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PREFACE

This disseftation consists of two parts which are focused on U.S. continental
outflow and mercury chemical cycling in various environments. Continental outflow
from the U.S. to the North Atlantic was invéstigated using a case study of NASA DC-8
flight 13 during the Intercontinental Chemical Transport Experiment — North America
(INTEX-NA). The chemical transformations of gaseous elemental mercury (Hg®) to
reactive gaseous mercury (RGM) and particulate mercury (PHg) were studied By
simulations with a mercury chemical box model based on the data analysis of NASA DC-
8 flights during the Arctic Research of the Composition of the Troposphere from Aircraft
and Satellites (ARCTAS) field campaign. Secondly, the chmical cycling of mercury and
the influence of water vapor on it were studied utilizing year-round measurements of
atmospheric mercury in New England by the UNH-NOAA AIRMAP program.

Although not obvious, these two topics are‘ related to each other. Hg® can be
transported in the global and regional atmospheres due to its long life time, 6-24 months
(Schroeder and Munthe, 1998). Thus, chemical transformations of mercury should be
studied with consideration of its atmospheric transport regime. It is well known that
transport of chemical species is an important factor to consider in estimating regional
chemical budgets. Chemical transformation between Hg® and RGM is important for the
atmospheric budget of mercury because RGM is readily removed from the atmosphere.
Furthermore, links between mercury chemistry and other chemical transformations can
give insight into atmospheric chemical processing.

The specific research topics were as follows. The first work was data analysis of

chemical species measured over the North Atlantic during INTEX-NA to quantify the
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effects of continental outflow to the atmosphere over the North Atlantic. This study
found two interesting results. First, pollutants in the southeastern U.S. boundary layer
were transported to the upper troposphere over the North Aﬁantic by vertical transport,
which was facilitated by convection and warm conveyor belt (WCB) uplifting combined
with fast‘ southwesterly flow in the free troposphere. Secondly, the data suggest that the |
total tropospheric column over the North Atlantic was impacted by U.S. outflow in
various stages of photochemical aging. This study was published in Atmospheric
Chemistry and Physics in April, 2008.

The second facet of the work was studying chemical transformation of Hg® to
RGM and PHg using a chemical box model based on the importance of RGM and PHg in
the atmospheric budget of total gaseous mercury (TGM). The first part of the mercury
study was the chemical transformation of Hg® in the Arctic springtime with box modeling
based on data obtained by NASA DC-8 flights during the ARCTAS field campaign. A
comprehensive gaseous chemical box model was developed including mercury, halogen,
and ozone chemistries. The study indicated that high solar radiation, continuous high Br,
emission, and a high NO, regime accelerated Hg® depletion in the Arctic springtime.
This study was published in Atmospheric Chemistry and Physics Discussion in Apﬁl,.
2010.

The second portion of the mercury study was the diurnal cycle of mercury at
Thompson Farm, one of the UNH-NOAA AIRMAP measurement sites. The mass
transport between gas-aqueous phases and aqueous reactions were added into the
chemical box model. The box model simulations indicated that the loss amount of Hg® at

nighttime could be influenced greatly by aerosol uptake with water solubility of Hg® and
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the presence of higher liquid water content of aerosols compared to the loss amount of
Hg° by'dry deposition. Moreover, sensitivity experiments suggested that the ambient
level of PHg is controlled by dry deposition. This work is planned to be submited to

Geophysical Research Letters in the near future.

Principal Objectives of my work were:
e Assess long-range trarisport of U.S. pollutant outflow to the Atlantic Ocean
utilizing a large suite of trace gases and meteorological parameters measured on

DC-8 flights during INTEX-NA.
e Investigate chemical transformation of mercury in various atmospheric

environments using data analysis and chemical box modeling.
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ABSTRACT -

CONTINENTAL OUTFLOW OF POLLUTED AIR FROM THE U.S. TO THE NORTH
ATLANTIC AND MERCURY CHEMICAL CYCLING IN VARIOUS
ATMOSPHERIC ENVIRONMENTS

by
Su Youn Kim
University of New Hampshire, December, 2010

The dissertation consists of two topics. The first was continental outflow from the
U.S. to the North Atlantic with a case study of NASA DC-8 flight 13 during the
Intercontinental Chemical Transport Experiment — North America. This study found two
interesting results. First, pollutants in the southeastern U.S. boundary layer were
transported to the upper troposphere over the North Atlantic by vertical transport, which
was facilitated by convection and waﬁn conveyor belt uplifting combined with fast
southwesterly flow in the free troposphere. Secondly, the data suggest that the total
tropospheric column over the North Atlantic was impacted by U.S. outflow in various
stages of photochemical aging. The second topic was a study of Mercury Depletion
Events (MDEs) in the Arctic springtime and mercury chemical transformation in the
northeastern U.S. MDEs were studied by simulations using a chemical box model and
data analysis of NASA DC-8 flights during the Arctic Research of the Composition of the
Troposphere from Aircraft and Satellites field campaign. A chemical box model was
developed considering only gaseous reactions of mercury, halogehs, and ozone

chemistries. Several idealized sensitivity experiments based on data analysis were
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simulated to study what factors were most important to MDE formation. The box model
capfured similar patterns as the measurements which were high Br,, O; depletion, and
decline of ethyne and light weight alkanes inside the MDE areas. The simulations
indicated that a continuous high Br, mixing ratio, high intensity of solar radiation, and a
high NO, regime caused faster Hg® depletion. Furthermore, the mercury diurnal cycle in
the northeastern U.S. was studied with the box model and data analysis of year-round
continuous measurements at the AIRMAP Thompson Farm site. The mass transport
between gaseous-aqueous phases and aqueous reactions were added into the box model.
Diurnal cycles of Hg® showed that it decreased ~40 ppqv on stable nights. Box model
simulations indicated that the decreased amount of Hg® was facilitated by water solubility
of Hg® and uptake into the liquid water content of aerosols. Moreover, the sensitivity
experiments with dry deposition added indicated that the ambient PHg level was strongly

influenced by this proéess.
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I. Continental Outflow of Polluted Air from the U.S. to the Upper
Troposphere over the North Atlantic during the NASA INTEX-NA

Airborne Campaign

1. Introduction

Continental outflow plays an important role in influencing the chemical
environment of the remote troposphere through long-range transport of natural and
anthropogenic trace gases and aerosols. Extensive airborne measurements over the
Pacific during NASA field campaigns such as PEM-WEST B and TRACE-P have
characterized the chemical composition of Asian outflow (Talbot et al.; 1997, Blake et al.,
2003; Bartlett et al., 2003). Moreover, Asian dust and anthropogenic pollutants via trans-
Pacific transport can impact air quality in the U.S. (DeBell et al., 2004; Jaffe et al., 1999,
2003). Recently, long-range transport of Saharan dust over the Pacific route to western
North America has been documented in the middle troposphere (McKendry et al., 2007).

One important component of the continental outflow over the north Pacific
(Talbot et al., 1996a, 1997) and south Atlantic (Talbot et al., 1996b) basins is wet
convective lifting of air masses over the continent with subsequent enhancement in
mixing ratios of insoluble trace gases in downwind areas over the ocean at altitudes
above 8 km. For example, over the north Pacific Crawford et al. (2003) reported
enhanced mixing ratios of CO in the entire 1-11 km vertical column of a cloud impactéd
area during TRACE-P. A case of deep convective lofting was also obtained during
TRACE-A, where a NASA DC-8 flight in the vicinity of a meso-scale complex moving
across burning Brazilian savannah measured high levels of biomass combustion products

in the middle-to—uppef troposphere (Bartlett et al., 1996; Pickering et al., 1996). These



scenarios are highly conducive to long-range transport of pollutants due to faster zonal
winds aloft and reduced photochemical reactivity.

The International Consortium for Atmospheric Research on Transport and
Transformation (ICARTT) field campaign was designed and conducted to gain a better
understanding of factors influencing large-scale air quality over North America, the
North Atlantic, and western Europe (Fehsenfeld et al., 2006). ICARTT measurement
platforms used for studying intercontinental transport included aircraft, ship, satellites,
sondes, autonomous balloons, and ground sites that were all operational during July-
August 2004. Five types of the North America outflow were classified, which were two
types of low level transports, fire plumes, and upper and lower level export by fronts
(Methven et al., 2006). Unlike Asian outflow which has been chafacterized extensively
by combustion tracers, a large suite of nonmethane hydrocarbons (NMHCs), and aerosol
composition, North America pollutant outflow over the Atlantic has focused largely on
ozone (03) and CO (Dickerson et al., 1995; Mao et al., 2006; Millet et al., 2006; Parrish
et al., 1993). North American outﬂow was characterized comprehensively for its
chemical composition during the ICARTT field campaign. Specifically, the large
variations in ratios between the pentyl and C,-C, nitrates over the North Atlantic
indicated the impact of different parent hydrocarbons emissions from the U.S. to the
North Atlantic by photochemical production during transport from the source regions
(Reeves et al., 2007). Canadian and Alaskan forest fires emissions caused elevated CO,
PAN, organic compounds and aerosqls. Moderately high levels of CO and longer-lived
hydrocarbons were found in about 44% sampled data which originated from North

America by low and upper level outflow (Lewis et al., 2007).



In the Northeastern U.S. a primary mechanism for continental outﬂow is a warm
conveyor belt (WCB) transport where a mature cyclone lifts air masses from the
boundary layer up into the westerly flow in the upper troposphere (Cooper et al., 2001).
The U.S. plumes lofted to the free troposphere by the WCB can affect air quality in
Europe within a few days (Stohl et al.,, 2003). An extensive field campaign linked
elevated trace gases mixing ratios in the lower troposphere over Scandinavia including
Alpine areas, to polluted air that was lifted into the free troposphere by the WCB over the
eastern U.S. (Huntrieser et al., 2005). A recent modeling study suggested that in summer
air masses in the central and southeastern U.S. may be lofted to the free troposphere by.
convection followed by export to the North Atlantic by the semi-permanent anticyclone
(Li et al., 2005). They also pointed out that U.S. regions with the most frequent
occurrence of deep convection were the Midwest, the Gulf Coast, and the East Coast.
The Gulf Coast and off the East Coast of the United States were also found to be
influenced by deep convection during SONEX field campaign over the Atlantic, which
was conducted in October — November1997, by determining lightning activity (Fuelberg
et al., 2000).

Here we present a case study of convective uplifting of polluted air to the free
troposphere over the southeastern U.S. coupled with rapid transport to the North Atlantic.
We utilized data obtained primarily on flight 13 of the NASA DC-8 during the
Intercontinental Chemical Transport Experiment — North America (INTEX-NA)

component of ICARTT (Singh et al., 2006).



2. Methods

2.1. Measurement data

INTEX-NA was performed over North America and the adjacent North Atlantic

Ocean using the NASA DC-8 aircraft to examine the large-scale distribution of trace

gases and aerosols associated with the North America continent (Singh et al., 2006). This

study focused on flight 13 which was conducted on July 28, 2004 with one of the main

objectives being sampling of U.S. continental outflow as described in Methven et al.

(2006) and Arnold et al. (2007). The DC-8 took off at about 12 UTC from the Pease

International Airport in New Hampshire and landed at around 22 UTC, yielding a flight

duratioh of about 10 hours. The flight route, shown in Figure 1.1, was located over the

Nortn Atiantic near the most northerly position of a stationary front and near the southern

end of a cold front (Figures 1.1 and 1.2).

A brief description
of the overall measurement

package on the DC-8 was

provided previously in Singh |

et al. (2006). The principal |

trace gases of interest here

were CO, CHy, CO,, COS,

and a suite of NMHCs and |

halocarbons which are

archived and available at

1z IR 28 JilL D4 15045 2 HESA LARC

Figure 1.1. Flight 13 route and the three regions in upper
troposphere.

http://www-air.larc.nasa.gov/cgi-bin/arcstat. The majority of the data, including CO and



CH4, were obtained by the University of California — Irvine (UC-Irvine) (Blake et al.,
2003; Colman et al., 2001). Carbon dioxide was measured as described by Vay et al.
(1999). Only flight 13 data collected over the Atlantic east of 70°W was used in our
analysis. We used relationships between CH4, CO, CO,, and COS in boundary layer air
(<2 km) over the southeastern U.S., determined using all the INTEX-NA DC-8 flight data
(flights 6, 7, 10, 12, 16, and 19) obtained over the continent at latitudes <35°N, to
understand the vertical distribution of vtrac'e gases along the ﬂight 13 track. These afe all
“long-lived trace gases, with CO having the shortest lifetime of about 1 to 2 months in
summer the range of OH concentration over 1.0 x 10° - 1.8 x 10° molecules cm™
(Brasseur et al., 1999; Mak and Southon, 1998). Thus, these trace gases are
photochemically stable so that dynamical process are the most important factors
determining their distribution downwind from North America on the transport time scales
important to this analysis. NMHCs and halocarbons used in this study were mainly the
urban and industrial tracers, C,Cly, 1-CsH 2, CHCls, and C¢He (Wang et al., 1995; Chan et
al., 2006; Aucott et al., 1999; Na et al., 2001), and a combustion tracer, CoHo.

We also utilized “Measurement of OZone, water vapor, carbon monoxide and
nitrogen oxides by Alrbus in-service airCraft (MOZAIC)” to examine the vertical
distribution of key trace gases over the east coast during the time period of flight 13.
MOZAIC uses autonomous instruments loaded into five long-range passenger airliners,
namely AIRBUS 340 - 300 aircraft. Of particular interest here was the four second data
obtained on a flight from Vienna, Austria to Washington, D.C. (U.S.A.) on July 28, 2004.

‘This dataset provided additional information on the vertical profiles of O3 and CO over



the eastern U.S. between 60°W - 78°W and 38°N - 48°N obtained during descent into the
Washington area.

Ground-level data from the AIRMAP  measurement  network
(http://airmap.unh.edu) in the northeastern U.S. for two days in July (27 and 28) 2004
were also utilizéd in this study. The NMHCs and CO data from Thompson Farm (TF) in
Durham, New Hampshire (23 m elevation, 43.11°N and 70.95°W) were 40 minute
averages and those from the second location on Appledore Island (AI), ME (sea level,
42.97°N and 70.62°W) were 1 hour averages (Sive et al., 2005; Zhou et al,, 2005)..
Methane and CO in ambient air were surveyed for selected U.S. cities by the UC-Irvine
group using canisters (Baker et al., 2008). Specifically, we used mbnthly average values
for August collected in the southeastern U.S. cities of Birmingham, Alabama and Baton
Rouge, Louisiana during 2001, and Charlotte, North Carolina and Knoxville, Tennessee
in 2002, and El Paso, Texas in 2003.

2.2. Backward trajectories and photochemical ages

Backward trajectories in combination with an analysis of synoptic conditions énd
photochemical ages can be an effective method to understand air mass transport.
Kinematic backward trajectories were calculated at one minute time steps throughout the
INTEX-NA flight series by Florida State University
(http:/fuelberg.met.fsu.edu/research/intexa/realtime/). The ratio of C3Hs/C,Hs was used
for comparing the relative photochemical age of air masses (McKeen and Liu, 1993;
Parrish et al, 2004). To assess the relative transport time from the boundary layer in the

southeastern U.S. to the flight legs over the North Atlantic, we utilized the chemical



clock provided by the reactivity of C;Hgand C,H¢ with OH. Equation (1.1) was used to

estimate the transport time:

I (r(C,H,)/ r(C,H¢)),
(r(C;H,)/ r(C,Hy)),

(Equafion 1.1)
(kc3Hs - kC2H6 NOH]

At =

Here, (r(CsHg)/r(CyHg])o 1s the ratio of the mixing ratios of the two compounds in
the boundary layer, (r(C3Hs)/r(C;Hg)): is the same ratio at a later time t for each of the
flight leg regions of interest, k is the OH reaction rate constant, and [OH] is OH
concentration. The DC-8 flight data éhowed that (r(C;Hs)/r(CyHg))o had a mean value of
0.36 = 0.15 (n = 66) for the boundary layer over the southeastern U.S. (hereinafter SBL).

As input for the estimates we used the measured OH mixing ratios, ambient
pressures, and air temperatures measured on the DC-8 flights in the SBL. Mean values
were 0.18 pptv for OH, 0.92 atm for pressure, and 294 K for temperature, which resulted

in a concentration of 4.1 x 10° OH molecules cm™ in the SBL. We used rate constants

1 -1
S

for C3Hg and C,Hgof 1.1 x 102 ¢m® molecule ' s and 2.3 x 10" cm® molecule -
respectively at 294 K (Sander et al., 2003).
3. Synoptic meteorology

Shown in Figure 1.2. a-f are mapé of sea level pressure (SLP) for 12 UTC on July
25 and 12UTC on July 28, 500 and 300 hPa geopotential heights for 00 UTC on July 26
and 12 UTC on July 28. Together. these define the surface, middle and upper
tropospheric circulation patterns across the U.S. on the flight day and a few days prior to
it. The circulation system that facilitated the transport pattern of Flight 13 evolved from a

Canadian Low with cold and warm fronts situated north of Quebec, Canada at 12 UTC on

July 21, as shown in the 6 hourly analyzed SLP. This low pressure system was moving
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eastward with the warm front evolving into an occluded front over the North Atlantic at
12 UTC on July 23, and the cold front remaining largely over the eastern U.S. through

O00UTC on July 24.



The cold front became a stationary front that was located over the eastern U.S.
and the western Atlantic starting at 12 UTC on July 24 (Figures 1.2 a and b) and it
persisted throughout the duration of flight 13. It should be noted that several small short-
lived cyclones were generated in association with the stationary front. In particular, one
of these small disturbances was generated over the southeastern U.S. at 06 UTC on July
26 and matured into a cyclone which propagated to the Virginia area over the‘following
24 hours. Accompanying the cold front associated with this small cyclone was a WCB
over the Southeast. These disturbances and associated WCB are conducive to lifting of
boundary layer air masses to the free troposphere.

The 500 hPa geopotential heights at 12 UTC on July 23 showed that a trough
associated with the Canadian Low was situated over the northern Great Plains. This
trough traveled across the Midwest (Figure 1.2 c¢) and reached southern Canada in the
vicinity of the Great Lakes at 12 UTC on July 28 (Figure 1.2 dj. It subsequently moved
northeastward relativély fast and weakened over the North Atlantic Ocean. While the
influence of this trough existed over the U.S. until 00 UTC on July 30, another trough
formed over southern Canada at 12 UTC on July 28 (Figure 1.2 d).

The flow patterns at the 300 hPa geopofential height and isotachs resembled those
at the 500 hPa level (Figures 1.2 € and f). Zonal wind speeds on the 300 hPa lével were
generally 5 - 25 m/s over the U.S., and increased to >35 m/s in the jet stream over the
northeastern U.S. In general, the jet stream on downwind side of trough is associated
with upward motion (Holton, 1995), which facilitates air mass movement from lower
altitudes to the upper troposphere with subsequent transport over long distances. Overall,

the maps of geopotential height at 500 hPa and 300 hPa together suggested a dynamic



westerly flow regime in the mid-to-upper troposphere.

00UTC July 26 00UTC Tuly 27

S

e

“33@12\53 Suu by s CORDZ 26 Jul 0*1‘;‘5“}‘0?‘3233 “J:&*Vi')'; 581 warnding

Figure 1.3. GOES infrared images (a and b), and skew T and log P diagram (c
and d) at the Slidell, Louisiana (30.33 °N and 89.82 °W) for 00 UTC July 26,
2004 and 00 UTC Julv 27. 2004.

GOES infrared imagery and skew T and log P diagrams at 00 UTC on July 26 and

27 suggested a strong possibility of upward transport of air masses from the surface

during that time period (Figure 1.3 a-d). GOES infrared imagery (Figures 1.3 a and b)

revealed the presence of high clouds over the eastern U.S. except in coastal regions,

extending from Texas eastward to western South Carolina and northeastward to New

England. These images indicated cloud top temperatures of 200K (~14 km altitude),

providing the possibility of strong deep convection. Manually digitized radar (MDR) is

the best indicator of convection, and Figures 1.4 a-f showed very large convection
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(a) 18 UTC July 25 b) 00 UTC July 26

R 34 i
Intensities (Dbz): 20 308 40M 45 50N 558
Figure 1.4. Manually Digitized Radar images for 18 UTC and O0UTC July 25 —

28, 2004. The image of 18 UTC July 27 is not available, so 20 UTC was in this

occurred over the southeastern and eastern U.S. in the afternoon to the evening for about
3 days betWeen July 25 — 27. Moreover, the area of high clouds coincided with heavy.
precipitation indicated by the MDR (Figures 1.3 a-b and 1.4 a-f). Images of other times
through 00 UTC on July 28 were also examined, and they uniforml}; suggested similar

conditions conducive to convection in this same region.
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Furthermdre, Skew T diagrams at individual locations from the eastern U.S.
verified the likelihood of convection. The convective available potential energy (CAPE)
and Lifted Index (LI) on the Skew T diagrams (Figures 1.3 ¢ and d) from the Slidell,
Louisiana (30.33 °N and 89.82 °W), during July 25 to 27 were used to diagnose the
presence of local convection. The CAPE values within the range of 1000 — 2500 J/kg
and LI less than -4, all falling into the criteria for unstable and convective atmospheric
conditions (http://www.theweatherprediction.com/ severe/indices/).

In summary, our synoptic analysis suggested that a stationary front associated
with a Canadian cyclone over the eastern U.S. continuously induced convection several
days before July 28, which facilitated fast transport of air masses from the boundary layer
to the free troposphere. The WCB over the southeastern U.S. also contributed to the
vertical transport as indicated by the spawning of small cyclones in association with the
stationary front. The mixed effects of widespread convection and the WCB over the
southeastern U.S. overlapped in their occurrence during July 25 — 28, 2004, and were also
described in Kiley et al. (2006) and Cooper et al. (2006). All meteorological evidence
consistently pointed to comi)ined vertical transport via convection and WCB uplifting
combined with fast eastward transport in the free troposphere over the eastern U.S.
during the two days prior to flight 13. In the following sections of this paper we
examined the chemical signatures measured at high altitude over the Atlantic to provide
support for the meteorological analysis conducted for flight 13.

4. Notable chemical characteristics of ﬂight 13
The vertical distribution of mixing ratios of CO, CH4, CO,, and COS is displayed

for the flight data east of 70°W in Figure 1.5. Note that data at altitudes <5 km was
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obtained near 40°W, not directly underneath of flight legs at altitudes >5 km (Figures 1.1
and 1.5). Mixing ratios of CO near the surface were 70 to 80 ppbv followed by a
decrease to the lowest values of ~60 ppbv at 2 km. At altitudes between 2 and 5 km, CO
increased to 80 ppbv, and then continued to rise quickly above 5 km varying over a range
of 78 — 134 ppbv at altitudes >8 km. The vertical profile of CHy tracked CO closely,
which exhibited levels of 1760 to 1770 ppbv near the surface followed by a slight
decrease at 2 km. Between 2 and 5 km CH, again hovered around 1770 ppbv. An
increasing trend with altitude was accelerated above 5 km, where CH4 was enhanced up
to 1843 ppbv at 8 — 11 km.

The vertical profiles of CO, and COS showed trends opposite those of CO and
CH,. Mixing ratios of CO, were ~376 ppmv near the surface, and then increased to 377
ppmv at 2 km followed by a decrease to ~375.5 ppmv between 2 and 5 km and further
decrease above 5 km The minimum value of 372.4 ppmv was observed in the 8 — 11 km
region. COS tracked CO; closely with mixing ratios varying over 455 - 475 pptv near the '
surface, increasing to 480 pptv at 2 km, and then decreasing gradually to 455 pptv
between 2 and 5 km. Thé lowest COS mixing ratios near 410 pptv were found at 8 - 11
km.

To understand the causes for the high mixing ratios of CO and CHj that occurred
in the 8 — 11 km altitude region, we identified three time periods with the most enhanced
levels (Figure 1.1). These occurred on constant altitude flight legs, with the first region at
10.4 km over the time period of 19 - 20 UTC, the second at 8.9 km during 12:20 - 14:40

UTC, and the third at 8.5 km over 17:30 - 19:00 UTC. All other segments of the flight
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are referred to as “Outside” (i.e., outside of the three regions), and they are discussed in

Section 5.
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Figure 1.5. Vertical distribution of (a) CO, (b) CHa, (c) CO, and (d) COS.
Lines in the graphs are for monthly average mixing ratios in July, 2004 in
Bermuda.

First, we used trace gas data from the NOAA Global Monitoring Division (GMD)
monitoring site on Bermuda (http://WWW.esrl.noaa.gov/gmd/dv/ftpdata.html) and from
Mace Head, Ireland (Simmonds et ai., 2006) to determine representative background
‘mixing ratios over the North Atlantic. The monthly average surface mixing ratio at
Bermuda in July 2004 was 1800 ppbv for CHs, 86 ppbv for CO, and 37.7 ppmv for CO,.

The mean mixing ratio of C,Cls at Mace Head, Ireland was 4.94 + 0.06 pptv from
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measurements over the period of 200¢ to 2004 (Simmonds et al., 2006). In two rural
areas of the U.S., annual mean surface mixing ratios of COS from February 2002 to
February 2005 were 444 + 8 pptv in Wisconsin and 441 + 8 pptv at Harvard Forest,
Massachusetts (Montzka et al., 2007).

Statistics are provided in Table 1.1 to describe the chemical environment of | the
three regions of enhanced mixing ratios. CO, C;H; and C,Cl4 exhibited mean. mixing
ratios of 127 ppbv, 117 pptv and 10.2 pptv, respectively, in region 1, 106 ppbv, 93 pptv
and 5.1 pptv in region 2, and 109 ppbv, 94 pptv and 5.5 pptv in region 3.
Correspondingly, in regions 1, 2, and 3 the mean value of CH4 was 1831 ppbv, 1805
ppbv, and 1808 ppbv respectively. Compared to the‘background levels over the North
Atlantic, the mean levelé of CH4, CO, and C,Cly in regions 1, 2, and 3 were higher by 0 —
1.7%, 23 — 48%, and 3.3 — 106% respectively. Mixing ratios of CS, whose primary
source is chemical industrial processing (Chin and Davis, 1993), were mainly less than 4
pptv in each region with occasional levels up to 14 pptv. Overall, the three regions
showed a clear influence of urban combustion emissions. |

The air mass transport time to the free troposphere can be estimated by combining
hydrocarbon lifetimes and trajectories whether the transport was by the WCB on the
synoptic scale or mesoscale convection (Purvis et al., 2003). This transport was
investigated here using backward trajectories combined with photochemical age
estimates of air masses in regions 1-3. Kinematic 5-day backward trajectories arriving in
each of the three regions are presented in Figure 1.6. Since many of the air masses
appeared to meander over the southeastern U:.S. for several days, 10-day backward

trajectories (not shown) were used to examine the long-range transport of these air
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masses to the U.S. In the case of region 1, these trajectories showed mainly two origins,

with one from over the eastern Pacific/U.S. west coast and the other from the Gulf of the
Mexico. These air masses arrived over the southeastern U.S. in the mid-to-upper
troposphere, and then spent ~4 days over the southeastern U.S. in the altitude region of
550 to 300 hPa. Eventually they were transported in <20 hours from over.the Virginia
area at 00 UTC on July 28 to region 1 in the upper trqposphere (>350 hPa). The mean
value of C3Hg/C,Hg was 0.23 + 0.02 in region 1, and photochemical aging of an SBL air

mass arriving in region 1 was 1.5 days based on equation (1.1).

a) region 1 region 2
_ ‘ 2L

I3

(c) region 3 {d) Outside

1000 950 900 830 800 760 700 650 600 530 50O 450 400 350 300 250 200 150

Figure 1.6. Kinematic 5-day backward trajectories for each region. Big dots are at 00
UTC on each day and the small ones are other hours. Unit of color bar is hPa.
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The backward trajectories for region 2 illustrated a complex dynamical situation.
In this case there were a large number of trajectories indicating that the air spent 3-4 days
over the southeast U.S. at altitudes ranging from near the surface to 500 hPa. In addition,
approximately 13% of the trajectories followed zonal westerly flow at 300 hPa which .
intercepted the air masses residing over the southeast U.S. for several days. Ten-day
backward trajectories indicated that the inflowing air hadv arrived from over thé
northwestern U.S., the North Pacific, and the Gulf of the Mexico. On July 27 this
mixture of air masses was quickly advected over the Northeast, and arrived at the flight
altitude on July 28. The value of C3Hs/C,Hg was 0.20 + 0.04 in this region, and the
photochemical aging of an SBL air mass arriving in region 2 was 2 days.

Air masses transported to region 3 had their origin over mainly the south central
and southeastern U.S. It appears that boundary layer air over eastern Texas was advected
at low level to the southeastern states and mixed with SBL air during vertical lifting on
July 27 and mid-tropospheric air masses that originated over the Oklahoma/Colorado
area. On the 28" the air passed over the Northeast in the mid-troposphere and arrived at
the flight altitude of 8.5 km nearly coincident in time with the region 1 air masses. It
appears that it took about 1.7 days to reach the air masses to the flight region 3. The
value of C3H8/C2H6 was 0.22 + 0.03 in region 3, and photochemical aging of an SBL air
mass arriving in this region was 1.7 days.

We also estimated the chemical clock transport times in these three regions using
ratios ‘of ethyne/CO and trichloroethylene/tetrachloroethylene (C,HCl3/C,Cls). In general,.
these produced variable transport times that varied by up to a factor of two from

C;Hg/C,Hs. Using a lower OH concentration suggested by Arnold et al. (2007) also
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produced transport times that were about two times longer. We believe that for flight 13
the trajectory estimated transport times are more reliable that those estimated by the
chemical clock method. This likely due to the air masses lingering 0§er the U.S. for
several days and entraining multiple inputs of boundary layer air by convection over the
SBL. This likely produced a very mixed air mass of various ages and is responsible for
the inconsistent chemical clock transport times.

Backward trajectories and the synoptic weather patterns indicated that the SBL air
masses were sampled in regions 1-3 due to their fast transport through convection and the
WCB that developed in association with the stationary front. Ultrafine aerosol showed
distinct mean differences of 10,172 particles/cm3 in region 1, 1,482 par‘cicles/cm3 in
region 2, and 1,998 particles/cm’ in region 3. A high degree of correlation between
enhanced condensation nuclei number densities and mixing ratios of CO, CH4, NO, and
OH has been observed in air masses influenced by deep convection over the central U.S.
(Twohy et al., 2002). However, we did not find such correlation in the three regions in
spite of the very high concentrations of ultrafine aerosols and increased mixing ratios of
CO. Wang et al. (2000) observed high concentration of condensation nuclei (>10,000
cm™) in the upper troposphere associated with convection using the NO/NOy ratio as a
chemical clock. They also pointed out that high CN concentration from aircraft emissions
in the upper troposphere was not sampled frequently because of faster dilution than the
transport of the boundary layer air aloft via convection. Although our results do not
parallel those of Twohy et al. (2002), our analysis implies an impact of convective
outflow in region 1 similar to the analysis of Wang et al. (2000). In addition, a diagnostic

indicator of wet convection is the ratio of CH3;0OOH/H,0;, since H,O; is removed
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preferentially by wet scavenging compared to CH30OH resulting in ratio values >1
(Talbot et al., 1996b). Snow et al. (2007) found that ratios of <1 for H,O,/CH;O0H and
<100 ppbv for O; indicated convection during the ICARTT study. The flight 13
measurements showed lower mean values of H,O,/CH;OOH which were 1.3, 2.6, and 2.2
in regions 1-3, respectively, than a value of 3.1 from the SBL. The raﬁo ranges were 0.77
—2.15 for region 1, 0.25 — 5.34 for region 2, and 1.16 — 3.72 for region 3? suggesting that
convection impacted regions 1 and 2. Overall, our analysis suggests that region 1 was
mostly influenced by deep convective vertical transport, whereas regions 2 and 3 appear
to be dominated by lofting of air by the WCB.

The photochemical ages estimated from C;Hs/C,Hs in regions 1, 2, and 3 are
reasonably similar to the transport times deduced from thé backward trajectories which
corroborates fast transport with minimal apparent dilution of SBL air by aged background
air. Evidence for minimal mixing is provided by similar mixing ratios of CHCl; between
regions 1-3 (9.4 — 10.5 pptv) and SBL (10.6 pptv). Additional evidence is the preserved
low mixing ratios of CO, and COS, which are typical of boundary layer air influenced by
biospheric activity during the growing season. The mean mixing ratios of CO; in regions
1-3 were between 373.5 and 375 ppmv, and these were lower by 0.6 — 1% than the
background mixing ratio from surface measurements at Bermuda. In comparison, mean
mixing ratios of COS in regions 1, 2, and 3 (426 — 440 pptv) were closer to values found
in the SBL over the U.S. The low mixing ratios of COS found in the upper troposphere
during flight 13 is indicative of efficient terrestrial COS uptake in the SBL (Sandoval-

Soto et al., 2005).
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The backward trajectories suggested that the air masses arriving in the three study
regions spent 1-4 days over the southeastern U.S. and were then transported to the
Northeast and upward by fast zonal flow in the middle and upper troposphere on July 27-
28. If the transport from the SBL to the flight regions was indeed rapid, then the effect of
dilution and in situ chemical processing can be small, and subsequently the mixing ratios
of trace gases in the source and flight regions should be similar. Mixing ratios of trac‘ers'
in the SBL were thus compared with upper fropospheric values (Table 1.1). In general,
industrial or urban tracers in the SBL exhibited higher levels than those in each flight
region except for C,Cly. This result is reasonable since some dilution would be expected
during transport of SBL air to the upper troposphere. Enhanced mixing ratios of other
urban tracers (e.g., C,Cly and CHCls) and high concentrations of ultrafine aerosol were
also observed as evidence of urban impacted air masses in the upper troposphere. In the
apparent SBL source region there are significant urban and industrial soufces based on
the emissions map of CHCl; (Aucott et al., 1999). The region is also widely covered
with abundant vegetation as evidenced by isoprene emissions (Fiore et al., 2005), which
accounts for uptaké of COS and CO; and consequently their reduced mixing ratios.

MOZAIC measurements were used as an independent source of data on air mass
composition over the Atlantic and eastern U.S. One of the instrumented flights into
Washington, D.C. from Europe on July 28 was essentially routed through the region of
interest here. MOZAIC data collected at 16:20 - 19:00 UTC on July 28 sampled the
upper troposphere where the rapid transport of SBL air masses seemingly occurred frém
00 UTC on July 27 to 16 UTC on July 28. The MOZAIC CO and O; spatial distributions

are shown in Figure 1.7. According to the backward trajectories, region 1 of flight 13
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ratios up to 175 ppbv were identified between 5 and 7 km (39.9 - 40.5°N, and 75.6 —
76.6°W). This polluted layer likely originated in the boundary layer over the U.S. but did
not get entrained in the flow pathway of the flight 13 upper tropospheric air masses.
However, the HYSPLIT backward trajectories were not able to resolve this because of
the inadequate vertical resolution.

We explored the possibility of an Asian impact on the flight 13 upper
tropospheric study area as found on flights 3, 8, 10, 15 and 20 by Liang et al., (2007).
Halon-1211 (CBrCIF,), an important tracer of Asian polluted outflow (Blake et al., 2003),
averaged 4.3 pptv over the flight 13 route, similar to background levels in boundary layer
air over the western Pacific during TRACE-P, 4.3 £ 0.04 pptv of CBrCIF, (Barletta et al.,
2006). Our backward trajectories analysis presented earlier and the key tracers indicated
that Asian emissions did not affect directly the flight 13 region, and suggests that the
outflow from the U.S. dominated the pollution in the study area.

5. FOutside air mass chemical composition

As mentioned in section 4, the Outside air included all segments except
measurements from regions 1-3. Hence different altitudes and geographical locations
were mixed for the Outside data. The average chemical composition of the Outside air
can be summarized to have an average composition of 84 ppbv CO, 375.4 ppmv CO,,
1781 ppbv CHy, 453 pptv COS, 45 pptv C,Ha, 3.4 pptv C,Cly, and 53 ppbv O;. To find
out whether the Outside chemical composition was similar to the North Atlantic
background air, we again compared the airborne measurements with those from the
NOAA GMD monitoring site on Bermuda and Mace Head (Simmonds et al., 2006). The

results of this comparison showed that CH4, CO, C,Cly and CO; were lower than at
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Bermuda and Mace Head by 1.1%, 2.4%, 30.6%, and 0.4% respectively. Comparison of
the mean values indicated that the Outside air was not affected by fresh urban and
industrial source emissions. However, the mixing ratios of trace gases in the Outside air
varied over wider ranges than those in regions 1, 2, and 3. In fact, maximum mixing
ratios of CS,, CsHg, and C,H;, were even larger than those in the three regions.

Backward trajectories for the Outside region indicated the possibility of air |
masses with diverse origins (Figure 1.6), which were categorized qualitatively into four
source regions. The fractional contribution for each source region was estimated by
comparison of the number of trajectories from each area to the total for the Outside. It
was found that ~44% of air masses ih the Outside area were from U.S. outflow, ~28%
originated from the western Atlantic, ~20% from the remote Central Atlantic, and ~8%
from over the North Pacific.

Chemical environments corresponding to the four source regions were
summarized in Table 1.2. The average mixing ratio of CO, C;H; and C,Cls were highest
at 98 ppbv, 68 pptv and 5.4 pptv respectively in U.S. outflow, and lowest at 69 ppbv, 18
pptv and 1.8 pptv in air from the remote Central Atlantic. The average levels of O3, CHy,
selected anthropogenic NMHCs, and ultrafine aerosol followed the same source
distribution. For example, the average mixing ratio of O3 showed the highest level of 70
ppbv in the U.S. outflow, and the lowest of 28 ppbv in air masses from the remote
Central Atlantic. However, CO; and COS exhibited opposite variation, with higher
mixing ratios from source regions far away from the North American continent.
Specifically, the average mixing ratios of CO, and COS were 374.2 ppmv and 442 pptv

respectively in the U.S. outflow, 376.0 ppmv and 457 pptv in air from the western
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Atlantic, 376.4 ppmv and 463 pptv from over the remote Central Atlantic, and 374.9
ppmv and 459 pptv from the Pacific. These results clearly show the role of the terrestrial
biosphere in modulating CO, and COS in the troposphere downwind of a continental area.
6. Chemical characterization using correlation analysis

The slope of the standard linear regression between correlated chemical
compounds can be a useful source identifier (Xiao et al., 2004). Based on the similar
vertical distributions recognizable from Figure 1.5, correlation of the pairs CH4-CO and
COS-CO, was examined using all data from flight 13 (Figure 1.8). Carbon monoxide
and CH4 were correlated remarkably well at r* = 0.92. This implies that anthropogenic
sources had a major impact on CH, mixing ratios at all altitudes sampled on flight 13
over the North Atlantic. The correlation between COS and CO, exhibited an r* = 0.61,

likely driven to a large extent by their close association with vegetative uptake.
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Figure 1.8. Correlations (a) between CO and CH4, and (b) between CO, and COS on
flight 13.

Correlations between source indicators and CO/CQO, were examined further for

each region and the results are presented in Table 1.3. The slope of CH4-CO had a value
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of 0.94 in region 1 (r* = 0.84), 0.97 in region 2 (r* = 0.79), and 0.68 in region 3 (1’ = 0.46).
These values are reasonably close to the slope of 0.84 that was obtained for urban and
industrial emissions by Harriss et al. (1994). To corroborate the urban and industrial
influence, relationships between CO and a number of anthropogenic tracers were also
examined. Compounds that correlated with CO at > 0.5, were CHCI; and C,H, in
region 1, CHCl; C,Cly, i-CsH,2, C¢Hg, and C;H; in region 2, and CHCl;, C,Cly, i-CsH,
CsH¢ and C,H; in region 3. This evidence clearly points to a significant influence of
urban, industrial, and combustion sources in all three regions.

Table 1.3. Correlation coefficients, slopes, and standard errors of the slopes for each
compound at each region. Regions denoted as regl, reg2, and reg3 are shown in Figure 1,
and outside is the segment of the flight route outside the three regions sampled by flight
13. SBL stands for the boundary layer over the southeastern U.S. observed by flights 6, 7,
10, 12, 16, and 19. Ratios of O3-CO and CH4-CO are in unit of ppbv/ppbv, CO-CO; in

ppbv/ppmv, CH4-CO; in ppmv/ppmv, COS-CO, in pptv/ppmv, and all others in
pptv/ppbv.

r Slope Standard error of the slope

Regl 1eg2 reg3 outside SBL | Regl reg2 reg3 outside SBL | regl reg2? reg3 outside SBL

0:-CO | 037 003 0.6 0.29 059 1 034 0.17 -035 0.98 0.26 24 084 16 0.35 0.03
084 079 046 0.89 0.65 1 094 097 0.68 1.0 0.71 58 22 45 11 0.17

042 045 042 0.59 0.41 | -0.45

co . . . . . 077 -0.83 -0.59 -0.73 14 5.4 11 2.8 0.07

C}égh' 0.81 085 0.60 090 077 | 007 006 0.7 0.06 008 | 030 011 023 006 0.01
Cé%‘“ 036 0.76 0.64 067 074 ] 015 009 0.10 0.08 009 | 027 006 015 002 001

CsHj,- | 038 053  0.79 0.40 017 1 0.19 0.23 0.36 0.14 0.82 1 0.19 0.13 0.16 0.09 0.04

CHo 022 066 073 055 057|013 031 029 025 064 [024 015 034 003 003
Cé%z' 089 077 076 084 087 | 15 17 15 15 26 | 28 093 19 004 005
CHy- - - -

co | 008 o7 0002 036 046|001 oo (o 001 oo 18 028 048 od1 004
%%Sz' 009 063 001 064 08| 67 12 13 81 53 |41 6 117 18 037
gg; 009 065 001 085 036| 60 -1 14 -2 27| n2 17 30 o8t o2

To verify the SBL origin of the polluted air on flight 13, relationships between

source indicators and CO in the SBL were calculated and the values of * and correlation
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slopes are shown in Table 1.3. The slopes of CHCl3-CO and C,Cl4-CO in the SBL were
similar to those in the three flight regions, providing support for the SBL as the source
region of th¢ air masses encountered on the flight route. Note that slopes of i-CsH;o-CO,
CsHgs-CO and C,H,-CO in the SBL were much higher than those observed on flight 13.
For example, the slope of i-CsHo-CO in each region of flight 13 was between 0.19 and
| 0.36 compared to 0.82 in the SBL. The lifetimes of C;H,, C¢Hs, i-Csle, C,Cly, and
CHCI; in the SBL were estimated to be 3.5, 2.4, 0.72, 17, and 29 days respectively.
Therefore, rhaximum mixing ratios of short-lived.i-CsHlo, CeHs, and C>H, in the SBL
were much higher than on flight 13 (Table 1.1), which resulted in higher slope values in
the SBL.

It is curious that, contrary to the tight CH4-CO correlation observed on flight 13,
CH4 and CO data from city surveys in the Southeast exhibited a poor correlation (=
0.16), although the slope of CH4-CO was 0.94, nearly identical to values observed. in
regions 1 and 2. The slope of CH4-CO in the SBL sampled by the DC-8 wés 0.70,
similar to region 3, but with much better correlation (% = 0.73) than the city surveys. The
difference may be related to the multi-years of data collection for thev city survey versus
the flight 13 snapshot.

The slope of COS-CO, was compared between the SBL and over the North
Atlantic. In the SBL CO, was correlated with COS at r* = 0.83, compared to r* = 0.61 in
the flight region. This diffefence is attributed to mixing of SBL air with ambiént air
while it meandered over the Southeast for several days and then during transit to the
upper tropospheré. The COS-CO; slope value was 5.3 pptv/ppmv in the SBL, which was

almost a factor of two lower than thé 9.9 pptv/ppmv value obtained from the flight 13
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regions. Mixing ratios of CO; in the SBL varied over the range 356 ppmv - 380 ppmv,
which was a factor of 5 wider than the range in the flight 13 region of 372 ppmv - 377
ppmv. Similarly, the COS data showed the SBL had a factor of 2 greater variation in
mixing ratios than the flight 13 data; 344 pptv - 485 pptv in SBL and 411 pptv - 479 pptv
for the flight regions. Wider ranges of CO; and COS in the SBL are due to much lower
minimum values of two compounds compared to the ﬂight route. The higher minimum
values along the flight pafh is indicative of mixing process with the air mass types
identified by our trajectory analysis. However, COS and CO, were not well correlated in
regions 1 and 3, compared to region 2 and all the flight 13 data together.

A contribution of emissions from the Northeast to the flight regions was checked
by utilizing UNH AIRMAP network data in New England. The r* values and slopes of
the correlations between selected trace gases and CO from ground-based measurements
on July 27 - 28 (UTC) at TF (Thompson Farm) and Al (Appledore Island) were very
different than those shown here for flight 13 (e.g., the slope of CH4-CO = 0.28 (r* = 0.06)
at Al). Therefore, we concluded that emissions from the Northeast were not an important
contributor to the elevated trace gas mixing ratios in the upper troposphere over the North
Atlantic. This is consistent with our meteorological analysis which showed that the SBL
was the likely primary source of pollutants in the upper troposphere

An important feature of the flight 13 dataset was the high degree of correlation
between trace gases in the Outside region. In fact, the correlations were close to, or
better than, those in regions 1, 2, and 3 (e.g., r* = 0.89 for CH4-CO). This is a surprising
result considering the diverse source regions indicated by our trajectory analysis.

Typically, there is little or no correlation between most trace gases in air masses not
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directly impacted by relatively fresh continental emissions. In this case, it appears that
the entire tropospheric column over the North Atlantic during the time period
surrounding flight 13 was impacted by North American anthropogenic emissions. This
region is in the direct outflow from the eastern U.S. (Parrish et al., 1993), but our analysis
seems to suggest that the troposphere over the mid-latitude North Atlantic basin was
fumigated with U.S. pollutants in various stages of aging. This is supported by the
trajectory-based partitioning of the Qutside air source regions, where 44% pointed to an
influence of U.S. continental outflow. Apparently, to retain their source relationships,
these air masses were not mixed effectively with background marine air. The flight data
demonstrate the pervasive impact of U.S. anthropogenic emissions on the mid-latitude
troposphere over the North Atlantic.
7. Conclusions

INTEX-NA, one of the components of ICARTT, was conducted over North
America and the adjacent North Atlantic to investigate the distribution of trace gases and
aerosols associated with emission sources m North America. The vertical distribution of
trace gases from DC-8 flight 13 during the campaign had‘ mixing ratios of CH4 and CO of
up to 1843 ppbv and 134 ppbv respectively, and low mixing ratios of CO; and COS,
reduced to 372.4 ppmv and 411 pptv respectively, in upper troposphere at 8 — 11 km
altitude over the North Atlantic.

The meteorology over the U.S. was identified as an ideal situation for strong
outflow for several days prior to flight 13. A stationary front, which evolved from a cold
front associated with a Canadian low, existed in the eastern U.S. over the several days

before the airborne measurements were conducted. As a result, it induced continuous
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convective aétivities and WCB uplifting of polluted air. In addition, a deep trough over
the Midwest facilitated fast southwesterly transport that was sustained for several »days
prior to flight 13.

The chemical features in the upper troposphere over the North Atlantic were as
follows. Urban and industrial tracers such as CH4 and CO were elevated in the upper
troposphere (e.g. 78 ppbv < CO < 135 ppbv) and good linear relatioﬁships between the
tracers (e.g. r* for CH4 — CO at region 1 = 0.84) showed the impact of urban/industrial
emissions to the flight regions. Low mixing ratios of COS and CO, (e.g. 372.4 ppmv <
CO, < 376.6 ppmv) indicated biogenic uptake at the surface in the SBL with subsequent
minimal dilution during the transport to the upper troposphere. Backward trajectories
and photochemical aging indicated that the SBL was a potential source region for the
chemical features. Agreement of the slopes for linear correlations of selected trace gases
with a long atmospheric lifetime compared to the transport between SBL and flight
regions support the SBL as the primary source region. Overall, meteorological and
chemical analyses suggest rapid outflow from the SBL to the upper troposphere over the
North Atlantic. In addition, the good linear correlation between urban and industrial
tracers in whole flight regions (r* for CH; — CO = 0.92) and Outside (r* for CH; — CO =
0.89) suggest that the troposphere over the mid-latitude North Atlantic was influenced

significantly with U.S. pollutants in various stages of air mass processing.
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II. Chemical transformations of Hg° during Arctic mercury depletion

events sampled from the NASA DC-8

1. Introduction

Atmospheric mercury exists in three forms, gaseous elemental mercury (Hg®),
reactivé gaseous mercury (RGM), and particulate mercury (PHg). Hg® comprises ~95%
of total gaseous mercury (TGM = Hg® + RGM) in the atmosphere (Lin and Pehkonen,
1999; Malcolm et al., 2003; Poissant et al., 2005). AtIhospheric mercury that enters
terrestrial and aquatic ecosystems (Branfireun et al., 2005; Magarelli and Fostier; 2005;
Strode et al., 2007) can be subsequently transformed to organic mercury (e.g., methyl
mercury) (Branfireun et al., 2005). Organic and inorganic mercury are harmful to
humans through food chain uptake; they are thus categorized as toxic compounds by the
U.S. Environmental Protection Agency.

Atmospheric mercury depletion events (MDEs) have been observed near the
surface in the Arctic springtime. Schroeder et al. (1998) were the first to observe that
TGM values, which were 1-2 ng m™ in winter, dropped off to <1 ng m™ after mid-March
at a Canadian Arctic site. Strong positive correlation between Hg® and O3 was found in
springtime air masses originating from the Arctic (Eneroth et al., 2007; Lu et al., 2001).
In addition, MDEs in interstitial air of snowfall, where Hg® concentration was decreased
from 5 fo 0.4 ng m™, was found at about 1 m depth in the snowpack at the Kongsvegen
Glacier, 10 km south-east from Ny Alesund, Svalbard (Fain et al., 2006).

Atmospheric mercury depletion in the Arctic has been attributed to
meteorological and chemical processes. The strong near-surface inversion layer during

winter and early spring creates a vertically isolated thin boundary layer over the Arctic,
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and it plays an important role in the occurrence of MDEs by blocking re-supply of
atmospheric chemical species such as O3 and Hg® from the free troposphere (Lehrer et al.,
2004). Chemically, the occurrence of MDEs could be closely related with the
transformation of Hg® to RGM and PHg as a reéult of its oxidation by reactive halogen
radicals which are likely abundant after polar sunrise (e.g., Cobbett et al., 2007; Lindberg
et al., 2002). RGM easily deposits to the surface of aerosols due to its high water
solubility (Lin and Pehkonen, 1999) to form PHg. Both RGM and PHg can be removed
from the atmosphere relatively quickly due to their high dry deposition velocities
(Schroeder and Munthe, 1998).

Box model studies suggest that reactive bromine cdmpounds (e.g., Br and BrO)
are much more important for the occurrence of MDEs than chlorine and sulfur
compournds (Ariya et al., 2604; Calvert and Lindberg, 2003; Goodsite et al., 2004; Xie et
al., 2008). It was speculated that highly reactive bromines are derived mainly from the
surface sea ice and less reactive bromines, such as HBr, are from sea salt aerosols (Lehrer
et al., 2004). As a result of mercury oxidation, a few studies suggested that the most
abundant RGM chemical compounds would be HgO, HgBr,, and BrHgOBr formed by
reaction of Hg® with bromine radical (Calvert and Lindberg, 2003; Xie et al., 2008).

The Arctic Research of the Composition of the. Troposphere from Aircraft and
Satellites (ARCTAS) field campaign, carried out by the National Aeronautics and Space
Administration Tropospheric Chemistry Program, was conducted over 3 weeks each in
April and July 2008 with focus on impacts on Arctic atmospheric composition from long-
range transport of pollution, boreal forest fires, aerosol radiative forcing, and chemical

processing (Jacob et al., 2010). Here, we aimed to understand the chemical mechanisms
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driving the occurrence of MDEs in the Arctic spring using box model results based on
extensive measurements of mércury and other chemical compounds from the NASA DC-
8 aircraft during the 2008 April deployment.
2. Methods
2.1 ARCTAS Measurement Data

Hg® was measured with a time resolution of ~2 minutes by th¢ University of
New Hampshire cold vapor atomic fluorescence spectrometer during the ARCTAS field
campaign. We utilized a modified Tekrén 24537A as described by Talbot et al. (2008).
The limit of detection (LOD) of the instrument was ~0.2 ng m™ (~22 ppqv). The internal
preésure of the instrument was maintained during the analysis stage at 1100 hPa. In-
flight zeroing and standard additions were conducted on all flights.

Ozone was measured at 1 Hz using the chemiluminescence technique as described
in Ridley et al. (1992). The University of California at Irvine sampled using stainless
steel passivated canisters to determine more than 75 gases including nonmethane
hydrocarbqns, “halocarbons, alkyl nitrates and sulfur compounds. A comprehensive
description of the sampling and analytical techniques can be found in Colman et al.
(2001). The Georgia Institute of Technology chemical ionization mass spectrometer was
used to measure BrO and Br; every 30 seconds using the reagent SFs . A detailed
explanation of the technique is given in Neuman et al. (2010). The University of New
Hampshire group collected aerosols on Teflon filters with subsequent analysis for soluble
ions by ion chromatography (Dibb et al., 2003). This group also sampled water-soluble

gases using the mist chamber technique (Scheuer et al., 2003).
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Figure 2.1. Spatial distribﬁtion of Hg® < 50 ppqv (yellow dots) and high Br, > 2pptv
(blue dots) (a) and O3 <10 ppbv (pink dots) and high Br, > 2pptv (light blue dots) (b)
below 5 km altitude
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There were 14 MDE cases below 5 km altitude iﬁ which the Hg® mixing ratio was
depleted to <50 ppqv (Ing m™ = 112 ppqv). The spatial distribution of mixing ratios of
Hg® <50 ppqv, O3 <10 ppbv and Br;, > 2 pptv as observed during ARCTAS is displayed
in Figure 2.1. Eight cases exhibited generally distinct features of MDEs, i.e., the
concurrence of high Br,, low Os, and low Hg® mixing ratios (Table 2.1), and these will be
the focus of this study. It should be noted though that the mixing ratios of Os right at the
onset and ending of the MDEs were mostly >10 ppbv. Case 6 showed O; values during
the MDE that were close to 10 ppbv. Six cases did not show a concurrence of high Br,
low O3, and low Hg®°. The comparison between these two types of cases should be
interesting, but unfortunately we could not study the six non-concurrence cases due to a
lack of sufficient measurement data. Perhaps these cases reflected the later stages of a

MDE with the mixing of MDE air with other air masses.

Table 2.1. MDE cases selected for study.

case | day altitude O; (ppbv) Hg® (ppqv) Br, (pptv) state of sea ice
(km) (below LOD
except several
points
mentioned
below)
1 4/8/2008 0.1-0.21 0.38-5.6 one - 22 325-5.8 Very fractured surface
no open water
2 4/9/2008 0.11 50-135 two - 21 1.3-27 Very fractured surface
no open water
3 4/16/2008 | 0.08 — 0.8 1.8-34.5 one - 39 02-32 Irregular small
patches of open water
4. 4/16/2008 | 0.09-0.65 | 3.3-43 25, 34, and 37 045-54 Irregular small
patches of open water
5 4/17/2008 | 0.1 0.8-30 1.5-6.15 Fine cracks no open
] water
6 4/17/2008 | 0.1 -0.8 10.7-34.5 | 18, 24, and 62 1.05-6.85 | No record
7 4/17/2008 | 0.09 9.0 -26.5 0.75-2.75 | Norecord
8 4/17/2008 | 0.07-0.22 [ 0.9-42 28 - 61 0.35-1.75 | Norecord
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Figure 2.2. Five-day backward trajectories for each MDE case. The color
bar is pressure level and the unit is hPa.
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2.2 Trajectories

Kinematic backward trajectories were provided at one minufe .time steps
throughout ARCTAS by Florida State University (http://www-air.larc.nasa.gov/cgi-
bin/arcstat-c). The three-dimensional wind components were utilized from the Weather
Research and Forecasting (WRF) Model hourly output at 45 km resolution to calculate
the backward trajectories (Fuelberg et al.,, 1996, 2000; Martin et al., 2003). For each
- MDE case, the corresponding five-day backward trajectories are shown in Figure 2.2.
The trajectories alloWed comparison of air mass origins both outside and inside the MDE
areas.
2.3 Box Model Description

Mercufy gas phase reactions occur mainly with O3, H,O,, halides such as Br,, Cl,,
and radicals OH, Br, Cl, and I (Table 2.2). The multitude of mercury chemical reactions
and their rates are not clearly established yet. Differing results have been published on
the products of some mercury chemicél reactions. For example, the reaction between
Hg° and OH apparently has two different products - HGOH and HgO (Goodsite et al.,
2004; Sommar et al., 2001; Pal and Ariya, 2004a). Furthermore, values of the rate
constant for many Hg® reactions vary considerably. There is large uncertainty in the rate
constant of the reaction between Hg® and Os, ranging from 3.0 x10° cm® molecule™ s
at 293 K (Hall, 1995) to 7.5 x10™"° cm® molecule™ s at 298 K (Pal and Ariya, 2004b).
This study utilized the rate constant from Pal and Ariya (2004) because it was only
temperature dependent rate constant. Note that this rate constant is still under discussion

(Castro et al., 2009). Rate constants for Hg® reactions with halogen radicals that have
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been reported in literature also vary greatly. The rate constant of Hg® with Cl radieal at
298 K ranges from 6.38 x10™® cm® molecule™ s (Donohoue et al., 2005) to 1.0 x10™""
cm’ molecule” s™' (Ariya et al., 2002). Rate constants of Hg® reaction with Br vary from
4.23x10" cm® molecule™ s (Donohoue et al., 2006) to 3.2 x10™"? cm® molecule™ s
(Ariya et al., 2002). Finally, BrO is recognized as an important oxidant in Arctic
mercury chemistry (Goodsite et al., 2004), but the rate constant values vary from 10" to
10"® cm® molecule s for its reaction with Hg® at a temperature of 298 K (Raofie and
Ariya, 2003). We did not include this reaction in most cases except in section 4.2 where
the possible role of this reaction in the occurrence of MDEs was stﬁdied. Overall, our
box model includes 28, 43, aﬁd 10 reactions for bromine, chlorine, and iodine chemistry
respectively. In addition, there are 10 mercury gas | phase reactions and 35 for O;
chemistry (Tables 2.2 —2.4).

The Kinetic PreProcessor (KPP) version 2.1 is the basic model framework (Sandu
and Sander, 2006), and it has been utilized to study mercury chemistry previously
(Hedgecock et al., 2005; Pan and Carmichael, 2005). The structure solves ordinary
differential equations, and we used a second order Rosenbrock method (Verwer et al.,
1999). Ideal (i.e., theoretical) experiments were used to clearly identify how
environmental factors (e.g., photolysis) influenced Hg® or O; depletion. As shown in
Section 3, backward trajectories for each case indicated that air masses were principally
transported over short distances in the 24 hours prior to airborne measurements. During
the MDEs, cold CN concentrations were mainly <500 cm'3, which indicated low aerosol
concentrations in the atmosphere, and air temperature averaged 255+5 K which was cold

enough to freeze the ocean surface. Moreover, the water vapor mixing ratios were <1700
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ppmv during MDEs period, which were low values, for example, compared to 4500-
11700 ppmyv in marine boundary layer of northeastern Pacific near Anchorage, Alaska

Table 2.5. Initial conditions used in model runs.

Chemical compounds Mixing ratios / concentrations
NO - 10 pptv
NO, 0 pptv
H,0, 152 pptv

HCHO 122 pptv
OH 360000 cm™
CH,;0OH 608 pptv
CH;CHO ' 121 pptv
C,Hg 1873 pptv
C,H, 364 pptv
C;Hg 542 pptv
n-C4Hq , 111 pptv
CH4 1880 ppbv
C,HsOH ' 63 pptv
HO, 2.72pptv
CH;Br 9.2 pptv
O3 35 ppbv
Hg° 122 ppqv
I, 1 pptv
Br, - 1 pptv
Cl, 2 pptv
CO 159 ppbv
H,O 1203 ppmv

(<1 km altitude) in the spring Intercontinental Chemical Transport Experiment'- B field
campaign. We examined the possibility of heterogeneous chemistry on the ice surface or
in the aerosol. In the simplified mechanism of heterogeneous chemistry, there are three
steps which are adsorption onto the aerosol or ice surface, diffusion into the bulk, and
Henry’s law equilibrium. Although temperature does not affect the transport vélocity of
a gas to the interface, diffusion into the bulk following the Einstein relation and Henry’s
coefficient are influenced considerably by temperature. This possibility of heterogeneous

chemistry indicated that the environment in the springtime over the Arctic Ocean was too
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dry and cold with very little sea salt. In the meteorologically stable Arctic at 255 K it is
reasonable to ignore horizontal and vertical transport, dep'osition, uptake by sea-salt
aerosol, and aqueous phase reactions in the simulations. We only considered I,, Br,, and
Cl, emissions from the ocean, and the mixing ratios for these species were set to constant

values at each time step to simulate continuous emissions. We also did not consider daily

and diel variation in photolysis rates.

Table 2.6. Photolysis rate constants for model simulation. (unit:s™).

middle high low
Br,—Br+Br 0.029 0.048 0.016
BrO —Br+O 0.020 0.045 0.014
HOBr—HO+Br 0.0015 0.003 0.001
BrCl—Br+Cl 0.0084 0.015 0.005
BrONO, —Br+NO; 0.00014 0.00027 9.16x10”
BrONO, —BrO+NO, 0.00077 0.0015 0.00052
Cl, »CI+Cl 0.0013 0.0028 0.00097
CIONO, —CI+NO; 1.91x10° 4.1x107 1.37x10
CIONO; —CIO+NO, 2.1x10° 5.57x10° 1.52x10°°
0;—0,+0('D) 1.82x10° 6.9x10° 1.18x10°°
NO, —» NO, + O 0.0056 0.01 0.0039
CH;CHO — CH; +CHO | 6.4x10”’ 2.2x10° 4.1x107
HCHO — H + HCO 9.1x10°° 2.5x107 6.3x10°
HCHO — H, + CO 2.02x107 4.86x107 1.5x10°
CH;O0H — CH;0 +OH | 2.01x10° 4.97x10° 1.5x10°
N,Os — NO, + NO; 9.23x10® 2.5x107 7.3%10°
H,0, — 20H 2.14x10°® 5.49x10° 1.6x10°

Initial values in the simulations were taken from the ARCTAS measurements
(Table 2.5). The data for several minutes were selected from outside the MDE regions
for the eight cases and averaged to set the initial values. 75, 50, and 25 pefcentiles of
photolysis rate constants from the MDE regions were categorized into three groups which

. were high, middle, and low values. The high values were a factor of 2 greater than
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middle values and the same pattern existed between the middle and low values (Table
2.6).

We conducted 14 ideal case sensitivity experiments using ARCTAS
measurements (Table 2.7). The base case (S1) used average initial concentrations and the
middle value of the photolysis rate constants (Table 2.5 and 2.6). In this base case run we
utilized the rate constant from Pal and Ariya (2004a) for reaction of Hg® with OH, the
rate constant from Goodsite et al. (2004) for reaction of Hg® with Br, the rate constant
from Khalizov et al. (2003) for the ng° + Cl reaction, and the rate constant from Ariya et
al. (2002) for the Hg® + Br, reaction (Table 2.2). In four control runs, we utilized high
and low photolysis rate constant values (S10 and S11) (Table 2.6), and high NO, (5000
pptv NO and 900 pptv NO,) and low NO, (0.32 pptv NO and 0 pptv NO,) regimes (S12
and S13) based on ARCTAS measurements. In five sensitivity runs different rate
constants were used for mercury chemistry: (1) Goodsite et al. (2004) for the Hg® with
OH reaction (S2), (2) Khlaizov et al. (2003) and Donohoue et al. (2006) for the Hg® with
Br reactions (S3 and S4), (3) Balabanov et al. (2005) for the Hg® with Br;, reaction (S5),
and (4) Donohoue et al. (2005) for the Hg® with Cl reaction (S6) (Table 2.2). In three
control runs the sensitivity of mercury chemistry to varying mixing ratios of Br; and Cl,
were studied using 3 and 5 pptv Br; and 5 pptv Cl, mixing ratios (S7-9). One last control
run was conducted without re-setting I, Cl,, and Br, mixing ratios at each time step to
their initial conditions to simulate no emission flux from the surface (S14).

3. Characteristics of MDEs |
The general physical and chemical characteristics of the MDEs have been

described by Mao et al. (2010a). Briefly, the vertical extent varied from 0.1 to 1 km and
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showed concurrent decreases in O3, Hg®, and selected light hydrocarbons which were
consistent with oxidation by I;alogen species. Our work here is focused on identifying
the most important chemical oxidation reactions, determining the depletion rates of O;
and Hg®, and the effects of varying chemical environments. The Chemistry near the
surface was fairly consistent between MDE and non-MDE locations. It appears that the
main difference was the continuous presence or absence of reactive halogens. In this
regard, we examined the MDE and non-MDE cases and did not find any difference in the
surface of the sea ice/snow based on views from the nadir camera on the DC-8. In fact,
there did not appear to be any open leads that the DC-8 flew over. Important chemical
compounds in this sfudy included Hg®, Os, and Br,, and thevmixing ratios for each case
are summarized in Table 2.1, Figures 2.1 and 2.3.

MDEs were sampled over horizontal distances of ~225 km (case 1), and it
appeared to be a typical MDE case with distinct demarcations in the spatial series of
chemical compounds. We selected 3-10 points before and after the MDE time window to
compare the geographical locations and the vertical extent of all MDEs, and we defined
these data as 6utside the MDE. Mixing ratios of Hg® decreased suddenly ffom >125
ppqv to the LOD except for one point of 22 ppqv. Ozone mixing ratios dropped quickly
from ~50 ppbv to 0 - 6 ppbv during the same period. Mixing ratios of Br; varied between
3.2 pptv and 5.8 pptv, which are considerably higher than the values outside the MDE
(0.05 -1.8 pptv). Moreover, mist chamber collected water-soluble bromide also increased
by ~20 pptv and bromide (Br) in aerosol phase by at least 3 pptv cqmpared to values
outside the MDE. However, 4 sampies inside the MDE showed that chloride (CI) in the

aerosol phase decreased from 136 to 56 pptv. Mixing ratios of CH3Cl, CH3Br, and CH;I
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did not show any discernible changes. Light alkanes and C,H; tracked changes in Hg®

and Oj; closely. For example, C;Hs mixing ratios decreased by ~700 pptv from outside to

inside the MDE areas.
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Figure 2.3. Vertical distribution of mixing ratios of Hg°(a), O;(b), C;Hs (c), and Br;
(d) for the outside and inside of all MDEs. Units are ppbv for Os, ppqv for Hg®, and
pptv for other species. The vertical red lines of Hg® and Oj; indicate the mixing ratio
where values below this represent depletion, while the line of Br; indicates the mixing
ratio where values greater than this shows mostly corresponding to MDEs.

Backward trajectories for case 1 indicated that the air masses captured in the

airborne measurements over the MDE area mostly originated from Nunavut at low

altitude traveling off the shore of northern Greenland for 24 hours prior to the
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measurements (Figure 2.2). Some air masses during the MDE period traveled at the 850-
650 hPa surfaces from southwestern Greenland. In comparison, air masses outside the
MDE were transported on 850-500 hPa surfaces from Nunavut or from southwestern
Greenland at altitudes raﬁging from near the surface to 700 hPa. .

Case 2' followed case 1 a day later occurring over a similar geographical area
around the similar time of the day (~13:00 local time). However, backward trajectories
for case 2 suggested that air masses originated from the Baffin Bay area in the mid-
troposphere, and were transported to the sampling location through northern Nunavut at
near-surface levels. Hg® and O3 mixing ratios decreased gradually, while Br; and aerosol
Br increased slightly from outside to inside the 34 km MDE region. Variations in light
alkanes and C,H, exhibited the same patterns as those in Hg® and O;. Air masses inside
and outside the MDE were sampled at similar altitudes, and the air masses outside the
MDE appeared to be transported along the same route as those inside the MDE. Thus,
differences in mixing ratios of all trace gases were not as large as those in case 1.

In case 3, the MDE was sampled over a horizontal distance of ~143 km off fhe
coast of northern Alaska. Ozone and Hg° mixing ratios declined steadily, Br, varied
from 0.2 to 3.2 pptv, and water-soluble bromide was increased up to 19 pptv. Mixing
ratios of BrO were ~4 pptv and decreased outside the MDE. Light alkanes and C,H;
tracked Hg® and O3 well. Backward tréjectories indicated that air masses traveled near
the surface over the northern coast of Alaska and the Beaufort Sea from the Arctic Ocean.
Air masses outside the MDE originated from the mid-troposphere. A spike of NO, levels

was observed in this case, which indicated fresh emissions likely coming from the oil
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refinery at Prudhoe Bay. The concurrent Hg® mixing ratio was 39 ppqv, possibly
reflecting source emissions from the same area. |

In case 4, the MDE area spanned 119 km over the Beaufort Sea and the Chukchi
Sea. Elemental mercury and Os decreased quickly from outside to inside the MDE.
Water-soluble bromide varied from 12 - 19 pptv, and Br, increased quickly up to 5.5 pptv
inside the MDE. The mixing rétio of BrO rose up to 8 pptv foilowed by a decline outside
the MDE. Light alkanes and C,H, followed th¢ same trend in Hg® and Os;. Air masses
inside the MDE appeared to be transported near the surface from northern Nunavut,
whereas air masses outside the MDE were transported from ‘Europe, Alaska, and the
Northwest Territories in the mid—troposphere across the Arctic Ocean.

In cases 5, 6, and 7, mercury depletions spanned horizontal distances of 17, 68,
and 56 km respectively, and were observed in the middle of the Arctic Ocean with similar
transport pathways and origins of air masses primarily close to surface over the Arctic
Ocean. All three cases showed declines in O3, Hg®, and light alkanes with concomitant
increases in Br;, BrO, and water-soluble bromide.

Case 8 with a ~150 km L-shaped MDE area appeared to be more complicated
than all other cases. Hg® mixing ratios exhibited a steep drop from 140 ppqv to the LOD
upon entering the MDE area. However, O; levels hovered around 30-40 ppbv for the
latter part of the MDE sampling, comparable to the levels outside the MDE. Moreover,
this MDE was not accompanied by high levels of Br,, BrO and water-soluble bromide.
Air masses inside the MDE had two main origins, the Arctic Ocean and eastern Russia.
Air masses outside the MDE were transported at mid- to upper-tropospheric altitudes

from the northwestern Pacific and Russia. Very fresh combustion emissions were
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observed over the first 36 km of the MDE as indicated by enhénced mixing ratios of NO,,
Hg?, butane, and pentane. Backward trajectories suggested that the air masses came from
northern Alaska where high NO; emissions comparable to the Prudhoe Bay Oil field were
| indicated by the 2002 EPA NO, emissions map. Another unique feature in this case was
that light.alkanes and‘ C,H; tracked O; closely, but not Hg®.

General features of the eight MDEs can be summarized as follows. MDEs were
found only near the surface over the ocean. Hg® mixing ratios from outside the MDEs
varied from 100 ppqv to 250 ppqVv, and the corresponding O3 mixing ratios were usually
>30 ppbv. The principal pattern of variation in Hg® from outside to inside the MDE area
is characterized by a precipitous fall from >100 ppqv to the LOD, while in comparison O;
decreased rather gradually from >30 ppbv to <10 ppbv. Four out of the eight cases
showed a sudden Br, build-up up to 7 pptv inside the MDE areas. Ethyne mixing ratios
also decreased during MDEs, and it was correlated with O3 at ¥ =0.72. Moreover, light
alkanes such as C,Hg, CsHg, C4Hjp and CsH;, showed the same pattern of variation as
that of C;H,. Similar findings were reported previously for O; depletion events (ODEs)
(Mao et al., 2010a; Eneroth et al., 2007). A general feature ascertained from backward
trajectories was that air masses outside most MDEs originated from the mid-troposphere,
whereas air masses inside MDEs traveled at low altitude over the ocean surface probably
entraining halogen-rich chemical compounds. Analysis of variations in chemical
compounds and backward trajectories indicated that halogen-rich air could be related to
changes in Hg®, Os, and light alkanes. In addition, fresh combustion emissions were
sampled as evidenced by high NO, levels in cases 3 and 8. The backward‘ trajectories

suggested that the high NO, originated from unknown sources in northern Alaska.
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4. Box Model Simulations
4.1. Base Case Results

The results of the base case (S1) are presented in Figures 2.4, 2.5, 2.6, and 2.7 and
Table 2.8. We defined depletion as mixing ratios <50 ppqv for Hg®, 10 ppbv for O3, and
25 pptv for C;H,. In the model runs Hg® was depleted in ~22 hours, and about 97% of
Hg® was transformed to up to 70 ppqv HgBr,. HgO was the second most abundant RGM
species, but its level was about 45-fold less than that of HgBr,. Some studies assumed a
radical reaction such as the HgBr + BrO reaction in the Arctic spring (Calvert and
" Lindberg, 2003; Xie et al., 2008), and BrHgOBr was one of the main RGM products.
This radical reaction was not included in our model due to a lack of experimental rate
constants. The dominant product, HgBr», indicated that the reaction of Hg® with Br
radical, which is principally produced by photolysis of Br,, is very important to Hg°
depletion. Ozone was depleted in 23 hours, and C,H, was depleted in ~36 hours. Ethyne
decreased very rapidly due to the reaction with abundant Br radical after O3 Was reduced
to <1 ppbv. Cases 1-6 of the ARCTAS measurements showed comparatively distinct
declines of C;H; and light alkanés compared to the simulation results. Ethyne was not
depIeted in the field observations, but the range of decrement was significant spanning
72-420 pptv from outside to ihside the MDEs. In the simulations C;H; wés decreased by
340 pptv, which Was in the same range as the observations. Light alkanes were also
consistently decreased during the 100 hours of simulation. For example, C,;H¢ decreased
to ~32 % of its initial concentration and C4sHo declined to about 76% of its initial
concentration after 100 hours of simulation. A decline of 205-920 pptv in ethane was

observed from outside to inside the MDEs compared to about a decrease of ~600 pptv
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after 100 hours of simulation. Thus, our box model simulations appear to be able to
reproduce the decreases of various light alkanes and C,H, captured in the ARCTAS
measurements as well as depletion of Hg® and O;. This suggests that the chemistry
represented in the box model sufficiently depicts chemical processes conducive to the
occurrence of MDEs and O3 depletion events (ODEs).

Table 2.8. Prominent T4, values for several sensitivity experiment results

Tdep (hOUrs)
Hg° O; CoH,
Base 21.9 23.1 35.9
Rate constant of Khalizov et al. (2003) 28.4 - 23.1 35.9
Hg° + Br Donohoue et al. (2006) 32 23.1 35.9
Different Br; 3 pptv 7.6 15.5 234
mixing ratio 5 pptv 3.4 9.3 14.2
Different photolysis ’ High 10 19.9 30.3
constant Low 32.7 25.6 41.6
High NO, regime 5.6 21.2 36.1

Furthermore, we simulated conditions without O3 chemistry but included O;
photolysis in our chemical mechanism. It indicated that certain levels of O3 provided an
additional sink of halogen radicals including Br, and hence the time to reach Hg°
depletion was longer. The results suggest a close relation between O3 and Hg®, and thus
we conducted simulations with O3 chemistry afterwards to make them more realistic.

4.2 Influence of Rate Constant Values

Applying different rate constants for Hg® reactions with Cl, OH, and Br; (S2, SS,
and S6) did not affect the time it took to reach depletion (denoted as 1acp) of Hg® (Tables
2.2 and 2.8 and Figure 2.4). However, different rate constants for Hg® reaction with Br
(S3 and S4) influenced the final product composition and t4.,. The amounts of HgO,
HgCl, HgCl,, and Hg(OH); produced were the greatest using the Donohoue et al. (2006)

rate constant value (S4) compared to application of other values(S1 and S3). Using the
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rate constants of Donohoue et al. (2006) and Khalizov et al. (2003) (S3 and S4) led to a
slow decrease in Hg® at first followed by a faster decline compared to the base case.
Furthermore, the variation in the rate constant values of Hg® reaction with Br was also
important in determining t4p. Compared to the base case (S1), using the rate constant
from Khalizov et al. (2003) and Donohoue et al. (2006) (S3 and S4) increased 14, (Table
2.8). However, about 97% of the RGM product was HgBr,, the same as in the base run

case.
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The rate constant of Hg® with BrO varies over the range of 1x10™"° - 1x10"* ¢cm®

molecule™ s

at 298 K (Raofie and Ariya, 2003) and the temperature dependent rate
constants were not provided in that study. We ran three simulations using rate constants
of 1x10™", 1x10™, and 1x10"" cm® molecule” s in the base case run to study the
influence of the reaction on Hg® depletion. With the lowest rate constant, Hg® reaction
with BrO was negligible. With the largest rate constant, the 14, value for Hg® was
reduced by 8 hours and slightly more HgO was produced than HgBr,. When the
temperature of 255 K was considered, the reaction of Hg® with BrO did not seem to be
important in our simulations, which suggests a negligible effect of Hg® reaction with BrO
on the occurrence of MDEs in the Arctic spring.
4.3 Influence of Halogen Radical Concentrations

A simulation was conducted without halogen compounds being re-set to the initial
conditions at each time step (S14). It was found that ~11% of Hg® was transformed to
RGM and O3 was decreased by ~0.5% after 100 hours of simulation. This suggested that
continuous emission of halogen compounds is imperative to the occurrence of MDEs and
ODEs in the Arctic springtime. |

In addition, simulations were performed using 3 and 5 pptv Br; and 5 pptv Cl, (S7,
S8, and S9) (Figure’ 2.5 and Table 2.8). We found that the higher the Br, concentration
was, the faster the Hg®, O3, and C;H, depletion occurred. The 74, value decreased
almost linearly with increases in Br,. Adding 5 pptv of Cl; (S9) reduced the t4ep value for
each compound by 20 - 30 minutes. The rate constant of Cl and Br with Hg® are of the

-1

same order of magnitude, 10"? ¢cm® molecule s, at 255 K. However, the order of

magnitude for the rate constant of Cl radical with hydrocarbons and O; are 10" cm’
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molecule! s except n-C4Hjo, 10 cm® molecule™ s'; the reactivity of Br radical with Os

1S 10_13 cm® molecule! s and that of Br radical with C,H, is 10" ¢m® molecule™ s

-1

Furthermore, there was a lack of bromine reactions with light alkanes in the model due to

insufficient kinetic information available in literature. Therefore, the high reactivity of Cl

with abundant hydrocarbons and O3 caused 14, value for Hg® to be much more sensitive

C2HZ {pptv)
n
&

o B

C2HE (pptv)

40
— 30
2
Q.
= 20F
3
10F
Q
6Q0
_ 500
£ o
=9
=~ 300
200
]
100

nC4HI G {ppty)

HgO (ppgy)

HyBr (ppg)
o
[s)

2 40 4] g6 100
tima(h)

time(h)
base Br2 3pptv Br2 Sppiy

Loyl ao 80 10
(12 Hppty

4 60 B> 100
fima(h)

Figure 2.5. 100 hour model simulation using different halogen mixing ratios.
Black is base run, blue is 3 pptv Bry, red is 5 pptv Br;, and green is 5 pptv Cl,.
Unit is same as Figure 2.4.

to Brathan Cl,. Approximately 99% of the RGM product was HgBr;, with the higher Br,

cases showing a slight increase in the amount of HgBr,. ARCTAS measurement data
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showed that Br, mixing ratios varied over 1-7 pptv in most MDEs, and thus it is
‘reasonable to speculate based on our box model simulations that Br, (Br) played an
important role ’in‘ the occurrence of MDEs.

At the 5 pptv Cl, mixing ratios of light alkanes decreased significantly compared
to cases with additional input of Br,. For instance, we found a 70% decrease in C,Hg in
100 hours for 5 pptv Cl, compared to a ~35% decrease in other cases.

4.4 Influence of Photolysis Rate Constants

Different photolysis rate constants affected the 14¢p value for Hg® (Table 2.6 and 2.8 and
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Figure 2.4.
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Figure 2.6) and higher photolysis rate constants (S10) drove faster depletion for Hg°.
The main RGM product was again HgBr,. However, HgO, the second most abundant
RGM product in the high photolysis case (S10) was about 52% of its values in the base
case because fast production of Br radicals accelerated the Hg® + Br reaction. Moreover,
the higher photolysis case showed a more rapid decrease in C;H, and O3 compared to the
lower photolysis. Light alkanes also showed faster decreases in the high photolysis case
(S10) and slower decreases in the low photolysis case (S11) (e.g., C;Hg showed a 62 %
decrease in the high photolysis case and a 21 % decrease in the low photolysis case after
100 hours of simulation). We examined the ARCTAS measurements for correlation
between the Br, photolysis rate constant and O; mixing ratios inside the MDE regions,
but we did not find a strong relationship. This is probably not surprising since the
depletion events were sampled at various stages of their lifetime.
4.5 High Versus Low NO, Regimes

ARCTAS measurements showed that the NO mixing ratio was commonly about
10 pptv and NO; was ~0 pptv. However, a couple of cases shoWed very high mixing
ratios of NO and NO; for short time periods which indicated an influence of fresh
emissions from northern Alaska, including the Prudhoe Bay Oil field. This motivated
simulations of high and low NO, regimes.

The low NO, regime (S13) was based on case 7 of the eight ARCTAS MDEs.

The results for low NO, were similar to the base case (Figure 2.7). In the high NO,
regime (812), Cl radical concentratioﬁ was slightly increased during the 100 hours of

simulation due to acceleration of Cl production from the reaction of ClIO + NO. Thus
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light alkanes decreased slightly more than in the base case after 100 hours of simulation

due to reaction of light alkanes with the Cl radical.
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Different from Cl, Br reactions with light alkanes were not implemented in our
model, and thus high NO, concentrations significantly increased the Br radical
concentration in comparison to the Cl radical. Fast production of Br radicals in the high
NO, regime (512)' occurred during the first part (33 hours) of simulation, with a

decreased BrO amount. Increased Br radical concentrations were presumably due to the
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reaction of BrO with NO. Thus, O; and Hg® depletion occurred in ~2 hours for O3 and
~16 hours for Hg® sooner compared to the base case (Table 2.8). Ethyne declined at a
faster rate initially in the high NO, regime (S12) compared to the base case (S1) because
of its reaction with Br radical, but overall the depletion time in the high NO, regime
(S12) was similar to that of the base case (S1). Note that these results suggested that the
impact of high NO, regime (S12) on I;Ig° depletion could be exaggerated slightly due to
the lack of rate constants of Br with light alkanes.

Moreover, we simulated the corresponding chemicai environments at higher NO,
levels based on ARCTAS measurements. This simulation showed that higher-NO,
induced changes in hydrocarbon concentrations slightly affected the RGM composition
and t4ep for Hg® in high NO, regime. Compared to the high NO; level alone, 4., for Hg®
was prolonged by 30 minutes, and HgO production was increased by 11%. The tq4ep, value
for O; was prolonged by 1.5 homs.

From the ARCTAS measurements we did not find distinguishable characteristics
for O3, C;H,, and light alkanes in the high NO, regimes, but Hg® was 28 — 44 ppqv
during these time periods in cases 3 and 8 with a possible contribution from combustion.
However, these levels were still low compared to the values outside the MDEs, and
indicated the possibility of fast Hg® oxidation in the high NO, regime as shown in the
model simulations. The other interesting simulation result was that O3 and C,H, were not
depleted as fast as Hg® in the high NO, regime. The data of case 8 showed that the high
NO, area did not exhibit correspondingly high Os;, C;H,, C;H¢, and C;Hg. However,
simulation results could help explain case 8 in which light alkanes, C;H;, and O3

followed a similar pattern but not Hg®. The BrO loss mechanism with NO produced
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more NO; which is an O3 precursor; hence O3 depletion was slower than Hg® depletion.
Moreover, the Br radical production pattern, which was higher for the first simulation
period and lower for the last simulation period compared to the base run, could explain
C;H; depletion in case 8. Furthermore, case 3 also had high NO, area but O; and C,H,
resembled with Hg®. Br, mixing ratio in case 3 was higher than case 8, and hence we _
simulated high NO, regime with a consistent éource of 2 pptv Br,, which was in the range
of Br; in case 3. The simulation indicated O; and C,H, depleted faster than original
simulation of high NOx.regime; Taep Was 16.9 hours for Oz and 27.5 hours for CH,.
Therefore, the simulation results indicated that different range of Br, mixing ratio drove
the different feature of casés 3 and 8.
5. Conclusions

Atmospheric MDEs observed- during the ARCTAS field campaign were
investigated by analysis of aircraft data and box modeling. MDEs were observed to
occur near the surface over the Arctic Ocean with coincident O3 depletion, high Br
levels, and decreases in light alkanes and C;H;. Generally, air masses inside the MDEs
transported at low levels over the ocean, and thus a distinguishable chemical feature of
the air is that it is likely halogen rich.

We developed a gas phase box model including mercury, halogen species, and
ozone chemistry with input from the ARCTAS measurements. We simulated several
sensitivity experiments to study the influence of variable rate constants of Hg® chemistry,
concentrations of halogen compounds, photolysis rate constant values, and NO, mixing
ratios on Hg® depletion. The results suggested that high Br, mixing ratios, high

photolysis rate constants, and high NO, regime caused accelerated Hg® depletion. These
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three environments accelerated Br radical production and hence increased the rate of Hg®
depletion. Moreover, we found that Hg® responded in a more sensitive manner to the
variations in the chemical environment compared to O;. This could possibly explain the
moderate decreases in O3 mixing ratios in MDE regions compared to total depletion of

Hg°.
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II1. Cycling of gaseous elemental mercury: Importance of water vapor

1. Introduction
Mercury, a toxic compound as classififed by the U.S. Environmental Protection

Agency, exists in three forms in the atmosphere; gaseous elemental mercury (Hg®),
reactive gaseous mercury (RGM), and particulate mercury (PHg). Measurement data
have showed that the concentrations of RGM and PHg are two orders of magnitudes less
than the concentration of Hg’. For example, the mean or median value of Hg® was
reported to be <2.5 ng m™ over the Pacific and at rural regions in North America (Laurier
et al., 2003; Radke et al., 2007; Mao et al., 2008; Swartzendruber et al., 2006; Poissant et
al., 2005; Lyman and Gustin, 2008), while the mean values were reported as 7-13 pg m™
for RGM and 9-13 pg m™ for PHg in northern Nevada and over the North Pacific (Lyman
and Gustin, 2008; Laurier et al., 2003).

Mercury is primarly emitted to the atmosphere in elemental form (Hg°), and its
sources are biomass burning, waste incinerators, coal-fired power plants, volcanos, and
automobiles (Brunke et al., 2001; Hall et al., 1990; Pyle and Mather, 2003; Won et al.,
2007; Glodek and Pacyna, 2009; Wilson et al., 2006). Moreover,v natural mercury
emissions include release from vegetation, soil, and the ocean (Bash et al., 2004; Sigler
and Lee et al., 2006). In contrast, mercury sinks from the atmosphere are by wet and dry
deposition (Mao et al., 2008; Sakata and Asakura, 2007). A regional mercury study over
eastern Asia suggested that RGM and PHg were mostly deposited around source regions,
while Hg® was transported over the Pacific and accounted for 39% of total Asian
emissions (Pan et al., 2008). Hence, the transformations from Hg® to RGM and PHg are
crucial for the global mercury cycle. Several model studies indicate that the principal

transformations of Hg” to RGM are through oxidation by the Br radical in the marine
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boundary layer and O3 in urban boundary layer {Kim et al., 2010; Holmes et al., 2009,
2010; Xie et al., 2008; Shon et al., 2005).

Box model is useful tool to study mercury chemistry in various environments.
Some previous box modeling studies conceptualized possible atmospheric processes in
one big box, which were‘m;ainly chemical processes, dry deposition, and emissions (Shon
et al., 2005; Hedgecock et al. 2004 and 2005). Meanwhile, a box model is also utilized to
study complicated chemical processes in the atmosphere while ignoring other
atmospheric processes. For example, mercury depletion events (MDEQ) in Arctic
springtime were studied by utilizing comprehensive chemical reactions in the Arctic
springtime atmosphere (Xie et al., 2008; Kim et al, 2010). Here, we focused on
chemical transformations of mercury species in the atmosphere including mercury,
halogen, ozone, and sulfur chemistries in the gas and aqueous phases. Moreover, we
considered one more atmospheric process, dry deposition, in the chemical box model for
the last set of sensitivity experiments.

Gaseous elemental mercury has been measured in the northeastern U.S. since
2003 as part of the UNH-NOAA AIRMAP program and speciated mercury has been
measured since 2007 (Mao et al., 2008, 2010b; Sigler et al., 2009). The seasonally
averaged diurnal variation of Hg® showed ~20 ppqv decrease at night in summer and fall
when the nocturnal inversion layer frequently occured (Talbot et al., 2005; Mao et al.,
2008). The nighttime loss of Hg® appears to be quite variable, ranging from nearly
complete removal to no perceiveable loss on a given night. Here, we conducted

sensitivity experiments with the chemical box model to interpret mercury chemical
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processes affecting the diurnal cycle of Hg® at Thompson Farm, one of the measurement
sites of the AIRMAP program.
2. Methods

2.1 Mercury measurements

Speciated atmospheric mercury was measured at Thorﬁson Farm (TF, 43.11N,
70.95W) in southern New Hambshire year round. A detailed description of the TF site
can be found in Sigler et al. (2009). At both sites we operate a Tekran system which
consists of a model 1130 to measure RGM, a model 1135 to measure PHg, and 2537A
cold vapor fluorescence detector. Eiemental Hg was quantified with a five minute time
resolution. Reactive Hg and PHg were determined using a two hour sampling and one
hour flushing and desorption sequences. The instruments were configured and operated
identically at both sites according to the U.S. Environmental Protection Agency Standard
Operating Procedures for Analysis of Gaseous and Fine Particulate-Bound Mercury (U.S.
EPA, 2009), with one modification. Instead of using the Tekran commercial water
femoval cartridge system, we developed a custom cold finger unit which operates
autonomously only producing water as a waste by-product. The system is extremely
clean and we believe that it helps keep the blank on the speciated measurements at zero.
- Thus, blank subtraction is rarely required. Calibration of the 2537A unit was conducted
automatically every 24 desorption cycles, and this was verified every six months using a
Tekran model 2505 Saturated Mercury Vapor Calibration Unit (i.e., direct injection from
the headspace of a thermoelectrically cooled Hg°® reservoir) to confirm absolute
calibration. A detailed description of the measurements can be found in Talbot et al.

(2010).
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2.2 Box model development

We developed a gas phase chemical box model that included Os, halogen, and
mercury chemical mechanisms (Kim et al., 2010). We added gas phase sulfur chemistry
and aerosol chemistry into our previous model and the detailed chemistries are presented
in Tables 3.1 - 3.4.

dlC,]
dt

1
HRT

=G, -G, -k, L(C,]- [C.,D (Equation 3.1)

dCy] _ k, . L(C ]—L[C D+4, -4, | - (Equation 3.2)
dt & HRT “ i ,

The gas phase concentrations of chemical compounds ([C,]) are determined by
gas phase chemical production (G;), gas phase chemical loss (Gy), and the amount of
uptake by aerosols (Equation 3.1). Here, we ignored other atmospheric processes such as
horizontal and vertical transport, dry deposition, and emission. We considered the impact
of dry deposition in a set of sensitivity expriments. We included mass transfer between
gas and aqueous phases (aerosol uptake) vand chemical production and loss in the aqueous
phase (A, and A‘) (Equation 3.2). The mass transfer between gaseous-aqueous phases is
controlled by the liquid water content (L), the rate of mass transport from the gas tob
aqueous phases (kmr), and the difference in chemical concentrations between the gas
phase and interface of gas-aqueous phases (C; — Cintwerface). Here, our focus is on
nighttime loss so we assumed an equilibrium state for gas-aqueous phases to obtain
Cinterface, due to high nighttime relative humidity of >70% (Pirrone et al., 2000). Hence
the concentration at the interface (Cinterface) i controlled by the Henry’s Law constant (H)
and concentration in the aqueous phase (C,q). The units of concentrations (e.g. C; and

-3
Cinterface) were ¢m .
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The mass transport between gas-aqueous phases consists of molecular diffusion in
the gas phase and gas-kinetic collisions at the interface of gas-aqueous phases (Schwartz,
1986), and it was formulated by utilizing the characteristic time. The molecular diffusion
to the aerosol surface is controlled by aerosol radius (a) and the diffusion coefficient (Dg)

in the first term on the right-hand side of equation 3.3. The gas-kinetic collision at the

~ interface is determined by the accommodation coefficient (a), molecular speed ( ;), and

aerosol radius (a) in the second term on right-hand side of equation 3.3.

2

kyp =( 3‘%)-‘ (Equation 3.3)

a_,
3D, v
There are two types of chemical reactions in the aqueous phase; reversible and
irreversible reactions. For the reversible reactions we assumed that the reaction is
controlled by diffusion in the phase. We considered mostly charged species, but the
diffusion rate of bimolecular reactions between ﬁncharged species (~10" L mol™ s) is
utilized in the model due to little impact of ionic strength on the diffusion rate
(Finlaysoh—Pitts and Pitts, 2000). We added 39 gas-aqueous equilibrium reactions, 28

reversible reactions in aqueous phase, and 51 irreversible reactions in the aqueous phase

(Table 3.2 - 3.4).

Table 3.1. Selected acidic gas phases reactions.

Reactions Rate constant/ equilibrium References

constant '
OH + SO, +M— 4.5%107" exp (T/300)" [NoJem® | Atkinson et al. (2004)
HOSO, + M molecule! 7! ,
HOSO, + 0, —» HO, + | 1.3x107 /exp (330/T) cm® Atkinson et al. (2004)
SO; molecule 7! :
SOs+ 2H,0 — HSO4 + | 8.5 x10™ exp(6540/T) cm® Sander et al. (2006)
H,0 molecule !
N>Os + H,O — 2HNO; | 2.5x107 cm® molecule” s Atkinson et al. (2004)
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Table 3.2. Gas-aqueous phases equilibrium reactions.

Reactions Equilibrium constant (unit: M atm™) | References

Hg > Hgg 0.11-0.14 Sanemasa, 1975/ Schroeder
and Munthe, 1998

HgO «» HgOpug 3.2 x10° Petersen et al., 1998

HgClyy « HgClyg 2.75 x 10° Schroeder and Munthe, 1998

HgBry,) < HgBryug 2.75 x10° Hedgecock and Pirrone, 2004

Hg(OH)y(,) +» Hg(OH)»aq) 1.2 x10* Lindqvist and Rodhe, 1985

O3 < Os0aq) 1.03x107 (at 298K) Sander et al. (2006)

Hepy < Heay 2.6x10* (at 298K) Sander et al. (2006)

OH,, < OHgy 39 (at 298K) Sander et al. (2006)

HO3() < HOyg 690 (at 298) Sander et al. (2006)

HyO05 = HiOsug 7.73x10* (at 298K) Sander et al. (2006)

NOs <> NOsaq) 3.8x107 (at 298K) Sander et al. (2006)

CH;Br,y « CH;3Br, 0.173 (at 298K) Sander et al. (2006)

CH;00H,,, « CH;00H,,, 300 (at 298K) Sander et al. (2006)

HCHO, <> HCHO 3.23x10° (at 298K) Sander et al. (2006)

CH3CHOy,) <> CH;CHO(,qy 12.9 (at 298K) Sander et al. (2006)

Cly o Cluy 2.3 (at 298K) Sander et al. (2006)

ClOy < ClOgqq 0.71 (at 298K) Sander et al. (2006)

CIOO) > ClOO0 17 (at 298K) Sander et al. (2006)

OClO¢, <> OCIO, 17 (at 298K) Sander et al. (2006)

HOCl,;, < HOCl,y 660 (at 298K) Sander et al. (2006)

By < Bryag 0.725 (at 298K) Sander et al. (2006)

BrCl, < BrClyg 0.98 (at 298K) Sander et al. (2006)

HOBr,, <> HOBr,, 130 (at 298K) Sander et al. (2006)

HNO;() <> HNOs3q) 2.1x10° (at 298K) Schwartz and White (1981)

HONO,, <> HONO, 49 (at 298K) Schwartz and White (1981)

HCl,, < HClg 727 (at 298K) Seinfeld and Pandis (1998)

SO <« SOzaq InH = -39.72+4250/T+4.525xIn(T) Sander et al. (2006)

Oz © Osiag) InH = -161.6+8160/T+22.39xIn(T) Sander et al. (2006)

NOg) < NOpq InH=-157.1+7950/T+21.298xIn(T) Sander et al. (2006)

CO¢ <> COpy =-178+8750/T+24.875xIn(T) Sander et al. (2006)

COs) © COpugy InH=-145.1+8350/T+19.96xIn(T) Sander et al. (2006)

CHy) <> CHuag

InH=-194.7+9750/T+27.274xIn(T)

Sander et al. (2006)

CoHe() © CoHgag)

InH=-240.2+12420/T+33.744xIn(T)

Sander et al. (2006)

C3Hgg) < C3Hgg)

InH=-281.1+14510/T+39.652%In(T)

Sander et al. (2006)

n-C4H g < n-C4H gaq)

InH=-269.9+14330/T+37.734xIn(T)

Sander et al. (2006)

CoHyg) < CoHyag) =-145.8+7880/T+20.384xIn(T) | Sander et al. (2006)

Clyg < Clyag) InH=-134.447590/T+18.702xIn(T) | Sander et al. (2006)

‘HBr( <> HBry InH =7.6+7117/T-0.035xT Brimblecombe and Clegg
(1989)

NH3(2) > NH3(aq) InH=-9.84+4160/T Sander et al. (2006)

- Table 3.3. Aqueous equilibrium reactions.

Reactions Equilibrium constant Refrences

Hg™ + SO;° <> HgS0; 2x10° M van Loon et al., 2001
HgSO; + SO;~ — Hg(S05),™ 1 x10"M van Loon et al., 2001
Hg” + OH « Hg(OH)" 3.98 x 10° M Smith and Martell, 2004
Hg(OH)" + OH" — Hg(OH), 1.58 10" M! Smith and Martell, 2004
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Hg(OH)" + CI' & Hg(OH)CI 2.7 x10' M’ Xiao, 1994

Hg™ + CI" & HgCI' 2 x10" M! Smith and Martell, 2004
HgCl' + CI' & HgCl, 5.0 x10° M Smith and Martell, 2004
HgCl, + CI' & HgCly 6.7 10" M Clever et al., 1985
HgCly + CI” < HgCl,”™ 1.3 x10" M Clever et al., 1985

Hg®* + Br — HgBr" 1.1 x10° M’ Clever et al., 1985
HgBr' + Br” — HgBr, 2.5x10° M Clever et al., 1985
HgBr, + Br < HgBry 1.5 x10° M”! Clever et al., 1985
HgBr; + Br & HgBr,;z' 23 x10' M Clever et al., 1985

BrCl + CI” & BrCl, 6.0 M

Wang et al. (1994)

SO,H,0 <> HSO, +H' 1.3x10%exp(1960x (1/T-1/298)) M Smith and Martell (1976)
HSO; < SO,” +H' 6.6x10%exp(1500% (1/T-1/298)) M Smith and Martell (1976)
H,SO, — HSO, + H' 1000 M (at 298K) Perrin (1982)
HSO,<S0,” +H" 1.02x10%exp(2720x (1/T-1/298)) M Smith and Martell (1976)
H,0, «HO, +H' 2.2x10exp(-3730% (/T-1/298)) M Smith and Martell (1976)
HNO; & NOy, + H' 15.4exp(8700x (1/T-1/298)) M Schwartz (1984)

HONO < NO, + H' 5.1x10%exp(-1260% (1/T-1/298)) M Schwartz and White (1981)
CO,H,0 & HCO; +H' 4.3x107exp(-1000x (1/T-1/298)) M Smith and Martell (1976)
HCO; < CO,” +H' 4.68x10 exp(-1760x (1/T-1/298)) M Smith and Martell (1976)

HCl~H +CI 1.74x10%xp(6900x (1/T-1/298)) M Marsh and McElroy (1985)
HO, -+ H + 0, 3.5x10° M Perrin (1982)

Br,Cl' «Br, + CI’ 1.3 M Wang et al. (1994)

HBr & H' + Br’ 1.x10° M(at 298K) Lax (1969)

NH," - NH; +H" 5.88x10° M Chameides (1984)

Table 3.4 Aqueous reactions.

Aqueous reactions Rate constant References

Hg + OH — ‘HgOH 24 x10°M s Gardfeldt et al. (2001)

HgOH +0, + H,0 — Hg(OH), + H + O, 10°M s Gardfeldt et al. (2001)

Hg+ OH — Hg' + OH 20 x 10°M s Lin and Pehkonen (1997)

HegO + H — Hg” + OH 1x 10" M5! Pleijel and Munthe (1995)

HOCI + Hg — Hg”' + CI' + OH 2.09 x 10° M5! Lin and Pehkonen (1998)

OCI'+ Hg (+H") —» Hg*" + CI' + OH 1.99 x 10° M5 Lin and Pehkonen (1998)

HgSO; — Hg" + product 0.6s" Pleijel and Munthe (1995)
| Hg(OH), — Hg" + product 3x 107 5T Pleijel and Munthe (1995)

Hg"' + HO, - Hg' + 0, + H' 1.7 x10°MTs? Pehkonen and Lin (1998)

Hg' +HO, - Hg+ O, +H' 1x10°MTsT Xie et al. (2008)

SO,” + OH (+0,) — SOs + OH 5.2 x10°M s Huie and Neta (1987)

SO,” + Cl, (+0,) — SOs +2CI 3.4 x10°M s Huie and Neta (1987)

HSO; + OH (+0,) — SOs + H,0 4.5x10°M s Huie and Neta (1987)

HSO; + Cly (+0,) — SOs +2CI+ H' 3.4 x10°M s Huie and Neta (1987)

HSO; + NO; (+0,) — SO + NO, + H' 1.0x10°M's™ Chameides (1984)

SOs + 0, (+H,0) - HSOs + 0, + OH 1.0x10°M s Jacob (1986)

2805 -2 804, + 0, 6.0 x10°M s Huie and Neta (1987)

SO, +HSO; (+0,) — SO,~ + H' + SO, 1.3 x10°M s Jacob (1986)

SO, +HO, —» SO,” +H + 0, 5.0 x10°M s Jacob (1986) -

S0, +0, — 80,5+ 0, 5.0 x10°M s Jacob (1986)

NO+OH — NO; +H" 2.0 x10"M s Strehlow and Wagner (1982)
' NO, + OH — NO, + OH 1.0 x10"M's! Treinin and Hayon (1970)

NO, + NO; — NO, + NO;° 1.2 x10°M's” Ross and Neta (1979)

NO; + HO,—»NO; +H + O, 4.5 x10° M5! Jacob (1986)

NO; + 0, —NO; + 0, 1.0 x10°M''s”! Jacob (1986)

CO,” + OH— OH + CO5y 3.9 x10°M's”! Buxton et al. (1988)

COy + 0, = COy” + 0, 6.5 x10°M's! Eriksen et al. (1985)

OH + HO, —» H,0 + 0O, 1.0 x10"° M s Elliott and Buxton (1992)

OH+ 0, > OH + 0, 1.0 x10"°M s T Elliott and Buxton (1992)
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OH+OH - H,0+0O 1.3 x10""M s Buxton et al. (1988)

0, +0; > 0,+05 1.5 x10°M's” Schested et al. (1983)

0y +H — 0,+ OH 9.0 x10°M s Neta et al. (1988)

0 +HO, —» O, + OH 4.0 x10°M's” Buxton et al. (1988)

HO, +0; > OH+ 05 + O, 5.5x10°M s Neta et al. (1988)

H + HO, — H,0, 1.0 10" M s Buxton et al. (1988)

H+ 0, — HO, 2.1 x10"MTs” Buxton et al. (1988)
H+0; > 0H+O0, 3.7 x100M s Neta et al. (1988)

CI' + OH »HOCI' 4.3x10°M s Jayson et al. (1973)
HOCI — CI' + OH 6.1x10°M s Jayson et al. (1973)
HOCI'+ H - H,0+ Cl 1.45x10"°M's™T Neta et al. (1988)

2Cl; — Cl, +2CI° 2.0<10°M s Neta et al. (1988)

Cly, +HO, - 2CI'+ O, + H' (1-4.5) x10° M5! Neta et al. (1988)

Cl, + OH — HOC1 + CI’ 1.0 x10°M s Wagner et al. (1986)

Cl; +H— H +2CI 7.0x10°M s Buxton et al. (1988)

Cl, +HO, - H +Cl, + O, 1.0x10°M s Bjergbakke et al. (1981)
Cl+ClI - Cly 8.5x10° M5! Buxton et al. (1998)
HOCI + SO;* — HSO, + CI 7.6x10°M s Fogelman et al. (1989)
Br+ Br — Br,’ 1.6x10°Ms” Scaiano et al. (1992)
HOBr + SO,” (+ H,0) »S80,” + Br + 2H" 5x10°M s’ Troy and Margerum, (1991)
Br + OH — HOBr' 1.1 x10"M s Klaning and Wolff (1985)
HOBr + H — H,0 + Br 1.1x10"" M5 Klining and Wolff (1985)
2Br,” — Br; + 2Br’ 2x10° Mg T . D’ Angelantonio et al. (1988)

2.3. Box model simulations

We studied Hg® loss from the gas phase associated with gas-aqueous mass
transfer during the nighttime in summer at the TF site. For the study, we did not consider
photo-dissociation chemical mechanisms from the gas phase reactions. Thus, radical
reactions did not occur due to the lack of radical production by photo-dissociation.
Several different measurement data sets were utilized to set the initial conditions of gas
phase chemical compounds (Table 3.5). The majority of the data was provided by the
AIRMAP program (NO, CH;OH, CH3Br, Hg®, CO, CO,, SO,, and hydrocarbons), and
we obtained representative values (<0.5 km altitude) for initial conditions of OH, HO,,
CH4, NO»,, H,0,, HCHO, H,0, and CH3;CHO from the DC-8 measurements over the TF
area during the 2004 ICARTT study.

These mixing ratios were calculated to

concentrations (cm™) at 294 K and 0.94 atm.
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The process of preparing initial conditions utilizing TF data was as follows. We
used the following criteria to select well-defined cases, and 15 nights out of 153 nights
were selected. First, we considered the time period only from May — September, 2009,
and excluded days with precipitation. In order to consider an isolated environment in the
horizontal dimension, we obtained 10 minute averaged wind speed data at nighttime
(20:00 — 06:00 EDT), and then selected the days where the mean value for 10 hours was
<1 m/s. The last consideration was the presence of a well established nocturnal boundary
layer during nighttime, which was identified by a nighttime decrease in O and Hg®, and
corresponding increase in CO; (Talbot et al., 2005). The median summertime mixing
ratio was utilized as the initial conditions for NO, CH;OH, CH;Br, Hg°; CO, COy, and
SO,. The monthly mean values of hydrocarbons at TF were documented by Russo et al.
(2010), and we utilized the average values during summer_time for C,Hs, C3Hs, CoH,, and
n-C4Hy9. Moreover, thé initial conditions were 1 pptv for Cl,, Bry, and I, (Stutz et al.,
2007). |

Aerosol input is also an important feature for realistic model simulations. A
couple of studies have shown that the dominant aerosol composition at TF is sulfate
(Ziemba et al., 2007; Cottrell et al., 2008). The median values for the summertime were
41.3 nmol m> for NH;" and 23.7 nmol m™ for SO.* (Ziemba et al., 2007), and we
utilized these values for the initial conditions. Our group conducted an intensive study of
PHg at Thompson Farm in summer 2009. Sampling with a cascade impactor showed the

“presence of sea salt, and the greatest amount of Hg was associated with it on coarse
aerosols (Feddersen et al., 2010). In fact, the largest amount of Hg was found on aerosol

with 3 pm aerodynamic diameter. For simplicity, we assumed all of the PHg was on 3
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um size aerosols. We did not consider the aerosol lifetime in the atmosphere due tc the

short simulation time (100 hours) compared to a typical aerosol lifetime of ~7 days

(Hedgecock et al., 2004).

3. Results

Table 3.5. Initial conditions for the simulation.

Chemical .. .
Mixing ratios
compounds
NO 50 pptv
NO, 0 pptv
H,0, 2086 pptv
HCHO 2305 pptv
OH 0.11 pptv
CH;0H 1620 pptv
CH;CHO 480 pptv
C,Hg 1085 pptv
C,H, 226 pptv
C;Hg 522 pptv
n-CsHyo 103 pptv
CH4 1800 ppbv
HO, 11.17 pptv
CH;Br 8 pptv
O; 39 ppbv
Hg° 138 ppqv
CO 150 ppbv
H,O 16400 ppmv
CO, 373 ppmv
SO, 350 pptv

3.1. The water solubility of Hg°

Henry’s law constant of Hg° is 0.11 - 0.14 M atm™ at 298K (Schroeder and
Munthe, 1998; Sanemasa, 1975), and the constant has a much higher value compared to
the constants of CO, (0.034 M atm™) and O3 (0.01 M atm™). Gaseous elemental mercury
is typically not thought of as a soluble compound, but its Henry’s law constant indicates

enough water solubility that it must be considered in chemical cycling of Hg®. We
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converted the constant to dimensionless units for application in our chemical box model
by multiplying by the temperature and gas constant (R: 82.05 (cm® atm K mol™)),
producing values of 2.69 — 3.42. The constant indicates that Hggq should be about a

factor of 3 greater than Hg® in the gas phase.

(@) Hg(g) concentration (b) HgO(g) concentration © Hg(aq) concentration
150 : “ , . 4 . . 10 : . . -
b1 o
_ 1oof . el
il a
sof Mi
2 b
ol o o
0 2 4 & 8 1c [\ 2 4 5 ] 16
time{h} timafh) time{h}

Figure 3.1. Results of Hg® (a), HgO(g (b), and Hgq) (c) from a 10 hour simulation.
Black line is without consideration of aerosol chemistry and blue line is with
aerosol chemistry included.

We conducted simulations using sensitivity experiments with and without aerosol
chemistry to check the impact of water solubility on Hg® in the gas phase (Figure 3.1).
The liquid water content (LWC) was set to 2x107"2 (m3(water)/m3(air)) for the case
considering aerosol chemistry (Dickerson et al., 1999). After 10 hours of simulation
without aerosol chemistry the results showed that ~3.8 ppqv of Hg® was transformed to
RGM, mostly HgO,). In comparison, the simulation with aerosol chemistry indicated
that ~11.5 ppqv of Hg® was transforméd to RGM and PHg, mainly HgO() and Hg,q).
Moreover, Hgq was increased to ~9 ppqv after 10 hours, and Hgnq was mainly
converted by mass transport of Hg® between the gaseous andv aqueous phases. Hence,

about a factor of 2 greater amount of Hg® was converted to aerosol forms compared to
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without aerosol present. Therefore, the slight water solubility of Hg® affects considerably
the interconversion of mercury species.
3.2. Aerosol uptake as a function of liquid water content

The liquid water content (LWC) of aerosols is the most important factor
controlling Hg® gaseous-aqueous: mass transport. We conducted several sensitivity
experiments to define the uptake as a function of LWC. Previous model studies utilized
different LWC values for discrete aérosol types. For example, the LWC value of sea salt
aerosol is commonly in the range of 3x107'" — 6x10™"" (m*(water)/m’(air)), while the
value for sulfate aerosol varied from 1.07x107'* — 2.14x1072 (Dickerson et al., 1999;
Hedgecock, et al.,, 2004). Moreover, an upper lirﬁit of LWC was 2x10™"" for mixed
ambient aerosol (Stanier et al., 2004).

The aerosol composition at TF showed that sulfate and organic matter are the
dominant components (Ziemba et al., 2007; Cottrell et al:, 2008). Thus, we assumed that
the aerosol LWC was 2x10'? for the lower limit. Moreover, LWC in the atmosphere
could be increased at night because of aerosol uptake and also thermodynamic occurrence
of dew or radiation fog. Therefore, we conducted five sensitivity experiments utilizing
different aerosol LWCs covering the range of 2x10™? - 2x10™' (Figure 3.2).

The 10 hour simulation showed that the dominant RGM and PHg were HgO,
and Hggg. More HgO() was produced with less LWC and more Hgq) was generated
with higher LWC. VHgO(g) was about a factor of 4 lower than Hg.q) for the case of 2x10°
12" and HgO(g) was 4 orders of magnitudes lower than Hg,q in the case of 2XiO'IO. We
extended the simulation time to check when the equilibrium between Hg® and. Hg(aq) was

reached, and we assumed that the equilibrium between both states was reached at 46
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ppqv Hg®, which was one third of the value of the initial condition. The time to reach
equilibrium by different LWC was as follows; 2.6 hours for 2x10™'%, 8.6 hours for 6x107"!,

24.9 hours for 2x10™"", 72.9 hours for 6x10"%.  Moreover, the equilibrium was not

reached for a 100 hour simulastion with a 2x10™'? LWC.

a . .
(@) Ha{g) concentration (b) HgO{g) concentration
150 i i v M v 1 3 v \ Y v
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(c) Hg{oq) concantration (d) Hg+(aq) concentration
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Figure 3.2. Results of Hg® (a), HgO(y (b), Hgag (c), Hg (aq (d) for a 10 hour
simulation with different LWC (unit: m’(water)/m>(air)). The lines represent as
follows: black for 2x10™'°, blue for 6x10™"", red for 2x107", green for 6x10712,
and purple for 2x107'
3.3 Results considering dry deposition
Previous ideal simulations (i.e. theoretical simulations) showed that the loss of

Hg® transferred exactly to the amount of RGM and PHg formed by mass conservation

due to omission of other atmospheric processes in the model. The dry deposition of Hg®
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is an important factor determining the amout of speciated mercury in the atmosphere

- (Mao et al., 2008), and thus we added the dry deposition process into the chemical box

model, which is formulated as iz'E%=—VE"1[C]. Here, we utilized 125 m for the

nocturnal inversion layer height (H) (Talbot et al., 2005), dnd a LWC of 2x10"". We
simulated several sensitity experiments with different dry deposition velocities (v4) for
speciated mercury (Table 3.6) (Shon et al., 2005; Mao et al., 2008; Seinfeld and Pandis,
1998). SI13 is the experiment without consideration of dry deposition for all three

speicated mercury chemical forms; Hg®, PHg, and RGM.

Table 3.6. Sensitivity experiments with dry deposition added.

va=5cms’ vg=0.5cms’ dry deposition of Hg®

"RGM | PHg | Both | RGM | PHg | Both | v4=0.2cm s' | vy=0cms’
S1 X X
S2 X X
S3 X X
S4 X X
S5 X X
S6 X X
S7 X X
S8 X X
S9 X X
S10 X X
S11 X X
S12 X
S13

First, we examined the impact of v = 5 cm s on speciated mercury without
considering dry deposition of Hg® (S2, S4, and S6) (Shon et al., 2005) (Table 3.7. and
| ~ Figure 3.3 (a)-(c)). The mixing ratio of Hg® was decreased by ~60 ppqv and it was
decreased slightly more for S4 and S6 compared to S13 and S2 for a 10 hour simulation.

The simulation showed that HgO,), the dominant form of RGM, was of the order of 0.1
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ppqv, and it was a factor of 2-3 less for S2 and S6 than S4 and S13. Hg(.q) value for the
S13 and S2 was increased to 60 ppqv after 10 hours of simulation, while the value for the

S4 and S6 cases was ~3 ppqv.

Table 3.7. Mixing ratios of speciated mercury after 10 hours of simulation.

Hg® (ppqv) | HgO) (ppqv) | Hgaq (PPYV)
No deposition (S13) 77 0.3 60
va=5cms’ | RGM(S2) 77 0.09 59
without Hg® PHg (S4) 72 0.3 34
deposition Both (S6) 72 0.08 3.3
va=5cms’ | RGM(S]) 44 0.05 45
with Hg® PHg (S3) 41 0.2 2.0
deposition Both (S5) 41 0.05 1.9
va=0.5cms’ | RGM (S8) 77 0.2 60
without Hg® | PHg (S10) 75 0.3 30
deposition | Both (S12) 75 0.2 30
va=0.5cms’ | RGM (87) 44 0.2 42
with Hg® PHg (S9) 43 0.2 22
deposition Both (S11) 43 0.1 22

| Second, we considered dry deposition of Hg® with vq = 5 cm s™ (Table 3.7. and
Figure 3.3 (d)-(f)). The dry deposition velocity of Hg® (0.2 cm s™') was derived without
consideration of aerosol uptake during summer nighttime at TF (Mao et al., 2008). Hg°
was decreased ~32 ppqv more after 10 hours, and HgO,) and Hguq) were increased
slightly less for S1, S3, and S5 compared to S2, S4, and S6. Third, we utilized a dry
deposition velocity of RGM and PHg = 0.5 cm s™' based on the typical dry deposition
velocity of a 3 um diameter aerosol (Seinfeld and Pandis, 1998) (Table 3.7. and Figure
3.3. (g)-(D)). The loss amount of Hg® was similar to in the cases with v4 = 5 cm s
Moreover, HgO(,) was increased more for cases S7, S8, S11, and S12 compared to S1, S2,

S5, and S6. Hg,q) was increased to ~20 ppqv for S9 and S11, and 30 ppqv for S10 and

-80 -



(a)

Hg{g) concentration

150
100 \
3 .
g ,
501 b
o —
o 2 4 8 8 1D
) time(h)
(d)
Hq{g) concentration
150 2
100
>
g
o
50
0 . \
o 2 4 8 g 10
tima(h)
(2) )
Ha{g) concentration
150
100
>
a
-9
50
0 A
o 2 4 & 8 1ib
time(h)
W
Hg{g) concentration
100}
&
s

0r

0

0 2 4 8 .8 1D
time(h)

(b)
HgO{g) concentration
s At FhadlidaliA

o 2 4 & &8 1b
tima(h)

HgO{g) concentration
AadShaslhadlube

o 2 4 -] g 1ip
time(h)

() .
HgO(g) concentration

¢ 2 4 8 8 10
time(h)

LY

Hg0{g) concentration
o5 e

1) 2 4 8 g8 10
time(h)’

(©)

ppQv

®

ppav

U]

ppay

20f

0

Hg(aq) concentration
o LR anae

2 4

g g 1ib

time(h)

Hg(aq) concentrotion
o

0 2 4
timefh)

& & 1o

Hg(aq) concentration

2 4

& g8 1D

tima(h)

Hg(ag) concentrotion

]

2 4

e 8 1o

time(h)

Figure 3.3. Results of 10 hour simulation for sensitivity experiments with
changing values of the dry deposition velocity. The first column is Hg®, the
second column is HgOy), and the third column in Hgg). (a)—(c) for 5 cm s of
' of RGM or PHg with
Hg® deposition, (g) (i) for 0.5 cm s of RGM or PHg without Hg® deposition, and
(G)-(1) for 0.5 cm s of RGM or PHg with Hg® deposition. The line colors are as
follows; black line for no deposition of PHg or RGM, blue line for only deposition
of RGM, red line for only deposition of PHg, and green line for deposition of
RGM and PHg.

RGM or PHg without Hg® deposmon (d)-(f) for 5 cm s
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S12 after 10 hours. The mixing ratios were one order of magnitude greater than in the
cases of S3, S4, S5, and S6.

The 10 hour simulations showed that the loss of Hg® was ~60 ppqv for mass
transfer between the gaseous-aqueous phases and ~32 ppqv for dry deposition utilizing vq
=02 cms’. The amount of Hg® lost indicated that aerosol uptake into its liquid water
could be very important to mercury cycling compared to loss by dry deposition of Hg®
alone. The results of sensttivity experiments conducted with different dry deposition
velocities for PHg suggested that dry deposition loss of PHg is an extremely important
process controlling ambient levels of PHg.

4 Conclusions

We included mass transfer between gaseous-aqueous phases and mercury aqueous
reactions into our gas phase mercury chemical box model in order to better understand
loss of Hg® during the night. The mass transfer between the gaseous-aqueous phases was
significantly influenced by water solubility of Hg® and the amount of LWC. The impact
of water solubility of Hg® was examined through two sensitivity experiments; with and
without aefosol chemistry. Ten hours of simulation showed that ~3.8 ppqv and ~11.5
ppqv of Hg° were depleted without and with aerosol chemistry respectively. The
sensitivity experiments showed that Hggq) was increaéed to 9-102 ppqv with variable
LWC ranging from 2x10™'2-2x10™'? after 10 hours of simulation.

Finally, we conducted sensitivity experiments with consideration of dry
deposition of speciated mercury. The sensitivity experiments indicated that dry

deposition of PHg is critical to generate typical ambient levels of PHg compared to Hg°
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and RGM. The loss of Hg® by aerosol uptake and dry deposition suggested that aerosol

uptake of Hg° could play an important role in mercury cycling in the atmosphere.
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IV. Implications of my study

The first study of my Ph.D. work was long-range transport of pollutants. My
study showed the importance of WCB and convection to long-range transport with fast
westerly flow in upper troposphere. Climate change should influence these dynamical
phenomené. For example, recent weather analysis in summer 2010 showed jet blocking,
which is associated with climate change. It drove extremly hot weather in many global
regions including Russia and northeastern Asia and terrible flooding in Pakistan and
China. These stagnant meteorology patterns, presumably involved with climate change,
should occur more frequently with associated intensive convection or WCBs transport.
Therefore, it will be interesting to study long-range transport patterns of pollutants in the
future with ongoing climate change.

The characteristics of mercury chemistries were studied in various environments;
Arctic springtime and rural areas in the northeastern U.S. There are a few implications
associated with my study. The first is related to my mercury study in Arctic springtime.
Thinking ebout how climate change in the Arctic might affect MDEs produced the
following possible scenarios. Climate change has driven a decreasing amount of ice
surface area over the Arctic Ocean, and thus should promote increasing amounts of
halogen compounds released into boundary layer air. This implies the possibility of more
frequent and Widespread occurrence of springtime MDEs.- On the other hand, a larger
open ocean would foster more turbulence in the atmosphere above, and perhaps cause
reduced occurrence of pronounced MDEs. Since the ocean is a large natural source of

Hg® (Andersson et al., 2008), this might also serve to reduce MDEs. It will be interesting
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to observe in the future the impact of reduced Arctic pack ice on chemical cycling of
trace gases like Hg® that are sensitive to such processes.

| "The second implication is related to the enrivonment in rural areas of the
northeastern U.S. Uptake of Hg® in the water layér of aerdsol within the nocturnal
inversion layer should occur readily based on our model results. During nighttime the air
within the inversion layer exhibits a relative humidity near 100%. At daybreak when the
sun rises the inversion starts to dissipate as vertical mixing commences. As the air warms
and begins to mix with drier air, the aecrosol LWC should decrease releasing Hg® back
into the gas phase. This diurnal cycling represents dynamic exchange of Hg® between the
gas and aerosol phases. Therefore, [ proposed that the diurnal cycle of Hg® was strongly
influenced by uptake onto aerosols with high liquid water content at night and then re-

volatilized back to the gas phase from the aerosol after sunrise.
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