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ABSTRACT 

A N A N A L Y S I S OF R E C O N N E C T I O N D Y N A M I C S I N A N 

E R U P T I V E F L A R E M O D E L 

by 

Daniel B. Seaton 
University of New Hampshire, September, 2008 

This dissertation develops a one-dimensional, analytic model for current sheets that form 

during solar flares. The model uses a method developed by B. V. Somov & V. S. Titov for 

Petschek-type reconnection. The first part of this dissertation provides a detailed analysis 

of the Somov-Titov model, its assumptions, strengths and weaknesses. We consider the role 

of both the diffusion region and nonuniform resistivity in the generation of Petschek-type 

solutions. 

The second part of this dissertation extends the averaging method to the dynamics of an 

asymmetric current sheet during a solar flare. We determine the location of the x-line and 

the distribution of incoming Poynting flux into upward and downward directed reconnection 

jets. We find that, except at the very beginning of a flare when the current sheet is most 

symmetric, the x-line is generally located near the lower tip of the sheet. We predict that 

it should be low enough in the corona to be observed by X-ray and EUV telescopes. We 

find that in most cases the majority of incoming flux exits the current sheet through the 

upward jet, in contrast to previous studies that assumed as much as 50% of the incoming 

flux is directed into the downward jet and flare ribbons. 

In the third part, we integrate thermal conduction into the Somov-Titov framework using 

a slow-shock model that includes conduction, and allows us to describe the thermal halo 

that surrounds the current sheet because of heat flow across the current sheet boundary. We 

find that thermal conduction has a significant effect on the fast-mode mach number of the 

xiv 



reconnection outflow, producing mach numbers as high as 7 for solar-flare conditions, three 

times greater than previously calculated. We conclude that these termination shocks are 

considerably more efficient at producing particle acceleration than previously thought since 

the efficiency of particle acceleration at shocks increases dramatically with Mach number. 

We compare this model with numerical simulations by T. Yokoyama & K. Shibata and find 

good agreement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Solar Eruptions 

The Sun is a relatively ordinary star, one of nearly 100 million G2V stars in our galaxy, 

which puts it approximately in the middle of the main sequence on the Hertzspring-

Russell diagram where most stars spend the majority of their lives. Like other stars 

similar to it, the Sun is essentially a sphere made of plasma, surrounded by a more 

irregular atmosphere, the solar corona. While the surface of the Sun, the photosphere, 

is about 5800 K, temperatures in the corona can reach 100 million K, especially during 

solar eruptions. These eruptions, commonly referred to as coronal mass ejections and 

solar flares, generally unfold in the corona, and are responsible for heating the plasma 

there to such high temperatures. 

The entire Sun is permeated by complex magnetic fields, which undergo evolution 

in activity over the course of a cycle of approximately 11 years. These fields are gen­

erated by a magnetic dynamo at the center of the Sun, and become "frozen in" to the 

plasma that makes up the Sun due to it 's high conductivity. During periods of inac­

tivity, referred to as solar minima, the Sun's magnetic field is essentially a dipole, but 

this magnetic structure becomes increasingly complicated as the solar cycle unfolds. 

Because the magnetic field is frozen into the plasma that makes up the Sun, fields are 

dragged along with the rotation of the Sun. Because the Sun rotates faster at its equa­

tor than at its poles, the magnetic field becomes increasingly stretched out as the Sun 
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rotates, eventually becoming twisted and complex at solar maximum. This period 

of increased activity is generally characterized by the appearance of many sunspots 

in the photosphere and many eruptions in the corona. Over time, these eruptions 

provide a mechanism for releasing the stress on the Sun's magnetic field, eventually 

allowing it to return to the simpler configuration seen during solar minimum. 

The mechanisms that trigger these eruptions and allow the reconfigurations of the 

magnetic fields that drive them are not completely understood. Our work here is based 

on a loss-of-equilibrium mechanism (see Section 1.2.2) that causes the solar magnetic 

field lines to become highly stretched. The process that allows these stretched field 

lines to relax is referred to as magnetic reconnection. Reeves (2006) and Lin (2001) 

previously studied the loss of equilibrium mechanism that triggers and drives the 

eruptions, but they did not formally model the reconnection process itself. It is this 

process that will be a principal focus of the rest of this dissertation. 

In fact, there are many processes on the Sun in which reconnection plays an 

important role, with eruptions only serving as the most prominent—and, perhaps, 

dramatic—example. Although a primary goal of this project is to inject realistic re­

connection physics into the models of coronal mass ejections and solar flares described 

by Reeves and Lin, our results could also be applied, at least in principle, to other 

phenomena involving reconnection. 

1.1.1 Solar Flares 

Solar flares were first observed in 1859 in white-light. While conducting observations 

of sunspots, Carrington (1859) observed a transient brightening on the disk of the 

Sun that lasted a few minutes. This event was simultaneously observed by Hodgson 

(1859), and was, Carrington noted, followed by a considerable magnetic storm later 

in the day. Because the sunspot group remained essentially unchanged after the 
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event, Carrington concluded that whatever he had observed had occurred above the 

photosphere. 

The flare that Carrington observed must have been a very large one, because flares 

large enough to be visible in white-light are relatively rare (Neidig & Oliver, 1983). 

Flares are much more commonly seen in narrow pass-band instruments centered on 

the Ha hydrogen line. The majority of solar emission in this line comes from the 

chromosphere—in fact, it is the bright red appearance of this line from which the 

chromosphere takes its name (Golub & Pasachoff, 2001). Light curves for the Ha 

emission during a flare as a function of time (see Figure 1-1) have a number of classic 

characteristics. First, in the impulsive phase, there is a sudden increase in emission 

at the beginning of the event. This is followed by a gradual decline in emission back 

to the background levels over several hours; this is called the decay phase. Flares 

with long decay phases are usually refered to as long duration events (LDEs), while 

flares with short decay times are often refered to as compact or impulsive flares. 

Generally, these compact flares occupy only a small region, while LDEs are large in 

extent and are characterized by double ribbons of bright H a emission (see Figure 1-

1). For this reason, LDEs are sometimes referred to as "two-ribbon flares" (Moore 

et al., 1980). As the event progresses, these ribbons gradually separate at speeds of 

a couple of k m s - 1 (Dodson, 1949; Servajean & Olivieri, 1946). After an acceleration 

at the beginning of the event, the velocities remain constant or decrease slightly as 

the flare progresses (Dodson, 1949; Malville & Moreton, 1963). 

The location and orientation of flare ribbons in the larger corona helps shed some 

light on the role of magnetic fields in the overall evolution of the flare. Flare ribbons 

generally form parallel to the boundary between regions of opposite magnetic polarity, 

which is commonly referred to as the magnetic neutral line (Martres et al., 1966). 

Magnetic loops that appear to connect these ribbons often appear in the Ha passband, 
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flare from August 28, 1966, and images of the types of features commonly associated 

with such emission from different events. (Figure from Forbes, 2003, used with 

permission.) 
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so we can conclude that these loops are filled with relatively cool plasma (relative to 

the surrounding corona) with temperatures on the order of 104 K. During the early 

phases of the flare, these loops form at an acute angle to the neutral line, which 

suggests the presence of sheared magnetic fields (Zirin & Tanaka, 1973; Tanaka & 

Nakagawa, 1973). Loops that form later in the events generally are perpendicular 

to the neutral line, which suggests that a more relaxed field has developed: this is 

consistent with the idea that the sheared field has released its stored energy during 

the course of the event. 

More recently, a number of space-based telescopes have allowed the observation of 

much higher temperature plasma that emits in the ultraviolet and X-ray wavelengths. 

The earliest of these X-ray missions was the S-054 X-ray Telescope onboard the 

orbiting space station Skylab. Observations by Vaiana et al. (1973) using this telescope 

revealed emission bridging the gap between Ha flare ribbons, which showed that 

the flare ribbons are merely footpoints of loops that are too hot to be seen in Ha. 

Subsequent observations of flares in soft X-rays using a variety of instruments revealed 

that hot loops form higher in altitude than their companions in Ha (Moore et al., 

1980; Svestka et al., 1987; Harra-Murnion et al., 1998). Figure 1-1 shows observations 

of such high temperature loops from the Soft X-ray Telescope on the Yohkoh satellite. 

Flares are also associated with other types of high energy, non-thermal radiation. 

When high energy particles collide with the chromosphere at flare loop footpoints 

they generate hard X-rays via thermal bremsstrahlung. These X-rays are frequently 

observed during flares (as in Takakura et al., 1995). Hard X-ray radiation is also 

observed at loop-tops during flares (Masuda et al., 1994). There appears to be a 

correlation between these hard X-rays and the derivative of the soft X-ray light curve 

(Tanaka et al., 1982; Starr et al., 1988; Dennis & Zarro, 1993). This correlation 

is usually referred to as the Neupert effect, after Neupert (1968), who discovered a 

5 



similar relationship between microwave emissions and the derivative of the soft X-

ray light curve. In both cases, the cause of the radaition is thought to be the same 

population of accelerated particles. 

1.1.2 Coronal Mass Ejections 

Although Carrington had noted a possible correlation between solar flares and mag­

netic storms on Earth as early as his first observation of a solar flare, Chapman & 

Ferraro (1931) offered the first formal theory of the nature of these terrestrial dis­

turbances. They proposed that the connection between solar activity and magnetic 

storms on Earth could be explained if this activity was associated with the impact 

of ionized material ejected by the Sun during a flare on the Earth's magnetic field. 

After the advent of the space age, Demastus et al. (1973), who observed "dramatic 

transient events" in the 5303 A coronal line using the Sacramento Peak Observa­

tory coronagraph, Tousey et al. (1973), who observed using the OSO-7 coronagraph, 

and Gosling et al. (1974), who observed with the coronagraph on Skylab, confirmed 

the ejections of ionized clouds at velocities of 400-1000 kms"1 outwards from the 

Sun. These explosions of ionized gase came to be known as Coronal Mass Ejections 

(CMEs). Figure 1-2 shows one example of CME evolution observed by the Large 

Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric 

Observatory (SOHO). 

More recent coronagraph observations show that CMEs can have an even wider 

range of velocities than the initial observations suggested, with speeds as slow as 

50 k m s - 1 and as fast as 3200 kms - 1 . The CMEs that occurred around Halloween 

2003 had measured speeds as fast as 3000 k m s - 1 Gopalswamy et al. (2005a), which 

were only surpassed by an event on 20 January 2005, which may have been as fast 

as about 3700 k m s - 1 (Gopalswamy et al., 2005b). Because of the wide range of 
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Figure 1-2: The evolution of a CME observed with LASCO onboard the SOHO 

spacecraft. (Figure from the SOHO-LASGO consortium.) 

speeds of CMEs, they are generally classified into two categories: gradual CMEs, the 

slower speed events which have measurable accelerations in coronagraph observations, 

and impulsive CMEs, the high speed events that tend to slow down as they move 

through coronagraph fields of view (MacQueen & Fisher, 1983; Sheeley et al., 1999; 

Moon et al., 2002). Recent work by (Vrsnak et al., 2005), however, has suggested 

that instead of two distinct classes of CMEs, the variation in properties make up a 

continuum of CME behavior. 

Long-term statistical studies of CMEs using instruments such as P78-1, the Solar 

Maximum Mission (SMM), and SOHO, as well as ground-based coronagraphs, have 

revealed the connection between the solar cycle and CME properties. Hildner et al. 

(1976) used Skylab data to uncover a correlation between the average sunspot num­

ber and the likelihood of CMEs occurring. Later, Webb & Howard (1994) confirmed 

this relationship using data taken from a number of coronagraphs. A further connec­

tion between solar activity and CMEs was presented by Howard et al. (1986), who 
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found that CMEs generally originate at the same latitudes as helmet streamers—low 

latitudes during solar minimum conditions and high latitudes during solar maximum. 

1.1.3 Prominence Eruptions 

Prominences are clouds of cool, dense material, similar to that of the chromosphere, 

but which are magnetically suspended in the corona, generally forming above the 

magnetic neutral line (Martin, 1973). In Ha observations, they appear as bright 

emission features when observed on the limb of the Sun, and dark absorption features, 

referred to as filaments, when viewed on the disk. When prominences form in quiet 

regions of the Sun they are called quiescent prominences, but they can form in both 

quiet and active regions of the Sun. Active region prominences generally form at 

low altitudes, while quiescent prominces form higher (Tang, 1987). Prominences in 

quiet regions are generally straight in shape and are long-lived, while active region 

prominences are often curved and evolve faster than their quiescent counterparts 

(Low, 1996). 

Erupting prominences, called "disparitions brusques" (sudden disappearances) by 

D'Azambuja (1955), were first reported based on daily spectroheliogram observations 

from the Meudon Observatory in Paris. D'Azambuja found that prominences often 

erupt and reform in the same place, frequently more than once. Both quiescent and 

active region prominences can erupt, but, while active region eruptions are almost 

always associated with a solar flare, quiescent prominences are rarely associated with 

a flare (Jing et al., 2004). On the other hand, both types of eruptions are associated 

with a CME about half of the time (Jing et al., 2004). 

1.1.4 Are Flares and CMEs Related? 

Carrington did not observe a CME when he observed his flare in 1859, but he clearly 

recognized the connection between geomagnetic activity and the flare. (In hindsight, 
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it seems clear that his flare was associated with a CME, and he was correct in noticing 

this correlation.) Although he was careful not to draw too strong a conclusion from 

his observations, others also noticed a similar relatioship between solar activity and 

geomagnetic effects (Hale, 1931; Newton, 1943). Eventually, it became clear that 

geomagnetic activity was caused by material that had been expelled from the Sun 

(Gold, 1962). 

The exact nature of the connection between flares and CMEs has been an out­

standing problem ever since. One of the earliest studies, by Munro et al. (1979), used 

the coronagraph on Skylab to survey CMEs and found that about 40% of them were 

associated with observed flares, while 70% were associated with filament eruptions. 

More recently, studies using the coronagraph on SMM found a similar relationship 

(Webb & Hundhausen, 1987; St. Cyr & Webb, 1991). Thus it is clear that CMEs can 

occur without an associated flare. Similarly, many flares, espcially small flares and 

the even smaller microflares and nanoflares, occur without the observation of a CME, 

but may contribute to the heating of the corona (Golub & Pasachoff, 1997; Priest & 

Forbes, 2000). Flares of this type are too small to cause an eruption, but may be 

linked to eruptions by contributing to the destabilization of the flux rope that leads 

to a CME and larger flare (Sterling & Moore, 2005). 

This relationship (or, perhaps, occasional lack of a relationship) established, the 

question became: what are the conditions under which a CME will be associated with 

a flare? Observations using the coronagraph on Skylab suggested that the CMEs 

most likely to be associated with flares were fast CMEs, with an average speed of 

775 kms" 1 . Meanwhile, CMEs that were associated with prominence eruptions were 

generally slower, averaging only 330 k m s - 1 (Gosling et al., 1976). Other observations 

with other instruments, including the K-coronameter at the Mauna Loa Observatory 

(MacQueen & Fisher, 1983) and LASCO on SOHO (Sheeley et a l , 1999; Moon et al., 
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2002) have confirmed the relationship between fast CMEs and flares. 

Conversely, some authors have investigated whether the flares that tend to be 

associated with CMEs have anything in common. Sheeley et al. (1975) compared ob­

servations from Skylab with observations from the X-ray flux monitor on the SOL RAD 

spacecraft and found that long-lasting soft X-ray flares are almost always associated 

with CMEs. Later Sheeley et al. (1983) revisited the question and found a correla-

tion between the duration of a flare and the probability it will be accompanied by 

a CME. However, other studies using later missions such at Solwind (Kahler et al., 

1989) and SMM (Harrison, 1991) found that CMEs occur with both impulsive and 

long-duration flares, shedding doubt on the proposition that CMEs only occur with 

long-lived flares. 

Because coronagraphs cover the disc of the Sun—and often a good deal more 

space—it is often impossible to see the initiation of a CME, and thus determining 

the relative timing of a CME and flare is a difficult task. Harrison (1986; 1991) 

and collaborators (Harrison et al., 1985, 1990) studied this problem using SMM by 

assuming CMEs accelerate at a constant rate and extrapolating CMEs backwards to 

estimate their origins. They concluded that CMEs generally begin before the onset of 

the flare. Other observations with SMM and the Mauna Loa Coronameter did manage 

to estimate the initiation of the CME to within about 10 minutes and showed similar 

results to the Harrison observations (Kahler, 1992). Zhang et al. (2001) followed 

CME evolution using LASCO and the Extreme-Ultraviolet Imaging Telescope (EIT) 

on board SOHO to conclude that CME initiation occurs before the associated flare. 

1.2 Theories of Solar Eruptions 

After the first direct observations of CMEs in 1972, many researchers concluded that 

CMEs must be caused by the expansion of the hot plasma produced by large flares. 
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In light of the more recent work on the connection between CMEs and flares, we 

now know this is not the case. Gosling (1993), for example, shows that on 20% of 

all CMEs are associated with large flares. Further, as we discussed above, CMEs 

often appear to begin before the onset of their associated flare. Finally, the thermal 

energy produced by flares is insufficient to accelerate CMEs to the high speeds they 

often achieve (Canfield et al., 1980; Webb et al., 1980; Linker et al., 1990). Most 

contemporary theories of CMEs hold that they are produced by a loss of stability of 

an equilibrium of the coronal magnetic field. As magnetic flux constantly bubbles 

up from the convection zone of the Sun, just below the photosphere, the motion of 

the footpoints of coronal structures causes a buildup of stress in the field. When 

these stresses exceed the equilibrium point of the field, stability is lost and the field 

erupts. It is the eruption that releases stored magnetic energy, accelerating the CME 

and heating the plasma and causing a flare. The process that releases this energy is 

referred to as reconnection. 

1.2.1 Reconnection and Solar Eruption Models 

Reconnection of field lines of opposite polarity as a mechanism for releasing the energy 

necessary to heat coronal plasma and cause a flare was first proposed by Carmichael 

(1964) in order to explain the reason for flare ribbons to separate in time. Carmichael's 

theory was later extended by Sturrock (1968) and Kopp & Pneuman (1976) in order 

to include observations of expanding post-flare loop systems. These papers argued 

that a rising reconnection site in the corona will continually create new, reconnected 

magnetic loops and that these loops create the observed flare loop system. According 

to these theories, the apparent expansion of a flare loop system is actually due to the 

continued appearance of new and increasingly large loops of hot plasma, rather than 

the expansion of a single, hot loop. 
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When field lines reconnect, stored magnetic energy is converted to heat, and trans­

ported along field lines into the chromosphere, which leads to the ablation of chro-

mospheric plasma. This process is often called "chromospheric evaporation." There 

are two models that attempt to explain the physical process by which chromospheric 

evaporation occurs. The first suggests heating is caused by the impact of accelerated 

particles on the chromosphere (Lin & Hudson, 1976; Emslie et al., 1981; Fletcher & 

Martens, 1998), while the second argues thermal energy is conducted along magnetic 

field lines and into the chromosphere (Hirayama, 1974; Antiochos & Sturrock, 1978; 

Forbes & Acton, 1996; Yokoyama &; Shibata, 2001). Figure 1-3 shows the Forbes & 

Acton version of this model. 

The Forbes & Acton model shown in the figure accounts for a number of important 

features of observed flares. In particular, there are many observations that show that 

the hot X-ray loops appear above the cooler Ha loops in a postflare loop arcade 

(Moore et a l , 1980; Svestka et a l , 1987; Harra-Murnion et al., 1998). In this model, 

the hottest loops are the newly formed loops closest to the reconnection site, while the 

loops lower in altitude, and further from the reconnection, have cooled somewhat. It 

also explains observations of shrinkage—the observed relaxation of cusp shape loops 

into more rounded loops which has been observed by both SXT on Yohkoh (Hiei & 

Hundhausen, 1996) and XRT on board Hinode (Reeves et al., 2008b). 

Reconnection also plays a role in prominent theories of CMEs. These theories 

can be divided into two classes, directly driven models and energy storage models 

(Klimchuk, 2001). In directly driven models, the energy necessary to accelerate the 

CME is injected directly into the corona from below the solar surface, while energy 

storage models assume that magnetic energy is stored in the corona until a loss of 

equilibrium occurs, releasing this stored energy and causing a CME. 

Most versions of directly driven models have been discounted by modern observa-
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Figure 1-3: A schematic of a flare that includes reconnection and chromospheric 

evaporation. (Figure adapted from Forbes, 2003, used with permission.) 
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tions. Some models used the energy released by a solar flare to drive the CME (Wu 

et al., 1975; Wu, 1982; Dryer, 1982), which requires that the flare preceeds the CME. 

We have already discussed that most observations show that flares follow CMEs, 

which leaves most of these models unworkable. Other directly driven models suppose 

that a sudden increase in current due to motions of plasma below the Sun's surface 

causes a CME (Sen & White, 1972; Kan et al., 1983). Such models also would require 

easily detectable flows over a large area of the photosphere, but such flows are not 

seen (Forbes, 1993). 

There are three classes of energy storage models that are viable. The first, the 

"breakout model" is driven by reconnection above a quadrupolar coronal magnetic 

field caused by shearing of the inner arcade (Antiochos et a l , 1999; MacNeice et al., 

2004). This reconnection removes the overlying field, and allows an eruption. As the 

eruption progresses, an x-line forms under the erupting flux rope and reconnection at 

this x-line allows the eruption to accelerate. A second class of CME models, the SAIC 

CME initiation model also depends on sheared arcades (Linker &; Mikic, 1995; Linker 

et al., 2001). This is a 2.5D numerical model in which flux cancellation in a sheared 

arcade causes the eruption. This model is closely related to the loss-of-equilibrium 

model below. 

1.2.2 Loss-of-Equilibrium Models 

In the loss-of-equilibirum—or catastrophe, as they are sometimes called—models, 

magnetic energy is stored in a flux rope which evolves quasi-statically until the me­

chanical equilibrium of the stressed magnetic field is lost and the flux rope erupts. 

This model dates to conceptual models first developed by van Tend &: Kuperus (1978) 

and van Tend (1979). In this model, a flux rope is balanced in the corona by com­

pression and tension forces. When the current in the flux rope reaches a critical value 
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the equilibrium disappears. Later this model was developed into a "circuit model" 

by Martens & Kuin (1989), who treated the flux rope like a wire suspended in the 

corona. Here, the loss of equilibrium occurs when motions of magnetic field in the 

photosphere cause an increase in coronal flux. 

More recently, a two-dimensional magnetohydrodynamic (MHD) version of the 

catastrophe model has been developed by van Ballegooijen & Martens (1989) and 

Forbes and a number of collaborators (Forbes & Isenberg, 1991; Isenberg et al., 1993; 

Forbes & Priest, 1995; Lin & Forbes, 2000; Reeves & Forbes, 2005; Reeves et a l , 2007). 

This work investigates the equilibrium states of a flux rope with finite cross-section in 

the presence of a number of background field configurations: a sunken dipole (Forbes 

& Isenberg, 1991) and quadrupole (Isenberg et al., 1993) as well as two magnetic 

point sources attached (Forbes & Priest, 1995) and detached (Lin & Forbes, 2000; 

Reeves & Forbes, 2005) current sheets. In each case, the loss of equilibrium is caused 

by photospheric motions on timescales similar to observations, while reconnection 

allows the rising flux rope to escape the corona in an eruption (Lin & Forbes, 2000). 

Figure 1-4 shows the evolution of the loss of equilibrium of the flux rope. 

Lin & Forbes (2000) and Lin (2001) added reconnection to the framework devel­

oped in the Forbes & Priest (1995) loss of equilibrium model. Without reconnection, 

the loss of equilibrium causes the flux rope to jump to a new equilibrium point, higher 

in the corona, where it oscillates, but does not escape. With the addition of recon­

nection, it becomes possible to cut the field lines that effectively tether the flux rope 

in place and allow it to escape as a CME. Because it was based on the same frame­

work as the Forbes and Priest model, the Lin and Forbes model is a two-dimensional 

model which evolves through a series of quasi-steady states as the CME progresses. 

This model did a good job of capturing the overall characteristics of an eruption, but 

it also had several limitations. First, it did not include the effects of gravity or the 
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Figure 1-4: Evolution of the loss of equilibrium of a flux rope. (Figure from Forbes 

& Priest, 1995, used with permission.) 
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generation of MHD waves. Second, it made no predictions about the dynamics of the 

current sheet, which it treated as having zero thickness. In fact, Lin himself wrote 

about this in his Ph.D. dissertation: "... although we have already investigated the 

importance of magnetic reconnection to the eruptive phenomena, there is still much 

that remans to be determined. For example, what is the actual dynamics of the 

reconnection process in the current sheet during an eruption[?]" (Lin, 2001). 

Reeves & Forbes (2005) and Reeves (2006) extended this model further in several 

important ways. First, they determined the radiative energetics of the model by 

including the thermal energy released in the current sheet. Second, they included the 

effects of gravity on the evolution of the eruption and energy release. Third, they 

present a detailed investigation of the relationship between flux rope acceleration and 

energy release. Finally, they use the thermal energy release to model light curves 

produced by various solar telescopes, including the spatial and spectral properties 

of the CME associated flare. Thus the Reeves and Forbes model provides a more 

complete picture of the unfolding eruption, including both the CME dynamics and 

predictions for the observed intensities of the evolving flare. They, too, however treat 

the current sheet as infinitely thin and make no predictions about its dynamics. This 

limitation served as one major motivation for the research discussed in the rest of 

this dissertation. 

1.3 Theories of Magnetic Reconnection 

As we mentioned above, all of the contemporary CME and flare models depend on 

magnetic reconnection in order to convert energy stored in the coronal fields into 

heat and kinetic energy. The term "magnetic reconnection" was coined by Dungey 

(1953) who had been studying particle acceleration in the Earth's magnetosphere. 

Several earlier studies (Giovanelli, 1946; Hoyle, 1949) had considered the question of 
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particle acceleration at magnetic neutral points, but did not include the magnetic 

field produced by the particle motions themselves. Dungey used an MHD framework 

to show that these moving particles would produce current in a thin sheet where 

the dynamics would be dominated by magnetic field diffusion—a feature we (perhaps 

unsurprisingly) now refer to as a current sheet. Dungey argued that diffusion of the 

field as it passed through this layer would cause a change in overall magnetic connec­

tivity, a process he described as field line "disconnection" followed by "reconnection." 

Nearly simultaneously, Cowling (1953) also realized the importance of current sheets 

for plasma heating and particle acceleration during solar flares as well. Recent devel­

opments in reconnection theory have led to numerous models, both steady-state and 

time-dependent; one-, two-, and three-dimensional geometries; analytic and numerical 

(Priest & Forbes, 2000). This dissertation focuses on a two-dimensional, steady-state 

treatment of the reconnection problem. It should be noted, however, that during 

the impulsive phase of a flare the field evolves rapidly, and the quasi-steady approx­

imation may not be a good one. On the other hand, during the gradual and late 

phase of the flare, when the current sheet evolves on long timescales, a quasi-steady 

approximation is not unreasonable. 

1.3.1 The Sweet-Parker Reconnect ion Model 

Dungey's 1953 reconnection model was a conceptual model rather than a mathemati­

cal one; it was only several years later that the first quantitative reconnection models 

appeared. Sweet (1958) and Parker (1957) presented the first such model, for the 2D, 

steady-state, incompressible case. They assumed that the reconnection would occur 

in a long, thin current layer whose length was set by the global scale-length of the 

field, Le. A schematic of their model, now commonly referred to as the Sweet-Parker 

model, is shown in Figure 1-5. Sweet and Parker estimated that, under the conditions 
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shown in the figure, the speed at which plasma enters the current sheet is given, in 

MKS units, by 

ve = vAeLu, (1.1) 

where Lu = n0LevAe/r] is the Lundquist number (sometimes also notated S, and 

called the magnetic Reynolds number), vAe = Be/^/i0pe is the Alfven speed in the 

inflow region, rj is the resistivity, Be is the field strength in the inflow region, and pe 

is the plasma density in the inflow region. The outflow speed in the Sweet-Parker 

framework is vAe and does not depend on the Lundquist number. In 2D models, the 

reconnection rate is given simply by the electric field perpendicular to the plane of 

the model at the reconnection site. Since the field is uniform in space in steady state 

models like the Sweet-Parker model, the Alfven Mach number, MAe — ve/vAe, gives 

the reconnection rate, normalized by the characteristic electric field vAeBe. Thus the 

Sweet-Parker reconnection rate is simply given by 

MAe = L~1'2. (1.2) 

In astrophysical plasmas, like the corona, the Lundquist number is very large (Lu ^> 

106) so the reconnection rate is very slow—far too slow to be the mechanism that 

drives events like solar flares, which happen on very short timescales. 

1.3.2 T h e Petschek Reconnect ion M ode l 

Petschek (1964) recognized this limitation of the Sweet-Parker model, and thus pro­

posed a mechanism by which magnetic fields could reconnect at a much faster rate. 

He did this by significantly reducing the length of the diffusion region in the Sweet-

Parker model. In Petschek's model there is a small central Sweet-Parker-like diffusion 

region attached to two pairs of standing slow-mode shocks which radiate outwards 

and consititute the bulk of the field reversal layer. Petschek's configuration appears 

in Figure 1-6. These shocks provide the majority of the conversion of the field from 
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Figure 1-5: Field and flow configuration for the Sweet-Parker model. Plasma flows 

into the current sheet, length Le, from above and below and exits through the narrow 

tips of the sheet, which have thickness I. The field is assumed to be uniform in the 

inflow region, so the external Alfven Mach number, M^e, is equal to the internal 

Alfven Mach number, M^i, which is measured at the midpoint of the edge of the 

current sheet. (Figure from Forbes, 2007, used with permission.) 
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Figure 1-6: Field configuration for the Petschek model. The length, L, of the Sweet-

Parker diffusion region is much shorter than the global scale length Le and the entering 

field is not uniform as in the Sweet-Parker model. To pairs of slow-mode shocks 

extend out from the central diffusion region. (Figure from Forbes, 2007, used with 

permission.) 

stored magnetic energy to heat and flow, and lead to the appearance of two hot 

outflow jets at the ends of the current layer. 

In deriving his model, Petschek assumed that the inflow region was current-free 

and that there were no field sources at large distance. When combined with the 

trapezoidal shape of the inflow region caused by the presence of the slow shocks, 

these assumptions cause a logarithmic decrease in the magnetic field as the inflowing 

plasma approaches the diffusion region. The variation of the field leads to a new 

formula for the maximum reconnection rate: 

MAe{max) = 7r/(8 lnL„), (1.3) 

where the Lunquist number, Lu, and Alfven speed on which it depends are now 
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Figure 1-7: The configuration used by (Yan et al., 1992) to produce a Petschek-like 

solution. The red box indicates the location of the resistivity enhancement. 

measured in the region far upstream of the current layer (see Figure 1-6). Because 

of the logarithmic dependence on the Lundquist number, the Petschek reconnection 

rate is much higher than the Sweet-Parker reconnection rate. For most plasmas, the 

Petschek formula predicts a reconnection rate, given by the Alfven Mach number, of 

MAe « 10"1 or 10"2. 

Since its introduction, the validity of the Petschek model has been a subject of 

much debate. Various numerical simulations carried out during the last 30 years show 

that it is a valid solution provided that there is some additional mechanism introduced 

to restrict the length of the central diffusion region. For example, the addition of a 

localized resistivity enhancement near the x-line, such as that seen in Figure 1-7 can 

force Petschek-like behavior (Yan et al., 1992; Baty et al., 2006). The use of more 

realistic kinetic treatments of the plasma in the current layer has also been shown to 

lead to Petschek type behavior (Wang et al., 2000). 
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Figure 1-8: The Syrovatskii field configuration. Here, external sources produce an x-

line even when local sources of current are not present. External driving then creates 

a current sheet, length L, whose length depends on the history of the driving and 

reconnection rate (Somov, 1992). The fastest reconnection occurs when L is equal to 

the global scale length, Le. (Figure from Forbes, 2007, used with permission.) 

1.3.3 T h e Syrovatskii Mode l 

While both the Petschek and Sweet-Parker models relied on the same mechanism, 

Green (1965) and Syrovatskii (1971) approached the reconnection problem in another 

way. They studied what happened when a weak flow interacts with an X-type neutral 

point (or x-line) in a magnetized plasma. Figure 1-8 shows an illustration of this type 

of reconnection configuration. When the external flow matches the rate at which field 

lines diffuse through the current sheet there is a steady state. It is this model which 

provides the starting point for the Somov-Titov model, which is described in detail 

in Chapter 2, and forms the basis for our own analysis of the reconnection problem. 

As we saw above for the Petschek model, in steady-state MHD models the vari­

ation of the field in the inflow region is the key quantity for dertermining how the 

reconnection rate will scale with the Lundquist number. In all such models the elec­

tric field will be uniform and perpendicular to the plane of the magnetic field. Outside 
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the diffusion region, the electric field can be expressed as E0 — —vyBx, where E0 is a 

constant, while vy and Bx are the inflow and field along the axis of symmetry (this 

corresponds to the y axis in our picture of the Syrovatskii model). We can then write 

the inflow Alfven Mach number far upstream as 

MAe = MAiB
2/B2, (1.4) 

where MAI is the Alfven Mach number in the current sheet, 5 j is the magnetic field 

at the edge of the current sheet, and Be is the magnetic field far upstream. In the 

Syrovatskii model the inflowing field along the y axis varies according to 

B^B^l+y'/L2)1/2, (1.5) 

where, again, Bi is the field at the current sheet and L is the length of the current 

sheet. We can combine equations 1.4 and 1.5 in order to find the variation of the 

reconnection rate as a function of the length of the current sheet. We find that 

MAe = MAi/(l + L2
e/L

2). (1.6) 

Thus the Syrovatskii reconnection rate is largest when L = Le. In this case, the 

reconnection rate scales as L~x^2, the same as the Sweet-Parker model. 

1.3.4 Other Reconnection Models 

Several other reconnection solutions, which are obtained by relaxing some of the 

assumptions made in the Petschek model, also exist. In particular, one can assume 

that the current density, j , in the inflow region is nonzero (Petschek assumed that 

j = 0 to first-order). In this case, the removal of the assumption allows an additional 

degree of freedom (the value of j) and thus creates a family of solutions. One way to 

characterize these solutions is by considering the relationship between internal Alfven 

Mach number (MAi, measured at the entrance to the diffusion region) and external 

Alfven Mach number (MAe, measured at the exterior inflow boundary). 
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In the flux pile-up solution the streamlines near the y axis diverge, and the field 

lines come closer together as they approach the diffusion region. Thus the field 

strength increases close to the diffusion region—this is the flux pile-up from which 

this type of reconnection takes its name. Because the divergence of the streamlines 

tends to expand the plasma, this type of flow is also referred to as a slow-mode 

expansion. In the flux pile-up case, the central diffusion region is much larger than 

in the Petschek case, but the reconnection is nonetheless fairly fast. Figure 1-9 shows 

an illustration of this type of solution. 

The other solution in Figure 1-9 is similar in character to flux pile-up and is called 

stagnation-point-flow (Clark, 1964; Sonnerup & Priest, 1975; Litvinenko et al., 1996). 

In the case when the resistivity is low, a very thin current sheet is created (with a very 

large magnetic gradient and, therefore, a very large current density, j). As magnetic 

field enters this sheet, it is destroyed by cancellation with the field entering from 

below. Plasma, which is physical matter, cannot be cancelled, and so must flow out 

sideways (Parker, 1973; Sonnerup & Priest, 1975). While the flow entering away from 

the y axis tends to diverge, the flow along the axis must necessarily stop at the current 

sheet, thus a stagnation point—where there is no flow—forms at the origin in this 

solution. The streamlines in stagnation-point-flow solutions behave similarly to those 

in solutions for fluids flowing into a stationary obstacle; this type of hydrodynamic 

flow solution gives these MHD solutions their name. 

The solutions above are only a few of the steady-state models that have been 

developed over the years. Many others also exist (e.g. Sonnerup, 1970; Yeh & Axford, 

1970; Shivamoggi, 1985; Craig et al., 1995), but these are the ones most relevant to 

the discussion in subsequent chapters. 
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Figure 1-9: The stagnation-point flow solution (panel a) for field annhilation and 

the related flux pile-up solution (panel b). (Figure from Forbes, 2007, used with 

permission.) 

1.4 New Research Presented in this Dissertation 

This dissertation extends the reconnection model first discussed by Somov et al. (1987) 

in several important ways. First, this is the first time that an asymmetric version of 

the model has been developed. Such an asymmetric model is essential for analyzing 

the reconnection process in eruptive flares. We use this new asymmetric model to 

improve the Reeves & Forbes (2005) flare model in order to capture some of the 

dynamics of the current sheet. Second, we consider the effects of thermal conduction 

on the properties of the plasma in the reconnection outflow. This new analysis also 

includes, for the first time in an analytical model, a study of the effect of thermal 

conduction on the plasma surrounding the current layer. Third, we also carry out an 

in-depth analysis of the Somov-Titov model and discuss its strengths and weaknesses. 

Specifically, we explain why it is unable to determine the rate of reconnection. We 

compare results from each of these extended versions of the Somov-Titov model with 

observations and numerical models of similar current sheets. 

Chapter 2 of this dissertation begins with a complete analysis of the Somov-Titov 

model, including all of the assumptions made in deriving the model and an exploration 

of the justification for these assumptions. After rederiving the Somov-Titov system we 
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present a discussion of the range of solutions allowed by this framework. We explore 

the relationship between the Somov-Titov model and the Sweet-Parker and Petschek 

models, and consider the implications of these results for those earlier reconnection 

models. In particular, we focus on the effects of several of the key assumptions of this 

model concerning the diffusion region. We also consider, for the first time, the effect 

that a non-uniform resistivity has on the model. 

In chapter 3 of this dissertation we integrate the Somov-Titov model into the 

asymmetric field from the Reeves and Forbes model. This allows us to make several 

improvements to the assumptions Reeves and Forbes made about the dynamics of the 

current layer and the energy budget of their model. Incorporating these improvements 

into the Reeves and Forbes model, we re-examine one of the CME cases presented 

in Reeves h Forbes (2005) to see the effect of these improvements. The key question 

of what determines the rate of reconnection remains unanswered. We compare these 

improved predictions to similar predictions made by numerical models by Reeves et al. 

(2008a). We also consider the implications of an asymmetric background field on the 

Somov-Titov model itself, including such a field's effect on the family of solutions 

obtained in the simpler, Syrovatskii-like model employed originally by Somov and 

Titov. 

Finally, in chapter 4, we consider the effects of thermal conduction on the Somov-

Titov model. Using work on the structure of slow-mode shocks by Xu & Forbes 

(1992), we are able to extend the model to include the effects on and effects of the 

plasma surrounding the current layer. We compare these results to predictions that 

Yokoyama & Shibata (1997) and Yokoyama & Shibata (2001) made using numerical 

simulations of current sheets during flares, also including thermal conduction. Finally, 

we consider the role of thermal conduction on the generation and strength of fast-

mode shocks in the reconnection outflow jet. 

27 



CHAPTER 2 

AN ANALYSIS OF THE 

SOMOV-TITOV SOLUTION FOR 

2D STEADY-STATE 

RECONNECTION 

2.1 The Somov-Titov Approach to the Reconnection Prob­

lem 

In this treatment of the steady-state 2D reconnection problem we use a technique 

by Somov & Titov first discussed in Somov (1992) and Somov et al. (1987). This 

approach returns the variation of averaged quantities along the length of the diffusion 

region including any associated slow-mode, Petschek-type shocks. The advantage 

of working with average quantities is that one can reduce the full set of 2D MHD 

equations to a set of ID equations. The primary disadvantage is that information 

about the internal variations across the layer are lost. 

Although not well known, this approach to the reconnection problem makes use of 

a common procedure for the analysis of fluid flow through a nozzle. Perhaps the best 

known example, found in many fluid dynamics textbooks, is the analysis of the de 

Laval nozzle. This is an hourglass shaped nozzle that is used to accelerate fluid flow 
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to supersonic speed (Leipmann & Roshko, 1957, pp. 124-130 and Schreier, 1982, pp. 

46-57). This type of nozzle is used in all modern rocket engines and supersonic jet 

engines, so solutions to this problem are widely known. The de Laval nozzle works 

by forcing subsonic flow to pass through a narrow throat, which forces the flow to 

accelerate to supersonic speed. The problem is often simplified by averaging the flow 

over the width of the nozzle, reducing the problem from two-dimensional to one-

dimensional. This approximation is valid as long as the width of the nozzle is small 

compared to the scale of the variation of the thickness along the nozzle to the length 

of the nozzle. The principal difference between this approach and the Somov-Titov 

approach, however, is that a nozzle has a definite profile, and thus there is a known 

function that describes the width of the nozzle as a function of the distance along 

it. In Somov & Titov's treatment of reconnection flow, the current layer's shape is 

not known—its thickness depends on how the other parameters act on it. Thus an 

additional assumption about the character of the reconnection layer must be imposed 

in order to obtain a solution for the ID system. In fact, this aspect of the problem 

also has a counterpart in nozzle flow: once the flow from a nozzle exits into free space, 

it is bounded by shocks whose shape and location are not known. Nonetheless, the 

ID treatment can still be used in this region to provide some useful results. (See pp. 

127-130 of Leipmann & Roshko, 1957.) 

In order to solve the reconnection problem, Somov begins with the complete set 

of steady-state 2D MHD equations. These equations, given by Roberts (1967), are 

the continuity equation, 

d 
„>v,) = o, (2.1; 

the momentum equation, 

'(v'5>~£-4,«* ™ 
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where, 

the energy equation, 

1 2 

Mij = ~ |B| Sij — BiBj, 

H - »• <2'3' 
where, 

and Ohm's Law, 

^fo+H^s^^l? 
j = a(x)(E + V x B ) . (2.4) 

Here, X{ are the planar cartesian coordinates, p is the density of plasma, V is a vector 

representing the velocity of flow, p is the gas pressure, M^ is the Maxwell stress tensor 

(for a plasma), B is the magnetic field, A is a conduction coefficient, T is the plasma 

temperature, c is the speed of light, E is the electric field, j is the electric current, 7 

is the ratio of specific heats (taken, throughout this paper, to be 5/3), and a(x) is 

the electrical conductivity. 

2.2 Deriving the Averaged Equations 

Before we apply the averaging approach used by Somov (1992), it is useful to introduce 

some of the notation and assumptions we will use below. Figure 2-1 shows a schematic 

of the field and flow configuration to be considered. First, we compute averages by 

integrating each term of the MHD equations over the half-thickness, a(x), of a current 

layer centered along the x-axis, so that, for example, 

(Q) =-^ [a{X) Q(x,y)dy, (2.5) 
a[x) Jo 

where y is the direction normal to the layer and (Q(x)) is the average value of some 

function Q(x, y). The location y = a (x) corresponds to an external point, just ouside 
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of the layer. This point represents the division between the potential field region 

where there is no current density, and the non-potential current layer itself, where 

current density is not necessarily zero. That is, for locations where y > a the magnetic 

field is potential, while for locations where y < a there is some current density. This 

current density may be spread uniformly throughout the layer, as in the diffusion 

region, or may be bifurcated into shocks, as in the Petscheck shocks region. Note 

that in the diffusion region, the dynamics are dominated by plasma diffusion (the r\ j 

term) while in the shocks region, dynamics are dominated by the V x B term. 

Because every quantity that remains after averaging is a function of x only, we will 

simplify our notation by dropping the (x) from here on. Subscripted variables such 

as Vya will indicate boundary values at a. Subscripted variables such as Vyo indicate 

values at the center of the layer at y = 0. Finally, following the standard practice for 

nozzle flow, we assume that quantities defined inside the current layer are uniform 

across the layer, allowing us to rewrite averages of products as products of averages, 

so 

{Q-R}* (Q) (R). 

Here Q and R represent two arbitrary variables which have been averaged using the 

procedure above. 

In order to evaluate boundary terms in averaged equations, we need to know the 

properties of the plasma outside of the current layer. Most of these properties are the 

result of the inherent symmetry of the current sheet to be considered. Working with 

the configuration shown in Figure 2-1, we suppose the following properties hold: 

• The current layer is much thinner than the scale of the variations in x along 

the layer, 

• The field and flow configuration has the four-fold symmetry and anti-symmetry 

properties show in Figure 2-1, 
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• The dominant contribution to the magnetic field outside the current layer is Bx, 

• The density in the current layer is nearly uniform across the layer, hence po = 

• Terms of order two and higher in Alfven Mach number, MA, can be dropped. 

The assumptions about the symmetry have particular consequences for several quan­

tities along the axes. Because the magnetic field in the x-direction reverses as one 

crosses the x-axis, BXQ — 0. Similarly, because the incoming flow above the x-axis is 

in the the negative direction while incoming flow below the x-axis is in the positive 

direction, the flow in the y-direction must reverse sign at the x axis, thus Vyo = 0. 

We will make use of both of these facts when we derive the averaged MHD equations 

below. 

This treatment involves the use of several parameters: the inflow Alfven Mach 

number, MA, the plasma beta, ft, and the Lundquist number (or magnetic Reynold's 

number), Lu, and the normalized thermal conductivity coefficient, A. We normalize 

each equation so that solutions depend only on these four input parameters. Table 

2.1 shows how each physical quantity is normalized. 

We note, as does Somov (1992), that the assumption that the thickness of the 

sheet is much less than its length and that it is relatively uniform in variation means 

that 

a da 

L ' dx 

Additionally, as we have pointed out above, variations across the current layer are 

assumed to be much smaller than variations along the layer. That is, 

d_ d_ 
dy dx 

Both of these will be important in deriving the equations that follow. 
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Figure 2-1: Schematic of the field and flow configuration used in the Somov-Titov 

approach. The shaded region, with thickness a(x), represents the current layer. Field 

is carried into the current layer from the top and bottom, reconnects, and is ejected 

in two oppositely directed jets in the x-direction. 

Quantity 

Magnetic Field 

Velocity 

Density 

Pressure 

Length 

Symbols 

B 

V 

P 

P 

X 

Normalization 

Bo 

Bo/y/inpo 

Pa 

BU±K 

L 

Table 2.1: Normalization of physical quantities. Ba and pa are the magnitude of B 

and the value of the density at x = 0, y = a. (3 is the ratio of gas to magnetic pressures 

at the same location, and L is the length of the current layer. 
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2.2.1 The Continuity Equation 

We begin our derivation of the Somov-Titov equations by taking the average of the 

continuity equation (Equation 2.1). Integrating it across y leads to 

<9 fa(x) da 
- (PaVya ~ (p)Vyo) = — J pVxdy - paVxa — , 

Here, we have integrated the left hand side of the equation directly and have applied 

Leibniz's Rule in order to move the derivative outside the integral on the right-hand 

side. Because Vyo = 0 by symmetry, we can eliminate the second term on the left. 

Then, deconvolving the integral in the first term on the right-hand side and noting 

that pa is normalized to 1 everwhere (see Table 2.1), we obtain 

2.2.2 The Momentum Equation 

Before taking the average of the momentum equation (Equation 2.2), we divide it 

into x- and y-components. In normalized units, we now have, 

" (v*L+v4) v-=-h+kB*B« - 1 ( T - 4 <2-7> 
and 

* {v-m+v4) v"=-k+lB'B- - I f f - B>) • <2-8) 
Averaging over the x-component of the momentum equation gives us 

l""(v'tv-) * + W*E " f (v4pv')dv = 

f 
Jo 

a(x) I f) f) 1 r) \ 

where we have used integration by parts on the left-hand side of the equation, and 

Leibniz's Rule on the bracketed term on the right-hand side. On the left-hand side, 

34 



we can immediately simplify the bracketed term, because we know that Vy0 = 0 by 

symmetry. We can apply Equation 2.1 again and rewrite the left-hand side of the 

equation 

LHS = PaVyaVxa + J% (vx^Vx) dy + £ (vx^PVx\ dy = 

= PaVyaVxa + £ (J^pVx
2j dy = PaVyaVxa + £ (ap{Vx)

2) - ^PaV2
a, 

where we have used Leibniz's Rule to complete the intergral. 

To evaluate the right-hand side, we will make use of the y-component of the 

momentum equation, which, after averaging, can be straightforwardly written 

(Bl) 
{p)=Pa + ^k (2.9) 

Since the kinetic energy density of the inflowing plasma is of second order, the total 

pressure (gas plus magnetic) must be balanced in the y-direction everywhere. There­

fore, p0 = (p) • By averaging Gauss's Law for magnetic fields, and assuming that By 

is essentially uniform in the current sheet (so, similarly to pressure, By0 = (By)) we 

find a relationship between Bya and the other quantities in the momentum equation, 

Bya =< By > +Bxa~ ~ -^ (a(Bx)). (2.10) 

Carrying out the integration on the right-hand side and applying Leibniz's Rule 

one more time, the right-hand-side becomes 

RHS = 
d_ 

dx 
a (p) + 

/ da B"in das 

'•Bya&xa ' 
d_ 

dx 
da »{B.)*)-%BL - U*(B,f) d 

dx 

da 2 

dx ya 

Following standard practice (Priest & Forbes, 2000) we observe that the inflow 

Alfven Mach number, MA, is small and that terms that are of second order in MA 

can be dropped. Since (By) and Bya are proportional to M^, the squared terms (By)
2 
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and Bya are of second order and are therefore eliminated. We can then expand the 

first term and apply Equation 2.9 to eliminate the second term in the curly brackets. 

We use Equation 2.10 to expand the term ByaBxa, and find that several terms cancel. 

We can then find the final form of the momentum equation, 

^(afl{v')2)+f>°v">{v"-j;v-) = 

.-jg + WBm+Mm+wr± 
2.2.3 The Energy Equation 

Bxa-^(a{Bx)). 

Somov & Titov originally treated the case of reconnection using a relatively simple 

energy equation. More recently Oreshina & Somov (1998) and Somov & Oreshina 

(2000) have considered the effect of radiative losses and thermal conduction. Here we 

follow the original treatment of Somov & Titov. We will reconsider these equations, 

including the effect of thermal conduction, in Chapter 4. 

Integrating both sides of Equation 2.3 above yields 

ra d 

Jo dx 

-I 
7" 

a Q 

dy 

^p+^vAvx-EBy dy = 

>7 
^-p+^vAvy + EBx dy. 

Here, E is the electric field, which is constant everywhere and normalized to VAQBQ/C. 

The integration on the right-hand side can be carried out directly. Noting that Vyo 

and Bx0 must be zero by symmetry, and that Vya is a third-order term that can be 

neglected, the right side becomes 

RHS = - 7 rPa + ^ ^ I V, ya J-J &xa-
, 7 - 1 2 

As before, we use Leibniz's Rule on the left-hand side, and rewrite the averaged 

Equation 

LHS = t { [{T=I {P) + l f ( v ) j (K) - cE{B4 a} 
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da 

dx 7 - l P a + 2 a x' 
cEB, 

ya 

Terms containing (Vy)
2 and Vy

2
a are second-order terms that we can drop (since (Vy) 

and Vya are proportional to MA these squared terms are again of second order). At 

the boundary of the current layer, in our normalized units, the electric field can be 

written E = VyaBxa = MA (since Bxa = 1 where x = 0 and Vya = MA at this point) 

so the final form of the energy equation becomes, 

d_ 

dx '^zr <P> + T <^>2) W a 

da 
dx 

7 _ , PaT^2 
v7 

jPa + jVxi VXI 
7 , a + ^ ^ 

2 ) xaJ 

, 7 - 1 
V i a - M A B 

(2.11) 

2.2.4 Ohm's Law 

Finally, we can rearrange and expand Ohm's Law and average it, 

f 6) (!B» -1*) * - f [ £ + ( K B » - v*B*:>] *• 
Note that the term containing that 5^ is of higher order than any of the other terms, 

and is therefore dropped. Also note that, because the electric field is uniform in the 

2D steady-state flow, integrating the first term on the right hand side simply yields 

aE. We can then integrate the entire equation directly, to find 

--Bxa = a[E+ ({Vx) (Bv) - (Vy) (Bx))]. 
a 

Although neither (Bx) nor (V )̂ in the second term on the right are necessarily zero 

in general, this term is negligible for the type of reconnection flows considered by 

Somov & Titov. In the diffusion region (Vy) is negligible by definition since a is 

defined here as the location in y where the diffusive electric field dominates. Outside 

the diffusion region, (Bx) is negligible. Thus we neglect this term entirely. Finally, 
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using that E = M^ again and that Lu = c2/a we can find the final form of Ohm's 

Law, 

a= Lu(MA + (Vx)(By)Y
 ( Z 1 2 ) 

2.3 The Somov-Titov System 

The assumptions made so far are fairly general ones that concern the geometry of 

the current layer and the ordering of quantities involved. In deriving their solutions, 

however, Somov & Titov have made several additional assumptions that restrict the 

set of possible solutions to those that resemble the Sweet-Parker and Petschek-like 

configurations. Other types of reconnection solutions, such as stagnation-point-flow 

(Sonnerup & Priest, 1975) and flux-pile-up (Priest & Forbes, 2000, pp. 152-153), are 

eliminated by these additional assumptions. The additional assumptions that Somov 

& Titov make that restrict the set of solutions that are obtained are: 

• There is no significant tangential flow outside the current layer, thus Vxa = 0. 

• The background magnetic field corresponds to the Syrovatskii solution to the 

current sheet problem, that is, Bxa = —\/l — x2. 

• There is no tangential magnetic field inside the current layer, thus (Bx) = 0. 

The first assumption eliminates stagnation-point-flow type solutions because these 

solutions have a significant tangential flow in the x-direction outside the current layer. 

This assumption, however, is very appropriate for the Petschek-like solutions where 

the exterior tangential flow is of second order in the Alfven Mach number (Priest & 

Forbes, 1986). 

The second assumption, that the fields involved are Syrovatskii-like, is one that 

has been recently used by several authors (Uzdensky &; Kulsrud, 2000; Malyshkin 
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et al., 2005). It represents an improvement over the assumption made by Petschek 

that the external field is uniform. The Syrovatskii expression naturally incorporates 

the length of the current sheet (or current layer, if shocks are present) determined 

by the external field sources. By contrast, the uniform field does not include this 

length in a natural way, but presupposes that the uniform field is simply terminated 

at some external length-scale (corresponding to x = 1 in our dimensionless units.) 

This termination is formally accomplished by putting the Petschek solution in a box 

whose dimensions are arbitrary and are not coupled to the external field. 

In the limit that (By) —* 0, the Somov-Titov solution reverts to that of Syrovatskii. 

Thus to first order, this formula, which describes the tangential field near a neutral 

sheet formed close to the zero-line, is a good choice. It is possible to improve this 

model by applying a formalism described in Chapter 3.4 of Somov (1992) that allows 

for the external Syrovatskii field to be improved by an iteration process that uses the 

solution for (By) to obtain a new Bxa. (This process will be discussed in detail in the 

final chapter of this thesis.) 

The third assumption, that there is no tangential field inside the current layer, is 

motivated by the fact that in the shock region of the Petschek model, the reconnected 

> field is entirely perpendicular. Thus Somov & Titov presuppose a similar geometry. 

The validity of this assumption must be considered carefully for two reasons. First, 

even for the Petschek model there is a substantial component of tangential field in the 

small diffusion region. At the x-line |(.BX)| « 1/2 MA, SO \(BX)\ = 0 seems a somewhat 

dubious assumption in this region. Second, the very need to assume something about 

the behavior of (Bx) underscores an important point about the Somov-Titov model, 

which is that the lack of a prescription for a(x) causes a problem. Without an equation 

for a(x), the averaging method leaves us without a closed set of equations. While the 

other assumptions Somov & Titov make about the system apply to external variables, 
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this assumption applies to an internal variable. Normally we would solve a problem 

like this by making assumptions about the background values—the model input—and 

using these assumptions to solve for the internal variables. Somov & Titov eliminate 

one of the internal variables (i.e. (Bx)) in order to close the system of equations they 

obtain. Further, even with this assumption they do not fully fix the solution because, 

as we will see, their solution still contains the reconnection rate as a free parameter. 

(In fact, this is also the case for Petschek's solution, which similarly fails to determine 

a unique reconnection rate.) Because this is an especially important point, we will 

discuss it more completely in Section 2.4. 

Using the assumptions detailed above, Somov & Titov arrive at their averaged 

MHD equations: the continuity equation, 

-Vya = ^ ^P) ^ * » ' (2-13) 

the momentum equation, 

± (ap(Vxf) =-a^± + {By} Bxa, (2.14) 

the energy equation, 

dx 
7 / \ , (P) /T , \2 

, 7 - 1 x ' 2 

and Ohm's Law, 

<P> + ^ (V*r (Vx) a 
7 paVya-MaBxa, (2.15) 

7 - 1 

~£>xa (2.16) 
LU(MA + {VX)(BV)Y 

Note that in order to solve these equations we also make use of the pressure balance 

equation, which comes from Equation 2.9 and in normalized units becomes 

<P> = f + % (2-17) 

We solve this system with the computer application Mathematica 6.0.1 using the 

default method in the "NDSolve" routine. "NDSolve" finds numerical solutions to 
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analytic systems of differential equations. The Appendix shows the complete Math-

ematica code used to solve this system, including the effects of thermal conduction, 

which are discussed in Chapter 4. 

2.3.1 Solutions t o the Somov-Ti tov Sys tem 

The Somov-Titov equations produce a family of solutions that depend on the choice 

of input parameters, MA, (3, and Lu. As for the Sweet-Parker model, the length of 

diffusion region, a, is related to the sheet thickness by 

where a0 is simply a(0). Since ao = 1/LUMA, we also have 

1 
a= ——7. (2.19) 

LUM\ K ' 

The parameter a can be as small as a = ao and as large as a = 1. Figure 2-2 shows 

examples of each of these solutions. The four variables plotted are (Vx), (By), (p), and 

a. In the case of the small a solutions (solid curve) (14) and (By) characteristically 

rise to nearly their maximum outflow values quickly inside the diffusion region, then 

remain relatively constant through the shock region, much like the Petschek solution. 

The thickness of the current layer, a, also increases in a manner expected for the slow-

shocks present in the Petschek model. The solutions' tendency away from Petschek-

like behavior as they approach the end of the current layer is due to the decrease in 

Bxa of the Syrovatskii background field. This effect is absent from Petschek's solution 

because of its use of a uniform background field (i.e. Bxa = — 1). 

In the case of a Sweet-Parker-like solution where a ~ 1 (dashed line), (14) and 

(By) do not achieve their maximum outflow values until they reach the end of the 

current layer, which, in this case, is also the end of the diffusion region. When a 

is slightly greater than 1, (By) increases as x3. (In Figure 2-2 we have chosen Lu 
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0.8 1.0 

Figure 2-2: Two possible solutions to the Somov-Titov system for an inflow Alfven 

Mach number MA = 0.1. The solid line is a Petschek-like solution, with Lu = 1000, 

and thus a = 0.1, while the dashed line is a Sweet-Parker-like solution with Lu ~ 80 

and a « 1.25. 

so that (By) behaves in this way.) This choice of a produces the most sheet-like 

solution, and we refer to the value of a that produces it as the critical a. We discuss 

the implications of the fact that the Somov-Titov system, like Petschek's, does not 

predict a unique reconnection rate, as one would expect for a physical parameter in 

the next section. 

2.3.2 Relation to the Petschek and Sweet-Parker Solutions 

As we have discussed above, Somov & Titov have approached the reconnection prob­

lem by assuming a priori that the field reversal layer—that is, the current layer plus 

shocks—have a Petschek-like character. Two of the assumptions they make—that 
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flow enters the layer entirely perpendicularly to it (Vxa = 0) and that the tangen­

tial field inside the layer is negligible ((Bx) = 0)—presuppose this type of behavior. 

The first assumption rules out alternate types of reconnection that are associated 

with external driving such as stagnation-point flow (Sonnerup & Priest, 1975) and 

flux-pile-up (Priest & Forbes, 1986). The second assumption is only plausible for 

Petschek-type solutions with shocks that are close to the switch-off limit. As we 

discussed before, this is especially problematic in the diffusion region, where (Bx) is 

never zero. 

Somov & Titov's approach does not lead to a unique answer for the reconnection 

rate, but instead, they recover a family of solutions with MA ranging from I/"1/2 to 1. 

The former corresponds to the Sweet-Parker value, where the diffusion region runs the 

full length of the current sheet. The latter corresponds to a diffusion region whose 

length, a — 1/Lu = CLQ—that is, a diffusion region whose length is approximately 

the same as its thickness. This behavior parallels that of Petschek's solution, which 

also produces a family of solutions for Alfven Mach numbers over the same range. 

In Petschek's solution, the reconnection rate is usually expressed in terms of the 

external Alfven Mach number, MAC which is measured at a large distance upstream 

of the current layer. Thus the correspondence between the Somov-Titov and Petschek 

models is not immediately apparent. The maximum Petschek reconnection rate is 

expressed as M^e = (4/7r)/ ln(Lu). This value occurs when the length of the diffusion 

region is approximately the same as its thickness and when the Alfven Mach number 

at the entrance to the diffusion region is close to or equal to unity (See Priest & 

Forbes, 1986). 

The similarity between the Somov-Titov solution and Petschek's solution is even 

more striking when we replace Bxa — — \/l — x2 with Bxa = — 1, so that the external 

magnetic field is uniform instead of decreasing with distance as it does in the Sy-
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rovatskii case. Then the most important difference between the two models is the use 

of the assumption (Bx) = 0 in the Somov-Titov formalism. Instead of this assump­

tion, Petschek uses the condition that outside of the diffusion region the position of 

the current reversal layer, a, is determined by the speed at which the slow-mode wave 

propagates. Thus, in order to obtain a steady-state solution, the outward propagating 

wave must balance exactly with the inflow velocity upstream of the shocks. In the 

incompressible limit, one can derive the simple equation: 

ax VA±{X) 

where VA± is the Alfven speed based on the component of the magnetic field normal to 

the shock. If we attempt to solve this equation by integration, we find it is necessary 

to supply a constant of integration, which Petcheck sets by assuming the slow shocks 

are attached to the end of the diffusion region, such that a(a) = do- Petschek makes 

no prescription for the value of a, however, except that it must lie between the sheet 

thickness (a = 1/LU) and the global scale length (a = 1). 

The similarity between the Somov-Titov and Petschek solutions has some bearing 

on the question of whether Petschek reconnection can take place in a plasma with 

uniform electrical resistivity. Numerical simulations suggest that Petschek's solution 

only occurs if the diffusivity is localized near the x-line. Some simulations have 

explicitly localized the diffusivity in this way by imposing a fixed spatial distribution 

on the resistivity (Yan et al., 1992; Baty et al., 2006), while others do it implicitly by 

relating the resistivity to some other variable like current density, which is naturally 

enhanced near the x-line (Ugai, 1988; Bhattacharjee & Wang, 1991). Some have 

argued that Petschek assumed that the resistivity of the current layer is uniform 

(e.g. Biskamp, 2000, pp. 387), and therefore his solution is inconsistent. However, 

Petschek's solution does not actually specify what the resistivity does at all, it only 

assumes that the length of the diffusion region can be shorter than the global length 
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scale. (As we noted, there is no equation that determines what this length should be.) 

As a result, Petschek's solution makes no prediction about the specific reconnection 

rate, it only provides a family of solutions with a range of possible reconnection rates. 

In the Somov-Titov framework, the indeterminacy is a consequence of the lack 

of an independent equation for the location of the 'boundary a. If such an equation 

existed, it would apply to both diffusion and shock regions, and would have to include 

the physics that creates the slow shocks. The length of the diffusion region remains 

a free parameter, while the only inherent length scales in the model are the global 

length and the thickness of the current sheet at the origin. In the case they consider, 

with uniform resistivity, it is difficult to see what causes the genesis of the slow shocks 

without the introduction of an additional length scale. This scale length could come 

from an imposed nonuniform resistivity (we will consider this case in Section 2.3.3) 

or perhaps the ion-inertial scale length associated with Hall resistivity. 

Somov & Titov's work suggests, then, that the problem with Petschek's solution 

is not that it is inconsistent, but rather, it is incomplete. The apparent inconsis­

tency arises from the interpretation that all reconnection rates allowed by Petschek's 

solution are equally valid. Previously, some authors (Forbes & Priest, 1987) have 

argued that the correct reconnection rate for Petschek-like solutions should be set 

by the boundary condition at large distance, specifically the flow provided by the 

external driving. However, this line of argument is inconsistent with the fact that 

characteristic rays in the upstream region of Petschek's solution require that there 

is no external driving (Soward & Priest, 1977). Thus it may very well be that the 

only valid Petschek solution for the case of uniform resistivity is the one where the 

length of the diffusion region is the same as the global length scale—that is, a =1 in 

our terms, or the Sweet-Parker solution. In order to obtain faster reconnection rates, 

it seems that some physical mechanism must be present to trigger the formation of 
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Petschek's slow shocks. In the next section, we show analytically that imposing a 

nonuniform resistivity, is sufficient to force a Petschek-like solution. 

2.3.3 Effects of Nonuniform Resistivity 

In order to understand the effects of nonuniform resistivity on the Somov-Titov so­

lution, we introduce a conductivity, a, in Section 2.2.4 that varies with the distance 

x. Following Yan et al. (1992) and Baty et al. (2006) we assume a prescribed profile 

of the form 

1 < * o - = -L l+qexp(-x/xs)
2 , (2.21) 

where q is the degree of nonuniformity and xs is the scale length over which a varies. 

To match the numerical simulations of Yan et al. (1992) and Baty et al. (2006) xs 

is set equal to a. We compare the results from this case to a case with uniform 

resistivity that has the same value of a outside of the diffusion region. Figure 2-3 

shows a plot of normal magnetic field, (By), as calculated in each case. The red curve 

is the case with nonuniform resistivity, while the blue curve has uniform resistivity. 

Adding nonuniform resistivity alters the profile of the field inside the diffusion region 

by a small amount, while outside the diffusion region the solutions quickly become 

indistinguishable. This is because only a small percentage of magnetic flux enters the 

current sheet through the diffusion region, while the majority of flux enters through 

the shocks. Thus the shocks completely dominate the dynamics of the current layer. 

Thus the effect of nonuniform resistivity is primarily seen in the properties of the 

diffusion region. 

The two curves shown in Figure 2-3 both correspond to the same small a, low 

P case. Here MA = 0.1, (3 — 0.03, and Lu = 3600, so a = 0.03. Therefore, even 

the case with uniform resistivity already exhibits the short diffusion region behavior 

characteristic of Petschek-like solutions. The nonuniformity only serves to enhance 
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Figure 2-3: A comparison of solutions with non-uniform (red curve) and uniform 

(blue curve) resistivity. Outside the diffusion, where the slow-mode shocks dominate 

the plasma dynamics, the solutions are exactly the same. Here MA = 0.1, (5 = 0.03, 

and a = 0.03. 

the boundary between diffusion and shocks regions, creating a more kinked curve, 

which corresponds to a sharper division between the two different regimes—the rising 

field (with respect to x) seen in the diffusion region and the relatively constant (also 

with respect to x) field seen in the shocks region. However, the external behavior of 

(By) and (Vx) is unaffected by the changes within the diffusion region. 

As we pointed out above, numerical solutions have shown that nonuniformity 

is required to generate the shocks that allow the Petschek solutions to occur. Here, 

however, the Petschek-like behavior is built-in to the solution through the assumptions 

that (Bx) = 0 and that the free parameter a is significantly less than unity. Once these 

assumptions are made, a Petschek-like solution is guaranteed. The formal addition 
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of nonuniform resistivity (i.e. Lu{x)) leads to an improved solution for the diffusion 

region. However, the physics needed to specify a unique reconnection rate are still 

missing. Thus we can say that including nonuniform resistivity in the Somov-Titov 

system has only a small effect on the diffusion region, while leaving the shocks region 

unaffected. The question of how the nonuniform resistivity leads to Petschek-type 

configurations remains unaddressed. 

2.4 Expansion of the Solution within the Diffusion Region 

Although Somov & Titov's assumption that there is no tangential field inside the 

current layer is reasonable between the slow shocks in the Petschek-like case, it is 

problematic in the diffusion region, especially in the vicinity of the x-line. In fact, 

an x-line cannot exist at x = 0 unless the average field tangential field is nonzero. 

As we discussed earlier, the assumption that (Bx) = 0 allows Somov & Titov to 

close their system of equations and thereby determine the thickness of the current 

layer. Although it is not obvious how to obtain a more realistic equation for (Bx), 

we can investigate the general effect of the presence of a non-zero tangential field by 

considering a Taylor expansion of the Somov-Titov system for small distances from 

the x-line. 

In order to examine this question in more detail we consider the situation at 

x = 0, which is the one place where it is possible to get a reasonable estimate of what 

(Bx) should be, and, therefore, its effect on the other variables. Somov & Titov (in 

Somov, 1992) provide expansions for the major variables at this point in the case that 

(Bx) — 0, and we can use these expansions as the basis for our analysis of what the 

effect of the tangential field is. Here we repeat these expansions, assuming instead 

that (Bx) 7̂  0. We use the equations described in 2.2, but will continue to assume 

Vxa = 0. Then we expand the equations around x = 0, and compare to the Somov & 
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Titov results. They obtained the following expressions (in normalized units): 

, „ . 4 + 5/3 3, 

(5,) = - M A 

5(1+ /?)«' 

2(4 + 5/?) 

5(l + /3)a a x + 0(x3), 

a = ao 1 + 
4(2 + 2.5/?)2 - 2.5a2(l + /3)(6.5 + 7.5/?) 

-or 0(x4 

(2.22) 

(2.23) 

(2.24) 
12.5a2(l +/?)2 

Note that the Somov-Titov expansion for a contains a series of typos when it appears 

in both Somov (1992) and Somov et al. (1987) which we have corrected above. Using 

these results, we can add the additional expansion, 

< P H + ^ W ) (2.25) 
4 + 5/3 

To generalize these expressions for the case where (Bx) ^ 0, we must first deter­

mine the behavior of (Bx) at x = 0. By definition, at the entrance to the current layer 

at a, Bx(0,a) = —1 (consistent with Syrovatskii's expression). We also know that, 

by symmetry, at the x axis Bx(0, 0) = 0. If we assume that the current density is rel­

atively uniform throughout the current layer, then Bx should vary relatively linearly 

across the current layer, and therefore (Bx) P=S —1/2 at x = 0. 

However, knowing the value of (Bx) at x = 0 is insufficient to determine the 

coefficients to first order in the expansion. The second derivative of (Bx) is required 

as well. (Because (Bx) is an even function, the first derivative of (Bx) is zero.) We 

know that the tangential field is nonzero inside of the diffusion region and should fall 

off to around zero at the end of the diffusion region at x = a. Therefore, we suppose 

that 

(Bx) = 
1 l x 2 

2 2 a 2 ' 

Corresponding to (Bx)" ?» 1/CK2. With this expression we then can find, for (Bx) ^ 0 : 

(Vx) = 
4(4 + 5/3) 

5(3 + 4/?)a 
x + 0(xs), (2.26) 
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(Bv) = -MA 

158 + 200/? 75 + 100/? 
•a x + 0{x3), (2.27) 

(28 + 40/?)a 28 + 40/3 

and 

a = ao 
4(4 + 5/?)(79+100/?)-5a2(3 + 4/?)(47 + 60/?) 2 4 

+ 10a2(3 + 4/?)(7+10/?) X + lX J (2.29) 

Interestingly, the addition of tangential magnetic field does not affect the overall 

form of the expansions with respect to a—that is, (14) is still proportional to x/a 

and < By > is still proportional to {cxja + c2a) x, where Ci and c2 are coefficients 

that depend on /?. This suggests that the Somov-Titov solutions are fairly robust 

with regard to the assumption concerning the effect of the behavior of (By) in the 

diffusion region as long as the scale over which (Bx) varies corresponds to a. The 

effect of allowing (Bx) ^ 0 is to decrease the derivative of (14), and to increase the 

derivative of (By), and to decrease the value of (p). At the x-line, the thickness of 

the current layer is ao = 1/(LUMA), regardless of the presence of tangential field (see 

Equation 2.12). The presence of (Bx) does, however, contribute to the overall pressure 

balance, helping support the current sheet against the exterior pressure. Less plasma 

compression is therefore needed to support a given sheet thickness, thus the density 

decreases in the presence of this additional field. This has the effect of reducing the 

density in the diffusion region from a value slightly greater than the external density 

((p) > 1) to a value slightly less than the external density ((p) < 1). 

The additional tangential magnetic field inside the diffusion region means that less 

of the exterior field is annihilated as it enters the current sheet. Consequently, less 

energy is available to accelerate the flow, resulting in an overall reduction of (14)- As 

the flow leaves the diffusion region and the tangential field falls off, V • B = 0 requires 

the normal field, (By), to increase at a higher rate than when the tangential field is 

left out. 
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In the case of a Petschek-like solution, all of these effects are small, since the bulk 

of the material enters the current layer through the shocks, rather than the diffu­

sion region. For Petschek-like solutions, the shock dynamics dominate the diffusive 

dynamics, and the effect of the presence of (Bx) is likely only a few percent near 

the diffusion region, and is negligible outside of the diffusion region. In the Sweet-

Parker-like case, however, the diffusion region is approximately the same length as 

the entire current sheet. In this case, we would conclude that the Somov-Titov result 

is more likely to contain error due to the assumption that there is no tangential field. 

However, because of the similarities in the expansions in either case, it is likely that 

the overall error remains less than a factor of two. 

One other issue concerning (Bx) that should be considered is how accurate the 

assumption that (Bx) = 0 is even in the shock region. Vasyliunas (1975) noted that 

when there is a gradient in the external tangential field along the current layer and 

shocks, the field lines between the shocks will be curved outwards. This curvature is 

a direct consequence of the velocity gradient across the current layer—the fact that 

the central portion of the reconnection jet moves faster than the edges. Field lines 

that enter the current layer inside the diffusion region are carried into the fast moving 

center of the reconnection jet, while field lines that enter in the shocks region remain 

in the slower moving outside of the reconnection jet. This velocity gradient has the 

effect of bowing the field lines outward. Our concern about (Bx) so far has been that 

field lines inside of the current layer will be curved inwards—bending towards the 

x-line—rather than the outward bend described by Vasyliunas. We supposed that 

in the shocks region, field lines would be essentially perpendicular to the outflow, 

and that the assumption that (Bx) = 0 would not be in doubt in this region. This 

additional result suggests that this assumption may be suspect even in this other 

region. (And, in fact, some very crude experimentation using our own model, with 
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a prescribed shape for a and allowing the presence of some (Bx) suggested that this 

outward bowing of the field lines was likely to be real.) Nonetheless, this curvature 

is a second order effect in the shocks region, and thus (Bx) can be taken to be zero 

without introducing significant error into the solution. 

In addition to considering the effect of (Bx) on expansions of the solution inside the 

diffusion region, we can also consider the effect of nonuniform-resistivity on the same 

region. For simplicity, we will consider only the incompressible (high /3), (Bx) = 0 

case here. Because we wish to explore the effects of nonuniform resistivity, we adopt a 

simple nonuniform resistivity model, which has the effect of converting the Lundquist 

number from a constant into a function. The resulting Lundquist can be expanded 

such that, 

Lu{x) = Lu0 + Lu2x
2 + 0(x4), (2.30) 

where is defined as 

LU2 = 
d2Lq, 

dx2 
x=0 

In this case, Somov & Titov's expansions for the diffusion region become: 

(Vx) = -x + 0(x3 

a 

(By) = ~MA — a 
la 

x + 0(x3 

a = ao l+[^-l-^)x2 + 0(x') 

(2.31) 

(2.32) 

(2.33) 
,a* 2 LuQ/ 

In this case, we omit the expansion for (p) above because in the incompressible case, 

density is uniform everywhere. We also note that ao must be redefinted slightly to 

ao = 1/LUOMA, since the Lundquist number is now a function of x. We can estimate 

the value of the ratio LU2/Lu0 in the expansion for a by noting that 

LU2 d2R, 

dx2 
x=0 

1 1 
L2 

where Lv is the scale length of the variation in Lu(x). 
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In order to get some insight on the effect of the resistivity on the type of recon-

nection taking place, we consider the behavior of the current sheet under different 

reconnection conditions. One reasonable assumption we can make is that, regard­

less of the type of reconnection taking place, the current layer must have a thickness 

greater than zero—that is, a(x) > 0 for all x—otherwise, the current sheet is closed 

off to outflow, and reconnection cannot proceed. Because these expansions are valid 

only in the diffusion region, and because a represents the scale-length of the diffusion 

region, we can use these assumptions to conclude that, at the very least, a{a) > 0. 

(Because a(0) is, by definition, larger than zero, this condition is sufficient to ensure 

that the thickness of the current layer is greater than zero everywhere in the diffusion 

region.) 

Inserting the expansion formula for a(x), we conclude that for reconnection to 

take place, we must have 

L-i > \ 5 5 (2-34) 
This means that if the ratio of the scale-length of the variation in resistivity to the 

length of the diffusion region is less than what is specified above, reconnection cannot 

occur. In the case where a = \/2, the critical a in the incompressible case, this 

ratio becomes infinity, thus it is impossible to recover the critical case in the presence 

of nonuniform resistivity. For small values of Lv, a will always be a small number. 

So nonuniform resistivity that varies over a short length-scale will requires that the 

diffusion region be small in order for reconnection to occur. Thus we conclude that 

the presence of nonuniform resistivity is sufficient to force a Petschek-like solution. 

This conclusion agrees with the finding of Yan et al. (1992), who found that it is the 

variation of resistivity over the length of the current sheet that determines whether 

reconnection is fundamentally Petschek or Sweet-Parker-like. 
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CHAPTER 3 

THE ASYMMETRIC CURRENT 

LAYER 

In the previous chapter, we discussed the Somov-Titov method for modeling the field 

and flows in a reconnecting current sheet. Previous studies by Somov et al. (1987), 

Somov (1992), and Oreshina & Somov (1997, 1998) have applied this method only 

to symmetric configurations with a background field like the one used by Syrovatskii 

(1971). Here we apply this method to the asymmetric background field that develops 

during an eruptive solar flare using the field model of Lin & Forbes (2000) and Reeves 

& Forbes (2005). Like Syrovatskii's model, their model treats the current sheet as an 

infinitely thin layer and does not provide any information about the magnetic field 

and flows within the layer. 

We discussed the Lin & Forbes model in Chapter 1 of this thesis. Because this 

model serves as the basis for our asymmetric solution to this problem, we will briefly 

review its basic properties before continuing with our discussion. The overall magnetic 

field configuration of the model depends, first, on four principle length scales: h, the 

height of the flux rope over the solar surface; q, the location of the upper tip of the 

current sheet; p, the location of the lower tip of the current sheet; and A, the half-

distance between the coronal loop footpoints. Figure 3-1 shows a schematic of the 

magnetic configuration of this model. 

The model uses rectangular geometry, with the y axis aligned along the axis of 
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Figure 3-1: Magnetic configuration of the CME model of Lin & Forbes and Reeves 

& Forbes. (Figure from Reeves & Forbes, 2005, used with permission.) 
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symmetry of the model and y = 0 defined as coincident with the solar surface. Thus 

h, q, and p lie along the y axis, while A sits on the x-axis, offset from the center line. 

The field is then given, in complex notation, by 

2zA0A(ft2 + A2)y(C2+p2)(C2 + g2) 
By + iBx = l—: (3.1) 

7T (C2 - A2) (C2 + h2) v/(A2+p2)(A2 + g2) 

where A0 is the source field strength and ( = x + iy. The current in the flux rope, / , 

is 

^h J(X2+p2)(X2 + q2)' 

Another key parameter of the model is the location of the x-line, y0. Because the 

Lin &; Forbes model treats the current sheet as an infinitely thin layer, it makes no 

prediction about its behavior. It also does not predict the position of the x-line within 

the current layer, and consequently does not provide a good method for determining 

how much of the incoming Poynting flux into the layer is divided into the upward 

and downward jets. The flare model by Reeves & Forbes (2005), which is based on 

the Lin & Forbes CME model, made the ad hoc assumption that the x-line is located 

exactly in the middle of the current sheet—that is, at the point 

Vo = —g—• (3.3) 

This assumption, as we will see later in this section, only holds when the current sheet 

is very short and very symmetric, which, in this model, only occurs at the beginning 

of an event. During the bulk of the event, this approach overestimates the height of 

the x-line considerably. 

Because the Somov-Titov model provides a prediction for the variation of flows 

and fields within the current sheet, we can obtain a more physically based estimate 

of the location of the x-line. As we will see, the relocation of the x-line will lead to a 

significant change in the energy output predicted by the Reeves & Forbes model for 

a given reconnection rate. 
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3.1 Locating the X-Line in an Asymmetric Current Sheet 

In a symmetric current layer, the location of the x-line is necessarily at the midpoint 

of the layer, but in the asymmetric case, this is no longer true. In order to identify 

its location, we return to the unaveraged re-component of the momentum equation 

(Equation 2.7), 

We consider this equation along the x-axis. Here, Vy(y = 0) = 0 and Bx(y = 0) = 0 

by symmetry. Thus the equation becomes 

x dx dx v dy dx 2 

We can then assume that we are located at the x-line itself. Since this is a magnetic 

neutral point, both of the terms that include By must be zero and can be eliminated. 

Because the total pressure is in balance in the y direction to good approximation, we 

can write 

In this treatment pa is a constant and so its derivative is zero. Substituting the 

remaining term into the equation gives us a final result 

pV*^Vx = -B™lt- (3-4) 

In the case where the stagnation point, the point at which the flow speed, and 

thus Vx goes to zero, and the x-line are co-located, then we find that the x-line will 

occur where 

^ - 0 , (3.5) 

which occurs where the external magnetic field reaches a maximum. However, even if 

the stagnation point and x-point are not co-located, as long as there is no acceleration 
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of flow through the x-line, this result still holds. In our quasi-steady treatment, any 

flow that does occur at the x-line must necessarily be diffusive and, therefore, small. 

Thus, the x-line will tend to be located close to the point where the magnitude of the 

external magnetic field reaches a maximum. We refer to this point as the pinch point. 

We note that because this result follows from the unaveraged momentum equation, 

it is completely independent of the assumptions made by Somov & Titov about the 

behavior of the plasma inside the current layer. 

In many CME models, the external field around the current sheet becomes very 

uniform high in the corona, near the upper tip of the current sheet. Thus the pos­

sibility exists that small variations in the flow, caused by waves or turbulence, for 

example, may introduce additional x-lines and trigger the formation of magnetic is­

lands. If this occurs, then the external field tangential to the current layer will be 

modified so that there is more than one pinch point. However, to the extent that the 

flow in the sheet is quasi-steady, the x-line should be located close to the pinch point. 

There are also cases where we might expect acceleration of flow through the x-line 

to occur. One example would be early in an eruption, when the background field 

changes from symmetric to asymmetric, and the x-line moves rapidly from a point at 

the center of the current layer to a point near the lower tip of the layer. However, 

this case, and others in astrophysical and space plasmas, are highly time-dependent, 

and thus, our quasi-steady treatment of the problem does not apply. Nonetheless, 

there is considerable evidence that suggests that this property will hold in general for 

CMEs and flares. Numerical models of asymmetric current sheets (Linker et al., 2003; 

Reeves et al., 2008a) indicate that the x-line does indeed occur at (or very close to) 

this pinch point. EIT observations of CMEs also support this conclusion (Yokoyama 

et al., 2001). 
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3.2 Improving the Reeves & Forbes CME Model 

Reeves & Forbes (2005) assumed that the Poynting flux entering the sheet is equally 

divided between the upward and downward directed jets. However, the partitioning 

of the Poynting flux is not equal in general, and it is very unequal when the x-line is 

not located near the middle of the current sheet, which is the case when the current 

layer becomes highly asymmetric. 

In order to recalculate the trajectories of the flux rope, current sheet, and x-

line, in the Reeves & Forbes model, we begin with their background magnetic field, 

which plays the same role in this calculation as the Syrovatskii field played in the 

last chapter. In Reeves & Forbes, the field along the current sheet is entirely in the 

tangential (now y, in our new coordinate system) direction, and is given by 

B 2XA0(X
2 + h2)sJ(y2-p2)(q2-y2) 

Va n {h2 - yt) (A2 + y2) J(X2 + p2) (A2 + q2)' 

Finding the pinch point requires only that we find the point at which the Bya is 

maximized, which we can find by solving the equation dBya/dy = 0 for y. Substituting 

Equation 3.6 into this expression, we obtain an equation for the location of the x-line 

2XA0y (A2 + h2) {2/ + q2y2 (A2 - 3y2) 

+P
2 [y2\2 - zy4 + Q2 ( V - 2A2); 

+h2 [q2 (y2 + A2) + p2 (-2g2 + y2 + A2) - 2y2X2] } = 0. (3.7) 

Excluding the trivial solution y = 0, this is a cubic equation for y2, so solving this 

equation gives 6 roots. These roots can be obtained explicity using the exact solution 

for cubic equations or numerically using a root finder. Only one of these roots will 

be both real and positive; this is the root that gives the location of the x-line in the 

current sheet. 

There are two limiting cases of interest. In the limit where the current sheet is 

very short, p and q are close together and there is no significant variation of the short 
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length of the current layer. Thus the formula for the x-line location becomes 

^ o ~ ^ , for ( g - p ) « A , (3.8) 

which is the relation assumed by Reeves & Forbes. In this limit, the field in Equa­

tion 3.6 is well approximated by the Syrovatskii described in section 2.3. This limit 

occurs early in an eruption, when the current sheet (or layer) first appears. 

The other limit of interest occurs late in an event, when h and q are both large 

compared to p and A. In this case, the formula for the x-line location becomes 

Vo « \A2 + 2^2' fo r hkq^Xkp (3.9) 

Thus, in the limit where the current sheet becomes very long and the flux rope is at a 

high altitude in the corona, the x-line remains low in the corona, close to the bottom 

tip of the current sheet. This result implies that the quasi-steady position of the 

x-line in a reconnecting current sheet is much lower in the corona than the midpoint 

of the current sheet. In fact, it should be low enough in the corona throughout the 

duration of an eruption that several solar-imaging instruments, such as the X-Ray 

Telescope and EUV Imaging Spectrometer on board Hinode, may be able to detect it 

when an eruptive event occurs on the limb. Both of these instruments have relatively 

restricted fields of view that only cover a region of about 1 solar radius beyond the 

solar limb (Deluca, 2007). Thus, in contrast to the predictions of the Reeves & Forbes 

model that the x-line would spend most of its lifetime well outside of the fields of 

view of these instruments, we predict that the x-line should remain contained in the 

field of view for most of the lifetime of the event. 

3.2.1 Recalculating Trajectories 

Before we can examine the dynamics of the current layer itself, we must first under­

stand the evolution of the background magnetic field during the eruption. In order 
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to do this, we revisit the calculation of the trajectories of the erupting flux rope and 

current sheet first reported by Lin & Forbes (2000) and Reeves & Forbes (2005). Be­

cause their calculation relies on the assumption that the x-line lies at the midpoint of 

the current sheet (see Equation 3.3), their calculation of the trajectories overestimates 

the height of the x-line throughout most of the eruption. Because the unnormalized 

reconnection rate (as measured by the electric field at the x-line) depends on the 

location of the x-line, a change in the location of the x-line will cause a change in the 

dynamics of the entire system. It is the unnormalized reconnection rate, E (0, yx-une) 

that determines the rate at which the magnetic flux is actually reconnected. So even 

if the normalized rate, MA = E (0, yx-Hne) /VAOBXQ, remains the same, the actual 

rate will change when the x-line is relocated to a new position. Therefore, in order to 

see how the new location of the x-line effects the trajectories, we need to recalculate 

them from scratch. Thus we repeat the calculation outlined in section 2.3 of Reeves 

& Forbes (2005), following equations 19 through 26, but using the correct location of 

the x-line, which we determined in section 3.1. 

For the purposes of this dissertation, we compare our new calculation to a specific 

case from Reeves & Forbes, where the background field, B — Ao/(7rAo), is 120 G. 

This treatment assumes the following parameters: the Alfven Mach number at the 

x-line is MA = 0.025, the photospheric footpoint separation is A0 = 2 x 109 cm, the 

mass of the flux rope is m — 2.1 x 1016 g, the length of the flux rope is L = 1010 cm, 

and the proton density at the base of the corona is p = 1.67 x 10~16g. Using these 

values, we calculated trajectories assuming first that yo = (p + <z)/2, the old Reeves 

& Forbes assumption, and then assuming that yo is located at the pinch point. The 

resulting trajectories are shown in Figure 3-2. 

Figure 3-2A shows a plot of trajectories of h, q, yo, and p, calculated using the 

Reeves & Forbes assumption that the x-line is located in the middle of the current 
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Figure 3-2: Trajectories of h (flux rope), q (upper current sheet tip), y0 (x-line), and 

p (lower current sheet tip) calculated using the Reeves & Forbes assumption (Plot 

A) that y0 — (p + q)/2 and the improved model (Plot B) where the x-line is placed 

at the pinch point. Both panels use the same reconnection rate, MA = 0.025. The 

shaded region represents the length of the current sheet. The solid lines represent the 

parameters h, q, and p, while the dashed line represents yo the x-line's trajectory. 
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sheet, while figure 3-2B shows trajectories calculated using the improved model, where 

the x-line is located at the pinch point. Both calculations assume that the reconnec-

tion rate is MA = 0.025. In the improved model, the eruption takes place a little 

faster (that is, the flux rope, h, rises a little more quickly) and the current sheet does 

not grow as long (p rises higher in the corona while q stays lower, for a net shorter 

current sheet). Since the Reeves & Forbes model uses the electric field to set the 

reconnect ion rate, the electric field is given by 

Ez = MAVA(0,yo)Bv(0,yo)/c, 

where VA(0, yo) is the Alfven speed measured at the x-line in the current sheet, and 

By(0, y0) is the background magnetic field measured in the same place. If yo is moved 

to a substantially lower point in the corona, the magnetic field measured there will 

be stronger. Since both the Alfven speed and the background field depend on this 

value, an increase will result in an enhanced electric field and, therefore, an enhanced 

reconnection rate. For the case shown in Figure 3-2, Ez is enhanced by about an 

order of magnitude for a value of MA = 0.025. Thus the event unfolds more quickly, 

the flux rope rises faster, and the current sheet reconnects away more quickly as 

well. However, one can recover a trajectory whose behavior is very similar to those 

obtained by Lin & Forbes (2000) and Reeves & Forbes (2005) by decreasing the value 

of MA by the same factor as the increase in Ez. Since MA is a free parameter in these 

models whose value has been adjusted to match observed flare emission, we conclude 

that Reeves & Forbes (2005) overestimated the values of MA by about an order of 

magnitude. 

Figure 3-4 shows a plot of trajectories for h, p, q, and yo plotted from a numerical 

CME model produced by the SAIC MHD code. (Figure 3-4 shows overview images 

from this MHD model.) Although this model does not correspond to the same pa­

rameters and background field strength, as those of Figure 3-2, it clearly confirms 
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that the x-line remains low in the current layer rather than rising to the midpoint of 

the current sheet as q becomes large. 

One of the properties of the 2D model is that the flux rope cannot escape unless 

the reconnection rate exceeds a critical value (Lin & Forbes, 2000; Lin, 2002). If the 

reconnection rate is too slow, the current sheet will not reconnect away fast enough, 

and the erupting flux rope will slow down and, eventually, bounce back towards the 

surface. Figure 3-5 shows two examples of this type of behavior. In the first example, 

the flux rope bounces once before escaping, while in the second example, the flux 

rope bounces many times without escaping. The former case occurs when the inflow 

Alfven Mach number, MA, is too low for a straightforward escape, but high enough 

that an escape is physically possible. The latter case occurs when the inflow rate is so 

slow that the forces restraining the flux rope cannot be overcome until many bounces 

have occurred. 

Using the assumption that the x-line is located at the center of the current sheet 

and using a density model (Sittler & Guhathakurta, 1999) like the one used in this 

model, Lin (2002) found that when MA < 0.013 the flux rope cannot escape without 

at least one bounce, when 0.013 < MA < 0.034 the flux will not bounce, but will 

undergo deceleration. Finally, for MA > 0.034 the flux rope will escape smoothly. 

Using the revised model discussed above with the same initial configuration as Lin 

used, we find that when MA is less than about 3 x 10~4, the flux rope cannot escape 

without at least one bounce. This number is around two orders of magnitude lower 

than its counterpart in Lin's work because the lower x-line location in our model 

yields a faster reconnection rate for the same value of MA than that in the Lin & 

Forbes (2000) model. Thus the reconnection unfolds faster for a given inflow rate, and 

the flux rope escapes more easily. However, in terms of the value of the electric field 

at the x-line (i.e. Eo = —1/cdAo/dt) the rate is nearly the same. That is, the amount 
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Figure 3-3: Panels from an SAIC CME model like the one from which the trajectories 

in Figure 3-4 are calculated. The top panels show projected field lines at two different 

times during the event, while the bottom panels show current density at the same 

times. (Figure from Forbes et a l , 2006, used with permission.) 
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Figure 3-4: Smoothed trajectories for h, p, q, and the x-line location, y0, dashed, 

computed with a numerical CME model (Reeves et a l , 2008a). (Note that this case 

does not correspond to the same values of MA and background fields as the case shown 

in Figure 3-2.) The bump in the curve for q may be a numerical artifact caused by 

difficulties in determining the position of q in the numerical model. (Data courtesy 

of K. Reeves, private communication, 2008.) 
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of magnetic flux that is being reconnected per unit time remains approximately the 

same. Because of the lower position of the x-line, the flow into the current sheet 

needed to maintain this rate is greatly reduced. Such a reduced value of MA is 

actually more consistent with the value inferred from observations by Yokoyama & 

Shibata (2001) than the value obtained by Reeves & Forbes. Yokoyama & Shibata 

estimated an inflow rate of MA ~ 0.004 during the late phase of the flare, a value 

that is more consistent with our own predicted value of MA. 

3.2.2 Improving Estimates of the Energy Release 

Changes in the reconnection rate and length of the current layer affect the amount 

of the Poynting flux channeled into the current sheet. Since the Poynting flux is 

the source of the heat generated by reconnection, the heat channeled into the flare 

loops and ribbons is sensitive to any change in the reconnection rate and to any 

change jn the division of energy between upward and downward directed flows. The 

location of the x-line determines the division point for upward and downward directed 

reconnection jets. So when the x-line location is significantly closer to the bottom tip 

of the current sheet the majority of incoming Poynting flux that is converted into heat 

and kinetic energy is channeled into the upward jet. Here, we will continue with the 

same case as above (120 G background field) and examine the effect of the relocation 

of the x-line on the overall energy budget of the reconnecting current sheet. 

The total energy of this system is, at any time, given by 

Wmag + WKE + Wtk = W0, (3.10) 

where Wmag is the free magnetic energy, Wth is the kinetic energy of the flux rope, 

Wth is the thermal energy, and W0 is the initial energy of the system. Since, Wo is 

not a function of time, 

Jt (Wmag + WKE + Wth) = 0. (3.11) 
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Figure 3-5: Flux rope height versus time for two scenarios containing a bouncing flux 

rope under the new asymmetric reconnection model. The upper curve (MA = 10~4) 

bounces once before escaping. The lower curve (MA = 2.5 x 10~5) continues to bounce 

without an escape. 
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Following Reeves & Forbes we can then write the rate of change of the kinetic energy 

of the flux rope—the kinetic power— 

d n 

Jt\2 
f-mhA = rrihh = Fh, (3.12) 

where m is the mass of the flux rope and, F, the force on the flux rope, is given by 

F = (I/c)Bext. Here i" is the current in the flux rope, given by Equation 3.2 and Bext 

is the external magnetic field, which is given as Bya in Equation 3.6. 

To calculate changes in time as a function of the model parameters h and p we 

write 

d d ; d .„ „. 

Jt = mh + lTP
p- < 3 1 3 » 

Here the first term represents changes due to the motion of the flux rope, while the 

second term accounts for changes due to reconnection. In the case of the thermal 

energy, 

dWth-

-dh~h = 0 

because there is no reconnection when p remains constant and, therefore, no heating 

in the model. Thus we can write the thermal power as 

dWth = dWth , 

dt dp 

If we hold h constant and rewrite Equation 3.11, we find 

dWmag 

dt h dP 

dWth . 
p = 0. 

We can then use the preceeding two equations, along with the fact that 

dWmag 

^ h 

where S(t) is the integral of the Poynting flux along the current sheet, to conclude 

that 

69 



5.x1032 

4. x 1032 

&3.x10 3 2 

£2 .x10 3 2 

1.x1032 

-

-

-

-

-1 
-J 

I I 1 1 1 1 1 1 

^ . 

^<^^--~~~~^^ 
jf*'' 

1 1 1 1 1 1 1 

w t h 

1 

-

-

= 

-

-

-

2000 4000 6000 

Time from formation of X point (sec) 

8000 

Figure 3-6: Eruption energy as a function of time for the Reeves & Forbes model and 

our new model. In both cases, the plots correspond to an inflow Alfven Mach number 

MA. = 0.025 and background field of 120 G. The dashed curves refer to the Reeves 

& Forbes results (with y0 = (p + q)/2), while the solid curves refer to the new result 

with y0 located at the pinch point. Because the eruption proceeds faster in the new 

model, the kinetic energy is increased slightly, while the faster overall reconnection 

reduces the heating slightly. 

dWth 

dt 
= S(t). (3.14) 

Making use of Equation 3.11, finding the magnetic energy is then straightforward. 

We can then solve the differential equations described in Reeves & Forbes and solve 

the system to obtain the energetics of the system. 

Figure 3-6 shows the energetics of the system for both the Reeves & Forbes current 

sheet assumptions (dashed lines) and the new pinch point model (solid lines). Because 
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the eruption occurs more quickly in the newer model, there is more kinetic energy. 

At the same time, the faster reconnection rate leads to a shorter current sheet and 

less integrated Poynting flux, and thus less heating. Overall, the new model uses up 

slightly more of the background magnetic energy. 

These adjustments in the overall energy are small, however, compared to the 

adjustments in power, particularly the adjustment to the thermal power that enters 

the downward jet. Reeves & Forbes arbitrarily assumed that half of the total thermal 

power goes up and half down. Now that we have a more physically-based model for 

the location of the x-line, we can determine the diversion of the incoming magnetic 

energy as a function of the parameters and time. According to our reconnection 

model, any Poynting flux that enters the current sheet below the x-line will energize 

the downward directed plasma, while any Poynting flux that enters above the x-line 

will energize the upward directed plasma. Thus in order to calculate the amount 

of power entering the downward jet, we simply integrate the Poynting flux entering 

the current sheet between p and X/Q. AS did Reeves & Forbes, we assume that all of 

the Poynting flux is eventually thermalized, although in practice some of the kinetic 

energy in the jet may be thermalized in the system. 

Figure 3-7 shows plots of the amount of thermal power that enters the downward 

jet, and is therefore available to heat the lower corona. Because the current sheet is 

essentially symmetric at the beginning of the event, both curves are very similar at 

the beginning of the eruption. However, in our case, the power drops quickly to only 

about 1/10 of the power available in the Reeves & Forbes case. Figure 3-8 shows the 

power in the new case as a function of the total thermal power (or Poynting flux) 

entering the current sheet. After the first 100 seconds of the event, only about 10% 

of the total incoming flux enters the downward directed jet. 

We can also take a broader look at the division of flux flow in the current layer. 
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Figure 3-7: Power entering the downward jet for the Reeves & Forbes assumption 

that the x-line is located in the middle of the current sheet (dashed line) and the new 

model, where the x-line is located at the pinch point (solid line). The parameters for 

the CME modeled in these plots are the same as those used in the energy calculation 

shown in figure 3-6. 
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Figure 3-8: Power in the downward jet for the new model with the x-line located at 

the pinch point. The case shown here is for the same parameters as the case shown 

in 3-7. The power is plotted as a percentage of the total Poynting flux entering the 

current sheet. 
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Figure 3-9: The location of the upper tip of the current sheet, q (left panel), and 

the percentage of flux in the downward jet (right panel) plotted as a function of the 

location of the bottom of the current sheet, p, and the flux rope, h, calculated for the 

case of a very small flux rope radius. 

The right panel of figure 3-9 shows what percentage of incoming Poynting flux enters 

the downward jet as a function of p and h. The left panel shows the location of q in 

the same case. We note that the incoming Poynting flux is only distributed evenly 

between the upward and downward jets in the case where h, p, q, and A are all of the 

same order, and thus the sheet is very symmetric. As soon as h begins to lift off, a 

much larger percentage of entering flux is diverted into the outgoing jet, while only 

about 10 to 15% of the incoming flux enters the downward jet. 

These results suggest that, for a given value of M^, Reeves & Forbes over-estimated 

the amount of heating during an eruption by a considerable amount. There are two 

contributions to this discrepancy between the new and old models. First, because 

the Reeves & Forbes model underestimates the effective rate of reconnection for a 

given value of MA} they predict more overall heating to take place during the event 
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than should, in fact, occur. As Figure 3-6 makes clear, this is a relatively small 

effect. Second, and more significantly, their model assumes that 50% of the incoming 

Poynting flux is directed into the downward jet, when, in fact, only about 10% of 

the incoming flux should enter the jet once the eruption is well underway (that is, 

after a few minutes). An important point to keep in mind, however, when comparing 

the old and new models, is that the dimensionless reconnection rate MA remains an 

adjustable parameter. As we noted earlier, Reeves & Forbes adjusted this parameter 

to provide the best match between model behavior and observations. However the 

values obtained are larger than those inferred in the Yokoyama & Shibata (2001) 

observations. With the new model there is no longer a significant discrepancy between 

the observed and predicted values of MA-

3.3 Modeling the Asymmetric Current Layer 

Although the Somov-Titov formalism is insufficient to determine the reconnection 

rate, it does provide a more realistic description of the magnetic field and flow struc­

ture of the current layer than the previous models of Lin & Forbes (2000) and Reeves 

& Forbes (2005). A key issue that we will address in this section is the effect of the 

asymmetry introduced into the flare reconnection process by the decrease of the solar 

magnetic field with height. So far, very little work has been done within the solar 

research community which specifically addresses this issue. 

Although several numerical simulations have been carried out in 2D (e.g. Yokoyama 

& Shibata, 1997, 2001) and 3D (e.g. Roussev et al., 2003; Kliem & Torok, 2006) which 

are asymmetric, there have been no studies published that examine the nature of the 

outflow from the reconnection region. One of the main reasons for this may be that 

most of these simulations lack a realistic resistivity model. In most cases (especially 

the 3D cases) the resistivity is numerical. Another reason may be that most of the 
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solar MHD models do not use a proper energy equation, but instead use an equation 

of state with an ad hoc polytropic index to relate the gas pressure to the density. 

In either case, obtaining a physically meaningful description of the diffusion region 

becomes problematic. 

In this section, we will apply the Somov-Titov procedure to a current layer whose 

exterior field is consistent with the asymmetric field of the Lin & Forbes (2000) and 

Reeves & Forbes (2005) models (Equation 3.6 above). We use equations 2.13 through 

2.16 from Chapter 2 (for the (Bx) = 0 case), replacing only Bxa with the new external 

field (Equation 3.6). As before, we normalize magnetic field to Bxa at the point x = 0, 

y = a0 so that Bxa(0) = - 1 . 

3.3.1 Sweet-Parker and Petscheck-like Solutions in the Asymmetric Case 

In chapter 2, we discussed the Somov-Titov solutions that use a symmetric, Syrovatskii-

like background magnetic field. These solutions range from Sweet-Parker-like to 

Petscheck-like, depending on the assumed length of the diffusion region, a. When 

the length of the diffusion region is small compared to the length of the Syrovatskii 

current layer, the solutions become Petschek-like, with the small diffusion region in 

the center of the current layer, and most of the current layer composed of the slow-

mode shocks. In these Petschek-like cases, plasma parameters such as the flow speed, 

(14), and field strength, (By), rise rapidly inside the diffusion region, reaching their 

maximum values (14u and MA) quickly, and then remain nearly uniform in the shocks 

region. When a is near unity, we obtain solutions that look like the Sweet-Parker 

solution. Here (14) and (By) gradually increase over the length of a large diffusion 

region that runs the full length of the current layer. 

Solutions to the asymmetric current sheet problem share many of the same general 

characteristics as their symmetric-system counterparts. These solutions can exhibit 
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both Sweet-Parker and Petschek-like behavior, depending on the value of a and, to 

a lesser extent, (5 (see chapter 2). However, because of the asymmetric nature of the 

external background field, the character of the solution on either side of the x-line will 

tend to be different. If we choose a such that it produces a Sweet-Parker-like solution 

on the upward flowing part of the current layer, then the downflowing part contains a 

normal magnetic field component that reverses sign (i.e. a magnetic island). Figure 3-

12 shows an example of a solution featuring this type of magnetic field reversal. If 

we choose a such that it produces a Sweet-Parker-like solution on the downflowing 

end, the upfiowing end will be Petschek-like. As figure 3-11 shows, using the highly 

asymmetric background field shown in Figure 3-10, only one side of the current layer 

(the downward flowing side) is Sweet-Parker-like. Cases that are Petschek-like on 

both ends of the current sheet do exist, but the shocks region is considerably more 

extended above the x-line than it is below. It is only possible to obtain Sweet-Parker 

solutions through the current layer by choosing model parameters that result in a 

current layer so short that it is nearly symmetrical. 

This result leads to the following conclusion: in the case of asymmetric, steady-

state reconnection, it is impossible to acheive a simple Sweet-Parker solution (i.e. one 

without a magnetic island and without a Petschek region) in the presence of magnetic 

field that decreases rapidly with altitude in the corona. 

The reason for this is straightforward: for a given variation of the external field, 

there exists a particular value of a (near unity) that will produce a Sweet-Parker 

type current sheet. In a highly asymmetric case, however, the external field variation 

is different above and below the x-line, so that the value of a needed to obtain a 

Sweet-Parker solution is different in the two regions. Because a = 1/ [LUM2
A) and Lu 

and MA are globally defined parameters, there cannot be different values of a above 

and below the x-line. Thus a Sweet-Parker solution can exist in only one of the two 
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Figure 3-10: Tangential magnetic field component of Lin & Forbes (2000) along the 

length of the current layer. The location x ~ —0.6 corresponds to the lower tip of the 

current layer (or sheet) and s w 6.1 to the upper tip. The x-line is located at x = 0, 

the pinch point. This field is used in the calculation of solutions seen in Figure 3-11. 
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Figure 3-11: An asymmetric solution for the outflow speed, (Vx), the magnetic field, 

(By), the density, (p), and current layer thickness, function of the distance x 

along the layer. Outside the diffusion region a corresponds to the distance between 

the slow shocks. Here MA = 0.1, Lu — 85, and (3 = 0.1, while the background 

magnetic field corresponds to that shown in Figure 3-10. Notice that, while the 

downward pointing jet is Sweet-Parker-like, the upward jet resembles Petschek. A 

pure Sweet-Parker solution is not possible in the case of an asymmetric current sheet. 
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Figure 3-12: A close-up example of the type of magnetic island that can form when 

the a chosen is less than the critical value of a (see chapter 2) on one side of the 

x-line (the left side, in this case) while greater than the critical value of a on the 

other (right side). 

regions for a given set of parameters. 

If the upper region is forced to be Sweet-Parker-like, then the lower region will 

have a field reversal (i.e. a magnetic island), so it is no longer a simple Sweet-Parker 

current sheet. The formation of an island in the downflow region may indicate a 

breakdown of the steady-state assumption since such stationary islands are not seen 

in numerical simulations to our knowledge. Two-dimensional MHD numerical simu­

lations by Forbes (1986) suggest that the downward jet is greatly reduced in solutions 

with j3 greater than about 1 and that most inflowing plasma is directed into the upper 

jet. For low f3 solutions (f3 <C 1) with outflow fast-mode Mach numbers greater than 

1, a downward jet does occur. However, as in our steady-state solutions, the length 

of this jet is very short compared to the upper jet. 
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That the Sweet-Parker solution seems to be difficult to obtain in this asymmetric 

framework does not necessarily mean that such asymmetric Sweet-Parker solutions 

will be impossible to obtain in general. We know from our expansions near x = 0, 

for example, that the addition (Bx) will increase the critical value of a. Thus the 

addition of tangential magnetic field to the solution may help to allow the upper 

jet to be more Sweet-Parker-like without triggering a field reversal in the lower jet. 

Additionally, a more general approach to this problem such as a complete numerical 

model might allow the formation of additional external current structures or other 

complex effects that cannot occur in this relatively simple model. Thus, while we 

cannot conclude that Sweet-Parker will not occur in an asymmetric framework, there 

is some evidence to suggest that slow reconnection solutions in this region are more 

complex than the simple Sweet-Parker treatment. 

Obtaining Petschek-like solutions throughout the current layer requires only that 

we choose a to be much smaller than the length of the shorter of the two jets, so 

the length of the diffusion region will be short. It is possible to choose a so that 

the diffusion region in both the upward and the downward jets is much shorter than 

the length of the current layer. In this case, while the asymmetry in the external 

background field outside the current layer will continue to have an effect on the 

solution, the short diffusion region essentially forces Petschek-like behavior on each 

side of the x-line. Thus it remains possible to recover solutions that are fundamentally 

Petschek-like, albeit with a diffusion region that may be asymmetrically shaped. 

3.3.2 Properties of the Asymmetric Solutions: Flows 

In the past ten years or so, several authors have reported on their observations of 

flows above postflare arcades during flares and other eruptions. One of the most 

dramatic examples of these features are the downflows observed by the Transition 
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Region and Coronal Explorer (TRACE) spacecraft (Handy et al., 1999) during the 

X-flare on 21 April 2002. These flows, referred to as supra-arcade downflows (SADs), 

appeared as dark voids in a diffuse structure, interpreted to be high temperature 

plasma (15-20 K) producing emission in the Fe XXIV line (Gallagher et a l , 2002). 

Because these flows are embedded in such high temperature plasma, they have been 

interpreted as being outflows from reconnection (Asai et al., 2004). Earlier, using 

the Soft X-ray Telescope (Tsuneta et al., 1991) on Yohkoh, McKenzie & Hudson 

(1999) and McKenzie (2000) observed similar flows moving with speeds between 50 

and 500 kms"1 above post-flare arcades. Because observations of such post-flare 

flows remain relatively rare, this phenomenon is still not well understood. Several 

authors have expressed hope that Hinode observations will help shed light on their 

nature (McKenzie et al., 2007). Such flows have already been observed by Hinode, 

but because Hinode was launched in October 2006 during solar minimum, there have 

been few flares observed and the type of large limb event needed to see these flows 

well has yet to be observed. 

Inflows have also been observed in the extended corona using the LASCO corona-

graph onboard SOHO by Sheeley & Wang (2002). These flows, which reach maximum 

speeds between 50 and 100 kms - 1 , occur frequently during periods of solar activity. 

Occasionally the inflow is accompanied by an outgoing partner. These events, which 

are called "in-out pairs" are believed to be the result of a special class of CMEs called 

"streamer blowouts" (Sheeley & Wang, 2007). Because of their relationship to erup­

tions, it is reasonable to infer that at least some of these events are also the product 

of (or related to) magnetic reconnection. 

Because all of these flows occur at speeds much slower than the Alfven speed, some 

authors have dismissed the idea that they could be directly related to reconnection 

outflow, which is generally thought to occur at or near the Alfven speed (McKenzie 
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& Hudson, 1999). However, because so few models of such reconnection flows in a 

realistic, asymmetric background exist, confirming this interpretation has been diffi­

cult. So one of the questions we would like to answer with this model is exactly what 

characteristics we might expect such post-flare flows to exhibit. 

The speeds of the outflows from the reconnection site are strongly influenced by 

the presence of thermal conduction, so we will return to this question in chapter 4 

of this thesis. Nonetheless, the symmetry of the background field also influnces the 

characteristics of these flows as well. 

In most cases, both symmetric and highly asymmetric, both the upwards and 

downwards directed jets reach approximately the same maximum speed (the exact 

speed depends on the model's input parameters, but the two jets nontheless share 

about the same maximum to within 5%). However, the downward jet tends to achieve 

its maximum speed only as it reaches the lower tip of the current layer. In highly 

asymmetric cases, the upper jet reaches its maximum speed close to the x-line. This 

appears to be the related to the dramatic widening of the upper layer that occurs 

in highly asymmetric cases (an example of which can be seen in Figure 3-11) and is 

indicitave of the divergence of the slow-mode shocks above the x-line. 

In no case does the velocity of a jet reach, or exceed, the inflow Alfven speed, 

corresponding to a value of 1 in normalized units. This behavior mirrors the behavior 

of the symmetric solutions, which, at their fastest, come within a few percent of the 

Alfven speed, but do not exceed it. 

On the other hand, the fast-mode Mach number of each jet, which depends 

strongly on the temperature of the flow, behaves in the opposite way. The tem­

perature of the upward directed jet tends to be lower than the temperature of the 

downward directed jet. As a result the fast-mode velocity is lower in the upper jet, 

which serves to increase the fast-mode Mach number of the upper jet slightly, by a 
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factor of about 1.5 at the most. There are many cases where the upper jet 's Mach 

number is higher than 1, while the lower jet 's Mach number is not. Of course, because 

of the role of temperature in determining the fast-mode Mach number, the presence of 

thermal conduction plays a much bigger part in determining the Mach number than 

the background field. Thus we will revisit this question, in particular, in chapter 4, 

which considers the effects of thermal conduction on the solutions. 

We also considered whether the formation of magnetic islands might have a signif­

icant effect on the behavior of the jets. (In particular, the downward jet, since that is 

where magnetic islands most commonly form.) While it does appear that the velocity 

curve develops a very slightly kinked shape when a magnetic island is present, this 

effect is small, and it does not appear to cause any other behavior of note. 

The observations of in-out pairs by Sheeley & Wang (2007) have some interesting 

characteristics that are worth noting in the context of these results for our asymmetric 

model. Many of these pairs are triggered by the eruption of a CME. When these pairs 

of flows occur, the downflowing component is generally narrow, while the upward 

flows begin as wide features that expand as they rise in the corona. Like these, our 

asymmetric models show a downward pointed jet that is very narrow compared to 

the upward going jet and is also relatively uniform in thickness along its length. The 

upward jets, however, often widen dramatically, until they may be just as thick as 

they are wide. Both of these properties are very similar to the features of in-out 

pairs. Sheeley & Wang (2007) interpret their observations of the outgoing component 

of these pairs to be a signature of a flux rope rising in the corona. However, our 

model results suggest a possible alternative interpretation: that the outgoing flow is 

related to reconnection in a highly asymmetric field. 
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3.3.3 Properties of the Asymmetric Solutions: Other Characteristics 

Ciaravella et al. (2002), Raymond et al. (2003), and Ciaravella et al. (2006) studied 

the properties of the current sheets that formed in the wake of several CMEs using the 

Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO (Kohl et al., 1995). 

UVCS allows observers to obtain a series of spectra for a number of prominent coronal 

emission lines for points all along a long slit. Thus it provides a way to measure the 

properties of the plasma—temperature, density, etc.—across a cross-section of the 

corona. 

Ciaravella et al. placed the slit perpendicular to the direction of CME travel, so 

that as the CME lifted off, the slit spanned the current sheet they expected would 

form in its wake. Using diagnostic emission lines they were able to estimate some of 

the properties of the current layer, most specifically, that the density was enhanced by 

a factor of about 2.5 over ordinary coronal values, and the temperature (for different 

current sheets during different events) spanned a range of values from 106 K, close 

to the coronal background temperature, to 107 K, a full order of magnitude hotter. 

Thus we asked whether these properties might be affected by the asymmetric nature 

of the background field. 

In the symmetric case, the density at the x-line depends strongly on plasma /?, 

ranging from 1, in normalized units, in the incompressible, very high j3 case, up to 

about 1.25 in the case of low j3. When the reconnection is Sweet-Parker-like, this 

value often represents the maximum value, and density falls off as you approach the 

ends of the current layer. When the reconnection is Petschek-like, the density is often 

at a maximum at a point about 25% of the way between the x-line and the tip of the 

current layer and, while this maximum value also depends on the plasma (3, it never 

reaches a value much higher than about 1.75. 

The asymmetric case behaves similarly. Although the variation in density along 
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the current layer is functionally different from the symmetric cases, the basic prop­

erties remain the same. The degree of density enhancement in both jets is nearly 

the same, and the maximum and minimum values are about the same as well. In 

highly asymmetric cases the density falls off more slowly in the upper jet than in 

the lower one, but the degree of the falloff is about equal, with the density reaching 

approximately the background value near the tips of the current layer. 

Temperature and density are linked, so it is perhaps not unsurprising that our 

findings about the asymmetric background field's effect on temperature are similar 

to our findings about its effect on density. In both the symmetric and asymmetric 

cases, the temperature reaches a maximum at the x-line. The exact value of this 

temperature depends on plasma /?. In the case of very low /?, high temperatures are 

achieved, while in the case of very high /?, little heating occurs and the temperature 

does not rise much above the background. For 0.1 < /3 < 1, values corresponding to 

those observed in the corona, the maximum temperature ranges from about 10 times 

the background in the lower (3 case to 2 times the background in the higher (3 case. 

These predictions agree well with the Ciaravella et al. findings. 

There is, however, an important difference between temperature behavior in the 

symmetric and asymmetric cases. In both cases, the temperature falls off with dis­

tance along the current layer, reaching temperatures that range from the background 

temperature in a few cases up to a few times the background temperature in others. 

In the asymmetric case, the temperature of the upper jet consistenly cools more than 

that of the lower jet. In the most extreme cases, the temperature of the outgoing jet 

may be as much as 2 times the temperature of the downgoing jet. 

As we will see in chapter 4, density and temperature are both strongly affected by 

the presence of thermal conduction. So we will revisit this question later to see how 

thermal conduction affects these properties. 
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CHAPTER 4 

THE EFFECTS OF THERMAL 

CONDUCTION 

Thermal conduction plays a major role in both energetic losses and the dynamics 

of reconnecting current sheets. The conduction of energetic particles and electrons 

along field lines that map from the reconnection site to the chromosphere is essential 

for the creation of flare ribbons and loops (see chapter 1 for a complete discussion of 

these phenomena). During the last ten years, several numerical similations have been 

carried out to test various proposals (such as those by Cargill et al., 1995) on how 

reconnection and conduction lead to the formation of flare loops, and to a lesser extent, 

flare ribbons. Perhaps the most significant simulations of this type are those carried 

out by Yokoyama & Shibata (1997, 2001). They conducted MHD simulations of flare 

current sheets with models that both included and excluded thermal conduction, so 

their work makes especially clear the specific effects of conduction on the plasma in 

and around the reconnecting current sheet. Their simulations impose a nonuniform 

resistivity at the x-line at t = 0 to initiate the Petschek-type reconnection in the 

current layer. Their later simulations (e.g. Yokoyama & Shibata, 2001) also include 

the effects of line-tying of the magnetic field to the solar surface, as well as the effects 

of chromospheric evaporation (see chapter 1). 

Figure 4-1 and Figure 4-2 show comparisons of the temperature and pressure, 

as well as field lines and fluid flow, in and around the current layer for one set of 
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simulations (1997) when conduction is not present and when it is. One of the most 

notable effects of conduction is to expand the region in which plasma has been heated 

to include not only the current sheet, but also the surrounding plasma. (The fact that 

thermal conduction causes heat to flow from the high temperature current layer into 

the surrounding plasma may seem obvious, but very few studies have examined how 

this process happens and how it affects other parameters.) We refer to this region of 

hot plasma surrounding the current layer as the "thermal halo" region. Figure 4-3 

shows cuts across the current layer of temperature and' density taken from another of 

the Yokoyama & Shibata models (2001). These plots make clear the location of the 

hot current layer and the surrounding thermal halo. 

It is clear from these figures that conduction noticably changes the behavior of the 

plasma near the current layer. In addition to increasing its temperature, conduction 

also affects the flows and magnetic field in this layer, accelerating the tangential flow 

while reducing the tangential field. Therefore, in order to understand the complete 

effects of thermal conduction, we want our model _to include the effect of thermal 

conduction on the thermal halo surrounding the current layer, as well as the current 

layer itself. 

4.1 Thermal Conduction &; Slow Shock Structure 

Somov & Oreshina (2000) have previously done a rough analysis of how thermal 

conduction modifies the reconnection process, but their analysis is too simple to 

allow direct comparison with numerical simulations like those of Yokoyama & Shibata 

(1997, 2001). First, Somov & Oreshina treat the thermal conduction in their model 

as a simple energy loss term, and do not consider the effects of heat flow out of the 

current sheet on the surrounding plasma. Consequently, their model mixes together 

the halo and the jet regions, so that they do not accurately predict the properties 
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Figure 4-1: Temperature maps shown without (top) and with (bottom) conduction, 

from Yokoyama & Shibata (1997). The vertical line shows the approximate location 

at which parameters were measured, while arrows show flow velocity vectors. (Figure 

from Yokoyama & Shibata, 1997, used with permission.) 
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Figure 4-2: Pressure maps shown without (top) and with (bottom) conduction, from 

Yokoyama & Shibata (1997). (Figure from Yokoyama & Shibata, 1997, used with 

permission.) 
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Figure 4-3: Cross-sections showing the variation of density (left) and temperature 

(right) across the thermal halo and current layer in Yokoyama & Shibata (2001). 

The dark shaded region represents the thermal halo region, the light shaded region 

represents the locations of the slow-shocks which surround the current layer. (Figure 

from Yokoyama & Shibata, 2001, used with permission.) 

of either region. Here, we offer a more complete model, where we do consider the 

effects of heat flowing out of the current layer on the plasma that surrounds it. This 

allows us to make a better comparison between the results of our own modeling efforts 

and other numerical models, which consider both the current layer and surrounding 

regions. Figure 4-4 shows a schematic of the configuration of the revised solution with 

a thermal halo and central current layer. As we will see in the next section, we can 

use work by Xu & Forbes (1992) to determine the relationship between properties of 

the thermal halo and current layer. 

Second, they use an anomalous heat flux term in their energy equation for the 

thermal conduction (Manheimer & Klein, 1975; Manheimer, 1977). However, evidence 

from the case with no thermal conduction, described in chapter 2, suggests that the 

temperature of the current layer in weak magnetic field eruptions may not be high 

enough to require the use of this anomalous heat flux term. Additionally, Yokoyama 

& Shibata use a classical heat flux, so in order to compare to their numerical models, 

we should adopt the same basic fomula. 
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Figure 4-4: Schematic of the configuration of the current layer and thermal halo in this 

reformulation of the Somov-Titov system including thermal conduction. The addition 

of conduction creates flow and variation in the magnetic field along the boundary at 

a(x) which are calculated using a modified version of the shock properties determined 

by Xu& Forbes (1992). 
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Finally, the current sheets in the cases considered by Somov & Oreshina appear 

to be exceptionally thin—on the order of a few meters thick. These values are not 

consistent with observations (Ciaravella et al., 2002) or models (Yokoyama & Shibata, 

2001) of coronal current sheets. Thus for a reasonable analysis of the effects of thermal 

conduction on current sheets in the corona, we must reconsider the problem with 

appropriate solar values. Thus there are several reasons why our approach to this 

problem represents an improvement over the existing solution by Somov & Oreshina. 

Because we wish to compare directly with the results of Yokoyama & Shibata, we 

will use the classical formula for our heat flux term. That is, 

C = -KVT, (4.1) 

where K is the thermal conduction tensor, £ is the energy loss function (see the full 

MHD energy equation, 2.3), and T is the temperature. In this case, we assume 

that strong magnetic fields are present, and therefore conduction occurs only along 

magnetic field lines; no conduction perpendicular to the field is allowed. Because 

we have already assumed that pressure and density are essentially constant in the 

y-direction inside the current layer, we must conclude temperature is also constant 

(in y) in the current layer. Therefore, all of the conduction in our model takes 

place in the halo region that connects the main outflow jet to the chromosphere. 

For simplicity, we assume that the field is connected directly to a thermal sink at 

temperature T0 at some distance Lc, which represents the distance from the current 

sheet to the chromosphere. Therefore, we can estimate the temperature gradient in 

the halo region as, 

Lc 

To obtain a better estimate of the actual temperature gradients in the external 

region requires a full 2D model of the entire flare loop-chromosphere system. Such a 

model is beyond the scope of our analysis here, which is focused on the current layer 
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region. Thus the estimated energy lost to thermal conduction is 

£ = A T 5 / 2 VT tan (9 

C = A ^ V r 7 / 2 t a n # 

c « AH.(T 7 / 2-T-)w 

where 6 is the angle between the magnetic field and current layer (and thus the 

tangent term can be rewritten as above) and A is a constant, based on the Spitzer 

formula (Priest, 1982), so 

A = 1.8 x l O - ^ ^ - W m - ' K - 1 . 
In A 

We can then rewrite the conduction term in our normalized units, 

C = y((T)^-T;/nl)
{-§^. (4.2) 

where, A* represents the normalized thermal conduction coefficient, into which we 

have absorbed all the constants in the equation, and is given by 

y=2X TV2 

7LcPoV^ 

where the additional terms T0, p0l and VAO are included to ensure proper normal­

ization. Respectively these parameters represent global temperature, density, and 

Alfven speed, measured upstream of the current layer at x = 0. 

The dimensionless parameter A* is the ratio of the energy loss due to thermal 

conduction to the energy input by Poynting flux carried at the Alfven speed into the 

current layer. Here A* must be in the range of approximately 0 < A* < 1. (In fact, 

it is possible to choose parameters such that A* > 1, but because the sheet cannot 

cool beyond the background temperature, any such choice returns the same solution 

as when A* = 1.) The ratio (By) /Bxa is equal to the tangent of the angle field lines 

make with the current layer boundary, which appears as a consequence of the tensor 

product in the general, form of £.. 
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4.1.1 Equations for Reconnection Jet within a Thermal Halo 

The main consequence of adding thermal conduction to our model is that heat can 

now flow out of the central current layer and into the halo region. In order to model 

the transition from the jet to the halo, we need to model the interface between the 

two. In general this is a very complex problem, but the problem is considerably 

simplified when slow-mode shocks are present. The structure of slow-mode shocks in 

the presence of thermal conduction has been previously considered by Xu & Forbes 

(1992). They obtained exact solutions for the structure of the slow-mode shocks in the 

presence of both conduction and radiation. However, they assumed that the net loss 

was due to radiation rather than thermal conduction. They did not include the effect 

of energy lost by conduction to the chromosphere. Here we re-work their analysis to 

replace the effect of loss due to radiation with the effect of loss due to conduction. 

The addition of thermal conduction modifies the boundary values upstream of 

the shock, so that Vxa and Bya are no longer zero. Thermal conduction raises the 

temperature of plasma immediately upstream of the slow shock so the shocks become 

isothermal. Xu & Forbes give the relationships for the shock transition in the presence 

of an energy loss. These relations are: 

Bxa = BxJ- + -I0, (4.3) 

Vxa = (Vx) ( l - | ^ ) , (4.4) 

Vxa {By) + Ma da 
/ya~ B adx 
Vya=

 Vxa^^1Vla+Vxa^, (4.5) 
•'xa 

Pa = Pu, (4-6) 

Q D 2 D 2 

Pa~ 2 2 2 ' l } 

where the dimensionless parameter J0 is the ratio of the energy loss rate to the incom­

ing Poynting flux. In Xu & Forbes, IQ included just the energy loss due to radiation. 
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Here, where the energy loss is thermal conduction, this ratio is 

\((T)7/2 -T7-/2) ^ 
j \ ' ' sink) Bxa • / i Q\ 

° ~ MaBxa + lpaVya • K'} 

Here we use (T) = (2 (p))/(f3 (p)) and the isothermal condition that the tempera­

ture must be the same both inside and outside of the current layer. We assume that 

the background field is unchanged from before, but, because we now have expanded 

the shock into three regions (downstream, the jet boundary, and far upstream), in 

the equations above, in order to differentiate between quantities in the subshock re­

gion and those far upstream of the shock we use the subscript a—e.g. Bxa—to signify 

quantities at the jet boundary, a, and the subscript u—Bxu—to signify quanties far 

upstream. Thus we now refer to the background field as Bxu. 

One key difference between our treatment of the slow-mode shock with heat con­

duction and the Xu & Forbes treatment is that the reconnection current layer is 

two-dimensional, while theirs was only one-dimensional. In the Xu & Forbes model, 

all heat that is conducted into the upstream region is necessarily convected back 

downstream (since, with only one dimension, there is no way to remove heat from 

the system entirely). In our model, heat can escape the system entirely if it flows to 

the heat sink before convection can carry it back into the current layer. Thus, there 

is always a net energy loss in our model. 

To address the effect of the conductive heat loss, we have modified the Xu & 

Forbes equations by replacing the radiative heat loss with a conductive heat loss. 

Since the relative heat loss, I0 depends on the properties of the jet, we need to iterate 

the combined system of slow-shock jump conditions and the Somov-Titov current 

layer. We first obtain an internal solution without including loss terms, then use 

this internal solution to find the appropriate shock jump conditions using equations 

4.3 through 4.8. Next, we use these new jump conditions to obtain the boundary 

conditions for the Somov-Titov system. This procedure is repeated until the solution 
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d_ 
dx 

— (-v + P~^\ V + dx\2Pa+ 2 Vxa + 

converges. 

Bearing in mind the iterative nature of the solution, and using the relationships 

above, we can rederive the MHD equations, now including thermal conduction. The 

Somov-Titov equations become: 

-paVya + pVxa-£ = ^ {ap (Vx)) , (4.9) 

for the continuity equation; 

£ (ap (Vx)
2) + Vxa (vya - £ l 4 a ) = - a ^ - + Bxa (By), (4.10) 

for the momentum equation; and 

a ( j <P> + f (K)2) (Vx) 

+A ((T)7'2 - T7Jn
2

k) &L = -\VaVya - Ma Bxa, (4.11) 

for the energy requation. Ohm's law is unchanged from its previous form. 

This system of equations, including thermal conduction, is solved similarly to the 

system without thermal conduction described in chapter 2. We again obtain explicit 

analytic solutions to the equations at x — 0, which we use as the initial conditions 

for obtaining solutions numerically for the rest of the layer. However, in this case 

we must be cautious in our interpretation of the results for the diffusion region (the 

region where x < a). Because the Xu & Forbes equations hold only for slow shocks, 

and the slow shocks are not present in the diffusion region, the solutions including the 

effects of these shocks are only meaningful in the region outside the diffusion region 

(x > a). We also note that the Xu & Forbes jump conditions hold only in the case 

that the thickness of the subshock transition is much less than the halo thickness— 

that is, the subshock thickness must be much less than the total shock thickness. 

This is another reason why we cannot apply the Xu & Forbes results to the diffusion 

region. 
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4.1.2 Solutions 

Because a principal effect of thermal conduction is to remove energy from the system, 

it is perhaps unsurprising that two of the most immediate consequences of adding 

thermal conduction to our equations are to cool the system and slow the outflow jet 

in the current layer. Figure 4-5 shows the effect of increasing thermal conduction 

given an otherwise identical set of input parameters. The top plot shows the speed 

of the outflow jet, (Vx), the middle plot shows the temperature, (T), of the current 

layer, while the bottom plot shows the density of the current layer, (p). In the case 

with no thermal conductions (red curves), the outflow jet nearly reaches the Alfven 

speed at the end of the current layer. Additionally, because there is no cooling, the 

temperature of the current layer is relatively uniform and very high. In the case with 

modest thermal conduction (green curves), the outflow jet reachs only about 80% 

of the Alfven speed, and, because some heat is carried out of the current layer by 

conduction, the temperature cools by nearly a factor of 10. In the case with maximum 

conduction (that is, the largest value of A for which we can still obtain solutions), 

indicated by blue curves, the outflow jet reaches only about 50% of the Alfven speed, 

and the temperature is almost uniformly equal to the background temperature. The 

dashed portion of the curves refer to the diffusion region solution, where the Xu & 

Forbes equations do not hold. 

As we discussed in chapter 3, McKenzie & Hudson (1999) and McKenzie (2000) 

used Yohkoh to observe post-flare downflows above a reconnecting loop system in the 

corona and found that downflow speeds were only about half of the estimated local 

Alfven speed. As a result, they concluded that the observed flows were considerably 

slower than those predicted by the standard reconnection models (i.e. Sweet-Parker 

or Petschek). However, the results shown in figure 4-5 suggest that even modest 

conduction may reduce the speed of the outflow jet by as much as a factor of two. 
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Figure 4-5: The effect of different thermal conductivity levels on the variation of 

outflow speed, temperature, and density with distance x along the current layer. The 

red curve corresponds to no conduction, the green to a modest amount of conduction, 

and the blue to very high conduction. The curves are dashed inside of the diffusion 

region, where the solutions including thermal conduction are not valid. 
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Thus we conclude that the downfiows may in fact be reconnection outflow, and the 

relatively slow speed due to thermal conduction. 

In chapter 3 we also discussed observations of current sheet temperatures and 

densities by Ciaravella et al. (2002), Raymond et al. (2003), and Ciaravella et al. 

(2006). They found that densities inside of the current layer were usually enhanced by 

about 2.5 times over background coronal densities, while our predicitions for densities 

without thermal conduction remained somewhat lower than that. The addition of 

thermal conduction, however, allows the plasma to cool substantially, which increases 

its density. Even modest amounts of conduction can increase the density to 5 times 

the background as seen in Figure 4-5. So a small amount of thermal conduction, that 

might only reduce the temperature of the plasma by a few percent, may account for 

the higher densities observed by these authors. 

4.2 Comparison with Numerical Simulations 

The numerical simulations by Yokoyama & Shibata were motivated by earlier predic­

tions by Forbes et al. (1989) that the strong thermal conduction that exists in the 

corona would modify the standard Petschek configuration by replacing the slow MHD 

shocks with a combination of conduction fronts and isothermal slow-mode shocks. The 

basic idea was confirmed by Yokoyama & Shibata, but a detailed comparison between 

their simulation and the isothermal slow-mode jump conditions shows descrepancies 

on the order of a factor of two or so. This is because the jump relations of Xu & 

Forbes must be modified to include the energy lost by conduction of heat from the 

reconnection region to the chromosphere. Here we will see that this modification leads 

to good agreement between the modified Somov-Titov formalism and Yokoyama & 

Shibata's numerical simulations of reconnection including conduction. 

In order to evaluate our model, we compared it to two numerical models by 
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Yokoyama & Shibata (1997, 2001). These two-dimensional models make use of a nu­

merical code that includes nonlinear, anisotropic heat conduction. Unlike our steady-

state model, these simulations are time-dependent, so our benchmarking comparison 

corresponds only to a snapshot of their model at some point in its evolution. These 

simulations do achieve quasi-steady configurations, but even in these cases there are 

low-level fluctuations. 

Yokoyama & Shibata use a classical Spitzer-type conduction coefficient that is 

proportional to T'5/'2VT, so we have used the same form so as to facilitate a good 

comparison. In real flares the thermal conduction is likely to be anomalous because 

of the very high temperature of the flare plasma. Somov & Oreshina use a conduc­

tion coefficient proportional to T3//2 and which is independent of the temperature 

gradient. Their model corresponds to the free escape of energetic electrons from the 

flare plasma. A noteworthy difference between the Somov & Oreshina model and the 

Yokoyama & Shibata simulation is the presence of a tangential field (Bx) inside the 

current layer. Because Somov & Oreshina assume that (Bx) is zero everywhere, the 

conductive loss goes to zero at their x-line. However, in the Yokoyama & Shibata 

model, heat flows not only out of the current layer and into the surrounding plasma, 

but also flows along field that exists in the diffusion region. Consequently, Somov & 

Oreshina predict very high temperatures in the diffusion region that simply do not 

occur in numerical simulations. If anything, the temperature in the diffusion region 

in the simulations are cooler than the rest of the layer. Thus it is clear that the 

Somov-Titov formalism can only be used to model the effects of thermal conduction 

outside the diffusion region, where normal field dominates any tangential field. In this 

region conduction in both models is predominantly out of the current layer (rather 

than along it). 

In order to make the actual comparison to our results, we have estimated average 
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values of key parameters in the Yokoyama & Shibata model both inside the current 

layer and at the boundary in the thermal halo region. This estimation is done by 

visually inspecting plotted cross sections from the two Yokoyama & Shibata papers 

(see Figures 4-1, 4-2, and 4-3). Most of the small-scale variations seen in these plots 

are due to temperature fluctuations. Nonetheless, in most cases it is possible to 

estimate an average value, treating the fluctuations as a measure of the error in the 

estimate. These cross-sectional measurements are made well outside the diffusion 

region in both cases (in the location of the white line in Figure 4-1), where our 

analytic model should be valid. 

We can see in Figures 4-1 and 4-2 that conduction has a significant effect on the 

results of the simulation, most obviously, broadening the heated region and increasing 

the uniformity (in temperature and other parameters) of the current layer. The ex­

pansion of the heated region occurs because heat flows out from the hot current layer 

and into the surrounding plasma, creating—as we have discussed above—a thermal 

halo. The increase in uniformity occurs because heat flows along lines of magnetic field 

faster than the plasma would otherwise naturally diffuse. Thus, without conduction, 

small regions of plasma can be heated to high temperatures, and there is no mecha­

nism to cool them or spread the thermal energy into the surrounding plasma. With 

conduction, even if heating only occurs in a particular region, heat can quickly flow 

throughout the entire current layer and thermal halo, leading to an even distribution 

of temperature. 

We compared our results to the Yokoyama & Shibata results by measuring plasma 

parameters inside the current layer and thermal halo and comparing the relative values 

of each. If our model works correctly, we would expect that comparisons of ratios 

of these values in both models would agree. The four tables that follow show input 

parameters and results from analyses with our model and the Yokoyama & Shibata 
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numerical models. Tables 4.1 and 4.3 show the input parameters used to match those 

in the 1997 and 2001 papers, respectively. Tables 4.2 and 4.4 show a comparison 

of ratios of values inside and outside the current sheet in the two models. Error 

in the measurements of the Yokoyama h Shibata results arises from both the time-

varying nature of their solution (which leads to many small fluctuations throught 

the current layer that make it impossible to assign an exact average value at any 

location) and the fact that values are read off of a graph with limited resolution. 

Fluctuations throughout the solution, however, account for the bulk of the error, 

which was estimated by eye. 

Note that for ratios of the form 

z = x/y, 

we use the formula for propagation of standard deviations to calculate error, given in 

Parratt (1961) by: 
I Ax2 Aw2:r2 

A z = \ / — + ^ T ~ -
V y v 

Because of the differences between our own, essentially 1-dimensional model, and 

the Yokoyama & Shibata 2-dimensional, numerical model, we would never expect 

exact agreement between the two models. However, as we can clearly see from the 

tables, there is systematic agreement between our model and the more complex nu­

merical model. In general, the ratios measured in the Yokoyama & Shibata model 

were within about 20-30% of the same ratios measured in our model, although there 

are a few cases where there are larger differences. The most notable of these is the 

velocity ratio in the 1997 paper, which, because of rapid fluctuations in the thermal 

halo region, was difficult to measure. In this case, however, measurements of the 

same ratio in the 2001 paper confirm that our results appear to agree. Additionally, 

Yokoyama & Shibata do not include cross sectional plots of magnetic field in their 

2001 paper, thus these ratios are omitted from our comparison. 
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Physical Parameter 

Cooling Length Scale 

Particle Number Density 

Background Magnetic Field 

Background Temperature 

Plasma /? 

Conduction Coefficient 

Alfven Mach Number 

Lundquist Number 

Symbol 

Lc 

n0 

Bo 

To 

0 
X- T o / 2 2 

MA 

J-'u 

Value 

6 x 108 m 

1 x 1015 m~3 

21.7 gauss 

4 x 106 K 

0.03 

3.4 x 10-4 

0.1 

3.6 x 103 

Table 4.1: Input Parameters for comparison with Yokoyama & Shibata (1997) results. 

Physical Parameter 

Density Ratio 

Pressure Ratio 

Velocity Ratio 

Mag. Field (x-direction) Ratio 

Mag. Field (y-direction) Ratio 

Symbol 

Pal < P> 

Pal <P> 

Vxal <VX> 

Bxa/Bo 

Byal < By > 

Y&S '97 Model 

0.20 ±0.04 

0.20 ±0.02 

0 ± 0 . 2 

0.88 ± 0.04 

1.10 ±0.07 

Theory 

0.34 

0.30 

0.15 

0.85 

1.4 

Table 4.2: Comparison of ratios calculated from Yokoyama & Shibata (1997) and our 

2D model. 
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Physical Parameter 

Cooling Length Scale 

Particle Number Density 

Background Magnetic Field 

Background Temperature 

Plasma f3 

Conduction Coefficient 

Alfven Mach Number 

Lundquist Number 

Symbol 

Lc 

n0 

B0 

To 

0 
A - < 2-

PoVinLc 7 

MA 

Lu 

Value 

6 x 107 m 

1 x 1015 m"3 

5.9 gauss 

2 x 106 K 

0.20 

0.015 

0.1 

1 x 104 

Table 4.3: Input parameters for comparison with Yokoyama & Shibata (2001) results. 

Physical Parameter 

Density Ratio 

Pressure Ratio 

Velocity Ratio 

Mag. Field (x-direction) Ratio 

Mag. Field (y-direction) Ratio 

Symbol 

Pa/ < P> 

Pa/ <P> 

Vxa/ <VX> 

Bxa/B0 

Bya/ < By > 

Y&S '01 Model 

0.48 ± 0.03 

0.47 ±0.02 

0.11 ±0.01 

— 

— 

Theory 

0.52 

0.45 

0.18 

0.82 

1.4 

Table 4.4: Comparison of ratios calculated from Yokoyama & Shibata (2001) and our 

2D model. 
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It is important to note that, while both models treat the shock and thermal dy­

namics similarly, there are a few major differences. Most obviously, Yokoyama & 

Shibata include two-dimensional effects in their model that our own cannot accomo­

date. It seems likely that two-dimensional effects account for the bulk of the difference 

between the two models. Other factors which may contribute to the differences are 

the numerical noise in the Yokoyama &; Shibata model, as well as the presence of 

non-steady-state features. 

4.3 Fast Shock Formation in the Presence of Conduction 

During flares, hard X-ray emission is often observed co-located with the tops of the 

post-flare loop arcade (Sui et al., 2002). These x-ray emissions are often linked to 

Type II radio bursts, and may be caused by particle acceleration due to fast-mode 

shock waves that form in the reconnection outflow jets above the post-flare loop 

systems (Tsuneta & Naito, 1998; Mann et al., 2001; Mann k Klassen, 2005). Since 

the strength of these shocks is related to the amount of particle acceleration, we 

investigated the role that thermal conduction plays in generating these shocks, and 

conduction's effect on the shock's strength. (For a complete summary of fast shock 

formation in reconnection jets see Forbes, 1986.) 

In our normalized units, we can calculate the fast-mode Mach number of the 

outflow jet using the formula 

MFM = ^ (4.12) 

V <P> ^ 3(p) 

Since the highest value of MFM occurs near the tip of the current layer, we measure the 

fast-mode Mach number at the point 1 — MA- Beyond this location our assumptions 

break down as Bxa approaches zero at the tip of the Syrovatskii current layer (see 

chapter 2). Measuring at this point generally allows us to calculate the Mach number 
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Figure 4-6: An example of the fast-mode Mach number shown as a function of distance 

along the current layer, x, plotted for the case corresponding to the Yokoyama & Shi-

bata (1997) input parameters that appear in table 4.1. The dashed-line corresponds 

to a Mach number of 1, and shows where the flow becomes super-magnetosonic. 

for the fastest flow, and therefore gives the maximum Mach number for a given set of 

parameters. Figure 4-6 shows an example of the behavior of fast-mode Mach number 

as a function of the distance along the current layer. The Mach number is generally 

low in the diffusion region, then rises rapidly in the shocks region as the temperature 

cools and the flow reaches its maximum speed. 

Based on thermal conduction's effect on outflow jet speed, one might expect that 

increasing thermal conduction would simply reduce the outflow jet's fast-mode Mach 

number, and thus the strength of the shock in the outflow jet. However, the Mach 

number depends on more than just the outflow speed, it also depends on the fast-

mode wave speed. Increased thermal conduction actually acts to cool the jet, which 
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in turn reduces the local sound speed. This dramatically increases the fast-mode 

wave speed in the jet, since the contribution from the weak magnetic field in the jet 

is negligible. To show this effect, we plot the fast-mode Mach number as a function of 

conduction coefficient and plasma (3 (Figures 4-7 and 4-8, respectively). For a given 

plasma /? (denoted by color in both figures), as conduction coefficient rises, the Mach 

number increases to a point, then decreases slightly. For any conduction coefficient 

greater than one, the Mach number remains constant. Figure 4-9 is a surface plot 

that shows the effect of both conduction coefficient and plasma j3 simultaneously. 

The normalized conduction coefficient represents the ratio of energy flow due to 

thermal conduction to free energy available; a conduction coefficient of one represents 

a case where all the free energy in a system is being removed by heat flow. As we 

noted before, a conduction coefficient greater than one does not remove any more 

energy from the system, so increasing the conduction coefficient beyond one has no 

effect on the fast mode Mach number. 

As the conduction coefficient increases, the temperature of the current layer de­

creases (see section 4.1.2), and, correspondingly, so does the sound speed. If the sound 

speed decreases while the outflow speed stays relatively constant, the fast-mode Mach 

number increases. However, as the conduction coefficient approaches one, the tem­

perature of the current layer approaches equilibrium with the outside, and thus the 

sound speed reaches a minimum. Meanwhile, as energy is lost to thermal conduction, 

the jet also slows. If the sound speed remains relatively constant while the outflow 

jet slows, the fast-mode Mach number is reduced. Thus we see—as in Figure 4-7— 

that the maximum Mach number for a given plasma (3 occurs when the conduction 

coefficient is slightly less than one. 

Figure 4-8 shows how varying the plasma f3 effects the fast-mode Mach number of 

the outflow jet. For each f3, there is a family of possible solutions, depending on the 
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Figure 4-7: The effect of conduction coefficient on fast-mode Mach number. The 

colored dots correspond to different plasma (5 cases, which are identified in the inset in 

the upper left. The dashed vertical line shows where the effect of increasing conduction 

ceases to have an effect. (Once the plasma is cooled to the background temperature, 

it cannot cool any more and conduction switches off.) The peak in Mach number 

occurs when conduction is slightly less than maximum. 
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Figure 4-8: The effect of plasma /? on fast-mode Mach number for the same individual 

cases as shown in figure 4-7. Cases with low Mach number correspond to low con­

duction, while cases with large Mach numbers correspond to high conduction. The 

+ signs indicate Mach numbers calculated for the Somov-Titov case with no conduc­

tion, and the x signs indicate a Somov-Titov-like case where the energy equation is 

replaced by the assumption that the plasma in the sheet has cooled to the background 

temperature. The two curves refer to the theoretical limits for Mach numbers: the 

lower one is the Soward & Priest (1982) calculation of Mach number without conduc­

tion, while the upper curve is the Mach number for a flow at the Alfven speed in an 

isothermal plasma. 
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Figure 4-9: The results shown in figures 4-7 and 4-8 shown as a 3D surface plot. The 

colored lines refer to the respective f3 cases described in figure 4-7. The Soward-Priest 

lower limit is represented by a surface bounded by a dashed line, while the isothermal 

upper limit is represented by a dashed-dotted line. 

I l l 



choice of conduction coefficient. We know from Figure 4-7 that higher Mach numbers 

occur when the conduction coefficient becomes large, while low Mach numbers occur 

when the plasma j3 is low. Figure 4-8 also shows the Mach number for several special 

cases. The lower curve refers to the Mach number (Forbes, 1986) that results from the 

use of the Soward & Priest (1982) reconnection theory. This theory is a compressible 

Petschek-type reconnection model with no thermal conduction. The upper curve 

gives the isothermal upper limit on Mach number—that is, the highest possible Mach 

number, assuming outflow at exactly the Alfven speed. The + signs refer to Mach 

numbers calculated for the Somov-Titov theory with no thermal conduction for a 

given plasma /?, while the x signs refer to Mach numbers for outflow for a modified 

Somov-Titov theory where the energy equation is modified to force the current layer 

and surrounding plasma to be entirely isothermal. We note that the results for the 

Somov-Titov model correspond closely to our results for zero conduction, while the 

strong-conduction Somov-Titov case correspond closely to our own isothermal model. 

Further, no result approaches the upper limit (for small f3). This is because conduction 

removes energy from the jet, preventing it from reaching the Alfven speed. 

The excellent agreement between our results for Ac = 0 and those of Soward &: 

Priest (1982) provide confirmation of the overall validity of the Somov-Titov formal­

ism for Petschek-type reconnection. The Soward & Priest theory uses a completely 

different mathematical approach than that of Somov & Titov. It is a rigorous two-

dimensional analysis of the compressible MHD equations and does not make use of 

averaging of any kind. It only assumes, as we have here (and as Petschek implicitly 

assumed) that the length of the diffusion region is a free parameter. 
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CHAPTER 5 

CONCLUSIONS & FUTURE 

RESEARCH 

In this dissertation we have developed an improved analytical model for the reconnec-

tion process in eruptive flares. Our model extends the formalism developed by Somov 

(1992) and Somov et al. (1987) that averages quantities over the thickness of the re-

connection outflow layer, a procedure that is very similar to the standard treatment 

for ID nozzle flow. We have extended the Somov-Titov formalism to the asymmetric 

reconnection process that occurs in flares and we have also used it to analyze the 

effects of thermal conduction on the reconnection region. At the conclusion of this 

work, it is appropriate to ask the question: what have we learned about reconnection 

and solar eruptions from this model and what are its prospects for future research? 

Thus, in the sections that follow, we will attempt to highlight some of the important 

conclusions we can draw from our work and point out some of the interesting research 

questions that remain unanswered. 

5.1 Conclusions 

Before using the Somov-Titov formalism, we first undertook a thorough analysis of it 

and the assumptions on which it is based, including a determination of the strengths 

and weaknesses of the system. Since little documentation about how Somov & Titov 
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obtained their equations exists—the only papers, to our knowledge, about this system 

(Somov et al., 1987; Somov, 1992) provide almost no comment on the origin of the 

equations—it was necessary to completely rederive the system from first principles. 

This analysis revealed three very important assumptions that restrict the family 

of possible reconnection solutions that the model predicts. The first is that the ap­

proach assumes there is no significant tangential flow outside the current layer, which 

eliminates a large class of possible reconnection type solutions (e.g. stagnation-point-

flow type solutions). The second assumption, that the background magnetic field 

is Syrovatskii-like, actually represents an improvement to the assumptions made in 

other Petschek-like models. The third major assumption is that there is no significant 

tangential magnetic field inside the current layer. 

Like Petschek, Somov & Titov obtain a family of solutions whose reconnection 

rate ranges from slow to fast. The solution with the slowest rate corresponds to the 

Sweet-Parker solution, with a diffusion region that is nearly the same length as the 

current layer. The solution with the fastest rate corresponds to the Petschek solution, 

with a diffusion region whose length equals the thickness of the current layer. 

Our analysis shows that the Somov-Titov system of equations is insufficient to 

provide a unique solution because the number of equations is one less than the number 

of unknowns. Thus their formalism fails to predict the reconnection rate. It only 

provides an accurate description of the reconnection process if the reconnection rate 

(or, equivalently, the length of the diffusion region) is given. A long standing question 

concerning Petschek's solution is why simulations such as those of Yan et al. (1992); 

Baty et al. (2006) and others have found nonuniform resistivity to be a prerequisite 

for the production of Petschek-like results. We found that even when a nonuniform 

resistivity is explicitly added to the Somov-Titov system, the reconnection rate still 

remains undetermined. However, this addition does provide some insight as to why 
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nommiformity leads to a Petschek-like solution. The nonuniformity can restrict the 

range of a to small values (that is, the Petschek range). 

Another result of our investigation of the Somov & Titov formalism is that their 

assumption that the tangential field component in the current layer is negligible ev­

erywhere is not valid in the diffusion region. Strictly speaking, this assumption is 

only valid in the slow-shock region. Nevertheless, we find, after recalculating their 

solution in the diffusion region with a model tangential field that is not zero, that 

the qualitive character of the solution remains the same, but that their predictions 

for the properties of the diffusion region are changed. 

That said, the assumption that the tangential magnetic field is zero is a significant 

limitation of the Somov-Titov model, especially in the case where the diffusion region 

(where this assumption is at its worst) is large. The need for this assumption arises 

from the fact that the number of averaged equations is insufficient to solve for all of 

the unknowns in the system. Thus, without an additional equation, it is impossible 

to improve the solution and remove this limitation. 

Our principal goal here has been to apply our new understanding of the Somov-

Titov formalism to improving analytical models of eruptive flares by Lin & Forbes 

(2000) and Reeves & Forbes (2005). We accomplished this in two ways. First, we 

applied the formalism to the asymmetric background field produced by these models, 

and second, we used it to analyze the effect of field-aligned thermal conduction. 

We use our improved model to explain several features that have been previously 

seen in observations and simulations of CMEs and flares. Additionally, we make 

several predictions about the nature of the current sheet that can be tested by future 

observations and simulations. 

One of the most significant of these predictions is the location of the x-line within 

a reconnecting current layer. We find that the x-line will occur at the location where 
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the external magnetic field reaches a maximum, a point we refer to as the pinch point. 

Using the same magnetic field as in CME models by Lin & Forbes (2000) and Reeves 

& Forbes (2005) we find that during most of the evolution of a CME, this location is 

very near the lower tip of the current sheet. 

The determination of this location within the current sheet (or layer) has sev­

eral important implications for both observations and theory. First, we find that the 

amount of incoming Poynting flux that enters the downward directed jet is, for the 

majority of the development of the CME only a small fraction of the total incoming 

flux. Thus significantly less energy enters the downward jet than was supposed by 

Reeves & Forbes. Second, the lower location corresponds to a higher effective recon-

nection rate for a given inflow Alfven Mach number. Thus we conclude that Reeves 

& Forbes (2005) over-estimated the inflow speed in their predictions; improved values 

give better agreement with observations by Yokoyama & Shibata (2001). Finally, the 

lower x-line location may be observable with X-ray and EUV telescopes, which have 

limited fields of view and cannot observe features that are very high in the corona. 

Direct observations of the reconnection outflow in flares would constitute a major 

confirmation of the correctness of the flare reconnection model. It would also greatly 

help in determining how the reconnection works in flares. 

In addition to the observational predictions, we show that in the presence of a 

. highly asymmetric background field, it is no longer possible to recover a simple Sweet-

Parker-like solution. This is because the critical a, which produces a Sweet-Parker 

solution, depends on the background field, which is not the same in the upward jet 

as it is in the downward jet. Thus when we choose a to produce a Sweet-Parker-like 

solution in one jet, we generally get either Petschek-like behavior or the formation 

of magnetic islands in the other. It is possible to obtain a Sweet-Parker solution in 

the upper jet by using a sufficiently large value of a. However, when this is done, 
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the field structure in the lower jet no longer resembles a standard Sweet-Parker-like 

solution. An island-like structure occurs which may be unstable or may indicate the 

existence of a more complex current structure. 

The addition of thermal conduction to the model also has significant effects on 

the properties of the outflow jets. Most notably, conduction leads to an increase in 

the temperature of the plasma that surrounds the current layer, a region we refer to 

as the thermal halo. In order to model the isothermal slow-mode jump conditions we 

apply work on the structure of slow-mode shocks by Xu & Forbes (1992) to the Somov-

Titov formalism. The addition of this shock model allows us to relax the Somov-Titov 

assumptions at the shock boundaries and determine the behavior of the plasma in 

the thermal halo. The existence of such a halo region was predicted by Forbes et al. 

(1989) and confirmed by numerical simulations by Yokoyama & Shibata (1997, 2001). 

Our analysis shows good agreement with the Yokoyama & Shibata (1997, 2001) result 

provided that the isothermal slow-mode jump conditions are modified to include the 

effect of the conductive heat loss. 

We also find that thermal conduction produces several effects that are important 

for the interpretation of observations. First, strong conduction reduces the outflow 

speed significantly, by as much as a factor of two, in some cases. This result may 

explain the observations of unexpectedly slow supra-arcade downflows by McKenzie 

& Hudson (1999) and McKenzie (2000). These flows are thought to be produced by 

reconnection, but they were found to have speeds only about half as fast as the local 

Alfven speed. Standard reconnection models predict that such jets should have ve­

locities near the local Alfven speed. However, our thermal conduction results suggest 

that the slower observed flow velocities may be due to the effect of thermal conduc­

tion. Thermal conduction drains energy out of the jet so there is less magnetic energy 

available to accelerate the flow. Second, observations by Ciaravella et al. (2002), Ray-

117 



mond et al. (2003), and Ciaravella et al. (2006) showed that densities inside of the 

flare/CME current layer are usually enhanced about 2.5 times over background den­

sities. We find that , the addition of thermal conduction, leads to a similar increase 

in the density of the current layer over the background. 

Third, we find that thermal conduction plays an important role in determining 

the fast-mode Mach number (and therefore the shock strength) of the outflow jet. 

Previous analyses (Soward & Priest, 1977) that did not consider thermal conduc­

tion predict much weaker shocks with Mach numbers from 1.5 to 2.0. These weak 

shocks are unlikely to produce the energetic particle acceleration that is thought to 

be responsible for the appearance of hard X-ray sources observed near post-flare loop 

arcades (Tsuneta & Naito, 1998). Here we find that for small f3 solutions, thermal 

conduction can produce Mach numbers as high considerably higher prediction 

than those of non-conductive models. 

5.2 Future Research 

Full reconnection solutions like Petschek's provide a prescription for how the field 

and flow vary in the region upstream of the current layer. The famous logarithmic 

scale of Petschek's reconnection rate is, in fact, due to the logarithmic variation of 

the magnetic field in this region. Thus one improvement that could be made to 

the Somov-Titov formalism would be to extend the solution to the external region as 

well. In fact, Somov (1992) offers a method by which this can be done. The combined 

solution for the external and internal regions requires an iterative approach, where 

we obtain an internal solution using the Syrovatskii background field, then calculate 

a more accurate external field using the method described by Somov (1992). This 

improved field can be used to produce a refinement of order « M& in the internal 

solution. 
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It is also worthwhile to note that the Syrovatskii field, and the similar asymmetric 

field used in chapter 3, are not the only possible background configurations for which 

this model may be useful. Other phenomena may lead to other field configurations in 

which the Somov-Titov system may prove useful. For example, Tur & Priest (1976) 

describe current sheets that form as the result of magnetic flux emergence from below 

the photosphere into different overlying magnetic fields. While the background fields 

in these cases differ from those explored in this dissertation, a version of the Somov-

Titov model with these new field configurations could provide insight into the process 

and consequences of flux emergence for the corona. 

It would be especially useful to compare our model to additional simulations be­

yond those of Yokoyama & Shibata (see chapter 4). This would be useful both in 

benchmarking our own work and testing the predictions we have made concerning the 

position of the x-line, the effect of the asymmetric background field on the behavior 

of the internal solution, and the relative speed and density of the upward and down­

ward directed jets. A simulation with field aligned conduction could also test our 

predictions concerning the fast-mode Mach numbers of the outflow jets. Because our 

model is analytical, it could also be used to provide insight into otherwise unexplained 

behavior occuring in complex simulations. 

Finally, we can expand the work using the Reeves & Forbes flare model discussed 

in chapter 3. For example, we can calculate both the the full evolution of the outflow 

jet and postflare loop system in time. Reeves &: Forbes (2005) studied the evolution 

of the postflare loop system in time, but did not model the dynamics of the current 

layer. Our improvements in the energy calculations of Reeves & Forbes, the addition 

of a model for the evolution of the current layer and outflow jets, as well as the 

availability of a next-generation loop cooling model (Klimchuk et al., 2007) could be 

used to produce a useful tool for the interpretation of observations of events like the 
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21 April 2002 X-flare (Gallagher et a l , 2002). Improvements could also be made 

in the Reeves & Forbes model's reconnection rate estimates. Finally, this improved 

model could be used as a predictive tool to help choose passbands and pointings for 

best observing flares using XRT. 

In addition to those making use of the Reeves & Forbes model, there are several 

other observational tests of the predictions made by this model that could be carried 

out as solar activity increases over the next several years using new space-based 

solar observatories such as Hinode. In particular, we have made several verifiable 

predictions about the appearance and dynamics of the current sheet during a flare 

that could be tested with X-ray and EUV observations. 

First, we have predicted that the x-line that forms in a current sheet during a 

CME is likely to be low in the corona. Some observations of a CME-related flare 

by XRT have already shown evidence of accelerating flow with an origin low in the 

corona (McKenzie, 2008, private communication). Thus, as the rate and intensity of 

solar flares increases with the solar cycle over the next few years, it is likely that XRT 

could actually image the x-line. Additionally, the Sun Watcher using Active Pixel 

detectors (SWAP), an EUV telescope on the PROBA2 mission, will have the ability 

to off-point from the Sun (Katsiyannis et al., 2005) by several solar radii. Thus there 

is a good chance to confirm this prediction with observations during the next few 

years. 

We also have made several predictions about the structure of the current sheet 

and thermal halo that could be confirmed with observations by EIS, on Hinode. 

Spectroscopic observations across the current layer could reveal details of density and 

temperature fmcuations, as well as some of the properties of the reconnection jet. 

Such observations could be especially useful in determining the role that thermal 

conduction plays during eruptions. If conduction is important, we expect to see a 
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current layer with relatively uniform temperature and density, while observations of 

strong variation in temperature and density structure would suggest that conduction 

is not strong during these events. Since conduction plays an apparently important 

role in determining the speed and Mach number of reconnection outflow jets in our 

model, such observations have important implications for the source of flows such as 

the SADs reported by McKenzie & Hudson. These observations could provide very 

important insights into the nature of the reconnection that drives solar flares and 

CMEs. 
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APPENDIX 

Mathematics Code 

Introduce Units & Physics Constants 
Here we choose physical parameters in order to match to the Yokoyama & Shibata, 1997, model. All units 
should cancel out, so the final set of parameters (J3, Lu, Ma, and A) are all unitless. 

• Units 

Joule = kg * — ; 
s2 

Joule 
Watt = ; 

s 

(* gauss=10~* Tesla; *) 

• Physical Constants 

• Proton Mass 

mp = 1 .67* 10"27 kg; 

• Boltzmann Constant 

kB = 1.38 * 10"23 Joule / K; 

• Definition of Mass Density 

p0 = n0 * mp; 

• Coronal Alfven Speed 

See Priest, Appendix II. Be careful about the inputs here, because this needs to end up unitless to not break 
everything. 

VA0 = 2 . 1 8 * 1 0 1 2 * B 0 * [ 1 * (n0m3)"1/2 - ; 
I, g a u s s ; s 
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• Model Values (in general, for the Corona) 

• Conduction Length Scale 

H e i g h t a b o v e C h r o m o s p h e r e o f D i f f u s i o n R e g i o n , Y & S ' 97 g i v e Lbox = 60 * 109 cm 

Lc = 6* 108m; 

• Particle Number Density 

n0 = 101 5m-3; 

• Background Field 

Chosen to match Y & S ' 97 Plasma /3 

B0 = 21.7 gauss; 

• Background Temperature 

T0 = 4*10 6 K; 

• Derive & Set Model Parameters 

• Alfven Speed 

FullSimplify[VA 0 ] 

1 .49595xl0 6 m 

• Plasma y3 

2 k B T 0 

0 = 
VAo'nip 

0.0295407 

• Conduction Coefficient 

A= (9*10"" Watt *m-1K"7/2) 
Po VA0

3 LC 7 

0.0000981224 

• Incoming Alfven Mach Number 

Estimated from Outflow and Inflow Velocity in Fig. 4 of Y&S. 
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Ma = 0 . 1 

0 . 1 

• Lundquist Number 

Lu = 3 . 6 * 1 0 3 

3 6 0 0 . 

• Length of Diffusion Region 

(LD and a a r e t h e same.) 

1 
LD 

Lu * Ma" 

0.0277778 

Define Model Equations 

• Set Up Relations Between Model Quantities 

These relationships come, in general, from Somov (such as the Syrovatskii field) and Xu & Forbes. 

• Field (Bx) Outside Halo Region (Background Field) 

BxO[x_] = - - y i - x 2 ; 

• Field (Bx) at Conduction Front 

£• Bxa[x ] = BxO[x] .,1 — 

Flow Velocity in x-Direction (Vx) at Conduction Front 

Bxa[x] 
Vxa[x_] =Vx[x] 1 -

BxO[x] 

Flow Velocity in y-Direction (Vy) at Conduction Front 

Vxa[x] By[x] +Ma 
Vya[x_] = + Vxa[x] d x a[x] ; 

Bxa[x] 

Mass Density at Conduction Front 

pa[x_] = 1; 
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Pressure Outside Halo Region (Background Pressure) 

Bx0[x] 2 (3 
p[x_] = + - ; 

2 2 

• Pressure at Conduction Front 

(Bxa[x])2 

pa[x_] = Pfx] ; 
2 

• Temperature Inside Current Layer 

P[x] 2 
T [ X _ ] = ; 

P[x] /3 

• Sink Temperature 

Tsink = 1; 

• Set Up Model Equations 

• Ohm's Law 

We can solve Ohm's Law directly and analytically, so we use it to eliminate a[x] from the numerical system. 

Bxa[x] 
a[x_] = 

Lu (Ma + Vx[x] *By[x]) 

Continuity Equation 

Continuity = dx (a[x] *p[x] *Vx[x]) == -pa[x] Vya[x] + pa[x] dx a[x] *Vxa[x] ; 

Momentum Equation 

Momentum= dx (a[x] *p[x] * (Vx[x])2) +pa[x] Vxa[x] (Vya[x] - dx a [x] *Vxa[x]) 
- a [ x ] *dx p[x] + Bxa[x] By[x] ; 

Energy Equation 

P[x] 

Hi-Energy = dx \ | - p [ x ] + '-^— (Vx[x] ) 2 \ Vx[x] * a [ x ] | - dx a [x] 

15 pa[x] Vxa[x] 2\ 

- p a [ x ] + 
2 

Vxa[x] + A* (T[x] 7 / 2 -Ts ink 7 7 2 ) Erf[ — ] 
x i By[x] 

L D
 J Bxa[x] 

'5 pa[x] Vxa[x]2 Vya[x] 
— pa [x] * Vya [x] + + Ma * Bxa [x] 
2 2 
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Work Out Initial Conditions 
NDSolve requires values of Vx, By, and p at x = 0 in order to run. We can find these analytically, and we do 
so below. 

• Get Vx'[0] from Continuity 

x = 0; 
Vx[0] = 0; 
Solve[Continuity, Vx ' [0]]; 
VxPrimeCont = Re[Vx' [0] /.%['[1]]]; 
x=.; 
vx[0]=.; 

• Get By'[0] from Momentum 

Mom2Der = dx Momentum; 
x = 0; 
Vx[0] = 0; 
By[0] =0; 
Solve[Mom2Der, By'[0]]; 
ByPrime = By'[0] / . %[[1]]; 

By[0]=.; 
Vx[0] =.; 

• Use Vx'[0] to check By'[0] 

(Not generally used, but nontheless useful in case it is needed.) 

Vx '[0] = VxPrimeCont; 
Simplify[ByPrime]; 
Vx'[0] =.; 

• Get Vx'[x] from Energy 

x = 0; 
Vx[0] = 0; 
By[0] =0; 
Solve[Energy, Vx'[0]]; 
VxPrimeEnergy= Re[Vx'[0] /. % [ [1]]]; 

By[0] =.; 
Vx[0] =.; 

• p[0] comes from Equality of two Vx'[0]'s 

By[0] =0; 
Solve [Simplify [VxPrimeCont, Assumptions-* {p[0] >0}] == 

Simplify[VxPrimeEnergy, Assumptions-» {p[0] > 0}] , p[0]]; 
pZero = p[0] /. %[[l]]; 
By[0]=.; 
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• Work Out Numerical Expressions for initial Conditions 

p[0] =pZero; 
Vx' [0] = VxPrimeCont; 
By[0] =0; 
VxPrime = Simplify[Re[VxPrimeCont]]; 
ByPrime = Simplify[Re[ByPrime]]; 
pZero = Simplify[Re[pZero] ] ; 
By[0] =.; 
Vx'[0] = .; 
P[0] =.; 

Solve Equations Numerically 
This counts the number of iterations for the thermal conduction routines. We didn't run any yet, so it is set to 

zero. 

i t e r s = 0; 

And then we set the domain of the region of interest. 

xmin = 0 .00001 ; 
xmax = 1 - Ma; 

What follows here is identical to the setup used in deriving initial values above, except we do not specify 
Bxa[x] so we can use the one calculated by the iterative method. 

• Set Up Bxa Separately 

We begin with Bxa[x] corresponding to the 10 = 0 (or, in the case of this file, Z0=0, to avoid confusion with 
the Mathematica character for imaginary numbers) case. 

Bxa[x_] = Bx0[x] Af - ; 

• Set Up Relations Between Model Quantities 

We clear the values from before in case there is any residual trouble from the previous routine. Once we begin 
iterating, we restart the analysis after each iteration at the line below. Notice that Bxa[x] is the only value that 
is not reset from run-to-run. 

C l e a r [ T , BxO, Vxa, Vya, p a , p , p a , a . By, Vx, p] 

• Field (Bx) Outside Halo Region (Background Field) 

Bx0[x_] = -y 1 - x2 ; 

• Flow Velocity in x-Direction (Vx) at Contudtion Front 

Bxa[x] 
Vxa[x_] = Vx[x] 1 -

Bx0[x] 
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Flow Velocity in y-Direction (Vy) at Contudtion Front 

Vxa[x] By[x] +Ma 
Vya[x_] = —, +Vxa[x] d x a [ x ] ; 

Bxa[x] 

• Mass Density at Conduction Front 

pa[x_] = 1 ; 

• Pressure Outside Halo Region (Background Pressure) 

BxO[x]2 /3 
p[x_] = + - ; 

2 2 

• Pressure at Conduction Front 

pa[x_] = p [ x ] -
(Bxa[x]) 2 

2 

Temperature Inside HTCS 

p[x] 2 
T[x_] = 

P[x] 0 

• Sink Temperature 

Tsink = 1 ; 

• Set Up Model Equations 

• Ohm's Law 

We can solve Ohm's Law directly and analytically, so we use it to eliminate a[x] from the numerical system. 

Bxa[x] 
a[x_] 

Lu (Ma +Vx[x] *By[x]) 

Continuity Equation 

C o n t i n u i t y = dx (a[x] *p [x ] *Vx[x]) == - p a [ x ] Vya[x] + pa [x ] ex a [x ] * V x a [ x ] ; 

Momentum Equation 

Momentum= 3* (a[x] *p[x] * (Vx[x]) 2) + pa [x ] Vxa[x] (Vya[x] - 3* a [x] *Vxa[x]) 
- a [ x ] *dx p [x ] +Bxa[x] By[x] ; 
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• Energy Equation 

Energy = dx | | T p [ x ] + ^ - i . (Vx[x] ) 2 | Vx[x] * a [ x ] | - 3* a [x ] Hi-
Vxa[x] + A* ( T [ X ] 7 / 2 -Ts ink 7 / 2 ) Erf f—1 == 

LLD
J Bxa[x] 

5 pa [x ] Vxa[x] 2 

- p a [ x ] + 
2 2 

5 pa [x ] Vxa[x] 2 Vya[x] 
— pa[x] * Vya[x] + + Ma*Bxa[x] I ; 
2 2 

Run NDSolve and Set Up Solutions 

• Run NDSolve and Count How Many Steps it Takes 

Here the variable c t is used to count the number of steps required for NDSolve to be completed. This code 
updates the step count every time that another 200 steps occur. 

c t - 0 ; 

solution = NDSolve {Continuity, Momentum, Energy, 

p[xmin] == pZero, Vx[xmin] == VxPrime* xmin, By[xmin] == By Prime * xmin} , 
{p, Vx, By}, {x, xmin, xmax}, MaxSteps -» 10 000, 

r rCt+t + l-, (Ct += 0) I-, 
StepMonitor :-* If Floor == 0, Print[ct += 0] II; 

L L 200 J 200 JJ 

Print["Steps: ", 
ct] 

• Set Solution Functions 

Vx[x_] =Vx[x] / . s o l u t i o n [ [1]] ; 
By[x_] =By[x] / . s o l u t i o n ! [ 1 ] ] ; 
p[x_] = p [ x ] / . s o l u t i o n ! [1] ] ; 

Compute Adjusted Bxa[x] 
This routine executes the calculation of the improved Bxa based on conduction, and stores the old one as 
Bxaprevious so we can compare it to the new one and see when we have reached a steady state. This must be 
done numerically. 

Bxaprevious[x_] =Bxa[x] 

-Vl-x 2 J — + — InterpolatingFunction[{{0.00001, 0.90001}}, <>] [x] 
V 5 5 

• Compute 10 

See Xu & Forbes, Eq. 32 
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ZO = I n t e r p o l a t i o n [ T a b l e I j x , -
A* ( T [ x ] 7 / 2 - T s i n k 7 / 2 ) E r f [ i ] % T Byt=] 

LD J Bxa[x] 

Ma*Bxa[x] + - pa[x] * Vya[x] 
}' 

{x, xmin, xmax+ . 0 0 1 , . 0 0 1 } ! , I n t e r p o l a t i o n O r d e r - > 2 5 ] ; 

• Define a New Bxa[x] 

See Xu & Forbes, Eq. 27a 

Clear [Bxa] 

3 2 
Bxa [x ] = BxO [x] , | - + - ZO [x] ; 

V 5 5 

Consider Whether to Run Some More Iterations And Do 
It If Necessary 
Now plot the new and old Bxa so we can compare and determine if the system is now steady-state. After this 
line, iterations begin at the C l e a r statement noted several sections above. The system has converged when the 
dashed and solid curves become indistinguishable. 

i t e r s = i t e r s + 1 

4 

Plot[{-Bxa[x], -Bxaprevious[x]}, {x, xmin, xmax}, 
PlotRange->{0, 1}, PlotStyle->{Dashing[{10}] , Dashing[{0.03, 0.03}]}] 
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