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ABSTRACT 

THE VENETIAN BLIND EFFECT, BINOCULAR LUSTER, 

" AND BINOCULAR RIVALRY 

by 

Richard S. Hetley 

University of New Hampshire, May, 2008 

When one views a square-wave grating and changes the average luminance or 

contrast of the monocular images relative to each other, at least three perceptual 

phenomena occur. These are the Venetian blind effect, or a perceived rotation of the bars 

around individual vertical axes; binocular luster, or a perceived shimmering; and 

binocular rivalry, or an alternating perception between the views of the two eyes. In this 

paper, it is shown that increasing the dichoptic luminance modulation leads to these three 

phenomena in sequence, while increasing dichoptic contrast modulation generally only 

leads to perceived rotation. 

It is also shown that average luminance and contrast are not the deciding factors 

in when the three perceptual phenomena occur. Perception of luster and rivalry occur 

when the light bars in the grating dichoptically straddle the background luminance, with 

little impact of the dark bars, as demonstrated when light bars or dark bars are presented 

in isolation. Also when presented in isolation, perceived rotation ceases when the bars 

dichoptically straddle the background luminance. The deciding factor is shown not to be 

the adaptation level of the participant and instead to be this relation of the monocular 

images to the background. 



X 

The patterns for perceived rotation versus binocular luster and binocular rivalry 

suggest separate mechanisms in the visual system. Possible mechanisms are suggested, 

and experimental manipulations are proposed that would discriminate between them. 



CHAPTER I 

INTRODUCTION 

Humans and other organisms use two eyes, set some distance apart, to extract 

information about the environment. Some visual information can be utilized by just one 

eye, such as the luminance or contrast1 in an image. However, using binocular vision 

allows us to detect differences between the two eyes' views, extracting unique types of 

information known as binocular disparities. 

Geometric disparities are perhaps the best understood type, resulting when objects 

in front of the observer appear in different positions and orientations in each eye's view. 

We use these disparities to create a fused image with depth and three-dimensional (3-D) 

orientation. Presenting viewers 

with geometric disparities is the 

principle behind classic methods 

of generating 3-D images (see, 

e.g., Howard & Rogers, 1995, 

chapter 1). 

Figure 1. Square-wave grating for demonstrating the 
Venetian blind effect. See text. 

1 All references to contrast in this paper are to Michelson contrast, defined by the equation 

^ ~ V^max _ -^min ) ' l ^max + ^min J ' 

where Lmax and Lmin are the maximum and minimum luminance values in the image (Michelson, 1927, p. 
40). 

Hi 
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rum rum 

Miinster(1941) 

discovered that luminance 

disparities are also important, a 

fact independently rediscovered 

by Cibis and Haber (1951), who 

named what they found the 

Venetian blind effect. The 

Venetian blind effect can be 
Figure 2. Viewing a square-wave grating with no 
disparity. Ordinary viewing of Figure 1 leads to 
identical luminance profiles in each retina for every 
bar. There is no perception of rotation in depth. See observed by viewing a flat image 
Figure 3. 

of vertical light bars and dark 

bars (a square-wave grating; Figure 1) with a neutral density filter over one eye. If the 

right eye receives the image dimmed by the filter, then the light bars appear to be rotated 

around individual vertical axes such that their rightmost edge slants out (Figure 2-4, also 

Figure 5 described in the 

perceived rotation section, p. 7). 

The effect is symmetrical when 

the left eye has the filter, and 

when observers focus on the 

dark bars they may appear to be 

slanted opposite from the light 

ones (Cibis & Haber, 1951). 

ruin JUUL 
Figure 3. Viewing a square-wave grating with a 
geometric disparity. Rotated bars would result in 

„.„ „~ r t r i . ,. , , , - narrower luminance profiles in one eye than the other. 
Filley (1998) d,scovered that this Jhu^ g e o m e t r i c d i s p a r i t i e s a r e important to perceived 

rotation. See Figure 4. 
perceived rotation also occurs 



o 
for contrast disparities, where 

lowering the contrast in one eye's 

image is analogous to putting a 

neutral density filter in front of 

that eye. 

These examples with a 

luminance or contrast disparity, rLTLTL J-LTLTL 
Figure 4. Viewing a square-wave grating with a 
luminance disparity. Viewing Figure 1 with a neutral occurring with no geometric 
density filter in front of one eye leads to different 
heights, not widths, in the luminance profile. There is disparity, involve an extra 
a resultant perception of rotation in depth. 

dimension: though the viewer 

experiences a perception of rotation in depth just as with geometric disparities, the viewer 

must also experience some brightness2 or perceived contrast. In my master's thesis 

(Hetley, 2005) I demonstrated that these two perceptions, perceived rotation on the one 

hand and brightness or perceived contrast on the other, could be described by 

repartitioning the disparity information. With disparity fundamentally depending on 

information "input" from the two eyes, the two "output" perceptions could arise by 

effectively summing the "input" to get brightness or perceived contrast and taking the 

difference to get perceived rotation3. More detail is available in the thesis. 

2 Brightness is the briefer and more common term for perceived luminance. There does not seem to be an 
accepted briefer term for perceived contrast. 

3 More precisely, brightness or perceived contrast in a grating with a luminance or contrast disparity can be 
described by a norm, 

\\D\\p=(L^R"fP, 
where L and R are the average luminance or contrast of the left and right monocular images, and D is 

the ordered pair \L, R) and represents the binocular image. Z) is the " p th" norm of D. A second 
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However, further perceptions are possible beyond these. Dove (1851) discovered 

a phenomenon which, in the translated works of Helmholtz (1873, 1910/1925), is called 

stereoscopic or binocular luster. Under similar circumstances to those which cause the 

Venetian blind effect, i.e., when there is an adequate luminance disparity in an image, the 

image appears to have a luster like the shimmer on a body of water or reflective piece of 

metal (Figure 14-15, described in the binocular luster section, p. 19). Informal 

observations during my master's thesis (Hetley, 2005) suggested that this could also occur 

for an image with a contrast disparity, but it was more commonly noticed with luminance 

at that time. 

Scientists have also undertaken extensive research on the phenomenon of 

binocular rivalry (see, e.g., Alais & Blake, 2005). Though generally discussed in terms 

of geometric disparity and, occasionally, even disparity in color or other submodalities of 

vision, further observations during my master's thesis (Hetley, 2005) indicated rivalry 

could occur for an image with a luminance disparity. In rivalry, it becomes nearly 

impossible to maintain a fused image as perception wavers back and forth between the 

two eyes' views (Figure 20, described in the binocular rivalry section, p. 32). It may not 

be meaningful to discuss rivalry with a contrast disparity since one monocular image with 

very low contrast may be wholly suppressed while the other image dominates perception 

without alternation. 

Some researchers (e.g., Julesz and Tyler, 1976) feel that luster and rivalry co-

occur. Some (e.g., Helmholtz, 1873, 1910/1925) feel that luster appears only when there 

grating that has no disparity and is at an average luminance or contrast defined by £) will match the 

original grating on brightness or perceived contrast. To describe perceived rotation, one may replace the 
summation with a difference, taking care to subtract the smaller number from the larger. In all cases, there 
are also constants to fit the equation to data from individual viewers, and the value for p may vary. 



is no rivalry. And some (e.g., Howard, 1995) feel that the relationship depends on other 

factors such as the size of the images in question. The relationship between perceived 

rotation and these other two perceptual phenomena does not seem to have been studied. 

Given that the perceived rotation and the brightness or perceived contrast in 

gratings (Hetley, 2005) may now be describable as phenomena occurring in "parallel," it 

is possible that perceived rotation, luster, and rivalry occur in "serial." That is, one could 

imagine a single mechanism in the visual system that would respond to increasing 

disparity with each of the latter three phenomena, requiring different threshold disparity 

levels for each one. Alternately, given that luster and rivalry do seem to relate (though 

the nature of the relationship has not been settled), it is possible that the three phenomena 

reduce to two independent mechanisms. That is, one could imagine one mechanism in 

the visual system that would respond with a perception of rotation when certain 

conditions were met, and a second that independently would respond with luster and/or 

rivalry when certain conditions were met. I will argue that there must be at least two 

mechanisms, and that the "conditions" concern both the disparity between the images 

received by the two eyes and the relation between these images and their background. It 

is possible that these two mechanisms relate to the two "parallel" perceptions addressed 

in my master's thesis. I will now discuss terminology used in this paper, then review the 

literature on these three perceptual phenomena and other relevant topics, and then 

describe my research into their relationship. 
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Notes on Terminology 

To discuss images, I use certain terminology conventions from Macknik and 

Martinez-Conde (2004). Binocular image and monocular image refer to an image 

presented to two eyes or to one eye, respectively. By definition, a binocular image is 

composed of a pair of monocular images, so a binocular image can be discussed in terms 

of both its binocular and monocular qualities. Dichoptic image refers to a binocular 

image that has a disparity or disparities in its two monocular images. Monoptic image, 

being the opposite of dichoptic, refers to an image that has no such disparity. It is 

important to note that the terms monocular and monoptic are therefore not the same. 

Fused image, a term not used by Macknik and Martinez-Conde, refers to a participant's 

unified perception of the presentation. 

To discuss luminance and contrast disparities, it is first necessary to have a 

common measure of disparity magnitude. I have adopted dichoptic luminance 

modulation and dichoptic contrast modulation, which were developed to specify 

experimental grating images. Dichoptic luminance modulation appears in the equation 

avglum = {baselum) * (1 ± lummod), 

where avglum is the average luminance of one monocular image in cd/m2 (e.g., the 

average luminance of the light bars and dark bars in one monocular grating)4, baselum is 

the base luminance for the binocular image (which is the average luminance of the two 

monocular images together), and lummod is the dichoptic luminance modulation. One 

monocular image therefore averages above the base luminance and the other averages 

below, with a magnitude determined by the modulation. The same general equation 

When considering types of monocular images that only incorporate one luminance value instead of 
alternating bars, avglum becomes lum. 
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holds for dichoptic contrast modulation, in Michelson contrast, describing monocular 

contrasts relative to a base contrast. 

Perceived Rotation 

Cibis and Haber (1951) gave empirical data on the Venetian blind effect, or 

perceived rotation, as it results from a luminance disparity. The basic effect can be 

demonstrated by stereoscopic viewing of Figure 5. Cibis and Haber did not use 

stereoscopic viewing, and instead used two white squares, 2.6 minutes of visual angle5 

each, both visible to each eye. The luminance from these squares could be estimated6 at 

around 100 cd/m2, and the participants viewed the squares with various strengths of 

neutral density filters in front of 

one eye or the other. The filters 

resulted in from 0.00 to 0.99 

dichoptic luminance modulation. 

By using a cancellation method, 

i.e., physically rotating the 

squares until they appeared flat 

despite the Venetian blind effect, 

Cibis and Haber found that the 

5 Visual angle is the angle subtended by a stimulus in an eye's view, where 1 degree is composed of 60 
minutes, and 1 minute is composed of 60 seconds. 

6 Actual luminance values were not given. I estimated this number by projecting light from a Mag-Lite 
flashlight onto plain white paper in a darkened room, then measuring the light with a Minolta LS-110 
photometer. The light used in this study was "a projector," and the material of the squares was not 
specified. 

Figure 5. Dichoptic square-wave grating with a 
luminance disparity. This binocular image has 
dichoptic luminance modulation of 0.4, and leads to 
perceived rotation of each bar when perceptually 
fused. 
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perceived rotation increased with 

the disparity up to a plateau at 

the highest filter strengths. It is 

worth noting that this "plateau" 

becomes linear when looking at 

modulation as the measure of 

disparity7. 

Cibis and Haber (1951) 
Figure 6. The Cibis & Haber (1951) explanation for 

explained the Venetian blind t h e Venetian blind effect. The two curves are 
luminance profiles for a light bar with and without 

effect as, essentially, the result of dimming. The horizontal dotted line is the absolute 
threshold. The two solid lines at the bottom show the 

an illusory geometric disparity d e t e c t e d w i d t h o f e a c h b a r - S e e t e x t 

(Figure 6)8. Due to the modulation transfer function of the eye (see, e.g., Williams, 

Brainard, McMahon, & Navarro, 1994), the edges in a square-wave pattern become 

blurred in their luminance profile on the retina. If the darkest parts of the image are 

below the absolute threshold for detection, then these blurred edges will cross that 

threshold at a different point from where a sharp edge would. With the luminance in one 

monocular image uniformly lowered, the total area detected in that image narrows. As 

discussed (see Figure 2-3), such geometric disparities are a standard way to generate 3-D 

images, and in fact Ogle (1952) criticized Cibis and Haber for even giving such a 

7 For example, the original filter strengths were measured in log units, where a change from 0 to 1 to 2 log 
units means going from no loss of luminance, to cutting the luminance to a tenth, to cutting the luminance 

to a hundredth. In dichoptic luminance modulation, this change is from 0 to 0.82 to 0.98, thus compressing 
and straightening any plateau that would be visible at higher log units. 

Figure 6 is adapted from Cibis and Haber's original within Fair Use under U.S. Copyright Law. See 
Appendix A. 



phenomenon a new name. 

Regardless of the name or the 

theorist, the Cibis and Haber 

explanation has been the most 

common one given for the 

Venetian blind effect (e.g., 

Howard & Rogers, 1995, p. 310; 

Ogle, 1962, pp. 302-303). Figure 7. Dichoptic sinewave grating with a contrast 
disparity on a black surround. This binocular image 

Fiorentini and Maffei has dichoptic contrast modulation of 0.5, and may 
" lead to perceived rotation of the entire sinewave 

(1971), amidst other research, pattern when perceptually fused. As discussed in the 
text, this may be an artifact, 

gave a different explanation for 

the Venetian blind effect based on their findings with contrast disparities. They used 

sinewave gratings instead of square-wave, which when presented with a contrast disparity 

and fused appeared to rotate about a single vertical axis. A separate oscilloscope 

presented one image to each eye, averaging 3 cd/m2 in luminance, through an aperture 7° 

in diameter within a black cardboard surround (similar to Figure 7, though this image 

presents a higher luminance than in the original, and the original did not actually provide 

a graphic). The gratings had a spatial frequency9 of either 2 or 6 cycles per degree, with 

one grating (for either the left or right eye) at 0.5 contrast and the other at various lower 

contrasts, resulting in from 0.00 to 0.90 dichoptic contrast modulation. By using a 

matching method, i.e., physically rotating a cardboard rectangle until it appeared parallel 

The spatial frequency of a repeating pattern is the number of cycles in a given area, or, more informally, 
how rapidly its bars repeat. 
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•

to the fused image, Fiorentini 

and Maffei found that the 

perceived rotation increased with 

the contrast disparity up to a 

plateau. 

As the images were 

sinewaves and only their contrast 

Figure 8. Dichoptic sinewave grating with a spatial varied, Fiorentini and Maffei 
frequency disparity. The left monocular image has a 
spatial frequency of about 2 cycles per degree and the (1971) felt they had eliminated 
right about 2 1/3 cycles per degree when held at arm's 
length. This leads to perceived rotation of the entire all detectable edges and edge-
sinewave pattern when perceptually fused. 

based explanations. Instead, 

they explained the perceived rotation in terms of spatial frequency. Previous researchers, 

notably Blakemore (1970), had shown that spatial frequency disparities lead to a 

perception of single-axis rotation, such that if the right monocular image has higher 

spatial frequency then the right edge of the fused image appears closer (Figure 8). 

Fiorentini and Maffei proposed that a spatial frequency operator in the brain takes the two 

eye inputs and responds if there is a spatial frequency disparity. An image with weaker 

contrast would result in a weaker signal to this operator, likewise causing an imbalance 

and ultimately a perception of rotation (Fiorentini & Maffei, 1971). 

Blake and Cormack (1979) were unable to replicate Fiorentini and Maffei's 

(1971) results, and indeed it may be difficult to perceive rotation in images like Figure 7. 

However, it is possible that Blake and Cormack did not allow the participants enough 

time to view the images. A more compelling concern came from Filley (1998), Filley 
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and Stine (1998), and Stine and 

Filley (1998), who essentially 

argued that Fiorentini and 

Maffei's results were an artifact 

of their setup. By using a sharp 

aperture with a sudden drop in 

luminance, Fiorentini and Maffei 

introduced a sudden luminance 

and contrast change at the edges 

that would not be present against 

a background of average 

luminance (compare Figure 7 to Figure 9). Therefore, each entire circular image could be 

the equivalent of a square from Cibis and Haber's (1951) research, requiring no 

explanation beyond the Cibis and Haber model for the resulting perceived rotation 

(Filley, 1998; Filley & Stine, 1998; Stine & Filley, 1998). 

Further, Filley's (1998) research demonstrated that the Cibis and Haber (1951) 

model itself is not tenable. Filley presented participants with numerous square-wave 

gratings that had luminance and/or contrast disparities (the effect of a contrast disparity 

on perceived rotation can be demonstrated by stereoscopic viewing of Figure 10). 

Filley's stimuli were rectangles 2.92° in width and 6.56° in height with a spatial 

frequency of 1.2 cycles per degree, presented stereoscopically and viewed through 3 mm 

artificial pupils. Either the left or right monocular image was at an average luminance of 

Figure 9. Dichoptic sinewave grating with a contrast 
disparity on a gray surround. This binocular image 
has the same dichoptic contrast modulation (0.5) as in 
Figure 7, but is less likely to lead to perceived 
rotation of the entire sinewave pattern when 
perceptually fused. See text. 
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26.7 cd/m2 (77.63 photopic td)10 

and 0.5 contrast, while the other 

monocular image had any of 

several combinations of 

luminance and/or contrast 

values, resulting in dichoptic 

luminance and/or contrast 

Figure 10. Dichoptic square-wave grating with a modulation from 0.00 to near 

contrast disparity. This binocular image has dichoptic 
contrast modulation of 0.5, and leads to perceived 0.50. Cibis and Haber's model 
rotation of each bar when perceptually fused. 

depends on portions of the image 

falling below the absolute 

threshold for detection, and predicts that no perceived rotation should occur for stimuli 

above threshold, yet perceived rotation reliably occurred in this study despite all images 

being wholly above threshold (Filley, 1998). Likewise, it can be observed that there are 

no parts in either Figure 5 or Figure 10 that are "undetectable." 

Lacking a model that fully explains the Venetian blind effect, I (Hetley, 2005) 

performed further experiments to at least describe the effect, as Filley (1998) did not 

actually measure magnitude of perceived rotation. The basic stimulus was akin to that 

shown in Figure 11. Each monocular image was 0.6° of visual angle in width, 0.4° in 

height, at 5.7 cycles per degree, and presented stereoscopically through 3 mm artificial 

10 The troland is a unit of retinal illuminance, calculated by multiplying pupil area in millimeters to 
luminance in cd/m2 (see, e.g., Boynton, 1966, pp. 284-285). However, using the pupil and luminance 
values given by Filley, the retinal illuminance should be 188.75 td. The reason for the discrepancy is 
unclear. 
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pupils. The vertical dark nonius 

lines shown in Figure 11 were 

simply to aid in fusing11. The 

background gray, and also the 

base luminance (the average 

luminance of the light and dark 

bars from both monocular 

images, as mentioned in the Figure 11. Sample Experiment I image with no 
disparity. This sample is akin to that used in Hetley 

notes on terminology), was 37.9 (2005), described in the text. This sample was 
generated with the code from my current research, 

cd/m2 (268 photopic td), and the and will be discussed as the neutral condition in 
Experiment I (p. 47). 

monocular images had a base 

contrast of 0.5 (Hetley, 2005). 

Among other experiments, I measured the magnitude of perceived rotation in the 

Venetian blind effect with a cancellation method. I presented participants with images 

that had pixels shifted between the two monocular square-wave patterns, resulting in 

geometric disparities like those that would be detected in real rotated images (see Figure 

3). These disparities were either 12.2, 24.3, 36.5 or 48.7 seconds of visual angle. The 

task was to find a level of dichoptic luminance or contrast modulation that resulted in a 

Venetian blind effect strong enough to counteract the perceived rotation from the 

geometric disparity. For luminance, modulation between around 0.30 and 0.90 provided 

This use of the term nonius line is adapted from the technique described in Ames, Ogle, and Gliddon 
(1932). In my research, I use it to refer to a line that appears in each monocular image and that falls on 
corresponding parts of the retina when the images are fused. 
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cancellation depending on condition12; for contrast, modulation between around 0.25 and 

0.75 provided cancellation (Hetley, 2005). 

Since then, further work (Stine &'Hetley, 2006) has provided a model for the 

magnitude of perceived rotation based on a contrast disparity. Although not discussed in 

that publication, the model also applies moderately well to a luminance disparity. This 

model is based on data from my past work (Hetley, 2005) and ideas from two other 

studies. 

First, Sclar, Maunsell, and Lennie (1990) modeled the response of neurons in 

macaque monkey (Macaca fascicularis) striate cortex to the contrast of a sinewave 

grating. Neuron response in this area, as well as various others, followed a Naka-

Rushton equation, 

v n" 
R(C\ = _22* + M 

C +<T50 

where R is the response, C is the contrast, Rmax is the maximum possible response, M 

is the spontaneous rate of response, cr50 is the contrast that causes half of the maximum 

response, and n is a parameter that adjusts the steepness of the response (Sclar et al., 

1990). 

Second, Backus, Banks, van Ee, and Crowell (1999) provided a convenient 

measure of the geometric disparity in a rotated image called horizontal size ratio (HSR), 

the ratio of the visual angle of the left monocular image and the right monocular image. 

Backus et al. discussed how a viewer's use of the HSR, along with other quantities 

12 Modulation was not permitted to go beyond 0.90. 
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including the similar vertical size ratio, unambiguously allow for determination of 

rotation around a vertical axis. 

With Backus et al.'s (1999) definition, the HSR's canceled by the Venetian blind 

effect in my thesis (Hetley, 2005) ranged from 0.857 to 1.17. With the constants that 

Sclar et al. (1990) used for striate cortex complex cells, we (Stine & Hetley, 2006) 

described the magnitude of perceived rotation by comparing the responses of two 

different neurons, one responding to the left monocular image and the other to the right. 

This followed the equation 

PercHSR(Q,Cr) = gaimRiQ - shift) - gainrR^Cr + shift), 

where the subscripts / and r indicate the neuron and image under consideration, gain is 

a parameter that adjusts the range of perception, shift is a parameter that adjusts the bias 

between the left and right responses, and PercHSR is the perceived horizontal size ratio 

(Stine & Hetley, 2006). Though not discussed, the same equation can be used with 

luminance input to describe perceived rotation. 

In total, perceived rotation from luminance or contrast disparities may not be 

well-explained, but it is well-described. The leading explanation based on the detection 

of blurred edges at an absolute threshold (Cibis & Haber, 1951; Howard & Rogers, 1995, 

p. 310; Ogle, 1962, pp. 302-303; see Figure 6) is untenable, as perceived rotation is 

detected above threshold (Filley, 1998; Filley & Stine, 1998; Stine & Filley, 1998; see 

Figure 5 and 10). However it occurs, perceived rotation can arise from stimuli of many 

different sizes and base luminance and contrast values, and the magnitude of rotation 

increases with the magnitude of dichoptic luminance or contrast modulation over a wide 

range, up to 0.99 modulation in some cases (Cibis & Haber, 1951; Filley, 1998; 
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Fiorentini & Maffei, 1971; Hetley, 2005). Despite this body of information, though, 

there are concerns about exactly what is being manipulated that are addressed in the 

following subsection. 

Light Bars and Dark Bars Versus Average Luminance and Contrast - There may be 

other fundamental approaches to the Venetian blind effect (and eventually the next 

phenomena discussed here). A grating stimulus may be defined in two mathematically 

interchangeable ways. The first is to state the maximum and minimum luminance values 

in the grating, which are the luminance values of the light bars and dark bars. The second 

is to state the average luminance and contrast, where the average luminance gives a 

"starting point" and the contrast specifies how "spread out" the light bars and dark bars 

are. I have been using the latter so far, but the question is whether there is a reason to 

choose one mathematical definition over the other. 

Gottesman, Rubin, and Legge (1981), after doing a study pertaining to contrast, 

asked whether contrast is really its own sensory dimension worth studying or whether it 

is some form of combination of sensory responses to the light and dark bars. Later, 

Legge and Kersten (1983) explicitly compared the different definitions of a grating, 

including multiple types of contrast. They presented participants with images on a 

computer screen that had either a rectangular or Gaussian luminance profile, and were 

either 0.1°, 1°, or 10° in width and 16° in height, with one condition at 0.1° width and 4° 

height. These images were either increments or decrements relative to a 340 cd/m2 

background, and so were considered to represent "light bars" or "dark bars." Participants 

viewed pairs of increments or decrements one after another on the screen and judged 
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whether the first or second presentation 

involved the most contrast against the 

background (Legge & Kersten, 1983). 

As with other research that they 

cited, Legge and Kersten (1983) found 

there are some differences between how 

light bars and dark bars are perceived; 

differences which would be overlooked 

when using average luminance and 

contrast as the definition of a grating. 

For one, the absolute detection threshold 

for dark bars is at a smaller contrast than 

for light bars, meaning a smaller disparity from the background is necessary to detect 

dark bars. However, looking at discrimination and not detection, they found that 

increments and decrements have equivalent effects. Further, discrimination functions 

plotted based on the contrast between an isolated bar and the background, specifically the 

Michelson contrast, follow the same shape for each type of stimulus. The functions even 

follow the same shape as contrast discrimination functions in intact sinewave gratings. 

This result suggests that one may consider Michelson contrast as a standard in defining 

gratings for discrimination tasks, and Legge and Kersten provided a physiological 

explanation: photoreceptor response to light is proportional to the logarithm of the 

intensity over a moderate range, and Michelson contrast is roughly equivalent to a 

logarithm transformation over a moderate range. 
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Figure 12. Data from Filley (1998). 
Probabilities that the monocular image which 
is manipulated (left or right) corresponds to 
the edge of each bar that appears closer to the 
viewer (left or right), for different contrast (on 
axis) and/or average luminance values 
(separate lines) of the manipulated image. 
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Figure 13. Data from Filley (1998) replotted 
against the luminance of the light bars. These 
are the same probabilities shown in Figure 12. 

In years since, science has 

typically defined gratings in terms of 

average luminance and contrast, though 

there are some increment and decrement 

imbalances such as those noted by 

Legge andKersten (1983). Anew 

analysis of Filley's (1998) research 

suggests that the light bars and dark bars 

may again be important when 

considering the Venetian blind effect. 

Filley's participants stated which edge of 

the bars in square-wave gratings appeared to be rotated closer to the viewer (in stimuli 

with dichoptic luminance and/or contrast modulation, as discussed), and their responses 

showed an interaction (Figure 12)13. When average luminance is raised in one 

monocular image, contrast can predict which edge appears closer. That is, with the right 

monocular image at a higher average luminance, if the left or right image has lower 

contrast, then each left or right edge (respectively) appears closer. However, when 

average luminance is lowered, the edge appearing closer is unaffected by contrast. That 

is, with the right monocular image at a lower average luminance, the right edge of each 

bar always appears closer (Filley, 1998). 

13 Figure 12 is adapted with permission of the original author. See Appendix A. This figure mainly differs 
from the original in that the score estimator is used to create standard error bars. The score estimator was 
first defined by Wilson (1927), and the formula is presented in the methods for data analysis section of the 
general methods (p. 45). 
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The nature of this interaction is made more clear when Filley's (1998) data are 

replotted based on the luminance of the light bars, not the average luminance (Figure 

13)14. With very" few exceptions, all the perceived rotation data follow the same shape 

when plotted in this manner. Thus, using part of the same argument as Legge and 

Kersten (1983), considering the light bars and dark bars separately may be necessary 

when defining Venetian blind stimuli. The usefulness of this approach to binocular luster 

and binocular rivalry in addition to perceived rotation will be discussed in my 

experiments. 

Binocular Luster 

Helmholtz (1873, 1910/1925) summarized both his and Dove's (1851) 

phenomenological study of binocular luster. For grayscale images, the basic effect can 

be demonstrated well by stereoscopic viewing of crystal-shaped images composed of 

lines and fields (Figure 14; Helmholtz described this but did not actually provide a 

graphic) or, here taken after McCamy (1998), Mondrians15 (Figure 15)16. When 

corresponding monocular components differ greatly in luminance, the fused image 

appears to shine like it is reflecting light, making Helmholtz's example appear like a 

crystal of graphite on a lustrous background. By comparison, identical components (such 

as many in the Mondrian) appear dull, just as the original monocular images printed on 

paper do (Helmholtz, 1873, 1910/1925). 

14 Figure 13 was not in Filley's original work, and instead is generated with permission from raw data 
provided by the original author. See Appendix A. 

15 The term Mondrian for such images was first used by Land (1983), referring to geometric designs of 
different patches that resemble paintings by the artist Piet Mondrian. 

16 Figure 15 is adapted with permission of John Wiley & Sons, Inc. See Appendix A. 
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Similar luster can be 

generated by dichoptic viewing 

of an image through colored . 

filters that differ a moderate 

amount in the wavelengths they 

pass17. The effect can also be 

generated purely monocularly, 

Figure 14. Dichoptic crystal image for demonstrating either through rapid succession 
binocular luster. See text. 

of differing images, or through 

an optical setup that presents the two images at slightly different perceptual depths 

(Helmholtz, 1910/1925). 

This concept of depth is central to Dove's (1851) explanation for luster, namely 

that luster is due to our 

perceiving conflicting images as 

two separate lights, one shining 

through the other (Helmholtz, 

1910/1925). The perception of 

color in an object depends both 

on specular reflection of light off 

the surface and diffuse reflection Figure 15. Dichoptic Mondrian image for 
demonstrating binocular luster. Note luster is visible 

from within the material18, which i n three components of the fused image. See text. 

17 The nature or magnitude of the difference was never precisely defined in Helmholtz (1910/1925), stating 
only that the colors must not be "too different," otherwise binocular rivalry might occur instead. 



21 

Dove (1851) felt are perceived at different depths. Thus, for luster based on color, he felt 

the viewer divides up the two monocular images to two sources. For black and white 

images, different intensities of light are known to lead to different pupil contraction, and 

contraction generally goes along with lens accommodation, so he felt that black and 

white examples likewise lead to different perceptual depths based on feelings of 

accommodation (Helmholtz, 1910/1925). 

Helmholtz (1910/1925) disagreed. For black and white images, examples such as 

the Mondrian in Figure 15 are nearly identical and have little reason to lead to different 

pupil contraction. Also, because pupil contraction changes the amount of light let in, if 

contraction were to occur when viewing Figure 15 then all the monoptic components 

should also show binocular luster, the Venetian blind effect, or some other effect (this 

argument was not mentioned by Helmholtz). The use of artificial pupils in modern 

research, such as my master's thesis (Hetley, 2005), is to eliminate pupil contraction as a 

factor. 

However, Helmholtz (1910/1925) felt the concept of specular reflection was 

indeed relevant, though misused by Dove (1851). When a surface is particularly 

reflective, light from a single source reflects in a single direction. This can lead to one 

eye receiving a very intense reflection while the other does not (Figure 16-17). Dull 

surfaces do not reflect as well, so when the visual system receives monocular images that 

do differ in intensity it is logical to have a special perception of reflectivity to distinguish 

Specular reflection and diffuse reflection are modern terms that were not used by Helmholtz. When light 
strikes a surface, some light goes through specular reflection where the angle of incidence of the light 
equals the angle of reflection. Some light also goes through diffuse reflection where the light enters the 
material and exits in random directions. Further, in diffuse reflection only certain wavelengths are actually 
released by the material, while in specular reflection the light remains unchanged. 
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Figure 16. Side view of specular reflection. Alight 
reflects off of a surface and goes directly to one eye, 
resulting in an image of the world that has a bright 
spot on that surface. See Figure 17. 

this surface property (Helmholtz, 

1910/1925). This explanation 

was also supported, with more 

diagrams depicting specular 

reflection, by McCamy (1998). 

Helmholtz's(1873, 

1910/1925) discussions of 

binocular luster were within 

larger discussions of binocular 

rivalry (the latter described in the 

next section here, p. 32), where he noted a distinction between the two. He observed that 

luster did not depend on the 

shifts in perception over time 

that occur in rivalry, as luster can 

be perceived in images 

illuminated by a spark that lasts 

only one-four-thousandth of a 

second19. Instead, he felt that 

luster was a result of a stable Figure 17. Top view of specular reflection. As light 
travels straight, only one eye detects the bright spot as 

perception of a fused image. The being at that exact location, leading to a luminance 
disparity and, it is proposed, binocular luster. See 

stability of luster can be text. 

These discussions did not address the persistence of vision after the spark. Tyler (2004), however, stated 
that luster is still detectable in an image presented for 2 ms between two presentations of masking stimuli. 
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compared to the defining 

instability of rivalry in images 

like Figure 18-19, where the 

upper and lower halves of the 

stereoscopic drawings differ (the 

bottom halves are identical to 

Figure 20, also described in the 

Figure 18. Dichoptic half-crystal, half-gratings next section, p. 32). However, 
image. This binocular image leads to binocular luster 
in the top half and binocular rivalry in the bottom half he passed along the observation 
when perceptually fused. 

by Dove (1851) that the two 

phenomena can be concurrent, as Dove found luster in rivaling images during the precise 

moments where perception was shifting from one monocular image to the other 

(Helmholtz, 1873, 1910/1925). 

Hering (1879-1883/1942, 

chapter 15, 1920/1964, section 

52) likewise briefly described 

the effect phenomenologically. 

However, as has been repeatedly 

noted (e.g., Ludwig, Pieper, & 

Lachnit, 2007; McCamy, 1998; 

Tyler; 2004), there has been very Figure 19. Dichoptic half-Mondrian, half-gratings 

image. This binocular image leads to binocular luster 
little modern investigation into in two components of the top half and binocular 

rivalry in the bottom half when perceptually fused. 
binocular luster, including both 
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psychophysical and physiological. As with Hering, work by Julesz and Tyler (1976) and 

McCamy (1998) mentioned luster mainly to say that it exists. However, Julesz and 

Tyler's phrasing was subtly different, stating that luster regularly occurs when images 

rival, but not when images are fused. It is possible that this brief analysis overlooked the 

more complicated situation of a fused image with great disparity. 

McCamy (1998) and Tyler (2004), in summarizing many phenomena, stated that 

binocular luster involves some indeterminate impression of depth. Tyler's description 

suggested that this would not be much depth information, because, although research 

participants can use luster to inform them when a stereographic image has a binocular 

disparity, luster alone has little use in judging what depth is simulated in the image20. 

The implications for Dove's (1851) explanation of luster, based on perceived depth, are 

unclear. 

Tyler (2004) also stated that luster is wholly different from rivalry and does not 

involve fluctuation, agreeing with Helmholtz (1873, 1910/1925). However, this view on 

fluctuation seems to be a point of contention between researchers, as both of these 

contradict Julesz and Tyler's (1976) statements discussed earlier. Agreeing with both 

Tyler and Helmholtz, Ludwig et al. (2007) stated that luster is as stable a perception as 

color. On the other side, Birnkrant, Wolfe, Kunar, and Sng (2004) described luster as 

"dynamic" in the same way rivalry is. 

Experimental data came from Wolfe and Franzel (1988), who included luster in a 

study on binocular information and visual "pop out." In general, basic features such as 

color and form are thought to be processed in parallel by the visual system, resulting in 

The task described was judging whether a random-dot stereogram of a spiral was pointing towards or 
away from the viewer. 
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extremely fast detection of objects uniquely defined by those features (e.g., Treisman & 

Gelade, 1980). Wolfe and Franzel asked participants to search for a stimulus among 

distractors based on binocular rivalry, binocular luster, or other qualities to determine if 

any would likewise "pop out." They presented from 2 to 32 stimuli dichoptically such 

that at most one target was uniquely defined by one of the above qualities and measured 

the time until a participant reported on the target's presence or absence (Wolfe & Franzel, 

1988). 

For rivalry, Wolfe and Franzel (1988) presented squares or spots 1.6° in visual 

angle, incorporating rivalry like that in Figure 20, or rivalry based on color, or no rivalry 

at all, estimated as averaging around 50 cd/m2 in luminance. They found that reaction 

time increased linearly with the number of distractors. For luster, they presented spots 

1.6° in visual angle with grayscale values that differed relative to the estimated 50 

cd/m background. Noting that the effect seems most compelling when one monocular 

image is more luminant than the background and the other is less luminant, nonlustrous 

stimuli were presented monoptically at around either 20 cd/m2 or 95 cd/m2, while lustrous 

stimuli had one monocular image at each luminance, thus dichoptically straddling the 

background. With those estimates, these stimuli would have a dichoptic luminance 

modulation around 0.65. Reaction time to detect targets based on luster was hardly 

Actual luminance values were not given. I estimated this number given that computer monitors, such as 
the Apple ColorSync Display for my experiments, tend to produce from 2 to over 100 cd/m2. The display 
used in this study was a monitor from an arcade game viewed with a built-in shutter stereoscope, and the 
grating images for the rivalry experiments were described as having "high contrast." 

I estimated this and following luminance values based on the gamma value for my experiments, 
assuming the maximum luminance that Wolfe and Franzel could display was 100 cd/m2. The background 
for the luster experiments was described as having a grayscale value of 175 out of 255, with the spots at 
100 or 250 out of 255. 
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affected by the number of distractors, suggesting luster but not rivalry is a basic feature 

supporting parallel search (Wolfe & Franzel, 1988). 

This result is particularly interesting because other phenomena labeled "basic 

features," such as color, are generally extracted early in visual processing (Wolfe & 

Franzel, 1988). The essential placement of luster as a binocular phenomenon is 

supported by Birnkrant et al.'s (2004) research with monoptic images. They 

monoptically presented participants with spheres 4.5° in visual angle that either contained 

information about reflectivity, such as a bright highlight which would occur from 

specular reflection, or lacked it, such as a scrambled version, and averaged an estimated23 

10-20 cd/m2 in luminance. Search for stimuli defined by monoptic "shininess" increased 

with the number of distractors. Therefore, though luminance information is available 

early in vision, and a reflection has an effect on luminance, reflectivity is not key in 

aiding search when not perceived as binocular luster (Birnkrant et al., 2004). Perhaps, as 

Wolfe and Franzel suggested, the "list of basic features" needs to be based on perception, 

not level of processing. 

The minimal total amount of research on binocular luster makes it difficult to 

draw conclusions. The effect may be explained as the visual system's natural response 

when presented with an image of high luminance disparity, i.e., to perceive the object as 

reflective (Helmholtz, 1873, 1910/1925; McCamy, 1998; see Figure 16-17). 

Hypothetically, this explanation may be relevant to the Venetian blind effect. Specular 

reflection would occur differently on surfaces at different rotations, and luster has been 

Actual luminance values were not given. I estimated these numbers by displaying stimuli from a PDF 
file of the authors' poster on my experimental Apple ColorSync Display monitor, then measuring the light 
with a Minolta LS-110 photometer. 
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described as involving some impression of depth (Dove, 1851; McCamy, 1998; Tyler, 

2004), but this has not been explored. At the least, luster can be expected around extreme 

levels of dichoptic luminance modulation (pure black and white images; Helmholtz, 

1873,1910/1925) and moderate ones (Wolfe & Franzel, 1988). There does not seem to 

be research on binocular luster and contrast disparities. 

However, there are other important aspects of the conditions in which luster is and 

is not perceived, which the following subsections address. These will include research 

showing luster can also be expected around low levels of modulation in the right 

circumstances (Anstis, 2000). 

The Relation between Stimuli and the Background - It is worth expanding the 

discussion of Wolfe and Franzel's (1988) use of images dichoptically straddling the 

background luminance when studying binocular luster. Fry and Bartley (1933), in 

researching the perception of brightness that results from luminance disparities, 

specifically avoided having one monocular image above and the other below the 

background luminance as this led to rivalry that made data collection impossible. Their 

stimuli were rectangles 2.38° in width by 1.2° in height, with one monocular image 

maintaining 10.8 cd/m2 in luminance and the other varying24, resulting in dichoptic 

luminance modulation from 0.00 to 1.00 in different experiments. The implications of 

this may seem unclear because Wolfe and Franzel, as well as Filley (1998) and myself 

(Hetley, 2005), were able to collect data despite using images that dichoptically straddled 

the background luminance. 

24 I believe that Fry and Bartley made a typographical error. The luminance value they gave was 10 times 
that stated here, but the higher number does not agree with their graphs or their other experiments. 
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However, the presence of binocular rivalry does not preclude other perceptual 

phenomena based in binocular vision, which will also be discussed in the section on 

binocular rivalry (p. 34, 36) and my experiments. Anstis (2000) demonstrated that 

dichoptic straddling is the ideal condition for inducing a perception of luster. Anstis 

presented participants with two columns of five squares, one column to each eye, with 

each square 0.75° of visual angle. The squares either were presented dichoptically with 

luminance disparities just like with the other research considered here, or were 

completely monoptic but flickered between two luminance values, which is a possible 

way to generate luster mentioned by Helmholtz (1910/1925), as discussed. The squares 

were at luminance values ranging from 34.35 cd/m2 to 192.36 cd/m2, always in pairs 0.15 

log units apart, which when presented dichoptically were at levels of dichoptic luminance 

modulation of 0.17 or 0.18 (Anstis, 2000). Note that these modulation values are much 

below the 0.65 estimated in the discussion of Wolfe and Franzel (1988). 

The key manipulation in Anstis (2000) was the background luminance, which 

ranged from 41.22 cd/m2 to 160.3 cd/m2, interleaved between the luminance values 

chosen for the squares. Participants gave numerical ratings from 0 to 10 for their 

subjective experience of the luster in each fused image of a square in all combinations of 

conditions. Ratings were highest (close to if not exactly 10) when the dichoptic squares 

straddled the background luminance and when the flickering squares flickered above and 

below the background luminance, regardless of the absolute value of the background 

luminance. Luster was still perceived when the squares were very close to the 

background without straddling it, but ratings decreased with increasing distance in 
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luminance, and the decrease was symmetrical with distance above and with distance 

below the background luminance (Anstis, 2000). 

Perhaps the relation between binocular luster and binocular rivalry, though 

discussed as being a point of contention between researchers (e.g., Birnkrant et al., 2004; 

Helmholtz, 1873, 1910/1925; Julesz & Tyler, 1976; Ludwig et al., 2007; Tyler, 2004), 

ties in here. It seems reasonable to conclude that both luster and rivalry arise from 

images that dichoptically straddle the background luminance, though just how much 

"straddling" is necessary may vary. Wolfe and Franzel (1988), after all, did not state that 

their luster stimuli also seemed to be rivaling, and the stimuli used in my master's thesis 

(Hetley, 2005) only rivaled at the most extreme luminance disparities. 

Fluorence - The issue of the relation between dichoptic images and the background as 

discussed with Wolfe and Franzel (1988) and Anstis (2000) prompts consideration of 

another phenomenon outside of binocular vision, namely fluorence. Evans (1959) 

defined fluorence as the perceptual counterpart of fluorescence, in the same way that 

brightness is the perceptual counterpart of luminance. Fluorence is, therefore, an 

experience of a glowing image, and it may arise in some similar circumstances to 

binocular luster. It is worth discussing fluorence to understand how it may impact the 

study of luster, but as will be seen, these are two distinct perceptual phenomena. 

Evans (1959) performed two experiments, where the first provided impetus for 

the study of fluorence in the second. In the first experiment, participants made matches 

between lights of certain wavelengths, intensities, and purities25, to a comparison light on 
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the same surround, where the instruction was to match the amount of gray in the two 

lights. Evans found that there are several combinations of intensity and purity that work 

to make matches, such that at higher purity a lower intensity is needed. Increasing 

intensity of grayscale images tends to make them seem closer to white, so these results 

mean that a matching light could seem as "gray" as "white light" (i.e., not gray at all) 

while itself being much dimmer than the white light, provided that the purity were raised. 

These results naturally led to the question of what would happen if a light appeared to be 

as "gray" as "white light" and then were increased in intensity (Evans, 1959). 

Thus, in Evans' (1959) second experiment, participants viewed a blank wall or 

panel that appeared white under illumination of either 308.36 cd/m2, a half of that, or a 

quarter of that. In that wall was a hole, 1.75° in width by 2° in height, with light shone 

from the other side through various filters. This hole was generally perceived as being 

continuous with the actual solid surface of the wall, so the hole could be called a "center" 

and the wall a "surround." Sometimes, a comparison gray patch was placed within the 

surround. The hole and the patch were viewed binocularly with no dichoptic 

components, unlike the other studies discussed in this paper. The participants viewed 

several intensity values in the center, all of which were greater than those determined in 

the first experiment to match "white" for different purity levels (Evans, 1959). 

Evans (1959) found that increasing intensity beyond the point of whiteness causes 

participants to feel that the center image is fluorescing. The conclusion was that the 

perceptual experience of fluorence and grayness are "positive" and "negative" around a 

25 Purity refers to the narrowness of the band of wavelengths present in a light. It roughly corresponds to 
the perceptual experience of saturation, so light that appears as a very vivid red likely has high purity, while 
light that appears as a weak pink likely has low purity. Grayscale images, such as those in my experiments, 
have the least purity. 
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sort of white zero point. Also, when increasing luminance of the center from near zero, 

perception reaches several noteworthy points in a sequence: first, a grayness match to any 

comparison gray patch in the surround; second, the minimum threshold for fluorence (the 

"white zero point"); then the point where the light has a brightness match to the surround; 

then the threshold where the light stops looking like it is a physical part of the surround 

and instead appears as its own separate illuminant, at which point fluorence vanishes. 

For lights that appear gray or white, i.e., those of the least purity, the minimum threshold 

for seeing fluorence is closer to the brightness match to the surround than for any light of 

higher purity (Evans, 1959). 

The fact that fluorence appears in lights close to a brightness match to the 

surround brings to mind the discussion of Anstis (2000). Anstis showed that the 

perception of binocular luster is strongest when dichoptic stimuli, with monocular 

components that need not be very different in luminance, straddle the background 

luminance. It is possible that fluorence was being seen during some of the experiments 

discussed here for luster. 

However, though fluorence may indeed have been seen, it is not the same thing as 

binocular luster. Given the pattern of thresholds discussed by Evans (1959), perception 

of fluorence is asymmetrical around a brightness match to the surround. Anstis (2000), 

as discussed, found symmetrical perception of luster as image luminance moves away 

from the background. Also, for grayscale images, intensity must be very close to the 

brightness match to the surround before fluorence will appear. An image such as Figure 

14 involves luminance values that are at or far below the "white" paper's background, and 

Figure 15 involves luminance values that are moderately far from the background gray, 
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and yet both result in a perception of luster. Lastly, fluorence vanishes as intensity goes 

up and the image no longer seems "solid." During my master's thesis (Hetley, 2005), 

participants viewing images with strong rivalry would often informally note what 

appeared to be bars floating in space that were themselves "lustrous." Therefore, 

fluorence needs to be kept in mind when considering the stimuli in a study of luster, but 

will not be given further theoretical consideration here. 

Binocular Rivalry 

Binocular rivalry is the alternation of perception between the monocular 

components of a dichoptic image that cannot be fused. The basic effect can be 

demonstrated by stereoscopic viewing of Figure 20, here taken after Panum (1858) who 

introduced gratings into the study26. A full review of binocular rivalry will not be 

attempted here, as it has undergone systematic research for almost 200 years. In fact, 

according to Wade (2005), the existence of the phenomenon has been described for 

almost 2000 years. For more 

information, the most recent 

writings wholly devoted to 

rivalry include Levelt (1965b), 

Lack (1978), and Alais and 

Blake (2005). 

Wheatstone(1838), 

Figure 20. Dichoptic gratings for demonstrating reported in his paper where he 
binocular rivalry. See text. 

Technically, Panum's gratings were at diagonals instead of horizontal and vertical. 
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Figure 21. Dichoptic circles for demonstrating 
unitary rivalry. When perceptually fused at arm's 
length, these binocular images lead to unitary 
binocular rivalry and the sieve effect. See text. 

introduced the stereoscope, 

performed the first systematic 

study of binocular rivalry and 

made three observations. First, 

when perception changes from 

one monocular image being 

dominant to the other, the two 

images often fragment. In 

Figure 20, instead of just 

perceiving horizontal bars and 

then just perceiving vertical bars, the viewer tends to perceive a fractured mosaic between 

periods of dominance. Second, voluntary control of the alternations by the observer 

appears impossible. This conclusion actually raises a point of contention and likely 

involves individual differences, as Helmholtz (1873, 1910/1925) felt he could arrest 

rivalry by means of attention to one image, and Lack (1978) provided experimental 

evidence that naive observers could exhibit limited control. Third, manipulating features 

of the images, including luminance, affects the alternations. For example, the monocular 

image with less luminance is dominant for a shorter period of time relative to the other 

(Wheatstone, 1838). 

These observations have been refined. Various sources (e.g., Fox, 2005; Howard 

and Rogers, 1995, p. 327; Ludwig et al., 2007; Wolfe & Franzel, 1988) have described 

how the mosaic or piecemeal dominance during transitions only occurs for larger images. 
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For images 1° in visual angle or 

smaller, exclusive or unitary 

rivalry may occur where 

perception changes as a whole. 

Howard (1995; see also 

2005) drew a connection 

between stimulus size, binocular 

Figure 22. Dichoptic circles for demonstrating rivalry, and binocular luster in an 

mosaic rivalry. When perceptually fused at arm's 
length, these binocular images lead to mosaic experiment on depth perception, 
binocular rivalry and binocular luster. See text. 

Circles smaller than 1°, with one 

monocular image black and the other white, result in unitary rivalry and a perception of 

being more distant than their surroundings, which he called the sieve effect (Figure 21)27. 

Circles larger than 1 ° result in mosaic dominance and also binocular luster with an 

indeterminate depth (Figure 22). As mentioned in the subsection on the relation between 

stimuli and the background (p. 28), the presence of rivalry does not preclude other 

perceptual phenomena based in binocular vision. Howard proposed that the perception of 

luster occurs in this situation because binocular brightness summation is possible during 

mosaic dominance. Previous research (e.g., Levelt, 1965a) had shown that, when an 

image is presented that has a strong contour in one monocular image, the luminance near 

that one contour tends to control the binocular brightness near the contour. With mosaic 

dominance, however, there are larger areas far from contours that could be more easily 

compared between the two eyes (Howard, 1995). It should be noted that this explanation 

Figure 21, as well as Figure 22-23, is adapted with permission of Pion Limited, London. See Appendix 
A. 
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for the relationship between rivalry and luster would conflict with my participants 

(Hetley, 2005) informally noting luster, as all my images were less than 1° in size. 

. Desaguliers (1716) and Helmholtz (1873, 1910/1925) made a distinction between 

contour or form rivalry, described so far, and color rivalry. In color rivalry, a dichoptic 

image differs in the wavelengths of light received by each eye, and the color perceived 

can rival without necessarily any difference in the image's form (Helmholtz, 1873, 

1910/1925). One may observe the phenomenon by viewing a blank area in this paper 

with a red filter over one eye and a green filter over the other eye, attempting to judge the 

color of the blank area. Wolfe and Franzel (1988) said research has found color and 

contour rivalry to be somewhat independent phenomena. Andrews, Sengpiel, and 

Blakemore (2005) argued, on the basis of single neuron recordings of their own and other 

researchers, that the mechanism for rivalry may vary in anatomical position in the visual 

system for each submodality of vision, including submodalities like motion in addition to 

contour and color. 

Contour rivalry is more relevant to this paper and will be addressed further. 

Blake (2005) summarized several classical papers on the properties of the images that 

influence alternations, bearing on the third of Wheatstone's (1838) general observations. 

It is possible to separately influence the overall speed of alternations and the relative 

predominance of one image. The deciding factor is stimulus strength, defined by Levelt 

(1965b, chapter 5) to include the relative amount of contours in an image and their 

average luminance, contrast, and blur. 

Levelt (1965b, chapter 5) formally stated the impact of stimulus strength in four 

propositions: starting from a monoptic binocular image, monocular increases in strength 
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increase the relative predominance for that image; monocular increases in strength do not 

affect the absolute average duration of dominance for that image; monocular increases in 

strength increase the alternation rate; and binocular increases in strength increase the 

alternation rate. Levelt's famous second proposition is important because, in light of the 

other propositions, it leads to two unintuitive conclusions: one, that a monocular increase 

in strength lowers the duration of dominance for the other image; two, that a subsequent 

change in the strength of the weaker image would affect its own duration. This means 

that the weaker image has an important role, which may explain other phenomena such as 

the ability of an abrupt change in a suppressed weaker image to suddenly command 

perception (Blake, 2005). Note that this interplay between images is another situation 

where rivalry does not preclude the use of information from both images. 

Andrews et al. (2005) noted that the majority of rivalry research has involved 

orthogonal gratings, such as in Figure 20. Solid black and white images, like the circles 

in Figure 21-22 discussed by Howard (1995), do not conflict at their contours but may 

also be varied in terms of Levelt's (1965b, chapter 5) stimulus strength, e.g., in 

luminance. Researchers have noted that using images that are not black and white, but 

are instead some dichoptic combination of grays (i.e., different luminances), are less 

likely to induce rivalry (Figure 23). Howard, for instance, stated that rivalry completely 

gives over to luminance summation during these circumstances. 

In this context, it is worth addressing Fry and Bartley (1933) again. As discussed 

in the subsection on the relation between stimuli and the background (p. 27), they 

presented uniform lit rectangles with certain luminance disparities, and avoided 

luminance values that dichoptically straddle the background luminance as these give rise 
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to rivalry. As was also 

discussed, Anstis (2000) showed 

that images that dichoptically 

straddle the background give rise 

to luster, though the monocular 

images may not be very different 

in luminance. If there were a 

relationship between binocular Figure 23. Dichoptic circles with a less intense 
luminance disparity. These binocular images 
generally do not lead to binocular rivalry (compare to luster and binocular rivalry, then 
Figure 21). "See text. 

one would expect that circles 

like those in Figure 23 could rival given a different relation to the background. 

Still, it remains interesting that rivalry generally did not impede research in my 

master's thesis (Hetley, 2005) despite my use of square-wave gratings with average 

luminance values above and below the background. It is possible that the use of gratings 

of light and dark bars differs from the use of solid rectangles. In fact, as suggested in the 

subsection on light bars and dark bars versus average luminance and contrast (p. 16), 

there may be more than one way to define images and their relationship. This will be 

discussed more in my experiments. 

Explanations for the cause of binocular rivalry vary. Blake (2005) observed there 

are two general approaches to explaining rivalry: some researchers view rivalry as an 

issue of perceptual interpretation like with any ambiguous stimulus (Figure 24); other 

researchers feel explanations can be found by considering the activity of neurons 

inhibiting each other. Helmholtz (1873, 1910/1925), as noted, felt that attention is 
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involved in selecting an image, 

with rivalry taking over when the 

individual puts no conscious 

effort forth. On the other hand, 

electrical recordings, such as that 
Figure 24. Ambiguous cube image. This is a classic 

of Andrews et al (2005) image which can be perceived as a cube in two 
different orientations based on the attention of the 

throughout the visual system viewer. This stimulus is generally called a Necker 
cube after Necker (1832), but that source actually 

clearly demonstrate neural u s e ( * a rhomboid, and Wheatstone (1838) was the first 
to use a cube. 

interactions. Further, the 

underlying mechanism may vary based on submodality. 

Therefore, it is not the purpose of this paper to identify the single "cause" for 

rivalry. Instead, the circumstances under which binocular rivalry occurs are more 

relevant. In summary, monocular images that are very different in form, i.e., that have 

great geometric disparities, undergo contour rivalry (Helmholtz, 1873, 1910/1925; 

Panum, 1858; Wheatstone, 1838). Images with great disparities in the wavelength of 

light undergo color rivalry (Desaguliers, 1716; Helmholtz, 1873, 1910/1925), and there 

may be different types and mechanisms of rivalry for different visual submodalities 

(Andrews et al., 2005). The predominance of one monocular image in perception, and 

the rate of alternations, may somewhat be manipulable by attention (Helmholtz, 1873, 

1910/1925; Lack, 1978), but they are certainly related to stimulus strength (Levelt, 

1965b, chapter 5). The relation between images and the background is important (Fry & 

Bartley, 1933), while notes such as that by Howard (1995) suggest that there is a 

minimum amount of disparity necessary for rivalry to occur. Observations by 
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participants in my research (Hetley, 2005) suggest that rivalry can occur at high (but 

unmeasured) dichoptic luminance modulation, but as mentioned at the outset, it may not 

be meaningful to discuss rivalry with dichoptic contrast modulation. Far more 

information is available in these sources (e.g., Alais & Blake, 2005) and their references. 

Literature Summary and Rationale for Current Research 

The phenomena of the Venetian blind effect, binocular luster, and binocular 

rivalry have been researched to varying extents, rarely in combination with each other. It 

has been known since Minister (1941), Cibis and Haber (1951), and Filley (1998) that 

square-wave gratings presented with a luminance or contrast disparity result in a 

perception of rotation, or the Venetian blind effect. This rotation increases across most 

possible values of dichoptic luminance or contrast modulation (e.g., Hetley, 2005). 

Binocular luster is also known to depend on luminance disparities, with Dove (1851) and 

Helmholtz (1873, 1910/1925) using dichoptic luminance modulation values of 1.00 (pure 

black and white images) and others, such as Wolfe and Franzel (1988) and Anstis (2000), 

using lower modulation. Though research on binocular rivalry has often used square-

wave gratings that have a strong geometric disparity (e.g., Panum, 1858), the use of black 

and white images (e.g., Howard, 1995) again shows the relevance of luminance 

disparities. 

Discussions of these phenomena bring up hints of relationships. The Venetian 

blind effect is a phenomenon of depth perception, specifically rotation; research on 

binocular luster has indicated that luster brings some indeterminate impression of depth 

(Howard, 1995; McCamy, 1998; Tyler, 2004); and binocular rivalry also can be used as 
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information about depth (Howard, 1995). Luster can be perceived during rivalry (Dove, 

1851; Helmholtz, 1873, 1910/1925; Howard, 1995), and luster (Anstis, 2000) and/or 

rivalry (Fry & Bartley, 1933) are often perceived in images where the components 

dichoptically straddle the background luminance. The fact that the Venetian blind effect 

was measurable during my master's thesis (Hetley, 2005), despite informal observations 

of binocular luster and/or binocular rivalry, suggests that all these effects may 

intermingle. 

My current research better quantifies the relationship between the Venetian blind 

effect, binocular luster, and binocular rivalry. After the upcoming general methods 

section, I present three experiments where I determined threshold values for the three 

perceptual phenomena on different types of stimuli. The discussions for each of the first 

two experiments present the rationale for the following experiment, and address by parts 

what the underlying mechanism or mechanisms may be for these perceptual phenomena. 

The central concept is that, if two perceptual phenomena are determined to arise in 

similar circumstances and/or to co-vary, then it is reasonable to presume they arise from 

similar underlying mechanisms. To judge this, one must precisely determine what "the 

circumstances" are in the first place, or what aspects are "co-varying." 

In Experiment I, the stimulus was a square-wave grating, presented with either 

dichoptic luminance modulation or dichoptic contrast modulation. The purpose was 

simply to "map out" thresholds using a stimulus similar to past research (e.g., Cibis & 

Haber, 1951). 

In Experiment II, the stimulus was composed of three "plain bars" taken from the 

square-wave gratings of Experiment I. The purpose was to determine whether or not 
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luminance and contrast really form the proper way to define stimuli for these perceptual 

phenomena, by studying isolated "light bars" or "dark bars" (see, e.g., Legge & Kersten, 

1983). 

In Experiment III, the stimulus was again composed of plain bars taken from the 

square-wave gratings of Experiment I, but the background luminance was varied, as was 

the adaptation level of the participant. The purpose was to determine whether or not the 

relation between stimuli and the background, specifically the isolated light bars or dark 

bars and the background, determines the perception (see, e.g., Anstis, 2000). 
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CHAPTER II 

GENERAL METHODS 

I performed three experiments with the same participants and apparatus, except as 

noted. In all experiments, I used the method of constant stimuli to determine the 

circumstances under which the participants perceived the three phenomena of interest: 

perceived rotation (the Venetian blind effect), binocular luster, and binocular rivalry. 

Participants 

All participants are adult males in the University of New Hampshire Psychology 

Department, and have had experience with stereoscopic viewing. Participants WWS and 

JJD have normal vision, while participant RSH has myopia as well as an astigmatism in 

the left eye, which are corrected by glasses. Institutional Review Board clearance was 

acquired beforehand (see Appendix B) and all participants gave informed consent. 

Apparatus 

All experimental sessions were performed in a darkened room. One participant at 

a time was seated, bit onto a bite bar, and viewed stimuli through 3 mm artificial pupils. 

The experiment was controlled by a program running in Mathematica 4.0.2.1 on a Power 

Mac G4, displayed on an Apple ColorSync Display. Vertical baffles were in place along 

the participant's line of sight to separate the views for the two eyes. The display was 

around 1.62 m in front of the participant and a single pixel had a width of around 46.2 

seconds of visual angle. The entire viewing area was around 3.8° in width (7.7° in total, 



separated for the two eyes and with a small amount covered by the baffles) and 4.6° in 

height, surrounded by a cardboard mask. Each monocular image was centered in the left 

or right half of the screen with a vertical dark nonius line above and below (to aid in 

fusing) and with other characteristics that varied based on the experiment. All 

experimental images were on a background of uniform gray which was at around 42.5 

cd/m2 (300 photopic td) in the first two experiments and which varied in the third. 

Procedure 

Before all sessions there was a period of setup with the lights on and a sample 

stimulus on the display. The participant bit onto the bite bar and aligned each artificial 

pupil so that it appeared centered on the relevant monocular image. The participant then 

set up a sight (one for each eye) composed of a pair of vertical wires so that their tips 

formed a direct line to the center of each monocular image. The experimenter (or a 

trained participant) viewed back along these lines to judge the position of each pupil and 

made any necessary adjustments before removing the sights. The experimenter and 

participant then adjusted the baffles in tandem to ensure unobstructed and equal views of 

the two halves of the display. The participant was allowed to set up music or other 

auditory background, the experimenter left the room, and the lights were turned off. 

Each experimental session began when the participant entered a key on a keypad. 

The sample stimulus was replaced with a uniform gray (which was at the background 

luminance in the first two experiments but varied in the third) for a five-minute 

adaptation period. Experimental trials began afterwards. The participant was shown a 

binocular image for 5 seconds, which was chosen pseudorandomly (using the computer's 
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own functions) from the available conditions for that experiment. The stimulus was then 

replaced with the uniform gray again and the participant was prompted to respond. After 

the response was entered on the keypad, the uniform gray remained on the screen for an 

interstimulus interval of 5 seconds, and then the next trial began. At the end of a session 

(each session lasting one hour or less), data were automatically output to a computer file. 

The participant's task was to make three judgments for each binocular image, 

reporting whether the image appeared to have a rotation in depth (the Venetian blind 

effect), binocular luster, and/or binocular rivalry. For perceived rotation, direction of 

rotation was not measured. For binocular luster, note Dove's (1851) observation that 

luster is sometimes observed during the alternations in rivalry but not during steady 

periods of dominance, and so participants were instructed to responded to a "glow," 

regardless whether it was perceived as stable luster or as transient luster tied to 

alternations in rivalry. Also note fluorence may be perceived in images very close to the 

background luminance, as discussed by Evans (1959), and so some "glow" detected by 

participants in images close to the background may actually have been fluorence. For 

binocular rivalry, participants were instructed to respond to either unitary or mosaic 

rivalry (see, e.g., Howard and Rogers, 1995, p. 327). 

Participants performed practice sessions until they felt comfortable and responses 

stabilized, which in all cases was three or fewer sessions for each experiment. They then 

performed formal sessions until 12 trials were completed for every condition in that 

experiment. Because of varying numbers of conditions, this meant the total number of 

sessions differed across experiments. 
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Methods for Data Analysis 

The data were plotted as the probability of responding "present" to each 

perceptual phenomenon across the 12 trials for each condition, using standard error bars 

based on the score estimator. The score estimator was first described by Wilson (1927) 

and, as has been discussed in detail by Agresti and Coull (1998) and Agresti and Caffo 

(2000), provides relatively accurate confidence intervals for proportions even when the 

set of data is small. The endpoints of a score confidence interval are calculated with the 

equation 

z
2 

pq + 
A , Zal2 j_ „ -i An 
P + ^—±Zal2 

in 
1 + ^ -

n 

where p is the estimated probability or proportion, q is equal to 1-/?, zal2 is the z-

score (or number of standard errors) for a confidence interval of the size desired, and n is 

the number of observations (Agresti & Coull, 1998, p. 120). Here, n was always 12 as 

stated, and zal2 was always 1. 

Thresholds for the perception of each phenomenon were calculated by fitting 

curves to the data. These curves were the cumulative density function of a Laplace 

distribution, fit using the FindFit function in Mathematica 5.0.0.0. When there was no fit 

found to the data, the results of this function were not plotted. Note that in the plots 

(Figure 27-29, Figure 34-36, Figure 40-42) some of the fits appear more sharp or steplike 

than necessary to fit the data. These fits were checked by varying the starting values for 

the FindFit function. 
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CHAPTER III 

EXPERIMENT I 

I performed Experiment I to determine thresholds for the three perceptual 

phenomena on a grating stimulus, as stated in the literature summary and rationale for 

current research (p. 40). I predicted that increasing levels of dichoptic luminance or 

contrast modulation would be necessary for each perception, where perceived rotation 

would require the least modulation, binocular luster the next, and binocular rivalry the 

most. I did not expect rivalry to be perceived at all for images with a contrast disparity. 

My initial predictions did not take into account the individual light bars and dark bars: 

this will be addressed in the upcoming discussion and in Experiment II. 

Stimuli 

Experiment I used 

square-wave gratings made up of 

three light bars and four dark 

bars at a spatial frequency of 

around 1.5 cycles per degree. 

Each monocular image was 

around 2.3° in width and 1.5° in 

height. The images varied from Figure 25. Sample Experiment I (grating) image, 
luminance disparity condition. This image has 

a monoptic "neutral" state, with dichoptic luminance modulation of 0.4, as in Figure 5. 
This is also an image in the left "eye" condition, 
where the left image has higher luminance. See text. 
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no dichoptic luminance or 

contrast modulation, where the 

light and dark bars averaged 42.5 

cd/m2 (the base luminance) and 

had a contrast of 0.5 (the base 

contrast). Some images had 

dichoptic luminance modulation 

Figure 26. Sample Experiment I (grating) image, and some had dichoptic contrast 

contrast disparity condition. This image has dichoptic 
contrast modulation of 0.5, as in Figure 10. This is modulation. The remaining area 
also an image in the right "eye" condition, where the 
right image has higher contrast. See text. on the screen was at the 

background luminance of 42.5 

cd/m2. 

There were three independent variables: whether dichoptic luminance modulation 

of dichoptic contrast modulation were being used, the amount of the modulation, and 

whether the left or right eye received the image with higher luminance or contrast. 

Possible modulation values for either luminance or contrast varied in 0.10 increments 

from 0.10 to 0.90, with an extra neutral condition that had no modulation (Figure 25-26, 

also see Figure 11 for the neutral condition). Each combination of values, including the 

neutral condition, appeared four times in one session. Participants performed three 

sessions, therefore completing 12 trials for each condition. 
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Figure 27. Experiment I data for JJD. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The left chart 
is for luminance ("lum") and right is for contrast ("con"). Filled boxes are for the left 
"eye" condition and empty boxes for right "eye." The vertical dotted line is the point of 
monocular equality to the background, where the light bars in one monocular grating are 
at the background luminance. See text. 

Results 

Data are shown in Figure 27-29, plotting the probability of responding "present" 

to each perceptual phenomenon with one figure for each participant. The meaning of the 

vertical dotted lines will be addressed in the upcoming discussion (p. 52). For most 

participants and most perceptual phenomena, the phenomena seem to become visible at 

separate threshold modulation values, with perceived rotation requiring the least and 

binocular rivalry the most. Note that participant WWS may not have a bottom threshold 

for perceiving the Venetian blind effect and, in fact, informally stated that there is almost 

always a rotation in the same direction (with the right edge of each bar appearing closer 

to the participant). Differences in thresholds for the "eye" conditions (being whether the 

left or right eye received the image with higher luminance or contrast) are not always 
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Figure 28. Experiment I data for RSH. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The left chart 
is for luminance ("lum") and right is for contrast ("con"). Filled boxes are for the left 
"eye" condition and empty boxes for right "eye." The vertical dotted line is the point of 
monocular equality to the background, where the light bars in one monocular grating are 
at the background luminance. See text. 

very pronounced but also differ with the phenomenon in question, where the most 

noticeable ocular dominance occurs with perceived rotation. 

There are differences based on the type of modulation. Numerically, the 

threshold modulation values for perceived rotation are nearly the same when considering 

luminance and contrast, but the meaning of such a comparison is uncertain across these 

different characteristics of a grating. Thresholds for luster clearly differ when 

considering luminance and contrast, with neither participant JJD nor WWS perceiving 

contrast-based luster, and participant RSH only approaching a 50% probability of 

perception at higher modulation. There is no detectable contrast modulation threshold for 

binocular rivalry, meaning that the monocular images are never perceived as alternating 

back and forth. Instead, there apparently comes a point where one image wholly 
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Figure 29. Experiment I data for WWS. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("Istr"), and rivalry ("riv") at different modulations. The left chart 
is for luminance ("lum") and right is for contrast ("con"). Filled boxes are for the left 
"eye" condition and empty boxes for right "eye." The vertical dotted line is the point of 
monocular equality to the background, where the light bars in one monocular grating are 
at the background luminance. See text. 

dominates the other, as can be seen in the data at high modulation values where rotation 

ceases to be perceived for JJD and RSH. 

There are multiple observations to make from informal discussions with the 

participants. As dichoptic luminance modulation increases, the light bars sometimes 

seem to float out in space, and be rotated in depth, for periods of time within an otherwise 

rivalrous presentation. Participants responded that they did perceive rotation during these 

situations, and, as seen in the data, at even higher modulation values this perceived 

rotation ceases. This experience of "floating" is interesting in light of similar 

observations during my master's thesis (Hetley, 2005), which, at the time, were explained 

as a conflict between geometric and other forms of disparity. This explanation is not 

relevant for these geometrically identical stimuli. 
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Different participants informally described the experience of binocular luster 

differently, including using such terms as "sheen" or "transparency." As seen in the data, 

it is interesting to note that luster (at least based on dichoptic luminance modulation) does 

tend to arise at similar modulation values despite these differences in verbal descriptions. 

Also informally, experiences during binocular rivalry are complex. Generally, all 

rivalry with these images is mosaic rivalry, which is to be expected given the images are 

larger than 1° in visual angle (see, e.g., Howard & Rogers, 1995, p. 327). In line with 

Dove's (1851) observation, binocular luster is sometimes observed as a transient 

phenomenon during the alternations in rivalry but not during steady periods of 

dominance, and sometimes luster is indeed steady. This transient luster seems to occur at 

higher dichoptic luminance modulation values. 

Discussion 

In a basic sense, the results from Experiment I address the question that led to it, 

namely what the thresholds are for the Venetian blind effect, binocular luster, and 

binocular rivalry in a grating stimulus. However, a chance observation shows a revealing 

coincidence touching on the work of Legge and Kersten (1983), originally discussed in 

the subsection on light bars and dark bars versus average luminance and contrast in the 

introduction (p. 16). 

With luminance modulation, the modulation value of 0.20 is a short distance 

below the threshold for binocular luster, at least for participant RSH. With contrast 

modulation, the modulation value of 0.60 is slightly below the point where participant 

RSH approached a 50% probability for perceiving luster. Though these modulation 
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values are seemingly unrelated, the light bars in the dichoptic stimuli are identical 

between the modulation types. That is, a stimulus with a dichoptic luminance modulation 

of 0.20 (starting from 42.5 cd/m2 base luminance and 0.5 contrast, as discussed) has light 

bars at 51.0 cd/m2 in one monocular image and 76.5 cd/m2 in the other. A stimulus with 

a dichoptic contrast modulation of 0.60 has exactly the same light bars. The dark bars, 

however, are not the same across modulation type, and in fact they swap which 

monocular image has higher dark bar luminance: with luminance modulation, the 

monocular image that has higher light bar luminance also has higher dark bar luminance; 

with contrast modulation, the other monocular image does. 

This discovery prompts further consideration. The vertical dotted lines in Figure 

27-29 mark another meaningful point which I call the point of monocular equality to the 

background. In grating stimuli, this point is the modulation value such that one 

monocular grating's light bars are at exactly the background luminance. That is, a grating 

with a dichoptic luminance modulation of 0.33, or a grating with a dichoptic contrast 

modulation of 1.00, has light bars at 42.5 cd/m2 in one monocular image and 85.0 cd/m2 

in the other. On one side of the dotted line all the light bars are above the background 

luminance, while on the other side they dichoptically straddle the background. For all 

participants, this point of monocular equality to the background must be crossed before 

luster and rivalry reach above threshold. The dark bars, however, are always below the 

background luminance and therefore do not seem to relate to the perception of luster and 

rivalry. 

This relation between individual bars and perception suggests that considering the 

light bars versus the dark bars may be central in describing the phenomena. If true, then 
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this provides a second argument against Legge and Kersten's (1983) suggestion that 

average luminance and contrast provide a more useful definition for grating stimuli. (The 

first argument came when looking at replotted data from Filley, 1998; see Figure 12-13) 

Further, the point of monocular equality to the background for the light bars 

brings to mind the discussion of Wolfe and Franzel (1988), Fry and Bartley (1933), and 

Anstis (2000) in the subsection on the relation between stimuli and the background in the 

introduction (p. 27). It is strange that luster and rivalry seem to arise with a predictable 

relation to the background while perceived rotation does not. But then, perceived 

rotation also seems to differ from the other two perceptions in that ocular dominance was 

detectable or was more pronounced. Thus, the evidence so far suggests that there are two 

mechanisms behind these three perceptions: one that handles binocular luster and 

binocular rivalry, and one that handles perceived rotation. Though luster and rivalry do 

not have exactly identical thresholds, it is reasonable to group them in this manner 

because the thresholds are in the same relationship to each other for each participant, i.e., 

luster arises sooner. 

However, this understanding is incomplete. For instance, the discussion of 

individual bars in Filley's (1998) images specifically pertained to perceived rotation, and 

the evidence from individual bars here mostly pertains to luster and rivalry. Therefore 

Experiment II was designed to elaborate on the role of the individual bars in describing 

the phenomena, while Experiment III was designed to elaborate on the relation to the 

background. 
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CHAPTER IV 

EXPERIMENT II 

I performed Experiment II to determine whether the most useful way to 

mathematically define stimuli for the three perceptual phenomena is in terms of average 

luminance and contrast, or in terms of the luminance values of the light bars and dark 

bars. I predicted that all three perceptions would arise in the patterns shown in 

Experiment I when participants were presented with isolated light bars, while the 

phenomena would either not occur or at least would not occur with the same pattern 

when participants were presented with any other related image. My initial predictions did 

not take into account the relation between the individual bars and the background, which 

will be addressed in the upcoming discussion and in Experiment III. 

Stimuli 

Experiment II used what I am calling "plain bars" images, which contained three 

dichoptic bars on a uniform field of the background luminance (Figure 30-33), 42.5 

cd/m as before. The three bars were of the same dimensions and position as the three 

light bars in a grating stimulus in Experiment I, each being around 0.3° in width and 1.5° 

in height, separated by one bar width from each other. The background gray continued 

between the bars. 

The plain bars varied in one of four ways, and the source of the luminance values 

for the bars was one independent variable, as discussed below. In the "average 

luminance" condition, the images varied from a monoptic "neutral" state, where they 
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were at the base luminance of 42.5 cd/m2 (no figure is provided as these bars would 

simply blend into the background). Non-neutral images had luminance values taken from 

the average luminance of a square-wave grating from Experiment I. That is,' in 

Experiment I, some images had dichoptic luminance modulation that varied in 0.10 

increments from 0.10 to 0.90, and this modulation value was used to determine the 

average luminance of each monocular image. In the "average luminance" condition in 

Experiment II, the plain bars were at those average luminance values (Figure 30). There 

was no equivalent "contrast" condition because there were no dichoptic "other bars" in 

these plain bars images with which there would be contrast. 

In the "light luminance bars" (Figure 31) and "light contrast bars" (Figure 32) 

conditions, the plain bars were at the luminance values of the light bars of a square-wave 

grating which had dichoptic 

luminance modulation or 

dichoptic contrast modulation, 

respectively. That is, they had a 

monoptic "neutral" state where 

they were at the luminance 

values of the light bars in a 

grating at 42.5 cd/m2 average Figure 30. Sample Experiment II (plain bars) 
"average luminance" image. Each monocular set of 

luminance and 0.5 contrast, and bars is at a luminance equal to the average luminance 
of one monocular image in Figure 25, i.e., in a grating 

non-neutral images followed the with dichoptic luminance modulation of 0.4. This is 
also in the left "eye" condition. See text. 

luminance of the light bars in a 
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grating that varied in its 

modulation. For both of these 

conditions, modulation of the 

grating from which the plain bars 

were taken varied in 0.10 

increments from 0.10 to 0.90. 

In the "dark bars" 

Figure 31. Sample Experiment II (plain bars) "light condition (Figure 33), the images 
luminance bars" image. The bars are identical to the 
light bars in Figure 25, i.e., in a grating with dichoptic were at the luminance values of 
luminance modulation of 0.4. This is also in the left 
"eye" condition. See text. the dark bars in a square-wave 

grating. The original grating stimuli swapped which monocular image had higher dark 

bar luminance when swapping between dichoptic luminance and contrast modulation, but 

the values for luminance themselves did not differ, and so there was only one "dark bars" 

condition. The modulation 

values again varied in 0.10 

increments from 0.10 to 0.90. 

Though there were four dark 

bars in each original grating, 

only three were presented here in 

order to make the stimuli more 

comparable across conditions. Figure 32. Sample Experiment II (plain bars) "light 
contrast bars" image. The bars are identical to the 

Though this idea of light bars in Figure 28, i.e., in a grating with dichoptic 
contrast modulation of 0.5. This is also in the right 

"luminance source" means a "eye" condition. See text. 
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complex derivation for the 

luminance values in these 

images, once calculated they are 

simple to understand. Each of 

these four types of images is now 

effectively a new dichoptic 

stimulus with its own base 

Figure 33. Sample Experiment II (plain bars) "dark luminance, and can be defined in 
bars" image. The bars are identical to the dark bars in 
Figure 25, i.e., in a grating with dichoptic luminance terms of dichoptic luminance 
modulation of 0.4. This is also in the left "eye" 
condition. See text. modulation. The average 

luminance of gratings with a luminance disparity was always centered around the base of 

42.5 cd/m2, and so the "average luminance" plain bars always had that base luminance. 

The light bars of gratings with either a luminance or contrast disparity always averaged 

63.75 cd/m2, and so the "light luminance bars" and "light contrast bars" images always 

had that base luminance. The dark bars of gratings with either a luminance or contrast 

disparity always averaged 21.25 cd/m , and so the "dark bars" images always had that 

base luminance. 

It turns out that the "average luminance," "light luminance bars," and "dark bars" 

images can likewise be said to have dichoptic luminance modulation from 0.10 to 0.90 

around their respective base luminance. The one exception is the "light contrast bars" 

condition, where the newly calculated dichoptic luminance modulation proceeds from 

0.03 to 0.30 in increments of 0.03. 
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In total, there were three independent variables: the source of the luminance 

values, the amount of the modulation, and whether the left or right eye received the 

image with higher luminance. Each combination of values was one condition, and there 

were also three neutral conditions: one for "average luminance," one for both "light 

luminance bars" and "light contrast bars" (as these would be identical if there were no 

modulation), and one for "dark bars." Note that the neutral condition for "average 

luminance" is a screen that is blank gray except for nonius lines, and so even though this 

condition was presented, it will not be plotted in this experiment. Each combination of 

values, including the neutral conditions, appeared twice in one session. Participants 

performed six sessions, therefore completing 12 trials for each condition. 

Results 

Data are shown in Figure 34-36, again plotting the probability of responding 

"present" to each perceptual phenomenon with one figure for each participant. Note that 

the modulation values at the bottom of each plot are the dichoptic luminance or contrast 

modulation values in the original grating images of Experiment I, allowing direct 

comparison of these plots to those in Figure 27-29. That is, the "average luminance" and 

"light luminance bars" plots can be compared to the plots for images with dichoptic 

luminance modulation; the "light contrast bars" plots can be compared to the plots for 

images with dichoptic contrast modulation; and the "dark bars" plots can be compared to 

either. 
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Figure 34. Experiment II data for JJD. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The top left 
chart is for "average luminance" ("avg"), top right "light luminance bars" ("11m"), bottom 
left "light contrast bars" ("lcn"), and bottom right "dark bars" ("dar"). Filled boxes are 
for the left "eye" condition and empty boxes for right "eye." The vertical dotted line is 
the point of monocular equality to the background, where one monocular image is at the 
background luminance. See text. 

The "light luminance bars" and "light contrast bars" plots show thresholds for the 

initial perception of rotation, binocular luster, and binocular rivalry that mirror those in 

Experiment I. Ocular dominance does not perfectly match across these two experiments, 
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Figure 35. Experiment II data for RSH. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The top left 
chart is for "average luminance" ("avg"), top right "light luminance bars" ("llm"), bottom 
left "light contrast bars" ("lcn"), and bottom right "dark bars" ("dar"). Filled boxes are 
for the left "eye" condition and empty boxes for right "eye." The vertical dotted line is 
the point of monocular equality to the background, where one monocular image is at the 
background luminance. See text. 

but it is worth noting that, again, differences in thresholds for the "eye" conditions were 

more common with perceived rotation. 

The vertical dotted lines are the point of monocular equality to the background, 

and the meaning of this point is similar to before, being where one monocular image is 
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Figure 36. Experiment II data for WWS. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The top left 
chart is for "average luminance" ("avg"), top right "light luminance bars" ("11m"), bottom 
left "light contrast bars" ("len"), and bottom right "dark bars" ("dar"). Filled boxes are 
for the left "eye" condition and empty boxes for right "eye." The vertical dotted line is 
the point of monocular equality to the background, where one monocular image is at the 
background luminance. See text. 

exactly at the background luminance (in Experiment I, it was the point where the light 

bars had this relation to the background; see p. 52). It can be seen that, in nearly all 

cases, luster and rivalry appear only once the stimulus begins dichoptically straddling the 

background. As such, luster and rivalry occur the most for stimuli in the "average 
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luminance" condition, and do not occur at all for stimuli in the "dark bars" condition. In 

fact, this relation to the background makes some sense of data from RSH, who was the 

only participant to report often seeing luster in grating images with a contrast disparity: 

this participant generally seems to see luster with less modulation than the other 

participants, and a comparison of the "light luminance bars" and "light contrast bars" 

plots reveals the initial threshold is in a similar location relative to the vertical line. 

The pattern followed by perceived rotation, however, is unexpected. For 

participant JJD and RSH in the "light luminance bars" condition, the initial threshold for 

perceiving rotation is similar to that in Experiment I but the perception is not maintained 

over nearly as large a range of modulation values. In fact, after a peak near the point of 

monocular equality to the background, perceived rotation ceases at about the same point 

that rivalry begins28. There likewise is a lack of perceived rotation in the "average 

luminance" condition, where the bars always dichoptically straddle the background. This 

cessation of rotation even occurs for participant WWS, who reported rotation in almost 

every image from Experiment I. 

It is also worth making some notes that relate to informal observations. Despite 

this similarity between all three participants on the cessation of perceived rotation, WWS 

has much lower probabilities for seeing rotation in the "dark bars" condition. The 

participant stated that for some entire sessions the dark bars seemed to remain flat while 

for others they seemed rotated. 

It can be seen that the slope for participant JJD's perception of rivalry in the 

"average luminance" condition is shallower and less curved than others. The participant 

28 As a result of the peak in the perception of rotation, Laplace fits would generally appear as flat horizontal 
lines and are not plotted in Figure 34-36. 
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informally observed he seemed to be shifting his criteria for responding to the 

phenomenon across sessions, in that over time he was more willing to respond "present." 

Given that this threshold is even lower in the subsequent Experiment III, it would seem 

that the new criteria are more stable. 

Beyond this instance with JJD, there is much more variability in the relationship 

between luster and rivalry thresholds in this experiment than in Experiment II. One issue 

may be that in the "average luminance" condition, both monocular images could be much 

closer to the background than in other conditions. As discussed in the subsection on 

fluorence in the introduction (p. 29), Evans (1959) discovered it is possible for grayscale 

images to seem to glow under circumstances similar to these. Participant RSH informally 

noted there did seem to be some very low modulation values in that condition where a 

"glow" appeared that did not feel exactly the same as luster, and might have been 

fluorence. Therefore, there is some extra uncertainty in the luster thresholds in this 

condition. 

Lastly, these individual bars, which are less than 1° in width but more than 1° in 

height, seem to only undergo mosaic rivalry and not unitary rivalry (see, e.g., Howard & 

Rogers, 1995, p. 327). Therefore, there is no more information available here on the 

relationship between these two forms of rivalry and the other perceptions. 

Discussion 

In most cases, the predictions for this experiment are met. The thresholds for the 

initial perception of rotation, binocular luster, and binocular rivalry are not detectably 

different when considering intact square-wave gratings versus considering the light bars 
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alone, suggesting that the light bars are central to the overall perception. There is no 

detectable luster or rivalry when considering the dark bars alone. There is indeed 

perceived rotation, .but given that the dark bar luminance values are identical in images 

with a dichoptic luminance disparity or dichoptic contrast disparity and yet would be 

expected to give rise to different directions of rotation, it seems reasonable to presume 

that the dark bars do not drive the overall perception. When considering the average 

luminance of the original square-wave gratings, perception simply did not follow any of 

the patterns from Experiment I. 

A natural conclusion is that average luminance and contrast are not as useful in 

defining stimuli for these three perceptual phenomena as are the luminance values of the 

individual bars. The monocular sets of light bars being both on the same side of the 

background luminance, versus dichoptically straddling the background, determines when 

observers will perceive rotation, luster, and rivalry. This goes contrary to the conclusion 

of Legge and Kersten (1983) that considering discrimination functions based on contrast 

is more useful than considering the individual bars, but perhaps it is not a complete 

conflict with their discussion of detection. As stated in the subsection on light bars and 

dark bars versus average luminance and contrast in the introduction (p. 16), there are 

several imbalances in how the visual system treats light and dark bars, including how 

luminance decrements are more detectable than luminance increments. The initial 

detection of rotation, luster, and rivalry are clearly another situation for considering 

individual bars, though it is interesting that the light bars seem to drive rotation more than 

the dark in this situation. 
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The discussion so far on the importance of dichoptically straddling the 

background is in accord with Wolfe and Franzel (1988), Fry and Bartley (1933), and 

Anstis's (2000) observations in the subsection on the relation between stimuli and the 

background in the introduction (p. 27). However, these sources discussed the occurrence 

of binocular luster and binocular rivalry in straddling images, while the present results 

show there is also a cessation of perceived rotation. The fact that perceived rotation was 

often detected in Experiment I even when images were rivaling, even when the bars 

themselves seemed to float out in space, and even when beyond the point where 

perceived rotation ceased in Experiment II, is curious. 

At a minimum, these results mean that luster and rivalry arise in similar 

circumstances and co-vary, while perceived rotation follows different rules. This insight, 

in turn, lends more weight to the idea of a connection between luster and rivalry, which 

was first discussed with Dove's (1851) observation that the two phenomena can be 

concurrent in the section on binocular luster in the introduction (p. 23), and to the idea 

that there are two mechanisms behind these three perceptions (one for luster and rivalry, 

one for perceived rotation), first supported in Experiment I (p. 53). 

It is unclear why perceived rotation would occur so differently in the two 

experiments, though, suggesting that perceived rotation is dependent on the relation 

between the light bars and the dark bars in a way not considered so far. Perhaps rotation 

is indeed dependent on the light bars, but the dark bars around them form a special sort of 

"local background." With that in mind, it could be that a participant's adaptation to the 

background luminance is interacting with this "local background," and so adaptation level 

may need to be considered along with background luminance. Alternately, it could be a 
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coincidence that perceived rotation, luster, rivalry, and the cessation of rotation related to 

the point of monocular equality to the background in this one experiment, and this point 

of transition is an artifact of the changes in the stimulus (e.g., the change in size). To be 

certain that the relation to the background is indeed key to the circumstances that give 

rise to these three perceptions, and to more precisely measure how perception "shifts" 

between the three, it is necessary to adjust two components so far untouched in these 

experiments: the background luminance and the adaptation level of the participant. 

Therefore, Experiment III was designed to elaborate on the relation to the background. 
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CHAPTER V 

EXPERIMENT III 

I performed Experiment III to determine whether or not the relation between 

binocular images and the background is central to the occurrence of binocular rivalry and 

binocular luster, and to the cessation of perceived rotation. In doing so, there could be a 

confound in that changing the background a participant is observing will also change the 

adaptation state of the participant. Therefore, I independently manipulated the luminance 

of the uniform gray adaptation image and the luminance of the background of the stimuli. 

I predicted that the thresholds for all three perceptual phenomena, and the threshold for 

cessation of perceived rotation, would shift to match changes in the background of the 

stimuli but would be unaffected by adaptation state. I also predicted that the shifts in the 

thresholds would be symmetrical with shifts in the background luminance, given that 

Anstis (2000) found symmetrical effects when considering subjective ratings of luster. 

Stimuli 

Experiment III used images that contained three dichoptic bars on a uniform field 

of the background luminance, i.e., "plain bars" images just as in Experiment II (see 

Figure 30-33). Instead of varying "luminance source," just one type of image was used: 

the "average luminance" plain bars. These bars, as before, varied in the amount of 

dichoptic luminance modulation from a monoptic "neutral" state where they were at the 

base luminance of 42.5 cd/m2. Non-neutral images had modulation that varied in 0.10 

increments from 0.10 to 0.90. This type of image was chosen because it was centered 
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towards the middle of the 

available luminance values for 

the monitor, and so would be the 

most efficient in showing 
Background 

whether shifts in the background luminance 

Adaptation luminance (cd/m2) 

21.25 42.5 63.75 

led to symmetrical effects. 

When "average 

luminance" plain bars were used 

in Experiment II, stimuli 

appeared as in Figure 30. 

Participants had adapted to 42.5 

(cd/m2) 

21.25 

42.5 

63.75 

Ex. IE 

Ex. IE 

Ex.n 

Ex. in 

Ex. in 

Figure 37. Adaptation and background luminance 
conditions for Experiment III. Cells marked "Ex. Ill" 
denote combinations that were used. The center cell 
is marked "Ex. II" to emphasize how all stimuli in 
Experiment II involved this combination. 

cd/m and then saw 42.5 cd/m as the background for each stimulus. In Experiment III, 

adaptation luminance and background luminance were two independent variables, and 

their values were either 21.25 cd/m2 or 63.75 cd/m2, as shown in the table in Figure 37 

(stimuli against these backgrounds are shown in Figure 38-39). These values were 

arbitrary and could of course have been anything, but 21.25 cd/m2 and 63.75 cd/m2 were 

chosen because they were the average luminance of the dark bars and of the light bars, 

respectively, in gratings (as was discussed in Experiment II, p. 57). Also, the base 

luminance of the stimuli remained unchanged at 42.5 cd/m2 for the entire experiment, and 

when such plain bars had dichoptic luminance modulation of 0.50 the monocular images 

were at exactly 21.25 cd/m and 63.75 cd/m , making comparison between conditions 

more simple. 
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Figure 38. Sample Experiment III image, 21.25 
cd/m2 background luminance. (Values will differ on 
paper.) The bars are identical to the bars in Figure 30, 
i.e., in an "average luminance" image with dichoptic 
luminance modulation of 0.4. See text. 

In total, there were four 

independent variables: 

adaptation luminance, 

background luminance, the 

amount of dichoptic luminance 

modulation, and whether the left 

or right eye received the image 

with higher luminance. 

Adaptation and background 

combinations were given 

shorthand labels of "2-2," "6-2," "2-6," and "6-6," where the two numbers were the tens 

digits of the luminance values, first being adaptation luminance and second being 

background luminance. Thus, in the "6-2" condition, a participant would adapt to a 

uniform gray of 63.75 cd/m2 

before the stimuli appeared, then 

see each stimulus against a 

background of 21.25 cd/m2 for 5 

seconds, then see 63.75 cd/m2 

again while making a response 

and during each 5 second 

Figure 39. Sample Experiment III image, 63.75 interstimulus interval. Only one 

cd/m2 background luminance. (Values will differ on 
paper.) The bars are identical to the bars in Figure 30, of the four combinations was 
i.e., in an "average luminance" image with dichoptic 
luminance modulation of 0.4. See text. done on an individual session. 
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Each combination of modulation value and "eye" conditions appeared six times in 

one session, so two sessions were performed at every adaptation and background 

combination to provide 12 trials for each combination of all conditions. A total of eight 

sessions were run, and for each participant a list was generated pseudorandomly (using 

the computer's own functions) to determine the order in which the adaptation and 

background combinations would be used. Participants, of course, knew which adaptation 

condition and background condition they were observing on a given session. 

Results 

Data are shown in Figure 40-42, plotting the probability of responding "present" 

to each perceptual phenomenon with one figure for each participant, with fits for the 

luster and rivalry data as described in the methods for data analysis section of the general 

methods (p. 45). For the occurrence and cessation of perceived rotation, two separate 

cumulative density functions of a Laplace distribution were used in order to fit the shape. 

For the calculation, the FindFit function in Mathematica 5.0.0.0 was given a list of data 

points that ceased at the modulation value where the peak of the graph appeared to occur, 

with all probability values after that peak replaced with the value 1.00. Each cutoff is 

visible in Figure 40-42 as the point where each curve ends, being a modulation value of 

0.3, 0.4, or 0.6 depending on the condition. 

Note that the point of monocular equality to the background is always at a 

modulation of 0.5, but this value has a different meaning for these images with a varying 

background. In the "2-2" and "6-2" conditions, the background was below the base 

luminance of the plain bars, and so when the plain bars were not dichoptically straddling 
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Figure 40. Experiment III data for JJD. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The left 
column of charts is for adaptation luminance of 21.25 cd/m2 ("2-2," "2-6"), and right for 
63.75 cd/m2 ("6-2," "6-6"). The top row of charts is for background luminance of 21.25 
cd/m2 ("2-2," "6-2"), and bottom for 63.75 cd/m2 ("2-6," "6-6"). Filled boxes are for the 
left "eye" condition and empty boxes for right "eye." The vertical dotted line is the point 
of monocular equality to the background luminance, where one monocular image is at the 
background luminance. See text. 

the background they had higher luminance than the background. In the "2-6" and "6-6" 

conditions, the background was above the base luminance of the plain bars, and so the 

opposite was true when the plain bars were not straddling the background. 
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Figure 41. Experiment III data for RSH. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The left 
column of charts is for adaptation luminance of 21.25 cd/m2 ("2-2," "2-6"), and right for 
63.75 cd/m2 ("6-2," "6-6"). The top row of charts is for background luminance of 21.25 
cd/m2 ("2-2," "6-2"), and bottom for 63.75 cd/m2 ("2-6," "6-6"). Filled boxes are for the 
left "eye" condition and empty boxes for right "eye." The vertical dotted line is the point 
of monocular equality to the background luminance, where one monocular image is at the 
background luminance. See text. 

Figure 43-45 show the modulation values calculated for these four thresholds, 

namely occurrence of perceived rotation, binocular luster, binocular rivalry, and cessation 

of perceived rotation. To judge the effects of adaptation luminance, background 

luminance, and their interaction, analysis of variance (ANOVA) was used. One ANOVA 
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Figure 42. Experiment III data for WWS. From bottom to top, probability of detecting 
rotation ("Vb"), luster ("lstr"), and rivalry ("riv") at different modulations. The left 
column of charts is for adaptation luminance of 21.25 cd/m ("2-2," "2-6"), and right for 
63.75 cd/m2 ("6-2," "6-6"). The top row of charts is for background luminance of 21.25 
cd/m2 ("2-2," "6-2"), and bottom for 63.75 cd/m2 ("2-6," "6-6"). Filled boxes are for the 
left "eye" condition and empty boxes for right "eye." The vertical dotted line is the point 
of monocular equality to the background luminance, where one monocular image is at the 
background luminance. See text. 

was performed for each of the four thresholds. Including "eye" condition as a third 

factor, each ANQVA was a randomized block factorial 2 x 2 x 2 design. 
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bg 21.25 bg63.75 bg 21.25 bg63.75 

Figure 43. Experiment III thresholds for JJD. Modulation values are plotted for the 
occurrence of rotation, luster, rivalry, and cessation of rotation, as noted in the legend. 
Filled symbols are for the left "eye" condition and empty symbols for right "eye." Solid 
lines are for the adaptation condition of 21.25 cd/m2 and dashed lines for 63.75 cd/m2. 
"bg" refers to the "background" condition, also 21.25 cd/m2 or 63.75 cd/m2. See text. 

Within each ANOVA, preliminary tests were performed as described in Kirk 

(1995, pp. 408-411) to determine the appropriateness of the terms in the ANOVA model. 

Starting from the most complex interaction and proceeding to the main effects, terms that 

failed to meet significance at the 0.25 level were pooled with the error term. For 

occurrence of perceived rotation, all terms pooled. For binocular luster, all interactions 

except the background luminance by "eye" condition interaction pooled, leaving all main 

effects in the model. For binocular rivalry, all terms except the main effect of 

background luminance and main effect of participants pooled. For cessation of rotation, 

all terms except the main effect of background luminance pooled. 

The mean square residual, after preliminary testing, was used to generate the 

standard error bars in Figure 43-45. Significance of the results of each ANOVA was 

judged using Holm's (1979) sequentially rejective test based on the Sidak (1967) 
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Figure 44. Experiment III thresholds for RSH. Modulation values are plotted for the 
occurrence of rotation, luster, rivalry, and cessation of rotation, as noted in the legend. 
Filled symbols are for the left "eye" condition and empty symbols for right "eye." Solid 
lines are for the adaptation condition of 21.25 cd/m and dashed lines for 63.75 cd/m2. 
"bg" refers to the "background" condition, also 21.25 cd/m2 or 63.75 cd/m2. See text. 

multiplicative inequality, as described in Kirk (1995, pp. 140-144), with a family-wise a 

level of 0.05. This method was chosen because it maintains the family-wise a level while 

providing more power than other procedures, as described in Kirk. Effect size for main 

effects and interactions was calculated as partial omega squared, and effect size for 

participant effects was calculated as partial intraclass correlation (Kirk, 1995, pp. 259-

264). 

The effect of adaptation luminance is nonsignificant for all thresholds, with the 

plots suggesting there may be some minimal effect on the perception of rotation that 

varies from one participant to the next. There is no significant interaction between 

adaptation luminance and background luminance, or for any other interaction, for all 

thresholds. There is a significant effect of participant when considering binocular luster 

(F2,i7 = 47.9866, MSRES = 0.0005184, p = 1.0198*10"7, p, = 0.9400) and binocular 
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Figure 45. Experiment III thresholds for WWS. Modulation values are plotted for the 
occurrence of rotation, luster, rivalry, and cessation of rotation, as noted in the legend. 
Filled symbols are for the left "eye" condition and empty symbols for right "eye." Solid 
lines are for the adaptation condition of 21.25 cd/m2 and dashed lines for 63.75 cd/m2. 
"bg" refers to the "background" condition, also 21.25 cd/m2 or 63.75 cd/m2. See text. 

rivalry (F2,20 = 10.3585, MSRES = 0.0007227, p = 0.0008176, pi = 0.7573), which is not 

surprising given the various differences seen between participants in Experiment I-II. 

The impact of background luminance is far more compelling, and can be seen by 

comparing Figure 40-42 to any other plot. In considering the "average luminance" 

condition in Experiment II (see Figure 34-36), the current data gathered from using 

"average luminance" images are dramatically different. In any of the adaptation and 

background combinations, rotation is actually perceived, and binocular luster and 

binocular rivalry are perceived less frequently than before. Further, the change follows 

the point of monocular equality to the background, such that thresholds in the current 

"average luminance" data look more like the "light luminance bars" thresholds from 

Experiment II. However, they are not identical to the "light luminance bars" thresholds, 
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as the slight shift of the point of monocular equality to the background is followed by a 

slight shift in thresholds. 

The effects of this shift in the background luminance are not symmetrical as 

luminance is raised and lowered. In fact, there are significant effects of background 

luminance when considering binocular luster (Fyy = 104.9730, MSRES = 0.0005184, p 

= 1.0836*10"8, co2 = 0.8125), binocular rivalry (F,,20 = 60.4172, MSRES = 0.0007227, p = 

1.8137*10~7, co2 = 0.7123), and the cessation of perceived rotation (Fi,22 = 75.8152, 

MSRES = 0.001703, p = 1.4066*10"8, co2 = 0.757122). As the background luminance is 

lowered, lower modulation values are necessary before luster and rivalry are perceived 

and rotation ceases. As the background luminance is raised, higher modulation values 

are necessary. With these higher modulation values necessary to see the cessation of 

rotation, one can also note a "divot" in the perceived rotation data at the point of 

monocular equality to the background, which is similar to "divots" in the Experiment II 

data. This result is likely due to one monocular image not being visible, resulting in 

dominance by the other monocular image. 

This asymmetry in the impact of background luminance may be related to 

informal observations about the appearance of the stimuli. When the background 

luminance is low, most of the plain bars are more luminant than the background, and 

fused images may tend to appear bright. When the background luminance is high, most 

of the plain bars are less luminant than the background, and fused images may tend to 

appear dark. Criteria forjudging that, say, luster is present may become confused when 

the bars themselves appear dark. In fact, JJD noted that the "glowing" parts of previous 

grating images had always been the brighter bars. The idea that the perception of the bars 
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as light or dark is important is underscored by WWS's data in the "2-6" and "6-6" 

conditions, where he rarely sees rotation. This result replicates his reports in Experiment 

II (p. 62), where perceived rotation in dark bars seemed present only for some sessions. 

Discussion 

The nonsignificant effect of adaptation luminance on the three perceptual 

phenomena is as predicted, along with the fact that moving the background luminance 

relative to the images moves the thresholds for perception. The statistically significant 

asymmetry in the effects of raising versus lowering the background luminance is not as 

predicted. This result disagrees with Anstis's (2000) research concerning subjective 

ratings of luster that were symmetrical. However, that research used dichoptic luminance 

modulation of 0.16 or 0.17, and in the current research modulation of 0.50 was needed 

before the images dichoptically straddled the background. Perhaps, as suggested in the 

results section (p. 77), the experience of these bars as "dark" versus "bright" in certain 

circumstances impacted the results, and using stimuli closer to those of Anstis might 

bring the current results in line. 

Establishing the importance of the relation between the stimuli and the 

background is the final goal of the current experiments. Now all three experiments can 

be considered in relation to each other, along with possibilities for the nature of the 

perceptual mechanisms involved. 
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CHAPTER VI 

GENERAL DISCUSSION 

My experiments demonstrate several principles that add to the understanding of 

perceived rotation (the Venetian blind effect), binocular luster, and binocular rivalry. 

The results support, expand, and possibly explain past observations in the study of these 

three perceptual phenomena, and provide new insight in how to characterize the stimuli 

that give rise to them. It is also possible now to perform several passes at describing the 

underlying mechanism or mechanisms that give rise to perceived rotation, luster, and 

rivalry, from which future research could naturally follow. 

Together, the experiments demonstrate that using average luminance and contrast 

to define a stimulus for measuring any of these three perceptual phenomena overlooks 

important factors, despite Legge and Kersten's (1983) argument that contrast is generally 

a useful measure. In Experiment I (see Figure 27-29), it was certainly possible to 

measure the thresholds for perception based in dichoptic luminance modulation or 

dichoptic contrast modulation, but Experiment II-III (see Figure 34-36 and 40-42) show 

that the individual light bars and their relation to the background is driving the perception 

of luster and rivalry. Specifically, for reasons that are not determined here, the visual 

system seems to take into account only the luminance of the light bars in a grating, and 

having those bars dichoptically straddle the background luminance is necessary for luster 

and rivalry to be perceived (extending work by Anstis, 2000; Fry & Bartley, 1933; Wolfe 

& Franzel, 1988). 



80 

When isolating the light bars and dark bars, as Legge and Kersten (1983) had 

done, rotation is also seen to relate to dichoptic straddling of the background. The pattern 

differs in that perceived rotation doesn't occur when the straddling occurs, but rather it 

ceases. That is, there seems to be a certain magnitude of disparity above zero at which 

perceived rotation begins, and another past the point of monocular equality to the 

background at which it ends. This pattern is not in strict opposition to that of luster and 

rivalry, though, because when participants are presented with an intact square-wave 

grating, it is only at the highest disparity levels that perceived rotation ceases. In fact, all 

three perceptual phenomena can occur concurrently with grating stimuli. As noted in the 

literature summary and rationale for current research (p. 40), perceptual phenomena that 

arise in similar circumstances and/or that co-vary may arise from similar underlying 

mechanisms. In this light, rotation is clearly different from luster and rivalry. 

As mentioned briefly in the discussion to Experiment II (p. 65), this result could 

be explained by treating the dark bars in an intact grating as though they were a special 

sort of "local background." The results of Experiment III, showing that adaptation has 

few if any reliable effects on these perceptions, bears on the issue. It is possible that, 

given that the visual system is unperturbed by abrupt changes in luminance and simply 

responds to the relation between images and their background, the "local background" 

composed of dark bars literally counts as the background when judging perceived 

rotation. As the light bars, by definition, never cross the dark bars in luminance, there 

would be little reason for perceived rotation to cease. In this sense, it may be logical to 

state that the occurrence of rotation is "opposite" the occurrence of luster and rivalry 
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around a midpoint at the background luminance, given that the definition of 

"background" is sufficiently loose. 

However, other interpretations are possible. In Experiment II-III, the point of 

monocular equality to the background (or some other modulation value near it, following 

changes in the background luminance as in Experiment IE!) often marks a transition 

between rotation and rivalry. This result is consistent with the view that dichoptically 

straddling the background causes rivalry, and rivalry itself prevents the perception of 

other phenomena. That is, luster may be perceived during rivalry as first mentioned by 

Dove (1851), but the alternation of perception between monocular images means that all 

other binocular phenomena are lost. 

This argument is flawed because the perception of rivalry does not preclude the 

uptake of binocular information (as discussed in the subsection on the relation between 

stimuli and the background, p. 28, and the section on binocular rivalry, p. 34, 36, in the 

introduction). In fact, the very existence of rivalry demonstrates that binocular 

information is entering the visual system, as the visual system must be receiving input 

from both eyes in order to experience a conflict. If not, then rivalry would end in the 

lasting dominance of one image, likely the stronger image. This result would go against 

the important role Levelt (1965b, chapter 5) observed is given to the weaker image, and 

other phenomena such as the ability of a changing suppressed image to command 

attention (see, e.g., Blake, 2005). 

Other issues in the perception of rotation, luster, and rivalry pertain to the nature 

of the stimuli. The perception of rotation of an individual bar is fundamentally related to 

the presence of edges. As discussed in the section on perceived rotation in the 
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introduction (p. 9), the attempt by Fiorentini and Maffei (1971) to eliminate edge-based 

explanations for perceived rotation as a function of contrast disparity was not convincing, 

as Filley (1998), Filley and Stine (1998), and Stine and Filley (1998) argued that an edge 

was present as an artifact in their setup. In comparison, though binocular rivalry can 

occur in images with strong edges, the example from Desaguliers (1716) and Helmholtz 

(1873, 1910/1925) of color rivalry (discussed in the section on binocular rivalry in the 

introduction, p. 35) shows that edges aren't necessary. 

The role of edges in luster is less certain. Ludwig et al. (2007) argued that luster 

is visible in dichoptic circle images that have a fusible monoptic border, but that 

otherwise-identical images without a border result in a perception of rivalry. An example 

of images with a border is Figure 22 (discussed in the section on binocular rivalry in the 

introduction, p. 34), where the white circles have a thin black rim. However, a thin and 

distinct border is not the only form of "edge" possible, as the solid black circles in Figure 

22 have edges without such borders. Further, the initial discussion of Figure 21-23 was 

in the context of Howard's (1995) sieve effect, where the size of the image influences the 

perception of luster and rivalry. Therefore, though edges and borders do not have a fully 

clear impact, they provide further evidence that rotation is its own phenomenon in visual 

perception while luster and rivalry are linked. 

For another approach to relating these three perceptual phenomena, I refer to 

Hetley (2005). As was discussed in the introduction (p. 3), I studied the relationship 

between the Venetian blind effect and brightness (and between the Venetian blind effect 

and perceived contrast). I determined that the perceptions of rotation and of brightness 

involve fundamentally different uses of the "input" luminance disparity information, 
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which would be consistent with separate mechanisms in the visual system for perceived 

rotation and for brightness. Perhaps the current research does indeed touch on two 

underlying mechanisms, but they are the same two discussed in my master's thesis. After 

all, all figures of data from my current research show some levels of disparity where 

perceived rotation occurs, but where nothing else occurs that was measured. It is 

possible that with images of low luminance disparity, or, more likely, images that do not 

dichoptically straddle the background, there are separate mechanisms that are handling 

perceived rotation and brightness; then, at or near the point of monocular equality to the 

background, these separate mechanisms switch over to two other perceptions. 

There are multiple possibilities for how this changeover could occur. One 

possibility is that, after the initial rotation versus brightness pairing, the rotation 

mechanism could switch to handling rivalry and the brightness mechanism could switch 

to handling luster. This result would be consistent with Howard's (1995) proposal that 

binocular luster is the result of brightness summation during mosaic dominance, and 

consistent with the above suggestion of rotation and rivalry being in conflict. However, it 

is likely that the experience of brightness does not "stop" as soon as luster takes over, 

given the informal mention in the discussion of Experiment III (p. 77) of different 

lustrous plain bars seeming bright or dark. 

A second possibility is that, after the initial rotation versus brightness pairing, the 

brightness mechanism could remain functioning for all or nearly all values of disparity, 

and the rotation mechanism could switch to handling both rivalry and luster 

simultaneously. The connection between luster and rivalry has been discussed 

repeatedly, whether in terms of luster occurring during moments of transition (e.g., Dove, 
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1851) or occurring when rivalry is halted (e.g., Helmholtz, 1873,1910/1925), but faith in 

this proposed division depends on the reliable co-varying of both luster and rivalry. 

Such a possibility is thrown into question given that participants show somewhat 

different luster and rivalry patterns, with one large discrepancy appearing in participant 

JJD's data in the "average luminance" condition in Experiment II (see Figure 34). 

However, as discussed in that results section (p. 62), there was a shift in the criteria being 

used for stating the perceptions were present, which means there is uncertainty in the 

thresholds. There is also the question of fluorence (Evans, 1959), which, as discussed in 

its subsection in the introduction (p. 29), is a perceived glow when images are close to the 

background luminance. Informal observations suggest that there was a qualitatively 

different "glow" in some limited cases near the background luminance in the "average 

luminance" condition in Experiment II, meaning there is further uncertainty in the 

thresholds. 

For both of the above possibilities, there remains the question of why rotation, 

luster, and rivalry would be perceived simultaneously both in my master's thesis (Hetley, 

2005) and in Experiment I. A third possibility is akin to that presented in the discussions 

in Experiment I-II (p. 53, 65), namely that luster and rivalry are handled by their own 

mechanism and perceived rotation is handled by its own. In this view, that perceived 

rotation has been demonstrated to be paired with brightness (Hetley, 2005) is merely 

incidental, and so this third possibility allows for three mechanisms instead of two, where 

brightness is handled by its own mechanism that was not studied here. Of course, more 

mechanisms mean a less parsimonious explanation. 
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Given that a shift in criteria is less of a theoretical concern than a practical 

concern that can be corrected in future work, I place a certain amount of faith in the 

second possibility listed here. Given that the third possibility suffers from mainly the 

same concerns, I likewise would support it. Further experimentation, of course, is 

necessary to tease apart these different possibilities. 

Further experimentation could take the form of another study like Experiment I, 

but where the "light bars" and "dark bars" were both directly manipulated. In this 

proposed "fourth" experimental setup, a manipulation where the "dark bars" were raised 

above the luminance of what had been the "light bars" would test whether the explanation 

of a "local background" for the pattern shown in perceived rotation made sense. 

Measuring not just the detection of each effect, but subjective ratings of the magnitude of 

each effect as in Anstis (2000), would reveal whether changing this "local background" 

also affected luster and rivalry. If rotation on one hand and luster and rivalry on the other 

were shown to more directly oppose each other through these manipulations, then this 

discovery would be just as fundamental as the discovery that looking at the light bars and 

dark bars mattered in the first place. This result would support any possibility for 

underlying mechanisms that placed rotation in opposition to luster and/or rivalry. 

Measurement of brightness in the fused images is also necessary. Brightness 

matching experiments could be performed with the grating stimuli where the "light bars" 

and "dark bars" were being manipulated together. It is already known that, for instance, 

simple luminance decrements against a background are more detectable than luminance 

increments (e.g., Legge & Kersten, 1983), and here one could determine the pattern 

followed by individual bars that were both against a background and within a grating. 
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Patterns detected this way could support or refute any of the possibilities suggested 

above. 

It should be noted that direction of perceived rotation was not measured in my 

current experiments, and neither was the distinction between stable luster (e.g., 

Helmholtz, 1873, 1910/1925) and transient luster (e.g., Dove, 1851). The latter 

distinction is more interesting in this context, as informal observations suggested each 

type of luster had its own threshold. A simple experiment, perhaps using the setup from 

one of my three experiments or this new fourth setup, could be conducted to measure the 

thresholds for perceiving one or the other type of luster. These new thresholds could 

occur at meaningful points in relation to any of the perceptual phenomena discussed so 

far, leading to new possibilities for underlying mechanisms. 

Lastly, edges and borders are important to consider. A fifth experimental setup 

could involve replacing all square-wave gratings or bars with sinewave. If multi-axis 

rotation were replaced with single-axis as in Fiorentini and Maffei (1971; see p. 9), but 

binocular luster and rivalry were unaffected, then that would support the unique place of 

rotation. A sixth experimental setup could involve taking all square-wave images 

presented so far and manipulating the presence or absence of thin borders, as discussed 

with the research of Ludwig et al. (2007; see p. 82). It could be predicted that luster 

would occur more regularly with the presence of thin borders while rivalry would occur 

less. If there were little effect of a border on perceived rotation, then, again, rotation 

would be shown to be in opposition to luster and rivalry. 

In summary, the phenomena of perceived rotation or the Venetian blind effect, 

binocular luster, and binocular rivalry have rarely been studied together. As discussed in 
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the introduction, there are many different explanations for each, and not all explanations 

adequately predict the phenomena. Now, at least, it is easier to properly describe the 

circumstances in which the perceptual phenomena arise. Consideration of individual 

dichoptic parts of an image in relation to the background, often specifically the more 

luminant dichoptic parts of an image, allows for prediction of the occurrence of binocular 

luster and binocular rivalry and the cessation of perceived rotation. Possible explanations 

for these patterns of occurrence and cessation involve various underlying visual 

mechanisms, but further experimentation is necessary to support or refute each one. 
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APPENDIX A 

Permissions 

Figure 6 is adapted from Cibis and Haber (1951). 

3/6/08 
"Lehman, Susannah" <SLEHMA@osa.org> 
RE: Following up on request about copyrighted material 

Dear Richard, 

In that case our permission for adaptation will suffice. Below is permission for your 
request. 

Sincerely, 

Susannah Lehman 

The Optical Society of America considers reproduction of small portions of its 
copyrighted material such as you request below to be Fair Use under U.S. Copyright 
Law. It is requested that a complete citation of the original material be included in any 
publication. If you require any confirmation or permission other than what this e-mail 
grants, please feel free to contact me. 

Susannah Lehman 

Authorized Agent 

mailto:SLEHMA@osa.org
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Figure 12 is adapted from Filley (1998), and Figure 13 is generated from raw data 
provided by Filley. 

3/14/08 
Eugene Filley <efilley@retinafoundation.org> 

I grant Richard Hetley permission to use and/or adapt Figure 9e from my master's thesis, 
"An investigation of the Venetian blind effect," in his dissertation for the University of 
New Hampshire. The dissertation must state that this is done with permission and must 
contain a full citation to my work. 

Eugene Filley, Ph.D. 
Retina Foundation of the Southwest 
9900 N Central Expressway 
Suite 400 
Dallas, TX 75231 

mailto:efilley@retinafoundation.org


96 

Figure 15 is adapted from McCamy (1998). 

3/4/08 
BJohns@wiley.com 
Fw: Request for permission to use copyrighted material 

Dear Mr. Hetley: 

Please be advise permission is granted to reuse figure 2 from Color Research and 
Application, 23, 362-373 in your forthcoming Thesis which will be published by 
University of New Hampshire. Credit must appear on every copy using the material and 
must include the title; the author (s); and/or editor (s); Copyright (year and owner); and 
the statement "Reprinted with permission of John Wiley & Sons, Inc." Please Note: No 
rights are granted to use content that appears in the work with credit to another source. 

Good luck with your thesis 

Sincerely, 

Brad Johnson, Permissions Assistant I John Wiley & Sons Inc. 1111 River St. I 
Hoboken, NJ 07030 I Mail Stop: 4-006B (4-02) I Ph: 201-748-6786 I Fax: 201-748.6008 
I bjohns@wiley.com 

Visit our website <www.wiley.com/go/permissions> for permissions information 

3/6/08 
BJohns@wiley.com 
Re: Clarification on use of copyrighted material 

Richard, If you prefer you may use the statement "adapted with permission of John Wiley 
& SonsInc" 

Thank you for your concerns regarding our copyright 

Sincerely, 

Brad Johnson, Permissions Assistant I John Wiley & Sons Inc. 1111 River St. I 
Hoboken, NJ 07030 I Mail Stop: 4-006B (4-02) I Ph: 201-748-6786 I Fax: 201-748.6008 
I bjohns@wiley.com 

Visit our website <www.wiley.com/go/permissions> for permissions information 

mailto:BJohns@wiley.com
mailto:bjohns@wiley.com
http://www.wiley.com/go/permissions
mailto:BJohns@wiley.com
mailto:bjohns@wiley.com
http://www.wiley.com/go/permissions
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Figure 21, Figure 22, and Figure 23 are adapted from Howard (1995). 

3/28/08 
Jatinder Padda <permissions@pion.co.uk> 
Perception figure permission 

Dear Richard Hetley 

*Doctoral Dissertation - University of New Hampshire - 2008* 

You requested permission to reproduce the following figures in your forthcoming 
publication: 

Figure 1,6, 7, 8, 9 (pages 68 - 73) 
Howard, I P "Depth from binocular rivalry without spatial disparity" 
first published in Perception, 1995, 24, pp67-74 

Pion grants non-exclusive online, anthology and quotation rights for distribution 
throughout the world in this and future editions free of charge contingent on our usual 
minor conditions: 

* that the full journal title, year, volume, first and last page numbers as above and the 
words *Pion Limited, London* appear in a position contiguous with the text, or is clearly 
indicated as appearing in the references. 

Yours sincerely 
Jatinder Padda 

Jatinder Padda 
Publishing Services Manager 

Pion Ltd 
207 Brondesbury Park 
London 
NW2 5JN 
Email: permissions@pion.co.uk 
Tel: 020 8459 0066 
Fax: 020 84516454 

Registered in England 622848 
Registered office: 207 Brondesbury Park, London NW2 5JN 

mailto:permissions@pion.co.uk
mailto:permissions@pion.co.uk
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Institutional Review Board Documentation 

University of New Hampshire 

Research Conduct and Compliance Services, Office of Sponsored Research 
Service Building, 51 College Road, Durham, NH 03824-3585 

Fax:603-862-3564 

26-Sep-2007 

HerJey, Richard S 
295 Forest Park 
Durham, NH 03824 

IRB # : 4074 
Study: The Venetian blind effect, binocular luster, and binocular rivalry 
Approval Date: 24-Sep-2007 

The Institutional Review Board for the Protection of Human Subjects in Research (IRB) has 
reviewed and approved the protocol for your study as Expedited as described in Title 45, 
Code of Federal Regulations (CFR), Part 46, Subsection HO with the following 
comment(s): 

1. The researcher must submit to the IRB for review prior to use any recruitment 
materials. 
2. The researcher should remove "in confidence" from the statement about contacting 
OSR with questions about rights as a reserach subject. 

Approval is granted to conduct your study as described in your protocol for one 
year from the approval date above. At the end of the approval date you will be asked 
to submit a report with regard to the involvement of human subjects in this study. If your 
study is still active, you may request an extension of IRB approval. 

Researchers who conduct studies involving human subjects have responsibilities as 
outlined in the attached document. Responsibilities of Directors of Research Studies 
Involving Human Subjects. (This document is also available at 
http://www.unh.edu/osr/compliance/irb.html.) Please read this document carefully before 
commencing your work involving human subjects. 

If you have questions or concerns about your study or this approval, please feel free to 
contact me at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB # above 
in all correspondence related to this study. The IRB wishes you success with your 
research. 

For the IRB, 

die fOflmpson' 
anager 

cc: Rle 
Stfne, William 

http://www.unh.edu/osr/compliance/irb.html
mailto:Julie.simpson@unh.edu
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