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ABSTRACT
KEEPING VISUAL-AUDITORY ASSOCIATIONS IN MIND: THE
IMPACT OF DETAIL AND MEANINGFULNESS ON CROSSMODAL
|  WORKING MEMORY LOAD |
by

Anne T. Gilman
University of New Hampshire, May, 2009

Complex objects have been found to tvake up more visual workiﬁg memory—as measured
by lowered change-detection accuracy with such stimuli—than simple colored shapes (Treis-
man, 2006; Xu, 2002). While verbal working memory studies have similarly shown reduced
apparent capacity for longer words (Baddeley, 2007), other research has demonstrated that
features contributing to object categbrization and reCognizability can help visual working
memory capacity (Olsson & Poom, 2005; Alvarez & Cavanagh, 2004). Until very recently,
no measures of crossmodal working memory capacity had been proposed, even thoﬁgh
crossmodal associations are part of the fabric of learning, from classical conditioning to cal-
culus. The working memory load of a range of cofﬁplex crossmodal (visual-auditory) objects
" was measured here in a sequence of experiments adapting classic visual chahge deteétion
procedures (Vogel et al., 2001). The adapted method involves rapid sequential presentation
of objects, each comprising a sound and an image, with a test object appearing after a 1-
second delay:- Application of this method:shed' light on the working memory impact of two .
sources of complexity, featural detail and object meaningfulness. Displaying the teét object
in a previously unused loéation——in this case, the center of the screen—resulted in lower
change-detection performance compared to placement in its original location. Test location
interacted with the role of different image types (gray‘ and colored shapes,v drawings, and

photos). Image type showed no consistent pattern of influence on working memory capacity

xiv



when test objects appeared in their origihal locations; when shown in an alternate location,
crossmodal aséociations involving more-detailed images were more accuré,tely ;eéalled. Inde-
pendent of) test location, more—co‘mplek animal sounds provided better crossmodal chaﬁge
detection i)erformance than abstra.ct t(:;nes. An association measure showed cOnsvistently
higher numbérs 6f associations for representational images than‘abstbract ones. Observe;s’
response bias was lov&;er for meaningful images, but their change-detection accuracy did not
-differ by image meaningfulness. The results obtained with this hove\l‘ crossmodal working
memory measure demonstrate that perceptual detail contributes to effective crossmodal

working memory capacity for sounds and for abstract and realistic images.
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CHAPTER 1
INTRODUCTION

1.1 Relevance of Crossmodal Working Memory

Rare is the university lecture which has no visual Iﬁaterial—projected slides being perhaps
the most common—accompanying the presenter’s spokeh words. This incorporation of
sights and sounds together is quite natural: a sighted, hearing child raised with a cat learns
about its rnedws, ‘vifs sensitive ears, and its‘ method of locomotion at roughly the same
’ time; Psychologists have long‘studied this type of joining together of heterogeneous sensory
input—after all, how could Pavlov’s dog have become conditioned without some internal
processing able to treat both sounds and sights and/or smells as relevant to each other
and to tie them together in the first vplacev? Refurning to the world of formal learning by
humahs, the incréz;sihg présénce of é()’mput"ers in homes an_dv classroorﬁs v0\:/er recent decades
has provided fertile ground for the growing use of interactive multimedia learning progréms.
Many peop'le now use multimedia displays in their cars to help them reach the venue for

their work or their evening’s entertainment.

1.1.1  Conflicting Predictions about Combini_ng Modalities

Whilefcombining modalities for learning is natural, its effectiveness in conveying unfamiliar
information .is not guéranteed. Extensive evaluations of the effect of ’m'ultimedia technolo-
gies on 1earniﬁg has provided many practical recommendations on how to make iIllstructional‘
multimedia more successful (Mayer,' 2005a, 2001). Influential fabtors for slide-like presenta-
tions of scientific bmat‘el"'ialinclude tdné, redundanéy, contiguity, and maﬁy others. Puzzles

remain, however, as some of the conclusions in this literature about ddding detail (Mayer;



Figure 1-1: Visual stimuli used in to determine visual working capacity for

multi—featured, complex objects.

Heiser, & Lonn,’ZQOI) within and across modalities (in thié case, visual and auditory) con-
flict with established studies of visual and verbal cognition, and some of the key authors
differ on the conditions constraining when ph'or knowledge—comprisin‘gfwhat people know
and can talk about as welln\as learned responses to situations in the world which are harder
to articulate—helps people learn new information. Several of thefrelévant findings have .
been found not to apply in a real—life schoolroom situation (Muller, Lee, & Sharma, 2008;.
Tabbers, Maftens, & Merriénboer, 2007). -
On the other hand, cutting—edge visual cognition research provides explanations of the
impact of detail and recognizability on our ability to remember new information that‘do>
“not always lend themselves readily to real-life application. For example, how meaningfﬁl do
you find the objects in F igure 1-1, taken from Xu (2002)7 Some scientists test short-term
memory using even more abstract stimuli “that are little burdened by the complexities of
extra-laboratory associations” (Sekuler & Kahana, 2007), such as the examples shown in
F igufe 1-2. Do you think the mushrooms shown in Figure 1-1 ;11ight be stored and retrieved
any differently than mushroom iniéges such as Figure 1-3?7 These particular puzzles rest \o.n
co_nﬂictiné assumptions aboﬁt the impact of adding detail and combining different modalities
on working memory (WM) capva’éity. >Student learning is a multifaceted pr_océss, and

working memory capaéity plays a key limiting role in that and any process where people are
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Figure 1-2: Visual gratings used to test recognition memory.

Figure 1-3: Do all mushroom images elicit identicél cognitive processing?

forming new associations which they may or may not reéall later. Later recall is the domain
of long-term memory, which covers durations ffom several vminutes to many years. At the
other extreme, sensory memory may last only for a few milliseconds, up to a second or two.
Forming novel associations—between a meow and a texture, between a bell and a meal, or
between a drawing and the typed word “synapse”—happens in the bridging processes of

working memory, played out over a few seconds.

1.1.2 Problem Statement

The goal of the proposed work is to shed light on those particular conflicting predictions
about the impact of added detail on'workirig memory capacity for objects ‘which com-
- bine visual and auditory features.. This requires the development of a new measure of
crossmodal working memory capacity, considering both perceptuél detail and stimulus
meaningfuless—an. important outgrowth of prior knowledge—as influences on indivi&ual

short-term recall of novel crossmodal associations. -



CHAPTER 2
MEASURING WORKING MEMORY CAPACITY

(

2.1 What is the function of working memory?

Working memory (WM) makes fleeting sensory responses and stored representations avail-
able for cognitive processing, allowing us to keep varied kinds of information “in mind” at
one time (Ba.ddeley, 2007; Miyake & Shah, 1999b). A whole host of meqtal com}putations
rely on working memory, from long division to sentence comprehension.

Decades of research have been devoted.to qﬁantifying WM capacity (Sweller,\2005, PP
21—23)? as it is a central limiting factor in our ability to make new associations. WM
capacity has Beenr shown to constrain learning in traditional classroom settings, for reasons
ranging from teachers’ instructions exceeding some students’ ability to retain sequences of

steps to intricate nuances of the reading process (Pickering, 2006).

2.1.1 How is working memory different from long-term memory?

Researchers disagree on how distinct WM is"from long-term memory (LTM). Jonides and
colleagues (2008) reviewed competing models w‘hichv suggest WM’s information stores reside
in the same or in different neural circuits as informatioh’tha‘c we can recall over the long
term. While these debates coﬁtinue, neuroimaging studies showing WM involvement of
early perpceptual areas in the visual system sustain core questions about the extent to
which working memor}; is any sort of storage structure versus a set of processes (Harrison’
& Tong, 2009).
: Taking ar_lo‘lthe;'/ta,ck,' scientists have differentiated WM capacity from attentional ca-

' pacity by comparing observers’ success with two combinations of interleaved tasks. One



combination required deteéting changes in an array of visual objects (a working membry
task) ahd trackinvg the movement of multiplé visual objects unrelated to those in the first
task (thiS would measure attentional limits). The other combination involved two wOrking
memory tasks: looking out for changes (as abové) in Oﬁe type of display and attending to
specific screen locations to count appearances of shape targets in a rapid stream of compa-
rable Shapes in another (Fougn‘ie,& Marois, 2006). If t‘lhev capacity of WM were tlhe‘s;ame as
/ th(a number of things we can attend tb at once, the measured capacity for Boﬁh task pairings
should have come but equal; and it did ﬁot. :

Broad agreemenf, though, surrounds the view that the amount of vinformatic‘m that
people can keep “in mind” to procéss simultaneously is vastly smaller than the amount of
informationthey retain over the long term. This means that the theoretical distinction
between WM and LTM is useful, and that prior knowledge plays a role. As an illustration,
ask yourself which of the followingv‘ nine-letter strings would be easier to keep in mind
if you covered this page immediately after reading them, FBICIAGRE or EGFRCIIBA?
Most Americans, seeing the familiar é,bbreviations (FBI, CIA, and GRE) in the first string,_
would have better luck repeating back all of those nine letters iﬁ order than they might with

“the second stri\ng? even though it comprises the same ietters. This’quick‘example highlights
sdme of the difficulty in measuring how much an individual’s ’wnorkin'g membry will hold: is
~ the first string of letters nine “things” to be held in mind, or three, or just one?

Sorﬁe researchers gfappliﬁg with this type of question have proposéd elegant information- -
theoretic solutions fo arguments about how working memory and its capacity limits may
be implemented in the brain, suggesting that capacity itself may be fixed (Brédy,r Konkle,
& Alvarez, 2008). o | i |

Thiéﬂs'imple alphabetic example abox}e also illustrates .the ongoing releva.ncé of behav-
ioral methods for working memory research. Whether or not information from the outside
world is stored in diﬂ'ereht places or using different signal properties according to the sensory
moda.lity through which that jnformation wés acqilired, if individuals’ success in forming

audiovisual associations varies according to perceptual or conceptual characteristics of the



stimulue presentation, the latter variation adds} to our overall understanding of working
memory. Since this dissertation work examines which stimulus characteristics show consis-
tent patterns as measured by individualsv’» short—term' recall, any references below to WM
capacity should be taken to refer to demonstrated capacity. Relative deficits er advan-

tages between stimulns types for short-term recall indicate greater or lesser load on working

memory resources, wherever and however those resources are implemented in the brain.:

2.2 Are sensory modalities important for WM? |

Working memory. has been a central focus of cognition research due to its pivotal role both
in maintaining new sensory irnpressions long enough for them to enter loné—term memory
and in making the content of those long-term stores available for nlanipulation (Miyake &
Shah,.,1999a). Early work relied on recall of verbal material—words and non-word letter
combinations—as the deﬁnin'g"measnre for working-memory capacity, with heavy use of
specialized words like numbers (Baddeley, 2007), which can be represented with only one
or two visual symbols (graphemes or nictographe) in many languages.

Even in the formative days of working memory research, attempts were made to s'epa.rate '
out the contribntions ot .different sensory modalities. One standard vapproa,ch used in WM
research is to require narticipants to reneat words/ out loud or under their breath in order
to block the strategy of mentally rehearsing words relating to stimuli to be remembered
This technique, called a'r'tzculatory suppression, is often used as a litmus test to detect
the use of verbal encoding strategies" as it has been shown to impair many memory tasks
but not classical visual change detection (Baddeley, 2007; Vogel, Woodman, & Luck, 2001),
rdescrlbed in the section on measuring WM capaaty (see p. 13)

Lists of words, though portrayed here as a fairly limited initial approach to studying
WM capacity, sparked what has become an enduring exploration of the role of modality
in short-term memory resources. The memory research that inspired the applied studies
mentioned in the introductory chapter.stem from Paivio’s groundbreaking work on short- -

term memory for words with different characteristics (Paivio, 1969). This makes use of



a classic measure of WM 'capacity:” nuxﬁbef of wordé (including number words) recalled
from a list, in presehted‘ order or in any order (Bavelier, Newport, Hall, Supalla, & Bouflé,
2008). Paivio discovered that people would femembér more words from a list that referred
‘to visible objects—e.g. “pig, hoxuse', square” —compared to less “imageable” words such
as “democracy” or “joy”‘ (Baddeley, 2007, seé p. 86). This finding sparked the notion
that different modalities access different short-term memory stores, often referred to as the
dual-channel hypothesis. ‘

:How might the leap be made from recall_differencés among verbal stimuli (remember,
Pai;/io’s reéult came from lists of words) to claims of cabacity benefits from combining
modalities such as sound and sight? Mayer and colleagues’ adaptation of Paivio’s chan-
nels for théir cognitive\model of multimedia learning constr;léd those channels as pipelines
running from sensation through working memory with very limited interaction before inte-
gration for longer—rtermvenc()din»g (Mayer et al., 2001, p. 190). This idga sheds light on the
logic applied by Mayer and many othef top researchers in éqgnitibn and learning, but some
questions remain. Aftef all, the visual and conceptual elements co‘ntr“a.sted by Paivio were
already bound together in participants’ long-term knowledge as semantic representations
of words they could recognize and use.. Learning novel associations joining image-based
and auditory or other sensory inputs may or may not follow the same patterns. The work
proposed below aims to answer a few of the questions stefnming from Mayer’s and others’

extensions of Paivio’s lexical finding into crossmodal studies.

2.2.1 Modality and the psycholbgy of learning 7

Cbmbining modalities, such as when a GPS display talks to you while also displaying
arrows on a screen, has been extensively explored for its f)otential to work arohﬁd the limits
of our Working memory and boost how much new information we can learn at onée (Mayer,
2005b; Sweller, 2005). Both of these strains of research are built on the idea that visual

and verbal modalities use different working-memory resources; one of the most widely-used .



memory models is that of Alan Baddeley (2007). Wé know that the model-makers’ work
involves many different trials of word lists; how do these more applied research lines look |
in practice?

Many of Mayer’s studies used brief computer presentations about the formation of light-
ning or the operating phases of a piston (Mayer, 2001). Novice learners (primarily under-
- graduates) would see this presentation of simple diagrams, they would not control the pace
of the presentation, and the apcompanying narrative would either be a recor(i‘ed voice or
;typed words above ea/éh diagram. A later test would assess not merely recall of fa,cfs, bﬁt
participant ability to apply the scientific principles to a new related problem. These prin-
ciples would not be required for later coursework for the’ participating students. Using this
type of protocol, combining voice and diagrams had better léarning outcomes than text and
diagrams. While this method brought many beneficial changes to the study of the psychbl—
ogy of learning, particularly the emphasis on transfer of principles, it is worth noting that
the topics tested were not related to participants’ fequired séhooiwork.

Another concern about some of the above literature is that the combined-rhodalifcy
advantage is only present for animations where the viewer h&;s no control over its pacing ‘(Lo>w
& Sweller, 2005; Moreno, 2006; Ginns, 2005). Slower readers may have been penalized in
‘ the text condition, and on a realjworld\ level, many instructional software programs aim to
put as much pacing éontrol in the users” hands as possible!

Sweller’s line of reséa,rch began with younger learners in an even more ecologically valid
setting than Mayer’s: younger students léarning math—a required subject. Many studies
comparing ambiguous instruction with worked examples showed an advantagé for the latter,
and in the case of geometry prodfs, keeping explana/tory text next to thé fqrmsv they related
to led to more successful learning (Sweller, 2005). The core explanation in these cases rests

| on working-memory demands: névice learners do not yet have larger knowledge structures
to help them retaip. the different pieces of a geometry or trigonometry problem as one
“thing” in workipg membry, so they neéd several solutions laid out before them step-by-

step, Without risking losing their hold on one aspect of a given step while looking back and



forth between pages.

The common ground between these two research lines has been summarized for a book

chapter, as follows.

The capacity imitations of working memory are a major impedirﬁenf when
students are required to learn new material. Furthermore, these limitations are
relatively inflexible. Nevertheless, in t<his chapter we explore one technique that
can effectively expand working memory capacity. Under certain, well-defined
conditions, presenting some information in auditory mode can expdnd effective
working merﬁory capacity and so reduce the effects of an excessive cognitive
load. This effect is called the modality effect or modality principle. . It is an
instructional principle that can substantially increase learning (Low & Sweller,

2005, p. 147).

Asméntioned above, the necessary condition of having learning materials presented without
learner control over the pacing of those materials suggests that the amount of time requiréd
to read text associated with graphics may be more explanatory than claims of changes to
working memory capacity itself. In the reéearch reviewed in the ab‘ové chapter, the vast
bulk of the cited results confirm that people show less interference 1n their performance of
two completely unrelated tasks if those tasks involve different modalities: Oddly enough,
the key result offered to counter explanations based simply on the time overlap between
reading and visually scanning a diagram rests on a comparison between learner success with
a geometry diagram and audio instructions versus successive presentations of the diagram
and written instructions—so the latter group had no access to the diagram while reading
the instructions, violatirig' the réséart:hers’ OWI\I cdgnitive'ldad principles for instructional
design (Low & Sweller, 2005, p.153). Thus, many questions thus remain about the learning
‘impact of combining mbdalifies; at least in certain situations, researchers have found results
opbosite to Griffin and Robinson’s (2005) finding that including a map did not aid student
leafning of Roman facts. | |

Looking at another modality, the use of ‘ge'st'ure has been found to aid learning in

9
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arenas as different as acting and geometry. Novice actors showed better recall of lines
where they had been blocked to move that tnose where they stood still (Noice & Noice,
2001); and in math learning, gesturing by both teacher and etudents confers significant
learning beneﬁts for later \prbblem‘ solying (Goldin-Meadow & Wagner, 2005). Gesture
itself may turn out to beﬁan exception, since cher nenroimaging‘nvork has denionStfated
tndt different modality pairings are handled by different circuits, not one central modality-
combining module (Calnerf, 2001). ‘Either way, the gesturalxresult’s merit examination for
other modality combinations, bnt'this proposal will concentrate on auditcry and visual
modalities exclusively. | \

~The predominant means of establishing and proving independence between modality-
specific WM stores, particuiarly those beyond visnal and verbal, has been to use unrelated
tasks in differing modalities and show that they do not interfere with each other at the
level that same-modality tasks do (see summary in Park et al ’(2007)).. Those results, while
~ very important and compelling, do not in themselves prove that coordinating tasks between
modalities will increase WM capacity. Th'ie' serves as another reason to keep sdme ques-

tions in mind about the learning studies cited above until they are bolstered by additional

foundational experiments.

))

2.2.2 Neuroimaging of crossmodal processing

In the neuroimaging literature, simultaneous crossmodal input is seen as a strain or a
luxury, used largely in case of unclear input from a single sense (Calvert, 20015; examples
include people’s use of a speéker’s facial movements to identify unclear speech sounds.
Many of these experiments include non-visual and non-ver}:)al modalirties such as touch
in addition to the pairings discussed by edncators. Unconnected, simultaneoue tasks in
diﬁ'erent“moda\lities cause processing logjams (Dux, Ivanoff, Asplund, & Marois», 2006). In -
other studies, however, crossmodal z;ctivaticn has been shown to_happen even for irrelevant
input (Fort, Delpuech, Pernier, & Giard, 200_2). Once people know about a particular

cbject, recognizing it will automatically activate crossmodal associations relevant to the
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object (Amedi, Kriegstein, Atteveldt, Beauchamp, & Naumer, 2005; Postle, D’Esposito,

& Corkin, 2005). These automatic activations may well complicate attempts to test only

“one modality to the complete exclusion of another, even with behévioral tools such as

~ articulatory suppression available to the experimenter.

Another complication worth mentioning is that perceptual syétems or processes that we
commonly think of as one modé,lity may actually be heterogeneous groupings of capabilities
whose parallel findings Can be composed into.a unitary, consciously-pérceived represenﬁatjoﬁ
of the world. V.S. Ramachandran refers to vi;sion as “a bag of tricks” (Ramachandran, 1990),
and the analysis of face proceséing supports this view. By taking photographs of human

faceé and separating out the low- and high-spatial-frequency elements ‘(looéely, the coarse

and fine details) has revealed that people respond to emotional expressions in faces using

more than Qhe neural circuit, and that tilese circuitsf-not vall of which involve the “vision”
center in the occipital cQ;tex—provide complementary information (Halit, Haan, Schyns, &
| Johnson, 2006; Holmes A, 2005;' Pourtois, Dan, Grandjean, Sander, & Vauilleumier, 2005).
The final wrinkle to add in to the discussion comes frém older work showing that modal-
ities change even in adult humans, in ways that relé,te to prior knq\;vledge. Within the
auditbr}; modality, trained musicians and novicés show opposite patterns of hemispheric
dominance when recognizing melodies (Bever»l& Chiarello, 1974). Three decades later, using
fuﬁctional imaging techniques; researchers have found that although all of their participants
v damped downv visual processing to deal with auditory input, this resource clampdown lev-
. eled off for orchestra conductors, while it continued to in‘tensifyvfor"non—conductors faced
with more ahd more difﬁcﬁlt auditory discriminations (Ha,irston et al., 2008). Thaﬁ re-
~sult is consonant with demonstrated phanges in utilization of péfiphgral vision for frequént

video-game players (Green & Bavelier, 2006, 2003). - And in an interesting revérsal for

long-h’eld views about hard-wired gender differences, a mere ten hours of play on a specific

action video game improved female players’ spatial processing enough to eliminate gender

differences among players (Feng, Spence, & Pratt, October 2007).

/
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2.2.3 Current approach to modality

Relying on a behavioral measure such as thé one used in the’ final stage of this dissertation
réseaifch offers a chance to resql,ve some of the contradict\o.ry predictions around working
niemorj for crogsmodal associations from learning studies'and a i)o;sible new addition to the
' neuroimaging tdolbox if successful. The probosed work will also contrast crossmodal work-
ing memory capacity with pa.ét and cc;hcurrent assessments of unimodal working memory.
For the latter, \I will create image-image pairings and combined sounds to insert into the
exact same structure of trials to assess unimodal chang;e detection accuracy for associations

of a comparable complexity to the crossmodal ones.

2.3 Measurement: What units does WM use?

2.3.1 Chunks, slots, and Vinformation load

Defining the units with which to measure WM capacity%and particularly whether those
units should take whole things (wbrds, visual objects, etc) or their component features
(syllables, oriented lines, and so on)‘ more into account—is a longstanding Source of debate.
Ever since George Miller’é influential 'treatise proposing the “magical number séven, plus
or minus two” (Miller, 1956), many scholars have attempted to refine a solid answer to thé
question of how much working Inervn‘o‘ry c’an hold. The more complex groups of inforﬁation, .
such as the three three-letter abbreviations used in my simple example (see p. 5) would be
called “chunks” in his terminology,bwhich is still in use today.

While some might interpret human chunking abili.ty to extend to all kinds of information
groupings, for working memory, variéus aspects of the things to be remgmbered do make a
difference. For exarhple, peéf)le can recall lbnger lists of"‘"‘short words théﬁ of mixed short
and long or all long words (Baddeley, 2007, p. 9). More modern research treatments replace
the “chunk” with a “slot”, a.rguiné that we have four slots with some ability to add in extra-
items; other scientists argue that truly the WM capacity limit is expressed in information

content rather than any fixed number of objects (Jonides et al., 2008; Brady et al., 2008;



Alvarez & Cavanagh, 2004).

According to the latter view, working memory functions a little like compression seftware
(e.g. Stuffit, PKZip, JPEG, tatr_, etc.):. information \frem the outside world that is \krfor
some reason easy to compress will use up less of our total working memory capacity than
information whieh is harder to compress. What might be psychologically easy to compress
can be affected by prior ei{perience, and thus in this view the WM load imposed by a given
stimulus cannot be calculated without reference to the viewer’s knowledge. Using the term
very loosely, one could argue that JPEG or other compression algorithms make use of prior
knowledge (in that case, enc0(ieti geometrical knowledge) to save and serve up atn image
covering many many pixels iising less storage space than would be required to save a bitmap
(a pixel-by-pixel format) of the same image. Referring back to our FBICIAGRE example,
this aspect of the 1nformat10n-ba.sed approach fits well with observed memory behavior:
people who already know somethlng about the strlng “FBI” as a unit have a recall advantage
with that string compared to, say, “IFB”. Specific solutions used experlmentally to gauge

information load of visual stimuli will be discussed further with regard to detail, p. 16.

2.3.2 Change detection and visual and crossmodal WM

In recent decades, scientists such as Pashler-and others.\ (Pashler, 1988) have sought ways
- to meatsure capacity for visual working memory in a .vi/ay that ;doesr not rely on symbols
for-spoken language: the core method that has been deve'lopedlis called change iietection. ’
" Viewers are presented with varions visual stimuli, those stimuli disappear for a specific
length of time, and t}ien one or more of them reappears (Vogel et al., 2001). A comparable
. real-world example might involVe a billiards table: say there are four different-colored balls
~ left. If you commit their locations to memory, look away for a second, and then look again,
how successful would you be at identifying any changes made by an interloper? While no
method is free of limitations (see Alvarez and Thompson (2009)); this method as developed

by Vogel:and colleagues avoids both production issues (decreased apparent capacity due

_to the processing required to tell the experimenter what you saw or heard) and order
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dependénby. The latter—that is, basing WM capacity on the number of words a person ca;
recall in order from a list—tends to indicafe greater WM éapacity for people using spoken
language compared to signed languages like ASL, while unordered measurés do not show
the édﬁle discrepancyy (Bavéiie; et al.;, 2008). | |
Factors impOrtant for visual WM

 Visual WM research has further évﬁluated the‘mnemonic role of objects and features, with
conflicting re;ults. Support for greater membry capacity for objects’was shown in Vogel,
Woodman, & Luck’s (Vogel et al., 2001). extended series of refinements on Pashlef’s (1988)
visual WM methodé. While theirbandbother studies found fhat bétween three and four
objécts can be stored with varying, amounts of featural vdqt‘ail recalled “for free” (Alvarez
& Cavanagh, 2004; Vogel et al., 2001), comparable attempts by Treisman and colleagues -
Vrsupported separate. memory. stores for features and for bindings While failing to support
any ;ffree” featgtal complexity storage accruing to bound objects (Wheéle; & Treisman, -
2002). Xu's coﬁtfa.sts of multi-part objects showed that combining features from different

dimensions (color and orientation) in the same object provided memory beneﬁts, while com-

~

bining different values on one dimension (with bicolored objects; for instance), did not (Xu,
2002). These uniillodal' results offer the ppssibiiity that crossmodal feature combinations
may display greater working_,memory capacity than unimodal ;ombinations. !

A final comi)lication m explain_ing featural comple)dfy is the role of image 'lo‘cation;
long\recognized for its importance in visual object biﬁding and sto;age. Further discussion |
of location and its possible role in (;,rossmodal feature bindiﬁg follows the more detailed
discussion of the change-detection methods used to test Working memory. One of the ‘a,iIrns
. of this research is to evaluate whether those prior (Visuarl-'only)vﬁndixf;gs hza.,ve,bea.rihg on -
crossmodal (visual-éuditory) associations. k

Résea.rch in the lés’S-thbroughly explored arena of crossmodal working memory must
investigate the key factors of interest lvidentirﬁed in verbal and visual WM research: featural

complexity a;ld location.
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Crossmodal WM results

Recent work has sought to remedy the lack of atteﬁtion to crossmodal vfeatur‘e binding in
the cognitive litera.ture (R: J. Allen, Hitch, & vBaddeley, 2009), using crossmodal stimuli
whlch d1v1ded up v1sual features that in unimodal trials were Jomed in a smgle image—
color and shape—, pairing spoken words w1th grayscale or amblguously-shaped images. My
dissertation research seeks to clarify the outer bounds of crossmodal working memory capac-
ity, while Allen and colleagues focused more on comparisons of crossmodal and unimodal
performance under varied dual-task conditions. More speciﬁcally, their methods involve
splitting visua.l‘objects’ featmes and delivering some featural information verbally (R J.
“Allen et al., 2009) vr‘athe(r than the present approa.oh of adding auditory fea.tures to sim-
ple and complex visual objects. In addition, their method uses crossmodal presentation
but tdests participahts’ recall using only visual stimuli, assessing whether other-modal input

can be incorporated into the‘visual working memory system. The present work evaluates

participants’ recall of crossmodal associations using crossmodal stimuli.

2.3.3 Visual and auditory details pléy a conflicting fole

Evaluations of working memory capacity date have not yet developed fully-plumbed a.naly-
© ses of the role of perceptual detail. Assessments of visual workmg memory capacity compare
freely between studles using using cr1sp and reoogmzable but relatively meaningless shapes ‘
which do have verbal labels (e.g. “square”, “-tria.ngle”) (Ca.jewski & Brockmole, 2006; Vogel
‘ et al, 2001), shapes carefully chosen to extremely difficult to describe verbolly (Postle et
al., 2005), cute cartoon animals (Horowitz et al., 2007), and the crossed bars and mush-
rooms (Xu, 2002) seen in the introduction. LTM is helped by visual detail, where photos in
- general are bette_;reca_lled than t_yped words (Schmidt, 2006).. Another recent study con-
’t'rasting a more-realistic and a more-schematic depicfion of the human heart sounded a dif-
ferent note, with more successful learning of ventricolar blood flow from the latter (Butcher,
| 2006). Although the results were presen‘tedras an indictment of detail in instructional graph-

ics, the two stimuli used differ in more ways than in their level of detail, including in the
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élarify of grdﬁping between atriar and ventricles; stich inﬂﬁences on Gestalt grouping have »
1ong been known to affect the utility of instru‘ctional diagrams (Vekiri, 2002). Spence (1990)
showed that ébme of the same viéual features maligned as “chartjunk” by Edward Tufte did
help readers better understand the chart’s contents. Later research confirmed that although
the addition of uninformative depth cues to graphs did reduce accuracy slightly, a larger
| ihﬂuence was exerted by the perceptual context and the size and prbﬁimity of neighbbring
- graph elements (Zacks, Levy, Tversky, & Schiano, 1998)‘Timé-to‘—naming results improved
for hand-draw;.l\ objects once color was added (Roésion & Pourtois, 2004). And complex
sounds are appareﬁtly not harder to membrize tl}an simple ones’ (Demany, Trost, Serman,
& Semal, 2008). Finally, Jun-ichiro Kawahara’é work on contextual cueing (in press) also
cOntr#s,ted mofe and less compieic soﬁnds:‘ recbrded speech played backw;eu‘(is for two exper-
iments, and telephone tones for a third.‘ Whiie configurations which had appeared regularly
with thé voice sounds showed faster search times iﬁ the last trial block, telephone tones
failed to produce a cueing effect (Kawahara, in press).

Similar concerns about detail have been voiced with regard to learniﬁg 'materials for
children, warning that overly é,ttractive math and séien{ce'manipulatives‘ (physical learning
tools) may take away from learning (Uttal, Liu, & DeLoache, 2006; Callanan, Jipson,
& Soemiichsén, 2002); both of these research teams, thoﬁgh, fail to distinguish between
novelty—which has well-known cognitive effects—and perceptual deté,il itself. 'Also, more-
distractible individuals%who otherwise perform more poorly tha;l othcrs in finding distinct
objects in a visual display—are brought up to the performance level of their more-focused
counterparts'when the vi‘sual background_‘is more crowded (Forster & Lavie, 2007)!

While background effects are beyond the scope of this dissertation, novelty effects are
relatively easy to control for—or at least to exéllude. For that purposes, all the experiments
used to dévelop the crossmoda.l’c’hang_e-detection method involved participant training (see
Appendix A.3)) with the exact same limited range of imagés and sounds which were used in

~ the éhange—detection experiments themselves.

Alvarez and Cavanagh (2004) used visual search time to quantify the visual information

16



load for each of their.participants, an approach adopted in the present research. They found
that a participant’s speed in finding visual stimuli (which was faster for colored squares
than for unfamiliar Chinesé characters) was indeed predictive of the Wo;king ‘memory load |
imposed by that type vof. stimulus (Alvarez & Cavanagh, 2004). By scaling their stimuli
according to participant behavior, they were able to study the impact of visual information
load without -needing to resolve every difficulty involved in modeling it for all subjects.
Theiij results are consonant with findings from an' international and multilingual study of
picture naming speed, where none of the measures of purély visual complexity (e.g. file size
of the graphic according to multiplg formats) was predictive of naming speed, whereas a
behavioral measure was: pilot-tester ratings of how well each graphicg,depicted what it was
supposed to represent did indeed predict naming speed (Székely et al., '2003)‘. ‘-Ea,ch of the‘ ‘
- image sets tested by Alvarez and Cavanagh consisted exclusively of members of the same
category: all Roman letters in one set, all shaded cubes in another, etc. Their training set
of line drawings, though, comprised objects with similar outlin‘és but Qery varied identities:
a bunch of celery, a pen, and so forth. Could the very high WM capacity recorded for thosé
drawings relate at all to the fact that they were different objects?

Some of the key findings in visual search which inform this discussion specifically rely »
on a count of low-level features‘ﬁand not an information-theoretic count to measure object
informativeness or complexity such as that suggested by (Alvarei & Cavanagh, 2004). Many
of those same ﬁndi'ngs,_ hpWever, rely on ’abstract images which might not tie in to prior
knowledge to the same extent that a picture of a bagel (or the mushroom pictured earlier) or
a tricycle might. The latter images might also be considered more meaningful to observers,

- particularly in light of the findings discussed earlier (p. 10) showing that remote likenesses

of known objects activate viewers’ conceptual associations auﬁomatically.

2.3.4 Associations—is that the same as meaning?

Researchers of human memory would be hard pressed to make any progress without fac-

toring meaning into their theories. Even memory for ‘three-letter nonsense syllables is
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inﬂuencé_d by their relative meaningfulness—closely tied to their pronounceability—, as ex-
haustively documented byrUnderwood and Schulz (1960). The roots of that researéh exfend
all the way back to Ebbinghaus’ work in the 19th Century!

Describing t’herdisti“nc@ions "drawr/lf. above between Roman letters and Cilinese pictographs
in terms of familiarity may not generalize well to the images-used in the metho&;deVelopment
phdsé of this dissertatiqn research: shaded balls and similar-sized color drawings (icons) of a
tree, a chair, ah apple, and a castle. For example, one University of New Hampshirke stﬁlient :
might have only rarely seen images of castles, but might might have played so much croquet
as a child that the colored balls would be highly familiar. Another might have been obsessed
with English castles in junior high, seeing hundreds of ixﬁages of them and perhapsljeven
downloading the same drawing used‘v in theée experiments. Can we differentiate i‘mages“ ina.
manner 1ess"sUb ject to individual variation? Althbugh partiéipants’ résponses will reliably
not be identical —otherwise one would suffice—there are also élea.r cross-participant work-
ing memory patterns stemming from prior knowledge such as the distinction foﬁnd between
upright numeré,ls (“2” and “5”) and their rotated equivalents, which were harder to find
and to recall correctly (Alvarez & Cavanagh, 2004).

An artisf or an art hiStbrian might 'char'a&erize the,castlerr'an,d tree drawings as mpréf
sentational ;Ild the shapes as abstract—see for instance Merriam-Webster’s fourth sense

for “abstract” below.

having only intrinsic form with little or no attempt at pictorial representation

or narrative content <abstract painting>

This distinction has been used not only to distinguish art forms within one culture and era,
but also to discuss the cognitive and cultural accomplishment levels of different groups of
\ péople over time (Halverson, 1992), and ,veven as a persohality measure (Furnham & Walker,
2001). A cognitive scientist might be more inclined to label the icons as more meaningful
- than the abstract shapes,—how could such a claim be supported?

Whileidecaaes of work in more than one subfield has been devoted to deﬁning mean-

ingfulness, established picture-naming (Székely et él,, 2003) and semantic (Pexman, Harg-
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" reaves, Siaka,luk,b Bodner, & Pope, 2008; Pexman, Hargreaves, Edwards, Henry, & Goodyeé,r,
2007, Mcliae, Cree, Seidenberg, &‘McNorgan, 2005) norms focus on concrete objec‘;s, omit-
ting ferrns and imageé representing the abétract sha.pes (e.g. “oval”, “checkbox” ) often
used as ifem markers or icons in multimedia lea.rn_ing materials. Classic works measurings
associations With a.bs'tract»shapes', on the other hand, usgd such shapes to the exclusion}v of
~ everyday concrete objects (Vanderplas & Garvin, 1959; Attneave & Arnoult, ‘1956). Ap-
parently, neither the older nor the more recently established norms resolve v;(hether “such
abstract shapes do eﬁlpirically demohstra.te iess of the kinds of mea.ninéa.vssessed by those
research groups. Also, meaningfulness (also termed semantic richness) explains variance in
the ne;ver studies only when considered alongside multiple other variables, requiring hun-
dreds of words or images I;er study, ratﬁe; than two dozen. For this diSserta.tioh, whose basic
methods would not support'hundreds‘ of stimuli, a meaningfulness measure based on Word
, associatiohs will bé idoseiy adapted (as descfibed in Section 4.1.4, p#ge 45) from McRae‘ et
al.’s (2005) number of vfea.tures (NoF) measures and from many yea.rs of assessments of the
diversity of word use among children (Hess, Sefton, & Landry, 1986; Johnson, 1944).
Whether the meaningfulness metrics or the behavioral (search-speed) measure is more
predictive of crqssmoda.l working memory capacity, both types of mveasurves tap into ob-

servers past experience, or pm’oi‘ knowledge, of the world around them.

2.3.5 Prior knowledge and working membry : ‘ .

Prior knowledge has been shown to play a la.rgé‘role in lea.rnihg in general, and Sweller
and éoliea.gues have found the same pattern v;rhen mixing levels of expertise a.mong‘their
, Il)a.rticvipa.nts, with rﬁore—knowledgeable learners ';‘equiring‘ less structure and guidance than
“novices (Kalyuga, Chandler, & Sweller, 2000). Whevre the theoretical conflict arises between ~
the Mayer and Swéller schools of research 1s in arenas where the prior knowledge dbes not
relate directly to whé.t is being‘ learned—say in the cé.se that you are learning to use an
- onboard GPS; system while visiting your hqmgtown versus, while‘on your very first visit

to Mount Rushmore. In Sweller’s (2005) model, a novice GPS user would not benefit
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(from prior location vk’nowledge without explicit instruction, whereas researchers‘following
Baddeley’s (2007) modei (Mé.yer among them) would predict such a benefit.

S(imé kinds of prior kiiowledge are easier to talk about than others—giving driving di-

rections to niy mother’é hoilse is sﬁbstantiallyveasier\ for me than ékplaining how to tell when

_to release the clutch after changing gears manually, yet both of those involve brdcedura.l
knowledge. Our vast stores of long-term memory include procedural, nairative, and myriad
other kinds of information.

Iilcludéd in those stores are category diétirictions; a .toddiei; ‘might not distinguish horses
and cows, but adults can. Colors, dfy or sweet wines, modern or early jazz—all these
distinctions can beconie working parts of our sorting processes, giving definition to what
we seé, taste, or hear around us. CategOric‘aid:istinctionsb are essential for the maintenance
of multiple oi) jects\‘invvisua.l working memory, as shown by‘ Olsson and Poom (2005): Using
change-detection methods very similar to those of Vogel, Wobdma.n, and Luck (2001), they
constructed stimuli which varied along ndn—cai.tegorica.l dimensions. For iiista.hce, some
stimlili cpnsiste(i of a white circle enclosedi by a ring of blue—the ratio between blue area
'a.n(i w’hite area varied confinuously betweeri all the objects to be remembered. In'that case,
pa.rticipa.nté’ change-detection accuracy suggested that they coilld hold about one such

- object in WM at a given time, far less than the capacity found for stimuli distiiiguiéhed by
categories (e.g. blue versus red squares). This role of category distinctions may influence

the role of the other factors under consideration for this study.

2.3.6  Which features are we counting? -

Another approach that -ma.y explain conflicting eﬁécté of dgta.il in different experiments -
suggests that for objects we can (‘recognize, low-level features may not be the right oneé
to qounf anyway. Extensive work a.ttempting to model object recognition suggests that
~ when people recognize an object, the genuinely identifying may be mi(i-level featureé like
a rough eyebrow pattein rather than low-level features like color or orientation of sp‘eciﬁc

" tiny regions (Uilinan,,Vida.IQNaQuet,' &V’,Sali, 2002; Borenstein & 'Uilma.n, 2002). The Ullman.
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work is an information-theoretic approach, where features are derived from'calculations'of
which suchv‘mid-level fea,tufes are most common within the category to be recognized (face,
dog, c(;a,r) and least commoﬁ ‘inb non—category—members. |

If the latter modél closely describes the objéct-recognition process by which working
memory distvinguishes betv&een itenis‘ to store, then indeed, greater visual detail, if such
detail identifies .an z'tem” as bclongz’ng to one or anothef category, sl;ould boost change-
detection capacity. On the other hand, perhaps greater distinguishing detail only helps up
to a certain threshold, after which it becomes burdénsome for working memory. Recent
work in visual wbrking memory suggests that we do indeed process identifiable objects .
differently than we do mo:re abstract combinations of visual features (Hommel & Colzato,
" 2009; VanRullen, 2009). Recent modelihg work has ekplored how visual objects could be
encoded in such a way that familiar combinations take up léss working memory cé,pacity
than rare or novel feature combinations (Brady et al., 2008).

Since an obser;'er’s prior knowledge holds such a ma.jor/inﬂuence over WM ca.pacity, how
can we désigh experiments which take that knowledge intov account—without first solviﬁg
years’ worth of modeyling challenges—and still vary detail effectively? Image—Based accounts
alone, counting features or bits or other image repreéentations, ha.ve not been predictive
- of visual working memory—after all, the lumina.ncé of"a.niupr‘igrht “5” is not different than
Va. lyihg—down “5”—or of picture-naming speed (Alvarez & Cavanagh, 2004; Székely et al.,
2003). -Adopting a behavioral ﬁleasure of visual information load will extricate the proposed -

work from some thorny debates about how to define detail while potentially clarifying the

memory and modality dynamics inspiring those debates.

2.4 Goals of the present work

To arrive at the full comparison of crossmodal working memory capacity to behavioral
measures used ‘in visual cognitioﬁ résea.rch, first and foremost a measure is needed for
crossmodal working memory capacity. Thus this dissertation is divided into two main

phases: developing such a method and applying that method to evaluate claims about
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detail‘ and meaningfulness of iméges associated with sounds.:

The measure is an adaptation of change-detection I;rocedures used to assess visual work-
- ing memory, basing its capacity estimate on observers’ rate of accurately detecting a change
in one dbject out of several initially presented. Both abstract and representétional sounds
paifed with images with more and lesé featural detail were evaluated, as was the impact of
different test-object’ locations.

In applying the method, a meaningfulness measure was also develeped which supported
claims of greater meaningfulness (in terms of associations) for representational images com-
pared to abstract shépes. The meaﬂingfulness measure was used, to prepare stimulus sets
which contrasted image meaningfulness with image detail (color versus grayscale), char-
a;ctéristics which were tested in separate experiments in tl}e development phase. A visual
séaréh task was incorporated alongside the core change-detection task to evaluate whether

search speed would correlate strongly with working memory load of visual-auditory associ-

ations.

22



CHAPTER 3

CROSSMODAL CHANGE DETECTION DEVELOPING
A GENERAL METHOD

3.1 Crossmodal Adaptation of Change Detection Procedure

To measure crossmodal working memory capacity independent of language, adaptations to
visual change detection methods were made as described below to assessed the contributions

to crossmodal binding.of different sound and image types as well as test-object location.

3.1.1 General Procedure

Rapid Serial Presentation

This sequence of experiments adapted classic visual change detection procedures (Vogel et
al., 2001) to measure crossﬁbdal (auditory and visual) working meﬁlory capacity. This new
meéthod involvés rapid sequential presentation 6f sound-image pairs, 500ms for each, with
a test pair appea.riing after a delay of 1000ms. Unlike the all-centered serial presentation
method,dévis/ed by Allen and colleagues (2009), all memory-array images were placed at
a fixed. distance (approximately 3.5°, well within fhe parafovea) from the center of the
screen and equidistant from each other. (See Figure 3-1 for ;1. sample sequence.) Observers’
accuracy in detecting whether or not the pairing was indeed présent in-the training arfay‘
provided a quantitative measure of their WM ca.pa.c’ity \\f/(/)r such visual-auditory associations.
Furthér comparisons to Allen et al’s methods are discussed with Experiment 4. Instructions
for the experiments in this chapter involved brief, individual training with the e);pe;imenter,
(see Appendix A3)

The 1000ms delay between the presentation of the initial array (the first three objects)
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no-change sequence
with location cue

300ms

500ms

500ms

1000ms

i —— I 1 e & e i = e = ey

Figure 3-1: Change Dptéctioh: This would count asa no-change trial,

as the test object has the same visual-auditory pairing as the first object

presented. Depending on the experimental condition, the balls might be

uniform gray or each a different color.

pe;formancé (Eng, Chen, & Jia;ng, 2005).
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and the test object is identical to that used in Vogel, Woodman, ahd"Luck’s (2001) ex-
periments, and it is well into the working-memory (rather than iconic-memory, closer to

| 100ms) range (Treisman, 2006). Delays of two seconds or more lead to loss of memory

While the presentation duration—half a secpnd for each object, with a total study time

of one'secOnd.—is longer than maﬁy of the. prior visual-only WM capacity -studies (Vogel ,
- et ‘al., 2001), those authors argue tha.t‘ more-complex stimuli may reduire more time to
process, as do subsequent studies (Jonides et ﬁl., 2008, see p 201). Each object receives
the ﬁinjmum exposu;é fime a!ccorded to complex stimuli in one of the key studieé Jonides

is summarizing (Eng et al., 2005), and the total study time of 1,500ms is slighﬂy longer



than their medium-length exposure time (1 s).

v Image placement for test objects .

Location has been identified as more crucial than other features used to perceive objects
’ vin‘many’studies of feature binding:a.nd visual working memory capacity (Treisman, 2006).
~ Therefore, tviro different ’a;iproaches to plaeemerit of test ebjects were compared: displayirig
them in the location where they had originally appeatred in the memory array (the original
location) or in the center of the screen, a location never used for presenting stimuli to

remember (the centered-probe condition).

Feature swapping

The other major difference between the crossmodal change detection metho"d used here
and some of the visual working memory precedents from Luck, Vogel, and Treisman and
colleagues is its exclusrve rehance on feature swapping Wheeler and Treisman (2002)
eontrasted memory for bmdmg of features with memory for the (presumably unbound)
features themseives, and in the latter case, a changed test display would include fee,tures
that had riot been present in the meiriory display. Rele,ted work testing out the impact
(described earlier) of varying features along the same or different dimensions also would
introduce features (colors in this case)’at test which had not been present in the original
memo'r}r display (Xu, 2002). \
The present method is speciﬁcaliy geared towards testing binding ‘between features con-
- veyed through different modalities, so—more like the binding-test trials from Wheeler and
’I‘reisman—any feature presented in the test phase of a trial would have been seen or heard
immediately before. In other words, the_iny changes were the associations between features.
| If our tests iricluded features that had not been presented immediately before, participants
could suceessfully identify changes without making any connections between auditory and
' visual features at all: if no dog seiind was present in tlie memory array, and the test pair

is a barking apple, voilal-—a change. Each memory trial used three visual-auditory pé;irs,
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With ime,ges aha souhds draWn rahdonﬂy from a\set of four p‘ossibiiities. In chahge trjals,
only images and sounds used in that trial were used ih the test dbject. | )

.Focusing in this manner on memory for crossmodal binding does permit a possibly
confounding strategy, identified by (R. J. Allen, Baddeley, & Hitch, 2006), where observers
can identify a variety of phssibl‘e binding changes based on one apcurately—remerlhbered
R pa.iring. Using the triai displayed in Figure 3-1, an example of this strategy would be for
the observer to remember only that the lower-left ball (appearing 1ast in the memory array,
" the third box in/the figure) honked like a goose, without any retention of the other two
st;muh This paxtlclpant could correctly detect a change in the 1mage—sound palrlngs for
,thls tnal if that last palrmg comes, bask if the honk sound comes with any other image,
or if that ball from the lower-left corner makes any non-honkmg _sound. Slnce test probes
in this swapping protocoi only select frorh the three sounds and three images presented in
the memory array, there are nine Vpossible ;isual-auditery pairings. for a ‘given trial, and a
person using this single-pairing strategy will be able to respond correctly to ﬁve out of those
nine.

This strategy option end our seqﬁential presentation‘«complicztte the ‘interpretation of
prior estimates of absqluteWM' capacity; and these experiments are agnostic ab.o’ut the
correct units. with which to measure it. Instead of focusing on absolute capacity, my analyses -
concentrate on response accuracy, as follows. Subtracting participants’ false alarm rate
: f;om their score for correct change detection, allowingius to penalize gu’essing and remove

individual respohse bias (R J. Allen et al., 2006). Chance responding would score 0%

accuracy, versus 100% for error-free change detection.

3.1.2 Participants,

Twelve students from the Umvers1ty of New Hampshire—each taking part in a single
’ expenment——partlclpated in each experlment with the exceptlon of the last experlment
which had 13. Most received course credit or $12 in compensation; the time involved was

approximately 50 minutes.
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3.1.3 Apparatus
Experiments 1 through 5 were run on a Dell desktop computer with an LCD screen; using
- custom software created by Colin Ware. The sixth experiment was presented on two Macin-
tosh iBook G4s, using code written by the author in PEBL (Mueller, 2006). Sounds for all
- experiments were presented using adjustable headphones (Philips SHP2500). Participants

pressed keys labeled “SAME” or “DIFF” to record their answers.

3.1.4 Stimuli

To keep our experimental crossmodal aséociations as simple, novel, and cdqsistent as possi-
ble, the images to associate were chosen to either represent abstract shapes (shaded balls)
or ndn—noise»makihg objects (e.g. trees, castleé, household itefns). Please refer to Ap—”
pendix A.2 to examine the images used.

Associated sounds consisted of 400ms recerdings of animal sounds, monosyllabic words,
or pure tones; epeciﬁc stimulus choices for each experiment are listed in Table 3.1 and

)

described in more detail for each experiment.

3.2 Experiment 1: Contrastihg Unimodal and Crossmodal Performance

3.2.1 Method and stimulus specifics

Crossmodal accuracy was first compa;ed to unimodal performance with serially—pfesented ,
colored balls which coﬁld change coler or not, with test objects always:appearing in’the
same location as where they were first presented. (Image stimuli for Experiments 1-6 are
shown in Appendix A.1.) Associated sounds consisted of 7200, 350, 500, or 650 Hz constant
tones (Fabiani, Kazmerski, Cycowicz, & Friedman, 1996). Articulatory suppression was
used to/a;esess involvement of the phonological loop:. observers spent half ‘of their trials-

repeating randemly-ehosen pe,irs of numbers pi'esented at the start of each trial.
. ¥ ' .
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Experiment Images - Sounds . Test Location

Expt. 1 " Colored Balls Pure Tones Original Location

Expt. 2 Gray & Colored Balls Pure Tones & Original Location

& Color Drawings Animal Sounds\

Expt. 3 Gray & Colored Balls | Animal Sounds Original or New

- & Color Drawings Location

Expt. 4 Gray & Colored Balls | Animal Sounds or | Original Location

& Color Drawings Spoken Words

Expt. § Gray & Colored Balls Pure Tones & ' Original? Location

& Color Drawings Animal Sounds

Expt. 6 "Color Photos or Animal Sounds New Location

Grayséale Drawings

Table 3.1: Experimental Design: Stimulus Contrasts

3.2.2 Hypotheses: Experiment 1

e

Perhaps binding visual and auditory features a,s crossmodal objects is comparable to bind-
ing visual features from veryvdiﬁ’erelllt dimensions—in other words, a‘sound featﬁre is simply
more different than a.'n. orientation feature associated to a color. If (éo, extrapolating from
/ Xu’s (2002) differentiation rather broadly, observers’ accuracy for crossmodal stimuli should
eqﬁal or exceed their change detectidn resﬁlts for unimodal stimuli. If instead‘ crossmodal
biﬁding is less successful than binding diﬁerent-dimehsion visual features,_hnimodal accu-
racy should be higher. If rapid serial presentation of colored shapes‘pa.rallevls simultaneous
presentation exactly (Vogél et al;, 2001), articulatory suppression should not aﬁeci;_ visual-
“only t;ials. Finally, if the phonological loop is used to process abstract tones as cfossmodal

features, articulatory suppression should impair change detection on crossmodal trials.
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3.2.3 Results: Expériment 1

Exé’luded Dafa

!

Technical issuéé and data analygis dictated the removal of data sets, as follows. Olie pé.r- '
ticipant in the first experiment was unable to successfully operate the experiment program,
fanci two others had more than three error - trials in specific blocks; those data were ex-
cluded. Also, zero t6 two participants‘in ea.c}i‘experiment responded with accuracy rates
which were not distinguishable from chance—these records were also excluded. Reported
Ns reflect the adjuéted total.number of participants fiom whom valid and complete data

sets were obtained.

_ Effects

* Corrected accuracy was significantly higher for unimodal change detgction, Mno_;uppr =
77.1%, Mguppr = 71.5%, than for crossmodal, Mﬁo_suppr = 55.9%, Msupp; = 32.3%. ’The uni-
moda.l advantage was significant, F'(1,88) = 45.4, MSE = 77.1,p < .001, and articulatory

" suppression depressed accuracy across the board, F(1,88) = 10.6, MSE = 77.1,p < .01,
with a marginally significant (p < .06) interaction reflecting a greater imb’a.ct on crossmodal -
trials. Crbssmoda.l detection accuraéy for this and all silbsequent experiments is shown with

) ‘a‘sta,n'dard error term based on the résidu'al standard error of the analysis of variance used

to determine sigpiﬁcant effects. See Figure 3-2 for a graph of the results of Experiment 1

and other method-development experiments.

3.2.4 Discussion: Experiment 1

These results suggest that, compared to associating color information with a located shape,
associating soundé with uniquely-colored shaded balls consumed considerab1y more working
memory resources. Similar-to Allen and colleagues’ recent results (R. J. Allen et al., 2009),

‘ a.fiiculatbry su;ipress_ion impaired recall fof both kinds (visual-visual and ’visua.‘l-alidit'ofy) »

Qf feature binding.
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Expt. 1: Uni- v. Crossmodal » Expt. 2: Stim. Complexity
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Figure 3-2: Change-detection accuracy results measured using p(Hit) -

p(FA), with residual standard error indicated.

3.3 Experiment 2: Contrasting Simple and Complex Stimuli

To compare the impact of more complex (more highly-featured) stimuli on crossmodal WM
capacity to related visual research, the second experiment diversified both the auditory and

visual stimuli used. A second set of more meaningful and feature-rich sounds was selected
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to contrast with the pure ‘tones: animﬁl sounds, each lasting within 50ms of the 336ms
duration of the tones. The sounds chosen—a éow’s moo, a goose’s honk, a frog’s croak, and
" a loon’s laughing call—differed from each other on many audjtdry diﬁiensions, including
* pitch, rhythm, ‘aﬁd timbre. All trials involved crossmodal associations.

To complete the comparison of meaningful stimuli with abstract ones, an additional

set of images was included, showing a tree, a stone castle, an apple, and a wooden chair.

None of these images portrayed animals,b to minimize any chance of semantic connections
between the images and the animal sounds. Also, a set of identical grayscale balls were
included to provide a less-featured abstract comparison for the colored ones. (See images

in Appendjk Al)

-3.3.1 Hypotheses: Experiment 2

If number of low-level features exclusively determines the working memory load‘of visual
and auditory stimuli, participants’ change dete(':tioh accuracy should be highest for gray
balls and for abstract tones, with drawn images and animal sounds showing the worst
performance. If the 'meéningfulness of those '}mages and sounds—tying in with lothterm

knowledge of some kind—boosts working memory capacity, the reverse should hold.

3.3.2 Results: Experiment 2

- The more complex sounds, Maimar = 48.6%, Mione = 41.1%, F(1,41) = 12.78, MSE =

2.82,p < .001, and the drawings of real-life objects, M;ya9¢ = 51.2%, M eoloredvait = 40.5%, Myraybalt =

42.9%, F(2,41) = 3.93, MSE = 2.82,p < .05, both showed main effects of improving
change—detection acc‘ufacy. (N.B.: The effect ofv'iniage type failed to replicate in later
experiments, as detailed below.) Accuracy results for this experiment are shown in Fig-

ure 3-2.
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3.3.3 Discﬁssion: Expériment 2

These results do not support a straightforward featural complexity cost to crossmodal work-
' ing memory capacity. ‘More-complex animal sounds and images—both plausibly more mean-

ingful than their abstract counterparts—were recalled more successfully than abstract tones

. or shaded balls.

3.4 Experiment 3: Does Test-Probe Location Matter?

To assess the confribution of location‘cues to recall of crossmodal 'pairings, the conditions of
Experiment 2 were répeated with the following changes. Abstract tones—greatly disliked by
participants—were removed. New trial blocks were add;ed without location cues at test, with
test iinage-sound pairs presented at the center of thé screen. 'Center—*tesf trials could only be
1mplemented for the umque image types (colored balls and 1mages), as sound assoc1at10ns
with the the identical gray balls could only be differentiated by locations, resulting in an
asymmetrical experlment design. Control trial blocks with test ob Jects reappearing in their
' original location, were (other than randomization) identical to the animal-sound blocks of

Experiment 2. (See Figure 3-3 to compare a center-test sequence to the original method.)

3'.4¢1 , Hygothesés: vExperimen't‘3

If location is as important for crossmodal aésociations using non-localized auditory features
as it is for visual-visual feature binding, change-detection accuracy should be poorer for
centered f)robes. At first blush, this hypothesis seems. likely, as more retrieval cues aré at
play for test probes in their original locations. However, for single—probe tests of feature
binciing after SimultaneOué presentation of multiple shapes, location of the test probe made
no difference in a key precedent (Treisman & Zhang, 2006). If single-probe test protocols for
rapid serial presentation are ident\ical to this precedent, no difference in crossmodal change-
detection accuracy should be obsérved between test probes in their original locations and
centered-test trials. Followmg Experlment 2, complex and recognizable images should show

the best performance compared to the gray and colored ba.lls
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change sequence,
no location cue

500ms i | i '

S00ms

500ms

1000ms

"Figure 3-3: Change Detection: This would count as a changve trial,"because
the glass was‘f_ir'st paired with a frog sound, not a cat’s. With the test
image placed in the center, observers cannot rely on location cues to detect

/

changes in sound-image pairings.

3.4.2 Resﬁlts: Expei'iment 3

Participants recalled crossmodal associations with location cues M = 50.9% better than
those tested at the screen’s center, M = 39.7%. The location-cue advantage was signifi-
cant, F'(1,121) = 15.66, MSE = 65.6,p < .001, while image types did ‘not exert a consistent
- main effect, failing to replicate the image difference found in Experinient, 2. (See Figure 3-2
for full resulté.) Crossmodal associations using gray balls were most successful-—and rep-
resentationai imagesrleavst successful—in thé 10catioﬁ-cue condition, vwhile representational
images were easier to recall than colored balls in absence of location cues. This interaction :

was significant, F(1,121) = 4.79, MSE = 65.6,p < .05.
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© 3.4.3 Discussion: Experiment .3

Image-sound pairings were e'asier to recall accura,teiy when test probes were presented in
‘ \\ ‘ . . ‘

their earlier locations than when they were placed in a novel, centered position. The in-
teraction between test-probe‘location and image type prompted both the replication of

N

Experiment 2 (as described above) and the always-centered test design of Experiment 6.

3.5 Experiment 4: Will Words Improve Performance?

Past research on verbal working memdry haﬁs shown that lists of five short words can be
recalled and repeated with near-perfect accuracy (Baddeley’, 2007, p. - 9). To find out
how much words might improve recall of novel visua,l-auditofy aésqciations, é.nima.l sounds
were contrastéd with monosyllabic English words in visual-auditory pairings. Recorded
words—all monosyllé.bic and imagéable, such-as “éphere”, “sock”, “moon”, and “cup”—
had similar duléa.tiohs to t\lyle‘animal séunds, and they were pilbt-tested fér inteiligibility ina
word-seduence identiﬁca.tion task mimic;mg thé auditory presentation proéocol for the main
experiment. 'Pilét festers did not make order-rqcall !e‘rrors with lists of three words (chosen
ré.ndomly each time from the set of four). This pr-otocol was the most similar to Allen et al.’s
crossmodal approach (2009;, with two key differenceé. Their croéSmodal stimuli divided up
visual features that in unimodal trials were joined in a single image—color and shape—,
pairing spoken words with grayscale or ambiguously-shaped images. The crossmodal stimuli
used here combine cbinplete images (compared to past unirhodal controls) with additional
auditory feaytyures which would be difficult to depict—for the animal sounds—or would
require an additional image. The second key difference lies in the semantic blausibility
of the verbal material used in their expe;iment (R J. Allen ét‘al,, 2009).' The words »
chosen for use in Experiment 4 did not obviously relate to the ima.ges,b used (e.g. 5 cé,stle
sa);ing “sock”). Judging by v&hat stimulus combinations prompted laughter in training,
‘to many paiticipa.nt_s, ,Small dbstréct yim,ag’es having a nameable sha.pé is a more expected

characteristic than for those images to bark, honk, or moo.
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-3.5.1 Hypotheses: Experiment 4

If image-based :;.nd sound-baséd’WM resources constitute entirely separate st‘ores, highly-
imageable words should overload \visual WM cépacity when paired with irrelevant images,
resulting in better performaﬁce for the animal sounds. On the other hand, if asséciating
novel pairings incurs very little processing cost, the associated words should be so eas')'; to
recall that change—detection performance should apprbach the high rates found in unimodal

trials in Experiment 1. -

' 3.5.2 Results: Experimént 4

 The visual-auditory pairings featuring words, M = 59.5%, were better recalled than the
ones using animal sounds, M = 50.6%. The word advantage was significant, F(1, 106) =
10.6, MSE = 268.8,p < .01; no signifi_cant differences Weré found between image types.

Accuracy results for this experiment are shown in Figure 3-2.

3.5.3 Discussion: Experiment 4

While/ images paired with spoken words were ea_sier to recall than those paired with animal
bsoﬁnds, top perform’ance‘ on Experiment 4 stillldoes’ not approéch the unimodal accuracy
rates observea in lExpériment 1—fhis suggests that maintenance of the pairing itself réquires
cognitive resourceé.’ The absence of significant differenceS“aCCOrding to image type also

provides an additional failure to replicate Experiment 2’s image results.

3.6 Experiment 5: Contrasting Simple‘and Complex Stimuli—Replication

In light of the lack »of consistent cost or benefit assbciated with different image types in
Experiments 3 and 4, we repllivca.ted‘ Expetiment 2in ’its 'ehtirety, crossing image-type differ— |
encés (g‘ray balls, colored. balE, and drawn images) with sound-typ; differences (pure tones
or animal sounds). The hypotheses for Experiment 5 were identical to those of Experiment

2.
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3.6.1 Results: ‘Experi‘me\'nt 5 (replication)

s

In this ‘lreplication‘of Experiment 2, the complex—vimage benefit observed earlier failed to
. replicate, F'(2,63) = 211, M SE = 198.99, while the advantage for animal sounds, M =
49.6%, kovber pure tones, M = 38.2% was supported, F'(1,63) = 21.26,MSE =V 198.99,p <
.001. See Figure 3—2 on p. 30 for full results. A significant interaction was observed between
imagé type and individual participaﬁt identity in the replication F'(20, 63) =210,MSE =
198.99, p < .05; no such interaction was observed in Experiment 2, F(12,41) = 1.30, M S E=
2.82. With only twelve people participating in each experiment, there could be‘individual

) v :
perceptual or strategy differences whose patterns are not captured by these data.

3.6.2 Discussion: Experimeﬂt 5

This replication of did not support a clear feé,tural—complexity cost or benefit for associated
images in crossmodal binding. While the software and hardware employed were identical,
:the two experiments (2 and 5) _.were: ;un in different buildings, with more physical distance
and less of a sight. line between experimenter and participants in the latter. Al'though
the experimenter used the same training process in both fo deliver instructions (see Ap-
pendix A.3), reliance on verbal instructions——cdrrectgd in the final experiment—may have
introduced errors, and changes in »deparfment polic& meant that Experimer;t 5’s partici-
- pants had read a brief deScrip’tion of the experiment before gigning up, while Experiment
2's had not. The Experiment 5 participants were froxh later in .the semester’s pool, in
#ddition, and had more information: about thé experiment beférehand., All of these slight
changes, conibined with the relatively small bsample size, make in_.terpretation> of the inter-
r,eplic'zition dif%erences difficult, other than clearly pointing to the need for further study as
in Experiment. 6. o |

More-complex animal sounds, on the other hand, were once again better recalled than
abstract tones, while image types produced no significant péttern of cost or improvement.
Compariﬁg these results with fhose of Experiment 3 suggests a possible interactién where

image complexity plays a different role when participants cannot use location cues.

36



3.7 Experiment 6: Do Image Differences Matter More, Absent Location?

To better ev’a.luateb contributions of image differences to crossmodal WM cé.bé,city, the Ex-
periment 6 presentéd each test probe at the center of the screen, removing the option of
- correct change detection base;l on prior location rather than other‘ image characteristics.
In addition, more highly-featured meaningful images (color photos of a book, a butter-
fly, a tree, and a Granny Smith apple) were c;)ntrasted with grayscale dra.wings proven to
be highly identiﬁable in multiple picture-naming experimehts (Rossion & Pourtois, 2004).
(See specific iniages used in Appendbc Al2) Resbonding to /pa,st participants’ concerns
about having two birds represented in the set of animal sounds, the loon fecording vs}as
' replaced with a cat’s megw. This ﬁna.l experiment also relied on articulatory suppression, v

with participants asked to repeat random number pairs under their breath for half of the

trials.

3.7.1 Hypotheses: Experiment 6

If the image-complexity benefit shown for centered-probe trials in Experiment ’3 was solely -
due to the fact that the representational images dépict real-world objects while the abstract
shapes do not, then highly recognizable grayscale drawings and color photos éhould show
comparable cha.nge—de“cection performance. If perceptual characteristics such as the greater
| number of differently-oriented lines in the images also contributed to that benefit, the color
pbhot'os should denionstra.té higher accuracy. If the more detailed ima.ges prompt observers to
rely more on verbal encoding, subvocal‘ a.rt‘icula.tory suppression should impair perfomance

on those trials more than on the trials using simpler grayscale drawings.

3.7.2 Results: Experiment 6

Full-c:olor photographs, Mm_suppr = 64.1%,M;,uppr = 51.2% provided gr.e,’ater crossmodal
change detection accuracy than grayscale drawings Moo suppr = ’52.9%, Myppr = 45.5%. In
addition to this significant effect of image detail, F'(1,96) = 4.25, MSE = 441, p < .05, sub-

- vocal articulatory suppression reduced accuracy across the board, F(1,96) = 6.01, MSE =
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441, p < .05, without any /(,)'bserved’interaction with image differences, F (1,96) = 0.44, MSE =

441. Accuracy results for this experiment are shown in Figure 3-2 on p. 30. !

3.8 Discussion: Methoanev»elopment

3.8.1 Owverall Resultsv

-
This crossmodal adapfatioh of classic Change—deteétion methods has shown that sensory
modalities and factors critical to object perception;féatural complexity and location—
themselves shape 6bservers’ crossmodal working memory capacity, and that those critical
factors interact. Specifically, the results from these méthod—development studies Show that
participants’ recall of image-sound pairings in certain cases does diff’erb for different image
ty_[‘;esv, and the iniage differences are not Well eﬁplained by icounting lpw-level features.
Detailed images representiffg real-world objects_ sometimes provide differing WM results
than moré abstract depictions. ‘

Application of this new crossmodal change-deteétion method suggests that WM capac-
ity for visual-auditory associations is lower than capacity for visual—bnly associations. This
series of experimeﬁts eﬁlphasized relative rather than absolute ciaims abbut WM capacity;
further discuséion of absolute capacity estimation can be found in Appendix B.1. Using

 their feature-splitting approach, Allen et al. found no change—détection differences across
uniﬁlodal and crossmodal presentations, but their participants performed e;.rticulato;y sup-
pression more slowly under crbssmoda.l f)resentation conditiqns (R. J. Allen et al., 2009,

p. 100). For thé prese/ht seqﬁence of experiments, comparing crossmodal to unimodal
performance—in our own first experiment and in others’ (Vpgel et al., 2001)—shows a clear
crossmodal disadvantage.

Change detection itself may undere/stimate true working ﬁlemory capacity (Alvarez &
Thompéon, 2009), as shown by compariﬁg feature-swapping change detection téchniqueé (Saiki
& Miyatsuji, 2005) witﬁ others which have been used to show tht bindihg,i:)ersists in ab- |
sence of attentipn (Gﬁjewski & Brockmole, 2006). The method used here relied eﬁcclusively\

on feature swapping—that is, features presented at test were alQays drawn from those
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which had been presented in the pieceding" niemory arrziy,‘ so only bindings were altered for
change trials. However, in tihe ‘changed-locatien trials, the test locatiori was not ever used
in memory arrays, so those trials should exhibit less overwriting than the same-location
7 trials; Having .i:‘he mnemonic boost of a speciﬁc location contributed more benefit than any
detriment from oVerwriting of features associated with that location.

Retaining image location at test sho'wedya clear'ad\/;u_itage for recall of visual—’auditqry
pairings. This is similar to the results of (Prabhakaran, Narayanan, Zhao, & Gacrieli, 2000),
which did involve changing testQprobe locations to previously-used areas on the screen; their
results supported a clear benefit for location. Our crossmodal results support the central role
of location in binding, as the auditor'yi features themselves were not localized; acoustically
and were bound to images only in the perception of the participants. These results contrast
directly w'ithjrecent findings that location did not beost visiial working memofy for single-
probe test prV(\)\tocols (Treisman & Zhaiig, 2006), suggesting that even 500ihs’ exposure to a
solo Yisua.l-a.uditofy pair fostered its encoding wii;h relation to the borders of the experiment
_ presentation screen. | |

While location clearly did contriblite to these crossmodal assccia.tions, the impact of
‘visual and auditory featural comiaiexity was not identical across experiments. In two repli-
cations of the same ‘pfotocol, more-complex animal sounds provided consistent change-
' Vdetection beneﬁts‘compare(‘i to abstract tones. Those replications failed to suliport any
consistent pattern of accuracy differences according to image complexity, however. Only
in the cases when image location cues were not available did greater \iisual detail improve
recall for crossmodal associations. Given that visual wcrking memory itself depends on
categorical distinctions (Olsson & Pocm, 2005), one\pbssible explanation would be that the
abstract tones were only marginally distinctive enough tosupport grea.ter_working memory
capacity. Alternatively, the loca.i:ion—cue trials (where the test probe was presented in its
original location) may have permitted a variety of mnemonicstrat»:egies to. participants, who
could successfully detect changes by récallirig associations between sounds and speciﬁc im-

ages or specific locations. If true, the availability of these qualitatively different strategies
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may have obscured 1mage—related differences in recall.

Finally, the pattern of results observed supports a nuanced treatment of featu.res (Olsson
& Poom 2005' Alvarez & Cavanagh 2004; Xu, 2002) more than a s1mple count of low-level.
features as predictive of working memory load More-complex 1mages were not assoc1ated ‘
with a 51gn1ﬁcant decrease in change detection accuracy, and were in fact easier to recall

than less-complex ones in cases where the test probe d1d not cue the prior location of the

test zpair. ‘

'3.8.2 Suggested Modifications

To clarify the results obtained thus far, several changes are inrorder. Firstly, centered
placement of test probes (that is, testing for change detection in a location unused in each
mernory array) is essential to discover the working memcry impact of image-type difference.
Thus this approach, as used in Exneriment 6, should be used_ for subsequent applications
of this change detection rnethod. ’Secondly, those imag\e—type differences already attested -
in one case (Experiment 3) involved meaningful color images showing better accuracy than
abstract colored shapes, and in the other case (Experiment 6) both sets of im_ages de;
picted' recognizable, meaningful objects, buit the advantages acvcruedto the full-color photos
compared to the 'grayscale drawings. Further analysis of the impact of these image char-
acteristics on crossmodal working memory capacity requires an experiment design which

contrasts meaningfulness with perceptual detail.
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' CHAPTER 4

CROSSMODAL WORKING MEMORY LOAD, DETAiL,
AND MEANINGFULNESS: REFINING METHODS

14

As stated in the previous chapter, thorough examination of the effects of ‘image‘ type
on crossmo’(da.l Working memory capacity requires. juxtaposing higher- and lower-featured
instances of both représentational images and abstract shﬁpes within one experiment. Tv;ro
further extensions are in order; First, image meaningfulness may influence. the working
memory load of vim;Lg_e-sfound a;ssociatioﬁs; determining this re_quirés an operational defini-
tion of meanjngfulness which can be applied to ali the imaée types used in this disseration.
Second, the imﬁge and sound complexity advant:,ages found in the earlier experiments call
for a comparison to a behavioral alternative to feature-based complexity measures for visual

/objegts, developed by Alvarez and Cavanagh (2004). |

l_‘The four image types required to ‘cross the effects of featural complexity with the distinc-
tion between representéfional imag'es aﬁd abstract shapes are: full-color reﬁ'resentatiorial
images, grayscale representational images, full-color abstract shapes, and grayscale abstract
shapes. These imag‘e (;lasses‘, if six exemplars are chosen for each fype, lend themseives to
the same sort of comparison as Alva;fez and Cavanagh’s (2004) five image Classes: colored

, reétarlgies, capital letters, Chinesé characters, random polygons, and shaded cubes. Their
\ , ; .
behavioral measure, which was found to correlate véi‘y strongly with the working memory

load of each image class, was an estimate of the per-item visual-search cost (in milliseconds)

for search arrays with more and more members of that class of vima'ges displayed.
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Further consideration of meaningfulness

As discussed in Section 2.3.4, another way to characterize the difference between represen-
tatiohal images and abstfact shapes. would be to say thatv the fofmer’ are more meaningful.
Assessing the working-memory impact of meaning could possibly clarify whether perceptﬁal
expertise alone (e:g. having seen and recognized trees before possibly more often than a
particular type of abétraét shape) is helping people recall more centered probes with repre-
sentational images (compared to the shapes); or if something‘more directly related tb prior
knowledge stpred in long-term memory is in play. But how to define meaning in this case?
Paired associate learning results showed again and again that pairs of more-meaningful
pseudowords are éasier to remember, with meaning there closely tied to pronounceabil-
ity (Underwooa & Schulz, 1960): Later/_ twists on that research—using paired associates
based on real words—attempted to tease apart the contributions of meaningfulness and im-
ageability, with thé latter helping long-term learning in ways that the former did not (Paivio,
1969). ' |

Since none of the models of word or image meaningfulness reviewed in Chapter -2 fit
the scope of the present Wbrk, ‘a new way of operationalizing meaning had to be developed
and tested. Pilot testers and experiment participants were shown each image one by one,
and they wrote or typed several associations about each imé,ge used. Participants ha,d no
specific constraints on these associations, which could be descriptive, functional, or personal.
’fhe classes of images were then chafacteriied as more or less meaningful according to the

number and variety of word associations provided by each person for that group of images.

4.1 Image selection

Multiple images forleach of the four classes (see Table 4.1) were selected or created to satisfy
the needs of this new examination. For coloxi“ photos, ;‘oyalty—free thumbndil images were
downloaded from a now-ciefunct stbck photo distributor. Similar to the vpreparations for
Experiment 6, grayscale images were adapted from color drawinés »(Rossion‘& Pourtois,

2004) by minimizing color sa,tvu‘ration. ‘Colored shapes were created by Colin Ware and the -
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Repres?ntational Irﬁagé Abstract Shape

Higher Detail Color Photo | Colored Shape

Lower Detail |  Grayscale Drawing -Grayscale Shape

Table 4.1: Schematic showing the image bategories to be tested.

author using several graphics tools from Adobe. Grayscale equivalents of those shapes were
developed by setting color saturation to -100%, as for-the drawings. To further strengthen
any conclusions drawn from differences in observer performance, two separate sets of images

were chosen that conform to the constraints laid out below.

4.1.1 Overall constraints

i

~ Each image measured between 1.5° and 3° on a side. Heigl’lt-’ and width—based measure-
“ments were balanced across conditions and participants: Half had “wide” (or matched for‘
horizontal visual angle of 3°) color photos and grayscale shapes but “tall”. grayscale draw-
ings and colored shapes; the other half saw the opposite. Please see Appendix A.2 to review

-

the images chosen after the completion of this review process.

4.1.2 Representational Images

Since real-life obj’ect size canrhave an impact on perception and memory (Kohkle & Oliva,
2007), the drawings and photos selected all depict objects that could easily be easily picked

| up using only one hand. To maintain similar levels of image-sound irrelevance across all
trials, no images of talking, calling, or singing animals were used.

The feé.tural contrast between the selected grayscale drawings va.nd their color-photo
counterparts involves not only color but differences in Shading, and each representational
image had far more variety of line orientation in the object’s edges than the abstract shapes
had. This\rdispa.r;ity allows for an additional experimental contrast illuminating the role of

perceptual saliency in working'memory research. Color and line orientation are both highly
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salient cueé for directing visual attentioﬁ, 'and visual search is faster for é,rrays of more
homogeneous than heterogeneous distractors (Wolfe & Horowitz, 2004) In visual change
detectlon though, any 1tem in the orlgmal array can be a target or a dlstractor Only using
abstract shapes, Olsson and Poom (2005) found that greater categomcal distinctiveness
boosted change detectlon a,ccuraqy, and in grating and sound recognition, others have found
lowered detection bias but unchanged acéufa.cy for more heterogeneous displays (Sekuler &
Kahana, 2007). This final experiment compares the role of color on the abst;act-shape side,
where that one gdditibnal feature diﬁ'erence between shapes makes a very large difference
in the number pf low-level features differentiating images in the set, to its role on the
representational sidé, where it is merely one moré/among many differences, albeit a highly
salient difference. This additional comparison also affords a new perspective on later studies

of image complexity and its effect on change detection (Awh, Barton, & Vogel, 2007).

4.1.3 Abstract Shapes !

Past IWOrk suggests that association-free shapes are extréemely difficult to come by. Specifi-
cally, based on a spoken aésociation protocol similar to the one used here (see below), out
of fifty participants’ responses, not a single randomly-generated polygon out of 180 tested
elicited zero associations, with the least-meaningful shape prompting assobciat;ions in. 20% of
respondents.(Vanderplas & Garviﬁ,,1959, p. 148). In more recent ’,work, relativ_ely meaning- -
less shapes were chosen from the Vanderplas and Garvin list which had elicited associations
from 30% or less of their»pa.rticipants (Postle et al., 2005, p. 206). All of the shapes tested
in this dissertation were ones that can ea.sﬂy be created on common software tools such as
Power Pomt that are used in creatmg slides or other materials for 1nstruct10n

To ensure comparability of resultsf.be_tween the two image sets, the colored shapes for
one group of pa;rticibants wa.s used (grayed out by setting color saturation to —100% aga,in)‘ ,
as the grayscale shapes for the other. In order for these shapes t6 serve viable visuai cues in
centered-probe cbnditions, ‘theyv peede_d to be d;’ﬂ‘erent shapes rather than different-colored

instances of the same shape.
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4.1.4 Meaningfulness Analysis
/
«;

Association' Counts

One 51mple approach to quantlfymg 1ma.ge mea.mngfulness is to count the number of asso-

ciations, whether words or phrases, provided by observers for each image.

Variety of Associations .

The other approach used here to 'compare image meaningfulness using written associations
cons1dered whether participants tended to put the same ‘associations down for i 1mages within
a class (e.g. gra.ysca.le abstract sha.pes) or if all the image associations pr0v1ded were unique.
To ca.lcula.te unique word assoc1at10ns for each image class the associations provided by each
- participa.nt were groupedlby image class and repeated items were removed. For example, if
a participant wrote “sha.i)e” down as arl association for four of the grayscale shapes, it worlld
" be counted asr”only one unique association for that class. This measure is an adaota.tion
of the type/token ratios used to assess childrenv’sv voca.bulary development mentioned in

Chapter 2.

‘ 4.2 Experiment 8: Revised Crossmodal Change Detection Method

4.2.1 Adding in Visual Search

Will per-item search cost for the ihlages involved in novel crossmodal associations predict
the working memory loa.d of the visual-auditory pairings? Answering this'question requires
the addition of visual search trials (i,nto/ the previous method; exact procedural details are
 included below. |

To keep a focus on participants’ overall change-detection ca.pacity across the four image
classes, leavihg questions of mnemo.nic‘stra,tegy for later irrvestigation, articulatory suppres-
sion was hot'used in the ﬁrlal experiment. |
| The other change to-the basic crossmodal change—detection metho_d was a greater use

of participant training in both search and change-detection procedures. Images used  for
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training consisted of the six Rossion & Pourtois drawings (2004) matching the (now-licensed)

’ tfaining images used in (Alvarez & Cavanagh, 2004). ‘

4.2.2 Centered-Test Crossmodal Change Detection

Following Experiments 3 and 6, all test ob jects presented to participants were placed in the

center of the screen, rather than in their original location.

4.2.3 Stimuli and Apparatus
Images

Appéndix A.2 presents the training images and the two parallel sets of images used for the
final experiment. These images were tested in a pilot study (initially' called Experiﬁent
7) involw)ing 26 UNH undergraduates who tested the proposed meaningfulness measures.
Their resp';mses weré also used to séreen out any images with very strong or anomalous

associations.

Sounds-

Sounds consisted of 380 to 400ms excerpts of recorded animal Sounds (dog, cat, cow, and

bird), all tested in the development of the chaﬁge—detection method.

" Apparatus

Stimuli and survey questions 'wére presented on Macintosh iBook G4s with 14-inch liquid-
crystal screens, using custom software writ’tten in PEBL (Mueller, 2006’). For participants
seated withb their eyes 57cm from thei screen‘,/a degfee of :Visual angle was déterminea to be
equivalent_ to 35.8 pixels on these screens. A 57cm string was be attached to each monitor 50
that pafticipants éould ea.'sily‘vcheck their (coi‘npletely unféstrained) ’hAeadrpc‘)sitvion between
testing blocks. The experimeﬁt program provides reminders to move around and relax

briefly in those times.



Cubicles and small rooms were used to allow each participant to do the procedures
individually, with an experiménter within earshot but not looking at the screen. Sounds

" were presénted using adjustable headphones (Philips SH152500).

- 4.2.4 Procedure

‘Participants f)erformed two tasks in each condition, the visual search task used to estimate
. image complexity and the core érossmodal change-detection task, then repeated their condi-
tion sequence in reverse (except for the training condition). Following (Alyarez & Céwanagh,
2004), condition orders were fixed, with half of the participants using this sequence: train-
ing, training, grayscale shapes, color photés,, colored shapes, grayscale drawings, grayscale
drawings, colored shapes, color photos, grayscale sha.pés. The block Seqﬁence for the other
half was: training, ,training, g;raysca'.le drawings, colored shapes, color photos, grayscale

shapes, grayscale shapes, color photos, colored shapes, graysca.le drawings.

Procedure for Visual Search »

Participa.nts searched for a target object in an array of objects taken from the same group
of six images. The target was first presented for 500ms, fhen after a 900ms blank pause,
an array of 4, 8, or 12 objects was presentgd; participants indicated whether or not the
target was present ‘by key preés. (See Appendix A4l for a listing of phe timing sequence.)
Distractors were randomly chosen to ensure broad coverage and varied groupings among
the images, ‘while présenting as many different objects in each search array as possible.
These inages were presentéd in pseudorandom 'p0sitions on a 5 x 4 grid of 5° x 5° squares,
randomly jittered by ﬁp to 1° horizontally and vertically, directly 'following the Alvarez and
Cavanagh (2004) procedi;re. Similarly, each stimulus set was tested separately; the training/ _'
~images were used -for éwo sets of 12 trials each, while testing blocks had 78 search tria;is.

(See Appendix A.4.3 for an overview of the experiment block Sequence.)
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'Procedure for Cr.ossmodial Change Detection

‘Based on the original crossrnodal change detection procedure, this task presented two.or
three image-sound pairs in rapid sequence, followed by a one-second blank pause and a test
image-sound pair.- (See Appendix A 4.1 for exact timing sequence\.) Participants indicated
by keypress whether the pair was present in the original array—with a key labeled “no
change”—or whether the image-sound pairing has changed (key labeled “change”).

For their training, participants went through two sets of eight trials of crossmodal change
detection. Each condition-specific testing ‘block consisted of 36 trials,\ half with two-item
sequences and half with th.ree-item, balanced between changed and unchanged triais. Images
and their associated sounds were chosen randomly for each trial. These training and test
blocks included far fewer trials than in‘the precedent (Alvarez & Cavanagh, 2004), which
tested not two but eight change-detection array sizes: 1, 3, 5, 7, 9, 11, and 13 items.‘ Not
only does the audiovisual task, thanks to its serial presentation, require more time per
trial than the visual-only precedent, but past results with the method also suggest that
array -sizes above 3 would lead:to a .major“dropin performance. Blocks of 36 trials here
7 provided similar representation for each,stimulus in the condition’s stimulus set as in the
precedent 'and a similar number of trials per array size. Participants typically spent 90
minutes performing these alternating trial blocks, and many expressed fatiguev following
their debrieﬁng, supporting the choice to limit the duration of the experiment} Using fewer
array sizes may reduce the statistical strength of ‘the eomparison between interpolated
estimate of a 75%—capacity level per stimulus class to image search times, foliowing Alvarez

and Cavanagh’s (2004) precedent, but in their case much of the data from the far ends of -

their range of array sizes had to be discarded.

4.2.5 Results: Comparison to method development S -

Corrected accuracy for crossmodal change detection was greater‘forthe color than the
grayscale images, F'(1,130) = 6.86, MSE = .029,p < .01 and unsurprisinglylgreater

‘when participants encountered two rather than three visual-vauditory pairings to remem-
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Representational Image Abstract Shape -

Higher Detail—Color | 70.0% o 72.5%

Lower Detail—Gray . 64.9% 64.2%

Table 4.2: Corrected accuracy scores for crossmodal working memory by

image type. These scores are obtained using p(Hit) — p(FA).-

“Representational Imagé Abstract Shape |’

Higher Detail—Color | 55.56%-56.3% 57.1%-57.8%

Lower Detail—Gray 43.1%-52.2% 42.2%-53.2%

Table 4.3: Corrected accuracy scores for crossmodal working memory when
| encountering three-item memory arrays. Accuracy rate pairs above show
the differences between the two image sets, listed with the East score fol-

lowed by the West score.

(

ber, F(i, 130) = 150.5/‘1, MSE = .029,p < .001. Mean accuracy by condition for three-item
arrays (for better comparison ktvo Experiments 1-6) is presented in Table 4.2

For clearer compa;isoq to the results of the method—develop/ment phase of this résearc‘h,‘
Figure 4-2 displays corrected accuracy rates only for memory arrays with three items; group
means split by image set are presented in Table 4.3.

Unlike the first six experiments of this dissertation, this experiment had two (counter-

balanced) between-subject differences: which of the two parallel image sets the participant

{

viewed, and which condition order he or she experienced. Contrasting these two fa,ctots
was added to the experimental design to Strengthen any possible conclusions by _incfeasing
the generalizability of the results. Indeed, in spite of efforts to keep the parallel imagé
setvs‘as equiyalent’ aS possible, change-detection accuracy was higher for one (referred to in
participant IDs as “W” or “West”) set than the other (see means displayed in Table 4.3).‘

At the same time, the change-detection task involved showed high individual variation,
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F(21,130) = 4.15, MSE = .029,p < .001‘ Since this variation could obscure any patterns
“arising from the image manipulations diséliSsed abdvé, rer;loving individual performapce
variability frém the analysis of variation associated with experimental condition was em- -
ployed as an additional. analysis. | | | 7 |
" Concerns about muddying analyseé of within-subject variation with high interTSubject
variation have been raised over many years, with particular concern that graphs v?hich
include the full inter-s{lbjl\'ect variability‘might ‘obscure detection of tbhe“:w_ithin-subject pat-
tern’s\ (Masson ’& Loffus, 2003; Loftus & Masson, 1994). Noting the drawbacks—including
masking of be/tween—condition variability differences—pf Loftus and Massonfs pa.rticﬁlar ab-
proach, Cousineau proposed a linear ndrming of pa.rticipant group means with relation to
f}leir indiQidual mean. (Coﬁsineau, 2005). -For the present analysis, an approaéh similar to
Cousineau’s was taken by simply norming each particvipa.n't’s change-detection scores with a-
z transform. In other words, one persbn’s a;céuracy on gré,yscale dfawings was reco_rded as
the number of standard deviétiohs that raw accuracy lay from the person’s mean accuracy
over all c‘ondi’vtions. |
- Using Cousineau’s approach would allow an examination of k:differences in magnitude
of any image-type-based effects between the parallel sets; in this cé,se, the z transform—
- which will hide such differences—was chosen to first éstablish whether the natufe of such
effects were ’consistent or variable using different imagés. Ih this‘*casé, the transformed
- data also bnly showed differences according to detail, with crossmodal colof s\t-i:/muvli better
remembered than grayscale lones., ' |
S‘plitting‘ Accuracy:v Signal Detection Thedry
. . J
Up to this point, accuracy has been treated as a unitary measure; many years of pyast‘ re-
\ search have been devoted, however, to ’statistics which can divide response accuracy. into
tWo components, a standardized dccufacy measure and the other a measure of bias, or how -
frequently observers report detecting whate;/er they are looking for. Signal Detection The--

ory (Pollack, 1964) has been an extrémelylinﬂliential approach to the study of perception,
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and one rneasure from that literature which has'been applied to change detection is A7 (Xu,
2002; Grier, 1971). A has been shown to be more accurate than the classic d/ measure in
- some circumstances (Donaldson, 1993), and like the data Xu obtained, these data;conta‘in
error-free trial blocks, which are better handled by A/ (Xu, 2002).’ That precedent omits .
the accompanying bias meaSure, however, and computational error and misinterpretation
‘of the A’ statistic have since been rectiﬁed with the new measure ‘A (Zhang & Mueller,
2005). Results from the first four eXperiments were evaluated according to A/ with almost
no change in significance of results—the only change was that part of the difference be-
tween performance on abstract tones versus animal sounds lay in a bias and not entirely
in an overall accuracy difference. The formula for each measure (A and b) is shown in
Appendix B.2. |
Looking only at varia.bility of A in Experiment 8, the same predictors are associated
: ’v/vith significant effects obseryed in the analysis of corrected accuracy show up as important.
Speciﬁcally, A was higher for the color images compared to the grayscale images, F(1,168) =
5.54, MSE = .0056,p < .05 and having two rather than three visual-auditory pairings to
‘remember was also signiﬁcant F(l 168) =110.01, M SE = .0056, p < .001. Which image
set the participant encountered also played a role, F(l 168) = 5.53, MSE = .0056,p <
.05. The overall distrlbution is shown in Figure 4—2 on p. 58. None of these factors
on the other hand, showed significant ties to bias (or b), which responded only to the
diﬁerence hetween representational images and abstract shapes, F(1,168) = 8.93, MSE =
1.285,p < .01 as shown in Figure 4-2. Response bias is the only factor studied which revealed
signiﬁcant differences in crossmodal' change detection according to the meaningfulness Of the
associated images. The lower bias scores for more meaningful shapes reflect partiéipants7
greater tendency to detect a change (both when a change had occurred and when none had)
compared to their tendency to report detecting a change on abstract-shape trials. Further

implications of this bias difference will be discussed in the concluding chapter.
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Detail Level | Repres. Image | Abstract Shape

Color | 8.02 ,‘ 7.36

Grayscale 1642 - 1897

Table 4.4: Mean search-time estimates in milliseconds according to image-.

type.

- 4.2.6  Results: Search speed as WM capacity predictor

The alternate model introddced in this final experiment;which' necessitated the addition of
visual search tasks—was taken from Alvarez and Cavanagh (2004) This model predicts that
the search speed cost (per added item in a v1sual array) will correlate closely w1th an estimate
of the ‘working memory load 1mposed by that type of v1sual 1mage Taking thls model into
the crossmodal realm requires applying the same v1sual-search rrletrlc" to the images used
for visual-auditory crossmodal associations, holding auditory featural comblexity and other

characteristics constant across conditions.

Visual search results

Using data from target-present trials, a search-time estimate was obtained by performing
linear regressions for each participant on search reaction times as a function of the number
of items in the search array. Thls estlmate of the number of additional milliseconds required
| tofind a target glven an added image in the sea.rch a.rray did vary accordmg to condition, as
shown in the followmg means table. These condition-based differences were s1gmﬁcant and
analyzing the detail and meamngfulness factors separately showed that for search speed,
only detail made a difference, F(3, 83) = 14.63, MSE = 149 3,p < .001. (% = .15) See

Figure 4-3 for a graph of these sea.rch-tlme estlmates
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Comparing WM to visual search results

‘What is interesting“ton?ote from this results before cbmparing them to working memory
capacity est;imates is the lack of a significant difference between color images and colored
" shapes, and the parallel lack of difference between grayscale images. - At the same time,
within representational and abstract images, the more highly—featurgd items were found
faste} than the comparatively less detailed ones, even though the grayscale images have
by far more individual low-level features than the colored shapes, if all such features are
courited’ equally. This result 1s particularly surprising when compared to multiple object
tracking research, where distiﬁctive an/d meaningful iﬁages posed consideralﬂy more cogni-
tive processix};g load than simpler ones (Horowitz et al., 2007).

Fufthermbre, the participants’ average search timés were all under 20 ms/item, compa-
rable only to the two fastest image ‘cla,sses,——colc‘)red squares and letters—tested by AlQa.réz

and Cavanagh (2004). |

Estimating the 75%-correct threshold

In order to complete this comparison of crossmodal to visual wbrking memory load models,
an estimate ﬁeeds to "be, made of the change-detection array size (that is, .the number- of
objects on the screen when starting a new change-detection trial) where observers’ raw
accuracy scores (average of hits and correct. rejections) would be 75%. Getting from t';his
estimate of WM capacity (as number of objects) to a measurement of working memory load

requires ﬁnding the inverse of the cé.pa.city estimate, following Alvarez and Cavanagh (2004).

( ,
Table 4.5 and Figure 4-3) show the working-memory load estimates arising from applying

this procedure to Experiment 8’s results.
No consistent main effects were found in an analysis of variance for this working memory

capacity measure. Comparing participants’ individual ca.pacity estimates to the search times

for each image type (see Figure 4-4 on p. 60) did not even trend towards a linear relationship,

p > .5, although those results also suggest that screening out negative WM-load values holds

some appeal. Taking group averages by condition for the search-time cost and the working
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Representational Image | Abstract Shape

Higher Detail—Color | 0212 - 0.202

Lower Detail—Gray ' 0_.285 ' 0.339

Table 4.5: Mean working memory load of novel visual-auditory pairings
according to image type tested in Experiment 8. As explained in the text,
this load figure is estimated by taking th_e‘inverse; of trhevnumber (i)f'memory-

array objects where the participant would achieve 75% accuracy.

memory load estimates, howevef, as donevin the visual precedent (Alvarez & Cavanagh,
2004, p. 108), did reveal a linear relationship, 72 = .971,77‘1\5‘(1,2) = 66.99,p = 0.015. The
r2 térm, éuggesting,Q?.l% of vé.riance is explained, is comparable to that obtained in the
prior visual research (99.2%‘,p:‘< .01) (Alvarez & Cavanagh, 2004, p. 108). Figure 4-5
preseﬁts the points representing these averages for the fdur conditions. However, while in
that precedent four out of their six pa&ticipants individually showed a significant linear
relationship based on bthese calculations,tin this case konly two did out of 22, with a third
participant’s model oh the margin of significance (p = .056). This looser fit to the model
tying tégether image-type search cost and work.ing‘m‘en‘lo_ry‘ load could stem from multiple
souréeé_, ‘including greater individual variability in performance of cross,moda’l than purely
visuél change detéqtidn, poorer estimation of participants’ working meniéfy éapacity due to
the reduced range of change-detection array sizes, ;I;d qualitative differences in crossmodal

recall.

4.2.7 Comparison to Individual Association Variety

What if the inclusion (of such different kinds of images requires a change in the model to
reflect those qualitative differences? Also; how can'we be sure that the word association
variety that showed clear differences in the pilot pa.rticipaLnts’ associ‘a.t'ions with these image™
- types holds tfue fof, those peopie going through Experiment 87 Since all participants in . -

the latter experiment were also asked, subsequent to.the blocks of visual search and change
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Representatz'qnal Image | Abstract Shape

Higher Detail—Color | = 4.50 3T '

. Lower Detail—Gray | - 4.21 .. 3.57

Table 4.6: Mean number of associations written down per image by type-

of image.

‘
J

detection, to provide associations related to the images used in their ima,ge set, Experi-/
ment 8 prbvided an opportunity to‘éXamine the fdle of association-based lmeanipgfulness in
crossmodal change detection. | |

Participants in Expefiment 8 did not provide a'svma,ny associations per imége (see
Ta,ble 4.6) as were elicited in the pilot. * In the carlier study, ‘pa.r‘ticipants were writing
i)y' hand on a printéd sheet with ten lines available per trial; in Experiment 8, partici-
' pa'ntsvwére.: typil‘lg' \:NOI‘dS into a text box on screen'after'nea,ﬂy .‘90vminutes’ effort on thev
main tasks. Once again, the numbe; of associationé for representational images was sig-
‘nificantly higher, F(1,513) = 38.13,MSE = 1.69,p < .001, and in this case, once in-
dividual diffe;‘ences were accéunted for, a significant advantage for the full-color images
in_each category w;s observed, _F"(v1,513)’ = 5.16, MSE = 1.69,p < .05. This difference
betweeﬁ g‘ra,'»ysca,le‘ and full-color images, as well as the main effect of representa,tion'éi im-
ages versus abstract SHapes, held true also in fhe méa,sure of variety of associations (;ee
Figure 4-1 'on p. 57). ‘ Participants provided one moré unique association per fepresen—
tational image than they did for an a,bstrac£ shape, on aVerage—a signiﬁca‘nt difference,
F(1,66) = 38.32, MSFE = 622,p < .001,> And, unlike the results from Experiment 7, they
providéd an averé,ge df a ﬁalf :wad (.:55) more for d color thaﬁ for a gfayscale imagé of the
same type—also signiﬁcant,vF(l,,GG) = 11.(_)8, MSE = .622,p < .01.

Adding these unique word-association counts into the modelv of the relation between
search d1d not change the ovefa,ll lack of a significant linear relationship between those mea-
_ sures;‘three p;irticii)ants (twb of Mthos"e mentioned beforé) demonstrated. a significant linear .
relationship vb'etween“visual‘searcrh >and workinglmem(’)ry.‘ vI‘-I‘Owev:er,ﬂ adding the averaged

;
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wOrd—éssociatio;l variety scores into the model relating‘ averaged search-speed and work-
ing memory load reduced the explanatory power of that model (p > .15), suggestiné that
séarch—spegd ,itself does capture the informational load of both more- and less—meaningful
"objects comparably. Further considerations of this applivcati(')n of the search-tiine pfedic—

-tion model to visual-auditory working ﬁlemory and exploration of the impactz\ of stimulus

meaningfulness follow in the final chapter.
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Expt. 8: Word Association Counts
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Figure 4-1: Average number of total and unique associations provided
by each participant per image in a given category, crossing image type
(representational or abstract) with detail level (color or grayscale). Error

bars indicate residual standard error.
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Corrected Accuracy

Zhang & Mueller's A for Three items

Expt. 8: Three-Item Change Detection Expt. 8: Normed Change Detection
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Figure 4-2: Crossmodal change-detection accuracy by several measures,
using 3-item arrays for comparison to earlier experiments: Corrected ac-
curacy (p(Hit) — p(FA)), participant z scores by condition, and signal
detection accuracy along with bias. Error bars indicate residual standard

€error.
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Expt. 8: Search Time Cost
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Figure 4-3: Experiment 8: Search-time estimates (in ms) for each image
type and an estimate of the crossmodal working memory load for associ- ,
ating each image type with an animal sound. Load estimates are based on

the inverse of the number of items in memory arrays for which participants

show 75% raw change-detection a.cé:uracy.
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- Additional Search Time Per Added ltem (rhs)
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bFigure 4-4: Search-time cost per image type for each participant plotted as -

a function of estimated working memory load of that image type. The latter
estimate was calculated as the inverse of the number of objects affording

the participant 75% accuracy.
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CHAPTER 5

FURTHER DISCUSSION AND CONCLUSIONS

The work described here ploneered a novel ‘measure of crossmodal working memory ca-
pacity to shed light on the role of greater featural detail and stlmulus meamngfulness in
observers’ capacity to correctly identify a changed feature binding taken from a crossmoda.l

" memory array. The experiments which served to develop this mefhod showed th\atcross—
moda} objoots’ working memory load could, 'oe greater than that of similarly multifeatured
visual objec\:ts.‘ More-complex sounds afforded significantly ‘r)etter change detection accu-
racy; as did more-complex images, although the latrer effect was only demonstrated for
trials where the test object was placed in a novel location. In the final comparison, stimulus

/ meanmgfulness as measured by participant-provided verbal assoc1a.tlons had only a sub-
vtle effect on crossmodal change detectlons—lowerlng decision bla,s—; whlle more- deta.lled

- full-color images very clearly improved accuracy compared to grayscale ones. These results k

support a nuanced view of the role of perceptua.l detaJI in working memory, as under most
of the c1rcumstances tested it prov1ded a strong benefit. This dlsserta.tlon research also

raises new questlons, as discussed below.

5.1 Working memory impact of adding detail crossmodally

5.1.1 . Modality itself

Initial tests of this new crossmodal working memory measure suggested that adding featu-
ral detail in an alternate modality does not necessarily reduce, and in some cases may add
to, the working memory load of a crossmodal object, as compared to a unimodal object

with comparable amounts of featural detail. This result, based directly on the results of
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Experiment 1 and indirécﬂy on comparisons between the crossmodal results here and prior
visual—oniy cha.hge detection rates, calls into que\)étion the claims ‘that changes in effective
working membry capacity are driving Mayer, Sweller, and colleagues’ Modality P\rinciple
(Low & Sweller, 2005). rI“his principle arises from the demonstrated benefits to learners of
i:aking in words and images from an instructional system Which speciﬁcally does not give
tvhem‘control over the pace of informafibn delivery (Ginns, 2005). The limited considera-
tion given to the effort, time, and procesSing involved in readihg itself, éombined with the
present results, suggest caution in interpreting their findings as an a,cross-the-bqard bene-
fit for presenting a.dded‘ information in an alternate modality. Similar qualifications have
been needed for instructional initiatives such as interactive learning, which was found to
have a range of effécts, not always optimal, in an extensive evaluation at the San Fra.nciscd
Exploratorium (S. Allen; 2004)" :‘Beyond the introduction of a novel method for assessing
créssmoda.l workiné memory load, what stands out about the present research is that highly
meaningful images and soundsfin other words, stimuli greatly “bﬁrdened by the complex-
ities of extra.—la.bora.tory associations” (Sekuler & Kahana, 2007)—; which might be used in
a classroom or an interactive museum exhibit, displayed working memory dynamics similar

to the more controlled stimuli used by those authors or by Olsson and Poom(2005).

5.1.2 We Do Not Just Count Features

Like the simple shapes in that earlier research (Olsson & Poom, 2005), short sound segments
with much greater featural complexity and much greater categorical distinctiveneés provided
signiﬁg:antly' ‘bettéf short-term recall'vtvhan fdid abstract tones. Image differences "proved hard -
to categorizie, though they never supported a significant featural-detail penalty such as vthat
found in multiple object tracking (Horowitz et al.; 2007) or in some visual working memory
Studiés (Treisman, 2006). These image differences only showed a cénsistent‘and consistently
significant pattern of effects when test probes were présented in the center instead of in their
original location. | B |

To summarize, with location cues, differences of kind (representational image versus
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abstract shape) or featural detail (color versus grayscale) did not display consistent patterns
of influence on participants’ change-detection success. When, on the other hand, crossmodal
test objects were presented in an unused location—the center of the screen, névef chosen as a

location in t/he memory array—more-detailed images gave better performance than simpler -

ones. In the one direct comparison of same-location and new-locations test conditions,

_participants had significantly better change detection in the first (same-location) condition.

* As mentioned above, all of these cases differ from what might be predicted from some
earlier visual working memory research, where each additional feature to store (e.g. color,

stripes) reduces available working memory capacity. Since the advantage aé‘companying lo-

 cation cues fits strongly with our general understanding of context and memory, while the ef-

fects of image detail and crossmodal working memory fall in more—dis‘put}éd and less-charted

- territory, the second phase of the dissertation concentrated on two factors—meaningfulness -

and detail—which might be driving the less-predictable change detéction results.

The experimental findings presented here are all compatible with information-theoretic
approaches to visual object idehtiﬁéation, despite some differences within that group of
approa)cheé. If ineaningful images’ working memory load is indeed based on feature counts,
but the features being-counted are fewer, 'higher;level'feafures than lin_e’ orientation, lu-
minance and so on (Ullman et ‘va.l., 2002; Borenstein & Uliman, 2002), their load would

indeed be lower than abstract and unfamiliar ob jects which cannot be recognized with such

- higher-level features. If our perception and cognition makes use of association-based work-

ing memory encoding, where more-familiar conjunctions of features could be stored more

efficiently than less-familiar ones (Brady et al., 2008), then the feature combinations in

~ highly recognizable objects might take up fewer encoding resources than the less-familiar

feature combinations. Since the complex-sound benefit in Experimqnté 2 and 5 operated
ibndependently of the image-type dynamics, we can contribute at least oﬁe new observa-
tion to thosé model debatéé; ‘'The entire crossmodal object does not need to be familiar and
meaningful a,si a whole—neither a barking dot nor a barking apple is likely to be familiar—to

benefit from the WOrking memory advantages coming from one of its corﬁ};onent,features.
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5.1.3 Location, location, location

~ Within visual tvorking memory‘resea.rch, some features have demonstrated greater impor-
tance than others, with location ranking among the more important ones. The interaction
.\observed in these experiments between testQprobe locat‘ion and the importance of associated
»  image differences highlights an interesting difference between these results, where location
cues led to'better‘change detection (contrasting trials such as Figure 3-1 on p 24 with ones
like Figure 3-3 on-p. 33, results from Experiment 3 shown in Figure 3-2) and earlier visual
- WM work, which found that location 1nformation did not help observers recall bindings
_correctly given a single test probe (Tre1sman & Zhang, 2006). While further work would be
necessary to identify the reasons for this- difference, a ; promising starting p01nt would be to
examine the ramifications of usmg rapid serial presentation instead of a fully s1multaneous
- memory array. If the presentatlon method does explain the dlfference in-impact of location
cues, that would further inform questions of how much of a particular scene—even a scerie
on a computer display—is stored in visual working rnemory This suggests that object fea-
‘tures, possibly prlmarily their edge or bounda.ry features (Alvarez & Cavanagh, 2008), are
stored in relation to other feature boundaries caught in the same exact ‘glimpse.

‘Other work from Alvarez and colleagues (Alvarez & Ollva 2007) has supported the
importance of relative geometry—termed global layout—in visual short-term memory. The
advantage shown in these results for same-location test prol)es suggests that the impact of

" global layout is sensitive to the difference between mul_ti:object displays where each object
is presented separately for 500ms in a series with the rest vand displays which present all
theobjects at once. Earlier work on visual repetitionpriming has suggested that rather
than relying on basic feature priming, this visual—search effect utilizes episodic memory on
a very short timescale (Huang, Holcombe, & Pashler, 2004) “The present data supporting a
location advantage for recall of visual-auditory associations are not geared towards making
a precise distinction along the same lines, but the Huang et al. results support the possibility
that participants can utilize the rapid separate views offered by the the serially presented

memory arrays to help them remember crossmodal associations. At a more general level,
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this location advantage adds credence to the claim that the images and (unlocalized) sounds

.are indeed bound together as objects in the observers’ perception.

5.1.4 Modality itself: Visual and auditory differences

This interaction with iocation was not observed when 'compari‘ng siﬁpler abstract tones
with mere-complex animal sounds and spoken words: whate\‘/er the location cues‘ a\'/ailable‘,
participants had better change—detection recall wiﬁh animal sounds coﬁpmed to abstract
tones, and spoken-word auditory features were better still. (See results from Experiments
'2, 4, and 5 in Figure 3-2) /

These findings support Olsson and Poom’s (2065) contention that visual workihg memory
relies on categorical distinctiohs, and again fail to support models where counting low-level
features provides a linear prediction of working mexhory‘ ldad. Using representational images

: complicates any attenipts to make image or soundksets» wlﬁch differ by ohly one featu_re yet

still represent easildeifferentiated objects.

5.1.5 Intra-set distinctiveness and working memory

The visual WM precedent which handled a variety of images compa.raBle to those used here
and WhiCh paved i;he vs;ay »for‘ alternatives to feature—countiﬁg memory-load models‘ is (Al-
varez & Cavanagh, 2004). Looking at the averaged performe,nce on both visual search and
chenge detection in Experiment 8, suppo;t for their behaviorally-scaled model of working
memory load can be observed.

Considering the marked difference in the percent of pa.rticipants whose search times and
WM loa'dsvwere ‘o‘r were not etronglsl feleted between Alvafez ‘end Cavanagh’s (2004) study
and Experiment 8, though, it is \WOI‘th looking at the range of variation to be explained.
Compared te that precedent, the images ﬁsed in Experiment 8 were very close together and
very fast in terms of search-time cost per item, and moderately close together and quite low
.in terms of working memory load. Figure 5-1 allows a visual review of the range of results

obtained in the two experiments.
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Comparing'the precedent’s image sets to those used in Experiment 8 raises the possibility
that inter-item differences within the same memory arrair could be a determining factor in
change detection\performance. Awh and colleagues were able to demonstrate that cross-set
visual object changes (e-g. putting’a cube in as a test probe where a Chinese character had
been presented in the IMemory array) were detected more accurately than changes involving "
more similar 1tems (Awh et al., 2007). Their method was not an exact parallel to the basic
method used here, and they did not measure the impact of gradations in intra-set hetero-
geneity. This hypothesized role of heterogeneity needs to be evaluated alongside hypotheses
about the WM impact of the characteristics of individual images. Change detection does
not demand exact recall from the observer 1t only demands differentiation: did you see this
one before or that one? One approach might be to use computational saliency measures to
assess the extent of 1nter—1tem differences going along with different combinations of images.
Unfortunately, those measures do not currently characterize meaningfulness or- otherwise
help to distinguish, say, between a display of six upright “2”s and a display of six “2”s

rotated to a horizontal position.

5.1.6 Color, WOW!

The strongest WM effects demonstrated here, after individual differences and the role of

array size, stemmed from the difference between full-color and grayscale images, ivvith the
former better recailed than the latter in all centered-probe. contrasts of those two image
‘detail levels. That color should serve as a highly rsalient feature is not in itself surprising, |
given the long record of visual-search studies establishing its importance. 'What is most
suprising about the stand-out effects of color in accurate recall of crossmodal associations
shows up in comparing color’s impact between the representational and abstrac't image sets
used in Experiments 3,6, and 8~

"Simply concluding that color- 1s much more salient than the other varied features doe;s |
not fully explain the crOSSmodal change-detection accuracy results obtained, as color photos

fared better than colored balls in Experiment 3, and because location does play such a strong
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role as well. The results»of‘these e);periments.do not rule’but the possibility that added detail
does become a working memory burden‘u after the minimum threshold of distinguishable
category membership has been reached. However, if that were the full explanat’ion, more-
detailed images should do significantly worse in the expe'riinenté wi“th test probes presented
iﬁ their originé.l location. Instead, they showed no consistent pattern of influence on change-
" detection accuracy. = , |
Looking at the résults from the final experiment (see Fig 4-2), we can see that the high
salience of color holds greater influence over successful crossmodal WM performancé than
the difference between shape cues—in spite of the demonstrated importance of boundary fea-
_tures (Alvarez & Cavanagh, 2008)—and the more broadly-distributed and more-numerous
small differences found betW’eén each representationai image. If thosé many tiny differences
could add up to a salience difference comparable to that conveyed by color differences,
grayscale drawings would ha\;ev easily outperformed gvraysvc‘ale shapés. And although those
same grayscale shapes are nowhere neaf the visual complexity of the cubes used by Alvarez
and Cavanagh (2004) and further examined by Awh and colleagues (2007), they are sig-
7 nificantly l;ardgr to keep in mind,‘ at least thenv a‘ss‘ociated with animal sounds, than their-
full-color coﬁnterparts. Specifically, Experiment 8 participants’ thréshold for 75%-accurate
change detection was five crossmodal objects for the colored shapes and thfee for the gl;ay‘
ones. Further experiments contrasting change (ietection Witil same-color and varied-color

images may help clarify the role of stimulus-specific and intra-set differences on working

memory performance with crossmodal associations.

5.1.7 Are individual WM capacity differences at. play?

At the level of observational anecdote, some participants in Experiments 3 and 4 said théy
preférred the least-detailed images, and at least a few of them did show worse working
fnemdry performance for the more-detailed ones. The opposite case (reports of participants

. . )]

preferring color photos who indeed performed better with those jmages)‘ was also true. In-

dividual differences in working memory capacity—which on the verbal side have inspired
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much applied reséarch rega.rdihg impacts on school performanc;e—have been used to clar-
ify mechanisms operating withing visual working memory (Vogel & Awh, 2008). These
participants with oppbsite pfeferences did not show overall capacity differences, though,
in that their accuracy on their respectiv‘er better and worse stimulus types was .comparable
between photo- and locétion—only preferrers. Further experimenlta,tion would Be needed to
' see whether these individual differences are reproducible; the fact that both cases can exist
once again rules out a simple measure of cognitiire load fc;r c;ossmodal associations based

on low-level featural complexity.

5.2 What does meaningfulness mean crossmodally?

The association-based measure of meaningfulhess very strongly supported initial\claims that
the representational image; used would eli;:it avgreatervnu’mber of meaningful associations

than the abstract shapes. While Experiment 7’s participants did not show any associational

differences accordihg to image détail (vcolor versus grayscalg), the pa.rticipa.ntS in Experiment

8 did, according more associations to color than grayscale ‘images. The signiﬁca,nf (if slight) .
advantaée for the color photos compared to the g'rayscale drawings on its own would need t';o

be followed by further ;:xperiment‘értic\)n——for instance comparing all dréwings or all photos—

for clarification, but the fact that it was accompanied by the same pattern in the abstract

shape's sﬁggests that covmpa.r’avti,\;/ely vivid irﬁages may briﬁg more aésbqi@fidns to mindvthba,n

duller ones.

- Image meaningfulhess was a.ssbciafed wi_th differences in response bias but not with
overall accuracy of crossmodal change detection; supporting recent clairhs that well-known
objectsb are prO(;es‘sed in &ifferent ways within visual cognition than novel feature combina-
~ tions (Hommel & Colzato; 2009; VahRullen, 2009). ‘This bias difference is similar to what

Visscher and colieagues foqnd in their study of recognition memory for synthesized, rela-
tively meaningless sounds——speciﬁca,lly, detection bias was lower (participants more often
“said “yes”) fof more-different stimuli and higher (participants were less likely to say “yes”)
for stimuli only one just noticeable d‘iﬁebrenceba,part (Visscher, Kaplan, Ka.hané, & Sekuler,

N
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2007). This heterogeneity-based difference in not aécura.cy but response bias has been found

by those researchers in a range of studies of visual recognition niémory, as well (Sekuler &

Kahana, 2007).

5.3 Future Work

5.3.1 Conceptual distance as category delineator

Several immediately fea.sible projecfs which would clarify some of the issues raised above
about category distinctions and featural detail suggést themsélves as extensidns to this worl£.
One would involve crossmodal change detection using image sets which are either members
of the same object category or of different categories; a éta.rting point would be to use
the images which"demonstra.ted coﬁceptﬁally—i:)ased differences in long-term fecallv(Konkle, .
Brady, Alvarez, & OliVa, submitt;ed). Such a£1 experiment could possibly determine vs‘/hether(
conceptual diﬁeréhées are sﬁfﬁcienﬁ to make vdistibnctions betWeen stiinuliIWhosé perceptual
characteristics only vary by degree—suggesting WM capacity might go down to one for
those objects (Olssoﬁ & Poom, 2005).

Another possibility‘ would involQe contrasting working memory performance using the
’ colored shapes from Experiine_nt 8 and‘cont'ra.sting thgm with similarly brigl}t and colorful
shépes whose ouﬂiﬁés a.re the sé.me'b’ut whose interior characteristics différ, such as_‘ha.ving 2
overlaid black stripe or dot patterns;; These images should be contrasted with the coloredv
balls from the niethod development‘phase of this resea.r‘chk and the grayscale shapes. This
study would go further to align éfossmodal working’menyuy)r'y ‘resévarch with related work
about the impa.Ct of Vdiﬂ’erent kinds of features on visual cbgnition (Alvarez & Cavanagh, |
©2008). / ' |

A third avenue to explore involves contrasting rapid serial presentation with simulta-
neous presentation, to see whether that difference is the main Source of the different role,

played here by location for feature binding.
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5.3.2. Takihg another long-term look at detail

The resédrch presented in this dissertation applied expe_rimental techniques from the field of
visual cognition to crossmodal stimuli in a manner geared towards comparisons to related
' findings in multimedia instruction research, summarized in Section 2.2.1 on p. 7. The

following claim about working memoi‘y was of particular interest.

It may be possible to increase effective working merrioi‘y capacity by pre-
senting information in a mixed visual and auditory mode rather than a single

mode (Low & Sweller, 2005, p. 148). -.

Expei‘iment 1 showed a substantial advantage for unimodal change detection (see Figure 3-
2). Throughout the dissertation, higher detail v;rithin either the yiéual or the auditory
modality on its own—unlike Bﬁtcher’s (2006) result for long-term‘ learning—showed a con-
sistent mnemonic advéntage over simpler stimuli. Taken together, these results suggest that
exploratioﬁs of the working ﬁ1emory dynamics in formal learning settings consid(er image
and sound heterogeneity in instruction as well a.s sensory modality. |

Since use of rgultimedia lbea.rningv materivalsvi’s likely to keep growing in the fofseeéble
future, anothér researcil direction éuggested by the present findings is to use considerably
: moré-meaningful and more-detailed images in research on long-term learning. Incremental
steps towards that goal might involve contrasting meaningful detail—such as scaling the
size ;)f a dof represenfing a city according to its,,popu\lation size—and irrelevant detail such
as what was used in ‘these‘tes;ts of novel association formation. One challenge to such
extensions is that for st\udents who are learning about, say, the structure of VDN A, aﬁ imége
of a helix may qhange in meaningfulne;s over the course of a semester.

.‘Ano‘ther t)ossibility would be to manipulate the characteristics of bullet points or othér,‘
usually-uniform shapes used in instructional materials. Would using more unique, Miro-
 style points with diﬁ'er_ent orientations next to,thr_ee concepts which have been called out
in a text box heli) readers to keep track of those concepts with repeated use of the unique -

shapes? This research would require careful coordination with instructors and in-depth
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subject knowledge for appropriate preparation of stimuli.

In spite of the varied challenges facing research which integrates fﬁnda.mental explo-
rations of huzﬁan cognitivé processing with the pressures and constrza:ints of formal leé,rning,
this diséertation provid;s evidence that laboratory research can indeed change our under-
standing of the dynamics of real-life learning. Designers of instructi(;nal media should

‘understand and not eschew detail, and hopefully working memory researchers will extend

~our understanding of how short-term cognitive processes shape long-term retention.
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Search Time per Added Item (ms)

| Comparisbn of Crossmodal to Visual WM and Search Speed

WM Load Estimate

i

Figure 5-1: Relation between working memory ’load and search times for
crossmodal stimuli tested heré (see key) and prior visual-only stimuli (range
and domain shown by dotted rectangle).. WM loard’is based on the inverse
of pajrticipants"capacity ét 75% éccuracy: a load of .25 indicates that they

" could detect changes with that accuracy for 4 items, a load of .5 reflects a

, capacify, of 2 items, and so on.
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APPENDIX A

IMAGES USED

A.1 Images: Experiments 1 through 6

A.l1.1 Images: Experiments 1 through 5

Experiment 1 used only colored balls, while Experiments 2-5 used all three of the image sets

shown here. ‘g " ' The balls
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have been re-created, due to a lack of compatibility between the experimental software and

screen capture; the remaining images are those used in the experiments.

A.1.2 TImages: Experiment 6

This final experiment in the method-development series contrasted the grayscale and full-

color meaningful images shown below.
.

[
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A.2 Images: Experimenté_ 7 and 8

'»Experiment 7, thekmeaningfulnéss pilbt, made use of all of the following images plus several
more, as described in the main text. Results from Experiment 7 were used to finalize image

selection for Experiment 8 a.n,d‘to characterize the images used.

A.2.1 TImages for Training

The training iinagés are the same as those used by Alvarez and Cvavanagh (2004), except that
they are shaded. As the original images used are now only available under license, the freely-
available, full-color equivalents (Rossion & Pourtois, 2004) have been used, transformed by

reducing ‘color saturation to —100% with Adobe Photoshop.

A.2.2 TImages for Testing

For the two stimulus sets shown below, six images were chosen to represent each image

class, all conforming to the constraints laid out in Section 4.1.

7



Set A

. Half the participants had an image set with taller color photos and wider grayscale drawings,

coded as “East”.
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Set B

The other participants, coded as “West”, encountered the taller grayscale drawings and the
gr

wider color photos.
e

X
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A.3 Procedure Specifics: Instructions

A.3.1- Exper‘iments/ 1-6 Instructions

For these method-development éxperiments, particiipants received individual vérbal instruc;
. tions.l All participants went through practice trials covering each possible experimental
factor, though possibly not each cornbination of factors. For instanqe’,’ in preparation for
Experiment 2, each participant practiced with botil sound types and all three image types
to the point of comfort with the protocol before testing. Training did not necessarily involve

all six combinations of sound and image types.

A.3.2 Experiment 8 Instructions

For the final experiment, instructions were made more uniform by including them in the
,experirnent program. After collecting a signed consent form, the experimenter seated each
participant, pointing -out the lsbeléd keys’(seevprocedure instfucticins ‘below) and the ad-
justment features of the chair, head_phones, and laptop screen. Instructions were delivered

on the screen, separated into small paragrdphs which were displayed one at a time.

General instructions
" The first specific instructions were as follows.

WELCOME TO THE EXPERIMENT! In Part I, you’ll be searching for
images and noticing changes in noise-making objects on the screen. In Part II,
you’ll play a word game ;ind answer some surveys. Press any key to see more

detailed instructions for Part ‘I.,

- Your first In:ain task will involve VISUAL SEARCH; the second main task is
CHANGE DETECTION. On the next screen you'll get more instructions on the
sea.rcii task, then you'll get to practice it a bit. After that you'll get instructions

- and practice rounds for change detection. (Press any key to move on to the next

- page.)

80



After the practice trials, you’ll alternate between those two tasks using dif-
ferent kinds of images. This program will remind you to stop and stretch now
and again after you've completed a set of images. Ready? (Press any key to

start.)

Experimental Procedure Instructions

Here are the instructions used for visual search. The designated keys were also labeled with

small stickers saying “FOUND” and “NOT found”.

|

VISUAL SEARCH: Firsﬁ you'll see a single object — keep it in mind, because
next you're going to look for that same object‘. So you’ljl.then see a bunch of
similar objects appear all together. Préss “P” if that éingle object‘you saw ﬁrét
is present in the group; press “W” if it’s not. Then you'll get a new object to

look for and start again. Press any key to begin.

Similarly, change—detectibn respbnSe keys were labeled “DIFF” and “SAME”, with the

following on-screen instructions.

CHANGE DETECTION: ‘N,ote which objects make which sounds.‘.. there

will be two or three objects in‘ each trial, making different noises. When one of
 them comes back in the center of the screen, decide if it has CHANGED whiat
it’s doing compared to when you last observed it. Press the “.” key if it changed

its tune; if not, press “Z” for no change. (Press any key to start practicing.)

Progress Indication

Halfway through their training blocks; participants were encouraged to ask questions, as

follons.

So now you'’ve practiced both of the tasks that make up the main experiment.
This would be a good time to get clarifications from the experimenter, or to tell

her you've got the hang of it. Then press a key to continue.
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Before starting the testing sequence, this message was displayed. |

Okay, now you're getting to the main portions of the experiment — this is

where we start changing up the image files. (Press any key to start.)

Participants also received reminders to stop and stretch after each experimentalkblock,

using randomly-selected and never repeating statements Isuggesting they—for example—

touch their toes or shflig their shoulders.

Instructions for Wrap-Up

After completing all experimental trial blocks, participants viewed this message.

Whoa, all the searchingra‘nd sound-tracking is done! You've been doing
this for a while, so do take a minute or two off as you wish. For Part II of
the experiment, you’ll first provide some word ‘associations, then answer two
surveys. And Part II is quicker than Part I! When you're ready to continue,
vtyApe a key.

Instructions for the word association task were as follows.

You will see a series of images. As each new one appears, write down what-
ever words come to mind easily. Type in a word and then hit the return key
after each one; if you run out, type the word 'done’ (no quotes) and hit return.

Let’s practice once.

They then received instructions for the Cognitive Failures Questionnaire (Broadbent,

Cooper, FitzGerald, & ‘Paurkes, 19820201), with the second half faken directly from the

original questionnaire.

Next you’ll go through a survey that has been used in some related research
on working memory and attention. Please answer as best you can without
pondering the questions much. The post-experiment debriefing explains further

why this may be relevant to working memory. (Press any key to go on.)
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The following questions are about minor mistakes which everyone makes
from time to time, but some of which happen more often than others. We want
to know how often these things have happened to you in the past. 6 months.

(Press any key to go on.)

The following bit of encouragement was displayed before the program asked participants to

identify their dominant hand (right, leff, or ambidextrous) and their gender.

Just a few more questions to help us make sure we have a good balance of

participants between conditions... (Press anykey to go on.)

After the entire experiment was completed, participants received these final instructions’

to go collect their debriefing.

Thank you for all your work!!! YOU FINISHED THIS WHOLE EXPERI-
MENT! The experimenter has a debriefing form for you which says more ébout
how your data will contribute to our research project.

’

A.4 Procedure Specifics: Timelines-

A.4.1 Visual Search
1. Target presented at the center of the display for 500ms.
2. Blank interval of 900ms.

3. Array of 4, 8, or 12 objects (all “from the same stimulus class as the target” (Alvarez

& Cavanagh, 2004, p. 107)) presented.
4; Participant indicates by keypress whether the target is present or absent.

- 5. Dependent variable: Search time as a function of number of items present.

i

A.4.2 Change Detection

1.. Fixation mark appears for 650ms
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2. First object aed aecompanying soupd presented for 500ms |

3. VSecond object and accompanying sound presented for 500ms

4. Thjrd ebject and a,ecompanying sound »presented for 500nis, if used
5. Blank palise for 1,000ms

6. Test ebject and accompanying sound presented

7. Participant indicates whether a change was detected by key press

[0.0]

. Dependent variable: Participant accuracy in detecting changes

A.4.3 Overall/Structu’i;e

Participants were reminded to take a break after every block. '

TRAINING

Training Image Set
Visual Search : 12 trials

Crossmodal Change Detection | 8 trials

prompted to ask questions
Training Image Set
Visual Search 12 trials

Crossmodal Change Detection | 8 trials

(continues on next page)
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TESTING

First Image Set

78 trials

Visual vSea.rch ’

Crossmodal Change Detection | 36 trials

Second Image Set

Visual Search 78 trials
' Crossmodal Change Detection | 36 trials

Third Image Set

Visual Search 78 trials

Crossmodal Change Detection | 36 trials

Fourth Image Set

Visual Search 78 trials |

Crossmodal Change Detection | 36 trials

Fourth Image Set

Visual Search 78 trials

Crossmbdal Change Detection | 36 trials

Third Image Set |

Vis’ual Search 78 trials

Crossmodal Change Detection | 36 trials

Second Image Set

Visual Search 78 trials

Crossmodal Chaﬁgé Detection | 36 trials

First Image Set

Visual Search 78 trials

Crossmodal Change Detection | 36 trials

SURVEYS
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APPENDIX B

FORMULAS AND CAPACITY ESTIMATES

B.1 Estimating working memory capacity

This dissertation focuses on relative éoinpa:risons within a given participant’s performance
of accurate change detections for associations of visual and auditory features. Howeve;r,
reséa.rchers examining working memory have over many yéa,rs looked for absolute measures”
of working‘memory capacity, such as the famous formulatioﬁ of the,“mégical number seven
plus or minus two” from Miller'(1956) suggesting that péople can keep abbut seven thi/ngs '
of various sorts in mind at once. o

Change detection accuracy itself has been used to provide a newer estimate of how many
visual objects observers can ma.iﬁtain in working merﬁory (Awh et al.,b2007; Treisman,
2006; Vogel et al., 2001; Pashler, 1988). This approach was extended by Alvarez and »

‘Cavanagh (2004), who vprOpos’ed usi’ng the inverse of a measure df object-based capacity as

“an indication of the working memory load of that type of object.

B.1.1 Application of Pashler’s capacity estimator

Pashler sﬁggested that the number of items that an observer can keep in mind (k) can be
estimated from that observer’s change-detection hit‘rateé—hbw many times the persbn says
/the display changed when the display really had changed—and their false-alarm rate—the
‘rate at which the person sé,ys the display changed when it hé,d not (Pasfiier, 1988).‘ Including
the false alarm rate allows the measurer to account for differences in guessing rates between
condition; and observers, since someone who catches every true change by simply pressing

the “Changed” kéy for every trial is not as accurate as someone who catches most of the
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true changes and almost never registers a false alarm.

Formula

Again using H for hit rate and F for false alarm rate, along with S for the size or number
of items in the memory array, Pashler’s (1988) formula is as follows.
k. S—-k

In words, this proposes that a person’s hit rate will be the ratio between their working
memory capacity and the number of items in each memory array, plus the product of their
guessing rate and the proportion of items over their capacity inclu(ied in the memory array.

That original formula can be solved for capacity (k), as shown below (Vogel et al., 2001,

p. 95).

=Sx(H—F)

k 1-F

Results from method development

While rapid serial presentation of crossmodal objects may involve different assumptions
fha.ﬂthose underlyihg fhe Pashler /(198,8) estimator, applying it to the data obtained in the
first six experiments suggests a capacity for somewhere between .75 and 1.75 crossmodal
objecfs (such as a barking apple, beeping chair, or mooing balloon) being maintvained at
once. This is lower than the rough four-object estimate from other scientists (Awh et al.,
2007; Alvarez & Cavanagh, 2004; Vogel et al., 2001; Pashler, 1988). The higher capacity
demonstrated 'in the final experiment for color photos and varied colored shapes (almost.
five crossmodal objects), on the other hand, suggests that the earlier low capacity is not a
direct outcome of combining an image with a sound. .

Since this method added auditory features to simple and complex visual objects rather
than splitting visual objects’ features and delivering some featural informétion verbé;lly (R. J

Allen et al., ‘2009), another perspective might be to treat each crossmodal object as two
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objects within working mem'ary. Even that adjustment only puts the moét successful par-
ticipants in the range of the three to four objecf'capacity found for visual objects (Vogel et
al., 2001). This difference suggests th@t binding features across different modalities does not
behéve in exactly the éame fashion as binding features from different perceptual dimensions

within one modality (such as vision).

B.2 Accuracy Measures

B.2.1 Corrected Accuracy Formula

All crossmodal change detection results have been reported using the corrected accuracy

measure reported by Allen and colleagues (2006), whose formula is as follows.

Corrected Accuracy = p(Hit) — p(FalseAlarm)

B.2.2 Signal Detection Theory Formulae

The culminating experiinent (Experiment 8) was also evaluated using Zhang and Mueller’s (Zhang
& Mueller, 2005) A and b, as discussed in the text (see p. 50). Using H for p(Hit) and F

for p(FalseAlarm), the formulae for this measure of accuracy and bias are as follows.

#_FQ—»H) fF<05<H

8y
A={ 3 HFE B F<H<05
$+dzE_ . H05<F<H
H trsossH
b={ L+d if_F<H<0.5
}jzill:’;) if05<F<H
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APPENDIX C

"IRB APPROVALS

This dissertation research was approved by the University of New Hampshire’s Institu-

tibnal Review Board.
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