length(sweep)==4 
dRPM=fliplr(dRPM); % run the sweep backwards 

else 
fsweep is up 

end 

t=zeros( [1 M]); 
Fx=zeros ( [1 M]); 
Fy=zeros ( [1 M]); 
ddxl=zeros ( [1 M]); 
dxl=zeros([l M]); 
ddx2=zeros([1 M] ) ; 
dx2=zeros([1 M]); 
ddyl=zeros([1 M] ) ; 
dyl=zeros([l M] ) ; 
ddy2=zeros([1 M]); 
dy2=zeros([1 M]); 
xl=zeros([1 M+l]); 
x2=zeros([1 M+l]); 
yl=zeros([1 M+l]); 
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y2=zeros( [1 M+l]); 
delx=zeros([1 M+l]); 
dely=zeros([1 M+l]); 
zoldl=zeros([1 M]); 
hlhistorical=zeros([1 M]); 
sdt=t; 
for n=l:M 

dt=60/(2*320*dRPM(n)) ; ">°,3--r at HALVED FROM ORIGINAL 
t (n+1) =t (n)+dt; *, storing tire steps. t(l)=n is the starting time 
fil=i*dfi; 
i=i+l; 
sdt (n)=dt; 
fatter 160 steps the positions of the teeth repeat 
if(i>160) 

i=0; 
ena 
^radial displacement z on every tooth _s obtained as the sun 
oof the projections of the displacements in x and y on the tooth radius 
%the factor 1000 is usee to obtain z in mm while x and y are in m 
zl=1000*(delx(n)*sin(fll)+dely(n)*cos(fil)); 

if(n<=160) 
"formulating chip thickness 
hl=c*sin(fil)-zl; zoldl(n)=zl; 

else 
hl=c*sin(fil)-(zl-zoldl(n-160)); 

end 
hlhistorical(n)=hl; 
fsee if the tooth is still in the workpiece 
if(hl>0) 

Fl=Ks*b*hl; 
zoldl(n)=zl; 

else 
F1=0; 
zoldl(n)=zl+hl; 

end 

oFx and Fy components 
Fx(n)=Fl*(cos(fil)+0.3*sin(fil)); 
Fy(n)=Fl*(sin(fil)-0.3*cos(fil) ) ; 

rthe accelerations in dax and ddy are proauced by forces Fx ana Fy and 
"displacemetns x and y are obtained by double integration 
ddxl(n+l)=(-Fx(n)-cxl*dxl(n)-kxl*xl(n))/mxl; 

if mod(n,2)==l 
dxl(n+l)=dxl(n)+ddxl(n)*dt; 
xl (n+l)=xl (n)+dxl (n) *dt; 

else 
dxl (n+l)=dxl (n-1) + dt* (ddxl (n-1)+4*ddxl (n)+ddxl (n+1) )/3; % -1% -'l%Runge Kutta 

method here 
xl(n+l)=xl(n-1) + dt*(dxl(n-l)+4*dxl(n)+dxl(n+1))/3; %-%%-i° -using current 

at as half the interval from t(n-l) to t (n-1) 
o"'%o i% o't if nonuniform 

time steps, this may intro. slight error 
end 

ddx2 (n+l) = (Fx(n)-cx2*dx2 (n)-kx2*x2 (n) ) /mx2; 

if mod(n,2)==l 
dx2 (n+l)=dx2 (n)+ddx2 (n) *dt; 
x2 (n+l)=x2 (n)+dx2 (n) *dt; 
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else 
dx2 (n+l)=dx2 (n-1) + dt* (ddx2 (n-1)+4*ddx2 (n)+ddx2 (n+1) )/3; %"„%%*t6%Runge Kutta 

method here 
x2 (n+l)=x2 (n-1) + dt* (dx2 (n-1)+4*dx2 (n)+dx2 (n+1) )/3; r.!S'.H".5using current 

dt as half the interval from t(n-l) to t(n-l) 
i?s«*ii? if nonuniform 

time steps, this may mtrc. slight error 
ena 

delx(n+l)=x2(n+l)-xl(n+1); 

ddyl (n+l) = (-Fy(n)-cyl*dyl (n)-kyl*yl (n) ) /myl; 

if mod(n,2)==l 
dyl(n+l)=dyl(n)+ddyl(n)*dt; 
yl(n+l)=yl(n)+dyl(n)*dt; 

else 
dyl (n+l)=dyl (n-1) + dt* (ddyl (n-1)+4*ddyl (n)+ddyl (n+1) )/3; %^°e'i%%Runge Kutta 

method here 
yl(n+l)=yl(n-1) + dt*(dyl(n-1)+4*dyl(n)+dyl(n+1))/3; °*%°%%"*using current 

dt as half the interval from t(n-l) to t(n-l) 
V-o ?•*%%•& if nonuniform 

time steps, this may mtro. slight error 
end 

ddy2 (n+l) = (Fy(n)-cy2*dy2 (n)-ky2*y2 (n) ) /my2; 

if mod(n,2)==l 
dy2(n+l)=dy2(n)+ddy2(n)*dt; 
y2(n+l)=y2 (n)+dy2 (n)*dt; 

else 
dy2 (n+l)=dy2 (n-1) + dt* (ddy2 (n-1)+4*ddy2 (n)+ddy2 (n+1) )/3; ro''%s« '.Runge Kutta 

method here 
y2 (n+l)=y2 (n-1) + dt* (dy2 (n-1)+4*dy2 (n)+dy2 (n+1) )/3; ^vU;?using current 

dt as half the interval from t(n-l) to t(n 1) 
r"s* + %'"-"'5 if nonuniform 

tine steps, this may mtro. slight error 
end 

dely(n+l)=y2(n+l)-yl(n+1); 

end 

Fs=0.5*1./(diff(t)); ORunga Kutta required half-time steps, this is generating the 
sampling frequency 
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APPENDIX E 

INTEGRATION TECHNIQUE 

This function demonstrates the integration technique used on the 4th order time domain 

model. The integration starts through time with Euler (rectangular) integration until 

several time steps have elapsed, and sufficient points are available to begin integration 

based on Runge Kutta techniques. It is proven that this technique is highly accurate 

compared to a rectangular-only technique and this can be demonstrated by using input 

functions such as sine and cosine. 

function xl=test_hybrid (ddxl, dt, initial_vel, initial__pos) 

M=max(size(ddxl)); 
dxl=zeros([1 M]); 
xl=zeros([1 M]); 
dxl (1)=initial_vel; 
xl(1)=initial_pos; 
for n=l:M-l 
if mod(n,2)==l 

dxl(n+l)=dxl(n)+ddxl(n)*dt; 
xl(n+l)=xl(n)+dxl(n)*dt; 

else 
dxl(n+l)=dxl(n-1) + dt*(ddxl(n-1)+4*ddxl(n)+ddxl(n+1))/3; %%1%%%?Punge Kutta 

method here 
xl (n+l)=xl (n-1) + dt* (dxl (n-l)+4*dxl (n)+dxl(n+l) )/3; ° >.%° > -%-susing current 

at as half the interval from t(n-l) to t(n-l) 
%--*% -•?%'- if nonuniform 

time steps, this may mtro. slight error 
end 

end 

end 
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APPENDIX F 

FORMANT FREQUENCY TRACKING FUNCTION 

f u r c t i o r [ f o r m a n t , numerator, d e n o m e n a t o r ] = f o r m a n t _ t r a c k e r ( i n p u t , F s , s t e p , w i n d o w _ s i z e , p , t h r e s h o l d ) 

e / . L n r r i - r , r L P i . r . r , J - r rer -it j r j - t i r r ir t _ t r d J c r f ' U *•' 1) , (1 i - l ) ] , H . t f ^ ^ ^ I f > , 1 , l 
r>_n a r t _ t - i - k ^ i t i - . * - or IPC A r i l j o i s 

t fo r i - i t [ I ^ n - i r ' b ] l o i T ^ r L ' r r k c i d r p . l , j i " ' T ^ i j " , b , t p , n r X ' ; ^ ^ ^ , p , t h r^b j l d ) 
v*r c x e , 

E i r p - i i r r - t s p ^ c i - v-r, o f o n , 
- d r c r s i c r irpu" - s i ? e , i r r u r r - r r o f SdTlc-^ . . 

• 3 t 0 p . 0 t ° p s r ° , i r i TbQi Q^ s a ^ p i ^ ; 
f / , r j c / _ _ s i 7 e f ^ a r r /ird^.*. s i 7 c , i r r u^bc-r c f s a ^ p T e s ; 

p . r - n x ^ i of LP o t f ^ i ^ r ^ , 
^ t t r r j i d a : " t r I ' t ' t o i ^ " a l J f jr o . ^ r a r . r L i j P _<- 5 *~ - i-" ^ r j-iir r-r T i ~ ' i t ' - 1 e j r^ i r i i d a t t 

f i o a *=•: " i d -s. 

a ; u r - j - d , i f i_o f ! F^Ft.' j 

num=l; 
dimension=length(input); 
dimension-window_size; 

f n i = l . s t e p : d i m e n s i o n - w i n d o w _ s i z e 
i f ( i < w i n d o w _ s i z e / 2 + l ) 

frame=input (abs (1 : i+wmdow_s ize ) ) , 
e l s o 

frame=input (round ( (num*step-window_size /2) :num*step+wmdow_size/2) ) ; 

foi k=l.p+l 
autocorrelation(k)=0; 
fcr 1=1:window_size-k 
autocorrelation(k)^autocorrelation(k)+frame(1)*frame(1+k-l); 
erd 
autocorrelation (k) =autocorrelation (k) /wmdow_size; 

erd 

t=window_size/2; 
fjr k-7t.-

l o r l - l . a i f c * s ^ z c - k 
i _ I (k ) - - i ^ l \MTfru-r--»U> * r - r " M l i V - ) ; 

e r d 
^ -r k)=a f ( k i w i f j o ^ ^ i " ° , 

<.rd 
n , i i j - i ix ( i ^ r (1( . t i i , 

* - p - i : rt , _ x , 

alpha=zeros(p,p); 
a=zeros(p,1); 
E=zeros(p,1); 
E(1)^autocorrelation(1) ; 
for i=l:p 

sum=0; 
tor 3=1:1-1 

if (i)>l 
sum=sum+alpha(],(i-l))*autocorrelation(abs(I-J)+1); 

erd 
erd 

k (i)= (autocorrelation(l + l)-sum)/E(i) ; 
alpha (l, i)=k (i) ; 
if i>l 

tor ]=l:i-l 
alpha(j,i)=alpha(],i-l)-k(i)*alpha(1-3,i-l), 

erd 
erd 
E(i+l)=(l-k(i)"2)*E(i); 
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var=E(l+l); 
erd 

for ]=l:p 
a (3)=alpha(j,p) ; 

erd 

f=[1 - a ' ] ; 
gain=0; 

p; 
fcr 1 =l:p+l 

gam=gain+f(i)*autocorrelation(i); 
erd 

gain; 
gam=gainA0.5; 

rootl=roots([1,-a']); 

mag_root=abs(rootl) ; 

arg_root=angle(rootl); 

k=l; 

tor ]=l:p 

if mag_root(j)>threshold 

if arg_root(j)>0 &&arg_root(3)<pi 

formant{num,k)=arg_root(3)/pi*(Fs/2) 

num; 

k; 

k=k+l; 

erd 

erd 

erd 

f tjj^l,, t 1 - U ' ; , , *F„', **,, lor i„ a l i . r 
numerator=l; 
denomenator=[1 - ( a ' ) ] ; 

f r f q z ( l , , ' i - U ' ) H , , * s ) 
s i t p ^ o t U , l , l j 

% pfer-eir t - -ri- (i r ' i t • ) , 
p ^ t i p t . n ir t (1, .) ) , 
^old 
rx't ( f ic i a r t u , .) x , 
r a fpf or-"drt ( j , -} ) ; 
t : lct (pfcr-^ri- { , .)) , 

•- I plot i , 1 , ) 

p ic t ( ( - l e r a t r i f rdTc t s t 1 b s . " & : ) , f r ^ r c ) 
p i , - 5 .CU1) 

% T - ivt f n t e - ( ' -f (u, ' C u i r - r r r ^ i r e ' ) ) , 
i ' i >1 - - i i 1 t i n ^ ( a ' ^ 5l3,D , 

num=num+l; 

erd 

s=size (formant); 

fcr i=l:length(formant) 

for j=l:s(2) 

if formant(1,i)==0 

formant(1,3)=NaN; 
end 

erd 
end 

formant=sort(formant'); 
time=[0.length(formant)-1]*step*l/Fs +2; 
Wn=[2]/(Fs/step); 
[b,a]-butter(2,Wn,"1?, ' ) ; 

1- p l j t (* i t 2 , lilt- J I (b,a, i . n a r t i l , ) j j ; 
bol^ a l l 

t p L t ( t x T c , ( II r (b,a,f^r-T^r t 1 " , * ) ) ) ; 
plcf ( t iTe, f 1 te r (b,a, f cT^r f P , . ) / ) , 
p lot (tiTP, f 1 1 t»i (b, a, fona i t ( , i i 1 , 
( p l a (fc rT-urt { ' , . ) ) ; 

wl „.. t n f I j n ) t 

t-g< r» 
op^-jt ( u i T i r t , ' b ' ) , 
""!_-• iai L-£" t ' l ' i i d i LM , 

plo^ (f I T S , -re r - ^ r t ( ! , . } , ' 
bo d a l l 
p lc t (t i r e , T r ^ r t 5/, : ! , ' . 
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p l o t ' t i t " , i 3 1 - a r t ( J , : ; , ' . ' ) ; 
c l c t {t-i r>=, f c r ^ t ( , : ) , ' . ' ) , 

plot- i f c - T i r t ( ; , : ) ' • , 

i .1 - 0 s - i ; 

Flo> i ^ l f i l t . io r - ra r* ( i , :) , [1 6<-] , ' &lj.Jj.r ' , S - t d ) ) ; 

r e t u r r ; 
end 



APPENDIX G 

FUNCTION TO CALL FORMANT FREQUENCY TRACKING AND PASS 
FORMANT FREQUENCIES TO STABILITY LOBE FUNCTION 

function [kx_hist]= formant2FRF(data, Fs) 

[formant, numerator, denomenator]=formant_tracker(data,Fs,1024,1024,10,0.01) ; 
plot(formant(1,:),'.'); 
hold all 
plot(formant(2, :),'.') ; 
plot(formant(3,:),'.'); 
plot(formant(4,:),'.'); 
pause (1) 
x=round(ginput(2)); 
formant=formant(:,x(1):x(2)); 
close 
figure 
hold 
for (ndx=l:length(formant)) 
[kx ky]=lobe_generator(formant(1,ndx), formant(1,ndx), 0.4135, 0.413, 0.04, 0.04); 
fwnx - formant(1,ncx)*2*pi; • rad/s 

c- kx - wnx"2 * 0.4135; % X/m 
'- <x hist (ncx) =kx; 

'opause(O.OCl) 
end 
figure 
plot(kx_hist) 
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APPENDIX H 

STABILITY LOBE FUNCTION, BASED ON [48] 

function [kx, ky] = lobe_generator(wnx, wny, mx, my, zetax, zetay) 

% clear all 
'- close all 
% clc 

c Define parareteis for x direction 

wnx = wnx*2*pi; " rad/s 
kx = wnxA2 * mx % K/rr 

% zetax = C.02; 

c Define parameters for y oirection 

wny = wny*2*pi; ° rad/s 
°- zetay - 0.02; 
ky = wnyA2 * my; f. N/n 
-5 Define specific force and force angle 
Ks = 750; % N/rar,A2 
beta = 68; -. deg 

% Define FRFs for two directions 
w = (0:0.5:2000*2*pi); * frequency, raa/s 
rx = w/wnx; 
FRF_real_x = 1/kx*(1-rx.A2)./((1-rx.A2).A2 + (2*zetax*rx).A2); 
FRF_imag_x = 1/kx*(-2*zetax*rx)./((1-rx.A2).A2 + (2*zetax*rx).A2); 
ry = w/wny; 
FRF_real_y = 1/ky*(1-ry.A2) ./ ( (1-ry.A2) .A2 + (2*zetay*ry) . A2); 
FRF_imag__y = 1/ky* (-2*zetay*ry) ./( (1-ry. A2) . A2 + (2*zetay*ry) . A2) ; 

% Convert to rar/N 
FRF_real_x = FRF_real_x*le3 
FRF_imag_x = FRF_imag_x*le3 
FRF_real_y = FRF_real_y*le3 
FRF_imag_y = FRF_imag_y*le3 

% Directional orientation factors for slotting 
mux = cos(beta*pi/180); 
muy = 0; 

°- Oriented FRF 
FRF_real_orient = mux*FRF_real_x + muy*FRF_real_y; 
FRF_imag_orient = mux*FRF_imag_x + muy*FRF_imag_y; 

% figure(1) 
% subplot(211) 
t plot(w/2/pi, FRF__real_onent) 
r= axis([0 1000 -7e-4 "*e-4]) 
% set(gca,'FontEize', 14) 
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% y l a b e l ( ' R e a l (mm/N)') 
% s u b p l o t (212) 
'; plot(w/2/pi, FRF__imag_orient) 
% axis("0 1000 -1.3e-3 1.3e-4]) 
% set(gca,'FontSize', 14) 
6 xlabel ( • f (Hz) ' ) 

' ylabel('Imag (mm/N)') 

i Determine valid chatter frequency range 
index = find(FRF_real_orient < 0); 
FRF_real_orient = FRF_real_orient(index); 
FRF_imag_orient = FRF_imag_orient(index); 
w = w(index); 

'"- Define average number of teeth m cut, Nt star 
Nt = 4; 
phis = 0; -r aeg 

phie = 180; 
Nt_star = (phie - phis)*Nt/360; 

% Calculate blim 
blim = -1./(2*Ks*FRF_real_orient*Nt_star); % mm 

'- Calculate eps_lon 
for cnt = 1:length(FRF_imag_orient) 

if FRF_imag_orient(cnt) < 0 

epsilon(cnt) = 2*pi - 2*atan(abs(FRF_real_orient(cnt)/FRF_imag_orient(cnt))) ; 
else 

epsilon(cnt) = pi - 2*atan(abs(FRF_imag_orient(cnt)/FRF_real_orient(cnt)) ) ; 
end 

end 

* Calculate spincle speeds for N = 0 to 3 
omegaO = w/(Nt*2*pi)./(0 + epsilon/2/pi); % rps 
omegal = w/(Nt*2*pi)./(1 + epsilon/2/pi); 
omega2 = w/(Nt*2*pi)./(2 + epsilon/2/pi); 
omega3 = w/(Nt*2*pi)./(3 + epsilon/2/pi); 

% figure(2) 
"5 subplot (211) 

% plot(w/2/pi, FRF_real_orient) 
5 axis([0 100C -Te-4 le-4]) 
°-~ set (gca, ' FontSize ' , 14) 
\ xlabel ('f (Hz) ') 
'•- ylabel (' Real (mm/N) ') 
o subplot(212) 

~s plot (oriegaO, blin) 
•; axis( [0 250 0 6] ) 
% set(gca,'FontSize', 14) 
° xlabel('\Onega (rps)') 
% ylabel ('b -lin} (ran)') 

"s figure 
plot(omega0*60, blim, 'b-', omegal*60, blim, 'b-', omega2*60, blim, 'b-', omega3*60, 
blim, 'b-') 
axis([0 15000 0 6]) 
set(gca,'FontSize', 14) 
xlabel('RPK') 
ylabel('b {lim} (mm)') 

%-logical (round (orrega3-omega2) ; 
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APPENDIX I 

Analytical Vibration Models to Explain Variation in Chatter Frequency During Tool-

Workpiece Cutting Engagement 

Introduction 

This section has been included to prompt future work in exploring the tool-workpiece 

boundary conditions associated with different cutting conditions for the purpose of 

postulating about the cause of in-cut drift of the chatter frequency. Interest in the 

boundary conditions of the cutting system are also relevant to entrance effects, not 

discussed in this dissertation. Further, it is a suggestion that future work explores the 

inclusion of various boundary conditions into the modeling effort, specifically, in 

formulating the equations of motion for the time domain model. The differences in 

boundary condition are shown to be a factor in the following derivations and can 

significantly affect the natural frequencies (hence chatter frequency predictions) of the 

system. This is a physical argument for why tap tests are insufficient to correctly estimate 

the natural frequencies since the boundary conditions during cutting are influenced by 

engagement with the workpiece material. 

The approach used in the time domain models is fixed-free assumption for the cutting 

tool with a complex forcing function between the workpiece and tool. While it is agreed 

that this approach captures behavior of the tool-workpiece interaction, it may be 

overlooking additional factors restricting the motion of the tool while it is engaged in the 

workpiece material. Although cutting force imposes a restriction on movement, the tool is 

in contact with the workpiece radially on both major and minor cutting faces, and the 
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rake face of the tool in contact with developing chips. It is the author's belief that this is a 

significant factor, particularly with the development of flank wear, which increases the 

non-cutting sliding material interface between the tool and workpiece material. It is 

possible that Columb damping effects become more pronounced as the interface friction 

increases. 

Modeling the Tool Support Configurations at the Tool-Workpiece Interface 

Transverse vibration in a beam is a classic topic for analytical vibration analysis and 

can be adopted to model the vibration of a cutting tool system. The typical approach 

assumes that the shear deformation in the beam is much smaller than the deflection so 

that the angular displacement of a differential element along the axis of the beam can be 

neglected and a small angle assumption is valid. In the elastic region at small deflections, 

this approach is acceptable and yields accurate results. A model of bending vibration can 

be derived for a cutting tool given the boundary conditions the cutting tool is subject to 

while it is engaged within workpiece material. 

The first step is to set up boundary conditions based on the tool fixation at both ends. 

A cutting tool is typically modeled as a Fixed-Free configuration so that the bending 

moment and shear force at the free end of the beam are zero. Based on the results of 

experimental and modeling evidence, the Fixed-Free boundary conditions may not 

accurately model the condition during cutting. The literature cites that a Fixed-Free 

supported cantilever has a first natural frequency of: 
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oo=-
3.5156 EI 

I2 - (1.1) 

where p is the tool mass density (mass/length), E is the modulus of elasticity, 

/ is the moment of inertia, and / is the overhang length. Given this equation, the 

point mass, denoted m , of the tool can be estimated: 

3EI 

3/3.5156 [El]2 , m = 0.243Lp (1.2) 
m = -

m- (27T/J V 

Figure II: Cantilever Coordinates 

Modeling the Workpiece-Engagement as a Pinned Boundary Condition 

A Fixed-Pinned condition is explored to more accurately explain the engaged cutting 

tool system. The boundary conditions of the fixed end, where w is deflection and x 

is the position longitudinally along the tool are given as: 

6 w 
w=0 and 

5x 
-=0 (1.3) 

At the workpiece-engaged (cutting) end of the tool holder, the boundary conditions 

are not as obvious. The cutting supports the tool holder similar to a pin and there is no 
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impedance to bending at the tool-workpiece interface. Also like a pinned joint, the cutting 

interface imposes a deflection restriction. Note: the author is proposing that a restriction 

to deflection may exist that is independent of the restriction imposed by cutting forces 

alone. Therefore, the boundary conditions for the cutting interface are: 

c2 

w=0 and EI^=0 (1.4) 

6x 

Where E and I are the material modulus and moment of inertia respectively. It is noted 

that the moment is zero at the cutting interface since there is no resistance to bending at 

this point. 

>~X 

Z7777 
Figure 12: Pinned Boundary Condition 

Application of Boundary Conditions into General Solution for Beam Vibration 

The boundary conditions can be adopted into the general form for vibration of a beam, to 

satisfy coefficient values and solve for system properties (i.e. mode shapes, natural 

frequencies, and displacement). According to Rao [55], the general solution for beam 

vibration takes the form: 
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X(x)=a] sin/Sx+fl2cos^x+a3sinh^x+a4cosh/Sx (1.5) 

2 

where ax...aA are coefficients of integration and /?4 = —— . jS relates density, 

EI 

area, and elastic properties of the material. Substitution of the fixed end boundary 

conditions into the general solution for position gives: 

X{l = 0) = 0;a2+a4 = 0 (1.6) 
and for the deflection, at 1=0 , the derivative of X is zero resulting in 

X{l = 0)=0;l3{al+a3) = 0 (1.7) 

Evaluating X at the end of the cutting tool (where x=l ) and applying the 

position boundary condition results in : 

X(x = /) = 0;a1sin/3/+a2cos/?/+a3sinh/3/+a4coshj3/=0 (1.8) 

Recalling the zero moment boundary condition at the tool-workpiece interface, the 

second derivative is taken to evaluate the moment boundary condition: 

EI X{x=l)=0;tf{-axs\npi-a2smpi+a^\nhpi + aAcos\ipi)=0 (1.9) 

These four equations are sufficient to solve for the coefficients by solving the determinant 

of the coefficient matrix: 
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0 
p 

sin pi 

1 
0 

COSJS/ 

0 
P 

sinh/?/ 

1 
0 

cosh 0 / 
- 0 2 s in0 / -02cosj8/ 02sinh0/ 02cosh0/ 

r 

« i 

a2 

a, 
a4 

= 

. . 
0 
0 
0 
0 

(1.10) 

The determinant can be solved using a calculator or symbolic mathematics toolbox. 

Setting the determinant to zero gives the characteristic equation tan/5/=tanh/$/ . This 

means that the solutions of pi that satisfy the characteristic equation relate to the 

modes of the system. With some additional algebra, the solutions for ai...a4 could be 

created, but this is not necessary unless mode shapes are of interest. For this discussion, 

the natural frequencies are interesting in that they show that the engaged cutting tool has 

different characteristics than the free ended cutting tool. Table 7.1 gives the solutions for 

PI in the Fixed-Pinned configuration. 

Table II: Values for Workpiece-Engaged Tool Holder Modeled as Fixed-Pinned 

PA 3.926602 

P2l 7.068582 

PJ 10.21018 

PA 13.35177 

PJ 16.49336 

Based on the relationship of P to the physical parameters of the tool, the natural 

frequencies can be evaluated based on PI . The fundamental frequency is given as: 

pco 
EI 

/4=3.9266024 
co = -

3.92660T \EI 

I2 

15.41819 \EJ_ 

V 
(1.11) 

The conclusions that are drawn from this are that the boundary conditions have a 

significant effect on the natural frequency of the system and they should be inspected in 
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higher detail. 

Modeling the Workpiece-Engagement as a Sliding Boundary Condition 

Repeating a similar process to the Fixed-Pinned boundary condition, the Fixed-Sliding 

boundary condition can also be evaluated. The boundary conditions of the fixed end are 

the same as previously, where w is deflection and x is the position longitudinally 

along the tool are given as: 

w=0 and ———0 
ox 

(1.12) 

Figure 13: Sliding Boundary Condition 

Unlike the Fixed-Pinned configuration, the end of the beam has a sliding condition 

instead of a pinned condition. The sliding boundary condition is restricted rotationally 

and no shear force exists since the tool is free to move linearly at the boundary. This 

results in boundary conditions of zero slope and zero shear force: 

5w-=0 and Mm*^ =0 (1.13) 
Sx <5x^ 5x% 

Repeating the same process to above, gives a set of pi values that can be used to 

calculate the natural frequencies of the Fixed-Sliding condition. Table 7.2 gives the 

227 



solutions for PI for the Fixed-Sliding configuration: 

Table 12: Values for Workpiece-Engaged Tool Holder Modeled as Fixed- Sliding 

PJ 2.365020 

P2l 5.497803 

PA 

PA 

PA 

8.639379 

11.78097 

14.92256 

Based on the relationship of P to the physical parameters of the tool, the natural 

frequencies can be evaluated based on PI . The fundamental frequency is given as: 

2.3650202 [EL 5.5933 [EI , T 1 / n =—r~iv -^^iv (L14) 

The sliding boundary condition may have more validity over the pinned boundary 

condition, since the bottom of the cutting tool is free to slide on the workpiece material, 

while the radial face of the tool is producing a forcing input from the cutting. 

Insight to the Tool-Workpiece Boundary Condition 

The results of investigating different boundary conditions for the tool-workpiece 

interface intimates the need for more attention to this area in chatter model construction. 

Two possible additional boundary conditions were discussed briefly to highlight the 

substantial influence boundary conditions present to this system, independent of forcing 

input. It has been shown analytically that there is a strong influence in the dynamics for 

deviations from the Fixed-Free boundary assumption that is often made in chatter 

models. The Fixed-Sliding boundary condition is closest to the observed change in 
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chatter frequency that occurs during a cut. However, this analysis of boundary conditions 

is only part of the picture and does not capture many real variables that exist in the 

cutting system. 

An important outcome of this analysis is the acknowledgment of these conditions 

and their potential effect on the system dynamics. The literature does not investigate 

these boundary conditions and they could be included in future work to provide a more 

comprehensive modeling approach that captures these effects. The author feels that it is 

important to investigate the boundary conditions and how they can be applied to any 

future modeling efforts. 
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