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ABSTRACT 

DYNAMICS OF PHYTOPLANKTON COMMUNITY 

COMPOSITION IN THE WESTERN GULF OF MAINE 

by 

Timothy S. Moore 
University of New Hampshire, May, 2008 

This dissertation is founded on the importance of phytoplankton community 

composition to marine biogeochemistry and ecosystem processes and motivated by 

the need to understand their distributions on regional to global scales. The ulti

mate goal was to predict surface phytoplankton communities using satellite remote 

sensing by relating marine habitats - defined through a statistical description of 

environmental properties - to different phytoplankton communities. While phyto

plankton community composition is governed by the interplay of abiotic and biotic 

interactions, the strategy adopted here was to focus on the physical abiotic factors. 

This allowed for the detection of habitats from ocean satellites based on abiotic 

factors that were linked to associated phytoplankton communities. 

The research entailed three studies that addressed different aspects of the main 

goal using a dataset collected in the western Gulf of Maine over a 3-year period. 

The first study evaluated a chemotaxonomic method that quantified phytoplankton 

composition from pigment data. This enabled the characterization of three phy

toplankton communities, which were defined by the relative abundance of diatoms 

and flagellates. The second study examined the cycles of these communities along 

with environmental variables, and the results revealed that the three phytoplank

ton communities exhibited an affinity to different hydrographic regimes. The third 

study focused on the implementation of a classifier that predicted phytoplankton 

communities from environmental variables. Its ability to differentiate communities 

dominated by diatoms versus flagellates was shown to be high. However, the in-
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crease in data imprecision when using satellite data led to lowered performance and 

favored an approach that incorporated fuzzy logic. The fuzzy method is well suited 

to characterize the uncertainties in phytoplankton community prediction, and pro

vides a measure of confidence on predicted communities. The final product of the 

overall dissertation was a time series of maps generated from satellite observations 

depicting the likelihood of three phytoplankton communities. 

This dissertation reached the main goal and, moreover, demonstrated that im

provements in the predictive power of the method can be achieved with increased 

precision and more advanced satellite-derived products. The results of this research 

can benefit present bio-optical and primary productivity models, and ecosystem-

based models of the marine environment. 
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CHAPTER 1 

PHYTOPLANKTON COMMUNITY 

COMPOSITION 

1.1 Introduction 

The composition of marine phytoplankton communities is a fundamental aspect 

of ocean ecology and biogeochemistry. Phytoplankton play a significant and dy

namically active role in the global cycles of nutrients and elements, and form the 

base of marine food webs. Although they represent only 1% of the global standing 

stock of organic carbon, phytoplankton have short generation times (from days to 

weeks) and thus account for an estimated 45% of the global annual primary produc

tion (Falkowski and Raven, 1997). These roles - both from a biogeochemical and 

ecosystem point of view - depend on the community composition. 

Certain algal groups perform different biogeochemical roles. These groups can 

be defined along taxonomic lines or categorized by the biogeochemical 'function' 

they perform. Diatoms, for example, are a group associated with high primary 

productivity and carbon export; coccolithophorids are important to carbon fluxes 

and the production of dimethyl sulfide which is linked to seeding cloud formation; 

cyanobacteria are numerically the most abundant phytoplankton and are significant 

components of open ocean communities. 

The structure of the higher trophic levels and the general ecology of a particu

lar marine ecosystem ultimately depend on the composition of the phytoplankton 

community. Fishery production, for example, has been linked with diatom com

munities (Cloern and Dufford, 2005; Barber and Hiscock, 2006). Thus, knowing 

the distribution of phytoplankton communities is central to further understanding 
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marine ecosystems and biogeochemical processes. 

Phytoplankton species vary in their distributions over space and time. Taxo-

nomically, there are more than 5,000 oceanic species distributed across at least 10 

classes from several kingdoms, and range in cell diameter from less than 1 micron up 

to 1 millimeter (Falkowski and Raven, 1997). When it comes to describing the com

munities phytoplankton species form, there are many ways to view and define them. 

For example, communities can be defined by morphological traits (Reynolds et al., 

2002), by size distribution (Sieburth et al., 1978), or along functional type (Moore 

et al., 2002). Despite their importance and regardless of the choice of community 

view, knowledge of the geographic distribution of phytoplankton communities re

mains elusive because of the high degree of difficulty in routinely measuring the 

community composition in a constantly changing ocean environment. 

Microscopic identification remains the only direct method of quantifying phyto

plankton composition, but this method has many drawbacks. It is an intensively 

time-consuming process and requires technical expertise in observing morphological 

differences that can be difficult to discern at microscopic levels even with training 

and experience. The recent application of high performance liquid chromatogra

phy (HPLC) for the detection and characterization of phytoplankton pigments from 

freshwater and marine water samples has promoted the development of new tech

niques for analyzing phytoplankton populations. The basic premise is built on the 

use of pigment markers as a means of separating phytoplankton classes apart from 

one another. Recent advances in this field have now permitted the rapid estima

tion of phytoplankton composition from water samples, and thus HPLC remains the 

most promising technique for assessing field populations of phytoplankton. 

It is not practical to depend solely on laboratory analyses of water samples to 

characterize phytoplankton communities at the temporal and spatial scales desired. 

For this reason, satellites have become the prime source of monitoring the oceans as 

they provide global coverage at a spatial resolution of approximately 1 km and the 

additional benefit of highly repeated orbits which can provide daily regional cover

age for several important ocean properties. Advances in satellite oceanography have 

revolutionized our understanding of phytoplankton biomass distributions on regional 
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and global scales. Phytoplankton biomass has been estimated from remote sensing 

instruments onboard earth-orbiting satellites since 1978 with the Coastal Zone Color 

Scanner (CZCS) instrument, and more recently with the Sea-viewing Wide Field of 

view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors. These instruments, commonly referred to as 'ocean color' sen

sors, measure the upwelling light field at key wavelengths in the visible part of the 

spectrum. Empirical algorithms have been developed to estimate total chlorophyll 

a concentration, which serves as a proxy for phytoplankton biomass. While biomass 

can be estimated using ocean color sensors, phytoplankton composition cannot with 

few exceptions (e.g., coccolithophorid blooms can be revealed by their unique optical 

signature). 

Statement of the problem 

Phytoplankton community composition at regional and global spatial scales re

mains an elusive biological property of the oceans. Currently, there are few pub

lished methods available that address this issue. This is due in part to the scarcity 

of data and the complexity of the problem. Satellite observations are critical to 

obtaining synoptic measurements of the oceans. The central challenge lies in the 

ability to relate satellite measurements to different phytoplankton communities -

however defined - and to spatially delineate these communities that have dynamic 

boundaries. 

1.2 Background 

Marine phytoplankton biogeography is a research area concerned with the spa

tial and temporal distribution of phytoplankton in the world's oceans. Early studies 

in the late 1800s (starting with the expeditions of the Challenger from 1872-1876) 

and early 1900s focused on the distribution of regional phytoplankton species, and 

led to the concept of plankton elements. Initially proposed by the researcher H.H. 

Gran (Semina, 1997), a plankton element is a phytoplankton assemblage charac

terized by an indicator species whose presence signified a distinct water mass upon 
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which the plankton types were dependent. As knowledge of local and regional dis

tributions of phytoplankton taxa gradually increased during the twentieth century, 

global distributions began to emerge. Smayda (1958) was among the first researchers 

to compile and map the global distribution of diatom species, and speculate on 

the underlying factors controlling their distributions. Margalef (1961) proposed a 

method to classify the distribution of phytoplankton, also based on indicator species. 

The method was based on known relations between species and abiotic factors such 

as temperature, salinity and nutrients. Around the same time, researchers from the 

Soviet Union compiled phytoplankton distributions from data at over 2000 stations, 

and generated global maps of numerous species (Semina, 1997). 

Longhurst (1995) recognized the importance of discontinuities between different 

marine ecosystems and advocated the partitioning of the global oceans into bio-

geographic provinces, much like terrestrial biogeographers do. However, Longhurst 

(1995) also realized that the paucity of accumulated knowledge of the distribution of 

marine organisms limited the degree to which marine biogeography could approach 

that of terrestrial environments. The knowledge of the distribution of oceanic phy

toplankton species is hindered by the nature of the oceans, and the inability to 

adequately sample this environment. The oceans cover an area more than twice 

that of land, but the biology has been undersampled by orders of magnitude com

pared to terrestrial life, according to Longhurst (1995). The reasons for this stem 

in part from the nature of the marine environment - the sampling of the oceans 

has been limited to ship-board observation, which greatly undersamples hard-to-

reach areas of the ocean. The horizontal movement of water transports species from 

one location to another, and boundaries between different water masses are leaky 

in that organisms can be exchanged across these dynamic interfaces. In addition, 

phytoplankton have a vertical distribution that is affected by their own ability to 

regulate water column position (e.g., buoyancy and flagellate-motility), as well as 

the vertical motion of the water column. 

Satellite observations of the oceans - a relatively recent technological advance

ment - have overcome many problems associated with sampling and observation over 

the oceans. Satellites now offer almost-daily global coverage of the oceans, and rep-
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resent a new source of information to be exploited. Contemporary oceanographic 

campaigns have augmented field collections with satellite observations (Sathyen-

dranath et al., 2004; Kamykowski and Zentara, 2003; Piatt et al., 2007). Satellite 

coverage extends to areas rarely sampled by ship, and has the ability to capture 

events with short turnover times that can be missed by infrequent repeat visits 

from ship. The approaches that these studies employ vary, but they share the use 

of satellite sea surface temperature or ocean color satellite data (as radiance fields 

or the derived chlorophyll-a product), or some combination thereof. What follows 

is not an exhaustive list, but leading examples that differ in their approach in using 

satellite data for identifying phytoplankton communities. 

One of the first algorithms to use satellite data to identify a specific phytoplank

ton type was that of Brown and Yoder (1994) in detecting coccolithophore blooms 

in ocean color images. The principle behind this application is the observed effect 

on the light field from the release of the individual coccolith plates into the water 

column resulting from cellular death of these particular phytoplankton. The coccol

ith plates, made from calcium carbonate, are efficient at reflecting light, and elevate 

the levels of upwelled light as detected by ocean color satellites in all visible wave

lengths. Brown and Yoder (1994) characterized this effect and demonstrated that 

ocean color satellites could detect this phenomenon. Iglesias-Rodriguez et al. (2002) 

associated coccolithophore blooms based on the Brown and Yoder (1994) model with 

the corresponding water characteristics in terms of temperature and photosynthet-

ically available radiation (PAR) from co-located satellite images. The relationship 

served as the basis of a probability function to predict coccolithophore blooms based 

on these water characteristics, and was used in a forecast model to predict the effect 

of global climate change on the future distributions of coccolithophore blooms. 

Subramaniam et al. (1999) developed an algorithm for detecting the cyanobac-

teria Trichodesmium spp. from ocean color radiance data. Trichodesmium spp. is 

a colonial forming algae that is responsible for most of the N^ fixation in the open 

oceans, and can represent a significant source of new production in tropical and sub

tropical seas. Trichodesmium spp. contain gas vacuoles which produce a distinctive 

effect on the backscattering of light. Similar to the detection of coccolithophorids, 
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the backscattering signal can be detected in ocean color satellite radiances, and thus 

their distributions can be mapped from satellite data. 

Kamykowski and Zentara (2003) presented a method to infer phytoplankton 

composition based on the upper ocean nutrient status (replete versus deplete) using 

the difference between sea surface temperature (SST) and the nutrient-depletion 

temperature (NDT) for nitrate. Basing phytoplankton community composition on 

HPLC data from cruises in the Atlantic Ocean and off the coast of California, 

the distribution of three different phytoplankton classes were organized along a 

progression of SST minus NDT. Phytoplankton community composition could then 

be derived from satellite SST imagery and a climatology of NDT. The success of 

this implementation depends on knowing the actual NDT values which vary from 

region to region (and are scarce in many regions). The use of a climatology as a 

substitute for actual contemporaneous conditions introduces uncertainty. 

Sathyendranath et al. (2004) used ocean color data to differentiate diatom-

dominated communities from other types of phytoplankton community (collectively 

referred to as 'mixed'). The approach they took was based on chlorophyll retrievals 

from different algorithms that used the radiance fields from the SeaWiFS sensor. 

Initially, HPLC data were used to segregate diatom-dominated samples from oth

ers, and specific bio-optical algorithms were developed for each data pool from co-

measured radiance and other bio-optically relevant information. The rationale be

hind this was that the behavior of the spectral absorption coefficients for the two 

populations were distinct, which were then used to parameterize unique algorithms. 

Look-up tables were generated for each algorithm at two reflectance ratios (510:555 

and 490:670 nm). To classify image pixels, satellite radiance fields were used to re

trieve the chlorophyll concentration from the lookup tables using the diatom-specific 

algorithm for both ratios, resulting in two chlorophyll values. This was repeated us

ing the tables based on the mixed populations. The community selected was the one 

that had the smaller differences between the two retrievals. The overall success rate 

was 72% for discriminating diatom-dominated populations from mixed populations 

based on the in situ data used in parameterizing the models. 

Alvain et al. (2005) also used ocean color data to identify different phytoplankton 
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groups. In this application, satellite radiances were co-located with in situ HPLC 

measurements, and the measured chlorophyll concentration was used to predict 

radiance ratios (i.e., the inverse of the ratio algorithm). The assumption here is 

that the differences between the measured radiances and the expected radiances 

are attributed to pigments other than chlorophyll a. These pigments were used as 

bio-markers of four specific phytoplankton groups, which were characterized based 

on pigment ratios (but did not employ CHEMTAX or any other published method). 

These groups were assumed to be the only choices available, and also that the 

dominant type was representative of the radiance data. Using these relationships 

based on 41 measurements, phytoplankton distributions were mapped with ocean 

color satellite data. The overall success rate was 61% based on the in situ data used 

in parameterizing the model. 

These studies share similar shortcomings and drawbacks. Three of the studies 

are directed at specific phytoplankton species (Brown and Yoder, 1994; Iglesias-

Rodriguez et al., 2002; Subramaniam et al., 1999). These are limited in their use 

towards identifying phytoplankton communities. The other two methods that use 

ocean color data (Sathyendranath et al., 2004; Alvain et al., 2005) have assumptions 

that link phytoplankton groups to differences derived from the spectral reflectance 

signal, and therefore require very precise radiometric accuracy. Ocean color satellite 

data are known to have errors from a variety of sources (e.g., atmospheric correction 

uncertainties), and the derived radiometric differences at the spectral bands could be 

explained by phenomena other than phytoplankton pigments. In addition, different 

combinations of in-water properties (e.g., particle backscattering and phytoplankton 

absorption) can produce the same spectral reflectance signature. Thus, the in-

water source of spectral variation is uncertain. Furthermore, many pigments which 

characterize different phytoplankton groups (i.e., the carotenoids) occupy the same 

range in their spectral absorption properties, and would exhibit similar effects on 

the resulting reflectance spectra. It is important to note that these studies represent 

the few approaches that are published, and the paucity of methods underscores the 

difficulties associated with the nature of the problem. 

With this in mind, the approach presented here attempts to avoid the shortcom-

7 



ings inherent in ocean color data by basing prediction of phytoplankton community 

composition on variables connected to the physical environment and not on bio-

optical algorithms. This dissertation is also based on a unique data set collected 

from a field program in the western Gulf of Maine for over 3 years, which is still in 

operation. The data set is largely composed of measurements along two monthly 

transects, which enabled systematic sampling of the same sites under different en

vironmental conditions (Figure 1-1). 

1.3 Goal 

The ultimate goal of this dissertation was to predict the composition of sur

face phytoplankton communities using satellite remote sensing by relating marine 

habitats - defined through a statistical description of environmental properties -

to different phytoplankton communities. While phytoplankton community compo

sition is governed by the interplay of abiotic and biotic interactions, the strategy 

adopted here was to focus on the physical abiotic factors and implicit correlated 

biotic factors. This allowed for the detection of habitats from ocean satellites based 

on abiotic factors that were linked to associated phytoplankton communities. 

1.4 Approach 

The distributions of phytoplankton biomass and community composition have 

been traditionally linked with physical forcing or lbottom-up' control (Riley et al., 

1949; Margelef, 1978; Smayda, 1980; Longhurst, 2007), and with the effects of graz

ing from higher trophic levels, or 'top-down' control (Banse, 1994). Both types 

of controls exert pressures, and their combined effects operate simultaneously on 

shaping the phytoplankton community. Seasonal changes in temperature, light, and 

nutrients affect both abiotic and biotic factors that control phytoplankton com

munity composition. Temperate ecosystems exhibit regular patterns of community 

succession from spring through the fall in concert with these variables and are taken 

as paradigm (Smayda, 1980). Several recent studies have reported observations of 
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large-scale community change in the north Pacific (Karl et al., 1997) and north At

lantic (Leterme et al., 2005) as a response to a change in the environment over the 

last few decades. These studies highlight the degree to which phytoplankton com

munities can shift in response to longer term changes in the environment at large 

regional scales. 

A data set from the western Gulf of Maine was used to test the feasibility of map

ping phytoplankton communities based on physical properties of the upper ocean. 

This data set consisted of in situ measurements spanning a 3-year period, largely 

taken from monthly cruises (Figure 1-1). Data collected included water samples 

used for HPLC analysis, and a suite of co-measured bio-optical and environmen

tal properties. By relating phytoplankton composition deduced from HPLC data 

with field measurements of the hydrographic environment, it was possible to link 

phytoplankton community distributions with habitat conditions. These relation

ships served as the basis for a mathematical algorithm which was applied to 8-day 

composites of satellite data to predict the phytoplankton community composition 

given remotely sensed physical properties. The result was a time series of maps of 

phytoplankton community distributions at the same space and time scales as the 

satellite data. In addition, fuzzy membership maps were produced that represent 

the confidence associated with the community maps. 

To map distributions of phytoplankton community composition from satellite 

data required the development of a classifier that could predict the phytoplankton 

composition - defined below - based on properties amenable to remote sensing. This 

approach is consistent with the long-standing theory that physical processes deter

mine the structure of the pelagic ecosystem from phytoplankton to higher trophic 

levels (Margelef, 1978; Cullen et al., 2002). This theory is well supported by field 

work in freshwater and marine systems (Smayda, 1980; Reynolds et al., 2000). The 

methodology was based on associations between the phytoplankton communities 

and their aquatic habitats as defined through a set of physical/chemical character

istics that had known ecological relevance. These relationships served as the basis 

of the classifier. 

The distributions were restricted to surface populations only. In nature, there is 
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a vertical component to any phytoplankton community. The surface community can 

be very different from populations that reside deeper in the water column. These 

deeper populations can, at times, be significant to the processes previously described. 

However, the main goal was to infer phytoplankton community composition from 

satellite data, and these measured properties were in general restricted to the surface. 

Therefore, the vertical distribution was set aside for the present research. 

Phytoplankton composition was defined at a broad level based on the relative 

abundance of diatoms and flagellates. This is a simplification of the composition 

of natural assemblages, which are typically heterogeneous communities comprised 

of species from multiple taxonomic classes. Diatoms are generally associated with 

high levels of primary production and carbon export, and are often singled out as 

a distinct phytoplankton group in marine models (Moore et al., 2002; Hood et al., 

2006). Phytoplankton populations dominated by diatoms also have been shown 

to have distinctive optical characteristics, and as a consequence influence the rela

tionships embedded in ocean color and primary productivity algorithms (Sathyen-

dranath et al., 2004; Claustre et al., 2005). Distinguishing diatoms from other types 

of phytoplankton was central to the overall goal of this research. 

Flagellates are representative of a diverse group of phytoplankton from several 

classes. These include dinoflagellates, prymnesiophytes (e.g., coccolithophorids), 

cryptophytes, chrysophytes, prasinophytes, and chlorophytes. This collection of 

phytoplankton are noted for their motile ability through their flagella. This group 

includes species that can form toxic blooms (e.g., some dinoflagellates), calcifying 

organisms that affect the alkalinity of the seawater (i.e., coccolithophores), nuisance 

species (e.g., the prymnesiophyte Phaeocystis spp.), and assorted small flagellates 

that are important to ecosystem structure (e.g., prasinophytes, cryptophytes, chrys

ophytes, and chlorophytes). While each of these flagellate species can be important 

at any given time, they rarely dominate the community composition by themselves. 

Thus, for the purposes of this study, they were grouped together as a community. 

The diatom and flagellate phytoplankton communities were defined by their 

fraction of total phytoplankton biomass in terms of Chla, and were named diatom-

dominated, mixed, and flagellate-dominated. At this level of composition, HPLC-
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derived pigments can be used to quantify the phytoplankton composition. The 

pigments can yield quantitative information at the class level. If one were inter

ested in species or genus level of composition, pigment-based methods would not be 

suitable, and one would need to go to microscopic methods. 

Three studies were completed that addressed questions that led to the final goal. 

The main objective and summary of each study were: 

1) objective: To evaluate the pigment-based method CHEMTAX as a means of 

quantifying phytoplankton composition to the class level. The main question exam

ined was: how sensitive is the CHEMTAX program to input parameters that control 

the output of the algorithm? The outcome of this study was a characterization of 

the sensitivity of the resultant phytoplankton composition to different initialization 

schemes for CHEMTAX. These results were also compared with an independent 

quantitative assessment of phytoplankton composition based on microscopic analy

sis. A manuscript based on this study is presented here in chapter 2. 

2) objective: To identify phytoplankton communities and their cycles in the 

western Gulf of Maine, and to evaluate the linkage with physical factors and corre

lated biotic factors. The main question addressed was: how do the phytoplankton 

communities evolve over seasonal cycles, and how do these relate to environmental 

variables? A principal component analysis was applied to the hydrographic data to 

discern the dominant modes and variables associated with environmental variability. 

The first three principal components, representing over 70% of the variability, were 

dominated by surface water temperature and covarying seasonal signals in light 

intensity, winds, and nutrients. When the environmental data were projected in 

the new coordinate system as defined by the first three principal components, data 

points associated with the different phytoplankton communities showed separation 

into different hydrographic domains. These results, presented here in chapter 3, led 

to the design of and implementation of the methods of the third study, which related 

phytoplankton community composition to hydrographic conditions. 

3) objective: To develop a methodology to map the distributions of phytoplank

ton communities in the Western Gulf of Maine from satellite data. The main ques-
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tion is: can physical variables and correlated biotic factors be used as a basis to 

map phytoplankton communities using satellite data, and what is the uncertainty 

associated with the resulting maps? This was addressed by developing a classifier 

that was based on statistical relationships between phytoplankton communities -

defined in terms of the relative contributions of diatoms and flagellates - and key 

environmental variables (temperature, light intensity, wind speed, salinity, and light 

attenuation). This classifier was applied to MODIS and SeaWiFS satellite data from 

the Gulf of Maine, and the maps generated depict phytoplankton communities with 

dynamic boundaries in space and time. A fuzzy classification method permitted the 

communities to have graded transitions and uncertainty levels to be represented by 

fuzzy membership maps. These results are presented in chapter 4, and the over

all dissertation results are put into the larger context of phytoplankton ecology in 

chapter 5. 
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Figure 1-1: Study area and station locations associated with the two monthly tran

sects - the Coastal Transect and the Wilkinson Basin Transect. Stations along these 

transects have been regularly visited every month since April 2004. 
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CHAPTER 2 

AN EVALUATION OF METHODS FOR 

ESTIMATING PHYTOPLANKTON 

COMMUNITY COMPOSITION IN THE 

WESTERN GULF OF MAINE USING HPLC 

PIGMENT ANALYSIS 

This chapter has been submitted to the Journal of Plankton Research. 

Abstract: To understand seasonal patterns of phytoplankton communities in the 

western Gulf of Maine ecosystem, a pigment-based method was applied to in situ 

water samples to quantify the phytoplankton composition. This paper reports 

on the evaluation of a method based on HPLC pigments analyzed with CHEM-

TAX (Mackey et al., 1996). The method was applied to water samples and light 

measurements taken at stations along a cross-shelf transect from March through 

October 2005 under a variety of environmental conditions. CHEMTAX results were 

compared with phytoplankton community composition derived from microscopic cell 

counts. CHEMTAX estimates the fractional contribution of different algal groups 

to chlorophyll a whereas the microscopic technique estimates their carbon fraction. 

The comparisons between microscopy and CHEMTAX showed r2 correlations that 

ranged from 0.35 to 0.82, but quantitative comparisons were problematic due to 

the nature of comparing class fractions of chlorophyll a (CHEMTAX) with class 

fractions of carbon (microscopy). Sensitivity to the initialization of CHEMTAX 

runs was also evaluated. The program requires an initial pigment ratio (IPR) table 

defining the ratio of accessory pigments to chlorophyll a for the algal classes present 

in the water samples. These ratios are known to vary among species acclimated 
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to different light levels. Sensitivity to the IPR table was assessed by comparing 

results from CHEMTAX using pigment ratios matched to each samples light level 

to those which used an average pigment ratio table. The relative differences were on 

the order of 10% across most algal classes, with dinoflagellates having the highest 

differences (18%) and chrysophytes the least (0.5%). We concluded that the use of 

microscopic cell counts was useful for revealing what species/groups are present in 

a sample, a function that is important in constructing the IPR. The use of light-

dependent IPR tables must be considered as part of a larger set of parameters (i.e., 

the ratio limits and phytoplankton species) that operate in concert with each other. 

It is also important to have pigment ratios of locally observed species. 
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2.1 Introduction 

The quantification of phytoplankton community composition has traditionally 

relied on microscopic cell counts. However, there are several major drawbacks with 

this method. Foremost, the counting of cells through a microscope is a time con

suming process. Cells are individually identified and counted to species or genus 

level, and can require several hours to count one sample. This limits the quantity of 

samples that can be effectively analyzed. It also requires a trained and experienced 

individual to properly identify cells, particularly as cell size decreases. Many phy

toplankton groups are too small to be identified with a traditional light microscope. 

This is especially true for many small flagellate species that occupy the same size 

range (2 to 10 /mi) and have similar structural characteristics (e.g., flagella mor

phology), and picoplankton which have cell diameters less than 1 micron. Even with 

experienced analysts, microscopic counts are prone to subjective treatment and can 

vary by large amounts. Schluter et al. (2000) reported large differences in micro

scopic counts performed on the same samples from 2 different laboratories (up to a 

10-fold difference). Wilhelm et al. (1991) quantified these kinds of differences and 

found that the coefficient of variation for cells counted using a microscope can vary 

between 15 and 50% between labs; others have shown similar results (Duarte et al., 

2000). 

An alternative method to microscopy is through the analysis of phytoplankton 

pigments. An important characteristic that differentiates algal groups is the compo

sition of the pigments or light-harvesting system used in the capture of light energy 

for photosynthesis. Pigments have been used as phylogenic markers in determining 

the location of an algal class in the evolutionary tree (Rowan, 1989). The associa

tion between pigments and specific phytoplankton groups is called chemotaxonomy, 

and several methods have been developed that predict phytoplankton composition 

based on pigment levels. 

Phytoplankton pigment concentrations can be routinely quantified using high 

performance liquid chromatography (HPLC) analysis. The underlying principle 

of pigment analysis is that most phytoplankton groups have unique pigments (or 
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pigment markers), such that the presence or absence of these groups can be identified 

based on the pigments found in a sample. There have been numerous methods built 

on this premise since the early 1990s, of which CHEMTAX has emerged as the 

most reliable (Llewellyn et al., 2005). Earlier methods allowed for marker pigments 

that had to be unique and could not be shared by multiple classes (e.g., Gieskes 

et al. (1988); Letelier et al. (1993)). This restriction has been shown to be a major 

drawback (Schluter et al., 2000). CHEMTAX is advantageous over these other 

methods, as it allows for different phytoplankton groups to share the same pigment, 

and a single group to contain multiple pigments. Since its introduction in 1996, 

CHEMTAX (Mackey et al., 1996) has been applied to freshwater lakes (Buchaca 

et al., 2005), estuarine systems (Lewitus et al., 2005; Ansotegui et al., 2003), and 

oceanic environments (Schluter et al., 2000; Riegman and Kraay, 2001; Llewellyn 

et al., 2005). 

A flowchart schematic for CHEMTAX is shown in Figure 2-1. The program takes 

as input a matrix of sample phytoplankton pigments (measured from HPLC), and 

outputs the expected composition of phytoplankton at the class level. The algorithm 

is based on matrix factorization, and iterates to optimize the agreement between 

the observed pigment matrix (the input data) and the expected pigment matrix, 

which is derived from an initial pigment ratio (IPR) table - a user defined matrix -

and the abundance of different algal populations (the output matrix). These latter 

2 matrices are subject to modification by the algorithm to satisfy the optimization 

criteria. The IPR table is a k by m matrix with k pigments and m algal classes. 

Ideally, this table should represent all phytoplankton classes that are present in the 

samples and their expected pigment-to-chlorophyll a ratios. This table is critical 

and should be set up with the utmost care. The degree to which this table can be 

modified is constrained by a user-defined matrix called the ratio limit table, which 

specifies the maximum percentage change during the iterative process. 

Choosing the initial pigment ratios remains the biggest problem for CHEMTAX 

because there is insufficient knowledge of pigment ratios in the field. Consequently, 

this matrix is filled with values based on culture work. Since the algorithm is 

operating at the class level of taxonomy, these ratios should be representative of 
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species for that class. It is known, however, that pigment ratios can vary between 

species within a given class. The ratios also vary with environmental conditions and 

the physiologic state of the phytoplankton. In particular, the ratios are sensitive to 

light levels, as well as temperature and nutrient status. The recommendation for 

best performance of CHEMTAX remains to use pigment ratios from algal cultures 

under a range of conditions that mimic those in the field (Schluter et al., 2000; 

Llewellyn et al., 2005). 

The present study examines the use of CHEMTAX for estimating the phyto

plankton community composition using HPLC measurements from the western Gulf 

of Maine. The sensitivity to the configuration of the IPR table and other user-defined 

parameters is statistically quantified. The CHEMTAX results are also compared to 

microscopic cell counts. The microscopic assessments are in the form of carbon 

fractions, whereas the CHEMTAX results are in the form of chlorophyll-a fractions. 

Since these quantities represent different properties of biomass, they are not di

rectly equivalent. The limitations and uses of using microscopic results in assessing 

CHEMTAX success is discussed. 

2.2 Methods 

2.2.1 Study site and data collection 

The study site is located in the western Gulf of Maine (Figure 1-1). Data used in 

this study were obtained from March through October 2005 at 2m and 10m depth 

along the Wilkinson Basin Transect (stations labeled WB1 through WB7). Three 

types of phytoplankton analysis were performed - HPLC, cell counts using a light 

microscope, and cell counts from flow cytometry. All water samples were collected 

using Nisken bottles on station. 

2.2.2 Cell counting methods 

Cells greater than 10 /mi were counted manually using a light microscope, and 

cells less than 10 /xm, including picoplankton, were counted with flow cytometric 
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methods. Results from both analyses were combined to yield a total cell count 

for each phytoplankton group for each sample. Phytoplankton groups were par

titioned into diatoms, dinoflagellates, cyanobacteria, cryptophytes, and small flag

ellates which included prymnesiophytes, chlorophytes, prasinophytes, and chryso-

phytes. Prymnesiophytes (mainly coccolithophorids) were observed and identified 

in the light microscope and grouped into the small flagellate category. Other small 

flagellates were not individually differentiated by flow cytometry nor by the light 

microscope. Cell counts were converted to carbon concentrations using biovolume-

carbon relationships as described below. 

Microscopy: netplankton 

Whole water samples (250 - 1000 mL) were collected at surface (0-2 m) and 

at 10 meters and preserved with formaldehyde or Lugol's Solution for microscopic 

enumeration. Samples were concentrated into 20 mL vials using a settling method 

as described in Rowan (1978); whole water samples were transferred to a graduated 

cylinder and remained undisturbed for at least 48 hours allowing particulates to 

settle to the bottom. From this cylinder, the upper volume was siphoned away 

with mesh-covered tubing (to minimize unwanted particle removal), leaving behind 

a concentrated water sample, which was transferred into 20 mL vials. These samples 

were stored until counted (one to six months after collection). Prior to counting, 

the sample was mixed thoroughly (gently as to minimize disturbance of cellular and 

chain integrity), and 1 mL was pipetted into a 1 mL Sedgewick Rafter chamber. 

A Leica DM light microscope was used to count and identify phytoplankton cells 

greater than 10 //m diameter to the genus level. The number of cells counted ranged 

from 25 to 400 per sample. Cell dimensions were recorded for at least 20 cells of each 

genus and averaged. In some cases, genus groups were split into 2 size categories 

when there was numerically significant numbers of different sizes. Cell counts were 

included in the carbon estimation if at least 25 cells for each genus were observed. 
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Flow cytometry: pico- and nanoplankton 

Approximately 1 mL of water was transferred from each whole water sample (at 

the time of collection) to a cryovial and combined with a small amount of formalde

hyde (approximately 50 fih). These samples were refrigerated for 1-4 hours, and then 

placed in a liquid nitrogen dewar where they remained until analysis. All cryovial 

samples were analyzed at the J.J. Maclsaac Facility for Individual Particle Analysis 

at the Bigelow Laboratory in West Boothbay Harbor, Maine. The cytometric anal

ysis partitioned the data into counts and concentrations for the following compart

ments: cyanobacteria, cryptophytes, eukaryotes less than 2 /zm, eukaryotes between 

2 and 5 /xm, and eukaryotes between 5 and 10 fiva. The eukaryotic community 

was assumed to comprise prasinophytes, cryptophytes, chlorophytes, chrysophytes, 

and/or prymnesiophytes. Cryptophytes could be identified from their size and fluo

rescent characteristics during the flow cytometric analysis, and their concentrations 

were subtracted from the '2-5' ^m category. The remaining eukaryote size fractions 

were assumed to be a mixture of prasinophytes, chlorophytes, chrysophyes, and/or 

prymnesiophytes. 

2.2.3 Phytop lankton carbon est imat ion 

Cell concentrations were converted to biovolumes using average cell dimension 

measurements and species- and/or genus-specific geometric formulae (Sun and Liu, 

2003). Diatoms, which may have had several species in a given sample with varying 

cell shapes, were assigned a formula that best matched their shape. For the flow 

cytometric results, all shapes were assumed to be spherical and an average size 

was given to each group. Biovolumes were converted to carbon units using carbon-

biovolume relationships found in Menden-Deuer and Lessard (2000) for all groups. 

Each phytoplankton group was given its own carbon-biovolume relationship. For 

the small flagellate group (both size fractions), the carbon-biovolume relationship 

for prymnesiophytes was used. 
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2.2.4 HPLC method and analysis 

Water volumes ranging between 500-1000 mL were filtered onto 25 mm Whatman 

G/FF filters (nominal pore size of 0.7 microns) for HPLC analysis. Filters were 

folded in half and wrapped in foil and immersed in liquid nitrogen, where they were 

kept until removed for analysis (typically 3-6 months). Upon removal, filters were 

placed in 15 mL test tubes containing 3.5 ml of 95% acetone which also contained 

a quantity of beta-apo-8'-caratenol (from Fluka) as an internal standard. These 

were kept refrigerated at -18C for 24 hours, and then were sonicated on ice for 1 

minute and returned to refrigeration for another 24 hours. The test tubes were then 

centrifuged for 6 minutes at 4400 RPM, and filtered through a 0.2 micron disposable 

filter attached to a glass syringe with a Luer-Lock tip. Approximately 1 mL of the 

filtered extract was transferred to an amber 2 mL HPLC vial, which was placed in 

the autosampler for analysis. 

The HPLC method used for all samples was based on Van Heukelem and Thomas 

(2001). The main hardware components of this system were all Series 200 Perkin 

Elmer products, and consisted of an autosampler, a pump capable of delivering 

multiple (maximum 4) mobile phase solvents, a photodiode array detector, and a 

column oven. The column type used for all samples was a ZORBAX Eclipse XDB 

C8 column (3.5/xm, 4.6 x 150 mm). Absorbance was recorded at 436 and 450 nm. 

The autosampler was maintained at 4C during operation. The column temperature 

was maintained at 60C. 

Pigments were identified and peak areas were converted into concentrations 

based on standards obtained from Sigma (chlorophyll a and chlorophyll b) and DHL 

A sample chromatogram is shown in Figure 2-2. The 436 nm channel was used to 

calculate total chlorophyll a - defined as the sum of chlorophyll a, chlorophyllide a, 

and chlorophyll a epimer. The 450 nm channel was used for all remaining pigments. 

2.2.5 CHEMTAX experimental design 

The execution of CHEMTAX is sensitive to two key tables initialized at the 

start of the program - the IPR table and the ratio limits table. CHEMTAX was 
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run using two different configurations for the IPR tables. Scenario A sorted samples 

into three groups based on light-level ranges and used variable IPR tables that were 

matched to light levels. Scenario B used an IPR table averaged for all light levels. 

Sensitivity to the ratio limits, ranging from 25 to 500%, was also investigated. 

Samples were initially sorted by month, and were separately prepared as input 

matrices into CHEMTAX. IPR tables were constructed for each month using values 

from the literature that corresponded closest to the phytoplankton species found in 

the microscopic samples (Table 2.1). For each month, 4 different IPR tables were 

constructed - one based on average light levels (AVG) and three for different light 

levels (as a function of photosynthetically available radiation - henceforth PAR). 

The high light table (HL) corresponded to PAR levels exceeding 300 /xmol photons 

m - 2 s_ 1 ; a medium light table (ML) to values between 100 and 300 ^mol photons 

m~2 s _ 1 ; a low light table (LL) corresponded to PAR levels below 100 /xmol photons 

m~2 s _ 1 . Values in the IPR tables were derived from two sources which listed 

pigment ratios for different phytoplankton species at three different light levels -

Schluter et al. (2000) and Henriksen et al. (2002). The boundaries between LL, ML, 

and HL tables were based the light levels presented in these studies. 

In scenario A, samples were segregated by light level and run through CHEM

TAX using IPR tables that were matched to the measured field PAR levels adjusted 

to depth. In scenario B, all monthly samples were run through CHEMTAX as a 

group using the AVG table. 

In addition, each scenario was run at 7 different ratio limits. These were 25, 50, 

100, 200, 300, 400 and 500 which correspond to the maximum percentage change 

by which the IPR table was allowed to adjust itself during the iterative fitting. The 

schematic for this experimental design is shown in Figure 2-3. 

2.2.6 PAR calculation 

Surface PAR measurements were recorded on station using a Satlantic OCR-ES 

Radiometer at intervals of every second, and the PAR attenuation coefficient in the 
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IPR Table: Initial ratios of pigments to chlorophyll a 
Class 

Diatoms1 

Dino-
flagellates2 

Cyano-
bacteria2 

Prymnes-
iophyte1 

(E.hux.) 
Chloro-
phytes1 

Prasino-
phytes2 

Crypto-
phytes1 

Chryso-
phytes2 

PAR 
H 
M 
L 
H 
M 
L 
H 
M 
L 
H 
M 
L 
H 
M 
L 
H 
M 
L 
H 
M 
L 
H 
M 
L 

Peri 
0 
0 
0 
0.343 
0.636 
0.711 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

19'but 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.54 
0.93 
1.56 

Fuco 
0.485 
0.585 
0.485 
0 
0 
0 
0 
0 
0 
0.073 
0.089 
0.121 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.337 
0.620 
0.974 

19'hex 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.685 
0.735 
0.811 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Prasin Alio 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.317 
0.346 
0.322 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.339 
0.271 
0.172 

0 
0 
0 

Zea 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.100 
0.060 
0.01 
0.087 
0.054 
0.011 
0 
0 
0 
0 
0 
0 

ChlB 
0 
0 
0 
0 
0 
0 

0.939 
0.673 
0.457 

0 
0 
0 

0.188 
0.178 
0.187 
0.527 
0.663 
0.790 

0 
0 
0 
0 
0 
0 

Viola 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.011 
0.031 
0.044 
0.035 
0.080 
0.072 
0 
0 
0 
0 
0 
0 

Table 2.1: Initial pigment ratios for the 3 different PAR levels: H (high light), M 
(medium light), and L (low light). The PAR-specific values were used for scenario A, 
while average pigment ratios were used for scenario B. Values were obtained from: 
^chluter et al. (2000) and 2Henriksen et al. (2002). 

water column was measured using a HyperPro radiometer profiler (Satlantic, Inc.). 

The surface PAR measurements were averaged for the station duration (typically 

0 . 5 - 1 hour), and used to obtain baseline surface PAR values. These were then 

propagated to the sample depths to get depth-resolved PAR values using the diffuse 

attenuation coefficient for PAR derived from the HyperPro. 
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2.3 Results 

2.3.1 Comparison of CHEMTAX and microscope counts 

The proportions of the different algal groups resulting from the microscopic-

based carbon estimates compared to the CHEMTAX estimates showed a range of 

quantitative agreement for both scenarios (Figure 2-4, Table 2.2). The highest 

correlation was using the PAR-matched IPR tables in scenario A at a ratio limit 

— 100. For this scenario and ratio limit, the highest correlations were for diatoms 

with r2 = 0.82 and the lowest correlations were for cyanobacteria with r2 = 0.35. 

The largest differences between scenarios were seen in the dinoflagellates, with r2 

= 0.56 to 0.18 for scenarios A and B, respectively. These values are comparable to 

correlation values reported by others (Schluter et al., 2000; Garibotti et al., 2003; 

Llewellyn et al., 2005). 

Algal Group A B 
Diatoms 082 0.65 
Dinoflagellates 0.56 0.18 
Cryptophytes 0.48 0.36 
Small Flagellates 0.49 0.34 
Cyanobacteria 0.35 0.40 
Average (X54 0.39 

Table 2.2: r2 values between CHEMTAX scenarios and cell counts (converted to 
carbon) for a ratio limit=100. 

Overall, diatoms had the highest correlations, but high r2 is not a sufficient 

condition for agreement. The large non-zero intercept indicates that diatoms were 

attributed 30-40% of the biomass using CHEMTAX when no diatoms were found 
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in the microscopic samples. This may be a result of the presence of fucoxanthin-

containing prymnesiophytes. The marker pigment for diatoms is fucoxanthin, which 

is also found in prymnesiophytes. There were prymnesiophytes identified in the mi

croscopic samples during summer and fall months when few diatoms were seen. The 

pigment ratios in the IPR tables for prymnesiophytes for these months were based on 

Emiliania huxleyi, but the prymnesiophyte species identified in the summer and fall 

samples were Calyptrolithina spp. and Calyptrosphaera spp. Schluter et al. (2000) 

reported significant sensitivity with prymnesiophyte IPR values in CHEMTAX. 

The relationship between carbon and CHEMTAX-derived fractions for dinoflag-

ellates is less clear. Other studies report a variety of problems relating dinoflag-

ellate fractions to those obtained with CHEMTAX (Llewellyn et al., 2005). The 

problems are several. Dinoflagellates can be heterotrophic, and heterotrophic di-

noflagellates are not readily distinguishable from autotrophic dinoflagellates in a 

microscope, whereas HPLC is measuring only autotrophic dinoflagellates (Llewellyn 

et al., 2005). Another complication is the ratio of carbon to chlorophyll a, which is 

generally higher for dinoflagellates than diatoms owing to their celluloid cell exteri

ors. Both of these factors could explain points below the 1:1 line. 

The biomass fraction estimates for the small flagellates in CHEMTAX (prasino-

phytes, chlorophytes, prymnesiophytes, and chrysophytes) follow the general trend 

with carbon-based estimates. CHEMTAX underestimated the fraction in March, 

May and July compared to carbon estimates. This coincided with the higher pro

portions of biomass allocated to diatoms by CHEMTAX for these months. Crypto-

phytes were attributed higher biomass fractions by CHEMTAX than carbon for June 
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and July samples. Cyanobacteria were in general underestimated by CHEMTAX 

compared to carbon estimates. This is a similar result as reported in Havskum et al. 

(2004). Zeaxanthin is the marker pigment for cyanobacteria, but this pigment is also 

shared by prasinophytes and chlorophytes, and all three had zeaxanthin entries in 

the IPR table. Schluter et al. (2000) and Henriksen et al. (2002) report different 

zeaxanthin:chla ratios for Synnechococcus spp., with Schluter et al. (2000) reporting 

values around 50 percent higher for similar PAR levels. It is unknown which ratio 

set is representative of the Gulf of Maine species. Pigment ratios determined from 

culture experiments with Gulf of Maine strains would have been preferable, but were 

lacking for this analysis. 

2.3.2 Effects of variable IPR tables on CHEMTAX 

The choice of the IPR tables between the two scenarios can be seen in Figure 2-5, 

which compares the class fractions for the 2 scenarios with the ratio limit=100. The 

average absolute differences between scenario A and B for all 8 classes are shown in 

Table 2.3, along with the range and the relative differences. The greatest dispersion 

is seen in the dinoflagellates which had the highest relative difference of 18%. The 

smallest differences were seen in the chrysophytes with a relative difference of less 

than 1%. The average relative difference was 9%. This is the percent by which 

CHEMTAX output differs when using an average IPR table versus PAR-specific 

IPR table(s). 

These results demonstrate the sensitivity of CHEMTAX to the initial pigment 

ratios. Overall, the average differences were surprisingly small given the range of 
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Algal Group 

Diatoms 
Dinoflagellates 
Cryptophytes 
Prasinophytes 
Prymnesiophytes 
Chlorophytes 
Chrysophytes 
Cyanobacteria 
Average 

Average 
Absolute 
Difference 
0.052 
0.064 
0.021 
0.036 
0.051 
0.023 
0.001 
0.008 
0.032 

Range 

0-0.85 
0-0.35 
0-0.30 
0-0.45 
0-0.41 
0-0.22 
0-0.2 
0-0.11 

Relative 
Difference 
(%) 
7.0 
18.3 
7.0 
8.0 
12.4 
10.4 
0.5 
8.0 
9.0 

Average 
Standard 
Deviation 
0.051 
0.024 
0.013 
0.029 
0.040 
0.024 
0.009 
0.005 
0.025 

Table 2.3: Average absolute differences between class fractions for scenario A and 
B at a ratio limit=100. Range and absolute differences are expressed as fractions 
of 1. The relative difference was computed from the average absolute difference 
divided by the range. The last column was derived by calculating the average of the 
standard deviation for each class over the range of ratio limits for Scenario A. 

the IPR values for each scenario (Table 2.1), which generally vary by a factor of 2 

or more, and in the case of zeaxanthin by a factor of 10. In fact, magnitudes of the 

relative differences were unrelated to the algal classes' IPR ranges. For example, the 

IPR values for dinoflagellates varied by a factor of 2 and had the highest relative 

difference (18%), whereas cyanobacteria had a similar range in IPR values, yet had 

a relative difference of only 8%. 

2.3.3 Effects of varying ratio limits on CHEMTAX 

The effect on the outcome of CHEMTAX from varying the ratio limits is illus

trated in Figure 2-6, which shows the diatom class outputs for scenario A for the 

selected ratio limits. The average standard deviation over the range of ratio limits 

for scenario A was 0.051 for diatoms. Results for other groups were better and are 

shown as the last column in Table 2.3. The results for scenario B were similar (not 

27 



shown). 

The overall effect of the ratio limits is reflected in the final pigment ratios, which 

are the values to which the pigment ratios were adjusted at the completion of a 

CHEMTAX run. As the ratio limits were increased, the IPR tables were allowed 

to change over larger ranges. The average fractional differences between starting 

IPR tables and final pigment ratios for both scenarios across the 7 ratio limits are 

summarized in Table 2.4. 

Scenario 
Ratio Limit A B 

25 24.4 22.0 
50 29.2 24.6 
100 34.5 27.3 
200 42.3 36.6 
300 47.6 42.0 
400 51.6 47.4 
500 54.6 51.6 

Table 2.4: Final pigment ratio average change (%). 

The final ratio values for scenario A changed slightly more than scenarios B 

for all ratio limits. As expected, pigment ratios changed by larger amounts as the 

ratio limit was raised. However, the average change to IPR values approach the 

maximum (i.e., the ratio limit) only at a ratio limit = 25. At higher ratio limits, 

the average change in the IPR tables did not reach their respective limits. Scenario 

B contained an input matrix of phytoplankton samples at different photo-adaptive 

states (i.e., the physiological adjustments to different light levels), whereas scenario 

A segregated data into PAR-based matrices, and used PAR-matched IPR tables. 

Having an input matrix composed of samples from mixed conditions may limit the 
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degree to which the IPR table can change inside the fitting procedure of CHEMTAX 

because adjustments to IPR values are being forced onto samples that may not be in 

the same light-adapted state. In this case, the input matrix would contain different 

pigment ratio characteristics for different samples. Thus, the composition of the 

input pigment matrix, in terms of light adapted states, has an apparent effect on 

the performance of CHEMTAX. 

2.4 Discussion 

2.4.1 CHEMTAX performance and assumptions 

The different algal groups showed variable agreement between microscopic car

bon and the CHEMTAX-based assessment of phytoplankton composition under the 

different scenarios. Scenario A had the highest r2 values, which ranged from 0.82 for 

diatoms to 0.35 for cyanobacteria. These r2 values are in the same range as those 

reported for similar studies (e.g., Llewellyn et al. (2005); Schluter et al. (2000); 

Garibotti et al. (2003)). The same r2 range has been described as 'good' by some 

investigators and 'poor' by others. 

There is uncertainty inherent in both methods of community assessment due 

to a variety of factors. However, the general performance of CHEMTAX is diffi

cult to evaluate, since the comparisons inevitably rely on carbon-based estimates 

from microscopy. Ideally, one would want to compare calculations based on the 

same unit (i.e., chlorophyll a), but this is not practical with microscopic samples 

as one would need to know intracellular chlorophyll concentration for each cell and 
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species. Therefore, most correlations in the literature compare carbon fractions to 

CHEMTAX chlorophyll-a fractions. 

The nature of the comparisons - one an estimate of the biomass fraction of 

chlorophyll a and the other an estimate of the carbon-based fraction - are related 

through the carbon-to-chlorophyll ratio (C:Chl). C:Chl in bulk water samples ranges 

from 10 to over 200, and depends on the physiological state of a given phytoplankton 

community. It also varies among species and algal groups (Geider, 1987). Diatoms, 

for example, tend to have C:Chl in the range from 10-50 (Cloern et al., 1995), while 

dinoflagellate and cyanobacteria C:Chl values can be much higher (Geider et al., 

1998). These differences are partly due to their compositional makeup and partly 

due to their differential responses to light, temperature, and nutrient conditions. 

In order for there to be perfect agreement between the cell counts and CHEM

TAX results, species-specific C:Chl must be identical to the community C:Chl, but 

this is generally not the case. A plot of total carbon versus chlorophyll a for this 

data set is shown in Figure 2-7. Although C:Chl values are within reported ranges, 

overall they are quite variable. The average C:Chl calculated for the entire phyto

plankton population for the data shown in Figure 2-7 was 52, which is consistent 

with the traditional global mean of 50 (Eppley, 1972). When the class specific C:Chl 

is higher than the community C:Chl, points will be pushed to right of the 1:1 line in 

Figure 2-4. This situation would most likely occur for dinoflagellates and cyanobac

teria in a community dominated by diatoms, since diatoms have lower C:Chl than 

either group. Conversely, points will be pushed to the left of the 1:1 line for a 

class whose C:Chl is lower than the community C:Chl. This situation is likely to 
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occur in a phytoplankton community dominated by cells that have a higher C:Chl 

than diatoms. The plots in Figure 2-4 do reveal these basic trends. Diatoms are 

generally to the left of the 1:1 line at low to middle levels of biomass fraction, and 

converge on the 1:1 line at high fractions; dinoflagellate and cyanobacteria points 

are to the right of the 1:1 line. However, as described below, there are other un

certainties found in the various conversions and assumptions, which are cumulative 

and therefore potentially very high. 

The main value of using microscopy in conjunction with CHEMTAX is to know 

which species should be used to populate the IPR tables, and to approximate tax-

onomic composition with comparisons. For example, it can provide supporting evi

dence for the presence or absence of an algal class, such as the absence of diatoms 

in summer samples found in this research. This can be used as a simple pass or 

fail check on CHEMTAX results, but a more quantitative performance evaluation 

is limited, if not impossible. 

2.4.2 Error sources in microscopy 

There are a number of inherent error sources associated with microscopic count

ing, as well as the conversion from cell counts to biomass and from biomass to carbon 

totals. The carbon estimates for the different algal groups combined light micro

scopic enumeration with flow cytometric techniques. The light microscopic counting 

was restricted to cells > 10 /mi. Cells of smaller diameter are simply too small to 

identify under the magnification of the light microscope (400X for the Leica). Other 

techniques are needed to identify and quantify smaller cells. One method is based 
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on epifluorescent techniques which require filtration onto a membrane and subse

quent illumination with directed light beams. Based on the color of the fluorescent 

emission, cells can be assigned to different algal groups. Flow cytometry offers an 

alternative method (Yentsch and Campbell, 1991). This technique is able to count 

and determine size characteristics of cells smaller the 10 //m, including picoplankton 

< 1 /j,m. In addition, it performs very well in distinguishing cyanobacteria and cryp-

tophytes from other groups because of the presence of phycobiliproteins which have 

distinctive fluorescence characteristics. Both of these methods have been used in pre

vious phytoplankton community assessment studies (Duarte et al., 2000; Schluter 

et al., 2000; Gin and Lee, 2003). 

Flow cytometry can differentiate living cells from non-living particles and can 

assign the cells to different size ranges. However, flow cytometry cannot differentiate 

algal groups other than cyanobacteria and cryptophytes. 'Other' living cells were all 

assumed to be flagellates representing prymnesiophytes, chlorophytes, chrysophytes 

and/or prasinophytes. The HPLC pigment data confirm that one or more of these 

groups were present in most samples. The carbon-volume relationships for these 

flagellate groups are similar, although this is from limited published data (Menden-

Deuer and Lessard, 2000). The carbon estimates for this size fraction would not 

have changed if this group had been segregated into separate algal classes, assuming 

there were no diatoms or dinoflagellates in this size range. There are a few pen-

nate diatoms that approach this size, but none were seen or identified in the light 

microscope. 

There can be large errors associated with the counting of phytoplankton in the 
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light microscope. Reports of counts on the same sample show a wide range of 

variability, reaching up to a factor of 10 difference (Schluter et al., 2000). On 

several samples in this study, replicate counts were made by different individuals 

and compared. The differences were not as large as previously reported, but did 

exhibit an average difference of 30% for species counts. Fixatives can distort original 

cell diameter by shrinkage or expansion, but no adjustments were made to cell sizes 

in this study. 

There are a number of relationships for converting biovolume to carbon units 

for different algal groups, with little consensus among them. Garibotti et al. (2003) 

found a 3-fold difference between diatom carbon estimates (at intermediate to high 

biomass regions) using the Strathmann (1967) and the Montagnes and Franklin 

(2001) equations, whereas Llewellyn et al. (2005) found a factor of 2 between the 

same equations. The differences are related to how vacuoles are treated in the cells 

and in the carbon quotas. Other factors which can effect the carbon content are the 

nutritional state and the light level. Cells in general will begin to lower overall carbon 

content in high light environments (Cullen and Lewis, 1988), or when nutritionally 

deplete (Menden-Deuer and Lessard, 2000). In this study, the relationships given in 

Menden-Deuer and Lessard (2000) were used as they represented diverse collections 

of algae across physiologic states. 

2.4.3 Error sources in C H E M T A X 

CHEMTAX requires the initialization of two user-defined tables prior to program 

execution, and these are the IPR and ratio limits tables. Both tables have an 
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influence on the outcome of CHEMTAX, and each was systematically varied in 

order to assess the effects on the output matrix. Two scenarios were set up for 

CHEMTAX using different implementation schemes for IPR tables. The first -

scenario A - initialized IPR tables with values that were matched to the light level 

of the sample matrix. Scenario B initialized the IPR table with an average pigment 

ratio and was used for all samples, regardless of light level. In addition, each scenario 

was executed at different ratio limits. 

In the case of scenario A, three PAR regimes were defined and IPR tables were 

constructed for each regime. The two prime sources for the IPR values were Hen-

riksen et al. (2002) and Schluter et al. (2000). These two studies used similar PAR 

ranges for their culture experiments, and thus set the boundaries between light 

regimes for scenario A. The choice of which IPR value to use for a given class was 

based on a match as close as possible to the species observed in the water samples. 

However, the IPR values used in this analysis may be based on species that are 

either not found or not representative of the algae that inhabit the Gulf of Maine 

waters. For example, the dinoflagellates Ceratium longipes and Ceratium fucus were 

observed in the samples from June through October. Yet, there were no pigment 

ratios for either of these species found in the literature. The dinoflagellate IPR val

ues were based on culture experiments with Scrippsiella sp. (Henriksen et al., 2002), 

which were observed in the Gulf of Maine samples but in fewer concentrations than 

other dinoflagellates. The peridininxhlorophyll a values for two different dinoflag

ellates in Henriksen et al. (2002) varied from 0.375 to 0.746 (a factor of 2) at the 

same light level. Thus, choosing which pigment ratio to use can be difficult when 

multiple species for a given class are present in the sample, as was often revealed 
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through the microscopic analysis. 

In some cases, one species for a given class would only be present during restricted 

times of year. For example, this problem occurred during summer months when 

diatoms were reported in the CHEMTAX results, yet no diatoms were identified in 

the microscopic samples. This is a result of assigning fucoxanthin to diatoms, when 

the fucoxanthin in these samples was most likely derived from prymnesiophytes, 

which were identified in the microscopic samples (e.g.,Calyptrolithina spp.). The 

IPR tables were populated with values based on Emiliania huxleyi which was not 

observed in the water samples, and may have different pigment ratio characteristics 

than species that were identified in the samples (e.g.,Calyptrolithina spp.). The 

consequences of this are not known, since values for Calyptrolithina sp. were not 

found in the literature. 

There is similar uncertainty with the cyanobacteria class. There are reports of 

two strains of Synechococcus spp. in studies of the north Atlantic and the Pacific 

Oceans (Olson et al., 1990) - a bright light strain and a dim light strain. The PAR-

dependent ratios of zeaxanthimchla vary by 50% for Synechococcus spp., and it is 

not known which ratio set is more applicable to the Gulf of Maine. This highlights 

pigment variability within genus and species, and the implications for CHEMTAX 

are that it is imperative to know the pigment characteristics of all phytoplankton 

types in a given area. 

The ratio limits can also affect the outcome of CHEMTAX. The purpose of the 

ratio limit is to constrain the degree to which CHEMTAX can adjust ratio values 

during the iterative fitting process. The ratios can be tightly constrained (i.e., small 
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ratio limits) or relaxed (i.e., large ratio limits). The final pigment ratios will always 

vary from the original IPR values, and for this study the average differences between 

initial and final pigment ratios are summarized in Table 2.4. As ratio limits were 

increased, the IPR values changed by larger amounts. However, only at a ratio 

limit of 25 (the lowest) did the IPR values actually reach the ratio limit. Scenario 

A, which was based on PAR-grouped samples, had higher overall changes than 

scenario B. Considering scenario A, the phytoplankton were assumed to be in a 

similar light-acclimated state. If the overall species assemblage in a given class had 

similar pigment composition and ratios which matched the IPR values, it would be 

expected that the final ratio values would not change significantly from the initial 

values. If the IPR values did not represent the true class pigment ratios, it would be 

expected that they would adjust during the iterations until a more representative 

value were reached. This could be a large change if the true ratios and IPR used in 

the run were far apart. This is a possibility, since pigment ratios for species found in 

the Gulf of Maine were not available from literature. Scenario B used input matrices 

with samples from a wide range of PAR levels, the IPR tables were thus fitted to 

samples that have diverse actual pigment ratios. Since CHEMTAX fit the IPR to 

the whole set, any gain in changing the IPR tables to values representative of one 

PAR regime would be lost on samples from another PAR regime. This is perhaps 

why the IPR tables changed less for scenario B. Once the IPR values were changed to 

a certain point, further change did not improve the residuals between iterations. In 

other words, samples (from the same algal class) in the same matrix conditioned to 

different light levels may not share the pigment ratios, and improvements in some 

samples during the iteration could cause other samples to increase their residual 
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error. This point was achieved more quickly in scenario B than A, and the mixed 

sample matrix may be the reason. 

Other factors not included in this study for affecting IPR values are nutrient 

conditions and growth phase. These are both important to pigment ratios as shown 

by Henriksen et al. (2002) and Schluter et al. (2000). Ratios can vary by as much 

as a factor of 4 for cells in stationary versus exponential growth (Henriksen et al., 

2002); such states were not known for the samples taken. The IPR values taken 

from Henriksen et al. (2002) were for the exponential growth phase. During at 

least one cruise (June), diatoms were suspected of being in stationary growth phase. 

Samples taken on June 17 showed extremely high levels of diatoms (counts over 

100,000 cells/liter). A cruise one week later to the same stations did not detect 

any diatoms from water samples. The June 17 samples were likely at the end of 

the diatom bloom and subsequently disappeared as a result of nutrient exhaustion 

(although it is unclear whether it was related to silicate or nitrate). Since IPR values 

change during CHEMTAX iterations, it is possible that the ratios self-adjusted to 

stationary phase values for scenario A. 

2.4.4 Time scales of photoacclimation — consequences for IPR 

The rationale for using PAR-dependent IPR tables to CHEMTAX is valid only 

if the phytoplankton are photoacclimated to the PAR used in the tables. Photoac

climation is the process of modifying the photosynthetic apparatus to the external 

light conditions. This process includes modifications to both the intracellular pig

ment concentration and composition. Phytoplankton will experience fluctuations 
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in light intensity if there is active vertical mixing. The extent to which the light 

level changes depends on the intensity of the mixing rate and the depth of the 

mixed layer. If cells are rapidly circulating through different light conditions, the 

rates of the photoacclimative processes may not be fast enough to adapt to the 

depth-dependent light level. 

There is considerable variability in the response rates of photoacclimation for 

different species under different conditions (e.g., Staehr et al. (2002)). Cullen and 

Lewis (1988) observed a faster response in photosynthetic parameters in phytoplank-

ton cultures when going from high to low light, compared to the response from low 

to high light. Phytoplankton respond within minutes to changes in the light environ

ment, as Oliver et al. (2003) have demonstrated. Variable fluorescence, a measure of 

the photosynthetic efficiency, can quickly respond (minutes to hours) to light shifts 

in a vertically circulating environment. However, full acclimation is a longer process 

and may take hours to days (Geider et al., 1998). 

An additional consideration is the ability of phytoplankton to regulate their 

vertical position by either buoyancy mechanisms or vertical swimming in the case 

of cells with flagella. For example, dinoflagellates have been known to be able to 

maintain position in the water column, and can achieve daily migration distances of 

20 meters (McGillicuddy et al., 2003). Similarly, cyanobacteria are known to change 

vertical position through internal buoyancy, and at least some species of diatoms 

have this ability as well (Geider et al., 1998). The ability to move confounds the 

effects of vertical mixing by the water column, and the process of photoacclimation. 
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2.5 Conclusions 

The CHEMTAX program quantifies the phytoplankton class composition based 

on the ratios of marker pigments to chlorophyll a. An important first step is the 

configuration of the initial pigment ratios for the expected algal classes. In practice, 

these are based on values obtained from cultured species representative of the vari

ous classes. However, these ratios are dependent on algal growth stage, light levels 

and quality, nutrients, and temperature. Pigment ratios can also vary considerably 

between species within a class. Previous recommendations for improving CHEM

TAX results are to know the phytoplankton species of the given water mass, and 

the environmental conditions (e.g., light) beforehand. Initial pigment ratios that 

adhere to these recommendations should give the best results for CHEMTAX. 

This study examined the sensitivity of CHEMTAX to different treatments of 

the initial pigment ratio table and the ratio limits table. The use of initial pigment 

ratios matched to the light level of the samples was compared to the use of pigment 

ratios averaged for all light conditions. The average relative difference between 

CHEMTAX results for the scenarios was 9%. The most affected algal class were 

the dinoflagellates, followed by the prymnesiophytes. The effects of different ratio 

limits were on the same order. Assuming these effects are additive and independent, 

combined differences could reach plus or minus 15-20%, dependent on the algal class. 

It is not possible to evaluate different IPR tables or ratio limits by compar

isons between CHEMTAX and microscopy. This is because the chemotaxonomic 

method and microscopic assessments inherently measure different aspects of com

munity biomass. Assumptions about the conversion between one form and the 
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other can be easily violated. Thus, quantitative comparison between microscopy 

and CHEMTAX is limited. Microscopy will provide information on species present 

in a sample, which is important for basing IPR entries for a given algal class. At 

a minimum level, it provides a measure of the presence/absense for different al

gal classes in comparison with CHEMTAX results. This in itself was found to be 

valuable. 
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Figure 2-1: Flowchart of the CHEMTAX program to calculate phytoplankton com

munity composition from HPLC data. 
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Ratio limits - 25, 50, 100, 200, 300, 400, 500 

" 

At each ratio limit (n=7) 

Scenario A Scenario B 

IPR table: PAR-matched 

Input data: Partial 
Monthly sorted 
by PAR 

Output data: 
3 matrices/month 
pre-sorted by PAR 

IPR table: Average 

Input data: All monthly 
not sorted by PAR 

Output data: 
1 matrix/month 

Figure 2-3: Schematic of the CHEMTAX experimental design. Scenario A was 

based on matching IPR tables to the sample PAR, while scenario B used an average 

IPR table. Each scenario was run with 7 different ratio limit values. 
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Figure 2-4: CHEMTAX class fractions versus carbon-estimated class fractions at a 

ratio limit = 100. Red dashed line is 1:1. 
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Figure 2-2: HPLC chromatogram from a June sample at 450 nm. 
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CHAPTER 3 

SEASONAL DYNAMICS OF 

PHYTOPLANKTON COMMUNITIES IN 

THE WESTERN GULF OF MAINE: 

LINKAGES BETWEEN PHYSICAL 

FORCING AND POPULATION 

COMPOSITION 

The following chapter has been submitted to the Marine Ecology Progress Series. 

Abstract: From June 2004 through November 2007, routine measurements of phys

ical, chemical and biological variables were made along 2 transects every month 

in the western Gulf of Maine. The phytoplankton community was characterized 

from HPLC pigment data and exhibited seasonal variability in its composition. A 

sparse winter population of diatoms and flagellates was succeeded by a spring bloom 

dominated by diatoms, but also accompanied by increases in dinoflagellates, cryp-

tophytes, prymnesiophytes, and other flagellates. A summer transition followed 

with the disappearance of diatoms and a remaining community dominated by flag-

48 



ellates with minor contributions from cyanobacteria. A second bloom occurring in 

the fall was composed of a mixed community of diatoms, dinoflagellates, and other 

flagellates. The relationship between surface phytoplankton communities and en

vironmental factors was examined using principal component analysis. The first 3 

principal components accounted for more than 71% of the variance in a set of nine 

environmental variables. The first principal component (47% of the variance) was 

associated with the seasonal variation in temperature, light, wind speed, the ratio of 

the euphotic depth to the mixed layer depth, salinity, and nutrient concentrations. 

When data points were projected in the subspace defined by the first three princi

pal components, similar phytoplankton communities tended to group together. The 

environmental factors were seen as key drivers for this pattern, and phytoplankton 

composition was consistent with habitat preferences as inferred from an adaptation 

of the data to the Reynolds Intaglio. 
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3.1 Introduction 

The influence of environmental factors on phytoplankton cell physiology and 

ecology has been a focus of marine research for over 100 years. It is generally 

understood that the rise and fall of phytoplankton species within a community 

can be caused or triggered by a combination of factors (e.g., light, temperature, 

nutrients, grazing, competition) that are working simultaneously. These factors 

affect life stage evolution and overall community composition, and are constantly 

varying in the marine environment (Smayda, 1980). Results of past research efforts 

have led to the establishment of basic relationships between the environmental state 

and the composition of the phytoplankton community (Sommer, 1989; Goericke, 

1998; Kruk et al., 2002) or the life stage of a particular species (McGillicuddy et al., 

2003). These studies found positive correlations between the environmental state 

(as a combination of factors) and the phytoplankton community composition or 

species condition. However, knowledge of the specific mechanisms responsible for 

phytoplankton succession within marine systems is still incomplete and unresolved. 

Cycles of community succession at seasonal scales are governed by changes in 

the physical forcing on the habitat suitability for both phytoplankton and graz

ers (Margelef, 1978; Smayda, 1980; Cullen and Lewis, 1988; Banse, 1994). Margalef's 

Mandala (Margelef, 1978) is a 2-dimensional plot that predicts the expected change 

in phytoplankton composition forced by nutrient availability and turbulence, which 

were considered to be the principal determinants shaping the population composi

tion. In this depiction, phytoplankton composition moves along a trajectory from 

high nutrient, turbulent conditions favorable to diatoms to low nutrient, stable con-
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ditions favorable to flagellates. This concept was further explored by Reynolds et al. 

(2000, 2002) and subsequently evolved into the Reynold's Intaglio - a template for 

describing phytoplankton communities and predicting where to find them along nu

trient/light gradients. 

Changes in environmental conditions occur on different time scales, from short-

term (e.g., days) to longer-term (seasonal) to even much longer (decadal, millenial), 

and thus bring about change in phytoplankton populations in freshwater and marine 

environments along these same time scales (Grover and Chrzanowski, 2005; Barber 

and Hiscock, 2006; Karl et al., 1997). In both short- and long-term cases, the use 

of physical/environmental factors in describing phytoplankton communities is at

tractive because some of the key variables that influence the plankton community 

(e.g., temperature and light) can be remotely sensed from satellite platforms. This 

could provide the means to depict phytoplankton communities on the same spatial 

and temporal scales as the satellite data. We hypothesize that there is a predictive 

capability in this approach. Physical aspects of the environment (e.g., tempera

ture, light, wind strength) can be measured, as can the phytoplankton structure 

through microscopic and pigment analysis. If correlations can be made between 

a set of physical variables and the composition of the phytoplankton community, 

then detection of the environmental conditions could be used to predict the phy

toplankton community composition. This concept has been applied to freshwa

ter (Grover and Chrzanowski, 2005; Kruk et al., 2002; Reynolds, 1984) and oceanic 

systems (Kamykowski and Zentara, 2003). These research approaches have used sta

tistical methods (e.g., principal component analysis) to relate the physical variables 

to different species or algal groups. The work presented here extends this idea by 
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analysing the relationship between the physical environment and the phytoplankton 

community in the western Gulf of Maine. We also acknowledge that included in 

any relationship based on physical factors includes correlated biotic factors (e.g., 

grazing and competition). In this sense, the question we are seeking to answer is 

to what degree does the physical environment, along with correlated biotic process, 

influence the phytoplankton community composition? 

The objectives of this study were to 1) identify and characterize the evolution 

of phytoplankton populations in the western Gulf of Maine over the study period, 

and 2) examine the associations between hydrographic forcing and phytoplankton 

communities. 

3.2 Methods 

3.2.1 Study Area 

The study site is located in the western Gulf of Maine (Figure 3-1), and encom

passes a region that stretches from the Merrimac River in the south to the Kennebec 

River to the north. The western boundary is fixed along the New England coast

line, and the eastern edge is taken to be roughly 75 km offshore (at the longitude of 

the farthest offshore station). The measurements in this study were obtained from 

June 2004 through November 2007. A common set of measurements were made 

at each station, although the number of depths (for discrete bottle measurements) 

and sampling frequency varied among the stations. The set of core measurements 

included radiometric and CTD profiles, and discrete samples for HPLC, nutrients, 
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and absorption analysis. Nutrient samples were analyzed at UNH by the McDow

ell lab using a nutrient analyzer and included nitrate, nitrite, ammonium, silicate, 

and phosphate. A Wetlabs ACS instrument capable of measuring vertical profiles 

of particle backscattering, total absorption, total scattering, total attenuation, and 

fluorometric-excited emission was also routinely deployed. 

The sampling program involved two transects that were visited every month -

one that extended from Portsmouth, NH to Bath, ME (the Coastal Transect) and 

another that extended from Portsmouth, NH to an offshore location 70 kilometers 

away in Wilkinson Basin (the Wilkinson Basin Transect). Whole water samples were 

collected for microscopic and flow cytometric analysis from stations along these 

transects from March 2005 through March 2006 at surface and near-surface (10 

meters depth) locations. These cruises were all conducted aboard the UNH vessel 

Gulf Challenger based in Portsmouth, NH. 

Results presented in this chapter will focus on data from the Wilkinson Basin 

Transect, and will generally be restricted to surface values, unless specifically noted. 

The Wilkinson Basin Transect (henceforth, WB) - a cross-shelf transect covering 

a distance of approximately 75 kilometers - was repeated once a month, although 

weather or ship maintenance schedules sometimes prevented or interfered with a 

designated month's run. In all, a total of 38 out of 41 possible months had some 

WB data. [Weather occasionally prevented all stations from being visited during a 

cruise.] 

The transect itself was composed of 6 stations, with the nearest inshore station 

(WB1) being a few kilometers offshore at a depth of 20 meters and the last station 
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(WB7) over 70 kilometers offshore (WB6 was discontinued early in the program 

and is omitted). Water depth initially increased with distance offshore from WB1 

to WB4, and then shoaled as the transect crossed Jeffrey's Ledge where WB5 is at a 

depth of 60 meters. The farthest station from shore, WB7, is located in Wilkinson 

Basin, one of the deepest parts of the Gulf of Maine with a depth greater than 270 

meters. 

3.2.2 E n v i r o n m e n t a l var iab les 

Environmental variables were selected based on factors put forth by Longhurst 

(1995) for predicting the sequence of the seasonal phytoplankton growth cycle. The 

list assembled by Longhurst was intended for global application, but is also rele

vant on regional spatial scales such as the Gulf of Maine. The fundamental point 

of view adopted by Longhurst (1995) and others (e.g., Cullen and Lewis (1988); 

Smayda (1980)) is that growth is governed by the interactions between light, nu

trients, mixing and stability of the upper water column. Based on the overlap of 

Longhurst's factors and the in situ data set, nine variables were selected. These 

were temperature, surface PAR, vertical attenuation coefficient, wind speed, nitrate 

concentration, phosphate concentration, dissolved silicate concentration, the ratio 

of the euphotic depth to the mixed layer depth, and salinity. The number of sta

tions with all of the above measurements totaled 85. The software program Matlab 

(www.mathworks.com) was used to perform the data analysis. 
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Temperature and salinity data 

Surface values of temperature and salinity were extracted from station CTD 

profiles using a Seabird instrument. Occasionally, the profiler was not functional 

on some cruises and stations. In these instances, temperature and salinity values 

were taken from a flow-through system, which measured along-track surface values 

of temperature and salinity (and other variables). Mixed layer depth (Zm) was 

calculated based on temperature and salinity profiles using a routine in Matlab 

(www.mathworks.com). The program searches a density profile over a moving depth 

window for a density change that exceeds a defined threshold. The default threshold 

for mixed layer depth calculation was set at a difference of 0.5 sigma units. When 

this threshold was not reached, it was apparent the entire water column was well 

mixed, and Zm was set to the water column depth. 

PAR data 

Two data sets for photosynthetic active radiation (PAR) were available - the 

instantaneous PAR as measured onboard cruises, and daily average PAR fields from 

satellite data. The latter was chosen for the prime reason that it is the light field 

experienced over a period of days that is significant to phytoplankton community 

selection, and not instanteneous PAR which is more directly affecting shorter-term 

physiological mechanisms on the cellular level. Thus, derived PAR fields were ex

tracted from SeaWiFS data. Daily SeaWiFS data during the study period were 

processed from level 1 to level 2 using SeaDAS, a software package specifically de

signed to process ocean color satellite data that was developed and distributed freely 
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by NASA (http://seadas.gsfc.nasa.gov). The output data produced during the level 

processing, in addition to water-leaving radiance and chlorophyll, included a PAR 

field based on the Frouin algorithm (Frouin et al., 2003). These daily PAR fields 

were then averaged for the preceeding 8 days of each cruise. In situ stations were 

co-located with the 8-day averages, and data were extracted from the imagery. 

Light attenuation coefficient 

The vertical diffuse attenuation coefficient of downwelling light at 490 nm, Kd4go, 

was obtained in a number of ways. It was calculated directly from downwelling 

light profiles measured with a Satlantic hyperspectral profiler, but this was not 

available for every station. In such cases, ^490 was modeled using optical properties 

measured with a Wetlabs ACS profile system and the Q AA model of Lee et al. (2002). 

When the two methods were compared, they agreed with an r2 = 0.71. 

Winds and turbulent mixing 

Wind data were downloaded off the GoMOOS website (www.gomoos.org) from 

fixed buoy measurements within and around the study area. Wind speeds were 

extracted from 20 different NOAA buoys and C-MAN towers, and GoMOOS buoys 

in and around the Gulf of Maine (Figure 3-1). The nearest buoy to the ship position 

was then selected as representative of the station wind field. Surface wind speeds 

(U) were converted to U3 as a measure of wind mixing strength on the surface 

waters, and were then averaged over a period of 8 days preceding the date of the 

cruise. This is a proxy for the friction velocity associated with the turbulent mixing 
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energy (Archer, 1995). 

3.2.3 Phytoplankton community composition 

Phytoplankton pigment concentrations were measured from HPLC analysis, and 

phytoplankton class fractions were estimated using the CHEMTAX algorithm as 

described in the previous chapter. Pigment data were loaded into CHEMTAX, and 

the result was an output matrix which consisted of the percentage class contribution 

to Chla for eight phytoplankton classes. The sum of class percentages for each sample 

equaled 100%. 

The eight classes were subsequently grouped into diatoms, flagellates, and cyanobac-

teria. Phytoplankton communities were formed from these three groups and de

scribed as diatom-dominated (70% or more of Chla attributed to diatoms), flagellate-

dominated (70% or more of Chla attributed to flagellates), and mixed (all remain

ing combinations). This view of the phytoplankton community follows previous 

studies differentiating phytoplankton communities (Sathyendranath et al., 2004), 

and is comparable to the subdivisions of phytoplankton in marine ecosystem mod

els (Moore et al., 2002). 

3.2.4 Principal component analysis 

Principal component analysis (PCA) is a statistical method used to reduce the 

dimensionality of multivariate data by linearly transforming them into a new data 

projection with minimal loss of information. The power of PCA is in data reduction 

by revealing the significant modes of variance within the data, and altering the axes 
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(the eigenvectors) to orient along these modes. The new orientation is such that the 

first principal component (PC) is a directed axis along the vector that accounts for 

most of the variance. The axes of the following PCs are orthogonal to one another, 

and account for sequentially decreasing amounts of variance. A p-dimension data 

set can have a maximum of p principal components. 

PCA was applied to the matrix of the nine environmental variables. Since these 

variables are of different units and range over different scales, all data were normal

ized to standardized variables by subtracting the mean from each value and dividing 

by the standard deviation. The PCA analysis supplied two important pieces of in

formation for the present study. First, the main sources of variation within the 

physical system were characterized. Secondly, a qualitative assessment of the asso

ciation of phytoplankton composition and physical factors could be made. This was 

done by plotting the environmental data points in their new PC orientation (whose 

distribution is strictly governed by their physical characteristics). These points were 

then color-coded by the phytoplankton community to which they belong. This re

vealed tendencies of phytoplankton communities to separate from one another and 

cluster into groups in the physical space. 

3.3 Results 

3.3.1 Hydrographic variability along the Wilkinson Basin transect 

The general hydrographic conditions along the WB transect in the upper 10 

meters showed strong seasonality in temperature, surface PAR, wind-driven turbu-
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lence, and salinity (Figure 3-2). Along-transect variations from same-day cruises 

showed inshore-to-offshore gradients in these variables as well. The surface temper

atures reached annual minima of less than 5C during February/March with the cold

est waters occurring nearshore (WB1 and WB2) and getting progressively warmer 

heading offshore to WB7. This pattern was observed during the spring but occa

sional reverses occurred in the late spring/summer, when the warmest waters were 

found inshore and cooler waters offshore. Late summer maxima reached levels be

tween 15C and 20C. The winter/spring station temperatures of 2006 and 2007 were 

warmer than those of 2005. 

Salinity ranged from a low of 28.5 PSU at WB1 and WB2 in the spring to a high 

of near 33 PSU at WB7 during winter, with a strong seasonal component visible at 

all stations. The cross-transect gradient shows higher salinities offshore - away from 

freshwater sources - during all months of the year. This gradient was weakest during 

winter and strongest during spring. There were extreme gradients during May of 

each year when, as a result of heavy rains and river runoff, nearshore salinities were 

less than 29 PSU, and offshore salinities were greater than 32 PSU. 

Satellite-derived daily PAR values exhibited a seasonal cycle, but minima/maxima 

were offset compared to the temperature cycle. The highest values occurred in late 

June (> 50 mole photons m~2d~l) and lowest values occurred in December (10 

mole photons m~2d~~l), whereas temperature minima were in February and max

ima in August. Extended periods of cloud cover in May 2006, July 2006, and June 

2007 lowered PAR values compared to the same periods in other years. Values for 

the wind strength (U3) were highest in winter and lowest in the summer, but the 
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seasonal patterns exhibited higher variability within seasons compared to the other 

variables. 

Mixed layer depth (Zm) showed a wide degree of variability between stations 

and seasons, but followed a common progression (Figure 3-3). Maximal Zm values 

occurred during fall and winter for all stations, with the deepest Zm at WB7, the 

station with the greatest water depth. Minimal Zm occurred during summer months, 

as well as at inshore stations in the spring. The factors governing Zm are different 

for each season. Wind and convective mixing deepen Zm in fall and winter, while 

freshwater runoff and/or upper layer warming due to increased solar radiation shoal 

Zm in spring/summer. The relative vertical positions of Zm and the euphotic depth 

(Zeu) ~ the depth at which available light is 1% of the surface value - determine the 

amount of light experienced by cells in the mixed layer. This is indicated by their 

ratio, Zeu/Zm, in Figure 3-3. Values less than 1 indicate potential light limitation, 

while values greater than 1 are situations where phytoplankton cells are exposed 

to suitable light for growth throughout the mixed layer. The latter occurs in the 

summer, when surface PAR is greatest and Zm is minimal. During winter months, 

this ratio decreases and can reach values below one, particularly at deeper stations 

with WB7 having ratios as low as 0.2. 

Surface nutrient concentration cycles followed inverse patterns compared to tem

perature (Figure 3-4). Dissolved inorganic nitrogen (DIN defined as the sum of 

nitrate plus nitrite) had its highest concentrations (5-10 fiM) in the winter months 

and lowest concentrations (< 1 fjM) during summer months of 2005 and 2006 (2007 

data are incomplete for nutrients). Silicate (Si02) exhibited this same pattern, with 

60 



highest concentrations reaching up 10 /uM, and lowest concentrations in the summer 

less than 1 fiM. Phosphate levels also followed the trends of Si02 and DIN exhibit

ing an inverse relationship with temperature; annual highs occurred in the winter 

months and lows occurred in summer months. Cross-transect gradients were exhib

ited in all 3 nutrient species, with the largest spread in winter months and weakest 

in summer when nutrient concentrations were at their annual minima. Higher nu

trient concentrations were typically found near the coast and declined offshore out 

to WB7, although this trend was at times reversed in the winter and spring months. 

3.3.2 Near-surface total biomass and phytoplankton community 

cycles 

Total chlorophyll a concentration {Chid) is the main photosynthetic pigment 

found in all phytoplankton and is generally taken as a proxy for the biomass of 

the whole phytoplankton community. The trends in surface chlorophyll at all WB 

stations followed a similar pattern - the highest values occurred during the spring 

and fall, and the lowest values during the summer and winter, and are displayed as 

the overall magnitude of each plot in Figure 3-5. The highest spring Chla values 

(>3 mg/m3) were observed at WB1 and WB2 during 2006 and 2007. Although the 

spring bloom of 2005 was of smaller magnitude, Chla levels stayed elevated for a 

longer period compared to 2006 and 2007. The fall Chla values of 2006 and 2007 

reached levels comparable to spring blooms of those years, and exceeded values of 

3 mg/m3 at WB3 and WB5 in 2006. There was a general decrease in surface Chla 

values from inshore to offshore in all seasons. WB7, the farthest station from shore, 

routinely had the lowest levels, whereas WB5 - situated on Jeffrey's Ledge - usually 
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had higher values than either WB4 or WB7. 

The surface phytoplankton community off the coast of New Hampshire alter

nated between diatom-dominated communities in the winter and spring to flagellate-

dominated communities in the summer and fall (Figure 3-5). [Note: The flagel

late group in these plots has been split into two sub-groups - dinoflagellates and 

'small flagellates' (comprising cryptophytes, prymnesiophytes, prasinophytes, chrys-

ophytes, and chlorophytes). The dinoflagellates occupied a cell size range of greater 

than 20 microns, while the latter group occupied the size range from 2 to 20 microns.] 

A similar pattern generally occurred at all stations. Diatoms generally dominated 

the community during the spring bloom (when total biomass reached its highest 

levels), with a secondary bloom occurring in June of 2005 and 2007. Diatoms were 

generally present in low numbers or absent in the surface waters during the summer 

at all stations. Diatoms were also significant during brief periods in the fall (i.e., 

the fall bloom), and would occasionally dominate at inshore stations. However, 

the fall blooms were typically mixtures of flagellates and diatoms, or dominated by 

flagellates as in 2007. 

Small flagellates were present year-round at all stations, whereas dinoflagellates 

were only present in spring, summer, and fall. The small flagellates were significant 

in the spring and would generally dominate the community after the spring bloom. 

The combined flagellates dominated summer months at all stations. Cyanobacteria 

represented a small but significant fraction of the community in the late summer, 

where they reached their highest levels. Although cyanobacteria never dominated 

the community in terms of biomass, they probably were numerically superior to 
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other phytoplankton in that season. The flagellates maintained their dominance 

through the fall. The fall blooms of 2004 and 2007 were dominated by flagellates 

and not diatoms at most stations, while the fall blooms of 2005 and 2006 varied 

in terms of dominance between these groups. There was a general decline in all 

phytoplankton groups during the winter, with the dinoflagellates having diminished 

to undetectable levels in each year. 

3.3.3 Principal component analysis 

The variables used in the PC A were temperature, PAR, K^QQ, salinity, wind 

stress, nitrate concentration, phosphate concentration, silicate concentration, and 

the ratio of the euphotic depth to the mixed layer depth (Zeu/Zm). The first three 

principal components accounted for more than 71% of the variance (Table 3.1). 

The eigenvalues of the first 2 principal components exceed 1, indicating these are 

significant (Legendre and Legendre, 1998). The first principal component (PCI) is 

positively correlated with wind speed and nutrient concentrations, and negatively 

correlated with temperature, PAR and Zeu/Zm (Figure 3-6). PC2 is positively 

correlated with ^490 and to a lesser degree salinity, whereas PCS is positively cor

related with silicate. The variables were previously shown to have seasonal signals, 

and most are strongly associated with PCI. This indicates that all nine variables 

were significant, and exhibited an even distribution of sample points over seasons 

and conditions. 

Figure 3-7 depicts the three phytoplankton communities (defined previously) rel

ative to the physical domains in biplots of the first three principal component axes. 
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Table 3.1: PCA eigenvalues for a matrix of 9 environmental variables 

PCA eigenvalues 
PCA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Latent 
4.2627 
1.2071 
0.9261 
0.7162 
0.6231 
0.5397 
0.3814 
0.2292 
0.1145 

Percent Variance 
47.36 
13.41 
10.29 
7.96 
6.92 
6.00 
4.24 
2.55 
1.27 

Cumulative Percent 
47.36 
60.77 
71.06 
79.02 
85.94 
91.94 
96.18 
98.73 
100.0 

Biplots of eigenvectors with scores show that phytoplankton communities tend to 

organize into different regions of PC space. Diatom-dominated communities tended 

to occur on the right-hand side of each plot, and were associated with higher nutrient 

concentrations and wind speeds. In contrast, flagellate-dominated communities oc

curred more frequently on the left side of each plot, and were associated with warmer 

temperatures, higher PAR, and higher Zeu/Zm. Mixed communities are distributed 

on both sides of the axis. These plots show an affiliation of phytoplankton commu

nities to different types of habitats, as defined by the nine environmental factors. It 

is important to note that these distributions also include correlated biotic effects, 

such as the effects from grazing and competition that correlate with temperature 

for example. 
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3.4 Discussion 

3.4.1 Description of the phytoplankton community - caveats and 

considerations 

Phytoplankton communities in coastal areas are a heterogeneous mix of species 

from different taxonomic classes. It is not unusual, and possibly frequent, to find a 

few species that numerically dominate the population mixed with a diverse set of 

less abundant species, especially in bloom conditions. In the western Gulf of Maine, 

blooms can develop at any time dependent on the local conditions. As Barber and 

Hiscock (2006) pointed out, when positive growth conditions occur, they can apply 

to many different species and an apparent bloom of a few species often obscures 

increased biomass in less conspicuous phytoplankton. Consequently, when deal

ing with the problem of using descriptive words to represent a mixed phytoplankton 

community, simply labeling a water mass as composed of 'diatoms' is often overlook

ing the contributions of other phytoplankton present in the population. Conversely, 

describing a community by listing every species present would not only be extremely 

challenging but would result in as many descriptions of communities as there are 

combinations of species - a task that would add an unnecessary level of complexity 

to an already burdensome task. This problem has been and is still under debate 

(see Reynolds et al. (2000) and Reynolds et al. (2002) and references therein). Since 

diatoms are a class of algae taxonomically different from other phytoplankton and 

unique in terms of their importance to food webs and marine biogeochemistry, it 

was essential to have these algae defined as their own group. The approach taken 

here to differentiate diatoms from all other phytoplankton is consistent with the 

65 



functional group view. 

The issue of how to define the remaining phytoplankton was a problem of whether 

to differentiate among flagellates and picoplankton, and how to differentiate the 

flagellates and the picoplankton communities from diatoms. To satisfy these consid

erations, phytoplankton at the taxonomic level were viewed as belonging to one of 

three classes - diatoms, flagellates, or cyanobacteria - and at the community level 

were assigned to one of three possible groups based on the relative proportions of 

these different phytoplankton classes. The three groups - diatom-dominated, mixed, 

and flagellate-dominated - were in some sense arbitrarily defined. However, since 

the goal was to characterize phytoplankton communities, criteria had to exist to 

distinguish one group from another, and this inevitably involved subjective criteria. 

Given the uncertainties in defining community composition using pigment (or any 

other) methods, the distinction between a diatom-dominated community, a mixed 

community, and a flagellate-dominated community is not discrete, but instead is a 

continuous transition. While this sacrifice in complexity of group composition may 

overlook some important facets of phytoplankton ecology - that of species succes

sion - it does serve to represent the general characteristics of phytoplankton at a 

community level. 

The term 'dominant' in the naming convention does not necessarily imply nu

merical superiority nor high biomass. Wintertime phytoplankton biomass levels and 

cell numbers were relatively low compared with other time periods, and contained 

stations classified as diatom-dominated communities. These are relative terms, and 

signify the relative community composition, which in some seasons can be very low 
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in terms of overall phytoplankton numbers and biomass levels. This instantaneous 

composition also does not give information of the direction of community succes

sion. A dominant phytoplankton species can decline within a few days to levels of 

insignificance to the population. As a consequence of the sampling frequency of a 

site (typically once per month), important stages in the development of a community 

(a continuous process) may be missed. Thus, the overall progression of community 

succession was broadly revealed at seasonal time scales, with the implicit foreknowl

edge that community change is continuous, and this change can occur rapidly at 

finer time scales than the sampling carried out here. 

The vertical distribution was also not considered here. Subsurface phytoplank

ton communities were evident at different times of the year (not shown). This was 

most pronounced in the summer months, when a subsurface chlorophyll maximum 

was present, which could have a different composition than the overlying commu

nity. This aspect was not the focus of this study. The restriction to analysis of 

surface water was deliberate, but it is acknowledged that the vertical distribution 

of community composition is of consequence to phytoplankton community organi

zation as it influences successional composition of the surface waters as a source of 

species which later can become dominant. This can occur through flagellate mi

gration - which can span distances of 20 meters/day - or mixing events which can 

re-distribute vertically partitioned communities. 
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3.4.2 Phytoplankton community composition and distributions 

Seasonal variation in phytoplankton community composition in temperate oceanic 

environments has been widely observed (Smayda, 1980; Longhurst, 2007). The phy

toplankton populations in the western Gulf of Maine have shown both temporal 

(seasonal) and spatial (inshore vs. offshore) variability. In this area diatoms dom

inated the community in winter and spring samples, and flagellates dominated in 

summer and fall samples. This trend was observed to some degree at all WB sta

tions, although a gradient was exhibited from inshore to offshore. The farthest 

offshore station (WB7) exhibited a much smaller diatom presence compared to the 

inshore stations. Flagellates dominated the community in summer and fall, and 

at offshore stations in winter and spring. Conversely, diatoms were occasionally 

dominant in the fall at inshore stations. 

The general patterns observed here are consistent with previous studies from 

the Gulf of Maine and other nearby coastal regions. Gran (1932) and Lillick (1938) 

conducted Gulf-wide studies of phytoplankton distributions in the Gulf of Maine. 

Both studies observed successional patterns throughout the Gulf of Maine. Low 

winter biomass, from October through January, was characterized by a low abun

dance of diatoms with fewer numbers of cold-water dinoflagellates. [Small flagellates 

were not enumerated.] Spring bloom communities replaced winter populations typ

ically in March/April, with diatoms being dominant. The summer community was 

composed of dinoflagellates, coccolithophores, and to a lesser extent diatoms. Late 

summer/early fall communities were dominated by localized diatom blooms with a 

dinoflagellate/coccolithophore background community. More recently, Tamigneaux 
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et al. (1997) reported similar phytoplankton succession in the Gulf of St. Lawrence, 

just to the north of the Gulf of Maine. The spring bloom community was dominated 

by chain-forming diatoms, which gave way to a small (<5 /im) flagellate-dominated 

community in the summer, and cyanobacteria also reached their peak in the late 

summer. The fall phytoplankton populations were found to consist of dinoflagellates, 

small flagellates, and diatoms. 

3.4.3 Response of phytoplankton to environmental forcing 

Coastal marine phytoplankton live in a dynamic environment with fluctuating 

conditions. The success of any species depends on its ability to maintain growth 

under these unstable conditions. There are many factors - both abiotic and biotic 

- which influence the growth of phytoplankton, and these at times can be differ

entially favorable for some phytoplankton and simultaneously disadvantageous for 

others. The set of abiotic environmental variables used in this study was based on 

lists assembled by Longhurst (2007) and Smayda (1980) of factors controlling the 

growth of phytoplankton and influencing species succession, and from other studies 

looking at environmental factors and the response of phytoplankton (Harris, 1986; 

Grover and Chrzanowski, 2005; Kruk et al., 2002; Reynolds, 1984). The primary 

variables in this list are temperature, light availability, turbulence, salinity, nutri

ents, mixed layer depth, and the ratio of the euphotic depth to the mixed layer 

depth. The cube of the wind speed was used as a proxy for turbulence. Other in

fluential factors not considered here are predation and sinking rate (Smayda, 1980). 

There is no single factor that determines the community structure, but rather a 

collective combination of these variables. Multivariate analysis can reveal which 
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environmental factors are significant. Grover and Chrzanowski (2005) reported that 

environmental variables accounted for less than half of the variance of phytoplank-

ton composition using multivariate analyses, while Kruk et al. (2002) reported that 

environmental variables accounted for 75% of the variability in phytoplankton com

munity composition. Both of these studies were based in freshwater lakes, and were 

examining the composition of phytoplankton to the genus and/or species level. In 

these aforementioned studies, temperature, light and nutrients were the dominant 

environmental factors. The objective of multivariate analysis in this study was 

not to develop regression models between environmental factors and phytoplankton 

response, but to determine the significant environmental variables and if there is 

a connection between environmental variables and phytoplankton communities de

fined at broad levels, not on species. There was strong qualitative evidence of this as 

exhibited by the groupings of phytoplankton communities within the PCA biplots. 

Broad associations between data points of similar community composition cor

related to environmental factors. The community composition, while dominated by 

changes at the seasonal level, can also vary over shorter time and space scales. The 

environmental factors have a strong seasonal component, but are also at any one 

time governed by the local meteorological conditions. This includes wind events 

and coastal river runoff from storms, both of which can impact water column sta

bility. The spring and fall are subject to more variations in the local weather, which 

consequently leads to more variable, mixed communities than summer. The gen

eral pattern observed in the series of PCA biplots showed an oscillation between 

summertime and wintertime conditions, both of which contained different phyto

plankton populations of flagellate-dominated and diatom-dominated communities, 
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respectively. 

The first principal component (PCI) contained about half of the variance of 

the environmental variables, of which temperature, nitrate, and wind speeds were 

the dominant factors. This has also been shown to be the case in previous stud

ies (Grover and Chrzanowski, 2005; Kamykowski and Zentara, 2003). Temperature 

has been shown to influence the species dominance of cultured phytoplankton pop

ulations (Goldman, 1977), as temperature directly impacts growth rates and shapes 

potential fundamental niche zones for species. It is also strongly correlated with nu

trient concentration and other factors with strong seasonal variability (PAR, wind 

speed, Zm). The robust nutrient-temperature relationship has been used to create 

nutrient-depletion temperatures - the temperature at which a nutrient concentration 

reaches a level deemed 'deplete' (Kamykowski and Zentara, 2003). In many cases, 

this is defined as the temperature when the nutrient concentration reaches zero from 

a line fitted to nutrients versus temperature data. In actuality, the nutrient level 

at which diatoms disappear may be non-zero. The evidence gathered here indicates 

that the summer absence of diatoms is due to silicate and/or nitrate limitation. 

The demand for silicate by diatoms is unique, and without it there cannot be any 

diatom growth. Previous studies show a marked decline in diatom biomass with 

silicate levels less than 2/xM (Egge and Aksnes, 1992). Silicate levels appeared to 

diminish faster than nitrate during the spring to summer transition in 2005 at most 

stations. Nitrate continued to be removed after the silicate reached its minimum. 

The re-appearance of diatoms in the surface did not occur until September, and 

then in only low numbers. Silicate and nitrate continued to rise through the fall as 

a result of physical processes, and was not apparently being significantly removed by 
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diatoms (which were perhaps being controlled through selective grazing processes). 

The diatom community did start to replenish itself in the late fall, but by this time 

of the year light availability became a potential limiting factor for phytoplankton 

growth. 

Light throughout the mixed layer becomes limiting due to both shorter daily 

photoperiods and an increase in Zm, which mixes cells over greater depth ranges 

and results in lower overall light exposure. Zm is dependent on the mixing energy 

provided by winds, and the thermal heating or cooling of the water column. The 

euphotic depth - Zeu - is independent from Zm, and depends on the surface light 

intensity and the light attenuation coefficient. The ratio Zeu/'Zm, used here as an 

index for the potential of light limitation, has important consequences for phyto

plankton growth and species selection. Decreasing values of Zeu/Zm can result from 

diminishing PAR and/or a deepening of Zm, both of which occurred in winter and 

caused Zeu/Zm to decrease below one. Data presented in Harris (1986) showed 

that variability in Zeu/Zm drove changes in species composition, and in turn caused 

changes in the community composition which occurred on the scale of days. 

The role of nutrient limitation and light limitation each impose a different chal

lenge for phytoplankton, and thus each will affect the community in different ways. 

Low-light tolerant species will be able to survive the wintertime conditions better 

than species that have high light requirements. This physiological constraint is op

erating at the species level, and less obviously at the group level. Diatoms may be 

able to maintain dominance, but within that group species composition is changing 

as a result of the conditions. This was seen in coastal stations where chain-forming 

72 



diatoms disappeared and were replaced by the large diatom Coscinodiscus spp. This 

phenomena was also observed by Smayda (1980) in winter in Narragansett Bay. 

3.4.4 Grazing impacts 

Grazing effects were not explicitly considered in this study, and it is not known 

to what extent the grazing community influenced the composition of the phyto-

plankton community. To consider how grazing may be impacting the phytoplank-

ton community, the study by Tamigneaux et al. (1997) provides insight into zoo-

plankton/phytoplankton trophic interactions. Tamigneaux et al. (1997) studied the 

impacts of grazing on phytoplankton in the Gulf of St. Lawrence, which has phy-

toplankton community successional patterns similar to those of the Gulf of Maine. 

Tamigneaux et al. (1997) examined the grazing impacts on two different phytoplank

ton size classes, and observed that the size structure of grazers and phytoplankton 

had similar seasonal changes. Despite the high grazing efficiency of large ciliates 

on diatoms in the spring (by high consumption rates), the grazers did not succeed 

in controlling phytoplankton growth, and diatoms were still able to be the domi

nant phytoplankton during the spring bloom. Nano-phytoplankton (consisting of 

small flagellates) and cyanobacteria showed tighter biomass control by their proto-

zooplankton grazers (consisting of smaller ciliates). However, during the summer, 

copepods had high concentrations and were preying on protozooplankton, allow

ing a relaxation of the biomass controls on nanoflagellates and cyanobacteria which 

permitted increases in the biomass of these phytoplankton. 
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Manning and Bucklin (2005) studied the copepod community off the coast of 

New Hampshire during 2002 and 2003, and reported the highest biomass of cope-

pods were found in July/August (Figure 3-8). The summertime periods of the 

highest zooplankton densities in this figure coincide with the highest biomass of 

cyanobacteria from this study. The conclusions of Tamigneaux et al. (1997) could 

apply to the Gulf of Maine, and are supported by the data. The effects of grazing 

are most notably expressed in the phytoplankton community by increases in the 

cyanobacterial population in the summer, when protozooplankton are being con

sumed by copepods. The net effect was that the overall composition of the summer 

phytoplankton community had an increase in the relative cyanobacterial biomass 

compared to flagellates, but the relative contribution of cyanobacteria was never 

greater than 20 percent. This did not change the summer community from being 

flagellate-dominated. The impact of grazing on the spring and fall phytoplankton 

communities is not known. 

3.4.5 Ecological significance 

Margelef (1978) suggested that variability in phytoplankton composition was 

driven by 2 main factors: turbulence and nutrient availability. Under this view, 

phytoplankton 'life forms' are adapted to different habitats along a continuum be

tween two extremes - a nutrient-replete high turbulent state favoring diatoms and 

a nutrient-deplete stratified state favoring flagellates. The findings of this research 

conform with this conceptualized model; that is, the distribution of phytoplank

ton populations follow a pattern closely associated with the seasonal progression 

of environmental factors that affect turbulence and nutrients. In the western Gulf 
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of Maine, diatom-dominated communities tend to occur in the winter and spring 

when nutrients and turbulence are high, and flagellate-dominated communities dur

ing summer when nutrients and turbulence are minimal. Reynolds (1984) addressed 

some shortcomings with the Margalef Mandala and extended it to freshwater phyto-

plankton. This basic template was later adapted to marine environments as a means 

of describing specific marine habitats associated with dinofiagellate taxonomic pref

erences (Smayda and Reynolds, 2001) and was called the 'Intaglio' - in essence a 

modification of the Margalef Mandala with phytoplankton survival 'strategies' and 

habitats superimposed. This plot is portrayed with data from this study coded by 

phytoplankton group in Figure 3-9. [Note: nitrate concentration was used as a proxy 

for nutrient supply for the y axis and the x axis has Zeu/Zm inverted to Zm/Zeu]. 

In general, the 2 main phytoplankton groups (diatom and flagellate groups) tend to 

occupy different areas in Figure 3-9 and conform to the habitat preferences as par

titioned by Smayda and Reynolds (2001). Flagellate-dominated points occupy areas 

described as stratified and post-upwelling, while diatom-dominated points tend to lie 

in the temperate ocean and shallow shelf water regions. The increase in nutrients is 

associated with 'mixing events' (e.g., wind or convective mixing) which break down 

vertically stratified layers and replenish the surface waters with nutrients. 

The marine environmental state passes through different habitats along a tra

jectory governed by its seasonal progression, with a corresponding change in the 

phytoplankton community. The physical and environmental factors of a habitat im

pose constraints upon the existing population, which is exploited by species that can 

best tolerate or take advantage of these conditions. Smayda and Reynolds (2001) 

suggest that the ability of a species to achieve success is based on its cellular phys-
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iological requirements and its morphological characteristics in the context of the 

environmental condition. Prom this perspective, diatoms dominate in the nutrient-

replete, high turbulent waters found in the winter and spring (and occasionally 

fall). Turbulence is suited to diatoms since they do not have motile capabilities, and 

without some level of turbulence non-motile particles denser than water will quickly 

sink (Smayda, 1980). Conversely, turbulence can damage the flagella of motile phy-

toplankton, and cause structural damage to flagellated cells. These environments 

may not be suited for these types of cells. The results in this study adhere to the 

Mandala/Intaglio template, but do not definitively confirm the concept of the 'life 

form' selection process behind the distributions. What is evident from this analysis 

is that phytoplankton communities in the Gulf of Maine exhibited a preference for 

given habitats. These habitats can be defined in terms of physical/envirionmental 

factors, which have different phytoplankton communities in terms of the relative 

abundance of diatoms to flagellates. 

It should be noted that Smayda and Reynolds (2001) assigned different dinoflag-

ellate species (not phytoplankton groups) to different regions in Figure 3-9, and that 

dinofiagellates as a whole are distributed across many habitats on this template. 

This is also true for other classes. For example, diatoms can be found in habitats 

ranging the whole spectrum. Species are not excluded from any one area of the 

template which depicts areas where certain species might be favored. This applies 

to the phytoplankton community grouping defined in this study. As exhibited in 

Figure 3-9, flagellate-dominated communities were found in the high-nutrient, high-

turbulent zones of the Intaglio favorable to diatoms, and diatom-dominated com-

munites were found in low-turbulence, low-nutrient zones favorable to flagellates. 
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Smayda and Reynolds (2001) suggest that such occurrences are the consequence of 

the stochastic aspects of phytoplankton distributions; that is, a species that is 'on 

site' with the largest number of inocula and most appropriate life-form morpholo

gies/physiologies are likely to gain the greatest advantage. In this sense, what the 

template suggests is the most probable habitat for a given species. This applies to 

the phytoplankton community distributions as well, suggesting that this approach 

could be used to indicate the most probable phytoplankton community given a set 

of nutrient/light/mixing conditions. 

3.5 Conclusions 

This study characterized the surface phytoplankton community and the physi

cal/chemical environment in the western Gulf of Maine during a three year period 

from 2004 through 2007. Annual patterns recurred in phytoplankton composition 

over this period, and the variations in phytoplankton composition at a broad level of 

classification showed strong correlation with environmental variables. The dominant 

mode of environmental variability (the first principal component) was associated 

with variables that had a strong seasonal signal (e.g., temperature and PAR). 

The oscillation of community composition from diatoms to flagellates and back 

occurred from winter/spring to summer/fall in every year. However, the magnitude 

and exact timing of the events varied from year to year. The spring blooms of 2006 

and 2007 were of greater magnitude compared to 2005, but were of shorter duration. 

The fall bloom of 2006 was the largest of the 3 fall periods and reached a magnitude 

comparable to the spring bloom. 
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The environmental factors that were linked to phytoplankton community com

position in this study include variables that can be measured from space which 

includes temperature, light availability, and wind fields. If the link between phyto

plankton composition and environmental factors is robust, then it may be possible 

to use information measured from satellites to predict phytoplankton populations 

along with a statistically defined measure of confidence or uncertainty. This will be 

explored in the next chapter. 
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Figure 3-1: Study area showing station and buoy locations; stations (white dia

monds) are shown for the Coastal and Wilkinson Basin transects. Wind fields were 

extracted from the nearest buoys - GoMOOS (red circles), NOAA (yellow diamonds) 

or C-MAN (blue squares) locations. 
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Figure 3-2: Time series of surface water temperature (upper left), salinity (upper 

right), satellite daily PAR (lower left), and the wind field Ua (lower right). Temper

ature and salinity are from in situ measurements. PAR fields were obtained from 

satellite, and wind fields were obtained from the nearest fixed buoy. Both were 

averaged for the preceding 8 days from the each station date. 
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Figure 3-3: Top: Time series of mixed layer depth along Wilkinson Basin. Bottom: 

time series of the ratio of the euphotic depth (Zeu) to mixed layer depth (Zm) along 

Wilkinson Basin. Red line (1:1) separates potential light-limited conditions (below) 

from light-saturated conditions (above) in the mixed layer. 
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Figure 3-4: Time series of surface nutrients: nitrate + nitrite (upper left), phosphate 

(upper right) and silicate (lower left) from Wilkinson Basin stations. 
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Figure 3-5: Phytoplankton composition time series along the Wilkinson Basin Tran

sect derived from pigment data via CHEMTAX. Four groups are displayed: diatoms, 

cyanobacteria, dinoflagellates and small flagellates. The small flagellates are the sum 

of cryptophytes, prasinophytes, chlorophytes, chrysophytes and prymnesiophytes. 
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Figure 3-6: PC A eigenvectors for the first 3 principle components (accounting for 

71% of the variance). 
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Figure 3-7: PCA biplots for PC 1 and PC 2 (top), and PC 1 and PC 3 (bot

tom). Data points are color-coded by phytoplankton composition: blue - diatom-

domintated; green - mixed; red - flagellate-dominated. Note: signs are different from 

previous plot as the variable with the greatest magnitude (N02) was assigned a 

positive value, which reversed the signs. 
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Figure 3-8: Time series of total zooplankton density at WB2 between April 2002 

and June 2004. (Figure provided by Chris Manning.) 
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Figure 3-9: Depiction of study data on a Reynold's Intaglio plot. Data are coded by 

phytoplankton category. Mixing events - measured by increasing Zm/Zeu - tend to 

disrupt the successional cycle from becoming flagellate-dominated nutrient limited 

and low Zm/Zeu) and spurs communities that favor diatoms. 
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CHAPTER 4 

MAPPING THE DISTRIBUTIONS OF 

PHYTOPLANKTON COMMUNITIES IN 

THE WESTERN GULF OF MAINE USING 

SATELLITE DATA 

The following chapter has been submitted to the Journal of Geophysical Research 

- Oceans. 

Abstract A classifier that uses hydrographic information as input was implemented 

to predict phytoplankton community composition in the western Gulf of Maine. 

Three phytoplankton communities were designated - diatom-dominant, flagellate-

dominant, and a diatom-flagellate mixture - based on HPLC pigment methods and 

the resulting proportions of diatoms versus flagellates. Co-measured environmental 

data were then sorted by phytoplankton community, and the statistical properties 

of the hydrographic variables associated with each community were characterized. 

These properties were then used to create a classifier that was applied to satellite 

data for computing the likelihood of each phytoplankton community existing at 

each pixel. Before applying the classifier to satellite data, its performance was 
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evaluated using in situ data. Based on a set of five environmental variables - water 

temperature, PAR, salinity, wind speed, and the light attenuation coefficient - the 

classifier achieved an average success rate of 82%. When applied to satellite data, 

the result were maps of the most likely phytoplankton communities and associated 

membership maps expressing the likelihood of each community. These patterns 

are consistent with previous ship-board observations of phytoplankton community 

composition. This new method enables phytoplankton communities to be mapped 

from satellite data at scales that are required for further understanding of marine 

phytoplankton ecology. These maps have the potential to be used in constraining 

variable parameters in primary productivity models, and as a source of comparison 

for marine ecosystem/biogeochemical models of phytoplankton distributions. 
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4.1 Introduction 

The prediction of phytoplankton community composition remains a challenging 

problem in aquatic ecology. The 'rules' governing assembly are uncertain (Cloern 

and Dufford, 2005) and frequently attributed to species 'being in the right place at 

the right time' (Smayda and Reynolds, 2001). This is partly attributable to the 

environment that phytoplankton inhabit, which can experience dramatic changes 

in conditions. At any given time, it is the combined influence of abiotic and biotic 

factors that govern the composition of the community, and the influence of any one 

specific factor is dependent on a given species' adaptive capabilities to that fac

tor (Smayda, 1980). Thus, phytoplankton are subject to selective pressures which 

influence the community composition and which can range over ecological and geo

logical time scales. Turbulence - and its effect on water column stability - has been 

seen as a key environmental factor in selecting for diatoms or coccolithophores (Tozzi 

et al., 2004). Similarly, temperature was correlated with the decline of diatoms and 

increase in dinoflagellates in the North Atlantic from a 50-year data set of contin

uous plankton recorder data between 1950 and the present (Leterme et al., 2005). 

These studies support the long-standing paradigm illustrated in Margalef's Man-

dala (Margelef, 1978) that certain phytoplankton types are favored over others when 

conditions of their habitat preference occur. 

The composition of the phytoplankton community is important because differ

ent species influence biogeochemical cycles and marine food webs in selective ways. 

Diatoms, for example, are often viewed as distinct from other phytoplankton for 

several reasons. They have a unique requirement for silica and are adapted to grow 
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at high rates under turbulent conditions, which often leads to bloom domination fol

lowing turbulent mixing events. This quality makes them major contributors to the 

export of organic matter to the deep ocean (Falkowski et al., 2003), as many can sink 

before grazers have a chance to consume them. The nutritional qualities of diatoms 

and other phytoplankton also affect production at higher trophic levels (Ban et al., 

1997; Cloern and Dufford, 2005). As a result, marine ecosystem and biogeochemical 

models explicitly include diatoms as a distinct phytoplankton group (Doney et al., 

2003). Diatoms have also been singled out in bio-optical and primary productivity 

models (Sathyendranath et al., 2004; Claustre et al., 2005). Thus, their distribu

tions and seasonal cycles are critical to understanding and improving the modeling 

of these processes and interactions. 

Much has been learned about phytoplankton biomass distributions and cycles 

since ocean color remote sensing platforms became orbital in the 1970's. Global 

fields of chlorophyll a concentration (Chla), a proxy for phytoplankton biomass, 

are now routinely measured from satellites. While this has enabled researchers to 

observe and monitor changes in algal biomass for the world's marine environment 

over the last decade, the ability to identify phytoplankton species is limited. It is 

possible to detect a few species based on their distinctive optical signatures contained 

in the detected light signals (e.g., Brown and Yoder (1994); Subramaniam et al. 

(1999)), but in general it is not possible to distinguish the species composition of 

the phytoplankton community in remote sensing images. Studies that have used 

remote sensing data for phytoplankton composition have been previously reviewed 

in section 1.2. 
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The objectives of this study were to 1) develop a classifier based on environmen

tal (physical) variables for distinguishing diatom from non-diatom populations; 2) 

evaluate the performance of the classifier using a validation data set, and 3) apply 

the classifier to satellite imagery. The end result of this analysis was the creation of 

weekly spatial maps depicting phytoplankton communities within the Gulf of Maine, 

and accompanying membership maps depicting the certainty or likelihood of each 

community. 

4.2 Methods 

4.2.1 General approach 

The general approach was centered on the development and implementation of 

a classifier that takes as input a set of hydrographic variables and predicts the phy

toplankton community composition in terms of the relative dominance of diatoms 

and flagellates. This approach involved two major steps. The first step used in 

situ data to train the classifier, which is then evaluated using the original data as 

well as 'unseen' subsets of the data. In its simplest form, the classifier predicts the 

phytoplankton community based on observed physical/hydrographic variables. It 

calculates the distance of an observed environment (a vector of the hydrographic 

measurements) to the mean conditions of known habitats, and selects the closest 

habitat. Based on the training set, each habitat is associated with one of three 

phytoplankton communities. 

The second step involved the application of the classifier to satellite data using 
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the same basic form of classifier, which was then adapted with a fuzzy logic approach. 

The reasons for using a fuzzy approach in the application to satellite data were based 

on the increase in uncertainties inherent in satellite data and the fact that fewer 

variables are accessible from satellites. An example of the former is the imprecision in 

satellite-derived measurements of a variable compared to an in situ measurement. As 

a consequence of the latter, habitats became less defined as a variable(s) was removed 

from its characterization and there was an increase in the overlap of communities. 

Fuzzy logic was first introduced by Zadeh (1965) as a mathematical way to repre

sent vagueness and imprecision inherent in data. The idea behind fuzzy sets simply 

states that an object can have partial membership to more than one set. This con

cept does not preclude the classical view that an object must belong exclusively to 

only one set. It is in fact a superset of classical set theory, as full membership to ex

clusively one set is still permitted either directly from the memberships themselves, 

or through the 'hardening' of fuzzy memberships (i.e, assigning the object to the 

class with the highest membership). 

In the application to satellite data, the likelihood that a phytoplankton com

munity exists at each location in the image is estimated using fuzzy membership 

functions. The fuzzy memberships are calculated using the same distance measure

ment as in step one, but a chi-square probability distribution function is applied 

to this measurement. The result is a set of numbers between 0 and 1 representing 

the likelihood that the observation 'belongs' to the known habitats. At each pixel, 

the memberships for all habitats belonging to the same phytoplankton community 

were summed, and normalized to the sum of all memberships. The end result were 
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'membership maps' depicting a probability of occurrence for each of the three com

munities at each pixel. Both fuzzy and 'hard' memberships will be shown with the 

satellite data. 

4.2.2 Training the classifier 

The classifier was trained on a data set that was collected in the western Gulf 

of Maine (Figure 4-1), and processed as described in section 3.2. There were two 

components of the data set: 1) biological data pertaining to the phytoplankton 

communities derived from HPLC analysis, and 2) the co-measured hydrographic 

data set comprising water temperature, photosynthetic available radiation (PAR), 

salinity, the diffuse light attenuation coefficient at 490 nm, and the strength of mixing 

from the wind (proportional to the cube of the wind speed). The total number of 

data points that had these variables was 255. The five variables selected were based 

on their current (or future) availability from remote sensing. 

A schematic illustrating the sequence of the classifier training is shown in Fig

ure 4-2. The initial step was to sort the in situ physical data into three subsets 

belonging to the three phytoplankton communities. The number of points in each 

phytoplankton community were 51, 94 and 110 for diatom-dominated, mixed, and 

flagellate-dominated, respectively. Within each community, the physical data were 

distributed across an unknown number of clusters, representing the habitats where 

the phytoplankton communities were found. The habitat centers were determined by 

applying a clustering algorithm to each community subset of physical data. There 

are many clustering algorithms available, but one that has been used in a wide vari-
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ety of applications is the fuzzy c-means (FCM) clustering algorithm (Bezdek, 1981). 

The FCM was selected for this work based on its commercial availability (as a Mat-

lab toolbox), and the broad array of validity functions that have been developed to 

assess the performance of the FCM clustering process. 

The exact number of habitat centers (c) was selected with the aid of the validity 

functions. These functions measure different aspects of the relations between clusters 

and the input data set for a given c. These aspects include the separation of cluster 

centers, the compactness of clusters, and the overlap of data points shared between 

clusters. Six validity measures were used to derive the optimal c for each community; 

these were the compactness and separation index (Xie and Beni, 1991), the Davies-

Bouldin index (Davies and Bouldin, 1979), and a family of four related functions 

known as the Generalized Dunn Indices (Bezdek and Pal, 1993). Since there is no 

single validity function that is perfect for all conditions, the preferred strategy is 

the use of multiple validity functions and then 'polling' each validity function to 

determine which value of c worked best for that measure. The highest number of 

votes for a given c was a key factor in deciding the best c for each phytoplankton 

community. 

Once the optimal c was determined, each habitat was characterized by computing 

the mean and covariance matrix of the environmental variables. These statistics were 

used to compute the distance of any point to a habitat center. The distance measure 

used was the Mahalanobis distance (Rencher, 1995) , defined as: 

Z2 = (Vrs - fitfZj^Vr, - fTji) (4.1) 
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where Vrs is an observation represented as a vector of environmental variables, y]{ is 

the ith class mean of the j t h phytoplankton community, and S^ is the covariance 

matrix for class j of the ith phytoplankton community. The Mahalanobis distance is 

the multivariate equivalent of the standardized random variable Z = (X — M)/S, 

which is the distance of the univariate random variable X from its mean M normal

ized by the standard deviation S. 

The habitat with the smallest Z2 is assigned to the data point. A schematic 

of the sequence of the flow is shown in Figure 4-3. In this depiction, the input 

data could be in situ environmental data or a vector of satellite data. The source 

of the data is not relevant, only that it follows the form of a vector that matches 

that of the habitat centers. This is the basic form of the classifier, and predicts 

the phytoplankton community associated with the nearest habitat (cluster). The 

classifier was then evaluated by comparing the predicted community with its original 

designation as determined by pigment analysis. 

4.2.3 Evaluating the classifier 

The main aspect of classifier performance that was assessed was discriminability 

and its associated error rate. Discriminability is defined by how well a rule (or classi

fier) can classify unseen data. To evaluate a classifier, a test data set independent of 

the training data is required. However, due to the limited amount of data available, 

all data were used in the training set for the classifier. To compensate for the lack 

of an independent test set, a number of simulations were performed by randomly 

removing 10% of the data points from each phytoplankton community to be used as 
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an evaluation set (Table 4.1). The remaining 90% of the data were used to re-train 

the classifier following the process described previously and illustrated in Figure 4-

2. Performance was evaluated by assessing the predicted phytoplankton community 

with its designation based on the minimum Z2 distance (following Figure 4-3). This 

process was repeated 100 times. Performance was evaluated on every training and 

evaluation paired set. 

Community #points Training Test Set 
Set 

Diatom 51 46 5 
Mixed 94 85 9 
Flagellate 110 99 11 

Totals 255 230 25 

Table 4.1: Sample size of the training and test data sets. Test sets were created 
from a random selection of 10% of the points for each phytoplankton community. 
100 training and test sets were created. Each training set was used to reconfigure 
the classifier (new class means and covariance matrices), and then evaluated with 
the associated test set. 

It was also of interest to evaluate the performance of the classifier when using 

progressively fewer input fields. The motivation stems from the state of readiness 

of certain remote sensing technologies. For example, sea surface salinity will be a 

future satellite measurement but does not exist presently. Likewise, the technology 

of high-resolution sea surface winds is not yet fully realized. 

To examine this quantitatively, the classifier was configured (i.e., means and co-

variance matrices generated) with progressively fewer variables as input, henceforth 

referred to as scenarios (Table 4.2). For each scenario, performance was evaluated 

on the training set. While this does not cover every possible combination of the 
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Table 4.2: Scenario configuration of variable composition 

Scenario Variables 
~~1 Temp, PAR, Kd49o, U3, Salinity 

2 Temp, PAR, Kd490, Uz 

3 Temp, PAR, Kd490 

4 Temp, PAR 

variables, it does serve to gauge the impact of different variables in the classifier and 

provide a measure of performance at different levels of knowledge of the system. 

4.2.4 Applying the classifier to satellite data 

The classifier was applied to satellite data that were mapped to a common pro

jection over the Gulf of Maine. The pixel resolution was set to 1.25 km2. All satellite 

data were obtained from NASA (http://oceancolor.gsfc.nasa.gov/). SST data were 

from the MODIS Aqua satellite and processed at UNH. Photosynthically Available 

Radiation (PAR) data were generated during the processing of daily SeaWiFS data 

from level 1 to level 2. This product was derived from the Frouin algorithm (Frouin 

et al., 2003), and 8-day composites were generated from the daily images at the same 

map projection and scale as the SST imagery. Wind fields were obtained from fixed 

buoys situated in and around the Gulf of Maine. Gridded maps of wind fields were 

generated by assigning each map pixel to its nearest buoy. This was determined to 

be of better quality than modeled NCEP winds, which have poor performance in 

coastal regions. Hourly buoy wind speeds were converted to U3 (wind speed cubed) 

and adjusted to an anometer height of 10 meters. Both PAR and U3 were averaged 

over 8 day intervals beginning with each calendar year. 
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The uncertainties increase for remote sensing variables compared to the same 

measurement made in situ. To address this increase in uncertainty, fuzzy mem

berships were produced from the Mahalanobis distance (described previously) for 

the satellite data. To convert the Mahalanobis distance to a fuzzy membership, a 

chi-square probability function was used. In mathematical terms, if the probability 

distribution of points belonging to the cluster centered at /Iji is normal and Vrs is 

a member of that population, then Z2 as defined by equation 4.1 has a chi-squared 

distribution with n degrees of freedom where n is the dimensionality of Vrs. The 

likelihood that Vrs is drawn from that population can be defined as: 

/ii = 1 - Fn{Z2) (4.2) 

where Fn(Z
2) is the cumulative chi-square distribution function with n degrees of 

freedom. The result is a number between 0 and 1, which was defined as the fuzzy 

membership of Vrs to the ith cluster of community j . 

This calculation was made to each habitat center for any given input vector. To 

obtain the probability that an observation belongs to a given phytoplankton com

munity, the fuzzy memberships (fa) were summed over all clusters associated with 

the j t h phytoplankton community, and then divided by the sum of fuzzy member

ships to all the clusters. This resulted in a number between 0 and 1 representing the 

probability that the observation belonged to that phytoplankton community. This 

was performed for each phytoplankton community, with the end result being a prob

ability to each phytoplankton community for a given observation, and the sum of the 

probabilities being equal to one. The community with the highest probability was 

then assigned as the most likely phytoplankton community (i.e., by 'hardening' the 
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fuzzy memberships). The results were mapped to the same projection as the satel

lite data and ultimately represented spatial distributions of expected phytoplankton 

communities. Satellite performance was evaluated by comparing match-ups between 

satellite predictions and the in situ data. 

4.3 Results 

4.3.1 Classifier Evaluation 

Cluster Analysis 

A total of twenty-seven clusters (i.e., habitat centers) were identified by applying 

the FCM algorithm to the data set. The number of clusters were 8, 10, and 9 for 

diatom-dominated, mixed, and flagellate-dominated communities, respectively. The 

numbers were selected with the aid of the validity functions (previously described). 

The data distribution of all 255 points along with the cluster means are shown in 

Figure 4-4 in a series of plots in two dimensions with temperature as the horizontal 

axis on each plot. The ensemble of plots presents the data in their five dimensional 

space, projected onto two dimensions at a time. 

In each two-dimensional plot, the separation of diatom-dominated (blue) from 

flagellate-dominated (red) points is evident. The distribution of points in the temperature-

PAR plot (upper left) has a circular pattern with the time trajectory going clockwise 

(e.g., sample points from January are located in the lower left corner of the plot; July 

points are located in the upper right). The plot of temperature-wind speed (upper 

left) shows similarity to Figure 3-9, which was the depiction of the western Gulf of 
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Maine data in the Reynolds' Intaglio form. In this plot, diatoms show an associa

tion with higher wind speeds. The distribution of habitat centers is in accordance 

with the conceptual models of Margelef (1978) and Smayda and Reynolds (2001). 

These two plots show that a time-of-year element and a physical mixing/turbulence 

component are captured in the distribution of the data and their habitat centers. 

For each habitat identified by the FCM algorithm, a mean and covariance matrix 

was computed. Large symbols in Figure 4-4 are the means associated with the 

clusters. The covariance matrix expresses the dispersion of the cluster points about 

the mean. In most cases, the dispersion is low, and the points are concentrated about 

the mean. However, there are several clusters made up of more disperse points. For 

example, the diatom-dominated cluster center located near the June samples (in the 

upper-left temperature-PAR plot) is the result of several points dispersed between 

May and July; it is not physically close to any of these points. Other clusters with 

dispersed points were evident for the other two phytoplankton communities (e.g., a 

flagellate-dominated cluster in the May region and a mixed cluster in April). 

These plots show that diatom-dominated points are segregated from flagellate-

dominated points fairly well. Points from the mixed community are interspersed 

through these other two, and exhibit overlap in each of the paired plots. Based on 

these plots, it is evident that it will be more difficult to discern diatom-dominated 

or flagellate-dominated points from mixed, than diatom-dominated from flagellate-

dominated communities. 
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Performance evaluation 

The classifier performance was evaluated by comparing the assigned commu

nity of each data point (as determined by the minimum Mahalanobis distance to 

a cluster) to its 'actual' phytoplankton community based on the pigment analysis. 

Performance statistics were the percentage of correct classifications. In addition, an 

'egregious' error statistic was calculated and defined as when a diatom-dominated 

community was assigned to the flagellate-dominated community, and vice-versa. 

The performance statistics were calculated on the full data set (100% of the 

data), and on the training (90% of the data) and corresponding test data (10%) 

subsets. These results are shown in Table 4.3. 

Data Set Diatom- Mixed Flagellate- Overall Egregious 
dominant dominant Error 

Full (100%) i l l 77\7 87^3 82~! 3J 
Training (90%) 82.2 74.3 80.7 78.6 7.1 
Test (10%) 54.2 49.0 56.8 55.4 16.3 

Table 4.3: Performance of the classifier on the different data sets based on five 
variables (temperature, PAR, Kd, salinity, wind speed). The numbers shown are 
the percentage of correct classifications, and percentage of egregious errors. 

Overall, the classifier performance with the full data set was 82% successful, 

and egregious errors were < 4%. In some sense, this is a measure of the goodness 

of fit of the classifier to the data. However, success was not 100% because the 

classifier was trained on subsets of the data, whereas the 82% is reflective of results 

after re-combining the subsets back into one pool. Thus, the overall performance 

includes data that were 'unseen' by each community, and reflects the extent to 
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which clusters overlap and are subject to mistaken classification. If the clusters 

did not overlap and were well separated, then there would be no misclassification. 

The performance numbers do indicate that clusters, for the most part, were well 

separated. Furthermore, the low percentage of egregious errors indicates that the 

flagellate-dominated and diatom-dominated communities are more distinct from each 

other than either is with the mixed community. 

The average performance values for the 100 simulation training and test sets 

assess the performance on 'unseen' data. The training sets have performance values 

that are approximately the same as the results using all the data. However, the 

performance values for the test data sets were significantly lower in every community. 

Success values averaged 55%, and egregious errors were 16.3% compared to 7.1% for 

the training sets. 

This decrease in performance is due to several factors. The random removal of 

10% of the data points from the training pool at times caused clusters to disappear, 

significantly impacting the cluster statistics. The test data in these simulations 

were therefore not able to affiliate with the cluster they were previously part of 

because it no longer existed. The consequence of this was to assign the test point to 

another nearby cluster that often belonged to another phytoplankton community, 

thus lowering the success rate. This suggests two limitations of the present method. 

First, this classification method is sensitive to the size of the training data set. 

The clusters are at the low end of a threshold in terms of the number of data 

points that define a cluster, and thus are not robust. An increase in the number 

of training data points should lead to greater cluster stability, assuming the data 
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points join an existing cluster and do not form new clusters in a different region of the 

environmental hyperspace. This leads to the second point - the number of clusters 

could change as a result of adding data that lie apart from existing clusters. Thus, 

adding or subtracting points could modify cluster statistics (means and covariances) 

and also the optimal number of clusters. 

Classifier performance with fewer input variables 

Performance statistics were calculated for the classifier when using progressively 

fewer variables, reflecting the loss of information due to unavailable data from satel

lite (Table 4.4). The overall performance values decreased from a high of 82% 

when using all five variables (scenario 1) to a low of 65% when using only temper

ature and PAR. The decrease in performance was greater in the diatom-dominated 

and mixed communities, while the performance in the flagellate-dominated showed 

a smaller change, declining from 87% to 76%. The greatest increase in egregious 

errors, jumping from 4% to 8%, occurred when the wind field was removed when 

going from scenario 2 to 3. 

Seen Vars Diatom- Mixed Flagellate- Overall Egregious 
dominant dominant Error 

1 T, P, K, U3, S 8T1 
2 T, P, K, U3 75.5 
3 T, P, K 64.7 
4 T, P 56A 

Table 4.4: Success (as a percentage) of classifying the full training data (255 points) 
using different combinations of physical variables (scenarios). Scenario 1 was based 
on all 5 physical variables, while scenario 4 was based on using only 2 - tempera
ture and PAR. Egregious errors occur when a diatom-dominated sample is classified 
as flagellate-dominated, and vice versa. Variables are T=temperature, P=PAR, 
K=ii'(i490) U3 = wind mixing strength, and S=salinity. 

77.7 
65.9 
63.8 
58.8 

87.3 
84.6 
76.6 
76.4 

82.1 
75.5 
69.3 
65.8 

3.7 
3.7 
7.6 
6.7 
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These results establish the best case performance for application to satellite 

data. Since salinity is not yet available from remote sensing, the best achievement 

for success (scenario 2) is 75%, a decline of 7% from the full suite of variables. 

When wind was removed (scenario 3) the performance dropped significantly for 

the diatom-dominated community, dropping by 10%, while the performance for the 

flagellate-dominated and mixed communities decreased by smaller amounts. The 

further removal of ^490 (scenario 4) caused additional declines, but not as drastic 

as between scenario 2 and 3. 

Wind speed and -JQ490 appeared to be important in differentiating diatom-

dominated from mixed communities. When either variable was removed, data points 

that were mixed became more susceptible to misclassification as diatom-dominated, 

and vice-versa. Since the performance for the flagellate-dominated community re

mains relatively constant across scenarios, the overall performance decrease must 

be caused by the other two communities. Furthermore, the additional misclassifi-

cations must then occur between diatom-dominated and mixed communities as the 

variables are progressively removed, with large declines having occurred when wind 

and Kdwo were removed. 

4.3.2 Appl icat ion t o satell ite imagery 

Uncertainty characterization 

Satellite data are inherently noisy, and are subject to errors as a result of al

gorithm and/or instrument uncertainties. To evaluate performance sensitivity to 

satellite data, the classifier was applied to the in situ data with one input variable 

105 



replaced with satellite values - one at a time - for temperature, PAR, Kd, and 

winds. Salinity remained as in situ values. These results are shown in Table 4.5. 

The satellite values were obtained by extracting co-located pixel data from the im

agery (8-day averages). Out of the 255 points in the full data set, 233 had valid 

corresponding satellite match-ups (Figure 4-5). 

Satellite 
Sub. 
No subs 
SST 
PAR 
Kd 
U3 

Diatom-
dominant 
88.1 
88.1 
78.6 
78.6 
54.8 

Mixed 

75.0 
65.5 
61.9 
57.1 
52.4 

Flagellate-
dominant 
85.7 
86.7 
77.2 
85.7 
75.3 

Overall 

82.4 
79.2 
71.9 
74.0 
63.2 

Egregious 
Error 
2.7 
2.7 
3.4 
6.7 
8.8 

Table 4.5: Classifier performance after substitution of input variables with satellite 
matchup data (N=233 points). In each case only one data set was replaced by 
satellite data. 

The variable that incurred the smallest overall change was SST, which decreased 

3% from the full original data set. [The slightly higher values for the first row in the 

table compared to the first row in Table 4.3 are due to the omission of data points 

where there were no valid co-located satellite fields. This was due to either cloud 

cover or some stations being located inside estuaries and screened out by the satellite 

land mask.] The variable substitution that caused the greatest change was the 

wind field, decreasing overall performance from 83% to 61%. The diatom-dominated 

community performance decreased by 34% with this substitution. In general, this 

community showed the largest decreases when variables were substituted. These 

results indicate that classifier performance declines when applied to satellite data. 

The values displayed in Table 4.5 reflect the sensitivity to 'individual' elements, 
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and are not the collective effect since only one input variable was replaced each 

time. The decrease in performance can be attributable to satellite uncertainties 

that originate from two primary sources. The first source is that the measurements 

themselves are not identical. Both SST and Kd from satellite are derived from al

gorithms, and thus have algorithm uncertainty. The second, and more problematic, 

source is related to the difference in the time period that the in situ and satellite 

measurements were averaged over. This point can be illustrated by examining the 

relations between in situ measurements and the satellite extractions in Figure 4-5. 

The PAR data set used for the in situ and satellite fields are from the same source -

the SeaWiFS imagery. Likewise, the wind speed fields used in both data sets are also 

from the same source - fixed buoy measurements. In both cases, the only difference 

is the 8-day window over which they were averaged. For the in situ fields, PAR and 

winds were averaged over the eight days preceding the station date. For the satellite 

fields, the 8-day averages were organized according fixed calendar dates, and thus 

are from a slightly different time period. The spread in the data points in all plots 

of Figure 4-5 contain this effect to some degree, as well as algorithm uncertainties 

for SST and Kd. 

To assess total performance using satellite data as input, the classifier was ap

plied to satellite match-ups as described in section 4.3.2 for scenarios 2-4 (as defined 

in Table 4.2). Classifier performance based on a comparison of match-ups between 

the satellite hard memberships (to the most likely phytoplankton community) and 

the original phytoplankton community assignment is shown in Table 4.6. 

The overall percentage of correct assignments from the imagery for scenarios 2 
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Seen Var Diatom- Mixed Flagellate- Overall Egregious 
dominant dominant Error 

2 T, P, K, U 5O0 39?7 743 57^2 6\8 
3 T, P, K 66.7 40.4 71.4 60.9 5.4 
4 T, P 40.5 45.2 72.4 56.7 9.5 

Table 4.6: Success (as a percentage) of correct classifications from satellite data 
(N=233 points) for the scenarios 2-4. Scenario 1 was not included because of the 
absence of satellite salinity data. Variables are T=temperature, P=PAR, K—Kd49Q, 
and U = wind stress. 

- 4 ranged from 57% to 61% and egregious errors from 6-10%. The best results 

were produced for scenario 3, which was based on temperature, PAR, and î d490-

Performance for scenario 3 is significantly better than for scenario 4 for the diatom-

dominated community (66.7% compared to 40.5%) and for egregious errors (5.4% 

compared to 9.5%). Consistent with the results in Tables 4.4, including K^QO as a 

factor is important for discerning diatom-dominated from mixed communities. The 

performance for scenario 2 is lower than scenario 3 (even though scenario 2 uses 

more variables) because there is a compounding effect from noise in the satellite 

variables. In the case of scenario 2, wind 'noise' combined with Kd49o noise worsens 

performance compared to when the wind is removed (scenario 3). As was shown in 

Table 4.5, the substitution of 'satellite' wind fields resulted in the greatest drop in 

performance compared to other variables. There is a trade-off when applying the 

classifier to satellite data; a reduction in the number of input fields generally results 

in lower performance, but the inclusion of such fields could lower performance due 

to the measurement 'noise' which compounds with the uncertainties from the other 

factors. 
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Generation of spatial phytoplankton community maps 

The preceding analyses were based on using the minimum Mahalanobis distance 

as the criteria to assign an observation to a phytoplankton community. The in

crease in uncertainties and the decline in performance when applying the classifier 

to satellite data provide the impetus to use fuzzy logic for the satellite application. 

In addition to providing the most likely phytoplankton community to be expected 

from a vector of satellite observations, the probabilities of the observation 'belong

ing' to each of the three communities are produced. 

Using the classifier based on scenario 3 (temperature, PAR, and ^490), satellite 

data were used as an input to the membership function, and spatially-resolved maps 

of the fuzzy memberships were produced. Figure 4-6 shows a set of 8-day composites 

for SST (from MODIS-Aqua), PAR (from SeaWiFS), and Kdi90 (from SeaWiFS) 

from September 22 to September 30, 2005. After using these fields as input to the 

classifier, the resulting fuzzy membership maps are shown in Figure 4-7. These fuzzy 

maps display the probability of a particular community occurring for each pixel, 

whereas the hard membership map (lower right) shows the spatial distributions of 

phytoplankton communities with the highest probabilities. 

The fuzzy logic approach allows the possibility of a given pixel having member

ship to more than one community. In reality, of course, it is not possible for more 

than one community to exist in a given location at the same time. The fuzzy mem

berships allow for ambiguity and reflect the fact that there is never 100% certainty 

that a given community will exist in a given place based on knowledge of the envi

ronment. The fuzzy maps when stacked together fit like pieces of a jigsaw puzzle, 
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with each phytoplankton fuzzy map being a piece. Transitions from one community 

to another are captured with grading memberships, as the memberships to one com

munity fade into rising memberships to another. While these transitional regions 

are seen in the hard class map as abrupt discontinuities, the fuzzy maps provide 

information on the degree of overlap. 

The hard membership map, while showing the three classes in one image, ob

scures the added information from the fuzzy maps - the degree of certainty that 

exists at each pixel. For example, the fuzzy membership distribution of the mixed 

community is shown to be high not only in the eastern Gulf of Maine, but also 

near Cape Cod and over Georges Bank. The flagellate-dominated community has 

higher memberships to the latter areas, and thus it appears in the hard classifica

tion map that a mixed community exists only in the eastern Gulf. However, the 

fuzzy memberships suggest that there is a reasonable likelihood that Georges Bank 

is a mixed community. In other words, it is less certain that Georges Bank is a 

flagellate-dominated community compared to the central Gulf of Maine, where the 

fuzzy memberships are very high to the flagellate-dominated community and very 

low to the other two. Thus, the fuzzy memberships allow for the possibility of an

other community existing at a certain location, whereas the hard membership maps 

depict the communities as either present or absent. 

The distribution of phytoplankton communities and the change in their distri

butions as governed by changes in hydrographic conditions during September 2005 

are shown in the fuzzy and hard membership maps in Figure 4-8 and Figure 4-9, 

respectively. In this time series, the Gulf of Maine is shown to be dominated by flag-
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ellates as depicted in the hard maps. During that one month period, diatoms began 

to appear in the western Gulf off of Nova Scotia. The apparent evolution of the di

atoms can be seen as diatoms progressively stretch southward in the coastal waters 

off Maine, eventually reaching Boston and Cape Cod. The community distribution 

patterns are much more discernible in the fuzzy maps. The sequence of the fuzzy 

maps show the evolution of each community in 'isolation', whereas the hard maps 

obscure the development of communities that are not the dominant community. 

The change in community composition is a relative phenomenon, which could 

have several causes. For example, the increase in the mixed community extent in 

the coastal areas - displacing the flagellate-dominated community present in early 

September - could be interpreted as a decline in flagellates. Conversely, it could be 

attributed to a rise in diatoms populations or some combination of both. The chloro

phyll images for the same time sequence (Figure 4-10) show increases in chlorophyll 

levels in the coastal area, indicating it may be that diatoms were increasing in abun

dance. The pairing of chlorophyll and the membership images are complimentary, 

and enhance the information about phytoplankton dynamics. 

The fuzzy and hard phytoplankton community maps present information that 

is different from the standard chlorophyll product derived from ocean color satel

lites. Chlorophyll images display overall biomass levels, while the fuzzy membership 

maps display the relative phytoplankton community composition from one of three 

broadly defined categories. When both types of maps are compared, different pat

terns are revealed. These image pairs highlight the complementary nature of these 

phytoplankton maps. 
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4.4 Discussion 

4.4.1 General observations 

The sequence of change in phytoplankton communities (referred to as succession) 

is driven by the differential response of phytoplankton species to environmental fac

tors. Typically, the response time to environmental change is the order of 2-10 

days (Harris, 1986), although it may be longer. This 'lag' time depends on the 

species and their physiological adaptive response (e.g., growth rate) to the environ

mental factor(s) involved, and is generally unknown. This introduces an uncertainty 

into the prediction of phytoplankton community composition based on coincident 

environmental conditions. While the lag response time comprises a significant source 

of uncertainty, there are other sources. The very definition of a 'community' is sub

ject to vagueness, as the criteria which separates different communities depends on 

subjective thresholds which are not certain. There are also instrument and algo

rithm errors, which influence data precision and the relationships dependent upon 

those data. 

Uncertainties in input variables propagate imprecision to the output, as the algo

rithm's 'decisions' are based on imprecise information. A methodological approach 

for handling data ambiguity is fuzzy logic. This was used as the basis for gen

erating probability maps for phytoplankton community composition from satellite 

data. The main objective of this study was to construct a classifier to predict the 

phytoplankton community composition based on environmental variables (temper

ature, PAR, .K<249o, salinity and wind speed), and to apply the classifier to satellite 

data. The classifier worked well on the original in situ data, with an overall pre-
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diction success of 82%. When satellite variables were used, the success was much 

lower. The uncertainties associated with different satellite data sets were shown to 

have differential impacts on the performance of the classifier. The overall decline 

in performance led to the use of a fuzzy logic approach, which was used to gener

ate probabilities for phytoplankton distributions. This approach allowed multiple 

outcomes to occur, and thus it is difficult to evaluate fuzzy performance using the 

same criteria as the non-fuzzy approach. The fuzzy approach allows any outcome 

to occur from given input data and thus always produces a correct result, but the 

correct result may have a lower probability than another outcome. The performance 

measures of the non-fuzzy approach, however, provided insight into the performance 

of the fuzzy classifier. 

4.4.2 Classifier performance and error analysis 

The performance of the classifier in successfully predicting the phytoplankton 

community was on the order of 63-82%, depending on the variables included, when 

the data used to 'calibrate' the function was used to evaluate it. Based on the simula

tion tests using 'unseen' data, the classifier could discriminate the three communities 

only 50-60% of the time and thus showed an overall decrease in performance. The 

performance numbers were between 60-65% when satellite matchups were extracted 

and compared to the training data. These numbers would be closer to the in situ 

results if it were not for errors (or noise) in the fields of the satellite data themselves. 

There are few studies to compare these performance numbers against. Sathyen-

dranath et al. (2004) reported a success rate of 72% for a classifier used to distinguish 
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diatoms from mixed phytoplankton populations, and Alvain et al. (2005) achieved 

a success rate of 61% for a classifier used to identify four different phytoplankton 

communities. Iglesias-Rodriguez et al. (2002) gives probabilities of coccolithophore 

blooms, but does not give performance results for an independent data set. [See 

section 1.2 for further review.] The classifier designed in this study had success 

rates that were comparable to or higher than the studies of Sathyendranath et al. 

(2004) and Alvain et al. (2005). With so few other results to compare, the results of 

this study and Sathyendranath et al. (2004) set the benchmark for phytoplankton 

classifier performance. 

The satellite performance evaluations were based on the 'hard' class member

ships, but this ignores the additional information provided using the fuzzy classifier. 

The fuzzy values provide a measure of the probability or likelihood of occurrence 

for a given phytoplankton community based on the observed physical environment. 

They give the relative likelihood, given the conditions, but almost any outcome has 

some chance of occurring based on many factors not directly considered in the design 

of the classifier (e.g., phytoplankton nutrient storage, grazing). When considering 

these probabilities and the expected outcome, it is important to understand the 

mathematical behavior of the classifier and the potential sources of error involved 

in mis-classifications. 

The fuzzy memberships are ultimately dictated by the statistical distributions 

of the in situ measurements used in the training set. These distributions are de

pendent on the number of overall input data points, and the number of clusters per 

group. Performance diagnostics from the simulations in which 10% of the points 
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were removed indicate the severity of this sensitivity. A major reason was having 

too few points in the classifier design. A total of 255 points were available for the 

training and 26 clusters were identified. For the simulations, the number of points 

was reduced to 230 (25 being set aside for independent evaluation). The location of 

clusters varied depending on which points were removed and thus exhibited insta

bility from simulation to simulation. For example, there were test runs when entire 

clusters were removed from the training pool, and this lowered the performance 

results when trying to classify the test data for that run (producing values of 0% 

success for the test data set). As a result, the average performance scores for the 

simulations were lower compared to those that used the training sets. This is an 

indication that there too few points in the training set to establish stability in the 

cluster statistics. In other words, there are habitats that are not represented in the 

data set. The classification of data points from these unaccounted habitats gener

ally lead to higher errors. The location and number of these unaccounted habitats 

remains unknown. 

An additional indication of data sparseness was seen in the mathematical be

havior of the covariance matrices. For several of the clusters represented with too 

few (e.g., 5 or less) points, the covariance matrices were statistically unstable. As a 

result singularities occurred during matrix inversion, which caused the calculation 

of the Mahalanobis distance to blow up. To remedy this, a common covariance ma

trix (i.e., the average covariance matrix for all classes) was used for these clusters. 

This is routinely used when the number of data points is low (Hoffbeck and Land-

grebe, 1996) and the subsequent singular value problems arise. By assuming that 

all classes covary the same way, the true statistical spread of points for a given class 
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is compromised which will affect the membership outcome. Despite this, Hoffbeck 

and Landgrebe (1996) have shown that the use of a common covariance matrix still 

leads to higher classification accuracy when the training sample sizes are small. 

4.4.3 Sources of uncertainties 

Most mis-classifications occurred between 'adjacent' classes, that is, between 

either diatom- dominated or flagellate- dominated and mixed. A much smaller fraction 

of the errors (2-10%) occurred between diatom-dominated and flagellate-dominated 

classes. These were the so-called egregious errors. Thus, if a pixel is classified as 

diatom-dominated, it is highly unlikely that it is actually flagellate-dominated and 

vice-versa. The mixed community had the lowest performance, and this is attributed 

to having mis-classifications with both diatom-dominated and flagellate-dominated. 

The number of error sources is large and has a cascade effect that propagates 

through the various stages of the analysis. To begin with, the assignment of the 

data points to phytoplankton groups has some uncertainty. The phytoplankton 

community assignment was based on results from the pigment analysis, and arbitrary 

divisions defining 'dominance' by diatoms or flagellates. While the CHEMTAX 

results for diatom fractions had the best agreement with cell counts compared with 

other phytoplankton groups (r2 of 0.8 - see 2.2), there was still sufficient uncertainty 

that could lead to an incorrect assignment. As the cluster analysis was shown to be 

sensitive to the number of data points, this could have a significant impact on the 

statistical characteristics for the entire classifier design. 

Another significant source of uncertainty lies in the time lag response to en-
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vironmental changes for phytoplankton. A typical lag response is between 1-10 

days, although some can be longer (Harris, 1986). The causes of time lag responses 

depend on the environmental factors involved and the species. Species that are 

stimulated for growth show a lag that is on the order of their cellular growth rate. 

Other lags can occur under unfavorable conditions, when cells are no longer in a 

favorable growth environment. This could be caused by nutrient scarcity or low 

light, for example. Under these conditions, cells can alter physiologic mechanisms 

to compensate for adverse conditions, thus enabling a population to maintain itself, 

at least temporarily. For example, diatoms have a storage capacity which enables 

them to maintain growth despite nutrient-deplete conditions. This could explain the 

June 2005 phytoplankton community dynamics along the Wilkinson Basin Transect. 

Diatoms were abundant at nearly all surface samples along the transect on June 17, 

2005. Nutrients (silicate and nitrate) at this time were depleted, yet diatoms were 

numerically dominant. Samples from a cruise 11 days later on June 28 along the 

same transect showed no trace of any diatoms in the surface waters. The diatom 

population was either advected out of the area, sank to the bottom, and/or was 

consumed by grazers. 

The practical effect of this has implications on the statistical distributions and 

cluster properties for data points that are in this mode. In the preceding example, 

the sample points may have been assigned to a completely different phytoplank

ton community had the sampling occurred a week later. This situation poses a 

problem for the classifier, as it obscures the influence of the environment on the 

composition of the community by assuming that cells are acclimated to their envi

ronment. It is not known for how many or which of the samples this was an issue. 
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This raises the conceptual problem: do such time lags render correlations between 

species composition and ecological conditions at points in time inappropriate? It 

probably depends on the environmental situation, and whether species composition 

has already re-aligned itself to the environmental conditions. The state of the phy-

toplankton community (i.e., the degree of time-lag adjustments) in relation to the 

environment is difficult to gauge. The phytoplankton community at the time the 

in situ measurements were taken may have adjusted to the environment, or it may 

have been in the process of re-adjustment. This source of uncertainty is not associ

ated with any instrument error, but is an inherent aspect of the stochastic nature 

of phytoplankton community response. 

4.4.4 Ecological significance 

The habitat preference for different phytoplankton groups is generally under

stood on broad levels, but remains an elusive property at large. Many species for 

example exhibit a wide tolerance for environmental factors such as pH and salinity, 

and can be found at any time throughout the year. Other species, such as Phaeo-

cystic spp., appear only during brief periods of the year. In many cases, the factors 

which trigger a phytoplankton response are not clearly understood. Still, the envi

ronment in which phytoplankton live can be described by a variety of variables, and 

these define the habitat. 

Several environmental factors shown to be useful predictors of different phyto

plankton communities are also amenable to remote sensing. Several key variables 

that define habitat preference - turbulence, mixed layer depth, and water column 
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stability - are more difficult to measure and are not available from remote sensing. 

These were not included in characterizing the habitats. However, water temperature 

- one of the most widely measured properties - is related to these other properties, 

and thus can be viewed as an index of environmental condition (Bouman et al., 

2003). Temperature and nutrients in this study were inversely related (figure not 

shown) in a manner similar to other findings where SST has been used in conjunc

tion with nutrient depletion temperatures (Carder et al., 1999; Kamykowski and 

Zentara, 2003; Iglesias-Rodriguez et al., 2002). Temperature has also been related 

to turbulence and mixed layer depth (Rodriguez et al., 2001; Bouman et al., 2003), 

and used directly to account for phytoplankton growth rates (Eppley, 1972) and 

indirectly for phytoplankton optical variability (Bouman et al., 2003) and primary 

production parameter estimation (Piatt et al., 2007). The practical consequence is 

that temperature tends to serve as a proxy for other physical/chemical properties. 

The three different phytoplankton communities exhibited a strong separation in 

five-dimensional space based on the physical variables selected. Habitat centers were 

identified and served as the basis for predicting phytoplankton community composi

tion from satellite measurements of the same variables. However, as variables were 

removed, the separation of habitats decreased and habitats began increasingly to 

overlap. Wind strength was important in distinguishing diatom-dominated from 

mixed communities, for example. Without this variable present, the chances in

creased that one would be mis-classified as the other. 

The overall uncertainty associated with the classifier was the underlying mo

tivation to use fuzzy logic, which was used to generate probabilities for finding a 
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community at a given location. These probabilities were supplied by the classifier in 

the form of fuzzy memberships. From a mathematical perspective, the fuzzy mem

berships can be regarded as the likelihood of a observation (pixel or measurement) 

belonging to that community. From an ecological perspective, this does not mean 

that one would find the community with the highest membership at that location, 

but gives the probability of that community occurring. A community with a lower 

probability, however, could also occur. 

When the fuzzy memberships or probabilities are mapped, as in Figure 4-8, 

they typically form spatially coherent patterns even when memberships are not 

high. For example, the mixed community maps in the figure show memberships 

over Georges Bank and other parts of the Gulf that resemble ocean features. While 

the flagellate-dominated community had higher probabilities in these same areas, 

a mixed community could have existed there instead. The maps show how likely 

and where potential communities overlap. In the same figure, the mixed and diatom-

dominated communities did not show membership to the water mass in the center of 

the Gulf of Maine. It is reasonable, therefore, to expect that a flagellate-dominated 

community would be found there, but along the coast and over Geores Bank it is 

less certain. 

Based on the current state of available in situ data, buoy technology, and satellite 

capability, the fuzzy approach is advantageous over a purely classical approach in 

classifying phytoplankton communities. The amount of uncertainties infiltrate the 

classical approach leading to mis-classification problems. The fuzzy approach deals 

with uncertainty by assigning probabilities to different outcomes, thus permitting 
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more than one outcome to occur. One utility of this approach is that the classifier 

has the capability of including more variables as the satellite and buoy technology 

evolve. For these reasons, phytoplankton community prediction is better served 

with a probabilistic approach. 

4.5 Conclusions 

The results provided here show a new approach for estimating phytoplankton 

community composition that can be applied to satellite imagery. Based on physi

cal variables measured in situ, three different phytoplankton communities showed 

separation and were successfully identified 82% of the time. However, when the 

classifier was applied to satellite data, performance declined as noise from measure

ment imprecision and uncertainties were introduced. To handle this, the classifier 

was adapted with fuzzy logic that permitted the classifier to produce probabilities 

of occurrence for each community. It was possible to map these probabilities to 

represent potential community distributions. This allowed ambiguity in predicting 

the community existing at any location. The observed communities were also shown 

to be tracked over time, thus permitting the ability to observe community change 

(succession) over space and time. The current application considers the phytoplank

ton community as a whole, but could also be applied to individual species such as 

Alexandrium spp. and others that have significant impacts at the ecological and/or 

socio-economic level. The prediction of such a species could have enormous benefits. 
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Figure 4-1: Study area with sample locations (N—255). 
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Western Gulf of Maine in situ Data Set 

Phytoplankton community Environmental variables 
Vrs = {T,S, Kd, U3,PAR} 

(M-ii.Sn), i = 1.....C, (|x2i, 22l), i = 1,...,c2 (M3i. 23i), i = 1,...,c3 

Figure 4-2: Schematic of classifier training. 

123 

http://M-ii.Sn


Western Gulf of Maine in situ Data Set 

Environmental variables 
Vre = {T,S,Kd,U3,PAR} 

Phytoplankton community and all 
other variables 

Calculate the Mahalanobis distance, Z2, from each 
observation Vre to each cluster center: 

fiji, i = 1 Cj j = 1....3 

Classify Vra to 
community with 

smallest Z2 

Compare with 
community 

determined by 
HPLC 

Figure 4-3: Schematic of the operation of the classifier as applied to in situ data. 
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Figure 4-4: Distribution of physical data by environmental pairs color-coded by 

phytoplankton community: blue - diatom-dominated; green - mixed; red - flagellate-

dominated. Larger points indicate location of the cluster centers (c). Top left: 

temperature-PAR; top right: temperature-wind strength; bottom left: temperature-

-Kd49o; bottom right: temperature-salinity. Total N=255, total c = 27; diatom-

dominated N—51, c=8; mixedN — 94, c—10; flagellate-dominated N=110, c=9. 
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Figure 4-5: Satellite extractions versus in situ data. All satellite fields were obtained 

from images that were based on 8-day averages. The in situ fields were instantaneous 

measurements for temperature and ^490, while PAR and winds were derived by-

averaging the preceding 8 days from the date of the measurement. This is a different 

8-day window compared to the satellite 8-day averages, which were fixed according 

the calendar beginning on January 1. 
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Figure 4-6: A set of SST (MODIS-Aqua), PAR (SeaWiFS), and Kd490 (SeaWiFS) 

8-day composites for September 6 - 13, 2005 as inputs into the fuzzy classifier. 
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Membership Diatom dominated 

Mixed 

Flagellate dominated 

Figure 4-7: Fuzzy and hard membership maps derived from the set of SST, PAR, 

and Kd (scenario 3) shown in figure 4-6. The fuzzy memberships are probabilities 

of occurence, and sum to 1 for each pixel. The hard membership map was produced 

by assigning the pixel to the community with the highest fuzzy membership. 

128 



Diatom-dominated Mixed Flagellate-dominated 

Membership 

Figure 4-8: Fuzzy membership map sequence from September 6 through October 8, 

2005. Left column -diatom-dominated memberships; middle column - mixed; right 

column - flagellate-dominated memberships. Each row represents the same time 

period as indicated in the dates shown in the diatom-dominated plots. 
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Figure 4-9: Phytoplankton community progression as depicted from the hard classi

fication maps from September 6 - 30, 2005 based on scenario 3. Black area in upper 

right image is missing data (also seen in figure 4-8). 
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Figure 4-10: 8-day composites of chlorophyll a concentration from the SeaWiFS 

satellite. 
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CHAPTER 5 

SUMMARY 

5.1 Motivations 

The fundamental question addressed in this dissertation was: can phytoplank-

ton communities be mapped from satellite data? It is a scientific question that has 

implications for climate change and coastal water quality, and thus is also a societal 

question. Although the specific reasons that make this question relevant to different 

people vary according to the contextual application (e.g., marine ecosystem, bio-

geochemistry or marine monitoring), the central motivation is the scientific need to 

understand the diversity and geographical distribution of phytoplankton communi

ties in marine habitats. While satellite remote sensing technologies have enabled 

the observation of phytoplankton biomass levels and their changes across regional 

and global spatial scales, the types of phytoplankton and the communities they form 

remain unknown and largely indistinguishable from space. 

It is extremely difficult to map phytoplankton communities without satellite ob

servation. Phytoplankton are largely invisible to the naked eye, and their turnover 

rates are on the order of 30 days compared to 30 years for terrestrial plants. In addi

tion, phytoplankton inhabit a medium which has horizontal and vertical movement 
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that influences their distributions. The time and space scales needed to monitor 

phytoplankton changes pose different challenges than terrestrial systems. While 

direct analysis of water samples from field programs provides the most conclusive 

method of identifying the types of phytoplankton present in the water, the practical 

limitations of human and financial resources combined with accessibility of offshore 

sites (e.g., weather, remoteness) often inhibit the ability to collect samples at the 

necessary time and space scales required to capture the succession of phytoplankton 

communities. Satellites can overcome the problems of time and space coverage, but 

the problem of how to best use the data to detect different phytoplankton commu

nities remains the pivotal challenge. 

The approach of this research was to use satellite information to detect habitats 

that were linked to different phytoplankton communities. The basis of this approach 

was an empirical study focused on establishing statistical relationships between phy

toplankton communities and the environment in which they were observed. By using 

variables that could be measured from space, it was then possible to apply the same 

phytoplankton-habitat relationships to the satellite data to create geographic maps 

of phytoplankton communities. 

The three studies of the dissertation addressed different aspects of the main 

problem using a data set collected in the Gulf of Maine over a 3-year period. The 

first study examined the use of a chemotaxonomic method to quantify phytoplank

ton composition from pigment data. The level of composition was to the class level, 

and was supported by microscopic observations. The second study examined the 

cycles of environmental variables and the phytoplankton communities through the 
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study period. Using a principal component analysis on nine different environmental 

factors, the dominant mode of variance was identified as seasonal, and phytoplank-

ton communities exhibited an affinity to different hydrographic regimes. The third 

study extended this finding to the construction of a classifier to predict phytoplank-

ton communities from environmental variables. The major findings and conclusions 

of each study will be reviewed. These will be discussed in conjunction with the 

relevant ecological issues surrounding the central themes of the dissertation. 

5.2 General considerations and conclusions 

One of the basic issues relating to the central theme was how to define a phyto-

plankton community. There are multiple ways to partition phytoplankton - from a 

biogeochemical perspective (Hood et al., 2006) to a size-based fractionation (Vidussi 

et al., 2001). Hutchinson (1967) defined a phytoplankton community as 'a collection 

of species living together and usually linked to a particular habitat.' This definition 

is closely related to the association, defined as an assemblage of species that recurs 

under comparable ecological conditions in different places (Hutchinson, 1967). Each 

definition is based at a species level of taxonomy and links them to their environment. 

Kruk et al. (2002) used a variant of these definitions to organize phytoplankton com

munities into 17 different groups in terms of morphological similarities which made 

them suited for different environments. In contrast, the biogeochemical view breaks 

down phytoplankton along functional lines, that is, according to their biogeochemi

cal function. The number of functional groups is usually on the order of 4-6 different 

groups. A typical functional group listing includes diatoms, coccolithophores, flag-
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ellates, and cyanobacteria. In this regard, all diatoms (which are taxonomically at 

the class level) are viewed as a single entity, as are coccolithophores. 

With regards to the data collected in the present dissertation, taxonomic com

position to the species level was available for a limited number of samples. However, 

HPLC samples were routinely collected, and composition to the class level was pos

sible. The focus of study 1 was to characterize the phytoplankton community to 

the class level using HPLC pigments and the CHEMTAX method. The outcome of 

study 1 was the subdivision of phytoplankton samples into eight different classes. 

However, the validation of the method was problematic. Although cell counting 

techniques are the only alternative to quantifying relative community composition, 

comparisons between the two methods do not produce reliable metrics. This is due 

to the nature of the methods (carbon fractions versus chlorophyll fractions) and vari

ability of the intracellular carbonxhlorophyll ratio needed to translate one quantity 

to the other. Results from this study focused instead on output differences between 

CHEMTAX simulations that were initialized with different parameters. 

The initial pigment ratio table, which is used as the starting point in the iterative 

process of the CHEMTAX method, is frequently mentioned in the literature. These 

ratios should be based on species found in the study area, and also should reflect 

the appropriate physiological state of each class. Both require some prior knowledge 

of each sample. Microscopic analysis can identify the dominant species representing 

each class, but the physiological state is harder to ascertain. In study 1, light 

levels were used as a proxy for physiological state. The use of light-specific pigment 

ratios versus averaged ratios over different light regimes did not significantly alter 
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the outcome of CHEMTAX. Since species from the same class can have different 

pigments and different ratios, knowing the species is critical. Mis-representations 

that occurred in CHEMTAX output in different seasons could be attributed to 

inaccurate pigment ratios for certain classes. This was due to the unavailability of 

pigment ratios for the species present and the substitution of ratios for other species 

in the same class. 

Conclusion 1 - CHEMTAX is a robust method for determining taxonomic composi

tion to the class level, but pigment ratios from species in the study area are needed. 

The eight classes generated from CHEMTAX were the basis of forming the even

tual phytoplankton community definitions in studies 2 and 3. Thus, each community 

had to be based on a combination of these eight classes. However, the number of 

class combinations was large compared to the number of samples, and these had to 

be reduced by class re-combination to limit the myriad set of possible class combi

nations. Since many flagellate species share the same size range and are morpholog

ically similar, all flagellate classes were combined. This reduced the eight classes to 

three groups - diatoms, flagellates, and cyanobacteria - that are aligned along func

tional group divisions. It was from these groups that the eventual phytoplankton 

'communities' were defined. 

The problem still remained of how to define communities from these three phyto

plankton groups; boundaries needed to be specified. The question as to where does 

one community begin and another end is difficult to establish, as the real world is 

a continuum of graded transitions rather than readily defined compartments with 

discrete edges. Sathyendranath et al. (2004) based diatom communities on a fu-
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coxanthin:chlorophyll a ratio of 0.4 or greater. This was based on cultured diatom 

fucoxanthin:chlorophyll a ratios, which generally are between 0.4 and 0.5. In this re

search, a diatom-dominated community was defined by a threshold of 70% or more of 

the chlorophyll a attributed to diatoms. The corresponding fucoxanthimchlorophyll 

a ratio for this community ranged between 0.3 and 0.5. This highlights the dif

ficulties with establishing thresholds for defining a diatom or any other type of 

community, since different criteria will produce different results. It is reasonable to 

say, however, that a phytoplankton community that has 70% or more of the biomass 

composed as diatoms is diatom-dominated. Likewise, a community in which 70% of 

the biomass is flagellates is conservatively flagellate-dominated. A so-called mixed 

community falls in between these, but these thresholds were arbitrary. Ultimately, 

the communities were subjectively defined by setting these thresholds. 

The relationship between these communities and environmental factors was ex

plored in study 2, and quantified into a predictor in study 3. A key question is: in 

a multivariate environment, how many variables is enough and which variables are 

significant? The choice of environmental factors was guided by variables suggested 

in Longhurst (2007) and others (Smayda, 1980; Harris, 1986). Study 2 examined 

nine different variables. The set of variables selected described various aspects of the 

environment, and included physical data (temperature, mixed layer depth, diffuse 

attenuation coefficient), meteorological data (wind speed and surface light inten

sity), chemical data (nutrient concentrations), and implicitly included correlated 

biotic factors, if any, such as grazing and competition. The focus of study 2 was to 

examine the cycles of these variables in conjunction with phytoplankton community 

cycles. A principal component analysis of the physical data qualitatively revealed 
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that diatom- and flagellate-dominated communities were associated with different 

physical environments. 

Conclusion 2 - Phytoplankton communities, defined at a broad level, exhibit affinities 

to different environmental habitats. 

The adaptation of the data set to the Reynolds Intaglio shows that diatom com

munities preferred environments with high nutrients and well-mixed water columns, 

whereas flagellate communities were prevalent in low-nutrient, highly stratified wa

ters. These findings - although not unexpected - shed light on and document the 

phytoplankton community cycles in the western Gulf of Maine, which have not 

been addressed in any recent publication. The overall results of study 2 provided 

the qualitative evidence to seek the phytoplankton community-physical environment 

relationships in a quantified way, which was the focus of study 3. 

In study 3, the relationships were established with a statistical model based on 

empirical distributions of the data. A classifier was developed, which took as input 

a set of physical data and predicted one of three phytoplankton communities. In 

this study, the set of physical variables was reduced from nine to five based on the 

preference for variables that are amenable to remote sensing. 

The success rate (i.e., performance) of the classifier was determined by comparing 

the predicted phytoplankton community to the 'actual' community for each data 

point. This was done with the training data set, and a set of 100 test data sets 

randomly selected (10% of the data) and not used for training. Not surprisingly, 

the performance of the classifier was higher with the training data set (82%) than 

the test data sets (~55%). This decrease in performance is attributed to the change 
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in the statistical characteristics of the data set when a random subset (10%) was 

removed, indicating that the data set probably contained too few points. Most 

of the errors were between 'adjacent' phytoplankton groups; that is, it was more 

frequent for a diatom- dominated or a flagellate- dominated community to be predicted 

as a mixed community or vice versa. The mis-identification of a diatom-dominated 

community with a flagellate-dominated community (or vice versa) occurred less than 

4% of the time with the training data set, and these were the so-called 'egregious' 

errors. Compared to other studies (Sathyendranath et al., 2004; Alvain et al., 2005), 

this method achieved higher success rates based on the same criteria (evaluating the 

training set). 

Conclusion 3a - Phytoplankton communities can be predicted based on environmental 

factors and success can range from 55% to 82%, depending on the data set. These 

represent potential upper and lower limits for community prediction. 

Errors progressively increased when environmental variables were removed, that 

is, when fewer than 5 variables were used as input. In addition, errors were higher 

when the input fields were satellite data, presumably as a result of 'noisy' satel

lite data. As a consequence, uncertainty increased in both input and output fields 

when the classifier was applied to satellite data. The best performance results when 

applied to satellite occurred when three fields were used as input - sea surface tem

perature, daily PAR, and KdAQO - and attained an overall success of 61% {diatom-

dominated and flagellate-dominated community successes were 67% and 71%, re

spectively). Despite the overall decrease in successful classification, egregious er

rors remained low (~5%). Although the classifier had more trouble predicting the 
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true class with satellite data, it was still highly successful at differentiating diatom-

dominated communities from flagellate-dominated communities. 

The overall decline in performance when using satellite data reflects the increase 

in uncertainty in predicting phytoplankton communities from space. A method that 

has been designed to accommodate data imprecision and uncertainty - in this case 

errors associated with satellite data - is fuzzy logic. This method was adapted 

to the classifier and assigned probabilities to each community of its likelihood of 

occurrence. The confidence level in predicting the correct phytoplankton community 

now can be quantified and represented as maps (matching the satellite input data) 

depicting the probability of each community occurring. In this way, phytoplankton 

communities can be mapped along with the uncertainty imposed by the imprecision 

in the satellite data. 

Conclusion 3b - Satellite data can be used as input to a classifier to predict phyto

plankton community distributions, but performance declines due to increased noise 

in the satellite data fields. A fuzzy logic approach is well suited to deal with data 

imprecision, and can supply confidence levels for the predicted communities. 

5.3 Problems in ecological prediction 

There is a cascade of ecologically relevant factors which vary across different 

scales and influence the response of species on short-term physiological and longer-

term ecological levels (Harris, 1986). Species are differentially affected by these 

factors, and it is their cumulative effect that decides the composition of the phy

toplankton population at any given moment. The responses have inherent time 
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lags, and while physiological responses occur on the order of minutes to hours, the 

influence on the community composition is on the order of days. It is difficult to 

determine the state of a phytoplankton community vis-a-vis its response to its en

vironment. The question arises as to whether the community is acclimated to its 

ambient environment, or is it in the process of changing? 

Theoretically, a closed system in which the environment is constant will be in 

equilibrium (Harris, 1986). Time and history need not be considered since there are 

no time lags associated with the population. This situation might be comparable to 

a tropical environment that has limited variance in its environment and a relatively 

stable phytoplankton community with a constant overall biomass level. The other 

extreme is a non-equilibrium system which is dominated by environmental distur

bances and disruption, and is subject to outside species immigration. The species 

in this type of community will respond differently according to their growth rates 

and the frequency of disturbances. This situation might be represented by the pas

sage of a storm that mixes the water column, resets nutrient levels, and introduces 

new species. In the marine environment, both types of system occur at different 

times, although it is debatable whether equilibrium states ever truly exist at all. A 

governing factor which dictates which system prevails at any given moment is the 

frequency of disturbances and the community response time to such disturbances. 

Within a community, species will respond differently (i.e., in terms of their growth 

rate response) to the frequency of disturbance. Thus, characterizing such tempo

ral fluctuations and the variance in properties such as Zeu/Zm are important for 

community prediction (Harris, 1986). 
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Data interpretation is affected by the state of the phytoplankton community, 

its overall status in regard to the time lag response to its environment, and the 

frequency and timing of the sampling. A location sampled on a given day might 

have a different phytoplankton community just a few days later, even though the 

overall environmental conditions have not changed. Depending then on when the 

site is sampled, a different result may occur. This type of uncertainty is not related 

to measurement precision but to the frequency of sampling and the state of the 

community. Thus, the ability to accurately predict the phytoplankton community 

given knowledge of the physical environment is subject to these considerations. 

Conclusion 4 ~ Due to the inexactness of the knowledge inherent to the marine 

system, the prediction of phytoplankton communities will never be 100%. In this 

regard, a method based in fuzzy logic which deals with probability and not certainty 

is best suited to the problem of predicting phytoplankton communities, whether using 

environmental or some other factors as the basis of prediction. 

5.4 Final Conclusions 

Predicting the phytoplankton community composition given the knowledge of the 

ocean environment will never be 100% accurate. Precision is compromised because 

there were many uncertainties and shortcomings associated with the measurements, 

ambiguity in defining communities, and with the general nature of the differential 

response of phytoplankton species to environmental change. The latter includes the 

time lags of response by phytoplankton to their environment on physiological (min

utes/hours/days) and ecological (days/weeks/seasons) scales. It has been shown 
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that a classifier can be applied to oceanographic environmental data to predict the 

phytoplankton community composition with reasonable accuracy. There is greater 

success as more environmental information is included in the function. 

The ultimate goal of this research was to predict phytoplankton community 

distributions using satellite remote sensing. The variability in the spatial and tem

poral distributions of phytoplankton communities require observational power only 

afforded through satellite data. The fundamental need for satellite data is based on 

the dual capabilities of their inherent spatial coverage and repeat cycles which can

not be matched by in situ observations. The classifier could be applied to satellite 

data, provided that the environmental variables used in the classifier match data 

available from satellite. Some of the key environmental variables are not mature or 

available yet as satellite products (e.g., salinity, high resolution winds). The clas

sifier omitted these data in its application to satellites. Additionally, the satellite 

products generally have less precision than their in situ counterparts, and the overall 

effect is an increase in system noise and more uncertainty in the data. The combined 

effects of input data reduction and increased noise resulted in lower performance and 

greater uncertainty. 

The fuzzy methodology is well suited for dealing with these types of uncertainties; 

it also has the capability to resolve transient and changing conditions over space 

and time natural to the marine environment. This dissertation reached the main 

goal and, moreover, demonstrated that improvements in the predictive power of 

the method can be achieved with increased precision and more advanced satellite-

derived products. It also has highlighted the difficulties and challenges in resolving 
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phytoplankton community composition. To achieve better predictive accuracy in 

the future, it is important to maintain a strong field program in conjunction with 

satellite data to calibrate and validate evolving models. This includes the use of 

fixed buoys and drifters (e.g., ARGO floats) to augment field programs. These 

resources are now forming an expanding and increasingly important aspect of ocean 

observing. As new satellite sensors come on-line, the real-time information collected 

about the ocean will provide new possibilities to describe and understand marine 

environments. Regardless of which method is ultimately employed, any progress 

or future success in understanding phytoplankton community dynamics will require 

the integration of the complementary information from all these data sources. 
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