
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 2010

The application of computational modeling to data
visualization
Daniel S. Pineo
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Pineo, Daniel S., "The application of computational modeling to data visualization" (2010). Doctoral Dissertations. 544.
https://scholars.unh.edu/dissertation/544

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/544?utm_source=scholars.unh.edu%2Fdissertation%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

THE APPLICATION OF COMPUTATIONAL MODELING
TO DATA VISUALIZATION

BY

Daniel S. Pineo.

B. S. University of Massachusetts, Amherst, MA (2000)

DISSERTATION

Submitted to the University of New Hampshire
in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy
in

Computer Science

December 2010

UMI Number: 3442539

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3442539
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest®

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This dissertation has been examined and approved.

Dissertation Director, Colin Ware,

Professor of Computer Science

David H. Laidlaw,

Professor of Computer Science

R. Daniel Bergeron,

Professor of Computer Science

Wheeler Rumi,

Assistant Professor of Computer Science

Kurt Schwehr,

Research Assistant Professor of Ocean Engineering

/ fy^û/O 9
Date

?

DEDICATION

To my wife Gretchen

111

ACKNOWLEDGEMENTS

I would like to foremost express my gratitude to my advisor, Colin Ware, for his guid-

ance and support throughout my research. His invaluable insight focused me on what was
important, and his imagination on what was possible. Many of the major ideas embodied
in this work originated from discussions with him. This truly would not have been possible
without him.

I would also like to thank my committee for their many valuable comments throughout

the development of this work, and in particular David Laidlaw for providing the images
used in his now visualization evaluation paper.

Finally, I would like to thank my family. The encouragement, inspiration, and love of
my wife, Gretchen, always gave me confidence and motivation when I needed it the most.
I thank my parents, Carol and Craig, for their support and inspiration.

Funding for this work was provided by NOAA grant NA05NOS4001153.

IV

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES x

ABSTRACT xi

1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 A Computational Approach 3

1.3 Original Contributions 8

2 BACKGROUND 10

2.1 Perception in Data Visualization 10

2.1.1 Edge and Contour Perception 10

2.2 Computational Models of Visual Perception Applied to Data Visual-
ization 13

2.3 The Neurophysiology of Perception 15
2.3.1 Neurons 15

2.3.2 The Eye and Retina 18

2.3.3 The Lateral Geniculate Nucleus (LGN) 19
2.3.4 Vl 19

2.4 Neurophysiological Computational Models of Perception 21

?

2.4.1 Models of Retinal Center Surround Response 21

2.4.2 Models of Vl Edge Response 23

2.4.3 Models of Vl Edge Enhancement 23

2.4.4 Models of Color Perception 25

2.5 Conclusion 25

3 NEURAL MODELING OF FLOW RENDERING EFFECTIVENESS 27

3.1 Introduction 27

3.2 The Computational Model - CortexSim 1.0 28

3.2.1 The Edge Detection Stage 29

3.2.2 The Contour Enhancement Stage 29

3.2.3 The Streamline Tracing Stage 33

3.3 Qualitative Evaluation 36

Regular Arrows 38
Jittered Arrows 39

LIC 40

Aligned Streaklets 41

3.4 Evaluation 41

3.4.1 Participants ¦ 42
3.4.2 Vector Field Generation 42

3.4.3 Instructions 44

3.4.4 Procedure 44

3.4.5 Computer Trials 45

3.5 Results 45

3.6 Discussion and Conclusion 48

4 FLOW VISUALIZATION OPTIMIZATION VIA COMPUTATIONAL

vi

MODELING OF PERCEPTION 51

4.1 Introduction 51

4.1.1 High-level Perception 53

4.2 The Computational Model - CortexSim 2.0 54

4.2.1 The Image 55

4.2.2 The Retina 56

4.2.3 Vl Edge Detection 57

4.2.4 Vl Edge Enhancement 59

4.2.5 GPU Model Implementation 60

4.3 Approach to Optimization 60
4.3.1 Graphical Primitives 61

Streaklet Primitives 61

Pixel Primitives 62

4.3.2 The Hill Climbing Algorithm 62
4.3.3 Evaluation Metric 64

4.3.4 Orientation perception 65

4.3.5 Speed Perception 66
4.4 Results 67

4.5 Discussion 71

5 COMPUTATIONAL MODELING OF NODE-LINK GRAPH PER-

CEPTION 75

5.1 Introduction 75

5.2 Background 76
5.2.1 Layered and Two-layer Node-link Graph Diagrams 77
5.2.2 Perceptual Theory and Node-link Diagram Aesthetics 79

5.2.3 Roelfsema's Curve Tracing Experiment 79

vii

5.2.4 Roelfsema's Curve Tracing Model 80

5.3 The Computational Model - CortexSim 3.0 81

5.3.1 The Label Cortex 81

5.3.2 Grossberg's Shunting Neural Dynamics 84

5.4 Model Evaluation 87

5.4.1 Node-link Graph Diagram Generation 87

5.4.2 Graph Data Generation 88

5.4.3 Instructions 89

5.4.4 Procedure 89

5.4.5 Participants 91

5.4.6 Computer Trials 91

5.4.7 Node-link Graph Modeling Results 91

5.5 Node-link Graph Diagram Optimization 93

5.5.1 Optimization Evaluation 95
5.6 Discussion 95

6 CONCLUSION 98

BIBLIOGRAPHY 106

APPENDICES 115

A CORTEXSIM 2.0 GPU KERNELS 116

B CORTEXSIM 3.0 GPU KERNELS 121

Vili

LIST OF FIGURES

1-1 The Three Pillars of Modern Science 4

1-2 Scramjet CFD Model 5
1-3 Andromeda CFD Model 6

2-1 The Perception of Contours 11
2-2 The Perceptual Enhancement and Inhibition of Edges 12
2-3 The Early Human Visual System 16
2-4 A Neuron 17

2-5 Vl visual processing 20
2-6 The Difference-of-Gaussians Receptive Field 22

2-7 The Gabor Response Function 24

3-1 Zhaoping's Model of Vl 30
3-2 Regular Arrows 38
3-3 Jittered Arrows 39

3-4 Line Integral Convolution 40
3-5 Aligned Streaklets 42
3-6 Jittered Arrows Closeup 43

3-7 Aligned Arrows Closeup 44
3-8 Human Error Distribution 46

3-9 Model Error Distribution 47

3-10 Log Transformed Histogram 47
3-11 Visualization Mean Error 48

ix

4-1 The Neural Network Architecture 56

4-2 Vl Gabor Kernels 58

4-3 Vl Edge Enhancement Kernels 59
4-4 Optimization Block Diagram 63
4-5 Jobard L· Lefer Visualization 68
4-6 Optimized Flow Visualization 68
4-7 Optimized Jet Stream Visualization 69
4-8 Optimized Color Jet Stream Visualization 69
4-9 Pixel Parameterized Visualization 70

4-10 Line Integral Convolution Visualization 70
4-11 Closeup of the discontinuities 71

5-1 Node-link Diagram Example 77
5-2 Layered Node-link Diagram Example 78
5-3 Roelfsema's Experiment 80
5-4 Roelfsema's Contour Tracing Operator 82
5-5 Labeling in CortexSim 83
5-6 Labeling Spread with Competitive Dynamics 86
5-7 Two-layer Node-link Graph Diagram Example 88
5-8 A Hermite spline 89
5-9 The Link Tracing Experiment 90
5-10 Model Iterations vs. Human Response Time 92
5-11 Model Error vs. Human Error 93

5-12 Sequence of Graph Optimizations 94
5-13 Original vs. Optimized Response Time 96

6-1 The General Design of the CortexSim Models 99

?

ABSTRACT

THE APPLICATION OF COMPUTATIONAL MODELING TO DATA
VISUALIZATION

by

Daniel S. Pineo.
University of New Hampshire, December, 2010

Researchers have argued that perceptual issues are important in determining what makes
an effective visualization, but generally only provide descriptive guidelines for transforming
perceptual theory into practical designs. In order to bridge the gap between theory and
practice in a more rigorous way, a computational model of the primary visual cortex is used
to explore the perception of data visualizations.

A method is presented for automatically evaluating and optimizing data visualizations
for an analytical task using a computational model of human vision. The method relies on
a neural network simulation of early perceptual processing in the retina and visual cortex.

The neural activity resulting from viewing an information visualization is simulated and
evaluated to produce metrics of visualization effectiveness for analytical tasks. Visualization
optimization is achieved by applying these effectiveness metrics as the utility function in a
hill-climbing algorithm. This method is applied to the evaluation and optimization of two
visualization types: 2D flow visualizations and node-link graph visualizations.

The computational perceptual model is applied to various visual representations of flow
fields evaluated using the advection task of Laidlaw et al. [I]. The predictive power of
the model is examined by comparing its performance to that of human subjects on the
advection task using four flow visualization types. The results show the same overall pat-
tern for humans and the model. In both cases, the best performance was obtained from

visualizations containing aligned visual edges. Flow visualization optimization is done using

xi

both streaklet-based and pixel-based visualization parameterizations. An emergent prop-

erty of the streaklet-based optimization is head-to-tail streaklet alignment, the pixel-based
parameterization results in a LIC-like result.

The model is also applied to node-link graph diagram visualizations for a node connec-

tivity task using two-layer node-link diagrams. The model evaluation of node-link graph
visualizations correlates with human performance, in terms of both accuracy and response

time. Node-link graph visualizations are optimized using the perceptual model. The opti-

mized node-link diagrams exhibit the aesthetic properties associated with good node-link

diagram design, such as straight edges, minimal edge crossings, and maximimal crossing
angles, and yields empirically better performance on the node connectivity task.

XIl

CHAPTER 1

INTRODUCTION

Perception is the means through which all data visualizations are processed, and
the characteristics of successful data visualizations can often be traced back to percep-
tual mechanisms of the human visual system. It is becoming increasingly recognized

that the properties of human perception play a vital role in determining the effective-
ness of data visualizations [2]. For example, the most successful flow visualizations
contain contours tangential to the flow field. These visualizations take advantage of
the edge detection mechanisms of human vision, which respond strongly to continuous
contours. As a second example, visualizations that must convey fine spatial details
are found to be more effective when they are rendered in greyscale then in a red-green
scale or yellow-blue scale. This is because luminance contrast processing mechanisms
of the visual system can convey far more detail than the chromatic contrast processing
mechanisms.

1.1 Problem Statement

Despite the obvious relevance, perceptual theories have been of limited use to data vi-
sualization designers because they are typically expressed in imprecise and descriptive
forms that are not readily applicable. For example, the theory of contour perception
states that two nearby visual objects that exhibit edges oriented close to the collinear
axis between them will be perceived as a continuous contour [3]. While this theory
suggests that we should limit our flow visualization designs to those with aligned ar-

1

rows, it still leaves and huge number of degrees of freedom unspecified. What about
the myriad of other design choices? A data visualization designer would likely be
interested in understanding the perceptual effects of the lengths of the arrows, the
widths, their spacings, and the presence or lack of arrowheads. Certainly these all
have some effect on the perceptual experience, but what is that effect? The space
of possible visualization choices is enormous, and descriptive theories are not com-
prehensive enough to describe it. As a result, creating effective data visualizations
continues to be more of an art than a science.

Seminal flow visualization papers that introduced the most widely used flow visu-
alization methods, such those of Cabrai and Leedom [4], Jobard and Lefer[5], Turk
and Banks [6], and van Wijk [7], give no indication of using perceptual theory in
their development. Thus, there is clearly a gap between perceptual theory and its
application to data visualization, which is likely due to the difficulty in applying such
a descriptive theory in practice. In particular, computers are not capable of interpret-
ing a descriptive theory, thus limiting their applicability. Interpretations by humans
are often imprecise, inconsistent, and subjective.

Furthermore, these seminal flow papers lack psychophysical studies into the effec-
tiveness of the visualization methods they introduce, although more recently Laidlaw

et al. [1] conducted a study that showed large differences in the effectiveness of dif-
ferent methods for a variety of visual tasks. Psychophysics complements perceptual
theory, allowing designers to experimentally quantify the effectiveness of data visual-
izations techniques by testing the performance of human test subjects on tasks requir-
ing accurate interpretation of visualizations, but are often costly and time-consuming.
Laidlaw et al. only examined a tiny subset of the possible flow renderings, when all
the parametric variations are considered. The combinatorie problem means that hu-
man testing is not a viable technique for evaluating the space of design alternatives

2

for any reasonably complex visualization.

1.2 A Computational Approach

An alternative method of quantifying the effectiveness of a data visualization, one
that addresses the shortcomings of descriptive theories and psychophysical tests, is
highly desirable. What is needed is not just a perceptual theory, but a perceptual
computational model that allows data visualization designers to explore in detail how
the perceptual mechanisms of the human visual system respond to a data visualiza-
tion.

Computational modeling has now emerged as the third pillar of modern science
(Figure 1-1), a peer alongside theory and physical experiment [8]. The basis for this
claim is the enormous impact that computational modeling has had in the scientific
disciplines where it has been successfully applied. Computational modeling has a
history of tying together theory and experiment by showing how small scale mechanics
produce large scale emergent behavior.

For example, computational modeling has become indispensable addition to the
field of fluid dynamics. While closed form theories of fluid dynamics are capable
of describing idealized systems, in even simple real world systems the behavior can
quickly become too complex for them to be directly applied in practice. For exam-
ple, the problem of designing of supersonic blunt nose aircraft confounded the fluid
dynamics community throughout the 1950's and early 1960's [9]. The complexity of
the mathematical analysis of this seemingly simple problem proved to be essentially
intractable. Experimental approaches to fluid dynamics via wind tunnels have the
limitations of being slow and expensive, and only yield a few variables such as lift
and drag. These limitations have a striking resemblance to the current limitations of
perceptual theory and psychophysical testing. In both cases, the theory is difficult

3

Model
Qualification

Experiment N
Analysis

TheoryModel
Validation

Computer
Simulation

Programming

Computational
Modeling

Model
Verification

Figure 1-1: The three pillars of modern science: experiment, theory, and computa-
tional modeling

to apply, with the experimental approach being slow, costly, and providing only a
partial understanding of the system.

For the field of fluid dynamics, the solution to these problems arrived with the
application of computational models. These computational fluid dynamics (CFD)
models calculate the behavior of small units of volume each behaving according to

the Naviar-Stokes equation (Figure 1-2), which describe the pressures and velocities
of the fluid in the volume. The generalization afforded by this approach allows the
model to be reused for arbitrary designs, there is no longer the need to create a new

model for each design. The models allow designers to easily determine the pressures
and velocities at any point. Thus, designers are able to inexpensively, interactively,
and with great detail, explore the behavior of the system. Ultimately, the application
of computational modeling profoundly changed the field of fluid dynamics.

4

\

?

1 ^H

?

?(?G + ? · Vv) = -Vp + V · T + f

Figure 1-2: The CFD model of the Hyper-X Scramjet that enabled NASA engineers
to study its behavior while operating at Mach 7, the Naviar-Stokes equation on which
the model is based [1O].

Another example of the benefits of applying computational science can be found

in cosmology. While the gravitational mechanics underlying the interaction of pairs
of stars was well known, how these interactions produced the spirals and arms found

in galaxies was an unsettled question. The number of stars involved was too large

to be calculated analytically, and experimentation was clearly not possible. Finally,

with the application of computational science, cosmologists were able to model galaxy

behavior (Figure 1-3) and settle the question once and for all.
In many ways, data visualization designers find themselves in the same predica-

ment. The complexity of real-world data visualizations interacting with the com-

plexities of the human perceptual process makes the direct application of perceptual

theories difficult. As with wind tunnels, psychophysical experiments allow the study

of complex data visualization designs experimentally, but this approach is slow and

5

Figure 1-3: An N-body simulation of the Milky Way and Andromeda galaxy collision

that will take place in 3 billion years [H].

expensive, and the data obtained for one design is not always generalizable to others.

What data visualization designers lack is a computational model of perception anal-

ogous to the CFD models that have benefited aeronautical designers. Such a model

would not only provide a cheaper alternative to human psychophysical studies, but

yield more detailed insight of the visual system's response to those visualizations.

Computational models describe a system by calculating the behavior of a large

number of simple, interacting elements. The complex behavior of the system emerges

from the interaction of the simple elements. CFD models, for example, show how

6

complex behaviors such as waves, vorticies, and turbulence emerge from volume ele-

ments (voxels) behaving according to the Naviar-Stokes formulas that describe fluid
flow. For a computational neural model of visual perception, the simple elements are

the neurons of the human visual system, and the emergent behaviors are the percep-

tual mechanisms. There are many potential advantages to applying a computational

modeling approach to data visualization:

• Simplicity - Computational models express complex behavior in terms of a few

fundamental behavioral rules, enabling the behavior of the system to be more

easily comprehended. By applying a computational model of visual perception

to data visualization, a visualization practitioner could observe the effects that

a visualization design have on the neural dynamics of the visual system, thus

gaining insight into the reason for its effectiveness.

• Utility - Computational models produce numerical values that are suitable for
use within a larger system. We explore this possibility in this thesis work by

encompassing a computational model of perception within an optimization loop.

• Visibility - The numerical values with which computational models are ex-

pressed afford the creation of visualizations that show the effects that the input

design has on the model.

• Extensibility - Computational models can be easily integrated with other com-

putational models. For example, a computational model of the early visual

system might be integrated with a computational model of working memory,

allowing designers to explore the cognitive load associated with a visualization.

• Generality - While descriptive models often describe very specific phenomena,

a computational model of perception may be made to process arbitrary visual

image inputs.

7

• Validation - The neural and psychophysical behavior predicted by computa-

tional models can be compared with reality.

• Verification - A computational model provides a test of theoretical models. If
the computational model yields the behavior predicted by the theoretical model,
then this provides evidence that both the computational and the theoretical
models are correct.

There are good reasons to believe that the ingredients are present for computa-
tional modeling to make a similar contribution to the science of data visualization.

• The primary visual cortex (also known as area Vl) of the brain contains a
very large number of computational elements all performing the same task in
parallel on different parts of an image. This means that high performance
parallel processing can be applied.

• Vl has been extensively studied by vision researchers for several decades and
its mechanisms are quite well understood.

• Vl is a critical area for pattern perception. It is here that the elements of
form are processed. It is also here that the computations are made regarding
which parts of an image will be visually salient. Although our understanding
of the brain is too limited and computers are still insufficiently powerful to

simulate the entire human brain we believe that useful progress can be made

by simulating this critical brain area for visual processing.

1.3 Original Contributions

The contribution of this work is the application of the computational modeling

paradigm to the problem of data visualization, and the demonstration that such

8

an approach can yield tangible results. Given the tremendous impact that computa-

tional science has had on other scientific disciplines, it seems clear that exploring the

viability of its application to data visualization is a worthwhile endeavor.

My contribution has five components:

1. Development of a computational model of human perception that simulates the

visual mechanisms critical to the perception of data visualizations.

2. Comparison of the model evaluations with human performance on psychophys-
ical tasks

3. Automatic optimization of data visualizations based on the effectiveness pre-

dicted by the model.

4. Demonstration of the generality of the approach by the application to two dis-

tinct classes of visualizations: 2D vector fields and node-link diagrams.

5. Establishment of computational modeling of perception as a "third pillar of

science" in data visualization by developing its relationship with perceptual

theory and psychophysical experimentation.

9

CHAPTER 2

BACKGROUND

The approach of using a perceptual model to optimize and evaluate data visualiza-

tions as described in chapter 1 touches upon a diverse range of scientific disciplines,

including data visualization, perception, neurophysiology, and computational model-

ing. In this chapter, we review the relevant work within these fields as they pertain

to this approach. In particular, we develop the relationship between these disciplines

and how they relate to the end problem of data visualization.

2.1 Perception in Data Visualization

Perceptual theory is perhaps the most directly related to the field of data visualiza-

tion, describing the visual mechanisms triggered when one views a data visualization.

Such descriptions are useful for understanding the implications that the choice of

visual variables has on the perception of a data visualization. Perceptual theory

has been applied to a number of data visualization design problems, such as color

sequences for color maps [12], node-link diagram layout [13] [14], symbol color and
shape distinctivenesses] , and texture coding for scalar maps [16].

2.1.1 Edge and Contour Perception

Of particular relevance to this thesis work is the perception of edges and contours in

data visualizations. The flow visualizations and node-link graph diagrams that we

model in this thesis work rely heavily on the use of edges and contours to convey

10

¦
G

?

a s

i1

¦^US 1
h

m m

???
¦IBI ¦ ¦1mi

w

OJk
¦

Figure 2-1: The perception of contours (from Field et al. [3]). The contour composed
of aligned edges is easily perceived among a field of distractors.

information. Perceptual processing mechanisms enable a viewer to rapidly detect

contours. Psychophysical research by Field et al. [3] has suggested that test subjects
were able to identify a path of edge elements among a field of distractor elements

(Figure 2-1). They found this to be reliable even as the elements were oriented up
to 60° relative to each other. This suggests that there exists a perceptual mechanism

in the visual system that is specialized in detecting continuous contours, and has

given rise to the perceptual theory that two nearby visual objects that exhibit edges
oriented close to the colinear axis between them will be perceived as a continuous

contour.

11

(¦

+

Figure 2-2: The perceptual enhancement and inhibition of edges. The perception of
nearby aligned edges are enhanced, while the perception of unaligned edges is inhibited.
This mechanism enables continuous contours to be easily perceived.

This research on edge perception, along with neurophysiological evidence described
later in section 2.3.4, suggests that there is some manner of lateral coupling among

the visual elements involved in detecting the path of edge elements. They and other
researchers have suggested that similarly oriented aligned contours mutually excite
one another, whereas they inhibit other neurons that are nearby (Figure 2-2).

Ware [17] proposed that the effectiveness of flow visualizations can be linked to
these perceptual processing mechanisms. Since conveying the path of flow advection is
one of the primary goals of flow visualization, the most effective flow visualizations use
contours to visually express the vector field. In effective flow visualization techniques,
contours within the visualizations are evident and are tangential to the direction of

flow. Laidlaw et al. [1] showed how to test the effectiveness of vector visualizations
by tasking human subjects with estimating where the particle advecting within the
flow field exits a bounding circle. They found that visualizations containing strong

12

perceptual contours along the flow direction tended to perform best.
The effectiveness of node-link graph diagrams can also be understood in terms of

this contour perception mechanism. Node-link graph diagrams use visual contours
connecting nodes to convey information. Smooth contours, lacking sharp angles or
crossings, are perceived most readily by the visual system, and are thus most effective.
This behavior is applied in data visualization in the form of graph layout aesthetics
[18] [19], which provide guidelines for effective layout of node-link graph diagrams.

It is important to note, however, that perceptual theories of the kind discussed
above are descriptive, rather than computational. As a result, they are capable of only
providing general guidelines for data visualization design. Such descriptive theories
cannot be used to quantitatively evaluate data visualizations.

2.2 Computational Models of Visual Perception

Applied to Data Visualization

In contrast to descriptive perceptual theories, computational models of perception
enable the analytical evaluation of data visualizations. A significant advantage of
such computational models is that they can be applied to a visual image using com-
puter algorithms, unlike descriptive theories that require human interpretation. These
models have been used to automatically evaluate the perceptual properties of visual

popout, saliency, and clutter in data visualizations.
Visual popout is the mechanism of visual perception whereby conspicuous features

in a visual scene can be easily found. Theories of popout suggest that visual features
are processed in parallel to create a set of "feature maps" [20] [21]. Each feature
map expresses the presence of some visual variable, such as size, orientation, or color,
at all points in the visual space. Based on these theories, computational models of
visual popout have been developed to predict the saliency of visual objects within a

13

scene [22], and such models have been applied to data visualization to predict how a
viewer's attention will be directed to relevant areas of a chart visualization [23] [24]

[25].

Clutter is a concept closely related to visual popout, but describes factors that
make targets harder, rather than easier, to see. Roscnholtz et al. [26] defined clutter
as "the state in which excess items, or their representation or organization, lead to a

degradation of performance at some task" , and offered two computational methods
for measuring clutter.

The first method treats clutter from a purely information theoretic standpoint, by

relating clutter to the number of bits required to encode the scene. While this method
provides an elegant measure of clutter, it is not clear how this method relates to
perceptual processes involved in the perception of clutter. The second method, which
is based on a statistical measure of saliency, is more closely related to perceptual
processing. This method calculates the ensemble of feature vectors in a scene. These
feature vectors correspond to the local features detected in the early visual system,
such as edges and color. The measure of clutter is derived from the volume of the
feature space spanned by the ensemble. Both measures correlate well with human
response time on search tasks using data visualizations, with no significant difference
between the measures.

While these models seek to computationally express perceptual behavior when

viewing data visualizations, they do not attempt to do so in a manner that is physi-
ologically plausible. These models describe very specific perceptual behavior and are
not straightforwardly extended to include additional behaviors. Nevertheless, this
work represents the state of the art in applying models of perception to the problem
of data visualization. Computational models based on the neurophysiology of the
visual system have the potential to express not just one specific perceptual behav-

14

ior, but possibly many behaviors that may be relevant to the perception of a data
visualization.

2.3 The Neurophysiology of Perception

Having argued the benefit of a computational neural model of perception for data
visualization, and noting its potential for application in data visualization, we now

review the architecture of the human visual system and explore the feasibility of con-

structing a computational model that is capable of expressing the visual mechanisms

observed in the perception of data visualizations.

The early stages of the visual system are critical to the perceptual processing of
data visualizations. When a visual image projects onto the retina at the back of the

eye, receptors in the eye convert the image into electrical signals. These signals pass

through the midbrain lateral geniculate nucleus (LGN), before proceeding to the pri-
mary visual cortex (Vl) at the posterior of the brain (Figure 2-3). These early stages
of visual processing provide the foundation of pattern perception, color perception,

texture and visual salience. Understanding how a visualization is processed in these

stages can tell us a lot about how effective it will be. In the following brief review
of relevant neurophysiology, we concentrate on aspects of the visual system that are

relevant to the modeling effort. Specific neurophysiological measurements are given

so they may be later incorporated into the computational model.

2.3.1 Neurons

The most basic building block of the visual system is the neuron. Neurons contain

many branches, called dendrites, that allow them to receive signals from other neurons

(Figure 2-4). When a particular pattern of signals is received, the neuron may become
excited and begin signaling other neurons along a branch called an axon. Neurons

15

s

? ?
l·

LGN
V1

Eye Extrastriate areas
(V2;V4;etc)

Figure 2-3: The early stages of human vision. Light enters the eye and falls on the
retina. Photoreceptors in the eye then send signals along the optic nerve, through the
LGN, and finally to Vl. The mapping of locations in the visual scene to neurons in
Vl is depicted.

make on the order of 10,000 connections, called synapses, to other neurons. Depending
on the neurotransmitter used by the neuron, its signals may have either excitatory or

inhibitory effects on the recipient neuron. Signals from an excitatory neuron makes
the neurons it signals more likely to become excited, and signals from inhibitory
neurons make the neurons it signals less likely to become excited.

The current across the neural membrane was first expressed by Hodgkin and Hux-

ley [28] as:

/ = CM%- + gKn\V - VK) + gNam3h(V - VNa) + g¡(V - V1)at

where / is the total current through the surface membrane of a neuron. It is dependent
on both the conductivity of the synaptic connection and the activity of the source

16

INPUTS
\ \ r

Dendrites

-^

\
e

Soma SMt^m7?

OUTPUTSy

Axon

r\ ^N.^ «a-

/»
y ?

-? ^

Figure 2-4: An example of a neuron [27]. The neuron receives input signals along its
dendrites, and sends an output signal along its axon.

neuron. In this equation, CM^ is the capacitive current, gKn4(V - VK) is an ionic
current of Potassium ions, gNam3h(V - VNa) is an ionic current of Sodium ions, and
gi(V — Vi) is a leakage current.

In artificial neural network models, the membrane conductances are often com-

bined and simplified into a single weight parameter, w^. This parameter specifies the
ability of a signal to propagate from the presynaptic neuron i, to the postsynaptic
neuron j. The overall activity of the postsynaptic neuron, y¿, is then calculated with
the function [29]:

yi = ^ [S Wi3Xi J
Where, x¿ is the activity of the presynaptic neuron, and f is a sigmoid saturation

function. Thus, Wij describes the pattern that the neuron responds to. In the early
visual system, these are localized visual patterns such as edges. The local visual area
corresponding to the pattern is known as a receptive field.

17

2.3.2 The Eye and Retina

The visual image is projected by the lens of the eye and focused onto the retinal
lining at the back of the eye. The light travels through the layers of the retina and
falls upon the light-sensitive photoreceptor neurons. There exist approximately 6
million color-sensitive photoreceptors, known as cones, and approximately 100 million
color-insensitive photoreceptors, known as rods. Cones are subtended by an angle
of approximately .006 degrees and are the principle photoreceptors responsible for
processing high-detail at normal light levels. Cones are most sensitive to a specific
frequency of light, such as red, green, or blue, but all cones are capable of detecting
white light. Thus, the retina is capable of processing black and white patterns at a
higher level of detail than it can process blue-yellow or red-green patterns.

The signals produced by these photoreceptors are then processed by several layers
of neurons in the retina. The receptive field surround signal is computed by horizontal

[30] and amacrine cells that are connected laterally to nearby areas of the retina.
Bipolar cells combine this surround signal with a center signal of an opposing polarity
to produce what is known as a center-surround receptive field. Such a receptive field
responds most strongly to light falling either in center of the field, or in the annulus
surrounding center, but not both. Bipolar cells exist in both on-sensitive and off-
sensitive forms, thus producing receptive fields that are sensitive to light in the center
(on-center/off-surround) and as well as fields that are sensitive to light in the annulus
(off-center/on-surround). Bipolar cells forward this signal to the retinal ganglion
cells, which send the center surround signal along the optic nerve, through the lateral
geniculate nucleus (LGN), and to the Vl.

The central 2° of vision is processed by a 500µt? diameter rod-free area of the
retina known as the fovea [31]. It is this area that is responsible for processing fine
detail. On average, there are approximately two retinal ganglion cells for each cone

18

in this area, one on-center and one off-center [32]. Away from the fovea, the cone
spacing and the ratio of photoreceptors to retinal ganglion cells increases quickly,
causing a drop in visual acuity in the periphery.

2.3.3 The Lateral Geniculate Nucleus (LGN)

The LGN is an area where the optic nerves from the two eyes connect in the mid-

brain. It appears that one of the primary functions of the LGN is to physically
reorganize the signal paths. For example, signals from the two eyes are brought into
close proximity. Also, the signals from the rods and cones are separated so they may
progress down different processing paths. The signal processing performed by LGN
remains incompletely understood, but is believed to be involved in stereopsis. Be-
cause this functionality is not pertinent to this work, the LGN is not included in the
computational model.

2.3.4 Vl

Vl, also known as the primary visual cortex, is the first cortical processing area of
vision, and is largely populated with neurons that are selective to orientated edges.
These neurons are capable of detecting the edges of sinusoidal grating patterns with
spatial frequencies up to 8 cycles per degree between 2° and 5° eccentricity [33], and
presumably higher in the fovea. The receptive fields of Vl neurons are retinotopic,
meaning that there is a direct mapping between a neuron's location in Vl and it's
receptive field in visual space.

The architecture of Vl can best be understood in terms of columns and hyper-

columns. A column is a cortical area of neurons that respond to a specific edge

orientation and receptive field location [34] [35] and contains about 200 to 250 neu-
rons [36]. These columns form a repeating pattern across the surface of Vl, such that

19

\
£¦

?
m

t

m

«H*
V\t ?

M-
K

1
/ <w

V» f

?

F-
?

Figure 2-5: The Vl visual processing of the scene from Figure 2-3. Red patches are
cortical columns containing neurons that respond to horizontal edges, yellow patches
are columns sensitive to edges angled at 60°. Highlighted areas indicate columns that
are active due to the edges of the star viewed in the visual scene.

within any 500µt? diameter area columns all orientations are represented (Figure
2-5). Such an area is known as a hypercolumn. Both columns and hypercolumns
lack well-defined borders in the visual Gortex, however, their treatment as discrete,

well-defined areas provides a useful approximation for understanding and modeling

20

cortical behavior.

Furthermore, there is evidence that the perception of an edge is enhanced by

nearby edges with an aligned orientation [3]. Studies of the dendritic trees of Vl
neurons suggest that this behavior is achieved via lateral connections, up to 4mm

long, between neighboring columns in Vl [37]. Vl is notable for detecting visual
feature dimensions including color, orientation, and simple motion, which form the

basic primitives that are used in all subsequent processing. Higher level visual areas,

such as V2 and V4, are currently not as well understood, and are not modeled in this
work.

2.4 Neurophysiological Computational Models of Perception

The neurophysiology described in the previous section is responsible for the perceptual

mechanisms activated when viewing data visualizations. By expressing this physiol-

ogy in a computational form, we can construct a model that exhibits the behavior

of the visual system, capable of being used to analyze data visualizations. In this

section, we review mathematical models that have been used to describe aspects of

the visual system.

2.4.1 Models of Retinal Center Surround Response

The center surround response of retinal ganglion cells can be described mathemati-

cally using a Difference-of- Gaussiane (DoG) function (Equation 2.1, Figure 2-6) [38].
This function contains a narrow excitatory center, produced by the cones of the

retina and forwarded directly to the retinal ganglion cells by the bipolar cells. The

excitatory center is encompassed by a larger inhibitory surround, produced by the

inhibitory effect of nearby horizontal and amacrine cells.

21

Figure 2-6: The retinal ganglion Difference- of- Gaussians receptive field,

an excitatory on-center (light) and an inhibitory off-surround (dark).

Í-'OKj'xty,crlta2 CV-I^1 x,y,s\ ^2^?,?/,s2

Where Gx^17 denotes the normalized two-dimensional Gaussian kernel

2ps2

and s denotes the standard deviation.

22

2.4.2 Models of Vl Edge Response

As noted in the previous section, the neurons of area Vl have been observed to
respond preferentially to orientated edges [34] [35]. It has been argued that the
Gabor function (Figure 2-7, Equation 2.3), defined mathematically as one-dimensional
sinusoid encapsulated within a two-dimensional Gaussian envelope (Equation 2.2), is
a good approximation for the edge patterns for which Vl neurons are selective [39].
Daugman argued that this function provides an optimal tradeoff between representing
spatial position and frequency.

2vr
Gabor^yxvj = Gx^n cos(—-? + f) (2.3)

where ? defines the wavelength of the sinusoid, and f defines the sinusoid offset.

2.4.3 Models of Vl Edge Enhancement

The edge enhancement behavior described in section 2.1.1 can be achieved by imple-
menting the pattern of lateral excitation described in section 2.3.4. Such a model of
Vl edge enhancement was developed by Zhaoping Li [40]. In this model, excitatory
and inhibitory neurons exist in pairs, and together express the saliency of an edge.
Li's model focuses entirely on the contour enhancement mechanisms of Vl. It does
not include retinal processing, or even edge pattern recognition using a Gabor-like
pattern matching elements. Thus, the model is not capable of processing an input
image directly, but instead requires an array of edge perception strengths as input.
The model uses a hexagonal array to represent the hypercolumn structure of Vl,
with each hexagon containing a set of 12 orientation selective columns. This model
is described in more detail in chapter 3, where it is used as the basis for our model

of flow visualization perception.

23

Figure 2-7: The Gabor response function, also with an excitatory center and inhibitory
surround.

The LAMINART model is a more detailed and physiologically-based model of

Vl edge perception developed by Grossberg et al. [41] [42]. It is considerably more
detailed than Li's model, including the center-surround processing of the retina and

Gabor-like pattern matching of Vl neurons. The model also incorporates the individ-

ual layers of neurons found in the neocortex, which are proposed to produce particular

behaviors, including contour enhancement and convergence of neural activity. This

model uses a regular grid layout and contains only two orientation selective columns

per hypercolumn: vertical and horizontally selective columns.

Using the LAMINART model, Grossberg has suggested the functional purposes of

24

many of the architectural feature found in the neocortex. From this model, Grossberg
and colleagues demonstrated functionality such as contrast normalization, perceptual
grouping [43] [44], texture segregation [45], and 3-D shape perception [46]. However,
while these functionalities are of importance to a human's ability to perceive data

visualizations, the application of this model to the problem of data visualization has
not been explored.

2.4.4 Models of Color Perception

While perhaps not as important as form perception for the visualization problems
addressed in this thesis work, the perception of color is also relevant to data visu-

alization design. The first stage of color processing by the cones of the retina can
be modeled using the CIEL*a*b* [47] perceptual color space. The Hering opponent-
process theory states that humans perceive color along white-black, red-green, and
blue-yellow color dimensions. The CIEL*a*b* color appearance model describes this
perceptual space using L*, a*, and b* coordinates, and defines the transformation to
this color space from the standardized RGB space (sRGB). In the CIEL*a*b* space,
the L* coordinate specifies the location of the color along the white-black dimension,
a* specifies along the red-green dimension, and b* along the blue-yellow dimension.

2.5 Conclusion

These models demonstrate that is possible to neurophysiologically model the percep-

tual mechanisms that play an important role in data visualizations. In this thesis
work, we build upon these models to create a framework for computationally evalu-
ating and optimizing data visualizations.

The work reviewed provides a powerful foundation for developing a computational
modeling approach to data visualization. We've reviewed the relationships between

25

data visualization and perception, between perception and neurophysiology, and be-
tween neurophysiology and computational modeling. These relationships transitively
form an indirect relationship between data visualization and computational model-
ing, and suggest computational modeling as a means of exploring the problem of
data visualization. The goal of this thesis work is to explore the problem of data
visualization in the context of this relationship with computational modeling.

26

CHAPTER 3

NEURAL MODELING OF FLOW RENDERING

EFFECTIVENESS

3.1 Introduction

Many techniques for 2D flow visualization have been developed and applied. These
include grids of little arrows, still the most common for many applications, equally
spaced streamlines [6] [5], and line integral convolution (LIC) [4]. But which is best
and why? Laidlaw et al. [1] showed that the "which is best" question can be answered
by means of user studies in which participants are asked to carry out tasks such as
tracing advection pathways or finding critical points in the flow field. (Note: an
advection pathway is the same as a streamline in a steady flow field.) Ware [17]
proposed that the "why" question may be answered through the application of recent
theories of the way contours in the environment are processed in the visual cortex of

the brain. But Ware only provided a descriptive sketch with minimal detail and no

formal expression. In the present chapter, we show, through a numerical model of

neural processing in the cortex, how the theory predicts which methods will be best

for an advection path tracing task.

Our basic rationale is as follows: tracing an advection pathway for a particle

dropped in a flow field is a perceptual task that can be carried out with the aid of
a visual representation of the flow. The task requires that an individual attempt

to trace a continuous contour from some designated starting point in the flow until

27

some terminating condition is realized. This terminating condition might be the edge

of the flow field or the crossing of some designated boundary. If we can produce a

neurologically plausible model of contour perception then this may be the basis of a

rigorous theory of flow visualization efficiency.

The mechanisms of contour perception have been studied by psychologists for

at least 80 years, starting with the Gestalt psychologists. With advances in our

knowledge of the physiology of the visual system, neurological theories of contour

perception have begun to develop. In the present chapter, we show that a model of

neural processing in the visual cortex can be used to predict which flow representation

methods will be better. We apply the model to a set of 2D flow visualization methods

that were previously studied by Laidlaw et al. [I]. This allows us to carry out a

qualitative comparison between the model and how humans actually performed. We

evaluated the model against human performance in an experiment in which humans

and the model performed the same task.

This chapter is organized as follows. First we describe the CortexSim 1.0 model

of visual perception used in this work. Next we show how the perceptual mechanisms

of the model differentially process various flow rendering methods. Following this, we

show how the model predicts different outcomes for an advection path tracing task

based on Laidlaw et al. 's prior work. Finally we discuss how this work relates to other

research that has applied perceptual modeling to data visualization and suggest other

uses of the general method.

3.2 The Computational Model - CortexSim 1.0

The CortexSim 1.0 model of the visual system processes images in three stages. The

first is an edge detection stage, which computes the visual edges in the scene. The

second stage, which performs edge enhancement, calculates the enhancing effect that

28

aligned edges has on their detection. The final streamline tracing stage models the
higher level cognitive process whereby a pathway is traced.

3.2.1 The Edge Detection Stage

CortexSim 1.0 computes visual edge detection using the Gabor model of Vl edge
detection described section 2.4.2 and defined by equation 2.3. The input to this

stage is a rasterized data visualization image. For parameters of the Gabor equation,
we used f = 0, causing the Gabor function to respond to lines in the center of the
receptive field. We used ? = 21 pixels and s = 7 pixels, producing a Gabor function
where the center maximum and the two neighboring minimum are significant, but

more distant maxima and minima become negligible. For 7 we used a value of 1,

resulting in a radially symmetric Gaussian envelope.

3.2.2 The Contour Enhancement Stage

The edge enhancement stage of the CortexSim 1.0 model is based on a neural model of
Vl by Li [40], which deals with the neural interactions of Vl responsible for producing
the perception of an extended contour from aligned visual edges. The detection of
visual edges is not part of Li's model, nor is the high-level perceptual process of
streamline tracing. The CortexSim 1.0 model combines these components with Li's
Vl contour enhancement model.

Following Li's model, CortexSim 1.0 uses a hexagonal array to represent the hyper-
column structure of Vl. Each hex contains a set of 12 orientation selective columns,

oriented in 15-degree increments, and each column contains an excitatory and in-
hibitory neuron, for a total of 24 neurons per hex. The signaling activity of neurons
are modeled as floating point values.

Lateral connections between nearby Vl neurons cause their activity to be either

29

Pyramidal
cell

responses /

T
(After intracortical interactions)

Inhibitory
inter-

neurons

r> \ o.

o CU
pairing

? er-

conrteetiort

Pyramidal
cells

(filtered through the CRFs)
I

Visual input
image sampled

by pyramid?
cells

Figure 3-1: Zhaoping's Model of Vl [48]. Neurons with aligned receptive fields mutu-

ally excite each other, and neurons with unaligned receptive fields inhibit each other.

enhanced or suppressed depending on the relative arrangement of their receptive

fields. These lateral connections cause neurons with aligned receptive fields to interact

such that they mutually excite each other. Similarly, neurons with unaligned receptive

fields interact such that they mutually inhibit each other (Figure 3-1).
These dynamics are described as follows. The excitation of the excitatory neuron

varies according to the equation:

30

—??? = -a???? - Y^ f(?%!/(2/?,0+?0) + Jo9x{xxe) + S Jie,jegx{Xje) + he + h
?? ?f?ß

(3.1)

The first term describes the voltage decay of the neuron's value back to zero with

a time constant of l/ax, for which we use a value of 1. The second term inhibits
edges of similar orientation mapping to the same receptive field. This is done by
receiving inputs from the inhibitory neurons of the same receptive field and similar
orientations. This behavior is produced by the F function, defined by:

?(0)

1 if 0 = 0

0.8 if |0| = 15°

0.7 if |ß| = 30°

0 otherwise

(3.2)

The activation function gy defines the signal produced by an inhibitory neuron as
a function of voltage potential. Similarly, the function gx defines the signal produced
by an excitatory neuron. It has the effect of clamping the excitatory signal to between
0 and 1. These functions are defined by:

0 if ? < 1

9?(?) = {x-1 ifl<x<2 (3.3)

1 if x>2

31

O if y < O

9y(y) = { 0.21 * y if 0 < î/ < 1.2 (3·4)
0.21* 1.2 + 2.5(2/ -1.2) if 1.2 < y

The third term is an excitatory neuron's feedback to itself. J0 defines the strength

of this feedback loop, for which we used a value of 0.8. The fourth term produces
the edge enhancement; it models the excitatory signal to neighboring neurons that
lie along the orientation direction in the manner depicted by figure 3-1. The function
J defines the strength of the excitatory connection to a nearby neuron, and is defined
by:

Jie,j0' (3.5)

0.126ß-^)2-2^)7-^90 if 0 < d < 10

and ß < p/2.69 or 0 < d < 10

and ß < p/1.1 and \??\ < p/5.9 and \?2\ > tt/5.9

0 otherwise

Where Q1 is the angle from the neuron's orientation to the line connecting the two
neurons, O2 is the angle from the neighboring neuron to this line, ß = 2|0i| + 2 *
sm(|0i + 02|), and d is the distance separating the neuron and its neighbor. Similarly,
the function W defines the strength of the inhibitory connections from nearby neurons,

and is defined by:

W,¿0¿e' = <

Oif d = 0or d> 10 or ß < p/11

or |?0| > p/3 or \??\ < p/11.999

0.14(1 - e-0-4(/3/¿)15)e-(AíVU/4)) otherwise

(3.6)

32

The fifth term is the input from the receptive field, calculated using the Gabor

function described in the previous section. The sixth term describes a background

signal that all excitatory neurons receive, and is set such that average neuron voltage

in the network remains constant. The inhibitory neurons evolve by:

-ViO = -ayyie - gx(xie) +]P Wi9^gx[XjO') + Ic (3-7)

Here the first term again acts to decay the value of the neuron back to zero.

The second term is input from the excitatory neuron in the pair. The third term

acts to inhibit edges that are of the same direction, but located orthogonally to the

edge. This prevents multiple parallel edges from being produced. The last term is a

background signal to all inhibitory neurons.

One of the main simplifications embodied in Li's model of contour enhancement is

that it fails to incorporate the way the mammalian visual systems scales with respect

to the fovea. Real neural architectures have much smaller receptive fields near the

fovea at the center of vision than at the edges of the visual field.

3.2.3 The Streamline Tracing Stage

Laidlaw et al. [1] compared the effectiveness of visualization techniques by presenting
test subjects with the task of estimating where a particle placed in the center of a flow
field would exit a circle. Six different flow field visualization methods were assessed

by comparing the difference between the actual exit numerically calculated and the

estimation of the exit by the human subjects. Laidlaw's experiment was carried out

on humans, but in our work we apply this evaluation technique to humans as well as

to our model of the human visual system and use a streamline tracing algorithm to

trace the path of the particle.

We use the term streamline tracing to describe the higher level process that must

33

exist for people to judge a streamline pathway. We call it streamline tracing because

the task requires the user to make a series of judgments, starting at the center,

whereby the path of a particle dropped in the center is integrated in a stepwise pattern

to the edge of the field. Though algorithms exist in the machine vision literature for

contour tracing [49], we found these to be inappropriate for use in this application.
Contour tracing algorithms are generally designed to trace out the boundary of a

visual shape, but a streamline tracing algorithm must also be able to produce a

streamline in a field of disconnected contours, such as is the case with the regular

arrows. The streamline to be traced does not necessarily follow a visible contour, but

instead be located between contours, and will sometimes pass through areas devoid of

visual elements. Thus we developed a specialized algorithm that is capable of tracing

streamlines that do not necessarily correspond to the boundary of any shape, but can

pass between visual contours.

Perception utilizes a combination of top-down and bottom-up processes. Bottom-

up processes are driven by information on the retina and are what is simulated by

Li's model [48]. Broadly speaking, top down processes reflect task demands and the
bottom up processes reflect environmental information. Top-down processes are much

more varied and are driven in the brain by activation from regions in the frontal and

temporal cortex that are known to be involved in the control of pattern identification

and attention [50]. All of the flow visualizations evaluated by Laidlaw et al. [1], except
for LIC [4], contain symbolic information regarding the direction of flow along the

contour elements (e.g., an arrowhead). In a perpetual/cognitive process this would be

regarded as a top-down influence. At present our model does not deal with symbolic

direction information, but it does do streamline tracing once set in the right general

direction. In regards to streamline tracing, the bottom-up information is processed

from the visual edges in the visualization, while the top-down information represents

34

the cognitive process of streamline pathway tracing.

Contour integration is modeled using the following iterative algorithm:

Algorithm 1 Contour Integration Algorithm
current-position <— center

current-direction 4— up

while current-position is inside circle do

neighborhood <— all grid hexes within two hexes from current-position
for all hex in neighborhood do

for all neuron in hex do

convert neuron-orientation to vector

scale vector by neuron-excitation

vectorsum <— vectorsum + vector

normalize vectorsum

current-position -f- current-position + vectorsum

current-direction 4— vectorsum

end for

end for

end while

return current-position

Algorithm 1 maintains a context that contains a current position and direction.
Initially, the position is the center, and the direction is set to upward. This context
models the higher-order, top-down influence on the algorithm that results from the
task requirements (tracing from the center dot) and the directionality which in our
experiment was set to be always in an upwardly trending direction.

Algorithm 1 traces the contour by repeatedly estimating the flow direction at

35

the current-position and moving the position a small distance (.5 hex radii) in that
direction. The now direction is calculated from the neural responses in the local

neighborhood of the current-position. The excitation of each neuron is used to gen-

erate a vector whose length is proportional to the strength of the response and whose

orientation is given by the receptive field orientation. Because receptive field orien-

tations are ambiguous as to direction (for any vector aligned with the receptive field,
its negative is similarly aligned). The algorithm chose the vector most closely corre-

sponding to the vector computed on the previous iteration. Vectors are computed for
all neurons in hypercolumns within a 2 hexes radius of the current position; they are

summed and normalized to generate the next current-direction.

Minor modifications changes were made from the method published by Pineo

and Ware [51]. Previously, the algorithm considered only a single hex cell at each
iteration of the algorithm. This causes undesirable behavior in some cases. For

example, on visualizations with arrowheads, the neural network can yield a very

strong edge orthogonal to the flow field positioned at the back of an arrowhead. If
the algorithm considered only the edges at this point, it can deviate excessively from
the correct path, despite the edges in nearby positions indicating the correct flow

direction. Averaging over a neighborhood is more robust and representative of human
visual processing, producing a stronger correlation with human performance.

3.3 Qualitative Evaluation

Four different flow visualization methods were used in our application of the com-

putational model to flow visualization. We used our own implementations of four
of the six flow visualization techniques used by Laidlaw et al. [I]. We investigated
a regular arrow grid because gridded arrows are still the most commonly used flow
visualization technique in practice. We also used grid of jittered arrows because of

36

the conjecture that jittering arrows improves perceptual aliasing problems [2]. We

included Line Integral Convolution (LIC) [4] because of its widespread advocation

by the visualization community [52] and head-to-tail aligned streaklets because of
Laidlaw et al. 's finding that aligned streaklets produces the most accurate perception

of advection pathway, and because of the theoretical arguments in support of this

method [17]. Note that Laidlaw used Turk and Banks' algorithm [6] to create aligned
arrows on equally spaced streamlines whereas we used Jobard and Lefer's [5] method

to achieve the same effect without an arrowhead [53].

Vl is known to have detectors at different scales. However, to make the problem

computationally tractable we chose only a single scale for the Vl, and we compensated

for this alteration by designing the data visualizations with elements scaled such that

they were effectively detected by the Gabor filter used by the model. The widths of

the arrows and streaklets were designed to be smaller than the central excitatory band

of the Gabor filter. This permits the edge to be detected even if not precisely centered

on the receptive field of the neuron. The spatial frequency of the LIC visualization

is defined by the texture over which the vector field is convoluted. Our texture was

created by generating a texture of random white noise of one-third the necessary

size and scaling it up via interpolation. The resulting spacial frequency of the LIC

visualization was of a scale that was effectively detected by the Gabor filters of the

model.

Samples of how the algorithm performed with the various visualization methods

are shown in Figures 3-2, 3-3, 3-4, and 3-5. For greater clarity we only show a section

of each image although the application of the algorithm to the whole image was

computed. In each example the original visualization is shown in panel B, in the

lower left. Panel A, in the top center, shows the effect of the Li algorithm on the

image following ten feedback iterations, at which point the neural excitation values

37

A»» VB

/ J T /
i ?* f ?

/

i 1I?»—-»» -*. (W Vit Vii

^ ?*. \?? ?? ?*? ^e •

/
1! ") 'i

<*V ?ß?
*"

ài ri» (Ii /il lit il· 4/ ·'# '<« f (1I /

ili il/ i*í ilf m té é Ai A
l

Itili *r if ?

/ / / > > / / / /
< 1

/ \ \ \ B/MM/
s s s- **¦ ** f f

t \ \s

IM I/
/ * ^ X \ \ \ \ r \ \ \ \ \

///MfMM f Y < t 1

M f M / -M M ,1, ,? <l, A

MM ^ I

S f f / / / / t t f / / f /

Figure 3-2: Regular Arrows

had stabilized. The small bars show how strongly each neuron responds, with redder

meaning stronger. Panel C, in the lower right, shows the path traced out by the
contour integration algorithm.

Regular Arrows

The regular arrow visualization (Figure 3-2) is produced by placing arrow glyphs with

uniform spacings. The magnitude of the vector field is indicated by the arrow length,

and the flow direction by the arrow head. The grid underlying the regular arrows

is apparent to humans, but the edge weights of the model show no obvious signs of

being negatively impacted. In fact, the regularity ensures that the arrows are well

38

>,Ji t W A¦ XUi

té i
>k IT

l \H
? \h\

\v.

\sr \ Wf i^v

f 1
/

1
I y, ¿/

-*>

/w

I -v#'
*r

o- *

/ *#
·#/ /.I

í, /í B/ / ?
*/ \

\ x f

i

/ / %

M ? /^ fr/ / y>»
S',*«V ^x•i< >

Figure 3-3: Jittered Arrows

spaced, thereby preventing any false edge responses produced by the interference of

multiple arrows in close proximity. We expect that non-tangential edge responses will

be produced by the arrowheads, leading to errors in the streamline advection tracing.

Jittered Arrows

The jittered arrow visualization (Figure 3-3) is derived from the regular arrows

method, but the arrows are displaced a small random distance from the regular lo-

cations. While composed of the same basic elements as the regular grid, we observe

instances where nearby arrows interfere with each other and produce edge responses

non-tangential to the flow direction. As with gridded arrows, the arrowheads excite

39

iti/ill
1

Aili-

If 1

>.QBJ
¥i

II
\\

I / I
Uli

ì
i ? I

M(I
ft» \ HtS «ß I

? ?? / t t
I i# 'Ii IN

B ! Ii
il

L

Wv t 1^ \ »/

1. I ?

I
i

B
m

1

Figure 3-4: Line Integral Convolution

neurons with orientation selectivity non-tangential to the flow. This can be seen in

Figure 3-6, where the back edge of the arrowhead causes orthogonal neural excitation

to each side of the upper arrow (Figure 3-6, blue circles). We observe excitation

resulting from the interference of two arrows at the bottom right (Figure 3-6, green

circle). These non-tangential responses are much stronger than those found in the

aligned streaklets visualization (Figure 3-7)

LIC

Line integral convolution (LIC, Figure 3-4) [4] images are formed by integrating a
texture of random noise along the flow direction. The neurons of the model are not

40

strongly excited by the LIC visualization. Elongated patches of black or white produce
the strongest responses, but these are still weak compared to other visualizations.
However, we note the lack of responses that are not tangential to the flow direction.
A major shortcoming of LIC is that it is completely ambiguous as to flow direction
which could be in either of two directions at any point. In Laidlaw et al. 's experiment

[1] this lead to very poor performance for LIC. However, because algorithm 1 did not
take symbolic direction into account for any of the visualization methods (which we
remedied with an upward bias as described in section 3.4.2), LIC could be expected
to perform better in our experiment than it would in real-world practice.

Aligned Streaklets

In the aligned streaklets visualization (Figure 3-5), streaklets are aligned such that
the head of one points to the tail of the next. This visualization produced strong
neural responses within the model. As Ware argued [17], theory predicts that head
to tail placement of arrows should produce good results. Perceptual theory suggests
that evenly spaced streamlines should provide the best stimulus for coherent chains
of excited neurons to develop.

3.4 Evaluation

By comparing the performance of humans to the model on the streamline advection
task, we can attempt to understand in what cases the model adequately describes
contour enhancement and extraction, and in what cases other perceptual mechanics

may need to be incorporated. In order to compare how well the cortical model
predicted human performance, we conducted an experiment where human subjects
and the model completed the same task with the same set of flow representations.

We chose Laidlaw's streamline advection task [I].

41

A
ti

II
I

i\
f f I

\ \
? i
i \V

% i \
t

I
? /

f
I t**

/

mem

S
N

BSI . 1/ I ? \ \ \
f/ \

\
/\ I

\ \
\\ S\ 1 \I <I I / \\¦> S

/S I
s \-" /

Figure 3-5: Aligned Streaklets

3.4.1 Participants

Six human subjects were used in this experiment. They were a mix of volunteers and

paid undergraduate students. There were four males and two females.

3.4.2 Vector Field Generation

Artificial flow fields were generated by interpolating a regular 8x8 grid of vectors.

Each vector is a pseudo-randomly generated, normalized vector with a positive y

component. This produced a vector field with an upward trend. This trend is im-

portant for ensuring that all streamline paths eventually exit the circle. To vary the

42

/
/·

Figure 3-6: Closeup of neural response to arrowheads. The black dots indicate the

center of hypercolumns, red bars indicate the excitation of the orientation sensitive

columns within the hypercolumn.

overall trending direction of the vector field, a pseudorandom angle was produced

between 45°, and all vectors were rotated by this value. The resulting vector fields

thus trended in the upper 90° quadrant. This was motivated by the fact that the LIC

method produces a visualization that is ambiguous; two possible flow directions may

be inferred from any standard LIC image. In the experiment, we asked the subject

to find pathways that trended upward. Likewise, the algorithm was also set to look

for upwardly trending solutions.

43

Figure 3-7: Closeup of neural response to aligned streaklets

3.4.3 Instructions

Subjects were asked to click where they felt that a particle deposited in the middle
of the circle would exit the circle. Due to the directional ambiguity of the LIC

visualization, the subjects were informed that the general trend of the now fields
would always be upward.

3.4.4 Procedure

The subjects were presented with each flow field visualization on a 15.1 inch, 133dpi
LCD screen. The diameter of the circle was 4.5 inches and the viewing distance

44

was approximately 57 cm. We evaluated four different visualization methods: regular
arrows, jittered arrows, LIC, and aligned arrows. The test subjects were given as long
as they needed to select with a mouse the point where they estimated that the particle
in the center would exit the circle. Each test subject was first allowed to practice the

task to minimize learning effects. Following this, they participated in 5 experiment
blocks. Each block was constructed by generating 10 random flow fields and rendering

them using the four visualization methods. The resulting 40 visualizations were then
presented to the test subject in a random order. Following each block, the subjects
were allowed to take a short break to minimize fatigue effects. Each test subject

performed 200 tests, for a total of 1200 tests for the entire the experiment.

3.4.5 Computer Trials

The computer carried out exactly the same set of trials with exactly the same stimulus
pattern generation algorithm. Raster images generated by the same four visualization
methods were used as inputs.

3.5 Results

Figures 3-8 and 3-9 show histograms of the errors for the trials of the human par-
ticipants and computer model, respectively. In both cases, most of the errors are
less than three degrees. Because the error data were highly skewed we applied a log
transform to the raw data before further analysis. This transform produced a roughly

normal distribution (Figure 3-10), allowing the use of analysis of variance techniques.
The geometric means for aggregated human performance and model performance are
summarized in Figure 3-11. We conducted a two-way analysis of variance (ANOVA)
with the two factors being aggregate human data and model output. ANOVA analysis
revealed that the model was significantly more accurate than the human participants

45

Human Performance

DUC
¦ Regular Arrows
D Jobard & Lefer
O Jittered Arrows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Error(degrees)

Figure 3-8: Histogram showing distribution of errors for humans

[F(1, 2966) = 128.22, ? < 0.001]. The mean error of the CortexSim 1.0 model was
.92 degrees, outperforming the human average of 1.5 degrees. There was no inter-
action between the visualization type and whether the subject was the human or

model. There was also a highly significant main effect for the type of visualization
[F(3,2966) = 23.43, ? < 0.001]. A Tukey HSD test indicated that the difference
between LIC and aligned streaklets was not significant. However, there were signif-
icant differences between all other visualizations. A linear fit of the error over the

block number yielded that the block number was not significant on the human trials

[F(1, 1125) = 2.29, ? = .13], indicating that fatigue and learning effects were not
significant.

(?

?

45

40

35

_ 30
LLJ
*- 25
o

£ 20
If 15
?
°- 10

. LU i.rlHl.JrII ro ?, nil, Urti,!

46

Model Performance

(?
?-
?

C
CU
U
i—

?
CL

60

50

40

30

20

10

0 dfljfl

? Lie

B Regular Arrows
DJobard&Lefer
? Jittered Arrows

ljHM.fllH|lllTl..w™, —?» ? IlilltamiHOI^ailWeBi.,.- i^WiiiiiII»! imm..,jm,^|ii„i W|^ in ? Wi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Error(degrees)

Figure 3-9: Histogram showing distribution of errors for the computer model

Log(error)

ure 3-10: Histogram of the log transformed data with a normal distribution overlay

47

s. 1.5

F -?

? Human

Mode

LIC J&L Reg
Visualization Type

Figure 3-11: Mean errors for the four visualization methods for human participants
and the model. Statistically distinguishable groups, with their performance rank or-
dering, are indicated with orange boxes.

3.6 Discussion and Conclusion

The qualitative agreement between the results for human observers and the Vl-based
model provides strong support of the perceptual theory outlined in the introduction.
The aligned arrows style of visualization produced clear chains of mutually reinforcing
neurons along the flow path in the representation, making the flow pathway easy to
trace as predicted by theory.

LIC produced results as good as the equally spaced streamlines, which lends sup-
port to its popularity within the visualization community. While LIC did not produce
as much neuron excitation as the aligned arrows method, this was offset by the lack
of non-tangential edge responses produced by glyph-based visualizations. However,
the relatively strong performance observed with the LIC visualization was achieved

48

only because our evaluation method ignored the directional ambiguity inherent in this
method by constraining flow to the positive y direction. Laidlaw et al. [1] found LIC
method to be the worst and it is probable that had we allowed flow in any direction,

up or down, human observers would have found pathways with close to 180 degrees
of error half of the time.

The performance of both the CortexSim 1.0 model and the human test subjects
is likely to be highly dependent on the underlying vector field used. As described
in section 3.4.2, the vector field was generated by interpolating between an 8x8 grid

of random, but generally upward pointing vectors. Consequently, when adjacent
vectors in this grid point somewhat toward each other, the vector field forms an area of
convergence. Convergence areas tend to funnel neighboring streamline paths together,
reducing error in streamline tracing (Figure 3-2, the streamline path advects through
a convergence area). Overall accuracies of both the model and human subjects may
be higher than might be observed using a vector field without such convergence zones.

The computer algorithm achieved a lower mean error than human observers. The
poorer performance of humans might be attributable to saccadic eye movements used
to trace a path, whereas the computer did not. For the patterns we used, it is likely
that the observers fixated on several successive parts of a path, and errors may have

accumulated as they resumed a trace from a previous fixation. Nevertheless, we feel
that the algorithm could easily be adjusted to make it give results closer to human
subjects. A more sophisticated approach would be to simulate eye fixations.

The model we applied is a considerable simplification over what actually occurs

in human visual processing. It uses a simple model of orientation sensitive neurons,

and fails to include cortical magnification [2] , the processing of the center of vision in
higher detail than the periphery. Real cortical receptive fields are not arranged in a
rigid hexagonal grid as they are in the model. Furthermore, the neurons of Vl respond

49

to many spatial frequencies [54], however our model only uses one in its present form.
In addition, besides the so-called simple cells, other neurons in Vl and V2 called
complex and hypercomplex cells also have important functions [55]. For example,
end-stopped cells respond best to a contour that terminates in the receptive field and
understanding these may be important in showing how the direction of flow along
a contour can be unambiguously shown. Moreover, visual information is processed
through several stages following the primary cortex, including V2, V4 and the IT
cortex. Each of these areas appears to abstract more complex, less localized patterns.

Researchers are far from having sufficient information to model the operations of these

stages, all of which may have a role in tracing contours. Nevertheless, the results are
compelling and there are advantages in having a relatively simple model. We plan to
add more complex functions in future versions of the model.

The problem of modeling perception at a higher more cognitive level is even more
challenging. It is likely that humans adopt different perceptual strategies depending
on the visualization. For example, with a regular arrow grid people are likely to rely

less on the contour information available in the display, which is degraded due to

perceptual aliasing [2], and more on higher-level cognitive strategies, such as looking
ahead from a particular arrow, mentally interpolating the flow direction at the look-
ahead point and repeating to the edge of the field. Conversely, in the case of aligned
streaklets, a simpler contour following finding strategy will be more successful.

The success of even a quite simple artificial Vl model in predicting human perfor-
mance suggests that our result could have practical as well as theoretical importance.
In the following chapter, we describe using a similar model to provide a fitness func-
tion for a hill-climbing optimization process with the goal of automatically developing
perceptually good visualizations.

50

CHAPTER 4

FLOW VISUALIZATION OPTIMIZATION VIA

COMPUTATIONAL MODELING OF PERCEPTION

4.1 Introduction

Data visualization researchers are largely concerned with algorithms that transform

data into a graphical form, but when it comes to deciding on the best form they

predominantly resort to their own aesthetic judgment. As we have noted in section

1.1, seminal flow visualization papers that introduced widely used flow visualization

methods, such those of Cabrai and Leedom[4], Jobard and Lefer[5], Turk and Banks
[6], and Wijk [7], give no indication of using perceptual theory in their development.

More recently, Laidlaw et al. [1] carried out a psychophysical study to evaluate a
number of flow visualization methods, but this too was largely atheoretical. Their

study showed which methods were superior for a defined set of tasks, but said little

about the reasons for the superiority. There is clearly a gap between perceptual

theory and its application to data visualization, which is likely due to the difficulty in

applying the theory, provided in a descriptive form, to data visualization algorithm

design. This is despite the considerable body of scientific perceptual theory that can

be applied to the problem [2].

The effectiveness of data visualizations can be largely attributed to the powerful

processing mechanisms of human vision, with the most effective visualizations map-

ping data to perceptual mechanisms in such a way that the important patterns are

51

easily perceived [2]. For example, the human visual system contains a perceptual
mechanism for detecting visual contours [3]. This mechanism causes the perception

of nearby, mutually-aligned edges to be enhanced, while the perception of nearby
edges that are not aligned are inhibited (Figure 2-2). Successful flow visualizations
take advantage of this perceptual mechanism by containing contours tangential to
the flow field. We have argued, based on perceptual theory, that head-to-tail aligned

contours should be better for the advection pathway perception tasks [56] [51]. Nev-
ertheless, although perceptual theory can provide us with intuitions about the best
way of conveying certain kinds of data, perceptual theory is descriptive in nature,
and this limits its usefulness in data visualization design [57].

We can say the same for issues such as the saliency of visual symbols used in
displays. Various researchers have argued that we should apply the theory of "pre-
attentive" processing to data visualization [15] [56], but exactly how this theory should
be applied is only given in vague descriptive terms. Thus the designer has no way of
knowing how easily a particular symbol in a particular context can be seen.

In the present chapter, we present the case that a computational model of the
human visual system can provide a necessary bridge between perceptual theory and its
application in data visualization. We use the problem of 2D steady flow visualization
as a motivating example throughout. In the previous chapter we showed how a
computational model of contour integration in the primary visual cortex could be
used to evaluate 2D flow visualization methods. In the present chapter, we show how

a much more powerful computational model, one that uses high performance GPU
processors, can be used in a perceptual optimization process.

52

4.1.1 High-level Perception

A human's understanding of data visualizations does not occur in the early visual

system. The visual patterns detected in the early processing stages are further pro-
cessed by higher-level areas of cognition enabling viewers to perform cognitive tasks
with the visualization.

In perceptual theory, top-down influences refer to the way that high-level cognitive
processes, such as the task at hand, affect the low-level processing that occurs in
areas such as Vl. Unfortunately, these top-down processes are not understood in

sufficient detail to be amenable to the kind of modeling that can be done for low

level processing, and in any case are highly variable, depending on a large number of
possible task requirements.

Nevertheless, we can make the reasonable assumption that there is a cognitive

mapping from low-level perception to high-level understanding, implying that erro-
neous low-level perception will have a degrading effect on high-level understanding.
This mapping depends on top-down factors, such as the context, task, and low-level
factors such as the detection of orientation or more salient features.

In a flow visualization, there is a natural mapping between contour orientation

and flow direction. For example, a horizontal edge is readily understood as a left-
right flow direction. The interpretation of color is more arbitrary, it depends on
factors such as common usage or the comparison to a provided color key. In our data

visualization evaluation, we use the natural mapping for orientation, and chose the

arbitrary mapping for color with blue mapping to low speed and yellow mapping to
high speed.

An effective visualization, in the context of this work, is one where the important

patterns in the data visualization are preserved and even enhanced when processed
through the low- level mechanisms of the human visual system (the retina and Vl),

53

making these patterns amenable to accurate interpretation by higher-level, more cog-
nitive stages of the visual system. Such patterns can represent the streamlines in a
flow visualization, symbols on a map, or the lines used to connect nodes in node-link

diagrams.

4.2 The Computational Model - CortexSim 2.0

The design of the CortexSim 2.0 computational model used in this chapter is inspired
by the models by Li [48] and Grossberg [58] [44] introduced in sections 2.4.3 and 2.4.3,
respectively. The CortexSim 2.0 uses 12 orientation columns per hypercolumn like
the Li model, but uses a regular layout like the Grossberg model. We also implement

a difference-of-Gaussians retinal response and a Vl Gabor response [39], similar to
the Grossberg model. Most importantly, while the Li and Grossberg models run until
feedback produces a steady state, in contrast, our feedback consists of a single lateral
excitation stage. The reasons for this are twofold. First, to model perception in the
moments after viewing, we are interested in the feedforward activity before steady-
state activity is reached. Second, calculating the neural activity until steady state
is reached is computationally time consuming, and is prohibitive in our optimization

approach where evaluations must be calculated quickly.

CortexSim 2.0 is based on the known physiology of the human visual system and

seeks to produce the behavior found by psychophysical researchers and expressed
by perceptual theory. We model the stages of human vision using a multi-layered,
partially connected, artificial neural network (See figure 4-1). The layers of the model
consists of a 2D array of either neurons (in the retina), or hypercolumns (in Vl).

There exists substantial variation in the physiological measurements of the human

visual system, between studies and even between individuals of a single study. This
variation can often be as large as a factor of two or more. Thus, model parameters de-

54

rived from physiological measurements are approximated, often to the nearest power
of two for computational reasons.

The human visual system is known to process scenes at multiple scales [54] [59].
While it is likely to process at a continuum of scales, our model approximates this by
processing the visual image at three resolution scales, using powers of two for reasons
of computational efficiency and to minimize scaling aliasing. The finest scale uses a
512x512 array, with each element separated in visual space by .008 degrees of visual
space, which corresponds roughly to the .006 degrees subtended by a retinal cone. The
two subsequent scales reduce resolution by factors of two. Thus, the medium scale
uses a 256x256 array and the coarsest scale uses a 128x128 array, which correspond
to .016 and .032 degrees per element, respectively.

Biological neurons operate by transmitting and receiving voltage spikes, with ac-
tive neurons being considered those that are transmitting voltage spikes most rapidly.
We model this behavior with an overall spiking rate. For example, a rate of one corre-

sponds to a neuron transmitting voltage spikes at its maximum rate. A neuron with
a rate of zero corresponds to a biological neuron at a minimal, baseline firing rate.
Negative rates are interpreted as a response to an inverse pattern. For example, if a
neuron that is selective for a white-center, black surround responds negatively, this

is interpreted as a response to a black-center, white surround pattern.

Neurons send their signals to other nearby neurons within the layer, as well as to
neurons in other layers. The connection strengths between neurons are specified by
16x16 kernel arrays in our model.

4.2.1 The Image

The visualization is rendered to a 512x512 sRGB video buffer array. The values in

this array indicate the light illuminating the cone receptors of the retina. We take

55

Image Retina § V1

<k *X

t + ?f'-JT \
? \ Sl

(1

I&/ /

V
V «*C*

* %%<

Figure 4-1: The neural network architecture. The visual image is first processed at
each position by the center surround retinal neurons, then in the second stage by the

edge selective neurons in the primary visual cortex (Vl).

the red, green, and blue values to correspond to the intensity of light at the three

wavelengths to which retinal cones are sensitive. When this array is displayed to a

133dpi monitor, the visual angle of one array element is approximately equal to one

foveal cone when viewed at 140cm. One degree of angle corresponds to 128 pixel

elements, or .008 degrees/pixel.

4.2.2 The Retina

The first neural layer of the model, the retinal layer, models the perceptual processing

of the visual scene done by the retina. The opponent-process mechanism produced

by the bipolar cells of the retina is modeled with a conversion to L*a*b* perceptual

56

coordinates, according to the CIEL*a*b* transformation [47]. The black-white lumi-
nance dimension, the red-green chromatic dimension, and the yellow-blue chromatic

dimension are referred to in the model by IL*, Ia*, and Ib*, respectively.
The retina also computes a center-surround field (Figure 2-6) by combining the

center signal of bipolar cells with a surround signal from horizontal and amacrine cells.

This center-surround signal is output by the retinal ganglion cells of the retina to sub-

sequent stages of the visual system. The center surround receptive field output of the

retinal ganglion cells is defined in the model as a Difference-of-Gaussians (Equation
2.1, Figure 2-6). The black-white, red-green, and yellow-blue center-surround retinal

responses are defined as:

^Zj = / ;?0<3?,?,s?,s2\? *)j+x,j+y (4-1)
?,y

^iJ = / J D°GXiy,gu(72(Ia*)i+xj+y (4.2)
x,y

Ri,j = / jD0Gx,y,gu<j2{I *)i+xj+y (4.3)
x,y

The values of s? and s2 specify the size of the center and the surround fields.

We use values of 1 and 2 for these parameters, respectively, to produce a center-

surround receptive field like the one shown in figure 2-6. For the values of CK1 and a2

we use 1 and .5, yielding a receptive field with center-surround characteristics, but

that produces a positive response to a uniform field.

4.2.3 Vl Edge Detection

Hypercolumns within the Vl component of the model exhibit both edge detection

and edge enhancement behavior. As in Li's model [48], we use 12 columns per hy-

57

Figure 4-2: The Vl Gabor kernels [39] used by the model. Neurons in light areas

produce an excitatory effect, neurons in dark areas produce an inhibitory effect.

percolumn, responding to orientations varying by 15° increments (Figure 4-2). Edge
detection results from the Gabor pattern [39] of synaptic connections from the retina,
defined by:

Vlid,e = I S GaborXty!eR^xbd+y\ (4.4)
?,y

The black-white luminance signal, which is responsible for form perception, is

used here. We use a value of 7 for ? (Equation 2.3), which gives a spatial frequency
of 8.9 cycles/degree for our medium scale resolution, roughly corresponding to the
parafoveal processing in the 2° to 5° eccentricity range found by Foster [33]. At
the high and low resolution scales this corresponds to 17.9 and 4.4 cycles/degree,
respectively. We use s = 2 to define the Gaussian envelope, which was chosen to

58

encapsulate a single cycle of the sinusoid. The absolute value causes the column to

respond positively to both light-centered and dark-centered edges, x' and y' are found

by rotating ? and y by ? degrees:

W, y')
cos a sin f

— sin ? cos I
(4.5)

4.2.4 Vl Edge Enhancement

Figure 4-3: The Vl edge enhancement kernels used by the model. Light areas produce

an excitatory effect, dark areas produce an inhibitory effect.

Columns of Vl exhibit enhanced activity when they correspond to an edge that

lies along a continuous contour. The pattern of synaptic connections (Figure 4-3)

used in the model to produce this behavior is defined by:

59

?,?,ß = Gx^(X12 - y12) (4.6)

Yielding the enhanced Vl column activity:

VKj,e = Z^ E'x,y,evli+x,j+yß (4.7)
?,?,?

4.2.5 GPU Model Implementation

The model was implemented in nVidia's CUDA GPU programming environment (Ap-

pendix A), and run on an nVidia GTX470 graphics processor. The highly parallelliz-

able nature of the neural network model allowed for efficient use of the GPU parallel

processing capabilities, yielding performance far beyond what would be possible on

conventional CPU processors. The model required approximately 50ms to run, and

consumed nearly 300MB of graphics memory. The neuron layers were stored in GPU

memory as arrays of single precision floating point numbers, and operated upon by

graphics kernels.

4.3 Approach to Optimization

Visualizations encode information with visual variables that correspond to the feature

dimensions detected by Vl. For example, flow visualizations use the orientation visual

variable to express vector flow orientation. Our work begins with the premise that, in

effective visualizations, the visual processing of those visual variables closely matches

the data being expressed. In visualization where visual variables are interpreted

as information, it is clearly desirable that those visual variables are processed in

a manner that accurately reflects the data that is being conveyed. If a viewer's

processing of orientation within a flow visualization does not correctly correspond

60

to the flow direction, then the viewer's judgment of the flow direction will likely be

impaired.

4.3.1 Graphical Primitives

A key issue is the choice of the graphical primitives used in the optimization and

their parameterization. For example, we might choose to use a grid of arrows and

simply optimize the line with and arrow density. However, because arrow grids are

known to be poor [1], even an optimized solution is unlikely to be acceptable. A

more sophisticated primitive can take into account prior work in data visualization,

suggesting that a particular style of presentation may be more effective. For example,

curved streaks that are tangential to the flow pattern and that have more distinct

heads than tails are suggested by a number of sources [53] [17].

The parameterization determines the space of visualizations that will be searched

by the optimization algorithm, and it is thus important that it be chosen carefully. An

excessively liberal parameterization will result in a large search space, yet an overly

restrictive parameterization will cause desirable solutions to fall outside the search

space.

To better understand these issues, we chose to investigate our optimization ap-

proach with two kinds of primitives: one using streaklets, and a second using black

or white pixels.

Streaklet Primitives

In the first parameterization, we use a set of graphical streaklet primitives, with each

streaklet defined by a center point, a length, and a color. The path of the streaklet

is found by advecting from the center point a distance of half the length in both the

upstream and downstream directions. Thus we drastically reduce the search space

61

at the cost of not exploring visualizations with graphical elements non-tangential to

the flow direction. The color of the streaklets can be used to express speed using an

arbitrary color map. In our parameterization we use blue to correspond to low speeds

and yellow to correspond to high speeds. In addition, the width of streaklets can be

used to express speed with one parameter to represent the gain factor.

Pixel Primitives

In the second parameterization, we define the visualization with a 512x512 array

of black and white pixels. This enlarges the search space considerably, allowing

the algorithm to search dense flow visualization techniques. We chose to limit the

parameterization to black and white pixels, rather than greyscale or color, to limit

the search space. Even when limited to black and white pixels, the space has a size
of 2512 visualizations.

4.3.2 The Hill Climbing Algorithm

The visualization optimization is based on the hill climbing search technique (Figure

4-4, Algorithm 2). The algorithm begins with an arbitrary and potentially poor

solution. For the streaklet-based parameterization we chose to start with a blank

visualization, and for the pixel-based parameterization we chose to start with random

white noise. This choice primarily affected the convergence time of the algorithm,

and had little effect on the resulting visualization. The visualization is repeatedly

modified slightly, and the modifications are kept only if they result in an improved

effectiveness. In applying the algorithm to flow visualization optimization using the

streaklet primitives, we modify the flow visualization by randomly adding or removing

a streaklet, or by slightly modifying the parameters of an existing streaklet. For the

visualization using pixel primitives, we invert a random pixel, changing it from white

62

Modify Visualization

Evaluate

Revert Modification

?
Improved?

Eva uation

Satisfactory?

I Yes
Done

Visualization

Perceptual Model

Interpretation

Figure 4-4: The data visualization optimization block diagram, showing the hillclimb-

ing algorithm (top) and the evaluation function (bottom).

to black, or vice versa. The process of modifying and keeping improvements continues

until some satisfactory solution is reached. While more efficient search strategies may
exist, hill climbing's simplicity makes it appropriate for an initial search technique.

63

Algorithm 2 Hill Climbing Visualization Optimization Algorithm
Visualization <— Blank or Random

while Visualization is not satisfactory do

Randomly add, remove, or modify an element of Visualization

Effectiveness <— effectiveness of Visualization (Algorithm 2)
if Effectiveness > BestEffectiveness then

BestEffectiveness <— Effectiveness
else

Revert changes to Visualization
end if

end while

4.3.3 Evaluation Metric

The evaluation metric is a measure of how accurately the data visualization conveys

data to the viewer. This is calculated by interpreting the neural activity of the

model as perceived data, and comparing the perceived data to the data that we

are attempting to convey. For example, flow visualizations convey flow direction by

using perceptual edges tangential to the flow direction. However, it may be possible

for non-tangential edges to be detected in the visualization. This can result, for

instance, from the shapes of arrowheads, or by the positioning of nearby streaklets

such that the arrowheads are aligned perpendicularly to the flow. By comparing the

vector data with the predicted perception of edges, we can estimate how accurately

the data is being perceived by the viewer. The overall evaluation is calculated as:

Eval = aOrientationEval + (1 — a)SpeedEval (4.8)

The value of a specifies the relative weight of the perception of orientation and speed

in the final evaluation. By setting the value of a to one, the evaluation of speed per-

64

ception can be optionally ignored. Likewise, the evaluation of orientation perception

can be ignored by setting a to zero. The OrientationEval and SpeedEval terms are
described below.

4.3.4 Orientation perception

To allow the analysis of orientation selective neurons in our model, we translate the

neural activity into a vector representation. This allows the overall orientation of

a set of neurons to be calculated via a vector sum. An orientation can be natu-

rally represented as a vector aligned with the orientation, and is uniquely defined

if constrained to the positive y direction. However, this creates complications when

performing analyses that incorporate averages or sums of orientations because such

calculations result in a strong bias in the positive y direction. Instead, we translate to

a vector with double the angle between the orientation angle and the positive x-axis,

producing angles that range from 0 to 2p. The orientation vector is calculated as:

From the activation of the edge sensitive neurons in the model, we predict the

perception of orientation, O' , produced by the data visualization. The predicted

orientation at a point in visual space is calculated from the activity of edge selective

neurons with receptive fields near the point being predicted. Nearby neural activities

are converted to vectors in orientation space and summed, weighted by their distance

to the visual point being predicted.

O'ijfi ~ / j Gx,yOj+x,j+y,e (4-10)
x,yfi

65

yi;J.ecos(2ö)
Vl^.ösin(20)

(4.9)

To evaluate the predicted perceived orientation at a point in the visualization, we

calculate the projection of the predicted orientation perception vector onto a normal-

ized orientation vector calculated from the data. This yields values that are largest

when the predicted and actual orientations are closely aligned, and smallest when

unaligned. The overall orientation evaluation is found by summing the projection

over all points at each of the model's three scales.

OrientationEval = ?]?]0'^· 0^ iJ (4.11)
s ij ' \Actualij\

4.3.5 Speed Perception

Data visualizations frequently use color to encode a data variable (e.g., [12]). In now
visualizations this is typically flow speed. In such cases, the perception of speed may

be included by using a non-zero value of a in equation 4.8. Perceived colors must be

interpreted as data values with the aid of some mapping from colors to values. The

perceived speed is calculated from the blue-yellow chromatic signal produced by the

retina, Rv~b. A Gaussian blur is applied to model the loss of detail relative to the
black-white signal.

We use a linear mapping, with saturation, for the interpretation from colors to

speed:

Sij = min(max(a J^ Gx,yR^bxd+y + ß, 0), 1) (4.12)
?,y

where a and ß define the mapping between the colors and the data values. As such,

these values are dependent on the data set used. To evaluate the speed, we sum the

absolute difference between the predicted perceived speed and the actual speed over
the three model scales:

66

SpeedEval = - SS ^' ~ \Ac^uakj 1 1 (4·13)
This produces evaluations that are largest when the predicted speed closely matches

the actual speed, and smallest when there is a large difference.

4.4 Results

Figure 4-5 shows a streaklet-based visualization optimized by the algorithm for orien-
tation perception (a = 1, thus ignoring speed evaluation). The data was created from
a 5x5 uniform grid of randomly oriented, normalized vectors. First, we notice that
the streaklets are spaced out, much like the Jobard h Lefer algorithm (Figure 4-6).
It has been conjectured that the effectiveness of aligning streaklets in a head-to-tail
fashion, as in the Jobard L· Lefer algorithm, is a result of the early perceptual process-
ing of the visual system. To find such streaklet alignment produced as an emergent
property of our perceptual optimization method lends support to this conjecture.

The head-to-tail alignment may may result from the inhibition of perception of
parallel, unaligned edges in Vl. In addition, as the spacing between streaklets is
reduced, there is an increased likelihood of a edge non-tangential to the flow being
perceived between nearby streaklets. Thus, a balance is reached between these factors
degrading the perception of direction when streaklets are spaced too closely, and the
lack of orientation information in between streaklets when spaced too sparsely.

However, it's worth emphasizing that unlike the Jobard L· Lefer algorithm, this
spacing is not explicitly specified. The spacing emerges because it is found by the
algorithm to be perceptually optimal. One consequence of this is that the spacing is
not a strict rule, and is not produced in some areas. We see this in the figure in areas
where the flow field diverges or converges. The spacing of the streaklets that develop

67

?^??±
-^«^

Figure 4-5: (Left) Flow visualization optimized by our algorithm using a streaklet
parameterization, note the emergent head to tail alignment.

Figure 4-6: (Right) A flow visualization created by the Jobard & Lefer algorithm
(From Jobard & Lefer [5J).

elsewhere in the visualization do not emerge in these areas, producing a clear display

these converging and diverging areas.

Figures 4-7 and 4-8 demonstrate the algorithm on atmospheric flow data from
the U.S. Navy Operational Global Ocean Model (NCOM). The visualized region
shows the Jet Stream of the northern hemisphere. Figure 4-7 shows a visualization

using black and white streaklets optimized by the algorithm for orientation perception
by using a = 1. Figure 4-8 shows a visualization using color streaklets, optimized
for both orientation and speed perception using a = .5. In this case, the blue-
yellow perceptual dimension was used to represent flow speed, with the resulting
visualization clearly showing the strong jet stream current flowing from left to right
across the visualized area.

Using the pixel-based parameterization (Figure 4-9), we see convergence to a vi-

68

^WWMM) ^»•v-VX>

X/—

N>c 9|\?C^ SZ \

-m \\
sr< Y.X S2^N ^S^^~ \J ¦^;S VK

G?^??¦?^iitâKS,.4zr.^s

W¡?^&- 1^^yMii<W> *·¦«.

?2i->/j'ír:»—?:

v^r^K<\ùs~~

Figure 4-7: (Left) Jet stream visualization produced by our technique by optimizing

the placement of black and white streaklets.

Figure 4-8: (Right) Jet stream visualization produced by optimizing a color streaklets
with a = .5.

sualization solution that more closely resembles those generated by the line integral

convolution (LIC) technique of Cabrai and Ledom [4] (Figure 4-10). We do, however,
observe important differences. There is a clear difference in the spatial frequency of

the texture in the direction perpendicular to the flow direction. The frequency of the

LIC visualization results from the underlying noise texture being convolved. In Figure

4-10, the underlying texture is a white noise, which results in frequencies as low as .5

cycles/pixel. This frequency can be adjusted by altering the convolved texture, but

such textures are typically not chosen based on the perceptual properties of vision.

The perpendicular wavelength generated by our technique is approximately 7 pixels,

produced from our choice of ? for the Gabor kernels of Vl.

One notable limitation of our technique, with respect to LIC, is the ability to

visualize areas of high curvature. In such areas, such as indicated by the red box

69

I
i

Mi

?

m
mK¡»B a

1

KWi
ili

SMUSSKS

Figure 4-9: (Left) The flow visualization produced by our technique using a pixel
parameterization. The boxed area indicates discontinuities in the visualization.

Figure 4-10: (Right) A flow visualization created by the Line Integral Convolution
method (From Cabrai & Ledom [J1.]).

in Figure 4-9 with a closeup shown in Figure 4.4, we see the orderly arrangement of
the visualization break down and produce sharp discontinuities. We also observe the

effects of the large search space resulting from the pixel-based parameterization. In
particular, the pixel-based parameterization did not produce extended contours or the
spacing observed from the streaklet parameterization. This is due to the large number
of pixels that must be inverted to move a pixel-based contour to a more optimal
position. Moving a contour requires many steps, and the hill-climbing optimization

requires that each intermediate visualization have an improved evaluation.

We found that for the streaklet-based parameterization the search required several

minutes to converge on a satisfactory visualization, using an nVidia GTX470 graphics
card. The pixel-based parameterization required over 24 hours to obtain the result
shown in figure 4-9.

70

Figure 4-11: A closeup of the boxed area in figure 4-9 showing the discontinuities

produced in areas of high curvature.

4.5 Discussion

In the introduction, we proposed that a computational model of human vision could

be valuable for two reasons: first, it could help bridge the gap between perceptual

theory and design guidelines for visualizations; second, it could be useful as a tool to

assist in the production of visualizations.

With respect to perceptual theory, we find it significant that the optimization

algorithm converged upon visualizations similar to the popular Jobard h Lefer algo-

rithm [5]. This supports the conjecture by Ware [17] that head-to-tail alignment of
display elements effective because it better stimulates the contour finding mechanisms

of the primary visual cortex.

We also assert that we have provided some support for the claim that an artificial

visual system can support design activities, although we recognize that the examples

provided here are not yet fully realized solutions, and we do not claim that they

are better than visualizations produced by skilled designers. Obviously, the solutions

that were produced were highly constrained by the graphical primitives we used.

71

This suggests that the key to successful application of what lies in the adoption of
primitives that reduce the dimensionality of the search space, but not so much that
the best solutions are excluded.

Ultimately, an artificial visual system may be used as a design aid. The role of the
designer might be to set broad design parameters, choose the primitives, and specify
the tasks. The computational system can optimize and evaluate solutions. Such

a system could provide rapid feedback to a designer as he or she works to create a
visualization. There is also potential for automatic optimizations to find solutions not

considered by designers. For instance, overriding the streaklet spacing in areas of high
convergence or divergence seems obvious in retrospect, but it was not an expected
result. Other uses for an artificial vision approach are quality control for complex

displays. It may be possible to use our method to test a large set of symbols against

a large set of backgrounds and, by using our evaluation technique, select symbols that
are visually compatible. This is not typically done at present because of the difficulty
of the task.

Although we believe that using a low-level model can help in ensuring that a
design meets goals relating to low-level properties, such as salience and the perception

of orientation, the process cannot be fully automatic. It seems inevitable that some

element of design must go into the selection of primitives used. These high-level
design decisions have parallels in top-down processing, because they directly relate
to issues of how a visualization will be used in the visual thinking process. Thus

designers still have a crucial role to play in the use of tools such as the one we have
devised.

A natural objection to the proposal that a model of human vision can be useful in
optimizing visualization is that human subjects will produce better and more reliable
results. Human factors experiments are often used to evaluate different displays in

72

order to determine if the display meets operational requirements [60] . Why then do

we need a simulation? The problem is that this method is too laborious for any but

relatively simple display problems. Complex displays can involve the use of dozens of

different symbols, on backgrounds consisting of different textures and colors, together

with linear features that use line styles and colors. Using human factors experiments

to ensure that all symbols and lines are clearly visible against all possible background

combinations is not possible since the number of conditions is an exponential function

of the number of factors to be considered leading to an experiment that is too large

to be carried out. Our system is capable of executing an experimental "trial" several

times a second and it can be run 24 hours a day. It can easily execute a million trials

in a single day. Compare this to a human factors experiment where, for example,

each trial may last five seconds with a typical session lasting less than an hour. We

may succeed in running 5 subjects a day, resulting in 4000 trials a day, although

in our experience this is optimistic. Thus, the computer method is over two orders

of magnitude faster. This means that evaluations, which would be infeasible using

human subjects, become practical.

There is no doubt that the simulation can be optimized for superior speed. There

is clear room for improvements in the search algorithm. We use a simple stochastic hill

climbing technique, which randomly makes alterations to the visualization. Improve-

ments could be made by making those alteration preferentially in areas where the

model has calculated high perceptual error. A well known limitation of hill-climbing

search algorithms is the propensity to find local maxima in the search space. While

more sophisticated search algorithms may yield visualizations that are calculated to

be even more perceptually accurate, we found that a simple hill-climbing approach

produced satisfactory solutions in reasonable time.

One can view data visualization as a communication problem. In communication

73

systems, source data is encoded, transmitted across a medium, and then decoded at
the destination. The quality of such a system lies in its ability to quickly and faithfully
transmit data from the source to the destination. Viewed from this perspective,

visualization can be considered the encoding stage of this system. The quality of this

system as a whole depends not only on this encoding, but on the decoding done by
the human visual system.

While we would not argue that the visualizations we have generated thus far are
the best that have been produced for this type of data, we believe that they are
at least quite good and certainly better than the arrow grids that appear in many
scientific publications and on the web sites of modeling groups. Furthermore, it is
encouraging to consider that there is still significant room for improvement using this
technique. As we better understand the functioning of the visual system produced by
its neurobiology, and more accurately model human visual mechanisms, the percep-
tion predicted by the model will become more accurate. Because this prediction is
used to search for the optimal data visualization, this will translate to an improvement
in data visualizations produced by our method.

We have shown how, by using a computational approach, perceptual theory can
be applied to data visualization to produce tangible results. In doing so, we address
a fundamental question of data visualization: What does it mean to be a good data
visualization? In the context of this work, we give our answer: A good data visu-

alization is one that triggers neural activity that encodes the desired information in
the brain.

74

CHAPTER 5

COMPUTATIONAL MODELING OF NODE-LINK

GRAPH PERCEPTION

5.1 Introduction

To demonstrate the generality of a computational approach to the evaluation and op-
timization of data visualizations, we apply the method to the problem of non-directed
node-link graph diagram layout. The high-level information conveyed by node-link
diagrams differs vastly from that conveyed by flow visualizations. Typically, flow
visualizations are used to express vector direction information, whereas graph-link
visualizations express relationship information. However, at the level of early percep-
tion, we realize that these visualizations have much in common: both are composed
of perceptual edges. Thus, this form of visualization is suitable for the application of
our perceptual modeling method. The primary difference in the perceptual processing
of the two forms of visualization is how those perceived contours are interpreted as
information.

The layout of node-link diagrams is typically accomplished by maximizing aes-
thetic measures that are known to correspond with what is considered good layout
and conducive to high performance on graph-related psychophysical tasks [13] [19].
The alternative approach developed here is to evaluate and optimize a node-link graph
layout by using the CortexSim computational model of human perception. The model
is used to estimate the speed and accuracy with which the node-link edges are per-

75

ceived under alternative layout conditions. The approach is to apply the model to
predict the Vl perception of contours in the node-link visualization. Next, a percep-
tual curve tracing operator is applied to trace the contour. This operator describes
how visual attention progresses along a contour from some starting location. In areas
where the contour is unclear, such as at intersections, the progression of attention
slows down. In straight sections of the curve, a stronger perceptual contour is con-
structed, allowing for a more rapid progression. The accuracy and time required in
tracing contours of the node-link diagram using this operator is used as a metric for
its quality.

5.2 Background

Graphs are mathematical objects that define a set of relationships, known as edges,
among a set of elements known as nodes. Many data sets are naturally expressed
as graphs, and visualized using node-link diagrams. Node-link graph diagrams are a
form of data visualization designed to convey the presence or absence of graph edges,
represented visually by curves or line segments, between the nodes, represented by
dots (Figure 5-1). Such a visualization allows viewers to quickly comprehend the
relationships between the informational elements, including transitive relationships
which may be depicted by dots connected via two or more curves or line segments.

The layout of node-link diagrams is a classical problem in data visualization. There
exists quite a bit of freedom in the choice of layout of the node-link graph diagram,
and the quality of a layout is typically judged with respect to graph "aesthetics"
[62]. These aesthetics include attributes such as the amount of edge curvature and
the number of edge crossings. High quality node-link graph layouts tend to have a
minimum of curvature and crossings [19], the best layout algorithms aim to minimize
these variables. However, there are other factors not generally taken into account,

76

^

7
\

\
Figure 5-1: A example of a node-link graph diagram (from Holten [61])

such as the tradeoff between curvature and crossing angles. A more perceptually based
model may be able to take these factors into account to produce a more optimal layout
solution.

The perceptual theory of contour perception predicts that performance will be
best when the edges connecting the nodes are straightest and have minimal edge
crossings. These predictions have been confirmed by experimental evidence [63].

5.2.1 Layered and Two-layer Node-link Graph Diagrams

Layered graph diagrams are a notable subclass of node-link diagrams. The nodes
of these diagrams are arranged such that they lie in distinct layers (Figure 5-2).
This layout facilitates the understanding of structural attributes of the graph, such
hierarchical and sibling relationships. For this reason, layered graph layouts have
found use in areas such as dependency diagrams, flow diagrams, and conceptual

77

{1,2,3,4,5,6,7,8,9,10}
0

0
{c,e,o,p,s}

{2,4,6,8,10} {1,3,5,7,9}
to}

{1,4,9}
{s}

{4,6,8,9,10}
{e}

{4,6,8,10}
tee}

{2,3,5,7}
(?)

{3,5,7}
{?,?}

Figure 5-2: An example of a conceptual lattice visualized as a layered node-link graph
diagram [64]· The problem of layered node-link graph diagram layout can be reduced
to the problem of two-layer graph diagram layout.

lattices.

A method commonly used by graph layout systems for producing layered graph
diagrams is the two-step approach described by Sugiyama et al. [65]. The first step of
the approach is to arrange the nodes of the graph into layers, adding additional nodes
if necessary to ensure that no link spans more than one layer. Next, the individual
layers of the graph are arranged, starting at one end of the hierarchy and working
toward the other. Thus, the Sugiyama method reduces the problem of multi-layer

graph layout to the problem of a two-layer graph diagram layout.

78

5.2.2 Perceptual Theory and Node-link Diagram Aesthetics

The aesthetic principles of minimizing curvature and crossings form the basis of pop-

ular graph layout algorithms, such as Dot [66] and Dynadag [67]. These principles
are used as metrics for optimization in these algorithms. However, such principles

are descriptive, as is often the case with perceptual theories. Thus, applying these

aesthetic principles in graph layout algorithms is often done in an ad hoc manner.

What is needed is a perceptual theory of contour tracing expressed as a computational
model.

5.2.3 Roelfsema's Curve Tracing Experiment

How contour tracing occurs at a neurophysiological level can be understood from the

experiments of Roelfsema et al. [68]. These experiments investigated the activity

of neurons in macaque monkeys during the perception of continuous contours. The

macaque subject initially focused vision on a small circle. Then, briefly, a pair of

continuous contours were shown: a target contour extending from the circle, and a

distractor contour that did not extend from the circle (Figure 5-3). Both contours

had a similar shape and were permitted to intersect. The subject's task was to locate

the far end of the target contour.

During this task Roelfsema et al. [68]. recorded the activity of Vl neurons with
edge sensitive receptive fields along the contours. They found that the activity re-

sponse of these Vl neurons to the visual contours proceeded in two distinct stages.

In the first stage, there is an initial, parallel detection of visual edges, whereby Vl

neurons corresponding to an edge in the visual scene become active. This processing

occurs simultaneously among neurons all corresponding to a point along either the

target or distractor curves. It begins about 40 ms after onset of the stimulus, which

is approximately the typical latency of a Vl neuron. After about 150 ms, the second

79

l·
Figure 5-3: Neurons with receptive fields along the attended contour become excited

sequentially. Enhanced activity begins at the center of vision, and target spreads along

the target contour. (Modified from Roelfsema et al. [68J)

stage of processing begins. In this second stage of processing, some neurons enter

an enhanced state of activity. This enhanced activity spreads sequentially across the

contour, beginning at the center of focus, and ending at the far end of the target

contour. This enhanced activity spreads only to neurons corresponding to edges that

compose the target contour. Neurons corresponding to the distractor contour do not

enter the enhanced activity state associated with this second stage of processing, even

if the target contour intersects the distractor contour.

5.2.4 Roelfsema's Curve Tracing Model

The Roelfsema curve tracing operator model seeks to describe the physiological be-

havior observed in the curve tracing experiments (Figure 5-4). Initially, the neurons

in this model begin in a "silent" state, corresponding to a baseline level of activity.

When the visual contours are presented to the model, feedforward edge detection

processing causes all neurons corresponding to the edges of the contours to enter the

"active" state, which corresponds to the first parallel stage of activity. The activity

80

of these neurons enable lateral connections between neurons with nearby receptive

fields and are tuned to collinear orientations. These connections model the lateral

orientation selective connections found in Vl [37]. The second serial stage begins with

a neuron corresponding to the initial point of focus on the target contour entering

a "labeled" state. This labeled activity spreads through the connections enabled by

the first stage of processing.

While the Roelfsema curve tracing model provides many details, it is not a com-

putational model. To apply the curve tracing operator to data visualization, it is

necessary to first implement it in a computational manner, and integrate it into the

CortexSim computational model of perception.

5.3 The Computational Model - CortexSim 3.0

The CortexSim 3.0 computational model (Appendix B) used to simulate the percep-

tion of node-link diagrams is a direct descendant of the CortexSim 2.0 model used for

flow visualization optimization. Roelfsema's "active" neurons are modeled using the

edge detection and enhancement processing of the CortexSim 2.0 model. The Cor-

texSim 3.0 model includes an additional cortical area to model the spread of labeling

along a perceptual contour as described by Roelfsema.

5.3.1 The Label Cortex

While it is not clear precisely how the tracing described by Roelfsema occurs at the

physiological level, we speculate that such processing may occur in the areas of the
posterior parietal cortex. Areas of the posterior parietal cortex have been found to be

both retinotopic and sensitive to attended location, making them plausible locations

for the implementation of such a mechanism. We refer to this speculative cortical
area in the CortexSim 3.0 model as the label cortex.

81

Time
A

) ??
*

B

X !Ïi

m

% Disabled connectionNs Silent neuron
\ Enabled connection\ Active neuron

V Labeled neuron

Figure 5-4: The contour perception visual routine proposed by Roelfsema et al. [68].
First, parallel bottom-up processing activates neurons corresponding to a perceptual
edge (shown in grey). Next, a sequential tracing operator labels the neurons as part of
the target curve, starting from the upper-left corner (shown in black) (Modified from
Roelfsema et al. [68]).

The tracing operator is implemented in the model using feedback activation from
the label cortex to Vl. The neural activity corresponding to the labeled state origi-

nates with activity in the label cortex and produces signals that feed back to Vl. The
feedback signals then propagate both laterally throughout Vl, as well as feedforward
back to the label cortex. The signaling along the lateral path propagates the labeling

82

Image Retina vi Labeled

Figure 5-5: Bottom up edge detection and enhancement produces initial activity in

Vl. Then, feedback signals from higher-level cortical areas travels laterally across the

contours detected in Vl, before looping back to the attention cortex.

state along the activated contour, the feedforward path serves to update the labeled

state of neurons in the label cortex (Figure 5-5). This behavior is expressed by the

following dynamics:

7(0)Si,j,e ~ V\j,eL(t)tj (5.1)

q(n+ l) _ Tr1/ V^ c(n) jp (5.2)
x,y

LCi + I)U = P]T^S1 (5.3)

83

These equations describe the spread of neural activity in the label cortex associated
with the labeled state produced by the feedback activity between the labeling cortex
and Vl. Activity in the label cortex is denoted with an L, and activity in Vl that is
associated with the labeled state is denoted with an S. The parenthesized superscript
indicates the number of times the labeling signal has been relayed laterally. Equation
5.1 describes the base case in which the feedback signal has reached Vl, but no

spreading within Vl has occurred. The excitation in Vl produced by the feedforward
edge detection and enhancement, denoted by Vl' (Equation 4.7), acts as a gating
operator in this feedback loop. When Vl' is close to zero, it serves to shut off the
feedback signal path. As a result, label propagation occurs only among neurons
corresponding to contours that were detected by the feedforward portion of the model.
The signal is also relayed laterally across Vl neurons with collinear receptive fields as
described by Equation 5.2. The relayed signal depends on both the gating produced by
the Vl neuron, Vl', and by the synaptic strength of the lateral connections, denoted
by E and defined in Equation 4.7. The overall feedback signal from Vl to the label
cortex is found by summing over all the feedback paths as expressed by Equation
5.3. The signal rapidly decays as it is relayed over several lateral connections due to
the repeated multiplications by Vl' and E, thus only the first four components are
computed in the CortexSim 3.0 model. Noise is introduced into the model with p,
which is a uniform random variable between .95 and 1.05. This enables the model
to sometimes trace a different contour in cases where the contour path is ambiguous
such as with acute crossings.

5.3.2 Grossberg's Shunting Neural Dynamics

The CortexSim 3.0 model contains feedback between Vl and the label cortex that,
unless normalized, becomes unstable, amplifying neural activity without bound over

84

many iterations. This problem is addressed by incorporating Grossberg shunting

neural dynamics [58] [69] to normalize local neural activity in the label cortex after
each iteration. Grossberg's shunting neural dynamics describe how populations of

neurons behaving according to the Hodgkin and Huxley equations [28] can produce
competitive and normalizing behavior. In the shunting network, neuron activity has

an inhibitory effect on neighboring neurons, producing competition among the neu-

rons within the region that causes the total local signal to be bounded to a constant.

We use the steady-state form of these dynamics to find L\, the locally normalized

activity in the label cortex:

Bf(Lj) . .
% A + Yrk=QGkf{Lk) [->

These dynamics describe the competition between a neuron, x¿, and neighboring

neurons, Xk^i- The local neighborhood is defined by the Gaussian envelope, Gk,
centered around the neuron :r¿. The overall activity within the Gaussian envelope

is bounded by B, which is set to one. The variable A, for which we use the value

0.1, describes the leakage current of the neuron and serves to limit the amplification

of noise in cases where surrounding activity, ^kf(xk), is near zero· The activation
function f(x) describes the mean output signaling of the neuron as a function of the
input signal to the neuron. In shunting networks, activation functions with a positive

second derivative serves to suppress low activity neurons and enhance high activity

neurons. Physiologically, the activation function of neurons has been observed to
closely resemble a sigmoid function [70], defined by:

/(X) = ? + e,(m-x) ?5"5)
Thus, we employ the portion of the sigmoid function before the inflection point, to

achieve both noise suppression and biological plausibility, by choosing the inflection

85

point m to be twice the average activity, ^. The value of s was chosen to be — ,
yielding a tangent line at the inflection point that passes through the origin.

Inhibition

Figure 5-6: The effect of competitive dynamics [58] on the spread of labeling activity
across a crossing. The straighter path (dark blue) suppresses the alternative path
(light blue) via inhibition (green) and become dominant.

In addition to maintaining stability, competitive neural dynamics have an impor-
tant effect on the spread of labeling activity across edge crossings. Labeling activity
reaching the edge crossing proceeds to spread along multiple paths (Figure 5-6).
Competitive dynamics causes the activity corresponding to these paths to compete,

86

producing a winner-take-all effect [58]. The path corresponding to the straightest
path across the crossing becomes dominant, due to the activity in Vl from aligned
edges, and alternative paths become suppressed. At orthogonal crossings, where ac-
tivity along the alternative paths is minimal, the straightest path quickly suppresses
alternative paths and become dominant. At acute crossings, on the other hand, the
level of activity along alternative paths is closer to that of the straightest path, requir-
ing more time for neurons corresponding to the straighter path to become dominant
via winner-take-all behavior.

5.4 Model Evaluation

The CortexSim 3.0 model was used to evaluate two-layer node-link graph visualiza-

tions and its performance was compared with that of human test subjects. For both
the model and human test subjects, we test the accuracy and time required to trace
out links in node-link diagram visualizations.

5.4.1 Node-link Graph Diagram Generation

The node-link graph visualizations used in this study are two-layer graph diagrams
(Figure 5-7). Two-layer graph diagrams provide a building block for more complicated
multi-level diagrams, yet restricting the visualizations to two-layer graph diagrams
serves to vastly limit the space of visualizations. The graph diagrams are constructed
from two parallel rows of five evenly-spaced nodes. The links are defined by cubic
Hermite splines (Figure 5-8) drawn to visually represent the edges between corre-
sponding nodes in the top and bottom rows. The cubic Hermite splines are defined
by two endpoints and two tangent vectors, one at at each endpoint. The vectors that
define the Hermite spline are constrained to orientations within 45° of vertical.

87

Figure 5-7: An example of a two-layer node-link graph diagram visualization used for

this experiment.

5.4.2 Graph Data Generation

The graph data describes the connectivity between the upper and lower rows of nodes.

The data is defined by a vector of five integers, with each value indicating the index

of the top node to which the corresponding bottom node is connected. Random

graph data is generated by randomly swapping two adjacent elements in the vector,

this is repeated five times. This method of partial randomization was chosen in

favor of full randomization, due to an excessive amount of crossings produced by full

PI

P2

Figure 5-8: A cubic Hermite spline is defined by two endpoints and two tangent
vectors. The end-point positions correspond to the nodes of the node-link diagram, the
tangent vectors define the path of the link between the endpoints.

randomization.

5.4.3 Instructions

Test subjects were instructed to begin each trial by attending to the node indicated
by a red circle. The subject was instructed to indicate whether or not this node
was connected to a second node indicated by a blue circle. The subject was told to
indicate that the two nodes were connected by pressing the "j" key, and unconnected

by pressing the "f" key.

5.4.4 Procedure

The human performance of the node-link graph visualization was measured using
a two-alternative, forced choice test. The visualization was presented on a 15.1,
133dpi LCD screen, viewed at a distance of approximately 57 cm. The test begins

89

Figure 5-9: The flow of the graph link tracing test. Left: The nodes are displayed with

the bottom starting location circled in red, this is displayed for one second. Center:

The links are displayed and an endpoint circled in blue, this is displayed for 300

milliseconds. Right: The links are removed and only the nodes and circles remain,

this is displayed until a response is given.

by presenting the test subject with only the nodes of the visualization, and a random

bottom node circled in red. This is presented for one second to allow time for the

test subject to focus attention to the circled node. Next, the links are drawn, as well

as a blue circle around one of the top nodes. The circled top node is always chosen

such that 50% of the time it corresponds to the circled bottom node, 25% of the time

it is one to the left, and 25% one to the right. After 300 milliseconds, the links are

removed, leaving only the nodes and the top and bottom circles. The test subject

was then given as long as needed to indicate whether or not they perceived the circled
nodes as connected.

The experiment was performed using 40 node-link graph diagram visualizations.

In each block, the 40 visualizations were presented in a random order. Each subject

participated in four experiment blocks, for a total of 160 trials for each subject, and

a total of 960 for the experiment. Prior to the experiment, each test subject was

allowed to practice the task to minimize learning effects.

90

5.4.5 Participants

Six volunteer test subjects participated in the experiment, including five males and
one female.

5.4.6 Computer Trials

The task was also performed using the CortexSim 3.0 computational model. The
model was used in four blocks, each containing the 40 visualizations used in the
human trials. The computer trial was initiated by setting the neural activity in the
label cortex, L(t=0) in Equation 5.1, to one at the neurons with receptive fields
corresponding to the starting node, and setting the activity to zero elsewhere. After
ten iterations of the model, the feedforward activity of the label cortex is assumed to
have reached steady state, and the activity level associated with the "active" state
is recorded at the five endpoint nodes. With each iteration, the activity is examined
for an increase in activity associated with the labeled state. Neurons with activity
that have increased to over 1.5 times the activity of the active state are assumed to
have transitioned to the labeled state. When a neuron corresponding to one of the

endpoint nodes transitions to the labeled state, the model has completed tracing the
contour. The number of iterations and the correctness of the transitioning endpoint

are recorded.

5.4.7 Node-link Graph Modeling Results

The mean human time and accuracy performance for each graph was averaged, as
was the mean performance of the model, and fit with a least-squares fit linear regres-
sion. Despite the highly inconsistent human performance, there was still a signifi-
cant correlation in the data. The correlation between the human response time and
model iteration time of 0.50, which an analysis of variance revealed to be significant

91

C
CQ
E
Zi

JZ

f

C
CO
f

1.3-

1.2H

1.1

0.9-

0.8H

0.7-
42 43 "44 45 46 47 48 4<G

Mean(Time) of CortexSim

50 51 52

Figure 5-10: Scatter plot of the number of iterations required by the model to trace

the contour, and human response time. The red line indicates the least-squares linear

fit, and the dotted lines represent the 95% confidence interval.

[F(1, 36) = 11.91, ? < .01] (Figure 5-10). The correlation between the human and
model error rates was found to be 0.37, this positive correlation was also found to be

significant [F(1, 36) = 5.65, ? = 0.023] by analysis of variance (Figure 5-11). These
results indicate that human time and accuracy performance does positively correlate

with model performance, and therefore the model is suitable for application as a

utility function in an optimization algorithm.

92

0.4-

0.35-

0.3-
c
RJ

i 0.25- ·
JZ
M—
o ·

? 0-2-
LU · *
¥ 0.15-to _--—
f .
2 ..———¦"

0.1- ..¦-·¦···' .— — -""'
. · ___. -----""" _· _

0.05---;-—" " ..·¦¦--""'"' .
0- · ·

0% 25% 50% 75% 100%

Mean(Error) of CortexSim

Figure 5-11: Scatter plot of model error percentage and human error percentage

5.5 Node-link Graph Diagram Optimization

The node-link graph diagram visualizations were optimized using the stochastic hill-
climbing technique described in section 4.3.2. The evaluation function for the opti-
mization algorithm was constructed from the accuracy and number of iterations that
CortexSim 3.0 model produces when tracing edges in node-link diagrams. The evalu-
ation contains both a primary and secondary component. The primary component is
the number of errors that occur when tracing each of the five links from its starting to

ending node. The secondary component is the total number of iterations required to
trace all five links. Comparing two evaluations is done by first comparing the primary

93

I

¦¦¦¦

1 H

Figure 5-12: An example of the sequence of graph optimizations performed by the

algorithm, progressing from left to right and from top to bottom. Highly acute and

ambiguous crossings are eliminated, and edges are straightened.

components, the visualization that produce the fewer errors has a higher evaluation.

If both evaluations produce an equal number of errors, then the visualization that

produces that requires the fewest number of total iterations is evaluated higher.

At each iteration of the optimization, one of the five edges was randomly chosen

and modified by generating new random vectors defining the Hermite spline for that

link, adhering to the constraint that they be within ±45° of vertical. The model was

94

used to reevaluate the visualization, and the change was maintained the modification if

it resulted in a higher evaluation, and reverted otherwise. The optimization algorithm
was run on each visualization for 100 iterations.

5.5.1 Optimization Evaluation

The psychophysical tracing experiment was repeated using the optimized, as well as
the original, node-link graph diagrams. Original and optimized graphs were mixed
and presented in a random order within each block, increasing the total number
visualizations per block to 80. The results indicate that the optimized node-link
graphs yielded an improvement in both the time and accuracy performance. The error
rates on the original and optimized graphs were 105 and 61, respectively, representing
a decrease in error rate of 44%. A Fisher's 1-tailed test indicates this decrease is

significant [Prob < 0.01]. The response time performance was also improved by the
optimization. The mean response time decreased from 0.92 seconds for the original
graphs, to 0.86 seconds for the optimized graphs. A One-way analysis of variance
showed that this improvement is significant [F(1, 1918) = 11.58, ? < 0.01].

5.6 Discussion

The successful application of the CortexSim 3.0 model to node-link graph diagram
visualization is evidence that the computational modeling approach presented in this
thesis work is generally applicable to the problem of data visualization. We found a
correlation between the model and human performance in regards to both response
time and accuracy. The correlation was positive and significant, but arguably not
very strong. However, given the variance in the between humans results, and even
between trials of an individual human, a very strong correlation would be expecting
too much.

95

1

0.95H

.i 0.9-.

0.85H

Optimized

Figure 5-13: Means diamonds for the response times of the original and optimized
node-link graphs. The center of the diamonds indicate the means, and the end bars
indicate the 95% confidence interval.

An unexpected result that emerged from the node-link graph diagram optimization
is that it generally did not produce orthogonal crossings, as had been anticipated.
Instead, it often created angles of approximately 60°. The reason for this is that
that all crossing angles greater than 60° have nearly perfect probability of being
traced correctly by the model, and produce a nearly identical delay in tracing. Thus,
the secondary evaluation criteria of minimizing the tracing time dominates, which
encourages the links to be as short and direct as possible. Crossing angles of 60° are
often better able to achieve this secondary criteria than crossings of 90°.

The quality of the graph diagrams was likely impaired by the compute time re-
quirements of the algorithm. Each link required approximately 50 iterations of the

96

model, and each node-link graph diagram entailed tracing five links, for a total of

approximately 250 model iterations per evaluation. This can be contrasted with the

flow visualization evaluation performed in chapter 4, which required only a single

model iteration, and furthermore did not require the computation of the label cor-

tex. As a result of the evaluation cost, only 100 iterations of the optimization loop

were performed on each node-link graph visualization. This was sufficient to pro-

duce clear improvements over randomly laid out graph diagrams, but there is likely

room for additional improvement by allowing the optimization to continue beyond
100 iterations.

The computational cost could be addressed with a more sophisticated optimiza-

tion algorithm. In this work, we used a simple stochastic hillclimbing algorithm, but

improvements could likely be made by incorporating node-link graph diagram aes-

thetics as search heuristics. Good heuristics could be used to generate modifications

to the visualization that are closer to a search optima, thus causing the algorithm

to first search diagrams that are more likely to yield an improved evaluation. While

the search algorithm was not the focus of this research, to use this optimization ap-

proach in an applied setting, the search algorithm and resulting runtime will be of
high importance.

97

CHAPTER 6

CONCLUSION

This work began with the observation that computational modeling has had a

profound effect on the scientific disciplines to which it has been successfully applied,

and recognizing that by using a neural model of human vision, the problem of data

visualization may be treated computationally. In this work, we investigated the ap-

plication of computational modeling to data visualization and explored some of the

opportunities that such an approach presents. Reviewing the neural architecture

of the visual system, we recognized the suitability of a computational modeling ap-

proach to the problem of data visualization. Neurons present themselves as conve-

nient computational building blocks of the visual system. These building blocks are

individually simple, responding to center-surround patterns in the retina and Gabor

patterns in Vl, but within a large population produce the mechanisms that are vital

to the perception of data visualizations. The CortexSim model of the visual system

was developed to simulate these perceptual mechanisms so their application to data

visualization design could be explored.

The implementation of the CortexSim model evolved over the course of this work,

however, the general design can be decomposed into two major parts: a low-level

neural network model of the early stages of the visual system, and a model of the

high-level task-related perceptual processing of the later stages of the visual system.

This suggests a general model design for the method used in this work, whereby

the early visual processing is modeled with a neural network, and the resulting the

98

High-level
Processes

Task Related
Top-Down Activation

:ed ?
tivationj

Task Performance
Evaluation D

Mid-level
Mechanisms

Contour Tracing I Salience

Popout Texture Segmentation I

Feedforward
Processing

Contour Enhancement

I
D

Edge Detection

Center-Surround

Data Visualization

Figure 6-1: The general design of the CortexSim model. The visual image is first
processed by several stages of feedforward processing, followed by the mid-level percep-
tual mechanisms, which are influenced by top-down activation. The resulting neural

network activity is analyzed to derive a measure of visualization effectiveness.

activity output this neural network is analyzed by subsequent higher-level perceptual
modules (See figure 6-1).

The first major component of the design, the low-level neural network, simulated
the early, feedforward visual processing of the human visual system. This included

99

the center-surround processing of the retina, the edge detection of Vl, as well as the
contour enhancement produced by Vl lateral connections. It has been proposed that
early visual processing mechanisms such as these are responsible for the effectiveness
of data visualizations [17]. Incorporating these mechanisms into a model of the visual
system enabled us to test this proposition by simulating how data visualizations
trigger these perceptual mechanisms.

We focused in this work on the perceptual mechanisms of edge detection and con-

tour perception for two reasons. First, the neural architecture of the human visual
system that produces these mechanisms is sufficiently understood to be implemented
into a computational model. Second, edge and contour perception is vital to many
important forms of data visualization, in particular the flow visualizations and node-
link graph diagrams used in this work. However, there remains many other percep-
tual mechanisms of importance to data visualization perception that could possibly
be added to the neural model. For example, the perceptual mechanisms of visual
salience, popout, and symbol distinctiveness, are all of importance to data visualiza-
tion and could likely also be incorporated into the neural model. These mechanisms
are important for the perception of map and chart visualizations, and incorporating
these mechanisms into the model would enable it to be used to simulate these visual-
ization types. Some visualizations use highly-packed symbols, which viewers perceive
as textures [16]. By incorporating the neural mechanisms of texture segmentation
into the model, it could also be used to analyze such texture-based visualizations as
well.

The second major component of the design is the model of the high-level task-
related perceptual analysis. Because the neural processing involved in performing
visual tasks is not understood at the neural level, these were built as a layer on top of
the low-level neural network model. The behavior of the neural network provides the

100

input to this high-level model of the analytical task. Because this high-level model is

task specific, we have developed high-level models for a number of specific analytical
tasks.

The first high-level task model, implemented in CortexSim 1.0, models the task

of cognitively tracing an advection pathway. This model evaluates the activity of

the edge and contour sensitive neurons in Vl, and performs an operation to trace an

advection pathway based on this Vl activity. This operation involved estimating the

flow direction from local neural activity, and iteratively tracing along the path based

on the estimated flow direction. Together with the low-level neural network model

of vision, the model was used to simulate the advection pathway tracing task on a

variety of flow visualizations.

Modeling the second task, estimating local orientation of the flow field at every

point in the flow field, was done in CortexSim 2.0. While clearly not a task that

could be reasonably asked of a human due to the large number of possible points,

humans are often called upon to estimate flow direction at some arbitrary point in

a flow visualization, for example, to estimate the advection pathway of a particle.

Therefore, this second task can be considered simply performing all possible cases of

estimating flow direction at an arbitrary point. The high-level task model was layered

upon the low-level neural network model. The model of this task is based on a simple

and reasonable assumption: the perceived orientation is related directly to the local

activity of the orientation sensitive Vl neurons.

The third task involved tracing the links of a node-link graph diagram, and was

modeled by implementing the curve tracing operator described by Rolfsema [68]. This
operator is based on the idea that attention spreads across the lateral connections of
Vl neurons that have become active due to a contour in the visual field. In CortexSim

3.0, top-down activation produced initial neural activity, corresponding to visual at-

101

tention, in a cortical area referred to as the "label cortex" . The attention spreads by
activating neurons in Vl, where the activity travels along lateral connections, before
returning back to the label cortex.

Unlike the previous implementations of high-level task, attention spreading was
implemented using a neural network. But unlike the feedforward processing of the
retina and the edge detection and contour enhancement mechanisms of Vl, the at-
tention spreading mechanism was driven by top-down, in addition to bottom-up,
activation. The top-down activation provides the neural activity corresponding to
the initial point of visual attention. Thus, it might be more appropriate to consider
attention spreading to be a mid-level perceptual mechanism, rather than a high-
level analytical task. Visual salience, popout, and texture segregation, which depend
highly on top-down activation, could similarly be considered mid-level perceptual
mechanism. These mechanisms, because they can be guided by top-down factors, are
often targeted by data visualizations to convey information. In future development
of the CortexSim approach, implementing these kinds of mid-level mechanisms could
prove essential for modeling data visualization task performance.

Due to the vast complexity of the human visual system, it is unreasonable to
attempt to model it precisely at this time. The CortexSim models used in this work
differs from the human visual system in a number of ways. Firstly, the CortexSim
model includes only the early processing areas of the visual system. Other visual
areas outside Vl are known to have an effect on visual perception, but are not well
understood. As these visual processing mechanisms become better understood, they
can be incorporated into the model, yielding a more accurate simulation of visual
perception.

Additional inaccuracies of the model stem from our incomplete understanding of
how the human visual system works. For example, the spiking behavior of neurons

102

tends to contain oscillations, commonly known as brain waves. The origin and purpose

of these waves continue to be debated, and their relationship to visual perception, if

any, is unknown. Without a clear understanding of these waves, they cannot not be

successfully incorporated into a computational model.

Furthermore, neuron locations in Vl were idealized to lie on a hexagonal grid in

CortexSim 1.0, and on regular grids in CortexSim 2.0 and CortexSim 3.0, and neu-

ron spiking behavior was approximated with a spiking rate. These idealizations were

necessary to keep the complexity and run time of the model manageable. The fidelity

of the model to true human neurophysiology is limited by available computing hard-

ware and by our state of knowledge of the visual system. As more computing power

becomes available in the future, it can be applied to making a more physiologically
accurate model.

Despite its limitations, the CortexSim model proved to be successful at modeling

human task performance using two very distinct visualization types: flow visual-

izations and node-link graph diagrams. For the flow visualizations, we found that

the model produced the same ordering of effectiveness that humans did for four vi-

sualization techniques. For the node-link graph visualizations, we found a positive

correlation between the model iteration time and human response time. It is not

clear whether this speaks to the robustness of the approach, or if even better re-

sults are possible with a more physiologically accurate model. It may be that both
explanations are true. However, it is clear that with advances in our knowledge of
the physiology of the visual system and improvements in computational capabilities,
there is potential to improve the model, and likely the results as well.

Furthermore, the model predictions were adequate for use in optimization rou-

tines. The optimization of visualizations proves the utility of the modeling approach
by demonstrating a tangible contribution to the problem of data visualization. The

103

similarities between the optimized visualizations and visualizations developed by hu-
man designers is notable. It is an indication that perceptual theory, and by extension
good data visualization design, is not based on opinion, but rather that there are
physical reasons underlying the effectiveness of high-quality data visualizations.

The neural network portion of the model was largely reused with each version of
CortexSim. The CortexSim 3.0 version of the neural model used for the node-link

diagram evaluation and optimization was essentially the same as the CortexSim 2.0
version previously used for the flow optimization, with the exception of the added la-
bel cortex. This demonstrates the reusability of a computational neural model. This
reuse of a core model is analogous to how a computational fluids dynamics model
can be applied to vastly differing designs, for example an aircraft and automobile
design. Tn contrast, the traditional approach of applying perceptual theory to data
visualization typically requires a new theory to be developed to describe each percep-
tual phenomenon. As the CortexSim model is further developed and made to more
accurately model the human visual system, it is likely that there will be even less
need to make significant modifications to evaluate novel visualization designs.

All of the optimization techniques employed in this work optimized the location
of the low-level graphical primitives within a visualization. A potential alternative to
this approach is to use the model to generate and optimize the aesthetic parameters
used in a traditional aesthetics-based layout algorithm. For example, the aesthetics-

based algorithm could layout diagrams based on a set of parameters. Then, the model
could be used to evaluate the diagrams produced using those parameters, thus evalu-
ating the parameters used to construct the visualization. The algorithm would search
for optimal parameters for constructing visualizations, rather than searching for a sin-
gle optimal visualization. Such an approach could yield a layout algorithm that is
optimized based on the perceptual model, but has the fast run time characteristics

104

of an aesthetics-based algorithm.

In addition to being used as a practical tool, a computational model of perception,

even one that is imperfect, can provide an invaluable tool for examining perceptual

theories of data visualization in a new way. It has been conjectured that the ef-

fectiveness of popular flow visualization techniques, such as the LIC and Jobard h

Lefer algorithms, are due to the contour processing mechanisms of the visual sys-

tem. Now with a computational model, we can begin to examine this conjecture

from a new, computational point of view. For instance, we find that the flow visual-

izations created by these popular techniques resemble visualizations optimized using

the computational model for the flow orientation task. We find that by complement-

ing perceptual theory and psychophysical experimentation with the "third pillar" of

computational modeling, we are able to provide strong support for this conjecture.

The success of computational models in other disciplines, such as computational

fluid dynamics, was the result of years of development many researchers. With further

development, computational modeling could become as vital to a data visualization

practitioner as computational fluid dynamics models are to aircraft designers. Per-

haps the most significant contribution of this work is to justify and motivate further

research in applying computational models to problems in data visualization.

105

BIBLIOGRAPHY

[1] D. H. Laidlaw, J. S. Davidson, T. S. Miller, M. da Silva, R. M. Kirby, W. H.
Warren, and M. Tarr, "Quantitative comparative evaluation of 2d vector field vi-
sualization methods," in VIS Ol: Proceedings of the conference on Visualization
Ol. Washington, DC, USA: IEEE Computer Society, 2001, pp. 143-150.

[2] C. Ware, Information Visualization: Perception for Design, 2nd Ed. Morgan
Kaufman, 2004.

[3] D. J. Field, A. Hayes, and R. F. Hess, "Contour integration by the human visual
system: Evidence for a local "association field"," Vision Research, vol. 33, no. 2,
pp. 173 - 193, 1993.

[4] B. Cabrai and L. C. Leedom, "Imaging vector fields using line integral
convolution," in SIGGRAPH '93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM, 1993,
pp. 263-270. [Online]. Available: http://dx.doi.org/10.1145/166117.166151

[5] B. Jobard and W. Lefer, "Creating evenly-spaced streamlines of arbitrary den-
sity," in Eurographics Workshop. Springer Verlag, 1997, pp. 43-56.

[6] G. Turk and D. Banks, "Image-guided streamline placement," in SIGGRAPH
'96: Proceedings of the 23rd annual conference on Computer graphics and inter-
active techniques. New York, NY, USA: ACM, 1996, pp. 453-460.

106

[7] J. J. van Wijk, "Spot noise texture synthesis for data visualization," in SIG-
GRAPH '91: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques. New York, NY, USA: ACM, 1991, pp. 309-318.

[8] President's Information Technology Advisory Committee, "Computational Sci-
ence: Ensuring America's Competitiveness," Computational Science Subcommit-
tee (PITAC), National Coordination Office for Information Technology Research
and Development, p. 117, 2005.

[9] J. F. Wendt and J. D. Anderson, Computational Fluid Dynamics: An Introduc-
tion, J. F. Wendt, Ed. Springer, 2009.

[10] D. J. Freeman, D. Reubush, C. R. McClinton, V. L. Rausch, and J. L. Crawford,
"The nasa hyper-x program," Tech. Rep., 1997.

[11] J. Dubinski, "The great milky way -andromeda collision," Sky and Telescope,
vol. 112, no. 10, p. 30, October 2006.

[12] C. Ware, "Color sequences for univariate maps: theory, experiments and prin-
ciples," IEEE Computer Graphics and Applications, vol. 8, no. 5, pp. 41-49,
September 1988.

[13] H. C. Purchase, "The effects of graph layout," in Computer Human Interaction
Conference, 1998. Proceedings. 1998 Australasian, Nov-4 Dec 1998, pp. 80-86.

[14] , "Performance of layout algorithms: Comprehension, not computation,"
Journal of Visual Languages & Computing, vol. 9, no. 6, pp. 647 -
657, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WMM-45J5BKS-5/2/f2d27b9e887b63c9f3247c933f4a9bf2

[15] C. Healey, K. Booth, and J. Enns, "Harnessing preattentive processes for multi-
variate data visualization," pp. 107-107, 1993.

107

[16] C. G. Healey and J. T. Enns, "Building perceptual textures to visualize multidi-
mensional datasets," in VIS '98: Proceedings of the conference on Visualization

'98. Los Alamitos, CA, USA: IEEE Computer Society Press, 1998, pp. 111-118.

[17] C. Ware, "Toward a perceptual theory of flow visualization," IEEE Corn-put.
Graph. Appi, vol. 28, no. 2, pp. 6-11, 2008.

[18] H. C. Purchase, D. A. Carrington, and J.-A. Allder, "Experimenting with
aesthetics-based graph layout," in Diagrams '00: Proceedings of the First In-
ternational Conference on Theory and Application of Diagrams. London, UK:
Springer-Verlag, 2000, pp. 498-501.

[19] H. C. Purchase, "Metrics for graph drawing aesthetics," Journal of Visual
Languages & Computing, vol. 13, no. 5, pp. 501 - 516, 2002. [Online]. Avail-
able: http://www.sciencedirect.eom/science/article/B6WMM-46YHVYF-3/2/
41eddd36d6b619b866cl08569cfca607

[20] A. M. Treisman and G. Gelade, "A feature-integration theory of attention,"
Cognitive Psychology, vol. 12, no. 1, pp. 97 - 136, 1980. [Online]. Avail-
able: http://www.sciencedirect.eom/science/article/B6WCR-4D6RJM2-46/2/
b34aa05384b2a7702189c22840489174

[21] J. M. Wolfe, K. R. Cave, and S. L. Franzel, "Guided search: An alternative
to the feature integration model for visual search," Journal of Experimental
Psychology: Human Perception and Performance, vol. 15, no. 3, pp. 419 -
433, 1989. [Online]. Available: http://www.sciencedirect.com/science/article/
B6X08-46X8WS6-l/2/501dfcl5c55b7f804b0900725ef0d027

108

[22] L. Itti and C. Koch, "Computational modelling of visual attention." Nat
Rev Neurosci, vol. 2, no. 3, pp. 194-203, March 2001. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/11256080

[23] S. Fabrikant and K. Goldsberry, "Thematic relevance and perceptual salience
of dynamic geovisualization displays," in Proceedings of 22nd ICA international
cartographic conference: mapping approaches into a changing world, July 2005.

[24] S. Garlandini and S. Fabrikant, "Evaluating the effectiveness and efficiency of
visual variables for geographic information visualization," Spatial Information
Theory, pp. 195-211.

[25] S. Fabrikant, S. Hespanha, and M. Hegarty, "Cognitively inspired and perceptu-
ally salient graphic displays for efficient spatial inference making," Annals of the
Association of American Geographers, vol. 100, no. 1, pp. 13-29, January 2010.

[26] R. Rosenholtz, Y. Li, and L. Nakano, "Measuring visual clutter,"
Journal of Vision, vol. 7, no. 2, pp. 1-22, 2007. [Online]. Available:
http://journalofvision.Org/7/2/17/

[27] N. A. Carlson, Foundations of Physiological Psychology. Needham Heights,
Massachusetts: Simon & Schuster, 1992.

[28] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane
current and its application to conduction and excitation in nerve." J
Physiol, vol. 117, no. 4, pp. 500-544, August 1952. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/12991237

[29] W. Mcculloch and W. Pitts, "A logical calculus of the ideas immanent in nervous
activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

109

[30] K. Naka, "Neuronal circuitry in the catfish retina," Invest. Ophthalmol, vol. 15,
no. 11, pp. 926-935, 1976.

[31] S. Polyak, The retina. The University of Chicago Press, 1941.

[32] S. Schein, "Anatomy of macaque fovea and spatial densities of neurons in foveal
representation," The Journal of Comparative Neurology, vol. 269, no. 4, pp. 479-

505, 1988.

[33] K. Foster, J. Gaska, M. Nagler, and D. Pollen, "Spatial and temporal frequency
selectivity of neurones in visual cortical areas vl and v2 of the macaque monkey."

The Journal of physiology, vol. 365, no. 1, p. 331, 1985.

[34] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex," J Physiol, vol. 160, no. 1, pp.

106-154, 1962. [Online]. Available: http://jp.physoc.org

[35] , "Receptive fields and functional architecture of monkey striate
cortex," J Physiol, vol. 195, no. 1, pp. 215-243, 1968. [Online]. Available:
http://jp.physoc.Org/cgi/content/abstract/195/l/215

[36] V. Mountcastle, "The columnar organization of the neocortex," Brain, vol. 120,
no. 4, pp. 701-722, 1997. [Online]. Available: http://brain.oxfordjournals.org/
cgi/content/abstract/120/4/701

[37] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, "Orientation
selectivity and the arrangement of horizontal connections in tree shrew striate

cortex," J. Neurosa., vol. 17, no. 6, pp. 2112-2127, 1997. [Online]. Available:
http://www.jneurosci.Org/cgi/content/abstract/17/6/2112

[38] R. Rodieck, "Quantitative analysis of cat retinal ganglion cell response to visual
stimuli," Vision Research, vol. 5, no. 12, pp. 583-601, 1965.

110

[39] J. G. Daugman, "Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters," Journal of
the Optical Society of America A: Optics, Image Science, and Vision, vol. 2,
no. 7, pp. 1160-1169, 1985.

[40] Z. Li, "A neural model of contour integration in the primary visual cortex,"
Neural Comput., vol. 10, no. 4, pp. 903-940, 1998.

[41] S. Grossberg and J. Williamson, "A neural model of how horizontal and inter-
laminar connections of visual cortex develop into adult circuits that carry out

perceptual grouping and learning," Cerebral Cortex, vol. 11, no. 1, p. 37, 2001.

[42] G. Carpenter and S. Grossberg, "The art of adaptive pattern recognition by a
self-organizing neural network," Computer, vol. 21, pp. 77-88, 1988.

[43] S. Grossberg, E. Mingolla, and W. D. Ross, "Visual brain and visual perception:
How does the cortex do perceptual grouping?" vol. 20, 1997, pp. 106-111.

[44] S. Grossberg, "How does the cerebral cortex work? learning attention, and
grouping by the laminar circuits of visual cortex," Spatial Vision, vol. 12, pp.
163-186, 1999.

[45] S. Grossberg and L. Pessoa, "Texture segregation, surface representation
and figure-ground separation," Vision Research, vol. 38, no. 17, pp. 2657 -
2684, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/
B6T0W-3VBWFR9-Y/2/6b28el2231482c4ef350d4b4afe67237

[46] S. Grossberg, L. Kuhlmann, and E. Mingolla, "A neural model of 3d shape-
from-texture: Multiple-scale filtering, boundary grouping, and surface filling-in,"
Vision Research, vol. 5, pp. 634-672, 2007.

Ill

[47] M. D. Fairchild, Color appearance models, Second Edition. John wiley h Sons,
Ltd, 2005.

[48] Z. Li, "Pre-attentive segmentation in the primary visual cortex," Cambridge,
MA, USA, Tech. Rep., 1998.

[49] P. Parent and S. Zucker, "Trace inference, curvature consistency, and curve de-
tection," vol. 11, no. 8, August 1989, pp. 823-839.

[50] N. Lund, Attention and Pattern Recognition. Routledge, 2001.

[51] D. Pineo and C. Ware, "Neural modeling of flow rendering effectiveness," in
APGV '08: Proceedings of the 5th symposium on Applied perception in graphics

and visualization. New York, NY, USA: ACM, 2008, pp. 171-178.

[52] H. Hauser, R. S. Laramee, H. Doleisch, F. H. Post, and B. Vrolijk, "The state
of the art in flow visualization, part 1: Direct, texture-based, and geometric

techniques," Computer Graphics Forum, vol. 23, pp. 203-221, 2004.

[53] D. Fowler and C. Ware, "Strokes for representing univariate vector field maps,"
in Graphics Interface '89, June 1989, pp. 249-253.

[54] H. Wilson, D. McFarlane, and G. Phillips, "Spatial frequency tuning of orien-
tation selective units estimated by oblique masking," Vision Research, vol. 23,

no. 9, pp. 873-882, 1983.

[55] . D. G. Rolls, E. T., Computational neuroscience of vision. Oxford University
Press, 2002.

[56] C. Ware, "3d contour perception for flow visualization," in APGV '06: Proceed-
ings of the 3rd symposium on Applied perception in graphics and visualization.
New York, NY, USA: ACM, 2006, pp. 101-106.

112

[57] H. Rushmeier, H. Barrett, P. Rheingans, S. Uselton, and A. Watson, "Perceptual
measures for effective visualizations," in Proceedings of the 8th conference on

Visualization'97. IEEE Computer Society Press, 1997, pp. 515-517.

[58] S. Grossberg, "Contour enhancement, short-term memory, and constancies in
reverberating neural networks," Studies in Applied Mathematics, vol. 52, pp.

213-257, 1973.

[59] D. Marr, E. Hildreth, and T. Poggio, "Evidence for a fifth, smaller channel in
early human vision," 1979.

[60] C. Wickens, J. Lee, Y. Liu, and S. Becker, An introduction to human factors
engineering. Pearson Prentice Hall Upper Saddle River, NJ, 2004.

[61] D. Holten and J. J. van Wijk, "A user study on visualizing directed edges in
graphs," in CHI '09: Proceedings of the 27th international conference on Human
factors in computing systems. New York, NY, USA: ACM, 2009, pp. 2299-2308.

[62] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph drawing: algorithms
for the visualization of graphs. Prentice Hall PTR Upper Saddle River, NJ,

USA, 1998.

[63] H. C. Purchase, "Which aesthetic has the greatest effect on human understand-
ing?" in GD '97: Proceedings of the 5th International Symposium on Graph
Drawing. London, UK: Springer-Verlag, 1997, pp. 248-261.

[64] D. Eppstein, "Concept lattice.svg," October 2006. [Online]. Available:
http://en.wikipedia.Org/wiki/File:Concept_lattice.svg

[65] K. Sugiyama, S. Tagawa, and M. Toda, "Methods for visual understanding
of hierarchical system structures," IEEE TRANS. SYS. MAN, AND CYBER.,

vol. 11, no. 2, pp. 109-125, 1981.

113

[66] E. Gansner, S. North, and K. Vo, "Technique for drawing directed graphs,"
Aug. 28 1990, uS Patent 4,953,106.

[67] S. North and G. Woodhull, "Online hierarchical graph drawing," Lecture notes
in computer science, pp. 232-246, 2002.

[68] P. Roelfsema, V. Lamme, and H. Spekreijse, "The implementation of visual
routines," Vision Research, vol. 40, no. 10-12, pp. 1385-1411, 2000.

[69] S. Grossberg, "Why do cells compete? Some examples from visual perception,"
The UMAP Journal, III, pp. 103-121, 1982.

[70] D. Kernell, "The adaptation and the relation between discharge frequency and
current strength of cat lumbosacral motoneurones stimulated by long-lasting
injected currents," Acta Physiologica Scandinavia, vol. 65, no. 1-2, pp. 65-73,
1965.

114

APPENDICES

115

APPENDIX A

CORTEXSIM 2.0 GPU KERNELS

/* RetinaKernel

input : Array of CIEL*a*b* values of the visual scene

weights: Dif f erence-of-Gaussiane kernel

output: Center-surround receptive field response
--*/

__global

void RetinaKernel (uchar3 *input, floatl +weights, floatl »output) {
int i = (((blockIdx.y)*16+threadIdx.y+8)

*(grid_diameter/16)+blockIdx.x)*16 +threadIdx.x+8;

__shared__ float w[16] [16] ;

__shared__ uchar4 in[2*16] [2*16] ;

in[threadldx.y] [threadldx.x] = input [i-8*grid_diameter-8] ;
in[threadldx.y] [threadldx.x+16] = input [i-8*grid_diameter+8] ;
in [threadldx.y+16] [threadldx.x] = input [i+8*grid_diameter-8] ;
in[threadldx.y+16] [threadldx.x+16] = input [i+8*grid_diameter+8] ;
w [threadldx.y] [threadldx.x] = weights [threadldx. y*16

+ threadldx.x] .x;syncthreadsO ;

float3 ? = make_float3(0,0,0) ;

for (int dy=0; dy<16; dy++) {
for (int dx=0; dx<16; dx++) {

? += w [dy] [dx] * in [threadldx . y+dy] [threadldx . x+dx] ;
>

116

}

output [i]. ? = ?. ?/256.0; // white-black

output [grid_area + i] .x = p.y/256.0; // red-green

output [2*grid_area + i].x = p.z/256.0; // yellow-blue
>

/* EdgeKernel

input: Center-surround receptive field response

weights: Vl Gabor kernels

output: Edge-sensitive receptive field response */

__global

void EdgeKernel (floatl* input, floatl* weights, floatl* output) {
int i = (((blockIdx.y)*16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16 +threadldx . x+8 ;

__shared__ float w[16] [16] ;

__shared__ float in[2*16] [2*16] ;

in [threadldx. y] [threadldx. x] = input [i-8*grid_diameter-8] .x;
in [threadldx. y] [threadldx. x+16] = input [i-8*grid_diameter+8] .x;
in [threadldx. y+16] [threadldx. x] = input [i+8*grid_diameter-8] .x;
in [threadldx. y+16] [threadldx. x+16] = input [i+8*grid_diameter+8] .x;

__ syncthreadsO ;

for (int p=0; p<12; p++) {

w [threadldx. y] [threadldx. x] = weights [p*16*16

+ threadldx. y*16 + threadldx. x] .x;syncthreadsO ;

float sum=0;

for (int dy=0; dy<16; dy++) {
for (int dx=0; dx<16; dx++) {

117

sum += in [threadldx. y+dy] [threadldx. x+dx] * w[dy] [dx] ;
}

>

output [p*grid_area + i] .x = abs(sum) ;
__syncthreadsO ;

}

}

/* EnhancementKernel

input: Edge-sensitive receptive field response
weights: Vl enhancement kernels
output: Enhanced edge-sensitive receptive field response*/

__global

void EnhancementKernel (floatl* input, floatl* output, floatl* weights) {
int i = (((blockIdx.y)*16+threadIdx.y+8)

* (gr id_diameter/16) +blockldx . x) *16 +threadldx . x+8 ;

float sum;

for (int p=0; p<12; p++) {
__shared__ float w[16][16];

__shared__ float in [2*16] [2*16] ;
in [threadldx. y] [threadldx. x] =

input [p*grid_area + i-8*grid_diameter-8] .x;
in [threadldx. y] [threadldx. x+16] =

input [p*grid_area + i-8*grid_diameter+8] .x;
in [threadldx . y+16] [threadldx . x] =

input [p*grid_area + i+8*grid_diameter-8] .x;
in [threadldx. y+16] [threadldx. x+16] =

input [p*grid_area + i+8*grid_diameter+8] .x;
w [threadldx. y] [threadldx. x] = weights [p*16*16

+ threadldx. y* 16 + threadldx. x] .x;

118

syncthreadsO ;

sum=0;

for (int dy=0; dy<16; dy++) {
for (int dx=0; dx<16; dx++) {

sum += w[dy] [dx] * in[threadldx.y+dy] [threadldx . x+dx] ;
>

output [grid_area*p+i] .x = sum;
__syncthreadsO ;

}

}

/* OrientationKernell

input: Enhanced edge-sensitive receptive field response
output: Orientation vectors

__*/

__global

void OrientationKernell (floatl* input, float2* output) {
int i = (((blockIdx.y)*16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16 +threadldx . x+8 ;

float2 ? = make_float2(0,0) ;

for (int p=0; p<12; p++) {
float e = abs (input [p*grid_area + i].x);
v. ? += e*cos(-2*PI*p/12.0) ;

v. y += e*sin(-2*PI*p/12.0) ;
}

output [i] = v;
}

119

/* 0rientationKernel2

input: Orientation vectors
actual: Actual orientation vectors

weights: Gaussian weighting kernel
output: Projection of perceived onto actual orientation*/

__global

void 0rientationCortex2(floatl* weights, float2* input,

float2 »actual, floatl +output) {

int i = (((blockIdx.y)*16+threadIdx.y+8)
* (grid_diameter/16) +blockldx . x) *16 +threadldx . x+8 ;

__shared__ float w[16] [16] ;

__shared__ float2 orient [2*16] [2*16] ;

orient [threadldx. y] [threadldx. x] = input [i-8*grid_diameter-8] ;
orient [threadldx. y] [threadldx. x+16] = input [i-8*grid_diameter+8] ;
orient [threadldx. y+16] [threadldx. x] = input [i+8*grid_diameter-8] ;
orient [threadldx. y+16] [threadldx. x+16] = input [i+8*grid_diameter+8] ;
w [threadldx. y] [threadldx. x] =

weights [threadldx. y*16 + threadldx. x] .x;syncthreadsO ;

float2 perceived = make_f loat2(0,0) ;
for (int dy=0; dy<16; dy++) {

for (int dx=0; dx<16; dx++) {

perceived += orient [threadldx. y+dy] [threadldx. x+dx] * w[dy] [dx] ;
>

}

float2 actual = normalize (actual [i]) ;

output [i] . ? = dotP (perceived, actual);

120

APPENDIX B

CORTEXSIM 3.0 GPU KERNELS

/* LabelKernelO

input : Labeled cortex response
vi: Enhanced edge-sensitive receptive field response

output: First stage of spread activity in vl */

__global

void LabelKernelOCfloatl* input, floatl* vl, floatl* output) {
int i = (((blockldx. y)*16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16 +threadldx . x+8 ;

for (int p=0; p<12; p++) {
output [p*grid_area + i] .x = vl [p*grid_area + i] .x*input[i] .x;

}

>

/* LabelKernell

input: Nth stage of spread activity in vl
vl : Enhanced edge-sensitive receptive field response

weights: Vl Gabor kernels

output: N+l th stage of spread activity in vl */

__global

void LabelKernell (floatl* input, floatl* vl,

floatl* weights, floatl* output) {
int i = (((blockldx. y) *16+threadIdx.y+8)

121

* (grid_diameter/16) +blockldx . ?) *16 +threadldx . x+8 ;

__shared__ float in[2*16] [2*16] ;

__shared__ float w[16] [16] ;

for (int p=0; p<12; p++) {

in [threadldx. y] [threadldx. x] = input [i-8*grid_diameter-8] .x;
in [threadldx. y] [threadldx. x+16] = input [i-8*grid_diameter+8] .x;
in [threadldx. y+16] [threadldx. x] = input [i+8*grid_diameter-8] .x;
in [threadldx. y+16] [threadldx. x+16] = input [i+8*grid_diameter+8] .x;

w [threadldx. y] [threadldx. x] = weights [p*16*16
+ threadldx. y* 16 + threadldx. x] .x;syncthreadsO ;

float sum=0;

for (int dy=0; dy<16; dy++) {
for (int dx=0; dx<16; dx++) {

sum += in [threadldx. y+dy] [threadldx. x+dx]*w[dy] [dx] ;
}

}

output [p*grid_area+i] .x = vl [p*grid_area+i] .x*sum;
__syncthreadsO ;

}

}

/* LabelKernel2

inputO : First stage of spread activity in vl

input 1 : Second stage of spread activity in vl
input2 : Third stage of spread activity in vl
input3 : Fourth stage of spread activity in vl
output: Total spread activity */

122

__global

void LabelKernel2 (floatl* inputO, floatl* inputl,

floatl* input2, floatl* input3, floatl* output) {
int i = (((blockldx. y) *16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16+threadldx . x+8 ;

float sum=0;

for (int p=0; p<12; p++) {
sum += inputO [p*grid_area+i] + inputl [p*grid_area+i]

+ input2 [p*grid_area+i] + input3 [p*grid_area+i] ;
}

output [p*grid_area+i] .x = sum*rand();
>

/* NormalizeKernelO

input : Total spread activity in vi
weights: Gaussian weights
inhib: Local inhibition */

__global

void NormalizeKernelO (floatl +input, floatl *inhib, floatl »weights) {
int i = (((blockldx. y) *16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16+threadldx .x+8 ;

__shared__ float w[16] [16] ;

__shared__ float in[2*16] [2*16] ;

w[threadldx.y] [threadldx . x] = weights [threadldx.y* 16 + threadldx.x] .x;
in[threadldx.y] [threadldx.x] = input [i-8*grid_diameter-8] .x;
in [threadldx.y] [threadldx. x+16] = input [i-8*grid_diameter+8] .x;
in [threadldx. y+16] [threadldx.x] = input [i+8*grid_diameter-8] .x;
in [threadldx. y+16] [threadldx. x+16] = input [i+8*grid_diameter+8] .x;
__syncthreadsO ;

123

float sum = 0;

for (int dy=0; dy<16; dy++) -C
for (int dx=0; dx<16; dx++) {

sum += sigm(in[threadldx.y+dy] [threadldx.x+dx])*w[dy] [dx] ;
}

}

inhib[i] .x = sum;

---------------- NormalizeKernell

input : Total spread activity
inhib : Local inhibitory activity

output: Normalized activity */

.global

,id NormalizeKernell (floatl* input, float 1* inhib, floatl »output) {
int i = (((blockIdx.y)*16+threadIdx.y+8)

* (grid_diameter/16) +blockldx . x) *16+threadldx . x+8 ;
output [i] . ? = BETA*sigm(input[i] .x)/(ALPHA + inhib[i].x);

124

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2010

	The application of computational modeling to data visualization
	Daniel S. Pineo
	Recommended Citation

	ProQuest Dissertations

