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ABSTRACT 

TEMPORAL VARIATION, REGIONAL SOURCES, AND REMOVAL PROCESSES 
OF VOLATILE ORGANIC COMPOUNDS IN NEW ENGLAND 

by 

Rachel S. Russo 

University of New Hampshire, May, 2009 

This dissertation describes three research projects with the common objective of 

characterizing the influence of volatile organic compounds (VOCs) on air quality in New 

England using measurements made over multiple years (2002-2008) and from different 

sampling locations. The specific objectives include identifying sources (direct emission 

or secondary production), quantifying mixing ratios, and characterizing the chemical (i.e., 

oxidation, photolysis) and physical (i.e., transport, mixing) processes which regulate the 

distributions of VOCs in the troposphere over southeastern New Hampshire. 

Chapters 2 and 3 discuss the seasonal and interannual variability of nonmethane 

hydrocarbons (NMHCs), selected halocarbons, and alkyl nitrates using measurements 

from canister samples collected at Thompson Farm in Durham, NH throughout January 

2004-February 2008. Several anthropogenic and biogenic sources of NMHCs and 

halocarbons were identified based on correlations with tracer compounds and 

comparisons with source signatures. Additionally, evidence for the dry deposition of 

alkyl nitrates at night was observed which is a previously unaccounted for removal 

mechanism. Analysis of alkyl nitrate/parent hydrocarbon ratios, measurements made 

onboard the NOAA R/V Ronald H. Brown during the 2002 New England Air Quality 
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Study, and canister samples collected throughout the Great Bay estuary in August 2003 

are presented to assess the relative contributions of anthropogenic and marine sources of 

alkyl nitrates. 

The research described in Chapter 4 used measurements of VOCs made at an 

inland (Thompson Farm) and an offshore (Appledore Island) site to identify evidence of 

chlorine initiated oxidation of VOCs, estimate chlorine atom (CI) concentrations during 

two summers and for different transport sectors, and assess the potential influence of 

chlorine chemistry on the oxidative capacity of the troposphere over coastal New 

Hampshire. Comparable CI concentrations were estimated using a novel technique based 

on the lifetime-variability relationship of NMHCs and using the traditional NMHC ratio 

method. Furthermore, the daytime loss of DMS and ethane in the marine sector at AI was 

reproduced when reaction with both OH and CI were considered providing supporting 

evidence for CI chemistry occurring in this region. 
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CHAPTER 1 

INTRODUCTION 

The atmosphere extends from the surface to greater than 100 km above the 

surface of the Earth. However, the troposphere (the lowest -8-15 km) contains the 

majority of the mass in the atmosphere (-90%) and is chemically and physically dynamic 

because of interactions with the surface (e.g., Brasseur et al., 1999). The natural 

processes occurring in the troposphere directly influence life (i.e., human, animal, 

vegetation) and the cycling of chemical constituents throughout the entire atmosphere, 

the ocean, and the continental biosphere. Human interactions with the environment, 

through agricultural practices, population growth, industrial and technological 

development, alter and perturb the chemical state and natural balance of the atmosphere 

(e.g., Crutzen and Lelieveld, 2001; IPCC, 2007; Schlesinger, 2009). 

The radiative budget and oxidation capacity of the atmosphere are significantly 

influenced by trace components (less than 1% of the atmospheric composition). An 

important group of trace gases in the atmosphere are volatile organic compounds (VOCs) 

(including hydrocarbons (RH), organic nitrates, halogenated and oxygenated organic 

species). VOCs originate from natural (volcanoes, lightning, marine organisms, 

vegetation, soil, biomass burning) and anthropogenic (combustion, industry, 

manufacturing, fuel and gasoline use, biomass burning) sources and are removed from 

the atmosphere (or converted to secondary products) by oxidation, photolysis, wet or dry 
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deposition, air-sea exchange, soil uptake, or heterogeneous processes (e.g., Roberts, 

1990; Altschuler, 1991; Fehsenfeld et al., 1992; Singh and Zimmerman, 1992; Atkinson 

and Arey, 2003). The hydroxyl radical (OH) initiated oxidation of VOCs removes OH 

from the atmosphere and produces the peroxy radicals responsible for production of its 

primary precursor, ozone (O3). Clearly, the chemical processes involving VOCs in the 

troposphere are directly linked to the budgets of several compounds, such as carbon 

monoxide, carbon dioxide, water vapor, methane, and ozone, which play major roles in 

climate change and air quality. 

The chemical composition of the atmosphere is complex and highly variable on 

temporal (seconds to decades) and spatial (local, regional, continental, global) scales 

because of the different sources, removal mechanisms, and residence times of the various 

compounds. Therefore, the budgets (i.e., production and removal processes, mixing 

ratios) of trace gases need to be studied and characterized for individual regions. For 

example, the air quality in New England is influenced by local anthropogenic and 

biogenic sources of VOCs and by emissions that are transported from upwind urban and 

industrial areas in the U. S. (e.g., de Gouw et al., 2005; Moody et al., 1998; Talbot et al., 

2005; Lee et al., 2006; White et al., 2008, 2009; Zhou et al., 2005, 2008). Moreover, the 

northeast U. S. is a major source region of continental outflow to the North Atlantic. 

Properly characterizing the relative contributions of transported and local emissions, 

background mixing ratios, and the processes responsible for variations in the composition 

of air masses is difficult. Additional complexities arise when studying air quality in 

coastal regions, such as New England, because of interactions between air masses 

originating from continental and marine regions. 
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Ambient measurements of VOCs made at various time scales (diumal, seasonal, 

interannual) are required to constrain and identify the physical (mixing, dilution, 

transport, deposition) and chemical (oxidation, photolysis, decomposition) processes 

which regulate their behavior. This dissertation is focused on characterizing the influence 

of VOCs on air quality in New England using multi-year measurements of nonmethane 

hydrocarbons, halocarbons, and alkyl nitrates. Chapter 2 is focused on analyzing the 

seasonal and interannual variability of C2-Q NMHCs and two halocarbons from daily 

canister samples collected throughout January 2004-February 2008 at Thompson Farm in 

Durham, NH. The specific objectives are to identify sources, describe temporal trends in 

sources or emissions, estimate emission rates of NMHCs from New England, and 

compare emission rates from the 2002 EPA National Emissions Inventory with the rates 

derived from ambient measurements. Chapter 3 discusses the seasonal, interannual, and 

diurnal variation and sources of alkyl nitrates using four separate data sets collected 

throughout coastal New Hampshire. Alkyl nitrates are photochemical products of the OH 

initiated oxidation of the C2-C5 alkanes discussed in Chapter 2 and are minor reaction 

products of the same NMHC-NOx chemistry which produces tropospheric O3. The 

relative contributions of different removal mechanisms of alkyl nitrates are assessed. 

Chapter 4 compares the relative influence of OH and chlorine initiated oxidation of 

NMHCs, CO, CH4, OVOCs, and DMS on the chemical composition of air masses 

encountered at Thompson Farm and Appledore Island during two summers (July-August 

2004 and 2005). Additional objectives include characterizing the interannual variability 

in meteorological conditions and VOC distributions, estimating chlorine atom 

concentrations, and describing the diurnal cycle of DMS. 

3 



CHAPTER 2 

LONG-TERM MEASUREMENTS OF NONMETHANE HYDROCARBONS AND 
HALOCARBONS IN NEW HAMPSHIRE: SEASONAL VARIATIONS AND 

REGIONAL SOURCES 

2.1 Introduction 

Volatile organic compounds (VOCs) (including nonmethane hydrocarbons 

(NMHCs), alkyl nitrates, oxygenated hydrocarbons, halocarbons) are ubiquitous and 

important chemical constituents in the atmosphere. Reaction of VOCs with various 

oxidants (e.g., hydroxyl radical (OH), ozone (O3), nitrate radical, halogens) produces 

organic (RO2) and hydro (HO2) peroxy radicals which react with nitrogen oxides (NOx) 

to produce secondary species, such as tropospheric ozone, organic nitrates, and 

peroxides, thus regulating the oxidation capacity of the atmosphere. The relative 

concentrations and speciation of NOx and NMHCs in a particular region determine 

whether ozone production or destruction occurs (e.g., Carter, 1994; Sillman and He, 

2002; Kleinman et al., 2005). In addition, the partitioning of low volatility VOC 

oxidation products into the condensed phase produces secondary organic aerosols (e.g., 

Odum et al., 1997; Kroll and Seinfeld, 2008). Ozone and aerosols are components of 

photochemical smog, respiratory lung irritants, and harmful to vegetation and crops. 

Furthermore, several VOCs, such as benzene, toluene, xylenes, and tetrachloroethene, are 

classified as toxic air pollutants and are subject to federal regulations (U.S. EPA, 2008). 

Therefore, it is crucial to identify and characterize the atmospheric distributions and 

4 



sources of VOCs in order to develop and validate emission inventories, reduce the levels 

of hazardous air pollutants, and to predict and control O3 and aerosol concentrations. 

Despite the importance of quantifying VOC sources and emissions, information 

on their regional distributions is highly variable because of several confounding factors, 

including different atmospheric lifetimes and removal mechanisms, varying 

meteorological conditions, and distinguishing between local, regional, and distant 

sources. In order to minimize these complications and to eliminate site-to-site 

differences, long-term continuous measurements from the same location are necessary. 

Multi-year measurements of NMHCs and halocarbons at remote and urban North 

American sites have been reported (e.g., Jobson et al., 1994; Hagerman et al., 1997; Kang 

et al., 2001; Mohamed et al., 2002; Gautrois et al., 2003; Swanson et al., 2003; McCarthy 

et al., 2006; Qin et al., 2007), but not for New England since 1994-2001 (Goldstein et al., 

1995; Kleiman and Prinn, 2000; Barnes et al., 2003; Lee et al., 2006). These studies have 

provided baseline data from which to monitor future changes in sources and ambient 

mixing ratios. Previous research has shown that the trace gas measurements (including 

O3, carbon monoxide (CO), nitric oxide (NO), NMHCs, halocarbons, alkyl nitrates) made 

at Thompson Farm (TF) in Durham, New Hampshire are representative of both inland 

and coastal New England (e.g., Talbot et al., 2005; Chen et al., 2007; Sive et al., 2007; 

Mao et al., 2008; Russo et al., 2009; White et al., 2008; Zhou et al., 2005, 2008). 

Therefore, the TF results can be applied to regional analyses of the short and long-term 

temporal variability, sources, and sinks of VOCs and to emission inventory evaluation. 

This is particularly valuable because southern New England, including the seacoast 

region of New Hampshire, and extending to the southwest through New York and New 
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Jersey are classified as O3 nonattainment areas (U.S. EPA, 2003, 2008). Moreover, air 

masses containing urban and industrial emissions from southern New England, the U. S. 

East Coast and mid-Atlantic corridor, and the Midwest are transported to New 

Hampshire. Consequently, TF is ideally situated for studying the chemical composition 

of air masses transported to the North Atlantic. 

In this work, four years of ambient NMHC and halocarbon data from daily 

canister samples collected at the UNH AIRJVIAP Thompson Farm site in southeastern 

New Hampshire are discussed. The primary objectives are to characterize and interpret 

the seasonal to interannual mixing ratio trends and to identify the sources of C2-C8 

NMHCs and halocarbons. Additionally, emission rates of the NMHCs are estimated and 

compared with the 2002 EPA National Emissions Inventory. 

2.2 Sampling and Analytical Methods 

2.2.1 Daily Canister Samples 

A canister sample has been collected nearly every day since January 12, 2004 at 

the University of New Hampshire AIRJVIAP Atmospheric Observing Station at 

Thompson Farm (TF) located in Durham, New Hampshire (43.11°N, 70.95°W, elevation 

24 m) (Figure 2.1). Thompson Farm is surrounded by agricultural fields and a mixed 

deciduous and coniferous forest and is located approximately 20 km inland from the 

Atlantic Ocean and 100 km north of Boston, MA. The ambient air samples were collected 

at the top of a 15 m tower next to the manifold inlet for all the instruments housed in the 

TF trailer. Samples were collected each day between 10:00-15:00 (EST; UTC-5 hours) 

and are representative of daytime conditions when photochemistry is most active and the 

boundary layer is likely well mixed. From January-June 2004, samples were collected in 
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1-liter canisters. Samples have been collected in 2-liter electropolished stainless steel 

canisters (University of California-Irvine) since June 2004. Prior to sampling, the 

canisters were prepared by flushing with UHP helium that had passed through an 

activated charcoal/molecular sieve trap immersed in liquid nitrogen. The canisters were 

then evacuated to 1 x 10" torr. 

Figure 2.1. Location of the UNH AIRMAP Atmospheric Observing Station at Thompson 
Farm in Durham, New Hampshire, and (inset) the sampling sites used during the Great 
Bay Experiment (Chapter 3). 

The canister samples were analyzed in the lab at UNH approximately every 1-3 

months for C2-C10 nonmethane hydrocarbons, C1-C5 alkyl nitrates, C1-C2 halocarbons, 

several oxygenated volatile organic compounds, and selected sulfur compounds. A three 
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gas chromatograph system in conjunction with flame ionization detection (FID), electron 

capture detection (ECD), and mass spectrometry (MS) was used for sample analysis. 

Details of the system configuration used for analysis of the canister samples collected in 

2004 and 2005 are given in Sive et al. (2005) and Zhou et al. (2005, 2008). A brief 

description of the system and modifications made in 2006 are presented here. The 

samples were analyzed by trapping 1500 cc (STP) of air on a glass bead filled loop 

immersed in liquid nitrogen. After sample trapping was complete, the loop was isolated, 

warmed to 80°C, and the sample was injected. Helium carrier gas flushed the contents of 

the loop and the stream was split into five with each sub-stream feeding a separate GC 

column. A 25 m x 0.53 mm I.D., 10 urn film thickness CP-Al203/Na2S04 PLOT column 

and a 60 m x 0.32 mm I.D., 1 um film thickness VF-lms column were connected to FIDs 

and were used for detecting the C2-C10 NMHCs. C1-C2 halocarbons and C1-C5 alkyl 

nitrates were detected by ECD and separated with a 60 m x 0.25 mm I.D., lum film 

thickness OV-1701 column. C1-C2 halocarbons were also measured with a 25 m x 0.25 

mm I.D., 3 um film thickness CP-PoraBond-Q column coupled to a Restek Phase XTI-5 

30 m x 0.25 mm I.D., 0.25 um film thickness column and detected by ECD. Oxygen 

doping was used for this channel to improve the sensitivity for the methyl halide 

measurements. A 60 m x 0.25 mm I.D., 1.4 um film thickness OV-624 column provided 

separation for the MS which was run in electron impact mode with single ion monitoring 

for measuring OVOCs and sulfur compounds, as well as duplicate measurements of 

several halocarbons and NMHCs. A secondary He carrier with a slower flow rate (1 

seem) was used for the MS in order to improve the measurement sensitivity. The OV-

1701 ECD channel was used for quantifying C2CI4 and C2HCI3, and the Cs aromatics 
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were quantified using the MS. A 1500 cc aliquot from one of two working standards was 

assayed every ninth analysis. The measurement precision (i.e., relative standard deviation 

(RSD) = (standard deviation of peak areas/average of peak areas) for each compound 

within a specific standard) for the different compounds was <l-5% for the C2-C7 

NMHCs, 2-10% for the C8 aromatics, 3-8% for C2C14, and 5-10% for C2HC13. 

2.2.2 Daily Canister Sample Data Set 

Measurements of several classes of NMHCs and two halocarbons are analyzed 

from the canister samples collected during January 12, 2004 to February 8, 2008. 

Collection of the daily samples is ongoing. The specific compounds, which represent a 

wide range of chemical reactivities and sources, are C2-C6 alkanes (ethane, propane, i-

butane, n-butane, i-pentane, n-pentane, n-hexane), C2-C4 alkenes (ethene, propene, 1-

butene), C6-Cs aromatics (benzene, toluene, ethylbenzene, m+p-xylene, o-xylene), 

ethyne, isoprene, tetrachloroethene (C2CI4), and trichloroethene (C2HCI3). The data for 

each year and for the combined four year data set was separated into four seasons which 

are defined as winter: December, January, February; spring: March, April, May; summer: 

June, July, August; and fall: September, October, November. Note that the data 

encompasses five winter seasons (2004-2008) and four spring, summer, and fall seasons 

(2004-2007). Winter includes December of the previous year (i.e., winter 2005 represents 

December 2004 and January-February 2005). Winter 2004 only includes January 12 to 

February 29, and winter 2008 is only through February 8. Mixing ratios higher than the 

95th percentile for each month were removed in order to ensure that the results were 

representative of typical conditions and were not skewed by a few outlying data points. 
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2.2.3 Thompson Farm Automated Gas Chromatograph 

Measurements of C3-C6 alkanes, ethyne, propene, benzene, toluene, ethylbenzene, 

m+p-xylene, and o-xylene made once per hour with an automated gas chromatography 

system during December 2005-January 2006 at TF were also used in this analysis. Details 

of the four channel (2 FIDs, 1 ECD, 1 MS) GC system, MMR preconcentrator, sample 

trapping and splitting, calibrations, and instrument control are given in Sive et al. (2005). 

The system deployed at TF also contained four channels, but VOC detection was made 

with two FIDs and two ECDs. The MMR preconcentrator system used two independently 

cooled and controlled stages for sample trapping. The first stage (water management) 

contained a Silonite-coated stainless steel sample loop and was cooled to -30°C. The 

second stage (sample enrichment) housed a Silonite-coated stainless steel loop filled with 

1 mm diameter glass beads and was cooled to -185°C. After the two stages reached their 

initial set point temperatures, a 1500 cc aliquot of air was trapped at 200 ccm. After 

trapping was complete, 100 cc of UHP helium was passed through both loops at a rate of 

100 ccm. The glass bead filled loop was then isolated, warmed to 90°C, and the sample 

was injected. Helium carrier gas flushed the contents of the loop and the stream was split 

into four with each sub-stream feeding a separate GC column. One 50 m x 0.32 mm I.D., 

5 \xm film thickness CP-Al203/Na2S04 PLOT column, one 60 m x 0.32 mm I.D., 1 urn 

film thickness VF-lms column, one 60 m x 0.25 mm I.D., 1 um film thickness OV-1701 

column, and a 25 m x 0.25 mm I.D., 3 |j.m film thickness PoraBond-Q column coupled to 

a 40 m x 0.25 mm I.D., 1 |u.m film thickness OV-1 column were used for trace gas 

separation. The PLOT and VF-lms columns were connected to FIDs and were used for 

C3-C7 and C5-C10 NMHC detection, respectively. The OV-1701 and PoraBond-Q/OV-1 
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columns were connected to ECDs and measured C1-C2 halocarbons and C1-C5 alkyl 

nitrates. A 1500 cc aliquot from one of two working standards was assayed every tenth 

analysis. The precision (i.e., RSD) for each of the hydrocarbons ranged from 3-10%. 

2.2.4 Standards and Calibration 

In order to ensure that the mixing ratios for samples analyzed at different times 

are comparable, whole air and synthetic standards were routinely analyzed and calibrated. 

After every eight canister samples, one of two whole air standards was analyzed in order 

to quickly notice any analytical problems and to monitor changes in detector sensitivity. 

Due to overlapping periods when different working standards were being used (e.g., July 

2005, Figure 2.2), the response of each detector (i.e., response factors) can be cross 

referenced, and the mixing ratios in the standards can be recalibrated (if necessary) and 

verified. Response factors (RF) for each compound in a particular standard were 

calculated by dividing the detector response (peak area = A) by the mixing ratio (MR) of 

that compound in the standard (RF = A/MR). The per carbon response factors (PCRF) 

were determined by dividing the response factor by the number of carbon atoms (C) in 

the particular hydrocarbon (PCRF = RF/C). 

Examples of the PCRFs for several NMHCs are shown in Figure 2.2 for the 

analyses when a new standard began to be used and every ~5-7 months when the same 

two standards were being analyzed. Ethane, propane, n-butane, ethyne, propene, and 1-

butene were measured with the PLOT column, and benzene and toluene were measured 

with the VF-lms column. The PCRF of the C2-C4 NMHCs decreased with increasing 

carbon number, but remained approximately the same over the four years and did not 

vary with standard (Figure 2.2a-f). Additionally, the PCRF were fairly constant for the C3 
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(mean ± standard deviation PCRF ~ 4.1 ± 0.18) and C4 (3.7 ± 0.16) compounds. The 

PCRFs for the VF-lms column were fairly constant for compounds with different carbon 

numbers within a specific analysis period. For example, in August 2005, the PCRFs for 

the C6-Cio NMHCs in ccr21, ccr24, and DC2 were 1.5±0.03, 1.4±0.03, and 1.4±0.04, 

respectively. In addition, in February 2008, the PCRFs for ccr21, hppc, and DC2 were 

1.2±0.04, 1.3±0.04, and 1.3±0.07, respectively. Periodically, the standards used by the 

automated GC system at TF were returned to the laboratory and analyzed on the canister 

analysis system. The PCRFs for the TF standards (ex. DC2) were in good agreement (± 

5%) with the lab standards ensuring that the measurements made by the two independent 

systems were comparable. 

2.3 Seasonal and Interannual Variability 

2.3.1 Anthopogenic Nonmethane Hydrocarbons 

The highest monthly mean and median mixing ratios of NMHCs (excluding 

isoprene, section 2.3.2) at TF were observed in the winter (Figure 2.3, Table 2.1). This 

reflects the slow removal rates from the atmosphere caused by minimum OH radical 

concentrations. Lower boundary layer heights in winter are conducive to the build up of 

trace gas concentrations and may also contribute to the wintertime peak mixing ratios. 

The lowest NMHC mixing ratios were observed in spring to summer when the maximum 

OH concentrations occur and the photochemical removal of NMHCs is the most rapid. 

The seasonal variation at TF is consistent with the general tropospheric trend observed at 

other Northern Hemisphere sites (e.g., Jobson et al., 1994; Bottenheim and Shepherd, 

1995; Goldstein et al., 1995; Hagerman et al., 1997; Gautrois et al., 2003; Swanson et al., 

2003; Lee et al., 2006; Qin et al., 2007). Furthermore, the summer background mixing 
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ratios (monthly 10 percentile) of the C2-C6 alkanes and ethyne were comparable to 

background levels measured at Harvard Forest in Massachusetts throughout 1992-2001 

(Goldstein et al., 1995; Lee et al., 2006) suggesting that the atmospheric levels of these 

compounds have not changed considerably since the 1990's. 

The longer lived compounds had higher mixing ratios and reached minimum 

annual mixing ratios later in the year. For example, ethane was the most abundant NMHC 

(excluding isoprene) all year with peak mixing ratios in winter-early spring (2000-5000 

pptv) (Figure 2.3a). Ethane decreased quickly from March to June (300-400 pptv/month), 

and then decreased more slowly (80-160 pptv/month) until mid-late summer when 

minimum mixing ratios (1000-2000 pptv) were observed. Mixing ratios of the C3-C6 

alkanes, alkenes, ethyne, and aromatics began to decrease in mid-late winter and reached 

minimum levels 2-4 months later (Figure 2.3; Table 2.1). Propane, i-butane, and n-butane 

mixing ratios were lowest in late spring followed by an increase in early summer before 

reaching a second minimum in late summer (Figures 2.3a-b). In comparison, minimum 

mixing ratios of the shorter-lived C5-C6 alkanes and toluene occurred earliest (April-

May), increased in early summer, and then remained within a similar range through 

October-November (Figures 2.3c-f; Table 2.1). Contrary to the expected photochemical 

trend, i-pentane mixing ratios were similar to or higher than the less reactive butanes in 

summer. The monthly median mixing ratios in June-September of each year for i-

pentane, n-butane, and i-butane were 70-120, 70-140, and 50-100 pptv, respectively. 
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The lowest mixing ratios of ethene, ethyne, and benzene were reached in late 

spring to early summer and persisted through late summer (Figure 2.3d, Table 2.1). 

Despite its order of magnitude shorter lifetime, ethene mixing ratios were often similar to 

or higher than ethyne in summer, fall, and winter. On average, propene, 1-butene, 

ethylbenzene, and xylenes (m+p and o) were also highest in winter, lowest in early-mid 

spring, and increased in early summer (Figures 2.3d-g, Table 2.1). Superimposed on the 

general seasonal pattern were unique interannual trends reflecting varying sources or 

emission ratios. For example, a higher and narrower range of propene (-50-80 pptv) and 

1-butene (-8-17 pptv) monthly medians was observed in spring 2006 through winter 

2008 compared to the previous two years when distinct winter peaks and spring-summer 

minimum mixing ratios were observed. Additionally, the highest monthly mean and 

median m+p-xylene and o-xylene mixing ratios of the entire four year study period (-25-

40 and 25-35 pptv, respectively), as well as the highest summer toluene (90-140 pptv) 

and ethylbenzene (14-22 pptv) mixing ratios, were observed in summer 2007 and 

elevated mixing ratios persisted through winter 2008 (Figures 2.3f-g). 

2.3.2 Isoprene 

Isoprene is the only NMHC discussed in this work with a predominantly biogenic 

origin (deciduous plants and trees) (e.g., Fehsenfeld et al., 1992). Isoprene mixing ratios 

increased rapidly in the beginning of June, remained high through August, and gradually 

decreased in September-October of each year (Figure 2.4a, Table 2.1). In July-August 

2005, 2006, and 2007, isoprene was the most abundant NMHC (monthly mean mixing 

ratios = 1000-2100 pptv) illustrating the importance of biogenic emissions in this region. 

In comparison, ethane (the longest lived NMHC) mixing ratios were 800-1250 pptv. 
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Figure 2.4. (a) Time series of isoprene (pptv) at TF during January 2004-February 2008. 
(b) Hourly average temperature (°C) during June-August of 2004, 2005, 2006, and 2007. 

Isoprene and ambient temperature were positively correlated during summer of 

each year (Figure 2.4b). The highest isoprene mixing ratios (>3 ppbv) were observed in 

the warmest summers (2005 and 2006) while the lowest (<1600 pptv) mixing ratios 

corresponded to the coolest summer (2004). The equation relating isoprene (in ppbv) and 

the hourly average temperature (T in °C corresponding to the hour the sample was 

collected) for all of the June-September data was log(isoprene) = 0.074T-1.91 (r2=0.57). 

The equation was nearly the same each individual year, on sunny/clear days, and on 

cloudy/rainy days. Furthermore, this relationship is consistent with previous studies 

(Fehsenfeld et al., 1992; Jobson et al., 1994; Goldan et al., 1995; Gong and Demerjian, 

1997; Hagerman et al., 1997; Kang et al., 2001) indicating a similar temperature 

dependence of ambient isoprene mixing ratios at various North American sites. Isoprene 
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was not correlated with JNo2 (NO2 photolysis frequency) or with the daily maximum and 

average photosynthetically active radiation (PAR) (obtained from the UNH weather 

station http://www.weather.unh.edu). This may suggest temperature is a better predictor 

of isoprene emission rates than sunlight at TF. 

2.3.3 Halocarbons 

Trichloroethene and tetrachloroethene are primarily emitted from industrial 

sources (dry cleaning solvents, degreasing agents) (e.g., Wang et al., 1995; McCulloch 

and Midgley, 1996). It is necessary to monitor the atmospheric trends of C2HCI3 and 

C2CI4 because they are toxic air pollutants and regulated by the EPA (U. S. EPA, 2007), 

precursors to toxic oxidation products (phosgene, trichloroacetic acid) (e.g., Kindler et 

al., 1995), and potential sources of chlorine radicals in the troposphere and stratosphere 

(Schauffler et al., 2003; Thompson et al., 2004). At TF, the shorter-lived (days-weeks) 

C2HCI3 had a similar seasonal variation as the NMHCs with a winter maximum (5-8 

pptv) and spring minimum (1-2 pptv). The early summer (3-5 pptv) increase in monthly 

median mixing ratios implies that evaporative emissions of C2HCI3 are important to its 

atmospheric distribution (Figure 2.5). Monthly median mixing ratios of the longer-lived 

(months) C2CI4 were fairly uniform. A seasonal variation was apparent in the C2C14 

background (monthly 10' percentile) mixing ratios which were highest in winter (8-9 

pptv) and lowest in late summer (3-5 pptv). The C2CI4 mixing ratios at TF are similar to 

background levels in Massachusetts during 1996-1999 (Kleiman and Prinn, 2000; Barnes 

et al., 2003). Even though a decrease in ambient C2CI4 mixing ratios has been observed at 

remote northern hemisphere sites (McCulloch et al., 1999; Blake et al., 2003b; Gautrois 

et al., 2003; Simpson et al., 2004; Thompson et al., 2004; Simmonds et al., 2006), the 
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similar mixing ratios in New England suggest that C2CI4 emission rates in more 

populated areas in the U.S. did not change considerably between the late 1990's and 

2004. However, several characteristics of the C2CI4 and C2HCI3 trends indicate that their 

atmospheric mixing ratios have been decreasing throughout 2004-2008. For example, 

there has been a decrease in the magnitude of peak mixing ratios, and the annual mean, 

median, and background mixing ratios have decreased with each successive year (Figure 

2.5, Table 2.2). 

Acknowledging that it is difficult to conduct an accurate trend analysis based on 

only four years of measurements, an estimate of the rate of decrease in atmospheric 

mixing ratios of both halocarbons was made. The annual statistics were used in order to 

minimize the influence of the seasonal variation in C2HCI3 and in background C2CI4. The 

linear regression through the annual background mixing ratios gave decrease rates of 

0.73±0.24 (-10-20 %/year) and 0.27±0.05 (-20-40 %/year) pptv/year for C2C14 and 

C2HCI3, respectively (Table 2.2). In comparison, C2CI4 decrease rates (pptv/year) were 

estimated to be 0.18 (C2HC13=0.01) during July 2000-December 2004 at Mace Head, 

Ireland (Simmonds et al., 2006), 1.0 (C2HC13=0.1) in 1991-1996 at Alert, Canada 

(Gautrois et al., 2003), 0.1-0.4 throughout 1989-2002 along the North American west 

coast (Simpson et al., 2004), 0.6-1.2 during 1994-1997 in the continental U.S. (Hurst et 

al., 1998), and 5 %/year in 1995-2003 based on analysis of EPA and NOAA CMDL data 

at remote U.S. and North American sites (McCarthy et al., 2006). However, it is difficult 

to make direct comparisons between the trends observed at different location because of 

the short C2HCI3 lifetime, the limited number of previous estimates, and the differences 

in regional emission rates and regulations. 
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C2HC1; c2cu 

Mean (SD) 
Median (N) 
Background 
Range 

Mean (SD) 
Median (N) 
Background 
Range 

Mean (SD) 
Median (N) 
Background 
Range 

Mean (SD) 
Median (N) 
Background 
Range 

pptv/year±(SD) 
r2 

2004 
6.0 (4.7) 
4.6 (277) 

1.30 
0.25-23.4 

2005 
5.0(3.7) 
4.5 (323) 

0.93 
0.16-21.1 

2006 
4.0 (3.6) 
2.9 (264) 

0.73 
0.14-20.3 

2007 
3.0 (2.6) 
2.5 (240) 

0.46 
0.12-14.6 

-0.27±0.05 
0.99 

15.8(10.5) 
12.3 (277) 

6.73 
3.3-65.7 

13.3 (7.6) 
11.0(324) 

6.20 
3.4-44.7 

13.1(9.2) 
9.6 (270) 

5.70 
3.3-65.3 

10.5 (6.5) 
8.6 (244) 

4.48 
2.4-40.6 

-0.73±0.24 
0.95 

Table 2.2. Annual C2HC13 and C2C14 statistics (pptv) for 2004-2008, and the rate of 
decrease (pptv/year) in the annual background mixing ratios. SD = standard deviation. N 
= number of samples. Background = 10{ percentile for the year. 

2.4 NMHC Source Identification 

2.4.1 Comparison with Tracers and Source Signatures 

The following source signature information is used to interpret and identify the 

sources of NMHCs observed at TF. The major sources of ethyne, benzene, carbon 

monoxide (CO), and alkenes are incomplete combustion of fossil fuels, biomass burning, 

and vehicle exhaust emissions (e.g., Harley et al., 1992; McLaren et al., 1996; Harley et 

al., 2001; Choi and Ehrman, 2004). C2-C4 alkanes are emitted from natural gas, 

incomplete combustion, and unburned gasoline. Fuel evaporation emissions (caused by 
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ambient temperature changes or residual engine heat during vehicle operation, resting, or 

refueling) are a dominant source of C4-C5 alkanes because of their high vapor pressures 

(Harley et al., 2001; Choi and Ehrman, 2004). The leakage of unburned liquefied 

petroleum gas (LPG) (during storage, distribution, or refilling) is a significant source of 

propane, i-butane, and n-butane and a minor source of alkenes (Blake and Rowland, 

1995; Chen et al., 2001; Jobson et al., 2004). Aromatics are a major component of liquid 

gasoline and are often observed in vehicle exhaust because of incomplete combustion or 

leakage of unburned fuel (e.g., Kirchstetter et al., 1999; Harley et al., 2000, 2001). 

Toluene, ethylbenzene, m+p-xylene, and o-xylene are also emitted from fuel evaporation 

and industrial processes (i.e., painting, architectural coating, manufacturing, printing, 

degreasing solvents) (e.g., Monod et al., 2001). 

Ethyne and CO were fairly well correlated at TF (r2=0.5-0.9) demonstrating a 

year-round impact from combustion emissions (Figure 2.6a). The correlations between 

alkenes and ethyne showed considerable scatter and were strongest in winter. The alkenes 

are very reactive (lifetime < 1 day to 2 weeks depending on season) and had presumably 

undergone mixing and oxidative removal during transport resulting in weaker 

correlations in spring, summer, and fall. Based on the winter measurements, the ethene 

and propene correlation slopes with ethyne (1.2 and 0.21, respectively) were similar to 

light duty gasoline and vehicle exhaust emission ratios (0.91-1.7 and 0.1-0.5, 

respectively) (Conner et al., 1995; Watson et al., 2001; Choi and Ehrman, 2004; 

McGaughey et al., 2004) suggesting that vehicular emissions, rather than LPG, were the 

dominant source of these alkenes. Propene and 1-butene were well correlated throughout 

the majority of the study period reflecting their common source (Figure 2.6b). The 
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correlation coefficients between ethyne and the alkanes, benzene, and toluene were fairly 

variable within each season and year (r2=0.4-0.9), but overall suggest that combustion 

sources were collocated with or were the same as the alkane and aromatic sources. 
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Figure 2.6. Correlations between (a) ethyne and CO (ppbv) and (b) propene and 1-butene 
for each year (2004, 2005, 2006, 2007, 2008). m=slope ± standard error (SE) (r2). 
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Figure 2.7. Correlations between (a) n-butane and propane and (b) n-butane and i-butane 
for each year, (c) Correlation between n-pentane and i-pentane. Gray circles are all of the 
samples collected in October-May of 2004-2008. Red squares are all of the samples 
collected in June-September of 2004-2007. m=slope ± SE (r2). 
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The C3-C6 alkanes were well correlated with each other (r2=0.6-0.9), while 

correlations between ethane and the C3-C6 alkanes were slightly weaker (r2=0.3-0.7). The 

slopes of the correlation between propane and n-butane (2.2-2.7, Figure 2.7a) and i-

butane (3.8-5.5, not shown) agree with LPG emission ratios (2-4 and 3-7, respectively) 

(e.g., Blake and Rowland, 1995; Chen et al., 2001; Barletta et al., 2008) indicating that 

LPG emissions are widespread and prevalent in New England. Moreover, the correlation 

slope between i-butane and n-butane (0.49-0.56, Figure 2.7b) is within the range of 

reported emission ratios from several sources, including urban (-0.3), vehicular exhaust 

(-0.2), petroleum (>~1), LPG (0.46), and natural gas (-0.6-1) (B. Sive, unpublished data; 

Blake and Rowland, 1995; Jobson et al., 1998, 2004; Fujita et al., 2001; Watson et al, 

2001; Barletta et al., 2002; Choi and Ehrman, 2004; Velasco et al., 2007). This suggests 

that a uniform mix of emissions from all of these sources is observed at TF. 

Similarly, i-pentane and n-pentane were strongly correlated (r2=0.92) (Figure 

2.7c), and the slope was within the range of reported emission ratios for vehicle exhaust 

and tunnel studies (-2.2-3.8), liquid gasoline (1.5-3), and fuel evaporation (1.8-4.6) 

(Conner et al., 1995; Kirchstetter et al., 1996; McLaren et al., 1996; Sagebiel et al., 1996; 

Rogak et al., 1998; Harley et al., 2001; Watson et al, 2001; Jobson et al., 2004; 

McCaughey et al., 2004; Lough et al., 2005; Velasco et al., 2007). The correlation slope 

was noticeably higher in the warmer months (June-September slope=2.2) reflecting 

enhanced evaporative emissions of i-pentane. Additionally, the correlation slopes 

between the C5-C6 alkanes and butanes were higher in summer. For example, the slope of 

the correlation between i-pentane with i-butane and n-butane was approximately a factor 

of two higher in summer (1.6 and 1.0, respectively) compared to winter (0.83 and 0.41, 
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respectively), while the summer n-pentane (0.72 and 0.46, respectively) and n-hexane 

(0.32 and 0.19, respectively) slopes were -40-70% higher than winter. This demonstrates 

that fuel evaporation and headspace vapor emissions of the C5-C6 alkanes were strong 

enough to counteract OH chemistry throughout the entire summer despite the required 

use of reformulated gasoline with a lower Reid vapor pressure (RVP) in order to reduce 

emissions of highly volatile NMHCs (U.S. EPA, 2003, 2008). 

The C7-C8 aromatics were well correlated illustrating their common sources. The 

toluene/ethylbenzene correlation slope was in good agreement with vehicular and urban 

emission ratios (Figure 2.8a) (e.g., Parrish et al., 1998; Monod et al., 2001). The o-

xylene/m+p-xylene correlation slope (0.44-0.55, Figure 2.8b) was slightly higher, and the 

m+p-xylene/ethylbenzene (1.1-1.9, Figure 2.8c) and o-xylene/ethylbenzene (0.53-1.1, not 

shown) slopes were lower than urban, gasoline, fuel evaporation, and vehicle exhaust 

emission ratios (-0.36-0.4, 2.2-4.6, and 1.2-1.8, respectively) (Conner et al., 1995; 

Kirchstetter et al., 1996; Sagebiel et al., 1996; Rogak et al., 1998; Monod et al., 2001; 

Watson et al., 2001; Choi and Ehrman, 2004; Jobson et al., 2004; Velasco et al, 2007). 

The differences between the emission and ambient Cg aromatic ratios likely reflect the 

preferential loss of the xylenes during transport because of their greater reactivity. 

2.4.2 Ambient Ratios: Compounds with Similar Lifetimes 

Information on the relative impact of various sources in a region can be obtained 

by comparing the ambient ratio of two compounds that have similar rates of reaction with 

OH but different sources (e.g., Klemp et al., 1997; Jobson et al., 1999; Goldan et al., 

2000). The ratio should reflect the integration of several factors, such as air mass mixing 

and dilution, new emission inputs, and oxidative removal, because neither compound will 
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be removed preferentially during transport. Thus, on average, the ratio can be assumed to 

remain fairly constant and approximately equal to the emission ratio (Parrish et al, 1998). 

For example, propane, ethyne, and benzene have similar lifetimes (<30% difference in 

koH) (Atkinson et al., 2006a), but propane is a tracer of gasoline, natural gas, or 

petroleum while ethyne and benzene are tracers of combustion. The propane/ethyne and 

propane/benzene vehicular exhaust emission ratios are < 1 while ratios from natural gas 

and LPG are >~1 (Conner et al., 1995; Fujita et al., 1995; Watson et al., 2001, Choi and 

Ehrman, 2004; White et al., 2008). In 2004-2008, the propane/ethyne and 

propane/benzene ratios (correlation slopes) ranged from 1-5 (~2) and 3-25 (~9), 

respectively, demonstrating the stronger influence of natural gas or LPG relative to 

incomplete combustion as a source of propane throughout the entire year. This 

corroborates previous work at TF and Appledore Island (10 km off the NH coast) during 

summer 2004 which concluded that LPG was the dominant source of propane throughout 

the entire day in southern NH (White et al., 2008). The strong correlations between 

propane and ethyne (Figure 2.9a), propane and benzene (r =0.71-0.76, not shown), and 

benzene and ethyne (Figure 2.9b) illustrate that emissions from natural gas or LPG were 

concurrent and/or collocated with fossil fuel/incomplete combustion. Furthermore, this 

suggests that non-vehicular exhaust emissions, such as residential use of natural gas or 

LPG, were important sources of ethyne and benzene. 

The slope of the benzene vs. ethyne correlation was the same in each season of 

every year at TF (slope of all data=0.21, r2=0.91) (Figure 2.9b). This value is consistent 

with observations of ambient benzene/ethyne ratios measured during several spring-

summer field campaigns conducted throughout the U.S. (Fortin et al., 2005; Harley et al., 
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2006; Parrish, 2006; Sistla and Aleksic, 2007; Wameke et al., 2007) and in major cities 

(Parrish et al., 2008). Decreasing ratio values since the mid-1990's have been interpreted 

as evidence of reduced benzene emissions, rather than an increase in ethyne, because of 

federal requirements to reduce the benzene content of gasoline (Fortin et al., 2005; 

Harley et al., 2006; U.S. EPA, 2008). The constant ratio value throughout 2004-2008 

suggests that benzene and ethyne emissions have not changed which is supported by the 

lack of an interannual trend in their mixing ratios (Figure 2.3d). The benzene content in 

gasoline has remained fairly constant (0.6-0.9%) over the past several years (U.S. EPA, 

2008) which may also partly account for the constant benzene/ethyne ratio. 
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Figure 2.9. Correlations between (a) propane and ethyne, and (b) benzene and ethyne for 
each year. m=slope ± SE (r2). 
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2.4.3 Ambient Ratios: Compounds with Different Lifetimes 

The analysis in the previous section was based on the assumption that the ambient 

ratio between two compounds with similar rates of removal from the atmosphere will 

remain nearly constant during transport. Additionally, ambient ratios between compounds 

with different rates of reaction with OH and with well characterized sources and sinks are 

frequently used to estimate the relative photochemical age of air masses, transport times 

and distances, or OH concentrations (e.g., Jobson et al., 1994; McKeen et al., 1996; 

Parrish et al., 1998; Smyth et al., 1999; Dimmer et al., 2001; Kleinman et al., 2003; 

Russo et al., 2003). A fundamental drawback to estimating air mass processing times 

using ambient ratios is a lack of information on seasonal variations in sources, especially 

when analyzing data from short-term field campaigns. Analysis of the long-term 

measurements from TF provided a unique perspective on the interrelationships between 

seasonal variations in sources and chemical processing in this region. 

Four common ratios with the shorter-lived compound in the numerator are 

ethyne/CO, propane/ethane, toluene/benzene, and C2HCI3/C2CI4 (Figure 2.10). The 

general behavior of these ratios can be predicted based on the differential removal of the 

compounds in each ratio. For example, if reaction with OH was the only factor 

influencing the seasonality in mixing ratios, a decrease in ratio values from winter to 

summer would be expected to occur concurrently with the increase in atmospheric OH 

concentrations because the shorter-lived compound is removed preferentially. The 

ethyne/CO ratio trend reflects the seasonal variation in OH concentrations with higher 

winter ratios (4-5 pptv/ppbv) indicating less processed emissions and low summer ratios 

(1-2 pptv/ppbv) reflecting more processed air masses (Figure 2.10a). The propane/ethane 
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and C2HCI3/C2CI4 ratios tracked each other very well, and the temporal variation of both 

ratios resembled the ethyne/CO ratio with maximum values in winter and minimum 

values in late spring-summer (Figure 2.10b). However, the propane/ethane and 

C2HCI3/C2CI4 ratios increased throughout summer and fall which reflects the similar 

lifetimes and seasonal variation of propane and C2HCI3 combined with the mid-late 

summer minimum ethane and C2CI4 mixing ratios. 
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Figure 2.10. Time series of the (a) ethyne/CO (pptv/ppbv) and toluene/benzene ratios 
and (b) propane/ethane and C2HCI3/C2CI4 ratios during January 2004-February 2008. 

In contrast, the seasonal variation of the toluene/benzene ratio was opposite of the 

ethyne/CO, propane/ethane, and C2HCI3/C2CI4 ratio behavior, and thus contrary to the 

expected photochemical trend (Figure 2.10a). The toluene/benzene ratio was lowest in 
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winter-spring (-0.5-1.5) and highest in summer-fall (0.5-7). These ratio values are 

comparable to ambient ratios (1-5) observed in numerous continental/urban areas (e.g., 

Parrish et al., 1998; Monod et al., 2001). However, the fact that the ratio increases in the 

summer is indicative of an additional source or enhanced emissions of toluene in this 

region. White et al. (2009) illustrated that the anomalous toluene behavior at TF could not 

be fully explained by fuel evaporation and industrial emissions. Toluene emissions were 

observed using dynamic branch enclosure and static chamber flux measurements 

suggesting that biogenic emissions contributed to the summer toluene enhancements 

(White et al., 2009). It was also noted that the toluene enhancements were larger with 

each successive year. This trend continued into 2007 when the highest toluene/benzene 

ratios (mean = 2.1) were observed. 

This analysis provides a good illustration of the necessity of characterizing VOC 

sources in individual regions. Furthermore, these results have important implications 

because numerous studies have used the toluene/benzene ratio to estimate photochemical 

air mass ages (e.g., Roberts et al., 1984; Gong and Demerjian, 1997; Kang et al., 2001; de 

Gouw et al., 2005; Warneke et al., 2007) or to distinguish between industrial, 

evaporative, and exhaust emission sources (e.g., Barletta et al., 2008). The TF 

measurements demonstrate that the toluene/benzene ratio may not be appropriate for 

estimating relative air mass ages in this region because an initial ratio (e.g., 

toluene/benzene emission ratio) needs to be assumed. An additional source of toluene 

will cause the initial toluene/benzene ratio used in the processing time calculations to be 

erroneously high leading to overestimated photochemical ages and transport distances. 
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2.5 Regional Emission Rates of NMHCs 

Emission rates of VOCs based on ambient measurements are critical values 

needed for developing regional budgets and emission inventories and as input to air 

quality models. Unfortunately, estimates of emission rates are extremely limited and are 

primarily reported on global scales (e.g., Boissard et al., 1996; Gupta et al., 1998) or in 

urban areas (e.g., Blake and Rowland, 1995; Chen et al., 2001). Major reasons for the 

lack of information on regional VOC emissions are the complications involved with 

differentiating between local, regional, and distant sources and the scarcity of long-term 

continuous measurements. Thus it is optimal to use measurements made when these 

complications are minimized. One possibility is to use data collected when long-range 

and regional transport to a site is minimal. For example, low wind speeds facilitate 

radiative cooling of the surface at night leading to the formation of an inversion layer 

which isolates the air near the surface from the air above the inversion layer (e.g., Hastie 

et al., 1993; Gusten et al., 1998; Talbot et al., 2005). The stable and calm conditions 

under this nocturnal boundary layer (NBL) inhibit vertical and horizontal mixing (Talbot 

et al., 2005). Therefore, an increase in VOC mixing ratios under these stable conditions 

can be attributed to emissions from local sources. 

The daily canister samples were collected after the NBL dissipated and are 

representative of daytime conditions when mixing and transport may be occurring. 

Consequently, emission rates of NMHCs were calculated by two different methods. First, 

emission rates were estimated using the measurements made once per hour by the 

automated GC system at TF during December 2005-January 2006. Both the mixing ratios 

and temporal variation of the automated GC and canister sample measurements agreed 
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very well (Figure 2.11). This demonstrates that the daily samples captured a wide range 

of air mass types and compositions including background air masses and significant 

winter pollution events with enhanced NMHC mixing ratios lasting longer than one day. 
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Figure 2.11. Comparison between (a) propane, (b) ethyne, (c) benzene, and (d) toluene 
measurements made by the automated TF GC system during December 2005-January 
2006 and the daily canister samples collected during the same time period. Note: the 
canister samples with mixing ratios >95th percentile for each month have been removed. 
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Two criteria were used for identifying nights when a stable inversion layer 

developed: (1) wind speeds < 1 m/s and (2) O3 < 5 ppbv. The two criteria conditions were 

met on several nights between approximately midnight and 05:00 with concurrent 

increases in NMHC mixing ratios. Emission rates were calculated by multiplying the 

slope of the linear regression between the change in hourly average concentrations (dC in 

molecules cm') per unit time (dt = 5 hours) by the boundary layer height (H): 

Emission Rate = 
dC 

x H 
dt 

A boundary layer height of 125 m was used because it is a representative value for this 

area (e.g., Talbot et al., 2005; Zhou et al., 2005; Mao et al., 2008; White et al., 2008). 

The emission rate of propane (4.2 x 1010 molecules cm"2 s"1) was 1-2 orders of 

magnitude larger than the other NMHCs (range 0.5-7 x 109 molecules cm"2 s"1) (Table 

2.3). The high propane emission rate is another illustration of the persistent impact of 

leakage from LPG tanks or refilling stations throughout the region (section 2.4.1). 

Additionally, assuming the TF results are representative of the state and region, the 

NMHC emission rates extrapolated to the state of New Hampshire and New England are 

-2-61 Mg/day and -12-430 Mg/day, respectively (Table 2.3). The emission rates of 

propane, i-butane, and n-butane in New Hampshire were 20-90% lower than observed 

from LPG leakage in Mexico City, Mexico (Elliott et al., 1997) and in Santiago, Chile 

(Chen et al., 2001). These results suggest that potential emissions of NMHCs from the 

northeast U.S. are comparable to emission rates that have been observed in densely 

populated urban areas. Furthermore, the subsequently high levels of precursor 

compounds in air masses transported to and across the North Atlantic may contribute to 

O3 and SO A production, thus influencing the air quality of downwind regions. 

38 



E
th

yn
e 

Pr
op

an
e 

Pr
op

en
e 

i-
B

ut
an

e 

n-
B

ut
an

e 

i-
Pe

nt
an

e 

n-
Pe

nt
an

e 

n-
H

ex
an

e 

B
en

ze
ne

 

T
ol

ue
ne

 

E
th

yl
be

nz
en

e 

m
+

p-
X

yl
en

e 

o-
X

yl
en

e 

W
in

te
r 

20
06

 T
F 

G
C

 

E
m

is
si

on
 R

at
e 

x
l0

9
±

S
E

 

7.
4 

±
2

.0
 

42
 ±

 4
.0

 

3.
2 

±
0

.7
 

3.
2 

±
0

.6
 

3.
6 

±
0

.8
 

2.
4 

±
0

.3
 

1.
4 

±
0.

1 

0.
6 

±
0.

1 

1.
6 

±
0

.4
 

2.
7 

±
0.

6 

0.
5 

±
0.

1 

1.
3 

±
0.

3 

0.
5 

±
0

.1
 

r2 

0.
78

 

0.
96

 

0.
86

 

0.
89

 

0.
83

 

0.
94

 

0.
96

 

0.
87

 

0.
81

 

0.
82

 

0.
86

 

0.
80

 

0.
88

 

W
in

te
r 

20
06

 D
ai

ly
 

E
m

is
si

on
 R

at
io

 

N
M

H
C

/E
th

yn
e 

2.
30

 

0.
25

 

0.
44

 

0.
85

 

0.
43

 

0.
22

 

0.
09

 

0.
19

 

0.
30

 

0.
04

 

0.
04

 

0.
02

 

C
an

 r2 

0.
57

 

0.
75

 

0.
60

 

0.
40

 

0.
68

 

0.
46

 

0.
61

 

0.
94

 

0.
79

 

0.
69

 

0.
61

 

0.
65

 

W
in

te
r 

20
06

 D
ai

ly
 C

an
 

E
m

is
si

on
 R

at
e 

x
l0

9
±

S
E

 

17
.1

 

1.
9 

3.
3 

6.
3 

3.
2 

1.
6 

0.
67

 

1.
4 

2.
2 

0.
30

 

0.
30

 

0.
15

 

N
ew

 

H
am

ps
hi

re
 

M
g/

da
y 

6.
4 

61
 

4.
5 

6.
1 

6.
9 

5.
8 

3.
3 

1.
7 

4.
3 

8.
2 

1.
8 

4.
4 

1.
8 

N
ew

 

E
ng

la
nd

 

M
g/

da
y 

45
 

42
7 

32
 

43
 

48
 

41
 

23
 

12
 

30
 

58
 

13
 

31
 

13
 

T
ab

le
 2

.3
. E

m
is

si
on

 r
at

es
 ±

 s
ta

nd
ar

d 
er

ro
r 

(S
E

) 
(m

ol
ec

ul
es

 c
m

"2 s
"1) 

of
 C

3-
C

8 
N

M
H

C
s 

ca
lc

ul
at

ed
 u

si
ng

 n
ig

ht
tim

e 
m

ea
su

re
m

en
ts

 
(0

0:
00

-0
5:

00
 l

oc
al

 ti
m

e)
 m

ad
e 

by
 th

e 
au

to
m

at
ed

 T
F 

G
C

 w
he

n 
a 

st
ab

le
 n

oc
tu

rn
al

 i
nv

er
si

on
 l

ay
er

 d
ev

el
op

ed
. 

T
he

 w
in

te
r 

20
06

 d
ai

ly
 

ca
ni

st
er

 e
m

is
si

on
 r

at
io

 w
as

 c
al

cu
la

te
d 

fr
om

 t
he

 s
lo

pe
 o

f 
th

e 
co

rr
el

at
io

n 
be

tw
ee

n 
a 

N
M

H
C

 a
nd

 e
th

yn
e.

 T
he

 w
in

te
r 

20
06

 d
ai

ly
 c

an
 

em
is

si
on

 r
at

e 
(m

ol
ec

ul
es

 c
m

"2 s
"1) 

w
as

 c
al

cu
la

te
d 

by
 m

ul
tip

ly
in

g 
th

e 
da

ily
 c

an
 e

m
is

si
on

 r
at

io
s 

by
 th

e 
w

in
te

r 
20

06
 T

F 
G

C
 e

th
yn

e 
em

is
si

on
 r

at
e.

 T
he

 e
m

is
si

on
 r

at
es

 (
M

g/
da

y)
 f

ro
m

 N
ew

 H
am

ps
hi

re
 a

nd
 N

ew
 E

ng
la

nd
 w

er
e 

ex
tr

ap
ol

at
ed

 f
ro

m
 t

he
 w

in
te

r 
T

F 
G

C
 

em
is

si
on

 r
at

es
. 



The second method examined the utility of using the daytime canister samples to 

calculate emission rates. Emission rates were estimated by multiplying the emission 

ratios for each compound by the emission rate of ethyne estimated from the nighttime TF 

GC measurements (Table 2.3, 7.4 x 109 molecules cm"2 s"1). Emission ratios using the 

winter 2006 daily can data were determined from the slope of the correlation between a 

specific NMHC and ethyne (NMHC/ethyne). Ethyne is frequently used as a reference 

compound because of its relatively long lifetime (weeks-months) and because its major 

source (combustion) is well known (e.g., Conner et al., 1995; Goldstein et al., 1995; de 

Gouw et al., 2005; Lee et al., 2006). 

The emission rates of the NMHCs calculated using the daily canister emission 

ratios were within -5-75% of the automated GC estimates (Table 2.3). The daily canister 

emission rates of several compounds (i-butane, n-pentane, n-hexane, benzene, toluene) 

were within the uncertainty range estimated using the nighttime GC measurements. The 

largest difference was the factor of 2-4 lower emission rates of m+p-xylene and o-xylene 

based on the emission ratio method. However, this result is not unexpected because the 

xylenes have short lifetimes (< 2 days in winter) and the samples were collected during 

the day when photochemistry was active. Additionally, emission rates determined using 

emission ratios from winters 2004, 2005, 2007, or 2008 were within -10-50% of the 

winter 2006 values. Furthermore, the winter 2006 emissions rates of propane, i-butane, n-

butane, i-pentane, and propene agreed (within factors of 0.2-4) with estimates made using 

nighttime measurements from the automated TF GC during summers 2003 and 2004 

(White et al., 2008). The consistency between the estimates for different winters and for 

winter and summer suggests that emission rates do not vary significantly with season or 
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year. Overall, these results suggest that the daytime canister samples provide reasonable 

estimates of emission rates for this region and may be used if the emission rate of a 

reference compound is available. 

2.6 Comparison with the 2002 EPA National Emissions Inventory 

A fundamental shortcoming of emission inventories is the lack of speciated VOC 

emission estimates. The utility of the long-term speciated VOC data from TF as an 

evaluation method of the 2002 EPA National Emissions Inventory (NEI) 

(www.epa.gov/ttn/chief/net/index) was investigated by comparing emission rates of 

benzene, toluene, ethylbenzene, m+p+o-xylene, and ethyne from the NEI to the estimates 

from TF (section 2.5). The NEI provides speciated emission rates for a subset of toxic 

compounds, including benzene, toluene, ethylbenzene, and m+p+o-xylene. Emission 

rates of ethyne were estimated using the EPA recommended composite source profiles 

for vehicle exhaust (gasoline and diesel), recreational equipment, lawn and garden 

equipment, and fireplace wood combustion. The results are constrained by the accuracy 

and completeness of emission reporting and are dependent upon the speciation profiles 

which are often dated composites of several similar sources from various locations 

throughout the country. In addition, the TF measurements reflect air masses that have 

undergone mixing and dilution and thus are not representative of direct emissions. 

Despite these limitations, an effective method for inventory validation is to compare the 

inventory emission rates to ambient emission rates. 

Overall, the TF and NEI emission rates agree fairly well (Table 2.4). The NEI 

slightly overestimated (by -5-50%) the ambient benzene, toluene, xylenes, and ethyne 

emission rates. These results suggest that the ethyne (or another compound) emission rate 
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from the NEI could be used to estimate emission rates of other VOCs by using their 

emission ratios relative to ethyne from the daily canister samples. This may be a valuable 

tool for modeling or predicting ambient VOC concentrations. The agreement between our 

results and the inventory may be fortuitous or it may indicate that VOC emissions are 

more accurately represented in the 2002 NEI than in earlier versions. In contrast to our 

results, Parrish (2006) concluded that the 1996 and 1999 NEIs overestimated VOC 

emissions by up to factors of 3-4 based on comparing inventory emissions and ambient 

measurements of benzene and ethyne. Possible reasons for the contrasting results are 

different methods used to estimate benzene and ethyne inventory emissions or the use of 

different versions of the NEI. The on-road benzene/ethyne ratio (0.35) is similar to the 

value from the 1999 on-road NEI (0.32) (Parrish, 2006). The total inventory ratio value 

(0.21) (Table 2.4) is in excellent agreement with the ambient ratio at TF discussed in 

section 2.4.2 and supports the continued downward trend of the benzene/ethyne ratio in 

the 1996 to 1999 NEI reported by Parrish (2006). Similarly, the inventory total and TF 

toluene/benzene ratios agree, and the range of NEI ratio values is consistent with the 

range of ambient ratios observed at TF (Figure 2.10a). 
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2.7 Summary 

This work characterized the mixing ratios, seasonal to interannual variability, and 

sources of C2-Q NMHCs, C2HCI3, and C2CI4 from samples collected during January 

2004-February 2008 at Thompson Farm in Durham, NH. The midday canister samples 

provided a comprehensive and representative picture of the day-to-day and interannual 

VOC trends and captured a wide range of mixing ratios and various sources. For 

example, separate estimates of NMHC emission rates using the daily canister sample and 

automated GC measurements agreed within 5-75% (range = 109-1010 molecules cm"2 s"1). 

Additionally, benzene, toluene, ethylbenzene, xylene, and ethyne emission rates from the 

2002 EPA National Emissions Inventory were within 5-50% of the TF emission rates. 

Other than small differences in actual mixing ratios, the alkanes, ethyne, benzene, and 

halocarbons exhibited consistent and reproducible seasonal trends each year. In contrast, 

the alkenes, toluene, ethylbenzene, and xylenes (m+p and 0) illustrated greater 

interannual variability reflecting their shorter lifetimes and/or varying sources or 

emission ratios. A persistent mix of emissions from several sources (fossil fuel 

combustion, gasoline, LPG, fuel or solvent evaporation, industry, biogenic) was observed 

each season and year. 
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CHAPTER 3 

TEMPORAL VARIABILITY, SOURCES, AND SINKS OF C1-C5 ALKYL NITRATES 
IN COASTAL NEW ENGLAND 

3.1 Introduction 

Alkyl nitrates are secondary products of the photooxidation of volatile organic 

compounds (VOCs) in the presence of nitrogen oxides (NOx=NO+N02) and represent a 

link between the atmospheric carbon and nitrogen cycles. Alkyl nitrate production 

(reactions 1-4) is initiated by the oxidation of a hydrocarbon (RH). The resulting alkyl 

radical (R) quickly reacts with O2 to form an alkyl peroxy radical (RO2). Further reaction 

with nitric oxide (NO) yields an alkoxy radical (RO) and nitrogen dioxide (NO2) or an 

alkyl nitrate (RONO2): 

RH + OH ^ • R + H20 (1) 

R + 0 2 ^ > R0 2 (2) 

R0 2 + NO ^ ^ > RO + N0 2 (3) 

R0 2 + NO ^ > RON02 (4) 

RON02 + hv ^ > RO + N0 2 (5) 

RON02 + OH —**-» products (6) 

where ki, k2, k3, k4, and k6 are reaction rate constants, J5 is the photolysis rate constant, 

and oti and 0,4 are the reaction branching ratios. The primary removal mechanisms from 

the atmosphere are photolysis and reaction with the hydroxyl radical (OH) (reactions 5 

and 6). Photolysis is dominant for the shorter-chain (C1-C3) alkyl nitrates while OH 

oxidation becomes a more important loss process for the larger alkyl nitrates (Roberts, 
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1990; Clemitshaw et al., 1997; Talukdar et al., 1997; Flocke et al., 1998). Reactions (1-4) 

demonstrate that alkyl nitrates share a common photochemical production mechanism 

with ozone (O3), as O3 formation follows the photolysis of the NO2 formed in reaction 

(3). The formation of alkyl nitrates serves as a sink for NOx and for the RO and RO2 

radicals, and therefore, impacts the O3 production efficiency (Atkinson et al., 1982; 

Ranschaert et al., 2000). Alkyl nitrates may be transported long distances because of their 

long lifetimes and serve as a temporary reservoir for NOx ultimately leading to O3 

production in remote regions (Clemitshaw et al., 1997; Flocke et al., 1998; Roberts et al., 

1998). In addition, alkyl nitrates are a component of total reactive nitrogen (NOy = NOx + 

HNO3 + NO3 + N205 + organic nitrates), and their relative contribution to NOy varies 

with location. For example in continental regions, alkyl nitrates typically comprise less 

than 10% of NOy because of the close proximity to primary NOx emissions (e.g., Shepson 

et al., 1993; Flocke et al., 1998; Thornberry et al., 2001; Simpson et al., 2006). In 

contrast, they may constitute a much larger proportion of NOy in remote regions, such as 

the equatorial marine boundary layer (20-80%) (Talbot et al., 2000; Blake et al., 2003a) 

or the Arctic (-10-20%) (Muthuramu et al., 1994). 

Characterizing alkyl nitrates may help explain imbalances in the atmospheric NOy 

budget. Discrepancies between surface deposition rates determined from the sum of the 

individual NOy compounds compared to the measured total NOy deposition suggests that 

all the species contributing to the total deposition are not being accounted for (e.g., 

Nielsen et al., 1995; Lefer et al., 1999; Horii et al., 2006). The shortfall is often largest in 

photochemically processed air masses and is usually attributed to unidentified alkyl and 

multifunctional organic nitrates (e.g., Nielsen et al., 1995; Munger, et al., 1998; Horii et 
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al., 2006). Consequently, research on the contribution of organic nitrogen to atmospheric 

nitrogen deposition and the impact on ecosystem functioning has been gaining 

importance (Cornell et al., 2003). 

In addition to their secondary photochemical source, primary emissions of light 

alkyl nitrates from the ocean (Atlas et al., 1993; Chuck et al., 2002; Moore and Blough, 

2002; Blake et al., 2003a) and biomass burning have been observed (Simpson et al., 

2002). However, information on the relative influence of primary marine and secondary 

anthropogenic sources of alkyl nitrates in coastal regions is limited (e.g., Roberts et al., 

1998; Chuck et al., 2002; Simpson et al., 2006). Recent modeling results suggest that the 

photolysis of alkyl nitrates emitted from the tropical Pacific Ocean, and the subsequent 

production of NO2, may increase O3 production by up to 20% (Neu et al., 2008). This 

demonstrates the importance of identifying alkyl nitrate sources and quantifying their 

mixing ratios in marine environments. 

The seacoast region of New Hampshire is downwind of the heavily populated and 

urban northeastern U. S. corridor and is in an excellent location for studying the chemical 

composition of air masses transported from the continental U.S. to the North Atlantic. 

Previous research has shown that this area is influenced by marine, vegetative, and 

anthropogenic sources of nonmethane hydrocarbons (NMHCs) and halocarbons (Sive et 

al., 2007; Varner et al., 2008; White et al., 2008; Zhou et al., 2005, 2008) and is strongly 

impacted by boundary layer dynamics (Mao and Talbot, 2004a; Talbot et al., 2005). In 

this work, we characterize the seasonal and diurnal variability, sources, and sinks of alkyl 

nitrates in southeastern NH and coastal New England. A portion of the alkyl nitrate data 

was obtained as a component of the 2002 New England Air Quality Study (NEAQS). The 
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objectives of NEAQS were to examine the transport, formation, and distribution of air 

pollutants in New England and the Gulf of Maine. Additionally, we incorporate data from 

a one day intensive study throughout the Great Bay estuary in August 2003 and from 

daily canister samples collected during 2004-2008 in order to further describe the 

temporal variability and atmospheric distribution of alkyl nitrates. 

3.2 Experimental 

3.2.1 NEAQS 2002 

3.2.1.1 Thompson Farm GC System. Measurements of C2-C10 NMHCs, C1-C2 

halocarbons, and C1-C5 alkyl nitrates were made during winter (January 11-March 1) and 

summer (June 1-August 31) 2002 at the University of New Hampshire Atmospheric 

Observing Station at Thompson Farm (TF) (43.11°N, 70.95°W, elevation 24 m) in 

Durham, New Hampshire (Figure 2.1). TF is surrounded by a mixed forest and is located 

~20 km inland from the Gulf of Maine, 5 km northwest of the Great Bay estuary, and 

-100 km north of Boston, MA. Samples were analyzed onsite by an automated gas 

chromatography (GC) system equipped with two flame ionization detectors (FID) for 

detecting NMHCs and two electron capture detectors (ECD) for measuring halocarbons 

and alkyl nitrates (described in detail by Zhou et al., 2005; 2008). Briefly, air was drawn 

continuously through a PFA Teflon lined manifold from the top of a 15 m tower. Once 

per hour, a 1000 cc aliquot of this air was collected through a dual stage trap for water 

management and sample concentration. Following enrichment, the sample was rapidly 

heated to 100°C and injected. Helium carrier gas flushed the sample to the GC where the 

stream was split into four channels for analysis. A 1000 cc aliquot from one of two 

working standards was analyzed every fifth sample. The measurement precision for each 
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of the hydrocarbons, halocarbons, and alkyl nitrates ranged from 0.3-15%. Specifically, 

the alkyl nitrate measurement precision is conservatively 5% for mixing ratios above 5 

pptv and 10% for mixing ratios below 5 pptv. The accuracy of the alkyl nitrate 

measurements is 10-20%>, and their detection limit is 0.01 pptv. The alkyl nitrates 

discussed in this work are methyl nitrate (MeON02), ethyl nitrate (EtON02), 2-propyl 

nitrate (2-PrON02), 1-propyl nitrate (l-PrON02), 2-butyl nitrate (2-BuON02), 2-pentyl 

nitrate (2-PenON02), and 3-pentyl nitrate (3-PenON02). 

3.2.1.2 GC System on the NOAA R/V RonaldH. Brown. During July 30-August 

6, 2002, ambient air and surface seawater samples were collected onboard the NOAA 

Research Vessel Ronald H. Brown off the coasts of New Hampshire and Boston, MA. An 

automated GC measured MeON02, 2-PrON02, and 2-BuON02 in addition to several 

hydrocarbons and halocarbons. Ambient air was sampled from -15 m above the sea 

surface and traveled approximately 80 m to the GC located near the back of the ship. A 

portion of this air flow was drawn by the sample concentrator and a 1000 cc sample was 

cryogenically trapped. Water from the ship's clean seawater system flowed to a Weiss 

type equilibrator. Air was drawn from the equilibrator at 200 ccm for determining 

concentrations of the stripped gases from the surface seawater. After the ambient air or 

equilibrator sample was concentrated, it was injected on to a two gas chromatograph 

system. One GC quantified halocarbons and alkyl nitrates with an ECD, and the other GC 

measured C2-C6 hydrocarbons by FID (Zhou et al., 2005). 

3.2.2 Canister Samples 

3.2.2.1 Great Bay Experiment. In addition to the routine measurements at TF 

(section 3.2.1.1), an intensive study was conducted from 18:00 on August 18 to 19:00 on 
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August 19, 2003 (local time) to examine the influence of marine derived halocarbons 

from the Great Bay estuary throughout southeast NH. The Great Bay is a 2140 hectare 

estuary located ~16 km inland from the coast of NH. The study area consisted of TF and 

4 sites located in southern NH: Downtown Boat Launch, Exeter (42.98°N, 70.95°W); 

Fort Constitution (FC), Newcastle (43.07°N, 70.71°W); Pease Weather Station, 

Portsmouth (43.08°N, 70.82°W); and Wagon Hill Farm (WHF), Durham (43.13°N, 

70.87°W) (Figure 2.1 inset). At each of the four sites, a two-liter electropolished stainless 

steel canister was filled to ambient pressure each hour. The samples were returned to the 

laboratory at UNH for analysis on a three GC system equipped with 2 FIDs, 2 ECDs, and 

a mass spectrometer (MS). The lab GC system has been previously described in Sive et 

al. (2005), White et al. (2008), and Zhou et al. (2005; 2008). Briefly, the samples were 

analyzed by cryotrapping 1000 cc of air on a glass bead filled loop immersed in liquid 

nitrogen. The loop was then isolated, warmed to ~80°C with hot water, and then the 

sample was injected. Helium carrier gas flushed the contents of the loop and the stream 

was split into five, with each sub-stream feeding a separate GC column. The FIDs were 

used for detecting C2-C10 NMHCs, and the ECDs measured C1-C5 alkyl nitrates and d -

C2 halocarbons. Oxygenated VOCs, sulfur compounds, halocarbons, and several NMHCs 

were detected by the MS. A 1000 cc aliquot from one of two working standards was 

assayed every fifth analysis. The measurement precision for each of the hydrocarbons, 

halocarbons, and alkyl nitrates ranged from 0.1-12%. The alkyl nitrate measurement 

precision for the canister samples is conservatively 3-4% for mixing ratios above 5 pptv 

and <10% for mixing ratios below 5 pptv. The accuracy of the alkyl nitrate canister 

measurements is 10-20%, and the detection limit is 0.01 pptv. 
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3.2.2.2 Thompson Farm Daily Canister Samples. Measurements of C1-C5 alkyl 

nitrates from daily canister samples collected throughout January 12, 2004 to February 8, 

2008 are also presented. The four year data set was separated into four seasons which are 

defined as winter: December, January, February; spring: March, April, May; summer: 

June, July, August; fall: September, October, November. Note that the data includes five 

winter seasons (2004-2008) and four spring, summer, and fall seasons (2004-2007). 

Details of the sample collection and analysis are given in Russo et al. (2009). Briefly, the 

ambient air samples were collected at approximately noon (local time) from the top of the 

15 m tower at TF. The samples were analyzed in the lab at UNH every 1-3 months for a 

large suite of volatile organic compounds (C2-C10 NMHCs, C1-C5 alkyl nitrates, C1-C2 

halocarbons, and selected oxygenated and sulfur compounds) using the same three GC 

system described in section 2.2.1. The primary working standards for the canister 

analysis system were two calibrated whole air samples contained in 36 liter 

electropolished low pressure pontoons (-350 psi). Due to overlapping periods when 

different working standards were being used throughout the four years, mixing ratios 

were verified and recalibrated, if/when necessary, and were cross referenced with other 

calibrated whole air and synthetic standards maintained by our lab. Furthermore, we have 

conducted several instrument intercomparison studies to ensure that the measurements 

from the in situ TF GC and canister samples made over multiple years are comparable 

(see Sive et al., 2005; 2007; Zhou et al., 2008; Russo et al., 2009 for additional 

information). 
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3.2.3 Measurement Intercomparison 

It is also necessary to intercompare our standards and calibration scales with other 

laboratories conducting VOC measurements. In summer 2004, an informal VOC 

intercomparison experiment was conducted by D. Blake at UCI to evaluate the 

comparability of measurements made by different investigators during the summer 2004 

ICARTT campaign. The intercomparison data presented here was provided by D. Blake 

(personal communication, UCI, 2005). Four pressurized canisters filled with whole air 

collected by UCI were sent to each laboratory for analysis. The mixing ratios in each 

canister as well as the mean of the four samples were reported. In total, UNH reported 

mixing ratios for 99 compounds, including C2-C10 NMHCs, C1-C5 alkyl nitrates, and Q -

C2 halocarbons (e.g., Varner et al., 2008; Zhou et al., 2008). The UNH alkyl nitrate 

measurements were in good agreement with UCI (Figure 3.1). The mean mixing ratios 

(in pptv) of each alkyl nitrate in the four canister samples were: (UNH/UCI) MeON02 

8.2/8.4, EtON02 8.4/8.5, 2-PrON02 24.2/27.3, l-PrON02 4.4/3.7, 2-BuON02 30.2/29.5, 

3-PenON02 7.6/8.8, and 2-PenON02 12.4/12.8. Furthermore, the percent difference 

between the UNH and UCI C2-C4 alkane measurements was < 2%, and the C5 alkanes 

agreed within 7-8%. These results demonstrate that the alkyl nitrate and NMHC mixing 

ratios reported by these various laboratories were based on similar calibration scales, and 

thus the measurements can be meaningfully compared. 

3.2.4 Ancillary Measurements 

Hourly average measurements of O3, carbon monoxide (CO), carbon dioxide 

(C02), and NOy made at TF during winter and summer 2002 and August 18-19, 2003 

were also used in this analysis. The instruments used were a Thermo Environmental 
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Instruments (TEI) model 49C-PS using ultraviolet spectroscopy at 254 nm for O3, a 

custom modified TEI model 48CTL using absorption of infrared radiation at 4600 nm for 

CO, a Licor model 7000 differential infrared absorption instrument for CO2, and a TEI 

model 42C using chemiluminescence measured NOy (Mao and Talbot, 2004a, b; Talbot 

et al., 2005). Meteorological parameters (wind speed, wind direction, temperature) were 

measured with a Met One model 014A anemometer. 

Q. 
Q. 

30 

25 

20 

a 15 

10 

Ethane 

• • UNH 
1-1 UCI (D. Blake) 
=1 U. Miami (E. Atlas) 
=1 U. York, U.K. 

Propane i-Butane n-Butane i-Pentane n-Pentane 

uu i 1 
^ 6 

^ ^ ^ ^ „ < 0 ^ Md& 0 ,*< X* ,xr 
• * \ < H 

Figure 3.1. (a) NMHC and (b) alkyl nitrate measurement intercomparison between the 
UNH, UCI, U Miami and U. York (NMHCs only) laboratories. Each bar is the average 
mixing ratio (pptv) of four canister samples analyzed by each lab. 
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3.3 Temporal Variation of Alky! Nitrates at Thompson Farm 

Two distinct data sets are combined to provide a robust characterization of the 

temporal variation of alkyl nitrates in rural New England. The continuous in situ 

measurements made at TF during winter and summer 2002 and the four years (2004-

2008) of daily canister samples allow both the short (diurnal to seasonal) and long 

(seasonal to interannual) term trends to be described (Figures 3.2 and 3.3). 
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Figure 3.2. Time series of (a) MeON02, EtON02, l-PrON02, (b) 2-PrON02, 2-BuON02, 
and (c) 2-PenON02, 3-PenON02 (pptv) from measurements made by the automated GC 
system at TF during Winter (January 11-March 1) and Summer (June 1-August 31) 2002. 
Note: there is a break in the x-axis during March-May 2002. 
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Date and Time (Local) 

1/1/07 7/1/07 1/1/08 

Figure 3.3. Time series of (a) MeON02, EtON02, l-PrON02, (b) 2-PrON02, 2-BuON02, 
and (c) 2-PenON02, 3-PenON02 (pptv) from daily canister samples collected at TF 
during January 12, 2004 to February 8, 2008. 

3.3.1 Seasonal Variation 

The median (±standard deviation) total alkyl nitrate mixing ratio (SRON02 = sum 

of individual C1-C5 alkyl nitrates) in winter and summer 2002 was 25 (±7) and 16 (±14) 

pptv, respectively (Table 3.1). Similar median (±standard deviation) mixing ratios of 23 

(±8) and 14 (±10) pptv were observed in the winter and summer daily canister samples, 

respectively (Table 3.2). The nearly 60% lower SRON02 mixing ratio in summer was 

driven by the reduced levels of C3-C5 alkyl nitrates which were typically highest in late 
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winter-early spring (February-March) and exhibited a broad minimum from May-October 

(Figure 3.3, Table 3.2). In contrast, monthly mean and median MeON02 and EtON02 

mixing ratios were fairly constant (~2-4 pptv) all year, and both compounds exhibited 

low day-to-day variability in late fall-winter (Figure 3.3a). This behavior may reflect their 

longer lifetimes resulting in a more homogeneous distribution throughout the year. 

Mean Median Max Min St. Dev. N % £RONQ2 

Winter 

MeON02 

EtON02 

2-PrON02 

l-PrON02 

2-BuON02 

3-PenON02 

2-PenON02 

ERON02 

%NOy 

3.4 

4.2 

7.4 

1.4 

6.5 

1.8 

2.4 

26.3 

0.30 

3.0 

4.0 

6.9 

1.3 

6.1 

1.7 

2.2 

24.9 

0.20 

12.8 

7.7 

12.9 

2.7 

12.3 

3.4 

5.1 

52.9 

2.80 

1.8 

2.3 

4.3 

0.7 

3.2 

0.5 

0.5 

7.9 

0.03 

1.3 

0.8 

1.7 
0.3 

1.8 

0.5 

0.8 

6.9 

0.40 

735 

720 

731 

716 

739 

738 

735 

748 

649 

12 

16 

27 

5 

24 

7 

9 

Summer 

MeON02 

EtON02 

2-PrON02 

l-PrON02 

2-BuON02 

3-PenON02 

2-PenON02 

£RON02 

%NOv 

3.1 

3.4 

6.5 

1.2 

3.6 

1.4 

2.0 

20.2 

0.70 

2.7 

3.0 

4.9 

1.1 

2.6 

0.9 

1.2 

15.9 

0.60 

8.4 

13.0 

31.7 

5.5 

18.1 

9.0 

13.7 

92.4 

5.50 

1.2 

0.8 

0.4 

0.1 

0.2 

0.04 

0.04 

0.1 

0.002 

1.3 

1.6 

4.7 

0.8 

3.1 

1.4 

2.1 

13.6 

0.50 

775 

773 

771 

783 

768 

697 

671 

797 

759 

17 

19 

30 

6 

16 

5 

7 

Table 3.1. Seasonal mean, median, maximum (Max), and minimum (Min) mixing ratios, 
standard deviation (SD), and number of samples (N) of alkyl nitrates at Thompson Farm 
during winter and summer 2002 (pptv). % ZRON02 is the median contribution of each 
alkyl nitrate to the SRON02 mixing ratio in both seasons. % NOy is the median 
contribution of IRON02 to NOy in both seasons (i.e., seasonal median value of 
ZRON02/NOy). 

56 



L
/1

 
^

1 

M
eO

N
0 2

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 S

R
O

N
O

, 
E

tO
N

0 2
 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 S

R
O

N
0 2

 

l-
P

rO
N

0 2
 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 E

R
O

N
O

, 
2-

P
rO

N
0 2

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 2

R
O

N
O

, 

2-
B

u
O

N
0 2

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 E

R
O

N
O

, 
3-

P
en

O
N

0 2
 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 E

R
O

N
O

, 

2-
P

en
O

N
0 2

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(N
) 

%
 Z

R
O

N
0 2

 

SR
O

N
O

, 
M

ea
n 

(S
D

) 
M

ed
ia

n 
(N

) 
%

 N
O

v 

Ja
nu

ar
y 

3.
0 

(0
.5

) 
3.

3(
13

5)
 

14
 

2.
7 

(0
.6

) 
2.

7 
(1

36
) 

11
 

0.
8 

(0
.3

) 
0.

8 
(1

37
) 

3 

6.
2 

(2
.0

) 
5.

8 
(1

37
) 

24
 

7.
2 

(2
.7

) 
6.

8 
(1

35
) 

28
 

2.
4(

1.
1)

 
2.

3 
(1

32
) 

9 

2.
8(

1.
3)

 
2.

6 
(1

32
) 

11
 

25
.1

 (
7.

6)
 

23
.3

 (
13

4)
 

0.
6 

Fe
br

ua
ry

 

3.
4(

0.
4)

 
3.

4 
(1

09
) 

13
 

2.
8 

(0
.6

) 
2.

7 
(1

08
) 

11
 

0.
9(

0.
3)

 
0.

8 
(1

08
) 

3 

6.
8(

1.
8)

 
6.

4 
(1

08
) 

25
 

7.
5 

(2
.6

) 
6.

8 
(1

08
) 

26
 

2.
8(

1.
2)

 
2.

8 
(1

05
) 

11
 

3.
0(

1.
3)

 
3.

0(
10

6)
 

12
 

26
.8

 (
7.

3)
 

25
.1

 (
10

9)
 

0.
8 

M
ar

ch
 

3.
4 

(0
.5

) 
3.

4 
(1

07
) 

13
 

3.
2 

(0
.9

) 
3.

0 
(1

07
) 

12
 

0.
9 

(0
.3

) 
0.

8 
(1

08
) 

3 

7.
7 

(2
.8

) 
6.

8 
(1

08
) 

27
 

7.
7 

(3
.0

) 
6.

9 
(1

06
) 

27
 

2.
7(

1.
6)

 
2.

2 
(1

05
) 

9 

3.
0(

1.
7)

 
2.

6 
(1

04
) 

10
 

28
.2

(1
0.

0)
 

24
.2

 (
10

8)
 

1.
0 

A
pr

il 

3.
2 

(0
.4

) 
3.

2 
(9

5)
 

16
 

2.
9 

(0
.7

) 
2.

8 
(9

5)
 

14
 

0.
8 

(0
.3

) 
0.

7 
(9

4)
 

4 

6.
2(

2.
1)

 
5.

6 
(9

5)
 

28
 

5.
2 

(2
.0

) 
4.

7 
(9

5)
 

23
 

1.
7(

0.
9)

 
1.

5(
95

) 
8 

1.
9(

1.
0)

 
1.

7 
(9

5)
 

8 

22
.0

 (
6.

5)
 

20
.5

 (
95

) 
0.

9 

M
ay

 

3.
2(

0.
4)

 
3.

2 
(1

03
) 

20
 

2.
7 

(0
.8

) 
2.

6 
(1

03
) 

16
 

0.
7 

(0
.5

) 
0.

6 
(1

05
) 

4 

4.
9 

(2
.3

) 
4.

1 
(1

05
) 

27
 

3.
2(

1.
8)

 
2.

8 
(1

05
) 

18
 

1.
4(

1.
0)

 
1.

1 
(9

6)
 

1 

1.
5(

1.
1)

 
1.

3 
(9

6)
 

8 

17
.3

(7
.2

) 
15

.2
 (

10
5)

 
0.

7 

Ju
ne

 

3.
1 

(0
.9

) 
3.

0 
(9

9)
 

21
 

2.
9(

1.
5)

 
2.

5 
(9

9)
 

17
 

0.
7 

(0
.5

) 
0.

6 
(1

01
) 

4 

5.
0(

3.
7)

 
3.

6 
(1

01
) 

25
 

3.
2 

(2
.7

) 
2.

1 
(1

01
) 

15
 

1.
7(

1.
5)

 
\.2

(8
3)

 
8 

2.
1 

(1
.8

) 
1.

4 
(8

3)
 

10
 

18
.0

(1
1.

7;
 

13
.6

 (
10

1)
 

0.
6 

Ju
ly

 

3.
0 

(0
.9

) 
2.

9 
(9

8)
 

19
 

2.
6(

1.
2)

 
2.

4 
(9

2)
 

15
 

0.
7 

(0
.4

) 
0.

6 
(9

8)
 

4 

5.
4 

(3
.4

) 
4.

6 
(9

8)
 

29
 

3.
1 

(2
.2

) 
2.

7 
(9

8)
 

17
 

1.
5(

1.
0)

 
\.2

(9
6)

 
8 

1.
6(

1.
1)

 
1.

3 
(9

5)
 

8 

17
.6

(9
.4

) 
16

.2
 (

98
) 

0.
6 

A
ug

us
t 

3.
0 

(0
.9

) 
2.

9 
(1

07
) 

20
 

2.
2(

1.
0)

 
1.

9 
(1

05
) 

14
 

0.
6 

(0
.3

) 
0.

5 
(1

07
) 

4 

4.
6 

(2
.8

) 
3.

7 
(1

07
) 

27
 

2.
9(

2.
1)

 
2.

3 
(1

07
) 

17
 

1.
5(

1.
0)

 
1.

2 
(1

03
) 

8 

1.
7(

1.
2)

 
\.5

(1
03

) 
11

 

16
.2

(8
.7

) 
14

.3
 (

10
7)

 
0.

6 

Se
pt

em
be

r 

3.
0(

0.
9)

 
2.

9 
(1

06
) 

19
 

2.
3(

1.
1)

 
2.

0 
(1

11
) 

14
 

0.
6 

(0
.4

) 
0.

5 
(1

09
) 

4 

4.
9(

3.
2)

 
4.

0 
(1

11
) 

27
 

3.
6(

2.
8)

 
2.

7 
(1

11
) 

18
 

1.
6(

1.
2)

 
1.

4(
10

5)
 

9 

1.
9(

1.
4)

 
1.

5 
(1

06
) 

10
 

17
.6

(1
0.

5)
 

15
.3

 (
11

1)
 

0.
7 

O
ct

ob
er

 

3.
0(

0.
6)

 
2.

9 
(9

1)
 

19
 

2.
5 

(0
.8

) 
2.

2 
(9

2)
 

14
 

0.
7 

(0
.4

) 
0.

5 
(9

2)
 

3 

5.
1 

(2
.8

) 
4.

0 
(9

2)
 

26
 

4.
5(

3.
1)

 
3.

2 
(9

2)
 

21
 

1.
7(

1.
0)

 
1.

4 
(8

9)
 

9 

1.
8(

1.
2)

 
1.

4 
(8

9)
 

9 

19
.1

 (
8.

9)
 

15
.5

 (
92

) 
0.

6 

N
ov

em
be

r 

3.
2 

(0
.5

) 
3.

1 
(1

01
) 

15
 

2.
8(

1.
2)

 
2.

5 
(1

02
) 

12
 

0.
7(

0.
3)

 
0.

6 
(1

02
) 

3 

5.
9(

2.
0)

 
5.

4 
(1

02
) 

26
 

6.
1 

(2
.6

) 
5.

1 
(1

02
) 

25
 

2.
1 

(0
.9

) 
\.9

(1
01

) 
9 

2.
5(

1.
2)

 
2.

2 
(1

01
) 

10
 

23
.2

 (
7.

8)
 

20
.7

 (
10

2)
 

0.
5 

D
ec

em
be

r 

3.
1 

(0
.4

) 
3.

1 
(1

00
) 

14
 

2.
6 

(0
.6

) 
2.

4 
(1

02
) 

11
 

0.
8 

(0
.4

) 
0.

7 
(1

02
) 

3 

6.
3 

(2
.8

) 
5.

4 
(1

02
) 

25
 

7.
0(

4.
1)

 
5.

7 
(1

02
) 

26
 

2.
2(

1.
2)

 
1.

9 
(9

8)
 

9 

2.
6(

1.
5)

 
2.

3 
(9

8)
 

11
 

24
.1

 (
9.

4)
 

21
.5

 (
10

1)
 

0.
5 

T
ab

le
 3

.2
. M

on
th

ly
 m

ea
n 

(p
pt

v)
, s

ta
nd

ar
d 

de
vi

at
io

n 
(S

D
),

 m
ed

ia
n,

 a
nd

 n
um

be
r 

of
 s

am
pl

es
 (

N
) f

ro
m

 t
he

 d
ai

ly
 c

an
is

te
r 

sa
m

pl
es

 
co

lle
ct

ed
 a

t T
F

 th
ro

ug
ho

ut
 J

an
ua

ry
 1

2,
 2

00
4-

Fe
br

ua
ry

 8
, 2

00
8.

 %
 S

R
O

N
0 2

 i
s 

th
e 

m
ed

ia
n 

co
nt

ri
bu

tio
n 

of
 e

ac
h 

al
ky

l 
ni

tr
at

e 
to

 th
e 

S
R

O
N

0 2
 m

ix
in

g 
ra

tio
 e

ac
h 

m
on

th
. %

 N
O

y 
is

 th
e 

m
ed

ia
n 

co
nt

ri
bu

tio
n 

of
 S

R
O

N
0 2

 t
o 

N
O

y 
in

 e
ac

h 
m

on
th

. 



The relative contributions of the individual C1-C5 alkyl nitrates to SRONC^were 

nearly the same in the continuous measurements and in the daily samples (Tables 3.1 and 

3.2). 2-propyl nitrate was generally the most abundant (-4-7 pptv), and 2-BuON02 was at 

comparable to slightly higher levels in winter-early spring. In all study years, 2-BuON02 

exhibited the most pronounced seasonal variation with approximately a factor of 2-3 

higher median mixing ratio in winter than in summer. While the relative contribution of 

2-BuON02 to ZRONO2 decreased from winter to summer, the contributions from 

MeON02 and EtON02 increased. As a result, MeON02, EtON02, and 2-BuON02 made 

nearly equal contributions to SRONO2 in summer (15-20%). The pentyl nitrates and 1-

PrON02 were the least abundant components of SRONO2 all year (<l-3 pptv). Overall, 

the alkyl nitrate mixing ratios and distributions at TF were comparable to levels observed 

at other North American sites, such as Michigan (Ostling et al., 2001), Colorado and the 

eastern U. S. (Stroud et al., 2001), the southeastern U. S. (Bertman et al., 1995), Summit, 

Greenland (Swanson et al., 2003), Ontario, Canada (Shepson et al., 1993), Alert NW 

Territories, Canada (Muthuramu et al., 1994), and Chebogue Point, Nova Scotia (Roberts 

etal., 1998). 

One possible explanation for the seasonal variation of alkyl nitrates at TF is their 

different tropospheric lifetimes throughout the year reflecting changes in photochemical 

production and/or destruction (OH oxidation and photolysis) rates. Lifetimes are shorter 

in summer than in winter (Table 3.3) because of higher OH concentrations and faster 

photolysis rates which may explain the lower C3-C5 alkyl nitrate mixing ratios. In 

addition, weaker photochemical activity may contribute to the low MeON02 and EtON02 

variability in winter (Figures 3.2, 3.3; Tables 3.1, 3.2). Another possible explanation for 
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the seasonal trend is changes in the dominant source regions and regional scale transport 

pathways. Previous research has documented that the chemical composition of air masses 

transported to New England strongly depends on both the season and source region. For 

example, north-northwesterly winds typically transport clean, Canadian air masses to 

New England that contain low O3, CO, NOy, and hydrocarbon mixing ratios and that are 

representative of background conditions (Munger et al., 1996; Moody et al., 1998; 

Shipham et al., 1998). This transport pattern is more frequent during the winter and often 

occurs behind a cold front. Air masses containing enhanced levels of anthropogenic 

emissions are primarily observed during transport from the south and west which occurs 

most frequently in summer and when New England is on the western side of a high 

pressure system after it has moved offshore or in the warm sector of an approaching low 

pressure system (Moody et al., 1998; Fischer et al., 2004; Mao and Talbot, 2004b). 

Consequently, the greater frequency of northwesterly winds in winter and southerly 

winds in summer may also contribute to the seasonal trends by influencing the dominant 

source region(s) of alkyl nitrates and their precursors transported to TF. 

3.3.2 Diurnal Variation 

The chemical and physical processes controlling the atmospheric distribution of 

alkyl nitrates can be elucidated through examination of their diurnal trends. During both 

winter and summer 2002, the hourly average alkyl nitrate mixing ratios steadily 

decreased overnight, reached minimum levels at -05:00-07:00 (local time), increased 

throughout the morning, and reached peak levels at approximately noon (Figure 3.4). The 

morning increase likely reflects a combination of vertical mixing, advection, and 

photochemical production. This is supported by comparison to the O3, wind speed, and 
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JNO2 diurnal cycles (Figure 3.4). Following sunrise, surface heating causes the nocturnal 

boundary layer (NBL) to dissipate and air masses from the residual layer above the NBL 

are mixed toward the surface resulting in increased O3 and alkyl nitrate mixing ratios. 

Winter Summer 

10 15 
Hour (Local) 

10 15 20 
Hour (Local) 

Figure 3.4. Hourly average (local time) (a) and (b) O3 (ppbv), wind speed (m/s), and JNO2 

(yellow shaded curve), (c) and (d) MeON02 (black left axes) and EtONC>2 (pink right 
axes) (pptv), (e) and (f) 2-PrON02 (green left axes) and 2-BuON02 (blue right axes) 
(pptv) in winter (left column) and summer (right column) 2002 at Thompson Farm. Error 
bars in 3.4c-f are the standard error. 
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The lifetimes of the C1-C5 alkyl nitrates due to the known removal mechanisms 

(photolysis and reaction with OH) are longer than one day, which suggests that their 

mixing ratios should be relatively constant over the course of a day (Table 3.3). However, 

the decrease in mixing ratios throughout the night indicates that removal processes 

occurring on a time scale <1 day were dominant. Processes potentially contributing to the 

early morning minima include losses from chemistry, deposition, decomposition, or 

mixing with air masses having lower mixing ratios. The rates of reaction with oxidants 

potentially available at night, such as O3 and the nitrate radical (NO3), are insignificant 

for alkyl nitrates (Becker and Wirtz, 1989; Atkinson, 1990); thus chemical reactions can 

be neglected. Decomposition can be ignored because alkyl nitrates are thermally stable at 

tropospheric temperatures (Roberts, 1990). Additionally, it is typically thought that alkyl 

nitrates do not undergo wet and dry deposition because of their low solubility (e.g., 

Roberts, 1990, Shepson et al., 1996). However, wet deposition of alkyl nitrates has been 

reported in some studies (e.g., Hauff et al., 1998). Moreover, Henry's Law constants of 

the C,-C5 alkyl nitrates (-0.5-2.6 M/atm) (Luke et al, 1989; Karnes and Schurath, 1992) 

are similar to peroxyacyl nitrates (1-5 M/atm) and higher than O3 (-0.01 M/atm) (Karnes 

and Schurath, 1992; Sander, 1999). Both PAN and 0 3 are well known to undergo surface 

deposition (e.g., Schrimpf et al., 1996; Finkelstein et al., 2000; Sparks et al., 2003). 

Transport or mixing may play a role in regulating nighttime ambient mixing ratios. 

However, the observation of decreasing alkyl nitrate mixing ratios on nights with calm 

winds and stable inversion layers is indicative of a process besides advection or vertical 

mixing of different air masses (see below). Therefore, it seems likely that deposition 

contributed to the alkyl nitrate diurnal behavior at TF. 
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6/6/02 6/8/02 6/10/02 6/12/02 
Date and Time (Local) 

6/14/02 6/16/02 

Figure 3.5. Time series of (a) O3 (ppbv) and wind speed (m/s), (b) ethane and propane 
(pptv), (c) NOy (ppbv), CO (ppbv), and C02 (ppmv), (d) MeON02 and EtON02, and (e) 
2-PrON02 and 2-BuON02 (pptv) at TF during June 6-16, 2002. Dry deposition of alkyl 
nitrates was observed on the nights of June 8 and 14 (between the dashed lines). 
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Detailed analysis of two nights during June 2002 provides evidence for the 

surface deposition of alkyl nitrates. On the evenings of June 7 and 13, 2002, O3 decreased 

to < 3 ppbv and the wind speed was near zero (Figure 3.5a). Ozone and wind speed 

remained at these levels through -07:00 on June 8 and 14 indicating that a stable 

nocturnal inversion layer had developed. Under these stable and calm conditions, the 

surface air is isolated from the air in the remnant boundary layer aloft which inhibits 

vertical mixing and advection (e.g., Hastie et al., 1993; Gusten et al., 1998; Talbot et al., 

2005). Therefore, variations in trace gas mixing ratios reflect local sources or sinks. This 

is illustrated by the large increase in carbon monoxide (CO), carbon dioxide (CO2), and 

NMHC mixing ratios on both nights resulting from local liquefied petroleum, natural gas, 

vehicular, or combustion emissions (e.g., Talbot et al., 2005; White et al., 2008) (plant 

respiration also contributes to the increase in CO2) (Figures 3.5b,c). Additionally, NOy 

decreased (Figure 3.5c) mainly due to wet and dry deposition of HNO3 and NO2 (e.g., 

Munger et al., 1998). Furthermore, on both nights, each of the C1-C5 alkyl nitrates 

decreased, maintained nearly constant mixing ratios for several hours, and increased in 

the morning concurrently with O3 and wind speed (Figures 3.5d, e). 

The diurnal variation of the light alkyl nitrates at TF provides evidence for a 

previously unaccounted for removal mechanism from the atmosphere and for a potential 

additional source of organic nitrogen to the surface. The flux from the atmosphere to the 

surface and the dry deposition velocities (Vd) of the alkyl nitrates were estimated as 

follows: 

Flux -
dC 

dt 
x H = -C x Vd (7) 
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where C is the mean alkyl nitrate concentration (molecules cm"3) between 00:00-06:00, H 

is the nocturnal boundary layer height, and [dC/dt] is the change in alkyl nitrate 

concentration between 0:00-06:00. The resulting dry deposition flux and velocity 

estimates strongly depend on the value chosen for the boundary layer height which varies 

with meteorological conditions and season. In these calculations, we used H=125 m 

because it is a typical nocturnal boundary layer height for this site (e.g., Talbot et al., 

2005; Sive et al., 2007; Mao et al., 2008; White et al., 2008; Zhou et al., 2008; Russo et 

al., 2009). 

The deposition rates of the individual alkyl nitrates were estimated to range from 

9 - 1 1 

-0.1 to -1.8 nmol m" hr" , and the dry deposition velocities were 0.04 to 0.26 cm s" 

(Table 3.3). The dry deposition rates and velocities were slightly higher in summer than 

in winter. These dry deposition flux and velocity values are at the lower end of estimates 

compared to other organic nitrogen compounds at North American sites. For example, 

dry deposition velocities were estimated to be 0.65 cm s"1 for isoprene nitrates (Giacopelli 

et al., 2005), 0.4 cm s"1 for hydroxyalkyl nitrates (Shepson et al., 1996), and 0.1 to 0.6 cm 

s"1 for PAN (Shepson et al., 1992; Schrimpf et al., 1996; Sparks et al., 2003; Doskey et 

al., 2004; Turnipseed et al., 2006; Wolfe et al., 2009). Nighttime Vd values for MP AN 

and PPN ranging from -0.1 to 0.7 cm s"1 and fluxes of-10 to 50 nmol m"2 hr"1 have been 

observed over pine forests (Turnipseed et al., 2006; Wolfe et al., 2009). Furthermore, the 

lifetimes (Td = H/Vd) of each alkyl nitrate due to dry deposition at TF were estimated to 

range from 0.6 to 3 days (Table 3.3). These lifetimes are shorter than the ones derived 

from OH oxidation and photolysis combined. 
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The TF results support previous research conducted at Harvard Forest (HF) (a 

temperate deciduous forest -110 km southwest of TF) which concluded that the 

deposition of unmeasured organic nitrogen compounds could explain discrepancies 

between total NOy and the sum of speciated NOy compound measurements (Munger et 

al., 1996, 1998; Lefer et al., 1999; Horii et al., 2004, 2006). Additionally, studies 

conducted at several sites throughout Canada found that "Other-NOy" compounds (i.e., 

excluding HN03, N02 , pN03 \ PAN, PPN) contributed 9-38% to NOy dry deposition 

(Zhang et al., 2009). Based on the summer flux estimates for TF, ZRONO2 (~5 nmol m"2 

hr"1 ~ 0.16 g N m"2 yr"1) constituted a non-negligible amount (-1-6%) of the "Other-NOy" 

deposition rates at the two Canadian sites closest to TF (Frelighsburg, Quebec -400 km 

northwest and Kejimkujik, Nova Scotia -500 km northeast) (Zhang et al., 2009). While 

these results suggest that the dry deposition of C1-C5 alkyl nitrates is not necessarily a 

major source of nitrogen to the surface, they do provide evidence that unaccounted for 

reactive nitrogen compounds contribute to NOy deposition, and this may be an important 

loss process at night when photolysis and oxidation are not occurring. 

3.4 Sources of Alkyl Nitrates in Coastal New England 

The following discussion uses a combination of four separate VOC data sets, 

which are representative of three different environments, in order to identify the major 

source(s) of alkyl nitrates in southeastern New Hampshire by comparing their temporal 

and/or spatial distributions to characteristic source signatures and to NMHC and 

halocarbon trends. 
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3.4.1 Inland/Coastal Environment: Thompson Farm 

The predominant source region and regional transport pathway of air masses to 

TF varies with season as discussed in section 3.3.1. In order to determine whether the 

alkyl nitrate mixing ratios observed at TF depend upon the source region, the hourly 

average wind direction data from winter and summer 2002 was separated into four 

sectors (northeast (0-90°), southeast (90-180°), southwest (180-270°), and northwest 

(270-360°)). In winter, mixing ratios were fairly uniform in the SW, NW, and NE sectors 

but were significantly higher (p<0.05) in the SE sector, while in summer, the mean 

mixing ratios in both the SE and SW sectors were significantly higher (p<0.001) than in 

the northern sectors (Table 3.4). It is not unexpected that enhanced mixing ratios would 

be observed during transport from the SE. Previous studies have shown that air masses 

that passed over east coast metropolitan areas and over the Atlantic Ocean can be 

transported inland to TF from the south-southeast by the sea breeze (Miller et al., 2003; 

Angevine et al., 2004; Mao and Talbot, 2004a; Zhou et al., 2008). Furthermore, in both 

seasons, the highest and lowest mean parent hydrocarbon (ethane, propane, n-butane, n-

pentane) mixing ratios were observed in the southern and northern transport sectors, 

respectively (not shown). This suggests that a major source region of NMHCs was the 

urban/industrial regions to the west-southwest of New England. In addition, this points 

toward a continental source of alkyl nitrates which was most likely secondary production 

following the oxidation of hydrocarbons. Moreover, the highest mixing ratios of alkyl 

nitrates corresponded to events with enhanced mixing ratios of NMHCs and carbon 

monoxide. For example, the highest C2-C5 alkyl nitrate mixing ratios during winter 2002 

were observed on February 7 under west-southwesterly winds (Figure 3.2). Concurrent 
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with the high alkyl nitrates were enhanced (above 90 percentile for winter) mixing ratios 

of CO (370-750 ppbv), ethane (4-7.2 ppbv), propane (5.7-11 ppbv), n-butane (1-3.7 

ppbv), and n-pentane (0.3-0.5 ppbv). 

Winter 

MeON02 

EtON02 

2-PrONOi 

l-PrON02 

2-BuON02 

3-PenON02 

2-PenON02 

IRON02 

NE 

3.6 ±0.2 

4.2 ±0.1 

7.3 ±0.2 

1.5 ±0.05 

6.4 ± 0.3 

1.8 ±0.1 

2.4 ±0.1 

26.2 ± 1.0 

SE 

4.2 ± 0.2 

4.7 ±0.1 

7.9 ±0.1 

1.5 ±0.03 

7.0 ±0.1 

1.9 ±0.04 

2.6 ±0.1 

29.0 ±0.6 

SW 

3.2 ±0.1 

4.0 ± 0.04 

7.1 ±0.1 

1.3 ±0.02 

6.3 ±0.1 

1.7 ±0.03 

2.3 ±0.1 

25.5 ±0.4 

NW 

2.9 ±0.1 

4.0 ±0.1 

7.4 ±0.1 

1.4 ±0.02 

6.5 ±0.1 

2.3 ±0.05 

2.3 ±0.1 

25.8 ±0.5 

Summer 

MeON02 

EtON02 

2-PrON02 

l-PrON02 

2-BuON02 

3-PenON02 

2-PenON02 

IRONO2 

NE 

2.4 ±0.1 

2.6 ±0.1 

4.2 ± 0.3 

1.0 ±0.1 

2.1 ±0.2 

0.7 ±0.1 

0.9 ±0.1 

13.3 ±0.7 

SE 

3.2 ±0.1 

3.5 ±0.1 

6.9 ±0.4 

1.3 ±0.1 

3.9 ±0.2 

1.5 ±0.1 

2.2 ± 0.2 

21.6+1.0 

SW 

3.4 ±0.1 

3.6 ±0.1 

7.3 ±0.3 

1.4 ±0.1 

4.2 ± 0.2 

1.6 ±0.1 

2.5 ±0.1 

22.6 ±0.8 

NW 

2.7 ±0.1 

2.9 ±0.1 

5.1 ±0.3 

1.0 ±0.1 

2.8 ±0.2 

1.0±0.1 

1.4 ±0.1 

16.1 ±0.9 

Table 3.4. Mean (+ standard error) mixing ratios of alkyl nitrates (pptv) in the northeast 
(NE, 0-90°), southeast (SE, 90-180°), southwest (SW, 180-270°), and northwest (NW, 
270-360°) transport sectors during winter (top) and summer (bottom) 2002. 
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The dominant and consistent contribution of 2-P1ONO2 and 2-BuON02 to 

SRONO2 at TF over various years and time scales further corroborates that their major 

source was photochemical production from propane and n-butane (Tables 3.1 and 3.2). 

Both 2-PrON02 and 2-BuON02 have been found to be the most abundant alkyl nitrates at 

numerous continental locations (Ridley et al., 1990; Shepson et al., 1993; Ostling et al., 

2001; Stroud et al., 2001; Blake et al., 2003b; Swanson et al, 2003; Simpson et al., 2003; 

2006). This characteristic continental source signature reflects a balance between the 

increasing alkyl nitrate yield and the decreasing lifetimes of both the parent alkane and 

alkyl nitrate with increasing carbon number (Atkinson et al., 1982; Flocke et al., 1991; 

1998; Arey et al., 2001). In contrast, in remote oceanic regions, the C1-C3 alkyl nitrates 

have been found to be supersaturated (Chuck et al., 2002; Dahl et al., 2005) and 

positively correlated with marine halocarbons (Atlas et al., 1993; Blake et al., 1999, 

2003a). Additionally, oceanic emissions of MeONC^ were estimated to be a factor of ~3-

4 larger than EtON02 in the Pacific (Blake et al., 2003a; Dahl et al., 2007) and Atlantic 

Oceans (Chuck et al., 2002). Although TF is often influenced by marine air masses 

originating from the SE and NE (Zhou et al., 2005; 2008), MeON02 and EtON02 were 

not correlated with marine halocarbons, and the year-round MeONCVEtONC^ ratio 

averaged ~ 1 . This suggests that the MeON02 and EtONCh levels observed in seacoast 

New Hampshire were controlled by anthropogenic precursor source(s). 

Furthermore, the C3-C5 alkyl nitrates were strongly correlated with each other in 

both winter and summer 2002 (r -0.7-0.9), and in all seasons throughout 2004-2008 

(r2~0.60-0.96). Ethyl nitrate exhibited slightly weaker correlations with the C3-C5 alkyl 

nitrates (r2~0.4-0.8). In winter, MeON02 was poorly correlated with the other alkyl 
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nitrates, whereas in summer 2002 and spring-fall 2004-2008, MeON02 was moderately 

correlated with the C2-C5 compounds (r2~0.3-0.6). The weaker MeONd and EtONC>2 

correlations may be a consequence of their longer lifetimes or different sources. In 

addition, the C1-C5 alkyl nitrates tracked each other extremely well (Figures 3.2 and 3.3) 

reflecting their similar and/or collocated precursor sources. 

3.4.2 Marine Environment: Measurements onboard the NOAA R/V Ronald H. Brown 

Measurements of MeONC>2, 2-PrON02, and 2-BuONC>2 were made from ambient 

air and surface seawater samples collected onboard the NOAA R/V Ronald H. Brown 

during July 30-August 6, 2002 as a component of the NEAQS 2002 campaign. Sampling 

occurred in Boston Harbor on 30-31 July and off the coast of New Hampshire from 1-6 

August. 2-Propyl and 2-butyl nitrate were well correlated in air (r =0.97) and were 

positively, but weakly (r2~0.34), correlated with MeONC>2 indicating that the alkyl 

nitrates shared a common source. In the air samples, MeONCh, 2-PrONC>2, and 2-

BuON02 ranged from 2-8, 4-30, and 2-16 pptv, respectively (Figures 3.6a, c; 2-BuON02 

not shown). In contrast, 2-PrON02 and 2-BuONC>2 mixing ratios in the surface seawater 

were lower and more uniform (9-13 pptv ~ 0.008-0.017 nmol L"1 and 2-5 pptv ~ 0.002-

0.006 nmol L"1, respectively) (Figure 3.6d). Methyl nitrate was more variable in the 

seawater but exhibited a similar range of mixing ratios (1-6 pptv ~ 0.007-0.051 nmol L"1) 

as in the air samples (Figure 3.6b). These results suggest that the New England coastal 

waters were undersaturated in 2-PrON02 and 2-BuON02 and that MeON02 was near 

equilibrium with respect to the overlying atmosphere. These results are consistent with 

Chuck et al. (2002) and Reeves et al. (2007) who proposed that alkyl nitrates in northern 

hemisphere temperate waters were near equilibrium with the atmosphere. Similar to the 
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TF results (section 3.4.1), this limited data set from the Gulf of Maine during NEAQS 

2002 does not provide conclusive evidence for a marine source of light alkyl nitrates in 

this region. 

MeON02 (pptv) 
71»W 

Figure 3.6. (a) Ambient air and (b) surface seawater mixing ratios of MeONCh (pptv), 
and (c) ambient air and (d) surface seawater mixing ratios of 2-PrON02 from samples 
collected in the Gulf of Maine throughout July 30-August 6, 2002 onboard the NOAA 
R/V Ronald H. Brown during NEAQS 2002 
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3.4.3 Estuarine Environment: Great Bay Experiment 

An intensive study focused on examining the spatial variability and sources of 

VOCs throughout the Great Bay estuary in seacoast New Hampshire was conducted from 

18:00 August 18 to 19:00 August 19, 2003 (local time) (Figure 2.1 inset). At TF, winds 

were from the south-southeast from noon on August 18 until early morning on August 19 

when they shifted to the west-northwest (Figure 3.7b). Three day back trajectories 

obtained from the NOAA HYSPLIT model (Draxler and Rolph, 2003) showed that air 

masses originated in eastern Canada and traveled along the Maine coastline before 

reaching NH from the east on the evening of August 18. Furthermore, a strong nocturnal 

inversion layer developed between midnight and 07:00 on August 19 as demonstrated by 

decreases in 0 3 and wind speed and by an increase in carbon dioxide (Figures 3.7a, b). 

The mixing ratios of each alkyl nitrate were remarkably uniform across the five 

sampling locations (Figures 3.7c-i). The standard deviation of the mixing ratios at all five 

sites each hour was <0.2 pptv for MeON02, EtON02, l-PrON02, 2-PenON02, and 3-

PenON02 and <0.5 pptv for 2-PrON02 and 2-BuON02. The lack of a spatial variation in 

mixing ratios and a correlation with marine derived compounds suggests that the 

source(s) of the alkyl nitrates was not associated with coastal emissions. In contrast, the 

marine halocarbons (bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide 

(CH3I), and ethyl iodide (C2H5I)) exhibited a distinct spatial variation with higher mixing 

ratios at coastal sites (FC, WHF) compared to inland sites (TF, Pease, Exeter) (Zhou et 

al., 2005). For example, the elevated mixing ratios of CHBr3 (>10 pptv) reflect the 

influence of local coastal and estuarine emissions on the evening of August 18 (Figure 

3.7j). Additionally, NMHC mixing ratios increased significantly under the nocturnal 
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boundary layer at each sampling location and decreased rapidly following the breakup of 

the inversion layer in the morning (White et al., 2008) (Figure 3.7j). The slightly 

increasing alkyl nitrate mixing ratios on August 19 likely reflect processed continental 

emissions and/or the downward mixing of air from above the inversion layer in the 

morning. Overall, the different temporal and spatial distributions of the alkyl nitrates 

throughout the Great Bay estuary compared to tracers of anthropogenic and marine 

emissions is further evidence for their dominant secondary source. 

3.5 Alkyl Nitrate/Parent Hydrocarbon Ratio Relationships 

In the previous section, the analysis of four distinct data sets indicated that the 

dominant source of alkyl nitrates in the seacoast region of New Hampshire was 

photochemical production from hydrocarbons. Accordingly, the relationships with the 

parent hydrocarbons were further examined using a sequential reaction scheme. The 

production and loss reactions of alkyl nitrates summarized in equations (l)-(6) can be 

simplified as follows by assuming that reaction (1) between the parent hydrocarbon and 

OH is the rate-limiting step: 

RH kA > RON02 —*»->products (8) 

The simplified kinetic equations lead to a differential equation, whose solution is a 

function only of time, and can thus be integrated to yield equation (9) (see Bertman et al., 

1995 for details on the derivation of equation (9)): 

[RQNQ2]_ /fcA cc tA- t,)t) |[RONQ2]oc(tA. tM)t 

[RH] ( k B - k A ) V [RH]o 

where kA=ki[OH], kB=k6[OH] + J5, (3=otia4, and [RON02]0/[RH]0 is the initial alkyl 

nitrate/parent hydrocarbon ratio (see Tables 3.3 and 3.5 for parameter values). If 
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[RONO2]o/[RH]o=0, the solution to the equation describes the time evolution of the alkyl 

nitrate/parent hydrocarbon (RONO2/RH) ratio based solely on gas phase hydrocarbon 

chemistry (Bertman et al., 1995). Previous studies typically assumed that the initial alkyl 

nitrate mixing ratio is zero (Bertman et al., 1995; Roberts et al., 1998; Stroud et al., 2001; 

Simpson et al., 2003), while more recent studies included analyses using non-zero initial 

ratios (Reeves et al., 2007). Some studies have also attempted to quantify the influence of 

additional hydrocarbon precursors (e.g., Sommariva et al., 2008). 

In order to examine the relationships between alkyl nitrates and their parent 

hydrocarbons, we compared the observed RONO2/RH ratios to the values calculated 

when the initial [RON02]0/[RH]0 ratio equaled zero (pure photochemistry curve), the 

mean, and the background (101 percentile) ratio values at TF during winter and summer 

2002 (Figure 3.8, Table 3.5). Also included in Figure 3.8 are the mean RON02/RH ratios 

from samples collected at several remote sites along the U.S. west coast (34-47°N) during 

December 2001 and June 2002 (unpublished data, D. Blake, UCI). These samples are 

representative of background air masses and generally agree with the highest TF 

RONO2/RH ratios (i.e., more aged air masses) in winter. The lower summer ratios at TF, 

compared to the west coast, likely reflect the influence of more recent emissions and 

higher parent hydrocarbon mixing ratios because of the closer proximity to anthropogenic 

sources. In fact, the samples collected on nights with a stable NBL, and thus representing 

local NMHC emissions and low RONO2/RH ratios, largely correspond to the points on 

the lower left of the plots at the most recent processing times. In both winter and summer, 

air mass ages ranging from several hours to 5 days were observed at TF. 
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collected at remote sites along the U. S. west coast in December 2001 and June 2002. 
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Figure 3.8 continued. 

In both seasons, the EtONCVethane ratios were factors of-5-10 above the pure 

photochemistry curve (Figures 3.8a,b). The trend toward the curve at the longest 

processing times is indicative of mixing with aged air masses containing lower ratios. 

Previous studies have also observed large deviations between predicted and observed 

EtON02/ethane ratios (Bertman et al., 1995; Roberts et al., 1998; Simpson et al., 2003). 

The deviation has typically been interpreted as evidence of a primary source of EtONC>2 

or of an additional source of the precursor ethyl peroxy radical from the decomposition of 

larger organic compounds, specifically alkoxy radicals (Bertman et al., 1995; Flocke et 

al., 1998). Interestingly, the mean and background initial ratio curves agreed with the TF 

observations very well in both the winter and summer over the entire range of measured 
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ratios (Figures 3.8a,b). Thus, the deviation from the zero initial ratio curve may reflect 

background EtONCVethane ratios in the atmosphere because of the sufficiently long 

lifetimes of EtONC>2 and ethane (~1 month and several months, respectively, in winter 

and ~1 week and 1-2 months, respectively, in summer). Bertman et al. (1995) and Reeves 

et al. (2007) also found better agreement between observed and predicted EtONCVethane 

ratios at short processing times when an initial ratio was used. It should be noted that 

these results do not rule out a potential contribution from direct emissions or additional 

precursor sources of EtON02. Rather, these results provide an additional explanation for 

the discrepancy between observed and predicted ratios. 

The 2-PrON02/propane and l-PrONCVpropane ratios were factors of 2-3 higher 

than the pure photochemistry curve at the shortest processing times in winter and trended 

toward the curve at longer times (Figures 3.8c,e). In contrast, in summer, the propyl 

nitrate/propane ratios were factors of 0.5-0.9 above the pure photochemistry curve at all 

air mass ages (Figures 3.8d,f). The small offsets above the curve at TF were much lower 

than observed by other studies conducted in North America (Bertman et al., 1995; 

Roberts et al., 1998; Stroud et al., 2001). The close agreement between the measured and 

predicted ratios and the similar behavior exhibited by both propyl nitrate/propane ratios 

indicates that l-PrONC^ and 2-PrONC>2 share a similar production mechanism following 

the oxidation of propane. This is in contrast to observations over the Atlantic Ocean 

(Reeves et al., 2007) and at Chebogue Point, Nova Scotia (Roberts et al., 1998) where the 

2-PrON02/propane and l-PrON02/propane ratios displayed different behavior which was 

attributed to the influence of different precursor compounds. Furthermore, the lifetimes 

of propane (weeks-months), 2-PrON02, and l-PrON02 (days-weeks) are sufficiently 
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long to sustain background propyl nitrate/propane ratios which may contribute to the 

deviations between ambient and predicted ratios. Overall, a significant amount of the data 

in both seasons falls between the mean, background, and zero initial ratios curves further 

suggesting that precursor sources other than propane may not contribute to the propyl 

nitrate distribution observed at TF. Additionally, in Figures 3.8a-f, the initial 2-

BuONCVn-butane ratio was equal to its background values (Table 3.5) in order to 

highlight how well the predicted C2-C3 RONO2/RH ratio curves encompass the 

observations. 

The pentyl nitrate/n-pentane ratios were slightly (factors of 0.3-0.4) below the 

pure photochemistry curves except at the shortest reaction times in winter (Figures 3.8g-

j). Previous studies have also found the pentyl nitrate/n-pentane ratios to lie slightly 

below the predicted curve, but the cause of this unexpected behavior has remained 

unknown (Roberts et al., 1998; Stroud et al., 2001; Simpson et al., 2003). One possible 

explanation suggested by Reeves et al. (2007) was the fragmentation of n-pentane to 

alkyl radicals other than the 2-pentyl and 3-pentyl radicals. At TF, the slopes of the 

pentyl nitrate/n-pentane ratios were consistent with the zero initial ratio curves, especially 

in summer, suggesting that photochemical production from n-pentane was the main 

source of both 2- and 3-PenON02. In contrast to the C2-C3 RONO2/RH ratios, the mean 

initial ratio curves overestimated the observations in both seasons (not shown). In this 

case, plotting the mean initial 2-BuON02/n-butane ratio with the background pentyl 

nitrate/n-pentane curves resulted in better agreement with the observations (pink lines in 

Figures 3.8g-j). This result is not unexpected when the different lifetimes of the C4 and 

C5 alkyl nitrates are considered. 2-butyl nitrate and n-butane have longer lifetimes and 
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higher background mixing ratios than the pentyl nitrates and n-pentane, respectively, 

suggesting that the initial pentyl nitrate/n-pentane ratio would be lower than the 2-

BuONCVn-butane ratio near a source region. This is corroborated by the TF 

measurements in which the mean and background pentyl nitrate/n-pentane ratios were 

lower than the 2-BuONC>2/n-butane ratios (with the exception of the winter background 

2-PenON02/n-pentane ratio) (Table 3.5). 

The influence of alkyl nitrate dry deposition on the interpretation of RONO2/RH 

vs. 2-BuON(Vn-butane relationships was also investigated. A term representing the first 

order removal rate due to dry deposition (kD = Vd/H = 1/xa; Table 3.3) was added to the 

alkyl nitrate removal rate constant term (ks = ke[OH] + J5 + kp) in equation (9). The 

calculated curves agreed with the observations but quickly reached a constant value and 

did not extend beyond processing times of -1-2 days on the pure photochemistry curve 

(Figure 3.8). This reflects the shortened lifetimes when dry deposition is considered 

(Table 3.3). The pronounced decrease in EtON02/ethane ratios is caused by the decrease 

in ratios with increased processing time (discussed above) and the larger ko for 2-

BUONO2 (Figures 3.8a,b). Considering that the observed RONO2/RH ratios extend to 

longer processing times, the significant influence of atmospheric mixing is apparent. 

Additional research is needed to quantify the seasonal variation, if any, in dry deposition 

rates and velocities of alkyl nitrates and is being conducted using the long-term and 

continuous measurements currently being made at Thompson Farm. 

3.6 Summary 

Measurements of C1-C5 alkyl nitrates made at various locations throughout 

seacoast New Hampshire and spanning several years (2002-2008) were presented. The 
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total alkyl nitrate mixing ratio was generally -20-30 pptv and constituted only a small 

component (< 1%) of ambient NOy at TF. This suggests that alkyl nitrates are not likely 

to have a significant influence on the local O3 or NOy budget. However, owing to the 

high mixing ratios of precursor compounds (NOx and NMHCs) emitted from the urban 

northeast U.S. corridor, production of alkyl nitrates during trans-Atlantic transport is 

likely to occur and has been observed (e.g., Reeves et al., 2007). This may ultimately 

influence the NOx and O3 distributions of downwind regions, such as Europe, making it 

necessary to accurately quantify the distributions of precursors and secondary species 

originating in the northeastern U.S. Furthermore, while the alkyl nitrate deposition rates 

(-0.1 to -1.8 nmol m" hr" ) at TF were much lower than for other nitrogen species, the 

observation that alkyl nitrates may undergo dry deposition provides evidence that 

unaccounted for reactive nitrogen compounds contribute to NOy deposition. 
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CHAPTER 4 

CHLORINE ATOM CONCENTRATIONS AND CONTRIBUTIONS TO VOC 
OXIDATION DURING SUMMER 2004 AND 2005 AT INLAND AND OFFSHORE 

COASTAL NEW ENGLAND SITES 

4.1 Introduction 

Atomic chlorine (CI) in the atmosphere originates from natural and anthropogenic 

sources. The largest source of both particulate and inorganic CI in the troposphere is 

dechlorination of sea-salt aerosol emitted by breaking waves over the ocean (e.g., 

Graedel and Keene, 1995; Erickson et al., 1999; Keene et al., 1999). Several mechanisms 

have been proposed to explain how the inorganic gaseous chlorine is released following 

the oxidation of sea-salt aerosol (e.g., Keene et al., 1990; Finlayson-Pitts, 1993, 2003; 

Piatt and Honninger, 2003). One mechanism involves the volatilization of hydrochloric 

acid (HC1) following displacement reactions with less volatile and stronger acids, such as 

sulfuric (H2SO4) and nitric (HNO3) acid. A second mechanism is the oxidation of sea-salt 

halides to reactive halogen molecules, such as Br2, BrCl, IC1, CI2, which are released to 

the atmosphere. Third, oxidized nitrogen species, such as dinitrogen pentoxide (N2O5), 

HNO3, nitrogen dioxide (NO2), chlorine nitrate (CIONO2), or nitrate (NO3), react with 

bromide or chloride in sea-salt to release hydrogen halides (HBr, HC1), nitryl chloride 

(CINO2), or nitryl bromide (BrN02). Once in the atmosphere, reactive halogen species 

are rapidly photolyzed to halogen atoms. Compared to the natural sources, anthropogenic 

emissions (fossil fuel combustion, waste incineration, water treatment, chemical 
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manufacturing, cooling towers, paper mills) make a minor contribution to the flux of CI 

into the troposphere (Graedel and Keene, 1995; Erickson et al., 1999; Keene et al., 1999). 

However, the variations in aerosol acidity resulting from reactions with nitrogen and 

sulfur species (from anthropogenic and natural sources), will have a significant influence 

on acid-displacement reactions, the oxidation capacity, climate, and ocean productivity in 

coastal regions. 

Atomic chlorine is removed from the atmosphere by reaction with organic 

compounds or with ozone (O3) depending on the relative concentrations of organics and 

nitrogen oxides (NOx). At low NOx mixing ratios, the presence of CI initiates a catalytic 

O3 destruction cycle: 

CI + 0 3 -+ CIO + 0 2 

CIO + hv -+ CI + O 
CIO + H02 -+ HOC1 + 0 2 

HOC1 + hv -+ OH + CI 

This cycle may be important in remote oceanic regions, the Arctic, or in the stratosphere. 

In continental regions, CI predominantly reacts with organic compounds, specifically 

hydrocarbons (RH). The rates of reaction of alkanes, as well as several alkenes and 

aromatics, with CI are 1-2 orders of magnitude faster than with the hydroxyl radical 

(OH). Similar to the OH initiated oxidation of hydrocarbons, the reaction between RH 

and CI in the presence of sufficient levels of NOx can ultimately lead to O3 production: 

CI + RH -+ R + HC1 + 0 2 -+ R02 + HC1 
R02 + NO -+ RO + N02 

N02 + hv -> NO + O 

0 + 0 2 + M ^ 0 3 + M 

The additional supply of radicals resulting from reaction between RH and CI will 

significantly influence the cycling of NOx, HOx, and sulfur species in the atmosphere. 
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Unfortunately, techniques are not currently available to measure ambient concentrations 

of atomic chlorine. Consequently, all estimates of CI concentrations to date are based on 

indirect methods and modeling. 

Several modeling studies have linked the increased rates of hydrocarbon oxidation 

by CI to the subsequent enhancements (-5-15 ppbv) observed in ambient O3 mixing 

ratios. However, these studies have been focused on heavily populated areas in 

southeastern Texas (Tanaka et al., 2003; Chang and Allen, 2006) and southern California 

(Knipping and Dabdub, 2003; Cohan et al., 2008). Southern New England, including the 

seacoast region of New Hampshire, is classified as an O3 nonattainment area, but has 

only recently been the focus of large-scale air quality campaigns (e.g., Fehsenfeld et al., 

2006). The chemical composition of the troposphere over New England is influenced by 

a complex mixture of primary biogenic (i.e., vegetation, crops) and anthropogenic (i.e., 

industry, combustion, fuel and gasoline usage) emissions, as well as secondary 

photochemical species, originating from local and more distant sources regions, such as 

the Midwest and urban East Coast corridor, (e.g., de Gouw et al., 2005; Lee et al., 2006; 

Russo et al., 2009a, b; Talbot et al., 2005; White et al., 2008, 2009). Additionally, 

halocarbons emitted from surface seawater or coastal macroalgae, such as bromoform 

(CHBr3), dibromomethane (CHiBr2), chloroiodomethane (CH2C1I), methyl iodide 

(CH3I), and ethyl iodide (C2H5I), are frequently observed at the UNH Observing Station 

at Thompson Farm (Sive et al., 2007; Varner et al., 2008; Zhou et al., 2005, 2008). The 

short photolytic lifetime of CH2C1I (~2 hours) indicates persistent and efficient transport 

of emissions from local marine and estuarine sources to Thompson Farm (~20 km inland) 

(Varner et al., 2008). 
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During a campaign conducted at Appledore Island, ME (July-August 2004), 

halogen species, including CI* (primarily CI2+HOCI) and HC1 (Keene et al., 2007), 10 

and OIO (Stutz et al., 2007), CH2C1I (Varner et al., 2008), and CHBr3 and CH2Br2 (Zhou 

et al., 2008), were observed. The modeling study of Pechtl and von Glasow (2007) 

demonstrated that the processing of continental outflow from the northeast U. S. can be 

significantly enhanced by interactions with CI during transport over the ocean. In 

addition, Pszenny et al. (2007) estimated chlorine atom concentrations by using the 

lifetime-variability relationship of selected NMHCs observed at Appledore Island. This 

work expands upon the analysis of Pszenny et al. (2007) by including data for an inland 

site, additional compounds, and summer 2005. The objectives of this work are to (1) 

identify any evidence of CI chemistry by analyzing and contrasting the VOC trends at an 

inland and offshore site, (2) estimate [CI] and [OH]/[Cl] ratios using NMHC 

measurements during two summers, (3) examine the potential influence of chlorine 

chemistry on hydrocarbon, DMS, and OVOC removal rates and kinetic reactivity, and (4) 

assess the relative contribution of OH and CI chemistry to the oxidation capacity of the 

troposphere in this region. 

4.2 Experimental 

4.2.1 Sampling Sites 

Measurements of volatile organic compounds were made at the University of 

New Hampshire Atmospheric Observing Stations at Thompson Farm (TF) (43.11°N, 

70.45°W) in Durham, NH and at Appledore Island, ME (Al) (42.67°N, 70.62°W) during 

July 1-August 15, 2004 and July 7-August 5, 2005 (Figure 4.1). The two sampling sites 

are approximately 30 km apart. TF is ~20 km inland from the coast of New Hampshire, 
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-5 km northwest of the Great Bay estuary, and is surrounded by agricultural fields and a 

mixed deciduous and coniferous forest. Ambient air is sampled from the top of a 15 m 

tower into a trailer housing the instruments at TF. AI is a 95 acre island located -10 km 

offshore of the Maine/New Hampshire coast. Ambient air was sampled from the top of a 

40 m WWII surveillance tower located on the island. 

4.2.2 Sample Collection and Analysis at Thompson Farm: July-August 2004 and 2005 

Approximately every 40 minutes, measurements of C2-C10 NMHCs, C1-C5 alkyl 

nitrates, and C1-C2 halocarbons were made by an automated gas chromatography system. 

The GC system is equipped with two flame ionization detectors (FID) for detecting 

NMHCs and two electron capture detectors (ECD) for measuring halocarbons and alkyl 

nitrates. The system is described in greater detail in Chapters 2 and 3 and in Zhou et al. 

(2005, 2008). 

4.2.3 Appledore Island Canister Samples: July-August 2004 and 2005 

4.2.3.1 Canister Sample Collection. Prior to being transported to AI, the 2-liter 

electropolished stainless steel canisters were prepared by flushing with UHP helium and 

then evacuating to -1 x 10" torr. Canister samples were collected at the top of each hour 

(00:00, 01:00, 02:00....23:00) during both the 2004 and 2005 campaigns. The air sample 

passed through -100 feet of lA" stainless steel tubing (from the top of the tower to the 

location of the sampling manifold on the second floor) to the metal bellows pump. The 

pump was running continuously throughout the campaigns to keep the sampling line 

clean. The procedure for filling the canisters was: (1) flush the sampling line by quickly 

opening and closing the outlet valve several times, (2) close the outlet, slowly open the 

canister, and fill to 25-30 psig, (3) open the outlet valve and empty the canister to -10 
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psig, (4) repeat steps 2 and 3 four times, and (5) fill the canister to 30 psig, quickly close 

the canister valve, open the outlet valve, and disconnect the canister from the sampling 

manifold. 

4.2.3.2 Laboratory Analysis of Canister Samples. The canisters were analyzed in 

the lab at UNH typically within 1 week of collection for C2-Ci0 NMHCs, Ci-C5 alkyl 

nitrates, C1-C2 halocarbons, several oxygenated volatile organic compounds, and selected 

sulfur compounds. A three gas chromatograph system in conjunction with flame 

ionization detection (FID), electron capture detection (ECD), and mass spectrometry 

(MS) was used for sample analysis. Details of the system configuration are given in 

Chapters 2 and 3, Sive et al. (2005), and Zhou et al. (2005, 2008). 

The mixing ratios of C2-C6 and C6-C10 NMHCs were obtained using the PLOT-

FID and DB-l-FID column-detector combinations. The final mixing ratios of Cg-Cg 

aromatics and monoterpenes for the Al 2005 samples were obtained using both the FID 

and MS measurements. The response factors for NMHCs measured by the FID have 

remained nearly constant throughout 2004-present (see Chapter 2). We are thus confident 

that the mixing ratios obtained from this channel are accurate. However, several Cg-Cio 

NMHCs elute within a short time period resulting in considerable peak overlap. These 

compounds are resolved better by the MS because compounds are identified by both 

retention time and mass to charge ratio. Therefore, the final mixing ratios were 

determined by normalizing the mixing ratios obtained for the MS to the median mixing 

ratios based on the FID: Final MR = (MS MR)*(median FID MR/median MS MR). 
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4.2.4 Proton Transfer Reaction-Mass Spectrometer 

Measurements of oxygenated volatile organic compounds (OVOCs, including 

methanol, acetone, acetaldehyde, methyl ethyl ketone (MEK), methyl vinyl ketone + 

methacrolein (MVK + MACR), acetic acid), acetonitrile, and dimethyl sulfide (DMS) 

were made with a proton transfer reaction-mass spectrometer (PTRMS) during July 1-

August 15, 2004 and July 7-August 5, 2005 at both TF and AI. The measurement cycle of 

the PTRMS was ~4 minutes. Half-hour averages of the PTRMS data were used in this 

analysis. Additional details of the PTRMS operation can be found in Sive et al. (2005), 

Ambrose et al. (2007), and Jordan et al. (2009). 

4.2.5 Data 

This analysis includes several of the most abundant compounds in the different 

NMHC classes (alkanes, alkenes, aromatics, alkynes, monoterpenes), as well as carbon 

monoxide (CO), methane (CH4), DMS, and OVOCs. The following compounds were not 

included in Pszenny et al. (2007) but are included in the AI 2004 results discussed here: 

ethylbenzene, m+p-xylene, o-xylene, DMS, and OVOCs. For the most part, the same 

compounds were measured at TF and AI in both 2004 and 2005. A few exceptions are: 

(1) o-xylene and n-nonane coeluted in the TF GC during 2004 and are not included, (2) 

final mixing ratios of 1,3,5-trimethylbenzene from TF in 2005 are not available yet, but 

will be added later, (3) measurements of 2 and 3-methylpentane and 2,4-dimethylpentane 

are only available for AI, (4) p-pinene was measured at TF in 2004, but not in 2005; 

however, measurements of 3-carene are available for 2005, and (5) a constant CH4 

mixing ratio of 1.8 ppmv was used in the AI 2005 analysis. 
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4.3 Comparison of Source Regions, Meteorology, and Trace Gases at TF and AI 

during July-August 2004 and 2005 

4.3.1 Source Regions 

Five source regions (northwest (NW), north-northeast (NNE), marine, southwest 

(SW), south coastal (SC)) were identified based on visual inspection of 48 hour 

HYSPLIT backward trajectories created using the ED AS 40 km archived meteorological 

dataset (Figure 4. la). Individual trajectories were initialized from both TF and AI in 2004 

and 2005 at 16:00 UTC (12:00 local time) at starting heights of 200 and/or 500 m with a 

new trajectory initialized every six hours (Figure 4.1b). Each measurement from TF and 

AI in 2004 and 2005 was separated into the appropriate source region corresponding to 

the time the samples were collected (Figure 4.2). 

A few interannual variations in the transport pathways influencing TF and AI are 

worth noting. The most frequent transport pathways encountered at TF were from the 

NW and NNE during both summers (20-40%), and the marine sector was sampled the 

least frequently (8-14%). The SC and SW sectors were consistently observed -12-18% of 

the time. In contrast, at AI in 2004, transport from the SC sector was observed a similar 

amount of the time as the NW and NNE sectors (20-30%). This is not surprising given 

the offshore location of AI. Transport from the SC sector was observed less often at AI in 

2005 (12-15%) while transport from the SW occurred marginally more frequently (17-

19%> compared to 12-13% in 2004). Overall, the source region frequency distribution was 

comparable at both sites during 2005. 
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Figure 4.1. (a, top) Location of the UNH Atmospheric Observing Stations at Thompson 
Farm (TF) (Durham, NH) and Appledore Island (AI), ME. The five major source regions 
of air masses encountered at TF and AI are also shown, (b, bottom) Examples of 
HYSPLIT backward trajectories for each of the five source regions. 
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4.3.2 Interannual Variability in Meteorological Conditions 

The meteorological conditions in 2004 and 2005 were significantly different 

which likely influenced regional air quality. The summer of 2004 was cooler and wetter 

than normal (normal is the 1971-2000 mean) (White et al., 2007; NCDC Climatological 

Data Summary, 2004, 2005). In contrast, the summer of 2005 was the second warmest on 

record in the northeast U.S. with temperatures ~3°C above normal. The hourly average 

temperature was ~0.8-2.3°C and 1.4-4.8°C higher at TF and AI, respectively, in 2005 

than in 2004 (Figure 4.3a). Daytime temperatures were ~1-7°C higher at TF compared to 

the offshore sampling site. In addition, JNo2 values at TF were lower in 2004 than in 2005 

indicating that less sunlight was available for initiating photochemical processes (Figure 

4.3b). The wind speed was also higher throughout the entire day at AI in 2005. 

Additionally, 7.25" of rain fell at TF during July 1-August 15, 2004 compared to 2.9" 

between July 7-August 5, 2005 (NCDC Climatological Data Summary, 2004, 2005). 

The meteorological differences, as well as the lower O3 mixing ratios in 2004 

(Figure 4.3d), can be explained by variations in the frequency and location of the 

dominant high and low pressure systems which influence the northeast U. S. during the 

summer. Summer 2004 (compared to summers 2000-2003) was characterized by a more 

active storm track along the U. S. east coast with more oceanic cyclones (Hegarty et al., 

2007). In addition, the enhanced intensity of the Canadian high pressure system and the 

lower 500 mbar geopotential height anomaly resulted in more frequent transport of aged 

Canadian and marine air masses to New England (Hegarty et al., 2007; Yorks et al., 

2009). Furthermore, the above average 500 mbar geopotential height anomaly during 

summer 2005 facilitated the development of stagnant high pressure systems which are 
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conducive to photochemical O3 production (Yorks et al., 2009). The more frequent 

occurrence of oceanic storms and air masses likely explains the higher percentage of time 

associated with transport from the SC sector at AI during 2004. This meteorological 

variability resulted in unique opportunities to study the influence of chlorine chemistry 

during two contrasting summers. 

TF2004 
TF2005 
AI2004 
AI2005 

10 15 
Hour (EDT) 

Figure 4.3. Hourly average (a) temperature (°C), (b) JNO2 (S"1), (C) wind speed (m/s), (d) 
0 3 (ppbv), and (e) CO (ppbv) at TF and AI in 2004 and 2005. 
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4.3.3 Interannual Variability in VOC Distributions at TF and AI 

The median mixing ratios of all of the VOCs included in this analysis in each 

transport sector, as well as CO and CH4, are given in Table 4.1. The time series of ethane 

is shown in Figure 4.2 as a representative example of the similarities and differences in 

the NMHC distributions at TF and AI. The ethane mixing ratios were within a 

comparable range (-500-3500 pptv) and track one another very well illustrating that the 

same or portions of the same air mass were typically encountered at both sites. Rapidly 

changing mixing ratios and clean and polluted episodes ranging in duration from hours to 

days were observed. The relatively low and invariant mixing ratios throughout July 7-13, 

2005 were associated with Hurricane Cindy traveling up the east coast and Hurricane 

Dennis passing to the west of New England (July 13-18, 2005). 

The estimates of chlorine atom concentrations made in this analysis are derived 

from the variability trends of eight specific NMHCs (C3-C5 alkanes, ethyne, benzene, 

toluene). The general distribution and diurnal trends of these compounds at TF and AI are 

discussed here. In 2004, the median C3-C4 alkane, n-pentane, ethyne, benzene, and 

toluene mixing ratios were higher in the NW and SW sectors at AI than at TF (Table 4.1). 

Moreover, the median mixing ratios of ethene and propene were factors of 1.5-7 higher in 

the different transport sectors at AI in both 2004 and 2005 compared to TF. This suggests 

that AI was more directly influenced by anthropogenic emissions and/or by more recent 

emissions from upwind source regions to the west-southwest of New England and 

provides an explanation for the higher peak mixing ratios observed at AI (Figure 4.2). 

The observation of enhanced trace gas mixing ratios, such as O3, at AI compared to TF 

has been attributed to shallow layer transport from southern New England and weak 
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ventilation caused by the lower marine boundary layer height (Mao and Talbot, 2004b). 

The median NMHC mixing ratios were higher in the marine, NNE, and SC sectors at TF 

in 2004 which presumably reflects the influence of local sources and the closer proximity 

to anthropogenic emissions which may reach TF even when air masses are transported 

from the east or northeast. An important exception to these trends was that i-pentane had 

higher median mixing ratios in all five sectors at TF. Enhanced emissions from headspace 

vapor and fuel evaporation caused by the warmer temperatures result in elevated mixing 

ratios of i-pentane every summer (at least since 2002) at TF (Russo et al., 2009 in 

preparation; White et al., 2008, 2009). 

An important distinction between the 2004 and 2005 NMHC trends at Al is that 

the median mixing ratios of the C3-C5 alkanes, ethyne, benzene, and toluene were higher 

in the SC and NNE sectors in 2005 (Table 4.1). Additionally, the median levels in the SC 

sector were comparable to the NW and SW sectors. This likely reflects the more frequent 

transport from coastal New England and the weaker influence of marine air masses 

compared to 2004. 

The NMHCs mixing ratios exhibit different diurnal variations at the inland and 

offshore sites (Figure 4.4). The amplitude of the NMHC diurnal cycle at TF is larger 

because of the development of the deeper continental boundary layer during the day and 

an inversion layer at night (Talbot et al., 2005; White et al., 2008). The cooler 

temperatures and low wind speeds at night (Figure 4.3) facilitate development of a stable 

nocturnal inversion layer, which inhibits vertical mixing and advection of air masses, thus 

allowing local emissions of NMHCs to build up to maximum levels at -04:00-06:00. As 
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the inversion layer dissipates in the morning, mixing ratios decrease rapidly and reach 

their lowest levels from late morning through the afternoon. 

2000 

1600 

& 1200 

400 

250 

200 

150 

100 ] 

140 

120 

•g. 100 

110 

100 

a. 

A 

/ 

~J\ 

-A 

- - TF2005 
AI2004 
AI2005 

^Ss; Sl_ 

10 15 
Hour (EDT) 

10 15 
Hour (EDT) 

Figure 4.4. Hourly average (a) propane, (b) i-butane, (c) n-butane, (d) i-pentane, (e) n-
pentane, (f) ethyne, (g) benzene, and (h) toluene mixing ratios (pptv) at TF and AI in 
2004 and 2005. 
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TF 2004 AI 2004 

ethane 
propane 
i-butane 
n-butane 
i-pentane 
n-pentane 
cyclohexane 
n-hexane 
mecychexane 
n-heptane 
n-octane 
n-nonane 
n-decane 

2,2,4-tmp 
2,4-dmp 
2-mepentane 
3-mepentane 
ethyne 
ethene 
propene 
trans-2-butene 
1 -butene 
cis-2-butene 
2-me-2-butene 
1-pentene 
benzene 
toluene 
ethylbenzene 
m+p-xylene 
o-xylene 
1,3,5-tmb 
isoprene 
a-pinene 
P-pinene 
camphene 
limonene 
DMS 
methanol 
acetaldehyde 
acetone 
MEK 
MVK+MACR 
acetonitrile 
acetic acid 
CO 

CH4 

marine 
977.1 
285.7 
23.0 
45.5 
89.9 
26.0 
8.3 
19.1 
9.2 
11.6 
6.7 

7.2 
14.5 

181.1 
19.8 
13.4 
3.3 
6.4 
5.3 
5.2 
6.2 
59.1 
53.6 
11.9 
35.5 

6.5 
108.4 
13.8 
10.8 
21.2 
6.2 
37 

1557 
66 

1050 
89 
89 
127 
107 

149.0 
1.83 

NNE 
883.6 
514.5 
33.1 
72.5 
152.1 

50.3 
10.6 
26.9 
11.7 
11.9 
6.8 

9.6 
21.7 

212.1 
71.3 
37.2 
6.4 
8.1 
7.2 
5.9 
7.3 

64.1 
85.2 
16.4 
51.7 

8.0 
294.8 
55.8 
43.5 
44.2 
10.5 
16 

2229 
205 
1562 
130 
179 
119 
297 

147.0 
1.87 

NW 
1098.4 
706.3 
51.8 
112.4 
228.3 
75.8 
13.2 
37.3 
13.7 
17.8 
9.1 

10.2 
35.8 

262.0 
71.9 
31.6 
6.0 
9.8 
7.6 
7.3 
8.1 

74.2 
114.0 
20.9 
55.0 

9.9 
508.7 
73.8 
50.6 
75.3 
19.1 
17 

2515 
272 
2097 
218 
364 
114 
286 

171.0 
1.87 

SC 
1164.0 
698.8 
56.3 
116.9 
255.3 
82.8 
13.8 
47.6 
15.2 
21.2 
9.3 

10.4 
33.1 

297.7 
34.1 
12.3 
3.1 
5.5 
4.5 
4.7 
6.4 
78.0 
121.9 
25.1 
68.8 

8.4 
186.5 
19.2 
21.1 
32.7 
12.1 
31 

3009 
493 
2678 
331 
284 
137 
307 

173.0 

1.88 

SW 
1250.0 
555.4 
47.8 
104.0 
180.9 
62.7 
9.6 
38.4 
12.0 
16.5 
7.4 

9.7 
32.1 

275.1 
30.2 
12.3 
4.1 
6.1 
4.6 
6.4 
6.7 

72.8 
94.0 
17.7 
49.2 

7.6 
316.4 
29.0 
23.8 
30.7 
5.3 
22 

2657 
212 
1954 
210 
471 
117 
423 
175.0 
1.84 

marine 
843.6 
174.9 
15.2 
23.6 
10.2 

7.1 
4.4 
5.3 
6.4 

3.8 
7.0 
3.4 
5.8 
7.8 
4.4 

9.7 
6.2 

152.9 
52.6 
15.6 
2.4 
4.1 
2.6 
4.5 
4.1 
43.3 
11.5 
5.9 

44.7 
14.9 
3.6 
6.9 
4.0 
7.2 
5.9 

106 
699 
168 
663 
44 
18 
90 
279 

132.0 
1.73 

NNE 
793.4 
406.6 
32.6 
63.4 

83.6 
32.7 
8.4 
13.6 
6.9 
9.5 
7.1 
5.0 
7.6 
18.5 
6.9 

21.2 
22.7 
179.0 
110.9 
26.6 
4.3 
5.4 
4.1 
4.6 
4.9 

42.0 
65.3 
10.1 
65.8 
18.7 
4.7 
20.7 
13.3 
31.4 
29.1 
10.3 
29 

1991 
320 
1225 
101 
73 
80 

408 
143.0 
1.75 

NW 
1050.8 
797.1 
81.1 
141.7 
207.5 
81.3 
13.7 
41.3 
12.1 
20.0 
9.1 
8.9 
14.6 
44.9 
12.3 
57.2 
46.4 
379.0 
277.3 
63.8 
3.8 
10.1 
4.2 
4.3 
7.7 

93.6 
188.6 
23.2 
98.3 
32.2 
6.4 

54.0 
27.0 
36.6 
27.9 
6.2 
27 

3005 
531 
1797 
227 
204 
100 
488 

185.5 
1.77 

SC 
921.9 
481.0 
45.5 
74.7 
78.1 
32.3 
7.2 
17.6 
8.4 
9.4 
6.1 
6.6 
6.8 
19.3 
6.1 
21.0 
23.2 

250.8 
120.3 
30.8 
2.7 
5.8 
3.7 
3.5 
5.6 

58.7 
69.3 
13.2 
67.6 
24.2 
5.2 
15.4 
7.7 
8.9 
4.6 
4.6 
56 

1400 
323 
1064 
129 
58 
81 
378 

151.5 
1.77 

SW 
1343.7 
635.3 
82.2 
138.8 
166.2 
72.6 
12.9 
36.7 
9.6 
18.6 
7.8 
8.4 
12.3 
27.0 
9.5 
45.0 
31.4 
379.2 
218.8 
52.8 
3.0 
8.1 
3.4 
4.2 
5.2 

91.3 
150.5 
18.7 
80.8 
26.6 
5.5 

20.2 
9.6 
8.9 
7.0 
7.2 
45 

2493 
551 
1863 
228 
195 
124 
566 

199.5 
1.79 

Table 4.1a. Median mixing ratios of VOCs (pptv), CO (ppbv), and CH4 (ppmv) in the 
five transport sectors at TF and AI in 2004. 
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TF 2005 AI 2005 

ethane 
propane 
i-butane 
n-butane 
i-pentane 
n-pentane 
cyclohexane 
n-hexane 
mecychexane 
n-heptane 
n-octane 
n-nonane 
n-decane 
2,2,4-tmp 
2,3-dmb 
2,4-dmp 
2-mepentane 
3-mepentane 
ethyne 
ethene 
propene 
trans-2-butene 
1 -butene 
cis-2-butene 
2-me-2-butene 
1 -pentene 
benzene 
toluene 
ethylbenzene 
m+p-xylene 
o-xylene 
1,3,5-tmb 
isoprene 
a-pinene 
P-pinene 
camphene 
limonene 
3-carene 
DMS 
methanol 
acetaldehyde 
acetone 
MEK 
MVK+MACR 
acetonitrile 
acetic acid 
CO 
CH4 

marine 
806.7 
337.2 
27.4 
49.5 
65.6 
34.5 
9.3 
15.1 
12.3 
11.1 
9.0 
8.0 
7.7 
14.6 

164.3 
74.2 
9.0 

8.4 

5.7 
11.4 
38.6 
49.8 
10.3 
17.5 
11.4 

60.8 
19.5 

32.3 
28.1 
44 

1786 
381 
1544 
148 
122 
113 
324 
138 
1.82 

NNE 
846.9 
327.6 
27.3 
45.8 
66.0 
36.8 
15.3 
12.7 
15.0 
9.8 
10.4 
9.4 
9.9 
15.4 

171.6 
88.8 
9.8 
7.2 
18.4 
7.4 
9.5 
16.2 
40.5 
50.9 
21.6 
15.1 
17.3 

148.7 
255.4 

226.0 
84.0 
38 

2462 
535 
1881 
177 
269 
117 
543 
139 
1.83 

NW 
933.5 
616.8 
38.9 
77.0 
107.5 
62.8 
16.3 
24.4 
13.3 
18.7 
8.2 
9.2 
10.9 
20.5 

212.9 
134.0 
22.9 
7.9 
16.4 
7.4 
10.0 
15.0 
52.7 
93.5 
21.3 
44.6 
19.8 

609.3 
130.0 

334.6 
137.7 

40 
3705 
807 

2928 
332 
835 
138 
1243 
165 
1.87 

SC 
934.3 
745.0 
51.8 
99.5 
156.2 
89.0 
13.1 
41.0 
13.7 
23.0 
8.7 
8.5 
7.8 

29.5 

297.4 
176.0 
12.0 
8.2 
19.1 
9.4 
12.3 
11.5 
76.6 
135.5 
16.4 
40.1 
16.7 

186.7 
56.8 

233.0 
88.4 
41 

2804 
667 

2360 
289 
619 
136 
831 
193 
1.86 

SW 
1166.6 
1046.4 
77.4 
141.7 
188.4 
106.2 
13.9 
44.8 
16.8 
27.4 
10.1 
9.8 
10.7 
28.0 

326.8 
135.5 
12.5 
6.8 
18.1 
7.8 
6.9 
12.7 
85.5 
161.7 
18.5 
39.9 
18.6 

254.2 
27.6 

53.1 
35.8 
43 

4211 
981 
3682 
520 
732 
143 
1172 
198 
1.88 

marine 
747.4 
206.7 
25.8 
37.5 
23.5 
12.2 
8.7 
9.9 
8.2 
9.7 
7.0 
7.9 
8.3 
15.4 
8.8 
7.9 
11.8 
13.5 

106.2 
46.2 
13.1 
5.2 
8.8 
11.2 
6.7 
5.7 

20.9 
17.6 
9.8 
13.5 
10.2 

10.1 
21.6 
18.2 
15.5 
15.6 

41 
1052 
213 
926 
74 
41 
75 

331 
122 

NNE 
842.5 
459.4 
51.4 
83.8 
95.5 
40.0 
9.5 
16.9 
9.9 
14.0 
9.2 
8.3 
11.1 
26.3 
13.5 
9.8 

34.1 
34.5 

224.0 
169.9 
44.2 
6.3 
9.3 
6.8 
8.2 
7.0 
50.1 
80.6 
16.0 
35.8 
16.3 

74.6 
102.8 
70.7 
45.1 
15.3 

35 
2098 
403 
1524 
146 
257 
109 
518 
155 

NW 
951.2 
844.1 
85.5 
150.2 
168.2 
75.8 
12.6 
34.3 
12.2 
24.0 
14.9 
11.8 
16.4 
30.1 
20.9 
11.9 
55.0 
51.5 

314.0 
260.8 
59.5 
6.8 
11.1 
8.5 
7.9 
8.0 

73.8 
150.3 
28.2 
60.2 
26.5 

133.4 
146.7 
79.3 
54.4 
15.5 

52 
2921 
648 

2455 
259 
543 
122 
872 
183 

SC 
907.1 
617.2 
60.7 
109.4 
138.2 
66.1 
11.1 
36.7 
11.8 
27.5 
14.8 
12.1 
17.8 
35.7 
23.4 
12.5 
66.5 
64.7 
377.4 
286.8 
69.6 
6.0 
13.1 
9.7 
6.8 
6.9 

74.0 
150.8 
34.3 
83.1 
35.9 

25.9 
21.3 
15.2 
15.0 
17.8 

51 
995 
285 
1121 
96 
119 
82 

347 
182 

SW 
1085.0 
740.2 
98.5 
148.1 
158.5 
76.2 
12.5 
41.1 
11.6 
26.6 
14.5 
11.5 
17.2 
28.2 
18.0 
11.1 
59.4 
49.6 
363.5 
235.1 
49.8 
5.8 
8.7 
5.4 
7.9 
6.8 
80.3 
157.1 
27.8 
52.5 
24.0 

36.0 
31.2 
21.8 
14.7 
17.9 

76 
1610 
493 
1792 
218 
207 
106 
545 
188 

Table 4.1b. Median mixing ratios of VOCs (pptv), CO (ppbv), and CH4 (ppmv) in the 
five transport sectors at TF and AI in 2005. 
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Maximum and minimum hourly average mixing ratios occur ~2-3 hours later at 

AI compared to TF (Figure 4.4). Under the shallow marine boundary layer at AI, the 

NMHC mixing ratios reach their highest levels during mid-morning and persist through 

early afternoon. Mixing ratios probably remain elevated throughout the entire morning 

because of the absence of a strong nocturnal inversion layer and the time delay between 

when the morning rush hour emissions begin and when the emissions reach AI. The 

lowest mixing ratios occur during the early evening hours (16:00-21:00). During 2005, 

the butanes, ethyne, toluene, and CO (Figure 4.3e) displayed a pronounced morning peak 

which was primarily associated with transport from the NW and SC sectors (not shown). 

4.4 Estimates of Chlorine Atom Concentrations 

4.4.1 Lifetime-Variability Relationship 

Several studies have shown that the variability and lifetime (x) of trace gases can 

be described by the following power law relationship (e.g., Jobson et al., 1998, 1999; 

Ehhalt et al., 1998; Lenschow and Gurarie, 2002): 

S,n[X] = AT-b (1) 

where Sin[x] is the standard deviation of the natural log of the mixing ratios of a specific 

compound and describes the variability of the compound. The parameters A and b are 

found from the fit of S]n[x] versus x and provide qualitative information on the distance to 

sources and the factors (i.e., chemistry, mixing, emissions) controlling mixing ratio 

variability. Parameter b is a measure of proximity to sources and varies between 0 and 1. 

Lower values of b are representative of measurements made close to sources where the 

mixing ratio variability is dominated by varying source strengths. Higher values of b 

reflect measurements made farther from sources where chemistry controls the variability 
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(Jobson et al., 1998, 1999). Lifetime-variability analyses have been applied to 

measurements of NMHCs, OVOCs, and halocarbons in order to characterize sources, 

relative processing times, and/or to estimate oxidant concentrations in remote, rural, and 

urban locations (e.g., Jobson et al., 1998, 1999, 2004; Karl et al., 2004; Millet et al., 

2004; Pszenny et al., 2007; Williams et al., 2000). 

ethane 
propane 
i-butane 
n-butane 
i-pentane 
n-pentane 
cyclohexane 
n-hexane 
2-mepentane 
3-mepentane 
2,3-dmb 
2,4-dmp 
mecychexane 
n-heptane 
2,2,4-tmp 
n-octane 
n-nonane 
n-decane 

benzene 
toluene 
ethylbenzene 
m+p-xylene 
o-xylene 
1,3,5-tmb 

ethyne 
DMS 

koH 
Alkanes 

2.40E-13 
1.10E-12 
2.12E-12 
2.30E-12 
3.60E-12 
3.80E-12 
6.97E-12 
5.20E-12 
5.20E-12 
5.20E-12 
5.78E-12 
4.80E-12 
9.60E-12 
6.76E-12 
3.34E-12 
8.11E-12 
9.70E-12 
1.10E-11 

Aromatics 
1.23E-12 
5.96E-12 
7.10E-12 
1.90E-12 
1.37E-11 
5.67E-11 

1.00E-12 
4.80E-12 

kCi 

5.90E-11 
1.40E-10 
1.43E-10 
2.05E-10 
2.20E-10 
2.80E-10 
3.50E-10 
3.40E-10 
2.90E-10 
2.80E-10 
2.30E-10 
2.90E-10 
3.90E-10 
3.90E-10 
2.60E-10 
4.60E-10 
4.80E-10 
5.50E-10 

4.00E-12 
5.90E-11 
1.22E-10 
1.45E-10 
1.50E-10 
2.42E-10 

5.20E-11 
3.40E-10 

CO 
CH4 

ethene 
propene 
t-2-butene 
1-butene 
c-2-butene 
2-me-2-butene 
1-pentene 

isoprene 
a-pinene 
P-pinene 
limonene 
3-carene 

methanol 
acetaldehyde 
acetone 
MEK 
MVK+MACR 
acetonitrile 
acetic acid 

koH 

1.50E-13 
6.40E-15 

Alkenes 
9.00E-12 
3.00E-11 
6.40E-11 
3.14E-11 
5.64E-11 
8.69E-11 
3.14E-11 

Biogenics 
1.00E-10 
5.30E-11 
7.90E-11 
1.70E-10 
8.80E-11 

OVOCs 
9.30E-13 
1.50E-11 
1.70E-13 
1.20E-12 
2.45E-11 
2.20E-14 
7.30E-13 

kQ 

3.15E-14 
1.00E-13 

1.10E-10 
2.70E-10 
3.31E-10 
3.38E-10 
3.76E-10 
3.95E-10 
3.97E-10 

5.10E-10 
5.30E-10 
5.30E-10 
6.40E-10 
5.20E-10 

5.50E-11 
7.90E-11 
2.50E-12 
3.80E-11 
2.15E-10 
1.20E-14 
2.65E-14 

References: Anderson et al. (2007); Atkinson et al. (1990, 1997, 2003, 2006a); Atkinson 
and Arey, (2003); Canosa-Mas et al. (2001); Ezell et al. (2002); Finlayson-Pitts et al. 
(1999); Shi and Bernard, (1997); Timerghazin et al. (2001); Wang et al. (2005). 
Notes: mecylhexane=methylcyclohexane; dmb=dimethylbutane; dmp=dimethylpentane; 
tmp=trimethylpentane; tmb=trimethylbenzene; MEK=methyl ethyl ketone; 
MVK+MACR=methyl vinyl ketone + methacrolein. 

Table 4.2. VOC, CO, and CH4 rate constants for reaction with OH and CI 
(cm3 molecule"1 s"1). 
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The lifetime of a specific NMHC against reaction with OH or CI (TOH and TCI, 

respectively) is: TZ = {l/(kz[Z])} where Z = OH or CI. The lifetime against reaction with 

both OH and CI was calculated from equation (2) (rate constants are given in Table 4.2): 

-1 

(2) X 
OH + CI 

T ' 1 
AW 

+ { l ) 
l T c J 

By keeping [OH] constant, an optimum value for [CI] which maximizes the correlation 

coefficient between Sin[x] and TOH+CI can be obtained. The optimization was performed 

using the 'solver' tool in Microsoft Excel, following Pszenny et al. (2007). Variability-

lifetime relationships were constructed for each transport sector using measurements of 

eight NMHCs (propane, i-butane, n-butane, i-pentane, n-pentane, ethyne, benzene, and 

toluene) from TF and AI in 2004 and 2005 (Figure 4.5). These eight NMHCs were 

chosen because they have similar sources (vehicular and gasoline emissions) and sinks 

(reaction with OH or CI). Furthermore, the lifetime of each NMHC against reaction with 

OH or CI is longer than ~1 day (assuming [OH] = 2.5 x 106 and [CI] = 4 x 104 molecules 

cm") which minimizes complications arising from variable sources and sinks. 

As discussed in Pszenny et al. (2007), coherent and similar lifetime-variability 

relationships were found for the southern and western sectors at AI in 2004 and were 

characterized by lower b values suggesting the influence from nearby sources (Table 4.3). 

This is consistent with the location of upwind source regions to the west-southwest of AI 

and shorter transport distances as indicated by the lower values of the A parameter. In 

contrast, higher b values were found for the marine and NNE sectors indicating a stronger 

influence from chemical processing and air mass mixing. In the present study, similar 

results were found for TF in 2004 with the highest b values, and thus the most processed 
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air masses, corresponding to the marine and NNE sectors (Table 4.3). However, the b 

values were lower in each sector at TF which illustrates the narrower range of Si„[x] 

values (i.e., lower variability) and suggests that varying source strengths had a stronger 

influence than at AI. Note that six transport sectors were discussed in Pszenny et al. 

(2007), whereas in this work, a separate midwest sector is not used. Samples 

corresponding to the midwest sector of Pszenny et al. (2007) were classified into either 

the NW or SW sectors in this work. 
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Figure 4.5. Lifetime-variability relationships for NMHCs in the five transport sectors at 
TF in (a) 2004 and (c) 2005, and at AI in (b) 2004 and (d) 2005. 
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In contrast to 2004, a narrow range of low b values (0.17-0.29) was obtained for 

both TF and AI in all transport sectors during 2005. This suggests a stronger relative 

impact from local or recent emissions in 2005 and/or a weaker influence from aged air 

masses. This is consistent with the more frequent transport of aged air masses to New 

England in 2004 discussed in section 4.3.2. The lifetime-variability relationships were 

similar in each sector at AI in 2005. The nearly identical A and b values is likely a 

consequence of the more uniform mixing ratios in the NNE, NW, SC, and SW sectors 

during 2005 compared to 2004 (Table 4.3, Figure 4.5). 

4.4.2 Comparison between TC11 Estimates at TF and AI in 2004 and 2005 

Atomic chlorine concentrations ([CI]) determined by optimizing the variability-

lifetime relationship exhibited similar trends in 2004 and 2005. At AI, the highest and 

lowest [CI] were estimated for the SW and SC sectors, respectively, in both 2004 and 

2005 (Table 4.3). Overall, a similar range of [CI] was obtained for 2004 (3.2-5.3) x 104 

molecules cm 3 and 2005 (2.9-6.9) x 104 molecules cm"3. The highest [CI] was also found 

for the SW sector at TF; however, the lowest [CI] was in the marine sector in both years. 

The CI concentrations in the marine sector were comparable to AI ((5-9) x 104 molecules 

cm" ), but were higher in the other four sectors (~105 molecules cm"3) (Table 4.3). It is 

counterintuitive that the concentrations were higher at TF than at the offshore location 

because sea-salt aerosol is the major source of CI in the atmosphere (Graedel and Keene, 

1995). However, according to the EPA 2004 and 2005 Toxics Release Inventories, 

-3000-4000 tons/year of chlorine is released in New England from chemical and 

industrial plants and paper mills (www.epa.gov/tri). Thus, even though anthropogenic 

sources are believed to be minor, CI or HC1 emissions from power plant cooling towers, 
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water treatment plants, waste incineration, or other chemical treatment processes may 

contribute to the composition of air masses observed at TF. Furthermore, a possible 

explanation for the variations in [CI] between sectors and sampling sites is the use of a 

constant OH concentration. The OH radical has a very short lifetime (~1 second) and 

highly variable concentrations which strongly depend upon solar radiation and water 

vapor concentrations. However, by keeping OH constant, the lifetime-variability trends 

should provide information on the relative differences in the source-sink distributions of 

NMHCs. 

Pszenny et al. (2007) suggested that the high [CI] in the SW sector may reflect 

enhanced sea-salt aerosol concentrations caused by high wind speeds. At AI in 2004, the 

highest sea-salt chloride, HC1, total nitrate, and HNO3 concentrations were observed in 

the SW sector (Fischer et al., 2006; Keene et al., 2007). Moreover, the highest median 

wind speeds were in the SW sector (second highest after the NNE sector at TF in 2005). 

Air masses originating to the SW typically travel over the ocean or coastal areas along 

the East Coast urban corridor before arriving in the seacoast region of NH (e.g., Mao and 

Talbot, 2004b; Angevine et al., 2004) and likely reflect a combination of marine and 

urban emissions. The scavenging of less volatile acids (HNO3, H2SO4) into sea-salt 

aerosol causes the acidity to increase (lowers the pH) and releases HC1 or other 

photolabile reactive halogen compounds (i.e., CI2, CIONO2, CINO2, BrCl) (Keene et al., 

1990; Finlayson-Pitts, 2003; Piatt and Honninger, 2003). Reaction between sea-salt 

chloride and oxidized nitrogen species (i.e., NO2, NO3, N2O5) in urban air masses may 

also produce gaseous chlorine species. Therefore, a combination of higher wind speeds 
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and enhanced chloride displacement from acidified sea-salt aerosols likely contributed to 

the high [CI] in the SW sector during both summers at TF and AI. 

These results have important implications for the processing of continental 

outflow over the Atlantic Ocean. A modeling study that was initialized to represent the 

conditions at AI during July 2004 demonstrated that significant concentrations of CI2 (up 

to -100 pptv) could be produced in polluted air masses that are advected over the ocean 

(Pechtl and von Glasow, 2007). Modeling studies and chamber experiments focused on 

air quality in heavily urbanized coastal areas, such as Houston, TX (Tanaka et al., 2000, 

2003; Chang and Allen, 2006) or Southern California (Knipping and Dabdub, 2003) have 

reported that the enhanced oxidation of NMHCs from reaction with CI can lead to 

enhanced O3 formation. 

4.4.3 Comparison to [CI] Estimates based on Hydrocarbon Ratios 

A separate estimate of both OH radical and CI atom concentrations was made 

using a more common technique which involves plotting the natural log of the ratio of the 

change in NMHC mixing ratios during a specified time versus their rate constants with 

OH and/or CI (Jobson et al., 1994; Rudolph et al., 1996, 1997; Ariya et al., 1998; 

Ramacher et al., 1999; Blake et al., 2003b). The estimates were based on the ratio of the 

average mixing ratios of ethane, propane, i-butane, n-butane, i-pentane, n-pentane, 

ethyne, and benzene in the AI 2004 marine sector and during the marine sector event on 

July 13-14, 2004 to their average in the NNE, NW, SC, and SW sectors (Figures 4.6a, b). 

The range of OH concentrations derived using the ratio method ((1-3) x 106 molecules 

cm"3) indicate that our choice of a constant [OH] = 2.5 x 106 molecules cm"3 was valid. 

Furthermore, the CI concentrations ((1.5-4) x 104 molecules cm") agree with the 
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estimates made in section 4.4.2 suggesting that the lifetime-variability relationship is a 

useful method for the indirect determination of CI concentrations. The correlations 

between the NMHC ratios and their respective koH and kci were similar (r2~0.7-0.8) 

providing additional evidence that chlorine chemistry influenced the composition of air 

masses observed at AI (Figures 4.6a, b). 
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Figure 4.6. Correlation between ln(NMHC/NMHC0) during a specific time period (At) 
and koH and kci (m=slope=[Z]At where Z = OH or CI) using data from AI during (a) all 
times with transport from the marine sector in 2004, (b) July 13-14, 2004, and TF during 
(c) July 13-14, 2004, and (d) August 12-13, 2004. NMHC is the mean mixing ratio 
during At; NMHC0 is the mean mixing ratio in the NNE, NW, SC, and SW sectors. 

Application of the ratio method to two specific marine events at TF (July 13-14 

and August 12-13, 2004) gave estimates of [OH] and [CI] ranging from (0.5-2) x 106 and 

(0.73-2.5) x 104 molecules cm"3, respectively (Figures 4.6c, d). These [CI] estimates are 

slightly lower than those obtained from the lifetime-variability relationships. 
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Nonetheless, the fairly strong correlations provide supporting evidence for the influence 

of CI chemistry under certain conditions. In fact, during the July 13-14 episode, the 

correlation between the NMHC ratios and kci (r2=0.80) was stronger than the correlation 

with k0H (r2=0.58). 

4.5 VOC Contributions to OH and CI Removal over Coastal NH 

The contribution of a specific VOC to O3 production depends on several factors, 

including (1) the mixing ratio of the VOC, (2) the concentration of available oxidants 

(OH, O3, NO3, halogens), (3) the rate of reaction between the VOC and oxidant, and (4) 

the NOx availability (Carter, 1994). One common method for assessing the potential 

contribution of VOCs to O3 formation is to calculate the loss rate of the VOC. This also 

represents the loss rate of the oxidant. The individual OH (or CI) loss rate (L0H or Lei in 

molecules cm" s" ) can be calculated by multiplying the concentration of the VOC ([X]) 

by the OH (or CI) concentration and k0H (or kci). The loss rate for the specific compound 

is the sum of the OH and CI contributions (Lx= L0H + La = kOH[OH][X] + ka[Cl][X]). 

Additionally, the kinetic reactivity (KR=Lx/Ltotai) is the fraction of VOC oxidized to 

produce peroxy radicals (RO2) and is an indicator of the rate that the radicals are formed 

following VOC oxidation (Carter, 1994). The total loss rate of VOCs, CO, and CH4, and 

consequently of OH and CI, is the sum of the individual removal rates (Ltotai = LVocs + 

Leo + Lcm) Where LyOCs = Lalkanes + Lalkenes + Laromatics + Le thync + Lbiogenics + L D M S + LovOCs-

During summers 2004 and 2005 at both TF and AI, the lowest and highest Ltotai 

was in the marine and NW sectors, respectively (Figure 4.7). These two sectors were 

chosen as representative examples of marine and continental air masses for an in depth 

comparison of OH and CI removal and kinetic reactivity. The total loss rate was higher in 

109 



the NW sector ((0.6-1.7) x 107 molecules cm"3 s"1) than in the marine sector ((3-5) x 106 

molecules cm" s") reflecting the direct influence from continental emissions at both 

sites. Reaction with CI contributed -20-35% and -13-20% to the total KR at TF and AI, 

respectively. This agrees with the range of 16-30% reported by Pszenny et al. (2007) 

based on the AI 2004 data. Methane and CO dominated Ltotai in the marine sector, and 

they were among the top 5 largest contributors to OH+C1 loss in the NW sector (Table 

4.4). The rest of the discussion will focus on the VOCs. 

The VOC KR was enhanced by -20-40% and -20-30% at TF and AI, 

respectively, by including CI. In addition, LVoc was higher at TF in the NW and marine 

sectors because of the larger contribution from Isogenics, Laikanes, Lethyne, and Lovocs- In the 

NW sector, Laikenes and Lar0matics were higher at AI presumably because of the higher 

median aromatic, ethene, and propene mixing ratios in this sector discussed in section 

4.3.3. At TF, isoprene made the largest contribution to Lvoc in the NW and marine 

sectors while acetaldehyde was the major contributor at AI (Table 4.4). 

The chlorine removal rate at AI was dominated by the alkanes and OVOCs, 

specifically ethane, propane, and methanol, in the marine sector, and also by 

MVK+MACR in the NW sector. In the marine sector during 2004, the CI removal rate of 

DMS was higher than the alkene, aromatic, biogenic, and ethyne rates (Figure 4.7a). 

Overall, LOH of the alkanes, alkenes, and aromatics was comparable within a specific 

sector and year at both AI and TF. The alkanes and OVOCs (ethane, propane, methanol) 

also made the largest contributions to LCi at TF in the marine sector. However, in the NW 

sector, Lei was dominated by the biogenics (Figure 4.7). Furthermore, during 2005, 

isoprene and its oxidation products (MVK+MACR) made comparable or larger 
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contributions to the oxidation capacity of air masses from the NW sector than the more 

abundant compounds, CO and CH4 (Table 4.4). This indicates that VOCs derived from 

biogenic sources must be considered in photochemical models in order to accurately 

predict the oxidation capacity and O3 budget of coastal regions in the northeast U.S. 
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AI2004 marine TF2004 marine 

Compound 
CO 
CH4 

acetaldehyde 
methanol 
DMS 
ethane 
m+p-xylene 
isoprene 
p-pinene 
propane 
Ethane 
propene 
MVK+MACR 
2-me-2-butene 
Ethyne 
a-pinene 
o-xylene 
1,3,5-tmb 
acetic acid 
t-2-butene 
c-2-butene 
1-pentene 
1 -butene 
Acetone 
n-butane 
n-decane 
n-octane 
mecychexane 
2-mepentane 
toluene 
MEK 
i-pentane 
i-butane 
3-mepentane 
n-nonane 
n-pentane 
2,2,4-tmp 
Benzene 
n-hexane 
Cyclohexane 
ethylbenzene 
n-heptane 
2,4-dmp 
acetonitrile 

OH+C1 
Loss Rate 
1.2E+06 
8.5E+05 
1.7E+05 
7.6E+04 
6.5E+04 
5.9E+04 
5.8E+04 
4.6E+04 
3.9E+04 
3.5E+04 
3.5E+04 
3.3E+04 
3.0E+04 
2.6E+04 
1.7E+04 
1.5E+04 
1.5E+04 
1.3E+04 
1.3E+04 
1.0E+04 
9.7E+03 
9.5E+03 
9.1E+03 
8.5E+03 
7.9E+03 
6.9E+03 
6.5E+03 
6.1E+03 
5.8E+03 
4.9E+03 
4.8E+03 
4.4E+03 
4.0E+03 
3.6E+03 
3.5E+03 
3.5E+03 
3.5E+03 
3.4E+03 
3.4E+03 
3.3E+03 
3.3E+03 
3.0E+03 
2.5E+03 
1.2E+02 

%OH 
1.00 
0.81 
0.93 
0.52 
0.48 
0.21 
0.89 
0.93 
0.91 
0.34 
0.84 
0.88 
0.88 
0.93 
0.56 
0.87 
0.86 
0.94 
1.00 
0.93 
0.91 
0.84 
0.86 
0.82 
0.42 
0.57 
0.53 
0.62 
0.54 
0.87 
0.67 
0.52 
0.49 
0.55 
0.57 
0.47 
0.46 
0.95 
0.50 
0.56 
0.79 
0.53 
0.52 
0.99 

%C1 
0.00 
0.19 
0.07 
0.48 
0.52 
0.79 
0.11 
0.07 
0.09 
0.66 
0.16 
0.12 
0.12 
0.07 
0.44 
0.13 
0.14 
0.06 
0.00 
0.07 
0.09 
0.16 
0.14 
0.18 
0.58 
0.43 
0.47 
0.38 
0.46 
0.13 
0.33 
0.48 
0.51 
0.45 
0.43 
0.53 
0.54 
0.05 
0.50 
0.44 
0.21 
0.47 
0.48 
0.01 

Compound 
CO 
CH4 
isoprene 
methanol 
MVK+MACR 
ethane 
propane 
limonene 
acetaldehyde 
i-pentane 
P-pinene 
a-pinene 
m+p-xylene 
DMS 
propene 
ethyne 
2-me-2-butene 
n-butane 
toluene 
1,3,5-tmb 
c-2-butene 
n-pentane 
n-hexane 
1-pentene 
1-butene 
acetone 
ethene 
t-2-butene 
n-heptane 
MEK 
n-decane 
mecychexane 
2,2,4-tmp 
i-butane 
n-octane 
cyclohexane 
ethylbenzene 
benzene 
acetic acid 
acetonitrile 

OH+C1 
Loss Rate 
1.4E+06 
1.1E+06 
7.9E+05 
2.9E+05 
1.8E+05 
1.5E+05 
1.1E+05 
7.4E+04 
7.3E+04 
6.6E+04 
6.6E+04 
6.2E+04 
5.3E+04 
4.0E+04 
3.3E+04 
3.3E+04 
3.3E+04 
2.8E+04 
2.7E+04 
2.6E+04 
2.3E+04 
2.3E+04 
2.1E+04 
1.8E+04 
1.7E+04 
1.7E+04 
1.6E+04 
1.6E+04 
1.5E+04 
1.4E+04 
1.4E+04 
1.4E+04 
1.2E+04 
1.1E+04 
1.0E+04 
1.0E+04 
8.6E+03 
5.0E+03 
4.8E+03 
1.8E+02 

%OH 
0.99 
0.63 
0.84 
0.31 
0.75 
0.10 
0.17 
0.88 
0.83 
0.30 
0.80 
0.73 
0.78 
0.27 
0.75 
0.34 
0.85 
0.23 
0.73 
0.86 
0.80 
0.26 
0.29 
0.68 
0.71 
0.64 
0.68 
0.84 
0.31 
0.46 
0.35 
0.40 
0.25 
0.28 
0.32 
0.35 
0.61 
0.89 
1.00 
0.98 

%C1 
0.01 
0.37 
0.16 
0.69 
0.25 
0.90 
0.83 
0.12 
0.17 
0.70 
0.20 
0.27 
0.22 
0.73 
0.25 
0.66 
0.15 
0.77 
0.27 
0.14 
0.20 
0.74 
0.71 
0.32 
0.29 
0.36 
0.32 
0.16 
0.69 
0.54 
0.65 
0.60 
0.75 
0.72 
0.68 
0.65 
0.39 
0.11 
0.00 
0.02 

,-3 -K Table 4.4a. The OH+C1 loss rates (molecules cm" s") and 
%C1) of VOCs, CO, and CH4 in the (a) marine and (b) NW 
and 2005. The compounds are listed from highest to lowest 

kinetic reactivity (%OH, 
sectors at TF and AI in 2004 
loss rate. 
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4.6 DMS Trends and Oxidation 

Dimethyl sulfide is produced by marine phytoplankton and is the dominant 

biogenic sulfur compound emitted from the ocean. The oxidation of DMS in the 

atmosphere is the major precursor of non-sea-salt sulfate (nss-S04) aerosol. Thus, DMS 

also serves as an important gas-phase precursor of cloud condensation nuclei (CCN). As 

a result, the biogeochemical cycling of DMS influences cloud formation and residence 

times, precipitation rates, cloud and surface albedo, the radiative balance of the earth, and 

aerosol production, growth, and acidity (e.g., Charlson et al., 1987; Pandis et al., 1994). 

Therefore, it is essential that the emission and removal processes of DMS in marine and 

coastal regions are accurately quantified. 

4.6.1 Diurnal Cycle and Removal Mechanisms of DMS at Al 

The diurnal cycle of a compound in the atmosphere reflects the combined effects 

of emission, chemical production, chemical loss (oxidation, photolysis, heterogeneous 

reactions), deposition (wet and/or dry), advection, and vertical mixing. Therefore, 

analyzing the diurnal cycle of a compound provides information on the relative 

contributions of these various processes. At Al during 2004, DMS exhibited a 

pronounced diurnal cycle in the marine sector with peak mixing ratios occurring at night 

(>100 pptv) that decreased throughout the morning to mid afternoon (06:00-15:00) 

(Figure 4.8). Enhanced emission rates of DMS from the ocean typically coincide with 

increasing wind speed (e.g., Carpenter et al., 2004; Huebert et al., 2004; Marandino et al., 

2008). However, the hourly average wind speed in the marine sector increased from ~6 

m/s at 05:00 to 8.5 m/s at 09:00 (Figure 4.8). The coincident decrease in DMS between 

06:00-09:00 indicates that removal processes were dominant. 
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Figure 4.8. Hourly average DMS (pptv) and wind speed (m/s) at AI during 2004 in the 
marine sector. The yellow curve is the hourly average JNO2 (S ) from TF. 

The possible removal mechanisms of DMS from the atmosphere are oxidation, 

advection, and mixing. DMS may react with several different oxidants, including OH 

(kOH = 4.8 x 10"12 cm3 molecule"1 s"1), CI (k a = 3.4 x 10"10 cm3 molecule"1 s"1), the nitrate 

-12 3 1 „-l radical (NO3, kN03 =1x10" cm molecule" s" , and bromine monoxide (BrO, kBro = 4.3 

x 10"13 cm3 molecule"1 s"1 (Atkinson et al, 2006b). During the AI 2004 campaign, a long 

path differential optical absorption spectroscopy system was deployed on AI for 

measuring several trace gases, including NO3 and BrO (Pikelnaya et al., 2007). The 

nitrate radical is produced from the reaction between NO2 and O3 (NO2 + O3 —» NO3 + 

O2) and is rapidly removed during the day by photolysis and reaction with NO (e.g., 

Wayne et al., 1991). In this region, NO3 only builds up at night when sufficient levels of 

NOx are available (i.e., in air masses from urban source regions and continental outflow 

from the eastern U. S.) (e.g., Brown et al., 2006; Ambrose et al., 2007). At AI, NO3 was 
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not detected after -05:00 following nights when enhanced mixing ratios were observed 

(Ambrose et al., 2007). Therefore, DMS loss by reaction with NO3 was neglected. The 

nighttime increase in hourly average DMS mixing ratios in the marine sector reflects 

continuous emission from the ocean and is consistent with the lack of NO from source 

regions and thus a lack of NO3 production. In addition, BrO was not detected (Keene et 

al., 2007) and was neglected in the following analysis of the chemical processes 

regulating the DMS diurnal cycle. The following discussion also does not include 

entrainment from the free troposphere and vertical mixing, which likely made non-

negligible contributions. However, it is safe to assume that the DMS mixing ratio in the 

free troposphere is near zero because it is emitted from the ocean surface and has a short 

lifetime (<~1 day) with respect to OH, halogens, and NO3. 

The expected mixing ratios of DMS were calculated under the assumption that the 

only important daytime oxidants of DMS were OH and CI: 

[DMS] = [DMS.] exp(-(koH[OH] + kci[Cl]) * t) (4) 

where [DMS;] is the mixing ratio at 06:00 (148 pptv = 3.6 x 109 molecules cm"3) and t is 

time (seconds). Chlorine atom concentrations estimated for the marine sector (Table 4.3) 

and the constant OH concentration used in the lifetime-variability analysis were used to 

calculate the DMS mixing ratio. For comparison, a diurnally varying OH concentration 

was estimated using the parameterization of Ehhalt and Rohrer (2000) (Figure 4.9a). The 

O3 photolysis frequency (J03) for each hour between 05:00-19:00 was obtained from the 

Tropospheric Ultraviolet and Visible (TUV) radiation model with input values based on 

July 19, 2004 at the latitude and longitude of Al (http://cprm.acd.ucar.edu/Models/TUV). 

This date was chosen as a representative example of the conditions when transport from 
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the marine sector influenced TF and AI (Figure 4.2). The hourly average JNO2 from TF in 

the marine sector was used because JN02 was not measured at AI. An estimated NO2 

mixing ratio for nights with marine transport of 0.2 ppbv was used (Ambrose et al., 

2007). A comparison between [OH] calculated using measured NMHC and NOx mixing 

ratios during NEAQS 2002 in the Gulf of Maine and the Ehhalt and Rohrer (2000) 

parameterization agreed fairly well (slope = 0.79, r2 = 0.84) and yielded an average [OH] 

of 2.5 x 106 molecules cm"3 (Warneke et al., 2004). 

The DMS mixing ratios calculated using the TUV OH (OHcalc) agree (within 

error bars) with the observations until -10:00, but overestimate the DMS removal by 

-10-50% during late morning to mid-afternoon (Figure 4.9b). Additional [CI] estimates 

were obtained using the lifetime-variability relationship for the daytime marine sector 

data which was separated into three time bins (06:00-09:00, 10:00-13:00, 14:00-17:00). 

These three groups were chosen to correspond to the rapid morning increase in photolysis 

frequencies, the midday peak in OH and CI concentrations, and the afternoon reduction in 

OH and CI production (Figure 4.9a). The resulting [CI] (Clvaried) were 6.2 x 104, 5.3 x 

104, and 8.9 x 103 molecules cm3, respectively. The higher [CI] at 06:00-09:00 is 

consistent with the build up of photolabile CI precursors overnight and rapid photolysis 

after sunrise. When these [CI] are used in (4) along with the TUV OH, a similar trend 

occurs in the calculated DMS as when [C1]=0 (pink line Figure 4.9b). The. agreement 

between observed and predicted DMS is much better when a constant OH concentration 

and the [CI] derived for the marine sector based on optimizing the variability-lifetime 

relationships are used. In these cases, the calculated DMS falls within the observed error 

bars throughout the entire time period of decreasing mixing ratios (Figure 4.9b). 
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Figure 4.9. (a) Hourly ozone (J03) and chlorine (Jen) photolysis frequencies (s"1) and 
calculated OH concentrations (molecules cm"3), (b) hourly average (± standard deviation 
of the mean) DMS and (c) ethane mixing ratios (pptv) in the marine sector at AI in 2004. 
The colored lines refer to different sensitivity studies with varying OH and CI 
concentrations in equation 4. 
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The larger discrepancy between observed and calculated DMS mixing ratios when 

the variable [OH] was used likely indicates that the midday peak [OH] (~107 molecules 

cm"3) was overestimated by the TUV model (Figure 4.9a). While it is unrealistic that 

[OH] was constant throughout the entire day, it is reasonable to assume that [OH] was 

relatively low. In the marine sector, the mixing ratios of OH precursors were low (Table 

4.1), and the median temperature (15.6°C compared to 17-19°C) and JNO2 were lower 

than the other four sectors. This indicates that the atmospheric conditions were less 

favorable for OH production and may have resulted in less variable concentrations. 

A similar analysis was performed using ethane. It was assumed that any potential 

marine source of ethane was negligible. Ethane was chosen as a long-lived NMHC with a 

significantly faster rate of reaction with CI than OH (Table 4.2). The hourly average 

ethane mixing ratios in the marine sector decreased throughout the entire night, and by 

147 pptv during the time corresponding to the reduction in DMS mixing ratios (Figure 

4.9c). In contrast to DMS, the predicted ethane mixing ratios fell within the error bars 

when the TUV OH was used. This is likely a consequence of the slower rate of reaction 

between OH and ethane than with DMS (Table 4.2). The predicted ethane mixing ratios 

were in closer agreement (<10%) with the observed hourly averages when a [CI] 

concentration estimated using the lifetime-variability method was used in (4). The 

increase at 14:00 in the calculated DMS and ethane mixing ratios when the [CI] for the 3 

daytime bins was used reflects the lower estimated [CI] in the 14:00-17:00 group. 

4.6.2 Comparison with Previous Studies 

The ambient diurnal cycle of DMS displays considerable regional variability. 

Unexplained behavior in the DMS diurnal cycle has been hypothesized to reflect both 

121 



chemical and dynamical processes. For example, Stark et al. (2007) observed an early 

morning maximum and an evening minimum in atmospheric DMS mixing ratios in the 

Gulf of Maine that was modeled more accurately when halogens (CI, BrO) were 

included. The best agreement was obtained when an [OH]/[Cl] ratio of 80 was invoked 

(Stark et al., 2007). This ratio value is within the range of our estimated ratios (-10-85) 

(Table 4.3). Furthermore, several measurement-modeling studies suggested that 

discrepancies between observed and predicted DMS diurnal cycles could be explained by 

including an additional oxidant, most likely CI or BrO, during the daytime and/or by 

increasing the oxidation rate of DMS by factors of-0.5-3 (Yvon et al., 1996; James et al., 

2000; Sciare et al., 2000). Moreover, de Bruyn et al. (2006) concluded that dynamic 

processes (i.e., mixing), as well as oxidation by halogens, likely contributed to the DMS 

cycle near Hawaii based on inconsistencies between observed and modeled DMS and its 

major oxidation product, SO2. The close agreement between the measured DMS with the 

mixing ratios calculated by including CI atom concentrations derived from the lifetime-

variability relationships of observed NMHCs at Al provides supporting evidence for the 

importance of halogens in the atmospheric sulfur budget of coastal regions. This 

additional oxidation of DMS will influence the formation of nss-S04 aerosols, and 

consequently CCN production, and will alter aerosol acidity and thus the phase 

partitioning of nitrogen and sulfur species. 

4.7 Summary 

The potential influence of chlorine chemistry on VOCs at an inland (Thompson 

Farm, Durham, NH) and an offshore (Appledore Island, ME) site during July-August 

2004 and 2005 was examined. Chlorine atom concentrations ranging from (2.9-29) x 104 
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molecules cm"3 were estimated by optimizing the fit between the variability and lifetime 

of eight selected NMHCs (C3-C5 alkanes, ethyne, benzene, toluene). These 

concentrations are comparable to estimates made using the more common method 

involving NMHC ratios. In addition, the lifetime-variability analysis demonstrated that 

the composition of air masses encountered at TF and AI during 2004 reflected a stronger 

influence from chemical processing and/or mixing. Relative to the results from 2004, 

local/regional emissions and shorter transport distances characterized the chemical 

composition of air masses during July-August 2005. These trends are consistent with the 

more frequent transport of aged Canadian and marine air masses to New England in 

2004. Furthermore, observed rates of DMS and ethane loss in marine air masses were 

best explained by including reaction with CI (in addition to OH) at the concentrations 

estimated in this work. 
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