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ABSTRACT 

HOMOTOPY MAPPING SPACES 

by 

Jeremy Brazas 

University of New Hampshire, May 2011 

Advisor: Dr. Maria Basterra 

In algebraic topology, one studies the group structure of sets of homotopy 

classes of maps (such as the homotopy groups nn(X)) to obtain information about 

the spaces in question. It is also possible to place natural topologies on these groups 

that remember local properties ignored by the algebraic structure. Upon choosing 

a topology, one is left to wonder how well the added topological structure interacts 

with the group structure and which results in homotopy theory admit topological 

analogues. A natural place to begin is to view the n-th homotopy group n„ (X) as the 

quotient space of the iterated loop space Q"(X) with the compact-open topology. 

This dissertation contains a systematic study of these quotient topologies, giving 

special attention to the fundamental group. 

The quotient topology is shown to be a complicated and somewhat naive ap­

proach to topologizing sets of homotopy classes of maps. The resulting groups 

with topology capture a great deal of information about the space in question but 

unfortunately fail to be a topological group quite often. Examples of this failure oc-
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curs in the context of a computation, namely, the topological fundamental group of 

a generalized wedge of circles. This computation introduces a surprising connec­

tion to the well-studied free Markov topological groups and indicates that similar 

failures are likely to appear in higher dimensions. 

The complications arising with the quotient topology motivate the introduction 

of well-behaved, alternative topologies on the homotopy groups. Some alterna­

tives are presented, in particular, free topological groups are used to construct the 

finest group topology on nn(X) such that the map Q"(X) —» nn(X) identifying ho­

motopy classes is continuous. This new topology agrees with the quotient topology 

precisely when the quotient topology does result in a topological group and admits 

a much nicer theory. 
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INTRODUCTION 

The fact that classical homotopy theory is insufficient for studying spaces with 

homotopy type other than that of a CW-complex has motivated the introduction of 

a number of invariants useful for studying spaces with complicated local structure. 

For instance, in Cech theory, one typically approximates complicated spaces with 

"nice" spaces and takes the limit or colimit of an algebraic invariant evaluated on 

the approximating spaces. The approach taken in this dissertation is to directly 

transfer topological data to algebraic invariants by endowing them with natural 

topologies that behave nicely with respect to the algebraic structure. While this 

second approach does not yield purely algebraic objects, it does have the advantage 

of allowing direct application of the rich theory of topological algebra. The notion 

of "topologized" homotopy invariant seems to have been introduced by Hurewicz 

in [Hur35] and studied subsequently by Dugundji in [Dug50]. Whereas these early 

methods focused on "finite step homotopies" through open covers of spaces, we 

are primarily interested in the properties of spaces of homotopy classes of maps 

pen. 
The topological fundamental group 7i*op(X) of a based space (X, x), as first spec­

ified by Biss [Bis02], is the fundamental group n^Xx) endowed with the natural 

topology that arises from viewing it as a quotient space of the space of loops based 

at x. This choice of topological structure makes n^ particularly useful for studying 
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the homotopy of spaces that lack 1-connected covers. The brevity of this construc­

tion is rather deceiving since the topology of TC^P(X, X) is typically very complicated. 

In fact, for over 10 years [May90,Bis02], it was thought that this construction always 

results in a topological group. The initial intention of this research was to determine 

the validity of this assertion. We actually produce a plethora of counterexamples 

and shed light on a number of "defects" of the functor n°p. Recently, Fabel [Fab09] 

has shown that the Hawaiian earring group n ^ H E ) fails to be a topological group 

independently of this work. 

In a first algebraic topology course, one learns early on that the fundamental 

group of a wedge of circles is the free group on the set indexing the wedge. One 

might similarly expect a generalized or "non-discrete" wedge of circles (constructed 

here as a suspension space £(X+)) to have topological fundamental group with some 

similar notion of "freeness." This computation is one of the main contributions of 

this dissertation to the theory of topological fundamental groups. A surprising 

consequence is that n^(L{X+)) either fails to be a topological group or is one of the 

well-studied but notoriously complicated free (Markov) topological groups. Since 

realizing free groups as fundamental group is an important tool in many fields 

it is hoped that this geometric interpretation of many quasitopological and free 

topological groups will provide useful in topological algebra. 

The complications that arise with the quotient topology motivate the introduc­

tion of new topologies, however, there are many natural choices. Each is likely 

to have its own benefits and uses. In many situations, a topology on a homotopy 

group may be defined to remember a specific local properties of a space. For this 
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reason, the author does not argue that one topology is "right" where others are 

"wrong" or that one is "better" than another. For instance, the main power of the 

quotient topology is the universal property of quotient spaces and the enormous 

amount of data that it remembers about loops representing homotopy classes. The 

topology of nT
n (X) introduced in this dissertation is constructed to give a group 

topology from the quotient topology by removing as few open sets in the quotient 

topology as possible. As with the quotient topology, its primary attribute is its 

universal property and connection to the topology of loop spaces. 
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0.1 Notation 

The following notation will be used: 

Topological spaces: 

• N , Z , Q, R, I = [0,1] - Non-negative integers, integers (both discrete), rational, 

real numbers with the standard topology, standard unit interval. 

• For each integer n > 1 and / € {1,...,«}, let Kln be the closed interval I ^- , ^1 c Z. 

• For e > 0, let Bn{e) = {x € R"|||x|| < <?}. In the case e = 1, we write Bn = Bn{\) 

or sometimes en. Let S" = ^B"+1 = {x e R"+1||x| = 1}. When considered as 

based spaces, the basepoint of Bn and S" will be (1,0,0,..., 0) unless otherwise 

stated. Let En(e) = int(Bn(e)) (interior in R") and En = int(Bn). for n > 0. 

Categories: In general, if a, & are objects of a category C, C(a, fr) denotes the set of 

morphisms a —> b in C. Cop will denote the opposite category with the direction of 

arrows reversed. 

• Set, Set, Top, Top*, hTop, and hTop* - category of sets, based sets, topological 

spaces, based spaces, homotopy category of spaces, and homotopy category 

of based spaces. If C is a full subcategory of Top or Top., hC denotes the 

corresponding full subcategory of hTop or hTop*. 

• Haus and Haus, denote the full subcategories of Top and Top, consisting of 

Hausdorff spaces. 
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• Top(n) - the category consisting of n-tuples (X, A\,..., A„_i) where A{ c X. A 

morphism (X,Ai,...,An-i) —> (Y,Bi,... ,B„-i) is a map / : X —> Y such that 

/(A-) £ B,- for each i. 

• Topin) - the category whose objects are pairs (X, x) where X = (X, A\,..., An-i) e 

Top(n) and x e A, for each z. Morphisms are basepoint preserving morphisms 

in Top(n). 

• Mon, cMon, Grp, Ab - the category of monoids, commutative monoids, groups, 

abelian groups. 

• MonwTop, GrpwTop - the category of monoids (resp. groups) with topol­

ogy. Objects are monoids (groups) with topology with no restriction on the 

continuity of operations. Morphisms are continuous monoid (group) homo-

morphisms. 

• TopMon, TopcMon - the category of topological monoids and topological 

commutative monoids viewed as full subcategories of MonwTop. 

• TopGrp, TopAb - the category of topological groups and topological abelian 

groups viewed as full subcategories of GrpwTop. 

Functors: 

• (-)+ : Top —> Top* is the functor adding disjoint basepoint to unbased space. 

It is left adjoint to the functor U : Top, —* Top forgetting basepoint. 

• For based spaces X Y , X A Y = X x Y/X V Y is the smash product. 
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• S : Top —> Top - unreduced suspension given by SX = X x 1/ ~ where 

(x, t) ~ (y, s) if either s = t = 0ors = t = l. 

• E : Top, -» Top, - reduced suspension given on a based space (X, x) by 

EX = E(X,x) = v , ^ |
X J , ,—; = X A S1 

v ' Xx{0,l}U{x}xI 

with canonical choice of basepoint. We typically denote a point in EX as x A t, 

the image of (x, t) e X x I in the quotient. E is left adjoint to the loop functor 

D : Top, -» Top,. 

• C : Top —» Top, denotes the unbased cone functor which is CX = •̂ TJT = IAX+ 

on an unbased space X. The image of X x {1} is chosen as the basepoint of CX. 

Sometimes C will denote the reduced cone CX = X A (1,1) but this distinction 

will be clear from context. 

0.2 Outline 

Chapter I includes preliminaries on function spaces with the compact-open 

topology and quotient spaces. In particular, a convenient basis is constructed for 

spaces of paths and the concept of restricted paths and neighborhoods is intro­

duced. 

Chapter II contains general theory regarding homotopy mapping spaces [X Y\* 

(quotient topology). In particular, we study the interaction of the topology of 

[X, Y]» with algebraic structure arising naturally when X is a co-H-space space or 
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Y an H-space. Subsequently, we conclude that many homomorphisms in exact 

sequences of homotopy mapping sets are continuous in this topological setting. 

A characterization of discreteness of homotopy mapping spaces is included using 

local connectivity results of Wada [Wad54]. This allows us to know when the 

added topological structure does not provide any new information. Lastly, we 

introduce three alternative topologies on homotopy mapping sets (particularly the 

homotopy groups). Individually, these topologies require the use of an adjunction 

from topological algebra, the theory of k-spaces, and the inverse system approach 

to shape theory. 

Chapter III deals with topology of path component spaces. These space arise 

naturally in the study of homotopy mapping spaces and receive a detailed treat­

ment. Of particular interest is the preservation of limits and colimits and the path 

component spaces of monoids and groups. 

Chapter IV is a study of the topological fundamental group and contains the 

main results of this dissertation. We provide some basic theory of these groups 

and go on to make a very general computation, namely, n°p(JL(X+)) for an arbitrary 

space X. This computation is akin to computing the fundamental group of a wedge 

of circles. Applying many results from the Appendix, we study the topology of 

nt°p(L(X+)) in detail and characterize when ntfp(L(X+)) is a Hausdorff topological 

group. The last section of this chapter contains some theory of the alternative 

topology of TI\{X) introduced in Chapter H 

Chapter V includes some comments on potential applications and extensions 

of these results, in particular a conjecture about the higher topological homotopy 
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groups. 

APPENDIX contains some theory of monoids and groups with topology where 

multiplication is not necessarily continuous. Much of this Appendix cannot be 

found in the literature, in particular, the large portion on quotient topologies on 

free groups. Results from the appendix are used throughout Chapters 11,111, and 

IV. 
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CHAPTER I 

PRELIMINARIES: TOPOLOGY 

1.1 Function spaces 

For unbased spaces X and Y we let M(X, Y) denote the set of maps Top(X, Y) 

with the compact-open topology. A subbase for this topology consists of sets of the 

following form: 

(K U) = {/ : X -> Y\f(K) c U where KQX compact and U open in Y). 

It X and Y have basepoint, let M»(X, Y) denote the set Top,(X, Y) of basepoint pre­

serving maps with the subspace topology of M(X Y). Additionally, for n-tuples X = 

(X, Av..., An-X), Y = (X Bu..., Bn-i) G Top(n) and based n-tuples (X, x), (Y, y) e Topfn), 

let M(X, Y) and M*((X, x), (Y, x)) be the horn-sets Top(n)(X, Y) and Topin)((X x), (Y, y)) 

respectively with the subspace topology of M(X Y). Notationally, we will not dis­

tinguish (K, U) as being a subbasis element for the topology of M(X Y) or any of 

these subspaces. We may mean (K, U) n M»(X, Y) when we write (K, U), however 

the distinction should be clear from context. In the based case, the basepoint of a 

set of maps will be the constant map unless otherwise stated. We will often make 

use of the following functorial nature of these mapping spaces. 
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Functorality 1.1 For C = Top, Top(n), we have that M(- - ) : C°v x C -> Top is a 

bifunctor. Similarly in the based case C = Top,, Topin), M»(-, - ) : Cop xC-> Top* is 

a bifunctor. 

Proof. Certainly C(-, - ) : Cop x C —> Set is a bifunctor. If therefore suffices to 

show that M(-, -) is well-defined on morphisms. We prove the case C = Top 

and the others follow from the fact that restrictions of continuous functions are 

continuous. Let f : X -* Y be a morphism in Top. We show that /* = M(id, f) : 

M{Z, X) -> M(Z, Y) given by f(g) = f o g and /# = M(/, frf) : Mft Z) -» M(X, Z) 

given by /#(^) = g° f are continuous for any Z e Top(n). For (K, U) c M(Z, Y) and 

^eCfr^lCLOJ/Wehave 

^ e (Kf\U)) n M(£X) c (fT\(K ID) 

and so discontinuous. On the other hand, if (K, U) c M(XZ) and g e (/#)_1«K LZ», 

then 

S e </(K), U) n M(X Z) c (/^^((K, U» 

and /# is continuous. • 

In a few cases, it will be convenient to shorten notation. For integer n > 1 and 

based space (X, x) e Top, let Q"(X, x) = M,(S", X). When the basepoint is clear from 

context, we simply write Q"(X). It is well-known that Q"(X) is naturally homeo-

morphic to both Q(Q"-1(X)) and the relative mapping space M((I"+1, dln), (X {*})). 

The relative loop space of a pair ((X A), x) e Top,2) is Q"(X A) = M,((Bn, S""1), (X A)) 
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and is naturally homeomorphic to both M((I", dln), (X, A)) and the space of maps 

of triples 

M^rx"1 x {ohr-1 x {i} u d{r~l) x /), (X,A, {*»). 

in Top(3). We now recall some basic facts regarding the compact-open topology. 

Proposition 1.2 An inclusion BQY induces an inclusion i: M(X, B) <̂-> M(X, Y). 

Proof. Let C c X be compact and U be open in Y. That i is an inclusion follows 

from the equation i«C, U n B» = <C U> n M(X, B). • 

Theorem 1.3 [Eng89, 3.4] If Y is T0 (resp. T\, Hausdorff, Regular and T\, Tychonoff), 

then so is M(X, Y). 

Remark 1.4 If X is an unbased space, there is a homeomorphism M(*, X) = X, 

/ l-> /(*) a n ( i f° r any based space Y, there is a homeomorphismM, (X+, Y) = M(X, Y), 

/ ^ f\x-

Remark 1.5 Since S° A X = X for every X e Top,, the previous remark implies that 

for arbitrary X, Y e Top, there are canonical homeomorphisms 

M*(S°,M.(X, Y)) = M,(*+/M,(X, Y)) = M(*,M(X Y)) = M,(X Y). 

Lemma 1.6 [Eng89, Proposition 3.4.5] Let X be any space, Y\ be a family of spaces with 

projections p\ : Y = Yl\ YA —* Y\. The canonical map M(X Y) —> YlAM(X Y\), f *-> 

(PA O / ) is a homeomorphism. It restricts to a homeomorphism M*(XY)-> YlA M,(X YA) 

in the based case. 
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Of particular interest to us are the homeomorphisms Q( I1A X0 = IIA ^ ( X A ) . 

Lemma 1.7 [Eng89, 3.4.B] Let XA and Y\ be a family of spaces indexed by the same set 

where each XA is Hausdorff. The product operation HA M(XA, YA) -> M (IIA XA, IIA XO/ 

(/A) *-* IIA /A is an embedding. This restricts to an embedding of based mapping spaces as 

well. 

Lemma 1.8 Let XA a family of based Hausdorff spaces, Ybea based space, and j \ : XA °-> 

VA XA be the canonical inclusions. The canonical map M ( V A XA, Y) —» IIA M,(XA, V), 

f *-* (J° j\) W A continuous bijection and is a homeomorphism of based spaces when XA is 

Hausdorff for each A. 

Proof. Since Top»(-, Y) : Top»op —> Set preserves colimits and is induced by the 

inclusion j a , this map is clearly a continuous bijection. Let XA be Hausdorff and x0 

be the basepoint of VA XA- Let (C, U) c M ( V A XA, Y). Since C is compact and XA is 

closed in VA XA, C n XA is compact for each A. But since each XA is Hausdorff, we 

have (XA - {x0}) n C = 0 for all but finitely many A. Suppose Ax,..., Am are the indices 

for which (XA - {xo}) n C £ 0. Since XA, is Hausdorff XA, n C is a compact subset of 

XA,. Let VA, = <XA, n C, U) and VA = M»(XA, Y) when A * A,-. This makes V = IIA ^A 

an open neighborhood in I I A M ^ X A , Y). Clearly if / e (C, U), then (/ o jA) <= V. 

Conversely, if (J o /A) E V, then /(C) = /(U,- XA, n Q = \Jt(f o ;A)(XA, n C) c U and 

we have / e (C, Ii>. Therefore ft-* (Jo jA) is a homeomorphism. • 

Lemma 1.9 Lef XA and YA foe a family of based spaces indexed by the same set where each XA 
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is Hausdorff. The wedge operation JJA M ( X A , YA) -> M. (VA XA, VA XI)/ (/A) •-» VA /A 

zs an embedding. 

Proof. The inclusions/yA : YA —» VA ^A induce inclusions (1.2) (jyA)# :
 M,(XA, YA) —> 

M,(XA, VA ^A)- Together, these give the embedding 

( \ ( \ 

f](7yA)#:[]M,(XA,YA)^[|M, XA,VYA =M \JXA,\J YA 
\ A / V A A / 

where the homeomorphism is from the previous lemma. This map is the desired 

embedding. • 

The Continuity of Evaluation 1.10 If X, Y € Top with X locally compact Haus­

dorff, then the evaluation map ev : X x M(X, Y) —> Y, ev(x, f) = f(x) is continu­

ous [MunOO, Theorem 46.10]. If X, Y e Top. with X locally compact Hausdorff, 

then ev.XA M»(X, Y) -» Y is continuous [Mau70, Theorem 6.2.31]. 

Exponential Law 1.11 [Dug66, Theorem 5.3] If X is Hausdorff and Y is locally 

compact Hausdorff, then for every space Z, the natural map rj : M(X M(Y, Z)) —> 

M(X X Y Z), r]{f)(x, y) = f{x){y) is a homeomorphism. 

Based Exponential Law 1.12 [Mau70, Theorem 6.2.38] If X Y are compact Haus­

dorff based spaces, then for every based space Z, the natural map r\* : M. (X M»(Y, Z)) -

M»(X A Y, Z), i]*(f)(x A y) - f{x)(y) is a homeomorphism of based spaces. 

Metrizable function spaces are also of interest. 
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Theorem 1.13 [Eng89,4.2.17 & 4.2.18] IfX is compact Hausdorff and Y is metrizable, 

then M»(X, Y) is metrizable. If, in addition, X is metrizable and Y is separable, then 

M»(X, Y) is separable. 

1.1.1 Restricted paths and neighborhoods 

In order to study quotients of spaces of paths and loops, it will be necessary 

to study operations on paths and to find a convenient basis for the topology of 

the free path space M(I, X). Sometimes we will write P(X) for M(I, X), P(X x) - {p e 

P(X)\p(0) = x], and P{X,x,y) = {p e P(X)|p(0) = x,p(l) = y}. We first consider 

concatenation of paths. For any fixed, closed subinterval A = [a, b] c 7, we make 

use of the following notation. Let HA : I —* A be the unique, increasing, linear 

homeomorphism. For a path p : I —» X, the restricted path of p to A is the composite 

PA = P\A ° HA : I —> A —> X. As a convention, if A = {t} c 7 is a singleton, pA : I —> X 

will denote the constant path at p(t). Note that \i 0 = t0 < h < ... < tn - 1, knowing 

the paths P[ti-lftt] for i=l,—,n uniquely determines p. 

This definition allows us to easily define the concatenation of paths. If p\, ...,pn : 

I —> X are paths such that p;(l) = p/+i(0) for each i = 1,..., n—1, then-fold concatenation 

of these paths is the unique path 

q = *n
i=lPi = p\*pi*---*pn 

such that <7J£ = pi for each i (recall Kj, = I ^ , ^J). The reverse of a path p is p~Y{t) = 

p(l-t). 
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The ability to restrict open neighborhoods to smaller and smaller paths will 

be convenient Chapter IV. The following construction is introduced to this end. 

If % = nj=i(C/, Uj) is a basic open neighborhood of a path p e P(X), then <2& = 

PUnc *0(H~A(A
 n Cj), Uj) is a basic open neighborhood of PA called the restricted 

neighborhood oify to A. If A = {t} is a singleton, then <% = flfecX^ U)> = <J / fW u/>-

On the other hand, if ^ = f] "=i (Cj, Uj) is a basic open neighborhood of the restricted 

path PA, then 9/A = Pl"=i(HA(CJ), UJ) is a basic open neighborhood of p called the 

induced neighborhood of ^ on A. It A = {t} is a singleton so that /^ is a constant map, 

we let WA = n;u<M, Uj) = <m, n"=i u;->. 

Lemma 1.14 For any basz'c open neighborhood % = fYj=1(Cj, Uj) in P(X) and closed 

interval AQl,we have {^A)A = ^ £ {^A)A- The second inclusion also holds when A is 

a singleton. 

Proof. It is easy to see that 

(®A)A= ~ 

;=i 

n 

f](HA(Cj),Uj) = P | (H?(AnHA(C})),Uj> 
/ A

 AnHA(Cj)^b 

Since HA(Cj) £ A, this is clearly %f. This gives the first inclusion. To prove the 

second, we note that 

{WA)A = H (HA {H-A\A n qi), Uj) = p | (A n q, Uj) 
AnCjtf) AnCysMJ 

Clearly, if /(C ;) c U;-, then /(A n Cy) c Uy whenever A f l C ^ f l . If A = \t), 

then e&A)A = (an^c,- ^/>r = <W'fW, W;>- Clearly, if/(C;) c Uj, then/(f) € LZ;. 
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whenever t e Cj. • 

A slightly more useful variant of the previous lemma is: 

Lemma 1.15 If 0 = tQ < h < t2 < ... < tn = 1 and <% = njLi<C;-, Uj) such that 

UU C, = I, then W = n ^ i C ^ ^ ] ) 1 ^ ' 1 . 

Proof. For convenience of notation, let A,- = [tj-i, U]. 2. of Lemma 1.14 gives the 

first inclusion % c fliLiC^A,^'- Now suppose 

n n 

f € f | (%,)* = f | p | {A{ n C;> LZy). 
i = l 1=1 A,-nc,-7t0 

Clearly, if teCj = UAinCj*oAin cj- then/(f) € Uj. Therefore, /(C ;) c Uj for each ;', 

that is / e ^ . • 

The condition that the union of the C, be the whole interval is to avoid taking 

the intersection with a potentially empty set. 

1.1.2 A convenient basis for free path spaces 

Let BPQC) denote the basis for the topology of P(X) generated by the subbasis 

of elements (K, U) and let 8§x be a basis for the topology of X which is closed 

under finite intersection (for instance, the topology of X). We now find a new 

basis ^P(X) c Bp(x>- To do so we must know how to subdivide the unit interval 

in an orderly manner. We use the following convention: For each integer m > 1, 

let [m] = {l,...,m} and for each / e [m], let K?m = [^ /^J be the corresponding 

closed subinterval of I. For any integer p > 1 and subset S c [m] we let pS = {j € 

[pm]\j = pq + 1 - k for q e S and k e [p]}. For example, if S = {1,3) c [4], then 
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3S = {1,2,3,7,8,9} c [12]. Now an interval K'm may be subdivided evenly into p 

smaller intervals ¥}m = U/e»{/j Kl
mp. Moreover, note that for any set S £ [m] and any 

p > 1 we have pS c [mp] and UyeS *& = U/epS
 KlnP-

Lemma 1.16 If C Q I is a compact set and U £ I is an open set containing C, then there 

is an integer M > 1 and asetSQ [M] such that C c (J-€S ̂  £ If-

Proof. Write li = Ujt 14 where each 14 is an open interval in I. Since C is compact, 

take 14,..., Iim to be the 14 such that 14 n C £ 0. Take a finite cover {(s/, £/)}/ of C 

where S/, £j e Q and (s;, £;) c LZ,- for some i. For each i, let | = min{s/|(s/, U) c LfJ and 

| = maxU/|(s;, U) c 17/}. Now for each i = 1,..., m we have [fj, | ] c 14 and 

"Lte]=Lk=«-
* 1 * * , 1 :=1 - - ' " ' - j=i 

Now let M = lcm(bi,..., bm, d\, —, dm) so that 

= U 4 a n d t h u s C c ] J U 4 c ] J u , c u . 
. Ma, i=\ ^Ma^ [-\ 

1 - b, J' b, 

So the desired set S c [M] is 

s - Q { ^ + i £}• 

Using previous notation we may state a special case of the Lebesgue lemma in 

terms of the compact-open topology of P(X). 
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Lebesgue Lemma 1.17 [MunOO, Lemma 27.5] If p e P(X) and {LZ,)^ is a finite 

open cover of the compact image a(T) c X, then there is an integer N > 1 such that 

p e C\%\(K'N, Ui^for not necessarily distinct ij e [M]. 

Lemma 1.18 For each open neighborhood W = D"=i(Q/ Hi) of path p : I —» Xin P(X), 

there is an open neighborhood V ofp of the form V = D *jLi(Djr Vj) £ W w/zere (J^i D{ = I 

and Vj e SSxfor each j = 1,2, ...,M. 

Proof. For each i, choose a finite open cover ~Yl = \V') of compact space 

piQ) c X such that U/efa] ^) £ ^ and V} G <^x for each ordered pair (f,;'). Now 

\oTl (Vl)\ is a finite cover of compact metric subspace Q £ J. So for each i we 

may use the Lebesgue lemma to find and integer m;- > 1 such that for each / 6 [mj 

we have: 

^ n Q c p"1 (v j j for some /, e [m,] 

Now 

The set Vx satisfies the desired inclusion into W however the union of the compact 

sets ¥}m. is not necessarily the entire unit interval. To fix this we cover p{T) with 

finitely many basic open neighborhoods {Yk}k€[N]
 C &X- NOW ( p - 1 ^ ) } is a 

cover of compact metric space I and we may apply the Lebesgue lemma again to 

find an integer Q > 1 such that for each q e [Q], K? c p~l (Y^ for some kq e [N]. 

Therefore p e V2 = f\e[Q] (x£, Ykq). Now we let V = Vx n V2 £ W which is of the 

form desired. • 
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Lemma 1.19 For each open neighborhood W = n"=i(Q, Ui) of path p e P(X) where 

U"=i Q = I, there is an integer N > 1 and an open neighborhood p e f]^=1(K^, Vj) c W 

where each Vj is some intersection of the Ui, i.e. Vj = O^T- Uifor some Tj c [n\. 

Proof. We have Q c a_1(L7!) for each i and so by Lemma 1.16 there is an integer 

Mi > 1 and set S,- c [M;] such that 

ZeS,-c[Mf] 

Let N = lcm(Mi) and P ; = ^ . We now re-index and find 

i'=l feS,-c[M,-] =1 /eP,S/C[N] 

Since U"=i Q = J/ the compact set K'N appears at least once in the intersection for 

each j e [N]. Therefore the open set 

is non-empty. We certainly have p e f\^=1(K^, Vj) and we claim the inclusion 

nf = 1 <<, V}) c fXi<Q, ^>. If £ ( < ) £ V) for each ;, then 

/5(Q) c j8 U *U 
VZeS,c[M,] / 

= /5 U 4 
.;eP,S,c[N] ,/ 
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But for each / G PiSi, we have K^c a 1(Ui) implying that Vj c U, by the definition 

of Vj. Therefore jS(Q) c U / 6 P A V) £ U{. * 

Since we assumed basis 88x is closed under finite intersections Lemmas 1.18 

and 1.19 imply the next result. 

Theorem 1.20 IfW is any open neighborhood of path p : I —» X, there is an integer N>1 

and an open neighborhood P | / l i ( ^ / Vj) ofp contained in W such that Vj e &xfor each 

j e [N]. Moreover, if 3§PQQ is the collection of neighborhoods of the form OjeiN]^^, Vj) 

with Vj G &x, &p(x) is a basis for the topology of P(X) which is closed under finite 

intersections. 

Proof. The first statement follows directly from Lemmas 1.18 and 1.19. To see 

that &P(X) is closed under finite intersection we suppose fy — (~)J€[M](K'M' LZJ) and 

y = f)je[N](K!
N, Vj) are neighborhoods in SSp^xy We find a common partition of I 

by letting P = lcm(M, N) and for each k G [P], we let Wk = Uik n Vjk G &X whenever 

4 c K j n KJ. It is easy to see that f n f = f \ e [ P ]<4, Wk) e ^ P ( x ) . • 

Intuitively, Theorem 1.20 allows us to restrict our use of basic neighborhoods in 

P(X) to neighborhoods that resemble "finite sets of ordered instructions." 

" % 

Figure 1: An illustration of a basic open neighborhood as an element of38p(x) 

20 



Using this basis, we may easily prove some basic facts about path spaces. 

Lemma 1.21 Let Cn = {(pi,...,p„) e P(X)%(1) = pi+1(0)}. For each n > 1, the n-fold 

concatenation map cn : Cn —* P(X) (pi,—,p„) i-» *"=1p,- is continuous. The operation 

r : P(X) —> P(X), a i-» or1 of taking a loop to its reverse is also continuous 

Proof. First, we note that r~l((C, LZ» = <{1 - t\t e Q , U) for each subbasis set 

(C, U) c P(X). Therefore r is continuous. Let*"=1p; e f l ^ i C ^ , ^/)- We may suppose 

that n divides m, in particular that kn = m. Now p,- e IZĵ  = ri/ejt{i)c[m](̂ m' ^;) f° r 

each z e [n] and 

(plf ...,pn) e (LTjji x • • • x lfc») f l Q c c^1 p|(JCL Uy> 
7=1 

Therefore cn is continuous. 

1.2 Quotient spaces 

The following lemma is a basic fact that we will refer to repeatedly. It is a direct 

consequence of the universal property of quotient spaces. 

Quotient-Square Lemma 1.22 Suppose A, B, C, D are spaces and the diagram 

A-J^B 

C~TD 

commutes in Set. Ifp is quotient and f, q are continuous, then g is continuous. Iff, p, q 

are quotient, then so is g. 
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It is well known that the product of two quotient maps may fail be a quotient 

map. This failure naturally leads to the introduction of so-called convenient cate­

gories of spaces. Since many of the quotient spaces considered in this dissertation 

fail to be Hausdorff we take Brown's approach [Bro06, §5.9]. 

Definition 1.23 A space X is a k-space if it has the final topology with respect to all 

maps C —> X for all compact Hausdorff spaces C. Equivalently [Bro06, 5.9.1], X is 

a k-space if and only if it is the quotient of a sum of compact Hausdorff spaces. 

Let kTop denote the full subcategory of Top consisting of k-spaces. The inclu­

sion functor kTop —» Top has a left adjoint k : Top —> kTop which is the identity 

on the underlying sets and functions. The identity k(X) —> X is always continuous 

and k(X) = X if and only if X is a k-space. For spaces X Y, let XxkY = k(X x Y). 

This satisfies k(X) Xfc k(Y) = X xk Y and gives a well-defined categorical product in 

kTop. 

Fact 1.24 [Bro06] The following are well-known facts regarding k-spaces. 

1. If X is a k-space and Y is locally compact Hausdorff, then X x Y is a k-space. 

2. Every quotient space of a k-space is a k-space. 

3. First countable spaces and locally compact Hausdorff spaces are k-spaces. 

4. If fi: Xi —> Yt, i = 1,2 are quotient maps of k-spaces, then f\ xk f2 is quotient. 

5. The previous two facts and the fact that finite products of first countable 

spaces are first countable imply that if X, Y are first countable and q : X —> Y 

is quotient, then qn : X" —> Yn is quotient for every n > 1. 
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6. Parts l.,3.,4. imply that if X, Y are locally compact Hausdorff and q : X —> V 

is quotient, then qn : Xn —» Yn is quotient for every n > 1. 

We also consider another class of spaces whose quotients are well behaved. 

Definition 1.25 A space X is a kw-space if X is the inductive limit of a sequence of 

compact subsets, i.e. X = IJn>i Kn and A is closed in X if and only if A n Kn is closed 

in Kn for each n > 1. 

Theorem 1.26 [Mic68, 7.5] IfX is a Hausdorff k^-space and q:X-*Yis quotient, then 

qn : Xn —> Y" is quotient for every n>l. 

As mentioned in the introduction, we are interested in quotients of mapping 

spaces. Simple descriptions of such objects are often hard to come by. While 

computationally challenging, there is an intuitive method of constructing a basis 

of open neighborhoods for any quotient space. We take this approach so that if 

q : Y —> Z is a quotient map, a basis for Z may be described in terms of open 

coverings of Y. 

Definition 1.27 For any space Y, a pointwise open cover of Y is an open cover 

% = {Uy}yey where each point y e Y has a distinguished open neighborhood W 

containing it. Let Cov(Y), be the directed set of pointed open covers of Y where the 

direction is given by pointwise refinement: If <fy = {Uy}yey, 'f = {Vy}yey e Cov(Y), 

then we say fy < V when Vy c Uy for each y e Y. 

We also make use of the following notation: If fy = {W}yey e Cov(Y) is a 

pointwise open covering of Y and A<ZY, let ^(A) = \Ja&A W. 
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Construction 1.28 Suppose q : Y —> Z is quotient map, z e Z, and fy £ Cov(Y) is 

a fixed point-wise open cover. We construct open neighborhoods of z in Z in the 

most unabashed way, that is, by recursively "collecting" the elements of Y so that 

our collection is both open and saturated. We begin by letting CfL (z, ̂ ) = {z}. For 

integer n > 1, we define O j ( z , f ) £ Z as 

On
q(z,W) = q(w(q-1(0';-1(z,WJ))) 

It is clear that On~x (z, ty) c 0£ (z, ̂ r) for all n > 1. We then may take the union 

n 

Note that if y € q'1 (Oq (z, <2r)), then W c ^_1 ((9? (z, <2r)) so that (9, (z, <2f) is 

open in Z. Also, if ^ = {Wy}yey is another point-wise open cover of Y such 

that q(WV) c ^(Lf) for each j / e Y , then Oq (z, >T) £ 0 ? (z, <2r). The neighborhood 

(9g (z, ̂ ) is said to be the open neighborhood of z in Z generated by%'. It is easy to see 

that for each open neighborhood V of z in Z, there is a pointwise open covering 

f e COP(Y) such that z&Oq (z, f ) c y . h particular, let V* = <f a(y) when q(y) e V 

and F y = Y otherwise. 

Theorem 1.29 The neighborhoods Oq (z, Y)for V e Cov(Y)form a neighborhood base at 

z m Z. 

The points in q~l \Oq (z, fy)) can be described as follows: Foreachy e q~l \Oq (z, ^ ) J , 

there is an integer n > 1 and a sequence of loops y0, yi, •••, ym+i such that 
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• yo = y and y2n+i = a 

• qtyii) = qiyn+i) for i = 0,1,..., n 

• y2i+i e W*+2 for i = 0,1,..., n - 1 

In this sense, the neighborhood <9? (z, ̂ ) is an alternating "collection" of fibers and 

nearby points (the "nearby" being determined by the elements of ^ ) . 
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CHAPTER II 

HOMOTOPY MAPPING SPACES 

2.1 Homotopy mapping sets as quotient spaces 

Definition 2.1 Two maps f,g : X —* Y are nomotopic (we write / - g) if there is a 

map H : X x I -> Y such that H(x, 0) = /(x) and H(x, 1) = g(x) for all x e X. For 

each f e 7, we let Hf be the restriction H|Xxm : X —> Y. If / , g e M»(X ^0 are based 

maps, H is said to preserve basepoint if Hf e M*(X,Y) for all f e J. If X, Y e Top(n), and 

f,g£ M(X, Y), H preserves relative structure if H^ e M(X Y) for all f e I. 

Homotopy defines an equivalence relation on M(X Y). Similarly, homotopy 

preserving basepoint, relative structure, or both give equivalence relations on the 

appropriate mapping spaces. 

Homotopy Mapping Spaces 2.2 Let 

[XY],[XY]*,[X,Y]and[X,Y]» 

be the quotient space of mapping space 

M (X, Y), M»(X Y), M(X, Y) and M ( X Y) 
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respectively where homotopy classes of maps are identified. These spaces will be 

referred to as homotopy mapping spaces. In the based case, the homotopy class of the 

constant map will be chosen as the basepoint of the homotopy mapping space. 

The underlying sets of homotopy mapping spaces are, of course, the homotopy 

mapping sets found throughout classical algebraic topology. 

Universal Property 2.3 The quotient topology on [X, Y]» is the finest topology on 

the underlying set of [X, Y]» such that the canonical surjection n : M.(X, Y) —> [X, Y]» 

is continuous. The same statement holds for the unbased and relative cases as well. 

Now we observe the functorality of homotopy mapping spaces. Recall that 

[-, - ] . : Top,op x Top. —» Set. is a functor where for maps / : W —> X, g : Y -> Z, we 

have f = [/, idYl : [X, Y], -> [W, Y]., f([h]) = [hof] and g. = [idm gl : [W, Y]. -» 

[W, Z]., g.([k]) = [g o k]. Together, we have \g,f] =g.of. 

Functorality 2.4 [ - , - ] . : Top»opxTop, —> Top. is a bifundor. The analogous statement 

holds for the unbased and relative cases. 

Proof. We already have defined [X, Y]. as a space and it is basic homotopy theory 

that the non-topological functor [-,-]» : Top.opxTop, —* Set, is a functor. Therefore 

it suffices to check the continuity of functions [g, / ] . = g*° f for each pair of maps 

/ : W -> X, g : Y -* Z. Recall that M»(-, - ) : Top,op x Top, -> Top. is a functor by 

1.1. In particular, the induced maps f*(k) = k ° / and g#(k) = go kin. the following 
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diagram are continuous. 

Ai PC Y) -^-> M. (W, Y) -^-> Ai (W Z) 

K n — ^ [w, n — ^ m n 

Here the vertical maps are the canonical quotient maps. It follows from the Quo­

tient Square Lemma that g, = [idw, g]* and f* = [/, idy], are continuous. Therefore 

the composite g, o f* is continuous. • 

Remark2.5 Since homotopic maps f,g : X —* Y induce the same continuous 

maps / . = g* and f* = g* on homotopy mapping spaces we actually have a functor 

[-, - ]»: hTop»op x hTop, —> Top, (and similarly for the unbased and relative cases). 

Proposition 2.6 IfX,Y,Z are spaces with X Hausdorff and Y locally compact Hausdorff, 

then there is a natural homeomorphism [X M(Y, Z)] = [XxY,Z]. IfX X Z are based spaces 

where X and Y are compact Hausdorff, there is a natural homeomorphism [XM,(Y, Z)]» = 

[XAY,Z].. 

Proof. By the exponential laws 1.11 and 1.12, there are natural homeomorphisms 

r\: M(X,M(Y,Z)) -» M(XxY,Z) and r\. : M*{X,NL{Y,Z)) -» M,(XAY,Z). Since home­

omorphisms of mapping spaces preserve homotopy classes, there are commuting 
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diagrams of spaces: 

M(X, M(Y, Z)) -4-> M(X x Y, Z) Ai(X, M(Y, Z)) -£ - • At (X A Y, Z) 
71 71 71 71 

[X, M( Y, Z)] —^—> [X x Y, Z] [X, M (Y, Z)]» ——> [XAY, Z], 

The vertical maps are the canonical quotient maps. By the Quotient Square Lemma, 

the bottom maps are homeomorphisms. • 

Example 2.7 For an unbased space X, n^X) = [*, X] is the path component space of 

X. If X is a based space, then n^(X) = [S°, X]* is the path component space of X. 

It is easy to see that [S°, X]» = [*, X] as unbased spaces for any choice of basepoint 

of X. A detailed study of the topology of path component spaces is appears in 

Chapter 3. 

Proposition 2.8 For unbased (resp. based) spaces X, Y, there is a canonical homeomor-

phism [X,Y] = n°v{M(Xf Y)), [X+,Y]. = [XY],and [X,Y], = n°p(M,(X Y)) 

Proof. These homeomorphisms are induced by those the natural homeomorphisms 

of function spaces in Remarks 1.4 and 1.5. • 

Example 2.9 For a based space (X, x) e Top, and integer n > 1,7î op(X/ x) = [Sn, X]» = 

7ig0p(Q"(X x)) is the n-th topological homotopy group of (X, x). When the basepoint is 

clear from context, we simply write 7î op(X). For n = 1, this is often referred to in the 

literature [Bis02] as the topological fundamental group of (X x). The higher topological 
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homotopy groups first appear in [GHMM08]. For a based pair ((X,A),x) e Topi 

and integer n > 1, n°p{X, A) = [(Bn, S""1), (X, A)]* = n^{Q.n{X,A)) is the n-th relative 

topological homotopy group of ((X, A), x). Note that n^X, A) is a space but may not 

have group structure. 

Remark 2.10 There are canonical homeomorphisms 7ijJf(Q"(X)) = n^p
+n(X) for 

integers n, m > 0. When n + m > 1 this is also an isomorphism of groups. There 

are canonical homeomorphisms n^{Cln{X,A)) = n£p
+n(X, A) for integers w? > 0 and 

n > 1. When m + n>2 this is also an isomorphism of groups. 

2.2 Multiplication in homotopy mapping spaces 

The characterization of the spaces admitting natural group structures on ho­

motopy mapping sets is classical [Whi78, III, 4. & 5.]. We use this to study the 

interaction of topological and natural algebraic structure in homotopy mapping 

spaces. Since our interest lies mainly in the homotopy groups, we will typically 

assume the presence of basepoint though similar results hold for the unbased and 

relative cases. 

A map / : X —> Yi X Y2 will sometimes be denoted (/i, f2) = {pi° ftPi° f) where 

Pi : Y\ X Y2 —> Yi are the projections. Additionally, a function / : Xi V X2 —» Y will 

sometimes be written as (/i,/2) = </ ° j \ , f ° /2> where ;';• : X, °-> Xi V X2 are the 

obvious inclusions. 

2.2.1 H-spaces 
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We first recall the conditions for inducing monoid and group structure in 

[X, Y]» when Yis fixed. Suppose (Y,y0) is a based space and z'i,i2 : Y —> YxY are 

the inclusions h(y) = {y, y0), i2(y) = (yo, y) for y e Y. Let pi, p2 : Y X Y -» Y be the 

projections such that pa o ia = idY and A : Y —> Y X Y be the diagonal map. 

Definition 2.11 (Y, y0) is a homotopy associative H-space (or just H-space) if there is a 

map /J : Y x Y —> Y such that i\o p = i2o p = idy and po (px idY) - p ° (z'iy x î) 

as based maps Y3 —> Y. A homotopy associative H-space Y is group-like if there is 

also a map / : Y —» Y (called a homotopy inverse) such that the diagram 

YxY1—>YxY 

Y- "-» ->Y 

YxY-^YxY 

commutes up to homotopy. A map / : Y -» Y' is a map ofH-spaces (group-like spaces) 

if and only if the diagram 

YxY^-^Y'xY' 

Y- -^Y' 

commutes up to homotopy. 

If Y is an H-space, [-, Y], : Top,op —» Mon is functor to the category of monoids 

and if Y is group-like, [-, Y], : Top»op —> Grp is a functor to the category of groups. 

For / , g e M,(X Y), let / • g = p o (J x g) o A. The multiplication of homotopy classes 

[/]/ [̂ ] e [X, Y]» is given by [/] * [g] = [/• g] and the identity of is the homotopy class 
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of the constant map. The fact that [-, Y]» is a well-defined functor Top»op —> Top. 

implies the following. 

Functorality 2.12 If Y is an H-space (resp. is group-like), then [-, Y]» : Top»op —> 

MonwTop (resp. [-,Y]. : Top»op —> GrpwTop) is a well-defined functor. Since 

homotopic maps f,g : X —> W induce the same homomorphisms [W, Y]» —» [X Y]» /or 

H-space Y, these functors factor through the homotopy category hTop»op. 

Lemma 2.13 Let f0, f\ e M(W, Y) and g0, g\ e M(X, Z) such that f0 ^ fx and g0 - gi-

Then (Jo x g0) ^ (/i x gx). Consequently, the map in Theorem 1.7 induces a well-defined 

function [x ] : [W, Y], x [X Z]. -» [W x X, Y x Z]., ([/], [g]) i-» [/ x #]. 

Proof. Suppose our based homotopies are H : W x l ^ Y, H0 = f0,Hx = f\ 

and G : X x I -> Z, G0 = go, Gi = gi- Let K : W x X X I -> Y x Z such that 

K(iy, x, f) = (H(n>, £), G(x, t)). This is clearly a continuous homotopy fo^go-fi^gi-

• 

We now show that in some cases [—, Y]» takes values in a category where the 

algebraic and topological structures interact nicely. To do this we need a basic 

fact about the compact-open topology proved in Chapter 1.1. We also use the 

semitopological monoids and quasitopological groups defined in A.l and A.ll of 

the Appendix. 

Theorem 2.14 Let Y be an H-space. Then [-, Y], : Haus°p -» sTopMon is a functor 

to the category of semitopological monoids. If, in addition, Y is group-like, then [-, Y]» : 

Haus°p —* qTopGrp is a functor to the category of quasitopological groups. 
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Proof. By 2.12 it suffices to show that [X, Y]» is a semitopological monoid (with 

continuous inversion when X is Hausdorff Y is group-like) for arbitrary X. We 

first show that for each / £ M»(X, Y), right multiplication and left multipUcation 

by [/] e [X, Y]» are continuous operations. Recall that f-g = [io(fxg)oA and 

[/] * [g] = [/" g] f° r // g e M»(X, Y). The bottom row of the commuting diagram 

A* M.(X, Y) x M,(X, Y) - * - • M(X x X, Y x Y) -^-> M ( X Y x Y) -^-> M.(X Y) 

[X,YL*PCYL -^[xxxrxY],^^[x,yxY],— ->[XY], 

is precisely the multiplication of homotopy classes. The product operation x is 

continuous (Lemma 1.7) and [x] is well-defined (Lemma 2.13). It follows that the 

composition of the top three maps (which is the dot operation) is continuous. Now 

we restrict this diagram to two diagrams 

{/} x M»(X, Y) ^ — > M . ( X Y) AL(X, Y) x {/} ^—->M,(X Y) 

{[/]}x[X,Y], [/]*(-) 
->[xn [xnx{[/]j <-)*[/] 

-^[XY], 

In both diagrams the top map is continuous as the restriction of the continuous dot 

operation. The Quotient Square Lemma implies both left and right multiplication 

by [/] are continuous. Therefore [X Y], is a semitopological monoid. In the case that 

Y is group-like with homotopy inverse ;': Y —» Y,we have (Jo j)- f - /• (Jo j) ^ cyo in 

M,(X, Y). So if j# : M*(XY) -» M(XY) is post-composition with /, then ;'» = [zdx> /]» 

is inversion in [X Y]». Since [-, -]»is well-defined as a functor to Top*, j* is contin-
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uous. • 

Remark 2.15 We have similar functors in the unbased and relative cases. Let 

Y be an H-space (group-like) and B Q Y be an H-space (group-like) such that 

the inclusion B '—> Y is a map of H-spaces (group-like spaces). We can show 

that [(X, A), (Y, B)]. is a semitopological monoid (quasitopological group) using the 

arguments from the proof of the previous theorem. 

Example 2.16 For all Hausdorff X and arbitrary Y, the homotopy mapping space 

[X, Q(Y)]» is a quasitopological group since Q(Y) is group-like via concatenation 

Q(Y) x Q(Y) -> Q(Y). For n > 2 [X,Q"(Y)]» = [X,Q(Qn-\Y))l is a quasitopological 

abelian group. 

Proposition 2.17 Iff : X —> X' and g:Y —> Y' are based maps, then the maps 

Q(g). : [XQ(Y)]» -> [XO(y')] ' and (/)* : [X',Q(Y)]» - • [X,Q(Y)]. 

given by Q.(g)»([k]) = [Q(g)ok]and f*([k]) = [kof] are continuous group homomorphisms. 

Proof. The functorality of Q gives the continuity of &{g) : &{Y) —> Q(Y'). The 

functorality of homotopy mapping spaces then guarantees the functorality of 0,(g), 

and f*. See [AGP02, 2.8.6] for a proof of the fact that these are actually group 

homomorphisms. • 

Explicit examples of homotopy mapping spaces (with group structure) failing 

to be topological groups appear in Chapter 4. This failure is a serious complication 

34 



arising from our choice of the quotient topology. We are, however, interested in 

conditions that do imply the continuity of multiplication. 

Corollary 2.18 Let X be Hausdorffand Y be an H-space (resp. group-like) so that [X, Y]» 

is a semitopological monoid (resp. quasitopological group). If the product map n Xn : 

M(X, Y) x M(X, Y) -» [X, Y]. x [X, Y]» is quotient, then [X Y]» is a topological monoid 

(resp. group). 

Proof. If 7i x 7i is quotient, applying the Quotient Square Lemma to the first diagram 

in the proof of Theorem 2.14 implies that multiplication [X Y]» x [X Y]. -> [X Y]„ 

([/]/ [&]) *"* li" ° (/ x g) ° A ] i s continuous. • 

A nice application here is that: 

Theorem 2.19 IfX is compact Hausdorffand Y is a metrizable group-like space, then 

1. [X Y], is first countable <=> [X Y]» is a pseudometrizable topological group. 

2. [X, Y], is first countable and Tx <=> [X Y], /s a metrizable topological group 

If, in addition, X is metrizable and Y is separable, then 

1. [X, Y], fs second countable <=> [X, Y]* fs a separable, pseudometrizable topological 

group. 

2. [X, Y]» zs second countable and Tx <=> [X Y]» is a separable, metrizable topological 

group 

Proof. In the first set of conditions, M»(X Y) is metrizable (see 1.13) and therefore 

first countable. If [X Y]. is first countable, then n x 7i : M ( X Y ) x M , ( X V ) -> 
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[X, Y]» x [X, Y]» is quotient by 1.24. The previous corollary then implies that [X, Y]» 

is a topological group. Every first countable topological group is pseudometriz-

able (Appendix A.26). Since every Ti pseudometric space is a metric space and 

pseudometric spaces are first countable, the rest of the statements are immediate. 

If we add the conditions that X is metrizable and Y is separable, then M ( X Y) 

is a separable metric space (see 1.13). Since the continuous image of a separable 

space is separable, [X, Y], is separable. The statements follow from those in the first 

set of conditions and the basic fact that separable pseudometric spaces are second 

countable. • 

Theorem 2.20 Let Xbea Hausdorff space and Y be group-like. If[X, Y]» is locally compact 

Hausdorff, then it is a topological group. 

Proof. It is a celebrated theorem of R. Ellis [AT08, Theorem 2.3.12] that every locally 

compact Hausdorff semitopological group is a topological group. Since [X, Y]» is 

a quasitopological group and therefore a semitopological group, the theorem fol­

lows. • 

Lemma 2.21 IfXi,X2 are spaces and Y is group-like, the inclusions jj : X,- —> Xi V X2 

induce a continuous group isomorphism <p : [Xa V X2, Y]» —> [Xi, Y]» x [X2, Y],. 

Proof. The inclusions induce continuous homomorphisms (;';)* : [Xi V X2, Y]» —> 

[Xi, Y]», (//)*([/]) = [f° ji]- Together these induce a continuous group isomorphism 
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(j>: [Xi VX2, Y]» -> [Xi, Y]» x [X2/ Y]». The inverse homomorphism (see [Whi78, The­

orem 5.20]), which is not necessarily continuous, is given by <p~l{[f\ [g]) = [(f,g)].m 

Theorem 2.22 The following are equivalent for any Hausdorff space X and group-like 

space Y: 

1. (p : [X V X, Y], -> [X, Y]» x [X, Y]» is a homeomorphism. 

2. The product map n x n : M,(X, Y) x M,(X Y) -> [X Y]» x [X Y]» is quotient. 

3. [X v X, Y]» fs a topological group. 

Proof. 1. «=> 2. follows from applying the Quotient Square Lemma to the commut­

ing diagram 

M(X V X Y) - >M(X, Y) xM*(XY) 

n nxn 

[X V X Y]. ^ > [X Y]. x [X Y], 

where the top map is the natural homeomorphism of Lemma 1.8. For 2. => 

3., if 7i x 7i is quotient, then multiplication in [X, Y]» is continuous by Corollary 

2.18. But 2. also implies <p : [X V X, Y]» = [X, Y]. x [X Y]. is a homeomorphism 

and isomorphism of groups. Thus [X V X Y]» is homeomorphic to the product of 

topological groups and also must be a topological group. To prove 3. => 1. we 

suppose [X V X, Y]» is a topological group and that XQ, yo are the basepoints of X Y 

respectively. Let fci, fc2 : X V X ^ X be the maps collapsing the second and first 

summands respectively and m : [X V X Y]» x [X V X Y], -» [X V X Y]» be continuous 

multiplication. If y'; : X -̂> X V X are the two inclusions, then k\ o ŷ  = z'rfx = 2̂ ° 72 

37 



and k2 o ]x = cXo =kxo j 2 . Therefore / o fo = </, cyo) and fok2 = (cyo, g). Now we 

have the continuous composite 

i/> : [X, Y], x [X,Y], (klTx(k2)" ) [X V X, Y]» x [X VX, Y]» >[XvX,Y], 

wheretf>([/],[g]) = (*i)*([/D(*2r(fe]) = lf°h][gok2] = [(f,cyo)][{^g)l Itsufficesto 

check thatt/> = <\r\ Indeed, we have [<//Cyo)][(cyo/^)] = <$>-\([f], [CyJW1 ((Kl [g])) = 

^(([/L M)([c»], [#])) = FHlf], [g])- • 

Proposition 2.23 Let Y be a group-like space and r : X —> Abe a retraction of based 

spaces. The inclusion i: A^> X induces a retraction i* : [X Y]t —> [A, Y]» in GrpwTop. 

If [X, Y]» is a topological group, so is [A, Y]». 

Proof. Since r°i = idA by definition, functorality gives fof = (roi)* = id[x,A], where 

i* and f are continuous homomorphisms. Therefore f is a retraction of groups 

with topology. By Corollary A.18 of the Appendix, [A, Y]» is a topological group 

whenever [X Y]» is. • 

Similarly, we have: 

Proposition 2.24 A retract r : Y —» Y' of group-like spaces induces a retraction n : 

[X, Y]» —» [X, Y']» of groups with topology for every space X. If [X Y]» is A topological 

group, so is [X V ].. 

Proof. Certainly n is a continuous homeomorphism [Whi78, III, 4.20]. It is a 

retraction since if i: Y *=-> Y' is the inclusion of group-like spaces such that r° i = idy, 
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then r, o u is the identity of [X, Y'L. • 

In addition to the continuity of multiplication, we are confronted with the 

following complication. 

Proposition 2.25 Let Y be anti-space. For every n > 1, the power function pn: [X, Y], —> 

[X, Y]», pw([/]) = [/]" is continuous. 

Proof. Fix an n > 1, let A„ : M(X, Y) -» M(X, Yf be the diagonal map and let 

mn : M(X, Yf -> M»(X, V), (/i, - , / „ ) *-> f\ • (fi • - • (/»-i • /»)) be the continuous dot 

operation (as in Theorem 2.14) iterated on mapping spaces. Since the operation is 

associative up to homotopy, the square 

M*(X, Y) —m"°A" > M»(X, Y) 

[ x n — ^ — > t x n 

commutes in Top». By the Quotient Square Lemma, pn is continuous. • 

Proposition 2.25 illustrates a property of homotopy mapping spaces which is 

not present in all quasitopological groups. 

Corollary 2.26 There is a quasitopological group G which is not isomorphic (in qTopGrpj 

to [X, Y]. for any Hausdorff space X and group-like space Y. Consequently, [-, Y], : 

Haus°p —> qTopGrp is not essentially surjective for any group-like Y. 

Proof. We construct a quasitopological abelian group G such that the square 

function G —» G, g H-> g2 is discontinuous. Consider subset K = | ^ | n > l,e = ± l | 

of the additive group of reals R. Take a subbase for ]R consisting of sets U(r, 5) = 
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{r + t\t e (-e,e) - K} for r € R and 6 > 0. Since Ufa,6) + r2 = Ufa + r2,5) for 

any r\, r2 e R and -U(0,6) = 11(0,b), the topology generated makes R a Hausdorff 

quasitopological group. The map s : R —> R, s(t) = 7X is discontinuous since the 

sequence jkn converges to 0 but s (573 )̂ = ^ does not. • 

2.2.2 co-H-spaces 

Now we study the dual notions of the previous section. Let (X, x0) be a based 

space, ji,J2 : X —> X V X be the inclusions into the first and second copies of X, 

/i,i2 i X ^ X x X b e the obvious inclusions, and k : XV X —> X x X be the map 

fc = (hf h)- Let q\, q2 : X V X —> X be the unique maps such that qa = pa° ia for 

a = 1,2. Let V : X V X -* X be the folding map so that ja o V = z'dx for a = 1,2. 

Definition 2.27 X is a homotopy coassociative co-H-space (or just co-H-space) if there 

is a map 0 : X - > X V X such that ft o 0 ^ z'dx * q2o d inM*(X,X) and (0 V z'dx) ° 0 -

(z'dx V 0) o 0 as based maps X—>XVXVX. A co-H-space X is cogroup-like if there 

is a map j : X —> X (called a homotopy coinverse) such that diagram 

x v x J — > X V X 

x — - — > x 

xvx—^XVX 

commutes up to homotopy. A map / : X —> X' is a map of co-H-spaces (cogroup-like 
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spaces) if and only if the diagram 

/ . . 71 

J\ ' w 

e & 

X V X ^ X ' V X ' 

commutes up to homotopy. 

If X is a co-H-space, [X, - ] , : Top. —> Mon is functor to the category of monoids 

andifXisacogroup-like, [X,-], : Top* —> Grp is a functor to the category of groups. 

For f,g£ M,(X, Y), let /• g = V o (f v g) o d. The multiplication of homotopy classes 

[/]/ [g] e IX, Y], is given by [/] * [g] = [/• g] and the identity of is the homotopy class 

of the constant map. For details regarding this algebraic structure we again refer 

to [Whi78, III, 4. & 5.]. The fact that [X, - ] , is well-defined as a functor Top, -> Top, 

implies the following. 

Functorality 2.28 If X is an co-H-space (resp. iscogroup-like),then[X -]. : Top, —> 

MonwTop (resp. [X, - ] , : Top, —» GrpwTop) is a well-defined functor. Since 

homotopic maps f,g:Y^>Z induce the same homomorphisms [X, Y], —» [X, Z], 

for co-H-space X, these functors factor through the homotopy category hTop,. 

Lemma 2.29 Iffo,fi e M*(W,Y) and g0,g\ e M*{X,Z) such that f0 - fi, and g0 - gi, 

then (/o V g0) ^ (fx V gx). Consequently, the map in Theorem 1.9 induces a well-defined 

function [V] :[W,Y]X[XZ]^ [WV X Y V Z], ([/], [g]) *->[fV g]. 

Proof. Suppose our based homotopies are H : W A I+ —> Y, H0 = fa, H\ = f\ 

and G : X A I+ —> Z, Go = goGi = gi- There is a natural homeomorphism 
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h : (W V X) A I+ as (W AI+) V (X A 7+). Therefore (H V G) o /z: (W V X) A 7+ -> Y V Z 

is a homotopy /o V g0 - / i v gi- • 

Now for the dual of Theorem 2.14. 

Theorem 2.30 Let X be a Hausdorff co-H-space. Then [X,-]* : Top, —» sTopMon z's 

a functor from the category of spaces to the category of semitopological monoids. If, in 

addition, X is cogroup-like, then [X, -]» : Top, —» qTopGrp is a functor to the category 

of quasitopological groups. 

Proof. By 2.28, it suffices to show that [X, Y], is a semitopological monoid (with 

continuous inversion when X is cogroup-like) for any space Y. We first show that 

for each / € M,(X, Y), right multiplication and left multiplication by [/] € [X Y], 

are continuous operations. Recall that f-g = Vo(fVg)od and [/] * [g] = [/• g] for 

f,g£ M,(X Y). The bottom row of the commuting diagram 

M,(X, Y) x M,(X, Y) -^->M,(X V X Y V Y) -^->M,(X, Y V Y) -^->M,(X Y) 

71X71 71 71 71 

[XY],x[X,Y], [v] >[XVX,YVY].—^->[X,YVY].—^—>[X,Y], 

is precisely the multipUcation of homotopy classes. The wedge operation V is 

continuous (Lemma 1.9) and [V] is well-defined (Lemma 2.29). It follows that the 

composition of the top three maps (which is the dot operation) is continuous. Now 
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we restrict this diagram to two diagrams 

{/} x Ai(X, Y) f——>M,(X, Y) A1(X Y) x {/} — t ^ >M»(X, Y) 

[/]*(-) (-)*[/] 
{[/]} x [X, Y]. " J W ) [X, Y]. [X, Y]tof x {[/]} ^ ^ - > [X Y], 

In both diagrams the top map is continuous as the restriction of the continuous 

dot operation. The Quotient Square Lemma implies left and right multiplica­

tion by [/] are continuous. Therefore [X, Y]» is a semitopological monoid. In 

the case that X is cogroup-like with homotopy coinverse / : X —> X, we have 

if°i)-f- /• (f°j) - cvo inM»(X, Y). So if f : Ai(X, Y) -» M,(X Y) is pre-composition 

with j , then /* = [pidy]* is inversion in [X, Y]». Since [ - , - ] . is well-defined as a 

functor to Top», j* is continuous. • 

Remark 2.31 We have similar functors in the unbased and relative cases. Let X be 

a based Hausdorff co-H-space (cogroup-like) and A c X be a co-H-space (cogroup-

like) such that the inclusion A -̂> X is a map of co-H-spaces (cogroup-like spaces). 

We can show that [(X, A), (Y, B)]» is a semitopological monoid (quasitopological 

group) using the arguments from the proof of the previous theorem. This, for in­

stance gives that the relative homotopy groups nn(Y, B) are quasitopological groups 

for n > 2. 

The proofs of the following results are dual to those in the previous section. 

Example 2.32 For Hausdorff X and arbitrary Y, the homotopy mapping space 
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[EX, Y]» is a quasitopological group since EX is co-group-like via the usual co-

multiplication 6 : EX -> EX V EX (See [AGP02, 2.10.2]). By Prop. 2.6, [EX Y]. is 

naturally isomorphic to [X, Q(Y)]» (from Example 2.16) as a quasitopological group. 

Of course [E"X, Y], for n > 2 is a quasitopological abelian group. 

Proposition 2.33 Iff : X —> X' and g : Y —» Y' are based maps, then the maps 

g. : [EX, Y]. -» [EX Y']» anrf (E/)* : [EX', Y], -» [EX Y]. 

given by g*([k]) = [g°k] and (E/)»([fc]) = [ko E / ] are continuous group homomorphisms. 

Corollary 2.34 Lrf X be a Hausdorff co-H-space (resp. cogroup-like space) and Y be 

arbitrary so that [X, Y], is a semitopological monoid (resp. quasitopological group). If the 

product map n x n : M,(X Y) X M»(X Y) -» [X Y], x [X Y]» fs quotient, then [X Y], fs 

a topological monoid (resp. group). 

Theorem 2.35 If X is a compact Hausdorff cogroup-like space and Y is metrizable, then 

1. [X, Y]» is first countable <=> [X Y], is a pseudometrizable topological group. 

2. [X, Y]» is first countable and Tx <^> [X, Y]» is a metrizable topological group 

If, in addition, X is metrizable and Y is separable, then 

1. [X Y]» is second countable <=> [X Y]» is a separable, pseudometrizable topological 

group. 

2. [X, Y]» is second countable and T\ <=> [X Y]» is a separable, metrizable topological 

group 
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Theorem 2.36 Let X be a Hausdorff cogroup-like space and Y be a space. If [X, Y]» is 

locally compact Hausdorff, then it is a topological group. 

Remark 2.37 Note that the previous two theorems apply to the topological ho-

motopy groups n°p{X) = [Sn, X]*, n>\ and can easily be modified to apply to the 

relative topological homotopy groups 

nn(X,A) = [(BB, S""1), (X A)]. = [ ( E B ^ L S ^ M X ^ L n > 2. 

Lemma 2.38 IfX is a cogroup-like and Yi,Y2 are spaces, then the projections pi: YiXY2 —> 

Yi induce a continuous group isomorphism <p : [X, Y\ x Y2]» —» [X, Yi], x [X, Y2]* given 

by<t>([(f,g)l) = (Ullg])-

Theorem 2.39 For any Hausdorff cogroup like space X and space Y, the following are 

equivalent: 

1. <p : [X, Y x Y]„ -» [X, Y]» x [X, Y]* is a homeomorphism. 

2. The product map nxn : M,(X,Y)x M»(X, Y) -» [X Y], x [X, Y], is quotient. 

3. [X, Y x Y], is a topological group. 

Proposition 2.40 Let X be a cogroup-like space and r : Y —» B be a retraction of based 

spaces. The induced homomorphism f : [X, Y], —> [X, B]» is a retraction of quasitopological 

groups. If[X, Y], is a topological group, so is [X B]». 

Proposition 2.41 Let r : X —> X' be a retraction of cogroup-like spaces. The inclusion 

i: X' ^> X induces a retraction f : [X Y], —> [X', Y], of quasitopological groups for every 
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space Y. If [X, Y]» is a topological group, so is [X', Y]». 

Example 2.42 For any non-connected space X = AL\B(A,B are disjoint and open), 

the retraction X —» S° collapsing A and B to points induces a retraction EX —» S1 of 

cogroup-like spaces. It is a result of Chapter 4 that [S1, Y]» is not always a topological 

group. The previous proposition then implies that whenever [S1, Y]» fails to be a 

topological group, [EX, Y]» also fails to be a topological group. Consequently, 

for any non-connected space X, [EX, —], does not take values in TopGrp. This 

is particularly interesting for the spaces E(X+) studied in Chapter 4. Another 

interesting example is when X = j l , \, \,..., ol c ]R which is non-connected and EX 

is homeomorphic to the Hawaiian earring H E described further in Example 4.24. 

The algebraic sturcture of the groups [HE, X], are used in [KR06,KR10]. 

Lemma 2.43 Let Xbe a co-H-space. For every n > 1, the power function pn : [X, Y]» —> 

[X, Y]„ p„([f]) = [/]" is continuous. 

Corollary 2.44 There is an abelian quasitopological group G which is not isomorphic to 

[X, Y]» for any Hausdorff cogroup-like space X. Consequently, [X~]*: Top* —» qTopGrp 

is not essentially surjective for any Hausdorff, cogroup-like X. 

2.3 Homotopy sequences 

Exact sequences involving homotopy mapping sets arise on many occasions 

in homotopy theory. In this section, we observe that these exact sequences very 

often are realized as exact sequences in the category of quasitopological (abelian) 

groups. 

46 



Cofiber and fiber sequences 2.45 Notation in this section is borrowed from [AGP02], 

however, since we are interested in a purely based setting we refer to the content 

of Whitehead [Whi78, III §6]. Though Whitehead works in the convenient cate­

gory of k-spaces, the arguments for cofiber and fiber sequences do not require this 

assumption. 

Fix a based map / : (X, x0) —> (Y, y0). Let CX = X A (1,1) be the reduced cone of X 

and Cf = YUf CX the reduced mapping cone of/. Specifically, C/ is the quotient of 

Y U CX by the relation f(x) ~ x A 0 for each x&X. Let z'i : Y <̂-> C/ be the inclusion. 

The cofiber sequence of / is 

X y — > <-/ — > c ; i — > c,-2 — 

where C!jt is the reduced mapping cone of 4 and 4+1 : Q ^ ^> Q t is the canonical 

inclusion. It is well known that there is a homotopy commutative diagram 

/ 
A > I > * - / 5> Cjj > Cj 2 > C;3 )> C;4 > U/5 

id 

* 
id id 

' "** 
~ = 

x - ^ y — ^ C / — ^ E x - ^ E y — > c E / — > L 2 X - ^ L 2 Y -

~i • ' 

where vertical maps are homotopy equivalences. 

The two horizontal sequences are useful since applying f-, Z]» for any based 

space Z yields two isomorphic exact sequences of groups (and sets when group 

structure is not present). The functorality of [-, Z], as a homotopy mapping space 

then gives 
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Theorem 2.46 For any based map f : X —» Y and space Z, there is a sequence of 

continuous homomorphisms (and functions) 

[X, Z], < - ^ - [Yf Z]. ^ — [Cf, Z]. i [EX Z]. ^ - [LY, Z\ <-

(£2/)* 
< [CE/, Z], < [£2X, Z]. ^ - [£2Y, Z], < 

groen fcy applying [-, Z]» to tfie cofiber sequence. In particular, if we truncate the sequence at 

[LX, Z], (resp. af [E2X, Z] J, f/zen we get an exact sequence in qTopGrp (resp. qTopAb). 

We may also consider the dual fiber sequence of / : (X, x0) —> (Y, yQ). The 

homotopy fiber of / is Pf = {{x,p) e X X P{X)\p(0) = y0 andp(l) = f(x)} with 

basepoint (x0, cXo). Let q\ : Pf —» Xbe the projection which has fiber ^ fco) - O(X). 

The cofiber sequence of / is 

- > i <?2 > P , - ^ P / A X - ^ Y 

where Pqk is the mapping path space of q* and qk+i : P^ °-» P f r l is the canonical 

projection. It is well known that there is a homotopy commutative diagram 

->P. <?5 ->P, 
95 

94 
-, P ?4 , D ^ , P ^ 
"?Iii! > J- a-> > 1 a 93 92 9i -^Pf^X^Y 

- ~ - id id id 

^2(X)—,ai(Y)—.Poy,—^(X)-,Q(Y)^P/vx-.y 
Q 2 ( / ) / 

where all vertical maps are homotopy equivalences. 

We may apply the functor [W, —]» for any space W gives rise to two isomorphic 
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exact sequences of groups (and sets when group structure is not present). As before 

the fact that the functions in the sequence are induced by maps implies continuity 

of the morphisms in the exact sequence. 

Theorem 2.47 For any based map f : X —> Y and space W, there is a sequence of 

continuous homomorphisms (andfunctions) 

> [W, Q2(X)] ( ^ l * [ W, Q2(Y)] > [W, PQ(x)] > [W, Q(X)] > 

(^h [W, Q(Y)] > [W, Pf] > [W, X] - ^ - > [W, Y] 

given by applying [W,—]»to the fiber sequence. In particular, if we truncate the sequence 

at [W, Q(Y)]» (resp. at [EX, Z]J and suppose W is locally compact Hausdorff, then we get 

an exact sequence in qTopGrp (resp. qTopAb). 

Similarly there is a cofiber and fiber sequence for a based pair of maps / : 

(X, A) —> (Y, B) which each give rise to an exact sequence after applying the appro­

priate functor [(Wi, W2), - ] * or [-, (Zi, Z2)]». In each case, the fact that the functions 

in the exact sequences are induced by continuous maps of pairs implies continuity 

of morphisms in the sequence. 

Homotopy sequence of a pair 2.48 The particularly useful example of fiber and 

cofiber sequences is the homotopy sequence of a pair of a based pair (X, A) e Top!2). 

Recall that QM(X, A) may be viewed as the space of maps of triples 

(l",/" -1 x {0}, J"-1 x {1} U diF'1) x I) - » (X A, {%)). 
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and the relative homotopy groups n^^A) = nt^p(Qn(X,A)). Pre-composition 

with the inclusion I"-1 X {0} t-» In gives a map d : Qn(X,A) -» D.n~l{A). Applying 

the path component functor n^, we see that the connecting homomorphism <?» : 

7z?(X,A) —» n^_x (A) in the long exact homotopy sequence of the pair (X,A) is 

continuous. The inclusion of mapping spaces / : Q*(X) <L-» Q"(X, A) induces the 

continuous homomorphism /» : 7i?(X) —» 7T?(X,A) on path components which 

also appears in the homotopy sequence of (X,A). Together, these observations 

imply the following proposition. 

Theorem 2.49 For every based pair (X, A) e Topi2) with inclusion i:Ac-^X, there is a 

long exact sequence 

•+ Tif (A) - ^ n f (X) - ^ TZ?(X„4) - ^ T T ^ ( A ) • > n*<X) 

in the category of quasitopological groups. 

Proposition 2.50 Let p : E -» B be a Hurewicz fibration of path connected spaces with 

fiber F. There is a long exact sequence 

d. 

- ^ ( B ) ><"(F) >* 

in the category of quasitopological groups. 

Proof. It is clear that the inclusion i : F <=-> E and fibration p : E —> B induce 

continuous homomorphisms i. and p*. Let Q(B) —* B be the constant map which 
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is the restriction of the path fibration M»(7, B) —> B. 

which induces the connecting homomorphisms d, 

homotopy groups. • 

2.4 Discreteness of homotopy mapping spaces 

It is also worthwhile to note when quotient topology on [X, Y]» fails to provide 

any new information, that is, when it has the discrete topology. In this section, we 

assume that all spaces are path connected and Hausdorff. 

Proposition 2.51 Suppose X, Y are based spaces such that either X is Hausdorff and 

cogroup-like or that Y is group-like. The following are equivalent: 

1. [X, Y]» is a discrete group. 

2. The singleton containing the identity is open in [X, Y]». 

3. For every null-homotopic, based map f : X —» Y, there is a basic open neighborhood 

r\"=\(Ki, Ui) of f in M(X, Y) containing only null-homotopic maps. 

Proof. 1. <=>2. follows from the fact that all translations in a quasitopological group 

are homeomorphisms. 2. <=> 3. follows directly from the definition of the quotient 

topology. • 

Remark 2.52 Recall from 2.7 that the path component space ^^(X) of a space X is 

the quotient space of X obtained by identifying path components. In Proposition 
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2.8, we noted that for arbitrary X and Y, there is a natural homeomorphism [X, Y]» = 

^^(M^X, Y)) taking the homotopy class of / to the path component of/. Moreover, 

this is a group isomorphism when X is cogroup-like or Y is group-like. Since a 

quotient space Z of X is discrete if and only if the fibers of the quotient map 

X —> Z are open in X, these observations allow us to characterize the discreteness of 

homotopy mapping spaces in terms of local connectedness properties of mapping 

spaces. We make use of the following notions of connectedness. 

Definition 2.53 Let Y be a space and k > 0 be an integer. 

• Y is k-connected if nn(Y) = 0 forn = 0,1,..., k. 

• Y is locally k-connected at y e Y if for every neighborhood U of y there is a 

k-connected open neighborhood V of y contained in I I Y is locally k-connected 

if it is locally k-connected at all of its points. A space is locally 0-connected 

precisely when it is locally path connected. 

• Y is semilocally k-connected at y € Y if there is an open neighborhood U of y 

such that the inclusion U t-^> Y induces the trivial homomorphism nk(U, y) —» 

7ijt(Y y). Y is semilocally k-connected if it is semilocally k-connected at all of its 

points. 

• Y is well k-connected (for k > 1) at y e Y if Y is semilocally k-connected at y 

and locally (k-l)-connected at y. Y is well k-connected if it is well k-connected 

at all of its points. Being well 0-connected is the same as being semilocally 

0-connected. 
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Proposition 2.54 A space X is semilocally O-connected if and only ifn°v(X) is discrete. 

Consequently, ifX is locally path connected, then n^{X) is discrete. 

Proof. Let nx : X —> n^(X) denote the quotient map identifying path components. 

Note that for each x e X, n^(nx(x)) £ X is the path component of x. If X is semilo­

cally O-connected and x e X, then there as an open neighborhood U of x such that 

U t-> X induces the constant function n0(U) —> 7i0(X). This means precisely that 

U Q w£(nx(x)). Therefore n~£{nx{x)) is open in X and since nx is quotient the 

singleton {nx(x)} is open in n°v{X). Conversely if n^p(X) is discrete, x e X, and 

l i = H ^ ^ X C ^ ) ) is open in X and the inclusion U °-> X induces the constant function 

7i0 (U) —» 7i0(X). It is obvious that every locally path connected space is semilocally 

O-connected. • 

Corollary 2.55 The homotopy mapping space [X, Y]» is discrete if and only ifM*{X V) is 

semilocally O-connected. 

The characterizations in 2.51 and 2.55 are general but are not particularly illu­

minating. We refine our focus to the case when X is a finite polyhedron. Recall that 

an m-dimensional finite polyhedron X is a space homeomorphic to the geometric re­

alization \K\ of an m-dimensional finite simplicial complex K. Any such space may 

be embedded in RN(X) for some N(X) > 1. A subpolyhedron S Q X is a subspace 

which is homeomorphic to the geometric realization of a subcomplex of K and so 

is a polyhedron itself. In [Wad54], H. Wada proves the following theorem. 
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Theorem 2.56 (Wada) Let X be an m-dimensional finite polyhedron and Y a Hausdorff 

space. 

1. IfYis locally k-connected, then M(X, Y) is locally (l-m) connected. 

2. IfYis well k-connected, then M(X, Y) is well (l-m) connected. 

In particular, we are interested in the case when / = m. 

Corollary 2.57 IfX is an m-dimensional finite polyhedron and Y is Hausdorff and well 

m-connected, then the homotopy mapping space [X Y] of unbased maps has the discrete 

topology. 

Proof. By Theorem 2.56, M(X, Y) is well O-connected and so n^(M(X, Y)) as [X Y] 

is discrete by Proposition 2.54. • 

Wada also proved a relative version of Theorem 2.56. We use this to prove the 

based and relative versions of Corollary 2.57. For integer p > 1 let [p] be the finite 

set {0,1, —,p}. Fix subpolyhedra X\, —,XV of m-dimensional finite polyhedron X 

and closed subspaces Yx,..., Yp of Hausdorff space Y. Let Q0 = X, Y0 = Y, and 

X = (X0, Xi,..., Xp), Y = (Y0, Yi,..., Yp) € Top(P+1). Recall that M(X, Y) is the subspace 

of M(X, Y) consisting of maps f : X —> Y such that /(X,) c Y,- for each i = l,—,p. 

For each subset S Q [p], let ms = dim (f]ses Xs) and Ys = f]ses ^s- Wada's relative 

theorem is: 

Theorem 2.58 (Wada) If Ys is locally ls-connected (resp. well ls-connected) for each 

S Q [p] (where Is > ms), then M(X, Y) is locally Np-connected (resp. well Np-connected), 
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where 

Np = mm(/s - ms) 

Corollary 2.59 Suppose X = X0 2 Xx 2 ... 2 Xp and Y = Y0 2 Ya 2 ... 2 Yp. IfX{ is 

mj-dimensional and Y, is well U-connected (where li > mi) for each i = 0,..., p, then [X, Y] 

is discrete. 

Proof. Since n°p(M(X,Y)) s [X,Y], it suffices to show that M(X,Y) is well N-

connected for some N > 0. Note that for each S Q [p], we have nis = dim(Xmax(s)) = 

fflmax(S) and Ys = Ymax(S). Since Ys is well /max(S)-connected for each S c [p] (where 

h = 'max(S) ^ wmax(S) = ^s) , Theorem 2.58 tells us that M(X, Y) is well N-connected 

for 

• 

Let x, y be basepoints for X, Y respectively, and suppose Xp = {x} and Yp = {y} 

are singletons. The next corollary follows directly from applying Corollary 2.59 to 

M(X, Y) = M.(((Xo,., Xp-i), x), ((Y„, -., Yp-!), y)). 

Corollary 2.60 If X = X0 2 X1 2 2 Xp = {*} and Y = Y0 2 Yx 2 2 

Yp = {y} such that X, is ntrdimensional and Y,- is well k-connected (where U > nij), then 

[((X0,», Xp_i), x), ((Y0/.., Yp_i), y)]» z's discrete. 

In particular, if p = 1, then we have: 

Corollary 2.61 if (X x) z's an m-dimensional polyhedron and (Y, y) is well m-connected, 

then [X, Y]» is discrete. 
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Example 2.62 For instance, if Y is a locally contractible space such as a manifold 

or CW-complex then [X, Y]* is discrete for any based finite polyhedron X. 

The next few statements and examples are direct applications of this section 

to the topological homotopy groups. Since S" is an n-dimensional polyhedron we 

have: 

Theorem2.63 For n > 0, n°p(Y) = [Sn,Y]» is a discrete space (group when n > 1) 

whenever Y is well n-connected. 

Example 2.64 For a locally contractible space Y (such as a manifold, CW-complex, 

or polyhedron), n^p(Y) is discrete for all n > 0. 

Theorem 2.65 For n > 1, a closed subspace AofX containing the basepoint x ofX, the 

relative homotopy group n^3(X, A) = [(Bn, Sn~l), (X,A)], of the pair ((X, A), x) e Topf2) is 

discrete (group when n>2) whenever X is well n-connected and A is well (n-l)-connected. 

Example 2.66 For a based CW-pair (X, .A) or a manifold X and submanifold AQX, 

7i^op(X A) is discrete for all n > 0. 

As noted in [GHMM08], discreteness is also connected to the cardinality of homo­

topy mapping spaces. The following is an obvious extension of [GHMM08, Theo­

rem 3.8]. 

Proposition 2.67 If X is compact metric space and Y is a separable metric space, and 

[X Y], is discrete, then [X Y]» is countable. 
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Proof. The function space M*(X, Y) is a separable metric space (1.13) and [X, Y]» is 

separable as the continuous image of a separable space. Every discrete separable 

space is countable. • 

2.5 Alternative topologies for homotopy mapping sets 

The complications arising in the study of homotopy mapping spaces motivate 

the introduction of alternative topologies. There are certainly many candidates, es­

pecially when restricted to the fundamental group. In this section, three alternative 

topologies are introduced. The first approach makes use of the reflection functor 

T studied in the Appendix (A.3.1). The second approach essentially translates the 

entire conversation into the convenient category kTop, of based k-spaces discussed 

in Chapter 1.2. The last approach makes direct use of shape theory (the inverse 

system approach). 

A direct consequence of the failure of [X, Y]» to be a topological group (for 

cogroup-like X or group-like Y) is that the functors [X, -], : Top, —> qTopGrp and 

[-, Y],: Top* —> qTopGrp fail to preserve products (See 2.22 and 2.39). Prior to our 

three constructions, we observe that this is part of a more general phenomenon. 

Let U : TopGrp —> Grp be the functor forgetting topological structure. 

Proposition 2.68 Let Xbea cogroup-like space. Suppose [X, -]JG : Top* —> TopGrp is 

a functor such that Uo [X, -]JG is the homotopy mapping set [X, -]»: Top, —» Grp. Then 

[X, -]JG preserves finite products. 

Proof. Let (Yi, y{) and (Y2,1/2) be based spaces. The Y\ x Y2 —> Yt induce continuous 
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homomorphisms [X, Y\ x Y2] J
G —> [X, Yj]JG, i = 1,2 which induce a continuous 

group homomorphism cf>: [X, Yx x Y2]J
G -> [X Yi]JG x [X YiJTG which is known to 

be a group isomorphism (2.38). Let;',: Y* '—> YiXY2 be the inclusions ji(y) = {y,yi), 

h(z) = (3/i'z)- These induce continuous homomorphisms /,• : [X Y;]JG —» [X Yi x 

Y2]J
G. Let ju be the continuous multiplication of [X Yx x Y2]J

G. The composite 

p l / j X /2) is a continuous map [X Yx ]»
TG x [X, Yi],rG -> [X Yx x Y2]»

TG. It is clear that 

this map is the inverse of (p. • 

The dual statement follows similarly. 

Proposition 2.69 Let Y be a group-like space. Suppose [-, Y]JG : Top»op —» TopGrp is 

a functor such that U ° [-, Y]JG is the homotopy mapping set [-, Y]» : Top,op —> Grp. 

Then [-, Y]JG preserves finite products (recall that a product in Top,op is just a wedge in 

TopJ. 

2.5.1 The functor T and [XY]I 

Fix a group-like space Z and a cogroup-like space W so that [-, Z]» : Top*op —> 

GrpwTop and [W, - ] : Top, —» GrpwTop are functors. We apply the reflection 

functor T from the Appendix A.3.1. Recall that for any group with topology 

G, T(G) is the unique topological group with continuous homomorphism G —» 

T(G) universal with respect to continuous homomorphisms from G to topological 

groups. It is a great convenience that the underlying group of T(G) is G and the 

universal arrow G —* T(G) is the continuous identity homomorphism (which is 

open if and only if G is already a topological group). For based spaces X Y let 
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[W,X\Z = T([W,X].) and [Y,Z]l = T([Y,Z],) . Since [-,Z\l and [W,-% are defined as 

composites of functors, they are themselves functors taking values in TopGrp. 

Functorality 2.70 [W, - ] * : Top, -> TopGrp and [-, Z]»T : Top,op -> TopGrp are 

product preserving (2.68,2.69) functors. The identity maps give natural transformations 

[W, - ] , —> [W, -]J and [-, Z], —» [-, Z]J zwtTi components in GrpwTop. 

These new topologies on homotopy mapping sets are characterized by the 

following property. 

Universal Property 2.71 The topology of [W, X], (resp. [Y, Z]J) is the finest group 

topology on the set [W,X], such that n : M*{W,X) -> [W,X], (resp. n : M(YZ) -> 

[Y Z],) is continuous. 

Remark 2.72 Since FM preserves quotient maps and the quotient maps 

m : FM([H X],) -> [W, X], and m : FM{[Y Z].) -> [Y, Z], 

are quotient by definition, the composites m o FM(7i) : FM(M,(W, X)) -» [V\£ X], and 

m o FM(TI) : FM(M»(YZ)) —> [YZ], are also quotient. 

Example 2.73 For n > 1, let 7i*(X) = T(nf{X)) and for n > 2, let < ( X A ) = 

T(n^p(X,A)). This means we have functors nx
x : Top, —> TopGrp, 7î  : Top, —> 

TopAb, n>2,n\: Topi2) -» TopGrp, and n\ : Topl2) -> TopAb, n > 3 such that the 

underlying functors to Grp and Ab are the usual homotopy and relative homotopy 

group functors. 
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The following are basic facts that result from the properties of T (see Chapter 

A.3.1). 

Proposition 2.74 For spaces X and Y, 

1. id: [W, X], = [W, X]J if and only if[W, X]» is a topological group. 

2. [ W, X], is discrete if and only if [W, X]» is discrete. 

3. Jf [W,Xi], = [W,X2], in GrpwTop, then [W,Xi]J = [W,X2]: in TopGrp. In other 

words, [W, -]» is a weaker invariant than [W, -]». 

4. If[W, X]J is a Hausdorff topological group, then the homotopy mapping space [W, X], 

with the quotient topology is functionally Hausdorff. 

The analogous results hold for [Y, Z]J. 

The case of the fundamental group nT
x is considered in more detail in Chapter 

4. 

2.5.2 k-spaces, the functor k, and [X, Y]» 

Here we move the conversation into a convenient category of spaces (that 

includes non-Hausdorff spaces) where products of quotient maps are quotients. We 

use the k-space from Chapter 1.2, however, other convenient categories offer similar 

approaches. All facts of k-spaces that we do not prove here appear in [Bro06]. 

For k-spaces X, Y, let T»{XY) be the set Top,(XY) with the test-open topology 

of [Bro06, 5.9]. A subbasis is given by sets (t, U) = {/ : X -> Y\f o t(C) c 17} 

for some compact Hausdorff space C and map t : C —> X. If X is Hausdorff, the 
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test-open topology is the same as the compact-open topology. Certainly, T»(-, - ) : 

kTop,op x kTop* —> Top, is a functor, however, it does not take values in kTop,. The 

category kTop, becomes enriched over itself when we give Top,(X Y) the topology 

of K,(X, Y) = fc(T,(X, Y)) for X Y e kTop,. 

For X, Y e kTop,, let [X, Y]J be the set [X Y], with the quotient topology with 

respect to n : K,(X, Y) —» [X Y]». Since every quotient of a k-spaces is a k-space 

[Bro06, 5.9.1], [X, Y]* is a k-space. Clearly this gives a functor [-, - ] , : kTop,op x 

kTop, —> kTop,. The same construction may be made in the unbased and relative 

cases as well. 

By Fact 1.24.4, n xk n : K,(X Y) xk K,(X, Y) -> [X, Y]* xk [X Y]* is quotient. This 

fact is precisely the step which hindered us from asserting that multiplication in the 

group [X, Y], was continuous. Additionally, for X Y e kTop,, the product operation 

1C(X, Y) xfc K,(X Y) -> K,(X x, X, Y xfc Y), (/, g) H> / X j t^ 

is continuous. 

Let kMon and kGrp be the categories of k-monoids and k-groups. These are 

precisely monoid and group objects in kTop,. 

Functorality 2.75 If Y is an H-space (resp. group-like) and a k-space, then [-, Y]» is a 

functor kTop,op —» kMon (resp. kTop,op —» kGrp) 

Proof. Let Y be an H-space with multiplication /i :YxkY —» Y and X be a k-space 
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with diagonal A : X —> X x^ X. For any space X, Consider the diagram 

iC(X, Y) xfc K.(X, Y) > K(X Y) 
71X^7! 71 

[x, y]* x, [x, n > [x, n* 

in kTop*. This is precisely the large rectangular diagram in the proof of Theorem 

2.14. Specifically the top map is the operation taking (/, g) to the map 

p ( f x ^ ) o A : X ^ X x t X ^ Y x t y A r 

and the bottom map is the monoid multiplication ([/], [g]) H» [p o (J xk g) o A]. But 

if'8) •"* fxkgi$ continuous and/i# : JC(X, YxkY) -> JC(X X) and A* : ]C(XxfcX Yxfc 

Y) —> iC(X, Y xfc Y) are continuous by functorality. The top map is the composite of 

these three maps and is therefore continuous. We have already noted that the left 

vertical map is quotient. By the Quotient Square Lemma, multiplication in [X Y]» is 

continuous. Additionally, if / : X2 —» Xi is a map the functorality of ko T*(-, Y) and 

the Quotient Square Lemma imply the continuity of the monoid homomorphism 

f* : [Xi, Y]» —> [X2, Y]». If, in addition Y is group-like with homotopy inverse 

j:Y->Y, then ;'# : T*(X Y) -» r„(X, Y), / •-» / o / is continuous by the functorality 

of r*(X, - ) . Applying k illustrates the continuity of /# : JC(X Y) -* &(X Y) and the 

Quotient Square Lemma again gives the continuity of the inversion map /». • 

The dual of this statement with analogous proof is: 

Functorality 2.76 IfX is a co-H-space (resp. cogroup-like) and a k-space, then [X - ] * is 
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a functor kTop* —> kMon (resp. kTop, —» kGrp) 

Example 2.77 For n > 0 the sphere Sn is a k-space. For a k-space X, we let nk
n{X) be 

the topological group[Sn, X], be the topological group. If X is not a k-space, then 

one could define nk
n{X) = nk

n(k(X)). 

Proposition 2.78 Let X, Y e kTop, where X is Hausdorff. The identity [X, Y]k -» [X, Y]» 

fs continuous. Moreover, ifM*(X, Y) is a k-space, then [X, Y]k = [X Y], «s spaces. 

Proof. Since X is Hausdorff, M,(X,Y) = T.PC Y). Since the identity 2C(XY) = 

k(T.(X,Y)) -* T*(X,Y) a M,(X,y) is continuous, the identity [X,Y]k -» K Y ] , is 

continuous. If A1(X, Y) is a k-space, then&(X, Y) = k(Tt(X, Y)) = T,(X Y) = M ( X Y) 

and therefore [X Y]k = [X, Y].. • 

Though very often the topologies of [X, Y]k and [X, Y], agree, the main difference 

of these two approaches lies in the difference of products in kGrp and Grp. 

2.5.3 The topological shape groups and n^{X) 

In the previous two sections, we topologized general homotopy mapping sets 

[X Y]». In this section, we use shape theory to topologize the homotopy groups. 

The author thanks Paul Fabel for suggesting the following application of shape 

theory which seems to be fairly well-known (for instance [Mel09]). Application to 

the quotient topology of n^p{X) is also of interest. The reader is referred to [MS82] 

for all preliminaries of the inverse system approach to shape theory. The homotopy 

category of polyhedra hPol, is the full-subcategory of hTop, consisting of spaces 

with the homotopy type of a polyhedron. It is well known [MS82, §4.3, Theorem 7] 
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that hPol, is a dense subcategory of hTop,. This means for each based space X, there 

is an hPol,-expansion X -* (XA, PAAV A) universal with respect to other morphisms 

X —> (Y^, q^>, M) in pro - hPol, (here X is treated as a rudimentary system indexed 

by a singleton). Specifically, the expansion consists of maps p\ : X —> XA such that 

PA = PAA'PA' whenever A' > A in directed set A. These maps induce continuous 

homomorphisms (PA)* : ̂ (X) —» 7Z|,0P(XA) for each n > 1. 

Remark 2.79 The results in Chapter 2.4 indicate that 7I^0P(XA) is a discrete group 

since XA has the homotopy type of a polyhedron. 

Definition 2.80 The n-th topological homotopy pro-group of a based space is the 

inverse system pro- n^ (X) = \TI°P(X\), (PAA')»/ -M of discrete groups in pro-TopGrp 

where the bonding maps are the induced, continuous homomorphisms (PAAO*
 : 

7t|,op(XA') —» 71^(XA). The n-tfz topological shape homotopy group of X is the limit 

fLt%p(X) = ]m\pro—nn(X) = lim7in
op(XA) which, as an inverse limit of discrete groups, 

is a Hausdorff topological group. The isomorphism class of "^(X) does not depend 

on the choice of hPol*-expansion. There are analogous constructions in the unbased 

and relative cases as well. 

Remark 2.81 It is a well-known fact of shape theory that a compact metric space X, 

has an hPol*-expansion X —> (X„, p„,n+i, N) indexed by the integers. Since ^{X) is 

a subspace of a countable product of discrete spaces, it is a metrizable topological 

group. 

The continuous homomorphisms (PA) : "^ (X) —» ^ ^ ( X A ) satisfy (PA). = (PAA')»(PA')» 

and therefore induce a canonical, continuous homomorphism O x : n%p(X) —> 
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n°p(X) to the limit. Let HTopGrp (resp. HTopAb) be the full subcategory of 

TopGrp (resp. TopAb) consisting of Hausdorff topological (resp. abelian) groups. 

Functorality 2.82 n°p : hTop, —» HTopGrp is a functor and <I>: n^ —> n^ is a natural 

transformation with components in qTopGrp. For n>2, fff : hTop» —» HTopAb is a 

functor and O : n„ —> 7tj,op is A natural transformation with, components in qTopAb. 

Proof. Forgetting the topological structure gives the usual shape group functors 

nx : hTop, -» Grp and nn : hTop, -» Ab f o rn > 2 [MS82, Ch II, §3.3, Corollary 2]. 

We have already seen that n°p is well-defined on objects and so it suffices to show 

that a based map / : X —» Y induces a continuous homomorphism f : ft^ (X) —> 

ft^Y). If X -> (XA, PAA', A) and Y -> (Yp, q^>,M) are hPoL-expansion for X and Y 

respectively, then a based map / : X —» Y induces a map 

(/ii/0): (XA,PAA'/A) -> (Y^q^rM) 

of inverse systems in hPol* [MS82, Ch I, §2.1, Theorem 1]. Here (/J,, (p) consists of a 

function (j> : M—> A and continuous maps /F : X ^ ) —> YM, |U e M such that when­

ever JU < / / there is a A e A such that A > cp(p),(p(p.') and frf^A = q^'fF'Pcp^')A-

The /M induce continuous homomorphisms (/^)* : T Z J ^ X ^ ) ) —> /^(Y^) such that 

whenever û < / / there is a A e A such that A > cp(p),(f)(ji') and {fF)*{p^)A)* = 

(W)»(/i*')''(P<Mf*')'0- Therefore, 
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is a morphism of inverse systems in HTopGrp and induces a continuous homo-

morphism 

on the limits. To see the naturality of O, we regard n°p(X) and n^p(Y) as rudimentary 

inverse systems in qTopGrp, let / : X —> Y be a based map, and consider the 

commuting square of inverse systems 

top 
n7(X) 

f> top n7(Y) 

(nT (XA), (pAA'U A) > (nfPr), (q^h M) 

Applying lim, we obtain the square 

<D 
"f(x)-^7tr(x) 

/• f-

for the naturality of O. • 

The primary application we make of shape groups is the following. 

Proposition 2.83 Ifn>l and the canonical map O : 7zj,op(X) —»7t|,op(X) is an injection, 

then ^^(X) is a functionally Hausdorff quasitopological group. 

Proof. Since 7t„op(X) is a Hausdorff topological group, it is functionally Hausdorff. 

Any space continuously injecting into a functionally Hausdorff space is functionally 
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Hausdorff. • 

The existence of the natural homomorphism <J>X '• TI«(X) —> ^^(X) hints at an 

alternative topology for nn(X). Let nfl(X) be the n-th homotopy group of X with 

the initial topology with respect to <E>. This topology is generated by the sets 0>^}(U) 

where 17 is open in 7t̂ op(X). By A.35 of the Appendix, 7i;f (X) is a topological group. 

Functorality 2.84 nf1 : Top, —> TopGrp is a functor and for n > 2, nf1 : Top. —> 

TopAb is a functor. 

Proof. It suffices to prove that the homomorphism/, : nfl
h(X) —> 7i^(Y) induced by 

a based map / : X —> Y is continuous. But this follows directly from applying A.36 

of the Appendix to the naturality diagram of O: 

7 i ? (X) -%f t? (X) 

/• /• 

The next proposition follows directly from the definition of the initial topology: 

Proposition 2.85 7z^(X) is Hausdorff if and only if the homomorphism <Px : TT„(X) —» 

7t„(X) is injective. 

The injectivity of O x has received a significant amount of attention in the case 

n = 1. In the effort to characterize the spaces X for which O x is injective (for fixed 

n), a simpler description of the topology of 7i^(X) is desirable. 
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Proposition 2.86 If X is a compact metric space, then n^\X) is a pseudometrizable 

topological group. 

Proof. By Remark 2.81, nn(X) is metrizable. In general, if Y is a metric space with 

metric d : Y2 —» R and a space X has the initial topology with respect to a function 

/ : X —> Y, then p = d o (/" x / ) : X2 —> R is a pseudometric for X. It is clear that 

p satisfies the axioms of a pseuometric. Also, if B^(y0) = ly e Y|d(y0, y) < r} and 

Bp
r(x0) = {x€ X\p(x0,x) = d(f(x0),f(x)) < r], the equation Bp

r(x0) = f-\Bd
r{f{x0))) 

indicates that the initial topology on X agrees with the topology induced by the 

pseudometric p. • 

Theorem 2.87 If a map f : X —> Y induces an isomorphism f : ftn{X) —> fc„(Y) of 

topological groups, then the continuous homomorphism f : n^h(X) —> n^h(Y) is quotient 

onto its image. 

Proof. We use the naturality diagram 

nf(X)-^nT(X) 
f> 

^00 - ^C00 

Let U c Im{f) such that f7l{U) is open in nf(X). Since ns
n
h(X) has the initial 

topology with respect to Ox , we have f^QJ) = ®^(V) for open V Q n^h(X). Since 

f is a homeomorphism and <I>Y is continuous, it suffices to check the equality 

0 y 1 ( / ( y ) ) n Im(f) = U. If u e U £ 7m(/,), and a e ^(LZ) = ^ ( V ) such that 
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f{a) = u, then Oy(w) = f o Ox(a) e f(V) and therefore w e ^ ( / ( V ) ) . For the other 

inclusion, if Or(w) e j£(V) and f(a) = w, then / o <&x(a) = <E>Y(w) e f(V). Since _£ 

is bijective, we have Ox(a) e V and therefore a e ®^}(V) = fcl{U). This implies 

u = /.(a) e U. • 

From this theorem, we begin to get a feel for the strength of n^ as an invariant. 

Corollary 2.88 If a map f : X —> Y induces an isomorphism f : nn(X) —> nn(Y) of 

topological groups, and an isomorphism f : nn{X) —> 7rn(Y) of groups, then f : 71^ (X) —> 

7î ft (Y) is an isomorphism of topological groups. 

The following is a comparison of the four topologies defined on the homotopy 

groups: 

Corollary 2.89 For any space X, the identity maps nk
n{k{X)) —> ̂ ^{X) —> 7iJ,(X) —> 

nf1 (X) are continuous. 

Proof. The identity k(X) —* X is continuous and so the identities nk
n{k{X)) —> 

TE^A^X)) —>7î op (X) are continuous by Proposition 2.78 and the functorality of n°p. 

The identity n°p(X) -> 7î (X) is continuous by the construction of T. The identity 

n°v(X) —> 7i;p(X) is continuous by the universal property of spaces with initial 

topologies. Since TI^(X) is a topological group and "^(X) —> 7i^(X) is continuous, 

so is the adjoint TZ^(X) -» ^h(X). • 
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CHAPTER III 

PATH COMPONENT SPACES 

In this chapter, we study the path component spaces defined in Example 2.7 

and used in Chapter 2.4. The path component space of a topological space X is the 

set of path components n0(X) of X with the quotient topology with respect to the 

canonical map nx : X —» n0(X). We denote this space as ^^(X) and remove or 

change the subscript of the map nx when convenient. The following definitions 

are equivalent up to homeomorphism: 

1. < P (X) = [*,X] 

2. n°p(X) = [S°, X], for any choice of basepoint in X. 

3. n^{X) is the coequalizer of the maps ev0, ev\ : P(X) —> X which are evaluation 

at 0 and 1. 

It is then clear that n°p : Top —» Top is a functor which factors through the 

homotopy category hTop. If X has basepoint x, we choose the basepoint of TI^QC) 

to be the path component of x in X. This gives a based version of the functor n^, 

however, the presence of basepoint will be clear from context. 

Example 3.1 Let T c R2 be the topologist's sine curve 

{(0,0)} U j(x,y)|y = s i n ( - ) , 0 < x < l} 
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or closed topologist's sine curve {0}x[-l, l]U{(x,y)|y = sinf^LO < x < 1}. Itiseasy 

to see that in both cases, n^(T) is homeomorphic to the Sierpinski space S = {0,1} 

with topology {0, {1}, {0,1}}. 

It is worthwhile to mention the remarkable fact, proved by D. Harris that every 

topological space is the path component space of some paracompact Hausdorff 

space. 

Theorem 3.2 [Har80] Every topological space Y is homeomorphic to the path component 

space of some paracompact Hausdorff space <H(Y). 

Some properties and variants of the functor 7f are included in [Har80]. The next 

example indicates that subspaces of R appear quite naturally as path component 

spaces. 

Example 3.3 Let X be the set R x l . We define a simple Hausdorff topology on X 

such that n^(A xI) = A for subspaces A c R and A x I c X. The topology on X has 

a basis consisting of sets of the form {a} x (s, t) and {a} x (t, 1] U (a, b) x IU {b} x [0, s) 

for 0 < s < t < 1 and a < b. This topology is a simple extension of the ordered square 

in [MunOO, §16, Example 3] and is the order topology given by the dictionary 

ordering on X. The path components of X are {z} x I for z e R (see [MunOO, §24, 

Example 6]). It then suffices to show that for each A Q R, the projection^ : XA —» A 

is quotient, where X^ = A X J has the subspace topology of X. Suppose U is open 

in X so that U n A is open in A. Since U x I = p^(U) is open in X and so 

(17 x J) D XA = (U n A) x I = p~2{U n A) is open in XA. Therefore pA is continuous. 

Now suppose V Q A such that p~A
l(V) = V x I is open in X^. For each v e V, there 
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is an open neighborhood {v} x (tv, 1] U (v, bv)xlU {bv} x [0, sv) of {v, 1) contained in 

V X 7. Since V X 7 is saturated with respect to PA, we have [v, bv] n A x I c V x 7. 

Similarly since (i?, 0) e V for each D £ V we can find a closed interval \av, v] such 

that [av, i;] n A x 7 c Vxl. Therefore, for each v eV,we have v e (aP, ̂ ) n A c V. 

Therefore V is open in A, pA is quotient, and consequently TC^P(XA) — A. 

Example 3.4 Using the previous example, we can find a space Y such that 7IQ°P(Y) = 

S1. Let e : R —> S1 denote the exponential map and X = R x 7 be the space defined 

in the previous example. Let Y be the set S1 x 7 with the quotient topology with 

respect to e x idj: X —» S1 x 7. It is easy to see that a basic open neighborhood in Y 

is e(U) where 17 is a basic open neighborhood of X described above. Similarly, one 

can show that the projection Y —» S1 is precisely the quotient map nY : Y —> 7i[)
op(Y) 

and so S1 = n°p(Y). 

We now observe some of the other basic properties of path component spaces. 

We will be particularly interested in the preservation of limits and colimits. The 

following will be very useful later on. 

Proposition 3.5 n^ -preserves coproducts and quotients in Top and Top,. 

Proof. Clearly, n^ (TJA XA) = L l A ^ r ( X A ) f o r a n y f a m i l y o f spaces {XA}. If q : X-> Y 

is a quotient map, then the diagram 

q 

X >Y 
"x 

n^(X)-rn^(Y) 
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commutes. The bottom map /»is quotient by the Quotient Square Lemma (1.22). 

In the based case the quotient map q : LIA X\ —> VA ^A induces a quotient map </* : 

7ig0p (UA XA) —> 7ig0p (VA XO which makes the same identifications as the quotient 

map 

^ 0 

( 
top 

\ A 

Therefore, there is a natural homeomorphism n^ (VA XA) - VA ^ C T ^ ) - " 

Though n°p preserves coproducts, unfortunately it fails to be cocontinuous. 

Since Top is cocomplete, it suffices to exhibit a coequalizer which is not preserved 

[MacOO, §V.4]. 

Example3.6 Let Y = {1,§, J,...,0} Q R We define parallel maps f,g : Z + -> Y 

by /(w) = ^ and g(n) = -^. It is easy to see that the coequalizer of these maps 

is homeomorphic to the Sierpinski space S of Example 3.1. The Sierpinski space 

is path connected since the function a : I —> {0,1} given by ac([0, ^]) = 0 and 

a((\> 1]) = 1 is continuous. Therefore 7i0°
p(S) is a one point space. Noting that both 

Z + and Y are totally path disconnected (so n^(Z+) = Z + and n^{Y) s Y), we find 

that / = / . and g = g*. Therefore the coequalizer of / , and g, is S which is not a one 

point space. This means the path component space of the coequalizer of / and g is 

not homeomorphic to the coequalizer of /* and g*. 

One might notice in the previous example that the path component space of the 

coequalizer is a quotient of the coequalizer of the induced maps. This phenomenon 

in fact generalizes to all (small) colimits. 
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Proposition 3.7 Let J be a small category and F : f —> Top be a diagram with colimit 

colimF. Suppose colim(n°pF) is the colimit of diagram n^ o f : / - > Top. There is a 

canonical quotient map Q : colim(nt£pF) —» n^ (colimF). 

Proof. By the colimit existence theorem [MacOO, §V.4], colimF is the coequalizer of 

parallel maps / and g and colim(nt^pF) is the coequalizer of parallel maps / ' and gf 

as seen in the diagram below. The coproducts on the left are over all morphisms 

u : j —» k in / and the coproducts in the middle column are over all objects i e /. The 

naturality of n : X —> n^{X) and the homeomorphisms n°p(]Xa X\) = UA n^(X\) 

of Proposition 3.5 gives the commutativity of the squares on the left and top right. 

By Proposition 3.5, q* is a quotient map. Since q o f = q o g, we have q*° f* = q*° g*. 

Therefore q* o t o f = q, o f o s = qf o gt o s = q, o t o gf. By the universal property 

of colim(n°pF), this induces a unique map Q : colim(n^pF) —> n°p (colimF) such that 

Q° q' = q, ° t. Since t is a homeomorphism and q, is a quotient map, Q is also a 

quotient map. 

UKh* Hi) f III*; F ( 0 ? > colimF 

<P {Uu:^k F(j)) = 4 C (U */ F(0) '- > n^ (colimF) 

toP(V(;\\ —^—> T T ^^(vaw L 

3!QI 
I 

L L ; ^ < P ( f (/)) = 3 l i s ; nf(F(i)) q- > cotim(n?F) 

Corollary 3.8 Let XUZY be the pushout of the diagram X< Z >Y where n^^Y) 
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is discrete and g,: n°p{Z) —> n°p(Y) is surjective. The inclusion ; ' : X ^ X U Z Y induces 

a quotient map ;'»: n^{X) —> n°p(X Uz Y) on path component spaces. 

Proof. The pushout of the diagram n^{X) ^—L- n°v{Z) —'—> n^(Y) is the quotient 

space W = n°v(X)l ~ where for each P,Qe TI^(Z) such that gt(P) = g*(Q) we make 

the identification f(P) ~ f(Q). Let q : n^QC) —» W be the quotient map. Consider 

the diagram 

<"(Z)-

/• 
top 

7i7(x)^-^7i7(xu 

+C00 

(op/ 

where Q is the canonical quotient map of Theorem 3.7 induced by the universal 

property of pushouts. Since both q and Q are quotient maps j* is also a quotient 

map. • 

As in Example 3.1, let T c R2 be the topologist's sine curve, a = (0,0), b = 

(1, sin(l)), and A = {a, b] c T. Let S = {a, &} be the Sierpinski space with topology 

{0, {b}, {a, b}}. The next corollary illustrates the possibility of weakening the topology 

of path component spaces by attach the topologist's sine curve in the appropriate 

way and also gives an example of when pushouts are preserved by n^. 

Corollary 3.9 Let f : A —> Xbe a map such that f(a), f(b) lie in distinct path components 

of Hausdorff space X. Let XUATbe the pushout of the diagram X < A ——> T where 

i is inclusion. The inclusion j : X —> Z induces a continuous bijection ;'» : TIQP(X) —» 

^(X DA T) which is not a homeomorphism and ^{Z) is canonically homeomorphic to 
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the pushout of n°p(X) ^— A -**-> S. 

Proof. It is easy to see the map ;'» : n^{X) —> ^ ^ ( X U^ T) is a bijection since we do 

not create any new connections between path components by attaching T in this 

way. Applying n^ to X < A —'—> T gives diagram n°p{X) «-̂ — A —^ S . The 

pushout Z of this diagram is simply 7i0(X) with a topology (strictly) weaker than 

that of n°p(X). Applying Theorem 3.7 gives diagram 

A * >S. 

7 l 7 ( X ) - ^ 7 I ^ ( X U 

id 

where Q is a quotient map. Since Q is a bijective quotient map, it is a homeomor-

phism. • 

Now we observe the behavior of n°p on products. 

Proposition 3.10 Let {XA} be a family of spaces and X = EL XA- LetnA : XA —> n^{X\) 

and n : X —> 7i0°
p(X) be £/ze canonical quotient maps and I1A TTA : X —> 11A " [ ^ P C I ) &e 

t/ze product map. There is a natural continuous bijection O : n°p (X) —» ]1A ^ O ^ P C I ) s u c ^ 

that O o 7t = I1A "A. 

Proof. The projections p a : IIAXA -» XA induces maps (P"A)» : Tit°p(Y\AXx) —» 

^ ^ ( X A ) which in turn induce the map O : 7i*op
 (]1A XA) —> I1A

 nQP(^)- This is a 

bijection due to the basic fact that the non-topological functor n0 preserves arbitrary 

products. • 
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Corollary 3.11 <J>: n^ (X) —» YIA noP(^)zs a homeomorphism if and only if the product 

of quotients YlA n\ : X —* Y\A ^o^PCO is itself a quotient map. 

Proof. This follows from the fact that n is a quotient map, O is a bijection, and 

Corollary 3.12 Ifn^(XA) is discrete for each A, then O : nf (X) -> Y[xn^{XA) is a 

homeomorphism. 

Proof. If ^ ^ ( X A ) is discrete, then nA : XA —> 7TQ°P(XA) is open. Since products of 

open maps are open, YlA n\ : X —> YlA 7Z[)
0P(XA) is open and must be quotient. By 

Corollary 3.11, O is a homeomorphism. • 

Of course, not all products (or even powers) of quotient maps are quotient. In 

light of Corollary 3.11, the facts in Chapter 1.2 provide some sufficient conditions on 

X, Y, n^(X), n^(Y) to guarantee that nf(X x Y) = n^(X) x n^(Y). This, however, 

does not occur in general. 

Corollary 3.13 nl°p does not preserve finite products. 

Proof. Let RK be the real line with the K-topology. In this space the set K = [1, \, \, —} 

is closed and sets of the form (a, b), {a, b) — K form a basis. Let QK be the rational 

numbers with the subspace topology of R^. Now let X = QK UK CK where CK is 

the cone on K. The path components of X are the singletons {a} f or a e QK - K 

and the set CK. The path component space of X is ^{X) = QK/K but the map 
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7ix x 7TX : X x X -» n ^ X ) X n^(X) is not a quotient map [MunOO, §22]. By Prop. 

3.10 the topology of n^(X X X) is strictly finer than that of n°p{X) x nf(X). • 

Other examples of this failure arise in the context of topological fundamental 

groups. In fact 2.34 and 2.39 imply that if n°p{X) is not a topological group then 

n°p(Q(X) x Q(X)) <* n°p(X x X) is not homeomorphic to n°p(Q(X)) x nJ(Q(X)) = 

nt
l
op(X)xnt

l
op(X). 

We will also have need to consider path components of monoids and groups 

with topology. In particular, if multiplication in M e MonwTop is only continuous 

in each variable, then we do not have H-space structure and must do more to 

obtain monoid structure on n0(M) = [*,M]. Recall the notion of semitopological 

and topological monoids (with continuous involution) from A.l of the Appendix. 

Proposition 3.14 Suppose M is a semitopological monoid and Cm denotes the path 

component of m e M. If a, G Cmi for i = 1,2, then aia2 £ Cmim2. Consequently, there 

is a well-defined multiplication n0(M) x nQ(M) -» n0(M), (Cm, Cn) H-> Cmn making 

ft^M) a semitopological monoid. Moreover, if s : M —> M is an involution on s, 

then s*: 7i0(M) —> 7to(M) is a continuous involution on n°p(M). 

Proof. Let p,- : I —> M be a path p,(0) = A,-, p,(l) = m;-. Let Afll : M -* M 

(resp. pm2 : M —> M) be left (resp. right) multiplication by a\ (resp. ra2). Con­

sider the concatenation q = (Afll o p2) * {pm o pa) : J -> M. This is well-defined 

since Afll o p2(l) = a1m2 = pm2 ° pi(0) and satisfies ^(0) = Afll o p2(0) = a ^ and 

a(l) = pm2 °pi(l) = mitn2. Clearly then flifl2
 e Cmim2. Since multiplication in M is as­

sociative and unital (if e is the identity of M, then Ce is the identity of n0(M)), the mul-
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tiplication CmCn = Cmn in n^{M) is both associative and unital. To see that n^{M) is 

a semitopological monoid, let m e M and Am/ pm : M —> M be (continuous) right and 

left multiplication by m. The induced maps (Am)», (pm)» : n°p(M) -» rc^M) are left 

and right multiplication by Cm respectively and are continuous by the functorality 

of n^. If s : M —> M is a continuous involution on M, then s,(Cm) = CS(m). Therefore, 

s(Ce) = Ce, s(CmCn) = s(Cmn) = CS(mn) = Cs(n)s{m) = CS(„)CS(m) and s, = (s ), = (id), = id 

proving that s. is a continuous involution on n^{M). • 

Corollary 3.15 7f G is a semitopological (resp. quasitopological group), then so is n^(G). 

Proof. If gg~l = e = g^g in G, then CgCg-i = Cgg-i = Ce = Cg-ig = Cg-iCg. Since 

inverses are given by C"1 = Cg-i, 7ig0p(G) is a group whenever G is. If fro : G —> G is 

continuous, then (inv)* is inversion on 7IQ°P(G) and is continuous. • 

Proposition 3.16 Let C be the category sTopMon, sTopMon*, sTopGrp or 

qTopGrp. Then n°p :C —>Cis a functor. 

Proof. We have already observed that n^ is well-defined on objects for each 

case. It suffices to deal with morphisms. If / : M —> N is a continuous ho-

momorphism of semitopological monoids (or groups), then the continuous map 

/ . : 7i^(M) -> 7i^(N), /.(CM) = C/(M) satisfies /.(C.Q.) = /.(Cm„) = C/(mn) = 

Cf(m)f(n) = Cf(m)Cf(n) - /»(Cm)/.(C„) so that /» is indeed a homomorphism. This 

is enough for the first, third and fourth categories. For the last case, suppose 

/ : (M, s) —» (N, t) is a continuous, involution-preserving (/ o s = t ° f) morphism 
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in sTopMon*. The functorality of 7i0°
p (on spaces) gives that t» o f = f o s,. There­

fore / , : (n^(M), s,) —> (n^p(N),Q is also a continuous, involution-preserving 

homomorphism. Preservation of composition and identity are immediate from the 

functorality of n^ : Top —> Top. • 

Proposition 3.17 If M is a setnitopological monoid (resp. semitopological monoid with 

continuous involution, semitopological group), the path component of the identity e is a 

semitopological submonoid (resp. semitopological submonoid with continuous involution, 

normal semitopological subgroup) ofM. 

Proof. Let N be the path component of e. Suppose a,b e M and p,q : I —> M are 

paths with p(0) - q(0) = e and p(l) = a,q(l) = b. Let la : M -> M be continuous left 

multiplication by a. Then r = (lao q)*p : I —> Mis a path with r(0) = p(0) = e and 

r(l) = fl^(l) = ab. Therefore N is a submonoid of M. If s : M —» M is an involution 

on M, and p : I —> M is a path with p(0) = e and p(l) = a, then s o p r J - ^ M — » M 

is a path p(0) = e and p(l) = s(a). Therefore N is closed under the image of all 

continuous involutions M ^> M. Therefore if (M, s) e sTopMon*, then (N, s\u) is a 

subobject of (M, s). If M is a semitopological group, and p : I —» M is a path from 

e to a, let Afl-i be left multiplication by a"1 so that Afl-i o p : J -» M is a path from 

a -1 to a_1fl = e. Therefore N is closed under inversion and is a subgroup. Clearly if 

inversion is continuous in M, it will be continuous in N with the subspace topology. 

To see that N is also normal we take n e N and a e M. Let p : I -* M be a path from 

e to n, /fl be left multiplication by a and pa-\ be right multiplication by a-1. Then 
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Pa-i ° A„ o p : I -» M is a path from aea"1 = e to ana-1. Therefore aNcT1 c JV. Since 

this also holds when we replace a with a~x, it follows that a^Na c 2V and therefore 

NQaNa'1. m 

Corollary 3.18 IfG is a semi(quasi)topological group and N is the path component of the 

identity e, then there is an isomorphism ^^(G) = G/N of semi(quasi)topological groups 

such that the following diagram commutes 

Proof. If a, b are in the coset gN, then g~xa, g~lb € N and we can find a path q from 

g~xa to g~rb. If Ag is left multiplication by g, Ag o q : I —> G connects the points a and 

b. Therefore each coset gN is path connected. Additionally if p : I —> G is a path 

with p(0) = g, p(0) = h and Ag-i is left multiplication by g"1, then ^ = Ag-i o p is a 

path <7(0) = e and q(l) = g~lh. Therefore g~xh e N and /z e gN. Therefore every path 

p : I —» G must lie entirely within the coset p(0)N. So the path components of G are 

precisely the cosets gN. • 

Corollary 3.19 Lrf Ga be a family of semi(quasi)topological groups and G = YlaGa be 

the product group with the product topology. There is a canonical isomorphism T I ^ G ) = 

Ila ^(Ga) of semi(quasi)topological groups. 
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Proof. The projections pa : G —* Ga induce the canonical, continuous group iso­

morphism O : n^{G) —> Y\a n^{Ga). It was noted in Corollary 3.11 that 0 is a 

homeomorphism if and only if Yla nGa : Yla Ga —> ]!« "[^(Ga) is quotient. If Na is 

the path component of the identity in Ga, then the projection Ga —> n^Ga) = Ga/Na 

is a quotient map of semitopological groups. It is a basic fact of semitopological 

groups [AT08, Theorem 1.5.1] that these projections are also open. Since products 

of open maps are open, Yla Ga —> Yla Ga/Na = Y\a
 noP(Ga) is open and therefore 

quotient. • 

Remark 3.20 If M is a topological monoid (with continuous involution), then 

7r0°
p(M) is a semitopological monoid (with continuous involution) but is NOT al­

ways a topological monoid. The diagram 

MxM >M 

nMXnM nM 

T I ^ ( M ) x 71^ (M) > n^(M) 

where the horizontal maps are multiplication commutes. If the product map nM x 

7iM is quotient, then n ^ M ) is a topological monoid, however, this is not always the 

case. For an explicit example consider the monoid QM(X) of Moore loops [May90] 

in a space X such that n^QC) is not a topological group. Since Q(X) ^ QM(X), 

multiplication in nt^p(QM(X)) = 7T*op(X) is not continuous. 

Example 3.21 An example of particular importance to us is the path component 
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space of the free topological monoid with continuous involution M^(X) defined in 

the Appendix A.l. Let X be an unbased space and nx : X —> n°p (X) be the quotient 

map identifying path components. Since rcx is a quotient map, the semitopological 

monoid M*nJji^'(X)) is well-defined. In particular its topology is characterized 

by the fact that the monoid homomorphism M*(nx) : M*T(X) -» M^x(n^p(X)) is a 

quotient map. Since the non-topological nQ : Top —> Set preserves products and 

coproducts, there is a canonical monoid isomorphism i/> : nQ(M*T(X)) —> Ad*(7i0(X)) 

defined as follows: The path component of w = x^.-.x^" is sent to ip(w) = P^.-.P^" 

where P, is the path component of x; in X. This makes the diagram 

AfT(X) 
M*r(7ix) 

n^{MT{X)) — ^ M ; X ( T T 7 ( X ) ) —^ MT(n^(X)) 

commutes in the category of semitopological monoids. Since the two non-horizontal 

maps in the left triangle are quotient we have: 

Lemma 3.22 i/>: n^(MT{X)) —> M^x(n^p(X)) is a natural (in X) isomorphism of semi­

topological monoids. 

Now we consider the case when G is a topological group. Since any quotient 

group of a topological group is itself a topological group with the quotient topology, 

it is clear from Corollary 3.18 that: 

Proposition 3.23 If G is a topological group, then so is n ^ G ) . Moreover n^ : 

TopGrp —» TopGrp is a functor. 
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Proof. We have already shown that TIQ(G) is a quasitopological group (Corollary 

3.15) so it suffices to check that multiplication is continuous. By Corollary 3.19, the 

canonical map 7i0°
p(G X G) —> n^p(G) X n^{G) is a homeomorphism. By Corollary 

3.11, the product nG X nG : G X G —> n^{G) X 7ip0p(G) is quotient. Now by Remark 

3.20, multiplication in ^{G) is continuous. • 

Theorem 3.24 IfG is a topological group, thenM*(X, G) and [X G]» are topological groups 

for any space X. 

Proof. Since G is a group-like space, the operation M ( X G) x M ( X G) —» M*(X G), 

if' 8) *"> u ° (f x g) ° ^ studied in Chapter 2.2.1 is continuous. Here p. is the multi­

plication of G and A : X —> X x X is the diagonal. With this multiplication M*(X, G) 

is a group where the identity is the constant map at the inverse of / : X —» G 

is / _ 1 : X -> G, i H fix)'1- Since both multiplication and inversion are contin­

uous in G, M*(X, G) is a topological group. As previously noted, the operation 

If] * [g] = iu ° if x g) ° A] gives group structure on [X, G]*. By Remark 2.52 there is a 

natural isomorphism [X, G], = n°p(M*(X, G)) of quasitopological groups. Corollary 

3.23 asserts that n°p(M*(X, G)) is a topological group. • 

Corollary 3.25 IfG is a topological group, then TT^P(G) is a topological group for alln>0 

(abelianfor n > 1). 
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CHAPTER IV 

THE TOPOLOGICAL FUNDAMENTAL GROUP 

In this chapter we study the topological fundamental group n°p(X, x) = [S1, X]* 

as defined in Example 2.9. Prior to this research and the independent work of 

Fabel [Fab09] it was thought that these groups are always topological groups. In 

fact, many authors asserted that n^ : Top, —> TopGrp was a well-defined functor 

under the false assumption that nxn: Q(X) x Q(X) -> n°p(X) x n°v{X) is always 

a quotient map. In this chapter, we provide counterexamples to this claim by 

computing n^ on a class of suspension spaces that resemble "non-discrete wedges 

of circles." 

4.1 The topological properties of n^ 

Many of the results in Chapter 2 give immediate results concerning the topolog­

ical nature of n^. For instance, since S1 is a cogroup-like, n^1: Top, —> qTopGrp is 

a functor to the category of quasitopological groups (Theorem 2.30) which factors 

through the homotopy category. There is an additional factorization: n^ = n^Q-

Specifically, the following diagram of functors commutes up to natural homeomor-
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phism: 

hTop, 
ho. 

Top, > qTopGrp 

Q forget 

T°P* H > T°P* 
V 

We call upon other results from Chapter 2 as needed. 

Lemma4.1 [Bis02, Prop. 3.2] If y : I -> X is a path, then hy : n^(X,y(l)) -> 

n°p(X, 7(0)), hy([a]) = [y*a* y_1] is an isomorphism of quasitopological groups. 

Proof. Consider the concatenation functions T : Q(X,y(l)) —> Q(X,y(0)), T(a) = 

y*a*y~1 a n d F : Q(X,y(0)) -» Q(X,y(l)),r(£) = y~l*fi*y. These are continuous as 

the restrictions of the more general concatenation functions from Lemma 1.21. Ap­

plying n°p gives the continuous homomorphisms hy : n ^ X y C l ) ) —> n°p(X,y(0)) 

and hyr-x : n^(X, y(0)) -» 7T^(X,y(l)), r.([/3]) = [y"1 * jg * y] respectively. These are 

continuous inverses of each other. • 

The following, is a convenient description of the topology of topological fun­

damental groups. 

Corollary 4.2 For every based space Y, the canonical monoid homomorphism 

g : Mr(Q(Y)) = 0 Q(Y)« -» TIJ^Y), ̂ a^ . . .^ ) = K * a2 * • • • * an] 

on the free topological monoid on 0(Y) is quotient. 

Proof. For each n > 1, concatenation C„ : Q(Y)" —> O(Y) is continuous 1.21. These 
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induce a map C : MT(Q(Y)) -> Q(Y) (The disjoint identity Q(Y)° = * is taken to 

the constant map). Let o : Q(Y) <-» O(Y)1 c Mr(Q(Y)) be the universal arrow and 

n : Q(Y) —> n^iX) be the quotient map. It follows that g = n o C is a monoid 

homomorphism which is quotient since n = noCoo. m 

It worthwhile to note the results of Chapter 2.2.2 that provide conditions to 

guarantee that 7î op(X) is a topological group. 

Theorem 4.3 Let Xbea path connected space. 

1. IfQ.(X) and ^ ( X ) are first countable, then n^(X) is a topological group. 

2. IfX is metrizahle, then n^QCj is first countable (and Ta) if and only ifn^{X) is a 

pseudometrizable (metrizahle) topological group. 

3.IfX is a separable metrizahle space, then ^^(X) is second countable (and Ti) if 

and only ifn^p(X) is a separable pseudometrizable (separable metrizahle) topological 

group. 

4. if7z*op(X) is locally compact Hausdorjf, then it is a topological group. 

Proof. 1. If Q(X) and n^(X) are first countable, then n x n : Q(X) x Q(X) -> 

7T*op(X) x n^(X) is a quotient map by Fact 1.24. By Corollary 2.34, n^(X) is a 

topological group. 2. and 3. are special cases of Theorem 2.35. 4. is a special case 

of Theorem 2.36. • 

4.1.1 Attaching cells 
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One of the great conveniences of the quotient topology on the fundamental 

group is that attaching n-cells to a space changes the topology in a rather convenient 

way. The following lemma appears in [Bis02]. The proof included here is slightly 

longer but is more intuitive than Biss'. For the statement and proof, we fix an 

e G (0,1) and let cn = Bn - Bn(e) = {x e R"|e < \x\ < 1} so that int(cn) = cn - Sn~l. If 

n > 2, int(cn) * S""1 is 1-connected. Ifn = 2,a,b>0,andR = {(at,bt)\t G [0,«>)} c R2 

is any ray emanating from the origin, then int(cn) -Ris 1-connected. 

Lemma 4.4 Suppose Z is a based space, n > 2 an integer, and f : S"_1 —> Z is a based 

loop. Let Z' = ZUf Bn be the space obtained by attaching a n-cell to Z via the attaching 

map f. The inclusion j : Z c-> Z' induces a group epimorphism (isomorphism when n > 2) 

j* : n°p(Z) —» TI°P(Z') which is also a topological quotient map. 

Proof. Clearly j* is a continuous surjection for all n > 2 as well as a group iso­

morphism when n > 2. Therefore it suffices to show j , is a quotient map for all 

integers n > 2. We re-label our spaces by letting Z\ = Z c Z2 = Z U c" c Z3 = Z' 

so that Z2 is Z\ with an "open collar." Clearly the inclusion ) \ : Z\ -̂> Z2 is a 

homotopy equivalence and induces an isomorphism (;'i), : ^^(Zi) '—* n^(Z2) of 

quasitopological groups. Suppose ;2 : Z2 ^-> Z3 so that j2 ° /i = ;'. Since Z2 is 

open in Z3, the map (;2)# : Q(Z2) <̂-> 0(Z3) induced on loop spaces is an open 

embedding. Suppose LT c 7r^op(Z3) such that ^(U) = (ji)71((J2)71(U)) is open in 

^^(Zi). Immediately, we have that (;'2)r
1(L0 is open in 7i^p(Z2) since (ji)» is a home-

omorphism. For k = 1,2,3, let nk : Q(Zfc) —> n1^^) be quotient map identifying 

homotopy classes of loops. It suffices to show that ^(LT) is open in H(Z3). Let 
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a G n-l(U). If a has image entirely in Z2, then V = ( ^ ( " ^ ( U ) ) = ^((hVi11)) 

is an open neighborhood of a in Q(Z2). Since (;2)# is an open embedding, (/2)#(V) 

is an open neighborhood of a contained in n~1(U) and we are done. Therefore, we 

suppose a(I) n Bn(e) + 0 and take the open pullback a~1(En) = ]AmeM(cm,dm) c I 

noting that only finitely many of the restrictions «|[Cm,dm] : [cmr dm] —> Z3 have image 

intersecting Bn(e). Suppose a\[Cm ^m ] , . . . , a\[Cm fdm ] correspond to these restrictions. 

For each i = 1,..., k, we find closed intervals [a;-, bi\ £ (cm., dm) such that a, < &, are 

rational numbers and a((cmi, dm) - (air bj)) c int(c"). Let C = [fli, &i] U • • • U [cik, bk] 

and D = [0,ai] U [&i,fl2] U • • • U [?7fc_lr «fc] U [bk, 1] (here we use the convention that 

[s, t] is the singleton, if s = t). In terms of the compact-open topology, we have 

ae<C,E">n<D,Z2>. 

Clearly, there is a loop j3 :1 —> Z2 such that jS|D = a|D and jS(C) c int(cn). These 

two conditions imply tha ta - y2 o jS when n > 2. When n = 2, we must be careful 

that none of the /%,,&,] "go around" mf (c2) ^ S1. In this case, we find a loop /? : I —> Z2 

such that /3[D = « b and /?([«;, bj]) £ m£ (c2) - Rt where R, c R2 is some ray emanating 

from the origin. With these choices of /? we have that that a ^ j2 ° ft for all n > 2. 

Note that 

<C int(cn)) n>2 

nlAovbilintffi-Ri) n = 2 

is an open neighborhood of/? in Q(Z2). Additionally, since [a] = [/2°jS] = (fcMI/*]) € 

li, jS lies in the open set n~1((j2)7
1(U)) of Q(Z2). As asserted in Corollary 1.20, basic 

open neighborhoods of loops in Q(Z2) may be taken to be of the form r\^li(Kl
M, U{) 

y = 
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where Kl
M = \j£, jA and Ui is open in Z2. We find such a neighborhood V so that 

is e r = p|<tfM, ir,> c ^((/z):1™ n r„. 

We choose M large enough so that Ma{, Mfy are integers for all i, or in other words, 

so that for each / either Kl
M c C or Kl

M c D. Since E" is locally path connected, we 

may assume that 11/ c int(cn) c E" whenever Kl
M c C. For n = 2 and Kĵ  c [a,, fy], 

we may also assume that Ui Q int(c2) - Ri- Now we can easily find the desired open 

neighborhood of a in Q(Z3), namely: 

^ = n <*^ «*> n(C,En) 

It is clear that a e <fy since a\D = /3|D and a(C) c £M. ^ is open in 0(Z3) since 

Z2 is open in Z3 (so each Ui is open in Z3). Suppose y e f c Q(Z3). Clearly, 

there is a loop 6 : I -> Z2 such that y|D = <5|D and 6 e V c 7t~1((/2)7
1(L0)- In 

other words 6 agrees with y on D and ^(iC^) c Ui for all the intervals Kl
M c C. 

This implies 5 e (C, int(cn)) and when n = 2 we have 6 e fl/Lid/**/ &;]/ w^c2) - R,->. 

It is a basic fact that if p\,p2 : I —> S are paths into a 1-connected space Y such 

that pi(i) = p2(t), i = 0,1, then there is an endpoint preserving homotopy of paths 

p\ — p2 in S. This guarantees a homotopy of loops y - j2 ° 6 in Z3. Consequently, 

[7] = [72 °6] = (;'2)»([<5]) e U proving the inclusion % c 7i-1(LZ). • 

Lemma 4.5 Suppose Z is a based space, n > 2 an integer, and fa : Sn 1 -» Z, a e A 
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is a family of based maps. Let 2! = Z \Jfa B
n

a be the space obtained by attaching n-cells 

to Z via the attaching maps fa. The inclusion j : Z c-» Z' induces a group epimorphism 

(isomorphism when n > 2) j * : n^^Z) —> n°p(Z') which is also a topological quotient map. 

Proof. Clearly j , is a continuous surjection for all n > 2 as well as a group isomor­

phism when n > 2. Therefore it suffices to show ;'* is a quotient map for all integers 

n > 2. We re-label Z = Z\ and Z' = Z4 and take the approach of factoring the 

inclusion / : Zi c-» Z4 twice as Z\ c Z2 Q Z3 c Z4. We will let nk : Q(Zk) -» ^^(Zk), 

k = 1,2,3,4 denote the quotient maps identifying homotopy classes of maps. Con­

sider the commutative diagram 

Q ( Z i ) — ^ Q ( Z 4 ) 

Tti 7I4 

T I ^ ) — ^ ( Z 4 ) 

and suppose U c 7Z*op(Z4) such that j71(U) is open in n^op(Z1). It suffices to show 

that n~1(U) is open in Q(Z4) so we suppose jS e n~1(U). Since the image /?(/) is 

compact in Z4 it may intersect only finitely many of the attached cells. Suppose 

av..., aN are the indices in A such that j8(2) n En
a. ± 0. Let Z2 = Zi Ua. B

n
a. c Z4 be the 

subspace of Z4 which is Z\ with the cells B^, —B"N attached. Additionally, for each 

a G A - {#!, ...«N} we take a point za e int(Bn) and let Z3 = Z±- [za\a e A- {alf ...aN}} 

be the open subspace of Z4 with the chosen interior points removed. We know from 

Lemma 4.4 that the inclusion ji : Z\ e-> Z2 induces a quotient map (/i), : 7i^op(Z1) —> 

n^p(Z2) since Z2 is obtained from Z\ by attaching only finitely many n-cells. Also 
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the inclusion j2 : Z2 *̂-> Z3 is a homotopy equivalence and therefore induces an 

isomorphism of quasitopological groups (j2)* : n°p{Z2) —> n ^ Z s ) . Lastly since 

I is compact and Z3 is open in Z4/ the inclusion j3 : Z3
 c-* Z4 induces an open 

embedding (;3)# : Q(Z3) c-» Q(Z4) on loop spaces. We now have that ;3 o j2 o jx = j 

and (j2 o j{)f = (y2), o (yi), : n°p(Zi) —> 7i^p(Z3) is a quotient map. The equality 

^(U) = (j2 o jXWsFiU)) 

then implies that (_/3)7
1(LZ) is open in n°p{Z3). Therefore, V = n~1((j3)~

1(U)) = 

(73)#1(^4"
1(Ur)) is an open neighborhood of jS in Q(Z3). Since {j3)# : Q(Z3) <̂-> Q(Z4) is 

an open embedding, (J3)#(V) is an open neighborhood of jS in Q(Z4). If y e (/3)#(V), 

then we have a loop y ' e V such that ;3 o y' = y. But this means \y'\ e (;'3)7
1(L0, 

so that [7] = [;3 o y ' J e U and consequently y e 7T~1(L7). This proves the inclusion 

(j3)*(V) Q n~l{U) and that n^QJ) is open in Q(Z4). • 

4.1.2 Discreteness and separation 

In general, it is difficult to determine if the fundamental group of a space is a 

topological group. There are, however, instances when it is easy to answer in the 

affirmative, namely those spaces X for which Tt^'(X) has the discrete topology. The 

following proposition is a consequence of 2.51 and 2.55. 

Proposition 4.6 For any based space (X, x), the following are equivalent: 

1. 7^op(X) is a discrete group. 
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2. Q(X) is semilocally O-connected. 

3. The singleton {[cx]} containing the identity (homotopy class of the constant loop) is 

open in n°p(X). 

4. Each null-homotopic loop a e Q(X) has an open neighborhood containing only 

null-homotopic loops. 

These obvious characterizations are inconvenient in that they do not character­

ize discreteness in terms of the topological properties of X itself. The next theorem 

was proved independently in [CM09] and is a consequence of the general results in 

Chapter 2.4. Unfortunately the general statements in Chapter 2 depend on Wada's 

proofs in [Wad54] which are omitted here. A direct proof of discreteness is greatly 

simplified in the case of the fundamental group and so it is provided here. This 

particular proof also appears in the independent work of [CM09]. 

Theorem 4.7 Suppose X is path connected. If TT1°P(X) is discrete, then X is semilocally 

1-connected. If X is locally path connected and semilocally 1-connected, then 7i^(X) is 

discrete. 

Proof. We suppose x e X and by Lemma 4.1 may assume that ^P(X) is discrete 

or equivalently that Q(X) is semilocally O-connected. This allows us to find open 

neighborhood W of the constant loop cx in O(X) such that a ^ cx for each a e W. 

There is an open neighborhood U of x in X such that cx € (S1, U) c W. Since 

every loop a e (S1, U) is null-homotopic in X, the inclusion i: U *=-» X induces the 

trivial homomorphism i, : n^Hx) —» 7t1(X,x). Thus X is semilocally 1-connected. 
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To prove the converse, suppose X is locally path connected and semilocally 1-

connected and that a e M((I, {0,1}), (X, {x})). We find an open neighborhood of a 

in M((I, {0,1}), (X, {x})) containing only loops homotopic to a in X. This suffices 

to show that Q(X) is semilocally 0-connected. For each t e I, we find an open 

neighborhood Ut of a(t) in X such that the inclusion ut: Ut
 c-> X induces the trivial 

homomorphism (ut), : 7i1(Ut, a(t)) —> 7i1(X,a(f)). We then find a path connected, 

open neighborhood Vt of a(t) contained in Ut- Take a finite subcover {Vtl,..., Vtk\ of 

a(I) and finite subdivisions of I to find an integer m > 1 such that a e f\^=1(K}m, Vj) 

where Vj = Vfj for not necessarily distinct ij e{l,...,k). For; = 0, ...,w,lets; = ^ e I. 

For each j = 1,..., m - 1 we have a{sj) e Vy D Vy+1 and find a path connected, open 

neighborhood Wj such that a(sj) e Wy c Vj n Vy+1. Now 

m m—\ 

W = f](K>n,Vj)nf)({Sj},Wj) 
;=1 ;=1 

is an open neighborhood of a in M((I, {0,1}), (X, {x})). We suppose y e f and 

construct a homotopy to a. We have y(Sj) e Wy for / = 1,..., m - 1 allowing us to 

find paths pj : I -> Wy such that pj(0) = a(Sj) and pj(l) = y(Sj). Let p0 = pm = cx be 

the constant path at x. We now make use of our notation for restricted paths. For 

;' = 1,..., m we define loops j5y: / —> Vy based at «(sy_!) as the concatenations 

Recall that Vj = Vt.. where a(f,-.) e Vy. Since Vy is path connected, the points 

94 



a(s;_i) and a(t,;) lie in the same path component of Uj. Therefore the inclusion Uj : 

Uj t-» X induces the trivial homomorphism (M;-)» : 7i1(LZ'y,a(sy_i)) —> 7i1(X^(s;-i)). 

Consequently, each loop j3y is homotopic (in X) to the constant loop at a(sy_i). 

The homotopies of loops /5y — ca(S._,) give fixed endpoint homotopies of paths 

aKj ^ py_i * y^ * p~\ Now we have concatenations of homotopies 

a *. *« j a ^ - *;
m

=1 (P/_! * 7 ^ * pT1) * po * (^iy^) * p~m
l * p0 * y * fm * 7 

This proves that % contains only loops homotopic to a in X, or in other words 

that the inclusion ty£ c-* M((I, {0,1}), (X, {x})) induces the constant function on path 

components. • 

Since a locally path connected space has a universal cover if and only if it is 

semilocally 1-connected, we have: 

Corollary 4.8 Let X be path connected and locally path connected. Then X is semilocally 

1-connected <=> 7i*°P(X) is discrete <=> X has a universal cover. 

Proposition 4.9 Let {XAJASA be a family of spaces and X- n A X* be the product space. 

Then n^ (X) is discrete if and only ifn^{X\) is discrete for each A e A and 7I^P(XA) = 0 

for all but finitely many A e A. 

Proof. Suppose 7I*°P(XA) is discrete for each A e A and 7Z^°P(XA) =£ 0 only for 

A € F where F c A is finite. Then Y[A^^{X\) is discrete. The continuity of the 

bijection <f> : nf (X) -» UA ^(XA) = E U F ^ ( X A ) implies that TZJ*' (X) is discrete. 

Now suppose 7^op (X) is discrete. The projections PA '• X —> XA are retractions and 
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induce retractions (/?A)» : n^ (X) —> n^ (XA). But every retract of a discrete space 

is discrete. Therefore ^ ^ ( X A ) is discrete for each A 6 A. By 4.7, X is semilocally 

1-connected. A basic neighborhood of a point in X is of the form 

U=Y\uAx 11 XA 
AeF AeA-F 

where F c A is finite and U\ is open XA . But the inclusion U °-> X does not induces 

the trivial homomorphism on fundamental groups if TII(XA) ^ 0 for infinitely many 

A. Since this was for arbitrary U, we must have ^ ^ ( X A ) = 0 for all but finitely many 

A 6 A. • 

Proposition 4.10 Let {XA} be a family of spaces such that ^ ^ ( X A ) is discrete, X = 13A XA, 

and p\ : X —> XA be the projections. The natural map (j) : n°p(X) —> I 1 A ^ ( X A ) , 

<P([f]) = (t/̂ A ° /]) is an isomorphism of topological groups. 

Proof. It is a basic fact of algebraic topology that <p is a natural group isomor­

phism. By Lemma 1.6, î  : Q(X) -* II A ^ ( X A ) , 4>(f) = (PA ° / ) is a homeomorphism. 

Applying 7i[)
op we get a homeomorphism T T ^ X ) -» "o^dlA^CXA)). Since each 

71Q°P(Q(XA)) = ^ ^ ( X A ) is discrete, Corollary 3.12 applies and the canonical map 

UQ (IIA ^ ( X A ) ) —> I1A ^ ^ ( X A ) is a homeomorphism. Taking composites, we ob­

tain the desired homeomorphism TC1°P(X) = IIA T I ^ X A ) . • 

Example 4.11 If X is the countable product X = Il„>i S1, then n°v(X) is isomorphic 
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to the non-discrete topological group nn>i ^ which is the countable product of 

discrete free cyclic groups. Interestingly, this space is not semilocally 1-connected. 

Corollary 4.12 lf{X\} is a (countable) family of spaces where each X\ has the homotopy 

type of a CW-complex or manifold, then n°p (\JA XA) is a (metrizable) topological group. 

It is often difficult to determine the existence of separation properties in qua-

sitopological groups. These complications are evident even in simple examples. 

In [Bis02] and [Fab05a], it is shown that the harmonic archipelago H A (a non-

compact subspace of R3), introduced in [BS98], satisfies: n°p (HA) is an uncount­

able, indiscrete group. The next example is a simple metric space with fundamental 

group isomorphic to the indiscrete group of integers. 

Figure 2: The harmonic archipelago [BS98] 

Example 4.13 Let S1 = {(x, y, 0) e R3|x2 + y2 = 1} be the unit circle in the xy-plane 

of R3. For all integers n > 1 let 

Cn = Ux,y,z)eR3\lx--\ +y2+z2 = (l + -

Now let X = S1 U (U„>iC„) have basepoint (-1,0,0). This may be viewed as 

a sequence of spheres whose equators converge to a circle where the circle and 
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spheres all have exactly one point in common. This is a non-compact space and 

is weakly equivalent to the wedge of spheres S1 V (V«>i S2) (which has discrete 

fundamental group). We have 7ti(X) = Z , however, every open neighborhood 

W of a loop a : S1 —> S1 c X contains a loop /3 : S1 —> UM>i C„ c X which is 

null homotopic. Therefore every open neighborhood of the class [a] in n°p(X) 

contains the identity [cx]. Thus [cx] = [a] for each [a] e n^p(X) and since every open 

neighborhood of [cx] contains [cx] = TI^P(X) the topology of n°p{X) is the indiscrete 

topology. This example also illustrates how weakly equivalent spaces may have 

fundamental groups with non-isomorphic topological structure. 

Since there are simple spaces with non-trivial, indiscrete fundamental group, 

we cannot take any separation properties for granted. The following is a simple 

characterization of spaces X for which n^(X) is T\. 

Proposition 4.14 Suppose (X,x) is path connected and n : Q(X) —» ^^(X) is the 

canonical quotient map. The following are equivalent: 

1. Whenever a, § £ O(X) such that [a] ± \fi], there are open neighborhoods A, B of a, p 

respectively, such that n(A) n 71(B) = 0. 

2. For each loop a e Q(X) which is not null-homotopic, there is an open neighborhood 

Vofa such that V contains no null-homotopic loops. 

3. The singleton containing the identity is closed in 7î op(X). 

4. TZJ^X) is T0. 

5. T I ^ ( X ) W T I . 
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Proof. 2. o 3. follows from the definition of the quotient topology and 3. «=> 4. 

<=> 5. holds for all quasitopological groups (A.27). For 1. => 2. suppose a e Q(X) 

such that a ¥ cx. Then there is a neighborhood A of a and B = (I, U) of c* such that 

n(A) n 7i(B) = 0. Clearly [cx] £ n(A) and so A contains no null-homotopic loops. 

Finally, to prove 2. => 1. we suppose a,/3 e Q(X) such that [a] ^ |j6]. Clearly, then 

a * /T1 ^ cx. By assumption, there is an open neighborhood V = fYj=i(K!
n/ Uj) of 

a * /T1 containing no null-homotopic loops. We may assume that n is even. Now 

A = Vjo,1! is a neighborhood of a and B = V7j , is a neighborhood of /J. Suppose 

5 e A and y e B. Since 5 * yx e At0-^ n ( B B ' 1 ] ) = y, the loop 6 * y~l cannot be 

null-homotopic and therefore [6] #= [y]. Therefore n(A) n 7i(B) = 0. • 

Now we relate a modern concept (apparently introduced in [Zas99]) useful in 

the study of wild spaces to separation in topological fundamental groups. 

Definition 4.15 A space X is homotopy Hausdorff at x e X if for each non-trivial 

class g e 7TJ (X, x), there is an open neighborhood U of x in X such that if i: U c-» X is 

the inclusion, then g £ L^n^U, x)) (or equivalently U contains no loops a e Q.(U, x) 

with [a] = g). If X is homotopy Hausdorff at all of its points then we say it is 

homotopy Hausdorff. 

This notion also appears in [FZ07] and [BS98] and is useful for studying gen­

eralized universal covering spaces of locally path connected spaces. The term 

"Hausdorff' is appropriate because X is homotopy Hausdorff if and only if its 

generalized cover (in the sense of Fischer and Zastrow) is Hausdorff. It turns out 

this property is also a necessary condition for the existence of the T\ separation 
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axiom in n^{X). 

Proposition 4.16 If X is path connected and n°p{X) is T\, then X is homotopy Hausdorff. 

Proof. Suppose nt^p(X) is T\ and X is not homotopy Hausdorff at x e X. There is 

a non-trivial class [a] e 7i^(X) such for every open neighborhood 17 of x, there is 

a loop 6 : I —> U based at x such that [5] = [a]. Since n^X) is T\, if a represents 

[a], then there is an open neighborhood n?=i(K£, Uj) of a not containing any null 

homotopic loops. But U\ is an open neighborhood of x and so there is a loop 

6 : I —> U\ based at x such that [5] = [a]. Let j3 : I —> X be the loop defined by 

^K\n = 6_1 / 04 . = aQ' a n d 4̂ = a4 for ^ = 2 ' "" '" ' N o w ^ G n"=i<^L Uj) and 

[jS] = [6_1 * a] — [cXg] which is a contradiction. • 

Proposition 4.17 The converse of Proposition 4.16 is not true even when X is a compact, 

locally path connected subspace o/IR3 or a compact, locally 1-connected subspace ofE.3. 

Proof. For the second statement, we refer to the space A c R3 in [CMR+08]. 

This space is locally path connected and homotopy Hausdorff but n°p(A) is not 

T\. Clearly every neighborhood of constant loop at the origin contains a loop 

homotopic to aba~l as in [CMR+08, Corollary 3.2], where a has image in a fixed 

"connecting arc" touching the origin and b is an embedding S1 —* A of constant 

radius on the "surface." Since all such loops are homotopic, every neighborhood of 

the identity of TI^{A) contains the class [aba"1] and so n^p(A) is not T\. For the sec­

ond example we refer to the results to follow in Chapter 4.2. Take Tc c R2 to be the 

closed topologist sine curve so that TIQP(TC) is homeomorphic to the Sierpinski space 
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S = {0,1} with topology {0, {1}, {0,1}}. The space X = Tc x S^ITC x {(1,0)} = E((TC)+) 

is not locally path connected, but is compact, locally 1-connected, and embeds as 

a subspace of R3. The results of Chapter 4.2 indicate that TL^QC) is a topological 

group isomorphic to the free topological group FM(S). As a group, this is the free 

product Z * Z = (0,1). We also have that every open neighborhood of the generator 

0 contains the generator 1. Clearly this group is not T\ but X is homotopy Hausdorff 

since it is locally 1-connected. • 

The notion of homotopy Hausdorff also provides application to characteriza­

tions of discreteness. It is shown in [FZ07, 4.6] that if X is path connected, first 

countable, homotopically Hausdorff, and 7ii(X) is countable, then X is semilocally 

1-connected. Adding the condition that X be locally path connected and applying 

4.7 and 4.16, we obtain the following: 

Corollary 4.18 Let X be path connected, first countable, locally path connected, and 

homotopy Hausdorff. Ifn^X) is countable, then TI^{X) is discrete. 

It is well known that if X is compact Hausdorff, path connected, locally path 

connected, and semilocally 1-connected, then n^ (X) is finitely generated. Adding 

the condition of compactness to the previous corollary, we find: 

Corollary 4.19 Let X be path connected, compact Hausdorff, first countable, locally path 

connected, and homotopy Hausdorff. Then nt(X) is finitely generated if and only ifnt^p(X) 

is discrete. 

The following is an extension of [CL05, Theorem 2.1] using 4.7. 
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Corollary 4.20 If X is a path connected, locally path connected, separable metric space, 

then X admits a universal cover o X is homotopy Hausdorffand n^X) is countable <=> 

n°p(X) is countable and T\ <& n^iX) is discrete. 

As the continuity of multiplication is critical in proving that every T0 topological 

group is Tychonoff, it can be difficult to recognize separation properties T,-, i > 2 

in quasitopological groups. Additionally the complex nature of homotopy as 

an equivalence relation further complicates our attempt to characterize stronger 

separation properties in fundamental groups with the quotient topology. To be 

able to make any general statement for when n°p(X) is Hausdorff, it is necessary 

to use the basis constructed for arbitrary quotient spaces in Chapter 1.2. We apply 

this construction to the quotient map n : Q(X) —> n°p(X). 

Proposition 4.21 For a path connected, based space (X, x), n°p(X) is Hausdorff if and only 

if for each class [/5] e ^(X) - {[cx]}, there is a pointwise open covering ̂  e Cov(Q.(X)) 

such that 0n([cx], <%) n Gn($\, <%) = 0. 

Proof. If n°p(X) is Hausdorff and [jS] e nt^'(X) - {[cx]}, we can find disjoint open 

neighborhoods W of [cx] and V of [§]• Now we may find pointwise open cover­

ings W = {WaLeQ(X) ,r = {Va}aeo{x) e Cov(Q(X)) such that &n{[cxlW) c W and 

0n([p],V) c V. We let W n V = {Wa n VaUQ{X} e Cov(Q(X)) be the intersection 

of the two. Since f , r < # n f , w e have 0„([cx], W n r ) c ^ ( [ c j , W) c W 

and &n{[§],W n y ) c ffa(\fi],y) c V. To prove the converse, we suppose that 

[/?i] and [/32] are distinct classes in 7r^p(X). Therefore [j3x * jS"1] £ [c ]̂ and by as­

sumption there is a <% e Qw(Q(X)) such that ^([c*], <2r) n ^ ( [ f t * jS"1], ̂ r) = 0. 
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Since right multiplication by [fi2] is a homeomorphism, we have that 0n([fii * 

&21}' ^Otfc] is open containing \fi{[ and #i([cx], ^Olj^] is open containing [jS2]. But 

[ffn{[^ * fcl W)\p2]) n ( ^ ( [ c j , W)\p2]) = 0 and so n^(X) is Hausdorff. • 

Though this proposition is entirely general, it is quite difficult to apply. We 

obtain a more practical approach when we apply results from shape theory. The 

topological shape homotopy groups fc^QC) defined in Chapter 2.5.3 are Hausdorff 

topological groups. The following is also noted: 

Theorem 4.22 If the canonical, continuous homomorphism O : n^X) —» fi^{X) is 

injective, then nt^p{X) is a functionally Hausdorff quasitopological group. 

Some recent results on the injectivity of O : n°p(X) —> n°p(X) include [CC06, 

EK98,FZ05,FG05]. Perhaps most notably, O is injective when X is a 1-dimensional 

compact Hausdorff space or an arbitrary subspace of R2. The converse of Theorem 

4.22 is false. 

Example 4.23 Consider the path connected, semilocally 1-connecetd but non-

locally path connected space (Z+,zQ) of [FG05, Example 2.4]. It is easy to see 

that 7i*op(Z+) = 7r^(Z+) = Z is discrete, free cyclic (and therefore functionally Haus­

dorff). Fischer and Guilbault note 7ii(Z+) = Z but that $ : nx (Z
+) -» 7ti(Z+) is the 

trivial homomorphism. 

Example 4.24 For integer n > 1, let C„ c R2 be the circle of radius ~n centered at 

[z,OJ. The one point union H E = U«>i Cn is the Hawaiian earring and is one of the 

most fundamental examples in the study of nt°p. 
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Figure 3: The Hawaiian earring. Any open neighborhood of the origin contains all but finitely 
many of the Cn. 

It was first proven in [MM86] that® : n°p(HE) -* 7t^(HE) isinjective. Though 

it is asserted in [Bis02] that <I> is a topological embedding, Fabel [Fab05b] has shown 

this to be false. Fabel has also shown that n°p(HE) is not first countable [Fab06] 

and fails to be a topological group [Fab09]. 

In general, determining when topological fundamental groups are regular or 

Tychonoff remains a challenging problem. As noted in [Fab09], it is not even known 

if 7i*op'(ME) is regular. 

4.1.3 Covering spaces and n^ 

We strengthen Theorem 4.7 through application of covering spaces. A covering 

map is an open surjection p : X —> X such that for each x e X, there is an evenly 

covered neighborhood U of x, i.e. p~l(U) = IJA ^A such that for each A, the restriction 

V\ —» U of p is a homeomorphism. The space X is a cover of X and we will 

always assume covers are path connected. A covering map is trivial if it is a 

homeomorphism. We refer to [MunOO] for basic facts regarding covering maps. 

It is easy to see that the collection of neighborhoods of the form V\ form a basis 
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3%v for the topology of X which is closed under finite intersection. This means the 

neighborhoods fXj^iKl, Vj), Vj e 8$v form a basis for the topology of the space of 

paths P(X). Recall that P(X, x) = {a e P(X)|a(0) = x} is the space of paths starting at 

x. 

Lemma 4.25 If p :X^>Xisa covering map and p(x) = x, then p# : Q(X, x) —> Q(X, x), 

a\-^poa = aisan open embedding. 

Proof. Note that p# is continuous by functorality and injective by the uniqueness of 

lifts. Let U — P|y=i(^/ Uj) n Q(X, x) be a non-empty open neighborhood in Q(X, x) 

where each Uj e 3Sr Clearly p#(U) c P\"=1(Ki,p(Uj)) n Cl(X,x). Since U is non­

empty, there is some a e U that is the lift of a = po a e H/LiCK^ pQlj)) n Q(X, *)• The 

lift a is defined as follows: There is a homeomorphism hj: p(LT;) —> 17; such that po/z; 

is the identity of p{Uj). For each t e K]n, we have a(t) = hj o a(t). Note that Uj-\ n Uj 

is non-emtpy (since aeU) and evenly covers p(Uj-i) n p(LT;). Therefore, if/S is any 

other loop in HjLiO^/ p(LT;)) n n ( X ' * ) / t n e unique lift j? e P(X, x) is defined in the 

same way, that is, for each t e K'n, fi(t) = hj °f3(t). Since j3(l) e p_1(x) n U„ = [x], jS is a 

loop in U. Therefore fi £ p#(U) giving the equality p#(U) = fl J=i< *& p(Uy)>n Q PC *)• 

• 

The next few results indicate that the data of path connected covers of an 

arbitrary space are captured as special open subgroups of 7i^(X). 

Theorem 4.26 If p : (X,x) —> (X x) is a covering map, the induced homomorphism 

p*: n^QC, x) —> ^^{X, x) is an open embedding of quasitopological groups. 

Proof. It is known that p» is injective [MunOO, Theorem 54.6] and p* is continuous 
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by the functorality of n^. Suppose U is an open neighborhood in n^(X,x). The 

diagram 

Q(X,x) —^C(Xj) 

7i n 

n^{X,x)^^n^{X,x) 

commutes. Since n : Q(X,x) -* 7it^p(X,x) is quotient, it suffices to show that 

n~1(p,(U)) is open in Q(Xrx0). If a e TCl(p*(U)), [«] lies in the image of p» and 

the unique lift & e P(X,x) of a is a loop in Q(X,x) [MunOO, Theorem 54.6]. Since 

a e n~l{U) and p# is an open embedding (Lemma 4.25), p#(7z_1(ll)) is an open 

neighborhood of p#{&) = poa = a which is clearly contained in 7i_1(p»(LZ)). • 

Theorem 4.26 immediately provides a characterization of discreteness which 

is more general than that of Theorem 4.7 and [CM09] since it applies to many 

non-locally path connected spaces with 1-connected covers. 

Corollary 4.27 IfX admits a path connected, 1-connected cover, then n!^(X) is discrete. 

Proof. If p : X —» X is a covering map and 7ii(X) = 1, the inclusion 1 —> ^(X) of 

the identity is an open embedding. Since the singleton containing the identity in 

n°v{X) is open and translations in quasitopological groups are homeomorphisms, 

rc^X) must be discrete. • 

This gives a very general condition to imply countability in fundamental groups. 

Corollary 4.28 If X is a separable metric space with a 1-connected cover, then 7i^(X) is 

countable. 

Proof. By the previous corollary, n^p{X) is discrete. It follows from Proposition 
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2.67 that if X is a separable metric space, then n^(X) is countable. • 

Upon seeing Theorem 4.25, one might be tempted to extend the known clas­

sification of covers to all locally path connected spaces using open subgroups of 

the topological fundamental group, however Proposition 4.30 below indicates the 

unlikelihood that every open subgroup H will admit a covering map p : X —» X 

such that p,{n^{X)) = H. 

Definition 4.29 Let H be a subgroup of ^ (X, x). We say X is semilocally H-connected 

if every point y e X is contained in a neighborhood U such that for every y e Q(l£ y) 

and paths a,/5:1 —> Xfrom x to y where [a * /T1] e H, we have [a*y* /T1] e H. 

Note that if H is the trivial subgroup, X is semilocally H-connected if and only 

if X is semilocally 1-connected in the usual sense. 

Proposition 4.30 If p : (X, x) —> (X, x) is a covering map and H = p, ( ^ ( X , x)j, then X 

is semilocally H-connected. 

Proof. Let U be an evenly covered neighborhood of y e X. Let y e Q(U, y) and 

paths a, jS : I -> X from x to y such that [a * /T1] e H. Since a * £ - 1 e H, the lift of the 

loop a * p~l is the loop & * fT1 in X based at x. If p-1(L0 = I I \ VA, then let VA0 be the 

V"A which contains <J(1) = j?(l). Let /z0 : U —> V\0 be the homeomorphism such that 

poho = idu. Since y has image in U, the lift of 5 = a * y * /3-1 is 5 = & * (ho o y) * /T1. 

Since 5 € Q(X, x), it follows that p,(5) = [po5] = [a*y* jS-1] e H. • 

If G is a quasitopological group and H is an open subgroup, the set of right 

cosets G/H with the quotient topology with respect to the projection G —> G/H, 

g i-> gH is a discrete space since all cosets are open. 
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Corollary 4.31 [MunOO, Theorem 54.6] Let p : (X, x) —» (X, x) be a covering map and 

H = p, (n^(X, x)J. The lifting correspondence <E>: ntfp(Xx)/H —> p~x{x), [a]H i-» a(l) 

is fl bisection of discrete spaces. 

Regarding spaces with indiscrete topological fundamental group, we have: 

Corollary 4.32 IfX is path connected and n°p(X) is non-trivial has the indiscrete topology, 

then every covering map p : X —> Xis trivial. 

Proof. Suppose p : (X, x) —» (X, x) is a covering map such that the cardinality of 

p~l{x) is greater than 1 and n°p(X,x) is non-trivial and indiscrete. Since n^p(Xx) 

does not have the discrete topology H = p*(n°p(X,x)j cannot be the trivial sub­

group. Since \TI°P(X,X)/H\ = \p~l(x)\ > 1, H must be a proper subgroup. By 

Theorem 4.25, p, {n°p(X, x)J is a non-trivial, proper open subgroup of n^X, x) con­

tradicting the fact that 7i^(X x) has the indiscrete topology. • 

4.2 A computation of 7rfp(Z(X+)) 

In this chapter, we describe the isomorphism class of n°p(L(X+)) in the category 

of quasitopological groups for an arbitrary space X. 

4.2.1 The spaces E(X+) 

Let X be an arbitrary topological space and X+ = X U {*} be the based space 

with added isolated basepoint. Let 

(L(X+),x0) - ( X x { a i
+

}
X

u W x I ' * o ) 
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be the reduced suspension of X+ with canonical choice of basepoint and x A s denote 

the image of (x,s) e X x 7 under the quotient map X+ x 7 —> £(X+). For subsets 

A £ X and S c 7, let A A S = {a A s\a e A, s e S}. A subspace P A 7 where P e 7i0(X) is 

a path component of X is called a foop of £(X+). 

Suppose £$x is a basis for the topology of X which is closed under finite inter­

sections. For a point x A t e X A (0,1) = £(X+) - {x0}, a subset 17 A (c, d) where x € 17, 

17 e ^ x and £ e (c, rf) c (0,1) is an open neighborhood of x A t. Open neighborhoods 

of x0 may be given in terms of open coverings of X X {0,1} in X x 7. If IF e 3§x is an 

open neighborhood of x in X and tx e (0, | ) , the set 

|J (IP A [0,^(1-^,1]) 
xeX 

is an open neighborhood of x0 in £(X+). The collection &L(X+) of neighborhoods 

of the form L7 A (c, d) and Uxex ( ^ A [0' k) u (1 - ^/1]) is a basis for the topology 

L(X+) which is closed under finite intersection. The following are obvious facts 

regarding £(X+). 

Remark 4.33 For an arbitrary space X, 

1. £(X+) is path-connected. 

2. L(X+) - {x0} = X A (0,1) = X x (0,1). 

3. Every basic neighborhood V e &L(x+) containing xQ is arc connected and 1-connected. 

4. For each t e (0,1), the closed subspaces X A [0, t] and X A [t, 1] are homeomorphic to 

CX the cone ofX, and are contractible to the basepoint point XQ. 
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5. E(X+) is Hausdorff if and only ifX is Hausdorff, but the following holds for arbitrary 

X: For each point x A t e X A (0,1), there are disjoint open neighborhoods separating 

x At and the basepoint x0. 

Remark 4.34 It is a well-known fact that the reduced suspension functor E : 

Top, —* Top, is left adjoint to the loop space functor Q : Top, —> Top,. Additionally, 

adding isolated basepoint to an unbased space (-)+ : Top —> Top, is left adjoint 

to the functor U : Top, —» Top forgetting basepoint. Taking composites, we see 

the construction £((-)+) : Top —> Top, is a functor left adjoint to UO. For a map 

/ : X -» Y, the map E(/+ ) : E(X+) -> E(Y+) is defined by E(/+)(x A s) = f{x) A s. The 

adjunction is illustrated by natural homeomorphisms 

M,(E(X+), Y) = M,(X+,Q(Y)) s M(X, LTQ(Y)). 

This adjunction immediately gives motivation for our proposed computation 

of7i;op(E(x+)). 

Proposition 4.35 Every topological fundamental group 7^°P(Y) is a quotient quasitopo-

logical group ofn°p'(E(X+)) for some space X. 

Proof. Let cu : E(Q(Y)+) -» Y be the adjoint of the unbased identity of Q(Y). The 

basic property of counits gives that the unbased map LZD(cw): Q(E(Q(Y)+)) —> Q(Y) 

is a topological retraction. Applying the path component functor, we obtain a group 

epimorphism 7z1°
p(E(Q(Y)+)) —» n^p(Y) which is, by Remark 3.5, a quotient map of 

spaces. Take X = Q(Y). • 
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Since a quotient group (with quotient topology) of a topological group is itself 

a topological group, the spaces £(X+) are prime candidates for counterexamples to 

the claim that n^ takes values in TopGrp. 

It is convenient to view the spaces £(X+) as generalized of wedges of circles. 

Intuitively, one might think of £(X+) as a "wedge of circles parameterized by the 

space X." Let Vx S1 be the wedge of circles indexed by the underlying set of X. 

Suppose e : I —> S1 is the exponential map and a point in the x-th summand of 

the wedge is denoted as e(t)x for t e I. The pushout property implies that every 

map / : X —> Y induces a map Vx S1 —> Vy S1 given by e{t)x i-> e(0/(*) for all t e 7, 

x e X. It is easy to see that V(-) S1 : Top —> Top, is a functor which we may relate 

to £((-)+) in the following way. 

Remark 4.36 There is a natural transformation y : V(-) S1 —» £((-)+) where each 

component yx : Vx S1 —> ^<(X+) given by yx(e(0^) = x A f is a continuous bijection. 

Moreover, yx is a homeomorphism if and only X has the discrete topology. 

Proof. Clearly, if X is a discrete space, then yx is a homeomorphism. If X is not dis­

crete, let dX denote the underlying set of X with the discrete topology. The identity 

id : dX —> X is continuous and induces the bijection yx - ydx°id : Vx-S1 - ^(dX+) —» 

E(X+). Naturality follows from the equation £(/+)(x A t) = f(x) A t = yy(e(t)f(x)). • 

According to this remark, if X has the discrete topology, then £(X+) is home-

omorphic to a wedge of circles. By the van Kampen Theorem and Theorem 4.7, 

nt°p(L(X+)) must be isomorphic to the discrete free group F(X). We will see later on 

that 7i]
op(E(X+)) is discrete if and only if X is semilocally O-connected. 
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Example 4.37 Let X = N* = {1,2,..., 00} be the one-point compactification of the 

discrete space of natural numbers. The suspension Z((N*)+) is a one-dimensional 

planar continuum which is not locally path connected. If dX is the underlying set of 

X with the discrete topology, the identity dX —> X induces the continuous bijection 

7x : Vx S1 —» £(X+) which is a weak equivalence but not a homotopy equivalence. 

Figure 4: E((N*)+) 

4.2.2 The fundamental group 7i1(L(X+)) 

To compute 7r1(E(X+)), we relate free topological monoids to 7i*op(L(X+)), via the 

unbased fames map u : X —» Q(E(X+)), u(x)(t) = ux{t) = x A t. Since u is the adjoint of 

the identity of E(X+), it is natural in X. Define a function f : MT(X) -> Q(E(X+)) 

taking the empty word to the constant map and ^(x^x^ • • • xe
n
n) = *"=1 f uj\. 

The following lemma is a direct consequence of the Lebesgue lemma, Theorem 

1.20 and our choice of basis 3§-L(x+y 

Lemma 4.38 A convenient neighborhood base of the loop ux in Q(E(X+)) is of the form 

ofxQ in E(X+) and U e g$x is an open neighborhood ofx in X. 

Corollary 4.39 A convenient neighborhood base of the loop ^(x^x^ •••xe
n") = *"=1 \u

e
x') 
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in Q(E(X+)) is of the form <% = nf=i \K) where % is an open neighborhood ofuXj as in 

the previous lemma. 

Proposition 4.40 J? : M*T(X) —> Q(E(X+)) is a topological embedding natural in X. 

Proof. Clearly, ^ is injective. The James map u : X —> Q(E(X+)) induces a 

continuous homomorphism MT{u) : M*T(X) -* MJ,(Q(L(X+))), xe^...xeJ H-» ue
x\...ux\ 

Let c : M*T(Q(E(X+))) -> Q(E(X+)) be concatenation a*...a£" i-» a*1 * • • • * a£
n\ Since 

n-fold concatenation Q(E(X+))" -> Q(E(X+)) and inversion Q(E(X+)) -> Q(E(X+)), 

a H-» a - 1 are continuous, c is also continuous. The composite / = co MT{u) 

Jf'j " is an open neighborhood of 

*?=1 (i£j.) in Q(E(X+)) where each % is as in Lemma 4.38. Then U = Ue
1
1...lfn

n is an 

open neighborhood of x^x^ . . . x̂ " in M*T{X) such that 

jf{U) = fa («*) |y,- e u,.} = «r n f{Mr{X)) 

Therefore ^ is an embedding. To check naturality, we let / : X —» V be a map of 

spaces and check that the diagram 

AfT(X) — ^ — > ivrr(X) 

Q C W ) Q(Z(/+)) >Q(£(Y+)) 

commutes in Top. Let w = x^.-x^ € M*T(X) so that J o M*T(/) = *?=1 (««x<)). But we 
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also have 

Q(E(/+)) o Sty) = E(/+) o ( ^ („«)) = ̂  (E(/+) O <;) = *»=1 („JjJ 

where the last equality follows from the naturality of u :id-> Q(E((-)+)). • 

Remark 4.41 This construction follows the well-known James construction [CM95, 

5.3] used originally by I.M. James to study the geometry of Q(EZ, *) for a connected 

CW-complex Z. 

Throughout the rest of this section, let nx : X -> n°p(X) and 7iQ : Q(E(X+)) -» 

7r*op(E(X+)) denote the canonical quotient maps. To compute 7T*op(E(X+)), we must 

first understand the algebraic structure of 7i1(E(X+)). We begin by observing that 

the James map u : X —» Q(E(X+)) induces a continuous map w» : TC^X) —> 

7i[)
op(Q(E(X+))) = 7i^op(E(X+)) on path component spaces. The underlying function 

u,: 7i0(X) —> 7i1(E(X+)) induces a group homomorphism /zx : F(nQ(X)) —> 7i1(E(X+)) 

on the free group generated by the path components of X. In particular, hx takes the 

reduced word P^P^ • • • P£* (where P,- e n0(X) and e{ e {+1}) to the homotopy class 

[i4j * ue
x\ * • • • * ux

k
k] where xt e P, for each i. We show that hx is a group isomorphism. 

Remark 4.42 hx is the unique group homomorphism making the following dia-
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gram commute. 

M*(X)—^^Q(E(X+)) 

M*(TIX) ^ u 

M*(n0(X)) - ^ F(7t0(X)) - ^ TH^X+J) 

Definition 4.43 A loop a G M((7, {0,1}), (Y, {y})) is simple if a_1(y) = {0,1}. The 

subspace of M((I, {0,1}), (Y, {y})) consisting of simple loops is denoted Os(Y). 

Remark 4.44 Qs is not a functor since it is not well-defined on morphisms. It is 

easy to see, however, that Qs(E((-)+)): Top —> Top is a functor. 

The map X -*• {*} collapsing X to a point induces a retraction r : E(X+) —> 

ES° = S1. This, in turn, induces a retraction r» : 7i*op(E(X+)) —» 7r*op(S1) = Z onto 

the discrete group of integers. By the previous remark, if a G QS(E(X+)), then 

r o a : I —> S1 is a simple loop in S1. But the homotopy class of a simple loop in S1 

is either the identity or a generator of n°p(Sl). Therefore ?"»([«]) must take on the 

value l / O o r - l . 

Definition 4.45 A simple loop a G QS(E(X+)) has positive (resp. negative) orientation 

if [a] G ^ ( 1 ) (resp. [a] G r~l{-l)). If [a] G ^(0), then we say a has no orientation 

and is trivial. The subspaces of Os(E(X+)) consisting of simple loops with positive, 

negative, and no orientation are denoted Q+S(E(X+)), Q_S(E(X+)), and Q0s(E(X+)) 

respectively. 

The fact that Z is discrete, allows us to write the loop space Q(E(X+)) as the 

disjoint union of the subspaces ^ ( / -^ (n ) ) , n G Z. Consequently, we may write 
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QS(L(X+)) as disjoint union 

QS(£(X+)) = Q+S(E(X+)) U Q0s(E(X+)) U Q_S(E(X+)). 

We also note that Q_S(E(X+)) = Q+S(£(X+))_1. Thus loop inversion give a homeo-

morphism Q+S(E(X+)) = Q_S(E(X+)). The next two lemmas are required to prove 

the surjectivity of hx-

Lemma 4.46 A simple loop a e QS(Z(X+)) is null-homotopic if and only if it is trivial. 

Proof. By definition, a simple loop which has orientation is not null-homotopic. 

Therefore, it suffices to show that any trivial loop is null-homotopic. If a is trivial, 

then a does not traverse any hoop of E(X+), i.e. there is a t e (0,1) such that a has 

image in either X A [0, t] or X A [t, 1]. By Remark 4.33.4, a is null-homotopic. • 

The subspaces P A (0,1), P e n0(X) are precisely the path components of X A (0,1). 

Therefore, if p : I -> L(X+) is a path such that p(0) e Pi A (0,1) and p(l) € P2 A (0,1) 

for distinct Pi, P2 e TZO(X) (i.e. the endpoints of p lie in distinct hoops and are not 

the basepoint x0), then there is a t € (0,1) such that p(t) = x0. This implies that the 

image of each simple loop lies entirely within a single hoop. 

Lemma 4.47 If simple loops a and f$ have the same orientation and have image in the same 

hoop P A I, then they are homotopic. 

Proof. Suppose a and $ have positive orientation and image in P A I. Since P A (1,0) 

is a path component of X A (0,1), we may find a t e (0,1) and a path p:I^> X A (0,1) 

116 



such thatp(O) = a{t) and p(l) = p(t). Now 

«[o,ti * p * p ^ a n d S i ] * P - 1 * a tui 

are trivial simple loops which by the previous lemma must be null homotopic. This 

gives fixed endpoint homotopies of paths 

aW] - ftaq * P_1 and «[t,i] - p * pV,i] 

The concatenation of these two gives 

a ^ am *a [ U ] « /3[(W] *p~x*p*p[til] a jS[(W] * p"[u] ^ £. 

One may simply invert loops to prove the case of negative orientation. • 

The next two statements are required to prove the injectivity of hx-

Lemma 4.48 If w = P^1... P^n e F(n0(X)) is a non-empty reduced word such that 

YH=\ ei £ 0, then hx(w) is not the identity ofnl(L(X+)). 

Proof. The retraction r : £(X+) —> S1 induces an epimorphism r* : 7T1(E(X+)) —> Z 

on fundamental groups, where r,([ux]
e) = e for each x£ X and e £ {±1}. Therefore, 

if Ltiei * °' then n{hx(w)) = n([ux\ *•••* ue
x
n
n]) = Ltiei * ° (where x{ e P,) and 

hx{w) cannot be the identity of 7i1(E(X+)). • 

Remark 4.49 Let P^ ... Pi" e F(7i„(X)) be a reduced word. 

117 



1. If 1 <k<m<n, the subword P^... P^ is also reduced. 

2. If n > 2 and E"=i e,- = 0, then there are i0, ix e {1,2,..., n\ such that Pio ± Ph. 

Theorem 4.50 hx : F(n0(X)) —»7ri(L(X+)) z's a natural isomorphism of groups. 

Proof. To show that hx is surjective, we suppose a e Q(£(X+)) is an arbitrary loop. 

The pullback a_1(E(X+) - {x0}) = ]Am€M(cm,dm) is an open subset of (0,1). Each 

restriction am = oc^^] is a simple loop, and by 4.33.5, all but finitely many of the 

am have image in the 1-connected neighborhood X A |o, ^j U (| , ll . Therefore a is 

homotopic to a finite concatenation of simple loops ami * am * •••* amn. By Lemma 

4.46, we may suppose that each am has orientation e,- e {±1} and image in hoop 

Pi A I. Lemma 4.47 then gives that am ^ ue
x\ for any xt e Pt. But then 

hx(P*I* ... K") = [u% *u%*---* u%\ = [am *am2*---*amn] = [a]. 

For injectivity, we suppose w = P^P^...P% is a non-empty reduced word in 

F(7t0(X)). It suffices to show that hx{w) = \ue
x\ *ue

x\*---*ux"\ is non-trivial when 

Xi e P{ for each i. We proceed by induction on n and note that Lemma 4.48 gives 

the first step of induction n = 1. Suppose n > 2 and hx(v) is non-trivial for all 

reduced words v - Q-^Q^ • • • Q- of length ;' < n. By Lemma 4.48, it suffices to 

show that hx(w) = Yux\ * ux\ * • • • * ux
n

n\ is non-trivial when £"=i e, = 0. We suppose 

otherwise, i.e. that there is a homotopy of based loops H : I2 —> £(X+) such that 

H(t, 0) = x0 and H(t, 1) = (ux\ *ue
x\*---* <"„) (t) for all t e I. For ;' = 0,1,..., In, we let 

bj = (^, l j e i2. Remark 4.33.5 indicates that the singleton {x0} is closed in £(X+) so 
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that H 1(x0) is a compact subset of P. Since each ue
x. is simple we have that 

« - i 

H-^o) 0 d(I2) = {0,1} x IU 7 x {0} U ]J{&2,} 
l'=l 

where <? denotes boundary in R2. We also have that H(b2i-i) = ux\(^) = %if\\± Xo 

for each i = 1,..., n. This allows us to find an r0 > 0 so that when Uj = B(b2i-v rQ) n I2 

is the ball of radius r0 about b2i-i in I2, we have H_1(x0) n (J"=i LZy = 0- Now we find 

an r-i e (0, r0) and cover H_1(x0) with finitely many open balls V; = B(zi, r{) C\f so 

that 

n 
( n \ / i r 1 \ /7 1 
IJUi =0andH |JV, c[o,£ju(-,l 

vj=l / V / / 

A X 
V / / 

(which is possible since H is continuous). Note that if q ; I —> |J ; Vi is a path with 

endpoints q(0), q(l) e H_1(xo), then the loop H o q : I —» £(X+) is based at Xo and has 

image in the 1-connected neighborhood XA| 0, g)u(f / lj/ and therefore mustbenull-

homotopic. We note that there is no path q : I —> (J/ Vi such that q(Q) = b^, (̂1) = b2m 

for 1 < k < m < n. If q : I —» U/ Vi is such a path, the concatenation u**̂  * u ^ * • • • * u£
x™ 

isnull-homotopicsinceHogisnull-homotopicand(Ho q) ^ ux
k
k
+

+\*ue
x
k^+

2
2*- • •**4™. This 

means that fcx fe^+2 • • • -P̂ ") = [M*£! * M3£ * *'- * M ^ ] i s t h e identity of n1(E(X+)). 

But by Remark 4.49.1 f^+jP^ • • • ̂ T is a reduced word of length < n and so by our 

induction hypothesis hx yk+l^k+l*'' ^m) cannot be the identity. 

Since such paths q do not exist, each b2i lies in a distinct path component (and 

consequently connected component) of U; Vi for each i = 1,..., n. Let Q = U^ij VJ 

be the path component of U; Vi containing b2\. But this means the b^-i/ * = 1/ — / w 
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all lie in the same path component of Z2 - \JiVi. Specifically, the subspace 

d(f)-\Jvi u\d \JQ 
( n \ 

I ) 

-d(f) 
\ i=l I 

is path connected and contains each of the &2/-1- Since we were able to assume 

that YLiei = 0, we know by Remark 4.49.2 that there are io, h e {1, —, n] such that 

Pio £ Pjj. We have shown that there is a path p : I —> I2 - \Jl Vj with p(0) = fe^-i a n ( i 

p(l) = &2ii-i- But thenHop : / - > E(X+)isapathwithx0 <£Hop(I),H(p(0)) = ±Axio, 

and H(p(l)) = | A x^. But this is impossible as H(p(0)) and H(p(l)) lie in different 

hoops of £(X+). Therefore M*} * ue
x\ * •• • * ue

x
n

n cannot be null-homotopic. 

To check the naturality of hx we use the following cubical diagram: 

HMX)) 
F(f.) 

•+Ffa>00) 

M*(TT0(X)) 

M*(71X) 

iVT(X) 

iVT(H0(y)) 

Af(7Iy) 

W+)). 

hY 

•7H(E(Y+)) 

ncjo^/ 

M*(/) 
->M*(Y) 

in Mon. Here / : X —> Y is a map of spaces and /» : TI0(X) —» 7i0(Y) is the induced 

function. The left and right squares commute by Remark 4.42. The top (resp. 

bottom) square commutes by the naturality of R (resp. TIQ O ̂ ) . The front square 

commutes by the functorality of M* and the naturality of n : id —» nQ. Since 

R o M*(7TX) : M*(X) —> F(7i0(X)) is surjective, the back square commutes. This is 
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precisely the naturality of hx- In particular, if W e F(n0(X)) and R o M{ux){w) = W, 

then 

hY o F(/»)(W) = hYoRo M{f,){M{nx){w)) = hYoRo Af (7iY) o M{f){w) = 

= J oM*(f)(w) = (E(/+)), o J(W) = (E(/+)), ohxoRoM(nx)(w) = 

= (E(/+)), o hx(W) 

Corollary 4.51 The fibers of the map TIQ. O ̂  : M*T(X) -» n°p(L(X+)) are equal to those 

ofR o MT(nx): M*r(X) -> M ^ T T ^ X ) ) -» F(TT0(X)). 

Since ux ^ uy if and only if x and y lie in the same path component of X, we denote 

the homotopy class of ux by [up] where P is the path component of x in X. Thus 

{[uP]\P e 7i0(X)} freely generates TI1(L(X+)) and the map u. : n^(X) -> 7if(i:(X+)) 

is the canonical injection of generators. 

The James map u : X —> Q(E(X+)) has image in Q+S(E(X+)) and the map u : X —> 

Q+S(E(X+)) with restricted codomain induces a continuous bijection w, : n^X) —> 

7z*op(Q+s(E(X+))) on path component spaces. The fact that this bijection is also a 

homeomorphism is an obvious consequence of the next lemma which is to be used 

in the proof of Theorem 4.53. For a map / : X —> Y, let /,» = n ^ M ^ / ) ) be the 

induced, continuous, involution-preserving monoid homomorphism. 
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Lemma 4.52 The fames map w : X —> Q+S(E(X+)) induces a natural isomorphism ofsemi-

topological monoids with continuous involution u,» : n^{MT{X)) —»n^ (M*T(Q,+S(L(X+)))). 

Proof. We note that on generators «»» is given by w*»(P) = [uP]. The naturality of 

T/> : 7i0(M*(-)) —> M*(TIO( -)) applied to the James map makes the following diagram 

commute in the category of monoids (without topology) 

n0(M*T(X)) ^ ,M (7i0(X)) 

u.. AT(u.) 

7z0(M*T(Q+s(E(X+)))) <—ii M(nQ(Q+s(L(X+)))) 
V ,Q+S(E(X+)) 

Since M» is a bijection,M*(M») is a monoid isomorphism. Therefore iu : n^{M*T(X)) —> 

71^ fM^(Q+s(E(X+)))j is a continuous, involution-preserving monoid isomorphism 

and it suffices to show the inverse is continuous. Letr : Q+S(E(X+)) —> M((0,1), (0, l)x 

X) be the map taking each positively oriented simple loop a : I —> E(X+) to the 

restricted map a\m) : (0,1) -> X A (0,1) = X x (0,1) and p : M((0,1), X X (0,1)) -» 

M((0,1), X) be post-composition with the projection Xx (0,1) —> X. For any £ e (0,1), 

consider the composite map 

v : Q+S(S(X+)) - ^ (0,1) x Q+S(E(X+)) idX(p°r) > (0,1) x M((0,1), X) 2 — > X 

where ;'f(«) = (£,a) and ez> is the evaluation map ev(t,f) = f(t). If a e Q+S(E(X+)) 

such that a(t) = x A s, then i?(a) = x. It is easy to check that the continuous 

homomorphism v** : TTQ°P(A1^(Q+S(E(X+)))) —> 7ip0p(M^(X)) is the inverse of u»» since 

on the generator [uP] of 7i[)
op(A^,(D+s(E(X+)))), we have v„([uP]) = v**([ux]) = P 

122 



(where x e P). m 

4.2.3 T I ^ X ^ S F ^ T ^ X ) ) 

Recall the definition of PR(Y) for quotient map q : X —» Y from the Appendix 

A.3. We are interested in the case q = nx which results in the quasitopological 

group F*x (n^(X)). By construction F£x (n^(X)) is the quotient space of M*T(X) 

with respect to the canonical map M*T(X) —» F(7i0(X)). The main theorem of this 

chapter is 

Theorem 4.53 hx : F^x (^^(X)] —» 7i^op(L(X+)) is a natural isomorphism of quasitopo­

logical groups. 

This theorem is particularly powerful in that X may be any topological space. 

Since F^JY) is a topological group if and only if id : F^(Y) = FM(Y), a direct conse­

quence of this theorem is that: 

Corollary 4.54 n°p(T,(X+)) either fails to be a topological group or is the free topological 

group FM(^QP(X)) on the path component space 7i[,op(X). 

Remark 4.55 This description of n°p(L(X+)) becomes remarkably simple when X 

is totally path disconnected (i.e. nx:X= n^p(X)). In this case we have 

<»(E(X+)) = Fl* (itf(X)) = FR «o p(X)) = FR(X). 
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We use the following commutative diagram to prove hx is continuous. 

Q(E(X+))<- MUX) 

na 

top. 

nM*T(X) 

Tt0P< H^(E(X+))^^7i7(M* r(X)) M> x ) 

Here ^ = ^{^) is the map induced by ^ on path component spaces. Recall 

from Corollary 4.51, that the fibers of the composites 7ZQ o jp : M ,̂(X) —»7r*op(E(X+)) 

and K o M\nx) = R o (i/>x o T I ^ ) : M*r(X) ^ F*x « P ( X ) ) are equal. Since 

R o M > x ) : 0 ( X 0 X-1)" ^ F*x «P(X)) 
n>0 

is quotient, the group isomorphism hx : F1^x\nt^p(X)\ —> 7T*°''(E(X+)) is always 

continuous Theorem 4.53 is equivalent to the assertion that hx is open. 

Outline of Proof 4.56 We have already proven that hx is a continuous, group iso­

morphism. To prove that hx is open, we take the following approach: It is shown 

in the proof of Theorem 4.50 that for a e Q(E(X+)), all but finitely many of the 

restrictions ^[Crn,dm] which are simple loops have image in the contractible neighbor­

hood X A [o, l) U (2, l ] . We assign to a, the word @(a) = a[Cmi,dmi]...a[CmnrdmJ where 

the letters &\cm.,dm\ are the non-trivial simple loops. This gives a "decomposition" 

function 2> : Q(E(X+)) -> M*T(Q+S(E(X+))) to the free topological monoid on the 

space Q+S(E(X+)) U Q+S(E(X+))-1 = Q+S(E(X+)) U Q_S(E(X+)) of non-trivial simple 
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loops. The use of this free topological monoid provides a convenient setting for 

forming neighborhoods of arbitrary loops from strings of neighborhoods of simple 

loops and is the key to proving Theorem 4.53 for arbitrary X. 

Step 1: The topology of simple loops 

Throughout the rest of this section let U = X A lo, ̂ J U (|, l l . This is an arc-

connected, contractible neighborhood and by the definition of &z(x+) contains all 

basic open neighborhoods of the basepoint x0. We now prove a basic property of 

open neighborhoods of simple loops in the free path space M(I, E(X+)). Recall that 

basic open neighborhoods in M(Ir £(X+)) are those described in Lemma 1.20 with 

respect the basis &z(x+y 

Lemma 4.57 Suppose 0 < e < | and W = f]f=1(K
l
m, W;) is a basic open neighborhood 

of simple loop a : I —> £(X+) in the free path space M(7,E(X+)). There is a basic open 

neighborhood V0 of x0 in E(X+) contained in X A [0,e) u (1 - e, 1] and a basic open 

neighborhood V = fYj^iKl, Vj) of a in M(I, £(X+)) contained in W such that: 

1. v0 = Vi = V2 = --- = Vi = Vk = Vk+i =••• = Vnforintegersl<l<k<n. 

2. The open neighborhoods Vi+\, •••, Vt-\ are of the form A A {a, b) where A e <%x and 

b-a<e. 

Proof. Let V0 = (Wa n Wm) n (X A [0,e) U (1 - e, 1]) c U. Since @z(x+) is closed 

under finite intersection V0 e £Sz(x+y There is an integer M > 3 such that m divides 

M and a(X^ U Kj}) c V0. Since a is simple we have a ( [ ^ , ^ ] ) c X A ( 0 , 1 ) . 

When p = 2, ...,M - 1 and K^ Q ¥}m we may cover a(Kp
M) with finitely many open 

125 



neighborhoods contained in W, n (X A (0,1)) of the form A A (a, b) where A e 38x 

and b — a<e. We then apply the Lebesgue lemma to take even subdivisions of I to 

find open neighborhoods Y,- = D =I^^N ' "KJ - & W/) °^ t n e restricted path % p . 

Here each YL is one of the open neighborhoods A A (a, b) c W,-. We now use the 

induced neighborhoods of section 1.2 to define 

M - l 

This is an open neighborhood of a by definition, and it suffices to show that V c W. 

We suppose j5 € V and show that jS(K )̂ c W, for each i. Clearly, /3(J^ U K*J) c 

W 1 nW m . I fp = 2 , . . . , M - l a n d ^ c ^ / t h e n ^ e ^ M C Y a n d ^ ( ^ ) = /3^(J)c 

U^x "^M ^ W,-. We may write V as V = n"=i<J%, vj) simply by finding an integer 

n which is divisible by M and every Np and re-indexing the open neighborhoods 

Vo and Y* . In particular, we can set Vj = V0 when KJn c K]^ U K*J. Additionally, if 

H~^ : I —> J^j is the unique linear homeomorphism (as in section 1.2), then we let 

Vj = Yj, whenever 

It is easy to see that both 1. and 2. in the statement are satisfied by V. • 

We note some additional properties of the neighborhood V constructed in the 

previous lemma: 
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Remark 4.58 For each path § e V we have, 

ft 
( l \ û  
u=1 ) 

u 
( n \ \ 

u* 
I /=* )) 

c Uandxo^jS 
(t-i 

u K 
K)=M ) 

This follows directly from the conditions 1. and 2. in the lemma. 

Remark 4.59 It is previously noted that there are disjoint open neighborhoods 

W+, W0, and W_ in M{I, £(X+)) containing Q+S(E(X+)), Q0s(E(X+)), and Q_S(E(X+)) 

respectively. Consequently, if a has positive orientation, then we may take V c JV+ 

such that V n QS(E(X+)) c Q+S(E(X+)), i.e. all simple loops in V also have positive 

orientation. The same holds for the negative and trivial case. In some sense, 

this means that V, when thought of as an instruction set, is "good enough" to 

distinguish orientations of simple loops. 

Remark 4.60 We now give a construction necessary for Step 4 which produces a 

simple loop yv(fi) € V for each path 0 6 V. For brevity, we let [0, r] = Uj=i 1&, 

[r,s\ = UJSn K, and [s, 1] = U ] U K £ and define yv(fi) piecewise by letting S*V(P) 

be equal to jS on the middle interval [r,s] (i.e. <¥v(P)[r,s] = P[r,s])- We then demand 

that yv(P) restricted to [0, r] is an arc in V0 connecting Xo to jS(r) and similarly <?v(P) 

restricted to [s, 1] is an arc in V0 connecting j3(s) to XQ. Since the image of <?v(P) on 

[0,r] U [s,l] remains in y0/ it follows that fv(P) e y. Additionally, Remark 4.58 

and the use of arcs to define yv(fi) means that yv(P) is a simple loop. 

Step 2: Decomposition of arbitrary loops 

Here we assign to each loop in E(X+), a (possibly empty) word of simple loops 
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with orientation. We again use the observation, that Q+S(E(X+)) and Q_S(E(X+)) = 

Q+S(E(X+))_1 are disjoint homeomorphic subspaces of M(I,E(X+)). The free topo­

logical monoid on Q+S(E(X+)) U Q_S(E(X+)) = Q+S(E(X+))_1 is just the free topo­

logical monoid with continuous involution M^(Q+S(E(X+))). We make no distinc­

tion between the one letter word a - 1 in M^(Q+S(E(X+))) and the reverse loop /? = 

a~l e Q+S(E(X+))_1. Similarly, a basic open neighborhood of a - 1 inM^,(Q+s(E(X+))) 

corresponds to an open neighborhood of f> in Q+S(E(X+))_1. We now define the 

"decomposition" function 2 : Q(E(X+)) -> M*r(Q+s(E(X+))). In step 4 we refer to 

the details described here. 

Decomposition 4.61 Suppose /? e M(I, {0,1}; E(X+), {x0}) is an arbitrary loop. First, 

if /? has image contained in U (i.e. $ e (I, U}), then we let @(fi) = e be the empty 

word. Suppose then that jS(I) <£ U. The pullback fi~l{X A (0,1)) = UmeM(cm,dm) is 

open in I where M is a countable indexing set with ordering induced by the ordering 

of I. Each restricted loop f>m = f>\Cm,am\ '• I —> £(X+) is a simple loop. Remark 4.33.5 

implies that all but finitely many of these simple loops have image in U and so we 

may take m\ < ... < m^ to be the indices of M corresponding to those j3mi,..., j3mjt with 

image not contained in U. Note that if C = I - \Jk
i=l{cmi, dmj), then /5 e <C, II). If none 

of the pm have orientation, we again let @(fi) = e. On the other hand, if one of the 

fim has orientation, we let m^ < — < m.in be the indices corresponding to the simple 

loops jSy = §m, which have either positive or negative orientation. We then let @(fi) 

be the word Ptfz-Pn inM*T(Q+s(E(X+))). 

Remark 4.62 Informally, 3>(fi) denotes the word composed of the simple loops of 
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f> which contribute a letter in the unreduced word of the homotopy class \§]. We 

may suppose that /?; has image in Py A 7 and orientation e ; e {±1}, or equivalently 

that [ft] = [uPjYL Clearly p - *)_J] and f£(lfl) = R(F^Kn • • • Kn) e F(n0(X)). 

Step 3: Factoring UQ 

We factor the quotient map 7TQ : Q(L(X+)) —> 7zf
]
op(E(X+)) into a composite using 

the following functions: 

1. The decomposition function 9 : Q(ZL(X+)) -> M*r(Q+s(E(X+))) 

2. The quotient map n8 : M*r(Q+s(E(X+))) -> 7t[)
op(M*T(n+s(E(X+)))) identifying 

path components (homotopy classes of positively oriented simple loops) 

3. The natural homeomorphism M"1 : n^ (AfT(Q+s(E(X+)))) -> T I J ^ M ^ X ) ) of 

Lemma 4.52 

4. The quotient map R o ^ x : n^{MT{X)) -> F*x
 (TZ|,0P(X)) 

5. The continuous, group isomorphism hx : F^* (7Zg0p(X)j —> nt£p(L(X+)) 

We let 7< = R o ̂ x o u;,1 o TZS O & : Q(E(X+)) -> Fn
R

x
 (TIJ^X)) be the composite of 1.-4. 

and 7C' = R o i/>x o u"1 o n s : M*T(Q+S(E(X+))) -> Fn
R

x (n^(XJ) be the continuous (and 

even quotient) composite of 2.-4. 
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Lemma 4.63 The following diagram commutes: 

Q(E(X+)) ^M*T(Q+ S(E(X+))) 

no 

7i7(M^(Q+s(E(X+)))) 

"«.' 

< ( £ ( X + ) ) ^ ^ F * X ( < P ( X ) ) 

The function %) will not be continuous even when X contains only a single point 

(i.e. £(X+) = S1). This is illustrated by the fact that any open neighborhood of a 

concatenation a * a - 1 for simple loop a contains a trivial simple loop /? which may 

be found by "pulling" the middle of a * a - 1 off of XQ within a sufficiently small 

neighborhood of XQ. 

Step 4: Continuity ofK 

Lemma 4.64 K : Q(£(X+)) -> Fn
R

x (n^(X)) is continuous. 

Proof. Suppose W is open in Fn
R

x (n^(X)) and j3 e JT^W). We now refer to the 

details of the decomposition of j3 in step 2. If jS has image in U, then clearly 

/? e (I, (i) c £^_1(e) c JT^W). Suppose, on the other hand, that some simple loop 

restriction j3m. has image intersecting £(X+) ~ U and f?(j5) = jS1j32...jSn is the (possibly 

empty) decomposition of /?. Recall from our the notation in step 2, that /3;- = fimi., 

j = 1,...,n are the j3m. with orientation. Since K' = Ro\pxo u~} ° 7is is continuous, 

(K'THW) is an open neighborhood of 9$) in M*T(Q+S(£(X+))). 
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Recall that j3 e <C, U), where C = I - \Jk
i=i{cmi, dm). We construct the rest of 

desired open neighborhood of jS by defining an open neighborhood of each j6W; and 

taking the intersection of the induced neighborhoods. 

If i ± ij for any j = 1,..., n, then /?mj does not appear as a letter in the decomposi­

tion of § and must be trivial. We apply Lemma 4.57, to find an open neighborhood 

Vt = njIiOKj,,/ V\) of pm, in M(I,E(X+)) which satisfies both 1. and 2. in the state­

ment. By Remark 4.59, we may also assume that V, n QS(E(X+)) c Q0s(E(X+)), i.e 

all simple loops in Vi are trivial. 

If i = ij for some ;' = 1,..., n, then /?;- = §mt has orientation e;. Since (K')_1(W) is an 

open neighborhood of 3>(fi) = fiiPz—fin in M^,(Q+S(E(X+))) and basic open neighbor­

hoods in M^.(Q+S(E(X+))) are products of open neighborhoods in Q+S(E(X+)) and 

Q+S(E(X+))_1, we can find basic open neighborhoods Vi = Cl^iK^ , iffi of jS; in 

M(/,E(X+)) such that 

Wj = Vi} n Q+s(E(X+))e> and hh-h e W1W2...Wn c (K'y\W)-

We assume each V, satisfies 1. and 2. of Lemma 4.57 and by Remark 4.59 that 

Vi} nQs(E(X+))cQ+s(E(X+))e>. 

Let 

t = (C,U)n pfyfc"A ]) 

so that y = <fy n Q(E(X+)) is an open neighborhood of $ in the loop space. We 

claim that each loop y e y is homotopic to a loop / such that 9>{y') e (K')_1(W). If 
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this is done, we have 

hx(K(y)) = 7iQ(y) = na<y) = hx(K(y')) 

and since hx is a bijection, 

K{y) = K(y') = K'(@(y')) e W 

This gives K(Y) Q W, proving the continuity of K. 

We define y' piecewise and begin by setting y'{C) = xQ. The restricted path 

yi = Y[cm,,dmi] '• l ~* L ( X + ) l i e s ^ ^e ° P e n neighborhood &[Cmrdm ] Q Vt. We now 

define y' on \cWi, dmi] by using the construction of Remark 4.60. We set 

y( = (r%mijni] = -KM 

which by construction is a simple loop in V,-. Intuitively, we have replaced the 

portions of y which are close to x0 ("close" meaning with respect to Y) with arcs and 

constant paths. Since y{ — y'{C) = x0 € U and {y')\Cm jm ] £ V, for each i, it follows 

that 7' e y . Moreover, since y (£) # / ( f ) only when y(t) and y'(£) both lie in the path 

connected, contractible neighborhood 17, it is obvious that y - / . It now suffices 

to show that $){y') € {K')~l(W). We begin by checking which of the simple loops 

y{ e y , n Q(L(X+)) have orientation and will appear in the word i^( / ) . If * =£ ij for 

any j , all simple loops in V,-, including y ,•' are trivial. Therefore y{ has no orientation 

and will not appear as a letter in 3>{y'). If this is the case for all i so that ${f) is the 
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empty word, then @(y') must also be the empty word e e (K')~r(W). Suppose on 

the other hand that $(§) = fiife-fin =£ e and i = f; for some ;'. The neighborhood 

V{ = Vtj was chosen so that all simple loops in V) have orientatione;-. Since y{ e V{. 

is simple, it has orientation e ; and we have y{ e ^ f l Q+s(L(X+)f> = Wj. Therefore 

W = Yh'rh-nn'e WiW2...w„ c (x ' r^w).-

Since K is continuous, 7IQ = hx ° K is quotient, and hx is bijective, /ix is a 

homeomorphism. 

4.2.4 The weak suspension spaces wL(X+) and n°p(wL(X+)) 

We pause here to note a deficiency of the suspension spaces £(X+): £(X+) is 

not always first countable at x0. This occurs particularly when X is not compact. 

Proposition 4.65 If X is compact, then there is a countable neighborhood base at the 

basepoint x0 consisting of neighborhoods of the form X A [0, ̂ J u f22 ,̂ l l . 

Proof. If X is compact and V = Uxex ( ^ A [0/ tx) U (1 - tx, 1]) is a basic open neigh­

borhood of x0 in £(X+) for pointwise open cover { IF^x of X m e n w e m a y find 

X\,..,xn such that [LP1,.-.,IF") is a finite subcover. Find an integer n such that 

0 < \ < min, tXi. We now have 

• 

Unfortunately, if X is a non-compact, first-countable (resp. metric) space such as 

Q, then £(X+) may not be first countable (resp. a metric space). For this reason we 
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consider a slightly weaker topology on the underlying set of E(X+), and denote the 

resulting space as wE(X+). A basis for the topology of wL(X+) is given by subsets 

of the form V A (a, b) and X A [o, J) u (sjj1, l ] , for 7 e J x and integer n > 2. The 

identity function id : E(X+) —> ztfE(X+) is continuous since the topology of wE(X+) 

is coarser than that of E(X+). The weak suspension it>E(X+) provides us with some of 

our most interesting examples and has a few advantages over E(X+). 

Fact 4.66 If X is a subspace of R", then wE(X+) may be embedded as a sub-

space of Rn+1. In particular, we may suppose X c [1,2]" x {0} c Rn+1. For 

a = (fli,...,«n/0) e X, let Ca c R"+1 be the circle which is the intersection of the 

n-sphere \x - (x\, ...,x„+i)| | | x - | | | = |||| |] and the plane spanned by vectors a and 

(0,..., 0,1). One can define a homeomorphism ryE(X+) —» IJ^ex C* quite easily. It is 

not necessarily true that E(X+) is homeomorphic to U*sx Q if X is not compact. 

The arguments in this section may be repeated to compute n^ (wL(X+)) or one 

may prove the following theorem. 

Theorem 4.67 The identity map id : E(X+) —> o;E(X+) is a homotopy equivalence and 

therefore induces a natural isomorphism of quasitopological groups id : 7i^p(E(X+)) —> 

7i;°>E(x+)). 

Proof. For 0 < e < *, let He : [e, 1 - e] —» J be the unique increasing linear 

homeomorphism and ce : wL(X+) —» E(X+) be the map collapsing the contractible 

subspace X A [0,e) u (1 - e, 1] to x0 and taking x A f to x A ffe(f) for t e [e, 1 - e]. 

Let c0 = idz(x+). We check that the composites a ° idwr.(x+) : E(X+) —> E(X+) and 

idWL(x+)°Ci : wE(X+) —» w;E(X+) are homotopic to the respective identities. Consider 
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the map h : Xxlxl -+ Xxl given by h(x, s, t) - (x, Hi=t (s)J. Composing with the 

quotient map q : Xx I -» E(X+), we see that q o h : X x 7 x 7 -» E(X+) sends 

A = X x {0,1} x 7 to the basepoint x0. This induces the map G : E(X+) x 7 = 

X x 7 x I/A —> E(X+) which is the homotopy Ci o idwz(x+) - wfe(x+)- It is obvious 

that G : wL(X+) XI —> ifE(X+) is continuous on points in ifE(X+) x 7 - G_1(x0). Let 

17 = X A [0, r) U (1 - r, 1], r < \ be a basic open neighborhood of x0 in if E(X+). Then 

G_1(U) = {(x A f,s)|(2r - l)(f - 1) > 3(s - r)} U {(x A f,s)|(l - 2r)(f - 1) < 3(s + r - 1)} 

is clearly open in wE(X+) x 7. • 

4.3 The topological properties of 7T^(E(X+)) 

We now use the computation of the previous section and the results from the 

Appendix to study the topology of 7i^op(E(X+)). In particular, we are interested in 

classifying the spaces X for which 7iJop(E(X+)) is a topological group. The main the­

orem here (Theorem 4.75) characterizes when 7z^op(E(X+)) is a Hausdorff topological 

group. In the results preceding Theorem 4.75,7i^(E(X+)) need not be Hausdorff. 

Proposition 4.68 (See Lemma A.50) The following are equivalent for an arbitrary space 

X: 

1. nt°p(L(X+)) is a topological group. 

2. 7i*op(E(X+)) is isomorphic to the free topological group FM \nQPPQ)-
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3. The identities F£x (7i[,op(X)j —> FR (n^^X)) —> FM (n^ffl) are homeomorphisms. 

Corollary 4.69 (See Corollary A.51) IfFR(X) is a topological group, then so is 7i^p(E(X+)). 

Corollary 4.70 (See Corollary A.52) If all powers of the quotient map nx : X —> n^(X) 

are quotient and FR (n^p(X)j is a topological group, then nt^p(L(X+)) is a topological group. 

Corollary 4.71 If X is a Tychonoff, kw-space (defined in 1.25), then 7z*op(L(X+)) is a 

topological group. 

Proof. It is shown in [MM073] that if X is a Tychonoff, fc^-space, then (1) 

FM(Y) = h^nFM(Y)n and (2) Rn : 0"=O(X © X"1)' -> FM(X)„ is a quotient map 

for each n > 1. Sipacheva shows in [Sip05, Statement 5.1] that if (1) and (2) are 

true, then R : M*T(X) -» FM(X) is quotient. Whenever R : Afr(X) -> FM(X), FR(X) is 

a topological group. By Corollary 4.69,7i1°
p(E(X+)) is a topological group. • 

Corollary 4.72 (See Example A.53) IfX is an A-space, then n°p(Z(X+)) is a topological 

group which is an A-space. 

Corollary 4.73 If X is first countable and 71Q°P(X) is an A-space, then 7^op(E(X+)) is a 

topological group which is an A-space. 

Proof. Since X and 7ig°p(X) are first countable, Fact 1.24.5 implies that all powers of 

7ix are quotient. By Corollary A.52,7ifp(E(X+)) = F*x (n°p(XJ) s FR ( ^ ( X ) ) . Since 

71Q0P(X) is an A-space, FR (n^(X)) is a topological group which is an A-space by 

Example A.53. • 
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Example 4.74 Let X be either the topologists sine curve 

T = {(0,0)} U Ux,y) e R2|y = s in ( - ) , 0 < x < n\ 

or the closed topologist's sine curve TQ = T U ({0} x [-1,1]). We noted in Chapter 

3 that 71^(7) = n^(Tc) = S where S = {0,1} is the Sierpinski space with topology 

{0, {1}, {0,1}}. By Fact 4.66, wL(X+) embeds into R3. It is locally 1-connected but 

not locally path connected. Since X is first countable and S is an A-space (it is 

finite), the previous Corollary indicates that there are isomorphism n°p(wT,(X+)) = 

7it1°
p(L(X+)) = FM(S) of topological groups. 

A somewhat more practical characterization appears the following Theorem 

which is a special case of A. 67. This theorem reduces the characterization of X for 

which 7z^p(E(X+)) is a Hausdorff topological group to a separation property and 

three well-known classification problems in topology. 

Theorem 4.75 Let X be Hausdorff. Then nt°p(L(X+)) is a Hausdorff topological group if 

and only if the following three conditions hold: 

1. n^(X) is Tychonoff. 

2. F M « p ( X ) ) = limnFM(7i7(X))„. 

3. R„ : 0"=o(7i7(X) 0 nf{Xf1)1 -* FM(n°p(X))n is a quotient map for each n>\. 

4. nn
x : X" —> 7ip0p(X)" is a quotient map for each n>\. 
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The following example is perhaps the most interesting example arising from this 

Theorem: 

Example 4.76 Let X = (0,1) n Q c R and Y = \Jaex c« c R 2 b e a s m F a c t 4-66- This 

space is a locally 1-connected (but non locally path connected), planar subspace 

(whereas £(X+) is not even a metric space). We have Y = wL(X+) ^ 2(X+) and so 

n^(Y) = n°p(Z(X+)) = Ff (n°p(X)) = FR(X) - FR(Q). The last two isomorphisms 

(in qTopGrp) come from the fact that X = Q is totally path disconnected. Since 

X is Tychonoff, Theorem A.67 that FR(X) is a topological group if and only if 

FM(X) = hmnFM(X)n and Rn : 0 " = 1 ( X e XT1)1 -> FM(X)n is quotient for all n > 1. 

However, it is shown in [FOT79] that both of these conditions fail for X = Q. 

Therefore, rc^Y) = FR(Q) is not a topological group. 

Corollary 4.77 n^ : hTop* —» qTopGrp does not preserve finite products. 

Proof. It is a direct consequence of 2.34 and 2.39 that if the canonical (continuous) 

group isomorphism 7^op(X x X) —» 7î op(X) x 7T^(X) is a homeomorphism, then 

n"p(X) is a topological group. Example 4.76 shows that this cannot always happen. 

• 

Applying what we know about powers of quotient maps from Chapter 1.2, we 

have: 

Corollary 4.78 IfX is first countable and 7igDp(X) is a first countable, Tychonoff, k^-space, 

then nt°p(L(X+)) is a Hausdorff topological group. This also holds when we replace "first 

countable" with "locally compact Hausdorff." 
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Proof. If X, n°p(X) are first countable (locally compact Hausdorff) then the powers 

nn
x : X" —» n^{X)n are all quotient. As mentioned in the proof of Corollary 4.71, if 

n°p(X) is Tychonoff and kw, then conditions 2. and 3. of Theorem 4.75 hold. Since 

all conditions of Theorem 4.75 are satisfied, 7i*op(E(X+)) is a Hausdorff topological 

group. • 

We have the following simplification (due to A.65) when X is totally path 

disconnected, i.e. nx : X = n°p(X). Recall that we have n°p(L(X+)) = FR(X) in this 

case. 

Corollary 4.79 Let Xbea totally path disconnected Hausdorff space. Then ntfv(L(X+)) = 

FR(X) is a topological group if and only if the following conditions hold: 

1. Xis Tychonoff. 

2. FM(X) = h^nFM(X)n. 

3. Rn : (J)"=0(X © X_1)! —> FM(X)n is a quotient map for each n > 1. 

Example 4.80 If X is the cantor set, j8N, the one-point compactification of a dis­

crete space, or any other totally disconnected, compact space, then 7i^p(E(X+)) is 

isomorphic to the free topological group FM(X). 

We may also give a nice characterization of discreteness. 

Corollary 4.81 The following are equivalent: 

1. 7r^op(E(X+)) is a discrete group. 

2. ^{X) is discrete. 
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3. X is semilocally O-connected. 

Proof. 1. <=> 2. follows from Corollary A.54. 2. <=> 3. was proven in Proposition 

2.54. • 

Proposition 4.82 (See Theorem A.63) The following are equivalent: 

1. n°p(L(X+)) is Tt. 

2. nx : X —> n^(X) is separating, i.e. for each %i,x2 e Xwith distinct path components 

^x(^i)/ nx{xi)r there are open neighborhood U* ofx{ inXsuch that 7ix(LZ1)n7Tx(Ur
2) = 

0. 

3. The canonical injection Ti°p(Xn) —> Tr^op(E(X+)) is a closed embedding for each n > 1. 

Corollary 4.83 If n^(X) is Hausdorff, then 7T^(E(X+)) is Tv 

Corollary 4.84 Let (P) be a topological property hereditary to closed subspaces. Then if 

n°p(L(X+)) is T\ and has property (P), then for each n > 1, n^(Xn) also has property 

(P). For example, if n^(E(X+)) is Hausdorff (resp. Tx and regular, T\ and normal, T\ and 

paracompact), then so is rc^X"). 

Corollary 4.85 (See Proposition 4.82 and Theorem A.71) Let X be such that nt^p(L(X+)) 

is T\. Then 7i^(E(X+)) is first countable if and only ifn^(E(X+)) is discrete. 

Example 4.86 Let QK denote the rational numbers with the subspace topology of 

the real line with the K-topology [MunOO]. Then "^(Q^) = Q^ is Hausdorff and 

totally path disconnected but is not regular. Since QK is Hausdorff, 7T1°
P(E(QK)+) = 
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FR(QK) is T\. If it is a topological group, it must also be regular. But the non-regular 

subspace Ck embeds in FR(QK). Therefore FR(QK) is not a topological group. 

Example 4.87 Using Remark 3.2, we can produce a large class of spaces each 

with topological fundamental group failing to be a topological group. For every 

Hausdorff, non-completely regular space Y, there is a paracompact Hausdorff space 

X = <H(Y) such that nJ(X) s Y. Since n°p{X) is Hausdorff, n°p{L(X+)) is Tx but by 

the previous corollary n°p(L(X+)) cannot be a topological group. 

Proposition 4.88 n°p(L(X+)) is functionally Hausdorff if and only ifnt^p(X) is function­

ally Hausdorff. 

Proof. If n^{X) is functionally Hausdorff, then by Lemma A.37 so is FM (TTQ°P(X)J. 

Since n°p(L{X+)) = F^x\TI°P{X)\ —> FM(^(X)\ is a continuous group isomor­

phism, n°p(L(X+)) must also be functionally Hausdorff. Conversely, if n°p(L(X+)) 

is functionally Hausdorff the fact that u» : TT*°P(X) —» 7i*op(E(X+)) is a continuous 

injection implies that n^{X) is functionally Hausdorff. • 

Certainly 4.84 implies that whenever 7i^p(E(X+)) is normal and T\, then 7i|)
op(X") 

is normal for each n. The author does not know of a partial converse simpler than 

the following. 

Proposition 4.89 Suppose 7z^op(E(X+)) is T\. Then 7i^op(E(X+)) is normal if and only if 

the closed subspace F^x(7i*op(X))n ofF1^x(nt°p(X)) consisting of words of length at most n is 

normal for each n > 1. 

Proof. Suppose n°p(L(X+)) is normal. It is shown in the Appendix A.60 that 

F^(7i^(X))„ is closed in <P(E(X+)) = F^x(7i^(X)). Therefore each F^x(7i^(X))M 
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is normal. Conversely, suppose each F^x(7i0°
p(X))„ is normal. It is shown in the 

Appendix A.61.1 that Fn
R

x(n^(X)) = limjjF^x(7r[)
op(X))„ and it is well-known that a 

space which is the inductive limit of closed normal subspaces is normal [Dug66, pg. 

158]. • 

4.4 The topological properties of n^ 

Recall from Chapter 2.5.1 that H^(X) is the topological group T(TI^P(X)) where 

T : GrpwTopTopGrp is left adjoint to the inclusion TopGrp —> GrpwTop. Its 

topology is characterized by the fact that the map m : FM(nt^p(X)) —> n^X) induced 

by the identity of TI^X) is quotient. A useful description of the universal property 

of n\{X) is: 

Corollary 4.90 If® : 7î (X) —> Gisa homomorphism to a topological group G such that 

<D o 7i: Q(X) —»7z|(X) —» G is continuous, then <& is also continuous. 

Some of the basic properties of these topological groups follow from the general 

results in Chapter 2.5.1. One of the most interesting is the following special case of 

2.74: 

Corollary 4.91 The identity nt^p(X) —> 7i*(X) is continuous and is a homeomorphism if 

and only ifnt^p(X) is a topological group. 

The development of the theory of the quotient topology is important to the 

study of the topology of ^ (X) . 

Corollary 4.92 Ifxo, X\ lie in the same path component ofX, then nT(X, x0) - ri[{X *i). 
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Proof. Apply % to the isomorphism of 4.1. • 

Corollary 4.93 IfX has a 1-connected cover, then ri^X) is discrete. 

Proof. If X has a 1-connected cover, then n^{X) is discrete by Corollary 4.27. But 

rcf PO is discrete if and only if n\(X) is discrete by 2.74. • 

Corollary 4.94 7i![(X) is discrete for any CW-complex or manifold X. 

Since we construct 7i*(X) by removing open sets from the topology of n^(X) 

there may be concern over when 7î (X) is Hausdorff. We now give some conditions 

involving the existence of this separation property. 

Theorem 4.95 If n^X) is Hausdorff, then ^(X) is functionally Hausdorff and X is 

homotopy Hausdorff. If the canonical homomorphism^ : 7r1(X) —> fci(X) is injective, then 

nJ (X) is Hausdorff. 

Proof. Every Hausdorff topological group is functionally Hausdorff. Since the 

identity n^(X) —> n^(X) is continuous, n!^{X) is functionally Hausdorff whenever 

rf[{X) is. It is proven in 4.16 that X is homotopy Hausdorff whenever nt^,(X) is 

T\. It is observed in Chapter 2.5.3 that <1> : TT^P(X) —> ft^X) is continuous. Since 

7fĉ op(X) is a Hausdorff topological group, the universal property of ^ ( X ) implies 

that <J> : 7i*(X) —> ft^X) is continuous. Therefore, if $ is injective, then 7i](X) 

continuously injects into a Hausdorff group as must be Hausdorff. • 
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It is a basic and useful fact that any free group may be realized as the funda­

mental group of a wedge of circles. We show here that any free topological group 

may be realized as the fundamental group of a generalized wedge E(X+). 

Theorem 4.96 There is a natural isomorphism hx : FM(nt^p(X)) —» nT
l(L(X+)) of topo­

logical groups. 

Proof. LetM : X—» Q(E(X+)) be the unbased unit of the adjunction Top*(E(X+), Y) = 

Top(X, QY). This map induces a continuous injection u* : n°p(X) —» n°p(L(X+)) on 

path component spaces. In Chapter 4.2, it is shown that M» induces a natural group 

isomorphism hx : F(n0(X)) —> 7t1(E(X+)) so that h~^ o u* is the canonical injection of 

generators. Moreover, h~£ : 7r^op(E(X+)) —» FM(^QP(X)) is continuous for an arbitrary 

space X. Since P M ^ ^ X ) ) is a topological group, h^ : 7i*(E(X+)) —> FM(^(X)) 

is continuous by the universal property of 7i*(E(X+)). The continuous injection 

id o u» : 7i*op(X) —* n°p(L(X+)) —> 7z (̂E(X+)) induces (by the universal property of 

free topological groups) the continuous inverse hx : FM(n°p(X)) —> 7T*(L(X+)). • 

Example 4.97 If Y is an space, there is a paracompact Hausdorff space X such that 

7i^(X) = Y (3.2). Since 7i^(E(X+)) = FM(Y) we realize every free topological group 

as a fundamental group. Some interesting examples come when Y Q R (See 3.3) or 

Y = SX (See 3.4). 

Example 4.98 The case when X = QY for a based space Y gives a natural isomor­

phism of topological groups hay : FM(nt^p(Y)) —> n%
x (E((QY)+)). The counit map 
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E((QY)+) —> Y induces the multiplication map FM(^IP(Y)) —» 7î (Y) used to define 

the topology of n\iX)-

Corollary 4.99 For any unbased space X, the following are equivalent: 

1. 7T^(£(X+)) is Hausdorff. 

2. 7r*op(E(X+)) is functionally Hausdorff. 

3. n^(X) is functionally Hausdorff. 

Proof. 1. => 2. follows from Theorem 4.95. 2. => 3. follows from the fact that 

u,: n°v{X) —> 7i*op(E(X+)) is a continuous injection. 3. => 1. If n^p(X) is functionally 

Hausdorff, then FM{n^{X)) = T^ (L(X + ) ) is Hausdorff (Lemma A.37). • 

Corollary 4.100 A quotient map q : X —> Y induces a quotient map q, : 7r^(E(X+)) —> 

7ij(E(Y+)) of topological groups. 

Proof. Both the functors FM and 7i*op preserve quotients and FM ° T ^ - 7Ti(^((~)+))-

Example 4.101 If X is a totally path disconnected (for instance, if X is zero-

dimensional), then 7i*(E(X+)) - ^M(X). 

The fact that every group is realized as a fundamental group is easily arrived at 

by attaching 2-cells to wedges of circles. Similarly, we attach 2-cells to a generalized 

wedge E(X+) to realize every topological group as a fundamental group. 
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Theorem 4.102 Every topological group G is isomorphic to the fundamental group n%
x (Z) 

of a space Z obtained by attaching 2-cells to a space of the form £(X+). Moreover, one may 

continue to attach cells of dimension > 2 to obtain a space Y which resembles a K(G, 1) in 

that n\(Y) = G and nx
n{Y) = Ofor all n>\. 

Proof. Suppose G is a topological group. According to Theorem 3.2, there is a (para-

compact Hausdorff) space X such that TI°P(X) is homeomorphic to the underlying 

space of G. If G is totally path disconnected, then we may take X = G. This gives 

hG : 7T*(E(X+)) = FM(n^(X)) = FM(G). The identity G-* G induces the retraction 

mG : FM(G) —» G so that mc°hc '• 7i^(E(X+)) = FM(G) —> G is a topological quotient 

map. For each a e ker(mc ° he) choose a representative loop fa : S1 —* £(X+) and 

attach a 2-cell to £(X+). The resulting space is Z = £(X+) Ua e\ and by Lemma 

4.5, the inclusion / : E(X+) -̂> Z induces a quotient map /» : 7i1°
p(E(X+)) —> n^p(Z). 

Since the functor T preserves quotients /» : 7i|(E(X+)) -* 7i^(Z) is also quotient. 

Since ker(mc ° he) = ker ;'» and both mG ° he and ;'» are quotient, 7i^(Z) = G as topo­

logical groups. The second statement follows by the usual process of inductively 

killing the n-th homotopy group by attaching cells of dimension n + 1. The fact that 

the inclusions at each step induce group isomorphisms on the fundamental group 

(which are topological quotients by Lemma 4.5 and therefore homeomorphisms) 

means that the direct limit space Y will satisfy TI^(Y) = G and nT
n(Y) -0 for all n =£ 1. 

• 

In the construction of Y in the previous theorem one will notice that Y is a 

CW-complex (and therefore a proper K(G, 1)) if and only if X = G is a discrete 
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group. This theorem permits the odd phenomenon of taking non-trivial funda­

mental groups of fundamental groups. For instance, there is a space X such that 

n%
x (X) = S1. Taking the identity to be the basepoint of 7z](X), we find the discrete 

group of integers as n\ (TT* (X)) = Z. 

A topological van Kampen theorem 4.103 We now prove a result analogous to 

the classical Seifert-van Kampen Theorem for fundamental groups. We assume all 

based spaces are Hausdorff. Unfortunately, the general statement: 

Statement 4.104 lf\\l\, U2, U\ n U2] is an open cover ofX consisting of path connected 

neighborhoods, the diagram 

Ti^niy >n\{Ux) 

n\{U2) >n\{X) 

induced by inclusions is a pushout in the category of topological groups. 

is not always true. To see why, we study an example. 

Example 4.105 Let X = N U {00} be the one-point compactification of the discrete 

space of natural numbers and consider E(X+) as in Example 4.37. We construct a 

space Y by attaching 1-cells to £(X+). For each x e X, let fx: S° —> £(X+) be the map 

given by / ( - l ) = x0 and / ( l ) = x/\\. Let Y = £(X+) U^ e\ be the space obtained by 

attaching a copy of the unit 1-disc e\ = [-1,1] for each x via the attaching map fx. 
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Figure 5: Y = E(X+) Ufi 4 

Note that any open neighborhood of the loop a : I —> £(X+) c Y, a(f) = oo A f 

contains loops which are not homotopic to a. By Proposition 4.7, n°p(Y) is not 

discrete. Since the identity n°p(Y) —> n^(Y) is continuous, n^Y) is not discrete. 

Define an open cover of Y by letting 

"' = (X A ([°< i ) U ( ! 1 ] ) ) U U 4 - d <4 = (X A ( ( I l] U [ft I))) u |J e\ 
xeX xeX 

Note that Ui = U2. 

Figure 6: The open set Ui c Y 

Collapsing the set £(X+) C\ U\ to a point gives map Ui —> Vx S1 to a countable 

wedge of circles which induces an isomorphism ri[(Ui) —* 7i| (Vx^1) °f discrete 

topological groups. Consequently, Tt[{U.\) = TZ*(172) is the discrete free group on 
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countably many generators. Now we have 

U l n * = (xA[ai)u(y)u(f,i])uU4 

Figure 7: The intersection U\ n U2 

Clearly ni{Ui n li2) = 0. If the square 

n\(U^U2) >n\{Ul) 

n\{U2) >n\<y) 

is a pushout in the category of topological groups, then 7i*(Y) is the free topological 

product of two discrete groups and must also be discrete. This contradiction 

indicates that Statement 4.104 cannot be true in full generality. The complication 

arising here motivates the following definition. 

Definition 4.106 A path p : I —> X is locally well-ended if for every open neigh­

borhood U of p in P(X) there are open neighborhoods VQ, V\ of p(0), p(l) in X 

respectively such that for every a e V0, b e V\ there is a path q e U with g(0) = a 
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and q(l) = b. A space X is Iwe-path connected, if every pair of points in X can be 

connected by a locally well-ended path. 

Example 4.107 It is easy to see that U\ n LZ2 in Example 4.105 fails to be Iwe-

path connected since there is no locally well-ended path from the basepoint to 

oo A \. It will turn out that this is the reason why Statement 4.104 fails to hold in 

full generality. On the other hand Y is Iwe-path connected and so it is not true 

that a path connected, open subspace of a Iwe-path connected space must also be 

Iwe-path connected. 

Since Definition 4.106 does not seem to appear elsewhere, we consider some 

qualities of locally well-ended paths and Iwe-path connected spaces. 

Remark 4.108 It is necessary to specify the codomain X since a path p : I —> A in a 

subspace AQX may be locally well-ended whereas the path p : I —> A -̂» X is not. 

The next proposition indicates that this complication does not arise when A is an 

open subset of X since, whenever A is open, P(A) is an open subspace of P(X). 

Proposition 4.109 If A is open in X and p : I —> A is a path, then p : I —> A is locally 

well-ended if and only ifp : I —» A •=—> X is locally well-ended. 

Lemma 4.110 The concatenation of locally well-ended paths is locally well-ended. The 

reverse of a locally well-ended path is locally well-ended. 

Proof. If U = riy=i(K£/ Vj) is a basic open neighborhood of concatenation p * q, 

then LZr0 in is an open neighborhood of p and UriAi is an open neighborhood of 
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q. If p and q are locally well-ended, there are open neighborhoods P0, P\, Q0r Q\ of 

p(0),p{l),q(Q),q{V) respectively with the property indicated in the Definition 4.106. 

Suppose a e PQ and b e Qi. There is a path p' e U\o,i] from a to p(l) and a path 

g' G UTI,I] from ^(0) to b. Since p(l) = ^(0), the concatenation // * g' is a well defined 

path and is an element of 

Kn)W]n(%.]) IW = u 

The fact that p~x is locally well-ended whenever p is follows from the symmetry of 

the unit interval. • 

Corollary 4.111 If X is path connected and {Ua) is an open cover of X consisting of 

Iwe-paih connected neighborhoods, then X is also live-path connected. 

Proof. Let a,b e X and p : I —> X be an path from a to b. Find an integer n > 1 

such that the restricted path a^ has image in Uaj for j = 1,..., n. Let Xj = a f ̂ J for 

/ = 0,1,..., n. Since Xj-\,Xj e LZa and LTa. is lwe-path connected, there is a locally 

well-ended path jSy: I —> Ua/ from Jty-i to x;. Since each 14 is open, by Proposition 

4.109, eachj3;-: I -» U«. «̂-> XislocaUy well-ended. Now(((^i*iS2)*^3)*"-*iS«-i)*/3„ 

is a path from a to &, which is a concatenation of locally well-ended paths in X and 

so must be locally well-ended. • 

Our interest in path connected, based spaces, motivates the inclusion of the 

following fact. 
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Proposition 4.112 For path connected space (X, xQ), the following are equivalent: 

1. Xis Iwe-path connected. 

2. For each x e X, there is a path p : I —> Xfrom x0 to x such that for every open 

neighborhood Uofp in M((1,0), (X,*o)) there is an open neighborhood V of x such 

that for each y e V there is a path q e Ufrom x0 to y. 

Proof. 1. => 2. follows from the fact that M((1,0), (X, x0)) is a subspace of P(X). 2. 

=> 1. If a, b e X and p, q : I —> X are paths p(0) = q(0) = x0r p(l) = a, and p(l) = b 

satisfying the conditions in 2. it is easy to see that p * q~l is a locally well-ended 

path from a to b. m 

We now observe that being lwe-path connected is not a rare quality in a space. 

Proposition 4.113 Every path p : I —> X in a locally path connected space X is locally 

well-ended. Consequently, all locally path connected spaces are lwe-path connected. 

Proof. Suppose X is locally path connected, p : I —» X is path, and U = PlLi(^n/ Uj) 

is a basic open neighborhood of p in P(X). Find a path connected neighborhood 

V0, V\ of p(0), p(l) respectively such that Vo £ Ui and V\ Q U„. For points a € V0, b e 

V\, we take paths a : I —* V0 from a to p(0) and jS : 7 —» Va from p(l) to fe. Now we 

define a path q e l i from a to & by 
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There are many non-locally path connected spaces which are lwe-path con­

nected. 

Example 4.114 For every space X, the (unreduced) suspension SX, the cone CX, 

and £(X+) are lwe-path connected but not necessarily locally path connected. 

For the next proposition, we use the following convention: If an inclusion map 

V *-> U induces the constant function n0(V) -» n0(U) on path components, we 

write V QQ U. 

Proposition 4.115 The following are equivalent. 

1. For every point x e X, the constant path cx :I —» Xatxis locally well-ended. 

2. For each x e X and open neighborhood Uofx there is a neighborhood Vofx such 

that V c 0 U. 

3. X is locally path connected. 

Proof. 1. <=> 2. follows easily from two observations: (a) The neighborhoods (I, U) 

where Uis an open neighborhood of x in X form a neighborhood base at cx and (b) 

V c 0 U if and only if every pair of points in V can be connected by a path in U. 

3. => 2. is obvious. 

2. => 3. Suppose 2. holds and U is an open neighborhood of x in X. Let nu : 

U —> n0(U) be the function identifying path components. By assumption, each 

y e U lies in an open neighborhood Vy such that Vy Q0 U. For a set A c U, let 

V(A) = UyeA Vy It is easy to check that if A c 0 u, then V(A) c 0 u . We also note 

that if A c 0 U, then ^ ( T C ^ A ) ) C 0 LT since 7iu(A) is a singleton. Let Wi = Vx 
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and inductively we define Wn+i = V(n^(nu(Wn))). By the previous observations, 

it is clear that Wn c 0 U for each n > 1. We have inclusions W: c W2 £ ... and 

let W = Un>i W„ c U. The set W is an open neighborhood of x contained in U 

since if y e Wn, then y € y y c Wn+i c W. Additionally, we have constructed W 

to be saturated with respect to nu, i.e. W = 7i~1(7iii(W)). To check that W is path 

connected, we suppose y,z& W. We have y , z e W^ for some N > 1. Since W^ Qo l i 

there is a path a : I —» U with a(0) = y and a(l) = z. Since W is saturated with 

respect to nu and a(t) lies in the same path component of U as y and z it follows 

that a(t) e W for each t e [0,1]. Therefore a is a path in W from y to z. • 

Statement 4.104 is proved here in the case that the intersection LZiH U2 is lwe-path 

connected. 

van Kampen Theorem 4.116 Let (X,x0) be a based space and {U\,U2,Ui n U2} an 

open cover ofX consisting of path connected open neighborhoods each containing x0. Let 

kt : U\ n U.2 °-> Ui and k : Ui '—> X be the inclusions. IfU\C\ U2 is lwe-path connected, 

the induced diagram of continuous homomorphisms 

T Z ^ n l f e ) - ^ 7^(110 

(k2). (Zi). 

"I^-la^x) 

fs a pushout in the category of topological groups. In other words, there is a canonical 

isomorphism 

nl(X) = 711(^)^^*1(112) 
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of topological groups. 

Proof. We show that if G is a topological group and fi : 7i*(LZ,-) —> G are continuous 

homomorphisms such that / i o (fcx), = / 2 o (A:2)», then there is a unique, continuous 

homomorphism O : 7i*(X) —> G such that <1> o (/,-). = fh The classical van Kampen 

theorem [MunOO, Theorem 70.1] guarantees the existence and uniqueness of the 

homomorphism <3> and so it suffices to show that O is continuous. To do this, we 

show that the composite <p - O ° n : Q(X) —> 7i](X) —> G is continuous. If this can 

be done then the universal property of n\{X) immediately gives the continuity of 

O : n\{X) -> G. 

Suppose W is open in G and a E (/>_1(W). We construct an open neighborhood on 

restricted paths of a and combine these to form an open neighborhood of a. To find 

the appropriate restrictions, we recall how O is defined. Since U\ n ii2 is lwe-path 

connected, Proposition 4.112 tells us that for each point x E Ui n 1/2 there is a locally 

well-ended path px : 7 —> U\ n Ii2 from x0 to x. Even though Ui n IZ2 may not be 

locally path connected at xQ (recall Proposition 4.115), we take pXo to be the constant 

path cX(j. Now for any path q : I —> Ui such that q(0), q(l) E LTi n li2, we define a loop 

L(^) E QLi; by L(^) = p?(0) * ^ * p"* Find a subdivision 0 = 10 < f 1 < ... < tn = 1 such 

that for each / = 1,..., n, the restricted path ccj = tf^t-] has image in li*, f; E {1,2}, 

and such that a ;(0),a ;(l) E Ui n Ii2. For convenience, let a;- = «;+i(0) = a(f;-) for 

j = 0,1,..., n. Now <!>([«]) is defined as the product in G: 

*([«])=A(m«i)])A(m«2)]).-./4.(ma«)])€ w 
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The homomorphism O is well defined, since whenever a ; has image in L?i n U2, we 

have / i o (fci),([L(a;)]) = f2° (fc2)»([L(ay)]). It is important to note that the choice of 

paths px in U\ n Ii2 is irrelevant to the definition of O. 

Since G is a topological group, there open neighborhoods W; of /i-([L(ay)]) in G 

such that WiW2...W„ c W. Since the composites fi o m : QIZ,- —» n\(Ui) —> G 

are continuous, we can find a basic open neighborhood Vy = OJ^iK^,, A]
m) of 

L(otj) - pa._x * ctj * p'1 contained in uJ1(Jr1(Wj)) C Q{J;. We may assume that My 

is divisible by 3 and that A£, C UI n U2 whenever L(a;-)(K™.) £ Hi n U2. Since 

each pa. has image in lii n LT2 this automatically implies that A'm c LZi n LZ2 for 

each K™. c [0, j ] U [§, l ] . Taking restricted neighborhoods (in P(X)), we find that 

(Vyjr 1 , is an open neighborhood of p„hl, (V/jn 2i is an open neighborhood of ay 

and (vX2 -. is an open neighborhood of p~x. Since l(Vy)r2 ,) and (Vy+i)r n are 
\ /[3,1J 1 \ \ ^ L3'1J/ L°'3j 

both neighborhoods of pa., we may assume that they are equal for j = 1,..., n — 1. 

Since p«. : I —> U\ n U2 is locally well-ended for each j = 1,..., n - 1 and p«.(0) = x0, 

pfl.(l) = fl; = a(£;), Proposition 4.112 allows us to find an open neighborhood By of 

fly in LZi n li2 such that for each x e By there is a path 5 e (Vy+i)r x-, from x0 to x. We 

consider the neighborhood 

[tri'tf " _ 1 

^=n((y4i])rl'nn<^B/> 
;=1 ;=1 

of a in Q(X). For any loop y e ^ w e notice that 
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For each/ = l,...,n, 

(V')[Hl = (N[Wl)' 
[trl,t,]\ 

>ltrl,t,] 

is an open neighborhood of y\t -vt ] in P(X). 

• If aj has image in U\ Pi L72, then so does yp t,t ]. 

• For / = 1,..., n - 1 , since y{tj) e Bj, there is a path 

6 / e(Ho^=(^W]rg a u i n u 2 > 

from x0 to y(£;). 

Let 50 = <5„ = c*0 and define a loop jS by demanding that /fy t,t ] is the loop <5;-i * 

7[trl,t ] * ST1 € QLfy for / = 1,..., n. We note that if tf; has image in U\ n IZ2, then so 

does frfrl,t;]- Certainly 

P- (§o * y[Mi] * 6i"1)*- • - ^ M * /[tri-t;! * 671)*(6/' * VKrW * 6/~+i)*'' '*(6»-1 * yi'-i'*-] * 5") 

is homotopic to y. Moreover, for / = l,—,n, we have (jS[trl,g) e (VJ)A for ^ = 

[0' J ] ' [I' I ] ' [I' i]- Therefkwe 

hr*A,\ G f l ({V')AT = V> - ^ ( / f ' T O ) S Q ^ 
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All together, we see that 

0(7) = *([y» = <w\)=Am0,H]])fhm,t2]]) • • • kmn-,tj) € w,w2 ...wncW. 

Since the choice of the paths px is irrelevant to the definition of O (we may replace 

paj by 5j) and f>n._1/f.] has image in LZ,-, the third equality makes sense. This proves 

the inclusion ^ c ^>_1(W) and the continuity of (p. m 

Remark 4.117 While the condition that Hi D U2 be lwe-path connected is sufficient 

for the van Kampen theorem to hold, it is certainly not a necessary condition. For 

any path connected, non-lwe-path connected space X, the unreduced suspension 

SX is quotient of X x I by collapsing X x {0} and X x {1} to a point. Let U\ and U2 

be the image of X x 10, \) and X x (^, 11 in the quotient respectively. The open sets 

Hi, U2 are contractible and the van Kampen theorem holds trivially even though 

Hi n U2 is not lwe-path connected. 

Example 4.118 Here we compute 7i|(Y) from Example 4.105 by choosing an ap­

propriate cover. For each x e X = N U {oo} let 0X denote 0 in e\ = [-1,1]. Note 

that IZ3 = Y - UxexJO*} is homotopy equivalent to £(X+) so 71̂ (1/3) - FM(X). Since 

X= U1UU3 and Ui n L73 is lwe-path connected and 1-connected the van Kampen 

theorem applies and gives 

n\(Y) = TtJ(Ui) * nl(U3) = FM(N) * FM(X) s FM(N U X) = FM(X) 
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Corollary 4.119 Given the hypothesis of Theorem 4.116, the homomorphism FM(Q(Ui)) * 

FM(Q(U2)) —» TI[(X) induced by the canonical maps Cl(Ui) —» 7i*(X), z = 1,2 is a 

topological quotient map. 

Proof. Since FM(Q(LTi)) * FM(Q(L72)) = FM(Q(Ur
1) © Q(LT2)) (here © is the coproduct 

in Top) is suffices to show that Q : FM(Q(LTi) © Q(LT2)) -+ ^ (X) , Q(a1...a„) = 

[«!*•••* a„] is quotient. Let ni: Q(LZ,) —> n°p(Ui) be the quotient map identifying 

path components. Since FM preserves quotients, FM{^-i © TZ2) is quotient. The map 

k : FM(<p(LTi) © n?{U2)) -> 7^(170 * nJ(U2) 

of Proposition A.44 is also quotient. Additionally, the canonical homomorphism k1 : 

7r*(lZi)*7iJ(ir2) -»7T^(Lri)*7IT(UinU2)^(L]r2) is always quotient. Let/z: H ^ L T I ) * ^ ^ ) 

7r̂ (L72) — ^ ( X ) be the isomorphism of Theorem 4.116. The composite Q = 

h o k! o k o FM(7i1 © 7T2) is quotient since it is the composite of quotient maps. • 

Corollary 4.120 Let X, Y be path connected spaces each of which has a neighborhood base 

(one of which is countable) of path connected, 1- connected neighborhoods at its basepoint. 

Then there is a canonical isomorphism 7iT{X V Y) = 7i*(X) * TT^(Y) of topological groups. 

Proof. We first recall a theorem of Griffiths [Gri54] which says that if Wlr W2 are 

based spaces, one of which has a countable base of 1-connected neighborhoods at 

its basepoint, then the inclusions W, •-> Wi V W2 induce an isomorphism 7ii(Wi) * 

7*1 (W2) —»7t1(Wi V W2) of groups. Let A (resp. B) be a path connected, 1-connected 
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neighborhood of the basepoint in X (resp. Y). Since X and Y are locally path 

connected and locally 1-connected at their basepoints, so are A,B, and A V B. 

Griffiths theorem implies that n^A V B) = 0. Let LTi = X V B and U2 = A V Y so that 

Ui n U2 = A V B. The van Kampen theorem applies and we have an isomorphism 

n\{X V Y) = TZ*(X V B) * 71J (A V Y) of topological groups. The inclusions X ^ X V B 

and Y ^ ^ V Y induce continuous group isomorphisms 7i](X) —» 7î (X V B) and 

7î (Y) —> 7ij(A V Y). These group isomorphisms are also homeomorphisms since 

their inverses are induced by the retractions XV B —> X and A V Y —> Y. All together, 

we have a canonical isomorphism of topological groups 

n\{X V Y) = n\{X V B) * n\{A V Y) = 7t̂ (X) * n\(Y) 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

This computation and analysis of n°p(L(X+)) offers new insight into the nature 

of topological fundamental groups and provides a geometric interpretation of 

many quasitopological and free topological groups. We note here how these ideas 

may be extended to higher dimensions and abelian groups, i.e. to the higher 

topological homotopy groups n°p(X, x) = nt£p(Q.n(X, x)) and free abelian topological 

groups. These quasitopological abelian groups were first studied in [GHMM08] 

and [GH09], however, these authors assert that TT^PC x) is a topological group 

without sufficient proof. This misstep is noted in [GHBIO] and the following 

problem remains open. 

Problem 5.1 For n > 2, is n^ a functor to the category abelian topological groups? 

As mentioned in the introduction, Fabel has shown that the topological fun­

damental group of the Hawaiian earring fails to be a topological group. This 

particular complication seems to disappear in higher dimensions since, for n > 2, 

the n-th topological fundamental group of the n-dimensional Hawaiian earring is 

indeed a topological group [GHBIO]. The results in this paper, however, indicate 

that Problem 5.1 is likely to have a negative answer. Just as in Proposition 4.35, we 

have 
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Proposition 5.2 For every based space Y, n^p(Y) is a topological quotient group of 

7iy(E»(G»(Y)+)). 

Therefore, if nt£p(Ln(X+)) is a topological group for every X, then n^iy) is a 

topological group for every Y. Consequently, the spaces £"(X+) are prime candi­

dates for producing counterexamples to Problem 5.1. Let ZR(Y) (resp. ZR(Y)) be the 

free abelian group on the underlying set of Y viewed as the quotient space of f^QO 

(resp. -FR(Y)) with respect to the abelianization map. These groups have many of 

the same topological properties as their non-abelian counterparts. In particular, 

ZR(Y) (resp. ZR(Y)) either fails to be a topological group or is the free abelian topo­

logical group ZM(Y) on Y. The results of this dissertation indicate the likelihood of 

the following statement: 

Conjecture 5.3 For an arbitrary space X, the canonical map TigP(X) —> nt£p(Ln(X+)) 

induces an isomorphism hx : ZR
x(n°p(X)) —> n°p(JLn(X+)) of quasitopological 

groups which are not topological groups. 

If this is indeed the case, then n^ will be a functor to the category of abelian 

quasitopological groups but not to the category of topological abelian groups. A 

computation of nt°p(Ln(X+)) for n > 2 should then provide an answer to Problem 

5.1. 
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APPENDIX 
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A great deal of the topological algebra required for this dissertation cannot be 

found in the literature. In this appendix, we included a number of these useful 

constructions and results. Since we may only assume that multiplication in homo-

topy mapping spaces is continuous in each variable, much of this content focuses on 

such objects. A nice reference for the theory of monoids and groups with topology 

is [AT08]. 

A.l Monoids with topology 

A monoid M endowed with a topology (no restrictions on the continuity of 

operation) will be referred to simply as a monoid with topology. Let MonwTop be 

the category of monoids with topology and continuous monoid homomorphisms. 

Definition A.l A semitopological monoid is a monoid with topology M such that 

multiplication u : M x M —> M is continuous in each variable. If, in addition, 

jU is continuous, then M is a topological monoid. The category of semitopological 

(resp. topological) monoids is the full subcategory sTopMon (resp. TopMon) of 

MonwTop. 

Recall that an involution on a monoid M is a function s : M -* M such that 

s2 = idM, s(mn) = s(n)s(m), and s(e) = e. 

Definition A.2 A semitopological monoid with continuous involution is a pair (M, s) 

where M is a semitopological monoid and s : M —* M is a continuous involution 

on M. If, in addition, M is a topological monoid, then (M, s) is a topological monoid 

with continuous involution. A morphism / : (Mi,Si) —* (M2, s2) of two such pairs is 
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a continuous homomorphism / : Mi —» M2 such that / preserves involution, i.e. 

/ o si = s2 ° / . Let sTopMon* be the category of semitopological monoids with con­

tinuous involution and continuous, involution-preserving homomorphisms. Let 

TopMon* be the full subcategory of sTopMon* consisting of topological monoids. 

Remark A.3 Since group inversion is an involution on G, there are forgetful func­

tors TopGrp —> TopMon* —• TopMon —> sTopMon. 

Universal Construction A.4 For any (unbased) space X, the topological sum 

Mr(X) = (J)n>0 X" (where X° = [e] is a singleton) is a topological monoid with 

identity e called the/ree topological monoid on X. An element (xi,...,xn) e Xn in 

MT(X) will be written as a word w = X\...xn and multiplication is simply word 

concatenation. The length of a word w = X\... xn is \w\ = n and we let \e\ = 0. A 

basic open neighborhood of w is a product U\.--Un = {ui-..un\ui e UJ where LZ, is 

an open neighborhood of X{ in X. It is well known that Mr : Top —» TopMon is a 

functor left adjoint to the functor U : TopMon —> Top forgetting monoid structure. 

Equivalently, the canonical inclusion o : X <̂-> Mr(X) is universal in the sense that 

any continuous function / : X —» N to a topological monoid N induces a unique 

continuous monoid homomorphism / : MT(X) —> N such that foo = f.ln partic­

ular f(xi—xn) is the product / (x i ) . . . f(x„) in N. The underlying monoid of MT(X) 

will be denoted M(X). 

Let X -1 be a homeomorphic copy of X (with elements written as x"1 e X-1). Let 

M*T{X) = MT(X® X"1) = 0„> O (X0 X-1)" be the free topological monoid on two 

copies of X and M*(X) denote the underlying monoid. A typical element of M*r(X) 
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is written as x^...x^" with x, e X and e* € {±1} and a basic open neighborhood of w 

is a product of neighborhood LZ^1... li£" where IT; is an open neighborhood of Xj in 

X. There is a canonical, continuous involution M*T(X) —> M .̂(X) on M ,̂(X) given by 

a? = x^...x£" t-> w_1 = x~e"...x~e" making the pair (M^(X),-1) a topological monoid 

with continuous involution. 

A word w e M*T(X) is reduced if x, = Xi+i implies e* = e,+1 for each i = 1,2,..., n - 1 . 

The empty word is vacuously reduced. The collection of reduced words, of course, 

forms the free group F(X) generated by the underlying set of X and the monoid 

epimorphism R : M*(X) —> F(X) denotes the usual reduction of words. In other 

words, F(X) is the quotient monoid of M*(X) by the equivalence relation generated 

by xx~l ~ e ~ x~lx for each x e X. The following justifies calling M*T(X) the /ree 

topological monoid with continuous involution on X. 

Proposition A.5 M*T : Top —• TopMon* is a functor left adjoint to the functor U : 

TopMon* —» Top forgetting monoid structure. Equivalently, the canonical inclusion 

a : X —> M*T(X) is universal in the sense that for each continuous function f : X —> N where 

(N, t) is a topological monoid with continuous involution, there is a unique, continuous, 

involution-preserving homomorphism f : (M*T(X),~l) —> (N, t) such that f°o~=f-

Proof. Let g : X © X"1 -> N be given by g(x) = f(x) and g{x~x) = t{f{x)). Note 

that t(g(x"£) = gix6) for all x e X and e 6 {±1}. Since Afr(X) is the free topological 

monoid on X © X -1, there is a unique continuous homomorphism / : M*T(X) —> N 

given by /(x^...x^n) = gix^—gix6^). Therefore, it suffices to check that /preserves 

involution (i.e. that tf{w~l) = f(w)). This is done by the equation: t{f(x~e"...x~£l)) = 
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t(g(x-e")...g(x^)) = t{g{x-^))...t{g{Xnn)) = g^-gtfn") = / (*?. .J£) • 

One of the reasons multiplication fails to be continuous in homotopy mapping 

spaces is the fact that a power qn : X" —> Y" of a quotient map q : X —> Y may 

not be quotient. This deficiency of Top also means the functors Mr and M*T do not 

preserve quotients. The following is a simple characterization of this failure. 

Proposition A.6 The following are equivalent for a quotient map q:X^>Y. 

1. The power qn : X" —> Y" is a quotient map for alln> 1. 

2. M.j{q): MT(X) —» Mr(Y) is a topological quotient map. 

3. M*T(q): M*T(X) —» M*T(Y) is a topological quotient map. 

Proof. If {qa\ is a set of continuous surjections, then qa is quotient for each a if 

and only if Q)a qa is quotient. 1. <=> 2. and 1. <=> 3. then follow from the simple 

observation that MT(g) = ® n>0 <f and A^fo) = MT(q ®q) = 0n>o(<7 0 qf. • 

Let ^ : X —* Y be a continuous surjection. The induced homomorphism M(q) : 

M(X) —» M(Y) is an epimorphism and we may give the monoid M(Y) the quotient 

topology with respect to M(q): MT(X) —» M(Y). We can do the same in the involuted 

case, by letting Mq(Y) = M^Y © Y"1). We note that Mq(Y) is not necessarily a 

topological monoid though if q = z'rfy, then M;yy(Y) = MT(Y). 

Proposition A.7 M?(Y) fs a semitopological monoid and (M^(Y),-1) zs a semitopological 

monoid with continuous involution. 
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Proof. We use the diagram of monoids with topology 

MT(X) >MT(X) 

M(q) A%) 

Mq(Y) >Mq{Y) 

where the vertical maps are quotient maps. The diagram commutes when the top 

map is left (right) multiplication by a word w = X\...xn and the bottom map is left 

(right) multiplication by M{q){w) = q(xi)...q(x2). Since left (right) multiplication 

by w in Mr(X) is continuous, the Quotient Square Lemma implies the bottom 

multiplication maps are continuous. Since M{q) is surjective, this accounts for all 

words in M(Y). Therefore Mq(Y) is a semitopological monoid. We have already 

shown that M*(Y) = MqS>q(Y® Y~l) is a semitopological monoid. For the involution, 

replace MT(X) by M*T{X), Mq(Y) by Mq{Y), and M(q) by the quotient map M(q 0 q): 

M*T(X) —> M*(Y) in the above square. Letting the top and bottom maps be the 

canonical involutions, the Quotient Square Lemma again may be used to prove the 

continuity of the involution of Mq{Y). • 

The construction of Mq(Y) is functorial in the following manner: Let Quo(Top) 

be the category of quotient maps q : X —» Y in Top. A morphism between two such 

surjections is a commuting square 
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that we write as a pair of maps (/, g). 

Proposition A.8 The assignment (q : X —> Y) H-» Mq(Y) on objects and (/, g) H-> M(g) on 

morphisms is a functor Quo(Top) —> sTopMon and the assignment q\-+ q®q*-^> M*q{Y) 

on objects and (f, g) i-> M*(g) on morphisms is a functor Quo(Top) —> sTopMon*. 

Proof. We have already shown that these functors are well-defined on objects. 

Suppose (/, g) : q\ —> qz is a morphism of quotient maps qt : Xt —> Y,. It suffices 

to show that the induced monoid homomorphism M(g) : Mqi(Yi) —> Mq2(Y2) is 

continuous. The functorahty of free (topological) monoids implies that MT(J) : 

Mr(Xi) —» MT(X2) is a continuous monoid homomorphism such that the diagram 

M r ( X i ) ^ ^ M T ( X 2 ) 

M(«fi) M(?2) 

M ' ( Y l ) l ^ M ^ ( Y 2 ) 

commutes in sTopMon. Since the vertical maps are quotient, the homomorphism 

M(g): M,,(Yi) —» M(?2(Y2) is continuous by the Quotient Square Lemma. The invo­

luted case follows in the same manner. • 

Proposition A.9 Let q : X —> Y and r : Y —» Z be quotient maps. The identity 

id : Mroq{Z) —> Mr(Z) is continuous. 
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Proof. The diagram on the left induces the diagram on the right. 

X - ^ X 

r°q Y M(r°q) 

M r(X)-^MT(X) 
MT(i?) 

MT(Y) 

M(r) 

Z—r^Z 
id 

Mroq(Z)-~^Mr(Z) 

Since the left vertical map in the right diagram is quotient, then bottom map is 

continuous. • 

Lemma A.10 Letq:X^> Ybea quotient map. 

1. The canonical injections a : Y —> Mq(Y) and o : Y —> M*q(Y) are topological 

embeddings. 

2. The identity id : Mq(Y) —> MidY(Y) = MT(Y) is continuous. 

3. The following are equivalent: 

(a) Mq(Y) is a topological monoid. 

(b) Mq(Y) is a topological monoid. 

(c) The identity Mq(Y) —> MT(Y) is a homeomorphism. 

(d) The identity AC(Y) —> M*T(Y) is a homeomorphism. 

(e) The power q" : Xn —> Y" is a quotient map for each n>2. 

Proof. 1. This follows from the fact that the quotient map q : X —» Y occurs as 

a summand of the quotient map M(q) : MT(X) -> Mq(Y) (resp. Af (q) : M*T(X) -» 
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M;(Y)). 

2. Take r = idY and apply Prop. A.9. 

3. (c) => (a) and (d) => (b) are obvious. We know from 2. that the identity 

morphisms id : Mq(Y) -> Mid(Y) = MT(Y) and id : M*q(Y) -> M*a(Y) = M*r(Y) are 

continuous. The continuous injection Y c-» Mq(Y) (resp. Y <-* M*(Y)) induces the 

inverse id : MT(Y) -> A4,(Y) (resp. id : MT(Y) -> A^(Y)) whenever M,(Y) (resp. 

M*(Y)) is a topological monoid. This gives (a) => (c) and (b) =* (d). Consider the 

diagram 

M r ( X ) ^ l M T ( Y ) 

MT(q) id 

Mq{Y)—-^Mr{Y) 
id 

in sTopMon. It is easy to see that id : Mq(Y) —> Mj(Y) is a homeomorphism if and 

only if MT(q) : MT(X) -> Mr(V) is quotient. But by Prop. A.6, MT(q) is quotient 

if and only if qn is a quotient map for all n > 1. Thus (c) <=> (e) is proven. The 

analogous diagram in the involuted case and Prop. A.6 give (d) <=> (e). • 

A.2 Groups with topology 

Topological groups are widely studied objects. The groups we consider here 

are not quite as well studied though some of these results appear in [AT08]. 

Definition A. l l A group G with a topology (with no restriction on the continuity 

of operations) is a group with topology. Let GrpwTop denote the category of groups 

with topology and continuous group homomorphisms. If, in addition, multipli­

cation /i : G x G —» G is continuous in each variable (equivalently all translations 
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are continuous) then G is a semitopological group. If inversion G —> G, g H-» g_1 is 

also continuous, then G is a quasitopological group. If multiplication and inversion 

are continuous, G is a topological group. Let TopGrp c qTopGrp c sTopGrp be 

the full subcategories of GrpwTop consisting of topological, quasitopological, and 

semitopological groups. 

For each g e G, we will denote the continuous restrictions of multiplication 

jU : Gx G ^ G to G x {g} as map pg : G —> G, pg(ft) = feg and to {#} x G as 

Ag : G —> G, Ag(/z) = g/z. If G is a semitopological group, these restrictions are 

homeomorphisms since they have inverses pg-\ and Ag-i respectively. If G is a 

quasitopological group then inversion a H-» a-1 is clearly a homeomorphism. For 

this reason, a neighborhood base at the identity e of semitopological group G 

suffices to characterize the topology of G. If G is a quasitopological group, we may 

assume this basis consists of symmetric neighborhoods UC\ IT1. 

Note that an isomorphism in sTopGrp and qTopGrp is a group isomorphism 

which is also a homeomorphism of spaces. 

Remark A.12 Since group inversion is an involution on G, there is a forgetful 

functor qTopGrp —> sTopMon*. 

Example A.13 Let G be any group with the finite complement topology T = {U Q 

G\\G - U\ < °o). If U is an open neighborhood of product g, then all and Ub are 

open in G for any a, b e G since G - all and G-Ub are finite sets. Therefore G is a 

semitopological group. Additionally, if U is open then IT1 = {g-1|g e LT} has finite 

complement and is open in G making G a quasitopological group. If G is finite, 
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then, of course, G is a discrete group. If G is infinite then G is T\ but not Hausdorff 

and cannot be a topological group. 

Some basic facts. Multiplication of sets A,B Q G will be denoted AB = {ab e G\a e 

A,beB). 

Proposition A.14 Let Gbea quasitopological group with multiplication p. :GxG-^ G. 

1. Gisa homogeneous space. 

2. If A c G and U is open in G, then AU and UA are open in G. Therefore p is open. 

3. If a subgroup HofG contains an non-empty open subset U, then H is open in G. 

4. IfH is an open subgroup of a quasitopological group G, then H is also closed in G. 

Proof. 1. If g,h e G, then the translation pg-\h : G —> G, x i-» xg~lh is a homeomor-

phism such that g^h. 

2. AU = \JaeA all = L U A K{U) and UA = \JaeA Ua = {ja&A pa{U) are both open in G. 

3. If U c H, then Ua c H is open for every a e H. Therefore H = UH - L U H Ua is 

open. 

4. If H is an open subgroup of G, then each coset aH is open in G. But G is the 

disjoint union of cosets G = LLH€G/H
 aH a n d therefore eH = H is closed in G. • 

If G is a quasitopological group and H < G is a subgroup, H with the subspace 

topology of G becomes a quasitopological group. We say H is a quasitopological 

subgroup of G. 

Proposition A.15 Suppose f : G —> H is a homomorphism of semitopological groups. If 

f is continuous at the identity eG ofG, then f is continuous. 

173 



Proof. Suppose U is open in H and g £ f~l{U). Then f(g) e U and f{gY1U is 

an open neighborhood of the identity eH of H. If / is continuous at eG, then there 

is an open neighborhood V of ec such that f(V) c f{g)~1U. But gV is an open 

neighborhood of V such that f(gV) = f(g)f(V) QU.m 

If a G is semitopological group and H is a subgroup, let G/H be the set of left 

cosets in G with the quotient topology of G. This makes the canonical projection 

7i: G —» G/H a topological quotient map. 

Proposition A.16 Suppose H is a subgroup of semitopological group G. The canonical 

projection n : G —> G/H onto the space of left cosets with the quotient topology is open. 

Proof. If U is open in G, then n~l{n(U)) = {gH\g e XI) = UH. Since n is quotient by 

assumption and UH is open in G by A.14, n(U) is open in G/H. m 

Corollary A.17 For a e A, let Ha be a subgroup of semitopological group Ga. The product 

of projections EL n* • Yla Ga -* I L G«/Ha is open. 

Corollary A.18 If G is a topological group and H is a normal subgroup, then the quotient 

group G/H with the quotient topology is a topological group. 

Proof. We use the diagram 

GxG >G 

G/HxG/H—^G/H 
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where n is the projection and \i and m are multiplication operations. Since n x n 

is open, it is quotient. Since n o p is continuous, m is continuous by the universal 

property of quotient spaces. • 

If H is normal in semi(quasi)topological group G, then G/H becomes a semi(quasi)-

topological group. It is a quotient semi(quasi)topological group of G. It is easy to see 

that the universal properties of quotient groups and quotient spaces characterize 

such groups: If n : G —> N is a group epimorphism and a quotient map spaces 

and / : G —» H is such that kern c ker / , then there is a unique, continuous 

homomorphism g : N —> H such that g o 71 = / . 

Proposition A.19 Let Hbea normal subgroup of semitopological group G. Then G/H is 

T\ if and only ifH is closed in G. 

Proof. If 7i : G —> G/H is the projection and eG/H = His the identity of G/H, then 

H = 7i_1(eG/H) is closed in G if and only if the singleton {eG/H} is closed in the qua-

sitopological group G/H. Since all translations are homeomorphisms, this occurs 

precisely when G/H is T\. • 

Proposition A.20 Suppose cp : G —> His a continuous homomorphism of semitopological 

groups. There is a continuous group isomorphism ^V : G/ker(/> —> Im((p) which is a 

homeomorphism if and only if(p : G —> Im((p) is a quotient map. 
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Proof. Both of statements follow from the commuting diagram 

G/ ker (p ——-> Im((j>) 
^ 

and the fact that the projection n : G —> G/ ker <£ is a topological quotient map. • 

Closure in quasitopological groups. We observe a few elementary properties of the 

closure operator in quasitopological groups. For an element g £ G, let ~g denote the 

closure of the singleton {g} in G. If necessary, we use superscript to distinguish the 

space where closure is being taken. 

Proposition A.21 Let Gbea quasitopological group. 

1. For each g e G, ge = ~g = eg. 

2. The closure of the identity ~e is a normal subgroup ofG. 

3. For each g e G and open neighborhood Uofg,~gQ U. 

Proof. 1. We have that ge n eg is closed and contains g, so g c ge n eg. Now suppose 

h& geUeg and U is any open set containing h. Then either g~lh e ~e or hg~l £ e. But 

g~xh € g_1Ii and hg~x e l lg - 1 and so we have e e ^ L f U l/g-1. This implies that 

g e LI and h^~g. Since §i U eg £ g c ge n eg, the equality is clear. 

2. Suppose a,b £e and LI is an open neighborhood of ab-1. Then fr e LZ_1fl and 

consequently e e (i_1a and a'1 e LI-1. Since a e (I and a e e we have e e LI. 

Therefore air1 e e so that e is a group, e is normal by part 1. 

3. We begin with the identity g = e e U. Suppose a € e and let V = U n Li-1. Then 
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a G aV and since aV is open and a ee we have, e e aV. Thus a~l e V but V was 

symmetric, so a G V c 17. Now take any element g G U c G and a <E.~g = ge. We 

have g-1a e 6? and e G g_1LJ so that g~xa G g_ 1Jiby the first part of the proof. This 

gives a G U SO that g c U. • 

Note that 3. of this last proposition indicates that two elements g,h G G are 

topologically indistinguishable if and only if ~g = h. 1. and 2. then give that 

Corollary A.22 For every g,h£G, geh if and only ifg = h. 

Recall that the Kolmogorov quotient of a topological space X is the T\ quotient space 

XI ~ where x ~ y if and only if x = y. 

Corollary A.23 The quotient group G/e of quasitopological group G is the Kolmogorov 

quotient ofG. All open neighborhoods U Q G are saturated with respect to the projection 

p : G —> G/e. Consequently G has the initial topology with respect top : G —> G/i. 

Proof. The first statement follows directly from A.21 and A.22. If U is open in G, 

and g G G, then g Q U. Therefore p~1{p(U)) = U. Since the topology of G consists 

of neighborhoods of the form p^iA) for A open in G/e, G has the initial topology 

with respect to p : G —> G/e. m 

Remark A.24 Since e X e = (e, e) in G x G, and p x p : G x G —> G/i x G/i is quotient, 

G/e x G/i = G x G/(e, e) is the Kolmogorov quotient of G x G. Consequently, if U is 

an open neighborhood of (g, h) in G x G, then ~gxh = (g,h)Q U. 

Proposition A.25 Let Gbya quasitopological group and p : G —> G/i fee i/ze projection. 

Then 
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1. Gisa topological group <=> G/e is a topological group. 

2. G is first countable <=> G/e is first countable. 

3. G is pseudometrizable o G/e is metrizable. 

Proof. 1. One direction is obvious by A.18. We observe commuting square 

GxG— >G 
tjxq q 

G/ex G/e-—>G/e 
m 

where m and m! are the respective multiplication functions. Suppose m' is con­

tinuous and V c G is open. By A.23, V = p~l(U) for open U in G/e. Therefore 

(p x pY1 (m/_1(LZ)) = nT1 (p_1(LZ)) = m_1(V) is open in G x G. 

2. Since G is a quasitopological group, it suffices to work with neighborhood 

bases at the identities. If U„ is a countable base at e € G, then Un = p-1(V„) for 

open Vn containing the identity e of G/e. If W is an open neighborhood of e in 

G/e, then p_1(W) is an open neighborhood of e in G. By assumption, there is an 

Um = p_1(Vn) c p~l(W). Clearly Vn c JV. Conversely, if Vn is a countable base 

at 1 € G/e, then li„ = p_1(^«) is a n open neighborhood of e in G. If W is an 

open neighborhood of e in G, then by A.23, W = p_1(W) for some open W in G/e 

containing e. There is a Vm Q W and therefore Um = p~l(ym) £ p_1(W) = W. 

3. In general, if X has the initial topology with respect to a map / : X —» Y where 

the topology of Y is induced by a metric rf:YxY->[0, oo), then p = do{fxf)isa 

pseudometric on X which induces a topology that agrees with the initial topology 
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(See the proof of Prop. 2.86). Therefore, by A.23, if d : G/ex G/e -» [0,oo) is a 

metric on G/e, then p = do(pxp)isa pseudometric which induces a topology 

agreeing with that of G. Now let p : G x G —> [0, oo) be a pseudometric generating 

the topology of G. Specifically, the open balls Bp(g,r) = {h e G|p(g,/z) < r}, g e G, 

r > 0 generate the topology of G. We induce a metric on G/e by showing that p is 

constant on the fibers of the quotient map p x p. If (g, h) e ker(p x p), then 'g-'e-h. 

If p(g, /z) ^ 0, then p(g, h) lies in an interval A = (a, b) where a > 0. Then p~x{A) is an 

open neighborhood of (g, h) such that (e, e) $. p_1(A). Remark A.24 gives that 

(e,e)eexe = gxhc p~\A). 

which is a contradiction. Since p(g, h) = 0 whenever ~g = h, there is an induced map 

rf : G/e x G/e —» [0, oo) such that d o (p x p) = p. We first check that d is a metric. 

Certainly, d(g,g) = p(g,g) = 0. If d(g,h) = 0, then p(g,h) = 0 and /z € Bp(g,r) for 

every r > 0. This implies g^h and A.22 gives ~g = /z. It is also clear that 

d(a,&) = p(a, V) = p(b,a) = d(b,a) 

and 

d(a, c) = p(fl, c) < p(a, V) + p(b, c) = d(a,b) + d(b,c) 

for all a,b,c e G. Since d is a metric on Gfe, it suffices to show the topology of G/e 

agrees with the topology generated by the open balls Bd(g, r) = {h e G/e\d(g, h)<r), 

g € G,r > 0. Since p is quotient and G also has the initial topology with respect to 
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p, it suffices to check the equality Bp(g,r) = p~1(B(j(g/r)) for g G G, r > 0. But this 

follows immediately from the fact that p(g, h) = d(g, h). • 

Since we have interest in non-Hausdorff topological groups, we prove the following 

corollary without generalizing the usual proof that a first countable, Hausdorff 

topopological group is metrizable. 

Corollary A.26 IfG is a first countable topological group, then G is pseudometrizable. 

Proof. If G is a first countable topological group, then G/e is a T\ (and therefore 

Hausdorff) topological group which is first countable by 2. of A.25. All such groups 

are metrizable [AT08,3.3.12]. By 3. of A.25, G is pseudometrizable. • 

While Ti need not imply T2 in quasitopological groups (see Example A.13), the 

following equivalence is useful. 

Proposition A.27 In a quasitopological group G, the following are equivalent: 

1. G is To. 

2. G is Ti. 

3. The singleton containing the identity is closed (i.e. e = [e]). 

Proof. 3. <=> 2. => 1. is clear since singletons are closed in T\ spaces and all 

translations are homeomorphisms. To show 1. => 3. we suppose G is T0 and let 

a G 1 with a =£ e. Since G is T0 there is an open set U such that either a G U and e i U 

or e G 17 and a £ U- The first case cannot happen, as A G i. Therefore e G IT and 

a $ U and moreover e e 17 n IT1 c IT and a$UC\ IT1. But now a(L7 n L7"1) is an 

open neighborhood of a. This gives e e a(L7 n L7"1) => a-1 e L7 n L7_1 => a e LI n IT1. 
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This, however, is a contradiction and so a = e. Thus i c e . i 

An alternative description of e may be given as follows. Let *WG be the intersec­

tion of all open neighborhoods in G containing the identity. 

Proposition A.28 e = 14G 

Proof. By Proposition A.21.3, we have the inclusion e c *Z/G. If every open neigh­

borhood of e contains a & G (i.e. a e lie), then e e a. But Corollary A.22 gives that 

a e a = e. • 

Recall that an A-space (or Alexandrov space) is a topological space whose topol­

ogy is closed under arbitrary intersections. An interesting and useful fact about 

A-spaces is the following: 

Remark A.29 Let A - space be the full subcategory of Top consisting of A-spaces. 

A - space is closed under quotients, arbitrary coproducts (disjoint unions), and 

finite products. For instance, if X is an A-space, then MT(X),M*r(X),M?(X), and 

M*(X) are all A-spaces. 

Corollary A.30 For a quasitopological group G, the following are equivalent. 

1. G is an A-space. 

2. e is open. 

3. G/e is discrete. 

Proof. 1. => 2. If G is an A-space, then e is open as an intersection of open neigh­

borhoods. 
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2. => 1. Suppose V = Ha ^a is any non-empty intersection of open neighborhoods 

in G. Pick any point a e V. Now fl-1 V^ is an open neighborhood of e in G for each 

a. We therefore have e e e = lie QcTlV = f]a crlVa and ae aeQV. Therefore V is 

open in G. 

2. <=> 3. e is open in G if and only if the singleton containing the identity of G/e is 

open if and only if G/e is discrete (since it is a semitopological group. • 

Corollary A.31 If a quasitopological group is an A-space, then it is also a topological 

group. 

Proof. If quasitopological group G is an A-space, then G/e is discrete by Corollary 

A.30 and is therefore a topological group. By Prop. A.25, G must then be a 

topological group. • 

Continuity of multiplication. By definition a quasitopological group G is a topological 

group if and only if the multiplication map GxG —> G is continuous. We now give 

a few convenient simplifications of this condition. 

Proposition A.32 For each quasitopological group G the following are equivalent: 

1. Gisa topological group. 

2. For each (a,b) e GxG and open neighborhood V of ab in G there is an open 

neighborhood A of a and Bofb such that AB Q V. 

3. For each open neighborhood W c G of the identity e, there is an open neighborhood 

UQWofe such that U2 c W. 
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4. There is a pair (a,b) e GxG such that for each neighborhood V of ab in G, there is 

an open neighborhood A of a and Bofb such that AB c V. 

Proof. 1. <=> 2. => 3. => 4. is obvious. 

3. => 2. Suppose (a, b) e GxG and V is and open neighborhood of ab. Now 

W = a^Vb'1 is an open neighborhood of the identity e. If 3. holds, then there is an 

open neighborhood U of e such that U2 = HIT c a^Vb"1. Therefore aUUb c y . If 

we let A = alZ and B = Ub, wehavefl e A, b e B and AB = (all)(llb) £ V. 

4. => 3. If W is an open neighborhood of e, and 4. holds for the pair (a, b), then aWfo 

is an open neighborhood of ab. This allows us to find an open neighborhood A of a 

and B of b such that AB Q aWb. Clearly LI = (a-1 A) n (Bb_1) is an open neighborhood 

of e. It suffices to check that U2 QW. If g,he U, then age A and hb e B. Therefore 

aghb e AB c aWb and consequently gheW.m 

Corollary A.33 If G is a quasitopological group such that there is a neighborhood base of 

open subgroups at the identity, then G is a topological group. 

Proof. If U is an open neighborhood of the identity, there is an open subgroup H 

such that H2 = H Q U. By Proposition A.32, G is a topological group. • 

Corollary A.34 If G is a quasitopological group having open subgroup H which becomes 

a topological group with the subspace topology, then G is a topological group. 

Proof. Suppose U is an open neighborhood of the identity e in G. Since H is a 

topological group there is an open neighborhood V of e such that VV Q ffn U £ U. 
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Since H is open in G, V is open in G. • 

Miscellaneous facts about topological groups. 

Proposition A.35 Let f : G —> H be a homomorphism where H is a topological group 

and G has the initial topology with respect to f. Then G is a topological group. 

Proof. Suppose U = /_1(V) is an open neighborhood of gg1 € G where V is open in 

H. There are open neighborhoods A, B of f{g), f(g') respectively such that f(gg') = 

f(8)f(g') zABcV.liae f'\A) and b e f~\B) then f(ab) = f(a)f(b) eABQV 

and so ab e /_1(V) = U. Therefore /_1(A) and /_1(B) are open neighborhoods of g 

and g' such that f~x{A)f~l{B) Q U. Therefore multiplication in G is continuous. It 

is easy to see that if U = f~l(V) is open in G, then so is IT1 = / - 1(V) _ 1 = f~l{V~l) 

since inversion is a homeomorphism in H and / is a homomorphism. Therefore 

inversion in G is continuous. • 

Proposition A.36 Suppose 

^H 

G'—jr+H! 

is a diagram in Grp where H, H' are topological groups and G, G' have the initial topology 

with respect to f,f. Ifh is continuous, then so is g. 

Proof. Suppose U = (/')_1(^0 is open in G' where V is open in H'. Then g^iU) = 

S_1((/')_1(^0) = (/)_1(^_1(^)) is open in G since the diagram commutes and h and / 

are continuous. • 
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A.3 Topologies on free groups 

A.3.1 Free topological groups F M P O 

The free (Markov) topological group on an unbased space Y is the unique topo­

logical group FM(Y) with a continuous map o : Y -» FM(Y) universal in the sense 

that for any map / : Y —> G to a topological group G, there is a unique continuous 

homomorphism / : FM(Y) —» G such that f = fo a. Using Taut liftings [Por91] 

or the Freyd special adjoint functor theorem [Fre66, Kat44], it can be shown that 

FM(Y) exists for every space Y and that FM : Top —> TopGrp is a functor left adjoint 

to the forgetful functor TopGrp —> Top. Moreover, the underlying group of FM(Y) 

is simply the free group F(Y) on the underlying set of Y and o : Y —> FM(Y) is 

the canonical injection of generators. There is a vast literature on free topological 

groups and we do make use of some of this theory. The reader is referred to [Tho74] 

for proofs of the following lemma. Recall that a space Y is functionally Hausdorff 

if for each pair of distinct points a, b € Y there is a continuous, real-valued function 

/ : Y -> R such that f(a) * f{b). 

Lemma A.37 [Tho74] Let Ybea topological space. 

1. FM(Y) is Hausdorff if and only ijY is functionally Hausdorff. 

2. o : Y —» FM(Y) is an embedding if and only ifY is completely regular. 

Lemma A.38 FM preserves colimits and quotient maps. 
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Proof. As a left adjoint, FM preserves all colimits. Suppose q : X —> Y is a quotient 

map and ox : X —> FM(X) and ay : V" —» FM(^0 are the canonical injections. Let G 

be a topological group and / : FM(X) —> G be a continuous homomorphism such 

that /(ker FM(q)) = 0. Suppose x, x' € X such that q(x) = q(xf). Since FM(^)(ffx(x)) = 

cry(^(x)) = oY(q(x')) = FM(q)(ox(x')) a n d / is constant on the fibers of FM(q), it follows 

that / = / o ox : X —> G is constant on the fibers of g. This induces a map A:: Y —> G 

such that koq = f. But then /c induces a continuous homomorphism fc : FMQ0 —» G 

such that ko aY = k. But then f ° ox = f = kooY°q = ko FM(q) o ax and the 

uniqueness of /g ives that / = k o FM(CJ)- • 

Another useful construction which makes use of free topological groups is the 

following: Given any group with topology G, the identity id : G —> G induces the 

multiplication epimorphism m.Q : F(G) —» G on the free group. We may now give 

G the quotient topology with respect to me : FM{G) -» G and denote the resulting 

group with topology as T(G). Since any quotient group of a topological group with 

the quotient topology from the projection is a topological group (A.18), T(G) is also 

a topological group. The identity function G —* T(G) is continuous since it is the 

composite mc°o : G —> FM{G) —» T(G). Moreover, any continuous homomorphism 

/ : G —* H to a topological group H induces a continuous homomorphism / : 

FM(G) —> H such that the diagram 

G^FM(G) 
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commutes.Since mc is quotient, / : T(G) —> H is continuous. Stated entirely in 

categorical terms this amounts to the fact that TopGrp is a full reflective subcategory 

of GrpwTop. 

Functorality A.39 T : GrpwTop —> TopGrp is a functor left adjoint to the inclusion 

functor U : TopGrp —» GrpwTop. Moreover, each reflection map rG : G —» T(G) ZS f/je 

continuous identity homomorphism. 

Proof. For a continuous homomorphism / : G —> H of groups with topology, 

FM(f): FM(G) —> FM(H) is a continuous homomorphism such that the square 

•FM 

mG 

T( 

( G ) ^ I F M 

G)-—*TC 

(H) 
mH 

H) 

commutes. The left vertical map is quotient and so the bottom map T ( / ) is contin­

uous. Since T is the identity functor on the underlying algebraic groups, the rest of 

the conditions to be a functor are satisfied. The natural bijection of the adjunction 

is TopGrp(T(G),H) = GrpwTop(G, U(H)), f i-> / o rG. • 

Lemma A.40 T preserves colimits, finite products, and quotient maps. 

Proof. As a left adjoint T preserves all colimits. If / : G —> G' is a group homo­

morphism of groups with topology such that / is also a topological quotient, then 
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FM(f): F(G) —> F(G') is also a topological quotient. Since the diagram 

FM (G)-^IFM (G') 

mc Mr. 

T ( G ) - ^ - T ( G ' ) 

commutes in TopGrp and the top and vertical maps are topological quotients, T ( / ) 

must also be a topological quotient map by the Quotient Square Lemma. To check 

that T preserves finite products we take G,H € GrpwTop. Clearly the projections 

of G x H induce the continuous group isomorphism T(G x f l ) -> T(G) X T(H). The 

maps i: G —> G x H, i(g) = (g, en) and / : H —> GxH, j(h) = (ec, h) are embeddings 

of groups with topology. Let \i be the continuous multiplication of T(G x H). The 

continuous composite 

(i o (T(Z) x T(;)) : T(G) x T(H) -> T(G X H) X T(G X H ) ^ T ( G X H ) 

is given by (g,/z) i-> {g,e}i)(eG,h) = (g,h) and is therefore the identity. Thus 

id : T(G x H) = T(G) X T(H). • 

Corollary A.41 Let Gbea group with topology. Then G is a topological group if and only 

ifG = T(G). 

Proof. One direction is obvious. If G is a topological group, then the identity 

id:G->G induces the continuous identity T(G) —» G. • 
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Corollary A.42 G is discrete if and only if T(G) is discrete. 

Proof. Since re • G —> T(G) is continuous, G is discrete whenever T(G) is. If G is 

discrete, then so is FM(G) and the quotient T(G). • 

The fact that every Hausdorff topological group is functionally Hausdorff im­

plies the following corollary. The author does not know if the converse holds. 

Corollary A.43 Ift(G) is Hausdorff, then G is functionally Hausdorff. 

The category TopGrp is cocomplete and A*GB denotes the pushout (free topological 

product with amalgamation) of a diagram A <— G —> B. IfG = {*}, then this 

is simply the free topological product A * B. Universal properties quickly verify 

that A * B has the quotient topology with respect to the canonical homomorphism 

kA,B '• FM(A © B) —> A*B (here © denotes the coproduct in Top) and A*GB has the 

quotient topology with respect to the canonical map A* B —> A*G B. Free topological 

products are related to the functor T in the following way: 

Proposition A.44 For groups with topology A, B, the canonical epimorphism 1CA,B '• 

FM(A © B) —> T(A) * T(B) is a topological quotient map. 

Proof. The following diagram commutes in the category of topological groups. 

FM(FM(A) © FM(B)) *F M W F M ( B ) y FM(A) * FM(B) - ^ FM(A © B) 

FM(mA®mB) ^AB 

FM(T(A) © T(B)) > T(A) * T(B) 

Since m^, mB are quotient and FM preserves quotients, all maps except for the right 

vertical map are known to be quotient. By the universal property of quotient 
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spaces, 1CA,B '• FM(A ® B) -> T(A) * T(B) must also be quotient. • 

A.3.2 Reduction topologies PR(Y) 

For every unbased space X, there is a canonical monoid epimorphism R : 

M*(X) —» F(X) (See A.l) reducing words by the relations xx'1 ~ e ~ x^x. We 

note that R also satisfies R(xo~1) = R(w)-1 for each word w e Af (X). Give F(X) the 

quotient topology with respect to R : M*T(X) —• F(X) and denote the resulting group 

with topology as FR(X). This quotient topology on F(X) will be called the reduction 

topology. 

Functorality A.45 For each space X, FR(X) is a quasitopological group. Moreover, FR : 

Top —> qTopGrp is a functor and R : M*T —» FR is a natural transformation each 

component of which is a monoid epimorphism and topological quotient map. 

Proof. For this proof all we need is the fact that M*T(X) is a semitopological monoid 

with continuous involution. By the Quotient Square Lemma, if the diagram 

M*r(X)^-^M*T(Y) 

FR(X)—r^FR(Y) 

commutes where / is continuous, then / ' is also continuous. The diagram com­

mutes when we let X = Y, f be left multiplication by word w in M*T(X) (resp. 

right multiplication by w in M^,(X), the involution w i-» w~l in M -̂(X)) and / ' be 

left multiplication by R(w) in FR(X) (resp. right multiplication by R(w) in FR(X), 
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group inversion w i-» ur 1 in M*T{X)). Since M*T(X) is a topological monoid with 

continuous involution, / is continuous in each of these cases. Therefore right and 

left multiplication by fixed words and inversion are continuous making FR(X) a 

quasitopological group. Moreover, a map g : X —» Y in Top induces a continuous 

homomorphism / = M*T(g) : M*T(X) —» M*T(Y). The diagram commutes when we 

let / ' be the homomorphism F(g) : FR(X) —> FS(Y) induced on free groups. By the 

same argument F(g) is continuous and FR is a well-defined functor (preservation 

of identity and composition follows from the functorality of the free group). The 

above diagram also illustrates the naturality of R. • 

Let a : X —» FR(X) be the continuous injection of generators. Though we will see 

that FR(X) is not always a topological group, a nice property of FR is the following: 

Universal Property A.46 Let Xbea space, (M, s) be a topological monoid with continuous 

involution, and Gbea quasitopological group. Iff : X —> Mis a continuous function and 

g : (M s) —»(G,_1) is a continuous, involution preserving homomorphism, then there is a 

unique, continuous group homomorphism h : FR(X) —> G such that h o a = g o f. 

Proof. The canonical embedding of generators a' : X —» MJ,(X) satisfies R o a' = o. 

The map / induces a continuous, involution-preserving monoid homomorphism 

/ : (M*r(X),_1) -»(M, s) such that / o a' = / which is /"(*) = /(x) and /(x_1) = s(f(x)) 

on generators. Since g preserves involution, we have g(s(f(x))) = ^(/(x))_1. Since 

g/(xx_1) = gf{x)gf{x)~1 = gf{xYlgf{x) = gfix^x) is the identity of G, g o / : 

MJ,(X) -> G is constant on the fibers of R : M*T(X) -> FR(X), there is a unique, con­

tinuous group homomorphism h : FR(X) —> G such that /z o R = gof. Consequently, 
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hoa = hoRoa' = gofoo'=gof. m 

Corollary A.47 If X is a space and f : X —> Gis a continuous function to a topological 

group, then there is a unique continuous group homomorphism f : FR(X) —> G such that 

foo = f. 

Corollary A.48 For any space X, the identity FR(X) —» FM{X) is continuous and is 

a homeomorphism if and only if FR(X) is a topological group. Moreover, the identity 

T(FR(X)) —> FM(X) is an isomorphism of topological groups. 

Proof. The continuous injection a : X —» FM(X) induces the continuous identity 

FR(X) —> FM(X) by A.47. Since FM(X) is a topological group, the universal property 

of T(FR(X)) gives that T(FR(X)) —> FM(X) is continuous. The continuous inverse 

FM(X) -> T(FR(X)) is induced by the map a = rfR(X) ° o : X -> FR(X) -» T(FR(X)) 

from the universal property of free topological groups. Since T(FR(X)) = FM(X) it 

follows that FR(X) is a topological group if and only if id : FR(X) = FM(X). • 

Now we consider a construction which generalizes FR. This construction plays 

a key role in recognizing the isomorphism class of the quasitopological group 

n°p(L(X+)) as in Chapter 4.2. Fix a quotient map q : X —> Y in Quo(Top). We 

generalize the previous construction of FR(Y) by replacing the topological monoid 

M*T(Y) with the semitopological monoid M*q(Y). Specifically, let F(Y) have the 

quotient topology with respect to the reduction map R : Mq(Y) —> F(Y) and denote 

the resulting group with topology as PR(Y). We will refer to this quotient topology 

as the q-reduction topology. Since Q = M*{q) : M ,̂(X) —» Mq(Y) is quotient by 
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definition, the composite RQ : M*T(X) —> PR(Y) is quotient. Note that when q = idY/ 

we have Ff(Y) = FR(Y). Functorality follows similarly to that of Mq and FR. 

Functorality A.49 For each q : X —» Y in Quo(Top), PR(Y) is a quasitopological group. 

There is a functor Quo(Top) —> qTopGrp given by (q : X —> Y) i-» PR(Y) on objects 

and (J, g) H-> F(g) on morphisms. Additionally, R:M*-^PRisa natural transformation 

each component of which is a quotient map of semitopological monoids with continuous 

involution. 

Lemma A.50 Letq:X^> Ybea quotient map. 

1. The canonical injection of generators a : Y —> PR(Y)is continuous. 

2. The identity id : PR(Y) —> FR(Y) is continuous and is a homeomorphism if and only 

ifFR(q): FR(X) —> FR(Y) is a topological quotient map. 

3. The following are equivalent: 

(a) PR{Y) is a topological group 

(b) id : PR(Y) = FR(Y) and id : FR(Y) = FM(Y) 

(c) F{q): FR(X) —> FM(Y) is a topological quotient map. 

4. The identity T(PR(Y)) —> FMCO is cm isomorphism of topological groups. 

Proof. 1. Since o is the composite of R : MqQC) -* PR(Y) and the embedding 

Y -̂> Mq{Y) (A.10.1), o is continuous. 
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2. Consider the diagram 

M*T(X) - * - • FR(X) - ^ FM(X) 

RoAf(?) FRW FM(?) 

commuting in sTopMon*. 2. follows immediately from the fact that the left vertical 

map in the left square is quotient. 

3. (b) => (a) is obvious, (a) => (b) If F^iY) is a topological group, a :Y -> F£(Y) in­

duces frf : FM(V) —> F^(Y). Since the identity F^(Y) -» FK(Y) —> FMQ0 is continuous, 

the three topologies on F(Y) must agree. For (b) <=> (c) it suffices to observe that the 

top and left maps in the left square of the above diagram are quotient. 

4. The map rp(Y) o a : Y —> Fq
R(Y) —> T(PR(Y)) is continuous and induces the con­

tinuous identity id : FM(Y) —> T(FR(Y)). The continuous identity id : PR(Y) —» FMQO 

induces id : T(PR(Y)) —» FM(Y) which is continuous by the universal property of 

T(fl00). • 

Corollary A.51 IfFR(X) is a topological group and q : X —* Y is quotient, then PR(Y) is 

a topological group. 

Proof. If FR(X) is a topological group, then id : FR(X) = FM(X) by Corollary A.48. 

Since FM preserves quotients, FM(q) '• FM(X) —> FM(Y) is quotient. Therefore, the 

composite F(q) : FR(X) —> FM(Y) is quotient and 3. of Lemma A.50 implies that 

PR(Y) is a topological group. • 
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Corollary A.52 If all powers of the quotient map q : X —> Y are quotient, then id : 

PR(Y) = FR(Y). 

Proof. If qn : X" -> Y" is quotient for each n > 1, then id : M*q(Y) = Mr{Y) by Lemma 

A.10. Therefore, the quotients PR(Y) and FR(Y) are homeomorphic. • 

Example A.53 Let X be an A-space and q : X —> Y be any quotient map. By A.29, 

M*T(X) is also an A-space. Since the category of A-spaces is closed under quotients, 

PR(Y) must also be an A-space. Moreover, A.30 implies that PR(Y) is a topological 

group. In particular, if X is an A-space, then FR(X) is a topological group which is 

an A-space. 

Corollary A.54 The following are equivalent for any quotient map q : X —> Y: 

1. Y is a discrete space. 

2. {^(Y) is a discrete group. 

3. FR(Y) is a discrete group. 

Proof. 3. => 2. => 1. is obvious since we have continuous injections id : PR(Y) —* 

FR(Y) and o : Y —> F^(Y). For 1. => 3. suppose Y is discrete. Then MT(Y) is discrete 

and the quotient FR(Y) is discrete. • 

Now we study the topological properties of F^(Y) in more detail. The following 

definition is reminiscent of the first condition in Lemma 4.14. 
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Definition A.55 We say a continuous function / : X —> Y is separating if whenever 

f(x\) = yi ± 1/2 = / f e ) there are open neighborhoods 11/ of x, in X such that 

f(U,) n f(U2) = 0. 

Remark A.56 For any quotient map q : X —> Y, Y is Hausdorff => g is separating => 

YisTi. 

The following definition makes sense for a fixed quotient map q : X —> Y. 

Definition A.57 A neighborhood 17 = LZ^1... l£" of w = x*1... xe
n

n in M*r(X) is q-

separating if g(LT,) n q{Uj) = 0 whenever qfa) =£ q{xj). We say LI is separating in the 

case q = z'dy 

Remark A.58 If LI^1... LÎ " is a q-separating neighborhood of x^1... x^n, then 

1 r^1 1 T 6 ' - 1 7 ie'+i 116" 
" 1 • • • " i - i u i + i • ' ' " » 

is a q-separating neighborhood of x^1... x ^ x ^ 1 . . . xe
n". This will be particularly 

useful when we remove letters by word reduction. 

Let Q = M*(q) : M*T(X) —> Mq(Y) be the induced monoid homomorphism which 

takes word w = x^1... xe
n

n to Q(w) = q(xi)£l... q(xnf
n and is quotient by definition. 

Additionally, the composite RQ : M*T(X) -» M*q(Y) -» P^Y) is quotient. 

Lemma A.59 Letq : X —> Ybea separating quotient map, w = x^1... Xs? be a non-empty 

word in M^(X), y;- = q(Xi), and W be an open neighborhood ofw. 

1. There is a q-separating neighborhood U = U^1 • • • lfn" ofw contained in W. 
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2. Q(w) is reduced if and only ifQ(v) is reduced for each veU. 

3. Ifv e U, then \RQ(w)\ < \RQ(v)\ < \Q(w)\. 

Proof. 1. If all of the y,- are the same, there is an open V = Ui of Xi such that 

U = LTj1... lfn
n c W. On the other hand, if y* =£ y;-, there are open neighborhoods 

V',/;ofx!andV'pofx;suchthatg(Vrj/;)n^(V'^) = 0. For each/, take open neighborhood 

Ui c n (̂*i)̂ (x;) ^«,; o r xi such that U = U^1... U^" c JV. Clearly IT is a q-separating 

neighborhood of w contained in W. 

2. Suppose first that Q(w) is a reduced word. Then for each i e {1,..., n - 1} either 

y; ^ y*+i or ê  = e!+1. Suppose v = z^1...ze
n
n lies in the q-separating neighborhood 

U and i e {l,...,n - 1} such that e; = -e i + 1 . If q(zt) = g(z!+i), then we must have 

y,- = g(x;) = q(Xi+i) - y!+i. But this cannot be since Q(w) is reduced. Therefore Q(v) 

is reduced. The converse is obvious since if Q(w) is not reduced then U already 

contains Q{w). 

3. Suppose v = z^1... ẑ " e U. The second inequality is obvious since |RQ(i>)l < 

\Q(v)\ = \Q(w)\- To prove the first inequality, Remark A.58 indicates that it suffices 

prove that for every reduction in Q(v), there is a corresponding reduction in Q(w). 

This follows directly from 2. • 

Let PR(Y)n denote F(Y)„ = {w e F(Y)||zt>| < n) with the subspace topology of 

Corollary A.60 Ifq:X-*Yis separating and n > 0, then PR{Y)n is closed in ^(Y). 

Proof. Suppose w £ MT(X) such that |RQ(zt>)| > n. Now take any q-separating 

neighborhood U of w in M^(X). Lemma A.59 asserts that if v e U, then |RQ(u)| > 
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\RQ(w)\ > n. Consequently, w € U c M*T(X)-RQ-1(i^(Y)„)provingthatRQ-1 (PR(Y)n) 

is closed in M*T(X). Since RQ is quotient F^(Y)M is closed in PR(Y). • 

We now observe some properties of PR(Y) which are often desirable in free topo­

logical groups. Let Z denote the set of all finite sequences C = ei, —, en withe, e {±1}, 

including the empty sequence. For each C = elr ...,en e Z, let Xc = {x^1... ^"|x ; e X} 

and recall that M^(X) = LJcez ̂ - Let |C| denote the length of each sequence and 

{RQ\ : Xc -» PR{Y)\Q be the restriction of the quotient map RQ : M*r(X) -» Fj(Y). 

The proof of the next proposition is based on that of Statement 5.1 in [Sip05]. 

Proposition A.61 Let q : X —> Ybe separating. 

1. PR(Y)hasthe inductive limit topology of the sequence of closed subspaces {PR (Y)n) n>0, 

i.e.Fl(Y) = ^nnPR(Y)n. 

2. For each rc > 0, the restriction (RQ)n : 0"= o(XeX - 1) ' ' -> PR(Y)„ ofRQ is a quotient 

map. 

Proof. 1. Suppose C c pR(Y) such that C n PR(Y)„ is closed in PR{Y)n for each n > 0. 

Since (RQ)C is continuous Q'^R-^Q) f l X ^ ( ^ 0 ) ^ ( 0 = (RQ)l\Cn PR(Y){Q) is 

closed in Xc for each C- But M*T(X) is the disjoint union of the X5 and so (RQy1(C) 

is closed in M^,(X). Since RQ is quotient, C is closed in PR(Y). 

2. Suppose A c fJ(Y)B such that (RQ);1^) is closed in 0"=O(X© X"1)' = ® |C|<n X1. 

Since PR(Y)n is closed in PR(Y) and RQ is a quotient map, it suffices to show that 

RQZ\A) = {a = a^...ae* e AfT(X)|RQ(a) € A} = R Q - V ) n Xs 
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is closed in Xc for each Z = elt...,ek€ Z. If|CI < n,thenKQ-1(A)nXc =RQr1(A)nX1^ 

is closed by assumption. For \Q > n, we proceed by induction, and suppose 

RQ^(A) n X6 is closed in X6 for all 5 e Z of length |6| = n,n + 1,...,|CI - 1. Let 

w = x f - x ^ e Xc such that RQ(w) $ A. Let y,- = qfa). If Q(w) = ye^-ye
k
k is 

reduced, U is a q-separating neighborhood of w, and u e U, then by Lemma A.59, 

n < |CI = |KQ(w)l = |RQ(i;)|. Thus RQ(li) n J* (Y),, = 0 and since A c ]* (Y)„ 

we have LI n RQ^(A) = 0. Therefore we may suppose that Q(w) is not reduced. 

For each i e {1, ...,k - 1} such that y, = y!+i and e; = -e,-+1 find a q-separating 

neighborhood U,- of ty in the following way. Remove the two letters xV, x^1 from 

w to obtain the word W{ = x6^ ...xf^x^—xf which satisfies RQ(wi) = RQ(w) £ A. 

Let Q = e1,...,ei-1,ei+2,...,ek so that |£-| = |t| - 2 and w{ e & - RQ~^(A). By our 

induction hypothesis RQ^X(A) is closed in X^ and so we may find a q-separating 

neighborhood Vt = A^...Aer]_Ae^l...A^ of w{ such that V) n RQ^(A) = 0. We may 

then find neighborhoods Ait A;+1 of xif xi+x respectively such that 

IT — 4 e l Aei-1 Aei Aei+1 Aei+2 Aek 

is a q-separating neighborhood of w. Now take a q-separating neighborhood U 

of w such that w e IT £ H; LT; (the intersection ranges over i such that y; = y;+i 

and e, = -e !+i). It now suffices to show that RQ{v) $. A whenever v = a^.-.a^ e U. 

If Q(v) is reduced, then n < \Q = \Q(w)\ = \Q(v)\ = \RQ(v)\. Thus RQ(v) £ PR{Y)n 

and we are done. If Q(v) is not reduced, then there is an i0 e {l,...,k- 1} such 

that q(di0) = q(ai0+i) and eio = -eio+1. Since U is a q-separating neighborhood of w 

199 



we must also have y^ = y^+i. If u!o = a^1 ...ay^a^—a^ is the word obtained by 

removing flj,flj?, we have RQ(v) = RQ(vk) and vk e V^. But F;o n RQ^(A) = 0 

andsoKQ(z;) = K Q K ) ^ A . B 

For each n > 1, let Y? denote the product Y" with the quotient topology from 

the product function qn : X" —» Y". Of course, since q is quotient, Yj = Y and if 

q = nx : X -» 7t[,op(X), then Y£ = T I^ (X" ) . Similarly, denote Y\ and (Y© Y"1)^ as the 

quotients of Xc and (X © X-1)" with respect to q and its powers and sums. In these 

terms, we have 

M;OO = 0(Y©Y-1)» = 0 Y < 
n>0 CsZ 

Let Qn : ®"=0(X© X"1)^ - ® ^ (Y© Y"1); and Rn : 0 ^ ( Y © Y"1); -> PR{Y)n be the 

respective restrictions of R and Q. Since Rn ° Qn = (RQ)n, the previous proposition 

implies: 

Corollary A.62 Ifq : X —> Y[is separating and n > 0, the restriction Rn : ®"=0(Y© 

Y~% ~* fyXln of reduction R : M*q(Y) -» PR(Y) is a quotient map. 

Theorem A.63 The following are equivalent. 

1. q:X^>Y is separating. 

2. PR(Y) is 7\. 

3. For each n > 1, the canonical map on : Ŷ  —> PR(Y) taking (y\, •••, y„) to the word 

yi-.., y„ is a closed embedding. 

Proof. 1. => 2. If <7: X —» Y is separating, the singleton F ,̂(Y)o = M containing the 

identity is closed by Corollary A.60. Since PR(Y) is a quasitopological group, it is 
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2. => 1. Suppose q : X —> Y is not separating. There are distinct ylf yi^Y such that 

whenever q(X{) = yi and LZ; is an open neighborhood of x;-, then q(Ui) n ^(1/2) ^ 0-

Suppose W is any open neighborhood of reduced word y\y~^ m F^(V) and x, € 

q~l{yi). Since RQ is continuous, there are open neighborhoods IT, of x, such that 

XiX"1 € LiiLT"1 c RQ_1(^0- But there is a y3 6 </(lii) n q{U?) by assumption and so 

Q{UiU~l) c R_1(W) contains the word y3y~l. Therefore e = Riysy^1) e W. But if 

every neighborhood of yiy^1 in FROO contains the identity, then F^Y) is not Tx. 

1. => 3. Suppose A is a closed subspace of Y? and (7 is separating. Let / : Yj? c-» 

II"=0(Y U Y-1)^ be given by j(ylf..., yn) = yi-..y„ so that Rn° j = on. Since j is a closed 

embedding, R?(an(A)) = j(A) is closed in IJ"=0(Y u Y -1^. But Rn is quotient by 

Corollary A.62 and F^(Y)„ is closed in f^(V). Therefore cr„(A) is closed in FJ^Y). 

3. => 1. If q is not separating, the argument for 2. => 1. implies that there are 

distinct yi, yi^Y such that any open neighborhood of the three letter word yiyiy^1 

in PR{Y) contains the one letter word y\ which lies in the image of ox. Therefore, if 

q is not separating, the image of ox cannot be closed. • 

Overall, we wish to characterize the quotient maps q : X —> Y for which PR(Y) 

is a Hausdorff topological group. One such characterization is the following. 

Theorem A.64 Let q : X —> Y be a quotient map. Then PRiy) is a Hausdorff topological 

group if and only if the following three conditions hold: 

1. Y is Tychonqff. 

2. FM(Y) = Hmn FM(Y)n. 
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3. RQ„ : (B"=0(X © X 1)' —> FM(Y)n is a quotient map for each n>l. 

Proof. 

Suppose PR(Y) is a Hausdorff topological group. Since q is quotient, we have 

id : PR(Y) = FM(Y) by A.50. Since FM(Y) is Hausdorff, Y must be functionally 

Hausdorff by Lemma A.37. Consequently, q is separating. Since q is quotient and * 

separating, A.63 implies that o :Y —> PR(Y) = FMQO is actually and embedding. By 

Lemma A.37, Y must be Tychonoff. Since id : i-^(Y)n = FM(Y)n for each n, it follows 

that 

FM(Y) = PR(Y) = KmF£(Y)„ = limFM(Y)n 

n n 

where the second isomorphism comes from A.61.1. The fact that RQn : (J)"=0(X © 

X"1)' -> PR{Y)n = FM{Y)n is quotient follows from A.61.2. 

Now suppose conditions 1.-3. hold. Since Y is Tychonoff, q is separating. Since 
RQn • 0 -=0(X ® x _ 1 ) ! -* FM(y)n is quotient by assumption and RQn : ® "=0(X © 

X"1)' -^ i^(Y)„ is quotient by A.61.2, we have id : PR(Y)n = FM{Y)n for each n. 

Therefore 

id : FM(Y) = HmFM(Y)„ = HrnF^(Y)„ = PR{Y) 
n n 

where the last isomorphism is from A.61.1. Lemma A.50 implies that F^(Y) is a 

topological group. Since q is separating F^^Y) is T\ A.63 and every Tx topological 

group is Hausdorff. • 

The proof of the following simplification when X=Y and q = idy is the same. 

Proposition A.65 For a Hausdorff space Y, FR(Y) is a topological group if and only if the 
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following three conditions hold: 

1. Y is Tychonoff 

2. FM{Y) = ^anFM{Y)n 

3. Rn : ®"=0(Y© Y~lY ~~* FMQOU is a quotient map for each n>\. 

It should be noted that the conditions 2. and 3. in the previous proposition 

have received a great deal of attention in topological algebra. Consequently, this 

characterization is quite useful for determining when our constructions result in 

a topological group. Full characterizations of spaces Y for which 2. and 3. hold 

individually remain open problems. See sections 5-8 of [Sip05] for recent results 

on these characterization problems. 

Recall from Lemma A.50 that for quotient q : X -» Y, id : PR(Y) = FM(Y) if and 

only if id : PR(Y) = FR(Y) and FR(Y) = FM(Y). This allows us to give alternative 

characterizations by considering two separate characterizations. 

Theorem A.66 Let q : X —> Y be a continuous surjection. Ifqn:Xn-^>Ynisa quotient 

map for all n>\, then the induced, continuous epimorphism FR(q): FR(X) —> FR(Y) is a 

topological quotient map. IfX and Y are Hausdorff spaces, the converse holds. 

Proof. If q" : Xn —> Yn is a quotient map for each n > 1, then so is M ^ ) = 

®«>o(<?e ?)" :
 MTQQ ~* •M*r(

y)- S i n c e the diagram 

M l ( X ) ^ l M L ( Y ) 

Rx Y 

ftoo-^ftm 
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commutes and the reduction maps are quotient maps, FR(q) is a quotient map. 

To prove the converse, let a* : Xn —> FR(X) and o\ : Y" —> FR(Y) be the canonical, 

closed embeddings of Theorem A.63 and X" = o*(Xn) and Y" = oY
n{Yn) be their 

images. 

We show the restriction p = FR(q)\xn : X" —> Y" is a quotient map using the 

commutative diagram 

Rx Xn-^FR(X)^M*T(X) 
FR(<?) M-T(q) 

Yn^FR(r)^M>T(Y) 

where the reduction maps are distinguished with subscripts. To see that p being 

quotient implies qn is quotient, take C c Y" such that (gn)_1(C) is closed in X". Then 

cr^((g")_1(Q) = p_1((7n(Q) is closed in X" and consequently ol(Cj is closed in f". 

Since o\ is a continuous injection, C is closed in Y". 

Suppose AQY" such that p_1(A) is closed in X". Since Rx is quotient and FR(q) 

is assumed to be quotient and Y™ is closed in FR(Y), it suffices to show that 

Bc = Rx\FR(q)-\A) n Xc = \x = x^...x^\RY{MT{q){x)) = RY(q(x1p...q(xkp) e A} 

is closed in Xc for each C = £1, —,ek. We proceed by induction on |C| = k. It is clear 

that if |CI < n, then Bc = 0. Additionally, if |CI = n and C * 1,1,..., 1, then Bc = 0. 

On the other hand, if |CI = n and C = 1,1, ••-, 1, then Bc = {xi...x„|^(^i)...^(x„) eA) = 

Rx
l{p~1{A)) n Xe is closed by assumption. Now we suppose that |CI > n and Bc is 
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closed in X6 for all 6 such that \6\ = n,n + l,..., \Q - 1. Let x = x^...xe
k
k eXc-Bc and 

y = M*T(q)(x) = q(x1Y
1...q(xkY*. Since x t Bc, we have RY(y) $ A. Let £ = E^...Ee

k
k 

be a separating neighborhood of y in M*T(Y). Since M*T(q) is continuous, there is a 

separating neighborhood D = D^.-.D^ of x, such that g(D,) c £; for each* e {1, ...,&}. 

Since E is a separating neighborhood, if q(xl) # ^(z;), then q(D,) n ^(D;) = 0. Now 

we consider the cases when y is and is not reduced. 

If y is reduced and v e D, then M^)(?7) e £ must also be reduced by A.59. 

Therefore n < \Q = \y\ = \RY{M*T{v))\, i.e. the reduced word of MT{q)(v) has length 

greater than n and cannot lie in A c Yn. Therefore DC\BC = 0. 

If y is not reduced, then for each i e {1,...,k - 1} such that q{xt) = q(x1+1) 

and e; = -el+1, we let wl = <7(xi)ei... qixt-if^qixt^f^2 • • • q(xk)
£k e M*r(Y) and 

ut = x*1...x£lz\xe^ ...x£
k
k be the words obtained by removing the i-th and (i+1)-

th letters from y and x respectively. We also let Q = e\,-- .,et-i,et+2, —ek- This gives 

FR(q)(Rx(ut)) = RY(M*T(u,)) = Ry(jot) = Ry(y) g A and consequently ut e Xs' - Bc'. 

We know by our induction hypothesis that Bc' is closed in Xc' and so we may find 

a separating neighborhood V, = A^1. ..A^A^ . ..Ae
k
k of u, contained in X^ - BCi. 

Let At = Al+1 = X so that 

U, = A\\..A£>-}AetAe«}A£l+l...Ae} 

is an open neighborhood of x. Now take a separating neighborhood U of x such 

that U Q D n H, U, where the intersection ranges over the i € {1 , . . . , k - 1} such 

that q(xt) = <7(x!+i) and et = -et+1. It now suffices to show that FR(q)(Rx{v)) = 
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RY{q{zifx... q{zkf
k) g A whenever v = z\'... z£

k
k € U. If M*T{q){v) = qfaf1... q{zk)

e* 

is reduced, then n < ICI = W = |Ky(M^))| and RY(A^.(?)(i>)) g A On the other 

hand, suppose q{z{)ei... q{zk)
Bk is not reduced. There is an i0 € {1,..., fc- 1} such that 

<7(z,0) = g(z;0+i) and ek = -ek+1. But zio e Dio and z ^ e D^+i, so we must have 

q(xio) = q(xig+i). Since v £ U c LJ!o, we have 

VlQ - Zx . . . Z.o_x Zig+2 . . . Zfc te Vlg ± A i5 -o 

Therefore 

FnWfcfr)) = Ky W 0 ( * ) ) = RyWj(q)(vk)) = F ^ ) ( £ x K ) ) * ^ 

proving that U n Bc = 0 and Bc is closed in Xc. • 

Putting all of the previous results together, we obtain the following classification 

theorem. 

Theorem A.67 Let X be Hausdorffand q : X —> Y be a quotient map. The following are 

equivalent: 

1. PR(Y)isa Hausdorff topological group. 

2. id : f^(Y) = FR(Y) = FM(Y) and q is separating. 

3. RQ : M*T(X) —> FM(Y) is a topological quotient map and q is separating. 

4. The following three conditions hold: 

(a) Y is Tychonoff. 
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(b) FM(Y)z)imnFM(Y)n. 

(c) Rn : ®"=0(Y® Y-1)' —> FM(Y)n is a quotient map for each n>\. 

(d) qn : X" —> Y" is a quotient map for each n>\. 

Proof. In A.50 it is shown for arbitrary q that PR(Y) is a topological group o 

id : F|(Y) a FR(Y) = FM(Y) <=> RQ : M*T{X) -» FM(Y) is a topological quotient map. 

Also q is separating <=> F^(Y) is Ti (A.63) and any topological group is 7\ if and only 

if it is Hausdorff. Therefore, we have 1. <=> 2. <=> 3. 

1. <=> 4. follows from Theorem A.64 and the fact that when X and Y are 

Hausdorff, id : PR(Y) = FR(Y) <=> FR(q) is quotient <=> ^" is quotient for each n > 1. • 

The arguments used to prove the next statements are based on the arguments 

used by Fabel [Fab06] to show that the Hawaiian earring group n^CHE) is not first 

countable. Given a sequence of integers Nm, we write limm->oo Nm = oo when for 

each M > 1, there is an m0 such that Nm > M for all ra > mo. 

Lemma A.68 Ifq:X^>Yis separating and wm is a sequence of reduced words in F^(Y) 

such that lim^oo \wm\ - oo, then the set {wm}m>i is closed in FR(Y). 

Proof. Let C = {wm\m>x c PR(Y). Since RQ : M*T(X) -» fJ(Y) is quotient, it suffices 

to show that RQ^iQ is closed in M*T(X). Let zk e RQ'^C), k e K be a net ((K, >) is a 

directed set) in M*T{X) converging to z e XCo c M*T(X) such that RQ(z) £ C. For each 

ktK,we write -RQ(zjt) = wmk, which implies \zk\ > \wmk\- Since X-0 is open in M^(X), 

there is a fc0
 G £ such that z* e XCO (and consequently |zjtl = |z|) for every k > k0. If 

the net of integers m^ is bounded by integer M, then RQ(zk) € [w^Wi,..., KJMI for 

each A: e K But F^(Y) is Ti by Theorem A.63 and so the finite set {wy w2, —, wM) is 
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closed in i-^(Y). Since RQfa) —* RQ(z), we must have RQ(z) e {wi, w2t ..., WM) £ C 

but this is a contradiction. Suppose, on the other hand, that m^ is unbounded and 

ko e K. Since limm^co \wm\ = oo, there is an ra0 such that \wm\ > \z\ for all m > m0. 

Since m^ is unbounded, there is a ki > fc0 such that m^ > m0. But this means 

\zkl\> \wm \>\z\ 

This contradicts that |zjtl is eventually \z\. Therefore we must have that RQ(z) e C 

which again is a contradiction. Since any convergent net in RQ^iQ has limit in 

RQ^iQ, this set must be closed in M*T(X). • 

Corollary A.69 Let q : X -"> Y be separating and wm be a sequence in PK{¥) such that 

limm^oo \wm\ = oo. Then wm does not have a subsequence which converges in f^(Y). 

Proof. If limm_*oo \wm\ = oo, then limm-+co |wm.| = oo for any subsequence wm.. There­

fore, it suffices to show that wm does not converge in PR(Y) whenever limm_>oo \wm\ = 

oo. Suppose wm —* v for some v e i-^(Y). There is a subsequence wmj of wm such 

that |wm/| > \v\ for each / > 1. But limm^oo |wm | = oo and so C = (a;m );>i is closed in 

PR{Y) by Lemma A.68. This implies v & C which is impossible. • 

Corollary A.70 If q : X —> Y is separating and K is a compact subset of PR(Y), then 

K c PR(Y)nfor some n>l. 

Proof. Suppose K £ F^QOn for any n > 1. Take Wi e K such that |tt>il = n\. 
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Inductively, if we have wm e K n FR(Y)nm, there is an nm+1 > nm and a word 

wm+1 e K n (f^(Y)„m+1
 -

 F R O O ^ ) - Now we have a sequence wm € K such that 

|tt>il < \w2\ < — which clearly gives limm^oo \wm\ = °°- Corollary A.69 then asserts 

that wm has no converging subsequence in PR(Y), however, this contradicts the fact 

that K is compact. • 

Theorem A.71 Letq : X—> Y be a separating quotient map. The following are equivalent: 

1. Yisa discrete space. 

2. PR(Y) is a discrete group. 

3. i-^(Y) is first countable. 

Proof. 1. <=> 2. was proven in A.54 and 2. =» 3. is clear. To prove 3. => 1., 

we suppose Y is non-discrete and Fj!,(Y) is first countable. Since q is quotient and 

separating, Y must be T\. Let y o e ^ such that the singleton {y0\ is not open. 

Since q is quotient */-1(yo) is not open in X. There is an x0 € ^_1(yo) such that 

every open neighborhood LT of x0 in X satisfies (̂LZ) # {y0}- In fact, q(U) must 

be infinite, since if q(U) = \yo,y\,-,ym], then U n f]™i(X - q^iyd) is an open 

neighborhood of x0 contained in q~l(yo). Suppose {By B2, •••} is a countable basis of 

open neighborhoods at the identity e in PR(Y) where B,+i Q Bi for each z. Choose 

any z e X such that g(z) =£ ̂ (x0) = yo and let w„ = \X0ZXQX~1Z'1X~1\ e M^,(X). It 

is clear that RQ(wn) = R((yoq(z)yoyQ1q(z)~1y^1)n) = e and therefore wn e RQ~1{Bi) 

for all i, n > 1. Since g is separating, there is an open neighborhood Un of x0 and 
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Vn of z such that % = (UnVnUnU~1V~1U~1)n is a q-separating neighborhood of w„ 

contained in RQ~1(Bn). Recall that %, being a q-separating neighborhood means 

q(Un) n q(Vn) = 0. Since q(Un) is infinite, we can find yn e q{Un) distinct from y0 

and xn e Un n q~1(yn). Since (̂LT„) n g( Vn) = 0, the three elements yo/ J/n/ q(z) of V are 

distinct for each n > 1. Now we have 

u„ = (xozxox-h^x-1)" £tync RQ-\Bn) 

which satisfies 

RQ(vn) = R((y0q(z)y0yn
1q{z) Vn1)") = (M(z)yoy»tyz) Vn1)" G B«-

Note that \RQ(vn)\ = 6n and so lim„_>oo \RQ(vn)\ = oo. By Corollary A.69, the 

sequence RQ(vn) cannot converge to the identity ofPR(Y). But since {B,} is a count­

able basis at e and £ Q ( P „ ) e B„, we must have RQ(t> n) —
¥ e. This is a contradiction. 
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