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ABSTRACT 

MEASUREMENTS OF THE 2001 APRIL 15 AND 2005 JANUARY 20 GROUND-

LEVEL ENHANCEMENTS BY THE MILAGRO WATER CERENKOV 

DETECTOR 

by 

Trevor Morgan 

University of New Hampshire, September, 2010 

The Sun is capable of accelerating particles up to high energies, the highest of 

which (>1 GeV) are detectable at the Earth's surface. Although the accelerating source is 

tied to the solar magnetic field, the physical process responsible continues to be debated. 

Essential information about the location and nature of the acceleration mechanism can be 

obtained from measurements of the highest-energy particles. 

The Milagro instrument was originally designed as a very-high-energy gamma-

ray detector, but was also sensitive to cosmic rays and high-energy solar particles. 

Milagro registered ground-level enhancements for the 2001 April 15 and 2005 January 20 

solar events during its operation from January 2000 to March 2008, the latter of which 

was the most intense in 50 years. The multiple data channels in Milagro, combined with 

complementary neutron monitor data, enabled for a detailed analysis of the energetic 

proton spectra even during the brief anisotropic phase of the 2005 January 20 event. 

xviii 



For both events the results for the proton spectra are consistent with a coronal 

shock origin. A timing analysis for the controversial 2005 January 20 event reveals that 

the prompt arrival of the relativistic protons and rapid evolution of the observed profiles 

measured at ground-level stations can be attributed to a coronal shock origin and do not 

require an additional or different process, i.e., direct solar-flare acceleration. 
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Introduction 

Energetic particle acceleration is a process common to many astrophysical 

sources, including the Sun. Due to its proximity, the Sun can be studied in far more detail 

than sources outside our own Solar System such as supernova remnants and active 

galactic nuclei. Therefore, the Sun is an excellent laboratory for studying many of the 

processes of particle acceleration that take place throughout the universe. 

Most of our knowledge on solar energetic particles, and their acceleration 

processes, is from research at energies below ~1 giga-electron volt (one electron volt is 

the energy gained when an electron is accelerated through a potential difference of one 

volt). This is because there are very few particles to detect at higher energies due to the 

power-law spectra, which drops rapidly with increasing energy. Furthermore, it is 

difficult to design spacecraft instruments with enough sensitivity to detect particles at 

these higher energies. 

Ground-based instruments, such as the Milagro water Cerenkov detector, 

indirectly measure the high-energy solar energetic particles by observing their secondary 

products resulting from collisions in the atmosphere. Measurements of solar energetic 

particles at GeV energies is important because it provides information on the acceleration 

mechanism(s) taking place at the Sun. The Milagro instrument possessed several 

advantages over a standard neutron monitor, enabling it to study particles at these 

energies in great detail. 

1 



This dissertation begins with an overview of the Sun and relevant solar processes 

(e.g., solar flares and coronal mass ejections). Determining the source of solar particles 

accelerated to cosmic-ray energies (>1 GeV) is difficult because coronal mass ejections 

and flares often occur together (and always do for ground-level enhancements), however 

one does not necessarily cause the other. Research on solar particles at these energies 

requires an understanding of cosmic rays and their interactions in the atmosphere, 

discussed in chapter 2. 

Neutron monitors have continually studied cosmic rays and ground-level 

enhancements since the 1950s, their design and relevant contributions are covered in 

chapter 3. The Milagro instrument was sensitive to cosmic rays in the same energy 

regime as neutron monitors, and thus sensitive to high-energy solar particles. Chapter 4 

describes the Milagro instrument, which detected two ground-level enhancements during 

its operation, the 2001 April 15 and 2005 January 20 events (Chapter 5). 

The multiple data channels in Milagro allowed for a measurement of the proton 

spectrum (analysis procedure described in chapter 6) even during the brief initial phase of 

the 2005 January 20 ground-level enhancement, which could not be measured using 

neutron monitors. The evolution of the proton spectra during both events is discussed in 

chapter 7, along with its implications on the accelerating source. In addition to the proton 

spectra, the various timing characteristics of charged particles and electromagnetic 

emissions in these events provide insight to the acceleration mechanism(s) responsible 

for the highest-energy protons. These characteristics are particularly important for the 

2005 January 20 event, in which ground-level intensity reached extraordinary levels 
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within a few minutes. The observed ground-level profile during the 2005 January 20 

event has generated controversy regarding whether existing theories can explain how 

solar particles can be accelerated to GeV energies in such a short amount of time or if 

some other process in the associated flare itself is responsible for the particles. 
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Chapter 1 

Solar Physics Overview 

Beginning with an overview of the Sun, this chapter introduces the dynamics of 

the solar magnetic field. Processes arising from the ever-changing and complex nature of 

this field close to the solar surface can accelerate particles to cosmic-ray energies. 

1.1 Physical Characteristics 

About 5 billion years ago a region of dense gas (>a millionth of an ounce per 

cubic mile) spanning trillions of miles across began to collapse due to its own 

gravitational attraction. Over millions of years it condensed, all the while with the 

material in the center growing hotter. Fusion of hydrogen into helium began once 

temperatures reached about ten million degrees Kelvin, providing the constant energy and 

required pressure to support the 1.989 x 1030 kg mass that we know as the Sun. The 

fusion process converts nearly 7 x 108 tons of hydrogen into 6.95 x 108 tons of helium 

every second, with an energy release of 3.86 x 1033 ergs. The Sun is currently in the 

prime of its life, its mass consisting of 70% hydrogen, 28% helium, and - 2 % heavier 

elements. 
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Figure 1.1: (Left) The different layers that compose the Sun. (Right) A coronagraph image taken by 
the LASCO instrument aboard the SOHO spacecraft shows plasma at millions of degrees 
Kelvin continually streaming outward. The edge of the photosphere is indicated by the 
white ring. 

The Sun's core extends from its center to -0.25 R 0 (Ro = 695,000 km = 109 R©) 

with an average temperature of ~1.5 x 107 K and average density of -1 .6 x 105 kg/m3, 

sufficient conditions for nuclear burning of hydrogen via the proton-proton chain. From 

the outer edge of the core to the boundary with the convective zone at -0.75 Rq lies a 

cooler region known as the radiative zone. In this region hydrogen and helium ions 

absorb and re-emit photons from the core, the photons diffuse outwards to regions of 

lower density and temperature^ Gamma rays from hydrogen burning take an average of 

1.7 x 105 years (Mitalas and Sills, 1992) to be transported out to the convective zone, 

losing most of their energy in the process. 

Energy from the radiative zone is transferred to the outermost layers of the Sun 

through the convection zone. Bulk quantities of plasma rise to the surface of the 

convection zone at several km/s, surrender their heat, and then fall back down toward the 
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radiative zone to be reheated. This heat is transferred to the opaque outermost layer of 

the Sun known as the photosphere. This region has a thickness of -500 km and a 

temperature of -6,000 K. By the time the gamma rays that began their journey in the 

core reach this layer they have lost enough energy to place them in the visible range of 

the electromagnetic spectrum. The photosphere has a mottled appearance, a result of the 

columns of plasma that rise through the convective zone. Typical diameters of these 

columns (called granulation cells) are -1,000 km. The photosphere defines the radius of 

the Sun at its visible edge. 

Above the photosphere is the chromosphere, a -2000 km thick layer with 

temperature ranging from -4,000-20,000 K. Spike-like jets of plasma (spicules) with 

diameters comparable to the granulation cells give the chromosphere a jagged 

appearance. This region participates in much of the solar activity such as flares and 

prominences. Between the chromosphere and corona is the transition region. In this thin 

region the temperature rapidly rises to above a million K, while the density decreases 

appropriately to maintain hydrostatic equilibrium. The mechanism for this heating is not 

well understood, however it is believed to be from the dissipation of wave motions, 

specifically magnetohydrodynamic waves (Cranmer et al., 2007). 

Above the transition region the temperature profile flattens and remains on the 

order of 106 K. This hot atmosphere is called the corona. Its brightness is one millionth 

that of the photosphere, so it may only be viewed during a total solar eclipse or by using a 

coronagraph such as in Figure 1.1. 
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1.2 Surface Magnetic Field and the Solar Cycle 

The interior layers of the Sun are believed to rotate as a rigid body. The outer 

layers, beginning with the convective zone, rotate differentially with latitude ( -25 days at 

the equator, - 3 3 days at the poles). The faster rotation near the equator twists the Sun's 

dipole magnetic field (Figure 1.2). Plasma motions in the convection zone are not simply 

vertical, the Coriolis force due to the Sun's rotation results in a swirling effect. These 

turbulent plasma motions coupled with the Sun's differential rotation leads to the 

generation of electric currents and magnetic fields through the dynamo mechanism. 

Streams of plasma carrying concentrated magnetic field ropes can break through 

the photosphere. These regions can have multiple sections of opposing magnetic 

polarities oriented inward and outward from the surface with magnetic field strengths 

ranging from -1,000-4,000 Gauss (regions without any activity are - 1 Gauss, twice as 

strong as the Earth's surface magnetic field) and are known as active regions. Areas of 

opposing magnetic polarities inhibit the mixing of surrounding hot plasma, causing them 

Figure 1.2: The Sun's differential rotation caused by plasma motions in the convective zone results in 
the twisting of magnetic field lines. 
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Figure 1.3: An active region on the Sun's surface as seen by the TRACE spacecraft. Photons emitted 
from plasma that is frozen into the magnetic field reveal its loop structure. 

to be cooler (darker) than the remainder of the photosphere. These visible phenomenon 

(typically the size of the earth) can become as large as Jupiter and are called sunspots, 

and can often form in groups within an active region. The high magnetic field intensity 

within active regions can produce large explosions in the Sun's atmosphere (solar flares) 

and eject large amounts of plasma, the process of which is called a coronal mass ejection 

(CME). 

As the solar dipole field continues to wind-up, solar activity increases due to more 

active regions and sunspots. Over time increasing fluxes of opposite magnetic field 
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polarity build up in the two solar hemispheres, which distorts the overall dipole structure. 

Eventually this causes the Sun's magnetic poles to flip. Solar activity then gradually 

decreases to a minimum before the differential rotation and swirling convective flows 

begin to produce increasing active regions and sunspots, causing the magnetic poles to 

flip again. The oscillating solar activity resulting from the Sun's polarity flips has an 11-

year period known as the solar cycle. 

Because the existence of sunspots are well correlated with solar activity, their 

number or frequency follows the solar cycle. Although some historical observations of 

sunspots date back thousands of years, their cyclic nature wasn't recognized until the 

early 1800s. Rudolf Wolf began systematic observations of sunspots in 1848, and to this 

D A I L Y S U N S P O T AREA A V E R A G E D O V E R I N D I V I D U A L SOLAR R O T A T I O N S 

STINKPOT 4RF4 IN FOIT<\1. 4HR4 I AT1TI1T1FSTRIPS OF STRIP ARFA\ •> (1 n»/„ •> II 1 •/« 11 > I ««/„ 

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 
DATE 

DATE 

Figure 1.4: (Top) The range of solar latitudes at which sunspots appear creates a plot known as a 
butterfly diagram. (Bottom) In addition to the Wolf sunspot number, sunspot coverage 
relative to the visible surface also reveals the 11-year cycle of solar activity. (Graph 
courtesy of Hathaway at N AS A-MSFC) 
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day the most traditional method of tracking the solar cycle is by recording the Wolf 

sunspot number (another method is the long-term variation of cosmic rays as discussed in 

section 2.1.3). Peaks in sunspot number occur during the solar maximum phase, and 

likewise, valleys occur during the solar minimum phase. 

1.3 Solar Wind and Interplanetary Magnetic Field 

George Fitzgerald was the first to suggest that matter could be regularly 

accelerated away from the Sun (Fitzgerald, 1892). His ideas of were further developed 

by Kristian Birkeland, who made geomagnetic surveys of auroral activity and concluded 

that the Sun emits a continuous flux of charged particles filling up interplanetary space 

(Birkeland, 1908, 1913), however these conclusions were not supported by any other 

evidence. 

In the early 1950s, Ludwig Biermann re-introduced Birkeland's theories by 

developing a model attempting to explain how the gaseous tails of comets were always 

oriented away from the Sun (Biermann, 1953). At the same time a competing model 

from Sydney Chapman explained the Sun's corona as a static atmosphere that extended 

well past earth's orbit (Chapman, 1957). It was Eugene Parker who suggested that 

Biermann's continuous flux of solar particles was Chapman's extended solar atmosphere 

expanding away in space as a supersonic flow (Parker, 1958). The solar atmosphere is so 

hot, even at large distances, that neither gravitational attraction or pressure can confine it, 

the resulting supersonic flow is known as the solar wind. 
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Figure 1.5: The Ulysses spacecraft orbited the Sun at high polar latitudes and tracked the variations 
of the solar wind speed and magnetic field during a period of solar minimum (left) and 
solar maximum (right). The active regions during solar maximum cause complex 
variations in the magnetic field and solar wind. 

The solar wind blows approximately radially at an average velocity of -450 km/s 

(Figure 1.5). Comprised of plasma, this wind is composed mostly of electrons and 

hydrogen ions below 1 keV, as well as contributions from ionized helium (-4%) and trace 

amounts of heavier elements. It has two typical behaviors termed the slow solar wind 
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and the fast solar wind. The slow solar wind has a composition similar to that of the 

corona and an average velocity of about 400 km/s. It has a complex structure and is more 

variable in intensity than the fast solar wind. The fast solar wind has less structure with a 

typical velocity of 750 km/s, and it nearly matches the composition of the photosphere. 

The fast solar wind is thought to originate from coronal holes, which are funnel-like 

regions of open field lines typically at high latitudes. 

The rotation of the Sun and the flow of the solar wind combine to make the 

geometry of the interplanetary magnetic field (IMF). As the solar wind transports plasma 

radially outward, the magnetic field is also transported due to the fact that it is frozen into 

the highly conductive plasma. The energy density of the solar wind is much greater than 

that of the magnetic field, therefore the magnetic field geometry is greatly altered because 

it is governed by the state of the solar wind. The magnetic field lines attached to the 

Sun's surface are thus curved to form an Archimedean spiral, referred to as the Parker 

spiral (Figure 1.6). 

The solar wind continues radially outward in the heliosphere at supersonic 

velocities until reaching distances at which ram pressure from the interstellar medium 

slows it down. The resulting shock wave that compresses and strengthens the IMF is 

known as the termination shock. Recently, the voyager missions passed through the 

shock between - 7 5 AU and -100 AU (Stone et al., 2005), and found its radius to vary 

with solar activity. The theoretical boundary where the solar wind is stopped by the 

interstellar medium (heliopause) as well as a turbulent region where the interstellar wind 

hits the heliosphere (bow shock) are both being investigated by missions such as 
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(Top) Magnetic field lines from the Sun carried by the solar wind create an Archimedean 
spiral. The wavy "ballerina skirt" plane defines the neutral current sheet that separates 
northward and southward solar magnetic field polarities (artist's rendition courtesy of 
NASA's Werner Heil). (Bottom) The interplanetary magnetic field generated by the 
Sun's rotation and the solar wind create a region in the interstellar medium known as the 
heliosphere (artist's rendition courtesy of NASA's Walt Felmer). 
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Voyager I and II. The NASA Interstellar Boundary Explorer (IBEX) was launched in 

2008 to make the first map of the heliosphere and interstellar medium interface (Figure 

1.6). 

1.4 Solar Flares and Coronal Mass Ejections 

1.4.1 Solar Flares 

Explosions in the Sun's lower atmosphere that release large amounts of energy are 

called solar flares. The first observation came in September of 1859 by Richard 

Carrington. While drawing sunspots he noticed two patches of intense light that appeared 

and faded within 5 minutes (Carrington, 1860). The Earth's geomagnetic field was 

disturbed 17 hours later with aurora seen as far south as Cuba. Carrington suggested a 

possible relationship with the preceding solar activity, an idea first put forth by Sabine 

(1852). A recent study of ice in Greenland revealed that Carrington's flare was the most 

powerful of the past 500 years (Battersby, 2005). 

In 1908, George Hale observed spectral lines known to change when produced in 

strong magnetic fields, and concluded that sunspots were intensely magnetic (Hale 1908). 

That fit nicely with earlier observations of equatorial extensions resembling magnetic 

field lines (Bigelow 1890), and prominence motion appearing to be influenced by a 

magnetic field (Deslandres 1894). 
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Radio Blackouts 

Scale GOES Flux 
(# per cycle) 

Effects seen at Earth 

R5 (Extreme) X20 (<1) 

R4 (Severe) X10(~8) 

Complete HF radio blackout for hours on sunlit side. 
LF maritime and aviation navigation signals experience 
outages causing loss in positioning for many hours on 
sunlit side. Increased satellite navigation errors for 
several hours on sunlit side and possibly night side. 

HF radio communication blackout on most of sunlit 
side for 1-2 hours. LF maritime and aviation navigation 
signals experience outages for 1-2 hours, minor 
disruptions in satellite navigation possible. 

R3 (Strong) XI (-175) Wide area blackout of HF radio communication for 
-hours, LF navigation signals degraded for -hours. 

R2 (Moderate M5 (-350) Limited blackout of HF on sunlit side, LF navigation 
signals degraded for - tens of minutes. 

R1 (Minor) Ml (-2000) Weak degradation of HF radio, LF navigation signals 
degraded for brief intervals. 

Table 1.1: Severity of radio blackouts from increases in X-ray intensity due to solar flares. 
Thousands of M1 flares occur on the Sun during each 11 -year cycle, causing negligible 
effects. Extreme events occur much less often, but the effects greatly impact 
communication on the Earth. (Courtesy of NOAA Space Weather Prediction Center) 

The connection between solar flares and intense magnetic fields found in active 

regions has been established for roughly a century. However, an understanding of what 

may be taking place in these events is just evolving. The basic picture consists of 

restructuring the local magnetic field in the active region. As the magnetic field lines 

reconnect the energy is deposited into the solar flare (Forbes, 2000). 

Solar flares are classified optically in terms of the maximum brightness in 

H-alpha as well as their coverage on the solar disk. The brightness is assigned a 
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designation of F, N, or B corresponding to faint, normal or brilliant, while a numerical 

value from 0-4 (a value of 4 indicates >24.8 square degrees of coverage) indicates the 

area of coverage. Solar flares are also ranked logarithmically in X-rays according to the 

peak flux of 1-8 Angstrom (10~10 m) photons in units of W/m2 aboard the Geostationary 

Operational Environmental Satellite (GOES). The magnitude of intensity is assigned one 

of the following classes, in ascending order, of A, B, C, M or X. Each class represents a 

decade in peak intensity, within which is a linear scale from 1-9 (XI corresponds to 10 4 

W/m2). The more powerful M and X class flares often affect conditions in the Earth's 

magnetosphere (Table 1.1). 

There is no certain indication that an active region on the Sun will produce a flare, 

however there are properties of sunspots and active regions that correlate with flares. 

Thus, predictions of GOES M and X class flares are given in terms of probabilities with 

24 or 48 hours notice by the U.S. National Oceanic and Atmospheric Administration 

(NOAA). 

1.4.2 Coronal Mass Ejections 

In the 1930s, Chapman and Ferraro proposed an intermittent solar wind that only 

occurred during active times (Chapman, 1919; Chapman and Ferraro, 1931a, 1931b, 

1932, 1933). This quantitative model described the impact of a cloud of ionized gas upon 

the Earth's geomagnetic field. Additional observations of solar flares were made in the 

following years (Hale 1931; Newton 1940, 1943), however they were not all associated 
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with a succeeding geomagnetic disturbance at the earth. Although it was suggested that 

the geomagnetic storms accompanying solar flares were caused by streams of plasma 

interacting with the Earth's magnetic field (Hale 1931, Chapman 1950), it would be 

decades before the phenomenon was seen in Thompson scattered white light. 

The transient disturbances that link flares on the Sun to the geomagnetic storms at 

the earth were first viewed by the Seventh Orbiting Solar Observatory (OSO-7) 

coronagraph (Tousey et al., 1973; Figure 7). Additional observations aboard the Skylab 

spacecraft measured the speeds from <100 to >1200 km/s, which strongly indicated that 

the higher speed "plasma clouds", or CMEs, could produce the solar wind flows 

responsible for geomagnetic storms (Gosling et al. 1974, 1976). The achievements of 

OSO-7 and Skylab would contribute to a new view on how particles are accelerated up to 

high energies, leading to successive missions such as the Solar Maximum Mission 

(SMM) launched in. 1980, as well as the Yohkoh (Japanese for "Sunbeam") and Solar and 

Heliospheric Observatory (SOHO) spacecrafts launched in the 1990s. 

CMEs are generally believed to originate from the eruption of a prominence or 

filament, or high speed ejecta from a coronal hole. Initially closed magnetic field lines 

that are frozen into the ejected plasma are stretched out into the corona. When the 

magnetic instabilities reach a critical point the field lines reconnect close to the surface, 

driving the ejected mass outwards via the Lorentz force. CMEs can eject more than 1013 

kg of mass at speeds in excess of 2000 km/s. These numbers correspond to a kinetic 

energy release of over 4 x 1032 ergs to simply lift the material out of the Sun's 

gravitational field. A typical high speed CME will consist of shock front at the leading 
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Figure 1.7: (Top) The first images of a coronal mass ejection by Tousey (1973). Images are corrected 
for a variety of effects including background light from stars, planets, and interplanetary 
dust. Modern images, such as from SOHO/LASCO (bottom) are vastly improved over 
those from early experiments. 
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Geomagnetic Storms 

Scale Kp values Effects seen at Earth 
(# per cycle) 

Widespread voltage control problems, some grid 
systems may experience complete collapse or 
blackouts, spacecrafts may experience extensive surface 
charging and problems with orientation, HF radio 
blackout in many areas for one to two days, satellite 
navigation degraded for days, LF radio navigation out 
for hours, aurora can be been seen as low as Florida. 

Voltage control problems, spacecrafts may experience 
some surface charging, tracking problems, and 
orientation problems, HF radio sporadic, satellite' 
navigation degraded for hours, aurora can been seen as 
low as Alabama. 

Voltage and spacecraft corrections may be required, LF 
radio navigation problems, intermittent satellite 
navigation problems, aurora can be seen as low as 
Illinois. 

Voltage outages possible in high-latitude power 
systems, corrections to spacecraft by ground control, 
aurora can be seen as low as New York. 

G1 (Minor) 5 (-1700) Minor impacts on power grids and satellite operations, 
aurora can be seen as low as Maine. 

Table 1.2: Severity of geomagnetic storms caused by passing coronal mass ejections. The coronal 
mass ejection that impacted Earth on March 13, 1989 collapsed the Hydro-Quebec power 
grid in seconds, leaving over 6 million people without power and causing significant 
economic loss. (Courtesy of NOAA Space Weather Prediction Center) 

edge, a cavity behind the shock front, and a core of plasma (bottom-left image in Figure 

1.7) . The angular extent of CMEs that produce solar energetic particle events is large 

(up to-180°). 

G5 (Extreme) 9 (-4) 

G4 (Severe) 8 (-100) 

G3 (Strong) 7 (-200) 

G2 (Moderate 6 (-600) 
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The geomagnetic disturbances that often follow large solar flares are caused by 

CMEs as they impact the Earth's magnetosphere (see section 3.1). As the CME 

propagates outward it compresses (strengthens) the IMF at its leading edge. As it washes 

over the Earth, the increased magnetic field intensity rearranges the geometry of the 

Earth's magnetic field causing geomagnetic storms. The severity of these storms can 

range from minor disturbances in satellite operation to widespread ground-level electrical 

failures and power outages (Table 1.2). 

1.5 Solar Energetic Particles 

Electrons, protons, and ions are accelerated to MeV and GeV energies by solar 

processes and are called solar energetic particles (SEPs). Although CMEs are the largest 

processes that take place near the Sun, their existence was unknown until the 1970s, 

much later than evidence for SEPs. The timeline of these discoveries led to an inaccurate 

view of the respective roles played by flares and CMEs, a view that is only beginning to 

realign today. 

SEPs above one GeV originating from the Sun were first reported by Scott E. 

Forbush in 1946. He discovered three "obviously unusual increases" in the Cheltenham, 

Maryland Compton-Bennett ionization chamber data from 1942-1946, and correctly 

concluded that they had been caused by charged particles emitted from the Sun (Forbush, 

1946). In addition, the charged particles must have had sufficient energy to penetrate the 
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Earth's magnetic field to be detected at ground-level (~a few GeV, as opposed to - tens of 

MeV for geomagnetic storm particles), leading to the term "solar cosmic rays (SCRs)". 

The computed maximum energy of the protons for the 1946 July 25 event was 7.3 GeV 

(Forbush et al., 1949). 

In the early 1950s, neutron monitors (NMs) were placed at locations throughout 

the world (Simpson, 2000). One of the goals for these instruments was to measure the 

relativistic particles, i.e., SCRs, discovered by Forbush. The 1956 February 23 event 

would be the first ground-level enhancement (GLE) detected by NMs, and is still the 

largest GLE ever recorded (see section 3.2.2). Using NM data, the Chicago group 

(Meyer et al., 1956; Liist and Simpson, 1957) concluded that the 1956 February 23 GLE 

was due to particles accelerated at or near the Sun. The analysis of the particle flux 

revealed that only the solar magnetic field was capable of achieving the >15 GeV 

energies detected (Parker, 1957). Solar flares and CMEs both derive their energy from 

the same solar magnetic field, however only flares were known to exist before the 1970s. 

Over the next decades many large SEP events (>10 MeV) were observed, some of 

which produced GLEs (>1 GeV). Most of these events were associated with large solar 

flares, however the prompt arrival of SCRs was generally restricted to flare events 

occurring in the western solar hemisphere (see section 3.2.2) where the Earth would be 

magnetically well-connected to the flare site through the Parker spiral (east/west on the 

Sun are in Earth-based coordinates). Since the flare was the only observable feature that 

was correlated with these events, it was generally believed to be the origin of the SCRs. 
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The early picture of SEPs consisted of acceleration directly above the flare site 

with the energy being derived from the strong magnetic fields in the flaring region 

(Gosling, 1993). Diffusive transport from the flare site to a field line connected to Earth, 

as modeled by Gleeson and Axford (1967), accounted for the delays in GLE onset times 

which were observed when the flare region was not magnetically well-connected. This 

simple model worked well showing prompt rises-to-maximum for flares originating on 

the western solar hemisphere, and slow rises-to-maximum for flares originating on the 

eastern solar hemisphere. Flare acceleration and diffusive transport remained as the 

accepted source of all SEP events for many years. 

1.5.1 Impulsive vs. Gradual Events 

In 1977, X-ray events were separated into classes using Skylab measurements 

(Pallavicini et al., 1977). One class consisted of compact flares of short duration with 

smaller volume and faster rise/decay times (impulsive), and another comprised of larger 

volume, longer duration events with longer rise/decay times (gradual), the latter being 

associated with CMEs (Sheeley et al., 1975). Kahler et al. (1978, 1984, 1987) found a 

high correlation (96%) between large SEP events and CMEs. Different proton/electron 

ratios in the SEPs associated with the two classes of X-ray events were found by Cane et 

al. (1986). Although the classification of SEP events (impulsive vs. gradual) originally 

came from the X-ray time-scale, they are more accurately determined by the intensity vs. 

time profiles of the SEPs themselves (Figure 1.8). 
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Figure 1.8: Intensity-time profiles of electrons and protons in (a) gradual and (b) impulsive SEP 
events. Efficient particle acceleration at shock fronts is on the order of days for gradual 
events, while impulsive events typically have a short-lived burst with a fast decay. 
(Reames, 1999) 

Ionization states of energetic ions in gradual and impulsive events were measured 

by Luhn et al. (1984, 1987). In gradual events no element above He was fully ionized 

and the charge state of Fe was 14 ± 1 (in agreement with the results of Tylka et al., 1995), 

indicating source material with an electron temperature of ~2 x 106 K, typical of the 

corona. In impulsive 3He-rich events all elements through Si were fully ionized and the 

charge state of Fe was 20.5 ± 1.2, typical of flare-heated material at temperatures of 

~107 K. Previous work by Hsieh and Simpson (1970) had found some small SEP events 

with greatly enhanced abundances of the rare isotope 3He. These events were found to 

have ~1,000-fold enhancements in 3He/4He and ~10-fold enhancements in Fe/O relative 

to coronal abundances typically found in large SEP events (Mason et al., 1984; Meyer, 

1985). Abundance measurements, SEP intensity profiles, and coronagraph images are 
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some of the modern measurements used to discern if SEP events are impulsive (flare 

accelerated) or gradual (coronal shock accelerated). 

Impulsive events are generally believed to be caused by restructuring magnetic 

field lines and turbulent wave motions deep in the solar atmosphere where spatial scales 

and time scales are small, just like flares. Enhancements in electron-to-ion ratios, heavy 

ions, and 3He relative to coronal values indicate the source material is of a flare origin. 

They typically exhibit initial sharp peaks in SEP fluxes, but overall fluxes are smaller 

compared to gradual events and occur over shorter time scales. The SEP intensity vs. 

time profiles for the "pure" impulsive event on 1982 August 14 are shown in Figure 1.8 

(this event is pure because there is no accompanying CME). Impulsive events are 

dominated by electrons, and the duration of the time profiles is determined by scattering 

of particles in interplanetary space. The longitudinal distribution of impulsive events is 

also smaller compared to gradual events. To be observed at Earth, charged particles must 

Characteristic Impulsive 
(Flare Acceleration) 

Gradual 
(Shock Acceleration) 

Population electron-rich proton-rich 
Duration minutes/hours days 

CME rare always 
Metric Type II rare always 

3He/4He -0.0005 
H/He - 1 0 -100 
Fe/O - 1 -0 .1 
Qfc - 2 0 - 1 4 

Volume 1026-1027 cm3 1028-1029 cm3 

Longitudinal Distribution <60° -180° 
Energy Density High Low 

Event Frequency (Solar Max) -1,000 per year - 1 0 per year 

Table 1.3: Different features and compositions observed in impulsive and gradual SEP events. 
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Solar Radiation Storms 

Scale >10 MeV Flux 
(# per cycle) 

Effects seen at Earth 

S5 (Extreme) 105 (<1) 
Unavoidable radiation hazard to astronauts, aircraft 
passengers exposed to radiation risk, satellites useless 
with damage possibilities, complete HF blackout, 
navigation operations difficult. 

S4 (Severe) 104(~3) 
Unavoidable radiation hazard to astronauts, aircraft 
passengers may be exposed to radiation risk, satellites 
experience operational problems, partial HF blackout, 
increased navigation errors. 

S3 (Strong) 103 (-10) 
Radiation hazard avoidance recommended to 
astronauts, aircraft passengers may be exposed to 
radiation risk, satellites may experience noise, HF 
radio degraded, possible navigation errors. 

S2 (Moderate 102(-25) Aircraft passengers may be exposed to radiation risk, 
possible navigation errors at polar cap locations. 

SI (Minor) 10 (-50) Minor impacts on HF radio in polar regions. 

Table 1.4: Effects of solar radiation storms near the Earth. In addition to astronaut and aircraft 
passenger safety hazards, extreme and severe storms can affect and possibly damage 
satellite operations. (Courtesy of NOAA Space Weather Prediction Center) 

be magnetically well-connected and thus originate at western solar longitudes, again 

implying a point-like origin low in the solar atmosphere such as in a solar flare. 

Gradual events are associated with fast CMEs (>500 km/s and sometimes 

exceeding 2,000 km/s) that accelerate particles for a long time in a coronal shock wave 

(Mason et al., 1984; Lockwood et al., 1999; Reames, 1999). Most of the major SEP 

events are gradual and are associated with GLEs observed by instruments such as NMs. 

Spacecraft measurements by Meyer (1985) revealed that SEP abundance ratios in gradual 

events were similar to those in the corona and solar wind (Mason et al., 1984). In 
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addition, SEP ionization states measured by Luhn et al. (1984, 1987) were similar to 

those at various regions of the corona and the solar wind (Feldman et al. 1981). These 

findings indicate that the acceleration mechanism was likely taking place at higher solar 

altitudes removed from the flare site, such as in a CME-driven shock. 

Protons are dominant in gradual events, and increases in fluxes generally last for 

days. Intensity vs. time profiles for the "pure" gradual event on 1981 December 5 are 

shown in Figure 1.8 (this event is pure because it is associated with an erupting filament 

(Kahler, 1986), without an accompanying solar flare). Charged particles are efficiently 

accelerated by the CME-driven shock front as it propagates radially outward to 1 AU, the 

peak in intensity 3 days later is from the shock passing the earth. The longitudinal 

distribution for gradual events is nearly uniform across the face of the Sun, suggesting 

that a shock wave can easily move across field lines while continuing to accelerate 

particles. 

1.5.2 Shock Acceleration 

In 1955 Thomas Gold suggested that high speed plasma ejected from the Sun 

would produce a collisionless shock as it forced its way outward into interplanetary space 

(Gold, 1955), evidence by spacecraft would come in 1968 by Gosling et al. (1968). 

CME speeds close to the sun were found to reach >2,000 km/s (Sheeley et al., 1985; 

Kahler, 1994), well in excess of the ambient solar wind, and capable of driving such 

shock waves (Cane et al., 1987). Type II radio bursts first observed by Wild et al. (1963), 



associated with plasma emission from shock waves, were observed in coincidence with 

fast CMEs (Stewart et al., 1982; Gary et al., 1984; Gergely et al., 1984). Combined 

observations by coronagraphs and in-situ measurements made by spacecraft off the limbs 

of the Sun (Schwerm, 1983; Sheeley et al., 1985; Lindsay et al., 1999) or near the Earth 

(Webb et al., 2000) show a clear association between CMEs and the subsequent detection 

of shocks and the related ejected material. 

A coronal shock created by the leading-edge of a fast CME will produce magnetic 

turbulence between regions of upstream and downstream plasma speeds. Particles are 

accelerated by scattering back and forth across the shock similar to a ping pong ball 

bouncing between two converging paddles, this process is called diffusive shock 

acceleration. High energies are achieved when traversing the shock many times, 

requiring efficient scattering such as in higher density regions with increased turbulence. 

When the magnetic field is quasi-parallel to the shock normal, the converging flow of 

scattering centers will cause charged particles to gain velocity each time they traverse the 

shock. Particles can gain additional energy when the magnetic field is quasi-

perpendicular to the shock normal by drifting in the V s h o c k
 x B electric field at the shock 

(Decker and Vlahos, 1986a, 1986b), this process is called shock-drift acceleration. A 

magnetic field configuration that is quasi-perpendicular to the shock normal can increase 

the maximum attainable energy and decrease the acceleration time because the diffusion 

coefficient may be much smaller, allowing particles to diffuse fast enough to encounter 

the shock many more times (Jokipii, 1987). 
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Coronal shocks will accelerate any charged particle that can be scattered and 

traverse the shock front, including those from the tail of the thermal distribution of the 

local plasma (~10 eV), to those from remnants of previous activity at higher energies 

(-1-100 MeV). The particle population that is swept up and accelerated by the coronal 

shock is called a seed population. This concept is important because it is easier to 

accelerate a 10 MeV proton to 1 GeV than to accelerate a 1 keV proton to 1 GeV. A 

coronal shock model calculated by Lee and Ryan (1986) addresses this relationship and 

computes the necessary amount of time for particles of different injection energies to 

reach desired maximum energies (in this model a proton with an injected energy of 10 

MeV would reach 1 GeV in ~5 minutes). 

The spectrum and timing of the protons accelerated and released by a coronal 

shock is influenced by several factors. These include the strength of the shock, its speed, 

the diffusion coefficient up- and downstream of the shock and its radius when it releases 

the protons into interplanetary space. These factors manifest themselves in a 

characteristic spectral shape, i.e., a steepening at the highest energies. Arguably, the best 

measure of these parameters is obtained during the anisotropic phase of a GLE, where the 

relativistic particles travel to Earth with little or no modification by interplanetary 

processes. 

The proton spectrum is also linked to the duration of the GLE. At lower energies 

(below a few tens of MeV/nucleon) the protons and ions detected at Earth can be intense 

for days, whereas relativistic protons (>1 GeV) may only be enhanced for hours or even 

minutes. Recent modeling of GeV shock acceleration replicates the transient nature of 
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the GLE (Lee, 2005; Zank et al., 2000). The phenomenon results from (1) the 

requirements of setting up the shock close to the Sun, (2) maintaining sufficient shock 

strength to accelerate particles to high energies, (3) maintaining a sufficient level of 

upstream turbulence to retain the particles for acceleration and (4) a dissipation of the 

same upstream turbulence that releases the GeV particles to be detected at Earth, if well-

connected. Thus, a careful study of the evolution of the intensity, spectrum and pitch-

angle distribution is necessary to properly investigate the nature of the accelerating shock 

and the conditions in the inner heliosphere. 

1.5.3 A Brief Summary of Solar Energetic Particles 

The strong, complex magnetic fields located in active regions on the Sun lead to 

solar flares and CMEs. Particles are accelerated by both processes. Impulsive (short-

term) events have particle compositions and charge states similar to those of the flaring 

region. Gradual (long-term) events have particle compositions and charge states that 

reflect those in the higher corona, and are associated with CMEs. 

CMEs can reach speeds in excess of 2,000 km/s, overtaking the existing solar 

wind speed of -450 km/s and producing a shock wave. Particles are accelerated by 

scattering back and forth across the shock and drifting in the VShock x B electric field at 

the shock. In this model, the physical parameters of the CME determine the maximum 

energy and injection time of the SEPs. As charged particles escape into interplanetary 
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Figure 1.9: Intensity vs. time profiles for protons of different energies for observers viewing a 
coronal mass ejection from the western solar limb (left), central meridian (middle), and 
eastern solar limb (right). The charged particles propagating along the Parker spiral will 
have prompt increases in intensity if initially well-connected to the observer. 
(Reames, 1999) 

space they travel along the magnetic field lines of the Parker spiral resulting from the 

Sun's rotation and the solar wind (Figure 1.9). 

Spacecraft at 1 AU (1 AU is the Sun-Earth distance = 1.495 x 1011 m) detect SEPs 

up to energies of a few hundred MeV. The largest SEP events can accelerate particles up 

to relativistic energies (>1 GeV), producing increases in ground-level cosmic ray 

intensity (GLEs) measured by instruments such as NMs. Traveling at >95% the speed of 

light, these SCRs arrive at Earth promptly and can provide information on the 

acceleration region and nature of the coronal shock. 
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In the chapters ahead, cosmic-ray detectors such as neutron monitors and the 

Milagro water Cerenkov detector will be described, beginning with a discussion on 

cosmic rays. Finally, the results and analysis of the 2001 April 15 and 2005 January 20 

GLEs using these instruments will be presented. 
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Chapter 2 

Cosmic Rays and Air Showers 

Cosmic rays are energetic particles that originate from inside and outside the 

Solar System. These cosmic rays interact with atmospheric molecules to produce 

cascades of secondary particles which in turn lead to further cascades, this process is 

known as an air shower. Multiple components of an air shower penetrate to ground-level 

where they can be detected. 

2.1 Cosmic Rays 

On August 7, 1912, Victor Hess measured the ionization of the atmosphere as a 

function of altitude by carrying three electroscopes in a balloon gondola. He concluded 

that the ionization was coming from "above" and was possibly of extra-terrestrial origin 

(Hess, 1912). The term "cosmic radiation" was coined by Millikan in 1925. 

Experiments at various latitudes by Clay (1927) and longitudes by Johnson (1933) 

verified that the Earth's magnetic field affected the intensity of the radiation and, thus, 

that the primary particles are charged. The experiments of Bradt and Peters (1948) 

revealed that the primary component is comprised not only of protons, but also of a small 
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fraction of completely stripped nuclei. The current understanding of cosmic rays and 

their detection followed from these early discoveries. 

2.1.1 Composition and Spectrum 

Usually the term "cosmic rays" refers to galactic cosmic rays (GCRs). GCRs 

consist almost entirely of relativistic atomic nuclei stripped of their electrons, the 

remaining ~1% are electrons and positrons. Of the nuclei, about 90% are protons, ~9% 

are helium nuclei, and less than 1% are heavier elements. All stable nuclei through 

uranium (Z=92) are present in GCRs, including some long-lived radioactive nuclei. 
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Figure 2.1: Comparison of observed cosmic ray and Solar System abundances, normalized to 
Silicon. 
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Chemical abundances of GCR nuclei reveal a strong correlation with Solar 

System abundances, but with some significant differences (Figure 2.1). The even-odd 

effect is a universal property of all nuclei that results from nucleosynthesis in dying stars. 

The most tightly bound nucleus is Fe-56 (Z=26), and marks the endpoint of stellar 

nucleosynthesis. The abundances of heavier elements decline rapidly thereafter. The 

abundances of the light elements Li, Be, and B in GCRs are roughly a million times that 

of their Solar System abundances, and the elements immediately below iron are also 

elevated by several orders of magnitude. 

The energies of GCRs detected at Earth extend from -100 MeV/nucleon up 

through >1017 eV (the highest manmade energies for protons are -101 3 eV by the Large 

Hadron Collider at CERN). The differential cosmic ray spectrum is shown in Figure 2.2. 
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Figure 2.2: The dominant contribution to the cosmic ray spectrum (left) comes from supernova 
remnants. Kepler 's supernova (right) is viewed in multiple bands of the 
electromagnetic spectrum with three NASA observatories. Expanding shock 
fronts in supernova remnants can accelerate particles up to energies o f - 1 0 ' 7 GeV. 
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Between 1010 eV and 1020 eV the general form of the cosmic ray spectrum is a power law 

with breaks at approximately 1015 eV and 1018 5 eV. The rollover below a few GeV is an 

effect of solar modulation, discussed in section 2.1.3. The break at 1015 eV is referred to 

as the knee. This softening of the spectrum is generally attributed to cosmic rays 

escaping the galaxy due to their gyro-radius becoming comparable to the scale of the 

galactic disk. At 1018 5 eV the spectrum appears to harden, this region is referred to as the 

ankle. At these high energies there are very few particles to detect, given the power-law 

nature of the spectrum. 

2.1.2 Sources and Distribution 

The dominant contributor to the cosmic ray spectrum is our own galaxy. 

Acceleration mechanisms involving fast shocks within supernova remnants can produce 

GCRs for thousands of years, and are generally used to explain the power law energy 

spectrum (Figure 2.2). However, this process depends on the strength, speed, and 

duration of the shock, and therefore has a maximum energy of ~1017 eV (Zirakashvili et 

al., 2007). 

Anomalous cosmic rays (ACRs) are interstellar particles that have entered the 

Solar System unaffected by the magnetic field of the solar wind, been ionized, and then 

accelerated at the termination shock (a relatively local phenomenon). This component is 

comprised mainly of elements difficult to ionize, including He, N, O, Ne, and Ar, and are 

restricted to spacecraft energies (below ~1 GeV). The Sun can also accelerate particles to 
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GeV energies, however this occurs only a few times per decade, and thus is not a 

continuous source. 

Particles above ~1017 eV are referred to as ultra-high-energy cosmic rays 

(UHECRs). The sources of these particles are unknown, some theories include active 

galactic nuclei (AGNs), quasars, or gamma-ray bursts (GRBs). UHECRs are thought to 

originate outside our own galaxy because charged particles above ~1015 eV are not 

trapped by the galactic magnetic field. It is difficult to explain the process of depositing 

such an extreme amount of energy into a single particle, opening the doors for exotic 

theories such as dark matter and string theory. An additional complication is that cosmic 

rays originating further than 50 Mpc from the Earth should interact with the 2.7 K 

background. This would theoretically lead to an attenuation of the cosmic ray flux above 

~5 x 1019 eV known as the GZK cutoff (Greisen, 1966; Zatsepin and Kuzmin, 1966), 

however observations indicate no such cutoff. Particle detection, and therefore a 

measurement of the spectrum, above these energies is difficult because cosmic rays above 

1019 GeV arrive on Earth at a rate of one particle per square kilometer per year. 

The angular distribution of GCRs below ~1015 eV has a small anisotropy of 

-0.1% (Linsley, 1983). This is expected because ions below this energy travel along the 

magnetic field structure of the galaxy and are subject to multiple scatterings off 

irregularities in the interstellar field. Extended air shower arrays resolve incident particle 

directions at higher energies but the small flux does not provide enough statistics for the 

anisotropy measurements, however the trend does show an increase in anisotropy with 

increasing energy. A study of the large scale cosmic ray anisotropy by the Milagro 
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Figure 2.3: Fractional differences of the cosmic ray rates as viewed by Milagro from 
2000-2007. The two black lines show the position of the galactic equator and the solid 
circle shows the position of the galactic north pole. (Abdo et al., 2009) 

observatory conducted from 2000-2007 (Figure 2.3) resulted in an anisotropy of 0.1% at 

a median energy of 6 x 1012 eV (Abdo et al., 2009). A steady increase in the magnitude 

of the anisotropy was seen over the seven year period. 

2.1.3 Solar Modulation of Cosmic Rays 

As"described in section 1.3, the Sun produces an outward-flowing solar wind 

carrying a turbulent magnetic field. Lower energy GCRs enter the heliosphere and 

diffuse inward toward the Sun, gyrating around the IMF and scattering off irregularities. 

Gradient and curvature drifts convect the GCRs away from the sun (Isenberg and Jokipii, 
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1979), causing them to suffer energy losses. The combined effect of these processes 

results in the solar modulation of galactic cosmic rays. 

The structure of the IMF varies with solar activity. This, in turn, has an influence 

on the cosmic ray intensity. When solar activity is at high levels, the IMF structure is 

highly irregular, further modulating the GCRs and leading to a lower cosmic ray 

intensity. When solar activity is low the IMF structure is less disrupted and GCRs suffer 

fewer energy losses in their transport. This leads to a periodic cycle of cosmic ray 

intensity that is anti-correlated with the 11-year solar cycle (Figure 2.4). 

Solar activity can also modulate the cosmic ray intensity on shorter timescales. 

CMEs are associated with solar activity, and their propagation in the inner heliosphere 

can distort the magnetic field topology. Dependent on its velocity, a CME typically 

encounters the Earth anywhere between 18 hours (2,300 km/s) and two days (800 km/s) 

after liftoff. The magnetic field carried by the plasma within the CME sweeps away 

some of the low-energy GCRs, resulting in a 3-10% decrease in the cosmic ray intensity 

over a period of several hours (Figure 2.4). These events are known as Forbush 

decreases, named after their discoverer Scott E. Forbush (Forbush, 1937). As the CME 

continues past the Earth a recovery in cosmic ray intensity is observed over several days. 

The quickest changes in cosmic ray intensity associated with solar activity are 

GLEs. The increases over background for these events can be well over 1,000% in some 

ground-level stations, and can occur within minutes (Figures 5.5, 5.6, 5.10-5.12, 7.1, 7.6, 

7.12). More on GLEs will be discussed later. 

38 



S 2100 X 

L D 

a 
o u 

2050 

g> 2000 
"ro 
£ 1950 
to 
CD 

I 1900 

1850 

Time of Decrease = 11/26/2000 16:00 UT 
Percentage Drop = 7.32 ± 0.72 
Fall Time =17 Hours 
Characteristic Rise Time = 137 Hours 

11/26/00 12/1/00 12/6/00 
Universal Time (UT) 

1 2 / 1 1 / 0 0 

Figure 2.4: Neutron monitors, such as the stations located at Climax, Colorado, and atop Mt. 
Washington, NH, continuously measure the intensity of the cosmic ray background. 
(Top) As solar activity increases (visibly observed by the number of sunspots) cosmic 
rays undergo additional energy losses, the result is a periodic anti-correlation known as 
the 11-year solar activity cycle. (Bottom) Solar activity can also cause short-term 
modulation, such as Forbush decreases caused by passing coronal mass ejections. 

2.2 Air Showers 

Experiments performed at sea-level and mountain altitudes revealed that cosmic 

rays have a soft component that is easily absorbed in a few mm of lead, and a penetrating 

component that can pass through several meters of lead and up to great depths 

underground and in water. Discoveries of new elementary particle species from the 
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1920s-1940s, notably short-lived pions and muons, solidified the two-component feature 

of the cosmic radiation. 

In 1934, Bruno Rossi found coincidences between multiple counters placed in a 

horizontal plane and separated by distances too large for these coincidences to be by 

chance, and noted that "occasionally very extensive groups of particles arrive upon the 

equipment" (Rossi, 1964). The most systematic early investigation of this phenomenon 

was by Pierre Auger. His collaboration detected coincidences over a period less than a 

microsecond in instruments distributed over hundreds of meters at ground-level and 

correctly concluded that these detected particles were products of high-energy cosmic-ray 

primaries (Auger et al., 1939). 

The overall picture began to develop beginning with a high-energy cosmic ray 

incident at the top of the atmosphere. Through nuclear collisions, the primary cosmic ray 

produces multiple secondary components, some of which undergo spontaneous decay, 

giving rise to other components. This cascade process in the atmosphere is referred to as 

an air shower. Detection of these air shower particles at ground-level are used to deduce 

the characteristics of the initiating cosmic ray. 

2.2.1 Development in Atmosphere 

The atmospheric density decreases exponentially and adiabatically with a scale 

height of about 7 km. It is useful to define atmospheric depth in units of atmospheric 

overburden, g/cm2. When a cosmic ray enters the Earth's atmosphere it interacts strongly 
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with an air nucleus and produces secondary particles. This takes place at a random 

atmospheric depth on a statistical basis dependent on the primary particle's mean free 

path (on average 80 g/cm2 for a proton with Eo -101 4 eV). 

This first interaction results in the production of many relativistic particles, the 

majority of which are pions. Dozens of pions can be produced in a single collision, and 

depends on the energy of the primary particle. The threshold energy for this process is 

equivalent to the rest mass of the pion in the center of mass frame. For proton primaries 

this threshold energy is -290 MeV. The available energy of the primary particle in the 

collision is transferred to the production and kinetic energy of the secondary particles, 

properties of which can be found below in Table 2.1. The production of pions and other 

particles in nuclear collisions continues to be studied extensively at high-energy colliders 

such as Jefferson Lab in Virginia and the European Council for Nuclear Research 

(CERN) in Switzerland. 

The primary nucleon initiating the air shower can retain a significant portion of its 

initial energy and undergo successive nuclear collisions, producing additional high-

energy protons and neutrons. The total number of nucleons will reach a maximum at an 

atmospheric depth dependent on the initial energy of the primary particle (Figure 2.5). 

The development of these particles constitutes the nucleonic component in air showers. 

The neutral pions almost immediately decay into two gamma rays because their 

mean lifetime is short compared to the intermolecular distance in the upper atmosphere, 

initiating the electromagnetic or "soft" component of air showers. These photons interact 

with matter by three processes, the photo-electric effect, Compton scattering, and pair 

41 



Particle Symbol Mass (MeV) Mean lifetime (sec) Decay Modes 

Electron e~ 0.511 stable 
Positron e+ 0.511 stable 

Muon 105.66 2.197 x 10"6 

105.66 2.197 x 10-6 c " + v e + Vp 

Pion TV 139.57 2.603 x 108 

K+ 139.57 2.603 x 10"8 

134.96 0.83 x 1016 7 + 7 

Table 2.1: Properties of elementary particles discovered in air showers. 

production. The photo-electric effect and Compton scattering can be neglected above a 

few tens of MeV, where pair production is the dominant process. 

Pair production is the process by which a photon interacts with the Coulomb field 

of the nucleus, creating an electron-positron pair. This occurs at energies higher than the 

sum of the rest masses of that pair. A high-energy electron emits a photon when it 

interacts with the electromagnetic field of a nucleus (Bremsstrahlung radiation). These 

photons, in turn, produce additional electron-positron pairs, and so on. This cycle 

continues until the initial energy of the neutral pion has been divided up into enough 

particles for the mean energy of the electron and positron pair to approach a critical 

energy of - 8 0 MeV. At this point electrons begin to lose a significant fraction of their 

energy by ionization, which does not produce additional shower particles. Now, the 

photo-electric and Compton scattering processes (which also do not produce additional 

particles) begin to dominate pair production. This is the point in the shower with the 

greatest number of particles, because the electromagnetic component contains the bulk of 

air shower particles, and is referred to as shower maximum (Figure 2.5). After shower 
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Atmospheric Depth (g cnr*) 

Figure 2.5: (Top) Development of an air shower (Simpson et al., 1953). (Bottom) Total number of 
shower particles for proton and iron primaries at different initial energies. The position 
of shower max is at a lower atmospheric overburden (higher altitude) for decreasing 
primary energy. (Gaisser and Hillas, 1977) 
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maximum is reached the number of particles decreases as the shower continues to 

propagate. 

In addition to the neutral pions, charged pions are also produced in the first 

interaction of the primary cosmic ray. The mean lifetime for charged pions are much 

longer and can therefore collide with molecules in the upper atmosphere, producing 

charged muons via the decay modes listed in Table 2.1. High-energy muons constitute 

the "hard" component in air showers, and represent 3-5% of the total number of air 

shower particles (Treat and Greisen, 1948). Muons are weakly interacting and travel in 

almost straight lines to ground-level. Their energies are, in general, much greater than 

their rest mass, thus they are highly relativistic and reach ground-level before they decay. 

Some charged pions decay and feed back into the electromagnetic component of the air 

shower. 

2.2.2 Ground-Level Structure 

The electromagnetic component will experience some lateral "spreading", mostly 

from Coulomb scattering. Likewise, the nucleonic component will also have some three-

dimensional properties due to random interactions while propagating through the 

atmosphere. However, the dominating contribution to the lateral spread of the air shower 

is determined by the amount of traverse momentum transferred to the shower particles in 

the first interaction. Muons may be displaced by a few degrees from the shower core, 

and when they reach ground-level, the separation can be more than a few kilometers. 
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Figure 2.6: The lateral density distribution in air showers, only a small fraction of particles 
are shown for clarity. (Hinton, 1998) 

The resulting distribution at ground-level is a very dense population within ~50 m 

of the shower core, dominated by photons and electrons (Figure 2.6). As one moves 

farther outwards the density drops sharply due to the electromagnetic component 

comprising the bulk of shower particles, and their confinement close to the shower core. 

Although the muon component represents a small fraction of the total number of air 

shower particles, they dominate the population at distances far from the shower core 

(>500 m). 

Air showers will also exhibit some thickness features that arise from the different 

speeds of the particle species. The secondary and higher order particles tend to move 

through the atmosphere as a thin front (-several meters) referred to as the "pancake" 
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structure of the shower. Some of the lower energy shower particles may have a longer 

flight path due to increased scattering, this will produce curvature features on the shower 

front. Although these particles are traveling near the speed of light, the curvature features 

cause nanosecond delays, and can be observed in detectors. 

2.3 Air Shower Detection Instruments 

Although the work discussed in the upcoming chapters relies on atmospheric 

showers produced by cosmic rays, it is important to acknowledge the contribution of 

gamma-ray induced air showers. For an instrument such as the Milagro detector (see 

chapter 4), which is sensitive to cosmic rays although functioning primarily as a gamma-

ray telescope, the ability to distinguish between the two types of showers is crucial. The 

important feature in gamma-ray induced air showers is their lack of muons. Many of the 

same physical principles and detection techniques are used for both gamma-ray and 

cosmic-ray shower observations. 

In addition to the instruments described in this section, NMs and the Milagro 

detector (for their contribution to this work) will each be described in the next chapters. 

2.3.1 Air Cerenkov Telescopes 

When a charged particle is traveling faster than the speed of light in a medium, it 

radiates in that medium. The photons emitted in this process are known as Cerenkov 
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light (described in section 4.1). Air Cerenkov telescopes (ACTs) detect the Cerenkov 

light emitted by an air shower as it travels through air (Weekes, 2003), and are designed 

to measure TeV gamma rays. 

One or more mirrors are used to concentrate the Cerenkov light onto a camera of 

photomultiplier tubes (PMTs) with fast readout systems. The image on the focal plane of 

the reflecting mirrors can be used to deduce the shower energy and incident direction. 

Cosmic rays provide a large source of background for ACTs, shower properties such as 

lateral spread and muon content are used to deduce the two types of showers. ACTs are 

limited to operating on dark, moonless nights, and must restrict their field of view in order 

to minimize background contributions. 

The pioneering Whipple 10-m gamma-ray telescope (Weekes et al., 1989) made 

the first successful detection of a TeV gamma-ray source, the Crab Nebula. The Very 

Energetic Radiation Imaging Telescope Array System (VERITAS), consisting of four 

12-m telescopes, operates in the 50 GeV - 50 TeV energy range. Its design is based on the 

Whipple telescope, and it is among the present day leaders in ground-based gamma-ray 

detectors. Each VERITAS telescope has 350 individual mirrors, and a field of view of 

Figure 2.7: The VERITAS array of four air Cerenkov telescopes in southern Arizona. 
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-3.5° with angular resolution -0.2° (Holder et al., 2006). Other ACTs include the High 

Energy Stereoscopic System (HESS) telescope in Namibia, and the Major Atmospheric 

Gamma-ray Imaging Cerenkov (MAGIC) telescope in La Palma. 

2.3.2 Air Fluorescence 

Air fluorescence was first used as a method of detecting nuclear explosions at Los 

Alamos National Laboratory in the early 1960s. Relativistic electrons in an air shower 

excite molecules in the atmosphere, producing ultraviolet light. In the mid 1960's the air 

fluorescence technique was applied to air showers by a group led by Kenneth Greisen 

(a former graduate student of Bruno Rossi) at Cornell University. Measuring the energy 

losses of the relativistic electrons provides an estimate for the energy of the initiating 

primary particle. 

The High Resolution Fly's Eye (HiRes) detector is comprised of 21 spherical 

4.2-m mirrors (Bird et al., 1994), in 1999 42 additional mirrors were added - 1 3 km away 

to provide stereo measurements. The experiment is located in the deserts of Utah where 

the atmosphere is very clean and clear, however viewing is still restricted to moonless 

nights. HiRes is sensitive to the highest-energy cosmic rays (above -10 ' 8 eV) and has 

successfully resolved events with energies greater than 1020 eV (Bird et al., 1995), well 

above the GZK cutoff. 
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2.3.3 Extended Air Shower Arrays 

Due to the power-law nature of the cosmic ray spectrum, instruments covering 

very large areas are necessary to detect secondary particles from the UHECR primaries. 

Extended air shower arrays are able to detect these particles by utilizing many small 

detectors, each with the ability of sampling a small fraction of the total number of air 

shower particles. Some notable experiments in this field are the High Energy Gamma 

Ray Astronomy (HEGRA) array in the Canary Islands, the Tibet array, and the Akeno 

Giant Air Shower Array (AGASA) in Japan. 

The largest extended air shower array is the Pierre Auger Observatory (Allekotte 

et al., 2008) located east of the Andes mountains in Argentina (Figure 2.8). The Auger 

array consists of 1,600 water Cerenkov tanks, which detect Cerenkov light emitted as a 

particle travels faster than the speed of light in water (described in section 4.1). Each 

3,000 gallon tank detects secondary particles from the air shower, and is separated from 

its nearest neighbor by 1.5 km, covering an area of 3,000 square kilometers. A clear 

advantage for the water Cerenkov technique, with respect to that of air Cerenkov, is that 

they can run uninterrupted regardless of atmospheric conditions. 

The Auger array also contains 24 air fluorescence detectors (Pierre Auger 

Collaboration, 2010a) which resolve ultraviolet light and track the shower's development 

through the atmosphere. This compliments the water Cerenkov tanks, providing high 

quality information about the initiating primary particle, however they are restricted to 
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Figure 2.8: Google Earth map of the Pierre Auger Observatory. Covering almost 1200 square miles, 
the Auger extended air shower array is the largest cosmic ray detector on the Earth. 

viewing on clear, moonless nights. The Pierre Auger Observatory has been in operation 

since 2004, and results for the cosmic ray spectrum above 10'8 eV have recently been 

published (Pierre Auger Collaboration, 2010b). 
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Chapter 3 

Neutron Monitors 

For a cosmic ray to reach Earth's atmosphere it must possess sufficient 

momentum to pass through the Earth's geomagnetic field. The structure of the field 

causes the threshold momentum to be a function of geographic location and direction. 

Neutron monitors are designed to measure the intensity of the nucleonic component in 

cosmic-ray showers and are located at many locations around the globe. Even 60 years 

after its development the neutron monitor continues to play a significant role in the study 

of cosmic rays and ground-level enhancements. 

3.1 The Earth as a Detector for Cosmic Rays 

Our planet's spinning outer core of liquid iron and nickel is the foundation for the 

Earth's dipole magnetic field. This field acts as a shield from the ever-present solar wind. 

When the wind encounters the Earth's magnetic field it is deflected like water around the 

bow of a ship. The region of space around the Earth that is traced out by the deflection of 

the solar wind is called the Earth's magnetosphere (Figure 3.1). 

Near the Earth, the magnetic field retains its dipole geometry. At further distances 

the incident solar wind compresses the Earth's magnetic field in the sunward direction 
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Figure 3.1: SOHO composite image depicting the solar wind incident upon the Earth's magnetic 
field. The magnetosphere deflects the solar wind, protecting the Earth and tracing out a 
teardrop shape that extends -200 Earth radii on the night side. (Figure courtesy of Steele 
Hill at NASA) 

producing a bow shock. The exact distance this compression takes place is determined 

by a balance between the solar wind ram pressure and the magnetic pressure of the 

Earth's planetary field (on average it occurs between 10 and 11 Earth radii). Fast CMEs 

carrying enhancements of charged particles at -tens of MeV can disrupt this balance and 

cause geomagnetic storms. The increased solar wind density present in the bow shock at 

the leading edge of the CME forces some magnetic field lines to restructure by means of 

magnetic reconnection. Particles accelerated by this process interact with the Earth's 

upper atmosphere at high latitudes, producing the cascading lights known as the aurora. 
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Figure 3.2: The dynamics of a charged particle in a uniform magnetic field. (Longair, 1992) 

Beginning with a uniform static magnetic field B, the equation of motion for a 

particle of rest mass mo, charge ze, and Lorentz factor y = (1 - v2/ c2)A'2 is given by 

^-(ym0v) = ze{YxB) (3.1) 
at 

A charged particle propagating along a magnetic field line has components of velocity 

parallel and perpendicular to the field line, allowing the result of equation 3.1 to be 

expressed as 

r = ym o vsin0/ zeB i.e. v2
± /r = zevBsinO/ym0 (3.2) 

Rewriting equation 3.2 in terms of the momentum p, the gyroradius of the particle can be 

represented as follows: 

r 
\ze J 

pc^\sm9 

Be 
where pe /ze is called the rigidity of the particle (3.3) 

This shows that particles with equal rigidities that are injected at the same pitch angle 0, 

into a magnetic field B will trace the same path. Rigidity has the dimensions of electric 

potential in units typically of GV. 
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The varying strength of the Earth's magnetic field with geomagnetic position 

determines particle access to specific locations. At higher latitudes the magnetic field 

geometry is closely aligned to vertical, meaning that a particle with a smaller gyroradius 

(lower rigidity) would be able to reach the Earth's atmosphere. The opposite is true as 

one approaches equatorial latitudes, here the magnetic field has only a small radial 

component. To reach the atmosphere near the equator a particle's gyroradius must be 

larger than several Earth radii to overcome the orientation of the magnetic field (higher 

rigidity). The threshold rigidity required to reach Earth's atmosphere at a certain 

geographic location is called the cutoff rigidity, and a map illustrating the associated 

values around the globe is provided in Figure 3.3. Cosmic ray intensities were shown to 

have a strong relationship with cutoff rigidity (McCracken et al., 1962, 1965, 1968), and 

observations were well ordered with cutoff rigidity calculations performed by Shea et al. 

(1965). The Earth's internal magnetic field was also shown to be evolving, requiring 

consistently updated cutoff rigidity calculations (Shea and Smart, 1970, 1990; Smart et 

al., 2000; Smart and Shea, 2009). 

For particles with rigidities much greater than a given location's cutoff, the 

gyroradii will be so large that trajectories will be relatively unaltered as the particles 

travel through the Earth's magnetosphere. However, for lower rigidity particles 

(approaching the cutoff from above), trajectories become heavily influenced by the 

magnetic field (Figure 3.3). The directions from which the primary cosmic rays are 

incident before encountering Earth's magnetosphere are called asymptotic viewing 

directions. 
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Longitude 

Figure 3.3: (Top) Map of cutoff rigidities (GV) for all locations on the globe (courtesy 
of the Remote Sensing Laboratory). The dipole nature of the Earth's magnetic field 
causes a strong latitude dependance, as a result a particle must have a higher minimum 
rigidity to reach the atmosphere near the equator. (Bottom) Simulated trajectories 
through the Earth's magnetic field for cosmic rays of different rigidities. Particles labeled 
1, 2, 3, 4, and 5 have rigidities of 20, 15, 10, 5, and 4.5 GV respectively. (Desorgher, 
2006) 
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3.2 Development of the Worldwide Neutron Monitor Network 

The first instruments to constantly measure cosmic radiation were ionization 

chambers (Lange and Forbush, 1948, 1957; Beach and Forbush, 1961, 1969). 

Implemented in the 1930's, the Carnegie network of ionization chambers, operated by 

Scott E. Forbush, recorded bi-hourly data from five locations: Hafelekar, Austria (1932), 

Christchurch, New Zealand (1936), Huancayo, Peru (1936), Cheltenham, U.S.A. (1937), 

and Godhaven, Greenland (1938). The particles detected were muon secondaries from 

relativistic proton primaries incident on the Earth's atmosphere. For the muons to be 

detected at ground-level, primary nucleons must have a minimum energy of ~4 GeV. 

Eventually a detector with a response to lower energy nucleons (producing higher 

statistics over shorter time intervals) was desired. 

In 1946, John A. Simpson began a study on the primary cosmic ray spectrum at 

the top of the atmosphere through measurements of the nucleonic air shower component. 

Using Boron-Trifluoride (BF3) counters leftover from World War II, Simpson conducted 

a latitude survey of the neutron count rate during high altitude flights (Simpson, 1948, 

1951, 2000). The intensity of the nucleonic component was found to vary with latitude 

by up to 400%. The latitude dependance of the nucleonic component opened a window 

for studying cosmic rays between —1-15 GeV, prompting the design for a continually 

operating nucleonic cascade monitor. 
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3.2.1 Design 

The cylindrical BF3 tubes used by Simpson had a diameter of 3.8 cm and a length 

of 87 cm (Simpson et al., 1953). Thermal neutron secondaries at energies of - tens of 

MeV resulting from cosmic-ray primaries interact with the BF3 proportional counters and 

initiate the reaction 

All electromagnetic components are filtered out by setting the pulse height to a level 

where only the a particles trigger the instrument. 

To be sensitive to high-energy neutrons, the original aircraft experiments rejected 

slower thermal neutrons by surrounding both the counters and paraffin wax within a 

cadmium shield. Lead was used in the ground-level design not only for improved 

thermal neutron shielding, but also to enhance the count rate. The fragmentation or 

fission of a lead nucleus by an incident high-energy nucleon produces additional 

multiplicities of fast neutrons, these are then slowed down by the paraffin wax, enabling 

detection (Simpson, 1953; Simpson and Uretz, 1953). 

Multiple tubes were placed close together to increase count rates, typically in 

groups of 12 (Figure 3.4). The NM "pile" consisted of over 6,500 pounds of lead and 

more than 3,000 pounds of paraffin wax. This configuration became the standard 

neutron monitor design and was deployed to Chicago, Illinois and Climax, Colorado 

I Li + tHe ->• I Li + tHe + 0.480MeV 94% 
?B + n —> 

I Li + tHe + 2.78 MeV 6% 6% 
(3.4) 
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Figure 3.4: (Top) Cross-sectional view of the IGY neutron monitor pile, extended to 12 
counters (Simpson, 2000). In this configuration the pile consisted of 6,500 pounds of 
lead plus approximately 3,000 pounds of paraffin wax. (Bottom) The NM64 
supermonitor configuration. The upgraded layout typically groups the larger 
BP-28 tubes (to be inserted into the lead rings) in groups of six, referred to as "banks". 
The improved lead ring design is enclosed in polyethylene and mounted on steel beams. 
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in 1949. In 1951, Climax became the first NM put into operation, and is still operational 

today. 

Muon decay is dependent on local temperature, therefore, intensity measurements 

for ionization chambers were also dependent on temperature. The "Simpson" NM proved 

to be a superior cosmic radiation detector. Although the intensity of the nucleonic 

component has a relationship to barometric pressure, the temperature dependence is 

negligible (Simpson et al., 1953). The project quickly grew to include twelve stations by 

1957. The advances of the NM provided additional scientific momentum to the onset of 

the 19th solar cycle, marked as the International Geophysical Year (IGY). 39 additional 

stations were installed in 1957, leading the design to be known as IGY neutron monitors, 

and bringing the worldwide network to 51 monitors. Although the IGY NM was widely 

recognized as an excellent detector for studying cosmic ray variations, it soon became 

clear that improved statistics were required for short-term events such as GLEs. 

The Leeds IGY NM reported that only 1.9% of the neutrons produced in the lead 

were counted (Hughes, 1961, 1966). Larger size BF3 counters were constructed at the 

Chalk River Nuclear Laboratories in 1959 (Carmichael, 1968). In 1960, Hatton and 

Carmichael determined an optimal design for a NM consisting of the larger counters 

(Hatton and Carmichael, 1964). The new super neutron monitor (NM64) design featured 

a polyethylene moderator to replace the paraffin wax and a geometrically superior 

arrangement of lead surrounding the counters (Figure 3.4). 
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Characteristic IGY NM64 

Counter type NW G-15-34A BP28 
Spacing of counters (cm) 15.2 50.0 
Moderator material Paraffin Polyethylene 
Moderator thickness (g/cm2) 2.95 1.84 
Producer material Lead Lead 
Top area of producer (cm2) 1.9 x 104 6.21 x 104 (per 6 tubes) 
Diameter (cm) 3.8 14.8 
Length (cm) 87 191 
Pressure (mm Hg) 450 200 

Table 3.1: Design improvements to the original IGY neutron monitor by Hatton and Carmichael 
(1964). The resulting supermonitor design offered a 10-fold increase in count rate. 

After the design changes listed in Table 3.1, the efficiency per unit area of the lead 

producer increased by a factor of ~3. When coupled with the larger area, the overall 

count rate increased by a factor o f - 1 0 . The advantages were evident with the July 1961 

GLEs (Steljes and Carmichael, 1961). The majority of NMs still operational today are of 

the NM64 design (Table 3.2 at the end of this chapter). 

3.2.2 Ground-Level Enhancement Observations and Results 

In roughly ten years of ionization chamber records, Scott E. Forbush noticed 

unusual increases for Cheltenham, Maryland on 1942 February 28, 1942 March 7, and 

1946 July 25 (Forbush, 1946). The last of three events was not observed by the 

Huancayo, Peru station due to its high cutoff rigidity (Pc -13.5 GV), indicating that the 

increase was due to particles with energies less than that of the Huancayo cutoff. The 

increases were attributed to charged particles from the Sun (Forbush, 1949), and the 

occurrence of "impact zones" indicated that the radiation was initially anisotropic (Firor, 
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1954). The development of the NM, sensitive to a wider range of rigidities, would 

provide improved measurements of GLEs. Fortunately, the network of NMs was 

established and operational in the early 1950s enabling detection of the 1956 February 23 

event, which remains as the largest GLE ever recorded. 

The 1956 February 23 GLE (Figure 3.5) coincided with a strong X-ray flare 

beginning at 0331 UT and located at N24°, W74° (Smart and Shea, 1990), this was prior 

to knowledge of CMEs and thus there is no evidence on record. The GLE was resolved 

in ionization chambers (Forbush, 1956) and all NMs operational at the time, including a 

-26% increase in Huancayo, Peru (Meyer et al., 1956; Smart and Shea, 1990), indicating 

the presence of particles up to energies of - 2 0 GeV. GLE onset was at -0350 UT, 

stations placed around the world varied by - 1 0 minutes and were originally thought to be 

the result of velocity dispersion associated with the geomagnetic cutoff rigidities, which 

were poorly known at the time. In 1957, Lust and Simpson concluded that the varying 

onset times were attributed to the initial anisotropy suggested by Firor (Lust and 

Simpson, 1957). 

Additional GLEs were observed, with widely varying profiles. The decay time 

constants were noticed to be much shorter when the associated flare was on the western 

portion of the solar disk (McCracken and Palmeira, 1960). Using asymptotic cones of 

acceptance, McCracken (1962a, 1962b) showed that several GLEs were strongly 

anisotropic when the associated flare occurred on the western third of the solar disk. 

For those events, the rise-time of the GLE was rapid and the initial anisotropic radiation 
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Figure 3.5: (Left) The 1956 February 23 event was the first GLE to be resolved by the neutron 
monitor network, and to this day remains the largest on record (Smart and Shea, 1990). 
(Right) The 1978 May 7 GLE observed by the Durham, NH station (Debrunner and 
Lockwood, 1980). As of this writing there have been 70 GLEs dating back to 1942. 

arrived in agreement with the predicted spiral nature of the IMF by Parker (1958). For an 

event occurring on the eastern two thirds of the solar disk, the rise-time was slower, and 

the initial radiation was only mildly anisotropic. 

As discussed in section 1.5, GLE profiles were initially explained by delays due to 

diffusive transport of the relativistic particles from the flare site. Although this model 

worked well, the discovery of CMEs and their high correlation with gradual events and 

GLEs led to a model involving a CME-driven shock to explain the acceleration and 

profile of the relativistic particles. In this model, a CME originating from the western 

third of the solar disk accelerates particles to relativistic energies and releases them low 

in the corona (<4 Rq). The relativistic charged particles propagate along the Parker 

spiral, experience some pitch-angle scattering, and arrive at Earth with an anisotropic 

distribution in the direction of the IMF. As the CME reaches higher solar altitudes, its 

angular width (and thus the relativistic particles traversing the shock) can cross multiple 
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field lines. The resulting pitch-angle distribution decreases in anisotropy after the initial 

stages of the GLE. Irregularities in the IMF past 1 AU continue to scatter the SCRs 

roughly an hour after GLE onset, further decreasing the anisotropy. SCRs originating 

from a CME-driven shock on the eastern two thirds of the solar disk do not initially have 

access to the Earth via the Parker spiral. As the CME grows in angular width, the 

relativistic particles cross field lines and eventually have access to the Earth via the 

Parker spiral. This produces the longer delay in GLE onset, prolonged rise-to-maximum, 

and decreased anisotropy observed in eastern events (Figure 1.9). 

In addition to measuring pitch-angle distributions, placing NMs at strategic 

locations throughout the globe provides a measurement of the rigidity spectrum from 

—1-15 GV (NM locations are provided in Table 3.2). This is possible due to the 

properties of the Earth's magnetic field discussed in section 3.1. During the isotropic 

phase of an event, the integral increase in count rate for a station with a particular cutoff 

rigidity provides a measure of the flux above that rigidity. However, the initial 

anisotropic distribution that is often associated with well-connected events prohibits this 

analysis strategy, as the anisotropy modulates count rates depending on the source 

location. 

A study of the 1956 February 23 GLE proton rigidity spectrum using the NM 

network was performed by Meyer et al. (1956) during multiple episodes of the event 

(Figure 3.6). At 0500 UT the GLE signal was still above background at the Huancayo 

and Mexico City stations, indicating the presence of higher rigidity particles. By 0900 

UT the flux at higher rigidities had greatly subsided, as a result the rigidity function is 
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steeper (softer). Similar softening of spectra during a GLE have been observed for other 

well-connected events (Figure 3.6), such as 1978 May 7 (Debrunner and Lockwood, 

1980; Debrunner et al., 1984; Lockwood et al., 2002). 

Alternative approaches to measure the proton rigidity spectrum have been 

attempted, particularly to obtain a result during the initial anisotropic stages. For 

example, two NMs at the same location but with one excluding the lead producer to yield 

a different response (Bieber and Evenson, 1991). Many of these approaches failed to find 

a dependable representation for the sensitivity of the alternate configuration. However, an 

Figure 3.6: (Left) Rigidity spectra for multiple episodes of the 1956 February 23 GLE (Meyer et al., 
1956). (Right) Rigidity spectra during the 1978 May 7 GLE for both a worldwide 
neutron monitor network analysis and the ratio between the Mt. Washington and Durham 
stations, the later spectra have been scaled down for clarity (Lockwood et al., 2002). In 
both events the spectra are harder at earlier stages. 
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approach using two NMs at similar locations, with similar cutoff rigidities, but at 

different altitudes, was able to yield results in the form of a power-law (Lockwood et al., 

2002). The ratio of the enhancements between two stations (e.g., Mt. Washington and 

Durham, NH) represents a measure of the spectral index in the rigidity range determined 

by the cutoffs of the NM pair (Figure 3.6). 

A measurable upper limit to the GLE proton rigidity spectrum was first suggested 

in 1971 (Heristchi and Trottet, 1971, 1975; Heristchi et al., 1976). Using the NM 

network, Heristchi and Trottet calculated the maximum rigidity produced in several 

events, and concluded that a more detailed spectral form than the standard power-law 

would be necessary to model the observed proton spectra. The discovery of CMEs and 

their correlation with large SEP events (Kahler et al., 1978) led to the present theory of 

coronal shock acceleration (Achterberg and Norman, 1980; Lee and Fisk, 1982; Lee and 

Ryan, 1986), and Ellison and Ramaty (1985) found an agreement between observed GLE 

spectra and the spectral form deduced from shock acceleration theory. This new spectral 

form consisted of the traditional power-law (the spectral index is determined by shock 

conditions) with an exponential decay, allowing the spectrum to "rollover" at higher 

energies 

dJ oc 
dE ^ e x p \dt J 0 E0 

(3.5) 

Beginning in 2000 an 11-station network, known as Spaceship Earth, was 

deployed to four continents to provide three-dimensional measurements of the cosmic ray 

angular distribution (Bieber and Evenson, 1995; Moraal et al., 2000). The stations are 

strategically placed at high latitudes and offer two advantages. First, the rigidity cutoffs 
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Figure 3.7: Locations and asymptotic viewing directions for the 11 neutron monitors that make up 
Spaceship Earth (Bieber et al, 2004). The Climax and South Pole (location not pictured) 
stations have been added to compare viewing direction. The lines show the viewing 
directions for the central 50% of the detector energy response. 

for all stations are essentially zero and thus all stations have the same energy threshold set 

by the atmospheric cutoff (~0.5 GV). Second, the asymptotic viewing directions 

(generally well away from the physical location) for the network of stations provide 

complete coverage of the entire equatorial region, with a three-dimensional perspective 

from Thule and McMurdo (Figure 3.7). Therefore, Spaceship Earth is an excellent tool 

for resolving pitch-angle distributions and apparent source directions during the initially 

anisotropic phases of GLEs. 

Even after 60 years of operation, NMs are still heavily relied upon for 

measurements of cosmic ray intensity in the -1-15 GV range. The advent of the Space 
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Age in the late 1950s has furthered our understanding of SEPs and their propagation in 

the inner heliosphere. However, NMs are still required for measurements of the highest-

energy SEPs due to their soft spectra and the small effective areas of spacecrafts. 

Station Coordinates Rigidity Elevation (m) Start 
(Lat, Long) Cutoff (GV) 

Aligarh, India* 27.91, 78.07 14.67 186 1971 
Alma-Ata, Kazakhstan 43.25, 76.92 6.61 775,1670,3340 1973 
Apatity, Russia 67.55, 33.33 0.57 177 1968 
Beijing, China 40.08, 116.26 10.06 48 1984 
Brisbane, Australia -27.42, 153.08 6.99 0 1976 
Calgary, Canada 51.08, 245.86 1.08 1128 1964 
Cape Schmidt, Russia 68.92, 180.53 0.00 0 1981 
Chacaltaya, Bolivia -16.31,291.85 12.53 5200 1966 
Climax, USA* 39.37, 253.82 2.99 3400 1951 
Dourbes, Belgium 50.10, 4.60 3.34 225 1969 
Durham, USA 43.10, 289.17 1.58 0 1964 
Erevan, Armenia 40.17,44.25 7.58 999,2000 1988 
Fort Smith, Canada 60.02, 248.07 0.33 206 2000 
Fukushima, Japan 37.75, 140.48 . 10.61 66 1971 
Gif-sur-Yvette, France 48.68, 2.13 3.60 40 1966 
Goose Bay, Canada 53.27, 299.60 0.64 46 1964 
Gulmarg, India* 34.07, 74.42 11.58 2743 1968 
Hafelekar, Austria 47.32, 11.38 4.38 2290 1968 
Haifa, Israel 32.80, 35.00 10.75 2300 1998 
Haleakala, USA* 20.72, 203.72 12.91 3052 1963 
Haleakala, USA 20.72, 203.72 12.91 3030 1991 
Hermanus, S. Africa -34.42, 19.23 4.58 26 1964 
Hobart, Australia -42.90, 147.33 1.84 18 1978 
Inuvik, Canada 68.35, 226.28 0.17 21 1964 
Irkutsk, Russia 52.47, 104.03 3.64 433,2000, 3000 1967 
Jungfraujoch, Switzerland* 46.55, 7.98 4.61 3475 1958 
Jungfraujoch, Switzerland 46.55,7.98 4.61 3475 1986 
Kerguelen Island -49.35, 70.27 1.14 33 1964 
Kiel, Germany 54.33, 10.13 2.36 54 1964 

Table 3.2: Neutron Monitors still in operation (part 1 of 2). Adapted from Smart and Shea (2000). 
Note: Many stations may have been rebuilt or upgraded. Stations operating 
with the original IGY design are denoted by a (*). 
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Station Coordinates Rigidity Elevation (m) Start 
(Lat, Long) Cutoff (GV) 

Kiev, Ukraine 50.72, 30.30 3.57 131 1969 
Kingston, Australia -42.99, 147.29 1.84 65 2000 
Leadville, USA 39.75, 255.03 3.03 3098 1968 
Lomnicky Stit, Slovakia 49.20, 20.22 3.98 2632 1954 
Magadan, Russia 60.12, 151.02 2.09 220 1970 
Mawson, Antarctica -67.60, 62.88 0.20 30 1986 
McMurdo, Antarctica -77.85,166.72 0.00 50 1964 
Mexico City, Mexico 19.33,260.82 8.61 2274 1970 
Morioka, Japan 39.70, 141.13 10.23 131 1977 
Moscow, Russia 55.47, 37.32 2.43 200 1966 
Mt. Norikura, Japan 36.11, 137.55 11.48 2770 1968 
Mt. Washington, USA* 44.30, 288.70 1.46 1909 1954 
Mt. Wellington, Australia -42.92,147.24 1.84 725 1970 
Nain, Canada 56.55, 298.32 0.36 46 1964 
Newark, USA 39.68, 284.25 2.09 50 1978 
Norilsk, Russia 69.26, 88.05 1.03 0 1971 
Novosibirsk, Russia 54.80, 83.00 2.87 163 1971 
Oulu, Finland 65.05, 25.47 0.78 15 1964 
Peawanuck, Canada 54.98, 274.56 0.47 0 2000 
Potchefstroom, S. Africa* -26.41,27.06 7.00 1351 - 1971 
Rome, Italy 41.90, 12.52 6.32 0 1966 
Sanae, Antarctica -70.31,357.59 0.86 856 1964 
South Pole, Antarctica -90.00, 0.00 0.09 2820 1977 
Tbilisi, Georgia 41.72, 44.80 6.73 510 1971 
Terre Adelie, Antarctica -66.67, 140.02 0.02 32 1968 
Thule, Greenland 76.50, 291.30 0.00 44 1964 
Tibet, China 30.11,90.53 14.10 4300 1998 
Tixie Bay, Russia 71.58, 128.92 0.76 0 1966 
Tokyo-Itabashi, Japan 35.75, 139.72 11.63 20 1969 
Tsumeb, Namibia -19.12, 17.35 9.21 1240 1976 
Turku, Finland 60.40, 22.60 1.36 32 1983 
Yakutsk, Russia 62.01, 129.43 1.65 105 1971 

Table 3.2: Neutron Monitors still in operation (part 2 of 2). Adapted from Smart and Shea (2000). 
Note: Many stations may have been rebuilt or upgraded. Stations operating 
with the original IGY design are denoted by a (*). 
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Chapter 4 

The Milagro Detector 

Milagro operated in the Jemez Mountains near Los Alamos, New Mexico from 

January 2000 to March 2008 (Atkins et al. 2000, 2001). The detector was built in a large 

pond and utilizes the water Cerenkov technique to detect air shower particles. Although 

Milagro operated primarily as a TeV gamma-ray observatory, it also functions as a 

cosmic-ray detector. Technical information, in addition to that contained in this chapter, 

can be found in reviews by McCullough (1999), Falcone (2001), and Abdo (2007). 

4.1 Cerenkov Emission 

The speed of light depends on the index of refraction of the medium that it is 

traversing, given by the simple relationship 

c 
v = — where n is the index of refraction (4.1) 

n 

When a charged particle exceeds this velocity it disrupts the electromagnetic field of the 

medium and radiates, this process is called Cerenkov radiation. Rewriting equation 4.1 in 

terms of energy gives a threshold energy to this process. 

17 moC2 

E„, = I where mo is the rest mass of the particle (4.2) 

V n 
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The Cerenkov radiation is emitted at a characteristic angle in the medium. The 

radiation propagates in the direction of the E x B field, leading to an emission angle 

given by 

cos(0c) = — where /? ~1 for relativistic particles (4.3) 
np 

The radiation is emitted with axial symmetry about the particle velocity vector in a 

pattern referred to as the Cerenkov cone, for water (n = 1.33) this angle is -41°. 

4.2 Physical Description 

4.2.1 Location 

The Milagro detector (Figure 4.1) operated at an elevation of 2650 m above sea 

level in the Jemez Mountains about 35 miles west of Los Alamos, New Mexico at latitude 

35.9° 52' 45" N and longitude 106° 40' 37" W. This elevation corresponds to an 

atmospheric overburden of -750 g/cm2, roughly 12 free mean paths for protons 

undergoing nuclear collisions in the atmosphere (~62 g/cm2). At this elevation the 

detector was located well below shower maximum for nearly all showers detected. 

However this situation (observing on the tail of the distribution) is common in the fields 

of high-energy gamma-ray and cosmic-ray air shower physics. Higher altitude locations 

closer to shower max can be difficult to maintain, and difficult to access. Rather than 

placing the instrument closer to shower maximum to detect more shower particles, 

Milagro attempted to detect a larger fraction of the shower particles incident at ground-
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Figure 4.1: Aerial view of the Milagro detector. 

level. Traditional extended air shower arrays are composed of small detectors spread 

over a large area, thus detecting only a small fraction of the shower particles. Milagro 

operated as a single, large detector, able to sample a large fraction of the shower particles 

that fell within its active area and thus lowering the energy threshold. 

Another factor that contributed to the low threshold energy of Milagro was the 

geomagnetic field. Particles incident on this field need sufficient rigidity to penetrate 

down to ground-level (see section 3.1). The threshold rigidity required for this is a 

function of the location of the detector within the geomagnetic field (Figure 3.3). 
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Milagro was located at a geomagnetic latitude of 44.5° N, neglecting variations in the 

geomagnetic field, this places the cutoff rigidity of Milagro at 3.86 GV. 

4.2.2 Detector Layout 

The core of the Milagro detector is a 6 million gallon pond with a depth of 8 m, 

and a surface measuring 80 m x 60 m that slopes on all sides yielding bottom dimensions 

of 50 m x 30 m. The pond is surrounded by 170 individual water Cerenkov detectors, 

called outriggers, over a 200 m x 200 m area. On the surface of the pond was an 

inflatable polyethylene cover that provided a light-impermeable environment, allowing 

the detector to function free of background light 24 hours per day. 

To protect , the detector from lightning (the Milagro site was among the most 

lightning prone areas in the United States) a 12,500 m2 Faraday cage enclosed the entire 

observatory site. The cage was composed of a mesh of wires suspended by telephone 

poles, enclosing the pond and the buildings containing the electronics hardware. This 

structure intercepted and grounded the lightning, protecting the detector from dangerous 

voltage spikes. 

Within the detector, a 2.8 m x 2.8 m (with respect to the surface) grid of sand-

filled PVC pipe spanned the floor of the pond, including the sloping sides (Figure 4.2). 

Photomultiplier tubes (PMTs) were attached to this grid by Kevlar strings before water 

was added (McCullough et al., 1999). Once the detector was filled with water the 

PMTs were suspended in two layers within the pond. 450 PMTs submerged under 1.5 m 
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of water (Air Shower layer or AS layer) detected air shower particles reaching the 

ground. 273 PMTs under 6 m of water (muon layer) were used to distinguish photon or 

electron-induced showers from hadron-induced showers. The muon layer PMTs were 

horizontally offset from the AS layer PMTs by half the grid spacing (Figure 4.2). 

The PMTs used in Milagro were 20 cm in diameter (Hamamatsu #R5912SEL). 

This particular model was chosen because it was found to perform well in the areas 

important for reconstructing air showers, some of which included good timing resolution 

at all levels including one photoelectron (2.7 ns for a single photoelectron (PE)), good 

charge resolution that included a resolved 1 PE peak, good charge linearity (up to - 7 5 

PEs), and high PE collection efficiency (20%, 25% at 325 nm, 450 nm; Atkins et al., 

2000)). A waterproof polyvinyl chloride (PVC) casing protected the electronic base of 

each PMT. A single RG-59 coaxial cable carried the high voltage to the tube and the AC 

signal from the tube back to the electronic system 

The pond densely sampled the air shower particles that reach the detector level. 

Since the Cerenkov angle in water is ~ 41°, the AS layer PMTs detected the Cerenkov 

radiation from the relativistic charged particles in the air shower with high efficiency. 

Roughly 50% of all electromagnetic particles that enter the pond were detected. Gamma 

rays in an air shower outnumber electrons and positrons by a factor of ~5 at ground-level, 

and because the AS layer PMTs were placed under 4 radiation lengths of water, gamma 

rays converted to electrons and positrons before reaching this layer. The electrons and 

positrons, in turn, Cerenkov radiate in water and were detected. The depth of the muon 

layer corresponded to 16 radiation lengths of water; thus, all electromagnetic particles 
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Figure 4.2: (Top) Inside view of the Milagro detector before it was filled with water. The grid of 
PVC pipe in which the PMTs will be mounted and the light-tight cover can be 
seen. (Bottom) Cross sectional schematic of the PMT layout of the Milagro pond with an 
incoming muon's Cerenkov cone and an incoming photon. 
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in an air shower were absorbed before reaching this layer, only muons and hadrons were 

able to penetrate and shower near this layer. Muons of energies as low as 1.2 GeV 

reached the muon layer in Milagro. 

The water in Milagro was initially obtained from a fresh water well at the site of 

the detector and was constantly recirculated at a rate of 200 GPM. During recirculation, 

the water was filtered through a charcoal filter, a 10 |im filter, a 1 (a,m filter, a carbon 

filter, and a 0.2 fim filter to maintain transparency. In addition, the water passed through 

a UV filter before returning to the pond to prevent any biological growth. To ensure good 

quality of the water, measurements of the attenuation length were made periodically, the 

latest had shown an attenuation length of 17 m at 325 nm. The bottom of the pond was 

lined to keep contaminants out of the filtered water. 

4.3 Electronics and Data Acquisition System 

The PMT cables were routed out of the pond and subsequently fed through a 

patch panel (each containing 16 tubes), the signals then traveled to an underground 

conduit containing the electronics. Each patch was first processed by a custom 16 

channel front end board (FEB) that read in the pulse signal from each PMT and 

distributed the high voltage to each tube. The FEB then processed the signal from each 

PMT and sent it to the digital boards where timing and pulse height information was 

prepared for digitization. 



To determine the arrival time and charge of a signal in a PMT, the time-over-

threshold (TOT) technique was used (Falcone, 2001). The TOT method measures the 

time a pulse spends above a defined threshold and then relates this time to the size of the 

signal in the PMT. A more straight-forward way of doing this would have been to pulse 

height analyze the signals, but due to high cost and the high event rate in Milagro the 

TOT method was chosen. Pulse height analyzers (PHAs) were not used in Milagro with 

the exception of calibrating the TOT. The event size and data size were reduced since the 

time-to-digital (TDCs) contained the pulse height and timing information without the 

need for a pulse height analysis. 

A disadvantage of the TOT technique was that it did not provide as good a 

measurement of the pulse size as a PHA due to the pulses rising and falling at an 

exponential rate in time. However this problem was alleviated somewhat by the dynamic 

range of the TOT being superior to a PHA. Another problem with the TOT technique is 

that pre-pulses and after-pulses lead to errors in signal durations. To negotiate this 
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Figure 4.3: Milagro's front end boards measured the time that a signal pulse spent with its voltage in 
excess of two predetermined thresholds. This time could then be correlated with the 
amplitude of the pulse by calibrating with an ADC. (Falcone, 2001) 
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problem, Milagro had two independent thresholds used to differentiate between large 

events (more likely to have associated pre-pulses) and small events. 

In the FEB, the signal from each PMT was split and sent to high gain (~ x 7) and 

low gain x 1) amplifiers (Atkins et al., 2000). The amplified signals were then sent to 

a discriminator with preset PE thresholds. The signal from the high gain amplifier was 

sent to a low threshold discriminator with a —1/4 PE threshold. The signal from the low 

gain amplifier was split in two, one part went to a high threshold discriminator with a 

~5 PE threshold, and the other went to an output connected to an external PHA for 

calibration purposes. Whenever the PMT pulse crossed either of the low or high 

thresholds an edge was generated (Figure 4.3). For a pulse that crossed only the low 

threshold, two edges were generated. For a pulse that crossed both the low and high 

thresholds, four edges were generated. 

The output of the low and high threshold discriminators were then sent to the 

digital boards. The digital boards multiplexed the signals from the low and high 

threshold discriminators, and provided triggering and monitoring information. Each 

PMT signal crossing a discriminator threshold generated a 300 ns pulse with a 25 mV 

amplitude (Abdo, 2007). These data were digitized using LeCroy 1887 FASTBUS TDC 

modules. Each of these modules contained 8 event buffers and 96 channels that could 

each record up to 16 edges per event with 0.5 ns resolution. The time of each event was 

recorded by using a latched GPS clock. 

After digitization, the data were read out with a FASTBUS smart crate controller 

(FSCC). The FSCC transferred the data to a pair of dual ported Versa Module Eurocard 



(VME) memory modules, which allowed for the simultaneous reading and writing of 

data. An SGI Challenge L multi-CPU computer was responsible for reading the data 

from the memory boards over the VMEbus, and controlled the operation of the detector 

electronics (Abdo, 2007). The system was controlled remotely over the internet, and in 

cases that required human intervention, the automated system was capable of sending an 

alert via pager carried by the collaboration member on active shift duty. This system 

allowed Milagro to operate with less than 0.5% dead time. 

4.4 Data Types 

The main datasets for the Milagro detector were the triggered rates, used to 

analyze very-high-energy gamma rays (>100 GeV) and resolve their arrival directions 

using event reconstruction algorithms based on PMT timing. This required a large 

number of AS layer PMTs to trigger (50-70) within 200 ns in order to identify the arrival 

direction and species of the primary particle. However, the energy threshold for protons 

in this data channel was - 5 0 GeV, well above the energies produced in an SEP event. For 

more on Milagro as a gamma-ray observatory see Atkins et al. (2003), and Abdo et al. 

(2007, 2008). 

The scaler datasets in Milagro recorded variations of low and high threshold hits 

in individual PMTs, and counted these hits similar to a NM. Although these rates were 

recorded every second, each 16-tube patch would need to be summed over all tubes to 

give a 16 second count rate. In addition to these low and high threshold scalers were data 

78 



channels consisting of discriminations of the analog sum of all AS layer low threshold 

hits. These multiplicity channels contained 8 levels of discrimination, corresponding to: 

6, 8, 10, 12, 16, 25, 32, and 40 pmt multiplicity. The multiplicity channels were recorded 

every second, and would also need to be summed over all 16 tubes in each patch, 

providing 16 second rates. 

The environment monitoring system (EMS) was used to monitor the status of 

many aspects of the observatory and its surrounding environment. The EMS recorded 

meteorological information including temperature, barometric pressure, humidity, wind 

speed, and precipitation. In addition, pond water characteristics such as depth, 

recirculation flow rate, pressure within the filtration system, water temperature status of 

PMTs and their associated high voltage, scaler counter rates from an independent 

CAMAC system, and trigger rates of the detector were also recorded. All of these data, 

updated at -160 second intervals, could be monitored remotely from a web page, and the 

data were archived. 

4.5 Simulating the Milagro Detector 

4.5.1 Monte Carlo Simulations 

The first stage in determining the Milagro detector's response to cosmic rays is to 

simulate the production and propagation of cosmic-ray induced air showers through the 

atmosphere. This is done using the CORSIKA (Cosmic Ray Simulations for Kaskade -
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version 6.5021) software package (Heck, 2010). The simulation begins with the first 

interaction of the primary particle in the atmosphere, followed by the subsequent 

interactions of the secondary particles in the shower down to ground-level (in this case 

the Milagro altitude, 2650 m). In order to obtain enough statistics, especially at lower 

energies near the rigidity cutoff due to the soft proton spectra in GLE events, hundreds of 

millions of CORSIKA showers were generated. Proton showers were thrown over a 

zenith angle range of 0-70° to simulate isotropic pitch-angle distributions, and fixed 

overhead at 0° to simulate an anisotropic pitch-angle distribution. Showers were 

simulated at logarithmically spaced energies ranging from 3.13-100 GeV for both pitch-

angle distributions. 

The simulation of air shower particles incident upon the detector was done using 

the GEANT4 (Geometry and Tracking) software package (Agostinelli et al., 2003). 

Using the CORSIKA shower results at ground-level, GEANT4 propagated these showers 

Figure 4.4: (Left) A cosmic-ray proton's simulated interactions in the atmosphere using CORSIKA, 
an 8 km x 8 km ground map of Chicago is included for reference. (Right) Simulated 
light in one of Milagro's Hamamatsu PMTs using GEANT4 (figure courtesy of Vlasios 
Vasiliou). 
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through a model of the Milagro detector. The interactions of the secondary particles in 

the shower, such as Cerenkov light production by relativistically charged particles 

traveling in water, pair production of electron-positron pairs from gamma rays, hadronic 

interactions, and other interactions were all simulated with GEANT4. The core positions 

of the CORSIKA showers were thrown randomly over a user defined surface centered on 

the pond. For each PMT hit, the GEANT4 output included the number of PEs, their 

arrival times, and the position of detection on the face of the photocathode. 

4.5.2 Simulating the Cosmic Ray Background 

Milagro's ability to detect air showers was not limited to the physical size of the 

instrument. Effective area is a measure of the effectiveness an instrument has in 

detecting particles and is defined as 

(4.4) 
iV Throw 

where Arhmw is the area over which the shower cores are distributed, Nm is the number of 

hits in the detector, and Nnrow is the number of primary particles thrown. Effective area 

is not to be confused with the efficiency of the detector, although they are related. For 

example, a detector that is 100% efficient to a radius of 100 m and 0% efficient elsewhere 

will have an Aey/of 1.00 * 7r(100 m x 100 m), or 3.14 x 104 m2. However, a detector that 

is 2% efficient everywhere out to a 1 km radius will have an Aeffoi 0.02 x tt( 1,000 m x 

1,000 m), or 6.28 x 104m2 . 
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To ensure that the Monte Carlo showers were thrown over a large enough area we 

progressively increased the throw area until the effective area reached an asymptotic 

value. For the Milagro prototype, Milagrito, this area occurred over a rectangular surface 

at approximately 7,000 m x 7,000 m (Falcone, 2001). Preliminary simulations in 

Milagro (referred to as preliminary for reasons described in section 4.5.4) for both 

isotropic and anisotropic pitch-angle distributions were thrown over circular areas out to 

a radius of 30,000 m. The asymptotic value was reached at a radius of -10,000 m, 

slightly larger than Milagrito. 

As discussed in section 2.1.1, the cosmic ray background is dominated by 

hydrogen (-90%), however there is a significant contribution from helium ( -9% by 

number). For our purposes, helium could be treated as four separate primary particles 

(the total momentum of the alpha particle is twice that of hydrogen at the same rigidity 

due to its charge), enabling an estimate of the simulated cosmic ray background to be a 

factor of 13/9 that of the simulated isotropic proton background. 

The scaler effective area curves (also called specific yield functions (SYFs)) were 

represented as a series of power-laws in rigidity 

Equation 4.5 can be rewritten in terms of energy using the relationship in equation 6.12. 

Using these SYFs and the differential energy spectrum for cosmic-ray protons (Haino et 

al., 2004), expressed as 

n 
(4.5) 

dN 
dE 

( E V2'74 
(m2 • sr • s- GeV) (4.6) = 0.315 

50 GeV 
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Data Channel Simulated Rate (Hz) Measured Rate* (Hz) Scale Factor 

Low Threshold 1.8 x 107± 1 x 106 7.81 x 106± 1.5 X 106 2.3 ±0 .13 
High Threshold 2.4 x 106± 2 x 105 1.25 x 106± 2.0 X 105 1.9± 0.35 

6-PMT 9.7 x 105± 1 x 105 2.66 x 105 ± 3.5 X 104 3.7 ± 0.61 
8-PMT 6.7 x 105± 6 x 104 1.64 x 105 ± 2.7 X 104 4.1 ±0 .77 
12-PMT 3.3 x 1 0 5 ± 4 x 104 7.95 x 104± 1.9 X 104 4.2 ± 1.1 
16-PMT 1.9 x 105± 3 x 104 5.38 x 104± 1.3 X 104 3.55 ± 1.0 
25-PMT 4.9 x 104± 3 x 104 1.30 x 104 ± 3.2 X 103 3.8± 2.5 

Climax NM 1.3 x 103 ± N/A 8.50 x 10'dt 1.9 X 10' 15.3 ± 4 . 6 
Durham NM 1.1 x 103± N/A 1.76 x 102 ± 2.8 X 10' 6.3 ± 2 . 1 

Mt. Washington NM 1.3 x 103± N/A 4.80 x 102 ± 9.5 X 101 2.7 ± 0 . 8 

Table 4.1: Simulated vs. measured cosmic ray 
were taken before the 2005 January 
obtained for the 2001 April 15 GLE). 

background rates in Milagro (measured rates 
20 GLE, an analogous set of scale factors was 

The expected rates in each scaler channel were computed and compared to the measured 

rates (Table 4.1). The expected rates were given by 
0 = 7 0 ° == 

f f ExY(E) dEdQ. 
J J AT? 

0=0° £,., 
(4.7) 

4.5.3 Sensitivity to Pitch-Angle Distributions 

Preliminary simulations were distributed randomly over a circular area extending 

out to a 10 km radius. Showers from primary particles at lower energies (below 

- 1 0 GeV) were necessary to complete the SYFs for the Milagro scaler channels, but 

producing hits in the higher multiplicity channels (e.g., 16-PMT and 25-PMT) from these 

lower energy protons was difficult. Roughly 100 billion showers for each pitch-angle 

distribution were needed to complete the 16-PMT yield function, and the 25-PMT yield 

function could not be extended below - 6 GeV. This was not a problem for the 2001 April 

15 event, the GLE was only present in the low and high threshold channels. However, 



the 2005 January 20 event was the most intense at ground-level in 50 years, and increases 

over background were recorded in all multiplicity channels up to and including 25-PMT. 

To utilize the full capability of the Milagro detector to analyze GLEs, the 25-PMT 

channel yield function would be needed down to the cutoff rigidity. Continuing along the 

path of the preliminary simulations would require a 10-fold, if not 100-fold, increase in 

showers produced, thus being an unreasonable approach. A solution to this problem 

would be provided by the simulations already completed. 

Showers produced by primary particles with high zenith angles (closer to the 

horizon) that reach ground-level are more likely to trigger multiple PMTs (Figure 4.2). 

This is because a single muon can go through more radiation lengths in the pond before 

reaching the AS layer depth, thus the Cerenkov cone will illuminate more PMTs. For low 

(near vertical) zenith angles a single muon is more likely to penetrate below the AS layer 

before its Cerenkov cone can spread out to hit multiple PMTs. Multiple muons at low 

zenith angles are needed to reach ground-level and interact with the pond, requiring the 

shower core to be relatively close to the detector. Multiple PMT hits for low zenith 

angles would then be dominated by shower cores in close proximity to the pond, with less 

contribution from shower cores at radial distances >1 km. For high zenith angles, higher 

multiplicity events could come from either scenario. To investigate this quantitatively, 

cuts on the preliminary simulations were made, separating the shower cores into two 

throw distance regions: 0 m - 1 km, and 1-10 km. 

The ratio between the effective area of the >1 km thrown cores to the total 

effective area from all cores was calculated as a function of energy for both pitch-angle 
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distributions. As predicted, the isotropic simulation set had a much larger contribution 

from >1 km cores than the zenith simulation set. In addition and perhaps most 

importantly, we used this relationship for differing PMT multiplicities and compared 

them to data from the 2005 January 20 event. Using the ratios at GLE energies 

(<10 GeV), we normalized these ratios to that of the 6-PMT channel. For zenith 

distributions the ratio trends smaller for increased multiplicity. (Figure 7.5). 

Since the cosmic ray background is isotropic, an anisotropic event produces a 

larger signal above background for lower multiplicity channels with respect to the higher 

multiplicity channels. Therefore, the count rate increases over background for different 

Milagro multiplicity channels reveal the pitch-angle distribution present at the time of an 

event. 

4.5.4 Simulating Milagro for Ground-Level Enhancements 

To effectively study GLE events, which characteristically have soft spectra at 

ground-level rigidities, the sensitivity of Milagro to SCRs at rigidities near the cutoff 

were crucial. Preliminary simulations were unable to produce enough statistics for the 

25-PMT scaler below 6 GeV, a major problem for analyzing the largest event detected by 

Milagro, the 2005 January 20 GLE, which produced an increase over background in this 

channel. However, these preliminary simulations did reveal trends in the effective area as 

functions of energy and throw distance. 
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By taking advantage of Milagro's higher efficiency to shower cores in close 

proximity to the pond, an extrapolation procedure for the SYFs of the higher multiplicity 

channels was developed. Showers at logarithmically spaced energies from 3.13-35 GeV 

were thrown in progressively larger annuli out to a maximum throw distance of 10 km. 

The total effective area was then a sum of the effective areas from each annulus. The 

relationships between the effective area from 0-100 m with respect to other annuli such as 

100-300 m, 300 m - 1 km, 1-3 km, and 3-10 km as a function of energy were all 

documented. 

To extrapolate the 25-PMT channel for events out to 10 km at rigidities 

comparable to the cutoff, our simulations were focused close to the detector (0-100 m) 

where the efficiency was highest. We then compared the result in this region to other 
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Figure 4.5: 2-D map of shower cores thrown in an annulus 1-3 km from the center of the 
pond. This particular map is for 25 GeV primary particles. 
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multiplicity channels. For example, the ratio of the 16-PMT Aeff to the 25-PMT Aeff as a 

function of inverse energy is given in Figure 4.6. The data fit nicely to an exponential. 

Although the 300 m - 1 km region does not have a final data point corresponding to 3.13 

GeV, the exponential fit estimates what the value of the ratio will be with respect to the 

completed 16-PMT result. The results of this extrapolation procedure can be seen in 

Figure 4.7, and are given in more detail in Figures A.1-A.4. 

Figure 4.6: The effective area ratios for the 16-PMT and 25-PMT channels as a function of inverse 
energy. The exponential relationship is used to extrapolate the specific yield function for 
the 25-PMT channel. 
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Figure 4.7: Milagro scaler channel specific yield functions for an isotropic (bottom) and an 
anisotropic (top) pitch-angle distribution. By throwing the shower cores in 
apertures progressively farther f rom the center of the detector, we could 
extrapolate the higher multiplicity specific yield functions to lower rigidities. 
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4.6 Comparison to Other Instruments 

Using the Cerenkov emission of charged particles in water, Milagro was able to 

detect nearly all particles that crossed the surface of the pond. In contrast, typical 

extended air shower array detectors cover <1% of the total area over which they are 

distributed (see section 2.3.3). This feature greatly lowered the energy threshold for 

Milagro while still retaining the abilities of an extended air shower array. Milagro 

operated with all-sky coverage and a very high duty cycle (>90%). 

Imaging ACTs (see section 2.3.1) are more sensitive to sources than Milagro was, 

thus, ACTs can observe over shorter timescales with higher significance. However, 

ACT's duty cycles are severely limited because they must minimize background light by 

observing on clear moonless nights. ACTs also have a relatively small field of view, 

making detections of transient unknown sources difficult. Milagro was well suited for 

these types of studies due to its very high duty cycle and all-sky coverage (Abdo et al., 

2007a, 2007b, 2008). 

When functioning as a cosmic ray and GLE observatory, Milagro was closely 

related to NMs (see chapter 3). Like Milagro, NMs operate above thresholds restricted 

by the cutoff rigidity, however Milagro possessed multiple channels with effective areas 

several orders of magnitude larger than that of a NM (Figures A.8, A.9). NMs are located 

around the globe (Table 3.2) with different rigidity cutoffs and atmospheric overburdens, 

the relative signals in this worldwide network of NMs can be used to determine the 

anisotropy of GLEs. As described in section 4.5.3, Milagro had this ability independently 

by utilizing the enhancement ratios between various multiplicity channels. 



There are a wide array of spacecraft detectors for cosmic rays and SEPs, but the 

sensitivity of these instruments is limited by the size of detector capable of being 

launched into space. This size constraint requires long integration times to be even 

remotely sensitive to GeV particles. Thus, ground-based detectors such as Milagro and 

NMs are required to measure the spectra at GeV energies, whereas spacecraft 

measurements measure the spectra below GeV energies. 

90 



Chapter 5 

The 2001 April 15 and 2005 January 20 Events 

During its eight years of operation the Milagro detector registered strong ground-

level enhancements for the 2001 April 15 and 2005 January 20 events, the latter of which 

was the most intense in 50 years. We will discuss spacecraft and ground-level 

observations for each event. 

5.1 The 2001 April 15 Event 

The 2001 April 15 event is associated with an X-class flare and a fast CME. The 

SEP intensity was among the highest in solar cycle 23 and observed by a variety of 

spacecrafts. Charged particles were accelerated up to several GeV, producing a GLE 

detected in many ground-based detectors. 

5.1.1 Observations with other Instruments 

The XI4.4 flare associated with the 2001 April 15 event was detected by 

GOES-8; it began at 1336 UT and reached a maximum by 1349 UT (Figure 5.1). The 
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flare, located at S20°, W85°, was the largest in a group of M- and X-class flares from 

active region 9415 . 

The Large Angle and Spectrometric Coronagraph (LASCO) instrument aboard the 

SOHO spacecraft detected the launch of a CME associated with the X14.4 flare (Figure 

GOES X-RAY DATA 

Apr9 Apr 10 Apr i l Apr 12 Apr 13 Apr 14 Apr 15 Apr 16 

Figure 5.1 (Top) Active region 9415 produced numerous flares from April 9, 2001 to April 16, 2001, 
the largest being the X14.4 flare on April 15, 2001 (courtesy of NOAA). 
(Bottom) SOHO/LASCO images during the 2001 April 15 event (Maia et al., 2007). The 
CME can be seen to propagate outward from the western limb. The "snow" in the second 
frame is due to charged particles striking the camera. 
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5.1). Using LASCO's C2 coronagraph (2-6 R© field of view), a height vs. time profile 

resulted in a CME speed of 1200 km-s1 with an extrapolated onset time of 1332 UT 

(Gopalswamy et al., 2003). The relatively fast CME speed is far in excess of the ambient 

solar wind speed, in addition there is type II radio emission during early stages of the 

event (Gopalswamy et al., 2003), evidence for the presence of a CME-driven shock. 

The SEP profiles aboard the Interplanetary Monitoring Platform-8 (IMP-8) for the 

2001 April 15 event (Figure 5.2), as well as evidence of type II radio emission associated 

with the fast CME, strongly indicate that particles were accelerated by a CME-driven 

shock. The 3He/4He ratio measured by the Ultra Low Energy Isotope Spectrometer 

(ULEIS) instrument aboard the Advanced Composition Explorer (ACE) was 0.22% at 

0.5-2 MeV/nucleon (Tylka et al., 2002), only a factor of five greater than the average 

solar wind value of 0.041% ± 0.003% (Gloeckleret al., 1999). This ratio is much less 

Universal Time (UT) 

Figure 5.2: IMP-8 spacecraft data (courtesy of Dr. C. Lopate, private communication) for protons 
from 15-145 MeV during the 2001 April 15 event. 
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than that of impulsive events (Kallenrode, 2003), suggesting an acceleration region at 

temperatures comparable to that of the corona such as in a CME-driven shock. 

The source location of both the X14.4 flare and the associated CME occurred on 

the western limb of the Sun, and as a result was magnetically well-connected to the Earth 

through the Parker spiral. Charged particles accelerated up to GeV energies were injected 

into interplanetary space, propagating along magnetic field lines. Shortly after the flare 

and CME onsets, many ground-based detectors registered GLEs due to the associated 

SCRs. 

5.1.2 Ground-Level Enhancement 

In 2001 the Sun was the in maximum phase of its cycle, and there was substantial 

solar activity around the time of the 2001 April 15 GLE (Figure 5.3). Active region 9415 

produced numerous M-class flares from April 5-15, including at least three X-class flares 

with associated halo CMEs. The CME shock passages at Earth caused multiple Forbush 

decreases, and reduced the cosmic ray background in Climax by ~20%. The 2001 April 

15 event occurred when the cosmic ray background was recovering from these 

decreases. For the Climax, Mt. Washington, and Durham NMs this recovery can be 

approximated to be linear over the short timeframe of the GLE. Therefore, a linear 

background subtraction for these NMs satisfactorily isolates the GLE signal from the 

cosmic ray background (Figure 5.4). 
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Figure 5.3: Cosmic ray intensities at the Climax neutron monitor around the time of the 2001 April 
15 event. Multiple Forbush decreases lower the background rate, and the GLE signal 
occurs while this background is in an exponential recovery phase. 

The largest increase over background in Milagro channels was only -1 .5% 

(Climax reached 35% in one minute data). Therefore, the background was dominated by 

small variations in intensity of comparable timescales to that of the GLE, rather than a 

longer exponential recovery. To isolate the GLE from the PC A corrected channels in 

Milagro, we fit a quadratic function to the background (with the event removed) for a 

time period of hours before and after the event (Figure 5.4). 
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Figure 5.4: The 2001 April 15 GLE was only 1.5% above the PCA corrected background rate (top). 
To isolate the GLE we performed a quadratic fit to the cosmic ray background in the 
Milagro channels (bottom). 
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Figure 5.5: Ground-level enhancements during the 2001 April 15 event for the Mt. Washington, 
Durham, and Climax neutron monitors. 
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Figure 5.6: Ground-level enhancements during the 2001 April 15 event for the Milagro low and 
high threshold channels. 

98 



5.2 The 2005 January 20 Event 

The 2005 January 20 event produced a GLE signal up to ~5,000% above 

background in some ground-level stations, a level not seen since the 1956 February 23 

event. Its rapid evolution and high intensity distinguishes it from other events, making it 

significant to the field. The event is associated with an X-class flare and a very fast CME 

(Figure 5.7). 

5.2.1 Observations with other Instruments 

The X7.1 flare on 2005 January 20 was the largest of multiple M- and X-class 

flares originating from active region 720. It began at 0636 UT at N12°, W58°, and 

reached a maximum by 0701 UT. The LACSO and Extreme ultraviolet Imaging 

Telescope (EIT) instruments aboard SOHO captured images of the associated CME. 

Gopalswamy et al. (2005) reported a velocity of 3,242 km-s1 , one of the fastest on 

record. 

The event was also observed in hard X-rays by the Reuven Ramaty High Energy 

Solar Spectroscopic Imager (RHESSI), and in gamma rays by the Solar Neutron and 

Gamma Ray Spectrometer (SONG) aboard the Russian CORONAS-F spacecraft (Figure 

7.8) The high-energy gamma rays (>60 MeV) are a sign of relativistic ion production. 

The rising edge of this data channel on the SONG instrument occurs at 0645:30 UT 

(more on event timing will be discussed in section 7.2.2). 
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Figure 5.7: (Top) The X7.1 flare detected by GOES-10 and GOES-12 on 2005 January 20 was the 
largest of a group of M- and X-class flares produced by active region 720 (courtesy 
of NOAA). (Bottom) SOHO/LASCO images capture the CME propagating outward 
from the western limb, and superimposed SOHO/EIT images reveal loop structure low in 
the corona at 0636 UT (Gopalswamy et al, 2005). The "snow" in the second frame is due 
to charged particles striking the camera. 

The SEP profiles for the Energetic and Relativistic Nuclei and Electron 

experiment (ERNE) aboard SOHO during the 2005 January 20 event (Figure 5.8), as well 

as evidence of metric type II radio emission coincident with the CME (Gopalswamy 

100 



1/20/05 1/21/05 
Universal Time (UT) 

Figure 5.8: Proton intensities from 4.7 MeV to 11.4 MeV measured by the ERNE instrument aboard 
the SOHO spacecraft during the 2005 January 20 event (courtesy of Dr. E. Valtonen, 
private communication). 

et al., 2005), strongly indicate that particles were accelerated by a CME-driven shock. 

Charge states aboard the Solar Anomalous and Magnetospheric Particle Explorer 

(SAMPEX) above - 2 5 MeV/nucleon were associated with a source temperature of ~1.6 x 

106 K, typical of solar wind or coronal material, not flare-heated material (see section 

1.5.1). In addition, the 3He/4He ratio during the 2005 January 20 event was reported to 

have an upper limit of 0.077% (Desai et al., 2006). This ratio is only a factor of two 

greater than a typical solar wind value (Table 1.3) and is further evidence of an 

acceleration region at temperatures found higher in the corona. 

The very prompt arrival and extreme intensity of the highest-energy particles 

(>1 GeV) make the 2005 January 20 event interesting. Although there is much spacecraft 

evidence of coronal shock acceleration in various particle species, the anisotropy and fast 

timing of the >1 GeV particles in ground-level detectors continue to spawn debate on the 
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accelerating source (i.e., flare accelerated or shock accelerated?). This will be discussed 

further in chapter 7. 

5.2.2 Ground-Level Enhancement 

Background levels in Climax were consistent before and after the GLE and the 

short duration of the event made a background correction for Climax unnecessary, 

however, background rates in Milagro were rising sharply over this short period. The 

background rate at the Haleakala NM (courtesy Dr. C. Lopate, private communication) 

provides insight to how the background in Milagro would be evolving during the GLE 

(Figure 5.9). 

Although the Sun was approaching solar minimum in 2005, there were high levels 

of solar activity around the time of the 2005 January 20 event. Active region 720 

produced multiple large flares from January 15 to January 20, including five X-class 

flares. The associated CMEs caused multiple Forbush decreases, which modulated the 

cosmic ray background, and the 2005 January 20 event took place during the recovery 

phase. The Haleakala NM and Milagro backgrounds track well with each other around 

the time of the 2005 January 20 GLE, but the Haleakala NM did not register an increase 

over background because of its high cutoff rigidity (Pc - 1 3 GV). We can approximate the 

recovery to be linear in Haleakala over the short duration of the GLE and, due to its well 

correlated behavior with Milagro, we performed a linear background subtraction on 

Milagro rates to isolate the 2005 January 20 GLE (Figure 5.9). GLE profiles for Climax, 
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Mt. Washington, Durham, and all available Milagro channels, are shown in Figures 5.10 

to 5.12. 
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Figure 5.9: (Top) Cosmic ray intensities at Milagro and the Haleakala neutron monitor around the 
time of the 2005 January 20 event. Multiple Forbush decreases lower the background 
rate, and the GLE signal occurs while this background is in an exponential recovery 
phase. (Bottom) Linear background subtraction to isolate the 2005 January 20 GLE from 
the cosmic ray background in the Milagro high threshold channel, a similar background 
subtraction was performed for all available Milagro channels. 
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Figure 5.10: Ground-level enhancements during the 2005 January 20 event for Mt. Washington, 
Durham, and Climax neutron monitors, as well as the Milagro low threshold channel. 
Note the different time scales. 
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Chapter 6 

Data Analysis and Procedure 

6.1 Background Correction using a Principal Component Analysis 

To perform an analysis of the events in question we must isolate the signals from 

the background count rates. The raw data rates from NMs have a known relationship 

with ground-level barometric pressure, however the Milagro rates have additional effects 

from several other factors. To relate the Milagro environmental data with background 

fluctuations we performed a principal component analysis (PCA) of the raw count rate 

with several environmental indicators. The PCA finds correlations between multiple data 

sets and defines new dimensions that have a reduced range of fluctuation. To test and 

illustrate this technique we performed a PCA on the February 2001 Climax NM count 

rate (Figure 6.1). A PCA can generate its own correction factor for the uncorrected 

Climax NM count rate and barometric pressure without prior knowledge of the 

relationship between the two data sets. 

Ground-level background rates are inversely related to solar activity, as discussed 

in section 2.1.3. To keep this modulation factor from affecting the correlations between 

Milagro background rates and local environmental conditions, datasets were chosen from 
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Figure 6.1: February 2001 was a period of low solar activity, providing a good sample for the 
PCA pressure correction. The raw Climax count rate is anti-correlated with barometric 
pressure (top). The PCA correction for Climax, scaled up for clarity, is nearly 
identical to the standard pressure correction (bottom). 

a period of low solar activity as indicated by the Climax NM around the time of each 

GLE. 

Background rates in Milagro are affected by at least three environmental 

parameters: barometric pressure, inside temperature, and outside temperature. Therefore, 

the PCA must have at least four dimensions—one for the uncorrected count rate and three 

for the environmental parameters. To perform a PCA, the covariance matrix of the 
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generated in the form 

C = 

Var(a) Cov(a,b) Cov(a,c) Cov(a,d) 
Cov(a,b) Var(b) Cov(b,c) Cov(b,d) 
Cov(a,c) Cov(b,c) Var(c) Cov(c,d) 
Cov(a,d) Cov(b,d) Cov(c,J) Var(d) 

(6.1) 

The variance of a dimension measures the spread of values from the mean of the 

dimension, defined as 
N 

Var(a) = ^ ( a i - n a f (6.2) 
z = l 

where a, is the i'h measurement of the dimension a, and is the mean of the dimension a 

defined by 
1 w 

(6-3) 
jv ,=1 

The covariance between two dimensions is a measure of the correlations between them, 

expressed as 
N 

Cov(x,y) = - - JUy) = Cov(y,x) (6.4) 

A positive covariance corresponds to dimensions that are positively correlated with each 

other, a negative covariance corresponds to dimensions that are anti-correlated (trend in 

opposite directions), and uncorrected dimensions have an expectation value covariance 

of zero. 

The principal components are the new dimensions that contain the greatest inter-

dimensional correlations, and therefore least correlated with each other. To find the 

principal components we diagonalize the covariance matrix by rotating the data into the 

directions of the eigenvectors from the covariance matrix. The principal component with 

the largest eigenvalue will have the greatest covariance, while the principal component 
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Figure 6.2: Environmental parameters (top) are used to correct the Milagro low threshold channel 
for a period of time surrounding the 2005 January 20 GLE (bottom). 

with the smallest eigenvalue will have the smallest covariance. The component 

represented by the smallest eigenvalue is then normalized to the raw count rate to obtain 

the correction factors for each environmental variable. The original datasets are 

multiplied by their respective correction factors to produce the PCA-corrected count rate 

(Figure 6.2). 
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6.2 

as 

Number of particles detected over the background rate for the given 
data channel 

Time interval over which the increase in count rate is valid 

Pitch-angle distribution function (in our case this information is 
buried within the specific yield functions) 

Proton rigidity function 

Specific yield function for the given data channel 

Table 6.1: Explanation of variables contained within equation 6.5. 

The integration is performed in rigidity space from a minimum corresponding to 

the cutoff rigidity of the detector, and up to a maximum of 13 GV. This upper limit can 

theoretically be taken to infinity, however the rigidity spectra fall off sharply beyond 

~5 GV. For even the hardest spectra (where higher rigidity particles are most 

pronounced) there is less than a 0.5% contribution above 13 GV, enabling us to set an 

upper limit to the integration without a significant effect on the results. 

As discussed earlier in section 3.2.2, the traditional analysis technique had been to 

find the count rate increases in a pair of NMs with differing sensitivities in order to 

compute the proton rigidity spectrum modeled by a power-law. 

Spectral Analysis 

The increase in count rate for ground-level stations due to SCRs can be expressed 

13 GV 

^Channel = AfAQ J J (P)Y{chamd(P) dP (6.5) 
p 

Channel 

At 

AO. 

J(P) 

YChannel^} 
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J(P) = BP~y (6.6) 

Equation 6.5 can now be solved for a family of parameter pairs (B, y), and curves 

representing the count rate increases for each NM (NChannei) can be plotted in these 

coordinates. The values of B and y at which two Nchannel curves intersect gives a result for 

the flux coefficient and spectral index simultaneously. 

However, we expect the power-law solution to be accurate only over a limited 

range of rigidities. As the acceleration process reaches its upper limits, a steepening of 

the spectrum at the highest rigidities is expected (see sections 1.5.2, 3.2.2). To account 

for this characteristic we can represent the proton rigidity function as a power-law with 

an exponential decay as in equation 3.5 to take into account the limits of the acceleration 

process (Ellison and Ramatay, 1985). 

J(P) = BP-yexp[-P/P0] (6.7) 

This representation has three parameters: the flux coefficient, B, spectral index, y, and 

break rigidity, Po. This form reduces to the power-law form of equation 6.6 as Po exceeds 

ground-based rigidities, but does not restrict the result to remain in power-law form, 

allowing for the spectrum to fall off or steepen at the higher rigidities. Solving for this 

representation of the rigidity spectrum requires a minimum of three data channels. 

Anisotropy effects can be large during the early stages of GLEs; multiple ground-

level stations do not sample the same distributions of particles due to these effects. This 

creates difficulty in obtaining results for proton spectra early in these events. The 

Milagro detector possesses multiple data channels with differing sensitivities at one 

location (see section 4.4), and is in close proximity to the Climax NM. An analysis using 

112 



the Climax NM and multiple Milagro channels can provide accurate results for the proton 

spectra early in GLEs despite the large anisotropic effects. 

6.2.1 Chi-squared Analysis 

Using the power-law representations for the SYFs in equation 4.5, equation 6.5 

can now be written as 
13GV n 

NChannel = ^ J £ A B P ^ CXP[~P / PJdP (6.8) 
1 cutoff 

The integral must be solved numerically. We performed a x-squared minimization 

analysis using count rate increases and the statistical error associated for each dataset for 

Climax, the New Hampshire NMs (excluding 2005 January 20 0651-0656 UT for reasons 

explained in section 7.2.3), and all available Milagro channels. 

The count rate increases were predicted for different rigidity spectra, where all 

three parameters are varied, densely covering the three-dimensional space spanned by 

these parameters. An analysis was performed for time slices as short as 5 minutes. The 

^-squared technique provides a result for the proton rigidity spectrum that is unique to 

that particular timeframe. Thus, the evolution of all three parameters in the proton 

rigidity spectrum could be studied. 

It is important to note that the results from this ^-squared procedure have not yet 

been adjusted for the solid angle viewing area or extended down to spacecraft energies, 

(these topics are discussed in section 6.2.3) and thus it is NOT the complete solution. 
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The %-squared result for the proton rigidity spectrum enables us to find the rigidity ranges 

each ground-level channel samples based on the detector response at different periods of 

an event. 

6.2.2 Response Functions 

The response of a data channel is the product of its SYF and the proton rigidity 

spectrum. 

RcHannel{P)=J(P)Ychannel(P) (6-9) 

The cutoff rigidity combined with the proton rigidity spectrum and SYF curves determine 

the rigidities a particular data channel is sampling. The lower cutoff rigidities of the NMs 

compared to that of Milagro naturally cause the NMs to be sensitive at lower rigidities 

(Figures A.8 and A.9). The relative sensitivity to rigidities near the cutoff for Milagro 

channels decreases with higher PMT multiplicity (Figure 4.7), therefore the higher 

multiplicity Milagro channels will be sampling higher rigidities with respect to the low 

multiplicity channels. 

The rigidities each data channel is sampling is greatly influenced by the 

exponential rollover. The exponential dependance on the break rigidity in the proton 

rigidity spectrum (equation 6.7) decreases the flux of particles with rigidities above the 

break value with respect to those below. To illustrate this dependence we look at two 

separate time intervals during the 2005 January 20 event (Figure 6.3). The /-squared 

114 



' I' " " " I I 

c 
ZD 

£ ro 

-Q 
< 

10 

103 

10 

10 

10 

10 ' 

10 

10" 

•Mt. Washington NM 
•Durham NM 
•Climax NM 
Milagro LT 
Milagro HT 
Milagro 12-PMT 
Milagro 25-PMT 

2005 January 20 0651-0656UT 

10" 

Rigidity 

6 7 8 9 
10 

</> 

'c 
ZD £ 
ro 
•m 
-Q 
< 

Rigidity 
Figure 6.3: Selected response functions during the 2005 January 20 GLE. The x-squared solution 

during the anisotropic phase from 0651-0656 UT (top) yielded a higher break rigidity 
than the isotropic 0656-0701 UT interval (bottom). As a result, there is a greater 
contribution of high rigidity particles in a given data channel during the 0651-0656 UT 
time interval. (Milagro 25-PMT was not above background for 0656-0701 UT, and thus 
its response for this time interval is omitted) 
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solution for 0651-0656 UT yielded a hard spectrum (break rigidity of -1.2 GV), 

however the spectrum obtained for 0656-0701 UT was significantly softer (break rigidity 

of -0 .5 GV). When we compare these two spectra at 6 GV the exponential factor for the 

0651-0656 UT spectrum is exp5, however for 0656-0701 UT it is exp12. The 

exponential characteristic of the break rigidity decreases the flux at 6 GV by several 

orders of magnitude between the two timeframes, thus the response functions in Figure 

6.3 during the latter period fall off much faster. 

The mean rigidity each data channel represents must be found separately for each 

time interval by satisfying the condition 

PM 13 GV 

J Khannel(P)dP= J Rchannel(P)dP (6.10) 
Pcmolf Pm 

For error in rigidity we allow for 25% of the total protons to extend either above or below 

the mean value. For a particular data channel, the rigidity obtained from equation 6.10 is 

then inserted into a spectrum modeled by equation 6.7 with parameters derived from the 

/-squared analysis. This gives a result for the flux at a certain rigidity in differential units 

of dJ/dP [# / (m2-s-sr-GV)], with error resulting from the range of sampled rigidities. 

6.2.3 Extending the Spectrum Using Spacecraft Data 

Although we have a partial solution for the proton rigidity spectrum at GV 

rigidities, a complete solution for the spectrum is necessary over a broader rigidity range. 

By adding SEP spacecraft data in the range of - f ew MeV to -tens of MeV we expand our 
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range of detection to ~3 orders of magnitude in rigidity and as much as ~8 orders of 

magnitude in flux. These improvements provide better statistical results for spectral 

parameters such as power-law index and break rigidity than ground-level measurements 

alone. 

A complicating effect in the spacecraft data is velocity dispersion. To be 

consistent in our analysis of the proton spectrum we must account for the different 

propagation delays in each energy channel. This delay is determined by the 

interplanetary path length at the time of the injection (a procedure to solve for this path 

length is discussed in section 7.2.2), as well as the relativistic velocity of the charged 

particles detected by a particular energy channel. For each spacecraft energy channel we 

solve for velocity from the relativistic energy equation 

and use the associated interplanetary path length to find the propagation delay. 

Intensities for spacecraft data are given in flux units of cU/dE [# / (cm2-s-sr-

MeV)], which we convert to dJ/dE [# / (m2-s-sr-GeV)]. To obtain our ground-level 

fluxes in the same units we must switch them from dJ/dP to dJ/dE using the relationship 

between energy and momentum 

E = ymc2 
(6.11) 

(6.12) 

and the chain rule 

dJ _ dJ dP 
dE ~ dP dE 

where 
dP 
dE 

(6.13) 
pc 
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SYFs for ground-level detectors are not averaged over the solid angle. For 

anisotropic distributions this is fine, however for isotropic distributions we must account 

for this in our results. In Milagro and NM simulations, isotropic distributions extend to a 

zenith angle of 70° which corresponds to a solid angle of 4.13 steradians. We must 

divide isotropic fluxes by this factor to keep all results in the same form. Now that we 

have all fluxes in terms of dJ/dE we can represent equation 6.7 in terms of energy. 

J(E) = BE'1 e x p [ - £ / E0] (6.14) 

The broad energy range that the data covers will cause a fitting procedure to 

neglect some data points to reduce error. To fit our data points with equation 6.14 all data 

points must have equal weighting. We perform a similar %-squared analysis as discussed 

in section 6.2.1 to include the spacecraft results, once again varying all three parameters 

simultaneously. The analysis predicts the flux at each data channel's rigidity, and finds 

the best solution by using relative errors from the actual values (Figure 6.5). 

6.3 Analysis: 2005 January 20 0656-0701 UT 

After the background subtractions have been completed, the resulting count rate 

increases for each data channel are solely from SCRs. The predicted vs. measured 

background rate ratios given in Table 4.1 apply to SCRs as well, therefore we scaled the 

SCR count rates based on the same ratios to obtain the true number of SCRs, represented 

by Nchannel in equations 6.5 and 6.8. 
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The anisotropic phase of the 2005 January 20 GLE concluded at 0656 UT, thus 

for the 0656 UT-0701 UT time interval we used the isotropic SYFs for Climax, the New 

Hampshire NMs, and all available Milagro channels (up to 16-PMT for this timeframe). 

The SYFs and the values for Nchannei were fed into the /-squared minimization code, 

discussed in section 6.2.1. The resulting proton rigidity spectrum is 

dJ IdP = 2.0 x107P-' 2 e x p ( - P / 0.51 GV) (6.15) 

The actual data points lie above and below this result. For example, the predicted count 

increase in the Milagro high threshold channel is 7.50 x 106, the actual count increase is 

1.21 x 107. Note that this corresponds to an error factor of 1.61. 
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Figure 6.4: Flux vs. rigidity for ground-level data channels during 2005 January 20 0656-0701 UT. 
The data points lie above and below the /-squared result of the proton rigidity spectrum 
for the same timeframe (red curve). 
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The product of the proton rigidity spectrum and the isotropic SYFs give the 

response functions of the data channels during this time interval (Figure 6.3, bottom). 

Using equation 6.10, the mean rigidity for the Milagro high threshold channel is 4.48GV, 

and inserting this rigidity into equation 6.7 results in a predicted flux of 506 Protons/(m2-

s-GV). This predicted flux is scaled up by the 1.61 factor from the x-squared technique 

to give 815 protons/(m2-s-GV). The low error in rigidity for the Milagro high threshold 

channel of 0.2 GV corresponds to a positive error in flux of 460 protons/(m2-s-GV), and 

the high error in rigidity of 0.3 GV corresponds to a negative error in flux of 396 protons/ 

(m2-s-GV). We can now plot each data channel's flux for the 2005 January 20 0656-0701 

UT timeframe vs. rigidity (Figure 6.4). 

A calculation of the interplanetary path length for charged particles at the time of 

the 2005 January 20 event resulted in a distance o f - 1 . 2 ± 0 . 1 AU (see section 7.2.2). 

The Milagro protons have a minimum kinetic energy of 3.2 GeV, corresponding to a 

velocity of ~0.95c, giving a transit time along a 1.2 AU path length of -10.5 minutes. 

The 0651 UT onset in Milagro channels gives the protons an injection time at the Sun of 

0640:30 ST (Solar Time). To analyze the proton spectrum during the 2005 January 20 

0656-0701 UT time interval we must be consistent in finding the intensity increases due 

to protons that were injected into interplanetary space from 0645:30-0650:30 ST at all 

energies. For example, using equation 6.11 for the 4.7 MeV ERNE channel we obtain a 

velocity of 0.0998c, corresponding to a transit time of -106 minutes. Therefore, the 

0656-0701 UT (0645:30-0650:30 ST) Milagro protons were injected at the same time as 

the 0831:30-0836:30 UT ((0645:30-0650:30 ST) 4.7 MeV ERNE protons. 
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Figure 6.5: ERNE and ground-level data for 2005 January 20 0656-0701 UT (left) and the 
resulting x-squared fit yielding equation 6.16 (right). 

The ground-level fluxes are scaled by their solid angle factor, and results for all 

fluxes are converted to units of dJ/dE [# / (m2-s-sr-GeV)] (Figure 6.5, left). A second %-

squared minimization technique (to include the spacecraft data points) finds the best 

solution for the proton spectrum over all energies (Figure 6.5, right), given by 

dJ / dE = 9.6 x 10 5 £" ' 1 e x p ( - £ / OASGeV) (6.16) 
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Chapter 7 

Results and Conclusions 

Results for the proton spectra during the 2001 April 15 and 2005 January 20 

GLEs, based on the analysis procedure described in the previous chapter, are consistent 

with coronal shock acceleration. A timing analysis for the controversial 2005 January 20 

GLE reveals that, although extreme in nature, the entire event can be attributed to a 

CME-driven shock and not requiring a different process, i.e., direct solar-flare 

acceleration. 

7.1 2001 April 15 Ground-Level Enhancement 

7.1.1 Pitch-Angle Distribution 

Many of the instruments in the world-wide network of NMs registered a GLE in 

response to the increase in relativistic protons during the 2001 April 15 event. To 

interpret the Milagro in the context of those from Spaceship Earth NMs, we added 

several vertical lines representing crucial stages in the event (Figure 7.1). 
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Figure 7.1: GLE profiles for Milagro and Climax (top), and Spaceship Earth (bottom) during the 
2001 April 15 event. The vertical blue lines mark the full-width at half-max and peak 
times for Milagro and Climax profiles and are compared to profiles from 
Spaceship Earth. (Spaceship Earth neutron monitor rates courtesy of Dr. P. Evenson). 
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The Spaceship Earth NMs are placed strategically at various locations where the 

rigidity threshold is governed by the atmospheric cutoff (-0.5 GV), to study the three-

dimensional cosmic-ray angular distribution (see section 3.2.2). Of the Spaceship Earth 

NMs only the Peawanuck and Nain stations (for station characteristics see Table 3.2) 

resolved the rising edge of the GLE consistent with Milagro and Climax. From Figure 

3.7 we see that the viewing directions for particles incident on these stations lie close to 

that of Climax. This is evidence that Milagro and Climax are detecting the first particles 

to arrive at 1 AU (streaming directly from the acceleration region). In addition, Milagro 

and Climax have similar cutoff rigidities, are in close proximity to one another (similar 

asymptotic directions), and have nearly identical GLE profiles. All of these factors 

indicate that Milagro and Climax are sampling the same distribution of particles 

throughout the duration of the event, providing the necessary data to study the proton 

spectra throughout the entirety of the event (see section 7.1.3). 

The onset of the GLE in Milagro and Climax occurred at 1359 UT, with the rising 

edge lasting roughly ten minutes, and the peak occurring at 1415 UT. Maxima in 

Spaceship Earth count rates range from 1410 UT at Peawanuck to 1500 UT (e.g., Tixie 

Bay and Norilsk). Because all Spaceship Earth NMs have the same energy response, the 

varying rise-to-maximum in GLE profiles indicate that the initial phase is anisotropic, as 

is typical in well-connected events. 

An anisotropy study based on Spaceship Earth NMS (Bieber et al., 2004) shows 

that the 2001 April 15 GLE was initially anisotropic, gradually evolving into an isotropic 

event by -1425 UT. Stations with poorer viewing directions (e.g., Apatity) measured an 
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attenuated particle intensity most likely seeing only particles that scattered out of the 

beam by magnetic turbulence (Bieber et al., 2004). An additional survey with a network 

consisting of four directional muon detectors was performed by Munakata et al. (2001). 

An excess of particles arriving from zenith directions were measured in coincidence with 

the onset of the GLE observed at the Thule NM (Figure 7.2). Distribution measurements 

(taken per hour) subside and replicate the isotropic background later in the event, 

consistent with the results of Spaceship Earth. 
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Figure 7.2: Pitch angle excesses and deficits measured by a network of directional muon detectors 
during the 2001 April 15 event (Munakata et al., 2001). The open circles represent 
excesses of particles and solid circles represent deficits, the intensity of each 
measurement is indicated by the size of the circles. A clear excess of particles arriving 
from the zenith direction is detected during the initial phase of the GLE observed by the 
Thule neutron monitor. 
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7.1.2 Event Timing 

As described in sections 1.5 and 3.2.2, charged particles often travel along open 

magnetic field lines in their transit to Earth during well-connected events, the length of 

this path is determined by the configuration of the Parker spiral at the time of the event. 

A velocity dispersion analysis of spacecraft particle onsets times by Reames (2009) 

resulted in a magnetic path length of 1.59 ± 0.01 AU during the 2001 April 15 event, 

corresponding to a - 1 3 minute transit time for the highly relativistic particles (a similar 

analysis for the 2005 January 20 event is described in section 7.2.2). The GLE onset in 

Milagro was at 1359 UT, requiring the >4 GV protons to have been injected into 

interplanetary space no later than 1346 ST. 

Bieber et al. (2004) and Gopalswamy et al. (2003) estimated that the onset of the 

associated CME for the 2001 April 15 event (based on CME height-time measurements 

extrapolated back to the solar surface) occurred at 1332 UT (1324 ST). The onset of the 

type II radio burst associated with the CME (indicating the presence of shock formation) 

occurred at 1338:40 ST (Aschwanden, 2010), ~15 minutes after the CME onset and 

~7.3 minutes before the injection of the relativistic protons. Using a CME speed of 1200 

km/s (Gopalswamy et al, 2003), the onset of the type II radio emission indicates that the 

shock formed at a height of -2.5 R©. The injection of the >4 GV Milagro protons then 

takes place when the CME is at -3.3 RQ, consistent with the 2.5-4.0 R© result for other 

CME heights at GLE injection (Kahler, 1994). During the peak stages of the GLE 

(1410-1425 UT) the CME height ranges from 4.4-6.0 RQ. 
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7.1.3 Proton Spectra 

As discussed in section 7.1.1, the Climax NM and the Milagro detector were 

among a few ground-level stations to resolve the leading edge of the 2001 April 15 GLE. 

The similarity of the GLE profiles in both instruments (Figures 5.5, 5.6) indicate that they 

were sampling the same distribution of particles throughout the entire event (including 

the leading edge where the anisotropy was greatest). In addition, the Mt. Washington and 

Durham NMs (Figure 5.5) resolved the rising edge of the GLE consistent with Milagro 

and Climax. An analysis of the proton spectra in time intervals as short as 5 minutes 

using these stations was performed following the procedure outlined in chapter 6. Data 

from IMP-8 (courtesy Dr. C. Lopate, private communication) was added to extend the 

proton spectra down to MeV energies. 

The time interval for each spectral result is expressed in UT based on ground-

level observations, however, protons at all energies are consistent with their simultaneous 

release from the Sun. For example, the results for the proton spectra during the time 

interval from 1400-1405 UT are from measurements at ground-level from 1400-1405 UT 

(1347-1352 ST), and in the 96-145 MeV IMP-8 channel from 1413-1418 UT 

(1347-1352 ST). The UT time intervals in other IMP-8 channels will also differ from the 

96-145 MeV channel, but are the same when expressed as solar time. Thus, the results 

for the proton spectra are given in UT time intervals based on the GLE profile, and 

represent protons at all energies injected from the acceleration region during the same 

period and observed at 1 AU. 
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Time Interval (UT) Flux, A (xlO5) Spectral Index, y Break Energy, Eo (GeV) 

1400-1405 0.71 ±0.2 1.0 ±0.2 0.69 ±0.13 
1405-1410 2.4 ± 0.4 • 0.8 ± 0.2 0.56 ±0.10 
1410-1425 3.9 ±0.9 0.95 ± 0.3 0.54 ± 0.06 
1425-1440 4.1 ±0.5 1.1 ±0.1 0.51 ±0.07 
1440-1455 16.7 ±4.9 0.8 ±0.1 0.41 ± 0.09 
1455-1510 23 ±7.1 0.8 ±0.2 0.36 ±0.07 
1510-1530 10 ±3.4 1.15 ± 0.3 0.41 ± 0.05 
1530-1550 4.9 ± 1.2 1.4 ±0 .4 0.46 ±0.08 
1550-1610 3.9± 1.5 1.55 ±0.4 0.47 ± 0.09 

Table 7.1: Evolution of the spectral parameters from equation 6.7 during the 2001 April 15 GLE. 
These results are also included graphically in Figures 7.3, B . l , B.2, and B.3. 

Results for the proton spectrum analysis are given in Figure 7.3, and in further 

detail in Figures B.1-B.3. The evolution of the parameters from equation 6.7 are listed in 

Table 7.1. The results do not replicate a power-law form over all energies at any stage of 

the event. Instead, for every time interval, the proton spectra break away from a power-

law at ground-level energies, indicative of shock acceleration as derived by Ellison and 

Ramaty (1985). 

The break energy is highest during the rising edge of the GLE, producing the 

hardest spectrum during the event. This is evidence that the conditions for efficient 

particle acceleration up to the highest energies took place when the CME was low in the 

corona (-3.6 R© during the rising edge of the GLE in Milagro). The spectra gradually 

soften through the peak stages of the GLE (Figure 7.11) as the pitch-angle distribution 

becomes isotropic and the CME reaches higher solar altitudes. We will return to this 

discussion in section 7.2.2. 
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7.2 2005 January 20 Ground-Level Enhancement 

The rapid onset of the 2005 January 20 GLE (Figure 7.4) have led many to 

conclude that a coronal shock cannot accelerate protons to GeV energies in such a short 

amount of time. This has made the 2005 January 20 GLE controversial. An investigation 

of the pitch-angle distribution, event timing, and proton spectra during the event are all 

crucial in order to determine how and where the highest-energy particles were 

accelerated. 
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Figure 7.4: Comparison of GLE profiles during the 2001 April 15 and 2005 January 20 events. 
When viewed on a logarithmic scale, the extreme intensity and rapid evolution of the 
2005 January 20 GLE clearly overshadows the 2001 April 15 GLE, which is widely 
recognized as having a classic GLE profile. 

7.2.1 Pitch-Angle Distribution 

The notable feature of the 2005 January 20 GLE is the spike-like peak in intensity, 

even when viewed on a logarithmic scale (Figure 7.4). The full-width at half-max 

(FWHM) for Milagro and Climax during the 2005 January 20 GLE is only ~3 minutes, 
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compared to ~1 hour during the 2001 April 15 GLE. In addition, at roughly 0656 UT, the 

falling edge transitions from a rapid decline (on a timescale similar to the rising edge) to 

a gradual decay. 

The extreme intensity during the initial phase of the 2005 January 20 GLE 

produced count rate increases in many Milagro multiplicity channels. This provided an 

opportunity for Milagro to measure the pitch-angle distribution independently (see 

section 4.5.3). At GLE energies (<10 GeV), shower cores >1 km from the detector 

contribute more to the isotropic background rate in higher multiplicity channels (e. g. 16-

PMT and 25-PMT) than in lower multiplicity channels. In an event with an anisotropic 

distribution, air shower particles are less likely to reach the detector from shower cores 

Figure 7.5: (Left) Increases over background for selected Milagro multiplicity channels during the 
2005 January 20 event. (Right) The simulated increases over background in selected 
Milagro multiplicity channels for different pitch-angle distributions (normalized to the 
6-PMT channel). The ratios during the initial phase of the 2005 January 20 GLE 
(0651-0656 UT) conform to an anisotropic pitch-angle distribution. 
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>1 km away. Using the ratios of the effective area curves as a function of throw distance 

(Figures A.1-A.4), we found the simulated increases over background in all Milagro 

multiplicity channels for both an isotropic and anisotropic pitch-angle distribution (Figure 

7.5, right). The results show that anisotropic events produce an attenuated signal above 

background in higher multiplicity channels when compared to the same signal in the 

lower multiplicity channels. Data during the initial phase of the 2005 January 20 GLE 

conform to an anisotropic distribution (Figure 7.5, left). 

The initial phase of the 2005 January 20 GLE was not resolved by the entire 

worldwide NM network. This can be seen in the Spaceship Earth NMs, which show 

large variances in onset time and profile during the initial phase (Figure 7.6). Of the 

Spaceship Earth NMs, only the South Pole and McMurdo stations yield a profile that 

resolves the anisotropic peak. From figure 3.7 we can see that, similar to the 2001 April 

15 event, Climax's viewing direction is close to that of the stations that can best resolve 

the initial phase of the GLE. However, the cutoff rigidity at Spaceship Earth stations is 

essentially zero, therefore the low rigidity threshold is determined by the atmospheric 

cutoff (-0.5 GV). As a result, velocity dispersion broadens the latter half of the 

anisotropic peak. 

Stations with poor viewing directions, such as Inuvik and Thule (Figure 3.7), did 

not rise above background levels during the initial phase of the GLE, even though the 

count rate in some stations were great (>10x over background). Because all Spaceship 

Earth NMs have the same energy response, this discrepancy suggests that the GeV 
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the 2005 January 20 event (shown on a logarithmic scale). The vertical red lines 
represent timestamps for the rising and falling edges of the anisotropic spike resolved by 
Milagro/Climax and compare them with profiles from Spaceship Earth. (Spaceship Earth 
neutron monitor rates courtesy of Dr. P. Evenson). 
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protons in the initial phase of the GLE were confined to a narrow beam with excellent 

magnetic connection to the acceleration region with minimal scattering along the 

connecting field line. The rise-to-maximum in Milagro channels (~80 s) is almost an 

order of magnitude faster than that of the 2001 April 15 GLE (also was a well-connected 

event), and is further evidence of a very favorable magnetic connection. The preferable 

conditions for particle transport in the inner heliosphere combined with a favorable 

magnetic connection could have played a large role in the extreme intensity observed in 

the early stages of the GLE. 

The latest onsets of the Spaceship Earth NMs (e.g., Thule, Inuvik) began at 

-0656 UT, well-aligned with the transition to an extended decay phase after the initial 

spike seen in Milagro and Climax. This is evidence of the pitch-angle distribution 

decreasing in anisotropy after only - 5 minutes into the event. An analysis by Biitikofer et 

al. (2009) also shows that the anisotropy present in the initial phase of the event had 

clearly decreased only a few minutes after the rising edge (between 0653-0703 UT). A 

separate analysis by Bombardieri et al. (2008) concluded that the GLE was strongly 

anisotropic at 0650 UT and 0655 UT, followed by rapid decrease in anisotropy after. 

7.2.2 Event Timing 

As discussed in the previous section, the first protons to arrive at Earth are 

confined to a narrow beam, and the rapid rise of the GLE signal suggests an excellent 

magnetic connection to the source region. Therefore, an accurate measurement of the 

path length traversed by these relativistic protons is necessary to determine when the 
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particles were released from the acceleration region. We will define this as solar proton 

release (SPR) time, and will express it in solar time. 

Results for the path length at the time of the 2005 January 20 event ranged from 

less than 1.2 AU (Moraal et al., 2007; Reames, 2009) to 1.76 AU (McCracken et al., 

2008). Depending on the path length used, the corresponding result for the SPR time 

would have an uncertainty of ~4 minutes, not accurate enough for our purposes. To 

obtain a reliable measurement for the path length we performed an inverse velocity 

analysis of particle onset times. The velocity dispersion effects for ERNE data channels 

cause their onset times to be delayed as a function of energy. Combining these onset 

times with those of relativistic particles in ground-based detectors, yields a measurement 

of the path length (Figure 7.7). 

The path length derived from this analysis is 1.27 ±0.1 AU, in agreement with the 

results of a similar analysis performed by Reames (2009), i.e., 1.19 ± 0.02 AU. We 

further assume an anisotropic pitch-angle distribution width of 20° and solar wind speed 

of 560 km-s-1 (courtesy Dr. C. Farrugia, private communication) that was present before 

the onset and continuing for about one day (the intervening solar wind speed data from 

SOHO are not available but the magnetic field direction is consistent with a steady wind 

of this speed). At this speed the quiescent length of the Parker spiral is 1.1 AU. Although 

shorter, it is roughly consistent with the values from the two independent velocity 

dispersion analyses described above. We will use a 1.2 ± 0.1 AU path length from here 

on because it is consistent with the velocity dispersion analyses and solar wind speed 

measurements. 
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Figure 7.7: Inverse velocity vs. onset time for ground-level detectors and the SOHO/ERNE 

instrument. The slope of the red fitted line is a measurement of the path length at the 
time of the 2005 January 20 event. The 1.76 AU result from McCracken et al. (2008) is 
included to illustrate its incompatibility to the data. 

The GLE onset in Milagro data channels occurred at 0650 UT. The 1.2 ± 0.1 AU 

path length results in a 10.5-minute propagation time for >4 GV protons, corresponding 

to a SPR time of 0639:30 UT (in agreement with Aschwanden (2010) and Simnett 

(2006)). The onset of the type II radio emission was at 0635:40 ST (Gopalswamy et al., 

2005; Aschwanden, 2010), evidence of shock formation before SPR time. Gopalswamy 

et al. (2005) fit a kinematic equation based on constant acceleration to the CME 

associated with the 2005 January 20 GLE using LASCO and EIT images (Figure 5.7), 

Height = 6.052 - 0.3361? + 0.0057/2 (7.1) 

where t is in minutes from 0600 UT. We note that CME acceleration is known to initially 

increase sharply before reaching constant speed or even decelerating (Demoulin and Vial, 

1992; Uralov et al., 2005). Therefore, results for CME heights based on equation 7.1 

136 



should be taken as a lower limit, but it should be a much better approximation than 

assuming no accelerations. 

Using equation 7.1, the CME height at type II onset was 2.3 R© and 2.9 R© at 

injection (SPR time). At these solar altitudes the CME speed ranged from -1900-2450 

km/s (and perhaps faster), well in excess of the Alfven speed and thus capable of driving 

a very strong shock. The peak of the count rate in Milagro and Climax at 0653 UT (0642 

ST) places the CME at 3.7 R©, low compared to the 5-15 R© heights in other events 

observed by Kahler (1994). 

High-energy gamma rays (>60 MeV) are dominated by 7i°-decay emission, a 

signature of relativistic ion production. Chupp and Ryan (2009) suggested that the high-

energy gamma rays and GLE particles may be associated. Therefore, any acceleration 

model must be able to explain their behavior and transport. The CORONAS-F/SONG 

62-310 MeV gamma rays (Kuznetsov et al., 2008) show a clear rise to maximum 

beginning at 0645:30 UT (0637:10 ST) with a FWHM between 0645:30 UT (0637:10 

ST) and 0648:00 UT (0639:40 ST), there is also some preliminary structure from 0644 

UT (0635:40 ST) to 0645:30 UT (0637:10 ST). 

The time profiles of the relativistic protons and high-energy gamma rays are 

difficult to explain with a flare-based model in which both populations are released 

simultaneously. McCracken et al. (2008) attributed the ~7-minute delay at 1 AU between 

the rising edges of the >60 MeV SONG gamma rays and the Sanae NM (Pc -0.86 GV) to 

the path length traversed by the protons, yielding the 1.76 AU result discussed earlier. 
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Figure 7.8: CORONAS-F/SONG gamma ray profiles during the 2005 January 20 event (UT). 
(Grechnev et al., 2008) 

However, we have shown that the path length is closer to 1.2 AU (corresponding to a ~2-

minute delay at 1 AU) resulting in a ~4-minute discrepancy between the rising edges of 

the high-energy gamma rays and the relativistic protons (0637:10 ST and 0641:30 ST 

respectively). 

In the interest of argument we assume that the GLE protons were accelerated by 

the flare and stored in coronal loops. The high-energy gamma-ray emission is then a 

product of >300 MeV ions reaching the footpoints of the coronal loops and interacting 

with photospheric material (Ryan and Lee, 1991). The delay would result from the GLE 

protons diffusing through the low corona for ~4 minutes before escaping along open field 

lines. This diffusion should then yield a prolonged and less intense GLE profile than the 

high-energy gamma-ray profile (Ryan, 2000). However, the peak observed in Milagro 

has a sharp spike-like structure with a rise-time of 80 s, it has no prolonged falling edge, 

and is of comparable width to that of the high-energy gamma rays. Therefore, even if the 
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high-energy gamma-ray emission is due to ~ 300 MeV flare ions trapped in coronal 

loops, it is still not associated with the GLE protons. 

7.2.3 Proton Spectra 

From Figure 7.9 it is clear that the Mt. Washington NM count rate does not have 

the same GLE profile as that of Milagro or Climax early in the 2005 January 20 event. 

The sample rates for the Mt. Washington and Durham NMs are 5 minutes, and thus were 

unable to resolve the fast-evolving initial phase. In addition, the Mt. Washington count 

rate from 0650-0655 UT was only mildly elevated from later stages of the GLE, whereas 

stations with favorable viewing directions were strongly elevated. Based on these 

observations we conclude that the Mt. Washington and Durham NMs were on the 

outskirts of the anisotropic beam which produced the initial spike in intensity seen by 

some ground-level stations. After the initial phase, however, the Mt. Washington and 

Durham profiles model the isotropic extended phase seen by many ground-level stations. 

Therefore, the NH NMs are included in the y} spectral analysis outlined in section 6.2.1 

for time intervals beginning after 0656 UT, but are excluded from the analysis during the 

initial spike from 0615-0656 UT. 

The profiles for Climax and Milagro during the 2005 January 20 GLE are nearly 

identical (Figure 7.9), indicating that they were sampling the same distribution of 

particles (close to the axis). The multiple data channels in Milagro provided enough data 

points to analyze the proton spectrum during the anisotropic phase from 0651-0656 UT. 



1/20/05 Universal Time (UT) 
Figure 7.9: GLE profiles for the Milagro 6-PMT channel and the Mt. Washington and Climax 

neutron monitors. The strong anisotropy effects during early stages of the GLE 
(0651-0656 UT) cause the Mt. Washington and Durham neutron monitors to miss the 
spike-like peak in intensity seen in some ground-level stations, such as Milagro and 
Climax. 

Results for the proton spectra are given in Figure 7.10, and in greater detail in Figures 

B.3-B.4. The evolution of the parameters from equation 6.7 are listed in Table 7.2. As 

was found in the 2001 April 15 GLE, the spectrum for every time interval during the 

2005 January 20 GLE exhibits the exponential rollover form modeled by Ellison and 

Ramaty (1985). 

The break energy during the initial spike between 0651-0656 UT is clearly 

elevated and set apart from any other period of the GLE (Figure 7.11). This, again, is 

similar to the 2001 April 15 GLE in which the most efficient particle acceleration 

occurred when the CME was lower in the corona. After 0656 UT the spectra soften 

dramatically (a softening of the spectra for a period of several minutes after the initial 
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Figure 7.10: Time-resolved proton spectra during the 2005 January 20 GLE. 
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Time Interval (UT) Flux, (xlO5) Spectral Index, y Break Energy, Eo (GeV) 

0651-0656 6.8 ±2.5 1.1 ±0.4 0.79 ±0.13 
0656-0701 9.6 ±2.1 1.1 ±0.2 0.48 ± 0.04 
0701-0706 63 ± 15 0.8 ±0.3 0.33 ± 0.06 
0706-0711 17 ±4.0 1.1 ±0.2 0.41 ± 0.03 
0711-0721 21 ±5.7 1.1 ±0.3 0.39 ±0.06 
0721-0731 26 ±7.1 1.05 ±0.4 0.35 ±0.05 
0731-0741 21 ±6.4 1.15 ± 0.5 0.35 ± 0.05 

Table 7.2: Evolution of the spectral parameters from equation 6.7 during the 2005 January 20 GLE. 
The hardest spectrum coincides with the initial spike in the Milagro GLE profile, and is 
evidence that efficient acceleration of protons to GeV energies occurred when the CME 
was low in the corona. 

phase was also found by McCracken et al. (2008) and Blitikofer et al. (2009)) and seem 

to have reached an equilibrium state (Figure 7.10, top). 

The spectra during the 2005 January 20 GLE seem to indicate two clear phases in 

the evolution of the CME-driven shock, an idea previously suggested by Evenson (1982) 

and Cane (1990). The timing results in section 7.2.2 show that a coronal shock 

accelerated particles through dense regions of solar atmosphere from 2.3-2.9 RQ, the hard 

spectrum during the earliest stages of the GLE indicate the particle acceleration was most 

efficient when the CME was blasting through these low coronal altitudes (high Mach 

number). After the GLE intensity peaked at 0653 UT (CME at -3.7 RQ) it then declined 

rapidly and was accompanied by a softening spectrum. The softening of the spectra can 

be attributed to the CME-driven shock exiting the dense layers of the corona and reaching 

interplanetary space where it would transition to an interplanetary shock (low Mach 

number). Relativistic particles would then have access to multiple field lines, leading to 

the decreased anisotropy observed by Bombardieri et al. (2008). 
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Figure 7.11: Evolution of the break energy during the 2001 April 15 and January 20 GLEs. 
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The transitions in the proton spectra (Figure 7.3), specifically the break energy 

(Figure 7.11, top), during the 2001 April 15 GLE are more gradual. Although the break 

energy is highest during the earliest stages of the GLE, one could argue that a fixed -0 .5 
\ 

GeV break energy is consistent within the error bars. However, similar events in the past 

have also been hardest during their earliest stages, and the same behavior is clearly seen 

in the 2005 January 20 GLE. Given the similarities, it is fair to assume that the 2001 

April 15 GLE acted in the same way. The extreme and rapid nature of the 2005 January 

20 GLE may be the reason why the separate phases suggested by Evenson (1982) and 

Cane (1990) are discernible while not in classic GLE profiles such as the 2001 April 15 

GLE. 

We speculate that in the 2005 January 20 GLE the favorable magnetic connection, 

strong anisotropy, minimal scattering, and fast transit of the CME all conspire to reveal 

the initial spike in the GLE profile before the CME-driven coronal shock transitions to an 

interplanetary one. In the 2001 April 15 event, particle transport conditions and a slower 

CME transit through the corona cause the initial, coronal phase and extended, 

interplanetary phase to overlap, producing the classic GLE profile. Therefore, the fastest 

evolving GLEs may provide insight into the GLE process that is not directly observable 

in more ordinary events. 
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7.3 Discussion 

Both the 2001 April 15 and 2005 January 20 events are associated with strong X-

class flares and fast CMEs from the western solar limb, however the GLE profiles are 

much different. The 2001 April 15 event has a classic GLE profile similar to many well-

connected events observed in the long history of NM observations (see section 3.2.2). 

On the other hand, the 2005 January 20 GLE has an extremely fast-evolving initial spike 

in intensity observed at some ground-level stations. Its prompt onset and deviation from 

the classic GLE profile have caused many to question if a CME-driven shock can 

duplicate the observations. We now discuss and interpret the results presented above in 

the context of other work. 

The 2001 April 15 GLE onset and peak times are well removed from those of the 

associated flare. GLE onset occurred at 1346 ST, while flare onset in soft X-rays came at 

1328 ST. The GLE peak lasted from 1357-1412 ST, but the flare peaked at 1341 ST, five 

minutes before the GLE onset. Similar to the results of Bieber et al. (1994), the timing of 

the GLE found in this analysis is better attributed to the associated CME. The CME 

liftoff occurred at 1324 ST and evidence of shock formation indicated by type II radio 

emission came at 1338:40 ST. The CME-driven shock then had more than 7 minutes to 

accelerate particles up to GeV energies before releasing them into interplanetary space. 

The CME height from shock formation to SPR time ranged from 2.5-3.3 R©, in 

agreement with other CME heights at GLE onset found by Kahler (1994). 
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Characteristic 2001 April 15 2005 January 20 

X-ray Flare Size X14.4 X7.1 
Source Location S20°, W85° N12°, W58° 

CME Speed 1200 km/s 3242 km/s 
Soft X-Ray Flare Peak (ST) 1341 0653 

4-7 MeV Gamma-Ray Onset (ST) 1333 0635:40 
>60 MeV Gamma-Ray Onset (ST) N/A 0637:10 

CME Onset (ST) 1324 0628 
Type II Onset (ST) 1338:40 0635:40 
Path Length (AU) 1.59 ±0.01 1.2 ±0 .1 

SPR time (ST) 1346 0639:30 ±:50 
CME height at Type II Onset 2.5 R 0 >2.3 Rq 

CME height at Injection 3.3 R 0 >2.9 RQ 
CME height during GLE Peak 4.4-6.0 Ro ~3.7 Rq 

Delay, SPR time - Type II Onset (min) ~7 ~4 
Preceding CMEs? Yes Yes 

Table 7.3: Various characteristics and timing information on both the 2001 April 15 and 2005 
January 20 events. 

The proton spectra throughout the entire event are consistent with the spectral 

form derived by Ellison and Ramaty (1985) and attributed to a coronal shock origin. An 

analysis performed by Bombardieri et al. (2007) also found that the proton spectra at all 

stages of the 2001 April 15 GLE are best fitted to a shock acceleration spectral form. 

The delays between the 2005 January 20 GLE and the associated flare are in the 

same order as those of 2001 April 15, but much shorter (Table 7.3). Flare onset in soft X-

rays came at 0628 ST, and GLE onset occurred at 0639:30 ST. The Flare peaked at 0653 

ST, and the GLE peaked at 0642 ST. The release delays between GLE protons and 

electromagnetic species are well established (Carmichael, 1962; Cliver et al., 1982), 

however, the delay for the 2005 January 20 event is the shortest ever recorded. 
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There is ample evidence for the existence of a CME-driven shock in the 2005 

January 20 event such as type II radio emission (Gopalswamy et al., 2005; Aschwanden, 

2010), charge states and abundance ratios (Desai et al., 2006; Labrador et al., 2005), and 

white light images (Gopalswamy et al., 2005). However, the short time delay and 

extreme intensity observed in some ground-level stations causes many to resurrect direct 

flare acceleration as the source of the highest-energy particles during the earliest stages of 

the GLE (e.g., Simnett, 2006; Grechnev et al., 2008; McCracken et al., 2008; Mason et 

al., 2009). In addition to support for direct flare acceleration, skepticism has risen on 

wether or not a CME-driven shock could produce the observed GLE profile within the 

allotted time. 

From the timing analysis described in section 7.2.2, the path length traversed by 

the relativistic protons at the time of the 2005 January 20 event was found to be 1.2 ± 0.1 

AU. This gives a SPR time of 0639:30 ± :50 ST for the >4 GV protons, roughly 4 

minutes after the onset of type II radio emission (Table 7.3). The CME height ranged 

from 2.3-2.9 R© from type II radio onset to SPR time, capable of driving a powerful 

shock through layers of dense solar atmosphere low in the corona before injecting the 

GeV protons into interplanetary space at -2 .9 R©, consistent with the values for the 2001 

April 15 event and in agreement with other CME heights at GLE onset (Kahler, 1994). 

The active regions which eventually produced the X-class flares associated with 

the 2001 April 15 and 2005 January 20 GLEs also produced several large flares and 

CMEs in the days leading up to the events, as evidenced by Forbush decreases observed 

shortly after (see sections 5.1.2 and 5.2.2). When CMEs occur in rapid succession from 
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the same active region, some of the SEPs produced by one CME may become seed 

particles to the next CME (Mason et al., 1999; Kahler, 2001). A seed population swept 

up by a CME-driven shock can greatly reduce the time required to accelerate ions to GeV 

energies (see section 1.5.2). Although no in-situ measurements are available, it is 

reasonable to speculate that activity prior to the 2005 January 20 event within the same 

active region would result in a seed population extending up through a few MeV. A quick 

calculation using the model derived by Lee and Ryan (1986) shows that a 10 MeV proton 

can be accelerated by a coronal shock within - 5 minutes, on the same order as the 

observed delay in the 2005 January 20 event. 

Intensities in some Spaceship Earth NMs during the initial phase of the 2005 

January 20 GLE reached levels well in excess of 1,000%, while some registered no 

increase until after the initial phase ended. This indicates a very anisotropic and beam-

like distribution of particles at GLE onset. The rise-to-maximum in Milagro channels 

( -80 s) is almost an order of magnitude faster than that of the 2001 April 15 GLE, which 

also was a well-connected event. The path length during the 2005 January 20 GLE (1.2 ± 

0.1 AU) is close to the length of the nominal Parker spiral and significantly shorter than 

during the 2001 April 15 GLE (1.59 ± 0.01 AU), indicating there may have been minimal 

or no scattering during the relativistic protons' transit to Earth. These factors indicate that 

the rapid onset and extreme intensity of the 2005 January 20 GLE was caused by a very 

favorable magnetic connection and minimal upstream turbulence, and not from an 

additional or alternative acceleration mechanism. 
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We conclude that the accelerating source of the relativistic protons for the entire 

2005 January 20 GLE is at a CME-driven shock for the following reasons: 

1. Type II radio emission, indicating the presence of a CME-driven shock, began low in 

the corona when the CME height was -2 .3 RQ-

2. The path length derived by three independent analyses was 1.2 ± 0.1 AU, 

corresponding to a SPR time of 0639:30 ± :50 ST when the CME height was -2 .9 

R©, in agreement with other CME heights at GLE onset observed by Kahler (1994). 

3. Although the delay between SPR time and type II onset is the shortest ever recorded 

( -4 minutes), the time to accelerate protons to GeV energies (as modeled by Lee and 

Ryan (1986)) is of the same order. 

4. The extreme CME speed at low solar altitudes (greater particle density) combined 

with seed particles remnant from prior activity from the same active region could 

speed up the acceleration process. 

5. The rapid onset and high intensity of the initial GLE spike observed in some 

ground-level stations is due to a beam-like distribution of particles and a favorable 

magnetic connection with little scattering. 

6. The proton spectra for the duration of the GLE are consistent with shock acceleration, 

similar to the 2001 April 15 GLE which is widely recognized as having a coronal 

shock origin. 

7. Finally, a flare-based model can not explain the ~4-minute delay between the 

high-energy gamma-ray emission and the onset of the GLE protons. 
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Shea and Smart (1996) noticed that occasionally a limited number of ground-level 

stations would exhibit a short-lived precursor spike prior to the onset of a more 

conventional GLE resolved at many more locations. The 2005 January 20 event is the 

latest, and perhaps best example, of these features. Others examples include the 1989 

October 22 (Figure 7.12), 1960 May 4 (McCracken, 1962b), and 1978 May 7 GLEs 

(Figures 3.5, 3.6). An additional feature that all these GLEs share is an anisotropic pitch-

angle distribution during early stages followed by a rapid decrease in the anisotropy. 

These events have led to theories of two separate acceleration mechanisms (Shea and 

Smart, 1998; McCracken and Moraal, 2007; Moraal et al., 2007; McCracken et al., 2008). 

McCracken et al. (2008) concluded that the accelerating source of the precursor 

spike of the 2005 January 20 GLE was the flare itself based on the time profiles of 

ground-level stations and the CORONAS-F/SONG >60 MeV gamma rays. Under the 

assumption that the high-energy gamma rays and the relativistic protons were released 

from the same point at the same time, the delays of the observed onset times yield a 1.76 

AU path length. McCracken et al. also concluded that a CME-driven shock forming at 

-0642 ST accelerated the relativistic particles after the initial spike and for the remainder 

of the event. However, we have shown that the path length is much closer to 1.2 AU, and 

the resulting delay between the releases of the high-energy gamma rays and relativistic 

protons is difficult to attribute to a flare origin (see section 7.2.2). In addition, the type II 

radio onset occurs at 0635:40 ST and thus shock formation commenced well before 

0642 ST. 
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Figure 7.12: GLE profiles for the 1989 October 22 event in the McMurdo, South Pole and Thule 
neutron monitors (Shea and Smart, 1996; McCracken et al., 2008). The 
precursor spike resembles that of the 2005 January 20 GLE and was seen in only a few 
stations. Most neutron monitors observed a profile similar to the Thule station. 

It is difficult to model the acceleration of the highest-energy particles directly 

from the flare site, however, we have no evidence that firmly disproves direct flare 

acceleration. It is also difficult to explain fast evolving GLEs, such as 2005 January 20, 

with two-theory models. On the other hand, shock acceleration not only models slowly-

evolving classic GLE profiles (2001 April 15) very well, but we have also shown that for 

the 2005 January 20 GLE (the fastest evolving GLE ever observed) the rapid onset and 

proton spectra are consistent with shock acceleration. Occam's razor would dictate that 

these facts suggest that shock acceleration theory should be seen as the leading candidate 

to explain the origin of the highest-energy particles produced in solar processes. 
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7.4 Conclusions 

Measurements of the 2001 April 15 and 2005 January 20 GLEs with the Milagro 

water Cerenkov detector and multiple NMs were used to analyze the proton spectra 

throughout the evolution of each event. The multiple data channels in Milagro enabled a 

self-consistent analysis of the proton spectra during the initial phase of the 2005 January 

20 GLE despite the large anisotropy effects. The spectral results for all phases of each 

event are consistent with a coronal shock origin. The spectra were hardest during the 

rising edge of the 2001 April 15 GLE and the precursor spike of the 2005 January 20 

GLE, indicating that the most efficient acceleration of the GeV protons occurred when 

the CMEs were at low solar altitudes (<3 Ro). The onset of the type II radio emission for 

both events occurred after CME launch and prior to GLE onset, evidence that shock 

formation commenced low in the corona with sufficient time to accelerate protons to GeV 

energies. This agrees with recent modeling of GeV shock acceleration (Lee, 2005; Zank 

et al., 2000) that requires setting up the shock close to the Sun and retaining the particles 

for acceleration before they are released into interplanetary space. 

The rapid evolution and high intensity of the 2005 January 20 GLE has generated 

both great interest and great debate within the field, causing many to resurrect direct flare 

acceleration as the source of the highest-energy particles during the initial phase of the 

GLE. However, we have shown that this extreme behavior is consistent with the same 

shock acceleration model explaining classic GLE profiles, e.g., 2001 April 15, but on a 

faster timescale and not requiring a different process, i.e., direct solar-flare acceleration. 
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Appendix A 

Simulation Plots 

Preliminary simulations for Milagro and the Milagro prototype, Milagrito, 

established that the detector was sensitive to shower cores up to 10 km radially. 

Simulating Milagro's sensitivity to solar cosmic rays required an extrapolation procedure 

to obtain the specific yield functions for the higher multiplicity channels near the cutoff 

rigidity, described in section 4.5.3. 

This section contains the simulation results for isotropic and anisotropic (zenith) 

pitch-angle distributions for Milagro's scaler channels which were used to analyze the 

2001 April 15 and 2005 January 20 GLEs. Milagro's specific yield functions are also 

compared to those of neutron monitors used in the analysis. 
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Figure A . l : Simulated proton effective area vs. throw distance for a zenith pitch-angle distribution 
from 3.13-9 GeV (dashed lines represent extrapolated values). 
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Figure A.2: Simulated proton effective area vs. throw distance for a zenith pitch-angle distribution 
from 12.5-35 GeV. 
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Figure A.3: Simulated proton effective area vs. throw distance for an isotropic pitch-angle 
distribution from 3.13-9 GeV (dashed lines represent extrapolated values). 
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Figure A.4: Simulated proton effective area vs. throw distance for an isotropic pitch-angle 
distribution from 12.5-35 GeV. 
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Figure A.5: Isotropic vs. zenith proton specific yield functions for Mt. Washington, Durham, and 
Climax neutron monitors (Mt. Washington and Durham out to 15 GV), as well as the 
Milagro low threshold channel. 
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8-PMT, and 12-PMT channels. 
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Figure A.7: Isotropic vs. zenith proton specific yield functions for Milagro 16-PMT and 
25-PMT channels (dashed lines represent extrapolated values). 

160 



(bottom) Mt. Wash NM 
(bottom) Durham NM 
(bottom) Climax NM 
(bottom) 16-PMT 
(bottom) 25-PMT 

4 5 6 7 8 9 
10 

Rigidity (GV) 

Figure A.8: Zenith proton specific yield functions for Climax, Mt. Washington, and Durham neutron 
monitors, as well as all available Milagro channels (dashed lines represent extrapolated 
values). 

161 



10 

i c r 

(top) LT 
(top) HT 
(top) 6-PMT 
(top) 8-PMT 
(top) 1 2-PMT 

1 0 ' 

TO 
CD 

< 101 
<v > 
u 

1 0 

1 0 " 

1 0 " 

(bottom) Mt. Wash NM 
(bottom) Durham NM 
(bottom) Climax NM 
(bottom) 16-PMT 
(bottom) 25-PMT 

1 0 

Rigidity (GV) 

Figure A.9: Isotropic proton specific yield functions for Climax, Mt. Washington, and Durham 
neutron monitors, as well as all available Milagro channels (dashed lines represent 
extrapolated values). 
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Appendix B 

Time-Resolved Spectra 

Measurements of the proton spectra during both the 2001 April 15 and 2005 

January 20 GLEs were derived from the analysis procedure outlined in chapter 6. 

Ground-level count rates were taken from the Mt. Washington, Durham, and Climax 

neutron monitors (see Table 3.2 for station characteristics), and all available Milagro 

scaler channels. Spacecraft data were taken from IMP-8 (courtesy of Dr. C. Lopate, 

private communication) for the 2001 April 15 event, and from SOHO/ERNE (courtesy of 

Dr. E. Valtonen, private communication) for the 2005 January 20 event. 

Milagro multiplicity channels experienced instrumental difficulties at the time of 

the 2001 April 15 event, therefore, in addition to the neutron monitors listed above, only 

the low and high threshold channels in Milagro were used in the analysis. Based on the 

pitch-angle distribution results described in section 7.1.1, spectral measurements were 

performed using specific yield functions modeled by an isotropic pitch-angle distribution 

for time intervals from 1400 - 1425 UT, and an anisotropic pitch-angle distribution for 

time intervals after 1425 UT. 

Many ground-based stations were unable to resolve the intense, initial phase of 

the 2005 January 20 GLE due to the anisotropic pitch-angle distribution (see section 

7.2.1). As a result, the Mt. Washington and Durham neutron monitors were omitted from 
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the spectral analysis performed from 0651-0656 UT. However, the favorable viewing 

direction of Milagro during this anisotropic phase, produced signals in multiplicity 

channels up to 25-PMT. Proton spectra were measured using Milagro scalers channels up 

to 25-PMT until 0656 UT, up to 16-PMT until 0706 UT, and up to the high threshold 

channel from then on. Based on the pitch-angle distribution results described in section 

7.2.1, spectral measurements were performed using specific yield functions modeled by 

an isotropic pitch-angle distribution for time intervals from 0651 - 0656 UT, and an 

anisotropic pitch-angle distribution for time intervals after 0656 UT. 
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Figure B . l : Proton spectra for multiple time intervals in the 2001 April 15 GLE. The results were 
obtained from the analysis procedure described in chapter 5 using data from ground-level 
detectors and IMP-8 spacecraft data. 
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Figure B.2: Proton spectra for multiple time intervals in the 2001 April 15 GLE. The results were 
obtained from the analysis procedure described in chapter 5 using data from ground-level 
detectors and IMP-8 spacecraft data. 
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Figure B.3: Proton spectra for the final time interval of the 2001 April 15 GLE, and early stages of 
the 2005 January 20 GLE. The results were obtained from the analysis procedure 
described in chapter 5 using data from ground-level detectors and spacecraft data from 
IMP-8 (2001 April 15) and SOHO/ERNE (2005 January 20). 
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Figure B.4: Proton spectra for multiple time intervals of the 2005 January 20 GLE. The results were 
obtained from the analysis procedure described in chapter 5 using data from ground-level 
detectors and SOHO/ERNE spacecraft data. 
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