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ABSTRACT 

H A D R O N - H A D R O N S C A T T E R I N G I N L A T T I C E Q U A N T U M 

C H R O M O D Y N A M I C S 

by 

Aaron M. Torok 
University of New Hampshire, September, 2009 

Hadron-hadron and multi-hadron scattering calculations in fully dynamical, mixed-

action Lattice Quantum Chromodynamics using the MILC gauge ensembles in a non-

perturbative simulation are discussed. In particular, calculations of the 7r+E+ , 7T + £° , K+p, 

K+n, and K°E0 scattering lengths are presented, and are the main subject of this disserta­

tion. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering 

lengths are found to be a7r+s+ = —0.197 ±0.017 fm, and av+^o — —0.098 ±0.017 fm, where 

the comprehensive error includes statistical and systematic uncertainties. Meson-meson and 

multi-meson lattice calculations by the NPLQCD collaboration are reviewed, and presented 

for completeness. 
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INTRODUCTION 

The Scattering Problem has been studied in many different contexts and spans several fields 

of physics. There is classical scattering, quantum mechanical scattering, and scattering of 

quantum fields. The subject of this dissertation is hadron-hadron scattering calculations 

in Lattice Quantum Chromodynamics (LQCD), and the objects considered are formally 

quantum fields. 

Heuristically, scattering provides information about the potential in the classical and 

quantum mechanical cases, and in the case of quantum field theory, about the interaction 

of two or more quantum fields. This is one reason for the ubiquity of scattering in physics; 

it is a tool that yields the interaction between objects being studied, and in effect defines 

their interactions. 

Experimentally, scattering studies are the main driving force behind all of the accelerator 

physics in the world. On the cutting edge are Jefferson National Laboratory (JLAB), 

Fermilab, as well as many others, and soon to come on-line, the single largest scientific 

endeavour in human history, the Large Hadron Collider (LHC). All of these programs 

are primarily focused on studying inelastic scattering, where the initial and final states of 

the particles being scattered are often very different. In the work presented here, elastic 

scattering of hadrons by other hadrons is considered, and the energies are lower as compared 

to most accelerator physics by many orders of magnitude. Naively, this low-energy problem 

would seem trivial, since at low energies the assumption might be that the problem becomes 

simpler, as relativistic effects would not be important, however, this is not necessarily the 

case. 

The success of Quantum Electrodynamics (QED) in calculating quantities relevant to 

atomic physics to extremely high-precision is dependent on the Feynman path integral 

approach, and is a perturbative method. The coupling constant of QED that is raised to 
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the next integer power at each successive order in perturbation theory, is s=» 1/137, so a 

second order correction in QED is suppressed by a factor of < 104. 

Quantum Chromodynamics (QCD) is also perturbative, but at energies > 1 GeV. When 

the momentum transfer is large enough, the degrees of freedom are those that appear in 

the QCD Lagrangian, quarks and gluons. However, in the regime of energies < < 1 GeV, 

the observed degrees of freedom are the mesons and baryons, which are understood to be 

bound states of quarks, confined to a region ~1 fm by the gauge fields of QCD, the gluons. 

The failure of perturbation theory at energies < < A, where A ~ 1 GeV, was the subject of 

the Nobel prize in physics in 2004, "for the discovery of asymptotic freedom in the theory of 

the strong interaction," by Gross, Politzer, and Wilczek. Ultimately, this is the motivation 

for using Lattice QCD to probe the regime of non-perturbative QCD. 

Wilson invented LQCD [9] as a regularization scheme, to provide a non-perturbative 

cutoff for QCD. A minimum wavelength exists due to the lattice formulation through the 

lattice spacing, b, where there is a maximum momentum of ~ -KJb [10] that can propagate 

on the lattice. As a result of the lattice formulation, Feynman path integrals become 

well-defined ordinary integrals, and the convergence problems associated with perturbation 

theory are avoided in favor of the rigorous definition of the lattice field theory. Lattice gauge 

theory is particularly amenable to calculation with computers due to its discrete formulation, 

which seems serendipitous considering that both lattice gauge theory and digital computers 

have developed over approximately the same time period. 

The use of largely parallel computing clusters and supercomputers has created explosive 

growth of LQCD. The evolution of the field of from the 1980s to the present is largely a 

result of the development of sophisticated optimization algorithms and machines. Many 

have doubted that Moore's law would have been predictive for so long, and with the multi-

core architectures that are currently employed, it may continue still. 

With regard to scattering in LQCD, there are theoretical underpinnings not associ­

ated with QCD itself. One is the formulation of the scattering problem in a Euclidean 

spacetime. The Maini-Testa theorem states that S-matrix elements cannot be calculated 
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from Euclidean space correlators at infinite volume, except at kinematic thresholds [11]. 

Liischer's formulation of scattering in a finite volume, that relates an expansion in discrete 

modes in the box to the phase shifts circumvents this issue. Another theoretical challenge 

currently associated with LQCD is the issue of the connection of the calculations done at 

unphysically large pion (quark) masses to the physical point. These issues are addressed, 

and calculable using Chiral Perturbation Theory (%-PT), the low energy effective theory 

of QCD, which is the theoretical tool that is utilized to use LQCD calculations to extract 

physical observables. Eventually, these issues may be moot, as calculations move toward the 

physical pion mass, however, they currently exist and hence, %-PT is essentially coupled to 

LQCD. Additionally, there are specific formulations of %-PT that address the finite volume, 

and finite lattice spacing effects, and quantify them in order to improve the accuracy and 

precision of LQCD extrapolations to the physical point. 

In this dissertation, calculations of scattering observables for several systems of hadrons 

are discussed. Calculations that involve mesons exclusively have reached a high level of pre­

cision. Calculations with baryons are more challenging, and the calculation of meson-baryon 

scattering lengths represents an intermediate step toward nuclear physics calculations using 

LQCD. In this work, the 7T+E+, TT+S0, K+n, K+p, K°S+, and X°S°systems are analyzed 

by calculating the masses and energies associated with these states in mixed-action LQCD 

using 4 sets of the coarse MILC gauge configurations [12]. Additionally, TT+TT+, K+K+, and 

multi-pion calculations are reviewed. 
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Chapter 1 

THEORY 

The theory of the strong interactions is QCD, and the low energy effective theory of QCD 

is x~PT. Wilson created LQCD [9], and proved that it is a renormalizable gauge theory. 

Using LQCD and x-PTtogether, one is able to extract physical observables, such as the 

masses and decay constants of the mesons. With the addition of Liischer's method for 

calculating scattering states in a finite volume, scattering observables are calculable using 

LQCD, currently at unphysical values of the quark masses. Using x_PT, extrapolation to 

the physical point is done ideally with the particular type of x_PT that correctly accounts 

for lattice artifacts. 

1.1 QCD 

QCD is the theory of color SU(3), meaning that it is an SU(3) gauge theory, where the 

gauge fields, the gluons, carry color charge, and couple to the color charge in the quarks. 

Following Georgi [13], the quarks are composed of 3 colors 

<?red 

<?blue 

<Zgreen 

There are 8 gluon fields, denoted Ga"'• The QCD Lagrangian is 

(1.1) 

C = -\G^Ga^ + ]T {iqlp/q-mqqq) (1.2) 
flavors 
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D" = P + igTaG^ , igTaG^ = [£>", Dv] . (1.3) 

The Ta are the Gell-Mann matrices. They are Hermitian, and satisfy 

Tr[TaTb] = l-8ah . (1.4) 

The Ta are the color charges, and the quarks form two kinds of bound states, bound by 

exchange of the gluons; the mesons, and the baryons. Their structure is 

4>-+qq, B -> ejklqjqkqi , (1.5) 

where <f> is a meson, and B is a baryon. 

QCD is perturbative at momentum transfers, Q > A.QCD- AS Q increases, the cou­

pling constant decreases, and perturbation theory gets better. This is what is meant by 

Asymptotic Freedom: the quarks are not confined at energies > > AQCD, and this is the 

perturbative regime. This is illustrated by the Beta function of QCD, and the running 

coupling constant [14] 

dg 9 .3 

13(g) = Mir = 
"d/j, 16-7T2 

g2(Q2) 4TT 

l l A r 2 A r —Nc - -Nf 3 3 ' 
(1.6) 

(1.7) 
4TT ( l l i V c / 3 - 2JV//3) log(QyA2

QCD) ' 

Given that the strong coupling constant becomes larger at low energies, it is impossible 

to do perturbative calculations using the QCD degrees of freedom, quarks and gluons. 

According to Creutz, before the development of Lattice QCD, meson-nucleon field theory 

was failing due to the fact that the coupling constant analogous to aem pa 1/137, was instead 

15, and the so-called perturbative calculations were failing completely [10]. 
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1.2 Lat t ice Q C D 

Kenneth Wilson invented Lattice QCD in 1974 [9]. His original approach and aim was 

to regularize QCD by introducing a finite cutoff for the maximum momentum that can 

propagate. Lattice QCD places the quarks at the points of a spacetime lattice, and the 

gluons occupy the links between lattice sites. With the introduction of this regularization 

method, the Feynman path integral for QCD becomes an ordinary integral, of very large 

dimension on the lattice [14]. 

Despite the fact that the lattice regularization renders the path integrals ordinary, and 

of finite-dimension, the scale of the numerical problem at hand lends itself to a statistical 

treatment. Therefore, Monte-Carlo methods are used in order to compute the integrals in 

question [10]. 

1.2.1 Latt ice Gauge Act ion 

The links between lattice sites are the gauge fields on the lattice. The lattice represen­

tation of the fundamental representation of 5(7(3), is related to the vector potential, A^, 

through [14] 

UXtlt = eXp(igaAc
ttX

c/2). (1.8) 

And the plaquette, a closed-loop is given by [14] 

UXiliV = Tr(UxfiUx+^Ul+^Ulu) , (1.9) 

where the p, is a unit vector in the /^-direction. The Wilson action is [14] 

SG-su(3) = ~2 E E ( 3 - XeUXjliV) . (1.10) 
y x ^u 

Expanding Ux^u, in Eq. (1.10), and taking the limit 6 —> 0, yields the continuum SU(3) 

gauge action up to 0(b2) corrections [14] 

SG-SU{3) = J drjdx^J + 0(b2) , (1.11) 
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where 

Ku = ^K - dvAl - gfabcA
aA • (1-12) 

1.2.2 Latt ice Fermions 

Fermions on the lattice present difficulties due to the fact that the derivative in the contin­

uum becomes a finite difference on the lattice, and this leads to species doubling. Addition­

ally, one of the most fundamental, and important properties of the free fermionic theory is 

chiral symmetry. Lattice fermions with chiral symmetry are essential for hadronic calcula­

tions because of the fundamental role chiral symmetry plays with regard to the existence 

of Goldstone bosons. 

Staggered Fermions 

There are several discretization schemes for lattice fermions, but in this work only stag­

gered and domain-wall fermions will be discussed since they are used in the calculations. 

Naive fermions on the lattice result in 16-fold degeneracy as a result of the fact that the 

lattice propagator has a sin2(6pM) in the denominator, which renders contributions for 

Vii = (^' 0,0, 0) equivalent to p^ — {pi,P2,P3,P4), with any element of the 4-vector p^ = IT. 

There are thus 24 combinations which correspond to 16 fermions [14]. 

One formulation that addresses this degeneracy, and is the formulation of the fermion 

action used in the calculations in this work is the staggered fermion formulation [15, 16, 17, 

18]. The fermion fields are [12] 

*P(x) = TxX(x) , $(x) = x(x)Tl , (1.13) 

with 

r* = 7 j * l / a )
 7^2 / a )

 7(*3/a)
 7f4/a). (i.i4) 

Using TtTx = 1 and 

r h x I W = (-l)<*i+-+"-i>/ f l = ty(s) , (1.15) 
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the naive fermion action can be written as [12] 

SKS = Y, *(*) I J2 *7ii0*0 VM x(x) + mX(x) L = x (DKS + m)X, (1.16) 
X I fl ) 

In the final expression matrix multiplication is implicit. It is possible to restrict the fermion 

field, x(x)i t o a single component, reducing the original 16-fold degeneracy to four, where 

each x(x) n a s f ° u r "tastes", which is a new and unwanted quantum number that can be 

removed by another method, that involves taking the fourth root of the fermion determi­

nant [19, 20, 21, 22, 23, 24, 25, 26]. 

Domain Wall Fermions 

For the valence sector, the five dimensional Shamir domain wall fermion action is used [27, 

28, 29] 

Ls-\ 

Sow = - E E [f (x> s) [D*(x>x') + !] *(x'>s)] -
x.x' s=0 

#(x, s)^—— #(x' , s + l) + tf(x, s ) ^ - ^ * ( x ' , s - 1) + 

+ m * ( * , 0 ) l ^ * ( x ' , LS - 1) + *(x, LS - l ) l _ ^ t f ( z ' , 0) 
2 -^~ ' - * , , - , - , - „ -, 2 

with Dw(x, x') the regular four dimensional Wilson fermion action [29], 

Dw(x, x') = (4 + M5)4,X' - Yl 1 7^(X)<WA,*' + ^ ^ W x,x'+p> 
M 

(1.17) 

(1.18) 

where Ls is the length of the 5th dimension. Hypercubic-smeared (HYP-smeared) [30, 31, 

32, 33] gauge links were used in Eq. (1.17) and (1.18) which reduces lattice artifacts. The 

physical four dimensional quark fields appear as boundary modes at the surface of the five 

dimensional space when M5 lies in the interval (—2,0). The physical quark fields (q(x) and 

q(x) are related to the underlying 5D fermions by [29] 

Q(x) = ^ ^ * ( x , 0 ) + i i ^ * ( x , L a - l ) 

q(x) = # ( ^ , L s - l ) ^ ^ + ^ ( x , 0 ) 1 + 7 5 (1.19) 
2 v ' ' 2 

The parameter m in Eq. (1.17) is related to the physical quark mass as it introduces in the 

effective action a mqq term. Domain wall fermions in the infinite Ls limit poses an exact 



chiral symmetry when m vanishes. This symmetry transformation is [29] 

*(x,s) -f eiT^s)e{x)^(x,s) (1.20) 

*(x,s) - • ^{x,s)e-ir^s)e{x) (1.21) 

where Ts(s) = sign^"^1 — s). 

However, at finite Ls this chiral symmetry is explicitly broken by the coupling of left 

handed and right handed modes in the middle of the 5th dimension. As a result one can 

construct the following partially conserved axial vector current [29] 

Ls-l 

s=0 

where j M is the four dimensional conserved vector current that corresponds to the 4D Wilson 

fermion action. This current satisfies a Ward-Takahashi identity which in the flavor non-

singlet case takes the form [28]: 

A^(Aa^x)0(y)) = 2m{q(x)ra^q(x)0(y)) + 

+ 2(qmp(x)ra
l5qmp(x)0(y)) + i(SaO(y)} (1.23) 

where [29] 

qmp(x) = * ( x , | l - l ) i ^ + * ( x , ^ ) l ± ^ (1.24) 

are four dimensional fields constructed at the midpoint of the the 5th dimension. The 

Ward-Takahashi identity of Eq. (1.23) is the same as the continuum counterpart with just 

an additional term 2{qmp{x)Ta^qmp{x)0{y)). This term is there only at finite Ls
 1 and 

it is a measure of the explicit chiral symmetry breaking. At long distances this term is 

proportional to 2{q(x)Ta^q(x)0(y)). Using the pseudo-scalar density as a probe operator 

0(y) the residual mass is defined as [29] 

m 1 y ? {qmP(t)Ta
l5qmp(t)q(0)ral5q{0)) , „ 

reS tmax -to2^ (q(t)ral5q(t)q(0)ral5q(0)) ' l ' ' 

1For the flavor singlet current this term survives the infinite Ls limit and gives rise to the anomaly. 
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where to, tmax is the time interval where only the ground state pion contributes to the two 

correlators in the ratio. 

1.2.3 Mixed Action Tuning 

The valence and sea quark actions are different, and the calculation is inherently partially 

quenched, which means that it violates unitarity. Unlike conventional partially quenched 

calculations, which become unitary when the valence quark mass is tuned to the sea quark 

mass, unitarity cannot be restored by tuning the valence quark mass [29]. The valence 

quark mass is tuned in such a way that the resulting domain-wall pions have the same 

mass as those made of the sea Kogut-Susskind fermions. In this case unitarity should 

be restored in the continuum limit, where the nf = 2 staggered action has an SU(8)L <8> 

SU(8)R <8> U{l)v chiral symmetry due to the four-fold taste degeneracy of each flavor, and 

each pion has 15 degenerate additional partners [29]. At finite lattice spacing this symmetry 

is broken and the taste multiplets are no longer degenerate, but have splittings that are 

0{a2b2) [34, 35, 36, 37, 38]. The domain wall fermion mass is tuned to give valence pions 

that match the Goldstone Kogut-Susskind pion 2 . This choice gives pions that are as 

light as possible, resulting in better convergence of the x~PT needed to extrapolate the 

lattice results to the physical quark mass point. This tuning was also done by LHPC 

collaboration [39, 40, 41, 42, 43, 44]. 

1.2.4 Contractions 

Gauge invariant Gaussian smeared quark propagators centered around a single point were 

used. In order to facilitate the complicated Wick contractions of the interpolating fields, 

all the contractions at the annihilation operator point (sink) were performed and all the 

color and spin indices were left open at the creation operator point (source). The resulting 

data are Fourier transformed (space indices at the annihilation operator point) and saved 

on disk as qq and qqq blocks. All the two-body (and N-body) correlation functions can 

2This is the only Goldstone boson that becomes massless in the chiral limit at finite lattice spacing. 
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then be constructed by appropriate contractions of the source spin and color indices. These 

operations are typically less expensive than the propagator and block generation, but as 

the contractions become more complicated, e.g. for multi-baryon systems, the nested loops 

that are required to implement the Wick contractions make parallelization of the contraction 

code necessary as well [29]. 

Code was constructed to automatically perform all permutations, keeping track of the 

signs associated with fermion exchanges, allowing the construction of complicated diagrams 

in a relatively simple and efficient manner. This approach works well when quark annihi­

lation diagrams are absent. For this reason, processes such as the I = 0 TTTT channel and 

pion-nucleon scattering, which require the all to all propagator method [45, 29] have not 

been calculated yet. 

1.3 Chiral Perturbation Theory 

Chiral Perturbation Theory is the low energy effective field theory of QCD. For energies 

below the p mass, the only hadrons that can be produced are the Goldstone bosons. Wein­

berg stated that a perturbative description in terms of the most general effective Lagrangian 

containing all possible terms compatible with the assumed symmetry principles yields the 

most general S matrix consistent with the fundamental principles of quantum field theory 

and the assumed symmetry principles [46, 47]. 

The six quark flavors are commonly divided into the three light quarks u, d, and s and 

the three heavy flavors c, b, and t, 

mu = 0.005 GeV 

md = 0.009 GeV 

^ ms = 0.175 GeV J 

< 1 GeV < 

( mc = (1.15-1.35) GeV ^ 

mb = (4.0 - 4.4) GeV 

y m t = 174GeVy 

(1.26) 

where the scale of 1 GeV is associated with the masses of the lightest hadrons containing light 

quarks, e.g., mp= 770 MeV, which are not Goldstone bosons resulting from spontaneous 

symmetry breaking. The scale associated with spontaneous symmetry breaking, 4-7r/ ~ 1 

GeV, is of the same order of magnitude [48, 13, 47]. 
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Figure 1-1: pi-pi scattering Feynman diagram 

1.3.1 The Chiral Symmetry-Breaking Scale 

The most general Lagrangian with SU(3)L X SU(3)R symmetry is of the form 

f2 

J—Tr(d^d„T,) , E = e2™l? . (1.27) 

Where the ir in Eq. (1.27) is a matrix of Goldstone boson fields. Eq. (1.27) describes 

massless Goldstone bosons. Including the quark masses, the Lagrangian takes the form 

£M = f4 ^ T r ( ^ S t ^ S ) + i l r ( E V M ) + ^1r(E/iM) (1.28) 

Eq. (1.28) is an effective Lagrangian, and in calculating the effective action, there will be 

terms that are non-renormalizable with arbitrarily high dimension. In order for this expan­

sion to converge, there must be a dimensionful parameter to suppress the non-renormalizable 

terms [48]. 

Expanding Eq. (1.27) in powers of 7r//, leads to a four point function of the form 

* £ • <!.»> 
Where factors of 1.29 occur at the vertices, and the p2 comes from the derivatives acting 

on the 7r fields. There is one case where the derivatives act on the external lines, and the 

amplitude is 

/ 4 J .(2TT)4 {k2)2 / 4 (4TT)2 g K 2 ' l j 
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where AXSB is an ultraviolet cutoff, and n is a renormalization point [48]. The result in 

Eq. (1.30) can also result from a higher dimensional operator such as 

f2 

AxSB 
(1.31) 

where the factor of 1/A^5B makes the operator in Eq. (1.31) dimension 4. Changes in the 

renormalization point K can be absorbed by redefining the coefficient of Eq. (1.31), and this 

coefficient should be at least as large as a change in the coefficient introduced by a rescaling 

of 0(1) in the renormalization point n for the mr scattering diagram. This then implies 

that [48] 

KSB ~ (4T)2 ' 
AxSB < 4TT/ (1.32) 

Therefore, the chiral symmetry breaking scale is assumed to be AX$B ^ 47r/. At the 

physical pion mass, and with / sa 93MeV, AXSB ~ lGeV. 

1.3.2 SU(2) and SU(3) x-PT 

In Eq. (1.27), the Goldstone boson fields are matrices. In the SU(2) case they are 

7T = 
V2 

IT 

~tf I 
(1.33) 

and for the 577(3) case, the Goldstone fields are 

7T = 

V2 

( -J-7T0 + -J-r? 

TT~ 

\ K' 

7T+ 

K° 

K+ ) 
K° 

~fa) 
(1.34) 
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In addition to the SU(3) gauge symmetry of QCD, there is an approximate SU(3) flavor 

symmetry. At very low energies, the only particles in the theory are contained in Eq. (1.34). 

These are the pseudo-Goldstone bosons, and their mass would be zero, except for the fact 

that the quark masses explicitly break the symmetry. The consensus is generally that due 

to the relatively large mass of the s quark, the convergence in the SU(3) sector is somewhat 

slower as compared with the SU(2) version [47]. This may be the case, however, Ref. [49] 

shows that the relative size of the strange quark may not necessarily be the reason for 

slower-convergence in all cases [47]. 

1.4 Scattering 

1.4.1 Scattering in Quantum Mechanics 

Quantum mechanical scattering problems are well known, and have been solved in a variety 

of ways. The main point is that the energy of the two scattering states can be related to a 

quantity called the phase shift of the wavefunction of the outgoing state. At very low ener­

gies, the potential is assumed to be spherically symmetric, and the effective range expansion 

is a valid approximation. Luscher's equation that relates the energy of the particles in a 

finite volume to the phase shift, provides a methodology to circumvent the Maiani-Testa 

theorem, and extract scattering observables in a finite volume Euclidean spacetime. 

In quantum mechanics, the scattering problem is to solve the Schroedinger equation in 

3 dimensions, and here considering the case of a central potential 

- ^ - V 2 ^ ( f ) + V(r)4>(r) = E^(r) , (1.35) 

then using the well known form of the plane wave solution 

^(r)^eikz + f(9)— , r^oo, (1.36) 
r 

expanding in partial waves 
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V>(r1 = ^ ( r 7 M 0 ) , (1-37) 
1=0 

and then projecting onto the s-wave (I — 0), leads to 

,^-1/2 , Jkr 
^o(r) = ^—(e-ikr - eikr) + (Air)1/2 f— , r ^ oo . (1.38) 

Ax r 

By making a change of variable due to spherically-symmetric potentials 

^ = ^ ' ^ 2 + K ( r M r ) = ° > «(»") = ± — ^ ^ , (1-39) 

where r^o is a solution to Eq. (1.39), and as r —> oo, u(r) is 

u( r ) = Csin(fcr + £) . (1.40) 

Choosing a different normalization for C, 

then the solution as r —> oo, E = 0, is 

^ ¥ = 0 , «o(r) = C ( r - a ) , u0(r) - t*>(r) = 1 - - . (1.42) 

For kr —> 0, Eq. (1.41), v —> «o, and 

vQ = l + krcot{8) , (1.43) 

which reduces to the familiar relation for the scattering length for an s-wave at zero energy 

pcot{6) = - - , for h = 1 . (1.44) 

1.4.2 Scattering in a Finite Volume 

From Eq. (1.44), the physical observable, the scattering length, is related to pcot 8(p). The 

energy shift from Eq. (1.47) relates the square of the center-of-mass momentum, p, which 

15 



is inserted into [50, 51, 52, 53] 

1 / T \ 2 

pcot8{p) = —- S(r/), where rj = ( — I (1-45) 

which is valid below the inelastic threshold. The regulated three-dimensional sum is [54] 

IJI<A x 

where the summation is over all triplets of integers j such that |j | < A and the limit A —• oo 

is implicit [29]. 

The energy eigenvalue En and its deviation from the sum of the rest masses of the 

particle, AEn, are related to the center-of-mass momentum pn, a solution of Eq. (1.45), by 

AEn = En - mi - TO2 = \J Pn + m l + Y Pn + m 2 _ m l _ m 2 

- Pn + - , (1.47) 

Afi 

2/X12 

2na 
0 

Mi2-^3 
1 + C I L + C 2 ( L ) J + 0 ( L ^ (1.48) 

with 
1 I J I < A 1 

ci = - Y TTTj - 4A = -2.837297 , (1.49) 
j # 0 I J I 

c 2 = c? - ^ V . ^ j = 6.375183 (1.50) 

The scattering length, a 3 , is defined by 

a = l i m ^ M , (L51) 

P^O p 

and to illustrate the accuracy of the perturbative formulation of pcot 5, Eqs. (1.45), and (1.48), 

are shown in Fig. 1.4.2. Here, a, the scattering length is calculated with Eqs. (1.45), 

and (1.48), with the regulator Aj going from 1 to 101 in steps of 10. This calculation is for 

the 7r+£+case of MILC Ensemble (ii) of Table 2.1. The error bars are the jackknife errors 

for that ensemble, and the band is the value of a using Eq. (1.48). 
3In the literature, the lattice spacing is often referred to as "a". Throughout this dissertation, the lattice 

spacing will be referred to as "6", in order to eliminate possible confusion with the scattering length, which 
is referred to herein as "a" 
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Figure 1-2: The function pcot 6 of Eq. (1.45) for values of the regulation parameter, A. The 
shaded band is the value of pcot S, or I/a, calculated with Eq. (1.48) 
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Chapter 2 

LATTICE CALCULATION 

METHODOLOGY 

There are several steps in the calculation of the scattering length using LQCD. Using the 

MILC gauge configurations [12], and the Chroma software suite [1], the NPLQCD collabo­

ration generated two light and one strange domain wall valence quark propagator for each 

gauge configuration. Table 2.1 shows the ensembles, and their associated statistics. Using 

the Chroma software suite, the propagators are calculated, and then blocks are formed. 

The propagators and blocks are binary files, where the blocks are qq, and qqq objects, that 

already have been Wick-contracted at the sink. The remaining operation to extract C(t), 

the correlator, is the contraction of the spin and color indices at the source, which creates 

the one-, two-, or N-particle correlator. The correlator is considered "data", and is the 

part that is analyzed, with the masses and energies extracted from it. With the extracted 

masses and energies, the scattering length is calculated using Luscher's method. Part of 

this process is illustrated in Fig. 2. 

2.1 Computational Details 

The propagators are gauge invariant gaussian-smeared at the source, meaning that the 

interpolating operator at the source is constructed from gauge-invariantly-smeared quark 

field operators, while at the sink, the interpolating operator is constructed from either local 

quark field operators, or from the same smeared quark field operators used at the source. 
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Generate J. Generate uncontracted 
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MILC gauge 
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Data files 
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proton, pipi, etc) 

CHRbMA . ^ " T ™ * ^ 

> : 'M'^ : • 

' r 
Contraction 

code executable 
(generated using 

CHROMA) 

Figure 2-1: Block diagram of the operations involved to generate correlators. 

Ensemble bmi bms bm«w} brri dwf 103 x bmres
 1 # of propagators 

(i) 2064f21b676m007m050 
(ii) 2064f21b676m010m050 
(m) 2064f21b679m020m050 
{iv) 2064f21b681m030m050 

0.007 
0.010 
0.020 
0.030 

0.050 
0.050 
0.050 
0.050 

0.0081 
0.0138 
0.0313 
0.0478 

0.081 
0.081 
0.081 
0.081 

1.604 ± 0.038 
1.552 ± 0.027 
1.239 ±0.028 
0.982 ± 0.030 

1039 x 24 
769 x 24 
486 x 24 
564 x 24 

{v) 2864f21b676m010m050 0.010 0.050 0.0138 0.081 1.552 ± 0.027 128 x 8 
(vi) 2896f21b709m0062m031 0.0062 0.031 0.0080 0.0423 0.380 ± 0.006 1001 x 8 
(vii) 2896f21b709m0124m031 0.0124 0.031 0.0080 0.0423 0.380 ±0.006 513 x 3 

Table 2.1: The parameters of the MILC gauge configurations and domain-wall propagators 
used in this work. The subscript I denotes light quark (up and down), and s denotes 
the strange quark. The superscript dwf denotes the bare-quark mass for the domain-wall 
fermion propagator calculation. The last column is the number of configurations times the 
number of sources per configuration. Ensembles (i)-(iv) have L ~ 2.5 fm and b ~ 0.125 fm; 
Ensemble (v) has L ~ 3.5 fm and b ~ 0.125 fm; Ensembles (vi),(vii) have L ~ 2.5 fm and 
b ~ 0.09 fm. 

This method creates two sets of correlation functions. These two sets of correlation functions 

that result from these source and sink operators are referred to as smeared-point (SP) and 

smeared-smeared (SS) correlation functions, respectively [55]. 

2.1.1 Correlat ion Functions 

In the continuum limit, the Fourier transformed Euclidean space correlation functions are 

sums of exponential functions. A generalized correlation function is [14] 
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C(t) = (O(t)O(O)) , 0{t) = J2 0{x, t) . (2.1) 
X 

Using 0(x,t) = emO{x,0)e~Ht, leads to 

C(t) = Y,mO\n)\2Ane-m»t . (2.2) 
n 

At large times, the correlation function is dominated by a single exponential dictated 

by the ground state energy and the overlap of the source and sink with the ground state. 

Specifically, the pion two-point function, C^+ (t) generated by a source (and sink) of the 

form 7r+(x,i) = u(x, t)7sd(x, t), 

Cv+(t) = ^ <0| 7T-(X,t) 7T+(0,0) |0) = ^ <7T-(X,t) 7T+(0,0)) . (2.3) 
x x 

The sum over all lattice sites at each time-slice, t, projects onto the three-momenta p = 0 

states. The source 7r+(x, t) couples to all possible states with the same quantum numbers 

as a single pion, including excited states. The source and sink are smeared over lattice sites 

in the vicinity of (x, t) to increase the overlap onto the ground state and the lowest-lying 

excited states. Again, by using time translation, 7r+(x, t) = e i / t7r+(x, 0)e~Ht yields [55] 

C - + W = E ^ 7 X>| i r-(x,0) |n)<n|7r+(0,0) |0> - A) ^ • (2.4) 

2.2 Signal Extraction 

The signal obtained from the correlation functions calculated on the lattice is extracted 

using standard chi-square minimization fits to one or more functions of the form Ae~mt. 

Another way to extract the masses and energies is by forming the effective mass plot, and 

fitting to the function that is produced by generating such a plot, which in essence, lin­

earizes the correlation function. Since the lattice is Euclidean, the time direction has been 

Wick-rotated, t —> HE, so the eigenvalues of the Hamiltonian will be decaying exponentials, 
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rather than oscillatory functions. This is of fundamental importance in terms of the lat­

tice calculation itself, since oscillatory functions in the integrals would not converge, while 

decaying exponential functions converge quickly. Since the correlators are assumed to be 

sums of multiple exponential functions, there are challenges with regard to data analysis, 

some of which are addressed in this section. 

2.2.1 Generalized Effective Functions 

Effective plots are a useful way to represent the data from a LQCD calculation since the 

signal is the form of a sum of decaying exponentials. The generalized effective function is 

defined by Juge, et. al. [56, 57] as 

^S{t) = Uog-§^~- (2.5) 
nj C{t + nj) 

Eq. (2.5) assumes that the form of the correlator is dominated by a single exponential 

decay over some range of time. If there is such behavior, then this will be the effective 

mass. Additionally, excited state signals are appreciably large in the lower time region, and 

in the effective plot this appears as curvature in the early time slices. 

2.2.2 Digital Filters 

Digital Signal Processing of the correlators potentially can increase the signal to noise ratio. 

Given that the correlators used in the lattice calculations in this work have inherent noise, 

and since they are a sum of multiple exponentials, it is possible that a digital filter can 

improve the signal extraction. 

Recursive Digital Filters 

The ground state signal to be extracted decreases exponentially as a function of time, and 

there is noise that decreases more slowly, and is an oscillatory signal. A simple, recursive 

digital filter of the form that follows was used on the correlators to see if the signal to noise 

ratio could be increased. The form of the digital filter is 
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C(i)filtered = C(t - l)fihered + & [C(t) - C(t - 1)filtered] > (2-6) 

where C(0)fiitered = C(0), and 

" = - ^ - . (2-7) 
r + At v ! 

In a simple analog Resistor-Capacitor (RC) low-pass filter, r = RC, is the time constant. 

Fig. 2-2 shows the proton effective mass plots for the low-pass filtered correlators, for several 

values of a, where a is defined in Eq. (2.7). Note that the a = 1 case reduces to the original, 

unfiltered correlator. 

This method requires more study to quantify the systematic error introduced by using 

it. However, the results shown in Fig. 2-2 (d) are tantalizing, with regard to what appears 

to be a well-defined plateau. 

Non-Recursive Digital Filters 

A non-recursive filter appears to be the type of filter that is appropriate for filtering a 

signal that is expected to be the sum of multiple exponentials. This type of digital filter 

does not modify the arguments (rate constants) of the exponentials at all, which is essential 

for accurate determination of energy levels and masses from correlation functions. The form 

of this type of filter is discussed in [58], and with regard to specific applications to Lattice 

QCD, in [55]. 

Inverse Function 

In principle, the operators that create the state that overlaps the energy eigenvalue of 

interest create the particle travelling forward in time, and also travelling backward due 

to the periodic boundary conditions in time. In the case of the mesons the ground state 

function looks like 

C^t) = Acoshim^t) , (2.8) 
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Figure 2-2: First-order, digitally low-pass filtered correlators for MILC Ensemble (ii) of 
Table 2.1, with a filter of the type described by Eq. (2.6). 
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and the backward-propagating state is visible, i.e. the exponentially-increasing part of 

Eq. (2.8). By normalizing Eq. (2.8) at each timeslice, t 

C(t) 
= cosh[m(£ — Lt/2)] , (2.9) 

C(t = Lt/2) 

then, in principle, the original correlator becomes cosh(mi) with an amplitude of 1. Now, 

the inverse can be taken and then defining a transformed correlator 

C'(t) EEexpj -cosh" 1 C(t) 
C(t = Lt/2) = e 

-m(t-Lt/2) (2.10) 

Cosh Function Plot, mOlO LARGE 

0.23 

0.225 

0.22 h 
4 
4 

0.215 

0.21 

0.205 h 

0.2 

nJ = 2 

i 

• ss 
SP 

• cosh 

10 15 
t/b 

20 25 30 

Figure 2-3: The SS and SP effective mass plots for the pion of MILC Ensemble (v) of 
Table 2.1, and the SS (labeled as cosh in the figure) after applying Eq. (2.10). The backwards 
propagating state, ~ exp(m7ri) is eliminated. 

Eq. (2.10) can be used to construct the effective mass plot. Figure 2-3 illustrates this 

procedure for the pion correlator of MILC Ensemble (v). It is clear from the plot that the 

two sets denoted "SS" and "SP" show the effects of the backwards-propagating state. After 

transforming one of them, in this case "SS", the set labeled by "cosh", the plateau extends 
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much further in time. Whereas in the cases where the cosh function was not applied, the 

single particle signal appears viable out to t ~ 15, and after applying the cosh, the single 

particle signal appears viable to t ~ 28. It is not yet clear if this will prove beneficial to 

extracting the ground state, however, if one considers the way that this is usually done for 

the 2 particle case in order to extract the interaction energy 

Eq. (2.11) assumes that all of the correlation functions decay as a single exponential. By 

applying Eq. (2.11) to the correlation function, many more time slices are gained in the 

case of the mesons. This may not be relevant for the baryons right now, because the noise 

is much greater that the amplitude of the backwards propagating state, but it could be 

important as statistics keep improving. 

2.2.3 Linear Combinat ion of Correlators 

The assumed form of single-particle correlators is 

oo 

C(t) = ^ A e " m " ' , (2.12) 
n=0 

where mo is the ground state, and each successive state is an excited state with the same 

quantum numbers, and for n > 0, mn > mg. By forming a linear combination of the SS 

and SP correlators, in principle one state can be removed from the correlator as in 

Css(t) - aCSP(t) = (A- aB)e-mot + {C - aD)e~m^ + ... . (2.13) 

By tuning the parameter a in Eq. (2.13), the first excited state, e _ m i i , can be eliminated. 

Additionally, this method can be used to eliminate the ground state, in order to extract the 

first excited state, the utility of this is extensively outlined in [55, 59]. 
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2.2.4 Effective Mass Function as an Overdetermined System of Linear 

Equations 

The generalized effective mass in Eq. (2.5) can be used to form a system of linear equations 

in order to fit the masses or energies from the lattice data. Once a range of time is identified 

from the effective plot, then a system of equations can be formed from the effective mass 

at each time, t, for every nj that falls within the range. If the range of time is of length N, 

then there are N — I + N — 2 + . . . + 1 equations for meff. For example, if N = 4, and the 

range of time goes from some t to t + 3, the system of equations is as follows 

Ax = d , (2.14) 

x = m 
eff 

log C(t) 
C(t+1) 

i o g c(«+P 
1 0 § C(t+2) 

1 0 6 C(t+3) 

C{i) 
C(t+2) 

l C(t+\) 

log 
(2.15) 

These equations are not guaranteed to have a unique solution meff. One can solve a reduced 

set of equations that correspond to minimizing the squares of the residuals which is the 

normal equation [60] 

ATd = ATAx , (2.16) 

and in the current example becomes 

20m' eff = log 
C(t) . C(t+1) . C(t + 2) 

+ l o § 7=771 ^ + log • 

+2 log 

C(t + l) 
C{t) 

C{t + 2) C(t + 3) 

C(t + 2) 
n1 C(t + 1) 01 C(t) 

(2.17) 
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which is a weighted average. From Eq. (2.17), meff is calculated. This method is faster 

than chi-squared minimization, and takes into account non-adjacent timeslices. 
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Chapter 3 

LATTICE RESULTS 

3.1 Calculat ion of t h e 1 — 2 7r+7r+ sca t te r ing length 

At the physical charged pion mass, the results of a mixed-action lattice calculation, using 

the methodology of Sec. 2, the I = 2 TTTT scattering length was calculated to be mna^2 = 

—0.04330±0.00042, where the error bar combines the statistical and systematic uncertainties 

in quadrature [2]. 

Pion-pion irn scattering is one of the best-understood hadronic scattering processes due 

to the fact tha t the pions are constrained by chiral symmetry at the maximum level since 

they are Goldstone bosons, and they have the smallest mass of any hadron. The 1 = 2 

channel does not contain any annihilation diagrams which renders it less expensive in terms 

of computational resources compared to the 1 = 0 channel for a lattice calculation. 

The prediction of mna^2 the from current algebra (Weinberg) [61] and from leading 

order in x - P T is 

mWvf = 0.1588 ; m ^ 2 = -0 .04537 , (3.1) 

at the charged pion mass. 

7T7T scattering has been computed with Mixed-Action x - P T ( M A x - P T ) at next-to-leading 

order (NLO) [62, 63] both for two and three flavors of light quarks. In principle, the fact 

that this mixed-action theory exists, means tha t the physical extrapolation is more accurate 

and precise due to correct calculation of lattice effects due to the mixed valence-sea quark 

actions. 

28 



Using the Roy equations [64, 65, 66], a precise calculation of m^a^0 and mna^2 is 

possible, using dispersion theory to relate scattering data at high energies to the scattering 

amplitude near threshold. Several low-energy constants of one-loop x-PT are critical inputs 

to this Roy equation analysis. One can take the values of these low-energy constants com­

puted with lattice QCD by the MILC collaboration [5, 6] as inputs to the Roy equations, 

and obtain results for the scattering lengths consistent with the analysis of Ref. [7]. 

In this mixed-action LQCD calculation, MILC ensembles (i)-(iv) are used. At each pion 

mass, the quantities mn, f^, and AE^ are calculated leading to the extraction of m^a^^ 

at each pion mass. Fig. 3-1 shows the calculated values of m^a^^ and the result of the 

SU(2) mixed-action analysis. The SU(3) mixed action corrections have been calculated 

using three-flavor MA^-PT [62, 63], and An SU(3) analysis was also performed as a check 

on the systematic error associated with the chiral expansion. 

In two-flavor MAx-PT(i.e. including finite lattice-spacing corrections) the chiral expan­

sion of the scattering length at NLO takes the form [63] 

m7Tal=\b^0) = -^-Al+ ml 

87T/2 16*2/2 
3 1 o g ( f ) - l - 4 = 2 ( M ) - | | ,(3.2) 

where it is understood that m^ and /^ are the lattice-physical parameters [63] and 

Aj„ = m)j - m\u = 2B0(mj - mu) + 62A7 + . . . , (3.3) 

where u denotes a valence quark and j denotes a sea-quark, and isospin-symmetric sea and 

valence quarks are used, rhjj (muu) is the mass of a meson composed of two sea (valence) 

quarks of mass rrij (mu) and the dots denote higher-order corrections to the meson masses. 

The extrapolated values of the scattering length and a comparison to previous calcu­

lations and experiments are in Table 3.1, and Fig. 3-2 is a visual representation of the 

calculated and measured values of the I = 2 7T7T scattering length in Table 3.1. 
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Figure 3-1: m^ a ^ 2 vs. mn/fn (ovals) with statistical (dark bars) and systematic (light 
bars) uncertainties. Also shown are the experimental value from Ref. [3] (diamond) and 
the lowest quark mass result of the nf = 2 dynamical calculation of CP-PACS [8] (square). 
The blue band corresponds to a weighted fit to the lightest three data points (fit B) using 
the one-loop MA%-PT formula in Eq. (3.2) (the shaded region corresponds only to the 
statistical uncertainty). The red line is the tree-level x_PT result. The experimental data 
is not used in the chiral extrapolation fits. 

run a 
7=2" 

XPT (Tree Level) 
NPLQCD (2007) 

E 865 (2003) 
NPLQCD (2005) 

MILC (2006)* 
MILC (2004)* 

CGL (2001) 

-0.04438 
-0.04330 ± 0.00042 

-0.0454 ± 0.0031 ± 0.0010 ± 0.0008 
-0.0426 ± 0.0006 ± 0.0003 ± 0.0018 

-0.0432 ± 0.0006 
-0.0433 ± 0.0009 
-0.0444 ± 0.0010 

Table 3.1: A compilation of the various calculations and predictions for the I = 2 7T7T 

scattering length. The prediction made in the paper [2] is labeled NPLQCD (2007). Also 
included are the experimental value from Ref. [3] (E 865 (2003)), the previous determination 
by NPLQCD [4] (NPLQCD (2005)), two indirect lattice results from MILC [5, 6] (the stars 
on the MILC results indicate that these are not lattice calculations of the I = 2 TTTT scattering 
length but rather a hybrid prediction which uses MILC's determination of various low-energy 
constants together with the Roy equations), and the Roy equation determination of Ref. [7] 
(CGL (2001)). 
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Figure 3-2: Bar chart of the various determinations of the I = 2 mr scattering length 
tabulated in Table 3.1. The stars on the MILC results indicate that these are not lattice 
calculations of the I = 2 mr scattering length but rather a hybrid prediction which uses 
MILC's determination of various low-energy constants together with the Roy equations. 

3.2 Calculation of the / = 1 K+K+ Scattering Length 

In Ref. [63], the expression for the 1 = 1 KK scattering length was determined to NLO in 

X-PT, including corrections due to mixed-action lattice artifacts. As with the I = 2 TTTT 

scattering length [62], it was demonstrated that when the mixed-action extrapolation for­

mula is expressed in terms of the parameters computed on the lattice, m „ mx and fx, there 

are no lattice-spacing-dependent counterterms at 0(b2), (D(b2mK) or 0{bA) [67]. There are 

finite lattice-spacing-dependent corrections, proportional to 62Ai, and therefore entirely de­

termined to this order in MAx-PT. As with the I = 2 7T7T system, the NLO MA formula 

for rriKCb^K does not depend upon the mixed valence-sea meson masses, and therefore does 

not require knowledge of the mixed-meson masses [68, 67]. This allows for a precise deter­

mination of the predicted MA corrections to the scattering length. At NLO in MAx-PT, 
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the scattering length takes the form[67] 

fnKaKK(b ^ 0) = m K 

8^/; 
1 + 

m K 

K (4TT/X) 
Or In [-*• + C*ln 

t*' 
A 
r 

+ Cx\n - f )+Css\n 
F H* 

+ Co - 32(47rY L^(IJ,) (3.4) 

where the various coefficients, Cj, along with fh?x and m2
ss, can be found in Appendix E of 

Ref. [63]. To account for the predicted MA corrections, one can either use eq. 3.4 to directly 

fit the results of the lattice calculation or one can determine the quantity 

A M A {mKaKK) = mKaKx 
MA 

mxa^K 
X-PT 

(3.5) 

subtract this from the results of the lattice calculation and use the NLO x~PT expression 

for the scattering length, 

rnK^KK = 
m K 

^f2K 
1 + 

m K 
(4TT / * )2 

2 1 n ' ^ 2ml 
fj? J 3(m2 — m2, 

In m; 
^ 

+ 2(20m2
K - 11ml) l n ( IS 14 

32(4 ?02^(M)]}- (3.6) 
27(m2 - ml) '" { /i2 J 9 

There is only one counterterm at NLO, and it can be determined on each MILC ensem­

ble. The results of this analysis are illustrated in Fig. 3.2, including the extrapolation to 

the physical point. 
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Figure 3-3: fnK+aK+K+ versus rnK+/fK+. The points with error-bars are the results of 
this lattice calculation (not extrapolated to the continuum) on both the coarse and (one) 
fine MILC lattices. The solid curve corresponds to the tree-level prediction of x~PT, and 
the point denoted by a star and its associated uncertainty is the value extrapolated to the 
physical meson masses and to the continuum. The smaller uncertainty associated with 
each point is statistical, while the larger uncertainty is the statistical and fitting systematic 
combined in quadrature. 

3.3 Calculation of Multi-Pion States 

The NPLQCD collaboration has studied the interactions of multi-meson systems, and ex­

tracted a three body interaction from these systems, as well as shown that it is possible to 

extract the two-body scattering lengths with greater accuracy using these systems. In recent 

works [69, 70, 71], the analytic volume dependence of the energy of n identical bosons in a 

periodic volume has been computed to 0(L~7), extending the classic results of Bogoliubov 

[72] and Lee, Huang and Yang [73]. The resulting shift in energy of n particles of mass M 

due to their interactions is [70] 
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_ 4 7 r a n 
^ 1 - ( ^ ) I + U ) P + c2*-*)'] 

+ 

a 
TTL 

a 

TTL 

J 3 + (2n - 7)XJ + (5n2 - 41n + 63) £ 

T 4 - 6X^.7 + (4 + n - nl)Jl + 4(27 - 15n + n ^ X K 

+(14n 3 - 227n2 + 919n - 1043)£ 

+ n C 3 

775 192 a' 

M T T 3 L 7 
(T0 + Ti n) + 

.-.O 67ra' 

M 3 L 7 (n + 3) X 

1 
+ »C 3 F Vs + O ( L - 8 ) , (3.7) 

where the parameter a is related to the scattering length1 , a, and the effective range, r, by 

2TT 
a = a — —gO r ( 1 

The geometric constants that enter into eq. (3.7) are 

TTL 
(3.8) 

X = -8 .9136329, 

C = 6.9458079, 

J = 16.532316, 

T0 = - 4 1 1 6 . 2 3 3 8 , 

K = 8.4019240. 

Ti = 450.6392. (3.9) 

and nCm = n\/ml/(n — m)\. The three-body contribution to the energy-shift given in 

eq. (3.7) is represented by the parameter 773, which is a combination of the volume-

dependent, renormalization group invariant quantity, r}§, and contributions from the two-

body scattering length and effective range, 

where 

rh = rjs ( 1 

647ra4 

. - . ^ . 727ra4r ^ 

96a4 

(3.10) 

V3=mM + ^ ( 3 ^ - 4 ^ ) logQzL) - ^ S M S • (3.11) 

The quanti ty 7/3 (̂ x) is the coefficient of the three-7r+ interaction tha t appears in the effective 

Hamiltonian density describing the system [70]. It is renormalization scale, n, dependent. 

1In this section the Nuclear Physics sign convention for the scattering length is used, which is opposite 
to that of the Particle Physics sign convention. In this convention, the TT+TT+ scattering length is positive. 
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The quantity S is renormalization scheme dependent and its value is given in the minimal 

subtraction (MS) scheme, 5MS = —185.12506. 

For n = 2, the last two terms in eq. (3.7) vanish and the remaining terms constitute the 

small a/L expansion of the exact eigenvalue equation derived by Liischer [51, 52]: 

The energies of n pion states are dominated by the n single-pion energies, with the 

interactions contributing a small fraction of the total energy. To extract the resulting 

energy shifts, AEn, the ratios of correlators 

Gn(t) = ^^t^Ae-^\ (3.12) 

are formed, where the second relation holds in the limit of infinite temporal extent and 

infinite number of gauge configurations. 

The computational aspect of the study of the multi-pion correlators required greater 

that 64-bit precision in order to compute the contractions up to N = 13 pions. In order 

to accomplish this, the contractions use arbitrary precision arithmetic based on the ARPREC 

library [74] which was extended for the particular operations needed here, matrix multipli­

cations and traces. For the correlators studied, 64 decimal digit precision (approximately 

octupule precision) in internal operations is sufficient to give results accurate to sixteen 

digits. 

3.4 Meson Baryon Scattering 

3.4.1 Overview 

In the previous sections it was shown that LQCD calculations of meson-meson interactions 

have yielded predictions for physical scattering lengths at the few percent level [2, 75, 67]. 

Several reasons underlie this striking accuracy. Firstly, at the level of the lattice calcula­

tion, Euclidean-space correlation functions involving pseudoscalar mesons have signal/noise 

ratios2 that do not degrade, or only slowly degrade with time. Therefore, highly accu-

2Here the signal is the Monte Carlo estimate of the quantum correlation function evaluated on the lattice, 
while the noise represents the statistical fluctuations in the correlation function. 
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rate fits of both single- and multi-meson properties are possible with currently available 

supercomputer resources. Secondly, and perhaps more importantly, QCD correlation func­

tions involving Goldstone bosons are subject to powerful chiral symmetry constraints. Since 

current lattice calculations are carried out at unphysical quark masses, these constraints 

play an essential role in extrapolating the lattice data to the physical quark masses, as 

well as to the infinite volume, and continuum limits. Chiral perturbation theory (x-PT) 

is the optimal method for implementing QCD constraints due to chiral symmetry, and in 

essence, provides an expansion of low-energy S-matrix elements in quark masses and powers 

of momentum [76], as in Eq. 1.29. 

In contrast to the purely mesonic sector, recent studies of baryon-baryon interactions, 

have demonstrated the fundamental difficulty faced in making predictions for baryons and 

their interactions [77, 78]. Unlike the mesons, correlation functions involving baryons suffer 

an exponential degradation of signal/noise at large times 3 and therefore pose a funda­

mentally different kind of challenge in extracting signal from data [79]. While baryon 

interactions are constrained by QCD symmetries like chiral symmetry, the constraints are 

not nearly as powerful as when there is at least one pion or kaon in the initial or final state. 

For instance, there is no expectation that the baryon-baryon scattering lengths vanish in 

the chiral limit as they do in the purely mesonic sector. In nucleon-nucleon scattering, the 

s-wave interactions are enhanced due to the close proximity of a non-trivial fixed point of 

the renormalization group, which drives the scattering lengths to infinity, thus rendering 

the effective field theory description of the interaction highly non-perturbative [80]. 

Given the contrast in difficulty between the purely mesonic and purely baryonic sectors 

described above, it is clearly of great interest to perform a lattice QCD investigation of the 

simplest scattering process involving at least one baryon: meson-baryon scattering. While 

pion-nucleon scattering is the best-studied process, both theoretically and experimentally, 

its determination on the lattice is computationally prohibitive since it involves annihilation 

3 A recent high-statistics study of baryon correlation functions on anisotropic clover lattices has found 
that the exponential decay with time of signal/noise occurs only asymptotically in time, and therefore, the 
signal/noise problem in baryon correlation functions is not nearly as severe as previously thought [55]. 
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diagrams. At present only a few limiting cases that involve these diagrams are being inves­

tigated [81]. Combining the lowest-lying SU(3) meson and baryon octets, one can form five 

meson-baryon elastic scattering processes that do not involve annihilation diagrams. Three 

of these involve kaons and therefore are, in principle, amenable to an SU{3) heavy-baryon 

X-PT (HBx-PT) analysis [82] for extrapolation. The remaining two processes involve pi-

ons interacting with hyperons and therefore can be analyzed in conjunction with the kaon 

processes in SU{3) HBx-PT, or independently using SU(2) HBx-PT. 

Meson-baryon scattering has been developed to several non-trivial orders in the SU(3) 

HBx-PT expansion in Refs. [83, 84], extending earlier work on kaon-nucleon scattering in 

Ref. [85]. A very-recent paper [86] has reconsidered the SU(3) HBx-PT results using a 

different regularization scheme, and also derived results for pion-hyperon scattering in the 

SU(2) HBx-PT expansion. These works make clear that the dearth of experimental data 

make it is very difficult to assess the convergence of the chiral expansion in the three-flavor 

case. In the pion-hyperon system, the complete lack of experimental data precludes a 

separate analysis in the chiral two-flavor expansion. A lattice calculation of meson-baryon 

scattering analyzed using x_PT is therefore useful not only in making predictions for low-

energy scattering at the physical point, but also for assessing the convergence of the chiral 

expansion for a range of quark masses at which present-day lattice calculations are being 

performed. 

Meson-baryon scattering is also of interest for several indirect reasons. The K~n in­

teraction is important for the description of kaon condensation in the interior of neutron 

stars [87, 88, 89, 90, 91], and meson-baryon interactions are essential input in determining 

the final-state interactions of various decays that are interesting for standard-model phe­

nomenology (See Ref. [92] for an example). Finally, in determining baryon excited states on 

the lattice, it is clear that the energy levels that represent meson-baryon scattering on the 

finite-volume lattice must be resolved before progress can be made regarding the extraction 

of single-particle excitations. 

The experimental input to existing X"PT analyses of meson-baryon scattering is exten-
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sively discussed in Refs. [85, 83, 84, 86]. Threshold pion-nucleon scattering information 

is taken from experiments with pionic hydrogen and deuterium [93, 94], and the kaon-

nucleon scattering lengths are taken from model-dependent extractions from kaon-nucleon 

scattering data [95]. There is essentially no experimental information available on the pion-

hyperon and kaon-hyperon scattering lengths. There have been two quenched lattice QCD 

studies of meson-baryon scattering parameters: the pioneering work of Ref. [96] calculated 

pion-nucleon and kaon-nucleon scattering lengths at heavy pion masses without any seri­

ous attempt to extrapolate to the physical point, and Ref. [97] calculated the 7 = 1 KN 

scattering length and found a result consistent with the current algebra prediction. 

The lowest-lying energy levels for five meson-baryon processes that have no annihilation 

diagrams are calculated. These processes are: 7r+E+ , 7r+!E!0, K+p, K+n, and if°!E0. The 

calculation uses mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-

improved coarse MILC configurations with b ~ 0.125 fm at four light-quark masses (m^ ~ 

291, 352, 491 and 591 MeV), and at two light quark masses (m^ ~ 320 and 441 MeV) on 

the fine MILC configurations with b ~ 0.09 fm, with substantially less statistics on the fine 

ensembles. The s-wave scattering lengths from the two-particle energies are extracted, and 

the five processes are analyzed using SU(3) HBx-PT. There is a rather conclusive lack of 

convergence in the three-flavor chiral expansion. Then, considering 7r+S+ and 7r+S° with 

SU(2) HBx-PT reliable predictions of the scattering lengths at the physical point are made. 

These are 

a,r+E+ = -0.197 ±0.017 fin; (3.13) 

aT+Ho = -0.098 ± 0.017 fm , (3.14) 

where the errors encompass statistical and systematic uncertainties. The leading order 

X-PT (current algebra) predictions for the scattering lengths are given by [61]: 

«TT+S+ = -0.2294 fm ; (3.15) 

an+so = -0.1158 fm . (3.16) 

Ultimately, either the chiral extrapolation should be performed after a continuum limit 
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has been taken, or one should use the mixed-action extension of HB%-PT to perform the 

chiral extrapolations [98, 99]. However, the results on the fine MILC configurations are 

statistics-limited and not yet sufficiently accurate to make this a useful exercise. Further, the 

explicit extrapolation formulas for the meson-baryon scattering lengths have not yet been 

determined in mixed-action x~PT. Despite these limitations, one expects the corrections 

from finite lattice spacing to be small for two principle reasons. Firstly, the meson-baryon 

scattering lengths are protected by chiral symmetry and therefore the (approximate) chiral 

symmetry of the domain wall valence fermions used in this work protects the scattering 

lengths from additive renormalization, which can be explicitly seen in the construction of 

the mixed-action baryon Lagrangian in Ref. [99]. The mixed-action corrections do not 

appear until next-to-next-to leading order in the chiral expansion of the meson-baryon 

scattering lengths. Secondly, previous calculations with the mesons using this mixed-action 

lattice QCD program suggest that discretization effects will be well-encompassed within the 

overall errors. In the precise calculation of meson-meson scattering, the predicted mixed-

action corrections [62, 63] were smaller than the uncertainties on a given ensemble [2, 67]. 

3.4.2 Meson-Baryon Scattering Processes 

The six scattering channels involving the lowest-lying octet mesons and baryons that do not 

have annihilation diagrams, 4 as well as the particle content, isospin, and valence quark 

content of these meson-baryon states are shown in Table 3.2. 

The notation of Ref. [83] is adopted, denoting the threshold T-matrix in the isospin 

basis as T\g, where I is the isospin of the meson-baryon combination, <f> is the meson, and 

B is the baryon. The five elastic meson-baryon scattering processes that considered here 

4The 7r+S° and K°T,+ systems have the same quantum numbers, and therefore require a mixed channel 
analysis in order to extract the K°Y1+ scattering length. This is discussed in Section 3.4.5. 
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Particles 
7T+S + 
7T+~° 
K+p 
K+n 

K°X+ 
K°E° 

Isospin 
2 

3/2 
1 

0 and 1 
3/2 

1 

Quark Content 
uuuds 
uudss 
uuuds 
uudds 
uudss 
udsss 

Table 3.2: Particle content, isospin, and valence quark structure of the meson-baryon states 
calculated in this work. As is clear from the valence quark content, these meson-baryon 
states have no annihilation diagrams. 

are then in correspondence with the isospin amplitudes according to 

T' T ( 2 ) . rp rp(3/2) 

7T+S+ — -̂ TTS ' J-n+E0 — J-TTE. ' 

1 
2< 

rp _ rp{l) . rp __ Irp{l) . rp{0) \ . rp__ T-ifl) 
J-K+p-J-KN' IK+n - <?\

1KN + 1KN)i xK°~P ~ ±TCE. ' 

(3.17) 

These threshold T-matrices are related to the scattering lengths a^B through 

T 0 B = 47rfl + ^ - j a * B , (3-18) 

where m^ is the meson mass and mg is the baryon mass. 

3.4.3 Finite-Volume Calculation of Scattering Amplitudes 

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter­

mined using either Eq. (1.45), or Eq. (1.48). As the finite-volume lattice calculation cannot 

achieve p = 0 (except in the absence of interactions), in quoting a lattice value for the 

scattering length extracted from the ground-state energy level, it is important to determine 

the error associated with higher-order range corrections. 

3.4.4 Lattice Calculation and Data Analysis 

In calculating the meson-baryon scattering lengths, the mixed-action lattice QCD scheme 

was used in which domain-wall quark [100, 101, 27, 102, 28] propagators are generated from 
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a smeared source o n n j = 2 + l asqtad-improved [34, 35] rooted, staggered sea quarks [103]. 

To improve the chiral symmetry properties of the domain-wall quarks, hypercubic-smearing 

(HYP-smearing) [30, 31, 32] was used in the gauge links of the valence-quark action. In 

the sea-quark sector, there has been significant debate regarding the validity of taking the 

fourth root of the staggered fermion determinant at finite lattice spacing [33, 19, 20, 104, 

21, 105, 24, 106, 107, 105, 22, 23, 25, 26]. While there is no proof, there are arguments to 

suggest that taking the fourth root of the fermion determinant recovers the contribution 

from a single Dirac fermion. The results of this paper assume that the fourth-root trick 

recovers the correct continuum limit of QCD. 

The present calculations were performed predominantly with the coarse MILC lattices 

with a lattice spacing of b ~ 0.125 fm, and a spatial extent of L ~ 2.5 fm. On these 

configurations, the strange quark was held fixed near its physical value while the degenerate 

light quarks were varied over a range of masses corresponding to the pion masses shown in 

Table 2.1. See Ref. [29] for further details. Results were also obtained on a coarse MILC 

ensemble with a spatial extent of L ~ 3.5 fm. However, this data is statistics limited. In 

addition, calculations were performed on two fine MILC ensembles at L ~ 2.5 fm with 

b ~ 0.09 fm. On the coarse MILC lattices, Dirichlet boundary conditions were implemented 

to reduce the original time extent of 64 down to 32, which saved a nominal factor of two in 

computational time. While this procedure leads to minimal degradation of a nucleon signal, 

it does limit the number of time slices available for fitting meson properties. By contrast, 

on the fine MILC ensembles, anti-periodic boundary conditions were implemented and all 

time slices are available. 

The correlation function that projects onto the zero momentum state for the meson-

baryon system is 

C4tB(t)=rij^(<l>\t,x)Wi(t,y)<l>(0,0)Bj(0,0)) , (3.19) 

where Vij is a positive-energy projector. For instance, in the case of K+p, the interpolating 
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operators for the K+ and the proton are 

(/>(*, x) = K+(t,x) = s(t, x)75tt(t, x) ; 

Bi(t,x) = Pi{t,x) = eabcuf(t,x.) (ubr(t,x)Cj5d
c(t,x)^ . (3.20) 

The masses of the mesons and baryons are extracted using the assumed form of the large-

time behavior of the single particle correlators as a function of time. As t —• oo, the ground 

state dominates; however, fluctuations of the correlator increase with respect to the ground 

state. The meson and baryon two-point correlators, C^t) and Cs(t), behave as 

C^t) - Ax e~m* *, CB{t) - A2 e~mB ' , (3.21) 

respectively, in the limits t —• oo and L —> oo. In relatively large lattice volumes the 

energy difference between the interacting and non-interacting meson-baryon states is a 

small fraction of the total energy, which is dominated by the masses of the mesons and 

baryons [2]. In order to extract this energy difference the ratio of correlation functions, 

G<pB(t)i is formed 

G^<Ji^f>^AB"'' <3-22) 
where AE = AEo is the desired energy shift. With AE, and the extracted masses of the 

meson and baryon, the scattering length can be calculated using Eqs. (1.45) and (1.47), 

or, if a « L, from Eq. (1.48). For the meson-baryon scattering lengths calculated in this 

work, the difference between the exact and perturbative eigen-equations is negligible. 

A variety of fitting methods have been used, including standard chi-square minimization 

fits to one and two exponentials. Generalized effective energy plots, as discussed in 2.2.1, are 

particularly useful for analyzing the lattice data and for estimating systematic errors [55]. 

In the meson-baryon case, the functions take the forms 

<* = ;Tlog (r^yf v) ' A<* = > e (rGf+ 0 " (3-23) 

v nj \CfrB{t + nj)J v nj \(j,j>B{t + nj)J 

With nj = 1, the standard effective mass and energy plots are recovered. Additional details 

regarding the utility of generalized effective mass and energy plots can be found in Ref. [59]. 
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The interpolating operator at the source is constructed from gauge-invariantly-smeared 

quark field operators, while at the sink, the interpolating operator is constructed from either 

local quark field operators, or from the same smeared quark field operators used at the 

source, leading to two sets of correlation functions. For brevity, the two sets of correlation 

functions that result from these source and sink operators are referred to as smeared-point 

(SP) and smeared-smeared (SS) correlation functions, respectively. By forming a linear 

combination of the SP and SS correlation functions, C^ss ' — aC^-sp\ one is able to remove 

the first excited state, thus gaining early time slices for fitting [59]. This effect is illustrated 

in Fig. 3-4, which is the effective AEn+-£+ plot for coarse MILC ensemble (ii), plotting 

C( s s), C ( s p) , and C"(ss) - a C ( S P ' with a tuned to remove the first excited state. The 

effective energies, for coarse MILC ensemble (ii) are plotted in Fig. 3-5. The effective 

masses and energy splittings for coarse MILC ensembles (i)-(iv) are plotted in Appendix A. 

All of the necessary quantities needed for extraction of the scattering lengths are contained 

in Table 3.3, which also contains the sum of meson and baryon masses at each quark mass. 

Fig. 3-6 shows the results for all five processes, and the behavior of Eq. (1.45), versus 

the interaction energy, presented in terms of the dimensionless quantities p cot S/mn and 

AE/m-K. The curve shown in Fig. 3-6 is pcot 5/m^ for the case of m^ = m#, and TUB = mp, 

as AE/mn is varied. S(rj) in Eq. (1.46) is a function of the meson and baryon masses, so 

there will be a unique curve for each combination of m^ and TUB • Consequently, the K+p, 

and K+n data points fall on this curve. 

3.4.5 The Mixed Channel 

As is clear from Table I, the 7r+!E!0 and K°T,+ states carry the same global quantum numbers, 

and therefore couple to the same energy-eigenstates in the finite lattice volume. For ener­

gies above both kinematic thresholds, a determination of the three scattering parameters 

associated with these states (two phases and one mixing-angle) requires a coupled-channel 

analysis. Therefore, three energy levels above both kinematic thresholds must be deter­

mined in the lattice calculation to fully characterize scattering in this kinematic regime. 
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Quantity 
mn 

mk 

mp 

W E 

771= 

u 
IK 

A ^ s 

A ^ = 
AEKP 

AEKU 
AEKB 

OTTE 

a-KZ 

O-Kp 

O-Kn 

O.RE 

mn + mp 

m-K + rn-£ 
m^ + m= 
rriK + mp 

mK + rriY, 
rriK + f7i= 

m007 (t) 
0.18384(31)(03) 
0.36783(32)(42) 
0.6978(61)(08) 
0.8390(22)(03) 
0.8872(13)(16) 

0.09257(16) 
0.10734(10) 

0.0150(14)(08) 
0.00646(64) (98) 
0.0140(22)(30) 
0.0057(18)(16) 
0.0118(08)(13) 
-2.12(16)(09) 
-1.08(09) (14) 
-2.80(32) (44) 
-1.41 (37) (34) 
-2.62(13)(21) 

0.8817(61) 
1.0229(23) 
1.0710(14) 
1.0657(61) 
1.2069(23) 
1.2550(14) 

mOlO (M) 
0.22305(25) (08) 
0.37816(26)(11) 
0.7324(31)(10) 
0.8531(19)(08) 
0.9009(13)(10) 

0.09600(14) 
0.10781(18) 

0.0148(08)(13) 
0.0062(05)(12) 
0.0146(15)(13) 
0.0051(14)(09) 
0.0125(05)(14) 
-2.36(09)(15) 
-1.19(09)(20) 
-2.95(21)(19) 
-1.33(30)(21) 
-2.77(08) (23) 

0.9555(31) 
1.0761(20) 
1.1240(14) 
1.1106(31) 
1.2312(20) 
1.2791(15) 

m020 (Hi) 
0.31031(38)(95) 
0.40510(33)(37) 
0.8069(22)(14) 
0.8830(18)(17) 
0.9233(18) (04) 

0.10208(14) 
0.10976(17) 

0.0111(10)(08) 
0.00431(68) (43) 
0.0092(10)(51) 
0.0036(09)(12) 
0.0085(08) (31) 
-2.30(15)(13) 
-1.08(15)(09) 
-2.3(0.2)(1.0) 
-1.05(22)(30) 
-2.18(15)(63) 

1.1172(23) 
1.1933(19) 
1.2336(19) 
1.2119(23) 
1.2881(19) 
1.3284(19) 

m030 (iv) 
0.37513(44)(13) 
0.43091(66)(16) 
0.8741(16)(05) 
0.9213(13)(03) 
0.9461(14)(08) 

0.10763(32) 
0.11253(31) 

0.0100(10)(11) 
0.00421(76) (60) 
0.0087(16) (16) 
0.0028(10)(11) 
0.0086(16)(16) 
-2.36(18)(19) 
-1.20(18)(15) 
-2.27(31)(32) 
-0.89(27)(31) 
-2.29(30)(32) 

1.2492(18) 
1.2964(15) 
1.3212(16) 
1.3050(19) 
1.3522(16) 
1.3770(17) 

Table 3.3: Lattice calculation results from the four coarse MILC ensembles which enter the 
analysis of the meson-baryon scattering lengths. The first uncertainty is statistical and the 
second uncertainty is systematic due to fitting. All quantities are in lattice units. 
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* Y C<ss,-aC(SP) 

0.03 

[ 

0.02 

0.01 

4 6 8 10 12 14 16 
t/b 

Figure 3-4: Effective AEn+^+ plot for coarse MILC ensemble (ii) from correlation functions 
C(SS) ̂  £<(SP) a n ( j (̂ (SS) _ a(7(SP) gy taking the linear combination with a tuned to remove 
the first excited state, earlier time slices are gained for fitting. 

In the present lattice volumes, the two-particle energies in these channels are close to the 

respective kinematic thresholds, and the energy of the lower-lying 7r+H° state (which is 

below the K°Y,+ threshold) is determined by the low-energy elastic scattering parameters, 

making it amenable to analysis using Eqs. (1.45), (1.46), (1-47) and (1.48). 

A priori, one would expect both the ir+Z° and K ° S + interpolating operators to couple 

to a common ground state (dominantly the 7r+S0 state), with a i^°E+-related level as 

the first excited state (for the lattice volumes considered here, the non-interacting 7r+El0 

system with two units of relative momentum has an energy considerably above the K°T,+ 

threshold). Interestingly, within statistical and systematic uncertainties, there are distinct 

energy levels from the two interpolating operators. This is consistent with strong coupling 

to the color-singlet constituents of the interpolating operator and only very weak couplings 

to states that require color rearrangement (see Fig. 3-5). While this is suggestive that 

mixing between the states is small, a definitive interpretation requires an extraction of three 

energy levels above the kinematic thresholds of the TT+E° and K°T,+, and below the next 

kinematic threshold, in order to determine the three scattering parameters. The optimal 
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Figure 3-5: Effective energy plots of the six meson-baryon processes shown in Table 3.2. The 
plots are from MILC ensemble (ii), nj = 2, and the linear combination C^ss^ — aC^sp^ is 
plotted. The dashed line is the sum of the meson and baryon masses for each process, while 
the error bars represent the jackknife uncertainty. Note that the bE axis of (e) is a factor of 
two larger in span than the other plots to encompass the dashed line at m^ + m= = 1.124. 
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Figure 3-6: pcot 5/m-n versus AE^s/fn-w for the five elastic scattering processes from coarse 
MILC ensemble (ii). The curve shown is p cot 6/mn for the case of m^ = ra^, and mg = mp . 

way to extract these levels is to use the variational method [108, 109], which requires the 

full matrix of correlation functions to be calculated, and diagonalized. The extraction of 

the scattering parameters would then proceed via an extension of the variational method 

to the coupled-channel scenario [110, 111]. 

Due to our incomplete knowledge of the three mixed-channel energy levels, no K°T,+ 

scattering parameters are extracted in this work. 

3.4.6 SU(3) HB^PT Extrapolation 

Scattering Length Formulas 

The scattering lengths of the five meson-baryon processes listed in Eq. (3.17) are, to 0{m\) 

in SU(3) HBx-PT [83, 84], 

a7T+E + 
m s 

Air mn + ms 

2m,r 2ml vrC 
~ + ~FTCl + Xr+£+(M) + 8fti23(/i)i? f2 ' f2 

J IT JTT tl\ 
(3.24) 

1 m-
ATT m^ + m--

^ + ^ C o i + X + 2 o(/ i ) + 8fc i ( /z)^ 
JTT J-iT JTT 

(3.25) 
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aK+i 
mN 

4TT rriK + mN 

2m,K 2m 

f2 + 
K 

K 
f2 

IK 

Ci + yK+P(fj) + 8/H23 (lA 
m K 

fK 

(3.26) 

aK+n — 
1 mN 

4rr rriK + rnN 
mK 

fl 
+ -Jfc01 + yK+M + 8hl(n) 

JK 

n3 1 

K 

(3.27) 

1 m~, 

47r rriK + m~ 7ft- JK JK 
(3.28) 

where we have defined CQI = CQ + C\ and h\23 = /ii — h<z + A13, and the loop functions are 

given by 

3 ;
7T+E+(M) = 

ml 

^2ti 
, 3 . m^ 

m^ - — 2 m m 

4 m%r — mi arccos \- — 
rriK 2 

mK 

bK "H 3F2mn - -Dzmv (3.29) 

y«+-=o{ij) = m : 
4TT2/^ 

m„ 21n m„ In 
/* A* / 

y'm^ - m2 f 7 ' m2
K — m2 I TT + arccos —— I x mKJ 

•K 

+ 4 
3{D - F ) 2 m ^ - -(£> + 3F)2mv 

O 
(3.30) 

3 ^ + P ( M ) = 
m K 

^2fK 
m*- 3 + 2 In — - + In — - + 3 In - 1 

fi fi fi 

+2Jm2
K - m 2 In 

mK + \ rni( — m. 

m-n 
3\/m2 — mK arccos mK 

m. 
7T , 

--(D-3F) 2{D + F) mt 
mv + m-n-

+ (D + 5F)mrj (3.31) 

yK+nb*) = 
yK+p 3m 3mK f (y mK In mK 

+ \j
mK ~ ml In 

mK + \/mK - m% 

m„ 

7T 
+ -(D~3F) (D + F) mz 

mv + m-n- 6 
+ -{7D + 3F)mv }> (3.32) 

•iVgsoM 
A* 

,1 2/4 l m * - 3 + 2 1 n - ^ + ln 
47r2 /^ I V A* A* 

+2Jm2
K — m2 In 

m ^ + ^m\^m\ 

m-n 
)JmJ mK arccos 

m ^ 

m t 

7T 
--(D + 3F) 2(D - F) mt 

m„ + m-n-
+ (D- 5F)mv }• 

(3.33) 
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In what follows, fi = Ax = 4irfn and f-^ is evaluated at its lattice physical value [4], and 

m^ is calculated from the Gell-Mann-Okubo formula. These choices modify the chiral 

expansion at 0(m^) and are therefore consistent to this order. The first mixed-action 

modification to these HBx-PT extrapolation formulas appear as corrections to these loop 

functions, y^B, and to the corresponding counterterms which absorb the scale dependence. 

Some of the mesons propagating in the loops appear as mixed valence-sea combinations, 

and thus the corresponding meson masses appearing in these functions are heavier by a 

known amount [68]. The precise form of the predicted corrections require a computation of 

the scattering processes with mixed-action/partially quenched x~PT. 

Our physical parameters are consistent with Ref. [86] (note that our decay constant 

convention differs by \/2). Namely, fn = 130.7 MeV, mn = 139.57 MeV, fK = 159.8 MeV, 

mK = 493.68 MeV, mN = 938 MeV, m s = 1192 MeV and mE = 1314 MeV. The axial 

couplings, D and F, for coarse MILC ensembles (ii)-(iv) are taken from the mixed-action 

calculation of Ref. [112], and extrapolate for coarse MILC ensemble (i) using these values. 

Extrapolation to the Physical Point 

For the purposes of fitting and visualization, it is useful to construct from the scattering 

lengths the functions I^1'2) which are polynomials in m^. For the 7r+S+ , K+p, and i^°!E0 

processes one defines5 

rW=-^fiCl + ^ ' ) = l ; (3.34) I — 

m<f, \ mB 

r ^ L 0 ^ - 2 ^ ( l + ^-)=l-C1m,; (3.35) 
rut, \ mB) 

r ! i U = - ^ (1 + %*) + ^ T ^ B ( A X ) = 1 - Cxm* - 4h123(Ax)ml , (3.36) rricj) \ TUB J lm$ 

and for the 7r+S°, and K+n processes one defines 

( 2 ) 4 T T < 
(1 + ^-) = 1 ; (3.37) 
V mBj 

3Here the standard notation, LO = leading order, NLO = next-to-leading order and so on is used. 
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T^LO^-^l(l + ^-)=l-C0lm,; (3.38) 

^NNLO = - ^ ^ ( l + ^-) + ̂ -yM^x) = 1 - C^m* - 8hi(Ax)ml . (3.39) 

Notice that the left-hand sides of these equations are given entirely in terms of lattice-

determined quantities, all evaluated under Jackknife, whereas the right-hand side provides 

a convenient polynomial fitting function. Plots of TJVLO formed from the lattice data (all 

ensembles listed in Table 2.1) versus the Goldstone masses are given in Fig. 3-7. There is 

evidence in this plot that the fine and large-volume coarse data are statistically limited as 

compared to the coarse data. Therefore, only the coarse data is included in the fits. The 

fine data is, however, indicative that lattice-spacing effects are small. 

In the three-flavor chiral expansion, there is an overdetermined system at both NLO 

and NNLO. While there are five observables, there are two Low Energy Constants (LECs) 

at NLO, Co and Coi, and two LECs at NNLO, h\ and h\23- Fits of the LECs from each 

process at NLO are given in Table 3.4 and the corresponding values of the scattering lengths 

are given in Table 3.5. At NLO, the LECs are of natural size, and provide a consistent 

extraction within uncertainties. Correspondingly, the scattering lengths appear to deviate 

perturbatively from the LO values. The perturbative behavior of the scattering lengths 

at NLO is evident from the plots of TNLO versus the Goldstone masses given in Fig. 3-8. 

Clearly the deviations of the lattice data from unity are consistent with a perturbative 

expansion. 

At NNLO the situation changes dramatically. This is clear from the plots of FNNLO 

versus the Goldstone masses given in Fig. 3-8. The shift of the value of T from NLO to 

NNLO is dependent on the renormalization scale fi. With the choice n = Ax one would 

expect this shift to be perturbative. However, this is not the case and therefore loop 

corrections are very large at the scale Ax. There are many strategies that one may take 

to fit the LECs in the overdetermined system. Here the LECs are fit to the 7r+E+ and 

7r+E!0 data, and then use these LECs to predict the kaon processes. Therefore, in Fig. 3-8, 

only (a) and (b) are fits. The fit LECs are given in Table 3.4. While the NNLO LECs hx 
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Quantity NLO fit each process NNLO fit T T + S + ^ + E ? 

C I ( T T + £ + ) 0.66(04)(11) GeV"1 3.51(18)(25) GeV' 1 

C0i(7r+H°) 0.69(06)(22) GeV"1 7.44(29)(69) GeV"1 

Ci{K+p) 0.44(09)(23) GeV"1 

C01(K
+n) 0.56(11)(27) GeV"1 

Ci(^°S°) 0.50(06)(14) GeV-1 

hi - -0.59(08)(14) GeV"2 

hi23 - -0.42(10)(10) GeV"2 

Table 3.4: SU(3) LECs fit from each process at NLO, and from 7r+E+ , and TT+!E!0 at 
NNLO. The first uncertainty in parentheses is statistical, and the second is the statistical 
and systematic uncertainty added in quadrature. 

Quantity LP (fm) NLO fit (fm) NLO (NNLO fit) (fm) NNLO (fm) 

OTTE 

OTTH 

a>Kp 

O-Kn 

0>KE 

-0.2294 
-0.1158 
-0.3971 
-0.1986 
-0.4406 

-0.208(01) (03) 
-0.105(01)(04) 
-0.311(18)(44) 
-0.143(10)(27) 
-0.331(12)(31) 

-0.117(06)(08) 
0.004(05)(11) 
0.292(35) (48) 
0.531(28)(68) 
0.324(39) (54) 

-0.197(06)(08) 
-0.096(05)(12) 
-0.154(51)(63) 
0.128(42)(87) 
-0.127(57)(70) 

Table 3.5: SU(3) extrapolated scattering lengths using the LECs from Table 3.4. The first 
uncertainty in parentheses is statistical, and the second is the statistical and systematic 
uncertainty added in quadrature. Note that the NLO (NNLO fit) column is using Ci,Cbi 
from the NNLO fit to 7r+E+,7r+S°. 

and h\23 appear to be of natural size, the NLO LECs Co and CQ\ are unnaturally large 

and therefore are countering the large loop effects. The extrapolated 7r + S + and 7r+H° 

scattering lengths are given in Table 3.5 and appear to be perturbative. Table 3.5 also gives 

the extrapolated kaon-baryon scattering lengths with the LECs determined from the 7r+E+ 

and 7T+S° data. The resulting NNLO predictions deviate by at least 100% from the LO 

values. Other fitting strategies lead to this same conclusion: the kaon-baryon scattering 

lengths are unstable against chiral corrections in the three-flavor chiral expansion, over the 

range of light-quark masses considered. 
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Figure 3-7: Plots of T^LO versus the Goldstone masses for the five meson-baryon processes. 
All lattice data is included. 
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Figure 3-8: Plots of TNLO and TNNLO versus the Goldstone masses. The line at T = 1 
is the leading order curve, and dotted line is the physical meson mass. The innermost 
error bar is the statistical uncertainty and the outermost error bar is the statistical and 
systematic uncertainty added in quadrature. The inner and outer filled bands correspond 
to the statistical and systematic uncertainty, respectively, of the fits to the LECs at NLO 
and NNLO using 7T+E+, and 7r+S° only, for the SU(3) case. 
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3.4.7 SU(2) HBxPT Extrapolat ion 

Given the poor convergence seen in the three-flavor chiral expansion due to the large loop 

corrections, it is natural to consider the two-flavor theory with the strange quark integrated 

out. In this way, 7rE and 7r£ may be analyzed in an expansion in m^ with no fear of 

corrections that scale as powers of m ^ . The detailed matching of LECs between the three-

and two-flavor theories is described in detail in Ref. [86]. The formulation of the 7rE and 

7rH T-matrices from [86] is useful to perform the two-flavor chiral extrapolations for a„.+s+, 

and a%+-=o. As pointed out in Ref. [86], there are two representations of the pion-hyperon 

scattering lengths that are equivalent up to omitted higher orders in the chiral expansion; 

one contains a chiral logarithm, and the other is purely a polynomial in mw. Using both 

forms provides a useful check on the systematics of the chiral extrapolation. 

Scattering Length Formulas I 

To C(m^) in the two-flavor chiral expansion, a^+^+ and a^+^o are given by [86] 

1 ms 
47T mn + 771s 

1 m-

2m7T 2r7?4 m% m , 2 r < 

m* , m l n , ml , m7r . m% 

; (3.40) 

(3.41) 

where the explicit forms —in terms of Lagrangian parameters— of the LECs C^+s+, hn+^+ > 

C^+so and hn+s.° are given in Ref. [86]. As in the three flavor case, the mixed-action modifi­

cation to the SU(2) scattering length formula would begin with corrections to the m;j. \n(mw) 

terms, with the mixed valence-sea pions having the known additive mass shift [68]. Again, 

H = Ax = 471"/̂  and f^ is evaluated at its lattice physical value. In analogy with the 

three-flavor case 

r L o = 1 ; (3.42) 

?NLO = 1 ~ C^+Bmv ; (3.43) 
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FNNLO = 1 — C„+Bmn - h7T+B(Ax)mn , (3.44) 

where B is either S + or S°. In Fig. 3-9 plots of TNLO and F^WLO versus the pion mass 

for the two-flavor case are shown. Clearly the deviations of F from unity are consistent 

with a perturbative expansion at both NLO and NNLO, showing that the loop corrections 

are much smaller at the scale Ax than in the three-flavor case. All extracted LECs are of 

natural size and given in Table 3.6. The extrapolated 7r + £ + and 7r+E!0 scattering lengths 

are given in Table 3.7. The results are consistent with what was found in the three-flavor 

extrapolation. The NLO and NNLO LECs are highly correlated in the NNLO fit. Fig. 3-10 

shows the 68% and 95% confidence interval error ellipses in the h-C plane for both 7r+S+ 

and 7r+S0. Exploring the full 95% confidence interval error ellipse in the h-C plane yields 

an+x+ = -0.197 ±0.017 fin; 

a-n+so = -0.098 ± 0.017 fm . 

(3.45) 

(3.46) 

These are the numbers that are the best determinations of the pion-hyperon scattering 

lengths from this calculation. 
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Figure 3-9: TNLO, F^NLO plots for the 7r+E+ , and ir+E° processes versus the pion mass. 
The line at T = 1 is the leading order curve, and the dotted line is the physical pion mass. 
The innermost error bar is the statistical uncertainty and the outermost error bar is the 
statistical and systematic uncertainty added in quadrature. The inner and outer filled bands 
correspond to the statistical and systematic uncertainty, respectively, of the fits to the LECs 
at NLO and NNLO using 7T+S+, and TT+S0 for the SU(2) case. 
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NLOfit NNLO fit 
C f f+S+ 0.66(04)(11) GeV-1 1.98(17)(24) GeV" 

1 • - 0.69(06)(22) GeV-1 2.01(24)(68) GeV~ fir+5° 
- 1 

h. ^E+ 
hff+~;0 

-0.65(36)(40) GeV"2 

•0.6(0.5)(1.1) GeV"2 

Table 3.6: SU(2) LECs fit from each process at NLO and at NNLO. The first uncertainty 
in parentheses is statistical, and the second is the statistical and systematic uncertainty 
added in quadrature. 

Quantity LO (fm) NLO (fm) NLO (NNLO fit) (fm) NNLO (fm) 
a^s -0.2294 -0.208(01) (03) 
anS -0.1158 -0.105(01)(04) 

-0.166(05)(08) 
-0.083(04)(11) 

-0.197(06)(08) 
-0.098(05)(12) 

Table 3.7: SU(2) extrapolated scattering lengths using the LECs from Table 3.6. The first 
uncertainty in parentheses is statistical, and the second is the statistical and systematic 
uncertainty added in quadrature. 

Scattering Length Formulas II 

Ref. [86] makes the interesting observation that replacing /„• with its chiral limit value, / , 

yields 

«7T+E+ = 
m E 

27r m-n + m-£ 
m. mi m" K , '"-7T /-I , '"-7T u> K+z+ = pr4 + ^ + E + ( 3 . 4 7 ) 

m-
BT+=0 = 

Air m-jx + m= 
WTT , m 2 , m l h t 

K+so = -pt-l + V « (3-48) 

where t\ is the LEC which governs the pion mass dependence of /„• [7]. Note that the 

chiral logs have canceled, and in this form, valid to order m .̂ in the chiral expansion, the 

scattering lengths have a simple polynomial dependence on m f . Taking the standard value 

/ = 122.9 MeV [7, 86] and refitting the LECs yields the results tabulated in Table 3.8. 

The extrapolated 7r+£+ and 7r+H° scattering lengths are given in Table 3.9. These results 

are clearly consistent with what was found in the two-flavor extrapolation with the chiral 

logarithm explicit. Fig. 3-11 shows the 68% and 95% confidence interval error ellipses in 
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TC 2 SU(2) Ji+E° SU(2) 

C , Y <GeV > 

Figure 3-10: The 68% (light) and 95% (dark) confidence interval error ellipses for fits for 
the 7T+£+ (left), and 7r+S° (right) processes using Eqs. (3.40) and (3.41). 

NLO fit NNLO fit 
Cn+v+ 1.28(09)(11) GeV"1 1.90(10)(17) GeV"1 

Cn+so 1.84(23)(25) GeV-1 1.93(12)(48) GeV"1 

K+5P 

-1.33(21)(26) GeV"2 

-1.36(27)(75) GeV~2 

Table 3.8: SU(2) LECs fit from each process at NLO and at NNLO. The first uncertainty 
in parentheses is statistical, and the second is the statistical and systematic uncertainty 
added in quadrature. 

the h-C plane for both 7r+£+ and 7r+!E0. Exploring the full 95% confidence interval error 

ellipse in the h-C plane yields 

G7T+E+ = -0.197 ±0.011 fin; 

a*+s° = -0.102 ± 0.004 fm . 

(3.49) 

(3.50) 

Comparison of these determinations with those of Eq. (3.46) give an estimate of the sys­

tematic error due to truncation of the chiral expansion at order m^.. 

In order to plot the scattering length versus m^, we define 

a7T+£+ = 07T+£ + ) = h {~T + fc^+ + 7 ^ ; + E + ) ; (3-51) 

mn + m~ 

m~. 47T 
m 
P P * 

(3.52) 
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Quantity LO (fm) NLO (fin) NLO (NNLO fit) (fm) NNLO (fm) 
a^s -0.2294 -0.212(03) (04) -0.190(04) (06) 
a^s -0.1158 -0.106(04) (05) -0.095(02) (09) 

-0.197(04)(09) 
-0.102(02)(09) 

Table 3.9: SU(2) extrapolated scattering lengths using the LECs from Table 3.8. The first 
uncertainty in parentheses is statistical, and the second is the statistical and systematic 
uncertainty added in quadrature. 

7i+S+ SU(2) 7i+5° SU(2) 

C ~ (GeV ') C v> (GeV ) 

Figure 3-11: The 68% (light) and 95% (dark) confidence interval error ellipses for fits for 
the 7T+S+ (left), and 7r+H° (right) processes using Eqs. (3.47) and (3.48). 

In Fig. 3-12 the scattering lengths are plotted versus the pion mass. The shaded bands in 

these plots correspond to the standard error in the determination of the LECs, as given in 

Table 3.8. 

Additional systematic errors arising from the specific lattice formulation that employed 

are discussed in detail in Ref. [2], and are expected to be well encompassed by our error bars. 

As discussed in section 3.4.3, there is a systematic error in extracting the scattering length 

from the phase shift. The range corrections affect the scattering length at the 5% level for 

7r+£+ , and at the 1% level for 7r+E!0. Finally, there are unquantified systematic errors due 

to finite-volume and lattice-spacing effects, however, these errors are likely encompassed by 

our quoted errors. 
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Figure 3-12: a plots for the 7r+£+ , and TT+E° processes versus the pion mass. The diagonal 
line is the leading order curve, and the dotted line is the physical pion mass. The innermost 
error bar is the statistical uncertainty and the outermost error bar is the statistical and 
systematic uncertainty added in quadrature. The filled bands are the fits to the LECs in 
the SU(2) case at NNLO as in Eqs. (3.51), and (3.52). 

3.4.8 Discussion of Results 

This study is the first fully-dynamical lattice QCD calculation of meson-baryon scattering. 

While the phenomenologically most-interesting case of pion-nucleon scattering involves an­

nihilation diagrams, and therefore, requires more resources than those currently have avail­

able, the ground-state energies of 7T+E+, TT+E°, K+p, K+n, and K°E° were calculated, and 

involve no annihilation diagrams. 

The scattering lengths of these two-body systems using HBxPT leads to the conclusion 

that the three-flavor chiral expansion does not converge over the range of light quark masses 

used in the calculation. While the kaon-baryon scattering lengths appear perturbative at 

NLO, a comparison of NNLO with NLO calls into question the convergence of the three-

flavor chiral expansion. Therefore, the values for the kaon-baryon scattering lengths at 

the physical point are not quoted. On the other hand, the 7r+E+ and 7r+H° scattering 

lengths appear to have a well-controlled chiral expansion in two-flavor HBxPT. Our results, 

«7r+s+ = -0.197 ±0.017 fm, and a^+sa = -0.098 ±0.017 fm, deviate from the LO (current 

algebra) predictions at the one- and two-sigma level, respectively. Hopefully, there will be 

future experimental data to compare with this calculation. 
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Regarding the lowest-lying baryon decuplet, which is not considered in this work, one 

interesting process for future study is the TT~Q~ system. It does not involve disconnected 

diagrams since the pions have no valence quarks with the same flavor as the Q,~ constituents. 

It has been argued that there is a bound state [113] in this channel, and therefore, it would 

be of interest to determine whether this state appears bound on the lattice at the available 

quark masses. 
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CONCLUSION 

Calculations of hadron-hadron and multi-hadron scattering states using fully-dynamical 

Lattice QCD have yielded results for TTTT, KK, multi-meson, and meson-baryon interactions 

with physical predictions. Now multi-baryon interactions at one quark mass have been 

calculated as well [55]. Many of these calculations exist in large part due to the freely 

available MILC gauge configurations, as outlined in Tab. 2.1. 

Calculations of the scattering lengths for the 7r+7r+, and K+K+ mesonic systems have 

been presented. Also, the N = 3 to iV = 12 pionic states, and the calculation of the ground-

state energies of the 7r+£+ , 7r+H°, K+p, K+n, and i^°S0 , with extrapolation of the 7r+£+ , 

7T+H° scattering lengths have been discussed in this dissertation. The main result of my 

research work is the extraction of the 7r+£+and 7r+H°scattering lengths using SU(2) x_PT. 

This result at the 95% confidence level is 

G7T+S+ = -0.197 ±0.017 fin; (3.53) 

a7r+Eo = -0.098 ± 0.017 fm . (3.54) 

Additionally, the if°£+energy levels were calculated, but as detailed in 3.4.5, the scat­

tering length for this channel is not calculated due to the fact that it is a mixed-channel. 

An unexpected consequence of the meson-baryon calculations is that the convergence in 

the three-flavor chiral expansion, at least for the processes studied here, illustrates an inter­

esting dichotomy. As the pion masses considered in this lattice calculation are comparable 

to the physical kaon mass, the distinct convergence patterns of the two- and three-flavor 

chiral expansions found in this work are suggestive that the breakdown in the three-flavor 

case is not due to the relative largeness of the strange-quark mass as compared to the light 
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quark masses, but rather due to some other enhancement in the coefficients of the loop 

contributions, possibly related to a scaling with powers of n/ , the number of flavors. 

The use of both SS and SP correlators to extract the ground state energies with greater 

confidence due to the suppression of an excited state as was discussed in Sec. 2.2.3 came 

about during the meson-baryon analysis. Since the analysis was performed with the coarse 

MILC ensembles, the available time slices for signal extraction are limited, so the suppression 

of the first excited state gains early time slices for fitting, and the plateaus on the effective 

plots are more apparent. Without this method, the signal extraction is more ambiguous, 

due to the fact that the s/n ratio has usually degraded significantly by the time the effective 

mass plot starts to show a plateau. 

A large part of the research work discussed in this dissertation was dependent on im­

proving the signal extraction which is part of the greater signal to noise issue confronting 

LQCD calculations. Recently, the NPLQCD collaboration showed that this problem may 

not be as dire as was previously thought [55]. However, the extraction of excited states 

remains a challenge both in the mesonic and baryonic sectors, and it is possible that LQCD 

may profit from the application of Digital Signal Processing, for instance as is discussed 

in Sec. 2.2.2. Additionally, in Sec. 2.2.2 the application of a naive first-order digital filter 

seems to yield compelling results when looking at the effective mass plots of Fig. 2-2. This is 

something that could be studied systematically to determine if it in fact improves extraction 

of the ground state, or if in fact the systematic error introduced is large. 

Given that computing power density is still growing, a logical continuation of the meson 

baryon calculations discussed here would be pion-nucleon scattering calculation. Much 

greater resources are required for this calculation, but there is much experimental data for 

7rn scattering, so it would interesting to see if LQCD could benchmark the -irn scattering 

lengths in the near future. 

i 
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Appendix A 

EFFECTIVE PLOTS 

The single particle effective mass plots and effective AE plots as described in Eq. 3.23 for 
the meson-baryon systems described in Sec. 3.4 are presented in this appendix for the MILC 
Ensembles (i)-(iv) of Table 2.1. 
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Figure A- l : Single particle effective mass plots for coarse MILC ensemble (i). Here, nj = 2, 
and the linear combination C^ss^ — aC^SF^ is plotted. The inner shaded bands are the 
jackknife uncertainties of the fits to the effective masses, and the outer bands are the 
jackknife uncertainty and systematic uncertainty added in quadrature over the indicated 
window of time slices. 
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Figure A-2: Meson-baryon effective energy difference plots for coarse MILC ensemble (i). 
Here, nj = 2, and the linear combination C^ss^ — aC^sp^ is plotted. The inner shaded bands 
are the jackknife uncertainties of the fits to the effective energy differences, and the outer 
bands are the jackknife uncertainty and systematic uncertainty added in quadrature over 
the indicated window of time slices. 
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Figure A-3: Single particle effective mass plots for coarse MILC ensemble (ii). Here, nj = 2, 
and the linear combination C^ss^ — aC^sp^ is plotted. The inner shaded bands are the 
jackknife uncertainties of the fits to the effective masses, and the outer bands are the 
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Figure A-4: Meson-baryon effective energy difference plots for coarse MILC ensemble (ii). 
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Figure A-5: Single particle effective mass plots for coarse MILC ensemble (Hi). Here, 
nj = 2, and the linear combination C^ss^ — aC^sp^ is plotted. The inner shaded bands are 
the jackknife uncertainties of the fits to the effective masses, and the outer bands are the 
jackknife uncertainty and systematic uncertainty added in quadrature over the indicated 
window of time slices. 
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Figure A-6: Meson-baryon effective energy difference plots for coarse MILC ensemble (Hi). 
Here, nj = 2, and the linear combination C^ss^ — aC^sp^ is plotted. The inner shaded bands 
are the jackknife uncertainties of the fits to the effective energy differences, and the outer 
bands are the jackknife uncertainty and systematic uncertainty added in quadrature over 
the indicated window of time slices. 
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Figure A-7: Single particle effective mass plots for coarse MILC ensemble (iv). Here, 
nj = 2, and the linear combination C^ss^ — aC^5P' is plotted. The inner shaded bands are 
the jackknife uncertainties of the fits to the effective masses, and the outer bands are the 
jackknife uncertainty and systematic uncertainty added in quadrature over the indicated 
window of time slices. 
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Figure A-8: Meson-baryon effective energy difference plots for coarse MILC ensemble (iv). 
Here, nj = 2, and the linear combination C^ss^ — aC^SF^ is plotted. The inner shaded bands 
are the jackknife uncertainties of the fits to the effective energy differences, and the outer 
bands are the jackknife uncertainty and systematic uncertainty added in quadrature over 
the indicated window of time slices. 
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