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ABSTRACT 

Wavelet Regression with Long Memory Infinite Moving Average Errors 

by 

Juan Liu 

University of New Hampshire, Sep 2009 

For more than a decade there has been great interest in wavelets and wavelet-based 

methods. Among the most successful applications of wavelets is nonparametric statis­

tical estimation, following the pioneering work of Donoho and Johnstone (1994,1995) 

and Donoho et al. (1995). In this thesis, we consider the wavelet-based estimators of 

the mean regression function with long memory infinite moving average errors, and 

investigate the rates of convergence of estimators based on thresholding of empirical 

wavelet coefficients. We show that these estimators achieve nearly optimal minimax 

convergence rates within a logarithmic term over a large class of non-smooth functions 

that involve many jump discontinuities, where the number of discontinuities may grow 

polynomially fast with sample size. Therefore, in the presence of long memory moving 

average noise, wavelet estimators still achieve nearly optimal convergence rates and 

demonstrate explicitly the extraordinary local adaptability of this method in handling 

discontinuities. We illustrate the theory with numerical examples. 

A technical result in our development is the establishment of Bernstein-type expo­

nential inequalities for infinite weighted sums of i.i.d. random variables under certain 
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cumulant or moment assumptions. These large and moderate deviation inequalities 

may be of independent interest. 



Chapter 1 

Introduction 

The origin of wavelets can be traced back to the beginning of the 20th century; how­

ever, wavelets, understood systematically as a way of providing local orthogonal bases, 

are a recent product of existing theories in various fields and some important research 

discoveries. The term "wavelet" originates from the work of Morlet et al. (1982), in 

the context of the analysis of seismetic reflection data. Since then wavelets have led 

to exciting applications in many areas, such as signal processing, for example Mallat 

(1989), and image processing, for example Shapior (1993). In the early 1990s, a series 

of papers by Donoho and Johnstone and their coauthors demonstrated that wavelets 

are powerful tools in problems of denoising, regression, and density estimation. The 

subsequent booming wavelet research broadened a large range of statistical problems. 

Wavelets provide a framework with some key advantages. Firstly, wavelets are 

orthonormal basis functions that are localized in both time and frequency, with time-

widths adapted to their frequency. This enables their ability to model a signal with 

high frequency components, such as discontinuities or sharp spikes, in contrast to 
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more traditional statistical methods for estimating an unknown function. Secondly, 

fast orthogonal discrete wavelet transformation makes the application of wavelets 

available. A third advantage is that wavelet coefficients are often sparse and, there­

fore, representations of functions could be economical. These essential attributes 

make wavelets an outstanding tool for statistical denoising. 

With the introduction of nonlinear wavelet methods in statistics by Donoho and 

Johnstone (1994, 1995, 1998) and Donoho et al. (1995), the theory and application of 

wavelet approaches to nonparametric regression has developed rapidly. Many papers 

have been written on this topic. 

1.1 Basic Definitions 

We consider nonparametric regression 

Yi = 9(xi)+ei, i = 1, 2, • • • , n , (1.1.1) 

where x{ = i/n G [0,1], £i, • • • ,En are observational errors with mean 0 and g is an 

unknown function to be estimated. 

Common assumptions on e\, • • • ,en are i.i.d. errors or stationary processes with 

short-range dependence such as the classic ARMA (Autoregressive Moving Average) 

processes, of the form: 

et = ciEt-i + c2et-2 -\ \- cpet-p + wt + rfiiot_i -I h dqwt_q, (1-1-2) 

where et is stationary, ci, c2, • • • , cp and di, o!2, • • • , dq are constants, cp ^ 0, dq ^ 0 

and wt is a Gaussian white noise series with mean equal to zero. 
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Concisely, the ARMA(p,q) model can be written as 

c(B)et = d(B)wt. 

Define the autocovariance function ACF to be as the second moment product 

r(s, s + j)= r(j) = E[(es - Vs)(£s+j - /V^)], (1.1.3) 

and define the autocorrelation function to be 

P(s,s + j) = rfj) = (1.1.4) 

See below for two figures (1.1 and 1.2) depicting the autocorrelation functions of 

an independent and ARMA(1,1) process. 

The conventional ARMA process is often referred to as a short memory process. 

However, in many fields which include economics, geosciences, biology and hydrology, 

it is unrealistic to assume that the observational errors are independent. Instead, 

these observational errors exhibit slow decay in correlation which is often referred to 

as long-range dependence or long memory. 

Suppose £i, • • • ,£«,-•• is a stationary error process with mean 0 and variance 1. 

Then {ei, i > 1} is said to have long-range dependence or long memory, if there 

exist constants a G (0,1) and C0 > 0 such that 

r(j) = E(elel+j) ~ C0\j\-
a, (1.1.5) 

where a, ~ bj means that aj/bj —> 1 when j —* oo. The literature on long-range 

dependence is very extensive, see, e.g., Beran (1994), Doukhan, et al. (2003) and 

their combined references. 
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Figure 1.1: Gaussian white noise series (top) and plot of its sample ACF 
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Estimation for data with long-range dependence is quite different from that for 

observations with independence or short-range dependence. For example, Hall and 

Hart (1990) showed that the convergence rates of mean regression function estimators 

differ from those with independence or short-range dependence assumption. See figure 

(1.3). 

In this thesis we suppose that the errors {£*, % e Z} constitute a strictly stationary 

moving average sequence which is defined by 

;i.i.6) 

Here {Q, j e Z} is a sequence of i.i.d. random variables with mean zero, variance 

a2, and bj, i G Z + are nonrandom weights such that X ^ f = a~2 [This implies 



that E(ej) = 1 for all i G Z]. Furthermore, we assume that the weights decay 

hyperbolically, i.e., 

bt ~ d r ( 1 + a ) / 2 , 0 < a < 1, (1.1.7) 

where C\ is a constant. From equations (1.1.6) and (1.1.7), one can verify that (1.1.5) 

holds with C0 = C\ a2 f^\u + u2)~(1+Q:)/2 du. Hence the random errors {e,,?' G Z} 

defined in (1.1.6) have long memory, and their distribution may be more general than 

being Gaussian. 

The family of long memory processes defined by (1.1.6) includes the important 

class of fractional ARIMA processes. For more information on their applications 

in economics and other sciences, see Baillie (1996). For various theoretical results 

pertaining to the empirical processes of long memory moving averages, we refer to Ho 

and Hsing (1996, 1997), Giraitis, et al. (1996, 1999), Koul and Surgailis (1997, 2001) 

and the references therein. 

The main objective of the present thesis is to study the wavelet-based estimator of 

the regression function g in (1.1.1), where g belongs to a large function class that may 

have a large number of jump discontinuities, and the number of jump discontinuities 

diverges polynomially fast with sample size. We investigate the asymptotic conver­

gence rates of the estimators and show that discontinuities of the unknown curve have 

a negligible effect on the performance of nonlinear wavelet curve estimators. 
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1.2 Background of The Problem 

Wavelet methods in nonparametric curve estimation have become a well-known tech­

nique. For a systematic discussion of wavelets and their applications in statistics, see 

the monograph by Hardle, et al. (1998). The major advantage of the wavelet method 

is its adaptability to the varying degrees of smoothness of the underlying unknown 

curves. Wavelet estimators typically achieve the optimal convergence rates over ex­

ceptionally large function spaces. For reference, see Donoho and Johnstone (1995, 

1998), Donoho, et al. (1995, 1996) and Hall, et al. (1998, 1999). The results of the 

above papers are based on the assumption that the errors are independent normal 

variables. For correlated noise, Wang (1996) and Johnstone and Silverman (1997) 

examine the asymptotic properties of wavelet-based estimators of mean regression 

function with long memory Gaussian noise. Kovac and Silverman (2000) and von 

Sachs and Macgibbon (2000) consider a correlated heteroscedastic and/or nonsta-

tionary noise sequence. They show that these estimators achieve minimax rates over 

a wide range of function spaces. In those papers it is assumed that the underlying 

function belongs to a large smooth function space. Li and Xiao (2007) consider the 

block thresholding wavelet estimation of a mean regression function when the errors 

are long memory Gaussian processes. 

In this thesis, we assume that the mean regression function g belongs to a large 

class of functions with discontinuities. The observational errors follow a long memory 

moving average precess which is primarily non-Gaussian. More specifically, we will 
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consider two types of assumptions on the random variables {Q, j G Z} in (1.1.6), 

which lead to large and moderate deviations of weighted partial sums of the long-

range dependent errors {ei,i G Z}. The first assumption on the random variables 

{Q, j G Z} is the Statulevicius condition (57): There exist constants 7 > 0 and 

A > 0 such that 

| r m ( 0 ) | < ^ z r for m = 3 ,4 , . . . I (1.2.1) 

where Tm(Q) denotes the cumulant of Q of order m; see Section 2.3 for its definition 

and some basic properties. Amosova (2002) has shown that, when 7 = 0, the con­

dition (Sy) is equivalent to the celebrated Cramer condition; and when 7 > 0, it is 

equivalent to the Linnik condition. Hence, the class of random variables satisfying 

(Sy) is very large. Our main result is Theorem 3.1, where we show that the wavelet-

based estimators, based on simple thresholding of the empirical wavelet coefficients, 

attain nearly optimal convergence rates over a large space of non-smooth functions. 

For proving this result, we will establish a Bernstein-type exponential inequality for 

a weighted sums of i.i.d. random variables Q (see Lemma 3.7 below), which may be 

of independent interest. 

The second assumption on {Q, j G Z} is weaker than the condition (57) and it 

only requires -S(|Ci |2+r') < 00 for a certain constant r\ > 0. We will show that, after 

adjusting the threshhold appropriately, the main result still holds under the latter 

moment condition. 

The rest of this thesis is organized as follows. In the next chapter, we recall 

some elements of wavelet transforms, provide nonlinear wavelet-based mean regression 
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function estimators and state some large and moderate deviation estimates, due to 

Bentkus and Rudzkis (1980), Petrov (2002) and Frolov (2005), respectively. These 

results are applicable to weighted partial sums of the random variables {ei,i > 1}. 

The main results (i.e. Theorem 3.1 and Theorem 3.8) are provided in Chapter 3, 

together with some discussions. Chapter 4 contains a modest simulation study. The 

proof of the main results appears in Chapter 5. 

In the above, we use C to denote positive and finite constants whose value may 

change from line to line. Specific constants are denoted by Co, C\, C2, A, B, M and 

so on. Throughout this thesis, R is the set of real numbers, Z is the set of integers, 

L2(R) is the set of square integrable real-valued functions on R and L°°(R) is the set 

of bounded integrable functions on R. 
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Chapter 2 

Wavelets and Nonparametr ic 

Regression 

In this chapter, an overview of background knowledge relevant to subsequent chapters 

is given. 

2.1 Wavelets and Multiresolution Analysis 

Firstly an introduction of wavelets and relevant properties is presented. Then the 

definition of multiresolution analysis is given and we will show how wavelets fit into 

it. 

Review of Wavelets 

The definition and a brief introduction of wavelets and how they evolved over time 
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are provided here, see Vidakovic (1999). More detailed mathematical descriptions of 

wavelets can be found in Meyer(1992) and Daubechies (1992). 

There are a number of ways of defining a wavelet. The first "wavelet basis" 

was discovered in 1910 when Alfred Haar showed that any continuous function f(x) 

on [0,1] can be approximated by 

fn(x) = (ZoJ)Zo(x) + (ZlJ)Zl(x) + ••• + < £ „ , / > & ( * ) , 

and that, when n —> oo, /„ converges to / uniformly, where (&, / ) is the inner product 

of / and £;. The Haar basis is very simple: 

£o(x) = I{0<x< 1), 

£i(x) = 1(0 <x< 1/2) - 7(1/2 < x < 1), 

&(x) = y/2[I{0 <x< 1/4) - %/2/(l/4 < x < 1/2)] 

£n(x) = 2j/2[I{k2~j <x<(k + 1/2)2^') - I({k + 1/2)2~J < x < [k + l)2" j)], 

where n is uniquely decomposed as n = 23' + k, j > 0, 0 < k < 2J' — 1, and 1(A) is 

the indicator function of a set A. 

The first definition of wavelets can be attributed to Morlet et al. (1982) and 

Morlet and Grossmann (1984), and it is given in the Fourier domain: A wavelet is 

an L2(IR) function for which the Fourier transformation \I/(u;) satisfies 
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jf°|*MI2f = i, 

for almost all u). 

The definition of Morlet and Grossmann is quite broad, and over time, the mean­

ing of the term wavelet became narrower. Currently, the term wavelet is usually 

associated with a function xj) G L2(R) such that the translations and dyadic dilations 

of ip, 

xjjjk{x) = 2j/2iP(2jx -k)J,keZ 

constitute an orthonormal basis of L2 (E). 

Later, Meyer (1992, page 66) gave an elaborate definition of mother wavelet I]J 

which describes most of the properties we want to give to a wavelet function: 

Let r be a non-negative integer. A function ip(x) of a real variable is called a 

basic wavelet of class r if the following properties hold: 

(a) if r = 0, ip(x) G L°°(1R); if r > l,i/)(x) and all its derivatives up to order r 

belong to L°°(R); 

(b) ip(x) and all its derivatives up to order r decrease rapidly as x —» oo; 

(c) J00^ xkil)(x)dx = 0 for 0 < k < r; 

(d) the collection of functions 2j/2ip(2jx — k), j , k G Z is an orthonormal basis of 

L2(E). 

Condition (a) is associated the regularity (See page 15) of the basic wavelet when 

the wavelet function is compactly supported. The Condition (b) describes the lo-
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0.0 0.2 0.4 0.S 0.8 

'rtaar1 mother, psi(0,0) 

1.0 

'd4' mother, psirp.O) 

•2 0 2 

's8' mother. psirp.O) 

•2 0 2 

'c12' mother, psi(0,0) 

Figure 2.1: Four different orthogonal mother wavelets "haar", "d4", "s8", and "cl2" 

calization property and extends also to the frequency domain. With regard to this 

property, many wavelets used in practice are compactly supported. Condition (c) 

specifies the oscillatory character, known as the vanishing moments property(See page 

14). Condition (a), (b), and (c) are the characteristics we want to give to a mother 

wavelet. There are many mother wavelets, e.g. the well-known Haar wavelet, discov­

ered by the mathematician Haar in 1910, Symmlet wavelet, Daubechies wavelet and 

Coiflet wavelet, all discussed by Daubechies (1992). See Figure 2.1. Although they 

have different expressions and characteristics, all of them satisfy the above definition. 
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A wavelet ip has r-vanishing moments if 

/ xkip(x)dx = 0, for Jfc = 0, l,---> r-l. 

Mallat's Multiresolution Analysis 

Mallat's Multiresolution Analysis (MRA) provides a tool to constructively de­

scribe different wavelet bases(Mallat, 1989). 

A multiresolution analysis (MRA) is a sequence of closed subspaces Vn, n G Z in 

L2(R) satisfying the following properties: 

(1) Vj C Vj+U 

(2) / ( . ) G l / ^ / ( 2 . ) e l A + l l 

(3) /(•) G v0 <* /(• -k)e v0, 

(4) a«^ = w, 

(5) Ujgz y j = L2(E)> J G Z> Le-> {^J}J6Z is dense in L2(R). 

(6) a scaling function <j> G V0 has a non-vanishing integral such that the collection 

{4>(x — k)\k G Z} constitutes an orthonormal basis for the space Vo-

Condition (1) implies that the orthogonal complement Wj of Vj in Vj+i can be 

found such that Vj+\ = Vj 0 W,-, where the symbol 0 stands for direct sum. Simi­

larly, Vj — Vj_i 0 Wj-i and so on. It follows that Wj_x is also orthogonal to Wj and 

all the spaces Wj (unlike the spaces Vj) are mutually orthogonal. 
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Prom condition (2) and (3), Vj G Z, {</>jfc, & G Z} constitutes an orthonormal basis 

for Vj , where 

cf>jk(x) = 2j/2<P(2jx-k). 

Let Pj be the orthogonal projection operator onto Vj. Condition (4) implies that, 

when j —> — oo, we lose all the details of / , and {Pjf} converges to {0} in an L2 

space, which could be expressed as lim Pjf = 0, where convergence of Pjf in an 
j-*-oo 

L2 space means that lim L \Pjf(x)\2dx = 0. The other end, in the same sense, 

ensures that the signal approximation converges to the original signal in condition 

(5): lim Pjf = f. The approximation Pjf of a function / at resolution level j is 
j-*oo 

given by 

pjf(x) = J}2ajk<Pjk(x), 
fcez 

where coefficients 

/

oo 

f(x)<f>jk{x)dx. 
•oo 

Condition (6) gives a definition of MRA and <fi is called /-regular, if 0 G Cr, where 

Cr is the set of functions having derivatives up to order r, and 4> and every derivative 

up to order r can be chosen in such a way that for every integer m > 0, there exists 

a constant Cm satisfying 

14>U){X)1 ~ ( I T S ^ /or j = 0, l , - , r . 

The following graph (Figure 2.2) shows the projection of the original signal into 

different orthogonal spaces. 
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Define functions 

k 

and 

k 

to be the smooth signal and the detail signals respectively. The orthogonal wavelets 

series approximation to a continuous signal f(t) is expressed in terms of these signals: 

f{t) « Sj(t) + Dj(t) + Dj^it) + ••• + Dx{t). 

The terms in this approximating sum constitute a decomposition of the signal into 

orthogonal signal components Sj(t), Dj(i),Dj-i(t), • • •, Di(t) at different scales. Be­

cause the terms at different scales represent components of the signal f(t) at different 

resolutions, the approximation is called a multiresolution decomposition (MRD). 

The fine scale features-the high frequency oscillations at the beginning of the sig­

nal, are captured mainly by the fine scale detail components D\ and D2. The coarse 

scale components De and 56 correspond to lower frequency oscillations towards the 

end of the series. 

Wavelet Transform 

In the later part of this section, we show how a fast wavelet transform can be 

derived from the multiresolution analysis properties. 
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Figure 2.2: Multiresolution decomposition of the doppler signal 
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Wavelet Representation 

From the definition of MRA and property Vj C Vj+i, there exists an orthogonal 

complement Wj of Vj such that Vj+i = Vj © Wj with Vj _L Wj. Therefore for some 

jo G Z, there is a series of mutually orthogonal subspace Wj, j G Z, such that 

Vj = Vjo © ©fc~ 0 Wk for jf > j 0 . L2(R) can be decomposed into mutually orthogonal 

subspaces, i.e., ©,-eZ Wj = L2(M). 

A scaling function 0 £ Vy0 with a non-vanishing integral exists such that the 

collection {(f>(x — k)\k £ Z} constitutes an orthonormal basis for Vj0. Now we consider 

the generation of an orthonormal wavelet basis for functions / £ L2(M). For some 

jo G Z, {(f)j0k, 4>jk '• j , k G Z, j > jo} forms an orthonormal basis for L2(M). 

Therefore, a function / in L2(R) can be represented as 

f(x) = ^2otjok(j)jok{x) + J2^2/3jkif>jk(x), (2.1.1) 
fcez j>j0 fcez 

Where the coefficients are given by 

°jok = / f(x)(t>j0k(x)dx, f3jk = j f(x)ipjk(x)dx 

The orthogonality properties of 0 and ip imply: 

/

oo roo 

<f>j0ki(x)<f>j0k2(x)dx = Sklk2, / ipjlkl(x)ipj2k2(x)dx = 5jlj25klk2, 
oo J—oo 

^jok! (x)ipjk2 (x)dx = 0, Vj0 < j , 

where Sjk denotes the Kronecker delta, i.e., Sjk = 1, if j = k; and 5jk = 0, otherwise. 

For more information on wavelets see Daubechies (1992). 
18 
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The first term on the right hand side of (2.1.1) is the projection Pj0f of / at 

resolution level j 0 . Using Vj+1 — Vj © Wj, and since {'ipjk : k G Z} is a basis 

for Wj, 5 ĵ>7 SfcezPjk'tPjk(x) is the difference between P,-/ and the finer resolution 

approximation Pj+if. So for each value of j , the second term in (2.1.1) adds another 

level of detail into the representation. 

Due to the vanishing moments property, if / is smooth, the wavelet representa­

tion is very economical because there will be few wavelet coefficients j3jk that are 

noticeably different from 0. Also, because wavelets are localized in time and scale, a 

discontinuity, or other high frequency feature, in / will only result in large wavelet 

coefficients for values of k corresponding to the location of the feature. Therefore, 

many functions can be adequately represented by a small number of wavelet coeffi­

cients. This property explains the application of wavelets to data compression and is 

also important in statistical applications. 

Discrete Wavelet Transformation 

Given real life data in a statistical setting, we are typically concerned with discrete 

samples, rather than continuous functions, since data are observed at a finite number 

of discrete time points in practice. Therefore, a discrete wavelet transform (DWT) is 

born. 

First consider some properties of 0. Since 0 G Vb C Vi, there exist an hn such 
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that cj){x) = ^2nhn4)lin{x), where 

hn =< (p,(j>i,n > = / (f)(x)(j)hn(x)dx. 

Therefore, for all j , k G Z, 

zez 

a n d S ;ez l^/|2 ~ 1- Similarly, we have 

if>j-i,k(x) = ^gi-2k<PjAx)-

Mallet showed that one possible choice is that gn = (—l)"/ii_„. 

The recursive relationship below between the scaling function and wavelet coeffi­

cients at successive levels can be obtained from the previous equations. 

c*j_i,/t = / f(x)\^2hi-2k<l>3i(x)]dx 
J i 

= ^2hl-2k{ f{x)(l)ji(x)dx} = Y^hl-2kUj,l, 

and with the same reasoning 

Pj-l,k = 2_^9l-2kOij,l-

i 

This recursive relationship is another important property of wavelet transform held 

between scaling function coefficients and wavelet coefficients at successive levels. This 

property is related to the pyramid algorithm, a fast algorithm to calculate the coef­

ficients provided by Mallat (1989). 

Consider a vector of function values / = (f(ti),--- ,f(tn))
T at equally spaced 

points ti, and let n be an interger power of 2, say 2J+1. A function can be constructed 
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at level J + 1 as follows: 

fj+i(x) = y^Qj+i,fc0J+i,fc(^), 

where aJ+itk = f(tk). The function fJ+i(x) is an element of VJ+i and can be projected 

onto spaces Vj and Wj, giving 

fJ+i(x) = (PVjfJ+1(x)) + (PWjfJ+1(x)) = Y^ajrfj^x) + J2MU(X)-

I i 

The corresponding scaling coefficients in level J are 

aj,i = ( / J + I , 0 J , / ) = \/2(/j+i,^/ifc-2;0j+i,fc) = V/2^/ifc-2/aj+i,/c-
k k 

Similaryly, the wavelet coefficients are 

k 

Applying this procedure recursively, we can find the coefficients a^ and fyk, for 

Jo < j < J-

Note that at each level of the reconstruction, finer scale coefficients are obtained 

from coarser ones as illustrated by 

^ a j - i ^ - i . f c C c ) + y]/?j-i,fc'0j-i,fc 
k k 

= (ProjVj_J)(x) + (ProjWj_J)(x) 

= (ProjVjf)(x) = Y^Qj,k<l>j,k(x)> 
k 

where 

(*j,k =< <t>j,k, ProjvJ > 
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= "^2 a j-1,1 < <f>j,k, <f>j-i,i > +Y2^J~1'1 < faki'&j-U > • 
i i 

This gives Mallet's Pyramid Algorithm. 

See Figure 2.3 below for an illustration of how the DWT works for a dopplor signal 

(the first one), and the wavelet coefficients in different levels are shown. Observe the 

following properties of the DWT coefficients: 

1. Typically, the wavelet coefficients at coarse scales are larger than the wavelet 

coefficients at fine scales. This is a cosequence of the smoothness of the doppler 

signal. 

2. The smooth coefficients se^ correspond to the smooth at scale 26, mainly cap­

turing the low frequency oscillations in the latter portion of the signal. 

3. The detail coefficients d^, d5ik, • • •, di,fc represent progressively finer "correla­

tions" to the smooth trend, capturing the higher frequency oscillations in the 

beginning of the signal. 

4. The coefficients are sparse in the sense that many coefficients are very small or 

nearly zero. 

Wavelet Analysis vs. Fourier Analysis 

The fast Fourier transform (FFT) and the discrete wavelet transform (DWT) 

share some similarities: both of them are linear operations, and the mathematical 

properties of the matrices involved in the transforms are also similar. The inverse 
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Figure 2.3: DWT of the doppler signal using default s8 wavelet 
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transform matrix of both FFT and DWT is the transpose of the original. Another 

similarity is that the basis functions of both transforms are localized in frequency. 

However, it is the difference between the two that strikes us and makes DWT stand 

out from FFT. The most interesting difference between these two kinds of transforms 

is that individual wavelet functions are localized in space, while the Fourier sine and 

cosine functions are not. The localization feature in both frequency scale via dilations 

and space via translations makes wavelets very useful and more trustworthy in many 

cases. For example, one major advantage of wavelet methods is their high adaptability 

and their ability to capture discontinuities and singularities. Another consequent 

advantage is the sparseness of wavelets coefficients when functions and operators are 

transformed into the wavelet domain. This sparseness results in a number of useful 

applications, such as removing noise from data, and will be discussed later. 

Figure 2.4 is a graph comparing wavelet basis and Fourier basis. 

2.2 Nonparametric Regression and Wavelet Shrink­

age 

In nonparametric regression problems, we want to estimate an unknown signal f(t) 

from some data y; that contain noise. For example, suppose we are given n noisy 

samples of a function / : 

Vi = f{k) + £i, i = 1. 2, • • • , n. 
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Figure 2.4: wavelet basis vs. Fourier basis 
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Our goal is to estimate / with the least mean square error: 

Rn(f, f) = E\\f - f\\l = E f\f(t) - f(t))2dt. 

Jo 

The usual parametric regression requires knowing a particular model for / . In non-

parametric regression, we make minimal assumptions about the exact nature of / . 

We only know a priori that / belongs to a certain class T of smooth functions, but 

nothing more. Some of the common estimators include those based on kernel func­

tions, smoothing splines and orthogonal series. Each one has its own strength and 

weakness. A typical drawback to these nonparametric techniques is that they could 

fail unless strong smoothness assumptions are satisfied everywhere. 

Wavelet-based methods are developing in statistics in areas such as regression, 

density and function estimation, modeling and forecasting in time series analysis, 

and spatial statistics. One of the most successful applications of wavelets is in non-

parametric statistical estimation. Donoho and Johnstone showed that by shrinking 

wavelets coefficients, wavelets estimators for nonparametric regression problems had 

statistical optimality properties, with / attaining the minimax risk 

ll{n, J7) = inf supi?n(/, / ) . 

Wavelet Shrinkage and Thresholding Procedure 

It was pointed out by many researchers that linear methods are not efficient when 

signals have considerable time-inhomogeneity such as varying degrees of smoothness. 
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Non-linear estimators can improve the efficiency and achieve better rates. The key 

advantages of wavelet estimators can be fully explored only when considering non­

linear wavelet estimators. The non-linearity comes from shrinking or thresholding 

the empirical coefficients j3jk, while the scaling function coefficients &j0k are kept 

untouched. The coefficients j3jk, J' = jo, • • • J, k = 0, • • • 2J' — 1 and &j0k, come from 

the DWT of the noisy data. Wavelet shrinkage and thresholding approaches were 

first introduced by Donoho and Johnstone (1994). The goal in this situation is to 

recover a signal in the presence of noise with non-random design point Xi taken to be 

%i = i/n. 

Donoho and Johnstone (1994, 1995, 1998) have developed an impressive the­

ory and methodology for nonparametric regression based on the principle of wavelet 

shrinkage. To be more detailed, wavelet shrinkage refers to estimates obtained by: 

i) Applying the discrete wavelet transform (DWT) to observations j/j, i = 1, 2, • • • , n, 

to obtain a sequence of wavelet coefficients d^, i = 1, 2, • • • , n. 

ii) Using threshold methodology to shrink the wavelet coefficients di, i = 1, 2, • • • , n. 

iii) Applying the inverse discrete wavelet transform to thresholded coefficients to 

recover the estimator of the function / . 

Figure 2.5, 2.6 and 2.7 give an graphical illustration of how DWT works. 

Steps i) and iii) are straightforward to implement, once the wavelet basis functions 

have been chosen. Some fast and efficient algorithms are available for performing the 

calculations. Step ii), the aim is to de-noise the empirical wavelet coefficients. There 

have been a number of approaches for a proper threshold, including the following. 
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Figure 2.5: The bumps signal and its DWT 
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• The classic thresholding scheme, the hard and soft thresholding methods, dis­

cussed in detail by Donoho and Johnstone (1994, 1995) and Donoho et al. 

(1995) 

• The cross-validation scheme, see Nason (1996) and also Hall and Penev (2001). 

• The frequentist block thresholding scheme. See Hall et al. (1998, 1999), Cai 

(1999, 2002) and Cai and Silverman (2001). 

• The empirical Bayes (EB) methods, see Chipman et al. (1997)and Clyde and 

George (2000). 

Antoniadis et al. (2001) gives a very comprehensive summary of the above meth­

ods. 

Classical thresholding methods and Choices of Threshold 

Donoho and Johnstone (1994, 1995) suggested two types of thresholding methods, 

hard and soft thresholding, based on the following assumptions: e* are independent 

Gaussian noise, then the wavelet coefficients are also contaminated with independent 

Gaussian noise. So in this case, the empirical wavelet coefficients can be written as 

Pjk — Pjk + £jk 

and (3jk is distributed as 

Pjk~N(Pjk,a
2) 
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Figure 2.8: The shrinkage function with threshold c = 3 (solid line) applied to a linear 

function (dashed line). Left: "Hard shrinkage". Right: "soft" shrinkage. 

Hard thresholding sets all the wavelet coefficients to be 0 if their absolute values 

are below a certain threshold A > 0: 

6H0jk,\)=PjkI{0jk\>\). 

Soft thresholding shrinks the wavelet coefficients that are larger than the threshold 

by A: 

6°0jk, A) = sgn(Pjk)(\Pjk\ - X)I{\$jk\ > A). 

Hard and soft thresholdings are illustrated in the Figure 2.8. 

After studying the performance of these thresholding methods, Dohono and John-
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stone (1994, 1995) concluded that the resulting function estimate is asymptotically 

minimax (see section 2.2) for a wide variety of loss functions and functions / belong­

ing to a wide range of smoothness classes. More importantly, they show that the 

wavelet estimator is nearly optimal for a wide variety of objectives. 

Choice of Threshold 

Clearly, an appropriate choice of a threshold value A is fundamental to the effec­

tiveness of the procedure described in the previous page. Too large a threshold might 

cut off important parts of the true function underlying the data, whereas too small a 

threshold may excessively retain noise in the reconstruction. 

1. Universal threshold 

Donoho and Johnstone (1994) proposed the universal threshold: 

A = a\/2log(n). 

When sigma is unknown, it may be replaced a robust estimate a, such as the 

median absolute deviation (MAD) of the wavelet coefficients at the finest level J = 

log(N) — 1 divided by 0.6745 and can be expressed as 

<r = MAD{pJk, k = 1, • • • , 2J}/0.6475. 

Despite its simplicity, it can be shown that hard- and soft-thresholding rules with 
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universal threshold can asymptotically approach the "oracular" risk. Donoho and 

Johnstone (1994) showed that if {ei}"=1 is a white noise sequence with variance 1, 

P(max(ei) > \J2logn) —> 0, as n —> oo. 

This means that in addition to its good asymptotic minimax properties, the universal 

threshold removes noise with high probability contributing to the visual quality of 

reconstructed signals. 

However, the universal threshold depends on the data only through a (or its es-

itmate). In fact, for large samples, it may be shown that the universal threshold will 

remove with high probability all the noise in the reconstruction, but part of the real 

underlying function might also be lost. As a result, the universal threshold tends to 

over-smooth data in practice. 

2. SureShrink threshold 

Donoho and Johnstone (1995) introduced a procedure, SureShrink, based on min­

imizing the Stein unbiased risk estimate (Sure). This threshold is implemented in an 

adaptive denoising procedure. The adaptation in SureShrink is achieved by specifying 

thresholds level-wise. The theoretical background for the threshold selection is in the 

following results: 

Letdi ~"-d- J\f(6i, 1), i = l,--- ,k. Let 0 be an estimator of 6 = (0U--- ,0k). Ifthe 

function g = {(?j}f=1, in the representation 9_(d) — d + g(cQ, is weakly differentiable, 

then 
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Ee\\0 - 0_\\2 = k + Ee{\\g(d)\\* + 2Vg(d)}, (2.2.1) 

where g = £ ? = i { ^ & } -

It is interesting that the estimator 9_ in 2.2.1 can be nearly arbitrary; for instance, 

it can be biased, non-linear, and so on. The application of 2.2.1 to soft threshold 

gives 

k k 

SURE(d, A) = k - 2 Y^ 1(1*1 < A) + ^2(\di\ A A)2, 
i=\ i=l 

as an unbiased estimator of risk, i.e., 

E\\5s(d, A) - £||2 = ESURE(d, A). 

When k is large, the law of large numbers(LLN) argument states that SURE is 

close to its expectation, motivating the following threshold selection: 

\sure = arg min SURE(d,\). 
0<X<Xu 

This procedure is very simple to implement since at each level, there are only 

k such values, and the algorithm to calculate Xsure is fast. It has been shown that 

SureShrink is smoothness-adaptive: if the unknown function contains jumps, the re­

construction does also; if the unknown function has a smooth piece, the construction 

is as smooth as what the mother wavelet allows. In addition, this shrinkage can be 

tuned to be asymptotically minimax over a wide range of smoothness classes. 

35 



3. Cross-Validation 

Cross-validation is a classical statistical procedure used in different statistical set­

tings. For example, in density estimation or in spline smoothing, cross-validation 

provides an automatic procedure for choosing the bandwidth or a smoothing param­

eter. Some general reference are Burman (1989), Silverman (1986) and Green and 

Silverman(1994). Nason (1996) applied cross-validation to the problem of threshold 

selection. His method utilized the standard paradigm: minimize the prediction error 

generated by comparing a prediction, based on part of the data, to the remainder of 

the data, 

M(X) = E J{fx(x)-f(x)}2dx. 

We give a brief overview of Nason's two-folded cross-validation procedure. It works 

by leaving out half the data points, can be used to select a threshold for a wavelet 

shrinkage estimator based on n = 2J+1 points. Let y\,y2, • • • ,yn be the observations. 

Firstly, take all the evenly indexed data points {y2j}, j = 1, • • • , n/2, to form a wavelet 

threshold estimate ff using a particular threshold while the remaining points are used 

to estimate the Mean Integrated Squared Error (MISE) at that threshold. Let /jf 

be an interpolated estimator, defined as 

where / j ^ n / 2 + 1 = f\ti is assumed. The counterpart of the odd-indexed points is 
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computed to give the interpolant / ° • and the cross-validatory estimate of the mean 

square error is 

n/2 

M(X) = £ { ( /& - y2j+1f + (/° - y23f). 

Nason(1996) showed that one can almost find a unique minimizer of M(A) and 

compared the performance of the cross-validatory threshold to the Donoho- Johnstone 

universal and SureShrink methods. He also reported that in the case of heavy-tailed 

noise the described method did not perform well. Wang(1996) addresses the problem 

in which the noise is correlated and exhibits long-range dependence. 

4. Block Thresholding Estimators 

Most of the standard wavelet methods achieve adaptivity through term-by-term 

thresholding of the empirical wavelet coefficients, which either kill or retain an individ­

ual coefficient based on its magnitude. Frequentist block thresholding methods shrink 

wavelet coefficients in groups rather than individually, assuming that information on 

neighboring coefficients has influence on the treatment of particular coefficients. Si­

multaneous decisions are made to retain or to discard all the coefficients within a 

block. 

Motivated by the need for spatial adaptivity, Hall et al. (1998,1999) first suggested 

grouping wavelet coefficients into blocks, modelling them blockwise and exploiting the 

information that coefficients convey about the size of their nearby neighbour. 
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Performance of the block thresholding method can be superior to that of its term-

by-term counterparts. Block thresholding schemes are shown to reduce the bias and 

to react more rapidly to sudden frequency changes in the signal. However, it was 

demonstrated that some block thresholded estimators are more sensitive with respect 

to the selection of threshold. 

2.3 Large and Moderate Deviation Estimates 

Large Deviation Estimates 

For the mean of n independent and i.i.d. random variables, a deviation, A„, is 

called ordinary, if \/n\n = 0(1), excessive, if nX^ —> oo, large, if An = 0(1), and 

moderate, if Xn = c^Jlogn/n. 

Numerous results exist on large and moderate deviations for sums of independent 

or weakly dependent random variables. However, there are few results on large de­

viation for moving average sequence {e^i € Z} defined in (1.1.6) with long range 

dependence. We refer to Ghosh and Samorodnitsky (2008) for an excellent overview 

of the subject and the most recent results under the Cramer condition. Their results 

show that, among other things, long range dependence changes the large deviations 

dramatically. 

In the following, we state an exponential inequality due to Bentkus and Rudzkis 

(1980) under the condition (57). To this end, we first recall the definition of cumulant 
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and its basic properties. 

Let £ be a random variable with characteristic function f^(t) = E exp(it£) and 

E\£\m < oo. The cumulant of £ of order m, denoted by rm(£), is denned by 

1 dP 
r ™<«'=5^( l 0 ^<" (2.3.1) 

t=0 

where log denote the principal value of the logarithm so that log/^O) = 0. Note 

that, under the above assumptions, all cumulants of order not exceeding m exist and 

log fe(t) = > ' ̂ # (itY + o(\t\m) as t - 0. ^{(^E-f^ + O ™t 
.7 = 1 ]' 

Cumulants are in general more tractable than moments. For example, if £ i , . . . ,£n 

are independent random variables and if Sn = £i + • • • -f £n, then (2.3.1) implies 

n 

r m (5 n ) = ^ r m ( e i ) . (2.3.2) 
j = i 

Moreover, if 77 = a£, where a 6 E is a constant, then rm(?7) = a T m ( £ ) . We 

refer to Petrov (1975) and Saulis and Statulevicius (2000) for further information on 

cumulants and their applications to limit theory. 

The large tail probability estimates of £ can be described by using information 

on the cumulants Tm(£). We will make use of the following result due to Bentkus 

and Rudzkis (1980) [see also Lemma 1.7 and Corollary 1.1 in Saulis and Statulevicius 

(2000)]. 

Lemma 2.1. Let £ be a random variable with mean 0. If there exist constants 7 > 0, 

H > 0 and A > 0 such that 

i r , . M . / m ! \ i + 7 H 
m ( 0 | < ( y ) 7 r ^ > for Mm = 2,3,..., (2.3.3) 

2 / ^rn-2 
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then for all x > 0, 

N ( exp ( - £), if 0 < x < (//i+7A)Vd+7), 
P{\G\>x)<l A ' _ _ (2.3.4) 

I exp f - i(xA)1/(i+7)\ i/ x > (/fi+7A)i/d+7). 

Condition (2.3.3) can be regarded as a generalized Statulevicius condition. It 

is more general than the celebrated Cramer and Linnik conditions. Recall that a 

random variable £ is said to satisfy the Cramer condition if there exists a positive 

constant a such that 

£exp(a|£|) < oo. (2.3.5) 

See Petrov (1975, p. 54) for other equivalent formulations of the Cramer condition 

and its various applications. 

A random variable £ is said to satisfy the Linnik condition if there exist positive 

constants S and C„ such that 

£exp (5 l ^ 4 " / ^ 1 ) ) < Cv for all v e (0, ]-). (2.3.6) 

Clearly, the Linnik condition is weaker than the Cramer condition. Amosova (2002) 

has proved that (i) If 7 = 0, then the Statulevicius condition (Sy) coincides with the 

Cramer condition; (ii) if 7 > 0, then (57) coincides with the Linnik condition. See 

Amosova (2002) for the precise relations among the constants 7, A, S and v in these 

conditions. 

It is also worthwhile to mention the following result of Rudzkis, Saulis and Stat­

ulevicius (1978) [see also Lemma 1.8 in Saulis and Statulevicius (2000)]: Let £ be a 

random variable that satisfies the following conditions: E(£) = 0, E(£2) = a2 and 
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there exist constants 7 > 0 and K > 0 such that 

\E{$,m)\ < ( m ! ) 1 + 7 i T " - V , m = 3 ,4 , . . . . (2.3.7) 

Then f satisfies condition (2.3.3) with # = 2 1 +V 2 and A = [2{K V a)]'1. 

Condition (2.3.7) is a generalization of the classical Bernstein condition: |i?(£m)| < 

\m\ Km'~2G2 for all m = 3,4, . . . , which has been used by many authors. For exam­

ples, see Petrov (1975, p.55), Johnstone (1999, p.64), Picard and Tribouley (2000, 

p.301), Zhang and Wong (2003, p.164), among others. 

Moderate Deviation Estimates 

Moderate deviation results for independent or weakly dependent random vari­

ables have been established by Rubin and Sethuraman (1965), Amosova (1972, 1982), 

Petrov (1975, 2002), Frolov (1998, 2005), Saulis and Statulevicius (2000), Wu and 

Zhao (2008). The last two articles contain very nice overviews on the topics together 

with an extensive list on the related references. 

We start by recalling a result of Petrov (2002). Let X\,..., Xi,... be independent 

random variables such that E(Xi) = 0 and E{\Xi\2+v) < 00 [i > 1) for some 77 G (0,1]. 

For any integer K > 1, denote 

BK = J2 E(X?), LK = - 1 J2 £( W + " ) • (2-3.8) 

In the terminology in Petrov (2002), Lx is called the generalized Lyapunov fraction. 
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For every i e l , define 

FK(x) = p(B-K
ll2J2xi<x\ 

Petrov (2002) proved that, if LK —> 0 as K —> oo, then for any constant C3 € (0,1) 

one has 

l i m iz^M = l i m | t£l _ 1 (2.3.9) 
K - o o 1 - $ ( x ) K - o o $ ( - x ) 

uniformly for all a; £ [0, (2C3 ln(l/Lft-))1//2]. In the above, $(x) is the distribution 

function of a standard normal random variable. Frolov (2005) improved the above 

result under more general conditions. 

42 



Chapter 3 

Main Results 

We consider the nonparametric regression model (1.1.1) with long memory random 

errors {ei} satisfying (1.1.6), (1.1.7) and (1.2.1). The following theorem shows that 

the wavelet-based estimators defined as in (3.1.4), based on simple thresholding of 

the empirical wavelet coefficients, attain nearly optimal convergence rates over a large 

class of functions with discontinuities, where the number of discontinuities is allowed 

to diverge polynomially fast with sample size. These results show that the disconti­

nuities of the unknown curve have a negligible effect on the performance of nonlinear 

wavelet curve estimators. 

3.1 Function Spaces Considered and Proposed Wavelet 

Estimators 

Common Function Spaces 
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In accordance with many papers in the wavelet literature, we investigate wavelet-

based estimators' asymptotic rates of convergence over a large range of Besov function 

classes Bpq, a > 0, 1 < p, q < oo, which is a very rich class of function space. The 

parameter a is an index of regularity or smoothness and parameters p and q are used 

to specify the type of norm. They include, in particular, the well-known Sobolev space 

Hm, Holder spaces C° of smooth functions, (B™2 and B^^ respectively), as well as 

function classes of significant spatial inhomogeneity such as the Bump Algebra and 

Bounded Variations Classes. For a more detailed study we refer to Triebel (1992). 

For a given r — regular mother wavelet ip with r > s, define the sequence norm 

of the wavelet coefficients of a function / 6 £?* by 

I/P 

IB-
k / I 3=30 

*°\Y,\MP 
I/P Q\ 1/9 

where a = s + l/2 — l/p. Meyer (1992) showed that the Besov function norm || / \\B* 

is equivalent to the sequence norm | / | B * of the wavelet coefficients of / . Therefore, 

we will use the sequence norm to calculate the Besov norm || / ||B» in the sequel. 

For any constant M > 0, define the standard Besov function space B^q{M) by 

B*Piq{M) = {.<? € B\A :|| g \\B.g< M,l<p,q< oo, suppg C [0,1]} . 

Proposed Wavelet Estimators with Associated Function Spaces 

In the regression model (1.1.1), the mean function g is supported on a fixed unit 
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interval [0,1], thus we assume that 4> and ijj are compactly supported on [0,1]. We 

also assume that both <f> and 'ip satisfy a uniform Holder condition of exponent 1/2, 

i.e. 

W(x) - 1>(y)\ < C\x - y\1'2, for all x, y G [0,1]. (3.1.1) 

Daubechies (1992, Chap.6) provides examples of wavelets satisfying these conditions. 

For a given r-regular mother wavelet ip with r > a, the wavelet expansion of g(x) 

is 

9(x) = Ylaiok4>j0k{x) + J2Y1 fykipjk(x), x G [0,1], (3.1.2) 
fcez j>jo fcez 

where 

ajok / g(x)(/)jok(x) dx Pjk= / g(x)tpjk(x)dx, 
Jo Jo 

and the series in (3.1.2) converges in Lp([0,1]). 

Let 

^ > 0 0 ( M , A) = {g : g G B ^ , \\g\\BSo:00 < M, \\g\U < A, suppg C [0, 1]} , 

and let P^A be the set of piecewise polynomials g2(x) of degree d < r — 1, with 

support contained in [0, 1], such that the number of discontinuities is no more than r 

(for detail, see Theorem 3.1 below in Chapter 3) and the supremum norms of g2 and 

g'2 are no more than A. The spaces of mean regression functions we consider in this 

paper are defined by 

VdrA{G^t00(M, A)} = {g : g = 9l + g2; 9l G 0£iOO(M, A), g2 G PdrA) . (3.1.3) 

i.e., VATA^SZOOO^M, A)} is a function space in which each'element is a mixture of a 

regular function g\ from the Besov space B^ ^ with a function g2 that may pose 
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discontinuities. 

In the statement below, the notation 2j^ ~ h(n) means that j(n) is chosen to 

satisfy the inequalities 2j^ < h[n) < 2jM+1. 

Our proposed nonlinear wavelet estimator of g(x) is 

h 
9(x) = Yl &Jok<Pj0k{x) + Y S ^I{\Pjk\ > $j)ipjk(x), (3.1.4) 

fcez i=jo kez 

where 
•t n 1 n 

"iofc = - ] C Yi4>3ok{xi), Pjk = -^2 Yi'*p3k(xi), (3.1.5) 

1(E) is the indicator random variable of the event E and the smoothing parameters 

j 0 , j \ are chosen to satisfy 2jo ~ log2n and 2jl ~ n1_7r for some constant 7r > 0 

(We will choose 7r < 0.75(2r + 1)_1 in our main theorem below. Also for notational 

convenience, we will suppress the subscript n for j0 and ji). 

In (3.1.4), the threshold Sj is level j dependent. We will choose 

8] = 23+7C2n-Q2- j ( 1-Q) Inn 

if the condition (57) is assumed; and 52- = C27rn(l — a) n_Q2_^1~Q^ Inn under the 

moment condition E(\(i\2+V) < oo. In the above 7 is the constant in (1.2.1), a is the 

long memory parameter in (1.1.5) and C2 = C0 / / \x — y\~aip(x)i]j(y) dxdy. 

3.2 Main Theorems 

Theorem 3.1. Suppose the wavelet tp is r-regular. Our wavelet estimator g is defined 

as in (3.1.4) with n < 0.75(2r + l ) ' 1 and 5* = 23+7C2n-Q2-^1-Q) Inn. Let rn be any 
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sequence of positive numbers that satisfy r„ = O(ne+0-25a^2r+1^ ), where 0 > 0 is a 

small constant such that 

9 + 0.25a(2r + 1)_1 < min{l/2, a/(2r + a)}. 

Then, for any constants A, M £ (0, oo) and a £ [1/2, r), there exists a constant 

C > 0 such that 

sup sup E f [g(x) - g(x)]2 dx < Cn-2aa/(2a+a) log2n. 

Remark 3.2. The above wavelet estimators g do not depend on the unknown param­

eters a and d. However, because of the long-range dependence nature, our thresholds 

5j (= Xo-j) must be level-dependent and our estimators depend on the unknown long 

memory parameter a. Wang (1996, p.480) and Johnstone and Silverman (1997, p.340) 

provided simple methods to estimate the long memory parameter a. So, in prac­

tice, one needs to estimate the long memory parameter before applying the wavelet 

method. In this paper, we treat it as known. Our thresholds 6j = Xaj — \ /2 3 + 7 In n Oj 

(for details, see Lemma 3.7 below) are similar to the standard term-by-term hard 

threshold S = y/2 In n a in the Gaussian case. However, because of the long memory 

and non-Gaussian errors here, one needs a bigger constant 23 + 7 instead of 2. One 

alternative to deal with the unknown parameter a is to use the robust median abso­

lute deviation estimates to replace Oj. The performance of the estimators with this 

replacement is under investigation by the authors for future research. 

Remark 3.3. Minimax theory indicates that the best convergence rate over the func-
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tion space %)00(Af, A) is at most n-W(2*+a). Since ££>00(M, ,4) C V d r 4 {^ i 0 0 (M, A)}, 

the above estimators achieve optimal convergence rates up to a logarithmic term, 

without knowing the smoothness parameter. From Wang (1996, p470), the tradi­

tional linear estimators which include kernel estimators can not achieve the rates 

stated in Theorem 3.1. Hence our non-linear wavelet estimators achieve nearly opti­

mal convergence rates over a large function space. 

Remark 3.4. Wang (1996) and Johnstone and Silverman (1997) considered wavelet 

estimators of regression functions in the wavelet domain or based on the so-called "se­

quence space model" with Gaussian error. For details, see Johnstone and Silverman 

(1997). Based on the asymptotic equivalence between "sequence space model" and 

"sampled data model" (1.1.1), they derived the minimax optimal convergence rates 

of wavelet estimators in the wavelet domain. Here, we consider the wavelet estimator 

in the time domain or directly based on the "sampled data model" (1.1.1) as in Hall, 

et al. (1999). 

3.3 Key Lemmas 

When studying moderate deviation of the moving average sequence defined in (1.1.6), 

the conditions LK —* 0 as K —> oo is not satisfied. [In fact LK in (5.2.4) will 

be bounded from below by a positive constant (depending on n) and BK —> 1 as 

K —• oo.] In order to prove an analogue of Lemma 3.7 below under the moment 

condition E(\(i\2+V) < oo for some constant 77 > 0, we will make use of the following 

tail probability estimate, which is essentially implied by the proof of Theorem 1.1 in 
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Prolov (2005) [see his Remark 1.2]. 

Lemma 3.5. Let {Xi,i > 1} be a sequence of independent random variables such 

that E(Xi) = 0 and E(\Xi\2+1>) < oo (i > I) for some rj > 0. Let BK and LK be 

defined as in (2.3.8). If for some constant C4 > 0 such that 

9_l_ OH 

(2 ln( l /LK ) ) 2 LK < C4 (3.3.1) 

for all K > 1, then there exists a finite constant C$ such that 

P(BK1/2\ E ^ | > *) < Cs(l - *(x)) (3.3.2) 

for all xe [1, (2\n(l/LK)y/2}. 

Proof: It is sufficient to prove that 

1 - FK(x) < C5(l - $(x)) (3.3.3) 

for all x e [1, (2 ln(l/LK))^2]. The method of proving (3.3.3) is similar to that of 

Theorem 1.1 in Frolov (2005). The most important differences between the conditions 

in Lemma 3.5 above and Theorem 1.1 in Prolov (2005) are that we do not assume 

LK —» 0 as K —• 00 nor the condition (1.2) in Prolov (2005). These later conditions 

are essential for proving 1 — FK(X) ~ 1 — $(:r) as K —> 00, but are not necessary for 

deriving the upper bound in (3.3.3). 

Since the complete proof of Theorem 1.1 in Frolov (2005) is rather long and it 

seems unnecessary to reproduce it here, we will only provide a sketch of the proof of 

(3.3.3) and point out the modifications that we need to make. 
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For any x e [\,{2\n{\/LK))1'2} and a fixed constant p e (0,1/2), set £K = 

PX\/BK- AS in Frolov (2005), we define the truncated random variables YKJ = 

Xj(Xi <£K) forl<i<K and put TK = Ylf=1 YKti. Note that 

K \ K 

(3.3.4) P( Y,*i > xy/B^\ < P(TK > x^B^) + X>(* ; > ^)-
^ i=i ' i=i 

For the last term on the right-hand side of (3.3.4), we have 

K K 

J2 P&i > *K) < Q{2+r,) J2 E{\*i\2+") = (px)-i2+r,)LK. (3.3.5) 
i = i i = i 

Since the function f(x) = x (1+r>)ex I
2 is increasing for x > (1 + ^)1^2, we can argue 

as in Frolov (2005, pp. 1794-1795) to show that 

(px)^2+^LKxex^2 = p-^LKx-^ex2l2 < C 

for all x G [1, (2 \rv{\/ LK))1^2], where C is a finite constant depending on p and rj 

only. Consequently, 
K 

^P(Xi>eK)<C(l-${x)) (3.3.6) 
i = l 

for all xe [l,(2ln{l/LK))1/2}. 

In order to bound the first term on the right-hand side of (3.3.4), similarly to 

Frolov (2005), we introduce independent random variables {YKti,i = 1,2,... ,K} 

with distributions functions 

P(YK4 <z) = — I' exv/^dP(YK4 < y), (3.3.7) 
<PK,i J-oo 

where <pKti = E(e*Y"*l^). Let TK = E * i F * , * , 

M K = E(TK) and B~K = Var(T^). 
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Instead of condition (1.2) in Frolov (2005), we show that our condition (3.3.1) 

implies that 

x 

~BK 

K 

irX* 
i=\ 

Xfl \XA > 
VB. K 

<CA (3.3.8) 

for all x G [1, (2 h\{l/LK))1/2]. In fact, by using Holder's inequality we see that the 

left-hand side of (3.3.8) is at most 

~B~K 

K 2 
2+r| 

P[\Xi\> 
rE K 

Xn 

JO— 
2+*7 

i = l 

2 
2+7] x5(2+r,) E{Xt^) 2+^M 2+ 

B (2+JJ) /2 
K 

2+1) (3.3.9) 

A+5ri = x',-'LK. 

Hence (3.3.8) holds thanks to (3.3.1). 

Note that, under (3.3.8), the proof of Theorem 1.1 in Frolov (2005), with o(-) 

being replaced by O(-), continues to work. In particular, it follows from (3.12), (3.13) 

and (3.16) in Frolov (2005) that 

/ K 

p (TK > xy/B^) < (n 
<PK,i I e 

-xMKIBK 
X^/Bt^-M t, 

rxyy/BK/BN dQK(y) 

(3.3.10) 

< C x - 1 e - l 2 / 2 

for all x G [1,(2 \n{\/LK))1'2]. In the above, GK(y) = P(TK < VVBK + MK). 

Combining (3.3.6) and (3.3.10) yields (3.3.3). This finishes the proof of Lemma 3.5. 

Lemma 3.6. Suppose that the wavelets 4> and if) satisfy the uniform Holder condition 

(3.1.1) and let A, M G (0, oo) and a G [1/2, r) be constants. Then for all jo and 

j , we have the following results about the approximation between empirical wavelet 

coefficients and the true wavelet coefficient(see 5.1.1). 

sup|aiofc - ajok\ = 0(n 1/2 + rn 1), 
fc 

(3.3.11) 
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sup\bjk - 0jk\ = 0{n~1'2 + rn~l) (3.3.12) 
k 

hold uniformly for all mean regression functions g as in (3.1.3). 

Lemma 3.7. Under the assumptions of Theorem 3.1, there exists a positive constant 

C such that 

P( \pjk ~bjk\> <*,-) < Cn~\ Vj G [jo, ji] and k = 0,1, • • • , T - 1. (3.3.13) 

3.4 A Further Extension 

So far we have assumed that the innovation process {Q, j G Z} satisfies the Stat-

ulevicius condition (57) given by (1.2.1). This condition can be weakened if one is 

willing to change the threshhold Sj accordingly. 

The following result shows that the conclusion of Theorem 3.1 still holds under 

the condition E(\d\2+r]) < oo for some constant r\ > 0. 

Theorem 3.8. Suppose that the wavelet xjj is r-regular. The wavelet estimator g is 

defined as in (3.1.4) with IT < 0.75(2r + I)-1 and 8] = C2nr}(l - a)n~a2-j^-a) Inn. 

We assume that 

nn(l-a)>2. (3.4.1) 

Letrn be any sequence of positive numbers such that for all 8 > 0, rn — 0(n
e+°-25a(2r+1)" ) ; 

where 0 > 0 is a small constant such that 

6 + 0.25a(2r + 1)_1 < min{l/2, a/(2r + a)}. 
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Then for any constants A, M e (0, oo) and a 6 [1/2, r) £/iere exists a constant C > 0 

sup 5-up E f [g(x) - g{x)}2 dx < Cn-2,Ta/{2a+a) log2n. 

rf<r,r<r„ fleV(iTA{eg0,cx>(^M)} -/0 
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Chapter 4 

Simulation 

To investigate the performance of the proposed wavelet estimator, we present a mod­

est simulation study. We generate Y^s data according to regression model Yt = 

g(xi) + £j, where Xj = i/n, i = 1,2, ••• ,n, and n is the sample size. Regression 

function g(x) is a piece-wise HeaviSine function: 

cos(47rx) - 3, if 0 < x < 0.3; 

9(x) = \ COS(4TTX) + 1, if 0.3 < x < 0.7; 

cos(47rx) + 5, if 0.7 < x < 1. 

It can be seen that g £ VdTA{Gl0t00{M, A)} with d = 0, r = 3 and a = A = 1. 

We use S-Plus function arima.fracdiff.sim to generate random errors £j, which are 

a Gaussian FARIMA(0,d,0) series with fractional difference parameters 0 < d < 0.5. 

From Beran (1994), we have d = (1 — a)/2 or a = I —2d, where a is our long memory 

parameter. In order to investigate the effect of the long memory parameter a on 

the performance of our estimator, in this simulation study, we consider parameter 
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d with values of 0.05,0.10,0.15, ...,0.45, which are equivalent to a with values of 

0.9,0.8,0.7,..., 0.1. We consider four different sample sizes: n = 128, 256, 512 and 

1024. For numerical comparisons we consider the average norm (AverNorm) of the 

estimators at the sample points 

i N r " 
AveNorm = — ] T ^(gifa) ~ 9 fa)) 

1=1 L i = l 

1/2 

where gi is the estimate of g in l-th replication and iV is the total number of repli­

cations. Since different wavelets yield very similar results, we only use Daubechies's 

compactly support wavelet Symmlet 8. Note that for Gaussian errors £j, we can use 

level dependent thresholds 5j = \/21nn <5j, where j = 1,2,..., log2 n — 1 and dj is an 

estimate of scale of noise cr,- from empirical wavelet coefficients in level j using the 

median of absolute deviation from the median from level to level. The simulation 

results for different sample sizes n and different long memory parameters a are sum­

marized in Table 4.1 and Figure 1. Based on these finite simulation studies, we see 

that our empirical results (Average Norms) are consistent with our theoretic results, 

i.e., Average Norm is a decreasing function of a for all different sample sizes. 
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Table 4.1: Average Norm from N = 500 replications. 

n 

128 

256 

512 

1024 

a 

0.1 

19.923 

27.342 

35.788 

51.243 

0.2 

14.884 

20.533 

26.137 

35.121 

0.3 

12.829 

17.457 

21.357 

28.020 

0.4 

11.915 

15.574 

18.151 

23.655 

0.5 

11.066 

14.476 

16.079 

20.166 

0.6 

10.320 

13.480 

14.508 

17.927 

0.7 

10.054 

12.647 

13.128 

15.946 

0.8 

9.764 

12.380 

12.404 

14.527 

0.9 

9.506 

11.612 

11.495 

13.147 

alpha 

Figure 4.1: The Average Norms of the estimators with different alpha values and 

sample sizes 
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Chapter 5 

Proofs of Main Theorems 

5.1 Proof of Theorem 3.1 

The overall proof of Theorem 3.1 is motivated by the arguments of Donoho, et al. 

(1996) and Hall, et al. (1998, 1999) for the independent data case. But moving from 

independent data to long range dependent data, especially non-Gaussian random er­

rors, involves a significant change in complexity. For nonparametric regression model 

with Gaussian random errors or for density estimation with i.i.d. random variables, 

one can apply respectively the Gaussian isoperimetric inequality or the standard 

Bernstein inequality to obtain an exponential bound. However, these techniques are 

not readily applicable to infinite moving average processes with long memory. The 

key technical ingredient in our proof is to apply the large deviation estimate (Lemma 

2.1) to establish an exponential inequality for a sequence of infinite weighted sums of 

i.i.d. random variables (For details, see Lemma 3.7). 
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Proof of Theorem 3.1: The proof of Theorem 3.1 can be broken into several parts. 

Observing that the orthogonality (2.1.2) of 0 and tp implies 

E f [g(x) - g(x)]2dx =: h 
Jo 

+ I2 + h + h, 

where 
3a 

h = E E(&Jok ~ aj0k)2, h = E E E&k ~ ^fc)2 ' 
k j=jo k 

h °° 

=̂ E E£fe-fe)2- '< = E £&• 
j=ja+l k j=ji+l k 

Here 0jk = PjkI(\Pjk\ > Sj) and j a = ja{;n) such that 2ja ~ (n_ 1 log2n) 

In order to prove Theorem 3.1, it suffices to show that U < Cn~2<TQ//(2'T+a) log2n, 

% = 1, • • • , 4, for all d, r, cr, A, M. These inequalities are shown in Lemmas 5.4 to 5.7, 

respectively. 

We start by collecting the lemmas. Denote 

1 n 

ajok := E(ajok) = - ^g{xi)(j)jok{xi), 

" r 1 (5.i.i) 
bjk '•= E(Pjk) = -^2g(xi)iJ>jk(xi). 

n 

Since we consider nonparametric regression with discontinuities on the sample data 

model, unlike the density estimation problem as in Hall, et al. (1998), one more step 

of approximation between empirical wavelet coefficients and true wavelet coefficients 

is needed. Lemma 3.6 which estimates the discrepancy between them will be used for 

proving the other lemmas. 

Proof of Lemma 3.6: We only prove (3.3.11). The proof of (3.3.12) is similar and 

is omitted. 
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Let p — 2-70, we may write 

,1/2 « 

For fixed n, p and A;, we note that 

(5.1.2) 
i = l 

0 < — - k < 1 if and only if — < i < - i ^. 
n p p 

Let mfc = [—J, where [x\ denotes the smallest integer that is at least x. Since 4> has 

its support in [0,1], the summation in (5.1.2) runs from m^ to mfc+1. However, for 

simplicity of the notation, we will not distinguish between \_x\ and x. Let i — m^ + £ 

in (5.1.2), we have 

ajok — 

1/2 "/J*"1
 f , g 

p £*(- + -)*(-) 
n 

n/p—1 

(let tt = ^ ) 

(5.1.3) 

Similarly, by a simple change of variables, we have 

MK+l)/p 
ajok — P1/ /2 / 9(x) 4>ipx — k)dx (let t = px — k) 

Jk/p 

= "4 /%(—)#*)*• (5-1-4) 
P1'2 Jo P 

Combining (5.1.3) and (5.1.4), we have 

n/p-l P ( W ) 

«**-«** = ^ E / , " K^)^)_H^)0W 
dt 

= J1 + J2, (5.1.5) 

where 
n / p - l «Ei£±l 

* - £ E / / [.(^)-0]*W* 
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and 
n / p - l . P ( < + 

* = ^ E / / »(^) [««-*«: eft. 

Let us consider the term Ji first. Since g = gi + g2 with 3^ £ ££,,oo(M, A) and 

#2 ^ -PdrA, we can write J\ = J\,\ + J\,2, where 

n/p-i .eL'+i) 
Jv = jr* E /M " h ( ^ ) -a(ir)]*M oft, J = 1, 2. 

Since 31 e G%oi00(M, A), a > 1/2 and 0 is bounded on [0, 1], we have 

^ e=o J vr ^ ^ 

Since g2 € PdTi4, it is piecewise polynomial and has at most r discontinuities. More­

over, g2 is bounded on [0, 1] and is Lipschitz on every open subinterval of [0, 1] where 

g2 is continuous. For simplicity, we will assume that each interval (^, * ) contains 

at most one discontinuity of the function g2 (—)• This reduction, which brings some 

convenience for presenting our proof, is not essential and the same argument remains 

true if an interval contains more discontinuities. 

If (^, „ ) contains no discontinuity of <?2(—)> then by the Lipschitz condition 

we have 
p(i+i) 

/ / |fc(*±*)-*(i±*)||,W|*<c£. (5,,) 
n 

If (2^ P^X>) contains one discontinuity, say to, of 32 (—)) then we will split 

the integral in (5.1.7) over (^, t0) and (t0, „ )• Since the values of the integrals 

remain the same if we modify the values of the function g2 (—) at the end-points 

of the intervals, we may assume that g2 (—) are polynomials on the closed intervals 

[^, tQ] and [t0, „ ]• Hence the triangle inequality and Lipschitz condition imply 
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that the integral in (5.1.7) is bounded above by a constant multiple of 

n ^ 
p(e+i) 

t0 + k^ /tt + le\ _ /£0 + fc\ dt 

dt<Cn if: dt + 2 I " dt 
to 

(5.1.8) 

Summing up (5.1.7) and (5.1.8) over £ — 0 , 1 , . . . , n/p — 1 and recall that there 

are r discontinuities, we obtain 

1 
1̂,21 <-n^C{l+T)n-1 <C{l + T)n-\ 

P 
(5.1.9) 

As to the second term J2, we use the boundedness of g and the uniform l/2-H61der 

condition (3.1.1) for 0 to derive 

u < 1/2 

?*<T-<>«•"• (5.1.10) 

It is clear that (3.3.11) follows from (5.1.5), (5.1.6), (5.1.9) and (5.1.10). 

Remark 5.1. If we write 

ajk = / g{x)<f>jk(x)dx = / ^i(x)0 j fe(x)dx+ / g2(x)(f)jk(x)dx 
Jo Jo Jo 

= ajk,l + ajk,2, 

(5.1.11) 

similarly for a,jk,\ and 0^,2, then Lemma 3.6 shows that sup|ajfc:i — a.jk,i\ = 0(n ^2) 
fc 

and sup|ajfc>2 — a ^ l = 0 (n - 1 / 2 + rn~l). Furthermore, if the number of the jump 
fc 

discontinuities T < rn = O^n1^2), then sup|ajfc,i — ajk,i\ = O^n'1/2) and sup|ajfe,2 — 
k k 

<Xjk,2\ = 0(n_ 1 / / 2). Similar results hold for j3jk and bjk. 

Let's restate Lemma 3.7 and provide the proof here. 
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Lemma 5.2. Under the assumptions of Theorem 3.1, there exists a positive constant 

C such that 

P(\fok-bjk\>&3)<Cn-\ VjeUoJi] and k = 0,1,-••,2?-1. (5.1.12) 

Proof: First let's calculate E(J3jk — bjk)
2. ^From (3.1.5) and (5.1), we have 

.. n n 

E0jk ~ bjk)
2 = — J2 Yl E{£ii£i2)^3k(Xi1)lpjk(xi2) 

2j 

1 1 = 1 12 = 1 

n n 

= ~2 E E r ( ' ' - i2)^(2Jx<1 - k)ip(yxi2 - k). 
11 = 1 22 = 1 

For each fixed k = 0, 1, • • • , 2J' — 1, similar to (5.1.3), we have 

0 7- n 2 " ~ J - l n 2 ~ J - l . _ • . 0 ? -

^ - M 2 = ^ £ E * - « 0 ( T ) 
ii = 1 12 = 1 

l \ a = 2-'Co(2'n-1) 
./o Vo 

\x — y\ aip(x)i]j(y) dxdy + o(l) 

where the last equality follows from (1.1.5) and a standard limiting argument. 

Recall that S2 = 2z+^C2n'a2-^1-^ Inn in (3.1.4). Let a2 = C2n-a2-^-^ and 

A = 2v/21+"1' Inn, then we have 82 = A2er|. From the above calculation, we see that 

E{Pjk — bjk)
2 ~ a2. In view of (3.1.5), (5.1.1) and (1.1.6), we may write J3jk — bjk as 

an infinite weighted sum of independent random variables {Q, j G Z}: 

Pjk ~ bjk = n 1 ̂  eiiljjk(xi) =: ] P dUtS(s, (5.1.13) 
i = l sez 

where 

n 1 EILi bi-sipjk(xi), if s < 0; 

I n * E l l s bisTpjkixi), if 0 < 5 < n; 

0, otherwise. 
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Hence, we have £ d2
n s = E0jk - bjkf ~ o]. 

sez 

For any positive integers n and /f, we define 

Sn = ^TvJ1dnyS(;s and S ^ = E cr"1 d„,s £ . (5.1.14) 
s€Z \s\<K 

Then, as K —> oo, SUIK —• •S'n almost surely for all integers n. Note that E(SnyK) — 0 

and, by (2.3.2) and (1.2.1), we have that for all integers m > 3, 

m (m!)1+7 

K(sn,K)\ = | E ( ^ ) r ^ ) | < E | ^ | ^ ^ - (5.1-15) 
|s |</C J \s\<K J 

By using (1.1.7), the Cauchy-Schwarz inequality and the fact that n~l YL"=i i>jk{xi) 

—> 1, we have 
n 

supd2
ns < Cn-1 Y ] r ( 1 + a ) < C n " 1 

for some finite constant C > 0. This implies 

It follows from (5.1.16) that 

icL 

d? 
sup^f<C{n-12:>)1~a. (5.1.16) 

f^ < sup Mf) • £ ^ 
S |<^ J lsl<K J |4|<A- (5.1.17) 

Combining (5.1.15) and (5.1.17) yields 

' ra!\H-7 2 1 + 7 

Tm(5„^) < (— J -—r^ -, Vm = 3 ,4 , . . . . (5.1.18) 

That is, SniA- satisfies the condition (2.3.3) with H = 21 + 7 and A = C~x A (n2^) ( 1 ~ a ) / 2 . 

Since 2jl ~ n1_7r, we have A > C _ 1 An1 '1""' ' '2 for all integers j G [jo, ji]- Hence 

A = 2A/2 1 + 7 Inn < (//i+7A)1/(i+7) for an integers j G [j0, j i] , for sufficiently large n. 
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It follows from Lemma 2.1 that 

p(\Sn,K\>\) < e x p ( AH)=n • 
(5.1.19) 

Let K —• oo and use Fatou's lemma, we have 

P(\Pjk ~ bjk\ > <$,-) = P(\Sn\ > A) < Uminf P ( |S n , * | > A) < Cn~\ 

This finishes the proof of Lemma 3.7. 

Remark 5.3. From the proof of Lemma 3.7, we see that by choosing A appropriately, 

the tail probability estimate (3.3.13) can be significantly improved. 

Lemma 5.4. Under the assumptions of Theorem 3.1, 

h :=Y,E(&^ - a **) 2 = °(n-2™/(2CT+Q) log2n). 
k 

Proof: Note that 

h < 2 [ Yl E(ajok - ajok)
2 + J](a j o f c - ajofe)

2] =: 2(/„ + /1 2) . 
it k 

As to the first term, we may apply the similar calculation as that in Lemma 3.7 to 

derive 

/11 = y V * C o ( 2 ' ' ° n - 1 ) a [ / / \x-y\-a<j>(x)<j>{y)dxdy + o{l) 
k lJo Jo J 

= J2 2-JOC0(2J0n-1)a / / \x - y\-a(j)(x)(j)(y) dxdy + o((2jon^)a) 
fc=0 "* •* 

< C(2jon-1)a = o ^ l ^ ) log2n), 

where the last equality follows from our choice of j0 with 2-70 ~ log2 n. 
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As to the second term, since T <Tn = 0(n0+o.25a(2r+i) ^ _ 0(n1/2), from Lemma 

5.1 and Remark 5.1, we have 

J12 = of^n-1] = o(n-2aali-2a+a) log2n). 

Together with term In, this proves Lemma 5.4. 

Lemma 5.5. Under the assumptions of Theorem 3.1, 

12 := E E ^ f e " ^ ) 2 ^ Cn"2-/^+ Q) log2n, 
3=30 k 

where 9jk = PjkI(\Pjk\ > 83) and j a — ja{n) such that 2ja ~ (n_ 1 log2n) a 

Proof: Notice Qjk = /?,•*;/( |/3jfc| > Sj), we have 

3=30 k 3=jo k 

=: 2(/21 + / 2 2 ) . 

(5.1.20) 

Also, 

/21 < E E W i ^ i ^2^) + E E ^ p f e - &*i > *i) 
j=jo k j=30 k (5.1.21) 

= : ^211 + -^212-

Since there are at most 2j non-zero terms of @jks and S2 = 2 3 + 7C 2n - a2 _^ 1 _ a^ Inn, 

we have 

3a 3a 

I211 < E E 4(5? - C1°S2 n • n~a E 2?° - Cn-2°a/i2(T+a) log2n. (5.1.22) 
3=30 k j=3o 

As to the term 7212, from (3.3.12) in Lemma 3.6 and our choice of r, it is easy to see 

thatsup|6 i fc-^- fc | < Sj for all j £ [j0,ja]. Thus, 7212 = 0(Y%Ljo E f c / ^ ( f e - M > 
k 
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5j)). Write 

Pjk = I 9'<Pjk = / gitpjk + / 92'ipjk =• Pjk,i + Pjk,2 

as in Remark 5.1. Since g\ € (?£>i00, we have P2
kl = 0 ( 2 ~ J ( 1 + 2 C T ) ) . AS to Pjk,2, since 

#2 G PdrA and our wavelet V> has r (r > d) vanish moments, there are at most r 

non-zero Pjk<2 terms with P2
k2 = 0(2~J). Thus, apply Lemma 3.7, we have 

3a 3a 

I212 <CJ2 2j2~j{1+2a)n-1 + CJ2 r2-jn~1 = o(n-2aa/{2a+a) log2n). (5.1.23) 
3=30 3=30 

Now let's consider the second term 2̂2- Apply Lemma 3.6 and E(J3]k — bjk)
2 ~ a2 

as that in Lemma 5.4, we have 

3a 3a 

- &jfc)2 + E E (#»* ~ ^fc)^ 
J=JO k 3=30 k 

^ C E E n~a2-^-^ + CJ22J («_1 + T2n~2) 
3=30 k 3=30 

(5.1.24) 

< Cn-2aa^2a+a^ log2n, 

where the last inequality follows from our choice r < r„, a < r and 1 < r. Combining 

with (5.1.20), (5.1.21), (5.1.22) and (5.1.23), this completes the proof of the lemma. 

Lemma 5.6. Under the assumptions of Theorem 3.1, 

31 

h'-= E E E&* ~ ̂  ^ Cn~2^2^ log 2™, 
J = J < T + 1 k 

where 0jk = PjkI(\Pjk\ > 5j) and j a = jc(n), such that 2ja ~ (n 1 log2 n) -a/(2a+a) 

Proof: As in Lemma 5.5, we have 

3=3a + l k 

2(/31+/3 2). 

J=j<T + l fc 

(5.1.25) 
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Also, 

7*< £ T,^(\/3Jk\<2sj)+ J2 £/^(iA*-&*i>*i) 
j=j*+i fc j=jv+i fc (5.1.26) 

= : ^311 + ^312-

Let's consider term 7311 first. Prom Remark 5.1, we only need to prove 

/3ii.i = £ £ / ? w / ( l f e l < 2 5 j ) < C ' n - 2 f f Q / ^ + Q ) l o g 2 n ) / = 1, 2. (5.1.27) 

Since /3 2
M = 0(2-^1+2(7)), we have 

h 
hx\,\ <C Yl 2J • 2" j ( 1 + 2 a ) < C2-2aj" = Cn-2(ra / (2(T+a) log2n. 

j=j<r + l 

For the second term /3ii,2, since #2 £ P<ITA and our wavelet ^ has r vanish moments 

with r > d, there are at most r non-zero coefficients 0jk,2- Because \@jk,2\ < 25j for 

these r terms, we have 

hu,2 < <? £ Ttf ^ CTn-a2-{l-a)j° < Cn-2CTQ/(2ff+a) log2n, 

the last inequality follows from T < Tn = o(ne+0-25a{2r+1)~1). Thus we prove (5.1.27). 

As to the term 73i2, we have, for any positive number a.\ and a2 such that a i + a 2 = 

1, 

Since we can choose ot\ large enough, close to 1, from Lemma 3.7, the first term in 

J312 is bounded by C ^J-L^+i 2J'2-J'n"1 = 0(n-
2™/(2"+«) log2n). 

As to the second term in 73i2, based on Lemma 3.6, we have for all j € [jo, ji], 

\bjk — (3jk\ < a.2Sj for sufficient large n. Therefore this term is negligible. Together 

with (5.1.26) and (5.1.27), we prove the bound for term 731. 
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As to the term I32, for any T^ G (0, 1), we have 

j=j„+l k 

+ E E^[(A*-^ f c)2 /(lA*-^l>(i-»nW] (5'L28) 

= : -̂ 321 + -^322-

Let's consider I32i first. Applying the same argument as in 722, using Lemma 3.6 

and noticing there are at most r terms that \Pjk\ > ViSj, we have 

/32i<C JT ^2n~a2~J{l~a)l{\^\>V^)+C £ rin-'+r'n-2) 
3=3a + l k ]=3a + \ (5 .1 .29) 

= : ^3211 + ^3212-

For the second term /3212, based on the boundness of r < rn in Theorem 3.1, we have 

/3212 < CjxTn-1 + Cj^n'2 = 0(n-
2™/(2<x+a) log2n). 

As to the first term 732ii, we can consider 73211,1 and 13211,2, respectively. For the 

term 13211,2, we have /32112 < CT]J/_. ,, rn~a2~J(1~a), which is the same as /3n2-

As to the term 732n,i, since P2
kl > rj\52 in 73211,1, we have, for any t > 0, 

/321i,i<cn-« £ E 2 ~ J ( 1 _ Q ) ( ^ r V y 

i ^ „ a ( t - l ) J'1 

= ir—^ E E^i2_i(1"a)(1"° 

/o_,a( t - l ) •" 

< o n y ^ 2-J'(1+2 ,T)*2" j (1_"a) (1"' ) 

- (iog2ny.^+i 

= o(n-2CTa/(2(7+Q)log2n). 

Together with /3212, we prove the bound for 732i. In order to prove the Lemma, in 

view of (5.1.28), it remains to bound the last term 7322-
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As before, we may write 

/322<2 J2 T,E[{fa-bjk)
2I(\0jk-Pjk\>(l-rii)8j\ 

31 

+2 E EE[(^-^)2/(fe-^i>(1-^)^)] (5'L30) 

j=jo + l k 

= '• 2(73221 + -̂ 3222)> 

Apply Lemma 3.6 to see that, when n is sufficiently large, \bjk — Pjk\ < (1 — Vi)^j f°r 

all j and A;. Thus the term /3221 is equivalent to J I 

£ J>[(/3 j f c - bjk)
2l(\pjk - bjk\ > (1 - % ) ^ | 

j=ja + l k 

Now we apply Holder's inequality, for any positive numbers a and b such that 1/a + 

1/6 = 1, we have it's bound 

J2 ^2[E(pjk-bjk) 2a 1/a 

P{\0jk-bjk\>(l-Vi)5j) 
1/6 

(5.1.31) 
j=j(7 + l k 

^From Lemma 3.7, let 771 > 0 be small enough, we derive 

[P{\Psk-bjk\>(l-Vl)5j)]
1/h = 0(n-1'b). 

For the expectation term we write E(/3jk — bjk)
2a — vJ

2aE(Y^seZ
 aTl^,sC)2° an(^ aPPly 

Rosenthal's inequality (Hardle, et al, p.244) and the calculation as in Lemma 3.7 to 

show that this moment exists and is bounded by a constant multiple of a2a. Putting 

this together we see that (5.1.31) is (up to a constant) at most 

31 31 

E E ^ 2 n _ 1 / 6 - E 2 J a | n - 1 / 6 < C 2 a j l n - Q - 5 < Cn"™- 1 ^ . (5.1.32) 
j=j<7 + l k j=j(T + l 

Now we choose a > (2a + a)/(2a(I - a) + a), so that 1/6 > 2aa/(2a + a). We can 

show the last term in (5.1.32) is bounded by Cn~na~2aa^2cr+a\ Therefore we obtain 

that /322i = 0(n-2(7a/(2<7+Q) log2n). 
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Similar to /3221, we write 

h 

1*222 < E E ( '̂fc ~ M2p{\Pjk - bjk\ > tti(l - Vl)$j) 
j=ia+1 £ (5.1.33) 

+ E E fe* ~ Pikfl{hk ~ Pjk\ > a2{l - riSj). 
j=jcr + l k 

The bound for the first term follows from Lemma 3.6 and Lemma 3.7, while the second 

term is negligible too. Combining (5.1.30), we get bound for 3̂22, which, together 

with (5.1.28) and (5.1.29), proves the lemma. 

Lemma 5.7. Under the assumptions of Theorem 3.1, 

7«:= E E ^ = o ( n _ 2 W ( 2 < T + Q ) l o g 2 n ) -
3=31 + 1 k 

Proof: Write 0jk = f gipjk = ./' 9i^jk + J 92^jk ='• Pjk,i + Pjk,2 as in Remark 5.1. 

In order to prove the lemma, it suffices to show 

0 0 

^••= E E / ? M = o ( n " 2 W ( 2 C T + Q ) l o g 2 n ) ' / = 1 ' 2 -
j=jl + l k 

As to 74)1, because of the compact support of g and I/J, we have, for any level j , 

there are at most 2J non-zero coefficients Pjk,i's. Also from g\ £ ^ 0 0 w e n a v e 

(3*kl = 0(2-^1+2<T)). Thus 

0 0 

h,\ < C E 2"2(T-? = C2-2CTn = o(n"2'TQ/(2'T+^ log2n), (5.1.34) 
3=31+1 

where the last equality follows from our choice of j j with 2jl ~ n1_7r and n < 0.75(2r + 

I)"1-

As to the second term /4i2, since there are at most r discontinuities for any level 

j and (3^k2 = 0(2~j) for those at most r coefficients, we have 

00 00 

h,2<c E z~2aj+c E r2~j- t 5 - 1 - 3 5 ) 
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From the facts that r <rn = o(n*+o.25(2r+i) ^ a n d 2h ~ n i - * w i t h ^ < o.75(2r + 

l ) - 1 , one can verify E ^ j 1 + i r 2 ~ j = r 2 _ J l = o{n-2aa^2(T+^ log2n). Combining this 

with (5.1.34) and (5.1.35) completes the proof of the lemma. 

5.2 Proof of Theorem 3.8 

For proving Theorem 3.8, we will replace Lemma 3.7 by the following tail probability 

estimate. It is here that the condition on n in (3.4.1) will be used. 

Lemma 5.8. Under the assumptions of Theorem 3.8, there exists a positive constant 

C such that 

P(\Pjk-bjk\>5^<Cn-\ Vje[joJi] and k = 0,1,-•• ,2j-l. (5.2.1) 

Proof: As in the proof of Lemma 3.7 we write 

n 

Pjk ~ bjk = n^^Eitpjkixi) =: ̂ d„ , s Cs- (5.2.2) 

For any positive integers n and K, we define Xs = Xn<a :— o~xdn,s (s for all \s\ < K. 

Then the sequence of random variables {Xs, \s\ < K} are independent, E(XS) = 0, 

E(\XS\
2+V) < oo, and the partial sum Sn,K in (5.1.14) can be written as Sn>K = 

J2\S\<K ^s - I n ^ n e notation of Lemma 3.5 we have 

d2 

BK = ^ ^Y -» 1 as K -> co. (5.2.3) 
\s\<K i 
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It follows from (5.1.16) that the generalized Lyapunov fraction LK satisfies 

^ Gj ' \*\<K °i 

< C(n-lvy{l-a)'2. 

Since 2jl ~ n 1 -", we have LK < Cn-7r?7(1-a0/2 for all K large and all integers j G 

[jo> ji]- Hence condition (3.3.1) is satisfied provided n is large enough. 

R l + » ? / 2 
K \s\<K 

1 
< —r—-r̂  max 

^ K ' N J ' \s\<K 

Let us take A = ^r]n(l - a)\nn. Then 6* = \2o) and A < ^2 ln(l /L^). There­

fore, by Lemma 3.5, we derive that for n and K large enough 

p(\Sn,K\ > A) < C5 ( l - $(A)) < Cn"1 , (5.2.5) 

thanks to the assumption that r]ir(l — a) > 2. Let K —• co and use Fatou's lemma, 

we have 

P(\Pjk ~ bjk\ > (Jj) = P ( | 5 n | > A) < linunf p( |5 n i A- | > A) < Cn~\ 

This finishes the proof of Lemma 5.8. 

Proof of Theorem 3.8: The proof of Theorem 3.8 is almost the same as that of 

Theorem 3.1, replacing Lemma 3.7 by Lemma 5.8 everywhere, where the condition 

on 77 in (3.4.1) will be used. The only other place we need to modify is in proving 

an upper bound for (5.1.31). We will take 2a = 2 + 77. During the proof, we need 

that 77 > 2a(t-a)+a' which is satisfied thanks to (3.4.1). The rest of the proof remains 

valid. For the sake of simplicity, we omit the details. 
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