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ABSTRACT 

DEVELOPMENT OF ENGINEERING TOOLS TO ANALYZE AND DESIGN 

FLEXIBLE STRUCTURES IN OPEN OCEAN ENVIRONMENTS 

By 

Judson DeCew 

University of New Hampshire, May 2011 

Methods to effectively predict system response in marine settings are critical in the 

engineering design process. The high energy ocean environment can subject structures to large 

wave and current forces, causing complex coupled motions and loads. This research focused on 

the development of effective methods to predict flexible system response and the structural 

integrity of marine High Density Polyethylene (HDPE) components. Numerical modeling tools 

were developed to analyze and design flexible structures in open ocean environments. 

Enhancements to the University of New Hampshire's Aqua-FE finite element computer program 

were performed, including expansion of the element library to include spherical geometries and 

implementation of various hydrodynamic effects such as Stokes 2nd order waves and water 

velocity reduction due to component shadowing. Two case studies, involving laboratory and 

field experiments, were performed evaluating the software modifications and examining the 

response of flexible systems in various environmental conditions. Practical applications of the 

numerical model are presented, focusing on the design, analysis and deployment of a 

submerged grid mooring 10 km from Portsmouth, NH. The system was recovered after a seven 

year deployment and inspected. The numerical model proved to be a valuable engineering tool 
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for investigating a system's motion dynamics and mooring tension response in marine 

environments. 

High density polyethylene is a primary structural component for marine systems such as 

fish containment, wave attenuators and marine defense barrier systems. The fundamental 

engineering issues with the compliant HDPE material are associated with how the material 

changes its stiffness and strength depending upon the service life, load rate and temperature. 

Structural modeling techniques were developed to determine effective methods of analyzing 

marine systems constructed of HDPE. This included the investigation of the mechanical behavior 

of new and environmentally fatigued HDPE specimens, obtained from commercial fish farms, at 

different strain rates and validation of the modeling approach with laboratory experiments. The 

operational limits, loads and modes of a failure of the HDPE cage frame were estimated, 

providing valuable information on the survivability of these large, flexible systems in offshore 

environments. 
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CHAPTER 1 

INTRODUCTION 

Methods to effectively predict system response in marine settings are critical in the 

engineering design process. The high energy ocean environment can subject structures to large 

wave and current forces, causing complex coupled motions and loads. Most systems deployed 

in the ocean can be characterized as flexible, i.e. moored systems that can endure large 

displacements. Navigational buoys and moorings, oil platform risers, wave energy devices and 

aquaculture equipment are a few examples. Aquaculture farms present an ideal case study of a 

complex flexible system. They utilize traditional and modern equipment throughout the 

mooring and structural elements. Typical aquaculture moorings employ anchors, chain, rope, 

various shaped flotation, and surface or submerged fish cages throughout the water column 

(Figure 1.1). In these systems, fish cages are the largest structures in terms of water blockage, 

mass and buoyancy and typically dominate the mooring's dynamic and load response. These 

rigid or flexible net pens can be secured in grid arrays (Figure 1.1) or single point moored (Figure 

1.2). 
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Figure 1.1: The University of New Hampshire's submerged grid mooring with 4 fish cages. The bays of the 

mooring are suspended 18 meters below the surface and provide a platform for investigating various 

structures. The SeaStation™ fish cage has a steel central spar and octagonal rim. The net is tensioned 

between these components, forming a rigid structure. Ballast is suspended below the net pen to provide a 

restoring force to the net pen. Additional information on the grid mooring can be found in Chapter 7. 
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Figure 1.2: A single point moored Ocean Cage Aquaculture Technology (OCAT) fish cage is shown on left. 

On right: The OCAT is presented without the net chamber for clarity. 
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Aquaculture is an expanding worldwide industry of which the grow-out of finfish species 

represents an area of significant expansion (Food and Agricultural Organization, 2004). The vast 

majority of the world's finfish species are grown in surface gravity cages as seen in Figure 1.3. 

These systems consist of one to three buoyant rims, a net chamber and weights to retain the 

nets volumetric integrity (can be individual weights or weighted lower rim). Presently the 

majority offish farms are located in protected sites such as bays or rivers. Fish farmers in the 

sheltered sites are running into various environmental and multi-user conflicts as they try to 

expand their operations. As a result, the industry has begun to develop aquaculture farms in 

more exposed sites, but it is unclear how the existing equipment will be able to withstand these 

higher energy environments. Therefore understanding the characteristics of fish cage and 

mooring motion and load response is essential to minimize system failure and allow the 

successful stocking, grow-out and harvesting offish in an offshore environment. 

Weighted 
Lower rim 

Figure 1.3: A typical gravity fish cage. The net pen consists of an HDPE superstructure supporting a 

flexible net and a weighted lower rim. 
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High density polyethylene (HOPE) pipe is the primary structural component for fish 

containment. The use of HDPE as a structural member has also grown in other industries 

(docking material, wave attenuators, marine defense barrier systems, etc). It is advantageous 

because the components are relatively easy to fabricate and repair, the plastic has outstanding 

corrosion characteristics and the material is compliant and (historically) inexpensive. The 

fundamental engineering issues with HDPE are associated with how the material changes its 

stiffness and strength depending upon the service life, load rate and temperature. A better 

understanding of the structural integrity of HDPE components, specifically of pre-used material, 

is important as cage failure can result in a considerable loss of product. For example, according 

to the Directorate of Fisheries in Norway, 170,000 Atlantic cod (Gadus morhua) escaped in 2005 

It is known that the HDPE cage rim integrity loss was the cause of 30% of net pen failures in 

Norway from 2001 through 2006. This has significant impacts on the local environment and 

native fish species (possible cross-breeding) as well as economic consequences (loss of fish 

product). Knowledge of proper mechanical properties and weathering of HDPE material utilized 

in net pens can reduce rim failure and prevent fish escapement. 

Various other operational or research components may also be deployed throughout 

the farm: instrument packages, automatic feeding buoys or hoses, load cells, etc. These highly 

coupled systems have a unique dynamic motion response when loaded by currents, waves, etc. 

Therefore understanding not only the relative motion between components, as it may increase 

wear and component tension, but also how objects respond in changing water flow fields 

caused, in part, by blockage or shadowing effects of nearby structures is critical. 

This research develops and investigates engineering methods to predict flexible system 

response and the structural integrity of HDPE components. It was, in a large part, motivated by 

4 



the successful design, deployment and utilization of a submerged offshore mooring grid 

described in detail in Chapter 7. The use of the mooring as a research platform provided insight 

into the modeling process and technique that could be improved. Primarily these improvements 

focused on extension of the element library and improved modeling of the hydrodynamic 

effects. 

Updates and enhancements were introduced to the software package developed by the 

University of New Hampshire (UNH) called Aqua-FE. This program has been successfully 

employed to design and analyze various flexible marine structures, and has been calibrated with 

laboratory and field measurements (Fredriksson, 2001; DeCew et al., 2005; Risso, 2007). As new 

technology is employed offshore, the program has to be continuously upgraded and validated. 

Therefore, the software was enhanced by including spherical elements and various 

hydrodynamic effects such as Stokes 2nd order waves, shadowing effects and proper coefficient 

of drag values at high Reynolds numbers for flow around cylinders. Two case studies were 

performed to evaluate the software modifications and examine the response of flexible systems 

in various environmental conditions. Structural modeling techniques were developed to predict 

performance of HDPE components in marine. In addition, investigations into the mechanical 

behavior of pre-used HDPE specimens were performed. Tensile tests were conducted on 

specimens obtained from new and previously deployed HDPE structures at different strain rates 

to obtain the material's Young's Modulus and tensile strength at yielding. This research 

increased the numerical modeling capability and provided a better understanding of HDPE net 

pen response. Finally, a practical application of the knowledge gained from this research is 

presented and discussed. 
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Chapter 2 is dedicated to enhancement of numerical modeling techniques used in the 

design and analysis of flexible moored installations. A new spherical element type was 

incorporated into the Aqua-FE program increasing its versatility. Additional hydrodynamic 

effects were implemented into the software including Stokes 2nd order waves and water velocity 

shadowing effects. Cylindrical truss elements were upgraded to have more accurate coefficient 

of drag values at high Reynolds numbers. All of these enhancements to the software were 

verified by comparison to analytical calculations. 

In Chapter 3, the numerical drag force predictions of a spherical fish cage were 

compared to tow test field measurements of a similar structure, taking into account water 

velocities outside and inside the net pen. Chapter 4 presents the dynamic response of a small 

scale, rigid fish cage system, secured by a single point mooring. It was analyzed under a variety 

of water velocities. To insure accuracy of the results, the numerical model data was compared 

to physical scale model tow test data performed in the Jere A. Chase Ocean Engineering 

Laboratory. The validated numerical model was then utilized to investigate the net pen 

dynamics and mooring loads under currents. 

Chapter 5 is dedicated to the development of structural modeling techniques to analyze 

HDPE structures in marine environments. A finite element analysis of a circular HDPE frame was 

performed and compared to similar laboratory experiments. A localized failure modeling 

technique was proposed to simulate the load and mode of failure of the frame. The technique 

was then used to examine net pen frames under environmental forces typical for a farm located 

in Eastport, Maine. Field measurements of mooring loads were obtained and used as input. The 

cage frame stress was predicted and compared to the tensile strength. Additional analysis was 
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then performed to predict the failure envelope of the cage frame superstructure and the 

corresponding load and mode of failure. 

Chapter 6 focuses on the mechanical behavior of new and previously used HDPE 

material obtained from net pen frames from three fish farms located in the Faeroe Islands, 

British Columbia and New Hampshire. It is known that the material was subjected to several 

years of cyclic (fatigue) loading and exposure to the marine environment during regular service. 

Numerical modeling was employed to analyze the overall dynamic behavior of fish farms under 

various sea conditions and the stress within the structural HDPE fish cage components. The 

results were used to predict the material's strain rate, which helped identify displacement rates 

used in the laboratory testing. Uniaxial tensile tests were performed on the HDPE specimens 

fabricated from the new and previously deployed cage components. 

Chapter 7 presents a practical application of the numerical modeling approach 

presented in this dissertation. The design, analysis, and deployment of the University's offshore 

mooring grid is described, highlighting the importance of a thorough engineering approach. The 

submerged mooring, deployed for seven years, was recovered and inspected. A systematic 

review of the design is presented with a discussion of the system's successes and failures. 
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CHAPTER 2 

ADVANCEMENTS IN NUMERICAL MODELING 

This chapter presents advancements in numerical modeling techniques aimed at better 

prediction of the dynamic behavior of flexible marine structures subjected to wave and current 

environmental loading. These advancements have been implemented in the UNH developed 

software package Aqua-FE. This finite element analysis (FEA) program has the ability to simulate 

wave, currents and storm events acting on complex mechanical systems to predict motion 

dynamics and mooring loads (Gosz et al., 1997 and Tsukrov et al., 2003). An important feature of 

Aqua-FE is its ability to handle the non-linear dynamics associated with large displacements. The 

software is equipped with an element library developed for marine structures, which includes 

truss, stiffener, non-linear and net elements. Regular and irregular waves can be applied, along 

with a linear current profile. A more detailed description of Aqua-FE is provided in section 2.1.1. 

The enhancements of the Aqua-FE software include three major developments: 

expansion of the menu of elements, implementation of additional hydrodynamic effects and 

validation for new applications. 
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2.1 Previous Technical Work 

2.1.1 Numerical Modeling of Flexible Structures 

Computer models are extremely useful in analyzing flexible structures in open ocean 

environments. The models can be easily modified to account for different designs and a range of 

loading conditions. The two most common numerical modeling approaches to represent 

dynamic deformation of flexible structures are mass/spring and finite element analysis (FEA) 

models (Garett, 1982; Haritos and He, 1992; Webster, 1995; Gignoux and Messier, 1999; Gobat 

et al., 2001; and Tsukrov et al., 2000). In mass/spring models, components are discretized into a 

series of lumped masses, while the stiffness of the component is represented by the spring (Rao, 

2004). The lumped masses are assigned based on the component geometric and material 

properties. It is assumed that the internal and external forces are applied to the system at the 

lumped mass locations. Mass / spring models are relatively straightforward to develop, 

however, they can become cumbersome if the system is large and complex. In addition, 

modifying the spring values to represent a nonlinear response or have a bending stiffness can be 

difficult. 

In FEA models, a system is discretized into a series of simple geometric shapes 

appropriate for a particular structure (for example, line and/or quad elements). The material 

properties, element interaction and loads are expressed at the element nodes. Compared to 

mass/spring models, FEA can better simulate and more accurately predict the mechanics of a 

system, including taking into consideration Poisson's effect, nonlinear responses and, if needed, 

bending stiffness. Both mass /spring and FEA models can simulate nonlinear loads. However the 

implementation of non-linear effects such as partial submergence and material properties is 

typically easier in FEA. 
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Mass/spring and FEA models have been implemented in software packages developed 

by research and commercial groups. A majority of mass / spring models associated with 

aquaculture systems have focused on the hydrodynamic response of nets with applications to 

other areas (Lee et al., 2004; Li et al., 2006; Huang et al., 2006; Zhan et al., 2005; Lader et al., 

2006; etc). There are presently two commercial software packages used to analyze marine 

aquaculture systems, Orcaflex™ (http://www.orcina.com) and Aquastructures™ 

(http://www.aquastructures.no). Orcaflex™ is a mass spring model which employs the Morrison 

approximation (Morrison et al., 1950) for wave and current loading. The numerical procedure 

used in Aquastructures™ is not publically available. These software packages have been used to 

predict the system dynamic response, net deformations and tensions in the mooring lines. 

However, they are limited in their ability to estimate stresses in the structural components and 

to utilize the correct material models necessary to predict failure of cages. 

The UNH group developed an FEA software package that utilizes truss, stiffener, net and 

nonlinear elements to investigate mooring load and dynamic system response (Gosz et al., 1996; 

Swift et al., 1998; and Tsukrov et al., 2000). The program is based on the Finite Element Analysis 

Program (FEAP) originally programmed by Professor R.L. Taylor from the Department of Civil 

Engineering at the University of California, Berkeley. Hydrodynamic forces on the structural 

elements are calculated using the Morison equation modified to account for relative motion 

between the structural element and the surrounding fluid. Following Haritos and He (1992), the 

fluid force per unit length acting on a cylindrical element is represented as 

f = cIvWl +c2\Rl +c3v„ +c4\Rn, (2-1) 
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where V ^ and V f t are the normal and tangential components of the fluid velocity relative to 

the structural element (see Figure 2.1), Vn is the normal component of total fluid acceleration 

and \Rn is the normal component of fluid acceleration relative to the structural element. The 

coefficients in the formula above are given by C, = — pwDCnVRn, C2 =Ct, C3 = pwA and 

C4 = pwACa, where D and A are the diameter and the cross-sectional area of the element in 

the deformed configuration, pw is the water density, Cn and Ct are the normal and tangential 

drag coefficients. A value of one was used for the added mass coefficient (Ca) following the 

work of Bessoneau and Marichal (1998), however the value can be changed depending upon the 

shape characterisitcs. Note that Cn and Ca are dimensionless, while Ct has the dimension of 

viscosity. Equation (2.1) is known to adequately predict the hydrodynamic force on a submerged 

cylindrical element whose diameter is small compared to the wave length (Haritos and He, 1992; 

Webster, 1995; Tsukrov et al., 2000). 

Figure 2.1: Relative fluid velocity components acting on a cylindrical element. The n and t subscripts 

represent the normal and tangential directions, respectively. 
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The numerical procedure calculates Cn and Q, using a method described by Choo and Casarella 

(1971), that updates the drag coefficients based on the Reynolds number (Re„) according to, 

8;r 
•(l-0.87s"2) (0<Re„<l) , 

Re„s 

C„ =\ 1.45 + 8.55 Re;090 ( l<Re„<30), (2.2) 

l.l + 4Re;050 (30<Re„<105) 

Ct =^//(0.55Re|!
/2 + 0.084 Re2/3) (2.3) 

where Re„ = pwDVRn\' fj., s = -0.077215665f ln(8/Re„) and //is the water viscosity. 

The Aqua-FE element library consists of truss, truss with non-linear material properties 

(referred to as "nonlinear" in this document), stiffener, net and spherical elements. At the 

beginning of the research described here, however, the spherical elements were not 

functioning. The truss and non-linear elements are subjected to normal and tangential 

components of hydrodynamic loading and experience four types of force: buoyancy forces due 

to fluid displacement, dynamic forces due to the motion of the element with respect to the 

fluid, gravity forces and point loading. A stiffener element is a "specialized" truss element that 

has the following properties: 

Possesses high stiffness (Young's Modulus) 

Can experience point loading 

Is not subject to buoyancy forces due to fluid displacement 

Is not subject to dynamic forces due to relative element and fluid motion 

Is not subject to gravity force 

Possesses zero mass and does not contribute to inertia forces 
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The incorporation of stiffener elements into Aqua-FE was necessary as there are no beam 

elements in the software program. Truss members have six degrees of freedom with endpoints 

characterized by pin attachments, so in certain formations, structures made of these elements 

will collapse upon themselves without the addition of stiffeners for stability. 

One element unique in representing aquaculture systems, developed specifically for the 

Aqua-FE software, is the consistent net element. Direct numerical modeling of the nets can 

require an excessive amount of computational capacity if every twine is represented. The 

consistent net element (Tsukrov et al., 2003) was developed to address this issue enabling the 

use of fewer elements, but maintaining (1) fluid drag, (2) inertia, (3) buoyancy, (4) weight and 

(5) elastic forces. The consistent net element approach allows the net structure to be modeled 

using fewer elements than straight geometric modeling, necessary to accurately model net 

panels while sustaining computational efficiency. The final element that was originally 

developed but not implemented or verified in the software was the spherical element. More 

information on this element type is presented in section 2.2. 

To understand portions of the enhancements presented in this chapter, it is important 

to have an understanding of Aqua-FE's operating procedure. The underlying code is a general 

purpose finite element program (see Appendix A for more information). Subroutines, such as 

the fluid-structure interaction, were added into the base code. The resulting program requires 

the mesh geometry, element and nodal connectivity and material property and fluid loading 

information. This data is stored in three main files: model structural and connectivity data file 

(*.out), material property and fluid data file (*.opt) and the I/O information file (feap.in). 

To analyze a system in Aqua-FE, first the finite element mesh is created in a standard 

FEA package such as MSC.MARC / MENTAT. This mesh is then exported and processed in the 



preaquafe subroutine, obtaining the model's nodal and element connectivity and boundary 

condition data (forming the *.out file). The *.opt file contains the material properties, fluid 

loading, numerical time steps and controls various operating MACRO'S (a MACRO is a sequence 

of commands, discussed in greater detail in Appendix A). Note that the following material 

property data is required: the effective density, defined as the total mass of the item divided by 

its volume (kg/m3), the Young's Modulus (Pa) and the cross-sectional area of the element (m2). 

Net elements are the exception, requiring a fourth input parameter. This value is geometrically 

calculated and allows the program to model netting members with respect to their solidity 

(Tsukrov et al., 2003), where solidity is the ratio of the projected area to the outline area. Finally 

the I/O information file contains data on the file location of the input data and provides the 

name of the file where the results of the simulation are to be stored. 

Aqua-FE has been extensively used to study a variety of different marine systems and 

has compared well with physical model testing and in-situ experiments for different structures 

and mooring configurations (DeCew et al., 2005; Fredriksson et al., 2005a;, Tsukrov et al., 2003; 

Fredriksson et al., 2003). More information on the software can be found in Tsukrov et al. 2005. 

2.1.2 Hvdrodvnamic Fluid-Structure Interaction 

The primary forcing mechanisms of flexible oceanic structures are wind, waves and 

current. The focus of this dissertation is aquaculture systems, which have a vast majority of their 

structure below the waterline. Therefore wind forcing will not be considered. Waves can be 

represented using a variety of methods, such as Airy wave theory, non-linear waves, etc. Fluid 

drag forces, associated with current, have been extensively studied and are relatively 

straightforward to predict (see, for example, Hoerner, 1965). There are three primary 

hydrodynamic methods to simulate the structures response to these forcings: undisturbed 
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hydrodynamic loading, loading with approximate representation of shadowing effects (through 

empirically derived coefficients), and fluid flow analysis based models. 

In undisturbed hydrodynamic loading (non-interactive) models, it is assumed that 

presence of elements does not influence the water flow or wave parameters. Component 

shadowing (blockage), surface wave effects due to waves breaking on structures, wave creation 

by the structure, and alteration of the wave or current path are not included. The majority of 

these models use Airy wave theory (see, for example, Dean and Dalrymple, 1991) and a 

modified version of the Morrison equation (Morrison et al., 1950) to represent the wave and 

water velocity induced drag on the component (Tsukrov et al., 2003; Li et al., 2006; Ladar and 

Fredheim, 2003; Huang et al., 2006; etc). Some models use different wave loadings, such as 

Stokes 2nd or 5th order approximations to represent the wave parameters (Fenton, 1985; 

Rahman, 1998). 

The non- interactive hydrodynamical models can be modified to allow component 

shadowing. Fredriksson et al. 2007a used measured velocity reductions within a system to 

investigate the tension response within a 20 cage near-shore farm. The tidal current was 

reduced as it progressed through the farm, decreasing the drag force on in-line cage systems. 

The results of the analysis compared well with field measurements. However, all altered water 

particle velocity values used in this approach must be pre-determined. 

Fluid flow analysis based models account for the structure's influence on the 

surrounding fluid. As systems become larger, they may affect the local wave and water velocity 

path and/or magnitude (Patursson, 2008). Fredriksson et al. (2008) preformed preliminary 

diffraction analysis using analytical methods to investigate the flow around a closed 

containment (i.e. floating tanks) fish farm. Lee (1995) presented a method for analysis of large 
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offshore structures where wave diffraction may be found. Other diffraction models can be 

found that model wave run-up on structures (Issacson and Cheung, 1994) or the diffracted wave 

properties (Lee and Kim, 2006; Clark et al., 1991). However, presently these programs are not 

computationally efficient for the modeling of large porous flexible systems. 

2.2 Numerical Model Enhancement. Incorporation of Spherical 

Element 

Spherically shaped elements are commonly used in marine engineering. These can be 

floats suspending gear at or below the surface, weights used to provide a restoring or damping 

force, or a rigid fairing material built around a structure to reduce its drag. From an engineering 

perspective, a sphere is ideal in that it has uniform drag characteristics regardless of the fluid 

flow direction. Since this shape is so prevalent in marine environments, the first enhancement 

of the Aqua-FE software was the incorporation of a spherical element. In 2004, the element was 

created for the software based upon flow around a sphere (Kestler, 2004). Portions of the 

operating code for the element were generated but not completed or incorporated into the 

software. In this work, an effort was made to implement the element, validate it, and develop 

operating protocols to insure proper use of the element. 

2.2.1 Drag Forces on Spherical Element 

A submerged spherical body, under dynamic flow (or motion) can have five force 

components acting upon it: gravity, mass inertia, buoyancy, fluid drag and fluid acceleration. 

The gravitational force is constant, the mass inertia force component is dependent upon the 

unit's acceleration and the buoyancy on the submerged volume. The fluid drag and acceleration 

forces change depending upon the relative motion between the fluid and the spherical body. 
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The dynamic fluid force contributions acting on a submerged spherical body are similar to the 

forces acting on cylindrical element: 

f i=C1V s+C2V + C3Vfl (2.4) 

where 

C^i/^QlV.-V,}! (2.5) 

C2=PWV (2.6) 

C,=PwVCm (2.7) 

where Cd is the drag coefficient, Cm is the added mass coefficient, A is the buoy cross-sectional 

area, V is the buoy volume, and pw is the mass density of the fluid. Bold faced letters represent 

vectors: fb is the total force on the buoy, V^ is the relative velocity, V is the total acceleration, 

and \R is the relative acceleration. The primary difference between equations 2.1 and 2.4 is 

the lack of tangential drag acting on the sphere. To insure accurate drag force values, the 

numerical procedure in Aqua-FE updates the coefficient of drag for each element at each time 

step. The coefficient of drag is a function of the Reynolds number (Re), defined as: 

Re=?^ (2.8) 

where d is the characteristic diameter, U is the water velocity, and u. is the fluid dynamic 

viscosity. The relationship between the coefficient of drag and Reynolds number has been well 

established (see, for example, White, 1999 or Berteaux, 1991), and is shown in Figure 2.2. 
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Figure 2.2: Dependence of drag coefficient of a sphere on Reynolds Number. Obtained from Donley, 1991. 

At Reynolds numbers less than one the drag coefficient curve is generated by Stokes law 

(1851), described as: 

24 
Q = —, Re < 1 

Re 
(2.9) 

This relation assumes that the sphere is smooth and the primary drag on the body is the surface 

drag associated with the spherical body's boundary layer. At Reynolds numbers greater than 1, 

flow seperation is initated, and pressure drag is formed. The coefficient of drag for smooth 

spherical bodies in this region was determined experimentally. Several obervations of the curve 

can be made: 

• The drag coefficients are relatively constant between Reynolds Numbers of 104 to 105. 

• At Reynolds numbers greater than 4 x 105, the coefficient of drag has a significant 

reduction, decreasing to approximately 20% of its previous value. This drop occurs at 

the "critical" Reynolds number, where the boundary layer becomes fully turbulent and 
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the location of flow seperation moves back. Generalized regimes of the curve near the 

critical Reynolds number are shown in Figure 2.3. 

The drag coefficient rebounds and levels off at Reynolds numbers greater than 107. 

Critical 
Super + Upper 
Critical Transition 

Subcritical 

CH 

Transcritical 

Re 

Figure 2 3' A schematic of the change of the drag force in the critical range of Reynolds numbers. Adopted 

from "Hydrodynamics around cylinder structures" by M Sumar and J Fredsoe. 

This reduction in drag coefficient can have significant implications for the dynamics of a 

spherical body and, therefore, needs to be properly implemented in the Aqua-FE software. The 

following approach has been proposed by DeCew et al. 2010 to represent the coefficient of 

drag. The curve is divided into five sections, with each section approximated by linear or 

exponential functions, with a continuity condition imposed: 

30.824i?e~° 8 4 6 5 + 0.4347, 0 < Re < 3.803 • 10s 

-9.222 • 10~6(Re - 4.3025 • 105), 3.803 • 10s < Re < 4.165 • 105 

Cn = t 0.0928 + 0.8 ( e ( 1 - r i ^TI^ ) ) , 4.165 • 105 < Re < 1.259 • 106 (2.10) 

0.1488 (1 - ei286io<A, 1.259 • 106 < Re < 108 
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Figure 2.4 presents the analytical curve given by (2.10) compared to the experimentally 

measured drag coefficient values. Formulae (2.10) have been implemented in the program 

Aqua-FE together with the updated formulation of the sphere element. 

103 

102 
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73 
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10 2 1 0 ' 10° 101 102 103 104 105 10° 107 108 

Reynolds Number 

Figure 2.4: Drag coefficients for a sphere. The experimental values are compared to equation (2.10). 

Experimental values were obtained from Hoerner (1965) and numerical approximation by DeCew et al., 

2010. 

2.2.2 Validation for Buoyancy and Node Assignment Scheme 

With the spherical element incorporated into the Aqua-FE software, proper use and 

output results of the element, specifically the location of the mass and buoyancy contributions 

of the element, were then verified. The Aqua-FE program utilizes 2 node elements for the 

assembly of the finite element mesh (Tsukrov et al., 2000). Therefore, to incorporate the 

spherical element into the software, it must also have 2 nodes. All the mass and buoyancy 

characteristics of the element are lumped around a single node (referred to as the active node). 
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The current and wave forces are applied to the same node. The second node of the element 

(connecting node) has no sphere properties associated with it and is used strictly for the 

element connectivity. This set-up can be seen more clearly in Figure 2.5. 

\ 
\ 

» \ Representation of 
I sphere surface 
/ 

/ 
/ s 

' x Active Node 

y 

Truss element 

Connecting Node 

Figure 2.5: The spherical element consists of two nodes: the active node where the mass and 

characteristics are applied, and the connecting node. 

Since the sphere's geometric and material properties are located at one node, the 

underlying truss element does not have any stiffness. Thus, a second truss element must be 

added in order for the sphere to retain its position relative to the other elements in the model. 

It is important to note that the sphere material property information supplied to the *.opt file is 

different from that of a truss element. The spherical element only requires the effective density 

(similarly defined as the total mass of the sphere divided by its volume) and diameter 

information. An example of the *.opt file is shown below. In this example, the material set 2 is 

the spherical element. The effective density (set to be neutrally buoyant, 1025 kg/m3) and 

diameter (0.5000 m) were set. A full *.opt file containing the description of required input 

properties is presented in Appendix A. 
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MATE 
1 1 Cylindrical 

Truss 
0 9.8062 1 1.037E+03 1.172E+09 1.075E-01 

2 2 Sphere 
0 9.8062 1 1.025E+02 5.000E-01 

To insure the element was properly incorporated into the software, a simple numerical 

study was initiated for which the drag of a sphere was investigated. A sphere was placed mid

way on a rope, fixed at both ends, and subjected to an inline steady water velocity (Figure 2.6). 

The model was comprised of 6 nodes and 6 elements (the sphere and a truss element overlap). 

The material and geometric properties for this model are shown in Table 2.1. The output rope 

tensions were monitored to verify the sphere location and monitor any possible influence of the 

underlying truss element's connectivity on the output results. The system was subjected to 10 

cms"1 constant-with-depth water velocity. 

Table 2.1: The geometric and material properties of the spherical element mode assignment verification 

model. 

Component Parameter Value 

Effective Density 1025 kg/m3 

Line Young's Modulus 1.0xl09Pa 

Cross sectional Area 1.0 x 10"2 m2 

Sphere Effective Density 1025 kg/m3 

Diameter 0.5 m 

The boundary conditions and element's geometric and material properties were identical for 

each load case. Three geometrical arrangements of the system were considered: 

• Case 1: The sphere located at the 3rd node in the mesh. 

• Case 2: The sphere located at the 4th node in the mesh. 
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• Case 3: Similar to load case 2, except that the underlying truss element's connectivity 

was reversed. 

Together, these investigations examined the location of the sphere (in relation to the active and 

connecting nodes selected during the mesh construction) and the influence of the underlying 

elements connectivity. 

Water Velocity 

<=> /V™/7 

Sphere 

Line Line 

7 7 ^ 7 7 

Case 1 

Sphere element 1st node 

\ 
Sphere element 2nd node 

Case 2 

Sphere element 2nd node 

\ 

-V 
Sphere element 1st node 

l i n e 

I buoy 

Case 3 

Sphere element 2nd node 

\ 

' - \ ' 
Underlymgtruss element Sphere element 1* node 
rotated 

Figure 2.6: A sphere was placed in line of a rope and analyzed under a constant with depth water velocity 

(top). The cases were investigated where the sphere's active node was moved and the underlying 

elements connectivity reversed. 

The output tension results for the elements are shown in Figure 2.7. It can be seen that 

the sphere is located at the 1st node of the elements connectivity (active node). In addition, the 

connectivity associated with the truss element used with spherical element did not influence the 

model's output tension results. 
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Case 1 
0 2853N 0 2853N -0 1902N -0 19O2N -0 1902N 

\ 
Buoy Location 

Case 2 
0 1902N 0 1902N 0 1902N -0 2853N -0 2653N 

Buoy Location 

Case 3 
0 1902N 0 19O2N 0 1902N -0 2853N -0 2853N 

1 Buoy Location 

Figure 2.7: The output tension results from the elements. The tension values are shown above the FEA 

mesh. 

With the proper location of the sphere known, the buoyancy output of the element was 

verified. A model consisting of a fully submerged spherical float connected to a line was created 

and tested in Aqua-FE. The sphere was connected to the line via a stiffener element. The model 

can be seen in Figure 2.8. The geometric and material properties are shown in Table 2.2. 
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Buoy element 1st node 

Stifftrter element 

Buoy element 2nd node 

/Z%7 

Figure 2.8: A buoyant spherical float placed at the end of a line (left) was modeled in Aqua-FE (right). Note 

that the buoy and stiffener elements overlay each other in the Aqua-FE model. 

Table 2.2: The geometric and material properties of the spherical element buoyancy verification model. 

Component Parameter 

Line 

Sphere 

Value 

Effective Density 
Young's Modulus 
Cross sectional Area 
Length 

Effective Density 
Diameter 

1025 kg/m* 
1.0xl09Pa 
1.0x10 
0.25 m 
1.0xlO"6m2 

1025 kg/m3 

0.5 m 

The steady state output tension in the line was compared to analytical values. The results of this 

analysis are shown in Figure 2.9. Note that for the purpose of this research, the "steady state" 

portion of the output does not include the system's initial transient response or deformation. It 

can be seen that the numerical prediction and analytical calculations were within 0.06%. The 

response of the spherical element for various levels of submergence was also verified by 

considering 4 levels of submergence: 100% (fully submerged), 75%, 50% and 25%. For all cases, 

the buoyancy forces in still water were found to be as expected from static equilibrium. 
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Figure 2.9: The output line tension results. The transient and steady state tension regions are also shown. 

2.2.3 Comparison of Truss and Sphere Elements. Behavior under 

Currents and Waves 

Once the element was fully implemented in the software, a comparison study was 

initiated between spherical and cylindrical shaped flotation members. These shapes are the 

dominant flotation geometries for marine applications, thus understanding their dynamic 

response under currents and waves is important. 

Three load cases were analyzed using two numerical models. First, a comparison of the 

surge (horizontal) motion and mooring line load response was performed. The line and float 

models, constructed in Aqua-FE, are shown in Figure 2.10. Each assembly was assembled using 

101 elements and 102 nodes. Buoyant steel spherical and cylindrical elements, having similar 

projected areas and volumes, were placed at the top of separate line arrays. The centers of both 

buoyant elements were placed at the waterline. 
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Figure 2.10: The truss and spherical floats were modeled using similar mooring lines in Aqua-FE. The 

deformed geometry is shown for the 1 m/s water velocity as an example. 

The geometric and material properties of the model are shown in Table 2.3. The tension 

at the base of the line (adjacent to the fixed boundary condition) was recorded for comparison. 

The horizontal displacement of the float was also monitored. The models were analyzed in eight 

constant-with-depth currents ranging from 0 to 1 ms"1, in 0.125 ms'1 increments. The output 

mooring tensions and deflections of the floats are given in Table 2.4. 

Table 2.3: The truss and spherical element dynamic behavior models geometric and material properties. 

The effective density is defined as the mass divided by the volume enclosed by the outside surface. 

Component Parameter 

Line 

Sphere 

Cylinder 

Effective Density 

Value 

1025 kg/m 
Young's Modulus 

Cross sectional Area 

Effective Density 

Diameter 

Effective Density 

Young's Modulus 

Cross sectional Area 

Length 

2.0xlOuPa 

1.0 x 10"6 m2 

100 kg/m3 

0.25 m 

100 kg/m3 

2 .0x l0 u Pa 

3.27 x 10"2 m2 

0.25 m 

27 



Table 2.4: The output model tension results from the sphere and cylindrical float behavior response 

investigation. 

Current 

(ms1) 

0 

0.125 

0.25 

0.375 

0.50 

0.625 

0.75 

0.875 

1.00 

Sphere 

Mooring 

Tension 

(N) 

74.209 

74.214 

74.229 

74.228 

74.267 

74.348 

74.492 

74.726 

75.077 

Float Model 

Horizontal 

Deflection 

(m) 

0 

0.005 

0.021 

0.047 

0.082 

0.127 

0.182 

0.245 

0.317 

Cylin 

Mooring 

Tension 

(N) 

74.209 

74.208 

74.189 

74.104 

73.879 

73.418 

72.630 

71.451 

69.872 

ider Float Model 

Horizontal 

Deflection 

(m) 

0 

0.020 

0.077 

0.173 

0.304 

0.468 

0.659 

0.865 

1.078 

It can be seen that the sphere and cylindrical floats have a similar mooring tension for a 

majority of the applied water velocities. As the water velocities increase, however, the spherical 

float has more tension in the line. This is a result of the cylindrical float changing its orientation 

to the water flow, reducing the projected area normal to the applied current. It is interesting to 

note that at the higher water velocities, the spherical float has approximately 70% less 

deflection, due mostly to the lower coefficient of drag. 

Understanding the differences in the dynamics of a spherical versus cylindrical shaped 

object in the ocean is also important. Therefore, the response of a similar buoyant sphere and 

cylinder was investigated under regular and irregular waves. A similar model to that used for 

the steady current flow analysis was employed, however two modifications to the model were 

made: (1) the water depth and line lengths were increased from 2 meters (nominal) to 10 

meters and (2) the Young's Modulus of the line was changed from 2.0 x 1011 Pa to 2.0 x 109 Pa. 

The centerline of each float remained at the waterline. The model is shown in Figure 2.11. 
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Figure 2.11: The models constructed in Aqua-FE to analyze the spherical and cylindrical floats response in 

waves. 

Two wave regimes based on Airy wave theory were then applied to the model. Regular 

waves having a height of 1 meter and period of 5.64 seconds were first applied. Then, an 

irregular wave field, represented by a Joint North Sea Wave Project (JONSWAP) spectrum, 

having a significant wave height of 1 meter and dominate period of 5.64 seconds was generated. 

The analytical expression for the spectrum, GJ0NSWAP, modified by Goda (1985), is: 

GJONSWAPU) = aHiT-*r5exp[-1.25(Tpfy*}AY 

Y = e R V - 1 ) 2 ^ 2 ] 

a 
0.0624 

0.23+0.0336y-0.185(1.9+A)-

a = Ubf>ft t) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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where Hs is the significant wave height, Tp is the dominate period, fp is the frequency at the 

spectral peak (1/TP), and a and X are shaping parameters used to adjust the height and width of 

the peak of the curve. More information on the generated wave spectrum used in this analysis 

can be found in Fredriksson et al. 2003. The output mooring line tension was recorded for this 

analysis and is presented in Figures 2.12 and 2.13. 

Spherical and Truss Float Tension in 1 meter, 5 64 sec waves 
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Figure 2.12: Element tension results of the model under 1 meter, 5.64 second waves. The full time series 

is shown on left, a 20 second section of the data is presented on right. 

Spherical and Truss Float Tension in Hs = 1 meter Tp = 5 G4 sec random waves Spherical and Truss Float Tension in H = 1 meter Tp = 5 64 sec random waves 

- Line Tension with Buoyant Sphere 
- Line Tension with Buoyant Cylinder 

Figure 2.13: Element tension results of the model under an irregular wave field having a significant wave 

height of 1 meter, and dominate period of 5.64 second waves. The full time series is shown on left, a 40 

second section of data on right. 
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The models were run for 100 and 200 seconds in the regular and irregular waves, 

respectively, to allow the system to enter a steady state load response. The following 

observations can be made from the results: 

• The spherical float consistently has larger initial peak loads associated with the float's 

initial response to the waves. 

• This force is amplified up to a factor of three in the irregular waves. 

• One explanation of the differences in the mooring line tension results is the waterline 

location and the concentrated buoyancy around the center of the spherical element. 

The truss element's buoyancy is distributed along its length, thereby generating linear 

change in tension response as the surface elevation rises or falls. However, the spherical 

float has the majority of its volume (and thus buoyancy) around its center. Thus small 

changes in water surface elevation significantly changes the buoyancy forces in the 

mooring. 

2.3 Numerical Model Enhancement. Implementation of 

Hvdrodvnamic Effects 

Gravity waves are a dominate forcing parameter in the marine environment. Therefore 

it is important to properly describe these in the Aqua-FE software. Most numerical models use 

Airy wave theory to describe the wave motion (Airy, 1845). Airy waves have the following three 

general properties: 

• The wave surface is a two-dimensional simple harmonic wave, 

• The theory is based on irrotational flow of an inviscid, incompressible fluid, 
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• Current may be superimposed to determine fluid velocity. 

Two primary assumptions of the theory are that the wave height is assumed to be small 

compared to wavelength and the fluid depth is assumed to be uniform. Aqua-FE was originally 

developed to utilize this linear, small amplitude wave theory for regular and irregular waves. In 

an effort to expand the dynamic loading scenarios, Stokes 2nd order waves were incorporated 

into the software. The governing equations were first written into the program. Then the output 

surface elevation was verified. Finally, error checks were incorporated to ensure proper use of 

the subroutine, for example, by not allowing super positioning of multiple Stokes 2nd order wave 

frequencies. 

2.3.1 Wave Theory 

The Aqua-FE software has the capability to generate waves based upon linear, small 

amplitude wave theory (see, for example, Dean and Darymple, 1991) to approximate regular 

and irregular wave characteristics. According to this theory, the surface elevation, r\, of small 

amplitude, linear waves is given by 

T] = - cos(kx - at) (2.15) 

where H is the wave height, k is the wave number, x is the horizontal position, a is the radian 

frequency, and t is time. Following small amplitude wave theory, the velocity potential, (|>, is 

, H a cosh[fc(7i+z)] . , , ... ._ „_. 

cb = — . .,, ^ sm(kx - at) 2.16) 

where h is the water depth and z is measured from the surface (positive upward), which is used 

to obtain the x and y components of the water particle velocity vector according to u = 
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— - ^ and w = — rr-, respectively. The relationship between the wave number and radian 
dx dz 

frequency (dispersion relation) is 

a2 = gktanh(kh) (2.17) 

Taking the derivative of equation (2.16) with respect to the horizontal direction, x, results in the 

horizontal water particle velocity, u: 

H gk cosh[fc(7i+z)] , . .. , - . . .„v 

u = \\, ^ cos(kx - at) 2.18 
2 a cosh(fch) y J v ' 

where g is the gravitational constant. Similarly, the vertical water particle velocity can be found 

by taking the derivative with respect to the vertical direction, z: 

w=-(T—. .,, h. sin(kx - at) 2.19 
2 sinh(kAi) v ' l ' 

The horizontal and vertical water particle accelerations can also be determined by 

taking the derivative of the water particle velocities in the horizontal and vertical directions: 

du H 2 cosh[k(/i+z)] . , - • . - * ,-, -,n\ 

~r — ~ o — . ' , _ , sinf/cx - at), 2.20) 
dt 2 sinh(fch) \ •>• \ ' 

dw H 2 sinh[k(7i+z)] , , ... , . . . . 

— = — a 1 — . .,,,_/ cos(kx - at). 2.21) 
dt 2 s nh(fch) v J v ' 

These equations are required by Aqua-FE software to determine the forces acting on the 

finite element mesh. Note that irregular waves in Aqua-FE are modeled as a superposition of 

sinusoids with different wave amplitudes (a), radian frequencies (a), and phases (e), so that 

n(t) = E"=i On cos(ant - cn) (2.22) 
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where N is the number of sinusoids, an are regularly spaced radian frequencies, and sn is a 

random number. 

The software requires similar parameters to calculate the surface elevation, horizontal 

and vertical water particle velocities and accelerations to properly implement the Stokes 2nd 

order waves (see, for example, Dean and Darymple, 1991). Using a perturbation approach, the 

velocity potential and surface elevation can be shown to be 

, Hg cosh[k(h+z)] . , . .. 3 r r 2 cosh2[fc(h+z)] . „ , . .. ;-,.,.,> 
(b = — •;, ^ sm(kx - at) Hza—, ' \ N sin2(fcx - at) 2.23 
Y 2a cosh(fcfc) v J 32 sinh4(feh) v J \ i 

x\= ^ c o s ( k x - a t ) + ^ g ^ [ 2 + cosh(2ft/i)]cos[2(fcx-(rt)] (2.24) 

Note that the dispersion equation remains similar to small amplitude wave theory for Stokes 2nd 

order waves. Taking the derivative of equation 2.23 with respect to the horizontal distance x, 

and vertical direction z, results in the horizontal and vertical water particle velocities, 

respectively: 

= Hgkcosh[fc(fe+z)] _ +±„2ffk c°sh[2fc(/H-z)] c o g [ _ j 
2 a cosh(kft) v J 16 sinh(fch)4 L v J\ \ i 

H gk sinh[fc(h+z)] . , , ... , 3 r r 7 , sinh[2fc(/i+z)] . r „ , , i N 1 ,_ _,., 
w = V, ,., s inf /cc-ot ) +— // 2ak—.,.,,,.,, sin[2(fcx - ot)l 2.26 

2 a cosh(feft) v ' 16 sinh(fch)4 L v ' J v ' 

The horizontal and vertical acceleration terms can then be found by taking the total derivative of 

the particle velocities, 

Du du (du\ fdu\ fdu\ . . 
— = —+ u[ — )+ v[ — )+ w[ — ) 2.27) Dt dt KdxJ \dyj \dzJ v ' 

Dw dw (dw\ fdw\ , [dw\ . . 
— = — + u[ — )+ i? — + w —-1 2.28) 
Dt dt \dxJ \dyJ \dzj v ' 

which result in the following horizontal and vertical water particle accelerations: 
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Du 1 cosh[fc(7i + z)] 1 sin[2(fcx - <rt)] 
—- = -Hgk w , , N—sinffct — at) - -H*gk* . , , , , n — 
m 2 cosh(/c/i) v ' 4 w sinh[2fch] 

3 , , cosh[2k(h + z)l 

(2.29) 

Dw 1 sinh[fc(/i + z)3 1 sinh[2fr(ft + z)] 
_ ^ — = —-^Hgk TTTT^—cosCkx - at) + -H*gkA . , , - „ , , , — 
Dt 2 a cosh(/c/i) v ' 4 a sinh[2/c/i] 

3 _ _ sinh[2/e(7i + z)] r 

-7;H2a2k . , , , , ^ cos 2(/ex - at)] 
8 sinh(fcfc)4 L ^ " 

(2.30) 

The nonlinear portions of the Stokes wave's surface elevation have steeper crests and 

flatter troughs compared to linear waves (shown in Figure 2.14). The horizontal velocities are 

also greater under the wave crest and reduced under the trough. The horizontal particle 

accelerations have a slight increase for the Stokes 2nd order waves, with the maximum and 

minimum values having a slight phase shift. 
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Figure 2.14: The Stokes 2nd order wave surface elevation (top), vertical water particle velocity (bottom 

left) and acceleration (bottom right) compared Airy waves. The waves had the following properties: T = 5 

seconds, H = 3.654 meters, h = 10 meters, L = 36.54 meters, H/L = 1/10. 

2.3.2 Evaluation of Performance of Subroutine 

Once Stokes 2nd order waves were incorporated into the software, the subroutine's 

performance was verified. Stokes 2nd order waves are initiated in Aqua-FE in the fluid properties 

section of the *.opt file. The iwave parameter controls the application of wave forces in the 

software. A value of 0 does not apply waves to the model, where a value of 1 applies Airy waves. 

nd An example of the *.opt file formatting for Airy and Stokes 2 order waves is shown below (a 
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single wave frequency is shown having a height and length of 0.25 m and 10.214 m, 

respectively). For Stokes 2nd order waves, a value of 2 should be utilized. 

No Wave Loading wave loading iwave = 0 
no. freq. nfreq = 0 

Airy Wave Loading wave loading iwave = 1 
no. freq. nfreq = 1 
1: height, length 0.250E+00, 

10.214 

,nd Stokes 2 Order Wave Loading wave loading iwave = 2 
no. freq. nfreq = 1 
1: height, length 0.250E+00, 

10.214 

The horizontal and vertical water particle velocity and acceleration output by the 

software were first compared to analytical solutions for nonlinear waves with a height of 0.25 m 

and period of 2.8 seconds. These values were compared at various water depths, times and 

horizontal positions. For brevity, sample output results are provided in Table 2.5 for a location 

0.5825 meters below the surface at x = 0, t = 0.1 sec. 

Table 2.5: Analytical calculations compared to the Aqua-FE output result for wave properties associated 

with Stokes 2nd order wave. 

Parameter 

Horizontal Velocity 

Vertical Velocity 

Horizontal Acceleration 

Vertical Acceleration 

Analytical Value 

0.2663 m/s 

-2.260 x 10~3 m/s 

-7.184 x 10~3 m/s2 

-0.422 m/s2 

Aqua-FE Output 

0.2663 m/s 

-2.260 x 10"3 m/s 

-7.184 xlO"3 m/s2 

-0.422 m/s2 

% Difference 

0.0 

0.0 

0.0 

0.0 

To verify the surface elevation and model response under Stokes 2nd order waves, a 

simple model of a wave following a 0.25 m diameter sphere on a 10 meter long line was 
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considered. The model was constructed of 102 nodes and 102 elements. The geometric and 

material properties of the model are presented in Table 2.6. The mooring line was selected to 

minimize its influence on the heave motion of the float. Figure 2.15 presents the results of this 

simulation. Good correspondence with expected wave following behavior was observed. 

Table 2 6- The truss and spherical element dynamic behavior model's geometric and material properties 

Component Parameter 

Line 

Sphere 

Stiffener 

Value 

Effective Density 

Young's Modulus 

Cross sectional Area 

Effective Density 

Diameter 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m3 

2.0xl009Pa 

1 .0x l0 3 m 2 

100 kg/m3 

0.25 m 

1025 kg/m3 

2.5x10" Pa 

1.0 x 10"7 m2 

Surface Elevation 

Figure 2.15: The surface wave elevation and Aqua-Fe model position. 
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Finally, unlike linear waves, Stokes 2" order waves cannot be superimposed in Aqua-FE 

due to the addition of the nonlinear term. Therefore, a special control command was introduced 

in the subroutine iwave. This command stops the Aqua-FE simulation and outputs an error 

message when multiple wave frequencies are prescribed in the nfreq input in the *.opt file. For 

example, if the *.opt file shows the following: 

wave loading iwave = 2 

no. freq. nfreq = 1 

1: height, length 0.250E+00,10.214, 2.435 

2: height, length 0.200E+00,14.511, 5.056 

the simulation will terminate and the following message is outputted to the *.res file: 

*ERROR* MULTIPLE WAVE FREQUENCIES NOT ALLOWED 

The full Stokes 2nd order wave subroutine is presented in Appendix A. 

2.4 Numerical Model Enhancement. Implementation of 

Shadowing Effects 

An interdependent relationship exists between a partially or fully submerged object and 

the surrounding fluid. The object is displaced and deformed by the fluid, while motion of the 

fluid is altered by the presence of the object. From an engineering perspective, the fluid 

modification phenomenon should be taken into consideration because reduced water velocities 

occur behind structures due to blockage or shadowing effects and will impact subsequent 

components / structures. In the case of fish netting, this is discussed in Aarnses et al. 1990, 

Loland (1991) and Patursson et al. 2010, where a velocity reduction typically occurs behind nets 
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of various solidities. This can have significant influence on system motion and component loads 

as relative water velocities are reduced in these areas. 

To rigorously model this phenomenon, a coupled fluid-structure interaction problem 

would have to be solved. The analytical solution of the coupled problem exists only for very 

basic geometries (see, for example, Patursson et al., 2008; Wang and Tan, 2008). In addition, 

numerical solutions of the coupled problem are computationally intensive and are mostly done 

for 2D and simple 3D geometries (Patursson et al., 2010). Thus, semi-empirical techniques to 

evaluate current shadowing must be resorted to in order to provide an efficient approach to 

modeling complex marine installations. 

Aqua-FE was initially developed to apply the same environmental fluid conditions to 

every submerged element in the model, regardless of wake effects or blockage that may be 

occurring. This approach can provide good accuracy in the case of standard flexible systems such 

as oil risers, surface buoy moorings and small fish cages. However, recent studies into larger 

systems and net chamber water blockage and subsequent velocity reductions provide evidence 

that the code should be modified to account for a horizontal change in water velocity 

(Fredriksson et al., 2007a; Patursson, 2008). 

Two approaches were considered to account for steady horizontal current velocity 

changes. The first was to develop a new element that incorporates a specific velocity reduction 

characteristic. This approach was used with a certain degree of success, but only a single cage 

system was modeled (Fredriksson et al., 2003). For a large system, however, this "reduced 

velocity" element would have to be generated for each existing element type (truss, buoy, net, 

etc) increasing the number of elements used in the model. In addition, if multiple velocity 

reduction locations exist, even more element types would be required, which would further 
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reduce the computational efficiency. The second approach was to allow multiple horizontal 

current profiles to be generated and applied to specific elements. Therefore, several different 

current values could be applied to different elements. If the current reduction is known, it can 

be incorporated into the model as different current velocities. This approach allows a horizontal 

current profile feature to be used in the model. 

The code was modified to accommodate up to 25 horizontal current profile points. This 

allows for a variety of applications to be investigated and, if needed, a large current reduction in 

a complex system. The code was altered to produce a specifically generated file, which contains 

all the wave (height, length, and phase) and current (velocity, depth) information for each 

profile. The program then assigns the proper profile to the associated element for processing. 

This repeats for each element at each time step. Modifying the code in this manner allowed for 

the most versatile use of the model, without compromising the efficiency of the program. 

Case studies verifying the proper implementation of this enhancement are presented in 

Chapters 3 and 4. The code modifications implemented in Aqua-FE was incorporated into the 

subroutine pmesh, presented in Appendix A. 

2.5 Numerical Model Enhancement. Transition from Subcritical 

to Critical Reynolds Numbers 

The final enhancement of the Aqua-FE software was the incorporation of the decrease 

in drag coefficients for cylindrical elements at high Reynolds Numbers. Whereas the spherical 

element has an accurate representation of the drag coefficient (DeCew et al., 2010), the 

cylindrical elements employ an approximation based upon Choo and Casarella (1971). This 

approximation does not incorporate the decrease in coefficient of drag at Reynolds numbers 
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approaching 105, as seen in Figure 2.16. This over-prediction of drag coefficients can result in 

increased drag forces and altered motion responses of a structure. 

1D3 
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Figure 2.16: Coefficient of Drag versus Reynolds for a smooth circular cylinder. Choo and Casarella 

approximations work well at Re number below 3 xlO , however neglect the reduction in coefficient of 

drag in critical flow regions. 

2.5.1 Drag Forces on Cylindrical Elements 

Recall that Aqua-FE incorporates both wave and current loadings on truss elements 

using a Morrison equation (Morison et al., 1950) formulation modified to include relative 

motion between the structural element and the surrounding fluid. The program calculates both 

the normal and tangential drag coefficients, at each time step, based upon the value of the 

Reynolds number. The experimentally observed variations of the normal coefficient of drag with 

Reynolds number for cylinders were presented, for example, by Hoerner (1965) and are shown 

in Figure 2.16. In numerical simulations, the drag coefficient for cylindrical elements has usually 

been approximated by formulations of Choo and Casarella (1971) (see Fredriksson et al., 2005c; 
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Haritos and He, 1992; Lader et al., 2007). However this approximation does not take into 

account the reduction in coefficients at high Reynolds numbers which is a result of the fluid 

boundary layer becoming fully turbulent causing the separation points to move aft. The point at 

which the steep reduction in drag coefficients occurs is referred to as the critical Reynolds 

number. Following the idea of Choo and Cadarella's, the coefficient of drag curve was divided 

into five sections, with each section approximated by linear or exponential functions, with a 

continuity condition imposed. This resulting relationship is as follows: 

— ( 1 - 0.87s"2), 0<Re< 1 
ResK J 

Cdn — " 

1.45 + 8.55fte-°-90, 1 < Re < 30 
1.1 + 4Re~° 5, 30 < Re < 2.33 • 105 (2.29) 

-3 .41 • 10~6(/?e - 5.78 • 105), 2.33 • 105 < Re < 4.92 • 105 

0.401 ( l - e T ^ \ 4.92 • 105 < Re < 107 

CM = W (0.55/?eV2 + Q.QMRe2/*) (2.30) 

where Cdn is the normal coefficient of drag, Cdt is the tangential drag coefficient, Ren is the 

Reynolds Number, s = -0.077215655 + ln(8/Re) and u. is the fluid viscosity. Alternatively, for 

Reynolds numbers less than 2.33 x 105, the following approximation can be used, although not 

employed in this research: Cdn = 10.435 Re"0761 + 1.083. Figure 2.17 shows the normal 

coefficient of drag for cylinders along with the Choo and Casarella values and those utilized in 

the new numerical model. The Choo and Casarella expression for the tangential drag coefficient 

for cylinders was not modified. 
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Figure 2.17: Normal drag coefficients for a cylinder. The experimental values are compared to the Choo 

and Casarella approximation and equation (2.29). 

2.5.2 Validation of Drag Forces 

The truss elements utilizing the drag coefficients (eq. 2.29) were verified by analyzing a 

cylinder, aligned perpendicular to the flow, in Aqua-FE and comparing the software's drag 

coefficient output data. A simple model was constructed of a fully submerged truss element as 

shown in Figure 2.18. The model consisted of 4 elements and 4 nodes. The geometric and 

material properties of the model are presented in Table 2.7. Seventeen constant with depth 

water velocities were applied to the model, selected to produce Reynolds numbers from 0.75 to 

5 x 106. The output coefficients of drag values were compared to those predicted by equation 

2.29 and are presented in Table 2.8. As expected, good correspondence is observed, verifying 

the proper implementation of this software enhancement. 
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truss_-Float2 

Figure 2.18: Aqua-FE model of cylindrical truss element generated to verify the drag predictions of the 

software 

Table 2.7: Geometric and material properties of the model. 

Component Parameter Value 

Line 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m" 

2.0xlOnPa 

1.0 x 10"6 m2 

Truss 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m3 

2.0xl0 n Pa 

1.96 x 10_1 m2 

Effective Density 

Stiffener Young's Modulus 

Cross sectional Area 

1025 kg/m3 

2.5xlOuPa 

1.0 x 10"7 m2 



Table 2.8: Aqua-FE output and analytical calculations verifying the Aqua-FE output values. 

Velocity Reynolds Analytical Cd Aqua-FE Cd % difference 

(m/s) Number Calculations Output 

1.654 x 10"6 

3.307 xlO"5 

0.441 

0.706 

0.816 

0.904 

0.97 

1.036 

1.102 

1.433 

1.764 

2.205 

2.866 

3.748 

4.41 

6.615 

11.024 

0.7502 

15 

2 x l 0 5 

3.2 x 105 

3.7 x 105 

4.1 x 105 

4.4 x 10s 

4.7 x 105 

5.0 x 105 

6.5 x 105 

8 x10s 

1.0 x 106 

1.3 x 106 

1.7 x 106 

2 x l 0 6 

3 x l 0 6 

5 x l 0 6 

12.20 

2.18 

1.109 

0.9402 

0.688 

0.517 

0.397 

0.309 

0.243 

0.262 

0.283 

0.302 

0.327 

0.368 

0.400 

0.405 

0.408 

12.20 

2.18 

1.109 

0.9402 

0.688 

0.517 

0.397 

0.309 

0.243 

0.262 

0.283 

0.302 

0.327 

0.368 

0.400 

0.405 

0.408 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0% 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0 % 

0.0% 

0.0 % 

2.5.3 Coefficient of Drag Sensitivity Study 

With the drag coefficient for the truss element properly implemented, a sensitivity 

study was initiated to investigate the effect of the updated algorithms on two marine structures: 

a buoy used at the UNH offshore site as a boundary marker and a 600 m3 Ocean Spar 

Technologies SeaStation™ fish cage. Both were placed using simplified moorings and analyzed 

under similar water velocities. The models were analyzed with the original and enhanced Aqua-

FE software. 

The offshore site marker consisted of a cylindrical float approximately 1.5 m long, 0.61 

m in diameter and with a mass of approximately 160 kg (see Figure 2.19). These are placed at 

the corners of the demonstration site as navigational buoys. A model of the buoy was created in 

Aqua-FE and placed on a 25 meter line. The model consisted of 50 elements and 51 nodes. The 
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geometric and material properties are shown in Table 2.9. The waterline was placed similar to 

those in the field, halfway up the cylinder. 

J Spar 

buoy 

- T 

Figure 2.19: The offshore site boundary marker analyzed in this sensitivity study. 

Table 2.9: The geometric and material properties of the buoy and mooring analyzed in this sensitivity 

study. 

Component Parameter Value 

Line 

Truss 

Effective Density 

Young's Modulus 

Cross sectional Area 

Effective Density 

Young's Modulus 

Cross sectional Area 

1004 kg/m3 

1.03xl09 Pa 

7.917 x 10"4 m2 

356.9 kg/m3 

2.0x10" Pa 

2.92 x 10 * m2 

The second model consisted of a more complex system: a 600 m3 SeaStation™ fish cage 

manufactured by Ocean Spar Technologies. The fish cage is constructed of a central spar buoy 

and an octagonal rim held together by tensioned stays woven into the net. The spar buoy acts as 
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a variable buoyancy chamber, allowing the system to remain on or below the water surface. For 

this analysis, the net pen was positioned in the water column with one meter of freeboard on 

the spar. Two models of the fish cage were constructed: one with and one without a net 

chamber. The two models allow for the direct comparison of the netting's influence on the 

structure. The geometric and material properties of the system are shown in Table 2.10 and 

models can be seen in Figure 2.20. 

Table 2.10: The geometric and material properties of the SeaStation fish cages analyzed in the 

sensitivity study. 

Component Parameter 

Line 

Effective Density 

Young's Modulus 

Cross sectional Area 

Value 

1004 kg/m3 

1.03 x 109 Pa 

7.917 x 10"4 m2 

Spar 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m3 

8.59 x 109 Pa 

6.64 x 10 * m2 

Rim 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m3 

10, 1.82xl0 luPa 

5.85 x 10"2 m2 

Net 

Effective Density 

Young's Modulus 

Cross sectional Area 

repetitions 

1025 kg/m3 

1.00xl010Pa 

3.63 x 10"6 m2 

98 

Effective Density 

Stiffener Young's Modulus 

Cross sectional Area 

1025 kg/m3 

2.00x10" Pa 

2.00 x 10"7 m2 
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Figure 2.20: FEA models of two SeaStation fish cages were constructed in Aqua-FE. One had a net 

chamber (lower right), where the second one only had the rims and tensioned stays (upper left). 

Both models were run under constant-with-depth water velocities of 1 and 2 ms"1. The 

mooring line tension and buoy tilt angle was monitored for the site marker simulation. The fish 

cage mooring tension was also recorded. The net pen's motion response was not examined due 

to the simplified mooring system employed in the analysis. The results of the analysis are shown 

in Figures 2.21 through 2.24 and summarized in Table 2.11. 
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Figure 2.21: The site marker mooring tension and buoy tilt angle under the 1 m/s water velocity. The 

system was analyzed with the original and updated software. 
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Figure 2.22: The fish cage drag force results under the 1 m/s water velocity. The cage with a net chamber 

(on left) and without (on right) was analyzed with the original and updated Aqua-FE software. 

Mooring Line Tension Comparison Plot 

30 

•3 
S 20 

•S 10 

Buoy tilt angle 
. i i i i i i 

/ 
\J'~~ 

-Original Code 
Updated Code 

50 100 150 200 250 300 350 400 

Buoy horizontal displacement 

-Original Code 
-Updated Code 

50 100 150 200 250 300 350 400 
Time (sec) 

Figure 2.23: The site marker mooring tension and buoy tilt angle under the 2 m/s water velocity. The 

system was analyzed with the original and updated software. 
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Figure 2.24: The fish cage drag force results under the 2 m/s water velocity. The cage with a net chamber 

(on left) and without (on right) was analyzed with the original and updated Aqua-FE software. 
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The steady state mooring tension results for both models are summarized in Table 2.11. 

The following observations can be made: 

• The enhanced code predicts reductions in mooring force (36%), buoy tilt (approximately 

50%) and horizontal displacement (29%) for the 1 ms'1 simulation. 

• Similar results can be seen for the buoy under 2 ms"1. However, the mooring tension 

predictions are increased for the upgraded software. This is a result of the significant 

decrease in buoy tilt angle, exposing more of the area to the oncoming flow, increasing 

the system drag. 

• The updated code shows similar results in regards to the fish cages. Drag on the cages 

with and without the net chamber is reduced due to the decrease in coefficient of drag 

on the large diameter components spar and rims). 

• It is interesting to note the influence of the net chamber on the total system drag. For 

the 1 ms"1 and 2 ms'1, the net chamber accounts for 83.6% and 87.9% of the drag force, 

respectively. 

• The netting also damps the cage system's response, as seen in Figure 2.23. 

Table 2.11: Summarized output mooring tension results of the simulations. 

Model 

Site Marker Buoy 

Sea Station w/ Net 

Chamber 

Environmental 

Loading 

Static 

1 m/s current 

2 m/s current 

1 m/s current 

2 m/s current 

Original Code 

(N) 

628.28 

2799.1 

2518.7 

30151 

118060 

Updated code 

(N) 

628.28 

1766.4 

2885.3 

26677 

98728 

% Diff 

0.00 

36.8 

-14.5 

11.5 

16.3 

Sea Station w/o Net 1 m/s current 7733.3 4374.9 43.4 

Chamber 2 m/s current * 29507 11862 59.8 



CHAPTER 3 

CASE STUDY. FIELD TESTS AND NUMERICAL 

MODELING OF A SPHERICAL FISH CAGE SYSTEM 

A case study was initiated to validate the Aqua-FE software upgrades by investigating 

the drag forces on a prototype aquaculture net pen in steady flows. A 450 m3 spherical shaped 

Aquapod™ cage system, developed by Ocean Farm Technologies (www.oceanfarmtech.com), 

was towed from Portsmouth Harbor to UNH's Open Ocean Aquaculture (OOA) site, located 15 

km offshore in the Gulf of Maine, by the R/V Meriel B in September 2005. The OOA site location 

relative to the NH coast is shown in Figure 3.1. Water velocity and tow line tension 

measurements were recorded for 16 minutes with the cage fully submerged. Two sets of water 

velocity measurements were made, one by a Marsh-McBirney electro-magnetic current meter 

located on the tow vessel and the second by an Aquadopp Acoustic Doppler current meter 

located within the cage structure. The towline tension was measured by a Sensing Systems 53 

kN (12,000 Ibf) load cell. The drag of the fish cage at various water velocities was measured and 

compared to numerical model predictions under similar conditions. Portions of this work were 

presented in the IEEE/MTS Oceans'06 conference in Boston, Massachusetts and was published 

in the conference proceedings (see DeCew et al., 2006). 
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Figure 3.1: The open ocean aquaculturesite is located off the coast of New Hampshire, USA in the 

southwest corner of the Gulf of Maine (Figure downloaded from http://spo.nos.noaa.gov and annotated). 

3.1 Marine Fish Cage System 

The Aquapod™ cage system, developed by Ocean Farm Technologies Inc, is different 

from traditional cage designs (Figure 3.2). Whereas typical gravity fish cages have upper and 

lower rims supporting a deformable cylindrical net chamber, the Aquapod™ system has a rigid 

spherical net containment structure. The 450 m3 cage is constructed of 80 triangular panels, 

connected with galvanized hardware, forming a spherical chamber with a diameter of 9.75 m 

(32 ft). The Aquapod's 16 gauge (2 mm diameter) vinyl coated galvanized wire, 2.54 cm square 

mesh net is integrated within each triangular panel. The net has solidity of 16% (not including 

the cage framework), where the solidity is the ratio of projected area of the net over the outline 
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area, normal to the water flow. The deployed system was a 1:3 scale version of the full size 

system (volume of 3250 m3) with a mass of 4040 kg (8900 lb). 

Figure 3.2: The 9.75 meter Aquapod fish cage. 

3.2 Instruments and Calibration 

Three instruments were used to measure the water velocity and towline tension. A 

Marsh-McBimey current meter was utilized to record the water velocity relative to the cage and 

was located on the tow vessel. An Aquadopp current meter was placed inside the cage structure 

to obtain water velocities inside the net pen. A Sensing Systems 53 kN (12000 Ibf) load cell 

recorded the towline tensions (also located on the vessel). 

The Marsh-McBirney current meter determines the water flow by measuring the 

voltage generated by the water moving through a magnetic field. The instrument outputs a 

voltage which is a linear measurement of water velocity. Prior to the tow experiment, this 
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instrument was calibrated in the UNH Ocean Engineering Wave/Tow tank. The current meter 

was towed at 7 different velocities, ranging from 0 to 1.71 m/s. The resulting calibration curve 

was linear and given by: 

U = 2.8012v + 0.0217 (3.1) 

where U is the water velocity (m/s) and v is the output voltage (volts). The calibration curve had 

a correlation value (R2) of 0.999. The sampling rate was set to 10 Hz. 

A Nortek Aquadopp current meter was the second water velocity measuring instrument 

employed in the tow test. The Aquadopp is a Doppler instrument which transmits acoustic 

signals that are reflected off particulates in the water column and utilizes the Doppler shift to 

determine the water velocity. The Aquadopp measures and averages the water velocity within a 

sampling volume 0.35 m to 1.5 meters from the instrument (most of the measurement occurs 

1.1 m from the Aquadopp). This instrument is not suited for tank calibration due to lack of 

acoustic reflectors (particles) in the tank, so a field comparison between the Aquadopp and the 

Marsh-McBirney was performed in Great Bay, NH. Both instruments were deployed to measure 

the incoming tide over a 20 minute period. The Aquadopp's sampling rate was set at 1 Hz 

(maximum rate allowed). Table 1 lists the current meter results from this test. The values shown 

were averaged over 5 minute intervals. As can be seen from the table, the difference between 

the instrument measurements was less than 4.1% with the Aquadopp reading lower than the 

Marsh-McBirney. This difference was considered acceptable due to the different sampling 

methods utilized by each instrument. 
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Table 3.1: Comparison test results between the Marsh-McBirney and Aquadopp current meters. 

Marsh-McBirney Aquadopp % Difference 

(m/s) (m/s) 

0.5622 0.5437 3.3 % 

0.5703 0.5470 4.1 % 

0.5537 0.5404 2.4 % 

0.5653 0.5452 3.5 % 

A 53 kN Sensing Systems load cell was utilized to measure the drag of the cage system. 

The load cell was calibrated prior to the tow test at the Woods Hole Oceanographic Institution 

(WHOI). The load cell was placed within the WHOI Rigging Shop's Baldwin Material Testing 

Machine S/N 1010 and loaded statically in steps from 0 to 53 kN (12,000 Ibf). Similar to the 

Marsh-McBirney current meter, the calibration curve was used during post-processing. The 

calibration curve for the load cell S/N 012, used in this experiment, is described by: 

T = 18.94v + 1.482 (3.2) 

where T is the tension (kN) and v is the output voltage (volts). The instrument was set to a 10 Hz 

sampling rate. 

3.3 Preparation and Set-up 

The Marsh-McBirney current meter and load cell were located on the tow vessel with 

the Aquadopp current meter located inside the cage (the Aquadopp is capable of recording the 

tension data on an internal memory card whereas the Marsh-McBirney is not). The Marsh-

McBirney current meter was deployed away from the side of the vessel with a horizontal 2 

meter (6.5 ft) I-beam and a vertical 1.5 meter (5 ft) aluminum pole (Figure 3.3). The I-beam was 

bolted to the vessel's gunwale, extending approximately 1 meter from the starboard side of the 
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vessel. A 2.5 cm diameter aluminum pole was secured to the end of the I-beam and extended to 

the water surface. The Marsh-McBirney meter was then attached to a 1.3 cm diameter stainless 

steel rod that protruded 1 meter into the water. 

The load cell was located at the stern of the vessel (Figure 3.4). A tow support line was 

secured around the base of the vessel's knuckle-boom crane (not shown). The load cell, secured 

to a 222 kN (50,000 Ibf) strong back, was shackled in-line with the tow line. The power cable, 

which carried the supply and output voltage for the load cell, ran to an Analog to Digital (A/D) 

board and a Labview Virtual Interface (vi) program, located at the bow of the vessel. This 

program provided the instruments with the required voltage (12 volts DC) and recorded the 

output voltages. It then applied the calibration curve and plotted the data for viewing on a 

laptop PC. Power for the auxiliary equipment (computer, power supply, etc) was provided by 

the ship's generator. A 183 meter (600 ft), 51 mm (2 in) Polysteel tow line was used to tow the 

cage system. The length was selected to minimize the vessel's propeller wash from affecting the 

net pen during the tow. Since the line was not continuous, sections of the line were shackled 

together and supported by floats. 

Secured to Gunwale Current Meter Support 

Figure 3.3: View of the Marsh-McBirney current meter and support. 
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Figure 3.4: The load cell and tow line components. 
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Figure 3.5: The A/D and vi utilized during the tow test. The power cables for the instruments ran to the 

A/D board, which was powered by the power supply. The data was then sent to the computer for viewing 

and analysis. 
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One important aspect of the tow test was to record the water velocity inside the cage 

structure. Understanding this "reduced" or altered water velocity will assist in the modeling of 

these types of structures as well as provide valuable information regarding the water blockage 

(if any) that occurs. The current velocity within the cage was recorded by the Aquadopp current 

meter. The current meter was secured within the cage with three lines (Figure 3.6). Two lines 

held the instrument vertically, with the third running to the front of the cage to keep the current 

meter from spinning. The current meter was located approximately 6 meters (20 ft) from the 

bow of the cage, along the "equator" or middle of the cage. The Aquadopp was installed within 

the cage during construction when the interior of the cage was easily accessible. In addition, this 

allowed the current meter to be properly oriented to the incident water flow. 

Aquadopp Current Meter 

Line to Bottom of Cage Tow Direction 

Figure 3.6: The Aquadopp current meter placed in the Aquapod cage (left) and orientation of the device 

to the tow direction (right). 

3.4 Towinq of the Cage 

On September 21, 2005, the Aquapod™ cage system was towed from Portsmouth 

Harbor to the UNH's Open Ocean Aquaculture site by the R/V Meriel B. To reduce the draft and 

drag of the structure, thirty floats (twenty with a 72 lb net buoyancy and ten with a 140 lb net 
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buoyancy) were added to the middle or "equator" of the cage for the majority of the tow (Figure 

3.7). The cage had approximately 5.5 m (18 ft) of draft in the water with the added flotation 

(normal draft ranges from 9.0 - 9.75 m). The original experiment plan was to tow the cage 

multiple times at a variety of water velocities. However, time constraints due to length of the 

tow, tide considerations, and operational concerns (attachment of the cage within the grid) 

limited the tow test. Therefore, only one tow test was conducted for approximately 15 minutes. 

Prior to the test, the floats around the center of the cage were removed, bringing the waterline 

to within 15 cm of the top of the structure. In an effort to conserve time, the vessel engine 

output (measured in revolutions per minute, RPM) was used to obtain a "speed" (as opposed to 

adjusting the RPM to obtain a certain water velocity). The vessel RPM was increased in six 

increments over the length of the test. The tow line tensions and water velocities, at the boat 

and within the cage, were measured throughout the entire test. 

Figure 3.7: The cage was deployed from the NH Port Authority and towed out to the UNH Open Ocean 

Aquaculture Farm site with the R/V Meriel B. 
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3.5 Results of Tow Test 

The water velocity measured by the Marsh-McBimey current meter and tensions 

measured by the load cell during the tow test are shown in Figure 3.8. Distinctive load 

"plateaus" can be seen throughout the first 10 minutes of the test, corresponding to a change in 

the vessel's RPM. The water velocity, although following the same trends, is not as well defined. 

The mean drag of the system ranges from 6.1 kN (1370 Ibf) at 0.56 ms"1 to 32.2 kN (7250 Ibf) at 

1.05 ms"1. Recall that these tensions include the drag force of the tow line. 
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Figure 3.8: Water velocity and load cell readings during the experiment. 

Detailed variations in water velocity and tension measurements can be seen in the 

subset time series results, shown in Figure 3.9. The sinusoidal pattern shown is attributed 

primarily to the waves present. The average time between peak tension forces is 

approximately 8 seconds, similar to the dominant wave period measured at that time (Figure 

61 



3.9). This phenomenon occurred throughout the test, regardless of water velocity. Waves were 

measured by the Gulf of Maine Ocean Observing System (GOMOOS) buoy B0120, located on the 

western Maine shelf (Figure 3.10). 

AquaPod Cage Tow Test Results Wave Characteristics for September 21 2006 
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Figure 3.9: A subset of load cell tension measurements and wave characteristics present of the day of the 

tow. The tow test was initiated at 16:00 EST. 

Figure 3.10: The GOMOOS buoy was located at 70° 25'40" W, 43° 10'51" N, approximately 22 km to the 

Northeast of the tow test site. 

The water velocities at the vessel and within the cage are compared in Fig. 3.11. The two 

time series data sets follow similar trends throughout the test, although the water velocity 
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within the cage is reduced. Due to different sampling rates between the instruments, the 

Marsh-McBirney data set (water velocity at the vessel) was filtered by taking a 10-point average. 

For the first 6 minutes of the test, a distinctive water velocity reduction takes place inside the 

cage. For example, average current velocities drop from 0.56 and 0.77 ms"1 to 0.21 and 0.32 ms"1 

for the Marsh-McBirney and Aquadopp current meters, respectively. This represents a water 

velocity reduction of 63.2% and 57.8%. 

AquaPod Cage Tow Test Resutts 

AquaPod Cage Tow Test Results 

-Water Velocity (Outside Cage) 

-Water Velocity (Inside Cage) 

10 12 14 

Figure 3.11: The measured water velocity reduction and tow line tension. 

From the 6th to 8th minute, however, a different trend is evident. The exterior water 

velocity decreases slightly (below 1.5 knots), but the interior velocity increases to an average of 

1.21 knots. The tow line tension shows a similar result with the load increasing to an average of 

18.99 kN at approximately the same water velocity. One explanation for this is the effect of the 

vessel's propeller wash on the cage. One of the main assumptions with this test set-up is that 

the water velocity at the vessel is the same velocity that the cage is experiencing. Therefore, any 

change in water velocity (such as propeller wash or a different current field at the cage, as 

opposed to the water velocity at the tow vessel), will affect the data. Propeller wash, in general, 

is a turbulent flow generated by the vessel's propeller moving through the water column. This 
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area of increased water flow typically extends aft of the vessel (which can be seen in Figure 3.7). 

This flow dissipates with time into the surrounding environment. However, if the flow was 

present at the cage, the water velocity affecting the cage was greater than that measured at the 

tow vessel. 

This consistent velocity increase within the cage, found at minute 6, suggests in part, 

that the water velocity outside the cage (but not at the tow vessel) was increased. The final 

stages of the test (minutes 12 through 14) support this theory, showing a slight increase in the 

tow line tension and interior water velocity, with a slight decrease in the water velocity outside 

the cage. It is important to note that at minute 9.5, the vessel did decrease its speed for 

approximately 1 minute due to operational concerns. This might have had an effect of not 

bringing the cage into a steady state load regime, and therefore the data from this time interval 

was not included in the discussion below. 

Table 3.2: Water velocities measured by Marsh-McBirney and Aquadopp current meters during the first 

six minutes of the experiment. 

Water Velocity Water Velocity 

(at vessel) (inside cage) % Reduction 

knots knots 

0.0000 0.0000 0.00 % 

1.0824 0.3982 63.2 % 

1.4972 0.6314 57.8 % 

3.6 Tow Test Discussion 

Water velocity data at the tow vessel and within the cage, as well as associated tow 

tensions, were successfully collected. A current reduction was observed inside the net pen. 

However, the test was limited in scope due to time constraints. As a result, information 
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regarding the drag force of the fish cage at high water velocities was limited. The following 

observations related to improvement of such tests in the future can be made. The 183 meter 

line used to tow the cage was possibly not long enough to allow the system to escape the 

propeller wash entirely. In addition, time constraints only allowed one test to be performed, 

instead of multiple runs at set velocities as planned. In the future, steps can be taken to insure a 

more successful test. For example, the tow line can be lengthened and the test can be 

performed in "stages," where the vessel can come up to speed for a short period of time 

(assuming steady state loads can be obtained), record the necessary data, and slow down to a 

minimal forward velocity. This will allow the propeller wash to dissipate after each burst. 

Mounting an "outside" current meter directly in front of the cage would also be useful. Finally, 

the tension measurements presented in this paper include the drag of the tow line. A separate 

experiment should be performed prior to the next tow test to determine the line's drag. 

Regardless of any propeller wash effect, the obtained data did provide insight into the 

cage's internal velocity reduction. In addition, the obtained load measurements validate the 

structural integrity of the system. These results will help the next generation of Aquapod™ 

structures for use in the open ocean aquaculture industry. 

3.7 Numerical Model Comparison 

The Aqua-FE software updates, described in Chapter 2, were then validated using the 

obtained in-situ fish cage drag and velocity reduction measurements. A numerical model of the 

Aquapod™ fish cage and tow line was constructed using 176 nodes and 399 elements, as seen in 

Figure 3.12. The towline floats were also placed in similar locations as those in the field. The 

end of the tow line was fixed at the height representing the stern of the tow vessel. The 

geometric and material properties of the model are shown in Table 3.3. 
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Figure 3.12: The field test set-up was recreated in Aqua-FE. The cage in the dotted box is zoomed in 

above. 

Table 3.3: The fish cage and tow line properties utilized in Aqua-FE. 

Component Parameter Value 

Framework 

Effective Density 

Young's Modulus 

Cross sectional Area 

830.3 kg/m5 

2.758 x109 Pa 

1.06 x 10"2 m2 

Net 

Effective Density 

Young's Modulus 

Cross sectional Area 

Repetitions 

11040 kg/m3 

2.0xlOnPa 

3.234 x 10"6 m2 
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Stiffeners 

Effective Density 

Young's Modulus 

Cross sectional Area 

1025 kg/m3 

2.5xlOuPa 

1.50 x 10"6 m2 

Effective Density 

Tow line Young's Modulus 

Cross sectional Area 

963.5 kg/m3 

1.06 x 109 Pa 
5.067 x 10"4 m2 

Float 

Effective Density 

Young's Modulus 

Cross sectional Area 

1014 kg/m3 

2.0xlO u Pa 

1.10 x 10~2 m2 

Tow Float Effective Density 

Diameter 

117.63 kg/m3 

0.419 m 
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The simulations were performed for three water velocities, as seen Table 3.4. The first 

two water velocities were similar to the lower velocities observed in the tow test results. 

However, due to propeller wash effects observed in the field experiment, the third water 

velocity was selected to be a current of 1 ms"1. 

To accurately model the field conditions, it was important to take into account the 

component shadowing observed in the field testing. To validate the effectiveness of the new 

hydrodynamic "shadowing" feature in Aqua-FE, the model was analyzed with and without an 

internal water velocity reduction. For one set of simulations, the water velocity affecting the aft 

portions of the cage (shown in Figure 3.13) was reduced to the values measured in the field 

(Table 3.4). The second set of numerical investigations did not reduce the interior water 

velocities. The predicted tension in the tow line was recorded for comparison to the field test 

results. 

Full Water Velocity Reduced Water Velocity 

Figure 3.13: The full ambient water velocity was applied to the front half of the cage system. The water 

velocities measured inside the cage were applied to the aft portions of the model. 
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The output tension results are shown in Table 3.4. The water velocity inside and outside 

the cage system are shown along with the measured tow line tension from the field experiment. 

The field measurement data is then compared to the numerical model predictions with and 

without the shadowing effects applied to the system. 

Table 3.4: Comparing the average drag force with the predicted numerical model 

Incident 

(Exterior) 

Water 

Velocity 

(ms1) 

0.56 

0.77 

1.00 

Reduced 

(Interior) 

Water Velocity 

(ms"1) 

0.21 

0.33 

0.40 

Field 

Measurement3 

(kN) 

6.10 

12.00 
— 

Numerical 

Model 

Prediction with 

velocity 

reduction (kN) 

5.54 

10.75 

17.61 

% Diff 

9.18 % 

10.71 % 
— 

Numerical 

Model 

Prediction w/o 

velocity 

reduction (kN) 

9.29 

17.44 

28.92 

% Diff 

34.33 % 

31.19% 

3 Average tension result shown in the table. 

It can be seen in the table that the implementation of the shadowing effect in Aqua-FE 

improved the model's predictions showing the importance of this numerical model upgrade. 

When the water velocity reduction was applied to half the fish cage, the numerical model 

predicted results within approximately 10% of the measured tensions. It is important to note 

that the measurement differences between the current meters and the assumption of the 

choice of the "shadowed" portion of the cage will affect the output results. Therefore, this 

accuracy is considered acceptable for such tests as there were uncertainties in the field 

experiment. In contrast, when the water velocity shadowing approach was not utilized, Aqua-FE 

over-predicted the drag forces by 30%. This difference is significant, and when designing or 

deploying marine equipment, would result in increased mooring sizes, costs, and structural 

integrity requirements of the fish cage system. Taking this decreased velocity into account is 

important in order to obtain accurate numerical model predictions and provide critical 
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information for field operation decisions. By incorporating this specific reduction into Aqua-FE, 

the loads and motions on similar Aquapod™ systems can be predicted more accurately. In the 

field, this reduction translates into a lower mooring line load, less current for fish to swim 

against and increased feed retention within the net chamber. 
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CHAPTER 4 

CASE STUDY. DYNAMICS OF SINGLE POINT MOORED 

FISH CAGE 

A second case study was performed to better understand the coupled motion and load 

response of a small scale fish cage secured in a single point mooring (SPM). In this study, the 

dynamic behavior of the Ocean Cage Aquaculture Technology (OCAT) system, developed by the 

American Soybean Association International Marketing (ASAIM) and the U.S. Soybean Export 

Council (USSEC), under various current regimes was investigated as a function of net solidity. 

The model was validated with data obtain from a series of tow tests using a Froude scaled 

physical model. The test results were compared to numerical model predictions under similar 

conditions. Once this validation was complete, the cage and mooring system was analyzed with 

the numerical model under various current profiles. The submergence depth of the cage and 

mooring component tension as a function of net chamber solidity was investigated. Note that 

portions of this research were originally published in Aquaculture Engineering (DeCew et al., 

2010). 

4.1 Introduction to Single Point Moorings 

Single point mooring of offshore aquaculture fish cages has recently been under 

investigation as an alternative to the traditional grid array (presented, for example, in Baldwin et 
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al., 2000; Fredriksson et al., 2007) or fixed multipoint mooring (described in DeCew et al., 2005; 

Loverich and Forester, 2000). There are several advantages to this mooring configuration 

consisting of a lone anchor point connected to a fish cage by a mooring chain or cable. Typically, 

one or two intermediate floats are present to prevent entanglement and provide reduction of 

the wave-induced loading on the anchor (see Figure 4.1 for a particular fish cage/mooring 

system analyzed in this chapter). One of the advantages is a substantial reduction in benthic 

accumulation of waste products as compared to the traditional grid mooring system due to 

distributing fish waste over a larger area (see Goudey et al., 2001 and Goudey et al., 2003). 

Another advantage is a possible reduction in mooring costs per cage which can be as much as 

two-fold, as in the example considered by Goudey et al. 2001. From the engineering point of 

view, a potentially beneficial property of the SPM system is its ability to align with the prevailing 

current or weather direction minimizing the projected area and, correspondingly, the 

environmental loading and stresses in mooring components. Structural performance and 

reliability of the SPM with a gravity cage under several environmental loading scenarios was 

rigorously studied by Huang et al. 2009 utilizing numerical and physical model testing. Even 

more improvements in structural reliability can be obtained if the cage buoyancy is set such that 

the net pen naturally, on its own, submerges when environmental loading exceeds a certain 

threshold. 

There are several intrinsic drawbacks of the SPM system that have to be taken into 

account by the mooring designers, installers, and fish farmers. First of all, the SPM lacks 

redundancy allowed by the traditional mooring configurations, so increased safety factors have 

to be used in the selection of anchors, mooring lines and other structural components. 

Secondly, the mooring experiences significantly more motion. This increases the possibility of 

damage due to friction, possibly exacerbated by biofouling. In particular, excessive motion may 
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lead to the failure of connecting hardware, and the integrity of the mooring can be lost as 

described in Goudey et al. 2003. The mooring scope (the ratio of the mooring line length to the 

water depth) appropriate for the chosen anchoring configuration results in a certain watch 

circle, so special care should be taken to avoid collision or entanglement with other components 

of the fish farm, e.g. other net pen systems, feed buoys, feed hoses, or service platforms. Lastly, 

adoption of the SPM results in periodic changes in the direction of tension applied to the 

anchor. This variability must be taken into account while designing the anchoring system. Two 

possible approaches, proposed by Goudey at al. 2003, include a properly selected dead-weight 

or a cluster of opposing drag-embedment anchors. 

4.2 Description of the Small-Volume Ocean Cage Aquaculture 

Technology System 

The OCAT design is a small volume, high fish stocking density cage system secured by a 

single point mooring (see Figure 4.1). The system was proposed by the American Soybean 

Association International Marketing (ASAIM) and the U.S. Soybean Export Council (USSEC) to 

increase opportunities for utilizing soy-based feeds for the aquaculture industry. Standing 4.5 

meters high with a lower square base panel of 7 by 7 meters, the truncated pyramid design 

incorporates a volume of roughly 100 cubic meters (Goudey, 2004). The cage has been 

deployed with a fish density approaching 60 kg/m3, whereas standard practice has a density of 

20 kg/m3. The cage's small size allows for an increased water flushing rate, reducing areas of low 

oxygen zones that can occur in large net pens. The increased stocking density employed by this 

cage system was shown to not negatively impact the fish growth or health (Cremer et al., 2003). 

The cage frame is constructed of HDPE pipe sections and galvanized steel corner weldments. A 
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pendant chain is suspended centrally from the bottom of the cage by means of an equidistant 

rope bridle. Each HDPE pipe section can be fully or partially flooded with water to increase or 

decrease the system's flotation. The net chamber is secured to each corner, minimizing 

deformation and providing a fixed volume for fish activity. 

(a) (b) 

Figure 4.1: (a) The OCAT truncated pyramid cage frame constructed with HDPE pipes. Ballast hangs below 

the system providing additional stability to the system, (b) The single point mooring secured with a 

deadweight anchor, mooring chain, surface float and two pairs of bridle lines. 

The system is anchored by a single point mooring. A 5000kg concrete deadweight 

anchor secures the system to the seafloor (Figure 4.1b). Three lengths of chain (25 mm and 19 

mm diameters stud link and 13 mm long link) run from the anchor to a 2.2 kN float. Finally, 

upper and lower bridle lines secure the cage to the mooring resulting in an overall mooring 

scope of 3.45:1. The single point mooring configuration permits the cage to align with prevailing 

currents. The cage buoyancy was set such that the waterline bisects the top rim (resulting in a 

total cage reserve buoyancy of 1.33 kN). This waterline is achieved by flooding the lower HDPE 

rims with water increasing its mass. These adjustments allow the system to self-submerge in 
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extreme storm events such as typhoons. More information on the system can be found in Risso 

(2007). Cage and mooring details are presented in Table 4.1. 

4.3 Physical Model and Experimental Setup 

To validate the numerical model, tow tests on a scaled physical model were performed. 

A 1/10 Froude scaled model of the cage frame was constructed using PVC pipe sections for the 

top and bottom rims and wooden dowels for the diagonals. The top pipe sections were capped 

off to provide buoyancy, and the lower rims were flooded to obtain proper cage hydrostatics. 

The scale model cage is shown in Figure 4.2. Once the frame construction was complete, the 

bridle lines, ballast bridle and ballast chain were assembled. The model parameters are shown 

next to their full scale counterparts in Table 4.1. The cage center of gravity (CG) and center of 

buoyancy (CB) locations of the full and model scale systems were scaled and matched 

accordingly. 

Figure 4.2:1:10 Froude scale model of the OCAT cage 
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Table 4.1: The cage and mooring full and model scale components. 

Cage Component "•'"•• 

Lower Rim 

Angled Rim 

Top Rim 

Splashboards 

Ballast Bridle 

Ballast Chain 

Net 

Lower mooring chain 

Upper mooring chain 

Buoy chain 

Float 

Upper Bridle Extension 

Upper Bridle line 

Lower Bridle Line 

Length 

Diameter 

Length 

Diameter 

Length 

Diameter 

Length 

Width 

Thickness 

Length 

Diameter 

Material 

Length 

Diameter 

Mass 

Mesh Size 

Twine Diameter 

Solidity 

Length 

Diameter 

Mass 

Length 

Diameter 

Mass 

Length 

Diameter 

Mass 

Diameter 

Buoyancy 

Length 

Diameter 

Material 

Length 

Diameter 

Material 

Length 

Diameter 

Material 

;: •- Full Scale-:. 

7 m 

0.28 m 

5.7 m 

0.20 m 

2.0 m 

0.28 m 

2m 

0.3 m 

0.01m 

5 m 

0.025 m 

Nylon 

3m 

0.032 m 

96 kg 

0.03 m 

0.0025 m 

14.8 % 

46 m 

0.025 m 

655.0 kg 

20.5 m 

0.019 m 

167.2 kg 

3 m 

0.013 m 

10.7 kg 

l m 

2.2 kN 

12.4 m 

0.024 m 

Polyester 

3.57 m 

0.018 m 

Polyester 

12.66 m 

0.018 m 

Polyester 

:$mm* 
0.70 m 

0.028 m 

0.57 m 

0.02 m 

0.20 m 

0.028 m 

0.2 m 

0.03 m 

0.001 m 

0.05 m 

0.0025 m 

Nylon 

0.3 m 

0.0032 m 

0.096 kg 

0.03 m 

0.0025 m 

14.8 % 

4.6 m 

0.0025 m 

0.655 kg 

2.05 m 

0.0019 m 

0.167 kg 

0.3 m 

0.0013 m 

0.011 kg 

0.1m 

2.2 N 

1.24 m 

0.0024 m 

Nylon 

0.36 m 

0.0018 m 

Nylon 

1.27 m 

0.0018 m 

Nylon 

• • * ' . ' • -
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The compliance of the mooring lines was not replicated in the physical model because it 

was not critical for analysis of the steady state drag forces generated on the cages by constant 

currents. Accurate modeling of the mooring compliance is critical in oscillating loads, such as 

waves, which were performed in a separate study (Risso, 2007). 

One of the principal forces acting upon the fish cage of the considered design is the drag 

associated with the net, making modeling the net important. Drag performance of the net is 

usually characterized by its solidity (Aarnses et al., 1990), defined as the projected area of the 

net divided by the overall outline of the net area. For a square mesh, for example, the Solidity 

(S) is given by: 

S= ^ = ^ 1 0 0 % (4.1) 

where L is the side mesh length and d is the twine diameter. A net with a high solidity has more 

water "blockage" than one of a lower solidity. 

In this study, the model net solidity was taken to be the same as that of the full scale 

system without geometrically reducing thread diameter and mesh size. This was done to better 

represent the Re - dependent frictional drag forces on the net. Otherwise, flow around the net 

threads would be more viscous (corresponding to lower Reynolds number), contributing to 

possible greater net drag. This phenomenon is discussed in more detail in Palczynski (2000) and 

Fredriksson (2001). The net used in the study had a square mesh size of 0.03 m, twine diameter 

of 0.0025 m and solidity of 14.8%. 

Physical model tow testing was completed in the UNH wave/tow tank (36.5 m long by 

3.05 m wide by 2.44 m deep). The model was towed through the water via a carriage system 

that travels above the tank (see Figure 4.3). A towing staff was fabricated from a 170 cm by 19 
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cm by 1.2 cm aluminum beam. A submersible load cell (SENTRAN® IP67 rated ZBl S Beam 222 N 

load cell) was attached at the bottom of this staff, in-line with the towing direction. The load cell 

was placed 30 cm below the waterline. At full scale, this matched the bridle connection point of 

the single point mooring. The model cage was attached to the staff via the mooring bridle. An 

extension line was added to move the cage away from the immediate effect of the load cell 

staff. 

Load Cell Staff 

Figure 4.3: The experimental setup for physical scaled model current testing. Note that bridle lines (left) 

were digitally enhanced for viewing purposes. 

The output load cell voltages ran through an A/D converter to a computer. National 

Instruments® and LABVIEW® software packages were used to view and record data. Calibration 

of the specified 50lbf (222 N) capacity load cell was completed prior to tow testing and proved 

to be linear. The load cell has a resolution of 0.044 N and was sampled at a rate of 10 Hz. 

4.4 Fish Cage and Mooring Numerical Model 

Similar to the previous case study, the Aqua-FE program was utilized to predict the net 

pen system behavior in a marine environment. Two finite element analysis models were 
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constructed for this study: one for scale physical model tow test comparison, and the second to 

investigate the full scale OCAT cage and mooring response to various current profiles. The first 

model is shown in Figure 4.4. The cage and bridles were simulated using 164 nodes and 288 

elements. The bridle connection point location was similar to that in the physical model. The net 

solidity of the physical model was recreated in the numerical model (14.8%) using 30 consistent 

net elements, developed in Tsukrov et al. 2003. 

As discussed in Chapters 2 and 3, a water velocity reduction occurs as the fluid flows 

through a net pen. This shadowing effect has been documented and quantified on several cage 

systems and net solidities (see, for example, DeCew et al., 2005; Fredriksson et al., 2001; 

Patursson, 2008) and should be taken into consideration. To account for this, a reduced velocity 

was applied to aft portions of the net chamber. From previous testing at UNH and the U.S. 

Naval Academy it was found that a net panel in the 15% solidity range would cause a reduction 

in current of roughly 12.7% (Patursson, 2008). Thus, in numerical modeling, 100% of the 

current velocity was applied to the front net panel and cage frame and 87.3% of the current 

velocity to the remaining fish cage components. 

Figure 4.4: Finite element model of the cage and bridle line components. 
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Once the comparison test was complete, the full mooring was assembled in Aqua-FE to 

perform a submergence study. Note that the same FEA model of the cage was utilized in both 

sets of numerical simulations. The additional components increased the number of nodes and 

elements to 210 and 335, respectively. The full cage and mooring system is shown in Figure 4.5. 

The cage's top rim motion was recorded to obtain the submergence depth of the system. The 

tension in the mooring was monitored in the lower mooring chain (near the anchor) and in the 

three bridle lines connecting the cage to the SPM (upper bridle extension and lower bridles). 

Float 

Element Tension 
Monitored 

Float Connection 
Chain 

Element Tension 
Monitored 

Lower Mooring Chain 

\ 
Upper Mooring Chain 

I 
Fixed Anchor 
Location 

Figure 4.5: Finite element model of the full OCAT cage and single point mooring system. The cage and 

bridle line components are similar to those shown in Figure 6. The tensions within four elements were 

recorded to provide mooring component tension. 

Three different net solidities representative of the actual nets utilized in aquaculture 

operations were used in this study to investigate the effect of the net chamber solidity on the 

systems dynamic response: 8.1%, 16% and 23.8%. Net Systems (www.net-sys.com) Ultra Cross 4 

ply and 16 ply netting parameters were used for the 8.1% and 23.8% solidities, respectively. The 
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16% net was selected to represent a generic net for comparison and is not based upon an actual 

product. The corresponding geometric properties are listed in Table 4.2. 

Table 4.2: Net pen solidities utilized in the numerical model submergence study. 

Parameter 

Solidity 

Twine diameter 

Square mesh side length 

Solidity 

Twine diameter 

Square mesh side length 

Solidity 

Twine diameter 

Square mesh side length 

Value 

8.1% 

1.12 mm 

26.8 mm 

16% 

2.5 mm 

30 mm 

23.8% 

2.73 mm 

21.6 mm 

4.5 Load Cases 

The cage's response to increasing currents is essential for analyzing its single point 

mooring design as well as the effectiveness of the cage and mooring system as a "self 

submerging" system. Eight water velocities, ranging from 0.25 m/s to 2 m/s in 0.25 m/s 

increments, were applied to the system in the scale physical model testing. The full and model 

scale values are shown in Table 4.3. Three tests for each tow velocity were conducted to ensure 

repeatability of measurements. All experiments for the physical and numerical model were 

conducted in a representative water depth (full scale) of 24 meters. 
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Table 4.3: Current velocity input parameters for physical scaled model testing. 

Current 

Regime (#) 

1 

2 

3 

4 

5 

6 

7 

8 

Full Scale Velocity 

(m/s) 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

Model Scale Velocity 

(m/s) 

0.08 

0.16 

0.24 

0.32 

0.40 

0.45 

0.56 

0.60 

4.6 Validation of Numerical Model 

Validation of the numerical model was conducted by comparing its predictions with the 

scaled physical model measurements. Figure 4.6 provides full scale numerical model predictions 

with the physical model measurements recalculated to full scale. In both cases, the total drag 

force acting on the system as a function of current velocity is provided for the netting of 14.8% 

solidity. A minimum least squares fit was used to present the quadratic dependence of the drag 

force T (tension in the tow line) on water velocity U: 

T = kU2 (4.2) 

where k is a coefficient calculated based upon data points U, and T, as follows: 

* - W ' (4'3> 
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Figure 4 6. Comparison between full scale numerical and (recalculated to full scale) physical model 

predictions of the drag on the OCAT cage system. 

As can be seen from Figure 4.6, a good agreement between the two models is observed 

with the numerical and physical predictions being within 3.6% from each other up to 1.5 m/s. At 

higher velocities, the numerical model predicts lower drag than the physical model with a 

maximum difference of 12.9% at 2 m/s. This can be attributed to the physical model's reduced 

Reynolds number and associated increased drag coefficient at these velocities. Taking the 

critical Reynolds numbers to be 2.33 xlO5 (see Figure 2.17) the water velocity required to enter 

critical flow for the full scale system is 1.22 m/s, compared to 12.2 m/s for the physical model. 

At 1.5 m/s, the frame pipe Reynolds numbers for the numerical and physical models are 3.81e5 

and 1.21e4, respectively. From Figure 2.17, the structural frame pipes of the physical model had 

drag coefficient values roughly 1.7 times higher than those in the full scale structure. 
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Note that several other physical effects were not included in the models. In particular, 

the numerical model did not include any surface effects, so that the contribution of 

corresponding wave generation forces were not reproduced. Also, the compliance of the 

mooring lines was not replicated in the physical model. Based on the previous studies that 

included field observations and measurements of full scale aquaculture installations 

(Fredriksson, 2007), these effects can be neglected for the considered dynamic loading of the 

OCAT system. 

4.7 Numerical Model Results and Discussion 

The single-point moored OCAT cage described in Section 4.2 was designed to submerge 

under high currents to minimize environmental forces and preserve structural integrity. This 

feature of the design was analyzed by conducting numerical experiments for three different 

values of net solidity corresponding to low, intermediate and high values for netting used in 

aquaculture operations, namely 8.1%, 16% and 23.8%. Each net solidity was investigated at 

current speeds up to 1.5 m/s representing the highest velocities at deployment areas of interest. 

In addition, several other values of the net solidity were investigated at the maximum 1.5 m/s 

current to get more insight into the submergence behavior. These net solidities were also based 

on netting used in the industry. The simulations were performed for a water depth of 24 m. In 

most simulations, the current distribution through depth was assumed to be constant; however, 

one simulation with current linearly decreasing from 1.5 m/s at the surface to 0 m/s at the sea 

floor was conducted. 

Figure 4.7 shows the submergence depth, defined as the vertical distance from the top rim 

to the water surface, as function of the current velocity. The deformed configuration of the 
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mooring cage at 1.5 m/s current for each net solidity is presented in Figure 4.8. The following 

observations can be made. 

1. At water velocities up to 0.75 m/s, the cage system remains at or near the surface 

regardless of the net chamber solidity. 

2. If a 1 meter vertical deflection is defined as the initiation of submergence, this threshold 

is achieved by the cages at 0.75,1, and 1.2 m/s for the 23.8%, 16% and 8.1% solidity net 

cages, respectively. 

3. From approximately 1 m/s to 1.5 m/s the cage, for the considered range of solidities, is 

in the unstable submergence regime when small changes in the systems design, e.g. 

solidity of netting, result in significant changes in the numerically predicted 

submergence. This is demonstrated, for example, by a 7.5 m difference between the 

submergence of a cage with a net solidity of 8.1% and 9% at 1.5 m/s currents. 

4. The transition into the critical flow region is captured by the numerical model, see the 

behavior of 8.1% solidity net cage near 1.2 m/s water velocity. 

5. The uniform current profile is not typically seen in the field. To evaluate the dependence 

of the submergence depth to the exact distribution of current, one simulation was 

performed for a linear changing velocity profile on the 16% solidity net pen. As 

expected, the submergence of the cage was reduced by a significant amount (8.7 m) as 

compared to the constant 1.5 m/s current. This depth corresponds to velocities of 1.1 

m/s acting on the center of the cage which agrees well with the submergence 

predictions for constant currents. 
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Figure 4.7: Submergence depth of the OCAT system for various netting solidities and water velocities. 

Note that the 9%, 10%, 12%, 16% with velocity gradient, 18% and 21% solidities were only examined at 

1.5 m/s. 
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Figure 4.8: Submerged configurations of the OCAT system at 1.5 m/s currents. 

The tension in the mooring components was also examined. The loads within the lower 

mooring chain (near the anchor) as well as the sum of the three bridle lines loads (representing 

the cage drag) were extracted from the numerical model for each analyzed water velocity and 

net solidity. It was observed that the drag associated with the lower and upper mooring chain 
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and spherical float had minimal influence on the total mooring system load (less than 10% at 

velocities below 0.5 m/s and less than 5% at higher water velocities). 

The anchor chain tensions are presented in Figure 4.9. It can be seen that at the 

currents corresponding to the initiation of submergence, the tension-deflection curve 

temporarily changes its character from quadratic to linear. This is caused by the changes in the 

system's geometry - rearrangements in orientation of components to reduce the drag force and 

minimize the potential energy. After this realignment, the system enters the unstable 

submergence regime where variations in submergence depth do not produce significant 

changes in the total potential energy. For example, cages with 8.1% and 9% net solidities 

experience very close mooring tensions (around 18 kN) for substantially different submergence 

depths (approximately 2 m for the 8.1% solidity versus 10 m for the 9% net solidity). 
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Figure 4.9: Variation of the mooring chain tension with water velocity for different net solidities. 
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4.8 Conclusions 

A small volume aquaculture cage system secured in a single point mooring was analyzed 

under a variety of currents. The submergence depth and mooring tensions were investigated as 

a function of net solidity. The numerical model was validated by comparison with scaled physical 

model tow tests and demonstrated good agreement. However, it was observed that the Froude 

scale physical testing can over-estimate drag forces on cylindrical components at high Reynolds 

numbers. This is a caused by the decrease in Reynolds number when the actual component's 

boundary layer becomes fully turbulent, thus moving back the location of the flow speration 

point, while the scale model of the component is still in laminar flow, leading to a larger 

coefficient of drag. The system was found to remain at the surface, regardless of solidity, at 

water velocities less than 0.75 m/s. The submergence studies show a significant unstable regime 

in the response of the cage where slight modifications in the net solidity or current produce 

large variations in the predicted depth of submergence. This can have significant impacts in the 

field, as the net pen was designed to be self-submerging. The mooring tension was not linearly 

dependent on the cage submersion depth. The output tension data showed that cages with 

similar net solidities could have significant differences in submersion depth yet similar mooring 

loads. Further studies are needed to combine the net solidity and the total system buoyancy 

effects on cage submergence to fine tune the cage and mooring for different environments. 
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CHAPTER 5 

DEVELOPMENT OF STRUCTURAL MODELING 

TECHNIQUES 

Finite element analysis (FEA) techniques were developed to determine the structural 

capabilities of high-density polyethylene (HDPE) net pen flotation structures. The modeling 

approach uses shell elements and localized failure criteria to predict critical loading conditions. 

FEA simulations were performed using values for the Young's Modulus for HDPE determined 

from tensile tests. Standard manufacturer's values of Poisson's ratio and the yield stress were 

assumed. To investigate the effectiveness of the method, a series of experiments were 

performed in the laboratory by testing circular sections of HDPE pipe to localized failure 

("kinking"). The same test was replicated with the FEA. A FEA model was then built to represent 

the complex geometry of a net pen flotation structure deployed at an operational fish farm 

located in Eastport, ME, USA. Simulations were performed using attachment line tension values 

measured at the site. The goal was to assess flotation pipe stress levels for typical operational 

conditions. Simulations were also performed to investigate the maximum capabilities of the net 

pen structure with different attachment line configurations. Quantifying the operational limits 

becomes more important as these systems are considered for more exposed, energetic 

environments. Portions of this research were published in Fredriksson et al. 2007b. 
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5.1 Previous Technical Work: Structural Modeling in Marine 

Aquaculture 

Most of the open ocean aquaculture engineering research conducted in the world has 

focused on the development of adequate mooring systems (Colbourne, 1997; Lee and Pei-Wen, 

2000; DeCew et al., 2005) and understanding and proper modeling of netting (Aarsnes et al., 

1990; Gignoux et al., 1999; Tsukrov et al., 2003; Zhan et al., 2005; Lader et al., 2006). However, 

very little research has been done on the reliability of cage frames (see, for example, Suhey et 

al., 2005). According to the Directorate of Fisheries in Norway, HDPE cage rim integrity loss was 

the cause of 30% of net pen failures in Norway from 2001 through 2006 (see Figure 5.1). 

Figure 5.1: Two failed cage rims, resulting in a loss of structural integrity. The rims were constructed of 

standard HDPE material and deployed in near-shore farms. 
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There are three main FEA models used to numerically investigate the structural 

performance and failure of cage frames under hydrodynamic loads: beam/truss elements, 2D 

shell, and 3D brick elements. Figure 5.2 shows a section of pipe represented by these element 

types. 

(a) (b) (c) 

Figure 5.2: Three element types representing the same length of pipe, (a) 2 node line element, (b) 2D shell 

elements, and (c) 3D brick elements. 

Beam/truss models are typically represented by a 2 node line elements. The elements 

are good for modeling the overall behavior of the structure. They can also capture the major 

loading and motions of the system. However, they are not appropriate to analyze stress 

concentrations and material failure. 2D elements are appropriate to study the deformation and 

buckling of shells, such as HDPE pipe. Local deformations and stress concentrations can also be 

monitored. These elements are not efficient for overall behavior and are not useful for 

hydrodynamic loading as the details of fluid pressure distribution are not usually known. 3D 

elements have the potential to most accurately model the structure, especially in the 

connection and attachment areas. However, there are a few drawbacks to these elements. 3D 

elements are extremely computationally intensive, especially for dynamic problems. There are 
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also mesh compatibility issues; the mesh-per-thickness required for accuracy lead to elements 

with poor thickness to length ratios, making the model difficult to converge. In addition, it is 

difficult to model large deformations typical for buckling (the model needs to be re-meshed 

after each time step). In the analysis presented in this chapter, the 2D shell elements are used 

to model structural behavior and buckling of cage rims. 

Analysis of the buckling process of HDPE cage frames becomes complicated due to the 

material's viscoelastic behavior. Extensive research has been conducted examining nonlinear 

and viscoelastic numerical modeling techniques to effectively represent HDPE under various 

loadings such as tension and compression (see for example, Dusunceli and Colak, 2006; Kwon 

and Jar, 2008; Lai and Bakker, 1995a, 1995b; Qi et al., 2005; Drozdov and Christiansen, 2007; 

Colak and Dusunceli, 2006; Joseph, 2005; Klompen, 2005). Zhang and Moore (1997a, 1997b, 

1998) developed nonlinear FEA models to predict performance limits of buried HDPE pipe. 

These models have been compared to analytical calculations and laboratory experiments with 

good results. However, the techniques offered by the researchers require accurate 

understanding of HDPE's material properties at the associated strain rates, and may be more 

complicated than necessary, significantly influencing the computational time when modeling a 

large complex fish cage frame. This chapter presents a new approach to model buckling in 

pipes, using a procedure which monitors the development of localized high deformation zones 

and simplified material property information. 

5.2 Aquaculture in Broad Cove. Maine 

The structural integrity of a surface gravity cage system was investigated as part of a 

comprehensive study working with a marine aquaculture company facility with 20 deployed net 

pens. The project included the installation of current meters and load cells to measure the 
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forcing and resulting loads in components of the farm (Fredriksson et al., 2006). The 

components consisted of anchor leg assemblies, net pen attachment lines and HDPE net pen 

structures. As part of the project, Aqua-FE was used with the field measurements to assess 

mooring gear operational limits (Fredriksson et al., 2007b). In this chapter, the structural 

capabilities of the HDPE net pens used to contain the finfish product are examined. 

The study was conducted for an operational facility located in Eastport, ME, USA. The 

Eastport site was positioned in Broad Cove near the border of New Brunswick, Canada (Figure 

5.3). Deployed at the site is an array of net pens configured in a 5 by 4 near-surface mooring 

grid system. It is oriented in a north-south direction and held up with flotation elements (Figure 

5.4). The surface portion of the farm has the approximate dimension of 219m by 274 m. Each of 

the net pens has a nominal radius of 15.9 m. 

Figure 5.3: The farm was located in Broad Cove, Eastport, Maine. 
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Figure 5.4: The fish farm consisted of 20 net pans each with an approximate diameter of 31.8 m. 

Instrumentation was deployed in the southwest portion of the farm. Load cells were installed on the SW 

anchor and bridle lines. 

The aquaculture site in Broad Cove is influenced by the extreme tides of the Bay of 

Fundy (Dudley et al., 2000). The predominant forcing on the farm components is a result of the 

tidal currents. The tidal currents interact with the nets and HDPE pipe components to create 

drag forces. The loads on each net pen are transferred to the mooring grid system, ground 

tackle and anchors using sets of attachment lines (y-lines). To quantify the forcing at the site, a 

current meter was installed at an exterior farm location (see the focus area in Figure 5.4). In 

addition to the current meter, four load cells were installed on the West (W), Southwest (SW), 

East (E) and Southeast (SE) y-lines. Instrument positions and y-line components are shown 

superimposed on the aerial photograph in figure. 

Each of the 20 net pens at the site is circular and is constructed with HDPE pipe. The 

surface flotation rim structure of each net pen consists of two concentric rings of pipe with a 
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nominal diameter and thickness of 323 and 19.8 mm, respectively (see Figure 5.5). The pipes are 

held together by passing them through 48 brackets constructed of two larger pipe sections 

(diameter of 406 mm, thickness of 6.9 mm). The brackets also incorporate a handrail support 

assembly made wi th 114mm diameter pipe wi th a thickness of 5.7mm with vertical and angled 

members through which a circular "handrai l " is passed. These components are shown in Figure 

5.5 (a load cell recorder strapped to one of the net pen stanchions is also shown in the figure). 

Cage Rim 

Angled Support 

Load Cell 
Recorder Cable 

Rim Sleeve 

Handrail 

Load Cell 
Recorder 

Sleeve support 

Figure 5.5: The cage frame and brackets are shown (with a attached bridle line load cell recorder). 

For most deployments at this site, the net pen components were specified empirically 

based on years of operational experience. However, the actual capabilities of these components 
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were rarely quantified. If the same structures are to be deployed in a more energetic 

environment, the point of failure would need to be predicted to prevent escapement, which can 

have dire economic and environmental consequences. Therefore, the objective was to develop a 

technique for predicting the structural integrity of the flotation structure of HDPE net pens. The 

technique was developed utilizing a combination of laboratory and computer model 

experiments. Using the technique, FEA simulations were performed for loading conditions at the 

Broad Cove site. The same model was then used to investigate maximum loading conditions at 

estimated yield values for the material. 

The first step in the approach was to carry out a series of laboratory tensile tests to 

determine the Young's Modulus for samples of weathered HDPE using a range of loading rates. 

The next step was to develop the modeling procedure for HDPE pipe, including stress-strain 

characteristics and FEMA techniques. This was done by utilizing shell elements and employing 

localized failure criteria. Circular ring laboratory experiments were then performed where five 

samples of actual pipe were tested to localized failure. The laboratory tests were replicated 

using FEM simulations. The results were then compared. Finally, the FEM approach was applied 

to the more complex geometry of the pen flotation structure deployed at the Broad Cove site. 

Calculations were performed to examine the stresses in the pipe during operation at the farm 

and to investigate the maximum load the net pen pipe assemblies can withstand. 

5.3 Finite Element Procedure and Material Modeling 

Unlike linear elastic materials such as steel, HDPE is considered viscoelastic because its 

mechanical response is time-dependent. A slowly applied load will cause the HDPE to undergo 

large deformations as the polymer bonds of HDPE "settle" and "unwind." However, if the same 

load is applied quickly, the bonds do not have sufficient time to react, resulting in less 
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deformation. As a result, the Young's Modulus relating stress and strain can be substantially 

larger at higher strain rates. Net pens located in exposed marine environments where waves 

and currents are prevalent may have a range of loading rates that are structure and site specific. 

To investigate the elastic characteristics of weathered HDPE, a series of tensile tests were 

performed using samples of pipe weathered for several years (stored in areas of direct sunlight). 

Since the actual loading rates at the fish farm site were not determined, three standard loading 

rates of 0.0127, 0.127 and 1.27 mm/s (typical of tensile testing procedures) were used in the 

experimental tests. 

Ten pieces of the HDPE were machined into the standard ASTM D638 "dog bone" shape 

having an initial (total) length of 12.7 cm and a test length of 5.08 cm (Figure 5.6). Three sets of 

stress-strain tests (each with three replicates) were conducted at the three loading rates in an 

Instron^Schenk Testing System (Model 1350). Also shown in Figure 5.6 is the machine with a 

specimen prior to testing. The stress-strain results for the tests are shown in Figure 5.7 for the 

0.0127, 0.127 and 1.27 mm/s loading rates, respectively. For each set of loading rate tests, a 

Young's Modulus was determined by linearizing the results. The values are provided in Table 

5.1. Also provided in Table 5.1 are the standard deviation and average of the Young's Modulus 

values. Tensile testing results show a dependence on the loading rate, though the results from 

using specimen 2 were lower than those of specimens 1 and 3 for each of the test sets. It is 

possible that the difference can be attributed to varied weathering conditions. The average 

value of the Young's Modulus for the slowest loading rate, equal to 6.67 x 108 Pa, was used as 

input for the FEM calculations. It should be noted that a value 8.00 x 108Pa was used by 

Vikestad and Lien (2005) to examine the bending stiffness offish cage collars. 
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Instron Machine 
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Figure 5.6: Samples of HDPE pipe were placed in an Instron tensile testing device. 
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Figure 5.7: Stress strain data results when loaded at 0.0127mm/s, 0.127 mm/s and 1.27 mm/s. 
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Table 5.1: Young's Modulus values obtained during tensile testing using weathered HDPE samples 

Sample Young's Modulus (Pa) 

1 

2 

3 

S.D. 

Average 

Rate 1, 0.0127 

7.80 x 108 Pa 

5.10 x 108 Pa 

7.13 x 108 Pa 

1.41 x 108 Pa 

6.67 x 108 Pa 

mm/s Rate 2, 0.127 mm/s 

9.52 x 108 Pa 

6.73 x 108 Pa 

9.27 x 108 Pa 

1.54 x 108 Pa 

8.37 x 108 Pa 

Rate 3,1.27 mm/s 

1.18 x 109 Pa 

7.72 x 109 Pa 

1.17 x 109 Pa 

2.33 x 108 Pa 

1.04 x 109 Pa 

5.4 Finite Element Analysis of HDPE Pipes 

Numerical modeling of the HDPE pipes was performed by utilizing shell elements 

developed to analyze thin structural components with high bending stiffness. These elements 

combine both membrane and bending resistance to applied loads. It is assumed that the flexural 

deformation of the shell occurs according to the Kirchhoff-Love hypotheses, so that bending 

stresses and strains are proportional to the distance from the mid-surface of the shell. The 

bilinear four-node thin-shell elements used in the analysis have six degrees of freedom per node 

as illustrated in Figure 5.8. In the figure, Ux, Uv, Uz and rx, ry, and rz are the components of nodal 

displacements and rotations, respectively. Bilinear approximation of the displacements provides 

continuity of the displacement functions through the boundary of the element (see, for 

example, Zienkewicz et al., 2005). Using these elements, numerical models were developed in 

the commercially available finite element program MSC.MARC (www.mscsoftware.com). 

Geometric properties were assigned based on the actual dimensions of structures, and the 

material was chosen to have the nonlinear stress-strain behavior of HDPE. 
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Figure 5.8: The four-node shell element with 6 degrees of freedom per node. 

To model the HDPE pipes used as net pen structural members, a simplified material 

model was used. The Young's Modulus of the material was assumed to be constant as long as 

the material is within its elastic region (i.e. stress is not larger than the material yield limit). The 

yield strain of a typical ductile polymer ranges from 5% -10% strain (where a metal yields at less 

than 0.1% strain). Once the stress in the material passes the yield stress, plastic deformation 

begins to occur. The material then follows a stress-strain relationship similar to that shown by 

the dashed curve on Figure 5.9. The material will eventually fail or fracture as the strain 

increases. Modeling the stress-strain characteristics is possible but requires an extensive 

number of tests to resolve the plasticity of the material under various loading rates (see Chapter 

6). Therefore a simplified structural model, shown as the solid curve on Figure 5.9, was chosen 

to represent the HDPE behavior. In this case, the critical point to determine failure is the yield 

stress, ay. 
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Figure 5.9: Approximation of polymer material behavior by linearly elastic - perfectly plastic curve. 

Thus, finite element analysis of the HDPE pipe requires the following material 

parameters: Young's Modulus, Poisson's ratio and yield stress. The Young's Modulus was 

determined from a series of tensile tests using weathered HDPE samples as described 

previously. Value for the Poisson ratio was taken from a provided manufacturer's value of 0.42. 

A sensitivity study was performed changing the Poisson ratio value in a series of FEM 

simulations and the results compared. It was found that the results did not vary significantly at 

the time steps used in the model. This result was similar to that found by Suhey et al. (2005) in 

their numerical model study of membrane structures used for open ocean aquaculture cages. 

Yield stress was taken as the standard manufacturer published value of 2.413 (107) Pa. In this 

study, weathered HDPE components were considered, but according to Ollick and Al-Amir 

(2003), weather does not significantly affect the yield stress of HDPE. 

5.5 Circular Ring Experiments 

To investigate the failure modes and maximum loads, a set of experiments was 

conducted using circular rings of HDPE pipe. Tests were first conducted in the laboratory where 



circular rings of HDPE pipe were deflected until "kinking" was observed. Then the laboratory 

tests were simulated using the FEM technique. 

The laboratory experiment consisted of five individual pull tests performed on 3.66 

meter diameter circular rings of HDPE pipe (SDR 15.5) having the same exposure as the material 

used in the tensile tests. The rings were fixed at two locations on one side spaced approximately 

2.8 meters apart along the arc. On the other side, a single rope with an inline load cell was 

attached to the ring. A photograph of the set up is shown in Figure 5.10. A "come-a-long" was 

slowly used until local failure ("kinking") was observed (Figure 5.11) and the test was stopped. 

Five individual tests were conducted. The results of the circular ring's change in diameter are 

shown in Figure 5.12. Tests 2-5 showed similar results with localized failure occurring at a load 

of approximately 1557 N (350 Ibf). 

Figure 5.10: Experimental test set-up of the circular ring experiments. 

101 



Figure 5.11: The tensioning connection point with a localized failure observed. 
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Figure 5.12: The results of the circular ring experiment. The force and associated circular ring diameter are 

shown. The diametric deflection was measured with a tape measure between the load application point 

and midpoint between the supporting bridles. 
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The next step was to perform numerical simulations of the circular ring laboratory tests 

using the MSC.MARC finite element modeling software and compare results. The finite element 

model was constructed using the geometric properties of the SDR 15.5 pipe from the circular 

ring laboratory tests. The material properties used in the model consisted of the published 

values for yield stress of 2.413 (107) Pa, a Poisson ratio of 0.42 and a Young's Modulus equal to 

6.67 (108) Pa obtained from the tensile tests. Parameters and values used in the FEM simulation 

are provided on Table 5.2. The fixed and point load boundary conditions were set in the same 

location as the laboratory tests. 

Table 5.2: Geometric and material properties of HDPE pipe used in the FEM calculations for the 

weathered ring experiments. 

Parameter 

Overall Diameter 
Pipe Diameter 
Wall Thickness 

Material 
Young's Modulus 
Poisson's Ratio 
Yield Stress 

Value 

3.66 m 
8.89 cm 
0.574 cm 

HDPE 
6.67 x 108 Pa 
0.42 
2.412 x 107 Pa 

The model was constrained by fixing one line location in the x, y and z directions. 

However, to replicate the degrees of freedom of the ring in the laboratory tests, the other line 

attachment location was only fixed in the direction of the point load (Figure 5.13). This allowed 

the model to bend and flex due to the application of the load and not restrict any motion. The 

load on the circular ring was simulated with applied point forces, distributed over 27 nodes. It is 

important to note that the load in the FEM simulations was applied quasi-statically so that the 

rate of loading was accounted for by the choice of material parameters only. 



In the FEM procedure, a localized failure criterion is applied as follows. The load acting 

on a set of closely spaced shell elements is slowly increased. When the yield stress of the 

element at the load application is reached, the model distributes the load to surrounding 

elements (effectively decreasing the stress at the time step). The load is increased, and the 

procedure is repeated until enough elements, consisting of approximately half the 

circumference of the pipe, reach the yield stress. At this point it is assumed that the cross-

section of the pipe fails, and the simulation is terminated. Using this simplified representation 

had the effect of over-predicting material failure (conservative approach) because the polymer 

may still have limited load bearing capabilities above the tensile strength, whereas the model 

will not. 

Fixed in y direction 

Figure 5.13: Using the values in Table 5.2, FEM calculations were performed to simulate the weathered 

ring experiments. Note that the ropes pull inward, present in the laboratory experiment, was not 

replicated in the FEM. The displacement, in meters, in the horizontal position (Y) is shown along the 

deformed geometry (right). 
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During the simulation, the rim deformed until the localized failure criterion is met. The 

before loading and deformed models of the rim are shown in Figure 5.13. The load at failure was 

calculated to be 1877 N, approximately 16% greater than the laboratory tests. Figure 5.14 shows 

a visual comparison of the "kinking" observed from both the laboratory and the computer 

model tests. 
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static 
Equivalent Von Mises Stress Layer i 

Figure 5.14: A visual comparison between the kinking and localized failure of the circular ring. Note that 

the yield stress of HDPE is 2.417 x 107 Pa. 

Although in the study the failure criterion is set when J4 the pipe circumference 

elements yield, the yielding of a few elements can constitute concern. Figure 5.15 shows the 

total applied load on the rim versus the percent of pipe circumference undergoing plastic 

deformation. This plot shows the amount of yielding as a function of load, at the load 

application point. It can be seen that once yielding occurs in 25% of the pipe, the load is near its 
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maximum value, and total collapse occurs shortly thereafter. From these results, a certain 

amount of confidence was obtained using this modeling approach. 

Figure 5.15: The load versus percentage of pipe circumference element failure. The progression of stress 

contours using the localized failure technique is also shown. 

5.6 Boundary Conditions and Geometric and Material 

Properties 

A numerical model of the net pen flotation structure was then built using the geometric 

and material properties described for HDPE (Table 5.3). Shell element dimensions varied 

depending upon the component. The inner and outer flotation pipe assemblies were modeled 

with shell elements (see Figure 5.8) having the dimensions of 294.8mm by 79.3 mm. A total of 

24,864 nodes and 25,824 elements were used in the model. The finite element model of the net 

pen is shown in Figure 5.16. Boundary conditions for the model were similar to those used for 
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the circular ring laboratory tests, but the load application was modified. When deployed in the 

field, the primary loads on a net pen are the drag forces associated with the net and the equal 

and opposite, counteracting y-line tensions. It is difficult to model the distributed load of the net 

(around the rim) and localized forces due to the y-lines simultaneously. Therefore, two load 

cases were used to investigate each scenario. Together these load cases should bracket the 

predicted stresses on the system. 

Table 5.3: The geometric and material properties of the net pen flotation structure FEM 

Component 

Cage 

Flotation Pipe 
(inner and outer) 

Rim Sleeve 

Sleeve Support 

Handrail 

Handrail Sleeve 

Vertical Support 

Angled Support 

Parameter 
Overall Diameter 

Circumference 
Material 

Young's Modulus3 

Poisons ratioa 

Yield Stress3 

Pipe diameter 
Thickness 

Pipe diameter 
Thicknessb 

Pipe diameter 
Thickness 

Pipe diameter 
Thickness 

Pipe diameter 
Thicknessb 

Pipe diameter 
Thickness 

Pipe diameter 
Thickness 

Value 
31.8m 
100 m 
HDPE 

6.67 (108) Pa 
0.42 

2.41 (107) Pa 
0.3238 m 
0.0198 m 
0.4064 m 
0.0690 m 
0.3238 m 
0.0198 m 
0.1143 m 
0.0057 m 
0.1413 m 
0.0242 m 
0.1413 m 
0.0134 m 
0.1143 m 
0.0108 m 

a All components used in the model has the same Young's Modulus, poisons ratio and yield stress. 
bSleeves take the rim or handrail pipe thickness into account. 
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Figure 5.16: An FEM model of a portion of the surface rings used in a net pen. 

The first load case examined the system from a "global" perspective. It utilized a 

distributed load representing the drag forces of the net chamber, with fixed and supported 

boundary conditions representing the y-line attachment points (Figure 5.17). Similar to the 

circular ring, one attachment point was fixed in the x, y and z direction and the other was 

restricted in the load application direction. The linear distance (around the rim) between points 

was dependent upon the input loading scenario (for example, if one or two y-lines were 

supporting the system in the field). The load representing the drag of the nets was assumed to 

be distributed evenly over the inner and outer rims. A force was applied to over 474 nodes that 

increased linearly with time at a quasi-static rate (note that the loads were only distributed over 

the "major arc" of the cage frame). Modeling the rim in this manner allowed for the proper 

distribution of the load. Note that the weight of the nets and coinciding buoyant force of the 

rims was not taken into consideration when modeling these structures. 
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Fixed in z 
direction 

Fixed in x, y, z 
direction 

Figure 5.17: The first load case: the drag was assumed to be evenly distributed over "major arc" the inner 

and outer rims. The two additional bridle line supports (would be present in the "minor arc" of the cage 

frame), were not taken into consideration for this analysis. 

The second load case investigated the response of the system due to y-line tensions. 

The model was fixed similar to the previous load case. However, in place of a distributed load, 

four sets of point loads were applied to the rim (Figure 5.18). Modeling the structure in this 

manner allowed more accurate representation of the attachments and localized stresses. In 

addition, these four sets of point loads can have different magnitudes, representing more "field

like" conditions. Both load cases, however, do assume the y-line locations (either as constraints 

or load application points) are symmetrically located around the rim. For each load case 

scenario, the geometric and material properties were assumed to be the same. In both of these 
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load cases, the major mechanism of kinking (the most dangerous) was examined. Therefore, 

certain loads and boundary conditions were neglected: additional bridle line supports, 

contribution from drag on the minor arc (mostly compensated by the attachment reaction 

forces, and out-of-plane components of reaction force. 

Fixed in z 
direction 

fixed_xyz 

po in t_cor i tac t l 

point_contact2 

point_contact3 

pomt_contact4 

l f i x e d _ z 

_ 

Fixed in x, y, z 
direction 

Figure 5.18: The tensions in the mooring line are represented by point loads applied to 1/z the pipe 

circumference and evenly distributed on the inner and outer rims. The two additional bridle line supports 

(would be present in the "minor arc" of the cage frame), were not taken into consideration for this 

analysis. 

5.7 Broad Cove Farm Case Study 

As part of the field program, current meters and load cells were deployed at the site 

during three distinct operating conditions. These conditions consisted of deployment of net 

pens with (1) standard predator and smolt nets, (2) standard predator and fish nets and (3) 

110 



predator and fish nets fouled with biological material. Net pen attachment line (y-line) load cells 

were deployed during conditions (1) and (2). Since the smolt nets have a higher solidity than the 

standard fish nets, tension values during this condition were used in this study. 

The current direction was an important factor in selecting the load cases. To accurately 

predict the stresses in the rims, the environmental conditions at the site had to be replicated in 

the model. Therefore, cases were chosen in which the cage would set back against the bridle 

lines due to the oncoming current, insuring that these lines were taking the majority of the load. 

Two data sets with these loading conditions occurred between 1400-1420 UTC on 5-May-04 and 

2200-2220 UTC on 16-May-04 where forcing velocities were relatively steady in time (Table 5.4). 

Table 5.4: The current velocity measurements obtained from the current meter located outside of the 

farm for two selected load cases. 

Load Case Date Time (UTC) East-going (m/s) North-going (m/s) 

1340 -0.070 0.559 

5/05/2004 1400 -0.271 0.137 

1420 -0.071 0.493 

2140 -0.201 -0.004 

5/16/2004 2200 -0.296 0.304 

2220 -0.268 0.258 

In addition to the current velocity measurements, load cells data sets were also 

acquired during the same cases from the West, SW, SE and East y-lines (see Figure 5.4). Note 

that these y-line locations coincide with the applied boundary conditions presented in Figure 

5.18. The instruments were programmed to measure net pen attachment loads at a rate of 5 Hz 

for 20 minutes each hour. The time series results for each load case are shown on Figures 5.19 

and 5.20. The average and maximum loads are provided on Table 5.5. The maximum loads are 
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used as input to the structural model to calculate net pen rim stresses typical of normal 

operation. 
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Figure 5.19: The load cell data sets f rom 5-may-2004 at 1400 UTC. 
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Figure 5.20: The tensions in the y-lines measured on 16-may-2004 at 2200 UTC. 



Table 5.5: The average and maximum load cell results from each of the Y-line attachments. 

Date W Y-line SW Y-line SE Y-line E Y-line 

Time (kN) (kN) (kN) (kN) 

5/05/04 Average 3~21 L50 2~95 1A1 

1400 Maximum 8.39 6.26 3.10 4.46 

5/16/04 Average 2.56 1.56 6.60 3.69 

2200 maximum 3.07 2.58 7.32 5.13 

5.8 Structural Modeling Results 

Using shell elements, the localized failure criterion, and the previously described 

boundary conditions, case studies were performed to examine loads on the net pen structure in 

normal Broad Cove environmental conditions. The rims were subjected to a distributed load 

having a resultant equal to the vector sum of the two y-line load vectors (load case 1), and 

individual y-line attachment forces (load case 2). To model the worst-case scenario, the 

maximum load of each recorded value was utilized as provided in Table 5.5. The results from the 

structural model calculations yielded conservative Von Mises stress values for each load case as 

provided on Table 5.6. 

Table 5.6: The Von Mises Stress calculated using the structural model for each load case and boundary 

condition. 

Date Boundary Conditions Von Mises Stress 

Time (UTC) 

5/05/2004 

1400 

5/16/2004 

2200 
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LC#1 2.17 (106) Pa 

LC #2 4.22 (106) Pa 

LC#1 2.14 (106) Pa 

LC#2 3.55 (106) Pa 



A visual representation of rim stress for each of the load cases is shown in Figures 5.21 

through 5.24. The maximum Von Mises stress obtained using the structural model was 4.23 

(106) Pa, which is less than 1/5 of the 2.41 (107) Pa yield value for HDPE. This result is expected 

since during normal operation, the net pen rims rarely fail. However, the modeling technique 

now allows the operational limits to be quantified. 
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Figure 5.21: Von Mises Stresses in the net pen structure using environmental loading data of 5-may 2004 

at 1200 with the 1st load case boundary conditions. The maximum stress occurred on the inside rim in the 

middle of the distributed loads as seen in Figure 5.18. 
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Figure 5.22: Von Mises Stresses in the net pen structure using environmental loading data of 5-may 2004 

at 1200 with the 2nd load case boundary conditions. The maximum stress occurred at the SW y-line load 

application point (maximum y-line tension). 

Figure 5.23: Von Mises Stresses in the net pen structure using environmental loading data of 16-may 2004 

at 2200 with the 1st load case boundary conditions. The maximum stress occurred on the inside rim in the 

middle of the distributed loads as seen in Figure 5.18. 
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Figure 5.24: Von Mises Stresses in the net pen structure using environmental loading data of 16-may 2004 

at 2200 with the 2nd load case boundary conditions. The maximum stress occurred at the SE y-line load 

application point (maximum y-line tension). 

5.9 Estimated Maximum Load 

The next step was to use the structural modeling technique to determine an estimated 

failure load of the net pen rim under various operational circumstances. Using shell elements 

and the localized failure criterion, simulations were performed for the three attachment 

configurations where the net pen was secured with (a) a single attachment point, (b) two 

attachment points and (c) four attachment points, as shown in Figure 5.25. 
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Load Application 
Direction 

Load Application 
Direction Load Application Direction 

(b) 

Figure 5.25: The attachment configurations were modeled where the net pen was secured with one (a), 

two (b) and four (c) point locations. 

These configurations can represent three situations ranging from a worst-case scenario 

(a) to normal cage securement (c). In each one of these load cases, forces were applied to the 

cage frame similar to the first boundary condition until the localized failure criterion was met. 

The net pen rim was fixed in the x, y, z directions at one, two or four locations. Any other y-line 

attachments were presented by fixing the model in 1 direction (opposite direction of the load). 

The results of the model tests are provided in Table 5.7. 

Table 5.7: The estimated failure loads for the three attachment locations 

Load Case Y-line Failure Load Ibf 

Configuration attachment kN 

points 

(a) 

(b) 

(c) 

2 

4 

53.0 kN 

98.6 kN 

>444 kN 

11919 Ibf 

22178 Ibf 

> 99815 Ibf 



With one y-line attachment point, the cage rim failed at 53 kN. However, it is rare that a 

net pen is secured by only one point. Typically, this situation exists if there is a line failure or the 

cage is temporarily secured for various operational reasons. Figure 5.26 shows the results when 

only one y-line attachment point was examined. The failure load increased to 98.6 kN when 

distributed over one full y-line (or two attachment points), as seen in Figure 5.27. When two y-

lines were used, the failure load increased dramatically. Yield stresses in stanchions and over 

sections of the main rims were visible at 288 kN. However, the pipe still had some structural 

integrity at this point. The rims finally "buckled" at a load of over 444 kN (Figure 5.28). These 

cage loading conditions can occur regularly at a farm site if the correct environmental conditions 

exist. Fortunately, when examining the failure load for attachment configuration (b) and the rim 

loads and associated stresses, the forcing needed to obtain the failure load (98.6 kN) is 

significant. 

Figure 5.26: The von mises stress distribution on the net pen rim when 53 kN is applied as a distributed 

load. 
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Figure 5.27: The von mises stress distribution on the net pen rim when one full y-line (shown 

superimposed above the results) is utilized. 

Figure 5.28: The von mises stress distribution on the net pen rim when two, symmetrical y-lines (shown 

superimposed above the results) are utilized. 
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It is important to recall that the boundary conditions used in the model are located 

symmetrically around the cage rim. In the field, however, operation personnel do not secure the 

cages at set locations (equally distributed along the rim), rather by "eye" and approximate 

distances between the y-lines. To investigate the effect of the y-line placement and failure of 

the pipe, a model was tested similar to LC #1 and y-line attachment configuration (c), except 

that the two "inside" y-line attachment points was separated by an additional 4.5 meters along 

the cage circumference (original separation was 12.9 meters), towards the undisturbed y-line 

locations. The results showed that although still adequate for the site, the failure load decreased 

by 31% (Figure 5.29). 

Figure 5.29: The stress distribution on the cage frame when y-lines are moved such they are not longer 

equally spaced around the cage circumference. 
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5.10 Conclusions 

The technique to structurally model HDPE pipe used in fish farm net pens showed 

promise as an effective tool for specifying these components. As with many modeling 

applications, however, these results must be considered approximate. For example, the value of 

6.67 x 108 Pa used for the Young's Modulus may have been underestimated and should be 

further investigated by performing additional tensile tests with a larger number of samples. In 

addition, the failure criteria are subjective and the boundary conditions simplified. The question 

also remains as to the appropriate loading rate, which affects the Young's Modulus for 

viscoelastic materials. Chapter 6 investigates this phenomena further. 

Quantifying the load rate in environments with waves and currents may not be trivial. 

This will become more important if these structures are considered for more exposed or open 

ocean environments. For example, tidal currents are often considered to be quasi-static, since 

forcing periods are on the order of hours. In this condition, slower loading rates may be 

considered. In conditions where intense waves exist, forcing periods are on the order of 

seconds, so a faster load rate may be appropriate. At many open ocean sites, both waves and 

currents provide dominant forcing components, so a combination may also need to be 

considered. It is clear that since the structural integrity of HDPE pipe is related to the loading 

rate, future work should be conducted to optimize the approach. 

Nevertheless, this present study showed that the HDPE pipe used for this near-shore 

fish farming application is appropriate. The structural modeling techniques developed, 

however, enabled the evaluation of acceptability margins. In the Broad Cove case, the estimated 

operational von Mises stress values were less than 1/5 of the yield stress. For the maximum load 

condition, it was necessary to consider the attachment configuration, where the worst-case 
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situation would occur as a point load. Utilizing two sets of y-lines (four attachment locations) 

minimizes the chance of this occurring. Using the developed techniques, additional studies can 

be conducted to optimize net pen designs and attachments for specific environments, especially 

if similar technologies are considered for more exposed, open ocean conditions. 
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CHAPTER 6 

MECHANICAL BEHAVIOR OF HDPE IN MARINE 

APPLICATIONS 

High density polyethylene (HDPE) is the dominant material used to build cage frames in 

the aquaculture industry. The fundamental engineering issues with HDPE are associated with 

how the material changes its stiffness and strength depending upon the service life, load rate 

and temperature. A preliminary investigation of the load rate dependence was presented in 

Chapter 5. In this chapter, this research is expanded to determine the mechanical behavior of 

HDPE during its service in marine environments, specifically, its sensitivity to strain rates. The 

majority of research into HDPE has focused on new material and strain rates associated with 

static terrestrial applications (e.g. buried pipe). Materials utilized in marine structures, however, 

are subjected to dynamic environmental forces (such as waves) and as a result, load the 

material at a much faster rate. In addition, aquaculture equipment is typically recycled from 

previous systems and the degradation or enhancements of the material properties in these 

conditions are not known. Thus, tensile tests were performed on new and pre-fatigued HDPE 

components, obtained from fish farms, in a laboratory setting at strain rates expected in open 

ocean environments. 

The HDPE material parameters relevant to proper analysis of HDPE cage components 

under hydrodynamic loading were investigated. To accomplish this, numerical models were first 



employed to predict and analyze structural performance offish cages in an open ocean 

environment. The modeling effort included analysis of the overall dynamic behavior of a fish 

farm under various sea conditions and the associated stress within the structural components of 

fish cages made of HDPE material. The results were used to evaluate the HDPE material's strain 

rate. This information was then used to help identify the required displacement rates in 

laboratory experiments to obtain the relevant material properties. This task included 

mechanical testing of HDPE specimens made of new and "weathered" cage components which 

were subjected to several years of cyclic (fatigue) loading and exposure to elements during 

regular service in marine environments. The samples were tested in uniaxial tension under the 

strain rates predicted by the numerical model. The Young's Modulus and tensile strength at 

yielding were obtained. This preliminary research will help identify the important mechanical 

characteristics of previously deployed HDPE cage frame material. 

6.1 Previous HDPE Research 

HDPE is an extremely versatile material that has been used extensively in land based 

piping systems (Janson, 2003). This popular material has therefore been studied for a wide 

range of applications. Ogorkiewicz (1970) and Smith (1977) for example, provide a good review 

of the general material properties of thermoplastics and elastomers, respectively. Elleuch and 

Taktak (2005), Plummer et al. 2001, and Dasari et al. 2003 performed various tensile loading 

experiments. HDPE stress-strain relationship's were also investigated by Zahedi et al. 2008, 

Hillmansen et al. 2000, Ohashi et al. 2002, and Patlazhan et al. 2008. Dasari and Misra (2003b) 

present the tensile strength as a function of strain rate at a fixed temperature. The effect of 

manufacturing and joining processes and extended field deployment of HDPE mechanical 

properties were investigated by Dusunceli and Colak (2008), Chen et al. 1997, Gloor (1958), and 



Ollick and Al-Amir (2003). The load rate influence on material fracture of HDPE was studied by 

Khan (2006), van der Wal and Gaymans (1997), and Gensler et al. 2000. Creep and fatigue 

properties were examined by Lai and Bakker (1995), Barker (1980), Parsons et al. 1999, Findlan 

(2007), and Jo et al. 1992. The effects of temperature on HDPE have been investigated by 

Nakayasu et al. 1961, Ghazanfari et al. 2008, Bilgin et al. 2007, and Merah et al. 2006. Dasari and 

Misra (2003) examined strain rates up to 10"1 sec"1 for new HDPE specimens. However, the 

material properties were for new materials and they were obtained at rates less than what 

preliminary investigations predict a cage system will experience (lO^sec1). 

6.2 Evaluation of Strain Rates in HDPE Cage Frames 

The material characteristics of HDPE are needed to accurately predict the structural 

response of marine HDPE components. The approach taken was to use computer models to 

predict the load rates acting on a HDPE cage frame in marine environment and the associated 

strain rate of the material. Two numerical models were employed to estimate the strain rates 

acting within an HDPE gravity net pen in waves. In the first model, the Aqua-FE software (see 

section 2.1.1), was utilized to predict the variation of mooring forces acting on the cage 

superstructure. This information was then used as input to a second FEM software package, 

MSC.MARC Mentat (see section 5.5), to obtain the strain rate within the cage frame. The strain 

rate information predicted by the FEM was then used to help identify the testing rates for the 

mechanical testing experiments. 

A standard circular gravity fish cage, common in the United States and Canada, was 

selected for this analysis. A model of the cage was placed in a simple mooring grid and analyzed 

under a series of regular wave conditions. To insure that the resulting mechanical testing 

included strain rates applicable to a variety of gravity cage systems, several factors that may 



influence the cage frame's load and material strain response were investigated. These included 

several wave regimes applied to the system and variations in the mooring's compliancy, the fish 

cage net solidity, and the frame's pipe wall thickness. 

6.2.1 Aaua-FE Mesh 

A 100 meter circumference, surface gravity fish cage model was first constructed in 

Aqua-FE. The net pen consisted of 2 HDPE rings, stanchions, and handrail supporting a 9 meter 

deep net chamber. The system was of similar materials and construction to that described in 

Chapter 5. The net was tensioned with a weighted lower rim (HDPE filled with sand). These 

systems are used commonly for the grow-out of salmon in downeast Maine, USA. A picture of 

the fish cage is shown in Figure 6.1. The cage's geometric and material properties are provided 

in Table 6.1. 

Main Rims Bracket 

Figure 6.1: A standard circular gravity fish cage. Two main flotation pipes are connected by brackets, 

forming the upper superstructure. 
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Table 6.1:Geometric and material properties of a standard gravity net pen 

Component 

Cage 

Flotation Pipe 
(inner and outer) 

Parameter 

Overall Diameter 
Circumference 

Material 
Net Chamber Depth 

Pipe diameter 
Thickness 

Interior 

Value 

31.8 m 
100 m 
HDPE 
9m 

0.3238 m 
0.0198 m 

Air 

Brackets3 Number 48 

Handrail 

Lower rimb 

Pipe diameter 
Thickness 

Pipe diameter 
Thickness 

Interior 

0.1143 m 
0.0057 m 

0.3238 m 
0.0198 m 

Sand 

Brackets are formed of various HDPE pipe sizes and lengths. 
Lower rim not shown in figure above. Lower rim consists of a single HDPE pipe filled with sand. 

The net pen was assembled in Aqua-FE using 346 nodes and 492 elements. To simplify 

the Aqua-FE model construction, the mass contributions of the handrail and bracket 

components were combined into the main rims (the buoyancy contributions were neglected as 

the cage remained on the water surface). A grid mooring was constructed to secure the cage 

(Figure 6.2). This single bay grid was similar to that presented in Tsukrov et al. 2000 consisting of 

4 grid lines and anchor legs, supported by submerged flotation. However, the scope of the 

system was increased to 4:1 by lengthening the anchor and grid lines. Each anchor leg consisted 

of 160 meters of 28 mm Polysteel® line, 27.4 meters of 94 mm chain and a drag embedment 

anchor (modeled as a fixed point). The mooring grid was submerged 18 meters below the 

surface and was supported by four 9.68 kN flotation elements. Bridle lines secured the top rim 

of the cage to the grid below. The water depth was set to 45 meters. The cage and mooring 

geometric and material properties are listed in Tables 6.2 and 6.3. 



Grid Flotation 
Fish Cage 

Anchor Chain 

Grid Line 

Anchor Line 

Figure 6.2: The Aqua-FE cage-grid mooring system model. A gravity fish cage was placed in a submerged 

grid, 18 meters below the surface in 45 meters of water. The lower ends of the anchor chain were fixed 

points. 

Table 6.2: Geometric and material properties of the cage system used in the sensitivity study. 

Component 

Fish Cage Upper 

Rim 

Fish Cage Lower 

Rim 

Fish Cage Net 

Chamber 

Stiffener 

Parameter 

Effective Density 

Young's Modulus 

Cross sectional Area 

Effective Density 

Young's Modulus 

Cross sectional Area 

Effective Density 

Young's Modulus 

Cross sectional Area 

Repetitions 

Effective Density 

Young's Modulus 

Cross sectional Area 

Value 

289.9 kg/m' 

1.172xl09 Pa 

8.200 x 102 m2 

1738 kg/m' 

1.172xl09 Pa 

2.200 x 10"2 m2 

1025 kg/m' 

2.00x1010 Pa 

b 

b 

1025 kg/m' 

2 . 5 x l 0 n Pa 

7.000 x 10"6 m2 



Table 6.3: Geometric and material properties of the mooring system used in the sensitivity study. 

Component Parameter Value 

Anchor Line 

Anchor Chain 

Grid line 

Grid Float 

Bridle line 

Effective Density 

Young's Modulus 

Cross sectional Area 

Length 

Effective Density 

Young's Modulus 

Cross sectional Area 

Length 

Effective Density 

Young's Modulus 

Cross sectional Area 

Length 

Effective Density 

Young's Modulus 

Cross sectional Area 

Effective Density 

Young's Modulus 

Cross sectional Area 

Length 

1380 kg/m3 

8.687xl09 Pa 

6.583 x 10"4 m2 

160 m 

6610 kg/m3 

2 .0x l0 n Pa 

7.024 x 10"3 m2 

27.4 m 

940 kg/m3 

1.830 x 1009 Pa 

1.257 x 10"4 m2 

90 m 

291.0 kg/m3 

2.0xlOuPa 

0.963 m2 

1025 kg/m 

1.140 x l0 " 3 m 2 

45 m 

Various bridle line Young's Modulus values were investigated. 

Various net chamber solidities were examined. 

Recall that the purpose of the numerical model was to determine strain rates in the 

frame so that the material characteristics of HDPE could be measured in the laboratory at the 

rates associated wi th marine loading conditions. To help insure that the obtained data would be 

useful for a variety of cage and mooring systems in different environments, several loading 

conditions and combinations of cage and mooring components were examined, specifically 

those which could influence the loading rate on the net pen (and therefore the strain rate of the 

HDPE material). These included investigating the fish cage response to various regular wave 

regimes, bridle line compliance, net solidities and the cage frame pipe wall thickness. 
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To quantify the effect of environmental conditions on the structure's load rate, three sets of 

waves were applied to the system. Currents were not investigated as current forces tend to 

apply a slow, steady load, thus producing lower strain rates (compared to wave forces). The 

wave steepness, wave height (H) over wave length (L), was set at 1/15, corresponding to small 

amplitude waves. The selected environmental loadings cover conditions that can be 

experienced near shore and at exposed aquaculture sites. To obtain a worst case scenario, wave 

direction was aligned with one mooring and bridle leg as seen in Figure 6.3. Regular waves with 

the following characteristics were applied to the model: 

• T = 4.0 sec, L = 24.93 m, H = 1.66 m 

• T = 8.0 sec, L = 99.73 m, H = 6.65 m 

• T =12.0 sec, L = 202.68, H = 13.512 m 

Waves 

Figure 6.3: Wave direction was aligned with one sole anchor leg in each simulation. 

Bridle line compliance and drag associated with the fish cage can also influence the 

structure's strain rate. Thus, numerical simulations were performed with three bridle line 
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stiffness values and net solidities. The mooring compliance was investigated considering the fish 

cage secured with bridle lines having different material properties: nylon line (common elastic 

mooring member, E = 6.315 x 108 Pa), polysteel® line (standard aquaculture equipment, E = 

3.431 x 109) and steel cable (without bending resistance, E = 2.0 x 1011). The remainder of the 

mooring parameters remained the same as those listed in Table 6.2. 

As shown in chapter 2, the drag force of an aquaculture cage system is dominated by 

the net chamber. Therefore, to examine the influence of net pen drag on the cage frame strain 

rate, the net solidity was set to 8%, 16% and 24% (similar to those used in Chapter 4). The net 

material and geometric properties applied to the model are shown in Table 6.4. 

Table 6.4: The net properties utilized in the Aqua-FE sensitivity study. 

Component Parameter Value 

Effective Density 1150 kg/m3 

8 % Solidity Net Young's Modulus 2.00 x 1010 Pa 
Chamber Cross sectional Area 9.809 x 10"7 m2 

Repetitions 309 

Effective Density 1150 kg/m3 

, 1 0 . 16% Solidity Young's Modulus 2.00x10 Pa 
Cross sectional Area 4.90S 
Repetitions 260 

Net Chamber Cross sectional Area 4.909 x 10"6 m2 

Effective Density 1150 kg/m3 

24% Solidity Young's Modulus 2.00xl010Pa 
Net Chamber Cross sectional Area 5.91 x 10"6 m2 

Repetitions 342 

The final parameter analyzed in this study was the pipe wall thickness. Two values 

representing standard (18 mm) and thick wall (36 mm) pipe were investigated. This parameter 

was modified during the structural analysis of the cage frame, discussed in section 6.2.3. 

Twenty seven dynamic simulations were performed, summarized in Table 6.5. Each model 



configuration was run for 400 seconds to insure a steady state mooring load response. The 

output bridle line tensions were then used as input to the structural model of the fish cage. 

Table 6.5: The environmental conditions, bridle line materials and net chamber solidities analyzed in the 

sensitivity study. 

Applied Waves Bridle Line Material Net Chamber Solidity Load Case 

Wave Height: 1.66 m 

Wave Period: 4 sec 

Wave Height: 6.65 m 

Wave Period: 8 sec 

Wave Height: 13.51 m 

Wave Period: 12 sec 

Nylon 

Polysteel 

Steel 

Nylon 

Polysteel 

Steel 

Nylon 

Polysteel 

Steel 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

8% 

16% 

24% 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
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6.2.2 Dynamic Modeling Results 

The steady state bridle line tensions were obtained from the load-bearing line in each 

simulation. Output tension results for the gravity cage from load cases 1, 4 and 7 (lowest 

tensions) and 19, 22, and 25 (highest tensions) are shown in Figure 6.4. It can be seen that the 

steel cable bridle lines produced the largest amplitude loads in both wave regimes. This is 

expected as the line is not as compliant, thus similar forcing will incur a larger component stress. 

In addition, the fish cages with high net solidities produce higher mooring tension compared to 

those with lower net solidities, which is consistent with previous analysis (Chapter 4). 
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Figure 6.4: The output bridle line tension results with 2 net solidities under two regular wave regimes. The 

8% solidity net chamber in 4 second, 1.66 meter waves (left) and 24% solidity in 12 second, 13.5 meter 

waves (right). 

To obtain the strain rates in the cage frame, the loading predicted from the 

hydrodynamic model must be transferred to the structural model. This was accomplished by 

approximating the average steady state amplitude and period of the bridle tension by a 

sinusoidal curve. This representative bridle force equation was then used as input for the 

structural MSC.MARC model. The following sinusoidal equation was utilized: 

F (0 = Aload sin(ct) (6.1) 



where F is the time dependent bridle load, A|0ad is the load amplitude, c = 2rc/T (rad/sec), T is the 

period, and t is time. These parameters for each simulation are shown in Table 6.6. The 

maximum and minimum load rates, shown in the shaded boxes, were selected for input into the 

structural model. 

Table 6.6 : The output parameters for the forcing equation required for the structural analysis. 

waves 

Height: 1.66 m 

Period: 4 sec 

Height: 6.65 m 

Period: 8 sec 

Height: 13.5 m 

Period: 12 sec 

Bridle Line 

material 

Nylon 

Polysteel 

Steel 

Nylon 

Polysteel 

Steel 

Nylon 

Polysteel 

Steel 

Net Chamber Solidity 

8 % 

Aloaa = 1180 

c = 1.57 

A|0ad = 2650 

c = 1.57 

Aioad = 4000 

c = 1.57 

Aioad = 11200 

c = 0.785 

Aload = 8842 

c =0.785 

A|0ad = 10400 

c =0.785 

A|0ad = 15600 

c =0.5235 

A,oad = 19998 

c =0.5235 

Aioad = 24000 

c =0.5235 

1 6 % 

A^ad = 1450 

c = 1.57 

Aload = 2333 

c = 1.57 

A|0ad = 2150 

c = 1.57 

Aioad = 4400 

c =0.785 

Aioad = 8400 

c =0.785 

Aioad = 10000 

c =0.785 

A|0ad = 19998 

c =0.5235 

Aioad = 29100 

c =0.5235 

A|0ad = 34500 

c =0.5235 

2 4 % 

Aioad = n/a a 

c = 1.57 

Aioad = n/a a 

c = 1.57 

Aioad = n/a a 

c = 1.57 

A|0ad = 2900 

c =0.785 

A|0ad = 9200 

c = 0.785 

Aioad = 12000 

c = 0.785 

Aioad = 17100 

c = 0.5235 

Aioad = 32100 

c =0.5235 

SBf 
The resulting output tensions were noisy and not sinusoidal in nature. Therefore, this data set 

was not utilized in the study. 

6.2.3 Structural Modeling of the Cage Frame 

The output load rates obtained from Aqua-FE were used as input for the structural FE 

model. The mesh of the entire net pen flotation structure was constructed in 

MSC.MARC/Mentat using the geometric and material properties provided in Table 6.7. As 

previously noted, two pipe wall thicknesses were considered. Shell elements, type 139, were 



employed throughout the mesh. The inner and outer flotation pipe assemblies were modeled 

with elements having the dimensions of 294.8mm x 79.3 mm. A total of 24,864 nodes and 

25,824 elements were used in the model. A portion of the FEM of the net pen is shown in Fig. 

6.5. 

Table 6.7: The geometric and material properties of the net pen flotation structure FEM. 

Component 

Cage 

Flotation Pipe 
(inner and outer) 

Rim Sleeve 

Sleeve Support 

Handrail 

Handrail Sleeve 

Vertical Support 

Angled Support 

Parameter 

Overall Diameter 
Circumference 

Material 
Young's Modulus3 

Poisons ratio3 

Yield Stress3 

Pipe diameter 
Thickness l c 

Thickness 2C 

Pipe diameter 
Thickness15 

Pipe diameter 
Thickness 

Pipe diameter 
Thickness 

Pipe diameter 
Thicknessb 

Pipe diameter 
Thickness 

Pipe diameter 
Thickness 

Value 

31.8 m 
100 m 
HDPE 

6.67 (108) Pa 
0.42 

2.41 (107) Pa 
0.3238 m 
0.018 m 

0.0037 m 
0.4064 m 
0.0690 m 
0.3238 m 
0.0198 m 
0.1143 m 
0.0057 m 
0.1413 m 
0.0242 m 
0.1413 m 
0.0134 m 
0.1143 m 
0.0108 m 

3 All components used in the model has the same Young's Modulus, poisons ratio and yield 
stress. 
bSleeves take the rim or handrail pipe thickness into account. 
c Two wall thickness were investigated in this study to represent a thin and thick walled 
structure. 



Figure 6.5: The FEM constructed in MSC.MARC/Mentat. The full rim is shown on left, a portion of the 

mesh on right. 

The boundary conditions utilized in this study were similar to those presented in load 

case 2 in section 5.6. In the FEM model, the tensions in the bridle lines were represented by 

point loads which were applied to 1/2 the pipe circumference and distributed on the inner 

flotation pipe in a single location (Figure 6.6). This load case investigated the response of the 

system due to the localized forces of the bridle line tensions predicted by the Aqua-FE software. 

The model also contained two fixed points. The first restricted the model in the x, y and z 

directions. The second restricted the mesh in the x direction only. The fixed points were 

symmetrically located around the cage frame, 45 degrees apart. Note that these point loads 

(and associated reaction forces the boundary conditions) represent the effects of cage inertia 

and net drag. 

136 



Figure 6.6: The boundary conditions applied to the FEM. 

The following equations were used as input for the point loadings, as determined from 

the dynamic analysis: 

F(t) = 1180 sin(1.57t) (6.2) 

F(t) = 49800 sin(0.5235t) (6.3) 

Each of the load equations was applied to the cage rims with wall thickness of 18 mm and 36 

mm. Strains and strain rates are different for different points on the frame. Four points along 

the fish cage frame were chosen for monitoring, as shown in Figure 6.7. These locations were 

selected due to the proximity to the load application point, as well as being in the areas of 

expected high strain. Three components of strain were recorded: axial exx, Syy and eequivaient, 

where £equivaient = h (exx + £yy + £zz)- Linear elastic analysis was assumed. 



Figure 6.7: Strain in the material was monitored in four nodal positions along the cage frame. 

Figures 6.8 and 6.9 present variations of strain corresponding to the applied load 

described by equations 6.2 and 6.3 on the thin-walled pipe system. It can be seen that the 

combination of sinusoidal load and linear elastic analysis assumption produces consistent cyclic 

results. 

mxSr 3 ^ 8 , , 0
J noiia 3631 

Figure 6.8: The output strain results from the structural analysis of the thin wall pipe under forcing 

described by equation 6.2. 
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Figure 6.9: The output strain results from the structural analysis of the thin wall pipe under forcing 

described by equation 6.3. 

The strain rate, £, of the material was obtained from the FEM's strain predictions using 

£ = 2nAst™in COS ( ~ t ) (6.4) 

where Astrain is the strain amplitude, T is the period, and t is the time. The oscillatory (cos) term 

can be dropped to obtain the maximum strain rate. Table 6.8 lists the predicted strain rates in 

the thin and thick wall pipes in each wave regime loading. It can be seen that the thinner wall 

pipe experienced higher strain rates due to less material in the rim. 



Table 6.8 : The predicted strain rate, as defined by equation 6.4, from the structural analysis. The 

maximum and minimum values are highlighted. 

Strain 

Comp. 

Exx 

Eyy 

Eequiv 

^xx 

Eyy 

Eequiv 

Loading 

Equation 

6.2 

6.3 

Strain Rate 

(s-1) 

Thin Wall Pipe 

Node 

3478 

5.33e-4 

1.40e-3 

1.20e-3 

7.5e-3 

1.95e-|?'f 

1.71e-2 

Node 

3531 

5.94e-4 

1.20e-3 

l. le-3 

8.4e-3 

1.75e-2 

1.58e-2 

Node 

22814 

2.76e-4 

6.49e-4 

5.77e-4 

3.9e-3 

9.1e-3 

8.1e-3 

Node 

22879 

2.99e-4 

5.92e-4 

5.41e-4 

4.2e-3 

8.3e-3 

7.6e-3 

Thick Wall Pipe 

Node 

3478 

3.34e-4 

8.42e-4 

7.40e-4 

4.7e-3 

1.19e-2 

1.04e-2 

Node 

3531 

3.46e-4 

7.52e-4 

6.76e-4 

4.9e-3 

1.06e-2 

9.5e-3 

Node 

22814 

liiiH*'? 
3.93e-4 

3.49e-4 

2.3e-3 

5.5e-3 

4.9e-3 

Node 

22879 

1.73e-4 

3.57e-4 

3.24e-4 

2.4e-3 

5.0e-3 

4.6e-3 

The maximum and minimum strain rates predicted by the model were 1.95 x 102 s"1 and 

1.66 x 10"4 s"1, respectively. Since information on the HDPE material properties at strain rates 

near the latter value are available for unused HDPE (for example, Dasari and Misra, 2003), the 

lower strain limit was not investigated in this study. As a result, the following strain rates were 

selected for the experimental program, insuring that the upper strain rate of interest was 

bracketed: 

• Ratel: l .OxlO^s 1 

• Rate 2: l .OxlO^s 1 

• Rate 3: l .OxlO'V1 

These strain rates were utilized in the tensile testing experiment to determine the material 

characteristics of the new and previously used HDPE. 

6.3 Experimental Program 

Using the strain rates predicted by the FEA models, the material properties of the new 

and previously deployed HDPE specimens were measured. It has been shown that exposure to 

140 



UV light and rain does not significantly change HDPE's material properties (Ollick and Al-Amir, 

2003). However, any effect of cyclic loading, due to the daily tidal current or wave events on the 

material was not known. Therefore, new and previously deployed specimens of HDPE were 

uniaxially tested to determine their mechanical properties under the strain rates chosen in the 

previous section. Previously fatigued material was obtained from 3 fish farms. For comparison, 

new, unused pipe was also acquired for this experiment. Twenty common "dog bone" shaped 

specimens were then fabricated from the HDPE material and tensile tested in an Instron® 

Schenk Testing System (Model 1350). The material's Young's Modulus and tensile strength at 

yielding for selected strain rates were determined. 

6.3.1 HDPE Specimens 

The pre-used HDPE material was obtained from the main rims of surface gravity cage 

systems from 3 fish farms located in the Faeroe Islands, British Columbia and New Hampshire. 

The unused material was obtained from a local supplier of HDPE pipe. To properly quantify the 

material properties of each specimen, a detailed chemical composition and deployment history 

of the pipe would be required. Unfortunately, the composition was not known, and only 

anecdotal evidence was available for some of the samples in regards to the duration of 

deployment and environmental conditions at the farm sites. Whereas it is common practice to 

keep detailed records of net chambers (due to cleaning, maintenance, replacement, etc), it is 

not the case for the cage frame, and it is common for sections of pipe to be recycled into new 

systems. This limits any direct comparison that can be made between samples. As a result, the 

information gained from this study will be qualitative and provide "seed" research results for 

future, more thorough, investigations. 

The goal of the experiments, therefore, was to determine if any trends were present 

that suggest that previously deployed material had significant differences in the material 



properties. Table 6.9 lists the geometric properties, origin, and known information regarding the 

deployment history of each pipe sample obtained from the aquaculture farms. 

Table 6.9: The geometric properties, origin and deployment history for the acquired pipe specimens. 

Pipe Sample 

Ala 

A2a 

B 

C 

D 

N 

Pipe 

Dimensions 

L = 62.2 cm 

D = 31.75 cm 

T= 17.5 mm 

L = 61.8 cm 

D = 31.75 cm 

T= 17.5 mm 

L = 92.7 cm 

D = 21.9 cm 

T= 11.1 mm 

L= 114.3 cm 

D = 21.9 cm 

T = 9.525 mm 

L = 129.5 cm 

D = 27.3 cm 

T= 17.5 mm 

L = 137.6 cm 

D = 11.43 cm 

T= 11.43 mm 

Origin 

Iceland / Faeroe 

Islands 

Iceland / Faeroe 

Islands 

New Hampshire, 

USA 

British Columbia, 

Canada 

British Columbia, 

Canada 

ISCO Industries, 

USA 

Known Deployment History 

Deployed in Iceland in 2002 at an exposed site. 

Towed to the Faeroe Islands in 2006 and placed 

in a semi-exposed farm. Pipe is PE80. Pipe 

specimens courtesy of Fiskaaling. 

Deployed in Iceland in 2002 at an exposed site. 

Towed to a farm in the Faeroe Islands in 2006 to 

a semi-exposed farm. Pipe is PE80. Pipe 

specimens courtesy of Fiskaaling. 

Cage subjected to a 5 month deployment in Gulf 

of Maine at the UNH OOA Demonstration site. 

Pipe specimens courtesy of JPS Industries. 

Deployed at Eggerton Farm, a protected site, for 

approximately 17 years. Site experiences 10 

significant storms a year, with Hs of 0.75 to 1 

meter. Pipe specimens courtesy of Marine 

Harvest. 

Deployed at Paradise Bay Farm for 12-17 years. 

Wave climate is unknown. Pipe specimens 

courtesy of Marine Harvest. 

New, unused pipe. Shelf life unknown. 

Purchased from ISCO Industries. 

Pipe samples are from the inner and outer rims of the same cage system. 

Tensile tests were performed to obtain the materials Young's Modulus and tensile 

strength at yielding. Twenty type V specimens, specified by ASTM D638, were fabricated from 

each pipe segment. The type V geometry was chosen due to the planned strain rate ranges and 

limited piston stroke of the Instron machine. The specimens were taken from the pipe as shown 

in Figure 6.10. In an effort to keep specimens flat and uniform among the different pipe 
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samples, all specimens were machined on an end mill. The gage cross sectional area of the neck 

of each specimen was then measured with calipers and recorded. 

12.7 mm 

101.6mm 

3.8 mm 

Figure 6.10: Twenty specimens were fabricated from each pipe segment. The samples were 101.6 mm 

long, 12.7 mm wide and 3.8 mm thick. The testing gage length, L0, was 9.5 mm. 

6.3.2 Experimental Procedure 
Each specimen was tested in tension under a constant displacement rate in the Instron* 

Schenk Testing System. The displacement rates were selected using: 

U = sLn (6.5) 

where £ is the strain rate obtained from the FEA results, L0 is the gage length of the samples and 

u is the displacement rate. Table 6.10 presents displacement rates utilized in the experimental 
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program calculated using equation 6.5. Note that this relationship assumes that the gauge 

length is the only area of elongation during testing. 

Table 6.10 : The displacement rates utilized for the material testing. 

Strain rate, e 

(s-1) 

1.0 x 10"1 

1.0 x 10"2 

1.0 x 10~3 

Gage Length, LQ 

(mm) 

9.525 

Displacement Rate, i t 

mms'1 

9.525 x 10"1 

9.525 x 10~2 

9.525 x 10"3 

The stress and strain within the HDPE specimen must be measured to obtain the 

Young's Modulus and tensile strength at yielding. Note that the HDPE's Young's Modulus was 

investigated only in the linear elastic region of the material's stress-strain curve. The engineering 

stress within each sample was calculated by dividing the tension (applied by the Instron) by the 

undeformed cross-sectional gage area of the specimen. The tension was measured by a 

calibrated Futek890 N load cell (model LSB303). 

Three methods were evaluated for obtaining the specimen's strain: an extensometer, 

the Instron cross-head movement and a Digital Imaging Correlation (DIC) system. Preliminary 

experiments were performed investigating the feasibility of utilizing an extensometer on the 

small HDPE samples. It was found that the sharp extensometer grips "knifed" into the soft 

material and caused visible localized stress concentrations. Therefore the extensometer was not 

used in the experiments. 

Specimen strain can also be obtained from the Instron cross head movement. To obtain 

the strain, the displacement of the grips is assumed to be equal to the elongation of the 

specimen. This calculation is based on the assumption that the reduced cross sectional gage 

area of the specimen is the only material deforming. In addition, strain measurements can be 
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influenced by slippage of the specimen in the grips and unknown compliance in the machine (at 

the joints, connection, etc). 

The final method to measure the strain in the HDPE specimen employed Digital Imaging 

Correlation (DIC) technology. DIC utilizes a high resolution digital camera to record the specimen 

under load and a mathematical correlation analysis to determine the strain range over the 

surface of the sample (Cintrion and Saouma, 2008). This technique is non-invasive, produces the 

strain over the entire surface area of the specimen and has been used in a variety of 

experiments with good results (Hild and Roux, 2006; Hilburger and Nemeth, 2005; Pan et al., 

2008). 

It was determined to utilize a combination of the cross-head movement and DIC techno 

logy for specimen strain measurement. The experimental set-up utilized for the uniaxial tensile 

testing is shown in Figure 6.11. The HDPE specimens were placed in the Instron crosshead grips, 

as shown. The 890 N load cell was placed below the lower crosshead and connected to the 

Instron for data acquisition. The DIC camera was placed approximately 30 cm from each 

specimen and rotated 45° to increase the number of pixels over the dog-bone test area as well 

as provide the largest recording view for the deformation process. The load cell and cross head 

movement were synchronized and recorded by the Instron machine. The DIC was recorded on a 

separate computer. The sampling rates of both instruments for each displacement rate are 

shown in Table 6.10. Note that the Instron has a minimum sampling rate of 1 Hz. 

The DIC instrumentation required the specimens to be "speckled" in contrasting paint. 

Therefore, the dog bones were lightly coated in a fine spray-paint mist, as can be seen in Figure 

6.12. Five replicates of each displacement rate (from each pipe sample) were performed, as 

recommended by ASTM D638, resulting in 90 tensile tests. The DIC was not utilized, however, 
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for every sample due limited computer space, availability of the instrument and periods of 

inadequate lighting. Therefore, some tests only have three of five specimens with DIC results. 

Figure 6.11: The test set-up of the experiments performed on the Instron tensile testing machine. The 

force straining the HDPE specimen was recorded from the load cell. The specimens strain was calculated 

from the Instron cross head movement and DIC measurements 

Table 6.11: The sampling rates of the 

Displacement Rates Displacement Rate, u 

1 9.525 x 10"1 mms"1 

2 9.525 x 10* mms"1 

3 9.525 x 10"3 mms"1 

instruments utilized in the tension testing. 

Instron Sampling Rate 

20 Hz 

5 Hz 

lHza 

DIC Sampling Rate 

20 Hz 

5 Hz 

0.2 Hz 
a The Instron had a minimum sampling rate of 1 Hz. 
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Figure 6.12: The specimens were speckled in contrasting paint for DIC measurement. 

6.3.3 Data Processing 

The Young's Modulus and tensile strength were determined based on the 

measurements described in section 6.3.2. The Young's Modulus was obtained by plotting the 

specimen's stress-strain curve, as shown in the schematic Figure 6.13. The slope of the linear 

portion of the curve was utilized to calculate the Young's Modulus. Preliminary experiments 

found that the "linear" portion of the curve was limited to strain values of 0.5 and 2.5%. 

Figure 6.13: The linear portion of the stress-strain curve was utilized to calculate the Young's Modulus, E. 

The tensile strength was assumed to correspond to the maximum value from the region 

of the curve shown in Figure 6.14. The strength values were found for all specimens and 

displacement rates. 
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Stress 

Elastic Deformation 

Strain 

Figure 6.14: The tensile strength at yielding, ay, was obtained for each specimen. 

6.3.4 Results 

The 90 specimens were tested at three displacement rates in the Instron tensile testing 

machine. The majority of the specimens were found to elongate over 700% (to the maximum 

travel distance of the Instron), regardless of displacement rate. The full deformation of a sample 

is shown in Figure 6.15. Sixteen of the eighty-seven samples fractured during the experiments. 

Of these fractures, 87% occurred at the faster displacement rates (Rate 1: 9.525 x 10'1 mms"1, 

Rate 2: 9.525 x 10"2 mms1). Data on the stress and strain was recorded for the entire 

deformation process. However, only the information from the linearly elastic portion was 

utilized in this research. 
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Figure 6.15: An undeformed and deformed specimen tested subjected to uniaxial tensile loading. 

The first steps performed upon the completion of the tensile tests were to verify the 

output data. This included (1) determination of the proper DIC settings, (2) verification of the 

DIC accuracy and strain distribution throughout the specimen under load and (4) comparison of 

the strain values obtained from the DIC and crosshead movement techniques. 

When processing the DIC data, it was necessary to balance the accuracy and subsequent 

computational processing time. The DIC uses a software package called VIC-2D to collect and 

process the strain measurements. The software has two primary parameters to allow user 

control over the quality and quantity of the data set: subset and step. The subset parameter 

controls the reference area (in pixels) that the DIC software utilizes for the displacement 

measurement accuracy. A larger subset provides greater system accuracy by tracking larger 

number of data points within the reference area, but is the least efficient computationally. The 

step parameter adjusts the distance (in pixels) the software utilizes to search and track the paint 

speckle movements from the initial undeformed specimen to the subsequent images of the 
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loaded specimen. To determine the optimal settings of these parameters, a sensitivity study 

was performed on one sample where the subset and step parameters were varied over the 

values listed in Table 6.12. The examined parameter values were limited to those shown based 

upon user experience and a desire to track 4000 points on the surface of each specimen. 

Table 6.12: The subset and step parameter values examined in the DIC sensitivity study. 

Load Case Subset value Step value Number of Tracked 
(in pixels) Points9 

1 23 1 29890 
2 23 2 7650 
3 23 3 3405 
4 25 1 30125 
5 25 2 7710 
6 25 3 3405 

a Refers to the number of points tracked for analysis over the tracked surface of the specimen. 

Using the extensometer feature in the DIC software, the strain (over the gage length) of 

the specimen was compared for each subset and step increment. The results of the analysis are 

shown in Figure 6.16. Similar output values can be seen for all 6 settings. The difference 

becomes apparent near the end of the test at strains approaching 700%. Using these results as a 

guide, the subset and step values of 23 and 2, respectively, were used for the rest of the 

analysis. 
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Figure 6.16: Sensitivity test results comparing the strain in a sample from the unused pipe at displacement 

rate 1, 9.525 x 10"1 mms"1 for the 6 load cases. Left: The total specimen strain. Top Right: The strain in the 

linear elastic region of the specimen. Bottom Right: The strain at the yield stress. 

The next steps examined the accuracy and confidence of the DIC measurements based 

upon the incremental statistics (i.e. per each time step) reported by the software such as 

correlation coefficient and Standard Error of Estimate (SSE) for analyzed regions of the image. 

The employed DIC system has a displacement measurement error of approximately +/- 0.01 

pixel (reported SSE was in the range 0.008 - 0.012). The sub-pixel accuracy is obtained by 

internal interpolation routines of the DIC software than compares grey values of the pixels. For 

the current study, positioning of the DIC camera together with its focal length resulted in 0.075 

mm/pixel scale. Optical distortions of the lens were studied and found to be negligible. A strain 

measurement accuracy of+/-0.016% (95% confidence) was obtained when comparing this value 

to the 9.5 mm gage length of the specimen. More information of the accuracy of the DICcan be 

found in Pan et al. 2008. 
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The strain distribution under tension was then examined. It can be observed that the 

strain is concentrated in the necked portion of the specimen, which supports the assumption 

that the sole area of deformation is located in this narrow region. The results of this analysis are 

shown in Figure 6.17, verifying the strain concentration in the gage portion of the specimen. 

«1 [J]-Laqraru;< 

11.17 

Figure 6.17: The axial strain distribution of the specimen under load. From left to right: The unloaded, 

undeformed specimen; and strain distribution during the linearly elastic deformation. 

The final verification compared the DIC strain measurements to the cross-head 

movement, and subsequent, strain calculations. The output results from one representative 

sample are shown in Figure 6.18. It can be seen that the crosshead calculations produce greater 

strain compared to the DIC measurements. The difference is probably a result of the initial 

compliance of the Instron system (joints, connection, etc) having to settle out before the 
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specimen reaches yielding. This, combined with the small gage length of the specimen, 

produced greater apparent strains than that occurring in the specimen itself. The difference in 

strain measurement compromised the use of the crosshead movement as a strain measurement 

source. This proved to be costly as the DIC was not utilized in every test, resulting in a decrease 

in the number of analyzed specimens. 

x IQ7 Pipe Specimen A2 - Displacement Rate 2 

2 5 

2 

1 5 
VI 
in 
m 

55 

1 

05 

0 

0 02 04 06 08 1 12 14 16 18 2 
Strain 

Figure 6.18: The stress-strain curves for a specimen obtained from pipe sample 2 under displacement rate 

2. The curves were obtained using the calculated crosshead and DIC measured strains. 

With the initial investigations complete, the Young's Modulus of the specimens were 

obtained. Figure 6.19 displays the results from one of the experiments. A linear approximation 

of the slope of the curve between strain of 0.5 and 2.5% was obtained. The resulting Young's 

Modulus values for each specimen can be seen in Tables 6.13-6.18. 
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Figure 6.19: The stress-strain curve obtained from tensile testing of HDPE specimen 1 of Pipe A l . 

Table 6.13: The Young's Modulus results of specimen obtained from PIPE A l . 

R a t e l : 9.525 x 10 * 

Specimen E 

(Pa) 

Rate 2: 9 .525x10 

Specimen E 

(Pa) 

Rate 3: 9 .525x10 

Specimen E 

(Pa) 

1 

2 

3 

4 

5 

5.76E+08 

5.61E+08 

4.95E+08 

4.77E+08 

6.69E+08 

6 

7 

8 

9 

10 

— 
— 

5.34E+08 

5.86E+08 

5.48E+08 

11 

12 

13 

14 

15 

3.90E+08 

3.61E+08 

4.14E+08 

— 

— 

Ave 

Std 

5.56E+08 

7.61E+07 

Ave 

Std 

5.56E+08 

2.69E+07 

Ave 

Std 

3.88E+08 

2.65E+07 
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Table 6.14: The Young's Modulus results of specimen obtained from PIPE A2. 

R a t e l : 9.525 x 10 * Rate 2: 9.525 x 1 0 : 

Specimen E Specimen E 

(Pa) (Pa) 

Rate 3: 

Specimen 

9.525 x 10; 

E 

(Pa) 

1 
2 
3 
4 

5 

5.28E+08 
5.36E+08 

5.41E+08 

5.14E+08 

6 
7 

8 

9 
10 

3.61E+08 
5.71E+08 
4.46E+08 

— 
— 

11 
12 
13 
14 

15 

4.57E+08 
3.48E+08 

3.09E+08 
— 
— 

Ave 

Std 

5.30E+08 

1.18E+07 

Ave 

Std 

4.59E+08 

1.06E+08 

Ave 

Std 

3.71E+08 

7.67E+07 

Table 6.15: The Young's Modulus results of specimen obtained from PIPE B. 

Rate 1: 

Specimen 

1 

2 

3 

4 

5 

9.525 X 10"1 

E 

(Pa) 

5.24E+08 

4.07E+08 

4.81E+08 

6.19E+08 

5.16E+08 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

9.525 X 10 2 

E 

(Pa) 

4.70E+08 

4.58E+08 

5.31E+08 
— 

— 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

9.525 x 10 3 

E 

(Pa) 

3.05E+08 

3.39E+08 
— 

— 

— 

Ave 

Std 

5.09E+08 

7.67E+07 

Ave 

Std 

4.86E+08 

3.91E+07 

Ave 

Std 

3.22E+08 

2.40E+07 

Table 6.16: The Young's Modulus results of specimen obtained from PIPE C. 

Rate 1: 

Specimen 

1 

2 

3 

4 

5 

9.525 x 1 0 * 

E 

(Pa) 

5.41E+08 

4.91E+08 

5.20E+08 

— 

— 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

9.525 x10 2 

E 

(Pa) 

4.23E+08 

5.24E+08 

5.11E+08 

— 

— 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

9.525 x 10 3 

E 

(Pa) 

4.09E+08 

3.49E+08 

3.45E+08 

— 

— 

Ave 5.17E+08 Ave 4.86E+08 Ave 3.68E+08 

Std 2.51E+07 Std 5.49E+07 Std 3.59E+07 



Table 6.17: The Young's Modulus results of specimen obtained from PIPE D. 

R a t e l : 9.525 x 10 * 

Specimen E 

(Pa) 

Rate 2: 9 .525x10 ' 

Specimen E 

(Pa) 

Rate 3: 

Specimen 

9.525 x 10: 

E 

(Pa) 

1 

2 

3 

4 

5 

4.87E+08 

4.87E+08 

5.09E+08 

4.97E+08 

6.14E+08 

6 

7 

8 

9 

10 

4.72E+08 

3.74E+08 

3.87E+08 

— 
— 

11 

12 

13 

14 

15 

3.32E+08 

3.13E+08 

3.99E+08 

3.82E+08 

— 

Ave 

Std 

5.19E+08 

5.40E+07 

Ave 

Std 

4.11E+08 

5.32E+07 

Ave 

Std 

3.57E+08 

4.06E+07 

Table 6.18: The Young's Modulus results of specimen obtained from PIPE N (new, unused). 

Rate 1: 

Specimen 

1 

2 

3 

4 

5 

9.525 x 10 * 

E 

(Pa) 

4.59E+08 

4.17E+08 

5.03E+08 

4.95E+08 

— 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

9.525 x 10 2 

E 

(Pa) 

4.81E+08 

3.84E+08 

3.45E+08 

— 
— 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

9.525 x 10'3 

E 

(Pa) 

2.27E+08 

3.48E+08 

— 

— 
— 

Ave 

Std 

4.69E+08 

3.93E+07 

Ave 

Std 

4.03E+08 

7.00E+07 

Ave 

Std 

2.88E+08 

8.56E+07 

The tensile strength at yield was also obtained for each sample. The results from each 

experiment can be seen in Tables 6.19 through 6.24. 



Table 6.19: Tensile Strength at Yielding for specimens obtained from PIPE A l . 

Rate 1: 

Specimen 

9.525 x 10'1 

Tensile 

Strength (Pa) 

Rate 2: 

Specimen 

9.525 x 10 2 

Tensile 

Strength (Pa) 

Rate 3: 

Specimen 

9.525 x 10 3 

Tensile 

Strength (Pa) 

1 

2 

3 

4 

5 

2.351E+07 

2.343E+07 

2.373E+07 

2.416E+07 

2.416E+07 

6 

7 

8 

9 

10 

2.492E+07 

2.428E+07 

2.175E+07 

2.229E+07 

2.213E+07 

11 

12 

13 

14 

1.886E+07 

1.708E+07 

1.838E+07 

1.993E+07 

Min 

Ave 

Std 

2.343E+07 

2.380E+07 

3.481E+05 

Min 

Ave 

Std 

2.175E+07 

2.307E+07 

1.425E+06 

Min 

Ave 

Std 

1.708E+07 

1.856E+07 

1.184E+06 

Table 6.20: Tensile Strength at Yielding for specimens obtained from PIPE A2. 

Rate 1: 

Specimen 

9.525 x 10"1 

Tensile 

Strength (Pa) 

Rate 2: 

Specimen 

9.525 x 10 2 

Tensile 

Strength (Pa) 

Rate 3: 

Specimen 

9.525 x 10 3 

Tensile 

Strength (Pa) 

1 

2 

3 

4 

5 

2.404E+07 

2.459E+07 

2.475E+07 

2.391E+07 

2.360E+07 

6 

7 

8 

9 

10 

2.285E+07 

2.463E+07 

2.186E+07 

2.279E+07 

2.125E+07 

11 

12 

13 

14 

1.768E+07 

1.723E+07 

1.652E+07 

2.139E+07 

Min 

Ave 

Std 

2.360E+07 

2.418E+07 

4.806E+05 

Min 

Ave 

Std 

2.125E+07 

2.268E+07 

1.279E+06 

Min 

Ave 

Std 

1.652E+07 

1.821E+07 

2.175E+06 

Table 6.21: Tensile Strength at Yielding for specimens obtained from PIPE B. 

Rate 1 : 

Specimen 

1 

2 

3 

4 

5 

Min 

Ave 

Std 

9.525 x 10 * 

Tensile 

Strength (Pa) 

2.139E+07 

1.676E+07 

2.106E+07 

2.262E+07 

2.149E+07 

1.676E+07 

2.048E+07 

2.259E+06 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

Min 

Ave 

Std 

9.525 x 10 2 

Tensile 

Strength (Pa) 

2.117E+07 

2.240E+07 

2.011E+07 

2.081E+07 

1.971E+07 

1.971E+07 

2.076E+07 

1.045E+06 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

Min 

Ave 

Std 

9.525 x 10 3 

Tensile 

Strength (Pa) 

1.503E+07 

1.937E+07 

1.522E+07 

1.635E+07 

1.837E+07 

1.503E+07 

1.733E+07 

1.927E+06 



Table 6.22: Tensile Strength at Yielding for specimens obtained from PIPE C. 

Rate 1: 

Specimen 

1 

2 

3 

4 

5 

Min 

Ave 

Std 

9.525 x 10 * 

Tensile 

Strength (Pa) 

2.080E+07 

2.260E+07 

2.333E+07 

2.499E+07 

2.574E+07 

2.080E+07 

2.416E+07 

1.960E+06 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

Min 

Ave 

Std 

9.525 x 10 2 

Tensile 

Strength (Pa) 

2.231E+07 

2.246E+07 

2.074E+07 

1.969E+07 

2.006E+07 

1.969E+07 

2.074E+07 

1.276E+06 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

Min 

Ave 

Std 

9.525 x 10 3 

Tensile 

Strength (Pa) 

1.699E+07 

1.606E+07 

1.635E+07 

1.914E+07 

1.779E+07 

1.606E+07 

1.734E+07 

1.239E+06 

Table 6.23: Tensile Strength at Yielding for specimens obtained from PIPE D. 

Rate 1: 

Specimen 

1 

2 

3 

4 

5 

Min 

Ave 

Std 

9.525 x 10"1 

Tensile 

Strength (Pa) 

2.211E+07 

2.255E+07 

2.179E+07 

2.248E+07 

2.270E+07 

2.179E+07 

2.238E+07 

3.694E+05 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

Min 

Ave 

Std 

9.525 x 10 2 

Tensile 

Strength (Pa) 

2.209E+07 

2.254E+07 

2.060E+07 

2.058E+07 

1.925E+07 

1.925E+07 

2.074E+07 

1.317E+06 

Rate 3: 

Specimen 

11 

12 

13 

14 

15 

Min 

Ave 

Std 

9.525 x 10 3 

Tensile 

Strength (Pa) 

1.634E+07 

1.680E+07 

1.743E+07 

1.776E+07 
— 

1.634E+07 

1.733E+07 

6.365E+05 

Table 6.24: Tensile Strength at Yielding for specimens obtained from PIPE N (New, unused). 

Rate 1 : 

Specimen 

1 

2 

3 

4 

5 

Min 

Ave 

Std 

9.525 x 10"1 

Tensile 

Strength (Pa) 

2.169E+07 

1.980E+07 

2.073E+07 

2.044E+07 

2.163E+07 

1.980E+07 

2.065E+07 

8.048E+05 

Rate 2: 

Specimen 

6 

7 

8 

9 

10 

Min 

Ave 

Std 

9.525 x 10 2 

Tensile 

Strength (Pa) 

2.045E+07 

2.063E+07 

1.941E+07 

1.954E+07 

1.739E+07 

1.739E+07 

1.924E+07 

1.290E+06 

Rate 3: 

Specimen 

11 

12 

13 

14 

Min 

Ave 

Std 

9.525 x 10"3 

Tensile 

Strength (Pa) 

1.577E+07 

4.333E+06 

1.834E+07 

1.483E+07 

4.333E+06 

1.250E+07 

6.171E+06 



6.4 Discussion 

The HDPE material parameters relevant to proper analysis of HDPE cage components 

under hydrodynamic loading were investigated. Numerical models were employed to estimate 

strain rates in the HDPE components offish cages in an open ocean environment. First, the 

overall dynamic behavior and mooring line tensions were investigated. The tension then were 

used as loading conditions on a FEM of a standard HDPE cage frame. Based on this information 

the laboratory testing procedures were specified to obtain the relevant material properties. 

The Young's Modulus and tensile strength was measured in the pipe specimens tested at three 

different displacement rates. 

The following observations from the tensile test results can be made: 

1. A large variation in the data can be seen. Young's Modulus values, from specimens of 

one pipe sample tested at similar displacement rates showed greater variability than 

expected. For example, samples tested from pipe A l at displacement rate 1 varied from 

4.15 x 108 Pa to 6.69 x 108 Pa. Similar variations in tensile strength were also present 

within and between samples. This could be a result of samples being taken from 

different portions of the pipe circumference and thus having unequal loading histories 

when in the field. 

2. A strain rate dependence in the Young's Modulus and Tensile strength at yielding is 

present. This was evident throughout the samples, and was amplified between the 

faster displacement rates (1 and 2) and the slowest one (3). For example, the average 

Young's Modulus values of specimens from pipe C were 5.17 x 108 Pa, 4.86 x 108 Pa, and 

3.68 x 108 Pa for displacements rates 1, 2 and 3, respectively. Similarly, average tensile 

strength values of specimens from pipe B were 2.05 x 107 Pa, 2.08 x 107 Pa, and 1.74 x 

107 Pa for displacements rates 1, 2 and 3, respectively. 



3. The new, unused pipe had the lowest average Young's Modulus and tensile strength 

values compared to the fatigued pipe. Note that Klompen (2005) found a similar trend 

for aged polymers where the yield stress increased over time. 

4. Published Young's Modulus values ranged from 8.0 -10.0 x 108 Pa, depending upon the 

chemical composition the material. The displacement rate associated with these values 

was not known. The Young's Modulus data obtained from these experiments are on the 

order of 30-65% less. This could be a result of using fatigued material or a difference 

between the displacement rates utilized for the previously published values and those 

investigated in this research. 

5. The published value of the HDPE yield stress is 2.417x 107 Pa. The results of the tensile 

tests showed similar results, ranging from 2.0-2.4 x 107 Pa at the faster rates to 1.25-

1.82 x 107 Pa at the slowest. 

It is important to note that the information gained from the tensile experiments is 

limited. Recall that the service history and chemical composition of the pipes were not known. 

In addition, the history of the "new" pipe could also not be verified. This led to qualitative, as 

opposed to quantitative, observations. 



CHAPTER 7 

DESIGN CONSIDERATIONS AND PRACTICAL 

APPLICATIONS OF FLEXIBLE STRUCTURES IN MARINE 

ENVIRONMENTS 

The enhancements of the Aqua-FE software developed in chapter 2 provide a versatile 

tool to investigate flexible system response. The numerical model can be used not only to 

examine small scale systems (Chapters 2, 3, 4), but to assist in the design and analysis of large 

complex systems as well. For example, Aqua-FE was utilized extensively in the design and 

analysis of the mooring systems deployed at the UNH site (Figure 3.1). Initially, these consisted 

of two single mooring grids containing two independent 600 m3 Sea Station™ fish cages 

(Tsukrov et al., 2000; Fredriksson et al., 2000; Baldwin et al., 2000). These moorings were 

replaced with a larger four grid mooring system that enabled the deployment of additional 

containment structures (seen in Figures 7.2 and 7.3). The mooring system geometries, 

subsurface flotation and pretension requirements were first specified using analytical 

techniques, which included standard chain catenary equations and equilibrium analysis. 

Mooring gear and ground tackle were then sized, in part, by modeling the designed system with 

Aqua-FE. This chapter will focus on the design, analysis and deployment of the four cage grid. 

This mooring was deployed in 2003 and used as a platform to conduct a series of engineering 

161 



and biological studies, advancing the state of the art in offshore aquaculture. The mooring was 

recovered and examined in 2010 after seven years of continuous use. 

The objective of this chapter is to describe the engineering design process used to 

specify components of the four-grid mooring system, including the numerical modeling and 

review the success or failure of the approach at the end of the seven year field deployment. The 

design process included a review of the specific design criteria for the open ocean site including 

the conceptual design, application of standard analytical methods to investigate the system 

hydrostatic characteristics, construction of a numerical model and comparison of static 

simulations with values calculated analytically and analyzing the results of dynamic simulations 

using a deterministic design wave condition with a superimposed, co-linear current. Using the 

results of the model simulations, along with practical experience, a design mooring component 

force was determined, components specified, procured and the system deployed. To evaluate 

the success/failure of the mooring, a brief description of the environmental conditions and 

research conducted at the site is presented and followed by the mooring recovery and 

inspection. Portions of the work presented in this chapter were published in Aquaculture 

Engineering Journal (Fredriksson et al., 2004) and Oceans 2010 Conference Proceedings (DeCew 

et al., 2010). 

7.1 Design Criteria 

Design criteria specific for the site off the coast of NH were established prior to the 

engineering analysis and specification of components. First, it was required that the entire 

system fit into the site boundaries specified in the government permit for the two separate 

mooring grids (30 total acres). It was also necessary that the new mooring be able to 



accommodate two existing SS600 cages and have space for additional fish containment 

structures. The gear had to be able to withstand the waves and currents that occur at the site, 

especially those associated with extreme storms. The mooring also had to be versatile, have 

straightforward installation and recovery of structures and components, be diver accessible and 

have minimal maintenance requirements. Finally, the mooring system needed to be designed to 

minimize entanglement with marine mammals. 

The first design constraint required that the new mooring system be deployed in the 

existing permitted site approximately 10 km from the shore. The site is in 52 meters of water 

and has a 30 acre (12.41 hectare) area. The bottom composition consists of relatively 

heterogeneous materials, which include bedrock outcroppings, gravel and muddy sands (Grizzle 

et al., 2003). The site is fully exposed from nearly all directions, though a small set of islands 

was located approximately 2 km to the north (Figure 3.1). In this study, a deterministic wave 

height of 9 meters with a period of 8.8 seconds was used with a co-linear current of 1 m/s for 

design purposes. The design wave height of 9 meters is estimated to be the energy based 

significant wave height (Hmo) of a 50 year storm at the site (Fredriksson, 2001). The design wave 

period is approximately the average dominant wave period of the most frequent wave 

directional band. Included in the design condition was a superimposed, a co-linear current of 1 

m/s (constant with depth). Although the largest velocity measured in two years of observation 

was 0.6 m/s (due to internal waves), the design coastal current value was chosen to encompass 

other coastal current components due to tidal forcing, surface winds and storm surge. 

The mooring system was specified to have a four-cage capacity to help insure future 

flexibility of the mooring capabilities. Two of the cages consisted of the previously deployed 

SS600 fish cages (see Figure 7.1). For mooring design purposes, two 3000 m3 Sea Stations™ 

(SS3000) were considered for the other two cage locations, though other commercial fish cages 
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could be accommodated. The operational plan, however, was to deploy one SS3000 and 

reserve the fourth cage location for future deployments of experimental systems. Both the 

SS600 and SS3000 have a similar construction. The cages are built around a central spar buoy 

and rim, both made of galvanized steel and can be submerged by flooding a chamber inside the 

central spar. The structure is held in a semi-rigid configuration by tensioning stays between 

these primary components. The containment net is woven into the stays, therefore maintaining 

a constant volume. Component details can be found in Fredriksson et al. 2003 and Kurgan 

(2003) for the SS600 and SS3000 cages, respectively. 

Rim 

1 5 m 

Pendent 
Line 

Central 
Spar 

Net 
Bottom 

Ballast 
Weight 

SS3000 SS600 

Figure 7.1: The SS600 and SS3000 cages each consist of a central spar and rim held together with 

tensioned stays. The spar on the SS600 has a length of 9 meters, while the spar on the SS3000 is about 15 

meters. The nominal rim diameter of the SS600 is 15 meters, while on the SS3000 it is 25 meters. Each 

cage incorporates a ballast weight suspended with a pendent line from the spar weighing 19 and 53 kN 

(dry) for the SS600 and the SS3000 cages, respectively. 

Another important consideration is marine mammal entanglement. Though no gear 

deployed in the open ocean will eliminate this serious issue, efforts must be made to 
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incorporate designs that minimize the effect on the marine mammal population. One approach 

utilizes a submerged grid using large diameter ropes (44-52 mm) that are pre-tensioned in the 

deployment process. In the previously deployed single-cage submerged grid (Baldwin et al., 

2000), the design (minimum) pre-tensioned value was estimated at 2.2 kN (Fredriksson et al., 

2000). In the four year deployment period, not one entanglement occurred. While it is 

recognized that few large marine mammals actually enter the site, the criteria was doubled in 

the design of the four-grid mooring system. 

The mooring grid was designed to be placed at a depth of approximately 18 meters and 

consisted of nine nodes (Figures 7.2 and 7.3). Four sets of bridle lines connected each cage to 

the submerged grid. The grid was anchored to the bottom using 12 mooring legs each 

incorporating co-polymer rope and a chain catenary. Tension in the system was maintained 

using subsurface flotation at the nine nodal locations. Due to the 12 anchor design, flotation 

elements at the corners were required to be larger than those at the grid sides to accommodate 

the weight of chain for two anchor legs. During the deployment process, the anchors were set 

to form the required geometry, which submerged the flotation elements down to the desired 

depth and lifted chain up off the bottom. The chain catenary in the anchor legs provided 

compliance to the system, while maintaining static pre-tensioning. Having a submerged mooring 

reduced the wear on the system (compared to employing flotation at the high energy surface 

environment) and kept a constant pre-tension in the gear. In addition, the depth was diver 

accessible, yet deep enough to mitigate excessive biological growth. 
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buoy 

Figure 7.2: An isometric view of the submerged 4-cage grid system. 

Anchor 1 Anchor 3 
Anchor 2 North 

Anchor 4 

Anchor 5 

* Anchor 6 

Figure 7.3: A top view of the submerged grid mooring system. It consisted of 8 corner anchor legs, 4 side 

anchor legs, 1 center anchor line, 12 grid lines, and 16 bridle lines. The anchors on the north and east 

sides are numbered for load identification. 
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7.2 Engineering Analysis 

Using the design concepts introduced in the previous section, the hydrostatic and 

geometric configuration of the submerged grid mooring was estimated using a standard 

analytical approach. Tension loads in the anchor legs and the desired geometry of the system 

to maintain the static shape of the grid were estimated using the inextensible cable (catenary) 

equations (see, for example, Faltinsen, 1990). A similar approach was used in the design of a 

double submerged grid aquaculture mooring as described in Fredriksson et al. 1999 and 

Fredriksson et al., 2001. These equations were also used to specify the chain forming the 

catenary in the anchor leg and the submerged flotation at the grid. The schematic shown on 

Figure 7.4 defines the components of one anchor leg of the mooring system. For the four-grid 

mooring configuration, it was required to have the pre-tensioned subsurface grid at a depth of 

18 m for relatively easy diver serviceability. 

—7777777777777. 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777r7777777-

Figure 7.4: Anchor leg definition schematic. Note that the float assembly consists of the float, a length of 

chain and the rope ring comer connections (not shown). 
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In general, the approach assumed a certain geometric configuration. For instance, since 

the average depth of the water at the site is 52 meters, the grid plane is approximately 34 

meters off the bottom (ya + yab on Figure 7.4). The anchor legs, which are made of rope (sab) and 

chain (sa), are not identical. It was decided that the eight corner legs were to be made up of 

36.5 m of chain and 78 m of rope resulting in a scope (anchor leg length to depth ratio) of 3.1. 

The four side anchor legs, however, were different, being composed of 27.4 m of chain and 78 

m of rope and therefore having a scope of 2.9. The horizontal component of the corner and side 

anchor legs (sbottom+Xa+Xab) w a s defined to be 107 and 96 m so that the entire system could fit 

into the 30 acre (12 hectares) site, assuming that the grid lines are 65 m. 

Using these and other predetermined design values (summarized in Table 7.1), the static 

pre-tension and the geometry of the submerged grid mooring was determined by employing the 

following analytical equations. First, the vertical force acting on the grid corner, Tvb, and 

associated chain suspended off the seafloor, sa, was determined by: 

'vb = Afloat ' "25mmchain ""•" "rope ring = 'va ( ' • !) 

Sa = T~f (7-2) 

where Bfloat is the net buoyancy of the float acting on one anchor leg, B25 mm Cham is the net 

buoyancy of the chain securing the float, Bropering is the net buoyancy of the rope ring (corner 

connection element), Tva is the vertical force acting on the chain, and p is the wet weight of the 

chain. For the static condition, it was then established that 20-30% of the anchor chain should 

be suspended off the seafloor. Using this as a guide, the tension at the anchor, T0, the horizontal 

and vertical positions of position of point A, xa and ya, respectively, could be found using: 
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T0 tan(0a) = Tvb 

(7.3) 

(7.4) 

(7.5) 

where <j)a is the angle formed at the top of the catenary. The tension in the anchor line, Ta, and 

grid line, Tg, could then be found using equilibrium analysis: 

Sin(<^)a) ~ a 

To — Tfib — Tg 

(7.6) 

(7.7) 

Once these values were calculated, the remaining system geometry, such as yab, sab, xab could be 

found. 

Table 7.1: Pre-determined design values utilized in the catenary analysis. These parameters were 

established due to geometric constraints (for example, permit area), availability of equipment and past 

experience. 

Parameter 

Water depth (hsite) 

Mooring grid depth 
(hgrid) 

Length of grid line(lgrid) 

Mooring scope 

Lengths of anchor line 

Lengths of anchor chain 

Chain length off the 
seafloor (sa) 

Wet weight of chain (p) 

Float buoyancy 

Rope ring buoyancy 

25 mm chain buoyancy 

Value 

52 m 

18 m 

65 m 

3.1 (corner) 
2.9 (side) 
78 m (corner) 
78 m (side) 
36.5 m (corner) 
27.4 m (side) 

11 m (corner) 
6 m (side) 

460 N/m 

11 kN (corner) 
3.2 (side) 

222 N 

243 N 

Description 

UNH offshore site water depth 

Depth of the grid was selected as part of design process 

Length selected to insure future versatility of mooring 

System was designed to have approximately a 3:1 scope 

Determined from scope and site permit area 

Selected upon cost considerations, availability and to insure 
horizontal force is applied to the anchors 

Design constraint; ideally only 20-30% of the anchor chain to be 
suspended off the seafloor in static condition 

Selected based upon availability from previous individual 
moorings and strength/weight characteristics 

Floats were selected based upon available sizes, costs and 
submergence depths of the component 

Calculated based upon the physical and geometrical properties 
of the rope ring 

Calculated based chain physical and geometrical properties 



7.4 Results 

7.4.1 System Hydrostatics 

To size the grid flotation elements and to determine the required geometry and pre

tension values of the mooring, the analytical techniques described in Section 7.3 were applied. 

Using a total vertical force of 5.1 and 2.8 kN for the corner and side grid flotation nodes, the 

anchor tensions, T0, and geometric characteristics of the suspended chain were calculated using 

equations 7.3 through 7.5. The static anchor line tensions for the corner and side legs, were 

found using equation 7.6 resulting in values of 12.52 kN and 6.62 kN, respectively. At the grid 

node locations, equation (7.7) was applied to obtain grid line tensions of 11.4 kN and 6.01 kN for 

the exterior (outside square) and interior (connecting to the center node) grid lines, 

respectively. 

The next step was to build a numerical model of the entire system and perform a 

hydrostatic simulation (i.e. no wave or current loading was applied). Geometric and material 

properties used in the model were based on the components described in Section 7.3 and the 

properties calculated as part of the analytical analysis (i.e. the size of the corner floats and 

geometry). Cage characteristics used in the model are discussed in Section 7.2. Note, however, 

that the cage system's bridle lines were slack in this analysis, thus the cages did not affect the 

grid tensions. For the hydrostatic numerical model tests, the entire fish cage and mooring 

system was allowed to come to static equilibrium for a period of 30 seconds. Tensions in the 

anchor and grid lines were calculated and the results provided in Table 7.2. After the transient 

portion of the simulation, the corner and side anchor line pretension values were calculated to 

be 12.84 kN and 7.30 kN, respectively. The exterior and interior grid lines were determined to 

have tensions of 11.69 kN and 6.67 kN, respectively. Results of the numerical model compared 

reasonably well (within 10%) with those calculated analytically. Note that the difference is due 



to stretch in the mooring lines. When the anchor and grid line stiffness is increased (for 

example, to values similar to steel cable) the analytical and numerical values are within 1%. The 

static tension results were different for the two methods because the analytical approach 

utilizes inextensible catenary equations while the numerical approach considers mooring line 

elasticity. The geometric difference due to stretching the mooring lines slightly changes the 

static tension. 

Table 7.2: Analytical and Numerically modeling static load results. 

Corner Anchor Line 

Side Anchor Line 

Grid Line (Outside Edges) 

Grid Line (Interior) 

Analytical (kN) 

12.52 

6.62 

11.41 

6.01 

Numerical (kN) 

12.84 

7.30 

11.64 

6.67 

% Difference 

2.5 

9.3 

1.9 

10.0 

7.4.2 Dynamic Simulations 

Dynamic simulations were performed using the UNH design condition consisting of a 

deterministic wave with a height of 9 meters and a period of 8.8 seconds coming from the 

northeast direction. Model simulations were used to calculate mooring line loads. Time series 

results for the anchor line tension from the numerical model are shown on Figure 7.5. 

Maximum steady state values were calculated to be 147 and 132 kN for the side (2 and 5) and 

corner (1, 3, 4 and 6) anchor line assemblies, respectively. One advantage of the data set 

resulting from performing numerical model simulations was that the tension from a variety of 

components in the mooring system could be analyzed. From this data set grid line tensions 

were also investigated. This information was important in the understanding of how the cages 

transfer loads to the anchor legs and the ground tackle. It was found that the grid line tensions 

in the northeast quadrant of the mooring were major load bearing components with values 

ranging from 70 to 120 kN when the design condition was applied (Figure 7.6). In addition, it 
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was found that a majority of the southwest SS3000 cage loads were transferred through the grid 

to the two side anchors. This information was vital to determining how the loads were 

distributed throughout the grid so each component could be specified. 

x 

Anchors 2 & 5 ' 

Anchors 3 & 4 ^ 

Time (sec) 

Figure 7.5: Selected mooring line load results using one of the UNH design conditions. Anchors are 

identified in Figure 7.3. 

45 kN 132 kN 
147 kN , 

North I i Waves 

T> I 

43 kN 70 kN 

# 

Current 

Figure 7.6: The maximum load distribution in the mooring using one of the UNH design conditions. The 

current and waves are applied from the northeast direction. 
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7.5 Component Specification and Deployment 

The use of the numerical model was important during the design of these mooring 

systems. It was imperative, however, to understand that the tension values calculated were 

only approximations. Modeling variability associated with choosing correct material and 

geometric properties, appropriate forcing and other physical characteristics (not necessarily 

represented), creates some uncertainty. For example, the numerical modeling approach did not 

take into account shadowing effects discussed in Chapters 2, 4 and 5 or the change in drag and 

mass due to biological fouling. Therefore, developing an appropriate design mooring 

component force also incorporates knowledge obtained from practical experience. A team of 

engineering and operational personnel discussed the modeling results, along with deployment 

and maintenance implications. Based on these discussions, the maximum loads calculated with 

the numerical model were increased by 17% to obtain a design mooring component force of 178 

kN. Along with the cost and operational factors, this design force was used to specify mooring 

system components. 

Many of the mooring parts used in the previous single-cage grid deployments, including 

eight of the twelve embedment anchors (and chain), as well as four of the side flotation 

elements, were reused to reduce costs. The anchors were chosen to have the smallest safety 

factor relative to other mooring components. Even though conservative environmental 

conditions were used in the design process, often more extreme or unplanned events could 

occur at the site. If a more extreme event was encountered, the intent was to have the anchors 

"drag" to relieve system stress before actual structural damage occurred in the other 

components (e.g. mooring rope, shackles). Depending upon the direction of the waves and 

currents, the grid lines are important members for the transfer and distribution of loads to the 
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anchor lines. Therefore, all of the mooring rope (grid and anchor) were sized using the same 

design force (178 kN) requirements. This also helped to reduce costs since the rope could be 

purchased in bulk quantities. The lines were held in place by 38 mm shackles, which have been 

found to be the limit of easy diver serviceability. Prior to deployment, each shackle pin was 

welded to prevent them from becoming undone. The grid corner flotation was sized not only to 

tension two anchor legs, but also to offset any biological fouling that may occur, allowing 

greater flexibility in routine cleaning operations. The mooring system components along with 

the minimum breaking loads (M.B.L.) and factors of safety (compared to the design force) are 

listed in Table 7.3. It is important to note that line, chain and shackles typically have a "working" 

load and a minimum breaking strength. In this system, the M.B.L. was employed to limit the size 

of the equipment and associated cost of the mooring grid. For reference, typically working 

loads are approximately 5 times lower than the M.B.L. Schematics of the grid corner and side 

and center anchor leg assemblies are shown in Figures 7.7 through 7.9. Figure 7.10 presents the 

crown line assembly located on each anchor. 

O.S5-m diam. steel buoy — 

„ ^^25-fiim shackle 
2-m of 25-mm long link chain 

0 ,19-mm shackle 
rope ring - . f 

XV 
38-mm s5-m of 48-mm, 

' \ shackle 8-piaft rope 

"^ X. 78-m of 48-mm, 8-plait rope 

Jy_ <l» 111 OrTi 38-mm shackle 

27 5-m of 52-mm stud-link chain 
1000-kg anchor 38-mm shackle 

\ 

Figure 7.7: Component details of the side grid mooring assembly. Some items are not to drawn to scale. 



1.45-m diam. composite buoy 

2-m of 25-mm long link chain 

O 
- 25-mm shackle 

rope ring 
• 19-mm shackle 

%-ffc. <* * ^ * - ~ , 65-mof48-

38-mm shackle 

78-m of 48-mm 8-plait rope 

38-mm shackle 

10-m of 52-mm stud link chain 

38-mm shackle 

27 5-m of 52-mm stud-link chain 
38-mm shackle 

Figure 7.8: Component details of the corner grid mooring assembly. Some items are not to drawn to scale. 

< 1,45-m diam. composite buoy 

rope ring | 

25-mm shackle 

3-m of 25-mm long link chain 
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Figure 7.9: Component details of the center grid mooring assembly. Some items are not to drawn to 

scale. The center node is held down by a 1800 kg steel deadweight. 
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Figure 7.10: Component details of the crown line assembly. Some items are not to drawn to scale. 



Table 7.3: The mooring system particulars. 

Component Description M.B.L.a Safety Factors6 

ANCHOR (12) 
Construction 
Mass 
SIDE ANCHOR CHAIN (4) 
Construction 
Length 
Mass 
CORNER ANCHOR 
CHAIN (8) 
Construction 
Length 
Mass 
ANCHOR LINE (12) 
Construction 
Length 
Specific Gravity 
Diameter 
SIDE GRID FLOTATION 
(4) 
Construction 
Mass 
Diameter 
CORNER and CENTER 
GRID FLOTATION (5) 
Construction 
Mass 
Diameter 
CORNER ROPE 
RING/CHAIN 
Construction 
Mass 
Length 
GRID LINE 
Construction 
Length 
Specific gravity 
Diameter 
SHACKLES 
Construction 
Mass 
Diameter 

Drag Embedment 
1000 kg 

Stud-Link 
27.4 m 
706 kg/m 

Stud-Link 
37.5 m 
706 kg/m 

8-plait co-polymer 
78 m 
0.94 
48 mm 

Steel 
136 kg 
0.9525 m 

Urethane Foam Com p. 
295 kg 
1.45 m 

25.4 mm steel long-link 
61.33 kg 
2.0 m 

8-plait co-polymer 
65 m 
0.94 
48 mm 

Galvanized Steel 
7.25 kg 
38 mm 

178 kND 

894 kN 

894 kN 

390 kN 

370 mc 

47 mc 

444 kNa 

390 kN 

756 kN 

1.0 

5.0 

5.0 

• 

2.2 

— 

— 

2.5 

2.2 

4.2 

a Minimum Breaking Load 
b Holding power 
c The flotation elements are rated at working depth. 
d The corner rope ring was tested by manufacturer to a load of 444 kN without failure. 
e Safety factor utilized the 178 kN design force. 
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The location of the mooring grid within the permitted site was determined using bottom 

topography information obtained courtesy of the Center for Coastal and Ocean Mapping /Joint 

Hydrographic Center (CCOM/JHC). The gear was successfully deployed the first week of July 

2003, using the F/V Nobska operated by Stommel Fisheries from Woods Hole, MA (Figures 7.11 

and 7.12). Anchor locations were first determined using Differential Global Positioning System 

(GPS) instrumentation based on the design geometry calculated using the catenary equations 

(Rice 2006). The gear was deployed "slack" with each of the grid floats at the surface (Figure 

7.13). A 15 meter line with indicator floats was attached to each of the grid floats. Next, using 

the crown lines, the anchors were pulled out with the fishing vessel to the predetermined 

positions. The anchors were set when only the indicator floats of the 15 meter lines were 

visible, "indicating" that the grid was at the proper depth. This technique allows the vessel 

operator to accurately position the anchors and grid since the inextensible catenary equations 

do not take into consideration stretching of the rope and bottom contour variability. 

Figure 7.11: The F/V Nobska, operated by Stommel Fisheries, deployed the four-grid mooring. 
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Figure 7.12- The gear was faked on the deck and streamed behind the deployment vessel 
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Figure 7.13: The grid lines can be seen organized on the water surface. 

Once the installation was complete, the designed anchor locations were compared to the 

deployed anchor positions, determined by temporarily mooring up to the crown lines and 

recording the positions using GPS. The resulting locations are displayed in Figure 7.14. The 

numerical values listed on the figure present the linear separation distance of the two anchors. 



It can be seen that the anchors were pulled further out from the grid than designed. This was 

likely a result of the loose construction (lay) of the line. It is important to note that some error 

may be incorporated into the measurements, depending upon the scope of the line attached to 

the corners and anchors. The grid depth, however, was flat, submerging approximately 15 

meters below the surface. A detailed description of the grid deployment process as well as in-

situ static line tensions can be found in Rice (2006). 

Figure 7.14: The mooring corner and anchor locations depicted on the UNH site bathymetry. The solid 

black diamonds represent the designed location of the anchors. The pink are the deployed locations as 

measured from the vessel GPS. The numbers are the distances between the deployed and designed 

positions. During deployment, it became apparent from the indicator floats that the designed anchor 

locations were not sufficient to get the grid to the designed depth. As a result, the anchors out further 

than designed. 



7.6 Research Activities and Environmental Conditions at the 

Submerged Mooring 

The submerged grid mooring provided a platform to conduct engineering and biological 

research projects at an exposed site in the Gulf of Maine. Numerous cage systems were at one 

point secured in the mooring such as the SS600 and SS3000 SeaStations™ by Ocean Spar 

Technologies, the Aquapod™ by Ocean Farm Technologies, the American Soybean Association's 

OCAT system, JPS Industries prototype submersible net pen and standard surface nursery cages 

(DeCew et al., 2006; Fredriksson et al., 2005; Celikkol et al., 2007, 2009). A few of these systems 

can be seen in Figure 7.15. Tensions in the grid and anchor lines were measured (Rice, 2006) as 

well as those in the bridle lines for the prototype gravity net pen (Santamaria et al., 2007). These 

in-situ measurements were used to verify the numerical modeling predictions from Aqua-FE. 

Studies were conducted monitoring the marine growth (biofouling) on traditional nylon nets, 

anti-fouling painted nets and emerging net technologies such as copper alloy materials (Celikkol 

et al., 2007; Greene and Grizzle, 2007; and Langan 2004). 

Figure 7.15: Cage systems deployed at the site include the SeaStation (top left), Aquapod (top right), 

OCAT (lower left), and the JPS prototype (lower right). 
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The mooring was also used to secure surface structures. Three fish feeding buoys were 

deployed in and around the grid (Figure 7.16). These fully automated buoys remotely fed fish in 

submerged cages secured in the grid mooring (Fullerton et al., 2004; Turmelle et al., 2009; 

Boduch and Irish, 2006; and Irish and Boduch, 2006). Two of these buoys (1/4 ton and 1 ton feed 

capacity) were attached directly to the grid using traditional and elastic mooring members. The 

third buoy with a 20-ton feed capacity had an external mooring, but was coupled to the grid 

with elastic feed hoses. More information regarding the buoy dynamics, mooring components 

tensions and operability can be found in (Rice et al., 2003; Fullerton et al., 2004; Turmelle et al., 

2009; Irish et al., 2001; Irish and Fredriksson et al.; 2003 and Horton, 2008). 

(a) <b> ( c ) 

Figure 7.16: Feeding buoys deployed within or coupled to the grid: (a) 1/4 ton feed capacity, (b) 1 ton feed 

capacity or (c) 20 ton feed capacity. 

In parallel to the engineering studies, a series of biological experiments were conducted. 

Fish growth studies on a variety of species using various feed diets were performed on species 

such as Atlantic Halibut (Hippoglossus hippoglossus), Atlantic Cod {Gadus morhua), Haddock 

(Melanogrammus aeglefinus), Summer Flounder (Paralichthys dentatus) and Steelhead Trout 
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(Oncorhynchus mykiss) (Chambers et al., 2007; Howell and Chambers, 2005; and Chambers and 

Howell, 2006). Some of these fish species are shown in Figure 7.17. Fish distribution, swimming 

speed and feeding behavior were observed in the submerged cages utilizing acoustic tags and 

hydrophones (Rillahan et al., 2009; 2011). Operational methods were also developed for open 

sea live harvesting of cod (Chambers et al., 2003). 

Figure 7.17: Several of the fish species grown at the site include Atlantic halibut (top left), Atlantic cod 

(top right), Haddock (lower left), and Steelhead Trout (lower right). 

In support of these research activities, the environmental conditions at the site were 

monitored with a wave riding buoy (Figure 7.18) secured in a single point mooring (Irish et al., 

2001; Irish and Fredriksson et al., 2003; Irish et al., 2004). To provide a better platform for 

measuring waves, compliant elastic tethers were incorporated into the mooring, which allowed 

the buoy to move freely with the waves with limited movement of the oceanographic 

equipment located in the water column (Irish and Fredriksson et al., 2003, Ahem 2002). 

Currents were recorded by an Acoustic Doppler Current Profiler (ADCP) placed in the mooring 
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near the seafloor. Various water parameters, such as the temperature, salinity, etc were also 

measured. 

Figure 7.18: The environmental monitoring buoy deployed at the offshore site. 

The waves at the site were measured by the environmental monitoring buoy with a 

Summit Technologies accelerometer (model number 34102A). The recorded accelerations were 

utilized to estimate the non-directional significant wave height (SWH) and dominant wave 

period. The SWH was found to be smallest during the summer months (typical SWH and 

dominate period values of 1-2 meters and 5-7 seconds, respectively) and larger during the 

winter (SWH and dominate period values of 4-6 meters and 6-8 seconds, respectively). Figure 

7.19 shows the significant wave heights for the 2006 winter season. It was found that the largest 

storm waves generally originated from "northeasters." Two of the largest storm events were 

observed in March 2001 (SWH of 7.5 m) and April 2007 (SWH of 9 m). Figure 7.20 shows the 

significant wave height history for the latter, representing a 50-year storm event for the region, 

capable of re-suspending sediments on the seafloor. In addition, time series data from this 

event showed surface elevation fluctuations of 30 m (single wave trough to crest distance). 
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Wave Statistics - Winter 2005-06 
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Figure 7.19: Typical winter storm waves in 2005-2006 with significant wave heights of 4 to 6 m. 
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Figure 7.20: The April 2007, 9 meter, 12 second storm event at the UNH offshore site. 

Currents at the site were measured with an upward looking RD Instruments 300 kHz 

ADCP secured in the mooring (Irish et al., 2004). Tidal currents in the region were found to be 

nearly uniform with depth, ranging from 0.02 m/s - 0.05 m/s. Storm driven currents were 
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measured to be strongest near the surface and decreased with depth, with maximum 

magnitudes of 0.5 m/s (1 knot). An example of a tidal water velocity time series in March 2004 

is shown in Figure 7.21. 
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Figure 7.21: The observed currents at the UNH site over one year. 

7.7 Mooring Recovery and Inspection 

In June 2010, the submerged mooring was recovered by Riverside and Pickering Marine 

of Elliot, ME using a barge (w/ crane) and tug vessel. The mooring components were then 

transported to shore with the UNH R/V Meriel B. The original deployment plan called for the 

crown lines to be used to release the pre-tension in the system, allowing the grid to rise to the 

surface. Unfortunately, the majority of the crown lines sank to the seafloor at some point during 

the seven years the mooring was in place. Therefore, the two southwest mooring lines were cut 

by divers, producing a similar result. With the grid at the surface to ease accessibility, each 
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anchor leg was systematically disconnected from the rope rings and removed from the water. 

The grid lines and floats remained secured at the surface with the center deadweight anchor. 

Once the anchors were recovered, the surface lines and floats were removed. Finally, the center 

deadweight was recovered, all the equipment organized and transported to shore. 

Upon recovery, the mooring components were inspected and documented. Anchors, chain 

and other critical components were pressure washed and organized. The following observations 

regarding the state of the critical components were made: 

Anchors - The majority of the anchors were in good shape, with some still having the original 

paint on the shaft and flukes (Figure 7.22). "Mud lines" and areas of biological growth helped 

determine that each anchor was well set into the seafloor sediment. One anchor had a bent 

stock, possibly occurring during deployment. Two of the anchors showed excessive material loss 

due to corrosion on the tip of the flukes. However, the corrosion did not threaten the 

operability or integrity of the anchor. 

(a) (b) 

Figure 7.22: Two anchors recovered from the mooring. Some of the anchors were in excellent shape, with 

paint present on the flukes and little material loss (a), whereas others had some material loss at the edges 

of the flukes (b). 
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Chain - The chain utilized with each anchor was in good shape. The majority of the chain was 

covered in mud, helping to reduce any corrosion. The chain near the anchor line attachment, 

and thus out of the seafloor sediment, displayed more evidence of long term exposure to 

seawater with an additional 2-3 mm of material loss (compared to the remainder of the chain). 

Quantitative comparisons of the chain's material loss that occurred during the deployment 

between anchor legs could not be made because "used" chain was utilized in the original 

mooring and measurements of the wire diameter were not made. 

Mooring Lines -The recovered grid lines were fouled with mussels upon recovery. Once cleaned 

off, the line had minimal abrasion and wear along its length. Anchor lines had significantly less 

mussel growth and were in similar condition. However, rope fraying was evident around the 

thimbles at rope ring connections, mostly in the northeast quadrant of the grid (dominate storm 

bearing direction). The lines showed wear around the thimbles (Figure 7.23) where contact 

could occur with the steel rope ring. The anchor line - anchor chain connection did not show 

any line fraying. Therefore, it is assumed that relative motion, present at the grid level, caused 

some wear between the line and rope rings. 

Figure 7.23: The grid lines were found to have some wear around the thimbles, near the rope rings. The 

lines must have come in contact with the rope rings, fraying the line over the seven year deployment. 
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Rope Rings /Shackles - These components were all in good shape. A few rope rings (shown in 

Figures 7.7, 7.8, and 7.9) had evidence of slight wear (rust worn off, a few flat spots at 

connection points). The shackles in the majority of the system had minimal wear. The shackles 

located on the northeast corner, had some wear in the bow of the shackle. However, none 

threatened the structural integrity of the mooring. 

Figure 7.24: The center connection rope ring and shackles. The rope rings and shackles were found to be 

in good shape, with minimal wear. 

Subsurface Floats - The floats were all in good condition. The attachment points located on the 

bottom of the flotation elements had little wear and were structurally sound (Figure 7.25). Both 

types of floats (urethane foam and steel) were fouled with biological growth but were otherwise 

in re-usable shape. 
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Figure 7.25: The connections on the floats were found to be in excellent condition. 

7.8 Review of the System 

A submerged grid mooring was designed, analyzed and deployed for seven years in the 

western Gulf of Maine. The design procedure included analytical calculations and numerical 

model simulations. A large portion of the design effort involved the interpretation of the 

numerical model results. Efforts were made to accurately model the system by comparing static 

simulation values to those obtained using inextensible catenary equations. Results from the 

dynamic simulations were employed to size the mooring gear and factors of safety. The grid 

was utilized as a scientific platform, hosting a series of engineering and biological studies. The 

system proved to have minimal maintenance requirements over its lifetime. The dominant 

maintenance procedure was the yearly removal of mussels from the grid lines and flotation 

elements and the occasional addition of zincs to the steel subsurface floats. The submerged 

platform survived numerous extreme environmental conditions, including a 9-meter significant 

wave height storm in 2007. The system's pre-tension and depth below the surface minimized 

wear between components due to relative motion. No marine mammal entanglements were 

observed over the mooring deployment, even though minke and fin whales were spotted in the 

vicinity of the grid. 
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A majority of the crown line flotation was lost at some point during the system's 

lifetime. This could be a result of excessive biofouling on the components over time (these were 

not cleaned as part of the maintenance schedule), slowly sinking the lines until pressure 

collapsed the floats. Without access to these lines for recovery, the removal of the system took 

longer than expected. 

The minimal amount of wear on steel components was unanticipated. Although the 

mooring design utilized the submerged system's pretension to reduce the relative motion 

between components (unlike surface moored systems), more material loss was expected at the 

grid corners and float connection points. The reduced water particle velocity (due to waves) 

and current magnitudes at depth helped facilitate this result. With largely steel components, the 

corrosion was minimal and much of the life of shackles, rings, thimbles was remaining after 

seven years. 

The submerged grid mooring proved to be a reliable, stable working platform for a 

variety of ocean structures. The success of the seven-year deployment with no structural 

integrity issues, no loss of fish cages or surface feed buoys highlights the importance of a sound 

engineering approach taken in the design process. 
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CHAPTER 8 

RESEARCH CONCLUSIONS 

Numerical modeling tools and techniques were developed to effectively predict flexible 

system response in marine environments. The Aqua-FE software package was enhanced by 

increasing the element library and implementing new hydrodynamic effects. Two case studies, 

involving laboratory and field experiments, were performed evaluating these software 

modifications. Aqua-FE was used as the primary tool in the design and analysis of the UNH 

offshore submerged mooring system. New structural modeling techniques were proposed, to 

evaluate the strength and predict localized failure in HDPE components. The mechanical 

behavior of new and previously deployed HDPE specimens, obtained from marine fish farms was 

investigated via tensile testing. 

The following conclusions result from the conducted research: 

• Enhancements in the UNH developed software package Aqua-FE improves the 

performance of the software when compared to laboratory and field experiments. 

• The expansion of the element library to include spherical elements and incorporation of 

Stokes 2nd Order waves increases the versatility of the program by providing new 

geometries and non-linear wave capabilities to the software. 

• An approach to simulate velocity shadowing effects is proved to be adequate to 

represent reduced water velocities inside and behind aquaculture cage systems. 
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• The cylindrical element's coefficient of drag enhancement is shown to improve the 

software predictions for drag forces and motion dynamics in the critical region of the 

drag coefficient as a function of Reynolds number curve (Figure 2.17). 

• Application of the modeling approach shows that the single point moored fish cage 

system experiences an unstable submergence regime in a certain current range. This 

region is characterized by significant changes in depth for small variations in the 

system's design, e.g. solidity of netting. 

• The modeling approach to predict localized failure is effective and shows good 

agreement to laboratory experiments. 

• A method to predict the strain rate within a HOPE net pen is proposed that incorporates 

influencing cage frame strain rate factors such as net solidity, mooring compliance and 

environmental loading. 

• HDPE's material properties are found to have a rate dependence and, therefore 

influence the structural capabilities of net pen frames. 

This research exposed several areas of required further work. The velocity shadowing 

approach described in Chapter 2, required knowledge of the incident and "reduced" water 

velocities around the cage and the regions/areas of reduced water flow. Therefore, empirical 

measurements are required for different system geometries or net solidities. It would be useful 

to determine "reduced" water velocity approximations associated with various geometries in 

certain flows for integrations into the Aqua-FE software. In addition, the method used in this 

research applied he reduced water velocity to half the cage system. This may be oversimplifying 

the problem and future research into a more accurate representation of the shadowed portions 

is necessary. In the case study of the net pen secured by a single point mooring (Chapter 4), the 
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effect of the net pen's buoyancy on the submergence depth was not studied should be 

investigated to determine this effect on the system's dynamic response. 

The structural modeling techniques can also be enhanced with future studies (Chapter 5). 

Investigations to determine the proper boundary conditions for net pens (y-line attachment, net 

load distribution, buoyancy forces, etc) should be initiated. Although significant progress was 

made in determining HDPE material properties at strain rates associated with marine 

environments (Chapter 6), there were two limitations to the research: (1) the initial strain rates 

selected for analyses were determined using linear elastic analysis and (2) the service history of 

the material was not known. A second iteration analyzing the cage frame strain rate should be 

conducted, utilizing the data gained in the mechanical testing experiments, to determine if the 

strain rates originally developed are adequate. Secondly, investigation of the HDPE material 

properties should be revisited when more information of the materials length of deployment 

and environmental conditions are obtained. 

The modeling tools and techniques researched in this study have applications outside the 

aquaculture industry. The Aqua-FE software can be utilized to investigate the motion and 

mooring load dynamics of a variety of structures such as wave buoys, wind turbines and acoustic 

tethers. The structural modeling approach and HDPE material property data can be applied to 

marine pipelines, barrier system and other complaint structures. Testing these modeling 

techniques on these types of systems would be an interesting extension of this research. 
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APPENDIX A: MODIFIED AQUA-FE SUBROUTINES 

FINITE ELEMENT ANALYSIS PROGRAM (FEAP) 

The core Aqua-FE finite element code is written in FORTRAN. It is based on an early 

version of the Finite Element Analysis Program (FEAP). FEAP was originally created as a general 

purpose finite element program for research and educational use. The source code was written 

by R.L. Taylor at the University of California at Berkley (Zienkewiech and Taylor, 1988). Aqua-

FE's fluid-structure interaction capabilities were added as one of the modules (Gosz et al., 1997; 

Swift etal., 1998). 

A problem solution in FEAP is constructed using a command language concept in which 

the solution algorithm is written by the user. FEAP has built-in commands for linear and non

linear applications in structural mechanics, fluid mechanics, heat transfer, and other areas. Both 

steady state and transient problems can be analyzed. Users also may add new routines for mesh 

generation and manipulation; model element or material description; new command language 

statements to meet specific application requirements; and plot outputs for added graphical 

display. 

The program contains a general element library. Elements are available to model one-, 

two- or three-dimensional problems in linear or non-linear solid mechanics. Elements provide 

capability to generate mass and geometric stiffness matrices for structural problems and to 
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compute output quantities associated with each element (e.g., stress, strain), including 

capability of projecting these quantities to nodes to permit graphical outputs of result contours. 

Users also may add an element to the system by writing and linking a single module to the FEAP 

system (the approach taken, for example, with the spherical element). 

OPT File Description 

As mentioned in Chapter 2, Aqua-FE simulation requires data on mesh geometry, 

element and nodal connectivity, material properties and fluid loading information. The material 

properties and fluid loading information is provided in the *.opt file. The file also relays 

FORTRAN MACRO controls to various subroutines to handle mesh and additional input data. An 

example of an *.opr file s shown below. Descriptions of the MACRO'S in the *.opt file and the 

allocation of columns for data input by the FORTRAN program can be found in Keslter 2004. 

FEAP ** Example *.opt file** 
260 412 19 3 3 

MP01 
filename.out 

MATE 
1 1 

0 9.8062 
2 2 

0 9.8062 
3 4 

0 9.8062 
4 5 

0 9.8062 
3 
1.2e0, 7.452e5 
1.55e0, 1.692e6 
1.7e0, 2.919e6 

5 3 
0 9.8062 

FDAT 

A2 

Truss element 
1 1.158E+03 1.172E+09 6.158E-02 

Sphere element 
1 9.058E+02 6.158E-02 

Net element 
1 1.025E+03 1.833E+09 3.142E-06 69 

Non-linear element 
1 7.120E+02 1.026E-02 4.8E-01 

Stiffener element 
1 1.025E+03 2.500E+11 5.000E-07 



analysis 
sub. check 
print check 
mat. 
updt 

wave 

type 

itypsw = 
isub = 

isubpr = 
noplot = 

drag coef. ic = 
cdn = 
cdt = 
cm = 

rho = 
depth = 

vconfx = 
vconfz = 
vgrdfx = 
vgrdfz = 

vis = 
loading iwave = 

no. freq. 
1: 

END 
MRCA 
PROF 
MACR 
TOL 
DT 
PRIN 
PARA 
LOOP 
TIME 
PRED 
LOOP 
FORM 
TANG 
SOLV 
CORR 
CEQS 
NEXT 
MRCB 
HIST 
HIST 
HIST 
HIST 
NEXT 
END 
MRCC 
STOP 

height, 

1 

STRE 
DISP 
DISP 
DISP 

nfreg = 
, length 

l.E-04 
0.01 

.25 
40000 

25 

343 
43 
43 
43 

1. 
0. 
1. 
1. 
2. 
1. 
0. 
0. 
0. 
1. 

1. 

4 
1 
1 
5 
1 

.200E+00 

.010E+00 

.000E+00 

.025E+03 

.400E+01 

.000E+00 

.000E+00 

.000E+00 

.000E+00 

.130E-03 
1 
1 

.30,30.531 

.5 

1 
1 
2 
3 



Aqua-FE Code Modifications 

This section presents the Aqua-FE code modifications implemented in the dissertation. The 

following MACRO'S in the subroutine pmesh were modified to support the component 

shadowing feature, implementation of Stokes waves, and incorporation of the proper truss 

element drag coefficients at high Reynolds Numbers: 

• FDAT 

• WETTEST 

• SURFELEV 

• AVCURR 

• UPDCD 

The code utilized to implement these features are shown in the following sections. 

MACRO - FDAT 
C MACRO 'FDAT' 
C READ IN PARAMETERS FOR FLUID LOADING 
C This part was heavily modified to accept multiple fluid loadings 
C Most things changed to a multi-dimensional array 
C The if and else statements have some repeated parts and can be 
C cleaned up... Still in debugging(4/15/05) mode so haven't gotten 
C to it. 

25 CONTINUE 
L0ADF=1 
PI = 3.141592653589793D0 
READ(1,4500)ITYPSW,ISUB,ISUBPR,NOPLOT,IC, 
+ CDN,CDT,CM,RHO,DEPTH,VCONFX,VCONFZ,VGRDFX,VGRDFZ , VIS 

C Sets the default number of fluid loadings to 1. 
NUMLOAD = 1 

C 
C The following if statement will process either the *.wc file 
C or if only 1 fluid loading, the standard way (else part) 
C The *.wc file is generated in the AguaFE Editor code written in 
C Python 

IF (ITYPSW .GT. 4) THEN 
ITYPSW=4 
READ (1,4510) WCFILENAME 
OPEN(UNIT = 37,FILE=WCFILENAME) 
IWAVE=0 
DO 481 KK = 1,25 
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NFREQ(KK)= 0 
C WRITE(6,*) 'NFREQ KK values are next' 
C WRITE(6,'(15)') NFREQ(KK) 
481 CONTINUE 

READ (37,4601) CDUM 
C WRITE(6,'(A20)') CDUM 

READ (37,'(A4)') BLANK 
READ (37,2747) NUMLOAD 

C WRITE(6,'(15)') NUMLOAD 
READ (37,'(A4)') BLANK 

C 
DO 471 11=1,NUMLOAD 

C WRITE(6,'(15)') II 
READ (37,'(A4)') BLANK 

DO 410 1=1,100 
C WRITE(6,*) 'In do loop' 

READ (37,4610) NW(II),H(I,II),WAVEL(I,II), 
+ PHI(I,II) 

IF(WAVEL(I,II) .EQ. 0.0) GOTO 411 
C 
C WRITE(6,•(15)') NW(II) 
C WRITE(6,'(Gil.4)') H(I,II) 
C WRITE(6,'(Gil.4)') WAVEL(I,II) 
C 

IWAVE=1 
NFREQ(II)=NFREQ(II)+1 

C WRITE(6,'(15)') NFREQ(II) 
410 CONTINUE 
411 NCURR(II)=0 

READ (37,'(A4)') BLANK 
DO 420 1=1,100 

READ (37,4610) NC(II),CURPROFD(I,II), 
+ CURPROFX(I,II),CURPROFZ(I,II) 

IF(NC(II) .EQ. 99) GOTO 421 
C 

WRITE(6,*) ' ' 
WRITE(6,'(15)') NC(II) 
WRITE(6,•(Gil.4)') CURPROFD(I,II) 
WRITE(6,'(Gil.4)') CURPROFX(I,II) 
WRITE(6,'(Gil.4)') CURPROFZ(I,II) 
WRITE(6,*) ' ' 

C 
NCURR(II)=NCURR(II)+1 
WRITE(6,*) ' ' 
WRITE(6,*) 'NCURR next' 
WRITE(6,'(15)') NCURR(II) 
WRITE(6,*) ' ' 

420 CONTINUE 
421 IF(NCURR(II) .EQ. 0) THEN 

NCURR(II)=1 
CURPROFD(1,11)=DEPTH 
CURPROFX(1,II)=0.0 
CURPROFZ(1,11)=0.0 
END IF 

C 
WRITE(6, 4700)ITYPSW,ISUB,ISUBPR,NOPLOT,IC, 
+ CDN,CDT,CM,RHO,DEPTH,VIS, 
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IWAVE,NFREQ(II) 

VFXAVE(II)=(DEPTH-CURPROFD(1,11))*CURPROFX(1,11) 
VFZAVE(II)=(DEPTH-CURPROFD(1,11))*CURPROFZ(1,11) 

WRITE(6,*) ' • 
WRITE(6,*) 'vfxave and vfzave' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 

IF(NCURR(II).GT.l) THEN 
DO 455 1=2, NCURR(II) 

VFXAVE(II)=VFXAVE(II)+(CURPROFD(1-1,11) 
+ CURPROFD(I,II))*(CURPROFX(I-l,II)+ 
+ CURPROFX(I,II)) 
+ /2.D0 

VFZAVE(II)=VFZAVE(II)+(CURPROFD(1-1,11) 
+ CURPROFD (I, II) ) MCURPROFZ (1-1,11) + 
+ CURPROFZ(I,II)) 
+ /2.D0 

WRITE(6,*) ' ' 
WRITE(6,*) 'vfxave and vfzave' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 
CONTINUE 

END IF 

VFXAVE(II)=VFXAVE(II)+CURPROFD(NCURR(II),II)* 
+ CURPROFX(NCURR(II),II) 

VFZAVE(II)=VFZAVE(II)+CURPROFD(NCURR(II),II)* 
+ CURPROFZ(NCURR(II),11) 

WRITE(6,*) ' ' 
) 'vfxave and vfzave' 
(Gil.4)') VFXAVE(II) 
(Gil.4)') VFZAVE(II) 

WRITE(6 
WRITE(6 
WRITE(6 
WRITE(6 

VFXAVE(II)=VFXAVE(II)/DEPTH 
VFZAVE(II)=VFZAVE(II)/DEPTH 

WRITE(6,*) ' ' 
WRITE(6,*) 'vfxave and vfzave' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 

WAMP(II)=0.D0 
IF (IWAVE.EQ.l) THEN 
DO 460 I=1,NFREQ(II) 

WRITE(6,4800)I,H(I,II),WAVEL(I,II),phi(I,II) 
WAVEK(I,II)=2.DO *PI/WAVEL(I,II) 
OMEGA(I,II)=VFXAVE(II)*WAVEK(I,II)+ 

+ DSQRT(G*WAVEK(I,II)* 
+ DTANH(WAVEK(I,II)*DEPTH)) 

FACTOR(I,II)=OMEGA(I,II)*H(I,II)/ 
+ (2.DO*DSINH(WAVEK(I,II)*DEPTH)) 



WAMP(II)=WAMP(II)+H(I,II)/2.D0 
460 CONTINUE 

END IF 

C beginning of updates 11/25/08 by JCD 
c thus update will incorporate stokes waves 
c if iwave = 2 
c if stokes, only 1 phase allowed 
c wavek, omega did not change 

IF (IWAVE.EQ.2) THEN 
DO 463 I=1,NFREQ(II) 

C 
IF (I.GT.l) THEN 

WRITE(6,*) '*ERR0R* MULTIPLE WAVE FREQUENCIES NOT 
ALLOWED' 

GOTO 666 
END IF 

C 
WRITE(6,4800)I,H(I,II),WAVEL(I,II),phi(I,II) 
WAVEK(I,II)=2.D0*PI/WAVEL(1, 11) 
OMEGA(1,11)=VFXAVE(II)*WAVEK(I,II)+ 

+ DSQRT(G*WAVEK(I,II)* 
+ DTANH(WAVEK(I,II)*DEPTH)) 

FACTOR(I,II)=OMEGA(I,II)*H(I,II)/ 
+ ((DSINH(WAVEK(I,II)*DEPTH))**4) 

WAMP(II)=WAMP(II)+(H(I,II)/2.D0J+ 
+ (H(I,II)**2)*WAVEK(I,II)* 
+ (DCOSH(WAVEK(I,II)*DEPTH)/ 
+ (16.DO*(DSINH(WAVEK(I,II)*DEPTH)**3) ) ) * 
+ (2.D0+DCOSH(2.D0*WAVEK(I,II)*DEPTH)) 

463 CONTINUE 
END IF 

c en(j 0 f updates 11/25/08 by JCD 

C 
C 

WRITE(6,4810) NCURR(II) 
DO 470 I=1,NCURR(II) 

WRITE(6,4820) I, CURPROFD(I,II), CURPROFX(I,II), 
+ CURPROFZ(I,II) 

47 0 CONTINUE 
WRITE(6,4900) 
READ (37,'(A4)') BLANK 

471 CONTINUE 
C 
C The else processes the fluid loading only if no *wc file... 
C 

ELSE 
II = 1 

C WRITE(6,*) ' ' 
C WRITE(6,'(15)') II 
C WRITE(6,*) ' ' 

NCURR(II)=2 
CURPROFD(1,11)=DEPTH 
CURPROFX(1,11)=VCONFX+VGRDFX*DEPTH 
CURPROFZ(1,II)=VCONFZ+VGRDFZ*DEPTH 
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CURPROFD(2,II)=0.0 
CURPROFX(2,11)=VCONFX 
CURPROFZ(2,II)=VCONFZ 
READ(1,4505) IWAVE,NFREQ(II) 
WRITE(6,'(15)') IWAVE 
WRITE(6,'(15)') NFREQ(II) 

DO 451 I=1,NFREQ(II) 
WRITE(6,'(15)') NFREQ(II) 
READ(1,4600) H(I,II),WAVEL(I,II),phi(I,II) 
WRITE(6,'(G11.4)') H(I,II) 
WRITE(6,'(Gil.4)') WAVEL(I,II) 
WRITE(6,'(Gil.4)') phi(I,II) 

CONTINUE 

WRITE(6,4700)ITYPSW,ISUB,ISUBPR,NOPLOT, IC, 
+ CDN,CDT,CM,RHO,DEPTH, VIS, 
+ IWAVE,NFREQ(II) 

WRITE(6,*) 'CHECK fdat ELSE2' 

VFXAVE(II) = (DEPTH-CURPROFD(1,11))*CURPROFX(1, II) 
VFZAVE(II)=(DEPTH-CURPROFD(1,11))*CURPROFZ(1,11) 

WRITE(6,*) ' ' 
WRITE(6,•(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 

IF(NCURR(II).GT.l) THEN 
DO 456 1=2, NCURR(II) 

VFXAVE(II)=VFXAVE(11) + (CURPROFD(I-1, 
+ CURPROFD(I,II))*(CURPROFX(1-1,11)+ 
+ CURPROFX(I,II)) 
+ /2.D0 

VFZAVE(II)=VFZAVE(II) + (CURPROFD(1-1, 
+ CURPROFD(I,II))*(CURPROFZ(1-1,11)+ 
+ CURPROFZ(I,II)) 
+ /2.D0 

WRITE(6,*) ' ' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(G11.4)') VFZAVE(II) 
WRITE(6,*) ' ' 
CONTINUE 

ENDIF 
VFXAVE(II)=VFXAVE(II)+CURPROFD(NCURR(II),II)* 

+ CURPROFX(NCURR(II),II) 
VFZAVE(II)=VFZAVE(II)+CURPROFD(NCURR(II) ,11)* 

+ CURPROFZ(NCURR(II),11) 

WRITE(6,*) ' ' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 

VFXAVE(II)=VFXAVE(II)/DEPTH 
VFZAVE(II)=VFZAVE(II)/DEPTH 

WRITE(6,*) ' ' 
WRITE(6,'(Gil.4)') VFXAVE(II) 
WRITE(6,'(Gil.4)') VFZAVE(II) 
WRITE(6,*) ' ' 



WAMP(II)=0.D0 
IF (IWAVE.EQ.l) THEN 
DO 461 I=1,NFREQ(II) 

WRITE(6,4800)I,H(I,II),WAVEL(I,II),phi(I,II) 
WAVEK(I,II)=2.D0*PI/WAVEL(I,II) 
OMEGA(I,II)=VFXAVE(II)*WAVEK(I,II)+ 

+ DSQRT(G*WAVEK(I,II)* 
+ DTANH(WAVEK(I,II)*DEPTH)) 

FACTOR(I,II)=OMEGA(I,II)*H(I,II)/ 
+ (2.D0*DSINH(WAVEK(I,II)*DEPTH)) 

WAMP(II)=WAMP(II)+H(I,II)/2.D0 
461 CONTINUE 

END IF 

C beginning of updates 11/25/08 by JCD 
c thus update will incorporate stokes waves 
c stokes happens when iwave = 2 
c if stokes, only 1 phase allowed 
c wavek, omega did not change 

IF (IWAVE.EQ.2) THEN 
DO 464 I=1,NFREQ(II) 

c 
IF (I.GT.l) THEN 

WRITE(6,*) '*ERROR* MULTIPLE WAVE FREQUENCIES NOT 
ALLOWED' 

GOTO 666 
END IF 

c 
WRITE(6,4800)I,H(I,II),WAVEL(I,II),phi(I,II) 
WAVEK(I,II)=2.D0*PI/WAVEL(I,II) 
OMEGA(I,II)=VFXAVE(II)*WAVEK(I, II) + 

+ DSQRT(G*WAVEK(I,II)* 
+ DTANH(WAVEK(I,II)*DEPTH)) 

FACTOR(I,II)=OMEGA(I,II)*H(I,II)/ 
+ ((DSINH(WAVEK(I,II)*DEPTH))**4) 

WAMP(II)=WAMP(II)+(H(I,II)/2.D0)+ 
+ (H(I,II)**2)*WAVEK(I,II)* 
+ (DCOSH(WAVEK(I,II)*DEPTH)/ 
+ (16.DO*(DSINH(WAVEK(I,II)*DEPTH)**3)))* 
+ (2.D0+DCOSH(2.D0*WAVEK(I,II)*DEPTH)) 

464 CONTINUE 
END IF 

c encj 0f updates 11/25/08 by JCD 

WRITE(6,4810) NCURR(II) 
DO 473 I=1,NCURR(II) 

WRITE(6,4820) I, CURPROFD(I,II) , CURPROFX(I,II) , 
+ CURPROFZ(I,II) 

473 CONTINUE 
WRITE(6,4900) 

ENDIF 
C 

GO TO 10 
C 
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c*****these statements can't be reached so are c'd to prevent 
warning*****c 
c INN = 0 
c INE = 0 
C WRITE(JDUMP,1003)INN,INE 
c WRITE(JDUMP,1004)NUMEL,NEN 
c DO 400 I=1,NUMEL 
c WRITE(JDUMP,1005)I,(IX(J,I),J=1,NEN) 
c400 CONTINUE 
c WRITE(JDUMP,1003)NUMNP,NDM 
c DO 500 I=1,NUMNP 
c WRITE(JDUMP,1006)I,(X(J,I),J=1,NDM) 
c500 CONTINUE 
c DO 600 II=1,NUMEL 
c600 WRITE(KDUMP,1007)((X(J,IX(JJ,II)),J=1,NDM),JJ=1,NEN) 
c GO TO 10 

C 
C FORMATS 
1000 FORMAT(A4,75X,Al) 
1002 F0RMAT(16I5) 
1003 F0RMAT(1X,2I5) 
1004 FORMAT(/,IX,215) 
1005 FORMAT(IX,915) 
1006 FORMAT(I6,3X,3G15.8) 
1007 FORMAT(8F8.4) 
2003 FORMAT(/5X,12HMATERIAL SET,I3,17H FOR ELEMENT TYPE,12,5X,// 

1 10X,49HDEGREE OF FREEDOM ASSIGNMENTS LOCAL GLOBAL / 
2 42X, 6HNUMBER, 4X, 6HNUMBER/(36X,2110)) 

2004 FORMAT(A1,20A4//5X,19HMATERIAL PROPERTIES) 
2 005 FORMAT(A1,20A4//5X,17HNODAL FORCE/DISPL//6X,4HNODE,9(17,A4 , A2) ) 
2006 FORMAT(110,9E13.3) 
2747 FORMAT(15) 
3003 FORMAT(5X,'**WARNING 01** ELEMENT CONNECTIONS NECESSARY TO USE 
BLO 

IK IN MACRO PROGRAM') 
4500 FORMAT(5(20X,I5,/),9(20X,G10.4,/),2 0X,G10.4) 
4505 FORMAT(20X,15,/,20X,I5) 
4510 FORMAT(2OX,A50) 
c 
cccccccccccc 
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MACRO - WETTEST 
Q* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Q* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE WETTEST(iwet,surf1,surf2,XI,Yl,Zl,X2,Y2,Z2,time, NUMB, 
+ IX) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

c 
c test if either node of element is below waterline 
c return wet status and surface elevation at each node 
c 

COMMON /FDATA/ G,H(100,25),WAVEL(100,25),WAVEK(100 , 25) , 
+ phi(100,25),OMEGA(100,25),FACTOR(100,25), 
+ DEPTH,VFXAVE(25),VFZAVE(25),CURPROFD(100,25), 
+ CURPROFX(100,25),CURPROFZ(100,25), 
+ CDN,CDT,CM,RHO,VIS,WAMP(25),NCURR(25), 
+ NFREQ(25),IWAVE,ITYPSW,ISUB,ISUBPR,IC 

C 
COMMON /CDATA/ NUMNP,NUMEL,NUMMAT,NEN,NEQ,IPR, 
1 NSDM,NQDM,NQUAD,NPRFL 
COMMON /NUMWC/ NUMLOAD 
INTEGER IIII 
DIMENSION IX(4,1) 

c 
C WRITE(6,'(15)') NEN 
C WRITE(6,'(15)') NUMB 

NEN2 = NEN + 2 
C WRITE(6,'(15)') NEN2 
C WRITE(6,*) ' ' 
C WRITE(6,'(15)') IX(1,1) 
C WRITE(6,'(15)') IX(2,1) 
C WRITE(6,'(15)') IX(3,1) 
C WRITE(6,•(15)') IX(4,1) 
C WRITE(6,*) ' ' 
C The IX is a 4 x 1 array. The +1 is added because index from 
python editor 
C is from 0-9, not 1-10. 
C 

IIII = IX(NEN2,1) + 1 
C WRITE(6,'(15)') IIII 
C 

WETMIN=DEPTH-WAMP(IIII) 
C WRITE(6,'(Gil.4)') WAMP(IIII) 

WETMAX=DEPTH+WAMP(IIII) 
IF ((Yl.GT.WETMAX) .AND. (Y2.GT.WETMAX)) THEN 

IWET=4 
ELSEIF ((Yl.LT.WETMIN) .AND. (Y2.LT.WETMIN)) THEN 

IWET=3 
ELSE 

etal=0.d0 
eta2=0.d0 
if (iwave.eq.l) then 

do 100 i=l,nfreq(IIII) 
etal=etal+h(i,IIII)*dcos(wavek(i,IIII)*X1-

+ omega(i,IIII)*time+phi(i,IIII)) 
eta2=eta2+h(i,IIII)*dcos(wavek(i,IIII)*X2-

+ omega(i,IIII)*time+phi(i,IIII)) 



100 continue 
endif 

C start of UPDATES BY JCD ON 11/25/08 
C INCORP OF STOKES WAVES 

i f (iwave.eq.2) then 
do 102 i=l,nfreq(IIII) 

c 
etal=etal+h(i,IIII)*dcos(wavek(i,IIII)*X1-

+ omega(i,IIII)*time)+ 
+ (h(i,IIII)**2)*wavek(i,IIII)* 
+ (dcosh(wavek(i,IIll)*DEPTH)/ 
+ (8.DO*(dsinh(wavek(i,IIII)*DEPTH)**3)))* 
+ (2.D0+dcosh(2.D0*wavek(i,IIII)*DEPTH))* 
+ dcos(2.D0*(wavek(i,IIII)*X1-
+ omega(i,IIII)*time)) 

c 
eta2=eta2+h(i,IIII)*dcos(wavek(i,IIII)*X2-

+ omega(i,IIII)*time)+ 
+ (h(i,IIII)**2)*wavek(i,IIII)* 
+ (dcosh(wavek(i,IIII)*DEPTH)/ 
+ (8.DO*(dsinh(wavek(i,IIII)*DEPTH)**3)))* 
+ (2.D0+dcosh(2.D0*wavek(i,IIII)*DEPTH))* 
+ dcos(2.D0*(wavek(i,IIII)*X2-
+ omega(i,IIII)*time)) 

c 
102 continue 

endif 
c 
c 
C NOTE THAT H IS NOT DIVIDED BY 2 DUE TO COMMAND BELOW. 
C end of UPDATES BY JCD ON 11/25/08 
c INCORP OF STOKES WAVES 
c 

c 
c 

surfl=depth+etal/2.d0 
surf2=depth+eta2/2.d0 

if ((Yl.le.surfl).and.(Y2.1e.surf2)) then 
iwet=3 

elseif ((Yl.gt.surf1).and.(Y2.gt.surf2)) then 
iwet=4 

elseif (Yl.le.surfl) then 
iwet=l 

elseif (Y2.1e.surf2) then 
iwet=2 

endif 
END IF 

c 
return 
end 



MACRO - SURFELEV 
c 
c 

DOUBLE PRECISION FUNCTION SURFELEV(XCoord,Time) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
COMMON /FDATA/ G,H(100,25),WAVEL(100,25) ,WAVEK(100,25) , 
+ phi(100,25),OMEGA(100,25),FACTOR(100,25), 
+ DEPTH,VFXAVE(25),VFZAVE(25),CURPROFD(100 , 25) , 
+ CURPROFX(100,25),CURPROFZ(100 , 25) , 
+ CDN,CDT,CM,RHO,VIS,WAMP(25),NCURR(25), 
+ NFREQ(25),IWAVE,ITYPSW,ISUB,ISUBPR,IC 

SURFELEV=0.D0 
C 
C This applies the surface elevation of only the first profile to 
C the model 

IF(IWAVE.EQ.l) THEN 
DO 101 I=1,NFREQ(1) 
SURFELEV=SURFELEV+H(1,1)*dcos(wavek(i , 1)* 

1 XCOORD-omega(i,l)*time+phi(i, 1))/2.D0 
101 CONTINUE 

END IF 

c start of UPDATES BY JCD ON 11/25/08 
C INCORP OF STOKES WAVES 

if (IWAVE.EQ.2) THEN 
DO 102 I=1,NFREQ(1) 

SURFELEV=SURFELEV+(h(i,l)*dcos(wavek(i , 1)* 
+ XCOORD-omega(i,l)*time)/2.D0)+ 
+ (h(i,l)**2)*wavek(i,l)* 
+ (dcosh(wavek(i,1)*depth)/ 
+ (16.DO*(dsinh(wavek(i,1)*depth)**3)))* 
+ (2.D0+dcosh(2.D0*wavek(i,1)*depth))* 
+ dcos(2.D0*(wavek(i,l)*XCOORD-
+ omega(i,1)*time)) 

102 CONTINUE 
END IF 

c encj 0f UPDATES BY JCD ON 11/25/08 
c INCORP OF STOKES WAVES 

RETURN 
END 

MACRO - AVCURR 

SUBROUTINE 
AVCURR(CentX,CentY,CentZ,Time,VFX,VFY,VFZ,AFX,AFY,AFZ,NUMB, 

+ IX) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 



COMMON /FDATA/ G,H(100,25),WAVEL(100,25),WAVEK(100 , 25) , 
+ phi(100,25),OMEGA(100,25),FACTOR(100 , 25) , 
+ DEPTH,VFXAVE(25) ,VFZAVE(25) ,CURPROFD(100,25) , 
+ CURPROFX(100,25*),CURPROFZ(100,25), 
+ CDN,CDT,CM,RHO,VIS,WAMP(25),NCURR(25), 
+ NFREQ(2 5),IWAVE,ITYPSW,ISUB,ISUBPR,IC 
COMMON /CDATA/ NUMNP,NUMEL,NUMMAT,NEN,NEQ,IPR, 

1 NSDM,NQDM,NQUAD,NPRFL 6+ 
COMMON /NUMWC/ NUMLOAD 
INTEGER IIII 
DIMENSION IX(4,1) 

C 
NEN2 = NEN + 2 

C The IX is a 4 x 1 array. The +1 is added because index from 
python editor 
C is from 0-9, not 1-10. 
C 

IIII = IX(NEN2,1) + 1 
VFX=0.D0 
VFY=0.D0 
VFZ=0.D0 
AFX=0.D0 
AFY=0.D0 
AFZ=0.D0 
NC=NCURR(IIII) 
IF(NCURR(IIII).GT.l) THEN 

DO 101 I=1,NCURR(IIII)-1 
IF (CURPROFD(I,IIII).LE.CentY) THEN 

NC = I 
GOTO 102 

END IF 
101 CONTINUE 
102 VFX=CURPROFX(NC,IIII) 

VFZ=CURPROFZ(NC,IIII) 
IF(NC.GT.l) THEN 

Wl=(CentY-CURPROFD(NC-l,IIII) )/(CURPROFD(NC,IIII)-
+ CURPROFD(NC-1,IIII)) 

W2=(CURPROFD(NC,IIII)-CentY)/(CURPROFD(NC,IIII)-
+ CURPROFD(NC-1,IIII)) 

VFX=CURPROFX(NC-1,IIII)*Wl+CURPROFX(NC,IIII)*W2 
VFZ=CURPROFZ(NC-1,IIII)*Wl+CURPROFZ(NC,IIII)*W2 

END IF 
END IF 
IF(IWAVE.EQ.l) THEN 

DO 201 I=1,NFREQ(IIII) 
angle=wavek(i,IIII)*CentX-omega(i,IIII)*time+phi(i,IIII) 

VFX=vfx+factor(i,IIII)*dcosh(wavek(i,IIII)*CentY)*dcos(angle) 
VFY=vfy+factor(i,IIII)*dsinh(wavek(i,IIII)*CentY)*dsin(angle) 

AFX=afx+omega(i,IIII)*factor(i,IIII)*dcosh(wavek(i,IIII)* 
+ CentY)*dsin(angle) 

AFY=afy-omega(i,IIII)*factor(i,IIII)*dsinh(wavek(i,IIII)* 
+ CentY)*dcos(angle) 

2 01 CONTINUE 
END IF 

C start of UPDATES BY JCD ON 11/25/08 



C INCORP OF STOKES WAVES 
if (IWAVE.EQ.2) THEN 

DO 202 I=1,NFREQ(IIII) 
angle=wavek(i,IIII)*CentX-omega(i , IIII)*time 

c 
c WRITE(6,*) 'check to see what VFX is before vfx is calced' 
c WRITE(6, ' (e2 0.5) ') VFX 

VFX=vfx+(h(i,IIII)*g*wavek(i,IIII))/(2.D0*omega(i, IIII) ) * 
+ ((dcosh(wavek(i,IIII)*CentY))/ 
+ (dcosh(wavek(i,IIII)*depth)))*dcos(angle)+ 
+ (3.DO/16.DO)*h(i,IIII)*factor(i,IIII)*wavek(i,IIII) * 
+ dcosh(2.D0*wavek(i,IIII)*CentY)*dcos(2.D0*angle) 

c 
c WRITE(6,*) 'check to see what VFY is before vfy is calced' 
c WRITE(6,'(e20.5)') VFY 

VFY=vfy+h(i,IIII)*g*wavek(i,IIII)/(2.D0*omega(i, IIII) ) * 
+ (dsinh(wavek(i,IIII)*CentY)/ 
+ dcosh(wavek(i,IIII)*depth))*dsin(angle)+ 
+ (3.D0/16.D0)*h(i,IIII)*factor(i,IIII)*wavek(i,IIII)* 
+ dsinh(2.D0*wavek(i,IIII)*CentY)*dsin(2.D0*angle) 

c 
c WRITE(6,*) 'check to see what AFX is before afx is calced1 

c WRITE(6,'(e20.5)') AFX 

AFX=afx+(h(i,IIII)*g*wavek(i,IIII)/2.DO)* 
+ (dcosh(wavek(i,IIII)*CentY)/ 
+ dcosh(wavek(i,IIII)*depth))*dsin(angle)-
+ ((h(i,IIII)**2)*g*(wavek(i,IIII)**2)/4.D0)* 
+ (dsin(2.D0*angle)/ 
+ dsinh(2.D0*wavek(i,IIII)*depth))+ 
+ 
(3.D0/8.D0)*h(i,IIII)*omega(i,IIII)*factor(i,IIII)*wavek(i,IIII) 

+ dcosh(2.D0*wavek(i,IIII)*CentY)*dsin(2.D0*angle) 
c 

AFY=afy+(-h(i,IIII)*g*wavek(i,IIII)/2.D0)* 
+ (dsinh(wavek(i,IIII)*CentY)/ 
+ dcosh(wavek(i,IIII)*depth))*dcos(angle)+ 
+ ( (h (i, IIII )* *2) *g* (wavekd, IIII )**2)/4. DO)* 
+ (dsinh(2.D0*wavek(i,IIII)*CentY)/ 
+ dsinh(2.D0*wavek(i,IIII)*depth))-
+ 
(3.DO/8.DO)*h(i,IIII)*omega(i,IIII)*factor(i,IIII)*wavek(i, IIII) 

+ dsinh(2.D0*wavek(i,IIII)*CentY)*dcos(2.D0*angle) 
c 
c 
202 CONTINUE 

END IF 
c 
c end of UPDATES BY JCD ON 11/25/08 
c INCORP OF STOKES WAVES 

RETURN 
END 



MACRO - UPDCD 

SUBROUTINE UPDCD(REN,aCDN, aCDT, aCM) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
COMMON /FDATA/ G,H(100,25),WAVEL(100,25),WAVEK(100,25), 
+ phi(100,25) ,OMEGA(100,25) ,FACTOR(100,25) , 
+ DEPTH,VFXAVE(25),VFZAVE(25) ,CURPROFD(100,25) , 
+ CURPROFX(100,25),CURPROFZ(100 , 25) , 
+ CDN,CDT,CM,RHO,VIS,WAMP(25),NCURR(25), 
+ NFREQ(25) ,IWAVE,ITYPSW,ISUB,ISUBPR, IC 

pi = 3.141592653589793d0 

c Code updated on 12/10/08 by JCD 
c update was to add critical Re values for truss element 
c data obtained via Hoerner. Takes effect at the critical 
c Reynolds number 

if (ic.eq.l) then 
if (ren.le.O.OOldO) then 

cdn=2789.8d0 
elseif (ren.le.1.d0) then 

sfact=-0.077215665d0+dlog(8.d0/ren) 
cdn=8.d0*pi*(1.dO-0.87d0*sfact**(-2))/(ren*sfact) 

elseif ((ren.gt.l.dO).and.(ren.le.30.d0)) then 
cdn=l.45d0+8.55d0*ren**(-0.9d0) 

elseif ((ren.gt.30.d0).and.(ren.le.3.078d5)) then 
cdn=l.ld0+4.d0*ren**(-0.5d0) 

c 
elseif ((ren.gt.3.078d5).and.(ren.le.3.632d5)) then 

rena=3.07 8d5 
renb=3.632d5 
cdna=0.9717d0 
cdnb=0.70694d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

c 
elseif ((ren.gt.3.632d5).and.(ren.le.3.939d5)) then 

rena=3.632d5 
renb=3.939d5 
cdna=0.7069d0 
cdnb=0.5412d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

c 
elseif ((ren.gt.3.939d5).and.(ren.le.4.363d5)) then 

rena=3.939d5 
renb=4.3 63d5 
cdna=0.5412d0 
cdnb=0.4142d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

c 
elseif ((ren.gt.4.363d5).and.(ren.le.4.444d5)) then 

rena=4.363d5 
renb=4.444d5 
cdna=0.4142d0 



cdnb=0.333 6d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.4.444d5).and.(ren.le.4.920d5)) then 
rena=4.444d5 
renb=4.920d5 
cdna=0.3336d0 
cdnb=0.2429d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.4.920d5).and.(ren.le.6.088d5)) then 
rena=4.92 0d5 
renb=6.088d5 
cdna=0.2429d0 
cdnb=0.2588d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.6.088d5).and.(ren.le.7.536d5)) then 
rena=6.088d5 
renb=7.536d5 
cdna=0.2 588d0 
cdnb=0.2 804d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.7.536d5).and.(ren.le.9.326d5)) then 
rena=7.536d5 
renb=9.326d5 
cdna=0.2804d0 
cdnb=0.2988d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.9.326d5).and.(ren.le.1.154d6)) then 
rena=9.32 6d5 
renb=1.154d6 
cdna=0.2988d0 
cdnb=0.3185d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.l.l54d6).and.(ren.le.1.459d6)) then 
rena=1.154d6 
renb=1.459d6 
cdna=0.3185d0 
cdnb=0.3566d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.l.459d6).and.(ren.le.1.846d6)) then 
rena=1.459d6 
renb=1.846d6 
cdna=0.3 566d0 
cdnb=0.3994d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif ((ren.gt.l.846d6).and.(ren.le.2.485d6)) then 
rena=1.846d6 
renb=2.485d6 
cdna=0.3994d0 
cdnb=0.4044d0 



c 

call cintb(ren,rena,renb,cdna,cdnb,cdn) 

c 
c 

elseif ((ren.gt.2.485d6).and.(ren.le.4.600d6)) then 
rena=2.485d6 
renb=4.600d6 
cdna=0.4044d0 
cdnb=0.4077d0 
call cintb(ren,rena,renb,cdna,cdnb,cdn) 

elseif (ren.gt.4.600d6) then 
cdn=0.4077d0 

endif 
CDT=pi*vis*(0.55d0*ren**0.5d0+0.084d0*ren**(2.d0/3.d0)) 

ENDIF 
aCDN=CDN 
aCDT=CDT 
aCM=CM 

RETURN 
END 
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