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ABSTRACT

HOMOTOPY MAPPING SPACES

by

Jeremy Brazas
University of New Hampshire, May 2011

Advisor: Dr. Maria Basterra

In algebraic topology, one studies the group structure of sets of homotopy
classes of maps (such as the homotopy groups 7,(X)) to obtain information about
the spaces in question. Itis also possible to place natural topologies on these groups
that remember local properties ignored by the algebraic structure. Upon choosing
a topology, one is left to wonder how well the added topological structure interacts
with the group structure and which results in homotopy theory admit topological
analogues. A natural place to begin is to view the n-th homotopy group 7,(X) as the
quotient space of the iterated loop space Q*(X) with the compact-open topology.
This dissertation contains a systematic study of these quotient topologies, giving
special attention to the fundamental group.

The quotient topology is shown to be a complicated and somewhat naive ap-
proach to topologizing sets of homotopy classes of maps. The resulting groups
with topology capture a great deal of information about the space in question but

unfortunately fail to be a topological group quite often. Examples of this failure oc-
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curs in the context of a computation, namely, the topological fundamental group of
a generalized wedge of circles. This computation introduces a surprising connec-
tion to the well-studied free Markov topological groups and indicates that similar
failures are likely to appear in higher dimensions.

The complications arising with the quotient topology motivate the introduction
of well-behaved, alternative topologies on the homotopy groups. Some alterna-
tives are presented, in particular, free topological groups are used to construct the
finest group topology on 7,(X) such that the map Q"(X) — n,(X) identifying ho-
motopy classes is continuous. This new topology agrees with the quotient topology
precisely when the quotient topology does result in a topological group and admits

a much nicer theory.
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INTRODUCTION

The fact that classical homotopy theory is insufficient for studying spaces with
homotopy type other than that of a CW-complex has motivated the introduction of
a number of invariants useful for studying spaces with complicated local structure.
For instance, in Cech theory, one typically approximates complicated spaces with
“nice” spaces and takes the limit or colimit of an algebraic invariant evaluated on
the approximating spaces. The approach taken in this dissertation is to directly
transfer topological data to algebraic invariants by endowing them with natural
topologies that behave nicely with respect to the algebraic structure. While this
second approach does not yield purely algebraic objects, it does have the advantage
of allowing direct application of the rich theory of topological algebra. The notion
of “topologized” homotopy invariant seems to have been introduced by Hurewicz
in [Hur35] and studied subsequently by Dugundji in [Dug50]. Whereas these early
methods focused on “finite step homotopies” through open covers of spaces, we
are primarily interested in the properties of spaces of homotopy classes of maps
[X Y]..

The topological fundamental group 7.7 (X) of a based space (X, ), as first spec-
ified by Biss [Bis02], is the fundamental group 7,(X, x) endowed with the natural
topology that arises from viewing it as a quotient space of the space of loops based
at x. This choice of topological structure makes 7;” particularly useful for studying
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the homotopy of spaces that lack 1-connected covers. The brevity of this construc-
tion is rather deceiving since the topology of n;"” (X, x) is typically very complicated.
In fact, for over 10 years [May90, Bis02], it was thought that this construction always
results in a topological group. The initial intention of this research was to determine
the validity of this assertion. We actually produce a plethora of counterexamples
and shed light on a number of “defects” of the functor n;"” . Recently, Fabel [Fab09]
has shown that the Hawaiian earring group n;o”(]H]E) fails to be a topological group
independently of this work.

In a first algebraic topology course, one learns early on that the fundamental
group of a wedge of circles is the free group on the set indexing the wedge. One
might similarly expect a generalized or “non-discrete” wedge of circles (constructed
here as a suspension space (X)) to have topological fundamental group with some
similar notion of “freeness.” This computation is one of the main contributions of
this dissertation to the theory of topological fundamental groups. A surprising
consequence is that ni"” (£(X,)) either fails to be a topological group or is one of the
well-studied but notoriously complicated free (Markov) topological groups. Since
realizing free groups as fundamental group is an important tool in many fields
it is hoped that this geometric interpretation of many quasitopological and free
topological groups will provide useful in topological algebra.

The complications that arise with the quotient topology motivate the introduc-
tion of new topologies, however, there are many natural choices. Each is likely
to have its own benefits and uses. In many situations, a topology on a homotopy

group may be defined to remember a specific local properties of a space. For this
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reason, the author does not argue that one topology is “right” where others are
“wrong” or that one is “better” than another. For instance, the main power of the
quotient topology is the universal property of quotient spaces and the enormous
amount of data that it remembers about loops representing homotopy classes. The
topology of m}(X) introduced in this dissertation is constructed to give a group
topology from the quotient topology by removing as few open sets in the quotient
topology as possible. As with the quotient topology, its primary attribute is its

universal property and connection to the topology of loop spaces.



0.1 Notation

The following notation will be used:

Topological spaces:

e N,Z,Q R, I =0, 1] -Non-negative integers, integers (both discrete), rational,

real numbers with the standard topology, standard unit interval.
e Foreachintegern > 1andje€ {1,...,n}, let K,ﬁ be the closed interval [L;l, ﬁ] clL

e For e > 0, let B"(¢) = {x € R"||lx]l < €}. In the case € = 1, we write B" = B*(1)
or sometimes ¢". Let " = dB™! = {x € R™!|[x] = 1}. When considered as
based spaces, the basepoint of B"* and S" will be (1,0, 0, ..., 0) unless otherwise

stated. Let E"(€) = int(B"(€)) (interior in R") and E" = int(B"). for n > 0.

Categories: In general, if a,b are objects of a category C, C(a, b) denotes the set of
morphisms a — b in C. C” will denote the opposite category with the direction of

arrows reversed.

¢ Set, Set., Top, Top., hTop, and hTop. - category of sets, based sets, topological
spaces, based spaces, homotopy category of spaces, and homotopy category
of based spaces. If C is a full subcategory of Top or Top., hC denotes the

corresponding full subcategory of hTop or hTop..

e Haus and Haus. denote the full subcategories of Top and Top. consisting of

Hausdorff spaces.



e Top™ - the category consisting of n-tuples (X, Ay, ..., A,-1) where A; € X. A
morphism (X, Ay, ...,An-1) = (Y, By,...,By—1) is amap f : X — Y such that

f(A)) € B; for each i.

o Top™ - the category whose objects are pairs (X, x) where X = (X, Ay, ..., A,-1) €
Top™ and x € A; for each i. Morphisms are basepoint preserving morphisms

in Top™.

e Mon, cMon, Grp, Ab - the category of monoids, commutative monoids, groups,

abelian groups.

* MonwTop, GrpwTop - the category of monoids (resp. groups) with topol-
ogy. Objects are monoids (groups) with topology with no restriction on the
continuity of operations. Morphisms are continuous monoid (group) homo-

morphisms.

* TopMon, TopcMon - the category of topological monoids and topological

commutative monoids viewed as full subcategories of MonwTop.

¢ TopGrp, TopAb - the category of topological groups and topological abelian

groups viewed as full subcategories of GrpwTop.
Functors:

® (-): : Top — Top. is the functor adding disjoint basepoint to unbased space.

It is left adjoint to the functor U : Top. — Top forgetting basepoint.

e For based spaces X, Y, XA Y = XX Y/X V Y is the smash product.



e S : Top — Top - unreduced suspension given by SX = X x I/ ~ where

(x,t) ~ (y,s) if eithers =t =0ors=t=1.

e X : Top. — Top. - reduced suspension given on a based space (X, x) by

XxI

=~ XAS!
Xx{0,1}U{x}xI XAS

X = (X, x) =

with canonical choice of basepoint. We typically denote a pointin ZX as xA ¢,
the image of (x,t) € X X I in the quotient. X is left adjoint to the loop functor

Q : Top. — Top..

e C: Top — Top. denotes the unbased cone functor which is CX = 2L = IAX,
on an unbased space X. The image of X X {1} is chosen as the basepoint of CX.
Sometimes C will denote the reduced cone CX = X A (I, 1) but this distinction

will be clear from context.

0.2 Outline

Chapter I includes preliminaries on function spaces with the compact-open
topology and quotient spaces. In particular, a convenient basis is constructed for
spaces of paths and the concept of restricted paths and neighborhoods is intro-
duced.

Chapter II contains general theory regarding homotopy mapping spaces [X, Y].
(quotient topology). In particular, we study the interaction of the topology of

[X, Y]. with algebraic structure arising naturally when X is a co-H-space space or



Y an H-space. Subsequently, we conclude that many homomorphisms in exact
sequences of homotopy mapping sets are continuous in this topological setting.
A characterization of discreteness of homotopy mapping spaces is included using
local connectivity results of Wada [Wad54]. This allows us to know when the
added topological structure does not provide any new information. Lastly, we
introduce three alternative topologies on homotopy mapping sets (particularly the
homotopy groups). Individually, these topologies require the use of an adjunction
from topological algebra, the theory of k-spaces, and the inverse system approach
to shape theory.

Chapter III deals with topology of path component spaces. These space arise
naturally in the study of homotopy mapping spaces and receive a detailed treat-
ment. Of particular interest is the preservation of limits and colimits and the path
component spaces of monoids and groups.

Chapter IV is a study of the topological fundamental group and contains the
main results of this dissertation. We provide some basic theory of these groups
and go on to make a very general computation, namely, ntl"p (E(X4)) for an arbitrary
space X. This computation is akin to computing the fundamental group of a wedge
of circles. Applying many results from the Appendix, we study the topology of
ni7(%(X,)) in detail and characterize when 7;7(Z(X.)) is a Hausdorff topological
group. The last section of this chapter contains some theory of the alternative
topology of 7{(X) introduced in Chapter II.

Chapter V includes some comments on potential applications and extensions
of these results, in particular a conjecture about the higher topological homotopy
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groups.

APPENDIX contains some theory of monoids and groups with topology where
multiplication is not necessarily continuous. Much of this Appendix cannot be
found in the literature, in particular, the large portion on quotient topologies on
free groups. Results from the appendix are used throughout Chapters ILIII, and

Iv.



CHAPTER 1

PRELIMINARIES: TOPOLOGY

1.1 Function spaces

For unbased spaces X and Y we let M(X, Y) denote the set of maps Top(X, Y)
with the compact-open topology. A subbase for this topology consists of sets of the

following form:
(K,U) ={f: X = Y|f(K) € Uwhere K € X compact and U open in Y}.

If X and Y have basepoint, let M.(X, Y) denote the set Top.(X, Y) of basepoint pre-
serving maps with the subspace topology of M(X, Y). Additionally, for n-tuples X =
(X, A1, -y An-1), Y = (Y, By, ..., By1) € Top™ and based n-tuples (X, x), (Y, y) € Top™,
let M(X, Y) and M.((X, x), (Y, x)) be the hom-sets Top®™ (X, Y) and Top™((X, x), (Y, 1))
respectively with the subspace topology of M(X, Y). Notationally, we will not dis-
tinguish (K, U) as being a subbasis element for the topology of M(X, Y) or any of
these subspaces. We may mean (K, U) N M.(X, Y) when we write (K, U), however
the distinction should be clear from context. In the based case, the basepoint of a
set of maps will be the constant map unless otherwise stated. We will often make

use of the following functorial nature of these mapping spaces.



Functorality 1.1 For C = Top, Top'™, we have that M(—,-) : C” xC — Top is a
bifunctor. Similarly, in the based case C = Top., Top™, M.(-,-) : C? xC — Top. is

a bifunctor.

Proof. Certainly C(—,~) : C? X C — Set is a bifunctor. If therefore suffices to
show that M(—, ) is well-defined on morphisms. We prove the case C = Top
and the others follow from the fact that restrictions of continuous functions are
continuous. Let f : X — Y be a morphism in Top. We show that f* = M(id, f) :
M(Z, X) = M(Z,Y) given by f#(g) = f o gand fx = M(f,id) : M(Y, Z) = M(X, Z)
given by fi(g) = g o f are continuous for any Z € Top™. For (K, U) € M(Z Y) and

g € (fH((K, D)), we have

ge (K fAUNYNMEZX)C (K W)

and so f* is continuous. On the otherhand, if (K, U) € M(X, Z)and g € (f;)"'((K, LD)),
then

g € (fK), Y N M(Y, Z) € (fa) '((K D))

and f; is continuous. m

In a few cases, it will be convenient to shorten notation. For integer #n > 1 and
based space (X, x) € Top-. let Q"(X, x) = M.(5", X). When the basepoint is clear from
context, we simply write Q"(X). It is well-known that Q*(X) is naturally homeo-
morphic to both Q(Q" (X)) and the relative mapping space M.((I"*?, 9I"), (X, {x})).

The relative loop space of a pair ((X, A), x) € Topﬁz) isQ"(X, A) = M.((B", 5" 1), (X, A))

10



and is naturally homeomorphic to both M.((I", "), (X, A)) and the space of maps

of triples

M((1*, 71 x (0}, T x (1} U A" x ), (X, A, (x])).-

in Top®. We now recall some basic facts regarding the compact-open topology.
Proposition 1.2 An inclusion B C Y induces an inclusion i : M(X, B) — M(X, Y).

Proof. Let C C X be compact and U be open in Y. That i is an inclusion follows

from the equation i({(C, U N B)) ={C, ) N M(X,B). m

Theorem 1.3 [Eng89, 3.4] If Y is T, (resp. Ty, Hausdorff, Regular and T, Tychonoff),

then so is M(X, Y).

Remark 1.4 If X is an unbased space, there is a homeomorphism M(*, X) = X,

f + f(*)and forany based space Y, there isa homeomorphism M.(X,, Y) = M(X, Y),
fr flx.
Remark 1.5 Since S° A X = X for every X € Top., the previous remark implies that

for arbitrary X, Y € Top. there are canonical homeomorphisms
M.(S%, M(X, Y)) = Mu(, Mi(X, Y)) = M(x, M(X, Y)) = M(X Y).

Lemma 1.6 [Eng89, Proposition 3.4.5] Let X be any space, Y be a family of spaces with
projections pa : Y = [ Ya — Ya. The canonical map M(X,Y) — [[, M(X, Y3), f
(pa © f) is a homeomorphism. It restricts to a homeomorphism M.(X,Y) = T1) M.(X, Y1)
in the based case.

11



Of particular interest to us are the homeomorphisms Q(]], Xi) = IT, Q(Xy).

Lemma 1.7 [Eng89, 3.4.B] Let Xx and Y be a family of spaces indexed by the same set
where each X, is Hausdorff. The product operation [, M(Xy, Ya) = M (I1, Xa, I14 Ya),
(fa) = 11, fa is an embedding. This restricts to an embedding of based mapping spaces as

well.

Lemma 1.8 Let X a family of based Hausdorff spaces, Y be a based space, and j : Xp —
V1 X be the canonical inclusions. The canonical map M.(V; X3, Y) = [I, M.(X1, Y),
f > (f © ja) is a continuous bijection and is a homeomorphism of based spaces when X, is

Hausdorff for each A.

Proof. Since Top.(—,Y) : Top.’? — Set. preserves colimits and is induced by the
inclusion j,, this map is clearly a continuous bijection. Let X1 be Hausdorff and x,
be the basepoint of \/; Xi. Let {(C, U) C M.(V, X1, Y). Since C is compact and X, is
closed in V, X3, C N X; is compact for each A. But since each X, is Hausdorff, we
have (Xi — {xo}) N C = @ for all but finitely many A. Suppose A4, ..., A,, are the indices
for which (X1 — {xo}) N C # 0. Since Xj, is Hausdorff X; N C is a compact subset of
X, Let Vi = (X3, NC Uy and V) = M.(X3, Y) when A # A;. This makes V =[], Ux
an open neighborhood in []; M.(X3,Y). Clearly if f € (C U), then (fo ja) € V.
Conversely, if (f © ja) € V, then f(C) = f(U; X3, N C) = U;(f o a)}(Xa, N C) € U and

we have f € (C, U). Therefore f — (f o ja) is a homeomorphism. ®

Lemma 1.9 Let X and Y, be afamily of based spaces indexed by the same set where each X

12



is Hausdorff. The wedge operation [1, M.(Xa, Y1) = M. (V1 X0, Vi Ya), (i) = Vi fa

is an embedding.

Proof. The inclusions jy, : Y2 — V; Ya induce inclusions (1.2) (jy, )¢ : Mu(Xa, Y2) —

M.(Xx, V3 Y2). Together, these give the embedding

H(]'YA)# : HM*(X/\/ Y;) - HM (XA, \/ YA) = M. (\/ X, \/ YA]
A A A A A A

where the homeomorphism is from the previous lemma. This map is the desired

embedding. =

The Continuity of Evaluation 1.10 If X,Y € Top with X locally compact Haus-
dorff, then the evaluation map ev : X X M(X,Y) — Y, ev(x, f) = f(x) is continu-
ous [Mun00, Theorem 46.10]. If X,Y € Top. with X locally compact Hausdorff,

then ev : X A M.(X,Y) — Y is continuous [Mau70, Theorem 6.2.31].

Exponential Law 1.11 [Dug66, Theorem 5.3] If X is Hausdorff and Y is locally
compact Hausdorff, then for every space Z, the natural map n : M(X, M(Y, Z)) —

MX XY, Z), n(f)(x, y) = f(x)(y) is a homeomorphism.

Based Exponential Law 1.12 [Mau70, Theorem 6.2.38] If X, Y are compact Haus-
dorffbased spaces, then for every based space Z, the natural map 1. : M.(X, M.(Y, Z)) —

M.XAY, Z), n.(f)(x A y) = f(x)(y) is a homeomorphism of based spaces.

Metrizable function spaces are also of interest.

13



Theorem 1.13 [Eng89, 4.2.17 & 4.2.18] If X is compact Hausdorff and Y is metrizable,
then M.(X,Y) is metrizable. If, in addition, X is metrizable and Y is separable, then

M.(X,Y) is separable.

1.1.1 Restricted paths and neighborhoods

In order to study quotients of spaces of paths and loops, it will be necessary
to study operations on paths and to find a convenient basis for the topology of
the free path space M(I, X). Sometimes we will write P(X) for M(I, X), P(X, x) = {p €
PX)Ip(0) = x}, and P(X,x, y) = {p € PX)Ip(0) = x,p(1) = y}. We first consider
concatenation of paths. For any fixed, closed subinterval A = [4,b] C I, we make
use of the following notation. Let Hy : I — A be the unique, increasing, linear
homeomorphism. For a path p : I — X, the restricted path of p to A is the composite
pa=placHs: 1> A— X. Asaconvention, if A = {t} C [isasingleton, ps : I = X
will denote the constant path at p(t). Note thatif 0 = #, < t; < ... < t, = 1, knowing
the paths py;_, 1) for i = 1, ..., n uniquely determines p.

This definition allows us to easily define the concatenation of paths. If p;, ..., p, :
I — Xarepathssuch thatp;(1) = p;,1(0) foreachi = 1, ..., n—1, the n-fold concatenation

of these paths is the unique path

G=*_Pi=P1*Pa* " *Pn

such that gy = p; for each 7 (recall K}, = [’;nl, ﬁ]) The reverse of a path p is p™(f) =
p(1 —1).

14



The ability to restrict open neighborhoods to smaller and smaller paths will
be convenient Chapter IV. The following construction is introduced to this end.
If% = ﬂ;;l(C i U;) is a basic open neighborhood of a path p € P(X), then %4 =
N Anc’ﬂ,(HZl(A N C;), U;) is a basic open neighborhood of p4 called the restricted
neighborhood of % to A. If A = {t} isa singleton, then % = ﬂtecj(I, Uy =(I, ﬂtecj u,.
Ontheotherhand, if % = ﬂ;;l( Cj, U;) is abasic open neighborhood of the restricted
path py4, then 74 = ﬂ}'zl(HA(Cj), U;) is a basic open neighborhood of p called the
induced neighborhood of 7% on A. If A = {t} is a singleton so that p,4 is a constant map,

we let 274 = M ({1}, U = A8}, Nz, Up.

Lemma 1.14 For any basic open neighborhood % = ﬂ;‘zl(Cj, U;) in P(X) and closed
interval A C I, we have (% *)a = % < (%a)". The second inclusion also holds when A is

a singleton.

Proof. It is easy to see that

@) =[ﬂ<HA(C,->, uj>] = (| HEANHC) U
A

=1 ANH,(Cj)20

Since H4(C;) € A, this is clearly %. This gives the first inclusion. To prove the
second, we note that

@' = () Ha(HAANC)) Uy = () anc, Uy

ANC;#0 ANC;z0
Clearly, if f(C;) C Uj, then f(ANC;) € U; whenever ANC; 2 0. If A = {1},

then (%)* = (I, N, u,-))A = ({8, Niec, U. Clearly, if £(C;) € Uj, then f(t) € U,
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whenever t € Ci. m

A slightly more useful variant of the previous lemma is:

Lemma 1.15 IfO =1 < h<thb .=t = 1and % = m;l=1<cj', U]> such that

i=1Cj =1 then % = ().

=1

Proof. For convenience of notation, let A; = [ti-1,#]. 2. of Lemma 1.14 gives the

first inclusion % € NL,(%4,)". Now suppose

n

fe ﬁ (%Ai)Ai = ﬂ ﬂ (A;N C;, Up).
i=1

i=1 A,-ﬁCj;é(D

Clearly, if t € Cj = Uync, 0 Ai N C;. then f(f) € U;. Therefore, f(C;) € U, for each j,
thatis fe%Z. m
The condition that the union of the C; be the whole interval is to avoid taking

the intersection with a potentially empty set.

1.1.2 A convenient basis for free path spaces

Let Bpxy denote the basis for the topology of P(X) generated by the subbasis
of elements (K, U) and let #x be a basis for the topology of X which is closed
under finite intersection (for instance, the topology of X). We now find a new
basis %pxxy C Bpx). To do so we must know how to subdivide the unit interval
in an orderly manner. We use the following convention: For each integer m 2> 1,
let [m] = {1,..,m} and for each j € [m], let Kl,, = [Eml, #] be the corresponding
closed subinterval of I. For any integer p > 1 and subset S C [m] we let pS = {j €
[pmllj = pg+1—kforgq € Sand k € [p]}. For example, if S = {1,3} C [4], then

16



35 =1{1,2,3,7,8,9} C [12]. Now an interval Kf,, may be subdivided evenly into p
smaller intervals K,’n = Uleptjt Kﬁnp. Moreover, note that for any set S € [m] and any

p > 1 we have pS C [mp] and U jes KZn = UiepS Kinp-

Lemma 1.16 If C C I is a compact set and U C I is an open set containing C, then there

is an integer M > 1 and a set S C [M] such that C C U g K1]v1 cu.

Proof. Write U = [[; Uy where each U is an open interval in I. Since C is compact,
take Uy, ..., U, to be the U; such that Uy N C # 0. Take a finite cover {(s;, #;)}; of C
where s;, t; € Q and (s, ;) € U; for some i. For each i, let %i- = min{s)|(s;, t;) C U;} and

% = max{t|(s;, t;) € U;}. Now for eachi = 1, ..., m we have [;‘j—l, ;—] C Uy, and

RS RS
o
I
HE

2
5
(o}
5
c
¢2]

@]
(@]
=
-
2
N
—
&
N
<

Using previous notation we may state a special case of the Lebesgue lemma in
terms of the compact-open topology of P(X).
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Lebesgue Lemma 1.17 [Mun00, Lemma 27.5] If p € P(X) and {U}¥, is a finite
open cover of the compact image a(I) C X, then there is an integer N > 1 such that

pE ﬂ;‘il(K{V, LI,-].) for not necessarily distinct i; € [M].

Lemma 1.18 For each open neighborhood W = (iL;(C;, U;) of path p : I — X in P(X),
there is an open neighborhood V of p of the form V = ﬂ?ﬁl(Dj, V) S Wwhere ), D; = I

and V; € $Bx foreach j = 1,2,..., M.

Proof. For each i, choose a finite open cover ¥ = {V? of compact space

] } jElmi]

p(Ci) € X such that g, V;'. C U; and V; € Py for each ordered pair (i, j). Now

{a‘l (V;)} is a finite cover of compact metric subspace C; € I. So for each i we
JEln;

may use the Lebesgue lemma to find and integer m; > 1 such that for each I € [m;]

we have:

K,.NCcp! (V}I) for some j; € [m;]

Now

p€V1=ﬂ ﬂ(K,lniﬂCi,V;:)gW

i€[n] i€[m;]
The set V; satisfies the desired inclusion into W however the union of the compact

sets K], is not necessarily the entire unit interval. To fix this we cover p(I) with

1s a
ke[N]

finitely many basic open neighborhoods {Yiiepyy € %Bx. Now {p’l(Yk)}
cover of compact metric space I and we may apply the Lebesgue lemma again to
find an integer Q > 1 such that for each 4 € [Q], K‘é cp! (qu) for some k, € [N].
Thereforep € V, = ﬂqe[Q] <Kg, qu>. Now we let V = V; NV, € W which is of the

form desired. m
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Lemma 1.19 For each open neighborhood W = (_(C;, U;) of path p € P(X) where
it Ci = 1, there is an integer N > 1 and an open neighborhood p € ﬂ;‘il(K{w Vac W

1=

where each V; is some intersection of the U;, i.e. V; = ﬂieTj U; for some T; C [n].

Proof. We have C; C a™'(U;) for each 7 and so by Lemma 1.16 there is an integer

M; > 1 and set S; € [M;] such that

cae | K, cpian
]

les;c[M;

Let N = Icm(M;) and P; = ££. We now re-index and find

M;*

pe) M <1<1i,u,->=ﬁ [ & up.

i=1 leS;c[M;] i=1 jeP,S;C[N]

Since U7, C; = I, the compact set K{\] appears at least once in the intersection for

each j € [N]. Therefore the open set

vi= (|

K )cu;

is non-empty. We certainly have p € ﬂ;il(K{\,, V;) and we claim the inclusion

MK, Vi € M(Ci U T B(KL,) € Vj for each j, then

ﬁ(cf)gﬁ( U K&i]=ﬁ[ U KL)

1€5,C[M;] JEP;S;C[N]
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But for each j € P;S;, we have szv C a”Y(U;) implying that V; C U, by the definition
of V;. Therefore B(C;) C Ujeps, V; € Ui ®
Since we assumed basis %y is closed under finite intersections Lemmas 1.18

and 1.19 imply the next result.

Theorem 1.20 If W is any open neighborhood of pathp : I — X, there is an integer N > 1
and an open neighborhood ﬂ;il(Kj , V) of p contained in W such that V; € %Bx for each
j € IN]. Moreover, if Zp(x) is the collection of neighborhoods of the fofm N ]-E[N](K{\,, Vi
with V; € Bx, Bp) is a basis for the topology of P(X) which is closed under finite

intersections.

Proof. The first statement follows directly from Lemmas 1.18 and 1.19. To see
that %px) is closed under finite intersection we suppose % = ﬂie[M](Kj\A, U;) and
v = ]-E[N](Kl"\,, V) are neighborhoods in %px),. We find a common partition of |
by letting P = Icm(M, N) and for each k € [P], we let W, = U, N V;, € %x whenever
K;‘, - K;f, N KI’& Itis easy tosee that Z N ¥ = ﬂke[P](K’l‘,, W) € Bpx).-m

Intuitively, Theorem 1.20 allows us to restrict our use of basic neighborhoods in

P(X) to neighborhoods that resemble “finite sets of ordered instructions.”

$ Blw

Figure 1: An illustration of a basic open neighborhood as an element of #Bp(xy
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Using this basis, we may easily prove some basic facts about path spaces.

Lemma 1.21 Let C, = {(p, ..., pn) € P(X)"|pi(1) = pix1(0)}. For each n > 1, the n-fold
concatenation map c, : C, — P(X) (p1,...,pn) > *L,pi is continuous. The operation
r:P(X) — P(X), a — a! of taking a loop to its reverse is also continuous

Proof. First, we note that ¥ *({(C, L)) = ({1 — #|t € C}, U) for each subbasis set
(G, U) € P(X). Therefore ris continuous. Let+! p; € ﬂ;”:I(KZn, U;). We may suppose
that n divides m, in particular that kn = m. Now p; € Uy = N ]-ek{i]C[m](KL, u;) for

eachi € [n] and
(D1 -vos ) € (UK;, X+ X uKn) NC,cct [ﬂ(KZ,,, u]-)].

=1

Therefore c, is continuous. &

1.2 Quotient spaces

The following lemma is a basic fact that we will refer to repeatedly. Itis a direct

consequence of the universal property of quotient spaces.

Quotient-Square Lemma 1.22 Suppose A, B, C, D are spaces and the diagram

commutes in Set. If p is quotient and f, q are continuous, then g is continuous. If f,p, q
are quotient, then so is g.
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It is well known that the product of two quotient maps may fail be a quotient
map. This failure naturally leads to the introduction of so-called convenient cate-
gories of spaces. Since many of the quotient spaces considered in this dissertation

fail to be Hausdorff we take Brown’s approach [Bro06, §5.9].

Definition 1.23 A space X is a k-space if it has the final topology with respect to all
maps C — X for all compact Hausdorff spaces C. Equivalently [Bro06, 5.9.1], X is

a k-space if and only if it is the quotient of a sum of compact Hausdorff spaces.

Let kTop denote the full subcategory of Top consisting of k-spaces. The inclu-
sion functor kTop — Top has a left adjoint k : Top — kTop which is the identity
on the underlying sets and functions. The identity k(X) — X is always continuous
and k(X) = X if and only if X is a k-space. For spaces X, Y, let X X; Y = k(X X Y).
This satisfies k(X) X k(Y) = X X; Y and gives a well-defined categorical product in

kTop.

Fact 1.24 [Bro06] The following are well-known facts regarding k-spaces.
1. If Xis a k-space and Y is locally compact Hausdorff, then X X Y is a k-space.
2. Every quotient space of a k-space is a k-space.
3. First countable spaces and locally compact Hausdorff spaces are k-spaces.
4. If f; : X; = Y;,i = 1,2 are quotient maps of k-spaces, then f; X; f, is quotient.

5. The previous two facts and the fact that finite products of first countable
spaces are first countable imply that if X, Y are first countableand g: X = Y
is quotient, then 4" : X" — Y" is quotient for every n > 1.

22



6. Parts 1.,3.,4. imply that if X, Y are locally compact Hausdorffand g : X = Y

is quotient, then 4" : X" — Y™ is quotient for every n > 1.
We also consider another class of spaces whose quotients are well behaved.

Definition 1.25 A space X is a k,-space if X is the inductive limit of a sequence of
compact subsets, i.e. X = {J,»; K, and A is closed in X if and only if AN K, is closed

in K, for eachn > 1.

Theorem 1.26 [Mic68, 7.5] If X is a Hausdorff k,-space and q : X — Y is quotient, then

q" : X* — Y" is quotient for every n > 1.

As mentioned in the introduction, we are interested in quotients of mapping
spaces. Simple descriptions of such objects are often hard to come by. While
computationally challenging, there is an intuitive method of constructing a basis
of open neighborhoods for any quotient space. We take this approach so that if
g : Y — Zis a quotient map, a basis for Z may be described in terms of open

coverings of Y.

Definition 1.27 For any space Y, a pointwise open cover of Y is an open cover
% = {UY)},ey where each point y € Y has a distinguished open neighborhood UY
containing it. Let Cov(Y), be the directed set of pointed open covers of Y where the
direction is given by pointwise refinement: If % = {Uy}yey, Y = {Vy}yey € Cov(Y),

then wesay % < ¥ whenV, C U, foreachy € Y.

We also make use of the following notation: If % = {U%},ey € Cov(Y) is a
pointwise open covering of Y and A C Y, let Z (A) = U e, U"
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Construction 1.28 Suppose q : Y — Z is quotient map, z € Z, and % € Cov(Y) is
a fixed point-wise open cover. We construct open neighborhoods of z in Z in the
most unabashed way, that is, by recursively “collecting” the elements of Y so that
our collection is both open and saturated. We begin by letting Of (z, %) = {z}. For

integer n > 1, we define O} (z, %) € Z as
03z %) =q(% (7 (0 & ))
It is clear that Og‘l (z,%) € Of (z, %) for all n > 1. We then may take the union
0, %)= U O (z, %)

Note that if y € 7! (Oq (z, % )), then Y C g1 (Oq (z, % )) so that O, (z, %) is
open in Z. Also, if # = {W¥},ey is another point-wise open cover of Y such
that g(W¥) C g(UY) for each y € Y, then O, (z, #) € O, (z, %). The neighborhood
O, (z, %) is said to be the open neighborhood of z in Z generated by % . 1t is easy to see
that for each open neighborhood V of z in Z, there is a pointwise open covering
¥ € Cov(Y) such thatz € O, (z, #) C V. In particular, let V¥ = 47}(V) when g(y) € V

and VY = Y otherwise.

Theorem 1.29 The neighborhoods O, (z, ¥) for ¥ € Cov(Y) form a neighborhood base at

zinZ.

The pointsing™ (Oq (z, % )) canbe described as follows: Foreachy € 7! (Oq (z, % )),
there is an integer n > 1 and a sequence of 100ps Yo, Y1, ---» Y2441 Such that
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®* Y =yandy2n+1 =
o g(y2) = q(y2i1) fori=0,1,...,n
® oy EUM2 fori=0,1,..,n-1

In this sense, the neighborhood O, (z, %) is an alternating “collection” of fibers and

nearby points (the “nearby” being determined by the elements of %).
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CHAPTER II

HOMOTOPY MAPPING SPACES

2.1 Homotopy mapping sets as quotient spaces

Definition 2.1 Two maps f, g : X — Y are homotopic (we write f = g) if there is a
map H : X X1 — Y such that H(x,0) = f(x) and H(x, 1) = g(x) for all x € X. For
each t € I, we let H; be the restriction Hlxxy : X — Y. If f, g € M(X Y) are based
maps, H is said to preserve basepoint if H; € M.(X, Y) forallt € I. If X, Y € Top™, and

f. g8 € M(X,Y), H preserves relative structure if H; € M(X,Y) for all t € L.

Homotopy defines an equivalence relation on M(X, Y). Similarly, homotopy
preserving basepoint, relative structure, or both give equivalence relations on the

appropriate mapping spaces.
Homotopy Mapping Spaces 2.2 Let

[X, Y], [X Y], [X, Y] and [X, Y].
be the quotient space of mapping space

MX, Y), M(X Y), M(X,Y) and M.(X,Y)
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respectively where homotopy classes of maps are identified. These spaces will be
referred to as homotopy mapping spaces. In the based case, the homotopy class of the

constant map will be chosen as the basepoint of the homotopy mapping space.

The underlying sets of homotopy mapping spaces are, of course, the homotopy

mapping sets found throughout classical algebraic topology.

Universal Property 2.3 The quotient topology on [X, Y. is the finest topology on
the underlying set of [X, Y]. such that the canonical surjection 7 : M.(X, Y) — [X, Y].

is continuous. The same statement holds for the unbased and relative cases as well.

Now we observe the functorality of homotopy mapping spaces. Recall that
[-, ] : Top.°? X Top. — Set. is a functor where formaps f: W— X, g: Y — Z, we
have f* = [f,idyl. : [X, Y] = [WY], f([h]) = [ho fland g = [idw, g : [INWY]. —

[W Z]., g-([k]) = [g o k]. Together, we have [g, f]=g.° f".

Functorality 2.4 [—, —]. : Top.’? X Top. — Top. is a bifunctor. The analogous statement

holds for the unbased and relative cases.

Proof. We already have defined [X, Y]. as a space and it is basic homotopy theory
that the non-topological functor [-, —]. : Top.°?XTop. — Set. is a functor. Therefore
it suffices to check the continuity of functions [g, f]. = g. © f* for each pair of maps
f:W—-X, ¢:Y > Z Recall that M.(—, —) : Top.’? X Top. — Top. is a functor by

1.1. In particular, the induced maps f*(k) = k o f and g4(k) = g o k in the following
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diagram are continuous.

M%) L5 MW Y) 2 MW, 2)
[X YL —F WYl ——[WZL
Here the vertical maps are the canonical quotient maps. It follows from the Quo-

tient Square Lemma that g. = [idw, gl. and f* = [f, idy]. are continuous. Therefore

the composite g. o f* is continuous. =

Remark 2.5 Since homotopic maps f,g : X — Y induce the same continuous
maps f. = g, and f* = ¢" on homotopy mapping spaces we actually have a functor

[, =] : hTop.°® x hTop. — Top. (and similarly for the unbased and relative cases).

Proposition 2.6 If X, Y, Z are spaces with X Hausdorff and Y locally compact Hausdorff,
then there is a natural homeomorphism [X, M(Y, Z)] = [XXY, Z]. If X, Y, Z are based spaces
where X and Y are compact Hausdorff, there is a natural homeomorphism [ X, M.(Y, Z)]. =

[XAY Z].

Proof. By the exponential laws 1.11 and 1.12, there are natural homeomorphisms
n: M(X, M(Y, Z)) » M(XXY, Z)and 1, : M.(X, M..(Y; Z)) = M.(XAY, Z). Since home-

omorphisms of mapping spaces preserve homotopy classes, there are commuting

28



diagrams of spaces:

M(X, M(Y, Z)) —— M(X X Y, Z) M(X, MY, Z)) == M.(XA Y, Z)
X, M(Y,Z)] ——[X x Y, Z] [X, M.(Y, 2)l. —— [X A Y, Z].

The vertical maps are the canonical quotient maps. By the Quotient Square Lemma,

the bottom maps are homeomorphisms. m

Example 2.7 For an unbased space X, ng’p(X) = [*, X] is the path component space of
X. If X is a based space, then ngo”(X) =[S, X]. is the path component space of X.
It is easy to see that [S%, X]. = [+, X] as unbased spaces for any choice of basepoint
of X. A detailed study of the topology of path component spaces is appears in

Chapter 3.

Proposition 2.8 For unbased (resp. based) spaces X, Y, there is a canonical homeomor-

phism [X, Y] = m,P(M(X, Y)), [X4, Y 2 [X, Y], and [X, Y], = )P (MA(X, Y))

Proof. These homeomorphisms are induced by those the natural homeomorphisms

of function spaces in Remarks 1.4 and 1.5. ®

Example 2.9 Forabased space (X, x) € Top. and integern > 1, (X, x) = [$", X]. =
ng"”(Q"(X, x)) is the n-th topological homotopy group of (X, x). When the basepoint is
clear from context, we simply write 71,7 (X). For n = 1, this is often referred to in the
literature [Bis02] as the topological fundamental group of (X, x). The higher topological
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homotopy groups first appear in [GHMMO8]. For a based pair ((X, A), x) € Top®

and integer n > 1, 7,7 (X, A) = [(B", S*™), (X, A)]. = ;" (Q*(X, A)) is the n-th relative
topological homotopy group of ((X, A), x). Note that nio"(X, A) is a space but may not

have group structure.

Remark 2.10 There are canonical homeomorphisms QX)) = n;‘;ﬁn(X) for
integers n,m > 0. When n + m > 1 this is also an isomorphism of groups. There
are canonical homeomorphisms 7' (Q*(X, A)) = 1/ (X, A) for integers m > 0 and

m+n

n > 1. When m + n > 2 this is also an isomorphism of groups.

2.2 Multiplication in homotopy mapping spaces

The characterization of the spaces admitting natural group structures on ho-
motopy mapping sets is classical [Whi78, III, 4. & 5.]. We use this to study the
interaction of topological and natural algebraic structure in homotopy mapping
spaces. Since our interest lies mainly in the homotopy groups, we will typically
assume the presence of basepoint though similar results hold for the unbased and
relative cases.

Amap f : X = Y7 XY, will sometimes be denoted (f, f2) = (p1© f, p2© f) where
pi : Y1 X Y, — Y are the projections. Additionally, a function f : X; V X, — Y will
sometimes be written as (fi, f,) = {(f © j1, f © jo) where j; : X; = X; V X; are the

obvious inclusions.

2.2.1 H-spaces
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We first recall the conditions for inducing monoid and group structure in
[X, Y]. when Y is fixed. Suppose (Y, y,) is a based space and i3,7, : Y — Y X Y are
the inclusions #1(y) = (¥, yo), i2(y) = (Yo, y) for y € Y. Let py,p, : Y XY — Y be the

projections such that p, 0 i, = idy and A : Y — Y X Y be the diagonal map.

Definition 2.11 (Y, yo) is a homotopy associative H-space (or just H-space) if there is a
map 4 :YXY — Ysuchthatijou =i,ou =idyand p o (u Xidy) = y o (idy X y)
as based maps Y* — Y. A homotopy associative H-space Y is group-like if there is

also amap j: Y — Y (called a homotopy inverse) such that the diagram

indy
YXY—=YXY

ATC [

y—>2—vy

o I

YxY2Lyxy

commutes up to homotopy. Amap f : Y — Y’ is a map of H-spaces (group-like spaces)

if and only if the diagram

commutes up to homotopy.

If Y is an H-space, [, Y]. : Top.°® — Mon is functor to the category of monoids
and if Y'is group-like, [—, Y]. : Top.°? — Grp is a functor to the category of groups.
For f,g e M.(X,Y),let f- g = po(f X g)oA. The multiplication of homotopy classes
[f] [g] € [X. Y]. is given by [f]*[g] = [f- g] and the identity of is the homotopy class
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of the constant map. The fact that [, Y]. is a well-defined functor Top.”? — Top.

implies the following.

Functorality 2.12 If Y is an H-space (resp. is group-like), then [-, Y], : Top.? —
MonwTop (resp. [, Y], : Top.”* — GrpwTop) is a well-defined functor. Since
homotopic maps f, g : X — W induce the same homomorphisms [W, Y], — [X, Y], for

H-space Y, these functors factor through the homotopy category hTop.”.

Lemma 2.13 Let fo, fi € M.(W,Y) and g0, §1 € Mu(X, Z) such that fy ~ f and go = .
Then (fo X o) = (f1 X §1). Consequently, the map in Theorem 1.7 induces a well-defined

Sfunction [X]: [W Y] X [X, Z]. - [WX X, Y X Z),, (If]. [g]) — [f X g].

Proof. Suppose our based homotopies are H : WXI — Y, Hy = fo,H; = f1
and G : XXI > Z, Gy = 80,G1 = §1. Let K: WX XX I — Y X Z such that
K(w, x, t) = (H(w, t), G(x, t)). This is clearly a continuous homotopy f, X go = f1 X 1.
n

We now show that in some cases [—, Y]. takes values in a category where the
algebraic and topological structures interact nicely. To do this we need a basic
fact about the compact-open topology proved in Chapter 1.1. We also use the
semitopological monoids and quasitopological groups defined in A.1 and A.11 of

the Appendix.

Theorem 2.14 Let Y be an H-space. Then [, Y], : Haus* — sTopMon is a functor
to the category of semitopological monoids. If, in addition, Y is group-like, then [—, Y]. :

Haus.” — qTopGrp is a functor to the category of quasitopological groups.
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Proof. By 2.12 it suffices to show that [X, Y]. is a semitopological monoid (with
continuous inversion when X is Hausdorff Y is group-like) for arbitrary X. We
first show that for each f € M.(X,Y), right multiplication and left multiplication
by [f] € [X, Y], are continuous operations. Recall that f-g = po (f X g)o A and

[f1+[g] = [f- gl for f, g € M.(X, Y). The bottom row of the commuting diagram

M.(X,Y) X ML(X, V) = MUX X X, Y X Y) =25 MA(X, Y X V) 2 MK, Y)
TKXTIJ( s JV Tll n\[
[X Y] x [X,Y]*—T[XX X YXx Y]*—A—.>[X,YX Y]*—T‘*[X/Y]*
is precisely the multiplication of homot\opy classes. The product operation X is
continuous (Lemma 1.7) and [X] is well-defined (Lemma 2.13). It follows that the
composition of the top three maps (which is the dot operation) is continuous. Now

we restrict this diagram to two diagrams

AXMEY—L2 MEy)  MEDYx{H—2L MEY)

I X IX% YL —29 L 1xy1. X Y1 x (1) — 22— %, v1.
In both diagrams the top map is continuous as the restriction of the continuous dot
operation. The Quotient Square Lemma implies both left and right multiplication
by [f] are continuous. Therefore [X, Y]. is a semitopological monoid. In the case that
Y is group-like with homotopy inverse j : Y — Y, wehave (foj) f = f-(foj) ~ ¢, in
M.(X,Y). Soif j : M(X,Y) = M.(X,Y) is post-composition with j, then j. = [idx, f].

is inversion in [X, Y].. Since [, —]. is well-defined as a functor to Top., j. is contin-
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uous. m

Remark 2.15 We have similar functors in the unbased and relative cases. Let
Y be an H-space (group-like) and B € Y be an H-space (group-like) such that
the inclusion B <= Y is a map of H-spaces (group-like spaces). We can show
that [(X, A), (¥, B)]. is a semitopological monoid (quasitopological group) using the

arguments from the proof of the previous theorem.

Example 2.16 For all Hausdorff X and arbitrary Y, the homotopy mapping space
[X, Q(Y)). is a quasitopological group since (2(Y) is group-like via concatenation
Q(Y) x QY) = Q(Y). For n > 2 [X, Q"(Y)]. = [X, QQ"(Y))]. is a quasitopological

abelian group.

Proposition2.17 If f : X — X' and g : Y — Y’ are based maps, then the maps

Q(g). : [X, QM) = [X, Q)] and (f)" : [X, Q)] - [X Q)]

given by Q(9).([k]) = [Q(g)ok] and f*([k]) = [ko f]are continuous group homomorphisms.

Proof. The functorality of 2 gives the continuity of Q(g) : Q(Y) — Q(Y’). The
functorality of homotopy mapping spaces then guarantees the functorality of Q(g).
and f*. See [AGP02, 2.8.6] for a proof of the fact that these are actually group
homomorphisms. &

Explicit examples of homotopy mapping spaces (with group structure) failing
to be topological groups appear in Chapter 4. This failure is a serious complication
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arising from our choice of the quotient topology. We are, however, interested in

conditions that do imply the continuity of multiplication.

Corollary 2.18 Let X be Hausdorff and Y be an H-space (resp. group-like) so that [X, Y].
is a semitopological monoid (resp. quasitopological group). If the product map m X 1 :
M.X,Y) X M(X,Y) — [X Y]. X [X, Y]. is quotient, then [X, Y]. is a topological monoid

(resp. group).

Proof. If nXm is quotient, applying the Quotient Square Lemma to the first diagram
in the proof of Theorem 2.14 implies that multiplication [X, Y], X [X, Y]. — [X, Y].,

([f1.[g)) = [p o (f x g) o A] is continuous. m

A nice application here is that:

Theorem 2.19 If X is compact Hausdorff and Y is a metrizable group-like space, then
1. [X, Y. is first countable © [X, Y]. is a pseudometrizable topological group.
2. [X, Y. is first countable and T, < [X, Y]. is a metrizable topological group

If, in addition, X is metrizable and Y is separable, then

1. [X, Y). is second countable & [X,Y]. is a separable, pseudometrizable topological
group.

2. [X,Y]. is second countable and T, < [X, Y]. is a separable, metrizable topological
group

Proof. In the first set of conditions, M.(X, Y) is metrizable (see 1.13) and therefore

first countable. If [X, Y]. is first countable, then n X 7 : Mi,(X Y) X M.(X Y) —
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[X, Y]. X [X, Y]. is quotient by 1.24. The previous corollary then implies that [X, Y].
is a topological group. Every first countable topological group is pseudometriz-
able (Appendix A.26). Since every T; pseudometric space is a metric space and
pseudometric spaces are first countable, the rest of the statements are immediate.
If we add the conditions that X is metrizable and Y is separable, then M.(X, Y)
is a separable metric space (see 1.13). Since the continuous image of a separable
space is separable, [X, Y]. is separable. The statements follow from those in the first
set of conditions and the basic fact that separable pseudometric spaces are second

countable. m

Theorem 2.20 Let X be a Hausdorff space and Y be group-like. If [X, Y1. is locally compact

Hausdorff, then it is a topological group.

Proof. Itis a celebrated theorem of R. Ellis [AT08, Theorem 2.3.12] that every locally
compact Hausdorff semitopological group is a topological group. Since [X, Y]. is
a quasitopological group and therefore a semitopological group, the theorem fol-

lows. m

Lemma 2.21 If X, X, are spaces and Y is group-like, the inclusions j; : X; = X1 V X

induce a continuous group isomorphism ¢ : [X; V X5, Y] — [ Xy, Y] X [Xy, Y]..

Proof. The inclusions induce continuous homomorphisms (j;)* : [X; V X3, Y], —

[Xi. Y1, (j(Lf]) = [f o ji]. Together these induce a continuous group isomorphism
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¢ : [X1 VX, Y] — [Xq, Y. X[X5, Y].. The inverse homomorphism (see [Whi78, The-

orem 5.20]), which is not necessarily continuous, is givenby ¢ ([f], [g]) = [(f, $)].m

Theorem 2.22 The following are equivalent for any Hausdorff space X and group-like

space Y:
1. ¢:[XVXY]L - [XYLXI[X Y] is a homeomorphism.
2. The product map n X 0 : Mu.(X, Y) X M.(X, Y) — [X, YL X [X, Y). is quotient.
3. [XV X, Y]. is a topological group.

Proof. 1. & 2. follows from applying the Quotient Square Lemma to the commut-
ing diagram

MXVXY)——MXY)XMXY)

XV X, Y] ———— [X Y. X [X, Y},

where the top map is the natural homeomorphism of Lemma 1.8. For 2. =
3., if m X 7 is quotient, then multiplication in [X, Y]. is continuous by Corollary
2.18. But 2. also implies ¢ : [X V X, Y]. = [X, Y]. X [X Y]. is a homeomorphism
and isomorphism of groups. Thus [X V X, Y]. is homeomorphic to the product of
topological groups and also must be a topological group. To prove 3. = 1. we
suppose [X V X, Y]. is a topological group and that xy, y, are the basepoints of X, Y
respectively. Let ky,k; : X V X — X be the maps collapsing the second and first
summands respectively and m : [XV X, Y. X[XV X, Y] — [XV X, Y]. be continuous
multiplication. If j; : X <> X V X are the two inclusions, then k; o ji = idx =k, © j,
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and k; o j; = ¢x, = ki © j. Therefore f o ky = (f,c,,) and f o k; = {c,,, §). Now we

have the continuous composite

¥ XYL XX Y] - v X YL X XV X Y] — 5 [XV X, Y]

where ([ f],[g]) = (k) ([f Dk2)([g]) = [fokillgoka] = [(f, cy)){ey,, §)). Tt suffices to
checkthaty = ¢~1. Indeed, wehave [{f, ¢,,)][{cyo, £)] = 711 ey )P (([cy, L [8])) =

¢~ (LS [eyo D)Ley, ) [8D) = 7111 []). =

Proposition 2.23 Let Y be a group-like space and r : X — A be a retraction of based
spaces. The inclusion i : A < X induces a retraction'’i* : [X, Y], — [A, Y], in GrpwTop.

If [X, Y]. is a topological group, so is [A, Y]..

Proof. Since roi = id, by definition, functorality gives i o7 = (roi)" = id[x 4, where
i* and r* are continuous homomorphisms. Therefore i* is a retraction of groups
with topology. By Corollary A.18 of the Appendix, [4, Y]. is a topological group
whenever [X, Y]. is. ®

Similarly, we have:

Proposition 2.24 A retract r : Y — Y’ of group-like spaces induces a retraction r. :
[X Y], = [X Y'). of groups with topology for every space X. If [X, Y]. is a topological

group, so is [X, Y']..

Proof. Certainly r. is a continuous homeomorphism [Whi78, III, 4.20]. Itis a
retractionsinceifi : Y < Y’ is the inclusion of group-like spaces such that roi = idy,
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thenr, o 4, is the identity of [X, Y'].. =
In addition to the continuity of multiplication, we are confronted with the

following complication.

Proposition 2.25 Let Y bean H-space. For everyn > 1, the power functionp, : [X, Y], —

[X, Y., pul[f]) = [f]" is continuous.

Proof. Fixann > 1, let A, : M(X,Y) - M.(X Y)" be the diagonal map and let
m, : MU(XY)" = M(XY), (fi, s fu) = fi- (f2 - oo - (fu-1- fu)) be the continuous dot
operation (as in Theorem 2.14) iterated on mapping spaces. Since the operation is

associative up to homotopy, the square

M(X, ) —22 MUK, Y)

[X Y} ————[X Y]

commutes in Top.. By the Quotient Square Lemma, p, is continuous. ®
Proposition 2.25 illustrates a property of homotopy mapping spaces which is

not present in all quasitopological groups.

Corollary 2.26 There is a quasitopological group G which is not isomorphic (in qTopGrp)
to [X,Y]. for any Hausdorff space X and group-like space Y. Consequently, [-,Y]. :

Haus.? — qTopGrp is not essentially surjective for any group-like Y.

Proof. We construct a quasitopological abelian group G such that the square
function G — G, g — g2 is discontinuous. Consider subset K = {-;;In >1l,e= il}
of the additive group of reals R. Take a subbase for R consisting of sets U(r, 6) =
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{r+tt € (—e,€) =K} forr € R and 6 > 0. Since U(ry,6) + r, = U(r; + 1,,0) for
any r, 12 € Rand —-U(0, 6) = U(0, 6), the topology generated makes IR a Hausdorff
quasitopological group. The map s : R — R, s(t) = 2t is discontinuous since the

sequence == converges to 0 buts(=+=) = & does not. m
q 237 24 26m) = 3

2.2.2 co-H-spaces

Now we study the dual notions of the previous section. Let (X, xp) be a based
space, ji,j2 : X = XV X be the inclusions into the first and second copies of X,
i1,12 : X <> X X X be the obvious inclusions, and k : XV X — X X X be the map
k = (i1,ix). Let q1,9, : X V X — X be the unique maps such that g, = p, o i, for

a=1,2 LetV:XVX — Xbe the folding map so that j, oV =idx fora = 1,2.

Definition 2.27 X is a homotopy coassociative co-H-space (or just co-H-space) if there
isamap 6 : X — XV X such thatg, 08 =~ idx ~ g,0 0 in M.(X, X) and (O V idx) 0 0 =
(idx V 0) o 0 as based maps X = XV XV X. A co-H-space X is cogroup-like if there

isamap j: X = X (called a homotopy coinverse) such that diagram

jvidx
XVX—3XVX
HT lv
X—2—X

1 T
idxVj

xvXx=Lxvx

commutes up to homotopy. A map f : X — X' is a map of co-H-spaces (cogroup-like
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spaces) if and only if the diagram

Xx— x

o| Jo

XVX—WX VX

commutes up to homotopy.

If X is a co-H-space, [X, —]. : Top. — Mon is functor to the category of monoids
and if X is a cogroup-like, [X, —]. : Top. — Grpisa functor to the category of groups.
For f,g € M.(X,Y),let f- g =Vo(fV g)o 0. The multiplication of homotopy classes
[f1 [g] € [X, Y].is givenby [ f]*[g] = [f- g] and the identity of is the homotopy class
of the constant map. For details regarding this algebraic structure we again refer
to [Whi78, I, 4. & 5.]. The fact that [X, —]. is well-defined as a functor Top, — Top.

implies the following.

Functorality 2.28 If Xisan co-H-space (resp. is cogroup-like), then [X, —]. : Top. —
MonwTop (resp. [X,—]. : Top. = GrpwTop) is a well-defined functor. Since
homotopic maps f, g : Y — Z induce the same homomorphisms [X, Y]. — [X, Z].

for co-H-space X, these functors factor through the homotopy category hTop..

Lemma 2.29 If f;, fi € MM(WY) and go, g1 € M.(X, Z) such that fy ~ fi and go = &,
then (fo V Qo) = (f1 V §1)- Consequently, the map in Theorem 1.9 induces a well-defined

function [V]: [W,Y]X [X, Z] > [WV X, YV Z, (If]. [g) = [f V g}

Proof. Suppose our based homotopies are H : WAL — Y, Hy = fo, Hi = f;
and G : XAIL — Z, Gy = g, G = g. There is a natural homeomorphism
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h:-(WVX)ANL =2(WAL)V(XAL). Therefore HVG)oh: WVX)AL, - YVZ
is ahomotopy fo Vg~ fiV gi.m

Now for the dual of Theorem 2.14.

Theorem 2.30 Let X be a Hausdorff co-H-space. Then [X,—]. : Top. — sTopMon is
a functor from the category of spaces to the category of semitopological monoids. If, in
addition, X is cogroup-like, then [X, —1. : Top. — qTopGrp is a functor to the category

of quasitopological groups.

Proof. By 2.28, it suffices to show that [X, Y]. is a semitopological monoid (with
continuous inversion when X is cogroup-like) for any space Y. We first show that
for each f € M.(X,Y), right multiplication and left multiplication by [f] € [X Y]
are continuous operations. Recall that f-g =V o (fV g)o 8 and [f]* [g] = [f- g] for

£, 8 € M(X,Y). The bottom row of the commuting diagram

MEY)XMXY) 5 MEVXYVY)-Z5MEYVY) s MEXY)

[X Y1 X [X, Y] ——= XV X YV YL —5— [X YV YL —— [X Y],

is precisely the multiplication of homotopy classes. The wedge operation V is

continuous (Lemma 1.9) and [V] is well-defined (Lemma 2.29). It follows that the

composition of the top three maps (which is the dot operation) is continuous. Now
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we restrict this diagram to two diagrams

AxMEYY—2 oMy MEDxH—2 sMmE

15} ><1[X . —22 [x,l Y] X, Y]Ol *ALf) —2 [xl;*

In both diagrams the top map is continuous as the restriction of the continuous
dot operation. The Quotient Square Lemma implies left and right multiplica-
tion by [f] are continuous. Therefore [X, Y]. is a semitopological monoid. In
the case that X is cogroup-like with homotopy coinverse j : X — X, we have
(foj) f = f-(fo)) = ¢, InM.(X, Y). Soif * : M(X, Y) = M.(X, Y)is pre-composition
with j, then j* = [}, idy]. is inversion in [X, Y].. Since [-, -], is well-defined as a

functor to Top., j* is continuous. ®m

Remark 2.31 We have similar functors in the unbased and relative cases. Let X be
a based Hausdorff co-H-space (cogroup-like) and A C X be a co-H-space (cogroup-
like) such that the inclusion A < X is a map of co-H-spaces (cogroup-like spaces).
We can show that [(X, A), (¥, B)]. is a semitopological monoid (quasitopological
group) using the arguments from the proof of the previous theorem. This, for in-
stance gives that the relative homotopy groups 7,(Y, B) are quasitopological groups

forn > 2.
The proofs of the following results are dual to those in the previous section.
Example 2.32 For Hausdorff X and arbitrary Y, the homotopy mapping space
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[ZX,Y]. is a quasitopological group since LX is co-group-like via the usual co-
multiplication 6 : ZX — LX V £X (See [AGP02, 2.10.2]). By Prop. 2.6, [EX, Y]. is
naturally isomorphic to [X, Q(Y)]. (from Example 2.16) as a quasitopological group.

Of course [Z"X, Y], for n > 2 is a quasitopological abelian group.

Proposition 2.33 If f : X — X" and g : Y — Y’ are based maps, then the maps

g [ZX Y] - [EX Y] and (Ef) : [ZX, Y] - [EX, Y].

given by g.([k]) = [go k] and (Zf).([k]) = [ko L f] are continuous group homomorphisms.

Corollary 2.34 Let X be a Hausdorff co-H-space (resp. cogroup-like space) and Y be
arbitrary so that [X, Y]. is a semitopological monoid (resp. quasitopological group). If the
product map t X 1t : M(X, Y) X M(X,Y) — [X, Y]. X [X, Y]. is quotient, then [X, Y] is

a topological monoid (resp. group).

Theorem 2.35 If X is a compact Hausdorff cogroup-like space and Y is metrizable, then
1. [X, Y. is first countable < [X, Y]. is a pseudometrizable topological group.
2. [X,Y]. is first countable and T, < [X, Y]. is a metrizable topological group

If, in addition, X is metrizable and Y is separable, then

1. [X,Y]. is second countable < [X, Y]. is a separable, pseudometrizable topological
group.
2. [X, Y] is second countable and T; < [X, Y] is a separable, metrizable topological

group
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Theorem 2.36 Let X be a Hausdorff cogroup-like space and Y be a space. If [X, Y], is

locally compact Hausdorff, then it is a topological group.

Remark 2.37 Note that the previous two theorems apply to the topological ho-
motopy groups 7" (X) = [S", X]., n > 1 and can easily be modified to apply to the

relative topological homotopy groups

(X A) = [(B", 5"Y), (X, A). = [(EB"L, L"), (X, A))., n= 2

Lemma 2.38 If X isacogroup-likeand Y1, Y, are spaces, then the projections p; : Y1XY, —
Y; induce a continuous group isomorphism ¢ : [X, Y1 X Y], = [X, Y1) X [X, Y>). given

by o(((f, )D) = (f1 [8D).

Theorem 2.39 For any Hausdorff cogroup like space X and space Y, the following are

equivalent:
1. ¢:[X,YXY]. - [X Y] X[X, Y] is a homeomorphism.
2. The product map X 11 : Mu(X, Y) X Mu(X, Y) = [X, Y], X [X, Y]. is quotient.
3. [X,Y X Y. is a topological group.

Proposition 2.40 Let X be a cogroup-like space and v : Y — B be a retraction of based
spaces. The induced homomorphismr* : [X, Y]. — [X, B]. is a retraction of quasitopological

groups. If [ X, Y] is a topological group, so is [X, B]..

Proposition 2.41 Let r : X — X’ be a retraction of cogroup-like spaces. The inclusion
i: X < Xinduces aretraction i : [X, YL — [X', Y]. of quasitopological groups for every
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space Y. If [X, Y. is a topological group, so is [X’, Y]..

Example 2.42 For any non-connected space X = ALl B (4, B are disjoint and open),
the retraction X — S° collapsing A and B to points induces a retraction ZX — S of
cogroup-like spaces. Itis a result of Chapter 4 that [S', Y. is not always a topological
group. The previous proposition then implies that whenever [S!, Y], fails to be a
topological group, [ZX,Y]. also fails to be a topological group. Consequently,
for any non-connected space X, [XX, ~]. does not take values in TopGrp. This
is particularly interesting for the spaces L(X,) studied in Chapter 4. Another
interesting example is when X = {1, TR 0} C R which is non-connected and XX
is homeomorphic to the Hawaiian earring HE described further in Example 4.24.

The algebraic sturcture of the groups [HE, X]. are used in [KR06, KR10].

Lemma 2.43 Let X be a co-H-space. For every n > 1, the power function p, : [X, Y]. —

[X, Y., pu([f]) = [f]" is continuous.

Corollary 2.44 There is an abelian quasitopological group G which is not isomorphic to
[X, Y. for any Hausdorff cogroup-like space X. Consequently, [X, 1. : Top. — qTopGrp

is not essentially surjective for any Hausdorff, cogroup-like X.

2.3 Homotopy sequences

Exact sequences involving homotopy mapping sets arise on many occasions
in homotopy theory. In this section, we observe that these exact sequences very
often are realized as exact sequences in the category of quasitopological (abelian)
groups.
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Cofiber and fiber sequences 2.45 Notation in this section is borrowed from [AGP02],
however, since we are interested in a purely based setting we refer to the content
of Whitehead [Whi78, III §6]. Though Whitehead works in the convenient cate-
gory of k-spaces, the arguments for cofiber and fiber sequences do not require this

assumption.

Fixabased map f : (X, x0) — (Y, yo). Let CX = X A (I, 1) be the reduced cone of X
and C; = YU, CX the reduced mapping cone of f. Specifically, Cs is the quotient of
Y U CX by the relation f(x) ~ x A 0 for each x € X. Leti; : Y <> Cs be the inclusion.

The cofiber sequence of f is

f i i i3 i
X —=Y ‘/Cf \Cil ‘/Ci2 poee

where C; is the reduced mapping cone of i and i1 : C;_, < C; is the canonical

inclusion. It is well known that there is a homotopy commutative diagram

i iz i3 i is i
? Ci1 > Ciz 4 Ci3 ? Ci4 a Ci5 P

FE T E T

f — LX Zf‘/ZY——>C>:f——>ZZX sz‘,zw P

D

14

where vertical maps are homotopy equivalences.

The two horizontal sequences are useful since applying [, Z]. for any based
space Z yields two isomorphic exact sequences of groups (and sets when group
structure is not present). The functorality of [-, Z]. as a homotopy mapping space

then gives
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Theorem 2.46 For any based map f : X — Y and space Z, there is a sequence of

continuous homomorphisms (and functions)

1%,z <21y, 21, <9 [c), Z) e[z, 21 <L Y, Z) —

———[Csp, Z) —[22X, AR L 3 Jp—

given by applying [—, Z]. to the cofiber sequence. In particular, if we truncate the sequence at

[ZX, Z]. (resp. at [£2X, Z).), then we get an exact sequence in qTopGrp (resp. qTopAb).

We may also consider the dual fiber sequence of f : (X, %) — (¥, y). The
homotopy fiber of f is Py = {(x,p) € X X P(X)|p(0) = yoand p(1) = f(x)} with
basepoint (xo, cy,). Let q; : Py — X be the projection which has fiber q;l (x0) = Q(X).

The cofiber sequence of f is

> Py, %}qu 2 » Py " ,X ! »Y

where P,, is the mapping path space of g, and gy,1 : Py, = P,_, is the canonical

Te-1

projection. It is well known that there is a homotopy commutative diagram

» Py, P —* P, % ,p,—* ,p " .p ",y T,y
{ zl { { =J' idl idJ( idl
— OX(X) Qz(f)"Qz(Y) » Pogny — Q(X) 5 7 ) = P X—>Y

where all vertical maps are homotopy equivalences.

We may apply the functor [W, —]. for any space W gives rise to two isomorphic
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exact sequences of groups (and sets when group structure is not present). Asbefore
the fact that the functions in the sequence are induced by maps implies continuity

of the morphisms in the exact sequence.

Theorem 2.47 For any based map f : X — Y and space W, there is a sequence of

continuous homomorphisms (and functions)

oo W Q20 S W, Q2(1)] — [W, Pago] —— [W, Q(X)] ——

CD W Q)] —— [W, P ——— [W X]—2— W Y]

given by applying [W, 1. to the fiber sequence. In particular, if we truncate the sequence
at [W, Q(Y)]. (resp. at [EX, Z1.) and suppose W is locally compact Hausdorff, then we get

an exact sequence in qTopGrp (resp. qTopAb).

Similarly, there is a cofiber and fiber sequence for a based pair of maps f :
(X, A) — (Y, B) which each give rise to an exact sequence after applying the appro-
priate functor [(W1, W), —]. or [-, (Z1, Z2)].. In each case, the fact that the functions
in the exact sequences are induced by continuous maps of pairs implies continuity

of morphisms in the sequence.

Homotopy sequence of a pair 2.48 The particularly useful example of fiber and

cofiber sequences is the homotopy sequence of a pair of a based pair (X, A) € Top®®.

Recall that Q2"(X, A) may be viewed as the space of maps of triples

(", I x {0}, I x (L U (I X 1) = (X, A, {1)).
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and the relative homotopy groups 7,"(X, A) = ny"(Q"(X, A)). Pre-composition
with the inclusion "1 X {0} < I" gives a map d : Q"(X, A) —» Q" 1(A). Applying
the path component functor ng’”, we see that the connecting homomorphism J. :
(X, A) — n::’fl(A) in the long exact homotopy sequence of the pair (X, A) is
continuous. The inclusion of mapping spaces j : Q*(X) — Q*(X, A) induces the
continuous homomorphism j, : 7P(X) — m4"(X, A) on path components which
also appears in the homotopy sequence of (X, A). Together, these observations
imply the following proposition.

Theorem 2.49 For every based pair (X, A) € Top® with inclusioni: A = X, there is a

long exact sequence
A 2 o
(W) () (K, A) T (A) T (X)

in the category of quasitopological groups.

Proposition 2.50 Let p : E — B be a Hurewicz fibration of path connected spaces with

fiber F. There is a long exact sequence

——y TCZOP(F) ELEN ﬂ:,OP(E) P, TCZOP(B) _a_._, n:’fl(F) _—
ee—— TZ;OP(B) — T(SOP(F) — %

in the category of quasitopological groups.

Proof. It is clear that the inclusion i : F = E and fibration p : E — B induce
continuous homomorphisms i. and p.. Let (2(B) — B be the constant map which
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is the restriction of the path fibration M.(I, B) — B. This lifts to a map Q(B) — F
which induces the connecting homomorphisms d, = n:’fl (@) : m,(B) — n;"_pl (F) on

homotopy groups. =

2.4 Discreteness of homotopy mapping spaces

It is also worthwhile to note when quotient topology on [X, Y], fails to provide
any new information, that is, when it has the discrete topology. In this section, we

assume that all spaces are path connected and Hausdorff.

Proposition 2.51 Suppose X, Y are based spaces such that either X is Hausdorff and

cogroup-like or that Y is group-like. The following are equivalent:
1. [X, Y]. is a discrete group.
2. The singleton containing the identity is open in [X, Y]..

3. For every null-homotopic, based map f : X — Y, there is a basic open neighborhood

1¢Ki, Uy) of f in M.(X,Y) containing only null-homotopic maps.

Proof. 1. & 2. follows from the fact that all translations in a quasitopological group

are homeomorphisms. 2. < 3. follows directly from the definition of the quotient

topology. ®

Remark 2.52 Recall from 2.7 that the path component space 77" (X) of a space X is

the quotient space of X obtained by identifying path components. In Proposition
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2.8, we noted that for arbitrary X and Y, there is a natural homeomorphism [X, Y]. =
ngo” (M.(X, Y)) taking the homotopy class of f to the path component of f. Moreover,
this is a group isomorphism when X is cogroup-like or Y is group-like. Since a
quotient space Z of X is discrete if and only if the fibers of the quotient map
X — Z are open in X, these observations allow us to characterize the discreteness of
homotopy mapping spaces in terms of local connectedness properties of mapping

spaces. We make use of the following notions of connectedness.

Definition 2.53 Let Y be a space and k > 0 be an integer.
e Yis k-connected if 1,(Y) =0forn=0,1, ... k.

o Y is locally k-connected at y € Y if for every neighborhood U of y there is a
k-connected open neighborhood V of y contained in U. Y is locally k-connected
if it is locally k-connected at all of its points. A space is locally 0-connected

precisely when it is locally path connected.

e Y is semilocally k-connected at y € Y if there is an open neighborhood U of y
such that the inclusion U < Y induces the trivial homomorphism (U, y) —
(Y, y). Y is semilocally k-connected if it is semilocally k-connected at all of its

points.

o Y is well k-connected (for k > 1) at y € Y if Y is semilocally k-connected at y
and locally (k-1)-connected at y. Y is well k-connected if it is well k-connected
at all of its points. Being well 0-connected is the same as being semilocally

0-connected.
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Proposition 2.54 A space X is semilocally 0-connected if and only if ng"” (X) 1s discrete.

Consequently, if X is locally path connected, then ng"’”(X) is discrete.

Proof. Letix : X — ng’p(X) denote the quotient map identifying path components.
Note that for each x € X, 13! (nx(x)) € X is the path component of x. If X is semilo-
cally 0-connected and x € X, then there as an open neighborhood U of x such that
U < X induces the constant function 71o(U) — mo(X). This means precisely that
U C nil(mx(x)). Therefore m3}(nx(x)) is open in X and since 7y is quotient the
singleton {rx(x)} is open in 7;"(X). Conversely, if 715" (X) is discrete, x € X, and
U = 13! (rx(x)) is open in X and the inclusion U < X induces the constant function
1o(U) — 19(X). It is obvious that every locally path connected space is semilocally

O-connected. m

Corollary 2.55 The homotopy mapping space [X, Y. is discrete if and only if M.(X, Y) is

semilocally O-connected.

The characterizations in 2.51 and 2.55 are general but are not particularly illu-
minating. We refine our focus to the case when X is a finite polyhedron. Recall that
an m-dimensional finite polyhedron X is a space homeomorphic to the geometric re-
alization |K] of an m-dimensional finite simplicial complex K. Any such space may
be embedded in R¥® for some N(X) > 1. A subpolyhedron S C X is a subspace
which is homeomorphic to the geometric realization of a subcomplex of K and so

is a polyhedron itself. In [Wad54], H. Wada proves the following theorem.
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Theorem 2.56 (Wada) Let X be an m-dimensional finite polyhedron and Y a Hausdorff

space.
1. If Y is locally k-connected, then M(X,Y) is locally (I-m) connected.
2. If Y is well k-connected, then M(X, Y) is well (I-m) connected.
In particular, we are interested in the case when ! = m.

Corollary 2.57 If X is an m-dimensional finite polyhedron and Y is Hausdorff and well

m-connected, then the homotopy mapping space [X, Y] of unbased maps has the discrete
topology.

Proof. By Theorem 2.56, M(X, Y) is well O-connected and so ;" (M(X, Y)) = [X, Y]
is discrete by Proposition 2.54. =

Wada also proved a relative version of Theorem 2.56. We use this to prove the
based and relative versions of Corollary 2.57. For integer p > 1 let [p] be the finite
set {0,1,...,p}. Fix subpolyhedra Xj, ..., X, of m-dimensional finite polyhedron X
and closed subspaces Y3, ..., Y, of Hausdorff space Y. Let Qy = X, ¥y = Y, and
X = (Xo, X1, Xp), Y = (Yo, Y1, .., Yp) € Top'P™V. Recall that M(X, Y) is the subspace
of M(X,Y) consisting of maps f : X — Y such that f(X;) C Y;foreachi=1,..., p.
For each subset S C [p], let mg = dim ((,cs Xs) and Ys = (g Ys. Wada’'s relative

theorem is:

Theorem 2.58 (Wada) If Y is locally Is-connected (resp. well ls-connected) for each

S € [p] (where Is > mg), then M(X,Y) is locally N,-connected (resp. well N,-connected),
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where

N, = min(s ~ ms)

Corollary 2.59 Suppose X = Xy 2 X, 2.2 X, and Y =Y, 2Y,2..2Y,. IfX; is
m;-dimensional and Y; is well l;-connected (where l; > m;) for each i = 0, ..., p, then [X, Y]

is discrete.

Proof. Since 7, (M(X,Y)) = [X,Y], it suffices to show that M(X,Y) is well N-
connected for some N > 0. Note that for each S C [p], we have mg = dim(Xnaxs)) =
Mmax(s) aNd Ys = Yrays). Since Y is well [naxs)-connected for each S C [p] (where
Is = Imax(s) = Mmaxs) = Ms), Theorem 2.58 tells us that M(X, Y) is well N-connected
for

N = rsfglilgll(ls - mg) = ]ggli[;]l(lmax(S) — Mmin(s)) = (I)gisf;(li —-m)=0.

Let x, y be basepoints for X, Y respectively. and suppose X, = {x} and Y, = {y}
are singletons. The next corollary follows directly from applying Corollary 2.59 to

MX Y) = M(((Xos - Xp-1), X), (Yo, s Yp-1), 1))

Corollary2.60 If X = X; 2 X; 2 ... 2 X, ={dadY =Y, 27, 2 ... 2
Y, = {y} such that X; is m;-dimensional and Y; is well l;-connected (where I; > m;), then

[((Xos - Xp-1), %), (Yo -r Y1), Y))« is discrete.
In particular, if p = 1, then we have:

Corollary 2.61 If (X, x) is an m-dimensional polyhedron and (Y, y) is well m-connected,
then [X, Y]. is discrete.
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Example 2.62 For instance, if Y is a locally contractible space such as a manifold

or CW-complex then [X, Y]. is discrete for any based finite polyhedron X.

The next few statements and examples are direct applications of this section
to the topological homotopy groups. Since S” is an n-dimensional polyhedron we

have:

Theorem 2.63 For n > 0, n¥(Y) = [S", Y). is a discrete space (group when n > 1)

whenever Y is well n-connected.

Example 2.64 For alocally contractible space Y (such as a manifold, CW-complex,

or polyhedron), 7,7 (Y) is discrete for all n > 0.

Theorem 2.65 For n > 1, a closed subspace A of X containing the basepoint x of X, the
relative homotopy group 7,"(X, A) = [(B", $"™%), (X, A)]. of the pair (X, A), x) € Top!” is

discrete (group when n > 2) whenever X is well n-connected and A is well (n-1)-connected.

Example 2.66 For a based CW-pair (X, A) or a manifold X and submanifold A C X,

n,tf”(X, A) is discrete for all n > 0.

As noted in [GHMMO08], discreteness is also connected to the cardinality of homo-
topy mapping spaces. The following is an obvious extension of [GHMMO08, Theo-

rem 3.8].

Proposition 2.67 If X is compact metric space and Y is a separable metric space, and

[X, Y. is discrete, then [X, Y]. is countable.
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Proof. The function space M.(X, Y) is a separable metric space (1.13) and [X, Y]. is
separable as the continuous image of a separable space. Every discrete separable

space is countable. ®

2.5 Alternative topologies for homotopy mapping sets

The complications arising in the study of homotopy mapping spaces motivate
the introduction of alternative topologies. There are certainly many candidates, es-
pecially when restricted to the fundamental group. In this section, three alternative
topologies are introduced. The first approach makes use of the reflection functor
7 studied in the Appendix (A.3.1). The second approach essentially translates the
entire conversation into the convenient category kTop. of based k-spaces discussed
in Chapter 1.2. The last approach makes direct use of shape theory (the inverse
system approach).

A direct consequence of the failure of [X, Y]. to be a topological group (for
cogroup-like X or group-like Y) is that the functors [X, —]. : Top. — qTopGrp and
[~ Y] : Top. —» qTopGrp fail to preserve products (See 2.22 and 2.39). Prior to our
three constructions, we observe that this is part of a more general phenomenon.

Let U : TopGrp — Grp be the functor forgetting topological structure.

Proposition 2.68 Let X be a cogroup-like space. Suppose [X,—17° : Top. — TopGrp is
a functor such that U o [X, —]7° is the homotopy mapping set [X, =]. : Top. — Grp. Then

[X, =17 preserves finite products.

Proof. Let (Y1, y1) and (Y, y2) be based spaces. The Y1 XY, — Y; induce continuous
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homomorphisms [X,Y; X Y5]7¢ — [X, Y;]T¢, i = 1,2 which induce a continuous
group homomorphism ¢ : [X, Y1 X Y5])T¢ — [X, Y1]7¢ X [X, Y] which is known to
be a group isomorphism (2.38). Let j; : Y; < Y1 XY, be the inclusions ji(y) = (y, y2),
j2(2) = (y1,2). These induce continuous homomorphisms J; : [X, Y;]7¢ — [X, Y; X
Y,]7¢. Let p be the continuous multiplication of [X, Y; X Y,]7¢. The composite
po (J1 X J2) is a continuous map [X, Y1]7¢ x [X, Y1]7¢ — [X, Y1 X Y,]7C. It is clear that
this map is the inverse of ¢. =

The dual statement follows similarly.

Proposition 2.69 Let Y be a group-like space. Suppose [, Y]I¢ : Top.® — TopGrp is
a functor such that U o [—, Y]I¢ is the homotopy mapping set [-, Y]. : Top.°> — Grp.
Then [—, Y]I© preserves finite products (recall that a product in Top.? is just a wedge in

Top.).

2.5.1 The functor 7 and [X, YT;

Fix a group-like space Z and a cogroup-like space W so that [, Z]. : Top.”? —
GrpwTop and [W,—] : Top. — GrpwTop are functors. We apply the reflection
functor 7 from the Appendix A.3.1. Recall that for any group with topology
G, ©(G) is the unique topological group with continuous homomorphism G —
7(G) universal with respect to continuous homomorphisms from G to topological
groups. It is a great convenience that the underlying group of 7(G) is G and the
universal arrow G — 7(G) is the continuous identity homomorphism (which is

open if and only if G is already a topological group). For based spaces X, Y let
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[W, X]F = t([W, X].) and [Y, Z]F = ©([Y, Z].). Since [, Z]F and [W, -]’ are defined as

composites of functors, they are themselves functors taking values in TopGrp.

Functorality 2.70 [W, -]} : Top. — TopGrp and [-, Z]} : Top.”* — TopGrp are
product preserving (2.68,2.69) functors. The identity maps give natural transformations

(W -1. = [W, =1 and [—, Z]. — [, Z]} with components in GrpwTop.

These new topologies on homotopy mapping sets are characterized by the

following property.

Universal Property 2.71 The topology of [W, X] (resp. [Y, ZI7) is the finest group
topology on the set [W, X]. such that © : M.(W, X) — [W X]. (resp. 7 : M.(Y, Z) —

[Y, Z].) is continuous.

Remark 2.72 Since Fj preserves quotient maps and the quotient maps
m : Fy([W X}.) = [W X} and m : Fn([Y, Z}.) — [Y, Z].

are quotient by definition, the composites m o Fp(m) : Fy(M.(W, X)) — [W, X]. and

m o Fy(1) : Fu(M.(Y, Z)) — [Y, Z]. are also quotient.

Example 2.73 For n > 1, let n%(X) = t(ri’(X)) and for n > 2, let n%(X, A) =
7(r,7(X, A)). This means we have functors 7* : Top. — T(;pGrp, 7, : Top. —
TopAb,n 22,1 : Topﬁz) — TopGrp, and 77, : Top® — TopAb, n > 3 such that the
underlying functors to Grp and Ab are the usual homotopy and relative homotopy

group functors.
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The following are basic facts that result from the properties of 7 (see Chapter

A.3.1).

Proposition 2.74 For spaces X and Y,
1. id : [W, X]. = [W, X]; if and only if [W, X]. is a topological group.
2. [W, XTI is discrete if and only if [W, X]. is discrete.

3. If [W Xi]. = [W, Xz]. in GrpwTop, then [W, X117 = [W, Xo)7 in TopGrp. In other

words, [W, =1} is a weaker invariant than [W, —]..

4. If [W, X1 is a Hausdorff topological group, then the homotopy mapping space [W, X].

with the quotient topology is functionally Hausdorff.
The analogous results hold for [Y, Z];.

The case of the fundamental group 7] is considered in more detail in Chapter

2.5.2 k-spaces, the functor k, and [X, Y]¥

Here we move the conversation into a convenient category of spaces (that
includes non-Hausdorff spaces) where products of quotient maps are quotients. We
use the k-space from Chapter 1.2, however, other convenient categories offer similar
approaches. All facts of k-spaces that we do not prove here appear in [Bro06].
For k-spaces X, Y, let T.(X, Y) be the set Top.(X, Y) with the test-open topology
of [Bro06, 5.9]. A subbasis is given by sets (¢, U) = {f : X = Y|f o #C) € U}
for some compact Hausdorff space C and map ¢ : C — X. If X is Hausdorff, the
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test-open topology is the same as the compact-open topology. Certainly, T.(—, —) :
kTop.? xkTop. — Top. is a functor, however, it does not take values in kTop.. The
category kTop. becomes enriched over itself when we give Top.(X, Y) the topology
of K(X Y) =k(T.(X, Y)) for X, Y € kTop..

For X,Y € kTop., let [X, Y]* be the set [X, Y], with the quotient topology with
respect to 7 : K(X,Y) — [X, Y].. Since every quotient of a k-spaces is a k-space
[Bro06, 5.9.1], [X, Y]t is a k-space. Clearly this gives a functor [, -], : kTop.’? x
kTop. — KTop.. The same construction may be made in the unbased and relative
cases as well.

By Fact 1.24.4, 7t X 7 : K(X, Y) X Ko(X, Y) = [X, YIF X¢ [X, Y] is quotient. This
fact is precisely the step which hindered us from asserting that multiplication in the

group [X, Y]. was continuous. Additionally, for X, Y € kTop., the product operation

KX Y) % KX Y) = KX X Y% V), (f,8)  f Xk g

is continuous.
Let kMon and kGrp be the categories of k-monoids and k-groups. These are

precisely monoid and group objects in kTop..

Functorality 2.75 If Y is an H-space (resp. group-like) and a k-space, then [-, Y]t is a

functor kTop.°® — kMon (resp. kTop.”® — kGrp)

Proof. Let Y be an H-space with multiplication u : Y X; Y — Y and X be a k-space
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with diagonal A : X — X x; X. For any space X, Consider the diagram

KX Y) % KX Y) —— K(X Y)

[X YT % [X, YT X YE

in kTop.. This is precisely the large rectangular diagram in the proof of Theorem

2.14. Specifically the top map is the operation taking (f, g) to the map

Ho(fxegoh: XX XL yx, y oy

and the bottom map is the monoid multiplication ([f], [g]) — [t o (f Xk §) o A]. But
(f,8) — fXrgiscontinuous and py : Ku(X, YXY) = K(X, Y) and A% : K.(XX X, Y X
Y) — KX, Y X Y) are continuous by functorality. The top map is the composite of
these three maps and is therefore continuous. We have already noted that the left
vertical map is quotient. By the Quotient Square Lemma, multiplication in [X, Y]¥ is
continuous. Additionally, if f : X, — X; is a map the functorality of ko T.(—, Y) and
the Quotient Square Lemma imply the continuity of the monoid homomorphism
fi X, YT = [Xp, Y. If, in addition Y is group-like with homotopy inverse
j: Y=Y, then jy : T(X, Y) = T(XY), f — jo fis continuous by the functorality
of T.(X, —). Applying k illustrates the continuity of j, : K(X,Y) = K.(X, Y) and the
Quotient Square Lemma again gives the continuity of the inversion map .. m

The dual of this statement with analogous proof is:
Functorality 2.76 If X is a co-H-space (resp. cogroup-like) and a k-space, then [X,—J is
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a functor kTop, — kMon (resp. kTop, — kGrp)

Example 2.77 Forn > 0 the sphere S” is a k-space. For a k-space X, we let 2% (X) be
the topological group[S", X[f be the topological group. If X is not a k-space, then

one could define 7t¥(X) = 7k (k(X)).

Proposition 2.78 Let X, Y € kTop. where X is Hausdorff. The identity [X, YIF — [X, Y]

is continuous. Moreover, if Mu(X, Y) is a k-space, then [X, YI* = [X, Y]. as spaces.

Proof. Since X is Hausdorff, M.(X Y) = T(X Y). Since the identity K(X/ Y) =
KT.(X Y)) = T.(X Y) = M(XY) is continuous, the identity [X, Y]F — [X Y], is
continuous. If M,(X, Y)isak-space, then K.(X, Y) = K(T.(X, Y)) = T.(X, Y) = M.(X, Y)
and therefore [X, Y[ = [X, Y].. =

Though very often the topologies of [X, Y] and [X, Y], agree, the main difference

of these two approaches lies in the difference of products in kGrp and Grp.

2.5.3 The topological shape groups and 75"(X)

In the previous two sections, we topologized general homotopy mapping sets
[X,Y].. In this section, we use shape theory to topologize the homotopy groups.
The author thanks Paul Fabel for suggesting the following application of shape
theory which seems to be fairly well-known (for instance [Mel09]). Application to
the quotient topology of n?%(X) is also of interest. The reader is referred to [MS82]
for all preliminaries of the inverse system approach to shape theory. The homotopy
category of polyhedra hPol. is the full-subcategory of hTop. consisting of spaces
with the homotopy type of a polyhedron. It is well known [MS82, §4.3, Theorem 7]
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that hPol. is a dense subcategory of hTop,. This means for each based space X, there
is an hPol.-expansion X — (X}, par, A) universal with respect to other morphisms
X = (Yu, g, M) in pro — hPol, (here X is treated as a rudimentary system indexed
by a singleton). Specifically, the expansion consists of maps p, : X — X, such that
pr = parpr Whenever A’ > A in directed set A. These maps induce continuous

homomorphisms (pa). : 71,7 (X) — 7,7 (X,) for each n > 1.

Remark 2.79 The results in Chapter 2.4 indicate that 7t,7(X,) is a discrete group

since X, has the homotopy type of a polyhedron.

Definition 2.80 The n-th topological homotopy pro-group of a based space is the
inverse system pro—m," (X) = (n;"” (X2), (Pan )er A) of discrete groups in pro—TopGrp
where the bonding maps are the induced, continuous homomorphisms (pi1) :
P (Xy) — mP(Xa). The n-th topological shape homotopy group of X is the limit
7P (X) = lim pro—m,(X) = lim 7 (X,) which, as an inverse limit of discrete groups,
is a Hausdorff topological group. The isomorphism class of 7,7 (X) does not depend
on the choice of hPol.-expansion. There are analogous constructions in the unbased

and relative cases as well.

Remark 2.81 Itis a well-known fact of shape theory that a compact metric space X,
has an hPol.-expansion X — (X, pn.x+1, IN) indexed by the integers. Since ﬁ;"”(X) is

a subspace of a countable product of discrete spaces, it is a metrizable topological
group.

The continuous homomorphisms (p1) : TP (X) = 7P (X)) satisfy (pa). = (pax )-(pa )«
and therefore induce a canonical, continuous homomorphism ®x : 7,7 (X) —
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7,7(X) to the limit. Let HTopGrp (resp. HTopAb) be the full subcategory of

TopGrp (resp. TopAb) consisting of Hausdorff topological (resp. abelian) groups.

Functorality 2.82 7,7 : hTop. — HTopGrp isafunctorand® : n.? — #t,” isanatural
transformation with components in qTopGrp. For n > 2, 7" : hTop. — HTopAb is a

functor and @ : 7,F — %7 is a natural transformation with components in qTopAb.

Proof. Forgetting the topological structure gives the usual shape group functors
7t; : hTop. — Grp and 7t,, : hTop. — Ab for n > 2 [MS82, Ch II, §3.3, Corollary 2].
We have already seen that 7, is well-defined on objects and so it suffices to show
that a based map f : X — Y induces a continuous homomorphism f, : 7,7 (X) —
ﬁ:,o”(Y). If X = (Xi, par,A)and Y — (Y, gy, M) are hPol.-expansion for X and Y

respectively, then a based map f : X — Y induces a map

(fur @) : X, pan, A) = Yy, quu, M)

of inverse systems in hPol. [MS82, Ch I, §2.1, Theorem 1]. Here (f., ¢) consists of a
function ¢ : M — A and continuous maps f, : Xp() — Yy, 4 € M such that when-
ever u < ' thereis a A € A such that A > ¢(u), ¢(v’) and fupown = Gup fwPow)a-
The f, induce continuous homomorphisms (f.). : 7,7 (Xsq) — 1" (Yu) such that

whenever p < ' there is a A € A such that A > ¢(u), (') and (fu)(Ppun)- =

(Guw )+(fur)+(Pp@ya). Therefore,
(£ @) : (P (X0, (Parr)es A) = (TP (Vo) (G ) M)
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is a morphism of inverse systems in HTopGrp and induces a continuous homo-

morphism
o P (X) = Tim (7P (Xa), (pan e, A) = T (7 (Y,), (G ) M) = 777(Y)

on thelimits. To see the naturality of ®, we regard P (X)and 7P (Y) as rudimentary
inverse systems in qTopGrp, let f : X — Y be a based map, and consider the

commuting square of inverse systems

£ N/
o (X) 11, (Y)

| |

(R X0, o) &) — iy (B (o), () M)

Applying lim, we obtain the square

mH(X) 2 17 (X)
A |
THY) —5 7 (Y)
for the naturality of ©. m

The primary application we make of shape groups is the following.

Proposition 2.83 If n > 1 and the canonical map @ : m,F(X) — #,7(X) is an injection,

then 1, (X) is a functionally Hausdorff quasitopological group.

Proof. Since #,"(X) is a Hausdorff topological group, it is functionally Hausdorff.
Any space continuously injecting into a functionally Hausdorff space is functionally
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Hausdorff. m

The existence of the natural homomorphism ®x : 71,(X) — 7,7 (X) hints at an
alternative topology for 11,(X). Let 7;"(X) be the n-th homotopy group of X with
the initial topology with respect to ®. This topology is generated by the sets @3 (U])

where U is open in 7,7 (X). By A.35 of the Appendix, 7¥(X) is a topological group.

Functorality 2.84 7" : Top. — TopGrp is a functor and for n 2 2, 7" : Top. —

TopAb is a functor.

Proof. It suffices to prove that the homomorphism f. : 5(X) — n3*(Y) induced by
abased map f : X — Y is continuous. But this follows directly from applying A.36

of the Appendix to the naturality diagram of ®:

Dy U4
T (X) — 1,7 (X)

| |7

T (Y) =5 T, (Y)

The next proposition follows directly from the definition of the initial topology:

Proposition 2.85 75*(X) is Hausdorff if and only if the homomorphism @y : m,(X) =

7t,,(X) is injective.

The injectivity of ®x has received a significant amount of attention in the case
n = 1. In the effort to characterize the spaces X for which @y is injective (for fixed

1), a simpler description of the topology of 75"(X) is desirable.
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Proposition 2.86 If X is a compact metric space, then m;(X) is a pseudometrizable

topological group.

Proof. By Remark 2.81, 7t,,(X) is metrizable. In general, if Y is a metric space with
metric d : Y? = R and a space X has the initial topology with respect to a function
f:X—> Y, thenp =do(f X f): X > Ris a pseudometric for X. It is clear that
p satisfies the axioms of a pseuometric. Also, if B¥(yo) = {y € Yld(yo, y) < r} and
Bl(xo) = lx € Xlp(xo,%) = d(f(xo), f(x)) < 7), the equation B’(xs) = f~1(B4(f(xo)))
indicates that the initial topology on X agrees with the topology induced by the

pseudometric p. =

Theorem 2.87 If a map f : X — Y induces an isomorphism f. : #,(X) — 7,(Y) of
topological groups, then the continuous homomorphism f. : niH(X) — nS*(Y) is quotient

onto its image.

Proof. We use the naturality diagram

(I)X -
T (X) — 1,7 (X)

| |

mSH(Y) 5 AT (Y)

Let U C Im(f.) such that f,}(U) is open in 73*(X). Since 73"(X) has the initial
topology with respect to @x, we have f1(U) = ®(V) for open V € n5*(X). Since
fis a homeomorphism and @y is continuous, it suffices to check the equality
OV NIm(f) = U. Yfu € UC Im(f.), and @ € £71(U) = ®;1(V) such that
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f.(@) = u, then @y (1) = f. o Dx(a) € f.(V) and therefore u € CD;l(f:(V)). For the other
inclusion, if @y(u) € f.(V) and f.(a) = u, then f, o @x(a) = Dy(u) € f(V). Since f.
is bijective, we have ®x(a) € V and therefore a € ®}(V) = f£7(U). This implies
u=f(a)el =

From this theorem, we begin to get a feel for the strength of 75" as an invariant.

Corollary 2.88 Ifa map f : X — Y induces an isomorphism f. : 7,(X) — #,(Y) of
topological groups, and an isomorphism f, : 7,(X) — 7.(Y) of groups, then f. : m3"(X) —

7>t (Y) is an isomorphism of topological groups.

The following is a comparison of the four topologies defined on the homotopy

groups:

Corollary 2.89 For any space X, the identity maps 7k (k(X)) — nf,"”(X) - m(X) -

nh(X) are continuous.

Proof. The identity k(X) — X is continuous and so the identities 7 (k(X)) —
7 (k(X)) — w7 (X) are continuous by Proposition 2.78 and the functorality of 72..
The identity 7,7 (X) — 71(X) is continuous by the construction of 7. The identity
. (X) > n¥(X) is continuous by the universal property of spaces with initial
topologies. Since 5"(X) is a topological group and 7,7 (X) — n$*(X) is continuous,

so is the adjoint 7}(X) — 75"(X). m
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CHAPTER III

PATH COMPONENT SPACES

In this chapter, we study the path component spaces defined in Example 2.7
and used in Chapter 2.4. The path component space of a topological space X is the
set of path components 73(X) of X with the quotient topology with respect to the
canonical map 7x : X — 7o(X). We denote this space as ng"’”(X) and remove or
change the subscript of the map nx when convenient. The following definitions

are equivalent up to homeomorphism:
1 m"(X) = [+ X]
2. ng"” (X) = [S% X]. for any choice of basepoint in X.

3. 7,7(X) is the coequalizer of the maps evy, ev; : P(X) — X which are evaluation

atOand 1.

top

It is then clear that T,

: Top — Top is a functor which factors through the
homotopy category hTop. If X has basepoint x, we choose the basepoint of ng”’ (X)
op

to be the path component of x in X. This gives a based version of the functor nf) ,

however, the presence of basepoint will be clear from context.

Example 3.1 Let T C R? be the topologist’s sine curve

{(0,0)} U {(x, Yy = sin(%),o <x< 1}
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or closed topologist’s sine curve {0} X [-1, 1]U{(x, y)ly = sin(y—lc) ,0<x < 1}. Itis easy
to see that in both cases, ng"'(T) is homeomorphic to the Sierpinski space S = {0, 1}

with topology {0, {1}, {0, 1}}.

It is worthwhile to mention the remarkable fact, proved by D. Harris that every
topological space is the path component space of some paracompact Hausdorff

space.

Theorem 3.2 [Har80] Every topological space Y is homeomorphic to the path component

space of some paracompact Hausdorff space H(Y).

Some properties and variants of the functor H are included in [Har80]. The next
example indicates that subspaces of R appear quite naturally as path component

spaces.

Example 3.3 Let X be the set R X I. We define a simple Hausdorff topology on X
such that ng’”(A xI) = A for subspaces A C Rand AXI C X. The topology on X has
a basis consisting of sets of the form {a} X (s, #) and {a} X (¢, 1]U (g, b) X IU {b} X [0, 5)
for 0 <s <t <1anda < b. This topology is a simple extension of the ordered square
in [Mun00, §16, Example 3] and is the order topology given by the dictionary
ordering on X. The path components of X are {z} X I for z € R (see [Mun00, §24,
Example 6]). It then suffices to show that for each A C R, the projectionp, : X4 — A
is quotient, where X4 = A X I has the subspace topology of X. Suppose U is open
in X so that UN A is open in A. Since U X I = pg!(U) is open in X and so
(UxD)NX,=WUNA)XI=p(UN A)is open in X,. Therefore p4 is continuous.
Now suppose V € A such that p,'(V) = V X I is open in X,. For each v € V, there
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is an open neighborhood {v} X (t,, 1] U (v, b,) X I U {b,} X [0, s,) of (v, 1) contained in
V X I. Since V X I is saturated with respect to p4, we have [v,b,] N AXIC VXL
Similarly, since (v,0) € V for each v € V we can find a closed interval [4,, v] such
that [a,, v] N A X I C V x I. Therefore, for each v € V, we havev € (a,,b,)NAC V.

Therefore V is open in A, p4 is quotient, and consequently ng’p(XA) = A.

Example 3.4 Using the previous example, we can find a space Y such that ngo” Y) =
S'. Lete : R — S! denote the exponential map and X = R X I be the space defined
in the previous example. Let Y be the set S' X I with the quotient topology with
respect to € X id; : X — S' X I. It is easy to see that a basic open neighborhood in Y
is e(U) where U is a basic open neighborhood of X described above. Similarly, one
can show that the projection Y — S! is precisely the quotient map nty : Y — ngo’;(Y)

and so S! & ng"”(Y).

We now observe some of the other basic properties of path component spaces.
We will be particularly interested in the preservation of limits and colimits. The

following will be very useful later on.
Proposition 3.5 nf)"" preserves coproducts and quotients in Top and Top..

Proof. Clearly, ;" (11, X3) = 11, 7" (Xa) for any family of spaces {X1}. If g : X = Y

is a quotient map, then the diagram

X Y
HXJ, lny
o’ (X) = e (Y)



commutes. The bottom map f. is quotient by the Quotient Square Lemma (1.22).
In the based case the quotient map q : I, Xy — V, X induces a quotient map 4. :

ny? (11, X1) = mg¥ (V; X») which makes the same identifications as the quotient
map
s [H XA) =~ H g7 (Xa) — \/ 37 (X3)
A A A
Therefore, there is a natural homeomorphism 7;” (V, X3) = V, 77 (X3). &
Though n,” preserves coproducts, unfortunately it fails to be cocontinuous.

Since Top is cocomplete, it suffices to exhibit a coequalizer which is not preserved

[Mac00, §VA4].

Example 3.6 Let Y = (1,1,2,..,0} € R. We define parallel maps f,g : Z* — Y
by f(n) = % and g(n) = n—il It is easy to see that the coequalizer of these maps
is homeomorphic to the Sierpinski space § of Example 3.1. The Sierpinski space
is path connected since the function @ : I — {0,1} given by «([0,1]) = 0 and
a((%,1]) = 1 is continuous. Therefore 71;*(3) is a one point space. Noting that both
Z* and Y are totally path disconnected (so 7y (Z*) = Z* and 1y7(Y) 2 Y), we find
that f = f. and g = g.. Therefore the coequalizer of f. and g. is $ which is not a one
point space. This means the path component space of the coequalizer of f and g is

not homeomorphic to the coequalizer of f. and g..

One might notice in the previous example that the path component space of the
coequalizer is a quotient of the coequalizer of the induced maps. This phenomenon

in fact generalizes to all (small) colimits.
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Proposition 3.7 Let | be a small category and F : | — Top be a diagram with colimit
colimF. Suppose colim(ry"F) is the colimit of diagram m,” o F : | — Top. There is a

canonical quotient map Q : colim(ry"F) — i, (colimF).

Proof. By the colimit existence theorem [Mac00, §V.4], colimF is the coequalizer of
parallel maps f and g and colim(ng’”F) is the coequalizer of parallel maps f” and g’
as seen in the diagram below. The coproducts on the left are over all morphisms
u : j = kin ] and the coproducts in the middle column are over all objects i € ]. The
naturality of 7 : X — ng"’(X) and the homeomorphisms ng’”(ﬂa X)) =11, ng"p(X;\)
of Proposition 3.5 gives the commutativity of the squares on the left and top right.
By Proposition 3.5, g. is a quotient map. Sincego f = go g, wehaveg.o f. =g.0 g..
Therefore g.oto f’ =g.0 fios=g.0 g.0os = g. ot o g. By the universal property
of colim(r, " F), this induces a unique map Q : colim(ny'F) — 1,7 (colimF) such that
Qogq =g.ot. Sincetis a homeomorphism and 4. is a quotient map, Q is also a

quotient map.

f .
L.k F(7) :g:§ Ui, FG) ! » colimF

| | |

AP (Lot D) 2 7 Iy B D) ——— i colimP)

T { 3@:*

]_Iu:]-_,k n(t)OP(P( ) %; e ’ n(t)"?’(P(i)) -—4——_) colim(nf)"PF)

Corollary 3.8 Let XUz Y be the pushout of the diagram X 725y where . (Y)
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is discrete and g, : ng"” (Z) - né"” (Y) is surjective. The inclusion j : X — XUz Y induces

a quotient map j, : 3" (X) — 13" (X Uz Y) on path component spaces.

Proof. The pushout of the diagram n;”(X) A n."(Z) £, 37 (Y) is the quotient
space W = 1,7 (X)/ ~ where for each P, Q € ,”(Z) such that g.(P) = g.(Q) we make
the identification f.(P) ~ £.(Q). Letg: nf)o”(X) — W be the quotient map. Consider
the diagram

" (Z) —— 5" (Y)

f| |

rP(X) s 7P (X Uz Y)
Q

W

where Q is the canonical quotient map of Theorem 3.7 induced by the universal
property of pushouts. Since both g and Q are quotient maps j. is also a quotient
map. =

As in Example 3.1, let T C R? be the topologist’s sine curve, a = (0,0), b =
(1,sin(1)), and A = {a,b} € T. Let $ = {a, b} be the Sierpinski space with topology
{0, {b}, {a, b}}. The next corollary illustrates the possibility of weakening the topology
of path component spaces by attach the topologist’s sine curve in the appropriate

way and also gives an example of when pushouts are preserved by nf)"p.

Corollary 3.9 Let f : A — X be a map such that f(a), f(b) lie in distinct path components
of Hausdorff space X. Let X U4 T be the pushout of the diagram X - A—T where
i is inclusion. The inclusion j : X — Z induces a continuous bijection j. : mg"(X) —

.P(X Uy T) which is not a homeomorphism and 1,7 (Z) is canonically homeomorphic to
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the pushout of 70" (X) g4,

Proof. It is easy to see the map j. : 1" (X) — my7(X Ua T) is a bijection since we do
not create any new connections between path components by attaching T in this
way. Applying 7;” to X Loa—isT gives diagram 7;"(X) &L A g The
pushout Z of this diagram is simply 77¢(X) with a topology (strictly) weaker than

that of 7;"(X). Applying Theorem 3.7 gives diagram

A id

/| J

(X)L (X U, T)

where Q is a quotient map. Since Q is a bijective quotient map, it is a homeomor-
phism. =

. £
Now we observe the behavior of ;" on products.

Proposition 3.10 Let (X3} be a family of spaces and X = [1; Xy Let my : Xy — 137 (Xa)
and m: X — Tcg"”(X) be the canonical quotient maps and [, ma : X — [ ng"”(XA) be
the product map. There is a natural continuous bijection ® : t)¥ (X) — T1, ¥ (Xa) such

thatq)on = H,\T(,\.

Proof. The projections pri : [1) Xa — X, induces maps (pra). : nf)"” (I1. X)) —
ng"”(X,\) which in turn induce the map P : n(t)"” (IL X)) — IL ng"”(X,\). This is a
bijection due to the basic fact that the non-topological functor 7y preserves arbitrary
products. m
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Corollary 3.11 @ : 7y” (X) — [1, 7,7 (Xa) is @ homeomorphism if and only if the product

of quotients [[, 75 : X — 1, ng’”(XA) is itself a quotient map.

Proof. This follows from the fact that 7 is a quotient map, ® is a bijection, and

Pon=][m1. m

Corollary 3.12 If ng’"(XA) is discrete for each A, then @ : ng"” x) - I nf)"” (X)) isa

homeomorphism.

Proof. If ng’”(XA) is discrete, then 713 : X4 — ngo”(X,\) is open. Since products of
open maps are open, [[, 1 : X = ], ng"”(X,\) is open and must be quotient. By
Corollary 3.11, ® is a homeomorphism. =

Of course, not all products (or even powers) of quotient maps are quotient. In
light of Corollary 3.11, the facts in Chapter 1.2 provide some sufficient conditions on
X, Y, " (X), P (Y) to guarantee that 7r," (X X Y) = 7157 (X) X 71,7 (Y). This, however,

does not occur in general.
Corollary 3.13 7, does not preserve finite products.

Proof. LetRg be thereal line with the K-topology. In this space thesetK = {1, 1,1, ...}
is closed and sets of the form (a, b), (a,b) — K form a basis. Let Qx be the rational
numbers with the subspace topology of Rx. Now let X = Qk Lix CK where CK is
the cone on K. The path components of X are the singletons {4} for a € Qx — K
and the set CK. The path component space of X is 7,"(X) = Qx/K but the map
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ixXmx: XXX — nf)""(X) X ng"”(X) is not a quotient map [Mun00, §22]. By Prop.
3.10 the topology of 71,7 (X X X) is strictly finer than that of 72" (X) X 7,7 (X). ™

Other examples of this failure arise in the context of topological fundamental
groups. In fact 2.34 and 2.39 imply that if 7;”(X) is not a topological group then
7, (Q(X) X Q(X)) = i¥(X x X) is not homeomorphic to 7, (Q(X)) X 7y (Q(X)) =
7 (X) x 7P (X).

We will also have need to consider path components of monoids and groups
with topology. In particular, if multiplication in M € MonwTop is only continuous
in each variable, then we do not have H-space structure and must do more to
obtain monoid structure on 7o(M) = [*, M]. Recall the notion of semitopological

and topological monoids (with continuous involution) from A.1 of the Appendix.

Proposition 3.14 Suppose M is a semitopological monoid and C,, denotes the path
component of m € M. If a; € C,,, for i = 1,2, then a1a; € Cy,m,. Consequently, there
is a well-defined multiplication 71o(M) X 119(M) — 19(M), (Cp, Cs) = Cn making
ng"p (M) a semitopological monoid. Moreover, if s : M — M is an involution on s,

. . . . 11
then s, : my(M) — 15(M) is a continuous involution on 7100” (M).

Proof. Let p; : I — M be a path pi(0) = a;, pi(1) = m;. Let A, : M > M
(resp. Pm, : M — M) be left (resp. right) multiplication by a; (resp. m,). Con-
sider the concatenation g = (4, © p;) * (P, © p1) : I = M. This is well-defined
since Ay © p(l) = aymy = P, © p1(0) and satisfies g(0) = A, © p(0) = a4, and
g(1) = Pm, ©p1(1) = mym,. Clearly then a1a, € Gy, Since multiplication in M is as-

sociative and unital (if e is the identity of M, then C, is the identity of 74(M)), the mul-
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tiplication C,,C, = Cp in 7" (M) is both associative and unital. To see that ;" (M) is
a semitopological monoid, letm € Mand A, p, : M — Mbe (continuous) right and
left multiplication by m. The induced maps (An)., (pm)s : g7 (M) — 11,7 (M) are left
and right multiplication by C,, respectively and are continuous by the functorality
of ’nf)o” . Ifs: M — M is a continuous involution on M, then s,(C») = Cy(). Therefore,
s(Ce) = Ce, S(CwCn) = S(Cmn) = Cotmn) = Csmstmy = CamCotmy and s? = (%), = (id). = id

. . . . . b
proving that s, is a continuous involution on 7,” (M). =

Corollary 3.15 If G is a semitopological (resp. quasitopological group), then so is ng"”(G).

Proof. If g¢7' = e = g7'gin G, then C;Cp1 = Coet = C, = Cg1p = Cp1C,. Since
inverses are given by C;' = Cy-1, 713”7 (G) is a group whenever Gis. If inv: G — Gis

. . « . . t . .
continuous, then (inv). is inversion on 7" (G) and is continuous. ®

Proposition 3.16 Let C be the category sTopMon, sTopMon’®, sTopGrp or

qTopGrp. Then w¥ : C — C is a functor.

Proof. We have already observed that Tcg"’” is well-defined on objects for each
case. It suffices to deal with morphisms. If f : M — N is a continuous ho-
momorphism of semitopological monoids (or groups), then the continuous map
fo i P — 1"(N), f(Cw) = Cpim satisties £(CuCy) = £i(Cun) = Cromy =
Crmyfy = CrmCrimy = f(Cm)f(Cy) so that f, is indeed a homomorphism. This
is enough for the first, third and fourth categories. For the last case, suppose
f: (M,s) = (N, t) is a continuous, involution-preserving (f © s = t o f) morphism

79



in sTopMon'. The functorality of ;" (on spaces) gives that . o f. = f. 0 5,. There-
fore f. : (ng"”(M), s.) — (ng"”(N), t.) is also a continuous, involution-preserving
homomorphism. Preservation of composition and identity are immediate from the

functorality of n” : Top — Top. m

Proposition 3.17 If M is a semitopological monoid (resp. semitopological monoid with
continuous involution, semitopological group), the path component of the identity e is a
semitopological submonoid (resp. semitopological submonoid with continuous involution,

normal semitopological subgroup) of M.

Proof. Let N be the path component of e. Supposea, b€ Mandp,q:1— M are
paths with p(0) = g(0) = e and p(1) = a,4(1) = b. Let I, : M — M be continuous left
multiplication by a. Thenr = (I, 0 q) *p : I = M is a path with r(0) = p(0) = eand
r(1) = aq(1) = ab. Therefore N is a submonoid of M. If s : M — M is an involution
onM, and p : I - Mis a path with p(0) = e and p(1) = 4, thensop: I > M > M
is a path p(0) = e and p(1) = s(a). Therefore N is closed under the image of all
continuous involutions M — M. Therefore if (M, s) € sTopMon’, then (N, sly) is a
subobject of (M, s). If M is a semitopological group, and p : I = M is a path from
e to a, let A, be left multiplication by a™! so that A,1 o p : I = M is a path from
a~! to a”'a = e. Therefore N is closed under inversion and is a subgroup. Clearly if
inversion is continuous in M, it will be continuous in N with the subspace topology.
To see that N is also normal we taken € N and a € M. Let p : I = M be a path from

e to n, I, be left multiplication by a and p,+ be right multiplication by a!. Then
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P10 A, 0p: I — Misapath from aea™! = e to ana™'. Therefore aNa™! C N. Since
this also holds when we replace a with a7}, it follows that 2 'Na C N and therefore

NCaNagl. m

Corollary 3.18 If G is a semi(quasi)topological group and N is the path component of the
identity e, then there is an isomorphism ng"”(G) = G/N of semi(quasi)topological groups

such that the following diagram commutes

G

e
proj

G/N —1}"(G)

Proof. If 4, are in the coset gN, then g7'4, ¢"'b € N and we can find a path g from
g 'ato g7'b. If A, is left multiplication by g, A, 0 g : I = G connects the points 2 and
b. Therefore each coset gN is path connected. Additionally, if p : I — G is a path
with p(0) = g, p(0) = h and A is left multiplication by g*, theng = Agnopisa
path g(0) = e and g(1) = g"'h. Therefore g"'h € N and h € gN. Therefore every path
p : I — G must lie entirely within the coset p(O)N. So the path components of G are

precisely the cosets gN. ®

Corollary 3.19 Let G, be a family of semi(quasi)topological groups and G = ], G be

the product group with the product topology. There is a canonical isomorphism nto"”(G) =

g’p(Ga) of semi(quasi)topological groups.

aTl
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Proof. The projections p, : G — G, induce the canonical, continuous group iso-
morphism @ : ;"(G) — [, 7;7(Ga). It was noted in Corollary 3.11 that @ is a
homeomorphism if and only if [T, 7g, : [T, Ga — [1a 7" (Ga) is quotient. If N, is
the path component of the identity in G,, then the projection G, — ng’"(Ga) & Go/Ny
is a quotient map of semitopological groups. It is a basic fact of semitopological
groups [ATO08, Theorem 1.5.1] that these projections are also open. Since products
of open maps are open, [1, Ga = [1, Ga/Na = [1,7,"(G,) is open and therefore

quotient. m

Remark 3.20 If M is a topological monoid (with continuous involution), then
ngo” (M) is a semitopological monoid (with continuous involution) but is NOT al-

ways a topological monoid. The diagram

MxM M
nMngl J(T‘M
.7 (M) X 1,7 (M) —— 71,7 (M)

where the horizontal maps are multiplication commutes. If the product map 7y X
Ty is quotient, then ng’p (M) is a topological monoid, however, this is not always the
case. For an explicit example consider the monoid QM(X) of Moore loops [May90]
in a space X such that Tcio” (X) is not a topological group. Since Q(X) ~ QM(X),

multiplication in 77,"(QY(X)) = 7}”(X) is not continuous.
Example 3.21 An example of particular importance to us is the path component
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space of the free topological monoid with continuous involution M;(X) defined in
the Appendix A.1. Let X be an unbased space and 7ty : X — 7157 (X) be the quotient
map identifying path components. Since 7tk is a quotient map, the semitopological
monoid M’;X(ng"”(X)) is well-defined. In particular its topology is characterized
by the fact that the monoid homomorphism M’ (rx) : My(X) — M, (n;7 (X)) is a
quotient map. Since the non-topological 7y : Top — Set preserves products and
coproducts, there is a canonical monoid isomorphism ¥ : 7(M>(X)) — M(19(X))
defined as follows: The path component of w = x{'...x;" is sent to Y(w) = P{...P;

where P; is the path component of x; in X. This makes the diagram

M(X)

M,

to? (Mip(X)) =5 M, (157 (X)) —7 Mg (X))

commutes in the category of semitopological monoids. Since the twonon-horizontal

maps in the left triangle are quotient we have:

Lemma 3.22 ¢ : 71," (M(X)) = M, (,7(X)) is a natural (in X) isomorphism of semi-

topological monoids.

Now we consider the case when G is a topological group. Since any quotient
group of a topological group is itself a topological group with the quotient topology;,

it is clear from Corollary 3.18 that:

Proposition 3.23 If G is a topological group, then so is m,"(G). Moreover m;" :
TopGrp — TopGrp is a functor.
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Proof. We have already shown that ng’”(G) is a quasitopological group (Corollary
3.15) so it suffices to check that multiplication is continuous. By Corollary 3.19, the
canonical map 7,7 (G X G) — 13" (G) X 1137 (G) is a homeomorphism. By Corollary
3.11, the product 7t¢ X 116 : G X G = 7, ¥(G) X my¥(G) is quotient. Now by Remark

3.20, multiplication in 7;”(G) is continuous. m

Theorem 3.24 If Gisatopological group, then M.(X, G) and [X, G). are topological groups

for any space X.

Proof. Since G is a group-like space, the operation M.(X, G) X M.(X, G) = M.(X, G),
(f,8) = p o (f X g) o Astudied in Chapter 2.2.1 is continuous. Here u is the multi-
plication of G and A : X — X X X is the diagonal. With this multiplication M.(X, G)
is a group where the identity is the constant map at the inverse of f : X —» G
is f1:X — G, x— f(x)!. Since both multiplication and inversion are contin-
uous in G, M.(X, G) is a topological group. As previously noted, the operation
[f1*[g] = [1 o (f X ) o A] gives group structure on [X, G].. By Remark 2.52 there is a
natural isomorphism [X, G}, = ng"’” (M.(X, G)) of quasitopological groups. Corollary

3.23 asserts that ngo” (M.(X, G)) is a topological group. =

Corollary 3.25 If G is a topological group, then T,," (G) is a topological group for all n > 0

(abelian for n > 1).
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CHAPTERIV

THE TOPOLOGICAL FUNDAMENTAL GROUP

In this chapter we study the topological fundamental group .7 (X, x) = [S!, X].
as defined in Example 2.9. Prior to this research and the independent work of
Fabel [Fab09] it was thought that these groups are always topological groups. In
fact, many authors asserted that TC;OP : Top, — TopGrp was a well-defined functor
under the false assumption that © x 7 : Q(X) X Q(X) — ntl"” (X) x ni"p(X) is always
a quotient map. In this chapter, we provide counterexamples to this claim by
computing ni"” on a class of suspension spaces that resemble “non-discrete wedges

of circles.”

4.1 The topological properties of "

Many of the results in Chapter 2 give immediate results concerning the topolog-
ical nature of 7}”. For instance, since S! is a cogroup-like, :* : Top. — qTopGrp is
a functor to the category of quasitopological groups (Theorem 2.30) which factors
through the homotopy category. There is an additional factorization: 71}” = 7;7Q.

Specifically, the following diagram of functors commutes up to natural homeomor-
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phism:

hTop.
top
ho !
/ 7P \
Top. L » qTopGrp
Q‘[ l forget
Top. o » Top.
Ty

We call upon other results from Chapter 2 as needed.

Lemma4.1 [Bis02, Prop. 32] Ify : [ — X is a path, then h, : 7;7(X,y(1)) —

7 "(X, 7(0)), hy([a]) = [y * a * y~'] is an isomorphism of quasitopological groups.

Proof. Consider the concatenation functions I' : Q(X, y(1)) = QX y(0)), I'(e) =
yra*xylandI” : Q(X, v(0)) = (X, y(1)),I"(B) = y~1+B*y. These are continuous as
the restrictions of the more general concatenation functions from Lemma 1.21. Ap-
plying ng”’ gives the continuous homomorphisms A, : TC;OP(X, y(1)) — n;"” (X, v(0))
and - = 7y (X, p(0)) = 7" (X, (1)), Ti([B1) = [y~ » B * ¥] respectively. These are
continuous inverses of each other. ®m

The following, is a convenient description of the topology of topological fun-

damental groups.

Corollary 4.2 For every based space Y, the canonical monoid homomorphism

g Mr(Q(Y)) = @ QYY" = 7P(Y), g(a10gy) = [y % ay % - - * ]

nz0
on the free topological monoid on C(Y) is quotient.

Proof. For each n > 1, concatenation C, : Q(Y)" — (Y) is continuous 1.21. These
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induce a map C : Mr(Q(Y)) — Q(Y) (The disjoint identity Q(Y)? = * is taken to
the constant map). Let o : Q(Y) — Q(Y)! € Mr(Q(Y)) be the universal arrow and
. QY) — nio”(Y) be the quotient map. It follows that ¢ = m o C is a monoid
homomorphism which is quotient sincem =moCoo. m

It worthwhile to note the results of Chapter 2.2.2 that provide conditions to

guarantee that T(;OP(X) is a topological group.
Theorem 4.3 Let X be a path connected space.
1. If O(X) and ntlo’”(X) are first countable, then n;"”(X) is a topological group.

2. If X is metrizable, then 7, (X) is first countable (and T1) if and only if i (X) is a

pseudometrizable (metrizable) topological group.

3. If X is a separable metrizable space, then ni"p(X) is second countable (and T,) if
and only if rci"”(X) is a separable pseudometrizable (separable metrizable) topological
group.

4. If n)"(X) is locally compact Hausdorff, then it is a topological group.

Proof. 1. If ((X) and n;"p(X) are first countable, then © X n : Q(X) X Q(X) —
n;"” (X) x n;"p (X) is a quotient map by Fact 1.24. By Corollary 2.34, n;"p (X) is a
topological group. 2. and 3. are special cases of Theorem 2.35. 4. is a special case

of Theorem 2.36. m

4.1.1 Attaching cells
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One of the great conveniences of the quotient topology on the fundamental
group is that attaching n-cells to a space changes the topology in a rather convenient
way. The following lemma appears in [Bis02]. The proof included here is slightly
longer but is more intuitive than Biss’. For the statement and proof, we fix an
€ € (0,1) and let ¢* = B" — B"(€) = {x € R"e < |x] < 1} so that int(c") = ¢* - " 1. If
n > 2,int(c") = S"!is 1-connected. If n = 2,4,b > 0, and R = {(at, bt)|t € [0, )} C R?

is any ray emanating from the origin, then int(c") — R is 1-connected.

Lemma 4.4 Suppose Z is a based space, n > 2 an integer, and f : "1 — Z is a based
loop. Let Z' = Z U¢ B" be the space obtained by attaching a n-cell to Z via the attaching
map f. The inclusion j : Z < Z' induces a group epimorphism (isomorphism when n > 2)

jo : TF(Z) > 7 P(Z') which is also a topological quotient map.

Proof. Clearly j. is a continuous surjection for all n > 2 as well as a group iso-
morphism when n > 2. Therefore it suffices to show j. is a quotient map for all
integers n > 2. We re-label our spaces by letting Z; = ZC Z, = ZU ¢" C Z3 = Z'
so that Z, is Z; with an “open collar.” Clearly, the inclusion j; : Z; <> Z, is a
homotopy equivalence and induces an isomorphism (j). : 7{7(Z1) < 7{¥(Z) of
quasitopological groups. Suppose j» : Z; < Z3 so that j, o j; = j. Since Z, is
open in Z3, the map (jo)+ : Q(Z;) > (Z;) induced on loop spaces is an open
embedding. Suppose U C n;"p (Z5) such that j7}(U) = (j1):X((j2)-*(U)) is open in
Tc;"”(Zl). Immedjiately, we have that (j,); (U) is open in ni"p (Z,) since (1), is a home-
omorphism. For k = 1,2,3, let 7y : Q(Z) — n;"p(Zk) be quotient map identifying

homotopy classes of loops. It suffices to show that 7;'(U) is open in Q(Z;). Let
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a € n;'(U). If a has image entirely in Z;, then V = (j,);(; (1)) = 7,1 ((j2)-1(U))
is an open neighborhood of a in )(Z,). Since (j,)« is an open embedding, (j2)«(V)
is an open neighborhood of a contained in n;l(U) and we are done. Therefore, we
suppose a(l) N B"(e) # @ and take the open pullback a Y (E") = 1 ,ep(Cms dm) C I
noting that only finitely many of the restrictions aly,, 4, : [cm, dn] — Z3 have image
intersecting B"(€). Suppose “|[cm1,dm1]/ ...,al[cmk,dmk] correspond to these restrictions.
For eachi = 1,..., k, we find closed intervals [a;, b;] € (¢, dm,) such that g; < b; are
rational numbers and a((c;,, dm;) — (ai, b)) C int(c"). Let C = [ay, by] U -+ U [ay, by]
and D = [0,a;] U [by,a;] U - -+ U [b—1, ;] U [by, 1] (here we use the convention that
[s,t] is the singleton, if s = ). In terms of the compact-open topology, we have
a € (C,E")N(D, Z,).

Clearly, there is a loop 8 : I = Z; such that flp = alp and B(C) C int(c"). These
two conditions imply that @ =~ j, o  when n > 2. When n = 2, we must be careful
that none of the fl,, 1, “go around” int(c®) = S'. In this case, wefindaloopf : I = Z,
such that Blp = alp and f([a;, b;]) € int(c*) — R; where R; C R? is some ray emanating
from the origin. With these choices of  we have that thata ~ j, o f for all n > 2.

Note that

(C, int(c")) n>2
¥ =

Niilla, bl int() - R) n=2

is an open neighborhood of g in Q(Z,). Additionally, since [a] = [j208] = (j2)-(I8]) €
U, B lies in the open set 71,1 ((j2): 1 (1)) of Q(Z,). As asserted in Corollary 1.20, basic

open neighborhoods of loops in Q(Z;) may be taken to be of the form NM (K. , L)
P & P y 1=1\M8
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where K}, = [1‘71, ﬁ] and U is open in Z,. We find such a neighborhood ¥ so that

M
B =( Ky U € w3 (RN W) N
1=1

We choose M large enough so that Ma;, Mb; are integers for all i, or in other words,
so that for each / either K}, ¢ C or K}, C D. Since E" is locally path connected, we
may assume that U; C int(c") C E" whenever Kﬁw c C. Forn =2 and Kjw C [a; bi],
we may also assume that U; C int(c?) — R;. Now we can easily find the desired open

neighborhood of a in {(Z;), namely:

U = [ () <Ky u,>] N{(C E")

1
Ky &D

It is clear that @ € % since alp = Blp and a(C) € E*. % is open in (Z;) since
Z, is open in Z3 (so each U is open in Z3). Suppose y € % C Q(Z3). Clearly,
there is a loop 6 : I — Z; such that ylp = dlp and 6 € ¥ C ' ((jo),(U)). In
other words & agrees with y on D and 8(K},) € U, for all the intervals K}, C C.
This implies 6 € (C, int(c")) and when n = 2 we have 6 € ﬂfﬂ([ai, b;], int(c®>) — R).
It is a basic fact that if p;,p, : I — S are paths into a 1-connected space Y such
that p1(i) = p2(i), i = 0,1, then there is an endpoint preserving homotopy of paths
p1 = p» in S. This guarantees a homotopy of loops y = j, 0 6 in Z3. Consequently,

[¥] = [j2 © 8] = (j2).(I8]) € U proving the inclusion % C 7;'(U). =

Lemma 4.5 Suppose Z is a based space, n > 2 an integer, and f, : "' —> Z, a € A
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is a family of based maps. Let Z' = Z Uy, B} be the space obtained by attaching n-cells
to Z via the attaching maps fo. The inclusion j : Z < Z' induces a group epimorphism

(isomorphism when n > 2) j. : 1y7(Z) — n¥(Z') which is also a topological quotient map.

Proof. Clearly j. is a continuous surjection for all n > 2 as well as a group isomor-
phism when n > 2. Therefore it suffices to show j, is a quotient map for all integers
n > 2. Werelabel Z = Z; and Z' = Z; and take the approach of factoring the
inclusion j: Z; «> Zy twice as Zy C Z, € Z3 € Zy. We will let 7ty : Q(Zy) — Tci"’” (Zy),
k =1,2,3,4 denote the quotient maps identifying homotopy classes of maps. Con-

sider the commutative diagram

Q(Zy) —=— Q(Z4)

7 (Z1) = T (Za)

and suppose U C 7}7(Z,) such that j,*(U) is open in 7}"(Z;). Tt suffices to show
that 7;1(U) is open in Q(Z4) so we suppose f € 7,;'(U). Since the image f(I) is
compact in Z, it may intersect only finitely many of the attached cells. Suppose
ay, ..., ay are the indices in A such that (I) N Ej}. # 0. Let Z, = Z, Uy, B € Z, be the
subspace of Z; which is Z; with the cells B; , ...Bf  attached. Additionally, for each
a € A—{ay, ..an} we take a point z, € int(B") and let Z; = Z, — {z.la € A—{ay, ...ay}}
be the open subspace of Z, with the chosen interior points removed. We know from
Lemma 4.4 that the inclusion j; : Z; < Z, induces a quotient map (j). : TC;OP (Zy) —

%(Z,) since Z, is obtained from Z; by attaching only finitely many n-cells. Also
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the inclusion j, : Z, < Z; is a homotopy equivalence and therefore induces an
isomorphism of quasitopological groups (j2). : 7,7(Z;) — m,7(Zs). Lastly, since
I is compact and Z; is open in Z,, the inclusion j; : Z; < Z4 induces an open
embedding (j3)s : Q(Z3) < (Z,) on loop spaces. We now have that js0 j0 j; = j

and (j © 1) = (j2)s © (i) : 7 (Z1) = 7;¥(Z5) is a quotient map. The equality

JHU) = (2 0 j1) N () 1 (UD)

then implies that (j;);}(U) is open in 7¥(Z,). Therefore, V = ;Y ((js)-* (1)) =
(ja); (1,1 (U)) is an open neighborhood of f in Q(Z3). Since (ja)s : Q(Zs) = Q(Zy4) is
an open embedding, (j3)4(V) is an open neighborhood of § in Q(Zy). If y € (j3)s(V),
then we have a loop y’ € V such that j; 0y’ = y. But this means [y’] € (j3);1(U),
so that [y] = [j3 0 ¥’] € U and consequently y € ;' (U). This proves the inclusion

(ja)#(V) € 7, (U) and that 7' (U) is open in Q(Z,). m

4.1.2 Discreteness and separation

In general, it is difficult to determine if the fundamental group of a space is a
topological group. There are, however, instances when it is easy to answer in the
affirmative, namely those spaces X for which 7}”(X) has the discrete topology. The

following proposition is a consequence of 2.51 and 2.55.
Proposition 4.6 For any based space (X, x), the following are equivalent:

1. 7P(X) is a discrete group.
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2. Q(X) is semilocally O-connected.

3. The singleton {[c.]} containing the identity (homotopy class of the constant loop) is

open in 71" (X).

4. Each null-homotopic loop a € Q(X) has an open neighborhood containing only

null-homotopic loops.

These obvious characterizations are inconvenient in that they do not character-
ize discreteness in terms of the topological properties of X itself. The next theorem
was proved independently in [CM09] and is a consequence of the general results in
Chapter 2.4. Unfortunately, the general statements in Chapter 2 depend on Wada's
proofs in [Wad54] which are omitted here. A direct proof of discreteness is greatly
simplified in the case of the fundamental group and so it is provided here. This

particular proof also appears in the independent work of [CM09].

Theorem 4.7 Suppose X is path connected. If w7 (X) is discrete, then X is semilocally
1-connected. If X is locally path connected and semilocally 1-connected, then TCTP(X) is

discrete.

Proof. We suppose x € X and by Lemma 4.1 may assume that ntlo” (X) is discrete
or equivalently that Q(X) is semilocally 0-connected. This allows us to find open
neighborhood W of the constant loop ¢, in {(X) such that @ = ¢, for eacha € W.
There is an open neighborhood U of x in X such that ¢, € (S',U) € W. Since
every loop a € (S!, U) is null-homotopic in X, the inclusion i : U = X induces the

trivial homomorphism i. : 71(U, x) = 71(X, x). Thus X is semilocally 1-connected.
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To prove the converse, suppose X is locally path connected and semilocally 1-
connected and that & € M((I, {0, 1}), (X, {x})). We find an open neighborhood of a
in M((I, {0,1}), (X, {x})) containing only loops homotopic to @ in X. This suffices
to show that ()(X) is semilocally O-connected. For each t € I, we find an open
neighborhood U; of a(t) in X such that the inclusion u; : U; = X induces the trivial
homomorphism (u;). : (U, a(t)) — m1(X, a(t)). We then find a path connected,
open neighborhood V; of a(t) contained in U;. Take a finite subcover {V, ..., V;,} of
a(I) and finite subdivisions of I to find an integer m > 1 such thata € ﬂ;”zl(K{;,, Vi
whereV; = th] for not necessarily distincti; € {1,..,k}. Forj=0,..,m,let sj = # €L
Foreach j=1,..,m—1wehave a(s;) € V;NVj, and find a path connected, open

neighborhood W; such that a(s;) € W; € V; N V1. Now
m ) m—1

w = K, vy [ )dsih W
j=1 j=1

is an open neighborhood of a in M((I,{0,1}), (X, {x})). We suppose y € % and
construct a homotopy to @. We have y(s;) € W, for j = 1,..., m — 1 allowing us to
find paths p; : I » W; such that p;(0) = a(s;) and p;(1) = y(s;). Let po = pm = cx be
the constant path at x. We now make use of our notation for restricted paths. For

j=1,..,mwedefine loops §; : I — V; based at a(s;,) as the concatenations

Bi=Pri Vit <o

Recall that V; = Vt,.]. where a(t;) € V;. Since V; is path connected, the points
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a(sj-1) and aft; ) lie in the same path component of U;. Therefore the inclusion u; :
U; — X induces the trivial homomorphism (u;). : 71 (U, a(si-1)) — 71X, @(5j-1))-
Consequently, each loop f; is homotopic (in X) to the constant loop at a(s;-1).
The homotopies of loops f; ~ ¢, ,) give fixed endpoint homotopies of paths

Qi = Pj-1* Vg * plfl. Now we have concatenations of homotopies

m

o = *j=1aKf,, o *71:1(;9]'_1*)/1({" x-p;l) :po*(*;'ilyKZn)x-p:nl :PO*)/*P;,I >y

This proves that % contains only loops homotopic to a in X, or in other words
that the inclusion % — M((I, {0, 1}), (X, {x})) induces the constant function on path
components. ®

Since a locally path connected space has a universal cover if and only if it is

semilocally 1-connected, we have:

Corollary 4.8 Let X be path connected and locally path connected. Then X is semilocally

t . . .
1-connected < 711”” (X) is discrete & X has a universal cover.

Proposition 4.9 Let {Xa}iea be a family of spaces and X = 1, Xa be the product space.
Then 7, (X) is discrete if and only if ¥ (X,) is discrete for each A € A and ;¥ (X3) = 0

for all but finitely many A € A.

Proof. Suppose 7,"(X)) is discrete for each A € A and 7}"(Xa) # 0 only for
A € F where F C Ais finite. Then [T, 7}"(X) is discrete. The continuity of the
bijection ¢ : ni"” xX) - I ni"”(X,\) = [Taer ni"”(XA) implies that n;"p (X) is discrete.

Now suppose 7;” (X) is discrete. The projections pa : X — Xa are retractions and
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induce retractions (pa). : T(;Op X - n;"” (X1). But every retract of a discrete space
is discrete. Therefore ntlo’”(X,\) is discrete for each A € A. By 4.7, X is semilocally

1-connected. A basic neighborhood of a point in X is of the form

u=HuA>< H X,

A€F A€EA-F

where F C Ais finite and U, is open X, . But the inclusion U < X does not induces
the trivial homomorphism on fundamental groups if 11(X3) # 0 for infinitely many
A. Since this was for arbitrary U, we must have n;"” (X1) = Ofor all but finitely many

AeA m

Proposition 4.10 Let {X;} be a family of spaces such that n;"”(XA) isdiscrete, X = [ Xa,
and py : X — Xi be the projections. The natural map ¢ : n;"” X - I, T(ioP(XA),

A1) = ([pa © f1) is an isomorphism of topological groups.

Proof. It is a basic fact of algebraic topology that ¢ is a natural group isomor-
phism. By Lemma 1.6, ¢ : Q(X) — [I, Q(X1), ¥(f) = (pa © f) is a homeomorphism.
Applying 7;” we get a homeomorphism 7/¥(X) — m¥ ([T, Q(X3)). Since each
né"”(Q(XA)) = ni"”(XA) is discrete, Corollary 3.12 applies and the canonical map
ng’” (I, QXw)) — I ntl"”(X,\) is a homeomorphism. Taking composites, we ob-

tain the desired homeomorphism 7}”(X) = [, 7;*(Xy). =

Example 4.11 If X is the countable product X = [],5; S, then 7} (X) is isomorphic
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to the non-discrete topological group [],-; Z which is the countable product of

discrete free cyclic groups. Interestingly, this space is not semilocally 1-connected.

Corollary 4.12 If {Xi} is a (countable) family of spaces where each X, has the homotopy

type of a CW-complex or manifold, then n;"p (I X4) is a (metrizable) topological group.

It is often difficult to determine the existence of separation properties in qua-
sitopological groups. These complications are evident even in simple examples.
In [Bis02] and [Fab05a], it is shown that the harmonic archipelago HA (a non-
compact subspace of R%), introduced in [BS98], satisfies: 7}” (HA) is an uncount-
able, indiscrete group. The next example is a simple metric space with fundamental

group isomorphic to the indiscrete group of integers.

Figure 2: The harmonic archipelago [BS98]

Example 4.13 Let S' = {(x, ¥, 0) € R®|x? + y* = 1} be the unit circle in the xy-plane

of R®. For all integers n > 1 let

- {vaemife-2 o212}

Now let X = S' U (U,»; C.) have basepoint (—1,0,0). This may be viewed as
a sequence of spheres whose equators converge to a circle where the circle and
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spheres all have exactly one point in common. This is a non-compact space and
is weakly equivalent to the wedge of spheres S! V (V51 %) (which has discrete
fundamental group). We have m1(X) = Z, however, every open neighborhood
W of aloop a : St = S! c X contains a loop B : S - |J,»; Cx € X which is
null homotopic. Therefore every open neighborhood of the class [a] in 7}"(X)
contains the identity [c,]. Thus [c.] = [a] for each [o] € n;"”(X) and since every open
neighborhood of [¢,] contains [c,] = 71}7(X) the topology of '¥(X) is the indiscrete
topology. This example also illustrates how weakly equivalent spaces may have

fundamental groups with non-isomorphic topological structure.

Since there are simple spaces with non-trivial, indiscrete fundamental group,
we cannot take any separation properties for granted. The following is a simple

characterization of spaces X for which ni"”(X) is T;.

Proposition 4.14 Suppose (X, x) is path connected and . : (X)) — ni"”(X) is the

canonical quotient map. The following are equivalent:

1. Whenever a, B € Q(X) such that [«] # [B], there are open neighborhoods A, B of &, B

respectively, such that m1(A) N n(B) = 0.

2. For each loop a € Q(X) which is not null-homotopic, there is an open neighborhood

V of a such that V contains no null-homotopic loops.
3. The singleton containing the identity is closed in 7}" (X).
4. ©(X) is T,.

5. P (X)is Th.
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Proof. 2. & 3. follows from the definition of the quotient topology and 3. & 4.
& 5. holds for all quasitopological groups (A.27). For 1. = 2. suppose a € Q(X)
such that a # c,. Then there is a neighborhood A of a and B = (I, U) of c, such that
n(A) N (B) = 0. Clearly [c,] ¢ 7(A) and so A contains no null-homotopic loops.
Finally, to prove 2. = 1. we suppose a, f € Q(X) such that [a] # [B]. Clearly, then
Qa* ﬁ‘l # cy. By assumption, there is an open neighborhood V = ﬂ?zl(Kf,, u;) of
a * B! containing no null-homotopic loops. We may assume that 7 is even. Now
A=V isa neighborhood of a and B = V[%l,l] is a neighborhood of 8. Suppose
dcAandy € B. Since 5 +y1 € Al*2] n (B[%'l])—l =V, the loop 0 * y~! cannot be
null-homotopic and therefore [0] # [y]. Therefore n(A)Nn(B)=0. m

Now we relate a modern concept (apparently introduced in [Zas99]) useful in

the study of wild spaces to separation in topological fundamental groups.

Definition 4.15 A space X is homotopy Hausdorff at x € X if for each non-trivial
class g € 111(X, x), there is an open neighborhood U of x in X such thatifi : U — Xis
the inclusion, then g ¢ i.(7t: (U, x)) (or equivalently U contains no loops a € Q(U, x)
with [a] = g). If X is homotopy Hausdorff at all of its points then we say it is

homotopy Hausdorff.

This notion also appears in [FZ07] and [BS98] and is useful for studying gen-
eralized universal covering spaces of locally path connected spaces. The term
“Hausdorff” is appropriate because X is homotopy Hausdorff if and only if its
generalized cover (in the sense of Fischer and Zastrow) is Hausdorff. It turns out

this property is also a necessary condition for the existence of the T; separation
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. . [
axiom in 71, (X).

Proposition 4.16 If X is path connected and n;"p (X) is T, then X is homotopy Hausdorff.

Proof. Suppose ntlo”(X) is T1 and X is not homotopy Hausdorff at x € X. There is
a non-trivial class [a] € ni"”(X) such for every open neighborhood U of x, there is
aloop 6 : I — U based at x such that [8] = [a]. Since ntlo"(X) is Ty, if a represents
[a], then there is an open neighborhood ﬂ?zl(K{;, U;) of a not containing any null
homotopic loops. But U; is an open neighborhood of x and so there is a loop
6 : I — U, based at x such that [0] = [a]. Letf : I » X be the loop defined by
P = 671, B = ag, and By = i for j = 2,..,n. Now f € ﬂ;‘zl(K,’;, U;) and

[] = [67! * a] = [c,,] which is a contradiction. m

Proposition 4.17 The converse of Proposition 4.16 is not true even when X is a compact,

locally path connected subspace of R® or a compact, locally 1-connected subspace of R.

Proof. For the second statement, we refer to the space A C R® in [CMR*08].
This space is locally path connected and homotopy Hausdorff but 7}"(A) is not
T;. Clearly every neighborhood of constant loop at the origin contains a loop
homotopic to aba™! as in [CMR*08, Corollary 3.2], where 4 has image in a fixed
“connecting arc” touching the origin and b is an embedding S' — A of constant
radius on the “surface.” Since all such loops are homotopic, every neighborhood of
the identity of 7;¥(A) contains the class [aba™'] and so n"(A) is not T;. For the sec-
ond example we refer to the results to follow in Chapter 4.2. Take T¢ C R? to be the
closed topologist sine curve so that ng’” (T¢) ishomeomorphic to the Sierpinski space
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$ = {0, 1} with topology {0, {1}, 10, 1}}. The space X = Tc x S*/Tc x {(1, 0)} = Z(T¢)+)
is not locally path connected, but is compact, locally 1-connected, and embeds as
a subspace of R®. The results of Chapter 4.2 indicate that 7}”(X) is a topological
group isomorphic to the free topological group Fu(5). As a group, this is the free
product Z+*Z = {0, 1). We also have that every open neighborhood of the generator
0 contains the generator 1. Clearly this group is not T; but X is homotopy Hausdorff
since it is locally 1-connected. m

The notion of homotopy Hausdorff also provides application to characteriza-
tions of discreteness. It is shown in [FZ07, 4.6] that if X is path connected, first
countable, homotopically Hausdorff, and 7;(X) is countable, then X is semilocally
1-connected. Adding the condition that X be locally path connected and applying

4.7 and 4.16, we obtain the following:

Corollary 4.18 Let X be path connected, first countable, locally path connected, and

homotopy Hausdorff. If 1(X) is countable, then n;"” (X) is discrete.

It is well known that if X is compact Hausdorff, path connected, locally path
connected, and semilocally 1-connected, then 7(X) is finitely generated. Adding

the condition of compactness to the previous corollary, we find:

Corollary 4.19 Let X be path connected, compact Hausdorff, first countable, locally path
connected, and homotopy Hausdorff. Then 1,(X) is finitely generated if and only if ”;OP(X)

is discrete.

The following is an extension of [CL05, Theorem 2.1] using 4.7.
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Corollary 4.20 If X is a path connected, locally path connected, separable metric space,
then X admits a universal cover < X is homotopy Hausdorff and m,(X) is countable <

n}"(X) is countable and T; & m;¥(X) is discrete.

As the continuity of multiplication is critical in proving that every T, topological
group is Tychonoff, it can be difficult to recognize separation properties T;, i > 2
in quasitopological groups. Additionally, the complex nature of homotopy as
an equivalence relation further complicates our attempt to characterize stronger
separation properties in fundamental groups with the quotient topology. To be
able to make any general statement for when R;OP (X) is Hausdorff, it is necessary
to use the basis constructed for arbitrary quotient spaces in Chapter 1.2. We apply

this construction to the quotient map 7 : Q(X) — n;"” X.

Proposition 4.21 For a path connected, based space (X, x), ni"” (X) is Hausdorff if and only
if for each class [f] € ni"”(X) — {[c.1}, there is a pointwise open covering % € Cov(CX(X))

such that On([c,], %) N C([Bl, %) = 0.

Proof. If m,”(X) is Hausdorff and [B] € 7¥(X) — {[c;]}, we can find disjoint open
neighborhoods W of [c,] and V of [f]. Now we may find pointwise open cover-
ings ¥ = (Wacaxy ¥ = {V¥acarx € Cov(Q(X)) such that Ox([c,], #) € W and
OBl ) C V. Welet # N ¥ ={W* 0 V¥aear € Cov(Q2(X)) be the intersection
of the two. Since #, % < # N ¥, we have Ox([c,], # N V) C On(lc,], #) T W
and G([Bl. # N ¥) C Ox([Bl,¥) C V. To prove the converse, we suppose that
[B1] and [B,] are distinct classes in ni"’” (X). Therefore [B1 * B;'] # [cx] and by as-
sumption there is a % € Cov(Q(X)) such that On([cx], Z) N Ou([B1 * B;') %) = 0.
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Since right multiplica"don by [B,] is a homeomorphism, we have that &,([f; *
B,'1, %)[B-] is open containing [B;] and & ([c.], % )[B-] is open containing [8,]. But
(ﬁn([ﬁl '], ?/)[.32]) N (Ou(lc:], %)[B2]1) = 0 and so n;?(X) is Hausdorff. m
Though this proposition is entirely general, it is quite difficult to apply. We
obtain a more practical approach when we apply results from shape theory. The
topological shape homotopy groups 7.7 (X) defined in Chapter 2.5.3 are Hausdorff

topological groups. The following is also noted:

Theorem 4.22 If the canonical, continuous homomorphism ® : n,7(X) — #7(X) is

injective, then ni"p(X) is a functionally Hausdorff quasitopological group.

Some recent results on the injectivity of @ : ntl"” (X) - ﬁ;"” (X) include [CCO06,
EK98, FZ05,FG05]. Perhaps most notably, @ is injective when X is a 1-dimensional
compact Hausdorff space or an arbitrary subspace of R?. The converse of Theorem

4.22 is false.

Example 4.23 Consider the path connected, semilocally 1-connecetd but non-
locally path connected space (Z*,z) of [FG05, Example 2.4]. It is easy to see
that ntl"” (Z%) = n{(Z*) = Z is discrete, free cyclic (and therefore functionally Haus-
dorff). Fischer and Guilbault note 7t;(Z*) = Z but that @ : 7;(Z*) — 71,(Z*) is the

trivial homomorphism.

Example 4.24 For integer n > 1, let C, C R? be the circle of radius % centered at
(%, 0). The one point union HE = |J,5, C, is the Hawaiian earring and is one of the

most fundamental examples in the study of .
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Figure 3: The Hawaiian earring. Any open neighborhood of the origin contains all but finitely
many of the Cy,.

It was first proven in [MM86] that @ : 7 (HE) — #."(HE) is injective. Though
itis asserted in [Bis02] that @ is a topological embedding, Fabel [Fab05b] has shown
this to be false. Fabel has also shown that n;"p (HIE) is not first countable [Fab06]

and fails to be a topological group [Fab(09].

In general, determining when topological fundamental groups are regular or
Tychonoff remains a challenging problem. Asnoted in [Fab09], it is not even known

if 70)”(HE) is regular.

4.1.3 Covering spaces and 7"

We strengthen Theorem 4.7 through application of covering spaces. A covering
map is an open sutjection p : X — X such that for each x € X, there is an evenly
covered neighborhood U of x, i.e. p~}(U) = 11, Vi such that for each A, the restriction
Vi — U of p is a homeomorphism. The space X is a cover of X and we will
always assume covers are path connected. A covering map is trivial if it is a
homeomorphism. We refer to [Mun00] for basic facts regarding covering maps.
It is easy to see that the collection of neighborhoods of the form V) form a basis
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4B, for the topology of X which is closed under finite intersection. This means the
neighborhoods ﬂ;-;l(K,’;, V), V; € %, form a basis for the topology of the space of
paths P(X). Recall that P(X, x) = {a € P(X)|a(0) = x} is the space of paths starting at

X.

Lemma 4.25 Ifp : X — X is a covering map and p(¥) = x, then py : Q(X, %) » Q(X, x),

@ v po d = ais an open embedding.

Proof. Note that py is continuous by functorality and injective by the uniqueness of
lifts. Let U = ﬂ;?:l(K,’;, U;) N Q(X, ) be a non-empty open neighborhood in Q(X, %)
where each U; € %,. Clearly ps(U) C ﬂ}’:l(Kf,, pU;)» N QX x). Since U is non-
empty, there is some & € U thatis theliftof &« = pod € ﬂ;;l(KZ;, pU;)»NQ(X, x). The
lift @ is defined as follows: There isa homeomorphism k; : p(U;) — U;such thatpoh;
is the identity of p(U;). For each t € K{,, we have d(t) = h; o a(t). Note that U, N U;
is non-emtpy (since & € U) and evenly covers p(U;-1) N p(U;). Therefore, if B is any
other loop in (K], p(U;)) N (X, x), the unique lift f € P(X, %) is defined in the
same way, that s, for each ¢ € K, f(#) = hioB(t). Since f(1) € pi(x)N U, = {#},fisa
loop in U. Therefore g € p,(U) giving the equality ps(U) = ﬂ;;l(K,’;, pUNNQX, x).
|

The next few results indicate that the data of path connected covers of an

arbitrary space are captured as special open subgroups of n;"”(X).

Theorem 4.26 If p : (X, %) — (X x) is a covering map, the induced homomorphism

p. : 1P (X, %) - (X, x) is an open embedding of quasitopological groups.

Proof. It is known that p. is injective [Mun00, Theorem 54.6] and p. is continuous
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by the functorality of {”. Suppose U is an open neighbothood in 7;¥(X, %). The
diagram

Q(X, %) —— QX %)
ni"” X, %) — ni"”(X, x)
commutes. Since 7 : QX x) — n;""(X, x) is quotient, it suffices to show that
Y (p.(U)) is open in Q(X, xp). If & € n(p.(U)), [2] lies in the image of p. and
the unique lift # € P(X, %) of a is a loop in (X, %) [Mun00, Theorem 54.6]. Since
& € mY(U) and ps is an open embedding (Lemma 4.25), px(n~!(U)) is an open
neighborhood of ps(&) = p o & = a which is clearly contained in ~!(p.(U)). ®
Theorem 4.26 immediately provides a characterization of discreteness which
is more general than that of Theorem 4.7 and [CM09] since it applies to many

non-locally path connected spaces with 1-connected covers.
Corollary 4.27 If X admits a path connected, 1-connected covet, then ni”’”(X) is discrete.

Proof. If p : X — X is a covering map and 7;(X) = 1, the inclusion 1 — 7;”(X) of
the identity is an open embedding. Since the singleton containing the identity in
;¥ (X) is open and translations in quasitopological groups are homeomorphisms,
ntl"”(X) must be discrete. m

This gives a very general condition to imply countability in fundamental groups.

Corollary 4.28 If X is a separable metric space with a 1-connected cover, then n;"”(X) is

countable.

Proof. By the previous corollary, TI;OP (X) is discrete. It follows from Proposition
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2.67 that if X is a separable metric space, then ni"p (X) is countable. m

Upon seeing Theorem 4.25, one might be tempted to extend the known clas-
sification of covers to all locally path connected spaces using open subgroups of
the topological fundamental group, however Proposition 4.30 below indicates the
unlikelihood that every open subgroup H will admit a coveringmap p : X — X

such that p.(m,"(X)) = H.

Definition 4.29 Let H be a subgroup of 71(X; x). We say X is semilocally H-connected
if every point y € Xis contained in a neighborhood U such that for every y € Q(U, y)

and paths «, f : I — X from x to y where [a * 7] € H, we have [a*y x f71] € H.

Note that if H is the trivial subgroup, X is semilocally H-connected if and only

if X is semilocally 1-connected in the usual sense.

Proposition 4.30 Ifp : (X, %) — (X, x) is a covering map and H = p. (n;"’”(f(, 32)), then X

is semilocally H-connected.

Proof. Let U be an evenly covered neighborhood of y € X. Lety € Q(U, y) and
pathsa,p : I = X from x to y such that [a* '] € H. Since a * 7! € H, the lift of the
loop a * 71 is the loop @ * f~1 in X based at . If p}(U) = [, V3, then let V,, be the
Va which contains &(1) = f(1). Let by : U — V), be the homeomorphism such that
p o hy = idy. Since y has image in U, the liftof 6 =a+y*Blisd =@ = (hyoy)* L.
Since 6 € (X, %), it follows that p.(8) = [po 8] = [a*y*p ' ]€H. m

If G is a quasitopological group and H is an open subgroup, the set of right
cosets G/H with the quotient topology with respect to the projection G — G/H,
g > gH is a discrete space since all cosets are open.
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Corollary 4.31 [Mun00, Theorem 54.6] Let p : (X, %) — (X, x) be a covering map and
H=p. (ni"”(f(, f)). The lifting correspondence @ : TC;OP(X, x)/H — p~1(x), [a]H — &(1)

is a bijection of discrete spaces.
Regarding spaces with indiscrete topological fundamental group, we have:

Corollary 4.32 If X is path connected and " (X) is non-trivial has the indiscrete topology,

then every covering map p : X — X is trivial.

Proof. Suppose p : (X, %) — (X, x) is a covering map such that the cardinality of
p~\(x) is greater than 1 and 7}”(X, x) is non-trivial and indiscrete. Since 7,7 (X, x)
does not have the discrete topology H = p. (ni"” X, 9?)) cannot be the trivial sub-
group. Since [m¥(X,x)/H| = |p'(x)] > 1, H must be a proper subgroup. By
Theorem 4.25, p. (ntlo” X, J”c)) is a non-trivial, proper open subgroup of 7, (X, x) con-

tradicting the fact that n;"” (X, x) has the indiscrete topology. ®

4.2 A computation of 7.¥(£(X,))

In this chapter, we describe the isomorphism class of 777 (Z(X.)) in the category

of quasitopological groups for an arbitrary space X.

4.2.1 The spaces X(X,)

Let X be an arbitrary topological space and X, = X U {*} be the based space

with added isolated basepoint. Let

X, XI )
7 X0

(=(X), %) = (Xx 10, U () xI
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be the reduced suspension of X, with canonical choice of basepoint and xA s denote
the image of (x,s) € X X I under the quotient map X, x I — X(X,). For subsets
ACXandSCLletAAS={aAnsla€ A, €S} Asubspace PAIwhereP € ny(X) is
a path component of X is called a hoop of L(X.).

Suppose % is a basis for the topology of X which is closed under finite inter-
sections. For a point x At € X A(0,1) = £(X,) — {xo}, a subset UA (c, d) where x € U,
U e $xandt € (c,d) € (0, 1) is an open neighborhood of x A t. Open neighborhoods
of xp may be given in terms of open coverings of X X {0, 1} in XX I. If U* € By isan

open neighborhood of x in X and ¢, € (0, %), the set

Jwaptyua-t,1)

xeX

is an open neighborhood of %, in L(X,). The collection %xx,) of neighborhoods
of the form U A (¢, d) and U,ex (U* A [0, £,) U (1 - £, 1]) is a basis for the topology
Y(X,) which is closed under finite intersection. The following are obvious facts

regarding X(X,).
Remark 4.33 For an arbitrary space X,
1. X(X,) is path-connected.
2. Z(X) —{xo} =X A (0,1) = XX (0,1).
3. Every basic neighborhood V € %y x,) containing x is arc connected and 1-connected.

4. Foreacht € (0,1), the closed subspaces X A [0, t] and X A [t, 1] are homeomorphic to
CX the cone of X, and are contractible to the basepoint point xp.
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5. X(X.) is Hausdorff if and only if X is Hausdor(ff, but the following holds for arbitrary
X: For each point x At € X A (0, 1), there are disjoint open neighborhoods separating

x A t and the basepoint xy.

Remark 4.34 It is a well-known fact that the reduced suspension functor L :
Top. — Top. is left adjoint to the loop space functor Q2 : Top. — Top.. Additionally,
adding isolated basepoint to an unbased space (=), : Top — Top. is left adjoint
to the functor U : Top. — Top forgetting basepoint. Taking composites, we see
the construction Z((—),) : Top — Top. is a functor left adjoint to UQ. For a map
f: X —>Y, themap X(f.) : Z(X,) = Z(Y,) is defined by Z(f,)(x A s) = f(x) As. The

adjunction is illustrated by natural homeomorphisms

ML(E(X,), Y) 2= M.(X., Q(Y)) = M(X, UQ(Y)).

This adjunction immediately gives motivation for our proposed computation

of 7 (L(X..)).

Proposition 4.35 Every topological fundamental group 7.7 (Y) is a quotient quasitopo-

logical group of 7y¥ (Z(X.)) for some space X.

Proof. Let cu : Z(€X(Y).) — Y be the adjoint of the unbased identity of Q(Y). The
basic property of counits gives that the unbased map UCQ(cu) : Q(Z(Q(Y).)) — Q(Y)
is a topological retraction. Applying the path component functor, we obtain a group
epimorphism 7,7 (Z(Q(Y).)) — 7¥(Y) which is, by Remark 3.5, a quotient map of

spaces. Take X = )(Y). =
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Since a quotient group (with quotient topology) of a topological group is itself
a topological group, the spaces (X, ) are prime candidates for counterexamples to
the claim that 7, takes values in TopGrp.

It is convenient to view the spaces X(X.,) as generalized of wedges of circles.
Intuitively, one might think of X(X.,) as a “wedge of circles parameterized by the
space X.” Let Vx S! be the wedge of circles indexed by the underlying set of X.
Suppose € : [ — S! is the exponential map and a point in the x-th summand of
the wedge is denoted as €(t), for t € 1. The pushout property implies that every
map f : X — Yinduces amap VxS — VS given by €(t), > €(t)s) forall t € I,
x € X. Itis easy to see that \/_) §' : Top — Top. is a functor which we may relate

to L((—)+) in the following way.

Remark 4.36 There is a natural transformation y : V ,S* — Z((-),) where each
component yx : VxS = L(X,) given by yx(€(t)x) = x A t is a continuous bijection.

Moreover, yx is a homeomorphism if and only X has the discrete topology.

Proof. Clearly, if X is a discrete space, then yx is a homeomorphism. If X is not dis-
crete, let X denote the underlying set of X with the discrete topology. The identity
id : dX — Xiscontinuous and induces the bijection yx = yxoid : Vx S! = L(dX,) —
2(X,). Naturality follows from the equation X(f,)(x A £) = f(x) A t = Yy(€(t)(r)).

According to this remark, if X has the discrete topology, then (X, ) is home-
omorphic to a wedge of circles. By the van Kampen Theorem and Theorem 4.7,
71;"” (X(X4)) must be isomorphic to the discrete free group F(X). We will see later on

that ni"p(Z(X+)) is discrete if and only if X is semilocally O-connected.
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Example 437 Let X = IN' = {1, 2, ..., 00} be the one-point compactification of the
discrete space of natural numbers. The suspension Z((IN"),) is a one-dimensional
planar continuum which is not locally path connected. If dX is the underlying set of
X with the discrete topology, the identity X — X induces the continuous bijection

vx : Vx S! = L(X,) which is a weak equivalence but not a homotopy equivalence.

3At 24t 1At

Figure 4: Z((IN*),)

4.2.2 The fundamental group 7;(X(X,))

To compute 71;(X(X., )), we relate free topological monoids to nio” (E(X,)), via the
unbased James map u : X — Q(X(X,)), u(x)(t) = u,(t) = x A t. Since u is the adjoint of
the identity of X(X,), it is natural in X. Define a function ¢ : M (X) — Q(X(X,))
taking the empty word to the constant map and _# (x]'x52 ... x7) = #1, (uiz)

The following lemma is a direct consequence of the Lebesgue lemma, Theorem

1.20 and our choice of basis %xx.).

Lemma 4.38 A convenient neighborhood base of the loop u, in Q(X(X.)) is of the form
v = (K, W)n ﬂ;-":_zl(K;, UA(s;, t)NCKD, W) where W € PBs,x.) is an open neighborhood

of xo in X(X,) and U € By is an open neighborhood of x in X.
Corollary 4.39 A convenient neighborhood base of the loop # (x(12G? ... 1) = #, (ui)
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in Q(X(X,)) is of the form % = (i ("//f")K;' where ¥; is an open neighborhood of u,, as in

the previous lemma.
Proposition 4.40 ¢ : M(X) — Q(X(X,)) is a topological embedding natural in X.

Proof. Clearly, ¢ is injective. The James map u : X — Q(X(X,)) induces a
continuous homomorphism M;(u) : Mp(X) — MH(QZ(X,))), 2.5 > 3l
Let ¢ : M7(Q(Z(X,))) — Q(Z(X.)) be concatenation af'...a;" = af' *--- *a;. Since
n-fold concatenation Q(X(X,))" — Q(Z(X,)) and inversion QZ(X,)) = QX(X,)),
a = a’! are continuous, ¢ is also continuous. The composite # = ¢ o My(u)
is therefore continuous. Suppose Z = (i, (“//lE ’)KI;' is an open neighborhood of
7 (ui) in Q(X(X,)) where each ¥ is as in Lemma 4.38. Then U = U3'...U;" is an

open neighborhood of x{'x2 ... x;" in M7.(X) such that
FU) = (o () lys € Ui = 2 0 7 (Mz(X)

Therefore ¢ is an embedding. To check naturality, we let f : X — Y be a map of

spaces and check that the diagram

M) — =2, M (x)
s l j/
QE(XL) BT QEYL)

commutes in Top. Letw = x'...x;" € My(X) so that _# o M(f) =+, (u?'(xi)). But we
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also have

QE(f) o £ (@) = E(f) o (+y (42)) = ¥y (2 0 i) = =, (u5,)

where the last equality follows from the naturality of u : id — Q(Z((~).)). =

Remark 4.41 This construction follows the well-known James construction [CM95,
5.3] used originally by I.M. James to study the geometry of Q(X.Z, *) for a connected

CW-complex Z.

Throughout the rest of this section, let iy : X — 7,7(X) and 7q : Q(Z(X,)) —
n;"” (X(X,)) denote the canonical quotient maps. To compute n;"p (£(X,)), we must
first understand the algebraic structure of 71;(X(X,)). We begin by observing that
the James map u : X — Q(X(X,)) induces a continuous map u. : ng"” xX) —
ng"” QX)) = ni""’(Z(X+)) on path component spaces. The underlying function
. : p(X) — 111(X(X,)) induces a group homomorphism ky : F(11o(X)) — 111(X(X}))
on the free group generated by the path components of X. In particular, hix takes the
reduced word P{'P}?.. .Pf(“ (where P; € 7p(X) and €; € {+1}) to the homotopy class

[ # 12 ++ - - #u5k ] where x; € P; for each i. We show that fix is a group isomorphism.

Remark 4.42 hy is the unique group homomorphism making the following dia-
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gram commute.

M (X) —ZL— Q(E(X,))
M'(nx)

M (720(X)) —— F(t0(X)) —— 71 (E(X.))

nQ

Definition 4.43 A loop a € M((I,{0,1}), (Y, {y})) is simple if a”'(y) = {0,1}. The

subspace of M((I, {0, 1}), (Y, {y})) consisting of simple loops is denoted ,(Y).

Remark 4.44 () is not a functor since it is not well-defined on morphisms. It is

easy to see, however, that Q;(X((-).)) : Top — Top is a functor.

The map X — {*} collapsing X to a point induces a retraction r : L(X,) —
8% =~ S'. This, in turn, induces a retraction 7. : ni"”(Z(XJ,)) - ni"”(Sl) = Z onto
the discrete group of integers. By the previous remark, if a € Q/(Z(X,)), then
roa:I— S!isasimple loop in S'. But the homotopy class of a simple loop in S
is either the identity or a generator of ni”” (S1). Therefore r.([a]) must take on the

value 1,0 or —1.

Definition 4.45 A simple loop a € Q4(X(X.)) has positive (resp. negative) orientation
if [a] € r71(1) (resp. [a] € . 1(=1)). If [a] € 7. 1(0), then we say a has no orientation
and is trivial. The subspaces of (,(X(X,)) consisting of simple loops with positive,
negative, and no orientation are denoted Q. ,(X(X,)), Q-(Z(X,)), and Qu(X(X,))

respectively.

The fact that Z is discrete, allows us to write the loop space Q(2(X.)) as the
disjoint union of the subspaces ng'(r;}(n)), n € Z. Consequently, we may write
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Q,(X(X,)) as disjoint union

Qs(E(X4)) = Q4s(Z(X4)) U Quos(Z(X4)) U Q- o(E(X2)).

We also note that Q_;(X(X,)) = Q.(X(X;))"!. Thus loop inversion give a homeo-
morphism Q,(X(X,)) = Q_(X(X,)). The next two lemmas are required to prove

the surjectivity of hx.
Lemma 4.46 A simple loop a € Q(X(X.)) is null-homotopic if and only if it is trivial.

Proof. By definition, a simple loop which has orientation is not null-homotopic.
Therefore, it suffices to show that any trivial loop is null-homotopic. If « is trivial,
then @ does not traverse any hoop of £(X,), i.e. thereis a t € (0, 1) such that a has
image in either X A [0, ] or X A [t,1]. By Remark 4.33.4, a is null-homotopic. m

The subspaces P A (0, 1), P € 1y(X) are precisely the path components of X A (0, 1).
Therefore, if p : I — ¥L(X,) is a path such that p(0) € P; A (0, 1) and p(1) € P, A (0, 1)
for distinct Py, P, € 79(X) (i.e. the endpoints of p lie in distinct hoops and are not
the basepoint x;), then there is a t € (0, 1) such that p(t) = x. This implies that the

image of each simple loop lies entirely within a single hoop.

Lemma 4.47 If simple loops & and B have the same orientation and have image in the same

hoop P A I, then they are homotopic.

Proof. Suppose a and $ have positive orientation and image in PA . Since PA (1, 0)

is a path component of XA (0,1), wemay finda t € (0,1)and apathp : I = XA (0,1)
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such that p(0) = a(t) and p(1) = B(t). Now

-1 |
apa*P* Py and B *p *apy

are trivial simple loops which by the previous lemma must be null homotopic. This

gives fixed endpoint homotopies of paths

o = Prog * P_l and ap,1; = p* P

The concatenation of these two gives

a = apg*ap = Bog*p T *p* By = Boa* By = B-

One may simply invert loops to prove the case of negative orientation. m

The next two statements are required to prove the injectivity of hx.

Lemma448 If w = P'...P;" € F(ny(X)) is a non-empty reduced word such that

i1 € # 0, then hx(w) is not the identity of m,(X(X,)).

Proof. The retraction r : £(X,) — S! induces an epimorphism 7. : 71(X(X,)) = Z
on fundamental groups, where r.([1,]¢) = € for each x € X and € € {+1}. Therefore,
if Y7, € # 0, then ru(hx(w)) = r([us! *--- * u3']) = X7, € # 0 (where x; € P;) and

hx(w) cannot be the identity of 77;(X(X,)). ®

Remark 449 Let P} ... P} € F(ro(X)) be a reduced word.
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1. If 1 < k < m < n, the subword P}* ... P;r is also reduced.

2. Ifn>2and Y, € = 0, then there are i, i; € {1,2,...,n} such that P;, # P;,.
Theorem 4.50 hy : F(1o(X)) — 11(X(X.)) is a natural isomorphism of groups.

Proof. To show that hy is surjective, we suppose a € (Q(Z(X.)) is an arbitrary loop.
The pullback a}(Z(X,) — {xo}) = Ilem(cm dm) is an open subset of (0,1). Each
restriction a,, = a, 4,] is a simple loop, and by 4.33.5, all but finitely many of the
a,, have image in the 1-connected neighborhood X A [O, %) L (%, 1]. Therefore a is
homotopic to a finite concatenation of simple loops ., * &y, * -+ * &y,. By Lemma

4.46, we may suppose that each a,, has orientation ¢; € {£1} and image in hoop

P; AL Lemma 4.47 then gives that a,,, = u} for any x; € P;. But then
PP ) = [ a0 1] = [, 50 ] = ]

For injectivity, we suppose w = P{'P;:...P;" is a non-empty reduced word in
F(rty(X)). It suffices to show that hx(w) = [uii *UZH ek ui’;] is non-trivial when
x; € P; for each i. We proceed by induction on 7 and note that Lemma 4.48 gives
the first step of induction n = 1. Suppose n > 2 and hx(v) is non-trivial for all
reduced words v = Q'Q%... Q?j of length j < n. By Lemma 4.48, it suffices to
show that hx(w) = [ufg *UUl Ak uf;;] is non-trivial when Y., €; = 0. We suppose
otherwise, i.e. that there is a homotopy of based loops H : I? — Z(X,) such that
H(t,0) = xo and H(t,1) = (43t » uZ % ---+ 1) (#) for all £ € L. For j = 0,1, ..., 21, we let

bj = (5%, 1) € 2. Remark 4.33.5 indicates that the singleton {xo} is closed in (X, ) so
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that H™'(xo) is a compact subset of I?. Since each 15 is simple we have that

n-1

H™(x0) N 9@ =10, x IV I x {0} U | b

i=1

where 9 denotes boundary in IR%. We also have that H(byi-1) = u5(3) = x; A § # xo
for eachi =1, ..., n. This allows us to find an 7, > 0 so that when U; = B(byi_1, 75) N I?
is the ball of radius r, about by;_; in I?, we have H™(xo) N UL, U; = 0. Now we find
an r; € (0,7y) and cover H™(x;) with finitely many open balls V; = B(z, ;) N I? so

that

el

i=1 1

(which is possible since H is continuous). Note that if g : I — |J,; V; is a path with
endpoints g(0), g(1) € H}(xp), then the loop Ho g : I — X(X,) is based at x, and has
image in the 1-connected neighborhood XA [O, %)u ( Z, 1], and therefore mustbe null-

homotopic. We note that thereisno path g : I — U, V; such that g(0) = bx, g(1) = bon

for1<k<m<n Ifg:I— U, Viissuchapath, the concatenation u* * 2 +- - -+ 347"

is null-homotopic since Hogis null-homotopicand (H o g) = uft#u2«- - -+3;m This

X+l Xgs2

means that hx (Pe T Pf,;") = [ue"“ * YK ey ui’;] is the identity of m;(Z(X,)).

k+1° k+2 ° X1 Xk+2

But by Remark 4.49.1 P{*1P*2 ... P is a reduced word of length < n and so by our

induction hypothesis hx (Pe per Pf;[‘) cannot be the identity.

k+17 k42 7

Since such paths g do not exist, each b; lies in a distinct path component (and
consequently connected component) of |, V; for eachi = 1, .., n. Let C; = U™ v

m=1

be the path component of | J; V; containing b,;. But this means the by, i=1,..,n
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all lie in the same path component of I? — | J; V;. Specifically, the subspace

1 i=1

[3(12) -1 V,] U [a (U Ci] - 8(12)]

is path connected and contains each of the by_;. Since we were able to assume
that },;€; = 0, we know by Remark 4.49.2 that there are iy, #; € {1,...,n} such that
P;, # P;,. We have shown that there is a path p : I = I*—J; V; with p(0) = by;,-; and
p(1) = by,—1. Butthen Hop : I - £(X,) is a path with xo ¢ Ho p(I), H(p(0)) = 1 A x;,,
and H(p(1)) = % A x;. But this is impossible as H(p(0)) and H(p(1)) lie in different
hoops of L(X,). Therefore 1! * u32 +--- * 15" cannot be null-homotopic.

To check the naturality of hx we use the following cubical diagram:

/P(no(X» W /ﬂ(no(m)
R
R
M (mo(X) O M (mo(V) hy
hXJv L\/f (y)
M () m(EX) g »a(Z(Y.))
nQo # ‘ nge f
M(X) T S M(Y)

in Mon. Here f : X — Y is a map of spaces and f. : 7o(X) — 74(Y) is the induced
function. The left and right squares commute by Remark 4.42. The top (resp.
bottom) square commutes by the naturality of R (resp. g © _#). The front square
commutes by the functorality of M" and the naturality of 7 : id — 7,. Since

Ro M(nx) : M'(X) — F(rp(X)) is surjective, the back square commutes. This is
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precisely the naturality of hx. In particular, if W € F(ro(X)) and Ro M’ (nx)(w) = W,

then

hy o F(f.)(W) = hy o Ro M (f.)(M (nx)(w)) = hy © R o M (1ty) o M'(f)(w) =

= F oM (f)w) = E(f) o F W) = E(fi)) 0 hx o R o M (mx)(w) =

= (Z(f))- © hx(W)

Corollary 4.51 The fibers of the map ng o _Z : Mi(X) — ni"” (X(X,)) are equal to those

of R o Mr(mx) : Mip(X) = Mi(rg7 (X)) = F(ro(X))-

Sinceu, ~ u, ifand only if x and y lie in the same path component of X, we denote
the homotopy class of u, by [up] where P is the path component of x in X. Thus
{[up]lP € 1o(X)) freely generates 7;(X(X.)) and the map u, : ngo” x) - n;""(Z(X+))
is the canonical injection of generators.

The James map u : X — Q(X(X,)) has image in Q,,(X(X,)) and the map u : X —
Q,(E(X,)) with restricted codomain induces a continuous bijection . : Tcg"”(X) -
HSOP(QH(Z(XQ)) on path component spaces. The fact that this bijection is also a
homeomorphism is an obvious consequence of the next lemma which is to be used
in the proof of Theorem 4.53. For amap f : X = Y, let fu = 7,7 (M;(f)) be the

induced, continuous, involution-preserving monoid homomorphism.
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Lemma 4.52 The James map u : X — Q. (2(X.)) induces a natural isomorphism of semi-

topological monoids with continuous involution i, : nf)o” (M7(X)) — ng”” (M}(Q+s (z (X+)))).

Proof. We note that on generators w.. is given by u..(P) = [up]. The naturality of
P : ip(M' (<)) — M'(mp(—)) applied to the James map makes the following diagram

commute in the category of monoids (without topology)

o (M(X)) L » M (150(X))
u.“lv ElM’ ()
T (Mip( Qs (E(X)))) = M (6(Q(Z(X,))))
Q4 s(Z(X4)

Since u. is abijection, M*(u.) is amonoid isomorphism. Therefore .. : ng"” (MH(X)) —

top

T

(M*T(Q+S(Z(X+)))) is a continuous, involution-preserving monoid isomorphism
and it suffices to show the inverse is continuous. Letr : Q,(X(X,)) = M((0, 1), (0, 1)X
X) be the map taking each positively oriented simple loop a : I — X(X,) to the
restricted map algqy : (0,1) = XA (0,1) = XX (0,1) and p : M((0,1), X X (0, 1)) —
M((0, 1), X) be post-composition with the projection Xx(0, 1) = X. Foranyt € (0, 1),

consider the composite map

idx(por)

v Qu(B(X,)) —L (0,1) X Qs (E(X.)) (0,1) X M((0, 1), X) —=— X

where ji(a) = (t,a) and ev is the evaluation map ev(t, f) = f(f). If a € Q,(X(X,))
such that a(t) = x A's, then v(a) = x. It is easy to check that the continuous
homomorphism v.. : 713" (Mi(Qs(2(X,)))) = 7gF (M;(X)) is the inverse of u.. since
on the generator [up] of nf)""(]\/I*T(QH(Z(XJr)))), we have v.([up]) = va([uy]) = P
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(where x € P).m

423 TP(E(X,)) = FY (n(X)

Recall the definition of F%(Y) for quotient map g : X — Y from the Appendix
A.3. We are interested in the case g4 = mx which results in the quasitopological
group FpX (ng"p(X)). By construction Fp* (ng’” (X)) is the quotient space of My(X)
with respect to the canonical map M (X) — F(1o(X)). The main theorem of this

chapter is

Theorem 4.53 hx : Fp* (ng"”(X)) — ntlo”(Z(X+)) is a natural isomorphism of quasitopo-
logical groups.

This theorem is particularly powerful in that X may be any topological space.
Since I—?{(Y) is a topological group if and only if id : F‘I’Q(Y) = Fu(Y), a direct conse-

quence of this theorem is that:

Corollary 4.54 77 (5(X.)) either fails to be a topological group or is the free topological

group Fa(r¥ (X)) on the path component space my" (X).

Remark 4.55 This description of 7}” (Z(X,)) becomes remarkably simple when X

is totally path disconnected (i.e. x : X = ng"p (X)). In this case we have

TP (LX) = F (i (X)) = Fr (TP (X)) = Fr(X).
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We use the following commutative diagram to prove hyx is continuous.

QE(X.)+ - M;(X)
| S
%o}
R (X)) < P (M (X)) )
1 8
};\ - \le)xl ll'x_

FR¥ (mg? (X)) e~ Mo, (767(X))

Here 2. = ng""( /#) is the map induced by _¢ on path component spaces. Recall
from Corollary 4.51, that the fibers of the composites ngo _# : M (X) — ni"”(Z(XJr))

and R o M*(11x) = R o (iPx © Tiag ) - Mi(X) = Fi¥ (nf)"p (X)) are equal. Since

Ro M(mx) : (DX @ Xy - Fx (n (X))

n>0

is quotient, the group isomorphism hy : FX(n'*(X)) — m'7(Z(X,)) is always
q group P R o 1 Y

continuous Theorem 4.53 is equivalent to the assertion that hy is open.

Outline of Proof 4.56 We have already proven that hx is a continuous, group iso-
morphism. To prove that hx is open, we take the following approach: It is shown
in the proof of Theorem 4.50 that for a € Q(X(X,)), all but finitely many of the
restrictions ay, 4,] which are simple loops have image in the contractible neighbor-
hood X A [O, %) L (%, 1]. We assign to a, the word 2(a) = ar, 4, )-Xlcy,.dy,] Where
the letters ay, 4,1 are the non-trivial simple loops. This gives a “decomposition”

function 2 : Q(E(X,)) = M (Q.5(X(X,))) to the free topological monoid on the

space Q. (Z(X,)) U Q (X)) = Qu(E(X,)) U Q4(E(X,)) of non-trivial simple
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loops. The use of this free topological monoid provides a convenient setting for
forming neighborhoods of arbitrary loops from strings of neighborhoods of simple

loops and is the key to proving Theorem 4.53 for arbitrary X.

Step 1: The topology of simple loops

Throughout the rest of this section let U = X A [O, ;13) W] (%, 1]. This is an arc-
connected, contractible neighborhood and by the definition of %5 x,) contains all
basic open neighborhoods of the basepoint xy. We now prove a basic property of
open neighborhoods of simple loops in the free path space M(I, £(X,)). Recall that
basic open neighborhoods in M(I, £(X.)) are those described in Lemma 1.20 with

respect the basis PBrx. ).

Lemma 4.57 Suppose 0 < € < % and W = (L (K, W;) is a basic open neighborhood
of simple loop a : I — X(X.) in the free path space M(I, 2(X,)). There is a basic open
neighborhood V of xo in X(X,) contained in X A [0,€) U (1 — €,1] and a basic open

neighborhood V = ﬂ;?:l(KZ;, Vi) of a in M(I, £(X,,)) contained in W such that:

1. Vo=V1=Vo= =V =V =V ==V, forintegers 1 < I <k < n.

2. The open neighborhoods Vi1, ..., Vi1 are of the form A A (a, b) where A € PBx and

b—a<e.

Proof. Let Vo = (W, N W,)N(XA[0,e)U (1-¢1]) C U. Since HBrx, is closed
under finite intersection Vj € %r(x.). There is an integer M > 3 such that m divides
M and a(K;, U KM) € V,. Since a is simple we have a([, 471]) € X A (0, 1).

When p = 2,..,M -1 and K}, € K, we may cover a(K} ) with finitely many open
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neighborhoods contained in W; N (X A (0, 1)) of the form A A (g, b) where A € %Bx
and b —a < €. We then apply the Lebesgue lemma to take even subdivisions of I to
find open neighborhoods Y; = ﬂg’z”l(KZ,p, Y;',,q) C (I, Wy) of the restricted path Qg .
Here each Y}, is one of the open neighborhoods A A (a,b) C W;. We now use the

induced neighborhoods of section 1.2 to define

M-1

V = (KUK, Vo) 0 [ ) ((vi)¥%).
p=2

This is an open neighborhood of a by definition, and it suffices to show that V C W.
We suppose B € V and show that S(K,) C W; for each i. Clearly, B(K}, L K¥) C
WiNW,. Ifp=2,..,M~-1and K}, C K}, then gz € Vi C Y;and B(K},) = By (I) C
Ulqi”l Y, S Wi. We may write VasV = ﬂ;;l(K,’;, V) simply by finding an integer
n which is divisible by M and every N, and re-indexing the open neighborhoods

Vo and Y;W. In particular, we can set V; = V; when K c K}, U KM. Additionally, if

H;(,} : I — K¥, is the unique linear homeomorphism (as in section 1.2), then we let

M

Vj=Y,, whenever

It is easy to see that both 1. and 2. in the statement are satisfied by V. m
We note some additional properties of the neighborhood V constructed in the

previous lemma:
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Remark 4.58 For each path g € V we have,

)

This follows directly from the conditions 1. and 2. in the lemma.

OK{;DQ U and x, éﬁ(tj K,f;J
j=k

j=l+1

Remark 4.59 It is previously noted that there are disjoint open neighborhoods
W,, Wy, and W_ in M(I, £(X,)) containing Q ,(Z(X,)), Qu(Z(X,)), and Q_(Z(X,))
respectively. Consequently, if a has positive orientation, then we may take V C W,
such that V N Q (X(X,)) € Q.(X(X,)), i.e. all simple loops in V also have positive
orientation. The same holds for the negative and trivial case. In some sense,
this means that V, when thought of as an instruction set, is “good enough” to

distinguish orientations of simple loops.

Remark 4.60 We now give a construction necessary for Step 4 which produces a
simple loop #/(B) € V for each path f € V. For brevity, we let [0,7] = ;'=1 K,
[r,s] = ’]:11+1 K, and [s,1] = Uk K! and define .%,(B) piecewise by letting .#/(8)
be equal to  on the middle interval [r, s] (i.e. A (B)s1 = Brrs))- We then demand
that #y(B) restricted to [0, r] is an arc in V| connecting x, to f(r) and similarly .#,(g)
restricted to [s, 1] is an arc in V; connecting f(s) to xp. Since the image of .#4/(8) on
[0,7] U [s, 1] remains in V, it follows that #,(8) € V. Additionally, Remark 4.58

and the use of arcs to define .%;,(8) means that .#,(f) is a simple loop.

Step 2: Decomposition of arbitrary loops
Here we assign to each loop in 2(X,), a (possibly empty) word of simple loops
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with orientation. We again use the observation, that Q. (Z(X,)) and Q_;(Z(X,)) =
Q.(Z(X,))™! are disjoint homeomorphic subspaces of M(I, £(X,)). The free topo-
logical monoid on Q,(Z(X,)) U Q_(Z(X,)) = Q(Z(X,))! is just the free topo-
logical monoid with continuous involution M (Q2,(Z(X.))). We make no distinc-
tion between the one letter word a™* in M;.(Q,5(X(X.))) and the reverse loop g =
a™! € Q,(X(X,))™. Similarly, a basic open neighborhood of @™! in Mi(Q.(Z(X.)))
corresponds to an open neighborhood of g in Q,,(X(X,))"!. We now define the
“decomposition” function 2 : Q(E(X,)) = Mp(Q.(2(X,))). In step 4 we refer to

the details described here.

Decomposition 4.61 Suppose € M(I, {0, 1}; £(X.), {xo}) is an arbitrary loop. First,
if B has image contained in U (i.e. B € (I, U)), then we let Z(B) = e be the empty
word. Suppose then that p(I) ¢ U. The pullback 71X A (0,1)) = I1,.epr(Cms da) 18
openin] where M is a countable indexing set with ordering induced by the ordering
of I. Each restricted loop B = Bic,.a,1 : I = L(X,) is a simple loop. Remark 4.33.5
implies that all but finitely many of these simple loops have image in U and so we
may take m; < ... < my to be the indices of M corresponding to those B,,,, -.., Bm, With
image not contained in U. Note that if C = I - %, (cy,, d,,), then g € (C, U). If none
of the 8,,, have orientation, we again let Z(8) = e. On the other hand, if one of the
Bm; has orientation, we let m;, < ... < m;, be the indices corresponding to the simple
loops B; = ﬁm,.j which have either positive or negative orientation. We then let 2(g)

be the word B185...8, in M7(Q4s(X(X,))).

Remark 4.62 Informally, 2(B) denotes the word composed of the simple loops of
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B which contribute a letter in the unreduced word of the homotopy class [8]. We
may suppose that §; has image in P; A [ and orientation €; € {+1}, or equivalently

that [B;] = [upJ%. Clearly p = +_B; and W ([B]) = R(PYP;: ... P) € F(mo(X).

Step 3: Factoring mq
We factor the quotient map nq : Q(E(X,)) — T(tlop (X(X,)) into a composite using

the following functions:
1. The decomposition function 2 : Q(X(X,)) = M (Q.(Z(X,))

2. The quotient map 71, : Mp(Q.s(E(X,))) — nf)o” (M(Q(X(X,)))) identifying

path components (homotopy classes of positively oriented simple loops)

3. The natural homeomorphism u! : 7" (A/I"T(Q+S(Z‘.(X+)))) — ngP(M(X)) of

Lemma 4.52
4. The quotient map R o Px : 71" (M(X)) = FX (ng"” (X))
5. The continuous, group isomorphism hx : Fp* (Tcg"” (X)) - " (E(X,))

WeletK = Ro gy o uzl om0 9 : Q(L(X,)) - F* (¥ (X)) be the composite of 1.-4.
and K’ = Ro Py o u;} oy : Mp(Qs(Z(X4))) — FR¥ (ng"”(X)) be the continuous (and

even quotient) composite of 2.-4.
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Lemma 4.63 The following diagram commutes:

QE(X,)) —Z— MH(Q4s(Z(X4)))

s

7% (M QL (ECX,))

TiQ

R
kS
H

R (E(X, ) e F (r7(X)

The function 2 will not be continuous even when X contains only a single point
(ie. X(X,) = S'). This is illustrated by the fact that any open neighborhood of a
concatenation & * a! for simple loop « contains a trivial simple loop p which may
be found by “pulling” the middle of a * a™* off of x, within a sufficiently small
neighborhood of xo.

Step 4: Continuity of K
Lemma 4.64 K : Q(Z(X,)) — F* (ng"p(X)) is continuous.

Proof. Suppose W is open in Fp* (ng’”(X)) and 8 € K'}(W). We now refer to the
details of the decomposition of  in step 2. If f has image in U, then clearly
B €<, U) € 27Y(e) € K'Y(W). Suppose, on the other hand, that some simple loop
restriction B, has image intersecting £(X,) — U and 2(B) = B1B>.--B. is the (possibly
empty) decomposition of 8. Recall from our the notation in step 2, that ; = ﬁmij,
j = 1,..,n are the B, with orientation. Since K’ = R o ix o u;! o 71, is continuous,

(K’)"}(W) is an open neighborhood of Z(B) in M;(Q.5(Z(X.))).
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Recall that g € (C,U), where C = I — U’,-‘zl(cml, dm). We construct the rest of
desired open neighborhood of g by defining an open neighborhood of each g,, and
taking the intersection of the induced neighborhoods.

Ifi # i; forany j = 1, ..., n, then B,, does not appear as a letter in the decomposi-
tion of f and must be trivial. We apply Lemma 4.57, to find an open neighborhood
V; = mf\jl(K;\l,’ Vi) of Bm, in M(I, Z(X,)) which satisfies both 1. and 2. in the state-
ment. By Remark 4.59, we may also assume that V; N Qy(Z(X,)) € Qu(Z(X,)), i.e
all simple loops in V; are trivial.

Ifi =i;forsomej=1,..,n thenf; = ﬁm,] has orientation €;. Since (K')"}(W)isan
open neighborhood of Z(8) = B1f2---f in M.(Q2,4(£(X,))) and basic open neighbor-
hoods in M7.(Q,,(X(X,))) are products of open neighborhoods in Q,(X(X,)) and
Q.(X(X,))L, we can find basic open neighborhoods v, = QZQ(K&’, LI:J ) of B;in

M(I, (X)) such that
Wj = Vi N Quo(E(X4)) and Bifa...fn € Wi W,... W, C (K'Y L(W).

We assume each V; satisfies 1. and 2. of Lemma 4.57 and by Remark 4.59 that
Vi, N Q(E(X,)) € Que(Z(XL)).

Let

% =(CUn (ﬁ (V[”’])]

i=1
so that ¥ = % N Q(X(X,)) is an open neighborhood of f in the loop space. We

claim that each loop y € ¥ is homotopic to a loop y’ such that 2(y’) € (K')"}(W). If
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this is done, we have

hx(K(y)) = ma(y) = maly’) = hx(K('))

and since hy is a bijection,

Ky)=K(¢)=K(@(y')eW

This gives K(¥') € W, proving the continuity of K.
We define )’ piecewise and begin by setting 3’'(C) = xp. The restricted path
Yi = Viewan] 1 2(X,) lies in the open neighborhood %[Cm 4,] & Vi- We now

define ¥’ on [cy,, ds,] by using the construction of Remark 4.60. We set

Vi = 0 Nopdn,] = 7

which by construction is a simple loop in V;. Intuitively, we have replaced the
portions of y which are close to x; (”close” meaning with respect to ') with arcs and
constant paths. Since y;/ = ’(C) = xp € U and (7’)[cm,,dm,] € V; for each i, it follows
thaty’ € ¥. Moreover, since y(t) # )’(t) only when y(f) and y’(f) both lie in the path
connected, contractible neighborhood U, it is obvious that y =~ 3. It now suffices
to show that 2(y’) € (K’)"}(W). We begin by checking which of the simple loops
vi € V,NQ(E(X,)) have orientation and will appear in the word 2()’). If i # i; for
any j, all simple loops in V;, including y;” are trivial. Therefore y;" has no orientation

and will not appear as a letter in 2(y’). If this is the case for all i so that Z(f) is the
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empty word, then 2()’) must also be the empty word e € (K'Y (W). Suppose on
the other hand that 2(f) = B18.--f» # e and i = i; for some j. The neighborhood
Vi = V;, was chosen so that all simple loops in V;; have orientation€;. Sincey/ € V;,
is simple, it has orientation €; and we have y;/ € VN Q,s(X(X,))% = W;. Therefore
20 =iV - vi, € WiW. . W, € (K'){(W).m

Since K is continuous, g = hx o K is quotient, and hx is bijective, hx is a

homeomorphism.

4.2.4 The weak suspension spaces wX(X,) and 71}" (wX(X,))

We pause here to note a deficiency of the suspension spaces L(X,): L(X,) is

not always first countable at x. This occurs particularly when X is not compact.

Proposition 4.65 If X is compact, then there is a countable neighborhood base at the

basepoint x, consisting of neighborhoods of the form X A [0, %) U ( zl, 1].

Proof. If X is compact and V = ,ex (U* A [0, t,) U (1 — £,, 1]) is a basic open neigh-
borhood of x; in Z(X,) for pointwise open cover {U*},cx of X, then we may find
X1, Xy such that {U%, ..., U™} is a finite subcover. Find an integer n such that

0 < ! < min;t,. We now have

n

xalo)u (5l =Yl o f)u(ma]) ey

Unfortunately, if X is a non-compact, first-countable (resp. metric) space such as

Q, then Z(X,) may not be first countable (resp. a metric space). For this reason we

133



consider a slightly weaker topology on the underlying set of Z(X,), and denote the
resulting space as wZ(X,). A basis for the topology of wX(X,) is given by subsets
of the form V A (a,b) and X A [O, %) U ("7‘1, 1], for V € $x and integer n > 2. The
identity function id : 2(X,) — wX(X,) is continuous since the topology of wX.(X.,)
is coarser than that of £(X,). The weak suspension wrt(X,) provides us with some of

our most interesting examples and has a few advantages over Z(X,).

Fact4.66 If X is a subspace of R", then wX(X,) may be embedded as a sub-
space of R™!. In particular, we may suppose X C [1,2]" x {0} ¢ R**!. For
a = (a, -, a,,0) € X, let C, € R™! be the circle which is the intersection of the
n-sphere {x = (X1, ooer X1 ”x - %” = ”g”} and the plane spanned by vectors a and
(0,...,0,1). One can define a homeomorphism wZ(X,) — U,x Cx quite easily. It is

not necessarily true that (X, ) is homeomorphic to |,cx C; if X is not compact.

The arguments in this section may be repeated to compute ntl"p (wX(X,)) or one

may prove the following theorem.

Theorem 4.67 The identity map id : L(X,) — wX(X,) is a homotopy equivalence and
therefore induces a natural isomorphism of quasitopological groups id : 7 P(£(X,)) —

" (WZ(X,)).

Proof. For 0 < € < 1, let He : [e,1-€] — I be the unique increasing linear
homeomorphism and c. : wX(X,) — Z(X,) be the map collapsing the contractible
subspace X A [0,€) U (1 —€,1] to xg and taking x A ¢ to x A He(t) for t € [e,1—€].
Let ¢o = idzx,. We check that the composites ¢; © idurx,) : Z(X4) — Z(X4) and

idwr(x,)© €y : wx(X,) — wx(X,)are homotopic to the respective identities. Consider
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themap h : X X I X I — X X Igivenby h(x, s, t) = (x, Hy (s)). Composing with the
quotient map g : X XI — X(X,), wesee that go b : XX I X I — X(X,) sends
A = X x{0,1} X I to the basepoint xy. This induces the map G : Z(X,) X I =
XX IXI/A — X(X,) which is the homotopy ¢; © iduxx,) = idzx,). It is obvious
that G : wX(X,) X I — wZ(X,) is continuous on points in wL(X,) X I - G 1(x;). Let

U=XA[0,nu@-r1],r< % be a basic open neighborhood of x; in wX(X,). Then
Gl ={(xAt,s)Rr—1)(t-1)>3( -} U{(x At s -2r)(t~-1) < 3(s+r—1)}

is clearly open in wX(X,) X I. m

4.3 The topological properties of 7,”(£(X,))

We now use the computation of the previous section and the results from the
Appendix to study the topology of 77;”(£(X,)). In particular, we are interested in
classifying the spaces X for which n;"”(Z(XJr)) is a topological group. The main the-
orem here (Theorem 4.75) characterizes when ni"” (X(X,)) is a Hausdorff topological

group. In the results preceding Theorem 4.75, R;OP(Z(X+)) need not be Hausdorff.

Proposition 4.68 (See Lemma A.50) The following are equivalent for an arbitrary space

X:
1. P(%(X.)) is a topological group.

2. P (£(X,)) is isomorphic to the free topological group Fy (ng"” (X)).
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3. The identities Fp* (rcg"” (X)) — Fg (ng"” (X)) — Fu (Tcg"”(X)) are homeomorphisms.
Corollary 4.69 (See Corollary A.51) If Fr(X) is a topological group, then so is n;"”(Z(XJr)).

Corollary 4.70 (See Corollary A.52) If all powers of the quotient map nix : X — nf,"”(X)
are quotient and F (ng""(}Q) is a topological group, then n;"”(Z(XJr)) is a topological group.
Corollary 4.71 If X is a Tychonoff, k.-space (defined in 1.25), then n;"’” (X(Xy) isa
topological group.

Proof. It is shown in [MMO?73] that if X is a Tychonoff, k,-space, then (1)
Fu(Y) = lim Fy(Y), and (2) R, = D_o(X ® X'} — Fu(X), is a quotient map
for each n > 1. Sipacheva shows in [Sip05, Statement 5.1] that if (1) and (2) are

true, then R : M(X) — Fu(X) is quotient. Whenever R : M (X) — Fu(X), Fr(X) is

a topological group. By Corollary 4.69, niop(Z(XJr)) is a topological group. =

Corollary 4.72 (See Example A.53) If X is an A-space, then 7}" (£(X,)) is a topological

group which is an A-space.
Corollary 4.73 If X is first countable and ng"” (X) is an A-space, then TC;OP (X)) isa
topological group which is an A-space.

Proof. Since X and .7 (X) are first countable, Fact 1.24.5 implies that all powers of
my are quotient. By Corollary A.52, m{7(£(X.)) = Fi* (¥ (X)) = Fr (7 (X)). Since
n,7(X) is an A-space, Fg (Tcg”’(X)) is a topological group which is an A-space by

Example A.53. m
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Example 4.74 Let X be either the topologists sine curve
2 (1
T={0,0}Vi(x y) eRy = sm(;),o <x< T(}

or the closed topologist’s sine curve T¢c = T U ({0} X [-1, 1]). We noted in Chapter
3 that n(t)o”(T) = Tcg"p(Tc) = 5 where § = {0, 1} is the Sierpinski space with topology
{0,{1},{0,1}}. By Fact 4.66, wX(X,) embeds into R®. It is locally 1-connected but
not locally path connected. Since X is first countable and $ is an A-space (it is
finite), the previous Corollary indicates that there are isomorphism 7} (wX(X,)) =

n;P(Z(X,)) = Fu(S) of topological groups.

A somewhat more practical characterization appears the following Theorem
which is a special case of A.67. This theorem reduces the characterization of X for
which 7{¥(£(X,)) is a Hausdorff topological group to a separation property and

three well-known classification problems in topology.

Theorem 4.75 Let X be Hausdorff. Then m,¥(£(X,)) is a Hausdorff topological group if

and only if the following three conditions hold:
1. ng"p(X) is Tychonoff.
2. Fur(mg" (X)) = limy, Fua(mg" (X))
3. Ryt DL (g7 (X) @ mg(X) 1) — Fua(reg? (X)) is @ quotient map for each n > 1.

4. 7t . X" — i (X)" is a quotient map for eachn = 1.
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The following example is perhaps the most interesting example arising from this

Theorem:

Example 4.76 LetX =(0,1)NQ c Rand Y = J,x C, € R? be as in Fact 4.66. This
space is a locally 1-connected (but non locally path connected), planar subspace
(whereas X(X,) is not even a metric space). We have Y = wX(X,) = X(X,) and so
P (Y) = mP(E(X,) = Fg* (my?(X)) = Fr(X) = Fr(Q). The last two isomorphisms
(in qTopGrp) come from the fact that X = Q is totally path disconnected. Since
X is Tychonoff, Theorem A.67 that Fr(X) is a topological group if and only if
Fu(X) & li; Fu(X), and R, : P (X XY - Fu(X). is quotient for all n > 1.
However, it is shown in [FOT79] that both of these conditions fail for X = Q.

Therefore, nio"(Y) = Fr(Q) is not a topological group.
Corollary 4.77 n;"p : hTop. — qTopGrp does not preserve finite products.

Proof. It is a direct consequence of 2.34 and 2.39 that if the canonical (continuous)
group isomorphism 7¥(X X X) — 7y"(X) X 7{7(X) is a homeomorphism, then
ntl"’” (X) is a topological group. Example 4.76 shows that this cannot always happen.
n

Applying what we know about powers of quotient maps from Chapter 1.2, we

have:

Corollary 4.78 If X is first countable and 71" (X) is a first countable, Tychonoff, k,-space,
then n;"” (E(X.)) is a Hausdorff topological group. This also holds when we replace “first

countable” with "locally compact Hausdorff.”
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Proof. If X, 7,7 (X) are first countable (locally compact Hausdorff) then the powers
7l X" o n(t)o” (X)" are all quotient. As mentioned in the proof of Corollary 4.71, if
7160” (X) is Tychonoff and k,, then conditions 2. and 3. of Theorem 4.75 hold. Since

all conditions of Theorem 4.75 are satisfied, ni"”(Z‘.(XJr)) is a Hausdorff topological

group.
We have the following simplification (due to A.65) when X is totally path

disconnected, i.e. Ty : X = n5”(X). Recall that we have n*(£(X,)) = Fr(X) in this

case.

Corollary 4.79 Let X be a totally path disconnected Hausdorff space. Then R;OF(Z(X+)) =

Fr(X) is a topological group if and only if the following conditions hold:
1. X is Tychonoff.
2. Fu(X) = limy Fy(X)s.
3. Ry: @LO(X & X1 — Fa(X)y, is a quotient map for each n > 1.

Example 4.80 If X is the cantor set, fIN, the one-point compactification of a dis-
crete space, or any other totally disconnected, compact space, then ni"”(Z(XJ,)) is

isomorphic to the free topological group Fy(X).

We may also give a nice characterization of discreteness.
Corollary 4.81 The following are equivalent:

1. 7 P(X(X,)) is a discrete group.

2. P (X) is discrete,
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3. X is semilocally 0-connected.

Proof. 1. & 2. follows from Corollary A.54. 2. & 3. was proven in Proposition

254. m

Proposition 4.82 (See Theorem A.63) The following are equivalent:
1. P(Z(X,)) is Th.

2. nx: X— ng"p (X) is separating, i.e. for each x,, x, € X with distinct path components
rix(x1), tx(x7), there are open neighborhood U; of x; in X such that tx (U )Nmix(Uy) =

0.

3. The canonical injection r;¥ (X") — 1} (£(X,)) is a closed embedding for eachn > 1.
Corollary 4.83 If ;" (X) is Hausdorff, then 7" (£(X.)) is Th.

Corollary 4.84 Let (P) be a topological property hereditary to closed subspaces. Then if
7 "(%(X.)) is Ty and has property (P), then for each n > 1, ;" (X") also has property
(P). For example, if n;"” (X(X,)) is Hausdorff (resp. T, and regular, Ty and normal, T, and

paracompact), then so is ngo”(X”).

Corollary 4.85 (See Proposition 4.82 and Theorem A.71) Let X be such that n;"" (Z(Xy)

is T1. Then ni"”(Z(X+)) is first countable if and only if n;"”(Z(X+)) is discrete.

Example 4.86 Let Qk denote the rational numbers with the subspace topology of
the real line with the K-topology [Mun00]. Then ng"”(QK) = Qg is Hausdorff and
totally path disconnected but is not regular. Since Qx is Hausdorff, ni”"’():(QK)+) =
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Fr(Qx) is T;. If it is a topological group, it must also be regular. But the non-regular

subspace Qx embeds in Fg(Qx). Therefore Fr(Qx) is not a topological group.

Example 4.87 Using Remark 3.2, we can produce a large class of spaces each
with topological fundamental group failing to be a topological group. For every
Hausdorff, non-completely regular space Y, there is a paracompact Hausdorff space
X = H(Y) such that ;" (X) = Y. Since m," (X) is Hausdorff, n,*(Z(X,)) is T; but by

the previous corollary 7, ¥(£(X,)) cannot be a topological group.

Proposition 4.88 7\"(2(X.)) is functionally Hausdorff if and only if 1" (X) is function-

ally Hausdorff.

Proof. If ng"p (X) is functionally Hausdorff, then by Lemma A.37 so is Fi (ngo'" (X)).
Since m!¥(Z(X,)) = F3¥ (Tcg"” (X)) — Iy (nf)o”(X)) is a continuous group isomor-
phism, 71}"(%(X,)) must also be functionally Hausdorff. Conversely, if 7'” (£(X.))
is functionally Hausdorff the fact that u. : my"(X) — m”(£(X,)) is a continuous
injection implies that ngo”(X) is functionally Hausdorff. m

Certainly 4.84 implies that whenever 7,”(£(X.)) is normal and T;, then 73" (X")
is normal for each n. The author does not know of a partial converse simpler than
the following.
Proposition 4.89 Suppose ntl"p(Z(XJ,)) is Ty. Then ni””(Z(XQ) is normal if and only if
the closed subspace Fg*(rty¥ (X)), of FRX(ny” (X)) consisting of words of length at most n is

normal for each n > 1.

Proof. Suppose 7.7 (%(X.)) is normal. It is shown in the Appendix A.60 that
FpX(my”(X))a is closed in 7}P(Z(X,)) = FiX(my7(X)). Therefore each F*(rt," (X))
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is normal. Conversely, suppose each Fp* (ng"”(X))n is normal. It is shown in the
Appendix A.61.1 that F*(ry" (X)) = lim FR¥ (g7 (X)) and it is well-known that a
space which is the inductive limit of closed normal subspaces is normal [Dugé66, pg.

158]. m

4.4 The topological properties of 7]

Recall from Chapter 2.5.1 that (X) is the topological group ’c(ni"”(X)) where
T : GrpwTopTopGrp is left adjoint to the inclusion TopGrp — GrpwTop. Its
topology is characterized by the fact that the map m : Fy(n ;‘”’(X)) — 77(X) induced
by the identity of 7;(X) is quotient. A useful description of the universal property

of n{(X) is:

Corollary 4.90 If @ : n{(X) — G is a homomorphism to a topological group G such that

Do m: YX) - n(X) = G is continuous, then @ is also continuous.

Some of the basic properties of these topological groups follow from the general
results in Chapter 2.5.1. One of the most interesting is the following special case of

2.74:

Corollary 4.91 The identity TL;OP(X) — 1((X) is continuous and is a homeomorphism if
and only if ni"p(X) is a topological group.
The development of the theory of the quotient topology is important to the

study of the topology of 7(X).

Corollary 4.92 If xo, x1 lie in the same path component of X, then n7(X, xo) = 71(X, x1).
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Proof. Apply 7 to the isomorphism of 4.1. m

Corollary 4.93 If X has a 1-connected cover, then 1{(X) is discrete.

Proof. If X has a 1-connected cover, then n;"p (X) is discrete by Corollary 4.27. But

1% (X) is discrete if and only if 7%(X) is discrete by 2.74. m

Corollary 4.94 7t7(X) is discrete for any CW-complex or manifold X.

Since we construct 77(X) by removing open sets from the topology of ni””(X)
there may be concern over when 7{(X) is Hausdorff. We now give some conditions

involving the existence of this separation property.

Theorem 4.95 If }(X) is Hausdorff, then ni"”(X) is functionally Hausdorff and X is
homotopy Hausdorff. If the canonical homomorphism @ : 11(X) — 7t1(X) is injective, then

7}(X) is Hausdorff.

Proof. Every Hausdorff topological group is functionally Hausdorff. Since the
identity ni"” (X) — n}(X) is continuous, ni"”(X) is functionally Hausdorff whenever
71(X) is. It is proven in 4.16 that X is homotopy Hausdorff whenever n;"p(X) is
T;. It is observed in Chapter 2.5.3 that @ : T(;OP(X) - ﬁ;"”(X) is continuous. Since
#17(X) is a Hausdorff topological group, the universal property of 7*(X) implies
that @ : 7{(X) — ﬁ;"”(X) is continuous. Therefore, if @ is injective, then 77(X)

continuously injects into a Hausdorff group as must be Hausdorff. =
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It is a basic and useful fact that any free group may be realized as the funda-
mental group of a wedge of circles. We show here that any free topological group

may be realized as the fundamental group of a generalized wedge Z(X,).

Theorem 4.96 There is a natural isomorphism hy : FM(nf)o”(X)) - n{(X(X,)) of topo-
logical groups.

Proof. Letu : X — ((X(X,)) be the unbased unit of the adjunction Top.(X(X,), Y) =
Top(X, QY). This map induces a continuous injection u, : ng"” xX) - nt1°”(2(X+)) on
path component spaces. In Chapter 4.2, it is shown that u. induces a natural group
isomorphism hy : F(11o(X)) — 11(X(X,)) so that b3 o u. is the canonical injection of
generators. Moreover, 11! : 7,7 (£(X,)) = Fu(my" (X)) is continuous for an arbitrary
space X. Since Fy(m,"(X)) is a topological group, 3! : ni(Z(X,)) = Fu(my’ (X))
is continuous by the universal property of 7{(£(X,)). The continuous injection
idou, : né"” X) —» ntl"” (Z(X,)) — nl(Z(X.)) induces (by the universal property of

free topological groups) the continuous inverse hy : Fy(rty” (X)) — i (5(X.)). =

Example 4.97 If Y is an space, there is a paracompact Hausdorff space X such that
nf)"”(X) = Y (3.2). Since m}(X(X,)) = Fum(Y) we realize every free topological group
as a fundamental group. Some interesting examples come when Y € R (See 3.3) or

Y = §! (See 3.4).

Example 4.98 The case when X = QY for a based space Y gives a natural isomor-

phism of topological groups hay : FM(ntl"”(Y)) — 7] (£((€2Y),)). The counit map
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Z((QY).) — Y induces the multiplication map Fu(m;”(Y)) — m%(Y) used to define

the topology of 77 (Y).

Corollary 4.99 For any unbased space X, the following are equivalent:
1. ni(X(X,)) is Hausdorff.
2. P(X(X4)) is functionally Hausdorff.
3. 13" (X) is functionally Hausdorf.

Proof. 1. = 2. follows from Theorem 4.95. 2. = 3. follows from the fact that
Uy ng’p X)— n;"” (X(X,)) is a continuous injection. 3. = 1. If Tcgo"(X) is functionally

Hausdorff, then F M(ng’p(X)) = n}(X(X,)) is Hausdorff (Lemma A.37). ®

Corollary 4.100 A quotient map q : X — Y induces a quotient map q. : n7(X(X,)) —

(E(Y)) of topological groups.

Proof. Both the functors Fy and 7t” preserve quotients and Fyromy” & n%(£((-),)).

Example 4.101 If X is a totally path disconnected (for instance, if X is zero-

dimensional), then 7{(2(X,)) = Fp(X).

The fact that every group is realized as a fundamental group is easily arrived at
by attaching 2-cells to wedges of circles. Similarly, we attach 2-cells to a generalized
wedge X(X,) to realize every topological group as a fundamental group.
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Theorem 4.102 Every topological group G is isomorphic to the fundamental group 7 (Z)
of a space Z obtained by attaching 2-cells to a space of the form £(X,). Moreover, one may
continue to attach cells of dimension > 2 to obtain a space Y which resembles a K(G, 1) in

that n{(Y) = G and 7 (Y) = 0 for all n > 1.

Proof. Suppose Gis a topological group. According to Theorem 3.2, thereis a (para-
compact Hausdorff) space X such that ng"” (X) is homeomorphic to the underlying
space of G. If G is totally path disconnected, then we may take X = G. This gives
he : THE(X,)) = Fr(ry’(X)) = Fm(G). The identity G — G induces the retraction
mg : Fm(G) — G so that mg o he : n(E(X,)) = Fy(G) — G is a topological quotient
map. For each a € ker(mg o hg) choose a representative loop f, : S! = Z(X,) and
attach a 2-cell to L(X,). The resulting space is Z = L(X,) L, €2 and by Lemma
4.5, the inclusion j : £(X,) < Z induces a quotient map . : 7, (E(X,)) — 77 (2).
Since the functor 7 preserves quotients j. : nj(X(X,)) — 7®[(Z) is also quotient.
Since ker(mg © hg) = ker j. and both mg o hg and j. are quotient, 77 (Z) = G as topo-
logical groups. The second statement follows by the usual process of inductively
killing the n-th homotopy group by attaching cells of dimension n + 1. The fact that
the inclusions at each step induce group isomorphisms on the fundamental group
(which are topological quotients by Lemma 4.5 and therefore homeomorphisms)
means that the direct limit space Y will satisfy n{(Y) = G and 7;,(Y) = Oforalln # 1.
n

In the construction of Y in the previous theorem one will notice that Y is a

CW-complex (and therefore a proper K(G, 1)) if and only if X = G is a discrete
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group. This theorem permits the odd phenomenon of taking non-trivial funda-
mental groups of fundamental groups. For instance, there is a space X such that
ni(X) = S'. Taking the identity to be the basepoint of 7?(X), we find the discrete

group of integers as 7} (n(X)) = Z.

A topological van Kampen theorem 4.103 We now prove a result analogous to
the classical Seifert-van Kampen Theorem for fundamental groups. We assume all

based spaces are Hausdorff. Unfortunately, the general statement:

Statement 4.104 If {LL;, Uy, Uy N Uy} is an open cover of X consisting of path connected

neighborhoods, the diagram

i (Up N Up) — i (Uh)

| |

1 (Uz) —— i(X)
induced by inclusions is a pushout in the category of topological groups.

is not always true. To see why, we study an example.

Example 4.105 Let X = IN U {oo} be the one-point compactification of the discrete
space of natural numbers and consider £(X,) as in Example 4.37. We construct a
space Y by attaching 1-cells to (X, ). Foreach x € X, let f, : S° — L(X,) be the map
given by f(—1) = xgand f(1) = x A 3. Let Y = £(X,) Uy, e! be the space obtained by

attaching a copy of the unit 1-disc e} = [-1, 1] for each x via the attaching map f..
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Figure 5: Y = L(X4) Uy, el

Note that any open neighborhood of the loopa : I —» £(X,) C Y, a(t) =co At
contains loops which are not homotopic to a. By Proposition 4.7, 7j"(Y) is not
discrete. Since the identity 7,¥(Y) — n’(Y) is continuous, 7*(Y) is not discrete.
Define an open cover of Y by letting

= e o) ) s« (G p ) U

x€X

Note that Ul = Uz.

Figure 6: The open set U1 C Y

Collapsing the set X(X,) N U, to a point gives map U; — V « S! to a countable
wedge of circles which induces an isomorphism 7{(U;) — 7] (\/ x Sl) of discrete
topological groups. Consequently, 7i(U;) = 7j(Us) is the discrete free group on
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countably many generators. Now we have

o =(eafo o2 o)

Figure 7: The intersection U; N Uy

Clearly t:(U; N Uy) = 0. If the square

iUy N Up) —— (L)

| l

1 (U) ——— 1y (Y)

is a pushout in the category of topological groups, then 717 (Y) is the free topological
product of two discrete groups and must also be discrete. This contradiction
indicates that Statement 4.104 cannot be true in full generality. The complication

arising here motivates the following definition.

Definition 4.106 A path p : I — X is locally well-ended if for every open neigh-
borhood U of p in P(X) there are open neighborhoods Vy, Vi of p(0),p(1) in X

respectively such that for every a € Vj, b € V; there is a path g € U with g(0) = a
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and q(1) = b. A space X is lwe-path connected, if every pair of points in X can be

connected by a locally well-ended path.

Example 4.107 It is easy to see that U; N U, in Example 4.105 fails to be lwe-
path connected since there is no locally well-ended path from the basepoint to
oo A 1. It will turn out that this is the reason why Statement 4.104 fails to hold in
full generality. On the other hand Y is lwe-path connected and so it is not true
that a path connected, open subspace of a lwe-path connected space must also be

lwe-path connected.

Since Definition 4.106 does not seem to appear elsewhere, we consider some

qualities of locally well-ended paths and Iwe-path connected spaces.

Remark 4.108 It is necessary to specify the codomain X sincea pathp:I— Aina
subspace A C X may be locally well-ended whereas the pathp: I - A < Xis not.
The next proposition indicates that this complication does not arise when A is an

- open subset of X since, whenever A is open, P(A) is an open subspace of P(X).

Proposition 4.109 If Aisopenin X and p : I — A is a path, then p : I — A is locally

well-ended if and only if p : I — A < X is locally well-ended.

Lemma 4.110 The concatenation of locally well-ended paths is locally well-ended. The

reverse of a locally well-ended path is locally well-ended.

Proof. If U = (1] (K, V) is a basic open neighborhood of concatenation p * g,

then U] is an open neighborhood of p and Ufy ;1 is an open neighborhood of
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g. If p and g are locally well-ended, there are open neighborhoods Py, P1, Qo, Q1 of
p(0), p(1), 9(0), (1) respectively with the property indicated in the Definition 4.106.
Suppose a € Pyand b € Q;. Thereisa pathp’ € U] from a to p(1) and a path
q € u[%,1] from ¢(0) to b. Since p(1) = ¢(0), the concatenation p’ * 4’ is a well defined

path and is an element of

[o3] [21] _
(o) 0 (Up)
The fact that p~* is locally well-ended whenever p is follows from the symmetry of

the unit interval. m

Corollary 4.111 If X is path connected and {U,.} is an open cover of X consisting of

lwe-path connected neighborhoods, then X is also lwe-path connected.

Proof. Leta,b € X and p : I = X be an path from a to b. Find an integer n > 1
sﬁch that the restricted path a,;; has image in Uy, for j = 1,..., n. Letx; = & (ﬁ) for
j=0,1,..n Since xj-1,x; € Uaj and Ua]. is lwe-path connected, there is a locally
well-ended path §; : I = U,, from x;-1 to x;. Since each U, is open, by Proposition
4.109, each B; : I = U, — Xislocally well-ended. Now (((B1*B2)*B3)*- - **Bu-1)*Pa
is a path from a to b, which is a concatenation of locally well-ended paths in X and
so must be locally well-ended. =

Our interest in path connected, based spaces, motivates the inclusion of the

following fact.

151



Proposition 4.112 For path connected space (X, xy), the following are equivalent:
1. X is lwe-path connected.

2. For each x € X, there isa path p : I — X from xo to x such that for every open
neighborhood U of p in M((I, 0), (X, xo)) there is an open neighborhood V of x such

that for each y € V there is a path q € U from x, to y.

Proof. 1. = 2. follows from the fact that M((I, 0), (X, xo)) is a subspace of P(X). 2.
= 1. Ifa,be Xand p,q : I - X are paths p(0) = g(0) = xo, p(1) = a, and p(1) = b
satisfying the conditions in 2. it is easy to see that p* g! is a locally well-ended
path fromatob. m

We now observe that being lwe-path connected is not a rare quality in a space.

Proposition 4.113 Every path p : I — X in a locally path connected space X is locally

well-ended. Consequently, all locally path connected spaces are lwe-path connected.

Proof. Suppose X is locally path connected, p : I — X is path,and U = ﬂ;’zl(KZ,, u;)
is a basic open neighborhood of p in P(X). Find a path connected neighborhood
Vo, V1 of p(0), p(1) respectively such that V, € U; and V; € U,,. For pointsa € Vi, b €
V1, we take paths @ : [ = V| froma to p(0) and g : I — V; from p(1) to b. Now we

define a path g € U from a to b by

Gin = %4k, = P (3,1 = P[] Tigr = Pt and g = B

152



There are many non-locally path connected spaces which are lwe-path con-

nected.

Example 4.114 For every space X, the (unreduced) suspension 5X, the cone CX,

and X(X.) are Iwe-path connected but not necessarily locally path connected.

For the next proposition, we use the following convention: If an inclusion map
V < U induces the constant function 7o(V) — mo(U) on path components, we

write V S, U.
Proposition 4.115 The following are equivalent.
1. For every point x € X, the constant path c, : I — X at x is locally well-ended.

2. For each x € X and open neighborhood U of x there is a neighborhood V of x such

that V Sy UL
3. X is locally path connected.

Proof. 1. © 2. follows easily from two observations: (a) The neighborhoods (I, U)
where U is an open neighborhood of x in X form a neighborhood base at ¢, and (b)
V o U if and only if every pair of points in V can be connected by a path in L.

3. = 2. is obvious.

2. = 3. Suppose 2. holds and U is an open neighborhood of x in X. Let 7t :
U — my(U) be the function identifying path components. By assumption, each
y € U lies in an open neighborhood V), such that V, Sy U. For a set A C U, let
V(A) = U yea Vy. It is easy to check that if A & U, then V(A) So U. We also note
that if A Sy U, then m/(my(A)) So U since my(A) is a singleton. Let Wy = V,
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and inductively we define W,,,; = V(ri;}(mru(W,))). By the previous observations,
it is clear that W,, Sy U for each n > 1. We have inclusions W; € W, C ... and
let W = U,»1 W, € U. The set W is an open neighborhood of x contained in U
since if y € Wy, theny € V,, C W,,; C W. Additionally, we have constructed W
to be saturated with respect to 7y, i.e. W = n(ny(W)). To check that W is path
connected, we suppose y,z € W. We have y, z € Wy for some N > 1. Since Wy So U
there is a path a : I — U with a(0) = y and a(1) = z. Since W is saturated with
respect to 7ty and a(t) lies in the same path component of U as y and z it follows
that a(t) € W for each t € [0, 1]. Therefore a is a pathin W from ytoz. m
Statement4.104 is proved here in the case that the intersection U;N U, is Iwe-path

connected.

van Kampen Theorem 4.116 Let (X, xo) be a based space and {Uy, Uy, Uy N Uy} an
open cover of X consisting of path connected open neighborhoods each containing x. Let
ki:UyNU, = Uand l; : U; <> X be the inclusions. If Uy N U, is lwe-path connected,

the induced diagram of continuous homomorphisms

T (Uy N Up) 42, ()

(kz)~l l(ll)»

71 (U>) T 7 (X)

is a pushout in the category of topological groups. In other words, there is a canonical
isomorphism

1 (X) = 7i(Uy) *wwynu) 7 (Ua)
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of topological groups.

Proof. We show that if G is a topological group and f; : 7{(U;) — G are continuous
homomorphisms such that f; o (k). = f; o (ky)., then there is a unique, continuous
homomorphism @ : 7{(X) — G such that ® o (I;). = f.. The classical van Kampen
theorem [Mun(0, Theorem 70.1] guarantees the existence and uniqueness of the
homomorphism @ and so it suffices to show that @ is continuous. To do this, we
show that the composite ¢ = @ o 7 : U(X) — 7 [(X) — G is continuous. If this can
be done then the universal property of n(X) immediately gives the continuity of

@ :ni(X) - G.

Suppose W is open in G and a € ¢~'(W). We construct an open neighborhood on
restricted paths of @ and combine these to form an open neighborhood of a. To find
the appropriate restrictions, we recall how @ is defined. Since U; N U, is lwe-path
connected, Proposition 4.112 tells us that for each point x € U; N U, there is a locally
well-ended path p, : I — U; N U, from xy to x. Even though U; N U, may not be
locally path connected at x, (recall Proposition 4.115), we take p,, to be the constant
path c,,. Now for any path g : I — U; such that g(0), (1) € U; 0 U,, we define a loop
L(g) € QU; by L(g) = pyo *q* pq‘(ll). Find a subdivision 0 = ty < t; < ... < t, = 1 such
that for each j = 1, ..., n, the restricted path a; = ay;_, +) has image in U;, i; € {1, 2},
and such that a;(0), a;(1) € U; N U,. For convenience, let 4; = a;,1(0) = a(t;) for

j=0,1,..,n. Now @([a]) is defined as the product in G:

O([e]) = fi ((L(e)]D fi([L(@2)]) - - - fiu ([(en)]) € W.
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The homomorphism @ is well defined, since whenever a; has image in U; N U, we
have f; o (k1).([L(a))]) = f2 o (k2).([L(2;)]). It is important to note that the choice of

paths p, in Uj N U, is irrelevant to the definition of @.

Since G is a topological group, there open neighborhoods W; of f;([L(a))]) in G
such that WiW,..W,, € W. Since the composites f; o m; : QU; — n{(lli) - G
are continuous, we can find a basic open neighborhood V; = ﬂf\:; 1(KA"/’I], AZ,,) of
L(@)) = Pay, * @j*p;| contained in nl.‘jl( fi]fl(Wj)) € QU;,. We may assume that M;
is divisible by 3 and that A,jn € U; N U; whenever L(“j)(KA"/lzj) ¢ U; N U, Since
each P.; has image in Uy N U this automatically implies that AZ,, c U;n U, for
each KI\";I,» C [O, 31-] U [%, 1}. Taking restricted neighborhoods (in P(X)), we find that
(V])[0 1] is an open neighborhood of Pai1s (Vj)[ 12] is an open neighborhood of «;
’3 373

-1

and (V]) is an open neighborhood of p;jl. Since ((Vf)[g,l]) and (Vj+1)[0’%] are

both ne1ghborhoods of p,;, we may assume that they are equal for j=1,..,n—-1.

Since p,; : [ = Uy N U, is locally well-ended for each j =1,...,n — 1 and p,(0) = xo,
Pa(1) = a; = a(t;), Proposition 4.112 allows us to find an open neighborhood B; of

a; in Uy N U, such that for each x € B; there is a path 0 € ( ]+1) from x; to x. We

[o3]

consider the neighborhood

n—1

%= ((Vf)[é%])[t;htﬂ N[ e B
j=1

of & in ()(X). For any loop y € %, we notice that
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e Foreachj=1,..,1n,

)[t;—lrt]]
4]

is an open neighborhood of y; _, 1) in P(X).

[tj—llt]]

e If aj has image in U; N U, then so does yy,_1 -

e Forj=1,..,n—1,since y(t;) € Bj, there is a path

-1
0 € (Vf+1)[o,é] = ((Vi)[z 1]) LN W)

37

from xg to y(¢;).

Let 6y = 0, = ¢4, and define a loop § by demanding that Bit,vt) 18 the loop 6;-; *
Vit * 6]71 € QUi] for j = 1, ...,n. We note that if @; has image in U; N U, then so

does By;,,1,1- Certainly

B = (B0 * ity * 7 - (81 * Vit * 5;1>*(‘51’ *Vltptpal * ‘5]131)*' ~#(On-1* Yty 0] * On)

is homotopic to y. Moreover, for j = 1,...,n, we have (ﬁ[trllt]])A € (Vj)a for A =

[0, %] , [%, %] , [g, 1]. Therefore

ﬁ[t,—l,t,] € ﬂ ((Vj)A)A = Vj - H;l(le(wl')) - QLI,-]
A
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All together, we see that

(]5()/) = (D([V]) = (I)([ﬁ]) = fil ([ﬁ[foztﬂ])ﬁz([ﬁ[tlltzl]) ce ﬂn ([ﬁ[f —1/tn]]) e WiW,.. W, € W

Since the choice of the paths p; is irrelevant to the definition of ® (we may replace
Pa; by ;) and By, , 1) has image in U;, the third equality makes sense. This proves

the inclusion % € ¢~}(W) and the continuity of ¢. m

Remark 4.117 While the condition that U; N U, be Iwe-path connected is sufficient
for the van Kampen theorem to hold, it is certainly not a necessary condition. For
any path connected, non-lwe-path connected space X, the unreduced suspension
5X is quotient of X X I by collapsing X X {0} and X X {1} to a point. Let U; and U,
be the image of X X [0, %) and X X (%, 1] in the quotient respectively. The open sets
Uy, U, are contractible and the van Kampen theorem holds trivially even though

U; N U, is not Iwe-path connected.

Example 4.118 Here we compute 7}(Y) from Example 4.105 by choosing an ap-
propriate cover. For each x € X = IN U {0} let 0, denote 0 in e = [-1,1]. Note
that Uz = Y — U,<x{0:} is homotopy equivalent to £(X,) so 7] (Us) = Fp(X). Since
X = U, VU Uz and U; N U3 is Iwe-path connected and 1-connected the van Kampen

theorem applies and gives

(V) = mi(Uh) = 73 (Us) = Fp(IN) * Fi(X) = Fu(IN U X) = Fur(X)
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Corollary 4.119 Given the hypothesis of Theorem 4.116, the homomorphism Fp(Q(U,)) *
Fm(Q(Uy)) — mi(X) induced by the canonical maps Q(U;) — n{(X), i = 1,2 is a

topological quotient map.

Proof. Since Fp(Q(Uy)) * Fm(Q(U2)) = Fa(Q(U4) @ Q(Uy)) (here @ is the coproduct
in Top) is suffices to show that Q : Fp(Q(U1) ® Q(Uy)) — ni(X), Qar-.an) =
[a; *--- = a,] is quotient. Let w; : Q(U;) — n;"p (U;) be the quotient map identifying

path components. Since Fy preserves quotients, Fy (711 @ 73) is quotient. The map

k : PP (Uh) @ i (Uy)) — mi(Uh) * 705 (L)

of Proposition A.44 is also quotient. Additionally, the canonical homomorphismk’ :
n{(lll) + 70 (L) — n{(lll) *T (U NUy) 711(U>) is always quotient. Let h: T(F{(Lﬁ) *t (UyNUy)
ni(Up) = 7mi(X) be the isomorphism of Theorem 4.116. The composite Q =

h ok o ko Fy(m;, & 15) is quotient since it is the composite of quotient maps. =

Corollary 4.120 Let X, Y be path connected spaces each of which has a neighborhood base
(one of which is countable) of path connected, 1- connected neighborhoods at its basepoint.

Then there is a canonical isomorphism 7 (X V'Y) = n((X) * [ (Y) of topological groups.

Proof. We first recall a theorem of Griffiths [Gri54] which says that if W;, W, are
based spaces, one of which has a countable base of 1-connected neighborhoods at
its basepoint, then the inclusions W; < W; V W, induce an isomorphism 7t,(W;) *

111 (Wo) — 111(W; V W,) of groups. Let A (resp. B) be a path connected, 1-connected
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neighborhood of the basepoint in X (resp. Y). Since X and Y are locally path
connected and locally 1-connected at their basepoints, so are A,B, and A V B.
Griffiths theorem implies that m;(AV B) = 0. Let U; = XV Band U, = AV Y so that
U; N U, = AV B. The van Kampen theorem applies and we have an isomorphism
(X VY) = (X V B)*n}(AVY) of topological groups. The inclusions X < XV B
and Y < A VY induce continuous group isomorphisms 77(X) — n{(X V B) and
ni(Y) = nj(AVY). These group isomorphisms are also homeomorphisms since
their inverses are induced by the retractions XVB — Xand AVY — Y. All together,

we have a canonical isomorphism of topological groups

m(XVY)=n{(XVB)*n{(AVY)=ni(X)*n(Y)
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

This computation and analysis of }” (£(X.)) offers new insight into the nature
of topological fundamental groups and provides a geometric interpretation of
many quasitopological and free topological groups. We note here how these ideas
may be extended to higher dimensions and abelian groups, i.e. to the higher
topological homotopy groups 7,7 (X, x) = nf)o”(Q" (X, x)) and free abelian topological
groups. These quasitopological abelian groups were first studied in [GHMMO08]
and [GHO09], however, these authors assert that 71,7 (X, x) is a topological group
without sufficient proof. This misstep is noted in [GHB10] and the following

problem remains open.
Problem 5.1 Forn > 2,is7” a functor to the category abelian topological groups?

As mentioned in the introduction, Fabel has shown that the topological fun-
damental group of the Hawaiian earring fails to be a topological group. This
particular complication seems to disappear in higher dimensions since, for n > 2,
the n-th topological fundamental group of the n-dimensional Hawaiian earring is
indeed a topological group [GHB10]. The results in this paper, however, indicate
that Problem 5.1 is likely to have a negative answer. Just as in Proposition 4.35, we
have

161



Proposition 5.2 For every based space Y, m,"(Y) is a topological quotient group of

TP (ZHQM(Y).))-

Therefore, if 7,7 (X"(X,)) is a topological group for every X, then 7,7(Y) is a
topological group for every Y. Consequently, the spaces £*(X,) are prime candi-
dates for producing counterexamples to Problem 5.1. Let Z;’{(Y) (resp. Zgr(Y)) be the
free abelian group on the underlying set of Y viewed as the quotient space of F£(Y)
(resp. Fr(Y)) with respect to the abelianization map. These groups have many of
the same topological properties as their non-abelian counterparts. In particular,
Z7(Y) (resp. Zr(Y)) either fails to be a topological group or is the free abelian topo-
logical group Zj(Y) on Y. The results of this dissertation indicate the likelihood of

the following statement:

Conjecture 5.3 For an arbitrary space X, the canonical map ng"” (X) - P (EH(X,)
induces an isomorphism hx : Zp* (nf)"” (X)) - nP(Z"(X,)) of quasitopological

groups which are not topological groups.

If this is indeed the case, then 7, will be a functor to the category of abelian
quasitopological groups but not to the category of topological abelian groups. A
computation of 7;¥(Z"(X,)) for n > 2 should then provide an answer to Problem

5.1.
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APPENDIX
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A great deal of the topological algebra required for this dissertation cannot be
found in the literature. In this appendix, we included a number of these useful
constructions and results. Since we may only assume that multiplication in homo-
topy mapping spaces is continuous in each variable, much of this content focuses on
such objects. A nice reference for the theory of monoids and groups with topology

is [ATO8].

A.1 Monoids with topology

A monoid M endowed with a topology (no restrictions on the continuity of
operation) will be referred to simply as a monoid with topology. Let MonwTop be

the category of monoids with topology and continuous monoid homomorphisms.

Definition A.1 A semitopological monoid is a monoid with topology M such that
multiplication ¢ : M XM — M is continuous in each variable. If, in addition,
¢ is continuous, then M is a topological monoid. The category of semitopological
(resp. topological) monoids is the full subcategory sTopMon (resp. TopMon) of

MonwTop.

Recall that an involution on a monoid M is a function s : M — M such that

% = idy, s(mn) = s(n)s(m), and s(e) = e.

Definition A.2 A semitopological monoid with continuous involution is a pair (M, s)
where M is a semitopological monoid and s : M — M is a continuous involution
on M. If, in addition, M is a topological monoid, then (M, s) is a topological monoid

with continuous involution. A morphism f : (My,s1) — (My, s2) of two such pairs is
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a continuous homomorphism f : M; — M, such that f preserves involution, i.e.
fosy =s,0 f. Let sSTopMon" be the category of semitopological monoids with con-
tinuous involution and continuous, involution-preserving homomorphisms. Let

TopMon’ be the full subcategory of sTopMon® consisting of topological monoids.

Remark A.3 Since group inversion is an involution on G, there are forgetful func-

tors TopGrp — TopMon" — TopMon — sTopMon.

Universal Construction A.4 For any (unbased) space X, the topological sum
Mr(X) = Eano X" (where X° = {¢} is a singleton) is a topological monoid with
identity e called the free topological monoid on X. An element (x, ..., x,) € X" in
M(X) will be written as a word w = x;...x, and multiplication is simply word
concatenation. The length of a word w = x7...x, is |[w| = n and welet|el = 0. A
basic open neighborhood of w is a product U ... U, = {uy---uslu; € U;} where U, is
an open neighborhood of x; in X. It is well known that M7 : Top — TopMon is a
functor left adjoint to the functor U : TopMon — Top forgetting monoid structure.
Equivalently, the canonical inclusion ¢ : X < Mr(X) is universal in the sense that
any continuous function f : X — N to a topological monoid N induces a unique
continuous monoid homomorphism f : Mr(X) — N such that fo o = f. In partic-
ular f (x1---x,) is the product f(x1)-.- f(x,) in N. The underlying monoid of Mr(X)
will be denoted M(X).

Let X~ be a homeomorphic copy of X (with elements written as x™! € X™?). Let
M(X) = MX®X™") = EBnZO(X ® X71)" be the free topological monoid on two

copies of X and M'(X) denote the underlying monoid. A typical element of M7.(X)
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is written as xil...xfl" with x; € X and €; € {1} and a basic open neighborhood of w
is a product of neighborhood U5 ... U;" where U; is an open neighborhood of x; in
X. There is a canonical, continuous involution M (X) — M:(X) on M;(X) given by
w = %X - wh = x5 x " making the pair (M;(X),™!) a topological monoid
with continuous involution.

A word w € M(X) is reduced if x; = x;1 implies€; = €;,; foreachi=1,2,...,n-1.
The empty word is vacuously reduced. The collection of reduced words, of course,
forms the free group F(X) generated by the underlying set of X and the monoid
epimorphism R : M*(X) — F(X) denotes the usual reduction of words. In other
words, F(X) is the quotient monoid of M*(X) by the equivalence relation generated
by xx™! ~ e ~ x7!x for each x € X. The following justifies calling M.(X) the free

topological monoid with continuous involution on X.

Proposition A.5 M. : Top — TopMon" is a functor left adjoint to the functor U :
TopMon™ — Top forgetting monoid structure. Equivalently, the canonical inclusion
0 : X — M (X)is universal in the sense that for each continuous function f : X — N where
(N, t) is a topological monoid with continuous involution, there is a unique, continuous,

involution-preserving homomorphism f : (M(X), 1) — (N, t) such that foo=f.

Proof. Let g: X® X' — N be given by g(x) = f(x) and g(x™*) = #(f(x)). Note
that #(g(x™) = g(x°) for all x € X and € € {x1}. Since M(X) is the free topological
monoid on X ® X}, there is a unique continuous homomorphism f : My(X) = N
given by f(x{..x7") = g(x7")...g(x"). Therefore, it suffices to check that f preserves

involution (i.e. that ¢ f (w) = f (w)). This is done by the equation: t(f~ (x;e"...xf‘)) =
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Hg(™)-- (™)) = HG(™)-..H(g(5™)) = §(7)--.g(xy) = fay..r) m

One of the reasons multiplication fails to be continuous in homotopy mapping
spaces is the fact that a power ¢" : X" — Y” of a quotient map 4 : X — Y may
not be quotient. This deficiency of Top also means the functors Mr and M, do not

preserve quotients. The following is a simple characterization of this failure.
Proposition A.6 The following are equivalent for a quotient map q: X — Y.

1. The power q* : X" — Y" is a quotient map for all n > 1.

2. Mr(g) : Mp(X) — Mz(Y) is a topological quotient map.

3. M3(q) : M3(X) — M(Y) is a topological quotient map.

Proof. If {g.} is a set of continuous surjections, then g, is quotient for each a if
and only if &, 4. is quotient. 1. < 2. and 1. & 3. then follow from the simple
observation that Mr(g) = Eano q" and M;(q) = Mr(g @ q) = @nzo(q ®q)". =

Letg : X — Y be a continuous surjection. The induced homomorphism M(g) :
M(X) — M(Y) is an epimorphism and we may give the monoid M(Y) the quotient
topology with respect to M(g) : M7(X) — M(Y). We can do the same in the involuted
case, by letting M(Y) = Mg, (Y ® Y'). We note that M,(Y) is not necessarily a

topological monoid though if g4 = idy, then My (Y) = Mr(Y).

Proposition A.7 M,(Y) is a semitopological monoid and (M;(Y),‘1 ) is a semitopological

monoid with continuous involution.
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Proof. We use the diagram of monoids with topology

Mr(X) — Mr(X)

M(q)l JMW)

Mq(Y) — Mq(Y)

where the vertical maps are quotient maps. The diagram commutes when the top
map is left (right) multiplication by a word w = x;...x, and the bottom map is left
(right) multiplication by M(gq)(w) = g(x1)-..q(x2). Since left (right) multiplication
by w in Mr(X) is continuous, the Quotient Square Lemma implies the bottom
multiplication maps are continuous. Since M(g) is surjective, this accounts for all
words in M(Y). Therefore M,(Y) is a semitopological monoid. We have already
shown that M{(Y) = Me,(Y® Y~ !) is a semitopological monoid. For the involution,
replace Mr(X) by M7 .(X), My(Y) by M(Y), and M(q) by the quotient map M(g & g) :
M (X) = M(Y) in the above square. Letting the top and bottom maps be the
canonical involutions, the Quotient Square Lemma again may be used to prove the
continuity of the involution of M (Y). =

The construction of M,(Y) is functorial in the following manner: Let Quo(Top)
be the category of quotient maps g : X — Y in Top. A morphism between two such

surjections is a commuting square
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that we write as a pair of maps (£, g).

Proposition A.8 Theassignment (q: X — Y) > My(Y) onobjects and (f, g) — M(g) on
morphisms is a functor Quo(Top) — sTopMon and the assignment q — q& q — M(Y)

on objects and (f, §) — M'(g) on morphisms is a functor Quo(Top) — sTopMon".

Proof. We have already shown that these functors are well-defined on objects.
Suppose (f,g) : ¢1 — g2 is a morphism of quotient maps ¢; : X; — Y;. It suffices
to show that the induced monoid homomorphism M(g) : Mql (Y1) = M, (Yy) is
continuous. The functorality of free (topological) monoids implies that Mr(f) :

Mr1(X;) = Mr(X3) is a continuous monoid homomorphism such that the diagram

Mt
Mr(Xy) Lt} Mr(X5)

M) l J'M(qz)

M,(Y1) YN M,(Y2)

commutes in sTopMon. Since the vertical maps are quotient, the homomorphism
M(g) : My, (Y1) = M,,(Y>) is continuous by the Quotient Square Lemma. The invo-

luted case follows in the same manner. =

Proposition A.9 Let g : X = Y and r : Y — Z be quotient maps. The identity

id : Myog(Z) = M,(Z) is continuous.
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Proof. The diagram on the left induces the diagram on the right.

X
rqu
Z

Since the left vertical map in the right diagram is quotient, then bottom map is

X MrX) 2 Mr(X)

J lMT(q)
r

=

Y Moo Mr(Y)
J lM(r)
—z};—) Z Mroq(Z) _ld‘—> Mr(Z)

continuous. M

Lemma A.10 Let q: X — Y be a quotient map.
1. The canonical injections 6 : Y — M(Y)ando : Y — M(Y) are topological
embeddings.
2. Theidentity id : M,(Y) — My, (Y) = Mr(Y) is continuous.

3. The following are equivalent:

(a) My(Y) is a topological monoid.
(b) M(Y) is a topological monoid.
(c) The identity M,(Y) — Mr(Y) is a homeomorphism.
(d) The identity My(Y) — M(Y) is a homeomorphism.
(e) The power q" : X" — Y" is a quotient map for each n > 2.
Proof. 1. This follows from the fact that the quotient map 4 : X — Y occurs as

a summand of the quotient map M(g) : Mr(X) — My(Y) (resp. M'(g) : M(X) —
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M;(Y)).

2. Take r = idy and apply Prop. A.9.

3. (c) = (a) and (d) = (b) are obvious. We know from 2. that the identity
morphisms id : My(Y) — Mu(Y) = Mr(Y) and id : M(Y) - M, (Y) = M(Y) are
continuous. The continuous injection Y < M,(Y) (resp. Y — M(Y)) induces the
inverse id : Mr(Y) — My(Y) (resp. id : My(Y) — M,(Y)) whenever M,(Y) (resp.
M(Y)) is a topological monoid. This gives (a) = (c) and (b) = (d). Consider the
diagram

Mr(X) 2, Mz(Y)

Mr(q)l lid

My(Y) —— Mr(Y)
in sTopMon. It is easy to see that id : My(Y) — M1(Y) is a homeomorphism if and
only if Mr(q) : Mr(X) — Mr(Y) is quotient. But by Prop. A.6, Mr(q) is quotient
if and only if 4" is a quotient map for all n > 1. Thus (c) © (e) is proven. The

analogous diagram in the involuted case and Prop. A.6 give (d) < (e). m

A.2 Groups with topology

Topological groups are widely studied objects. The groups we consider here

are not quite as well studied though some of these results appear in [AT08].

Definition A.11 A group G with a topology (with no restriction on the continuity
of operations) is a group with topology. Let GrpwTop denote the category of groups
with topology and continuous group homomorphisms. If, in addition, multipli-
cation i : G X G — G is continuous in each variable (equivalently all translations
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are continuous) then G is a semitopological group. If inversion G — G, g — g'is
also continuous, then G is a quasitopological group. If multiplication and inversion
are continuous, G is a topological group. Let TopGrp C qTopGrp C sTopGrp be
the full subcategories of GrpwTop consisting of topological, quasitopological, and

semitopological groups.

For each g € G, we will denote the continuous restrictions of multiplication
p:GXG —> GtoGx{glasmap p, : G = G, pg(h) = hg and to {g} X G as
Ag : G = G, Ag(h) = gh. If G is a semitopological group, these restrictions are
homeomorphisms since they have inverses p, and A1 respectively. If G is a
quasitopological group then inversion a — a7! is clearly a homeomorphism. For
this reason, a neighborhood base at the identity e of semitopological group G
suffices to characterize the topology of G. If G is a quasitopological group, we may
assume this basis consists of symmetric neighborhoods Un U™

Note that an isomorphism in sTopGrp and qTopGrp is a group isomorphism

which is also a homeomorphism of spaces.

Remark A.12 Since group inversion is an involution on G, there is a forgetful

functor qTopGrp — sTopMon'.

Example A.13 Let G be any group with the finite complement topology 7~ = {U C
GlIG — U] < oo}. If U is an open neighborhood of product g, then all and Ub are
open in G for any 4, b € G since G — all and G — Ub are finite sets. Therefore G is a
semitopological group. Additionally, if U is open then U™ = {g g € U]} has finite
complement and is open in G making G a quasitopological group. If G is finite,
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then, of course, G is a discrete group. If G is infinite then G is T; but not Hausdorff

and cannot be a topological group.

Some basic facts. Multiplication of sets A, B € G will be denoted AB = {ab € Gla €

A,be€ B).
Proposition A.14 Let G be a quasitopological group with multiplication i : GX G — G.

1. G is a homogeneous space.
2. If AC Gand U is open in G, then AU and UA are open in G. Therefore y is open.
3. If a subgroup H of G contains an non-empty open subset U, then H is open in G.

4. If H is an open subgroup of a quasitopological group G, then H is also closed in G.

Proof. 1. If g, h € G, then the translation p PR G—-Gxm— xg‘lh is a homeomor-
phism such that g — h.
2. AU = U eqaU = Ugeq A(U) and UA = Uy Ua = U ey po(U) are both open in G.
3. If U C H, then Ua C H is open for every a € H. Therefore H = UH = [,y Ua is
open.
4. If H is an open subgroup of G, then each coset aH is open in G. But G is the
disjoint union of cosets G = [[ e/ aH and therefore eH = H is closed in G. ®

If G is a quasitopological group and H < G is a subgroup, H with the subspace
topology of G becomes a quasitopological group. We say H is a quasitopological

subgroup of G.

Proposition A.15 Suppose f : G — H is a homomorphism of semitopological groups. If
f is continuous at the identity e of G, then f is continuous.
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Proof. Suppose U is open in H and g € f~}(U). Then f(g) € U and f(g) U is
an open neighborhood of the identity ey of H. If f is continuous at eg, then there
is an open neighborhood V of eg such that f(V) € f(g)"'U. But gV is an open
neighborhood of V such that f(gV) = f(g)f(V)C U.m

If a G is semitopological group and H is a subgroup, let G/H be the set of left
cosets in G with the quotient topology of G. This makes the canonical projection

1 : G — G/H a topological quotient map.

Proposition A.16 Suppose H is a subgroup of semitopological group G. The canonical

projection 7 : G — G/H onto the space of left cosets with the quotient topology is open.

Proof. If U is open in G, then Y r(U)) = { gHlg € U} = UH. Since 7 is quotient by

assumption and UH is open in G by A.14, 7(U) is openin G/H. m

Corollary A.17 Fora € A, let H, be a subgroup of semitopological group Ga. The product

of projections [ 1, 7a : [1, Ga = 11, Ga/Ha is open.

Corollary A.18 If G is a topological group and H is a normal subgroup, then the quotient

group G/H with the quotient topology is a topological group.

Proof. We use the diagram

GXG———G

G/Hx G/H—— G/H
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where 7 is the projection and y and m are multiplication operations. Since 7 X 7
is open, it is quotient. Since 7t o u is continuous, m is continuous by the universal
property of quotient spaces. m
If His normal in semi(quasi)topological group G, then G/H becomes a semi(quasi)-

topological group. It is a quotient semi(quasi)topological group of G. It is easy to see
that the universal properties of quotient groups and quotient spaces characterize
such groups: If 7 : G — N is a group epimorphism and a quotient map spaces
and f : G — H is such that kernt C ker f, then there is a unique, continuous

homomorphism g : N — H such that gont = f.

Proposition A.19 Let H be a normal subgroup of semitopological group G. Then G/H is

T if and only if H is closed in G.

Proof. If 7 : G — G/H is the projection and eg/y = H is the identity of G/H, then
H = nY(eg/n) is closed in G if and only if the singleton {eg/y} is closed in the qua-
sitopological group G/H. Since all translations are homeomorphisms, this occurs

precisely when G/His T;.m

Proposition A.20 Suppose ¢ : G — H is a continuous homomorphism of semitopological
groups. There is a continuous group isomorphism ¥V : G/ ker¢ — Im(¢p) which is a

homeomorphism if and only if ¢ : G — Im(®) is a quotient map.
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Proof. Both of statements follow from the commuting diagram

G
I
G/ kero —5 Im(¢)
and the fact that the projection 7 : G — G/ ker ¢ is a topological quotient map. m
Closure in quasitopological groups. We observe a few elementary properties of the
closure operator in quasitopological groups. For an element ¢ € G, let g denote the
closure of the singleton {g} in G. If necessary, we use superscript to distinguish the

space where closure is being taken.
Proposition A21 Let Gbea quasitopological group.
1. Foreachg€ G, ge =g =eg.
2. The closure of the identity e is a normal subgroup of G.

3. For each g € G and open neighborhood U of g, g € U.

Proof. 1. We have that geNeg is closed and contains g, so g € geNeg. Now suppose
h € geUeg and U is any open set containing h. Then either g 'h € eor hg™! € e. But
¢ 'h e ¢g'U and hg™! € Ug™ and so we have e € g'UU U Ug™. This implies that
g€ Uandh €g. Since geUeg C g C geN ey, the equality is clear.

2. Suppose 4,b € e and U is an open neighborhood of ab™!. Then b € U 'a and
consequently e € U'aand 4! € U™, Sincea € U and a € & we have ¢ € U.
Therefore ab™' € e so that e is a group. e is normal by part 1.

3. We begin with the identity ¢ = e € U. Suppose a € eand let V= UN U"’. Then
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a € aV and since aV is open and a € ¢ we have, e € aV. Thusa! € V but V was
symmetric, soa € V C U. Now take any element g€ UC Ganda € g = ge. We
have g7'a € eand e € g7'U so that g"la € g~tU by the first part of the proof. This
givesa€ UsothatgC U.m

Note that 3. of this last proposition indicates that two elements g,h € G are

topologically indistinguishable if and only if g = h. 1. and 2. then give that
Corollary A.22 Forevery g, h€ G, g€ h if and only if g = h.

Recall that the Kolmogorov quotient of a topological space X is the T; quotient space
X/ ~wherex ~ yifand only if x = .

Corollary A.23 The quotient group G/e of quasitopological group G is the Kolmogorov
quotient of G. All open neighborhoods U € G are saturated with respect to the projection

p: G — G/e. Consequently G has the initial topology with respect top : G — G/e.

Proof. The first statement follows directly from A.21 and A.22. If U is open in G,
and g € G, then g C U. Therefore p~*(p(U)) = U. Since the topology of G consists
of neighborhoods of the form p~!(A) for A open in G/e, G has the initial topology

with respecttop : G — G/e. m

Remark A.24 Since Xz = (¢,¢) in GX G, and p X p : GX G — G/eX G/e s quotient,

G/eX G/e = G X G/(e, e) is the Kolmogorov quotient of G X G. Consequently, if U is

an open neighborhood of (g, &) in G X G, then g X h= (gh)c U

Proposition A.25 Let G by a quasitopological group and p : G — G/e be the projection.
Then

177



1. Gis a topological group < G/e is a topological group.
2. Gis first countable & G/e is first countable.

3. Gis pseudometrizable & G/e is metrizable.

Proof. 1. One direction is obvious by A.18. We observe commuting square

GXxG—/———G

||

G/ex G/e—— G/

where m and m’ are the respective multiplication functions. Suppose m’ is con-
tinuous and V C G is open. By A.23, V = p~}(U) for open U in G/e. Therefore
(pxp)™? (m"l(ll)) =m! (p‘l(U)) =m }(V)is openin GX G.

2. Since G is a quasitopological group, it suffices to work with neighborhood
bases at the identities. If U, is a countable base at ¢ € G, then U, = p~'(V,,) for
open V, containing the identity e of G/e. If W is an open neighborhood of e in
G/e, then p~}(W) is an open neighborhood of e in G. By assumption, there is an
Un = p1(Vy) € p7Y(W). Clearly V,, € W. Conversely, if V, is a countable base
at e € G/e, then U, = p1(V,,) is an open neighborhood of e in G. If W’ is an
open neighborhood of e in G, then by A.23, W = p~}(W) for some open W in G/e
containing e. There is a V,, € W and therefore U,, = p"}(V,,) € p"{ (W) = W".

3. In general, if X has the initial topology with respecttoamap f : X — Y where
the topology of Y is induced by a metricd : Y XY — [0, ), thenp =do (f X f)isa

pseudometric on X which induces a topology that agrees with the initial topology
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(See the proof of Prop. 2.86). Therefore, by A.23, if d : G/e X G/e — [0,) is a
metric on G/e, then p = d o (p X p) is a pseudometric which induces a topology
agreeing with that of G. Now let p : G X G — [0, o) be a pseudometric generating
the topology of G. Specifically, the open balls B,(g,7) = {h € Glp(g,h) <1}, g € G,
r > 0 generate the topology of G. We induce a metric on G/e by showing that p is
constant on the fibers of the quotient map p x p. If (g, h) € ker(p X p), theng =€ = h.
If p(g, h) # 0, then p(g, h) lies in an interval A = (a, b) where a > 0. Then p~!(A) is an

open neighborhood of (g, 1) such that (e, ¢) € p™(A). Remark A.24 gives that

(ee)eexe=gxh< p(A)

which is a contradiction. Since p(g, 1) = 0 whenever g = h, there is an induced map
d: G/e X G/e — [0, ) such that d o (p X p) = p. We first check that d is a metric.
Certainly, d(3,3) = p(g,8) = 0. If d(g, i) = 0, then p(g, k) = 0 and € B,(g,7) for

every r > 0. This implies g € hand A.22 gives g = h. Itis also clear that
d(@,b) = p(a,b) = p(b,a) = d(b,7)
and

d@ ) = pa,¢) < p(a, b) + p(b.c) = d@, b) + d(b,7)

forall a,b,c € G. Since d is a metric on G/e, it suffices to show the topology of G/e
agrees with the topology generated by the open balls By(g, ) = (he G/eld(g, h) <1,

g € G, r > 0. Since p is quotient and G also has the initial topology with respect to
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p, it suffices to check the equality B,y(g,7) = p~'(Ba(g, 1)) for g € G, r > 0. But this
follows immediately from the fact that p(g, k) = d(3, k). m

Since we have interest in non-Hausdorff topological groups, we prove the following
corollary without generalizing the usual proof that a first countable, Hausdorff

topopological group is metrizable.
Corollary A.26 If G is a first countable topological group, then G is pseudometrizable.

Proof. If G is a first countable topological group, then G/e is a T; (and therefore
Hausdorff) topological group which is first countable by 2. of A.25. All such groups
are metrizable [AT08, 3.3.12]. By 3. of A.25, G is pseudometrizable. m

While T; need not imply T, in quasitopological groups (see Example A.13), the

following equivalence is useful.

Proposition A.27 In a quasitopological group G, the following are equivalent:
1. Gis Ty.
2. GisTh.
3. The singleton containing the identity is closed (i.e. e = {e}).

Proof. 3. © 2. = 1. is clear since singletons are closed in T; spaces and all
translations are homeomorphisms. To show 1. = 3. we suppose G is T and let
a € e witha # e. Since G is T there is an open set U such that eithera € Uand e ¢ U
ore € Uand a ¢ U. The first case cannot happen, as a € e. Therefore e € U and
a ¢ Uand moreovere € UNU ' C Uanda ¢ UN U L. But now a(UN U ) is an
open neighborhood of a. This givese c a(UNU ) =a e UNU =g UNnU™.
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This, however, is a contradiction and soa =e. ThuseCe.m
An alternative description of e may be given as follows. Let U be the intersec-

tion of all open neighborhoods in G containing the identity.
Proposition A.28 ¢ = U

Proof. By Proposition A.21.3, we have the inclusion e € U. If every open neigh-
borhood of e contains a € G (i.e. a € Ug), then e € a. But Corollary A.22 gives that
a€a=e.m

Recall that an A-space (or Alexandrov space) is a topological space whose topol-
ogy is closed under arbitrary intersections. An interesting and useful fact about

A-spaces is the following;:

Remark A.29 Let A — space be the full subcategory of Top consisting of A-spaces.
A - space is closed under quotients, arbitrary coproducts (disjoint unions), and
finite products. For instance, if X is an A-space, then Mr(X), M;(X), M,(X), and

M(X) are all A-spaces.

Corollary A.30 For a quasitopological group G, the following are equivalent.
1. Gis an A-space.
2. eis open.
3. Gl/eis discrete.

Proof. 1. = 2. If G is an A-space, then e is open as an intersection of open neigh-
borhoods.
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2. = 1. Suppose V =), V, is any non-empty intersection of open neighborhoods
in G. Pick any point a € V. Now a7V, is an open neighborhood of e in G for each
a. We therefore haveecee = U; Ca 'V =,a 'V, and a € ae C V. Therefore V is
open in G.

2. © 3. eis open in G if and only if the singleton containing the identity of G/e is

open if and only if G/e is discrete (since it is a semitopological group. =

Corollary A.31 If a quasitopological group is an A-space, then it is also a topological
group.

Proof. If quasitopological group G is an A-space, then G/e is discrete by Corollary
A.30 and is therefore a topological group. By Prop. A.25, G must then be a
topological group. m

Continuity of multiplication. By definition a quasitopological group G is a topological
group if and only if the multiplication map G X G — G is continuous. We now give

a few convenient simplifications of this condition.
Proposition A.32 For each quasitopological group G the following are equivalent:
1. G s a topological group.

2. For each (a,b) € G X G and open neighborhood V of ab in G there is an open

neighborhood A of a and B of b such that ABC V.

3. For each open neighborhood W C G of the identity e, there is an open neighborhood
U S Wof e such that U* S W.
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4. There is a pair (a,b) € G X G such that for each neighborhood V of ab in G, there is

an open neighborhood A of a and B of b such that ABC V.

Proof. 1. & 2. = 3. = 4. is obvious.

3. = 2. Suppose (a,b) € G X G and V is and open neighborhood of ab. Now
W =a"1Vb! is an open neighborhood of the identity e. If 3. holds, then there is an
open neighborhood U of e such that U? = UU € a7'Vb™'. ThereforealllbC V. If
welet A =alland B = Ub, wehavea € A, b € Band AB = (all)(Ub) C V.

4. = 3. If W is an open neighborhood of e, and 4. holds for the pair (g, b), then aWb
is an open neighborhood of ab. This allows us to find an open neighborhood A of a
and B of b such that AB € aWb. Clearly U = (a"'!A)N(Bb™!) is an open neighborhood
of e. It suffices to check that U? € W. If g, h € U, then ag € A and hb € B. Therefore

aghb € AB C aWb and consequently gh€ W.m

Corollary A.33 If G is a quasitopological group such that there is a neighborhood base of

open subgroups at the identity, then G is a topological group.

Proof. If U is an open neighborhood of the identity, there is an open subgroup H

such that H> = H € U. By Proposition A.32, G is a topological group. m

Corollary A.34 If G is a quasitopological group having open subgroup H which becomes

a topological group with the subspace topology, then G is a topological group.

Proof. Suppose U is an open neighborhood of the identity e in G. Since H is a
topological group there is an open neighborhood V of e such that VV € HNU < U.
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Since His openin G, Visopenin G. m

Miscellaneous facts about topological groups.

Proposition A.35 Let f : G — H be a homomorphism where H is a topological group

and G has the initial topology with respect to f. Then G is a topological group.

Proof. Suppose U = f~}(V) is an open neighborhood of g¢’ € G where V is open in
H. There are open neighborhoods A, B of f(g), f(g’) respectively such that f(gg’) =
fQf(¢)e ABC V. Ifae f}(A) and b € f1(B) then f(ab) = f(a)f(b) € ABC V
and so ab € (V) = U. Therefore f~}(A) and f~!(B) are open neighborhoods of g
and g’ such that f~(4)f~}(B) € U. Therefore multiplication in G is continuous. It
is easy to see that if U = f"(V) is openin G, thensois U™! = f}(V)™! = fHV)
since inversion is a homeomorphism in H and f is a homomorphism. Therefore

inversion in G is continuous. m

Proposition A.36 Suppose

is a diagram in Grp where H, H' are topological groups and G, G’ have the initial topology

with respect to f, f'. If h is continuous, then so is g.

Proof. Suppose U = (f')"}(V) is open in G’ where V is open in H'. Then g}(U) =
g HYHVY) = () Y (hY(V)) is open in G since the diagram commutes and h and f

are continuous. |

184



A.3 Topologies on free groups

A.3.1 Free topological groups Fj(X)

The free (Markov) topological group on an unbased space Y is the unique topo-
logical group Fp(Y) with a continuous map o : Y — Fp(Y) universal in the sense
that for any map f : Y — G to a topological group G, there is a unique continuous
homomorphism f : Fy(Y) = G such that f = f o 0. Using Taut liftings [Por91]
or the Freyd special adjoint functor theorem [Fre66, Kat44], it can be shown that
Fu(Y) exists for every space Y and that F : Top — TopGrp is a functor left adjoint
to the forgetful functor TopGrp — Top. Moreover, the underlying group of Fu(Y)
is simply the free group F(Y) on the underlying set of Y and 0 : Y — Fyu(Y) is
the canonical injection of generators. There is a vast literature on free topological
groups and we do make use of some of this theory. The reader is referred to [Tho74]
for proofs of the following lemma. Recall that a space Y is functionally Hausdorff
if for each pair of distinct points 4, b € Y there is a continuous, real-valued function

f Y > Rsuch that f(a) # f(b).
Lemma A.37 [Tho74] Let Y be a topological space.
1. Fu(Y) is Hausdorff if and only if Y is functionally Hausdorff.

2. 0:Y — F\(Y) is an embedding if and only if Y is completely regular.

Lemma A.38 F) preserves colimits and quotient maps.
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Proof. As a left adjoint, F preserves all colimits. Suppose 4 : X — Y is a quotient
map and ox : X = Fy(X) and oy : Y — Fy(Y) are the canonical injections. Let G
be a topological group and f : Fi(X) — G be a continuous homomorphism such
that f (ker Far(g)) = 0. Suppose x, x' € X such that g(x) = g(x’). Since Fp(g)(ox(x)) =
oy(q(x)) = oy(g(x")) = Fm(g)(ox(x")) and f is constant on the fibers of Fj(g), it follows
that f = f ooy : X = G is constant on the fibers of g. This inducesamapk:Y — G
such that ko g = f. But then k induces a continuous homomorphism k : Fy(Y) = G
such that ko oy = k. But then foox = f = kooyoq = ko Fy(g) o ox and the
uniqueness of f gives that f = k o Fy(g). m

Another useful construction which makes use of free topological groups is the
following: Given any group with topology G, the identity id : G — G induces the
multiplication epimorphism mg : F(G) — G on the free group. We may now give
G the quotient topology with respect to m¢ : Fu(G) — G and denote the resulting
group with topology as 7(G). Since any quotient group of a topological group with
the quotient topology from the projection is a topological group (A.18), 7(G) is also
a topological group. The identity function G — 7(G) is continuous since it is the
composite mg oo : G = Fpu(G) — 1(G). Moreover, any continuous homomorphism
f: G — H to a topological group H induces a continuous homomorphism f :

Fm(G) — H such that the diagram

G —— Fu(G)

RIS

T(G)—}——?H
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commutes.Since m¢ is quotient, f : 7(G) — H is continuous. Stated entirely in
categorical terms this amounts to the fact that TopGrpis a full reflective subcategory

of GrpwTop.

Functorality A.39 7 : GrpwTop — TopGrp is a functor left adjoint to the inclusion
functor U : TopGrp — GrpwTop. Moreover, each reflection map r : G — ©(G) is the

continuous identity homomorphism.

Proof. For a continuous homomorphism f : G — H of groups with topology,

Fum(f) : Fm(G) — Fm(H) is a continuous homomorphism such that the square

F1u(G) 2% £y(H)

al [

T(G)WT(H)

commutes. The left vertical map is quotient and so the bottom map 7(f) is contin-
uous. Since 7 is the identity functor on the underlying algebraic groups, the rest of

the conditions to be a functor are satisfied. The natural bijection of the adjunction

is TopGrp(t(G), H) = GrpwTop(G, U(H)), f + fors;. m
Lemma A.40 1 preserves colimits, finite products, and quotient maps.

Proof. As a left adjoint 7 preserves all colimits. If f : G — G’ is a group homo-

morphism of groups with topology such that f is also a topological quotient, then
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Fu(f) : F(G) — F(G') is also a topological quotient. Since the diagram

Fu(G) 24 Fiy(@)

©(G) —=(G)

commutes in TopGrp and the top and vertical maps are topological quotients, 7(f)
must also be a topological quotient map by the Quotient Square Lemma. To check
that 7 preserves finite products we take G, H € GrpwTop. Clearly the projections
of G X H induce the continuous group isomorphism 7(G X H) — 7(G) X ©(H). The
mapsi:G— GXH,i(g) = (g ex)and j: H—> G X H, j(h) = (eg, h) are embeddings
of groups with topology. Let u be the continuous multiplication of 7(G X H). The

continuous composite
uo (t(@) X 7(j)) : ©(G) X ©(H) = (G X H) X 1(G X H) — 1(G X H)

is given by (g,h) — (g, eu)ec,h) = (g h) and is therefore the identity. Thus

id: (GXH)=1(G)Xt(H). m

Corollary A.41 Let G be a ¢group with tovology. Then G is a tovological group if and onl
ary group POLOgY. pologicat group Yy

if G = 7(G).

Proof. One direction is obvious. If G is a topological group, then the identity

id : G — G induces the continuous identity 7(G) — G. =
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Corollary A.42 G is discrete if and only if ©(G) is discrete.

Proof. Since rg : G — 7(G) is continuous, G is discrete whenever 7(G) is. If G is
discrete, then so is Fo(G) and the quotient 7(G). m
The fact that every Hausdorff topological group is functionally Hausdorff im-

plies the following corollary. The author does not know if the converse holds.
Corollary A.43 If 1(G) is Hausdorff, then G is functionally Hausdorff.

The category TopGrp is cocomplete and A+ B denotes the pushout (free topological
product with amalgamation) of a diagram A « G — B. If G = {#}, then this
is simply the free topological product A *+ B. Universal properties quickly verify
that A * B has the quotient topology with respect to the canonical homomorphism
kap : Fm(A ® B) — A * B (here @ denotes the coproduct in Top) and A #; B has the
quotient topology with respect to the canonical map A*B — A#;B. Free topological

products are related to the functor 7 in the following way:

Proposition A.44 For groups with topology A, B, the canonical epimorphism kap :

Fm(A @ B) — 1(A) # ©(B) is a topological quotient map.

Proof. The following diagram commutes in the category of topological groups.

Fpp(A)VFp(B)

Fu(Fa(A) ® Fyu(B)) — Fu(A) * Fy(B)—=— Fyl(A @ B)
Fp(ms®mp) kap
Fu(t(A) ® 1(B)) - 5 T(A) * 7(B)

Since my4, mp are quotient and Fy; preserves quotients, all maps except for the right
vertical map are known to be quotient. By the universal property of quotient
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spaces, ks g : Fm(A ® B) — t(A) * T(B) must also be quotient. m

A.3.2 Reduction topologies Fj(Y)

For every unbased space X, there is a canonical monoid epimorphism R :
M'(X) — F(X) (See A.1) reducing words by the relations xx™! ~ e ~ x"lx. We
note that R also satisfies R(w™!) = R(w)™! for each word w € M*(X). Give F(X) the
quotient topology with respect to R : M;.(X) — F(X) and denote the resulting group

with topology as Fr(X). This quotient topology on F(X) will be called the reduction
topology.
Functorality A.45 For each space X, Fr(X) is a quasitopological group. Moreover, Fg :

Top — qTopGrp is a functor and R : M, — Fg is a natural transformation each

component of which is a monoid epimorphism and topological quotient map.

Proof. For this proof all we need is the fact that M7.(X) is a semitopological monoid

with continuous involution. By the Quotient Square Lemma, if the diagram

M) Lo My(Y)

s

Fr(X) 5 Fr(Y)

commutes where f is continuous, then f’ is also continuous. The diagram com-
mutes when we let X = Y, f be left multiplication by word w in M(X) (resp.
right multiplication by w in M(X), the involution w — w™! in M;(X)) and f’ be
left multiplication by R(w) in Fr(X) (resp. right multiplication by R(w) in Fr(X),
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group inversion w > w! in M;(X)). Since M;(X) is a topological monoid with
continuous involution, f is continuous in each of these cases. Therefore right and
left multiplication by fixed words and inversion are continuous making Fr(X) a
quasitopological group. Moreover, a map g : X — Y in Top induces a continuous
homomorphism f = M7(g) : M(X) = M(Y). The diagram commutes when we
let f’ be the homomorphism F(g) : Fr(X) — Fr(Y) induced on free groups. By the
same argument F(g) is continuous and Fy is a well-defined functor (preservation
of identity and composition follows from the functorality of the free group). The
above diagram also illustrates the naturality of R. m

Leto : X — Fr(X) be the continuous injection of generators. Though we will see

that Fr(X) is not always a topological group, a nice property of F is the following:

Universal Property A.46 Let X bea space, (M, s) be a topological monoid with continuous
involution, and G be a quasitopological group. If f : X — M is a continuous function and
g : (M, s) = (G,™1) is a continuous, involution preserving homomorphism, then there is a

unique, continuous group homomorphism h : Fr(X) — G such thathoo = go f.

Proof. The canonical embedding of generators 0’ : X — M;(X) satisfies Ro o’ = 0.
The map f induces a continuous, involution-preserving monoid homomorphism
[ (M(X), 1) = (Mys) such that fo o’ = f whichis f(x) = f(x) and f(x™) = s(f(x))
on generators. Since g preserves involution, we have g(s(f(x))) = g(f(x))™!. Since
gf(ax™) = gf()gf(x)™? = gf(x)'gf(x) = gf(x"'x) is the identity of G, go f :
M:(X) — G is constant on the fibers of R : M(X) — Fr(X), there is a unique, con-

tinuous group homomorphism / : Fr(X) — G such thathoR = go f. Consequently,
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hoa:hoRoa':gofoa’:gof, ]

Corollary A.47 If X is a space and f : X — G is a continuous function to a topological

group, then there is a unique continuous group homomorphism f : Fr(X) — G such that
foo=f.

Corollary A.48 For any space X, the identity Fr(X) — Fu(X) is continuous and is
a homeomorphism if and only if Fr(X) is a topological group. Moreover, the identity

T(Fr(X)) — Fm(X) is an isomorphism of topological groups.

Proof. The continuous injection ¢ : X — Fy(X) induces the continuous identity
Fr(X) — Fu(X) by A.47. Since Fj(X) is a topological group, the universal property
of 7(Fr(X)) gives that 1(Fr(X)) — Fm(X) is continuous. The continuous inverse
Fu(X) — 1(Fr(X)) is induced by the map 0 = rpyx 00 : X = Fr(X) — 1(Fr(X))
from the universal property of free topological groups. Since T(Fr(X)) = Fm(X) it
follows that Fr(X) is a topological group if and only if id : Fr(X) = Fy(X). =

Now we consider a construction which generalizes Fz. This construction plays
a key role in recognizing the isomorphism class of the quasitopological group
nP(Z(X,)) as in Chapter 4.2. Fix a quotient map 4 : X — Y in Quo(Top). We
generalize the previous construction of Fr(Y) by replacing the topological monoid
M;(Y) with the semitopological monoid M,(Y). Specifically, let F(Y) have the
quotient topology with respect to the reduction map R : M(Y) — F(Y) and denote
the resulting group with topology as Fi(Y). We will refer to this quotient topology
as the g-reduction topology. Since Q = M'(q) : M(X) — M(Y) is quotient by

192



definition, the composite RQ : M’(X) — F?{(Y) is quotient. Note that when g = idy,

we have F&(Y) = Fx(Y). Functorality follows similarly to that of M, and F.

Functorality A.49 For each q: X — Y in Quo(Top), Fi(Y) is a quasitopological group.
There is a functor Quo(Top) — qTopGrp given by (7 : X — Y) > Fi(Y) on objects
and (f, g) > F(g) on morphisms. Additionally, R : M; — F% is a natural transformation
each component of which is a quotient map of semitopological monoids with continuous

involution.

Lemma A.50 Let q: X — Y be a quotient map.
1. The canonical injection of generators o : Y — Ft(Y) is continuous.

2. The identity id : Fx(Y) — Fr(Y) is continuous and is a homeomorphism if and only

if Fr(q) : Fr(X) — Fr(Y) is a topological quotient map.
3. The following are equivalent:

(a) F(Y) is a topological group
(b) id : Fi(Y) = Fe(Y) and id : Fg(Y) = Fa(Y)

(c) F(q) : Fr(X) — Fm(Y) is a topological quotient map.
4. The identity T(F}(Y)) — Fum(Y) is an isomorphism of topological groups.

Proof. 1. Since 0 is the composite of R : M(Y) — P;’{(Y) and the embedding

Y <= M(Y) (A.10.1), 0 is continuous.
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2. Consider the diagram

Mi(X) -2 Fr(X) —2 5 Fu(X)

RoM (q)l Fx(q)l FM(q)J

FL (N —= Fr() —~ Fu()

commuting in sTopMon". 2. follows immediately from the fact that the left vertical
map in the left square is quotient.

3. (b) = (a) is obvious. (a) = (b) If F%(Y) is a topological group, 0 : Y — Fi(Y) in-
duces id : Fu(Y) = F%(Y). Since the identity F;(Y) — Fz(Y) = Fu(Y) is continuous,
the three topologies on F(Y) must agree. For (b) © (c) it suffices to observe that the
top and left maps in the left square of the above diagram are quotient.

4. The map rpy,00: Y - Fi(Y) — 7(Fi(Y)) is continuous and induces the con-
tinuous identity id : Fp(Y) — t©(FL(Y)). The continuous identity id : Fi(Y) — Fap(Y)
induces id : ©(Fi(Y)) = Fm(Y) which is continuous by the universal property of

T(F(Y)). =

Corollary A.51 If Fr(X) is a topological group and q : X — Y is quotient, then Fi(Y) is

a topological group.

Proof. If Fr(X) is a topological group, then id : Fr(X) = Fu(X) by Corollary A.48.
Since Fy preserves quotients, Fu(g) : Fu(X) — Fu(Y) is quotient. Therefore, the
composite F(q) : Fr(X) — Fu(Y) is quotient and 3. of Lemma A.50 implies that

Fi(Y) is a topological group. m
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Corollary A.52 If all powers of the quotient map q : X — Y are quotient, then id :

FI(Y) = Fa(¥).

Proof. If 4" : X" — Y" is quotient for each n > 1, then id : M{(Y) = M;(Y) by Lemma

A.10. Therefore, the quotients I—%(Y) and Fg(Y) are homeomorphic.

Example A.53 Let X be an A-space and q : X — Y be any quotient map. By A.29,
M7 (X) is also an A-space. Since the category of A-spaces is closed under quotients,
F?(Y) must also be an A-space. Moreover, A.30 implies that F/(Y) is a topological
group. In particular, if X is an A-space, then Fr(X) is a topological group which is

an A-space.

Corollary A.54 The following are equivalent for any quotient mapq: X — Y:
1. Y is a discrete space.
2. Fi(Y) is a discrete group.

3. Fr(Y) is a discrete group.

Proof. 3. = 2. = 1. is obvious since we have continuous injections id : FI’Q(Y) -
Fr(Y)ando:Y — F;’Q(Y). For 1. = 3. suppose Y is discrete. Then M (Y) is discrete
and the quotient Fr(Y) is discrete.

Now we study the topological properties of F#(Y) in more detail. The following

definition is reminiscent of the first condition in Lemma 4.14.
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Definition A.55 We say a continuous function f : X — Y'is separating if whenever

f(x1) = 11 # y2 = f(x,) there are open neighborhoods U; of x; in X such that

fU) N f(Up) =0.

Remark A.56 Forany quotientmapgq: X — Y,Y is Hausdorff = ¢ is separating =

Y is Tl.
The following definition makes sense for a fixed quotientmapg: X — Y.
Definition A.57 A neighborhood U = U7'... U of w = x{'...x5" in My(X) is ¢-

separating if q(U;) N q(U;) = @ whenever g(x;) # q(x;). We say U is separating in the

case g = idy

Remark A.58 If U ... U;" is a g-separating neighborhood of x7' ... %3, then

llil L. ulei—f u€i+1 ll';n

41 "

is a g-separating neighborhood of x{'...x["1x*1 ... a5*. This will be particularly

i1t e

useful when we remove letters by word reduction.

Let Q = M'(g) : M(X) — M(Y) be the induced monoid homomorphism which
takes word w = x5'... %" to Q(w) = q(x1)* ... 4(x,)* and is quotient by definition.

Additionally, the composite RQ : My(X) — M, (Y) — Fi(Y) is quotient.

Lemma A.59 Let q: X — Y be a separating quotient map, w = x5 ... X be a non-empty

word in M1(X), yi = q(x;), and W be an open neighborhood of w.

1. There is a q-separating neighborhood U = U7' ... U, of w contained in W.
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2. Q(w) is reduced if and only if Q(v) is reduced for each v € U.
3. Ifv € U, then |IRQ(w)| < IRQ()| < IQ(w)!.

Proof. 1. If all of the y; are the same, there is an open V' = U; of x; such that
U=U...U;” € W. On the other hand, if y; # y;, there are open neighborhoods
Vi;jofx;and V; of x; such that g(V; )Ng(V;) = 0. For each i, take open neighborhood
Ui © Mygyqey Vij of xi such that U = Uy ... Uy € W. Clearly U is a g-separating
neighborhood of w contained in W.
2. Suppose first that Q(w) is a reduced word. Then for each i € {1,...,n — 1} either
Yi # Yir1 OF €; = €;,1. Suppose v = zi'...z;" lies in the g-separating neighborhood
Uand i € {1,..,n — 1} such that €; = —€;1. If 9(z;)) = g(zi+1), then we must have
¥i = q(x:) = g(xi11) = Yir. But this cannot be since Q(w) is reduced. Therefore Q(v)
is reduced. The converse is obvious since if Q(w) is not reduced then U already
contains Q(w).
3. Suppose v = z7'...z; € U. The second inequality is obvious since |[RQ(v)] <
Q) = |IQ(w)|. To prove the first inequality, Remark A.58 indicates that it suffices
prove that for every reduction in Q(v), there is a corresponding reduction in Q(w).
This follows directly from 2. m

Let Fi(Y), denote F(Y), = {w € F(Y)llw| < n} with the subspace topology of
FI(Y).

Corollary A.60 If q: X — Y is separating and n > 0, then Fi(Y), is closed in Fi(Y).

Proof. Suppose w € M (X) such that [RQ(w)| > n. Now take any g-separating
neighborhood U of w in M:.(X). Lemma A.59 asserts that if v € U, then |RQ(v)| =
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[RQ(w)| > n. Consequently, w € U € M(X)-RQ*(Fi(Y).) proving that RQ™? (F;’{(Y)n)
is closed in M(X). Since RQ is quotient Fi(Y), is closed in Fi(Y).m

We now observe some properties of F5(Y) which are often desirable in free topo-
logical groups. Let Z denote the set of all finite sequences C = ¢;, ..., €, withe; € {+1},
including the empty sequence. For each C =€y, ..., €, € Z, let X* = ..l € X)
and recall that M(X) = [, Xt. Let [C| denote the length of each sequence and
(RQ); : X* — Fi(Y)yy be the restriction of the quotient map RQ : M (X) — Fi(Y).

The proof of the next proposition is based on that of Statement 5.1 in [Sip05].
Proposition A.61 Let q: X — Y be separating.

1. F(Y) has the inductive limit topology of the sequence of closed subspaces {Fi(Y)u} =0,

i.e. Fi(Y) = limy Fi(Y).

2. Foreachn > 0, the restriction (RQ), : P (X®X 1) — Fi(Y), of RQ s a quotient

map.

Proof. 1. Suppose C € F(Y) such that C N Fi(Y), is closed in F}(Y), for each n > 0.
Since (RQ); is continuous Q~'(R1(C)) N X = (RQ)FIC) = RQ)FIC N F(Y)q) is
closed in X* for each . But M;(X) is the disjoint union of the X* and so (RQ)™(C)
is closed in M;(X). Since RQ is quotient, C is closed in Fi(Y).

2. Suppose A C F4(Y), such that (RQ);(A) is closed in D_ (X ® X1} = P, X"

Since F1(Y), is closed in Fi(Y) and RQ is a quotient map, it suffices to show that
RQM(A) = la = .4 € M(X)IRQ(@) € A} = RQH(A) N X
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is closed in X* foreach = €4, ..., €x € Z. If |C| < n, then RQEl(A)ﬂXC- = RQM(A)N X"
is closed by assumption. For |C| > n, we proceed by induction, and suppose
RQ;1(A) N X® is closed in X° for all 6 € Z of length I6| = n,n +1,...,1C| — 1. Let
w = x.x¥ € XC such that RQw) ¢ A. Let y; = gq(x). If Qw) = ¥y is
reduced, U is a g-separating neighborhood of w, and v € U, then by Lemma A.59,
n < || = [RQw)| = |[RQ()|l. Thus RQ(U) N Fj{(Y),, = 0 and since A C F]{(Y)n
we have U N RQEl(A) = (. Therefore we may suppose that Q(w) is not reduced.
For each i € {1,..,k — 1} such that y; = y;;; and €; = —€;,; find a g-separating
neighborhood U; of w in the following way. Remove the two letters x;", x;*! from
w to obtain the word w; = x{'..x{" ] x{*2...x;* which satisfies RQ(w;) = RQ(w) ¢ A.
Let C; = €1,...,€i-1, €12, -, € SO that || = || — 2 and w; € X% — RQE}(A). By our
induction hypothesis RQ;'(A) is closed in X% and so we may find a g-separating
neighborhood V; = AT..A{AT2. Al of w; such that V; N RQE}(A) = 0. We may
then find neighborhoods A;, A;,; of x;, x;1 respectively such that
U; = AT AT ATATH AT LA

is a g-separating neighborhood of w. Now take a g-separating neighborhood U
of w such that w € U € (); U; (the intersection ranges over i such that y; = ¥
and €; = —€;,1). It now suffices to show that RQ(v) ¢ A whenever v = a‘il...aik € U.
If Q(v) is reduced, then n < [C| = |Qw)l = |Q®)| = IRQ(v)l. Thus RQ) ¢ Fi(Y).
and we are done. If Q(v) is not reduced, then there is an iy € {1,...,k — 1} such

that g(a;,) = g(a;,+1) and €;, = —€;41. Since U is a g-separating neighborhood of w
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— o &1 i1 Fige2
we must also have y;, = 1. f v, = a'..a

4. a. %, .a; is the word obtained by

removing aZ",aZ‘_’:, we have RQ(v) = RQ(v;,) and v;, € V;,. But V;; n RQE; (A)=20
and so RQ(@®) = RQ(v;)) ¢ A.m

For each n > 1, let Y] denote the product Y" with the quotient topology from
the product function 4" : X" — Y". Of course, since 4 is quotient, Y; = Y and if
g =mx: X - ny"(X), then Yr = 7 (X™). Similarly, denote Yf, and (Y ® Y™'); as the

quotients of X* and (X @ X™!)" with respect to g and its powers and sums. In these

terms, we have

M =Prer ;=P

120 CeZ

Let Q. : P XoX )y > Pl (Yo Y~'); and R, : P (Yo Y1), — Fi(Y), be the
respective restrictions of R and Q. Since R, © Q, = (RQ),, the previous proposition
implies:
Corollary A.62 If q : X — Y is separating and n > 0, the restriction R, : @:’zo(YGS
Y1), = Fi(Y)n of reduction R : Mi,(Y) — Fp(Y) is a quotient map.
Theorem A.63 The following are equivalent.

1. q: X — Y is separating.

3. For each n 2 1, the canonical map o, : Y] — Fi(Y) taking (Y1, - Yu) to the word

Y1+ Yn 18 a closed embedding.

Proof. 1. = 2. If g : X — Y is separating, the singleton F}(Y) = {¢} containing the
identity is closed by Corollary A.60. Since Fi(Y) is a quasitopological group, it is
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Ts.
2. = 1. Suppose g : X — Y is not separating. There are distinct y;, y, € Y such that
whenever g(x;) = y; and U; is an open neighborhood of x;, then g(U;) N g(Uy) # 0.
Suppose W is any open neighborhood of reduced word y;y,* in Fi(Y) and x; €
g7 (y;). Since RQ is continuous, there are open neighborhoods U; of x; such that
x1x;t € UhU;' € RQ7Y(W). But there is a y3 € g(Ui) N q(U>) by assumption and so
Q(U1U;") € R™(W) contains the word ysy;'. Therefore e = R(ysy5") € W. But if
every neighborhood of y;y;" in Fi(Y) contains the identity, then Fi(Y) is not T.
1. = 3. Suppose A is a closed subspace of Y7 and g is separating. Let j: Y7 <

io(YLUY™!) be given by j(y1, -, Yn) = Y1--Yn s0 that R, © j = 0,.. Since j is a closed
embedding, R, (0,(A)) = j(A) is closed in [1L,(Y U Y”l);. But R, is quotient by
Corollary A.62 and Fi(Y), is closed in Fi(Y). Therefore 0,,(A) is closed in F}(Y).
3. = 1. If g is not separating, the argument for 2. = 1. implies that there are
distinct y1, ¥, € Y such that any open neighborhood of the three letter word y11,y;*
in I—“I’Q(Y) contains the one letter word y; which lies in the image of o;. Therefore, if
q is not separating, the image of 0; cannot be closed. =

Overall, we wish to characterize the quotient maps q : X — Y for which F(Y)

is a Hausdorff topological group. One such characterization is the following.

Theorem A.64 Let g : X — Y be a quotient map. Then Fi(Y) is a Hausdorff topological

group if and only if the following three conditions hold:

1. Y is Tychonoff.

2. PM(Y) = @n PM(Y)n-

201



3. RQ,: P, (X & XY — Fa(Y), is a quotient map for each n > 1.

Proof.

Suppose Fi(Y) is a Hausdorff topglogical group. Since g is quotient, we have
id : I-’;’{(Y) = Fy(Y) by A50. Since Fup(Y) is Hausdorff, Y must be functionally
Hausdorff by Lemma A.37. Consequently, g is separating. Since q is quotient and
separating, A.63 implies that o : Y — F%(Y) = Fu(Y) is actually and embedding. By
Lemma A.37, Y must be Tychonoff. Since id : Fi(Y), = Fp(Y), for each n, it follows

that

Fu(Y) = Fi(Y) 2 limy Fi(Y), = lim Fy(Y),

where the second isomorphism comes from A.61.1. The fact that RQ, : EB?ZO(X ®
X1 — FI(Y), = Fu(Y), is quotient follows from A.61.2.

Now suppose conditions 1.-3. hold. Since Y is Tychonoff, g is separating. Since
RQ, : P (X ® XY — F(Y), is quotient by assumption and RQ, : P} (X &
X1 — Fi(Y). is quotient by A.61.2, we have id : Fi(Y), = Fu(Y), for each n.
Therefore

id : Faa(Y) = limy Fys(Y),, 2 limy FL(Y),, = Fi(Y)

where the last isomorphism is from A.61.1. Lemma A.50 implies that Fi(Y) is a
topological group. Since g is separating Fi(Y) is T; A.63 and every T; topological
group is Hausdorff. =

The proof of the following simplification when X = Y and g = idy is the same.

Proposition A.65 For a Hausdorff space Y, Fr(Y) is a topological group if and only if the
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following three conditions hold:

1. Y is Tychonoff

3. Ry: EB?:O(Y ® Y1) — Fy(Y)n is a quotient map for each n > 1.

It should be noted that the conditions 2. and 3. in the previous proposition
have received a great deal of attention in topological algebra. Consequently, this
characterization is quite useful for determining when our constructions result in
a topological group. Full characterizations of spaces Y for which 2. and 3. hold
individually remain open problems. See sections 5-8 of [Sip05] for recent results
on these characterization problems.

Recall from Lemma A.50 that for quotientq: X = Y, id : P%(Y) = Fp(Y) if and
only if id : Fi(Y) = Fr(Y) and Fr(Y) = Fy(Y). This allows us to give alternative

characterizations by considering two separate characterizations.

Theorem A.66 Let q: X — Y be a continuous surjection. If 4" : X" — Y" is a quotient
map for all n > 1, then the induced, continuous epimorphism Fr(q) : Fr(X) — Fr(Y) isa

topological quotient map. If X and Y are Hausdorff spaces, the converse holds.

Proof. If 4" : X* — Y" is a quotient map for each n > 1, then so is M;(g) =

D507 ® )" : Mi(X) = M;(Y). Since the diagram

M%) 222, M ()

R [

Fr(X) —— Fr(Y)

Fr(q)
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commutes and the reduction maps are quotient maps, Fx(g) is a quotient map.

To prove the converse, let6X : X" — Fp(X)and oY : Y" — Fg(Y) be the canonical,
closed embeddings of Theorem A.63 and X" = ¢X(X") and Y" = ¢)(Y") be their
images.

We show the restriction p = Fr(g)lz. : X* — Y" is a quotient map using the

commutative diagram

X" —% Fp(X) 2 My(X)

q"l lFR(q) lM}(q)

Y" o Fa(Y) = M5(Y)

where the reduction maps are distinguished with subscripts. To see that p being
quotient implies 4" is quotient, take C € Y" such that (4")"1(C) is closed in X". Then
oX((g")y (C)) = p™o)(C)) is closed in X" and consequently ¢} (C) is closed in Y".
Since o} is a continuous injection, C is closed in Y.

Suppose A € Y" such that p™1(A) is closed in X". Since Ry is quotient and F(g)

is assumed to be quotient and Y” is closed in Fx(Y), it suffices to show that
B* = R (Fr(@) (A) N X = {x = 25 a5 Ry (M) (%)) = Ry(g(x1) - q(xi)*) € A}

is closed in X* for each C = €y, ..., €. We proceed by induction on [C| = k. It is clear
that if || < n, then B* = 0. Additionally, if |l = nand C # 1,1,..., 1, then B* = 0.
On the other hand, if IC| = nand C = 1,1, ..., 1, then B* = {x1...x,lq(x1)..-q(x,,) € A} =

R (p™(A)) N X* is closed by assumption. Now we suppose that |C| > n and B® is
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closed in X for all § such that 6| = n,n +1,...,|C| — 1. Letx = ¥'..x7* € X — B and

= M>(9)(x) = q(x1)...q(x)*. Since x ¢ BY, we have Ry(y) ¢ A. LetE = E‘il...Ei"
be a separating neighborhood of y in M7.(Y). Since M}(g) is continuous, there is a
separating neighborhood D = Df'...D{* of x, such that g(D,) C E, for eachi € {1, ..., k}.
Since E is a separating neighborhood, if g(x,) # q(x,), then g(D,) N g(D,) = 0. Now
we consider the cases when y is and is not reduced.

If y is reduced and v € D, then M’.(9)(v) € E must also be reduced by A.59.
Therefore n < || = |yl = [Ry(M7(v))], i.e. the reduced word of M7.(q)(v) has length
greater than n and cannot lie in A € Y". Therefore D N B* = 0.

If y is not reduced, then for each i € {1,..,k — 1} such that q(x,) = g(x;+1)
and €, = —€,1, we let w, = q(x1)" ... g(x-1)q(x42) ... q(x)* € M(Y) and
u, = x'... x5 x2 . x* be the words obtained by removing the i-th and (i+1)-
th letters from y and x respectively. We also let , = €3, ...,€,.1,€,42, ...€. This gives
Fr(g)(Rx(4,)) = Ry(M;(1,)) = Ry(w,) = Ry(y) ¢ A and consequently u, € X% — B%.
We know by our induction hypothesis that B~ is closed in X" and so we may find
a separating neighborhood V, = AT'... A™A™2 ... A% of 4, contained in X" — B%.

Let A, = A,;1 = X so that

ul - Ail.. A ’_1A 'A z+1A +2

12 k

is an open neighborhood of x. Now take a separating neighborhood U of x such
that U € D N (), U, where the intersection ranges over the i € {1,...,k — 1} such

that g(x,) = g(x.+1) and €, = —€,1. It now suffices to show that Fr(g)(Rx(v)) =
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Ry(q(z1)* ... q(z:)*) € A whenever v = 27" ...z} € U. If My.(9)(v) = q(z1)" - .- g(z)*
is reduced, then n < |C| = |x] = |Ry(M;(9))| and Ry(M;(q)(v)) € A. On the other
hand, suppose g(z1) .. . g(zx)* is not reduced. There is an i € {1, ..., k- 1} such that
q(z;,) = 4(zi,+1) and €;, = —€;,1. But z;, € D;, and z;,; € Dj,1, S0 we must have

q(xi,) = q(xi,+1). Since v € U € U;,, we have

& €ig-1_Eig+2 € . in — R
Vp =27 2, 20 . 2k €V, € XPo — B

Therefore

Fr(@)(Rx(v)) = Ry(M7(9)(v)) = Ry(M7(9)(vi)) = Fr(q)(Rx(v;,)) ¢ A

proving that U N B* = @ and B is closed in X*. m
Putting all of the previous results together, we obtain the following classification

theorem.

Theorem A.67 Let X be Hausdorff and q : X — Y be a quotient map. The following are

equivalent:
1. Fi(Y) is a Hausdorff topological group.
2. id : Fi(Y) = Fr(Y) = Fm(Y) and q is separating.
3. RQ : M(X) — Fum(Y) is a topological quotient map and q is separating.
4. The following three conditions hold:

(a) Y is Tychonoff.
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(b) Fm(Y) = lim Far(Y)n.
(c) Ry: EB:;O(Y ® Y Y — Fp(Y), is a quotient map for each n > 1.

(d) q" : X* — Y" is a quotient map for each n > 1.

Proof. In A.50 it is shown for arbitrary g that Fi(Y) is a topological group <
id : F‘I’{(Y) = Fr(Y) = Fy(Y) & RQ : M(X) — Fu(Y) is a topological quotient map.
Also q is separating < Fi(Y) is T1 (A.63) and any topological group is T if and only
if it is Hausdorff. Therefore, we have 1. © 2. © 3.

1. © 4. follows from Theorem A.64 and the fact that when X and Y are
Hausdorff, id : P;’Q(Y) = Fr(Y) © Fr(g) is quotient & g" is quotient foreachn>1. m

The arguments used to prove the next statements are based on the arguments
used by Fabel [Fab06] to show that the Hawaiian earring group n;"”(I[—I]E) is not first
countable. Given a sequence of integers N,,, we write lim,, .. N, = 00 when for

each M > 1, there is an my such that N,, > M for all m > m,.

Lemma A.68 If q: X — Y is separating and w,, is a sequence of reduced words in Fi(Y)

such that lim,, e |w,,| = oo, then the set {wm}anl is closed in F;’Q(Y).

Proof. Let C = {wy)us1 € FR(Y). Since RQ : M(X) — Fi(Y) is quotient, it suffices
to show that RQ7!(C) is closed in Mj(X). Let zx € RQ7'(C), k € Kbeanet (K, 2)isa
directed set) in M(X) converging to z € X% C M(X) such that RQ(z) ¢ C. For each
k € K, we write RQ(2x) = Wy, which implies |z| > |w,,|. Since XCo fs open in M(X),
there is a ko € K such that z; € X% (and consequently |z = |zl) for every k > k. If
the net of integers my is bounded by integer M, then RQ(zx) € {wy, wy, ..., wp) for
each k € K. But Fi(Y) is T; by Theorem A.63 and so the finite set {w;, w,, ..., wp) is
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closed in Fi(Y). Since RQ(zx) = RQ(z), we must have RQ(z) € {wy, wy, ..., wm} € C
but this is a contradiction. Suppose, on the other hand, that m; is unbounded and
ko € K. Since lim,, , |w,,] = o0, there is an mg such that |w,,| > |z| for all m > m,.

Since my is unbounded, there is a k; > kg such that ny, > my,. But this means

|zt,| = [, | > 12

This contradicts that |z is eventually |z]. Therefore we must have that RQ(z) € C
which again is a contradiction. Since any convergent net in RQ™(C) has limit in

RQ7Y(C), this set must be closed in M;(X). =

Corollary A.69 Let q : X — Y be separating and wy, be a sequence in Fi(Y) such that

limy, c0 [wy| = o0. Then w,, does not have a subsequence which converges in P%(Y).

Proof. If lim,,_,c |w,,| = o0, then lim,,,_, |Wy, | = oo for any subsequence Wm,. There-
fore, it suffices to show that w,, does not converge in F]{(Y) whenever lim,, e [w,,| =
o0, Suppose w, — v for some v € Fi(Y). There is a subsequence wy, of w,, such
that Iwml,l > || for each j > 1. But limy—eo Iwmjl =zooandsoC = {wm]}j21 is closed in

Fi(Y) by Lemma A.68. This implies v € C which is impossible. ®

Corollary A.70 If g : X — Y is separating and K is a compact subset of Fi(Y), then

K C Fi(Y), for some n > 1.

Proof. Suppose K ¢ Fi(Y), for any n > 1. Take w; € K such that |w| = n;.
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Inductively, if we have w, € KN F%(Y)nm, there is an n,,; > n, and a word
Wme1 € KN (F'I’{(Y)nm+1 - F‘}{(Y)nm)- Now we have a sequence w,, € K such that
lwi| < |w,| < ... which clearly gives lim,,_.« [w,| = . Corollary A.69 then asserts
that w,, has no converging subsequence in P;’{(Y), however, this contradicts the fact

that K is compact. =

Theorem A.71 Letq: X — Y bea separating quotient map. The following are equivalent:
1. Y is a discrete space.
2. Fi(Y) is a discrete group.
3. Fi(Y) is first countable.

Proof. 1. & 2. was proven in A54 and 2. = 3. is clear. To prove 3. = 1,
we suppose Y is non-discrete and Fi(Y) is first countable. Since g is quotient and
separating, Y must be T;. Let yo € Y such that the singleton {y,} is not open.
Since g is quotient 471(yy) is not open in X. There is an xy € g (1) such that
every open neighborhood U of xy in X satisfies g(U) # {yo}. In fact, g(U) must
be infinite, since if g(U) = {yo, y1,--» ¥}, then U N N, (X — 47} (y;)) is an open
neighborhood of x, contained in 471(y,). Suppose {By, By, ...} is a countable basis of
open neighborhoods at the identity e in F;’((Y) where B;,; € B; for each i. Choose
any z € X such that q(z) # q(xo) = yo and let w, = (xozxoxalz‘lxal)n € M(X). It
is clear that RQ(w,) = R((yoq(2)yoy,"9(z)',")") = e and therefore w, € RQ7!(B))

for all i, n > 1. Since q is separating, there is an open neighborhood U, of x; and
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V, of z such that %, = (U, V,U,U,;'V;*U;,')" is a q-separating neighborhood of w,
contained in RQ7'(B,). Recall that %, being a g-separating neighborhood means
g(U,) N q(V,) = 0. Since g(U,) is infinite, we can find y, € g(U,) distinct from y,
and x, € U, N g Y(y,). Since g(U,) N q(V,) = 0, the three elements o, ¥, 4(z) of Y are

distinct for each n > 1. Now we have
Uy = (xozxox;lz'lxgl)n € %, < RQ™(B,)
which satisfies
RQ@,) = R((v01)y0%5" 9@ %)) = (v04@905:9@)'y;") " € B

Note that |[RQ(v,)] = 6n and so lim,-« [RQ(v,)] = oo. By Corollary A.69, the
sequence RQ(v,) cannot converge to the identity of F;(Y). But since {Bj} is a count-
able basis at e and RQ(v,) € B,, we must have RQ(v,) — e. This is a contradiction.
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