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ABSTRACT

MORITA EQUIVALENCE FOR GROUP-THEORETICAL
CATEGORIES

by
Deepak Naidu

University of New Hampshire, May, 2007

We give necessary and sufficient conditions for two pointed categories to be dual
to each other with respect to a module category. Whenever the dual of a pointed
category with respect to a module category is pointed, we give explicit formulas for
the Grothendieck ring and for the associator of the dual. This leads to the definition
of categorical Morita equivalence on the set of all finite groups and on the set of all
pairs (G, w), where G is a finite group and w € H*(G, k*). A group-theoretical and
cohomological interpretation of this relation is given. As an application, we give a
series of concrete examples of pairs of groups that are categorically Morita equivalent
but have non-isomorphic Grothendieck rings. In particular, the representation cate-
gofies of the Drinfeld doubles of the groups in each example are equivalent as braided
tensor categories and hence these groups define the same modular data.

The notion of a nilpotent fusion category, which categorically extends the notion
of a nilpotent group, was introduced by Gelaki and Nikshych. We give sufficient
conditions for a group-theoretical category to be nilpotent.

We classify Lagrangian subcategories of the representation category of a twisted
quantum double D¥(G), where G is a finite group and w is a 3-cocycle on it. This gives

a description of all braided tensor equivalences between twisted quantum doubles of fi-

vi
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nite groups. We also establish a canonical bijection between Lagrangian subcategories
of Rep(D“(G)) and module categories over the category Vecg of twisted G-graded
vector spaces such that the dual fusion category is pointed. As a consequence, we
establish that two group-theoretical fusion categories are weakly Morita equivalent if

and only if their centers are equivalent as braided tensor categories.

Vil
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CHAPTER 1

INTRODUCTION

Fusion categories arise in several areas of mathematics such as representation the-
ory, quantum groups, and operator algebras. Several results concerning the structure
and classification of fusion categories have appeared in literature (see [ENO] and
references therein). There is an important class of fusion categories called group-
theoretical. As the name suggests, these are fusion categories that come from a
group-theoretical datum. One of the reasons for the importance of group-theoretical
categories is that it is not known, at the time of writing, whether there exists a finite-
dimensional Hopf algebra whose representation category is not group theoretical. In
this work we study an equivalence relation called weak Morita equivalence on the class
of group-theoretical categories.

Throughout this work we will work over an algebraically closed field &k of char-
acteristic 0. Unless otherwise stated all cocycles appearing in this work will have
coefficients in the trivial module k*: A right module category over a tensor category
C is a category M together with a functor M x C — M and certain associativity
and unit constraints satisfying some natural axioms (see [O1] and references therein).
The dual of a tensor category C with respect to a module category is the category

Ci = Fune¢(M, M) whose objects are C-module functors from M to itself and mor-
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phisms are natural module transformations. The category C}, is a tensor category
with tensor product being composition of module functors.

A fusion category over k is a k-linear semisimple rigid tensor category with finitely
many isomorphism classes of simple objects and finite-dimensional Hom-spaces such
that the neutral object in simple (see [ENO]). If C is a fusion category and M is a
semisimple indecomposable module category over C, then it is known that the dual
category C}, is a fusion category. The duality of fusion categories is known to be an
equivalence relation [Mul].

A fusion category is said to be pointed if all its simple object are invertible. Every
pointed category is equivalent to a fusion category Vecg whose objects are vector
spaces graded by the finite group G and whose associativity constraint is given by
the 3-cocycle w € Z3(G, k*). Let us denote Vecg := Vec,. A fusion category is called
group-theoretical if it is equivalent to the dual of a pointed category with respect to
some semisimple indecomposable module category.

We use the notion of weak Morita equivalence [Mul] of fusion categories to study
an equivalence relation called categorical Morita equivalence on the set of all finite
groups and on the set of all pairs (G, w), where G is a finite group and w € H3*(G, k*).
Namely, we say that two groups G and G’ (respectively, two pairs (G, w) and (G', w'))
are categorically Morita equivalent if Vece is dual to Vece (respectively, Vecg is
dual to Vecgl,) with respect to some semisimple indecomposable module category.
This equivalence relation extends the notion of isocategorical groups, i.e., groups with

equivalent tensor categories of representations, studied in [Da] and [EG]. Our motiva-
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tion to study categorical Morita equivalence comes from the question about existence
of finite-dimensional semisimple Hopf algebras with non group-theoretical represen-
tation categories asked in [ENO, Question 8.45]. We think that understanding equiv-
alence classes of categorically Morita equivalent groups is a natural step towards
answering this question.

The notion of a nilpotent fusion category, which categorically extends the notion
of a nilpotent group, was introduced in [GN]. We give sufficient conditions for a
group-theoretical category to be nilpotent.

Let G be a finite group and w be a 3-cocycle on G. In [DPR1, DPR2] R. Dijkgraaf,
V. Pasquier, and P. Roche introduced a quasi-triangular quasi-Hopf algebra D*(G).
When w = 1 this quasi-Hopf algebra coincides with the Drinfeld double D(G) of G
and so D¥(G) is often called a twisted quantum double of G. It is well known that the
representation category Rep(D¥(G)) of D¥(G) is a modular category [BK, T] and is
braided equivalent to the center [K] of the fusion category Vec¢.

In [DGNO)J a criterion for a modular category C to be braided equivalent to the
center of a category of the form Vec for some finite group G and w € Z3(G, k*) is
given. Namely, such a braided equivalence exists if and only if C contains a Lagrangian
subcategory, i.e., a maximal isotropic subcategory of dimension \/m More pre-
cisely, Lagrangian subcategories of ‘C parametrize the classes of braided equivalences
between C and centers of pointed categories, see [DGNO, Section 4].

This means that a description of Lagrangian subcategories of Rep(D*(G)) for all

groups G and 3-cocycles w is equivalent to a description of all braided equivalences
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between representation categories of twisted group doubles. Such equivalences for
elementary Abelian and extra special groups were studied in [MN] and [GMN].

We classify Lagrangian subcategories of Rep(D“(G)). In view of the above re-
marks this gives a description of all braided tensor equivalences between twisted
quantum doubles of finite groups. We also establish a canonical bijection between
Lagrangian subcategories of Rep(D“(G)) and module categories over the fusion cate-
gory Vecg such that the dual fusion category is pointed. As a consequence, we obtain
that two group-theoretical fusion categories are weakly Morita equivalent if and only
if their centers are equivalent as braided tensor categories.

The main results of this work are:

(1) Computation of the dual of Vecg with respect to a semisimple indecompos-
able module category when the dual is pointed, including explicit formulas for the
Grothendieck ring and the associated 3-cocycle.

(2) Necessary and sufficient conditions for two pointed categories to be dual to
each other with respect to a module category.

(3) A series of concrete examples of pairs of groups (G1, G2) that are categorically
Morita equivalent but have non-isomorphic Grothendieck rings (and hence, inequiva-
lent representation categories). A consequence of the categorical Morita equivalence
of these groups is that the representation categories Rep(D(G1)) and Rep(D(Gs)) of
their Drinfeld doubles are equivalent as braided tensor categories and so, in particu-

lar, these groups define the same modular data. To the best of our knowledge these
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are first examples of finite groups with this property, cf. a discussion of a finite group
modular data in [CGR].

(4) Sufficient conditions for a group-theoretical category to be nilpotent.

(5) Classification of Lagrangian subcategories of Rep(D*(G)). As a consequence,
we obtain that two group-theoretical fusion categories are weakly Morita equivalent
if and only if their centers are equivalent as braided tensor categories.

Below we give a brief description of the contents of each Chapter.

Chapter 1 is this Introduction.

In Chapter 2, we recall necessary definitions and results from cohomology of groups
and projective representations. We also recall some definition and results on fusion
categories, module categories, duals of fusion categories, graded fusion categories,
nilpotent fusion categories, and modular categories.

[n Chapter 3, we give necessary and sufficient conditions for the dual of a pointed
category with respect to a module category to be pointed. We show that the
Grothendieck ring of the dual of a pointed category with respect to a module category
when the dual is pointed is the group ring of a certain crossed product of groups. We
also find an explicit formula for the 3-cocycle associated to the dual category. We
introduce the notion of categorical Morita equivalence on the set of all finite groups
and on the set of all pairs (G, w), where G is a finite group and w € H3(G, k*). We
give a group-theoretical and cohomological interpretation of this relation. Finally, as
an application we give a series of examples of pairs of groups that are categorically

Morita equivalent but have non-isomorphic Grothendieck rings.
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In Chapter 4, we give sufficient conditions for a group-theoretical category to be
nilpotent.

In the final Chapter, Chapter 5, we classify Lagrangian subcategories of Rep(D“(G)).
As a consequence, we obtain that two group-theoretical categories are weakly Morita
equivalent if and only if their centers are equivalent as braided tensor categories.

All categories considered in this work are assumed to be small. All k-linear abelian
categories considered in this work are assumed to have finite dimensional Hom-spaces
and finite number of isomorphism classes of simple objects. All functors between k-

linear categories are assumed to be additive and k-linear on the space of morphisms.
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CHAPTER 2

PRELIMINARIES

In this Chapter we recall necessary definitions and results from cohomology of
groups and projective representations. We also recall some definitions and results
from fusion categories, module categories, duals of fusion categories, graded fusion

categories, nilpotent fusion categories, and modular categories.

2.1 Cohomblogy of groups and Shapiro’s Lemma

Throughout this section G will denote a finite group. Let M be a left G-module
with action denoted by (g, m) — g>m, for ¢ € G, m € M. We define a cochain
complex C(G, M) = (C™(G, M))p>0 of G with coefficients in M as follows. Let
G" =G x -+ x G (n factors) and C*(G, M) = Fun(G", M) be the set of all
n-cochains. By convention, G°(G, M) = M. A n-cochain f is said to be normalized
if f(g1, 92, --.,9n) = Opr whenever g; = 1¢ for some i € {1, 2,...,n}. All n-cochains
are assumed to be normalized. Let §* : C™(G, M) — C™*1(G, M) be the coboundary

operator given by

(0" f)(g1s- s Gns1) = 910 f(g2,- 01 Gnt1)
+ Z (=1 F(91, - - Gim1s GiGit1r- - Grt1)
=1

+(——1)n+1f(gla ree 7971)7
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for all f € C™(G, M).
If M is a right G-module, we denote the action by (m, g) — m«g, for g € G,

m € M. Also, define §" : C*(G, M) — C"*}(G, M) by

(énf)(gh B 7gn+1) = f(927 v 7gn+1)
+ Z (_1)1f(gla vy 9i-15 9iGit1y - - - )gn+1)
i=1

+(_1)n+1(f(glu s agn) < gn+1)7

for all f € C™(G, M).

Let Z™(G, M) = Ker(d™) be the set of n-cocycles and B*(G, M) = Im(é™~!) be
the space of n-coboundaries. Similarly, let Z"(G, M) = Ker(d") and B"(G, M) =
Im(8"™'). The n-th cohomology group H™(G, M) of G with coefficients in M is the
quotient Z*(G, M)/B"(G, M), (n > 1). Also, let H*(G, M) = Z"(G, M)/B"(G, M).

Let M be a left module over two finite groups K and K’. Any homomorphism

a: K’ — K induces a homomorphism between the cohomology groups:
H"(K, M) — H*(K', M) : W+ w® := w o a*™. (2.1)

Let H be a subgroup of G. Let p : G — H\G be the usual surjection, i.e.,
p(g) := Hg, for all g € G. We will denote p(1g) by 1. For each z € H\G choose a
representative u(z) in Gj i.e., an element u(x) with pu(x) = . In particular, choose
u(1) = lg. The set H\G is a right G-set with the obvious action: z < g := p(u(z)g),

z € H\G and g € G.
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Also, the set {u(z) | z € H\G} is a right G-set: u(z)<ag = u(z<g), v € H\G
and g € G . The elements u(x)g and u(z < g) differ by an element &, , of H, for all
r€ H\Gand g € G :

u()g = ke qu(z < g). (2.2)

The following relation holds:

Ra,g192 = K, g1 82991, 925 (2'3)

for all z € H\G and gy, g2 € G

The abelian group Fun(H\G, k*) of functions from H\G to k* is a left G-module:
(g f)(z) = f(x<ag), z € H\G and g € G . Let us regard k* as a trivial left
H-module. It is easy to see that Fun(H\G, k*) is isomorphic to the coinduced module
Coind$k* = Homp(G, k*). Throughout this work we will identify the coinduced
module Coind%k* with Fun(H\G, k*).

Let C := CoindGk* = Fun(H\G, k*) and K := H\G. The action of G on K
restricts to an action of H on K. Let K¥ denote the set of elements of K that
are stable under the action of H. Note that K¥ forms a group that is isomorphic
to H\Ng(H), where Ng(H) is the normalizer of H in G. Denote by I the group
Hom(H, k*).

By Shapiro’s Lemma there is an isomorphism between H*(G, C) and H*(H, k*)

for each n € N. It is well known that the restriction maps induces this isomorphism.
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We will need the explicit form of the inverse of the restriction map when n = 1, 2.

Lemmas 2.1.1 and 2.1.2 provide these inverse maps.

Lemma 2.1.1. The following map induces an isomorphism between H(H, k*) = H

and HY(G, C):

p1: ZH(H, k) — Z1(G, 0),  (21(p)(9))(x) = pla,g), (2.4)

forall pe Z'(H, k*), g€ G,z € K.

Proof. We will first show that ¢1(p) € Z}(G, C), for all p € Z*(H, C*). We need to

show that ¢1(p) satisfies the equation:

(P1(0)(g1))(=) (pr(p)(92))(x < 91) = (1(p)(9192))(x)

< P(Kw,gl)p("immygz) = p(nz,glgz)7

forall z € K, g1,92 € G.

The 1-cocycle condition on p is:

p(h1)p(h2) = p(hihs).

Put hy = Kz g, and hg = Kgqq,, g, In the above equation and use (2.3) to obtain the

desired equation.

10
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The map ¢, induces a homomorphism:

o1 H'(H, k*) — HYG, C).

Let )1 denote the restriction homomorphism:

b ZNG, C) = ZH(H, k), a(7)(R) = v(R)(D), (2.3)

forall v € ZY(G, C) and h € H. Let 71 denote the induced homomorphism:

P

& 2 HY(G, C) — HM(H, k). (2.6)

It remains to show that the homomorphisms 7 and zz are inverse to each other.

It suffice to show that ¢y o @1 = Idgzypg kx). Pick any p € Z*(H, k*). Then

Ui(p1(p))(h) = (er1(p)(R))(1) = p(k1,n) = p(h), for all h € H. So ¢ropy = Idzi(, kx)

and the Lemma is proved. [

Lemma 2.1.2. The following map induces an isomorphism between H2(H, k*) and

H*(G, C):

L2 ZQ(Ha k™) - ZQ(Gv C), ()91, 92))(z) = M(K’z,glv degl‘w)a (2.7)

for all p € Z?(H, k*), g1, g € G,and z € K.

11
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Proof. We will first show that (i) € Z%(G, C), for all u € Z*(H, k*). We need to

show that ¢(u) satisfies the following equation for all g1, g2, g3 € G and z € K:

(1) (g2s 93))(x <2 g1) (w(B)(g1, 9293))() = (P(1)(9192, g3)) (@) (P (1) (91, g2)) ()

A /’I’(K/ZQQLQQ’ Hx<19192,93) N(ﬁz,gn ’$a3<191,gzgs) = #("5%9192’ 5:649192,93) #("517917 “wdgl,gz)'

The 2-cocycle condition on p is:

M(hz, h3) M(hb h2h3) = H(hlh% hs)#(hb ha),

for all hq, ho, hg € H. Put hy = Ky ), ho = Kyagr,go a0 B3 = Kyag s, g5 1D the above
equation and use (2.3) to obtain the desired equation.
Let us now show that ¢ preserves coboundaries. Let a: H — k* be any function.

Then ¢(d'a) is a coboundary. Indeed, define a function & : G — C by (&(g))(z) =

a(Kzagy, g9)%(Ka, 1)
oKz, g1 Kzagy, g)

a(Kz,q). Now, (ap(éla)(gl, 92))(z) = (510‘)(’%,917 Kzagy,g2) =

a(nx@l, 99 )a(”z, 91 )
O‘(Hr,glgg)

= ((8'@)(gy, 92))(z). So ¢ preserves coboundaries and hence it
induces a map:

71 HY(H, k) — HX(G, C). (2.8)

Let ¢ denote the restriction map:

v Z5G, C) — ZHH, KY),  p(y)(ha, ha) = y(ha, ha)(1), (29)

12
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for all v € Z*(G, C) and hy, hy € H. Let ¥ denote the induced map:

¥ H¥G, C) — H(H, k*). (2.10)

It remains to show that the maps ¢ and ¢ are inverse to each other. It suffice
to show that ¢ o ¢ = Idgay kx). Pick any p € Z2(H, k*). Then ¢(¢(p))(hy, he) =
() (b, Re))(1) = K1 hys Krans,he) = plha, he), for all by, hy € H. So o =

Idz g, k<) and the Lemma is proved. [ |

There is a right action of K# on C"(G, C):

(v, ) ="y, (g1, 90) () = (91, g0) (Pu()uly)),

for all y € C(G, C), g1,..., 90 €G, z € K¥ and y € K.
It is routine to check that the above action is independent of the function v : K — G.
This induces a right action of K on Z*(G, C) and H™(G, C). If H is normal in G,

then K® = K and
g1y 9n) (W) = (915, gn)(2Y),

forally e C*(G, C), g1,...,g. € G,and z, y € K.

If H is normal in (G, we can also define a right action of G on C*(G, C):

g1, 9u) (@) = (91, - -+ 9n) (P(9)Y), (2.11)

for aHf)/G Cn(Ga C)vgagl>"'79n€G>yEK'

13
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Also, if H is normal in G, then Z"(H, k™) is a right G-module:

(y ) = 1% po(hay .o ha) = plghig™ ..., ghag ™),

for pe Z*(H, k%), ge Gand hy,... h, € H.

If H is abelian and normal in G, then Z"(H, k*) becomes a right K-module:

(s @) = ),

for p € Z™(H, k*) and € K. This induces an action of K on H*(H, k*).

Lemma 2.1.3. If H is abelian and normal in G, then the map ¢, defined in (2.5) is

a K-module map.

Proof. Pick any v € Z1(G, C)and z € K. We have ¥, (*v)(h) = (*v)(h)(1) = y(h)(z)
and ($1(1)7) (k) = r()((@)hu(@)™) = y(u(@)hu(z))(1). By Lemma 2.1.1 we

know that v = (6'a) ¢1(p), for some o € C and p € H. We have,

Y(h)(z) = (") pr(p) (h) ()
alx <ah)

= O[(CU) p(ﬁm,h)

= p(u(z)hu(z)™)

and

2
——~
e
&
S
>
£
B
i
_
Il
=
(%Y
,
=
S
S
&
&
>
£
B
A
g
-
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It follows that ¢4 is K-linear and the Lemma is proved. |

Lemma 2.1.4. If H is abelian and normal in G, then the map ¢ defined in (2.8) is

a K-module map.

Proof. Pick any p € Z%(H, k*). It suffices to show that 1) (*p(u)) is cohomologous to
P(p(p®)) = p®in H2(H, k*), for all z € K. We will actually show that ¢ (*¢(p)) =

p®, for all x € K. We have,

() (ha, ha) = () (s, h)(1)
= o(p)(h1, ho)(x)
= (K, h1» Kadhy, ho)
= 1(Ka hys Ko hy)
= p(u(@)hu(@)™, w(@)hyu(z)™)

= 7 (h1, ha)

for all hy, hg € H and ¢ € K. So ¢¥(*¢(p)) = ©*, for all x € K and the Lemma is

proved. [

Pick any 2 € Z2(G, Coind$k*). The 2-cocycles 1 and ¢(¢(1)) are cohomologous.

So, there exists n € C(G, Coind$k*) which satisfies:

= (8'n) o). (2.12)

Lemma 2.1.5. The restriction res(n) of the map 7 is an element of H.

15
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Proof. Equation (2.12) means that

(g1, g2)() = (') (g1, g2)(2) (1)) (g1, g2) ()

)
_ n(g2)(«) 1(g1) (=)
n(g192)(z)

/J‘(wagl: Hz<‘91»92)(1)7
for all x € K, and ¢1, g2 € G.

Put z =1, g1 = hy, go = ho € H, and use u(1l) = 1¢ to get

n(h1)(1) n(he)(1) = n(hyho)(1),
ie., res(n) € H and the Lemma is proved. ]

2.2 The Schur multiplier of an abelian group.
Let H be a finite abelian group. Let A2H denote the abelian group of alternating

bicharacters on H, i.e.,

B(hth, h) == B(hl,h>B(hg, h),
A’H:=Q B:HxH—k*| B(h, hihy) = B(h, h1)B(h, hy), and
B(h, h) =1, for all h,hy,hy € H

Note 2.2.1. Let B € A2H. The condition B(h, h) = 1, for all h € H implies that
B(hy, ha)B(hg, hy) = 1, for all hy,hy € H. Indeed, we have B(hy, ho)B(hs, h1) =
B(hy, hy) B(hy, h1)B(hy, h1)B(ha, hy) = B(h1, hoh1) B(hy, hihy) = B(hihe, hihy) =

1, for all Ay, he € H.

16
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Define a homomorphism alt : Z2(H, k*) — A*H : p — alt(w), by

Fb(h% hl)

alt() (b, hz) i= T2,

hi,hs € H.

Lemma 2.2.2. The homomorphism alt induces an isomorphism between H?(H, k*)

and A2H.

Proof. 1t is evident that alt(B%*(H, k*)) = {1}. So alt induces a homomorphism

which, by abuse of notation, we also denote by alt:
alt : H*(H, k*) — A*H : i — alt(p). (2.13)

The homomorphism alt is injective. Indeed, let p € Z%(H, k*) and suppose
alt(p) = 1. So p is symmetric. Recall that there is a bijective correspondence between
symmetric classes in H2(H, k*) and equivalences classes of abelian central extensions
of k* by H. Since p is symmetric, the central extension 1 — k* — E, — H — 1
that p determines is abelian. Since k* is algebraically closed, it is a divisible group.
So every abelian extension of £* by H splits. So, in particular, the previous exact
sequence splits. Therefore, p € B2(H, k*). It follows that alt is injective.

To see that alt is surjective, pick any B € A?H. Since H is a finite abelian group,
we can write H = Z/mZ ® --- & Z/mZ. Let ¢; be a generator of Z/n,Z (written
multiplicatively), ¢ = 1,2,--+,1. Let ¢; : Z/mZ «— H, i = 1,2,--- |l be the usual

inclusions. Define A\,s := B(p,(c,), ¢s(cs)), 8 € {1,2,---,1}. Since B is alternating,

17
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the relation A.sAsr = 1 holds for all 7, s € {1,2,---,1}. Also, note that A\, =1, for

all € {1,2,--+,1}. We have

B(@'Ir:1cfr7 &' _ic?) = B(ILL_ . (cP7), Iy s (c®))
= le:lnfsle(‘Pr(cr)pTv 903(08)%)
= I T AP

— 7 ! (Prgs—psqr)
- Hr:lns:1,s<r)\rsr A

In the last equality used the relations A\, = 1 and A\ A, = 1, 7,8 € {1,2,---,{}.

Now, define a map p : H x H — k* by p(@l_,cr, &L_;c%) := ITL_, 1T

)\"PSQT
7 s=1,8<r s g

It is evident that u is a bicharacter on H. So pu € Z%(H, k*). It is also evident that

alt(p) = B and the Lemma is proved. |

Remark 2.2.3. Suppose H is a normal abelian subgroup of a finite group G. The
abelian group A?H is a right G-module:
(B, g) — B9, B9(hy, hy) := B(gh1g™?, ghag™), g € G, hy,hy € H. 1t is evident that

the map alt is G-linear. So H*(H, k*) and A?H are isomorphic as G-modules.

2.3 Projective representations

Definition 2.3.1. Let V be a finite-dimensional vector space over k. A mapping
p:G— GL(V) is called a projective representation of the finite group G with
2-cocycle o : GxG — k™ if it satisfies p(1g) = idy, and p(g1)p(g2) = a(g1, 92) p(9192),

for all 91,92 € G.

18
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Remark 2.3.2. (i) There are obvious notions of irreducible projective representations
and direct sum of projective representations.

(i) Let p1 and p, be projective representations of a finite group G with 2-cocycles
a and 3, respectively. Then their tensor product is a projective representation of G
with 2-cocycle af.

(iii) Let p be projective representation of a finite group G with 2-cocycles . Then
there is a notion of a dual representation p* which is a projective representation of G

with 2-cocycle o™,

Lemma 2.3.3. Let p: G — GL(V) be a projective representation with 2-cocycle a.
Then V ® V* becomes a G-module and its decomposition into irreducible modules of

G contains a copy of the trivial module.

Proof. That V ® V* is a G-module follows from the above remarks. Define

g T = p(g)oT op(g)™?, for all g€ G, and T € End(V). With this action, End(V)
becomes a G-module. It can be shown that the usual vector space isomorphism
between V @ V* and End(V) is G-linear. Now, {Aidy | A € k} is a submodule of

End(V) on which G acts trivially and the Lemma is proved. |

Let p : G — GL(V) be a projective representation with 2-cocycle a. If we
identify GL(V) with GL(n, k) where n = dim,(V), then the resulting map is called
a projective matrix representation. In this work, by projective representation we will

always mean a projective matrix representation. The dual representation p* of a
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projective representation p of G is defined by p*(g) := (p(g)?) ™!, for all g € G, where

the superscript T stands for the transpose of a matrix.

Definition 2.3.4. Two projective representations p; : G — GL(n, k) and
p2: G — GL(n, k) with 2-cocycle « are isomorphic if there is a matrix A € GL(n, k)

such that pa(g) = Api(g)A~?, for all g € G.

2.4 Abelian categories

References for this Section are [BK] and [Mac].

Definition 2.4.1. An additive category C is a category satisfying the following ax-
ioms.

(A1) Home(X, Y) is an abelian group, for all X, Y € Obj(C)

(A2) There exists a zero object 0 € C: Home(X, 0) = Home(0, X) = {0}, for all
X € Obj(C)

(A3) Finite direct sums exist, i.e., for all Xy, Xo € Obj(C) there exists ¥ € Obj(C)
and morphisms 41 : X1 —= Y, 6: Xo =Y, p1: Y — Xy, and py : Y — X, such thatv

p1ot = idx,, pe 0 tg = idx,, and 4y o p; + i 0 po = idy.

Example 2.4.2. Let R be aring and let C := category of left R-modules. Then C is

an additive category.

Definition 2.4.3. Let F' : C — D be a functor between additive categories. We say
that F'is additive if Home(X, Y) LN Homp(F(X), F(Y)) is a group homomorphism,

for all X,Y € Obj(C).
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Remark 2.4.4. Let F : C — D be an additive functor. Then F(X) & F(Y) =

F(X&Y), for all X,Y € Obj(C).

Definition 2.4.5. Let F be a field. An additive category C is F-linear if for all
X,Y,Z € Obj(C), Home(X, Y) is a F-vector space and the composition Home (X, Y)x

Home(Y, Z) — Home (X, Z) is a F-bilinear map.

Definition 2.4.6. Let F : C — D be a functor between F-linear categories. We
say that I is F-linear if Home(X, Y) L Homp(F(X), F(Y)) is F-linear, for all

X,Y € Obj(C).

Definition 2.4.7. Let C be an additive category. Let f: X — Y be a morphism in
C.

The kernel of f is an object K € Obj(C) together with a morphism 7: K — X
such that f o4 = 0 and for all morphisms 7' : K’ — X such that fo¢ = 0 there is a
unique morphism k : K/ — K such that ¢ =iok.

The cokernel of f is an object C' € Obj(C) together with a morphism j: Y — C
such that j o f = 0 and for all morphisms j': Y — C’ such that j' o f = 0 there is a

unique morphism k : C' — C’ such that j' = ko j.

Remark 2.4.8. If kernel exists, it is unique up to a unique isomorphism. The same

Is true for cokernel.

Example 2.4.9. Let C := the category of abelian groups. Let f: X — Y be a

morphism in C. Then, coker(f) = Y/Im(f).
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Definition 2.4.10. An abelian category‘is an additive category C in which every
morphism f: X — Y admits the following decomposition K LEx L5115y s
such that

(M) joi=1,

(i) K 5 X = ker(f), Y <= C = coker(f) (kernel and cokernel exist), and

(iii) I = coker(k) = ker(c).

Example 2.4.11. Let R be a ring and let C := category of left R-modules. Then C

is an abelian category.

Definition 2.4.12. Let C an abelian category and let X € Obj(C). The object X is
said to be simple if it is non-zero and has no subobjects other than the zero object
and X. The object X is said to be semisimple if it is isomorphic to a finite direct sum
of simple objects. The abelian category C is said to be semisimple if every object in

C is semisimple.

Remark 2.4.13. Let I be an algebraically closed field. Let C be a F-linear abelian
category. Schur’s Lemma holds for C, i.e., for any two simple objects X and Y of C,
the following statements hold.

(i) For any f € Home(X, Y), either f =0 or f is an isomorphism.

(il) Home (X, X) =F - idx.

(iii) Home (X, V) = F, it X 2 Y and Home(X, V) = {0}, if X Y.

Proof: The first statement follows from the fact that the kernel and cokernel of a

morphism define subobjects. For the second statement, pick any f € Hom¢{(X, X).
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Then f defines a linear transformation: Home(X, X) — Home(X, X) : g+— foug.
Since F is algebraically closed, there exists a scalar A € F and a nonzero morphism
g € Home(X, X) such that f og = Ag. Note that by (i), g is an isomorphism.
We have fog = Ag = (Mdx og) & f = AMdx. So Home(X, X) = F-idy. For
the last statement, suppose X = Y and fix an isomorphism [ : X = Y. Pick any
h € Hom¢(X,Y). Then, [™' o h € Home(X, X). By (ii), 7' o h = Midy, for some

A €TF. So h= Al and it follows that Hom¢(X, V) = F.

2.5 Fusion categories

References for this Section are [BK], [ENO], and [Mac].

Definition 2.5.1. A tensor category (C,®,1,, A, p) is a category C along with a

tensor product bifunctor ® : C x C — C, the unit object 1, and natural isomorphisms

a:®(® x id) = ®(id x ®)
A @1 xid) S id

p:®(idx1)>id

called associativity constraint and right and left unit constraints, respectively, satis-

fying the following commutative diagrams called pentagon and triangle axioms.
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(X®Y)®2)®

(XY ®2) (XY (ZW)

aX,Y®Z,Wl

Xo((Yeoz)oW)

laX,Y,Z®W

XY ®(ZoW)

idx®ay,z,w

@x,1,Y

(X®1)Y X® (1Y)
XY

commute for all objects X,Y,Z, W in C.

Note 2.5.2. In the previous definition, if C is an abelian tensor category, then we will
additionally require that ® is biadditive on the space of morphisms. If C a F-linear
tensor category for some field F, then we additionally require that ® is F-bilinear on

the space of morphisms.

Definition 2.5.3. Let ¢ = (C,®,1,a,\,p) and C' = (C',®,1',a, A, p) be tensor
categories. A tensor functor from C to C’' is a functor F' : C — (' together with a
natural isomorphism

p:R(FxF)S F®

and an isomorphisrh v: 1'% F(1) such that the diagrams

AF(X),F(Y),F(Z)

(F(X) @ F(Y))® F(W) F(X)® (F(Y)® F(2))

wx,y®idp(z) l lidp(x)&m’,z
F(X®Y)® F(Z) FX)® F(Y ® Z)
wxgmzl l‘PX,YobW
Flax,y,z)

FXQY)® 2) FIX® (Y ® 2))
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AF(X)

1'® F(X) F(X)
v®idp(x) F(Ax)
F(1) @ F(X) —= F(l1®X)
and
FX)®1 e F(X)
idp(x)@v ]F(Px)
F(X)® F(1) —22 F(X®1)

commute for all objects X,Y, Z in C.

Definition 2.5.4. Let C = (C,®,1,a, A, p) be a tensor category and let X be an

object in C. A right dual to X is an object X* such that there exist morphisms

ex X' ®X —1,

Cx 1—-X & X*,
called evaluation and coevaluation morphisms, such that the following compositions

a7 e . " N
X 22X 1@ x XX (v g X )@ X SEXY, e (X* e X) XEX, x g1 £, X

P i axh » e id x* x
X* D0 xr 1 B8,y (X @ X*) XX (xr g X) @ X* KB g g xr Ax, xr

are equal to the identity isomorphisms idyx and idx«, respectively.

A left dual to X is an object *X such that there exist morphisms

dx: X®*X —1,

dx:1-*X®X,
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such that the following compositions

-1

p;l idx®@c’ " Cx XX * e, @ldx
X=Xl —=X(X®X) (X" X)g X ——

10X 25 X

-1

* >"“‘< *
X—1"X

cly @ids x
ey

(X ®X)® X ZEEX oy o (X @t X) LXEN gy Lx ny

are equal to the identity isomorphisms idy and id«y respectively.

Definition 2.5.5. A tensor category C is called rigid if every object in C has right

and left duals.

Example 2.5.6. In the tensor category Vec of finite-dimensional vector spaces over
a fleld F every object V has a (left or right) dual V* = Homg(V, F). The evaluation
and coevaluation morphisms are: evy : V* @V - F: f®v — f(v) and

coevy :F—-V@V*:iam—a), vu® f, where {v;}, {f*} are dual bases.

Definition 2.5.7. A fusion category over an algebraically closed field F is a F-linear
semisimple rigid tensor category with finitely many isomorphism classes of simple

objects and finite-dimensional Hom-spaces such that the neutral object in simple.

Remark 2.5.8. A fusion category can be thought of as the “categorification” of the

notion of a ring.

Example 2.5.9. Let F be an algebraically closed field.
(i) The category Vec of finite dimensional vector spaces over F is a fusion category.
(ii) Let G be a finite group such that |G| is invertible in F. Then the category Rep(G)

of finite-dimensional representations over F of G is a fusion category.
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(iii) More generally, let H be a finite-dimensional semisimple Hopf algebra over F.
Then the category Rep(H) of finite-dimensional representations over F of H is a fusion
category. Tensor products and dual objects are defined using the comultiplication and

antipode, respectively.

Definition 2.5.10. An object X in a fusion category is said to be invertible if the
evaluation and coevaluation morphisms ex : X*® X — landcx : 1 — X ® X* are

isomorphisms.

Definition 2.5.11. A fusion category is said to be pointed if all its simple objects

are invertible.

Example 2.5.12. Let G be a finite group and w € Z3(G, k*). Let Vecd be the
category of finite-dimensional vector spaces over k graded by the group G with mor-
phisms being linear transformations that respect the grading. Then Vecg becomes a

pointed category with tensor product given by:

(V ® W)g = @I,yEGZIy:gV;T ®k Wy,

for all V,W & Obj(Vecy:), and associativity constraint given by:

(Ug1 & ng) Q@ Wy — Uy ® (ng ® Wgs) F(u®v) @ w w(g;[, g2, 93) (u® (v ®w)).

A category is called skeletal if all isomorphic objects in the category are actually

equal. Every category is equivalent to a skeletal category. It is convenient to work
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with a skeletal category V¢ equivalent to Vecg. Let Vi be the fusion category with
simple objects g, g € (G. The tensor product is defined by g; ® go = 9192, and the
associativity isomorphisms are w(g1, 92, 93)idg g.95- The unit object is 1¢. The left
and right unit isomorphisms are w(lg, lg, g)id, and w(g, 1, 1¢)id,, respectively. The
previous statement follows from the triangle axiom for tensor categories. Since we
can assume that all cocycles are normalized, the left and right unit isomorphisms are
the identity morphisms. The left and right dual objects of g are g* = *g = g~1. If
G’ is another group and o' € Z3(G', k), then V% = V¥ if and only if there is an

isomorphism a : G — G’ such that w' and w* are cohomologous.

Remark 2.5.13. Every pointed category is equivalent to Vecg for some finite group
G and 3-cocycle w € Z3(G, k*).

Sketch of proof: Let C = (C,®,1,a, A, p) be a pointed category. A skeleton of a
category D is any full subcategory D such that each object of D is isomorphic (in D)
to exactly one object of D. Every category is equivalent to any of its skeletons. Let
us constructs a skeleton C of C: choose one object ‘from each isomorphism class of
objects in C. Let Obj(C) be the set of all objects chosen above. For any X € Obj(C),
by X we mean the object in C that represents the object X. Define Homz(X, V) :=
Home (X, Y). Define tensor product ®inC: X@Y := X ® Y, for all X, Y € Obj (©).
Fix isomorphisms (X, Y): X @YX ®Y in C, for all X, Y € Obj(C). We now
define associativity constraint @ in C. For any X, Y, Z € Obj(C) define @x v z to be

the following composition.
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B(XoY, Z) B(X,Y)®idz ax,v,z
—_—— — ey —t

(XoY)oZ (XoY)®Z (X®Y)®Z X® (Y ®2)

(idx®8(Y, Z))* BX, Yoz) !
—_— —_—

X® (Y oZ) X6 (Y o2).

Left and right unit constraints are defined in the obvious way. It can be shown that
the necessary axioms (pentagon, triangle) are satisfied. Then C is a fusion category
that is equivalent to C. Since C is pointed, the simple objects of C form a finite group
G and the associativity constraint @ in D gives rise to a 3-cocycle w € Z3(G, k).
The cohomology class of this 3-cocycle does not depend on the choices made in the

construction of C. Then C = C & Vecy, as fusion categories.

Definition 2.5.14. The Grothendieck ring Ko(C) of a fusion category C is the free
Z-module generated by the isomorphism classes of simple objects of C with the mul-

tiplication coming from the tensor product in C.

Remark 2.5.15. The Grothendieck ring of a fusion category is a based unital ring

(see [O1)).

Example 2.5.16. The Grothendieck ring of the fusion category Vecg, where G is a

finite group and w is a 3-cocycle on G, is isomorphic to the group ring Z|G].

Definition 2.5.17. Let C be a fusion category. Let Ko(C) be the Grothendieck
ring of C. For any object X € Obj(C), define the Frobenius-Perron dimension of
X, FPdim(X), to be the largest positive eigenvalue (which exists by the Frobenius-
Perron theorem, see [Gal) of the matrix [X] of multiplication by X in Ko(C), where

X is the image of X in Ko(C). The Frobenius-Perron dimension of C, FPdim(C), is

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the sum of squares of the Frobenius-Perron dimension of the objects in any complete

set of representatives of simple objects of C.

Example 2.5.18. Consider the fusion category Rep(H), where H is a semisimple
finite-dimensional Hopf algebra over an algebraically closed field F. Then FPdim(V) =

dimp(V'), for all V' € Obj(Rep(H)).

2.6 Module categories
A module category over a tensor category can be thought of as the “categorifica-

tion” of the notion of a module over a ring. Recall some definitions from [O1]:

Definition 2.6.1. A right module category over a tensor category (C, ®, l¢, a, A, p)
is a category M together with a bifunctor ® : M xC — M and functorial associativity
and unit isomorphisms: upy xy M@ (X QYY) > (MX)QY, iy M®1lc - M

for all X,Y € Obj(C), M € Obj(M) such that the diagrams

RX®Y)® Z) (2.14)
Mo XY ®2) M@XRY)RZ
l#M,X,Y@Z HM,X,Y@ile
KM®X,Y,Z

MeX)® (Y ® Z)

(MeX)QY)® Z

MM, 10,Y

M® (1c & Y) (M X 1c) QY (2.15)

W:W

MY
commute for all M € Obj(M), X,Y,Z € Obj(C).
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Note 2.6.2. In the previous definition, if C is an abelian tensor category, then we will
additionally require M to be an abelian category and ® to be additive on the space
of morphisms. If C is a F-linear category for some field F, then we will additionally

require M to be a F-linear category and ® to be F-bilinear on the space of morphisms.

Definition 2.6.3. Let (M, p!,7!) and (My, p?, 72) be two right module categories
over a tensor category C. A module functor from M, to Mj is a functor F': M; —
M together with functorial isomorphisms va, x : F(M ® X) — F(M) ® X for all

X € Obj(C), M € Obj(M,) such that the diagrams

FIM®(X®Y)) (2.16)

F(Me®X)QY) FIM)®(X®Y)

FIM®X)QY

2
“F(M),X,Yl

(FIM) 2 X)®Y

a1, x Qidy

F(M®1¢)

F(M)®1c
commute for all M € Obj(M;), X,Y € Obj(C).

F(M) (2.17)

Two module categories M; and My over C are equivalent if there exists a module
functor from M; to My which is an equivalence of categories. For two module
categories My and M over a tensor category C their direct sum is the category M@
My with the obvious module category structure. A module category is indecomposable

if it is not equivalent to a direct sum of two non-trivial module categories.
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Definition 2.6.4. Let M; and My be two right module categories over a tensor
category C. Let (F', +') and (F?, 94?) be module functors from M; to M, A
natural module transformation from (F*, v*) to (F?, 4*%) is a natural transformation

n: F' — F? such that the square

MMeX

FY{M®X)— F*(M® X) (2.18)
'ﬁw,xl lvﬂ,x

1 2
FY (M) @ X —> F}(M) ® X

commutes for all M € Obj(M), X € Obj(C).

Example 2.6.5. Let us recall a description of semisimple indecomposable module
categories over V& (the skeletal fusion category defined in Example 2.5.12) given in
[02]. Let M be a semisimple indecomposable right module category over V¢ with
module category structure p. Without loss of generality we may assume that M is
skeletal. The set of simple objects of M is a transitive right G-set and hence can be
identified with the set of right cosets H\G for some subgroup H of G. So the set of
all simple objects of M, Irr(M) = H\G. All the isomorphisms fi, 4, 4, = € H\G,

g1, g2 € G are given by scalars. So we can regard u as an element of C?(G, Coind%k*):

M(gh 92)(37) = Heog1, 925 TE H\G7 g1, 92 € G.

We may assume that the 2-cochain g is normalized. Since the unit constraint in Vg

is trivial, the commutativity of Triangle 2.15 implies that the unit constraint in M
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is trivial. Let us regard w as an element of Z3(G, Coind§k*) C C3(G, CoindGk™)
by treating w(gy, g, g3) as a constant function on H\G, for all gy, g2, 95 € G. The

commutativity of the Pentagon 2.14 implies that
Cpu=w (2.19)
ie.,

1(g2, gs)(T < g1) 1(9192, 9s)(2) ™" (g1, g293)(x) w(g1, g2)(z) ™" = w(g1, g2, g3),
(2.20)
for all g1,99,93 € G,z € H\G.

The previous equation, in particular, means that w restricted to H x H x H
represents the trivial class in H3(H, k*). So semisimple indecomposable right module
categories over V¢ are given by pairs (H, p), where H is a subgroup of G such
that w|gxmxm is cohomologically trivial and g € C?(G, Coind%k*) is a 2-cochain
satisfying 62 = w, where w is regarded as an element of Z3(G, Coind$k*).

Let H be a subgroup of G such that w|yxmxm is cohomologically trivial. Let
Ay, = {p € C*G, Coind5k*) | 6*u = w}. Two elements in Ay, give rise to
equivalent module categories if they differ by some element in B%(G, Coind$k*); we
will say that such elements are equivalent. Let KHM denote the equivalence classes of
Ag . There is a (in general non-canonical) bijection between Ay, and H2(H, k*).

Note that Ay 1 = H?(G, CoindGk*) = H*(H, k).
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2.7 The dual category
Let C be a tensor category and let M be a right module category over C. The
notion of the dual of C with respect to M is analogous to the notion of the dual of

a ring R with respect to an R-module M, which is defined to be the endomorphism

ring Endg(M).

Definition 2.7.1. The dual category of C with respect to M is the category C}, :=
Fune(M, M) whose objects are C-module functors from M to itself and morphisms

are natural module transformations.

The category C}, is a tensor category with tensor product being composition
of module functors. Let (,%17 FY, (v%, F*) € 0bj(C4,), where 4, 4 represent the
module functor structure on the functors F! and F?, respectively. Then, (7!, F!) ®
(7%, F?) = (v, F' o F?), where  is defined by: ya,x = Ypa(up), x © I (Vir, x) for
al M e M, X € C. Let n: (v}, F') — (7%, F?) and 7/ : (¥°, F®) — (¥*, F*) be
morphisms in C}y, i.e., natural module transformations. Then their tensor product
n®n' is defined by: (n®@7')(M) := npaary © F*(n)). Denote by (1, idy) the obvious

unit object.

Remark 2.7.2. It is known that if C is a fusion category and M is a semisimple

indecomposable module category over C, then C}, is a fusion category. In this case,

it is known that FPdim(C) = FPdim(C},) (see [ENO]).
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Definition 2.7.3. Two fusion categories C and D are said to be weakly Morita equiv-
alent if there exists an indecomposable semisimple right module category M over C

such that the categories C}, and D are equivalent as fusion categories.

Remark 2.7.4. It was shown by Miger that the above relation is indeed an equiva-

lence relation.

Definition 2.7.5. A fusion category C is said to be group theoretical if it is weakly

Morita equivalent to a pointed category.

Remark 2.7.6. A fusion category is group-theoretical if and only if it is equivalent
to the fusion category (Vec&)y, for some finite group G and w € Z*(G, k*) and
some semisimple indecomposable module category M over Vecg. A classification of
semisimple indecomposable module categories over Vecg: was given in Example 2.6.5.
A finite-dimensional semisimple Hopf algebra H is said to be group-theoretical if its
representation category Rep(H) is group-theoretical. It is not known to the author,
at the time of writing, if there exists a finite-dimensional semisimple Hopf algebra

that is not group-theoretical.

2.8 Graded and nilpotent fusion categories
The following is taken from [GNJ.

Let (R, B) denote a based ring R with basis B and let C be a fusion category.
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Definition 2.8.1. (R, B) is said to be graded by a finite group G if there is a partition
B = Uyee By, such that R = ©4ecq R,, where R, is a Z-submodule of R generated by

By and Ry, Ry, C Rgyg,, B = Ry-1, for all g,g1,92 € G.

Definition 2.8.2. C is said to be graded by a finite group G if C decomposes into a
direct sum of full abelian subcategories C = @4eq €, such that €y # 0, C; = Cy-1 and

the tensor product maps Cg, % Cy, to Cy,q,, for all g, g1, 92 € G.

Let R,q denote the based subring of R generated by all basic elements of R con-
tained in X X*, X € B. Let R® .= R, R = R4, and R™ := (R®™Y),,, for every
positive integer n. Similarly, let C,q denote the full tensor subcategory of C generated
by all simple subobjects of X ® X*, X simple object of C. Let C(® := C, CV) := C,q,

and C™ = (Ct»~1),, for every positive integer n.

Definition 2.8.3. R is said to be nilpotent if R™ = Z1, for some n. The smallest n

for which this happens is called the nilpotency class of R.

Definition 2.8.4. C is said to be nilpotent if C™ = Vec, for some n. The smallest n

for which this happens is called the nilpotency class of C.

Note 2.8.5. Note that a fusion category is nilpotent if and only if its Grothendieck

ring is nilpotent.

Example 2.8.6. (1) The fusion category Vecg, where G is a finite group and w is a
4
3-cocycle on G, is nilpotent. Its nilpotency class is equal to 1.

(2) Let G be a finite group and C := Rep(G). Then C,q = Rep(G/Z(G)), where Z(G)
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is the center of G. Furthermore, C is nilpotent if and only if G is nilpotent.
(3) The Tambara-Yamagami categories [TY] are nilpotent with nilpotency class equal

to 2.

2.9 Braided tensor categories, ribbon categories, and modu-
lar categories

Definition 2.9.1. A braided tensor category C is a tensor category (C,®,1,a,\, p)

equipped with a natural isomorphism called braiding: ¢ : ® — Q7 (where 7: CxC —

CxC:(X,Y)— (Y, X) is the flip functor) satisfying the following commutative

diagrams called hezagon aziom:

IX,Y®Z
e

® (Y ®Z) YozZ)oX

X .
Z

)
Y ®(Z®X)

m WV

YoX)9Z 2Ly ((X®Z)

(XeY)®

IXQY,Z

(XQY)®Z)—=Z3(X®Y)

~1 —1

XY ®Z) (ZeX)®Y
idx@o‘y}z ol %
XQUZoY) 25 (XQZ) QY

for all objects X,Y, Z in C.

Definition 2.9.2. A braided tensor category C with braiding o is called symmetric

if oy x ooxy = idxgx, for all objects X and Y in C.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 2.9.3. A tensor functor (F, ¢, v) from a braided tensor category C (with
braiding o) to a braided tensor category C' (with braiding o¢') is braided, if for any

pair X,Y of objects in C, the square

PxY

F(X)® F(V) 2 F(X @ Y)
U/F(X),F(Y)L lF(UX,Y)

F(Y)® F(X) 5 F(Y ® X)

Y, X

commutes.

Definition 2.9.4. Let C be a tensor category with associativity constraint «. The
center Z(C) of C is the category whose objects are pairs (V, o_y ), where V € Obj(C)
and o_y is a family of natural isomorphisms ox v : X @ V = V ® X defined for all

objects X € Obj(C) such that for all X, Y € Obj(C) the following diagram commutes.

(XY)eV
XY ov) Ve (XeY)
idx®0’y,vl la\—/,lx,y
X@VaY) 2  (XeV)eY 2 v o x)gyY

A morphism from (V, o_v) to (W, o_w) is a morpshism f : V — W in C such

that for each X € Obj(C) we have (f ® idx)ox,v = oxw(idx ® f).

Remark 2.9.5. The center Z(C) of a tensor category C has a canonical structure of

a braided tensor category.
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Definition 2.9.6. Let C = (C,®,1,a, A, p) be a rigid tensor category. For any

morphism f € Home(X, Y), the dualof f is a morphism f* in Home(Y™*, X*) defined

-1

idy* ®cx idy«@(f®id x* Xy * y,x*

-1
by: f* =Y+ 25 vrp1 V*@(X®X*) Ly @Y @X*)
YV*®QY)® X* @ 1@ Xt 2 X*, where e and ¢ are the evaluation and

coevaluation morphisms, respectively.

Definition 2.9.7. A rigid braided tensor category C (with braiding o) is said to
be ribbon if it is equipped with a natural isomorphism called twist: 8 : ide — ide,
satisfying 9X®y —=0yxX O0xy© (QX (X)ey), 91 = idl, and 0}(* = (9}()*, for all X,Y S

Obj(C).

Definition 2.9.8. Let C be a F-linear ribbon category with braiding o, twist 6,
and neutral object 1 such that Hom¢(1,1) = F. For any endomorphism f €

(0X0f)®idx* X ® X* nyx*

Home(X, X), define its trace, tr(f) == 1 =5 X @ X*
X*®X %51 eF = Home(l, 1), where e and c are the evaluation and coevaluation

morphisms, respectively. For any object X € Obj(C), the value ¢r(idx) is called the

dimension of X and denoted d(X).

Remark 2.9.9. In the previous definition, the identification of Home(1, 1) with F

is by the isomorphism F = Home(1, 1) : A+ A -idy.

Definition 2.9.10. A ribbon fusion category C with isomorphism classes of simple
objects enumerated as {X; = 1, Xs,- -+, X,,} is said to be modular if the S-matriz

with entries \S; ; := tr(ox; x, © 0x,,x,) is invertible.
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Remark 2.9.11. The name “modular” comes from the fact that modular categories

give rise to projective representations of the modular group SL(2, Z).

Example 2.9.12. Let G be a finite group. Its group algebra k[G] over k is a Hopf

algebra with k-basis {z | z € G} and

multiplication TRy — Ty, xz,y € G,
unit lg,
comultiplication Alr) =z R, z € G,
counit e(z) = 1, z € G,
antipode y(z) =27} z €G.

The Hopf algebra dual to k[G] is isomorphic to the function algebra F(G) of the

group G. It has k-basis {0, | ¢ € G} where

1 for g = x,

3g(@) = b9z =
0 for g # .

It has
multiplication dg0n = 0g.n0g, g,he G,

unit 1= Z g,

geG
comultiplication A(dy) = Z dg, ® dg,, g€ G,
9192=g
counit €(dg) = dg.15+ g€ G,
antipode v(8g) = 041 z,9 € G.
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As a vector space the Drinfeld double D(G) of G is F(G) ®y k|G]. D(G) is a Hopf

algebra with

multiplication (0g @ 2)(0p ®Y) = 0y zna-1(0g @ Y), z,9,9,h € G,
unit 1= §,®]1g,
geG
comultiplication A(d, ® ) = Z (0g, ® ) ® (092 ® ) z,9 €G,
g192=g
counit €6y ® ) = 0g,14, z,9 € G,
antipode V(0 ® T) = §p-1-1, @2 z,y €G.

The category Rep(D(G)) of finite-dimensional representations of D(G) as a k-algebra
is a modular category. A description of simple object and explicit formulas for the

S-matrix and twist of Rep(D((G)) are mentioned in Chapter 5.

Remark 2.9.13. It is known that for any finite group G, the categories Z(Vecg)
and Rep(D(G)) are equivalent as braided tensor categories. A twisted version (called
twisted quantum double of G) D*((G), where w is a 3-cocycle on the finite group G was
introduced in [DPRI1]. Note that D¥(G) is a quasi-triangular quasi-Hopf algebra. It
is known that Rep(D“(G)) is a modular category. It is also known that Rep(D¥(G))

is equivalent to Z(Vecg) as a braided tensor category.

2.10 Centralizers in modular categories
Let C be a modular category with braiding o, twist 6, and S-matrix .S (see [BK]).

Let D be a full (not necessarily tensor) subcategory of C. Its dimension is defined by
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dim(D) = >~ xclrrpy d(X)?, where Irr(D) is the set of isomorphism classes of simple
objects in D. In [Mu2|, Miiger introduced the notion of the centralizer D' = C¢(D)

of D in C as the full subcategory defined by
Obj(Dy:={X €Cloyxooxy=idxgy, foral Y € D}.
It was shown that D’ is a fusion subcategory of C and that
dim(D) - dim(D’) = dim(C). (2.21)

Following M. Miiger, we will say that two objects X,Y & C centralize each other if
oy x 00y y = idxgy. For simple X and Y this condition is equivalent to S(X, Y) =
d(X)d(Y) [Mu2, Corollary 2.14].

Remark 2.10.1. If D is a full subcategory of C such that all objects in D centralize
each other, i.e., D C D’ then (dim(D))? < dim(C). Indeed, we have dim(D) <
dim(D') and so it follows from (2.21) that (dim(D))? < dim(C). In particular, if D is
a symmetric fusion subcategory of C, then (dim(D))? < dim(C).

Lemma 2.10.2. Let D be a full subcategory of C (which is not apriori assumed to

be closed under the tensor product or duality) such that D C D’. Then the fusion

subcategory DCC generated by D is symmetric.

Proof. We may assume that D is closed under taking duals. Indeed, it follows from
[ENO, Proposition 2.12] that X centralizes Y if and only if X centralizes Y* for any

two simple objects X,Y in C.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Let 7y, Z; be simple objects in D. There exist simple objects X1, Xs,Y:,Ys in
D such that Z; is contained in X; ® Y7 and 7, is contained in X, ® ;. By [Mu2,
Lemma 2.4 (i)], it follows that Z; centralizes X, ® Y5, and hence Z;, Z» centralize

each other. m

Corollary 2.10.3. Let D be a full subcategory of C such that D C D' and dim(D)? =

dim(C). Then D is a symmetric fusion subcategory.

2.11 Lagrangian subcategories and braided equivalences of
twisted group doubles

Let C be a modular category. Let us assume that C has integral Frobenius-Perron

dimensions of simple objects. It was shown in [ENO] that any such category is

equivalent to the representation category of a semisimple quasi-Hopf algebra and has

a canonical spherical structure with respect to which the categorical dimension of

any object is equal to its Frobenius-Perron dimension. In particular, all categorical

dimensions are positive integers. Let us recall some definitions and results from

[DGNO)J.

Definition 2.11.1. A fusion subcategory D of C is said to be isotropic if the twist 6

of C restricts to identity on D.

Definition 2.11.2. A fusion subcategory D of C is said to be Lagrangian if it is

isotropic and (dim(D))? = dim(C).
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Remark 2.11.3. (i) The definitions of isotropic and Lagrangian subcategories above
are motivated by the example below.

(ii) Isotropic subcategories are necessarily symmetric.

Example 2.11.4 ([DGNOJ). Let G be a finite abelian group. Let ¢ : G — k* be a

quadratic form, i.e., for all g € G, g(g™!) = q(g) and the map

b: G x Gk : (g, ga) e —19102)
(91920 = 20 a(e2)

is a symmetric bicharacter. The pair (G, ¢) is known in literature as a metric group.
A subgroup H of G is called isotropic is q|ly = 1. An isotropic subgroup H of G
is called Lagrangian if H+ = H. Let C(G, q) := V} (the skeletal pointed category
defined in Example 2.5.12). The quadratic form ¢ gives C(G, ¢) the structure of a

braided category (see [Q]):

k = Home(g, (9192, 9192) 3 61 ® g2 = g2 ® g1 := q(g192)idg, 5,

for all g1,9o € G. The category C(G, q) is modular if and only if the symmetric
bicharacter b associated to g is non-degenerate. It is also know that isotropic and
Lagrangian subcategories of C(G, q) correspondence to isotropic and Lagrangian sub-

groups of (G, q), respectively.

Consider the set of all braided tensor equivalences F : C = Z(P), where P is a

pointed fusion category. There is an equivalence relation on this set defined as follows.
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Wesay that Fy : C = Z(Py) and Fy : C =5 Z(P,) are equivalent if there exits a tensor
equivalence ¢ : P; = P, such that FooFy = toF o Fy, where F; 1 Z(P;) — Py, i = 1,2,
are the canonical forgetful functors. Let E(C) be the collection of equivalence classes
of such equivalences. Informally, E(C) is the set of all “different” braided equivalences
between C and representation categories of twisted group doubles.

Let Lagr(C) be the set of all Lagrangian subcategories of C.

In [DGNO, Theorem 4.5] it was proved that there is a bijection

fE(C) > Lagr(C) (2.22)

defined as follows. Note that each braided tensor equivalence F : C = Z(P) gives rise
to the Lagrangian subcategory f(F) of C formed by all objects sent to multiples of
the unit object 1 under the forgetful functor Z(P) — P. This subcategory is clearly
the same for all equivalent choices of F.

In particular, the center of a fusion category D contains a Lagrangian subcategory

if and only if D is group-theoretical [DGNO].
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CHAPTER 3

CATEGORICAL MORITA EQUIVALENCE FOR
GROUP-THEORETICAL CATEGORIES

The results presented in this Chapter are based on [N]. The organization of this
Chapter is as follows. In Section 3.1 we give necessary and sufficient conditions for
the dual of a pointed category with respect to an indecomposable module category
to be pointed. In Section 3.2 we show that the Grothendieck ring of the dual of a
pointed category with respect to an indecomposable module category when the dual
is pointed is the group ring of a certain crossed product of groups. We also find an
explicit formula for the 3-cocycle associated to the dual category. In Section 3.3 we
introduce the notion of categorical Morita equivalence on the set of all finite groups
and on the set of all pairs (G, w), where G is a finite group and w € H3(G, k*).
We give a group-theoretical and cohomological interpretation of these relations. In
the final section, Section 3.4, we give a series of examples of pairs of groups that are

categorically Morita equivalent but have non-isomorphic Grothendieck rings.

3.1 Necessary and sufficient condition for the dual of a pointed
category to be pointed
We fix the following notation for this and the next Section. Let G be a finite group

and w € Z3(G, k*). Let H be a subgroup of G such that w|mx =z is cohomologically
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trivial. Let K := H\G and C := Coind$k*. Let u: K — G be a function satisfying
pou = idg and u(p(lg)) = lg, where p : G — K is the usual surjection. Denote
p(lg) by 1. Let x : K x G — H be the function satisfying (2.2). Let C := Vg
and let M = M(H, p) denote the right module category constructed from the pair
(H, 1) (see Examples 2.5.12 and 2.6.5), where p € C?(G, C) is a 2-cochain satisfying
5?1 = w. In the previous equation we regarded w as an element of Z3(G, C) by
treating w(g1, gz, g3) as a constant function on K, for all g1, g2, gs € G. The module
category structure of M is given by p. If w =1, then we will assume that p belongs
to Z?(H, k*) and that the module category structure of M(H, u) is given by ¢(u)

(see (2.7)).
Lemma 3.1.1. For each z € K, %ﬁ is an element of Z2(G, CoindGk*).

Proof. We have 0%y = w, where w is regarded as an element of Z3(G, Coind%k*).
It suffices to show that §%(*u) = w, for all z € K¥. This follows from the fact that

p(u(z)u(y)) ag = plu(z)u(y < g)), for all z € K¥ y € K, and g € G. Indeed,

(0* 1)) (g1, 92, 93)(¥)
= "1u(g2, 93)(y < 91) “1(9192, 93) () ™" “pelg1, 9293) () “rlgn, g2)(y)
= (g2, 93)(P(u(x)uly 2 01))) 1(9192, ga) (p(u(z)u(y))) ™
X p(g1; gogs) (p(u(z)u(y))) plgr, g2) (plulz)u(y)))™
= u(g2, 93) (P(u(z)u(y)) < 9) plg1g2, gs) (p(u(@)u(y)))™

x (g1, g29s) (p(u(@)u(y))) mlgr, g2)(p(u(z)u(y)))™
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= (1) (91, 92, 93) (P(u(x)u(y)))
= (91, g2, 95) (p(u(@)u(y)))

- w(gla gz, 93)
So 0%2(*p) = w, for all z € K and the Lemma is proved. -

Definition 3.1.2. For each z € K¥, define the set Fun, = Fun,(G, C):

Fun, := {’y e CY(@G, O)

Sy = %} (3.1)

Lemma 3.1.3. Invertible objects in C}, are given by pairs (v, ), where z € K and

v € Fun,.

Proof. We associate an invertible objects in C}, to each pair (v, z), where z € K¥
and v € Fun, as follows: define a map f, : K — K by f.(y) = p(u(z)u(y)) for all
y € K. Extend the map f, to a functor F, : M — M. The module functor structure
on Fy, which is also denoted by v, is: vy, ¢ = Y(9)(¥) idp(u(z)uw))«g for all g € G and

y € K. The pentagon axiom for a module functor (2.16) is:

“u(g1, 92)(y) ¥(9192) () = Y(91)(y) v(92)(y < 91) 1(91, 92)(¥),

forall g1, go € G and y € K.
This condition is satisfied because v € Fun,. The inverse of (v, F;) is the module
functor associated to the pair ((P®® y)=1 p(u(z)~1)). All invertible objects in C3,

arise in this way and the Lemma is proved. [
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Two invertible C-module functors (v}, z1) and (72, z2) are isomorphic in C}, if and

only if #; = x, and there exists an element o € C such that v!(g)(y) = afzzg)fyz(g)(y)

forall ge G and y € K.
This motivates us to define an equivalence relation on the set Fun,: we define two

elements !, v? € Fun, to be equivalent if there exists an a € C such that

forallge G and y € K.
Let Fun, denote the set of equivalence classes of Fun, under the aforementioned

equivalence relation.

Lemma 3.1.4. For each z € K, if Fun, # 0, then there is a bijection between the

sets Fun, and H!(G, C) and hence there is a bijection between the sets Fun, and .

Proof. Suppose Fun, # 0, z € K¥, Fix some n € Fun,. Then the maps

Fun, — ZY(G, C) : B+ g—

and
ZHG, C) — Fung : v +— 1y
are inverse to each other. These maps induce a bijections between the sets Fun, and

HY@, C). The second statement of the Lemma follows from Shapiro’s Lemma. W
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Theorem 3.1.5. The fusion category Chy (where C = V& and M = M(H, u)) is

pointed if and only if the following three conditions hold:
1. H s abelian,
2. H is normal in G and

3. the restriction ¥(9u/p) is trivial in H*(H, k*), for all g € G,

where v is the restriction map defined in (2.9). If w = 1, then we assume that p
belongs to Z*(H, k*) and the module category structure on M is given by o(p) (see

(2.7)). The third condition above is then replaced with:
3! w represents a G-invariant class in H2(H, k*).

Proof. Suppose that Cj, is pointed and let S = K¥, where K = H\G. The set of
isomorphism classes of simple objects in C}, is given by the set J ¢ (Fu_n; x {s}).
By the previous Lemma, we have FPdim(C},) < |H|S|. Note that |H| < |H| and
S| < |K| = #—% By Remark 2.7.2, FPdim(C},) = FPdim(C) = |G|. It follows that
we must have Fun, # 0§ for all z € K, ;ﬁl = |H| and § = K. The second condition
in the previous sentence means that H is abelian. The third condition means that
H is normal in G. The first condition is equivalent to saying that %“ is trivial in
H%(G, C), for all € K. This is equivalent to saying that the restriction (%) is
trivial in H2(H, k*), for all g € G.

Conversely, suppose that H is abelian and normal in G and that i (%) is trivial

in H2(H, k*), for all g € G. Let C’' denote the full fusion subcategory generated by
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invertible objects of C}4. The isomorphism classes of simple objects in C' are given
by elements of the set | J ¢ (Fun, X {z}). The size of each set in the previous union
is |H|. So FPdim(C") = |G]. It follows that C}, = C’. In other words, every simple
object in C}, is invertible, that is, the category C}, is pointed.

The last statement of the theorem follows [rom Lemma 2.1.3. |

Remark 3.1.6. The 2-cocycle ¥(9u/p) that appears in the previous Theorem is
cohomologous to a 2-cocycle (defined in the Lemma below) that appears in several

places in literature, in particular in [DPR1].
For each x € ¢, define T, : G x G — k* by

17 LU)W(:I?, g1, 92)

w(:z:glcc‘l, z, g?)

-1 -
w(xg1z™", Tgow

T.(g1, 92) == , for all ¢,, g2 € G. (3.2)

It is straightforward to verify that §°Y, = 2, for all z € G, where w*(gy, g2, g3) =

1

w(zgrz™t, zgex™!, zgsz™t), for all g1, g2, 93 € G.

Lemma 3.1.7. Let H be a normal subgroup of G and let 2 € C*(G, Coind%k*) be a
2-cochain that satisfies 61 = w, where w is regarded as an element of Z%(G, Coind%k*).

The 2-cocycles ¢ (%“) and (%é—%i X Tm]HxH> define the same class in H2(H, k*).

Proof. We have

<¢(u)gc y Tx> (h, o)

(p)
_ Y(p)(zhaz™!, chez™!) y w(zhiz™t, Thor™, z)w(z, hy, he)
(i) (ha, ha) w(zhiz™, x, hy)
_YCu)(h, he) U(p) (@, hihs) y P(p)(haz™, z) P(p)(zhe™, @)
V(p)(h, ko) ()@, R1) ()2, he) Y(p)(zhihoz™t, z) ’
o1
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for all x € G, hy,he € H. In the second equality above we used (2.20) with
(g1, 92, g3, ) = (=, h1, he, 1png), (xhiz™Y, 2, ho, 1ing), (Thiz™), zhox™, , 1g\g)
and canceled some factors. Observe that the second and third factors in the last

expression in the equalities above define coboundaries and the Lemma is proved. W

Example 3.1.8. If G is a finite cyclic group, then H2(H, k*) = {1} for any subgroup
H of G. Hence the dual of Vecg with respect to any indecomposable module category
for any 3-cocycle w on G is pointed. Also, if G is finite abelian group, then the dual of
Vece with respect to any indecomposable module category is pointed. The previous
statement is not true for Vecg if w is a non-trivial 3-cocycle on the abelian group G.
Indeed, consider the dihedral group Dg = {r, s | r* = 52 = 1, rs = sr™1} and the
subgroup < 7% > of it. It can be shown that (Veeng ) (<r2s, 1y = Veck ozys, where w
is a certain non-trivial 3-cocycle on (Z/2Z)*. Now, we know that Vecp, is dual to the
representation category Rep(Ds). Hence, there must exist an indecomposable module
category over Vecy o;s with respect to which the dual of Vecy 75 is equivalent to

the non-pointed fusion category Rep(Dsg). We refer the reader to [CGR] and [GMN]

for similar results.

3.2 The dual of a pointed category (when it is pointed)
In this Section, we follow the notation fixed at the beginning of Section 3.1. We
will assume that H is abelian and normal in G and that %‘ is trivial in H*(G, C),

for all z € K, i.e., we will assume the the conditions of Theorem 3.1.5 hold.
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3.2.1 Tensor product and composition of morphisms

It suffices to restrict ourselves to simple objects in C},. Recall that simple objects
in C}, are given by pairs (v, z), where v € Fun, (the set defined in (3.1)) and
x € K. The element z € K determines a C-module functor F, : M — M given
by F.(y) = xy, for all y € K. The C-module functor structure on F, is given by 7.
Tensor product (=composition of module functors) in C},: for any two simple objects
(v}, 21) and (4%, z2), (7}, 21) ® (V% z2) = (®24 4%, z12). Tt is straightforward to
check that *2y!~4? is an element of the set Fung,,.

Now let us look at morphisms in C},. It suffices to restrict ourselves to iso-
morphisms between simple objects. Recall that an isomorphism between two sim-
ple objects (7!, =) and (7%, ) (note that the second coordinates have to be equal
for an isomorphism to exist) in C}, is given by an element oo € C' which satisfies:

Y (9)(y) = 242 42(g)(y), for all g € G and y € K.

Note 3.2.1. An isomorphism « : (v}, ) — (7%, z) is completely determined by

a(l). If o is an automorphism, then a(y) = «(1) for all y € K. Indeed, we have

a{y<g) v Hg)(w)

7 {g)(y) = 22 12(g)(y), for all g € G and y € K. So we have afyag) = 52 a(y).

Now let y =1 and g = u(y). Then, a(y) = ~IEIO] a(l). It is easy to show that

the above equality is independent of the choice of the function v : K — G.

Let a: (W}, z1) — (72, 1) and B : (7%, 73) — (¥*, z2) be any two isomorphisms

between simple objects in C},. The tensor product of o and 3:

(@® p)(z) = (Paf)(z) = a(zx)5(2),
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for all z € K. If 4* = ~*, then the composition of 3 and « is given by (8 o a)(z) =

B(z)a(z), for all z € K.

3.2.2 The Grothendieck ring

The set of isomorphism classes of simple objects in C}, forms a group A:

A - U (mw X {CU}) (?1-7 xl) * (:7—2—7 332) - (merl /727 C171:1';2); (33)

where for any v € Fun,, by 7 we mean the equivalence class of v in Fun,. The inverse
of any (7, ) € A'is (Fl—fy—ji, :U"l). The Grothendieck ring Ko(Ch,) is isomorphic to
the group ring Z[A]. |

The rest of this Section is devoted to showing that A is isomorphic to a certain
crossed product of the groups H and K.

Since % is trivial in H*(G, C), for each T € K we have a maps 7, € CY(G, C),
x € K such that:

€T

iy, = 2. 3.4)
. (

Define a function

T3
P K x K — NG, C), ey, @) = —22 2 (3.5)

Neyzs

Lemma 3.2.2. The function o defines an element in H*(K, HY(G, C)).
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Proof. Let us first show that 7(zy, z2) € ZY(G, C), for all z1, z, € K. We have

z12 (T 2 (§in, z251xm2 T z

So i(x1, 23) € ZY(G, C), for all 21, 25 € K. Now let us show that §°7 = 1. We have

(0%0) (w1, T2, x3) = I(mn, @3) 0 (120, T3) ™ D(m1, Tows) (P (w1, 22)) ™

3 zoxs z3
T Nmg Mg % Neyzoas % N1 Nxozs Nayzy

x x z
UEPER Ny Tas Neyzozg 3(%20)g, ) ™3 )a

I

The cohomology class of 7 does not depend on the choice of the family of maps
{ns | = € K}. Indeed, let {n’ | z € K} be another family of maps satisfying (6'n}) =

v - i ~ “2n5,
£, for all z € K. We contend that o(z, To) = —% and 7' (zy, ) = ——77-,:1172’”1

define the same class in H*(K, ZY(G, C)). We have, §* (g,ﬁ) =1, 1ie. ?],1 e ZYG, 0),

for all z € K. Define 8 : K — ZYG, C) by B(z) := %, for all z € K. Then,

A

- z9 " = Igﬂ . )1:2 Ix ﬂ /m .
Py, 2y) = S0 = (15(11;)177;122)” 2 = (0'f)(x1, x2) ¥/ (21, T2) and the Lemma

is proved. [

Corollary 3.2.3. The function v =, o i defines an element in H*(K, H) (where

Yn is defined in (2.5)) .
Proof. This follows immediately from Lemmas 2.1.3 and 3.2.2. [

Remark 3.2.4. If w = 1, then the element v in the previous Corollary is the image

of 1 under the following composition.

H*(H, k)% — HY(G, )X — H*(K, HY(G, C)) — H*(K, H). (3.6)
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The first map in the above composition comes from ¢ (2.7), the second from (3.5)
and third is induced from the map ¢, (2.5). Maps similar to the one in (3.6) appears

in [Da] and [EG].

Let us put a group structure on the set HxK. For any two pairs (p1, 1), (p2, T2)

define their product by:

(p1, 1) (p2, 22) = (V(21, T2) 1% P2, T1T2). 3.7)

Associativity follows from Corollary 3.2.3. We denote this group by Hx, K.
As mentioned in Lemma 3.1.4, the set Fun, and H are in bijection for each z € K.

The following maps induce this bijection.

G:H—Fun,,  G(p) = ngr(p), (3.8)

0, : Fun, — f[, 02(7) == ¥1(7/M2),

where the maps ¢; and %, are defined in (2.4) and (2.5), respectively.

Theorem 3.2.5. The Grothendieck ring Ko(Chy) = Z[A] is isomorphic to the group

ring Z{H %, K.

Proof. Suffices to show that the groups A and H %, K are isomorphic. Define a map
'T:Hx, K — Aby T((p, 2)) := (Calp), @). Forall (p1, z1), (p2, 72) € H %, K, we

have
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T((p1, 1)(p2, 2)) = T((v(21, T2) P1° P2, T172))

= (Carao (1, T2) p1°p2), T122)

and

T((plv ml)) *T((p27 332)) = (Ccvl(pl)’ 1’1) * (sz(pQ)a 'TQ)

= (*2(Car (P1)) Cao (p2), T172)

We contend that 6,,.,(*2e, (p1) Cay(p2)) = v(z1, 22) pT%p2. Indeed, for all h € H, we

have

Terea (R) (1)
_ (Gaa(pa)(h))(22) (Con(p2)(R))(1)
Mzras (71)(1)
_ (palpa)(h)) (@) 12y (R)(2) (p1(p2)(R))(L) 1y (R)(1)
Ny (R)(1)

= (v(@1, 22) p1* p2) (h)

91‘1@ (m (Cwl (Pl)) C:cz (102)) (h)

Hence, (g a2 (v(21, 22) p1%p2) = *2(Cay(p1)) (ay(p2). This shows that T is a group

homomorphism. It is evident that T is a bijection and the Theorem is proved. [

Example 3.2.6. Suppose the order of H is relatively prime to the order of the group
K and suppose ¢(®p/p) is trivial in H*(H, k*), for all z € K. Then the Grothendieck
ring of C} is isomorphic to Z[ﬁ x K. Indeed, since |H| and | K| are relatively prime

we have H2(K, H) = {1} which implies that v is trivial in H2(K, H).

o7
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3.2.3 A Skeleton

A skeleton of a category D is any full subcategory D such that each object of D is
isomorphic (in D) to exactly one object of D. Every category is equivalent to any of
its skeletons. Let us recall how one constructs a skeleton D of any tensor category D
with associativity constraint a and tensor product ®. The construction is as follows:
choose one object from each isomorphism class of objects in D. Let Obj(D) be the
set of all objects chosen above. For any X € Obj(D), by X we mean the object in D
that represents the object X. |

Define Homz(X, Y) := Homp (X, Y). Define tensor product ® in D: X @Y :=
X®Y, forall X,Y € Obj(D). Fix isomorphisms 8(X,Y): X ©Y>2X ®Y in D,
for all X, Y € Obj(D). For any f € Homz(X, Y) and g € Homz (X', Y') define its
tensor product:f ® g = B(X’, Y ) o (f®g) o B(X, Y).

We now define associativity constraint @ in D. For any X, Y, Z € Obj(D) define

ax. v z to be the following composition:

B(XOY, Z) B(X,Y)®idg ax,v,z
_— e —_—

XoY)eZz (XoY)®Z (XRY)®Z X® (Y ®2)

(idx ®@B(Y, Z))™* B(X, Yoz)"!
—_—l _——

X® (Y 06Z) X oY o2).

Left and right unit constraints are defined in the obvious way. It can be shown
that the necessary axioms (pentagon, triangle) are satisfied. Hence D is a tensor
category. The tensor categories D and D are equivalent as tensor categories. Indeed,

define a functor I : D — D by F(X) = X and F(f) = f for any object X and
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any morphism f in D. It is evident that this functor is essentially surjective and
fully faithful. Thus F establishes an equivalence of the categories D and D. Let
us put a te‘nsor functor structure on F. We need natural isomorphisms J(X, Y) :
FIXoY)=XoY3XY =FX)®F(Y). Lt J(X,Y)=0(X,Y). Then it is
straightforward to show that J is a natural isomorphism and that all the necessary

axioms are satisfied.

Remark 3.2.7. If D is a pointed fusion category, then the simple objects of a skeleton
D of D form a group and the associativity constraint in D gives rise to a 3-cocycle.
The cohomology class of this 3-cocycle does not depend on the choices made in the

construction of D.

The function x defines an element in Z?(K, H):

/1(56’1, 5132) = K‘xl,u(mz)- (39)

Note that the cohomology class of k is independent on the choice of the function
u. Also note that the cohomology class that « defines in H%(K, H) is equal to the
cohomology class associated to the the exact sequence 1 - H — G — K — 1.

Define a 3-cocycle @ on the group H x, K (see (3.7) and (3.5)):

w((plv 331)7 (P2, xQ)v (p37 5133)) = (ﬁ(xb 1132)(’&(1'3)))(1) pl("{’(a”% 5133)), (310)

for all (py, 1), (p2; x2), (p3, T3) € H X, K.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Remark 3.2.8. (i) [t is routine to check that w does indeed define a 3-cocycle and
that its cohomology class does not depend on the choice of the function u : K — G.

(ii) A special case, with 7 = 1, of the formula in (3.10) appeared in [GMN].

Theorem 3.2.9. The fusion categories Cyy and VecZ .. are equivalent.

WK

Proof. et us construct a skeleton Ej\-; of the category C},.
Let A = U, {(Glp), ) | p € HY} denote the set of all simple objects of Ciy (see

(3.8) for definition of ¢,). Tensor product ® in Che (Coy(p1), 1) @ (Cop(p2), T2) =

(Cor (1), 21) ® (Caz(p2), B2) = (*2(Car(P1)) Caz(P2), T1B2) = (Covan (V(@1, 22)PT° p2), T172).
Note that A forms a group (multiplication coming from ®) that is isomorphic to
Hx, K.

Fix isomorphisms in Ci: € 2 f((Cay(p1), 21), (Coa(p2), 22)) © (Carlpn), 21) ©
(Gaalp2)y @2) = (Corma V(@1 22) 1" P2), ©122) = (" (Cay (P1)) Can (P2), 12) =
(Gox (1), 1) ® (Can(p2), w2), for all (G (p1), 1), (Cas(p2), 72) € A, The following

equality holds:

f((CM(pl)v xl)? (ng(p2)v xQ))(ng)
f((Cm(pl)’ CIZ1), (Civz(pQ)a mQ))(y)
)(

X C551$2(U<$17 x2)p91v2p2)(9

"2(Car (P1)) Caa(P2))(9) () =

Y),

forall g € G, y € K. After using the definition of (;,, Czy, Csya, and 7, canceling and

rearranging, the above equality becomes:

(G (p1), 21), (Cealp2), 22))(y < 9) _ @1, 22)(9)(y) P1(Fasy,a)
F((Car (1), 1), (Caylp2), 22))(y) v(z1, T2)(ky,q) PY° (Ky,g)
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Putting y = 1 and g = u(y) in the above relation and canceling, we obtain:

(@1, 29)(u(y))(1) p1(Kas,uw))
F((Gar(p1), 21), (Gan(p2), 22))(1)

F((Gar(p1), @1), (Can(p2), 2))(y) = (3.11)

Remains to calculate the associativity constraint in C§, which we denote by .
For aly (Cwl (pl)v wl)v (c:vz(pQ)a $2)> (st (03), SUS) € K: @' is defined by:

wl((CM(pl)v m1)> (sz(p2)7 mQ)? (Cacs(pS)a $3>)

(S ((Gai(p1), 21), (Cay(p2), 22))) ® 1diguy(ps),z5))
F(Cai(p1), @1), (Can(p2)s @2) © (Cas(p3), T3))

J(Car (1), #1) © (Cay(p2), T2), (Cas(p3), @3))

(Td (e (1), 21) © S ((Caa(P2), %2), (Cas (p3), @3)))

(G p1), 1), Canlp2)s ©2))

f((CM(pl)? x1)> (C:vg(p2)a 372) (C:cs( 3)7 373))

f((cm(pl) ) (sz(p2)> xQ)) (st( ) ))

({Cas (P2), #2), (Cas(p3), 23))

X

X

Note that @'(((z,(p1), 1), ((ay(p2), T2), (Cas(ps), z3)) is an automorphism of a
simple object in C}3,. By Note 3.2.1, @'((Cay{p1), #1), (Can(p2), 22), (Cas(p3), 3))(¥)

is constant for all y € K. Thus, it suffices to calculate

@' ((Cey (P1)s 1), (Con(p2)s T2), (Cas(pa), 3))(1).
We have,

@' ((Car(p1), 1) (Cay (P2), 22), (Cas(p3), 23))(1)

_ f((C:vl(pl)v wl)v (sz(pQ)a 372))(333)
f((Cm(/Ol)v xl)? (sz(p2)> 339) © (C:cs(pfi)a x3))(1)
f((gxl(pl)’ 331) © (Cm (102) ) (Cﬂ:s (p
f((czz(pQ)v $2)7 (ng(pS) ))

) 23))(1)
1)

X

(
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J((Ger(p1)s 1), (Cas(p2), z2))(1)
F(Goi(p1), 1), (Gas(p2), 2) © (Cag(p3), 3))(1)
f(((ail(pl)v CE]) © (sz(pQ)ﬂ 332)7 (Cws(pfi)a x3))(1)
f((sz(Pz)a T2), (st(p3)))7 I'3)(1)
x (@1, z2)(w(23))(1) p1(Fes, ules))-

We used (3.11) to obtain the last equality.

X

Since the cohomology class of w’ does not depend on the choice of the isomor-
phisms f(:, -), we can assume that f(-, -)(1) = 1. Also, regard @’ as a 3-cocycle on

H %, K. Then we get:

@'((p1, 1), (P2, 2), (p3, 23)) = D(21, 22)(u(w3))(1) p1(r(22, 23)),

for all (py, 1), (p2, 2), (p3, ©3) € H x, K. That is, @' = w and the Theorem is

proved. [

Example 3.2.10. Let G = Z/4Z = {0,1,2,3}, w = 1, H = {0,2}, and p = 1.
Since 1 = 1 we can assume that 7 = 1 (see (3.5)) and v = 1 (see Corollary 3.2.3). By
Theorem 3.2.5 it follows that Ko(Cky) = Z[ZT\QZXZ/QZ]. Let m = {po, p1}, where
p1 represents the non-trivial homomorphism. We have, K = {H +0, H+1}. We claim
that the associativity constraint w in C}, is non-trivial. It suffices to show that the
restriction of w to some non-trivial subgroup of Z75Z X Z/2Z is non-trivial. Consider
the restriction of w to the subgroup K = {(pg, H +0), (p1, H + 1)}. It suffices to
show that there exists a triple of elements in this subgroup such that w evaluated
at this triple is not equal to 1. Define the function v : K — G by u(H +0) = 0

and u(H + 1) = 1. Since 7 = 1, the first factor in the definition of w vanishes. We
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have, w((p1, H+ 1), (p1, H+1), (p1, H+ 1)) =p1(e(H+1, H+1)) = p;1(2) = -1
Thus, the 3-cocycle w is non-trivial. In particular, the fusion categories Vec%/m and

Vec7 nzwz,2z are dual to each other.

3.3 Categorical Morita equivalence
Using the notion of weak Morita equivalence for fusion categories we put an

equivalence relation on the set of all pairs (G, w), where G is a finite group and

w € H3(G, k*):

Definition 3.3.1. We say that two pairs (G, @) and (G, @) are categorically Morita
equivalent and write (G, @) =~ (G', @) if the fusion categories Vec¥ and Vec%, are

weakly Morita equivalent.

Remark 3.3.2. Note that finding categorically Morita equivalence classes of the set
of all pairs (G, w), where G is a finite group and w € H*(G, k*) amounts to finding

weakly Morita equivalence classes of the set of all group-theoretical categories.
We also define an equivalence relation on the set of all groups:

Definition 3.3.3. We say that two groups G and G’ are categorically Morita equiv-
alent and write G = G’ if the pairs (G, 1) and (G’, 1) are categorically Morita equiv-

alent.

Remark 3.3.4. Two finite groups G and G’ are called isocategorical if their repre-
sentation categories Rep(G) and Rep(G') are tensor equivalent [EG]. If two groups G

and G’ are isocategorical, then they are categorically Morita equivalent (this follows
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from the fact that for any group G the categories Rep(G) and (Vec%;)jw(a 1) are tensor
equivalent). We show in Section 3.4 that the converse is not true, that is, there do

exist groups that are categorically Morita equivalent but not isocategorical.

Remark 3.3.5. It was shown in [O2] that if two fusion categories C and D are weakly
Morita equivalent, then their centers are equivalent as braided tensor categories. It
follows that if two groups are categorically Morita equivalent, then the centers of their

representation categories are equivalent as braided tensor categories.

Definition 3.3.6. We say that a group G is categorically Morita rigid if any group

that is categorically Morita equivalent to G is actually isomorphic to G.

Remark 3.3.7. By remark 3.3.5 it follows that abelian groups are categorically
Morita rigid. In particular, an abelian group can not be categorically Morita equiva-

lent to a non-abelian group.

The next theorem gives a group-theoretical and cohomological interpretation of cat-

egorical Morita equivalence.

Theorem 3.3.8. Two pairs (G, W) and (G', @) are categorically Morita equivalent

of and only if the following conditions hold:

1. G contains a normal abelian subgroup H such that w|gxmxg s trivial in

H3(H, k),

2. there is a 2-cochain p € C*(G, Coindgk*) such that 6*p = w and Y (*u/p) is

trivial in H2(H, k*), for all x € H\G and there is an isomorphism
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a: G'SH x, (H\G) (where w is regarded as an element of Z*(G, Coind5k*),

¢ and H %, (H\G) are defined in (2.9) and (3.7), respectively) and

@?
WI

3. the 3-cocycle Zr is trivial in H*(G', k*) (where w is the 3-cocycle associated to

the dual (Vecg)\yy, u defined in (3.10)).

Proof. Suppose the pairs (G, @) and (G', @) are categorically Morita equivalent.
Then there exists an indecomposable right module category M over Vecg such that
the categories (Vecg )}, and Vecg’, are tensor equivalent. So there exists a subgroup
H of G such that w|gxzxu represents the trivial class in H3(H, K*) and 2-cochain
i € C*G, CoindGk*) (satisfying 6?1 = w) which together produce the module
category M. Note that (Vecg)h must be pointed. By Theorem 3.1.5, it follows
that H is abelian and normal in G and that ¢(u/p) is trivial in H2(H, k*), for all
x € H\G. Theorem 3.2.9 says that (Vecg )i = Vecgm(H\G). It now follows that

there must exist an isomorphism a : G' — H x,, (H\G) such that w® is cohomologous

to w'. The converse is evident and the Theorem is proved. |

Corollary 3.3.9. Two groups G and G' are categorically Morita equivalent if and

only if the following conditions hold:
1. G contains a normal abelian subgroup H,

2. there exists a G-invariant p € H*(H, k*) such that the groups G' and

H x, (H\G) are isomorphic (where H x, (H\G) is defined in (3.7)) and
3. the 3-cocycle w associated to the dual (Veca)hum, .y, defined in (3.10), is trivial.
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3.4 Examples of categorically Morita equivalent groups with
non-isomorphic Grothendieck rings

Let p and g be odd primes such that p — 1 is divisible by g. Then there exists
a unique upto isomorphism non-trivial semidirect product of the groups Z/pZ and
Z/qZ. Let a and b be generators of the groups Z/pZ and Z/qZ, respectively. Let us
fix an action of Z/qZ on Z/pZ: fix at € Z (t #1 mod p) such that t7—1 is divisible
by p. Such a t of course exists because p — 1 is divisible by g. Then the action of
Z/qZ on Z/pZ is defined by: a<b := a*. Let p be a generator of the groups W
Then the induced action of Z/¢Z on Z//p\Z is given by: (p<b)(a) = pla<b™!). But
bl =971, So pab=p* ",

The subgroup Z/pZ (identified with Z/pZx {1}) of Z/pZ~Z/qZ can be considered
as a right (Z/pZ x Z/qZ)-module where the action is via conjugation. The dual
group ZTpZ is also a right (Z/pZ x Z/qZ)-module with the action being induced
from the action of Z/pZ x Z/qZ on Z/pZ. Let G := Z/pZ x (Z/pZ x Z/qZ) and

G = Z//p\Z X (Z/pZ % Z]/qZ).

Lemma 3.4.1. The groups G and G’ have different number of normal subgroups of

order p.

Proof. Note that both groups have the same number of subgroups of order p. We
claim that all subgroups of order p in G are normal whereas there exists a non-normal
subgroup of order p in G'. The generator of any subgroup of G of order p is of the form

(a!, (@™, 1)), where [, m € {1,...,p} with [ and m not simultaneously equal to p.
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The elements (a, (1, 1)), (1, (g, 1)), and (1, (1, b)) generate the group G. Note that
the element (a!, (@™, 1)) is stable under conjugation by the first two generators of G.
While conjugation by the third generator gives: (1, (1, b))~(d, (a™, 1))(1, (1, b)) =
(1, (1, b7 H)(d", (@™, b)) = (¥, (@™, 1)) = (d!, (@™, 1))!. This shows that all sub-
groups of order p in G are normal. Consider the subgroup of G’ of order p generated
by the element (p, (a, 1)). We have

(1, (1, B, @, D), (1, 8) = (L, (1, 5 (0" (ah, B)) = (5, (af, 1)). Note
that the element (p'* ", (a*, 1)) is not a power of (p, (a, 1)) because ¢4~} # ¢ mod p.
This shows that the subgroup of G’ of order p generated by the element (p, (a, 1)) is

not normal and the Lemma is proved. [

Corollary 3.4.2. The groups G and G' are categorically Morita equivalent but have

non-isomorphic Grothendieck rings.

Proof. To see that these two groups G and G’ satisfy the conditions in Corollary
3.3.9, take H to be the subgroup Z/pZ of G and take p = 1. Observe that the groups
Hx(H\G) and G’ are isomorphic. Since the exact sequence 1 — H — G — H\G — 1
splits and p = 1, it follows that the 3-cocycle associated to the dual (VecG)jw(H,“),
defined in (3.10), is trivial. So the conditions in Corollary 3.3.9 hold and it follows that
the groups GG and G’ are categorically Morita equivalent. To see that these groups have
non—isomorph;m Grothendieck rings note that the previous Lemma implies that these

groups have different number of quotient groups of order pg. By [Nik, Proposition
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3.11} it follows that the Grothendieck rings Ko(Rep(G)) and Ko(Rep(G')) are not

isomorphic. -
Corollary 3.4.3. The groups G and G’ are not isocategorical.
Proof. This follows immediately from the above Corollary. [

Remark 3.4.4. (i) By Remark 3.3.5 the representation categories Rep(D(G)) and
Rep(D(G")) of the Drinfeld doubles of the groups G and G’ are equivalent as braided
tensor categories and hence these groups define the same modular data.

(ii) Equivalence of certain twisted doubles of groups was investigated in [GMN].

(iii) The above examples of categorically Morita equivalent groups come from a
more general construction: start with any finite group G and a finite right G-module
H. Consider the semidirect product H x G. We can regard Hasa right G-module
with the action being induced from the action of G on H. Then the groups H x G
and H x G are categorically Morita equivalent. Note however that these two groups
are not always non-isomorphic.

(iv) By Ito’s theorem [Gr, Theorem 6.3.9] it follows that the possible dimensions
of irreducible representations of the groups G and G’ are 1 and ¢. It can be shown
that the order of the commutator subgroup is p? for both groups. Therefore, the
order of the abelianization (equal to the number of 1-dimensional representations)
of both groups is q. So the group algebras k[G] and k[G'] are both isomorphic to

koko &k M(k)© Myk)& - & My(k),

v

(p?=1)/q copies

q copies
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(v) It follows from Corollary 3.4.2 that the groups GG and G’ have different charac-
ter tables. This provides a counter-example to the hunch, mentioned in [CGR], that

groups defining the same modular data will have the same character table.
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CHAPTER 4

NILPOTENCY AND GRADING OF
GROUP-THEORETICAL CATEGORIES

The main result of this Chapter is Proposition 4.1.9 in which we give sufficient
conditions for a group-theoretical category to be nilpotent.

We fix the following notation for this Chapter. Let C := Vg, where G is a fi-
nite group and w € Z*(G, k*) and let M = M(H, ) denote the right module
category over C constructed from the pair (H, u) (see Examples 2.5.12 and 2.6.5),
where H is a subgroup of G such that w|gxgxy is cohomologically trivial and
1 € C*G, Coind%k*) is a 2-cochain satisfying 6?4 = w. In the previous equa-
tion we regarded w as an element of Z3(G, Coindgkx) by treating w(gi, go, 93) as a
constant function on H\G, for all ¢1, ga, g5 € G. Let K := H\G. Then Iir(M) = K
and Obj(M) = {@rexnzx | n, is a non-negative integer}, where n,x = @° 2.

Hom(@rerxnz®, ByexkMyy) := Brek Dyex Hom(n,z, myy) and

{0}, ife#y

Hom(n,z, myy) =
My, n, (), itz =y

where M, », is the space of n, x n, matrices with entries from k. Recall that the
action of C on M is given by the right action (denoted by <) of G on K and the

module category structure is given by pu.
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Let u : K — @ be a function satisfying p o u = idg and u(p(le)) = lg, where
p: G — K is the usual surjection. We denote by 1x the object p(1) in the category
M. Let k: K x G — H be the function satisfying (2.2). We will denote by K the
Kronecker tensor product of matrices. I,, will denote the n x n identity matrix.

If H is normal in G, define R,, for each x € K, to be the set of all projective
matrix representations of H with 2-cocycle ¢ (%“) (where ¢ is the map defined in
(2.9)). Note that if H is normal in G, by Lemma 3.1.1, ¢ (%) is indeed a 2-cocycle

on H.

€T
Ry = {p ‘ p is a projective matrix representation of H with 2-cocycle ¢ (f-)}
, H

(4.1)
Also, let
R, = the set of isomorphism classes of R,
Irr(R,) = the set of irreducible elements of R,
Irr(R,) = the set of isomorphism classes of Irr(R,)
(4.2)

ODbj(Ch,) = the set of isomorphism classes of Obj(C%,)
Irr(C},) = the set of irreducible objects of C},

Irr(Cy,) = the set of isomorphism classes of Irr(C},)

Let D be a semisimple category having finitely many isomorphism classes of simple
objects. For any object X of D let us denote by #X the number of simple objects

(counting multiplicities) in the decomposition of X.
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Lemma 4.1.1. The FP-dimension of any object (F,~) € Obj(Ci,) is given by

#(F(s)), where s is any simple object in M.

Proof. First, observe that #(F(s)) = #(F(lk)) for any simple object s in M. Indeed,
F#(F(s)) = #(F(lgx au(s))) = #(F(1k) <u(s)) = #(F(1k)). The second equality
above is because there is an isomorphism vy, () between F(1x <u(s)) and F(lg) <
u(s). It is clear that # extends to a ring homomorphism from the Grothendieck ring
Ko(Chy) of Ciy to Z. The statement of the Lemma now follows from [ENO, Lemma

8.3]. -

Suppose H is normal in G. Then the 2-cocycles %’f and ¢ <¢ (%‘-)) (where ¢ and
¢ are defined in (2.7) and (2.9), respectively) are cohomologous, for all z € K. So

for each @ € K, there exists 1, € C'(G, Coind$k*) which satisfies:

i:— = (0'n.) ¢ (w <%—L>> ~ (4.3)

We assume that n;, = 1.

Lemma 4.1.2. The following map is well defined.

R ObJ(C.X/t) tp e Glp) = (F) ), (4.4)

where (F, 7) is defined by: F(s) := dim(p)zs = zs@zs®---Dzs, forall s€ K =

~
dim(p) summands

[rr(M) and v, 4 := 1:(9)(8) p(ks,q), for all s € K, g € G = Irr(C). The Frobenius-

Perron dimension of (,(p) is equal to dim(p), for all p € R,.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. To show that ~ is a module functor structure on F, it suffices to show that

equation below holds for all g;,9, € G, s € K.

*1(g1, g2)(s)

Vs, = Vs, g1 Vsdg1,g2- 4.5)
M(91’ 92)(8) g1g2 g1 <91, g2 (

The right hand side of the above equation is equal to

N:(91)(8) p(ks,g1) Me(g2)(8<991) p(Ksagy,g0)

T

= a(g2)(s) melg2)(s991) 9 (—f) (Feons Fagrron) 0(Fomrsn)

= mnla192)5) @1 ) ¢ (4 (L)) (01 2)05) o050
() 10 2)6) m0192)(5) )

which is the left hand side of (4.5). We used (2.3) in the second equality above. The

last statement of the Lemma follows from Lemma 4.1.1. [ ]

Lemma 4.1.3. Let (,, z € K be the maps defined in (4.4). The following statements

hold.
(i) If py, p2 € R, are isomorphic, then (,(p;) is isomorphic to (,(p2).
(ii) If ¢z (p1) is isomorphic to (,(p2) for any p1, p2 € R,, then p; is isomorphic to ps.

(iii) If p € R, is irreducible, then (. (p) is simple.

Proof. (i) Suppose py, pz € R, are isomorphic and let ((p;) = (F', 7') and ((ps) :=

(F?, v?). Let n = dim(p;) = dim(p2). To see that (F, 4!) is isomorphic to (F?, 7?)
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it, suffices to show that these exists a 8 € Fun(K, GL(n, k)) such that the equation

below holds for all s € K, g € G.

Voo = B(5) 7,0 B(s99)7"

Since p; is isomorphic to py, there exists A € GL(n, k) such that pa(h) = A py(h) A7,

for all h € H. Put 8(s) := A, for all s € K. Then,

Ve o = 12(9)(5) pa(Ks,g)
= n.(9)(s) Ap1(ksg) A7
= A ne(9)(s) p1(s,q) A7

= B(s) 7., B(sag)".

)

It follows that (F, 41) is isomorphic to (F2, v2).

(ii) Suppose (. (p1) and (.(p2) are isomorphic, p1, p2 € Ry. Let ((p1) := (FY, 4Y)
and ((p2) := (F?, 4?). Since (F', 4!) is isomorphic to (F?, 4?), there exists 8 €
Fun(K, GL(n, k)) such that the equation 2, = B(s)v:,8(s < g)™" holds for all

se K,ge G. Put s:=1k,9=h € H in the previous equation to get

pa(h) = (1:(h)(1x) ™" Vi,
= (a(R) (1)) ™! B(LK) Y, A1) T

= B(1x) pr(h) B(1x) ™
It follows that p; is isomorphic to ps.
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(iii) Suppose p € R, is irreducible and let (,(p) := (F, ). Suppose, in order to ob-
tain a contradiction, that (F, 7) is not simple. Then, there exists (F'!, v1), (F? ~?%) €
Obj(Cxy) such that F = F!' @ F?, v = v! @ 4 where F'(s) = nixs, F3(s) = naxs
for all s € K and ny,n, are positive integers satisfying n; + ny = dim(p). We
have, p(h) = (n:(R)(1x)) ™ Yxe,h = Me(R)(1&)) ™ Y1y, 0 @ (12(R) (1K) ™ Vi, o for el
he H. Put py(h) := (n(h)(1k)) ™ i,p and pa(h) = (n:(R)(1k)) ™" 7E, , for all
h € H. Tt follows from Lemma 2.1.5 and (4.5) that p;, p2 are elements of R,. So
p = p1 ® pe. This contradicts our supposition that p is irreducible. Hence, (,(p) is

simple whenever p € R, is irreducible. [
Lemma 4.1.4. There is a bijection between the sets |J, . Irr(R,) and Irr(C}).

Proof. Tt follows from Lemma 4.1.3 that the maps (,, z € K in (4.4) induces injections
C, : Tr(R.) — TE(Chy), (4.6)

for all z € K, defined by: (,(p) := (.(p) where p is the isomorphism class represented

by p and (,(p) is the isomorphism class represented by (,(p). Now, the sum of squares

of the Frobenius-Perron dimensions of the objects of the set |,z Im({,) is equal to

Y. D @im(@)*=)_|H|=|K||H| =Gl

zeK'ﬁEI—ﬂ:(Rz) zeK
The Lemma now follows from the fact that FPdim(C},) = FPdim(C) = |G|. -
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For each x € K, let (C}/), denote the full abelian subcategory of C}, with objects
given by the set

{(F, ) | (F, ) is isomorphic to a direct sum of objects of the set (,(Irr(R;))}

Remark 4.1.5. (i) Let (F, v) € Ci;. Then, (F, v) € (Ciy). if an only if there is a
non-negative integer n such that F'(s) = nws, for all s € K.

(ii) (C}4)1, forms a semisimple tensor category with finitely many isomorphism classes
of simple objects. The unit object (1, idas) of C}; is contained in (Chy)1-

(iii) Ry, is a semiring with basis Irr(R;, ). The multiplicative structure is given by
the tensor product of representations.

(iv) The set Obj((Ch)1,) of isomorphism classes of Obj((C}y)1,) forms a semiring

with basis Im(,,.).

Lemma 4.1.6. The map (;, (defined in (4.6)) induces a unit preserving semiring

isomorphism between R, and Obj((C%,)1,)-

Proof. 1t follows from Lemma 4.1.4 and Remark 4.1.5 that the map defined below is

a bijection.
T : Ry, — Obj((Cho)ix) : 7+ Cuc(p) (4.7)

Note that T preserves the unit. Let (F,y) € Obj((Cis)15). Then, ~ sétisﬁes the
equation Y gigs = Vs, g1 Vsagr, g0 O &ll 8 € K, 91,90 € G. Put s = lx and ¢g; =
hi,92 = he € H in the previous equation to get the equation Vi, hihy = Vig, by Vi, ho
Define

Y': Obj((Choix) = Buye : (Fy ) = T'((F, 7)) (4.8)
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where (Y'((F, v)))(h) := Yig.n, for all h € H. We have T' o (1, = idg, . So T’
induces a map Obj((C})1,) — Ri, which is inverse to the map T defined in (4.7).
Let us show that T is a semiring isomorphism. It is clear that Y preserves the additive
structure. To see that it preserves the multiplicative structure note that is suffices
to show that Y'(Ci(p1) © Ci(p2)) = p1 ® p2 (= tensor product of representations
p1 and po), for all py,pe € Ry, Let Ci(pr) = (FY4Y), Cplp2) = (F?, %), and

(FY, vY) o (F?, 4%) := (F, «) for py1,p2 € R1,.. We have,

T'(Crie(p1) © G (p2)) (h) = Vi,
- 7}7'2(11(),h © Fl(fygk,h)
A1 2
= Ydim(p2)1x, b © (’Y]K,h X Id’im(Pl))
= (Idim(pz) X 711K,h) (V%K,h X Idim(m))
= (712K,h X ’711K,h)
= pa(Kige,n) & p1(Kig,n)

= pa(h) ® p1(h)

for all h € H. This shows that T/({i,(p1) 0 ((p2)) = p2 @ p1 = p1 ® py and the

Lemma is proved. |

Proposition 4.1.7. If H is normal in G, then the fusion category Ci, (where C = Vg

and M = M(H, 1)) is graded by the group K = H\G.

Proof. Trom Lemma 4.1.4, it is clear that Ci; = @,ex(Chy).- Pick any (F,v) €

(Crdes (FY Y € (Ch)ans (F2, 7?) € (Chy)zy. We need to show that
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(i) (F, v)* € (Cry)a— where (F, v)* is the dual of (F, v).
- (i) (FY A1) o (F2, %) € (Chpdanzs-

There exists non-negative integers n, ny, no such that F(s) = nzs, F1(s) = mzs,
F%(s) = ngmys, for all s € K. Statement (ii) above follows from Remark 4.1.5 and
the fact that (F' o F?)(s) = ningziz28, for all s € K. To see that Statement (i)
above holds, define an object (F', 7') € (Ci,).-1 as follows: let F'(s) := na~'s, for
all s € K, and let v, , = ((12-15,9)7)7", for all s € K,g € G. Then ' defines a
module functor structure on F’ if and only if the equation below is satisfied for all

SEK,gl,QQEG.

21

(g1, g2)(s) Tl S .
ooty (riene) )7 = (0100 (Cea10) ) 7

Now, - satisfies (4.5) for all s € K, g1, 92 € G. Replace s with z7!s in (4.5) to get

“u(g, g2)(z's)
191, g2)(x1s)

Yx=1s,g192 = Vz=ls,91 V(z—1s)<g1, 92

1(g1, g2)(s)
2" (gr, 92)(s)

z=1s,9192 — Vz—ls,q1 V(z~1ls)<g1, 92

Taking the transpose and inverse of both sides of the above equation, we get

21

#lg1, 92)(5) e e
H(gl,QQ)(S) ((71”1379192) ) _((’Vx— s,g1> ) ((fY(z s)<191,g2) ) ,

which is precisely what we need. Now, we claim that (F’, ') is the right dual of (F, «),

Le, (F,v)* = (F', ). Notethat if (F, v) is simple, then so is (F”, v'). So it suffices to
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show that the unit object of C}i, is contained in the decomposition of (F, ) o (F', 7')
into simple objects. In view of Lemma 4.1.6, it suffices to show that the identity
element (=trivial representation of H) of Ry, is contained in Y'((F, ) o (F', ¥)),

where T’ is defined in (4.8). Let (F, v) o (F', o) = (F", 4"). Then,

T, A))R) = Y,
= V0, h © F (Vg n)
= Ynz—1,h © (’YllK,h X 1,)
= (L @1 ) ((re-1,0)") T BL)

= ((Ya1,0)") T Ry g

for all h € H. Define a map p: H — GL(n, k) by p(h) := v,-1,,. Then p is a projec-
tive representation of H with 2-coycle (;:Er“) So p* is a projective representation
of H with 2-cocycle 1 (ﬁ>—1. So, we have T((F”, v")) = p* ® p. By Lemma
2.3.3, it follows that the decomposition of p* ® p into irreducible representations of

H contains the trivial representation and the Proposition is proved. |

Note that Irr(R;, ) generates a based ring that is isomorphic to the Grothendieck
ring ICo(Rep(H)) of the representation category Rep(H) of H. Also, note that (Cy )1,

is a fusion sub-category of C},.

Corollary 4.1.8. The based rings Ko(Rep(H)) and Ko((Chy)1,) are isomorphic.
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Proof. In view of Lemma 4.1.6 and Proposition 4.1.7 we only need to show that the
map T defined in (4.7) preserves duals. But this follows immediately by noting that

T'(Ci(p)*) = p*, for all p € Ry, where T’ is the map defined in (4.8). |

Proposition 4.1.9. If H is normal in G and H is nilpotent, then the fusion category

Chi (where C = Vg and M = M(H, p)) is nilpotent.

Proof. First note that Ko(Rep(H)) is nilpotent because H is nilpotent. Also, note
that (C}4)1, is a nilpotent fusion category since by the previous corollary Ko((Chy)1x) =
Ko(Rep(H)). Now observe that (C})aq is a fusion sub-category of (Ci()1,. By [GN,

Proposition 4.6} it follows that (C},).q is nilpotent and hence C}, is nilpotent. |

Remark 4.1.10. (i) If the conditions of Proposition 4.1.9 hold, then the nilpotency
class of Cj is less than of equal to 1+ (nilpotency class of H).
(ii) If Ci ¢ (where C = Vg and M = M(H, p)) is nilpotent, then H is nilpotent. This

follows from the fact that Ko(Cy ) contains Ko(Rep(H)) as a subring.
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CHAPTER 5

LAGRANGIAN SUBCATEGORIES AND BRAIDED
TENSOR EQUIVALENCES OF TWISTED QUANTUM
DOUBLES OF FINITE GROUPS

The results presented in this Chapter are based on [NN].

In Section 5.1 (respectively, Section 5.2) we classify Lagrangian categories of the
representation category of the Drinfeld double (respectively, twisted double) of a fi-
nite group. The reason we prefer to treat untwisted and twisted cases separately is
because our constructions in the former case do not involve rather technical cohomo-
logical computations present in the latter. We feel that a reader might get a better
understanding of our results by exploring the untwisted case first. Of course when

w = 1 the results of Section 5.2 reduce to those of Section 5.1.

5.1 Lagrangian subcategories in the untwisted case
We fix notation for this Section. Let GG be a finite group. For any g € G, let
K, denote the conjugacy class of G containing g. Let R denote a complete set of

representatives of conjugacy classes of G. Let C denote the representation category

Rep(D(G)) of the Drinfeld double of the group G:

C := Rep(D(G)).
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The category C is equivalent to Z(Vec), the center of Vecg. It is well known that C is
a modular category. Let I’ denote a complete set of representatives of simple objects
of C. The set I is in bijection with the set {(a, x) | @ € R and x is an irreducible

character of Cg(a)}, where Cg(a) is the centralizer of a in G (see [CGR)). In what

follows we will identify I' with the previous set.

I''={(a, x) | a € R and x is an irreducible character of Cg(a)}. (5.1)

Let S and 0 be (see, e.g. [BK], [CGR]) the S-matrix and twist, respectively, of C.
Recall that we take the canonical twist. It is known that the entries of the S-matrix lie
in a cyclotomic field. Also, the values of characters of a finite group are sums of roots
of unity, so they are algebraic numbers. So we may assume that all scalars appearing
herein are complex numbers; in particular, complex conjugation and absolute values

make sense. We have the following formulas for the S-matrix, twist and dimensions:

|G|

(e, 20 ) = e rcam | 2, Yot ¥ 7 ea)
e(av X) = (i(ga;’
- S
d((a, x)) = | Ka| deg x Cola) deg x,

for all (a, x), (b, X') € T, where G(a, b) = {g € G | agbg™ = gbg~'a}.

5.1.1 Classification of Lagrangian subcategories of Rep(D(G))
Lemma 5.1.1. Two objects (a, x), (b, X') € I" centralize each other if and only if the

following conditions hold:
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(i) The conjugacy classes K,, K, commute element-wise,
(i1) x(gbg™ 1) X' (g7 ag) = deg x deg X/, for all g € G.
Proof. By [Mu2, Corollary 2.14] two objects (a, x), (b, X') € I centralize each other
if and only if
S((a, x), (b, X)) = deg x degx’.

This is equivalent to the equation

> xlgbg™")x'(97ag) = |G| degx deg ¥/, (5.2)

9€G(a,b)

where G(a, b) = {g € G | agbg™! = gbg~'a}. 1t is clear that if the two conditions of
the Lemma hold, then (5.2) holds since G(a, b) = G.
Now suppose that (5.2) holds. We will show that this implies the two conditions

in the statement of the Lemma. We have

|G| degx degx' =1 > x(gbg™") X' (g7 ag)l

g€Gla,b)

< Y Ixlgbg™HI X (97 ag)]
g€G(a,b)

< |G| degx degx'.

80 Y geciap 1X(900 DX (97 ag)| = |G| deg x deg x'. Since
G a, b)| < |G|, Ix(g9bg™)] < degx, and |x'(g7"ag)| < deg X/,

we must have G(a, b) = G, |x(gbg™!)| = degyx, and |x'(¢7ag)| = degx’. The

equality G(a, b) = G implies that the conjugacy classes K,, K, commute element-
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wise, which is Condition (i) in the statement of the Lemma. Since |x(gbg™")| = deg x,

and |x/'(g7!

ag)| = degx/, there exist roots of unity o, and 3, such that x(gbg™!) =
ay degx, and x/(g7ag) = B, degy/, for all g € G. Put this in (5.2) to get the

equation

> a8, =G|, (5.3)

Note that (5.3) holds if and only if oy 3, = 1, for all g € G. This is equivalent to saying

that x(gbg™!) X'(¢7'ag) = degx degy/, for all g € G and the Lemma is proved. ®

Lemma 5.1.2. Let F be a normal subgroup of a finite group K. Let Irr(K) denote
the set of irreducible characters of K. Let p be a K-invariant character of E of degree

one. Then

et = 0

xe€lrT(K):x|p=(degx) p

Proof. Suppose x is any irreducible character of K. Since p is K-invariant, by Clif-

ford’s Theorem, if p is an irreducible constituent of x|z, then

xle = (deg x) p. (5.4)

By Frobenius reciprocity, the multiplicity of any irreducible x in Ind%p is equal to
the multiplicity of p in x|g. The latter is equal to degy if x satisfies (5.4) and 0 °

otherwise. Therefore,

> (deg x)* = deg Indfp = K]

\E|’
x€Irr(K):x|p=(deg x) p

as required. .
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Let H be a normal Abelian subgroup of G and let B be a G-invariant alternating

bicharacter on H. Then H = |, ynp Ka- Let

Lu, ) := full Abelian subcategory of C generated by

( Vet a € HN R and x is an irreducible character of Cg(a)
a, x) €
such that x(h) = B(a, h) degx, forall he H

Proposition 5.1.3. The subcategory Ly p) © Rep(D(G)) is Lagrangian.

Proof. We have

x(gbg™") X' (g7 ag) = Bla, gbg™") degx B(b, g ag) degx’
= B(a, gbg™") B(gbg™', a) degx degx’

= deg x deg X/,

for all (a, x), (b, X') € L,y N T, 9 € G. The second equality above is due to G-
invariance of B and the third equality holds since B is alternating. By Lemma 5.1.1,
it follows that objects in Ly, py centralize each other.

Also, we have 0, ) = a’%(é% = %%’—z—) degx = 1, for all (a,x) € Lu,p NT.
Therefore, 0|, 5 = id.

The dimension of Ly, py is equal to |G|. Indeed,

dim(ﬁ(H, B)) . Z d(a) X)2

{a, x)eLm, Bynl

= D |Kd[*(degx)?

(@, x)€Ly, BynT
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= YUK Y (degx)?

ecHNR x:(a, X)€L (g, pynI’

21Cc(a)|
> KL=

aceHNR

¢
:||~g—|l > K|

a€HNR

= |G-

The fourth equality above is explained as follows. Fix « € H N R. Define p: H — k*
by p(h) := B(a, h). Observe that p is a Cg(a)-invariant character of H of degree 1
and then apply Lemma 5.1.2.

It follows from Lemma 2.10.2 that £ g, p) is a Lagrangian subcategory of Rep(D(G))

and the Proposition is proved. |

Now, let £ be a Lagrangian subcategory of C. So, in particular, the two conditions

in Lemma 5.1.1 hold for all simple objects in L. Define

Hg = U K,. (5.6)

a€R:(a, x)EL for some X

Note that H, is a normal Abelian subgroup of . Indeed, that H. is a subgroup
follows from the fact that £ contains the unit object and is closed under tensor
products. The subgroup H is normal in G because it is a union of conjugacy classes
of G. Finally, that H. is Abelian follows by Condition (i) of Lemma 5.1.1.
For each a € H N R, define &, : H — k* by
x(h)

Eull) = o
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for h € Hy, where x is any irreducible character of Cg(a) such that (a, x) € LNI'. To
see that this definition does not depend on the choice of x, let (a, x), (a, x'), (b, X") €
LNI" and apply Condition (ii) of Lemma 5.1.1 to pairs (a, x), (b, x”) and (a, x'), (b, x")

to get

xlgbg™) _ (x'gTtag T X(gbe™) _ (X(gT'ag)\
deg x deg x" deg ¥/ deg x" ’
g g

for all g € G. This implies that % = %7 for any two pairs (a, x), (a, ') € LNT.

For any a,b € Hy N R, by Condition (ii) of Lemma 5.1.1, &, and &, satisfy the

equation:

€a(gbg™) = &(g7 ag)™?, forall g€ G. (5.7)

Define a map By : Hy x Hr — k* by
Bﬁ(hlv hQ) = Ea(g_lhlg)? (58)

where hy = gag™,g € G,a € H: N R.
Proposition 5.1.4. B, is a well-defined G-invariant alternating bicharacter on H.

Proof. First, let us show that B, is well-defined. Suppose gag™' = kak™!, where

a€ HeNR,g,k € G. Then

Be(gag™, ™Y = &((g7 Db(g™' D))
=&((g7 ) alg™ )™

=& (gag D)™
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= &7 (kak™HD) ™!
= &7 k)T E))
=& (K7l hk)

= Be(kak™, 16I71),
for all b€ He N R, € G. The second and the fifth equalities above are due to (5.7).

Let hy = kak ™Y, ho € H;,g € G, where a € H: N R,k € G. Then

Ber(ghig™", ghog™") = Be(gkak™ g™, ghag™)
= £a((gk) " (ghag™ ") (k)
= £a(k™ hok)
= Be(kak™, hy)
= Br(h, ha).

So B, is G-invariant.

Now,

Bc(gag™, gag™") = Bc(a, a)

foralla € H: N R,g € G. The first equality above is due to the G-invariance of By.

So Be(h, h) = 1, for all h € H.
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Also, Be(gragrs gobgs ) Be(gebgs 'y qiagr) = €alg1 92bgs ' 91)€x(95 " qragr ' g2) =
1, for all g1,92 € G,a,b € HN R. We used (5.7) in the last equality.
To see that B, is a bicharacter, observe first that &, is a homomorphism, for all

a€ He N R, We have

Be(gag™, h1) B(gag™, he) = (97 hag) €a(g™ hag)
= £,(g7 hihag)

= Be(gag™", hihs),

for all a € He N R,g € G,h1,hy € Hz. We conclude that B is a G-invariant

alternating bicharacter on H, and the Proposition is proved. [

Recall that Lagr(C) denotes the set of Lagrangian subcategories of a modular

category C.

Theorem 5.1.5. Lagrangian subcategories of the representation category of the Drin-
feld double D(QG) are classified by pairs (H, B), where H is a normal Abelian subgroup

of G and B is an alternating G-invariant bicharacter on H.

Proof. Let € := {(H, B) | H is a normal Abelian subgroup of G and B € (A2H)“}.
Define a map ¥ : £ — Lagr(C) : (H, B) — Ly, ), where C = Rep(D(G)) and L, )
is defined in (5.5). It was shown in Proposition 5.1.3 that Ly p) is a Lagrangian
subcategory.

To see that U is injective pick any (H, B),(H', B) € £ and assume that ¥((H, B))

= V((H', B")). So in particular we will have Ly, gy N T" = Lz, )y N I. Note that
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H = Ua, et syrrKa and H = U(a,x)eg(H,’B,)n[‘Ka. Since Lig, By NT = L, gy NT,
it follows that H = H'. Also note that for any (a, x) € L,y NI = L, gy N T,
we have x(h) = B(a, h) degx = B'(a, h) degx, for all h € H = H'. Since B, B’ ére
G-invariant, it follows that B = B’. So V¥ is injective.

To see that W is surjective pick any £ € Lagr(C). Consider the pair (Hg, Bg),
where H, and B, are defined in (5.6) and (5.8), respectively. Proposition 5.1.4 showed
that (H, Bc) belongs to the set £. We contend that W((H;, Bg)) = L. It suffices
to show that LNT C Ly, ,). But this hold by definition of Ly, g, and the

observation that gggix = ge];f,, for any two pairs (a, x),(a, xX') € LN, a€ HNR,

So U is surjective and the Theorem is proved. ]

5.1.2 Bijective correspondence between Lagrangian subcategories and

module categories with pointed duals
Let D be a fusion category and let M be an indecomposable D-module category.

There is a canonical braided tensor equivalence [EO]|

o Z(D) 2 Z(D%) (5.9)

defined by identifying both centers with the category of D X (D},)*V-module endo-
functors of M.

Let f : F(C) = Lagr(C) be the bijection between the set of (equivalence classes
of} braided tensor equivalences between C and centers of pointed fusion categories

and the set of Lagrangian subcategories of C defined in [DGNO], see (2.22).
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Theorem 5.1.6. The assignment M + 1 restricts to a bijection between the set
of equivalence classes of indecomposable Vecg-module categories M with respect to

which the dual fusion category (Vecg)h ts pointed and E(Rep(D(G))).

Proof. By Theorem 3.1.5, Theorem 5.1.5 and taking into account that the isomor-
phism alt : H*(H,k*) = (A%H) is G-linear, we see that the two sets in question
have the same cardinality. Thus, to prove the theorem it suffices to check that for
M= M(H, 1) one has f(tp) C Lo, aie(w)), Where Lim, airu)) is the Lagrangian sub-
category defined in (5.5).

By definition, f(ta) consists of all objects Z in C = Z(Vecg) (identified with
Rep(D(@G))) such that the Vecg-module endofunctor Fz : M — M : M — M ® Z is
isomorphic to a multiple of ida. Note that here we abuse notation and write Z for
both object of the center and its forgetful image.

Let us recall the parametrization of simple objects of Z(Vece) in (5.1). Suppose
that a simple Z corresponds to the conjugacy class K, represented by a € R and the

character afforded by the irreducible representation 7 : Cg(a) — GL(V;). Then as a

Gi-graded vector space Z = @,ck, V¥ and the permutation isomorphism
Coz: g7 7 ®g

is induced from 7, where we identify simple objects of Vecg with the elements of the

group G.
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It is clear that F is isomorphic to a multiple of idys as an ordinary functor if
and only if K, C H. Note that this implies that H C Cg(a). Note that for every
Vecg-module functor F: M — M the module functor structure on F is completely
determined by the collection of isomorphisms F(H1®h) = F(H1)®h, h € H, where
H1 denotes the trivial coset in H\G = Irr(M).

For F = Fy the latter isomorphism is given by the composition

@zy(h,m)_li

dye (@ h)idye
(Highyoz S0 9 e (he ) BenleWidvs

idH1®cn,z
—_—

H1®(Z3h) (H192)&h.

Note that the restriction of ¢;,z to h ® V@ is given by = (h), for all h € Cg(a). If the
above composition equals identity, then w(h) = alt(y)(a, k) idy,, for all h € H. So

Z € Lg,anw) and, therefore, f(iae) € LiH, ate(u)), a8 required. |

5.2 Lagrangian subcategories in the twisted case

In this Section we extend the constructions in the previous Section when the
associativity is given by a 3-cocycle w € Z*(G, k*). Note that the results of this
Section reduce to the results in the previous Section when w = 1.

For this Section we follow the notation fixed at the beginning of the previous
section. Let w be a normalized 3-cocycle on G, i.e., w is a map from G x G x G to

k* satisfying:

w(g2, 93, 9a)w(g1, 9293, ga)w(g1, 92, g3) = w(g192, 93, ga)w (g1, g2, g3ga),  (5.10)

w(g, 1g, ) =1,
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for all gal7917927g37g4 € G.

Let C denote the representation category Rep(D“(G)) of the twisted quantum

double of the group G [DPR1, DPR2]:

C = Rep(D*(G)).

The category C is equivalent to Z(Vecg). It is well known that C is a modular
category. Replacing w by a cohomologous 3-cocycle we may assume that the values
of w are roots of unity.

For all a,g,h € G, define

Ba(h, g) == w(a, h, g)w(h, K ah, g)"'w(h, g, (hg) " ahg). (5.11)

The (,’s satisfy the following equation:

Bo(z, y)Balzy, 2) = Bulz, Y2)Be-1ae(y, 2), for all z,y,2z € G. (5.12)

Observe that the restriction of each 3, to the centralizer Cz(a) of @ in G is a normal-
ized 2-cocycle. Let T" denote a complete set of representatives of simple objects of C.
The set ' is in bijection with the set

{(a, x) | @ € R and x is an irreducible g,-character of C(a)}. In what follows we

will identify I' with the previous set:

I':= {(a, x) | @ € R and x is an irreducible 3,-character of C¢(a)}. (5.13)
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Let S and 0 be the S-matrix and twist, respectively, of C. It is known that the entries
of the S-matrix lie in a cyclotomic field. Also, the values of a-characters of a finite
group are sums of roots of unity, so they are algebraic numbers, where « is any 2-
cocycle whose values are roots of unity. So we may assume that all scalars appearing
herein are complex numbers; in particular, complex conjugation and absolute values

make sense. We have the following formulas for the S-matrix, twist, and dimensions

(see [CGR)):

S((a, x), (0, X))

X(zg'z™ ") ¥ (ygy ™),

B Balz, 9')Balzg’, 1) By, 9)Bs(yg, ¥71)
N 2 ( Balz, 271) Bo(y, 1) )

g€Ka,g' EKpNCa:(g)

H(CL, X) - %(?5“227
d((a, x)) = | Ka| degx = &l deg x,

|Ca(a)l
for all (a, x), (b, X') € I, where g = z7taz, ¢’ = y~'by.

5.2.1 Classification of Lagrangian subcategories of Rep(D“(G))

Remark 5.2.1. Let p: K — GL(V) be a finite-dimensional projective representation
with 2-cocycle « on the finite group K. Let x be the projective character afforded
by p, i.e., x(x) = Trace(p(z)), for all € K. Suppose that the values of & are roots

of unity. Then |x(z)] < degy, for all x € K and we have equality if and only if

p(z) € k* - idy.
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Lemma 5.2.2. Two objects (a, x), (b, X') € I centralize each other if and only if the

following conditions hold:

(i) The conjugacy classes K,, K}, commute element-wise,

. oz, yt ey~ Loy, 2t ,z " tax x tax,y~?! — - - -
(if) (ﬂ( y~tby)B (xyﬂa(i,x'l))%i((yy,y"l) )Bs (y y )) x(zy by~ ) ¥ (ya~Lazy ™)

= deg x degx/, for all :i,y € G.

Proof. Two objects (a, x), (b, x') € I' centralize each other if and only if

S((a, x), (b, X')) = deg x deg x.

This is equivalent to the equation:

3 <6a(x, 9)Bu(zg’, ™ HB(y, 9)Bs(yg, y 1)

B, D)6y, 5= ) x(@g's™) X (yay™)

geKa,g'€KpynCs;(g)
= | Ko|| K| degx degx/,

(5.14)

1

where g = x7lax, ¢’ = y~'by. It is clear that if the two conditions of the Lemma

hold, then (5.14) holds since the set over which the above sum is taken is equal to
f(a X .[(b.
Now suppose that (5.14) holds. We will show that this implies the two conditions

in the statement of the Lemma. We have

|Ka|| K| deg x deg X/

Ba(z, g')Ba(zg’, 71 , 9)B(yg, y71
_ 3 < (z, 9')Ba(zg )Bs(y, 9)Be(yg, y)

e 0. o) >x(w9’w‘1)x’(ygy"1)

9€Ka,9'€KyNCa(g)
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IN

Z (ﬁa(aj> gl)ﬁa(xgla w_l)ﬁb(y; g)ﬁb(ygv yﬁl)

-1 e
9€Ka,9'€KyNCr(9) ﬂa(x’ z )/Bb(’y, Yy )

_ Z Ix(zg'z™h)| ¥ (ygy™)|

g€ Ka,g'€KyNCi(g)

)t Ix(zg'z™M)| X (ygy™)|

< K || K| deg x degy/
So

> Ix(@g'z™")] Ix'(ygy™")| = |Kal|Ky| degx degx'.

9€Ka,g’' € KpyNCi (g)

Since [{(g, ¢') | 9 € Ko, g' € Ko N Co(g)}| < K|, [x(zg'a™")] < degx, and
X' (ygy™")| < degx’, we must have [{(g, ¢') | g € Ko, ' € Ky N Co(g)} = |Kal ),
ie. {(9,9) 19 € Kayg € KyNCclg)} = Ko x Ky, |x(xg'z7")| = degx, and
X' (ygy™")| = degx’. The equality {(g,9') | g € Ka,9' € Kpy N Cs(g)} = Ka X K
implies that K, C Cg(g), for all g € K, . This is equivalent to the condition that
K,, K}, commute element-wise which is Condition (i) in the statement of the Lemma.

Now, (5.14) becomes:

Balz, 9)Bu(zg, 2~ 1) Bo(y, 9)Be(yg, y‘l)) xegs™) X ygy™)
(g,g/g?;axxﬁ Pal(z, 271 By, y~) degx  degi el
(5.15)

where g = z7taz, ¢’ = y~'by. Since |x(zg'z™!)| = degx, and |x'(ygy~")| = deg X', by

Remark 5.2.1, X(Zi/;;) and Xléizy;) are roots of unity. Note that (5.15) holds if and

only if

<ﬁa(:c, 9)Bu(xg, 1) By, 9)Bo(yg, ™)

1.—1 / -1\ /
5a(37; x—l)/ﬁb(y) y—l) ) X(mg L )X <ygy ) - degX degX )
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for all g € K,, ¢ € Ky, where g = 7 ax, ¢’ = y~'by. This is equivalent to Condition

(ii) in the statement of the Lemma. |

Note 5.2.3. Let E be a subgroup of a finite group K. Let a be a 2-cocycle on K.

Let x be a projective a-character of . For any = € K, define x* by

(1) = a(lz, 2™ oz, 27z) a(z, 27 x (27 ),

-1

for all I € E. Then x* is a projective a-character of zEx™". Suppose F is normal in

K. Then x is said to be K-tnvariant if x* =y, for all x € K.

Lemma 5.2.4. Let E be a normal subgroup of a finite group K. Let a be a 2-cocycle
on K. Let Irr(K') denote the set of irreducible projective a-characters of K. Let p

be a K-invariant projective a|gpyg-character of E of degree 1. Then
K
> (deg x)* = I‘—E—II
XelrT (K)ix|p=(degx) p

Proof. The proof is completely similar to the one given in Lemma 5.1.2 except in this
case we apply Clifford’s Theorem [Ka, Theorem 8.1] and Frobenius reciprocity [Ka,

Proposition 4.8] for projective characters. [

Let H be a normal Abelian subgroup of G.

Recall that w € Z3(G, k*) gives rise to a collection (5.12) of 2-cochains f,, a € G.
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Definition 5.2.5. We will say that a map B : H x H — k* is an alternating w-

bicharacter on H if it satisfles the following three conditions:

B(hb h?) = B(h‘% h’l)-la \ (516)
B(h, h) =1, (5.17)
§' By = Bnluxm, (5.18)

for all h, hy, he € H, where the map B, : H — k™ is defined by Bp(h1) := B(h, hy),

for all h,hy € H.

Definition 5.2.6. We will say that an alternating w-bicharacter B : H x H — k*

on H is G-invariant if it satisfies the following condition:

Ba(z, h)Ba(@h, 271)
Ba(z, 271)

Bz taz, h) = B(a, zhz™"), forallz € G,a€ HNR,h € H.

(5.19)

Define

A2H :={B: H x H— k*| B is an alternating w — bicharacter on H}, (5.20)

and

(A2H)Y := {B € A2H | B is G-invariant}. (5.21)
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Remark 5.2.7. If w = 1, then (A2 H)® is the Abelian group of G-invariant alternat-

ing bicharacters on H.

Remark 5.2.8. If B is an alternating w-bicharacter on H, then the restriction
w|gxgxyg must be cohomologically trivial. Indeed, let wy = w|gxpxy. Then B
defines a braiding on the fusion category Vecy/. The isomorphism h; ® ho S he® by
is given by B(hq, hsy), for all hy, hy € H, where we identify simple objects of Vec}/
with elements of H. It is known ( see, e.g., (Q], [FRS}) that in this case wy is an
Abelian 3-cocycle on H. By a classical result of Eilenberg and MacLane [EM] the
third Abelian cohomology group of H is isomorphic to the (multiplicative) group of
quadratic forms on H. The value of the corresponding quadratic form ¢ on h € H is
given by g(h) = B(h,h). Since B is alternating we have ¢ = 1 and so wyg must be

cohomologically trivial.

Let B € (A2H)® and define:

L, ) = full Abelian subcategory of C generated by

(0. ) €T a € HN R and y is an irreducible g,-character of Cg(a)
a, x) €

such that x(h) = B(a, h) degx, forall h € H
(5.22)

Proposition 5.2.9. The subcategory Ly, gy € Rep(D“(G)) is Lagrangian.

Proof. Pick any (a, x), (b, X') € L, By NT. We have
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(ﬁa(ar, Y y) oy by, 27 Be(y, 27 az) By(yzraz, y~ ))
Balz, 1) By, y71)
x(zy ™ oyz™ 1)X(y:v azy™")
a b -—1 a ~1b Y —-1 —_— —_—
- ety gay()ﬁ giyl) Y2 )B(a, zy~tbyz™")
. Boly, 27 an) By ya e, -
Go(y, y=1)

= B(z™ az, y~'by) By 'by, " ax) degx degx’

1
)B(b, yr tazy™!) x degy degx’

= degx deg X/,

for all 2,4 € G. The second equality above is due to (5.19) while the third equality
is due to (5.16). Note that K,, K, commute element-wise since H is Abelian. By
Lemma 5.2.2, it follows that objects in Ly, py centralize each other.

Also, 0|z 5, = id. The proof of this assertion is exactly the one given in Propo-
sition 5.1.3.

Now, fix a € HN R and observe that B, defines a Cg(a)-invariant f,-character of
H of degree 1. Indeed,

Bolz, z71)
Bo(hz, 71) 6, (x, x~1h)

= B(z"'az, 27 hz)™! B(a, k) B(a, 27 ha)

(Ba)*(h) = B(a, 2 th)

= B(a, h),

for all # € Cg(a),h € H. The second equality above is due to (5.19).
The dimension of L, p) is equal to |G|. The proof of this assertion is exactly the

one given in Proposition 5.1.3 except we appeal to Lemma 5.2.4 in this case.
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It follows from Lemma 2.10.2 that Ly, ) is a Lagrangian subcategory of Rep(D“(G))

and the Proposition is proved. |

Lemma 5.2.10. Let H be a normal Abelian subgroup of G. Let B : H x H — k* be
a map satisfying (5.16),(5.17), and (5.19). Suppose 6'B, = B,|ux#, for all a € HNR.

Then B € (A2 H)C.

Proof. We only need to verify that (5.18) holds. We have

(51Bx_1am)(h'la h?)

_ B(z"lazx, hy)B(z ™ az, ho)
B B(z7laz, hihs)

, -1 -1
(QL(L g:()f?f_fil), a )> B(a, zhiz™) x <ﬁa($, gjgfﬁgjﬁ_}%’ a )) Bla, zhyr™)

Ba(z, x71) —-1y-1
" (ﬁa(m, ) Bl a:—1>> Bla, zhuhse™)
Bal, hy)Ba(zhy, 271 8u(z, hy)Be(Thy, 27 1) Ba(zhiz™t, hoz™!)
Balz, 271 Bo(, hyho)Ba(zhihy, z71)

_ Ba-taz(ha, ho)Balzhy, 271 Ba(m, he)Ba(zhe, 1) Be(xhiz™!, xhor™")
N Ba(zhy, he)Ba(z, 271)Ba(xhihe, x71)
 Bataa(ha, he)Ba(zhy, hox ™) Bp-taz (@71, Thow ™) Bu(@, oz ™) Be-14q (ha, 277)
N Balzhi, he)Ba(z, 71)Be(zhihy, z1)

= ﬁ:c*laa:(hla h2)7

forallz € G,a € HN R, hy, he € H. In the second equality above, we used (5.19). In
the third equality we used 6'B, = B,|mxy. and canceled some factors. In the fourth
equality we used (5.12) with (z, y, 2) = (z, h1, he). In the fifth equality we used
(5.12) twice with (z, y, 2) = (z, he, z71), (zhy, 71, Thez™!). In the last equality we

used (5.12) twice with (z, y, 2) = (zhy, he, 271), (z, ™1, Thoz™!). [
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Now, let £ be a Lagrangian subcategory of C. So, in particular, the two conditions

in Lemma 5.2.2 hold for all objects in £LNT. Define
H = U K,. (5.23)
a€ R:{a, x)eLNT for some x

Note that H. is a normal Abelian subgroup of G.

Define a map B, : H; x Hy — k* by

/Ba(m, h?)ﬁa(th) (L'_l) > X(thx_l)

B/(hqi, ho) :=
e(ha, ho) Bo(w, o) dog x

(5.24)

where hy = a7 laz,z € G,a € H: N R and  is any B,-character of Cg(a) such that
(a, x) € LNT. The above definition does not depend on the choice of x. The proof
of this assertion is similar to the proof given for the corresponding assertion in the

untwisted case,

Proposition 5.2.11. The map B, defined in (5.24) is an element of (A2 H)®.

Proof. First, let us show that B/ is well-defined. Suppose z7'ax = 2z 'az, where
a€ HeNR,z,z € G. Then
Be(a—taz, y-tby) — Dol Y ) Buloy by, 270 x(zy~tbya™")
L Y Y /Ba(m) x__l) degX
_ (ﬁb<y, 7~ }az)By(yz " az, y—1>)‘1 <x'<y:c—1axy-l>>‘l
Be(y, y~) deg X’
_ (ﬁb(y, 2"laz)fy(yz " az, y‘l))'1 (x’(yz‘lazy’1)>"1
Boly, y=*) deg x’
_ Balz, y7'by)Balzy by, 27 x(zyTbyz")
Ba(z, 271) deg x

= Be( " az, y~'by),
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forall b€ HcN R,y € G, where X' is any irreducible Gy-character of Ce(b) such that
(b, ¥') € LNT. The second and the fourth equalities above are due to Condition (ii)
of Lemma 5.2.2.

The map B, satisfles (5.16) because Condition (ii) of Lemma 5.2.2 holds. Let us

show that (5.17) holds for Bg:

Be(z taz, 27 ax)

_ Ba(z, z7taz) B, (az, z71) y x(a)
Balz, z71) deg X
w(a, az,z7Nw(az, z~

1 1

= W(a T (L'—lam) X ) a) w(fE, T ax, (1:‘_1)
y by

x 0
w(az, z~laz, z71) w(a, z, z7Hw(z, 71, a) (@)

17 CL)

w(a, z, z7Hw(z, 271, a)

w(a, T, z7a)w(az, T~

=1,

for all x € G,a € He N R. In the second equality we used the definition of §,. In
the third equality we used (5.10) with (g1, g2, g3, g4) = (@, , 27 az, z7!) and used

the fact that 6, ,y = 1 . In the fourth equality we used (5.10) with (g1, g2, g3, 94) =

(a, z, x4 a).

The map B, satisfies (5.19) because Bg(a, zhz™!) = X(fj:gz;), for all a € HN

R,z € G,h € H. We have Br(a, h1)Be(a, hy) = Xe0xlbal — g (, py)xduta)l
Ba(hy, ho) Be(a, hyhs), for all @ € HN R,hy,hy € H. The second last equality
above is because H acts as scalars on the projective §,-representation of Ce(a) whose

projective character is x. By Lemma 5.2.10 it follows that B, € A2H and the

Proposition is proved. [
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Theorem 5.2.12. Lagrangian subcategories of the representation category of the
twisted double D*(G) are classified by pairs (H, B), where H is a normal Abelian
subgroup of G such that w|gxpxm 18 cohomologically trivial and B : H x H — k* is

a G-invariant alternating w-bicharacter in the sense of Definition 5.2.6.

Proof. The proof is completely similar to the one given in Theorem 5.1.5. |

5.2.2 Bijective correspondence between Lagrangian subcategories and

module categories with pointed duals
Let H be a subgroup of G such that w|gx g« # is cohomologically trivial. Consider

the set {p € C*(H, k*) | 6% = w|gxuxm}- An element p of the previous set satisfies:

p(ha, ha) p(haha, ha)™" p(ha, hohs) p(ha, he)™" = w(ha, he, hs). (5.25)

for all hy, hy, hg € H.
We will say that two elements of {i € C?*(H, k*) | 6* = w|pxuxw} are equivalent

if they differ by a coboundary. Let

Qpu . := equivalence classes of {u c C*(H, k*) | 6%u= W|H><H><H} . (5.26)

For each z € G, define v, : G x G — k* by

_ w(g1, 92, T)w(g192295 97", g1, 92)
w(gl’ 9251792_17 92)

Va(91, 92) , for all ¢1, g2 € G.
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It is easy to verify that the following relation holds:

T:vlwz(gla 92) _ Vgl(mla xQ)ng(xlv 132)
Yo (@20127 ", 299205 1) Tuy (91, g2) Vgrg2 (21, T2)

, forall x1,29,91,92 € G,
(5.27)
where T is defined in (3.2).

Suppose that H is normal in G. For any z € G and u € C?(H, k*) such that
§2u = wlgxmgxm, define pax := p® x Tolpgxm. It is easy to verify that §2(u<z) =
wlgxaxng. This induces an action of G on Qy,, (defined in (5.26)). Indeed, that this
is an action follows from (5.27). Let (Qp, )¢ denote the set of G-invariant elements

of QH,w: i.e.,

(QH,U))G = {,LL < QH,w

% x Yolxp is trivial in H*(H, k%), for all = € G} )
(5.28)

It can be deduced from Theorem 3.1.5 that the set of equivalence classes of inde-
composable module categories over Vec(, such that the dual is pointed is in bijection
with the set of all pairs (H, i), where H is a normal Abelian subgroup of G such that
W« rxw 1s cohomologically trivial and p € (Qp,,)¢.

Theorem 5.2.12 showed that the set of Lagrangian subcategories of Rep(D“(G))
is in bijection with the set of pairs (H, B), where H be a normal Abelian subgroup of
G such that w|gxmx g is cohomologically trivial and B € (A2 H)® (defined in (5.20)).

In this Subsection we will first show that the set of equivalencelclasses of indecom-
posable module categories over Vecy such the dual is pointed is in bijection with the

set of Lagrangian subcategories of Rep(D“(G)). We will establish the aforementioned
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bijection by showing that there is a bijection between Qg (defined in (5.26)) and
AZH (defined in (5.20)) that restricts to a bijection between (Qg,)¢ and (A2H)C,
where H is any normal Abelian subgroup of G such that w|g«pgxm is cohomologically
trivial.

Let H be a normal Abelian subgroup of G such that w|gxpxa is cohomologically
trivial. Let g € C?*(H, k*) be a 2-cochain satisfying 6?1 = w|gxpxg. Define alt' (1)

by

plha, hy)

alt' () (hy, hy) = . o).

Lemma 5.2.13. The map alt'(g) : Hx H — k* defined above is an element of A% H.

Proof. Clearly alt'(p)(hy, he) = alt'(u)(he, ki)™t and alt'(p)(h, k) =

for all h, hi,hy € H. We have

alt'(p)(hy ha) alt'(p)(h, ho) _ plla, B) | plhe, B)  p(h, fahe)
alt' (1) (h, hiho) plhy Ba) T op(hy he) T p(hahs, h)
o, D)o, W)y, ho)

~ u(h, ho)pu(hahy, hyu(hy, ho)
_ (P, R)p(hha, ha)
(h (
(h

X w(h, h], hg)

X w(h, hy, hy) X w(hy, he, h
11(h, ho)p(he, hhy) (s s ho) X w(hn, h, h)

_wWin, hi, h2) (h1> ha, h)
(h'la h’: h’?)

= ﬁh(hh hQ)v

for all b, hy, he € H. In the second, third, and fourth equalities above we used (5.25)

with (hl, hg, h3) - (h, h], hg), (hla hg, h), (hl, h, hg), respectively. |
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The map alt’ induces a map between Qp, and AZH. By abuse of notation we

denote this map also by alt’:
alt' : Qg — A2H : g alt'(p). (5.29)

Lemma 5.2.14. The map alt’ defined above is a bijection.

Proof. First note that alt’ is well-defined. TFix pg € C*(H, k*) satisfying §%ug =
w|gxaxe. Let Bo = alt'(ug). Define bijections f1 : A2H = A’H : B — B% and
fo i1 Qp. — HYH, k*) :prs (%) Note that the cardinality of the two sets Qg
and A2 H are equal. Injectivity, and hence bijectivity, of alt’ follows from the equality

fl &} alt/ = alt o) fQ.

Lemma 5.2.15. The following relation holds:

T:c(h% hl) ﬁmhl:c“l(iva h?)ﬁxhlw—l(mh’%m—l)
= , for all z € G, hq,he € H.
Ta:(hla h?) ﬁzhlz_l(wa m—.l) b

Proof. We have

Tl ) | Papeslea)

Tolhe, ho)  Banya—1(%, ho)Benye-1(The, ©771)

B w(zhoz™t, zhix ! x) w(zhyz™, z, 7 HYw(z, 271, zhiz™)
 w(zhez1, z, hy)w(zhiz™!, Ther1, T) w(z, hy, 271)

w(xhe, hq, :1:'1)

% w(zhiz™1, Thy, x Hw(xhe, 71, zhiz~1)

(z, z71, zhiz™Nw(zhez ™!, zhy, z71)

(zhg, 271, xhiz~Yw(zhez ™!, z, hyz™!)
1

 w(zher™!, zhia ™!, R)w(zhiz !, z, T w
w(zhiz™Y, zhex !, T)w(zhiz™1, zhe, 7 Hw

? :1;7 ‘,’U_l)
w(zhiz~t, zhex™!, 2 )w(zhiz™1, zhy, v~ Hw(zhe, 71, zhiz~ w(zher™1, z, hyx~1)

w(z, 271, zhiz™Yw(zh hez™
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w(z, 271, zhiz™Yw(zhoz™, z, z71)
w(xhy, 71, chiyz Vw(zhez™1, z, hyz™1)

= 1,
for all z € G, hy,hy € H. In the first equality above we used the definition of T and
[ and canceled some factors. In the second, third, fourth, and fifth equalities we used
(510) with (gh g2, gs, 94) = (fL’hQ.’,U—‘l, z, hl) $_1)7 (.’Ehg.’ﬂ_l, l’h}ﬂ?”l, z, x—l),

1

(zhix™, zhox™ ) z, 271), and (zhoz™, =, ™1, zhiz™?), respectively. |

Lemma 5.2.16. The map alt’ defined in (5.29) restricts to a bijection between

(Q.,)¢ and (A2H)C.

Proof. Let us first show that alt’((Qp,,)%) € (A2H)C. Pick any p € (Qm,)°. So
alt (“7; X TlexH> =1, for all z € G. We have
alt'(p)(z~taz, k) x alt'(u)(a, zha~1)™1

_ plh, 27 tax) y pla, zhe™t)

= e am B)  (eha )

_ p(@laz, h) o p(h, 27 az)
-~ p(zlam, B) © pE(h, 2lax)

z -1
= qalt </—;— X TleXH) (h, :c'laa;) X %‘?i—;
_ Tu(h, z7"ax)
- Y,(z~laz, h)
_ba (z, h)Bu(zh, z71)
Polz, z71) 7

for all x € G,a € HN R,h € H. In the fourth equality above we used the fact
that alt (%} X Tw\HxH) = 1 and in the fifth equality we used Lemma 5.2.15. So

alt'((Qg.,)¢) € (A2H)C, as desired.
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Now let us show that (A2H)¢ C alt'((Qp.)%). Pick any u € Qg and suppose
that alt'(p) € (A2H)C. Suffices to show that alt (’—E— P Tz|HxH> =1,foral zeG.
Let B := alt’(i). We have

5 T, (s bo)
alt | — x 1, hi, ko) X —————
(5 % el ) () x A0

= B(zhix™}, zhex™)B(hy, ho)™?

= B((yz™")a(ya™), whya™") B(y oy, hy)™! (where hy = y~lay)
— @1(?/37_1, wh@x‘—l)ﬁa(thm‘l? my_l) % ﬁa(y7 y_l)
Ba(yx=1, zy=1) Baly, h2)B(yhe, y=)

_ Ba(yz™", xhe)Balyhe, 271 Ba(yhoz™, zy™)
Bmhlz—l(ivha, DBy, v Balyz™? wy‘l)ﬁa(y, ha)Ba(yhe, y=7)

_ Balyr™!, 2)Ba(yhe, 271)Ba(yhor™, 2y™h)Baly, y71)
Bahiz—1(2, ho)faniz—1(he, 271 fa(yz™t, zy=1)Ba(yhe, ¥y 1)

_ Bahya=1(2, £71)Ba(yhe, =7 1)Ba(yhor™, 2y~ )Baly, y~7)
Bahiz—1 (2, h2)Baniz—1(zhe, 7)) 0a(y, 271)Balyz™t, 2y=1) Bu(yhe, y1)

T (hla h?) % ﬁa(ya y—l)ﬁhl(m_la xy-—l)
(h% 1) ﬁa(yv mﬁl)ﬁa(yx—la wy—l)

_ Tu(ha, ho)

T:c(hQ; hy)’

for all € G, hy, hy € H. In the fourth through eight equalities above we used (5.12)
(y, 71, xy~1), respectively. It follows that (A2 H) C alt’((Qp,.,)°) and the Lemma

is proved. [

Recall that E(C) denotes the set of (equivalence classes of) braided tensor equiv-

alences between a modular category C and the centers of pointed fusion categories.
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Theorem 5.2.17. The assignment M > 1 (defined in (5.9)) restricts to a bijection
between equivalence classes of indecomposable Vecg-module categories M with respect

to which the dual fusion category (Vecq)i ts pointed and E(Rep(D*(G))).
Proof. The proof is completely similar to the one given in Theorem 5.1.6. [

Theorem 5.2.18. Let C1,Cy be group-theoretical fusion categories. Then C1,Cq are
weakly Morita equivalent if and only if their centers Z(Cy) and Z(Cy) are equivalent

as braided fusion categories.

Proof. The “if” part is true for all fusion categories by [EO]. For the “only if” part, let
(G, wy), (G2, wg) be two pairs of groups and 3-cocycles such that C; is weakly Morita
equivalent to Vecg, and C, is weakly Morita equivalent to Vecg. If Z(Cy) = Z(Cy) (as
braided fusion categories) then Z(Vecy!) = Z(Vecy) (as braided fusion categories)
and therefore, Vecg! and Vecg? are weakly Morita equivalent by Theorem 5.2.17 and

hence, C; and Cy are weakly Morita equivalent. |

Corollary 5.2.19. Let G, G’ be finite groups, w € Z3(G, k*), and ' € Z3(G', k*).
Then the representation categories of twisted doubles D*(G) and D*(G'") are equiva-
lent as braided tensor categories if and only if G contains a normal Abelian subgroup

H such the following conditions are satisfied:
(1) wlpxuxn s cohomologically trivial,

(2) there is a G-invariant (see (5.28)) 2-cochain u € C?*(H, k*) such that that

52/~L = W'HxHxH; and
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(3) there is an isomorphism a : G' = H %, (H\G) such that w o (a X a x a) and

W' are cohomologically equivalent.

Here v is a certain 2-cocyle in Z*(H\G, H) coming from the G-invariance of i and
@ is a certain 3-cocycle on H %, (H\G) depending on v and on the exact sequence

1— H— G — H\G — 1 (see Theorem 3.5.8 for precise definitions).
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