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ABSTRACT 

S U R F A C E STRUCTURE AND COMPOSITION DETERMINATION BY L O W - E N E R G Y 

E L E C T R O N SCATTERING AND M O N T E C A R L O SIMULATIONS 

by 

Jiebing Sun 
University of New Hampshire, September, 2008 

This thesis reports on surface and surface alloy structural and compositional determi

nation with low-energy electron scattering and Monte Carlo simulations. Low-energy elec

tron diffraction (LEED) technique and the newly developed low-energy electron microscopy 

(LEEM) IV technique are used to measure the electron scattering intensity spectra and 

dynamical multiple scattering analysis is performed to optimize the surface structural and 

non-structural parameters via comparison between the experimental spectra and calculated 

ones. My work focuses on the following four surface systems. 

( I l l ) , (110) and (001) surface structures of the semimetal bismuth are determined with 

LEED. The unreconstructed ( l x l ) structure is revealed for all three surfaces. The interlayer 

spacings for several outermost layers are resolved. All results agree with those obtained by 

first-principles calculations. The Debye temperatures for the Bi( l l l ) and Bi(110) surface 

are found to be lower than that of the Bi bulk. In conjunction with the LEED technique, 

scanning tunneling microscopy (STM) observation is performed on the Bi(001) surface. 

Surface topology images show dominant bilayer steps and no single layer step. 

The newly developed LEEM-/V technique is used to investigate the PdCu surface alloy 

on the substrate Cu(001). Studies include quantifying the temporal evolution of Pd con

centration on the Cu(001) terrace, mapping the 3D heterogeneous surface chemical compo-
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sition, and identifying a step-overgrowth thin film growth mechanism. It is found that, at 

the initial deposition stages, Pd atoms reside in the second layer at the sample temperature 

of 473 K, and the Pd concentration increases exponentially with time. The heterogeneous 

structure and composition near the steps are found to be a result of the step-overgrowth. We 

highlight the LEEM-TV technique which provides a high lateral resolution at surfaces. We 

demonstrate a 3D profile of Pd concentration in the surface region by using the LEEM-iV 

technique. 

The reconstructed Si(001)-2xl surface has been intriguing due to its great scientific 

and technical significance. Unfortunately, no satisfactory agreement between the LEED 

experimental and theoretical data have been achieved. Some controversies over this surface, 

such as the flip-flop dimer dynamics and the ground-state structure, still require further 

study. Utilizing LEEM to get electron scattering spectra from a single domain, we get a 

refined asymmetric tilted dimer structure. 

We investigate the 6H-SiC(0001) surface phase transition in order to ultimately under

stand the formation of graphene on it. LEEM diffraction data from a large single domain 

are analyzed for 3x3, l x l and \ /3x\ /3 phases. All the surface structures turn out to 

have an "A" bi-layer bulk termination. It is found that the amount of Si at the surface 

decreases with increased temperature. Adatom-trimer-adlayer model for the 3x3 surface 

does not give a satisfactory result and more work needs to be done to resolve this structure. 

A mixed Si-vacancy top-site overlayer on the l x l surface is found. A VSxy/3 overlayer 

at the T4 registry on the substrate surface generates a best fit between experimental and 

calculated data. 
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CHAPTER 1 

Introduction 

1.1 Surface science 

Surface science is the study of physical and chemical phenomena that occur at the interface 

of two phases, including solid-liquid interfaces, solid-gas interfaces, solid-vacuum interfaces, 

and liquid-gas interfaces. It encompasses concepts such as heterogeneous catalysis, semicon

ductor device fabrication, fuel cells, self-assembled monolayers, abrasion, erosion, adhesives 

and thin-film growth. Surface science is of interest mainly due to its four characters: abun

dant chemical compositions and geometrical structures, intriguing electronic structures, 

remarkable physical properties, and challenging surface techniques. A variety of surface 

phenomena, such as phase transitions, optical properties, adsorption, surface reactions and 

thin-film growth, have been extensively investigated. 

Partially because of its historical development, surface science is roughly divided into two 

scientific fields: surface chemistry and surface physics [7]. Surface science began with surface 

chemistry which centers on the study of reactions at interfaces. Some research directions in 

surface chemistry are surface functionalization, heterogeneous catalysis, surface adsorption, 

and interface study. Irving Langmuir was one of the founders of this field in the early 

20th century. He was awarded the 1932 Nobel Prize in Chemistry for his discoveries and 

investigations in surface chemistry [8]. 75 years later, German physicist Gerhard Ertl was 
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awarded the 2007 Nobel Prize in Chemistry for his studies of chemical processes on solid 

surfaces [8]. 

In contrast, surface physics, which concentrates on the study of physical changes at 

interfaces [3], emerged as late as the 1960s. Some topics in surface physics include sur

face reconstruction, surface phonons and plasmons, epitaxy on surface, the emission and 

tunneling of electrons, spintronics, and the self-assembly of nanostructures on surfaces. 

Surface science needs special research methods and techniques. Much care and in

spiration has been devoted to exploring the systematic laws governing surface processes. 

Physicist Wolfgang Pauli once remarked on the surfaces in the following way, "God made 

solids, but surfaces were the work of the devil!" It is this "devil" quality of surfaces that 

imposes challenges to the surface scientists and stimulates our curiosity. But excitingly, 

much progress has been made; details can be found in excellent books [9, 7, 3, 10, 11, 12]. 

Fantastically, numerous advances have taken place in the last couple of decades with the de

velopment of nanotechnology. Furthermore, the significance of surface science study extends 

far beyond its own field, as quoted from Surface Scientist E. Ward Plummer, "Surfaces are 

the playground of Solid State Physics [13, 14]." 

The multiple motivations for surface science study come from its significant scientific 

and practical importance. Surface-related phenomena, such as erosion, friction and surface 

tension, are everywhere in our daily life. Chemical reactions start at the solid surface 

and catalysts play an important role at the surfaces. To explain and understand such 

interesting behaviors is one mission of surface scientists. To engineer surfaces and put 

them into practical applications is a parallel pursuit. For instance, thin film growth on a 

surface or interface is crucially correlated to the quality of that surface or interface itself. 

This is particularly important in the modern semiconductor industry. Surface scientists 
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and engineers make many efforts to discover growth mechanisms of thin films and thus 

better control their growth. Recently, with the burgeoning development of nanotechnology, 

the importance of surfaces has been rising due to the increasing quantum effects resulting 

from the decreasing size. The high surface-to-volume ratio leads to many new properties of 

materials at the nanometer scale. 

Specific goals in the surface investigations include probing the surface geometric struc

ture, chemical composition and electronic structure. A wide variety of surface analysis 

techniques are well developed and the facilities are commercially available. Different surface 

techniques are used to extract different surface information and each has its own advantages 

and disadvantages. They can be classified in terms of probe type, resolution, operating en

vironment, or working mode. Special expertises might be needed for individual techniques. 

The ultra-high vacuum (UHV) technique for the sample cleanness is an example. 

Here is a partial list of techniques routinely used in many surface science laborato

ries: surface X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultra-violet 

photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), low-energy elec

tron diffraction/microscopy (LEED/LEEM), electron energy loss spectroscopy (EELS), re

solved high-energy electron diffraction (RHEED), electron/photon stimulated desorption 

(ESD/PSD), ion scattering spectroscopy (ISS), secondary ion mass spectrometry (SIMS), 

scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), 

infrared reflection-absorption spectroscopy (IRAS), and surface enhanced Raman spectro

scopies (SERS). Books describing these analytical techniques are suggested [7, 3, 9, 10, 11, 

12, 15]. 
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1.2 Thesis motivation 

Determining structure and chemical composition of crystalline surfaces with high spatial 

resolution is the primary objective of this thesis. The surface region or the top layers (~10 

A in depth) tends to have structure different from its corresponding bulk due to the broken 

symmetry in the surface-normal direction. The atomic geometry and chemical composition 

are the most fundamental physical properties of surfaces. They are closely associated with 

other surface characteristics such as optical, magnetic, electronic and chemical properties. 

Surface structural information is essential to explain and predict material properties. 

Unfortunately, 2D surface crystallography has been challenging compared to successful 

3D crystallography which benefits from the X-ray diffraction (XRD) technique. The most 

powerful 2D crystallography tool, low energy electron diffraction (LEED), emerged only in 

the late 1960s thanks to the availability of ultra-high vacuum (UHV) and surface cleaning 

techniques although the working principle had been experimentally demonstrated in the 

1920s [16]. Up to date, dynamical LEED analysis remains the most effective technique 

for surface crystallography. Its high sensitivity to atomic location and species, resulting 

from the atomic ion-core potential scattering, can be used to resolve the periodic structure 

of surfaces. The large scattering area (on the order of fim2) over which the diffraction 

intensities are averaged, however, poses a restriction to our goal of measuring the surface 

structure and compositions at nanometer scale resolution in order to resolve heterogeneous 

structures. 

Resorting to modern scanning probe microscopy/spectroscopy (SPM/SPS) turns out to 

be of little help. The reason is that these techniques have difficulties either in detecting 

the subsurface layers or in sensitively identifying the chemical elements. To overcome these 

hurdles, we are devoted to developing a new technique to realize our objective. The solution 
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is a combination of low-energy electron microscopy (LEEM) imaging and dynamical LEED-

IV analysis techniques. LEEM is capable of in situ direct imaging of a surface, and the 

local surface information can be retrieved via the analysis of the local intensities in the 

image. In this thesis, I shall demonstrate that this technique, LEEM-/F, generates a 3D 

profile of the chemical composition of a PdCu surface alloy at 8.5 nm resolution, the first 

3D mapping of surfaces at such a high resolution. Using this technique we have identified 

an ultra-thin film over-growth mechanism. 

Furthermore, I have improved different LEED program packages to increase their ver

satility. The atomic structures of surfaces (111), (HO) and (100) of the semimetal Bi are 

resolved. The surface geometries for single domains of the semiconductor surfaces, Si(001) 

and 6H-SiC(0001), are determined with LEEM. Monte Carlo simulations are employed to 

understand the energetics of the Pd/Cu(001) surface alloy system. 

1.3 Content arrangement 

Following this Introduction, in Chapter 2 and Chapter 3 I describe the experimental tech

niques of LEED and LEEM, respectively. In Chapter 4 I give an account of the Monte 

Carlo simulations. Results and discussions for bismuth surfaces (111), (110) and (001), 

the PdCu surface alloy on Cu(001) surface, the Si(001)-2xl surface, and the 6H-SiC(0001) 

surface phases are presented in Chapter 5, 6, Appendix A, and B, respectively. In Chapter 

7 I summarize the main results of this thesis and draw conclusions. 
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CHAPTER 2 

Low Energy Electron Diffraction 

2.1 LEED physics 

2.1.1 Surface structure 

The creation of a new surface by cleaving a crystal brings structural changes to the exposed 

surface plane. The changes could lead to dramatic differences in the physical and chemical 

properties between the surface and the underlying bulk. Therefore, the surface structure is 

of fundamental significance in surface science. 

For a perfect bulk-terminated surface, the atomic structure retains the same lateral sym

metry as the bulk but has a broken symmetry in the surface normal direction. Many surfaces 

even have more radical structural changes due to the creation of the surface-vacuum inter

face. The surface chemical species could be foreign atoms adsorbed on the substrate. At the 

uppermost several layers, atomic rearrangements are possible. Figure 2-1 illustrates some 

rearrangements of the surface atoms, including interlayer relaxations, atomic reconstruc

tions, and a missing row structure. It is not surprising that these geometric reorganizations 

can result in a dramatic change in physical and chemical properties. A surface lattice struc

ture of foreign atom B on the substrate A(hkl) is usually denoted by A(hkl)-(m x n)-Rd°-B, 

where m and n are the length ratios of two overlayer unit cell vectors to two substrate unit 

cell vectors and 9° represents the angle between the substrate unit cell vectors and the 
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Figure 2-1: The side view of surface atom rearrangements in a simple cubic lattice with the lattice 

constant a. (a) The atomic layer spacing is contracted with d\<db, where d\ and <4 are the first 

interlayer and bulk interlayer spacings, respectively, (b) A dimerization causes a new surface lattice 

vector length of 2a. (c) A missing row reconstruction also leads to a new surface lattice vector length 

of 2a. 

overlayer unit cell vectors. R0° can be omitted when 6 = 0. B can be omitted when B atom 

is A atom itself. 

Another aspect of real surfaces is the existence of defects. Zero-dimensional or point de

fects involve adatoms, ledge adatoms, kinks, and vacancies. An important one-dimensional 

or line defect is the step in which the atomic ledge separates two terraces from each other. 

Figure 2-2 depicts a typical surface topology which shows terraces, adatoms, vacancies, 

steps, and kinks. Steps are important in the formation of high-index surfaces. Because 

of defect-induced local variation in important physical quantities, such as binding energy, 

coordination and electronic states, the defect structure of a surface plays a predominant 

role in surface processes such as crystal growth, evaporation, surface diffusion, adsorption, 

and surface chemical reactions. 

The four systems studied in this thesis have different surface structures. The Bi( l l l ) , 

(110) and (001) surfaces all retain the truncated bulk surface lattice structures. The Pd 

ultra thin film on the Cu(OOl) substrate has a c(2x2) underlayer intermixing structure. 
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Figure 2-2: A schematic view of a typical surface topology. Surface structures/defects include 

terraces, adatoms, vacancies, kinks and steps. 

The Si(OOl) surface reconstructs into a 2x1 dimer superlattice. The 6H-SiC(0001) surface 

exhibits rich surface phases at different temperatures; they include 1x1,3x3, ^ x v ^ - ^ 3 0 0 

and 6^/3x6^/3 structures. 

For a 2-dimensional (2D) periodic atom net, only five ways exist to arrange the lattice 

points, and the resulting lattices are the five Bravais lattices shown in Figure 2-3. They 

are the oblique, primitive rectangular, centered rectangular, square, and hexagonal lattices. 

The corresponding reciprocal lattices can be obtained by defining base vectors (&i, 62) in 

reciprocal space in terms of base vectors (a\, 0,2) in direct space as 

£•£,• = 2 7 ^ (i,j = 1,2). (2.1) 

A 2D reciprocal lattice possesses the same symmetry as its corresponding real space lattice. 

This characteristic can be used to infer the real lattice structure from the lattice diffraction 

pattern. Details will be described later in this chapter. 
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Figure 2-3: Unit cells of five 2D Bravais lattices. a\ and 02 are surface lattice vectors. 7 is the 

angle between these two lattice vectors. 

2.1.2 Electron diffraction 

Among the surface probes of photons, electrons, ions and atoms, electrons are uniquely 

suitable to resolve the atomic surface structure. The short electron mean-free-path (eMFP) 

at low energy makes electrons particularly sensitive to the surface region. Figure 2-4 gives 

plots of the universal eMFP against electron kinetic energy in many solids. One can see 

that the eMFP is between 5 and 10 A for an electron energy range of 20 to 500 eV. This 

eMFP is comparable to the thickness of about 3 to 5 atomic layers that we are interested 

in. Meanwhile, the wavelength of the electrons in this energy range is comparable to the 

interatomic spacing, which makes the diffraction possible. 

In principle, low energy electron diffraction is analogous to X-ray diffraction which 

is used to determine bulk lattice structures. The kinematic theory of the diffraction is 

sufficient to explain the experimental diffraction principle. The Laue equation describes the 

diffraction condition: 

AK" = Kj - K\ = ghk, (2.2) 
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where KJ and K'J are the components of the incident and scattering wave vector Ki and 

Ks parallel to the surface. AK" is the parallel component of momentum transfer and cjhk 

is a vector of the 2D surface reciprocal lattice point (hk). Moreover, the elastic diffraction 

requires K3 Ki . We can apply an Ewald sphere to the 2D problem as long as we 

attribute each reciprocal 2D lattice point (hk) to a rod normal to the surface. 

Figure 2-5 shows the Ewald sphere construction for elastic electron diffraction on a 2D 

surface lattice. The graph shows the reciprocal 2D lattice points (hk) which satisfy the 

diffraction Equation 2.2, given as the crossing points between the Ewald sphere and the 

array of parallel diffraction rods. 

For surface structure determination by LEED, kinematic theory as used in X-ray diffrac

tion is not enough. The incident electrons are scattered multiple times by the ion-core po

tentials before they leave the material. The scattering cross-section is very large, hence we 

can get intense diffracted beams. One key aspect that complicates the modeling of the scat

tering processes is the multiple scattering of electrons which requires a much more elaborate 

analysis. Fortunately, the back-reflected electrons are restricted to the first three to five 

atomic layers. This implies that the complications from multiple scattering are limited to 

the surface region. The next section will give a more detailed description of the dynamical 

scattering processes to be considered. 

2.1.3 Dynamical processes 

LEED scattering is a dynamical process. Four main ingredients of the electron-solid inter

action are addressed individually as follows: 

• ion-core potential scattering 

Like other probes such as ions, atoms and photons, impinging electrons interact with 
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a solid in a way that follows their own intrinsic nature. The chosen electron energy 

is low, ranging from 10 to 500 eV, and the electron carries a negative charge and a 

small mass. The electron will feel the Coulomb force in an atom from both the nuclei 

and the surrounding electrons. As the Coulomb potential decays rapidly far away 

from the nucleus, we can model the potential of the atomic lattice as a muffin-tin 

shape, i.e. a spherically symmetric potential within the muffin-tin radius of the atom 

and a constant potential VQ in between the atoms. As a consequence, the electron-

atom interaction is an electron interaction with ion-core potential. This model gives 

a simple spherical form of the scattering wave and facilitates the dynamical LEED 

analysis. One complication caused by the many-body interaction is simplified by the 

Slater approximation in the Hartree-Fock exchange-correlation term. 

• inelastic effects 

For the LEED pattern and LEED-iV spectrum, we consider only elastically-scattered 

electrons. Typically, intensities of elastically scattered electrons account to the order 

of 1% of the incident electrons. Many of the other electrons suffer inelastic collisions. 

On one hand, we experimentally exclude the inelastically scattered electrons by col

lecting only the elastically scattered electrons. On the other hand, we benefit from 

the strong inelastic processes. The inelastic effects cause the short mean-free-path 

of the electrons at the applied energies. The inelastic scattering could be caused by 

many different surface processes. Surface plasmon excitations, conduction electron 

excitations and core-level excitations are main sources. Surface state resonances and 

phonon excitations are also important in some cases. The electron attenuation by 

the inelastic scattering is normally simulated by an imaginary part of the self-energy 

which is also referred to as damping potential or optical potential VQJ . At low plasmon 
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energies around 20 eV, the pronounced energy loss leads to a small damping potential. 

Below the plasmon energy, single electrons can be excited from the conduction band 

producing a smaller damping potential. Just above the plasmon energy, the damping 

potential rises rapidly, and at higher energies the speed of the electron reduces absorp

tion resulting in a slowly increasing damping potential [17]. The change of damping 

potential with the electron energy explains the inelastic scattering mean-free-path 

changing trend in Figure 2-4. 

• thermal effects 

Thermal vibration is an intrinsic property of atoms. The scattering intensity damping 

due to thermal absorption is inevitable even at low temperatures. The higher the 

temperature the stronger the reduction of the beam intensity. In the dynamical 

analysis, the Debye-Waller factor, a concept borrowed from XRD, is used to model 

this effect. By optimizing the vibrational amplitude of the surface atoms, information 

on the surface Debye temperature can be obtained. 

• multiple scattering 

Kinematic scattering theory, i.e. single scattering theory, is not sufficient to model 

low energy electron scattering. LEED is very different from XRD in this respect. 

LEED analysis requires more complicated multiple scattering calculations. Within 

kinematic theory, the peaks interpreted are called primary peaks; while in the LEED-

IV spectra, additional peaks, or secondary peaks, show up and demand a dynamical 

interpretation. In the dynamical analysis, the multiple scattering is taken into account 

for both intraplane and interplane scattering. 
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2.2 LEED experiment 

Figure 2-6 shows a schematic LEED setup and its optical system. An electron gun and 

the optical system produces a collimated beam of electrons which strike the sample surface. 

The backscattered electrons travel to a four-grid optical system which selects elastically 

scattered electrons and accelerates them onto a fluorescent screen. The visible pattern on 

the screen at a certain kinetic energy provides a picture of the reciprocal lattice points 

active in diffraction. When we ramp up the incident electron energy, the diffraction spots' 

positions and intensities change. By recording a series of diffraction patterns at different 

electron energies, we can extract the beam intensity vs ramp-voltage (IV) curves. The 

surface structural information will be obtained by comparing the calculated IV spectra 

with those obtained in the measurements. 

We performed the Bi surfaces measurements on the LEED system of Prof. David Adams 

at the Institute for Storage Ring Facilities at the University of Aarhus in Denmark. A 

schematic setup of the LEED apparatus and the main parts of the system are shown in 

Figure 2-7. An effective set of vacuum pumps generates a base pressure of 7 • 10~9 Pa in 

the main UHV chamber. A semi-spherical electron energy analyzer is employed to detect 

Auger electrons in order to monitor the surface cleanliness. An ion gun is used for sample 

sputtering. A fast low-temperature CCD camera (not shown in the picture) is mounted 

facing the LEED screen. The LEED pattern is recorded by the CCD camera and displayed 

on a computer monitor. By using kinematic theory, the calculated diffraction pattern is 

superimposed onto the observed pattern. The sample position can be aligned by finding 

the best overlap of these two patterns. In this way, the angles of incidence can be adjusted 

to be within 0.5°. The detailed experimental conditions for each surface will be given in 

Chapter 5. 
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the LEED main chamber and the sample manipulator are indicated. 
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2.3 Numerical implementation 

Compared to many other surface techniques, LEED requires more complicated theoretical 

work. The reason is, as discussed in Section 2.1.3, the dynamical processes in low energy 

electron scattering. A full dynamical analysis is a must for a complete explanation of the 

spectrum structures. While being subject to many unknown structural or dynamical pa

rameters, an appropriate and effective theory, either with an exact or approximate method, 

is needed. The efficiency of implementing a theory to computations is an extra consideration 

in order to reduce the computing time and efforts. 

2.3.1 Calculation procedure 

The excellent books by Pendry and Van Hove et al. [17, 18, 19] have detailed descriptions of 

LEED theories and their implementation in computing programs. The following is a brief 

introduction to the dynamical analysis scenario. 

• phase shifts and atomic i-matrix calculations 

Based on the simple plane-wave scattering by a spherically symmetric potential de

scribed in most quantum mechanics textbooks, the form of an asymptotic scattering wave 

can be expressed in terms of scattering amplitude t(E, 9): 

elU^ + t(E,9)^, (2.3) 

where feo is the wavevector of the incident plane wave, r is the distance vector from the 

atomic nucleus, 6 is the polar angle, ko = fco , and r = \r\. The scattering amplitude is 

then expanded in terms of t-matrix ti and Legendre polynomials P\{cos9) as 

oo 

t(E, 9) = 4^ ^(21 + l)tiPi{cos9), (2.4) 

=o 
e2iS, _ I eiSlsinSl 

where ti = —— = —— . (2.5) 
' AikQ 2k0

 y J 
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Assuming that the radial wavefunction for the incident electrons with the angular momen

tum I is <f>i{r) and defining L\ = < (̂i?)/'(/>i(R) where R is the muffin-tin radius, we obtain Si 

as the following formula by applying the continuity condition at the muffin-tin radius: 

e2iS[ = LthWj^-hWjKR) 

hiiy (KR) - Lih^(KRY 

where K = \/2(E — VQ). h\ and h2 are spherical Hankel functions of the first and second 

kinds, respectively. E is the kinetic energy of incident electrons and VQ the muffin-tin 

potential. 

The radial wavefunction 4>i(r) is calculated from the radial Schrodinger equation below. 

2 n_ 
2m 

d_ 
dr 

d4i{r) 
dr 

+ ^ m ^ W ) + \VH(T) + Vex(r) + VQ] Mr) = E^r), (2-7) 

I / f ^ 2 

VH(r) = - ^ - + Vsc(r) + j : 1 ' \r — r 
j 

d6r, (2.8) 

where Z is the nuclear charge at position r and Vsc(r) is the potential due to the charge 

that screens the LEED electron (it is usually neglected). i/}j(r ) is the wavefunction for the 

jth-core-electron. Vex(r) is the exchange-correlation term, a functional of charge density 

through the Slater's local potential approximation [20, 21, 22]. VQ is the real part of inner 

potential. 

The core-electron wavefunction is sufficiently tightly bound that they can be taken to 

be unchanged from those of the free atom. Calculations of free atom wavefunctions have 

been made by various authors [23, 24, 25] and are readily available. The accuracy of using 

such wavefunctions to construct ion-core potentials has been extensively checked through 

band structure calculations [26]. 

In Schrodinger equation 2.7, only the real part of the inner potential is included. The 

complex inner potential including both real part and imaginary part could have been incor

porated. Then we would get complex phase shifts whose imaginary part implies that either 
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more or less flux is being absorbed inside the muffin-tin than would be absorbed by VQI in 

the absence of the ion core, i.e. the scattering wave will be damped by e~
2ImS'. Although 

this is a complete and proper way, in practice the inelastic effects are often not included 

in the phase shifts, but rather in the interatomic-wave propagation. The main reason is 

that as a consequence of this choice, the value of the imaginary part of the potential Vbi 

can remain unspecified until later and can thus be revised without having to recompute the 

phase shifts [19]. One justification to do so is that the choice of the treatment of Voi is not 

critical because the correction to the phase shifts is small [17]. 

The atomic scattering phase shift is the only parameter in the LEED calculation to 

distinguish different chemical identification in substitutional alloys. So the difference in 

scattering properties for Pd and Cu is crucial for this binary system. We calculated the 

phase shifts and then the scattering amplitude t(E, 6) for both Cu and Pd atoms. The 

angular distribution of the scattering amplitude squared \t(E,9)\2 is plotted in a polar 

coordinate system in Fig. 2-8. Three different electron kinetic energies are considered with 

respect to the vacuum zero. They are 2, 4 and 7 Rydbergs, respectively (1 Rydberg « 

13.605 eV). For both Cu and Pd, the amplitude squared ratio of forward scattering to 

the back scattering increases with increasing energies, which indicates prominent multiple 

scattering at lower energies and stronger electron damping at higher energies. By comparing 

the scattering strength for Cu and Pd, the scattering is much stronger by Pd than by Cu by 

noting the scale difference between the two panels in Fig 2-8. Based on the Equation 2.4, 

the total scattering cross section is obtained as 

°T = %YJ{2l + l)sin2(8l), (2.9) 

where ka = y/2(E + VQ) because we have included the muffin-tin zero in the elastic scat

tering potential. The total scattering cross sections for Cu and Pd at the energy range 
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from 10 to 150 eV are calculated and drew in Fig. 2-9. We see that the total cross sec

tion is about 5OQ for Cu and 20a^ for Pd where ao (« 0.529 A) is the Bohr radius. Their 

comparability in magnitude to the Cu(001) lattice unit cell size of 23.3ag indicates strong 

electron scattering by atoms. The total cross section for Pd is apparently much stronger 

than Cu. This character follows the general trend that the scattering strength increases 

with increasing atomic number (29 for Cu and 46 for Pd). The difference in the scattering 

strength would account for our ability to distinguish Pd from Cu in the LEED scattering 

intensity calculations employed in our LEEM-iY technique. 

• single layer scattering matrices 

A layer with only one atom per unit cell is called a Bravais-lattice layer. The diffrac

tion matrices for a Bravais layer between the incident wave e s 'r and e B are given by 

Pendry [27, 17]: 

8?r2i M # = 717777" £ {^n-m [fi(̂ )]} (i - x)-^m, 
A g l i m 

Im 

{i-l'Yllm>[n(kp]}eiS
t'ain6lf (2.10) 

In M*^, the subscripts and superscripts read from right to left. The symbol "+" 

indicates the vacuum-to-surface direction and "-" the reverse direction, g and g stand for 

two reciprocal lattice vectors. A is the area of the unit cell. UQ = y2(E — VQ) and kg = 

2(E — VQ - iVoi — \g\2)- Si (1=0, 1, 2...) represent the set of phase shifts. Y/m Cl(k^) 

are the spherical harmonics where Q(k_j) is the solid angle of the beam. 

The Eq. 2.10 has incorporated intralayer multiple scattering in a self-consistent fashion. 

It is implemented in the following way, and detailed mathematical deduction can be found 

in Ref. [27, 28] by Pendry. When the incident wave is expanded into spherical waves about 

the j th atom in a plane, the incident flux on the ion cores for each partial wave is denoted 
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Figure 2-8: Polar plot of the atomic scattering amplitude squared \t(E, 6)\ for Cu (upper panel) 

and Pd (lower panel) at three different electron kinetic energies 2 Ryd (red), 4 Ryd (green) and 7 

Ryd (blue) (1 Ryd. ss 13.605 eV). Note the scale different between the two panels. 
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Figure 2-9: Total scattering cross sections for Cu (red curve) and Pd (blue curve) at the energy 

range of 10 to 150 eV with respect to the vacuum zero. 

as AjJ. The scattering wave would be related to the flux via the phase shifts addressed in 

the preceding calculation procedure. To include the multiple scattering, the total flux must 

consist of two parts: the incident flux Am> and the scattered flux by other atoms Am - We 

hence get the total flux incident onto the j th atom: 

Mm — Am + Am' (2.11) 

where A^ itself depends on A\m and therefore must be determined self-consistently. Pro

vided that the A\m are known, the incident flux on other atoms is obtained just by multi

plying a phase factor from the j th atom to the other atoms. Then we get the flux incident 

on the j th atom scattered from other atoms. We expand this flux in the form of partial 

wave about the j th site and get 

A\S) = V A < rX, ,» n, lm / ,y I m lm,l m ' (2.12) 
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where X is the intralayer multiple diffraction matrix expressed in angular momentum space: 

Xlm,l"m" = E Cl(l'm',l"m")Frmle
iSi'sin5v. (2.13) 

I +m =even 

Cl(l'm',t m ) are the Clebsch-Gordon coefficients multiplied by some prefactors and 

^l'm 1S *n e ^ttice sum in a plane. They are expressed as follows. 

C ( i ' m ,
J Z / / m " ) = 4 W ( - l ) ( ' - ' ' - ' " ) / 2 ( - i r ' + - ' V J , _ m , ( | , 0 ) 

x J YUtyY^MYy^Mdn (2.14) 

F{,m, = J2^r^hf\ko Rj )(-i)m'e-
im'*&) (2.15) 

3 

The sum in Equation 2.15 is taken over the layer's lattice vectors Rj excluding the origin 

atom. 4>{Rj) is the azimuthal angle of the vector Rj, and ko = \f^{E — VQ — iVoi). 

Total flux Aim would be given in terms of A°m and X by inserting Eq. 2.12 into Eq. 2.11 

and finally the scattering matrices are obtained as Eq. 2.10. 

When the beam symmetries and temperature effects are incorporated [18], we get 

g{ ,gi 91 ,91 

A 
im 

where / and J both represent groups of plane waves related to each other by the same 

symmetry. In order to perform the symmetry reduction in the calculations, the origins of 

coordinates must be in the symmetry axis or plane. For multiple layers, the origins are not 

necessarily at the center of atoms in all layers. In this case, new origins in some layers must 

be referred to. Here sis the 2D vector relating the new origin of coordinates to the old one. 

The thermal effect is represented by a temperature-dependent scattering amplitude 

which equals to a Debye-Waller factor e~M multiplied by the scattering amplitude at 0 
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K, where 

Ak ((Ar-)2)T. (2.16) 

The Ak is the momentum transfer and the Af is the atomic vibrational vector. Since 

the temperature-dependent scattering amplitude can be expressed in terms of temperature-

dependent phase shifts, we can instead include the thermal effect by replacing the phase 

shifts 5i at 0 K with the temperature-dependent phase shifts Si(T). 5i(T) can also be seen as 

effective phase shifts at temperature of T. By angular momentum expansion, the relation 

between 5i(T) and 5i is obtained as 

I ' l " 

^ite(*;1>f+v*'yo.,o), (2,7) x e i" sini 

where 

a = 1 ((Arf)T (2.18) 

and 

B1" (z'o, IO) = j Yfm„ (n)Yfm, (^)y ;_m(o)do. (2.19) 

• composite layer scattering matrices by matrix inversion 

A composite layer refers to a layer with more than one atom per unit cell. A matrix 

inversion formalism can be used to calculate the composite layer scattering matrices [28, 

29]. Given a A^-subplane layer, the following quantities are defined in a spherical wave 

representation with L = (I, m). 

t\ = 2jr-elSlsin8i: scattering t-matrix of a single atom in subplane i; 

T\ ,: scattering matrix containing all scattering paths within subplane i; 

T\ ,: scattering matrix including all those scattering paths within the composite layer 
Li Li 

that terminates at subplane i; 
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G3rTr- structural propagators describing all unscattered propagations from atoms in the 
Lib 

subplane i to atoms in the subplane j . 

GJl , can be expressed either as a sum over lattice points in real space or as a sum over 
1J±J 

reciprocal-lattice points. Here we show the latter form: 

nJi _ -ik§ • (fj-ft) fiji (2.20) 

with 
iki (fj~n) 

A ^ B 
91 91, X 

•Y£{i%)YL,(i&- (2.21) 

The ?i and fj are the positions of arbitrary reference atoms in subplanes i and j , re

spectively. The sum over g\ converges rapidly because kp has an increasing imaginary part 

as the magnitude of g\ becomes large. 

The subplane r-matrix is represented by the following expression (/ is the unit ma

trix) [30]: 

r' , = [(/ - fG is-fii\ — l l ,LL, _ UJ _ , ]LL,t\. (2.22) 

The matrices Tl(i=l, ..., N) are obtained in the following way [28]. 

J>2 

( 
I 

-T2G21 

-rlG12 

I 

1/-<1JV -T1G 
\ - ' 

2G2N 

.T
N) \-TNGN1 -rNGm ... 

( \ 

^N 
j , yj 

Factoring out the following quantity R1^ from Equation 2.20, 

Rf = e±4fcTrl 
(2.23) 
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we get the composite layer diffraction matrices 

«n = - ^ E YL^^] £ [«r (̂ )-T-t,]. (,24, 
L L ' g - L l = 1 

• bulk reflection matrix calculation 

Once the Bravais layer and composite layer matrices have been obtained by the above 

formalisms, one can stack these layers to get the bulk scattering matrices. The bulk reflec

tion matrix can be calculated by the layer-doubling method or the renormalized forward 

scattering (RFS) perturbation method. 

The layer-doubling method stacks two identical layers (or slabs) to get a new layer (slab) 

which will be the new stacking layer (or slab). This double layers stacking is repeated until 

reflected beams converge. For the two diffraction layers A and B, each having diffraction 

matrices r\", rA
+, £^+, t~A~ and r^~, rB

+, t^+ , t~^~, respectively, the combined slab has 

diffraction matrices given by Pendry [17] shown below. 

R-+ = rA+ + tYP~r^+P+{I - r^p-r^P+Y1^ 

T++ - t++P+(I - r\~p-rl+P+)-H\+ 

(2.25) 

R+- = r+- + t++P+r+-p-(I - r~B
+P+r+

A'P-)-lrB-

T~ = rA'P-(I - r-B
+P+r\-p-)-HB-

The P+, P~ are propagating matrices from a reference point in the layer A to a reference 

point in the layer B. If ?BA is the vector of these two points from layer A and B, we have 

P± = e±i^"*'B>l. (2.26) 

The RFS method [31] assumes that the reflection by all layers is weak and the pertur

bation is therefore based on an expansion of the total reflectivity of the surface in terms of 

the number of reflections. The 1st order perturbation contains all the paths that have been 

reflected only once, the 2nd order contains only triple-reflection paths, and so on. The RFS 
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scheme typically uses less than 20 layers and less than 6 orders of iteration for convergence. 

See more details in literature [18, 31]. 

It should be noted that these two stacking methods have their own limits. The layer-

doubling method has good convergence only when the interlayer spacing is larger than ~0.5 

A. The RFS method must have the interlayer spacing larger than ~0.9 A. In other cases, 

one must employ the composite layer method to calculate the closely spaced layers. 

2.3.2 Reliabil ity factor 

Once the experimental IV curves are obtained, we compare them with simulated ones for 

trial structures. A reliability factor R is chosen to measure the level of agreement. By 

optimizing some structural and other non-structural parameters, the best-fit structure is 

regarded as the real surface structure. 

The two most widely used R factors are the Rp (Pendry R factor) [32] and the R^ 

factor [33, 34, 35]. Rp is particularly sensitive to the relative peak position and the existence 

of small peaks but less sensitive to relative heights and relative peak width. The Rp is defined 

in the following way. The logarithmic derivative L of the diffraction intensity is given first 

by 

_ dln(I(E) _ 1 dI{E) 
L - dE ~ 1(E) dE • {2M) 

A function Y is then introduced 

Y = TTW?< ^ 

where Vot is the imaginary part of the inner potential. 

The Rp factor is defined as 

r> _ J \Xexp Ycal) dE 
P~ RY^ + Y^dE {2'29) 
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The Rp factor is a simple quadratic function of the discrepancy and so is easily analyzed 

statistically. We assume that, due to random fluctuations, the residual value of Rp at the 

minimum value Rp m j n is 

ARP = RPm[n x ^ | i , (2.30) 

where &E is the total energy range compared in the IV analysis. From this number and 

the curvature in Rp near the minimum, we can estimate errors in optimized parameters. 

In contrast, the R2 factor compares the IV curve intensities point by point, quite similar 

to the x2 used in X-ray diffraction. It takes into account the absolute magnitude of the 

intensity. From beam to beam, the same scaling factor is used. The R2 factor is defined as: 

( Tex rjcal \ / jex \ 2 

where i^fci' ^hki a r e the experimental and calculated intensities, respectively. The index i 

represents the data points spanning over the electron energy range. The experimental un

certainty of the beam (hk), 07^, is obtained by comparing symmetry-equivalent beams [35]. 

The global scaling constant c can be determined by dR/dc = 0: 

( jex real \ / jcal \ 

hk / hk,i \ n" / 

Estimates of the parameter uncertainties CTJ have been taken to be 

* = ( J W ^ J • (2-33) 

were n is the number of parameters and Rmin is the local minimum value. The error matrix 

e can be obtained from the curvature matrix a via e = a'~l, where [36] 

i ( d*R \ ^ [difftA (di$$. ««'-'^HEhe h^ • (2-34) lJ 2 V dxidxi J {-^. \ dxi I \ dx 

Njree is taken to be 

Nfree = ^ — r , (2.35) 
hk ' 

27 



where Ak]_^{E) is the surface-normal component of the diffraction vector for the beam 

(hk) at energy E. [E\, E2] is the energy interval for each measured beam (hk), and d is 

the bulk interlayer spacing. 

2.3.3 Program packages 

We use several different packages for different surface systems. One package is a fully au

tomatic procedure for structure search by Adams [37]. This dynamical LEED procedure 

is based on the computer programs [38, 39] developed from the programs of Pendry [17] 

and of Van Hove and Tong [18]. The layer-doubling method is used for bulk matrix cal

culation. In order to realize simultaneous optimization of all structural and nonstructural 

parameters, a new procedure has been constructed for the R factor minimization. For de

tails of this procedure and the quadratic tensor model (QTM) algorithm, see Ref. [37] and 

Ref. [40], respectively. Other striking advantages of this package include its high computing 

efficiency by dynamically allocating matrix sizes with Fortran 90 codes and the friendly 

interactive environment by implementing a graphical user interface (GUI) to control the 

LEED program. Figure 2-10 shows the flow chart of the program. We adapt this package 

to the Bi(l l l) surface by allowing for the composite layer matrices input for bulk matri

ces calculation. This package is also used for the Pd/Cu(001) system by implementing an 

energy-dependent inner potential. The second package is the standard package SATLEED 

(Symmetrized Automated Tensor LEED) by Barbieri and Van Hove [41] within the renor-

malized forward scattering perturbation formalism. This package has been used to resolve 

the Bi(110) surface structures. It is also used to check the results by other packages. 

The third one is the non-symmetrized automated tensor LEED programs for multiple 

angles of incidence and/or surface structures (ATLMLEED) [41]. It is suitable for calcu-
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Calculate total bulk matrices by layer doubling 
X 

Calculate scattering matrices of surface layers 
z 

Calculate intensity vs. energy curves by combining 
scattering matrices of bulk and surface layers 

X 
Calculate model functions or derivatives of model 

functions and the i?-factor 
X 

Read model function values into QTM algorithm 

Obtain new values of parameters by QTM algorithm 

Has convergence been reached by QTM algorithm^. 
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Write new values of parameters into input data files 

No 

Figure 2-10: Flow chart describing the LEED calculation and optimization process. QTM stands 

for the quadratic tensor model algorithm. 

lations of several different coexisting structures (multiple domains). We use this one for 

the Bi(001) and Bi(110) surfaces. Both SATLEED and ATLMLEED use the Tensor LEED 

method for a quick structure search [42]. 

Atomic scattering phase shifts have been calculated using a muffin-tin potential model 

and the standard Barbieri/Van Hove phase shift package available online [41]. The phase 

shifts have been renormalized by the thermal effects of rms isotropic vibrational amplitudes. 
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2.4 LEED technique development 

LEED remains the most powerful tool for 2D atomic structure determination due to the 

unique information it acquires. The diffraction pattern is just a Fourier transform of the 

real space and hence retains the symmetry of the real space. According to this relationship, 

we can infer the surface lattice structure from a diffraction pattern. However, this simple 

analysis can not determine the atomic positions within the unit cell. The quantitatively 

dynamical analysis of the diffraction intensities can solve this problem. The dynamical 

analysis can be done by following the steps described in 2.3.1. Multiple scattering is incor

porated for the intralayer and interlayer scatterings. Inelastic scattering and thermal effects 

are considered. The energy dependent diffraction intensity is very sensitive to the struc

tural parameters. In the surface-normal direction, the order of magnitude of 0.01 A can be 

accurately obtained. 

So far, the LEED technique has successfully resolved numerous surface structures. They 

include simple metal surfaces, surface alloys, and metal oxide compounds and other adsor-

bates on surfaces. A super cell as big as (7x7) on the Si(l l l) surface has been resolved [43]. 

Recently, complex transition metal oxide surface structures have been determined [44] and 

the application to nanostructure diffraction has been tried [45]. A Fortran-90 LEED pro

gram has been developed to handle non-diagonal i-matrices describing the scattering of 

non-spherical potentials, anisotropic vibrations, and anharmonicity [46]. There is still much 

potential to further develop the technique. Diffuse LEED, direct LEED holography, and 

spin polarized LEED (SP-LEED) have been developed and they are under improvement. 

Diffuse LEED works for disordered surface structures. Direct LEED holography gives a fast 

and highly efficient determination of atom locations. SP-LEED can be used to characterize 

magnetic materials. Much more work can be invested in these promising techniques. In 

30 



this thesis, I shall describe the development of a LEEM-/V technique in chapter 6 which 

has resolved the 3D surface region structure and chemical composition. 
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CHAPTER 3 

Low Energy Electron Microscopy 

3.1 Introduction 

LEEM (low energy electron microscopy) is a relatively new modern surface analytical tech

nique. It was invented by Bauer in 1962 on glass-based vacuum apparatuses [47]. The 

first operational LEEM instrument was constructed under UHV conditions by Telieps and 

Bauer in 1985 [48, 49]. In the IBM T. J. Watson Research Center, the LEEM-I system was 

developed by Tromp and Reuter in 1991 [50], and the LEEM-II system by Tromp et. al in 

1998 [4, 51]. Commercialized LEEM facilities are available from only two manufacturers: 

ELMITEC GmbH since 1995 and SPECS GmbH since 2007. At present, there are about 

30 LEEM facilities in operation throughout the world [52]. 

LEEM possesses the combined functions of electron diffraction and real-time in-situ di

rect imaging techniques. The high lateral spatial resolution and high temporal resolution 

makes it a powerful unique tool in surface studies. For instance, the IBM LEEM-II system 

reaches a high spatial resolution up to 5 nm. As a result, LEEM is particularly suited 

for studying surface dynamical processes at nanometer scale such as surface phase transi

tion, surface adsorption, thin film growth, and surface reaction. In an early review, Bauer 

presented a detailed description of studies by LEEM [53]. 

Although the diffraction principle in LEEM is the same as in LEED, an aperture, in 
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LEEM, can be placed in the back-focal plane of the objective lens allowing only one beam to 

go through. Consequently, electrons in this beam, reflected from an illuminated surface area, 

will be projected onto the imaging plane forming a spatially-resolved intensity image. By 

recording and analyzing the contrast variation in the image, structural and compositional 

information could be extracted. With respect to its capability of 3D surface structural and 

compositional determination, the LEEM technique plays an irreplaceable role in surface 

analytical techniques. 

3.2 LEEM equipment setup 

LEEM may be better understood by comparison with transmission electron microscopy 

(TEM). Although both use electron probes and electron diffraction, their essential difference 

is the path of diffracted electrons. In TEM, the electrons go through thin samples while, in 

LEEM, the imaging electrons are backscattered. This difference makes the LEEM apparatus 

design more complicated and difficult. As a solution, a magnetic deflection prism was 

devised to direct the diffracted electrons. Another difference between LEEM and TEM is 

the energy range of incident electrons. TEM uses electrons with high energy up to tens 

of keV, while LEEM uses electrons with energy from 0 to 100 eV. This clearly leads to 

different electron penetration depths, which explains why the LEEM is suitable to detect 

the surfaces while TEM is used to detect the bulk. The following shows the setup of two 

LEEM systems, ELMITEC III and IBM LEEM-II, respectively. 

The ELMITEC III system is shown in Figure 3-1 (a). The main components are an elec

tron illumination column, a sample diffraction column, an imaging column, and a magnetic 

beam splitter. The magnetic sample loadlock provides easy load of a sample from air to the 

preparation chamber, and transfer of the sample between the preparation chamber and the 
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electron diffraction chamber. A detailed layout for each column is depicted in Figure 3-1 

(b). The illuminating column is composed of an electron gun, a condenser, two deflectors, 

and a gun stigmator. The sample diffraction column contains an objective lens and an ob

jective stigmator. The imaging column consists of a projector deflector, a contrast aperture, 

a transfer lens, two projectors, and a screen. The digital image is sent to a computer for 

information processing. All the electronic optics parameters are computer-controlled. In 

the crossing of three columns is the deflection prism which is also called a beam splitter 

shown in Figure 3-1 (b). We can see an angle of 120° between any two columns. This means 

the electron beam is deflected to the sample surface by 120°, and the backscattered beams 

are deflected as well, by 120°, to the imaging column. As will be seen in the following, the 

deflection angle difference is the primary difference between the ELMITEC III and IBM 

LEEM-II systems. 

The IBM LEEM-II system is shown in Figure 3-2. The main components include an elec

tron gun, three condenser lenses, a 90° deflection double-focusing prism array, a rotation-free 

objective lens doublet, and five lenses in the projector column (a transfer lens, a diffrac

tion lens, and three projector lenses). In addition, there are two sets of stigmators in the 

condenser lens system, as well as three sets of steering coils. The objective lens contains 

a set of stigmators, and the projector column contains a set of steering coils. It is evident 

that the deflection angle of this system is 90° while that of ELMITEC III is 120°. Detailed 

descriptions of the design by Tromp et al. can be found in Ref. [4, 51]. 

3.3 L E E M working modes 

Figure 3-2 (a) shows the electronic optics when a bright-field image is formed in the IBM 

LEEM II system. The emitted electrons from the electron gun are accelerated to 15 keV, 
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Figure 3-1: A schematic of the ELMITEC III LEEM system, (a) The main components include an 

electron illumination column, a sample diffraction column, an imaging column, and a beam splitter 

at the crossing of the above three columns, (b) Detailed components in each column. 
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Figure 3-2: IBM LEEM II system by Tramp et al. [4]. (a) The LEEM optical system in the 

bright-field imaging mode, (b) A detailed schematic of the combined diffraction with an objective 

lens. 
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go through the condensor lenses and are deflected by the magnetic prism array by 90° to 

the objective lens. A bias of - 15 kV bettwen the sample and the objective lens decelerates 

the electron to be 0 to 200 eV. Then the slow electrons are reflected after diffraction at 

the crystalline surface. Reflected electrons are accelerated and focused by the objective 

lens. Once more they are deflected by 90° by the magnetic prism array downward to 

the aperture plane. The aperture allow only (00) beam to go through, and therefore the 

electrons in the (00) beam contribute to the image formed in the screen after passing the 

projector lenses. The image reflects the electron reflectivity of the illuminated surface area. 

By analyzing the contrast variation at different places in the image, information about 

the surface heterogeneity can be obtained. Figure 3-2 (b) depicts in more detail how the 

electron diffraction work with the objective lens. Three sets of parallel paths indicate three 

different diffracted beams from a large surface area. Each set of parallel beams are focused 

onto the back-focal plane by an objective lens. An aperture can be put on the back-focal 

plane to allow only one beam to transfer, resulting in an image projected onto the screen. 

Besides the frequently used bright-field imaging, LEEM is a multifunctional device used 

for many different scientific purposes. The facility has always been equipped with a photo-

electron emission microscopy. Figure 3-3 shows a chart of its working modes. The switching 

between different modes can be realized with easy and quick operations, as briefly described 

below [54]. 

• Reflectivity contrast 

Since different areas on the surface might show a difference in electron reflectivity, 

which dependes on the surface material or even the surface structure, and the reflectiv

ity coefficient depends on the incident electron energy, the contrast can be optimized. 

The most famous example is the difference between the (7 x 7) reconstruction and 
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Figure 3-3: LEEM/PEEM working modes. 

the (1 x 1) structure on the Si(ll l) surface at about 850°C. At an electron energy of 

about 10 eV the (7 x 7) areas appear much brighter than the remaining surface. 

• Dark-field imaging 

One non-specular LEED spot is used in the intermediate plane for imaging. All areas 

on the surface that contribute to the existence of this spot appear bright in the image, 

and all other areas appear dark. 

• Phase contrast 

The wave nature of the incident electron beam is used to generate a vertical diffraction 

contrast. The different topologies on the surface lead to different phase shifts of the 

electron wave and thus result in brightness contrast in the imaging. One example is 

that steps are made visible on the surface. 
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• MEM (mirror Electron Microscopy) 

The electron energy is reduced to the limit, when the electrons return in the retarding 

field, before they hit the sample surface. The incident electron potential is normally 

between -5 and 0 eV. The basic mechanism is that all height variations on the sample 

surface, such as steps, grains etc., change the local properties of the retarding field 

and therefore have influence on the reflected electron beam. The intensity of the 

reflected beam is very high, and there is no LEED image visible; since no scattering 

process takes place, all reflected electrons are in the specular beam. 

• LEED 

Since a diffraction pattern is formed in the back-focal plane of the objective lens, it is 

possible to image this pattern on the screen by removing the aperture. This working 

mode gets the diffraction information LEED provides from which the surface lattice 

structure can be derived. 

• Micro diffraction 

By restricting the electron beam to only a very small area on the surface (fraction of a 

fim), it is possible to determine the crystal structures and orientations of small areas 

on the surface, such as single islands or terraces. For the IBM LEEM II system, the 

illumination size can be limited down to 50 nm. We use this technique for Si(001)-

(2x1) and 6H-SiC(0001) surfaces as described in Chapters A and B. 

• PEEM (photoelectron emission microscopy) 

The illumination source of electrons of the LEEM is switched to an ultra-violet (UV) 

light source making use of the photoelectric effect. The resolution is not as good 

as in LEEM, but at lower magnification, differences in the work function of different 

39 



materials are easily visible. There is no LEEM image visible in the intermediate image 

plane but the photoelectron angular distribution. This mode is often conveniently 

used to align the sample position to get a normal electron incidence. 

• Spectroscopic imaging with energy filter 

In the PEEM mode, a sophisticated energy filter enables imaging with an energy 

resolution down to 250 meV with a minimal impact on the high spatial resolution 

in the commercialized FE-LEEM P90 system by SPECS based on the design by 

Tromp [55]. 

3.4 A novel technique: LEEM-/V analysis 

As described above, the direct imaging of a surface area represents the reflectivity of every 

point in this surface region. Recording the bright-field imaging intensity against the incident 

electrons energy for an local area, one could extract the structural and chemical information 

about that local area by analyzing the electron diffraction intensities. This is the basic idea 

for the LEEM-IV technique to be tested on the PdCu surface alloy system. In this way, 

a high lateral spatial resolution could be obtained. The IBM LEEM II system principally 

reaches an spatial resolution of up to 5 nm and the ELMITECH III system up to 8 nm. 

Figure 3-4 illustrates the LEEM-IV technique. On the left, the bright-field image of the 

heterogeneous PdCu surface alloy at 41 eV is shown. A series of images can be acquired 

by changing the electron energy, and on the right side, IV curves can be recored from the 

images for two local spots indicated on the left. The differences between the two curves are 

evident. They can be used to distinguish the heterogeneous structures between these spots. 
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Figure 3-4: An illustration of the LEEM-IV technique. Left panel: the bright-field image of the 

heterogeneous PdCu surface alloy at 41 eV. A series of images are formed when the electron energy 

is ramped up. Right panel: two IV curves corresponding to the two spots indicated on the left 

panel. 

The main differences between the LEEM-IV technique and the conventional LEED-IV 

technique are compared in Table 3.1. In spite of the big advantage of this technique in its 

much higher lateral resolution over the LEED technique, in practice, two of the differences 

impose serious challenges to the dynamical analysis of the intensity. They are (1) the 

relatively low electron kinetic energy in LEEM compared to LEED, and (2) the limited 

electron kinetic energy range in our LEEM experiments. 

The electron kinetic energy in our LEEM experiments (10~100 eV) is lower than tha t 

typically used in LEED IV (50^500 eV). This complicates the quantitative analysis because, 

within about 50 eV of the vacuum level, the mean-free path of electrons in solids is strongly 

energy dependent [19]. Consequently, in calculations of the electron reflectivity, the inelastic 
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Table 3.1: Major differences between LEEM-IV and conventional LEED techniques. 

LEEM-JV 

Real time, in situ, direct imaging 

Reflectivity of only (00) beam 

Electron beam energy: 5~100 eV 

Spatial resolution: ~5 nm 

Conventional LEED 

Reciprocal space (fc-space) patterns 

Many beams in diffraction patterns 

50~500 eV 

Intensity averaged over an area of /jm2 

damping potential (i.e. the imaginary part of the inner potential Vim) cannot be assumed to 

be constant as in conventional LEED-iV analysis. After evaluating various proposed models 

for the imaginary part of the inner potential, we found that Vim(E) oc E1'3 consistently 

gave the best agreement between the measured and calculated IV curves. 

For the real part of the inner potential VQ{E) (in units of eV) we used the form pro

posed by Rundgren for copper [56], which is based on an excited-state potential for the 

exchange and correlation energy of electrons by using the Hedin-Lundquist local density 

approximation [57, 58, 59]: 

{ -13.4 for E < 36 eV 

(3-1) 
-3.6 - 65.8/ V ^ + IO.O for E > 36 eV 

Furthermore, we include an overall additive constant (AVb) to Equation 3.1 as an in

dependent non-structural parameter in our optimization. These energy-dependent inner 

potential models proved to describe the surface alloy very well. For the small energy range, 

careful error analyses have been performed to verify the reliability of optimized structures. 

More details and results will be presented in Chapter 6 where we shall demonstrate that 

the LEEM-/V works well with the PdCu surface alloy system. 
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CHAPTER 4 

Monte Carlo simulations 

4.1 Introduction 

When a deterministic method is difficult, unfeasible or impossible, in solving a mathematical 

problem, a stochastic scheme could be conceived as a solution. The Monte Carlo (MC) 

simulation is such a statistical method for this need. Originally, it was a type of random 

method under the name of "statistical sampling". An early use of the Monte Carlo method 

was to evaluate high-dimension definite integrals. In the 1940s, the Monte Carlo simulation 

got its current name after a famous casino in Monaco in honor of the pioneer Stanislaw 

Ulam's uncle who was a gambler in that casino. Before this naming, a rather simple 

form of this method was actually used by Enrico Fermi in the 1930s [60] when he was 

working on neutron diffusion in Rome. Attributed to the advent of electronic computers 

in 1940s, a groundbreaking and far-reaching success was achieved in the application of 

Monte Carlo simulations to neutron multiplication in fission process. This accomplishment 

strongly accelerated the rapid development of the Monte Carlo method [61]. The following 

decades have seen broad applications of this method and its high effectiveness in solving an 

indeterministic problem. Today, the Monte Carlo method is used in computational physics, 

computational chemistry, material science, biology, video games, finance, economics, and 

other fields. 
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4.2 Metropolis Monte Carlo algorithm 

The Metropolis Monte Carlo algorithm is a standard technique for statistical physics sim

ulations. It was proposed by Metropolis and coworkers in 1953 [62]. In this algorithm, 

the variable, temperature, is introduced in the sampling procedure. Specifically, a Boltz-

mann factor is incorporated in the procedure of accepting or rejecting a trial move so that 

the sampling follows the Boltzman distribution property closely. This is also called impor

tance sampling - very different from the random sampling (or simple sampling) also used in 

Monte Carlo simulations where all random moves are accepted in the searching space. With 

Metropolis' algorithm, the thermal average of a system property can be easily calculated. 

Assume that a system in its initial state 0 has an energy of eo- A trial move is from the 

state 0 to a randomly chosen state 1 which has an energy of t\. We define the change in 

system energy e as Ae = t\ - eo- T is the temperature and k the Boltzmann constant. A 

pseudo-number generator, to be explained in the next section, is used to produce a random 

number R between 0 and 1. The acceptance or rejection of the new state 1 is determined 

by the following decision criteria. 

1) accepted, if Ae < 0; otherwise: 

2) accepted, if R < e-
Ae/kT. 

rejected, if R > e~Ae/kT. 

In importance sampling, the probability of a state being sampled must be the same as 

the actual probability of that state. Significantly, step 2 insures this requirement. 

The expectation value of a physical observable, say A, can be calculated. For each move 

at tempt i up to iV, we have a value of A4 for this variable. The expected value will be the 

average of Ai under the condition that the sampling conforms to the Boltzmann distribution 
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e-e/kT. 

Note that N could be a very large number leading the system to a statistically stable one 

since, rigorously, the above equation is only valid for an infinite number of attempts, i.e. an 

infinite number N. 

4.3 Pseudo-random number generator 

The Monte Carlo simulations rely heavily on fast and efficiently generated random numbers. 

For the new state 1 discussed in the preceding section, a random number is used for choosing 

this new state, i.e. determining which new state the system possibly moves to. Furthermore, 

a random number is used in the acceptance and rejection criterion. Obviously, it is crucial 

to have a good random number generator to give a random number uniform in the interval 

[0, 1]. This random number, in practice, is generated by a computing software which 

however makes the random number virtually deterministic. Therefore, a pseudo-random 

number generator generates a sequence of numbers which are not truly random. The outputs 

of a pseudo-random number generator only approximate some properties of the random 

numbers. 

In our simulations, the recently invented Mersenne Twister algorithm [63] is adopted. 

This algorithm was developed in 1997 by Makoto Matsumoto and Takuji Nishimura. The 

Mersenne Twister generator, MT 19937, has many advantages over most other generators. 

It has a colossal period of 219937 —1. It generates numbers equi-distributed in 623 dimensions, 

and runs faster than all but the most statistically unsound generators. 
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4.4 C o n s t a n t - W T and Constant-^l/T MC simulations 

In statistical physics, partition functions are connected to thermodynamical properties, 

however, it is hard to get analytical forms for the partition functions resulting from the 

complexity of a system with a huge number of particles. Multidimensional integration 

in the continuity case is a nearly intractable problem with the current computing power. 

Amazingly, the Monte Carlo simulations can solve this problem by sampling the configura

tion space and averaging values generated in all samplings. 

Monte Carlo simulations can be designed for different ensembles, for example, the mi-

crocanonical ensemble, canonical ensemble, and grand-canonical ensemble. One can choose 

a most appropriate ensemble for the system under study. Here we briefly describe two en

sembles, canonical ensemble and grand-canonical ensemble, used in our PdCu surface alloy 

study. 

When the Monte Carlo simulation is applied in the canonical ensemble, the system has 

the number of particles N, volume V and temperature T fixed. So this method is also 

called constant-NVT Monte Carlo simulation. For an attempted move from an old state to 

a randomly selected new state, the acceptance rule obeys the Metropolis criteria described 

in Section 4.2. One example shown in Figure 4-1 is used to illustrate this method. It is a 

mixed system of components A and B with the total number of A and B, system volume, 

and system temperature being constant. A trial move is the location exchange of A and 

B. This exchange could change the system energy and numerous exchanges will ultimately 

lead the system to an equilibrium state. Once the equilibrium is reached, trial moves stop 

and the expectation values of physical variables can be obtained. We are going to use this 

constant-NVT simulation to simulate the Pd atom partition in the first two atomic layers. 

The other ensemble we used is the grand-canonical ensemble, which is also called a 
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Fi gure 4-1: A schematic canonical ensemble of component A and B. A trial move is the swapping 

of A and B. 

constant-/iVT ensemble. In this ensemble, the temperature, volume, and chemical potential 

are fixed. The number of particles in a system can be obtained as a function of external 

conditions imposed by a reservoir. The trial moves can be the swapping of particle identities 

between a multiple component system and a reservoir. Figure 4-2 depicts such a system 

with two components of A and B. In the small inset box, two components A and B coexist. 

Outside the inset box, the reservoir is treated as one with only component B, even though 

there is an extremely small number of A after certain trial moves. The chemical potential to 

take out or put in one B in the reservoir is fixed and will remain the same in the simulations. 

A trial move will be the exchange of A in the small box with only B in the reservoir because 

A-A exchange does not alter the system configuration. Note that in this case, the total 

energy change includes two parts: one from the A-B system due to configuration change 

and the other from the reservoir due to the chemical potential difference between A and B. 

Specifically for our PdCu system, we exchange Cu atoms in a two-layer slab with Pd atoms 

in a reservoir with fixed chemical potential. One additional useful piece of information 
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Figure 4-2: A schematic grand canonical ensemble. The system in the inset box consists of 

components A and B, and the reservoir outside the inset box contains only B. A trial move is the 

swapping of A in the system and B in the reservoir. 

obtained in this simulation is the chemical potential in the slab, by which, we can judge if 

the surface structure is equilibrated by comparing the chemical potentials in all places of 

interest. 

4.5 Thermodynamic integration for chemical potential cal

culation 

Thermodynamic integration is a method to calculate the free energy and subsequently the 

chemical potential. The basic idea is integrating the free energy change over temperature 

and getting the free energy for a reference point at very high temperature so as to get 

the absolute value of the free energy at a given temperature. For a system of n particles, 

we do constant-iVyT Monte Carlo simulations at a small incremental step from the system 

temperature to a very high temperature. The internal energy E is obtained for each temper-
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ature in the simulations. Integrating dE/T gives entropy change at different temperatures 

according to 

dS(T) = f = f (4.2) 

At the reference point of a very high temperature, the system entropy is given by the 

Boltzmann formula 

S = k * Into, (4.3) 

where U is the number of microscopic configurations of the ensemble. Then we can obtain 

the absolute entropy at the sample temperature. 

When we vary the number of particles n in the system, this method will give the entropy 

difference AS(n) between different n at the same temperature. Subsequently, change in 

Helmholtz free energy will be available based on 

AF(n) = AE-T*AS(n). (4.4) 

One will find the chemical potential by using 

This method, although involving much simulation and integration work, offers another way 

to obtain the chemical potential in addition to the constant-/iiVT simulation addressed in 

the last section. Both of these two methods have been tried on the Pd/Cu alloy system. In 

chapter 6, it will be demonstrated that they produce similar results and lead to the same 

conclusions. 
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C H A P T E R 5 

The 3 low-index surfaces of the 

semimetal bismuth 

Bismuth is a group V semimetal. The total density of electrons (and the total density of 

holes) in Bi is about 3xl0 1 7 cm - 3 - down from typical metallic densities by about a factor 

of 105. The effective masses of the carriers are small; for electrons along the trigonal axis 

m* « 0.003 me where me is the electron mass [64]. The resistivity of Bi is typically 10 to 100 

times larger than that of most metals. Bi crystallizes in the rhombohedral (A7) structure 

with two atoms in one unit cell. It has an electronic configuration of [Xe]4f145d106s26p3. 

Having an even number of conduction electrons per primitive rhombohedral cell, they come 

very close to being insulators, but there is a slight band overlap, leading to a very low density 

of states at the Fermi level and a very small number of carriers. As a result, the pentavalent 

semimetals provide a striking illustration of the crucial importance of the crystal structure 

in determining metallic properties. Were it exactly a simple cubic Bravais lattice, then, 

having an odd valence, they would be very good metals indeed. Furthermore, theoretical 

work has shown that the balance between being a semiconductor or a semimetal depends 

crucially on the structural details [65]. 

This structural importance could also happen to the surfaces due to the atomic geometry 

change and broken symmetry. In fact, this has been manifested on the Bi surfaces. Bi surface 
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electronic properties have been found to be radically different from the bulk. Fascinatingly, 

the Bi(llO) [66], Bi(OOl) [67] and Bi(l l l) [68, 69] surfaces prove to possess metallic surface 

states. See Ref. [70] for a detailed review by Hofmann. The metallic surface states could 

be caused by surface modifications due to the local atomic environment and symmetry 

changes. It is well known that a semiconductor, e.g. the Si(001) surface, can reconstruct into 

another semiconductor, not a metal. For Bi(110) and Bi(001), however, the absence of any 

reconstructions is unexpected and in sharp contrast to the situation on most semiconductor 

surfaces. Explaining the lack of the reconstruction with simple arguments is not possible. 

A particularly interesting effect impacting the surface electronic structure is spin-orbit 

splitting. The spin-orbit interaction in the heavy element Bi is very strong. In the bulk band 

structure, the spin-orbit interaction is important [71] but it does not lead to a splitting of 

the bands with respect to the spin (i.e. to a lifting of the Kramers degeneracy) because of the 

inversion symmetry of the bulk structure. On the surfaces, however, no inversion symmetry 

is present and the surface state bands are split with respect to their spin direction [66, 72]. 

So far, no direct measurements of the spin-dependent surface band structure have been 

reported and the evidence for the spin-orbit splitting is the excellent agreement between the 

measured surface state dispersion and that calculated from first principles with the inclusion 

of the spin-orbit interaction [72]. Additional direct evidence is found in the quasiparticle 

interference pattern on Bi(110) [73]. 

Practically, when a semimetal turns into a metal, this good metallic metal on a semimetal 

can be taken as a model for a nearly two-dimensional metal. The surface states can be used 

for the field of spintronics due to its unique spin-orbit splitting features. The spin-orbit 

splitting of the bands will change band structure and Fermi contour. Surface state bands 

have a profound impact on effects like screening. The surface dictates the chemical prop-
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erties of a solid. The surface importance even increases sigificantly for smaller structures. 

Properties of bulk Bi can be altered by quantum size effects [74]. Examples of length-scale 

and dimensionality related novel phenomena are: the thickness dependence of transport 

properties in Bi thin films [75], metal-to-semimetal transition in Bi nanowire [76], super

conductivity in granular films of Bi clusters [77], Bi ultra-thin film phase transition on 

Si(l l l) [78], and Bi thin film as a template for an organic semiconductor growth [79]. All 

could contribute to potential applications in relevant nanotechnology. 

Although the creation or increase of surface could play an important role in the non-bulk 

structures, the surface structures of Bi have been largely unexplored since the pioneering 

qualitative work of Jona [80]. This chapter presents quantitative results for Bi( l l l ) [81], 

(110) [82] and (001) surfaces. 

5.1 The bismuth bulk structure 

Bismuth has a rhombohedral (.47) crystal structure composed of two interpenetrating face-

centered-cubic sublattices slightly stretched in the [111] direction [83]. There are two atoms 

per unit cell and three nearest neighbors for each Bi atom. The structure can be viewed 

as a stacking of covalently bonded bilayers in the [111] direction with much weaker bonds 

between these bilayers. This picture is confirmed by the overall mechanical properties of Bi 

which is brittle and easily cleaves along the (111) plane, presumably between two bilayers. 

Represented by both rhomboheral and hexagonal lattices, the lattice structure is shown in 

Figure 5-1. The bisectrix (Ci), binary (C2), and trigonal (C3) axes are taken to be the x, y, 

and z coordinate axes, respectively. The hexagonal lattice vectors are denoted as a and c. 

The c axis lies in the rhombohedral [111] direction. The lattice constants are a = |a| = 4.535 

A and c = |c| = 11.814 A at 78 K, as listed in Table 5.1. Three primitive lattice vectors in 
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Figure 5-1: The crystal structure of Bi is indexed by both rhombohedral and hexagonal systems. 

In the rhombohedral unit cell, the central atom is indicated by a circle and the lattice vectors are 

shown as ai , a2, a3 referred to the origin point O. C\, C2 and C3 are bisectrix, binary and trigonal 

axes, respectively. 

the rhomboheral frame are denoted as a i , a2 and a3. The conversion between the two sets 

of lattice constants is as follows. 

a i = (—a/2, — \ /3o /6 , c/3), 

* a2 = (a/2, -V3a/6,c/3), (5-1) 

a3 = (0, VSa/3, c/3). 
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Table 5.1: Lattice constants of Bi in the hexagonal system at different temperatures. 

a (A) 

c(A) 

78 K 

4.535 

11.814 

298 K 

4.546 

11.862 

5.2 The Bi( l l l ) surface 

A quite different picture of the surface electronic structure of B i ( l l l ) was recently presented 

by Ast and Hochst [84]. They have shown that very good agreement between the measured 

surface state dispersion and a tight-binding calculation can be obtained for a very weak spin-

orbit coupling parameter. However, in order to achieve this, a strong outward relaxation 

of the first interlayer spacing had to be assumed. This relaxation is Adi2/d\2 = 71 % 

where Adi2 is the change in the first to second interlayer distance and d\2 ( = 1.59 A) is 

the truncated bulk value for this distance. Such a big interlayer relaxation would be highly 

unusual. Moreover, the first interlayer spacing, d\2, would be larger than the inter-bilayer 

distance G?23, leading to a completely different type of bonding at the surface. In the first-

principles calculations presented in Ref. [72] and here, the situation is quite different: they 

also give very good agreement with the experimental surface band structure but the spin-

orbit splitting of the bands is pronounced and the interlayer relaxations are small. A direct 

structure determination of B i ( l l l ) is therefore required. 

The amount of structural information on the Bi surfaces in general and B i ( l l l ) in 

particular is very limited. In a pioneering work, Jona has analyzed the LEED patterns for 

different Sb and Bi surfaces [80]. For B i ( l l l ) he found a hexagonal (1 x 1) pat tern and 

assumed that the surface was terminated with a short first interlayer spacing, i.e. with an 
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intact bilayer. A later scanning tunneling microscopy investigation by Edelman et al. [85] 

supported the presence of only one termination. However, the detailed surface atomic 

configuration is so far unknown. 

Here we present an experimental study of the surface structure of clean Bi(l l l ) by 

LEED IV analysis. Experimental diffraction intensities taken at sample temperatures of 

140, 171, 218, 268 and 313 K at normal incidence and 139 K at off-normal incidence with 

polar angles 8 — ±10° have been analyzed by comparison to dynamical LEED calculations. 

The optimization of the structural and non-structural parameters was carried out by min

imizing a reliability (R) factor with the quadratic tensor model algorithm of Hanson and 

Krogh [40]. Two different surface models were tried: a termination with an intact bilayer 

and a termination with a broken bilayer. The agreement between measured and calculated 

intensities is excellent for the intact bilayer. The most important results are the structural 

parameters, i.e. the layer relaxations, and the mean-square vibrational amplitude of the 

surface atoms. 

5.2.1 The bulk-truncated B i ( l l l ) surface structure 

The truncated bulk crystal structure of Bi( l l l ) is shown in Figure 5-2. For the figure, we 

have assumed that the crystal is terminated with a Bi bilayer. By considering only the 

(1 x 1) LEED diffraction pattern reported by Jona [80], a different termination would also 

be possible: the surface could be terminated with a long first interlayer spacing, i.e. with a 

bilayer cut upon surface creation. This is inconceivable because of the covalent bonds that 

hold the bilayer together. We have indicated the locations of these bonds in the figure. To 

create a surface terminated with an intact bilayer, no covalent bonds have to be broken. 

The formation of a split bilayer, on the other hand, requires the breaking of three covalent 

55 



O 1st layer 
• 2nd layer (a) top view 

(b) side view (parallel to mirror plane) 

>r >r 
2.347 A 

Figure 5-2: Truncated-bulk structure of Bi( l l l ) . The dark solid lines indicate covalent bonds 

between the atoms within the bilayers. (a) Top view of the first three atomic layers. Each layer 

consists of a two-dimensional trigonal lattice and the lattice constants are given. The mirror planes 

of the structure are also shown as dashed lines, (b) Side view (projected onto a mirror plane) of the 

first four layers. The alternating short and long interlayer spacings are evident. 

bonds per surface unit cell. This picture is confirmed by the overall mechanical properties 

of Bi which is brittle and easily cleaves along the (111) plane, presumably between two 

bilayers. The bilayer-type structure gives rise to alternating interlayer distances. For the 

truncated bulk at 140 K we have: d\2 =1.594 A, d£3 =2.347 A, d\A =1.594 A, d\b =2.347 

A and so on. 

In the hexagonal system, the lattice constants for 78 K and 298 K are given in Ta

ble 5.1 [86]. Based on these lattice constants, we get the linear thermal expansion coefficients 

parallel and perpendicular to the (111) plane as 11.0 x 10~6 K _ 1 and 18.5 x 10~6 K _ 1 , re-
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spectively, which are consistent with thermal expansion coefficients reported by Erfling [87]. 

We obtain the lattice constants for 140, 171, 218, 268 and 313 K by interpolation. 

5.2.2 Methods 

Experiment 

The experiment was performed in a /i—metal ultra-high vacuum chamber with a base pres

sure of 7 • 10 - 9 Pa. It is equipped with a four-grid LEED optics from Omicron. Surface 

contamination was measured by Auger Electron Spectroscopy (AES) using a hemispheri

cal electron analyzer and the LEED electron gun as an electron source. The sample was 

mounted on a manipulator, allowing positioning to within 0.1° around all three axes of the 

crystal. The sample was cooled by liquid nitrogen. The sample temperature was adjusted 

via liquid nitrogen flow. 

The surface was cleaned by cycles of Ar+ sputtering (1 kV, 2/xA) and annealing to 

150°C. With AES no surface contamination could be detected. Figure 5-3 shows an Auger 

spectrum with incident electron energy of 3 keV. The dominant peak and trough around 

100 eV is by Bi. The maximum possible oxygen contamination was determined to be 0.02 

monolayers. 

Spot intensities were measured using a 16 bit Charge-Coupled Device (CCD) camera. A 

back-illuminated and Peltier cooled (—40° C) CCD chip guaranteed an extraordinarily high 

quantum efficiency. The camera was mounted on a base, which allowed rotation around all 

three axes. Great care was taken to align the camera with respect to the electron gun and 

the Bi crystal. 

To obtain intensities of the diffracted beams as a function of electron energy, the fol

lowing procedure was employed: A series of images was recorded within the energy range 
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Figure 5-3: Auger electron spectrum of the cleaned Bi(lll) surface. The incident electron is 3 

keV in kinetic energy. No surface contamination is detected except the strong Bi peak around 100 

eV. 

from 30 eV to 350 eV, while the energy was increased in steps of 1 eV after every recorded 

image. The integrated spot intensity of every single diffracted beam hk was extracted from 

these images. Normal incidence was found by minimizing the R factor between symmetry-

equivalent beams. In the final data set, the intensities of the symmetry-equivalent beams 

were averaged. 

LEED calculations and R factor analysis 

The dynamical LEED calculations were performed using the computer code of Adams [38, 

39] which was developed from the programs of Pendry [17] and of Van Hove & Tong [18]. 

Atomic scattering phase shifts have been calculated using a muffin-tin potential model 

and the standard Barbieri/Van Hove phase shift package available online [41]. A muffin tin 

radius of 2.87 atomic units has been adopted for Bi. Variations in the muffin tin radius have 
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proved non-significant for the structure determination. Furthermore, the phase shifts have 

been renormalized by the thermal effects of root-mean-square (rms) isotropic vibrational 

amplitudes. Up to 17 phase shifts have been used because of the strong scattering of the 

heavy Bi atom {Z = 83), especially at energies above 300 eV. The muffin-tin constant Vb 

and the imaginary damping potential Vim were both taken to be energy-independent. The 

surface potential step of height Vb was located half a short bulk interlayer spacing away 

from the topmost layer. The reflection and transmission matrices for composite layers were 

calculated using Van Hove and Tong's combined space method [18]. The reflection matrices 

for the bulk crystal were calculated by Pendry's layer-doubling method [17]. The agreement 

between experimental and calculated LEED intensities is quantified by the R2 factor defined 

in Equation 2.31. 

Ab-initio calculations 

Our collaborators performed ab initio calculations of the surface crystal structure of Bi( l l l ) . 

The full-potential linearized augmented plane wave method in film-geometry [88, 89] as 

implemented in the FLEUR-code was used and the local density approximation [90] to 

the density functional theory was employed. Spin-orbit coupling was included in the self-

consistent calculations [91]. The evaluation of the surface relaxation has been carried out for 

the symmetric 14-layer film, both, with the inclusion of the spin-orbit coupling (SOC) term 

and without this term. Force calculations have been performed for the first four interlayer 

spacings without spin-orbit coupling while the total energy computations have been carried 

out for the first two interlayer spacings with the inclusion of SOC. As the latter evaluations 

are computationally more demanding we kept the d^ and ^45 interlayer spacings equal to 

those obtained from the force calculation. The geometry was chosen such that both sides 
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of the film were terminated with an intact bilayer. A wavefunction cutoff of 3.6 a.u. l was 

chosen and the irreducible part of the Brillouin zone was sampled with 21 k-points. 

5.2.3 Results 

Normal incidence at different temperatures 

After some initial tests with both structural models for the truncated bulk, the model 

involving a cut bilayer, i.e. a long first interlayer spacing, was discarded because of the poor 

agreement with the experimental data. The structural and non-structural parameters for the 

surface terminated with an intact bilayer were refined using the procedure outlined above. 

The optimized parameters for a sample temperature of 140 K are listed in Table 5.2. These 

are the interlayer spacings ckj, the rms atomic vibrational amplitudes u in the surface layers, 

the real part of the inner potential Vb, the damping potential Vim, and the global scaling 

constant c . The Debye temperatures are calculated according to the relation between 

Debye temperature ®E> and mean-square atomic vibrational displacement {u2)T at sample 

temperature T [17] 

<„.>T= » ! > ( £ / * - = * + i \ (M) 
x /T makB®D \<d2

DJo e*-l 4J v ' 

where ma is the atomic mass, % Planck's constant and kg the Boltzmann constant. At a 

sample temperature of 140 K ten symmetry in-equivalent beams with a total energy range 

of 2079 eV have been used to minimize the R factor. For comparison, the Pendry R factor 

for the agreement between calculated and experimental spectra is found to be Rp = 0.25. It 

should be emphasized that a proper comparison requires a full and independent optimization 

of Rp, which is not performed in the present work. Experimental and calculated intensity-

energy curves are shown in Figure 5-4. The excellent agreement between the experimental 
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Table 5.2: Optimum parameter values for the surface structure of Bi( l l l ) at 140 K and normal 

incidence. Interlayer spacings between the ith and j th layer are indicated as dij\ rms vibrational 

amplitudes for atoms in the ith layer are denoted as u;. Vo and Vim are the real part and imaginary 

part of inner potential, respectively, c is the global scaling constant. dh is the corresponding 

interlayer spacing of the truncated bulk at 140 K. €>D is the Debye temperature calculated from U{. 

Parameters 

Vo (eV) 

d12 (A) 

d23 (A) 

3̂4 (A) 

ui (A) 

«2(A) 

Vim (eV) 

c 

R factor 

starting 

values 

4.0 

1.594 

2.347 

1.594 

0.1433 

0.1433 

4.0 

2.4 x 106 

0.198 

optimized 

values 

3.61 ±0.54 

1.602 ±0.018 

2.393 ±0.018 

1.594 ±0.018 

0.239 ±0.019 

0.222 ±0.020 

4.34 ±0.57 

5.8 ±2.1 x 106 

0.075 

Ad 
dh 

(%) 

-

±0.5 ±1 .1 

±1.9 ±0.8 

0.0 ±1.1 

-

-

-

-

-

eD(K) 

-

-

-

-

ntl 

771"? 

-

-

-

and calculated results is evident. 

The sensitivity of the R factor to the optimization parameters of interlayer spacings and 

atomic vibrational amplitudes has been investigated in the case of T = 140 K. Figure 5-5 

shows the R factor as a function of these parameters individually. All the sensitivity curves 

take on a parabolic shape as discussed in Refs. [92, 39]. As expected, we can see a larger 

sensitivity of the R factor to the interlayer spacings than to the atomic vibrational ampli

tudes. From the error analysis outlined above, we determine that one standard deviation 
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Figure 5-4: Comparison of experimental and calculated intensity versus energy curves for normal 

incidence on Bi( l l l ) at 140 K. Solid lines show experimental data and dotted lines show calculated 

data. 
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Figure 5-5: Sensitivity of R factor to deviations from the optimized parameter values du, ^23, 

ui, U2 at 140 K. Rmin is the minimized R factor. The intersections between R — 1.04i?mjn and the 

sensitivity curves correspond to the uncertainty in the individual parameters. 

corresponds to 4 % increase of the R factor with respect to its minimum, i.e. R = 1.04-Rmjn. 

Hence, the intersections between R = 1.04.Rmjn and the sensitivity curves correspond to 

the error bars of the individual parameters. 

The optimized parameters for the complete set of temperatures are given in Table 5.3 

together with the number of beams and the total energy range. The first interlayer spacing 

shows no significant relaxation in the temperature range studied while the second interlayer 

spacing shows a small expansion. 

The changes of rms atomic vibrational amplitudes with temperature for the first two 

layers are shown in Figure 5-6. The corresponding Debye temperatures as calculated from 

Equation 5.2 are also given. It is found that the first two layers exhibit lower Debye 

temperatures than the bulk for all sample temperatures investigated. Note that the Debye 

temperature for the first two layers increases slightly with sample temperature. There are 

two reasons for this. The first is the experimental uncertainty in the determination of u 
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Table 5.3: Optimized parameters for different sample temperatures. AE is the total energy range for all the beams, cfe is the distance between the 

rth layer and j th layer in the bulk at the corresponding temperature. G>£>i and 9j}2 are the optimized Debye temperatures for the atoms in the first 

and second layers, respectively. 

T 

(K) 

140 

171 

218 

268 

313 

No. of 

beams 

10 

10 

9 

9 

7 

AE 

(eV) 

2079 

2068 

1375 

1207 

555 

A<ii2 Ad23 

"12 u 2 3 

(%) 

0.5 ±1.1 1.9 ±0 .8 

0.0 ±1.1 2.1 ±0 .8 

-0 .4 ±1.3 2.0 ±0.9 

-0 .4 ±1.5 1.6 ±1 .1 

-0.4 ±2.9 1.0 ±1.9 

M l 

A 

0.239 ±0.019 

0.256 ±0.019 

0.260 ±0.023 

0.284 ±0.024 

0.289 ± 0.049 

" 2 

A 

0.222 ±0.020 

0.237 ±0.020 

0.248 ±0.023 

0.268 ±0.024 

0.266 ±0.049 

@r>i ©£>2 

(K) 

7l±7
5 77l? 

74±f 8 0 ^ 

8 2 ^ 86i^ 

83±l 8 8 ^ 

88li| 96±1? 

V0 

(eV) 

3.61 ±0.54 

3.71 ±0.53 

3.96 ±0.61 

4.21 ±0.73 

4.61 ± 1.44 

(eV) 

4.34 ±0.57 

4.22 ±0.56 

4.01 ±0.70 

4.20 ±0.77 

3.97 ±1.49 

R 

factor 

0.075 

0.084 

0.072 

0.069 

0.043 
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Figure 5-6: Optimized root-mean-square atomic vibrational amplitudes with error bars for the 

first and second top layers. Corresponding Debye temperatures are indicated for comparison with 

the bulk Debye temperature OD bulk — 120 K [5]. 

and the second is that the Debye model is only a very simple approximation. 

Comparison to first-principles calculations 

The first-principle calculations performed with the inclusion of spin-orbit interaction give 

bulk short and long interlayer spacings of 1.667 A and 2.228 A, respectively. Scalar rela-

tivistic evaluations, that do not include the SOC term, lead to a very slight modification 

(of approximately 1 %) of these results. To check the sensitivity of the surface relaxation 

to the number of atomic layers incorporated into the relaxation, we have computed the 14-

layer Bi(l l l) film without the SOC term for two geometries. In the first geometry only the 

two surface layers were allowed to relax to the equilibrium and in the second geometry the 

four surface layers have been relaxed. Both these calculations result in a small contraction 
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of the first interlayer spacing {Adl2/d\2 ~-0.6 %) and in an expansion of the second one 

(Ad23/d%3 ~+6 .6%) . The third interlayer spacing 0̂34 (^34= d\2 in bulk Bi) also experiences 

a small contraction similar to Ad\2 while the fourth one expands by Ad^/d^5 ~ +2.3 %, i.e. 

significantly less than the expansion of the d23 distance. The inclusion of spin-orbit interac

tion into the calculation results in a small expansion of the d\2 distance, Ad\2/d\2 — +0.6 %, 

and in an expansion of the second interlayer spacing, Ad^/d^ = +6.2 %. These data can 

be compared with the experimental results linearly fitted and extrapolated to 0 K which are: 

Adn/d\2 = +(1.2 ± 2.3) % and Ad23/d%3 = +(2.6 ± 1.7) %. For the Adi2/d\2 relaxation a 

very good agreement is obtained with the computed value when the SOC term is included. 

For Ad23/d^3 the theoretical value clearly lies outside the experimental error but the 

agreement can still be judged to be fair in view of the remaining uncertainties. In Figure 5-7 

we show the calculated difference between total energies per surface atom for the films, as a 

function of the relaxation for the first and the second interlayer spacings as well as the whole 

energy landscape around the obtained energy minimum. The Ad\2/d\2 relaxation curve 

(open squares) was computed keeping Ad23/d\3 = 0 %, while the d23 was relaxed keeping 

Adu/d\2 = 1 % (open circles). As one can see in the figure, Ad23 shows an extremely 

weak energy dependence. For instance, the energy difference between Ad23/d^3 = 2 % 

and Ad^/d^s = 6 % is about 4.3 meV/surface atom. This very small quantity can be 

influenced by the choice of the approximation for the exchange-correlation potential, by the 

finite thickness of the slab, by small inconsistencies in the k-point sampling between bulk 

and film calculations, as well as by the fact that the linear extrapolation to 0 K may be 

oversimplified. 
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Figure 5-7: Calculated energy changes for relaxations close to the optimum value. Ad\2/d\2 was 

computed keeping Adiz/d^ — 0 % while Ad23/d^ was calculated keeping Adu/d^ = 1 %• Inset: 

contour plot of the energy as a function of Ad\2/d\2 and Adzz/d^. The energy difference between 

the contour lines is 1/6 meV / surface atom. 
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Table 5.4: Optimized results for two different off-normal incident angles on the Bi( l l l ) surface at 

139 K. Qm and 6_D2 are the optimized Debye temperature for the atoms in the first and second 

layers, respectively. Interlayer spacing dy are fixed at optimized values from normal incidence. 

Incident 

angle 6 

+ 10 

- 1 0 

Optimized 

angle 

10.48 

-9.99 

No. of 

beams 

52 

50 

AJ3 

(eV) 

9044 

8990 

©Dl e D 2 

(K) 

80.3 ± 10 109.8 ± 18 

81.5 ± 9 102.3 ± 14 

c 

1.9 ±0 .4 x 106 

2.2 ± 0.5 X 106 

A V 0 

(eV) 

5.99 ± 0.26 

6.50 ± 0.37 

vim 

(eV) 

3.78 ± 0.35 

4.02 ± 0.39 

K-factor 

0.089 

0.107 

Off-normal incidence wi th 9 = ±10° at 139 K 

As complementary measurements to confirm the surface structure determined by normal 

incidence, off-normal incidence are performed. Due to the broken symmetry of the beams 

resulting from the off-normal incidence, there are much more symmetry-inequivalent beams 

used for optimization. For the 9 = ±10°, 52 and 50 beams and 9044 and 8990 eV of the 

total energies are compared, respectively. Small R factors and optimized results are shown 

in Table 5.4. The polar angle optimized are 10.48° and —9.99° in the two situations which 

are very close to the measured values of 10° and —10°. The interlayer spacings are fixed 

as the optimized values from the normal incidence. The optimum parameter values for 

9 = +10° and 9 = —10° are very close to each other. Compared with those for the normal 

incidence at 140 K, the results for the off-normal incidences show minor differences which 

are not significant when taking the error into account. 

A representative set of experimental and calculated intensity-energy curves for the 9 = 

+10° are shown in Figure 5-8. Obviously an excellent agreement between the experimental 

and calculated intensities has been obtained. 
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Figure 5-8: Comparison of experimental and calculated IV curves for some beams at 139 K and 

off-normal incidence on Bi(lll) with polar angle 6 = 10° 

5.2.4 Discussion and summary 

Our results give a consistent picture of the surface geometric structure of Bi( l l l ) . The most 

important result is the fact that the relaxations are quite small, unlike the values assumed 

in the tight-binding fit to the electronic structure in Ref. [93]. Indeed, moderate relaxations 

would be expected for a system like Bi(l l l) that can be viewed, drastically simplified, as a 

stack of covalent bilayers bound by van der Waals-like bonds. It is even conceivable that the 

relaxation in £̂ 3 should be bigger than that in d\i- The argument is again that the much 

stronger bonds within a bilayer would be modified less upon a change in the environment. 

Another interesting result is the reduced surface Debye temperature for the first two 

atomic layers. This finding is consistent with a very early study of Goodman and Somor-

jai [94]. Reduced surface Debye temperatures are a common phenomenon on many surfaces. 
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The actual numerical values of the surface Debye temperature are an important ingredient 

for the determination of the electron-phonon coupling strength from angle-resolved photoe-

mission data [95, 96]. 

Finally, there are some interesting technical issues worth mentioning. The QTM al

gorithm introduced for the R factor minimization by Adams has been tested [37] for the 

surface structure determination of clean Al(llO), Al(100)-c(2 x 2)-Li and Al(lll)-(2 x 2)-Na. 

The results obtained by this new procedure showed an excellent agreement with those from 

a simple grid-search procedure [36, 97]. Some advantages have been shown and discussed, 

including (i) the rapid convergence to the optimum values, (ii) the ability to define linear 

correlations between search parameters and perform parameter optimization within denned 

intervals (iii) the capability of optimizing both the structural and nonstructural parameters 

simultaneously. These characteristics have been confirmed by our calculations. Tests for 

some more complicated systems, such as surface alloy structures, are under way. An im

portant feature in our optimization is the employment of a global scaling constant c for all 

beams, which makes the R factor retain the information of relative intensities from beam 

to beam. 

5.3 The Bi(llO) surface 

From a chemical point of view, the creation of a surface requires the breaking of atomic 

bonds. Covalent bonding plays only a minor role in most metals. Thus the effect of 

bond-breaking is small and surface properties are similar to those of the bulk, although 

localized electronic surface states may be present. On semiconductors, creating a surface 

leaves so-called dangling bonds which should give rise to half-filled and therefore metallic 

bands. However, it turns out that on most semiconductor surfaces the atoms re-arrange their 
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positions such that the dangling bonds are removed and the surface is again a semiconductor 

and not a metal [98]. Semimetals such as bismuth lie in between these two cases. On the one 

hand, a semimetal is close to being a semiconductor since directional bonding is important 

and the valence and conduction bands are almost separated by a gap. On the other hand, 

there is a very small overlap between both bands such that the material is formally a metal. 

This delicate balance between being a metal and a semiconductor depends crucially on the 

atomic structure [65] and it can be expected to be severely disturbed at the surface. 

The Bi(l l l ) surface structure has been presented in the last section. One important 

difference between bulk terminated Bi(llO) and Bi(l l l) is that the Bi(llO) surface exhibits 

dangling bonds, while Bi(l l l) does not. In a pioneering study by Jona [80], oxygen adsorp

tion experiments suggest that Bi(110) is noticeably more active than Bi( l l l ) . A qualitative 

analysis of LEED patterns in Jona's study shows an unreconstructed ( l x l ) Bi(110) sur

face structure. From the bulk structure Jona erroneously concluded that the unit cell (and 

hence the LEED pattern) should not be exactly rectangular but that the lattice vectors 

should include an angle slightly different from 90°. This is not correct, as will become ap

parent below. The unit cell is rectangular and almost square. A recent scanning tunneling 

microscopy study by Pascual et al. [73], revealed images of the Bi(110) surface that are 

consistent with a near-square surface unit cell. 

In contrast to most metal surfaces, Bi(110) has a very low symmetry - the only symmetry 

element being a mirror plane while it has no translational symmetry normal to the surface. 

This makes the LEED-IV analysis of this surface challenging. Along the [110] direction 

the Bi has a close stacking of atomic layers, i.e. the buckled bilayer as described below 

that requires the combined space method [18] to calculate diffraction matrices. The stacked 

layers have a registry that does not repeat itself, or in other words, the stacking sequence 
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has an infinite repeat distance due to its non-symmetrical translation parallel to the mirror 

plane. More importantly, the dangling bonds at the surface may complicate the surface 

electronic and geometrical structures, which makes this open surface quite similar to many 

semiconductors and binary compounds. 

We report on a study of the surface structure of clean Bi(llO) by quantitative LEED 

IV analysis. Experimental diffraction intensities taken at a sample temperature of 110 K 

under normal incidence have been analyzed by comparison to dynamical LEED calculations. 

Great care was taken to align the sample considering the low symmetry diffraction pattern. 

The main structural parameters that were optimized in the LEED-iV analysis include the 

first 4 interlayer spacings and the Debye temperatures for the first 2 surface layers. The 

experimental relaxations are in good agreement with those from first-principles calculations 

by our collaborators. 

5.3.1 The bulk-truncated Bi(llO) surface structure 

The bulk truncated surface structure of Bi(110) is shown in Figure 5-9. Each atom has 

three nearest neighbors to which it is connected by quasi-covalent bonds. The side views 

show the stacked bilayers loosely bound by a single bond between every other atom in 

neighboring bilayers. Within one bilayer, each atom in one layer closely bonds with two 

nearest-neighbor atoms in the other layer forming a buckled structure. The covalent bonds 

have been drawn by solid lines and the dangling bonds at the surface layer by dashed lines. 

The bilayer-type structure gives rise to alternating interlayer distances. For the truncated 

bulk at 110 K we have: d\2 = 0.208 A, d%3 = 3.064 A, d\A = 0.208 A, d%5 = 3.064 A, and so 

on. Interlayer spacings between the ith and j th bulk layers are indicated as e&. Noticeably, 

the Bi(110) surface has very low symmetry: the only symmetry element is a mirror plane 
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Figure 5-9: Truncated-bulk structure of Bi(llO). The solid lines and dotted lines mark covalent 

bonds and dangling bonds, respectively, (a) Top view of the first two atomic layers. Each layer 

consists of a two-dimensional rectangular lattice and the lattice constants at 110 K are given. The 

mirror planes of the structure are also shown as dashed lines, (b) and (c) Side views of the first 

eight layers perpendicular and parallel to the mirror plane, respectively. The bilayer-like structure 

with alternating short and long interlayer spacings is evident. 

as indicated in Figure 5-9. The lengths of unit vectors at 110 K are taken as 4.731 A and 

4.538 A; see Refs. [86, 80, 83]. If the rhombohedral structure is treated as a pseudocubic 

structure as in Ref. [80], Bi(110) will be denoted as Bi(001). The pseudo-square character 

of the surface unit cell is evident: for a cubic Bi structure all the atoms in the first bilayer 

would have the same height, the unit cell would be rotated by about 45°, and contains only 

one atom. 
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5.3.2 Methods 

Experiment 

The experiment setup and cleaning procedure are the same as described in Sec. 5.2.2 for 

the Bi( l l l ) surface. Especially, great care was taken to align the camera with respect to 

the electron gun and the Bi crystal for this low symmetry surface, as described below. 

To obtain intensities of the diffracted beams as a function of electron energy, the follow

ing procedure was employed: A series of images was recorded within the energy range from 

30 eV to 300 eV, while the energy was increased in steps of 1 eV after every recorded im

age. The integrated spot intensity of every single diffracted beam (h, k) was extracted from 

these images. The presence of only one mirror line symmetry for Bi(110) leads to technical 

challenges for the LEED experiment. These difficulties are illustrated in Figure 5-10 that 

shows two measured LEED patterns taken at different incident energies. The pseudo-square 

pattern of the reciprocal lattice and the missing left/right symmetry are clearly evident. 

The up/down symmetry is given by the mirror plane in the crystal (the horizontal plane in 

Figure 5-10). It is necessary to align the sample surface perpendicular to the incoming elec

tron beam, and this is usually done by comparing the IV curves of the symmetry-equivalent 

beams. Here this procedure can only be applied for the up/down angle. In order to align 

the left/right angle we optimized the diffraction spot position on the LEED screen until 

they agreed with the kinematically calculated positions. 

The alignment procedure is as follows. At a certain incident electron energy, we record 

the diffraction pattern. Knowing the electron energy, the sample and screen geometries and 

the lattice constant, we calculate the beams positions on the screen under normal incidence. 

The sample is aligned until a best overlap is reached between the observed pattern and the 
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Figure 5-10: LEED patterns at two different electron beam energies for normal incidence on 

Bi(110) at 110 K. The (1,0) and (0,1) diffraction spots are marked. 

calculated pattern. Figure 5-11 shows such a comparison at the energy of 62.2 eV. Some 

experimental diffraction spots have been saturated for a better visualization of all beams. 

The small circles are calculated beam spots. It is apparent that most of the spots overlap 

very well. In this way, we can do adjustments at different energies to guarantee a normal 

incidence in the entire energy range. We estimate that this approach leads to an error of 

less than 0.5° in the angle of incidence. 

In the final data set, the intensities of the symmetry-equivalent beams are averaged. 

Dynamical LEED calculations 

The dynamical LEED intensity calculations were performed using the standard package 

SATLEED (Symmetrized Automated Tensor LEED) by Barbieri and Van Hove [41] within 

the renormalized forward scattering perturbation formalism. Atomic scattering phase shifts 

have been calculated using a muffin-tin potential model and the standard Barbieri and 

Van Hove phase shift package [41]. The bulk diffraction matrices for the closely spaced 

bilayers were calculated with the combined space method [18]. The same muffin-tin radius 
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Figure 5-11: Comparison between experimental (bright spots) and kinematically calculated diffrac

tion pattern (green circles) for Bi(llO) at 62.2 eV. 
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(RMT) of 2.87 a.u. and phase shifts have been used as those for Bi( l l l ) . Phase shifts have 

been renormalized by the thermal effects of root-mean-square (rms) isotropic vibrational 

amplitudes. Up to 15 (L = 14) phase shifts are used. The muffin-tin constant VQ is taken 

to be energy-independent and is optimized. Vim, the imaginary part of the inner potential, 

also referred to as damping potential or optical potential, is taken as 4 eV for the bulk and 

4.2 eV for the first 2 overlayers. The slightly larger value at the surface was chosen to model 

the presence of dangling bonds, which increases the electron damping. The surface potential 

step of height VQ is located half a long bulk interlayer spacing away from the topmost layer 

nuclei. The bulk Debye temperature is fixed at 119 K [99], while the Debye temperatures 

for the first 2 layers are optimized. Mean-square atomic vibrational amplitudes {u2)T at 

temperature T for the Debye-Waller factor calculation are derived from Debye temperatures 

©£> according to Equation 5.2. 

In the LEED intensity analysis, agreement between experimental and calculated LEED 

intensities is quantified by the widely used Pendry R factor, Rp, as defined in Equation 2.29. 

The uncertainties in the optimized structural parameters are estimated based on the Equa

tion 2.30. 

Ab initio calculations 

Our collaborators [100] performed ab initio calculations of the surface crystal structure of 

Bi(110). The full-potential linearized augmented plane wave method in film-geometry [88, 

89] as implemented in the FLEUR-code was used and the local density approximation [90] 

to the density functional theory was employed. Spin-orbit coupling was included in the 

self-consistent calculations [91]. The evaluation of the surface relaxation has been carried 

out for the symmetric 14-layer film, both, with the inclusion of the spin-orbit coupling 
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(SOC) term and without this term. Force calculations have been performed for the first 

four layers without spin-orbit coupling while relaxations have been carried out only for the 

first two interlayer spacings with the inclusion of SOC. In the latter evaluations we kept the 

interlayer spacings (I34 and ^45 equal to those obtained from the force calculation without 

SOC. The geometry was chosen such that both sides of the film were terminated with an 

intact bilayer. A wavefunction cutoff of 3.8 a.u. -1 was chosen and the Brillouin zone was 

sampled with 32 k-points. 

5.3.3 Results and discussion 

LEED structure determination 

The LEED pattern of Bi(llO) has previously been discussed by Jona [80]. He defined a 

pseudo-cubic bulk unit cell and concluded that the unit cell (and hence the LEED pattern) 

should not be exactly rectangular but that the lattice vectors should include an angle slightly 

different from 90°. Our study does not confirm this conclusion. Our LEED patterns as 

presented in Figure 5-10 show an exact rectangular net from careful measurements of the 

diffraction spots positions and, indeed, such an exact rectangle can also be expected from 

a projection of the bulk reciprocal lattice onto the surface [70]. The measured ratio of the 

two reciprocal unit cell vectors is 0.96(2) in good agreement with the expected value of 

0.959. Moreover, the observed patterns show no indication of any reconstruction of the 

Bi(110) surface, despite the existence of active dangling bonds at the surface. Apparently, 

Bi(llO) is found to be very different from typical semiconductors surfaces, such as Si(100) 

and Ge(100) which both exhibit 2x1 reconstructions. 

The structural and non-structural parameters were optimized for a Bi(110) surface ter

minated by an intact bilayer. A termination with a split bilayer was immediately excluded 
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due to lack of agreement with the experimental IV curves shown in Figures 5-12 and 5-13. 

20 symmetry in-equivalent beams with a total energy range of 3591 eV have been ana

lyzed to determine the following structural and non-structural parameters: the first four 

interlayer spacings ckj (j = i + 1; 1 < i < 4), the real part of the inner potential VQ, and 

Debye temperatures 0 ^ and ©D 2 for atoms in the first and second layers, respectively. 

The results of the structural analysis are summarized in Table 5.5. Note that the first and 

the third interlayer spacings correspond to the small separation (0.21 A) between the two 

layers making up the bilayer in the bulk. Their seemingly dramatic relative relaxations 

are very small in absolute terms. Also, the forth layer appears to move above the third 

layer by 0.01 A. However this very small value is clearly below our detection limit. Overall 

no significant relaxation for the Bi(110) surface is found. We have tried many possible 

displacement patterns allowed due to the low surface symmetry. However, we found no 

significant improvement in Rp when changing the relative distance between the two basis 

atoms in the first and second layers parallel to the mirror line. The Debye temperature for 

the first layer is found to be lower than that of the bulk, which is consistent with an early 

study of Goodman and Somorjai [94]. Reduced surface Debye temperatures are a common 

phenomenon reflecting the weaker bonding of surface atoms compared to the bulk [101]. 

The actual numerical values of the surface Debye temperature are an important ingredient 

for the determination of the electron-phonon coupling strength from angle-resolved photoe-

mission data [95, 102, 96, 103]. Meanwhile the second layer shows a Debye temperature 

close to the bulk value. 

The LEED-iV analysis gives a relatively high Rp factor of about 0.38 compared to 

typical values of 0.1 to 0.3 for clean unreconstructed metal surfaces. Many efforts have 

been made to find out the possible causes of this value. We simulated non-normal incidence 
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Table 5.5: Optimized parameter values for the surface structure of Bi(llO) from LEED and ab 

initio calculations. Interlayer spacings between the ith and jth layer are indicated as dij. e& is the 

corresponding interlayer spacing of the truncated bulk at 110 K and Adij = d^ — cfe. Vo is the 

real part of the inner potential. 0^ and QD2
 a r e the Debye temperatures for the first and second 

layers, respectively. 

Parameters 

rfl2 (A) 

d23 (A) 

rf34 (A) 

dA5 (A) 

V0 (eV) 

QDl (K) 

6 D 2 (K) 

Rp 

Experimental results by LEED 

Starting values 

0.208 

3.064 

0.208 

3.064 

8.0 

119 

119 

-

Optimized values 

0.18 ±0.048 

3.06 ±0.043 

0.01 ± 0.040 

3.20 ± 0.046 

3.5 ±1.50 

95i62£ 

116if° 

0.38 

Adtj/d% (%) 

- 1 3 ± 2 3 

-0.2 ±1.4 

-105 ± 1 9 

+4.3 ±1.5 

-

-

-

-

ab initio calculations 

Ady/4 (%) 

-62 

+0.3 

-105 

+4.4 

-

-

-

-
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conditions extensively in the LEED-/V calculations and found that an increase in the 

incident angle gave a dramatic rise in the R factor from its minimum at zero or normal 

incidence. This suggests that the sample is properly aligned and the relatively high value is 

not caused by deviations from normal incidence during the IV measurement. The influence 

of the muffin-tin radius on the structure has been studied and results show essentially the 

same geometry with a minimum R factor at the muffin-tin radius of 2.87 a.u.. We also tried 

the atomic potential derived from our ab initio calculations with no significance changes in 

the optimized structural parameters nor an improvement in the R factor. So it might be 

the structural complexity and low symmetry of the Bi(llO) surface itself that complicates 

the LEED process. As seen on open semiconductor surfaces the presence of dangling bonds 

and the presence of voids in the open surface structure is a real challenge for the muffin-

tin approximation of the crystal potential and could also contribute to the relatively high 

Rp for this surface. However, the low surface symmetry of Bi(llO) gives rise to the large 

number of non-equivalent beams. Here we present an accumulative energy range of 3591 eV 

(20 beams) which is far broader than a typical one of about 1000 eV used in LEED studies. 

When an overall range of only 1071 eV (the first 6 beams) was analyzed in our work, the R 

factor decreased to 0.23 without changes in the optimized structural parameters. This value 

is comparable to LEED results for many semiconductors and metal oxide compounds with 

similar geometric and electronic structures. Interestingly, the reduction of R factor due to 

fewer beams indicates more intricate scatterings in the higher ordered beams. Furthermore, 

with horizontal surface atomic displacement in the mirror-plane allowed, a smaller R has 

been obtained but, considering that the displacement values are within error limit and no 

significant geometry change occurred, we are not including these displacements in the report. 

The agreement between this large experimental data set and the calculated intensity-energy 
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curves, as shown in Figures 5-12 and 5-13, give us confidence in the reliability of our results. 

The error bars of the optimized parameters were analyzed based on the variation of 

the R factor around Rpmin, ARp = 0.036 according to Equation 2.30. The dependence 

of Rp on a change of the interlayer spacings away from their optimized values is shown in 

the Figure 5-14. In this analysis, all other parameters were fixed at their optimized values. 

We can see that all the sensitivity curves take on a parabolic shape. The errors for the 

individual parameters are also listed in Table 5.5. 

Comparison to first-principles calculations 

The first-principle calculations performed for bulk Bi without the inclusion of spin-orbit 

interaction give bulk short and long interlayer spacings of 0.142 A and 3.087 A, respectively. 

Evaluations that include the SOC term lead to a very slight modification of approximately 

0.01 A of these results. As shown in Table 5.5, our scalar relativistic force calculations give 

the following values for the first 4 interlayer spacing relaxations at 0 K: Adi2/d\2 = —62%, 

A<W4>3 = +°-3%> AdM/d\A = -105%, and Ad45/d%5 = +4.4%. These results agree 

reasonably well with those obtained by the LEED-/F analysis at 110 K considering the fact 

that the absolute distance difference between the experimental and calculated first interlayer 

relaxations of —13% and —62% is only 0.06 A. Both the experiment and theory lead to the 

contraction of the first interlayer spacing. For the second interlayer spacing the theory gives 

a small expansion while the experiment shows a small contraction of the spacing. However 

the theoretical result is within the experimental error bar. The absolute distance difference 

between the experimental and calculated second interlayer relaxations of 0.015 A is even 

smaller than that for the first interlayer spacing. For the third and fourth interlayer spacings 

the theory and experiment are in excellent agreement. The first-principle calculations that 
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Figure 5-12: Comparison of 20 experimental and calculated IV curves for normal incidence on 

Bi(110) at 110 K. Solid lines show experimental data and dotted lines show calculated data which 

are shifted downward for comparison. To be continued in Figure 5-13. 
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Figure 5-14: Error bar determination for the first 4 interlayer spacings based on ARp = 0.036 

and Equation 2.30. 

include the spin-orbit interaction term lead to Ad\2/d\2 = —43% and Ad23/^23 = +0.4% 

for the first and second interlayer spacings respectively. These values have been obtained 

by keeping the interlayer spacings Ad^/d\A and Ad^/d\b equal to those found in the 

scalar relativistic calculations. This shows that the influence of spin-orbit interaction on 

the relaxation is small and probably will not change the values of 0̂34 and d^ significantly. 

Notice, that in the relaxed geometry a change of 6% or 0.01 A in Adyildyi corresponds to 

an energy change of only 0.5 meV per surface atom which is certainly at the limit of our 

accuracy. 

In our force calculations, we also optimized the position of the surface atoms in a plane 

parallel to the surface. By symmetry, this movement is then confined to the mirror plane 

shown in Figure 5-9 (a). We notice, that these relaxations are small and do not exceed 1.0% 

in the top four layers, consistent with the experimental findings. 
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5.3.4 Conclusions 

Our results give a consistent picture of the very low-symmetry surface geometric structure 

of Bi(llO) by LEED intensity analysis and first-principles calculations. Good agreement 

is reached between experimental LEED and theoretical IV curves. No structural recon

struction occurs despite the dangling bonds present at the surface. No significant absolute 

value of relaxation is found for the first 4 interlayer spacings. The reduced top-layer Debye 

temperature suggests essentially larger vibrational atomic amplitudes at the surface. Ex

perimentally, the approach of sample alignment by calculating the diffraction spot positions 

on the LEED screen is very efficient and can be used for surfaces with low symmetry as 

well as for in-situ cleaved surfaces. 

5.4 The Bi(OOl) surface 

The Bi(OOl) surface is also found to be a better metal than the bulk. In contrast to the 

relatively localized surface states on Bi(llO) and Bi( l l l ) , however, the surface states on 

Bi(OOl) penetrate very deeply into the bulk. It has been suggested that this could explain 

some apparent contradictions found for the electronic structures of clusters, nanowire and 

nanotubes [67]. 

So far there are very few publications on the Bi(OOl) surface. As far as we know, no 

quantitative atomic surface structure is available. This section presents surface geometric 

results by STM and LEED. 

5.4.1 The bulk-truncated Bi(OOl) surface structure 

The top view and side view of Bi(OOl) are depicted in Figure 5-15. The crystal can be 

viewed as built from quasi-hexagonal layers of Bi(OOl). In each layer an atom has two 
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neighbors at the same distance as on the Bi(l l l) surface (4.54 A) and four next-nearest 

neighbors at a slightly larger distance (4.72 A) [70]. The three nearest neighbors of any Bi 

atom in the bulk structure, however, do not lie in the same quasi-hexagonal layer but they 

connect these layers. The connections to the nearest neighbors are indicated as "bonds" in 

Figure 5-15. The side view shows that there are two different possible interlayer spacings. 

The termination of the surface is not known, but it seems likely that the shorter interlayer 

spacing prevails, not least because it requires only the breaking of one covalent bond per 

unit cell instead of two. The broken bonds at the surface are also indicated as dashed lines 

in Figure 5-15. It can be seen that the structure is close to an ABCABC. . . stacking 

sequence of the quasi-hexagonal layers, except that the fourth layer atoms are not quite in 

registry with the first layer atoms. They are actually shifted by a distance of 0.57 A. The 

registries of the stacking layers from the surface to the bulk are in the following way: in 

the direction from one atom to its nearest neighbors (vertical direction in Figure 5-15 (a)), 

the atom position shifts by half 4.54 A from one layer to the next, and in its perpendicular 

direction, atom shifts by an alternating distance of 5.953 and 5.241 A. The symmetry of the 

surface is very low. The only symmetry element is a mirror plane which is also indicated 

in Figure 5-15 (a), in contrast to a higher symmetry of a threefold axis and three mirror 

planes in Bi( l l l ) . Consequently there are some important differences between Bi(001) and 

Bi(l l l ) : in order to form Bi(l l l) no covalent next-neighbor bonds have to be broken while 

one bond per unit cell has to be broken to form Bi(001). 

The LEED pattern for the surface was found to be ( l x l ) [80, 67] but no quantitative 

LEED study has yet been performed. The energy-minimized geometric structure has been 

calculated for this surface by first-principles [100]. The first interlayer distance d& contracts 

by £\d\2/db
12 = —3.0%, and the second interlayer spacing G?23 expands by A<i23/^23 = +14%. 
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Figure 5-15: Truncated-bulk structure of Bi(OOl). The dark solid lines indicate covalent bonds 

between the atoms within the bilayers. (a) The top view of the first four atomic layers. The single 

mirror plane of the structure is shown as a dashed line, (b) The side view of the first four layers 

parallel to the mirror plane. Dashed lines on the first layer atoms indicate dangling bonds. 



Similar to Bi(llO), Bi(OOl) has another feature with respect to its symmetry. It would be 

possible to shift atoms of Bi(OOl) along the mirror line without breaking the translational 

symmetry parallel to the surface, retaining a ( l x l ) LEED pattern. Such displacements 

have been considered in the first-principles calculations but they have been found to be 

very small (below 0.1 A) [100]. 

5.4.2 Surface morphology observation by STM 

The surface atomic morphology is imaged with the commercial scanning tunneling mi

croscopy STM 150 Aarhus (SPECS (§)). The key STM components are schematically shown 

in Figure 5-16 [6]. The sample holder is held onto the sample stage by two clamps and they, 

as a whole, are electronically and thermally insulated from the STM cage by three quartz 

balls. The tip facing up to a sample is connected to the scanner tube and in turn to the 

approach motors. A Zener diode is used to adjust the experimental temperature by heating 

during cooling. A heavy metal block, containing the STM cage and supporting the sample 

holder, is hung by springs, which allows for an excellent vibration-isolation for the STM 

system. Peripherally, two ion sputtering guns are installed: one is for the sample cleaning 

and the other for the in-situ tip sputtering. For tunneling, the tip moves upward to the 

sample by automatically controlled piezo-electronic motors. The motion stops upon the 

detection of a tunneling current. The well documented details of this facility is referred to 

inRef. [104]. 

To clean the Bi(001) surface, cycles of argon ion sputtering and annealing are carried 

out to remove surface contaminants and smooth the surface. Argon ions are accelerated 

with a voltage of 500 V at an ambient gas pressure of about 5 x l 0 - 6 mbar for about 20 min 

and followed by about 45 min annealing at 120°C. All the STM images are taken at room 
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1 Sample 
2 Sample holder 
3 Clamps 
4 Tip 
5 Tip holder 
6 Scanner tube 
7 Approach motor rod 
8 Motor mount 

9 Approach motor 
10 Quartz balls 
11 Zener diode 

Figure 5-16: Schematics of the STM 150 Aarhus [6]. The sample is placed in a sample holder held 

down on the STM top by clamps. The top plate is thermally and electrically insulated from the 

STM body by three quartz balls. The tip is held by a macor holder glued to the top of the scanner 

tube. The scanner tube is glued to the rod which together with a segmented piezo tube forms a 

small motor used for coarse approach. The Zener diode is used to counterheat the STM body during 

cooling. 
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temperature and a UHV pressure of 1x10 mbar. All the measurements are calibrated 

with the known Au(788) surface step height and terrace width. 

An atomic picture in Figure 5-17 (a) shows the Bi(001) lattice structure. The image 

size is 50x50 A2. Tunneling current It = 0.260 nA and tunneling voltage Iy = 173.6 mV. 

The lighter spots indicate protruding atoms. The small parallelogram is plotted to show 

the primitive unit cell. It agrees with the quasi-hexagonal surface lattice on Bi(001). A line 

scan across 11 atoms (10 interatomic spacings) is indicated in the upper panel (a). The 

atomic corrugation along this line is shown in the lower panel (b). 

To get the surface morphology at a larger scale, larger areas are scanned. Figure 5-18 

(a) shows a typical surface region (1000x1000 A2, It = 0.190 nA, and Iv = 1250.0 mV). 

Big terraces are seen with the width ranging from 100 to 700 A which are longer than the 

electron coherence length. The steps edges are shown by the abrupt change in the contrast 

variation. A line scan across four steps and an interesting "hump" is shown in panel (a). The 

corresponding height along the line is plotted in the panel (b). We get a step height of about 

3.68 A which is close to the double layer height of 3.72 A in the Bi(001) bulk. Therefore, 

only double layer step height exists on the surface. This indicates that all the terraces are 

geometrically equivalent and are felt the same by the incident electrons. In other words, the 

surface is a single domain with incoherent terraces. This surface morphology is confirmed 

by the LEED results in the next section. Meanwhile, one question arises naturally: is it 

a short or long termination on the surface? It is not easy to observe because of the sharp 

step edge of double layers. But it is possible to see the first interlayer spacing by removing 

parts of the first layer near the step with some delicate experimental procedures. This work 

is under progress. 

One more interesting phenomenon spotted in the Figure 5-18 (a) is a "hump" nanostruc-
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ture near the mark "B". It is believed to be a twin crystal similar to the twin microlayers 

observed by Edelman et al. [85] at the Bi(l l l) surface. Figure 5-18 (b) gives the hump 

height of about 1.97 A. More studies can be done to find out how this structure forms and 

its surface effects. 

5.4.3 Surface structure determination by LEED 

The LEED experiment is performed on the LEED facility at the University of Aarhus. 

The LEED setup is shown in Figure 2-7. A base pressure of ~ 1 0 ~ n torr in the chamber 

is obtained. The sample is loaded from the top window of the chamber. The cleaning 

procedure is the same as that used in STM study. The cleanliness of the surface is monitored 

by AES. No surface contamination is detected. The sample is aligned to get a normal 

incidence by matching the kinematically calculated pattern with the experimental pattern. 

A series of LEED-iV spectra are recorded with a CCD camera for different temperatures 

of -160, -110, -78, -38, and 11 °C. The sample cooling is realized via a liquid nitrogen flow. 

The temperature can be controlled to ±3°C within 20 min. Figure 5-19 and 5-20 show the 

difference in some beam intensities at different temperatures. We can see for each beam, 

the temperature has a minor influence on the diffraction peaks but reduces the intensity as 

the temperature goes up. It is not surprising when considering the stronger electron wave 

damping due to the stronger atomic vibrations at a higher temperature. 

A quantitative analysis of the experimental spectra for the sample temperature of-160°C 

is performed with the standard package of ATLMLEED by Barbieri and Van Hove [41]. The 

package is able to handle multiple angles of incidence and/or multiple surface structures 

coexisting on the surface. We use this package for the possibility of multiple domains present 

on the surface. Our results show that the short termination structure generates a best-fit 
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Length / A 

Figure 5-17: An atomically resolved STM image of the Bi(001) surface, (a) Size: 50x50 A2. 

Tunneling current: It = 0.260 nA. Tunneling voltage: ly = 173.6 mV. The parallelogram indicates 

the primitive unit cell, (b) The atomic corrugation along the scanning line in (a). 
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Figure 5-18: Bi(001) surface morphology by STM. (a) Picture size: 1000x1000 A2. Tunneling 

current: It = 0.190 nA. Tunneling voltage: Iy = 1250.0 mV. The scanning line across steps is 

indicated. The corresponding step heights and the "hump" height are shown in (b). 
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Figure 5-19: Diffraction intensities vs the sample temperature. To be continued. 
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Figure 5-20: Continuation of Figure 5-19. 
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between experimental and calculated data. Other possible models have been tried but they 

gave a worse level of agreement. They include the long spacing termination and coexistence 

of two possible domains. So far, we have only optimized structural parameters and the 

optimum interlayer spacings are listed in Table 5.6. The first and third interlayers contract 

by -5.5% and -7.7%, respectively. The second and the fourth interlayers expand by +11.0% 

and +3.4%. The interlayer relaxations obtained by ab initio calculations are also given 

in this table; they show a good agreement with the LEED results. One more parameter 

optimized is the atomic displacement along the mirror plane. We get displacements of 

0.259, 0.172, 0.101 and -0.010 A for the atoms in the first four layers, respectively. The 

sensitivity of the R factor to these displacements and the optimization of non-structural 

parameters are to be studied. The comparison between experimental and calculated IVs is 

shown in Figure 5-21, and almost all of the peaks' positions match and it shows an overall 

good agreement. The Rp factor of 0.34 for the agreement between the experimental and 

calculated IV curves is still a bit high. It is understandable when considering the low 

symmetry of the Bi(001) system and the complexity of the structure itself. It, however, 

can be improved when other parameters are optimized. The calculated IV curves for the 

long termination structure are also shown in Figure 5-21 and the fit is much worse with a 

R factor is 0.61. So the long termination surface can be ruled out. 

5.4.4 Summary and outlook 

To summarize, the STM observation shows wide terraces separated with double layers steps 

resulting in a single domain on the Bi(001) terrace. LEED simulations confirm the existence 

of a single domain with the short termination. Interlayer spacings obtained by LEED agree 

well with those by the ab initio calculations. In STM, we try peeling off the first layer in 
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Figure 5-21: Comparison between experimental (solid) and two sets of calculated IV curves 

for Bi(001) at -160°C: short termination (dotted) and long termination (dash-dotted) structures. 

Vertical shifts of the calculated data are just for a better visual comparison. 
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Table 5.6: Optimized parameter values for the surface structure of Bi(OOl) from LEED and ab 

initio calculations. Interlayer spacings between the zth and jth layer are indicated as dij. eft is the 

corresponding interlayer spacing of the truncated bulk at -160°C and Adij = d^ — c^ Vo is the 

real part of the inner potential. 

Parameters 

dia (A) 

d23 (A) 

d34 (A) 

di5 (A) 

Vo (eV) 

RP 

Experimental results by LEED 

Starting values 

1.744 

1.981 

1.744 

1.981 

4.0 

-

Optimized values 

1.648 

2.199 

1.609 

2.054 

1.8 

0.34 

A<V4 (%) 

-5.5 

+11.0 

-7.7 

+3.4 

-

-

ab initio calculations 

Ady/4 (%) 

-3.0 

+14.0 

-

-

-

-

order to measure the first interlayer distance directly. Optimization of a complete set of 

parameters in LEED is in progress. 
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CHAPTER 6 

P d C u surface alloy on Cu(OOl) 

6.1 Introduction 

6.1.1 Surface alloys 

A phenomenon that has been fully recognized recently and spurred much interest is the 

surface alloy formation - an intermixing of bulk surface atoms with foreign adatoms in 

the outermost layer or in a few outermost layers resulting in a stable ultra-thin alloy films 

on a substrate [105, 106, 107]. Surface alloys even form between elements which are im

miscible in the bulk such as Na and K deposited on Al(l l l ) and (001), Au on Ni(110), 

Ag on P t ( l l l ) , and Sb on Ag(ll l) [108, 109, 110, 111, 112]. Apart from the composi

tional change, the ultrathin metal-on-metal films could adopt unusual alloy structures with 

no bulk analogue. They tend to have different physical and chemical properties from its 

constituent elements. The available experimental data about the structure of bimetallic 

surface alloys was reviewed by Bardi [106]. Different topics on recent surface studies were 

compiled in a book volume [107]. Quite complex alloying, ordering and segregation behav

iors may be observed as a function of surface stoichiometry. Pratically, the most relevant 

technical applications of surface alloys are heterogeneous catalysis, where a large number 

of catalysis are multimetallic and synergistic effects due to the atomic-level interaction of 

multiple active metal species at the surface are believed to be significant [105]. Bimetal-
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lie surface chemistry plays a crucial role in other technologically important areas such as 

magneto-optical films, microelectronics fabrication, electrochemistry, corrosion passivation, 

and structural materials. Well-defined bimetallic surfaces have offered for the first time an 

ability to correlate surface chemical reactivity with atomic-scale surface structure. Such 

structure/function relationships must ultimately form the basis for any predictive ability 

in tailor-making bimetallic surfaces with desirable reactive properties. Understanding the 

electronic, magnetic, and catalytic properties of these "surface alloys" remains a major 

challenge in surface physics. One reason for this is that many surface alloy phases are 

metastable, with the equilibrium phase being a dilute random bulk alloy. Metastability 

can make it difficult to create reproducible, homogeneous alloy films. Additionally, many 

surface alloys are structurally inhomogeneous at the nanometer scale. In order to under

stand quantitatively how film properties are related to structure and ultimately to atomic 

bonding, structural and compositional heterogeneity must be characterized. Despite much 

development of techniques sensitive to the composition and structure of the topmost few 

atomic layers has contributed to the rapid increase in knowledge about the properties of 

multi-metallic surfaces, it is highly demanded for a technique to fulfill the heterogeneity 

measurement with high temporal and spatial resolution. 

Here we describe in detail a novel quantitative analysis of electron diffraction that allows 

us to determine the local 3D composition and structure of an alloy surface with nanometer-

scale spatial resolution. In traditional low-energy electron diffraction (LEED) experiments, 

diffraction patterns are acquired from a large illuminated area. Quantitative analysis of the 

diffracted intensity versus electron energy (LEED-iV) can be used to determine the average 

composition and structure. We perform quantitative LEED-/V analysis on a LEEM image 

which allows us to quantitatively determine the alloy film composition and structure with 
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8.5 nm lateral spatial resolution. Specifically, we use LEED-/V to analyze specularly-

reflected electrons that are incident normal to the surface. From the energy-dependence of 

their reflectivity we determine local alloy composition and structure. 

6.1.2 P d C u surface alloy on Cu(OOl) 

We have applied our technique to the well-known Pd/Cu(001) surface alloy system, one 

of the most studied metal-on-metal growth systems. In the last two decades, the PdCu 

surface alloy on a Cu(OOl) substrate has been extensively studied due to its scientific and 

practical significance. This system possesses novel properties including material selectiv

ity [113], catalytic effect [114], eletromigration damage resistance [115, 116], and structural 

stability [117]. The PdCu surface alloy undergoes temperature-dependent phase transitions. 

When sub-monolayer coverages of Pd are deposited onto a Cu(OOl) surface held at tem

peratures below 173 K, the Pd atoms remain on the surface with a l x l periodicity [117]. 

However, if the temperature is raised to room temperature, the Pd atoms exchange with Cu 

atoms in the first layer, forming a c(2 x 2) checker-board layer. This overlayer alloy phase 

has been widely studied both experimentally [118, 119, 120, 121, 122, 123, 124, 125, 126, 127] 

and theoretically [128, 129, 123, 125, 130, 131, 132, 133, 134]. Other examples which also 

exhibit the c(2x2) top layer alloy are Au on Cu(100) [135, 136, 137, 138, 139], Cu on 

W(100) [140], Mn on Cu(100) [141, 142], Mn on Ni(100) [143, 142], Mn on Pd(100) [144], 

Na on Al(100) [145], Ag on W(100) [146], Au on W(100) [146], Cu on Mo(100) [147], Ag on 

Mo(100) [147], and Zr on Pt(100) [148]. In a very early study, Smith et al. [118] observed 

c(2 x 2) low energy electron diffraction (LEED) patterns during adsorption of Pd onto a 

Cu(001) substrate. Subsequently, Graham [119] suggested the formation of a surface alloy in 

qualitative LEED and angle-resolved ultraviolet photoelectron spectroscopy (ARPES) stud-
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ies. This speculation was later confirmed by Franco Jona's group [120, 149]. By performing 

quantitative LEED analysis, they experimentally resolved a well-ordered c(2 x 2) toplayer 

surface alloy structure at room temperature and ruled out a c(2 x 2) overlayer of only Pd 

atoms. The c(2 x 2) overlayer sttucture was observed by Murray et al. with STM [150, 124]. 

The vibrational mode of the c(2 x 2) surface alloy was studied by Hannon [125] by using 

electron-energy loss spectroscopy (EELS). Their results support a favorable NN bonding 

model between Pd and Cu atoms. Theoretically, first-principles electronic structure cal

culations by Kudrnovsky et al. [128] successfully predicted the formation of this overlayer 

alloy. Molecular dynamics simulations by Black et al. [129] also supported this model. 

Studies with embedded atom method (EAM) [123, 130] and Bozzolo-Ferrante-Smith (BFS) 

method[131] further justified the overlayer alloying structure. Among the considerable in

vestigations on this system, much work have been devoted to determining if an amount of 

Pd is incorporated in the underlayer. Interestingly, EAM simulations by Pope et al. [123] 

suggested a more favorable overlayer alloy than the underlay alloy and ab initio calculations 

by AlShamaileh et al. [151] showed no preference for an underlayer versus overlayer alloy. 

But from a thermodynamical point of view, a Cu-rich overlayer is favorable due to the its 

lower surface energy (1.85 Jm~2) than Pd (2.05 Jm~2) [152], and the underlayer coordina

tion provides more favorable PdCu NN bonds. This gives rise to the question whether the 

overlayer alloy is thermally metastable. 

As observed in many annealing property experiments, an intriguing transition takes 

place from overlayer alloy to underlayer alloy. This phase change was first observed by 

Graham et al. [153] through low energy ion scattering spectroscopy (LEISS) which implies 

a nearly pure Cu outermost layer upon annealing at 440 K. In a subsequent study using 

positron-annihilation-induced Auger spectroscopy (PAES), Koymen et al. [117] found a fast 
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transition within a couple of minutes at 423 K. Later work by Anderson et al. [154] reported 

this phenomenon at a sample temperature of 353 K by using Auger electron spectroscopy 

(AES), Rutherford backscattering (RBS) spectroscopy, LEED, work function measurements 

and the desorption of probe molecules (CO), where a complete transition took about 1 hr 

due to the lower temperature applied. With an annealing temperature of 550 K, Barnes et 

al. [2] observed an irreversible phase transition from surface layer alloy to the second layer 

alloy. They also examined the geometry of the annealed structure by using quantitative 

LEED analyses and derived the activation energy of 1.13 eV for Pd site switching from 

the outermost layer to subsurface (second layer). This value is bigger than the activation 

energy of 0.88 eV [122] for Pd alloying into the top layer at Cu(001) surface, but it is smaller 

than the bulk alloy interdiffusion energy of 2.1 eV [155]. One implication of this overlayer-

underlay transition is that configurations with more nearest-neighbor (NN) Pd-Cu bonds 

are preferable. The stability of the sub-surface alloy compared to the first layer alloy was 

supported by calculation of vibrational properties of this alloy [156, 133], first-principles 

calculations [128], and empirical modeling [125]. 

The sequence of temperature-dependent surface phases described above is shown schemat

ically in Figure 6-1. 

6.1.3 Formation of surface alloy 

Surface diffusion is an important process in film and crystal growth, chemical reaction, 

heterogeneous catalysis and semiconductor industry [157]. The process involves the motion 

of adatoms, clusters, vacancies and other microscopic surface structures. To obtain the 

knowledge of diffusion kinetics and mechanism is the main objective in surface alloy forma

tion study. Diffusion rate is dictated by many factors such as diffusion potential barrier, 
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Figure 6-1: The top view (left column) and side view (right column) of CuPd surface structures 

on Cu(001) at different temperatures, (a) p(l x 1) Pd overlayer below 173 K, (b) c(2 x 2) overlayer 

at room temperature, and (c) c(2 x 2) underlayer above about 423 K. 
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adatom mobility, and chemical potential gradient. These factors are in turn governed by 

the adatom-surface bonding strength, the substrate lattice, the morphology of the surface, 

and the thermal status. 

Atomic diffusion at surfaces is a microscopic and complicated process. Some diffusion is 

treated as random walk due to the absence of dynamical theory discovered as the determin

istic driving-force. High temporally and spatially resolved analytical technique is needed to 

elucidate the surface diffusion processes. The most used ones are FIM (field ion microscopy) 

and STM (scanning tunneling microscopy). By observing the displacement of surface struc

tures, it is possible to obtain useful information regarding the manner in which the relevant 

species diffuse - both mechanistic and rate-related information. Diffusion processes can be 

simulated with kinetic Monte Carlo methods. Diffusion increases entropy, decreases Gibbs 

free energy, and therefore is thermodynamically favorable. So the diffusion can be studied 

with thermodynamic approaches. Most observed and studied adatom diffusion mechanisms 

include surface jumping (or hopping), atomic exchange (Fig. 6-2 (a)), and vacancy diffusion 

(Fig. 6-2 (b)) [158]. Recently, experimental and theoretical work has found a variety of new 

diffusion schemes which consist of long jumps, rebound jumps, cross-channel diffusion, and 

long-range atomic exchange; the readers are referred to a review by Antczak [159]. 

When it comes to the multilayer surface alloying, the atomic diffusion in the solid be

comes more and more prominent in the deep layers. The main mechanisms for diffusion in 

bulk are cataloged as follows [160, 161]. (1) Interstitial diffusion. It is the case when one 

atom migrates to one interstitial cite by pushing apart its two NN atoms. This diffusion 

mostly happens to small size atoms which do not cause a too strong distortion of the host 

atoms they push. For our model system composed of Pd and Cu atoms, this probability 

of this diffusion mechanism is slim because the difference in their atom sizes is not so big 
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(a) w j exchange 

(b) €^ - * i vacancy 

(c) vacancy 

Figure 6-2: Some possible mechanisms for Pd atom diffusion, (a) top layer alloying via exchange, 

(b) top layer alloying via vacancy, and (c) 2nd layer alloy via vacancy. Red ball stands for the 

adatom, blue ball for bulk atom, and hollow circle for the vacancy site. 

(atomic radius 1.28 A for Cu and 1.37 A for Pd). (2) Substitutional diffusion. This is 

the situation when two NN atoms directly interchange their cites. If this is imagined to 

happen by rotation of the two atoms, considerable distortions of neighboring atoms must be 

involved. A 'ring rotation' could contribute to this mechanism. Due to much distortions of 

many atoms, it is believed that the probability of this mechanism is also low. (3) Vacancy 

mechanism. This process is shown in Fig. 6-2 (c). In a perfect crystal, the introduction 

of a single vacancy increases entropy by increasing the number of configurations. At this 
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point the formation of a vacancy is favorable. Nevertheless, vacancies are defects and the 

associated defect energy (enthalpy of formation) opposes their formation. A compromise 

is reached whereby there is an equilibrium concentration of vacancies. The existence of 

vacancies will enhance the atomic diffusion in the bulk. An atom is readily jumping into its 

neighboring vacancy site, and thus the diffusion is contingent upon the number of point va

cancies. Since the prevalence of point vacancies increases in accordance with the Arrhenius 

equation, the rate of crystal solid state diffusion increases with temperature. (4) Intersti-

tialcy mechanism. This diffusion occurs when an atom pushes one of its NN atoms into an 

interstitial position and occupies the lattice site preciously occupied by the displaced atom. 

If a series of atoms are pushed and took place fast, an equivalent 'long jump' occurs. 

In order to better understand the formation and stability of the temperature-dependent 

PdCu surface alloy structures, the energetics of PdCu overlayer and underlayer alloying have 

been studied by extensive electronic calculations and atomistic simulations and by some ex

perimental measurements. Up to room temperature, Pd atoms directly migrate into the 

first layer forming a well-ordered c(2x2) structure and up to about 423 K Pd in the first 

layer is activated to jump into the 2nd layer. In these thermally-induced diffusion processes, 

adatom-mediated diffusion and vacancy-mediated diffusion are two main possible mecha

nisms. The former one means direct exchange of Pd adatom with Cu atom. This mech

anism has been proved in some self-diffusion and inter diffusion systems; examples are W 

on Ir(llO) [162], self-diffusion on Pt(OOl) [163], and a Co/Cu monolayer on Ru(0001) [164]. 

The vacancy-mediated mechanism involves vacancy formation and adatom/vacancy diffu

sion. It has been experimentally confirmed in some metal or metal-alloy systems such as 

Mn on Cu(100) [165, 166], self-diffusion on Cu(OOl) [167, 168], In on Cu(OOl) [169], Pd on 

Cu(OOl) [170, 1], and Pd on Cu( l l l ) [171]. 
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Grant et al. [170] studied the diffusion of Pd in the Pd/Cu(001) top layer alloy via atom-

tracking STM. It was found that the motion of individual Pd atom landing on the surface 

diffuses by a vacancy-exchange mechanism. Their ah initio calculations and Monte Carlo 

simulations confirmed this process. The kinetics and mechanism of an irreversible thermally-

induced overlayer-to-underlayer transition in the PdCu c(2x2) structure was investigated 

by LEED [2]. The activation energy for Pd site switching from the outermost layer to 

sub-surface (second layer) sites has been estimated to be 1.13±0.12 eV. In the sudy of the 

kinetics of the surface alloys formation, the following questions arise: why Pd atoms migrate 

from the 1st layer to the 2nd layer irreversibly? Why Pd in the 2nd layer is well-ordered 

and does not migrate into the 3rd layer? These questions can be answered by evaluate the 

atomic energetics in the system. Pope et al. [122] roughly estimated the diffusion energies 

based on the NN interactions model for clean metals. Eremeev et al. [1] employed the 

embedded-atom method (EAM) to calculate the elementary diffusive steps energies with 

a preferable vacancy-mediated diffusion mechanism. Specifically, the diffusion activation 

energy Q is calculated as the sum of vacancy formation energy Ef and adatom migration 

energy Em. Table. 6.1 lists their results together with those from Refs. [170] and [2]. 

Corresponding to the three columns are the following three cases: (1) diffusion of a single 

Pd atom to be incorporated into the first layer of the Cu(001) surface, (2) diffusion of Pd 

atom in the top layer Cu(001)-c(2x2)-Pd completely ordered alloy system, and (3) diffusion 

of the Cu(001)-c(2x2)-Pd ordered alloy in the second layer and available diffusion paths 

for the migration of Pd atoms. E\ represents the copper-site vacancy formation energy in 

the ith-layer. E]l denotes the migration energy of an Pd atom in the ith-layer to a vacancy 

site in the jth-layer. Q13 is the activation energy for one Pd-vacancy exchange given as the 
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following: 

QV=E) + Et (6.1) 

In case (1), the vacancy formation energy in the 2nd layer, E2A— 1.24 eV), is much larger 

than the 1st layer vacancy formation energy Ej(= 0.49 eV). As a result, the activation 

energy Q12(= 1.51 eV) is significantly larger than that in the surface layer - Qn(= 1.51 

eV). This fact accounts for the preference of the surface planar diffusion to form a top layer 

alloy. In case (2), both Qu and Q12 are smaller that those for case (1). This indicates that 

the diffusion barriers for both in-plane and inter-plane diffusion decrease with increasing Pd 

coverage. The decrease in Q12 confirms the experimental results that diffusion of Pd into 

the 2nd layer begins at coverage close to 0.5 ML and not at a low coveraes [117, 150, 125]. 

In case (3), the activation energies from the 2nd layer to the 1st and 3rd layer are both high: 

Q21 = 1.60 eV and Q23 = 1.79 eV. It is suggestive of a stable 2nd layer alloy structure. 

Notably the vacancy formation energy in the 3rd layer is as large as 1.19 eV, close to that 

in the case of a clean Cu(001) surface (1.26 eV) [1] and measured value for the bulk Cu 

(1.27±0.05 eV) [172]. This 2nd layer alloy stability will be confirmed by our Monte Carlo 

simulations in this chapter. As we are going to show, the heterogeneous Pd/Cu intermixing 

happens in the first 3 top layers; by highly temporally- and laterally-resolved LEEM-/V 

technique, this multilayer alloying is found due to a step-mediated mechanism (step over

growth mechanism). 

6.1.4 LEEM-iV study on the PdCu surface alloy 

Here, we focus on the underlayer alloy and investigate its structural and compositional 

development during deposition. When Pd incorporates into the surface, the ejected Cu 

atoms either migrate to steps or coalesce to form new islands. Even when the incident Pd 
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Table 6.1: Elementary diffusion steps energies for PdCu alloying on the Cu(OOl) substrate. The 

copper-site vacancy formation energy E\, palladium atom migration and diffusion activation energies 

E% and Qli, respectively, are given in eV for Cu(OOl), surface and sub-surface Cu(001)-c(2x2)-Pd 

alloys. After Eremeev et al. [1] 

Singh 

4 

^ 

Q11 

&, 

E12 

Q12 

3 P d 

0.49 

0.474° 

0.45 

0.466a 

0.94 

0.94a 

0.88±0.03b 

1.24 

0.27 

1.51 

1st layer alloy 

z) 

Em 

Qn 

E2f 
17.12 
Em 
Qu 

0.30 

0.12 

0.42 

1.14 

0.07 

1.21 

1.13±0.12c 

2st layer alloy 

E) 

E2
m

l 

Q21 

z2f 
E22 

m 
Q22 

E) 

E2J 
Q23 

0.40 

1.20 

1.60 

0.88 

0.80 

1.68 

1.19 

0.60 

1.79 

Superscript i denotes the copper-site vacancy formation in layer % and 
ij indicates migration of a Pd atom from layer i to the j-layer vacancy. 
a Ref. [170], ab initio calculation. 
6 Ref. [170], exp. 
c Ref. [2], exp. 
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flux is low (2.5 ML/hr), significant island nucleation can occur, leading to a highly non

uniform surface. In order to limit island nucleation, we deposited Pd at 473 K and at a 

very low rate (about 1 ML/hr). Under these deposition conditions, we observed significantly 

reduced island nucleation. Submonolayer Pd is deposited on Cu(OOl) with a deposition rate 

of about 1 ML/hr at 473 K. Specular IV (intensity vs. voltage) curves are extracted from 

LEEM images and analyzed with a dynamical LEED theory (LEED-IV). The average t-

matrix (ATA) method [173, 174] is used for the random alloy lattice t-matrix calculation. 

Temporal evolution of the composition on both the uniform terrace and the heterogeneous 

near-step areas is investigated with a resolution of ~ 8.5 nm. Studies on the uniform terrace 

(i.e. far from steps) show a second layer c(2 x 2) intermixing alloy capped by a nearly pure 

Cu top layer. The Pd concentration far from steps grows more slowly than linear, despite a 

constant Pd flux of about 0.9 ML/hr. Line scan studies across a step show a step-induced 

heterogeneous structure. Monte Carlo simulations are carried out to determine the laterally 

equilibrated structure in the first two layers. Results from careful tests on clean Cu(001) 

surfaces and Cu(001)-c(2 x 2)-Pd underlayer alloys are compared with previous reports and 

excellent agreement is obtained [175]. LEEM image intensity analysis proves to be effective 

for this model system, and generally applicable to surface alloy systems. 

The chapter is structured as follows. Experimental and computational methods are 

presented in Sec. 6.2. Tests of the LEEM-/V method on simple Cu(001) and Cu(001)-

c(2 x 2)-Pd surfaces are demonstrated in Sec. 6.3. The applications of this technique in time-

resolved alloy profile measurements and in heterogeneous thin film growth are described in 

Sec. 6.4. Then, we present the Monte Carlo simulation results in Sec. 6.5 and a detailed 

analysis of the errors in the concentration profile measurements in Sec. 6.6. Finally, Sec. 

6.7 concludes this paper with a summary. 
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6.2 Methods 

6.2.1 E x p e r i m e n t 

In our experiments we use LEEM technique to image the growth of the CuPd surface alloy 

in situ during Pd deposition onto Cu(OOl) using a commercial Knudsen cell. In LEEM, 

an image is formed from low-energy electrons (10~100 eV) reflected from the surface. In 

the imaging conditions we employed, both the incident and reflected beams are normal to 

the surface, as in conventional LEED. We place an aperture in the optical path so that 

only electrons in the specular beam (the (00) LEED beam) contribute to the image. Thus 

the LEEM image intensity measures the spatial variation of the (00) beam at a particular 

energy. By recording images at different beam energies, the dependence of the intensity on 

the beam energy (the LEED-/F curve) can be recorded for any point on the surface. In 

this way we measure the time evolution of the Pd concentration of the film with a spatial 

resolution of 8.5 nm and a time resolution of about 3 min. When the aperture is removed, we 

can record IV curves for different beams by imaging the diffraction plane, as in conventional 

LEED. 

It is well known that reduced surface mass transport can give rise to island nucleation 

that makes the surface alloy phase inhomogeneous and rough [127, 124]. In order to reduce 

island nucleation, and produce a structure closer to equilibrium, we deposit Pd at a very 

slow rate (2.5 ML/hr) with the Cu(001) substrate held at 473 K. A LEEM image recorded 

using 13.1 eV electrons after the deposition of about 0.6 ML Pd is shown in Figure 6-3. Its 

most striking feature is the spatial variation of the contrast. The steps and island edges 

appear brighter than regions on the terrace. Small islands are uniformly bright. This image 

shows that the alloy film is inhomogeneous even when the flux is low and the deposition 
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Figure 6-3: 13.1 eV LEEM image after deposition of « 0.6 ML Pd on Cu(001) at 473 K. The 

image shows dendritic islands (one indicated by an arrow) and significant contrast variation near 

steps. Scale bar, 1 /jm. 

is carried out at elevated temperature. The inhomogeneity is clearly associated with the 

presence of atomic steps. A recent LEED analysis of a similarly-grown film suggests that 

the Pd is located primarily in the second layer, in a c(2x2) structure, while the surface 

consists almost entirely of Cu [2]. 

If the deposition is carried out with an even lower flux, island nucleation is further 

suppressed. A sequence of LEEM images recorded during a deposition with a flux of 1.0 

ML/hr is shown in Figure 6-4. The images in column (a) are recorded using 13.5 eV 

electrons, and those in column (b) with 20.1 eV electrons. As more Pd is deposited, ejected 

Cu atoms diffuse to the steps, causing them to move. Far from the steps, the image 

intensity is uniform. However, at the upper side of the step the image intensity is spatially 

inhomogeneous. 
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The areas of interest are schematically shown in the Figure 6-5. They include (1) a local 

homogeneous area of clean Cu(OOl), (2) temporal evolution of concentration at homoge

neous terrace during deposition, (3) line scan across a step, and (4) an inhomogeneous area 

containing a step. All studies on these areas are to be individually presented later in this 

chapter. 

6.2.2 Quantitat ive analysis of LEEM intensity data 

In LEED-/V analysis, IV curves are calculated for a trial structure and compared with 

experiment. The parameters of the trial structure, in this case the structure and alloy 

composition in the first three surface layers, are varied to give the best agreement with 

the measured IV curve. We use dynamical LEED-JV analysis to determine near-surface 

structure and composition from electron reflectivity data acquired using LEEM. To calculate 

the IV curves we used computer codes from Adams [38, 39, 37] which were developed from 

the programs of Pendry [17], Van Hove and Tong [18]. The codes simultaneously optimize 

both structural and non-structural parameters, and have been tested extensively for Al(llO), 

Al(100)-c(2x2)-Li, Al(lll)-(2x2)-Na [37], and Bi(l l l) [81]. Up to 13 phase shifts [41] 

(L = 12) are used for the atomic t-matrix calculation. The average t-matrix approximation 

method is used for the random alloy lattice. For this CuPd binary alloy, an effective i-matrix 

t is calculated as t = xtpj + (1 — x)tcu, where x is the Pd concentration and, tpd and tcu 

are individual ^-matrices for pure Pd and Cu systems. A x2-based R2 factor is employed to 

measure the agreement level between the experimental and theoretical data [37]. Here we 

show that this approach gives accurate results for both the clean Cu(OOl) surface as well as 

for the Pd/Cu(001) structures analyzed previously with conventional LEED-iV. 

As mentioned in Section 3.4, some key differences between LEEM and conventional 
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Figure 6-4: Sequence of LEEM images recorded during the deposition of Pd on Cu(OOl) at 473 

K. The electron beam energy is 13.5 eV for the images in column (a) and 20.5 eV for the images in 

column (b). The images are labeled by the elapsed deposition time and the total Pd coverage. The 

marked line in column (a) is used for the near-step heterogeneous structure study. The rectangular 

area in column (b) is used for the uniform structure study on the terrace. Scale bar, 500 nm. 
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• (1) Clean Cu(001) 

• (2) Temporal resolution: terrace of 
the alloy 

• (3) Spatial resolution: line scan 
across a step 

• (4) 3D resolution: circular area 
containing a step 

Figure 6-5: Schematic drawing of four areas of interest studied: (1) a local small area of clean 

Cu(OOl), (2) temporal evolution of concentration at terrace during deposition, (3) line scan across 

a step, and (4) an area containing a step. 

LEED-/F are of particular concern in our analysis: (1) the relatively low electron kinetic 

energy in LEEM compared to LEED, and (2) the limited electron kinetic energy range in 

our LEEM experiments. Besides, the inelastic background should be properly treated. 

In the LEEM-IV analysis, the inelastic damping potential (i.e. the imaginary part of 

the inner potential V,m) is taken to be energy-dependent. Among various proposed mod

els, Vim(E) = Vdamp E1^ is found to give the best agreement between the measured and 

calculated IV curves for clean Cu(OOl). Demuth et al. [176] used this exponential form 

for low-index surfaces of Ni for energies in the range 10 to 220 eV. In addition, Noonan 

and Davis [177, 178] used this form for both Cu(110) and Cu(001). We optimized the con

stant pre-factor V^amp a s a n independent non-structural parameter in our calculations; see 

Table 6.2. 

For the real part of the inner potential VQ(E) we used the form shown in Equation 3.1. 

This correction to the real part of the inner potential resolved a controversial claim of an 

Monatomic step 
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in-plane contraction reported in a recent LEED-/V study on Cu(OOl) [179]. We include an 

overall additive constant (AVb) to Equation 3.1 as an independent non-structural parameter 

in our optimization; see Table 6.2. These energy-dependent inner potential models are the 

most suitable approximation we can use for our system and they proved to describe the 

surface alloy very well. 

LEEM images contain a contribution from inelastically scattered and secondary elec

trons. This contribution can be measured directly by integrating the background intensity 

near the (00) diffraction spot in diffraction mode. The inelastically scattered electrons are 

dispersed out of the optical path by the LEEM prism, so their contribution to the image 

intensity decreases rapidly with increasing beam energy. We find that the background in 

our images is approximately proportional to exp(—E/SO), where E is the electron kinetic 

energy in eV. 

6.3 Test of the LEEM-IV technique 

6.3.1 LEED analysis of clean Cu(OOl) 

We tested our treatment of low-energy electrons by analyzing LEEM data recorded in 

"diffraction mode". In this mode we record spatially-averaged diffraction patterns, just as 

in conventional LEED. A typical diffraction image from clean Cu(001) terrace indicated in 

Figure 6-5 (1) is shown in Figure 6-6. The IV curves of three symmetry in-equivalent beams 

(00), (10), and (11) from clean Cu(001) measured in this way are shown in Figure 6-7. The 

Debye temperature of the bulk is fixed at 315 K, while the vibrational amplitudes for the 

first two layers are optimized. 

A direct comparison of the computed and measured IV curves is given in Figure 6-7. 
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Figure 6-6: Diffraction pattern for clean Cu(001) at 46.2 eV measured in the LEEM. The diffuse 

intensity in the left of the image is due to secondary electrons, which are not filtered out of the 

image. 
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Figure 6-7: Measured (solid) and best-fit calculated (dotted) IV curves for clean Cu(001) at 473 

K. The same scaling factor is used for all three beams. 
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The agreement is excellent. The inclusion of an energy-dependent VQ greatly improves the 

agreement in the peak positions. The energy-dependent Vim is essential in reproducing the 

relative peak intensities, especially at low energies. The best-fit structural parameters for 

clean Cu(OOl) are summarized in Table 6.2. The error bars in the clean surface analysis are 

based on an increase of 4% in the R2 factor [37]. We find a contraction of 1.6% in the first 

interlayer spacing and an expansion of 1.0% in the second in contrast to the bulk interlayer 

spacing of 1.811 A. The Debye temperatures for the first two top layers are found to be 

lower than the bulk, characteristic of larger atomic vibrational amplitudes at the surface. 

The results agree very well with previous investigations by LEED-/F [178], spin-polarized 

LEED[180] and medium-energy ion scattering [181]. 

6.3.2 LEEM Analysis of clean Cu(OOl) 

Next we compare the TV-spectra of the (00) beam extracted in both LEED and LEEM 

modes, and perform a structural analysis solely based on the latter. The measured LEEM 

image intensity (solid curve) from clean Cu(001) at 313 K, as a function of electron kinetic 

energy, is shown in Figure 6-8 together with the IV curve measured in diffraction mode 

(dash-dotted curve). The inelastic background, described above, has been subtracted from 

the solid curve. The agreement is very good, demonstrating the equivalence of measuring 

the (00) peak intensity in either LEEM or LEED mode. 

We have performed a structural analysis using only data from the (00) beam up to 

250 eV. We find good agreement between the computed (dashed curve) and measured IV 

curves. Specifically, we find d^ = —1.6 ± 0.9%, ^23 = +1.5 ± 2.0%, with an R2 factor 

of 0.051. These results agree well with previous investigations summarized in Table 6.2. 

It shows that the (00) IV curve contains enough information, even over a limited energy 

121 



Parameters 

rfl2 (A) 

d23 (A) 

ui (A) 

U2 (A) 

' d a m p 

AVb (eV) 

c 

i? factor 

starting 

values 

1.811 

1.811 

0.182 

0.182 

0.80 

0.00 

198.7 

0.647 

optimized 

values 

1.78 ±0.016 

1.83 ± 0.033 

0.27 ±0.020 

0.19 ±0.017 

0.92 ± 0.07 

1.02 ±0.31 

121.3 ±22.2 

0.038 

Ad/dh (%) 

This work Ref. [178] Ref. [180] Ref. [181] 

-1 .6 ±0 .9 -1.0 ±0 .4 -1 .2 -2 .4 

±1.0 ±1 .8 ±1.7 ±0 .6 ±0.9 ±0.9 

-

-

-

-

-

-

eD (K) 

-

-

213±\l 

300tH 

-

-

-

-

Table 6.2: Optimum parameter values for Cu(001) at 473 K. Interlayer spacings between the ith 

and j th layers are denoted as dij. Root-mean-square vibrational amplitudes for atoms in the ith 

layer are denoted as u». Vdamp is the pre-factor of the imaginary part of the inner potential. AVo 

is the overall shift of the real part of the inner potential to Equation 3.1. c is the global scaling 

constant from beam to beam. db is the corresponding interlayer spacing of the truncated bulk at 

473 K. QJD is the Debye temperature calculated from Wj. 

Beam(OO) Exp. by LEEM 
-- Exp. byLEED 
••• Cal. to exp. by LEEM 

,**f*im< 

100 150 
Energy (eV) 

200 250 

Figure 6-8: Comparison between the (00) beam intensity measured in LEEM (solid), LEED (dash-

dotted) and the best-fit (dotted) to the LEEM curve. 

122 



range, to perform an accurate structural analysis. 

6.3.3 LEEM Analysis of Cu(001)-c(2 x 2)-Pd 

The analysis of clean Cu(OOl) shows that data from the (00) beam is sufficient to deter

mine the surface structural parameters, i.e. the interlayer spacings. We tested our ability 

to determine layer-resolved Pd concentrations by analyzing a known alloy structure: the 

Pd/Cu(100) alloy phase prepared by depositing 0.6 ML of Pd on Cu(001) at 473 K. Again, 

in our analysis we include only data from the (00) beam over an energy range 10^100 eV. 

To reduce noise, we average the image intensity over the boxed region indicated in Fig

ure 6-4. It is clear from the images that the intensity (and structure) is homogeneous far 

from the step. This same procedure cannot be used near the step, where the intensity is 

spatially inhomogeneous. The basic structure of this phase is determined using conventional 

LEED-iV by Barnes et al. [2] who deposited Pd at room temperature until the (1/2, 1/2) 

beam intensity reached a maximum, followed by annealing at 550 K. According to the early 

work by Pope et al. [121] the maximum (1/2, 1/2) beam intensity occurs at a Pd coverage 

of 0.55 ± 0.10 ML. Barnes showed that upon annealing, almost all of the Pd migrates to the 

2nd layer in a c(2 x 2) alloy structure. 

Our LEEM intensity data for this phase is shown as the 0.60 ML curve (solid) in Fig

ure 6-9(a). In our analysis, each of the three topmost layers is divided into two c(2 x 2) 

checkerboard sublattices. The ATA method is used to calculate random alloy ^-matrices for 

each sublattice. Independently optimized compositional parameters are 6\\ and #12, #21 a n d 

#22) #31 and #32, representing the Cu concentration (in ML) in each of the two sublattices of 

the 1st, the 2nd, and the 3rd layer, respectively. Note that we make no assumption about 

the total amount of Pd in the film. All of these parameters are allowed to vary within an 
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interval of 0 to 1 ML at a step of 0.001 ML during optimization. The Pd concentration in 

the ith layer, Q, is given by: q = 1 — (On + 612)/%, (i — 1, 2, 3). A value of 0.86 for Vdamp is 

used for this structure. Debye temperatures for all layers are fixed at the bulk value, i.e. 315 

K for Cu and 275 K for Pd. We did not optimize the Debye temperature but simply tested 

different values and found no significant structural changes. The best-fit values of the main 

parameters are shown in Table 6.3, which are in excellent agreement with those found by 

Barnes et al. [2] Specifically, we find that the Pd resides entirely in one sublattice in the 2nd 

layer. This is in agreement with the checkerboard model. The bulk interlayer spacings used 

in this work and Ref. [2] are 1.811 and 1.805 A, respectively. z% and 2:4 are the ripplings of 

the sublattices in the 2nd layer and the 4th layer, respectively. The value of rippling in the 

2nd layer indicates a small upward shift of the Cu sublattice normal to the surface due to 

size difference between Cu and Pd atoms. In our work, 2:4 is not optimized while in Ref. [2] 

a significant rippling of 0.2 A in 2:4 was reported. However, ab initio modeling [151] does 

not support substantial rippling in the 4th layer. A comparison between the measured and 

computed IV spectra is shown in Figure 6-9(a). 

In conclusion, excellent agreement between experimental and calculated (00) beam IV 

curves has been obtained for both clean Cu(001) as well as for a known Pd/Cu(001) un-

derlayer alloy structure. The structural parameters derived from our analysis agree well 

with those determined using conventional LEED. Notably in the underlayer alloy case, we 

get consistent results even without a large buckling in the 4th layer. These results give us 

confidence that our analysis is capable of determining surface structural and compositional 

parameters for Pd/Cu(001) structures with high accuracy. 
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Parameters 

dn (A) 

C*23 (A) 

fin (ML) 

6»i2 (ML) 

ci (ML) 

02i (ML) 

022 (ML) 

c2 (ML) 

03i (ML) 

^32 (ML) 

c3 (ML) 

2̂ (A) 

^4(A) 

R factor 

This work 

1.85 

1.85 

1.00 

0.89 

0.06 

1.00 

0.04 

048 

0.97 

1.00 

0.02 

0.05 

fixed at 0 

0.009 

Ref. [2] 

1.86 

1.85 

fixed at 0 

fixed at 0.5 

fixed at 0 

0.07 

0.2 

0.28 (Rp) 

Table 6.3: Comparison of results for this work with that of Barnes et al. [2] for the Cu(001)-

c(2x2)-Pd alloy. d\2 and d23 are the 1st and the 2nd interlayer spacing, respectively. 0\\ and 0i2, 

621 and 022, 03i and 032, representing the Cu concentration in each of the two sublattices of the 

1st, the 2nd, the 3rd layer, respectively. c\, c2 and C3, the Pd concentration for the three top-most 

layers, ct ~ 1 — (9tl + 9i2)/{2, (i = 1,2,3). z2 and z4 are the rippling of sublattices in the 2nd layer 

and the 4th layer, respectively. 
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6.4 Applications 

6.4.1 Temporal evolution of Pd concentrations on terrace 

First, we apply this technique to resolve the PdCu film growth during deposition on the 

terrace, as shown in Figure 6-5 (2). Figure 6-4 shows a sequence of LEEM images recorded 

during deposition of Pd with a flux of 1.0 ML/hr. The images in column (a) and (b) are 

recorded at 13.5 eV and 20.1 eV beam energies, respectively. There is an atomic step running 

vertically near the center of the images. As Pd is deposited, the step moves to the right due 

to the attachment of ejected Cu atoms. As growth proceeds the contrast variation in the 

image increases. The step profile is initially smooth, but becomes wavy as the amount of 

Pd in the surface region increases. Quantitative analysis of the image intensity, described 

below, shows that the image appears bright at 20.5 eV when significant amounts of Pd 

reside in the second layer. At 13.5 eV, the image appears bright when the amount of Pd in 

the third layer is large. Thus the images in column (a) show qualitatively how the amount 

of Pd in the third layer evolves with time while those in column (b) show how the second 

layer evolves. The images show directly that the Pd concentration is uniform on the terrace, 

but is highly inhomogeneous at the upper side of atomic steps. The evolution of the alloy 

composition can be determined quantitatively by analyzing the full IV curves at each point 

on the surface with a resolution of ~ 8.5 nm. We do this by acquiring images while the 

electron beam energy is swept from 10 to 100 eV. The heterogeneous structure has been 

found to be induced by step flow [182] and will be further described in the next section. 

Here we describe the analysis of the uniform areas on the terrace far from steps. IV 

curves from the terrace at four different Pd coverages, i.e. deposition times, are shown in 

Figure 6-9(a). The IV data are obtained by averaging over a local rectangular homogeneous 
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Deposition time (min) 

Fi gure 6-9: Analysis of the Pd concentration on the terrace (averaged over the white rectangle in 

Figure 6-4). (a) Measured (solid) and computed (dotted) image intensity as a function of electron 

beam energy at four different Pd coverages, (b) Corresponding time evolution of the Pd concentra

tions Cj (i = 1,2,3) for the first three surface layers. Fitx.2 is the fitting curve of C2 according to 

Equation 6.2 with a flux of 0.9 ML/hr. s-C\ and s_C2 are simulated uptake curves for c\ and C2-
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region indicated in Figure 6-4. The most obvious change in the IV curve with increasing 

Pd coverage is the growth of the peak around 20 eV. The evolution of the composition of 

the film can be determined by comparing the measured IV curves to electron scattering 

calculations as in conventional LEED. Using the procedure outlined in the preceding section, 

we determine the Pd concentration in each of the first three surface layers. We recorded IV 

curves at 3 minute intervals, thus we can determine the evolution of the Pd coverage with 

3 minute time resolution. The results of this analysis are shown in Figure 6-9(b), where the 

Pd concentrations in the surface (c\), second (02), and third (C3) layers, far from steps, are 

shown as a function of time. The analysis shows that C2 grows monotonically with time, 

while c\ and C3 are both small, and essentially constant. The small value of C3 suggests that 

direct migration of Pd from the second layer to the third is slow, even at 473 K. If the Pd 

atoms were evenly distributed on the terrace during growth the total Pd concentration, c\ 

+ C2 + C3, would grow linearly with time, which it does not. It appears that while the Pd 

concentration on the terrace is laterally equilibrated (i.e. uniform image intensity), some of 

the incident Pd flux is lost from the terrace. Previously, we showed that some Pd from the 

terrace is irreversibly buried by the advancing step [182]. Here we show that the same step 

flow model describes how the concentration of Pd on the terrace develops with time. We 

assume there is a constant flux, F, of Pd incident onto the surface. Under our deposition 

conditions at an elevated temperature (473 K), Pd deposited onto the surface migrates 

preferentially to the second layer. For simplicity we assume that all of the deposited Pd 

initially goes to the second layer and that migration to other layers does not occur (c\ — 

C3 = 0). We further assume that surface mass transport is fast, and that consequently the 

Pd concentration in the second layer, C2, is spatially uniform. As the step advances during 

growth, Pd in the second layer in front of the advancing step is converted into third layer 
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Pd trailing the step. In this simplified scenario, the time evolution of c2 far from a step, is 

given by 

C2 = l - e - ^ . (6.2) 

The derivation of this equation is as follows. Suppose the 2nd layer Pd concentration at 

time t is c2 and the terrace width is L. Assume all the ejected Cu atoms will be rapidly 

attached to the step edge. After an infinitesimal time dt, the step moves a distance of LFdt 

which buries the terrace and converts the 2nd layer Pd into the 3rd layer. So the lost Pd 

from the 2nd layer is c*LFdt. During the period of time dt, all incorporated Pd amount is 

Fdt. Consequently, the resulting increase in 2nd layer Pd concentration (dc2) is 

dc2 = Fdt - c2 * {LFdt)IL. (6.3) 

Combined with the initial condition c2 — 0 at t = 0, the solution of Equation 6.3 is 

given in Equation 6.2. The dash-dotted curve in Figure 6-9(b) shows a fit to Equation 6.2 

corresponding to F = 0.9 ML/hr. The fit agrees reasonably well with the LEED analysis, 

suggesting that the sub-linear growth in the total Pd coverage with time is consistent with 

burying of Pd by the advancing step. Because the small increase in c\ with time is ignored, 

fitting to c2 alone underestimates the true flux. If it is assumed that both c\ and c2 are 

buried by the step, i.e. if one overestimates the amount of Pd lost to step overgrowth, a 

value of F — 1.1 ML/hr is obtained. In the following we assume F = 1.0 ML/hr, a value 

consistent with the observed step motion during growth. 

6.4.2 Step over-growth of surface alloy 

Secondly, we use the technique to investigate the heterogeneity along the line scan shown in 

the Figure 6-5. A series of LEEM images recorded during Pd growth is shown in Figure 6-4. 

Each image is labeled by the deposition time and total Pd coverage. During the growth we 
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periodically ramped the energy from 10 to 100 eV. Prom this data we construct IV curves 

for each point in the image with a time resolution of about 3 minutes. For each IV curve we 

can perform a full dynamical LEED analysis to determine the local structural parameters 

and layer-resolved Pd concentration (i.e. in each individual image pixel). This data allows 

us to determine how the three-dimensional Pd concentration evolves with time. It is clear 

that the image contrast is heterogeneous at the upper side of the step. In Figure 6-10 we 

show how the Pd concentration evolves along the line indicated in Figure 6-4. The four 

panels show the Pd concentrations (along the same line) at four different deposition times. 

The most striking feature of the concentration profiles is the asymmetry in the third-

layer Pd concentration, C3. In front of the advancing step (i.e. at large x) C3 is essentially 

zero. However, at the trailing side of the step, C3 is large at the step position, but decays 

monotonically away from it (i.e. towards x = 0). With time, the amount of Pd at the step 

edge grows. 

The presence of third-layer Pd exclusively at the upper side of the step suggests a 

possible mechanism driving the heterogeneity: alloying via step overgrowth. The principle 

is illustrated schematically in Figure 6-11. The figure shows a side view of the surface 

near a step at three times t\ < £2 < £3 during Pd deposition at 473 K. We label the Pd 

concentrations in the first three surface layers c\, c^, and C3. Motivated by the experimental 

results, we assume that there is no Pd in the first layer {c\ — 0) and that Pd in the second 

layer (02) is spatially uniform (due to rapid surface diffusion). Furthermore, we assume that 

there is no direct migration of Pd to the third layer (03 = 0 far from the steps). As more 

Pd is deposited, the concentration of Pd in the second layer increases and the step moves 

to the right due to the attachment of ejected Cu atoms. Part of the surface is overgrown by 

the advancing step, effectively transferring Pd from the second layer (in front of the step) 
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Fi gure 6-10: Measured Pd concentration profiles across an advancing step and equilibrated con

centration distributions in the first two layers from Monte Carlo simulations. c\ (i = 1,2,3) are 

measured data for the ith layer. s_Cj (i = 1,2) are the simulated profiles. Each panel corresponds 

to one deposition time. The chemical potential JJL is shown and e = —25 meV. The arrows point to 

the step edge position. 
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I 

Figure 6-11: A schematic illustrating how heterogeneity arises during step-flow overgrowth. Side 

views of the Cu surface are shown at three times {t\ < ti < £3) during the deposition of Pd. The 

denser color indicates higher Pd concentration. Step flow overgrowth converts mobile Pd in the 

second layer into fixed Pd in the third layer. 

to the third layer (behind the step). The mobility of Pd in the third layer is presumably 

much lower than that of Pd in the second layer because the environment is "bulklike". The 

activation energy for vacancy-mediated diffusion in bulk copper is 2.06 eV [172], while that 

for vacancy-mediated self-diffusion at the (001) surface is only 0.80 eV [168]. Pd transferred 

to the third layer is virtually immobile at 473 K. In the simplest scenario, the amount of Pd 

buried by the step is equal to the instantaneous concentration in the second layer, leading 

to a characteristic profile for C3 in the overgrown region. 

We now describe how the alloy compositions measured near a step validate the step-

overgrowth model. Three key signatures of the overgrowth model are (1) the asymmetry in 

the third-layer Pd concentration near a step, (2) the characteristic profile of the third-layer 

Pd in the overgrown region, and (3) the correlation between third-layer Pd behind the step 
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and the second-layer Pd in front of the step. Each of these predictions can be rigorously 

tested by analyzing the Pd concentration near the step. IV curves from four points along a 

line crossing a step are shown in Figure 6-12. The most significant differences between the 

curves occur for energies below 30 eV. In the overgrown region, the intensity of the peak 

near 20 eV is lower, and a low energy shoulder is present at about 13 eV. We find very good 

agreement between the calculated and measured IV curves at all points on the surface. The 

variation in c\, C2, and C3 along a line crossing a step is shown Figure 6-10. Take the case 

of t = 27 min for example, the analysis shows that most of the Pd is located in the second 

layer, in agreement with previous LEED studies [2]. Away from the step, the concentrations 

are spatially uniform, with C2 « 0.4 and c\ and C3 about zero. Near the step, C3 is large on 

the upper side of the step but drops dramatically to zero at the step position. The value 

of C3 at the upper side of the step is equal to that of C2 on the lower side of the step. This 

correlation strongly suggests that Pd in the third layer arrives there via the stepovergrowth 

process. The time evolution of C3 further confirms this picture. The variation in C3 near 

the step is shown in Figure 6-13 for three different times of 27, 36 and 50 min during Pd 

deposition. It is clear that the amount of Pd buried by the step increases monotonically 

with time as the step moves. If the buried Pd is immobile, the profile of C3 in the overgrown 

region should not change with time. For example, the three curves shown in Figure 6-13 

should agree for x < 500 nm, which they do. This suggests that diffusion into or out of the 

third layer is slow at 473 K. The data in Figure 6-10 suggest that the Pd instantaneously 

buried by the step is equal to the value of ci on the terrace. That is, the spatial profile of 

the buried Pd is related to the time profile of the Pd in the second layer. In other words, 

cs(x(t)) — C2(t), where x(t) is the step position. We have measured both x(t) and c(t) (far 

from the steps), which allows us to test this prediction. The dark thicker line in Figure 6-13 
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shows the profile predicted by the stepovergrowth model. The agreement is quite good, 

showing that the spatial profile of the buried Pd c(x) is directly related to the distribution 

of mobile Pd on the terrace C2(i). The direct comparison of the measured and predicted 

alloy composition profiles confirms the basic picture of compositional heterogeneity driven 

by step overgrowth. 

We have shown that step overgrowth converts mobile, second-layer Pd into immobile Pd 

in the third layer. We now show how correlations between the amount of Pd in neighboring 

layers gives insight into the bonding and stability of the alloy film. As discussed above, the 

profile for C3 in Figure 6-10 is determined by the step-overgrowth mechanism. Contrary to 

the assumptions of the simplified step-overgrowth model (Figure 6-11), c<i is not spatially 

uniform. Far from the step, C2 is constant, but near the step it decreases to half that value. 

One possibility is that surface diffusion is inhibited (e.g., when C3 is large) and that C2 is 

not equilibrated laterally. An alternative scenario is that the C2 is equilibrated and that the 

variation in C2 with C3 is due to a repulsive Pd-Pd interaction. In this case, the correlation 

between C2 and C3 can be used to infer the strength of this interaction. For example, if 

there were no interaction between Pd atoms, then c^ would be spatially uniform, and there 

would be no correlation with C3. Alternatively, if Pd atoms strongly repel, then c^ will be 

small when C3 is large, and vice versa. Consider a highly simplified model in which the 

internal energy of the film is proportional to the number of Cu-Pd nearest-neighbor (NN) 

bonds. This model is motivated by the stability of the c(2x2) structure, in which all of the 

Pd NNs are Cu, and is supported by first-principles calculations [128] as well as empirical 

modeling [125]. The theoretical analysis of the bonding shows that Cu-Pd NN bonds are 

favored over both Cu-Cu and Pd-Pd bonds. In the following Sec. 6.5, we perform Monte 

Carlo simulations on the model to determine if the measured correlation between C2 and C3 
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is consistent with a fully equilibrated second layer. 

6.4.3 3D mapping of surface structure and composition 

Lastly, we apply the LEEM-/V analysis in a circular area on the surface shown in Figure 6-5 

(4). Over 17,665 pixels in a circle of diameter 1.25 jiva have been analyzed with the spatial 

resolution of 8.5 nm. The results are shown in Figure 6-14 for the concentration of Pd in 

each of the first three layers of the surface after the deposition of 0.45 ML of Pd at 473 K. 

The analysis shows that the top layer is almost entirely Cu, while most of the deposited 

Pd is located in the second layer. Near the step, there are significant variations in the Pd 

concentration. There is a substantial amount of Pd in the third layer on the upper side of 

the step, while on the lower side there is virtually none in the third layer. A sharp step 

edge is evident in the images. Therefore, it has been demonstrated, for the first time, to be 

able to measure the 3D mapping of concentration profile at such a high lateral resolution 

as 8.5 nm. 

6.5 Monte Carlo simulations 

In the simple model outlined above, we assumed that all of the deposited Pd migrates to the 

second layer, and that the Pd from the terrace eventually becomes buried by the advancing 

step. In previous work, we described a more realistic model based on the energetics of 

Pd-Cu bonding. As we show below, this model can be used to predict the time evolution of 

the Pd concentration profiles, in each layer, both on the terrace and in the heterogeneous 

regions near the step. 

The central premise of the model is that Cu-Pd nearest-neighbor bonds are favored. 

This idea is motivated by the stability of the c(2 x 2) structure, which contains only Cu-Pd 
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Figure 6-12: Measured and calculated IV curves near an atomic step, (a) 13.5 eV LEEM image 

recorded after the deposition of 0.45 ML of Pd at 473 K. Distances, x, along the line scan indicated 

are given in nm. At the start of Pd deposition, the step is located at x = 0. (b) Measured (black) 

and computed (red) IV curves for the four points indicated in (a). 
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Figure 6-13: Pd concentration along the line indicated in Figure 6-4 (a). Third layer Pd concen

tration measured at three different deposition times of 27, 36, 50 min during deposition. During 

growth the step advances to the right. The darker thicker curve is the 2nd layer Pd concentration 

on terrace. 
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Figure 6-14: Three-dimensional map of the Pd concentration near a surface step. The images are 

constructed from the analysis of 17,665 individual pixels and show the concentrations in the first 

three surface layers after deposition of 0.45 ML of Pd (27 min.) at 473 K. The spatial resolution is 

8.5 nm. The maps are superimposed on the corresponding LEEM image at 13.1 eV. Scale bar, 500 

nm. 
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NN bonds, and is supported by first-principles calculations [128], empirical modeling [125], 

as well as embedded-atom method calculations [133], which showed that Cu-Pd NN bonds 

are favored over both Cu-Cu and Pd-Pd bonds. In the Monte Carlo simulations, the internal 

energy of the film is equal to eN, where e is the energy of one Cu-Pd NN bond, and N 

is the number of such bonds, e is negative, so the system adopts a structure that favors 

Cu-Pd nearest neighbors. The simulations are carried out on four-layer slabs with 20 x 20 

atoms in each layer with periodic boundary conditions. The atoms in both the third and 

fourth layers are fixed. The Metropolis algorithm [62] is used to determine the equilibrium 

distribution of Pd atoms in the film. The equilibration process is carried out until the 

average quantities show no change. For all the simulations, typically the average energy 

reaches equilibrium after 500 attempted Cu/Pd swaps per free atom (i.e. 4 x 105 total trial 

moves). Equilibrium quantities, e.g. system energy and Pd concentrations, are computed 

by averaging over an additional 8 x 104 trial moves once the energy is equilibrated. 

In the Monte Carlo simulations of the temporal evolution of the concentrations on the 

terrace, we compute the values of c\ and C2 as a function of total coverage, while C3 is fixed 

at the measured value. That is, we compute how a given total coverage on the terrace, 

c i + C2, is partitioned between the first and second layers, while the Pd coverage in the 

third layer is fixed. This is a constant-iVKT simulation in which we treat the system as a 

canonical ensemble [183]. A trial move in this simulation involves atom-identity exchange 

within the first two layers. Simulated results are shown in Figure 6-9(b). s_ci and s_C2 are 

simulated Pd concentration uptake curves for the first and the second layer. The agreement 

with experimental data is good, showing that the simple model quantitatively predicts both 

the spatial and temporal evolution of the alloy composition. In this simulation, e is obtained 

as -25 meV. An example of a simulated equilibrium structure is shown in Figure 6-15 for 
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Figure 6-15: The computed equilibrium structure of an alloy with c\ + C2 = 0.58, c$ = 0.33, and 

e = —25 meV. Cu atoms are shown as lighter balls, Pd atoms as darker balls. 

c\ + C2 = 0.58 and C3 = 0.33. 

For the heterogeneous surface region near a step, we performed Monte Carlo simulations 

to predict the equilibrium distribution of Pd within a grand-canonical ensemble frame, a so-

called constant-fj,VT simulation. The Pd concentration in the first two layers is determined 

by the chemical potential, A/i = [ipd~MCu> where fipd and ficu is the chemical potential of 

Pd and Cu, respectively. A trial move in this simulation consists of swapping an atom from 

one of the first two layers of the slab with an atom from a reservoir in which the Pd chemical 

potential is /1 (the Cu chemical potential is 0), while the third layer concentration is fixed 

at the experimental value. These rules effectively allow Pd to migrate between the first and 
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second layers of the film, but not to penetrate further into the bulk. When the physical 

properties of this surface slab are stable, which indicates that it is in equilibrium with the 

reservoir, we get average total first two-layer concentrations of c\ + ci and simultaneously 

the partition of c\ and C2 as functions of varying C3 and fi. By matching simulated and 

experimental total concentrations of C1+C2, we get /i for each point along the scan line and 

c\ and C2 as well. Simulation results are shown as s_ci and s_C2 in Figure 6-10, which agree 

well with the measured profiles considering this is a highly simplified model. The chemical 

potentials obtained for 11, 27, 36 and 50 min are -312 ± 0.4, -254 ± 0.9, -218 ± 2.1 

and —172 ± 1.2 meV, respectively, and e = -25 meV throughout. The small deviation in 

chemical potentials along each scan line demonstrates that the first two layers are laterally 

well equilibrated and the second layer heterogeneity is caused by the heterogeneity in the 

third layer. The same conclusion can be reached by calculating the Helmholtz free energy 

from a thermodynamic integration over temperature [183], and subsequently the chemical 

potential by the derivative of the free energy with respect to the number of Pd atoms. Both 

fundamentally different methods result in almost the same chemical potential values shown 

in Figure 6-16. Thus we have shown that during growth, the Pd concentration in the first 

two surface layers is laterally equilibrated. A remarkably simple model of the energetics 

can therefore predict the concentration profiles over the entire surface. 

6.6 Error analysis in LEEM intensity calculations 

We have investigated the reliability of our results by analyzing how the agreement between 

the measured and computed IV curves change when c\, C2, and C3 are varied. Statistical 

.R-factor methods used in conventional LEED-IF are not applicable because of the limited 

energy range of the data. Instead, we focus on the residual, |A/(.E)|2, defined as the square 
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Figure 6-16: Chemical potentials for four different deposition times are obtained by two indepen

dent methods of constant-/!VT simulation (dotted curves) and thermodynamic integration (solid 

curves). 
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difference between the computed and measured IV curves at energy E. We determine 

the error bars in the concentrations by varying c\, c%, and C3 until the agreement between 

the measured and calculated IV curves becomes noticeably worse (examples are shown in 

Figure 6-17). Our definition of 'noticeably worse' corresponds to an increase in the R2 

factor of about 0.015. Using this procedure, we find that the errors in C2 and C3 are larger 

than that in c\. Contour plots in Figure 6-17 show how the R2 factor depends on C2 and 

C3 for three different Pd configurations, i.e. at three different points, A, B and C, on the 

line across a step shown in Figure 6-4 column (a). To get a more general assessment of the 

errors, we choose these three typical points with different ratios C2/C3. These three points 

A, B and C correspond to three positions in the line scans: 315 nm at t = 27 min, 660 and 

315 nm at t = 50 min, respectively. 

Three IV curves are shown at the bottom of each panel: the experimental (darker solid 

curve), best-fit computed (dotted curve), and one curve (gray solid curve) calculated at a 

value of C3 that produced significantly worse agreement with the measured curve (i.e. with 

a larger R2 factor). The agreement can be assessed visually by comparing the residual, 

\AI(E)\2, for the best-fit data (dotted) and worse-fit curves (solid) shown at the top of each 

panel. The residual for the worse-fit curve is clearly larger than that of the best-fit curve. 

The contour plots on the right show the dependence of the R2 factor on C2 and C3 near 

the optimized values. The solid square marks the best-fit values of C2 and C3, while the 

solid circle indicates those of the worse-fit curve. The increment in the ^-factor contours 

is 0.005. From the elongated shape of the contours, it is clear that the error in C3 is larger 

than the error in C2. The error bars for C2 and C3 derived using this procedure are given 

in Table 6.4, together with the best-fit values. Corresponding R2 values are also listed. 

Following this procedure we find error bars of about ± 0.10 ML for C2 and ± 0.15 ML for 
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Figure 6-17: Determination of errors in c-i and C3. TV-curves at three positions on the line across 

a step (A, B, and C) are shown at the bottom of each panel. The measured curve is shown as a 

dark solid line, the best-fit curve is shown as dotted, and a computed curve with a worse fit is shown 

as a gray solid line. The residual \AI(E)\2 is shown on the top of each panel. The dotted ones are 

for best-fit data and solid curves for worse-fit data. The contour plots in the upper right corner of 

each panel show R2 as a function of C2 and C3. The solid square indicates the values of C2 and C3 for 

the best-fit point and the solid circle marks the values for the worse fit. The increment in the i?2 

contours is 0.005. 
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Point 

A 

B 

C 

c2 (ML) 

0.25 ±0.10 

0.24 ±0.10 

0.49 ±0.09 

Best-fit values 

c3 (ML) 

0.23 ±0.15 

0.54 ±0.21 

0.14 ±0.15 

i?2 factor 

0.025 ±0.015 

0.008 ±0.015 

0.010 ±0.015 

Table 6.4: C2, C3 and R2 factor with error bars at three points on the surface near a step. 

C3-

6.7 Summary and conclusions 

A new technique to measure surface structure and chemical composition, with high temporal 

and spatial resolution, is developed by analyzing LEEM image intensities. Serving as a 

model system, the surface alloy of submonolayer Pd on Cu(001) substrate is prepared at 473 

K. Structural and compositional information for the first three topmost layers are obtained 

by dynamical intensity analysis on a clean Cu(001) surface, a uniform PdCu surface alloy 

terrace far from the step and heterogeneous areas near steps at different deposition times. 

Tests on clean Cu(001) and Cu(001)-c(2x2)-Pd present excellent agreement with previously 

reported results that show that the reduced dataset in LEEM-iV presents no limitation to 

the sensitivity of this technique. Temporal evolution of ultrathin film gives a deposition 

flux of about 0.9 ML/hr, close to the experimental growth rate of 1 ML/hr. Step-flow 

is found to be the origin of heterogeneity around steps. Monte Carlo simulations show a 

well equilibrated surface structure and reproduce the measured concentration profile. Most 
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importantly, this new technique has the unique capability to determine surface structural 

information with high lateral resolution of 8.5 nm. It is potentially applicable to many 

relevant surfaces to investigate the surface processes at nanometer scale. 
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C H A P T E R 7 

Summary and conclusions 

In summary, this thesis reports on surface structure and composition determination by low-

energy electron diffraction (LEED), low-energy electron microscopy (LEEM), and Monte 

Carlo simulations. LEED and LEEM techniques are used to measure the electron diffraction 

spectra and dynamical multiple scattering analysis is performed to optimize the surface 

structural and non-structural parameters via comparing experimental and calculated data. 

The results are summarized below for four surface systems studied. 

The (111), (HO) and (001) surfaces of the semimetal Bi are investigated with LEED. 

All of their atomic geometry are determined by the intensity analysis. The unreconstructed 

( l x l ) structure is found for all three surfaces. The surface interlayer relaxations determined 

by LEED agree with those by first-principles calculations. The surface Debye temperatures 

for both Bi( l l l ) and Bi(110) are found to be lower than that of the Bi bulk. The STM 

observation on the Bi(001) surface shows that bilayer steps dominate on the surface and no 

single layer steps exist. 

LEEM-iV study on Pd ultra thin films on the substrate Cu(001) includes the temporal 

evolution of Pd concentrations on the uniform Cu(001) terrace and heterogeneous areas 

around advancing steps. It is found that, at the initial deposition stages, Pd atoms re

side in the second layer at the sample temperature of 473 K, and the Pd concentration 

increases exponentially with time. The heterogeneous structure and composition near steps 
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are found to be a result of step overgrowth. In this study, we have successfully developed 

the LEEM-/V technique to achieve a nanometer scale resolution of the surface structure 

and composition. Specifically, we have demonstrated a 3D profile of Pd concentrations in 

the 3 topmost layers at the resolution of 8.5 nm. This technique is potentially useful in 

relevant surface technologies. 

Studies on the Si(OOl) surface and 6H-SiC(0001) surface are presented in Appendix A 

and B, respectively. 

The reconstructed 2x1 geometry in the Si(OOl) surface has been refined by a single do

main electron diffraction with the LEEM facility. This single domain diffraction eliminates 

uncertainties about the size ratio of possible multiple domains and simplifies the calcula

tions. This dataset is potentially a more reliable and definite determination of this surface 

structure. The results give a tilted asymmetric dimer structure. 

The 6H-SiC(0001) surface phase transition and the surface phase structures have been 

investigated. LEEM diffraction data from a large single domain are analyzed for 3x3, l x l 

and A/3 x A/3 phases. Results obtained so far show good agreement between experimental 

and theoretical data. All the surface structures turn out to have an "A" bi-layer bulk 

termination. It is found that the amount of Si at the surface decreases with increasing 

temperature. Adatom-trimer-adlayer model for the 3x3 surface does not give a satisfactory 

result and more work needs to be done to resolve this structure. A mixed Si-vacancy top-site 

overlayer on l x l surface is found. A \ /3x\ /3 overlayer at the T4 registry on the substrate 

surface generates a best fit between experimental and calculated data. 
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APPENDIX A 

Si(001)-(2xl) surface 

A.l Introduction 

Si is one of the most important materials used in the modern semiconductor industry. The 

performance of electronic devices based on the Si surfaces is definitely influenced by these 

surfaces. The knowledge of atomic structures of these surfaces is of fundamental signifi

cance in order to understand the surfaces or interfaces properties. One of these surfaces, 

Si(001)-(2xl), has drawn lasting research interest since the late 1970s for its structure 

determination. Numerous studies supported a 2x1 dimer structure on the surface which 

reduces the number of dangling bonds per surface atom from two in the bulk-terminated 

surface to one in the reconstructed structure [184, 185, 186, 187, 188, 189, 190, 191]. Many 

studies indicated that the dimer is asymmetric and buckled [184, 188, 192, 193, 190, 194]. 

The dimer structure will be shown in the Section A.3.2. Although many measurements and 

possible models have been tried in the LEED experiments [195, 196, 197, 198, 199, 200, 201], 

the results obtained so far are not very satisfactory, since the agreement between experi

mental and calculated LEED IV curves is not very convincing. One issue of concern is the 

availability of high quality samples. The other issue is whether the real surface structure 

is correctly modeled. The dimer structure is, however, still conceived as being dynamically 

or statically asymmetric [189, 202]. More powerful and effective measuring techniques are 
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needed to unravel the real structure. 

This work is aimed at resolving this surface geometry by using the low energy electron 

microscopy (LEEM) technique. The LEEM is switched to the LEED mode by removing 

the aperture in the back-focal plane of the objective lens. A small size electron beam is 

incident upon a single domain of the Si(001)-(2xl) surface. The single domain diffraction 

will simplify the dynamical LEED calculations, and more importantly, it will give a more 

reliable determination of the surface structure by eliminating the uncertainty about the 

ratio of multiple domain sizes. The results presented here should be regarded as "a work in 

progress" and the results are not finalized. 

A.2 Methods 

The LEEM is used to record the electron diffraction IV curves. One of the LEEM's ad

vantages over the conventional LEED technique is that the LEEM provides a possibility of 

illuminating a local surface area, or a single domain. In our experiment, a controlled small 

size of electron beam is incident upon a single domain of Si(001)-(2xl). This working mode 

is sometimes called microdiffraction mode. The IV spectra can be extracted from a series of 

diffraction patterns recorded at different incident electron energies. All the measurements 

are done at the sample temperature of 373 K. This technique has been utilized to refine the 

surface structure of a single domain of Ru(0001) [203]. 

Dynamical LEED intensity simulations are performed for trial surface structures. By 

comparing the calculated and measured spectra, the best-fit trial structure is taken as the 

true structure. A full-dynamical LEED program is used for the LEED intensity analy

sis [204, 205, 206, 207, 208]. The quality of the fit of calculated to experimental data is 

evaluated by the reliability factors Rp. In all calculations, a 2D lattice constant of 3.84 
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Table A.l: The values of the real part Vo and the imaginary part V* of the inner potential against 

the kinetic energy E of the incident electrons. 

E (eV) 

V0 (eV) 

Vi (eV) 

80.00 

-7.18 

3.77 

25.00 

-10.08 

2.09 

85.00 

-6.97 

3.78 

30.00 

-10.08 

2.44 

90.00 

-6.79 

3.79 

35.00 

-10.08 

2.77 

95.00 

-6.61 

3.80 

40.00 

-9.82 

3.06 

100.00 

-6.45 

3.80 

45.00 

-9.33 

3.31 

105.00 

-6.30 

3.80 

50.00 

-8.90 

3.51 

110.00 

-6.16 

3.80 

55.00 

-8.53 

3.66 

115.00 

-6.03 

3.80 

60.00 

-8.20 

3.69 

120.00 

-5.90 

3.80 

65.00 

-7.91 

3.72 

125.00 

-5.79 

3.79 

70.00 

-7.64 

3.74 

130.00 

-5.68 

3.79 

75.00 

-7.40 

3.76 

135.00 

-5.57 

3.78 

A is used and a Debye temperature of 640 K is used for the bulk layers. The following 

factors are checked: the depth of the relaxation, the influence of phase shifts, and the in

fluence of coherent and incoherent domain mixing. The complex inner potential is assumed 

to be energy dependent from the Rundgren's phase shift program [209] . The real part 

is Vo = max(0.26 - 69.69/V^ + 7.84, -10.08) eV, where E is the kinetic energy of the 

incident electrons. The imaginary part V, is numerically calculated from mean free path 

measurements and it varies from 2.09 to 3.78 eV as the electron energy increases from 25 

to 135 eV [210, 209, 208]. The values of the inner potentials are given in Table A.l. 

A.3 Results and discussion 

Previous studies on the Si(OOl) surface show a coexistence of (2x1) and (1x2) domains 

which are rotated by 90° from each other. In our experiments, fractional-order beams only 

appear along one integral-order beam axis - (1, 0) beam axis, but not on its perpendicular 

axis - (0, 1) beam axis. A schematic LEED pattern is shown in Figure A-l. There is (1/2, 

0) beam but no (0, 1/2) beam. This suggests that only a single domain on the Si(OOl) 

surface is analyzed. One more feature is the 2 mirror-plane symmetry of the diffration 

pattern, which is suggestive of symmetric dimerizing or averaged asymmetric dimerizing at 

the surface. 
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Figure A - l : A schematic LEED pattern for the single domain Si(001)-(2xl). Solid spots represent 

the integral-order beams and hollow spots the fractional-order beams. Beams (0, 0), (1, 0), (0, 1) 

and (1/2, 0) are labeled. Note that that is no (0, 1/2) beam. 

A.3.1 Comparison wi th LEED data 

We compare the single-domain LEEM IV curves with the latest reported LEED data from 

the Institute of Crystallography at the University of Munich (ICM) [200]. Figure A-2 shows 

all the LEEM beams and some beams in the ICM dataset. Because of the unavailability of 

the (0, 0) beam in the ICM dataset, this beam is not compared. Beams under comparison 

include the integral-order beams (1, 0), (0, 1), (1, 1), (0, 2), (2, 0) and the fractional-order 

beams (1/2, 0), (1/2, 1), (3/2, 0), (3/2, 1). Note that the beams (1, 0) and (0, 1) are 

averaged and compared with the beam (1, 0) in the ICM dataset, and the same for beams 

(2, 0) and (0, 2). For a better visualization of comparison, the LEEM intensities are all 

multiplied by a factor of 3. 

For a surface with coexistent Si(001)-(1 x2) and Si(001)-(2xl) domains, the diffraction 

pattern from the (1x2) domain is just a rotation of the diffraction pat tern from the (2x1) 

domain by 90°. The rotation makes beams (1, 0) and (0, 1) equivalent in intensities, and 

it is the same for (2, 0) and (0, 2). This is the situation happening in the conventional 
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Figure A-2: Comparison of the LEEM experimental data (solid) with the ICM data (dotted). 

Beam (0, 0) is not compared due to its unavailability in the ICM dataset. Averaged beams (1, 0) 

and (2, 0) in the ICM dataset are compared with averaged (1, 0) and (0, 1), and averaged (2, 0) 

and (0, 2) in the LEEM dataset, respectively. 
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LEED technique where the diffracted intensities are contributed from a large surface area 

containing both domains. Consequently, these equivalent beams are averaged for da ta 

analysis. It is noteworthy that each of these beams is contributed by both domains, but the 

equivalence between the beams (1/2, 0) and (0, 1/2) are different. The beams (1/2, 0) and 

(0, 1/2) are due to different individual domains and the equivalence in intensities relies only 

on the same domain sizes. In the ICM LEED dataset, beam (1, 0) is an average of beams 

(1, 0) and (0, 1), and beam (2, 0) an average of beams (2, 0) and (0, 2). The following gives 

a summary in comparison. 

All the compared beams show an overall moderate match between the ICM data and 

the LEEM data. But there are some differences listed below. 

• LEEM has the specular beam (0, 0) which is a dominant beam in intensity while ICM 

dataset has no (0, 0) beam. 

• LEEM IVs have more spectra sturctures at low energies while the ICM dataset has 

more structures at high energies. 

• Due to the single domain diffraction in LEEM, the (1, 0) and (0, 1), (2, 0) and (0, 

2) beams are apparently different. But in the ICM data, they are equivalent and 

averaged, respectively. 

• Some curves show different relative peak intensities between the LEEM and ICM 

data. One example is the peaks in the beam (1, 1). In the LEEM data, the peak at 

around 60 eV is weaker than that at around 45 eV, but in the ICM dataset, it is the 

reverse. 

Based on the above comparison, we can see evident differences between the LEEM and 

ICM data although overall the curves are similar to each other. LEEM IVs do offer some 
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spectra structures which ICM does not have. With these characteristics, the LEEM data 

potentially promise a definite and more reliable determination of the surface structure. 

A.3.2 Calculation results and discussions 

The Si bulk has a well-known diamond structure. One conventional unit cell is shown in 

Figure A-3 (a). The lattice vector length of 5.43 A and the Si-Si bond length of 2.35 A are 

indicated. The top view of the bulk-terminated (001) surface is shown in Figure A-3 (b). 

The numbers in (b) indicate the atom height in the four topmost layers. The value is a 

fraction of the lattice vector length in the [001] direction. 

In the dynamical LEED analysis, different energy ranges have been tried for isotropic 

and anisotropic atomic vibrations, respectively. The corresponding Rp factors are listed 

in Table A.2. The agreement is significantly worse for the low energy range below 40 

eV than for the high energy range. This may be for the following reasons: (a) at low 

energies the mean free path increases and this is not correctly included in the theory, (b) 

the form of the inner potential is probably incorrect at low energies, and (c) the phase shifts 

are not appropriately calculated. In the potential calculation the Slater-approximation is 

used for the exchange and correlation term, which is good for high energies, but not for 

energies near the Fermi level. Also inelastic interactions, such as plasmon excitations and 

resonance effects, may be important but are not explicitly considered in the theory. In 

LEED calculations usually energies above 30 - 50 eV are used; we therefore use energies 

above 30 eV for the time being. The results show a significantly better R factor for the 

higher energy range, and this is also visible in the plot of the IV curves. The structural 

results, however, are nearly the same. 

For the isotropic simulations, the optimized surface atomic geometry is shown in Fig-
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Figure A-3: Si crystal structure, (a) One conventional unit cell of the Si crystal, (b) The top view 

along the [001] direction. The numbers indicate the atom height in the four topmost layers. The 

value is a fraction of the lattice vector length in the [001] direction. 

Table A.2: Rp values for isotropic and anisotropic vibrations in two different energy ranges. 

RP, 10-130.5 eV 

isotropic vibrations 

anisotropic vibrations 

RP, 30-130.5 eV 

0.33 

0.27 
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ure A-4. It is a top view of the (001) surface and a side view from the [110] perspective. 

The positions of the atoms in the first five layers are optimized. Each layer is divided into 

two (2x1) sublattices, so there are ten sublattices. Ten atoms in these ten sublattice unit 

cells are labelled by the numbers 1 through 10; see Figure A-4. The x, y, and z axes are set 

in the [110], [110] and [001] directions, respectively. The optimized coordinates are given 

in Table A.3. Prom Figure A-4, we see that the atoms 1 and 2 displace much in the [110] 

direction resulting in a dimer structure. The difference in the vertical shifts between atoms 

1 and 2 leads to a tilting bond between them. The bond length is about 2.2 A, a bit shorter 

than the NN Si distance of 2.35 A in the Si bulk. The dimer height is about 0.6~0.7 A. The 

atoms in the third and fourth layers underneath the dimer are shifted into the crystal by 

about 0.3~0.35 A. These are the main features which will remain though the error bars are 

certainly large at the moment. The experimental and calculated IV curves are compared 

in Figure A-5. It shows a good overall agreement with most peaks' positions and intensities 

matched between the experimental and calculated results. 

However, some significant features of the experimental data cannot be fitted, i.e. the 

height of the peak of the (0, 0) beam at 55 eV, the position of the peak of the (1, 1) beam 

at 45 eV, and the height of the peaks of the (0, 2) beam. The reason for the misfit is not 

clear. 

One possible cause may be a flip of the dimers, instead of a thermal vibration, as pro

posed by total energy calculations. Such a flip would correspond to a coherent superposition 

of domains with asymmetric dimers. This has been checked as well, but did not lead to an 

improvement. 

The results shown above are obtained with incoherent superposition of asymmetric 

dimers. A coherent superposition would mean that the domains are coherently flipping, 
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Figure A-4: The dimer structure on Si (001). Each of the five topmost layers is divided into two 

(2x1) sublattices, so there are ten sublattices. Ten atoms in all ten sublattice unit cells are labelled 

by the numbers 1 through 10. The x, y, z axes are chosen in the [110], [110] and [001] directions, 

respectively. The displacements of the atoms 1 and 2 in the [110] direction leads to a dimer bond, 

and the vertical displacements of them leads to a tilting bond. The solid lines indicate the Si-Si 

bonds, (a) The top view, (b) The side view from the [110] direction. 
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Figure A-5: Comparison of the experimental IV curves with those from isotropic vibrations 

calculations. Experimental data are shown in gray (green in color) and calculated in dark (pink in 

color). Energy range: 30~130 eV. RP = 0.33. 
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Table A.3: Optimized coordinates of ten atoms in the topmost ten sublattice unit cells. 

Atom No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

x(k) 

2.727 

-2.886 

2.059 

-2.122 

0.038 

-3.814 

0.022 

-3.801 

1.868 

-1.871 

y(A) 

1.920 

1.920 

0.000 

0.000 

0.000 

0.000 

1.920 

1.920 

1.920 

1.920 

z(A) 

0.000 

0.695 

1.419 

1.461 

2.648 

3.026 

4.061 

4.341 

5.514 

5.587 

which is not realistic either. A further possibility is the assumption of a single domain with 

randomly distributed asymmetric domains. These calculations will be tried. 

For the anisotropic vibration simulations, more layers are required to be optimized to get 

a better agreement. Considering the error bars, the results need more evaluation right now 

to determine their reliability although the agreement is better than the isotropic simulations. 

The optical potential has some influence on the height of the peaks at low energies. 

Different optical potentials are worth trying to see the influence of this parameter. 

A. 4 Summary 

The Si(001)-(2xl) surface structure has been refined with a single domain electron diffrac

tion by LEEM. The results show aysmmetric dimers. Current results are still under way to 

be finalized. 
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APPENDIX B 

6H-SiC(0001) surface phases 

B.l Introduction 

Silicon carbide (SiC) is known for its remarkable properties such as a wide band gap, high 

thermal conductivity, high thermal stability, and extreme hardness [211]. Structurally, the 

SiC compound is interesting for its various polytypes. All polytypes differ in the stacking 

sequence of the Si-C bi-layer structure. The most studied polytypes are 3C-SiC, 2H-SiC, 4H-

SiC, and 6H-SiC. The initial numbers denote the numbers of bi-layers in their corresponding 

primitive unit cells and C, H means cubic, hexagonal structures, respectively. With A, B, C 

standing for three Si-C bi-layers which register in the same way the three repeated stacking 

layers in an fee crystal do, the repeated stacking units for the above four crystals are 

correspondingly ABC, AB, ABCB, and ABCACB. Note that the two neighboring atomic 

planes between two consecutive bi-layers have the same registry. 

Since different polytypes have different band gap widths, it is possible to engineer the 

stacking sequence to get a desirable band gap. However, it is unknown what guides the 

stacking sequence and what is the role of the surface in the crystal growth. The surface 

structure information available so far is not adequate for controlling the stacking sequence. 

Moreover, SiC has become very interesting recently as an ideal platform to grow heteroge

neous catalysts and a single graphite sheet [212]. The knowledge of the surface structures 
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is definitely crucial to understand the surface processes governing the thin films' growth. 

In this work, we particularly focus on the 6H-SiC(0001) surface. This bulk-terminated 

surface structure is shown in Figure B-l. The bulk can be built with repeated stacking 

of the ABCACB unit. Each layer has a 2D hexagonal structure. This Si-terminated sur

face exhibits different surface structures at different annealing temperatures [213]. Around 

800°C, it is an unreconstructed ( l x l ) bulk-like structure. Annealed at 900°C, the surface 

becomes a (3x3) reconstructed structure. At 1050°C, the (3x3) superlattice forms. Up 

to 1300°C, the LEED diffraction shows a (6\/3 x 6\/3) pattern. At 1400°C, the ( lx 1) 

graphite ultra thin films are obtained on the surface. Our goal is to resolve the surface 

structural and compositional evolution during the phase transition, and ultimately, unravel 

the growth mechanism of graphene on this surface. The following sections present some 

results obtained so far. 

B.2 Surface phase transitions 

The phase transition of the 6H-SiC(0001) surface upon heat treatment has been observed 

by LEEM. Bright and dark fields imaging demonstrates a direct in situ observation of the 

surface phase evolution, transitions in a sequence of l x l , 3x3, l x l , y/3xy/3, 6 ^ x 6 ^ 3 

and the graphene phase due to gradually increased temperature. With an introduction of 

a small amount of disilane ((Si2Hg) into the UHV chamber at the annealing temperature 

of 850°C, a 3x3 LEED pattern is displayed. As the temperature is escalated to 900°C, 

a l x l LEED pattern appears. The l x l pattern becomes a 3x3 pattern upon decreasing 

temperature and a V3x^/3 pattern upon increasing temperature to 1050°C. Therefore, the 

3x3 to l x l transition is reversible. The sharp LEED patterns for these three phases are 

shown in Figure B-2. 
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Figure B - l : Bulk-terminated 6H-SiC(0001) surface, (a) The side view. The bi-layer stacking 

sequence is ABCACB in one unit cell, (b) The top view. It is a hexagonal 2D lattice in each layer. 
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Figure B-2: LEED patterns for the 6H-SiC(0001) surfaces at different annealing temperatures. 

The bright background is due to the deflected inelastically scattered electrons. It is deducted in the 

intensity extraction, (a) The LEED pattern at Ek = 50 eV for the 3x3 reconstruction at 850°C. 

(b) The LEED pattern at Ek = 37 eV for the l x l structure at 900°C. (c) The LEED pattern at Ek 

= 50 eV for the y/3x^3 reconstruction at 1050°C. 
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Figure B-3: An AFM image of the 6H-SiC(0001) surface. All the steps are the same triple bi-layer 

height, i.e. ~ 8 A. Image size: 3 x 3 ;Um2. 

The LEEM bright and dark-field images have shown wide terraces on the surfaces. It 

is found that all the steps are the same triple bi-layers height of ~8 A. An atomic force 

microscopy (AFM) picture of the surface is shown in Figure B-3. The availability of wide 

terraces allows for electron scattering in a single-domain. The corresponding diffraction IV 

spectra can be used to determine the surface structure and chemical stoichiometry. In all 

LEEM IV measurements, the same diffraction area has been used. Quantitative dynamical 

analyses of the LEEM-IV curves are performed to resolve the bulk termination and the 

surface overlayer structures. 

B.3 3x3 reconstruction 

When annealed at around 850°C at an ambient of the disilane gas, the 6H-SiC(0001) surface 

reconstructs into a (3x3) structure. The disilane is used as a Si source for the Si-rich 3x3 

structure. A model for the 3x3 reconstruction proposed by Schardt et al. [214] is shown 
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in Figure B-4. In one 3x3 superlattice unit cell, there are three Si overlayers including one 

adlayer, one trimer layer and one adatom layer on the Si-C bulk bilayer. 

We have tried this model for the 3x3 structure in our experiment. By dynamical IV 

analysis, a moderate level of agreement between the experimental and calculated data is 

reached. The comparison of experimental and calculated IV curves is shown in Figure B-5. 

Some beams fit well but others do not. This could be caused by the incorrect surface model

ing. It is possible to get different surface structures with different experimental procedures. 

Another possibility is that a certain amount of defects could exist on the terrace affecting 

the measuring results. High quality sample surfaces will be prepared for new measurements. 

In the analysis, the "A" termination of the bulk proves to give a better agreement than "B" 

or "C" termination. 

B.4 l x l structure 

When one increases the annealing temperature to 900°C, the 6H-SiC(0001)-3x3 surface 

becomes a 1 x 1 structure indicated by the LEED pattern. Various models have been tried 

for this surface. A best agreement between the experimental and calculated data is given 

by a Si overlayer model. This model is schematically shown in Figure B-6. In this model, 

a Si adlayer sits on the "A" bi-layer terminated surface. Furthermore, averaged f-matrix 

calculations for the mixed Si and vacancy overlayer model show a considerable amount 

of vacancies in the Si adlayer. So the overlayer is not one monolayer of Si. When the 

sample temperature is increased, some Si atoms in the 3x3 structure evaporate leaving the 

surface. Depending on how much Si is left on the surface, the overlayer could have only a 

submonolayer of Si. 

The comparison of experimental and calculated IV curves is shown in Figure B-7. Over-
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Figure B-4: 3x3 reconstruction of the 6H-SiC(0001) surface, (a) The side view. Above the Si-C 

bilayer in the bulk-terminated surface, three Si overlayers reconstructed. They are one adatom layer, 

a trimer and an adatom in one 3x3 unit cell, (b) The top view of the reconstruction. The large 

3x3 unit cell is shown. 
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Figure B-5: Comparison of experimental (black) and calculated (gray) IV curves for the 6H-

SiC(0001)-3x3 surface. 
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Figure B-6: 6H-SiC(0001)-lxl surface structure, (a) The side view. Above the two Si-C bilayers 

in the bulk-terminated surface, one Si overlayer is adsorbed on the top cite, (b) The top view of 

this surface. 
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all, there's a good agreement except for the very low energy part. Energy-dependent inner 

potential has been tried. The real part of inner potential does not improve the fit signifi

cantly while the the imaginary part does. The imaginary part of the inner potential is in 

the form of E1/3. 

B.5 V^xy^ reconstruction 

When the annealing temperature is increased to about 1050°C, a sharp \Z3x\/3 LEED 

pattern is displayed. Since this surface is the result of the transition from the l x l structure, 

it is natural to model this surface as a \ /3x\ /3 overlayer on the bulk-terminated surface. 

The following possibilities are tried: Si or C overlayer and the registry of the overlayer. It 

turns out that the a Si overlayer on the T4 site of the underneath "A" bilayer terminated 

surface gives a best fit between experimental and calculated data. That is, the atoms in the 

overlayer are situated above the C atoms in the first Si-C bilayer. Figure B-8 shows this 

model and Figure B-9 shows the IV curves. We can see a very good agreement in the IV 

curves obtained. All the previous LEED IV work [215] is based on a multi-domain model 

which can bring more optimization parameters and larger error in the optimized results. 

B.6 Summary and conclusions 

In our study of the 6H-SiC(0001) surface phase transition, single domain data have been 

acquired. For all the surface structures, "A" bi-layer bulk termination proves to give better 

agreements between experimental and calculated IV curves. It is found that the amount 

of Si at the surface decreases with increased temperature. Adatom-trimer-adlayer model 

for the 3x3 surface does not give a satisfactory result and more work need to be done to 
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Figure B-7: Comparison of experimental (black) and calculated (gray) IV curves for the 6H-

SiC(0001)-lxl surface. 
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Figure B-8: \ /3x \ /3 reconstruction of the 6H-SiC(0001) surface, (a) The side view. Above the 

Si-C bilayer in the bulk-terminated surface, there is a reconstructed \ /3x \ /3 Si overlayer. (b) The 

top view of the reconstruction and the \/3x^/3 unit cell. 
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Fi gure B-9: Comparison of experimental (black) and calculated (gray) IV curves for the 6H-

SiC(0001)-v
/3xv

/3 surface. 
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resolve this structure. A mixed Si-vacancy top-site overlayer on l x l surface is found. A 

\ /3x\ /3 overlayer at the T4 registry on the substrate surface generates a best fit between 

experimental and calculated data. Tests of these LEEM analyses are expected to pave 

the way to study the interface between SiC and graphene and reveal the graphene growth 

mechanism. 
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