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ABSTRACT 

ION SEQUESTRATION PARTICLES FOR NAVAL 

ANTICORROSION COATINGS 

BY 

ZACHARY Z. ZGURIS 

University of New Hampshire, December, 2008 

Corrosion is the electrochemical process of a metal returning to its lower 

energy state, the metal oxide. The cost of corrosion is difficult to estimate. One 

area particularly susceptible to corrosion problems with high maintenance costs 

is that of the 20,000 tanks existent in the US Naval Fleet. The Navy is sponsoring 

the development of novel coatings and additives that can be used to decrease 

the rising corrosion related costs. 

This dissertation describes in detail the synthesis of Ion Sequestration 

Particles (ISP) that when added to the standard MIL-DTL-24441 or potentially 

another coating system act to enhance the anticorrosion properties of the 

coating. A solid ion sequestration core material (SISCM) is first produced. The 

core is then encapsulated in a second stage forming a shell that protects the 

SISCM sufficiently from the harmful interactions with uncured epoxy based 

coatings. 

ISPs were designed to sequester harmful ions while releasing passivating 

ions in their place. The passivating ions then migrate to defect sites at the 

coating interface where they act to inhibit corrosion. The anticorrosion 
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performance of ISPs in epoxy coatings has been demonstrated by both 500 hrs 

of hot deionized water immersion and 1000 hrs of salt spray exposure (ASTM 

B117). The best improvements in coating performance are attained with ISP 

content ranging from 5 -10 wt % loading in a coating. 

ISPs were designed to limit the transport of harmful ions through the 

coating. However this work has determined high diffusion coefficients for ions (CI" 

and PO42") through the epoxy matrix. Without ISPs, the diffusion coefficient 

through the MIL-DTL-24441 coating was determined for phosphate to be 

1.16x10-7 cm2/s and for chloride to be in the range of 2.7 x10"9 to 5.6x10"10 

cm2/s. The addition of 5 wt % ISPs to the coating had the effect of decreasing 

the diffusion coefficient by an average of 25.5%. These results yield the 

conclusion that the enhanced anticorrosion properties of coatings containing 

ISPs is more likely due to the passivating effect of the released phosphate ions 

than due to the ISPs ability to sequester harmful ions. 
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INTRODUCTION 

Corrosion is the electrochemical process of a metal returning to a lower 

energy state, that of a metal oxide. This process occurs naturally for most 

metals, with the metal oxide being the natural state found during mining 

operations. The metal ores are converted into pure metals or alloys during a 

refining process, consuming a large amount of energy in the process. Metals and 

metal refining has been the basis of modern society, dating back to the 

Chalcolithic period in the 5th millennium BC and advancing through to the current 

days. 

The cost of corrosion is difficult to estimate. One large scale study initiated 

by the US Legislature in 1998, undertaken in cooperative agreement between 

NACE International and the Federal Highway Administration, looked at two 

separate issues in an attempt to estimate the national corrosion costs for the 

United States. Method 1 considered the total costs of corrosion control methods 

and services with a resultant total annual cost estimate at $121 billion (1.38 % of 

the total US GDP in 1998). Method 2 was an industrial sector analysis of 

corrosion costs with a total annual cost for the five categorized sectors at $137.9 

billion. These two approaches were summed up to a total annual direct cost of 

corrosion in excess of $276 billion. The study goes on to say that the total cost is 

more then twice the $276 billion including the indirect costs1. 
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In a 2003 report to congress by the US General Accounting Office on the 

corrosion costs to the DOD and Military services it is stated that the full impact of 

corrosion on defense management can not be quantified due to limited amount of 

data from these sources on the issue2. The report goes on to state that corrosion 

costs represent the largest life cycle cost of components of military weapons 

systems (tanks, aircraft, ships ,etc). For example, in 1993 it was reported an 

estimated $2-2.5 billion was spent for corrosion related repairs just on wheeled 

vehicles, including 5-ton trucks3. 

One area particularly susceptible to corrosion problems with high 

maintenance costs is that of the 20,000 tanks (ballast, fuel, potable water, 

combined holding tanks, etc) existent in the US Naval Fleet. Approximately 4000 

of these tanks are inspected annually with a total cost in excess of $24 million4. 

Only a small fraction of these inspected tanks are in need of repair. The cost of 

refurbishment and repair of failed coatings in these tanks is approximated at 

$250 million annually. 

The Navy is taking a number of approaches to minimize the maintenance 

cost of the tanks. One of the Naval Research Laboratories (NRL) areas of 

research focus is "Solvent free high edge coverage ballast tank coatings increase 

current service life for increased cost savings, and reduction in hazardous 

material emission during ship's life".5 There is a largely financial motivation 

driving the service life of anticorrosion coatings used inside tanks from the 

current 5-7 years lifetime towards a 20+ year lifetime. To this end, there is an 

increase in funding and study of new anticorrosion coating systems to be 
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developed for and evaluated by the NRL for their ability to compete with and 

exceed the existent MIL-DTL-24441 coatings that have seen wide spread used 

throughout the fleet. 

While the Navy is interested in the development of new low volatile 

organic compound long life anticorrosion coatings, it has also expressed interest 

in novel anticorrosion approaches. One such alternative approach to increased 

coating performance is an additive that can be used in existing as well as newly 

developed coating systems to increase their anticorrosion potential. This 

approach requires the development of an anticorrosion additive that offers 

increased corrosion protection to the coating without changing the basic 

chemistry or physical properties of the system. 

The goal of this work was to develop a successful synthesis process for 

ion sequestration particles (ISPs) that provide enhanced corrosion protection 

upon dispersal in an anticorrosion coating. These ISPs are designed to 

sequester free ions, as they are generated during the corrosion process as in the 

case of hydroxyl ions or as they diffuse through the coating as in the case of 

chloride ions. In order to maintain charge neutrality, the particles will release 

phosphate ions which function as corrosion inhibiting anions. The driving force 

for the ion exchange is the concentration gradient differential of the ions between 

the particle and the coating, and can be considered a diffusion controlled 

process. 

This dissertation describes in the following chapters the development of 

the synthesis of these ISPs, characterization of the ISPs, and testing of their 
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anticorrosion enhancing capabilities on steel substrates. Chapter 1 presents 

background information on corrosion and the anticorrosion coating to further aid 

in the readers understanding of this work. In Chapter 2 the synthesis evolution 

and experiments performed resulting in the final development of ISPs are 

explained. The details of each experimental procedure as well as the process 

changes made during development are discussed. Chapter 3 describes 

characterization of the ISPs and other materials used in this work. Chapter 4 

discusses the evaluation of the anticorrosion properties of the synthesized ISPs. 

Chapter 5 provides conclusion and discusses the future continuation of this work. 
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CHAPTER 1 

BACKGROUND 

1.1 Corrosion of Steel 

A plethora of texts have been written covering the many complex issues of 

corrosion. This section does not provide a thorough in depth understanding of all 

the issues related to corrosion. Instead it covers the essential information 

needed to understand the addressed problem of corrosion of steel substrates in 

an aqueous environment as would be found inside the ballast tanks of a naval 

vessel. 

Figure 1.1: Simplified Corrosion Cell 

Simply stated, corrosion is the electrochemical conversion of a metal into 

an oxide that, dependent on the pH of the system, can be either soluble or 
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insoluble. This is an electrochemical process which requires in essence a 

complete cell or circuit. In the corrosion "cell" illustrated in Figure 1.1, the 

electrons conduct through the metal while the ions are transported through the 

electrolyte. 

Corrosion requires a conductive medium, the electrolyte, connecting the 

anodic and cathodic sites such that a complete circuit is formed. The electrolyte 

is typically water but in some cases other liquids or materials are utilized or 

encountered. The anode and cathode areas can be separated by distances 

ranging from angstroms up to meters. However the solution conductivity varies 

as the inverse of the conduction path and damage is more severe over shorter 

distances6. 

0.04 
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§ 0.02 
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O 
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0 
14 13 12 11 10 9 8 7 6 5 4 3 2 
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Figure 1.2: Corrosion Rate of Steel as a Function of pH7 

In aqueous environments in the range of pH 4-10, the corrosion rate is 

nearly constant, as can be seen in Figure 1.2 and is primarily controlled by the 

6 
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rate of oxygen diffusion to the actively corroding surface . For alkaline 

conditions above pH 10, the corrosion rate is retarded by the formation of a 

passive ferrous oxide film. At pH values below 4, the corrosion rate increases 

dramatically due the evolution of hydrogen and the solubility of the oxide formed. 

The anodic reaction of iron into iron oxide is presented as EQ 1-1. The 

cathodic reaction for the reduction of oxygen dissolved in water is shown as EQ 

1-2. The ferrous ions and the hydroxyl ions formed by these reactions then 

combine to form ferrous hydroxide as in EQ 1-3. 

Fe-+Fe2+ + 2e- [EQ 1-1] 

0 2 + 2 H20 + 4 e" - • 4 OFT [EQ 1-2] 

Fe2+ + 2 OH" -^Fe(OH)2 [EQ 1 -3] 

Given a sufficient oxygen and water supply in the region of the ferrous 

hydroxide precipitation, there is then a further oxidation as written in EQ 1-4 into 

a hydrated ferric oxide. This is the ruddy brown material deposited on the 

surface of corroding steel and is commonly referred to as "rust". While other 

oxides can form under varying conditions (ex. Fe203 and Fe304) this is the 

product of primary importance to this project. 

2 Fe(OH)2 + % 0 2 +H20 -^2 Fe(OH)3 [EQ 1 -4] 

It has been shown by more than one author that the oxide film formed on 

iron is of a hydrated gel like network of ferric oxides and that it is changed into 

the Fe203 form when removed from solution and dried9. The passive film 

network consists of a three different types of "bridges", -Fe-H20-Fe-, -Fe-HO-Fe-, 

and -Fe-O-Fe-. This ionic gel structure forms a much more efficient protective 
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passive film then does the perfect oxide film of Fe203.
1°. For the case of internal 

tanks on Naval Vessels it is likely this drying and associated weakening of the 

protective oxide layer occurs during the logistical cycles of filling and emptying 

the tanks. 

+ 

o 

a. 

Cat hod ic 0 Anodic 
Current 

Figure 1.3: Schematic of polarization curves for steel in near neutral solution11 

The ferric oxide layer is one of two protective oxide layers formed for steel 

substrates, the other being the formation of a magnetite layer in an oxygen 

depleted solution as can occur in transport limited by localized corrosion 

conditions such as undercoating or pitting. Schematically, the two passive films 

for iron are represented in Figure 1.3. The Flade potential, Ef is the point where 

the reduction or dissolution of the passive film occurs at a greater rate than the 

formation. The breakdown potential, Eb is the point where more aggressive 

corrosion occurs; i.e. localized failures to the passive layer initiate pitting 
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corrosion. This breakdown potential and associated explosion of growth in pitting 

occurs due to a cooperative interaction caused by the increase in defect spacing 

from randomly distributed metastable pits transitioning from a dispersed to a 

more clustered arrangement12. Inhibition of steel substrates by ionic species 

requires a concentration of anions, pH, and oxidizing agents resulting in a 

potential that falls in either of the stability regions of ferric oxide or magnetite13. 

1.1.1 Effect of Chloride Ions on Corrosion 

The presence of chloride ions alters the corrosion process considerably. 

The chloride ions and associated counter ion increase the conductivity of the 

solution. It has been repeatedly shown that the corrosion rate increases with an 

increase in conductivity of the electrolyte14,15,16,17. Additionally, the chloride ions 

can form ferrous chloride at the anode, while sodium hydroxide is formed at the 

cathode. These two soluble intermediates meet away from the steel surface 

forming ferrous hydroxide that then undergoes further oxidation as in EQ1-418. 

Chlorides drastically increase the corrosion rates due to this action which results 

in a dissolution of the oxide layer from the surface. The dissolution of the oxide 

layer results in a loss of any protective passivating or resistive effect the oxide 

layer as on the underlying metal. The chlorides can additionally become directly 

included into the corrosion products. EQ 1-5 shows a reaction with the additional 

products of H+ ions which results in a local acidic condition which further 

accelerates corrosion in the region19. 

4 Fe2+ + CI- + 8 H20 - • Fe4(OH)8CI + 8 H+ + 9 e" [EQ1 -5] 
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1.1.2 Undercoating (Organic) Corrosion 

Coatings used for the prevention of corrosion can be thought of as acting 

as a resistor in the electrochemical circuit of the corrosion cell. The modern 

anticorrosion coating acts as a barrier to the transport of water, oxygen, and ions 

to the metal surface. However, all organic coatings are somewhat permeable to 

both oxygen and water at varying rates shown in Table 1-1. The diffusion rate of 

water through a coating is 10-100 times greater than the consumption rate at a 

freely corroding steel surface20. Therefore the limiting of ion transport through a 

polymeric coating has more of an effect on the corrosion rate then does the 

limiting of oxygen and water transport21. 

Table 1-1: Barrier Properties of Resin and Paint Films' 

Coating Type 
Epoxy Polyamide 
Chlorinated Rubber Plasticized 
Chloropolymer (solvent borne) 
Styrene acrylic latex 
vinyl chloride - vinylidene copolymer latex 
Red lead heat treated linseed oil (BS 2523) 
Ti02 Pigmented Alkyd 
Aluminum Epoxy Mastic 
Tar Coal Epoxy 
Chlorinated Rubber unmodified 
acrylic water borne primer 
Copolymer Latex 

Oxygen Permeability 
cc/m2/100um/day 

23C, 85% RH 
value 
130 
183 
82 

1464 
22 
734 
595 
110 
213 
30 
500 
12 

deviation 
33 
7 
19 
54 
9 
42 
49 
37 
28 
7 

5 

Water Vapor Permiability 
g/m2 / 25um /day 

38C, 95% RH 
value 

62 
38 
40 

920 
11 

214 
258 
42 
30 
20 
720 
27 

deviation 
8 
2 
8 

4 
3 
6 
6 
1 
3 
37 
5 

Outside of gross defects or mechanical damage, corrosion of steel 

substrate protected by an otherwise intact and pore free organic coating occurs 

at the interface between the metal and the coating. In order for undercoating 

corrosion to occur there first needs to be a loss of adhesion between the metal 
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substrate and the coating. Typically this is initiated by the diffusion of water 

molecules through the coating into an area at the interface containing 

contaminants or corrosion products. Some instances of initiation of undercoating 

corrosion are caused by capillary forces, where water is drawn into the interfacial 

area due to a pre-existing lack of good adhesion. This lack of good adhesion is 

often due to a failure of the coating system as a result of poor mixing, improper 

drying/curing conditions or entrapment of air underneath the coating during 

application23. 

Undercoating corrosion has been theorized to follow one or a combination 

of three different perspectives comprising mechanical, chemical, or 

electrochemical24. The mechanical approach looks at the defect as a pore with 

the anode and cathode inclusive. The corrosion products are formed and 

eventually block the pore. At which point the corrosion products continue to 

develop as water, oxygen and ions are transported through the coating to the 

corrosion site. These products result in an increase in pressure and a resultant 

mechanical force pushing the coating away from the metal substrate increasing 

the active corrosion area25. 

The chemical approach differs in that the anode and cathodes exist 

separately underneath the coating. The ion transport happens through the 

coating26. The corrosion products generated result in an undercoating pH shift 

at both the anodic and cathodic sites27. This resultant pH shift causes one of a 

number of possible effects to the coating/substrate interface, including 

precipitation of insoluble products, cathodic disbondment, polymer degradation28, 
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and localized increase in ion transport through the coating . This is an area that 

is not clearly understood since the failure mechanism is unique to each 

coating/substrate application. 

Electrochemically a substantial potential difference can exist between the 

anode and cathode of the undercoating corrosion cell due to the resistive effect 

of the protective coating. This potential difference drives water transport into the 

coating by electro-osmosis29. It follows that the increase in hydration of localized 

regions within the coating would yield a decrease in resistance and transport 

occurs initiating corrosion. This rapid ion migration leads to delamination of the 

coating30. In addition, the increase in water in the coating can in and of itself 

result in a loss of adhesion between the coating and the substrate31. 

1.2 Organic Anti-Corrosion Coatings 

The existing anti corrosion coatings can be broken down into one of four 

categories: organic, inorganic, anodic, and cathodic. In regard to this work, due 

to the application of ion sequestration particles specifically to internal naval 

holding tanks and voids, the organic anti-corrosion coating is the only category of 

interest. These organic coatings are complex formulations consisting of multiple 

functional components that synergistically provide the best possible corrosion 

protection for a given application. Any one coating contains a combination of 

binders, pigments, fillers, additives, and solvents as can be seen in by the 

coating contents listed in Table 1-2 . This section contains a reasonably detailed 

review of organic coating formulation and the function of each component 
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therein. Emphasis of this review is on active anti corrosion compounds, 

especially active pigments as these will be the pigments replaced or augmented 

by the ion sequestration particles developed and discussed in the body of this 

dissertation. 

Table 1-2: Grey Maintenance Epoxy Amine Coating System 
Coating Component 
Rutile Titanium Dioxide 
Lampblack 
Chrome Yellow Medium 
Epoxy Resin MW900 
Methyl Isobutyl Ketone 
Ethoxyethanol 
Xylene 
Resin Leveling Agent 
Amine adduct 

Pigment to binder wt ratio 
Nonvolatile content (wt%) 
Viscosity (Stormer-Krebs Units) 
Density (lb/gal) 

w t % 
23.7% 
0.1% 
0.3% 
38.6% 
3.9% 
10.2% 
6.9% 
1.5% 
14.9% 

40:60 
60 
72 

10.2 

Function 
filler 
inactive pigment 
anticorrosion pigment 
binder component 
solvent 
solvent 
solvent 
additive 
binder component 

Throughout the literature the terminology differs between individual authors. 

In this text an anticorrosion pigment shall be designated as any solid and 

insoluble inorganic particle added to the binder for the purpose of enhanced 

corrosion protection. Organic inhibitive compounds added to the binder matrix 

will be classified as an additive as opposed to a pigment. Terminology often 

defines inhibitors as those soluble compounds which used in closed loop liquid 

systems to protect the internal metal surfaces from corrosion damage. This 

terminology will allow for a better report on the current technologies in the 

anticorrosion coating field. 
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1.2.1 Binders 

Binders serve as the media that holds the other components of the 

organic coating together and adherent to the substrate. The binder also forms the 

bulk of the resistive properties of the coating. Binders for anti corrosion coatings 

primarily belong to the following characteristic families: drying oils, alkyd resins, 

polycondensation resins, coalescent film forming, and silicone organics. While 

upwards of 2/3 of all anti corrosion coatings sold are of the oil based alkyd type32 

their use is primarily for the protection against atmospheric corrosion and they 

are unsuitable for continuous immersion and marine applications. 

Coatings used on interior tanks for naval applications are almost 

exclusively of the polycondensation type, primarily utilizing either polyurethanes 

or epoxy/amide chemistries. Polycondensation type coatings form a tough highly 

crosslink network that is resistant to swelling, ion transport, water transport, and 

oxygen transport33. 

Epoxv Amine/Polvamide Binders 

Epoxies react readily with a number of different functional groups, though 

the most significant in regards to the anticorrosion coatings is the reaction with a 

primary or secondary amine as in Figure 1.4. The most common di-epoxide 

produced and used is that of the coupling reaction of epichlorohydrin with 

bisphenol-A followed by dehydrohalogenation to produce, Diglycidyl Ether 

Bisphenol A or DGEBA as it is commonly named34. More then 50% of epoxy 
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produced is used for anticorrosion coatings due to a high corrosion resistance 

and excellent adhesion to metal substrates35. 

A R" HC\ 

H 

Figure 1.4: Reaction between Epoxide and Primary Amine 

The properties derived form these binders come with a substantial 

increase in materials and application cost. For the case of naval applications, the 

savings from longer periods between maintenance and overhaul largely outweigh 

the additional material and application costs36. Epoxy coating systems have the 

technical challenges of short pot life and narrow overcoat windows which require 

careful application techniques and regiments for success. 

Polyurethane Binders 

The urethane linkage is a chemical group formed between an isocyanate 

and an alcohol moiety shown in Figure 1.5. When these linkages exist in 

quantities averaging more then 2 per molecule a crosslinked network is formed. 

Polyurethanes can have an almost limitless number of properties dependent on 

their formulation. By controlling chain length, cross link density, and monomer 

polarity, polyurethanes can be produced with properties ranging from soft 

elastomers to tough rigid solids and hydrophilic to hydrophobic in nature, etc. 
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Figure 1.5: Urethane Formation from an Alcohol and Isocyanate 

In addition to properties such as good adhesion, low permeability, and 

excellent film formation, urethane coatings have the advantage of speed over 

epoxy based coatings. Some urethane coating systems cure so rapidly it is 

possible to walk on the coated surface 30 to 60 seconds after application37. This 

can shorten application time as there is no long wait between coats in 

applications requiring multiple coating layers to complete the protective system. 

1.2.2 Anticorrosion Pigments 

Pigments in anticorrosion coatings are not added for aesthetics but for the 

additional corrosion protection they bring to a coating system38. Functional 

anticorrosion particles that are insoluble in the solvent and binder systems fall 

into this category. The mechanisms by which the various pigments affect 

corrosion differ but can be regarded as belonging to one of three functional 

types39: barrier, chemically active, or electrochemically active. In regard to 

barrier mechanisms they provide either a decrease in transport through the 

coating(flake pigments) or they adsorb on the substrate during the coating 

process providing a physical barrier at the metal interface (blocking pigments)40. 

The chemically active components react with the substrate, binder, or diffusing 

species to provide inhibition. The electrochemically active inhibitors are those 
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that affect the potential of the system directly by cathodic protection of the metal 

substrate. 

Important for all pigment types is the pigment volume concentration (PVC) 

and the critical pigment volume concentration (CPVC). PVC is defined as: 

% P V C = 1 0 0 % * V p i g m e n t / (Vpigment + Vn0n-volatile binder) 

Where VPigment is the total volume of the pigment and Vn0n-voiatiie binder is the volume 

of the non volatile binder in the coating system41. In order for a coating to have 

good performance and low porosity there has to be sufficient binder to wet out all 

of the pigment particles. 

The CPVC is the crossover point where the binder is in insufficient quantity to 

wet out the surface area of the pigments42. Above the CPVC coatings exhibit 

progressively decreasing performance due to an increase in voids, porosity, and 

permeability43. For isometric particles the CPVC decreases with increasing 

particle size44. Prediction of CPVC values has proven impossible and the 

methods used to determine it involve the production of sample plates at differing 

pigment concentration for subjection to an array of accelerated corrosion 

experiments45. 

1.2.2.1 Barrier Pigments 

Flakes are pigments which have large aspect ratios as a lamellar thin 

sheet with thickness of up to 5 microns46. At application, the flakes align 

themselves parallel to the substrate forming a multilayer platelet barrier 

suspended in the binder47. Flake pigments in anticorrosion coatings increase the 

resistance to water permeability by increasing the diffusion path length through 
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the coating . In aggressively abrasive environments the flakes also increase the 

erosion resistance of the coating49. Flake pigments utilized for anticorrosion 

purposes are made of glass, aluminum, zinc, or micacious iron oxide. 

Glass flakes were first used in coatings by Owens Corning back in the late 

1950s, but with the dawn of the high solids single coat market they are being 

revisited50. In a 5 year oceanic exposure experiment off the shores of Dam 

Neck, VA and LaCosta Island, FL a glassflake coating system finished as a top 

performer out of 31 included coating systems based on corrosion protection51. 

Glass flakes are unique among the pigments used for anticorrosion coatings in 

that they only act as a physical barrier52. 

While the glass flake pigments provide an increase in corrosion resistance 

they are not as efficient in their anticorrosion role as are the metal and metal 

oxide flakes53. This is due to the metal flakes having an additional chemical 

effect when the flake containing coating is in direct contact with the metal. 

Aluminum flakes can consume oxygen or hydroxyl ions as they are generated by 

one of the two following equations54: 

AL203 + 2G-H- = 2AI02"+H20 [EQ 1 -6] 

4AI + 302 + 40H" = 4AI02" + 2H20 [EQ 1 -7] 

Both of these reactions result in the decrease in cathodic disbondment at the 

coating/steel interface. The disadvantage of aluminum flakes is their 

susceptibility to cathodic alkali attack, making them poor performers for sea 

water immersion coatings as shown by B117 salt fog chamber experiments55. 
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Zinc flakes have been successfully utilized as anticorrosion pigments 

where they create very good barrier effects resulting in coatings with high 

packing densities and mechanical properties without porous structure, blistering 

or other defects56. Post accelerated salt spray exposure, zinc particles of 

lamellar structure showed an increased coating adhesion when tested side by 

side under identical conditions against spherical zinc particles57. Lamellar zinc 

has an adverse reaction which takes place in water-borne coatings resulting in 

the generation of hydrogen. This adverse reaction can be prevented by a series 

of inhibitors containing a nitro-group ortho to an hydroxyl-group which acts as a 

potential chelating group58. 

Micaceous iron oxide pigments have been successfully used with their 

enhanced anticorrosion properties being attributed to the decrease in water 

permeation due to the orientation of the lamellar pigments in the coating59. The 

anticorrosion performance of micaceous iron oxide pigments can be further 

enhanced by a zinc phosphate conversion coating process60. Lamellar 

muscovite particles with a precipitated layer of hematite on their surface showed 

an 8% increase in anticorrosion efficiency over lamellar zinc, with a particular 

resistance to osmotic blistering of the coating61. The optimal pigment volume 

concentration for micaceous iron oxide has been shown to be in the range of 

15% for maximum corrosion protection62. 

Blocking pigments function by reducing the active metal surface area by 

adsorption without any additional chemical effects. This adsorbed pigment layer 

blocks the ionic transport at the metal surface resulting in inhibition of the 
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corrosion process . Pigments of this type include but are not limited to lead 

oxide (white lead), lead sulfate, cobalt oxide and zinc oxide. These are of limited 

use in naval anticorrosion coatings due to low corrosion protection efficiencies 

compared to active and lamellar pigments. One suggested possibility to increase 

the anticorrosion performance of the oxide (ZnO, AI2O3, Fe2C>3, Fe304) blocking 

pigments is to impart onto them n-semiconductors properties64. 

1.2.2.2 Chemically Active Pigments 

Chemically active pigments inhibit corrosion by retarding the anodic 

reaction, retarding the cathodic reaction, or limiting the ionic transport65. 

Modern inhibitive pigments are regulated globally and required to meet 

strict environmental and health regulations in the US. Many of the earlier 

pigments, most notably those based on hexavalent chromium and lead have 

been banned from the coatings industry due to their toxic nature as they 

eventually leech out into the environment66. The "old" toxic pigments will be 

discussed only briefly with the focus of this section will be on the newer non toxic 

inhibitor pigments used in the anticorrosion industry. 

Toxic Inhibitors 

The toxic pigments used for anticorrosion are the traditional chrome and 

lead based pigments. Due to environmental and health concerns these are no 

longer in use with a few exceptions such as chromate coatings for specialized 

aircraft aluminum alloy protection. In the early days, these were reported as the 
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most effective corrosion inhibitors but more recent work has shown modern 

environmentally friendly pigments to have equal or even superior performance67. 

Chromate Pigments 

The chromate based pigments are either categorized as known or 

suspected carcinogens. Environmental regulations and worker health and safety 

oversight groups have propagated legislation and laws that restrict the use of 

these heavy metal based pigments68. Chromate leaches out of coatings when 

there is an increase in acidity inside defects of the coating, while in neutral 

environments there is no evidence of chromates escaping from the coating69. 

Chromate replacement has been taking place steadily since the 1960's as new 

less toxic alternatives have been developed. 

The chromate pigments provided anticorrosion protection at cathodic 

points by the reduction of Cr6+ to a solid species containing Cr3+ inhibiting the 

cathodic reaction70. Additionally there is a formation of a passive layer on the iron 

surface. The passive layer contains a mixture of iron (II) and chrome (III) oxides 

formed by the reaction of EQ 1-871. This oxide layer acts as a barrier to prevent 

ion transport thus inhibiting corrosion of the iron surface. 

6FeO + 2 Cr04
2" + 2H20 - • Cr203 + 3 Fe203 + 40H" [EQ 1 -8] 

Zinc chromate (3ZnCrO4«K2CrO4»Zn(OH)2»H20) is historically one of the 

most frequently used anticorrosion pigments72. Other commonly used chromate 
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pigments are Barium Chromate (BaCr04), Calcium Chromate, Ammonium 

Chromate, Zinc Tetrachromate (ZnCr04 4Zn(OH)2), Lead Chromate (PbCr04), 

and Strontium Chromate (SrCr04). 

Lead Pigments 

Lead based pigments are one of the oldest synthetic pigments dating 

back to the second century BC73. In the first half of the 20th century more than 

three million tons of lead pigment was produced for use in protective coatings74. 

Lead has the heaviest laws and regulations prohibiting usage in modern coatings 

due to the widespread use in decades past. In addition to the ban of lead use in 

modern coatings, many states have laws requiring specialized removal and 

treatment of existing lead coatings in and on structures. Lead leaches out readily 

from coatings over the total range of pH with as much as 80% of the total lead 

escaping at low pH75. 

The common lead pigments used in coatings consist of powdered lead 

(Pb), calcium plumbate (Ca2Pb04), lead suboxide (Pb+PbO), red lead 

(PbOPb02), and white lead, (PbC03)2Pb(OH)2). Lead provides protection by a 

mechanism involving degradation of compounds and the formation of lead soaps. 

These then degrade in the presence of water and oxygen to yield a variety of 

compounds which are inhibitive. The most important being lead azelate76. The 

resulting lead azelate and other lead compounds inhibit rust formation by 

blocking defects in the naturally occurring oxide film on the iron surface or 

possibly by interfering with the cathodic reduction of rust to magnetite77. 
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Metallic lead can protect steel galvanically by acting as an anode and 

thereby limiting the steel surface to the cathodic reduction of oxygen eliminating 

damage to the surface78. There is also anodic inhibition due to Pb(OH)2, and a 

scavenging of oxygen resulting in an oxygen deficient condition on the steel 

surface79. Lead based anticorrosive paints have been developed specifically for 

ship hull and other in service use in the naval environment80. Given the anti-lead 

legislation and strict regulation by the EPA as well as the Navy's goals of being 

ahead of the EPA in terms of coating compliance it is clear that there is no longer 

any place for the lead based pigments in Naval applications. 

Non-Toxic Inhibitors 

The area of non toxic environmentally friendly corrosion inhibitors is one of 

great interest. Efforts are put forth toward studying any compound with even a 

glimmer of hope as being functional in regards to corrosion protection. Any 

listing or tallying of pigments investigated for anticorrosion properties would be 

remiss in thinking that none had been overlooked. This section will cover the 

most widely accepted and used pigments as well as some of the newer pigment 

technologies. 

It is often difficult to compare results between authors as both the methods 

used and the methods of reporting corrosion protection efficiency vary greatly. 

The most complete and recent comparison of anticorrosion pigments was 

reported by A. Kalendova81. It involved studying many of the most significant 

modern anticorrosion pigments under standardized conditions in accelerated 
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corrosion environments. The results of this work are presented in Table 1-3. The 

author concludes with two comments worth noting here. The first is that some 

pigments are sensitive to overdosing with drastic loss in performance with 

increased loading, including those used in the study. The other is that modern 

environmentally friendly pigments have excellent anticorrosion efficiencies 

compared with the chromate and lead based pigments of the past. 

Table 1-3: Results of Kalendova Anti-Corrosion Pigment Study 

Anticorrosion pigment 
zinc phosphomolybdate 
calcium hydrogen phosphate 
organic modified zinc phosphate 
calcium metaborate 
zinc phosphate 
zinc aluminum phosphate 
strontium chromate 
zinc dust 
calcium ferrite 
calcium borosilicate 
strontium aluminum polyphosphosil 

Ranking @ 
PVC = 10% 

1 (best) 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 (worst) 

Ranking @ 
PVC=CPVC 

2 
5 
4 
8 
3 
1 

10 
6 
9 
7 
11 

Phosphates 

By far the most commonly used and most effective* of the non toxic 

inhibitors are those belonging to the phosphate family. A number of different 

cations are available to make up the phosphate salt. These include aluminum, 

barium, calcium, potassium, zinc and others. Zinc phosphate, along with the 

* although zinc molybdenum phosphate is discussed under molybdates it is a modified phosphate 
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other phosphate pigments have anticorrosion efficiencies that typically rise with 

an increase in pigment concentration81. 

Zinc phosphate was one of the earliest non toxic replacements for the lead 

and chromate based pigments. It has been proven to be an efficient substitute for 

zinc chromate, especially for immersion applications82. The mechanism of zinc 

phosphate protection on steel is reportedly by phosphate ion donation83. This 

phosphate ion is used to build up a protective film on the anodic area of the iron 

surface84. This protective phosphate layer on steel consists of a mixture of 

hydrated insoluble metal phosphates: hopeite, Zn2(P04)2 • 4H20 and 

phosphophyllite, Zn2(Fe,Mn)(P04)2» 4H2085. In addition to the development of a 

protective ferric phosphate layer on the steel surface there is a blockage of pores 

caused by diffusion of free ferric phosphate precipitate reducing the transport of 

water and harmful ions to the corrosion sites to further inhibit damage86. 

Zinc phosphate pigment anticorrosion efficiencies can be increased by 

modification, especially in the neutral aqueous sodium chloride environment87. 

The addition of calcium cations into the coating via calcium exchanged silica can 

produce a modified phosphate film containing calcium phosphate which imparts 

effective inhibition of corrosion by limiting oxygen access to the metal surface88. 

Furthermore a synergistic effect between zinc phosphate and a modified zeolite 

rock allows for decrease in zinc phosphate content in a coating at the same 

protection levels.89 

Zinc aluminum polyphosphate, another modified zinc phosphate pigment, 

showed superiority over unmodified zinc phosphate in EIS data and polarization 
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experiments . Polyphosphates with cations of calcium, magnesium, or zinc 

protected steel in artificial sea water by the precipitation of a thin amorphous film 

on cathodic areas91. Polyphosphates represent the possibility of increasing the 

phosphate content and thereby increasing the efficiency of an anticorrosion 

pigment92. The most important polyphosphates are tripolyphosphate and 

hexametaphosphate93. 

Calcium acid phosphate, a cheaper pigment, has better corrosion 

protection under salt spray testing then zinc phosphate and comparable 

protection to zinc tetraoxychromate94. Furthermore, polarization results show an 

almost complete inhibition of the cathodic oxygen reduction reaction by calcium 

acid phosphate (Ca(H2P04)2)-

Molybdates 

Molybdate based pigments are anodic passivators that form a ferric 

molybdate layer over the metallic substrate thereby inhibiting both the anodic and 

cathodic reactions of corrosion95. The use of molybdates is somewhat limited 

due to their high price and they are often used in combination with other inhibitive 

pigments96. The four most popular molybdates for anticorrosion pigments are 

basic zinc molybdate, basic calcium zinc molybdate, basic zinc molybdate 

phosphate, and basic calcium zinc molybdate phosphate66. 

Of the molybdates, zinc molybdenum phosphate has the highest reported 

corrosion control reportedly due to a synergistic effect between the phosphate 

and molybdate ions97. Zinc molybdenum phosphate has higher anticorrosion 
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performance compared to zinc phosphate, zinc and iron phosphate, zinc 

aluminum phosphate, and basic zinc phosphate proven by salt chamber studies 

and EIS measurements where the capacitance for the molybdate was the lowest 

for the longest period of time98. The protective characteristics of zinc 

molybdenum phosphate pigments have been reported to be close to those of 

strontium chromate pigments which make it a viable replacement for the toxic 

chromate". Performance of zinc molybdenum phosphates can be even further 

enhanced by the additional presence of zinc oxide pigments due to an 

electrostatic attraction between the molybdate anion and the positively charged 

surface of the zinc oxide particles100. 

Borates 

Barium metaborate (Ba (B02)2«nH20) is the most commonly used borate 

inhibitor industrialy with application across a broad spectrum of binder systems66. 

Alkalinity and anodic passivation from the metaborate ion are the primary modes 

of protection. These systems are considered environmentally acceptable due to 

relatively low acute and chronic toxicity of the barium ion and a low effect of 

barium and borates on the environment101. Peak anticorrosion performance has 

been reported at barium metaborate concentrations of 20 parts by weight102. The 

chief disadvantage of borate pigments is their high solubility which makes it 

unacceptable for use in some water borne binder systems. 
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Silicates 

Silicates are not suitable for anticorrosion coatings that are meant for 

immersion applications66. They are chiefly used in oleoresinous systems where 

they form inhibitive soaps with ions from other pigments in the system. 

Common anticorrosion silicate pigments are calcium borosilicate, calcium barium 

phosphosilicate, calcium silicate and calcium strontium phosphosilicate. They 

work as a blocking pigment as well as having some active functionality based on 

their ionic nature and in some cases their basicity103. These pigments find use in 

light duty coatings due to their lower performance when compared to other 

anticorrosion pigments104. 

Ion Exchange Pigments 

Few references have been found with mention of ionic exchange pigments 

or mechanism in regards to anticorrosion coating. The references found are 

vague mentioning a pigment consisting of a silicate anion and Ca2+ cations105. 

The mechanism of ion exchange indicated is that the pigment exchanges Ca2+ 

with harmful species, the Ca/silica interacts with the binder and improves 

crosslinking, or the silica and calcium become mobile and form a protective layer 

on the metal surface106. Shieldex is a commercially available pigment based on 

this principle107. Shieldex is recommended for use in coil coating primers or one 

and two coat wash primers and does not find application in naval immersion 

coatings108. 
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1.2.2.3 Electrochemically Active Pigments 

The galvanic pigment acts as the sacrificial cathode in the coating, 

protecting the steel substrate. They are typically a powdered metal with the 

limiting conditions being the metal selected must be less noble then the metal 

substrate it is trying to protect. In addition to this criterion, the metal oxide of the 

pigment must also allow for electron conductivity. This limits the selection of 

available metals for use in this type of system on steel substrates to zinc based 

particles. Zinc particles are widely used in primer coatings, with some modern 

zinc rich coatings approaching 98% PVC. The zinc oxide layer that occurs 

during the corrosion of these particles conducts electrically, due to inclusions of 

zinc metal in the layer. 

Zinc particles protect iron by a twofold process. First the zinc particles 

form a compact barrier to the ionic transport through the coating. Second, they 

protect by anodic zinc dissolution following the reaction shown in EQ 1-10109. 

Znjs) - • Zn2+
(aq) + 2e [EQ 1 -10] 

This anodic dissolution leads to formation of zinc oxide at the site of the cathodic 

reaction, i.e. the surface of the iron substrate or the zinc salt precipitates in the 

pore of a coating defect110. This zinc oxide layer acts as an efficient protective 

barrier layer against further transport of ionic species to the corrosion site111. 

1.2.3 Fillers 

Fillers are typically low cost materials added to a coating to lower the cost 

per volume, or in some cases to offer thixotropic control of coating viscosity. Talc 
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is very common as filler in anticorrosion coating systems. Other common fillers 

are titanium dioxide, magnesium aluminum silicate, and silica112. There have 

been reported cases where careful selection of a lower cost filler material has 

shown a synergistic effect and increased the performance of an inhibiting 

pigment such that it can be used at lower concentrations of the more expensive 

pigment at the same effectiveness113. 

1.2.4 Additives 

Additives in the anti corrosion coating are soluble and sometimes reactive 

compounds used in small quantities to give the coating specific properties. The 

function an additive can bring to a coating is quite diverse. Some examples of 

additive function are antifouling, increase flow ability, enhance surface adhesion, 

anti foaming, fire resistance, thickeners, etc. 

A few anticorrosion compounds are classified as an additive as opposed 

to a pigment. These organic anticorrosion additives are typically conducting 

polymers which are sometimes referred to as organic metals due to their ability to 

conduct electrons. The organic anticorrosion additive of primary interest is 

polyaniline (PANI) in the emeraldine (conductive) form. 

The corrosion protection provided by PANI is attributed to the passivating 

effect caused by the oxidizing ability of the emeraldine form114. The efficacy of 

PANI as a corrosion inhibitor in organic coatings is as of yet not clearly defined. 

One author reports that there is no beneficial effect of the addition of PANI to 

epoxy and alkyd based coatings115. Instead they report a decrease in corrosion 

30 



protection for an epoxy coating containing 0.3% PANI that also utilizes zinc 

pigmentation due to an increase in the formation of zinc oxide caused by the 

conductive pathway formed by PANI between zinc particles. In a different work, 

PANI was shown to actually increase the corrosion rate of the steel plates, along 

with altering the uniform corrosion of the controls to a pitting regime116. 

In stark contrast to these results, a more involved study showed across 

the board performance enhancement by the addition of PANI to epoxy based 

coatings containing differing inorganic anticorrosion pigments117. The best 

reported results were with PANI concentrations of 5 vol % for all pigments and a 

100% protection efficiency (zero corrosion) when combined with zinc dust (@ 

pvc/cpvc=0.65) after approximately 1500 hrs of salt spray testing. Another study 

reported that an anticorrosion coating containing dispersed PANI had 5 times 

longer coating life and protected at 25-60% lower coating thickness then other 

materials118. A composite particle produced from Ti02 and PANI shows 

improved results over PANI alone when utilized as anticorrosion additive in a 

coating and subjected to salt spray studies119. 

Polydiphenylamine (PDPA) is another conductive polymer under 

consideration as an anticorrosion additive. Coatings with concentrations ranging 

from 0-5% PDPA in a vinyl resin were used to characterize the anticorrosion 

behavior. Coatings with PDPA concentrations greater then 3% showed excellent 

corrosion protection of steel120. 
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1.2.5 Solvent 

Solvents are used to increase flow ability of the anticorrosion coatings in 

order to aid in applications of a smooth defect free coating. Additionally, a 

decrease in coating viscosity has been proven to result in better adhesion 

between coatings and steel substrates121. Solvents used for anticorrosion 

coatings fall into two categories, inert and reactive. Traditionally the solvents 

used were volatile organic liquids that evaporated from the coating prior to the 

gel point was reached. However today there are numerous regulations that limit 

the amount of volatile organic compounds in coating systems to relatively low 

levels122. 

Class I corrosion preventative compounds are identified by the US Navy 

as those with more then 340 g/L of VOC while Class II components have less 

then 340g/L123. The Navy no longer allows the use of Class I components with 

the exception of application for spot touch up and repair work124. They are 

currently striving to meet the reality of zero VOC anticorrosion coatings. The 

Navy has set the goal of exceeding current and future EPA regulations by 

adopting 100% solids anticorrosion coatings125. 

One solution to the zero solvent regulations is the use of reactive solvents. 

These are low molecular weight molecules with at least one functional group that 

is reactive and completely miscible with the coating system chemistry126. By this 

method it is possible to achieve a low viscosity in order to achieve adequate film 

formation and adhesion at application while still maintaining a 100% solids 

content of the coating to meet regulations and standards127. High solids anti-
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corrosion coatings have the additional benefit of being better at protecting 

against corrosion128. This increase in resistance is due to a more homogeneous 

film formation in solvent free systems129. 

1.3 Ion Sequestration Particles in the Anticorrosion Coating 

The ISPs developed as discussed in this dissertation would take on 

the roll of an active pigment in an anticorrosion coating. They could be utilized 

as a total or partial substitution for the current active pigments used for corrosion 

inhibition. ISPs added should not interfere with other aspects of the coatings to 

which they are added, such as their adhesion to the substrate, film forming 

characteristics, etc. Given the complex nature of the interaction between the 

various components (binder, active pigments, fillers, additives, and solvents) of 

the anticorrosion coating formulation, it is likely that the addition of ISPs at the 

commercial level would require some slight reformulation. 
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CHAPTER 2 

ISP SYNTHESIS 

This chapter describes in detail the synthesis evolution and experiments 

performed resulting in the final development of ISPs. The details of each 

experimental procedure as well as the process changes made during 

development are discussed here. Synthesis composition is covered in this 

chapter with the specific details of each chemical reaction performed during the 

course of this work provided in tabulated form for reference. Chapter 3 will 

describe characterization of the particles, and Chapter 4 will discuss the 

anticorrosion properties of the synthesized ISPs. 

2.1 Evolution of the Synthesis of Ion Sequestration Particles 

The goal of this work was to develop a successful synthesis process for 

ion sequestration particles (ISPs) that provide enhanced corrosion protection 

upon dispersal in an anticorrosion coating. These ISPs are designed to 

sequester free ions, as they are generated during the corrosion process as in the 

case of hydroxyl ions or as they diffuse through the coating as in the case of 

chloride ions. In order to maintain charge neutrality, the particles will release 

phosphate ions which function as corrosion inhibiting anions. The driving force 

for the ion exchange is the concentration gradient differential of the ions between 

the particle and the coating, and can be considered a diffusion controlled 
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process. This system is illustrated in Figure 2.1 where you see a particle in a 

coating matrix on a steel substrate and some possible ion exchange schemes. 

Coafag Matrix 

Figure 2.1: Ion Sequestration Particle in a Coating Matrix 

There has been considerable evolution of the ISP synthesis. Initially there 

were two congruent synthesis approaches proposed and investigated. One was 

based on the development of a core shell based ISP while the other aimed to 

develop a homogeneous ISP. 
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Figure 2.2: Synthesis Scheme for Initial Core Shell Approach 

The initial core shell approach as illustrated in Figure 2.2 utilized ionic 

bonding of short chain polyamines and phosphoric acid to make an ion 

sequestration core particle. Due to the rapid reaction between the acid and base 

this required development of an atypical dispersion method. The particles were 

made by drop wise addition of dilute monomers directly into a high shear field. 

Originally it was hoped that these core particles would be stable and useable on 

their own. Unfortunately this was not the case and the ionic core required further 

protection. The ionic coupled core particles were then stabilized by interfacial 

polymerization with either a multifunctional isocyanate or a multifunctional 

epoxide. Both of these monomers react by condensation polymerization with an 

excess of the amine functionality that was designed in to the core particles. 
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This technique synthesized solid ISPs that were dried into free flowing 

powders with particle sizes ranging from 1-100 um. However, the encapsulation 

of the ionic core material was incomplete and far from the desired core shell 

morphology. Upon mixing these particles with a MIL-DTL-24441 standard 

coating there was reaction causing a gelation of the liquid. Initially it was 

assumed that this was related to pigment shock. Further investigation revealed 

the problem to be more fundamental in nature. The ISPs were exchanging ions 

with amine components of the liquid monomers, in effect adding ionic crosslinks 

to the coating components. This rendered the coating system unusable by 

changing the liquid into a viscous slurry/loose gel. 
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Figure 2.3: Synthesis Scheme for Homogeneous ISPs 
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The alternate homogeneous ISP relied on a different synthesis 

route illustrated in Figure 2.3. The mechanism of this approach was to create an 

ionic coupled droplet of phosphoric acid and an amine containing monomer 

capable of radical polymerization. A dispersion of phosphoric acid in heptane 

was coupled with allylamine and other monomers including a crosslinker. The 

polymerization should have resulted in a homogeneous crosslinked polymer 

network bound to phosphate. This method produced ISPs for characterization, 

but was abandoned after 18 months due to difficulties stemming from the inability 

to produce allylamine based polymer chains beyond oligomeric length. This work 

is not presented in the body of this dissertation. The details are presented in 

Appendix I. 

38 



Dilute 
PE! Solution 

(1 wt %) 

Stirred 
Non-Solvent 

ofPEI 

Li JMMA m 
Low Temp 
Radical 

Polymerization 

Low Temp 
Centrifugation 

J *"Y Supernatant ] 

ilization J ^_ Lyophilization ISP 

Figure 2.4: Synthesis Scheme for PEI Solvent/Non-Solvent Approach 

Figure 2.4 illustrates a third synthesis scheme that was investigated after 

abandoning the homogeneous route and the inability of the core shell synthesis 

to successfully encapsulate the core. This approach was an alternative method 

to produce a core shell ISP. The concept was to use a solvent/nonsolvent 

system for polyethylenimine to produce core particles. Polyethylenimine 

(Mw=60,000) was dissolved, at dilute concentration, in a good solvent. During 

slow drop wise addition of the solution into a miscible liquid that was a 

nonsolvent of the polymer the good solvent disperses and the polymer 

precipitates as a "dried" polymer particle. The dispersed particles were then 
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encapsulated. Fine dispersions of particles in the 100-200 nm range were 

synthesized by this method. This method required difficult drying schemes 

involving low temperature centrifugation and lyophylization due to low 

temperature transitions of the synthesized particles. It was considered 

unsuccessful and offers little in regards to the successful synthesis route of this 

work. At this time it was also attempted to produce particles by fine mechanical 

grinding of bulk dry ion sequestering core material based on PEI, but this was 

also unsuccessful. Detailed discussion of this work is left out of the body of this 

dissertation, but is available in APPENDIX 2. 
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Figure 2.5: Synthesis Scheme for WISCM based ISPs 

In the face of failure, a step back was taken to garner a fresh perspective 

on the development of a new synthesis scheme for ISPs as seen in Figure 2.5. 

This new scheme utilizes a wet ion sequestration core material (WISCM) 

encapsulated by a layer of polymethylmethacrylate (PMMA). Then by a 

controlled drying process the water was removed from the core. This method 

produced the first viable ISPs capable of incorporation into an anticorrosion 

coating. However this does not represent the final evolution of the ISP synthesis. 
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The drying process was difficult and resulted in ruptured capsules if not carried 

out precisely. 

Figure 2.6: Synthesis Scheme for SISCM based ISPs 

Upon successfully synthesizing WISCM based ISPs, it was deduced that if 

a WISCM could be encapsulated and protected by this technique the same could 

42 



be done with a solid core. The best particles from the initial synthesis scheme 

were selected and dispersed in heptane. They were encapsulated with PMMA in 

an inverse phase precipitation interfacial polymerization. These particles were 

viable as they were successfully incorporated into an anticorrosion coating. This 

final synthesis is more somewhat straightforward, reproducible, and produces 

ISPs that when then mixed with an anticorrosion coating system results in 

improved corrosion protection, as seen in later chapters of this text. The 

synthesis scheme is presented in Figure 2.6 and the details are presented fully in 

the following sections of this chapter. 

2.2 Synthesis of Ion Sequestration Particles 

This section will describe the details of the experimental procedures used to 

synthesize the ISPs. This will be discussed in three parts. First the WISCM 

process is discussed in detail. Next the initial unsuccessful core shell synthesis 

is described, as these particles were later used as the solid ion sequestration 

core material (SISCM) in the final evolved synthesis. Finally, the successful 

combined synthesis utilizing the particles made in the initial process and the 

encapsulation developed as part of the WISCM synthesis is described. 
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2.2.1 Encapsulation of Wet Ion Sequestering Core Material 

Figure 2.7: Precipitation of Polymer on WISCM in Heptane 

This synthesis of an ISP differed from other approaches in that the initial 

encapsulation was of a liquid phase. Wet ion sequestration core material 

(WISCM) was dispersed in heptane by sonification. Then the droplets were 

encapsulated by an inverse phase precipitation polymerization of 

methylmethacrylate (MMA) in heptane as represented in Figure 2.7. The 

encapsulated ion sequestering liquid needed to be dried after the encapsulation. 

Successful drying was achieved by a controlled low pressure distillation process 

that allows the water to be separated from the distillate while refluxing the 

heptane. 

2.2.1.1 Wet Ion Sequestration Core Material 

The WISCM developed is chemically similar to previous ISP core 

materials. The primary difference is that it is solvated with water. WISCM 

consists of polyethyleneimine (Mw= 60,000) ionically associated with phosphoric 
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acid. For all of the experimental work done with this method the WISCM is of the 

composition shown in Table 2-1. 

Table 2-1: WISCM Composition 
Component 
Water 
PEI 
H3P04 

Mass 
140 
10 
6 

% 
90% 
6% 
4% 

WISCM is prepared by first diluting 10g of PEI into 90ml_ water and 6g of 

phosphoric acid into 50 ml_ or water. The two solutions are then mixed together. 

The resultant liquid is a transparent solution. The solution is then boiled under 

reflux for one hour with an argon purge to remove any dissolved oxygen. 

2.2.1.2 Encapsulation of WISCM 

Previous attempts at ISP synthesis (see APPENDIX 2) provided the 

knowledge of a low temperature transition in the PEI (@ ~25C) which required 

the temperature to be kept to a minimum during the encapsulation process. If the 

encapsulation was attempted at a temperature above 50 C there was 

agglomeration to the point of almost complete separation (ZZZONR020107). To 

meet this requirement low temperature radical generating initiators for the 

polymerization of MMA were investigated with the results presented in Table 2-2. 
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Table 2-2: Experiments in the Investigation of Low Temperature Initiators 
Experiment ID 

ZZZONR092906 
ZZZONR100206 
ZZZONR100306 

ZZZONR110306 
ZZZONR110606 
ZZZONR110806 

Low Temperarature Initiator 

benzoyl peroxide - phosphoric acid 
benzoyl peroxide - triethylamine 
benzoyl peroxide - ascorbic acid 
benzoyl peroxide - cobalt napthanate 
WAKO Chemical V-70 
benzoyl peroxide-cobalt napthanate 

Description of Result 

no precipitate 
amber discoloration, no precipitate 

no precipitate 
solid polymer formed 
white polymer precipitate 
solution browned, polymer precipitate 

The first successful system (ZZZONR110306) for low temperature radical 

polymerization of MMA for encapsulation utilized a redox couple of benzoyl 

peroxide with cobalt naphthenate. This system successfully polymerized MMA 

at room temperature but PMMA was not produced under WISCM encapsulation 

conditions utilizing this system. It was suspected that the core material was 

interfering in the redox couple of the initiator system preventing or scavenging 

the low temperature generation of radicals. 

A low temperature initiator made by WAKO Chemicals Inc has been 

successfully utilized in other unrelated projects and was selected as the initiator 

for the polymerization of MMA for WISCM encapsulation. WAKO's V-70 (Error! 

Reference source not found.) has a half life of 10 hrs at 35C and is the lowest 

temperature solvent soluble azo-initiator commercially available. V-70 was 

successful in polymerizing MMA which in turn precipitated at the interface 

encapsulating the WISCM droplets. 
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Figure 2.8: Chemical Structure of V-70 
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The procedure (ZZZONR120706) used to successfully encapsulate the 

WISCM in PMMA was as follows. Into a three neck round bottom flask is placed 

200ml_ of heptane, 20ml_ of WISCM solution, and 3g of SPAN83 surfactant. The 

temperature is maintained at 35C with a temperature probe inside the flask. A 

condenser at 5C is used to minimize the loss of heptane as vapor. A Branson 

Sonifier 450 with a Vz diameter tip is used to sonicate the solution for 20 minutes 

at an 80% duty cycle and output power of 7. The sonifier disperses the WISCM 

solution in the heptane. The sonifier power, duty cycle, tip size, and sonification 

time control the size of the droplets of WISCM produced. 

WISCM droplets produced by the sonifier were not stable on their own. A 

low HLB surfactant was needed to help stabilize this water in oil emulsion. 

Investigation (ZZZONR102306 & ZZZONR112807) of several likely candidates 

for the best surfactant was performed by producing dispersions of WISCM in 

heptane and then observing the stability of the suspension with different 

surfactants. The results are presented as Table 2-3. SPAN 83 was selected as 

the surfactant for use for the WISCM process as it maintained the suspension for 

a period of several hours. 

Table 2-3: Surfactants Studied for WISCM Dispersion Stabilization 
Surfactant 
Symperonic PE/F68 
Span 60 
Span 83 
Tween 80 

HLB 
N/A 
4.7 
3.7 
15 

Effect on Dispersion 
separation by 15 min 
separation at 3 min 
stable for several hours 
settling after 5 to 10 minutes 

Agitation was supplied at 300 rpm by an overhead shaft mixer after the 

generation of the inverse phase emulsion by the sonifier. Next 5g of MMA was 
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added to the flask and the system purged with argon for 30 minutes. Then 0.050 

g of V-70 dissolved in 2 ml_ of toluene was added and the system was allowed to 

react for approximately 48 hrs under nitrogen. Table 2-4 shows a summary of the 

components used in this experiment, the quantity used, and the weight 

percentage of the total mass. 

Table 2-4: WISCM ISP Formulation 
Chemical 
Heptane 
WISCM 
Span 83 
MMA 

Mass (g) 
200 
20 
2 
5 

Weight % 
88.1% 
8.8% 
0.9% 
2.2% 

2.2.1.3 Drying of PMMA Encapsulated WISCM 

The encapsulated WISCM next underwent a process for removal of water 

from the core. The technique developed to remove the water utilized a controlled 

partial vacuum at slightly elevated temperatures. Initial drying attempts using 

high temperatures (T>100C) resulted in vaporization of the water in the WISCM 

and destruction of the PMMA capsules due to rupture. 
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Figure 2.9: Experimental Apparatus for WISCM Drying 

A 10mL distilling receiver was used in this step to collect the water 

removed from the encapsulated WISCM. The experimental set up shown in 

Figure 2.9 consisted of an oil bath, round bottom flask, distillate receiver, 

49 



condenser, vacuum pump, and digital vacuum regulator. As the heptane and 

water condense they run down collecting in the receiver. The heptane being less 

dense and immiscible with water separates to the top in the receiver. As the 

condensate fills the receiver flask the heptane being on top was refluxed back 

into the RBF. The water is collected in the bottom of the receiver. The amount 

was quantified by reading the graduations or by drainage after bringing the 

system back to atmospheric pressure and opening the valve at the base of the 

receiver. The drying was stopped when the volume of water in the receiver no 

longer increased. 

The experimental parameters identified to yield a successful drying 

process were a temperature of 57C with the vacuum regulator set at 180 mm Hg. 

This provides conditions where the water was slowly removed through the PMMA 

wall. If too rapid a drying process was used the capsules ruptured resulting in 

failure to synthesize ISPs. This happened in the earlier high temperature drying 

experiments that resulted in agglomeration and degradation of the ISPs. 

2.2.1.4 WISCM Encapsulation Experimental Variations 

After the first successful encapsulation and drying of WISCM based 

ISPs(ZZZONR120706)), the experiment was repeated. The process succeeded 

in being reproduced one additional time showing that the encapsulation of the 

WISCM is reproducible. However two of the repeated experiments failed to 

produce particles resulting in a 50% success rate for the synthesis process. 
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The next evolution involved changing the agitation in the experimental 

apparatus. In the first successful WISCM synthesis, agitation was provided by a 

25mm football shaped magnetic stir bar in the RBF. One of the reproducibility 

failures was suspected to be due to an unstable suspension. If this was the case 

it was likely caused by a lack of sufficient agitation from the magnetic stir bar. 

The WISCM suspensions generated by the sonifier were not stable for more then 

a period of hours without continued agitation. The experimental set up was then 

changed to one that utilizes an overhead mechanical stirrer with a hemispherical 

mixing blade which results in an increased agitation in the flask and the 

suspension was better maintained. 

This process change once again failed to yield a successfully 

encapsulated WISCM particle. The oligomer chains did not seem to be 

precipitating at the WISCM droplet surface as the polymerization progressed, 

possibly due to the increased shear field generated by the mechanical mixer. 

Instead there was a formation of new particles of polymer in the bulk phase 

leaving the WISCM unencapsulated. Failure to encapsulate the WISCM was 

easily detected as unencapsulated WISCM yellows rapidly after only a few days 

when not protected by encapsulation. This can be seen in Figure2.10, where the 

right hand jar contains unencapsulated WISCM solution which has yellowed as 

amines are known to when unprotected130. 
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Figure 2.10: Comparison of encapsulated WISCM (left) and unencapsulated 
WISCM (right), both as suspensions in heptane 

Attempts to vary the shell wall composition were made by copolymerizing 

MMA with BA and BMA. This was done in an attempt to be able to decrease the 

glass transition temperature (Tg) of the shell material from the 105 C Tg of 

PMMA. The lowering of the glass transition temperature would result in a softer 

shell which in turn would allow for the more rapid transport of water and ions 

through the shell wall. Towards this a number of experiments were performed 

where co-monomers were used to produce lower Tg which was predicted by the 

Fox equation. The results of this are shown in Table 2-5. 

Table 2-5: Calculated Tg Values o Comonomer Shell Experiments 
Experimental ID 
ZZZONR041907 
ZZZONR050107 
ZZZONR051507 
ZZZONR052207 

Monomer A 
MMA 
MMA 
MMA 
MMA 

Monomer B 
BA 

BMA 
BMA 
BMA 

WA 

0.480 
0.252 
0.332 
0.335 

wB 
0.520 
0.748 
0.668 
0.665 

Tg(K) 
274 
311 
317 
317 
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The result of these experiments was that it was not readily possible to 

encapsulate the WISCM successfully with a copolymer. While copolymers were 

made during these experiments, they did not encapsulate the WISCM. This is 

likely due to the low temperature polymerization scheme used, coupled with the 

different reaction rates for the copolymerizations. Additionally the copolymers 

might not be as thermodynamically driven to the interface between the WISCM 

and the heptane as was the PMMA homopolymer due to polarity differences or 

changes in the zeta potential of the system. 

2.2.1.5 Summary of WISCM ISP Experiments 

The WISCM encapsulation was capable of producing ISPs with a limited 

50% success rate (ZZZONR120706 and ZZZONR010307). The success of the 

dried ISPs was shown when they were mixed with the amine component of a Mil 

P-24441 epoxy coating. After a week the mixture was still liquid, transparent, and 

there was no observable viscosity increase. The amine was then mixed with the 

epoxy component and cured. This was the first successful dispersion of an ISP 

into the MIL-DTL-24441 coating. 

Table 2-6 contains the experimental data in a compact form for the 

synthesis experiments done under the WISCM encapsulation presented in this 

section. 
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Table 2-6: Experimental Details for WISCM Based ISPs 
Experimental ID 

ZZZ0NR111406 
Solvent (mL) | WISCM (mL) 

100 | 20 
Surfactant (g) 

3 
MMA(g) 

5 

Temp. (C) 
45 

Span 83 as surfactant Result was a solid mass of polymer Possibly temperature related 
ZZZONR112706 | 200 | 20 | 1.2 | 5.031 35 
Tween 80 was used as surfactant. Suspension failed and particles agglomerated and settled. 
ZZZONRI13006 | 200 I 20 2 I 5 109 35 
Span 83 from this point on Produced particles Problem with purge gas 
ZZZONR120706 | 200 | 20 | 2 I 5 35 
Encapsulation success. Heptane dried @ stp, then particles redispersed in heptane 
ZZZONR010307 | 200 | 20 | 2 | 4.95 335 
Succesful encapsulation more particles for drying 
ZZZONR020107 | 50 5 0.3 6 80 
Higher temperature, complete agglomeration of WISCM and polymer. Unsuccesful 
ZZZONR022207 | 200 | 20 | 2 5 35 
WISCM settled problem with magnetic stirring'' Polymer layer formed on top of WISCM 
ZZZONR032007 | 300 | 20 | 2 I 5 35 
switch to mechanical stiring. More solvent added to raise level for stir blade 
ZZZONR032207 | 150 0 3 drops | 14 331 50 
testing MMA & V70 at higher Temperatures 
77ZONRH v. •• 7 • •!» ,'" *> ' " 
This m,i>|. | ( | ,m-r hul <li-' IKJI —M i[.suht' Urii-d \<i slh V, snhii .IN.' ,H>|I'I*.I- 11 vidl 
ZZZONR041907 | 200 | 20 | 1 I see below 
2 51 g MMA / 2 72g BA copolymer No capsules Rapid yellowing of suspension 
ZZZONRC^t'iir i n , .i 4 , i " | s ' . \ -n 80 S" I *-!<'.'. 

i 

' 35 

4'i 

3.071g MMA" 112 i BMA >| '>|.,m. r i ill n \<> In 1- i fW • uld copol>mr-ri7r- ^ Tjs on DSL 
ZZZONR051507 100 0 13 drops tween 80 see below 40 
6 03g BMA 3 003g MMA another attempt to get copolymer Low >ield only 48 \< 
ZZZONR052207 | 100 20 | 0 see below 40 
3.078g MMA, 6.12g BMA similar results to ZZZONR051507 copoly shell abandoned 

2.2.2 Synthesis of a "Core Shell" ISP 

This section discusses the initially unsuccessful particle synthesis. This 

approach was initially designed to produce the ideal ISP that of a core shell 

morphology. This process was not successful at producing ISPs independently 

but it is presented here because this work is the foundation of the successful 

synthesis process discussed later in this chapter. 
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Coating Matrix 

Figure 2.11 Depiction of an Ideal Core Shell ISP 

The ideal ISP would be of core shell morphology consists of an ion 

sequestrating solid core material surrounded by a crosslinked polymer shell as 

shown in Figure 2.11. The shells function is to protect and contain the core 

material from dissolution and reaction with components of an uncured coating 

system. The fundamental synthesis of the ion sequestering core is based around 

the ionic association of phosphoric acid with a linear polyamine inside a high 

shear field forming microparticles. This ionic association is able to interact by ion 

exchange with harmful anions involved in the corrosion process, most notably 

hydroxyl and chloride ions. 
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Table 2-7: pKa's for Ion Segues tration Core Materials 

H3P04 

TEPA 

pKaj 

2.16 

9.68 

pKa2 

7.21 

9.1 

pKa3 

12.32 

8.08 

pKa4 

4.72 

pKa5 

2.98 

The phosphoric acid has three protons that can be utilized for the ionic 

bonding with the TEPA. However, the pKa for the third proton is 12.32 which is 

too high for any of the amine moieties present in TEPA to associate. Therefore 

the amine moieties can only associate with two of the phosphoric acid protons. 

The acid/base reactions result in a crosslinked network as represented in Figure 

2.12. The chemical components are formulated in such a way that there is an 

excess of amine functionalities after the first acid/base reaction with the 

phosphoric acid. 
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Figure 2.12: Ionic Association of Monomers 

After the first step is completed such that the amines have associated with 

the phosphoric acid forming the ionic core of the particles, a second monomer is 

added to the system. This secondary monomer reacts with the excess amines 
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designed into the core of the initial particles. This should form a hard shell on the 

surface of the particles. Instead it more likely forms a rigid structure that supports 

but does not encapsulate the ionic core. 

Two different chemicals, isocyanates and epoxides were investigated as 

they both can react with the excess amines to generate the shell material. An 

isocyanate moiety reacts with the excess amines to form urea bond (EQ 2-1). 

H H 

R—NH2 + O C N " R " % , / V N , 
R jf R" 

0 [EQ2-1] 

In addition the isocyanate can also self polymerize, with the amine 

moieties acting as a catalyst, forming isocyanurate bonds (EQ 2-2) 

O 

RV A .R" 
3 / R " *" 

OCN 0 = d =0 

R " [EQ2-2] 

Likewise the core materials excess amines can react with an epoxide by 

nucleophilic addition to produce an epoxy bond. 

A R" H°\ 
R 2 K/— \^R 

H [EQ 2-3] 

The reaction between the isocyanate and primary amines is very fast K|So-

NH2 ~ 16,000 (L/mol/s) and highly exothermic with AHRXN = -197,000 J/mol 131 at 

30C. The speed of this reaction makes working with this chemistry challenging. 

The epoxy amine reaction is much slower with KEPOXY-NH2 ~ 5 (L/mol/s) at 30C 
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. The slower epoxy amine reaction provided different problems than the 

extreme speed of the isocyanate amine reaction. 

2.2.2.1 Batch Process Synthesis 

Syringe 

(dropwise addition) 

Dispersing 
Element 

Figure 2.13: Schematic of Batch Process 

A batch process (Figure 2.13) with a 10% reactant concentration was 

selected for the initial experimental synthesis (ZZZONR061504). The early 

experiments were all formulated with a 30% excess of TEPA over that needed for 

complete association with the phosphoric acid. The TEPA (19.6g) was dissolved 

Ultra Turrax 
(homogenizer) 
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in 200ml_ of heptane and placed in the reaction vessel, a 500 ml_ polypropylene 

jar. Agitation was provided by an IKA Ultraturrax T-25 High shear mixer at a 

speed setting of 3 on a scale of 1-6. The reactor was cooled by immersion in an 

ice/water bath as the acid-base reaction between the amine and the phosphoric 

acid is exothermic and the Ultraturrax also generates heat. The phosphoric 

acid (4.68g, 99.9% pure, melted at T=40C) was then added drop wise from 

above by a gravity feed though a needle. After the phosphoric acid was added 

the reactor was allowed to mix for 20 minutes with the shear field from the 

Ultraturrax high shear mixer applied. 

This first experiment failed to produce particles. Instead it resulted in two 

distinct liquid phases. Insolubility of the phosphoric acid and TEPA in the 

heptane required a change of solvents as the reaction was not proceeding in the 

inverse phase dispersion as expected. The solvent was first switched to 

chloroform due to the density as well as increased solubility of the TEPA in this 

phase. A commercial stabilizer molecule, nonylphenyl pentaethylene glycol (NP-

5) was added in an effort to stabilize the suspension. The synthesis was 

repeated with NP-5 at a concentration of 0.5% by weight of the reactants in the 

dispersed phase of chloroform. These changes resulted in what appeared 

under visual observation in a light microscope to be agglomerations of particles 

stuck together. The ionic bonds formed by the association of the amine with 

phosphoric acid are not fixed as they would be if they were covalent. It can be 

deduced that without any covalent bonds to stabilize the particles they can and 

do agglomerate. 
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In order to provide the individual particles produced with a more robust 

structure, a difunctional isocyanate was used to produce a covalently bonded 

matrix or shell around the core particle. Hexane di-isocyanate (HDI) was 

selected and used to this end. Experiments were carried out as before, but after 

the complete addition of the phosphoric acid, HDI (3.998g) was added slowly 

drop wise from a syringe over a 20 minute period. In later experiments the 

isocyanate was changed to toluene diisocyanate (TDI) after checking the 

solubility of several isocyanates in chloroform. 

Addressing the health concerns of using chloroform (carcinogenic) as the 

solvent for these experiments, several other solvents were investigated for the 

solubility of the reactants. N-methyl pyrrolidone (NMP), dimethyl sulfoxide 

(DMSO), water and acetonitrile (ACN) were investigated as substitute solvents. 

ACN was selected based on solubility of reactants and physical properties. It 

was important that the solvent chosen had a low boiling point to facilitate easy 

removal during the drying of particles. ISPs are required to be solvent free for 

their addition into the anticorrosioh coatings as the solvent could change the 

properties of the coating and the Navy has the goal of a solvent free 100% solids 

coating system. 

The first successful synthesis of dry solid ISP (ZZZONR070104) was 

produced by TEPA (19.5g) in 200 ml_ of ACN with the addition of Laurie Acid 

(0.140g) as an alternative stabilizer molecule. Another change was the dilution 

of phosphoric acid (4.659g) in ACN to 10% concentration prior to addition. 

Similarly the TDI (4.14g) was diluted to 10% concentration in ACN. The addition 
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rate of the now dilute reactants was controlled by the use of a programmable 

syringe pump and a Popper and Sons 50ml glass syringe with a 28 gauge 

needle. A flow rate of 1.0 mL/min was used. 

At best, batch synthesis contained significant agglomerations and 

coagulum with large amounts of undispersed bulk material synthesized. The 

rapid reaction of the acid/base as well as the speed of the amine/isocyanate 

reaction was producing more solid bulk waste material than good particles. In 

order to overcome the speed of this reaction it was determined that the 

monomers need to be injected directly into the shear field generated by the 

ultraturrax tool. The synthesis was changed from a batch process to a semi 

batch process. Experimental composition details for the work described in this 

section are presented in Section 2.2.2.3. 
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2.2.2.2 Semi-Batch Process Synthesis 

Outlet to Reactant 
Resevoir 

Inlet from Pump 

Inlet from Syringe Pump 

Figure 2.14 Cross section Showing Modified Continuous Cell 

The transition from a batch to a semi-batch/semi-continuous synthesis 

was made possible by the purchase and modification of a continuous flow cell for 

the Ultraturrax. A custom inlet adapter was fabricated to allow for a needle 

(shown in gold) to disperse the reactants directly into the shear field of the 

Ultraturrax continuous cell as depicted by the red base piece in the cross 

sectional drawing as Figure 2.14. The Ultraturrax rotates the inner shaft with a 
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crenellated mixer blade at variable speeds ranging from 5,000 to 60,000 RPM 

and by doing so generates a shear field internally in the center of the cell. By 

adding the reactants directly into this shear field they were potentially dispersed 

faster then they reacted resulting in the successful synthesis of ISPs. 

Additional process changes included the addition of a peristaltic pump 

utilized 14" silicone tubing for circulation of reactants from the reservoir through 

the cell and back into the reservoir. A mechanical mixer was used to maintain a 

uniform concentration profile in the reactant reservoir. The semi-batch process 

schematic is shown as Figure 2.15. 

D Ultraturrax 

/ \ 

Syringe pump 

H 

Figure 2.15 Process Schematic Semi-Batch Synthesis 
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This process had numerous difficulties during development, most of which 

stemmed from the reaction speed of both the ionic coupling and the 

encapsulation. The most common failure was a blockage of the needle tip. If the 

reactants were not ejected from the needle tip at sufficient rate, the reaction 

proceeded faster then the fluid flow rate and caused a blockage of the needle. 

Upon determining the appropriate reactant concentrations, flow rates and needle 

placement the system aspirated the reactants from the needle and syringe by the 

negative pressure differential generated in the center of the shear field. 

The experimental process for synthesis of ISPs by the semi-batch process 

(ZZZONR040506) starts with the preparation of the three solutions. Solution A 

consisted of TEPA (15.00g), and mono n-dodecyl phosphate (1.48 g) dissolved 

in 250 ml_ of ACN. Solution A was placed in the reservoir and circulated by the 

peristaltic pump with the speed setting on 45 out of 99 on the pumps arbitrary 

scale which corresponds to a flow rate of 6.1 mL/s. The ice bath surrounding the 

reservoir was filled with ice and water. The Ultraturrax was started after the 

circulation of Solution A began. Solution B, consisting of phosphoric acid (11.65 

g) dissolved in 100 ml_ ACN at 50 C, was injected by a syringe pump into the 

shear field of the continuous cell. After all of Solution B was injected, circulation 

was allowed to continue for 10 minutes and the ice in the bath was replenished. 

Next Solution C, consisting of TDI (10.35 g) dissolved in 40 ml_ ACN was injected 

into the continuous cell. After the injection of Solution C formed the shell material 

the flask was transferred to a rotary evaporator. The solvent was removed by 
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evaporation at low pressure (<10 mm Hg) and a temperature of 40C. This 

process, after many iterations and refinements, was successful in producing ISPs 

of varying size and functional ratios. 

2.2.2.3 Summary of Core Shell ISP Experiments 

The experimental data for the synthesis of particles described throughout 

this section are presented in a compact format as Table 2-8 for the batch process 

and Table 2-9 for the semi-batch process. The experimental designation, mass 

of reactants and a brief description is presented for each experiment. 

Table 2-8: Experimental Details for Batch Process ISPs 
S w i s h © -
ZZZONR061504 

Mass TEPA 

19.5 

MassH3P04 

4.66 

Mass Encapsulate 

0 
Encaesulant 

N/A 
Mass Stabilizer 

o 
Stabilizer 

N/A 
sohrentimU 

200 
Solvent 
Heptane 

No Particles formed, Separated into two phases 
Z2ZONRQ61504C | 196 | 466 o N'A 01213 NP5 200 Heptane 
No Particles faired Separated into two phases 
ZZZONR061504 195 46 
Sincetre synthesis fa-led in Hep'ane So'.eT \as s.vch 
ZZZONR061804 | 1575 466 

0 NA 
3d oCnlo'oforr Unpa-dcec ln idb i 

o N/A 

0156 

t some part cles 
0102 

NP5 

NP5 

200 

200 

Chioro'orrr 

Chloroform 

Decreased the ammounts of excess anme, no improvement shown 
ZZZONR062104 19.5 4.65 3.998 HDI 0.141 NP5 200 Chloroform 

Addition of HDI as an encapsulant/shell material. 
ZZZONR062204 | ' 95 465 1733 HDI 021 NP5 200 Chloroforrr 
(Are HDI used Lafgearr.mobrlofsolid.'agglome'ation 

ZZZONR062804C 15 4.659 
Reveresed the addition, H3P04 added first then TEPA d 
ZZZONR070104 | 195 I 4659 
Switch to Acetonitnie Pre diluted monomers before addit 

XX 
rapped into solution, h 

414 
ion TDI replaced HDI 

HDI 
3P04 dispersed 

TDI 
as shell polymer 

0.141 NP5 
well. Failure on addition of TEP 

014 LauncAcid 
tesdted in parities (TEM Imag 

200 
A. 

260 
Bd) 

Chloroform 

Acetontnle 

The functional ratio in Table 2-9 is the ratio of amine functionalities to 

reactive phosphate functionalities to the isocyanate (or epoxide) functionalities. 

This ratio can provide a sense as to how much phosphate is associated in the 

core particles which should be related to the ion sequestering capacity of the 

particles. The experimental variables of mass of amine, phosphoric acid, and 
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encapsulant that were varied can be more easily understood by this ratio than by 

the mass of monomers used. 

Table 2-9: Experimental Details for Semi Batch 
Sample© 
ZZZONR071404 

MassTEPA I Mass H3P04 

19.5 I 4.659 

Mass Encapsulant 

4.14 

Encapsulant 
TDI 

3rocess ISPs 
Mass Stabilizer Stabilizer 

0.14 | Laurie Acid 

solvent {nit.} 
280 

Functional Ratio 
10 280 33 

Failure. The reaction solidified blocking the outlet. Reaction mixture came shooting out of shaft. 

ZZZONR072004 | 19.5 | 4.659 | 4.14 | TDI 0.14 | MDP 280 
Change to new stabilizer Mono n-Dodecyl Phosphate 
ZZZONR081004 | 15 | 4.66 | 4.14 | TDI 0.143 | MDP 280 
Post Cure after rxn at 60C for 1 hr 
ZZZONR081904 | 195 | 466 | 414 | TDI 0141 | MDP 280 
Inttia'ly thought to be successful but particles did rot produce dry particles 
ZZZONR0826n4 | 1Q5 | -61) | - 14 | TDI 0141 ] Laurie Acid 350 
,\ or»ed '.el' Fi"-t w e e s * li ~rease m dil i' or o' H3P041 T rtCN nebec 
ZZZONR090704 | 15 | 906 | 345 | TDI 0138 | Laurie Acid 340 
Change of ratios Not leaving 30% excess anine for reaction with epoxy coating anymore 
ZZZONR091504 15 | 7.76 | 10.35 \ TDI 0.166 | Laurie Acid 

ZZZONR092404 1 '5 | M65 | ".035 | TDI 1479 iLauncAao 380 
Th s is when H3P04 was switched to afunctional based on tilranor- and PkA data First successful fine particles produced 
ZZZONRiO'104 | .5 | 1 ' 6S | 1035 | TDI 1479 

Tl •; /.as a repeat o' ZZZONR092H04 hut \ " i 1 ° s'lear fie c irea-,ed P'e. o i= /.on- •.?<; cone /.ith UT on ? T 
ZZZONR102704 | 15 | 1165 | 2023 | DGEBA 
Charges we'e heating of soli A to 23 so tnere »vas no cnarce of H3P04 crystallizing when hitting 
ZZZONR'02804 | b | 13 59 | 1888 | DGEBA 

1889 

| Lm -c Acid 

s / a s c o i e c 
I MDP 

380 
<. '-ptcf1 o 6 

530 
co'der solvent Cancelled in process 

' 899 | MDP 530 
UT or 3 af'er add t o l of DGEBA 2 ir post cure <• 70C Pa-tide-* c ed 

ZZZGNR111604 | 15 | 13588 | 944< | DGEBA 152 | MDP NR 
After seerg SEM of particles cut ine DGEBA by half 60C 3hr post cure after addition of DGEBA UT 3 

ZZZONR010705 15 11.65 | 10.35 | TDI 1.48 

UT: 6 this is to make more particles and try reproducability, same as ZZZONR101104 fee particles selected as 
ZZZONR0111D5 | 15 | 1165 | 1035 | TDI 148 

| Laurie Add 

best based or 
iLauncAod 

380 
dryflowability, 1 

380 
UT-6 T=30C second repeat o'ZZZONR101104 
ZZZONR04050C | ' 5 | 1 C5 | 1035 | TDI '48 | MDP 400 
Tr •; A ? - r 'er'o of ore IOI is s ,rt lesi^ .0 Tidke mere particles UT 6 T=30C to'a. sond con^en 6 201 

ZZZONR040506 | 15 | 1165 | 10 | HDI 1466 | MDP 400 
It was thought that swrtch'ng sack to HDI a less reactive isocyanate, would allow bete partiCe coverage before polynenzatior, 
ZZZONRUV006 | '=* | V 65 | 13 9° | HDI 08^2 | MDP 4:n 

1:0.28:0.33 

1:0.36:0.33 

1.028033 

1 0 28 C 33 

1 0 7 0 1 

1:06:03 

1 0 6 0 3 

1:0.6:0.3 

1 0 6 0 3 

0 70 2 

1 0 7 0 1 

1:0.6:0.3 

stSISCM 
1 0 6 0 3 

1 0 6 0 3 

1 0 . 6 0 3 

1 o G 0 42 

C'iriaing'neeicrpsulpiitratiotolia enoresnel iiotena Tii«s \a co"f ic i t Realtor«olidifeca<!ddreartartre=e.or 
ZZZONR051506 | <5 | H 6 5 | 1399 | HDI 0812 |LauicAcid 450 1 0 6 0 4 2 
The reactor outlet plugged Wet rotary seal went on UT dispersing element New e'erent ordered 
ZZZONR052406 1.5 | 1.208 | 1.456 | HDI 0.337 | Laurie Acid 450 1:0.6:0.45 

Attempt to dilute by 10% to make particles.without plugging system 

2.2.3 Solid Ion Sequestration Core Material Encapsulation 

Learning from the previous synthesis approaches, it was decided to 

encapsulate the solid ion sequestration core material (SISCM) particles made 

during the approach that tried to develop the ideal "core shell" synthesis 
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investigated at the very beginning of this work. A technique similar to that used 

for the WISCM encapsulation was used to protect the ISPs described in section 0 

by encapsulating them in a shell of PMMA. The early semi-batch synthesis ISPs 

easily dried to a free flowing powder. However they were not successful 

resulting in a gelation or solidification when added to the uncured components of 

the MIL-DTL-24441 coating. This was likely due to rapid reaction and ion 

exchange between these particles and the components of the coating which 

created an instant gel/sol upon mixing. Encapsulation by a PMMA shell proved 

itself in the protection of the WISCM capsules so it followed that it should protect 

the solid core against harmful ionic and covalent interactions with the coating as 

well. 

Previously produced ISPs were redispersed via sonification and 

mechanical agitation into heptane (ZZZONR070607). The particles were 

mechanically redispersed successfully in heptane without the addition of any 

stabilizer or surfactant. This mixture was placed in a RBF and encapsulated by a 

process similar to the WISCM encapsulation (ZZZONR070907). 

The WISCM encapsulation scheme was modified. Since the PEI had 

been eliminated we could increase the reaction temperature to 55C and a 

different initiator, V-65 (WAKO Chemical Co.) was used at this higher 

temperature. V-65 (Figure 2-16) is an oil soluble low temperature azo-initiator 

with a 10 hr half life thermal decomposition temperature of 51C. Calculations 

were done to determine what quantity was needed to produce molecular weights 

of PMMA in the range of 125,000 g/mol. This synthetic approach finally was able 
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to reproducibly yield larger quantities of ISPs capable of being incorporated into 

test coupons for anticorrosion performance evaluation. 

Figure 2-16: Wako Chemical V-65 Azo-lnitiator 

2.2.3.1 Experimental Procedure 

^m"''n11' 1 ^ 1 * ^ 1 Hi Vent for Argon Purge 

Septa for 
injection into 
reactor 

pH|i • Cool ant Return 

Inlet from Refrigerated 
Bath (5C) 

Argon Purge 

Oil Bath 

Figure 2.17: Experimental Apparatus for Encapsulation of SISCM 
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The first SISCM encapsulation utilized previously synthesized dry ISPs 

particles (ZZZONR070908). The SISCM (2.9017 g of ZZZONR010705 

compositional details shown in Table 2-10) were transferred into a three neck 

RBF containing 100 ml_ of heptane and a magnetic stir bar. The flask was then 

gently shaken to provide an initial suspension before being placed in a sonic bath 

for 20 minutes. This resulted in a uniform re-dispersion of the particles in the 

heptane. The three neck RBF was then removed from the sonic bath dried of 

any water. 

Table 2-10: Components used in ZZZONR010705 
| Mass I Function Ratio 

It was then placed into an oil bath on a heating/stirring plate. The magnetic 

stirring was set to 300 rpm, and the temperature to 50 C. A condenser with 

recirculating coolant at 4 C was placed on the center neck to prevent evaporation 

of the heptane during the polymerization. The liquid containing the dispersed 

particles was then purged by a slow steady stream of argon bubbles for 30 

minutes through a line and adapter placed over one of the side necks. 

The monomer MMA (1.0 g) was injected through the septa covering the 

third neck on the flask. This was done shortly after the argon purge began so 

that any oxygen dissolved into the monomer was also purged. The initiator, V70 

in early work (0.01 Og) and V65 later was first dissolved in 2 mL of HPLC grade 

acetone that had been previously purged with argon, and then diluted with an 

additional 8 mL of argon purged heptane. 
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Prior to addition of the initiator, the argon feed was removed from the 

liquid but left in the reactor providing a continuous blanket of argon to occlude 

oxygen. The initiator solution was added via syringe through the septa covering 

the third reactor neck dropwise over 30 minutes. The reaction proceeded for 6 

hrs, at which time the temperature controls were turned off and the reactor 

allowed to cool to room temperature. Magnetic stirring and the condenser were 

continued until the suspension was transferred to the drying phase. 

The encapsulated ISPs were dried on a rotary evaporator. The reaction 

solution was transferred into a single neck round bottom flask. It was then 

connected to the rotary evaporator and subjected to a reduced atmosphere of ~ 

100 mm Hg at 30C. After the bulk of the heptane was removed the pressure was 

further reduced to the limit of the vacuum pump and allowed to dry for another 

one to two hours. The powder indicated that it was sufficiently dry when tapping 

of the glass resulted in a cloud of light particles floating up from the bulk. This 

occurred after a period where there was caking and balling of the powder inside 

of the flask. 

2.2.3.2 Variations in Solid Ion Sequestering Core Materials 

The Solid Ion Sequestration Core Material(SISCM) had previously been 

made with TEPA as one of the two ionically associated chemicals that make up 

the ion sequestering core. By changing this component to a longer chain 

polyamine it was thought to be possible to further stabilize the core of the 

particle. The goal of this was to investigate the development of a better SISCM 
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possibly one that eliminated the need for the protective encapsulation of the 

SISCM with PMMA. 

Table 2-11: PEI SISCM Compositions 

PEI A Mn=423 
H3P04 " 
TDI 

Mass 
15.0 
.6.0 
53 

Function Ratio 
1 

Q.6 
0 3 

PEI was purchased with molecular weights ranging from 423 g/mol to 

9000g/mol. These PEI were then investigated as a substitute for the TEPA in the 

original formulation for the SISCM. SISCM (compositional details shown in 

Table 2-11) was only successfully produced with the 423g/mol PEI, 

approximately twice the chain length of TEPA (DETONR050). The larger 

molecular weight PEIs were insoluble in acetonitrile and thus incompatible with 

the refined synthesis of SISCM particles. The SISCM particles made from the 

PEI were not capable of being mixed with amine components of a coating system 

without encapsulation. 
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Figure 2.18: Pebble like agglomerations of 90% phosphate SISCM 

The ratio of phosphate in the core particles is primarily responsible for the 

anticorrosion properties. A greater percentage of phosphate in the core particles 

should result in better protection properties of the ISPs. To this end the SISCM 

core ratios were changed from 60% of amines coupled to phosphate up to 90%. 

The 80% particles (ZZZONR030508) were successfully dried and encapsulated. 

SISCM (ZZZONR043008) with 90% of the amine functionalities associated with 

phosphate formed large hard pebble like agglomerates upon drying as can be 

see in Figure 2.18. This is a result of the core not being stabilized enough by the 

isocyanate structure and ionic exchange and interaction between the individual 

particles. It was impossible to redisperse the particles without mechanical 

crushing or grinding and so they were not encapsulated or tested in a coating. 
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Solid content during SISCM synthesis was typically 10%. Experiments 

doubling (ZZZONR042308) and halving (ZZZONR042408) the solid 

concentration were performed successfully. At 20% solids there was some 

agglomeration and the mixing in the reactant reservoir was limited by the 

thixotropic nature of the solution. At 5% solid concentration the synthesis 

proceeded smoothly. This seemed to produce a finer suspension of particles 

with less strain, as detected audibly, on the Ultraturrax. In addition to this there 

was some small difference in the size of particles produced by the two methods 

as will be discussed in Chapter 3. 

2.2.3.3 Summary of SISCM Encapsulation Experiments 

The SISCM synthesis has produced ISPs in sufficient quantities for 

adequate testing of anticorrosion properties. The resultant PMMA encapsulated 

SISCM particles mixed into anticorrosion coatings successfully. They have been 

subject to a set of preliminary accelerated aging experiments to determine their 

enhanced corrosion protection properties as discussed in Chapter 4 

Anticorrosion Properties. 

New SISCM particles were synthesized in attempts to control the ratio of 

phosphate in the core and the effects due to changing the solids content of the 

process. The experimental data for these SISCM particles are presented in 

compact form as Table 2-12. 
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Table 2-12: Experimental Data for SISCM Core Particle 
Mass TEPAI Mass H3P04I Mass TDII Mass Stabilizer Stabilizer | solvent (mL)| Functional Ratio 

DETONR043 15 11.65 10.35 1.48 MDP 340 1:0.6:0.3 
Failed. The dispersing Elements carbide seal shattered leaving it useless. New one ordered 
DETONR049 | 15011* | 6 012 | 5 587 \ 0 51 |Launc"-*-d| 1J0 | 10 6 'i 3 
" - This was SISCM with (PEI Mn=423) instead of TEPA, Laurie acid left out Stirnng of rpartant rr semr vt sorted 

151430' | 6 0076 | 5%" DETONR050 0 503 Laurie Acid 320 1 0 6 0 3 
redo of DETONR040 with stirring and Laurie acid 
ZZZQNR030508 I 15 | 15529 | 6 9 | 0748 |LauncAcid| 320 | 1 0 8 0 2 
SISCM with higher ratio of PQ4 
ZZZONR031208 15 17.47 6.9 0.78 Laurie Acid 320 1:0.9:0.2 
This exp Failed. Tool was ruined. Once again can't produce with more TDI then a 1:1 total ratio of amine: reactants 

kiiWiiimiii.i^TijTirtiWil.w^^^ iimiriimijiifmnwitiii'iwjiiiiiii-imiim fin 
0,748 158 | 1 fi J 0 2 

- — " • * • ' • • - - • * • * - - • - - • > 

ZZZONR042408B | I 3.22 | 0-35 
on was lhixotropic sliny 

7.25 Laurie Acid 320 1:0.8:0.2 
5% solids, made a big difference in the ease of synthesis and pumping of solution. Future work should be at 5% 

15 | 1747 | 345 I 0 72 |LauncAcid| 700 | 109-01 ZZZONR043008 
5% solids for ionic association attempt to increase phosphate levels During drying made small "rocks" "1cm in diameter 

Experimental details for the SISCM encapsulation experiments are 

presented in tabular form as Table 2-13. 

Table 2-13: Experimental Data for SISCM Encapsulation 
Experimental ID 

Bitfiftfl^1* 
SISCM ID SISCM Mass (g) 

mmmmw :-k.?*'. Yitsm-
Solvent (mL) 

^.m . 
EGDMA(g) 

- - 0 ; 

v70 trttiator, fifsf$empt;:iS# 

DETONR045 |zZz6NR0lTl05 4.9581 100 0 

MMA(g) 

r 
• 

1.0637 

Temp. (C) 

50 -

50 
particles dried. Scraped during drying when cake formed. Produced fine white powder 
DETONR046 |ZZZONR011105 | 5008| 100 004 15098 50 
012g MOP, addition of EGOMA as a crosslinker to particles 
DETONR047 ZZZONR011105 5 017 100 0161 15119 50 
012gMDP 10%EGDMA as a crosslinker to particles 

DETONR048 IZ2ZONR011105 I 5003| 100 00759 07628 50 
012gMDP, less total shell material 
DETONR052 ZZZONR011105 5.004| 100 0.0316 1.4971 50 
syringe needle broke and was replaced with larger diameter needle 
ZZZONR121407 |N/A | 0| 100 o 10637 50 
this was to generate a sense of Mw profile with the MMA/V70 initiator system 
ZZZONR012208 N/A o| 100 
test of V65 initiator same as ZZZONR121407. refrigerated bath froze solid and conde 
ZZZONR012208 |N/A | 0| 100 

0 
iser failed. All so 

o 

1.292 51 
Ivent and monomer lost 

1292 51 
Redo with condenser at 10C instead of 5C to prevent freezing 
ZZZONR022908 NA | 0 100 
Making PMMA with new MMA monomer bought to replace they very old MMA used pr 

ZZZONR040808 IZZZONR030508 I 37| 400 

0 
sviosly Chasing 

0 

10132 50 
owM,v Should be -125K 

7 447 50 
V65 initiator succesful 
ZZZONR042408 ZZZONR042308 37 500 0 7.5 50 
V65 used dried to fine powder 

ZZZONR042508 IZZZONR042408B 17 5| 300 0 375 50 
V65 SiCcê stu Dned and put into corrosion testing 
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2.3 Summary of ISP Synthesis 
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Figure 2.19: Final ISP Synthesis Scheme 

The evolution of the ISP synthesis finally lead to the development of the 

process for the successful production of viable ISPs as outlined in Error! 

Reference source not found.. Some of this evolutionary process of synthesis 
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development was not discussed here as it was not incorporated into the final 

synthesis process (see APPENDIX 1 and APPENDIX 2). The ISPs synthesized 

by this final scheme are free flowing particles that can be incorporated into 

anticorrosion coatings and then evaluated for their corrosion inhibiting properties. 

The synthesis process developed has the potential to be scaled up, utilizes 

low cost readily available raw materials, and has few difficult steps now that a 

viable process has been discovered. The future of the process would likely 

involve the transfer of the SISCM particle production from semi batch to a true 

continuous process. This was attempted briefly as part of this work but it was 

rapidly apparent that changing the process to a continuous set up would involve 

a complex engineering solution as well as unavailable process control 

equipment. 
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CHAPTER 3 

CHARACTERIZATION 

This chapter contains details on characterization experiments that were 

instrumental in the successful completion of this work. The characterization is 

broken up into two sections. The first of which contains information on the 

individual components and their interactions. The second section contains 

characterization details for the ISPs synthesized. Additional supplemental 

characterization experiments, both successful and unsuccessful are presented in 

Appendix 3. 

3.1 Characterization of Monomers and Surfactants 

This section will discus experiments performed to characterize and better 

understand the interaction between components used in this work. Without 

understanding of these basic interactions and reactions between chemical 

constituents, the synthesis development would never have succeeded. A brief 

description of the experimental procedure, justification of the needs, and the 

results is presented in each case. 
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3.1.1 Reaction Kinetics of DGEBA TEPA 

During the initial encapsulation attempts DGEBA was investigated as a 

reactant. Several semi-batch syntheses were attempted with DGEBA replacing 

TDI as the original shell material. During these experiments (ZZZONR2704) 

there was an agglomeration and reaction between particles resulting in a single 

solid mass. This was thought to be due to the reaction rate between the epoxy 

moiety and the remaining amines of TEPA being much slower then the reaction 

between the isocyanate and TEPA. To determine if this was the case the DSC 

was utilized as a micro-calorimeter to determine the reaction between DGEBA 

and TEPA. 

Two experiments (ZZZONR101104A&B) utilized the DSC in isothermal 

mode at 30C and 60C. At room temperature, TEPA(1.07g) was mixed 

stoichiometricly with DGEBA (6.75g) in a 20 ml_ scintillation vial by hand with a 

spatula. A DSC pan was then filled with 20 to 40 mg of the mixture, sealed, and 

placed in the DSC. The DSC was operated in isothermal mode at 30C for 24 

hours. This resulted in the data shown as Error! Reference source not found. 

and shows that the cure time for DGEBA with TEPA takes greater then 11 hours 

at 30C. The clipping of the curve at the beginning of this experiment is due to a 

lack of data for the time required to mix the two components, prepare the pan 

and load the pan in the DSC. 
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-0.0020 

127.92min Sample: zzz 30C 24Hrtepa dgeba 
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ExoUp Time (min) Universal V4.5ATA Instruments 

Figure 3.1 Isothermal Heat Flow of DGEBA + TEPA at 30C 

The reaction time of 11 hours at 30C was too long. This could be 

decreased by increasing the temperature. The DSC experiment was repeated 

but this time with the isothermal temperature set at 60C. The results are shown 

as Figure 3.1. Once again there is the initial loss of data due to the sample 

preparation, but as the total enthalpy of the reaction was not of chief interest from 

these experiments it is unimportant. The 60C experiment showed a full cure of 

the epoxy was reached by 120 minutes. This data was used to alter the ISP 

synthesis by adding a two hour post cure at 60C for future DGEBA stabilized 

ISPs (ZZZONR102804). 
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Figure 3.2: Isothermal Heat Flow of DGEBA + TEPA at 60C 

3.1.2 Characterization of PMMA Produced by SISCM Encapsulation 

The polymer characterization of molecular weight was done by gel 

permeation chromatography (GPC) in THF. The polymer encapsulant was 

extracted from the ISPs post encapsulation by dissolution in THF. The THF ISP 

mixture was subjected to an hour in the sonifier bath which aided in dissolving 

the PMMA from the particles. The samples were then centrifuged to settle out 

the insoluble core material. The supernatant, removed by syringe, was 

concentrated by evaporation prior to injection into the GPC. The GPC molecular 

weight results are based on a calibration curve generated with polystyrene 

standards. A representative GPC trace is presented as Figure 3.3. 
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Figure 3.3: GPC Results for ZZZONR040808 

Successful encapsulation with varying shell ratio and shell composition 

was been performed on SISCM synthesized ISPs. The resulting extractions of 

the encapsulating shell are summarized in Table 3-1. DETONR45, DETONR46, 

and ZZZONR070907, have varying shells as denoted by the weight percent of 

encapsulant 17.66%, 23.02% and 25.63%. DETONR47 and DETONR48 have 

an additional monomer Ethylene Glycol Dimethacrylate (EGDMA) which cross 

linked the encapsulant polymer and made it resistant to dissolution in solvent. 

Assuming a uniform coating of the particles, the weight percentage of the outer 

shell material is directly related to the thickness of the shell. 
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Table 3-1: SISCM Encapsulation Experiments 
Sample ID 

DETONR45 
DETONR46 
DETONR47 
DETONR48 
ZZZONR070907 
ZZZONR042508 
ZZZONR040808 
ZZZONR042408 

SISCM ID 
ZZZONR011105 
ZZZONR011105 
ZZZONR011105 
ZZZONR011105 
ZZZONR010705 
ZZZONR042408B 
ZZZONR030508 
ZZZONR042308 

Wt % encapsulant 
17.66% 
23.0% 
22.7% 
13.1% 
25.6% 
17.6% 
16.8% 
16.9% 

Mn 
5638 
17229 
xl inked 
xlinked 
9210 
35063 
42119 
30087 

Mw 
7467 
35504 

10349 
61005 
86060 
58308 

PDI 
1.32 
2.06 

1.12 
1.74 
2.04 
1.94 

The molecular weights determined by GPC show very low, almost 

oligomeric, PMMA for the DETONR samples as well as ZZZONR070907. These 

weights are below the entanglement length of -20,000 g/mol for PMMA133 

resulting in a shell wall with little to no mechanical strength. These resulted in a 

revision to the process with the change to V-65 as an initiator for 

ZZZONR040808, ZZZONR042408, and ZZZONR042508 which yielded slightly 

higher molecular weight PMMA. While the cause of the lower than expected 

molecular weight of the polymers was not determined specifically, the SISCM is 

speculated to have some inhibition or possibly radical scavenging effect resulting 

in the seen molecular weights. 

3.1.3 Experimental Determination of PEI Amine Ratio 

Commercial PEI is a branched polymer, structure shown as Figure 3.4 and 

can even contain macrocycles. It is synthesized by the ring opening of 

ethyleneimine. Literature has reported amine ratios for commercial PEI to be 

approximated by 25% primary, 50% secondary, and 25% tertiary 

amines134'135,136. However this is a generalization and amine ratio of PEI can 
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vary from manufacturer and even from batch to bath. Since the best corrosion 

protection would be provided by the highest phosphate amount in an ISPs ion 

sequestering core, it was decided to determine exact the ratio of amines. More 

importantly to calculate exactly how much of the PEI could be coupled to 

phosphate. 

Tertiary Amine 

H2N- • C - -C-
H. 

N-

C-

-C-
H2 

-C-
H0 

C -
H2 

-NH„ 

N-
H Jm 

Secondary Amine 

Primary Amine 

Figure 3.4: Structure of Polyethylenimine 

This amine ratio was experimentally determined (ZZZONR080806) by 

titration with a phosphoric acid solution while measuring the pH of the solution as 

a function of volume of a phosphoric acid solution added. The plot of the titration 

curve allowed us to determine the ratio of primary and secondary amines in the 

PEI from the inflection points of slope change. The change in the slope indicates 

that the primary and secondary amines have been fully associated. 

3.097 g of a 50 wt % PEI (Mn 60,000 g/mol) water solution was added to 

100.0 g of high purity water in a 250 mL glass beaker. The beaker was placed on 

a magnetic stir plate to provide agitation via a 25mm magnetic stir bar. A valved 
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100ml_ syringe with the piston removed was filled with a solution containing 

6.0947 g of phosphoric acid (99.9% crystalline) in 100.1 g of purified water. This 

syringe was affixed with an 18 ga needle and suspended above the 250 mL 

beaker containing the PEI solution. The syringe and needle droplets were 

previously calibrated to have a drop volume of 0.0357 mL for this solution. Data 

was recorded by an optical drop counter and pH probe via a laptop and Vernier 

interface. The system recorded total volume of phosphoric acid solution added 

and pH of the solution at each drop. 

X (g H3P04/g PEI) = VT
drop [CH3PO4] / mPE, [EQ 3-1] 

The data was converted into g of phosphoric acid per gram of PEI by EQ 3-

1, where VTdroP is the total volume added dropwise, [CH3PO4] is the concentration 

of the phosphate solution and ITIPEI is the mass of PEI being titrated. This was 

plotted against the pH as shown in Figure 3.5. The slope change represents the 

complete titration of the primary, secondary, and finally tertiary amine. Linear 

regressions were fit to the regions preceding and following the two primary slope 

changes and the intercept calculated. This resulted in the primary amines being 

fully associated at 0.47 (g of H3P04)/(g of PEI) and the secondary amines 

associated at 1.475 (g of H3PO4 )/(g of PEI). This translates to a mole ratio of 

20.7% primary amine, 64.9% secondary amine and 14.4% tertiary amine for the 

PEI. 
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While maximizing the phosphate loading of the core particles was the 

motivation for determining the amount of phosphate that could be coupled to PEI, 

the completely coupled PEI has a pH of 2.81. It is known that in the acid region, 

pH < 4 steel corrosion increases rapidly from dissolution of oxide films. It was 

thought that having the core particles loaded to this level could increase 

corrosion rate of the steel rather than inhibit it. For this work a value of 0.6 g 

phosphate per gram of the PEI was selected as this would ensure the particles 

would remain slightly basic at a pH of 7.4. 

10.00 

8.00 

£ 6.00 

4.00 4-

2.00 4 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

grams of H3P04 per gram of PEI 

Figure 3.5: Titration of PEI by Phosphoric Acid 

3.2 Characterization of ISPs 

Characterization of ISPs helped to understand the effects of synthesis 

changes on the particles. SEM, TEM, light scattering, optical microscopy and 

sequestering capacity by titration all have been used to characterize the ISPs 
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synthesized throughout this work. This section will discuss the results of 

characterization techniques as they pertain to the particles themselves. 

3.2.1 Particle Morphology 

Scanning electron microscopy was used to understand particle size and 

morphology throughout this work. Visual light microscopy typically failed to 

provide sufficient resolution for characterization of ISPs due to their size which 

ranged from nanometers to hundreds of microns depending on the synthesis 

parameters. 

Figure 3.6: SEM of ZZZONR070108, first successful ISPs 

The goal of the original synthesis design was to produce particles of a 

core shell morphology (see 2.2.1). The actual particles produced were not of a 

uniform concentric core shell morphology as can be seen in the SEM images of 

two early batch synthesized particles (Figure 3.6). There was a TDI polyurea 

layer draped over many of the smaller core particles. Instead of a core shell 

structure as planned, an occluded morphology was synthesized consisting of 
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many small domains of ion sequestering core particles encapsulated in a 

polyurea/polyisocyanurate phase as depicted schematically in Figure 3.7. 

Figure 3.7: Cross Section Schematic of Occluded Morphology of ISPs 

Figure 3.8 shows an SEM image of a successful semi-batch synthesized 

ISP (ZZZONR091504). This ISP was made by encapsulating the ion 

sequestration core with TDI to form a polyurea shell. The image shows improved 

encapsulation when compared with the SEM images of the batch synthesized 

ISPs. The particle is about 1 urn by 2um in size. This result was typical when 

comparing the batch and semi-batch process and these images were used in the 

decision to move forward with the semi-batch development. 
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Figure 3.8: SEM image of a Semi-Batch Synthesized ISP 

Many of the synthesis experiments resulted in failure to adequately 

encapsulate the core particles. The result of one such unsuccessful semi-batch 

ISP synthesis is shown in Figure 3.9. The image shows many small (~100 nm) 

primary particles adhering to a string of polyurea as opposed to being 

encapsulated by it. This effect was believed to be caused by the reaction rate of 

the polycondensation of TDI with TEPA being faster then the transport of the TDI 

to the interface with the core particle in the shear field generated by the 

continuous cell. 
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Figure 3.9: SEM micrograph of 50,000x magnification of a polyurea 

encapsulation experiment 

The SEM images provide data on the effect of process changes on the 

particle morphology. This allowed for the eventual evolution of the semi batch 

synthesis that was used to produce SISCM for encapsulation in PMMA. It was 

not possible to adequately protect the ion sequestering material with just the TDI 

reaction alone. 
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Figure 3.10: SISCM ISP @13,000x and 50,000x 

Particles produced by the SISCM synthesis are shown as Figure 3.10 and 

Figure 3.11. Figure 3.10 shows a discrete particle in the left image and a more 

magnified view of the particle in the right. The particle consists of many smaller 

60-80 nm primary particles stuck together. These primary particles are formed 

from the ionic association of the amine and phosphoric acid in the first step of the 

SISCM synthesis. They are then bound together and stabilized but not fully 

encapsulated by the polyurea formed by the addition of TDI. The final 

encapsulation with PMMA protects the primary particles from harmful interactions 

with anticorrosion coating monomers. Figure 3.11 shows a better quality SEM 

image of the agglomeration of smaller particles typical of the SISCM ISPs. 
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Figure 3.11: SEM of SISCM Synthesized ISPs 

One final note on SEM images of ISPs. The particles contain a significant 

percentage of phosphorus. It was difficult to view particles at high magnification 

because of a charge build up from the electron beam on the particles which 

caused them to melt and defocus. The suggested solution to this problem is to 

use a very heavy gold palladium coating as opposed to the more typical thinner 

coatings used for SEM. 

In an effort to further understand the morphology of the ISP samples were 

prepared for TEM imaging. Preparation by drying a dilute solution on a carbon 

film covered copper TEM grid did not allow us to see any detail of the particles. 

Imaging was tried without staining as well as with ruthenium tetraoxide stain. As 

this did not work, the particles were embedded in an epoxy and cast into a small 

cylindrical beam capsule for microtoming. These samples were then subjected 

to negative staining by immersion in a 1% osmium tetraoxide solution for 20 
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minutes. This produced the images in Figure 3.12 and Figure 3.13 of ISPs 

produced (ZZZONR040808). 

Figure 3.12: TEM of Microtomed ISP at 25,000 x Magnification 

The TEM images confirmed the general morphology of the ISPs as not 

core shell but of the occluded and uneven structure. As it is a thin (50-90 nm 

typical) section of the particle it provides the information that between the smaller 

primary particles there is little to no gap or free space. This information was 

unavailable from the SEM images. These were the best images taken by this 

technique. TEM was not utilized extensively as the SEM images provided more 

useful information about the particles synthesized. 
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Figure 3.13: TEM of Microtomed ISP at 40,000 x Magnification 

3.2.2 Characterization of ISP Size 

It was speculated that the size of the ISPs would have an effect on their 

overall effectiveness in anticorrosion coatings. Moreover, the particles had to be 

of a small enough diameter that they could successfully be incorporated into an 

anticorrosion coating. These coatings are typically applied at thickness 

beginning at 250 urn. Therefore the ISPs had to be smaller than 250 urn, ideally 

an order of magnitude smaller to be incorporated into existing coating systems 

without disrupting the film forming characteristics. 
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Figure 3.14: Microtrac Size Characterization Data for ZZZONR042508 

The characterization of the ISP size distribution was done primarily by light 

scattering. SEM was used in some cases to verify these results. Particle size was 

determined on dried ISP which in some cases resulted in larger agglomerates of 

particles being measured. Early particle size distributions were determined by a 

Microtrac S3000 particle size analyzer. Later measurements were made on a 

newer Microtrac S3500 as it replaced the S3000 during the course of this work. 

A representative plot of the data received from these instruments is shown as 

Figure 3.14. 
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Figure 3.15: Bimodal Distribution for ZZZONR010705 ISPs 

The results of the particle size analysis for ISPs synthesized are 

summarized in Table 3-2. The particle size distributions were in many cases 

bimodal or even trimodal with a smaller size in the 1-4 urn range and a larger 

size distribution in the 10-50um range as illustrated by Error! Reference source 

not found.. These samples were probably truly bimodal. Samples that have 

small distributions of 1000 urn and greater likely contain agglomerations of dry 

particles that were not adequately separated by the shear induced by the 

Microtrac prior to the sample chamber. 
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Table 3-2: Summary of Pari 
Sample ID 

ZZZONR 010705 
ZZZONR 052406 
ZZZONR 040506 
ZZZONR 080906B 
ZZZONR 080906 
ZZZONR 040506 
ZZZONR 050306 
ZZZONR 070104 
ZZZONR 011105 
ZZZONR GROUND PEI 
ZZZONR 032807 
ZZZONR 120706 
ZZZONR 040808 
ZZZONR 010207 
ZZZONR Bently pei ground 
ZZZONR 080906 
ZZZONR 120706 
ZZZONR 111406 20 min sonication 
ZZZONR 111406 40 min sonication 
ZZZONR 111406 Post PMMA 
ZZZONR 042408 
ZZZONR 120706 
ZZZONR 042508 
ZZZONR 040808 
ZZZONR 92404 
ZZZONR 102004 
ZZZONR 072004 
ZZZONR 110904 
ZZZONR 101104 
ZZZONR 011105 
ZZZONR 010705 
ZZZONR 010705b 
ZZZONR 010705C 
ZZZONR 070104 
ZZZONR 040501 
ZZZONR 051501 
DETONR 45 
DETONR 47 
DETONR 48 
DETONR 46 
DETONR 45 

icle Size Analysis in urn 
Peak 1 

5.5 
5 
12 
0.1 
2 
5 

3.5 
0.5 
10 
10 

120 
90 
50 

300 
10 

100 
0.6 
0.15 
0.1 
0.11 
30 
0.8 
17 
19 
2 
25 
2 
4 

1.3 
0.6 
4.5 
15 
20 
4 
60 
10 
10 
20 
30 
20 

junk 

peak 2 
20 

200 
0.45 

35 
13 
1.5 
110 
50 

60 
500 

300 
300 
40 

20 
70 
11 
7 
10 

15 
180 

60 
450 
400 
400 

peak 3 
60 

90 
45 

300 
150 

160 

1200 
1200 

70 

250 
1200 
1200 
1200 

peak 4 
200 

400 
130 

1000 

Dv 
50.5 
19.68 
61.2 

.146.7 
2.33 
195.7 
66.06 

433.3 
78.33 
272 
1807 
405 
3740 
62.7 
201 

0.748 
0.1659 
0.127 

0.1153 
28.22 
0.748 
594.3 
711.8 
26.19 
26.83 
14.43 
51.46 
11.71 
34.39 
5.36 
16.25 
19.53 
11.83 
53.85 
23.68 
85,49 
761.3 
630.7 
747.9 
711.6 

Dn 
6.126 
3.391 
3.39 

0.1001 
2.28 
3.3 

4.447 

2.267 
3.17 
158.6 
100.3 

68 
657 
1.77 
60.6 
0.74 

0.1408 
0.0965 
0.0962 

3.17 
0.737 
2.699 
2.936 
1.81 

26.05 
0.511 
1.358 
1.358 
0.549 
0.785 
15.73 
0.71 
5.156 
3.102 
4.706 
3.16 
2.682 
2.067 
1.487 
3.25 

Da 
15.18 
7.36 
10.49 

0.1186 
2.32 
16.5 
27.8 

17.69 
19.26 
221.1 
801 

208.8 
2760 
11.67 
102.5 
0.745 

0.1552 
0.1147 
0.1083 
10.44 
0.745 
16.84 
20.48 
6.312 
26.57 
6.482 
22.53 
7.038 
4.29 
3.585 
16.08 
10.56 
9.356 
11.58 
12.88 
11.92 
29.28 
22.48 
15.64 
33.68 

The encapsulated WISCM was analyzed on a Nanotrac UP250 (Microtrac 

Inc. North Largo, FL) to determine the particle size distribution. Particles made 

by this method were significantly smaller then those made by the SISCM 

synthesis. Typical WISCM particle size ranges were the range 100's of 

nanometers diameter. A representative result from the Nanotrac is shown as 

Figure 3-16. The particles for this sample, ZZZONR120706 have a nominal size 
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of approximately 100 nm. These results are recorded in Table 3-2 along side the 

other measurements 
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Figure 3.16: Nanotrac Particle Size Distribution for PMMA encapsulated WISCM 
(ZZZONR120706) 

3.2.3 Characterization of PMMA Encapsulation of WISCM 

Characterization of the WISCM capsules after the encapsulation with 

PMMA proved challenging. It was important to determine if PMMA was present 

and if microcapsules were produced as opposed to a crop of discrete particles. 

The TGA was used to determine if PMMA was present in the suspension post 

encapsulation reaction. One might more typically detect PMMA by DSC hoping to 

detect a characteristic Tg in the range of 105-120C. But because the WISCM 

particles have a hydrated core, the water would vaporize at 100C causing a 

possible rupture of the DSC pan and contamination of the DSC cell. Alternative 

techniques were used to avoid this result. 
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TGA of a sample of the WISCM was compared to a sample of the PMMA 

encapsulated WISCM. The results of this experiment are shown in Figure 3.17. 

The curve for the encapsulated WISCM shows an earlier onset of degradation at 

150C which would be indicative of PMMA loss. The difference between the 

encapsulated vs unencapsulated WISCM is due to the degraded PMMA, The 

retardation of the decomposition and crossing of the curves at -650C defies 

explanation. It would be expected that the PMMA encapsulated sample would 

remain lower than the unencapsulated for the entire run. These results proved 

that PMMA had been successfully produced but not if it had encapsulated the 

WISCM. 
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Figure 3.17: TGA Data for WISCM and PMMA encapsulated WISCM 
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There was concern that the MMA had polymerized forming discrete 

particles rather then encapsulate the WISCM. After the TGA results showed that 

PMMA had been polymerized, the heptane was evaporated under a nitrogen 

purge overnight. This left a solid pancake consisting of the capsules and 

surfactant. The pancake was then easily redispersed into fresh heptane by 

simply shaking the flask. This was an indirect proof that the WISCM had been 

encapsulated by the PMMA. Had the WISCM not been encapsulated by the 

PMMA a non-dispersible mass would have formed upon drying due to the ionic 

bonds of the core material exchanging. This re-association into solid 

agglomerate had been demonstrated many times in unsuccessful experiments. 

An optical microscope was used to image the suspension of encapsulated 

WISCM particles in heptane. The results showed what appeared to be 

agglomeration of very small particles. It was surmised that there were PMMA 

capsules containing WISCM as the agglomerated particles did not reform into 

larger single droplets under the cover slip. A representative image is shown as 

Figure 3-18. The larger dark ringed spheres are approximately of 3-5 urn in 

diameter and are likely air bubbles trapped under the cover slip. Due to the small 

size, as verified by the Nanotrac it is impossible to clearly see the individual 

particles. 

Dyeing the WISCM was attempted unsuccessfully to help show the 

WISCM particles and their shell. Suspensions of WISCM in heptane were made 

with ALEXA 647 in solution. The Alexa fluorescent die phase separated from the 

solution into a blue liquid phase at the bottom. Likewise, water soluble red dye 
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was added to the WISCM and dispersed. While it seemed that the dye was in the 

particles, under the optical microscope there was no detection of the red indicator 

likely due to the small size of the droplets low yield of the chromophor. 

Figure 3.18: Light microscopy image of PMMA encapsulated WISCM 

In the end, proof of encapsulation came in the form of successful 

dispersion of the dried particles into the amine component of the MIL-DTL-

24441C coating. The dispersed particles showed no signs of the previously 

experienced interaction between the ISPs and the coating components. The 

particles were then successfully incorporated into coated sample coupons 

(ZZZONR021207) where they were evaluated for their enhanced corrosion 

characteristics. 
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3.2.4 SISCM Encapsulation 

The success of the encapsulation of SISCM was clearly proven by two 

different results. Figure 3.19 shows SEM images of a section of SISCM particle 

(ZZZONR010705) in the upper pair of images. Many primary ion sequestering 

core particles (90-110nm) make up the agglomerated mass of the larger SISCM 

as a whole which range from 10-20um in diameter. In the lower images the 

same particles (ZZZONR0713007) are shown post PMMA encapsulation. There 

is an increase of the primary particle size (100-150 nm) caused by the layer of 

PMMA covering the entire SISCM particles. In addition it seems that there are 

no discrete PMMA particles formed during the polymerization or at least none are 

found separated from the encapsulated SISCM. 

Figure 3.19: SEM of SISCM pre and post encapsulation with PMMA 
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While the visual changes identified from these SEM provided some proof 

that the SISCM was encapsulated with a layer of PMMA, final proof of 

encapsulation came by the successful incorporation of these ISPs into the MIL-

DTL-24441C coating. 

3.2.5 Characterization of Ion Exchange Capacity 

It has proven difficult to quantitatively characterize the ion sequestering 

properties of the particles produced over the course of this work. A number of 

different approaches towards characterizing the ion exchange properties of the 

ISPs were attempted over the course of this work. Most of these were 

unsuccessful and are discussed in Appendix 3. This section discusses the one 

successful methodology that allows for comparison between particles to be made 

based on ion sequestration capacity. 

Investigations of anticorrosion pigments reported in literature do not 

concern themselves with characterization of capacities of the pigments directly. 

Outside of referencing mass fraction of functional ion, such as to say there is a x 

wt. % phosphate in the pigment based on the molecular formula, they rely on 

results garnered from accelerated corrosion experiments. One attempted 

methodology for the quantification of the ion sequestering capacities of ISPs 

directly has resulted in success. This method relies on the titration of the ISPs in 

water to develop a pH profile vs quantity of hydroxyl ions added to the solution. 
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Figure 3.20: Titration Setup for ISP Capacity Determination 

The ISPs, dispersed in pure water, were titrated with a calibrated standard 

solution of sodium hydroxide (61.8623 g/L) by a syringe pump at a rate of 1 

mL/min as shown in Figure 3.20. The sequestering capacity was calculated and 

presented as the mass of OH ions the ISPs absorb on a per gram basis. The 

pH value of 12 was chosen as the comparison point based on the region of 

passivation of steel at this pH and in addition to this the titration curves all level 

off near this pH. 

Figure 3.21 shows the titrations of 4 different ISPs from the initial 

synthesis approaches. The polyurea encapsulated ISPs along with the 

polyallylamine ISPs showed the best ion exchange characteristics at pH 12 with 

a buffering capacity of approximately 0.26 grams of ions per gram of ISPs. 
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These early ISPs show a lower ion sequestering capacity as the formulation was 

not optimized at this stage of ISP evolution. 

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 

grams of OH" per gram of ISP 

Figure 3.21: Ion Sequestering Capacity of Early ISPs 

Particles made by the final SISCM synthesis were titrated and the results 

are presented as Figure 3.22. These particles show an increased capacity to 

sequester OH" ions when compared to the early ISPs produced as shown in 

Figure 3.21. It is likely that the increased capacity is influenced by the higher 

phosphate loading used in the SISCM of the later particles. The PMMA shell 

used to protect the SISCM from harmful interactions with the uncured 

components of the anticorrosion coating may also play some roll in the enhanced 

performance as well. This is possibly due to a prevention or retardation of a 

partial dissolution of the ionic components of the core material. 

There is also a distinct difference in the behavior of the PMMA 

encapsulated particles when placed into the water for titration. Unencapsulated 

particles mix into the water readily and seem to swell. Whereas the PMMA 
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encapsulated particles are extremely hydrophobic and try to separate from the 

water. Strong agitation is required to maintain a semblance of dispersion with 

these particles during the titration. 

0 0.25 0.5 0.75 1 1.25 

grams of OH- per gram ISP 

Figure 3.22 Ion Sequestering Capacity of Later ISPs 

The values of gram of OH- per gram of ISP at pH 12 are presented for 

each sample titrated in Table 3-3 for comparison. The data shows that ISPs with 

lower loading of 1:0.6:0.3 have a decreased capacity at the comparison point of 

pH 12 when compared to the higher phosphate loaded particles. 

ZZZONR042408 and ZZZONR042508 show the most ion sequestering 

capacities. These were the final particles synthesized for this work. In 

105 



comparison with the early batch synthesis particles of ZZZONR070104 they 

show an almost ten fold increase in ion sequestering capacity. 

Table 3-3: ISP Capacity a 
Sample ID 
ZZZONR070104 
ZZZONR092404 
ZZZONR102804 
ZZZONR101104 
ZZZ0NR110804 
ZZZONR011105 
ZZZONR040808 
ZZZONR042408 
ZZZORN042508 

g OH / g ISP 
0.089 
0.255 
0.124 
0.354 
0.266 
0.235 
0.575 
0.742 
0.674 

tpH = 12 
Description of ISPs 
Batch process ISPs 
Polyurea Shelled Semi Batch ISPs with UT on 3 
Epoxy Shelled Semi Batch ISPs 
Polyurea Shelled Semi Batch ISPs same as 092404 but with UT on 6 
Homogeneous (Polyallylamine) ISPs 
Semi Batch process ISPs first used as SISCM 
SISCM ISPs 
SISCM particles made at 20% solids 
SISCM particles made at 5% solids 

3.2.6 Diffusion of Chloride Ions Through the MIL-DTL-24441 Coating 

The theorized mechanism of ISPs anticorrosion enhancement in a coating 

is based on diffusion of the passivating ions from the core along with the 

entrapment of harmful ions as they diffuse through the coating. Therefore the 

diffusion of these ions through the anticorrosion coating is of interest. Literature 

containing results on water uptake and diffusion in epoxy has been published 

since the 1960s137. These results are typically derived from experiments based 

on gravimetry or electrochemical impedance measurement138. The values 

determined from these methods typically vary widely and are inconsistent139. By 

comparison, little has been published about ion transport through the 

anticorrosion coating. 
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Figure 3.23: Concentration Profile for the Differential Cell 

A concentration gradient cell was used to determine the effect of ISPs on 

chloride transport through the MIL-DTL-24441 coating140. This method 

determines the diffusion coefficient from time it takes for a species to pass 

through a film. The concentration profile for the film is illustrated in Figure 3.23. 

For these experiments C2 (the high concentration) was provided by a 5 wt % 

NaCI solution. For early times the concentration C2 can be considers as constant, 

with C'2, the concentration at the boundary of the film and salt solution also 

constant. The initial concentration Ci was essentially zero as ultra pure water 

was used. 

C(x,t) = C\ erfc 
f x ^ 

4ADt 
[EQ 3-2] 
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The solution to Ficks second law with time in one direction for this system 

is presented as EQ 3-2141. Here the concentration C is a function of x and t. The 

value of ^ADt in this equation represents the characteristic diffusion length, the 

distance it takes the diffusion front to travel in time t. Rearangement of the 

terms results in the solution presented as EQ 3-3. 

D = t 
M [EQ 3-3] 

B 

As the thickness of the coating (I) is known, the breakthrough time can be 

used to calculate the diffusion coefficient for the film142. The breakthrough time is 

the experimentally determined time where the concentration Ci rapidly 

increases143, deviating from the control sample. This represents the diffusion 

front having traveled through the thickness of the film. 

Figure 3.24: Diffusion Cell with Perspective, Front, and Top Views shown 
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A set of experimental cells were designed and fabricated for the 

concentration gradient method. These cells consist of four Teflon blocks 

machined as described in Figure 3.24. The cells were designed to capture an 

epoxy film between two cell halves. The epoxy films were thin and smooth 

making no additional gasket material or compound necessary to seal the PTFE 

cells to the films. 

The loose epoxy films investigated were produced by spray application of 

the MIL-DTL-24441 epoxy coating onto a UHMW PE plate. After the coating was 

sufficiently cured, well past the gel point and tack free, the coating was carefully 

peeled from PE plate. The films were then allowed to cure fully while laid flat on 

the PE plate for at least 72 hrs. The films were cured at room temperature. 

Coatings were prepared at roughly 0.005" thickness. For each experiment a film 

was prepared neat (without ISPs) and containing 5 wt % of ZZZONR042508 

ISPs. 

Conductivity probes (CON-BTA, Vernier Software & Technology, 

Beaverton, OR) were used to measure the increase in conductivity on the side of 

the cell containing ultrapure water (Ci). Data was recorded by a Vernier 

LabQuest stand alone data acquisition system. The diffusion cell set up has two 

identical side by side solution reservoirs such that the same film could be 

subjected to a control of pure water and a salt solution simultaneously. One set 

of cells was used to run samples without ISPs while the other was run 

simultaneously containing the same film containing 5 wt % ISP. The control was 

performed to account for any species that might leach out from the coating. 
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Figure 3.25: Diffusion Cell Experimental Setup 

In order to increase the diffusion rate through the epoxy film the 

experiments were performed at 60C. The test assembly, shown in Figure 3.25 

was placed into a water bath at 60 C to ensure uniformity of temperature. The 

bath chamber also ensured a 100% humid environment which helped prevent 

vapor loss from the solutions in the cell. 
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Figure 3.26: Diffusion Cell Results for ISP containing sample (ZZZONR042908) 

The data from the diffusion cell experiments was tabulated and plotted as 

in Figure 3.26. There is a distinct and abrupt break through time for all samples 

subjected to the sodium chloride solution. This breakthrough time was denoted 

by the sharp and rapid increase in conductivity that is not present for the control 

samples containing pure water on both sides of the epoxy film. The 

breakthrough time and the coating thickness were used to calculate the diffusion 

coefficient for the epoxy film. 

The experimentally determined diffusion coefficients for sodium chloride 

through the MIL-DTL-24441 film are presented in Table 3-4. The experiment 
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measures conductivity and it can be inferred that the much smaller sodium ion is 

transported along with the chloride ion to maintain charge neutrality. The values 

determined in the first experiment (ZZZONR042908) varied by an order of 

magnitude from those determined in the second experiment. This could possibly 

due to variations in conditions of the film preparation or cure time. The coating 

films were prepared in small batches. Possibly variations in the measurement of 

the A, B or solvent component of the coating at preparation resulted in this 

variation or that the coating was not cured sufficiently in the first experiment. 

Additionally temperature and humidity control is not available in the laboratories 

where the films were prepared. Humidity has a large effect on the cured 

properties of epoxy coatings. 

Table 3-4: Diffusion Coefficient of NaCI through the MIL-DTL-24441 Coating 
Experimental ID 

ZZ2QNRQ428Q8 ' ' - * . 
MIL-DTL-24441 

MIL-DTL-24441 w/ 5 wt % ISPs 
ZZZONR070208 -

MIL-DTL-24441 
MIL-DTL-24441 w/ 5 wt % ISPs 

Breakthrough Time (s) 

18900 
14700 

63600 
83100 

Film Thickness (cm) 

" "1.52E-02 
1.14E-02 

- -_-
1.27E-02 
1.27E-02 

D (crnVs) 

3.1E-09 
2.2E-09 

-
6.3E-10 
4.9E-10 

DT=2oc(cm'7s) 

2.7E-09 
2.0E-09 

5.6E-10 
4.3E-10 

One result from these experiments, aside from determination of the 

diffusion coefficient, is that for both experiments the diffusion coefficient for the 

coating containing 5 wt % ISPs was -25% less then that of the neat MIL-DTL-

24441 coating. While this could be argued to be within experimental error the 

27% decrease for ZZZONR042908 and 24% decrease for ZZZONR070208 could 

also be explained by the chloride ions being trapped or retarded by the ISPs. 

These values, converted to T=20C by the well known relationship of D-1/T1 = 
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D2/T2, are in reasonably good agreement with values from literature for sodium 

chloride in a pure epoxy film D = 8x10"9 cm2/s and 4x10"9 cm2/s 144. 

3.2.7 Diffusion Coefficient Determination by ATRIR 

In situ diffusion measurements in polymer films can be determined by 

attenuated total reflectance infrared spectroscopy (ATRIR)145. ATRIR is one of 

very few methods available that allows the in situ study of diffusion through 

coatings. Experiments using ATRIR were performed to determine both the water 

and phosphate diffusion coefficients through the MIL-DTL-24441 coating. This 

work follows with some modifications, the method reported by several 

authors146'147. 

Successful ATRIR diffusion coefficient determination requires that the ion 

under investigation has an IR response. Phosphate has a strong IR response 

due to PO stretching at ~1100 1/cm 148. These experiments did not provide 

information on the counter ion diffusion, as sodium does not have any IR 

response. It is not possible to comment on sodium ion diffusion as it has been 

reported that it is possible for there to not be a cation diffusing along with the 

anion during ionic diffusion through polymers149. 

A germanium crystal was utilized on a MIRacle ATR (Pike Technologies 

Inc.) mounted in a Tensor 27 infrared spectrometer (Bruker Optics) for this work. 

Germanium crystals for ATR have the highest refractive index (Ri = 4 @ 1000 

1/cm), resulting in the shallowest depth of penetration (dp) of the evanescent 

wave into the sample material150. 
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dp = y~x = - v [EQ 3-4] 

2n{n\ sin2 0 , -w* / 2 

Where: 

Dp = 7~1 = Depth of evanescent wave penetration into sample 

X= Wavelength of light 

0= Angle of incidence of the IR beam 

n-i= Refractive index of the crystal 

n2= Refractive index of the sample 

Given a typical refractive index for epoxy coatings of approximately 1.55 

151 the depth of penetration for the ATRIR system at 1100 cm"1 is calculated 

using EQ 3-4 to be 0.72 urn. Coatings used for these experiments were on the 

order of 150 urn in thickness, making the penetration depth less then 0.5 % of the 

total thickness. This small depth of penetration allowed for a true measurement 

at the surface of the coating. There is a penalty for such a small penetration of 

the evanescence wave, it comes in the form of diminished response. Therefore 

germanium crystals work well only for strongly absorbing bands152. 

A = i _ . - *r 
Ax 4-e™\ 

e ( -"* 2 ' ) ( _^ e HW + ( 2 y) 
2L 

AL 

[EQ 3-5] 

Where: 

t = time 

At = integral of the IR peak at time t 
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A00= integral of IR peak at infinity 

L = thickness of the coating 

D = diffusion coefficient 

The solution to the continuity equation in a polymer film with constant 

diffusion coefficient has been presented elsewhere153. Equation 3-5 takes into 

account the effect of FTIR-ATR evanescence wave penetration into the coating. 

Simplifications to this solution resulting in the elimination of y from the equation 

can be made provided two conditions are met by the experimental set up and 

polymer film being studied154. These two conditions that must be met are 

described by: 

It was verified that the epoxy systems and geometries used in this work 

met these requirements. This allows for a rearrangement of EQ 3-5 into EQ 3-6. 

A least squares linear regression can now be fit to experimental data plotted. 

The slope of this fitment to the data allows for the calculation of the diffusion 

coefficient directly. 

In 
( A \ 
1 

V ^oo J 

= ln 
\7Z ) 

DK 
2 

~fifl [EQ3-6] 

The MIRacle ATR has the added feature of removable and 

interchangeable crystal elements. The germanium crystal was removed from the 
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ATR assembly and coated with a MIL-DTL-24441 film by airbrush. Post curing of 

the film, careful measurement of the film thickness was made with a NIST 

traceable dial indicator accurate to 2.54 urn. After determining the film thickness 

the crystal was replaced in the ATR unit. A small PTFE cell was fabricated to 

interface with the ATR unit and provide an ample solution reservoir for the 

experiments. The PTFE cell was clamped over the coated crystal with an o-ring 

used to seal against leakage. This entire assembly is illustrated in Figure 3.27. 

This sectional view shows the cell clamped down on a epoxy coating over the 

crystal element. The upper hole in the cell is threaded for attachment to the auto 

tensioning clamp of the MIRacle ATR. The auto tensioning clamp provides 

precise concentric and parallel alignment as well as a controlled and repeatable 

clamping force that seals the cell against the epoxy coating. 

Figure 3.27: Sectional Diagram of Diffusion Cell on ATR Crystal. 
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Literature reported the use of filter paper to "wick" salt solutions into the 

area between the coating and a solid anvil147. A loose film on an ATR crystal 

requires pressure from an overhead anvil to ensure good contact between the 

film and the crystal. This good contact is important because of the extremely low 

penetration depth of the ATRIR technique. While this method provided results it 

did not account for any decrease in localized concentrations as ions diffuse 

through the coating or evaporation of liquid from the filter paper. A large (in 

comparison with the coating volume) reservoir for the solution eliminates any 

concerns in regard to concentration changes of the "source" solution. 

Data acquisition on the TENSOR 27 FTIR was controlled by the OPUS 

Software Suite which has a built-in feature that allows automated time dependent 

(kinetic) acquisition of spectra. The first spectra for each experiment were 

always taken immediately prior to injection of the liquid solution into the cell. This 

provided us with a baseline point without the possibility for any ion or water 

diffusion. Two liquids were used for these experiments, ultra pure water, and a 

0.25N solution of disodium phosphate. The pure water was only used to pre-

saturate the epoxy coatings in the later experiments, ZZZONR080808 and 

ZZZONR091908. 
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Figure 3.28: Overlay of IR Spectra for ZZZONR062408 (30 minute sampling 
interval) 

The IR Spectra were treated for atmospheric compensation of C02 prior to 

any further numerical treatment. The compiled spectra for ZZZONR062408 are 

presented in Figure 3.28. In this experiment the MIL-DTL-24441 film is subjected 

to a 0.25N disodium phosphate solution at room temperature with spectra taken 

every 30 minutes The peaks labeled for water (OH at -3400 cm"1 and -1600 cm" 

1) and for the phosphate (PO stretch at -1100 cm"1) were selected and integrated 

using the OPUS software. The value of the integral represents quantitatively the 

amount of functional group present in the sample for each indicated IR response. 
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Figure 3.29: Normalized Integral Plotted Versus Time for ATRIR Experiment 

ZZZONR062408 

The integration value for each spectrum in the experimental series was 

complied into a single spreadsheet for further numerical treatment. Normalization 

was performed by dividing by the extrapolated value for the integral at infinity. 

This was then plotted versus the sample time as seen in Figure 3.29. This 

shows that the breakthrough time for the phosphate and water as the same. This 

indicates that the phosphate is transported coupled with the water through the 

coating, at least in the initial period. 

Calculation of the diffusion coefficient was done from a plot of the ln(1-

At/Ah) versus time as in equation 3-5. Solution by this method is only valid for the 
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steady state or linear portion of the data. Therefore the linear regression is only 

fit to this portion of the data as shown in Figure 3.30 with the slope equivalent to 

-DTT2 / (4L2) . The diffusion coefficient was calculated from the resultant slope. 
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Figure 3.30: Linear Regression for OH band at -1600 cm"1 in ZZZONR062408 

The calculated diffusion coefficient for water from ZZZONR062408 is D = 

2.01 x 10"8 cm2/s which agrees well with values from literature for water in epoxy 

films which range from 2 to 4 x10"8 cm2/s 138. Table 3-5 contains the values of 

diffusion coefficients for the MIL-DTL-24441 epoxy coating as determined by the 

ATRIR method. 
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The direct coating of epoxy film onto the germanium crystal provided 

excellent results only for the first experiment to use this method. Unfortunately 

the germanium was damaged after the first experiment (ZZZONR062408) when 

the coating was removed from the crystal. Previous experience with ATR used 

more robust diamond crystal element, as germanium is considerably softer then 

diamond, damage was done to the crystal in the form of scratches during the 

removal of the adhered coating. The next experiment (ZZZONR071508) showed 

a dramatic decrease in signal due to the scratches imparted on the Germanium 

crystal. This weakening in response resulted in spectra where the water peak 

could not be successfully integrated. The crystal was then polished as an 

attempt to alleviate this decrease in IR response while at the same time a new 

crystal was purchased to replace the damaged one. 

ZZZONR080808 was performed with the re-polished crystal. This 

experiment attempted to decouple the diffusion of the phosphate ion from the 

water diffusion. This was done by first soaking and saturating the coating with 

ultrapure water for 24 hrs prior to the start of the experiment. The experiment 

was then run with the 0.25N disodium phosphate solution. Presaturating the 

coating with water, by soaking it for 48 hrs prior to the experiment, it proved 

possible to determine the phosphate diffusion coefficient independent of the 

water. The signal of the repolished crystal was still considerably weaker then the 

first experiment with the undamaged crystal. 

The same experiment was repeated (ZZZONR091908) with the new 

germanium crystal, except this time the film was not coated directly on the 
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crystal. Instead a loose film was clamped against the crystal by the cell. This 

gave good response and cleaner spectra. The diffusion coefficient determined 

for this experiment is likely more accurate then the one determined by 

ZZZONR080808 with the damaged crystal based on the improved response with 

the new crystal. 

Table 3-5: Diffusion Coefficients Determined by the ATRIR Method 
Experimental ID 

OH (water) 
PO Stretching 

ZZZONR07I508 
OHi.vater) 

PO Stri'tr hing 
ZZZONR080808 

PO Sttotc limn 
ZZZONR091908 

PO Stretching 

Permeation Time (min) 
•i« - »y ,» . , , v v ^ %-%}*ft«j. *( AS.\ 

450 
450 

330 

125 

5.5 

Film Thickness (urn) 
>;W» »*. x < ; \ , - ' 

133.4 
133.4 

H7b 

155 0 

145.0 

D (cm2/s) 
1 (, * 

2.0E-08 
5.3E-09 

4.2E-09 

«) 7E-DH 

1.2E-07 

In regards to the phosphate diffusion decoupled from the water diffusion, it 

becomes clear why one reported value in literature states that the phosphate 

transport occurs at the same rate as the water147. With the independent diffusion 

coefficient an order of magnitude greater then that of the water through the 

coating it is clear that when no attempt is made to separate the two events with 

pre-swelling, one does not see the true phosphate diffusion. Figure 3.31 shows 

the phosphate values from three experiments, ZZZONR062408, 

ZZZONR080808, and ZZZONR091908 and emphasizes the effect of 

presaturating the coating with water prior to measuring the diffusion coefficient of 

phosphate. 
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Figure 3.31: Normalized Phosphate Data Coupled (ZZZONR062408) and 
Uncoupled! ZZZONR091908) from Water 

The high value for phosphate diffusion through the coating indicates it is 

unlikely the enhanced corrosion effects of ISPs are due to the slow steady long 

time diffusion of phosphate and entrapment of chloride ions. Certainly some of 

the harmful chloride ions will be retained in the ISP as shown by the decrease in 

diffusion coefficient determined for sodium chloride by the differential cell 

method. Given the life time of the coating of a minimum of 7 years (2.2x108 s) in 

a naval applications, and the characteristic diffusion time of phosphate from a 

point 25 mil from the coating/water interface of 8400 s (2 1/3 hrs) it becomes 

apparent that another mode of action must be present to explain the enhanced 

corrosion performance as coatings when loaded with ISPs (as shown in Chapter 

4). 
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ISPs effect on the corrosion performance is speculatively due to the 

formation of passive films at the steel substrate. The phosphate ions released 

can interact with the free sites on the iron substrate, especially those that are not 

coupled to the epoxy coating155. The epoxy coatings success as an 

anticorrosion coating is in large part due to the excellent adhesion with the steel 

substrate. Even on the best of coating applications it is likely that some 

unadhered or unchelated sites between the coating and the steel substrate 

remain. These unadhered sites would be the location where the initial corrosion 

process occurs. A likely mechanism is that phosphate ions released form the 

ISPs reach these sites and form the many well known and studied passive 

complexes with the free iron in place of the corrosion products that would 

otherwise form at these weak spots. 

3.3 Summary of Characterization 

Characterization of the monomers, individual reactions, and the particles 

was important during the evolution of the ISP synthesis. Results of 

characterization techniques allowed for a continual progress towards the 

development of a successful synthesis route. SEM images were the most useful 

overall but all of the techniques described in this chapter provided information 

needed to make this work successful. 

It is impossible to develop a new concept, such as ISPs for anticorrosion, 

into reality without the necessary characterization techniques to understand the 

effect of developmental changes in the process on the resulting products. In the 

case where there is no available characterization technique for a new product, 
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the development of a characterization technique is necessary along with the 

development of the product. 

In this work other characterization techniques attempted some 

unsuccessfully and are reported in APPENDIX III. These include an attempt at 

synthesizing longer chain ethyleneamines, prerusted sample coupons, ISP 

characterization by phosphate detection via (NMR, analytical chemistry/visable 

spectroscopy, FTIR), NMR determination of primary vs secondary amine 

competition with phosphoric acid. 
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CHAPTER 4 

ANTICORROSION PROPERTIES 

The goal of this project was to produce ISPs that provide enhanced 

corrosion protection. Proving that the ISPs have enhanced protection properties 

was critical to the success of this project. Two weeks were spent at the Naval 

Research Laboratories (NRL) facilities in Key West, Florida acquiring experience 

and training as part of this work. That time was used to learn most of the Navy's 

procedures for testing and qualifying new anticorrosion coatings. Hands on 

training in application techniques and evaluation of testing results provided the 

experience needed to evaluate the anticorrosion performance of ISPs. 

During the time spent at the NRL under the guidance of Ted Lemieux (NRL 

Corrosion Science Section Head) and Arthur Webb (NRL Marine Coatings 

Section Head) the preliminary qualification program used to evaluate the ISPs 

synthesized in this work was defined. Discussions and the extensive experience 

of the NRL members resulted in the selection of the ISP evaluation program 

consisting of accelerated corrosion studies based on 1000 hrs of salt spray 

chamber exposure (ASTM B117), 500 hrs hot (80C) deionized water immersion, 

and 90 day cathodic disbondment. 
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This chapter describes the details of preparation of steel coupons for 

accelerated corrosion study as well as the testing procedures the coupons 

underwent. The results and anticorrosion properties of the ISPs are presented 

and discussed as well. 

4.1 Preparation of Steel Coupons 

It was decided to use the same sample coupon size, surface finish, and 

materials as those utilized by the NRL. ANSI 1018 steel coupons (4"x6"x1/8") 

were purchased already prepared for coating. This size was recommended as a 

minimum acceptable plate size for the accelerated corrosion testing. Smaller 

steel coupons can have problems related to edge effects. Greater then 50% of 

all coating failures occur at sharp corners and edges. This is due to rheological 

properties during film formation resulting in a thinning of the protective film at 

these points as can be seen in Figure 4.1. The samples ordered were edge 

ground prior to blasting to help eliminate thinning at the sharp edge. 

Figure 4.1: Edge Thinning of Epoxy Coating 

It is well known that surface preparation is more important then the actual 

coating system in regards to the successful protection of a steel substrate. The 
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surface of the sample coupons was specified to meet SSPC - SP5 (NACE 1) 

white metal blast cleaning as set forward by the Society for Protective 

Coatings156. SSPC-SP-5 is a white metal blast cleaned surface that is free of all 

visible oil, grease, dirt, dust, mill scale, rust, oxides, corrosion products, paint, 

and other foreign matter. This surface preparation results in the highest possible 

performance of an anticorrosion coating system as all surface contamination is 

completely removed. The samples come thermal sealed in heavy polyethylene 

bags and are certified to SSPC-SP-5 standards. 

Samples were purchased from KTA-Tator Inc. (115 Technology Drive 

Pittsburgh, PA 15275). This source was recommended and used by the NRL in 

their Key West Facility. All of the steel coupons used throughout this work were 

of the same size, surface preparation, and material. 

4.1.1 Anticorrosion Coating for ISP Performance Evaluation 

Four different MIL-DTL-24441C type III coatings were acquired from NCP 

Coatings Inc. (PO BOX 307, 225 Fort St. Niles, Ml 49120). Procuring small 

quantities of this material was somewhat difficult as standard orders for MIL-DTL-

24441 coatings are in the tens or hundreds of gallons. This coating was the 

standard chosen for this work based on the widespread usage in the past by the 

Navy and recommendations of the NRL staff. Three of the ordered coatings 

were standard formulations in green, grey, and white. The fourth was formulated 

as a clear coating without pigmentation for use with a confocal Raman 
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microscope. The different colors were purchased to aid in visual identification 

during multiple coat applications. 

The MIL DTL-24441C coating provided excellent protection of the sample 

coupons. In testing the performance enhancing properties of the ISPs the 

excellent protection of the MIL-DTL-24441 coating made it difficult to quantify 

enhancement. It was decided to switch to a less effective epoxy base coating for 

evaluation of the different ISPs synthesized. A coating system was developed 

based on DGEBA and TEPA for sample coupon preparation (formulation shown 

in Table 4-1). This system provided a poor coating baseline so that the 

evaluation of the corrosion enhancement capacities of ISPs was magnified and 

thereby more easily quantified. 

Table 4-1: Formulation of TEPA/DGEBA Coating System 

TEPA 
DGEBA 
Toluene 

Mass (g) 
18.0 
80.9 
25.0 

4.1.2 Coating Application 

Producing a good coating on the steel plates was the greatest difficulty in 

regards to the preparation of sample coupons. The small amounts of materials 

produced in the laboratory made it impossible to follow the NRL laboratories 

practice of using commercial sized spray equipment. The minimum quantity of 

coating accepted by the NRL for evaluation is 5 gallons. In this work samples 

were prepared in gram quantities, making industrial spray application impossible. 
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Figure 4.2: Coupons by Different Application Techniques 

A range of coating applications was evaluated for their ability to produce 

good coatings. Several brush and rollers were investigated for their ability to 

produce good films on the steel substrate with the MIL-DTL-24441 coating. The 

results of the different application techniques are shown as Figure 4.2. Each 

application tool left a regular pattern of irregularities in the surface indicating 

coating regions of different thickness. This would prove problematic as the thin 

and thick areas could result in polarization of the substrate and artificially 

increase the corrosion rate. These results determined that no brush or roller 

application would produce a suitable coating with the MIL-DTL-24441 system. 
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Steel Plate in Draw Bar Mold 

Figure 4.3: Draw Bar Over Plate Mold with Dimensions 

A mold was prepared for a draw bar application of the coatings. This was 

a polyethylene block machined to the specifications shown in Figure 4.3. The 

steel coupons were placed in the machined recess as shown by the cut away of 

one corner in Figure 4.3. The mixed liquid coating was poured over the steel 

coupon and a draw bar pulled across the mold to produce a uniform film. The 

blocks were machined with two different groove sizes, 10 mil over plate thickness 

and 20 mil over plate thickness allowing for application of two 10 mil layers if 

desired. 

The draw bar in mold technique was limited to producing only fixed 

thickness coatings. Later it was decided to move to thinner coatings to help 

accelerate the corrosion damage. Other problems with the draw bar in mold 

application technique were sample coupon thickness variation and curvature of 

the steel coupons. In addition surface irregularities occasionally occurred on 
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samples prepared by draw bar application as seen in Figure 4.4. It was difficult 

to get a smooth uniform thickness coating with this application technique. 

Figure 4.4: Application Defects on a Draw Bar Application 

Following discussion and recommendation of Arthur Webb, the draw bar 

in mold application method was abandoned in favor of a solvent reduced spray 

application. This was primarily motivated by the non-uniform film thicknes 

generated by the draw bar method due to variations in the steel coupons. 

Adding solvent to the coating system changes the film forming and rheological 

properties as well as affects the protective properties of the dried coating. For the 

purpose of this work it was decided that this was acceptable due to the scale of 

sample ISPs produced. Spray application gave control of coating thickness as 

well as produced excellent uniform films. 
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Figure 4.5: Spray Application Tools, Cressendo (left) and Mini Touch up (right) 

The two components of the MIL-DTL-24441 coating were mixed together 

and then 50% by volume of toluene was added as a thinning solvent. Through 

experimentation it was found that this was the minimum solvent needed to 

successfully spray the MIL-DTL-24441 onto a steel plate. Steel coupons were 

positioned at a 45 degree angle by a 90 degree welding magnet during the spray 

coating process. 

The first spray coatings were done with a Cressendo (Model #: 175-7) 

airbrush manufactured by Badger Air Brush Company (Figure 4.5). The small 

volume of the airbrush paint cup coupled with the good application control, made 

this a good application tool for the scale of ISPs synthesized. Unfortunately the 

limited material transfer rate did not allow for a rapid application It was difficult if 

not impossible to apply a single batch mixing to the multiple sample plates 

required for a given experiment. All samples prepared as part of the same 

experiment were coated with a single batch mixing of the coating components to 
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ensure uniformity and eliminate small variations in the ratio of epoxy to hardener 

between control and ISP test coupons. 

The limited material transfer rate was resolved by switching to a AmPro 

Burgundy Collection Mini Touch-Up HVLP Spray Gun with Regulator (model #: 

AR6029) shown in Figure 4.5. This spray gun has a fluid reservoir volume of 

100 ml_. This unit successfully sprayed the sample sizes generated as a course 

of this project (15-20 mL coating per steel coupon typical). The spray method 

produces very uniform coatings on the steel coupons as expected and 

additionally gives a finer control on the thickness of the coating. 

In order to amplify the corrosion damage the coating thickness was 

reduced from the 10 mil generated in the draw bar molds to 3-4 mil wet thickness 

coating in the spray application. The post B117 scribe evaluation results were 

more easily quantified with the thinner coating as the corrosion effected area was 

increased. 

4.1.3 Interaction Between ISPs and Coating 

Despite the fact that ISPs made by the synthesis outlined in 2.1.1 were free 

flowing powders it was impossible to re-disperse them successfully into an epoxy 

based coating for application. At first this was thought to be pigment shock, a 

phenomenon where the dry pigment added to the coating causes localized 

reaction and/or agglomerations that can not be dispersed afterwards. Pigment 

shock is prevented by first dispersing dry pigments in solvent prior to mixing. 
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When ISPs were added in solvent the effect of the pigment on the amine 

component was actually worsened and intensified. The ISPs were added to the 

amine component of the epoxy coating as it was feared they would react with the 

epoxy component over time. The ISPs had to be stable in one of the coating 

components as standard shipyard practices make their addition to the coating 

system at application time improbable at best. The ISPs were associating with 

the amine components resulting in large agglomerates most likely due to ionic 

exchange. In the worst cases the ISPs in solvent instantly turned the liquid amine 

component into a viscous paste, gel, or solid. 

Figure 4.6: Coating Containing Early ISPs 

By addition of the dry ISPs (5% by weight) to the mixed MIL-DTL-24441 

coating it was possible to prepare a sample coupon shown in Figure 4.6. The 

agglomerations caused by the pigment can be seen as the large solid 
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perturbations raised from the coating surface. This was the only sample 

prepared with ISPs not protected by the PMMA encapsulation step. 

4.2 Accelerated Corrosion Experiments 

Three qualifying experiments were initially selected to determine the 

anticorrosion properties of the ISPs. Of these experiments the 90 day cathodic 

disbondment was abandoned and only the 1000 hr salt fog chamber exposure 

and 500 hr hot Dl experiments were used for all samples. 

4.2.1 90 Day Cathodic Disbondment 

Cathodic disbondment testing creates a galvanic cell consisting of a 

magnesium electrode in series with sample coupons in fresh sea water. This 

experiment tests the destruction of adhesion between the coating and substrate 

caused by products of the corrosion reactions. 

Figure 4.7: Cathodic Disbondment Tank Showing Central Anode and Sample 

Coupons 
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UNH has a Coastal Marine Laboratory in Newcastle, NH where we were 

able to set up a 5 ft diameter tank (Figure 4.7) for cathodic disbondment testing. 

This site has fresh sea water available and the tank was continually flushed with 

a slow steady flow. The test method followed ASTM G8, which has a common 

anode centrally located to all samples in the tank. Sample coupons are 

subjected to an initial coating defect by a YA" drilled circle prior to immersion. 

Samples were labeled on the face as well as additional labeling of the wires 

going to the anode. Samples were immersed for 90 days, then removed and 

evaluated. 

Figure 4.8: 90 Day Cathodic Disbondment Sample Pre and Post Testing 
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Cathodic disbondment showed no change between those samples 

containing ISPs and those without. Figure 4.8 shows the typical result from 90 

days of CD, the slight discoloration is surface staining/fouling from the sea water. 

There were no signs of coating disbondment, blistering or corrosion for any 

sample. Characterization by ASTM D714 - 87 would result in all of the samples 

being rated at 10 (no blisters). Likewise the ratings for all samples evaluated by 

ASTM D610 would be 10 (less than or equal to 0.01% rust). This evaluation 

method was discontinued as the results were uninformative. 

4.2.2 1000 hrs Salt Fog Chamber (ASTM B117) 

While there is no known coating test or standard that accurately predicts a 

coatings performance in the field157, ASTM B117-90: "Standard Test Method of 

Salt Spray (Fog) Testing" describes the conditions for the most common 

corrosion test used to evaluate coating anticorrosion performance. The method, 

involves supporting a sample coupon at an angle of 15 to 30 degrees from 

vertical in a chamber where they are subjected to a continuous spray of a salt 

solution at 35C. The salt solution, 5% by weight of sodium chloride in water, is 

not recycled and the chamber is designed such that condensing droplets do not 

fall on the sample coupons. A Q-Lab Corporation Q-fog model SSP (Figure 4.9) 

salt spray chamber was used for this work. 
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Figure 4.9: Q-Fog Salt Spray Chamber 

The samples in Figure 4.10 were prepared using the MIL-DTL-24441C 

epoxy coating. The samples labeled "a" (left sample) contains with 

approximately 5 wt % of WISCM ISPs (ZZZONR0100307) whereas the sample 

labeled "b" (right sample) are for reference (unfilled). The initial samples were 

scribed 4" with a 1/8" diameter end mill prior to being subjected to B117 

conditions for 1000 hrs. 
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Figure 4.10: Coupons Prepared for Salt Spray 

Figure 4.11 Coupons Post 1000 hrs of Salt Spray Exposure 
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Figure 4.11 shows the same samples as Figure 4.10 after 1000 hrs of 

exposure in the Q-Fog environmental chamber. The samples were removed; 

dried; the scribe area scraped; imaged; and evaluated. The scraping is done to 

remove loose paint and corrosion deposits so that the damaged area around the 

scribe could be carefully measured and evaluated. The coating and corrosion 

deposits were removed by hand with a %" diameter chisel. 

Table 4-2: Rating of Failure at Scribe (Procedure A) 
Millimetres Inches (Approximate) Rating Number 

Zero 
Over 0 to 0.5 
Over 0.5 to 1.0 
Over 1.0 to 2.0 
Over 2.0 to 3.0 
Over 3.0 to 5.0 
Over 5.0 to 7.0 
Over 7.0 to 10.0 
Over 10.0 to 13.0 
Over 13.0 to 16.0 
Over 16.0 

0 
0 to 1/64 

1/64 to 1/32 
1/32 to 1/16 
1/16 to 1/8 
1/8 to 3/16 
3/16 to 1/4 
1/4 to 3/8 
3/8 to 1/2 
1/2 to 5/8 

5/8 to more 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

ASTM D1654-92 "Standard Test Method for Evaluation of Painted or 

Coated Specimens Subjected to Corrosive Environments" is a method for 

quantifying the damage done during salt spray and other accelerated corrosion 

experiments. Following the evaluation procedure A as outlined ASTM D 1654, 

the samples were carefully measured with a digital caliper (Mitutoyo, Model CD-

6"C) and recorded. The measurements are recorded as the minimum and 

maximum damage distance as measured from the pre-scribe. The results of the 

evaluation are presented in Table 4-3. The ratings are determined by 

comparison of the measurement value to those in Table 4-2 included in ASTM 
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D1654. The results for ZZZONR021207 a WISCM based ISP show a 5% 

improvement in the average minimum rating and a 3% average maximum rating 

improvement for the sample containing the ISPs. 

Table 4-3: Evaluation Results for ZZZONR021207 by ASTM D 1654 

ZZZONR021207 
as per ASTM D 1654 
(Evaluation of Painted or Coated Specimens Subject to Corroive Environments) 

Segment 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Ave 

ZZZONR021207A 
Min 

0.62 
0.95 
0.87 
0.79 
0.61 
1.11 
0.33 
0.62 
0.39 
0.71 

0.70 

Rating 
8 
8 
8 
8 
8 
7 
9 
8 
9 
8 

8.1 

Max 
2.17 
1.53 
2.01 

1.7 
0.9 

1.58 
1.03 
1.31 
1.26 
1.71 

1.52 

Rating 
6 
7 
6 
7 
8 
7 
7 
7 
7 
7 

6.9 

ZZZONR021207B 
Min 

1.43 
1 

0.77 
0.61 
0.44 
0.98 
1.05 
0.87 
0.75 
1.12 

0.902 

Rating 
7 
7 
8 
8 
9 
8 
7 
8 
8 
7 

7.7 

Max 
2.38 
2.21 
1.89 

1.9 
1.33 
2.53 
1.74 
1.28 

1.3 
1.89 

1.845 

Rating 
6 
6 
7 
7 
7 
6 
7 
7 
7 
7 

6.7 

Table 4-4: Evaluation Results for ZZZONR082007 by ASTM D 1654 
Sample ID 
ZZZONR083007A 
ZZZONR083007H 

Min Ave 
0.91625 
0.59625 

Score Ave 
7.75 

8.125 

Max Ave I Score Ave 
2.03 6.5 

1.33625| 7.25 

Description 
Control with no particles 
~5wt% of ZZZONR070907 ISP encapsulated in PMMA 

The SISCM based ISP ZZZONR070907 when added at 5 wt % to MIL-

DTL-24441 coating resulted in an average minimum damage score improvement 

of 3.75% and an average maximum damage score improvement of 7.5% as seen 

in Table 4-4. The results of salt spray exposure experiments resulted in 

quantified results showing an improvement caused by the addition of ISPs. Both 

WISCM and SISCM particles showed improvement over their respective control 

samples which do not contain ISPs. These results demonstrate that the ISPs 

aid in the anticorrosion properties when added to the Mil P-24441 coating. 
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Figure 4.12: Salt Spray Exposure, left samples contains 5 wt % DETONR046 
right samples are controls with no ISPs 

Figure 4.12 shows the magnified effects of switching to the DGEBA TEPA 

coating. The increased damage to both samples with the poor coating made it 

easier to quantify the effect of the ISPs. In some cases this coating system might 

have been too weak of a coating with plates not containing particles being rated 

as 0 across the scribe. 
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Results for the evaluation of all B117 salt spray exposure samples are 

presented in an abridged format as Table 4-5. In this table, ratings greater than 

8.0 are identified in blue, ratings between 8.0 and 7.0 in green, and ratings 

between 7.0 and 6.0 in yellow to emphasize the increased performance of these 

samples. 

The series of sample coupons in ZZZONR030408 contained ISP loading 

from 0 to 5 wt %. The plates in this series show an increasing performance with 

an increasing mass fraction of ISP with the best performance for sample G of this 

series at 5 wt %. 

0 2 4 6 8 10 12 14 16 18 20 

Wt % ISP 

Figure 4.13: Weight % ISPs vs Performance in B117 

ZZZONR041408 was a series of experiments with the same particles at 

higher loading levels up to 20 wt % ISPs with the results shown graphically as 
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Figure 4.13. This shows that the optimal loading level for this ISP in the coating is 

10 wt %. The higher loading levels showed less effective results. The 20% 

sample was not applied by spray coating as it was too viscous. It was instead 

poured on to the steel plate and then sprayed with the airstream from the spray 

gun to a thin layer with the excess coating being blown off the plate. While the 

CPVC was not determined for ISPs, it is likely that the 20 wt % loading is very 

near or even beyond the CPVC. This can account for the decreased performance 

inB117. 

The best performance is from SISCM made ISPs ZZZONR042508 at a 

loading of 5 wt %, sample F of series ZZZONR042608. The remarkable result is 

not just the average rating of 10 for the minimum, or 7.2 for the maximum 

damage, but that the unformulated DGEBA/TEPA coating was transformed into a 

coating comparable to the MIL-DTL-24441 coating. 

From the results of the salt spray experiments ISPs generally seem to 

provide the most effective performance enhancement at 5 or 10 wt % loading of 

the coating. 
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Table 4-5: Summary of Sa t Spray Plate Eva 
SAMPLE ID 
ZZZONR021207A 
ZZZONR021207B 
ZZZONR083007A 
ZZZONR083007H *• 
ZZZONR020108A 
ZZZONR020108B 
ZZZONR020108C 
ZZZONR030408B 
ZZZONR030408C 
ZZZONR030408E 
ZZZONR030408J 
ZZZONR0304408G 
ZZZONR041408B 
ZZZONR041408D 
ZZZONR041408F 
ZZZONR041408H 
ZZZONR041408J 
ZZZONR042608B 
ZZZONR042608D 
ZZZONR042608F 
ZZZONR042608H 
ZZZONR042808A 
ZZZONR042808C 
ZZZONR042808E 
ZZZONR042808H 

Min 
0.70 

Rating 
3£Skf 

0 89 H i ^ 
0.92 

- 0.60-
1.63 
16+ 
1.21 
16* 

10 41 
16+ 

1136 
0.90 
16+ 
5.49 
1.52 
3.57 
3.97 
13 20 
2 24 
0 00 
0 39 
16+ 

8.162 
0.868 
0.525 

JHBN 
s9ilpi 

6.9 
0.0 

0.0 
0.3 
00 
26 

"7.8-
0.0 
4.4 

6.0 
5.1 
17 
b7 
10 0 
90 
0 

3.7 

Max 
1 52 
1 85 
2.03-
L34~ 
6.59 
16+ 
2.94 
16+ 
16+ 
16+ 

26.05 
2 72 
16+ 

11.54 
7.20 
7.09 
9.48 
24 90 
5 04 
138 
2 25 
16+ 

15.03 
1.985 
1.559 

Rating 
6.9 
6.7 
6.5 

4.1 
0.0 
5.6 
00 
00 
00 
03 
58 
0.0 
2.0 
3.6 
3.5 
2.6 
01 
46 

Vhr 
m 
0 

1.6 
6.7 

uations by ASTM D1654 
ISP ID 

ZZZONR010307 

»"~ *n*#*g>m- -^ ~ * 

zammormi 
DETONR046 

DETONR046 
DETONR046 
DETONR046 
DETONR046 
DETONR046 
DETONR046 

ZZZONR040808 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 

ZZZONR042408 
ZZZONR042408 
ZZZONR042408 
ZZZONR042508 
ZZZONR042508 
ZZZONR042508 
ZZZONR042508 

wt % ISP 
5.8 
0 
0 

AM 
5 
0 
5 
0 
1 

25 
39 
5 
0 
5 
10 
15 
20 
0 

25 
5 
10 
0 

2.5 
5 
10 

coating 
MIL-DTL-24441 
MIL-DTL-24441 
MIL-DTL-24441 
M«.-DTL~24441 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA'TEPA 
DGEBA'TEPA 
DGEBA'TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA'TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

The complete data for each salt spray exposure experiment is available in 

APPENDIX 4. Images of each sample plate taken at intervals from pre exposure 

through to post exposure are presented in APPENDIX 5. 

4.2.3 500 hrs Hot De-Ionized Water Immersion 

The hot de-ionized water immersion experiments were performed by 

submerging samples at an angle of 15-30 degrees from vertical in a controlled 

temperature bath containing de-ionized water at 80C. Samples were removed 

periodically and images taken on the imaging station recording the progress of 
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corrosion or lack there of for samples well protected by the coating system. After 

500 hrs the samples were removed and imaged one final time. 

Table 4-6: Scale and Description of Rust Ratings (ASTM D610) 

Rust Grade 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Percent of Surface Rusted 

Less than or equal to 0.01 percent 
Greater than 0.01 percent and up to 0.03 percent 
Greater than 0.03 percent and up to 0.1 percent 
Greater than 0.1 percent and up to 0.3 percent 
Greater than 0.3 percent and up to 1.0 percent 
Greater than 1.0 percent and up to 3.0 percent 
Greater than 3.0 percent and up to 10.0 percent 
Greater than 10.0 percent and up to 16.0 percent 
Greater than 160 percent and up to 33.0 percent 
Greater than 33.0 percent and up to 50.0 percent 
Greater than 50 percent 

Spot(s) 

9-S 
8-S 
7-S 
6-S 
5-S 
4-S 
3-S 
2-S 
1-5 

Visual Examples 

General (G) 

None 
9-G 
8-G 
7-G 
6-G 
5-G 
4-G 
3-G 
2-G 
1-<3 
None 

Pinpoint (P) 

9-P 
8-P 
7-P 
6-P 
5-P 
4-P 
3-P 
2-P 
1-P 

The evaluation of corrosion damage for samples subjected to hot de-

ionized water immersion was performed as per ASTM D610-01: "Standard Test 

Method for Evaluating Degree of Rustin on Painted Steel Surfaces". ASTM D610 

covers the evaluation of rusted steel surfaces by comparison to visual standards. 

The numerical rust grade scale is an exponential function of the rust area as 

presented in Table 4-6 which is included in the standard. The type of corrosion is 

rated as spot, general, pinpoint, or a hybrid of these three. 
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Figure 4.14: Images Hot Dl Sample Coupons Showing the Effect if ISPs 

Figure 4.14 shows a series of images recorded over the course of 

evaluation of ZZZONR020108. This was a test using the DGEBA TEPA coating 

with 5 wt % DETONR046 (D) and without (E). After 574 hrs, sample with 5 % 

SISCM based ISPs (ZZZONR020108D) was rated at 9P, as there are several 

small pinpoint areas precluding it from a rating of 10. The control sample 

(ZZZONR020108E) was given a rating of 1G. The images themselves clearly 

show the effectiveness of the ISPs enhanced protection of the steel substrate. 

The same observed improvement due to ISP addition was seen for all samples 

evaluated during this work. 
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Figure 4.15: Wt % ISP vs. Hot Dl Performance 

Figure 4.15 displays the experimentally determined rating values versus 

the ISP loading level in the coating from ZZZONR030408, ZZZONR042608, and 

ZZZONR042808. Error bars are omitted due to the nature of the data which is 

relative to the control sample for each experimental batch of sample plates. This 

shows the best corrosion protection as evaluated by hot Dl immersion was 

experienced at a 5 wt % ISP loading based on the experimental data. As 10 wt 

% loading was determined to be of greatest protection in regards to the salt 

chamber experiments, an ideal loading of 7.5 wt % would be a good compromise 

between the 5 wt % shown by data for hot Dl and the 10 wt % maximum for salt 

spray exposure. Unfortunately no data was evaluated at this loading level during 

the course of this work. Future work will need to investigate this range to narrow 

down the best loading level for ISPs in an anticorrosion coating. 
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Table 4-7: Results of Hot Deionized Water Immersion as per ASTM D610 
Experimental ID wt%ISP ISP ID Rating Notes 

ZZZONR020108D 
ZZZONR020108E 
Z2ZONR02MO7A 
222QNRff21607B 
ZZZONR083007B 
ZZZONR083007G 
ZZZONR030408A 
ZZZONR030408D 
ZZZONR030408E 
ZZZONR030408H 
ZZZONR030408I 
ZZZONR041408A 
ZZZONR041408C 
ZZZONR041408E 
ZZZONR041408G 
ZZZONR041408I 
ZZZONR042608A 
ZZZONR042608C 
Z22ONR042608E 
ZZZONR042608G 
ZZZONR042808B 
ZZZONR042808D 
ZZZONR042808F 
ZZZONR042808G 

5 
0 

" .2.1-

..-.c... 
0 

4.9 
0 
1 

25 
5 

39 
0 
5 
10 
15 
20 
0 

25 
5 
10 
0 

2.5 
5 
10 

DETONR046 

— 
zssoNf&cssr 

T - . * 
— 

ZZZONR070907 

— 
DETONR046 
DETONR046 
DETONR046 
DETONR046 

— 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 

— 
ZZZONR042408 
ZZZONR042408 
ZZZONR042408 

— 
ZZZONR042508 
ZZZONR042508 
ZZZONR042508 

9P 
1G 
10 
9S 
10 
10 
1H 
5S 
6S 
9P 
8P 
0G 
6P 
7H 
7H 
8P 
4G 
6P 
9P 
7P 
4P 
6H 
7S 
8P 

3-4 SMALL SPOTS, ALMOST IMPOSSIBLE TO SEE 
BLACK DISCOLORATION UNDER NON CORRODED AREAS 
NO BUSTERS OR RUST 
ONB«UWl RUST SPOT 
SOME BLISTERING (FEW SIZE 6) 
SOME BLISTERING (MODERATE SIZE 4) 
SPOT AND PINPOINT, CLOSE TO A 0 
DARKENED SURFACE UNDER COATING 
DARKENED SURFACE UNDER COATING 

8 NOT 9 DUE TO ONE SPOT COULD BE COATING APPLICATION DEFECT 
ENTIRE SURFACE RUSTED HEAVILY 

SOME BLISTERS (FEW SIZE 6) 
UNRUSTED AREAS ARE BLACKENED UNDER COATING (MAGNETITE'?) 

RUST IS NEAR EDGES WHERE EDGE COATING FAILED 
GENERAL DARKENING UNDER COATING 
LARGE CIRCULAR REGION SOLVENT CONTACT ©APPLICATION 

Table 4-7 summarizes all of the results of the hot de-ionized water 

immersion experiments performed over the course of this work. Images were 

recorded for each sample plate prior to, during, and post immersion. The image 

sequences as in Figure 4.14 for each of the hot deionized water immersion 

samples are presented in APPENDIX 5. 

4.3 Summary of Anticorrosion Properties 

Sample coupons for testing were prepared successfully by thinning the 

protective coatings for spray applications. Coatings were applied at a wet 

thickness of 4 mils on 4" x 6" x 1/8" ANSI 1018 steel coupons prepared and 

certified at SP5. Both MIL-DTL-24441 and a formulated DGEBA TEPA coating 

were successfully used to prepare coatings containing ISPs for evaluation. 
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The anticorrosion properties of the ISPs synthesized have been 

successfully studied by 500 hrs of hot deionized water immersion and 1000 hrs 

of salt spray exposure. The results show that the ISPs enhance to varying 

degrees the corrosion resistance of the coatings to which they are added for all 

cases. The ISPs synthesized in this work function best in regards to anti 

corrosion protection in a coating at loading levels of 5-10 wt %. 

Actual peak efficiency of the ISPs is likely to change from one coating 

system to another. Each system would need to be evaluated individually to 

determine the optimal ratio, with a specific focus on the region between 5 and 10 

wt % being studied. This work has provided a methodology for such future 

evaluations. 
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CHAPTER 5 

CONCLUSIONS & RECOMMENDATIONS 

5.1 Conclusions 

The SISCM based synthesis of ISPs has been shown to be reproducible, 

and has successfully produced large enough quantities of ISPs for anticorrosion 

performance evaluation. This process also has the possibility of being scaled up 

to produce industrial quantities. The ISPs synthesized meet the requirements 

needed to be incorporated into existing anticorrosion coatings. With the ever 

increasing VOC and raw material legislation worldwide these new 

environmentally friendly and nontoxic anticorrosion pigments can be utilized to 

develop even better anticorrosion coatings for not only naval, but other 

applications. 

From this work the following can be concluded: 

1. Synthesis of the SISCM core particles should be undertaken at 5 wt 

% solids. This limits the tendency for the continuous cell or other 

components to become blocked which in turn ruins the synthesis of 

the core particles. 
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2. ISPs can be synthesized with core ratios of phosphate to amine 

moieties as high as 0.8. Ratios of 0.9 and higher form a solid mass 

upon drying most likely caused by ionic interaction between 

particles as they dry. 

3. A PMMA shell protects the SISCM sufficiently from the harmful 

interactions that occur between the unencapsulated SISCM and the 

unreacted components of epoxy based coatings. 

4. The diffusion coefficient for water through the MIL-DTL-24441 

coating was determined to be D=2.01x10"8 cm2/s. This was derived 

from the ATRIR method and agrees with literature values for 

diffusion of water through epoxy matrixes. 

5. The diffusion coefficient of phosphate through the MIL-DTL-24441 

coating was determined by ATRIR to be 1.16x10"7 cm2/s 

independent of water diffusion through the coating. 

6. The diffusion coefficient for chloride through the MIL-DTL-24441 

coating was determined by the differential cell method to be in the 

range of 2.7 x10"9 to 5.6x10"10 cm2/s without ISPs. The addition of 

5 wt % ISPs to the coating had the effect of decreasing the diffusion 

coefficient by an average of 25.5%. 

7. The best observed corrosion performance in terms of 500 hrs hot 

Dl exposure occurs when ISPs are added at 5 wt % to the coating. 
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8. The best observed corrosion performance in terms of 1000 hrs of 

B117 salt spray exposure occurs at an ISP loading level of 10 wt % 

to the coating. 

9. The ion sequestering capacity of ISPs improve with increasing 

phosphate loading level of the core particle 

10. The use of a poor unformulated epoxy coating can help amplify the 

effects of additives in regards to determination of their corrosion 

protection enhancement. The use of an unformulated coating 

eliminates any supplementary effects of additives and anticorrosion 

pigments in a formulated coating as well as increases the corrosion 

rate of the steel substrate. 

11. The benefit of adding SISCM ISPs to existing "good" coatings was 

shown by the increase (3-7% by ASTM standard methods 

discussed in this work) in corrosion performance under the 

preliminary evaluation periods investigated. 

5.2 Recommendations for Future Work 

Given the promising results, the development of ISPs should continue and 

be taken to the next level. The ISPs synthesized in this work have paved the 

road to a new type of anticorrosion pigment, but the path to industrial 

implementation is long and has only just begun. The following recommendations 

for future work should be carefully considered and implemented for the 

successful continuation of ISPs development in the future. 
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• The addition of molybdate ions into the initial ion sequestration core 

should be studied. By adding small quantities of molybdic acid (H2Mo04) 

or phosphomolybdic acid (H3Moi204oP*H20) the protective properties 

provided by ISPs could be further enhanced. Literature has stated that 

the molybdate ion has excellent anticorrosion properties and that it works 

synergistically with the phosphate ion at mass quantities as low as single 

percentages of the phosphate mass. 

• The synthesis process for the SISCM should be converted to a continuous 

process. This would require the purchase of additional equipment and 

application of process control to balanced the continuous system 

parameters. The continuous process when optimized should produce 

more uniform chemically balanced SISCM particles as there would not be 

any recycled already formed particles interfering in the synthesis. The 

encapsulation by PMMA would remain a batch process but this could be 

scaled up and performed in larger quantities in a 10L reactor. 

• ISP containing coatings should be subjected to a larger array of 

evaluative corrosion testing. The qualifiers chosen and implemented in 

this study are only some of the many tests applied by the NRL and the 

original goal was to produce and screen successful candidates to be 

tested by the NRL. The next phase of study should produce sufficiently 

large batches (0.5-1.0 kg) of ISPs and send them to the NRL Laboratories 
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for independent evaluation and testing by the experienced staff at this 

facility. 

• ISPs should be evaluated in different coating types. This study only 

investigated their effectiveness in epoxy based chemistries. In theory the 

ISPs could be utilized in a broad array of anticorrosion coatings binder 

systems. Certainly it should be incorporated and evaluated into urethane, 

alkyd, and acrylic binder systems. 

• The CPVC should be determined for the new continuous process 

synthesized ISPs as well as for the SISCM based ISPs. The CPVC is 

determined by an in depth study of different loading of particles into a 

coating and subjecting the coupons prepared to many controlled corrosion 

experiments. This would be a project in and of itself but the data is 

necessary if ISPs are to be successfully implemented commercially. 
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APPENDIX 1 

HOMOGENEOUS ISPs 

This appendix contains the details on the development of homogeneous 

ion sequestration particles. The material presented in this appendix differs from 

the body of this work in that the synthesis, characterization, and properties are 

presented together. 

A1.1 Introduction to Homogeneous ISPs 

The homogeneous approach provides some useful reference material 

however the contribution to the successful synthesis development is minor. This 

work is included for the sake of completeness as well as to provide scientists 

who might continue this research with the methodologies that were unsuccessful 

so that resources are not squandered in the future. 

The homogeneous ISP was an alternative approach investigated along 

side the early batch and semibatch ISPs. Instead of striving for a core and shell 

morphology this approach attempted to develop a homogeneous particle. This 

was to be formed by radical polymerization of allylamine coupled to phosphoric 

acid droplets suspended in heptane. The allylamine would polymerize around 

the phosphate ions which would act as crosslinks to maintain the structure of the 
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particle. It was postulated that the ionically coupled network could be further 

solidified by the addition of covalent crosslinks from the incorporation of the co-

monomer diallylamine. This rigid network would not release the phosphate ions 

easily and maintain the structure of the homogeneous ISPs. 

A1.2 Synthesis of Homogeneous ISPs 

The synthesis of homogeneous ISPs consists of an inverse phase radical 

polymerization in heptane. The overall process is outlined in Figure A1.1 which 

shows the basic components and the sequence of the synthesis. 

Allylamine 

' ' 

| Phosphor c I 
I Acd I 

I 
,r " I Thermal I 

I Radical 

< 

- ^ v ""«"" j 

I Solvent I 

A J 
[ RotoVap J 

< ' 

j Dried ISP j 

Figure A1.1: Synthesis Scheme for Homogeneous ISPs 

Crystalline anhydrous phosphoric acid (mp 42.35 C) was melted at 50C, 

degassed with an argon purge for 20 min and dispersed in 200 ml_ of heptane at 

50C by the ultraturrax fitted with the immersion tool and placed through the 
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center neck of a 500 ml_ jacketed reactor. A condenser at 5 C was used to 

prevent the evaporative loss from the reactor. Mono-n-dodecyl phosphate was 

added at 4 wt % of reactants to help stabilize the heptane dispersion. 

Allylamine diluted in heptane (10 wt % cone) was then added to the 

solution and allowed to interact with the dispersed phase of phosphoric acid. 

The ratio of allylamine to phosphoric acid was calculated such that there were 

two primary amines for each phosphoric acid molecule. The PKa of allylamine is 

9.7158 and is strong enough to interact with both the first and second proton on 

the phosphoric acid but not the third. 

Table A1-1: Experimental Details for ZZZONR110904 
Reactant 
Allylamine 
Phosphoric Acid 
AIBN 
Mono-n-dodecyl phosphate 

Mass (g) 
12.000 
10.298 

0.24 
0.891 

Mw 
57.095 
97.990 

Moles 
0.210 
0.105 

Functionality 
1 
2 

An argon purge was submerged to remove dissolved oxygen from the 

heptane and reactants. After 30 minutes the purge was raised above the liquid 

level but continued to provide an argon blanket to exclude oxygen from the 

system. A radical initiator, AIBN (dissolved in 1-2 ml_ of acetone) was added and 

the temperature was increased to 80C. As the reaction proceeded the milky 

white suspension yellowed slightly. The reaction was allowed to proceed for a 

period of 6 hrs after which the temperature was lowered to room temperature. 

The particles were dried on a rotary evaporator at reduced pressure. The dried 

powder formed a cake like solid but was easily redispersed into heptane. The 

quantity for each chemical used for this synthesis is presented as Table A1.1. 
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A1.3 Characterization of Homogeneous ISPs 

Solid state NMR was performed to determine if the allylamine 

polymerized. Solid state NMR is a useful tool for samples that can not be redily 

dissolved in a solvent as was the case with the homogeneous ISPs. Typically 

the signal to noise ratio is not as good as for solvent NMR and the time needed 

to collect data is considerably longer. 

The solid state NMR spectrum for the polyallylamine ISPs is shown as 

Figure A1.2. Modeling of the theoretical shifts for polyallylamine was done at the 

UIC facility with the help of Kathy Gallagher. The peak at 30-45 is for the 

backbone chain carbons. Had there been any unreacted allylamine in the 

particles there would have been a peaks at -110 and 140, therefore we can say 

that there is no allylamine present in the ISPs. 
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Figure A1.2: Solid State NMR spectra of Polyallylamine ISPs 
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Liquid NMR was also performed to determine that there was no unreacted 

allylamine remaining in the solvent post reaction. This sample had the particles 

separated and removed by centrifugation prior to being run. It was concluded 

that the allylamine polymerized and was present only in the microparticles. 

Allylamine is a strong irritant and poses health hazards so the NMR work was 

done to prove that there is no remaining allylamine in the particles or solvent. 

An aqueous GPC (Gel Permeation Chromatography) was set up on an 

Agilent HPLC system. By analyzing a series of similar monomers of varying 

molecular weights a calibration table (see Table A1-2) was developed for use 

with polyallylamine characterization. 

Table A1-2: Calibration Data for Aqueous GPC 

Chemical 
Diethylene Glycol 
Triethylene Glycol 
PEG 400 
Allyl Amine 
Diallyl Amine 

Mw 
106.12 
150.15 
400.00 
57.40 
97.16 

Elution time 
32.67 
30.83 
24.90 
38.21 
37.40 

The homogeneous ISPs were partially soluble in PBS buffer used with the 

aqueous GPC set up. A representative plot is shown as Figure A1.3. The 

molecular weight of the allylamine was found to be approximately 400g/mol. This 

is not truely a macromolecule but instead oligomers with chain lengths of 

approximately 8 allylamine units. This was considerably longer then the TEPA 

used in the encapsulated ISPs synthesis and seemed to be effective at 

maintaining particle integrity. There is likely some minor crosslinking or other 
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strong interaction occuring during the polymerization as the particles are not 

100% soluble in any common solvent as they should be if there was no 

crosslinking. 
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Figure A1.3 Aqueous GPC Results for ZZZONR110904 

A1.4 Synthesis Variations 

In order to produce longer polymer chains for the homogeneous ISPs, co-

polymerization of allylamine with maleic anhydride and ethyl vinyl ether were 

performed. The goal was to determine if it was possible to synthesize higher 

molecular weight polymer. It was considered that the limited mobility of the 

associated allylamine may have had a role in limiting the molecular weight of the 

polyallylamine synthesized. The copolymerization with maleic anhydride 
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(ZZZONR032105) was unsuccessful at producing high molecular weight 

polymer. However it was possible to successfully produced larger chains by 

copolymerizing allylamine with ethyl vinyl ether (ZZZONR032005) with Mn as 

high as 436,000 g/mol. 

Synthesis of a more crosslinked homogeneous ISP was attempted by 

utilizing diallylamine as a comonomer (ZZZONR022405). The diallylamine was 

added at a molar ratio of 1 to 4 with the allylamine, while maintaining the total 

amine to phosphate ratio at 1:1. The addition of diallylamine resulted in an 

unsuccessful reaction with no discrete ISPs formed. At this point literature was 

revisited in order to find hints as to the difficulties in polymerizing allylamine. 

A1.5 Summary of Homogeneous ISP Approach 

The homogeneous particle method produced particles that initially tested 

as good ISPs by titration (see 3.2.5), but no further investigation into this 

approach was taken. The decision to abandon this approach and focus on other 

processes was made after a review of the limited literature on polymerization of 

allylamine which is reportedly difficult159. Literature clearly states that there is a 

well know chain transfer to monomer when trying to polymerize allylamine160. 

This chain transfer is degradative and prevents the formation of higher molecular 

weight in either the homopolymer or copolymers of allylamine161. It seems the 

only way to produce high molecular weight polyallylamine is by radiation 

polymerization162. This limited the probability of success for the homogeneous 

ISP and the decision to abandon this approach was made early in this work. 

164 



APPENDIX 2 

SOLVENT/NONSOLVENT POLYMER PECIPITATION 

A2.1 Introduction 

This approach towards ISP synthesis relied on a solvent/nonsolvent 

polymer precipitation to produce particles in the nanometer size range. A 

polymer is first dissolved, at dilute concentration (~1 wt %), in a good solvent. By 

slow drop wise addition of the solution into a miscible liquid (a nonsolvent of the 

polymer) the good solvent disperses and the polymer collapses onto itself 

precipitating into solid particle. Chemical modification can then be performed to 

encapsulate the particle. 

This appendix will also cover briefly another alternative approach that was 

investigated as a spin off of the solvent/nonsolvent process. It is possible to 

make in bulk PEI coupled to phosphoric acid. This material is a hard solid. It 

was attempted to use a temperature controlled ball mill to grind this material at 

low temperature into a fine powder, and then encapsulate this powder in a 

suspension of heptane. 
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A2.2 Solvent/Nonsolvent ISP Synthesis 

For this method to work it was important to first identify a liquid that was a 

nonsolvent of PEI that was 100% miscible with water, the good solvent. To this 

end a series of experiments were performed with different polar solvents163. In 

these experiments a 20 ml_ glass scintillation vial was filled with approximately 15 

ml_ of each solvent investigated. Into this solvent filled vial several drops of a 50 

wt % solution of PEI in water was added. The vial was then shaken to provide 

agitation. The solution was observed and changes noted. The results of these 

experiments (ZZZONR061306) are presented in Table A2-1. The solvent 

selected as a nonsolvent of PEI was acetone. 

Table A2-1: Nonsolvent of PEI Selection Experimental Observations 
Solvent 
Methanol 
Isopropanol 
NMP 
Acetonitrile 
Acetone 

Observed Change 
Clear, no change 
Clear, no change 
Initially milky then returned to clear 
Milky/foggy solution 
Solution turns white 

The same polyethyleneimine (Mn ~ 60,000 g/mol) was used in this work 

as is discussed In Chapter 2 for use with the WISCM based ISP synthesis. The 

PEI comes as a 50 wt % solution in water. This solution was further diluted to a 

concentration of 1 wt % with ultra pure water. The entire synthesis process is 

illustrated schematically in Figure A2.1 and the description of the experimental 

procedure (ZZZONR061516) follows. 
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The 1 wt % solution of PEI was added dropwise via a 20 ga needle 

affixed to a 100mL glass syringe. The feed rate is controlled by a digital syringe 

pump at 2ml_/min. The droplets were injected into a stirred jacketed reactor 

containing a 500 mL of acetone at 5C. Symperonic PE/F68 was used as a 

stabilizer for the suspension at 2 wt % of the reactants. The particles formed as 

the water was diluted by the acetone and the "dried" PEI collapsed into a small 

solid particle suspended in the acetone by agitation. 

Dilute 
PEI Solution 

(1 wt %) 

Stirred 
Non-Solvent 

of PEI 

MMA 

Low Temp 
Radical 

Polymerization 

" 

Low Temp 
Centrifugation 

" 

~*~i Supernatant ) 

I Lyophilization 

Figure A2.1: Synthesis Scheme for PEI Solvent/Non-Solvent Approach 

A dilute solution of phosphoric acid (1 wt %) in acetone was then fed into 

the suspension of PEI particles by syringe pump. The interaction between the 
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two solutions forms the ion sequestration core. This core required encapsulation 

to limit any ionic exchange between the particles so that agglomeration was 

prevented. Additionally the encapsulating shell would prevent the core from 

interacting with the liquid amine monomers of the epoxy coating system. 

Hexane diisocyanate (HDI) was chosen for the shell material. HDI can 

polymerize at the surface of the particle both by reaction with unassociated 

amine moieties of the PEI as well as through self polymerization catalyzed by the 

amines. The HDI at 1 wt % in acetone was injected into the reactor and allowed 

to react for 1 hr. Table A2-2 contains the quantity for each reactant used in the 

experiments discussed in this section. 

ableA2-2 Reactants 
Experiment ID 
ZZZONE061506 
ZZZONR062206 
ZZZONR062806 
ZZZONR072406 
ZZZONR080906 
ZZZONR090106 

Used for Solvent/Nonsolvent ISP 
PEi(g) 

1.5 
3.0 
1.5 
1.5 
1.5 
1.5 

H3P04 (g) 
0.90 
2.43 
0.90 
1.22 
0.00 
0.90 

HDI(g) 
0.70 
0.70 
0.70 
0.00 
0.00 
0.00 

Synthesis 
TDI(g) 

0.00 
0.00 
0.00 
0.57 
0.36 
0.71 

Symp. PE (g) 
0.000 
0.124 
0.062 
0.066 
0.000 
0.066 

This process produced fine particles in suspension. However upon 

standard low pressure drying in a rotary evaporator they agglomerated. A 

successful drying scheme involved lyophylization but due to the volume of 

acetone and water the process was time consuming. A drying process was 

developed that utilized low temperature centrifugation to eliminate the bulk of the 

liquid phase. This drastically reduced the time needed to freeze dry the particles 
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into a powder. Upon warming the powder agglomerated to form a solid mass. 

ISPs that required subzero storage were not viable. 

As an alternative to the complicated drying process, alternative monomers 

were considered for the shell material. It was thought that the selection of a 

different more rigid monomer will produce a shell polymer with a much higher 

glass transition temperature and eliminate the tendency of the particles to 

agglomerate. TDI was chosen as this new monomer and particles 

(ZZZONR090106) were synthesized with TDI as the shell material. This did not 

result in readily dryable free flowing powder. 

Stabilization of the PEI particles prior to association with the phosphoric 

acid was the next attempted modification to the process. By adding covalent 

crosslinking to the PEI particles prior to association it was hoped that the mobility 

and ability to agglomerate would be limited. First an experiment 

(ZZZONR080906) was done to see if the PEI particles could be stabilized by the 

addition of TDI without forming coagulum. This was successful and new ISPs 

were produced with 5% of the amine moieties coupled with TDI prior to the 

association step. Then an excess of TDI was added post association with 

phosphoric acid. This experiment (ZZZONR090106) did not produce particles 

that could be readily dried and stored at ambient conditions. 

The water remaining in the acetone was suspected as being the cause of 

the inability to dry the particles successfully. The acetone, due to a lower vapor 

pressure, would be removed first during drying. This in effect would concentrate 

the water which could then solvate the ion sequestering core material. To 
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prevent this from occurring, the particles were washed by a solvent exchange 

scheme in order to remove the bulk of water from the system. A SS high 

pressure ultrafiltration cell was purchased and assembled utilizing teflon 

membranes typically used for protein purification. After lengthy discussion with 

membrane manufacturer technical specialists an appropriate membrane was 

suggested, with the disclaimer that they was no precedent for it being used in this 

manner. Particles were subjected to washing with 2 complete exchanges of hplc 

grade acetone. This technique was not successful in preventing agglomeration 

upon drying, indicating that remaining water re-solvating the core was not the 

problem. 

A2.3 Characterization 

A Nanotrac 250, a dynamic light scattering based particle size analyzer 

was used to characterize the size and distributions for the ISPs produced by this 

method. The solvent/nonsolvent approach has successfully and reproducibly 

synthesized particles of 100-200 nm diameters. This size characterization was 

done on the particles dispersed in acetone. A representative nanotrac result is 

shown as Error! Reference source not found, and is typical of the narrow 

distributions seen for the solvent/nonsolvent particle synthesis. 
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Figure A2.2: Histogram showing particle size for HDI/PEI ISPs (ZZZONR061506) 

The solvent/nonsolvent based ISPs had a low temperature glass transition 

temperature at approximately 11C as shown in Figure A2.3. It was initially 

suspected that this was due the HDI based shell material and the harder TDI was 

chosen to replace the HDI. However this change of shell material did not effect 

the Tg as was expected. The Tg seen for the ISPs with TDI as a shell material 

actually dropped to approximately 3C as is shown by Figure A2.4. 
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Figure A2.3: DSC plotforZZZONR06166, HDI encapsulated PEI ISPs 
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Figure A2.4: DSC plot for ZZZONR072406, TDI encapsulated PEI ISPs 
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These results were indicative that the low Tg was not of the shell material 

but instead belonged to the ionic core material. PEI coupled to phosphoric acid 

was dried at high temperature (100 C) and full vacuum. It was then run on the 

DSC to determine if the Tg belonged to the core material. There was indeed a 

transition but not at the expected 3-12 C. Instead the pure PEI/phosphoric acid 

core had a glass transition at 20-30 C which is slightly higher then that seen for 

the ISPs. This data is presented in Figure A2.5. 

Figure A2.5: DSC showing Transition of PEI/Phosphoric Acid Core Material 

The decrease in the Tg for the encapsulated particles could be caused by 

a hydroplasticization effect of water that was not removed from the core164. When 

compared with the drying process used for the pure core material, a much 
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gentler drying process was utilized for the ISP. It is likely some water remained 

bound to the extremely hydrophilic core material. 

It is also possible that some interaction with the shell polymer resulting in 

the seen decrease of the Tg. This is unlikely given that the TDI encapsulated 

ISPs had a lower Tg then those with HDI shells. One would expect the opposite 

to be true if they were responsible for the shift in the glass transition. 

Figure A2.6: SEM images of dried ZZZONR061506 

During the early drying attempts the particles were at elevated 

temperatures and agglomerated. At temperatures above the Tg the core 

material softens and the shell material was not able to protect the particles. This 

resulted in the seen agglomeration shown by the SEM images of Figure A2.6. 
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Similar to what was experienced during earlier attempts to producing core shell 

ISPs the urea/isocyanurate shell was either incomplete or lacked the strength to 

sustain the core. 

A2.4 Bulk Ion Sequestering Core Based ISPs 

The possibility of producing a solid core material consisting of PEI coupled 

to phosphoric acid was briefly investigated. This material was made by the 

addition of pure phosphoric acid dissolved in water at 50 wt % concentration to 

the PEI that comes 50 wt % in water. The solution containing the associated 

components was then dried at 60C and full vacuum in a rotary evaporator. This 

produces very hard solid chunks of the core material. First a small batch of 8g 

total (ZZZONR082906) was produced and then scaled up to produce 100g of 

bulk material (ZZZONR091106) successfully. 

This hard bulk material was then taken to Bentley Pharmaceuticals where 

a low temperature ball mill was utilized to grind the material into a fine powder. 

The ball mill went through a programmed grinding cycle of 30 minutes where the 

temperature was maintained at 5C. Small carbide balls inside a rotating and 

oscillating carbide chamber perform the actual grinding. This method produced a 

fine powder while at low temperature and dry. The particle size distribution from 

the grinding was and is represented in the histogram presented as Figure A2.7. 

The size ranged from 1um to 200 microns. This sort of wide particle size 

distribution is a common of ball mill ground powders. 
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Figure A2.7: Microtrac Particle Size Analysis for Ground Bulk PEI/H3PO4 

The powder produced from grinding was readily dispersed in heptane. An 

encapsulation experiment (ZZZONR091906) was done similar to that attempted 

for the pei solvent/nonsolvent ISPs with MMA and AIBN at 80C. However as the 

temperature was increased the fine suspension of particles agglomerated into 

two solid masses on the edge of the reactor. A second experiment 

(ZZZONR092506) to encapsulate with MMA utilizing V70 initiator at lower 

temperature (30 C) was also unsuccessful. 
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Figure A2.8: DSC for TDI encapsulate ground bulk PEI/H3P04 particles 

It was possible to stabilize the bulk ground particles dispersed in heptane 

with TDI. These ISPs synthesized from the ground bulk core material likewise 

contained the low temperature glass transition of the core material as shown in 

Figure A2.8. This made the drying, handling and manipulation of these ISPs 

impractical. No further investigation of this method was performed as the 

research moved towards the WISCM based ISPs. 
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A2.5 Summary of Solvent/Nonsolvent Synthesis 

The solvent/nonsolvent ISPs synthesis and the bulk ISP synthesis method 

were unable to produce particles that could be dried or manipulated at room 

temperature. This made the ISPs produced by these syntheses unviable and 

this work was set aside. The one benign result from this work was the idea 

behind the WISCM ISP synthesis. The success of the WISCM based ISPs 

caused this approach to be completely abandoned. 
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APPENDIX 3 

SUPPLEMENTAL EXPERIMENTS 

This Appendix contains the description and results of supplemental 

characterization and properties experimental work that was both successful and 

unsuccessful done as part of this work. These experiments are of less 

significance to the complete understanding of ISPs and their synthesis then the 

material presented in Chapter 3. Additionally, unsuccessful work is shared as it 

is important to share failures with others. Often times failed research is not 

disseminated and thus it is repeated only to result, once again in failure. 

A3.1 Determination of Primary versus Secondary Amine Reactivity 

In order to better understand the competition between the primary and 

secondary amines in TEPA an experiment was devised which utilized H-NMR 

(ZZZONR071504). A 50% by mole mixture of a primary amine (n-octylamine) 

and a secondary amine (diethylamine) was prepared in deuterated acetonitrile (5 

ml_). A small trace of benzene was added to the solution. This was then divided 

into two equal parts. To one of these halves sufficient phosphoric acid was 

added to associate with half of the total amine moieties available. This 

association formed a solid precipitate of the phosphoric acid coupled with the 
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amine. The liquid was separated from the solid precipitant by centrifugation, 

followed by filtration and was then transferred into an NMR tube. A sample of the 

unreacted mixture of amines was likewise prepared for NMR. The exact mass of 

the reactants used is presented in Table A3-1. 

Table A3-1: Composition for ZZZONR071504 
Chemical 

diethylamine 
n-ocytlyamine 
phosphoric acid 
benzene 

Mass (g) MW (g/mol) # Mole 
0.0906 
0.1602 
0.0202 

73.1376 
129.2448 
97.995 

0.001239 
0.001240 
0.000412 

one small drop 

The benzene was added to act as an internal standard for comparing the 

integration values of the proton spectra. The spectra were integrated and then 

converted by setting the benzene peak to 1.0 for both the reacted and unreacted 

NMR spectra as it remains unchanged. Spectra were generated on a Varian 500 

MHz NMR. Proton NMR is quantitative; therefore the comparison of the 

integration of the amine peaks give quantitatively the ratio phosphoric acid 

associated with in regards to primary or secondary amine functionality. 

Table A3-2: Peak Integration Values from H-NMR 

Chemical Shift Unreacted Reacted 
7.4 

1.03 
0.88 

1.00 
15.43 
9.56 

1.00 
15.34 
2.65 

Benzene internal standard (converted to 1.0) 
secondary amine peak (CH3) 6H 
primary amine peak (CH3) 3H 

The results from the NMR experiments are shown in Error! Reference 

source not found, while the before and after spectra with integration values are 

presented as Figure A3-1 and Figure A3-2 respectively. The primary amine had a 
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shift of 0.88 ppm. The secondary amine peak was at a shift of 1.03 ppm. The 

benzene peak used as an internal standard was at 7.4 ppm. The integration of 

the secondary amine peak was almost unchanged while that of the primary 

amine dropped by 6.91 (72.3 %) This showed that the phosphoric acid reacted 

almost exclusively with the primary amine functionalities. This result was 

expected based on the greater pKa value of the primary amine and the well 

known reactivity of primary amine over secondary amine moieties but was 

proven to be true by this experiment. 
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Figure A3.1: H-NMR Spectra before Addition of Phosphoric Acid 
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Figure A3.2: H-NMR Spectra After Reaction with Phosphoric Acid 

A3.2 Development of Extended Amines 

TEPA was the longest available monomer in the ethyleneimine family in a 

purified form at reasonable cost and quantities. A longer chain ethyleneimine 

would be beneficial for the synthesis of the ISP core. To this end it was 

attempted (ZZZONR081604) to double the length of the TEPA by the reaction 

with TDI as shown in Figure A3.3. 
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Figure A3.3: Reaction of TEPA with TDI to Synthesize a Larger Monomer 

Two dilute solutions were prepared prior to reaction with a 2:1 molar ratio of 

molecules. The first solution contained 15.0 g TEPA in 100 mL of ACN. The 

second was made up of 6.90g TDI in 100 mL of ACN. Solution A was placed in 

an ice bath and allowed to reach thermal equilibrium at 0C. Magnetic stirring 

provided agitation for solution A in the bath. Solution B was slowly added drop 

wise to Solution A from above. 

Reaction between isocyanates and primary amines occurs at a very 

fast rate. It was hoped that the low temperature 0 C as well as dilution would 

slow the reaction rate and allow for the synthesis of a useful longer chain 

molecule. Useful meaning that the synthesized material would be soluble in ACN 

so that it could be used in the synthesis of core particles. Unfortunately the 

resultant material from this reaction was a solid precipitate. The solid precipitate 

would not melt at temperatures below 100C and was discarded as it was not 

possible to incorporate the product into the ISP synthesis. Speculatively it was 

believed the reaction was localized at the droplet of solution B, with a higher ratio 

of amine to isocyanate in the region of the droplet resulting in much longer 
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molecule extensions then dimerization, possibly even producing a crosslinked 

polyurea as the precipitate. 

A3.3 Pre-Rusted Accelerated Corrosion 

Figure A3.4: Pre-Rusted Plates Prior to Coating 

An alternative attempt at increasing the corrosion rate and observable 

difference between control and ISP containing coatings was done by 

investigating the use of a pre-rusted steel plate. The pre-rusted coupons were 

prepared from the standard 4"x6"x1/8" ANSI 1018 steel sample coupons by 

subjecting them to salt fog chamber for 24 hrs. After the 24hrs in the chamber 

exposed to standard B117 conditions, the samples had layers of iron oxide on 

the surface as shown in Figure A3.4. Coatings were applied to the pre-rusted 

plates by spray application. One coupon was sprayed with a control coating 

(MIL-DTL-24441) while the other contained ISPs. 
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Figure A3.5: Pre-rusted coupon post 1000 hrs B117 

The prerusted samples were then exposed to B117 conditions in the salt 

fog chamber for 1000 hrs. Post scribe evaluation proved impossible as the entire 

plate was badly corroded (rated 0 by ASTM D1624 and D610) on both sample 

coupons (see Figure A3.5). It was impossible to differentiate the corrosion 

damage from the pre-scribe with that caused by the pre-rust treatment. This 

made post exposure damage quantification impossible. This technique was 

discarded as not being of any practical utility. 

A3.4 Characterization of Ion Exchange by FTIR 

Infrared Spectroscopy is a powerful analytical technique that can be used 

to analyze compounds based on functional moieties. A spectra database of all 
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the monomers and then reactions between individual monomers was created by 

running samples on a Bruker FTIR. By setting up this database it was hoped that 

ISPs could be characterized by their functional groups with qualitative and 

quantitative results. 

The first approach was to use the FTIR to characterize the phosphate ion 

after it exchanged with a chloride ion in DMSO. A series of controlled samples 

were run on the FTIR at different concentrations of phosphate. Initially it was 

expected that this would lead to being able to quantify the P-0 stretching peak of 

the phosphate. However after analyzing the spectra scaled to a reference peak it 

was determined quantification was not possible as the SO stretch overlaps with 

the PO stretch at ~1100 cm"1. At the time, batch and early semi batch core shell 

ISPs would swell and agglomerate in water making water not viable as a solvent 

for this work. This method was discarded for and other alternatives were 

investigated. 

A3.5 Other Techniques for Ion Exchange 

This section briefly discusses techniques attempted at ion exchange 

characterization. Little detail is provided as this information is primarily provided 

for those who will continue this work in the future to aid them in developing more 

powerful characterization techniques for the study of ISPs. 

It was attempted to characterize the ISPs by monitoring ion exchange 

through a dialysis bag filled with ISPs stirred in a fixed volume of sodium chloride 

solution. The issue with this method was how to accurately measuring the 
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amount of phosphate counter ion released into the solution. Investigating of kits 

and ASTM standards for biological phosphate determination in water did not 

provide useful results. These biological determination methods relied on visible 

spectroscopy and intensity measurement. They are very good at determining 

very small trace amounts of phosphate. The amount of dilution required with ISP 

solutions to not oversaturate the spectroscope made this technique impracticle. 

The use an electrochemical reference electrode sensitive in theory to only 

phosphate was tried. The electrode was also sensitive to chloride ions in 

solution make this a poor choice for ion exchange characterization. Later an 

electrode sensitive to only chloride ions was purchased for similar work. This 

electrode was impossible to standardize with any repeatability. Readings taken 

from a salt solution in a closed container would fluctuate by 1 or 2 orders of 

magnitude. This solution was in the center of the probes supposed range. 

P31 NMR was investigated. Sample NMR tubes were prepared directly at 

the NMR station containing deuterated water, both pure and sodium chloride 

solutions. 5 wt % of ISPs were added directly prior to insertion into the NMR 

magnet. Timed measurements were performed. Even though this was a liquid 

NMR experiement the presence of the solid ISPs in the solution proved 

problematic in terms of spectra acquisition and it proved impossible to determine 

phosphate diffusion by this method. 
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APPENDIX 4 

B117 SCRIBE EVALUATION DATA 

This Appendix contains the data for each sample evaluated following 

ASTM D1654 scribe evaluation after 1000 hr B117. Each experiment will be 

presented on a separate page, with all samples from that experiment presented 

on that single page. The actual measurements data of variation from the scribe 

line as well as the rating are presented for each sample. This is then averaged 

and reported and discussed in Chapter 5. 
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Experiment ID: ZZZONR021207 

SAMPLE ID 
ZZZONR021207A 
ZZZONR021207B 

Min 
0.7 

0.887 

Rating 
8.1 
7.8 

Max 
1.52 
1.845 

Rating 
6.9 
6.7 

ISP ID 
ZZZONR010307 

wt%ISP 
5.8 
0 

Coating 
MIL-DTL-24441 
MIL-DTL-24441 

Sample ID ZZZONR021207A exposure: 
Min 

Segment (mm) 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Average: 

Rating 
Max 
(mm) Rating 

Sample ID ZZZONR021207B 

0.62 
0.95 
0.87 
0.79 
0.61 
1.11 
0.33 
0.62 
0.39 
0.71 

8 
8 
8 
8 
8 
7 
9 
8 
9 
8 

2.17 
1.53 
2.01 
1.7 
0.9 
1.58 
1.03 
1.31 
1.26 
1.71 

6 
7 
6 
7 
8 
7 
7 
7 
7 
7 

0.7 8.1 1.52 

Segment 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

6.9 Average: 

Min 
(mm) Rating 

Max 
(mm) Rating 

1.45 
1 

0.77 
0.61 
0.44 
0.98 
1.05 
0.7 
0.75 
1.12 

7 
8 
8 
8 
9 
8 
7 
8 
8 
7 

2.38 
2.21 
1.89 
1.9 
1.33 
2.53 
1.74 
1.28 
1.3 
1.89 

6 
6 
7 
7 
7 
6 
7 
7 
7 
7 

0.887 7.8 1.845 6.7 

189 



Experiment ID: ZZZONR083007 

SAMPLE ID 
ZZZONR083007A 
ZZZONR083007H 

Min 
0.92 
0.60 

Rating 
7.8 
8.1 

Max 
2.03 
1.34 

Rating 
6.5 
7.3 

ISP ID 

ZZZONR070907 

wt % ISP 
0 

4.9 

Coating 
MIL-DTL-24441 
MIL-DTL-24441 

Sample ID ZZZONR083007A 
Min 

Segment (mm) 
A 
B 
C 
D 
G 
H 

Rating 
Max 
(mm) Rating 

Sample ID ZZZONR083007H 
Min Max 

Segment (mm) Rating (mm) Rating 
0.5 

0.58 
1.03 
1.91 
1.33 
0.76 
0.7 

0.52 

9 
8 
7 
7 
7 
8 
8 
8 

1.1 
1.34 
2.09 
2.91 
3.55 
1.77 
1.78 
1.7 

7 
7 
6 
6 
5 
7 
7 
7 

A 
B 
C 
D 
G 
H 
I 

J 

0.21 
0.55 
0.64 
0.56 
0.52 
0.75 
0.88 
0.66 

9 
8 
8 
8 
8 
8 
8 
8 

1.89 
1.1 

1.16 
0.72 
0.76 
1.65 
1.5 

1.91 

7 
7 
7 
8 
8 
7 
7 
7 

Average: 0.91625 7.75 2.03 6.5 Average: 0.59625 8.125 1.33625 7.25 
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Experiment ID: ZZZ0NR110607 

SAMPLE ID 
ZZZONR110607A 
ZZZONR110607B 

Min 
2.40 
2.14 

Rating 
6.1 
6.3 

Max 
7.03 
6.47 

Rating 
3.8 
4.0 

ISP ID wt % ISP 
5.8 
0 

Coating 
MIL-DTL-24441 
MIL-DTL-24441 

Sample ID ZZZONR110607A 
Min 

Segment (mm 
A 
B 
C 
D 
G 
H 
I 

J 
Average: 

Rating 
Max 
(mm) Rating 

Sample ID ZZZONR110607B 

1.66 
1.03 
1.93 
2.8 

2.35 
2.09 
3.51 
3.86 

7 
7 
7 
6 
6 
6 
5 
5 

6.03 
4.91 
3.26 
11.08 
5.75 
7.08 
9.06 
9.09 

4 
5 
5 
2 
4 
3 
4 
3 

2.40 7.03 

Min 
Segment (mm 

A 
B 
C 
D 
G 
H 
I 

3.8 Average: 

Rating 
Max 
(mm) Rating 

3.27 
2.11 
2.35 
1.49 
1.11 
1.55 
3.28 
1.95 

5 
6 
6 
7 
7 
7 
5 
7 

6.4 
5.56 
5.9 
4.3 
3.97 
3.65 
6.33 
15.64 

4 
4 
4 
5 
5 
5 
4 
1 

2.14 6.3 6.47 4.0 
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Experiment ID: ZZZONR020108 

SAMPLE ID 
ZZZONR020108A 
ZZZONR020108B 
ZZZONR020108C 

Min 
1.63 
16+ 
1.21 

Rating 
6.9 
0.0 
7.4 

Max 
6.59 
16+ 
2.94 

Rating 
4.1 
0.0 
5.6 

ISP ID 
DETONR046 

DETONR046 

wt % ISP 
5 
0 
5 

Coating 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

Sample ID ZZZONR020108A exposure: 
Min 

Segment (mm) 
A 
B 
C 
D 
G 
H 
I 
J 

Average: 

Rating 
Max 
(mm) Rating 

1.14 
1.6 

1.58 
0.88 
1.56 
1.57 
3.6 
1.1 

7 
7 
7 
8 
7 
7 
5 
7 

3.53 
13.8 
10.65 

2 
2.47 
5.96 
10.97 
3.3 

5 
1 
2 
7 
6 
4 
2 
6 

1.63 6.9 6.59 

Sample ID ZZZONR020108C 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
G 
H 

Max 
(mm) Rating 

1.63 
0.76 
0.75 
1.22 

1 
1.31 
0.93 
2.09 

7 
8 
8 
7 
8 
7 
8 
6 

2.36 
2.5 

2.62 
2.59 
2.25 
3.65 
3.96 
3.55 

6 
6 
6 
6 
6 
5 
5 
5 

4.1 Average: 1.21 7.4 2.94 5.6 

B isolated area, I- isolaed damage area 

Rating 

Sample ID 777nNRn9nin«R 
Min 

Segment (mm) 
A 
B 
C 
D 
G 
H 
I 

Average: 16+ 

Max 
(mm) Rating 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 

0 16+ 

total failure of coating 
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Experiment ID: ZZZONR030408 

SAMPLE ID 
ZZZONR030408B 
ZZZONR030408C 
ZZZONR030408E 
ZZZONR030408J 
ZZZONR030408G 

Min 
16+ 

10.41 
16+ 

11.36 
0.90 

Rating 
0.0 
0.3 
0.0 
2.6 
7.8 

Max 
16+ 
16+ 
16+ 

26.05 
2.72 

Rating 
0.0 
0.0 
0.0 
0.3 
5.8 

ISP ID 
DETONR046 
DETONR047 
DETONR048 
DETONR049 
DETONR050 

wt % ISP 
0 
1 

2.5 
3.9 
5 

Coating 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

Rating 
Max 
(mm) 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Sample ID ZZZONR030408B 
Min 

Segment (mm) 
A 
B 
C 
D 
E 
F 
G 
H 

Average: 16+ 0 16+ 

No unrusted surface on front 
Sample ID 777ntutn^nsaRf= 

Min Max 
Segment (mm) Rating (mm) 

A 
B 
C 
D 
E 
F 
G 
H 

Average: 16+ 0 16+ 

Rating 

Rating 

Rating 

Sample ID 777nnan^nAnnr. 
Min 

Segment (mm) 
A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) 

0 Average: 10.41 0.3 16+ 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Sample ID ZZZONR030408G 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) 

Rating 
16+ 
16+ 
16+ 

11.65 
9.16 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
1 
2 
0 
0 
0 
0 
0 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Rating 
0.82 
1.73 
1.01 
0.4 

0.05 
1.29 
0.53 
1.56 
0.82 
0.81 

8 
7 
7 
9 
9 
7 
8 
7 
8 
8 

3.17 
2.43 
3.37 
1.63 
1.94 
2.7 

2.75 
3.44 
2.41 
3.4 

5 
6 
5 
7 
7 
6 
6 
5 
6 
5 

0 Average: 0.90 7.8 2.72 5.8 

Average: 

Rating 

Sample ID ZZZONR030408J 
Min 

Segment (mm 
A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) Rating 

1.68 
6 

8.07 
24 

6.54 
14.42 
3.09 
13.2 

21.23 
15.34 

7 
4 
3 
0 
4 
1 
5 
1 
0 
1 

9.83 
16.22 
45.27 
37.78 
19.39 
27.81 
32.19 
24.84 
25.5 
21.67 

3 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11.36 2.6 26.05 0.3 
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Experiment ID: ZZZONR041408 

SAMPLE ID 
ZZZONR041408B 
ZZZONR041408D 
ZZZONR041408F 

ZZZONR041408H 
ZZZONR041408J 

Min 
16+ 
5.49 
1.52 

3.57 
3.97 

Rating 
0.0 
4.4 
7.0 

6.0 
5.1 

Max 
16+ 

11.54 
7.20 

7.09 
9.48 

Rating 
0.0 
2.0 
3.6 

3.5 
2.6 

ISP ID 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 
ZZZONR040808 

wt % ISP 
0 
5 
10 
15 
20 

Coating 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

Sample ID ZZZONR041408B 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
G 
H 
I 

Max 
(mm) Rating 

16 + 
16 + 
16 + 
16 + 
16 + 
16 + 
16 + 
16 + 

0 
0 
0 
0 
0 
0 
0 
0 

16 + 
16 + 
16 + 
16 + 
16 + 
16 + 
16 + 
16 + 

0 
0 
0 
0 
0 
0 
0 
0 

Sample ID ZZZONR041408D 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
G 
H 

Max 
(mm) Rating 

4.74 
6.75 
8.79 
4.14 
4.2 

4.52 
6.41 
4.35 

5 
4 
3 
5 
5 
5 
3 
5 

11.03 
14.26 
13.95 
12.53 
9.68 
9.07 
11.11 
10.65 

2 
1 
1 
2 
3 
3 
2 
2 

Average: 16+ 0.0 16+ 0.0 Average: 
Large areas of deep pitting and flaky oxide covering 
total area of plate 
Sample ID 777nMRtui4/«r 

Min Max 
Segment (mm) Rating (mm) Rating 

A 
B 
C 
D 
G 
H 

5.49 4.4 11.54 2.0 

1.21 
0.99 
0.83 
1.53 
1.35 
2.18 
1.97 
2.12 

7 
8 
8 
7 
7 
6 
7 
6 

2.49 
4.14 
3.84 
3.77 
7.29 
10.99 
14.4 
10.65 

6 
5 
5 
5 
3 
2 
1 
2 

Sample ID ZZZONR041408H 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
G 
H 

Max 
(mm) Rating 

Average: 1.52 7.0 7.20 3.6 Average: 

3.18 
3.53 
6.27 
3.47 
3.95 
3.2 

2.93 
2.01 

6 
6 
4 
6 
6 
6 
7 
7 

5.96 
11.35 
7.48 
7.31 
6.73 
6.23 
7.05 
4.62 

4 
2 
3 
3 
4 
4 
3 
5 

3.57 6.0 7.09 3.5 

Average: 

Rating 

Sample ID ZZZONR041408J 
Min 

Segment (mm 
A 
B 
C 
D 
G 
H 

Max 
(mm) Rating 

3.08 
3.22 
4.66 
2.1 

2.51 
6.84 
5.44 
3.93 

5 
5 
5 
6 
6 
4 
4 
6 

6.72 
7.34 
8.58 
7.42 
13.14 
11.58 
11.46 
9.61 

4 
3 
3 
3 
1 
2 
2 
3 

3.97 5.1 9.48 2.6 
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Experiment ID: ZZZONR042608 

SAMPLE ID 
ZZZONR042608B 
ZZZONR042608D 
ZZZONR042608F 
ZZZONR042608H 

Min 
13.20 
2.24 
0.00 
0.39 

Rating 
1.7 
6.7 
10.0 
9.0 

Max 
24.90 
5.04 
1.38 
2.25 

Rating 
0.1 
4.6 
7.2 
6.3 

ISP ID 
ZONR042; 
ZONR042' 
ZONR042' 
ZONR042; 

wt % ISP 
0 

2.5 
5 
10 

Coating 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

Rating 

Sample ID ZZZONR042608B 
Min 

Segment (mm) 
A 
B 
C 
D 
E 
F 
G 
H 

9.6 
8.66 
9.19 
16.4 
14.46 
17.65 
23.4 
13.99 

9.61 
9.01 

3 
3 
3 
0 
1 
0 
0 
1 
3 
3 

22.2 
24.74 
27.44 
35.78 
26.1 
21.5 
31.88 
26.24 
17.71 
15.4 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Average: 13.20 

Rating 

Sample ID ZZZONR042608D 
Max Min 
(mm) Rating Segment (mm) 

A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) Rating 

1.7 24.90 0.1 Average: 

0 
1.6 

3.52 
5.45 
4.08 
1.78 
0.86 
1.58 
1.94 
1.62 

10 
7 
5 
4 
5 
7 
8 
7 
7 
7 

1.57 
5.58 
6.6 

9.22 
7.37 
4.83 
3.39 
5.06 
3.84 
2.91 

7 
4 
4 
3 
3 
5 
5 
4 
5 
6 

2.24 6.7 5.04 4.6 

Dark Magnetite over entire surface 
Sample ID ZZZONR042608F 

Min 
Segment (mm) 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Average: 

Rating 
Max 
(mm) Rating 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

1.39 
0.9 

0.68 
1.78 
0.95 
1.17 
3.03 
1.11 
1.38 

7 
8 
8 
7 
8 
7 
6 
7 
7 

Sample ID ZZZONR042608H 
Min 

Segment (mm) Rating 
A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) Rating 

0.45 
0 
0 
0 

1.16 
0.72 

0 
0.84 

0 
0.77 

9 
10 
10 
10 
7 
8 
10 
8 
10 
8 

1.88 
2.48 
2.31 
3.17 
2.57 
1.71 
1.91 
1.68 
3.35 
1.4 

7 
6 
6 
5 
6 
7 
7 
7 
5 
7 

0.00 10.0 1.38 7.2 Average: 0.39 9.0 2.25 6.3 

one small area of disbondment damage 
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Experiment ID: ZZZONR042808 

SAMPLE ID 
ZZZONR042808A 
ZZZONR042808C 
ZZZONR042808E 
ZZZONR042808H 

Min 
16+ 
8.16 
0.87 
0.53 

Rating 
0.0 
3.7 
7.8 
8.8 

Max 
16+ 

15.03 
1.99 
1.56 

Rating 
0.0 
1.6 
6.7 
7.0 

ISP ID 
ZZZONR042508 
ZZZONR042508 
ZZZONR042508 
ZZZONR042508 

wt % ISP 
0 

2.5 
5 
10 

Coating 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 
DGEBA/TEPA 

Sample ID 777DMPnd7an«A Sample ID ZZZONR042808C 
Min 
(mm) Segment 

A 
B 
C 
D 
E 
F 
G 
H 
I 

Average: 16+ 

Max 
Rating (mm) Rating 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 
16+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.0 16+ 0.0 

Segment 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Average: 

Min 
(mm) 

Max 
Rating (mm) Rating 

0.87 
2.89 
6.85 
9.94 
12.14 
12.13 
16.5 
12.4 
5.8 
2.1 

8 
6 
4 
3 
2 
2 
0 
2 
4 
6 

2.17 
5.85 
20.29 
24.7 
19.5 
16.67 

18 
25.5 
12.13 
5.51 

6 
4 
0 
0 
0 
0 
0 
0 
2 
4 

8.16 3.7 15.03 1.6 

entire plate blackened, large undercut lots of blistering 
Sample ID ZZZONR042808E 

Min 
Segment (mm 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Average: 

Rating 
Max 
(mm) Rating 

0.34 
1.43 
0.99 
1.11 
0.98 
1.09 
0.6 

0.97 
0.62 
0.55 

9 
7 
8 
7 
8 
7 
8 
8 
8 
8 

1.93 
4.37 
2.24 
2.74 
1.43 
1.5 

1.04 
1.52 
2.33 
0.75 

7 
6 
6 
6 
.7 
7 
7 
7 
6 
8 

0.87 7.8 1.99 6.7 Average: 

Rating 

Sample ID 777r>NRfiA9RnBH 
Min 

Segment (mm) 
A 
B 
C 
D 
E 
F 
G 
H 

Max 
(mm) Rating 

0 
1.35 
1.05 
0.83 

0 
0 

0.25 
0.45 
1.32 

0 

10 
7 
7 
8 
10 
10 
9 
9 
8 
10 

0.91 
1.65 
1.7 
1.46 
0.97 
1.95 
1.5 

2.15 
2.01 
1.29 

8 
7 
7 
7 
8 
7 
7 
6 
6 
7 

0.53 8.8 1.56 7.0 
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APPENDIX 5 

PHOTOGRAPHS OF SAMPLE COUPONS 

This Appendix contains a series of time laps images for each painted steel 

sample coupons used to evaluate the anticorrosion performance of the ISPs. 

Each sample will have a series of four images presented. The images always 

contain a pre experiment image at time zero in the top left image. Proceeding 

clockwise from this image will be two intermediate time images where the 

samples were removed from the experiment briefly and photographed. Finally 

the bottom right image is of the sample coupon post exposure. Each image in 

the sequence is labeled with the actual time stamp for that images acquisition 

time. 
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