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ABSTRACT
BIMODULE CATEGORIES AND MONOIDAL 2-STRUCTURE:
by

Justin Greenough
University of New Hampshire, September 2010
Advisor: Dr. Dmitri Nikshych

We define a notion 6f tensor product of bimodule categories and prove that with
this product the 2-category of C-bimodule categories for fixed tensor C is a monoidal
2-category in the sense of Kapranov and Voevodsky ([KV91]). We then provide a
monoidal-structure preserving 2-equivalence between the 2-category of C-bimodule
categories and Z(C)-module categories (module categories over the center of C). The
.(braided) tensor structure of C; Bp C, for (braided) fusion categories over braided
fusion D is introduced. For a finite group G we show that Qe—equivariantization is
equivalent to the tensor product over Rep(G). The fusion rules for the Grothendeick
ring of Rep(G)-module categbries are derived and it is shov'vn that the group of in-
vertible Rep(G)-module categories is isomorphic to H2(G, k*), extending results in

[ENOO0.
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INTRODUCTION

0. 1 Generalities

Over the last century it has become evident that the study of algebraic structures
vfrom a module theoretic perspective is effective and powerful. The essential paradigm
‘hinges on the observation that one structure may “act” on another énd that in study-
ing such acﬁons one may learn something about the structures involved. The applica-
tion df this basic notion has led to the development of a vast machinery of techniques
)and methods. In the theory of group representations, for example, one defines the
action of a group on a vector space by specifying an ass;ciation between elements of
a group and linear transformations on a fixed spacé. Much can be understood about
groups by making observations about the sorts of linear transformations which can
arise by this process and in particular the traces of these linear maps (character the-
ory). To study Lie algebras one defines an associative algebra as a certain quotient of
the tensor algebra and then studies modules over this algebra. This notion also occurs
naturally in more physical contexts, such as Boundary Conformal Field Theory (seé
for example [Car], [JF03], [VP01]). To any CFT is associated a ring-like object which
acts on boundary conditions in a higher-dimensional space. Considerations about
how simiiar constructions can be deformed have helped lead to the development of
the theory of quantum groups, Hopf algebras and algebraic catggor& theory, and have
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deep applications in theoretical physics (sée [Maj02], [Str07], [FMS99] among many
others).

It is beneficial to consider the ways in which modules interact. The collection
of modules defined over a given structure will generally form‘ a category with extra
algebraic structure allowing the application of extended classical results and con-
structions from ring and group theory. In precisely this fashion one moves from a
“one-dimensional theory” to an enriched categorical theory with analogous but sub-
tler structures yielding analogous But more refined ;esults. Thus the classical picture
acts as a cartography for the new tﬁeory and provides a narrative over which it
develops.

" The categories under study are required to satisfy axioms making something akin
to linear algebra possible (so called abelian categories). Fusion categories are defined
to be abelian categories equipped with a monoidal structure (multiplication) that
behaves nicely with respect to other important operations. The notion of “monoidal
" category” is an abstraction of the notion of a ring and is intended tb capture ring-
like préperties on an axiomatic level. Similarly we @ay define symmetric r-braided
tensor categories as abstractions of a commutative ring, and module category as an
abstracted module. Module categories, introduced by Bernstein in [Ber95] and studied
~ in [Ost03], [EO04] among many others, form the basic objects of study in this thesis.
The definition of a mbdule category involves d\escribing the action of a monoidal
category just as classical modules describe actiox;s of rings. Because we are dealing
with more abstract structures the new axioms take the form of commuting diagrams '

whose vertices are objects and whose edges consist of appropriately defined maps
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which form part of the definition of the action. These maps dictate the appropriate
assbciativity and unit constraints, in the categorical context, that one would see
expressed in equations such as (zy)z = z(yz) and 1z = z in algebra. As with
rings and modules, one would like some meaningful way by whinx to relate pairs of
module categories. There we have‘ functions preserving module structure (linearity)
- and here we have functors preserving module category structuré, so called module
functors. Ohe primary difference in the categorical setting is that here we have a way
of relating pairs of module functors. Since module functors themselves are required
to satisfy certain axioms (again taking the form of commuting diagrams) we may
define module transformations as transformations preserving this structure in the
appropriate fashion.

Just as modules over a fixed ring form a category, module categories over a fixed
Iﬁonoidal category form an appropriately enriched structure, called a 2-category. Just
é.s in certain circumstances the category of modules over a fixed ring may itself have
the structure of a monoidal category (under tensor product of modules) so m;L;r the

- associated 2-category of module categories havé under certain conditions a monoidal
structure making it a monoidal 2-category. As we move from monoidal categbry to
monoidal 2-category the basic data expressed in diagrams (2-dimensional versions
of equations in tﬁe lower-dimensional case) are replaced by 3-dimensional diagrams,
polytopes, which represent restrictions on the ways cells of varioué levels are allowed to
interact. Now instead of just O-cells (objects) and: 1-cells (morphisms) we have 2-cells
(morphisms between morphisms). A priori there is no reason why the theory should
féil_ to continue beyond level two yielding 3-cells, 4-cells etc. Although it is possible to

3



define higher level structures leading to n-categoies, and even oo-categories, we leave
this to future endeavor.

The basic “nice” condition allowing us to define a tensor product between module
categories occurs when we require that module categories are really bimodule cate-
gories. One instance in which this happens arises naturally when we stipulate that
the underlying monoidal category is braided, a notion generalizing the idea of ring
commutativity in an appropriately categorical way. In such a case we can define a
tensor product of bimodule categories in a way reminiscent of the definition of the
tensor product of modules; by stipulating an _object universal‘ for certain types of
functors. If the bimodule categories in question are taken over a fixed monoidal cat-
egory C we denote this new tensor product X¢. As the notation suggests X reduces
to a well known product for abelian categories developed by Deligne in [Del90]: in
the case that C = Vec, the category of vector sbaces,'we have X, = K.

A major part of this thesis has focussd on asking and answering basic theoretical
questions about K¢ and the associated monoidal 2-category of bimodule categories.
It turns out that X shares, in categorical ahalogue, many properties of the classical
module theoretic tensor product, e.g. weak associat'ivity, Frobenius reciprocity, and
unitaliﬁy with respect to the underlying monoidal category. These results, as in the
classical case, provide powerful tools required for difficult calculations and form a

basic starting point from which to develop algebraic aspects of the theory.
\\



0.2 Thesis outline

First steps in defining this extended product involve defining balanced functors from
the Deligne product of a pairbof module categories. This approach mimics the classical
definition of tensor product of modules as universal object for balanced or middle
linear morphisms. Tenéor p;oduct of module categorieé is then defined in terms of
a universai functor factoring balanced functors. Ih Theorem 2.3.1 we prove that the
tensor product exists; explicitly we prove that, for M a right C-module category and
N aleft C-module category there is a canonical equivalence ME N ~ Fun,(MP N)
where the category on the right is the appropriate category of C-module functors.

In order to apply the tensor product of module categories we provide results in
§2.3 giving 2-category aﬁalogues to classical formﬁlas relating tensor product and
hom-functor. In this setting the classical hom functor is replaced by the 2-functor
Fun, giving categories of right exact C-médule functors.

In §4.1 we prove

Theorem 0.2.1. For any monoidal category C the associated 2-category B(C) of C-
bimodule categories equipped with the tensor product Bc becomes a (non-semistrict)

monoidal 2-category in the sense of [KV91].

In Chapter 5 we discuss the tensor product for a special class of module categories.
Here we assume our module categories are quipped with the structuré of fusion
categories >and that their centers contain a faithfui image of some fixed braided fusion
category D (such categories are said to be tensor over D, see Definition 5.0.7). Under

these circumstances the tensor product itself has the structure of a fusion category.
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If the module categories are braided the tensor product is braided. We describe these
structures explicitly. J

As an immediate application we prove in Chapter 6 that de-equivariantization of
a tensor category can be represented as a tensor product over Rep(G), the category of
finite dimensional representations of a finite group G. Let A be the regular algebra in
Rep(G). For tensor category C over Rep(G)_ the de-equivariantization Cg is defined
to be the tensor category of A-modules in C. This definition was given in [DGNO10)

and studied extensively there. We prove

Theorem 0.2.2. There is a canonical tensor equivalence Co ~ C Mpeyqy Vec such
that the canonical functor C — C Rpey) Vec is identified with the canonical (free

module) functor C — Cg.

In §7 we introduce the notion of the center of a bimodule category generalizing
the notion of the center of a monoidal category. We then prove a monoidal-structure
preserving 2-equivalence between the monoidal 2-category of C-bimodule categories,

denoted B(C), and Z(C)-Mod, module categories over the center Z (C):

Theorem 0.2.3. There is a canonical monoidal equivalence between 2-categories B(C)

and Z(C)-Mod.

In §8 we give a second application of the monoidal structure in B(C). To be precise
. we show that, for arbitrary finite group G, fusion'rules for Rep(G)-module categories
over Mgep(c) correspond to products in the twisted Burnside ring over G (see e.g.

[OY01] and [Ros07]). As a side effect we show that the group of iﬁdecomposable



invertible Rep(G)-module categories is isomorphic to. H2(G, k) thus generalizing

results in [ENOO09] given for finite abelian groups.



CHAPTER 1

PRELIMINARIES, BACKGROUND

Very little in this section is new. Where it seemed necessary sources have been
indicated. In most cases what is included here has become standard and so we omit
references (suggested general references: [Mac00], [BKO01], [Kas95] along with those

already given in the introduction).

1.1 Abelian categories

As mentioned in the introduction we are interested in studying an enriched, categori-
fied veréion of the theory of rings and modules. The proper context in which to do
this should provide tools and structures allowing us to do something akin to linear
algebra in this extended regibn of discourse. In _thisv section we will outline the basic

sorts of categories With_ which we will have occasion to work in later sections.
Definition 1.1.1. An additive categdry is a category C satisfying the following.
1) Every ixom set has the structure of an abelian group with respect to which
composition of morphisrﬁs is a group homorphism. |

it) C has a zero object 0 with the property that Hom(0,0) = 0.

i11) (Existence of direct sums.) for any objects X7, Xy € C there exists an object

¢

Z = X ® X3 € C and morphisms j; : X; = Z, p; : Z — X; for i = 1,2 such

8



that p; o j; = idx, and j; o p; + js o p; = idz and Z is unique object up to a

unique isomorphism having this property.

The object Z in (4i1) is called the direct sum of X; and X, and is denoted X; & X3. A
functor F : C — D between additivé categories is said to be an additive functor if the

associated functions Home(X,Y) — Homgp(F(X), F(Y)) are group homomorphisms.

Definition 1.1.2. Let k be any field. An additive category is k-linear if each hom
set has the structure of a vector space over k with respect to which composition of
morphisms is bilinear. A functor between k-linear categories is a k-linear functor if

the associated functions between hom sets are linear transformations. .

Let C be an additive categor&, and f: X — Y a morphism in C. Then the kernel
of f (if it exiéts) is the unique (up t/o a unique isomorphism) object K together with
a morphism & : K — X such that fox =0 and if & : K’ — X is any other morphism
‘with this property there is a morphism j : K’ — K with ko j = &’. Typically we
denote the kernel of f by ker(f). Similarly one defines the cokernel of f to be an
object coker( f ) »a.md a mgrphism ¢ :Y — coker(f) with the property that cof = 0 and
which is universal with respect to this property in a way analogous to the universality
defining ker(f). If ker(f) =0 f is. said to be injective, and surjective if coker(f) = 0.
In the case thz:t fis inj‘ective we call X a subobject of Y and if f is surjective we call
Y a quotient object of X. In an additive categoyy there‘is no guaranteé that kernels

A

and cokernels exist. We will require that they do.

Definition 1.1.3. Let C be an additive category. Then C is an abelian category if it
satisfies the further property that for any morphism f : X — Y there is a composition

9



ker(f) 5 X 5T 5V S coker(f) with joi = f and coker(k) = I = ker(c). The
object [ is called the image of f. In particular, kernels and cokernels exist in an

abelian category.

Deﬁnition 1.1.4. In an abelian category C an objec‘t is said to be simple if its only
subobjects are itself and 0. If there are only finitely many isomorphism classes of
simple objects then C is called finite. If aﬁ object Y can be written as the direct sﬁm |
of simple objects Y is called semisimple, and C is called semisimple if all of its objects

~ are semisimple.

Any category for which the class of objects form a set will be called small. An
important theorem of Mitchell shows that the category of modules over a fixed ring
is the typical example of an abelian category. We include it here without proof for

the sake of completeness. See [Fre64] and [Mit64] for a more thorough discussion.

Theorem 1.1.5 (Mitchell). Fvery small abelian categofy is equivalent to a full sub-
category of the category of left modules over an associative unital ring. If the category

is k-linear then the ring is a k-algebra.

We end this section on abelian categories with a few definitions familiar from
topology, the theory of modules, and representation theory which will be of impor-

tance to us in the sequel.

Definition 1.1.6. An ezac! sequence in an abelian category is a diagram of the form

Jim1 Xy fi X, fisr Xis1 five

10



where ker‘( fix1) is the image of f; for every t. That is fiy1 fi = 0. If all but finitely

many of the Xj; are 0 then this is called a finite exact sequence.

Definition 1.1.7. Functor F': A — B is said to be right exact if F' takes short exact
sequences ) - A — B — C — 0in A toexact sequences F'(A) — F(B) — F(C) — 0
in B. Similarly one defines left exact functors. Denote by Fun(A, B) the category of

right exact functors A — B.

1.2 Monoidal and fusion categories

In the rest of this thesis all categories are assumed to be abelian and k-linear, have
finite-dimensional hom spaces, and all functors are assumed to be additive and &-
linear. Even though most of what we do here is valid over fields of positive charac-

teristic we assume at the outset that k is a fixed field of characteristic 0.

Definition 1.2.1. A monoidal category C consists of the following: a category C
containing an object 1 called the unit of C, an exact-in-both-variables bifunctor ®:
C x C — C, natural isomorphisms a : ®(® X id) —» (d X ®), rx : X ®1 ~ X,

lx : 1® X ~ X whenever X € C, required to satisfy the following commutative

diagrams:
(WX)Y)z
aw,x,y®Z AaWX,Y,z |

' ax,1,y

(W(XY))Z wx)yz) &Y » X(1Y)

aw.xy,zl 1aw,x,yz r;& AY
W((XY)Z) s W(X(Y Z)) Xy
W@ax v,z

11



for any objects W, XY, Z € C. Here, as in the sequel, we may abbreviate tensor
products as juxtaposition in an effort to save space. The natural isomorphism a is
called an associativity constraint and £, r unit constraints of C. The monoidal category

C is said to be strict if all the natural isomorphisms a, r, ¢ are identity.

Remark 1.2.2. Denote by & the product of abelian c-ategories introduced in [Del90].
This is an object in the category of abelian categories universal for right-exact in both
variables bifunctors from the cartesian product category C x D. If (C,®,1,qa,¢,7) and
(D,®,1',d,€,r") are monoidal categories then C XD has the structure of a monoidal
category as follows: (X;® X5)® (V1R Ys) = (X; ®Y;) W (X; ® Y;) with associativity

constraint a & a’, unit object 18 1’ and unit constraints £R ¢, r K .

Definition 1.2.3. Let C = (C,®,a,¢,1,1),D = (D, ®,a',¢,r',1') be monoidal cate-
~ gories. A functor F : C — D is said to be a monoidal functor if it comes with hatutal
isomorphisms fxy : F(X ®Y) ~ F(X)® F(Y) and u : F(1) ~ 1’ satisfying the

following hexagon and squares for'every X,Y, 7 € C.

Flax,y,z)

F(XY)F(Z) %2 p((XY)Z) F(X(YZ))

fx,?@idi . lfx‘vz

(F(X)F(Y)F(Z) F(X)(F(Y Z))
"m} %
F(X)(F(Y)F(2))

\\
\

FX)® F(1) /& L, FrX)®1 F(1) ® F(X) —eid__, l'® F(X)

fx.1]> lr'F(X) : 7 LXT JVE‘F(X)

FX®1)—e—— F(X)  F1®X) — F(X)

F(tx)

12



In order to emphasize or designate the linearity constraint f for a functor F' we may
on occasion write (F, f). The functor is said to be a strict monoidal functor if the

natural isomorphism f is identity.

Following ferminology from regular category theory we will say that two monoidal
cafegories are monoidally equivalent if there is a monoidal functor between them which
is an equivalence. As it turns out, by MacLane’s famous “strictness theorem,” we

| may justifiably assume all monoidal categories to be strict. We include the statement

here for completeness and because we will use it extensively in what follows.

Theorem 1.2.4 (MacLane strictness theorem). Any monoidal category is monoidally

equivalent to a strict one.

A nice proof of Theorem 1.2.4 may be found in qual and Street’s‘ 1993 papér on
braided tensor categories [JS93]. In what follows we will assome monoidal categories
strict unless stated otherwise. The primary benefit of having such a theorem is that it
provides notaﬁonal convenience simplifying diagrams-and calculations. For example
it allows us to replace the expressions (X ® Y) ® Z and X ® (Y ® Z) with the \
now unambiguous expfession X ®Y ® Z, and allows us to dispense with structural

constraints.

Definition 1.2.5. Let (F, f),(G,g) : C — D be two monoidal functors. A monoidal

natural transformation i : F' — G is a natural transformation satisfying the rectangle

\

FX®Y)—2 __ ,G(X®Y)

fx,vl lgx,v '

F(X)® F(Y) ———— G(X) ® G(Y)

13



for any X,Y €C.

As in many familiar classical situations (Rep(G), R-Mod for commutative R,
pointed toplogical spaces, etc) there is a natural notion of duality. The following

definition gives a categorical axiomatization of this concept.

Definition 1.2.6. Let C be a monoidal category, and let X be an object of C. An
object Y is said to be a right dual of X if there are morphisms evy : Y @ X — 1

| and coevy : 1 — X ® Y, called evaluation and coevaluation, such that both of the
compositions

» coe evx

X=10X"AXQY X5 Xel=X

Y=Y®1-3XQY®X "=1Y =Y

are equal to identity. Similarly one defines a left dual of X to be an object V together

with morphisms evyy : X ® V' — 1 and coevx : 1 — V ® X making both of the

compositions -
X=X01KX@VOX 510X =X
coev’, ev/, - ]
V=19V —3VXQV-5VQ1l=V
identity.

It is well known that if X possesses any left (right) dual then it is unique up to a

unique isomorphism. In this case the left (right) dual object of X is denoted *X (resp.
. . \\\ :

X*). Furthermore this process of associating to an object its duals, should such dual

objects exist, extends to morphisms. Explicitly, if f : X — Y is a morphism between

objects X,Y possessing right duals then define the right dual f*: Y* — X* of f by

14



the composition

coevx

Y*=Y*®1—~—)Y*®X®X*M—>

V'eY®X 510 X" = X~

Similarly one defines the left dual *f : *Y — *X.

Definition 1.2.7. A monoidal category is said to be rigid if every object possesses
both a right and a left dual objéct. |

. Definition 1.2.8. Let C be an abelian k-linear monQidal category having finite di-
mensional hom spaces withvrespect to which th(? bifunctor ® is bilinear. C is called a
tensor category if it is finite, rigid and has a simple unit object 1. C is called a fusion

category if it is tensor and semisimple.
Also of interest is the notion of invertible object in a tensor category.

Definition 1.2.9. An object X is invertible if there is an object Y such that X®Y ~

1~Y ® X. If every simple object is invertible the category is said to be pointed.

1.2.1 Braiding, center.

The definitions given thus far in §1.2 describe basic categorical analogues to the
objects of study in the classical theory of rings. The next definition describes the

categorical version of a commutative ring.

Definition 1.2.10. A monoidal category C is saic\l to be braided if it is equipped with

a class of natural isomorphisms -

cV,WV®W—>W®V
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satisfying the pair of hexagons

uwvw) 2 (vw)u oVyw L8 wwv)

G.V w aa'lv/' \;VI,U,V
U)W V(WU) UVW) ' wuyw
cub\ /@ w U@m‘ /W@v
(VU)W —— V(UW) - U(WV) —— (UW)V

Ay, w,v ;
for all objects U, V, W € C.

When C is strict these reduce to commuting triangles giving equations

cuvew = (idv ® cuw)(cuy ® idw)

Cygv,w = (CU,W & zdv)(sz X Cuw).

In any braided monoidal category the‘isomOrphisms Cx,y,Cy,x are COmposable. We

adapt the following definition from {Mug00], [Mug03].

Definition 1.2.11. Two objects X,Y in a braided monoidal category are said to

centralize each other if cx ycy x = idygx.

Let D be a fusion subcategory of a braided fusion category C. Following [DGNO10}

we make the following definition.

Definition 1.2.12. The centralizer D’ of D is the full subcategory of objects of C

that centralize each objects of D. The ce_ntralize}’- C’ is sometimes called the Miigef

center of C.

In the next two examples G is a finite group.
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Example 1.2.13. Rep(G), the category of finite dimensional representations of G,

is a braided tensor category with the usual tensor product.

Example 1.2.14. The category Vecs of finite dimensional G-graded vector spaces
twisted by w € H3(G,k>) is a rigid monoidal category. Simple objects are given
by k, (g"* component k, 0 elsewhere) with unit object k;. Associativity is given by

k, kn ke = wW(g, b, m)id on simple objects, tensor product is defined by

VeWw),=P VoW

hk=g
and (V*), = (*V), = V,-1. In general Vecs is not braided.

Definition 1.2.15. The center Z(C) of a monoidal category C is the.category having
as objects pairs (X, c) where X € Cand forevery Y € C ¢y : Y @ X > X QY isa

family of natural isomorphisms satisfying the hexagon

CXY,Z

(XRY)®Z™ 520 (X®Y)

-1 -1

XY ®2Z) (ZeX)®Y

idx ®cy, 7>~ ‘ tx,z®idy

X®ZoY) 7 (X®2Z)®Y

Ax.zY

for all Y, Z € C. Here a is the associativity constraint for the monoidal structure
_ SN
in C. A morphism (X,¢) — (X',c) is a morphism f € Hom¢(X, X’) satisfying the

equation ¢y (f ® idy) = (idy ® f)cy for evéry Y eC.

The center Z(C) has the structure of a monoidal category as follows. Define the

17



tensor product (X, c) ® (X', ) = (X ® X', ¢) where ¢ is defined by the composition

-1
Ay X, x!

YR(XX) S5 (YeoX)eX' 2o (XeY)e X'

Eyl iax,y,x'

(X@X)®Y — X@(X'QY)+—— X ® (Y ® X')
Cy

X, x!,Y

If 7 and ¢ are the right and left unit constraints for the monoidal structure in C
then the unit ogject for the monoidal structure in Z(C) is given by (1,77!{) as one
may easily check. Suppose now that C is rigid and X € C has right dual X* (recall
Definition 1.2.6). Then (X,c¢) € Z(C) has right dual (X*,2) where ¢y := (ciy)* and
*Y is the left dual éf Y. One may also check that Z(C) is braided by ¢(x ¢g(x" ) = .

There is a canonical inclusion of monoidal category C into its center given by
X — (X,cx). It is well known that the center Z(C) is in some sense “larger” than
C. This differs from th.e classical analogue in which a ring contains its center. We.

generalize the notion of center in §7.

1.2.2 Pre-metric groups

Everjlzthing in this sut;section may be found .in [DGNOlO].r We refer thé reader
to [DGNO10], [Kas95] and [BKO01] for definitions and other information relating to
braided fusion categories. | |

Recall that a quadratic form on an abelian group G having values in an abelian
group B is a map ¢ : G — B such that q(¢g!) = q(g) and the symmetric ﬁmction ‘

b(g,h) := q(qg()i;&) is bimultiplicative. We call b: G x G — B the bimultiplicative form

associated to q. If B = k™ we call b the bicharacter associated to q. -
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Definition 1.2.16. A pre-metric group is a pair (G, q) where G is a finite abelian
group and q : G — k* is a quadratic form. A morphism of pre-metric groups

(G1,q1) — (G2, ¢2) is a hofnomorphism ¢ : G; — Gy such that gy 0 ¢ = q.

The set of isomorphism classes of the simple objects of any pointed braided fusion
category C form a group G. For g € G denote by ¢(g) € k* .the braiding cx,x €
Aut(X ® X) where X is in g. Then g — ¢(g) is a quadratic form G — k*. In this
way C determines the pre-metric group (G, q).

Conversely every pre-metric group (G,q) determines a pointed braided fusion
category C(G,q) as follows. As a fusion category C(G, q) is Vecg, the category of
(finite-dimensional) G-graded vector spaces. For X homogeneous object of degree g

define the twist Ox = q(g). Then the braiding cx,y : X ® Y — Y ® X satisfies
cxyeyx = b(g, h)idyex 4 (1)

where b is the bicharacter determined by q. In the special case that ¢ comes from
a bicharacter § E G x G — k> via the equation g(z) = B(z,z), the associated
braiding is cxy = [(g,h)7 for 7 the linear twist. These two constructions define
reciprocal eqﬁivalences between the category of pre-metric groups and the {truncated

2-) category of pointed braided fusion categories.

1.3 Module categories

In §1.>2 we described the basic objects of study for a categorical version of classical
ring theory. In this section we will define the categorical analogue of the classical
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theory of modules. The first definition is crucial for this thesis.

Definition 1.3.1. Let C be a monoidal category. A left C-module category (M, p)
is a category M together with an exact bifunctor ® : C x M — M and a family of
natural isomorphisms puxyy (X QY)OM - X (Y @ M), lyy: 19 M — M for

X,Y € C and M € M subject to the coherence diagrams

(WX)Y)M
Lw,x,y®M W X,Y,M
(W(XY))M Wxyvay XDM——= s X(1M)
p‘W,XY,Ml 1”’“’,X,YM T)m AM
W((XY)M) e W(X(Y' M) XM

Similarly one defines the structure of right module category on M. If the structure

maps are identity we say M is strict as a module category over C.

Example 1.3.2. Any monoidal category C is a module category over itself with
action given by monoidal structure. This is referred to as the regular module category -

structure on C.

Example 1.3.3. Let G be a finite group with subgroﬁp H. For 2-cocycle pu €
H?(H,k*) the category Rep“(H ) of projective representations of H corresponding
to Schur multiplier p constitutes avRep(G)—module category with module category
structure defined by W ® V :=resf(W) ® V whenever W € Rep(G), V € Rep,,(H)

and res : Rep(G) — Rep(H) is the restriction functor.

For any X € C we get a functor Lx : M — M given by M - X @ M (left
multiplication by X). It is natural to ask about the existence of adjoints of Lx. The
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following definition introduces a convenient technical tool for dealing with module
categories. For the next definition assume M is a C-module category for semisimple

C. Denote by Vec the braided tensor category of finite dimensional vector spaces.

Definition 1.3.4. For M, N € M the internal hom Hom(M, N) is defined to be the
object in C representing the functor Homa(__ ® M, N) : C — Vec. That is, for any

object X € C we have
Homam (X ® M, N) ~ Hom¢(X, Hom (M, N))

naturally in Vec. It follows from Yoneda’s Lemma that Hom(M, N) is well defined

up to a unique isomorphism and Hom(—, —) is a bifunctor.

Definition 1.3.5. For M, N left C-module categories a functor £ : M — A is said
to be a C-module functor if F comes equipped with a family of natural isomorﬁhisms

fxm: F(X ® M) —» X ® F(M) satisfying the coherence diagrams

F(XY)M)
Flux,v,m Fxvy,.m _
’ F(ey
F(X(Y M)) (xyyry  FUM) T F(M)
fx,yml 1#X,Y,F(M) Fim A)
XE(A) Fara XYV (F(M) LE(M)

whenever X,Y € C and M € M. We may write (F,f) when referring: to such a

functor. A natural transformation 7 : F' = G for bimodule functors (F, f),(G,g) : -
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M — N is said to be a module natural transformation whenever the diagram

F(X @ M) —2"_, (X @ M)

fx,Ml lQX,M

X ® F(M) ——— X ® G(M)

dx@TxgN
commutes for all X € C and M € M.

In what follows we will have occasion to deal with categories of module functors.

We fix notation now.

Definition 1.3.6. The category of left C-module functors from M — A with mor-
phisms given by module natural transformations will be denoted Fung(M,N). The
subcategory of right-ezact C-module functors (recall Definition 1.1.7) will be denoted

Func‘(M,N)

It is known that the category Func(M,N) is abelian. Furthermoré it M\N are
semisimple then so is Func(M,N) (see [ENOO5] for details).

In much jof this thesis we will be concerned with categories for which there are
left qnd right module s;tructures which interact in a consistent and predictable way.
In the next subsection we will discuss this in more detail and for now simply give a

definition.

Definition 1.3.7. Let C, D be monoidal categorie_\g. M is said to be a (C, D)-bimodule
category if M is a C X D°P-module category. \If M and N are (C,D)-bimodule
categories call FF : M — N a (C,D)-bimodule functor if it is a C & D°*-module
functor.
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Recall MacLane’s strictness theorem for monoidal categories stating that every
“monoidal category is equivalent to a strict one (Theorem 1.2.4). Next we prove a
generalized version for module categories which reduces to the monoidal strictneés
theorem in the regular module case. Our proof mimics the proof of the monoidal

strictness theorem found in [JS93].

Theorem 1.3.8. Any module category is module equivalent to a strict module cate-

gory.

Proof. Let (M, p, r) be aright C-module category for some strict monoidal category C.
The strategy ié to show that M is module equivalent to a C-module category M’ which
is defined to be a,vca,tegory of functors on which C acts by functor composition and
which is therefore strict. We begin by recalling that C is monoidally equivalent to the
category of C-module endofunctors Func(C,C) with equivalence giveﬁ by X = FX,
FX :C — C is the functor sending 1 — X (1 is unit object in C): FX(Y) =X QY.
Define M’ to have objects given by pairs (F, f) where F' is a functor C — M and

fxy F(X)®Y — F(X ®Y) is a natural isomorphism in M satisfying the diagram

FX)®Y ®2Z) % ,FXeY®2)
ﬂF(X),Y,Z]\ fomg
(F(X)®Y) ®ZWF(X®Y) ®Z

for every triple X,Y,Z € C. In short, F is a ﬁght C-module functor with module
linearity given by f. A morphism 8 : (F1, f) — (F?, f?) in M’ is defined to be a

natural transformation 6 : F! — F? satisfying the diagram in Definition 1.3.5 making

23



it a module natural transformation. Composition in M’ is vertical composition of
natural transformations.
Now note that M’ is a right C-module category: for X € C and (F, f) € M’ define

(F,f) ® X := (F o FX, fX) where f¥ is defined by
FFX(Y)®Z=F(X®Y)9Z " F(X®Y ® Z) = FFX(Y ® 2).

Note that the action of C on M’ is strict since composition of functors is strictly
associative and F! = id. We show that M is module equivalent to A{’.
For M € M define functor Ly : C — M by left M multiplication in C, i.e.

X — M ® X. This allows us to define functor L : M — M’ by
L(M) == (Lpy pips,— ).

It is evident that L(M) is an object in M': the diagram required of ps — — is precisely
the pentagon in the definition of module category. We show that L is both essentially
surjective and fully faithful.
To see essential surjectivity observe that any (F, f) € M’ is isomorphic to L.
Indeed f1x : Lry(X) = F(1) ® X ~ F(X) for any X €C, and f, _ is natural.
Next let 8 : Ly — Ly be a morphism in M’ for M , N € M. Define the morphism

¢: M — N in M by the composition ‘:\‘\,
| T 01- ™
p=M-—->Mx1—N®1— N.
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We claim that for all Z € C one has 87 = ¢ ® Z, whence 6 = L(p) and L is thereby

full. To see this consider the following diagram.

BUM1,Z M@z

rlez
M®Z-——’”°3—>(M®1)®Z M®(1® Z) M®Z

<P®Z‘[ 191®Z » Jvol@Z 192

Rectangle on the left is definition of ¢, middle rectangle commutes since 8 is a mor-
phism in M’, right rectangle commutes on naturality of 8. Top and bottom horizontal
compositions are identity (two applice;,tions of-the triangle axiom which forms a part
of the definition of module category). Thus perimeter is identical to the equation
p® Z =8z and L is full. On the other hand if L(f) = L(g) for any morphisms -
f,g € M then the square of naturalif;y fo; r implies f = ¢, and L is also therefore
faithfu}. This completes the proof that L is an eciuivalence

We now show that L is a module functor and finish the proof of the theorem.

Define natural isomorphism
Iy = pmy,- (LM Y), pmgy,-,-) = (LIM) @Y, timve-.-)-

Pentagon in the definition of module category implies that Jysy is a-morphism in M’

and that J is a module functor. We are done. ' ‘ O
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1.3.1 Bimodule categories

For right C-module category M having r-nodule associativity ,u define fixyum =
prtev-x- Then M has left C-médule category structure given by (X, M) M ®*X
with module associa’;ivity £~ 1. Similarly, if M has left C-module structure with asso-
ciativity o then M has right C-module category structure (M,Y) — Y*® M with

associativity 67! for G xy = Ov+ x+.um-

Proposition 1.3.9. These actions determine a (D,C)-bimodule structure
YRXM—-»X"QQM®'Y

on M whenever M has (C, D)-bimodule structure. If v are the bimodule coherence
isomorphisms for the left/right module structures in M (see Proposition 1.3.10), then

Yy mx = Yx+mry are those for M.

In the sequel whenever M is a bimodule category M will always refer to M

with the bimodule structure described in Proposition 1.3.9.

Proposition 1.3.10. Let C, D be strict monoidal catgories. Suppose M has both
left C-module and right D-module category structures _;L’, u and a natural family of

isomorphisms Yxmy : (X Q@M)®Y - X @ (M QY) for X inC, Y in D making
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the pentagons
(XY)M)Z = (XYY(MZ) (XMYYZ)—> XA(‘M('YZ)_)- - (M) 2 (M)

u‘®idl u'i €MJ'

(X(YM))Z Ry ((XM)Y)Z dew . M1 2%

71 | v@ia{ . ’“l

X(YM)Z) 5 X(Y(MZ))  (X(MY))Z —— X((MY)Z) Me— —1M

commute. Then M has canonical (C, D)-bimodule category structure.
v

Proof. Throughout abbreviate X := X, ® X, in C ® D. Suppose given p, u
and v as in the statement of the pro.position. Observe that C X D acts on M by
(XRY)R'M := (X®M)®Y where the ® on the right are the givén module structures
assumed for M. For M € M define natural isomofphism i Q(idempor X ®') —

®'(®' x idpq) by the composition

pxvm = (xunmys ® idy, )iy, via ® v, 50 ) (B x )1 ve, ) -

' Thus uf,?,M (XM @ (Ya®Y:) = (X1 (Vi ® M)®Y;)) ® X, in the

language‘. of left and right module structures . -A |
Consider the partitioned diagram below whose periphery is thé appropriate dia-

gram for u written as the composition which defines it. To save space we elide identity

morphisms, morphism subscripts, and objects occurring at internal vertices. Label

the subdiagrams Dsi.
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> ((X1Y1I(Z1M)) Z2) (Y2 X2)

(X1 Y1 Z1)M)(Z2Ya X3) —— (X1 Y1 Z1) M) Z2)(Ya Xz)

u" ! D1 Lu" D2 hd
- ! R
T X1 Y121 M) (Z2Y2)) X2 - > : — bs  ((XiN)({(Z1M)Z2)) (Y2 X2)
u‘l D3 Lu‘ D4 ut L ut
r 1 ~
(X1 ((Y121)M))(Z2Y2)) X2 i —~ - — (X1 Y1) 21 M) 22))Y2) X2
1J{ D¢ v - b7 ¥ D8 ul
{ +
(X1(((V2 1) M)(Z2Y2)) X3 Y z 3 —— 3 (X1 (Vi ((Z1 M) 22))) Y2) X2
" D9 Y Dio L
(X1{{(Y1Z21)M)2Z2)Y2) X2 : + X1({(("1(Z1M))Z2)Y2) X2 — (X1 ((Z1 M) 22)) Y2) X2

Diagrams D1, D4 are the associativity diagrams for u", p!, diagrams D2, D3, D5,
D7, D9, D10 are naturality diagrams for either y' or vy, and diagrams D6 and D8

are the second and first diagrams given at the beginning of this remark. a

Remark 1.3.11. For bimodule structure (M, ), 7 is given by yx ary = fx®i180y.M
err the inherent left and right module Cé.tegory structures. In this way we get
the converse of Proposition 1.3.10: every bimodule structure gives separate left ‘and
right module category structures and the special constraints described therein in a

predictable way.

Remark 1.3.12. We saw in Proposition 1.3.10 that bimodule category structure can
be described separately as left and right structures which interact in a predictable
. fashion. We méke an analogous ébservation for bimodule functors. Let F' : (M,vy) —
(N, 8) be a functor with left C-module structure }ig and right D-module structure f7,

where (M, v) and (N, d) are (C, D)-bimodule categories with bimodule consistency
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isomorphisms 7y, § as above. Then F is a (C, D)-bimodule functor iff the hexaéon

'YXMY

FX®(MQ®Y))—— ((X®M)®Y)X®MYF(X®M)®Y
fx,Mng lfx Mm®Y
X®F(M®Y)X o X®(F(M)®Y)<—~QX®F(M))®Y

commutes for all X in C, Y in D, M in M. The proof is straightforward and so we

do not include it.

1.3.2 Exact module categories

It is desirable to restrict the general study of module categories in order to render
questions of classification tractable. In their beautiful paper [EO04] Etingof and
Ostrik suggest the class of exact module categories as an appropriate restriction in-
termediary between the semisimple and general (non-semisimple, possibly non-finite)
cases. Let P be an object in any abelian category. We say P is projective if th‘;

functor Hom(P, —) is exact.

Definition 1.3.13 ([EO04]). A module category M over tensor category C is said
to be exact if for any projective object P € C and any M € M the object P® M is

projective.

[t turns out that module category exactness is equivalent to exactness of certain
functors. We will not require the general formulation here but give the next lemma

for exact module categories because exactness ensures adjoints for module functors.
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Lemma 1.3.14. For M, N ezact left C-module categories the association
Func(M,N) % Func(N, M)

sending F' to its left adjoint is an equivalence of abelian categories. If M,N are

bimodule categories then this equivalence is bimodule.

Proof. By Lemma 3.21 in loc. cit. such adjoints exist and since adjoints are unique
up to isomorphism the association is bijective on ismomorphism classes of objects

(functors). For F : M — N linearity of F* over C comes from that for F' via the

composition

ag = Homp(F*(X ® N),R) =~ Hompn(X ® N, F(R))
~ Homp (N, X* ® F(R)) ~ Hompy (N, F(X* ® R))

~ Homp(F*(N),X* ® R) ~ Homyu(X ® F*(N), R)

for X € C, N € N, R € M. The third ~ is linearity of F.. Define

apagxam(id) - X ® F4(N) 5 F*(X @ N)

The diagrams required to show that a gives C-linearity for F¢ in Func(N, M)
are not difficult to draw but tedious and non-enlightening and so we omit them.

Now assume that the module categories involved are bimodule. Define left and right
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C-module action on F%¢ by the equations
X@F?:=(F®*X), FY®X:=(X®F)™.

This defines bimodule action (X RY) ® F*¢ := (*Y ® (F ® *X))*® with bimodule
coherence the adjoints of those for F: If yxy : X @ (FQRY) - (X ®F)®Y) are

those for F then those for F* are given by vy y = (y-v,-x)*% |

Note 1.3.15 (Notation). For C and D finite tensor categories we define a new cat-
egory whose objects are exact (C,D)-bimodule categories with morphisms (C, D)-
bimodule functors. Denote this category B(C,D). When C = D this is the category
of exact bimodule categories over C, which we denote B(C). For M and N in B(C, D)
denote by Func p(M,N) the categofy of (C, D)-bimodule functors from M to N. It
is evident that for exact (C, D) bimodule category M and (C, £) bimodule category A
the category of mo.dule funétors Func(M, N) has the structure of a (D, £) bimodule
éategory with action (X IZ!.Y) ®F = F(—- ® X) ® Y. For finite exact module cate-
gories M, N the catégory of functors Func(M,N) is known to be an exact module
category over the tensor category Func(N,N) with action given by composition of

functors (Lemma. 3.30 loc. cit.).

1.3.3 Dominant functors

Let F : A — B be an additive functor between abelian categories and define its image
Im(F) to be the full subcategory of B having objects given by all subquotients of

objects of the form F(X) for any X € A.
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Definition 1.3.16. The functor F' is said to be dominant if Im(F) = B.

It is an easy exercise to show that Im(F) is itself an abelian category. Furthermore
if A, B are tensor categories and F' a tensor functor then Im(F') is a tensor subcategory
of B.‘ Indeéd if Aj, A; are quotients of subobjects Z;, Z; of F(Xi), F(X3) for X;
objects of A then exactness of tensor structure ® of B implies that A; ® A, ‘is a
quotient of Z; ® Z, which is a subobject of F(X;) ® F(X>) ~ F(X; ® Xs). Hence
A; ® A; is a subquotient of F(X; ® X5) and is therefore an object of Im(F). The
unit object 1 is contained in Im(F) because it is a trivial subobject of F (1),1 and
constraints come from those in B.

It is also evident that if A, B are semisimple then dominance of F' means that any

object of B is actually a subobject of F/(X) for some X € A.

1.4 2-categories and monoidal 2-categories

Recall that a 2-category is a generalized version of an ordinary category where we
have cells of various degrees and rules dictating how cells of different degrees interact.
There are two ways to compose 2-cells o, 3: vertical composition Ba and horizontal

composition 3 * a as described by the diagrams below.

f

AooB = A |45, A\ﬂ;B\ﬁajc:A\n@i@

It is required that a* 8 = (Beh)(f'ea) = (W' ea)((e f) where o signifies composition
between 1-cells and 2-cells giving 2-cells (see [Lei04] for a thorough treatment of higher
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category theory and (Ben67], [Kel82] for theory of enriched categories). For fixed -
monoidal category C we have an evident 2-category with O-cells C-module categories,

1-cells C-module functors and 2-cells monoidal natural transformations.

Example 1.4.1. The category of rings defines a 2-category with 0-cells rings, 1-cells

bimodules and 2-cells tensor products.

A monoidal 2-category is essentially a 2-category equipped with a monoidal struc-
ture that acts on pairs of cells of various types. For convenience we reproduce, in

part, the definition of monoidal 2~‘category as it appears in [KV91).

Definition 1.4.2. Let A be a strict 2-category. A (laxz) monoidal structure on A

consists of the following data:

M1. An object 1 = 14 called the unit object
M2. For any two objects A, B in A a new object A ® B, also denoted AB

~ M3. For any l-morphism v : A — A’ and any object B a pair of 1-morphisms

u®B:A‘®B——>‘A'®BandB®u:B®A—rB®A’

M4. For any 2-morphism

and object B there exist 2-morphisms

u®B B®u
A®B ™54 @B B®A|TBg A’
\/‘ \_/‘

@B Bou'
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MS5. For any three objects A, B, C anisomorphism a4 ¢ : AQ(B®C) — (A®B)®C
M6. For any object A isomorphismsl4:1® A— Aandrg: A®1— A

M7. For any two morphisms «: A — A’, v : B — B’ a 2-isomorphism

AR B2 A9 B

u®31%u v lu@B’

AQBXZ5 A QB

M8. For any pair of composable morphisms A % A’ *, A" and ob ject B 2-isomorphisms

A@B—UE ,prgp  BeA— B A"
u®BJV‘ /g 2 B®u1 / o
v'®B Beu'
A®B - B® A
M9. For any four objects A, B, C, D a 2-morphism
A®a
A®(B®(C® D)%% A® (B® C)® D)
aA,B.C®D®Di
(A® B)®(C ® D) @4,B.0.D @4,B8C,D
GA®B,C, DJ{
((A®B)®C)®D) (A®(B®C))

M10. For any morphism u: A — A’,v: B — B’,w : C — C’ 2-isomorphisms

\

AR (BR®C)2E5(A®B)®C AR(BRC)XES (A9 B)®C
u®(B®C)l @y,B,C l(u®B)®C A®(U®C)l QA vC J,(A&))@C
A®(B®C) 2 (A®B)®C A®(B'®C);52(A®B)®C
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QA,B,C

AR(BRC)-="5(AQB)®C
A®(B®w)1 oA B | l(A@B)éw

AR (B®C)—(A®B)®C"

M11. For any two objects A, B 2-isomorphism

A@TB

AR (B®1)——— AQB 1®(A®B)—IAL>A®B
| S e
GA,B,1 a),A,B
TA®B la®B
(A®B)®1 (1®A)®B
AR(1®B) 222, A@B
QA1,B
ra®B
(A®1)® B
M12. For any morphism u tA— A 2-isomorphisms
10A25104 A1-2HA el
lAl/l V[JA/ TA % \1}‘[4:
A—— A A—T— A’

M13. A 2-isomorphism € : r; = .

These data are further required to satisfy a series of axioms given in the form

of commutative polytopes listed by Kapranov and Voevodsky. As well as describing

the sort of naturality we should expect (extending that appearing in the definition of

2-cells for categories of functors) these polytope‘s provide constraints on the various

cells at different levels and dictates how they are to inteact. For the sake of brevity

we do not list them here but will refer to the diagrams in the original paper when
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needed. In [KV91] these po.lytOpes are indicated using hieroglyphic notation. The
Stasheff polytope, for example, (which they signify by (¢ @ e ®@e@e® ob), pg. 217)
describes how associativity 2-cells and their related morphisms on pentuples of 0-cells
interact. In the sequel we will adapt their hieroglyphic notation without explanation.

We digress briefly to explain what is meant by “commuting polytope.” This notion
will be needed for the proof of Theorem 0.2.1 Our discussion is taken from loc. cit..
In a strict 2-category A algebraic expressions may take the form of 2-dimensional
cells subdivided into smaller cells indicating the way in which the larger 2-cells are to
be composed. This procedure is referred to as pasting. Consider the diagram below

left.

/—7<\ /\
\_5/ \

Edges are 1-cells and faces (double arrows) are 2-cellsin A; 7' : gh = dk, V : ek = bc,
U: fd = ae. The diagrgm represents a 2-cell fgh = abc in A as follows. It is possible
to compose l;cell F and 2-cell a obtaining new 2-cells F' x &, a ¥ ' whenever these
compositions make sense. If & : G = H, these are new 2-cells FG = FH and

GF = HF, respectively. Pasting of diagram above left represents the composition
fah L2 fdk L5 aek X abe.

For 2-composition abbreviated by juxtaposition the pasting is then (a*V)(Uxk)(f*T).
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In case the same external diagram is subdivided in different ways a new 3-dimensional
polytope may be formed by gluing along the common edges. Thus the two 2-dimension
diagrams can be combined along the edges fgh and abc to form the new 3-dimensional

pblytope

We have labeled only those edges common to the two original figures. As an aid to
deciphering polytope commut,ativif;y we will denote the boundary with bold arrows as
above. To say that the polytépe commutes is to say that the results of the pastings
of the two sections of its boundary agree. In such a case we say that the pair of

diagrams composing the figure are equal: the 2-cells they denote in A coincide.
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CHAPTER II

TENSOR PRODUCT OF BIMODULE CATEGORIES

The next few chapters contain a description éf the data giving the 2-category of
C-bimodule categories for a fixed monoidal category C the structure of a monoidal
2-category. In the rest of this thesis all categories are assumed to be abelian and k-
linear, have finite-dimensional hom spaces, and all functors are assumed to be additive
and k-linear. Even though most of what we do here is valid over fields of positive

characteristic, we assume at the outset that k is a fixed field of characteristic 0.

2.1 Preliminary definitions and first properties
Recall definition of right exactness (Definition 1.1.7).
Definition 2.1.1. Suppose (M, p) right, (N, 1) left C-module categories. A functor

F: MRN — Ais said to be C-balanced if there are natural isomorphisms buxy :

F(M® X)®N) ~ F(MX (X ® N)) satisfying the pentagon

F(M®(X®Y))RN) M Xov N S F(MB (X ®Y)® N))
F((M®X)®Y)RN) F(MR (X ® (Y ®N))
bMQX.Y.N M X YN

F((M® X)X (Y ® N))
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whenever X, Y are objects of C and M € M.

Of course Definition 2.1.1 can be extended to functors from the Deligne product

of more than two categories.

Definition 2.1.2. Let F : M; ® My K --- B M, — N be a functor of abelian
categories and suppose that, for some 7, 1 <7 < n—1, M; is aright C-module category

and M;,, a left C-module category. Then F is said to be balanced in the i** position if

,,,,,

F(MiR-- - RM;R(X®M;;;)R---B®M,) whenever M; are in M; and X isin C. The

b* are required to satisfy a diagram analogous to that described in Definition 2.1.1.

One may also define multibalanced functors F' balanced at multiple positions si-

multaneously. We will need, and so define, only the sirﬁplest nontrivial case.

Definition 2.1.3. Let M, be right C-module, M, (C, D)-bimodule, and M3 a left
D-module category. The functor F : M; ® M, R M3 — N is said to be completely

balanced (or 2-balanced) if for X € C,Y € D, N € M3y, M € M, and P € Mj there

are natural isomorphisms

by xnp: F(M®X)RNRP)~ F(MR (X ® N)K P)

bnyp: FIMB(N®Y)RP)~ F(MBNR (Y ® P))

A
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satisfying the balancing diagrams in Definition 2.1.1 and the consistency pentagon

F(M®X)R(N®Y)®P)——— F(M® X)INR (Y ® P))
M®X,NY,P .
b}\l,X.N@Y,P
i

FIMR(X®(N®Y))RP) bhe,xv.voP

F(M&!(()'(‘®N)®Y)IZIP)—?-——+F(M®(X®N)IZI(Y®P))

M X, Y®N

Here +y is the family of natural isomorphisms gssociated to the bimodule structure in
M, (see Remark 1.3.10).‘ Whenever F' from M; K MyK- .. &M, is balanced in “all”
positions call F' (n — 1)-balanced or completely balanced. Iﬂ this case the consiétency
aﬁoms take the form of com;nuting polytopes. For example the consistency axiom
for 4-balanced functors is equivalent to the commutativity of a polytope having eight
faces (four pentagons and four squares) which reduces to a cube on elision of y-labeled
edges. With this labeling scheme the 1-balanced functors are the:original ones given

in Definition 2.1.1.

Definition 2.1.4. The tensor product of right C-module category M and left C-
module category N consists of an abelian category M X N and a right exact C-
balanced functor By : MBIN — M B¢ N universal for right ezact C-balanced

functors from M XN

Remark 2.1.5. In [Tam01] constructions similar to these were defined for k-linear
_ \ .

categories as part of a program to study the representation categories of Hopf algebras

and their duals. Balanced functors appeared under the name bilinear functors, and

the tensor product there is given in terms of generators and relations instead of
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the universal properties used here. The tensor product was defined and applied

extensively by [ENOOQ9] in the study of semisimple module categories over fusion C.

Remark 2.1.6. Universality here means that for any right exact C-balanced functor
F: MRN — A there exists a unique right exact functor F such that the diagrarh

on the left commutes.

MBN ;A MRBN —"—5—U
BM,Nl / BM,Nl lF’
F F

M N MR N - Y

F

The category M & N and the functor By are defined up to a unique equivalence.
This means that if U : M KRN — U is a second right exact balanced functor with
F' = F'U for unique right exact functor ¥’ " there is a unique equivalence of abelian

categories a : U — M B¢ N making the diagram on the right commute.

Remark 2.1.7. The definition of balanced functor may be easily adapted to bifunc-
tors from M x N instead of M & N. In this case the definition of tensor product
becomes object universal for balanced functors right ezact in both variables from
M x N (Remark 1.2.2). This is the approach taken by Deligne in [Del90]. One eas-
ily checks that our definition reduces to Deligne’s for C = Vec. This provides some

justification for defining the relative tensor product in terms of right-exact functors

i\
A

as opposed to functors of some other sort. \

Lemma 2.1.8. Let M, N be right, left C-module categories for C a monoidal cate-

gory. Then the universal balanced functor By n from Definition 2.1.4 is dominant
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(Definition 1.3.16).

" Proof. Let F be any balanced functor from VM IZIN , and let F be the unique functor
from M®c N with FBan = F. For the inclusion i : Im(Basn) — M®c N define
F':= Fi. Then it is obvious that F'Byx = F , hence F" factors through I'm(Ban)
uniquely. As a consequence of the universality of the relative tensor product M X

The following lemma, is a straightforward application of the tensor product uni-

versality from Definition 2.1.4. We list it here for reference in the sequel.

Lemma 2.1.9. Let F,G be right ezact functors M ¥ N — A such that FByn =

GBum. Then F = G.

Proof. In the diagram

MBN —22 s M B N

MR N - ~

G
for T = FBpn'= GBan the unique equivalence a is td i ar- t

Definition 2.1.10. For M aright C-module category and N aleft C-module category
denote by Fun®(M &N, A) the category of right exact C-balanced functors. Mor-

phisms are natural transformations 7 : (F, f) ——>(G, g) where f and g are balancing
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isomorphisms for F' and G satisfying, whenever M € M and N € N,

F(M®X)RN)—2%" , (M ® X)& N)

fM‘x,Nl PM'X‘N .

F(MRB(X ® N)) —————— G(M 8 (X ® N))

TM,X®@N

for X in C. Call morphisms in a category of balanced functors balanced natural
transformations. Similarly we can define Fun®®(M;R-- -®M,, A) to be the category
of right exact functors “balanced in the i** position” requiring of morphisms a diagram

similar to that above.

2.2 Module category theoretic structure of tensor product

In this section we examine functoriality of M. and discuss module structure of the
tensor product.
For M a right C-module category, N/ a left C-module category, universality of

B implies an equivalence between categories of functors
Y : Fun™(MRN, A) 5 Fun(M R N, A) (2)

sending F + F (here overline is as in Definition 2.1.4). Quasi-inverse W sends G
G B with balancing G # b, b the balancing of ‘B - On natural transformations
7, W is defined by W(7) : 7 % Bpn where «\is the product of 2—m§rphism and
1-morphism: components are given by W(T)ugn = 7B, (mmn). One easily checks

that YW = id so that W is a strict right quasi-inverse for Y. Let J : WY — id
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be any natural isomorphism. Then components of J are balanced isomorphisms
Jiepy i (FyFxb) — (F, f) where f is balancing for functor F. Being balanced means

commutativity of the diagram

N

F(ba,x,n)
—_—

F(M@XN) F(MX@N)
JMX@Nl ’ lJAl&XN

F(M@X@N)——-—)F(MEX@N)
fMmx,n

forany M e M, X € C,N € N. Hénce any balancing structure f on the functor F

is conjugate to F % b in the sense that

fruxn = Jugxn © F(barx,n) © Jaixsn- 3)

| Remark 2.2.1. Let F,G: MK N — A be right exact C-balanced functors. To un-

derstand how )Y acts on balanced natural transfo,\rma?ion 7 : FF — G recall that to any
functor £ : § — T we associate the comma category, denoted (E, T}, having objects
triples (X,Y,q) € § x 7 x Homz(E(X),Y). A morphism (X,Y,q) — (X',Y’,¢') is a
pair of morphisms (h, k) with the property that k oq= ¢ o E(h). For E right exact
and S, 7T abelian, (F,7) is abelian ([FGR75]).

Let F be the unique right exact functor having FBy = F and considér the
comma category ‘(*F’., A). Nétural balanced transformation 7 determines a functor
S, MBN — (F,A), X  (Bua(X),G(X),7x) and | — (F(f),G(f)). It i
evidént that S, is right exact and inherits C-balancing from that in B, G and 7.

Thus we have a unique functor S, : M R N — (F, A) with S, Ba N = S;. Write
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= (81,82, 0). Usmg Lemma 2.1.9 one shows that S; = idapma and S = G. Then

o(Y): F(Y) - G(Y) for Y € M®c N. This is precisely 7: F — G.

Given right exact right C-module functor F : M — M’ and right exact left C-
module functor G : NV — N’ note that Bypayr(FRG) : MBN — M XK N is

C-balanced. Thus the universality of B implies the existence of a unique right exact

functor F B¢ G := Bpp o+ (F B G) making the diagram

MRN B M RN

BM Nvlv J'BM"N’

M@cNmM'&CNl

commute. One uses Lemma 2.1.9 (see the next diagram) to show that X is functorial

on l-cells: (F'®¢ E)(FRc E)=FFX: E'E.

FEE F'RE’

MI g Nl M" NI!

1BMI N’

B M’ &c N’ BMII'NII

M N » M" B N

F'FR:E'E

MBERN —

Thus the 2-cells in M7. of Definition 1.4.2 are identity. If we deﬁne FQN -—— FRcidy

(Definition 3.1.5) then the 2-cells in M8. are identity as well.

4

Remark 2.2.2. Next we consider how K can beé applied to pairs of module natural

transformations. Apply Ba - to the right of the diagram for the Deligne product of
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7and o
FRE

TN Bu av
© MRM|TEN RN TN B N
e

giving natural transformation
(rRo) =By (T80): Bua(FRE) = Bua(GRH)  (4)

having components By *(780) agp = By av(74R0g). Here x indicates compositi()h
between cells of different index (in this case a 1-cell and a 2-cell with the usual 2-
category structure in Cat).

It is easy to see that this ié a balanced natural transformation, i.e. a morphism
in the category (;f balanced right exact functors Fun®(M R N, M’ 8. N’). Using

comma category (F K¢ F', M' Bc N') we get

T&co’:=(7‘®0’)':F@cF’iGEcG’. » (5)

Note also that X is functorial over vertical composition of 2-cells: (7/Bco’)(7Hc0) =
7' We 0’0 whenever the compositions make sense. Though we do not prove it here

observe also that X preserves horizontal composition e of 2-cells:
(t'e7)Re (0'00)=(T"Hco')e (T Rc0). -

For the following proposition recall that',' for left C-module category M, the functor

Lx: M — M sending M — X ® M for X € C fixed is right exact. This follows from
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the fact that Hom(X* ® N, _) is left exact for any N € M..

Proposition 2.2.3. Let M be a (C, E)-bimodule category and N an (€, D)-bimodule
category. Then MR N is a (C,D)-bimodule category and Bag  is a (C, D)-bimodule

functor.

Proof. For X in C define functor Lx : MRN — MRN : MEN —» (X @ M)KN.
Then there is a unique right exact Ly making the diagram on the left commute;

bimodule consistency isomorphisms in M make Ly balanced.

MBN 20 Ry N MBRN N0 0 N
BM,Nl / | BM.Ni /
; Lx Ry

MBp N MBp N

Similarly, for Y in D define endofunctor Ry : M XN — M X (N ® Y). Then
there is unique right exact Ry making the diagram on the right commute; bimodule
consistency isomorphisms in A make Ry balanced. Lx and Ry define left/right'
module category structures on M ¢ N. Indeed for u the left module associativity
in M note that B v {px vy Ridy) : Lx Ly Bua =~ Lxgy Baua is an isomorphism
in Fun®(M RN, M B¢ N) so corresponds to an isomorphism Ly Ly ~ Lxgy in
End(M X NV') which therefore satisfies the diagram for left module associativity in

MR N. Composing diagonal arrows we obtain the following commutative diagram.

BmnLx

MBRN — Mng‘—’MEDN

Lx
Bun —
1 %

MBRp N
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Note then that

Lx RyBun = Ry LxBun

and since EEB M 1s balanced Lemma 2.1.9 implies Ry Lx = Lx Ry. Suppose
Qe MK N. Then (XRY)® Q := Lx RyQ = Ry LxQ defines (C,D)-bimodule
category structure on M K¢ A/. Note also that since the bimodule consistency iso-
morphisms in M &N are trivial the same holds in M Kz NV. As a result By is a

(C, D)-bimodule functor. O

In the sequel we may use Lx to denote left action of X € C in M XN and for

. the induced action on M K¢ N. Similarly for Ry.

Remark 2.2.4. The above construction is equivalent to defining left and right module

category structures as follows. For the right module structure
N e id
®: (MN)RC 25 M(NVRC) 2B MN

where a! is defined in Lemma 3.1.1 and where tensor product of module categories
- has been written as juxtaposition. The left action is similarly defined using o? and

left module structure of M in second arrow.

Proposition 2.2.5. Let M be a (C,D)-bimodule category. Then there are canonical

(C, D)-bimodule equivalences M Rp D ~ M ~ C"-J\Zlc M. T

Proof. Observing that the D-module action ® in M is balanced let Iy : MNp D —

~ M denote the unique exact functor factoring ® through By p. Define U : M —
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MXDby M+— MX1 and write U = BappU. We wish to show that [ and U’
are inverses. |

Note first that {pU’ = idps. Now define natural isomorphism 7 : By p = U'®
by 7, x = by x1 Where b is balancing isomorphism for B M.D- As a balanced natural
isomorphism 7 corresponds to én isomorphism 7T : Bygp = dm@pp = U'® in the

category End(M Xp D). Commutativity of the diagram

®

MNXD } M
o 2 s
M, D U

M®DDU—,_®5M®'DD

implies Ullpy = U'® so that idpw,p ~ U'lpy via 7. In proving CKe M ~ M one
lifts the left action of C for an equivalence 154 : C & M = M. Strict associativity of

tﬁe module action on M implies that both ¢ and I are trivially balanced. !

Corollary 2.2.6. Let (F,f) : M — N be a morphism in B(C) where f is left C- |
module linearity for F. Then there is a natural isomorphism Frag = ra(ide W F)
satisfying a. polytope version of the diagram for module functors in Definition 1.3.5.

A similar result holds for the equivalence .

Proof. Consider the diagram

CRM 4R LCRN
® M onr ®
M . N
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The top rectangle is definition of ide K¢ I, right triangle definition of functor 7/, and
left triangle definition of ras. The outer edge commutes up to f. We therefore have
natural isomorphism f : FraBe g — ma(idc B¢ F)Be a. Now observe that, using

the regular module structure in C we have the following isomorphisms.

FraBea(XYR M) = F(XY)M)
= F(X(YM)) = FrmBem(XBYM),
ralide B F)Bea( XY R M) = (XY)F(M) S XF(Y M)

= T/\/(idc Ec F)BCN(X X YM)

Here XY € C, M € M and ~ is tdx ® f;}w Using the relations required of the
module structure f described in Definition 1.3.5 one seés that the second iéomorphism
constitutes a C-balanciﬁg for the functor ra-(idec B¢ F)Bc . Thus both functors are
balanced. Using the relations for f from Definition 1.3.5 a second time shows tha,tv f
is actually a balanced natural isomorphism FraBea — rar(ide B¢ F )B_c ~- Hence
we may 'descena to a natural ivsomorphismbrp = f: Fry — ra(ide Elc F). The
assrociatedvpolytopes are given in Polytope 4.1.2, Chapter 4. The result for [ is

similar. ‘ |

Corollary 2.2.6 shows, predictably, that functoriality of( [, r depends on module
linearity of the uhderlying functors. In particuigr, if F is a strict module functor
lr and Tp are both identity. As an example note that the associativity is strict as

a module functor (this follows from Proposition 3.1.6) and so rg,, ., = id for the
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relevant module éategories. Similarly for I. Thus polytopes of the form (1@ e Qe R )

(pg. 222 in [KV91]) describing interaction between a, { and v commute trivially.

Remark 2.2.7. ra : C®e M — M is itself a strict left C-module functor as follows.
Let X € C and let Lx be left C-module action in C R M. Replacing Lx with idX¢ F
in the diagram given in the proof of Corollary 2.2.6 and chasing around the resulting

diagram allows us to write the equation
LIXTMBC,M = TME)-(—BC,M

where L is left X-multiplication in M and Lx the induced left X-multiplication in
CWe M. Thus Lyrpg =1 mLx, which is precisely the statement that T M is strict
as a C-module functor. Thus Corollary 2.2.6 irﬁplies that r,,, = zd for any C-module
category M. If M is a bimodule category it is evident that rx is also a strictv right

module functor and hence strict as a bimodule functor.

Proposition 2.2.8. For (C, D)-bimodule category M and (C, £)-bimodule category N
the category of right ezact C-module functors Fun,(M,N) has canonical structure of

a (D, E)-bimodule category.

Proof. (XRY)® F)(M) = F(M®X)®Y defines DR E ™ -action on Fun.(M,N).
Right exactness of (X XY)® F comes from right»exactness of F' and of module action

in M,N. DR E™ acts on the module part f of F by

(XRY)® flzm = vz,rmex)y fzmex F(vz,mx)
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where -y is the bimodule consistency for the left and right module structures in M,
N (Proposition 1.3.10). The required diagrams commute since they do for f.

Next let 7 : F = G be a natural left C-module transformation for right exact
left C-module functors (F, f),(G,g) : M — N. Define action of X ®Y on 7 by
(XRY)®7T)m = Tmex Ridy : (X RY)Q F)(M) - (XXY)® G)(M). Then

(X ®Y) ® 7 is a natural left C-module transformation. Indeed the diagram -

. T id
F(ZoM)@ X)®Y "2, c((Zo M)® X) @ Y
F“/l Gy
T id A
FZ®M®X))®Y 220, 70 (Mo X)®Y
fz,Maxl 9zMeX
idz®T i v
(ZOFM®X) ey MY (79GM®X)®Y
Y L’Y
TM®x®idY

ZQ(FIM®X)®Y) Z®(GM®X)Y)

commutes. The top rectangle is the rectangle of naturality for 7. The middle rectangle
expresses the fact that 7 is a natural left C-module transformation. The bottom
rectangle is the rectangle of naturality for . Perimeter is the diagram expressing

that ( XWY)®7isa module natural transformation. ' O

Remark 2.2.9. ) in equation (2) at the beginning of this section is an equivalencev

of (D, F)-bimodule categories
Fun!*(M &N, S) — Fun (M &g N, S) (6)

whenever M € B(C, &), N € B(€,D), S € B(C, F). If balanced right exact bimodule
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functor u : M IXIN — U is universal for such functors from M&N then MR N ~ U
as bimodule categories.

To see the first claim let F' be £-balanced left C-module functor MRN — S with
module linearity f and balancing ¢. For X € C denote by Lx :‘ MEN - MRN
left z;,ction of X, and define natural isomorphisms fx : FLx ~ LxF by (fx)a= fxa
whenever A. e MR AN. Note that LxF has balancing'idxlﬂt and that FLy is

balanced by
txemynF(Viy Bidy)  (FLx)(M®Y)RN) ~ (FLx)(M R (Y ® N))

whenever M € M, Y € £ and N € N. Using Lemma 2.1.9 one verifies that

FLy =FoBLyx andl LxF = LxF. Note that BLy is the induced left \action of X in
MR N which we will also denote Ly. Naturality of f implies that fx is balanced
hence and application of Y gives fx : FLx ~ LxF naturally in Fun(M K¢ N, S).
One checks that F is bimodule functor with module linearity Fx.o = (fx)q whenever
Q € MR N (7 satisfies required diagrams because f does).

We may therefore §vrite (F,f) = (F, 7) for the functor in Funs(M Rg N, S).
We now show that Y respecté the bimodule structure in the functor categories. For

YeD,ZeF and Q € MXg N one checks easily that

V(Y @ F)(Q) = FRv(Q) = Fo BRy(Q) 2 F(Q® Y) = (Y ® Y(F))(Q)

and similarly that Y(F ® Z)(Q) = (V(F) ® Z)(Q) making Y a bimodule functor.
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For the second claim, universality of both Bu s and u gives unique equivalence

« of abelian categories making the diagram

MBRN

U——s—M

X

e N

commute. Thus « is the unique exact functor factoring Bay s, and since the latter is a

balanced bimodule functor « inherits this property by the first part of the proposition.

2.3 Relative tensor product as category of functors

The purpose of this section is to prove an existence theorem for the relative tensor
product by providing a canonical equivalence with a certain category of module func-
tors. Let M, N be exact right, left module categories over tensor category C, and

define I : MR N — Fun (M N) by
I:MRXN+— Hom (-, M)Q N

where Hom,, means internal hom for right C-module structure in M (Definition
1.3.4). Using the formulas satisfied by internal hom for right module category struc-

ture we see that‘image\s under I are indeed C-module functors:

I(MBN)(X®M) = Homp(X ®M',M)® N =Homp (M',* X ® M)®N

= X ®Homy,(M' ,M)® N = X ® I(M R N)(M').
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Using similar relations one easily shows that I is C-balanced. Hence I descends to a
unique right-exact functor I : M K¢ N — Fun,(M°, N) satisfying TB;W ~v=1

In the opposite direétion define J : Fun,(M?® N) - MK N as follows. For
F a C-module functor M — A let J (F) be the object representing the functor
M X N — Hom(N, F(M)), that is Homama(M K N,‘J(F)) = Homp (N, F(M)).

Now denote by J' : Fun.(M®,N) — M &; N the composition By aJ.

Theorem 2.3.1. Let C be a rigid monoidal category. For M a right C-module cate-

gory and N a left C-module category there is a canonical equivalence
MK N =~ Fun (M N).

If M, N are bimodule categories this equivalence is bimodule.

Proof. In order to prove the theorem we simply show that I and J’ defined above are
quasi-inverses. This will follow easily if we can first show that I, J are quasi—in\?erses,

and so we dedicate a separate lemma to proving this.

Lemma 2.3.2. [,J are quasi-inverses.

Proof. Let us first discuss internal homs for the C-module structure in M&A induced
by X® (MBI N) := (X® M)® N. Let X be any simple object in C. Then one
shows, using the relations for internal hom in M and N separately, that the internal

hom in M & A is given by

Hom (M & N,S® T) = Hom (M, S) ® Hom (N, T) (7)
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where the ® is of course that in C. Usi'ng‘this and the definitions of I and J we have

Hompan (M ® N, JI(S®T)) = Homu(N,Hom,,(M,S)®T)

= Home(1, Hom, (N, Hom (M, S) ® T))
= Hom¢(1, Hom ysqp (M X N, S® T))

= Hommmn(M X N,SRT).

The third line is an application of (7). The first and the last line imply that the
functor M ® N +— Homp(N,Hom,(M,S) ® T) is represented by bofh SX® T and
JI(S® T), and these objects must therefore be equal up to a unique isomorphism,
hence JI =~ id. |

Next we show that IJ ~ id. Let F be any functor M — A. From the first part

of this proof we may write the following equation (up to unique linear isomorphism):

Homp (N, IJ(F)}(M)) = Homumn(M 8 N, JIJ(F))

= Hompgan(M 8 N, J(F)) = Homp (N, F(M)).

Thus both IJ(F)(M) and F(M) are representing objects for the functor N
Hompma(M B N, J(F)) for each fixed M € M. Thus [J(F)(M) = F(M) up
to a unique isomorphism. The collection of all such isomorphisms g_ives a natural iso-
morphism IJ(F) ~ F, and therefore I.J ~ id. Tﬁis, with the first part of this proof,

is equivalent to the statement that J is a quasi-inverse for I, proving the lemma. 0O

Now we are ready to complete the proof of Theorem 2.3.1. Using the definition
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of J' and T write J/IBpyn = BunJI ~ By By uniqueness (Lemma 2.1.9) it

therefore follows that J'T ~ id. Also IJ' = IBynJ = IJ ~ id, and we are done. [J

As an immediate corollary to Theorem 2.3.1 and associativity of relative tensor
product (equation 9, given below) we are able to prove a module category theoretic
version of a theorem which appears in many plaées, notably as Frobenius reciprocity
for induced representations of finite groups ([Ser77, §3.3]) and generally as a classical

adjunction in the theory of modules.

Corollary 2.3.3 (Frobenius Reciprocity). Let M be P (C, D)-bimodule category, N
a (D, F)-module category, and A a (C, F)-module category. Then there is a canonical

equivalence

- Fun (M ®p N, A) ~ Funp(N, Fun.(M, A)) (8)

as (&€, F)-bimodule categories.

Proof. To see this we will first use Lemma 1.3.14 to describe the behaviour of the

tensor product under op. Observe that
(M Rp NP ~ Funy(M®P, NP ~ Funp(N, MP) ~ NP Xp MP

applying Theorem 2.3.1 twice (first and third) and Lemma 1.3.14 for the second step.
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Now we may write

Func(MRp N, A) = (MBp )P B A = (N Ry M) B A
o~ NOP g’p (MOP EC A)

~ Fun.(N, Funp,(M, A)).

O

Theorem 2.3.3 states that functor MMp — : B(D, ) — B(C, £) is left adjoint to

functor Fun (M, —) : B(C,&) — B(D,¢£). j
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CHAPTER III

ASSOCIATIVITY AND UNIT

CONSTRAINTS FOR B(C)

3.1 Tensor product associativity

In this section we discuss associativity of tensor product. Let C; D, € be tensor cat-
egories. Let A be a right C-module category, M a C-D-bimodule category, A a
. D-E-bimodule category and P a left £-module category. In an effort to save space we

will at times abbreviate tensor product by juxtaposition.

Lemma 3.1.1. AK(MXpN) ~ (ARM)XpN and (MR pN)KA ~ MXp(NKA)

as abelian categories.

Proof. Let F : ARMEKN — S be totally balanced (Definition 2.1.3). For A
in A define functor F4 : MRN — S by MXN — F(AR M & N) on simple
tensors and f +— F(id4 B f) on morphisms. Note that functors F 4 are balanced
since F is totally balanced. Thus for any object A there is a unique functor Fj4 :
MXp N — 8 satisfying fhe diagram below left. The F, allow us to define funétor

F:AR(MBEpN) — §: ARQ — Fu(Q) whenever Q is an object of M Xp A/
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giving the commutative upper right triangle in the diagram on the right.

MBN ARMBIN 2% AR (MBp N)

BM,Nl Fa BAgM'Nl F F/l
My N —3 (AR M) Bp A —— S \

Since the functors Baman, Bamar, F and F' are unique by the various universal
properties by which they are defined, both A X (M Rp N) and (AR M) Rp N are

universal factorizations of F' and must therefore be connected by a unique equivalence
0‘?4,/\4,/\/ AR MR N) S (ARM)BRp N

(perforated arrow in diagram). One obtains natural equivalence o}y 4 : (M Ep
MERA S MRp (N KR A) by giving the same argument “on the other side,” i.e. by

first defining Fyy : AR M — S for fixed N € N and proceeding analogously. - 0O

Remark 3.1.2. For bimodule category A Remark 2.2.9 implies that o are bimodule

equivalences.

Lemma 3.1.3. For o' in Lemma 3.1.1 (AR Byw)ah pn (AR M)RN —

AR (M Kp N) is balanced.

Proof. Treat M as having right C-module structure coming from its bimodule struc-
ture, and similarly give A/ | its left C-module structure. Recall, as above, we define
Rx : M — M and Lx : N — N right and left action of X € C on M, N re-
spectively. We will use superscripts to keep track of where C-action is taking place,
e.g. R{' means right action of Y in M. Recall also that we have right D-action
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1dsRe Rx : AWRe M — AW M, for X € D, which we denote also by Rx. Consider

the following diagram:

BRid id®L x

ARMRN

AMBRN

— AMRN — AMRN
Ly N BRid
B(id®RLx) AR M &N\‘ |
BRid B(Rx?i e M | B Aman)
1 %‘ X %
AMBRN AR MRN ' A(M}\f)
RxBid i % x R B

+ AM R N)

Leftmost rectangle is (definition of Rx) X idy, top rectangle is tautologically B X
Ly, upper right and lower left triangles are definition of al,' lower right rectangles
definition of id4 B¢ Baa and b is id 4 X (balancing isomorphism for By ). An

application of Lemma 2.1.9 then gives
(sz @c BMN)aiX,M,N(RX X ZdN) ~ ('l,dA Ec BMN)aii,M,N'(ZdA&M X Lx)

Since b satisfies the balancing axiom (Definition 2.1.1) for By it satisfies it here.

* This is precisely the statement that (AR Bupar)ady am v is balanced. O

A

\

Proposition 3.1.4. If A and N are bimodules we have (AR M)Kp N ~ AK,

(MRp N) as bimodule categories.

Proof. We plan to define the stated equivalence as the image of the functor (AKX,
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Bun)ey pn i (ABc M)BN — AR (M Bp N) under Y (equation (2)). Lemma.
- 3.1.3 implies that indeed Y is defined there. With notation as above define a! and a?

using the universality of B by the following diagrams.

(AR M)RIN 28 AR (MBN) AR (M Bp N) 22K (AR M) Rp A

BAM.NJV idAEClBM,N _ BA.MNl BA,M%’DMN
: AAMN CAMN .

o are defined in Lemma 3.1.1.To see that a! and a? are quasi-inverses consider the

diagram
AR (MN) e taBB1N ARM®E Baman » AIMBRN)
\ BAEM,JV/ }A.M Rid /
, a « ~ o
Bamn (ARMN ' » (AMYRN id A By
: ;ATME’DidN Bamn |
\ )
A(MN) = y (AMON " » A(MN)

1

The triangles in upper left and right are those defining o2, o! respectively. The

central square is the definition of B4 ¢ ®p idy, and the left and right squares those
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1

defining a? and a'. Thus the perimeter commutes, giving

a'a? B pn(ida B Bagn) = (ida B By nr) Basew
= a'a®Barn(ida® Buy) = Basn(ida 8 Buy)
= dla2BA,MN(a2)_lBA@N = Ban(a®) " Bamy
= a'a®Bamn = Ban

= dla?= idA(MN)

where the first implication follows from the square defining id 4 ¢ By s, the second
by the definition of a?, the third by Lemma 2.1.9 (for Bagmn, Ba, M, resp.). Using

2

a similar diagram one derives a’a' = id 4myn hence the a* are equivalences and by

Remark 2.2.9 they are bimodule equivalences. O

In what follows denote
aA,M,A/zai(,M,N(Ach)DN':-A&C(MDN) . (9)

In order to prove coherence for a (Proposition 3.1.8) we will need a coupie of simple
technical lemmas together with results about the naturality of a. In the monoidai
category setting associativity of monoidal prodtig:t is required to be natural in each
of its indices, which are taken as objects in the underlyingv category. In describigg

monoidal structure in the 2-category setting we also require associativity though
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stipulate that it be natural in its indices up to 2-isomorphism (see M.10 in Definition

| 1.4.2). For us this means, in the first index,
armn 2 as M (FMIN = F(MRp Naamu

for bimodule functor F : A — B. Similarly we need 2-isomorphisms for F in the
remaining positions. The content of Proposition 3.1.6 is that all such 2-isomorphims ‘
are actually identity. Before stating it we give a definition to introduce a notational

convenience.

Definition 3.1.5. For right exact right C-module functor F : A — B define 1-cell
FM := FRcidpy : AR M — BR: M and note that FM is right exact. Similarly

we can act on such functors from the right.

Proposition 3.1.6 (Associativity “2-naturality”). We have
ap M (FM)N = F(MN)aqpmn-

Analogous relations hold for the remaining indexing valencies of a.

Proof. We will prove the stated naturality of a for 1-cells appearing in the first index.

A similar proof with analogous diagrams gives the others. Recall o! defined in Lemma,

A

\'.

64



3.1.1. Consider the diagram:

(FMN

(AMON : : — (BMN
'}AM’N BB_M,N/'
S~ (P} -
AM)RN — L BMyRN

]\BA,M BB.MI

ol M AM@N“—THBIZM@N BN @

=)

1BA,M8N BB,M&Nl
ABM‘N \BBM.N\
A(MN) T ’ » BIMN)

The top, bottom and center rectangles follow from Definition 3.1.5 and definition of
tensor product of functors. Commutativity of all other subdiagrams is given in proof

of Proposition 3.1.4. External contour is the stated relation. ' O

Remark 3.1.7. Observe that the proof of Proposition 3.1.6 also gives 2-naturality

of al; the center square with attached arches gives the equation
o n(FM) Ridy) = FMBN)ay pa- (10)
Lemma 3:1.8. The hexagon

AMN)BP 2 (AMNRP

ai,MN,vl , ' lB(AMw,P
AMN R P) ((AMINYP
Bumn.p 1 laAMN
A(MN)P) i (AMN))P
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commutes.

Proof. The arrow B 4aanp drawn from the upper-left most entry in the hexagon to
the lower-right most entry divides the diagram into a pair of rectangles. The upper
right rectangle is the definition of a4 am a B¢ idp and the lower left rectangle is the

definition of a4 pn p. O

In the case of monoidal categories the relevant structiure isomorphisms are required
to satisfy axioms which take the form of commuting diagrams. In the 2-monoidal case
we make similar- réquirements of the structure morphisms but here, 5ecause of ‘the
presence of higher dimensional structures, it is necessary to weaken these axioms by
requiring only that their diagrams commute up to some 2-morphisms. Above we
have defined a 2-associativity isomorphism apmyp 1 (MN)P — MWN ’P).‘ In the
definition of monoidal 2-category a is required to satisfy the pentagon which appears
in the lower dimensional monoidal case, but only up to 2-isomorphism. The content
of Proposition 3.1.9 is that, in the 2-category of bimodule categories, the monoidal
structure K¢ strictly satisfies the associated 'hexago_n just as in the monoidal cdt’egory
setting. For us fhis mee;ns that the 2—isoﬁorphism asmn,p (see M. Definition 1.4.2)
is actually identity for any bimodule categories A, M, N, P for which the relevant_

tensor products make sense.
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Proposition 3.1.9 (2-associativity hexagon). The diagram of functors commutes.

(AM)NP)

( ('AM ) N) P CAMN,P
aA,M,Ng‘EPJv
(AMN)YP . A MNP

A MNP l

A(MN)P) —gra—— AIMNP))

NP

Proof. Consider the diagram below. We first show that the faces peripheral to the

embedded hexagon commute and then show that the extended perimeter commutes.

(AMIN B P | TAMN P » (AM)(N B P)
}(AM)NQ : , idAME‘D{.A
CAMN ((.AM)N)P —GAM—NJ;_) (AM)(NP)
asmNReidp o
AMN)R P (AMN)P _ CAMNP _ M NEP
| )
S 4, MN,P
U MNP A(MN)P) W A(M(NP)) |
| id/_A@cBMN“p | | idAEC(idMEQf,P) i

AMN R P) L » AMN B P))

The top rectangle is the definition of a 4aq a P, the rectangle on the right is naturality
of a as in Proposition 3.1.6, the bottom rectangle the definition of a tensored on the

left by A, and the hexagon is Lemma 3.1.8. To prove commutativity of the extended

\
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perimeter subdivide it as indicated below.

(AMN B P AT — (AM)VRP) -
f\\B . / » R
AMN BamNnarp
QM NRP (AM) X NRKP
1 —
: QA MN
AMN) R P 4B p RN R P N aakinw
l ' X AMBRN P
U MNP AM RN R P)
idAiZIc(BM'N@f)//. id g BM‘M{ '

A(MN & P) e ‘ » AMN B P))

The upper and lower triangles are the definitions of al,, wp and AR, (definition
of ajy ), respectively (Lemma. 3.1.1). Right rectangle is definition of a4, M/\[@p
Upper left rectangle is (definition of aqama) ® P, and the lower left rectangle is
eiplained in Remark 3.1.7. The central triaﬁgle commutes as follows. Using the

definition of a! given in the proof of Proposition 3.1.4 we can draw the diagram

B AMBRN R P
AgMgng,—%A(MN)'!ZIP o

\\\\\\T;=\\hﬁmmmN@m

where we have abbreviated the various a! appedring in the statement of the lemma
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by «; and associated functors B occurring in their definitions B; in such a way that

-

o By =‘B:3, azBy = Bay - aaB; = Bs.

These equations imply B; = a3a2a1‘183 where B; = B4 manvwe. Apply Lemma 2.1.9

to write id = azazag . Now equating paths in the large diagram allows us to write

as MNP (a2 ) (Bama BP) = (AR, alpp) (ol pin p) (@amn BP)Bapyn &P

and a final application of Lemma 2.1.9 gives the relation expressing commutativity

of outer pentagon. O

Let M; be a (C,-_I,Ci)l—bimodule category tensor categories C; 0 < i < n + 1.
Then one extends the arguments above to completely balanced functors (Definition
2.1.2) of larger index toashow that any meaningful arrangement of parentheses in the

expression M; M, My--- R | M, results in an equivalent bimodule category.

Remark 3.1.10. Propositior; 3.1.9 implies that the 2-morphism described in M9 of
Definition 1.4.2 is actually identity. The pfimary polytope associated to associativity
in the monoidal 2—categ6ry setting is the Stasheff polytope which commutes in this
case. It is obvious that the modified tensor product ® with associativity ([KV91]
§4) is identity and that nearly evéry face comlr{mtes strictly. Fhe two non-trivial

remaining faces (one on each hemisphere) agree trivially. We refer the reader to the

original paper for details and notation.
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3.2‘ Unit constraints

Recall from Proposition 2.2.5 the equivalences [y : MKpD ~ Mandr M CRM ~ -

M. This section’s first proposition explains how [, 7 interact with 2-associativity.

Proposition 3.2.1. (idap Mp ly)apne = mrpn; Tmapon{aema) = 7y Bp idy.
Also the tﬁ'angle

(MRp D) Kp N

i idpr
aM,‘D,Nl MmBpidps

MRy (DBp N)—= MRy N

commutes up to a natural isomorphism.

Proof. The first two statements follow easily from definitions of o' (Lemma 3.1.1),
module structure in MXpA and those of [ and r. This means that the 2-isomorphisms
p and X in M11 of Defintition 1.4.2 are both trivial.

The diagram below relating [ and r corﬁmutes only up to balancing isomorphism

b for Bayn where we write b : Bya(® Ridy) = By a(iday B ®).

(MR DN ‘ , Ll . » MR (DN)

Burpn Bp

MRDRN

BN

Bum,p

M(DRN) ‘ Bumen
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Top triangle is definition of a!, rectangle is definition of idxs Bp Bp pr, lower right
triangle is M&p (definition of rar), triangle on left is (definition of ix()®p N, and cen-
tral weakly commuting rectangle is definition of balancing b for By . The perimeter
is a diagram occuring in the proof of Proposition 3.1.4 (we have been sloppy with the
labéling of the arrow across thé top). Since all c;tiler non-labeled faces commute we

may write, after chasing paths around the diagram,

4 . b, )
Lm Bp tdn (Bat,p Bp idar) Brmp v = (ida Bp rar)arm,p v (Bap Bp idp) Bamp -

Applying Lemma 2.1.9 twice we obtain a unique natural isomorphism

3

pipmn : b Bp idy = (ida Bp radappn (11)

having the property that pan * ((Bap Bp idy)Brmpa) = b, the balancing in

B 0
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CHAPTER IV

PROOF OF THEOREM 0.2.1

4.1 The commuting polytopes

In this section we finish verifying that the list of requirements given in the definition of
monoidal 2-category ([KV91]), Definition 1.4.2 of this thesis, are substantiated by the
scenario where we take as underlying 2-category B(C). Recall ‘that for a fixed monoidal
category C the 2-category B(C) is defined as having 0-cells C-bimodu}e categories, 1-
cells C-bimodule functors and 2-cells monoidal natural transformations. M1-M11 are
evident given what we have discussed so far; exiplicitly, and in order, these a.ré given
in Proposition 2.2.5, Proposition 2.2.3, Definition 3.1.5, Remark 2.2.2 (take one of
the 2-cells to be identity transformation on identity functor), Equation 9, Proof of
Proposition 2.2.5, Deﬁﬂition 3.1.5 (trivial, composition with id commutes), Polytope
4.1.3, Proposition 3.1.9 (frivial), Proposition 3.1.6 (apmy = id for bimodule functor
F); Proof of Proposition 3.2.1. Commﬁtativity of the Stasheff polytope follows from
Proposition 3.1.9 (see Remark 3.1.10).

The data introduced throughout are require(f‘\to satisfy sever;l—commuting poly-

topes describing how they are to interact. Fortunately for us only a few of these

require checking since many of the structural morphisms above are identity. Because
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of this we prove below only those verifications which are not immediately evident. Re-
call (Definition 3.1.5) that we define action MF' of bimodule category M on module

functor F.

~ Polytope 4.1.1. For M, N, P € B(C), the pastings

(TMN yP (rMN )7’

(CMN ) » (MNP ((CMON)P 5 (MN)P

ac,m NP aCM N P arM NP am IN P acMNP AN J'aM,N.p
TMNP PMAN

(C(MN CM YNP) M(NP) CcmmnyP 22 mwp)

Qe AN, p ac, MNP < PM N:;A(NP) ac,MN,Pl "(/MN)-p \}"V"M,N.‘P IrM(NP)

C((MN o C(M(N'P)) C((MANP) C—MN—;—)C(M(NP))

correspond to the same 2-cell.

Proof. Note that every face commutes (all labeling 2—Célls are identity) except for
Tapnp 10 the second diagram. Thus the pastings give the same 2-cell if we can
show 74, ., is also identity. By comments following the proof of Corollary 2.2.6
this is equivalent to showing that apap is a strict module functor, i.e., that the
module linearity w assoéiated to a is/ identity. qu X € C note that for simple tensor

(MN)P = B p(Bun B P)(ME N & P)

appp(X ® (MN)P) = (X @ M)(NP) = X ® apnp((MN)P)

so by two applications of Lemma 2.1.9 w = id. O
The remaining four polytopes describe 2-naturality of the action of the unit object
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in our monoidal 2-category (recall that the unit object in B(C) is C itself). The first

concerns 2-naturality of u, A and P.

Polytope 4.1.2. For F': M — M’ a morphism in B(C) and any C-bimodule category

N the polytopes

(MO st L MECN)  (NOM T AN(CM)
\\&‘A'N / jﬂN,M /
Y ™ v - Nrr
(FON MTMN F(CN) (NC)F NM M N(CF)
N NE

(MCON —= { s MI(CN)  (NO)M! —2 1 S N(CM)

Har,
™ I

MN | . NM

MI

commute. Similarly there' are commuting prisms for upper left vertex corresponding
to the remaining four permutations of M,C, N with upper and lower faces commuting

up to either A or p.
In [KV91] these triangular prisms are labeled {(— ®1 ® o), (1® — Qe), etc.

Proof. We verify commutativity of the second polytope. Commutativity of the other
prisms is proved similarly. Denote by * mixed composition of cells. Commutativity

of polytope on the right is equivalent to the equation
(idy B f)((idy Be F) * parm) = BN M ¥ (idvmec B¢ F) (12)

where f is module structure of F' and f = rp (recall Corollary 2.2.6). Let LHS

and RHS denote the left and right sides of (12). Then one easily shows that both
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LHS*(( Bx c®.idrm) Br,yom) maxzy and RHS*((By exeidm) Bryyo,m) Mrxsw, for N €
N, X €C,M € M, are equal to by x o5y Where b’ is the balancing for By av. Two

épplications of Lemma 2.1.9 now imply that LHS=RHS. O
The next polytope concerns functoriality of the 2-cells I, rr.

Polytope 4.1.3. Let M 5 N S P obe composible 1-morphisms in B(C). Then the

prisms
c CH__ep me—E% _,pe
cG ) e
w7 ®c,F c/ w7 ®C,F,(/
T - r l .
M cr CN e Tp I " FC N(jlc lp
v TGF ' el
cr | f‘— cr |W f
» P M Y P
)id )ui
F e : F G
N N
commaute.

Proof. We prove commutativity of the first prism. Commutativity of the second
follows similarly. It is obvious that ®¢ g is trivial (it is just composition of functors).
First polytope is the condition rgr = (G * T‘F)(TG xCF). Let f bg left C-linearity for
F', g that for G. Then (G, g)(F, f) :== (GF,ge f) where (geo f)x m = 9x,r()G(fx,1)

is left C-linearity for GF. One checks directly that

(G *xre)(re *vCF) * BC,M“ =(ge f)7 L.

y

rgr is defined as the unique 2-isomorphism for which rgp x Beag = (g e )71 so

Lemma 2.1.9 givés the resulit. _ O
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Polytope 4.1.4. For any 2-cell a : F = G in B(C) the cylinders

CF FC
M Jea Ten MC &/: NC
<-¥{ « <—-l/ *
A - TN Laq G Ip 7%
F v/_ F f
e } IPUEE A )
M ~ u - JN M LG_/N

commute.

Proof. Again we check commutativity of the first polytope. The first cylinder is the
condition (a *Tam)re = TG(Ta * Ca) where Ca is the 2-cell defined by id¢ X «
| and 1dc means natural isomorphism id : i¢d¢ = id¢. One verifies this directly using
the bimodule condition on . Again one checks first that components after right *-
composing with the appropriately indexed universal functor B agree. Thus for X € C

and M € M we have

((a*ram)re * Beadxam = axemfxag

(ra(ra *Ca) * Bem)xmm = gxa(idx ® an)

and since « is a natural module transformation the compositions on the right agree.

Applying Lemma 2.1.9 for Be a4 gives the result. ' O
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Polytope 4.1.5. For M in B(C), the pastings

(COOM =22, c(eM) (COOM —222, c(eM)
«‘:/PC.M ‘[TCM %‘ lidc@crm
reRpidp | ACBeTM CM reBeidag leBidad CM
rr% 1”4 / 1T_M
CM —— > M cM M

give the same 2-isomorphism. FEach of the remaining two orderings of the mul-
tiset {C,C, M} determines an analogous pair of pastings, and hence a unique 2-

isomorphism.

Remark 4.1.6. Note that the pair of diagrams is determined by .i:he order of the
objécts in the upper left vertex. Keeping parentheses fixed, there are related pairs
of diagrams for the remaining two ordefings of the multiset {C,C, M}. Each pair
determines a pair of pastings, and each such pair of pastings similarly determines a

unique 2-isomorphism.

Proof. We give proof in the diagrammed case. The other two are similar. Bimodule

linearity for 4 is trivial (since rq is strict & la Remark 2.2.7). The equation-

TrM ¥ ,uC,M = td | (13)

is therefore the content of Polytope 4.1.5. To see this choose natural isomorphism
J:rpmBepm = ® = ® = raBe aq having components Jxgn = Ta(by x 1) where
b is the balancing for B¢ aq. According to the definition of pc a¢ in 11 we see that

77



(raa* pem) * (Be e Be tdag) Bere, m = Taqg *b. Now using the fact that 7,4 is trivially
balanced (proof of Proposition 2.2.5) the natural isomorphism J is balanced: that is,

we have commutativity of the diagram

(rm*b)x,v,m
—_

rmBe(X ®Y B M) = (XY)M rmBem(XRY @ M) = X(Y M)

Ixy@m=(rm*d)1 xv.m l lJX@YM=(TM *b)1,x,v M
TMBeM(X QYR M) = (XY)M ———=rmBcm(XKY @ M) = X(YM)
This follows from the balancing diagram satisfied by b. Using the relations given
in the balancing diagram for b we derive the relations by,xy.m = by xymbxym and
bxim = id which‘together imply b, xy,u = id for any X,Y €C, M e M. Thué
the vertical arrows in the diagram above are identity hence rp¢ * b = id.. On an
application of the uniqueness of the descended 2-cells (Lemma 2.1.9) we must have

Tam * piem = @d, which is (13). 0

This completes verification of the polytopes required for monoidal 2-category

structure, and therefore completes the proof of Theorem 0.2.1.
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CHAPTER V

TENSOR PRODUCT OF FUSION CATEGORIES OVER

BRAIDED FUSION CATEGORIES

In this chapter we are interested in examining the relative tensor product of
monoidal categories. That is, if monoidal categories Cy,C, also happen fo be module
categories over a fusion category D when is C; ®p C; monoidal? When can we give
C; Rp Cy a braided structure? What is its cénter? Clearly it is possible to formulate
many interesting questions. We hope to answer some of them here. We will need the

following definition.

Definition 5.0.7 ([DGNO10]). Let C be a monoidal category. Then C is said to be

tensor over braided fusion category D if there is a braided tensor functor ¢ : D —

Z(C).

Typically we will identify D with its image in the center Z(C). Evidently this
gives C the structure of a D-bimodule category: if X €e Cand D € D deﬁﬁe DX =
¢(D) ® X where ® on the right is in Z(C) and where we identify (D) ® X with its
image under the canonical surjection Z(C) —C. ‘x\Right ’D-modulé“category structure

is given by X ® (D).
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5.1 Tensor product of monoidal categories

Unless otherwise noted assume all tensor categories are semisimple. Let D be a
braided fusion category and let ¢; : D — Z(C;), i = 1,2, be braided inclusions so that
C; are tensor over D. F‘ufther assume that the compositions m;p; are fully faithful
functors (m; : Z(C;) — C; are the canonical surjectidns). We may thus consider D as

a braided fusion subcategory of both C,.

5.1.1 Monoidal structure of C; Xp Cq

Let C; be monoidal categories over braided fusion category D. Let 7 : CiRC, — C,IKC,
be the functor X®Y +— Y X X, and denote by B; , : C; ®KC; — C;®pC, the universal

balanced functor described in Definition 2.1.4.

Proposition'S.l.l. Cy ®Wp Cy has canonical structure of a monoidal category with

respect to which B; 4 is a strict monoidal functor. -

Proof. Denote by I' .the composition of functors

I=CRCGRCGRC %0 RGRCGREE® R,

and define A = By 0T, It is evident that A is balanced. Thus we get unique functor

A making the diagram

C1 X Cg X Cl X C‘Z
Bé‘la,czl 2
(C1 gu Cz) K (C1 E’D Cg) —‘K—'———)Cl g'p Cz
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(¥

commute. Here Béfc2 = B9 X Bj 4 is the universal functor for right exact functors
balanced in positions 1, 3 (Definition 2.1.3) from the abelian category at the apex.

Associativity for A is verified as follows. Abbreviate functors

Ae = AT Rideme,): (€1 REC)™ — ¢ 8y G

AT = A(idclgcz X F) : (Cl Y C2)®3 — Cl E'D CZ'

We leave verification that A,, A, are balanced in positions 1, 3 and 5 to the motivated
reader. One checks easily that A, = K(K@idclgvcz)BE? and A, = K(idCI@DCZIZ]K)BEg‘ .

Thus by uniqueness of Az, A, we must have

g
[

K(K X idclg.pcz)

I's
I

A(ide,i,c, R A).

Next let a* be associativity constraints in C;. Then Bis *a!®a? : A, — A, is a

balanced natural transformation and we thus get a unique natural isomorphism
Bio+al®a?: A(AR ide,mpe,) — Alide,mpc, B A).

This is precisely the associativity diagram required of A evincing it a bona fide tensor
structure on C; Mp C;. Observe that unit object for A comes from 'identity objects of
C; in the obvious way: 1 = B;2(1 X 1).

Tensor strictness of Bj 2 follows from the fact that monoidal structure in C; X C,
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is defined by the functor I". Indeed if U := X WY and V := X' ® Y’ are objects in

Ci X Cy we have, from the definition of A and T,
Bl’2F(U® V) - K(Bl’g @ Bl‘g)(U V)

The LHS is Bl'z evaluated on the tensor product U ® V in C; ¥ C, and the RHS is
the tensor product BLQ(U ) ® B12(V) in C; Wp Cy. It is clear that both sides equal

Bi2((X ® X )R (Y ® Y")). O

5.1.2 Functors' over D

In this subsection we are interested in studying the (the as yet undefined) monoidal 2-
category of tensor categories over a fixed braided fusion category. The next definition

-is an essential step in this direction.

Definition 5.1.2. Suppose C;,C, are tensor categorie_s over braided fusion category
D, and denote by 1; the the compositions D «— Z(C;) — C;. A tensor functor

F:Cy —Cyis said to bga functor over D if Fiy = 1.

Definition 5.1.2 stipulates that functors over D are precisely those respecting the
relevant braided injections. We require one further definition to form the functorial

counterpart to Propbsi_tion 5.1.1.

Definition 5.1.3. Suppose B,C,D are tensor é"ategories and let F' : C — B and
G : D — B be tensor functors with tensor structures f, g respectively. A relative

braiding for the pair F, G is a family of natural isomorphisms cxy : F(X)®G(Y) —
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G(Y) ® F(X) satisfying the pentagons

F(XY)G(Z)-ZX F(X)F(Y)G(Z)  F(X)G(VZ) -5 F(X)C(V)G(Z)

lCY,Z ijX R

exv.z F(X)G(Z)F(Y)  exwvz G(V)F(X)G(Z

ch,Z - JvCX,Z

G(Z)F(XY)—— GD)F(X)F(Y)  G(VZ)F(X) 5 G(V)G(Z)F(X)

forall X,)Y€eCand V,Z € D.

Assume the category B in Definition 5.1.3 is braided. Then any pair of tensor
functors into B are related by a relative braiding having components given by the
braiding indexed by objects in the images of F and G. This follows from naturality

of the tensor structures f, g and the braiding hexagon.

Proposition 5.1.4. Let C;,Cs, A be tensor categories over braided fusion category D
and let F; : C; — A be tensor functors over D related by a relative braiding. Then

Fy, Fy determine a unique tensor functor C; ®p Cy — A.

Proof. Let t,t’ be tensor structures for Fy, F, respectively and lét ¢ denote the relativ'e
| braiding as in Definition 5.1.3. Dénote by ¢* the braided structure in Z(C;). Thé
functors F; determine a, tensor functor F' : C; X Cy — A defined by sending XX Y
Fi(X) ® F2(Y). We show that F is a tensor functor below.

| The proof of Proposition 5.1.4 divides into tt\lree parts. First-we show that F is
D balanced. Then we show‘ that the functors F ® and ®@(F K F) are both tensor
and balanéed, and finally that tensor structure f : F® = ®(F K F) is a balanced
natural isomorphism. This will imply that all these structures descend to the relative
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product.

1. F balancing. Denote by bx py the composition

f—1

Fy(X ® D) ® F(Y) 22 Fi(X) ® Fy(D) ® Fy(Y) —25 Fi(X) ® Fy(D ®}Y).

for X € C;, Y € C2 and D € D. This composition makes sense because F1(D) =
F5(D) thanks to Definition 5.1.3. We show that b satisfies the balancing diagram,
thus balancing for F'. This is a straightfoward calculation: simply observe that the

diagram commutes for D, E € D:

Fi((XDE)F,(Y) ‘XD » Fi(X D)Fy(E)Fy(Y)
R(X)(DE)F(Y) o Fl(X)FI(D)FI(E)@(XD)FZ(EY)
Fi(X)Fy(DEY) s o R(X)R(D)R(EY)

Note that tp g = tp g via Definition 5.1.3. The rectangles are therefore diagrams
required of tensor structures for Fy, F, and triangle commutes trivially. Perimeter is

the balancing diagram for b.

2. Tensor structure of F'. In what follows we will be required to draw diagrams having
vertices labeled by sextuples of objects. In oidey to simplify and condense notation
let us adopt the following convention: write Fl(}( VE2(Y) = (X)(Y) for the tensor
product of the images of X € C;,Y € C; in A. Since all monoidal categories are

assumed strict we lose nothing by so doing. Denote objects of C; & C; using overline
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and subscripts: X = X; ® X, etc. Define natural isomorphisms fxv: FX® 7) —

F(X)® F(Y) by the composition

€Y. X,

FXY) = (Xi1)(X:Y2) 25 (X)(M)(6)(Ya) 25 (00)(X0) (V) (Ya)

=  FX)F).

We now show that f provides F' with the structure of a tensor functor. This will

require the defining diagrams for the relative braiding.

F(XY 2) » (X0)(1.2) (X2) (V2 Z2)
t@t’ k tat €Y1 Z1.Xa
(mezl)"(xmngﬂ»(xl)(m(zlfxa(n)(za . FX)F(Y 2)
€Z1,X2Ys €Z1.X3 tet!
F(X Y)F(Z) (DX (Z) (V) (Zalm FR) (Y1) (20) (1) (Za)
tt! y . €Zy,Ys

(X)) (X2) (V) F(Z)

S F(Y)F(?)ﬂ?)

. X2

All subdiagrams are either relative braiding diagram or diagrams for tensor structure

in' the F;. Perimeter is tensor diagram for (£, f).

3. Balancing of F®. In this part of the proof we show that the composition F'® : -
'(CllZlcg)m — A of F with the mbnoidal structure in C;¥C, is D balanced in positions
1 and 3. This is necessary for F' to descend to a functor from the relative product

- in a way which respects monoidal structure. For D € D define natural isomorphism
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bﬁ(l,D,xz,?" FR(X1DRX,KY)~ F® (X, X DX,KY) by the composition

1
' R

(X, DY) (XaYs) 28 (X,YiD)(XaYa)

—1 ) B
P (XGN)(D)(XaYe) T (X,Y1)(DXaYa)
where we ‘continue to use notation introduced in part 2 of this proof. Note that the

third ekpression is not ambiguous because Fy, F, agree on D. Let D,E € D. The

following diagram shows that b! provides a balancing of F® in the first position.

1

(XiDEY)(XaYs) —— 2 (X, DY, E)(X¥;) —225 (X, DY )(E) (XaY5)
CbEy ot _ i t',;_}(gyz
~ V) 3
(XiNDE)(XoY2) — = (XND)E)(XoY2) (X1DY1)(EX,Ye)
. -
tX1Y1,DE txlbeJv E,XqYp CID,YI
1 , v
(X1Y1)(DE)(X.Y) _—‘t%’ (Xa)(D)(E)(X2Y?) (X1Y1D)(EX,Ys)
tID—EID,Xz,Yz 1 ' tx,v1.D
1 B A 1
(XiV1)(DEX,Ys) < (X1Y1)(D)(EX2Y?)

tt—l
D,EXqYy

Every subdiagram is either braiding hexagon, naturality of ¢ or tensor structure for

t,t'. One similarly defines b2 F(XRY,DRY;) ~ F® (XX Y, X DY)

y1},l.tD1X2

giving balancing in position 2 over D.

4. Balancing of ®(F ® F). In this part of the proof we show that the composition
Q(FRF) : (C;RC,)®? — A of the monoidal strudture in A with F® F is D balanced
in positions 1 and 3. Begin by defining natural isomorphism (id ® tEf,(z)(t x,,0 ®id) :

Fi{(X\D)Fy(X,)F(Y) — Fi(X1)Fo(DX,2)F(Y). Using the diagrams required of ¢, ¢/
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it is easy to show this satisfies the diagram required of a balancing for ®(F ® F) in

position 1. Doing so for position 3 is just as easy.

5. Balancmg of f: F ® — Q(F X F). Recall the definition of the tensor structure
f for F from Part 1 of this proof. We show that satisfies the dlagram required of a
balanced natural transformation in both positions 1 and 3. In position 1 this means
showing that (bx, p.x, ® zd) fxl p8x, 7 = fx,80x. 70, p.x, v Where b' is balancing
of F® in position 1 as in Part 3 of this proof and b is balancing of F'. To show this

consider the diagram

XLD

(X, DX)F(V) Z257X,) (D X) F (V) 225 (X1>(D)<x2>(yl>(m 1, (D) () (V) (1)
():;:Dm?) tfﬁ‘txl)(x};ﬁ(ﬂ oot (&D)(H%(X;S(m
F'X(l“;;bm?) P 0) X (D)(K)(Y) (X»(D)m;(lxzxm
FLZ:;(Dm) ana®on (Xl)(;:)(Dlﬁ)(Yz) el <X1>A<Dm<2>(n>

Every subdiagram is either naturality or tensor_diagrams for t,t' or relative braiding
of Fy, Fy. Since the composition of morphisms across the top is ‘t X, D,;’(z ® t'm ‘the
perimeter is the balancing diagram for f in position 1. Showing that f'is balanee&
in position 3 requires a similar diégram and is jl{st as easy.

Parts 1-5 above imply that there are unique\functors and natural isomorpﬁiSm

f F® - ®(FRF): (CRp C)®? - A saﬁsfying f* BY2'= f. Using basic

properties of the functor B;s and the definition of A from Proposition 5.1.1 one.
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shows that F® = F A and @(FR F) = @(F ® F) where F : C1 ®p Cy — A is the
unique functor with FB;s = F. Thus f provides F with the structure of a tensor

functor in a canonical way. The proposition is proved. ' O

Proposition 5.1.4, thodgh perhaps interesting in its own right, is of immediate
value in that it implies closure over relative product ®p of the class of functors over

D. This we prove in Proposition 5.1.10.

5.1.3 The fusion category C; Xp C,

In this section we show that the relative product of two fusion categories over braided
D inherits the structure of a fusion category over D. Notation is retained from the

previous section.

Theorem 5.1.5. Let C;, i = 1,2 be fusion categories over D. Then C, Rp Cs is .also

a fusion category over D.

We break up the proof of Theorem 5.1.5 into two parts: first we will show that
C1 ®p C; is fusion and then show in Proposition 5.1.8 that it is fusion over D in the

sense of Definition 5.0.7.
Proposition 5.1.6. Under the conditions of Theorem 5.1.5 Cy Mp Cy is fusion.

Proof. Thanks to Proposition 5.1.1 it remains only to check that C; ®p C, is rigid
and semisimple. We begin with a general result.\\ Recall that a dominant functor F
is one for which the codomain category and the category Im(F') coincide (Definition

1.3.16).
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Lemma 5.1.7. Let C,D be semisimple tensor categories with C fusion, and let F :

C — D be a strict dominant tensor functor. Then D is fusion.

Proof. Let F denote the tensér subcategory of D generated by objects in th‘e image
of F. Since F is a tensor functor F is itself fusion with rigidity inherited from that
in C: duality is given by F(X)* = F(X*) and evp(x) 1= Flevx) : F(X)* ® F(X) —
F(1) = 1. Similarly coevp(x) := F(coevx).

It is our task 1;0 define duality for a general ob jéct inD. Tothisend fix Y € D. Let
X € C be an object such that F(X) contains Y as a subobject. Write F(X) =Y ®Z
for some object Z € D. Now F(X*)®Y is a subobject of F(X*)® F(X). Define the

object Z* to be the largest subobject of F(X*) having the property that

F(evy)

z+oy = 0.

Define Y* to be the complement of Z* in F(X*), ie. F(X*) =Y*® Z*. Thus the
object Y*®Y is a subobject of F(X*)® F(X), and we may therefore restrict F(evx)
to define morphism 'ey := F(evy)|y-gy. To be explicit, let py. : Y* — F(X*) and
py : Y — F(X) be inclusions of the indicated subobjects. Then we have defined |
ey := F(evx) o (py- ® py).

Next let 7y : F(X) — Y and Ty F(X) — Y™ be projections. .Then define -
coy = (my @ my+) o Fcoevy) : Y @ Y* — 1 Neither ey nor coy is identically
zero because of the choice of subobject Y*. We ‘claim that ey, coy together with the

identifications made above make Y* a bona fide left dual for Y € D. It remains to
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check the usual identities. On the definitions of coy and ey we have
(ly ® COy)(ey & 1y) = (ly ® F(evx))(7ry @ py =Ty~ X py)(F(Coer) (%] 1y).

Using the basic identity py;wy. = idp(x+) — pz~7z~ this becomes a difference of
two maps with only the “positive” one non-zero because of the definition of Z*.
The remaining non-zero part fits into the following diagram as the lower horizontal

composition.

F(coevx)®id id@F(evx)

F(X) s F(X)F(X*)F(X) » F(X)

PY : Ty

Y, —— F(X)F(X")Y vwid YF(X)Y id®py YF(X*)F(X)z’mF(evx?/

F(coev x)}®id

All subdiagrams commute trivially. The horizontal composition across the top of the
diagram is id (this is the equation required of rigidity of X in C). Tracing around
the perimeter gives (idy ® ey)(coy ® idy) = mypy which is idy (th¢ other basic
identity relating p and 7). The second equation idy. = (ey ® idy-)(idy: ® COy)

follows similarly. V ‘ O

Now we complete the proof of Proposition 5.1.6. By Lemma 2.1.8 the universal
balanced functor By : (4 ®Cy — € Bp Cy is dominant, hence C; Bp C, is rigid.
Also since C; are both semisimple the categorx C ®Rp G, is semisimple because it
is equivalent to the category of functors F unz;\(Cfp ,C2) (Theorem 2.3.1) which is

semisimple by [ENO05, Theorem 2.16]. O

Proposition 5.1.8. Under the conditions of Theorem 5.1.5 C; ®p Cy is fusion over
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D.

Proof. Let @; : D — Z(C;) be the braided inclusions putting fusion categories C; over

D. Note that D sits inside Z (C1 ®p Cs) by the composition

0=D>DRD " Z(C)R Z(C) = Z(CL R C) 28 Z(C1®p Cy)  (14)
sending D — (B12(D ® 1),7p, ,pmy)). Here ¥ is the braiding in Z(C, ®p C;) as
in the last part of the proof of Proposition 5.2.3 and ZB,, is the functor sending
(A, ca) — (Bl,z(A),"y’Bu(A)) for any object (A, ca) in the center of C; & Cs. Tb com-
| plete the proof of Proposition 5.1.8 we must show that the composition 14 is an

inclusion and that it is braided.

1. @ is an inclusion. Since ¢ X 5 is an inclusion on account of ¢; being so we must,
check only that Z B, is an inclusion on the tensor subcategory generated by objects

of the form (DX 1,cp, _ ® 1). But this is obvious.

2. Braiding of ¢. Since both ¢y, ¢y are braided the functor ¢, X ¢, is also braided
(this is perfectly general and has nothing whatever to do with the other properties of
,(pi): Note also that Z B, s is braided; this follows from the fact that B, s is a braided

functor (this is shown in Proposition 5.2.3). O

Corollary 5.1.9. For C;,Cy; D as in the hypothesis of Theorem 5.1.5 the category of

D-module functors Funp(Cy,Cs) has the structure of a fusion category over D.
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Proof. This follows immediately from the comments at the end of the proof of Propo-

sition 5.1.6. O

Now that we have a multiplication in the catégory of tensor (fusion) categorieé
over a fixed braided fusion category it is natural to ask if this extends to morphisms
of such categories. This is the content of the following proposition. Recall what it

means for a functor to be a functor over a braided fusion category (Definition 5.1.2).

Proposition 5.1.10. Let (F, f) : C; — & and (G, g) : C; — &, be tensor functors
over D for C;, &; tensor categories over braided fusion D. Then F®p G has canonical

structure of a tensor functor over D.

Proof. Define functors Fy : C; — & Rp & and Gy : Co — £ Kp &, by
Fi(X) := Bio(F(X)R 1), G2(Y) := B12(1R G(Y)).

Using the braided inclusions from Proposition 5.1.8 it is easy to check that Fi, Gy
are functors over D. Observe that F1(X) ® Gao(Y) = G2(Y) ® F1(X) so we have a
trivial relative braidingr between F,G,. Applying Proposition 5.1.4 to @(F1 ¥ G,) =
By 2(F X G) we get a unique tensor functor C; Bp C; — & Rp 52: This is exactly '

FRpG. 5 O

5.2 Tensor product of braided fusi"(,_)n categories

In this section we discuss when the relative tensor productb of a pair of braided fusion

categories is itself braided. It turns out that in order for such a braiding to exist we
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* will need a restricted version of the phenomenon described in Definition 5.0.7.

Definition 5.2.1. If C, D are braided then we say C is braided over D if there is a

braided inclusion D < C’ where C’ is the centralizer of C (Definition 1.2.12).

Example 5.2.2. Let G; be finite abelian groups and g¢; : G; — kX quadfatic forms
satisfying q;(g) = B3;(g, g) for some bicharacters §8; on G;, i = 1,2. One easily checks
that (G; x Ga,p) is a pre-metric group for p(g,h) = ¢:1{g9)¢g2(h). As a quadratic
form p comes from the bicharacter on G’i X Gq x G x Gq given by (g1, hy, g2, hs) —
B1(g1, 92)Ba(hy, ha).

Now suppose we have embeddings G — G; for a‘ finite group G such that q((g) =
q2(g) for all g € G. Then the pair (G, q) is a metric group for q := ¢;¢. Denote by
G the subgroup of G| x G, given by the set {(z,z )|z € G} and vsuppose that p
descends to a quadratic form on (G} x G2)/G. Since p is constant on G-cosets we
have ¢;(z)q(g9) = ¢:(9z)q(1) for z € G;, g € G. As a result bi(g,z) = q(1)~! and since

bi(1,1) = 1 we may conclude that
blg,z)=1 o - (15)

fori=1,2.

Let us translate this into the language of pointed braided fusion categories a la_
§1.2.2. Pre-metric inclusions G — G; correspg\md to braided inclusions C(G,q) —
C(Gi, ). Equation 15 becomes ¢y =1 (¢! the .braiding in C(Gi, ¢;)) whenever X,Y
are homogeneous objects of Vecg, of degfees geqG, z resﬁectively. Thus the images
of the braided inclusions are confained in Miiger centers C (Gi.,‘ ¢;)’. As braided fusion
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categories it is evident that C(Gy x G,/G,p) ~ C(G1, q1) Be(c,q) C(G2, @2)-

The next proposition describes braiding for the tensor category C; ®pCy; whenever
C; :'are braided over D in the sense of Definition 5.2.1. Note that the Deligne product of
any pair of braided categories has braiding given by Deligne product of the individual
braided.structures. In what remains of this section we extend this observation to the

relative product over a braided fusion category.

Proposition 5.2.3. LetC;, i = 1,2 be braided fusion categories braided over D. Then

C1 ®p Cy has canonical braiding such that By s is a braided functor.

Proof. By Propositions 5.2 and 5.3 in [JS93] braided structures on C, ®p C, are in
correspondence with tensor structures on the monoidal product ® : (C; Bp 62)82 —
C, ®p C,. Thus to prove the proposition we consider such tensor structures.

Let ¢ be braiding on C; and let A : (C; ® C,)®? — ¢, ®p C, be as in the proof
of Proposition 5.1.1. The category (C; IZ C2)®? has monoidal structure coming from
the one in Cl & C; in the onious way. We will adopt the cénvention of abbreviating
| objects of the form X; & X, € C, ®C; by X and on occasion write X; = X; for the
“coordinatgs” of X. Thus (X®Y); = X ® Y:. Any tensor structure Axgy jxv -

MXRY)®URV)) =~ AXRY)®AURY) is of the form
Mgy oav © Br2(X1UihV B X,U,Y, Vs) :> B 2(X1Y1U, Vi R X, Y,UsVs)
R ‘\

where we have used the definition of A to write (co)domain of X in terms of By,. -
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Given braidings in C; the most natural possibilities are
’\YEV,UEV = Bl,2(1X1 ® CI(UI’ Yl) ® 1y, X 1x, ® C2(U2’ Y2) ® 1V2)

where C*(A, B) € {c¢} 5, ci};’lA} Leaving out tensoring with identity the diagram

needed in ordér for A to have monoidal structure A is

CY{(W1 Y1,V RC2 (WL Y2,V2)

AUWYRV X Z) S AURVIAWYRX Z)
C‘(Yl,lel)l%Cz(Yz,Vng) Cl(Yl,Xl)%Cz(Yz,Xz)
ATWRV X)AY & Z) » AU B VAW R X)A(Y & Z)

Cl(W1,V1)RC?(W2,V2)

This is really two diagrams: one for C' and another for C?. The diagram correspond-

ing to C! comes down to showing commutativity of the diagram

CHWY,V)®idx
WYVX — VWYX

’ idw®Cl(Y,VX)l lide®CI(Y,X)

WVXYCWVWXY

where subscripts have been left off for simplicity. This diagram commutes if we choose
C' = ¢! to be the braiding in C;. Similar considerations lead to choosing C? = ¢? to

be the braiding in C,.

Lemma 5.2.4. The natural isomorpism X descends to a canonical tensor structure

on K : (Cl @’D 62)82 — Cl gp C2. \

Proof. To prove the lemma we must only show that A : AQ - QAR A): (K

C2)® — C; ®p C; is D-balanced in positions 1, 3, 5, 7. The 1-balancing of X is
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equivalent to commutativity of the perimeter

ct Rc? .
B12(X, DU Y1 Vi R X,UpYaVa) 28 B, o( X1 DY;,U Vi 8 X, Y3UsVs)

cl cl
, ,
DUV, DY UiV,

) el Rc2
By (X U1YiViD R X,U, Y, V) =22 28 B o (X, iU Vi DR X,Y,UsVa)

bl lb
cl R
B1a(XUihVi B DX,UsY,Ve) =278 By o( X\ ViU Vi B DX,YaUs V)
which com_mlites trivially. Upper and lower horizontals are Az pxy rgv 2nd Apxey ey

where X D := X; DX X, and verticals are A 1-balancing. Balancing in the 7th position

is similar. The 3-balancing of A\ comes down to the diagrams

Yy, YD ’ ‘UY

XUYDV —» XYDUV DXUYV — DXYUV
“u.D K
) cu.Y cp.U .
€p,v XYUDvV ) DUV °p,XU XDUYV ep,x
‘DU Uy
<D,V <U,D
XUyYvp ‘cu v y XYUVD XUDYV pr— > XDYUV

where indices and tensor with identity morphisms have been elided. In the diagram
on the left ¢ = ¢’ and on the right ¢ = ¢*. Each subdiagram is either naturality or
pentagon for the braiding. The double edges follow from D injecting into the Miiger
centers. The 5—bal@nciﬁg requires similar diagrams.

- Our discussion implies that A descends to A : A® — ®(A & A), a natural isomor-

96



phism, as indicated in the diagram.

(C, R Cy)® ”’“““’7x

A® '
A \\\
m\
' | : C\l\%g’l) Cy
B
V

®(ARA)

R4
By

(C, Rp Cy)®4

Using basic properties of B 5 this becomes X:A® — A(AR A) and hence a tensor

structure for A, proving the lemma. ' O

In the language of [JS93] the functor A gives C; Bp C; a multiplication ® : C, Kp
Cy xC1RpCy — C1Rp Cy defined by (A4, B) ,-——‘ K(A B). Part of the data describing
a multiplication in C; ®p C, involves isomorphisms <I>(A; 1) ~ A,‘<I>(1, B)~B thch
we can assume are identity (on assuming strictness of tensor structure A in C; KpCy).
Natural isomorphisms A give an isomorphism ®(A, A)®®(B, B') ~ ®(A®B, A'®B').
Proposition 5.3 of loc. cit. implies that C; IZIDCQ 'acql.lires a braided structure ¢ making

the diagram commute:

AAR1)®K(1RB)=A® B cas ' Bo A=RK(1KR B)®K(AR 1)
x;él.l@ﬁ’l TXIEB,AQI
AM(AR)®(1IRB)) = A(ARB) = A(1IRB)® (AR 1))

Denote by vggy the natural isomorphism BI,Q(C\},I’Yl K}, y,) 1 A — A% for any pair
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of objects U,Y € C; ®C, . Note that
Axeey = Bi2(id ® C{,l ®idNid® 03,1 ®id) = 1 (xwv)

and

. 1 2 _ _
)‘18!?,?&1 = Bl,z(cx,,n & CXQ,‘/z) = TXRv-

Balancing of X in positions 3 and 5 implies balancing of <y in positions 1, 3, hence a
unique natural isomorphism 7 : A — A°P satisfying ¥ * B‘E‘; = 7. Uniqueness gives

Xug]_’_.[gu = % and X-gl,lg_ = ¢d. Thus braiding on the relative tensor product is

equal to ¥: for A, B € C; ®p C; we have cap =7, . O

5.3 Module categories over C; Kp C,

In this section we are interested in studying module categories over fusion (tensor)
categories of the form C; 8p C; where we retain above notation. We begin with a

general lemma relating balancing and module category structure.

Lemma 5.3.1. Let M be a strict C, D-module category and let N be a left C-module
category. Then any D-balanced left C-module functor MRN — A descends to a

[]
functor MRp N — A having canonical C-module structure.

Proof. Denote by f the balancing ismorphisms for F, and for X € C write @xu :
F(X®M) — X®F(M) for C-module structure of F.IfL x is the functor associated to
left X-multiplication then we can view ¢ as a natural isomorphism ¢x : F(Lx®1) —

LxF (here 1 = idy). Recall that left X-multiplication in M&pN is given by Lx, the
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unique endofunctor on MXpN determined by By po(LxX1) : MRN — MEpN.
Itis trivial to check that both F(Lx®1), Lx F are balanced functors MEN — Awith

. , 1
balancing coming from f. Also one checks that ¢ x is balanced natural transformation.

Thus we have unique px : F(Lx X 1) — LxF : MBpN — A. Using basic properties
of By n we see that F(Lx 8 1) = F(Lx) and LxF = LxF. Thus components of
Px are given by px 4 : F(X ® A) — X ® F(A) for a typical object A € MRp N,

Extending this construction to all objects in C we get C-linearity for F. O

Let us now return to pre Lemma 5.3.1 notation. In what follows assume all module
categories to be strict, an assumption we can justify thanks to Theorem 1.3.8. The
next proposition relates module structure over the tensor product to module structure

over braided fusion category D.

Proposition 5.3.2. Any module category over C,RpCy admits a canonical D-bimodule

category structure with respect to which the left and right module structures agree. -

Proof. Suppose braided inclusions ; : D — Z(C;) put C; over braided C as above.
Let M be a left C; Mp Cs-module category. Then define left and right D-module

category structures on M in the following way. For M € M set
D®M= Bl,2(§01(D)®1)®M, M®D: B]ﬂg(l(ﬁg(D))@M

: \ |
Note that left module associativity of the action comes from tensor structure of ¢,

“and module associativity on the right comes from tensor structure of p;. Note also
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that since

Bia2(p1(D) R 1) ® Bia(1 R 9a(D)) = Bia(pi(D) W po(E))

= Bia(1Rp(E)) ® 31;2(<P1(D) X1)

left C; and right C; module structures are strictly consistent: (DQ M) E = D ®

(M ® E). 1t is evident that by p; ®idpy : DM S M ® D. O

Theorem 5.3.3. Let C; be tensor categories over braided fusion category D. Then
Xp is a functor Cy-Mod RCy-Mod — Cy Rp Cy-Mod. Furthermore Ry is bilinear with

respect to composition of functors.

Proof. Let 'M_E Ci-Mod, N € C2-M0d and for convenience assume that thé braided
inclusions @; : D — Z(C;) are both strict as tensor functors. Centrality of D in C;
allows us to define D-bimodule structure on both M and A by stipulating that left,
right actions agree. We break up the proof of Theorem 5.3.3 into two parts. First we
show that Mp has the proper codomain category and then show that it respecﬁs the

relevant structures.

Proposition 5.3.4. MRXp N has canonical structure of a C; ®p Cy-module calegory.
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Proof. Define C, ®p Cy-module structure on M Xp N using the diagram

CGRGERMBN — L CRMRCRN
‘ l®2:=(®,®)
B12®BpN _ MRN
| 1BM,N
CiRp C, & M Bp N » M Bp N

Fo; conveniénce abbreviate T := Bpn 0 ®% 0 7(23)- We wish to descend T to the
functor ivndicated in the diagram by the unadorned horizontal arrow.

We first check that the composition T' is D-balanced in positions 1 and 3 (Defini-
tion 2.1.3). Let X,Y, D, M, N be objects in Ci,Cy, D, M, N'. Then -

Bun(XDM R YN) 2 By (XM R DY N)

{

gives balancing bxppyn : T(XDRYRMKN) - T(XX DY XK MK N) in position
1 for T. Balacing in position 3 can be written in terms of both balancing for B

and the central structure in C,. Explicitly
Bun(XMDRYN) 5 By (XM B DYN) S Bpya(XM R YDN)

where as usual ¢ is the braiding in Z(C;). It is evident that these candidate balancings
in positions 1, 3 satisfy the balancing diagrani"g; for those positions, hence T is so
balanced. We therefore get a unique right exact functor (the unlabeled horizontal

arrow in the diagram) which we will also call ®.
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Next we check module associativity. It is easy to check that the compositions

(L;id)

(€1 R C)® R (MRAN) D (0,8 ) B (MEBN) L M &p N

and

(€L R )% R (M B N) 22D (e, Bp Co) B (M Bp N) L MBp N

are equal (here we use I' for monoidal structure in C; & C; as in Proposition 5.1.1).
Also it’s easy (but tedious) to show that they are each balanced in positions 1, 3, 5; all

balancings may be written in terms of ¢' and balancings for By » and By . Thus they

descend to functors T(T'® id) and T(B12 R T) : (CiRpCo)*2R(MRpN) — MRpN
which are equal. Using basic properties of universal balanced functors one therefore

has

TARD=T(Q1RKT)
where again we use A to denote monoidal structure in C; ®pC, as in Proposition 5.1.1.
This is precisely the statement that M ®p A has (strict) C; Rp Cp-module category

structure. Unit object of the action is clearly 1 = B; 5(1 X 1) and the required unit

constraints obtain. ' O

The next result is the module counterpart to the cdrresponding result for tensor
1\ ,
functors proved above (Proposition 5.1.10) showing that the class of module functors

over D is closed under the relative product Rp.
Proposition 5.3.5. Let F; : M; — N;, i = 1,2, be a pair of functors where for each
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i F; is C;-module. Then Fy Rp Fy : My Bp My — N} Bp N, has canonical structure

of a C; Rp Cy-module functor.

Proof. Denote by ‘B am the universal D-balanced functor By m, @ My @ My —
M, Bp M,. Similarly define By. Let Fy have C;-module structure ¢ and F, have
Cy-module structure ¢. Define F := By (FiR F3) : Mi® My — N1®pN;. One easily
checks that F is balanced by t55br.0.mmtun : F(MD® N) — F(M ® DN)
for M,N € M, M3 and D € D and where b is balancing for By,. We therefore get
functor Fy Xp F3 : M, Bp My — N Bp N, with the usual uniqueness property.
We now show that it respects C; Wp Co-module structure. Then note that we have

a natural isomorphism
By # (tR ) x 7 : By(F1®, F®)T — By(®(F R F),0(FR F)r.  (16)

Using the definition of C; Mp Dy-module structure @pq, a4 for M; ®p My and
N Bp N; as described in the proof of Proposition 5.3.4 and the definition of the
tensor product Fy Xp F> we see that this is a natural isomorphism (Fy Bp F5) ®pm
(B2 IXI Bum) .—~> Qn(1 R (F; Bp F2))B12 & Bag. Al structures are easily seen
to be balanced therefore equation 16 descends to a unique natural isomorphism
tRt : (FRp F2)Qu — (1R (Fy Rp Fy)). This is precisely to say that F; Xp Fy

has the structure of a module functor. a

With Proposition 5.3.5 we have shown that &p as des_cribed in the statement of

- Theorem 5.3.3 is a functor. This completes the proof of the theorem. : U
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The next result examines functoriality of relative tensor product.

Proposition 5.3.6. Let C;,i € {1,2} be categories fusion over braided fusion D, and
let M; be right C;-module categories, N; left C;-module categories. Then there is a

canonical equivalence (M X¥p M3)Re,mc, (NMBpN) >~ (MK, N)Rp (Mggcz.Nzl) .

Proof. The proposition is proved by showing the existence of unique balanced functors
L,L'| R, R' making the diagram below commute. We present the diagram here in full
prematurely and explain its various attributes in the following paragraph as we work
through the proof. To save space we haven’t been completely explicit in indexing

universal balanced functors B, and rely on context to alleviate confusion.

T(23) @) '
MBNBMBN — 3y MBMBN BN ————— S M BN, B M BN,

By, ® Bz,zjv BMIEMQ,NlﬂNzl ) 131.1352,2

(M1 B¢, M)B (M3 Be, No) —L s M B M) Qe @pc, V1B A2) —R—) (M1 B¢, M) B (M2 B, N2)

Bj( lﬂx,zﬁclgvcz By,2 13

(My Bey M1)Bp (M3 Be, Nz) —— (M1 Bp M2) B e, W1 Bp M2) ——3 (M1 By M) Bp (M2 B, N2)
L R

The functor 7(33y permutes the second and third tensorands. It is easy to see that
the composition Bm,g M; N;EN‘z o T(23) is D-balanced in positions 1 and 3 (Deﬁnition
2.1.3), hence the existence of unique balanced functor L making the subdiagram in
the upper leff, commute. Similarly B2 ®e,mpc, Bigo L is 'Zj-balanced giving unique
balanced L' making lower left subdiagram commute. |
Moving to the right side of the diagram one ci\iecks that coxﬁposition B11XBy,0
- T(a3) is C; Bp Cy-balanced giving unique balanced R making upper right subdiagram

commute. Existence of the functor R’ is slightly trickier. Observe that composition
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of functors down the vertical center forms half of the diagram defining the functor

B12®e,m,c, Bi2 (the rectangular subdiagram in the left of the diagram below).

M B M BN R N, y (M1 8¢, N1)Bp (M2 B¢, Ny)
Bat Ry N BN, (M Bp M2) B (N Bp N2) ’ ‘R’
[ Bpt, ®Bp Mo Ny Bp N,

(M & M3)Be ¢, (V1 B N) — (M Bp M3)Be g, c, V1 8Bp N3)
’ 81,280 @ ¢, B1.2 :

‘Denote I':= Bo B1’,1 X By 207(23), fhe composition of right-most vertical and top right-
functors. psing the D-balancing of By and B, as well as the biﬁlodule-linearity of
functors B one shoWs that I is D-balanced in positions 1,3 and thus we have a unique
balanced functor‘ I (M Bp My) B (N Bp Ag) — (M) Be, M) Bp (M3 Be, Ny)
such that I o B, 3™ By 3 =T. In fact IV is C; ®p C»-balanced giving unique balanced
functor R'. This is precisely R’ in the first diagram.

Every cell commutes and therefore the exterior contour also commutes. Retaining

notation above this means
Bo Bl,l X 32,2 = RILI oBo Bl,l X Bgyz

since T12’3 = 4d. Universality of functors B and B;; X B> implies that R'L' = id.
Reasoning similar to the above yields L'R" = id, hence L', R’ are quasi-inverse and

the proposition is proved. ' , O

Note 5.3.7. In the case that categories M;, N; have bimodule category structure the

equivalence in Proposition 5.3.6 is an equivalence of bimodule categories.
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Corollary 5.3.8. Suppose that M is a C;-bimodule category, N is a Cy-bimodule
category, and assume ‘that M and N are invertible. Then M Rp N s invertible as a

Cy Wp Cy-bimodule category and has inverse M~ Rp N 7L

Proof. Theorem 5.3.3 implies
(M EC: N) ECNZIDCz (-)Vl—1 EC‘z N_l) = (M gcl M_l) Xp (N ng N—l) = C} Xp Cy

giving the result. O
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CHAPTER VI

EQU‘IVARIANTIZATION AND TENSOR PRODUCT

6.1 (De)-equivariantization: background

Most of the background information in this section is taken from [DGNblO]i. Let
M be a monoidal category. Recall that an action of M on C is a monoidal functor
F : M — End(C) where End(C) denotes the category of k-linear endofunctors on C.

For finite group G denote by G the finite monoidal categofy having ‘objects ele-
ments of G , only trivial morphisms, and with ténsor préduct given by multiplication
in G. Then an action of G on C is the same as-an action of G on C. The tensor cat-
egory Vecg of finite dimensional G-graded vector spéces identifies with the k-linear
hull of G and hence an action of G on C is the same thing as a k—iinear action of Vecg
on C.

Let Rep(G) denote the braided category of finite dimensional representations of

G. Then we have an equivalence of 2-categories
{k-linear categories with G-action} & {k-linear categories with Rep(G)-action},

called equivariantization and de-equivariantization.
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6.1.1 Eduivariantization

In this section we describe how a category with G-action has canonical Rep(G)-
‘module struéture. Let F : G — End(C), g — Fg‘be an action of G on C and let
Yo - FgF;; o~ Fy be the isomorphism giving F' the structure of a monoidal functor.
A pair (X, u) for object X € C is said to be G-equivariant if there is a natural family

ug : Fg(X) >~ X of natura] isomorphisms making the diagram

Fy(Fu(X)) —)__, F,(x)

‘Yy.’&(x)l j""g

th(X) » X

ugh

commute for g, h € G. Morphisms of equivariant objects are defined to be morphisms
in C commuting with u, for all g € G. Evidently we have a category of G-equivariant
objects in C, denoted C°.

The category CG has Rep(G)-module category structure as follows. For represen-

tation (V, p) and (X, u) € C¢ we define (V ® X,u") by the composition
W= F(XeV)~F(X)oV"™ XeVv

6.1.2 De-equivariantization

Here we describe how a Rep(G)-module category carries a natural structure of a
\
category on which G acts. Recall that the regular object A in Rep{G) can be viewed

as the algebra Fun(G, k) of k-valued functions on G. As a representation G acts on

A by right translation. Any Rep(G)-module category D thus contains a subcategory
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~ of A-modules, which we denote by Dg and call the de-equivariantization of D.

6.2 Monoidal 2-structure and (de)-equivariantization

Wé keep notation as above. Braiding of Rep(G) ifnplies an embedding of 2-categories
Rep(G)-Mod — B(Rep(G)) into the monoidal 2-categovr);con'sisting c‘Sf‘Rebp(G)-bimodule
categories. This is symptomatic of the observation that every module category over
a braided monoidal category is really a bimodule category. Denote by Rgep(c) the
monoidal 2-structure in B(Rep(G)).

Denote by G-Mod the 2-category consisting of categories with G-action. G-Mod
has monoidal structure as follows. Let F, £ be objects in G-Mod with G-aétions

~ given by monoidal functors F, E respectively. Then G acts on F R € via FX E. We

“write F @ £ to indicate the category F X & with this action.

Proposition 6.2.1. The correspondence C — CC between the 2-categories G-Mod

and B(Rep(G)) respects monoidal structure.

Prodf. Denote by Fung(Vec,C) the category of functors which commute with the
action of G where we view Vec as having trivial G-action. Fung(Vec,C) carries
a natural Reﬁ(G’)-module category structure as follows: for (V,p) € Rep(G) define
(H,h) ® (V, p) := (HY,hY) where HY (W) - H(W)®V and where hY is given by
the composition

.‘.
\

hY = HY(Fyk) = H(Fyk) ® V2B, H(k) & V = F,(HY (k).

One easily checks that the relevant module coherence diagram for hY follows from
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those satisfied by h and p.

Lemma 6.2.2. For C € G-Mod there is a canonical equivalence of Rep(G)-modulé

categories C¢ ~ Fung(Vec,C).

Proof. For (X, u) € C% denote by Hx : Vec — C the ‘_unique.funcvtor having Hx (k) =
X. Then u, : Hx(k) ~ F;Hx(k) gives Hx the structure of a G-module functor.
In the bpposite dir_ection any G-module functor (H,h) : Vec —. C determines ‘a
G-equivariant object of C: G-module structure h on H corresponds to a natural
isomorphism hg : H(k) ~ F,(H(k)) where F : G — End(C) is the action of G on C.
Let vy := h, ' : Fy(H(k)) ~ H(k) and observe that the G-module diagram satisfied by
h translates into the diagram making (H(k),v,) an object in the equivariantization
CE. Clearly these two constructions are inverse.

It remains to check that this correspondence respects Rep(G)—module cafegory
structures. Let (X,u) € C¢ and (V,p) € Rep(G). Then the functor associated to
(XoV,u")is (H X®y,uv) and this is trivially naturally isomorphic to the functor

(Hx,u) ® (V, p). | | - O

Remark 4.3”in [DGNO10] implies that, as abelian categories, Fung(Vec,C) ~
Funye.,(Vec,C). Write Funvec'G(Vec, C) := C. It is trivial that this equivalence
respects Rep(G)-module structure, and henceb as Rep(G)-module categories C¢ ~C.
As monoidal categories G-Mod and VecG~Modi are. equivalent. We will use © to

\.
denote monoidal structure in both places. For G-module categories C, D we have the
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following Rep(G)-module equivalences:
(COD) ~COD = C Rpeps) D =~ C% Bpep(cy DC. Y]
First and last equivalences are Lemma 6.2.2 and the second is Theorem 8.3.2. (N

6.3 On de-equivariantization and relative tensor product

The main result of this section is the proof of Theorem 0.2.2. We begin with the

following lemma..

Lemma 6.3.1. Let C, D be fusion categories and let F' : C — D be a surjective tensor

functor. Let I be its right adjoint. Then
1. I(1) is an algebra in Z(C).
2. ’D is tensor equivaleni to the category Mod(I(1)) of right I(1)-modules in C.
3. The equivalence in (2) identifies F' with the free 'rﬁodule functor X — X®I(1).

Proof. To prove (1) ogservé that D is a Z(C)-module category with action X ® Y :=
F'(X)®Y where F' : Z(C) — D is F composed with functor forgetting central
structure. Under this action I_im(l, 1) = I(1) (see Definition 1.3.4) so by Lemma 5
in [Ost03] I(1) is an algebra in Z(C). Note that since I(1) is an algebra in Z(C) we
have tensor structure on Modc(I(1)): X ® I(1) -% I(1) ® X so for I(1)-modules X,Y

X ®j1y Y makes sense. Theorem 1 in the same paper says that Mod¢(I(1)) >~ D as
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module categories over C via F in (3). Observe that
F(X) @i F(Y) = (X ® I(1) @1y (Y ® I(1)) = (X @ Y) @ I(1) = F(X ® ).

Hence F': X — X ® I(1) respects tensor structure. This completes the proof of the

lemma. , . |

In what follows G is a finite group and we write £ := Rep(G), the symmetric
fusion éategory of finite dimensional representatiohs of G in Vec. Let C be tensor
category over & (Definition 5.0.7) which we thereby view as a right £-module category.
Let A be the regular representation of G. A has the structure Aof an algebra in £ and
wé therefore have the notion of A-module in C. Denote by C¢ the category Mod (A}
of A-modules.in C. There is functor Free : C — Cg, X +— X ® A left adjoint to the
functor Forg : C¢ — C which forgets A-module structure ([DGNO10, §4.1.9]). We are

now ready to prove the theorem.

Proof of Theorem 0.2.2. Let F := Beye. : C® Vec — C B¢ Vec be the canonical
surjective right exact functor described in Definition 2.1.4 which is tensor by Propo-
sition 5.1.1, énd let I be its right adjoint. Lemma 6.3.1 gives us tensor equivalence
Mod¢(I(1)) ~ C®¢ Vec. Denote by A’ the image of the regular algebra‘ A in £ under

the composition

E—Z(C)— C\ (18)

We claim that I(1) is A’

Let X,Y € C be in distinct indecomposible £-module subcategories of C. Since
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the indecomposible £-module subcategories of C are respeéted by F the images of
X,Y under F are in distinct £-module components of C Mg Vec. Not only does this
irhply that F(X) and F(Y) are not isorriorphic but in -fact Hom(F(X), F(Y)) =>;0.
Thus if F(X) contains a copy of the unit object 1 € C &g Vec then X and 1 € C
muéf bélong to the same indecomposible £ “module subcategory of C. Thus any object
whose F-image contains the unit dbject must be contained in the image of £ in C
under the composition (18).

Note that the restriction of F to the imag'é of £ in C gives a fiber functor £ —
ERVec = Vec. By [DGNO10, §2.13] the choice of a fiber functor from £ determines a
group G = G having the property that Fun(GFp) is regular algebra A in Rep(G) and
as such is canonically isomorpic to I(1). Thus we have tensor equivalence Mod¢(A) =

Co ~ C ¢ Vec and the proof is complefe. ' O
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CHAPTER VII

MODULE CATEGORIES OVER

BRAIDED MONOIDAL CATEGORIES

In what follows C is a fixed tensor category (Definition.1.2.8) and all module
categories are assumed to be exact. Recall (Definition 1.2.10) that C is said to be

braided if C is equipped with a class of natural isomorphisms
cvw: VOW -WeV

for objects V, W € C satisfying a pair of hexagons describing how they interact with

tensor associativity. When C is strict these reduce to the equations-

covew = (idv ® cuw)(cuy ®idw) (19)

cvovw = (cuw ®idy)(idy ® cvw). (20)

7.1 The center of a bimodule category

In this section we describe a construction whic\‘h\_ associates to a strict C-bimodule
‘category M a new category having the structure of a Z(C)-bimodule category. Note

that as monoidal categories C”, which we have been using to denote the opposite
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category, is canonically monqidal equivalentv to the category C™”, the category C withA
monoidal product reversed. We wjll therefore not distinguish between them and use

“ the single notation C.
For the first proposition assume C to be braided by cx y : X®Y »Y®X. Our

first proposition is well known and we provide a proof only for completeness.

Proposition 7.1.1. Let M be a left C-module category. Then M has canonical

structure of C-bimodule category.

Proof. We begin with the following lemma.

Lemma 7.1.2. M is right C-module category via (M, X) +> X ® M wheré ® is left

C-module structure.

Proof. For left module associativity a define natural isomorphism
a’M,X’Y = ay’X’M(’idM ® Cx,y) T M® (X ® Y) — (M 1% X) ®RY

for X,Y € C and M € M. In terms of the left module structure by which M ® X
is defined @y xy = ayxm(cxy ®idy) = (X ®Y)OM - Y ® (X ® M). We show

that o’ is module associativity for right module structure. Consider diagram

CX,YZ ay z,X,M

S (YZX)M 2253y Z2) (X M) 222 (Z2Y ) (X M)

cy,z ey, Z
ZY, XM

€X,ZY

XY,z (XZY)M > (ZYX)M azy,xM
c/ laz,yx,M
°X.¥ _

(ZXY)M %Z((XY)M)C—X?Z((YX)M)—A—;Z(Y(XM))

ay, X,

(XY Z)M

az Xy.m
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The upper left rectangle is naturality of ¢, upper right triangle naturality of a, leftmost
triangle is equation (20), triangle in lower half of diagram is equation (19), central
bottom rectangle is naturality of a¢ and rightmost rectangle is a-pentagon in C. The

: : . -t 1
two directed components of the external contour are precisely @y, xy 703 x yz and

(@, xy ® Z)aiy xv,z- The diagrams for action of unit in C are even easier. -0

Define action of X ®Y € CXC"™ using left and right actions, i.e. (XKY)QM =

Y ® (X ® M). Define
Yxmy = axymlcrx ®idy)ayyy Y @ (X QM) - X @ (Y @ M),

In order to verify that the candidate action is indeed bimodule we must show that
satisfies the necessary pentagons (Remark 1.3.10). Commutativity of the first pen-

tagon follows from an examination of the diagram below.

€Z,XY

(XY Z)M

ez, XYM axyY,zZ,M

(ZXY)M

YXY,M,Z
)

Z((XY)M
azx,y,.Mm ax,y,m Jﬁx, Y. ZM ax,.yzM

Z(X(Y M) 222X (Z(y M) 225 X (Y (ZM))

S AZ, XYM, ay,z,M
ax,z,¥yMm aZy.M

(XZ)(Y M) —— (XZY)M

GXZYM

» (XY)(ZM)

(ZX)(YM) 5 X (ZY)M) 5 X(Y2)M)

¢z, X aX ZY.M

Every peripheral rectangle is either the definition of v or the module associativity
satisfied by a. Note that top left vertex can be connected to the lower center vertex by

the map cz x ®idyga making commutative rectangle expressing naturality of a in first
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index. Lower center vertex can be connected to uppermost right vertex by the map
idx ®czy®idy making commutative rectangle expressing naturality of a in the second.
index. Commutativity of this new external triangle is (equation (19))®M. Thus the
internal pentagon comfnut‘es, and this is precisely the first diagram in Remark 1 3.10.
Commutativity of second pentagon is similar. This coxppletes the proof of Proposition

7.1.1. ' . 0
Next we generalize the notion of center to module categories.

Definition 7.1.3. Let M be a C-bimodule category. A central structure on M is a
family of natural isomorphisms px a: X ® M ~ M ® X, X € C, one for each object

M € M, satistying the condition

(XY)M M s M(XY)
o Jser
- X(Y M) (MX)Y
X ®¢Y.Ml I‘PX,M@.Y
X(MY) e (XM)Y

¢ a" are left and right module associativity in M and v

whenever Y € C where a
bimodule consistency (Proposition 1.3.10). ¢, is called the centralizing isomorphism

‘ associated to M. _If such a central structure exists M is said to be central over C.

Note that when M is strict as a bimodule category the hexagon reduces to
‘ \

3

v Qid
XMY — MY vxy
idx@(pk A’I
XYM
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In what follows assume C is a strict monoidal category.

Definition 7.1.4. The center Z¢(M) of M over C consists of objects given by pairs
(M, pn) where M € M and where Y ié a family of natural isomorphisms such
that the‘isomorphisms. oxum: X @M~ MQ® X satisfy Definition ?".1.3 for X € C.
A morphism from (M, <pM) to (N,pon) in Zg(M) is a morpilism t:M —- NinM

satisfying @ x n(idx @ t) = (t ® idx )ox m-

Note 7.1.5. Definition 7.1.4 appeared in [GNNO09] in connection with centers of

braided fusion categories.

Example 7.1.6. For C viewed as having a regular bimodule category structure

Ze(C) = Z(C), the center of C.

Definition 7.1.7. Let M, A be bimodule categories central over C. Then C-bimodule

functor 7' : M — N is called central if the diagram

T(X & M) — . X @ T(M)
Tlex,m) 1 l‘ﬁx.r(m
T(M ® X) ———— T(M)® X

fux

commutes for all X € C, M € M, where ¢ denotes centralizing natural isomorphisms
in M and N. f is linearity isomorphism for T. A central natural transformation

7: F'= G for central functors F,G : M — N is a bimodule natural transformation

118



F = G with the additional requirement that, for X € C, M € M the diagram

PX,F(M)

X ® F(M) F(M)® X

X®TM1 1TM®X

X®@GM)———GM)® X

P X,G(M)
commutes.

It is evident that centrality of natural transformations is preserved by vertical (and
horizontal) composition, and we thus have a category (indeed a bicategory) Z(M, N)
for central bimodule categories M, N consisting of central functors M — N where

morphisms are central natural transformations.
Lemma 7.1.8. Z¢(M) is a Z(C)-bimodule category.

Proof. Assume M is strict bimodule category. We have left action of Z(C) on
Zc(M) given as follows: for (X, cx) € _Z(C) and (M, pup) € Ze(M) define (X, cx) ®

(M,oum) = (X ® M, pxgu) where for Y € C

X®py,m

Pr.xeMm ——Y®X®M—->X®Y®M——>X®M®Y
so that X ® M € Z¢(M). Define right action of Z(C) by (M, pu) ® (X, cx) =

(M ® X, prmex) where

.\I

X
Oy MoX —Y®M®X“’~”‘—®;M®Y®X TMXQY

putting M ® X € Z¢(M). It is easy to check that these actions are consistent in the

119



way required of bimodule action.
Proposition 7.1.9. Z¢(M) has a canonical central structure over Z(C).

Proof. oxm : (X ® M, oxem) — (M ® X, ppex) is a morphism in Z¢(M) as can

be seen by the diagram

Y
YXM —22" Ly MX
CY,)HX?MJ> Pt ijv,zw®x
XYM MY X
X®¢pY,Ml LxXY M 1M®CY,X
XMY ox BT +MXY .

Triangles are Definition 7.1.3 for ¢ and the square is C-naturality of ¢.

4

O

Proposition 7.1.10. For C-bimodule category M we have canonical Z (C)-bz'médule

equivalence Funegeor(C, M) =~ Zc(M).

Proof. For simplicity assume M is strict as a C-bimodule category. Define functor
A : Funggee(C, M) =~ Zc(M) by sending F — (F(1), f™ o f¢*) where f% : F(X) =~
X ® F(1) and fx : F(X) =~ F(1) ® X are left/right module linearity isomorphisms

for F. The diagram below implies (F(1), f" o £ e ZC(M)

r £
FO)XY X p(xy)—2% _, xyFrQ)
r £
fX®YT s m IX®fy

XF(Y)

\

Left and right triangles are diagrams expressing module linearlity of F' and square is
bimodularity of F' (Remark 1.3.12). Inverting all ¢ superscripted isomorphisms gives
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the diagram required for cenf;rality of fro fe_l.

To complete definition of functor f‘_@c@cap(C, M) — Z(M) we must define ac-
tion on natural bimodule transformations. For 7 : F' = G a morphism in the category
of functors Mcwo?(C,M) note that 7y : (F(1), f" o fe—l) — (G(i),gr ogt ) isa
morphism in Z¢(M): indeed, diagram required of 7, as central morphism is given by
pasting together left /right module diagrams for 7 along the edge 7x : F(X) — G(X).

We now define qﬁasi—inverse I’ for functor A. For M € M denote by Fy the
functor C — M defined by Fpu(X) := X ® M. Right exactness of Fy, follows
fro¥n (contravariant) left exactness of Hom(__, Hom(M, M)). Since M is a strict C-
bimodule category Fy is strict as a left C-module functor. For (M, <P1ﬁ) € Ze(M) we

give Fjy the structure of a right C-module functor via .
Fu(X)=XOMZ¥ Mo X = Fy(l) ® X (21)

and with this Fjs is C-bimodule. Define I'(M, pys) := Fjy with the bimodule structure
given in (21). It is now trivial to verify that AT' = id and that T'A is naturally
equivalent to id via f°. Finally, it is easy to see that ' is a strict Z (C)-bimodule

functor. vl v O
As a corollary we get a well known result which appears for example in [EO04].
Corollary 7.1.11. (CRC®)} ~ Z(C) canonicc;l.ly as monoidal categories.

Here, as elsewhere, we have used C}, to denote the category of C-module endo-

functors End. (M) for C-module category 'M.
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7.2 The 2-categories B(C) and Z(C)-Mod

Recall that B(C) denotes the category of exact C-bimodule categories. The main
result of this section is Theorem 7.2.3 giving an equivalence B(C) ~ Z(C)-Mod which
is suitably monoidal. Before we give the first proposition of this subsection recall that

C has a trivial Z (C)—module category structure given by the forgetful functor.

Proposition 7.2.1. The 2-functor B(C) - Z(C)-Mod given by M v+ Z¢(M) =

Funegeor (C, M) is an equivalence with inverse given by N +— Fun 7 (C®,N).

Proof. In Proposition 7.1.10 we saw that Z¢(M) is a Z(C)-module category whenever
M is a C-bimodule category (here module structure is just composition of functors).
The category of Z(C)-module functors Fung,(C?,N) for Z(C)-module category N

has the structure of a C-bimodule category with actions
(FeX)(Z)=F(X®2), Y®F)(Z)=F(ZQY).
To see that Funcgeo(C, —) and Fung ) (C, —) are quasi-inverses first note that

Fung)(C”, Funges (€ N) = Funcges (€ Rz¢) €, N) = Funcgea(Z(C)e, N)
(22)
as C-bimodule categories for any bimodule category N’ where we have used equation.
8 freely. Theorem 3.27 in loc. cit. gives a ca.nonibal equivalence (C,*\A)jw :>C for any
(exact) C-module category M. In the case that M = C this and Corollary 7.1.11

imply Z(C); ~ ((C R C?); )¢ ~ CRC®. Thus the last category of functors in (22) is
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canonically equivalent to Fun ge(CRCP N) ~ N.

In the opposite direction we have, for Z(C)-module category M,
Funcgc'o;; (C, Funz(c) (COP, M)) ~ Funz(c) (COP gc@cop C, M)- (23)

Note that C® Begeor C ~ (C & CP); ~ Z(C) (Corollary 7.1.11) and thus the last

category of functors in (23) is canonically equivalent to Fun 2ey(Z(C), M) =M. O
Lemma 7.2.2. As Z(C)-bimodule categories Zc(MP) =~ Zo(M)°P.

Proof. For M, C as above we have the bimodule equivalences
Funegeor (C, M?) 22 Funegeo (M®,C)% 2 Funegeo (C, M),

The first equivalence is Lemma 1.3.14 and the second uses Corollary 2.3.3. By Propo-

sition 7.1.10 the first term is equivalent to Z¢(M®) and the last to Z¢(AM)°P. a

Theorem 7.2.3. The 2-equivalence Z¢ : B(C) ~ Z(C)-Mod is monoidal in that

Ze(M B N) ~ Ze(M) Ry Ze(N) whenever M, N are C-bimodule categories.

Proof. We have canonical Z(C)-bimodule equivalences

10

Ze(MR: N) Funcgéop(C,M Ke N} =~ Funegeop (MP, N)

18

’MZ(C)(ZC(MOP)’ Zc(N ))\2 MZ(C)(ZC (M), Ze(N))

12

Fung)(Z(C), Ze(M) Bz ey Ze(N)) = Ze(M) Bz(cy Ze(N)

The first equivalence is Proposition 7.1.10, the second and fifth are Corollary 2.3.3, the
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third follows from the fact that the equivalence of 2-categories Z(C)-Mod ~ (CXC?)¢-
Mod (Corollary 7.1.11) preserves categories of 1-cells, and the fourth follows from

Lemma 7.2.2. Example 7.1.6 shows that Z. preserves units. O

| Corollary 7.2.4. Let M be a C-module category for finite tensor C. There is a

canonical 2-equivalence B(C) ~ B(C},) respecting monoidal structure.

Proof. Corollary 3.35 in [EOO4] says that Z(C) ~ Z(Ciq)- The result follows from

Theorem 7.2.3. O
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CHAPTER VIII

Fusion rules for Rep(G)-module categories

8.1 Burnside rings

Much in the beginning of this section is basic and can be found for example in
[CR87]. Let G be a finite group. Recall that the Burnside Ririg Q(G) is defined to be
the commutative ring generated by isomorphism classes of G-sets with addition and

multiplication given by disjoint union and cartesian product:

(H) + (K) = G/HUG/K

(HWK) = G/H x G/K

Here (H) denotes the isomorphism class of the G-set G/H for H < G and G acts

diagonally over x. Evidently we have

(H{G) = (H), (H)(1) =[G : H|(1)
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so QG) is unital with 1 = (G). It is a basic exercise to check that multiplication in

QU(G) satisfies the equation!

H)EK) = Y (HNeK).

HoKeH\G/K

We are interested in a twisted variant of the Burnside ring. Here we take as basis
elements (H, o) where G/H is a G-set and ¢ is a k*-valued 2-cocycle on H. Multi-

plication of basic elements takes the form

(H,p)(K,o) = Z (HN°K, uo®)
HaKeH\G/K

where on the right p,o® refer to restriction to the sAubgroup HN°K from H,*°K,

respectively. The cocycle 6 : K x K — kX is defined by o%(z,y) = o(z*, y*).

Note 8.1.1. The decomposition for twisted Burnside products described above oc-
curred in [OY01] in order to study crossed Burnside rings, and in [Ros07] in connexion
with the extended Burnside ring of semisimple Rep(G)-module categories M having

exact faithful module functor M — Rep(G).

Recall that indecbmposable Vecg-module categories are parametrized by pairs
(H,u) where H < G and p € H?(H,k*). Denote module category associated to
such a pair by M(H , ). Explicitly simple objects of M(H, ) form a G-set with

\!‘

stabilizer H and are thus in bijection with cosets in G/H. Module associativity

1One uses the fact that there is a bijection between the G-orbits of (zH,yK) € G/H x G/K and
double cosets H \ G/K given by (sH,tK) — Hs 'tK. The orbit corresponding to the coset HaK
contains (H, aK) with stabilizer H N*K, thus orbit Og(H aK) of (H,aK) is G/(HN®K) as G-sets
giving the formula.
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is given by scalars (g1, g2)(X), for p € Z%(G, Fun(G/H,k")), associated to the
natural isomorphisms (g192) ® X — ¢1 ® (92 ® X) whenever g; € G and X € G/H.
Module structures are classified by non-comologous cocycles so we take as module
associativity constraint any representativé of the cohomology class [y]. Identifying €
H*(G, Fun(G/H,k*)) = H*(G, Ind$k>*) with its image in H2‘(VH,k'x) by Shapiro’s

Lemma we may classify such constraints by H2(H, k>).

8.2 VecG-Mo/d fusion rules

The categories Vecg and Rep(G) are Morita equivalent via Vec: (Vecg)y .. =~ Rep(G)
(send representation (V, p) to the functor Vec — Vec having F(k) = V with Vecg-
linearity given by p). Since Rep(G) is braided the category Rep(G)-Mod has monoidal
structure ERep(G)-(see Proposition 7.1.1). Although Vecg is not braided the category
Vecg-Mod has moﬁoidal structure as follows. For M,.N € Vecg-Mod define Vecg-
module category structure on M&RN by g® (m&®n) := (g ®@m)K(g®n) for Si_mple
object k4 := g in Vecg, and linearly extend to aﬂ of Vecg. Let MON denote MRN -

with this module category structure.

Proposition 8.2.1 (Vecg-Mod fusion rules). With notation as above

MH,p oMK )~ P MHENK,uo).
HaKeH\G/K

\

Proof. Send (H,o) to module category M(H, o). This association is clearly well
defined and respects the action of G. Applying the proof above for decomposition of
basic elements in Q(G) to simple objects in M(H, u) ® N (K, o) verifies the stated
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decomposition on the level of objects. We must check only the module associativity
constraints for the summand categories. To do this we simply evaluate associativity
for a sxmple object in the summand category havmg set of obJects G/HN*K. We

" may choose representatlve H XaK. For g,h € G we have
gh® (HNaK)~g® (h® H)Rg® (h® aK)

via u‘(g,h)(H) K o(g, h)(aK). Noting fhat G/K ~ G/*K as G-sets, restricting ¢ :
H*(G, Fun(G/K, kX)) ~ H*(*K,k*) to cbset aK on the right gives ¢(0)(k1,k2) =
a(ky, kz)(aK) for ki, ks € °K. Thus o) (ky, ko) = <p(a)(kf, k%) € H*(°K, k*), and
this wé simply denote by ¢%; module associativity is pu & ¢® which ’is idential to po®

since each is a scalar on simple objects. O

Corollary 8.2.2. The group of invertible irreducible Vecg-module categories is iso-

morphic to H*(G, k>).

Proof. Without taking twisting into consideration invertible irreducible Vecg-module
categories correspond to invertible basis elements of the Burnside ring 2(G). Suppose
(H)(H') = (G) in Q(G). Then ) (H N®H') = (G) which can happen only if there is
a single double coset HH' and if HN*H' = G, and this occurs only if H = H' = G.

It follows from Proposition 8.2.1 that
\

M(G,p) © M(G, i) = M(G, ')

Sending M(G, u) to p givesb the desired isomorphism. S O
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8.3 Rep(G)-Mod fusion rules

In this section we use the results of the last section together with the equivalence
“of 2-categories Vecg-Mod — Rep(G)-Mod to derive fusion rules for the free Z, -ring
generated by simple Rep(G)-module categqries. The equivalence is defined by sending
M — M where .

M := Funye..(Vec, M). (24)

Observe that Funvec;(Vec, Vec) acts on Funyec, (M, N) on the right by the formula
(F®S)Y M) =F(M)®S(k) whenever M € Mand S : Vec — Vecis a Vecc—modlile

functor. FF® S is trivially a Vecg-module functor:

(FRS) g M) ~ (g® F(M))o Sk)
= (9@ F(M)) © (9 ® S(k))

— 9® (F(M) 0 S(k))

= g®(F®S)(M).

The isomorphism is Vecg-linearity of F' and the second line follows from the fact

that simple objects of Vecs (one dimensional vector spaces) act trivially on Vec. Let
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T : Vec — Vec over Vecg. Associativity of the action is also trivial:

(F®ST)(M) = F(M)o ST(k)
- F(M)© Sk ® T(k))
= F(M)o (S(k)® T(k)) |
= (F(M)o S(k)) © T(k)

= (F&S)(M)OTK) = ((F®S5)eT)(M)

The second line is tensor product (composition) in Funy..,(Vec, Vec) and the iso-

morphism is due to the canonical action of Vec on A given by internal hom:
Homp(V ® N, N) := Homy..(V, Homy (N, N)). (25)

Proposition 8.3.1. For H < G and u € H*(H,k*) denote by Rep,(H) the category
of projective representations of H with Schur multiplier p. Then Rep,(H) ~ M(H, i)

as Rep(G)-module categories.

Proof. Send functor F : Vec — M(H, u) to F(k). Rep(G)-module structure on
Rep,(H) is given by res®id: for V € Rep(G) and W € Rep,(H) the action is defined

by V@ W :=res$(V) ® W where ® on the right is tensor product in Rep,(G). O
One of the main results of this section is the following theorem.

Theorem 8.3.2. The 2-equivalence M — M between (Vecg-Mod, ®) and (Rep(G)-
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Mod, Bg.p(c)) is monoidal in the sense that
MON ~ ﬂ@Rep(G) N

as Rep(G)-module categories.

The action of Rep(G) =~ Funy..,(Vec, Vec) is given by composition of functors.
Since the correspondence is an equivalence of 2-categories we may identify abelian

categories of 1-cells:
FunVecG (M,N) =~ FunRep(G)(ma ﬁ) - ) (26)

In what follows we provide a few lemmas which show that useful formulas provided

earlier for monoidal 2-categories hold also over the category of Vecg-modules.

Lemma 8.3.3. The 2-equivalence M +— M from Vecg-Mod to Rep(G)-Mod when

restricted to 1-cells is an equivalence of right Rep(G)-module categéries.

Proof. Thé equivalence of 1-cells ¢ : Funye.(M,N) =~ F UNRep(c) (M, N) takes func-
tor F': M — N over Vecg to the functor defined by Q — FQ for Rep(G’);module
fuﬁctor Q : Vec —» M. We must cheék that this correspondence respects Rep(G)
action. ’

Any gfunctor E : Vec — Vec over Vece detetmines representation E(k), #nd any

representation V determines functor EV(k) = V. V € Rep(G) ~ Vec right-acts on

F € Fungepc)y(M,N) by (F ® V)(Q) = F(Q) o EV. Writing < ¢((F),Q > for the
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functor in A determined by F,Q we have, for W € Vec,

<UFQEY),Q>(W) = (F®EY)(Q)W)
= FQEY(W)

= <((F)®E",Q > (W).

O

Lemma 8.3.4. Let M, N be left V.ecg-module categories. Then MON ~ Fun(MP N)

as left Vecg-module categories.

Proof. Let M := M(H, p) and N := M(K, o) as above. Define
®: MON — Fun(M™,N), &M N)(M'):=Hom(M',M)®N.  (27)

Clearly ® is an equivalence of abelian categories (see Lemma 2.3.2 for example) and it
remains to show that it respects Vecg-module struéture. The category Fun(M,N)
carries Vecg-module structure (g QF )(M ) = g ® F(g~! ® M) for simple objects g
in Vecg. Left action on M is given by X .4 ®P M = X ® M with inverse module

associativity. We have

(sh® F)(M) = gh® F(h™'g™ ® M)
~ g®hQFh*® (e M)

g (h® F)(97'®@ M) =(g® (h® F))(M)

l
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where ~ is o(g, h)u~1(h™%, g~1) which is cohomologous to a(g, h)u(g, h), i.e. module

associativity on functors is given by uo. For simple objects M, M’ in M, N e N

(g@P(M O N))(M') = g& (Hom(g™' ® M', M) ® N)
~ Hom(M',g® M)® (g ® N)

= 2(g® (MO N)(M')

where ~~ is canonical. ® respects Vecg-module structure. i
Lemma 8.3.5. Funyec,(M,N ) MPON as right Rep(G) module categories.

Proof. We have an equlvalence Y 1 Funyee (M,N) — MPON, F v+ ¢F where
YF(V)(M) := F(M) © V whenever V € Vec,M € M and where we have used
Lemma 8.3.4 to express M ©® N as category of functors is an equivalence. 1 has-

quasi-inverse F +— F(k):

<YFQV),W > (M) = (F(M)oV)oW

1R

FM)o (VW)

YF(V @ W)(M)

= YF(EY(W))(M) =< $F o B, W > (M).

Lemma 8.3.6. M ~ M as Rep(G)-module categories.

Proof. Funye.,(Vec, MP) =~ Funye,,(M,Vec) ~ Fun'Rep(G)‘(—M", Rep(G)) where
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first ~ is Lemma 8.3.4 and the second comes from the 2-equivalence. The first term

is M and the last is M. ' ‘_ 0

Proof of Theorem 8.3.2. With notation as above,

MON =~ Funye,(MP N)
~  Fungpeyc) (M, N)

> Fungepe) (M N) = M Bpepe) N

First line is Lemma 8.3.5, secpnd is Lemma 8.3.3 and third is Lemma 8.3.6. 0o

Theorem 8.3.2, together with the observation in Remark 8.3.1, immediately gives

a formula for Rep(G)-module fusion rules.

Corollary 8.3.7 (Rep(G)-Mod fusion rules). The twisted Burnside ring QG) s
isomorphic to the ring Ko( Rep(G)-Mod) of equivalence classes of Rep(G)-module cat-
egories with multiplication induced by Mpeycy- That is, for irreducible Rep(G)»—module

categories Rep,(H), Rep,(K) we have, as Rep(G)-module categories

Rep,(H) Bpepc) Repo(K) =~ P Rep,,.(HN°K). (28)
. HaKeH\G/K '

Corollary. 8.3.8. The group of invertible irreducible Rep(G)-module categories is

isomorphic to H*(G,k>). V\"a

Proof. The proof is equivalent to that of Corollary 8.2.2. a
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Note 8.3.9. Corollary 8.3.8 generalizes Corollary 3.17(ii) in [ENO09] where it was
given for finite abelian groups. Indeed when A is abelian Viecy = Rep(A*) for A*

group horhomorphisms Hom(A, k*).
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