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ABSTRACT

I. THE SYNTHESIS AND COORDINATION CHEMISTRY OF NOVEL 1,1,1- 

TRIS(AMINOMETHYL)ETHANE (TAME) DERIVED LIGANDS AND THEIR USE 

AS SIZE SELECTIVE FLUORESCENT ZN(II) SENSORS. II. THE SYNTHESIS 

OF STRONGLY AND WEAKLY BINDING LIGANDS WITH N, O, AND S-DONOR 

GROUPS TO BE USED AS RECEPTORS IN FLUORESCENT RATIOMETRIC 

INDICATORS FOR TRANSITION METAL IONS.

By

Daniel Patrick Kennedy 

University of New Hampshire, December, 2007

The Ni(ll)-mediated template synthesis of the novel chelator TAMEpyr, 

where TAMEpyr =A/,A/',/V'-tris(2-pyridylmethyl)-1,1,1 -tris(aminomethyl)ethane, 

and its coordination chemistry with a host of metal ions is presented. Structural 

data for [Zn(TAMEpyr)]2+ show the propensity of the ligand for an octahedral 

coordination geometry. Solution studies of TAMEpyr further illustrate the 

chelator’s flexibility. Lastly, the pyridyl groups of the parent ligand TAMEpyr were 

exchanged with a host of azaheterocycles affording a collection of novel TAME 

derived chelators.
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The Ni(ll)-template chemistry developed to prepare the novel chelator 

TAMEpyr was exploited in the preparation of novel Zn(ll)-selective fluorescent 

sensors. The molecules TAMEisoquin and 6,7-DMTI possess the fluorophore- 

spacer-receptor design motif that is evident in many photoinduced electron 

transfer (PET) based metal-ion sensors. These molecules display exquisite 

spectroscopic selectivity for Zn(ll) with target-induced fluorescence 

enhancements of ca. 14 and 17 respectively. The measured quantum yield for 

[Zn(TAMEisoquin)]2+ was a dismal 1.2%. This was improved, however, to 20% 

for [Zn(6,7-DMTI)]2+. The thermodynamic stability imparted to the target analyte 

from the polydentate N6-donor set was evidenced in the measured Kd’ of 1.4 fM 

for [Zn(TAMEisoquin)]2+. Unlike many reported sensors, the TAME-based 

chelators display excellent selectivity for Zn(ll) over Cd(ll). Moreover, the 

synthetic flexibility of the TAME podand for additional functionalization may 

facilitate the development of novel bifunctional luminescent sensors. Work on 

TAME derived azacoumarins is presented.

Lastly, swelling polymeric networks built from N-isopropylacrylamide 

(NIPA) have been prepared toward the sensing of Cu(ll). The candidate’s role in 

this collaborative project was to synthesize strongly and weakly binding metal ion 

receptors to be copolymerized into the polyNIPA network. Fluorescent groups 

were also copolymerized into this network which acted as luminescent reportors 

upon analyte recognition. Depending on the charge of the bound metal-receptor 

complex the polymer either became swollen or shrank. Polymer shrinking 

brought the donor-acceptor pair closer together such that fluorescence

xxiv
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resonance energy transfer (FRET) increased. Conversely, reduction of like 

charges within the polymeric network caused the polymer to swell thus 

attenuating the measured FRET. This section describes the ligating systems 

chosen to be incorporated into the polyNIPA systems and the results obtained for 

the sensing of Cu(ll) is presented.
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CHAPTER 1

NOVEL LIGANDS DERIVED FROM THE 1,1,1 -TRIS(AMINOMETHYL)ETHANE 

(TAME) FRAMEWORK: THE Nl(ll) MEDIATED TEMPLATE 

REACTION/TETRAHYDROBORATE REDUCTION

Summary

In this chapter the synthetic chemistry of the tripodal triamine TAME will 

be discussed. Novel hexadentate ligands have been prepared and characterized 

using a tandem Ni(ll) mediated template reaction/tetrahydroborate reduction and 

demetallation chemistry. The TAME derived systems proved to be flexible 

ligands for a host of transition and main group metal ions. This discussion will 

entail a description of the history of the template strategy in the synthesis of 

macrocyclic and acylic ligating architectures. Tripodal ligands derived from 

TACH, TREN, TACN and sen will also be discussed. The synthesis of TAME 

derived ligands and the coordination chemistry of the novel ligand TAMEpyr will 

also be presented followed by conclusions and future work.

l
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1.1. Introduction

Planar and tri-dimensional cyclic and acyclic Schiff bases, their polyamine 

homologues, and related derivatives have attracted interest due to their ability to 

shed light on molecular processes occurring in biochemistry, material science, 

magnetism, catalysis, encapsulation, activation, transport and separation 

phenomena^ 7-8) In the bioinorganic arena many ligands have been designed to 

mimic the catalytic activity of naturally occurring metallo-enzymes.(9) A variety of 

planar macrocyclic and macroacyclic ligands have been prepared to better 

understand the role of different donor atoms, their relative position, the number 

and size of the chelating rings, flexibility and shape of the coordinating group 

toward selective binding of charged or neutral inorganic species.(10-12)

There has been considerable interest in our own research group in the 

preparation and study of hexadentate chelators based on the TACH framework 

1.13, where TACH=c/s,c/s-1,3,5-triaminocyclohexane (Figure 6). The picolyl 

derivative TACHpyr 1.14 (ibid.) was shown to have striking effects on cultured 

mammalian tumor cells. Interference with the cell growth cycle eventually led to 

apoptotic cell death.(73, 14) It is believed that the ligand targets biological iron, 

zinc, and copper which starves the cell of vital nutrients it needs to 

proliferate^ 75)

The interest in TACH-tripodal N6-donor systems is related to the rigidity of 

the framework and how that may relate to binding selectivity among the main

2
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group and transition metal ions. Traditionally the TACH derived ligands were 

prepared via reductive amination procedures.(76) The author of this dissertation 

has a particular interest in template synthesis and has applied this to the tripodal 

framework TAME 1.36, where TAME=1,1,1-tris(aminomethyl)ethane. Thus, in the 

following discussion the candidate describes the template synthesis of C=N 

bonded ligands, followed by an overview of the tripodal hexadentate ligands and 

related cage ligands derived from the TACH 1.13, TACN 1.19, TREN I.22 and 

1,3,5-tris(aminomethyl)benzene 1.25 frameworks.

1.2. Schiff base ligands and the template effect

Considerable progress has been made in the design and study of novel 

metal chelators.(77) The challenge of making elaborate chelators from simple 

starting materials has been overcome by employing self-assembling procedures, 

recognition processes, and taking advantage of the so-called “metal-template 

effect” (vide post).(18) Creation of polyfunctional ligating-architectures that 

contain additional coordinating sites, redox active groups (e.g. ferrocene), and IR 

active groups (e.g. arene-Cr(CO)3) have often relied on Schiff-base forming 

reactions (Figure 1).

R '\  R '\
R-NH2 + V = 0  — ̂  -  7=N~R + H20

H H

Figure 1. Formation of a Schiff base.

3
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The importance of the C=N group in macrocyclic and macroacyclic chemistries is 

multifaceted and follows as:( 18)

1) Often Schiff-bases are obtained by simple self-condensations of formyl- or 

keto-substrates with primary amine precursors (Figure 1). One-step 

multiple self-condensation processes can give rise to complex planar or 

tridimensional architectures.

2) Alternatively, templating with a metal-center often provides entry into 

otherwise inaccessible species.

3) Once the imine is formed reductive-demetallation reactions with an 

appropriate reducing agent affords the corresponding polyamine 

derivative. The derivative is less susceptible to hydrolysis and possesses 

greater flexibility than the imino-counterpart. The reduced compounds 

contain NH groups which may be further functionalized by appropriate 

synthetic methodologies.

4) There are many examples of metal-selective ligands (e.g. crown ethers for 

alkali and alkaline earth metals, macrocyclic thioethers for soft heavy 

metals, acyclic and macrocyclic polyaza ligands for first-row transition 

metals, etc.). The fusion of different coordinating entities (e.g. a Schiff- 

base and crown-ether moiety) into a unique ligating set can give rise to a 

very interesting system capable of multiple and/or different metal ion 

recognition processes.

Schiff bases do indeed form interesting metal complexes (Figure 2). For 

instance, the molecule pyridoxal isonicotonyl hydrazone (PIH) is an excellent

4
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Fe(lll) chelator that possesses desirable antitumor properties.(70) Chiral salen 

derivatives such as 1.1 have been employed by Jacobsen et al. in the preparation 

of Co(lll) complexes that catalyze the hydrolytic kinetic resolution of terminal 

epoxides. (20)

N N

OH HO t-Bu

t-Bu t-Bu 
PIH 1.1

Figure 2 The structures of some interesting acyclic Schiff base metal
chelators

However, the direct synthesis of structurally sophisticated Schiff base ligands 

(and subsequently the polyamine counterparts) is often complicated by 

competing polymerizations taking place concomitantly in the reaction milieu. In 

macrocyclic chemistry this phenomenon has been attributed to unfavorable 

entropy losses in the acyclic backbone upon the desired ring-closing step.(27) 

The side-products can be minimized by running the reaction at high dilution, thus 

reducing the likelihood of competing intermolecular processes. However, this 

strategy is often plagued by poor yields of the desired material. Another 

synthetic strategy is the inclusion of a metal ion that serves to direct the steric 

course of the reaction. The term ‘metal template effect’ coined by Daryle Busch 

in 1963 refers to the propensity of a metal ion to poise the reacting groups in 

such a fashion that otherwise energetically inaccessible reactions can take 

plac e.(22)
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The metal template effect can be further categorized as either the “kinetic 

template effect” or “thermodynamic template effect.” Busch first described the 

kinetic template effect in the reaction of a diamagnetic Ni(ll)-complex 1.2 with 

a,cx’-dibromo-o-xylene 1.3 resulting in the production of a macrocyclic Ni(ll)- 

complex 1.4 (Figure 3).(23) According to Busch the probability of ring-closure is 

assured by the presence of the metal ion, which holds the terminal mercapto 

groups in a c/s-position such that a single rate-determining step occurs. 

Conversely, the so-called “thermodynamic template effect” refers to a reaction 

that will occur in the absence of the templating metal-ion.(2) However, the metal 

promotes the formation of the desired product by removing it from competing 

equilibria. An example of this phenomenon was illustrated in the preparation of 

the aforementioned Ni(ll)-complex 1.2.(2) In the absence of Ni(ll), the reaction 

between p-mercaptoethylamine 1.6 and a generic a,a’-diketone 1.5 affords an 

equilibrating mixture of thiazoline 1.8 and the desired Schiff-base 1.7 (Figure 3). 

Upon addition of Ni(ll) the yield of the desired Schiff-base as the Ni(ll)-complex 

1.2 was improved to ca. 70%.

Factors that influence the product slate of a metal template reaction 

include coordination preferences of the templating metal (i.e. hard or soft 

templates, geometry preferences, size selectivity, etc.), the chelate and/or 

macrocyclic effects, and the so-called negative template effect in which the 

templating metal holds reactive groups apart from one-another to encourage an 

intermolecular reaction.(24) Metal-mediated template reactions have been 

utilized in stubborn alkylations, Schiff-base condensations, Mannich

6
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condensations, nitrile condensations, and self-assembly processes affording 

topologically rich molecules like the catenanes, rotaxanes, helicates and 

calixarenes.(24)

R N S
 *■  X  Ni

R N S
\ /

1.4

HoN SH n J, U,. W o oY C vxX
rX >  r" X  sh s r fl

h 2n  s h

1.5 ^ ^  v 1.7 i  -

1.6

Ni(ll) Thermodynamic Template 
Effect

r x
R . M  S

Y  X
R N S

1-2

Figure 3 Examples of the thermodynamic and kinetic metal template effect.

An important feature of the metal template strategy is the effect of metal 

ion size and identity on the outcome of the reaction. This was illustrated in the 

reaction of 2,6-diformylpyridine with terminal amino-polyethylene glycols {Figure

4). (25-27)

7
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1.11

Figure 4 Template synthesis of Schiff base macrocycles

When n=1, the pentacoordinate product 1.10 was formed preferentially with Mg(ll) 

due to an ideal fit between the macrocyclic binding cavity and ionic radius of the 

templating metal. This particular reaction is called a [1+1] condensation where 

the mole ratio of 2 ,6 -diformylpyridine to the linear diamine 1.12 in the isolated 

product 1.10 was 1:1. The remaining alkaline earth metals reacted preferentially 

with the n=2 polyether giving the [1+1] hexacoordinate product 1.11. However, 

when n=1, the presence of Pb(ll) favors a [2+2] homobimetallic macrocyclic 

complex 1.9. The Pb(ll)-ion is relatively large with an ionic radius of 1.33 A which 

may favor the formation of a 30-membered ring.{26, 29) This result highlights the 

importance of both size and identity of the metal ion in the outcome of these

8
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reactions. The six-coordinate ionic radii of the templating metals are listed in 

Table 1.(29)

Metal Ionic Radius (A)
Mg(ll) 0.86
Ca(ll) 1.14
Sr(ll) 1.32
Ba(ll) 1.49
Pb(ll) 1.33

Table 1 The six-coordinate ionic radii of selected main group metals

A more recent example of a metal-assisted Schiff base condensation 

comes from the laboratory of Rybak-Akimova etal.(30) In the quest for novel- 

radiopharmaceuticals based on 67Cu, the aim of this work was to develop 

macrocycles with acylic pendant arms that would match the square-pyramidal 

geometry of Cu(ll). The unique coordination and structural properties of such 

systems may also prove important in the development of enzyme mimics, new 

catalysts, MRI-contrast reagents and new fluorescent probes. The synthesis of 

five-coordinate Ni(ll)-complexes with pendant arm-containing macrocycles was 

achieved by the Schiff-base condensation of 2 ,6 -diacetyl- or 2,6-diformyl-pyridine 

with the tetra-amine trpn (where trpn= tris-(3-aminopropyl)amine) in the presence 

of Ni(CI04)2 (Figure 5). The subsequent reductive demetallation afforded stable 

pentadentate ligands that were used to prepare the corresponding Cu(ll)- 

complexes. Protonation of the pendant arm produced four-coordinate 

macrocyclic complexes. The treatment of [Ni(L2c)]2+ with either AcaO or BzCI 

resulted in the production of mono-functionalized Ni(ll) complexes. After 

reductive demetallation these species were complexed to Cu(ll) and were found 

to display a square-planar geometry in the solid state, as evidenced by X-ray

9
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crystallography, and remained four-coordinate in aqueous solutions below 

pH=11.

/ /  v L - / J  NHCI0<)s

HO'

, n~ ni— k t

"NH^y
INKI.k)!1’  

NaBH4

R*H

M,N

(r(M)

~\i* -NH^ i»
NHCOR

INHUOI1*
jna C N

Uc

|NHUcH*<R-M«)
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NaCN

I.Jc m 14c

'  ,N--Cu---N NHCOR
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|Cu(L4«)p (R «Ph)

Ni(Cf04),

R = Me

|NI(LI«)p

Nl— N

J
INHUM]IMHUrtT 

NaCN

.

Cu—N

|Ca(Ub)||Cu(l,2»)|

Figure 5 Ni(ll)-mediated template reaction of 2,6-disubstituted pyridines.(30) 

1.3. Tripodal chelators

There has been considerable interest toward the design and synthesis of 

a number of tripodal ligands. Researchers are actively pursuing tripods because 

of their inherent thermodynamic stability, kinetic inertness and interesting 

topological structures.(31) If appropriately sized, these frameworks will efficiently 

occupy a trigonal face of the bound metal-ion. The resulting framework can be 

further functionalized with additional donor groups to achieve novel ligating

10
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architectures. The following discussion highlights some of the work that has 

been accompolished in the past on the TACH, TACN, sen, TREN, and TAME 

tripodal frameworks.

1.3.1. TACH Systems

Historically, the TACH-framework has been derivatized via metal-free 

Schiff-base condensations with 2-pyridinecarboxaldehyde (which ultimately led to 

the aforementioned ligand TACHpyr 1.14) and salicylaldehyde to afford a small 

collection of hexadentate chelators (Figure 6).(32, 33)

Figure 6 A selection of reported TACH-based chelators.

The lipophilic chelator TACHsal 1.15 formed 1:1 M:L binding 

stoichiometries with Al(lll), Ga(lll), In(lll) and Fe(lll).(32) The resulting six- 

membered chelate rings are well-tailored for tricationic binding partners.^34)

n h 2

TACH 1.13 TACHpyr 1.14

OH

TACHsal 1.15 TACHpyr-trisimine 1.16
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Likewise, the N30 3 donor set is adequate for trivalent metals according to HSAB 

theory. (35)

The Schiff-base TACHpyr-trisimine 1.16, first reported in 1957 by Lions et 

al., serves as a hexadentate ligand for a host of first-row divalent transition metal 

ions.(33, 36) According to Gillum et al. the ligand TACHpyr-trisimine 1.16 would 

prefer to coordinate a metal-ion in a trigonal prismatic geometry (Figure 7).

Figure 7 Representation of the inner-coordination sphere of [Zn(TACHpy-
trisimine)]2+.

X-ray powder diffraction patterns for [Mn(TACHpyr-trisimine)]2+, [Co(TACHpyr- 

trisimine)]2+, and [Zn(TACHpyr-trisimine)]2+ were very similar and supported 

slightly tapered trigonal prismatic geometries. The average dimensions from the 

structural data of [Zn(TACHpyr-trisimine)]2+ follow as: a=2.70A, b=2.85A, 

c=3.23A, d=2.15A, e= 2.25A (Figure 7). For tris-chelates, like TACHpyr-trisimine 

1.16, a measure of the so-called twist angle (a) provides a quantitative measure 

of how octahedral or trigonal prismatic a six-coordinate metal-complex is (Figure  

8). The average value of a, as calculated from Gillum’s powder diffraction data, 

for Mn(ll), Co(ll), and Zn(ll) was ca. 8°. An ideal octahedron possesses a twist

Trigonal

Trigonal 1 
by TACH

.b~ - ® Trigonal face defined 
by pyridyl groups

Trigonal face defined
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angle of 60°. If the two trigonal faces in Figure 8 are completely eclipsed then 

the twist angle is 0° resulting in a trigonal prismatic geometry.

Figure 8 Trigonal twist angle a for [M(TACHpyr-trisimine)]2+.

X-ray powder diffraction data obtained for TACHpyr-trisimine 1.16 complexes of 

both Fe(ll) and Ni(ll) were not definitive. Absorbance spectroscopy, however, 

corroborated a near-octahedral geometry for [Fe(TACHpyr-trisimine)]2+. The 

work of Fleischer etal. later found that [Ni(TACHpyr-trisimine)]2+ possessed an 

intermediate geometry between trigonal prismatic and octahedral.(37) The twist 

angle was measured from single-crystal X-ray crystallography to be ca. 32°. It 

appears that the presence of the three-imino groups (C=N) in TACHpyr-trisimine 

restrict its ability to twist about the principal rotation axis (normal to the page in 

Figure 8 ) thus hindering the formation of octahedral metal complexes.

Improvements on the synthesis of the TACH 1.13 framework ultimately led 

to the preparation and study of the aforementioned chelator TACHpyr 1.14.(76) 

TACHpyr 1.14 was initially prepared to serve as a ligating scaffold for novel 

Ga(lll)-radiopharmaceuticals. It was found that the ligand readily formed

N(imine)(imine)

a
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complexes with “cold” Ga(lll) and In(lll) in methanol (Figure 9).(38) 1H-NMR 

studies over a period of four weeks indicated that{Ga(TACHpy)]3+ was inert to

Figure 9 Representation of [Ga(TACHpyr)](N(>3)3-DMF. The image was 
created from data obtained in the Cambridge Structural Database (CSD).

hydrolysis in aqueous solvent systems over a pH range of 2-8, while 

[ln(TACHpy)]3+ was unstable in water at pH 5-7. The crystal structure of 

[ln(TACHpy)][N03 ]3-DMS0  showed a greater distortion toward trigonal prismatic 

coordination geometry than [Ga(TACHpy)][N03 ]3-DMF. This was evidenced in 

the angles of twist (|), which ranged from 21.98(22)° to 22.66(22)° in the Ga(lll)

complex and 17.93(11)° to 19.04(10)° in the In(lll) complex. The cyclohexyl ring 

of the coordinated TACHpy 1.14 ligand was also more distorted by the larger 

In(lll) metal-ion. The distortions were evident in the splaying of the cyclohexyl

14
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nitrogens from their ideal axial positions. Likewise, bloating within the binding 

cavity led to a reduction in the average C-C-C-C torsion angle of the cyclohexyl 

ring.

Group IIB metal complexes of TACHpyr 1.14 also illustrated the size 

selective nature of the chelator.(39) The complexes

[Zn(TACHpyr)](CI04)2 Me0H, [Cd(TACHpyr)]{CI04)2, and [Hg(TACHpyr)KCI04)2 

were isolated and their solid state structures were determined {Figure 10). The 

coordination sphere changed from an octahedral to a trigonal-prismatic geometry 

with increasing metal radius. The crystallographically measured twist angles {a) 

were 43.7(2)° for |Zn(TACHpyr)]2+, ranged between 11.0(4)° and 21.7(2)° for 

[Cd(TACHpyr)]2+, and ranged between 3.1 (3)° and 5.5(2)° for [Hg(TACHpyr)]2+. 

As was noted for [ln(TACHpyr)]3+, a slight outward expansion of the 

triaminocyclohexane nitrogens occurred with Cd(ll) and Hg(ll). This likewise led 

to a reduction in the cyclohexyl ring C-C-C-C torsion angles with concomitant 

flattening of the ring.

15
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Figure 10 Top-view down of [Hg(TACHpyr)](CI04)2 highlighting the nearly 
trigonal prismatic geometry of this complex. The image was created from 

data obtained in the Cambridge Structural Database (CSD).

The interaction of Fe(ll) and Fe(lll) with TACHpyr 1.14 gave rise to six- 

coordinate, low-spin, cationic complexes of Fe(ll).(40) The anaerobic reaction of 

TACHpyr 1.14 with Fe(ll) salts afforded the bronze-colored [Fe(TACHpyr)]2+ 

complex, but under ambient conditions oxidative dehydrogenation of one or two 

of the aminomethylene group(s) of the ligand occured (Figure 11). The resulting 

mono- and diimino Fe(ll) complexes (denoted as [Fe(TACHpyr-ox-2)]2+ and 

[Fe(TACHpyr-ox-4)]2+ respectively) were an inseparable mixture, but could be 

collectively oxidized with H2O2 to the aforementioned complex [Fe(TACHpyr- 

trisimine)]2+ (which is indicated in Figure 11 as [Fe(TACHpyr-ox-6 )]2+). Similar

16
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oxidations of secondary amines coordinated to Ru, Fe, Ni, Cu, Co, and Os 

centers have all been observed.(41) Cyclic voltammetry of the imino

Fe(li) or (aq or MeOH) 
+

W <  ✓' N

tachpyr N r 2

[Fe(tachpyr-ox-6 )]:[2+ [Fe(tachpyr-ox-2)]|2+ [Fe(tachpyr-ox-4)]2+

Figure 11 Fe(ll)-mediated oxidation of TACHpyr under ambient
conditions.(42)

complex mixture revealed an irreversible anodic wave at +0.78 V (vs. N.H.E.). 

The experiment was carried out in water with 0.5M KCI as the supporting 

electrolyte. TACHpyr 1.14 likewise acted as a reducing agent toward Fe(lll) salts, 

affording the mono- and diimino Fe(ll) complexes as products. The chelator also 

reductively removed Fe(lll) from an Fe(lll)(ATP)3 complex (which is a putative 

form of intracellular iron), producing the mono- and diimino Fe(ll) complexes 

denoted in Figure 11.

The effects of steric hindrance on the complexation of Mn(ll), Co(ll), Ni(ll), 

Cu(ll) and Zn(ll) were studied with /V-alkylated analogs of TACHpyr 1.17 and 1.18 

(Figure 12). (43)
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R=Me 1.17 
R=Et 1.18

Figure 12 JV-alkylated derivatives of TACHpyr.

The ligands (A/-Me)3TACHpyr 1.17 and (A/-Et)3TACHpyr 1.18 formed 

hexacoordinate complexes with Mn(ll), Co(ll), Ni(ll), Cu(ll), and Zn(ll) in MeOH. 

The Mn(ll) and Co(ll) complexes possess high-spin electronic configurations, 

based on solution magnetic susceptibility, electronic spectroscopy and X-ray 

crystallographic studies. However, visible-near IR absorbance spectra and X-ray 

data demonstrated weakened bonding in the complexes of (A/-R)3TACHpyr 1.17 

and 1.18 relative to TACHpyr 1.14. These observations have been attributed to 

the steric effects of the Me or Et groups on the coordinated TACH amines. 

Structures of [Zn(TACHpyr)]2+ and [Ni(TACHpyr)]2+ indicated a clear preference 

of TACHpyr 1.14 and its derivatives for octahedral geometry, while [Cu((N- 

Me)3TACHpyr)]2+ exhibited a classic Jahn-Teller tetragonal distortion. The 

[M(TACHpyr)]2+ complexes (where M = Co, Ni, Cu and Zn) were all inert in 

aqueous pH 5.5 media. However, all the metal complexes of the /V-alkylated 

TACHpyr derivatives dissociated the metal ion at pH=5.5, consistent with the 

aforementioned reduced binding strength of the chelators.

Substitutions on the pyridyl rings of TACHpyr 1.14 afforded a collection of 

TACH-x-Rpyr chelators, where the ring substituents (R) are either methyl groups 

or methoxy groups (Figure 13).(44)
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:nh HN
NH

L1 -  L4, R = Me, tach-x-Mepyr (x = 3 -  6 )
L5, R = MeO, taeh-x-MeOPyr (x = 6 )

Figure 13 Methylated and methoxylated derivatives of TACHpyr.(42) The
structure in (a) is the open-form of apoTACH-x-Rpyr and the structure in (b) is 

the closed-form that occurs upon coordination.

Dicationic complexes of the TACH-x-Rpyr family of chelators were prepared and 

studied in both the solid state and in solution. Striking features were seen in the 

6 -substituted complexes (x=6 , R=Me or R=MeO), where steric repulsions 

between the 6 -substituents at the 3-fold axis of the pseudo-octahedral 

coordination sphere resulted in substantially weakened metal-ligand bonding. 

Intraligand repulsions resulted in bond angle and length distortions, coordination 

unsaturation, and shifts of the d-d electronic transitions to lower energies. 

Aqueous lability studies by HPLC agreed with the spectroscopic findings. The 

bonding properties of the other TACH-x-Mepyr chelators (where x = 3, 4, 5) 

closely resembled the solution chemistry of the parent ligand TACHpyr 1.14. 

Likewise, X-ray crystallography revealed that {Zn(TACH-3-Mepyr)]2+ closely 

resembled [Zn(TACHpyr)]2+. The cytotoxicities of the chelators toward human 

breast cancer cells (MCF7) at a fixed chelator concentration of 16 jiM showed 

time-dependent induction of cell death in the order TACH-3-Mepyr >~ TACH-4- 

Mepyr > TACH-5-Mepyr > TACHpyr 1.14, whereas TACH-6-Mepyr and TACH-6 -
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MeOpyr had no effect on the cells. The depressed cytotoxicities of the latter two 

were attributed to the inability of the chelators to bind Fe(ll) or Zn(ll) strongly.

In sum the TACH framework will ideally occupy the trigonal face of metal 

ions that have ionic radii that vary between ca. 0.7A and 0.9A. The size selective 

nature of TACH is related to its rigidity. Distortions that occur upon metal ion 

coordination are reflected in perturbations in the chair conformation of the 

cyclohexyl ring. The TACH podand can be functionalized with a host of donor 

groups using metal free synthetic methodology.

1.3.2. TACN Systems

The tripodal framework 1,4,7-triazacyclonane 1.19 (TACN) has been 

utilized in the hexadentate chelator TACNpyr I.20, where TACNpyr= 1,4,7-tris(2- 

pyridylmethyl)-1,4,7-triazacyclononane (Figure 14).

Wieghardt etal. prepared and studied the Mn(ll), Fe(ll), Co(ll), Ni(ll), Cu(ll), 

Ru(ll) and Pd(ll) complexes of TACNpyr I.20.{45) Crystallographic studies of 

[Mn(TACNpyr)]2+ revealed a distorted trigonal-prismatic geometry. This is

TACN 1.19 TACNpyr I.20

Figure 14 The tripodal ligand TACNpyr I.20.
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analogous to what was seen with [Mn(TACHpyr)]2+.(43) Like [Ni(TACHpyr)]2+, 

the complex [Ni(TACNpyr)]2+ possesses an octahedral geometry in solution and 

the solid state. In [Pd(TACNpyr)]2+, the ligand only offers the metal-center five 

donor atoms resulting in the “dangling” of one of the picolyl pendant arms. The 

cyclic voltammograms of the Mn(ll), Fe(ll), Cofll) and Ni(ll) complexes of 

TACNpyr 1.20 showed reversible or quasi-reversible 1-electron-transfer 

processes in MeCN. Studies carried out by Christiansen etal. showed that 

[Fe(TACNpyr)]2+ undergoes rapid helical inversions between the A and A 

configurations (Figure 15).(46) The 13C-NMR data was used to measure a rate 

constant for racemization which exceeded 150 s‘ - at 90°C. According to the 

authors the racemization takes place via an intramolecular twisting mechanism 

(i.e. Bailar-twist) which is favored when the triplet excited state for an Fe(ll)- 

complex is close in energy to the singlet ground state.(46, 47) This process 

requires the intermediacy of a trigonal prismatic transition state.

N ' N

n 2+

2 14 \  
n~ C n ^ (

Figure 15 Top-down view of the helical inversion of [Fe(TACNpyr)]2+.

The work of Tsukube et al. showed that TACNpyr I.20 is a highly selective 

and efficient membrane transporter of Na(l) (Figure 16).(43, 49) The striking 

feature of this study is that the relatively soft TACNpyr I.20 chelator, which is
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recognized as a good ligand for heavy metal cations and transition metal ions, 

also shows specific “ionophoric” activity for a hard cation like Na(l).

Figure 16 The putative structure of [Na(TACNpyr)]2+.

Very recently Jackson et al. reported a reversible and stereoselective N- 

to C-bonded rearrangement of [Co(TACNpyr)]3+ (Figure 17).{50)

Figure 17 Reversible and stereoselective N- to C-bonded rearrangement of

In this novel rearrangement a TACN nitrogen was displaced upon deprotonation 

of the relatively acidic a-carbon, which then binds to the metal ion as a 

carbanionic-donor. The kinetics for this process show retention of configuration 

of the resolved (+)-[Co(TACNpyr)]3+ reactant. The racemization between the (+) 

and (-)-forms of [Co(TACNpyr)]3+ (i.e. A and A) competes, as evidenced in the 

kinetics studies, with the donor-atom rearrangement. The reaction is also slowly

2+

(+)-[Co(TACNpyr)]3+ (+)-[Co(T AC Npyr-H- C)]2+

(+)-[Co(TACNpyr)]3+.
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reversed in acidic media with retention of configuration. In pH=7 solutions of this 

complex an oxidation of the a-carbon competes with the rearrangement affording 

(+)-[Co(TACNpyr-OH)]3+ (Figure 18).

Figure 18 The oxidation product (+)-[Co(TACNpyr-OH)]3+.

In sum the TACN framework is unique in that the tridentate N3 cap is 

embedded iri a nine-membered ring which may add a degree of size selectivity 

for metal ions in TACN derived ligands. The acidity of the a-methylene units in 

the TACN ring is responsible for the interesting chemistry of the resolved 

[Co(TACNpyr)]3+ complex. Unlike the analogous TACH derived ligands TACNpyr 

shows promise as a novel ionophore.

1 .3.3. Cage ligands derived from sen

Formaldehyde has been used in a remarkable variety of reactions with 

polyamines to give macrocyclic and macropolycyclic ligands. Polymacrocycle 

formation with the Co(lll)-complex of sen 1.21, where sen=5-(4’-amino-2’- 

azabutane)-5-methyl-3,7-diazanonane-1,9-diamine, affords an array of 

sophisticated caged molecules collectively known as the “sarcophagines”

(+)-[Co(TACNpyr-OH)]3+
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(Figure 19).(51-55) The reaction of {Co(sen)]3+ with paraformaldehyde and TEA 

is a unique metal-templating Mannich reaction.(56) The resulting tri-iminium 

cationic intermediate from this reaction will then participate in a multi-step 

condensation with a host of reaction partners, which include various aldehydes, 

phosphines, and arsines. The resulting sarcophagine ligand “entombs” the 

Co(lll)-centerthus hindering decomplexation.

Me

Figure 19 A select collection of the so-called “ sarcophagines” .

The stability constants for the parent sen 1.21 were ascertained by 

Hollingshed etal. with a host of transition and main group metal ions (Table
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2).{57) The authors claim that the complexation behavior of sen 1.21 as 

compared to linear polyamines and polyazamacrocycles is associated with the 

steric properties of the chelator rather than the bascities of the ligand 

coordination sites. Sen 1.21 forms the strongest complexes with first-row 

transition metals and weaker complexes with Cd(ll) and Pb(ll) because of a poor- 

size match within the binding cavity. The binding constant with In(lll) was 

surprisingly high and was attributed to the size-selective nature of sen 1.21. The 

relative stabilities of Mn(ll)<Fe(ll)<Co(ll)<Cu(ll)>Zn(ll) is in accord with the Irving- 

Williams series.(55)

Table 2 Protonation and formation constants for the hexadentate tripodal 
_______________________ ligand sen 1.21 .{57)_______________________
Equilibria (L=sen 1.21, all metals are 

dicationic except for In which is 
tricationic)

LogK (25.0°C, |x=0.1)

HL/L-H 10.76±0.01
HsL/HL-H 10.08±0.01
h3u h 2l-h 9.40±0.01
H4L/H3LH 7.20±0.01
H5L/H4LH 5.19±0.01
h6l / h 5l-h 2.73±0.01
MnL/Mn-L 8.6±0.1

MnLH/MnL-Mn 8.1±0.1
FeL/Fe-L 13.4±0.1

FeLH/FeL'H 7.0±0.1
CoL/Co-L 18.0±0.1

C0 LH/C0LH 5.9±0.1
CoLH2/CoLH-H 5.6±0.1

CuL/Cu-L 26.2±0.3
CuLH/CuL-H 9.9±0.1

CuLH2/CuLHH 5.6±0.1
Cu2L/Cu-Cu-L 33.5±0.1

CugLH.i/C^L-H'1 7.8±0.1
Cu2LH.2/Cu2LH-H'1 10.7±0.1

ZnL/ZnL 17.0±0.1
ZnLH/ZnL-H 6.8±0.1

ZnLH2/ZnLH-H 5.9±0.1
CdL/Cd-L 13.4dt0.1
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Table 2 continued...
GdLH/CdL-H

CdLH2/CdLHH
PbL/Pb-L

PbLH/PbL-H
PbLH2/PbLHH

8.0±0.1 
6.3±0.1 
9.2±0.1 
9.1 ±0.1 
7.5±0.1 
15.1±0.1 
9.7±0.1 
6.7±0.1 
10.4±0.1

InL/ln-L
InLH/lnLH

lnLH2/lnLHH
InLH.t/lnL-H'1

To summarize the sen derived ligands are unique in that they afford a host 

of caged ligands in the presence of formaldehyde and Co(lll). The sen ligand 

itself forms thermodynamically robust complexes with both transition block metal 

ions and main group metal ion as evidenced by large formation constants with 

these species. The tripodal cap is more flexible than the corresponding TACH 

and TACN frameworks because the anchoring methylene H’s are free to twist 

about the principal rotation axis when they are engaged in coordination.

1.3.4. TREN ligands

The tripodal polyamine TREN I.22 (where TREN=tris-(2- 

aminoethyl)amine) has been employed by many workers as a facial cap for a 

variety of metal-ions (Figure 20). Most notably Schrock and coworkers have 

utilized various derivatives of TREN I.22 in the
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TREN 1.22 TRENpyr 1.23

Figure 20 The structures of TREN 1.22 TRENpyr 1.23.

preparation of molybdenum-containing catalysts that effect the reductive splitting 

of N2 to NH3 under ambient temperatures and pressures.(50) Keeping in-stride 

with the previous examples the analogous ligand TRENpyr 1.23 is unique in that it 

contains a seventh donor atom at the apex of the TREN-framework (Figure 20). 

Indeed, a seven-coordinate complex of TRENpyr 1.23 exists with Mn(ll) as 

evidenced in the crystallographic study carried out by Deroche et at. (Figure 

21).(60) Moreover, [Mn(TRENpyr)]2+ scavenges superoxide (02") which was 

also studied by Deroche and coworkers using the so-called xanthine-xanthine 

oxidase-cytochrome c assay. A few papers were published years earlier that 

were aimed at studying the superoxide dismutase (SOD) activity of Fe(ll) 

complexes of both TRENpyr I.23 and the well-know hexadentate heavy-metal 

chelator TPEN, where TPEN=A/,A/,/V',/V'-tetrakis-(2-

pyridylmethyl)ethylenediamine.{61-63) Superoxide dismutase is an enzyme 

which reduces cellular oxidative stress by converting 0 2' into H20 2. Both 

aminopyrdyl ligands readily disengage coordination of a picolyl group to the 

metal-center, which is hypothesized to play a role in the observed SOD activity.

A later crystallographic study of [Zn(TRENpyr)]2+ showed that the ligand only
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offers the metal six donor-sites resulting in the dangling of one of the picolyl arms 

(Figure 21).(64)

Figure 21 Structures of [Mn(TRENpyr)](PF6)2 and[Zn(TRENpyr)](CI04)2. The
images were created from data obtained in the Cambridge Structural Database

(CSD).

In the same study (Mohamadou and Gerard) the protonation constants and 

binding constants of TRENpyr I.23 with Zn(ll) were obtained potentiometrically 

(Table 3).

A small collection of papers by Hartmann and coworkers describe the gas 

(i.e. mass spectroscopy), solution, and solid state coordination environments of 

TRENpyr I.23 with Ni(ll) and Cu(ll).(65, 66) In the solid state the chelator binds 

two

Table 3 Protonation and Zn(ll)-formation constants of TRENpyr I.23.

Equilibria (L=TRENpyr I.23) LogK/p (25.0°C, p=0.1), p for Zn(ll) 
only

HL/LH 9.12±0.01
H2L/HL-H 8.14±0.01
h3u h 2l-h 6.91±0.01
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Table 3 continued... 
H4L/H3LH 
H5L/H4LH 
ZnL/LZn 

ZnLH/Zn-L-H

2.50±0.01
1.0±0.3

15.62±0.02
21.38±0.01
23.92±0.04ZnLH2/ZnLH |2

equivalents of Ni(ll). The measured magnetic moment for this complex was 

3.59BM, which is below the range expected for two paramagnetic Ni(ll)-centers. 

The authors speculate that the complex cation contains one tetrahedrally bound 

Ni(ll) ion, with experimental magnetic moments that range between 3.2-4.1BM, 

and one square planar Ni(ll) ion, which does not contribute to the observed 

paramagnetism.(67) The authors admit that structural data for this species 

remains elusive. However, it is the opinion of the candidate that Hartmann and 

coworkers failed to account for the possibility of antiferromagnetic behavior within 

the dimetallic complex. From the elemental analysis data they report 

[Ni2(TRENpyr)](BF4)2(OH)2 which suggests the possibility that the hydroxyl 

groups are bridging the metal-centers. However, in solution and the gas phase a 

binding stoichiometry of 1:1 M:L was observed with Ni(ll). The visible-near IR 

absorbance data supports Ni(ll) in an octahedral environment. Similar behavior 

with Cu(ll) was also observed, however solution and gas phase data indicated 

that TRENpyr 1.23 forms a tetragonally distorted monomeric complex with the 

metal.

Brewer etal. reported a reaction of Fe(lll) with TREN 1.22 and three 

equivalents of 2-pyridinecarboxaldehyde that exclusively yields the Fe<ll) 

complexes, [Fe(TRENpyr-trisimine)]X2 (where X = CICV or PFe") (Figure 22).(68)
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nh2
FeX3

2-pyridinecarboxaldehyde,

H 2 N ^ J  n h2

1.22
X=CI04 or PF6 

1.24

Figure 22 Preparation of [Fe(TRENpyr-trisimine)]X2.

The structure of [Fe(TRENpyr-trisimine)](CI04)2 1-24 was determined with X-ray 

crystallography and features an octahedral Fe(ll)-center with facial coordination 

of the pyridyl and imino N atoms (Figure 23). The short Fe-N bond distances 

(1.9747A (Fe-Npyridyi) and 1.9523A ( F e - N imino) support a low spin assignment for 

the Fe(ll)-center. The apical N atom of the TREN 1.22 framework is nearly planar 

and is outside of bonding interactions with the metal at a distance of ca. 3.45A. 

The low spin assignment is supported by Mossbauer spectroscopy, which 

reveals two low spin forms that are not in thermal equilibrium.

In sum the TREN framework is unique in that upon functionalization of the 

primary amines with additional donor groups the resulting ligand can offer its 

binding partner more than six coordinating atoms. This leads to interesting 

reactivity as evidenced by the SOD mimicry of [Fe(TRENpyr)]2+ and unique 

coordination geometries as illustrated by the seven coordinate complex 

[Mn(TRENpyr)]2+. Like sen derived ligands the TREN framework is more flexible 

than the corresponding TACH and TACN based ligating systems.
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Figure 23 Structure of [Fe(TRENpyr-trisimine)](CI04 )2- The image was 
created from data obtained in the Cambridge Structural Database (CSD).

1.3.5.1,3,5-Tris(aminomethyl)benzene ligands

Another class of tripodal chelators are based on the 1,3,5-tris- 

(aminomethyl)benzene framework I.25 (Figure 24). This ligating group is more 

constrained than the aforementioned tripodal architectures. Lin and coworkers 

have prepared and characterized ligands 1.26 and 1.27.(37, 69) Because of 

reduced flexibility within the arene-framework there was a tendency for the 

ligands to form trimetallic complexes with a host of divalent first-row transitions 

metal ions.
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h2n

NH

1.25 1.26

'NH,

1.27

Figure 24 Chelators based on 1,3,5-tris(aminomethyl)benzene I.25.

The formation constants for the 3:1 M:L complexes are reported in Table 4.

Ligand Co(ll) Ni(ll) Cu(ll) Zn(ll)
1.27 16.97±0.12 22.35±0.16 24.07±0.06 23.00±0.07
1.26 28.44±0.06 28.57±0.13 29.17±0.09 28.49±0.06

Table 4 Formation constants (logp^i.o) for ligands 1.27 and 1.26.

With the hexamine chelator 1.26 ternary complexes with o-phenanthroline were 

also studied (Figure 25). This study was aimed at better understanding the self- 

assembling processes that take place in the construction of coordination 

oligomers and polymers. In this case each branch of the tripod will bind a metal- 

center to afford a 3:1 M:L complex. The metal centers in each branch will be 

chemically and magnetically equivalent. The resulting thermodynamically robust 

and kinetically inert tripodal architecture can then be employed in the
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construction of supramolecular systems that may possess interesting and useful 

physical properties.(70)

Figure 25 Putative structure of the ternary 3:1:3 M:L7:L2 complex. In this 
case M=Cu(ll), L}=l.26,and L =o-phenanthroline.

1.4. Summary-The challenge of TAME

The tripodal framework TAME I.36, where TAME=1,1,1- 

tris(aminomethyl)ethane, has been under utilized in the preparation of new 

acyclic ligating architectures. Two reports in the literature describe the 

preparation and study of Mn(ll), Fe(ll), Co(ll), and Zn(ll) complexes of TAMEpyr- 

trisimine 1.51, where TAMEpyr-trisimine= A/,/V',/N/”-tris(2-pyridylmethyl)-1,1,1- 

tris(iminomethyl)ethane.(71, 72) The structure of the complex (Fe(TAMEpyr- 

trisimine)]2+ was determined by crystallography and is indeed quite octahedral 

(Figure 26).

= Cu(ll)
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Figure 26 The structure of [Fe(TAMEpyr-trisimine)](CI04 )2. The image was 
created from data obtained in the Cambridge Structural Database (CSD).

However, the hexahydro analogue TAMEpyr 1.60, where TAMEpyr =N,N’,N”- 

tris(2-pyridylmethyl)-1,1,1-tris(aminomethyl)ethane, has not been prepared and 

studied until now. The following discussion describes the preparation and 

coordination chemistry of the novel hexadentate chelator TAMEpyr 1.60. We 

utilized a Ni(ll)-mediated Schiff base condensation of TAME 1.36 and TAME- 

derivatives with a variety of azaaromatic aldehydes to afford a new family of 

tripodal hexadentate chelators. The coordination chemistry of TAMEpyr 1.60 with 

various transition block and main group metal ions is presented and comparisons 

with our gold-standard chelator TACHpyr 1.14 are made. A portion of the 

following work has been published.(73)
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Results and discussion

1.5. The preparation of the TAME framework

The preparation of the tripodal triamine TAME I.36 began with the 

commercially available trialcohol I.28 (Scheme 1). The hydroxyl groups in the 

starting material were converted into bromides via treatment with PBr3.(74, 75)

OH
Me-

H 0 \  OH 

1.28

PBr3
Me-

B r  Br 

I.29

Br NaN3

DMF, A
Me

N3

N3 N3 
1.30

Me

PhS02CI,
pyridine

O S 02Ph

a) PPh3, NH3(aq) 
p-dioxane
b) HCI(aq)

Me

Ph02S 0 '" ' 0 S 0 2Ph 

1.31

n h 2

3HCI 
H2n ^  NH2 

I.32

Scheme 1 The preparation of TAME-3HCI

The disadvantage of this reaction was the production of copious amounts of HBr 

during the addition of PBr3 to the reaction pot. This by-product was scrubbed 

from the head-space of the reaction vessel by piping the evolving gas into a 

solution of NaOH. An alternative approach that avoids the production of caustic 

fumes is to convert the hydroxyl groups into an arenesulfonate via treatment of 

the starting material with the appropriate arenesulfonyl chloride. The tribromide 

I.29 underwent a reaction with NaN3 to afford the crude triazide 1.30. Fleischer 

had isolated the triazide and partially characterized it <IR analysis). However,
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due to the explosive nature of polyazides this material was generated in situ and 

then subsequently reduced via a Staudinger reaction with triphenylphosphine in 

NH3(aq) and p-dioxane.( 76, 77) This approach, initially developed by Martin et 

al., is attractive because it does not require the use of LiAIH4 whose reaction with 

water or air could cause an explosion. The desired triamine was then isolated 

from solution in moderate yield (40.2%) as the hydrochloride salt 1.32 via 

treatment with HCI and filtering the resulting precipitate.

Following the method of Fleischer et al. the starting material 1.28 was also 

converted into the corresponding benzenesulfonate 1.31.(78) The particular 

advantage of this reaction was that the product could be recrystallized from 

EtOH/acetone in excellent yields (92.3%). Albeit trivial, compound 1.31 can then 

be converted into TAME-3HCI I.32 via the same reaction sequence of the 

tribromide I.29.

An alternative preparation of the free base TAME recently arose from the 

research efforts of Dunn etal. (Scheme 2).{79)
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NaNPht

Ph02S 0

Ph02S 0  Me

1.33
0 S 0 2Ph

NaNPht

DMF, A

Me-
Ph02S 0

NPht

1.34 NaOHfaq),
microwave

NH2
Me

H2N n h 2
1.36

Scheme 2 Dunn’s preparation of TAME.

Looking to avoid the preparation of polyazides, Dunn developed a strategy that 

initially relied on the so-called Gabriel reaction.(00) Starting with the 

aforementioned benzenesulfonate 1.33 the corresponding trisphthalimide 1.35 

was prepared in poor yield (ca. 20%). The reduction in yield can be 

compensated for by simply running the reaction on larger scale and recovering 

the bisphthalimide by-product 1.34. Geue and coworkers reported that the 

recovered material can be treated with additional sodium phthalimide {NaNPht) 

to afford the desired product 1.35.(80) The subsequent reaction of 1.35 with 

NaOH as reported by Geue requires the use of a reaction bomb. Dunn avoided 

that step by carrying out the hydrolysis in a microwave oven in a closed vessel. 

The desired product was then extracted from the reaction liquor as the free base 

TAME 1.36 which was used as is in subsequent chemistries.
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In order to explore polyfunctional TAME derivatives that could be used to 

link, immobilize, or target TAME chelators the differentiation of pentaerythritol

1.37 was studied (Scheme 3).(87)

Me HCS  Bn°

H0^ \  —OH ^ ° ^ 3  BnBr>KOH
HQ^  -OH pTsOH, O 0  O DMSO 0 ^ 0  

toluene, reflux | T
1.37 Me Me

1.38 1.39
HCI(aq) BnO \ OH P ^S O ^I BnO \ O S 02Ph

MeOH HO- -OH pyridine Ph02SO—^ O S 02Ph

1.40 1.41

NaN3 BnO—\ _ N 1 atm H2 B n O - ^  NHg

ethylene glycol, ^  _ y ^ - N 3 Pd/C, MeOH H k| _ V S*^~NH2
A 3

1.42 1.43

Scheme 3 The preparation of TAME derivative 1.43.

The pentaerythritol starting material was converted into an orthoester 1.38 with 

triethyl orthoacetate and catalytic pTsOH. This step furnished the differentiated 

pentaerythritol derivative 1.38 that possessed a lone hydroxyl group. This 

particular compound was susceptible to low-pressure sublimation which greatly 

facilitated the purification of the crude product slate. The lone hydroxyl group 

was then converted into a benzyloxy group via a Williamson etherification 

reaction affording compound 1.39. The orthoester functionality of compound 1.39 

then underwent acid-mediated decomposition with dilute aqueous HCI yielding 

the trialcohol 1.40. This key synthetic intermediate could be purified by trituration 

with Et20. The hydroxyl groups of 1.40 were converted into the corresponding
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benzenesulfoxy groups using the aforementioned Fleischer chemistry.(78) The 

resulting compound 1.41 was then heated with NaN3 in ethylene glycol affording 

the desired triazide I.42. The triazide I.42 was isolated via a liquid-liquid 

extraction and partially characterized (IR analysis) to ensure that all the 

benzenesulfoxy leaving groups had departed. The isolated triazide I.42 

{caution!) was subsequently dissolved in MeOH and reduced with 1 atm of H2 in 

the presence of catalytic Pd°. This reaction afforded the desired TAME derivative

1.43 in nearly quantitative yield.

An alternative approach to differentiated TAME derivatives came about 

serendipitously. Initial attempts at the preparation of tetraamine 1.47 were met 

with limited success (Scheme 4).

The major by-product from the failed reaction was highly crystalline and could be 

recrystallized from boiling EtOH to afford the azetidine 1.48 in ca. 30% yield 

(Scheme 5).

n -

S 0 2NH2
NaOEt, EtOH

S 0 2NHNa ^  *.

DMF, A1.44 1.45

TsHN NHTs
NHTsTsHN

1.46 1.47

Scheme 4 Attempted preparation of tetramine 1.47.
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\ ^ y — S 0 2NHNa ________,

l ah  DMF.A

Br TsHN

TsHN
1.48

Scheme 5 Formation of azetidine 1.48.

The close proximity of a nucleophilic sulfonamide to an adjacent electrophilic 

primary bromide on the same molecule creates a high local concentration of 

reacting partners thus facilitating an intramolecular ring closure via an Sn2 

mechanism (Figure 27).

This would suggest that the reaction was carried out under kinetic control and the 

initially desired tetrasulfonamide 1.46 could possibly be accessed under more 

forcing conditions. Further attempts at the tetrasulfonamide were not carried out. 

Presumably a spiroazetidine would not form because of excessive ring-strain in 

the spiro[3.3]heptane skeleton.(21)

The azetidine I.48 is still a synthetically useful reagent because it readily 

undergoes a detosylation/ring-opening reaction in refluxing 70% aqueous H2S04 

to afford the differentiated TAME derivative I.49 as a hydrogen sulfate salt 

(Scheme 6).

N -S 0 2Tol

©

X=NHTs or Br 

Figure 27 Proposed mechanism of ring-closure.
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TsHN H2S 0 4 HO
nh2

^ - nh2O n-T s 3H2S04
TsHN

1.48 1.49

Scheme 6 Preparation of TAME derivative 1.49.

The attractive feature of this reaction sequence is two-fold: reduction of the 

number of synthetic steps to gain access to the desired triamine scaffold {6 steps 

in Scheme 3 as opposed to 2 steps); and there is no need to prepare and handle 

any explosive polyazides. It was later discovered that Litherland and Mann had 

already reported the azetidine 1.48 and the corresponding hydrolysis reaction to 

afford compound 1.49 in 1938.(82)

1.6. The Ni(ll)-mediated template reaction of TAME

The tripodal triamine TAME 1.36 can be condensed with three equivalents 

of 2-pyridinecarboxaldehyde and one equivalent of a Ni(ll) salt to cleanly afford 

the trisimine complex 1.50 (Scheme 7) in moderate yield (40.2% isolated yield).

2+

Ni(CI04)26H20 ,
NH2 2-pyridinecarboxaldehyde, •  H

Me—? 

H2N^
2CKV

1.36

Me
1.50

Scheme 7 The preparation of [Ni(TAMEpyr-trisimine)]2+ 1.50.
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The advantage of the template methodology became apparent when 

attempts were made at the direct preparation of TAMEpyr-trisimine 1.51 via a 

metal-free Schiff base condensation (Scheme 8), which showed that

CHO

Me

h 2n

I.36
EtOH, A

EtOH

N—

1.51

Scheme 8 Schiff base condensations of TAME.

the major products isolated from the direct reaction of TAME and 2- 

pyridinecarboxaldehyde were not the desired trisimine 1.51 but rather a mixture of 

aminal I.54 and the trisubstituted-triazaadamantane I.53 (Figure 28).

pyr

Me

r / S -2-1
nL ^ n

^Nw^-2-pyr

6
1.53 1.54

Figure 28 Products isolated from the attempted direct preparation of
TAMEpyr-trisimine.
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During the course of the reaction the close proximity of a primary amine and 

adjacent imine greatly increases the local concentration of reacting partners.

This facilitates an intramolecular ring closure affording aminal 1.54 as an 

intermediate. The aminal then undergoes subsequent cyclization-reactions to 

afford the triazaadamantane 1.53. The triazaadamantane 1.53 was first prepared 

in 1957 by Dwyer et al. but they incorrectly proposed the trisimine structure 1.51 

(83). The development of NMR methods lead to the discovery of the correct 

adamantyl-like structure I.53 nearly a decade later(84). The assignment of the 

position of the 2-pyridyl groups was finally accomplished in 1978 by Webb and 

Edwards.(85) Their NMR data were consistent with the presence of a single 

isomer containing diequatorial and monoaxial pyridyl groups (Figure 28). This 

adamantyl structural motif was also seen by Webb and Edwards in the 

condensation product of TAME 1.36 and benzaldehyde.

As was discussed in the preparation of the differentiated TAME derivative

1.43 (Scheme 3) it appears that competing intramolecular cyclizations are a 

common reaction motif in this class of neopentyl derivatives. However, if TAME 

was reacted with salicylaldehyde no cyclization products were observed 

(Scheme 8). The trisimine 1.52 formed in excellent yield ^93.6%), likely because 

the phenolic group can readily engage in a hydrogen bond (as shown in Scheme 

8) with the pendant arm imine thus thwarting any intramolecular cyclizations.

The ligand donor set N3O3 in the ligand 1.52 is ideally suited for harder 

cations (e.g. Fe(lll), Ga(lll), Cr(lll), etc.). To demonstrate this a 1:1 complex with
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Cr(lll) was prepared by reacting 1.52 with CrCI3-6H20  in the presence of Na2C03  

(Figure 29).

CrCb 6H20  

Na2C 0 3,
ethylene glycol, H20,
MeOH, reflux

Figure 29 Preparation of the novel CrN303  complex 1.55.

The reaction mixture needed to be refluxed with ethylene glycol because of the 

inert-nature of Cr(lll). It is known that water-ligand exchange rates depend on 

both the charge and the ligand field stabilization energy (LFSE) of the cation.(8 6 ) 

The effect is most evident in Cr(lll) and Co(lll), both trivalent cations possessing 

local minima of LFSE amongst ions of the first row d-block with electronic 

configurations of cP and low-spin cP respectively. Because of this Cr(lll) ligand 

substitution occurs through an associative mechanism (/a) rather than a 

dissociative one (ld).{87) Therefore, association of ligand 1.52 with Cr{lll) will be 

hindered by unfavorable steric interactions within the inner coordination sphere, 

thus slowing the rate of complexation. The sluggish nature of the complexation 

allowed a competing hydrolysis of the Schiff base ligand to occur which 

drastically reduced the isolated yield of the complex to ca. 15%.

The template reaction also proceeds when the heterocyle is a five 

membered-ring. This was demonstrated by preparing trisimine complexes of 

TAME with 2-imidazolecarboxaldehycle and 2-thiazolecarboxaldehyde (Scheme 

9).
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Me

H2N

nh2

n h 2

1.36

Ni(CI04)2
Et0H/H20
 ^

N
'/>— CHO 

X

X=NMe, S

2CI04-

Me

1.56 when X=NMe
1.57 when X=S

Scheme 9 The Ni(ll)-mediated template reaction of TAME with five- 
membered ring heterocycles.

This result is noteworthy because a-thiazolyl and a-imidazolyl groups, as claimed 

in the literature, are poorly oriented for chelation as compared to their six- 

membered counterparts (e.g. a-pyrrdyl). (88-91) The non-ideal chelating 

dispositions of these groups result in poor orbital overlap between the donor 

atom and the metal center.

A crystallographic study of the complex [Fe(TACHTz)]{CI0 4 )2, where 

TACHTz= A/,A/’,A/”-tris(2-thiazolylmethyl)-c/s,c/s-1,3,5-triaminocyclohexane, 

showed that chelating thiazolyl groups will adequately bind Fe(ll) when appended 

to a tripodal architecture (Table 5).

Table 5 Crystal data and structure refinement for [Fe(TACHTz)](CI04)2.

Com pound  
Color/shape 
Empirical formula 
Temperature 
Crystal system 
Space group 
Unit cell dimensions

[Ni(TACHTz)](C I04)2
Red/block
Ci8H24Cl2FeN60 8S3
213(2) K
Monoclinic
P2(l)/2
a=17.101(4)A a=90.00°
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Table 5 continued...
b=8.781(2)A (i=92.098(3)°
c=16.320(4)A y=90.00°

Volume 2449.1 (10)A3
Z 4
Density (calculated) 1 -832 Mg/m3
Absorption coefficient 1.150mm
Diffractometer/scan Bruker SMART/CCD area detector
Radiation/wavelength Mo ka (graphite monochrom.)/0.7107A
F(000) 1384
Crystal size 0.40x0.30x0.20mm
6 Range for data collection 1.19 to 28.18°
Index ranges -22£hs2, -11 0, -21 £/£21
Reflections collected 17824
Independent reflections 3677
Observed reflections 3677
Data/restraints/parameters 5677/0/439
Goodness-of-fit on P  1 '630
Final R indices [/>2s(/)] /?,=0.0371, wR2=0.0937
R indices (all data) /?;=0.0453, w/?2=0.1011
Largest diff. peak and hole 6.717 and -0.521 e.A

Table 6 Crystal data and structure refinement for [Fe(TACHTz)](CI04)2.

The ORTEP view of the [Fe(TACHtz)]2+ complex cation clearly shows the Fe{ll) 

center in a nearly perfect octahedral geometry (Figure 30). The measured 

average twist angle a was 52(1)°, which is very close to the ideal value of 60°. 

The disposition of the thiazolyl groups toward the metal center was assessed by 

measuring the “bite” of the three 5-membered chelate rings. The average 

distance between the nitrogen donors in each of the pendant arms is 2.64(1 )A, 

which is accompanied by an average N(het.)-Fe-N{amine) bite-angle of 83.0(5)°. 

When compared to the closely related complex [Fe(TACH-3-Mepyr)]Cl2, with a 

measured intra-chelate nitrogen distance of 2.65(1 )A and a bite-angle of 83.6(4)°, 

it appears that chelating thiazolyl groups are efficient donors when appended to a 

tripodal framework (unpublished results). The author of this dissertation believes 

trigonal twisting about the C$ principal rotation axis allows the thiazolyl groups to 

achieve adequate dispositions for good orbital overlap with the metal center.
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Figure; 30 The ORTEP view of the cation [Fe(TACHTz)]2+.

1.7. Tetrahydroborate reduction

The versatility of the template reaction is evident from the subsequent 

tetrahydroborate reduction of [Ni(TAMEpyr-trisimine)]2+1.50. The resulting 

triamino complex [Ni(TAMEpyr)]2+1.58 (Scheme 10) was generated cleanly.(73)

a) xcs. NaBH4 C / / / v  
EtOH, H20  V w J

1.50 I-58

Scheme 10 The tetrahydroborate reduction of [Ni(TAMEpyr-trisimine)]2+
(.50.
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This reaction proceeds through reductive demetallation initially producing metallic 

Ni° (i.e. nickel-black) as a precipitate and putatively the free ligand TAMEpyr- 

trisimine 1.51 (Figure 31). The reaction mixture contains excess NaBH4 which is 

free to reduce the triimino ligand 1.51 to the triamino ligand TAMEpyr I.60. The 

reaction is quenched by the addition of concentrated HCIO4  until a pH of 

approximately 6 is achieved (assessed with pH paper). The advantage of HCIO4  

as a quenching reagent is three-fold: it will decompose the excess NaBH4 into 

B(OH)3 which prevents over reduction that would affect the heterocyclic 

rings(92), it will decompose the boron-amido complexes I.59 liberating the free 

secondary polyamine I.60, and finally it will oxidize the nickel-black to Ni(ll). The 

Ni(ll) is subsequently captured by the emerging TAMEpyr to afford a pink 

[Ni(TAMEpyr)]2+complex I.58. The generation of this complex provides the 

investigator with a colorimetric indicator signaling the completion of the reaction.
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2+

V
Me

1.50

20104- NaBH4  ̂ Ni°(s) Ml

1.51

NaBH4
2+

|NH

V r
Me

2CI04'

I.58 I.59
X=H, or BH2

Figure 31 Putative mechanism for tetrahydroborate reduction of 
[Ni(TAMEpyr-trisimine)]2+ I.50.

1.8. Comparison of ligand field poperties of TAMEpyr and TAMEpyr- 
trisimine via Ni(ll) complexes

The orange complex [Ni(TAMEpyr-trisimine)]2+ I.50 and the pink 

[Ni(TAMEpyr)]2+ complex I.58 were studied with absorbance spectroscopy. In 

the visible-near IR spectrum of unreduced [Ni(TAMEpyr-trisimine)]2+ 1.50 (orange 

colored spectrum in Figure 32) the presence of a metal-to-ligand charge-transfer 

(MLCT) band starting at ca. 490 nm (20400 cm'1) and proceeding into the UV 

region is characteristic of the pendant arm imino groups.<93) This band was
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noticeably absent in the spectrum of [Ni(TAMEpyr)]2+ (pink colored spectra ibid.) 

indicating the desired reduction had occurred.

200

180

160

140 -

r  120

60

600 700

Wavelength (nm)

[Ni(TAMEpyr-trisimine)]2+ — - [Ni(TAMEpyr)]2+

900 1000 1100400 500 800

Figure 32 The visible absorbance spectra of [Ni(TAMEpyr-trisimine)]2+ 1.50
m : / T A M C ~ w - v i 2 +  i  c o  u . r M  a *  o c o r

i2+-trisimine)]visibleFigure absorbance of [Ni(TAMEpyr ,5032 The ectras

The shoulder that appears at ca. 490 nm (20400 cm', e=65 cm'1M'1) in the 

spectrum of I.50 is the 3A2g-^3Tig(F) metal-centered d-d transition. This 

assignment suggests that this complex possesses a pseudo-octahedral 

geometry in solution.(43) This structural assignment is corroborated by the 

presence of a low-energy transition at 804 nm (12400 cm'1, e=32 cm'1M'1) with a 

shoulder at ca. 865 nm (11600 cm'1, e=24 cm'1M'1). This particular transition is 

assigned as the metal-centered 3A2g—►^g band envelope that is overlapping 

with a spin-forbidden 3A2g—̂E-lg transition.(42) This electronic transition is rather
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useful because it correlates well with the crystal field splitting parameter Ao.(28) 

The value of Ao is a measure of the energy difference between the bonding f2g 

and antibonding eg metal-centered d-orbitals in an octahedral field (Figure 33).

‘2*
Empty
ligand
group
orbital

i f f ^
'2* 

M -» L  
7t bonding 
(it acceptor)

% \
O Bonds \  
only '■

T t  t
2*

(a)

u n /  
%

L -» M
7t bonding 
(it donor)

(b)

•jW n % 
'2* 

Filled 
ligand 
group 
orbital

Figure 33 Splitting of metal d-orbitals in an octahedral field for a cP ion.(94)

If a ligand, like TAMEpyr-trisimine 1.51, is a good o-donor and rc-acid then the 

metal will be highly stabilized in that ligand field resulting in a large Ao (to the left 

in Figure 33). The converse is true if the ligand is a poor donor/acceptor or
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possesses a donor atom disposition that is incongruent with the metal-ion in the 

complex. This will cause a decrease in Ao and a bathochromic shift in the 

3A2g—►3T2g band envelope. The values of Ao obtained from the spectra of a series 

of structurally related tris(a-diimine) complexes of Ni(ll) tend to vary between 

10400 and 12800 cm'1 .(95) The value of Ao for complex I.50 (12400 cm'1) was 

approximated from the lowest energy transition in the absorbance spectrum. A 

reported low energy transition of 14000 cm'1 for the related complex 

[Ni(TACHpyr-trisimine)]2+ is far-removed from the expected range of Ao.{93) This 

spectral aberration was rationalized by assuming a non-octahedral geometry in 

solution.

The exact value of Ao and the so-called Racah ligand field parameter B', 

which is a measure of the interelectronic repulsions of the metal af-electrons, can 

be obtained for a cP metal in an octahedral field if all three spin-allowed 

transitions are observed in the absorbance spectrum.(28) Unfortunately, the 

highest energy 3A2g—>3T1g(P) d-d transition was obscured in the spectrum of I.50 

by the presence of the aforementioned MLCT band. Moreover, the 

approximation/ratiometric method as explained in the text of Miessler and Tarr 

requires one to know the exact position of the 3A2g-^3T1g(F) transition.(94) The 

symmetry labels located in the parenthesese next to (i.e. P or F) refer to the 

corresponding Russel-Saunders term symbols for the free-ion. Ascertaining that 

value proved challenging because of the overlap with the MLCT band. 

Furthermore, it appears that this band is artificially large (e=65 cm'1M'1) because 

of intensity-borrowing with the adjacent MLCT band.
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Interpretation of the spectrum of complex 1.58 was more straightforward 

because of the lack of the MLCT band upon reduction (pink spectrum in Figure 

32). The higher energy 3A2ĝ 3T1g(F) transition in [Ni(TAMEpyr)]2+ 1.58 occurred 

at 510 nm (19600 cm'1, e=21 cm'1M'1) indicating that the complex maintains a 

pseudooctahedral geometry in solution. This claim was further corroborated by 

the presence of the low-energy transition at 794 nm (12600 cm'1, e=24 cm'1M'1) 

and a shoulder at ca. 861 nm (11600 cm'1, e=18 cm 1M'1), which has been 

assigned as the 3A2ĝ 3T2g band envelope overlapping with the 3A2g—̂1Eig spin- 

forbidden transition. A pseudooctahedral structural assignment came as no 

surprise because it was anticipated that reduction of the imino groups to the 

amino groups in I.58 would result in a more flexible ligating scaffold that could 

better accommodate the preferred octahedral geometry of six-coordinate Ni(ll). It 

appears that the loss of the 7t-acidic imino groups in complex I.50 was 

energetically compensated for by relaxing the strain within the chelator. In fact, a 

slight blue-shift of ca. 10 nm (160 cm'1) in Ao upon C=N reduction suggests that 

the Ni(ll)-is better stabilized by the triamino ligand TAMEpyr I.60.

The Racah ligand field parameter S’ was calculated from the spectrum of 

[Ni(TAMEpyr)]2+ I.58 and the Tanabe-Sugano diagram (Figure 34) for a 

metal. (94)
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Figure 34 Tanabe-Sugano diagram for a metal ion.

A plot of the ratio of the ^ ^ (F )  and transitions (v2/vi) as a function of AJB’ 

was created from the Tanabe-Sugano diagram and exponentially fit {Figure 35). 

The spectrum of complex I.58 was used to calculate the VzN\ ratio (v2/vi=1.56). 

The value of AoIB  for [Ni(TAMEpyr)]2+1.58 was then ascertained from Figure 35 

(AJB =24) and used to calculate the Racah parameter (B’=530 cm'1) and a more 

accurate value of Ao (Ao=12700 cm'1).
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1.45

1.25
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Figure 35 Assessment of AJB’ for [Ni(TAMEpyr)]2* I.58.

Unlike tris(a-diimine) Ni(ll) complexes which have Racah parameters (S’) that 

vary between 740 and 880 cm'1, the triamino complex I.58 possesses enhanced 

covalent character as compared to the trisimine complex I.50 with a calculated 

value of B ’=530 cm'1.(95) This came as a surprise because toss of the imino 

groups on reduction should reduce the rc-acidity of the ligand concomitantly 

enhancing the interelectronic repulsions of the c/-electrons due to reduced metal- 

to-ligand backdonation. The Racah parameter depends on both the rc-acidity of 

the ligand and the ligand-metal fit, which might be perturbed by the presence of 

the imino groups in [Ni(TAMEpyr-trisimine)]2+.

A calculation of the so-called nephelauxetic parameter (3, which is a ratio 

of the Racah parameter for the complex 1.58 (S’) and the Racah parameter for 

the gaseous free-ion (S) was carried out. This value is telling of how well the
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ligand can reduce interelectronic repulsions on the metal upon coordination. A 

value of 1.00 tells the investigator that the metal-ligand bonding is purely 

electrostatic. A value of p less than 1.00 indicates increasing covalency within the 

metal-ligand coordinate bonds. The value of B for free Nr(ll) is 1041cm'1 which 

results in a value of p for [Ni(TAMEpyr)]2+ I.58 of 0.51 .{28)

The more accurate ligand field splitting parameter Ao that was calculated 

from the Racah parameter B  allowed for the calculation of the /-factor for 

TAMEpyr 1.60 which could be used to place the chelator in the spectrochemical 

series. The relationship between Ao and the /-factor is as follows:

A q  — g ion ‘ flig an d

<!■»)

where the glon for Ni(ll) is 8700 cm'1 and Ao for 1.58 is 12700 cm'1 .{28) The 

calculation of the /-factor for the ligand resulted in a value of ZrAMepyrOf 1.46. This 

result placed TAMEpyr 1.60 at the higher end of the spectrochemical series thus 

classifying it as a strong-field ligand.

1.9. Liberation of TAMEpyr I.60 and the preparation of benzyloxy-TAMEpyr 
I.64

The liberation of TAMEpyr I.60 from Ni(ll) was accomplished by treating 

the isolated complex 1.58 with an aqueous solution of NaCN -(Scheme 11).
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2CI04' NaCN(aq)
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 ► Me
OR...

3
1.60

Me
1.58

Scheme 11 Liberation of free TAMEpyr I.60.

From the spectrochemical series the f-factor of CN' is ca. 1.7 which is larger than 

the value calculated for TAMEpyr I.60 (/hgand=1 -46) suggesting that CN' will 

outcompete TAMEpyr 1.60 for the metal and form water soluble [NKCN)4]2'. The 

completion of this particular reaction was monitored by noting the loss of the pink 

color and development of a yellow colored solution which is consistent with the 

formation of [Ni(CN)4]2'. The freebase ligand was then extracted from the mother 

liquor with methylene chloride (DCM) and the solvent evaporated yielding the 

desired compound 1.60 free of impurities in near quantitative yields. An 

alternative method of isolating free TAMEpyr 1.60 involves acidifying an ethanol 

suspension of [Ni(TAMEpyr)](CI04)2 1.58 with excess concentrated HCI. The 

resulting white precipitate (presumably TAMEpyr-nHCI salt, where n can vary 

between 1 and 6) can be isolated via centrifugation and then treated with excess 

NaOH. The freebase TAMEpyr I.60 can then be extracted from the reaction 

mixture with DCM. With the liberated ligand in hand a systematic study of the 

coordination chemistry of TAMEpyr 1.60 with a variety of metal ions ensued (vide 

infra).
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Large-scale approaches (ca. 5-10 g) to the desired ligand were tentatively 

explored (Scheme 12).

Me

Ph0 2S O "' oso2Ph 
1.33

0S 02Ph NTsNa

X  -
DMF, A

NH2

nh 2
H2N Na2C03, MeON, A

I.36 I.60

Scheme 12 Failed attempts at the preparation of TAMEpyr I.60.

The first approach involved a reaction between the benzene sulfonate I.33 and 

the sodium-salt of a 2-picoylsulfonamide. The reaction likely failed as a result of 

steric hindrance thus preventing the nucleophilic sulfonamide from reacting with 

the substrate I.33. The direct reaction of TAME I.36 with 2-picolyl chloride also 

failed to produce the desired product I.60. The resulting product-slate was 

exceedingly complex as evidenced in the crude 1H-NMR spectrum which 

indicated multiple alkylations on the primary amine of TAME 1.36 had taken 

place.

The benzyloxy differentiated TAME derivative 1.64 (vide supra) also 

underwent the Ni(ll)-mediated template reaction with 2-pyridinecarboxaldehyde
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affording the corresponding triimino complex 1.62 (Scheme 13). The visible-near 

IR absorbance spectrum of the isolated material was nearly identical to that of 

the parent complex [Ni(TAMEpyr-trisimine)](CI04)2 I-50 (Table 6).

v  (cm'1) for [Ni(benzyloxy- 
TAMEpyr-trisimine)]2+

Assignment v (cm'1) for [Ni(TAMEpyr- 
trisimine)]2+

12400 
ca. 11300 (sh.) 

ca. 20000

aA 2q >3T2q 
3A2q ^ 1Eiq

3/W -*T 1a(F)

12400 
ca. 11600 <sh.) 

ca. 20400
Table 7 Position of the d-cf electronic transitions for I.50 and I.62. The

spectra were collected at 25.0°C in MeCN. The exact position of the 
3A2g ^ 3T ig(F) transitions were obscured by the aforementioned MLCT band.

This result is important because introduction of additional functionality in the 

ligating scaffold does not interfere with the metal-binding site. In the future this 

will allow for the preparation of TAME-based bifunctional chelators which 

maintain the desirable metal binding properties of the parent TAMEpyr 1.60 

ligand. This result highlights the utility of the peripheral methyl group in the 

TAME-framework. The isolated triimine complex 1.6? was then reduced with 

NaBH4 in aqueous EtOH affording the desired triamino complex 1.63 in 35.0% 

isolated yield. The reduction was evidenced in the loss of aC=N stretch at 1648 

cm'1 and development of the N-H stretch at 3288 cm'1 in the IR spectrum of the 

isolated complex I.63. The Ni(ll)-center was subsequently removed with NaCN 

quantitatively affording the desired ligand benzyloxy-TAMEpyr I.64.
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Ni(CI04)2 6H20, 
2 -pyridinecarboxaldehyde, 

O. / - N H 2 Et0H/H20

H?NT
NH2

1.43

NaBH NH 2CIO4"

Et0H/H20

O

1.62

N

HN^

1.63 benzyloxy-TAMEpyr 1.64

Scheme 13 The preparation of benzyloxy-TAMEpyr I.64.

1.10. Coordination Chemistry of TAMEpyr with various metal ions

The liberated ligand TAMEpyr I.60 was used in the preparation of a variety 

of 1:1 metal complexes (Scheme 14). The analytical purity of the ligand was 

checked by elemental analysis and NMR spectroscopies prior to the 

complexation studies.
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NH
NH

>
Me

Me

V 3
1.60

M=Mn(ll) 1.65, Fe(ll) 1.66,
Co(ll) 1.67, Cu(ll) 1.68,
Zn(ll) 1.69, In(lll) 1.70 
X=CI04' or BF4‘

Scheme 14 Preparation of a variety of TAMEpyr metal-complexes.

The complexes were prepared straightforwardly by reactions of the metal salts 

and the ligand in MeOH with Et20  as a cosolvent to induce precipitation and 

improve the yields of the desired material. The crude complexes were 

recrystallized from a MeCN/Et20 solvent system and a 1:1 M:L composition was 

verified for all products by elemental analysis (CHN) and electrospray mass 

spectrometry (Table 7).

Complex ESI-MS CHN Data
(calculated % on top and 
experimental % below)

[Mn(TAMEpyr)](CI04)2- 1/2H20 m/z=544, M-CI04' C, 42.3, H, 4.80, N, 12.8 
C, 42.3, H, 4.78, N, 12.4

[Fe(TAMEpyr)](CI04)2 - C, 42.8 H, 4.69 N, 13.0 
C, 43.1 H, 4.75 N, 13.1

[Co(TAMEpyr)](BF4)2 - C, 44.3 H, 4.85 N, 13.5 
C, 44.3 H, 5.05 N, 13.3

[Cu(TAMEpyr)](CI04)2 m/z=552, M-CKV C.42.3H, 4.63 N, 12.9 
C, 42.2 H, 4.58 N. 12.8

[Zn(TAMEpyr)](CI04)2 m/z=553, M-CKV C, 42.2 H, 4.62 N, 12.8 
C, 41.9 H, 4.60 N, 12.7

[ln(TAMEpyr)](N03)3- MeOH m/z=629, M-N03' C, 39.8 H, 4.74 N, 17.4 
C, 39.9 H, 4.47 N, 17.7

Table 8 The 1:1 M:L stoichiometry data. The air-sensi live nature of the Fe(ll)
and Co(ll) complexes prevented ESI-MS analysis.
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To gain insight into the geometry preferences of coordinated TAMEpyr

1.60 a crystallographic study of [Zn(TAMEpyr)]2+ 1.69 was carried out because 

Zn(ll) has no electronic geometry preferences (Figure 36).(39) The cation 

possesses crystallographic C3 symmetry where the C3 axis passes through 

nuclei C9, C8 and Zn1. TAME I.36 appears better suited to providing an 

octahedral geometry as compared to TACH 1.13, because [Zn(TAMEpyr)]2+ I.69 

has a larger trigonal twist angle (46.5(2)°) than the related complex 

[Zn(TACHpyr)]2+ (43.7(2 )°).(30)

Figure 36 X-ray crystal structure of the cation [Zn(TAMEpyr)]2+ I.69.
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Complex 1.69 also has significantly shorter Zn-Npy bond lengths than 

[Zn(TACHpyr)]2+ (2.128(2) A versus 2.165(4) A). A greater twist angle is 

consistent with shorter bond lengths to the metal ion because steric interactions 

between the coordinating pyridines were reduced. The other striking comparison 

is with [Fe(tptMeTAME)]2+, the Fe(ll) complex of the tri-A/-methylated TAMEpyr 

analog. This complex was structurally characterized at 153K, where the Fe(ll) 

center is in the low-spin state and the trigonal twist angle is nearly octahedral at 

51.0 °.(96)

The ability of TAMEpyr I.60 to attain a conformation close to octahedral is 

clearly attributable to twisting of the framework and so an analysis according to 

the formalisms that Al-Obaidi et al. applied to {Fe(tptMeTAME)]2+ is 

appropriate.(96) There are multiple conformational possibilities in TAMEpyr 

chelates because of left- or right-handed twists with respect to the Gj-axis of both 

the TAME cap (atoms C8, C7, C7A, C7B) and the three aminopyridyl arms. The 

twist configuration of the three six-membered rings in the TAME portion of 

[Zn(TAMEpyr)]2+ 1.69 was assigned by convention as 8CAP. This assignment 

denotes a clockwise-twist about the C3 axis. Furthermore, X and 8-configurations 

of the five-membered aminopyridyl chelate rings (e.g. Zn1-N2-C6-C5-N1) are 

possible. The three aminopyridyl arms may have an absolute configuration of A 

or A. In [Zn(TAMEpyr)]2+ 1.69 the conformation of the five-membered chelate 

rings are XXX and the absolute configuration is A. The secondary nitrogens are 

rendered stereogenic upon coordination and in the structure of |Zn(TAMEpyr)]2+

1.69 they were all found to possess the S configuration using the Cahn-Prelog-
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Ingold nomenclature rules. The complex crystallizes in the chiral space group 

P2i3. Because the Flack parameter refined to a value of 0.015(14), the 

stereoisomer reported herein is correct. While the crystal studied is of the 

A8cap(MA,)SSS isomer, crystals of the enantiomer A^cap(568)RRR are likely 

present somewhere in the sample but they were not studied.

The 1H-NMR spectra of [Zn(TAMEpyr)]2+ I.69, [Fe(TAMEpyr)]2+ I.66, and 

[ln(TAMEpyr)]3+ I.70 show marked differences in appearance. The data illustrate 

that TAMEpyr maintains rigid psedooctahedral geometry at room temperature 

when coordinated to a 3d metal ion, but as the size-fit worsens the inner 

coordination sphere becomes more elastic. The spectra of the Fe(ll) and Zn(ll) 

complexes display a sharp doublet-of-doublet spin pattern for the pseudobenzyl 

and TAME methylene protons indicating conformational rigidity in solution at 

room temperature. The corresponding methylene protons are no longer 

diastereotopic in the spectrum of [ln(TAMEpyr)]3+ 1.70 and have collapsed into a 

doublet (Figure 37). The fluxional behavior observed in solution is consistent 

with a diastereomerization process taking place in solution. This spectral 

behavior was not observed in the closely related complex [ln(TACHpyr)]3+ 1.70 

until a temperature of 107° was achieved.(38) Presumably the oomplex 1.70 has 

a smaller twist angle because of the poor size match of the binding cavity with 

the relatively large In(lll) ion (ionic radius=94pm).(20) This would reduce the 

energetic barrier to diasteromerization. Racemization between the A and the A 

forms would require configurational inversion of the secondary amines. The 

transition state for
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TT

8.0 7.0 6.0 5.0 4.0 3.0
ppm (t1)

Figure 37 Partial 1H-NMR spectra for [Fe(TAMEpyr)]2+ (top) in MeCN-cfe and 
[ln(TAMEpyr)]3+ (bottom) in DMSO-cfe.

such a process is a trigonal prismatic complex with a twist angle oc=0°.{47) The 

energy barrier for a Bailar twisting mechanism for TAME based ligands should be 

lower than it is for TACH ligands because the TAME methylene carbons are not 

constrained to a ring. This in turn facilitates twisting about the Cz axis. Variable 

temperature NMR experiments, which could be used to measure the activation 

energy for such a process, were not performed on the TAME derived metal 

complexes.

The visible-near IR absorbance spectra of all the colored complexes are 

fully consistent with a pseudooctahedral coordination geometry and strong metal- 

ligand interactions including effective drc—>p7t* metal-ligand donation (Table 8).
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M(ll)_______v, cm'1 (e, cm 1M 1) Transition__________Color
Fe(ll) 24000 (70000), 

18000 (300) 
21100 (63), 18400 
(28), 10650(21)

MLCT Bronze

Cu(ll)

Co(ll)

16100(107)

Orange

Blue
Table 9 Visible-near IR absorbance spectroscopy of [M(TAMEpyr)J .

The room temperature 1H-NMR spectrum of [Fe(TAMEpyr)]2+ I.66 (vide supra) is 

not paramagnetically shifted, indicating a low spin electronic configuration (1A-ig 

ground state). An absorbance at 24000 cm'1 in this complex has therefore been 

assigned as a metal-to-ligand charge-transfer band (MLCT) characteristic of LS 

Fe(ll) complexes.{97, 98) This transition masks the d-d metal centered 

transitions except for a low energy shoulder (18000 cm'1, e=300 cm'1M'1), which 

is often assigned as an obscured 1Aig—>1T ig transition.(97) The spectrum of 

[Cu(TAMEpyr)]2+ I.68 is typical of distorted octahedral complexes of Cu(ll), with 

the presence of one asymmetric band at 16100 cm'1.(99) The asymmetry is a 

result of a Jahn-Teller distortion invariably associated with cF metals. All three 

possible d-d transitions for a HS d7 metal ion are seen in the spectrum of 

[Co(TAMEpyr)]2+ I.67. The 4T ig-+4A2g band often lies under the ^ ^ (P )  transition, 

but in the case of I.67 both transitions are seen at 21100 cm'1 and 18400 cm'1 

respectively. The lowest energy transition, which is equal to Ao, occurs at 10650 

cm'1. A ligand field strength >15000 cm'1 can cause Co(ll) to be LS.(47) The 

resulting LS d7 complex would then undergo Jahn-Teller distortions leading to 

additional strain within the complex thus disfavoring this electronic configuration. 

In fact, it is quite rare indeed to observe a LS Co(ll) complex.
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1.11. Conclusions and future work

In sum the Ni(ll)-mediated template synthesis of the novel chelator 

TAMEpyr I.60 and its coordination chemistry with a host of metal ions has been 

presented. Structural data for [Zn(TAMEpyr)]2+ I.69 show the propensity of the 

ligand for an octahedral coordination geometry. This has been attributed to the 

flexibility of the framework in regard to trigonal twisting. Solution studies of 

TAMEpyr I.60 demonstrate that the chelator possesses a great deal of flexibility 

which may be exploited in the future toward the preparation of metal-selective 

ligands. Moreover, the rich synthetic chemistry of the TAME framework will grant 

access to a host of bifunctional metal chelators without disturbing the binding 

pocket of the ligand. Lastly, the pyridyl groups can be exchanged with a host of 

azaheterocycles affording a new family of hexadentate chelators. The next 

chapter of this dissertation will describe how the Ni(ll)-mediated template 

reaction of TAME I.36 was exploited in the preparation of novel fluorescent 

Zn(ll)-sensors.
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CHAPTER 2

TAME DERIVED FLUORESCENT SENSORS FOR ZN(II)

Summary

In this chapter the candidate presents an application of TAME derived 

ligands for the PET/CEF fluorescent sensing of Zn(ll). The discussion begins 

with a description of fluorescence and how fluorescent metal-chelates are used 

to detect a wide-variety of analytes. The literature precedence of fluorescent 

metal sensors has been restricted to the most recent examples because of the 

breadth of this field. This discussion then seques into the preparation of several 

azaaromatic aldehydes which serve as the fluorophores in the novel TAME 

derived luminescent sensors. The synthesis of the ligands via the Ni{ll) mediated 

template reaction/tetrahydroborate reduction is discussed followed by a 

description of the photophysical properties of these systems.
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2.1. Fluorescence: discussion adapted from reference (100)

Fluorescence is defined as the emission of light from an excited electronic 

state. When a molecule absorbs a photon of light it is excited to higher electronic 

and vibrational states. This process is illustrated in the so-called Jablonski 

diagram (Figure 38).

Intersystem
crossing

Internal 
conversion (~ps)

Phosphorescence 
s - ms)

Fluorescence 
<~ns) /

Absorption
h r .

Figure 38 The Jablonski diagram. The figure was borrowed from 
www.theochem.kth.se/people/orubiop/jablonski2.gif.

The Frank-Condon principle states that electronic transitions are so fast 

compared to nuclear motion that nuclei have nearly the same position and 

momentum immediately before and after the electronic transition has 

occurred.( 101) In the excited electronic state a valence electron will reside in 

either a non-bonding or antibonding molecular orbital. The excited state of the
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molecule is then free to lose some of its vibrational energy and traverse to the 

lowest vibrational level of the first excited electronic state (Si). This process is 

referred to as internal conversion. This rapid loss of energy is nonradiative (i.e. 

no photons are released) and therefore the emitted energy enters the 

surrounding environment as heat. The heat arises from collisions between the 

excited molecule and nearby solvent molecules. Once in the ground vibrational 

level of the Si state the molecule is free to relax to the ground electronic state 

(S0) by emitting a photon (hvf). This phenomenon is called fluorescence. The 

photon emitted is at lower frequency than the incident photon that enabled the 

excitation because of vibrational relaxation in the Si state prior to the emission. 

Often times the fluorescence-emission spectrum will resemble the absorbance 

spectrum because the same electronic and vibrational energy levels are involved 

in excitation and in emission.

Fluorescence spectra are influenced by the local environment of the 

excited molecule and as such can be useful in probing intermolecular 

interactions. The most sensitive indicators in such studies are the measurement 

of the lifetime of the excited state (x) and the rate of relaxation (k^). Upon 

excitation of a molecule the fluorescence from the excited state will decay. The 

rate law for this process is often first order and characterized by the following 

equation:

d[M *1 
F * ~  d t =kd[ M*]

(ll.a)
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where F is the intensity of the fluorescence and [M*] is the concentration of the 

excited species M. The lifetime (x) for this process is simply the inverse of the 

rate constant for deactivation (- -̂). Measurements of fluorescence decay in dilute
tea

solutions can be achieved by impinging light on the sample, usually from a laser 

source, and observing the resulting fluorescence intensity over time. If the 

process is first-order then the decay will be exponential and a plot of logF versus 

time will be linear.

If fluorescence is the only pathway for deactivation (which may not be the 

case) then the aforementioned rate-law holds true and kd is equal to kf, which is 

defined as the first-order rate constant for fluorescence. However, competition 

from non-radiative processes, like thermal deactivation (kt), photochemical 

reactions {kp), and quenching reactions (/c<?) with other species in solution (Q) 

complicates the rate-law ll.a. The overall rate of decay of the excited state is 

then the sum of the rates for the competing processes and follows as:

= kf [M*] + kt [M*] + kv[M*] + kQ{M*]{Q] = kd[M*]

(ll.b)

and, likewise, the observed lifetime is given as:

1
kf + kt + kp + kQ [Q]

(He)
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The quantum yield (O) of fluorescence is defined as the fraction of 

absorbed photons that ultimately lead to emission via fluorescence. It is a ratio 

of the number of photons emitted to the total number of photons absorbed and 

varies in value between 0 and 1. Another way of representing the quantum yield 

is to create a ratio between kf and kd which leads to the following expression:

r
<f> = —

T0

(ll.d)

where the natural fluorescence lifetime is represented by the variable t0. This 

equation provides the relationship between quantum yield and fluorescence 

lifetime.

Fluorescence is almost always observed from the lowest excited state Si 

because of the exceedingly fast rates of internal conversion from the higher 

vibrational levels (see Figure 38). Internal conversion to the ground state also 

occurs and is the primary component of thermal deactivation which competes 

with the fluorescence. The rate for this process, however, is often slow because 

the difference in energy between Si and S0 is large relative to the energy 

differences of the vibrational levels.

A decrease in the fluorescence emission intensity may be the result of 

several competing processes. Collisions with quenching molecules, excitation 

transfer to non-fluorescent species in solution, oligomerization resulting in non-
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fluorescent species at high concentrations, and radiative migration leading to 

self-absorption are all reasons a decrease in the quantum yield occurs.

2.2. Applications of fluorescence: discussion adapted from reference (102)

Fluorescence techniques can be used to detect lower concentrations of a 

target analyte than the corresponding absorbance-based spectrophotometric 

methods. Fluorescence is one of the most sensitive analytical techniques 

available because the emission intensity \F) can be measured independent of the 

source power. Unlike absorbance measurements, which requires measuring 

both the incident (P0) and emerging (P) light, fluorescence enjoys enhanced 

sensitivities because the power of the source can be increased. This source 

intensification leads to enhanced fluorescence emission intensities. In 

absorbance-based measurements, source intensification would result in a

proportional change in P, which after creating the ratio (■£■), does not affect the
Po

measured absorbance. It is said that fluorometric methods have sensitivities that 

are one to three orders of magnitude better than the corresponding absorbance 

methods. However, precision and accuracy in fluorometric methods are two to 

five times worse.

Inorganic species can be detected with fluorometry either by forming a 

luminescent complex with a metal-ion or by quenching the natural fluorescence 

of a chelator via interactions with a paramagnetic species. It is the latter case 

that limits the fluorometric detection of many transition-metal ions. The open-
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shell d-metals often prevent fluorescence by facilitating intersystem crossing of 

the excited singlet state to a triplet state (Ti). The Ti state is free to relax by 

phosphorescence. A second limiting factor for the fluorometric detection of 

transition metals is the abundance of closely spaced vibrational levels which 

facilitates relaxation via internal conversion processes.

Several fluorometric reagents have been developed for non-transition 

metals because these species are less susceptible to the aforementioned 

deactivation processes. The most successful reagents for cation analysis 

possess aromatic groups with two or more donor atoms that serve to chelate the 

analyte. The structures of some well-known fluorometric reagents are given in 

Figure 39.

OH

'OH
O

8-hydroxyquinoline flavanol
Used to detect Al and Be Used to detect Zr and Sn

HO-
OH

N=N

HO

alizarin garnet R benzoin
Used to detect Al and F‘ Used to detect B, Zn, Ge, and Si

Figure 39 Examples of fluorometric reagents for inorganic species from 
Skoog, Holler and Nieman.(102)
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The preceding discussion highlights the development of novel, selective, 

fluorometric reagents for metal-ion detection. These reagents are here-to-forth 

referred to as metal-sensors. Because of the breadth of this field the following 

discussion has been limited to recent advances in sensor chemistry citing 

examples that highlight sensor-design strategy. The reader should note that it is 

often difficult to fully identify and characterize all contributing mechanisms to the 

sensory action of a particular luminescent metal complex. It is the aim of the 

author of this dissertation to introduce some of the popular sensing mechanisms 

that have been exploited in the development of novel metal-ion sensors. This 

discussion will begin with photoinduced electron transfer metal sensors.

2.3. Photoinduced electron transfer

Luminescent sensors for a variety of analytes have been developed by 

taking advantage of the phenomenon of photoinduced electron transfer 

(PET).{103-106) PET serves as the switching mechanism in the sensor between 

the “on” and “off” states. This strategy requires the preparation of a fluorophore 

covalently attached to an analyte-receptor via some spacer (Figure 40).
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Fluorophore Spacer
Receptor

hv'

Figure 40 A fluorophore-spacer-receptor sensor turned “ off”  by PET in the
absence of the analyte.

Known redox potentials are used to choose components so that the receptor will 

transfer an electron to-or-from the excited state of the fluorophore.( 107) This 

effectively eliminates any emission in the absence of the target analyte and 

renders the sensor in the “off” state. When a diamagnetic analyte binds to the 

receptor this prevents the receptor mediated electron transfer to/from the excited 

state of the fluorophore (Figure 41). The sensor is then turned “on” and the 

excitation energy dumped into the surroundings as a detectable emission. 

Alternatively, when a paramagnetic analyte binds to the receptor the 

fluorescence can be quenched via electron transfer from the metal -center to the 

excited state of the fluorophore. This sensor design strategy has be referred to 

as “target-induced emission enhancement.’̂  108) The advantages of this 

strategy, according to Callan, de Silva, and Magri, is its quantitative design and 

the predictability of many observable parameters.
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Figure 41 A fluorophore-spacer-receptor sensor turned “on” by blocking 
the PET channel upon analyte recognition.

Furthermore, intensity ratios between the “on” and “off” states are said to be 

useful at values of 2 and even visually dramatic (in the dark) at values of 10 or 

greater.(fOS)

Alternatively, one can view the PET process in terms of the frontier 

molecular orbitals of the fluorophore and receptor assembly (Figure 42).
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Condition A: receptor vacant

LUMO

HOMO

LUMO
^ v e xc ite

HOMO fw n n / > HOMO

HOMO

PET

Fluorophore Receptor

S0

Fluorophore Receptor 

Si

HOMO

Backdonation 
HOMO ------- ►

tf
LUMO

HOMO

HOMO

0 0 
Fluorophore Receptor Fluorophore Receptor 

S„

Figure 42 Molecular orbital picture of PET when the receptor is vacant. The
sensor will absorb light (hvexcite) but will not fluoresce.

In Condition A where the receptor is vacant the excitation involves promotion of 

an electron from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO) of the fluorophore. If the HOMO of the 

receptor lies in energy between the HOMO-LUMO pair for the fluorophore then 

the receptor is able to donate an electron to the half-filled HOMO of the 

fluorophore in the S! state. This is the photoinduced electron transfer event and 

results in a potentially damaging radical anion-cation pair. To repair itself the 

fluorophore can then thermally back-donate the electron that resides in its LUMO 

to the HOMO of the receptor resulting in the ground state of the assembly. This 

process does not involve fluorescence and as such the sensor is rendered silent.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Condition B where the receptor is occupied by a cationic guest the 

HOMO of the receptor will be engaged in a coordinate covalent bond with the 

cation (Figure 43). This reduces the energy of the receptor’s HOMO and as 

such the receptor will be less willing to participate in the aforementioned PET 

process. This phenomenon can be evidenced experimentally by measuring a 

cation-induced anodic shift in the cyclic voltammogram of the bound fluorophore- 

receptor assembly. The fluorophore is now “turned-on” and is free to relax 

through the usual fluorescence process.

Condition B: receptor occupied

LUMO

HOMO

hVexcite
n j-u -i_ n _ r>

$

LUMO

HOMO

t'Vemit
o r u r m / t *

HOMO HOMO

Fluorophore Receptor 

S0

Fluorophore Receptor 

St

Figure 43 Molecular orbital picture of PET when the receptor is occupied.
The sensor is now “turned-on”.

2.4. Proton PET sensors

An example of the aforementioned “fluorophore-spacer-receptor” design 

strategy is illustrated in the H+-sensing molecule 11.1 developed by Zang and 

coworkers (Figure 45).{109) Unlike most PET sensors which employ a 

methylene spacer group, the imide nitrogen in compound 11.1 serves as a virtual
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spacer between the receptor (aniline group) and the fluorophore 

(perylenetetracarboximide) by creating a node in the molecular orbital system of 

the assembly (Figure 44). This breaks up any extended conjugation and as 

such PET from the anilinic unit to the perylenetetracarboximide resulted in 

negligible fluorescence under basic conditions (i.e. the sensor is “off”). However, 

protonation of the anilino-nitrogen resulted in a strong fluorescence enhancement 

(FE). Other analytes that bind to the aniline group (e.g. ZnC^) also gave a 

similar effect.

Figure 44 The calculated superimposed HOMO and LUMO surfaces of a p- 
anilino-perylenetetracarboximide. Note the node that is collinear with the 
imide nitrogen atoms which serves to decouple the fluorophore from the anilino- 
receptor. The image was generated in Spartan at the semi-emprical PM3 level of 
theory.
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11.1 COoEt

MeO

II.4 CN

CN MeO-

Me

Me

II.5

Me

Figure 45 Examples of PET-H+ sensor molecules.

The fluorophore-spacer-receptor format was also utilized in compound 11.2 

developed by Fahrni et al (Figure 45).(110) Protonation of the dialkyl aniline unit
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eliminates the PET to the pyrazoline fluorophore and a strong fluorescence 

enhancement was observed. This effect was also evidenced in compounds 11.3 

and 11.4 which are designed as Ca(ll) and Na(l) sensors respectively (Figure 

45).(111, 112)

The copolymer II.5 developed by Tian et at. is another example of the 

fluorophore-spacer-receptor design motif.( 113) Protonation of the tertiary 

aliphatic amine inhibits PET thus switching “on” the emission from the 

naphthalimide unit.

2.5. Alkali and alkaline earth PET sensors

The detection of closed-shell alkali and alkaline earth metal ions with 

luminescent PET sensors has been achieved using the fluorophore-spacer- 

receptor design motif. A collection of anthracene-based PET sensors has been 

developed by Lincoln and coworkers (Figure 46).(774-7 16)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X=NH 11.6 
X=S 11.7 
X = 0 11.8

Figure 46 PET sensors for alkali and alkaline earth metals developed by
Lincoln et al.

The presence of two-receptors in molecules 11.6 through 11.8 gives rise to three 

possible binding stoichiometries: namely 1:1 M:L (with 1 receptor empty and 1 

receptor occupied); 2:1 M:L (both receptors occupied); and 1:1 M:L (both 

receptors engaged in a “sandwich” complex with 1 equivalent of the analyte). All 

three stoichiometries were observed with the alkaline earth metals. The alkali 

metals formed 1:1 and 2:1 binding stoichiometries but failed to form ‘sandwich’ 

complexes with the ligands. Fluorescence was only switched on when both 

tertiary nitrogens were engaged in coordination (i.e. binding stoichiometries of 

2:1 M:L or 1:1 M:L sandwich complex). In the absence of the cations the authors 

note similar PET-mediated quenching events for all three X-molecules. 

Unfortunately, the aim of selective binding for group I and group II metal ions 

within this set was not achieved. Moreover, the mono-azacoronand 11.9, also 

developed by Lincoln etal. possessed an “off” quantum yield of 0.25 in the
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absence of the analytes.(77(5) Even though the bis-azacoronand 11.10 maintains 

two binding sites, which may complicate the coordination chemistry, the off 

quantum yield (i.e. background fluorescence) was improved to 0.07. This result 

illustrates the quenching ability of two tertiary nitrogen lone pairs as compared to 

one. When both azacoronand receptor sites were occupied by the analyte the 

corresponding “on” quantum yields achieved values as high as 0.73. 

Unfortunately, poor analyte selectivity and limited water solubility reduces the 

utility of these molecules.

The crown-ether 11.11 introduced by Kenmoku etal. demonstrated a 5-fold 

fluorescence enhancement in the presence of Na(l) (Figure 47).(777) This 

sensor is limited by a rather weak binding constant with Na(l) (Kd=0.44M) as 

measured at pH=7. The switching mechanism of this molecule is still PET-based 

even though there are no nitrogen-lone pairs contained in its structure. Likewise, 

the PET requisite Na(l)-induced anodic shift was observed in an electrochemical 

study of benzocrown ethers.(77S) The advantage of removing nitrogen from the 

sensor enhances receptor selectivity for the target Na(l) analyte over H+. This 

allows the sensor to be used in aqueous environments at pH=7.4.
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Figure 47 Examples of PET sensors for Na(l) and Li(l) respectively.

The development of sensors for Li(l) has proved to be challenging 

because of a lack of selective and strong receptors for the target analyte. One of 

the more strongly binding receptors is 1-oxy-4,7-diaza-9ane [N20].

Gunnlaugsson and coworkers have made progress toward Li(l) sensing by 

developing molecule 11.12 which operates in acetonitrile.(7 79) This particular 

compound is an example of a “fluorophore-spacer-receptor-spacer-fluorophore” 

design motif. An observed fluorescence enhancement of 9 occurs when the Li(l) 

analyte binds to the diazacrown ether (<J>on=0.1 1). A fluorescence enhancement 

was only observed with Li(l) and not with Na(l), K(l) and Ca(ll). The disadvantage 

of this system is the relatively high pKa of the receptor (pKai=7.2) in aqueous 

media limiting analyte selectivity over H+.

The boron-dipyrromethine fluorophore has become increasingly popular in 

the design of novel luminescent sensors.(120-122). A recent example of a “turn

off” Ca(ll) sensor (Figure 48) was reported by Cha etal.( 123) The fluorescence 

of compound 11.13 switches off in the presence of the analyte because of the 

ease of oxidation of the resulting phenolate embedded in the calixcrown receptor.
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In other words, a PET mechanism is invoked via the calixcrown phenolate 

oxygens to the adjacent dipyrromethine moiety upon analyte recognition thus 

extinguishing emission from the dye molecules.

OHOH

Me Me MeMe

11.13

Figure 48 A “ turn-off” Ca(ll) luminescent sensor. The starred sites in the 
figure are linked forming a conical-like structure.

The sensor is selective for Ca(ll) over other cations in methanolic solution, 

presumably because of a good size-match between the ionic radius of the 

analyte and the size of the calixcrown receptor. However, marked decreases in 

the quantum yield in aqueous media limits the utility of this sensor.

Additional examples of boron-dipyrromethine fluorophore-based metal 

sensors are highlighted in the work of Gee and coworkers.(124) The fluorophore 

was attached covalently to Roger Tsien’s Ca(ll) receptor ‘BAPTA’ affording a 

new family of Ca(ll)-selective turn-on sensors (Figure 49).(125)
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Figure 49 Gee’s novel Ca(ll)-selective PET sensor.

The acetate pendant arms in molecule 11.14 were converted into methyl esters to 

afford a cell permeable pro-chelator. Once in the cell the esters were saponified 

by trans-membrane esterases preventing the compound from exiting the cellular 

milieu.(126) This resulted in an order-of-magnitude increase in the observed 

fluorescence enhancement upon cellular Ca(ll) recognition.

Another class of crown ether based sensors were developed by Pearson 

etal. (Figure 50).{127-129) Metal ion selectivity for Mg(ll) overCa(ll) is derived 

from changing the electronic properties of the A/-aryl group appended to the 

azacrown ether receptor. The electron donating ability of the N-aryl group varies 

as follows: 11.18>ll.15>ll.16=11.17. Compound 11.18 possesses enhanced 

selectivity for Mg(ll) because the electron-rich phenylene diamine unit binds 

strongly to the charge-dense Mg(ll) ion. NMR data suggested that Mg(ll) resides 

in close proximity to the aliphatic amine portion of the azacrown ether receptor 

resulting in a large change in the chemical shifts derived from anthracene as 

compared to the free ligand.
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R1 ,R2,R3=H 11.15 
R1=CI,R2,R3=H 11.16 
R1 ,R3=H,R2=CI 11.17

R2,R3=H,R1= ~ N ^ >  11.18 

Figure 50 Pearson’s azacrown ether Mg(ll) and Ca(ll) sensors.

In the remaining compounds 11.15 to 11.17 there was only a small fluorescence 

enhancement observed with Mg(ll) suggesting the ion migrates to the N-aryl side 

of the receptor upon fluorophore excitation. This phenomenon is reminiscent of 

an internal-charge transfer (ICT) mechanism which would cause substantial 

positive charge density to accumulate at the aliphatic amine which may play a 

role in the sensory mechanism of this class of compounds.(730)

Barium has proven to be an elusive target for metal-ion sensing, also due 

to a lack of receptors with selectivity and affinity for Ba(ll). The work of Nakahara 

and coworkers is perhaps the most significant contribution to this field to 

date.( 131) The cryptand 11.19, following the fluorophore-spacer-receptor format, 

shows poor binding to Ba(ll) in water and thus a weak fluorescence 

enhancement. The reason for this is that water hydrates the ligand 11.19 strongly
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reducing its availability to the analyte. However, addition of the non-ionic 

detergent Triton X-100 to a solution of the sensor and Ba(ll) caused the lipophilic 

chelator to migrate into a less polar micellular environment thus expelling water 

of hydration and enhancing analyte binding (see Figure 56).{132) This effect 

resulted in a strong fluorescence enhancement upon analyte recognition. The 

cryptand is size-selective for Ba(ll) over the remaining alkaline earth metals, but 

analyte repulsions from the micellular environment limits the scope of this 

strategy. There is evidence in the literature that micellular environments can be 

useful when the receptor acts like a “periscope” and peaks into the solution and 

nabs nearby target cations.( 133)

11.19

Figure 51 Nakahara’s micellular Ba(ll) PET sensor.

2.6. Zn(ll), Cd(ll), Hg(ll) PET sensors

There are several criteria that must be met when developing metal ion 

sensors for biological applications: namely large molar absorptivities; a significant
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fluorescent Stokes’ shift to prevent self-quenching; large quantum yields; a shift 

in either/or both excitation and emission wavelengths upon analyte recognition; 

excitation wavelengths at or above 400nm to minimize background fluorescence 

of cellular components, tissue, and biological fluids; high selectivity for the target 

analyte; low toxicity; and if intracellular analytes are the desired target a high 

lipophilicity is needed so the fluorescent probe can diffuse across the lipid bilayer 

of the cell.( 134)

Divalent zinc, an abundant metal ion found in biological systems, is an 

appropriate target analyte for PET*based sensors. The success of the following 

examples of Zn(ll)-PET sensors can be partly attributed to the closed-shell 

nature of the analyte (c/10) and the availability of Zn(ll)-selective receptors. The 

well-documented sensors developed concurrently in the laboratories of Lippard 

(MIT) and Tsien (UCSD) rely on the dipicolylamine (DPA) unit as the analyte 

receptor (Figure 52).{126, 135, 136) Burdette and Lippard strategically placed 

halogens (F or Cl) on the fluorophore to lower the pKa of the tertiary nitrogens. 

This novel modification prevents protonation at this site under physiological pH 

thus reducing background fluorescence from the sensor in the absence of the 

analyte. Fluorescein is an attractive candidate for the fluorophore unit because 

of its visible excitation and emission wavelengths which reduces the possibility of
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Figure 52 Fluorescein-based Zn(ll)-PET sensors. The identity of X can be H,
Cl, or F.

tissue damage in biological assays for Zn(ll). The compound 11.20 in Figure 52 

follows the fluorophore-spacer-receptor format. When the analyte binds to the 

DPA receptor, PET from the tertiary amine to the fluorescein moiety is blocked 

causing a Zn(ll)-induced fluorescence enhancement. This family of Zn(ll) 

sensors has been implemented in the visualization of high levels of neuronal 

Zn(ll), which has been implicated in Alzheimer’s disease and other neurological 

disorders. Another attractive feature of this class of compounds is that neuron

sensor loading is achieved with passive diffusion without the need of 

acetoxymethyl ester derivatives.( 126) The phenolate oxygen also binds to the 

Zn(ll) contributing to the sensory mechanism via the aforementioned 

phenomenon of ICT.(737, 138)

The DPA unit was also utilized in the development of coumarin based 

Zn(ll)-PET sensors (Figure 53).(733) Compound 11.21 is another example of a 

fluorophore-spacer-receptor formatted sensor behaving straightforwardly in the 

presence of the analyte. Compound II.22,
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11.21 II.22

Figure 53 Coumarin-based PET sensors for Zn(ll).

however, has a modicum of internal charge transfer character which contributes 

to the sensory mechanism. This is a result of the binding of the lactone oxygen 

of the coumarin to Zn(ll). Metal-binding therefore perturbs the excited state of 

the chromophore causing the development of a shoulder in the emission 

spectrum. This effect resulted in a ratiometric sensor which may prove valuable 

in the quantitative analysis of Zn(ll) in the intracellular milieu.{126) However, 

increasing the amount of water in the methanol solvent reduced the shift, 

suggesting that water is competing with the lactone oxygen for coordination to 

the metal. This does not bode-well for aqueous studies of compound II.22 with 

the analyte. Likewise, the fluorescence enhancement of 11.22 is weak because of 

the background fluorescence of the free-ligand. Callan et al. speculate that the 

higher reduction potential of the aminocoumarin 11.22 as compared to the 

dimethoxycoumarin 11.21 which therefore prevents emission quenching j(via PET) 

by the free-chelator.( 108)

A recent example of a ratiometric sensor for Zn(ll) came from Lippard’s 

laboratory at MIT (Figure 54).(140) Woodroofe and Lippard couple the Zn(ll)
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sensitive DPA-fluorescein moiety to a Zn(ll) insensitive coumarin unit producing 

compound 11.23.

Compound 11.23 undergoes saponification (at the arrow designated site in Figure

54) by the aforementioned esterases upon entry into a cellular environment. The 

liberated fluorescent molecules are subsequently observed at distinct 

wavelengths. The Zn(ll) sensor portion of molecule 11.23 {indicated by 

parentheses in Figure 54) will bind Zn(ll) and undergo a green fluorescence 

enhancement which can be quantified against the disparate blue coumarin 

fluorescence. This approach is only useful if the unconnected fluorophores are 

co-localized.

Simple PET sensors for Zn(ll) based on pyrenyl-fluorophores are plagued 

by weak emissions due to aggregation of the ligands in bulk water (Figure

55).(141) However, compound 11.24 can be dispersed in micelles and the

^ / /  >Zn(ll)-sensor

Figure 54 Lippard’s ratiometric Zn(ll) sensor.
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sensory action toward mesoscopic Zn{ll) {i.e. Zn{ll) near the surface of the 

micelle) enhanced.

Furthermore, interference from H+ is not an issue if the water the micellular 

vesicles are suspended in is buffered at pH=7. This is likely attributable to the 

dielectric effect of the micellular surface region disfavoring the presence of 

H+.{133) When the vesicles are created with an anionic surfactant {e.g. sodium 

dodecyl sulfate) then the negative charge density at the micellular surface 

enhances the presence of protons and concomitantly reduces the Zn(ll)-induced 

fluorescence enhancement upon analyte recognition. When the surface of the 

micelles are positively charged, as they are with cetyltrimethylammonium 

bromide, then no Zn(ll)-induced fluorescence enhancement was observed 

because the analyte is repelled from the vesicular surface via electrostatic forces. 

Therefore, non-ionic detergents emerge as the best choice for micellular-sensor 

assemblies, such as Triton-X-100 as was discussed in the special case of the 

Ba(ll) sensor 11.19.

II.24

Figure 55 Pyrene-based mesoscopic Zn(ll)-sensor.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11.25

Figure 56 The structure of the non-ionic surfactant Triton X-100 II.25.

A PET sensor for Zn(ll) was developed by Gunnlaugsson et al. which 

contains a very simple iminodiacetate receptor (Figure 57).(142) This particular 

compound is insensitive to neutral pH and displays an “on” quantum yield of 21% 

(fluorescence enhancement=50). If the pH of the solution drops below ca. 5 

protonation of the anilino-nitrogen attached to the carboximide resulted in a 100- 

fold enhancement of the emission intensity highlighting the unfavorable 

interference from H+,

o2c

co2HN

11.26

Figure 57 Gunnlaugsson’s Zn(ll)-sensor.

Receptors designed for Zn(ll) (e.g. DPA) often experience interference 

from Cd(ll). Other examples of Gunnlaugsson’s iminodiacetate PET sensors 

demonstrate exciplex emissions upon titration with Zn(ll) or Cd(ll) (Figure 

58).(143, 144) The exciplex emission arises from a charge transfer between 

adjacent anthracenyl-fluorophores. The exciplex nature in the sensory 

mechanism manifested itself in the emission spectra, which show loss of the finer
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features typical of anthracenyl fluorophores upon analyte binding. This was 

further evidenced by a large red-shift in the emission of the complex as 

compared to the free-ligand. The mono-substituted compound 11.27 forms an 

exciplex band at 468 nm upon Zn(ll)-binding. Compound 11.28 has an enhanced 

affinity for Cd(ll) relative to Zn(ll) and produces exciplex emissions at 500 nm 

upon analyte binding.

Figure 58 Gunnlaugsson’s exciplex sensors for Zn(il) (left) and Cd(ll)

PET sensors for the toxic Hg(ll) ion have also enjoyed reoent success. 

Lippard and Nolan have developed a water soluble “on-off” sensor for Hg(ll) that 

employs an N2S2 donor set (Figure 59).(145) The soft thioethers interact with 

the target analyte strongly effectively quenching the PET to the fluorescein- 

reporter.( 146) However, this sensor is limited by a weak 5-fold fluorescence 

enhancement in the presence of 1.0 equivalent of the analyte. The background 

fluorescence of compound II.29 under physiological conditions is a result of 

protonation at the aliphatic amine. The electron withdrawing nature of the 

protonated aminomethyl group raises the oxidation potential of the pendant

© ©

(right).
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aniline unit sufficiently enough to hinder the PET process.(147) This will cause 

the sensor to be partially switched on in the absence of Hg(ll).

SEt

SEt
HN

HO.

co2

II.29

Figure 59 Lippard and Nolan’s Hg(ll)-sensor.

Another example of a PET-based Hg(ll) sensor comes from the laboratory 

of Qian (Figure 60).(148) The receptor of compound II.30 is a 2,6- 

bis(aminomethyl)pyridine group which also serves to anchor the 

aminonaphthalimide fluorophores. To improve water solubility two 

hydroxyethyloxyethyl groups have been installed at the distal end of the sensor. 

The selectivity for the target analyte is excellent as evidenced by a fluorescence 

enhancement of 17 upon Hg(ll) recognition, while other cations displayed feeble 

fluorescence enhancements in the presence of the sensor. The pKa of the 

tertiary amine group was sufficiently low at a value of 5.2 to minimize interference 

from H+ at neutral pH. The major advantage of this Hg(ll)-sensor is the high 

affinity for Hg(ll) that gives a detection limit of ca. 0.1 nM Hg(ll).
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Figure 60 Qian’s luminescent Hg(ll)-sensor.

2.7. Metal-ion internal charge transfer (ICT) and twisted internal charge 
transfer (TICT) sensors

The fluorophore can be directly integrated into the receptor resulting in a 

seamless assembly of contiguous p-orbitals. These so-called internal charge 

transfer (ICT) metal sensors will possess an electron rich receptor and electron 

poor fluorophore.( 149) A substantial redistribution of electron density occurs 

upon excitation resulting in a large dipole in the excited state. Binding of a 

charged species in the receptor perturbs the fluorophore upon excitation (Figure

61). Often the metal cation is ejected from the receptor in the excited state due 

to electrostatic repulsions within the receptor. The presence of the analyte, as 

Figure 61 suggests, leads to blue-shifts in the absorbance spectra and red-shifts 

in the emission spectra as compared to the free-sensor.
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Figure 61 Schematic of ICT metal ion sensing.

An example of a “turn-off” Zn(ll) sensor is compound 11.31 (Figure

62).{150) The extended conjugation between the pyrenyl-fluorophore and the 

terpyridine receptor via an dialkynyl thiophene conduit suggests that ICT is the 

major component of the sensory mechanism. Upon analyte binding fluorescence 

in acetonitrile of 11.31 is turned-off. Shifts in the UV-visible absorbance spectrum 

and cyclic voltammogram corroborate the affirmation of an ICT sensing 

mechanism.

11.31

Figure 62 ICT-based turn-off sensor for Zn(ll).
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The NO2S2 coronand serves as the receptor for Hg(ll) in sensor 11.32 

(Figure 63).(151) The selectivity for the target analyte is evidenced by a sub

micromolar detection limit (ca. 10‘7M) of Hg(ll). The ICT nature of 11.32 is 

revealed in a color change from pink to yellow upon Hg(ll) binding. A small blue- 

shift was observed in the UV-visible absorbance spectrum.

Metivier etal. have uncovered a useful Pb(ll) sensor 11.33 by employing a 

calixarene receptor (Figure 64).(152) A blue-shift of 52 nm was observed in the 

UV-visible spectrum of 11.33 in the presence of the analyte. This result is 

noteworthy because the pH of the solution (40% aqueous MeCN) was 5.2 and 

protonation equillibria of the dansyl group normally effects the luminescent 

behavior through the usual PET processes. Likewise laudable, selectivity for 

Pb(ll) was maintained over Cu(ll), Zn(ll), Cd(ll), and Hg(ll).

Me

Figure 63 ICT-Hg(ll) sensor.
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Figure 64 An ICT Pb(ll) sensor.

Quinizarin 11.34 has classically been utilized in the detection of B(lll) and 

Be(ll) (Figure 65).(153) Other hydroxyanthraquinones, like quinizarin-2-sulfonic 

acid, have also been used to detect Be(ll) and Al(lll).(754) If was recently 

recognized that these reagents are ICT fluorophores where intramolecular 

hydrogen bonds between the phenolic group and the adjacent carbonyl serve as 

de-excitation channels in the apo-ligand.()55) When the offending bonds are 

replaced with dative bonds to ionic analytes moderate fluorescence 

enhancements were observed. Tricationic guests, like Ga(lll) or In(lll), induce a 

seven-fold enhancement of the emission intensity of quinizarin 11.34.
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Figure 65 The structure of quinizarin 11.34.

Pb(ll) is a closed shell species and should be amenable to PET-based 

sensing. However, fluorescence quenching via intersystem crossing (i.e. “heavy- 

atom effect”) will plague such systems.(102) Jimenez etal. have avoided 

internal conversion deactivation by developing compound 11.35 which possesses 

a fluorescence enhancement with Pb(ll) (Figure 66).(156) The structure of 11.35

suggests that this sensor contains an ICT fluorophore. However, twisting about 

the anilinic or aromatic C-vinyl bonds results in a so-called twisted internal 

charge transfer (TICT) state which is responsible for the observed fluorescence 

enhancement with Pb(ll). An anodic shift was seen in the cyclic voltammogram

CN

11.35

Figure 66 A TICT-based sensor for Pb(ll).
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of the Pb(ll)-ll.35 complex. This was due to destabilization of the sensor radical 

cation .(156)

Taking advantage of TICT Xiao and Qian developed compound 11.36 

(Figure 67) ( 157) which features a cyclic piperazine receptor that resulted in a 

substantially twisted aromatic C-N bond because of the so-called per/-effect 

between the piperazine and the hydrogen at C8.( 158)

The development of TICT states upon excitation prevented competing PET 

processes thus resulting in large fluorescence enhancements (>100) with the 

open-shell analytes Fe(lll) and Cr(lll) and smaller yet significant enhancements 

with Mn(ll), Co(ll), Ni(ll), Cu(ll), and Pb(ll).(759) Interestingly, no enhancements 

were seen with Hg(ll) or Zn(ll).

The compound developed by Morozumi and coworkers 11.37 operates via 

an extreme case of the aforementioned TICT phenomenon (Figure 68).(160) 

The reader is encouraged to note that this system has the requisite structure for 

PET-based sensing by possessing the tried-and-true “fluorophore-spacer- 

receptor” design motif. Interestingly this compound exhibits a 37-fold

CN CN

Me

II.36

Figure 67 TICT-assisted luminescent metal-ion sensor.
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fluorescence enhancement upon interactions with Ca(ll), but minimal to non

existent effects were observed with Sr(ll), Ba(ll), and Mg(ll). The reason for this 

is that Ca(ll) binds to the podand framework and both amido carbonyls facilitating 

the conformational twisting needed to achieve a TICT state. The structure of the 

complex thus gives rise to the desired emission. The selectivity for Ca(ll) is 

clearly attributable to the size-selective nature of the polyether framework.

2.8. Electronic energy transfer (EET) metal-ion sensors (100)

Some of the most valuable applications of fluorescence involve the 

transfer of excitation energy from one fluorophore to another. This process is 

strongly dependent on the distance between the fluorophores and on their 

relative orientations. This phenomenon has been treated theoretically by a host 

of investigators and has been verified experimentally through the design of model 

systems.

H

Figure 68 TICT-based Ca(ll) sensor.
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The transfer of the excitation energy from a donor molecule (D) to an 

acceptor molecule (A) will ultimately lead to fluorescence from this species via 

the following collection of photochemical reactions:

hv
D -> D*

D * ^ D  + hv'
D * + A ^ D + A *
D* D + heat 
A* -> A + hv"

The process begins with the donor undergoing excitation by absorbing a photon 

(hv). The donor can fluoresce (kf), donate the excitation energy to the acceptor 

(fa), or undergo internal conversion (evolve heat). If electronic energy transfer 

(EET) occurs then the excited acceptor (4*) can fluoresce, as denoted in the last 

reaction by producing a photon (hv"). The transfer of excitation energy can be 

measured three ways: observing a decrease in the fluorescence quantum yield of 

the donor due to the presence of the acceptor; observing the decrease in the 

lifetime of the donor due to the presence of the acceptor; or noting the increase 

in fluorescence of the acceptor due to the presence of the donor. The efficiency 

for such a process is defined as the fraction of excited donor molecules that 

undergo deactivation via EET. It can be expressed in terms of the rate constant 

for EET (fa) and the collective rate constants for all other deactivation pathways

( f a ) :

kT
efficiency =

kT + kd

(ll.e)
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1 ( R  \  ̂The rate of energy transfer from a donor to an acceptor (kr) is kT = — {-p-J where

To is the decay time of the donor alone, R0 is the Forster distance, and r is the 

donor-acceptor distance (vide infra). The units for kr are thus the same as the 

units for kd {i.e. s'1) leaving efficiency as a unitless quantity. Because the

fluorescence quantum yield for the donor alone is ^  and the quantum yield for

the donor in the presence of the acceptor is £-^-'the efficiency for EET can b© 

expressed as the following:

efficiency = l - ^ ± d

(II-*)

The efficiency of this transfer is heavily dependent on the distance between the 

donor and the acceptor. In the range of 1 to 10 nm EET is refered to as 

fluorescence resonance energy transfer (FRET). For each donor-acceptor pair 

the efficiency of EET depends on r'6, where r is the distance between the FRET- 

pair. The relationship between r0, where r0 is the distance at which the efficiency 

is 50%, and r  is as follows:

7
efficiency =

(H.g)

Tbe variable r0 is also termed the Forster distanced 161) Moreover, the value of 

r0 depends on the amount of overlap between the fluorescence spectrum of the 

donor and absorbance spectrum of the acceptor. It also depends on the angular

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



orientation between the FRET pair, which is often unknown or difficult to 

ascertain. The orientations of the pair can be averaged, but caution needs to be 

exercised if the fluorophores are in a constrained environment.

Because each component possesses unique luminescent behavior a two- 

color sensory system can be developed and a ratio of the emission wavelengths 

for the D-A pair created. Therefore, the utilization of EET systems is particularly 

attractive in the sensing arena because the analyte can be quantitated in 

undefined environments. There has been success in thd development of EET- 

based metal ion sensors which is evidenced in the following examples.

By coupling an aminocoumarin to the distal end of molecule 11.38 the EET 

mechanism was exploited in the sensing of Al(lll) (Figure 69).(162) Upon 

analyte recognition the phenolic hydrogens are replaced with Al(lll) which 

prevents vibrational coupling to the bulk water that would otherwise attenuate the 

emission intensity.{163) The resulting emission from the bound receptor 

overlaps with the absorbance of the aminocoumarin unit. The direct excitation of 

the aminocoumarin does not show Al(lll)-induced fluorescence enhancement 

confirming that the aminocoumarin does not ligate the analyte. In the absence of 

the analyte the phenolic unit has a short excited lifetime due to vibrational 

coupling. This resulted in a feeble EET to the distal end of the molecule thus 

weak emissions were observed. On analyte recognition, however, the lifetime of 

the bound-receptor was extended giving rise to an excellent EET to the 

aminocoumarin.
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Figure 69 An EET Al(lll) sensor.

Often underutilized in receptor design, a hydroxamate is showcased in De 

Costa and coworkers compound 11.39 (Figure 70).(164) The structure 

possesses a fluorophore-spacer-receptor design motif seen in PET metal ion 

sensors and as such switches off the naphthalene fluorescence upon binding 

Fe(lll) in 50% aqueous methanol under acidic pH. The appearance of a ligand- 

to-metal charge transfer absorption band at longer wavelengths suggests that 

EET deactivation may play a role in the turn-off sensory mechanism of this 

compound.

o

II.39

Figure 70 A hydroxamate turn-off sensor selective for Fe(lll).
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The hydophobic PET sensor 11.40 relies on an EET-mediated quench of 

the anthracenyl unit upon Cu(ll) binding (Figure 71).(165) The sensor II.40 was 

integrated into Triton X-100 micelles. As was seen in the aforementioned 

examples, the micellular environment was not disturbed by the presence of small 

quantities of the sensor and the corresponding analyte.

nh nh2

11.40

Figure 71 A hydrophobic anthracene fluorophore is attached to a novel
Cu(ll) receptor.

2.9. Excimer and exciplex metal sensors

Excited states possess half-filled orbitals which may interact with ground- 

state orbitals. The resulting n-n overlap results in extended delocalization of the 

states. This phenomenon manifests itself in broad red-shifts in the 

corresponding emission spectra of the excited-state complexes (termed 

exciplexes). The fluorophore-spacer-receptor system 11.41 developed by Licchelli 

etal. are designed to bring the 7i-systems of the naphthalimide fluorophores 

within close proximity to one another upon binding multiple molecules of 11.41 to 

one equivalent of analyte (Figure 72).(166)
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N—

11.41

Figure 72 Licchelli’s etal. excimer-forming Zn(ll) and Cd(ll) sensor. The
value of the n-ethyl units varies from 2-5.

These fluorophores have enjoyed increasing use in exciplex-based sensors. 

Long-wavelength emissions were observed in the presence of small 

concentrations of Zn(ll) or Cd(ll), due to 1:3 M:L exciplexes. The exciplexes 

formed in solution when the poly(ethylene) linker unit was large enough (n>2). 

Increasing the analyte concentration resulted in the formation of 1:2 and 

subsequently 1:1 M:L complexes which do not form exciplexes, and thus the 

long-wavelength emissions were extinguished. This result illustrated the lack of 

intraligand n-n interactions upon analyte binding. However, a fluorescence 

enhancement of 6 was seen with both Zn(ll) and Cd(ll) when conditions favoring 

1:1 M:L binding stoichiometries were employed. The authors speculate that 

analyte interactions with the carbonyl groups of the fluorophore increases the 

energy of the 1mt* excited state thus preventing intersystem crossing which would 

ultimately extinguish the desired emission.(138, 167, 168)

Lastly, compounds II.42 through II.45 are designed to form exciplexes in 

the presence of Ca(ll) or Ba(ll).( 169) By varying the length of the polyethylene 

glycol linker a suitable framework for the desired analyte was achieved causing 

the terminal naphthalene-units to overlap. The authors investigated the 

relationship between the substitution effects and the metal ion recognition. The

no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fluorescence quantum yields decreased as the electronegativity of the p- 

substituent of the acceptor benzoate increases. Compound 11.45 (where n = 5, 6) 

showed the most efficient quenching and exciplex emissions. When Li(l), Na(l), 

K(l) and Mg(ll) were added to an acetonitrile solution of compounds 11.42 through 

11.45 (n = 5, 6), the shape and intensity of the fluorescence spectra did not 

change. However, the spectra of all the compounds significantly changed with 

the addition of Ca(ll) and Ba(ll). In the absence of alkaline earth cations the 

emissions from the apo-ligand were moderated by the para-substituted benzoate 

via a PET mechanism.

2.10. Coordination-enhanced fluorescence (CEF) metal-ion sensors

nonemissive in solution.(168, 170, 171) This can be rationalized by two 

arguments.(702) The molar absorptivities for a k k  state are often 100 to 1000 

times greater than they are for the nrc* transition. Therefore, the lifetime 

associated with the k k  state is shorter (10'7 to 10'9 seconds) as compared to the

X=H, 11.42 
X=CI, 11.43 
X=CF3i 11.44 
X=CN, 11.45

Figure 73 Luminescent Ca(ll) and Ba(ll) sensors.

Molecules with the lowest excited state of the r\K  type are typically

in
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lifetime for the nrc* state (10'5 to 10'7 seconds). Non-radiative deactivation 

channels will compete with fluorescence in nrc* systems. The rate constant for 

intersystem crossing is smaller for k k  systems because the energy difference 

between the Si and Ti states is larger. This reduces the likelihood for 

intersystem crossing so that fluorescence can occur. The fluorescence for such 

systems can be persuaded to switch “on” if the 1nrc* state is perturbed such that 

the lowest energy singlet excited state is of the 17wt* type (Figure 74).

S2 ( k k )  

Si (nn)

S2 (me*) 

Si ( k k )

hvf

Figure 74 Inversion of a noniuminescent me Si state to an emissive kk Si
state.

Azaaromatics such as acridine, o-phenanthroline, and quinoline demonstrate this 

behavior in the presence of Lewis acids.{ 172-174) Upon complexation to Zn(ll) 

the 1nrc* excited state of quinoline moves to higher energies. The inversion of the 

excited states affords a 1rax*—► S0 emission.(149) Several quinoline-based Zn(ll) 

sensors have been developed around this principle (Figure 75).(175-180)
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Figure 75 Quinoline-based CEF sensors for Zn(ll).

Fredrickson’s Zn(ll)-sensorTSQ 11.46 is membrane permeable and 

selective for Zn(ll) in the presence of physiological relevant concentrations of 

Ca(ll) and Mg(ll). Under pH 7.4 aqueous conditions TSQ forms the complex 

Zn(TSQ)2 as the species for Zn(ll) detection. One drawback of this sensor is that 

the intracellular Zn(ll) chelator dithizone blocks the action of TSQ 11.46 by 

competing for the analyte.(181) The ciosely related Zn(ll)-sensor zinquin II.47 

is another quinoline-based sulfonamide, but the advantage of this particular 

chelator is the presence of an acetoxyethyl ester (Figure 75). Upon cellular 

loading of zinquin II.47 ubiquitous intracellular esterases hydrolyze the 

acetoxyethyl group releasing the.corresponding carboxylate into the cytosol. 

Hydrolysis hinders extracellular leakage of the sensor. However, extrusion of 

anionic fluorometric reagents from the cytosol via the action of organic ion 

transporters may limit the utility of this strategy.( 182)

A recent example of a quinoline based Zn(ll)-sensor comes from the work 

of Mikata etal. (Figure 76).(753)
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TQEN 11.48 TPEN 11.49

Figure 76 Mikata eta l.’s TQEN 11.48.

Mikata’s molecule TQEN 11.48 {where TQEN=A/,A/,A/',/V-tetrakis(2- 

quinolylmethyl)ethylenediamine) is the first example of a TPEN 11.49 (where 

TPEN=A/,A/,A/',A/-tetrakis(2-picoyl)ethylenediamine)-based fluorescent sensor. 

Unlike the aforementioned Zn(ll)-sensors TQEN 11.48 possesses six-donor atoms 

which is the maximum number of donor atoms for Zn(ll).(28) Maximizing donor 

atoms gives rise to very stable complexes with the analyte. By replacing the 

pyridine rings with quinoline groups, Mikata and coworkers have created a Zn(ll)- 

sensor that relies on the concomitant operation of PET and CEF sensory 

mechanisms. The fluorophore-spacer-receptor design motif is embedded in 

each of the four chelate arms of TQEN 11.48 where the receptors are the tertiary 

amines and the spacers are the interstitial methylenes. The quinoline 

fluorophore also coordinates the analyte which raises the energy of the 1nxc* state 

and affords a k k —>S0 emission upon Zn(ll)-recognition and excitation. In the 

absence of the analyte the amines launch PET at the four quinolinyl groups 

rendering the sensor in the “off” state. TQEN II.48 is soluble in chloroform, 

dichloromethane, and DMF and only slightly soluble in acetonitrile and DMSO. 

Unfortunately, TQEN 11.48 is insoluble in H20, acetone, methanol, and ethanol
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limiting its utility in protic solvent systems. However, in DMF and 50% aqueous 

DMF TQEN 11.48 yields a 23-fold emission enhancement in the presence of 1.0 

equivalent of Zn(ll). The response selectivity is only challenged by Cd(ll), which 

exhibits ca. 60% of the emission intensity of {Zn(TQEN)]2+. Competition 

experiments with Na(l), K(l), Mg(ll), Ca(ll), Ni(ll), and Mn(ll) did not quench 

[Zn(TQEN)]2+, however the emission intensity was attenuated in the presence of 

Cu(ll), Co(ll), Cd(ll), Ag(l) and excess Fe(lll), giving an indication of the metal 

binding selectivity of TQEN II.48 relative to Zn(ll). The crystal structure of 

[Zn(TQEN)]2+ shows that the chelator binds the analyte through all six of the 

nitrogens forming a distorted octahedral complex (Figure 77).
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Figure 77 Representation of [Zn(TQEN)](CI04)2 from the crystal structure 
data. The data was obtained from the Cambridge Structural Database (CSD).

Two unique aromatic ring environments occurred in this complex: two rings on 

the periphery of the complex, one coming forward and one going back, which 

cannot interact; and two rings pointing up in Figure 77 which may give rise to tc-tc 

overlap between the benzo groups and cause excimer formation upon analyte 

binding and excitation. However, in this complex steric hindrance between the 

rings resulted in a twist forcing all four rings into a propeller-like configuration.

The binding affinity of TQEN 11.48 for Zn(ll) in 50% aqueous DMF was measured 

to be Kd= (7.0±3.2)*10'6M which highlights the loss of thermodynamic stability of 

this complex relative to [Zn(TPEN)]2+ which has a measured binding-constant of 

approximately Kd~10'15M. This suggests that the quinolinyl groups are too close
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together upon Zn(ll)-binding resulting in a huge steric effect. A dim quantum 

yield of ca. 0.2% with the target analyte, unfortunately, limits the utility of this 

sensor.

Mikata improved on TQEN with the publication of the methoxy derivatives 

T(MQ)EN 11.50 and T(TMQ)EN 11.51 (Figure 78).{184)

R1=R2=H: TQEN 11.48 
R1=H,R2=OMe: T(MQ)EN 11.50 
R1=R2=OMe: T(TMQ)EN 11.51

Figure 78 Mikata and coworkers’ quinoline Zn(ll) sensors.

Installation of methoxy groups on the benzo-rings of TQEN II.48 not only 

improved the quantum yields of the sensor-Zn(ll) complexes (2% for T(MQ)EN 

II.50 and 3% for T(TMQ)EN 11.51) but long-wavelength emissions were 

evidenced in the fluorescence spectra. The unsubstituted ligand TQEN II.48 had 

an emission maximum at 383nm, whereas the methoxy derivatives had emission 

maxima at 408nm and 493nm for T(MQ)EN II.50 and T(TMQ)EN 11.51 

respectively. The crystal structure for [Zn(T(MQ)EN)]2+ revealed the possibility of 

excimer formation because of enhanced twisting of ca. 30° around the principal
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rotation axis. Unfortunately, spectroscopic selectivity for Zn(ll) over Cd(ll) was 

lost when the methoxy groups were installed on the quinoline fluorophores. The 

sensor T(MQ)EN 11.50 had a emission enhancement of ca. 11 in the presence of 

Zn(ll) and an enhancement of ca. 14 in the presence of Cd(ll). The sensor 

T(TMQ)EN 11.51 suffers from considerable background emissions (i.e. the apo- 

ligand is partially turned “on” in 50% aqueous DMF) which reduced its 

enhancement to 2.8 in the presence of Zn(ll) and ca. 4 in the presence of Cd(ll). 

The authors did not speculate on the loss of Zn(ll)/Cd(ll) selectivity in the paper, 

however, the presence of the methoxy groups caused marked distortions in the 

inner coordination sphere of [Zn(T(MQ)EN]2+ as evidenced in the structural data 

(not shown here). The increased steric interactions between the substituted 

quinolinyl groups may increase the size of the binding cavity of the ligand which 

could better accommodate Cd(ll). Conversely, Cd(ll) could distort the binding 

cavity in a manner that facilitates an excimer sensory mechanism, although no 

separate excimer emission signal was observed. Unfortunately, no structural 

data is available for these Cd(ll) complexes.

2.11. Novel TAME-based PET and CEF metal ion sensors

The chemistry that was developed for the preparation of TAMEpyr I.60 as 

explained in Chapter 1 of this dissertation was exploited in the preparation of 

novel TAME-based PET/CEF metal ion sensors. The following discussion 

demonstrates the utility of the TAME framework in developing size-selective 

Zn(ll)-luminescent sensors. The scope of this study was restricted to the
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preparation and photophysical investigations of novel azaaromatic TAME-based 

luminescent metal-ion sensors (Figure 79).

Figure 79 Generic approach to TAME-based luminescent metal-ion
sensors.

It was envisoned that the azaaromatic groups would serve as the fluorophore. 

Upon analyte binding the 1nrc* state is expected to move to higher energies

and render the sensor silent in the absence of the analyte. This will be due to 

PET via the interstitial methylene conduits. This discussion begins with the 

preparation of the requisite azaaromatic aldehydes.

Results and Discussion

2.12. Synthesis of azaaromatic aldehydes

The reaction of 2-quinolinecarboxylic acid (quinaldic acid) II.52 with thionyl 

chloride in refluxing MeOH cleanly afforded the corresponding methyl ester II.53 

in 80% yield (Scheme 15).( 185) The ester was then reduced with LiBhU in Et20 

to afford the primary alcohol 11.54 in 90% yield. The alcohol 11.54 was used 

without any further purification in the subsequent Swern oxidation affording 2-

Azaaromatic
fluorophore

Receptor

1.36 Me

resulting in %n-+S0 emissions. The TAME framework will serve as the receptor

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quinolinecarboxaldehyde 11.55.(186-188) The disadvantage of the Swern 

oxidation was that the dimethyl sulfide by-product was not completely removed 

by chromatography and polluted the isolated material with a noxious odor.

SOCI2 LiBH4

N ^ C 0 2H Me0H- reflux ^ ^ N ^ C 0 2Me Et2°
II.52 0  11.53

.ClCl'
 o _

OH DMSO, NEt3,
CH2CI2l -78C

Scheme 15 Preparation of 2-quinolinecarboxaldehyde II.55.

The isomeric compound 1-isoquinolinecarboxaldehyde 11.58 was initially 

prepared via formylation of the parent heterocycle isoquinoline 11.56 (Scheme 

16).{189) This reaction, classified as a homolytic aromatic substitution, produced 

a trioxanyl derivative of isoquinoline 11.57. According to Giordano etal. the first 

transformation is mediated by a Fenton reaction between the Fe(ll) salt and H202  

which subsequently produces a trioxanyl radical in situ.(189, 190) The resulting 

carbon-centered radical reacted regioselectively at C1 of the heterocycle 

affording compound 11.57. The trioxanyl group is a mask for the desired aldehyde 

which was revealed upon treatment of 11.57 with sulfuric acid.

O O

V
N FeS04, H20 2, 

TFA, MeCN,
11.58 CHO11.56 ref|UX

Scheme 16 Initial preparation of 1-isoquinolinecarboxaldehyde II.58.
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The major disadvantage of this strategy is the need for excess trioxane (e.g. 95 

equiv.) in the preparation of the trioxanyl derivative 11.57. During solvent removal 

in the workup the excess trioxane decomposed into formaldehyde gas and was 

deposited as paraformaldehyde (-(CH20)n-) on the condenser of the employed 

rotary evaporator. The poisonous nature of formaldehyde and the tedium of 

cleaning the condenser prohibited the use of this strategy on larger scales.

An alternative synthesis of the desired aldehyde 11.58 was devised based 

on the chemistry that was performed on quinaldic acid 11.52 (Scheme 17). 

Commercially available 1-isoquinolinecarboxylic acid II.59 was converted into the 

methyl ester II.60 using thionyl chloride in refluxing MeOH.

SOCI2 a) UAIH4

MeOH, r e f l u x THF.-70C

II.59c0 2H N.60cO2Meb) ACOH H.58CHO

Scheme 17 Alternative preparation of 1-isoquinolinecarboxaldehyde II.58.

The methyl ester II.60 was then converted directly into the desired aldehyde II.58 

by treating the starting material with 0.50 equivalents of UAIH4 in THF at 

-70°C.( 191) Notably, the methyl ester II.60 was not reduced to the corresponding 

1° alcohol. The formation of a soluble hemiacetal-aluminate complex 11.61 

reduces the reactivity of the anionic hydrogens thus preventing over reduction 

(Figure 80).
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OMe

MeO

11.61

Figure 80 The structure of the soluble hemiacetal-aluminate complex
11.61.(797)

The desired aldehyde II.58 was liberated from the complex 11.61 upon treatment 

with AcOH. This reaction has been utilized by Rutner et al. in the preparation of 

otherwise inaccessible heterocyclic aldehydes (e.g. pyrazinealdehydes).

A third approach to 1-isoquinolinecarboxaldehyde 11.58 based on the so- 

called Reissert reaction (Scheme 18) was attempted.(192) Treatment of 

isoquinoline II.56 with KCN, and benzene sulfonyl chloride (PhSOgCI) allowed for 

the regioselective installation of a nitrile functional group at C1 of the heterocycle.
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KCN, NaBH4

so2ci,
II.62CN

N PhS02CI, \ ^ \ / N- s o 2Ph €t0H
11.63 CN

a) DIBAL-HX
toluene, -78C
b) MeOH, HCI 8.58 CHO ,A vide supra

^ h2s o 4

A

II.59c o 2H

Scheme 18 The third approach to 1-isoquinolinecarboxaldehyde II.58.

The resulting sulfonamide II.62 underwent elimination with NaBhU affording the 

nitrile 8.63.(793) An attempt was made at reducing the nitrile with diisobutyl 

aluminum hydride (DIBAL-H) but competing reduction of the heterocycle to a 1,2- 

dihydroisoquinoline limited the scope of this approach.(92) Fortunately, the nitrile 

could be recycled by converting the remainder of the batch into the carboxylic 

acid 11.59 which can be used in the preparation of the target (Scheme 17).

A small collection of benzo-fused five-membered heterocycles were also 

prepared. The benzo-fused thiazolecarboxaldehyde II.66 was prepared 

straightforwardly starting from 2-aminothiophenol II.64 and glycolic acid to afford 

the 1° alcohol 11.65 (Scheme 19).(794) The advantages of this reaction are that it 

does not require a solvent and reaction completion is judged by the evolution of 

the stoichiometric amount of H20 . The alcohol II.65 was then oxidized with Se02 

and the resulting aldehyde 8.66 was purified via sublimation.
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NH
HO

OH

SH A- ' H2°

N OH SeOp N

p-dioxane, 
H20, reflux11.64 11.65

Scheme 19 Preparation of 1-benzothiazolecarboxaldehyde II.66.

An attempt at the related 1,2-benzisoxazole-3-carboxaldehyde 11.71 was 

made starting with 2’-hydroxy acetophenone II.67 (Scheme 20). The ketone 

II.67 was converted into the oxime II.68 via treatment with hydroxylamine-HCI 

and NaOAc.(795) The hydroxyl group of oxime II.68 was then acetylated 

chemoselectively with acetic anhydride (Ac20) affording the acetoxy ketoxime 

11.69.(796)

n h2o h  hci
M e —*-

NaOAc, 
OH EtOH/H20

.OH Ac20

11.68 11.69 A

OAc

70% T-Hydro™

CHOMe Se02l p-dioxane,a) pyridine, 
reflux

b) 5N HCI
N

/O
l2, DMSO 11.71II.70

A

Scheme 20 The attempted preparation of 1,2-benzisoxazole-3-
carboxaldehyde 11.71.

The acetoxy group leaves via base-promoted intramolecular ring closure 

affording 3-methyl-1,2-benzisoxazole ll.70.( 196) Pure II.70 was obtained by 

reduced-pressure distillation (bp=56°C, 210mTorr) and subjected to two oxidation 

attempts.
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The first attempt at the desired aldehyde 11.71 was made by treating II.70 

with a mixture of 70% T-Hydro™ (where 70% T-Hydro™ is a 70% by weight 

aqueous solution of f-butyl hydrogen peroxide) and Se02 in p-dioxane.(797) No 

reaction occurred and only starting material was recovered and later subjected to 

a Kornblum oxidation with molecular iodine and methyl sulfoxide (DMSO), which 

again yielded only starting material after workup.( 198, 199) It appears that the 

methyl group in compound 11.70 is not activated and will require a more powerful 

oxidant to achieve the desired transformation. No further attempts have been 

made at preparing aldehyde 11.71.

Electron rich isoquinolinecarboxaldehydes have also been prepared. The 

inspiration for this stems from the methoxylated quinolines used by Mikata et a/in 

the preparation of novel fluorescent Zn(ll)-sensors (vide supra).(184) The first 

approach taken in the preparation of 6,7-dimethoxyisoquinoline-1- 

carboxaldehyde II.84 started with the one-carbon homologation of commercially 

available 3,4-dimethoxybenzaldehyde 11.72 via a Henry nitro-aldol condensation 

(Scheme 21).{200, 201)
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MeO

MeO

NaOH, MeOH 
b) HGI, H20

MeN02 11.73

n o 2

n h 4oac
. reflux

EtOH/THF,
OC

NaBH4 MeO- n o 2

Zn̂ 9 )   ̂ MeO

11.74

nh2

10% Pd/C 
HC02NH4> 
MeOH, reflux

HCI, MeO' 
H20, A 11-75

Scheme 21 The preparation of 3,4-dimethoxy-p-phenethylamine II.75.

This reaction was carried out with either NaOH or ammonium acetate (NH4OAc) 

acting as the base. The method that utilized NaOH yielded the desired product 

11.73, after recrystallizaton, in 32.2% yield. The alternative method with NH4OAc 

had an enhanced yield of 67.7% of compound 11.73 after recrystallization. Initial 

attempts at the global reduction of the p-nitrostyrene 11.73 were met with limited 

success. The first approach involved a Clemmensen reduction of the nitroalkene 

functionality to the aminoethyl group of the corresponding p-phenethylamine 

11.75.(202) This reaction was accomplished only once on small scale {ca. 1mmol 

of starting material) and could not be repeated successfully or scaled-up. The 

reason for the failure is, unbeknownst to the author of this dissertation but may be 

related to the batch-to-batch homogeneity of the zinc-mercury amalgam 

(Zn(Hg)). An alternative approach to the Clemmensen reduction, as described in

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the literature, involves either H2/Pd/C or UAIH4 resulting in a global reduction of 

the nitroalkene to the desired p-phenethylamine 11.75.{203-205) A safer, more 

facile approach to compound 11.75 involved a partial reduction of the substrate 

with NaBH4 yielding the p-nitroethyl compound 11.74 in moderate yield (78.5%), 

followed directly by a catalytic transfer hydrogenation with 10% Pd/C and 

ammonium formate (HCO2NH4) affording an 86.7% yield of 11.75. The 

advantages of this reaction are that no gaseous H2 is needed to complete the 

transformation and the Pd/C catalyst also serves to decolorize the reaction 

mixture thus affording the desired compound free of impurities. The free base 

11.75 can be used without any further purification in the next step of the synthesis 

of the isoquinoline target 11.84 or it can be stored for an indeterminate time as a 

hydrogen sulfate salt.

To construct the isoquinoline skeleton the p-phenethylamine 11.75 was first 

converted into the corresponding 1,2,3,4-tetrahydroisoquinoline 11.76 via a Pietet- 

Spengler reaction (Scheme 22).(206, 207)

MeO

MeO  ̂ (CH^n M6°  

NH2 HCO2H, a M e O NH h20

Fremy's salt

11.75 11.76

MeO

MeO FeS04> H20 2, Me°

MeO

11.77 TFA, MeCN, 
reflux O o

Scheme 22 Attempt at preparing 6,7-dimethoxy-1 
isoquinolinecarboxaldehyde II.84.
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The resulting product 11.76 was purified by saturating an ethanolic solution with 

oxalic acid. The resulting oxalate salt of 11.76 was isolated in 94.0% yield and 

was spectroscopically pure. The tetrahydroisoquinoline 11.76 is a natural product 

bearing the trivial name heliamine.{208, 209) It is part of the alkaloid content of 

several giant columnar cacti including the species Backebergia militaris.

The literature oxidation of heliamine 11.76 occurs sequentially with T- 

Hydro™ and catalytic RuCl2(PPh3)4 followed by refluxing the resulting 3,4- 

dihydroisoquinoline in p-cymene with catalytic Pd°.(210,211) A potentially more 

convenient route is a single-pot two-step oxidation mediated by Fremy’s 

sa\\.{212-214) In aqueous solution Fremy’s salt exists as a purple monomeric 

nitrosodisulfonate radical II.79 (Figure 81) {215)

K2
O O O

0 'V *N.'0'S'0
© 0 .

II.79

k4

0

0
oso2

o 2s o -n —o
! ! © 

o — n -o s o 2

oso20^
II.80

Figure 81 The structure of Fremy’s salt in solution (left) and solid state
(right).

which dimerizes in the solid state forming an explosive bright orange powder 

II.80. Fremy’s salt was prepared electrochemically with a stainless steel 

electrode (see experimental) from the corresponding hydroxylamine disulfonafe 

11.81 (Scheme 23). Alternatively, a chemical means of oxidation of the 

hydroxylamine 11.81 can be done {e.g. KMn04) but this requires a subsequent 

purification of the isolated material.(273)
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N aN 02 + NaHS03
a) HOAc, ice ©
-----------   2Na

b) N a2C 03,
H20

o
© ©

11.81

2 .0  amperes 2N®
O O O

ice bath O
©

Fremy's salt j

II.79

Scheme 23 Electrochemical synthesis of Fremy’s salt.

A custom-designed amperostatic coulometric titrator was used to pass 2.0 

amperes of current through the solution that contained the inorganic 

hydroxylamine 11.81. The extent of the one-electron oxidation after ca. 3 hours 

was judged by UV-visible absorbance spectroscopy (Figure 82). The analytical 

wavelength selected for quantitation occurred at X=544nm and has a reported 

molar absorptivity of 14.5cm’1 M"1.(213) Quantitation of this band revealed the 

electrolysis was 83.7% complete after 3 hours.
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Figure 82 UV-visible absorbance spectrum of Fremy’s salt in 1M KOH.

Fremy’s salt was then precipitated from the reaction solution by addition of 

excess KCI. The precipitate was isolated via vacuum filtration and was stored 

damp in the refrigerator for several weeks without incident.

The identity of Fremy’s salt was verified qualitatively by obtaining an EPR 

spectrum of a frozen (77K) 1M KOH solution of the isolated material {see 

experimental) (Figure 83).
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Figure 83 EPR spectrum of ca. lO^M Fremy’s salt at 77K in1M KOH.

modulation frequency=10G; modulation amplitude=100kHz; receiver gain= 60dB; 
time constant=655.36ms; sweep time=335.54s; conversion time=81.92ms; 
power=17.09mW; attenuation=11dB; number ofscans=1; centerfield=3275G, 
sweep-width=250G.

To interpret the EPR spectrum the appropriate spin-Hamiltonian for a nitroxide 

radical needed to be ascertained from the literature.{276) The energy E from the 

Hamiltonian contains a Zeeman splitting term (ms=-1/2 or+1/2) and a single 

nitrogen (1=1, mN=-1,0,+1) hyperfine term with nitrogen coupling A n .

E  =  /3 g B 0m s +  (2pNA Nm sm N

(ll.h)

The variables for equation ll.h are defined as:
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P=Bohr magneton, which is equal to 9.274-1 O'24 amperes-meter2

g=electron Zeeman factor and is dimensionless

f?0=applied magnetic field

ms=spin of the electron

pN=nuclear magneton

AN=hyperfine coupling constant

mN=nuclear angular momentum

In the presence of an external magnetic field {Ba) the energy levels for the 

unpaired electron interacting with the nitrogen nucleus are illustrated in Figure 

84.

ms=+1/2

ms=-1/2

IT1|=+1

m|=0

m(=-1

mp-1

m|=0

rnp+1

Figure 84 The energy levels for an unpaired electron in a magnetic field 
interacting with a nitrogen nucleus.

For a single photon transition must remain the same (AmN =0) which results in 

three allowed transitions (indicated by the double-headed arrows in Figure 84). 

As the magnetic field is increased at constant frequency (v~9.5GHz) the 

conditions of Equation ll.h are fulfilled three times resulting in a triplet of lines in 

the energy absorption spectrum of a nitroxide radical.

AE =  hv =  figB -  fipNANm N

(Hi)
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The anisotropic behavior observed in the spectrum (Figure 83) was a result of 

dipolar hyperfine coupling and contact coupling within the frozen sample 

(contained within the T tensor of the spin Hamiltonian). However, the observed 

EPR spectrum of the synthetic material nearly matched a literature spectrum of 

authentic material (Figure 85).(217) The loss of fine structure in the 

experimental spectrum as compared to the literature spectrum can be attributed 

to differences in concentration of the analyte and the solvent system employed 

(literature conditions: 5 mM Fremy’s salt in 0.5 M KNO3 at 77K, experimental 

conditions: 10'4 M Fremy’s salt in 1M KOH at 77K).(218)

mC7 1

Figure 85 Literature EPR spectrum of Fremy’s salt.{217)
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With the desired oxidant in hand the tetrahydroisoquinoline heliamine 11.76 

was oxidized in an aqueous solution (Scheme 22). The reaction requires four- 

equivalents of Fremy’s salt but thermal decomposition of the monomeric radical

11.79 needed to be compensated for by maintaining an excess of Fremy’s salt in 

solution. Small aliquots of the damp orange powder were periodically added to 

the reaction flask and an excess of the reagent was judged by maintaining a 

purple solution. The isolated crude product was a mixture of the desired 

isoquinoline 11.77 and the corresponding 3,4-dihydroisoquinoline intermediate in a 

mole ratio of 8.9:1.1. The two compounds were separated via column 

chromatography affording the desired substrate 11.77 for subsequent chemistry.

Unfortunately, attempts at the homolytic aromatic substitution of 

compqund 11.77 were not met with success (Scheme 22). Only starting material 

was evidenced by NMR likely indicative of the sluggish reaction between the 

electron-rich heterocyclic substrate 11.77 and the feebly nucleophilic carbon- 

centered trioxanyl radical (Figure 86).

Figure 86 Thwarted homolytic aromatic substitution on substrate 11.77.

An alternative entry into the desired 1 -substituted 6,7- 

dimethoxyisoquinoline exploited a modified Bischler-Napieralski reaction
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(Scheme 24).{219, 220) The advantage of this strategy is that the (3- 

phenethylamine II.75 prepared in the aforementioned synthesis (Scheme 22) 

can be reused. The first step in the reaction is a regioselective acylation at C6 of 

substrate II.75 followed by a Schiff base condensation in the workup affording 

11.82. The resulting 1 -methyl-3,4-dihydroisoquinoline II.82 was then oxidized 

quantitatively (as evidenced by thin layer chromatography) with 10% Pd/C in 

refluxing p-cymene.(22t) The resulting isoquinoline 11.83 possessed the active 

methyl group at C1 which underwent oxidation with Se02 in dry p-dioxane to 

afford the desired aldehyde II.84 in nearly quantitative yield.{222)

Scheme 24 Preparation of 6,7-dimethoxy-1-isoquinolinecarboxaldehyde
II.84.

Care was taken to dry the p-dioxane prior to reaction by distilling the solvent from 

Na° and storing the dry distillate over 4A sieves. Any H2O present in the solvent 

lengthens the reaction time resulting in oxidation of aldehyde II.84 affording the 

corresponding carboxylic acid.

An attempt was made at preparing isoquinolines with varying substitution 

patterns of the distal methoxy groups (Scheme 25). The methodology 

developed for the preparation of 3,4-dimethoxy-f3-phenethylamine II.75 was

MeO

MeO

'2 AcOH.A p-cymene, reflux

10% Pd/C

Me
11.75 11.82

MeO SeOg MeO

MeO'
Me

p-dioxane, Mea 
reflux

11.83 11.84
O
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implemented in the preparation of the 2,4-dimethoxy analog 11.88 (see Scheme 

25).

OMe OMe

MeO'

MeO

MeN02
 ►
NH4OAc, MeQ 
reflux

11.86

2 NaBH4

EtOH/THF,
OC

10% Pd/C 
HC02NH4> 

INUs MeOH, reflux

OMe

MeO
11.87 11.88

Scheme 25 Preparation of 2,4-dimethoxy-p-phenethylamine 11.88.

Commercially available 2,4-dimethoxybenzaldehyde 11.85 was converted into the 

corresponding p-nitrostyrene 11.86 in 76.6% yield after recrystallization. The 

nitroalkene was reduced sequentially with NaBH4 affording the p-nitroethyl 

compound 11.87 in 86.9% yield and then the nitro group reduced to the amine 

11.88 via transfer hydrogenation in 88.2% yield. Once again the resulting |3- 

phenethylamine 11.88 was promptly used as is in subsequent chemistries or 

stored long-term as the hydrogen sulfate salt.

Attempts at the cyclization of compound 11.88 via the Bischler-Napieralski 

reaction failed to produce the desired 3,4-dihydroisoquinoline 11.89 (Scheme 26).

OMe
OMe

MeONH2 AcOH.AMeO' . Me
11.88

Scheme 26 Failed Bischler-Napieralski reaction of 11.88.
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The disposition of the two methoxy groups with respect to C6 is the likely reason 

the Bischler-Napieralski reaction failed with this substrate (Figure 87). Electron 

donating groups only enhance the nucleophilic character of the ortho and para 

carbons within an aromatic ring.(223) The regioselective acylation of 11.88 (which 

would lead to the desired 3,4-dihydroisoquinoline 11.89) is likely hindered because 

C6 (meta to both methoxy groups) is suffering from an electron deficit rendering it 

feebly nucleophilic. The isolated material from this reaction was an intractable 

mixture of several compounds. It is speculated that acetylation at C3 and C5 

complicated the product slate.

C6 OMeOMe

MeO'MeO'
11.90 .91

'workup1 

-H+, -H20

OMe

MeO'
Me

11.89

Figure 87 The feeble nucleophilic character of C6 likely prevents the 
desired regioselective acylation.

Efforts toward the preparation of coumarin derivatives granted access to 

another family of azaaromatic aldehydes. It was hypothesized that 

azacoumarins (Figure 88) would serve as excellent chromophores in the hunt for 

novel TAME based fluorescent metal sensors.
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Figure 88 The structure of 7-azacoumarin 11.92.

Coumarins are excellent fluorophores due to their photostability and long 

excitation and emission wavelengths.(224) They also possess large Stoke’s 

shifts thus preventing self-quenching.(225, 226) Likewise, there are examples of 

coumarin-based main group metal sensors {e.g. K{l), Ca(ll), Mg{ll)) in the 

literature.( 134) However, there appears to be a lack of any reports of 

azacoumarins serving this role. Moreover, there are no literature accounts of 

azacoumarins acting as ligands for metal ions. This provided a fertile ground for 

investigation.

Relying on what was learned from the preparation of 6,7-dimethoxy-1- 

isoquinolinecarboxaldehyde 11.84 it was envisioned that preparation of an 

azacoumarin aldehyde would require the presence of an active methyl group 

adjacent to the heterocyclic nitrogen (Scheme 27). It was also envisioned that a 

von Pechmann*type reaction would serve to construct the pyranone ring around 

an appropriately substituted pyridinol.
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von Pechmann disconnection

R V R

* !
o

CHO ^M e

/
[Ox] here

Me

Scheme 27 Retrosynthetic analysis of a 7-azacoumarin aldehyde.

The von Pechmann reaction is an acid-mediated condensation of a phenol with a 

p-ketoester that yields a 4-substituted coumarin (hence the R group in Scheme 

27). The acid catalysts typically used include AICI3, P2O5, and even 

trifluoroacetic acid, but a recent report by De and Gibbs demonstrates that BiCI3 

is also an efficient catalyst in the von Pechmann reaction (Scheme 28).(227)

Scheme 28 The Bi(lll)-mediated von Pechman reaction of resorcinol 11.93.

This particular catalyst was attractive because bismuth salts are relatively 

inexpensive, nontoxic and because of the ease with which the desired 

transformation can be effected. The methodology of De and Gibbs was tested 

with several Bi(lll) salts (i.e. BiCI3, BiBr3, Bil3l Bi(OAc)3, and Bi(N0 3)3-5 H2 0 ) and 

it was found that only BiCI3 and Bi(N03)3-5H20  catalyzed the von Pechmann 

reaction of resorcinol 11.93. However, all the reported substrates that underwent 

the Bi(lll)-catalyzed von Pechmann reaction were electron-rich carbocycles.

O o Me

11.93 11.94
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Unfortunately, the transformation did not occur with the electron-poor substrate 

3-pyrdinol 11.95 (Scheme 29). Only starting materials were isolated upon 

workup.

Me
OEtMe

11.95

Scheme 29 The failed Bi(lll)-mediated von Pechmann reaction of 3-pyridinol
11.95.

An alternative strategy for the construction of 7-azacoumarins was 

reported in 1997 by Brufola etal. which demonstrated a one-pot Knoevenagel 

condensation of the functionality rich substrate pyridoxal (one of the many forms 

of vitamin B6).(228) Taking advantage of this methodology the closely related 

molecule pyridoxine 11.97 was converted into the corresponding 7-azacoumarin 

11.100 in a two-pot four-step reaction sequence (Scheme 30).
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HO OH “ a) NaOH, pH=12 
b) benzyl cyanide, 

OH CTABr, 90°C, 3hr------------ te-HO
X  h2s o 4, h2o,

N Me 70°C, 2hr

1 1 .
L . O H  10equiv. Mn02

___________ h .

N Me

II.97 H 11.98

HO HO

ph c) HCI, 90°, 0.5hr Ph
pH=4

O
Me Me

11.99 11.100

Scheme 30 Two-pot preparation of a 7-azacoumarin 11.100.

The first step in the reaction sequence is a regioselective Mn(IV)-mediated 

oxidation of the alcohol located at C4 of the pyridoxine ring.(229) The resulting 

aldehyde is in equilibrium with the corresponding hemiacetal II.98 thus hindering 

further oxidation of the substrate. The second step involved a Knoevenagel 

condensation between the hemiacetal II.98 and benzyl cyanide under basic 

conditions with cetyltrimethylammonium bromide (CTABr) acting as a phase 

transfer catalyst.(230) The resulting terminal nitrile II.99 was never isolated or 

characterized. Its existence as the diastereomer shown II.99 was confirmed by 

the subsequent tandem acid hydrolysis-cyclization reaction affording the desired 

7-azacoumarin 11.100 in 66.0% yield. The product was purified via 

recrystallization from boiling 1:1 acetone:EtOH (v/v).

The isolated 7-azacoumarin 11.100 contains the desired active methyl 

group adjacent to the heterocyclic nitrogen. However, the presence of the 

pseudobenzyl alcohol required protection of 11.100 before the methyl group could
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be oxidized. This was done with benzoyl chloride (BzCI) in dichloromethane 

(DCM), with a mixture of DMAP and triethylamine (TEA) acting as the base 

(Scheme 31). The TEA is a slightly stronger base and was co-employed with 

DMAP to achieve the desired transformation.

HO BzO

BzCI, DMAP 

TEA, DCM
Me Me

11.100

Se02  ►
p-dixoxane,
microwave

11.101

BzO.

Ph

CHO
11.102

Scheme 31 The preparation of a 7-azacoumarin aldehyde 11.102

The protected material 11.101 then underwent Se02 oxidation in dry p-dioxane 

with microwave irradiation. The ideal conditions for the quantitative formation of 

the desired aldehyde 11.102 (as evidenced by TLC) were achieved by maintaining 

a constant temperature of 175°C in a closed vessel for 0.5hr. The product 11.102 

was chromatographed on silica to remove the selenium by-products.

An alternative strategy in the synthesis of azacoumarins is the converse 

construction of a pyridine ring around an appropriately substituted pyranone ring 

(Scheme 32).
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Me

DMFDMA 
 ►

Me t0[“8na reflux

11.103

M e^O

° ^ > ^ v vNMe2
Me

11.104

NHBz
11.105 M e -^O ^O

Ac20, o. 
reflux NHBz

11.106

DMFDMA 
 ►

toluene,
reflux

Me2N

NHBz
Me

11.107

NH4OAc

AcOH, N 
reflux

NHBz

11.108

Scheme 32 The preparation of a 6-azacoumarin 11.108.

By taking advantage of the chemistry developed by Svete et al. access was 

granted to a useful pyranone building block 11.106.(231) The reaction sequence 

began with a Knoevenagel-condensation of 2,4-pentanedione 11.103 and 

dimethylformamide dimethylacetal (DMFDMA) affording compound 11.104. The 

product was isolated without characterization and submitted to dehydrating 

conditions (Ac20) with hippuric acid 11.105 to give the desired pyranone 11.106 in 

44.1% yield after recrystallization from boiling EtOH. The pyranone 11.106 

contains an active methyl group which reacts with DMFDMA to afford the 

homologated amine 11.107.(232) The product was isolated without 

characterization and then converted into the corresponding 6-azacoumarin 11.108 

in 22.0% yield after recrystallization from boiling EtOH/H20 .(233) No attempts 

were made at optimizing the yields because the reactions employed were 

scalable (to ca. 5g). The product 11.108 from the previous reaction sequence 

contained the desired active methyl group adjacent to the heterocyclic nitrogen. 

This compound was then converted quantitatively into the corresponding

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aldehyde 11.109 (evidenced by TLC) using the aforementioned microwave 

assisted Se02 oxidation (Scheme 33).

Scheme 33 The preparation of a 6-azacoumarin aldehyde 11.109.

2.13. Synthesis of TAME-based ligands for metal-ion sensing via the 
template methodology

The Ni(ll)-mediated template reaction of TAME I.36 was first carried out 

with 2-q.uinolinecarboxaldehyde II.55 affording the desired complex 11.110 in 30% 

yield after recrystallization (Scheme 34).

Scheme 34 Preparation of [Ni(TAMEquin-trisimine)](CI04)2 11.110.

It was somewhat of a surprise that the trisimine complex 11.110 formed at all 

because of foreseeable steric interactions between the benzo groups within the

NHBz P-dioxane, 
microwave

NHBz

11.108 11.109

Ni(CI0 4)2 6 H20 , ^ N i l ^  J a
2-quinolinecarboxaldehyde, /  N
EtOH/water

I.36 11.110
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inner coordination sphere. A report by Park describes structural preferences for 

the similar ligand TACHquin (where TACHquin=A/,Af,A/”-tris(quinolinylmethyl)- 

cis,cis-1,3,5-triaminocyclohexane) with Zn(ll) (Figure 89).(234) X-ray 

crystallography elucidated a strong preference of TACHquin for an octahedral 

geometry (a=53.7(8)°). The reader is reminded that the ideal twist angle for a 

regular octahedron is oc=60°, where a is the angle through which one trigonal 

face of the octahedron has been rotated with respect to the opposite trigonal face 

as viewed along the C3 axis (see Figure 8 in Chapter 1 ).(235) Park speculated 

that enhanced trigonal twisting about the C3 axis of the complex cation 

[Zn(TACHquin)]2+ is the mechanism taken by the chelator to reduce intraligand 

repulsions upon coordination to Zn(ll). However, the substantial twisting within 

the cation resulted in the lengthening of the Zn-N3 bond <2.171<(9)A) with respect 

to the other two Zn-N(tach) bonds (2.124(9)A and 2.135(9)A). This phenomenon 

caused the Zn-N6 bond to shrink (2.198(10)A) as compared to the other two Zn- 

N(quin) bonds (2.296(9)A and 2.255(9)A) thus bringing the three quinolinyl 

groups within close proximity. A crystallographic disorder of the single labeled 

pendant arm in Figure 89 (with 50% occupancy of atoms C27 to C36) was 

ascribed to the crowding of the bulky heterocyclic groups
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Figure 89 The ORTEP views of [Zn(TACHquin)]2+ (two molecules A and B 
related by disorder) with 50% occupancy of C27 to C36.

TAME can better accommodate the aforementioned twisting than TACH because 

the anchoring methylene groups within the TAME framework are not constrained 

to a six-membered ring. Therefore, TAME has more conformational flexibility 

than TACH facilitating the formation of the trisimine complex [Ni(TAMEquin- 

trisimine)]2+ 11.110 by reducing intraligand repulsions through adequate twisting 

about the G$ axis.

The visible-near IR absorbance spectrum of complex 11.110 (Figure 90) 

illustrated the reduced ligand field strength of the TAMEquin-trisimine chelator as 

compared to TAMEpyr-trisimine 1.51 (see Figure 32).
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Figure 90 The visible-near IR absorbance spectrum of [Ni(TAMEquin- 
trisimine)](CI04)2 in MeCN (T=25°C).

The most striking feature of the spectrum is the appearance of a high energy 

shoulder within the 3A2g-»3T2g band envelope (ca. 825nm (12100cm'1), e=32cm' 

1M'1). This shoulder is assigned as the spin-forbidden 3A2g—>1Eg d-d transition. 

The position of the shoulder occurred at low energy within the spectrum of 

[Ni(TAMEpyr-trisimine)]2+ I.50 (ca. 865nm (11600cm'1), e=24cm'1M'1). This 

spectral pattern is consistent with a reduced ligand field strength of the 

chelator.(44) The approximate value of Ao for [Ni(TAMEquin-trisimine)]2+11.110 is 

11050 cm'1 (spectral feature at ca. 905nm, e=39cm'1M'1). A red-shiftof 1350cm'1 

as compared to the Ao of [Ni(TAMEpyr-trisimine)]2+ 1.50 (804nm (12400cm'1), 

32cm'1M'1) corroborates the aforementioned non-bonding repulsions of the 

quinolinyl groups. The reduced a-donor ability of quinoline as compared to
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pyridine fails to explain the marked decrease in Ao for [Ni(TAMEquin- 

trisimine)](CI04)2 11.110.(753) Intraligand repulsions within the inner coordination 

sphere must exist in this complex despite the flexibility of the TAME framework. 

The planar C=N groups are inflexible and restrict additional twisting about the C3 

axis that is needed to relieve the quinolinyl crowding. The remaining d-d 

transition observed in the spectrum of [Ni(TAMEquin-trisimine)]2+ 11.110 is the 

3A2g-*’3Tig(F) band (ca. 550nm (18000cm'1) e=28cm'1M'1) which was partially 

obscured by an overlapping MLCT band (ca. 540nm (18500cm'1) e>160cm'1M'1). 

There is also the possibility that the complex cation does not possess 

pseudooctahedral geometry in solution. Structural data, which unfortunately was 

not collected, could be used to confirm this suspicion.

The complex [Ni(TAMEquin-trisimine)](CI04)2 11.110 was reduced with 70 

equivalents of NaBH4 to afford the corresponding Ni(ll)-complex 11.111 . The 

desired ligand, TAMEquin 11.112, was liberated from the Ni(ll)-complex 11.111 with 

excess NaCN and isolated in 68.0% yield (Scheme 35).
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a) NaBH4, 
Et0H,H20  

2CI04' b)HCI04

11.110 11.111

c) NaCN

_//
11.112

Scheme 35 Preparation of TAMEquin 11.112.

Over-reduction of the quinolinyl groups to the corresponding 1,2-dihydro-, or

I ,2,3,4-tetrahydroquinolinyl groups was not an issue under these reaction 

conditions. This result further highlights the utility of the template strategy in the 

preparation of novel TAME-based chelators.

The Ni(ll)-mediated template reaction of 1-isoquinolinecarboxaldehyde

II.58 with TAME 1.36 furnished the complex [Ni(TAMEisoquin-trisimine)KCI04)2 

11.113 in 91.0% yield (Scheme 36).
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Ni(CI04)2 6H20,
1 -isoquinolinecarboxaldehyde, 

NH2 EtOH/water ^ Nl^ N  2 CIO4'
Me

NH2
h2n^ Me

11.113I.36

Scheme 36 The preparation of [Ni(TAMEisoquin-trisimine)](CI04)2 11.113.

By simply moving the fused benzo groups to the periphery of the complex 

intraligand repulsions within the inner coordination sphere of 11.113 are 

substantially reduced. This was evidenced in the visible-near IR absorbance 

spectrum of [Ni(TAMEisoquin-trisimine)}(CI04)2 11.113 (orange spectrum in 

Figure 91). The position of Ao for complex 11.113 (795nm (12550cm'1), e=39cm" 

1M"1) has undergone a hypsochromic-shift with respect to the Ao for 

[Ni(TAMEquin-trisimine)](CI0 4)2 11.110 (yellow spectrum in Figure 91) by 

1500cm'1. Likewise, the position of the spin-forbidden transition 3A2g->1Eg occurs 

at low energy (ca. 870nm (11450cm'1), e=25cm'1M'1) in the 3A2g-»®T2g band 

envelope of the spectrum. The transitions in the spectrum of [Ni(TAMEisoquin- 

trisimine)]2+ 11.113 are nearly identical in position, shape, and intensity of the 

corresponding bands in the spectrum of [Ni(TAMEpyr-trisimine)]2+1.50 {Figure 

32). This illustrates that the donor-efficiency of pyridine and isoquinoline are very 

similar in complexes I.50 and 11.113. Unfortunately, the presence of the MLCT 

band starting at ca. 640nm and proceeding toward the UV region obscured all 

the other d-d transitions expected in the spectrum.
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Figure 91 The visible-near IR absorbance spectra of [Ni(TAMEisoquin- 
trisimine)](CI04)2 11.113 (orange) and [Ni(TAMEquin-trisimine)](CI04)2 H.111 
(yellow) in MeCN (T=25°C).

X-ray grade single-crystals of [Ni(TAMEisoquin-trisimine)](CI04)2 11.113 

were grown from a 1:1 MeOH:MeCN (v/v) solution via Et20  diffusion (Table 9). 

The ORTEP view of the cation [Ni(TAMEisoquin-trisimine)]2+ (Figure 92) clearly 

demonstrates that the complex possesses a pseudooctahedral geometry.

Table 10 Crystal data and structure refinement for [Ni(TAMEisoquin- 
trisimine)](CI0 4)2*MeCN.

Compound [N i(T AMEisoquin-trisimine)](CI0 4 )2- MeCN
Color/shape Red/blade
Empirical formula C39H36CI2N8Ni0 8
Temperature 100(2) K
Crystal system Triciinic
Space group P i

Unit cell dimensions a=9.7915(8)A a=97.1740(10)°
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Table 9 continued.

Volume
Z
Density (calculated) 
Absorption coefficient 
Diffractometer/scan 
Radiation/wavelength 
F(000)
Crystal size
6  Range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Observed reflections 
Data/restraints/parameters 
Goodness-of-fit on F*
Final R indices [/>2s(/)]
R indices (all data)
Largest diff. peak and hole

b=10.8860(9)A
c=18.4048(16)A
1913.0(3)A3
2
1.518 Mg/m3 
0.712mm'1
Bruker SMART/CCD area detector 
Mo ka (graphite monochrom.)/0.7107A 
904
0.30x0.10x0.04mm 
2.07 to 25.00°
-11 <,h< 1 1 , -12 SjfcS12 , -2 1 S/S21
16878
6672
5974
6672/0/523
1.101
^=0.0608, w*2=0.1697 
/?y=0.0657, w/?2=0.1740 
2.840 and -0.706e.A'3

P=99.9800(10)°
7^92.3600(10)°

A measured twist angle of 39.8(6)° illustrates the restriction the three C=N bonds 

impose on trigonal twisting about the Gs axis of the complex. The three five- 

membered chelate rings are flat (i.e. no A, or 8 designations can be made) 

suggesting the three C=N bonds are engaged in extended resonance 

delocalization with the adjacent heterocycles. This delocalization serves to 

stabilize the complex cation.
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Figure 92 The ORTEP view of the cation [Ni(TAMEisoquin-trisimine)]2+. Note 
a C3 axis that is co-linear with atoms C35, C34, and N il. The perchlorate anions 

and MeCN solvate have been eliminated for illustrative clarity.

The absolute configuration of the cation shown in Figure 92 is A. The 

corresponding A isomer (not shown) is also present in the centrosymmetric unit 

cell (Z=2). The striking feature of this structure is the observed “handedness” of 

the TAME framework as assigned with the conventions developed by Al-Obaidi 

etal.(96) When the pendant arm is saturated, as it is in [Zn(TAMEpyr)]2+{see 

Figure 36) or [Fe(tptMeTAME)]2+, the energetically preferred conformation of the 

framework is congruent with the absolute configuration of the complex (i.e. A8°ap 

or AA,cap). However, the converse assignment, A^cap {shown in Figure 92) and 

A8cap (not shown but present in the unit cell), was observed in the structure of
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[Ni(TAMEisoquin-trisimine)]2+. The rigid nature of the planar five-membered 

chelate rings prevents the necessary twisting to achieve the desired match 

between the conformation of the TAME framework and the absolute configuration 

of the complex. This result further highlights the rigid nature of the TAMEisoquin- 

trisimine chelator. The average Ni-Nhet distance (2.084(4)A) is slightly longer 

than the average Ni-Nimine distance (2.044(8)A) (Table 10). This may be 

explained by backbonding of a filled af-orbital (t2g) on the metal with the 

antibonding 7t* of the C=N group thus strengthening the Ni-Nimine bonds. This 

assertion is corroborated by the presence of the MLCT band starting at ca.

640nm in the absorbance spectrum of this complex (vide supra).

Bondlengths (A)
Ni-N(imine) 2.035(3) Ni-N(het) 2.079(3)
Ni-N(imine) 2.048(3) Ni-N(het) 2.086(3)
Ni-N(imine) 2.050(3) Ni-N(het) 2.088(3)
C=N(imine) 1.273(5) N(imine)-C(TAME) 1.461(5)
C=N(imine) 1.272(5) N(imine)-C(TAME) 1.461(5)
C=N(imine) 1.271(5) N(imine)-C(TAME) 1.460(5)
C(imine)-C(het) 1.481(5) C(het)-N(het) 1.331(5)
C(imine)-C(het) 1.471(5) C(het)-N(het) 1.361(5)
C(imine)-C(het) 1.472(5) C(het)-N(het) 1.332(5)

C(het)-N(het) 1.358(5)
C(het)-N(het) 1.329(5)
C(het)-N(het) 1.358(5)

Bond angles (°)
N-Ni-N(chelate) 78.73(12) N-Ni-N(trans) 162.68(12)
N-Ni-N(chelate) 78.37(12) N-Ni-N(trans) 159.44(12)
N-Ni-N(chelate) 78.47(12) N-Ni-N(trans) 162.27(12)

Table 11 Selected bond lengths and bond angles for [Ni(TAMEisoquin-
trisimine)](CI04)2 MeCN.

The trisimine complex 11.113 was then reduced to the corresponding 

triamine complex 11.114 with excess NaBH4 (Scheme 37). The desired ligand 

TAMEisoquin 11.115 was liberated from the Ni(ll)-complex 11.114 with NaCN and
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isolated in nearly quantitative yield (99.0%). The ligand was spectroscopically 

pure as the free base but needed to be stored as the hydrogen chloride salt 

(TAMEisoquin-6HCIH20  from elemental analysis) to prevent degradation of the 

moderately light and air sensitive isoquinoline rings.

11.113

a) NaBH4, 
EtOH,H20
b) HCIO4

7  "N H  2CI04‘ 
N̂H

11.114

c) NaCN

Me

3
11.115

Scheme 37 The preparation of TAMEisoquin 11.115.

The liberated chelator TAMEisoquin 11.115 was then ready for 

complexation studies with a variety of metal ions. The ligand was reacted with 

Zn(CI04 )2-6H20  in MeOH affording the corresponding {Zn(TAMEisoquin)j(CI04)2 

complex 11.116 in 91% yield (Scheme 38).
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Me—' Zn(CI04)2 6H20  'NH

11.115 3 II

Me0H/Et20 w
Me

11.116

Scheme 38 Preparation of [Zn(TAMEisoquin)](CI04)2 11.116.

X-ray quality crystals of [Zn(TAMEisoquin)](CI04)2 11.116 were grown from 

Et20  diffusion into a 1:1 MeOH:MeCN (v/v) solution of the complex (Table 11). 

The structure for this particular complex was difficult to solve. In the asymmetric 

unit there were four unique complex cations observed resulting in a value for Z of 

32. The crystallographers (DiPasquale and Rheingold) labeled the four cations A 

through D to ease analysis. Each of the unique cations possessed six- 

coordinate Zn(ll) that displayed a distorted octahedral geometry. The twist 

angles for the cations ranged between 34(2)° and 43.1(8)° (Table 12). The 

ORETEP view of cation A is shown in Figure 93. As was

Table 12 Crystal data and structure refinement for 
Zn(TAMEisoquin)](CI04)2'5/3MeCN.

Compound [Zn(TAMEisoquin)]<CI04)2-5/3MeCN
Color/shape Colorless/block
Empirical formula CasHaeNsZn.CbOa.I.eefCgHaN)
Temperature 208(2) K
Crystal system  Orthorhombic
Space group Pbca
Unit cell dimensions  a=33.428(3)A___________________  g=90°
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Table 11 continued...

Volume
Z
Density (calculated) 
Absorption coefficient 
Diffractometer/scan 
Radiation/wavelength 
F(000)
Crystal size
6 Range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Observed reflections 
Data/restraints/parameters 
Goodness-of-fit on F2 
Final R indices [/>2s(/)]
R indices (all data)
Largest diff. peak and hole

described for the previous TAME-based crystal structures the stereochemical 

dispositions of the four cations in the asymmetric unit were analyzed using the 

conventions of Al-Obaidi etal.(96) Because each cation has six chelate rings 

(three six-membered chelates and three five-membered chelates) and three 

stereogenic nitrogen centers (i.e. the secondary amines) there is the possibility 

that several isomers of the cation will form. The conformation of the TAME cap 

in molecule A is 8CAP, meaning the framework is engaged in a clockwise twist 

about the C$ axis that passes through atoms C35a, C34a, and Zn1a (see Figure 

93). The absolute configuration of the three five-membered chelates was 

determined to be A. The chiral nitrogens have been assigned collectively as 

SSS. Lastly, a shallow pucker in the three five-membered chelate rings was 

assigned as XXX. The stereochemical disposition of the TAMEisoquin ligand in 

cation A follows as A8capAM,(SSS). The remaining cations B through D have 

been assigned stereochemical designations in Table 12.
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b=26.441(3)A p=90°
C=35.580(4)A ’w=90°
31448(6)A3 
32
1.475 Mg/m3 
0.823mm'1
Bruker SMART/CCD area detector 
Mo ka (graphite monochrom.)/0.7107A 
14478
0.25x0.20x0.10mm 
0.00 to 25.00°
0<h£39, 0<£<31, 0<IM2
27756
27756
27756
27756/0/1933
1.038
R,=0.0787, wR2=0.1763 
/?7=0.1183, w/?2=0.1949 
1.144 and -0.485e.A'3
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C12a14a

C13a

C19a
C18aC16a Zn1a -O

N5a,
C20

C32a

C34a
,C35a

Figure 93 The ORTEP view of cation A for [Zn(TAMEisoquin)]2+. The 
perchlorate anions and MeCN solvate have been removed for illustrative

clarity.

The striking feature of this crystal structure is the range of conformations the 

ligand possesses in the solid state. This observation illustrates the flexible 

nature of the TAME framework in this family of chelators. Hydrophobic portions 

of the complex cation could also associate with nearby molecules possibly 

interrupting cation-anion interactions. This too may cause the ligand to contort 

into a variety of conformations, which were evidenced in the crystal data.
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Complex Zn-N(het.) 
average bond 
lengths (A)

Zn-N(amine) 
average bond 
lengths (A)

Twist Angle
« n

Stereochemical
configuration

Cation A 2.16(1) 2.178(4) 34(2) A S ^ m ^ s s )
Cation B 2.16(1) 2.164(6) 38(2) AXcap8 8 8 (RRR)
Cation C 2.15(1) 2.16(1) 43.1(8) AXCAPm (s s s )
Cation D 2.15(2) 2.16(1) 40(3) a x capu x .(sss)

Table 13 Selected data from the structure of [Zn(TAMEisoquin)] .

The chelator flexibility was further illustrated by dynamic behavior of 

[Zn(TAMEisoquin)]2+ in solution (Figure 94). The 1H-NMR spectrum in DMSO-cfe 

indicated that the complex maintains an intermediate geometry between a rigid 

octahedron and trigonal prism. If the chelator was a rigid octahedron then the 

methylene H’s of both the TAME framework and the isoquinolinyl pendant arms 

would be in unique chemical environments. Therefore, a diasterotopic 

relationship would exist between the geminal H’s of both the pendant arms and 

the TAME framework. Because of the presence of a C3 axis each collection of 

symmetry related methylene H’s would possess a doublet-of-doublet spin pattern 

in the NMR spectrum.(38) However, if the complex cation was a rigid trigonal 

prism in solution then a Cqv symmetry would mandate a simple doublet for the 

symmetry related TAME methylene H’s and a doublet for the isoquinolinyl 

methylene H’s. Thus, the broadening of these resonances in the spectral region 

between 3.0 and 5.0 ppm indicates isomerization between the helical A and A 

configurations. Erosion of the anticipated doublet-of-doublet spin multiplicity also 

supports a solution phase helical inversion of the cation. This dynamic behavior 

was enhanced when TAMEisoquin 11.115 was exposed to 1.0 equivalent of Cd(ll) 

(Figure 94). The poor size-match between the binding cavity of the chelator and
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the ionic radius of Cd(ll) (1.09A) may enhance helical isomerization by reducing 

intraligand steric repulsions in the transition state of the twisting cation. This 

assertion assumes that a Bailar-type twist is the mechanism chosen by the 

chelator to afford the observed dynamic behavior. Two other plausible 

mechanisms, namely a rhombic twist or a dissociative pathway, may also play a 

role in the observed dynamic behavior for both [Cd(TAMEisoquin)]2+ and 

[Zn(TAMEisoquin)]2+.(47)

Ml

ULAW
T T TT

ppm <M ) 6.0 7.0 6.0 5.0 4.0 3L0

Figure 94 Partial 1H-NMR spectra of the Zn(ll) and Cd(ll) complexes of 
TAMEisoquin. The reader should direct their eyes to the spectral region 

between 3.0 and 5.0 ppm. Solvent impurities are indicated by an asterisk (*).

To assess the size-fit between Cd(ll) and TAMEisoquin the complex was 

prepared from a MeOH solution of the chelator and Cd(N0 3 )2-4 H20  and isolated 

in 96.0% yield (Scheme 39). Microcrystals were obtained by Et20 diffusion into
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a 1:1 MeNQ2:MeCN (v/v) solution of the complex. Unfortunately, the crystals did 

not diffract strongly and as such failed to afford any structural data.

2+

1.11711.115

Scheme 39 The preparation of [Cd(TAMEisoquin)](N03)2 11.117.

A computational study was carried out on the [Cd(TAMEisoquin)]2+ cation 

in lieu of the desired crystallographic data. A geometry optimization was 

performed on the cation with DFT at the B3LYP/LANL2DZ level of theory. The 

computational result is shown in Figure 95.

Figure 95 Geometry optimized structure of [Cd(TAMEisoquin)]z+ at the 
B3LYP/LANL2DZ level of theory. Note the splaying of the isoquinolinyl groups.
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The validity of the computational result was checked by measuring the Cd- 

N(het.) bond lengths (2.35+0.01A) and Cd-N(amine) bond lengths 

(2.429±0.005A). Known CdN6 complexes have crystallographically measured 

bond lengths that vary between ca. 2.3-2.4A.(47) This result supports the validity 

of the computational result. A second check was made on the optimized 

structure by measuring the computational angle of twist about the C3 axis of the 

complex cation and the bite distance between the chelating nitrogens. The 

computational twist angle of 39(4)° matched the predicted twist angle of 40° 

obtained following the method of Kepert.(236) In Kepert’s model one only needs 

the intrachelate bite distances and metal-ligand bond lengths to calculate the 

twist angle. That structural information that was readily obtained from the 

geometry optimized structure of [Cd(TAMEisoquin)]2+. The conformation of the 

optimized complex has been assigned as follows: A5capA,M(SSS). The striking 

feature of this computational result is that the Cd(ll) is beginning to pucker out of 

the binding cavity of the complex due to the poor size-match between the ligand 

and the metal. This is perhaps best seen in the splaying the of isoquinolinyl 

groups with respect to the secondary amino groups. The inter-heterocyclic 

nitrogen distances (3.7(1 )A) that forms one of the trigonal faces of the distorted 

octahedron are markedly longer than the inter-amino distances (3.23(9)A) that 

forms the other trigonal face. Ideally, these two distances should be identical, 

which suggests the ligand undergoes an axial elongation upon coordination to 

Cd(ll).
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The closely related azaaromatic 6,7-dimethoxy-1- 

isoquinolinecarboxaldehyde 11.84 furnished the corresponding trisimine complex

11.118 upon treatment with TAME I.36 and a Ni(ll) salt {Scheme 40).

/ ^ ^ . O M e l 2+

OMe

N 2CI04"

*■36 n.118

Scheme 40 The preparation of [Ni(6 ,7 -DMTI-trisimine)](CI04)2 N.118.

The ligand was given the trivial name 6,7-DMTI (where 6,7-DMTI=6,7-dimethoxy 

TAMEisoquin) to simplify chelator nomenclature. The resulting complex formed 

orange colored needles upon Et20 diffusion into a 1:1 MeOH:MeCN (v/v) 

solution. However, no structural data was obtained for this complex. The visible- 

near IR spectrum in MeCN was nearly identical to the spectrum for 

[Ni(TAMEisoquin-trisimine)](CI04)2 (Table 13).

A,max fnml v (cm e Assignment
877(sh.) 11400 33.5 3A2ĝ 1Eig

805 12400 40.0 3A2g->3T2g
co.640-500 co. 15600-20000 co. 275 MLCT (Ni->C=N)

<500 > 2 0 0 0 0 - 7C->7t* (intraligand)
Table 14 Visible-near IR absorbance data for [Ni(6 ,7-DMTI-trisimine)](CI04)2

in MeCN at 25°C.

This data suggests that no additional binding-strength was achieved by the 

presence of the 7t-donating but inductively withdrawing MeO-groups on the
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Me

HoN

Ni(CI04)2 6H20, 
6,7-dimethoxy-
1 -isoquinolinecarboxaldehyde, 

NH2 EtOH/water

NH2 **
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periphery of the complex cation. Moreover, additional steric bulk was minimized 

in the inner coordination sphere of the complex cation by placing the MeO- 

groups at the 6 and 7 positions of the heterocyclic ring system.

The three C=N bonds were reduced with excess NaBH4 in aqueous EtOH 

but the use of NaCN to liberate 6,7-DMTI 11.119 from the metal center proved 

unsuccessful. The organic material isolated furnished a complicated 1H-NMR 

spectrum (not shown) indicating that the 6,7-dimethoxy-1 -isoquinolinyl groups 

were sensitive to the presence of a strong nucleophile like CN'. An alternative 

de-metallation scheme was devised which involved the acidification of crude 

uncharacterized [Ni(6 ,7 -DMTI)](CI04 )2with concentrated HCI (Scheme 41). The 

resulting protonated chelator was isolated as a precipitate from EtOH and dried 

under vacuum to afford a white powder. The uncharacterized protonated 

chelator 6,7-DMTIxHCI was then dissolved into minimal amounts of water and 

treated with excess NaOH until a pH^14 was achieved (evidenced by paper). 

The free-base 6,7-DMTI 11.119 was then extracted from the basic media with 

DCM and isolated in 27.2% yield free of impurities. The dismal yield, however, 

did not hinder subsequent complexation studies with the liberated 6,7-DMTI

11.119 chelator.
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2 +
a) NaBH4, 
Et0H,H20
b) HCIO4

c) HCI Me 
EtOH
d) NaOH,
H20
e) Extract with 
DCM

/ Hj /—N 
! \

11.119

OMe

3
Me

11.118

Scheme 41 The preparation of 6,7-DMTI 11.119.

Unfortunately, our tandem Ni(ll)-mediated template 

reaction/tetrahydroborate reduction failed to afford TAME based chelators with 

either the benzo-fused thiazolecarboxaldehyde II.66 (see Scheme 19) or the 7- 

azacoumarin 11.102 (see Scheme 31). The former thiazole substrate II.66 only 

afforded starting material when the corresponding template reaction was carried 

out. Varying the temperature of the reaction mixture from ca. 20°C to reflux did 

not affect the desired transformation.
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Unfavorable congestion

Me

H2N

n h2

n h2

Ni(CI04)2 6H20, 
4,5-benzo-1 -thiazole 11.66  

EtOH/water

X

1.36

VrPoor convergence of ~ |^e 
N-lone pairs on Ni(ll)

11.119
I Ni(CI04)2 6H20,

2 \ 7 -azacou marin 1 1 .1 0 2
EtOH/water Unfavorable congestion

T
-OBz ^OBz

0  o—

N 2CI04

1.120

Scheme 42 Failed attempts at the preparation of TAME-based trisimirw 
complexes of bulky azaaromatic aldehydes.

The author speculates that steric crowding between the benzo groups working in 

concert with an unsuitable convergence point of the nitrogen lone pairs in the 

five-membered chelate rings thwarted the desired reactivity {Scheme 42).

In the later case of the 7-azacoumarin aldehyde 11.102, only the 

bisazacoumarin complex 11.121 was evidenced in the MALDI-TOF mass 

spectrum of the crude isolated material (Figure 96). The presence of a bulky 

benzyloxy group on the pyridine ring may have prevented a reaction with the 

third equivalent of the 7-azacoumarin aldehyde 11.102 substrate. Varying the
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solvent and reaction time still only afforded the bisazacoumarin complex 11.121. 

Substituting Ni(ll) for a larger templating cation could perhaps bias the formation 

of the desired ligand by bloating the binding cavity thus reducing intraligand steric 

repulsions.

Figure 96 Putative structure of the bisazacoumarin complex 11.121.

The impetus for synthesizing the 6-azacoumarin aldehyde 11.108 was 

partly derived from reducing the steric bulk of the 7-azacoumarin aldehyde 11.102 

thus facilitating reaction completion. It was also hypothesized that switching the 

templating metal to Fe(ll) would facilitate reaction completion. The propensity of 

Fe(ll) to achieve a low-spin electronic configuration (t2g6eg°) in the presence of a 

tris a,a’-diimine ligating set should persuade the reaction equilibria to favor the 

formation of the desired trischelate instead of a bischelate.(42) The reaction of 

the 6-azacoumarin aldehyde 11.108 with TAME I.36 in the presence of 

FeCl2-4 H20  did indeed form the desired trisimine complex 11.122 (Scheme 43).

Open coordination site

Me
11.121
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rx'P oa) FeCI2 4H20, J  y - &
6 -azacoumarin i.   BzHN ^ \r \  JBzHNNH2 aldehyde 11.108,

„ „, EtOH/water, reflux
NH* b) kp f6

NHBz

11.122

Scheme 43 The synthesis of the 6-azacoumarin trischelate complex of
Fe(ll).

The desired complex was isolated as a deep-blue powder from the reaction 

milieu upon anion exchange with hexafluorophosphate. The desired material 

was in fact a low-spin species due to the lack of paramagnetic shifting in the 1H- 

NMR spectrum. Unfortunately, the reaction mixture was complicated with 

numerous by-products which elude removal via recrystallization. The 

azacoumarin substrates 11.102 and 11.108 therefore have limited utility in the 

metal-mediated template reaction toward the preparation of novel TAME-based 

chelators. The preparation of an azacoumarin free of excess functionality 

remains elusive.

2.14. Photophysical properties of TAMEisoquin, and 6,7-DMTI: Zn(ll) 
luminescent sensing

The UV spectra of TAMEisoquin 11.115 and [Zn(TAMEisoquin)]2+ in 50% 

aqueous DMF exhibit four maxima that have been assigned as intraligand 

charge-transfer bands (Figure 97). The free ligand has maxima at 322 nm

(logei=3.92±0.01), 309 nm (loge2=3.86±0.01), 283 nm (loge3=3.96±0.01), and
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272 nm (loge4=4.05±0.01). Upon Zn(ll)-recognition there was a slight 

bathochromic shift of ca. 2 nm in the UV-spectrum with a concomitant increase in 

the intensity of the emerging maxima at 324 nm (logsi=3.95±0.01) and 312 nm 

(Ioge2=3.91±0.01) (Figure 97) and attenuation of the maxima at 284 nm 

(Ioge3=3.92±0.01) and 273 nm (Ioge4=4.04±0.01). The increase in the molar 

absorptivity has been attributed to the movement of the 1n7t* state to higher 

energies upon coordination of the heterocyclic nitrogen to the Zn(ll)-cation.

There were no spectral changes evidenced when TAMEisoquin 11.115 was 

exposed to >1.0 equivalents of Zn(ll), thus supporting a binding stoichiometry of 

1:1 M:L under these conditions.

0.7
 TAMEisoquin

— -  ZnTAMEisoquin

0.6

0.5

S*
0.4

§A■e
4 0.3

0.2

0.1

340 360280 300 320260

Wavelength (nm)

Figure 97 UV spectra of 56 p.M TAMEisoquin and [Zn(TAMEisoquin)]2+ in
50% aqueous DMF (v/v) at 25.0°C.

1S9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In 1:1 DMF:H20  (v / v ) at 25.0°C the ligand showed very little fluorescence 

when excited with 321 nm light (Figure 98). This result demonstrated that PET 

was launched at the isoquinolinyl groups via the secondary amines in the 

absence of the Zn(ll) analyte. Limited water solubility of TAMEisoquin 11.115 

prevented us from studying the efficiency of the PET mechanism as a function of 

pH. It was speculated that the PET mechanism would be interupted upon

 TAMEisoquin
 ZnTAMEisoquin

380 390 400 410370340 350 360330

Wavelength (nm)

Figure 98 Fluorescence spectra (XeX=321 nm) of 14 |xM TAMEisoquin and 
[Zn(TAMEisoquin)]2+ in 50% aqueous DMF at 25.0°C.

protonation of the secondary amines. This in turn would enhance the 

background emission from the apo-chelator under acidic pH. However, in the 

presence of Zn(ll), a 15-fold enhancement of the emission intensity at 355 nm 

was observed. The Zn(ll)-cation binds to both the secondary amines and the 

heterocyclic nitrogens (as evidenced in the NMR and X-ray data) of TAMEisoquin
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11.115 preventing the PET-mediated quenching of the isoquinolinyl groups. The 

sensor is then turned-on and the resulting luminescent response amplified via the 

CEF mechanism.

The emission intensity at 355 nm was linear over a modest concentration 

range of [Zn(TAMEisoquin)]2+. A nonlinear response emerged in the plot 

depicted in Figure 99 when the concentration of the complex reached ca. 20 pM. 

In the linear portion of the plot a slope of logK=6.32±0.02, where 

F=K-[ZnTAMEisoquin], was calculated by a least-squares fit of the data. Even 

though the Stoke’s shift upon analyte binding was 34 nm .(3000 cm'1), overlap of 

the absorbance and emission spectra at 321 nm likely promoted self-absorption 

at higher concentrations of [Zn(TAMEisoquin)]2+.(702)

Figure 99 The effect of concentration of [Zn(TAMEisoquin)]2* on emission 
intensity (F) at X«m=355 nm in 50% aquous DMF at 25.0°C.

100.0

logK=6.32±0.02

0.0 -I------------- ,------------- ,------------- ,------------- ,------------- ,------------- ,
O.OE+OO 1.0E-05 2.0E-05 3.0E-05 4.0E-05 5.0E-05 6.0E-05

[ML] (M)

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The quantum yield of [Zn(TAMEisoquin)]2+ was measured to be 1.2% via 

the use of quinine sulfate as a standard (1N H2SO4 ^quinine=54.6%) (Equation 

ll.j).{237) The following relationship was used to calculate ẐnTAMEisoquin]:

4*[ZnTAMEisoquin] — ^ q u in ine
Grad ICtltlZnTTlMEisoquin] t} [ZnTAMEisoquin]

V quinineGradient,quinine

(H.j)

The “gradients” for Equation ll.j for both the Zn(ll) complex and the standard are 

the slopes from the plot in Figure 100 (see Chapter 4 for experimental details). 

The refractive indices (q) for the solvent systems of both the unknown and 

standard were neglected.

1800000.0

1600000.0 -

1400000.0

1200000.0

1000000.0

800000.0

600000.0

400000.0

200000.0

y = 37667915.8x + 27788.5 
R2= 1.0

° quinine sulfate 
° [Zn(TAMEisoquin)]2+

— Linear (quinine sulfate)
— Linear ([Zn(TAMEisoquin)]2+)

y = 825406.3X + 1717.2 
R2= 1.0

0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140
Absorbances (A.U.) at X=321 nm for [ZnTAMEisoquin]2*'and >=365 nm for 

quinine sulfate standard

Figure 100 Quantum yield determination of [Zn(TAMEisoquin)](CI04)2 in 
50% aqueous DMF at 25.0°C. Serial dilutions of quinine were prepared in 1N

H 2S 0 4.
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Dissolved oxygen, which could quench the fluorescence intensity by promoting 

intersystem crossing, was minimized by purging the solvent systems with 

nitrogen for ca.1 hr prior to analysis. It is believed that internal conversion arising 

from the aforementioned trigonal twisting of the complex cation served to 

attenuate the observed emission intensity. This result may highlight one of the 

disadvantages of employing the TAME-framework to develop novel Zn(ll)- 

luminescent sensors. Substitution of TAME with the TACH framework could 

perhaps increase the emission intensity by forming more rigid complexes with the 

analyte. The crystallographic data of the cation [Zn(TAMEisoquin)]2+ illustrated a 

number of conformational modes available to the chelator upon analyte 

recognition (vide supra). It is hypothesized that constraining the ligating- 

architecture may enhance the emission intensity upon analyte recognition by 

reducing the competing internal-conversion rates. It is hoped that future work on 

analogous isoquinolinyl ligating systems will confirm this assertion.

The spectroscopic selectivity of TAMEisoquin 11.115 toward Zn(ll) was 

indicated by the luminescent response of 11.115 to other monocationic and 

dicationic metal ions (Figure 101). The fluorescence response was only slightly 

positive with main group alkali and alkaline earth metal cations. This result 

highlights the poor-match between the N6 donor set of TAMEisoquin 11.115 and 

these oxophilic cations. The response of TAMEisoquin 11.115 to the first row 

transition-metal ions Mn(ll) through Cu(ll) was quenching. This was anticipated 

for the reasons already discussed in this dissertation. Heavier closed-shell metal 

ions, like Ag(l), also exhibit quenching with TAMEisoquin 11.115 because of
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enhanced intersystem crossing rates due to increased spin-orbit coupling with 

the analyte. The most striking feature observed in this study was that 

TAMEisoquin 11.115 displayed a very feeble fluorescence enhancement in the 

presence of Cd(ll).

15.0

13.0

11.0

9.0

oU. 7.0
«u.*a.

5.0

3.0

1.0

- 1.0

Figure 101 Screening emission enhancements of TAMEisoquin in the 
presence of 1.0 equivalent of various cationic analytes. The experiments 
were conducted in 50% aqueous DMF at 25.0°C with [TAMEisoquin]T0tai=14|iM.

This result is particularly noteworthy because Cd(ll), as mentioned previously, 

often interferes with the spectroscopic selectivity of luminescent Zn(ll)-sensors.

It is believed that Cd(ll) not only quenches the emission by the usual heavy-atom 

effect but it also promotes internal conversion via the aforementioned trigonal 

twisting of the cation in solution. The observed spectroscopic selectivity for Zn{ll) 

is quite powerful and may prove useful in the development of luminescent 

sensors for Zn(ll). In biological systems Cd<H) is essentially nonexistent,
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however, in the analysis of Zn(ll) in other arenas, such as hydrometallurgy, 

environmental chemistry, and materials science the detection of the target 

analyte may be prone to interference from Cd(ll) and Hg(11). (238-241)

An estimation of the binding constant for TAMEisoquin 11.115 to Zn(ll) has 

been carried out by competing the ligand for the metal against TPEN II.49, a 

well-known heavy metal chelator.(242) In the presence of 1.0 equivalent of 

TPEN II.49 at pH=7 (p=0.1 M, see Chapter 4 for experimental details) partial 

quenching of the emission from [Zn(TAMEisoquin)]2+ was achieved, suggesting 

the metal was partially extracted by TPEN forming the non-luminescent complex 

[Zn(TPEN)]2+ (Equation ll.k).

[Zn(TAMEisoquin)]2+ + HnTPENn+ ^  [Zn(TPEN)]2+ + HmTAMEisoquinm+

(ll.k)

The conditional dissociation constant Kd’ was calculated from the data to be 1.4 

fM, highlighting the strong affinity the chelator TAMEisoquin 11.115 has for the 

metal.

The UV spectra of the analogous ligand 6,7-DMTI 11.119, and the 

corresponding complex [Zn(6,7-DMTI)]2+ in 50% aqueous DMF exhibits two well- 

defined maxima that have been assigned as intraligand charge-transfer bands 

(Figure 102). The free ligand has maxima at 326 nm (loge=3.94±0.02) and 314 

nm (loge=3.90±0.02). Upon Zn(ll)-recognition there was a slight bathochromic 

shift of 2 nm in the UV-spectrum with a concomitant increase in the intensity of 

the emerging maxima at 328 nm (loge=4.03±0.02) and 316 nm {log£=4.04±0.02)

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Figure 102). Likewise, the increase in the molar absorptivity has been 

attributed to the movement of the 1nrc* state to higher energies upon coordination 

of the heterocyclic nitrogen to the Zn(ll)-cation. There were no spectral changes 

evidenced when 6,7-DMTI 11.119 was exposed to >1.0 equivalents of Zn(ll), thus 

supporting a binding stoichiometry of 1:1 M:L under these experimental 

conditions.
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—  - 6,7-DMTI  |Zn(6,7-DMTI)]2+

Figure 102 UV spectra of 50 pM 6,7-DMTI and [Zn(6,7-DMTI)]2+ in 50%
aqueous DMF at 25.0°C.

In 50% aqueous DMF at 25.0°C the ligand 6,7-DMTI 11.119 showed very 

little fluorescence when excited with 326 nm light (Figure 103). This result 

demonstrates that PET was launched at the substituted isoquinolinyl groups via 

the secondary amines in the absence of the Zn(ll) analyte. However, in the 

presence of Zn(ll), a 17-fold enhancement of the emission intensity at 360 nm 

was observed.
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Figure 103 Fluorescence spectra (X«x=326 nm) of 5|iM 6,7-DMTI and [Zn(6,7- 
DMTI)]2+ in 50% aqueous DMF at 25.0°C.

The emission intensity at 360 nm was linear over a small concentration 

range of [Zn(6,7-DMTI)]2+. A nonlinear response emerged in the plot depicted in 

Figure 104 when the concentration of the complex reached ca. 30 jxM. In the 

linear portion of the plot a slope of logK=7.54±0.03 was calculated by a least- 

squares fit of the data. Even though the Stokes’ shift upon analyte binding was 

34 nm (3000cm'1), overlap of the absorbance and emission spectra at 326nm 

likely promoted self-absorption at higher concentrations of [Zn(6,7-DMTI)]2+.
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Emission of [Zn(6,7-DMTI)]2+ at 360nm
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Figure 104 The effect of concentration of [Zn(6,7-DMTI)]2+ on emission 
intensity (F) at X«m=360 nm in 50% aquous DMF at 25.0°C.

The quantum yield of [Zn(6,7-DMTI)]2+ was measured to be 20% via the 

use of quinine sulfate as a standard (Figure 105). Analogous to what was 

observed with the methoxylated TQEN derivatives T(MQ)EN II.50 and 

T(TMQ)EN 11.51 prepared by Mikata etal. the quantum yield of [Zn(6,7-DMTI)]2+ 

was ca.17 times larger than the quantum yield for [Zn(TAMEisoquin)]2+ (i.e.

1.2%).( 184) The polarizing nature of the electron donating MeO-groups may 

supply the expected PET/CEF sensing mechanism of 6,7-DMTI 11.119 with a 

modicum of ICT character.
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Figure 105 Quantum yield determination of [Zn(6,7-DMTI)]2+ in 50% aqueous 
DMF at 25.0°C. Serial dilutions of quinine were prepared in 1 N H2SO4.

The spectroscopic selectivity of 6,7-DMTI 11.119 toward Zn(ll) was 

indicated by the luminescent response of 11.119 to other monocationic and 

dicationic metal ions (Figure 106). As was seen with TAMEisoquin 11.115, the 

fluorescence response was only slightly positive with main group alkali and 

alkaline earth metal cations. Likewise, the response of 6,7-DMTI 11.119 to the 

first row transition-metal ions Mn(ll) through Cu(ll) was quenching. Heavier 

closed-shell metal ions {i.e. Ag(l), Hg(ll), and Pb(ll)) again exhibited quenching 

with 6,7-DMTI 11.119 because of enhanced intersystem crossing rates due to 

increased spin-orbit coupling with these analytes. The exquisite spectroscopic 

selectivity of 6,7-DMTI 11.119 for Zn(ll) was maintained over Cd(ll) highlighting 

the utility of the TAME-framework in the preparation of size-selective metal-ion 

sensors.
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Figure 106 Screening emission enhancements of 6,7-DMTI 11.119 in the 
presence of 1.0 equivalent of various cationic analytes. The experiments 
were conducted in 50% aqueous DMF at 25.0°C with [TAMEisoquin]Totai=20 pM.

2.15. Conclusions and future work

In sum, the tandem Ni(ll)-mediated template reaction/tetrahydroborate 

reduction developed to prepare the novel chelator TAMEpyr I.60 has been 

exploited in the preparation of novel Zn(ll)-selective fluorescent sensors. The 

molecules TAMEisoquin 11.115 and 6,7-DMTI 11.119 possess the fluorophore- 

spacer-receptor design motif that is evident in many PET-based metal-ion 

sensors. The isoquinolinyl groups allow CEF to work in concert with the PET 

switching mechanism. Moreover, TAMEisoquin 11.115 and 6,7-DMTI 11.119 

display exquisite spectroscopic selectivity for Zn<ll) with target-induced 

fluorescence enhancements of ca. 14 and 17 respectively. The measured
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quantum yield for [Zn(TAMEisoquin)]2+ was a dismal 1.2%. This was improved, 

however, to 20% for [Zn(6,7-DMTI)]2+. Unfortunately, the emission maxima for 

both sensors were embedded in the UV-region of the electromagnetic spectrum. 

Therefore, these molecules have limited utility in the sensing of biological Zn(ll) 

because of the current instrumental limitations. The thermodynamic stability 

imparted to the target analyte from the polydentate N6-donor set was evidenced 

in the measured Kd’ of 1.4 fM of [Zn(TAMEisoquin)]2+. Unlike many sensors in 

the literature, the TAME-based chelators display excellent selectivity for Zn(ll) 

over Cd(ll). This observation may ultimately play a significant role in the design of 

second generation molecules. Likewise, the synthetic flexibility of the TAME 

podand for additional functionalization may facilitate the development of novel 

bifunctional luminescent sensors (Figure 107). It is envisioned that site-selective

Fluorophore
NH,

NH
Targeting

Biomolecule
Fiuorophon

Figure 107 Generic representation of a site-selective TAME-based 
luminescent sensor for the cellular analysis of Zn(ll).

Zn(ll) sensing could be accomplished if a targeting biomolecule is attached to the 

peripheral methyl group of the TAME-framework. Once a visibly-emitting 

fluorophore is uncovered site-selective luminescent-sensing of Zn(ll) in a cellular 

matrix will ensue
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CHAPTER 3

FLUORESCENT RATIOMETRIC INDICATORS FOR TRANSITION METAL
IONS: A GENERAL APPROACH

Summary

In this chapter the author will discuss how swelling polymeric networks 

built from N-isopropylacrylamide (NIPA) have been prepared toward the sensing 

of Cu(ll). This body of work has been a collaborative effort between myself and 

Dr. Roy Planalp, Dr. W.Rudi Seitz and his student John Osambo (UNH), Dr. 

Shawn C. Burdette and his student Aaron Atkinson (UCONN). The author’s role 

in this project was to synthesize strongly and weakly binding metal ion receptors 

to be copolymerized into the polyNIPA network. Fluorescent groups (e.g. 

naphthalyl and anthracenyl) were also copolymerized into this network which 

acted as luminescent reportors upon analyte recognition. Depending on the 

charge of the bound metal-receptor complex the polymer either became swollen 

or shrank. Polymer shrinking brought the donor-acceptor pair closer together 

such that fluorescence resonance energy transfer (FRET) increased.

Conversely, reduction of like charges within the polymeric network caused the 

polymer to swell thus attenuating the measured FRET. The following discussion
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will begin with the phenonmenon of polymer swelling citing key literature reports 

of polymeric based sensors. Then the stage will be set for our work by 

describing the history of polymeric sensors as explored in the Seitz group. 

Lastly, the author will discuss the ligating systems he chose to synthesize to be 

incorporated into the polyNIPA systems and the results obtained for the sensing 

of Cu(ll) will be presented.
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3.1. Introduction

The use of polymeric materials in the development of chemical sensors for 

neutral and ionic analytes has become increasingly popular. Chemically induced 

polymer swelling is attractive as a transduction strategy because there are many 

ways to monitor changes in polymer properties that accompany swelling.{243)

For example lightly crosslinked polymers can expand or contract with changes in 

temperature, solvent composition, pH, hydrostatic pressure and by external 

magnetic and electric fields.(244, 245) When placed in a suitable solvent system 

the polymer can absorb a portion of the solvent causing swelling.{246,247) The 

extent of the swelling depends on two competing processes. Initially, the free 

energy of mixing will increase the degree of solvation of the polymer and will 

cause the polymer chains to radiate outward into the solution. However, as the 

polymer begins to expand the polymer chains will experience an elastic retraction 

from the cross-linking moieties. The degree of polymeric swelling is also 

increased by electrostatic repulsions between like-charges that may exist in the 

polymeric framework {e.g. between two carboxylate residues that are in close 

proximity to one another when the polymer is in a shrunken state).{243) A 

steady-state is achieved when the opposing forces of solvation and elastic 

retraction balance. It is said that volumetric changes within the polymeric 

network as large as 10-100 times can occur.(248)

Swelling polymeric networks have been exploited in the preparation of 

novel chemical sensors in the literature. For instance Holtz and Asher
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constructed a crystalline array of polymer spheres within a hydrogel that shrink or 

swell in the presence of certain analytes.(249) The crystalline colloidal array 

diffracts visible light if the spacing between the polymer spheres increase.{250- 

252) Upon analyte recognition the diffracted light gives rise to an intense color 

change which is detectable by the naked eye. The hydrogel contained a 

molecular recognition group, for instance a crown-ether which demonstrated 

selective interactions with Pb(ll) over Li(l) or K(l) (Figure 108). The recognition 

events cause the gel to swell because of the increased osmotic pressure within 

the gel due to a Donnan potential arising from mobile counterions to the crown 

ether bound Pb(ll).(244, 247) The swelling increases the mean separation 

between the colloidal spheres and as such shifts the Bragg peak of the diffracted 

light to longer wavelengths (i.e. red shifts occurred in the visible extinction 

spectra of the sensing materials in the presence of the analyte).

nh2

NH

Figure 108 The structure of Holtz and Asher’s Pb(ll) polymeric sensor.

Optical “turn-off” sensors for the continuous monitoring of 0 2 were 

developed by Lee et al. based on the quenching of the stable dye Pt-
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octaethylporphyrin (PtOEP) (Figure 109).(253) The cP square planar complex 

PtOEP is a strong room temperature fluorescent dye. However, PtOEP is 

susceptible to intersystem crossing in the presence of triplet O2 thus quenching 

the observable fluorescence. Sensing films were constructed by incorporating 

PtOEP into polyvinyl chloride, polystyrene or silicone matrices. The response 

time of the optical sensors varied from 10-100 seconds depending on the type of 

polymer matrix employed. Presumably the response rate of the sensor is 

governed by the diffusion of O2 into the polymeric network where it can interact 

with the PtOEP dye. The response of the sensor was assessed using Stern- 

Volmer plots, which describe the emission from PtOEP as a function of O2 

concentration^ 101) The sensing films maintained good operational stability. 

Likewise, there was no significant photo-bleaching of the material as observed 

over the course of one year. According to the authors the aim of this work was to 

detect O2 in aerodynamic environments.

PtOEP

Figure 109 The structure of the luminescent dye PtOEP.

Polymeric sensors other than thin films have also been prepared and 

described in the literature. For example Chen etal. showed that the 

fluorescence of the water soluble polyanionic conjugated polymer {poly-(2-
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methoxy-5-propyloxy sulfonate phenylene vinylene] (MPS-PPV) can be 

quenched by extremely low concentrations of cationic electron acceptors like 

A/,/V-dimethyl-4,4’-bipyridinium (MV2+) in aqueous solutions (Figure 110).(254)

MPS-PPV / MV2*

Figure 110 Fluorescence quenching of MPS-PPV with MV2+. The figure was
borrowed from reference (254)

Using a combination of steady-state and ultrafast spectroscopy Chen established 

that the fluorescence quenching arose from a complex that formed between one 

molecule of the polymer (which contains -1000 monomer units) with one 

molecule of MV2+ (Figure 110). The MV2+ is said to be associated with the 

polymer via 7c-stacking forces. Transfer of excited state electrons on the polymer 

chain to MV2+ quenches the fluorescence from the polymer. The speed of these 

electron transfer events was clocked at 650 femtoseconds. The quenching can 

be selectively reversed (i.e. fluorescence “turned-on”) in the presence of a 

biotinylated derivative of MV2+ (Figure 111). The biotinylated derivative 

associates with the polymer in an analogous fashion as the parent MV2+ does
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effectively quenching all the fluorescence from the polymer. Upon exposure to 

avidin the biotinylated derivative dissociates from the polymer and forms a strong 

complex with the analyte. The polymer is now free to fluoresce resulting in a 

highly selective sensor for avidin. This reversible fluorescence quenching 

provides the basis for a new class of highly sensitive biological and chemical 

sensors.

Figure 111 The reversal of MPS-PPV fluorescence quenching upon avidin 
binding. The functionality labeled “B” is a biotinylated residue on the polymer 

which has a large affinity for the analyte. The figure was borrowed from
reference (254).

3.2. Previous work within the Seitz group

Our collaborators Seitz and coworkers have been interested for some time 

in preparing and studying swelling polymers for chemical and biological sensing. 

The seminal paper for this work emerged in the early 1990’s with the 

development of a polymeric sensor that detects changes in the ionic strength of 

aqueous solutions (Figure 112).(255)

Fluorescence quenched Strong fluorescence
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Figure 112 Polymer sensor that detects changes in the ionic strength of
aqueous solutions.

The sensor was prepared from commercially available polymeric beads (i.e. ion 

exchange resins) that shrink when the ionic strength of the solution the beads 

were emerged was increased. The changes in polymer size were attributed to 

changes in osmotic pressure. As the ionic strength of the solution in contact with 

the beads increased the degree of solvation within the bead decreased leading to 

a reduction in the osmotic pressure acting on the bead. This in turn caused the 

bead to shrink. The polymeric beads were attached to a reflective diaphragm 

such that changes in polymer size caused a change in the reflector’s position 

(indicated in Figure 112 by the double-headed arrow). This resulted in a change 

in the intensity of light reflected back into a two-channel optical fiber. Increased 

intensity changes were observed as the amount of crosslinking within the beads 

was decreased. Without the restrictive forces imposed by the crosslinkers the 

beads were free to shrink to a greater degree allowing more light to be reflected 

back into the fiber optic channel. Unfortunately, the commercially obtained 

material was susceptible to cracking with repeated use of the sensor.
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This study prompted the Seitz group to synthesize their own polymeric 

networks so that the physical properties of the swelling material could be tailored 

for specific applications, which would ultimately result in better performance of 

the device.(256-258) Polymer beads were constructed from poly(vinyl benzyl 

chloride) (Poly-VBC) because of the ease with which vinyl benzyl chloride can be 

polymerized. Moreover, Poly-VBC can be copolymerized with a host of 

comonomers which allows for the introduction of additional functionality (e.g. a 

receptor) for selective analyte sensing. Unfortunately, the Poly-VBC beads failed 

to move the reflective diaphragm shown in Figure 112 because they did not 

swell with enough force.(248)

The functionalized Poly-VBC networks were instead directly attached to a 

fiber optic tip.(256-258) In these systems the intensity of the reflected light from 

the polymer-substrate interface was measured. As the polymer came in contact 

with the analyte (e.g. H+) swelling or shrinking took place which led to changes in 

the reflected light. The observed changes were attributed to perturbations of the 

refractive index of the Poly-VBC network. This strategy ultimately proved 

problematic because of shear forces acting on the polymer-substrate interface 

during the swelling/shrinking process. These forces caused the delamination of 

the polymer from surface of the optical tip.

During the course of the aforementioned studies it was shown that 

functionalized Poly-VBC beads become clear upon swelling and opaque upon 

shrinking. This observation led to the design of a new sensing scheme. The 

polymeric beads were instead suspended into a hydrogel forming a cloudy
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membrane. Hydrogels themselves are polymer membranes with a high degree 

of hydrophilicity.(257) When equilibrated in aqueous environments these 

polymers take up large volumes of water, yet they retain their shape. The 

intensity of the scattered light within the membrane was measured (Figure 113). 

As the beads in the hydrogel became swollen a change

Figure 113 Swelling/shrinking polymeric beads suspended in a hydrogel
membrane.

in the refractive index occurred causing changes in the turbidity of the 

membrane. This phenonmenon has proven useful and has been employed by 

the Seitz group to make new chemical sensors.

In a recent paper Seitz and coworkers demonstrate that lightly 

crossslinked copolymers of N-isopropylacrylamide (NIPA) that contain a small 

amount of a recognition comonomer (2% acrylic acid) act as sensors for H+, 

Cu(ll) and Pb(ll).(243) They prepared copolymers of NIPA and acrylic acid as 

microspheres and embedded those spheres into a poly(vinyl alcohol) (PVA) 

hydrogel membrane. At pH=6 the acrylic acid moieties were deprotonated which 

caused the spheres to swell because of the increased affinity of the anionic 

polymer for water. The swelling process was evidenced by measuring a
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decrease in the turbidity within the membrane. Upon acidification the carboxylate 

residues are protonated causing the polymer bead to shrink which increased the 

turbiditity within the membrane. Because it is known that carboxylate groups will 

coordinate divalent metal ions, thus causing a net decrease in the anionic charge 

in the polymer bead, Seitz and coworkers found that in the presence of Cu(ll) 

and Pb(ll) the embedded polymer beads (that contain 2% w/w acrylic acid) 

shrank resulting in an increase in the measured refractive index.(259, 260) 

Because the number of ions needed to induce a large amount of swelling within 

the polymer was small these membranes are potentially useful for chemical 

sensing applications. However, greater selectivity for different metal ion analytes 

needs to be achieved by incorporating comonomers with selective metal binding 

groups into the polymeric network. The following discussion describes a new 

approach to selective metal ion sensing.

3.3. Swelling polymeric networks for the detection of Cu(ll) (From John 
Osambo, W. Rudolf Seitz, Daniel P. Kennedy, Roy P. Planalp, Aaron Atkinson, 
and Shawn Burdette, submitted for publication).

Ratiometric sensors utilize analyte-induced changes in absorption

maxima, emission maxima, or both to differentiate between the free and bound

sensor molecule. Ratiometric emission measurements involve monitoring the

fluorescence of the bound and free sensor at a fixed excitation wavelength. The

ratio of the intensities from the free and complexed form becomes the measured

parameter, provided that the emission maxima for the bound and unbound

sensor are sufficiently different. Ratiometric measurements are insensitive to
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both the amount of indicator present and instrumental drift factors such as 

variation in the source intensity. These unique properties make ratiometric 

measurements the preferred strategy for all sensing applications, particularly 

intracellular sensing where control of indicator amount becomes impractical.

The limited number of available ratiometric sensors for Cu(ll) attests to the 

difficulty in adapting sensing strategies to metal ions with intrinsic quenching 

effects. Even though existing small molecule sensors for Cu(ll) are capable of 

ratiometric measurements, these strategies rely on manipulation of extinction 

coefficients to indirectly increase the emission intensity. The absolute quantum 

yield of the resulting Cu(ll)-complexes often remains relatively low compared to 

traditional fluorescent sensors for closed-shell metal ions.

An alternative approach to preparing ratiometric sensors for transition 

metal ions that circumvents fluorescence quenching, involves the use of polymer 

architecture changes. Herein is reported the design of sensors that take 

advantage of the thermal phase transition properties of poly-N- 

isopropylacrylamide (polyNIPA).(267, 262) Below the lower critical solution 

temperature (LCST) of 37°C, pure polyNIPA remains soluble in water; however, 

the polymer precipitates above this temperature. When crosslinked, polyNIPA 

swells in water below the LCST and contracts at higher temperatures. 

Copolymerization of NIPA with other monomers shifts the LCST of polyNIPA to 

lower or higher values depending on the affinity of the other monomers for water. 

A small percentage of a charged monomer, like a carboxylate unit, can be 

sufficient to completely disrupt the phase transition, which allows polyNIPA to
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remain in solution at temperatures up to the boiling point. Inclusion of a 

comonomer also introduces heterogeneities along the polymer backbone that 

cause the phase transition to occur over a range of temperatures. Our approach 

involves copolymerizing NIPA with a ligand that binds Cu(ll) and two 

fluorophores capable of undergoing fluorescence resonance energy transfer 

(Figure 114). Ratiometric data can be extrapolated using the relative FRET 

observed at different concentrations of Cu(ll). This report compares two types of

Figure 114 Representation of our novel Cu(ll)-sensor.

ligands (Figure 115) with different properties that alter the polymer behavior in 

aqueous solution. The first ligand 111.1, which contains a neutral 2,2’-bipyridyl 

group in the unbound state, causes the polymer to become charged upon Cu(ll) 

binding. Under these circumstances, binding of the analyte increases the affinity 

of the polymer for water thus shifting the LCST to higher temperatures. The 

resulting swelling in the polymer upon metal binding increases the distance 

between the two fluorophores, which results in decreased FRET. The second 

ligand III.2, a phenyl iminodiacetate, carries negative charge at pH£6 solutions 

and forms a neutral complex with the Cu(ll) analyte . In contrast to the first 

approach, complexation reduces the affinity of the polymer for water, thus shifting
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the LCST to lower temperatures and causing the polymer to contract. The 

resulting decrease in distance between the two fluorophores results in increased 

FRET. In both ligand systems complexation with Cu(ll) affects the degree to 

which the microparticles swell or shrink in water.

Figure 115 Ligating comonomers for FRET-based Cu(ll) sensing.

Results and discussion

3.4. Preparation of metal ion receptors

This chapter describes a collaborative project between the Planalp, Seitz 

and Burdette groups. The role of thePlanalp group was to design and synthesize 

ligating comonomers, which were incorporated into sensing polymers by the 

Seitz group.

The first monomer prepared was based on dipicolylamine (DPA) (Scheme

44).

Me

111.1 III.2
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a) 2 -pyridinecarboxaldehyde 
MeOH

NHg b) NaBH4

111.3 ■11.4

Br OP9 0K2C03i MeCN

111.5

Scheme 44 The preparation of allylated DPA 111.5.

The choice of DPA as the ligating unit stems from its extensive use as a Zn(ll)- 

receptor in small molecule luminescent sensors.(126, 135, 136) The short two- 

step reaction sequence to prepare the allyl DPA began with a condensation 

between 2-aminomethylpyridine III.3 and 2-pyridinecarboxaldehyde followed by 

the in situ reduction of the resulting imine intermediate with NaBH4. A 

polymerizable allyl tether was appended to the secondary amine of DPA 111.4 via 

alkylation with allyl bromide. The resulting product required chromatography on 

basic aluminum oxide to free the desired compound 111.5 from impurities 

generated during the course of the reaction. Preliminary data from the Seitz 

group suggested that introduction of allyl DPA into the NIPA framework caused 

the polymer to expand when it is was in the presence of Cu(ll) at pH=6. It was 

reasoned that the monocationic DPA receptor (monoprotonated at pH=6 because 

pKai~10) will bind Cu(ll) displacing a proton and forming a +2 charged complex. 

This will facilitate polymer swelling because of increased electrostatic repulsions 

between the bound receptors. The observed polymer swelling resulted in a 

decrease in the measured FRET between the naphthalene and anthracene
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fluorescent groups (data not shown). As mentioned in chapter 2 of this 

dissertation the FRET phenonmenon is heavily dependant on distance between 

the donor-acceptor pair. Additional data from the Seitz group is needed to 

complete the analysis.

Another comonomer was synthesized that possessed a lipophilic n-hexyl 

tail (Scheme 45). The aliphatic group was selected to increase the distance 

between the metal binding groups in the polymer. It was envisioned that 

increasing the distance will attenuate the effect of electrostatic repulsions 

between bound receptors and thus support the hypothesis that metal binding is 

principally responsible for polymer swelling. Reductive amination failed to afford 

the desired synthetic intermediate 111.7 in acceptable yields (ca. 10% conversion 

based on the crude 1H-NMR). Instead alkylation of n-hexylamine with 2-picolyl 

chloride yielded compound 111.7 which was subsequently purified by reduced 

pressure distillation (bp=90-93°C, P=95-100mTorr). The secondary amine of 

compound 111.7 was acylated with acryloyl chloride affording the comonomer 111.8. 

No attempts have been made so far on the polymerization of compound 111.8 into 

the NIPA networks.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-pyridinecarboxaldehyde

Me"

111.6

H
Me

2-picolyl chloride 111.7
Na2C03, 
MeCN, A

acryloyl chloride

TEA, toluene _

111.8

Scheme 45 Preparation of a lipophilic comonomer.

The utility of the iminodiacetate (IDA) group as a cation receptor in small 

molecule luminescent sensors prompted us to prepare compound 111.10 (Scheme 

46). The desired product was easily obtained pure as a white crystalline solid 

upon neutralization of the reaction mixture. Careful control of the amount of HCI 

delivered during the workup prevented the polymerization of the isolated product.

a) acrylol chloride 
Et20, NaOH

h o 2c / ^ 'n / ^ c o2h ------------► H02C N c o 2h

H  b > H C I

III.9 111.10

Scheme 46 Preparation of acryloyl-IDA.

However, the limited solubility of compound 111.10 proved to be problematic 

during the polymerization process. As such this compound was not pursued for 

further study.
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The IDA framework was further exploited in the preparation of a thioether 

which was envisioned to act as a receptor for softer metal ions like Pb(ll) or 

Hg(ll) (Scheme 47). The terminal hydroxyl groups of the diethanolamine 111.11

\\ _ SOCI2 ^  H HC' »SH
HO 0H CHCi Cl Cl NaOEt, EtOH, A

111.11 chci3 111.12

° V ^ >H acryloyl chloride
ISL ^  / v .

Me S S Me TEA, toluene Me S S Me

111.13 111.14

Scheme 47 Preparation of an acryloyl-thioether receptor for soft metal ions.

substrate were replaced with chlorides using thionyl chloride. The resulting 

ammonium salt 111.12 then underwent a thioetherification reaction with ethane 

thiol and sodium ethoxide which afforded the linear dithioether 111.13. The 

secondary amino group was acylated with acryloyl chloride affording compound 

111.14.

The IDA receptor was also integrated into a styrenyl scaffold (Scheme 

48). Attempts at the preparation of compound 111.17 was met with failure. The 4- 

vinylaniline substrate 111.15 could only be monoalkylated resulting in the 

production of compound 111.16. It was hypothesized that both the electron 

withdrawing vinyl group para to the anilino nitrogen working in concert with a 

steric effect introduced upon monoalkylation prevents the formation of the 

desired dialkylated product. This prompted us to move the vinyl group meta to
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o

111.15
Nal, proton sponge 

MeCN, reflux

t-BuO

111.17

O

h2n

Nal, proton sponge 
MeCN, reflux

111.18
R=Et, 111.19 
R=t-Bu, III.20

Scheme 48 Preparation of phenyl-IDA ligating comonomers.

the nucleophilic nitrogen which indeed, under identical reaction conditions, 

furnished the desired dialkylated product. Proton sponge (1,8- 

bis(dimethylamino)naphthalene) was used because of its relative high pKa of 

12.34 for its conjugate acid in aqueous solution.(263) It is one of the strongest 

amine bases known where the high basicity is attributed to the relief of strain 

upon protonation between the nitrogen lone pairs. However, the molecule is 

sterically hindered, making it a weak nucleophile. Because of this combination of 

properties, proton sponge has been used in organic synthesis as a highly 

selective non-nucleophilic base. Both the ethyl ester 111.19 and t-butyl ester III.20 

were prepared so that multiple deprotection strategies could be tested once the 

pro-ligating group had been incorporated into the polymeric network. The t-butyl
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group can be converted into the corresponding carboxylic acid with trifluoroacetic 

acid (TFA) whereas the ethyl ester can be hydrolyzed with mineral acids like HCI 

or H2S04.(264)

Our collaborator’s Burdette and Atkinson prepared a bipyridyl based 

comonomer. Their synthesis began with a Se02 oxidation of the substrate 111.21. 

The monoaldehyde III.22 was isolated from the reaction mixture and reductively 

aminated with n-propylamine giving the secondary amine III.23 which was then 

acylated with acryloyl chloride affording the desired compound 111.1.

Me

Me

Me

111.21

Se05

p-dioxane

NHCHO

Me

III.22 III.23
Me

acryloyl chloride

111.1

Scheme 49 The synthesis of Burdette and Atkinson’s 2,2’-bipyridyl
comonomer 111.1.

The results of polymerization and sensor characterization for the t-butyl 

ester III.2 and the bipy derivative 111.1 are described in the next section.
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We are also interested in preparing macrocyclic receptors for Pb(ll) and 

Hg(ll). Our first entry into this class of compounds is a diacryloyl derivative of an 

N3S2 macrocycle recently reported by Xiao et al.{265) This molecule was chosen 

because it offers soft (S) and borderline (N) donor groups that are well-suited for 

Pb(ll) and Hg(ll) complexation. Molecule 111.27, however, possesses two 

complicating features related to rotational isomerism and its expected 

polymerization behavior.

Scheme 50 Preparation of an N3S2 macrocycle to serve as a Hg(ll) or Pb(ll)
receptor.

The synthesis began with a thioetherification of 1,2-dichloroethane which 

afforded the linear diamine III.24. The next step of the reaction sequence was a

O O
Cl NaOEt, EtOH, H2N 

A

NH2

Ag(N03), MeOH, 
reflux

NaCI04
111.24

Me
I I® 

N * 'V Me
©

CIO4 MeOH, reflux

xcs. NaBH4 Me
------------

Me acryloyl chloride

toluene

111.25 111.26

111.27
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silver-mediated template reaction of 2 ,6 -diacetylpyridine, which upon anion 

exchange, gave the desired Schiff-base silver complex 111.25. The complex was 

subjected to reductive demetallation conditions to afford three isomers of the 

N 3S 2  macrocycle (meso and D,L pair) 111.26. The secondary amino groups were 

acylated with acryloyl chloride to afford the desired monomer 111.27. This 

molecule is unique in that the presence of two polymerizable acryloyl groups 

allows the material to act as both the receptor and cross-linker.

Work is underway in preparing mixed N xS y macrocyclic receptors that will 

possess only one polymerizable functionality. This is envisioned to simplify the 

polymerization process. A novel model system has been prepared 

straightforwardly (Scheme 51). The synthesis began with tosylation of the N- 

phenyl diethanolamine substrate III.28. The tosylates were subsequently 

displaced by 2 -aminoethanethiol in a refluxing mixture of sodium ethoxide and 

absolute ethanol. The resulting linear triamine III.30 was used as is in the silver- 

mediated template reaction of 2 ,6 -diacetylpyridine affording the desired ligating 

scaffold in complex 111.31. It is envisioned that introduction of either an acryloyl or 

vinyl group on the phenyl ring will ultimately grant access to a useful collection of 

comonomers. No attempts at measuring the metal binding ability of the N 4S 2  or 

N3S2 macrocycles have been made.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



h2n^ ^ o o

Ag(N03), MeOH,
111.30 reflux

©n
Me Me

c(
Ag:

Functionalize
here

111.31

Scheme 51 Preparation of a model N4S2 macrocycle.

3.5. Sensors prepared with the phenyl-IDA comonomer III.2 and bipyridyl 
comonomer III.1 (From John Osambo, W. Rudolf Seitz, Daniel P. Kennedy, Roy 
P. Planalp, Aaron Atkinson, and Shawn Burdette, submitted for publication)

The redox active Cu(ll) ion was selected as the target analyte for this new 

approach to metal ion sensing because of its quenching nature. The 2 ,2 ’- 

bipyridyl 111.1 and phenyl iminodiacetate III.2 comonomers were selected as the 

receptors because of the well-studied coordination chemistry of these ligands as 

well as their changes in charge upon analyte recognition. The bipyridyl ligand 

111.1 was copolymerized with NIPA via the acryoyl group to make the sensor. The 

terf-butyl ester pro-ligand III.20 was copolymerized with NIPA via the pendant
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vinyl group. The ester-containing polymer was treated with acid providing the 

desired polymer-bound imininodiacetate ligand 111.2. Napthalene methacrylate 

111.33 and 9-vinyl anthracene 111.32 were included in the polymer formulation to 

introduce a FRET pair (Figure 116). FRET-based systems that utilize 

naphthalene as the donor and anthracene as the acceptor have been reported 

previously.(266, 267) This FRET pair was a convenient option to test our model 

sensor system because the required monomers are commercially available. 

Napthalene and anthracene will shift the LCST to lower values because they are 

nonpolar, which enhances the FRET in the absence of charged ligands or metal 

ions since the polymer contracts.

Copolymer microparticles were prepared exclusively by Osambo and Seitz 

via dispersion polymerization at 60 °C in acetonitrile using azoisobutyrylnitrile

Figure 116 Monomeric FRET pair for incorporation into the swelling 
polyNIPA polymers. The naphthalene monomer acts as the donor and the 

anthracene monomer acts as the acceptor.

(AIBN) as the initiator and a styrene/acrylonitrile copolymer as a stabilizer. 

Sensors were obtained from polymeric formulations containing ca. 5 mole % 

ligand, 5 mole % methylenebisacrylamide crosslinker, 90 mole % NIPA, 0.2 mole 

% naphthalene methacrylate III.33 and 0.05 mole % vinyl anthracene III.32. The 

concentrations of Cu(ll) were determined by excitation of the naphthalene at 260 

nm, and measuring the ratio of anthracence emission at 421 nm to naphthalene

111.32 111.33
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emission at 355 nm. This ratio increases as the copolymer shrinks bringing the 

donor and the acceptor closer together, or decreases when the polymer expands 

and the distance between the donor and acceptor increases. Fluorescence 

experiments were carried out at pH=6.0 to prevent the formation of metal 

hydroxide complexes. The bipyridyl ligand 111.1 is in its neutral form and the 

phenyliminodiacetate III.2 is in the dianion form at pH 6, which prevents proton- 

induced changes in polymer structure.

Figure 117 illustrates how the intensity ratio varies with added Cu(ll) for 

the copolymer prepared using the bipyridyl ligand 111.1. The intensity ratio 

decreases with added Cu{ll) up to a concentration of approximately 7 x 10-7 M, 

consistent with decreased FRET as the consequence of particle expansion 

resulting from charge accumulation on the polymer chain. Depending on the 

binding constant of the receptor with the target metal ion these sensors can 

either operate as indicators sampling the matrix for the analyte or as 

stoichiometric sensors which removes all analyte from the matrix. The intensity 

ratio does not change at higher concentrations of Cu(ll). The sensor behavior 

reflects a linear relationship between the moles of added Cu<ll) and moles of 

ligand in the copolymer that corresponds to continuing fluorescence ratio 

decreases up to a saturation point of 1:1 Cu(ll):bipyridyl ligand in the polymer 

particle. At 50 °C, the copolymer particle is initially more compact increasing 

FRET. As a result of the temperature-dependent change in polymer architecture, 

the initial intensity ratio is higher, and the magnitude of decrease in the 

fluorescence ratio when titrated with Cu(ll) increases.
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9-Vinylaanthracene: 2-Naphthylmethacrylate fluorescence Intensity
ratio vs. concentration of Cu2+ solution added to polymer suspension
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Figure 117 Cu(ll) titration of polyNIPA doped with compound 111.1

The phenyl iminodiacetate III.2 containing polymeric sensors also 

demonstrate architecture driven fluorescence changes, but exhibit different 

behavior because of the charged metal chelator. Figure 118 depicts the effects 

of Cu(ll)-binding on the anthracene to naphthalene intensity ratio for the sensor 

particles. In contrast to the bipyridyl system, the free ligand is charged and the 

metal complex is neutral. Added Cu(ll) neutralizes the charge on the ligand and 

causes particles to contract, which increases FRET. The ratio increases with 

added Cu(ll) up to ca. 5.0x10“7 M. Only modest changes in fluorescence 

intensity are observed upon further addition of Cu(ll). The fluorescence changes 

are consistent with the formation of 1:1 Cu(ll):ligand complexes in the polymer 

particles.
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9-Vinylanthracene:2-Naphthylmethacrylate fluorescence Intensity
ratio vs. concentration of Cu2+ions added to polymer suspension
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Figure 118 Cu(ll) titration of polyNIPA doped with compound 111.2

3.6. Conclusions and future work

These experiments demonstrate a general approach to detecting metal 

ions like Cu(ll) that normally quench fluorescence. There is promise that 

sensitive sensors can be produced, because the fluorescence ratio changes are 

large, ranging from ca. 0.2 to 0.8 in the case of phenyl iminodiacetate, and from 

1.6 down to 1.0 for bipyridyl at 50°C. Future experiments will address shifting the 

emission wavelengths away from UV wavelengths by examining other FRET  

pairs. Other ligands will also be screened to address issues of metal ion 

selectivity and affinity. Ligand selection only requires a change in ligand charge 

from the free to complexed form, and that backbone modification for 

copolymerization withNIPA be feasible. Choosing a different acrylate can vary 

the temperature sensitivity of the sensor particles. Poly{n-propylacrylamide) has 

a LOST of 25°C, 12 degrees lower than polyNIPA, and the LOST can be tuned to 

any desired temperature by blending acrylamides.(268)
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This approach effectively separates the metal ion binding function and the 

reporting function of the fluorophore into two different parts of the polymer, so 

that the sensor may bind metal ions without fluorescence quenching. 

Furthermore, by relying on fluorescence resonance energy transfer, this 

approach capitalizes on the advantages of ratiometric measurements.
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CHAPTER 4

EXPERIMENTAL SECTION

4.1 General methods

Melting points (mp) were recorded on Mel-Temp II capillary melting point 

apparatus and are reported uncorrected.

Infrared spectra (IR) were recorded on a Nicolet 205 FTIR spectrometer and 

absorptions are reported in wavenumbers (cm'1)

Flash column chromatography was performed with Sorbent Technologies silica 

gel (32-63 pm).

Thin layer chromatography was performed with Whatman 250 pm silica gel UV254 

polyester plates (CAT NO 4410 222). The developed plates were also visualized 

with p-anisaldehyde and phosphomolybdic acid stains.

1H-NMR spectra were recorded on a Varian Mercury 400 MHz NMR 

spectrometer operating at 399.749 MHz. Chemical shift (8) values are reported 

in ppm relative to tetramethylsilane (TMS). Coupling constants are reported in 

Hertz (Hz).

13C-NMR spectra were recorded on a Varian Mercury 400 MHz NMR

spectrometer operating at 100.516 MHz. Chemical shift (8) values are reported in
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ppm relative to TMS unless otherwise noted. All spectra were obtained 

decoupled.

Low resolution mass spectra (MS) were recorded on either a Thermo-Finnegan, 

Finnegan LCQ quadrupole ion-trap mass spectrometer with electrospray 

ionization for liquid-phase analytes (ESI) with help from Mr. Kevin Bullock or a 

Shimadzu Group, Kratos Analytical Division, Axima-CFR MALDI-TOF matrix- 

assisted laser desorption, time-of-flight mass spectrometer (MALDI-TOF) with 

help from Mrs. Orjana Terova. The methods of ionization are reported for the 

individual experiments. The matrix used for all the MALDI-TOF measurements 

was genesic acid. The instrument was calibrated with Ceo at m/z=720.0.

High resolution mass spectra (HR-MS) were conducted by the MS facility at the 

University of Notre Dame. The method of ionization was fast atom bombardment 

(FAB) in the positive (+) detection mode. A glycerol matrix was employed in all 

the measurements.

Elemental analysis (CHN) were performed by Atlantic Microlabs, Inc. using 

combustion based automatic analyzers.

UV-visible-near infrared absorbance spectra (UV-vis-near IR) were recorded on a 

Varian Cary 50 spectrophotometer and absorptions are reported in both 

nanometers (nm) and wavenumbers (cm'1). Molar absorptivities are reported in 

cm'1M'1.
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Fluorescence spectra were recorded on a Varian Cary Eclipse Fluorescence 

spectrometer. Emission wavelengths are reported in nm. Emission intensities 

were recorded in arbitrary units (a.u.).

Electron Resonance spectra (EPR) were recorded on an X-band (9.5 GHz) 

Bruker EleXsys E-500 cw-EPR/ENDOR spectrometer with help from professor N. 

Dennis Chasteen and Dr. Fadi Bou-Abdallah.

X-rav crystallography experiments were carried out by Dr. Arnold Rheingold and 

Dr. Antonio DiPasquale at the University of California San Diego crystallography 

facility. Details about each experiment are reported in tables found throughout 

the text of this dissertation.

Magnetic moments (m*) were measured by Evan’s NMR method using residual 

CD2HCN, CD2 HSOCD3 or 5% t-butanol (v/v) as indicator in both the sample and 

closed capillary.(67) All magnetic moments are reported in Bohr Magnetons 

(BM).

4.2. Solvents

Absolute ethanol (EtOH) was obtained from Pharmco Chemical Co. and was 

used as is.

Acetic anhydride (Ac20 )  was obtained from Mallinckrodt and used as is.

Acetone was obtained from Fischer Chemical Co. and used as is
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Acetonitrile (MeCN) was obtained from Aldrich Chemical Co. as 

spectrophotometric grade.

Chloroform (CHCI3 ) was obtained from EMD Chemical Co. and used as is.

Diethvlether (Et20 )  was obtained from VWR international and was distilled from 

Na° and benzophenone prior to use.

Dimethvlformamide (DMF) was obtained from Fischer Chemical Co. and was 

used as is.

Dimethvlsulfoxide (DMSO) was obtained from Fischer Chemical Co. and was 

used as is.

Deuterated NMR solvents (DMSO-ofe. CDCI3 , MeCN-cfe, D20 )  were obtained from 

Cambridge Isotope Laboratories and used as is. With the exception of D20  the 

remaining solvents were stored in a dessicator that contained a pad of Drierite™ 

in between use.

Ethvlacetate (EtOAc) was obtained from EMD Chemical Co. and was fractionally 

distilled before use.

Ethylene alvcol was obtained from Alfa Aesar and used as is.

Glacial acetic acid (HOAc) was obtained from EM Science and used as is.

Hexanes was obtained from Pharmco Chemical Co. and was fractionally distilled 

prior to use.

Isopropvl alcohol (/PrOH) was obtained VWR and used as is.
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Nitromethane (MeN02) was obtained from Mallinckrodt and used as is.

Methanol (MeOH) was obtained from Aldrich Chemical Co. as 

spectrophotometric grade and was used as is.

Methylene Chloride (DCM) was obtained from EMD Chemical Co. and was used 

as is.

p-Dioxane (1,4-dioxane) was obtained from Aldrich Chemical Co. and was 

distilled from Na° and benzophenone and stored over 4A sieves prior to use.

p-Cvmene was obtained from Aldrich Chemical Co. and was used as is.

Pyridine was obtained from Fischer Chemical Co. and was distilled and stored 

over 4A sieves prior to use.

Tetrahvdrofuran (THF) was obtained from EMD Chemical Co. and was distilled 

from Na° and benzophenone prior to use.

Toluene was obtained from EMD Chemical Co. and was stored over 4A sieves 

prior to use.

4.3. Reagents

Table 15 Reagents used and their commercial sources

Reagent Commercial Source
1,1,1 -T ris(hydroxymethyl)ethane Acros Organics

1,2-Dichloroethane Fisher Scientific
10% Palladium on active carbon (Pd/C) Lancaster

1-Isoquinoline carboxylic acid Alfa Aesar
2,4-Dimethoxybenzaldehyde Alfa Aesar
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Table 14 continued...
2,4-Pentanedione Eastman Kodak Co.

2,6-Diacetylpyridine Aldrich
2-Aminomethylpyridine (AMPY) Aldrich

2-Aminothiophenol Aldrich
2'-Hydroxylacetophenone Acros

2-imidazolecarboxaldehyde Lancaster
2-Picolyl hydrochloride Aldrich

2-Pyrdinecarboxaldehyde Aldrich
2-thiazolecarboxaldehyde Aldrich

3,4-Dimethoxybenzaldehyde Aldrich
30% hydrogen peroxide (H2O2) EMD

3-Vinylaniline Aldrich
4-Dimethylaminopyridine (DMAP) Aldrich

a-Bromo tert-butylacetate Aldrich
Acryloyl chloride Aldrich

Allyl bromide Lancaster
Ammonium acetate (NH4OAC) J.T. Baker

Ammonium formate (NH4O2CH) Fisher Scientific

Ammonium hydroxide (NH4OH) Fisher Scientific

Benzene sulfonylchloride Acros Organics
Benzoyl chloride (BzCI) Aldrich
Benzyl bromide (BnBr) Acros Organics
Benzyl cyanide (BnCN) Aldrich

Bismuth nitrate pentahydrate (Bi(N0 3)3-5H20 ) Alfa Inorganics
Cadium(ll) nitrate tetrahydrate (Cd(N03)2-4H20 ) Fisher Scientific

Celite® Fisher Scientific
Cetytrimethylammonium bromide (CTABr) Alfa Products

Chromium chloride hexahydrate (CrCl3-6H20) Mallinckrodt
Cobalt(ll) tetrafluoroborate hexahydrate Aldrich

(Co(BF4)2-6H20 )
Copper(ll) perchlorate hexahydrate Aldrich

(Cu(CI04)2-6H20 )
Cysteamine Sigma-Aldrich

Diethanolamine Lancaster
Dimethylformamide dimethylacetal (DMFDMA) Aldrich

Ethanethiol (EtSH) Aldrich
Ethylene glycol Alfa Aesar

Formic acid Aldrich
Hippuric acid Aldrich

Hydrochloric acid (HCI) EM Science
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Table 14 continued...
Hydroxylamine hydrochloride (NH2OH-HCI) 

Iminodiacetic acid (IDA)
Indium(lll) nitrate pentahydrate (ln(N03)3-5H20 )

Iron(ll) perchlorate hexahydrate (Fe(C I04)2-6H20 )
Iron(ll) sulfate (FeS04)

Isoquinoline

Lithium aluminum hydride (LiAIH4)

Lithium borohydride (LiBH4)
Magnesium sulfate (M gS04)

Manganese(ll) perchlorate hexahydrate 
(Mn(CI04)2-6H20 )  

A/,A/,A/',A/'-Tetrakis(2-pyridylmethyl)ethylenediamine
(TPEN) 

n- Hexylamine 
Nickel perchlorate hexahydrate (Ni<CI04)2-6H20 )  

A/-Phenyldiethanolamine 
Oxalyl chloride 

Paraformaldhyde 
Pentaerythritol 

Pentaerythritol bromide 
Perchloric acid (H CI04)

Phosphorus tribromide (PBr3) 

Polyphosphoric acid (82% P2O5)
Potassium bromide (KBr)

Potassium carbonate (K2C 0 3)
Potassium cyanide (KCN)

Potassium hydroxide (KOH)
Potassium iodide (Kl)

1,8-Bis(dimethylamino)naphthalene (Proton 
Sponge™) 

p-Toluenesulfonamide (pTsNH2)
p-Toluenesulfonic acid (pTsOH) 

Pyridoxine hydrochloride
1-Quinolinecarboxylic acid (quinaldic acid)

1,3-dihydroxybenzene (resorcinol) 
Salicylaldehyde 

Selenium dioxide (S e02)
Silver(l) nitrate (AgN03)

Sodium acetate (NaOAc)

Acros Organics 
W.R. Grace & Co. 

Alfa Aesar
Aldrich

Mallinckrodt
Eastman Organic 

Chemical Co. 
Aldrich
Aldrich
EMD

Aldrich

TCI Organics

Aldrich 
GFS Chemical Co. 

Aldrich 
Acros Organics 

Professor Edward Wong 
Analabs, Inc. 

Fisher Scientific 
Fisher Scientific

Aldrich

Acros Organics

Acros 
Flinn Scientific, Inc.

Mallinckrodt 
Fisher Scientific 

J.T. Baker 
Aldrich

Alfa Aesar
Aldrich 

Acros Organics 
Alfa Aesar 

Fisher Scientific 
Aldrich 
Aldrich 

Aldrich 

Mallinckrodt
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Table 14 continued...
Sodium azide (NaN3) Matheson Colemann &

Bell
Sodium bicarbonate (Na2C 0 3) Fisher Scientific

Sodium bisulfite (N aH S03) Fisher Scientific

Sodium borohydride (NaBH4) Aldrich

Sodium carbonate (Na2C 0 3) Fisher Scientific

Sodium carbonate hydrate (Na2C 0 3-H20 ) EM Science

Sodium chloride (NaCI) Fisher Scientific
Sodium cyanide (NaCN) Mallinckrodt

Sodium hydroxide (NaOH) VWR International
Sodium iodide (Nal) J.T. Baker
Sodium metal (Na°) Fisher Scientific

Sodium methoxide (NaOMe) Fisher Scientific
Sodium nitrite (N aN 02) Aldrich

Sodium perchlorate hydrate (NaCI04-H20 ) Sigma
Sodium sulfate (Na2S 0 4) EMD

Sulfuric acid (H2S 0 4) J.T. Baker
Thionyl chloride (SOCI2) Alfa Aesar

T-Hydro® Aldrich
Triethylamine (TEA) Aldrich

Trifluoroacetic acid (TFA) Aldrich
Triphenylphosphine (PPh3) Aldrich

Zinc(ll) perchlorate hexahydrate (Zn(CI04)2-6H20 ) Aldrich

4.4. Synthesis and Characterization

Standard synthetic laboratory techniques were employed in the preparation of 

the following compounds. Drying was accomplished under a stream of nitrogen 

or under reduced pressure (ca. 10'2 Torr) with a standard Schlenk line. 

Anaerobic manipulations were accomplished under a nitrogen atmosphere in a 

glovebox (VAC model HE-43 with HE-493 purifier).
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Caution: perchlorate salts and organic azides can be explosive and should be 

handled with care. No explosions occurred during the course of this work.

4.4.1 Chapter 1 Experimentals

1.1.1 -Tris(bromomethyl)ethane I.29

To 1,1,1-tris(hydroxymethyl)ethane (11.3 g, 94.0 mmol) was added neat PBr3 

(38.9 g, 144 mmol) via a pressure equalizing funnel over a period of 2 h. The 

resulting colorless oil was stirred 30 minutes at 100°C. The temperature was then 

elevated to 170-180°C and the reaction mixture was stirred for 4 days. The 

resulting orange oil was cooled to room temperature and suspended in a mixture 

of 100 ml_ of tap water and 100 ml_ of CHCI3. The mixture was shaken 

vigorously and filtered through paper by gravity. The resulting two-phases were 

separated and the aqueous layer was extracted with additional CHCl3<3x25 mL). 

The pooled organic fractions were then washed with saturated aqueous NaHC03  

(3x100 mL), brine (3x100 mL) and then dried over excess anhydrous Na2S04. 

After decanting away from the drying agent the solvent was removed on a rotary 

evaporator affording a pale yellow oil that was subsequently distilled (b.p. 119 

°C/10 mmHg) yielding 8.8 g (64%) of the product as a colorless liquid. 1H-NMR  

(CDCI3): 3.50 (6H, s, methylene H’s); 1.29 (3H, s, methyl H’s). 13G-NMR (GDCI3) 

8: 39.80, 39.20, 21.79. IR (KBr pellet) v: 2971, 2933, 1459, 1422, 1377, 1269s, 

866, 851,688, 663 cm'1.
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1.1.1 -T ris(benzenesulfonyloxymethyl)ethane 1.31

Into a 500 mL two-way RBF equipped with a Teflon coated stir bar was added

10.0 g (83.2 mmol) of 1,1,1 -tris(hydroxymethyl)ethane and 44.0 mL of dry 

pyridine. The flask was then fit with a pressure equalizing drop funnel and N2 

inlet. The funnel was charged with 38.2 mL (52.9 g, 300 mmol) of 

benzenesulfonyl chloride and the RBF was immersed in an ice bath. After 

purging the headspace with N2 for 10 min the stopcock was cracked and the 

contents of the funnel were added dropwise to the RBF over the course of 1 hr. 

The resulting white slurry was then allowed to warm to RT and stand for 16 hr. 

Into a 1 L Erlenmeyer flask was added 80 mL of H20 , 160 mL of MeOH and 60  

mL of concentrated HCI. The slurry was then poured into the Erlenmeyer flask 

and the resulting granular solids were stirred vigorously for 0.5 hr. The solid 

material was filtered through a glass frit via vacuum, th e  filter cake was 

recrystallized from boiling absolute EtOH affording 41.5 g (92.3%) of the product 

as fluffy white needles. 1H-NMR (CDCI3): 7.84-7.81 (6H, m, aromatic H’s); 7.71- 

7.66 (3H, m, aromatic H’s); 7.59-7.54 (6H, m, aromatic H’s); 3.82 (6 H, s, 

methylene H’s); 0.91 (3H, s, methyl H’s). 13C-NMR (CDCI3) 5: 139.88, 139.24, 

134.47,132.84, 74.81, 44.46, 21.06 ppm. IR (KBr pellet) u: 3068, 2961, 2902, 

1587, 1368, 1188, 969, 868 cm'1, mp (104.0-104.5°C).

1.1.1 -Tris(aminomethyl)ethane-3HCI I.32

To a slurry of NaN3 (15.6 g, 240 mmol) and DMF (120 mL) was added 1,1,1- 

tris(bromomethyl)ethane (6.18 g, 20.0 mmol). The resulting mixture was stirred
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under nitrogen at 90-95°C for 16 h, then cooled to room temperature and rapidly 

poured into 700 mL of tap water giving a clear colorless solution. The aqueous 

solution was extracted with Et20 (200 mL, 3x100 mL), the organic fractions were 

pooled, dried over excess anhydrous MgS04 and then filtered through paper by 

gravity. The colorless ethereal solution was carefully concentrated on a rotary 

evaporator to 150 mL and subsequently diluted with 200 mL of 1,4-dioxane. The 

resulting solution was concentrated to 150 mL and then poured into a flask that 

contained triphenylphosphine (26.2 g, 100 mmol). The resulting yellow solution 

was then diluted with NH4OH (100 mL) and stirred at room temperature for 20 hr 

with signs of gentle effervescence. The mixture was then evaporated to dryness 

affording a colorless residue. The residue was dissolved into 400 mL of 

chloroform and then extracted with 2 N HCI (4x100 mL). The acidic aqueous 

extracts were combined and washed with CHCI3 (4x20 mL) and then diluted with 

25 mL of concentrated HCI. Colorless crystalline material precipitated from 

solution upon concentration on a rotary evaporator. The mixture was cooled to 

4°C overnight, filtered on a glass frit, washed with small portions of cold EtOH 

and Et20 , and then dried under vacuum to afford 4.26 g (94%) of the product. 1H- 

NMR (D20): 3.09 (6H, s, methylene H); 1.14 (3H, s, methyl H); the NH overlaps 

with the signal from residual water at 4 .6 5 .13C-NMR (D20 )  8: 42.88, 35.44,

17.06. IR (KBr pellet): 2992, 2920, 2788, 2640, 2591, 1602, 1521, 1509, 1470, 

1066,995,857cm '1.
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4-(Hydroxymethyl)-1-methyl-2,6,7-trioxabicyclo[2.2.2]octane I.38

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 13.6 g (100 

mmol) of pentaerythritol, 10.0 mL of toluene, 18.3 mL (16.2 g, 100 mmol) of 

triethylorthoacetate and ca. 50 mg of p-TsOH (acid catalyst). The RBF was fit 

with a short-path distillation head and the RBF immersed in a hot oil bath. The 

EtOH (theoretical amount 17.5 mL, 300 mmol) that was produced during the 

course of the reaction was distilled into a graduated cylinder. The heating was 

terminated after 6 hr and the resulting glass was sublimed with heating under 

reduced pressure (ca. 10"2Torr) to afford 13.4 g (83.6%) of the product as a 

white crystalline solid. 1H-NMR (CDCb): 4.03 (6H, s, methylene H’s); 3.47 (2H, 

d, J=4.8Hz, methylene H’s); 1.63 (1H, t, J=t4.8Hz, OH); 1.46 (3H, s, methyl H’s). 

13C-NMR (CDCI3) 6: 108.77, 69.51, 61.57, 35.80, 23.62 ppm. mp (110-111°C).

4-(benzyloxymethyl)-1 -methyl-2,6,7-trioxabicyclo[2.2.2]octane I.39

Into a 250 mL RBF equipped with a Teflon coated stir bar was added powdered 

KOH (1.65 g, 29.4 mmol) and 10.0 mL of DMSO. To the resulting suspension 

was added benzyl bromide (894 pL, 1.29 g, 7.52 mmol) and the substrate I.38 

(1.00 g, 6.24 mmol) which on stirring became exothermic. After 30 min the 

solution was diluted with 100 mL H20  and the product was extracted with Et20  

(2x10 mL). The pooled organic fractions were washed sequentially with 

saturated brine (2 mL), water (2 mL), and then dried over excess anhydrous 

MgS04. The mixture was filtered and the solvent removed under vacuum 

affording 973 mg (63.0%) of a colorless oil that solidified on standing. This
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material was amenable to trituration with H20  which aided in the purification of 

the product. 1H-NMR(CDCI3): 7.37-7.25 (5H, m, aromatic H’s); 4.45 (2H, s, 

pseudobenzyl H’s); 4.01 (6H, s, methylene H’s); 3.19 (2H, s, methylene H’s);

1.45 (3H, s, methyl H’s). 13C-NMR (CDCI3) 5: 137.70, 128.72, 128.13, 127.63, 

108.72, 73.69, 69.73, 68.52, 35.14, 23.66 ppm. mp (83-85°C).

2-[(benzyloxy)methyl]-2-(hydroxymethyl)-1,3-propanediol I.40

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 1.90 g 

(7.59 mmol) of the substrate 1.39, 10.0 mL of MeOH and 20.0 mL of 0.01 NHCI. 

The resulting mixture was stirred at RT for 1 hr and then neutralized with 708 mg 

(8.43 mmol) of N aH C 03. The solvent was removed and the residue suspended 

in 10.0 mL of MeOH. The suspension was filtered through a glass frit and the 

filtrate was brought to dryness under vacuum affording 1.73 g (99.0%) of the 

product as a colorless viscous oil. 1H-NMR (CDCI3): 7.38-7.26 <5H, m, aromatic 

H’s); 4.50 (2H, s, benzyl H’s); 3.70 (6H, s, methylene H’s); 3.49 (2H, s, 

methylene H’s); 2.83 (3H, br.s, OH’s).

2-(Benzyloxy)-1,1,1 -tris(benzenesulfonyloxymethyl)ethane 1.41

Into a 100 mL RBF equipped with a Teflon coated stir bar was added the 

substrate 1.40 (1.70 g, 7.50 mmol) and 5.0 mL of dry pyridine. The flask was 

cooled in an ice bath and benzenesulfonyl chloride (3.45 mL, 4.78 g, 27.0 mmol) 

was added via syringe dropwise to the reaction mixture over the course of 15 

min. The reaction was then diluted with 5.0 mL of pyridine and allowed to warm 

to RT affording a yellow colored precipitate. To the flask was then added water
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and the resulting granular solids were broken up with a spatula and then isolated 

on a glass frit via vacuum. The resulting filter cake was triturated with Et2<D 

affording 1.23 g (25.3%) of the product as a white crystalline solid. 1H-NMR  

(CDCb): 7.95-7.10 (20H, m, phenyl H’s); 4.27 (2H, s, methylene H’s); 3.97 (6H, s, 

methylene H's); 3.32 (2H, s, methylene H’s). 13C-NMR (CDCI3) 5:135.08,

134.39, 129.63, 128.60, 128.10, 127.61, 73.60, 67.08, 66.45, 44.10 ppm. IR 

(KBr pellet) v: 3066, 2954, 2891, 1585, 1482, 1448, 1367, 1189, 983, 857, 590 

cm"1.

2-(Benzyloxy)-1,1,1 -tris(aminomethyl)ethane I.43

Into a 25 mL RBF equipped with a Teflon coated stir bar was added 0.500 g (773 

pmol) of the substrate 1.41,1.5 mL of ethylene glycol and 252 mg (3.87 mmol) of 

NaN3. The RBF was fit with a reflux condenser equipped with a N2 inlet and the 

resulting mixture was brought to reflux in an oil bath thermostated at 130-140°C 

for 16 hr. The mixture was allowed to cool and then 3.0 mL of H2O were added. 

The resulting deep red/brown solution was extracted with Et20  (2x5 mL) and the 

pooled organic fractions were dried over excess anhydrous Na2S0 4 - The 

solution was decanted away from the solids and the solvent was evaporated 

behind a blast shield in the fume hood affording 142 mg (60.9%) of the crude 

triazide 1.42 as an amber colored oil. IR (liquid film) v: 3088, 3065, 3031, 2932, 

2867, 2533. 2103, 1298 cm"1. Underlined data indicates the presence of the 

azide.
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Into a 100 mL side-armed RBF equipped with a Teflon coated stir bar was added 

a spatula tip of 10% Pd/C (ca. 2mg) and a 1.0 mL methanolic solution of the 

triazide I.42 (141 mg, 471 pmol). The head space was purged with N2 for 10 min 

and then a ballon filled with gaseous H2 was fit to the flask. The mixture was 

stirred magnetically at RT for 48 hr. The mixture was filtered through a glass frit 

and the filtrate was brought to dryness under vacuum affording 106 mg (99.9%) 

of the product as a pale yellow oil.

p-Toluenesulfonamide sodium salt 1.45

Into an oven-dried 250 mL RBF was added 1.19 g (51.7 mmol) of metallic 

sodium followed by 60 mL of dry EtOH resulting in an immediate effervescence. 

The RBF was fit with a reflux condenser and the heterogeneous mixture was 

brought to reflux until all the sodium dissolved. To the refluxing mixture was 

added 8.86 g (51.7 mmol) of p-toluene sulfonamide. The mixture was refluxed 

for 2 hr resulting in the dissolution of the substrate. On cooling to RT a white 

precipitate emerged from solution. This material was isolated on a glass frit and 

dried under vacuum affording 7.11 g (71.0%) of the product as a white powder.

IR (KBr pellet) v: 3351, 3306, 3211, 3063, 3033, 3019, 2977, 2917, 2861, 1906, 

1642, 1220. 1207. 1152. 1112 cm'1. The -S 0 2- stretching frequencies 

corresponding to the isolated product (underlined data) have undergone 

substantial shifting as compared to the starting material. IR (KBr, p-TsNH2) v: 

1326. 1152. 1093 cm'1.

3,3-bis(p-tolylsulfonamidomethyl)-1-p-tolylsulfonyl-azetidine I.48
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Into an oven-dried 250 mL RBF was added ca. 20 mL of dry DMF, 1.30 g (3.35 

mmol) of pentaerythritol bromide, and 3.24 g (16.8 mmol) of the p-toluene 

sulfonamide sodium salt. The resulting mixture was refluxed for 16 hr under the 

protection of a stream of N2. The mixture became homogeneous upon reflux 

followed by the formation of a colorless precipitate. The mixture was allowed to 

cool to RT and then 100 mL of H20  was added causing the immediate formation 

of a white precipitate. The solids were filtered via vacuum and the resulting filter 

cake returned to the reaction flask. Into the RBF was then added 10 mL of 3:1 

acetic acid:H20 (v/v) and the resulting mixture was boiled for 0.5 hr. The mixture 

was then filtered hot and the filter cake was recrystallized from absolute EtOH. 

The resulting crystalline product had a mass of 0.644 g (33.0%). 1H-NMR 

(CD3CN): 7.76 (2H, d, J=8.0Hz, aromatic H’s); 7.70 (4H, d, J=8.0Hz, aromatic 

H’s); 7.54 (2H, d, J=8.0Hz, aromatic H’s); 7.47 (4H, d, J=8.0Hz, aromatic H’s); 

5.73 (2H, t, J=7.0Hz, -N H S02-); 3.51 (4H, s, ring CH2’s); 2.80 (4H, d, J=8.0Hz, 

exo-CH2’s); 2.55 (3H, s, methyl H’s); 2.51 (6H, s, methyl H’s). 13C-NMR (CDCI3) 

6: 144.65, 144.08, 136.56, 131.13, 130.20, 130.13, 128.60, 127.05 ppm. IR (KBr 

pellet) v: 3250, 2923, 1598, 1449, 1329, 1162, 1092, 1071, 815,671, 551 cm'1.

2-Hydroxyl-1,1,1 -tris(aminomethyl)ethane-3H2S04 I.49

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 3.00 g 

(5.19 mmol) of the azetidine substrate 1.48 and 9.0 mL of 70% H 2 S O 4  (v/v). The 

RBF was fit with a reflux condenser equipped with a N2 inlet and the head space 

was purged with N2 for ca. 10 min. The mixture was brought to reflux for 2.5 hr 

affording a brown colored solution. The hot solution was then poured into 100
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mL of 30% aqueous EtOH (v/v). The resulting solution was concentrated to 50 

mL under vacuum followed by dilution with 100 mL of absolute EtOH affording a 

granular precipitate. The solids were isolated on a glass frit via vacuum filtration 

resulting in 1.32 g (60.0%) of the desired product as an off-white powder. 1H- 

NMR (D20): 4.54 (12H, s, ammonium H’s overlapped with the bisulfate H’s); 4.02 

(1H, s, OH); 3.61 (2H, s, methylene H’s); 3.06 (6H, s, methylene H’s). 13C-NMR  

(D20 )  5: 62.02, 40.26, 39.62 ppm. IR (KBr pellet) v: 3348, 3121, 1630, 1599,

, 1549, 1186, 1055, 1003, 883, 589 cm'1.

[N i(TAMEpyr)](CI04)2 I.58

An aqueous solution of NaOH (265 mg, 6.7 mmol) was added to 1,1,1- 

tris(aminomethyl)ethane-3HCI 1.32. The resulting solution was then brought to 

dryness on a rotary evaporator affording colorless oily solids. Absolute ethanol 

(25 mL) was then added to the solids, and the mixture was sonicated for 5 

minutes and cooled to 4°C for 1hr. The cold ethanolic solution was filtered 

through a glass frit. The filtrate was then diluted with 100 mL of water and 

transferred to a flask that contained Ni(CI04)2-6H20  (808 mg, 2.21 mmol). The 

resulting sky blue solution was stirred with slow addition of an ethanolic solution 

(40 mL) 2-pyridinecarboxaldehyde (710 mg, 6.63 mmol). The resulting solution 

was stirred under nitrogen for 16 hr where a color change from blue to orange 

took place. The reaction mixture afforded significant amounts of orange colored 

precipitate, which was collected on a glass frit and dried under vacuum to afford 

614 mg of [Ni(TAMEpyr-trisimine)](CI0 4)2 L50. To a mixture of 150 mL of doubly 

distilled water and 20 mL of EtOH was added complex I.50 (0.5 g, 0.8 mmol) and
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NaBH4 (2.2 g, 58 mmol). The reaction mixture was stirred for 16 hr to give a pale 

pink solution. The pH of the mixture was dropped to ca. 6-7 with addition of 70 % 

HCIO4. The pink precipitate that formed was collected on a glass frit and washed 

with small portions of Et2 0 . The resulting powder was recrystallized by EtaO 

diffusion from CH3CN yielding fuchsia colored prisms. The prisms were isolated 

and dried under vacuum to give 473 mg (40%) of the product. (Found: C, 42.68; 

H, 4.71; N, 12.94. CajHsoNeNiCfeOa requires: C, 42.62; H, 4.67; N, 12.97%.). 

MS(ESI/methanol): m /z 547 (M-CIO4'). Pett = 3.2 BM at 23 °C. ?wnax/nm (H2O)

794 (12.0 cm'1M'1), 510 (15.8 cm'1M'1). IR (Mull): 3275, 1611, 1576, 1095 cm'1.

TAMEpyr I.60

To a sample of [Ni(TAMEpyr)](CI04)2 (50 mg, 80 pmol) was added 5 mL of hot 

aqueous NaCN (21 mg, 420 pmol). The mixture was shaken for five minutes 

affording a pale yellow solution. The solution was extracted with methylene 

chloride (3x5 mL); the organic fractions were combined, and dried over 

anhydrous Na2S04 . The supernatant was decanted and the solvent was 

removed on a rotary evaporator. The resulting colorless oil was dried further 

under vacuum to afford 30 mg (96%) of the product. 1H-NMR (COCI3): 8.51 <3H, 

m, pyridyl H); 7.60 (3H, m, pyridyl H); 7.33 (3H, d, 3J =  7.6 Hz, pyridyl H); 7.13 

(3H, m, pyridyl H); 3.91 (6H, s, pseudobenzylic H); 2.62 (6 H, s, methylene H);

2.50 (3H, s, NH); 0.95 (3H, s, methyl H). 13C-NMR (CDCI3) 8: 160.61, 149.34, 

136.62, 122.37, 122.00, 56.93, 56.16, 38.70, 22.14 ppm.

TAMEsal 1.52
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The TAME-3HCI salt (237mg, 1.05mmol) and NaOAc (438mg, 3.22mmol) were 

dissolved into 5.0 mL of H20  and the resulting solution was added to a 250 mL 

Erlenmeyer flask. To the flask was then added 40.0 mL of absolute EtOH 

followed by salicylaldehyde (393mg, 3.22mmol). The bright yellow solution was 

boiled for 5 min and then cooled to RT. To the flask was then added 20.0 mL of 

H20  affording a bright yellow precipitate. The solids were collected on a glass frit 

via vacuum filtration and the filter cake was recrystallized from boiling EtOH 

affording 422 mg (93.6%) of the desired compound as a yellow crystalline solid. 

1H-NMR (CDCI3): 13.37 (3H, s, phenolic H’s); 8.38 (3H, s, imine H’s); 7.36-7.32 

(3H, m, aromatic H’s); 7.28-7.25 (3H, m, aromatic H’s); 6.99-6.97 (3H, m, 

aromatic H’s); 6.92-6.88 (3H, m, aromatic H’s); 3.65 (6H, s, methylene H’s); 1.17 

(3H, s, methyl H’s). 13C-NMR (CDCI3) 8: 166.77, 161.24, 132.77, 131.74, 119.04, 

118.86, 117.15, 65.26, 40.43, 21.00 ppm. IR (KBr pellet) v\ 3112, 2970, 2886, 

2833, 1631, 1579, 1276, 757 cm’1.

[Cr(T AMEsal)]* H20  1.55

Into a 25 mL RBF equipped with a Teflon coated stir bar was added CrCl3-6H20  

(124mg, 466pmol), H20  (1.0 mL), ethylene glycol (1.0 mL) and MeOH (3.0 mL) 

sequentially. To the resulting forest green solution was added TAMEsal (200 

mg, 466pmol) and the resulting mixture was brought to reflux for 0.5 hr. To the 

refluxing mixture was then added Na2C0 3 -H20  (51.9 mg, 419pmol) and the 

resulting solution was refluxed an additional 25 min. The mixture was filtered 

through a glass frit affording a cranberry colored filtered cake. The crude product
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was subsequently recrystallized from MeCN in an Et20 diffusion chamber to yield

33.2 mg (15.0%) of the desired product as deep red prismatic crystals. (Found: 

C, 62.74; H, 5.26; N, 8.50. C26H24N3O3O H 2O requires: C, 62.90; H, 5.28; N,

8.46 %.). peff = 3.8 BM at 23 °C. IR (KBr pellet) v: 3019, 2918, 1619, 1537,

1467, 1445, 1318 cm'1 Xmax/nm  (CH3CN) 500 (20,000 cm‘1M'1).

[Ni(TAMEIm-trisimine)](CI04)2l.56

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 120 mL of 

MeOH, TAME-3HCI (113 mg, 500 pmol) and NaOMe (162 mg, 3.00 mmol). The 

resulting suspension was stirred into a solution for 5 min and then 

Ni(CI04)2-6H20 (183 mg, 500 pmol) and 2-imidazolecarboxaldehyde (144 mg,

1.50 mmol) were added affording a pale blue solution. The RBF was fit with a 

reflux condenser equipped with a N2 inlet and the solution was brought to reflux 

for 24 hr. The resulting orange colored suspension was filtered through a glass 

frit via vacuum. The filter cake was recrystallized from MeCN in an Et20  diffusion 

chamber affording 83.0 mg (26.0%) of the desired complex as a collection of red 

needles. (Found: C, 34.35; H, 3.85; N, 20.20. C^^iNgNiChOs requires: C, 34.3; 

H, 3.60; N, 21.1%.). MS(ESI/methanol); m /z  509 (M-CIO4'). IR (KBr pellet):

3126, 2965, 2923, 1635, 1559, 1442, 1109,624 cm'1. U n m  (CH3CN) ca. 800 

(16 cm'1M'1), 894 (21 cm'1M'1), 534 (45 cm'1M'1).

[Ni(TAMETz-trisimine)](CI04)2l.57

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 120 mL of 

MeOH, TAME-3HCI (113 mg, 500 pmol) and NaOMe (162 mg, 3.00 mmol). The
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resulting suspension was stirred into a solution for 5 min and then 

Ni(CI04)2-6H20  (183 mg, 500 pmol) and 2-thiazolecarboxaldehyde (170 mg, 1.50 

mmol) were added affording a pale yellow solution. The RBF was fit with a reflux 

condenser equipped with a N2 inlet and the solution was brought to reflux for 24 

hr. The resulting orange colored suspension was filtered through a glass frit via 

vacuum. The filter cake was recrystallized from MeCN in an Et20  diffusion 

chamber affording 100 mg (30.3%) of the desired complex as shiny orange 

colored needles. (Found: C, 31.05; H, 2.80; N, 12.74. C i7H i8N6S3NiCI208  

requires: C, 30.93; H, 2.75; N, 12.73%.). IR (KBr pellet): 2932, 2877, 2871, 2807, 

2728, 1626, 1496, 1372, 1099, 781, 625 cm'1. W n m  (CH3CN) 814 (35 cm‘1M' 

1), ca. 500 (68 cm'1M'1).

[Fe(TACHTz)](CI04)a

Under the protection of a N2 atmosphere in the glovebox was mixed a degassed 

methanolic solution (1.0 mL) of TACHTz (20.0 mg, 47.5 pmol) and a degassed 

methanolic solution (1.0 mL) of Fe(CI04)2*6H20  (17.5 mg, 47.5 pmol) 

immediately forming a forest green solution. To this was then added degassed 

Et20  affording copious amounts of a dark green precipitate. The solids were 

isolated by removing the supernatant via pipet. The resulting crude product was 

dissolved into 1.0 mL of degassed MeCN and the resulting dark green solution 

was placed in an Et20  diffusion chamber for 16hr. The complex crystallized as 

X-ray grade large red hexagonal prisms. A sample was sent to Dr. Arnold
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Rheingold at UCSD for crystallographic analysis (Table 5). |R (Csl pellet): 3256, 

3190, 3127, 2900-2850, 1511, 1455, 1098, 624 cm'1.

[Mn(TAMEpyr)](CI04)2 I.65

A colorless methanolic solution (1 mL) of Mn(CI04)2-6H20  (29 mg, 80 pmol) was

added to a colorless methanolic solution (1 mL) of TAMEpyr (31 mg, 80 pmol)

resulting in the formation of a colorless precipitate. The mixture was diluted with

Et20  and the solids were collected on a frit and dried under vacuum. The

product was recrystallized by ether diffusion from CH3CN affording nearly

colorless needles. The needles were isolated and dried under vacuum to afford

37 mg (72%) of the desired product. (Found: C, 42.41; H, 4.81; N, 12.30.

C23H3oN6MnCI208 requires: C, 42.87; H, 4.69; N, 13.04%.). MS(ESI/methanol):

m /z 544 (M-CICV). Pett = 5.9 BM at 23 °C. IR (Mull): 3266, 1608, 1569, 1094 cm' 

1

[Fe(TAMEpyr)](CI04)2 1-66

A pale yellow degassed methanolic solution (1 mL) of Fe(CI04)2-6H20  (29 mg,

80 pmol) was added to a colorless degassed methanolic solution (1 mL) of 

TAMEpyr (31 mg, 80 |imol) under the protection of a nitrogen atmosphere. The 

reaction mixture was allowed to deposit solids for 16 hr. The supernatant was 

removed and the resulting dark colored crystalline solids were washed with small 

portions of degassed Et20 , and then dried under a stream of nitrogen. The 

solids were then recrystallized by Et20  diffusion from CH3CN affording chestnut 

colored prisms. The crystals of the complex were stable to air indefinitely
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whereas a sealed oxygenated aqueous solution of the complex decomposed 

when incubated at 37°C overnight. 1H-NMR (CD3CN degassed): 7.81 (3H, m, 

pyridyl H); 7.52 (6H, m, pyridyl H); 7.20 (3H, t, 3J =  6.4 Hz, pyridyl H); 4.46 (3H, 

m, NH); 4.31 (3H, dd, diastereotopic pseudobenzylic H); 4.05 (3H, dd, 

diastereotopic pseudobenzylic H); 2.97 (3H, dd, diastereotopic methylene H);

2.49 (3H, dd, diastereotopic methylene H); 0.81 (3H, s, methyl H). IR (Csl 

pellet): 3267, 1615, 1577, 1088, 761, 624 cm’1. (Found: C, 43.10; H, 4.75; N, 

13.13. CgaHsoNeFeClaOe requires: C, 42.81; H, 4.69; N, 13.02%.).

[Co(T AMEpyr)](BF4)2 1.67

A pale red degassed methanolic solution (1 mL) of Co(BF4)2-6H20  (19 mg, 55 

pmol) was added to a colorless degassed methanolic solution (1 mL) of TAMEpyr 

(21 mg, 55 pmol) under the protection of a nitrogen atmosphere. The reaction 

mixture was then subjected to Et20  diffusion for 5 days to afford orange colored 

prismatic crystals. The supernatant was removed and the resulting crystalline 

solids were washed with small portions of degassed Et20 , and then dried under a 

stream of nitrogen to give 21 mg (63%) of the product. The crystals of the 

complex were stable to air indefinitely but decomposed rapidly in CH3CN when 

exposed to air. (Found: C, 44.28; H, 5.05; N, 13.35. C23H30N6C0B2F8 requires: C, 

44.34; H, 4.85; N, 13.49%.). p^f = 4.9 BM at 23°C. IR (Csl pellet): 3172m, 

1606m, 1565w, 729s, 478s. IR (Mull): 3275, 1611, 1576, 1095 cm'1. W /n m  

(CH3CN degassed) 939.0 (21.1 cm'1M'1), 472.0 (63.5 cm'1M'1), 400 (28 cm'1M'1).
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[Cu(TAMEpyr)](CI04)2 1-68

A pale blue isopropanolic solution (1 mL) of Cu(C I04)2-6H20  (30 mg, 80 pmol) 

was added to a colorless isopropanolic solution (1 mL) of TAMEpyr (31 mg, 80 

pmol) resulting in the formation of a sky blue powder. The solvent was removed 

on a rotary evaporator and the resulting powder was recrystallized by Et20  

diffusion from CH3CN, isolated and dried under vacuum, to afford 47 mg (91%) of 

the product as royal blue needles. (Found: C, 42.21; H, 4.58; N, 12.77. 

C23H3oN6CuCI208 requires: C, 42.31; H, 4.63; N, 12.87%.). MS(ESI/methanol): 

m /z 552 (M-CICV). peff = 2.1 BM at 23°C. IR (Mull): 3249, 1613, 1574, 1096 cm' 

1. A^ax/nm (CH3CN) 620 (107 cm'1M'1) asymmetric peak.

[ln(TAMEpyr)](N03)3- MeOH I.70

A colorless methanolic solution (0.90 mL) of ln(N03)3-5H20  (8.0 mg, 20 pmol) 

was added to a colorless methanolic solution (0.90 mL) of TAMEpyr (7.8 mg, 20 

pmol) resulting in the formation of a colorless solution. The solution was allowed 

to stand for 18 hr. The complex was crystallized from solution as feather-like 

white needles by Et20  diffusion. The needles were isolated and dried under 

vacuum to afford 10.1 mg (73%) of the desired product. 1H-NMR (DMSO-de): 

8.25-8.21 (3H, m, pyridyl H); 8.04 (3H, s, pyridyl H); 7.79 <3H, d, 3J =  8.0 Hz, 

pyridyl H); 7.66 (3H, t, 3J =  6.0 Hz, pyridyl H); 5.86 (3H, m, NH)\ 4.31 (6H, d, 3J =

6.0 Hz, pseudobenzyl H); 3.17 (6H, d, 3J =  7.2 Hz, methylene H); 0.84 (3H, s, 

methyl H). IR (KBr pellet): 3163, 1609m, 1571w, 1365vs, 1279s. (Found: C,
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39.99; H, 4.47; N, 17.72. C23H3oN6lnN309 requires: C, 39.85; H, 4.74; N, 

17.43%.).

[Zn(TAMEpyr)](CI04)2 1.69

A colorless methanolic solution (1 mL) of Zn(C I04)2'6H20  (30 mg, 80 pmol) was 

added to a colorless methanolic solution (1 mL) of TAMEpyr (31 mg, 80 pmol) 

resulting in the formation of a colorless precipitate. The solvent was diluted with 

a small portion of Et20  and the solids were isolated, washed with additional 

ether, and then recrystallized by Et20  diffusion from CH3CN to afford 30 mg 

(58%) of colorless prisms. 1H-NMR (CD3CN): 8.07 (3H, m, pyridyl H); 7.88 (3H, 

d, 3J =  4.8Hz, pyridyl H); 7.57 (3H, d, 3J =  8 Hz, pyridyl H); 7.46 (3H, t, 3J =  6.8 

Hz, pyridyl H); 4.35 (3H, dd, pseudobenzylic H); 3.95 (3H, dd, diastereotopic H); 

3.53 (3H, m, N/-/); 3.32 (3H, dd, diastereotopic methylene H); 2.85 (3H, dd, 

diastereotopic methylene H); 0.77 (3H, s, methyl H). IR (Mull): 3249,1613,

1574, 1096 cm'1. (Found: C, 41.90; H, 4.60; N, 12.68. C23H3oN6ZnCI208 requires: 

C, 42.19; H, 4.62; N, 12.83%.). MS(ESI/methanol): m /z553 (M-CICV). Suitable 

crystals for X-ray crystallography were prepared by slow Et20  diffusion into an 

CH3CN solution of the complex.

4.4.2 Chapter 2 Experimentals 

Methyl-2-quinolinecarboxylate 11.53

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 2.01 g 

(11.6 mmol) of quinaldic acid , 15.0 mL of absolute MeOH, and the resulting
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suspension was stirred while immersed in an ice bath for ca. 5min. To the 

mixture was then added 2.53 mL (4.14 g, 34.8 mmol) of thionyl chloride 

dropwise. The reaction solution was allowed to warm to room temperature and 

then refluxed under the protection of N2 overnight. After ca. 12 hr the solvent 

was removed under vacuum affording a pale-yellow solid residue. The residue 

was dissolved into 15 mL of water and the resulting solution treated with excess 

Na2C03 piecemeal until the effervescence ceased. The resulting solution was 

extracted with DCM (3x50 mL), the organic fractions pooled and then dried over 

excess anhydrous Na2S04 . The mixture was filtered via gravity and the solvent 

removed under vacuum. The resulting off-white solid had a mass of 1.74 g 

(80.0%). The crude product was spectroscopically pure and used as is 

subsequent reactions. 1H-NMR (CDCI3): 8.33-8.31 (2H, m, quinoline H’s); 8.21 

(1H, d, J=8.4Hz, quinoline H); 7.90-7.88 (1H, m, quinoline H); 7.82-7.78 (1H, m, 

quinoline H); 7.68-7.64 (1H, m, quinoline H); 4.09 (3H, s, methyl H’s). 13C-NMR  

(CDCI3) 6: 170.10, 148.10, 147.75, 137.56, 130.93, 130.54, 129.57, 128.87, 

127.78, 121.25, 53.46 ppm. IR(KBr pellet) v: 3065-3001,2952, 1714 cm'1.

2-Quinolinecarbinol II.54

Into a 250 mL RBF equipped with a Teflon coated stir bar was added methyl-2- 

quinolinecarboxylate (1.71 g, 9.13mmol), ca. 50 mL of dry Et20 , and 200 mg 

(9.13 mmol) of LiBH4. The head-space was purged with N2for 10 min and the 

resulting heterogeneous mixture refluxed with stirring for 24 hr. The solvent was 

then removed under vacuum affording a pale yellow solid residue. The residue 

was dissolved into 50 mL of water and acidified to pH=2 with 1M HCI. The
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mixture was made basic to pH=8 with 1M NaOH. The product was extracted with 

DCM (3x50 mL), the organic fractions pooled and then dried over excess 

anhydrous Na2S0 4 . The mixture was filtered via gravity and the solvent removed 

under vacuum affording 1.30 g of a pale yellow oil (90.0%). The crude product 

was used as is in subsequent reactions. 1H-NMR (CDCI3 ): 8.13 (1H, d, J=8 .8Hz, 

quinoline H); 8.07 (1H, d, J=8.4Hz, quinoline H); 7.82 (1H, d, J=8.0Hz, quinoline 

H); 7.74-7.52 (1H, m, quinoline H); 7.56-7.52 (1H, m, quinoline H); 7.29 (1H, d, 

J=8 .8Hz, quinoline H); 4.92 (2H, s, methylene H’s); ca. 4.5 (1H, s(br.), -OH). IR 

(liquid film) v: 3345, 3057, 2921, 1619 cm'1.

2-Quinolinecarboxaldehyde II.55

Into a 500 mL three-way RBF equipped with a Teflon coated stir bar, two 

pressure equalizing drop-funnels, and a N2 inlet was added 25 mL of dry DCM 

and 1.55 g (1.07mL, 12.3mmol) of oxalyl chloride. The resulting solution was 

cooled to -78°C with a dry-ice/acetone bath. The head-space was purged with N2 

for 10 min. One of the drop-funnels was charged with 1.91 g (1.75 mL, 24.5 

mmol) of DMSO dissolved in 5 mL of DCM. This solution was added with stirring 

to the RBF dropwise over a 5 min period. The other funnel was charged with

1.30 g (8.20mmol) of 2 -quinolinecarbinol dissolved in ca. 10 mL of DCM. This 

solution was then added to the reaction mixture dropwise over the course of 5 

min. The resulting mixture was stirred an additional 20 min and then TEA (6.20g,

8.51 mL, 61.2 mmol) was added to the RBF dropwise. After waiting an additional 

5 min the reaction mixture was warmed to RT. To the mixture was added 50 mL 

of H20. The layers were separated, and the organic phase was washed
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sequentially with 5% aqueous NaHC03 (50 mL) and 5% aqueous NaCI (50 mL). 

The organic phase was dried over excess anhydrous Na2S0 4 , filtered via gravity, 

and the solvent removed under vacuum affording a brown oil. The crude product 

was purified by column chromatography (Rf=0.80, 1:1 EtOAc:hexanes (v/v)) 

yielding 1.01 g (77.5%) of a white powder with a sweet aroma. 1H-NMR (CDCI3):

10.24 (1H, s, aldehyde H); 8.31 (1H, d, J=8.4Hz, quinoline H); 8.27-8.24 (1H, m, 

quinoline H); 8.03 (1H, d, J=8.4Hz, quinoline H); 7.92-7.82 (1H, m, quinoline H); 

7.85-7.82 (1H, m, quinoline H); 7.71-7.67 (1H, m, quinoline H). 13C-NMR (CDCI3) 

6: 194.00, 152.82, 148.16, 137.63, 130.73, 130.66, 130.30, 129.44, 128.10, 

117.59 ppm. IR (KBr pellet) v: 3057, 2813, 1711 cm'1.

1-Trioxanylisoquinoline II.57

Into a 500 mL RBF was added 200 mL of MeCN and 120 g (1.33mol) of 1,3,5- 

trioxane. To the resulting solution was added sequentially 1.81 g (1.65 mL, 14.0 

mmol) of isoquinoline, 1.60 g (1.07 mL, 14.0 mmol) of trifluoroacetic acid, 3.4 mL 

of 30.0% H2O2 (30.0 mmol), and 32.0 mg (0.2 mmol, 0.7 mol%) of FeS04. The 

RBF was fit with a reflux condenser and the mixture refluxed for 5hr. The 

reaction mixture took on an orange color with heating. The solvent was removed 

under vacuum, and the resulting solid residue dissolved into 50 mL of 1M NaOH, 

and the crude product extract with Et20  (3x50 mL). The pooled organic fractions 

were dried over excess anhydrous Na2S04, filtered via gravity through paper, 

and the solvent removed under vacuum. The residue was chromatographed on 

silica (Rf=0.58, 1:1 EtOAc:hexanes (v/v)) affording 2.30 g (75.6%) of the purified 

product. 1H-NMR (CDCI3): 8.89 (1H, d, J=8.0Hz, isoquinoline H); 8.50 (1H, d,
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J=5.6Hz, isoquinoline H); 7.85 (1H, d, J=8.8Hz, isoquinoline H); 7.73-7.64 (3H, 

m, isoquinoline H); 6.43 (1H, s, methine trioxane H); 5.49 (2H, d, J=6.4Hz, 

methylene trioxane H’s); 5.45 (2H, d, J=6.4Hz, methylene trioxane H’s). 13C- 

NMR (CDCI3) 6: 153.44, 141.40, 137.39, 130.50, 127.70, 127.21, 126.84, 126.32, 

122.89, 105.35, 94.27 ppm. IR (KBr) v: 3054, 3006, 2962-2752, 1622, 1331, 

1099 cm'1.

Methyl-1-isoquinolinecarboxylate 11.60

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 20 mL of 

MeOH and 3.00 g (17.3mmol) of 1-isoquinolinecarboxylic acid. The RBF was 

then cooled in an ice bath for 5 min. To the resulting stirred solution was added

6.18 g (3.79 mL, 52.0 mmol) of thionyl chloride dropwise. The mixture was then 

allowed to warm to RT and after stirring for 30 min the RBF was fit with a reflux 

condenser and the contents refluxed for 16hr. The solvent was then removed 

under vaccum and the resulting solid residue was dissolved into 20 mL of H20, 

neutralized by the piecemeal addition of excess Na2C03  until the effervescence 

ceased. The product was extracted with DCM (4x20 mL), the pooled organic 

fractions dried over excess Na2S0 4 , filtered via gravity through paper, and the 

solvent removed under vacuum. The crude product was then distilled under 

reduced pressure (bp=144-145°C, 700mTorr) affording 1.59 g ^49.0%) of a 

colorless oil. 1H-NMR (CDCI3): 8.84 (1H, d, J=8.8Hz, isoquinoline H); 8.63 (1H, 

d, J=5.6Hz, isoquinoline H); 7.88 (1H, d, J=8.0Hz, isoquinoline H); 7.83 (1H, d, 

J=5.6Hz, isoquinoline H); 7.76-7.67 (2H, m, isoquinoline H’s); 4.10 <3H, s, methyl 

H’s). 13C-NMR (CDCI3) 6: 166.35, 148.24, 141.65, 137.01, 130.65, 128.89,
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127.20, 126.99, 126.46, 124.40, 53.06 ppm. IR (liquid film) u: 3055, 2951, 2849, 

1720 cm'1.

1 -Isoquinolinecarboxaldehyde II.58

Into a 500 mL three-way RBF equipped with a Teflon coated stir bar, a pressure 

equalizing funnel, and N2 inlet was added 1.00 g (5.34 mmol) of methyl-1 - 

isoquinolinecarboxylate dissolved in ca. 30 mL of dry THF. The funnel was 

charged with 0.101 g (2.67 mmol) of LiAIFU suspended into 10 mL of dry THF. 

The RBF was cooled in a dry ice/MeOH bath until a temperature of -70°C was 

achieved. To the RBF was then added the suspension of UAIH4 with stirring 

over the course of 15 min. The resulting brown mixture was stirred an additional 

15 min and then the reaction quenched with the addition of excess glacial AcOH 

(ca. 1.5 mL). The resulting reaction mixture was brought to RT and then a few 

drops of H20  followed by a few drops of 1M NaOH were added to make the 

aluminum salts more granular. The resulting heterogeneous mixture was filtered 

via vacuum through paper and the resulting yellow filtrate brought to dryness 

under vacuum. The residue was chromatographed on silica with 1:1 

EtOAc:hexanes (Rf=0.79) affording 0.280 g of the desired product as a white 

powder with a sweet aroma (33.0%). 1H-NMR (CDCI3): 10.40 (1H, s, aldehyde 

H); 9.34-9.31 (1H, m, isoquinoline H); 8.76 (1H, d, J= 5.6Hz, isoquinoline H); 

7.93-7.89 (2H, m, isoquinoline H’s); 7.79-7.74 (2H, m, isoquinoline H’s). 13C- 

NMR (CDCI3) 8: 195.63, 149.79, 142.41, 136.85, 130.74, 130.00, 126.91, 126.31, 

125.70, 125.45 ppm. IR(KBr pellet) v: 3048, 3033, 2844, 1703 cm'1.
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1-isoquinoline carbonitrile II.63

Into a 500 mL RBF equipped with a Teflon coated stir bar was added 16.7 g (256 

mmol) of KCN and 130 mL of H2O. To the resulting stirred solution was added 

9.10 g (10.0 mL, 70.4 mmol) of isoquinoline and 27.9 g (20.1 mL, 158 mmol) of 

benzenesulfonyl chloride sequentially. Approximately 25 mL of DCM was added 

to the gummy reaction mixture and the resulting biphasic solution was stirred for 

4 hr at RT. The organic layer was then removed with a separatory funnel and the 

remaining aqueous layer was extracted with DCM (3x50 mL). The pooled 

organic fractions were washed with H20  (100 mL), 3N HCI (50 mL), H2O (100 

mL), 1N NaOH (50 mL), and H20  (100 mL) sequentially. The organic fraction 

was dried over excess anhydrous Na2S04  and filtered via gravity through paper. 

The solvent was removed under vacuum affording 8.60 g (41.0%) of crude 2- 

phenylsulfonyl-1,2-dihydroisoquinoline-1-carbonitrile 11.62. 1H-NMR (CDCI3): 

7.91-7.88 (2H, m, aromatic H’s); 7.65-7.61 (1H, m, aromatic H); 7.57-7.52 (2H, 

m, aromatic H’s); 7.35-7.25 (2H, m, aromatic H’s); 7.20-7.18 (1H, m, aromatic H); 

7.14-7.12 (1H, m, aromatic H); 6.78-6.76 (1H, m, 4H of the isoquinolinyl group); 

6.18(1 H, d, J=8.0Hz, 3H of the isoquinolinyl group); 6.14 (1H, s, 1H of the 

isoquinolinyl group).

Into a large beaker was added 200mL of EtOH and 7.20 g (24.4 mmol) of 2- 

phenylsulfonyl-1,2-dihydroisoquinoline-1 -carbonitrile. To the stirred suspension 

was added 0.920 g (24.4 mmol) of NaBH4 causing the heterogeneous reaction 

mixture to effervesce gently. After 2 hr of stirring the resulting yellow solution 

was evaporated to dryness and the residue partitioned between CHCI3  (100 mL)
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and H20  (100mL). The organic layer was isolated and then washed sequentially 

with 3N HCI (50 mL), H20  (100 mL), 1N NaOH (50 mL), and H20  (100 mL). The 

organic phase was then dried over excess anhydrous Na2S0 4 , filtered via gravity 

through paper and the solvent removed under vacuum affording 2.32 g (62.0%) 

of the product as a white powder. The overall yield of the product starting from 

isoquinoline was 21.0%. 1H-NMR (CDCI3): 8.65 (1H, d, J=5.6Hz, isoquinoline H); 

8.36-8.33 (1H, m, isoquinoline H); 7.97-7.95 (1H, m, isoquinoline H); 7.92-7.90 

(1H, m, isoquinoline H); 7.86-7.79 (2H, m, isoquinoline H’s). 13C-NMR (CDCI3) 8:

143.51, 136.11, 135.03, 131.95, 130.08, 129.56, 127.54, 125.52, 124.65, 116.06 

ppm. IR (KBr pellet) v: 3059, 2228, 1622 cm"1.

2-Hydroxymethyl benzothiazole 11.65

Into a 100mL RBF was added 9.49 g (125 mmol) of glycolic acid and 12.5 g (10.7 

mL, 100 mmol) of 2-aminothiophenol and the resulting mixture was heated neat 

in a sand bath to a gentle boil. The theoretical amount of H20  (ca. 3.0 mL) 

evolved after 1.5 hr of heating. The resulting orange colored oil was cooled to 

RT and then 120 mL of 3N HCI was added affording a yellow suspension. The 

suspension was cooled in an ice bath and 60 mL of 20% NaOH (w/v) was added. 

The resulting solids were collected via filtration and washed with 1 Lof cold H20. 

The granular solids were dried under vacuum affording 9.19 g (56.0%) of the 

product as a yellow powder. ^-NM R (CDCI3): 7.97 (1H, d, J=8.4Hz, benzo H); 

7.87 (1H, d, J=8.0Hz, benzo H); 7.46 (1H, t, J=8.0Hz, benzo H); 7.37 (1H, t, 

J=8.0Hz, benzo H); 5.08 (2H, s, methylene H’s); 3.96 (1H, s, -OH). 13C-NMR
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(CDCh) 8: 172.87, 152.95, 134.86, 126.39, 125.31, 122.94, 122.03, 62.71 ppm.

IR (KBr pellet) v: 3161,2902, 2831, 1611 cm'1.

2-Benzothiazolecarboxaldehyde 11.66

Into a 100mL RBF equipped with a Teflon coated stir bar was added 5.00 g (30.3 

mmol) of 2-hydroxymethyl benzothiazole, 3.40 g (30.6 mmol) of Se02, 25.0 mL of 

p-dioxane and 1.0 mL of H2O. The RBF was fit with a reflux condenser equipped 

with a N2 inlet and the resulting suspension was brought to reflux for 0.5 hr. The 

mixture was cooled to RT and then filtered via vacuum through paper into 200 

mL of cold H2O. The product was extracted with DCM (4x100 mL) and the 

pooled organic fractions dried over excess anhydrous Na2S0 4 . The mixture was 

filtered and the solvent removed under vacuum affording 3.40 g of the crude 

product (69.0% crude) as a brown powder. The product was purified by 

sublimation affording 1.67 g (34.0%) of a white crystalline solid with a sweet 

aroma. 1H-NMR (CDCI3): 10.17 (1H, s, aldehyde H); 8.24 (1H, d,.J=8.4Hz, 

aromatic H); 8.00 (1H, d, J=8.0Hz, aromatic H); 7.59 (2H, m, aromatic H’s). 13C- 

NMR (CDCI3 ) 8: 185.65, 165.50, 152.71, 136.56, 128.61, 127.58, 125.97, 122.84 

ppm.

2’-Hydroxyacetophenone oxime 11.68

Into a 100 mL RBF equipped with a Teflon coated stir bat was massed 2.78 g 

(40.0 mmol) of hydroxylamine hydrochloride. To the RBF was added 40 mL of 

absolute EtOH and 10 mL of H2O. The resulting mixture was stirred into a 

solution followed by the addition of 2.72 g (2.41 mL, 20.0 mmol) of 2’-hydroxy
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acetophenone. The RBF was fit with a reflux condenser and the mixture was 

brought to reflux. To the refluxing solution was added 5.44 g (40.0 mmol) of 

NaOAc-H20  dissolved in 10 mL of H20. The resulting solution was refluxed for

2.5 hr and then cooled to -10°C. The cold solution was then poured slowly into 

200 mL of H20  affording a white crystalline precipitate. The product was 

collected in a Buchner funnel and washed with cold H20. The resulting solids 

were dried under vacuum affording 2.00 g (66.0%) of the desired product. 1H- 

NMR (CDCI3): 11.64 (1H, s, phenolic H); 8.09 (1H, s, oxime H); 7.45-7.43 (1H, m, 

phenyl H); 7.29-7.25 (1H, m, phenyl H); 7.00-6.90 (2H, m, phenyl H’s); 2.36 (3H, 

s, methyl H’s). 13C-NMR (CDCI3) 5: 159.73, 157.57, 131.03, 127.86, 119.56,

118.80, 117.47, 11.01 ppm.

2’-Hydroxyacetophenone acetoxime 11.69

Into a 50mL RBF equipped with a Teflon coated stir bar was added 2.00 g (13.2 

mmol) of 2’-hydroxyacetophenone oxime followed by 4.0 mL of Ac20  which 

immediately caused the evolution of heat. An additional 1.0 mL aliquot of A c ^  

was added to the RBF followed by 50 mL of H20. The resulting white precipitate 

was isolated on a Buchner funnel and the resulting filter cake was washed with 

small portions of cold H20. The resulting solids were dried under vacuum 

affording 2.33 g (91.0%) of the product. 1H-NMR (COCI3): 11.28 (1H, s, phenolic 

H); 7.48-7.45 (1H, m, aromatic H); 7.35-7.31 (1H, m, aromatic H); 7.04-7.01 (1H, 

m, aromatic H); 6.93-6.89 (1H, m, aromatic H); 2.44 (3H, s, methyl H’s); 2.25 

(3H, s, methyl H’s). 13C-NMR 5: 167.02, 164.24, 158.80, 132.59, 128.67, 119.32, 

118.33, 117.41, 19.46, 13.11 ppm.
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3-Methyl-1,2-benzoisoxazole 11.70

Into a 100mL RBF equipped with a Teflon coated stir bar was added 2.30 g (11.9 

mmol) of 2’-hydroxyacetophenone acetoxime and 25 mL of dry pyridine. The 

RBF was fit with a reflux condenser equipped with a N2 inlet and the contents of 

the RBF were brought to reflux with stirring for 3.5 hr. The reaction mixture was 

allowed to cool to RT and then it was poured into 50 mL of 1N HCI. The product 

was extracted with DCM (3x50 mL), the organic fractions were pooled and then 

dried over excess anhydrous MgS04. The mixture was filtered via gravity 

through paper and the filtrate was brought to dryness under vacuum. The 

resulting product was purified by reduced pressure distillation (bp=56°C, 

210mTorr) affording 1.21 g (76.6%) of the product as a colorless oil. 1H-NMR 

(CDCIs): 7.65-7.62 (1H, m, aromatic H); 7.55-7.54 (2H, m, aromatic H); 7.33-7.29 

(1H, m, aromatic H); 2.59 (3H, s, methyl H’s). 13C-NMR (CDCI3) 8: 163.03, 

155.22, 129.95, 123.39, 122.46, 121.38, 110.05, 10.33 ppm.

3,4-Dimethoxy-p-nitrostyrene 11.73

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 33.0 g (199 

mmol) of 3,4-dimethoxybenzaldehyde and 83.0 mL (93.5 g, 1.53 mol) of MeNOg. 

To the resulting orange solution was added 5.00 g (64.9 mmol) of NH4OAC and 

the RBF was fit with a reflux condenser equipped with a N2 inlet. After purging 

the head space for ca. 10 min the mixture was brought to reflux. After 1 hr at 

reflux the red colored solution was poured carefully into 330 mL of iceoold 70% 

aqueous isopropyl alcohol (v/v). The resulting bright yellow suspension was
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allowed to stand for 15 min and then the yellow precipitate was isolated via 

vacuum on a Buchner funnel. The filter cake was washed with ca. 170 mL of 

70% aqueous isopropyl alcohol until the emerging filtrate was colorless. The 

filter cake was then recrystallized from boiling EtOH and dried under vacuum to 

afford 28.1 g (67.7%) of the product as a bright yellow crystalline solid. 1H-NMR 

(CDCIs): 7.97 (1H, d, J=13.6Hz, alkene H); 7.44 (1H, d, J=13.6Hz, alkene H);

7.18 (1H, dd, Ji=8.0Hz, J2=2.0Hz, aromatic H at C6); 7.02 (1H, d, J=2.0Hz, 

aromatic H at C2); 6.92 (1H, d, J=8.0Hz, aromatic H at C5); 3.95 (3H, s, methyl 

H’s); 3.93 (3H, s, methyl H’s). 13C-NMR (CDCI3) 5: 153.03, 149.77,139.53, 

135.38, 124.84, 123.01, 111.55, 110.46, 56.30, 56.23 ppm. IR (KBr pellet) V: 

3124, 3082-2839, 1627, 1598, 978 cm'1, mp: 134-136°C.

3,4-Dimethoxy-p-nitroethylbenzene 11.74

Into a 500 mL RBF equipped with a Teflon coated stir bar was added 80 mL of 

absolute EtOH. The RBF was then emerged in an ice water bath and stirred 

under the protection of N2 for ca. 10 min. To the cold solvent was then added 

7.24 g (191 mmol) of NaBH4 and the RBF was then fit with a pressure equalizing 

funnel charged with a saturated solution of 10.0 g (47.8 mmol) of 3,4-dimethoxy- 

P-nitrostyrene in 175 mL of dry THF. The substrate was added dropwise to the 

RBF over the course of 90 min. After 90 min the resulting colorless reaction 

mixture was poured into 200 mL of cold H20. To the resulting mixture was then 

added 50 mL of glacial acetic acid. The resulting pale yellow solution was 

allowed to cool to RT. The product was isolated from the aqueous mixture with
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Et20  (3x100 mL) and the pooled organic fractions were dried over excess 

anhydrous MgS0 4 , filtered via gravity through paper, and the solvent removed 

under vacuum affording 7.93 g (78.5%) of the crude product as a pale yellow oil. 

This material was used as is in subsequent chemistries. 1H-NMR (CDCI3): 6.82 

(1H, d, J=8.0Hz, aromatic H at C5); 6.75 (1H, dd, Ji=8.2Hz, J2=2.0Hz, aromatic 

H at C6); 6.71 (1H, d, J=2.0Hz, aromatic H at C2); 4.59 (2H, t, J=7.2Hz, 

methylene H’s adjacent to arene); 3.87 (3H, s, methyl H’s); 3.86 (3H, s, methyl 

H’s); 3.26 (2H, t, J=7.2Hz, methylene H’s adjacent to nitro group). 13C-NMR 

(CDCI3) 8: 149.40, 148.56, 128.28, 120.84, 111.93, 111.73, 76.75, 56.09, 33.35 

ppm. There was coincidental overlap of the MeO-groups. IR (KBr pellet) v:

3003, 2960-2837, 1608, 1592, 1552, 1379 cm'1.

3,4-Dimethoxy-p-phenethylamine 11.75

Into a 250 mL RBF that contained 7.50 g (35.5 mmol) of crude 3,4-dimethoxy-p- 

nitroethylbenzene was added 65 mL of absolute MeOH and a Teflon coated stir 

bar. To the resulting stirred yellow solution was added a slurry of 10% Pd/C (250 

mg, 0.235 mmol, 0.670 mol%) in 20 mL of MeOH. To the resulting black 

suspension was added 9.87 g (156 mmol) of ammonium formate and the RBF 

was fit with a reflux condenser and N2 inlet. The head space was purged with N2 

for ca. 10 min and the mix brought to reflux for 16 hr. The mixture was cooled to 

RT, filtered via vacuum through a pad of Celite® and then the pale yellow filtrate 

brought to dryness under vacuum. The residue was dissolved into 60 mL of H20  

and made basic with 20% NaOH (w/v) until a pH of ca. 14 was achieved (paper

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



indicator). The basic solution was extracted with DCM (60 ml followed by 2x30 

mL). The pooled organic fractions were dried over excess anhydrous MgS0 4 , 

filtered via gravity through paper, and the solvent removed under vacuum 

affording 5.58 g (86.7%) of the product as a clear orange colored oil. This 

material was purified by suspending the isolated oil into ca. 100 mL of Et20  and 

adding concentrated H2SO4 dropwise yielding a white precipitate. The mixture 

was sonicated, triturated with additional Et20, and then isolated on a glass frit. 

The white powder was dried under vacuum and then stored long-term in a 

dessicator. 1H-NMR (DMSO-cfe) 8.32 (2H, br.s, H2S04); 7.77 (2H, br.s, NH2-); 

6.89 (1H, d, J=8.4Hz, aromatic H at C5); 6.87 (1H, d, J=2.0Hz, aromatic H at 

C2); 6.76 (1H, dd, Ji=8.4Hz, J2=2.0Hz, aromatic H at C6); 3.76 (3H, s, methyl 

H’s); 3.73 (3H, s, methyl H’s); 3.03 (2H, m, methylene H’s adjacent to amine); 

2.80 (2H, t, J=7.2Hz, methylene H’s adjacent to arene). 13C-NMR {CDCI3) 6: 

149.42, 148.29, 130.23, 121.23, 113.19, 112.63,56.16, 56.07, 40.90, 33.20 ppm.

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolineoxalate II.76

Into a 50 mL RBF equipped with a Teflon coated stir bar was added 5.00 g <27.6 

mmol) of free-base 3,4-dimethoxy-p-phenethylamine and 30.0 mL of formic acid. 

To the resulting brown colored solution was added 850 mg <28.3 mmol) of 

paraformaldehyde and the resulting heterogeneous mixture was sealed and 

heated with stirring at 50.0±0.1°C in a thermostated temperature bath for 16 hr. 

The solvent was then removed under vacuum and the resulting red/orange oil 

dissolved into 100 mL of EtOH saturated with oxalic acid (ca. 5 g) affording a 

white fluffy precipitate. The heterogeneous mixture was cooled to 4°C for 16 hr
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and then the white solids isolated via vacuum filtration yielding 7.35 g -(94.0%) of 

the product as the oxalate salt. 1H-NMR (DMSO-cfe): 6.74 (1H, s, aromatic H);

6.69 (1H, s, aromatic H); 4.62 (3H, s, NH+oxalate H’s); 4.13 (2H, s, methylene 

H’s at C1); 3.67 (3H, s, methyl H’s); 3.66 (3H, s, methyl H’s); 3.32 <2H, t,

J=6.0Hz, methylene H’s); 2.89 (2H, t, J=6.0Hz, methylene H’s). 13C- 

NMR(DMSO-Gf6) 8: 165.81, 148.04, 147.38, 124.22, 120.11, 111.94, 109.76,

55.85, 44.17, 41.76, 23.23 ppm. There was coincidental overlap of the MeO- 

groups. IR (KBr pellet) v: 3422, 3001-2590, 1917, 1723, 1615, 1520cm’1. mp 

(uncorrected): 196-197°C.

Fremy’s salt 11.80

Into a 1L beaker equipped with a large Teflon coated stir bar was added ca. 250g 

of crushed ice. The beaker was immersed in ice water bath and 15.0g 

(217mmol) of NaN02 were added. The mixture was stirred with a glass rod 

followed by the addition of 41.6g (400mmol) of NaHS03  and 22.5mL (23.6g, 

393mmol) of glacial acetic acid. The resulting mixture was agitated with a glass 

rod and then stirred magnetically for 90min. The resulting solution was checked 

with potassium iodide-startch paper (negative) and pH paper (pH~5). To the 

beaker was added 50.0g (472mmol) of Na2C03  and 250mL of H20  resulting in a 

pH=11 solution of the inorganic hydroxylamine 11.81. Into the solution was then 

immersed a homemade stainless steel electrode fabricated from 15.0cm of 

0.064” stainless wire. The electrode was connected to a full-wave bridge rectifier 

and isolation transformer (Figure 119). The circuit was completed with 40.0cm 

of coiled 0.064” stainless steel wire immersed in a porous cup {cathode). The cup
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was then suspended in the 1L beaker and filled with 10% aqueous Na2C03  (w/v). 

The voltage was ramped with a Variac until a current of 2.00A was observed.

The solution within the beaker turned a deep purple color indicating the formation 

of the nitrosodisulfonate radical 11.79. After 3hr an aliquot of the solution was 

analyzed at A,=544nm indicating the oxidation was 83.7% complete. Into the 

purple colored solution was added 76.6g (1.03mol) KCI causing an orange 

colored fluffy solid to precipitate from solution. The mixture was filtered on a 

glass frit via vacuum and the filter cake was washed with 100mL of 1M KOH.

The damp filter cake was stored in a Nalgene® bottle at 4°C indefinitely. The 

identity of the isolated material was verified qualitatively with EPR (see Chapter 

2).

Preparation of Fremy’s Salt
a)HOAc, ice 
90 min
tyNefeCOj, H2O

NaNCV NaHSO, ---------► ©
2Na o ' \ / \ e

pH~11; Kl-staich lest (-)

Oxidation of the inorganic 
hydroxylamineto Frenty's salt was 
accomplished with a homemade 
amperostatic couiometric titrator 
(fuilwave bridge rectifier)

Fullwave Bridge Rectifier
83.7'/., 2.00A. 0°,3hr 

Yield was determined by UV-vis 
(W = 5 4 4 n m . e=14.5ctrr1M*1)

Anode Half-Reaction 
1 =s=^ nitrosodisulfonate + 1e‘ + 1H*

Cathode Half-Reaction 
1e+1H* 1/2Hj(g)

(-) cathode

Aided by A. Perkins (UNH EE) and J. \Mlderman (UNH UIC). Org. Synthesis 1972,52.86.

Figure 119 Schematic of the homemade amperostatic coioumetric titrator.
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6.7-Dimethoxyisoquinoline 11.77

Into a 500 mL Erlenmeyer flask equipped with a Teflon coated stir bar was added 

16 g (151 mmol) Na2C03 and 400mL of H20. To the solutionwas added ca. 6.1 g 

of damp Fremy’s salt and 2.47 g (8.70 mmol) of 6,7-dimethoxy-1,2,3,4- 

tetrahydroisoquinoline-oxalate resulting in a deep-purple colored solution. The 

resulting solution was stirred at RT for 2 days. An excess of Fremy’s salt was 

maintained by adding small aliquots periodically over the course of the reaction. 

The aqueous solution was extracted with DCM (100 mL, followed by 2x50 mL 

portions) and the pooled organic fractions were dried over excess anhydrous 

MgS0 4 . The mixture was filtered via gravity through paper and the solvent 

removed under vacuum affording 1.06 g (64.5%) of the crude product. TLC 

(silica, 1:1 MeOH:EtOAc) indicated the presence of two compounds (Rf=0.61,

6.7-dimethoxyisoquinoline II.77; Rf=0.39, 3,4-dihydro-6,7-dimethoxyisoquinoline

ll.77b). The 1H-NMR spectrum was used to quantify the ratio of the desired 

compound II.77 to ll.77b: 0.89:0.11. The desired product was isolated via column 

chromatography (1:1 MeOH:EtOAc). 1H-NMR of ll.77b (CDCI3): 9.04 (1H, s, 

aromatic H at C1); 8.39 (1H, d, J=5.6Hz, aromatic H); 7.50 (1H, d, J=5.6Hz, 

aromatic H); 7.19 (1H, s, aromatic H); 7.06 (1H, s, aromatic H); 4.04 (6 H, s, 

methyl H’s). 1H-NMR of 11.77 (CDCI3): 8.23 (1H, s, imine H atC1); 6.81 (1H, s, 

aromatic H); 6.67 (1H, s, aromatic H); 3.92 (3H, s, methyl H’s); 3.90 -(3H, s, 

methyl H’s); 3.73 (2H, t, J=8.0Hz, CH2 adjacent to aromatic ring); 2.68 <2H, t, 

J=8.0Hz, CH2 adjacent to N). 13C-NMR of II.77 (CDCI3) 6: 153.20, 150.51,
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150.19, 142.25, 132.71, 124.96, 119.40, 105.49,104.75, 56.29, 56.23 ppm. IR 

of II.77 (KBr pellet) v: 3059, 3014, 2966-2585, 1620, 1575, 1506 cm'1.

3,4-Dihydro-6,7-dimethoxy-1 -methylisoquinoline II.82

Into a thermostated cell was added 5.0 mL of DCM, 1.09 g (6.00 mmol) of 3,4- 

dimethoxy-p-phenethylamine, 517 pL (9.00 mmol) of glacial acetic acid and 

approximately 5 mL of polyphosphoric acid (82% P 2 O 5 ). The resulting viscous 

mixture was brought to 80.0±0.1°C with periodic stirring with a glass rod. After 4 

hr the viscous brown mixture was poured over excess cracked ice and the 

resulting red-colored solution was brought to pH=10 with the slow addition of 

excess Na2C0 3 . The resulting solution was extracted with DCM (3x75 mL) and 

the pooled organic fractions dried over excess anhydrous MgS0 4 , filtered via 

gravity through paper and then brought to dryness under vacuum. The mass of 

the isolated product was 1.00 g (82.0%) of a pale yellow solid. 1H-NMR (CDCI3): 

6.99 (1H, s, aromatic H); 6.69 (1H, s, aromatic H); 3.92 (3H, s, methyl H’s); 3.91 

(3H, s, methyl H’s); 3.63 (2 H, triplet of quartets, Ji=7.4Hz, J2=1.6Hz, methylene 

H’s); 2.64 (2H, m, methylene H’s); 2.36 (3H, t, J=1.6 Hz, methyl H’s). 13C-NMR 

(CDCI3) 8: 163.84, 151.06, 147.68, 131.37, 122.75, 110.48, 109.28, 56.46, 56.20, 

47.28, 25.99, 23.68 ppm. IR (KBr pellet) v: 2994-2839, 1627, 1604, 1573, 1514 

cm'1.

6,7-Dimethoxy-1 -methylisoquinoline II.83

Into a 250mL RBF equipped with a Teflon coated stir bar was added 1.00 g (4.87 

mmol) of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline, 50 mL of p-cymene,
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and 0.500 g (0.470 mmol, 0.1 mol%) of 10% Pd/C. The RBF was fit with a reflux 

condenser and a N2 inlet and the head space was purged for 10 min and then 

the mixture was brought to reflux for 27 hr. The mixture was filtered hot through 

a pad of Celite® and the filtrate was brought to dryness under vacuum. The 

product was isolated via column chromatography (silica, 1:1 MeOH:EtOAc, 

Rf=0.60) as 0.530 g (53.5%) of a yellow crystalline solid. 1H-NMR (CDCI3): 8.27 

(1H, d, J=6.0Hz, aromatic H); 7.37 (1H, d, J=6.0Hz, aromatic H); 7.27 (1H, s, 

aromatic H); 7.05 (1H, s, aromatic H); 4.04 (3H, s, methyl H’s); 4.03 (3H, s, 

methyl H’s); 2.89 (3H, s, methyl H’s at C1). 13C-NMR (CDCI3) 8: 156.13, 152.73,

150.05, 141.18, 132.87, 123.44, 118.40, 105.49, 104.04, 56.24, 56.20, 22.73 

ppm. IR (KBr pellet) V: 3055, 3026, 2969-2840, 1619, 1569, 1506, 1481 cm'1.

6,7-Dimethoxyisoquinoline-1 -carboxaldehyde II.84

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 0.530 g 

(2.61 mmol) of 6 ,7-dimethoxy-1-methylisoquinoline, 30 mL of dry p-dioxane and 

0.500 g (4.51 mmol) Se02. The RBF was fit with a reflux condenser equipped 

with a N2 inlet and the head space was purged for 10 min. The heterogeneous 

mixture was brought to reflux for 2 hr and then filtered hot through a pad of 

Celite®. The filtrate was brought to dryness and the desired product purified with 

column chromatography (silica, 1:1 MeOH:EtOAc, Rf=0.65) affording 0.196 g 

(34.6%) of the pure compound as a light tan crystalline solid with a sweet aroma. 

1H-NMR (CDCI3): 10.36 (1H, s, aldehyde H); 8.74 (1H, s, aromatic H); 8.62 (1H, 

s, aromatic H); 7.73 (1H, d, J=5.6Hz, aromatic H); 7.12 (1H, s, aromatic H); 4.10 

(3H, s, methyl H’s); 4.05 (3H, s, methyl H’s). 13C-NMR (CDCI3) 8: 196.66,
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153.36, 153.09, 147.48, 141.84, 134.65, 124.21, 123.42, 104.98, 103.66, 56.50,

56.26 ppm. IR (KBr pellet): 2997-2811, 1695, 1653, 1616, 1582, 1560, 1506 cm'

1

2.4-Dimethoxy-p-nitrostyrene II.86

Into an oven dried 250 mL RBF was added 8.15 g (49.0 mmol) of 2,4- 

dimethoxybenzaldehyde, a Teflon coated stir bar and 20.5 mL (23.1 g, 378 

mmol) of MeN02. The RBF was fit with a reflux condenser and N2 inlet and the 

heterogeneous mixture was refluxed for 1 hr. The resulting red solution was 

poured into 70% aqueous isopropyl alcohol causing a percipitation of fluffy yellow 

solids. The crude product was isolated on a Buchner funnel and the filter cake 

was washed with 70% isopropyl alcohol until the emerging filtrate was colorless. 

The product was recrystallized from boiling EtOH affording 7.89 g (76.6%) of a 

crystalline yellow solid. 1H-NMR (CDCI3): 8.08 (1H, d, J=13.6Hz, alkene H); 7.82 

(1H, d, J=13.6Hz, alkene H); 7.38 (1H, d, J=8.8Hz, aromatic H at C6); 6.56 (1H, 

dd, ^ = 8 .4 ^ , J2=2.4Hz, aromatic H at C5); 6.49 (1H, d, J=2.4Hz, aromatic H at 

C3); 3.93 (3H, s, methyl H’s); 3.87 (3H, s, methyl H’s). 13C-NMR (CDCI3) 8: 

164.61, 161.44, 136.24, 135.93, 134.56, 112.63, 106.13, 98.87, 55.86 ppm.

There is coincidental overall of the methyl C’s.

2.4-Dimethoxy-P-nitroethylbenzene 11.87

Into a 250 mL RBF equipped with a Teflon coated sir bar was added 30 mL of 

absolute EtOH and 3.62 g (95.6 mmol) of NaBH4 and the RBF was fit with a 

pressure equalizing funnel and N2 inlet. The funnel was charged with 5.00 g
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(23.9 mmol) of 2,4-dimethoxy-p-nitrostyrene dissolved in 50 mL of dry THF. The 

RBF was immersed in an ice bath and the solution was added to the RBF over 

the course of 90 min. The resulting colorless mixture was poured into 100 mL of 

H20  and 40 mL of concentrated HCI was added slowly to the aqueous mixture 

affording vigorous effervescence. The solution was allowed to cool and then 

extracted with Et20  (3x50 mL). The pooled organic fractions were dried over 

excess anhydrous MgS0 4 , filtered via gravity through paper, and the solvent 

removed under vacuum yielding 4.39 g (86.9%) of a clear orange oil. 1H-NMR 

(CDCb): 7.03 (1H, d, J=8.0Hz, aromatic H at C6); 6.45 (1H, d, J= 2.4Hz, aromatic 

H at C3); 6.41 (1H, dd, J^S.OHz, J2=2.4Hz, aromatic H at C3); 4.55 (2H, t, 

J=7.2Hz, methylene H’s); 3.81 (3H, s, methyl H’s); 3.79 (3H, s, methyl H’s); 3.23 

(t, J=7.2Hz, methylene H’s). 13C-NMR (CDCI3) 6: 160.69,158.59,131.25,

116.41, 104.37, 98.85, 75.25, 55.59, 55.49, 28.81 ppm. IR (KBr pellet) v: 3003, 

2940-2838, 1614, 1588, 1552, 1508 cm'1.

2,4-Dimethoxy-p-phenethylamine 11.88

Into a 250 mL RBF that contained 4.39 g (20.8 mmol) of crude 2,4-dimethoxy-|3- 

nitroethylbenzene was added 40 mL of absolute MeOH and a Teflon coated stir 

bar. To the resulting stirred yellow solution was added a slurry of 10% Pd/C

(146 mg, 0.137 mmol, 0.670 mol%) in 10 mL of MeOH. To the resulting black 

suspension was added 5.77 g (91.5 mmol) of ammonium formate and the RBF 

was fit with a reflux condenser and N2 inlet. The head space was purged with N2 

for ca. 10 min and the mix brought to reflux for 16 hr. The mixture was cooled to
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RT and then filtered via vacuum through a pad of Celite® and the pale yellow 

filtrate brought to dryness under vacuum. The residue was dissolved into 40 mL 

of H20  and made basic with 20% NaOH (w/v) until a pH of ca. 14 was achieved 

(paper indicator). The basic solution was extracted with DCM (3x40 mL). The 

pooled organic fractions were dried over excess anhydrous MgS0 4 , filtered via 

gravity through paper, and the solvent removed under vacuum affording 3.32 g 

(88.2%) of the product as an orange colored oil. 1H-NMR (CDCI3 ) 7.03 (1H, d, 

J=8.0Hz, aromatic H); 6.45 (1H, d, J=2.4Hz, aromatic H); 6.42 (1H, dd, Ji=8.0Hz, 

J2=2.4Hz, aromatic H); 3.78 (8H, br.s, NH2 overlapped with methyl H’s); 2.87 

(2H, t, J=6.8Hz, methylene H’s); 2.68 (2H, t, J=6.8Hz, methylene H’s). 13C-NMR 

(CDCI3 ) 8 : 159.52, 158.62, 130.79, 120.59, 103.93, 98.67, 55.43, 55.34, 42.48,

34.30 ppm. IR (liquid film) v: 3367, 3296, 3262, 3177, 3073, 2999-2836, 1612, 

1587, 1507 cm'1.

7-Hydroxy-4-methylcoumarin 11.94

Into 20 mL scintillation vial equipped with a Teflon coated stir bar was added 121 

mg (0.250 mmol) of Bi(N03 )3-5H20 , 651 mg (637 pL, 5.00 mmol) of ethyl 

acetoacetate, and 550 mg (5.00 mmol) of 1,3-dihyroxybenzene (resorcinol). The 

resuling mixture was brought to 75.0±0.1°C in a thermostated cell for 1 hr. The 

resulting heterogeneous mixture was cooled to RT and then small amounts of ice 

were added to the mixture affording a gummy off-white solid. The mixture was 

centrifuged and the supernatant decanted. The solid plug was recrystallized 

from boiling absolute EtOH and the product was isolated on a glass frit via 

vacuum. The mass of the resulting product was 756 mg (85.8%) of a white
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crystalline solid. 1H-NMR (DMSO-cfe): 10.52 (1H, br.s, phenolic H); 7.59 (1H, d, 

J=8.8Hz, aromatic H at C5); 6.81 (1H, dd, Ji=8.8Hz, J2=2.4Hz, aromatic H at 

C6); 6.71 (1H, d, J=2.4Hz, aromatic H at C8); 6.13 (1H, d, J=1.2Hz, H at C3); 

2.37 (3H, d, J=1.2Hz, methyl H’s). 13C-NMR (DMSO-cfe) 6: 161.83, 160.95,

155.51, 154.21, 127.29, 113.53, 112.69, 110.92, 102.85, 18.77 ppm. IR (KBr 

pellet) v: 3116, 2820, 2425, 1671, 1605, 1515 cm'1.

5-(Hydroxymethyl)-8-methyl-3-phenyl-2H-pyrano[2,3-c]pyridin-2-one 11.100

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 30 mL of 

H20  and then 5.00 g (24.3 mmol) of pyridoxine-HCI. To the resuting vigorously 

stirred colorless solution was added 21.2 g (243 mmol) of Mn02 followed by 30 

mL of H20  and 1.35 mL (24.3 mmol) of concentrated H2S0 4 . The resulting 

heterogeneous mixture was stirred under the protection of N2 for 2 hr at ca. 70°C 

in a warm oil bath. The resulting dark brown heterogeneous mixture was cooled 

to RT and then filtered via vacuum through a glass frit and the filtrate was 

transferred to a 250 mL RBF, checked with pH paper (~5), and then diluted with 

50 mL of H20. To the brown solution was added 3.60 g (90.0 mmol) of NaOH 

affording copious amounts of a precipitate. The pH was checked again (-11-12) 

and then 2.85 g (2.80 mL, 24.3 mmol) of benzyl cyanide and 886 mg (2.43 mmol) 

of cetyl trimethyl ammonium bromide (CTABr) were added sequentially. The 

resulting orange colored heterogeneous mixture was stirred vigorously at ca. 

90°C under the protection of N2 in a warm oil bath for 0.5 hr. The resulting 

heterogeneous brown mix was then cooled at 1-2°C for 16 hr. The resulting 

precipitate as isolated on a glass frit and washed with cold H20  and acetone.
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The filter cake was recrystallized from boiling 1:1 acetone:H20  affording 2.47 g 

(38.1%) of the product as colorless needles. 1H-NMR (DMSO-cfe): 8.34 (1H, s, 

azacoumarin H at C6); 8.26 (1H, s, azacoumarin H at C4); 7.76 <2H, m, phenyl 

H’s); 7.50 (3H, m, phenyl H’s); 5.50 (1H, t, J=5.5Hz, -OH); 4.82 (2H, d, J=5.5Hz, 

pseudobenzyl H’s); 2.60 (3H, s, methyl H’s). 13C-NMR (DMSO-cfe) 8:159.22,

147.21, 146.43, 143.17, 136.52, 134.93, 131.99, 131.72, 129.89, 129.44, 128.96,

123.06, 58.64, 19.15 ppm. IR (KBr pellet) v: 3168, 2902, 2840, 2731, 2642,

1722, 1601, 1558, 1505 cm'1.

5-(Benzyloxymethyl)-8-methyl-3-phenyl-2H-pyrano[2,3-c]pyridin-2-one 11.102

Into a 50 mL RBF equipped with a Teflon coated stir bar was added the 7- 

azacoumain 11.100 (267 mg, 1.00 mmol) and 4.0 mL of DCM. To the resulting 

stirred suspension was added 12.0 mg (0.100 mmol) of DMAP, 167 p,L (121 mg,

1.20 mmol) of TEA and 128 pL (155 mg, 1.10 mmol) of benzoyl chloride and the 

mixture was stirred at RT for 24 hr under the protection of N2. To the 

heterogeneous mixture was added 30 mL of EtOAc, the reaction mixture was 

washed sequentially with 30mL of H20, 30mL of saturated aqueous NaHCOs, 

30mL of saturated NH4CI and then 30mL of H20. The isolated organic fraction 

was diluted with 30 mL of EtOAc, dried over excess anhydrous MgS0 4 , filtered 

through paper via gravity, and the solvent removed under vacuum affording 250 

mg (89.0%) of the product as a pale yellow solid. 1H-NMR (CDCb): 8.53 (1H, s, 

coumarin H at C6); 8.11 (1H, s, coumarin H at C4); 8.03<2H, m, phenyl H’s);

7.69 (2H, m, phenyl H’s); 7.58 (1H, m, phenyl H); 7.45 <5H, m, phenyl H’s); 5.61

(2H, s, pseudobenzyl H’s); 2.77 (3H, s, methyl H’s). 13C-NMR {CDCI3) 8: 166.20,
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158.97, 149.30, 147.39, 144.98, 134.36, 134.15, 133.87, 133.73, 130.00, 129.89,

129.49, 128.89, 128.76, 124.65, 123.53,61.17, 19.27 ppm. IR (KBr pellet) v: 

3064, 2967, 2921, 2853, 1716, 1654, 1597cm’1. HR-MS (FAB+): m/z=372.1243 

(M+H+).

5-(Benzyloxymethyl)-3-phenyl-2H-pyrano[2,3-c]pyridin-2-one-8- 
carboxaldehyde 11.102

Into a 10mL quartz reaction tube equipped with a Teflon coated stir bar was 

added 100 mg (0.269 mmol) of the benzyloxy-7-azacoumarin 11.101, 4.0 mL of 

dry p-dioxane and 50.7 mg (0.457 mmol) of Se02- The resulting mixture was 

irradiated in a CEMS microwave oven for 0.5 hr in a closed vessel at 200°C and 

40 psi. The power of the irradiation was controlled manually to achieve and 

maintain the reaction temperature (see attached plot). The resulting yellow 

solution was cooled to RT and then chromatographed on silica with 1:1 

hexanes:EtOAc (v/v) (Rf=0.61) affording 216 mg (83.3%) of the desired product 

as a white powder with a sweet aroma. 1H-NMR (CDCI3): 10.57 (1H, s, aldehyde

H); 8.84 (1H, s, azacoumarin H at C6); 8.17 (1H, s, azacoumarin H at C4); 8.05 

(2H, m, phenyl H’s); 7.71 (2H, m, phenyl H’s); 7.60 (1H, m, phenyl H); 7.47 (5H, 

m, phenyl H’s); 5.70 (2H, s, pseudobenzyl H’s). 13C-NMR (CDCI3) 5: 187.98,

166.06, 157.34, 150.02, 146.01, 139.83, 134.78, 134.07, 133.59, 133.03, 131.51, 

130.57, 129.98, 129.05, 128.94, 125.95, 60.75 ppm. IR (KBr pellet) v: 3061, 

2921, 2850, 1740, 1716, 1599, 1584 cm’1. HR-MS (FAB+): m/z=386.1042 

(M+H+).

258

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/V-(5-acetyl-6-methyl-2-oxo-2H-pyran-3-yl)-benzamide 11.106

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 20 mL of 

dry toluene, 3.09 mL (3.00 g, 30.0 mmol) of 2,4-pentanedione and 4.50 mL (4.04 

g, 33.9 mmol) of DMFDMA. The RBF was fit with a reflux condenser equipped 

with a N2 inlet and the head space was purged for 10 min. The reaction mixture 

was brought to reflux for 2 hr. The resulting orange solution was cooled to RT 

and the solvent was removed under vacuum. To the red colored oil was added 

30 mL of Ac20  and 5.37 g (30.0 mmol) of hippuric acid. The resulting mixture 

was brought to reflux for 40 min affording a deep red colored solution. The 

solvent was then removed under vacuum and the solid residue was recrystallized 

from boiling absolute EtOH affording 3.59 g (44.1%) of long, fibrous, tan colored 

needles. 1H-NMR (CDCI3): 8.91 (1H, s, pyran-2H-one H at C4); 8.60 (1H, br.s, 

NH); 7.90 (2H, m, benzoyl H’s); 7.61 (1H, m, benzoyl H); 7.53 (2H, m, benzoyl 

H’s); 2.62 (3H, s, methyl H’s); 2.55 (3H, s, methyl H’s). 13C-NMR (CDCI3) 5: 

196.15, 166.47, 162.11, 158.76, 133.49, 132.90, 129.22, 127.29, 123.67, 122.77,

116.81, 29.53, 20.13 ppm. IR (KBr) v: 3342, 3111, 3003, 1725, 1681, 1665, 

1623,1602,1527 cm'1.

3-Benzoylamino-5-methyl-2tf-pyrano[3,2-c]pyridine-2-one 11.108

Into a 250 mL RBF equipped with Teflon coated stir bar was added 2.71 g (10.0 

mmol) of substrate 11.106 and 20 mL of dry toluene. To the resulting stirred 

suspension was added 1.50 mL (1.35 g, 11.3 mmol) of DMFDMA and the RBF fit 

with a reflux condenser equipped with a N2 inlet and the head space was purged
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for ca. 10 min. The contents of the RBF were brought to reflux for 3 hr. An 

additional 10 mL aliquot of toluene was added to prevent burning the emerging 

precipitate. The solvent was removed under vacuum affording and the red 

crystalline residue was dissolved into 50 mL of AcOH. To the solution was 

added 1.54 g (20.0 mmol) of NH4OAc and the reflux condenser equipped with a 

N2 inlet was reattached to the RBF. The head space was purged for 10 min and 

then the contents of the flask were brought to reflux for 1 hr. The RBF was 

cooled in an ice bath and the resulting precipitate was isolated on a glass frit via 

vacuum. The filter cake was recrystallized from 45 mL of boiling absolute EtOH 

affording 617 mg (22.0%) of the product as a yellow crystalline solid. 1H-NMR 

(DMSO-c/6): 9.83 (1H, s, pyran-2-one H at C4); 8.72 (1H, br.s, NH); 8.46 (1H, d, 

J=5.6Hz, pyridine H at C7); 7.97 (2H, m, phenyl H’s); 7.64 (1H, m, phenyl H);

7.56 (2H, m, phenyl H’s); 7.32 (1H, d, J=5.6Hz, pyridine H at C8); 2.70 (3H, s, 

methyl H’s). 13C-NMR (DMSO-ofe) 8: 166.75,157.56,157.46, 156.30,149.69, 

133.91, 132.97, 129.25, 128.31, 125.51, 123.36, 114.66, 110.05, 21.94 ppm. IR

(KBr pellet) v: 3401, 3345, 3151, 2925, 1723, 1670, 1627, 1589, 1565, 1523 cm'

1

3-Benzoylamino-2H-pyrano[3,2-c]pyridine-2-one-5-carboxaldehyde 11.109

Into a 10 mL quartz reaction tube equipped with a Teflon coated stir bar was 

added 400 mg (1.43 mmol) of 3-benzoylamino-5-methyl-2H-pyrano[3,2- 

c]pyridine-2-one, 5.0 mL of dry p-dioxane and 317 mg (2.85 mmol) of Se02. The 

resulting mixture was irradiated in a CEMS microwave oven for 0.5 hr in a closed 

vessel at 175°C and 30 psi. The power of the microwave was controlled
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manually to achieve and maintain the desired reaction temperature. The resulting 

yellow solution was cooled to RT and then chromatographed on silica with EtOAc 

(Rf=0.61) affording 290 mg (69.0%) of the desired product as a white powder 

with a sweet aroma. 1H-NMR (CDCI3): 10.15 (1H, s, aldehyde H); 9.90 (1H, br.s, 

NH); 9.67 (1H, s, azacoumarin H at C4); 8.84 (1H, d, J=5.6Hz, azacoumarin H at 

C7); 7.98 (2H, m, phenyl H’s); 7.75 (1H, d, J=5.6Hz, azacoumarin H at C8); 7.67 

(1H, m, phenyl H); 7.58 (2H, m, phenyl H’s). 13C-NMR (CDCI3) 5; 195.27,

166.85, 156.89, 156.64, 150.01, 148.30, 133,92, 133.13, 129.34, 128.73, 128.48,

119.49, 116.47, 115.01 ppm. IR (KBr pellet) v: 3406, 3127, 2922, 2852 1730, 

1703, 1672, 1624, 1586, 1560, 1528 cm’1. HR-MS (FAB+): m/z=295.0712 

(M+H+).

[Ni(TAMEquin-trisimine)](CI04)2-1/2H20  11.110

Into a 20 mL scintillation vial equipped with a Teflon coated stir bar was added 

30.0 mg (0.256 mmol) of TAME dissolved in 2.3 mL of absolute EtOH. To the 

stirred solution was then addedl 1.6 mL of H20  and 93.6 mg (0.256 mmol) of 

Ni(CI04)2-6H20  dissolved in 3.9 mL of H20  affording a violet colored solution. To 

this solution was then added 121 mg (0.768 mmol) of 2-quinolinecarboxaldehyde 

dissolved in 3.0 mL of EtOH. The resulting mixture changed color from green to 

orange which was then followed by precipitation of an orange colored powder. 

The heterogeneous mixture was stirred for 16 hr at RT. The resulting mixture 

was cooled to 1 -2°C for 1 hr affording copious amounts of an orange colored 

powder. This material was then isolated on a glass frit via vacuum filtration. The 

resulting filter cake was recrystallized from MeCN in an Et20  diffusion chamber
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affording 61.7 mg (30.0%) of the desired product as orange colored needles. 

(Found: C, 52.46; H, 3.85; N, 10.49. CssHsoNeNiCfeOs-l/a^O requires: C, 52.47; 

H, 3.90; N, 10.49%.). IR (KBr pellet) v: 3073, 2969, 2931, 2874, 1665, 1621, 

1597, 1512, 1100, 623 cm’1. UV-vis (MeCN, 25°C): 11050 (39 cm'1M’1); ca. 

12100 (32 cm’1M’1); ca. 18000 (28 cm’1M’1). MS (ESI): m/z 692 <M-CI04).

TAMEquin 11.112

Into a 20 mL scintillation vial equipped with a Teflon coated stir bar was added 

40.9 mg (51.6 pmol) of [Ni(TAMEquin-trisimine)](CI04)2 followed by 9.7 ml of H2O 

and 1.3 mL of EtOH. To the stirred suspension was added 142 mg <376 mmol) 

of NaBH4 and the resulting mixture was stirred for 42 hr at RT. A black granular 

solid formed from solution. The mixture was then quenched with the dropwise 

addition of concentrated HCI04 until all the effervescence had ceased. A cream 

colored solid emerged from solution which was subsequently isolated via 

centrifugation. To the residue was added 5.0 mL of H2O followed by a few 

spatula tips of NaCN immediately affording a white solid. The solid was 

extracted with DCM (3x5 mL), the pooled organic fractions dried over excess 

anhydrous Na2S04, and the organic layer decanted into another vial. The 

solvent was removed under vacuum affording 18.9 mg (68.0%) of the product as 

a pale yellow solid. 1H-NMR (CDCI3): 7.98 <6H, t, J=8.8Hz, quinolinyl H’s); 7.73 

(3H, d, J=8.8Hz, quinolinyl H’s); 7.65-7.61 (3H, m, quinolinyl H’s); 7.49-7.45 (6H, 

m, quinolinyl H’s); 4.11 (6H, s, pseudobenzyl H’s); 2.70 (6H, s, methylene H’s); 

ca. 2.5 (3H, br.s, NH’s); 0.98 (3H, s, methyl H’s). 13C-NMR (CDCI3) 8: 161.34,
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147.85, 136.49, 129.51, 127.73, 127.47, 126.09, 120.68, 57.12, 56.82, 38.84,

22.25 ppm.

[Ni(TAMEisoquin-trisimine)](CI04)2 MeCN 11.113

To a solution of TAME (30.9 mg, 264 jimol) in EtOH (2.3 mL) was added 

Ni(CI04)2-6H20  (93.6 mg, 256 jumol) dissolved in (4.0 mL). The resulting 

pale blue solution was titrated with 1-isoquinolinecarboxaldehyde (121 mg, 770 

(imol) dissolved in EtOH (3.0 mL). A finely divided orange powder precipitated 

from solution immediately. The heterogeneous reaction mixture was allowed to 

stir at RT for 16 hr. The solids were filtered on a glass frit, washed with portions 

of Et20  (3x10 mL), and dried under vacuum. The crude trisimine complex was 

recrystallized from 1:1 MeOH:MeCN (v/v) via Et20  diffusion as large, lustrous 

orange needles (137 mg, 62%). IR(KBr pellet): 3256, 2964, 2933, 1623, 1589, 

1458,1322, 1093cm'1. A/cm'1 (MeCN) 12550 (39cm'1M'1); 11450<sh, 25cm'1M'

1); -19800 (~180cm'1M'1). (Found: C, 53.06; H, 3.99; N 11.54. 

CasHaoNeNiCfeOe-Cj-HaN requires: C, 53.33; H, 3.99; N, 11.77%.). Crystals 

suitable for X-ray crystallography were obtained by slow Et20  diffusion into a 1:1 

MeCN:MeOH (v/v) solution of the complex.

TAMEisoquin 11.115

To a suspension of [Ni(TAMEisoquin-trisimine)](CIO4)2-2MeCN^50 mg, 63 pmol) 

in H20  (10 mL) was added NaBH4 (151 mg, 4.00 mmol). The resulting mixture 

was briefly sonicated and then shaken to afford copious amounts of a pale pink 

precipitate. The mix was stirred at RT for 3 hr. The reaction was then quenched
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with the addition of concentrated HCIO4 (pH=6 ). The mixture was centrifuged 

and the supernatant was decanted away from the solid plug. The solids were 

washed with Et20  (2x20 mL) and then dried under vacuum. The resulting pale 

pink solids were dissolved into MeOH (3 mL). To the solution was added excess 

NaCN (19.1 mg, 391pmol) dissolved in H20  (1 mL). The mixture was shaken 

vigorously and then extracted with DCM (3x3 mL). The organic fractions were 

combined, dried over Na2S0 4 , decanted, and the solvent was removed under 

vacuum to afford TAMEisoquin as a pale yellow oil (34.0 mg, 99%). 1H- 

NMR(CDCI3): 8.39 (3H, d, J=6.0Hz); 8.21 (3H, d, J=8 .8Hz); 7.77 (3H, d,

J=8.0Hz); 7.60 (3H, m); 7.50 (3H, d, J=6.0Hz); 7.46 (3H, m); 4.36 (6H, s); 2.77 

(6H, s); 2.53 (3H, br.s); 1.02 (3H, s). 13C-NMR(CDCI3): 159.54, 141.85, 136.31, 

130.01, 127.35, 127.15, 127.06, 125.38, 120.06, 57.09, 54.04, 39.22, 21.95 ppm. 

The ligand was also prepared as a hydrochloride salt by dissolving the free 

amine into EtOH and adding conc. HCI dropwise. The resulting white precipitate 

was isolated, washed with Et20, and dried under vacuum. (Found: C, 54.31; H, 

5.74; N, 10.86. C35H36N6-6HCI-H20  requires: C, 54.07; H, 5.70; N, 10.81%).

[Zn(TAMEisoquin)](CI04)2'2H20-1/2MeCN 11.116

To a solution of TAMEisoquin (28.3 mg, 52.3 pmol) in MeOH (3 mL) was added

Zn(CI04)2-6H20  (19.5 mg, 52.3 j^mol) dissolved in MeOH ( mL). The mixture

was allowed to stand for 5min, and then E t^  (20 mL) was added affording

copious amounts of a white precipitate. The heterogeneous mixture was

centrifuged and the supernatant was decanted. The solid plug was washed with

Et20  and then dried under vacuum affording the desired complex as a white
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powder (38.4 mg, 91%). 1H-NMR(DMSO-af6): 8.44 (3H, d, J=8 .8Hz); 8.15 <3H, d, 

J=8.0Hz); 8.01 (3H, t, J=6 .8Hz); 7.95 (3H, d, J=6.0Hz); 7.89 (3H, t, J=7.2Hz); 

7.75 (3H, d, J=6.0Hz); 4.83 (3H, m); 4.75 (3H, m); 4.58 (3H, m); 3.28 (3H, m);

3.05 (3H, m); 0.76 (3H, s). IR(KBr): 3280, 3070, 2920, 1627, 1598, 1101 cm'1. 

(Found: C, 50.83; H, 4.59; N, 10.10. C35H36N6ZnCI20 8-2H20-1/2MeCN requires: 

C, 50.19; H, 4.85; N, 10.57%). Crystals suitable for X-ray analysis were obtained 

via Et20  diffusion into a 1:1 MeOH:MeCN (v/v) solution of the complex.

[Cd(TAMEisoquin)](N03)2-2H20  11.117

To a solution of TAMEisoquin (43.7 mg, 80.8 (imol) in MeOH (1.5 mL) was added 

Cd(N03)2-4H20  (22.9 mg, 74.2 (imol) dissolved MeOH (1.5 mL). The mixture 

was allowed to stand for 5 min, and then Et2Of20 mL) was added affording 

copious amounts of a white precipitate. The heterogeneous mixture was 

centrifuged and the supernatant was decanted. The solid plug was washed with 

Et20  and then dried under vacuum affording the desired complex as a white 

powder (55.9 mg, 96%). Microcrystals were obtained via E t ^  diffusion into a 1:1 

MeN02:MeCN (v/v) solution of the complex. 1H-NMR(DMSO-cf6): 8.69 (3H, d, 

J=6.0Hz); 8.43 (3H, d, J=8.4Hz); 8.14 (3H, d, J=8.0 Hz); 8.05 (3H, d, J=6.0Hz); 

7.96 (3H, t, J=7.6Hz); 7.84 (3H, t, J=7.2Hz); 4.72 (6H, s); 4.55 (3H, m); 3.24 <6H, 

m); 0.89 (3H, s). IR(KBr pellet): 3219, 3065, 2919, 2869, 1625, 1381, 1346, 

1312cm'1. (Found: C, 51.83; H, 4.64; N, 13.93. C35H36N6CdN20 6 -2 H20  requires: 

C, 51.70; H, 4.96; N, 13.78%).
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[Ni(6,7-DMTI-trisimine)](CI04)2-3H20  11.118

To a solution of TAME (32.4 mg, 276 fimol) in EtOH (2.0 mL) was added 

Ni(CI04)2-6H20  (101 mg, 276 pmol) dissolved in H20  (10 mL). The resulting pale 

blue solution was titrated with 6,7-dimethoxy-1-isoquinolinecarboxaldehyde II.84 

(180 mg, 829 pmol) dissolved in EtOH (3.0 mL). The heterogeneous reaction 

mixture was refluxed for 16 hr. The yellow/orange solids were filtered on a glass 

frit, washed with portions of Et20  (3x10 mL), and dried under vacuum. The crude 

trisimine complex was recrystallized from 1:1 MeOH:MeCN (v/v) via Et20  

diffusion as thin, red/orange needles (260 mg, 97.0%). IR (KBr pellet): 3135, 

3079, 2938, 2844, 1648, 1620, 1560, 1511, 1489, 1094, 623 cm'1. A/nm (MeCN) 

877 (33 cm'1M'1); 805 (40 cm'1M'1); ca. 640-500 (-275 cm'1M'1). (Found: C, 

47.66; H, 4.70; N, 8.11. C4iH42N60 6NiCI208-3H20  requires: C, 47.97; H, 4.71; N, 

8.19%.).

6,7-DMTI 11.119

To a suspension of [Ni(6,7-DMTI-trisimine)](CI04)2 (114 mg, 117 pmol) in H20  

(20 mL) was added NaBH4 (284 mg, 7.51 mmol) and 1.0 mL of absolute EtOH. 

The resulting mixture was briefly sonicated and then shaken to afford copious 

amounts of a pale pink precipitate. The mix was stirred at RT for 3 hr. The 

reaction was then quenched with the addition of concentrated H CI04 (pH=6).

The mixture was centrifuged and the supernatant was decanted away from the 

solid plug. The solids were washed with Et20  (2x20 mL) and then dried under 

vacuum. The resulting pale pink triamine complex was dissolved into MeOH (3
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mL). To the solution was added excess NaCN (19.1 mg, 391 pmol) dissolved in 

H20  (1 mL). The mixture was shaken vigorously and then extracted with DCM 

(3x3 mL). The organic fractions were combined, dried over Na2S0 4 , decanted, 

and the solvent was removed under vacuum to afford TAMEisoquin as a pale 

yellow oil (34.0 mg, 99%). 1H-NMR(CDCI3): 8.39 (3H, d, J=6 .0Hz); 8.21 <3H, d, 

J=8 .8Hz); 7.77 (3H, d, J=8.0Hz); 7.60 (3H, m); 7.50 (3H, d, J=6.0Hz); 7.46 <3H, 

m); 4.36 (6H, s); 2.77 (6H, s); 2.53 (3H, br.s); 1.02 (3H, s). 13C-NMR(CDCI3): 

159.54, 141.85, 136.31, 130.01, 127.35, 127.15, 127.06, 125.38, 120.06, 57.09, 

54.04, 39.22, 21.95 ppm. The ligand was also prepared as a hydrochloride salt 

by dissolving the free amine into EtOH and adding concentrated HCI dropwise. 

The resulting white precipitate was isolated, washed with Et20, and dried under 

vacuum. (Found: C, 54.31; H, 5.74; N, 10.86. C35H36N6-6HCI-H20  requires: C, 

54.07; H, 5.70; N, 10.81%).

PHOTOPHYSICAL AND BINDING CONSTANT EXPERIMENTALS

Stock solutions of the ligands TAMEisoquin 11.115 and 6,7-DMTI 11.119 

with various metal ions were prepared in 1:1 DMF:H20  (v/v). These stock 

solutions were then used to prepare various ~pM 1:1 M:L solutions. All spectral 

measurements were carried out in a 3 cm3 cuvette with a 1 cm path-length. The 

fluorescence spectra were conducted with an excitation wavelength (kex) of 

321nm for TAMEisoquin 11.115 and 326nm for 6,7-DMTI 11.119.
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The quantum yield of the Zn{ll)-complexes were determined by comparing 

with a quinine .sulfate standard measured in 1N H2S04. The formula used to 

calculate the quantum yield of the Zn(ll) complex is:

Gradx rg
<t>v =  O c t  --- --------------------- 5 -

Gradst r)2st

Xli-j)

The subscripts ‘x’ and ‘st’ refer to the experimental sample and the standard, 

respectively, and Grad refers to the slope of a least-squares straight line through 

a plot of integrated fluorescence intensity vs. absorbance. The refractive 

indices, ri, were neglected in the computation and may introduce a small amount 

of error in the quantum yields reported herein.

The binding constant of TAMEisoquin for Zn(ll) was assessed using a 

ligand exchange reaction with the strongly binding chelator TPEN. Stock 

solutions of [Zn(TAMEisoquin)]2+ and TPEN were prepared in 50mM HEPES 

buffered at pH = 7.2 with 0.1 M KN03 as ionic strength adjuster. A 14pM solution 

of [Zn(TAMEisoquin)]2+ with 1.0 equiv of TPEN was prepared in the HEPES 

buffer. A decrease in the emission intensity at 355nm was monitored over the 

course of three weeks (T=25°C). A 14pM solution of (Zn(TAMEisoquin)]2+ 

without the competing ligand was also monitored as a control for photobleaching. 

A decrease of approximately 50% of the original emission intensity remained 

constant after 1 week. From this data a conditional dissociation constant Kd of 

1.4 fM was calculated. The reaction was repeated with 2.0 equivalents of
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competing TPEN and a Kd of 1.4 fM was calculated after the reaction obtained 

equilibrium.

4.4.3 Chapter 3 Experimentals 

Dipicolylamine (DPA) 111.4

Into a 25 mL RBF equipped with a Teflon coated stir bar was added 2- 

pyridinecarboxaldehyde (1000 pL, 1.126 g, 10.5 mmol), 2.1 mL of MeOH and 2- 

aminomethylpyridine III.3 (1073 pL, 1.125 g, 10.4 mmol) sequentially. The 

resulting solution was stirred at RT for 1 hr and then NaBH4 was added (143 mg, 

3.70 mmol) affording copious effervescence. The mixture was stirred for 16 hr 

and then the solvent was removed under vacuum. The residue was dissolved 

into H2O (10 mL), acidified to pH=4 with concentrated HCI (evidenced by paper) 

and then the solution washed with CHCI3 (2x10 mL). To the solution was added 

1 M NaOH until the pH=11 and then the product was extracted with CHCI3 (5x15 

mL). The pooled organic fractions were dried over excess MgS04, filtered via 

gravity through paper and the solvent removed under vacuum yielding 1.50 g 

(72.0%) of the desired product as a yellow oil. 1H-NMR (CDCI3): 8.57-8.55 (2H, 

m, pyridyl H’s); 7.66-7.62 (2H, m, pyridyl H’s); 7.36 (2H, d, J=4.0Hz, pyridyl H’s); 

7.17-7.14 (2H, m, pyridyl H’s); 3.98 (4H, s, pseudobenzyl H’s); 2.60 (1H, br.s, 

NH). 13C-NMR (CDCI3) 8: 159.90, 149.50, 136.64, 122.46, 122.12, 54.99 ppm. 

IR (liquid film) v: 3304, 3053, 3009, 2913, 2836, 1591, 1570, 1473 cm'1.
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/V-allyl-dipicolylamine 111.5

Into a 250 mL RBF equipped with a Teflon coated stir bar was added DPA 111.4 

(1.50 g, 7.53 mmol), 100 mL of MeCN and the K2CO3 (10.4 g, 75.3 mmol). To 

the vigorously stirred heterogeneous mixture was then added allyl bromide (2.73 

g, 22.6 mmol) dropwise via pipet. The resulting mixture was sealed and stirred at 

RT for 16 hr. The mixture was then filtered via vacuum through a glass frit and 

the filtrate was brought to dryness under vacuum affording 1.69 g (94.0% crude) 

of the product as a dark brown oil. The crude oil was chromatographed on 

aluminum oxide with 4:1 hexanes:EtOAc (v/v) and the fractions that contained 

the compound with Rf=0.4 were pooled and brought to dryness under vacuum 

affording the desired compound as a yellow oil. 1H-NMR (CDCI3): 8.52 (2H, m, 

pyridyl H’s); 7.65 (2H, m, pyridyl H’s); 7.54 (2H, d, J=8.0Hz, pyridyl H’s); 7.14 

(2H, m, pyridyl H’s); 5.94 (1H, m, allyl H); 5.24 (1H, m, allyl H); 5.16 (1H, m, allyl 

H); 3.82 (4H, s, pseudobenzyl H’s); 3.19 (2 H, m, allylic H’s). 13C-NMR (CDCI3) 8:

160.03, 149.26, 136.57, 135.64, 123.01, 122.08, 118.11, 60.15, 57.55 ppm. IR 

(liquid film) v: 3070, 3009, 2977, 2922, 2817, 1642, 1590, 1570, 1473 cm'1.

A/-hexyl>2-pyridinemethanamine III.7

Into a 250 mL RBF equipped with a Teflon coated stir bar was added Na2C03  

(15.0 g, 141 mmol), 2-picolylchloride-HCI (8.20 g, 50.0 mmol) and 100 mL of 

MeCN. To the stirred mixture was then added n-hexylamine 111.6 (13.2 mL, 10.1 

g, 100 mmol). The RBF was fit with a reflux condenser equipped with a N2 inlet 

and the contents of the flask were brought to reflux for 18 hr. The mixture was
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then filtered via gravity through paper and the solvent removed under vacuum. 

The oil was distilled under reduced pressure (bp=90-93°C, 95-100 mTorr) 

affording 493 mg (5.0%) of the desired product as a yellow oil. The remainder of 

the crude product was set aside for future distillations. 1H-NMR (CDCb): 8.55 

(1H, m, pyridyl H); 7.63 (1H, m, pyridyl H); 7.31 (1H, m, pyridyl H); 7.15 (1H, m, 

pyridyl H); 3.90 (2H, s, pseudobenzyl H’s); 2.65 (2H, t, J=7.2Hz, a-CH2); 2.07 

(1H, s, NH); 1.53 (2H, p, J=6.4Hz, p-CH2); 1.29 (6H, m, Y,5,e-CH2’s); 0.88 (3H, t, 

J=6.8Hz, terminal methyl H’s). 13C-NMR (CDCI3) 5: 160.14, 149.48, 136.58, 

122.45, 122.05, 55.57, 49.97, 31.98, 30.33, 27.24, 22.81, 14.25 ppm.

/V-acryloyl-/V-hexyl-2-pyridinemethanamine III.8

Into a 100 mL RBF equipped with a Teflon coated stir bar was massed the 

substrate 111.7 (400 mg, 2.08 mmol) followed by the addition of 4.0 mL of dry 

toluene. The RBF was cooled in an ice bath and then the acryloyl chloride (169 

pL, 188 mg, 2.08 mmol) and TEA (319 pL, 232 mg, 2.29 mmol) were added 

sequentially. The resulting heterogeneous mixture was stirred for 30 min under 

the protection of a N2 atmosphere. The mixture was then filtered through a glass 

frit and the filtrate brought to dryness under vacuum affording 459 mg (90.0%) of 

the product as a yellow oil. 1H-NMR (CDCI3, rotational isomers were evidenced 

in the spectrum resulting in the doubling of each resonance): 8.58, 8.52 (1H, m, 

pyridyl H); 7.66 (2H, m, pyridyl H’s); 7.32, 7.20 (1H, m, pyridyl H); 6.64, 6.51 (1H, 

dd, J^IO.OHz, J2=16.6Hz, AMX acryloyl H); 6.44, 6.38 (1H, dd, J1=2.0Hz,

J2=16.6Hz, A MX acryloyl H); 5.75, 5.64 (1H, dd, J1=2.0Hz, J2=10.0Hz, AMX
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acryoyl H); 4.77, 4.71 (2H, s, pseudobenzyl H’s); 3.27, 3.41 (2H, t, J=7.6Hz, a- 

CH2); 1.59 (2H, m, p-CH2); 1.27 (6H, m, y,8,e-CH2’s); 0.87 (3H, m, terminal 

methyl H’s). 13C-NMR (CDCI3) 8: 166.98, 166.53, 158.00, 157.63, 149.90, 

149.19, 137.27, 137.01, 128.74, 128.64, 128.01, 127.53, 122.70, 122.65, 122.50, 

120.64, 53.46, 51.81, 48.61, 47.47, 31.76, 31.64, 29.42, 27.76, 27.20, 26.87, 

26.62, 22.73, 14.22, 14.17 ppm.

[Carboxymethyl-(acryloyl)>amino]acetic acid 111.10

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 

iminodiacetic acid (1.00 g, 7.51 mmol), 6.0 mL of 10% NaOH (w/v) and Et20  <6.0 

mL). The resulting biphasic mixture was cooled in an ice bath followed by the 

addition of acryloyl chloride (617 p,L, 688 mg, 7.60 mmol). The mixture was 

allowed to warm to RT and then stirred under the protection of a N2 atmosphere 

for 16 hr. To the mixture was then added concentrated HCI until a pH=3 was 

achieved. The aqueous layer was isolated, washed with CHCI3 <2x5 mL), and 

then brought to dryness under vacuum. The residue was suspended in MeOH 

and diluted with EtOAc until a finely divided white powder formed. The powder 

was isolated on a glass frit via filtration and brought to dryness under vacuum 

affording 1.20 g (85.0%) of the desired product as a white powder. 1H-NMR 

(D20): 6.35 (1H, dd, Ji=10.4Hz, J2=17.0Hz, AMX acryloyl H), 6.03 (1H, dd, 

Ji=1.6Hz, J2=16.8Hz, A MX acryloyl H); 5.65 (1H, dd, J1=1.6Hz, J2=10.4Hz, AMX 

acryloyl H); 3.99 (2H, s, CH2); 3.91 (2H, s, CH2). 13C-NMR (DgO) 8: 175.90,
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175.04, 170.01, 129.92, 126.70, 53.17, 51.63 ppm. IR (KBr pellet) v: 3568, 3446, 

2991, 2950, 1649, 1608, 1466 cm’1.

2,2'-DichlorodiethylamineHCI 111.12

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 

diethanolamine 111.11 (1.17 g, 11.1 mmol) and 10.0 mL of CHCI3. To the stirred 

solution was added SOCI2 (2.44 mL, 3.98 g, 33.4 mmol) via syringe and then the 

RBF was fit with a reflux condenser and brought to reflux for 1.5 hr. The solvent 

was removed under vacuum and the residue suspended into Et20  and sonicated. 

The resulting white powder was isolated on a glass frit and brought to dryness 

under vacuum affording 1.05 g (53.0%) of the desired product. 1H-NMR (DMSO- 

cfe): 9.78 (2H, br.s, NH’s); 3.97 (4H, t, J=6.4Hz, CH2-N); 3.36 (4H, t, J=6.4Hz, Cl- 

CH2-). 13C-NMR (DMSO-afe) 5: 48.55, 39.66 ppm.

3,9-Dithia-6-monoazaundecane 111.13

Into a 50 mL RBF equipped with a Teflon coated stir bar was added metallic 

sodium (644 mg, 28.0 mmol) and 25 mL of absolute EtOH. To the effervescing 

warm solution was then added ethanethiol (1.24 mL, 1.04 g, 16.8 mmol) and 

substrate 111.12 (1.00 g, 5.60 mmol). The mixture was refluxed for 2 hr under the 

protection of a N2 atmosphere. The RBF was then cooled in ice and the solvent 

removed under vacuum. The residue was dissolved into 80 mL of H20 and the 

product was extracted with DCM (3x40 mL). The pooled organic fractions were 

dried over excess a/ihydrous MgS04, filtered via gravity through paper and the 

solvent removed under vacuum affording 800 mg (73.0%) of the desired product
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as a yellow foul smelling liquid. 1H-NMR (CDCI3): 2.83 (4H, t, J=6.0Hz, 5,7- 

CH2’s); 2.70 (4H, t, J=6.0 Hz, 4,8-CH2’s); 2.55 (4H, q, J=7.2Hz, 2,10-CH2’s); 1.75 

(1H, br.s, NH); 1.27 (6H, t, J=7.2Hz, terminal methyl H’s). 13C-NMR (CDCI3 ) 5: 

48.52, 32.10, 26.03, 15.07 ppm.

JV-acryloyl-3,9-dithia-6-undecanamide 111.14

Into a 50 mL RBF equipped with a Teflon coated stir bar was added the substrate 

111.13 (600 mg, 3.10 mmol) and 5.0 mL of dry toluene. The RBF was immersed in 

an ice bath and under the protection of a N2 atmosphere the acryloyl chloride 

(252 pL, 281 mg, 3.10 mmol) and TEA (476 pL, 345 mg, 3.41 mmol) were added 

sequentially via syringe. The resulting heterogeneous mixture was stirred for 30 

min. The mixture was filtered through a glass frit and the solvent removed under 

vacuum affording 768 mg (99.9%) of the desired product as an oily film. 1H-NMR 

(CDCI3): 6.56 (1H, dd, J1=10.4Hz, J2=16.6Hz, AMX acryloyl H); 6.38 (1H, dd, 

Ji=2.0Hz, J2=16.6Hz, AMX acryloyl H); 5.73 (1H, dd, J1=2.0Hz, J2=10.4Hz, AMX 

acryloyl H); 3.59 (4H, m, 5,7-CH2’s); 2.72 (4H, m, 2,10-CH2’s); 2.59 (4H, m, 4,8- 

CH2’s); 1.28 (6H, m, terminal methyl H’s). 13C-NMR (CDCI3) 5: 166.23,128.80,

127.34, 49.13, 47.57, 30.98, 29.31, 26.51, 26.23, 15.03, 14.97 ppm.

[Terf-butoxycarbonyl methyl-(3-vinyl-phenyl)-amino]acetic acid ferf-butyl 
ester 111.20

To 15.0 mL of MeCN was added 3-vinylaniline {476 pL, 4,20 mmol), 

proton sponge (1.98 g, 9:24 mmol), and Nal {0.316 g, 2.11 mmol) sequentially. 

The resulting mixture was stirred magnetically for 5 min at RT affording a nearly 

colorless solution. To the solution was then added ferf-butyl bromoacetate {1.30
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mL, 8.82 mmol) resulting in the immediate formation of a white ppt. The mixture 

was refluxed under a N2 atmosphere for 51 hr. The heterogeneous mixture was 

then cooled and poured into 100 mL of EtOAc and then filtered via vacuum 

through a glass frit. The filtrate was collected and washed with an equal volume 

of brine. The organic phase was isolated, dried over excess MgS0 4 , filtered via 

gravity through paper, and the solvent removed under vacuum. The resulting 

yellow oil was chromatographed on silica (2:1 hexanes:EtOAc (v/v), Rf=0.6) to 

remove the residual proton sponge. The purified product was a colorless oil and 

had a mass of 1.24 g (85.0%). 1H-NMR (CDCI3): 7.16 (1H, m, aromatic H); 6.83 

(1H, m, aromatic H); 6.65 (1H, dd, Jax=1 1 -0Hz, vinyl AMXH, JMx is obscured due 

to overlapping resonances); 6.61 (1H, m, aromatic H); 6.51 (1H, m, aromatic H); 

5.67 (1H, dd, Jaof1 7.6Hz, Jmf0.8Hz, vinyl A MX H); 5.19 (1H, dd, J*x=11.0Hz, 

J/\/w=0.8Hz, vinyl AMX H); 4.02 (4H, s, methylene H’s); 1.46 (18H, s, methyl H’s). 

13C-NMR (CDCI3 ): 170.39, 148.52, 138.56, 137.68, 129.43, 116.40, 113.54,

112.30, 110.47, 81.84, 54.86, 28.26ppm. IR (liquid film): 3084.6, 2977.7, 1741.7, 

1599.6, and 1151.2cm'1. HR/EM (theory: m/z=347.2097; observed: 

m/*=347.2117).

2,2’-[1,2-Ethanediylbis(thio)]bis-ethanamine III.24

Into a 50 mL RBF equipped with a Teflon coated stir bar was added 2-amino- 

ethanethiol (3.09 g, 40.0 mmol) and 20 mL of absolute EtOH. To the stirred 

suspension was added metallic sodium (1.15 g, 50.0 mmol) and the effervescing 

suspension was stirred into a solution. The RBF was fit with a reflux condenser 

and 1,2-dichloroethane (1.58 mL, 1.98 g, 20.0 mmol) was added to the reaction
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mixture dropwise resulting in a violent reaction that spontaneously refluxed.

Once the addition was complete the mixture was gently refluxed for 16 hr. The 

solution was concentrated under vacuum and the resulting residue dissolved into 

50 mL of H2O and the product extracted with DCM (3x25 mL). The pooled 

organic fractions were dried over excess anhydrous MgS0 4 , filtered via gravity 

through paper, and the solvent removed under vacuum affording 767 mg (21.2%) 

of the product as a waxy pale yellow solid. 1H-NMR (CDCI3): 2.89 (4H, t, 

J=6.4Hz, 2,9-CH2’s); 2.73 (4H, s, 5,6-CH2’s); 2.66 (4H, t, J=6.4Hz, 3,8-CH2’s); 

1.37 (4H, br.s, NH’s). 13C-NMR (CDCI3) 8: 41.43, 36.62, 32.18 ppm. IR (KBr 

pellet) v : 3352, 3287, 2920, 2863, 1580, 1473 cm'1.

[Ag (2,13-Dimethyl-6,9-dithia-3,12,18-triazabicyclo[12.3.1 ]octadeca- 
1 (18),2,12,14,16-pentaene-KN3,KN1 2 , k N 1  8,kS6,kS9)] (CIO4) III.25

Into a 500 mL three-way RBF equipped with two-pressure equalizing drop 

funnels and a reflux condenser fit with a N2 inlet was added a large Teflon coated 

stir bar and 100 mL of MeOH. To the stirred solvent was then added Ag(N03 ) 

(799 mg, 4.70 mmol). One funnel was charged with a methanolic solution (10.0 

mL) of 2,6-diacetylpyridine (767 mg, 4.70 mmol) and the other was charged with 

a methanolic solution (10.0 mL) of substrate III.24 (848 mg, 4.70 mmol). The 

head space of the apparatus was purged with N2 for 10 min. To the RBF was 

then added sequentially the 2,6-diacetylpyridine and substrate 111.24. The 

resulting yellow mixture was brought to reflux in the dark for 16 hr. Within 

minutes of boiling a black granular solid precipitated from the reaction mixture 

indicative of the formation of Ag°. The mixture was then filtered through a glass 

frit and the bright yellow filtrate was diluted with a methanolic solution (10 mL) of
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NaCI04-H20  (1.41 g, 10.0 mmol). The resulting yellow solids were sonicated into 

a yellow powder, isolated on a glass frit and brought to dryness under vacuum 

affording 899 mg (35.9 %) of the desired product as a yellow powder. 1H-NMR 

(DMSO-ofe): 8.27 (3H, m, pyridyl H’s); 3.65 (4H, m, N-CH2’s); 3.33 <2H, s, H20); 

3.22 (4H, t, J=5.2Hz, S-CA£-CH2-N’s); 3.03 (4H, br.s, S-C/^C^-S); 2.55 (6H, s, 

methyl H’s). 13C-NMR (DMSO-of6) 5: 166.15, 150.53, 141.47, 125.16, 47.54,

39.34, 34.67, 16.86 ppm. IR (KBr pellet) v: 3429, 3145, 3102, 2965, 2921, 1636, 

1581,1417, 1089 cm'1. Xmax/nrn (CH3CN) 291.0 (4300 cm'1M'1) k- k , 336 <2975 

cm'1M‘1) MLCT.

2,13-Dlmethyl- 6,9-dithia-3,12,18-triazabicyclo[12.3.1 ]octadeca-1 (18),14,16- 
triene III.26

Into a 250 mL RBF equipped with a Teflon coated stir bar was added 100 mL of 

MeOH and substrate 111.25 (800 mg, 1.50 mmol). To the stirred suspension was 

added NaBH4 (567 mg, 15.0 mmol) and the resulting mixture was refluxed under 

the protection of a N2 atmosphere for 2 hr. The reaction mixture was cooled to 

RT and the granular black solids (Ag°) were filtered on a glass frit and the filtrate 

was brought to dryness under vacuum. The residue was suspended into 20 mL 

of H20  and ca. 10 g of NaOH was added to make the mixture basic. The product 

was extracted with CHCI3 (3x50 mL), the pooled organic fractions washed with 

H20  (2x25 mL), dried over excess anhydrous MgS04 and filtered through paper 

via gravity. The filtrate was brought to dryness under vacuum affording 458 mg 

(82.3%) of the desired product as a pale yellow oil. 1H-NMR (COCI3 a mixture of 

a D,L pair and a meso-compound were evidenced in the spectrum): 7.60 (2H, m, 

pyridyl H’s); 7.09 (4H, m, pyridyl H’s); 3.92 (2H, q, J=6.8Hz, methine H’s); 3.84
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(2H, q, J=6.4Hz, methine H’s); 2.62 (2H, m, methylene H’s); 2.27 (4H, br.s,

NH’s); 1.40 (6H, d, J=1.6Hz, methyl H’s); 1.39 (6H, d, J=1 .6Hz, methyl H’s). 13C- 

NMR (CDCI3) 8: 164.26, 164.03, 137.15, 136.90, 120.71, 119.94, 59.33, 59.15, 

47.74, 47.39, 33.89, 33.73, 32.79, 32.47, 23.18, 22.99 ppm. IR {liquid film) v: 

3293, 3058, 2966, 2922, 2845, 2715, 1590, 1574, 1466 cm'1.

12,18-Diacryloyl-2,13-dimethyl- 6,9-dithia-3,12,18- 
triazabicyclo[12.3.1]octadeca-1(18),14,16-triene III.27

Into a 50 mL RBF equipped with a Teflon coated stir bar was added the substrate 

III.26 (458 mg, 1.23 mmol) and 5.0 mL of dry toluene. The RBF was immersed in 

an ice bath and under the protection of a N2 atmosphere the acryloyl chloride 

(251 (iL, 279 mg, 3.09 mmol) and TEA (464 pL, 337 mg, 3.33 mmol) were added 

sequentially via syringe. The resulting heterogeneous mixture was stirred for 30 

min. The mixture was diluted with 25 mL of EtOAc and then filtered through a 

glass frit. The filtrate was brought to dryness under vacuum affording 516 mg 

(99.9%) of the desired product as an oily film. Because of the presence of 

rotational isomers the NMR spectra were essentially unintrepretable. IR (liquid 

film) v: 3062, 2978, 2932, 2853, 2240, 1793, 1729, 1643, 1611, 1590, 1575,

1446 cm'1. HR-MS (FAB+): m/z=420.1762 (M+H+).

JV-phenyldiethanolamine ditosylate 111.29

Into a 250 mL RBF equipped with a Teflon coated stir bar was added N- 

phenyldiethanolamine (25.0 g, 138 mmol) and 50 mL of dry pyridine. The RBF 

was fit with a pressure equalizing drop funnel equipped with a N2 inlet and 

charged with a pyridine solution (25 mL) of p-toluenesulfonyl chloride (52.6 g,

278

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



276 mmol). After chilling the RBF in an ice bath the stopcock to the drop funnel 

was cracked and the reagents were mixed slowly over the course of 1 hr. The 

RBF was allowed to warm to RT and the hetereogeneous mixture was stirred for 

3 hr. The mixture was then poured into 500 mL of ice water and the resulting 

solids were isolated on a glass frit. A portion of the crude material was 

recrystallized from boiling 1:1 H20:EtOH (v/v) affording 3.35 g (ca. 5%) of the 

desired product as a white crystalline solid. The remainder of the crude was 

stored for later recrystallizations. 1H-NMR (CDCI3): 7.71 (4H, AA’XX’ of the tosyl 

H’s); 7.27 (4H, AAXX’of the tosyl H’s); 7.13 (2H, apparent t, J= 7.6Hz, phenyl 

H’s); 6.70 (1H, apparent t, J=7.2Hz, phenyl H); 6.43 (2H, apparent d=8.4Hz, 

phenyl H’s); 4.09 (4H, t, J=6.0Hz, 0-CH2’s); 3.55 (4H, t, J=6.0Hz, N-CH2’s); 2.42 

(6H, s, methyl H’s). 13C-NMR (CDCI3) 5: 145.91, 145.20, 132.77, 130.10, 129.68,

128.04, 117.77, 112.18, 66.77, 50.36, 21.86 ppm. There is coincidental overlap 

of two of the aromatic resonances.

[Ag(N4S2-macrocycle)](CI04)2 111.31

Into a 50 mL RBF equipped with a Teflon coated stir bar was added 2-amino 

ethanethiol (945 g, 12.2 mmol) and 50 mL of absolute EtOH. To the stirred 

suspension was added metallic sodium (352 mg, 15.3 mmol) and the 

effervescing suspension was stirred into a solution. The RBF was fit with a reflux 

condenser and substrate 111.29 (3.00 g, 6.13 mmol) was added to the reaction 

mixture dropwise resulting in a violent reaction that spontaneously refluxed.

Once the addition was complete the mixture was gently refluxed for 16 hr. The 

solution was concentrated under vacuum and the resulting residue dissolved into
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20 mL of H20  and the product extracted with DCM (3x30 mL). The pooled 

organic fractions were dried over excess anhydrous MgS0 4 , filtered via gravity 

through paper, and the solvent removed under vacuum affording 1.55 mg 

(84.5%) of the product as a pale orange oil. The material was used as is in the 

subsequent chemistry without characterization.

Into a 500 mL three-way RBF equipped with two-pressure equalizing drop 

funnels and a reflux condenser fit with a N2 inlet was added a large Teflon coated 

stir bar and 100 mL of MeOH. To the stirred solvent was then added Ag(NC>3) 

(854 mg, 5.03 mmol). One funnel was charged with a methanolic solution (10.0 

mL) of 2,6-diacetylpyridine (821 mg, 5.03 mmol) and the other was charged with 

a methanolic solution (10.0 mL) of substrate III.30 (1.506 g, 5.03 mmol). The 

head space of the apparatus was purged with N2 for 10 min. To the RBF was 

then added sequentially the 2,6-diacetylpyridine and substrate III.30. The 

resulting yellow mixture was brought to reflux in the dark for 16 hr. Within 

minutes of boiling a black granular solid precipitated from the reaction mixture 

indicative of the formation of Ag°. The mixture was then filtered through a glass 

frit and the bright yellow filtrate was diluted with a methanolic solution (10 mL) of 

NaCI0 4 -H20  (1.41 g, 10.0 mmol). The resulting yellow solids were sonicated into 

a yellow powder, isolated on a glass frit and brought to dryness under vacuum 

affording 1.65 g (51.9 %) of the desired product as a yellow powder. Small 

aliquots were recrystallized by Et20  diffusion into a 1:1 MeCN:X (v/v, where 

X=MeN02 or MeOH) solution of the complex. 1H-NMR (DMSO-de): 8.23 (3H, m, 

pyridyl H’s); 7.10 (2H, m, phenyl H’s); 6.89 (2H, apparent d, J=8.0Hz, phenyl
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H’s); 6.68 (1H, apparent t, J=7.2Hz, phenyl H); 3.75 (4H, apparent t, J=5.2Hz, 

methylene H’s); 3.58 (4H, apparent t, J=6.0Hz, methylene H’s); 3.11 (4H, 

apparent t, J=5.6Hz, methylene H’s); 3.05 (4H, apparent t, J=5.6Hz, methylene 

H’s); 2.43 (6H, s, methyl H’s). 13C-NMR (DMSO-d6) 8:166.20, 151.23, 141.08, 

129.57, 125.32, 118.96, 115.88, 110.00,51.20, 48.59, 34.84, 31.91, 16.89 ppm. 

IR (KBr pellet) v: 2927, 1649, 1598, 1582, 1502, 1353, 1086, 806, 759, 621 cm'1 

U n m  (CH3CN) 291.0 (6500 cm'1M'1) n-n .
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APPENDIX

ASPECTS OF THE IRON COORDINATION CHEMISTRY OF CURCUMIN AND 
THE SYNTHETIC DERIVATIVE DMCU 

Summary

In appendix I the author of this dissertation will describe the work he 

conducted on the natural product curcumin and a synthetic derivative 

dimethoxycurcumin (DMCU). First a case will be created for the biological 

significance of curcumin. Then our interest in curcumin as a novel cellular iron 

chelator will be discussed citing a recent publication from our collaborators Dr. 

Suzy Torti, Dr. Frank Torti and their respective students at the Wake Forest 

University. Then the discussion will segue into what is known about the aqueous 

speciation of curcumin with Fe(ll/IH) followed by a description of the studies 

carried out by the author with the help of Dr. Fadi Bou-Abdallah and Dr. N.

Dennis Chasteen (UNH) that show how curcumin mediates a one electron 

reduction of Fe(ll|) under basic conditions. The section will then end with 

conclusions and proposed future work.
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Introduction

Curcumin is a naturally occurring yellow pigment found in the rhizome 

Curcuma longa, which has been used for centuries as a spice and coloring agent 

in eastern cuisine.{269) Characterized as a polyphenol, curcumin possesses a 

diverse array of functional groups (Figure 120).

Imbedded in the core of curcumin is a p-diketone which is reminiscent of the 

chelating groups found in the well-known ligands acetoacetonate {acac) and 

salen. The enol tautomer of curcumin is drawn in the figure because it 

dominates in both solution and the solid phase.^270) On the periphery of 

curcumin exists substituted phenolic groups which are appended to the diketone 

via alkene spacers. The presence of these olefinic groups is important because 

they allow curcumin to act as a Michael-acceptor.(277) This effect has been 

implicated in the ability of curcumin to modify biological targets like the 

glutathione transferase family of enzymes (GST’s), which may partially explain 

the observed antioxidant behavior of curcumin.

There are numerous reports on the medicinal benefits of curcumin, which 

include its anti-inflammatory, antioxidant and anticancer properties, 

cardiopreventive effects and its use to treat various skin disorders.(272)

o  OH

Curcumin 

Figure 120 The structure of curcumin.
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Likewise, the striking effects of curcumin on those who suffer from diabetes, 

rheumatoid arthritis, multiple sclerosis, Alzheimer’s disease, inflammatory bowel 

disease, cystic fibrosis and HIV have been reported.{272) It is believed from the 

ample evidence available in the literature that curcumin will interact and modify 

gene expression, transcription factors, numerous enzymes and protein 

kinases.(2 Z2)

Because we are inorganic chemists we have focused our attention on the 

coordination chemistry of curcumin, with a particular emphasis on iron. Our 

underlying hypothesis in this work is that curcumin is a cellular iron chelator. Iron 

is both toxic and essential to biological systems.(273) Ferritin, the major iron 

storage protein, plays a key role in maintaining iron homeostasis by capturing 

and buffering the intracellular labile iron pool.(269) Work conducted on the 

synthetic chemopreventive agent oltripraz shows that ferritin plays a role in the 

antioxidant (phase II) response pathway.(274) Levels of ferritin are regulated 

both transcriptionally by oxidants and cytokines and post-transcriptionally by the 

labile iron in cells.(269) When cellular iron content is high, mRNA-binding ferritin 

repressor proteins (IRPs) are inactivated and ferritin translation is increased. Dr. 

Suzy Torti, Dr. Frank Torti and their coworkers have noted that oltripraz induced 

ferritin mRNA in concert with other proteins involved in the antioxidant response 

pathway.(274) However, the effect exhibited by curcumin was an unprecedented 

dissociation between the mRNA and protein regulation. They note that as ferritin 

mRNA increased (an effect associated with the electrophilic or antioxidant 

response) the amount of ferritin decreased.{269) Iron chelators are known to
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bind intracellular iron and thus activate ferritin translational repressors that 

repress ferritin at the translational level.{275) What this means for curcumin is 

that, according to the Torti’s, curcumin is acting as both an iron chelator and 

antioxidant enzyme inducer within the cell. Working closely with the Torti group 

we are currently interested in understanding the fundamental coordination 

chemistry of curcumin and its synthetic derivatives. We hope that these studies 

will, in part, aid in explaining some of the aforementioned biological effects.

Reported Iron Coordination Chemistry of Curcumin

There are two potential metal binding sites in curcumin, namely the §- 

diketone moiety and the catecholic 3-methoxy-4-hydroxy site. The diketone is 

the thermodynamically preferred site of metal-ion binding. This is due to the 

steric accessibility and the quasi-aromatic nature of the resulting chelate ring. 

There is scant structural evidence in the literature of transition-metal complexes 

of curcumin with the notable exceptions of b/scurcumin complexes of Cu(ll), 

which are said to be tetrahedral in geometry, and a unique [(rj6-p- 

cymene)(CI)Ru(curcumin)] complex that is our opinion biologically 

irrelevant.(276, 277) Both the Cu(ll) and Ru(ll) species are chelated by the 

diketone group of the ligand. A lack of structural data in the literature provides 

the investigator with an impetus to obtain crystallographic information on 

synthetic iron-curcumin chelates to better understand the binding properties of 

the ligand.
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However, there does exists a literature report that describes the aqueous 

speciation of curcumin with Fe(ll/lll).(278) The thermodynamic data is consistent 

with curcumin acting as an Fe(lll) chelator, which is best evidenced in the 

calculation of the pM values for both Fe(ll) and Fe(lll) at pH=7.4, 1 pM iron, 10 

pM curcumin (Table 15).

Model logKaH logp Fe(ll) logp
Fe(lll)

pM

HCurcumin^LH 10.51 - - -

H2Curcumin1'=LH2 9.88 - - -

H3Curcumin=LH3 8.38 - - -

[Fe"(OH)]+=FeH-1 - -9.3 - -

[Fe"(OH)2H2CurcunninV=L.Fe - 9.20 - -

[Fel,(OH)H2Curcumin]=LFeH - 19.76 - -

[Fe H2Curcumin]+=LFeH2 - 28.11 - -

[Fem(OH)r=FeH-1 - - -3.5 -

[FeMl(OH)2r=FeH-2 - - -6.37 -

[Fe,llH2Curcumin]2+=LFe - - 22.25 -
[FeMI(OH)H2Curcumin]+=

LFeH-1
- - 12.14 -

Fe(ll)-Curcumin - - - 7.7
Fe(lll)-Curcumin - - - 16.7

Fe(IH)-deferiprone - - 20
Fe(lll)-desferrioxamine - - - 26
Table 16 Reported protonation and binding constants of curcumin with

iron.(27£)

The larger the pM value is (pM=-log[Fe]free) the lower the concentration of free 

iron, which means more of the metal is bound by the chelator. The nine-decade 

difference between the pM values for curcumin with Fe(ll) and Fe(lll) (7.7 vs. 

16.7) has been attributed to the better match, in terms of HSAB theory, between 

the oxygen donor atoms of the chelator and Fe(lll). Curcumin’s selectivity for 

Fe(lll) in fact occurs across a wide-range of pH values. If one calculates the pM
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value as a function of pH for curcumin the selectivity for ferric ion increases 

starting at ca. pH=3 (Figure 121). The plot below clearly demonstrates that 

curcumin will preferentially bind Fe(lll) over Fe(ll). As a comparison the pM 

values at pH=7.4, 1 jiM Fe(lll), 10 pM chelator were calculated for the well known 

chelators deferiprone and desferrioxamine (Table 15).(269)

Curcumin: pM vs. bHaaMB
'  i ,* ' '  ***'Vjr''4 ,**r §S3?5 f̂^^mSi

Figure 121 Calculated pM values for curcumin with Fe(lll) (blue curve) and 
Fe(ll) (pink curve) as a function of pH.

The reduced pM for curcumin as compared to these iron chelators, which are

typically used to treat iron overload, is related to its reduced denticity (i.e. 

curcumin is bidentate and deferiprone and desferrioxamine are tetra- and 

hexadentate respectively). However, the pM value for curcumin compares 

favorably to the iron chelator nitrilotriacetic acid (NTA) and many other iron 

chelators and as such is consistent with chelation activity in vivo.(34, 269)
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The Challenge of Curcumin

Drawing inspiration from the studies carried out by the Torti group at Wake 

Forest University we decided to further explore the iron coordination chemistry of 

curcumin to better understand the structure and reactivity of the proposed metal 

complexes. A major challenge when working with curcumin is its limited water 

solubility, so one goal of this particular project is to create synthetic derivatives of 

curcumin that possess enhanced water solubility as compared to the native 

compound. These modifications, however, cannot sacrifice the functionality that 

is responsible for the aforementioned biological activity. Another goal of this 

project is to better understand the observed effects curcumin has on iron 

metabolism. Because there was a lack of structural information for Fe-curcumin 

complexes in the literature we initially attempted to synthesize metal complexes 

of the ligand and characterize their structures with X-ray crystallography. These 

efforts were not met with any success. The following discussion, however, 

describes what was learned from our studies.

Ligand Preparation and Iron Complexation Experiments

The ligands curcumin, prepared by our coworker Joon Cho, and the 

synthetic derivative DMCU, prepared by the author, can be synthesized 

straightforwardly in one step taking advantage of the chemistry developed by 

Pedersen et al (Scheme 52).(279) The reaction sequence began by treating 

acetoacetonate (acac) with B2O3 affording a 2:1 acac:boron complex in situ. This 

step served to protect the interstial methine against unfavorable Knoevenagel
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cpndensations upon treatment of the reaction mixture with the benzaldehyde 

derivative and B(0/Pr)3 (i.e. to make curcumin the benzaldehyde derivative 

needs to be vanillin and to make DMCU the benzaldehyde derivative is 3,4- 

dimethoxybenzaldehyde). The resulting mixture is then made basic with TEA 

and then heated overnight resulting in a regioselective aldol condensation on the 

terminal methyls of the boron bound acac groups. The resulting chelated 

curcumin is liberated from the boron center upon acidification and the isolated 

crude product is purified with flash column chromatography on silica. This 

afforded spectroscopically pure curcumin in low to modest yields (ca. 10-30%). 

The advantage of this synthetic strategy is the limited number of steps and the 

ease with which curcumin derivatives can be prepared. In fact, the derivative 

DMCU was prepared under identical conditions by simply switching the vanillin 

substrate with 3,4-dimethoxybenzaldehyde.

OHo
*■ MeO OMe

OHHO
Purified by flashing on silica

i. a) 0.7 equiv B20 3, EtOAc 40°C, 30 min b) 2.0 equiv vanillin,
2.0 equiv B(0/Pr)3,EtOAc, 40°C, 30min c) 1.5 equiv TEA, EtOAc, dropwise 
addition over 15 min, 40°C, 18 hr d) 1.2N HCI, 60°C, 1 hr

Scheme 52 The preparation of curcumin.

With the ligands in hand complexation studies with iron ensued. We were 

initially hoping to see 1:2 or even 1:3 metal complexes of curcumin (depending 

on the oxidation state of the iron employed). However, from the aforementioned
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speciation data only 1:1 complexes were reported in aqueous solvent systems. 

Work carried out by Saladini et al. on glycosyl-curcuminoid derivatives show 1:2 

complexes with both Ga(lll) and Fe(lll) in water.(280) In our studies when one 

equivalent of FeCl3-6H20  was mixed with two equivalents of curcumin and two 

equivalents of NaOH (used to deprotonate the enolic proton to aid in 

complexation) in methanol a brown precipitate emerged from solution. This 

material was centrifuged, isolated and dried under vacuum. The MALDI-TOF 

mass spectrum (matrix: gentisic acid 10mg/mL in 450/50 

MeCN/water+0.01%TFA. Fullerene was used in the calibration) of this isolated 

material reveals the presence of a 2:1 curcumin:iron complex (m/z=790) (Figure 

122).
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Figure 122 The MALDI-TOF MS of the isolated brown powder.

One argument invoked to explain the coordination unsaturation in the speciation 

data is based on interligand steric congestion within the inner coordination 

sphere of higher order Fe-curcumin complexes. Repulsions may lead to 

attenuated binding affinities resulting in the reported 1:1 complexes with 

curcumin. The author of this dissertation believes that poor solubility is the 

reason a 1:2 complex of curcumin with iron has failed to be accounted for in the 

speciation data.

To further study this chemistry the author worked closely with Dr. Fadi 

Bou-Abdallah and Dr. N. Dennis Chasteen. Mixing FeCl3-6H20, curcumin and 

NaOH in a 1:1:2 ratio in MeOH did not afford the brown precipitate but instead
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gave a dark colored solution which could be studied with EPR spectroscopy 

(Figure 123).

2X03 1

= xOj 93 3H redL !̂i?i otg-4.16£
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Fe(lll)€0TA standard 1:1 Fe(ll):curcumin+2.00eqi«vNaOH

Figure 123 EPR spectra of standard Fe(lll)-EDTA and Fe(lll)-curcumin.

A standard Fe(lll)-EDTA sample in pH=7 water was provided and checked by the 

Chasteen lab. Both the standard and the sample were analyzed at 

[Fe(lll)]tot=100mM. The Fe-curcumin sample was prepared by adding 2.0 equiv of 

commercially available standardized 1.000N NaOH (EM science) to a methanol 

solution of commercially available curcumin (Acros, 98%). To the resulting 

crimson red solution (presumably a dianionic curcumin species) was added 1.0 

equiv of FeCl3-6H20 dissolved in methanol. The resulting solution was shaken 

and then analyzed frozen at 77K using X-band EPR (frequency=9.156951GHz). 

The instrumental parameters were set as the following:
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modulation frequency=10G; modulation amplitude=100kHz; receiver gain= 60dB; 
time constant=655.36ms; sweep time=335.54s; conversion time=81.92ms; 
power=17.09mW; attenuation=11dB; number of scans=1; centerfield=2000G, 
sweep-width=3000G, number of data points=4096.

Aggregation within the sample was checked by analyzing at the following 

[Fe(lll)]tot concentrations: 5mM, 1mM, 0.5mM, 0.1 mM. Quantitation at the g~4.3 

signal was accomplished via double integration of this feature.

The EPR data suggests that in the presence of base curcumin will reduce 

the oxidation state of Fe(lll) to Fe(ll). Loss of intensity at the g=4.3 feature as 

compared to the Fe-EDTA standard is consistent with either aggregation within 

the sample or reduction of the oxidation state. Aggregation was ruled out as a 

possibility by running serial dilutions of the sample and plotting the double 

integral as a function of total Fe(lll) concentration. This resulted in a linear 

relationship (not shown). An EPR spectrum is not expected for Fe(ll) species 

because of the even number of unpaired electrons for a HS d6 metal in an 

octahedral field. This results in a loss of the so-called Kramer’s degeneracy.{87)

To confirm if redox chemistry was taking place between curcumin and 

Fe(lll) NMR was used to measure the magnetic susceptibility of various mixtures 

of iron and curcumin (Table 16).(281)
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Sample £m> 1(cm mol )
n /feff (B.M.)

FeCl3-6H20 alone 0.01374 4.8 5.7

1:1 Fe-curcumin 
no NaOD added

0.01380 4.8 5.7

1:1 Fe-curcumin 
+2.00 equiv NaOD

0.01066 4.2 5.1

1:1 Fe-DMCU 
+2.00 equiv NaOD

0.01622 5.2 6.2

Table 17 Measured magnetic moments for various solut ons of curcumin
and Fe(lll).

The experiments were carried out at room temperature (T=296K) with 

[Fe(lll)]tot=5-10 mM in MeOH-d4 containing feuOH (5% v/v). To the samples was 

added a sealed capillary tube containing the solvent system alone. Quantitation 

of the magnetic susceptibility was done using the following expression:

where the difference in frequency of the fBuOH resonance in contact with the 

paramagnetic material and the fBuOH in the capillary tube is Av, the field strength 

of the NMR instrument is v/ (400 MHz); and the concentration of the sample is c 

(given in mol L'1). The corrected magnetic susceptibility (%m) was calculated 

using the diamagnetic contributions from: 1) the metal core electrons

(-13-1 O'6 cm3mol'1); 2) the chloride anions (3x-23-10'6cm3mol'1); 3) the hydration 

sphere of the ferric chloride reagent (6x-13-10'6cm 3m or1); 4) the curcumin (- 

180-1 O'6 cm3mor1, estimated from Pascal’s constants).(67) The number of 

unpaired electrons (n) per metal ion and the magnetic moments (jj,eff) were 

calculated from the NMR data using the following expressions:
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%' Xm- T  = n - ( n  + 2)

Heff = V8 • Xm ' T

The data in the table shows that Fe(lll) is being reduced to Fe(ll) when the 

stoichiometry of the reaction solution was 1:1:2 in cuncumin:Fe(lll):NaOH. 

Another striking feature observed from the data was that DMCU did not afford a 

reduction with Fe(lll) suggesting that the phenolic group, present only in 

curcumin, is responsible for the observed redox behavior.

Conclusions and Future Work

From the data the author of this dissertation has proposed a mechanism 

for the redox activity of curcumin with Fe(lll) (Figure 124).

2.0 equiv 
NaOH(D)

1em Donation

9
■ OMeMeO-

OH

Putative Radical Intermediate

Figure 124 Proposed mechanism for curcumin mediated reduction of
Fe(lll).

The proposed mechanism involves the intermediacy of a radical curcumin 

species. It is believed that extended delocalization of the unpaired spin density 

accounts for the relative longetivity of this species. Somehow the damaged
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curcumin radical needs to be repaired at the expense of something in solution 

before it can form a complex with Fe(ll). The details for this specific reaction 

remain elusive. In the case of DMCU the phenol is not present and as such the 

methoxy group on the 3-position of the aromatic ring does not reduce Fe(lll). To 

further support this proposed mechanism stopped-flow and freeze-quench 

experiments needed to be conducted to intercept and characterize the fleeting 

intermediates.

In summary, curcumin acts both as an antioxidant enzyme inducer and 

cellular iron chelator. Moreover, curcumin is an Fe(lll) chelator and does form 

higher order complexes with iron (i.e. 1:2 and perhaps 1:3 Fe:curcumin species). 

Lastly, curcuminoids that bear phenolic groups participate in redox chemistry with 

iron. Work is currently being conducted by Joon Cho with the help of the 

Chasteen lab to further support the curcumin mediated reduction of Fe(lll) to 

Fe(ll).

Dimethoxycurcumin (DMCU)

Into a 100 mL RBF equipped with a Teflon coated stir bar was added 

acetoacetonate (1.00 g, 1.03 mL, 10.0 mmol), 10 mL of EtOAc and B2O3 (50 mg, 

7.00 mmol). The flask was then fit with a Claisen adapter equipped with a rubber 

septum and N2 inlet. The head space was purged with N2 for 10 min and then 

the RBF was immersed in a thermostated bath at 40°C for 0.5 hr. A milky white 

suspension formed in the RBF. To the RBF was added a solution of 3,4- 

dimethoxybenzaldehyde (3.32 g, 20.0 mmol) dissolved in 5 mL of EtOAc followed
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by neat B(0/Pr)3 (3.76 g, 4.61 mL, 20.0 mmol) via syringe. The resulting 

homogeneous orange colored solution was stirred an additional 0.5 hr at 40°C. 

To the solution was then added TEA (887 mg, 1.28 mL, 15.0 mmol) dissolved in 

10 mL of EtOAc. After 15 min the solution developed a rich red color. After 

stirring for nearly 19 hr the temperature of the thermostated bath was raised to 

60°C and to the reaction mixture was added 1.5 mL of concentrated HCI and 8.5 

mL of H20. After 1 hr the resulting biphasic mixture was allowed to cool to RT 

followed by isolation of the organic layer. The aqueous layer was extracted with 

additional portions of EtOAc (3x10 mL) and the combined organic fractions were 

washed with saturated brine and dried over excess anhydrous MgSO,*. The 

mixture was filtered via gravity through paper and the solvent removed under 

vacuum leaving 3.51 g (88.0% crude yield) of a red glass. The crude mixture 

was chromatographed on silica with 2:3 Et20:hexanes (v/v) and the fractions that 

contained the compound with Rf=0.30 were pooled and brought to dryness. The 

resulting orange powder was the desired compound and proved to be 

spectroscopically pure. 1H-NMR (CDCI3): 7.61 (2H, J=16.0 Hz, alkene H’s); 7.14 

(2H, dd, J1=2.0Hz, J2=8.4Hz, aromatic H’s); 7.08 (2H, d, J=2.0Hz, aromatic H’s); 

6.88 (2H, d, J=8.4Hz, aromatic H’s); 6.50 (2H, d, J=15.6Hz, alkene H’s); 5.82 

(1H, s, methine H); 3.94 (6H, s, methoxy H’s); 3.92 (6H, s, methoxy H’s). 13C- 

NMR (CDCI3): 183.46, 151.25, 149.44, 140.61, 128.27, 122.85, 122.24, 111.33, 

109.94, 101.51, 56.20, 56.12 ppm.
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