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PREFACE

This dissertation consists of two parts which are focused on U.S. continental

outflow and mercury chemical cycling in various environments. Continental outflow

from the U.S. to the North Atlantic was investigated using a case study of NASA DC-8

flight 13 during the Intercontinental Chemical Transport Experiment - North America

(INTEX-NA). The chemical transformations of gaseous elemental mercury (Hg°) to

reactive gaseous mercury (RGM) and particulate mercury (PHg) were studied by

simulations with a mercury chemical box model based on the data analysis of NASA DC-

8 flights during the Arctic Research of the Composition of the Troposphere from Aircraft

and Satellites (ARCTAS) field campaign. Secondly, the chmical cycling of mercury and

the influence of water vapor on it were studied utilizing year-round measurements of

atmospheric mercury in New England by the UNH-NOAA AIRMAP program.

Although not obvious, these two topics are related to each other. Hg° can be

transported in the global and regional atmospheres due to its long life time, 6-24 months

(Schroeder and Munthe, 1998). Thus, chemical transformations of mercury should be

studied with consideration of its atmospheric transport regime. It is well known that

transport of chemical species is an important factor to consider in estimating regional

chemical budgets. Chemical transformation between Hg° and RGM is important for the

atmospheric budget of mercury because RGM is readily removed from the atmosphere.

Furthermore, links between mercury chemistry and other chemical transformations can

give insight into atmospheric chemical processing.

The specific research topics were as follows. The first work was data analysis of

chemical species measured over the North Atlantic during INTEX-NA to quantify the
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effects of continental outflow to the atmosphere over the North Atlantic. This study

found two interesting results. First, pollutants in the southeastern U.S. boundary layer

were transported to the upper troposphere over the North Atlantic by vertical transport,

which was facilitated by convection and warm conveyor belt (WCB) uplifting combined

with fast southwesterly flow in the free troposphere. Secondly, the data suggest that the

total tropospheric column over the North Atlantic was impacted by U.S. outflow in

various stages of photochemical aging. This study was published in Atmospheric

Chemistry and Physics in April, 2008.

The second facet of the work was studying chemical transformation of Hg° to

RGM and PHg using a chemical box model based on the importance of RGM and PHg in

the atmospheric budget of total gaseous mercury (TGM). The first part of the mercury

study was the chemical transformation of Hg° in the Arctic springtime with box modeling

based on data obtained by NASA DC-8 flights during the ARCTAS field campaign. A

comprehensive gaseous chemical box model was developed including mercury, halogen,

and ozone chemistries. The study indicated that high solar radiation, continuous high Br2

emission, and a high NOx regime accelerated Hg° depletion in the Arctic springtime.

This study was published in Atmospheric Chemistry and Physics Discussion in April,

2010.

The second portion of the mercury study was the diurnal cycle of mercury at

Thompson Farm, one of the UNH-NOAA AIRMAP measurement sites. The mass

transport between gas-aqueous phases and aqueous reactions were added into the

chemical box model. The box model simulations indicated that the loss amount of Hg° at

nighttime could be influenced greatly by aerosol uptake with water solubility of Hg° and

vii



the presence of higher liquid water content of aerosols compared to the loss amount of

Hg° by dry deposition. Moreover, sensitivity experiments suggested that the ambient

level of PHg is controlled by dry deposition. This work is planned to be submited to

Geophysical Research Letters in the near future.

Principal Objectives of my work were:

• Assess long-range transport of U.S. pollutant outflow to the Atlantic Ocean

utilizing a large suite of trace gases and meteorological parameters measured on

DC-8 flights during G????-??.

• Investigate chemical transformation of mercury in various atmospheric

environments using data analysis and chemical box modeling.
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ABSTRACT

CONTINENTAL OUTFLOW OF POLLUTED AIR FROM THE U.S. TO THE NORTH

ATLANTIC AND MERCURY CHEMICAL CYCLING IN VARIOUS

ATMOSPHERIC ENVIRONMENTS

by

Su Youn Kim

University of New Hampshire, December, 2010

The dissertation consists of two topics. The first was continental outflow from the

U.S. to the North Atlantic with a case study of NASA DC-8 flight 13 during the

Intercontinental Chemical Transport Experiment - North America. This study found two

interesting results. First, pollutants in the southeastern U.S. boundary layer were

transported to the upper troposphere over the North Atlantic by vertical transport, which

was facilitated by convection and warm conveyor belt uplifting combined with fast

southwesterly flow in the free troposphere. Secondly, the data suggest that the total

tropospheric column over the North Atlantic was impacted by U.S. outflow in various

stages of photochemical aging. The second topic was a study of Mercury Depletion

Events (MDEs) in the Arctic springtime and mercury chemical transformation in the

northeastern U.S. MDEs were studied by simulations using a chemical box model and

data analysis ofNASA DC-8 flights during the Arctic Research of the Composition of the

Troposphere from Aircraft and Satellites field campaign. A chemical box model was

developed considering only gaseous reactions of mercury, halogens, and ozone

chemistries. Several idealized sensitivity experiments based on data analysis were
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simulated to study what factors were most important to MDE formation. The box model

captured similar patterns as the measurements which were high Br2, O3 depletion, and
decline of ethyne and light weight alkanes inside the MDE areas. The simulations

indicated that a continuous high Br2 mixing ratio, high intensity of solar radiation, and a

high NO* regime caused faster Hg° depletion. Furthermore, the mercury diurnal cycle in

the northeastern U.S. was studied with the box model and data analysis of year-round

continuous measurements at the AIRMAP Thompson Farm site. The mass transport
between gaseous-aqueous phases and aqueous reactions were added into the box model.

Diurnal cycles of Hg° showed that it decreased -40 ppqv on stable nights. Box model

simulations indicated that the decreased amount of Hg° was facilitated by water solubility

of Hg° and uptake into the liquid water content of aerosols. Moreover, the sensitivity

experiments with dry deposition added indicated that the ambient PHg level was strongly
influenced by this process.
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I. Continental Outflow of Polluted Air from the U.S. to the Upper

Troposphere over the North Atlantic during the NASA INTEX-NA

Airborne Campaign

1. Introduction

Continental outflow plays an important role in influencing the chemical

environment of the remote troposphere through long-range transport of natural and

anthropogenic trace gases and aerosols. Extensive airborne measurements over the

Pacific during NASA field campaigns such as PEM-WEST B and TRACE-P have

characterized the chemical composition of Asian outflow (Talbot et al.; 1997, Blake et al.,

2003; Bartlett et al., 2003). Moreover, Asian dust and anthropogenic pollutants via trans-

Pacific transport can impact air quality in the U.S. (DeBeIl et al., 2004; Jaffe et al., 1999,

2003). Recently, long-range transport of Saharan dust over the Pacific route to western

North America has been documented in the middle troposphere (McKendry et al., 2007).

One important component of the continental outflow over the north Pacific

(Talbot et al., 1996a, 1997) and south Atlantic (Talbot et al., 1996b) basins is wet

convective lifting of air masses over the continent with subsequent enhancement in

mixing ratios of insoluble trace gases in downwind areas over the ocean at altitudes

above 8 km. For example, over the north Pacific Crawford et al. (2003) reported

enhanced mixing ratios of CO in the entire 1-11 km vertical column of a cloud impacted

area during TRACE-P. A case of deep convective lofting was also obtained during

TRACE-A, where a NASA DC-8 flight in the vicinity of a meso-scale complex moving

across burning Brazilian savannah measured high levels of biomass combustion products

in the middle-to-upper troposphere (Bartlett et al., 1996; Pickering et al., 1996). These
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scenarios are highly conducive to long-range transport of pollutants due to faster zonal

winds aloft and reduced photochemical reactivity.

The International Consortium for Atmospheric Research on Transport and

Transformation (ICARTT) field campaign was designed and conducted to gain a better

understanding of factors influencing large-scale air quality over North America, the

North Atlantic, and western Europe (Fehsenfeld et al., 2006). ICARTT measurement

platforms used for studying intercontinental transport included aircraft, ship, satellites,

sondes, autonomous balloons, and ground sites that were all operational during July-

August 2004. Five types of the North America outflow were classified, which were two

types of low level transports, fire plumes, and upper and lower level export by fronts

(Methven et al., 2006). Unlike Asian outflow which has been characterized extensively

by combustion tracers, a large suite of nonmethane hydrocarbons (NMHCs), and aerosol

composition, North America pollutant outflow over the Atlantic has focused largely on

ozone (O3) and CO (Dickerson et al., 1995; Mao et al., 2006; Millet et al., 2006; Parrish

et al., 1993). North American outflow was characterized comprehensively for its

chemical composition during the ICARTT field campaign. Specifically, the large

variations in ratios between the pentyl and C2-C4 nitrates over the North Atlantic

indicated the impact of different parent hydrocarbons emissions from the U.S. to the

North Atlantic by photochemical production during transport from the source regions

(Reeves et al., 2007). Canadian and Alaskan forest fires emissions caused elevated CO,

PAN, organic compounds and aerosols. Moderately high levels of CO and longer-lived

hydrocarbons were found in about 44% sampled data which originated from North

America by low and upper level outflow (Lewis et al., 2007).
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In the Northeastern U.S. a primary mechanism for continental outflow is a warm

conveyor belt (WCB) transport where a mature cyclone lifts air masses from the

boundary layer up into the westerly flow in the upper troposphere (Cooper et al., 2001).

The U.S. plumes lofted to the free troposphere by the WCB can affect air quality in

Europe within a few days (Stohl et al., 2003). An extensive field campaign linked

elevated trace gases mixing ratios in the lower troposphere over Scandinavia including

Alpine areas, to polluted air that was lifted into the free troposphere by the WCB over the

eastern U.S. (Huntrieser et al., 2005). A recent modeling study suggested that in summer

air masses in the central and southeastern U.S. may be lofted to the free troposphere by

convection followed by export to the North Atlantic by the semi-permanent anticyclone

(Li et al., 2005). They also pointed out that U.S. regions with the most frequent

occurrence of deep convection were the Midwest, the Gulf Coast, and the East Coast.

The Gulf Coast and off the East Coast of the United States were also found to be

influenced by deep convection during SONEX field campaign over the Atlantic, which

was conducted in October - November1997, by determining lightning activity (Fuelberg

et al., 2000).

Here we present a case study of convective uplifting of polluted air to the free

troposphere over the southeastern U.S. coupled with rapid transport to the North Atlantic.

We utilized data obtained primarily on flight 13 of the NASA DC-8 during the

Intercontinental Chemical Transport Experiment - North America (G????-??)

component of ICARTT (Singh et al., 2006).

-3-



2. Methods

2.1. Measurement data

INTEX-NA was performed over North America and the adjacent North Atlantic

Ocean using the NASA DC-8 aircraft to examine the large-scale distribution of trace

gases and aerosols associated with the North America continent (Singh et al., 2006). This

study focused on flight 13 which was conducted on July 28, 2004 with one of the main

objectives being sampling of U.S. continental outflow as described in Methven et al.

(2006) and Arnold et al. (2007). The DC-8 took off at about 12 UTC from the Pease

International Airport in New Hampshire and landed at around 22 UTC, yielding a flight

duration of about 10 hours. The flight route, shown in Figure 1.1, was located over the

North Atlantic near the most northerly position of a stationary front and near the southern

end of a cold front (Figures 1.1 and 1.2).

A brief description

of the overall measurement

package on the DC-8 was

provided previously in Singh

et al. (2006). The principal

trace gases of interest here

were CO, CH4, CO2, COS,

and a suite of NMHCs and

halocarbons which are
Figure 1.1. Flight 13 route and the three regions in upper

archived and available at troposphere.

http://www-air.larc.nasa.gov/cgi-bin/arcstat. The majority of the data, including CO and
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CHU, were obtained by the University of California - Irvine (UC-Irvine) (Blake et al.,

2003; Colman et al., 2001). Carbon dioxide was measured as described by Vay et al.

(1999). Only flight 13 data collected over the Atlantic east of 700W was used in our

analysis. We used relationships between CH4, CO, CO2, and COS in boundary layer air

(<2 km) over the southeastern U.S., determined using all the INTEX-NA DC-8 flight data

(flights 6, 7, 10, 12, 16, and 19) obtained over the continent at latitudes <35°N, to

understand the vertical distribution of trace gases along the flight 13 track. These are all

long-lived trace gases, with CO having the shortest lifetime of about 1 to 2 months in

summer the range of OH concentration over 1.0 ? 10 - 1.8 ? 10 molecules cm"

(Brasseur et al., 1999; Mak and Southon, 1998). Thus, these trace gases are

photochemically stable so that dynamical process are the most important factors

determining their distribution downwind from North America on the transport time scales

important to this analysis. NMHCs and halocarbons used in this study were mainly the

urban and industrial tracers, C2CI4, 1-C5H12, CHCI3, and CöHö (Wang et al., 1995; Chan et

al., 2006; Aueott et al., 1999; Na et al., 2001), and a combustion tracer, C2H2.

We also utilized "Measurement of OZone, water vapor, carbon monoxide and

nitrogen oxides by Airbus in-service airCraft (MOZAIC)" to examine the vertical

distribution of key trace gases over the east coast during the time period of flight 13.

MOZAIC uses autonomous instruments loaded into five long-range passenger airliners,

namely AIRBUS 340 - 300 aircraft. Of particular interest here was the four second data

obtained on a flight from Vienna, Austria to Washington, D.C. (U.S.A.) on July 28, 2004.

This dataset provided additional information on the vertical profiles of O3 and CO over

-5-



the eastern U.S. between 600W - 78°W and 3 80N - 48°N obtained during descent into the

Washington area.

Ground-level data from the AIRMAP measurement network

(http://airmap.unh.edu) in the northeastern U.S. for two days in July (27 and 28) 2004

were also utilized in this study. The NMHCs and CO data from Thompson Farm (TF) in

Durham, New Hampshire (23 m elevation, 43.1 1°N and 70.950W) were 40 minute

averages and those from the second location on Appledore Island (AI), ME (sea level,

42.97°N and 70.620W) were 1 hour averages (Sive et al., 2005; Zhou et al., 2005).

Methane and CO in ambient air were surveyed for selected U.S. cities by the UC-Irvine

group using canisters (Baker et al., 2008). Specifically, we used monthly average values

for August collected in the southeastern U.S. cities of Birmingham, Alabama and Baton

Rouge, Louisiana during 2001, and Charlotte, North Carolina and Knoxville, Tennessee

in 2002, and El Paso, Texas in 2003.

2.2. Backward trajectories and photochemical ages

Backward trajectories in combination with an analysis of synoptic conditions and

photochemical ages can be an effective method to understand air mass transport.

Kinematic backward trajectories were calculated at one minute time steps throughout the

INTEX-NA flight series by Florida State University

(http://fuelberg.met.fsu.edu/research/intexa/realtime/). The ratio of C3H8/C2H6 was used

for comparing the relative photochemical age of air masses (McKeen and Liu, 1993;

Parrish et al, 2004). To assess the relative transport time from the boundary layer in the

southeastern U.S. to the flight legs over the North Atlantic, we utilized the chemical
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clock provided by the reactivity of C3H8 and C2H6 with OH. Equation (1.1) was used to

estimate the transport time:

ln(KC3^8)/KC2^6))o
?/ = —v v 3 8^—v 2 6JJ' (Equation 1.1)

(*cä -kc2H6)[OH]

Here, (r(C3Hg)/r(C2H6])0 is the ratio of the mixing ratios of the two compounds in

the boundary layer, (r(C3Hg)/r(C2H6))t is the same ratio at a later time t for each of the

flight leg regions of interest, k is the OH reaction rate constant, and [OH] is OH

concentration. The DC-8 flight data showed that (r(C3Hs)/r(C2H6))o had a mean value of

0.36 ± 0.15 (n = 66) for the boundary layer over the southeastern U.S. (hereinafter SBL).

As input for the estimates we used the measured OH mixing ratios, ambient

pressures, and air temperatures measured on the DC-8 flights in the SBL. Mean values

were 0.18 pptv for OH, 0.92 atm for pressure, and 294 K for temperature, which resulted

in a concentration of 4.1 ? IO6 OH molecules cm"3 in the SBL. We used rate constants

1 7 "X 1 1 ~ 10 -j 11
for C3H8 and C2H6of 1.1 ? 10" cm molecule " s" and 2.3 ? 10" cm molecule " s"

respectively at 294 K (Sander et al., 2003).

3. Synoptic meteorology

Shown in Figure 1.2. a-f are maps of sea level pressure (SLP) for 12 UTC on July

25 and 12UTC on July 28, 500 and 300 hPa geopotential heights for 00 UTC on July 26

and 12 UTC on July 28. Together these define the surface, middle and upper

tropospheric circulation patterns across the U.S. on the flight day and a few days prior to

it. The circulation system that facilitated the transport pattern of Flight 13 evolved from a

Canadian Low with cold and warm fronts situated north of Quebec, Canada at 12 UTC on

July 21, as shown in the 6 hourly analyzed SLP. This low pressure system was moving
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Figure 1.2. Analyzed sea level pressure (a and b) for 12UTC July 25, 2004 and
12UTC July 28, 2004, 50OhPa geopotential height (c and d), 30OhPa
geopotential height (e and f) for OOUTC July 26, 2004 and 12UTC July 28,
2004.

eastward with the warm front evolving into an occluded front over the North Atlantic at

12 UTC on July 23, and the cold front remaining largely over the eastern U.S. through

00UTC on July 24.
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The cold front became a stationary front that was located over the eastern U.S.

and the western Atlantic starting at 12 UTC on July 24 (Figures 1.2 a and b) and it

persisted throughout the duration of flight 13. It should be noted that several small short-

lived cyclones were generated in association with the stationary front. In particular, one

of these small disturbances was generated over the southeastern U.S. at 06 UTC on July

26 and matured into a cyclone which propagated to the Virginia area over the following

24 hours. Accompanying the cold front associated with this small cyclone was a WCB

over the Southeast. These disturbances and associated WCB are conducive to lifting of

boundary layer air masses to the free troposphere.

The 500 hPa geopotential heights at 12 UTC on July 23 showed that a trough

associated with the Canadian Low was situated over the northern Great Plains. This

trough traveled across the Midwest (Figure 1.2 c) and reached southern Canada in the

vicinity of the Great Lakes at 12 UTC on July 28 (Figure 1.2 d). It subsequently moved

northeastward relatively fast and weakened over the North Atlantic Ocean. While the

influence of this trough existed over the U.S. until 00 UTC on July 30, another trough

formed over southern Canada at 12 UTC on July 28 (Figure 1.2 d).

The flow patterns at the 300 hPa geopotential height and isotachs resembled those

at the 500 hPa level (Figures 1.2 e and f). Zonal wind speeds on the 300 hPa level were

generally 5-25 m/s over the U.S., and increased to >35 m/s in the jet stream over the

northeastern U.S. In general, the jet stream on downwind side of trough is associated

with upward motion (Holton, 1995), which facilitates air mass movement from lower

altitudes to the upper troposphere with subsequent transport over long distances. Overall,

the maps of geopotential height at 500 hPa and 300 hPa together suggested a dynamic
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westerly flow regime in the mid-to-upper troposphere.
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Figure 1.3. GOES infrared images (a and b), and skew T and log P diagram (c
and d) at the Slidell, Louisiana (30.33 0N and 89.82 0W) for 00 UTC July 26,
2004 and 00 UTC JuIv 27. 2004.

GOES infrared imagery and skew T and log P diagrams at 00 UTC on July 26 and

27 suggested a strong possibility of upward transport of air masses from the surface

during that time period (Figure 1.3 a-d). GOES infrared imagery (Figures 1.3 a and b)

revealed the presence of high clouds over the eastern U.S. except in coastal regions,

extending from Texas eastward to western South Carolina and northeastward to New

England. These images indicated cloud top temperatures of 200K (~14 km altitude),

providing the possibility of strong deep convection. Manually digitized radar (MDR) is

the best indicator of convection, and Figures 1.4 a-f showed very large convection
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Figure 1.4. Manually Digitized Radar images for 18 UTC and OOUTC July 25 -
28, 2004. The image of 18 UTC July 27 is not available, so 20 UTC was in this

occurred over the southeastern and eastern U.S. in the afternoon to the evening for about

3 days between July 25 - 27. Moreover, the area of high clouds coincided with heavy

precipitation indicated by the MDR (Figures 1.3 a-b and 1.4 a-f). Images of other times

through 00 UTC on July 28 were also examined, and they uniformly suggested similar

conditions conducive to convection in this same region.
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Furthermore, Skew T diagrams at individual locations from the eastern U.S.

verified the likelihood of convection. The convective available potential energy (CAPE)

and Lifted Index (LI) on the Skew T diagrams (Figures 1.3 c and d) from the Slidell,

Louisiana (30.33 0N and 89.82 0W), during July 25 to 27 were used to diagnose the

presence of local convection. The CAPE values within the range of 1000 - 2500 J/kg

and LI less than -4, all falling into the criteria for unstable and convective atmospheric

conditions (http://www.theweatherprediction.com/ severe/indices/).

In summary, our synoptic analysis suggested that a stationary front associated

with a Canadian cyclone over the eastern U.S. continuously induced convection several

days before July 28, which facilitated fast transport of air masses from the boundary layer

to the free troposphere. The WCB over the southeastern U.S. also contributed to the

vertical transport as indicated by the spawning of small cyclones in association with the

stationary front. The mixed effects of widespread convection and the WCB over the

southeastern U.S. overlapped in their occurrence during July 25 - 28, 2004, and were also

described in Kiley et al. (2006) and Cooper et al. (2006). All meteorological evidence

Consistently pointed to combined vertical transport via convection and WCB uplifting

combined with fast eastward transport in the free troposphere over the eastern U.S.

during the two days prior to flight 13. In the following sections of this paper we

examined the chemical signatures measured at high altitude over the Atlantic to provide

support for the meteorological analysis conducted for flight 13.

4. Notable chemical characteristics of flight 13

The vertical distribution of mixing ratios of CO, CH4, CO2, and COS is displayed

for the flight data east of 700W in Figure 1.5. Note that data at altitudes <5 km was
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obtained near 400W, not directly underneath of flight legs at altitudes >5 km (Figures 1 . 1

and 1.5). Mixing ratios of CO near the surface were 70 to 80 ppbv followed by a

decrease to the lowest values of ~60 ppbv at 2 km. At altitudes between 2 and 5 km, CO

increased to 80 ppbv, and then continued to rise quickly above 5 km varying over a range

of 78 - 134 ppbv at altitudes >8 km. The vertical profile of CH4 tracked CO closely,

which exhibited levels of 1760 to 1770 ppbv near the surface followed by a slight

decrease at 2 km. Between 2 and 5 km CH4 again hovered around 1770 ppbv. An

increasing trend with altitude was accelerated above 5 km, where CH4 was enhanced up

to 1843 ppbv at 8 -11 km.

The vertical profiles of CO2 and COS showed trends opposite those of CO and

CH4. Mixing ratios of CO2 were -376 ppmv near the surface, and then increased to 377

ppmv at 2 km followed by a decrease to -375.5 ppmv between 2 and 5 km and further

decrease above 5 km. The minimum value of 372.4 ppmv was observed in the 8 - 1 1 km

region. COS tracked CO2 closely with mixing ratios varying over 455 - 475 pptv near the

surface, increasing to 480 pptv at 2 km, and then decreasing gradually to 455 pptv

between 2 and 5 km. The lowest COS mixing ratios near 410 pptv were found at 8 - 11

km.

To understand the causes for the high mixing ratios of CO and CH4 that occurred

in the 8 - 1 1 km altitude region, we identified three time periods with the most enhanced

levels (Figure 1.1). These occurred on constant altitude flight legs, with the first region at

10.4 km over the time period of 19 - 20 UTC, the second at 8.9 km during 12:20 - 14:40

UTC, and the third at 8.5 km over 17:30 - 19:00 UTC. All other segments of the flight
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are referred to as "Outside" (i.e., outside of the three regions), and they are discussed in

Section 5.
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Figure 1.5. Vertical distribution of (a) CO, (b) CH4, (e) CO2, and (d) COS.
Lines in the graphs are for monthly average mixing ratios in July, 2004 in
Bermuda.

First, we used trace gas data from the NOAA Global Monitoring Division (GMD)

monitoring site on Bermuda (http://www.esrl.noaa.gov/gmd/dv/ftpdata.html) and from

Mace Head, Ireland (Simmonds et al., 2006) to determine representative background

mixing ratios over the North Atlantic. The monthly average surface mixing ratio at

Bermuda in July 2004 was 1800 ppbv for CH4, 86 ppbv for CO, and 377 ppmv for CO2.

The mean mixing ratio of C2Cl4 at Mace Head, Ireland was 4.94 ± 0.06 pptv from
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measurements over the period of 2000 to 2004 (Simmonds et al., 2006). In two rural

areas of the U.S., annual mean surface mixing ratios of COS from February 2002 to

February 2005 were 444 ± 8 pptv in Wisconsin and 441 ± 8 pptv at Harvard Forest,

Massachusetts (Montzka et al., 2007).

Statistics are provided in Table 1 . 1 to describe the chemical environment of the

three regions of enhanced mixing ratios. CO, C2H2 and C2CI4 exhibited mean mixing

ratios of 127 ppbv, 117 pptv and 10.2 pptv, respectively, in region 1, 106 ppbv, 93 pptv

and 5.1 pptv in region 2, and 109 ppbv, 94 pptv and 5.5 pptv in region 3.

Correspondingly, in regions 1, 2, and 3 the mean value of CH4 was 1831 ppbv, 1805

ppbv, and 1808 ppbv respectively. Compared to the background levels over the North

Atlantic, the mean levels of CH4;CO, and C2CI4 in regions 1, 2, and 3 were higher by 0 -

1.7%, 23 - 48%, and 3.3 - 106% respectively. Mixing ratios of CS2, whose primary

source is chemical industrial processing (Chin and Davis, 1993), were mainly less than 4

pptv in each region with occasional levels up to 14 pptv. Overall, the three regions

showed a clear influence of urban combustion emissions.

The air mass transport time to the free troposphere can be estimated by combining

hydrocarbon lifetimes and trajectories whether the transport was by the WCB on the

synoptic scale or mesoscale convection (Purvis et al., 2003). This transport was

investigated here using backward trajectories combined with photochemical age

estimates of air masses in regions 1-3. Kinematic 5-day backward trajectories arriving in

each of the three regions are presented in Figure 1 .6. Since many of the air masses

appeared to meander over the southeastern U.S. for several days, 10-day backward

trajectories (not shown) were used to examine the long-range transport of these air
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masses to the U.S. In the case of region 1, these trajectories showed mainly two origins,

with one from over the eastern Pacific/U.S. west coast and the other from the Gulf of the

Mexico. These air masses arrived over the southeastern U.S. in the mid-to-upper

troposphere, and then spent ~4 days over the southeastern U.S. in the altitude region of

550 to 300 hPa. Eventually they were transported in <20 hours from over the Virginia

area at 00 UTC on July 28 to region 1 in the upper troposphere (>350 hPa). The mean

value of C3H8/C2H6 was 0.23 ± 0.02 in region 1, and photochemical aging of an SBL air

mass arriving in region 1 was 1.5 days based on equation (1.1).

(a) region 1 (b) region 2

¦··¦-·· JH

(c) region 3 (d) Outside

. -f

I__J
1000 950 900 (!50 B00 750 700 Bf3O 600 550 500 150 100 G150 300 ¿50 300 1:30

Figure 1.6. Kinematic 5-day backward trajectories for each region. Big dots are at 00
UTC on each day and the small ones are other hours. Unit of color bar is hPa.
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The backward trajectories for region 2 illustrated a complex dynamical situation.

In this case there were a large number of trajectories indicating that the air spent 3-4 days

over the southeast U.S. at altitudes ranging from near the surface to 500 hPa. In addition,

approximately 13% of the trajectories followed zonal westerly flow at 300 hPa which

intercepted the air masses residing over the southeast U.S. for several days. Ten-day

backward trajectories indicated that the inflowing air had arrived from over the

northwestern U.S., the North Pacific, and the Gulf of the Mexico. On July 27 this

mixture of air masses was quickly advected over the Northeast, and arrived at the flight

altitude on July 28. The value of C3H8/C2H6 was 0.20 ± 0.04 in this region, and the

photochemical aging of an SBL air mass arriving in region 2 was 2 days.

Air masses transported to region 3 had their origin over mainly the south central

and southeastern U.S. It appears that boundary layer air over eastern Texas was advected

at low level to the southeastern states and mixed with SBL air during vertical lifting on

July 27 and mid-tropospheric air masses that originated over the Oklahoma/Colorado

area. On the 28th the air passed over the Northeast in the mid-troposphere and arrived at
the flight altitude of 8.5 km nearly coincident in time with the region 1 air masses. It

appears that it took about 1.7 days to reach the air masses to the flight region 3. The

value of C3H8/C2H6 was 0.22 ± 0.03 in region 3, and photochemical aging of an SBL air

mass arriving in this region was 1.7 days.

We also estimated the chemical clock transport times in these three regions using

ratios of ethyne/CO and trichloroethylene/tetrachloroethylene (C2HCI3/C2CI4). In general,

these produced variable transport times that varied by up to a factor of two from

C3H8/C2H6. Using a lower OH concentration suggested by Arnold et al. (2007) also
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produced transport times that were about two times longer. We believe that for flight 13

the trajectory estimated transport times are more reliable that those estimated by the

chemical clock method. This likely due to the air masses lingering over the U.S. for

several days and entraining multiple inputs of boundary layer air by convection over the

SBL. This likely produced a very mixed air mass of various ages and is responsible for

the inconsistent chemical clock transport times.

Backward trajectories and the synoptic weather patterns indicated that the SBL air

masses were sampled in regions 1-3 due to their fast transport through convection and the

WCB that developed in association with the stationary front. Ultrafine aerosol showed

distinct mean differences of 10,172 particles/cm3 in region 1, 1,482 particles/cm3 in
region 2, and 1,998 particles/cm3 in region 3. A high degree of correlation between
enhanced condensation nuclei number densities and mixing ratios of CO, CH4, NO, and

OH has been observed in air masses influenced by deep convection over the central U.S.

(Twohy et al., 2002). However, we did not find such correlation in the three regions in

spite of the very high concentrations of ultrafine aerosols and increased mixing ratios of

CO. Wang et al. (2000) observed high concentration of condensation nuclei (> 10,000

cm"3) in the upper troposphere associated with convection using the NO/NOy ratio as a

chemical clock. They also pointed out that high CN concentration from aircraft emissions

in the upper troposphere was not sampled frequently because of faster dilution than the

transport of the boundary layer air aloft via convection. Although our results do not

parallel those of Twohy et al. (2002), our analysis implies an impact of convective

outflow in region 1 similar to the analysis of Wang et al. (2000). In addition, a diagnostic

indicator of wet convection is the ratio of CH3OOH/H2O2, since H2O2 is removed
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preferentially by wet scavenging compared to CH3OOH resulting in ratio values >1

(Talbot et al, 1996b). Snow et al. (2007) found that ratios of <1 for H202/CH3OOH and

<100 ppbv for O3 indicated convection during the ICARTT study. The flight 13

measurements showed lower mean values OfH2O2ZCH3OOH which were 1.3, 2.6, and 2.2

in regions 1-3, respectively, than a value of 3.1 from the SBL. The ratio ranges were 0.77

-2.15 for region 1, 0.25 - 5.34 for region 2, and 1.16 - 3.72 for region 3, suggesting that

convection impacted regions 1 and 2. Overall, our analysis suggests that region 1 was

mostly influenced by deep convective vertical transport, whereas regions 2 and 3 appear

to be dominated by lofting of air by the WCB.

The photochemical ages estimated from C3H8ZC2Ho in regions 1, 2, and 3 are

reasonably similar to the transport times deduced from the backward trajectories which

corroborates fast transport with minimal apparent dilution of SBL air by aged background

air. Evidence for minimal mixing is provided by similar mixing ratios of CHCl3 between

regions 1-3 (9.4 - 10.5 pptv) and SBL (10.6 pptv). Additional evidence is the preserved

low mixing ratios of CO2 and COS, which are typical of boundary layer air influenced by

biospheric activity during the growing season. The mean mixing ratios of CO2 in regions

1-3 were between 373.5 and 375 ppmv, and these were lower by 0.6 - 1% than the

background mixing ratio from surface measurements at Bermuda. In comparison, mean

mixing ratios of COS in regions 1, 2, and 3 (426 - 440 pptv) were closer to values found

in the SBL over the U.S. The low mixing ratios of COS found in the upper troposphere

during flight 13 is indicative of efficient terrestrial COS uptake in the SBL (Sandoval-

Soto et al., 2005).
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The backward trajectories suggested that the air masses arriving in the three study

regions spent 1-4 days over the southeastern U.S. and were then transported to the

Northeast and upward by fast zonal flow in the middle and upper troposphere on July 27-

28. If the transport from the SBL to the flight regions was indeed rapid, then the effect of

dilution and in situ chemical processing can be small, and subsequently the mixing ratios

of trace gases in the source and flight regions should be similar. Mixing ratios of tracers

in the SBL were thus compared with upper tropospheric values (Table 1.1). In general,

industrial or urban tracers in the SBL exhibited higher levels than those in each flight

region except for C2CI4. This result is reasonable since some dilution would be expected

during transport of SBL air to the upper troposphere. Enhanced mixing ratios of other

urban tracers (e.g., C2CI4 and CHCI3) and high concentrations of ultrafine aerosol were

also observed as evidence of urban impacted air masses in the upper troposphere. In the

apparent SBL source region there are significant urban and industrial sources based on

the emissions map of CHCI3 (Aucott et al., 1999). The region is also widely covered

with abundant vegetation as evidenced by isoprene emissions (Fiore et al., 2005), which

accounts for uptake of COS and CO2 and consequently their reduced mixing ratios.

MOZAIC measurements were used as an independent source of data on air mass

composition over the Atlantic and eastern U.S. One of the instrumented flights into

Washington, D.C. from Europe on July 28 was essentially routed through the region of

interest here. MOZAIC data collected at 16:20 - 19:00 UTC on July 28 sampled the

upper troposphere where the rapid transport of SBL air masses seemingly occurred from

00 UTC on July 27 to 16 UTC on July 28. The MOZAIC CO and O3 spatial distributions

are shown in Figure 1.7. According to the backward trajectories, region 1 of flight 13
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ratios up to 175 ppbv were identified between 5 and 7 km (39.9 - 40.50N, and 75.6 -

76.6°W). This polluted layer likely originated in the boundary layer over the U.S. but did

not get entrained in the flow pathway of the flight 13 upper tropospheric air masses.

However, the HYSPLIT backward trajectories were not able to resolve this because of

the inadequate vertical resolution.

We explored the possibility of an Asian impact on the flight 13 upper

tropospheric study area as found on flights 3, 8, 10, 15 and 20 by Liang et al., (2007).

Halón- 121 1 (CBrClF2), an important tracer of Asian polluted outflow (Blake et al., 2003),

averaged 4.3 pptv over the flight 13 route, similar to background levels in boundary layer

air over the western Pacific during TRACE-P, 4.3 ± 0.04 pptv OfCBrClF2 (Barletta et al.,

2006). Our backward trajectories analysis presented earlier and the key tracers indicated

that Asian emissions did not affect directly the flight 13 region, and suggests that the

outflow from the U.S. dominated the pollution in the study area.

5. Outside air mass chemical composition

As mentioned in section 4, the Outside air included all segments except

measurements from regions 1-3. Hence different altitudes and geographical locations

were mixed for the Outside data. The average chemical composition of the Outside air

can be summarized to have an average composition of 84 ppbv CO, 375.4 ppmv CO2,

1781 ppbv CH4, 453 pptv COS, 45 pptv C2H2, 3.4 pptv C2Cl4, and 53 ppbv O3. To find

out whether the Outside chemical composition was similar to the North Atlantic

background air, we again compared the airborne measurements with those from the

NOAA GMD monitoring site on Bermuda and Mace Head (Simmonds et al., 2006). The

results of this comparison showed that CH4, CO, C2Cl4 and CO2 were lower than at
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Bermuda and Mace Head by 1.1%, 2.4%, 30.6%, and 0.4% respectively. Comparison of

the mean values indicated that the Outside air was not affected by fresh urban and

industrial source emissions. However, the mixing ratios of trace gases in the Outside air

varied over wider ranges than those in regions 1, 2, and 3. In fact, maximum mixing

ratios of CS2, Celle, and C2H2 were even larger than those in the three regions.

Backward trajectories for the Outside region indicated the possibility of air

masses with diverse origins (Figure 1 .6), which were categorized qualitatively into four

source regions. The fractional contribution for each source region was estimated by

comparison of the number of trajectories from each area to the total for the Outside. It

was found that -44% of air masses in the Outside area were from U.S. outflow, -28%

originated from the western Atlantic, -20% from the remote Central Atlantic, and -8%

from over the North Pacific.

Chemical environments corresponding to the four source regions were

summarized in Table 1.2. The average mixing ratio of CO, C2H2 and C2CI4 were highest

at 98 ppbv, 68 pptv and 5.4 pptv respectively in U.S. outflow, and lowest at 69 ppbv, 18

pptv and 1.8 pptv in air from the remote Central Atlantic. The average levels of O3, CH4,

selected anthropogenic NMHCs, and ultrafine aerosol followed the same source

distribution. For example, the average mixing ratio of O3 showed the highest level of 70

ppbv in the U.S. outflow, and the lowest of 28 ppbv in air masses from the remote

Central Atlantic. However, CO2 and COS exhibited opposite variation, with higher

mixing ratios from source regions far away from the North American continent.

Specifically, the average mixing ratios of CO2 and COS were 374.2 ppmv and 442 pptv

respectively in the U.S. outflow, 376.0 ppmv and 457 pptv in air from the western
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Atlantic, 376.4 ppmv and 463 pptv from over the remote Central Atlantic, and 374.9

ppmv and 459 pptv from the Pacific. These results clearly show the role of the terrestrial

biosphere in modulating CO2 and COS in the troposphere downwind of a continental area.

6. Chemical characterization using correlation analysis

The slope of the standard linear regression between correlated chemical

compounds can be a useful source identifier (Xiao et al., 2004). Based on the similar

vertical distributions recognizable from Figure 1.5, correlation of the pairs CH4-CO and

COS-CO2 was examined using all data from flight 13 (Figure 1.8). Carbon monoxide

and CH4 were correlated remarkably well at r = 0.92. This implies that anthropogenic

sources had a major impact on CH4 mixing ratios at all altitudes sampled on flight 13

over the North Atlantic. The correlation between COS and CO2 exhibited an r2 = 0.61,

likely driven to a large extent by their close association with vegetative uptake.

y= 1.06 ? +1692

~. 1820

•?» 1800
O 440K

^ 1780

y = 9.89 ? - 32«2
r2 = 0.61

* ·*^ * *

-t t-

372 373 374 375 376 377 378

CO (ppbv) CO2 (ppmv)

Figure 1.8. Correlations (a) between CO and CH4, and (b) between CO2 and COS on
flight 13.

Correlations between source indicators and CO/CO2 were examined further for

each region and the results are presented in Table 1.3. The slope OfCH4-CO had a value
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of 0.94 in region 1 (r2 = 0.84), 0.97 in region 2 (r2 = 0.79), and 0.68 in region 3 (r2 = 0.46).

These values are reasonably close to the slope of 0.84 that was obtained for urban and

industrial emissions by Harriss et al. (1994). To corroborate the urban and industrial

influence, relationships between CO and a number of anthropogenic tracers were also

examined. Compounds that correlated with CO at r2 > 0.5, were CHCI3 and C2H2 in

region 1, CHCl3, C2Cl4, 1-C5H12, C6H6, and C2H2 in region 2, and CHCl3, C2Cl4, 1-C5H12,

C6H6 and C2H2 in region 3. This evidence clearly points to a significant influence of

urban, industrial, and combustion sources in all three regions.

Table 1.3. Correlation coefficients, slopes, and standard errors of the slopes for each
compound at each region. Regions denoted as regi, reg2, and reg3 are shown in Figure 1,
and outside is the segment of the flight route outside the three regions sampled by flight
13. SBL stands for the boundary layer over the southeastern U.S. observed by flights 6, 7,
10, 12, 16, and 19. Ratios OfO3-CO and CH4-CO are in unit of ppbv/ppbv, CO-CO2 in
ppbv/ppmv, CH4-CO2 in ppmv/ppmv, COS-CO2 in pptv/ppmv, and all others in
pptv/ppbv.

Slope Standard error of the slope
Regi reg2 reg3 outside SBL Regi reg2 reg3 outside SBL regi reg2 reg3 outside SBL

O3-CO
CH4-
CO

COS-
CO

CHCl3-
CO

C2Cl4-
CO
i-

C5H12-
CO

CO
C2H2-

CO
CH4-
CO2

COS-
CO2
CO-
CO,

0.37

0.84

0.42

0.81

0.36

0.03

0.79

0.45

0.85

0.76

0.16

0.46

0.42

0.60

0.64

0.38 0.53 0.79

0.22

0.89

0.08

0.09

0.09

0.66

0.77

0.71

0.63

0.65

0.73

0.76

0.002

0.01

0.01

0.29 0.59

0.89 0.65

0.59 0.41

0.90 0.77

0.67 0.74

0.40 0.17

0.55 0.57

0.84 0.87

0.86 0.46

0.64 0.83

0.85 0.36

0.34 0.17

0.94 0.97

-°·45 0.77
0.07 0.06

0.15 0.09

0.19 0.23

0.13 0.31

1.5 1.7

-001 0.01
6.7 12

-6.0 -11

-0.35

0.68

-0.83

0.07

0.10

0.36

0.29

1.5

0.0004

1.3

-1.4

0.98

1.0

-0.59

0.06

0.08

0.14

0.25

1.5

-0.01

8.1

-12

0.26

0.71

-0.73

0.08

0.09

0.82

0.64

2.6

0.005

5.3

-2.7

2.4 0.84 1.6

58 22 45

14 5.4 11

0.30 0.11 0.23

0.27 0.06 0.15

0.35

11

2.8

0.06

0.02

0.03

0.17

0.07

0.01

0.01

0.19 0.13 0.16 0.09 0.04

0.24 0.15 0.34

2.8 0.93 1.9

1.8 0.28 0.48

421 69 117

112 17 30

0.03

0.04

0.11

1.8

0.81

0.03

0.05

0.04

0.37

0.2

To verify the SBL origin of the polluted air on flight 13, relationships between

source indicators and CO in the SBL were calculated and the values of r2 and correlation
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slopes are shown in Table 1.3. The slopes of CHCI3-CO and C2CI4-CO in the SBL were

similar to those in the three flight regions, providing support for the SBL as the source

region of the air masses encountered on the flight route. Note that slopes of 1-C5H10-CO,

CoHe-CO and C2H2-CO in the SBL were much higher than those observed on flight 13.

For example, the slope of 1-C5H10-CO in each region of flight 13 was between 0.19 and

0.36 compared to 0.82 in the SBL. The lifetimes of C2H2, C6H6, 1-C5Hi2, C2Cl4, and

CHCI3 in the SBL were estimated to be 3.5, 2.4, 0.72, 17, and 29 days respectively.

Therefore, maximum mixing ratios of short-lived 1-C5H10, C6H6, and C2H2 in the SBL

were much higher than on flight 13 (Table 1.1), which resulted in higher slope values in

the SBL.

It is curious that, contrary to the tight CH4-CO correlation observed on flight 13,

CH4 and CO data from city surveys in the Southeast exhibited a poor correlation (r =

0.16), although the slope OfCH4-CO was 0.94, nearly identical to values observed in

regions 1 and 2. The slope of CH4-CO in the SBL sampled by the DC-8 was 0.70,

similar to region 3, but with much better correlation (r2 = 0.73) than the city surveys. The
difference may be related to the multi-years of data collection for the city survey versus

the flight 13 snapshot.

The slope of COS-CO2 was compared between the SBL and over the North

Atlantic. In the SBL CO2 was correlated with COS at r = 0.83, compared to r = 0.61 in

the flight region. This difference is attributed to mixing of SBL air with ambient air

while it meandered over the Southeast for several days and then during transit to the

upper troposphere. The COS-CO2 slope value was 5.3 pptv/ppmv in the SBL, which was

almost a factor of two lower than thé 9.9 pptv/ppmv value obtained from the flight 13
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regions. Mixing ratios of CO2 in the SBL varied over the range 356 ppmv - 380 ppmv,

which was a factor of 5 wider than the range in the flight 13 region of 372 ppmv - 377

ppmv. Similarly, the COS data showed the SBL had a factor of 2 greater variation in

mixing ratios than the flight 13 data; 344 pptv - 485 pptv in SBL and 41 1 pptv - 479 pptv

for the flight regions. Wider ranges of CO2 and COS in the SBL are due to much lower

minimum values of two compounds compared to the flight route. The higher minimum

values along the flight path is indicative of mixing process with the air mass types

identified by our trajectory analysis. However, COS and CO2 were not well correlated in

regions 1 and 3, compared to region 2 and all the flight 13 data together.

A contribution of emissions from the Northeast to the flight regions was checked

by utilizing UNH AIRJvIAP network data in New England. The r2 values and slopes of
the correlations between selected trace gases and CO from ground-based measurements

on July 27 - 28 (UTC) at TF (Thompson Farm) and AI (Appledore Island) were very

different than those shown here for flight 13 (e.g., the slope OfCH4-CO = 0.28 (r2 = 0.06)

at AI). Therefore, we concluded that emissions from the Northeast were not an important

contributor to the elevated trace gas mixing ratios in the upper troposphere over the North

Atlantic. This is consistent with our meteorological analysis which showed that the SBL

was the likely primary source of pollutants in the upper troposphere

An important feature of the flight 13 dataset was the high degree of correlation

between trace gases in the Outside region. In fact, the correlations were close to, or

better than, those in regions 1, 2, and 3 (e.g., r2 = 0.89 for CH4-CO). This is a surprising
result considering the diverse source regions indicated by our trajectory analysis.

Typically, there is little or no correlation between most trace gases in air masses not
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directly impacted by relatively fresh continental emissions. In this case, it appears that

the entire tropospheric column over the North Atlantic during the time period

surrounding flight 13 was impacted by North American anthropogenic emissions. This

region is in the direct outflow from the eastern U.S. (Parrish et al., 1993), but our analysis

seems to suggest that the troposphere over the mid-latitude North Atlantic basin was

fumigated with U.S. pollutants in various stages of aging. This is supported by the

trajectory-based partitioning of the Outside air source regions, where 44% pointed to an

influence of U.S. continental outflow. Apparently, to retain their source relationships,

these air masses were not mixed effectively with background marine air. The flight data

demonstrate the pervasive impact of U.S. anthropogenic emissions on the mid-latitude

troposphere over the North Atlantic.

7. Conclusions

INTEX-NA, one of the components of ICARTT, was conducted over North

America and the adjacent North Atlantic to investigate the distribution of trace gases and

aerosols associated with emission sources in North America. The vertical distribution of

trace gases from DC-8 flight 13 during the campaign had mixing ratios of CtLt and CO of

up to 1843 ppbv and 134 ppbv respectively, and low mixing ratios of CO2 and COS,

reduced to 372.4 ppmv and 411 pptv respectively, in upper troposphere at 8 - 11 km

altitude over the North Atlantic.

The meteorology over the U.S. was identified as an ideal situation for strong

outflow for several days prior to flight 13. A stationary front, which evolved from a cold

front associated with a Canadian low, existed in the eastern U.S. over the several days

before the airborne measurements were conducted. As a result, it induced continuous

-30-



convective activities and WCB uplifting of polluted air. In addition, a deep trough over

the Midwest facilitated fast southwesterly transport that was sustained for several days

prior to flight 13.

The chemical features in the upper troposphere over the North Atlantic were as

follows. Urban and industrial tracers such as CH4 and CO were elevated in the upper

troposphere (e.g. 78 ppbv < CO < 135 ppbv) and good linear relationships between the

tracers (e.g. r2 for CH4 - CO at region 1 = 0.84) showed the impact of urban/industrial
emissions to the flight regions. Low mixing ratios of COS and CO2 (e.g. 372.4 ppmv <

CO2 < 376.6 ppmv) indicated biogenic uptake at the surface in the SBL with subsequent

minimal dilution during the transport to the upper troposphere. Backward trajectories

and photochemical aging indicated that the SBL was a potential source region for the

chemical features. Agreement of the slopes for linear correlations of selected trace gases

with a long atmospheric lifetime compared to the transport between SBL and flight

regions support the SBL as the primary source region. Overall, meteorological and

chemical analyses suggest rapid outflow from the SBL to the upper troposphere over the

North Atlantic. In addition, the good linear correlation between urban and industrial

tracers in whole flight regions (r2 for CH4 - CO = 0.92) and Outside (r2 for CH4 - CO =

0.89) suggest that the troposphere over the mid-latitude North Atlantic was influenced

significantly with U.S. pollutants in various stages of air mass processing.

-31-



II. Chemical transformations of Hg° during Arctic mercury depletion

events sampled from the NASA DC-8

1. Introduction

Atmospheric mercury exists in three forms, gaseous elemental mercury (Hg°),

reactive gaseous mercury (RGM), and particulate mercury (PHg). Hg° comprises ~95%

of total gaseous mercury (TGM = Hg° + RGM) in the atmosphere (Lin and Pehkonen,

1999; Malcolm et al., 2003; Poissant et al., 2005). Atmospheric mercury that enters

terrestrial and aquatic ecosystems (Branfireun et al., 2005; Magarelli and Fostier; 2005;

Strode et al., 2007) can be subsequently transformed to organic mercury (e.g., methyl

mercury) (Branfireun et al., 2005). Organic and inorganic mercury are harmful to

humans through food chain uptake; they are thus categorized as toxic compounds by the

U.S. Environmental Protection Agency.

Atmospheric mercury depletion events (MDEs) have been observed near the

surface in the Arctic springtime. Schroeder et al. (1998) were the first to observe that

TGM values, which were 1-2 ng m"3 in winter, dropped off to <1 ng m 3 after mid-March

at a Canadian Arctic site. Strong positive correlation between Hg° and O3 was found in

springtime air masses originating from the Arctic (Eneroth et al., 2007; Lu et al., 2001).

In addition, MDEs in interstitial air of snowfall, where Hg° concentration was decreased

from 5 to 0.4 ng m~3, was found at about 1 m depth in the snowpack at the Kongsvegen
Glacier, 10 km south-east from Ny Alesund, Svalbard (Fain et al., 2006).

Atmospheric mercury depletion in the Arctic has been attributed to

meteorological and chemical processes. The strong near-surface inversion layer during

winter and early spring creates a vertically isolated thin boundary layer over the Arctic,
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and it plays an important role in the occurrence of MDEs by blocking re-supply of

atmospheric chemical species such as O3 and Hg° from the free troposphere (Lehrer et al.,

2004). Chemically, the occurrence of MDEs could be closely related with the

transformation of Hg° to RGM and PHg as a result of its oxidation by reactive halogen

radicals which are likely abundant after polar sunrise (e.g., Cobbett et al., 2007; Lindberg

et al., 2002). RGM easily deposits to the surface of aerosols due to its high water

solubility (Lin and Pehkonen, 1999) to form PHg. Both RGM and PHg can be removed

from the atmosphere relatively quickly due to their high dry deposition velocities

(Schroeder and Munthe, 1 998).

Box model studies suggest that reactive bromine compounds (e.g., Br and BrO)

are much more important for the occurrence of MDEs than chlorine and sulfur

compounds (Ariya et al., 2004; Calvert and Lindberg, 2003; Goodsite et al., 2004; Xie et

al., 2008). It was speculated that highly reactive bromines are derived mainly from the

surface sea ice and less reactive bromines, such as HBr, are from sea salt aerosols (Lehrer

et al., 2004). As a result of mercury oxidation, a few studies suggested that the most

abundant RGM chemical compounds would be HgO, HgBr2, and BrHgOBr formed by

reaction of Hg0 with bromine radical (Calvert and Lindberg, 2003; Xie et al., 2008).

The Arctic Research of the Composition of the Troposphere from Aircraft and

Satellites (ARCTAS) field campaign, carried out by the National Aeronautics and Space

Administration Tropospheric Chemistry Program, was conducted over 3 weeks each in

April and July 2008 with focus on impacts on Arctic atmospheric composition from long-

range transport of pollution, boreal forest fires, aerosol radiative forcing, and chemical

processing (Jacob et al., 2010). Here, we aimed to understand the chemical mechanisms
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driving the occurrence of MDEs in the Arctic spring using box model results based on

extensive measurements of mercury and other chemical compounds from the NASA DC-

8 aircraft during the 2008 April deployment.

2. Methods

2.1 ARCTAS Measurement Data

Hg° was measured with a time resolution of ~2 minutes by the University of

New Hampshire cold vapor atomic fluorescence spectrometer during the ARCTAS field

campaign. We utilized a modified Tekran 24537A as described by Talbot et al. (2008).

The limit of detection (LOD) of the instrument was -0.2 ng m"3 (~22 ppqv). The internal
pressure of the instrument was maintained during the analysis stage at 1100 hPa. In-

flight zeroing and standard additions were conducted on all flights.

Ozone was measured at 1 Hz using the chemiluminescence technique as described

in Ridley et al. (1992). The University of California at Irvine sampled using stainless

steel passivated canisters to determine more than 75 gases including nonmethane

hydrocarbons, halocarbons, alkyl nitrates and sulfur compounds. A comprehensive

description of the sampling and analytical techniques can be found in Coiman et al.

(2001). The Georgia Institute of Technology chemical ionization mass spectrometer was

used to measure BrO and Br2 every 30 seconds using the reagent SFe" . A detailed

explanation of the technique is given in Neuman et al. (2010). The University of New

Hampshire group collected aerosols on Teflon filters with subsequent analysis for soluble

ions by ion chromatography (Dibb et al., 2003). This group also sampled water-soluble

gases using the mist chamber technique (Scheuer et al., 2003).
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Figure 2.1. Spatial distribution of Hg° < 50 ppqv (yellow dots) and high Br2 > 2pptv
(blue dots) (a) and O3 <10 ppbv (pink dots) and high Br2 > 2pptv (light blue dots) (b)
below 5 km altitude
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There were 14 MDE cases below 5 km altitude in which the Hg° mixing ratio was

depleted to <50 ppqv (lng m"3 = 112 ppqv). The spatial distribution of mixing ratios of
Hg° <50 ppqv, O3 <10 ppbv and Br2 > 2 pptv as observed during ARCTAS is displayed

in Figure 2.1. Eight cases exhibited generally distinct features of MDEs, i.e., the

concurrence of high Br2, low O3, and low Hg° mixing ratios (Table 2.1), and these will be

the focus of this study. It should be noted though that the mixing ratios of O3 right at the

onset and ending of the MDEs were mostly >10 ppbv. Case 6 showed O3 values during

the MDE that were close to 10 ppbv. Six cases did not show a concurrence of high Br2,

low O3, and low Hg°. The comparison between these two types of cases should be

interesting, but unfortunately we could not study the six non-concurrence cases due to a

lack of sufficient measurement data. Perhaps these cases reflected the later stages of a

MDE with the mixing of MDE air with other air masses.

Table 2.1. MDE cases selected for study.

case day altitude
(km)

O3 (ppbv) Hg° (ppqv)
(below LOD
except several
points
mentioned
below)

Br2 (pptv) state of sea ice

4/8/2008 0.1-0.21 0.38-5.6 one - 22 3.25-5. Very fractured surface
no open water

4/9/2008 0.11 5.0-13.5 two - 2 1 1.3-2.7 Very fractured surface
no open water

3

T

?

4/16/2008 0.08 - 0.8 1.8-34.5 one - 39 0.2 - 3.2 Irregular small
patches of open water

4/16/2008 0.09 - 0.65 3.3-43 25, 34, and 37 0.45 - 5.4 Irregular small
patches of open water

4/17/2008 0.1 0.8-30 1.5-6.15 Fine cracks no open
water

4/17/2008 0.1-0.8 10.7-34.5 18,24, and 62 1.05-6.85 No record
4/17/2008 0.09 9.0 - 26.5 0.75 - 2.75 No record
4/17/2008 0.07 - 0.22 0.9-42 28-61 0.35 - 1.75 No record
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(a) Case 1 (b) Case 2

ñ

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6
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t

(g) Case 7 (h) Case 8
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Figure 2.2. Five-day backward trajectories for each MDE case. The color
bar is pressure level and the unit is hPa.
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2.2 Trajectories

Kinematic backward trajectories were provided at one minute time steps

throughout ARCTAS by Florida State University (http://www-air.larc.nasa.gov/cgi-

bin/arcstat-c). The three-dimensional wind components were utilized from the Weather

Research and Forecasting (WRF) Model hourly output at 45 km resolution to calculate

the backward trajectories (Fuelberg et al., 1996, 2000; Martin et al., 2003). For each

MDE case, the corresponding five-day backward trajectories are shown in Figure 2.2.

The trajectories allowed comparison of air mass origins both outside and inside the MDE

areas.

2.3 Box Model Description

Mercury gas phase reactions occur mainly with O3, H2O2, halides such as Br2, Ch,

and radicals OH, Br, Cl, and I (Table 2.2). The multitude of mercury chemical reactions

and their rates are not clearly established yet. Differing results have been published on

the products of some mercury chemical reactions. For example, the reaction between

Hg° and OH apparently has two different products - HgOH and HgO (Goodsite et al.,

2004; Sommar et al., 2001; Pal and Ariya, 2004a). Furthermore, values of the rate

constant for many Hg° reactions vary considerably. There is large uncertainty in the rate

constant of the reaction between Hg0 and O3, ranging from 3.0 xlO"20cm3 molecule"1 s"1
at 293 K (Hall, 1995) to 7.5 xlO"19cm3 molecule"1 s"1 at 298 K (Pal and Ariya, 2004b).
This study utilized the rate constant from Pal and Ariya (2004) because it was only

temperature dependent rate constant. Note that this rate constant is still under discussion

(Castro et al., 2009). Rate constants for Hg° reactions with halogen radicals that have
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been reported in literature also vary greatly. The rate constant of Hg° with Cl radical at

298 K ranges from 6.38 xlO"13 cm3 molecule"1 s"1 (Donohoue et al., 2005) to 1.0 ? IO"11

cm3 molecule"1 s"1 (Ariya et al., 2002). Rate constants of Hg° reaction with Br vary from

4.23X10"13 cm3 molecule"1 s"1 (Donohoue et al., 2006) to 3.2 ? IO"12 cm3 molecule"1 s"1

(Ariya et al., 2002). Finally, BrO is recognized as an important oxidant in Arctic

mercury chemistry (Goodsite et al., 2004), but the rate constant values vary from 10"13 to
10"15 cm3 molecule"1 s"1 for its reaction with Hg° at a temperature of 298 K (Raofie and
Ariya, 2003). We did not include this reaction in most cases except in section 4.2 where

the possible role of this reaction in the occurrence of MDEs was studied. Overall, our

box model includes 28, 43, and 10 reactions for bromine, chlorine, and iodine chemistry

respectively. In addition, there are 10 mercury gas phase reactions and 35 for O3

chemistry (Tables 2.2 - 2.4).

The Kinetic Preprocessor (KPP) version 2.1 is the basic model framework (Sandu

and Sander, 2006), and it has been utilized to study mercury chemistry previously

(Hedgecock et al., 2005; Pan and Carmichael, 2005). The structure solves ordinary

differential equations, and we used a second order Rosenbrock method (Verwer et al.,

1999). Ideal (i.e., theoretical) experiments were used to clearly identify how

environmental factors (e.g., photolysis) influenced Hg° or O3 depletion. As shown in

Section 3, backward trajectories for each case indicated that air masses were principally

transported over short distances in the 24 hours prior to airborne measurements. During

the MDEs, cold CN concentrations were mainly <500 cm" , which indicated low aerosol

concentrations in the atmosphere, and air temperature averaged 255±5 K which was cold

enough to freeze the ocean surface. Moreover, the water vapor mixing ratios were <1700
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ppmv during MDEs period, which were low values, for example, compared to 4500-

1 1700 ppmv in marine boundary layer of northeastern Pacific near Anchorage, Alaska

Table 2.5. Initial conditions used in model runs.

Chemical compounds
NO
NO2
H2O2

HCHO
OH

CH3OH
CH3CHO

C2Ho
C2H2
C3H8

n-C4Hio
CH4

C2HsOH
HO2

CH3Br
O3

Hg°

Br2
Cl2
CO
H2O

Mixing ratios / concentrations
IQPPtv
Opptv

152 pptv
122 pptv

360000 cm"
608 pptv
121 PPtv

1873 pptv
364 pptv
542 pptv
m PPtv

1880 ppbv
63PPtV

2.72pptv
9.2 pptv
35 ppbv
122 ppqy

IPPtv
IPPtv
2PPtV

159 ppbv
1203 ppmv

(<1 km altitude) in the spring Intercontinental Chemical Transport Experiment - B field

campaign. We examined the possibility of heterogeneous chemistry on the ice surface or

in the aerosol. In the simplified mechanism of heterogeneous chemistry, there are three

steps which are adsorption onto the aerosol or ice surface, diffusion into the bulk, and

Henry's law equilibrium. Although temperature does not affect the transport velocity of

a gas to the interface, diffusion into the bulk following the Einstein relation and Henry's

coefficient are influenced considerably by temperature. This possibility of heterogeneous

chemistry indicated that the environment in the springtime over the Arctic Ocean was too
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dry and cold with very little sea salt. In the meteorologically stable Arctic at 255 K it is

reasonable to ignore horizontal and vertical transport, deposition, uptake by sea-salt

aerosol, and aqueous phase reactions in the simulations. We only considered I2, Br2, and

CI2 emissions from the ocean, and the mixing ratios for these species were set to constant

values at each time step to simulate continuous emissions. We also did not consider daily

and diel variation in photolysis rates.

Table 2.6. Photolysis rate constants for model simulation. (unit:s" ).

middle high low
Br2->Br+Br 0.029 0.048 0.0.16
BrO ->Br+0 0.020 0.045 0.014
HOBr^HO+Br 0.0015 0.003 0.001
BrCWBr+Cl 0.0084 0.015 0.005
BrONO2 ->Br+NQ3 0.00014 0.00027 9.16x10"
BrONO2 ->BrO+N02 0.00077 0.0015 0.00052
Cl2 ->C1+C1 0.0013 0.0028

^T
0.00097

7"ClONO2 -^C1+N03 1.91x10^r 4.1x10 1.37x10
ClONO2 ^C10+N02 2.1x10"' 5.57x10"'

w
1.52x10^-

03^Q2+Q('D) 1.82x10 6.9xl0"6 1.18x10"'
NO2 -+ NO2 + O 0.0056 0.01

^-
0.0039

CH3CHO -+ CH3 +CHO 6.4x10 T 2.2x10
3"

4.1x10T

HCHO -+ H + HCO 9.1x10"' 2.5x10
3"

6.3x10"'
T"HCHO -? H2 + CO 2.02x10" 4.86x10 1.5x10

CH3OOH -> CH3O + OH 2.01x10"' 4.97x10"' 1.5x10"'
N2O5 -+ NO2 + NO3 9.23x10"' 2.5x10^s- 7.3x10"'
H2O2 -* 2OH 2.14x10"' 5.49x10"' 1.6x10"'

Initial values in the simulations were taken from the ARCTAS measurements

(Table 2.5). The data for several minutes were selected from outside the MDE regions

for the eight cases and averaged to set the initial values. 75, 50, and 25 percentiles of

photolysis rate constants from the MDE regions were categorized into three groups which

were high, middle, and low values. The high values were a factor of 2 greater than

-47-



fi
(U

Vh
(U

g"
<u

fiu
IM

*c3
.&
a

•p
«Hl
O

&
s
s
fi

XSl

r^
(N
U

H

M
U

X
O
Z
a

iS.

o

"3

I

|t3
"i

?

? ? ? ? ? ? ? ? ? X ? \?\

1^ \?\

?

? ?\ ? ? X ? ? ? ?\ \? X ?

1^ X

Ö
O
CJ
ß
U
MJy

"ce

e

El
?

X

X X X X X X X X X X X X X

?
a

X

«

•a
ce ¦
H

X
O

? ? ?

?

?

?

? ? ?

X X X

?

X

?

X

?

X

?

X

?

X

O ?

C(J

?

X

X

Ö
J-H

^H—I
m

te
O

'•?
e«

CQ

Q

?

?

?

X X X ?

X

? ? ? ?

?

X

?

?

?

?

?

?

? ?

?

?

?

X

?

X X X X X X X X

O

X X

(N
^H
ù0

X

Vh

QS
en ce
O Ph
O ,_
^s <+h

Ph

U
ce

O

C3
O
O
CN

§1(N ^h
^-' ce

? Vh
H. O(U C+H

. HÎ m
'S «?S o
Ü (N,
Vi

«S "?
Ü US
>> ce

(U
X)
'G
o
C/3

"? T
Sf
42 o
fi (N
ce ^"^

Vh

fi
O
O

ce
Vh

+H
O
(U
Vh

«A

ce

CO
(U (N
le Q
.o „
32 "^
71 °
? Ci

¦4-J .
Ja TS?—H OT
^ -4-»
£ <ü
"? üs* §
? §H -

fi
o

ce
ti
fi
(U
o
fi
O
O
fi
(U
60

_o
"ce
C+H
O
in
fi
O

T3
fi
O
O

<U —
tu S

O
C
O
Q

Vh

??
fi

'G
(U

'¡/5
fi
O
O

fi
O

C+H
O
(U
¡?
ce
o

O
Q

^d" cu
O HfiO *3
(N 03
ce -^-

48



middle values and the same pattern existed between the middle and low values (Table

2.6).

We conducted 14 ideal case sensitivity experiments using ARCTAS

measurements (Table 2.7). The base case (Sl) used average initial concentrations and the

middle value of the photolysis rate constants (Table 2.5 and 2.6). In this base case run we

utilized the rate constant from Pal and Ariya (2004a) for reaction of Hg° with OH, the

rate constant from Goodsite et al. (2004) for reaction of Hg° with Br, the rate constant

from Khalizov et al. (2003) for the Hg° + Cl reaction, and the rate constant from Ariya et

al. (2002) for the Hg° + Br2 reaction (Table 2.2). In four control runs, we utilized high

and low photolysis rate constant values (SlO and SIl) (Table 2.6), and high NO* (5000

pptv NO and 900 pptv NO2) and low NO* (0.32 pptv NO and 0 pptv NO2) regimes (S 12

and S 13) based on ARCTAS measurements. In five sensitivity runs different rate

constants were used for mercury chemistry: (1) Goodsite et al. (2004) for the Hg° with

OH reaction (S2), (2) Khlaizov et al. (2003) and Donohoue et al. (2006) for the Hg° with

Br reactions (S3 and S4), (3) Balabanov et al. (2005) for the Hg° with Br2 reaction (S5),

and (4) Donohoue et al. (2005) for the Hg° with Cl reaction (S6) (Table 2.2). In three

control runs the sensitivity of mercury chemistry to varying mixing ratios of Br2 and Cl2

were studied using 3 and 5 pptv Br2 and 5 pptv Cl2 mixing ratios (S7-9). One last control

run was conducted without re-setting I2, Cl2, and Br2 mixing ratios at each time step to

their initial conditions to simulate no emission flux from the surface (S 14).

3. Characteristics of MDEs

The general physical and chemical characteristics of the MDEs have been

described by Mao et al. (2010a). Briefly, the vertical extent varied from 0.1 to 1 km and
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showed concurrent decreases in O3, Hg°, and selected light hydrocarbons which were

consistent with oxidation by halogen species. Our work here is focused on identifying

the most important chemical oxidation reactions, determining the depletion rates of O3

and Hg°, and the effects of varying chemical environments. The chemistry near the

surface was fairly consistent between MDE and non-MDE locations. It appears that the

main difference was the continuous presence or absence of reactive halogens. In this

regard, we examined the MDE and non-MDE cases and did not find any difference in the

surface of the sea ice/snow based on views from the nadir camera on the DC-8. In fact,

there did not appear to be any open leads that the DC-8 flew over. Important chemical

compounds in this study included Hg°, O3, and Br2, and the mixing ratios for each case

are summarized in Table 2.1, Figures 2.1 and 2.3.

MDEs were sampled over horizontal distances of -225 km (case 1), and it

appeared to be a typical MDE case with distinct demarcations in the spatial series of

chemical compounds. We selected 3-10 points before and after the MDE time window to

compare the geographical locations and the vertical extent of all MDEs, and we defined

these data as outside the MDE. Mixing ratios of Hg° decreased suddenly from >125

ppqv to the LOD except for one point of 22 ppqv. Ozone mixing ratios dropped quickly

from -50 ppbv to 0 - 6 ppbv during the same period. Mixing ratios of Br2 varied between

3.2 pptv and 5.8 pptv, which are considerably higher than the values outside the MDE

(0.05 -1.8 pptv). Moreover, mist chamber collected water-soluble bromide also increased

by -20 pptv and bromide (Br") in aerosol phase by at least 3 pptv compared to values

outside the MDE. However, 4 samples inside the MDE showed that chloride (CT) in the

aerosol phase decreased from 136 to 56 pptv. Mixing ratios of CH3CI, Ct^Br, and CH3I
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did not show any discernible changes. Light alkanes and C2H2 tracked changes in Hg°

and O3 closely. For example, C2H6 mixing ratios decreased by -700 pptv from outside to

inside the MDE areas.

(b)

??& ?

¦3 3
5

1

0 *_*«**£

7 o

7 A *
?
» ? O ?

? "V "
& ?«· *?

100 150

?§° (ppqv)
250 ? 40 60
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80

'*
I*

easel
case2
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W^^ttuM** >«a«
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C2H5 lnixmg ratio (pptv)
2 4 ó
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Figure 2.3. Vertical distribution of mixing ratios of Hg°(a), 03(b), C2FÍ6 (c), and Br2
(d) for the outside and inside of all MDEs. Units are ppbv for O3, ppqv for Hg°, and
pptv for other species. The vertical red lines of Hg° and O3 indicate the mixing ratio
where values below this represent depletion, while the line of Br2 indicates the mixing
ratio where values greater than this shows mostly corresponding to MDEs.

Backward trajectories for case 1 indicated that the air masses captured in the

airborne measurements over the MDE area mostly originated from Nunavut at low

altitude traveling off the shore of northern Greenland for 24 hours prior to the
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measurements (Figure 2.2). Some air masses during the MDE period traveled at the 850-

650 hPa surfaces from southwestern Greenland. In comparison, air masses outside the

MDE were transported on 850-500 hPa surfaces from Nunavut or from southwestern

Greenland at altitudes ranging from near the surface to 700 hPa.

Case 2 followed case 1 a day later occurring over a similar geographical area

around the similar time of the day (-13:00 local time). However, backward trajectories

for case 2 suggested that air masses originated from the Baffin Bay area in the mid-

troposphere, and were transported to the sampling location through northern Nunavut at

near-surface levels. Hg° and O3 mixing ratios decreased gradually, while Br2 and aerosol

Br" increased slightly from outside to inside the 34 km MDE region. Variations in light

alkanes and C2H2 exhibited the same patterns as those in Hg° and O3. Air masses inside

and outside the MDE were sampled at similar altitudes, and the air masses outside the

MDE appeared to be transported along the same route as those inside the MDE. Thus,

differences in mixing ratios of all trace gases were not as large as those in case 1 .

In case 3, the MDE was sampled over a horizontal distance of -143 km off the

coast of northern Alaska. Ozone and Hg° mixing ratios declined steadily, Br2 varied

from 0.2 to 3.2 pptv, and water-soluble bromide was increased up to 19 pptv. Mixing

ratios of BrO were -4 pptv and decreased outside the MDE. Light alkanes and C2H2

tracked Hg0 and O3 well. Backward trajectories indicated that air masses traveled near

the surface over the northern coast of Alaska and the Beaufort Sea from the Arctic Ocean.

Air masses outside the MDE originated from the mid-troposphere. A spike of NO* levels

was observed in this case, which indicated fresh emissions likely coming from the oil
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refinery at Prudhoe Bay. The concurrent Hg° mixing ratio was 39 ppqv, possibly

reflecting source emissions from the same area.

In case 4, the MDE area spanned 1 19 km over the Beaufort Sea and the Chukchi

Sea. Elemental mercury and O3 decreased quickly from outside to inside the MDE.

Water-soluble bromide varied from 12-19 pptv, and Br2 increased quickly up to 5.5 pptv

inside the MDE. The mixing ratio of BrO rose up to 8 pptv followed by a decline outside

the MDE. Light alkanes and C2H2 followed the same trend in Hg° and O3. Air masses

inside the MDE appeared to be transported near the surface from northern Nunavut,

whereas air masses outside the MDE were transported from Europe, Alaska, and the

Northwest Territories in the mid-troposphere across the Arctic Ocean.

In cases 5, 6, and 7, mercury depletions spanned horizontal distances of 17, 68,

and 56 km respectively, and were observed in the middle of the Arctic Ocean with similar

transport pathways and origins of air masses primarily close to surface over the Arctic

Ocean. All three cases showed declines in O3, Hg0, and light alkanes with concomitant

increases in Br2, BrO, and water-soluble bromide.

Case 8 with a -150 km L-shaped MDE area appeared to be more complicated

than all other cases. Hg° mixing ratios exhibited a steep drop from 140 ppqv to the LOD

upon entering the MDE area. However, O3 levels hovered around 30-40 ppbv for the

latter part of the MDE sampling, comparable to the levels outside the MDE. Moreover,

this MDE was not accompanied by high levels of Br2, BrO and water-soluble bromide.

Air masses inside the MDE had two main origins, the Arctic Ocean and eastern Russia.

Air masses outside the MDE were transported at mid- to upper-tropospheric altitudes

from the northwestern Pacific and Russia. Very fresh combustion emissions were
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observed over the first 36 km of the MDE as indicated by enhanced mixing ratios of NO*,

Hg°, butane, and pentane. Backward trajectories suggested that the air masses came from

northern Alaska where high NOx emissions comparable to the Prudhoe Bay Oil field were

indicated by the 2002 EPA NOx emissions map. Another unique feature in this case was

that light alkanes and C2H2 tracked O3 closely, but not Hg°.

General features of the eight MDEs can be summarized as follows. MDEs were

found only near the surface over the ocean. Hg° mixing ratios from outside the MDEs

varied from 100 ppqv to 250 ppqv, and the corresponding O3 mixing ratios were usually

>30 ppbv. The principal pattern of variation in Hg° from outside to inside the MDE area

is characterized by a precipitous fall from >100 ppqv to the LOD, while in comparison O3

decreased rather gradually from >30 ppbv to <10 ppbv. Four out of the eight cases

showed a sudden Br2 build-up up to 7 pptv inside the MDE areas. Ethyne mixing ratios

also decreased during MDEs, and it was correlated with O3 at r2 = 0.72. Moreover, light
alkanes such as C2H6, C3H8, C4H10 and C5H12 showed the same pattern of variation as

that of C2H2. Similar findings were reported previously for O3 depletion events (ODEs)

(Mao et al., 2010a; Eneroth et al., 2007). A general feature ascertained from backward

trajectories was that air masses outside most MDEs originated from the mid-troposphere,

whereas air masses inside MDEs traveled at low altitude over the ocean surface probably

entraining halogen-rich chemical compounds. Analysis of variations in chemical

compounds and backward trajectories indicated that halogen-rich air could be related to

changes in Hg°, O3, and light alkanes. In addition, fresh combustion emissions were

sampled as evidenced by high NOx levels in cases 3 and 8. The backward trajectories

suggested that the high NOx originated from unknown sources in northern Alaska.
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4. Box Model Simulations

4.1. Base Case Results

The results of the base case (Sl) are presented in Figures 2.4, 2.5, 2.6, and 2.7 and

Table 2.8. We defined depletion as mixing ratios <50 ppqv for Hg°, 10 ppbv for O3, and

25 pptv for C2H2. In the model runs Hg° was depleted in -22 hours, and about 97% of

Hg° was transformed to up to 70 ppqv HgBr2. HgO was the second most abundant RGM

species, but its level was about 45-fold less than that of HgBr2. Some studies assumed a

radical reaction such as the HgBr + BrO reaction in the Arctic spring (Calvert and

Lindberg, 2003; Xie et al., 2008), and BrHgOBr was one of the main RGM products.

This radical reaction was not included in our model due to a lack of experimental rate

constants. The dominant product, HgBr2, indicated that the reaction of Hg° with Br

radical, which is principally produced by photolysis of Br2, is very important to Hg°

depletion. Ozone was depleted in 23 hours, and C2H2 was depleted in ~36 hours. Ethyne

decreased very rapidly due to the reaction with abundant Br radical after O3 was reduced

to <1 ppbv. Cases 1-6 of the ARCTAS measurements showed comparatively distinct

declines of C2H2 and light alkanes compared to the simulation results. Ethyne was not

depleted in the field observations, but the range of decrement was significant spanning

72-420 pptv from outside to inside the MDEs. In the simulations C2H2 was decreased by

340 pptv, which was in the same range as the observations. Light alkanes were also

consistently decreased during the 100 hours of simulation. For example, C2Ho decreased

to -32 % of its initial concentration and C4H10 declined to about 76% of its initial

concentration after 100 hours of simulation. A decline of 205-920 pptv in ethane was

observed from outside to inside the MDEs compared to about a decrease of -600 pptv
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after 100 hours of simulation. Thus, our box model simulations appear to be able to

reproduce the decreases of various light alkanes and C2H2 captured in the ARCTAS

measurements as well as depletion of Hg0 and O3. This suggests that the chemistry

represented in the box model sufficiently depicts chemical processes conducive to the

occurrence of MDEs and O3 depletion events (ODEs).

Table 2.8. Prominent Xdep values for several sensitivity experiment results

Hg0
Tdep (hours)

O3 C2H2
Base 21.9 23.1 35.9

Rate constant of
Hg0 + Br

Khalizov et al. (2003) 28.4 23.1 35.9
Donohoue et al. (2006) 32 23.1 35.9

Different Br2
mixing ratio

3 pptv 7.6 15.5 23.4
5PPtV 3.4 9.3 14.2

Different photolysis
constant

High 10 19.9 30.3
Low 32.7 25.6 41.6

High NO^ regime 5.6 21.2 36.1

Furthermore, we simulated conditions without O3 chemistry but included O3

photolysis in our chemical mechanism. It indicated that certain levels of O3 provided an

additional sink of halogen radicals including Br, and hence the time to reach Hg°

depletion was longer. The results suggest a close relation between O3 and Hg°, and thus

we conducted simulations with O3 chemistry afterwards to make them more realistic.

4.2 Influence of Rate Constant Values

Applying different rate constants for Hg° reactions with Cl, OH, and Br2 (S2, S5,

and S6) did not affect the time it took to reach depletion (denoted as idep) of Hg0 (Tables

2.2 and 2.8 and Figure 2.4). However, different rate constants for Hg° reaction with Br

(S3 and S4) influenced the final product composition and Xdep. The amounts of HgO,

HgCl, HgCl2, and Hg(OH)2 produced were the greatest using the Donohoue et al. (2006)

rate constant value (S4) compared to application of other values(Sl and S3). Using the

56



rate constants of Donohoue et al. (2006) and Khalizov et al. (2003) (S3 and S4) led to a

slow decrease in Hg° at first followed by a faster decline compared to the base case.

Furthermore, the variation in the rate constant values of Hg° reaction with Br was also

important in determining t<?ß?· Compared to the base case (Sl), using the rate constant

from Khalizov et al. (2003) and Donohoue et al. (2006) (S3 and S4) increased Xdep (Table

2.8). However, about 97% of the RGM product was HgBr2, the same as in the base run

case.
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Figure 2.4. 100 hour model simulation using different rate constants. Black is base
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The rate constant of Hg° with BrO varies over the range of lxl O15 - lxl O13 cm

molecule"1 s"1 at 298 K (Raofie and Ariya, 2003) and the temperature dependent rate

constants were not provided in that study. We ran three simulations using rate constants

of IxIO"13, IxIO"14, and IxIO"15 cm3 molecule"1 s"1 in the base case run to study the

influence of the reaction on Hg° depletion. With the lowest rate constant, Hg° reaction

with BrO was negligible. With the largest rate constant, the Xdep value for Hg° was

reduced by 8 hours and slightly more HgO was produced than HgBr2. When the

temperature of 255 K was considered, the reaction of Hg° with BrO did not seem to be

important in our simulations, which suggests a negligible effect of Hg° reaction with BrO

on the occurrence of MDEs in the Arctic spring.

4.3 Influence of Halogen Radical Concentrations

A simulation was conducted without halogen compounds being re-set to the initial

conditions at each time step (S14). It was found that -11% of Hg° was transformed to

RGM and O3 was decreased by -0.5% after 100 hours of simulation. This suggested that

continuous emission of halogen compounds is imperative to the occurrence of MDEs and

ODEs in the Arctic springtime.

In addition, simulations were performed using 3 and 5 pptv Br2 and 5 pptv Cl2 (S7,

S8, and S9) (Figure 2.5 and Table 2.8). We found that the higher the Br2 concentration

was, the faster the Hg°, O3, and C2H2 depletion occurred. The Tdep value decreased

almost linearly with increases in Br2. Adding 5 pptv of Cl2 (S9) reduced the tdep value for

each compound by 20 - 30 minutes. The rate constant of Cl and Br with Hg° are of the

same order of magnitude, 10~12 cm3 molecule"1 s"1, at 255 K. However, the order of

magnitude for the rate constant of Cl radical with hydrocarbons and O3 are 10" cm
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molecule"1 s"1 except 11-C4H10, IO"10 cm3 molecule"1 s"1; the reactivity of Br radical with O3
is 10"13cm3 molecule"1 s"1 and that of Br radical with C2H2 is 10"14 cm3 molecule"1 s"1.

Furthermore, there was a lack of bromine reactions with light alkanes in the model due to

insufficient kinetic information available in literature. Therefore, the high reactivity of Cl

with abundant hydrocarbons and O3 caused Xdep value for Hg° to be much more sensitive
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Figure 2.5. 100 hour model simulation using different halogen mixing ratios.
Black is base run, blue is 3 pptv Br2, red is 5 pptv Br2, and green is 5 pptv Cl2.
Unit is same as Figure 2.4.

to Br2 than Cl2. Approximately 99% of the RGM product was HgBr2, with the higher Br2

cases showing a slight increase in the amount of HgBr2. ARCTAS measurement data
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showed that Br2 mixing ratios varied over 1-7 pptv in most MDEs, and thus it is

reasonable to speculate based on our box model simulations that Br2 (Br) played an

important role in the occurrence of MDEs.

At the 5 pptv Cl2 mixing ratios of light alkanes decreased significantly compared

to cases with additional input of Br2. For instance, we found a 70% decrease in C2Ho in

100 hours for 5 pptv Cl2 compared to a -35% decrease in other cases.

4.4 Influence of Photolysis Rate Constants

Different photolysis rate constants affected the Xdep value for Hg° (Table 2.6 and 2.8 and
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Figure 2.4.
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Figure 2.6) and higher photolysis rate constants (SlO) drove faster depletion for Hg°.

The main RGM product was again HgBr2. However, HgO, the second most abundant

RGM product in the high photolysis case (SlO) was about 52% of its values in the base

case because fast production of Br radicals accelerated the Hg° + Br reaction. Moreover,

the higher photolysis case showed a more rapid decrease in C2H2 and O3 compared to the

lower photolysis. Light alkanes also showed faster decreases in the high photolysis case

(SlO) and slower decreases in the low photolysis case (SIl) (e.g., C2Ho showed a 62 %

decrease in the high photolysis case and a 21 % decrease in the low photolysis case after

100 hours of simulation). We examined the ARCTAS measurements for correlation

between the Br2 photolysis rate constant and O3 mixing ratios inside the MDE regions,

but we did not find a strong relationship. This is probably not surprising since the

depletion events were sampled at various stages of their lifetime.

4.5 High Versus Low NO^ Regimes

ARCTAS measurements showed that the NO mixing ratio was commonly about

10 pptv and NO2 was ~0 pptv. However, a couple of cases showed very high mixing

ratios of NO and NO2 for short time periods which indicated an influence of fresh

emissions from northern Alaska, including the Prudhoe Bay Oil field. This motivated

simulations of high and low NOx regimes.

The low NOx regime (S 13) was based on case 7 of the eight ARCTAS MDEs.

The results for low NOx were similar to the base case (Figure 2.7). In the high NOx

regime (S 12), Cl radical concentration was slightly increased during the 100 hours of

simulation due to acceleration of Cl production from the reaction of ClO + NO. Thus
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light alkanes decreased slightly more than in the base case after 100 hours of simulation

due to reaction of light alkanes with the Cl radical.
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base run, blue is high NOx regime, and red is low NOx regime. Unit is same as
Figure 2.4.

Different from Cl, Br reactions with light alkanes were not implemented in our

model, and thus high NOx concentrations significantly increased the Br radical

concentration in comparison to the Cl radical. Fast production of Br radicals in the high

NOx regime (S 12) occurred during the first part (33 hours) of simulation, with a

decreased BrO amount. Increased Br radical concentrations were presumably due to the

-62-



reaction of BrO with NO. Thus, O3 and Hg° depletion occurred in ~2 hours for O3 and

~16 hours for Hg° sooner compared to the base case (Table 2.8). Ethyne declined at a

faster rate initially in the high NO* regime (S 12) compared to the base case (Sl) because

of its reaction with Br radical, but overall the depletion time in the high NO* regime

(S 12) was similar to that of the base case (Sl). Note that these results suggested that the

impact of high NO* regime (S 12) on Hg° depletion could be exaggerated slightly due to

the lack of rate constants of Br with light alkanes.

Moreover, we simulated the corresponding chemical environments at higher NO*

levels based on ARCTAS measurements. This simulation showed that higher-NO*

induced changes in hydrocarbon concentrations slightly affected the RGM composition

and Tdep for Hg° in high NO* regime. Compared to the high NO* level alone, Xdep for Hg°

was prolonged by 30 minutes, and HgO production was increased by 1 1%. The Tdep value

for O3 was prolonged by 1 .5 hours.

From the ARCTAS measurements we did not find distinguishable characteristics

for O3, C2H2, and light alkanes in the high NO* regimes, but Hg° was 28 - 44 ppqv

during these time periods in cases 3 and 8 with a possible contribution from combustion.

However, these levels were still low compared to the values outside the MDEs, and

indicated the possibility of fast Hg° oxidation in the high NO* regime as shown in the

model simulations. The other interesting simulation result was that O3 and C2H2 were not

depleted as fast as Hg° in the high NO* regime. The data of case 8 showed that the high

NO* area did not exhibit correspondingly high O3, C2H2, C2H6, and C3H8. However,

simulation results could help explain case 8 in which light alkanes, C2H2, and O3

followed a similar pattern but not Hg°. The BrO loss mechanism with NO produced
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more NO2 which is an O3 precursor; hence O3 depletion was slower than Hg° depletion.

Moreover, the Br radical production pattern, which was higher for the first simulation

period and lower for the last simulation period compared to the base run, could explain

C2H2 depletion in case 8. Furthermore, case 3 also had high NOx area but O3 and C2H2

resembled with Hg°. Br2 mixing ratio in case 3 was higher than case 8, and hence we

simulated high NOx regime with a consistent source of 2 pptv Br2, which was in the range

of Br2 in case 3. The simulation indicated O3 and C2H2 depleted faster than original

simulation of high NOx regime; Xdep was 16.9 hours for O3 and 27.5 hours for C2H2.

Therefore, the simulation results indicated that different range of Br2 mixing ratio drove

the different feature of cases 3 and 8.

5. Conclusions

Atmospheric MDEs observed during the ARCTAS field campaign were

investigated by analysis of aircraft data and box modeling. MDEs were observed to

occur near the surface over the Arctic Ocean with coincident O3 depletion, high Br2

levels, and decreases in light alkanes and C2H2. Generally, air masses inside the MDEs

transported at low levels over the ocean, and thus a distinguishable chemical feature of

the air is that it is likely halogen rich.

We developed a gas phase box model including mercury, halogen species, and

ozone chemistry with input from the ARCTAS measurements. We simulated several

sensitivity experiments to study the influence of variable rate constants of Hg° chemistry,

concentrations of halogen compounds, photolysis rate constant values, and NOx mixing

ratios on Hg0 depletion. The results suggested that high Br2 mixing ratios, high

photolysis rate constants, and high NOx regime caused accelerated Hg° depletion. These
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three environments accelerated Br radical production and hence increased the rate of Hg°

depletion. Moreover, we found that Hg° responded in a more sensitive manner to the

variations in the chemical environment compared to O3. This could possibly explain the

moderate decreases in O3 mixing ratios in MDE regions compared to total depletion of

Hg°.

-65-



III. Cycling of gaseous elemental mercury: Importance of water vapor

1. Introduction
Mercury, a toxic compound as classififed by the U.S. Environmental Protection

Agency, exists in three forms in the atmosphere; gaseous elemental mercury (Hg0),

reactive gaseous mercury (RGM), and particulate mercury (PHg). Measurement data

have showed that the concentrations of RGM and PHg are two orders of magnitudes less

than the concentration of Hg0. For example, the mean or median value of Hg0 was

reported to be <2.5 ng m"3 over the Pacific and at rural regions in North America (Laurier
et al., 2003; Radke et al., 2007; Mao et al., 2008; Swartzendruber et al., 2006; Poissant et

al., 2005; Lyman and Gustin, 2008), while the mean values were reported as 7-13 pg m"3
for RGM and 9-13 pg m~3 for PHg in northern Nevada and over the North Pacific (Lyman
and Gustin, 2008; Laurier et al., 2003).

Mercury is primarly emitted to the atmosphere in elemental form (Hg0), and its

sources are biomass burning, waste incinerators, coal-fired power plants, voléanos, and

automobiles (Brunke et al., 2001; Hall et al, 1990; PyIe and Mather, 2003; Won et al.,

2007; Glodek and Pacyna, 2009; Wilson et al., 2006). Moreover, natural mercury

emissions include release from vegetation, soil, and the ocean (Bash et al., 2004; Sigler

and Lee et al., 2006). In contrast, mercury sinks from the atmosphere are by wet and dry

deposition (Mao et al., 2008; Sakata and Asakura, 2007). A regional mercury study over

eastern Asia suggested that RGM and PHg were mostly deposited around source regions,

while Hg0 was transported over the Pacific and accounted for 39% of total Asian

emissions (Pan et al., 2008). Hence, the transformations from Hg0 to RGM and PHg are

crucial for the global mercury cycle. Several model studies indicate that the principal

transformations of Hg0 to RGM are through oxidation by the Br radical in the marine
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boundary layer and O3 in urban boundary layer (Kim et al., 2010; Holmes et al., 2009,

2010; Xie et al., 2008; Shon et al., 2005).

Box model is useful tool to study mercury chemistry in various environments.

Some previous box modeling studies conceptualized possible atmospheric processes in

one big box, which were mainly chemical processes, dry deposition, and emissions (Shon

et al., 2005; Hedgecock et al. 2004 and 2005). Meanwhile, a box model is also utilized to

study complicated chemical processes in the atmosphere while ignoring other

atmospheric processes. For example, mercury depletion events (MDEs) in Arctic

springtime were studied by utilizing comprehensive chemical reactions in the Arctic

springtime atmosphere (Xie et al., 2008; Kim et al., 2010). Here, we focused on

chemical transformations of mercury species in the atmosphere including mercury,

halogen, ozone, and sulfur chemistries in the gas and aqueous phases. Moreover, we

considered one more atmospheric process, dry deposition, in the chemical box model for

the last set of sensitivity experiments.

Gaseous elemental mercury has been measured in the northeastern U.S. since

2003 as part of the UNH-NOAA AIRMAP program and speciated mercury has been

measured since 2007 (Mao et al., 2008, 2010b; Sigler et al., 2009). The seasonally

averaged diurnal variation of Hg0 showed ~20 ppqv decrease at night in summer and fall

when the nocturnal inversion layer frequently occured (Talbot et al., 2005; Mao et al.,

2008). The nighttime loss of Hg° appears to be quite variable, ranging from nearly

complete removal to no perceiveable loss on a given night. Here, we conducted

sensitivity experiments with the chemical box model to interpret mercury chemical
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processes affecting the diumal cycle of Hg° at Thompson Farm, one of the measurement

sites of the AIRMAP program.

2. Methods

2.1 Mercury measurements

Speciated atmospheric mercury was measured at Thomson Farm (TF, 43.11N,

70.95W) in southern New Hampshire year round. A detailed description of the TF site

can be found in Sigler et al. (2009). At both sites we operate a Tekran system which

consists of a model 1130 to measure RGM, a model 1135 to measure PHg, and 2537A

cold vapor fluorescence detector. Elemental Hg was quantified with a five minute time

resolution. Reactive Hg and PHg were determined using a two hour sampling and one

hour flushing and desorption sequences. The instruments were configured and operated

identically at both sites according to the U.S. Environmental Protection Agency Standard

Operating Procedures for Analysis of Gaseous and Fine Particulate-Bound Mercury (U.S.

EPA, 2009), with one modification. Instead of using the Tekran commercial water

removal cartridge system, we developed a custom cold finger unit which operates

autonomously only producing water as a waste by-product. The system is extremely

clean and we believe that it helps keep the blank on the speciated measurements at zero.

Thus, blank subtraction is rarely required. Calibration of the 2537A unit was conducted

automatically every 24 desorption cycles, and this was verified every six months using a

Tekran model 2505 Saturated Mercury Vapor Calibration Unit (i.e., direct injection from

the headspace of a thermoelectrically cooled Hg° reservoir) to confirm absolute

calibration. A detailed description of the measurements can be found in Talbot et al.

(2010).
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2.2 Box model development

We developed a gas phase chemical box model that included O3, halogen, and

mercury chemical mechanisms (Kim et al., 2010). We added gas phase sulfur chemistry

and aerosol chemistry into our previous model and the detailed chemistries are presented

in Tables 3.1 -3.4.

^EiI = 0,,-G1- kMrL([Cg ] -j^[Caq ]) (Equation 3.1)
d\C 1 1-^L = k^mc, ] - -[C\q ]) + Ap - A1 (Equation 3.2)
The gas phase concentrations of chemical compounds ([Cg]) are determined by

gas phase chemical production (Gp), gas phase chemical loss (Gi), and the amount of

uptake by aerosols (Equation 3.1). Here, we ignored other atmospheric processes such as

horizontal and vertical transport, dry deposition, and emission. We considered the impact

of dry deposition in a set of sensitivity expriments. We included mass transfer between

gas and aqueous phases (aerosol uptake) and chemical production and loss in the aqueous

phase (Ap and Ai) (Equation 3.2). The mass transfer between gaseous-aqueous phases is

controlled by the liquid water content (L), the rate of mass transport from the gas to

aqueous phases (kM-r), and the difference in chemical concentrations between the gas

phase and interface of gas-aqueous phases (Cg - Cinterface)· Here, our focus is on

nighttime loss so we assumed an equilibrium state for gas-aqueous phases to obtain

Cinterface, due to high nighttime relative humidity of >70% (Pirrone et al., 2000). Hence

the concentration at the interface (Cinterface) is controlled by the Henry's Law constant (H)

and concentration in the aqueous phase (Caq). The units of concentrations (e.g. Cg and

Cinterface) Were Cm"3.
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The mass transport between gas-aqueous phases consists of molecular diffusion in

the gas phase and gas-kinetic collisions at the interface of gas-aqueous phases (Schwartz,

1986), and it was formulated by utilizing the characteristic time. The molecular diffusion

to the aerosol surface is controlled by aerosol radius (a) and the diffusion coefficient (Dg)

in the first term on the right-hand side of equation 3.3. The gas-kinetic collision at the

interface is determined by the accommodation coefficient (a), molecular speed (v), and

aerosol radius (a) in the second term on right-hand side of equation 3.3.

Aaa

^~(3Z) +3v«} (Equation 3.3)

There are two types of chemical reactions in the aqueous phase; reversible and

irreversible reactions. For the reversible reactions we assumed that the reaction is

controlled by diffusion in the phase. We considered mostly charged species, but the

diffusion rate of bimolecular reactions between uncharged species (~1010 L mol"1 s"1) is
utilized in the model due to little impact of ionic strength on the diffusion rate

(Finlayson-Pitts and Pitts, 2000). We added 39 gas-aqueous equilibrium reactions, 28

reversible reactions in aqueous phase, and 5 1 irreversible reactions in the aqueous phase

(Table 3.2 - 3.4).

Table 3.1. Selected acidic gas phases reactions.

Reactions Rate constant/ equilibrium
constant

4.5x10 31 exp (T/300)"3 y [N2]cm3
molecule"1 s"1

References

OH + SO2 +M-
HOSO2 + M

Atkinson et al. (2004)

1.3 ? IO"1 VeXp(SSOZT)Cm3
molecule"1 s"1

HOSO2 + O2 -* HO2 +
SO3

Atkinson et al. (2004)

SO3+ 2H2O -» H2SO4 +
H2O

8.5xl0""exp(6540/T)cm3
molecule"1 s"1

Sander et al. (2006)

2.5xl0"22cm3 molecule"1 s"1N2O5 + H2O -+ 2HNO3 Atkinson et al. (2004)
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Table 3.2. Gas-aqueous phases equilibrium reactions.

Reactions Equilibrium constant (unit: M atm" ) References
Hg(g) <-> HS(aq) 0.11-0.14 Sanemasa, 1975/ Schroeder

andMunthe, 1998
HgO,ei ~ HgOfaa, 3.2 ? 10° Petersen et al., 1998
HgCl2(Ei <-» HgCl2(aaì 2.75 ? 10° Schroeder and Munthe, 1998
HgBr2fgì <-» HgBr2(aq) 2.75 xlO" Hedgecock and Pirrone, 2004
Hk(OH)2M ^Hr(OH)2,.,, 1.2x10* Lindqvist and Rodhe, 1985
O3(g) ' O3(aq) 1.03xl0'z(at298K) Sander et al. (2006)
H1(e) ' H1íssL· 2.6xl04(at298K) Sander et al. (2006)
OHfeÌ <-> OH,(agì 39 (at 298K) Sander et al. (2006)
HO2(g) · HO2(aq) 690 (at 298)

7.73xl04(at298K)
Sander et al. (2006)

H2Q2(g) <~» H202(aa) Sander et al. (2006)
N03(eì <-> NQ3faaì 3.8xl0¿(at298K) Sander et al. (2006)
CH3Br(U) <-> CH3B^30) 0.173 (at 298K) Sander et al. (2006)
CH3OOH^ <-> CH3OOH1iaoJ_ 300 (at 298K) Sander et al. (2006)
HCHOf1,) <-> HCHOfa0) 3.23xl03(at298K) Sander et al. (2006)
CH3CHOf,,) <-> CH3CHOf30) 12.9 (at 298K) Sander et al. (2006)
Cl(g) ·*-» Cl(ao) 2.3 (at 298K) Sander et al. (2006)
ClO1MJ ClO1(adì 0.71 (at 298K) Sander et al. (2006)
ClOOfa) <-> ClOO(aq) 17 (at 298K) Sander et al. (2006)
OC10fa) <-> OClO1ïaaL 17 (at 298K) Sander et al. (2006)
HOClfg) <-> HOCIf30) 660 (at 298K) Sander et al. (2006)
Br2(g) · Br2(aq) 0.725 (at 298K) Sander et al. (2006)
BrClfg) <-> BrCl,feu_ 0.98 (at 298K) Sander et al. (2006)
HOBrfg) +-> ????(30) 130 (at 298K) Sander et al. (2006)
HNO3(g) ¦ HNO3(ao) 2.IxIO3 (at 298K) Schwartz and White (1981)
HONOf5) <-> HONOf30) 49 (at 298K) Schwartz and White (1981)
HClfg) <-> HCIf30) 727 (at 298K) Seinfeld and Pandis (1998)
SO2(g) ' SO2faq) InH = -39.72+4250/T+4.525xln(T) Sander et al. (2006)
O2(g) ' O2(aq) lnH = -161.6+8160/T+22.39xln(T) Sander et al. (2006)
NO,m: NO,(aq) 1??=-157.1+7950/?+21.298*1?(?) Sander et al. (2006)
COfg) <-> COf30) InH=- 1 78+8750/T+24.875 xln(T) Sander et al. (2006)
CO2(g) · CO2(aq) lnH=-145.1+8350/T+19.96xln(T) Sander et al. (2006)
CH,4(g) · CHtf,ML lnH=-194.7+9750/T+27.274xln(T) Sander et al. (2006)
C2H2^g) ' C2H2J16(aq) lnH=-240.2+12420/T+33.744xln(T) Sander et al. (2006)
C3H8(g) *-> C3HJf30) 1??=-28 1 . 1+145 10/T+39.652xln(T) Sander et al. (2006)
n-C^iHiofg) <-> H-C4H1Qf30) lnH=-269.9+14330/T+37.734xln(T) Sander et al. (2006)
C2H2f;,) <-> C2H2f30) lnH=-145.8+7880/T+20.384xln(T) Sander et al. (2006)
Cl2(g) ¦ Cl2(aq) 1??=-134.4+7590/?+18.702?1?(?) Sander et al. (2006)
HBr,(g)' HBr,(aq) InH =7.6+71 17/T-0.035 xT Brimblecombe and Clegg

(1989)
NH3(g)' NH3(aq) lnH=-9.84+4160/T Sander et al. (2006)

Table 3.3. Aqueous equilibrium reactions.

Reactions
12+

Equilibrium constant
2xlO'3M

Refrences

Hg2+ + SO, <-> HgSO3
HgSO3 + SO32' <-> Hg(SO3)?7"
Hg2+ + OH' ^ Hg(OH)+

1 xlOluM_l
van Loon et al, 2001

3.98 ? 1O10M"1
van Loon et al., 2001
Smith and Martell, 2004

Hg(OH)+ + OH' <-> Hg(OH)2 1.58XlO11M-1 Smith and Martell, 2004
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Hg(OH)+ + Cl' <-> Hg(OH)Cl 2.7XlO7M"1
2XlO7M"1

Xiao, 1994
Hg2+ + Cl" <-> HgCl+ Smith and Martell, 2004
HgCl+ + Cl" <-> HgCl2 5.OxIO6M"1

6.7xlOuM"'
Smith and Martell, 2004

HgCl2 + Cl" -> HgCl3" Cleveretal., 1985
1.3XlO1M"1HgCl3" + Cl" <-> HgCV

Hg2+"+ Br" 1.1 XlO9M"1
Clever et al., 1985

¦ HgBr+ Clever et al, 1985
HgBr+ + Br" <-> HgBr2 2.5XlO5M"

1.5XlO2M"1
Clever et al, 1985

HgBr2 + Br" <-> HgBr3" Clever et al, 1985
HgBr3" + Br" <-> HgBr/ 2.3xlO'M Clever et al., 1985
BrCl + Cl" <-> BrCl2 6.0M Wang et al. (1994)
SO2H2O <-> HSO3" + H+
HSO3" <-? SO32" + H+

1.3xlO"2exp(196Qx (l/T-1/298)) M Smith and Martell (1976)
6.6xl0"Bexp(150Qx (l/T-1/298)) M Smith and Martell (1976)

H2SO4 <-> HSO4" + H+
HS04-<->S042- + H+

1000 M (at 298K) Perrin(1982)
1.02xlO;2exp(272Qx (l/T-1/298)) M Smith and Martell (1976)

H2O2 *-+H02" + H+ 2.2xl0"'2exp(-3730x (l/T-1/298)) M Smith and Martell (1976)
HNO3 • NO3" + H+ 15.4exp(870Qx (l/T-1/298)) M Schwartz (1984)
HONO <- NO2" + H+ 5.1xlQ-*exp(-126Qx (l/T-1/298)) M Schwartz and White (1981)
CO2H2O <-> HCO3" + H+
HCO3" <-> CO32" + H+

4.3xlO",exp(-100Qx (l/T-1/298)) M Smith and Martell (1976)
4.68xl0""exp(-176Qx (l/T-1/298)) M Smith and Martell (1976)

HCl <- H+ + Cl" 1.74XlO6CXp(OgOQx (l/T-1/298)) M
3.5?10"t?

Marsh and McElroy (1985)
HO2 <-> H+ + O2 Perrin(1982)
Br2Cl" <->Br2 + Cl" 1.3 M Wangetal. (1994)
HBr <-+ H+ + Br" l.xl09M(at298K)

5.88XlO^M
Lax (1969)

NH4+ <-> NH3 + H+ Chameides(1984)

Table 3.4 Aqueous reactions.

Aqueous reactions Rate constant References

Hg + OH -> HgOH 2.4 ? 109M-1S"1
109M-1S-1

Gärdfeldtetal.(2001)
HgOH +O2 + H2O -> Hg(OH)2 + H+ + O2 Gârdfeldt et al. (2001)
Hg + OH • Hg+ + OH"

- Hg2+ + OH" 1 ? 1O10M-1S-1
Lin and Pehkonen (1997)

HgO + H+
2.09 ? 1O6M-1S"1

Pleijel and Munthe (1995)
HOCl + Hg -> Hg2+ + Cl" + OH" Lin and Pehkonen (1998)
OCl" + Hg (+H+) -> Hg2+ + Cl" + OH" 1.99 ? 10oM"'s Lin and Pehkonen (1998)
HgSO3 -> Hg" + product 0.6 s"1

3 ? IO"7 s"1
Pleijel and Munthe (1995)

Hg(OH)2 -> Hg0 + product
uZ¿+ _i_ tir» xj„+ _l r> _l

Pleijel and Munthe (1995)
Hg2+ + HO2 -> Hg+ + O2 + H+

1 ? 1O10M-1S"1
Pehkonen and Lin (1998)

Hg+ + HO2 -> Hg + O2 + H+
5.2XlO9M-1S7]"3.4XlO8M-1S-1

Xie et al. (2008)
SO32- + OH (+O2)

T-
SO5" + OH" Huie and Neta (1987)

SO32" + Cl2" (+O2) -> SO5" + 2d'
4.5XlO9M1S"1

Huie and Neta (1987)
HSO3" + OH (+O2) -> SO5" + H2O

3.4XlO8M-1ST^T
Huie and Neta (1987)

HSO3- + Cl2- (+O2) -> SO5- + 2Cr+ H+
1.OxIO8M-1S-'

Huie and Neta (1987)
HSO3- + NO3 (+O2) -> SO3- + NO3- + H+

1.OxIO8M-1S-'
Chameides(1984)

SO5- + O2" (+H2O) -> HSO5" + O2 + OH"
6.OxIO8M-1S"1

Jacob (1986)
2 SO," ->2 SO4" + O2
SO4" + HSO3" (+O2) -> SO42" + H+ + SO5" .3XlO9M-1S"1

Huie and Neta (1987)

SO4" + HO2 -> SO42" + H+ TÖ~2
Jacob (1986)

5.OxIO9M-1S"1
Jacob (1986)

SO4" + O2"^ SO4 + O2 Jacob (1986)
NO + OH -^ NO2" +H+ 2.OxIO10M-1S"1 Strehlow and Wagner (1982)
NO2" + OH -> NO2 + OH" 1.OxIO10M-1S-'

1.2XlO9M-1S"1
Treinin and Hayon (1970)

NO2" + NO3 -> NO2 + NO3-
4.5XlO9M-1S"1

Ross and Neta (1979)
NO3 + H02->N03- + H+ + O2 Jacob (1986)

*N0," + O2NO3 + O2
CO32" + OH -»"OH-"+ CO3"

1.0xl09M"'s
3.9 ? IO8 MV

Jacob (1986)

6.5XlO8M1S"1
Buxton et al. (1988)

CO3" + O2 CO32" + O2 Eriksenetal.(1985)
OH + HO2 -> H2O + O2

1.OxIO10M-1S"1
Elliott and Buxton (1992)

OH + O2 OH" + O2 Elliott and Buxton (1992)
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OH + OH' -> H2O + O 1.3 ? 10'"M-'s-TTT"

1.5 XlO9M-1S
Buxton et al. (1988)

O2- + Q3 _> Q2 + Q3- Sehested et al. (1983)
O3" + H+-^O2 +OH

4.OxIO8M-1S"1
Neta et al. (1988)

O" + HO2" -* O2- + OH
5.5XlO6M-1S'

Buxton et al. (1988)
HO2' + O3 -> OH + O2' + O2 Neta et al. (1988)
H + HO2 -> H2O2 1.OxIO10M-1S"1 Buxton et al. (1988)
H + O2 -> HO2 2.1 XlO111M-1S-1 Buxton et al. (1988)
H + O3 — OH + O2 3.7XlO10M-1S"1

4.3x10* MV
Neta et al. (1988)

Cl" + OH -HOCl"
6.IxIO9M-1STTT"

Jaysonetal.(1973)
HOC!" -? Cl" + OH

1.45XlO111M-1S-1
Jaysonetal.(1973)

HOCl" + H+ -? H2O + Cl
2.OxIO9M-1STTT"

Netaetal. (1988)
2Cl2" -> Cl2 + 2Cl" Neta et al. (1988)
Cl2- + HO2 -»¦ 2Cl--I-O2-HH+ (1-4.5) ? 10"Nf1S''

1.OxIO9M-1STTT"
Neta et al. (1988)

Cl2" + OH ->¦ HOCl + Cl"
7.OxIO9M-1S"1

Wagner et al. (1986)
Cl2- + H -* H+ + 2cr

1.OxIO9M-1STTT"
Buxton et al. (1988)

Cl2 + HO2 -> H+ + Cl2" + O2
8.5XlO9M-1S"1

Bjergbakke et al. (1981)
Cl + Cl" Cl2

7.6XlO8M-1S"1
Buxton et al. (1998)

HOCl + SO/' -> HSO4" + Cl" Fogelman et al. (1989)
Br+ Br" -» Br2 1.6XlO10M-1S"1

5XIO9M-1STTT"
Scaiano et al. (1992)

HOBr + SO32' (+ H2O) ->S042" + Br" + 2?G Troy and Margerum, (1991)
Br" +OH-» HOBr" 1.1 XlO10M-1S"1 Kläning and Wolff (1985)
HOBr" +H+ -? H2O + Br

2XlO9M-1S"1
Kläning and Wolff (1985)

2Br2' • Br2 + 2Br" D'Angelantonio et al. (1988)

2.3. Box model simulations

We studied Hg° loss from the gas phase associated with gas-aqueous mass

transfer during the nighttime in summer at the TF site. For the study, we did not consider

photo-dissociation chemical mechanisms from the gas phase reactions. Thus, radical

reactions did not occur due to the lack of radical production by photo-dissociation.

Several different measurement data sets were utilized to set the initial conditions of gas

phase chemical compounds (Table 3.5). The majority of the data was provided by the

AIRMAP program (NO, CH3OH, CH3Br, Hg°, CO, CO2, SO2, and hydrocarbons), and

we obtained representative values (<0.5 km altitude) for initial conditions of OH, HO2,

CH4, NO2, H2O2, HCHO, H2O, and CH3CHO from the DC-8 measurements over the TF

area during the 2004 ICARTT study. These mixing ratios were calculated to

concentrations (cm3) at 294 K and 0.94 atm.
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The process of preparing initial conditions utilizing TF data was as follows. We

used the following criteria to select well-defined cases, and 15 nights out of 153 nights

were selected. First, we considered the time period only from May - September, 2009,

and excluded days with precipitation. In order to consider an isolated environment in the

horizontal dimension, we obtained 10 minute averaged wind speed data at nighttime

(20:00 - 06:00 EDT), and then selected the days where the mean value for 10 hours was

<1 m/s. The last consideration was the presence of a well established nocturnal boundary

layer during nighttime, which was identified by a nighttime decrease in O3 and Hg°, and

corresponding increase in CO2 (Talbot et al., 2005). The median summertime mixing

ratio was utilized as the initial conditions for NO, CH3OH, CHsBr, Hg°, CO, CO2, and

SO2. The monthly mean values of hydrocarbons at TF were documented by Russo et al.

(2010), and we utilized the average values during summertime for C2FÍ6, C3H8, C2H2, and

natilo. Moreover, the initial conditions were 1 pptv for CI2, Br2, and I2 (Stutz et al.,

2007).

Aerosol input is also an important feature for realistic model simulations. A

couple of studies have shown that the dominant aerosol composition at TF is sulfate

(Ziemba et al., 2007; Cottrell et al., 2008). The median values for the summertime were

41.3 nmol m"3 for NH4+ and 23.7 nmol m"3 for SO42" (Ziemba et al., 2007), and we
utilized these values for the initial conditions. Our group conducted an intensive study of

PHg at Thompson Farm in summer 2009. Sampling with a cascade impactor showed the

presence of sea salt, and the greatest amount of Hg was associated with it on coarse

aerosols (Feddersen et al., 2010). In fact, the largest amount of Hg was found on aerosol

with 3 µ?? aerodynamic diameter. For simplicity, we assumed all of the PHg was on 3

-74-



µ?? size aerosols. We did not consider the aerosol lifetime in the atmosphere due to the

short simulation time (100 hours) compared to a typical aerosol lifetime of ~7 days

(Hedgecock et al., 2004).

Table 3.5. Initial conditions for the simulation.

Chemical
compounds

NO
NO2
H2O2

HCHO
OH

CH3OH
CH3CHO

C2H2?6
C2H2
C3Hg

n-C+Hio
CH4
HO2

CH3Br
O3

Hg°
CO
H2O
CO2
SO2

Mixing ratios
50pptv
0PPtV

2086 pptv
2305 pptv
0.11 pptv
1620 pptv
480 pptv
1085 pptv
226 pptv
522 pptv
103 pptv

1800 ppbv
1117 pptv

8PPtV
39 ppbv
138 ppqv
150 ppbv

16400 ppmv
373 ppmv
350 pptv

3. Results

3.1. The water solubility of Hg°

Henry's law constant of Hg° is 0.11 - 0.14 M aim1 at 298K (Schroeder and

Munthe, 1998; Sanemasa, 1975), and the constant has a much higher value compared to

the constants OfCO2 (0.034 M arm"1) and O3 (0.01 M arm"1). Gaseous elemental mercury
is typically not thought of as a soluble compound, but its Henry's law constant indicates

enough water solubility that it must be considered in chemical cycling of Hg°. We
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converted the constant to dimensionless units for application in our chemical box model

by multiplying by the temperature and gas constant (R: 82.05 (cm atm K" mol" )),

producing values of 2.69 - 3.42. The constant indicates that Hg(aq) should be about a

factor of 3 greater than Hg0 in the gas phase.

Hg(g) concentration ' HgO(g) concentration Hg(aq) concentration
ISO G

100-
>
CX
a
a.

50-

0 .
02 + 63 10 0 2 + 68 10 02 + 68 10

tlme{h) tlme{h} time{h}

Figure 3.1. Results of Hg° (a), HgO(g) (b), and Hg(aq) (c) from a 10 hour simulation.
Black line is without consideration of aerosol chemistry and blue line is with
aerosol chemistry included.

We conducted simulations using sensitivity experiments with and without aerosol

chemistry to check the impact of water solubility on Hg° in the gas phase (Figure 3.1).

The liquid water content (LWC) was set to 2><10~12 (m3(water)/m3(air)) for the case
considering aerosol chemistry (Dickerson et al., 1999). After 10 hours of simulation

without aerosol chemistry the results showed that -3.8 ppqv of Hg° was transformed to

RGM, mostly HgO(g). In comparison, the simulation with aerosol chemistry indicated

that -11.5 ppqv of Hg° was transformed to RGM and PHg, mainly HgO(g) and Hg(aq).

Moreover, Hg(aq) was increased to -9 ppqv after 10 hours, and Hg(aq) was mainly

converted by mass transport of Hg° between the gaseous and aqueous phases. Hence,

about a factor of 2 greater amount of Hg° was converted to aerosol forms compared to
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without aerosol present. Therefore, the slight water solubility of Hg° affects considerably

the interconversion of mercury species.

3.2. Aerosol uptake as a function of liquid water content

The liquid water content (LWC) of aerosols is the most important factor

controlling Hg° gaseous-aqueous mass transport. We conducted several sensitivity

experiments to define the uptake as a function of LWC. Previous model studies utilized

different LWC values for discrete aerosol types. For example, the LWC value of sea salt

aerosol is commonly in the range of 3xl0"u - 6xl0"n (m3(water)/m3(air)), while the
value for sulfate aerosol varied from 1.07xl0~12 - 2.14xl0~12 (Dickerson et al., 1999;
Hedgecock, et al., 2004). Moreover, an upper limit of LWC was 2xl0~u for mixed

ambient aerosol (Stanier et al., 2004).

The aerosol composition at TF showed that sulfate and organic matter are the

dominant components (Ziemba et al., 2007; Cottrell et al., 2008). Thus, we assumed that

the aerosol LWC was 2xl0"12 for the lower limit. Moreover, LWC in the atmosphere
could be increased at night because of aerosol uptake and also thermodynamic occurrence

of dew or radiation fog. Therefore, we conducted five sensitivity experiments utilizing

different aerosol LWCs covering the range of 2xl0"12 - 2xl0"10 (Figure 3.2).
The 10 hour simulation showed that the dominant RGM and PHg were HgO(g)

and Hg(aq). More HgO(g) was produced with less LWC and more Hg(aq) was generated

with higher LWC. HgO(g) was about a factor of 4 lower than Hg(aq) for the case of 2x10"

12 , and HgO(g) was 4 orders of magnitudes lower than Hg(aq) in the case of 2xl0"10. We
extended the simulation time to check when the equilibrium between Hg° and Hg(aq) was

reached, and we assumed that the equilibrium between both states was reached at 46
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ppqv Hg°, which was one third of the value of the initial condition. The time to reach

equilibrium by different LWC was as follows; 2.6 hours for 2xl0"10, 8.6 hours for 6xl0~n,
24.9 hours for 2xl0~n, 72.9 hours for 6><10"12. Moreover, the equilibrium was not
reached for a 1 00 hour simulastion with a 2 ? 1 0" LWC.

(a)
150

iooh

a
a,

(C)

Hg (g) concentrati ??

4 6
tifTie(h)

Hg(aq) concentration

2E- ?a BE-I

' ' HgO(g) concentration

timefh)

Hg-i-(aq) concentration

2E- 1 1

4 e
t!m«(h)

BE-1 2 2E-12

Figure 3.2. Results of Hg° (a), HgO(g) (b), Hg(aq) (e), Hg+(aq) (d) for a 10 hour
simulation with different LWC (unit: m3(water)/m3(air)). The lines represent as
follows: black for 2xl0"10, blue for 6xl0"u, red for 2xl0"u, green for 6xl0"12,
and purple for 2x1 012

3.3 Results considering dry deposition

Previous ideal simulations (i.e. theoretical simulations) showed that the loss of

Hg° transferred exactly to the amount of RGM and PHg formed by mass conservation

due to omission of other atmospheric processes in the model. The dry deposition of Hg°
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is an important factor determining the amout of speciated mercury in the atmosphere

(Mao et al., 2008), and thus we added the dry deposition process into the chemical box

model, which is formulated as = —-[C]. Here, we utilized 125 m for the
dt if

nocturnal inversion layer height (H) (Talbot et al., 2005), and a LWC of 2?10"?. We
simulated several sensitity experiments with different dry deposition velocities (Vd) for

speciated mercury (Table 3.6) (Shon et al., 2005; Mao et al., 2008; Seinfeld and Pandis,

1998). S 13 is the experiment without consideration of dry deposition for all three

speicated mercury chemical forms; Hg0, PHg, and RGM.

Table 3.6. Sensitivity experiments with dry deposition added.

Vd = 5 cm s"
RGM PHg Both

Vd- 0.5 cm s"
RGM PHg Both

dry deposition of Hg°
Vd= 0.2cm s' Vd = 0 cm s"

Sl
S2
S3
S4
S5
S6
S7
S8
S9

SlO
SIl
S12
S13

First, we examined the impact of Vd =5 cm s"1 on speciated mercury without
considering dry deposition of Hg° (S2, S4, and S6) (Shon et al., 2005) (Table 3.7. and

Figure 3.3 (a)-(c)). The mixing ratio of Hg° was decreased by -60 ppqv and it was

decreased slightly more for S4 and S6 compared to S13 and S2 for a 10 hour simulation.

The simulation showed that HgO(g), the dominant form of RGM, was of the order of 0.1
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ppqv, and it was a factor of 2-3 less for S2 and S6 than S4 and S 13. Hg(aq) value for the

S 13 and S2 was increased to 60 ppqv after 10 hours of simulation, while the value for the

S4 and S6 cases was ~3 ppqv.

Table 3.7. Mixing ratios of speciated mercury after 10 hours of simulation.

Hg° (PPqv) HgO(g) (ppqv) Hg(aq) (ppqv)
No deposition (S 13) 77 0.3 60

Vd = 5 cm s"
without Hg°
deposition

RGM (S2) 77
PHg (S4) 72
Both (S6) 72

0.09
0.3

0.08

59
3.4
3.3

Vd = 5 cm s"
with Hg°
deposition

RGM(Sl) 44

PHg (S3) 41
Both (S5) 41

0.05
0.2

0.05

45
2.0
1.9

Vd = 0.5 cm s"
without Hg°
deposition

RGM (S8) 77

PHg(SlO) 75
Both (S 12) 75

0.2
0.3
0.2

60
30
30

Vd = 0.5 cm s
with Hg°
deposition

RGM (S7) 44
PHg (S9) 43

Both (SIl) 43

0.2
0.2
0.1

42
22
22

Second, we considered dry deposition of Hg° with Vd = 5 cm s" (Table 3.7. and

Figure 3.3 (d)-(f)). The dry deposition velocity of Hg° (0.2 cm s"1) was derived without
consideration of aerosol uptake during summer nighttime at TF (Mao et al., 2008). Hg°

was decreased ~32 ppqv more after 10 hours, and HgO(g) and Hg(aq) were increased

slightly less for Sl, S3, and S5 compared to S2, S4, and S6. Third, we utilized a dry

deposition velocity of RGM and PHg = 0.5 cm s"1 based on the typical dry deposition
velocity of a 3 µ?? diameter aerosol (Seinfeld and Pandis, 1998) (Table 3.7. and Figure

3.3. (g)-(l)). The loss amount of Hg° was similar to in the cases with vd = 5 cm s"1.

Moreover, HgO(g) was increased more for cases S7, S8, Sl 1, and S 12 compared to Sl, S2,

S5, and S6. Hg(aq) was increased to -20 ppqv for S9 and SIl, and 30 ppqv for S10 and
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(e)
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time(h)

(f)
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0)
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time(h;

Figure 3.3. Results of 10 hour simulation for sensitivity experiments with
changing values of the dry deposition velocity. The first column is Hg°, the
second column is HgO(g), and the third column in Hg(aq). (a)-(c) for 5 cm s"1 of
RGM or PHg without Hg° deposition, (d)-(f) for 5 cm s"1 of RGM or PHg with
Hg0 deposition, (g)-(i) for 0.5 cm s"1 of RGM or PHg without Hg° deposition, and
(j)-(l) for 0.5 cm s"1 of RGM or PHg with Hg° deposition. The line colors are as
follows; black line for no deposition of PHg or RGM, blue line for only deposition
of RGM, red line for only deposition of PHg, and green line for deposition of
RGM and PHg.
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S 12 after 10 hours. The mixing ratios were one order of magnitude greater than in the

cases of S3, S4, S5, and S6.

The 10 hour simulations showed that the loss of Hg° was ~60 ppqv for mass

transfer between the gaseous-aqueous phases and ~32 ppqv for dry deposition utilizing vj

= 0.2 cm s"1. The amount of Hg° lost indicated that aerosol uptake into its liquid water

could be very important to mercury cycling compared to loss by dry deposition of Hg°

alone. The results of sensitivity experiments conducted with different dry deposition

velocities for PHg suggested that dry deposition loss of PHg is an extremely important

process controlling ambient levels of PHg.

4. Conclusions

We included mass transfer between gaseous-aqueous phases and mercury aqueous

reactions into our gas phase mercury chemical box model in order to better understand

loss of Hg° during the night. The mass transfer between the gaseous-aqueous phases was

significantly influenced by water solubility of Hg° and the amount of LWC. The impact

of water solubility of Hg° was examined through two sensitivity experiments; with and

without aerosol chemistry. Ten hours of simulation showed that ~3.8 ppqv and -11.5

ppqv of Hg° were depleted without and with aerosol chemistry respectively. The

sensitivity experiments showed that Hg(aq) was increased to 9-102 ppqv with variable

LWC ranging from 2? 10"12-2x 10"10 after 10 hours of simulation.

Finally, we conducted sensitivity experiments with consideration of dry

deposition of speciated mercury. The sensitivity experiments indicated that dry

deposition of PHg is critical to generate typical ambient levels of PHg compared to Hg°
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and RGM1 The loss of Hg° by aerosol uptake and dry deposition suggested that aerosol

uptake of Hg° could play an important role in mercury cycling in the atmosphere.
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rv. Implications of my study

The first study of my Ph.D. work was long-range transport of pollutants. My

study showed the importance of WCB and convection to long-range transport with fast

westerly flow in upper troposphere. Climate change should influence these dynamical

phenomena. For example, recent weather analysis in summer 2010 showed jet blocking,

which is associated with climate change. It drove extremly hot weather in many global

regions including Russia and northeastern Asia and terrible flooding in Pakistan and

China. These stagnant meteorology patterns, presumably involved with climate change,

should occur more frequently with associated intensive convection or WCBs transport.

Therefore, it will be interesting to study long-range transport patterns of pollutants in the

future with ongoing climate change.

The characteristics of mercury chemistries were studied in various environments;

Arctic springtime and rural areas in the northeastern U.S. There are a few implications

associated with my study. The first is related to my mercury study in Arctic springtime.

Thinking about how climate change in the Arctic might affect MDEs produced the

following possible scenarios. Climate change has driven a decreasing amount of ice

surface area over the Arctic Ocean, and thus should promote increasing amounts of

halogen compounds released into boundary layer air. This implies the possibility of more

frequent and widespread occurrence of springtime MDEs. On the other hand, a larger

open ocean would foster more turbulence in the atmosphere above, and perhaps cause

reduced occurrence of pronounced MDEs. Since the ocean is a large natural source of

Hg° (Andersson et al., 2008), this might also serve to reduce MDEs. It will be interesting
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to observe in the future the impact of reduced Arctic pack ice on chemical cycling of

trace gases like Hg° that are sensitive to such processes.

The second implication is related to the enrivonment in rural areas of the

northeastern U.S. Uptake of Hg° in the water layer of aerosol within the nocturnal

inversion layer should occur readily based on our model results. During nighttime the air

within the inversion layer exhibits a relative humidity near 100%. At daybreak when the

sun rises the inversion starts to dissipate as vertical mixing commences. As the air warms

and begins to mix with drier air, the aerosol LWC should decrease releasing Hg° back

into the gas phase. This diurnal cycling represents dynamic exchange of Hg° between the

gas and aerosol phases. Therefore, I proposed that the diurnal cycle of Hg0 was strongly

influenced by uptake onto aerosols with high liquid water content at night and then re-

volatilized back to the gas phase from the aerosol after sunrise.
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