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ABSTRACT

MORITA EQUIVALENCE FOR GROUP-THEORETICAL 
CATEGORIES

by

Deepak Naidu 

University of New Hampshire, May, 2007

We give necessary and sufficient conditions for two pointed categories to be dual 

to each other with respect to a module category. Whenever the dual of a pointed 

category with respect to a module category is pointed, we give explicit formulas for 

the Grothendieck ring and for the associator of the dual. This leads to the definition 

of categorical Morita equivalence on the set of all finite groups and on the set of all 

pairs (G, to), where G is a finite group and to G H 3 (G, k x ). A group-theoretical and 

cohomological interpretation of this relation is given. As an application, we give a 

series of concrete examples of pairs of groups that are categorically Morita equivalent 

but have non-isomorphic Grothendieck rings. In particular, the representation cate­

gories of the Drinfeld doubles of the groups in each example are equivalent as braided 

tensor categories and hence these groups define the same modular data.

The notion of a nilpotent fusion category, which categorically extends the notion 

of a nilpotent group, was introduced by Gelaki and Nikshych. We give sufficient 

conditions for a group-theoretical category to be nilpotent.

We classify Lagrangian subcategories of the representation category of a twisted 

quantum double D 0J(G), where G is a finite group and to is a 3-cocycle on it. This gives 

a description of all braided tensor equivalences between twisted quantum doubles of fi-

vi
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nite groups. We also establish a canonical bijection between Lagrangian subcategories 

of Rep(DU{G)) and module categories over the category Vecq of twisted G-graded 

vector spaces such that the dual fusion category is pointed. As a consequence, we 

establish that two group-theoretical fusion categories are weakly Morita equivalent if 

and only if their centers are equivalent as braided tensor categories.

VLI
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CHAPTER 1

INTRODUCTION

Fusion categories arise in several areas of mathematics such as representation the­

ory, quantum groups, and operator algebras. Several results concerning the structure 

and classification of fusion categories have appeared in literature (see [ENO] and 

references therein). There is an important class of fusion categories called group- 

theoretical. As the name suggests, these are fusion categories that come from a 

group-theoretical datum. One of the reasons for the importance of group-theoretical 

categories is that it is not known, at the time of writing, whether there exists a finite­

dimensional Hopf algebra whose representation category is not group theoretical. In 

this work we study an equivalence relation called weak Morita equivalence on the class 

of group-theoretical categories.

Throughout this work we will work over an algebraically closed field k of char­

acteristic 0. Unless otherwise stated all cocycles appearing in this work will have 

coefficients in the trivial module k x . A right module category over a tensor category 

C is a category M.  together with a functor M.  x C Ad and certain associativity 

and unit constraints satisfying some natural axioms (see [0 1 ] and references therein). 

The dual of a tensor category C with respect to a module category is the category 

C*M := Func(Ad, Ad) whose objects are C-module functors from Ad to itself and mor-

1
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phisms are natural module transformations. The category C*M is a tensor category 

with tensor product being composition of module functors.

A fusion category over k is a k-linear semisimple rigid tensor category with finitely 

many isomorphism classes of simple objects and finite-dimensional Hom-spaces such 

that the neutral object in simple (see [ENO]). If C is a fusion category and M  is a 

semisimple indecomposable module category over C, then it is known that the dual 

category C*M is a fusion category. The duality of fusion categories is known to be an 

equivalence relation [Mul].

A fusion category is said to be pointed if all its simple object are invertible. Every 

pointed category is equivalent to a fusion category Vec£l whose objects are vector 

spaces graded by the finite group G and whose associativity constraint is given by 

the 3-cocycle u  G Z 3 (G, k x ). Let us denote Vecc  VeclG. A fusion category is called 

groiLp-theoretical if it is equivalent to the dual of a pointed category with respect to 

some semisimple indecomposable module category.

We use the notion of weak Morita equivalence [Mul] of fusion categories to study 

an equivalence relation called categorical Morita equivalence on the set of all finite 

groups and on the set of all pairs (G, u),  where G is a finite group and u  G H 3 (G, k x ). 

Namely, we say that two groups G and G' (respectively, two pairs (G, u>) and (G' , u/)) 

are categorically Morita equivalent if Vecc is dual to Vec^/ (respectively, Vec]b is 

dual to Vecq,) with respect to some semisimple indecomposable module category. 

This equivalence relation extends the notion of isocategorical groups, i.e., groups with 

equivalent tensor categories of representations, studied in [Da] and [EG]. Our motiva­

2
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tion to study categorical Morita equivalence comes from the question about existence 

of finite-dimensional semisimple Hopf algebras with non group-theoretical represen­

tation categories asked in [ENO, Question 8.45]. We think that understanding equiv­

alence classes of categorically Morita equivalent groups is a natural step towards 

answering this question.

The notion of a nilpotent fusion category, which categorically extends the notion 

of a nilpotent group, was introduced in [GN]. We give sufficient conditions for a 

group-theoretical category to be nilpotent.

Let G be a finite group and uj be a 3-cocycle on G. In [DPR1, DPR2] R. Dijkgraaf, 

V. Pasquier, and P. Roche introduced a quasi-triangular quasi-Hopf algebra DUJ(G). 

When uj — 1 this quasi-Hopf algebra coincides with the Drinfeld double D(G)  of G 

and so DM{G) is often called a twisted quantum double of G. It is well known that the 

representation category Rep(DUJ(G)) of DW(G) is a modular category [BK, T] and is 

braided equivalent to the center [K] of the fusion category Vec£h

In [DGNO] a criterion for a modular category C to be braided equivalent to the 

center of a category of the form Vec^ for some finite group G and uj € Z 3(G, k x ) is 

given. Namely, such a braided equivalence exists if and only if C contains a Lagrangian 

subcategory, i.e., a maximal isotropic subcategory of dimension ^dim (C). More pre­

cisely, Lagrangian subcategories of C parametrize the classes of braided equivalences 

between C and centers of pointed categories, see [DGNO, Section 4],

This means that a description of Lagrangian subcategories of Rep(DM(G)) for all 

groups G and 3-cocycles uj is equivalent to a description of all braided equivalences

3
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between representation categories of twisted group doubles. Such equivalences for 

elementary Abelian and extra special groups were studied in [MN] and [GMN].

We classify Lagrangian subcategories of Rep[DM{G)). In view of the above re­

marks this gives a description of all braided tensor equivalences between twisted 

quantum doubles of finite groups. We also establish a canonical bijection between 

Lagrangian subcategories of Rep(Z}w(G)) and module categories over the fusion cate­

gory Vecg such that the dual fusion category is pointed. As a consequence, we obtain 

that two group-theoretical fusion categories are weakly Morita equivalent if and only 

if their centers are equivalent as braided tensor categories.

The main results of this work are:

(1) Computation of the dual of Vecq with respect to a semisimple indecompos­

able module category when the dual is pointed, including explicit formulas for the 

Grothendieck ring and the associated 3-cocycle.

(2) Necessary and sufficient conditions for two pointed categories to be dual to 

each other with respect to a module category.

(3) A series of concrete examples of pairs of groups (Gi, G2) that are categorically 

Morita equivalent but have non-isomorphic Grothendieck rings (and hence, inequiva­

lent representation categories). A consequence of the categorical Morita equivalence 

of these groups is that the representation categories Rep(G(Gi)) and Rep(G(G2)) of 

their Drinfeld doubles are equivalent as braided tensor categories and so, in particu­

lar, these groups define the same modular data. To the best of our knowledge these

4
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are first examples of finite groups with this property, cf. a discussion of a finite group 

modular data in [CGR],

(4) Sufficient conditions for a group-theoretical category to be nilpotent.

(5) Classification of Lagrangian subcategories of Rep(Dw ((?)). As a consequence, 

we obtain that two group-theoretical fusion categories are weakly Morita equivalent 

if and only if their centers are equivalent as braided tensor categories.

Below we give a brief description of the contents of each Chapter.

Chapter 1 is this Introduction.

In Chapter 2, we recall necessary definitions and results from cohomology of groups 

and projective representations. We also recall some definition and results on fusion 

categories, module categories, duals of fusion categories, graded fusion categories, 

nilpotent fusion categories, and modular categories.

In Chapter 3, we give necessary and sufficient conditions for the dual of a pointed 

category with respect to a module category to be pointed. We show that the 

Grothendieck ring of the dual of a pointed category with respect to a module category 

when the dual is pointed is the group ring of a certain crossed product of groups. We 

also find an explicit formula for the 3-cocycle associated to the dual category. We 

introduce the notion of categorical Morita equivalence on the set of all finite groups 

and on the set of all pairs (G , u j ) ,  where G is a finite group and u> G H 3 (G, k x ). We 

give a group-theoretical and cohomological interpretation of this relation. Finally, as 

an application we give a series of examples of pairs of groups that are categorically 

Morita equivalent but have non-isomorphic Grothendieck rings.

5
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In Chapter 4, we give sufficient conditions for a group-theoretical category to be 

nilpotent.

In the final Chapter, Chapter 5, we classify Lagrangian subcategories of Rep(jDW(G)). 

As a consequence, we obtain that two group-theoretical categories are weakly Morita 

equivalent if and only if their centers are equivalent as braided tensor categories.

All categories considered in this work are assumed to be small. All /c-linear abelian 

categories considered in this work are assumed to have finite dimensional Hom-spaces 

and finite number of isomorphism classes of simple objects. All functors between k- 

linear categories are assumed to be additive and /c-linear on the space of morphisms.

6
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CHAPTER 2

PRELIMINARIES

In this Chapter we recall necessary definitions and results from cohomology of 

groups and projective representations. We also recall some definitions and results 

from fusion categories, module categories, duals of fusion categories, graded fusion 

categories, nilpotent fusion categories, and modular categories.

2.1 Cohomology of groups and Shapiro’s Lemma

Throughout this section G will denote a finite group. Let M  be a left G-module 

with action denoted by (g , m) v-> g > m,  for g G G, m  £ M.  We define a cochain 

complex C(G, M)  =  (Cn(G, M ))n>0 of G with coefficients in M  as follows. Let 

Gn — G x • • • x G (n factors) and Cn(G, M) = Fun(G", M)  be the set of all 

n-cochains. By convention, G°(G,M)  =  M.  A n-cochain /  is said to be normalized 

if f(gi ,  c/2> • • • , 9 n) = 0m whenever gi =  1 q for some i £ { 1 ,2 , . . .  ,n}.  All n-cochains 

are assumed to be normalized. Let 5n : Cn(G, M)  —> Cn+1 (G, M)  be the coboundary 

operator given by

(^n / ) ( 3 i )  • • • > 9 n + i )  =  g i > f { g 2 , . - .  , 9 n + l )

n

+  (—l)V(fi'l) • • • 3 Pi—1J 9i9i+1, • • • i 9n+l)
i= 1

+  ( - l ) n+1f ( 9 l , - - . , 9 n ) ,

7
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for all /  G Cn(G, M).

If M  is a right G-module, we denote the action by (m, g) > m  < g, for g G G, 

m  G M.  Also, define 8 n : Cn(G, M)  —> Cn+1 (G, M)  by

G f 7 ) ( p i , -  ■ • ,gn+i) =  f{92,---,9n+i)
n

d" ^   ̂ ( 1) ' / ( P i ) • • • 5 Pi—1 > 9i9i+ 1 > • • • ) PVi+l)
i=l

+ (_4)"+1(/(P i > . . .  ,p„) «p„+1),

for all /  G Cn(G, M).

Let Z n(G, M)  =  Ker( 8 n) be the set of n-cocycles and B n(G, M)  =  Im(Sn~1) be 

the space of n-coboundaries. Similarly, let Z_n(G, M) =  Ker( 8 n) and B"(G, M) = 

The n-th cohomology group H n(G, M ) of G with coefficients in M  is the 

quotient Z"(G, M ) / B n(G, M), (n > 1). Also, let tf"(G , M) =  M ) / B n(G, M).

Let M  be a left module over two finite groups K  and K 1. Any homomorphism 

a : K'  —> K  induces a homomorphism between the cohomology groups:

H n(K, M) H n(K', M)  : cu i—> cu“ ;= Wo a x". (2.1)

Let H  be a subgroup of G. Let p : G —» JT\G be the usual surjection, i.e., 

p(g) := Hg,  for all g G G. We will denote p (lc ) by h For each £ G iL\G choose a 

representative u(x) in G; i.e., an element u(x) with pu(x) = x. In particular, choose 

u(l) =  1g- The set H \ G  is a right G-set with the obvious action: x <\ g := p(u(x)g),  

x  G H \ G  and g G G.

8
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Also, the set {u{x) \ x  G H \G }  is a right G-set: u{x) < g =  u(:r < <7 ), a; G i / \G  

and g G G . The elements u(x)g and < (?) differ by an element kXi9 of H,  for all 

x  G H \ G  and g G G :

u(a:)0 =  (2.2)

The following relation holds:

^ ® i 9 l 9 2  K 'x , g i  ^ x < i g i , g?  > ( ^ ' ^ )

for all x  G H \ G  and g\, g2 G G

The abelian group F u n (# \G , A:x) of functions from H \ G  to k x is a left G-module: 

(g > f ) (x)  — f ( x  < g), x  G H \ G  and g G G . Let us regard as a trivial left 

iL-module. It is easy to see that Fun(iL\G, fcx) is isomorphic to the coinduced module 

Coind^A:x =  Hom^(G, k x ). Throughout this work we will identify the coinduced 

module Coind^/G with Fun(LT\G, k x ).

Let G := Coind°Hk x =  Fun(H\G,  k x ) and K  := H\G.  The action of G on K  

restricts to an action of H  on K.  Let K H denote the set of elements of K  that 

are stable under the action of H.  Note that K H forms a group that is isomorphic 

to H\ Ng (H) ,  where Na{H)  is the normalizer of H  in G. Denote by H  the group 

Hom(iL, k x ).

By Shapiro’s Lemma there is an isomorphism between H n(G, C ) and H n(H , k x )

for each n G N. It is well known that the restriction maps induces this isomorphism.

9
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We will need the explicit form of the inverse of the restriction map when n =  1, 2. 

Lemmas 2.1.1 and 2.1.2 provide these inverse maps.

Lemma 2.1.1. The following map induces an isomorphism between H 1 (H, k x ) = H  

and H X(G, C):

<P! : Z \ H ,  k x ) -> Z \ G ,  C), (^(p)(g))(x)  = P(kx,9), (2.4)

for all p G Z 1 (H, k x ), g G G, x  G K .

Proof. We w ill first show  th a t <fi(p) G Z X(G, C), for all p G Z 1(H, C x ). We need to  

show  th a t ipi (p) satisfies th e equation:

{ p i ( p ) { g i ) ) { x )  ( ‘P i { p ) { 92) ) ( x < 9 i )  =  { M p ) { 9 i 92) ) ( x )

^  P { ^ x , g i ) p { ^ x < l g i , g 2 )  P i ^ x ,  g i g 2  ) )

for all x e  K , gi, g2 £ G.

The 1-cocycle condition on p is:

p{hi)p(h2) =  p(hih2).

Put hi = nxgi and h2 =  in the above equation and use (2.3) to obtain the

desired equation.

10
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The map induces a homomorphism:

^  : H \ H ,  k x ) -> H \ G ,  C).

Let 'ipi denote the restriction homomorphism:

: Z 1 (G, C) -> ^ ( t f ,  fcx), ^ i(7 )(^) =  7W (1), (2-5)

for all 7  G Z 1 (G, C) and h G H. Let tpi denote the induced homomorphism:

f a :  H \ G ,  C) -> H \ H ,  k*). (2 .6 )

It remains to show that the homomorphisms Tp{ and are inverse to each other. 

It suffice to show that t ) i ° ^  =  Idzi (H,k*)-  P ick  any p G Z l {H, k x ). Then 

^ 1(^1 (p))(h) ~  (<Pi (p)(h))(l ) =  p(Ki,h) =  for all h e  H. So =  Idz i{H,k*)

and the Lemma is proved. ■

Lemma 2.1.2. The following map induces an isomorphism between H 2(H, k x) and 

t f 2(G, G):

(p : Z 2 (H, k x ) -+ Z 2 (G, C), (<p(p)(gu g2))(x). = p(kXiQ1, K x < g i t 9 2 ) ,  (2.7)

for all p G Z 2 (H, k x ), gi, g2 G G, and x  G K.

11
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Proof. W e w ill first show  th a t </?(/i) G Z 2 (G, C ), for all G Z 2 (H, k x ). W e need to  

show th a t satisfies th e  follow ing eq u ation  for all gi, g2, 5 3  G G and  x  G K:

{p{p)(92,  93 ) ) ( x <g i )  {p( h) ( 9i ,  929z)){x ) =  (^ ( / i ) ( p ^ 2, 0a)) fa) (v?(a^)(Pi, 02))fa)

4=7” fr(̂ K,x<ig1 j g2 , Ẑ xogi 92193 ) Trogi, g2g3 ) 5132 ’ ̂ xogigz, <?3 ) /^fax.gi) â;<lgi i <?2 ) ‘

The 2-cocycle condition on fj, is:

M ^2, M 3) = K h i h 2, h3) f i (hu h2),

for all hi, h2, h3 G H.  Put /ij =  kXi91, h2 =  nx<gitg2 and /z3 =  «x<igig2,33 in the above 

equation and use (2.3) to obtain the desired equation.

Let us now show that <p preserves coboundaries. Let a : H —» k x be any function. 

Then (^((Pa:) is a coboundary. Indeed, define a function a  : G —> C  by (a(g))(x) 

a{Kx<g). Now, (ip{S1a)(g1, g2))(x) = (51a )(Kx,ffl, ^ 9llff2) =

__ ai) _  g2 f}(x). So ip preserves coboundaries and hence it

induces a map:

p  : H 2{H, k x ) -> H 2 {G, C). (2.8)

Let if denote the restriction map:

: Z 2 {G, C) -> Z 2 (H, k x ), ^ ) { h i ,  h2) =  7 ( h ,  h2)( 1), (2.9)

12
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for all 7  G Z 2 (G, C) and h\, h2 G H.  Let i> denote the induced map:

ijj : H 2 (G, C) —> H 2 (H, k x ). (2 .10)

It remains to show that the maps <p and i\) are inverse to each other. It suffice 

to show that 'tp o tp =  Idz^(H,k*)• Pick any y  G Z 2 (H , k x). Then ip(ip(y))(hi, hi) = 

{<p(h)(h 1; M X 1) =  /i(«i.hn «i<*i,fe2) =  /XM  h2), for all /i1; h2 E H . So ^  o <p =

I dz 2(H,kx) and the Lemma is proved. ■

There is a right action of on Cn(G, C):

(7 , x) (-> *7 , x7(^i,- • • , 0n)(j/) := 7 (^ i,---,P n )(pW ® M y)),

for all 7  G Cn(G, C), gi , . . . ,  G G, x  G and y E K .

It is routine to check that the above action is independent of the function u : K  —> G. 

This induces a right action of K H on Z n(G, C) and H n(G, C ). If iT is normal in G, 

then K H = K  and

xi { g i , • • •, 9 n)(y) ■= 7(01 > • • • > 9 n){xy),

for all 7  G Cn(G, C), g \ , . . . ,  gn G G, and x, y G K.

If H  is normal in G, we can also define a right action of G on Cn(G, C):

9i ( g i , - - - , 9 n ) ( y )  := h ( g i , - - - , g n ) {p( g) y ) ,  (2.11)

for all 7  G Cn(G, C), g, g±,. . . ,  gn G G,y  G K.

13
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Also, if H  is normal in G, then Z n(H, k x ) is a right G-module:

{p, 9 ) ^  /A  P9 (hi, . . . , h n) = {j,(ghig \ . . . ,  ghng x), 

for p £ Z n(H, k x ), g £ G and h \ , . . . ,  hn £ H .

If H  is abelian and normal in G, then Z n(H, k x ) becomes a right K-module:

(p,  x)

for p £ Z n(H, k x ) and x £ K.  This induces an action of K  on H n(H, k x ).

Lem m a 2.1.3. If H  is abelian and normal in G, then the map ipi defined in (2.5) is 

a ib-module map.

Proof. Pick any 7  £ Z 1(G, C ) a . n d x £ K .  We have =  ^'y) (h)(1) =  i (h)(x)

and (4!i('y)x)(h) = ,tpi('y)(u(x)hu(x)~1) =  'y(u(x)hu(x)~1) ( l ). By Lemma 2.1.1 we 

know that 7  — (cPct) <fi(p), for some a £ C and p £ H.  We have,

l ( h)(x ) =  (($l a ) M p ) ) ( h)(x )

a(x <h) 
a(x)

=  p(u(x)hu(x)~1)

and

7 (u(x)hu(x)  *)(1) = ((51a ) p l (p))(u(x)hu(x) ^ ( l )

a(  1 <1 u(x)hu(x)~1)
a ( l )

p(u(x)hu(x)~1)

14
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It follows that ipi is /C-linear and the Lemma is proved. ■

Lemma 2.1.4. If H  is abelian and normal in G, then the map <p defined in (2.8) is 

a iC-module map.

Proof. Pick any /i € Z 2 (H, k x ). It suffices to show that fj(xip(/j,)) is cohomologous to 

=  jjx in H 2 (H, k x ), for all x  G K.  We will actually show that ip(xip(fi)) — 

jix , for all x  G K.  We have,

^ ( X p ) ) ( / l ,  h2) =  x<p(fj)(h1, h2)( 1)

=  P(p)(hi> h2){x)

h\'i ^x<h\.h2)

/1 2 )

=  n(u(x)hiu(x)~1, u(x)h2u(x)~1) 

=  ^ X(hi, h2)

for all /i1? h2 G H  and x  & K.  So if(xLp(y)) =  /P ,  for all x  6  K  and the Lemma is 

proved. ■

Pick any jj. G Z 2 (G, Coind%kx ). The 2-cocycles n and (p(^(p,)) are cohomologous. 

So, there exists rj G G1(G, Coind#/cx) which satisfies:

Lemma 2.1.5. The restriction res (rj) of the map r] is an element of H.

15
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Proof. Equation (2.12) means that

K 9 u  9*){x) = (^v){9i ,  9 2 ) (x) g2){x)

V(9 2 )(x) r]{gi)(x)
V(9i92){x)

for all x  G K,  and gi, g2 G G.

P u t x — 1, g\ =  hi, g2 ~  h2 G id , and  use u( 1) =  \g to  get

d ^ iX 1) d ^ X 1) =  V(hih2){ 1),

i.e., re s (77) G id and the Lemma is proved.

2.2 The Schur multiplier of an abelian group.

Let id be a finite abelian group. Let A2id denote the abelian group of alternating 

bicharacters on H, i.e.,

f \
B(hih2, h) =  B( h i ,h )B(h 2, h),

A2H  := < B :  H x H - > k x B(h,  hih2) =  B(h,  hi)B(h,  h2), and

< B(h,  h) — 1, for all h, hi, h2 G id >

N o t e  2 .2 .1 .  Let B  G A 2 id . The condition B(h,  h) =  1, for all h G H  implies that 

B{h\, h2)B(h2, hi) — 1, for all h i , h 2 G id. Indeed, we have B(hi ,  h2 )B(h2, d-i) =  

j5(/q, /i2)5 (/h , hi )B{h2, h i )B(h2, h2) =  h2hi )B(h2, M 2) = B{hxh2, hih2) =  

1, for all h i ,h 2 G id.

16
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Define a homomorphism alt : Z 2 (H, k x ) —» A2 AT : fi —> alt(fi), by

alt(fj,)(hi, h2) := hu h2 € H.
fi[ni,

L em m a 2.2.2. The homomorphism alt induces an isomorphism between H 2 (H, k x ) 

and A2AA

Proof. It is evident that al t(B2(H , /cx)) =  {1}. So alt induces a homomorphism 

which, by abuse of notation, we also denote by alt:

alt : H 2 {H, k x ) -*■ A2AT : Jl i-> al t {f i ) .  (2.13)

The homomorphism alt is injective. Indeed, let /a G Z 2 (H, k x) and suppose 

alt(fi) =  1. So /a is symmetric. Recall that there is a bijective correspondence between 

symmetric classes in H 2 (H, k x ) and equivalences classes of abelian central extensions 

of k x by H.  Since ji is symmetric, the central extension I k x —> H —>1

that [i determines is abelian. Since k x is algebraically closed, it is a divisible group. 

So every abelian extension of k x by H  splits. So, in particular, the previous exact 

sequence splits. Therefore, pt G B 2 (H, k x ). It follows that alt is injective.

To see that alt is surjective, pick any B  G A2H.  Since H  is a finite abelian group, 

we can write H  =  Z /n jZ  © • • • ® rL/n{L.  Let c* be a generator of Z /n ,Z  (written 

multiplicatively), i =  1, 2, • • • , I. Let ^  : Z /© Z  H, i =  1, 2, • • • , I be the usual 

inclusions. Define Xrs := B{ipr{cT), <ps(c5)),r,  s G {1,2, ••• ,/}. Since B  is alternating,

17
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the relation Xrs\ sr =  1 holds for all r , s £  {1, 2 , - • • ,1}. Also, note that Xrr =  1, for 

all r E {1, 2, • • • , /}. We have

B ( ® U C , e U t f )  =

= <p.(c,y)

—  f L  n ; \ ( P r q s ~ P s q r )r=l s=l,s<rArs

In the last equality used the relations Xrr =  1 and XrsXsr = 1, r,s E {1,2, - • • ,/}.

Now, define a map p : H  x H —► k x by p(@lr=lc19.r , 0 =̂1c®s) := n{,=in is:=1)S<r,A7/s'3,r.

It is evident that ji is a bicharacter on H.  So p £ Z 2{H, k x ). It is also evident that

alt(p) =  B  and the Lemma is proved. ■

Remark 2.2.3. Suppose H  is a normal abelian subgroup of a finite group G. The 

abelian group A2if  is a right G-module:

(B , g) t-> B 9, B 9 (hi, h2) := B(ghig~1, gh2g~l ), g E G, h j , h 2 E H. It is evident that 

the map alt is G-linear. So H 2 (H, k x ) and A2H  are isomorphic as G-modules.

2.3 Projective representations

Definition 2.3.1. Let V  be a finite-dimensional vector space over k. A mapping 

p : G —* G L ( V ) is called a projective representation of the finite group G with 

2-cocycle ct : G xG  —* k x if it satisfies p ( 1g )  =  idy, and p(gi)p(g2) = a{gi, 9 2 ) p(9 \g2)i 

for all g\,g2 E G.

18
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Remark 2.3.2. (i) There are obvious notions of irreducible projective representations 

and direct sum of projective representations.

(ii) Let pi and P2 be projective representations of a finite group G with 2-cocycles 

a  and /3, respectively. Then their tensor product is a projective representation of G 

with 2-cocycle a(3.

(iii) Let p be projective representation of a finite group G with 2-cocycles a. Then 

there is a notion of a dual representation p* which is a projective representation of G 

with 2-cocycle a -1.

Lemma 2.3.3. Let p : G —> G L(V ) be a projective representation with 2-cocycle a. 

Then V  ® V* becomes a G-module and its decomposition into irreducible modules of 

G contains a copy of the trivial module.

Proof. That V  ® V* is a G-module follows from the above remarks. Define 

g > T  := p(g) o T  o for all g £ G, and T  £ End(V). W ith this action, End(V)

becomes a G-module. It can be shown that the usual vector space isomorphism 

between V  <S> V* and End(V) is G-linear. Now, {Aid^ | A £ k} is a submodule of 

End(V) on which G acts trivially and the Lemma is proved. ■

Let p ; G —» GL(V)  be a projective representation with 2-cocycle a. If we 

identify GL(V) with GL(n, k) where n =  dimfc(V), then the resulting map is called 

a projective matrix representation. In this work, by projective representation we will 

always mean a projective matrix representation. The dual representation p* of a

19
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projective representation p of G is defined by p*(g) := (p{g)T) 1, for all g £ G, where 

the superscript T stands for the transpose of a matrix.

D efinition 2.3.4. Two projective representations px : G —► GL(n, k) and

p2 : G —■>• GL(n, k ) with 2-cocycle a  are isomorphic if there is a matrix A  £ GL(n, k)

such that for all g £ G.

2.4 Abelian categories

References for this Section are [BK] and [Mac].

Definition 2.4.1. An additive category C is a category satisfying the following ax­

ioms.

(Al) Homc(Ar, Y )  is an abelian group, for all X , Y  £ Obj(C)

(A2) There exists a zero object 0 £ C: Homc(Aj 0) = Homc(0, X )  = {0}, for all

X  £ Obj(C)

(A3) Finite direct sums exist, i.e., for all X x, X 2 € Obj(C) there exists Y  £ Obj(C)

and morphisms i x : X x —> Y,  i2 : X 2 —> Y,  px : Y  ► X x, and p2 : Y  X 2 such that

P i ° h  = idxn P2 o i2 =  idx2, and i i o p 1 + j 2 op2 =  idy.

Exam ple 2.4.2. Let R  be a ring and let C := category of left i?-modules. Then C is 

an additive category.

Definition 2.4.3. Let F : C —> V  be a functor between additive categories. We say 

that F  is additive if Homc(R, Y)  —► Hom p(F(X), F(Y) )  is a group homomorphism, 

for all X,  Y  £ Obj(C).

20
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Remark 2.4.4. Let F : C —> V  be an additive functor. Then F( X)  © F(Y)  = 

F ( X  © Y) ,  for all X , Y  £ Obj(C).

Definition 2.4.5. Let F be a field. An additive category C is ¥ -linear if for all 

X , Y , Z  £ Obj(C'), Homc(AT, Y)  is aF-vector space and the composition LIomc(X,  Y ) x  

Homc(y, Z)  —> Home (AT, Z)  is a F-bilinear map.

Definition 2.4.6. Let F  : C —► V  be a functor between F-linear categories. We 

say that F  is F -linear if Homc(X, Y)  Hornp( F( X) ,  F(Y)) is F-linear, for all

X, V £ Obj(C).

D efinition 2.4.7. Let C be an additive category. Let f  : X  —> Y  be a morphism in 

C.

The kernel of /  is an object K  £ Obj(C) together with a morphism i : K  —> X

such that f  o i  — 0 and for all morphisms i! : K '  —> X  such that /  o i' =  0 there is a

unique morphism k : K 1 —> K  such that il — % o k.

The cokernel of /  is an object C £ Obj(C) together with a morphism j  : Y  —> C 

such that j  o f  — 0 and for all morphisms j 1 : Y  —> C' such that j '  o /  =  0 there is a

unique morphism k : C —> C'  such that j '  = k o j.

Remark 2.4.8. If kernel exists, it is unique up to a unique isomorphism. The same 

is true for cokernel.

Exam ple 2.4.9. Let C := the category of abelian groups. Let /  : X  —» Y  be a 

morphism in C. Then, coker(f )  =  y /Im (/) .
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Definition 2.4.10. An abelian category is an additive category C in which every 

morphism f  : X  —> Y  admits the following decomposition K ^ - X ^ - I ^ Y - ^ C  

such that

(i) j  o i =  / ,

(ii) K  X  =  ker(f ) ,  Y  —>■ C =  coker(f)  (kernel and cokernel exist), and

(iii) /  =  coker(k) =  ker(c).

Exam ple 2.4.11. Let R  be a ring and let C : =  category of left R-modules. Then C 

is an abelian category.

Definition 2.4.12. Let C an abelian category and let X  £ Obj(C). The object X  is 

said to be simple if it is non-zero and has no subobjects other than the zero object 

and X . The object X  is said to be semisimple if it is isomorphic to a finite direct sum 

of simple objects. The abelian category C is said to be semisimple if every object in 

C is semisimple.

Remark 2.4.13. Let F be an algebraically closed field. Let C be a F-linear abelian 

category. Schur’s Lemma holds for C, i.e., for any two simple objects X  and Y  of C, 

the following statements hold.

(i) For any /  £ Homc(X, Y),  either /  =  0 or /  is an isomorphism.

(ii) Homc(X, X )  = F ■ idx-

(iii) Romc{X, Y) =  F, if X  =  y  and Homc(X, Y) ^  {0}, if X  £  Y.

Proof: The first statement follows from the fact that the kernel and cokernel of a 

morphism define subobjects. For the second statement, pick any /  £ Homc(X, X).
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Then /  defines a linear transformation: Homc(W, X ) —> Homc(Af, X)  : g ^  f  o g. 

Since F is algebraically closed, there exists a scalar A G F and a nonzero morphism 

g G Homc(Af, X )  such that /  o g = \g.  Note that by (i), g is an isomorphism. 

We have /  o g = Xg =  (Aidx 0 g) f  = Aidx- So Homc(X, X)  =  F • id^. For 

the last statement, suppose X  =  Y  and fix an isomorphism I : X  Y . Pick any 

h G Homc(X, Y).  Then, l~l o h G Hornc(X,  X) .  By (ii), l~x o h =  Aidx, for some 

A G F. So h — XI, and it follows that Homc(W, Y)  =  F.

2.5 Fusion categories

References for this Section are [BK], [ENO], and [Mac].

Definition 2.5.1. A tensor category (C, ®, 1, a,  A, p) is a category C along with a 

tensor product bifunctor <g> : C x C —■> C, the unit object 1 , and natural isomorphisms

a  : <g>(® x id) <8>(id x 0 )

A : 0 (1  x id) id 

p : 0 (id x 1 ) —A id

called associativity constraint and right and left unit constraints, respectively, satis­

fying the following commutative diagrams called pentagon and triangle axioms.
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( (X ® Y )® X )® IY

(X ® (Y <g> X)) ® W

& X , Y ® Z , W

X  ® {{Y ® Z) ® W )
i d  x ® a Y , Z , W

(X ® Y ) ® ( Z ® W )

aX,Y,X®VY

■X® ( Y ® ( X ®  W))

( X ®  1 ) ® Y - “ X , 1 , V ■X® ( 1 ®Y)

X ® Y

commute for all objects X, Y, X, W  in C.

N ote 2.5.2. In the previous definition, if C is an abelian tensor category, then we will 

additionally require that ® is biadditive on the space of morphisms. If C a F-linear 

tensor category for some field F, then we additionally require that ® is F-bilinear on 

the space of morphisms.

Definition 2.5.3. Let C =  (C, ®, 1, a,  A, p) and C  =  (C', ®, l 1, a,  A, p) be tensor 

categories. A tensor functor from C to C  is a functor F  : C —» C  together with a 

natural isomorphism

p  : ®(F  x F) —> F® 

and an isomorphism v  : V F( l )  such that the diagrams

(F(X)  ® F(Y) )  ® F( W)

tf>x,Y®i&F(.Z)

F ( X  ® Y )  ® F(Z)

' P X ® Y , Z

F( ( X  ® Y )  ® Z ) -----

a F ( X ) , F ( Y ) , F ( Z )

F { a X , Y , z )

F( X)  ® (F(Y)  ® F(Z))

i d F ( x ) ® iP Y , Z

F( X)  ® F( Y  ® X)

< f i X , Y ® W

 ► F ( X  ® (Y ® X))
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and

1'® F( X)

v®idF(x)

F{1)  ® F ( X )  

F(X)<8> V

i d  f ( x ) ® 1'

' F ( X )
- * F( X)

F ( \ x )

■F( 1®X)

P F { X )

P X , 1

■F(X)

F ( p x )

■F( X®1)F { X ) ® F {  1)- 
commute for all objects X ,Y ,  Z  in C.

Definition 2.5.4. Let C = (C, ®, 1, a, A, p) be a tensor category and let X  be an 

object in C. A right dual to X  is an object X* such that there exist morphisms

ex  : X *  ® X  -*■ 1,

Cx .'1 —► X  0  X *,

called evaluation and coevaluation morphisms, such that the following compositions

v "A ■, _ v- ex®idx
X  -------► 1  <8> X   *

p * '  v *  ^  i

( X  <g> X * )  ®  X  " x  x~  > X  <g> ( X *  <8> X )  idx— x  > X  <g> 1 x

x * L * ^ x * ( g ) 1  ®  ( x  ®  x * )  ( x *  ®  x )  ®  x *  e x ^ idx> > 1  ®  X *  X *

are equal to the identity isomorphisms idx and idx*, respectively.

A left dual to X  is an object *X such that there exist morphisms

e ' x  : X ® * X - » 1 ,

d x  : 1 -> ® X,
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such that the following compositions

idx<g>c'
X ®  ( * X ® X ) ( X  (8) * X )  <8> X  e*-— > 1  ®  X  -

< X - X , X , * X  ' *
X < g > ( X ® * X )  — * X < 8>1 * x

are equal to the identity isomorphisms idx and id*x respectively.

Definition 2.5.5. A tensor category C is called rigid if every object in C has right

and left duals.

Exam ple 2.5.6. In the tensor category Vec of finite-dimensional vector spaces over 

a field F every object V  has a (left or right) dual V* = Hom ^E, F). The evaluation 

and coevaluation morphisms are: evv : V* 0  V  —> F : /  0  v >—> f (v)  and 

coevy : F —> h  ® b* : a  h  a  Yli vi ® /*> where {w*}, {/*} are dual bases.

Definition 2.5.7. A fusion category over an algebraically closed field F is a F-linear 

semisimple rigid tensor category with finitely many isomorphism classes of simple 

objects and finite-dimensional Hom-spaces such that the neutral object in simple.

Remark 2.5.8. A fusion category can be thought of as the “categorification” of the 

notion of a ring.

Exam ple 2.5.9. Let F be an algebraically closed field.

(i) The category Vec of finite dimensional vector spaces over F is a fusion category.

(ii) Let G be a finite group such that |G| is invertible in F. Then the category Rep(G) 

of finite-dimensional representations over F of G is a fusion category.
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(iii) More generally, let H  be a finite-dimensional semisimple Hopf algebra over F. 

Then the category Rep (if) of finite-dimensional representations over F of H  is a fusion 

category. Tensor products and dual objects are defined using the comultiplication and 

antipode, respectively.

Definition 2.5.10. An object A in a fusion category is said to be invertible if the 

evaluation and coevaluation morphisms ex ■ X* 0  X  —» 1 and cx '■ 1 —> X 0  X* are 

isomorphisms.

Definition 2.5.11. A fusion category is said to be pointed if all its simple objects 

are invertible.

Example 2.5.12. Let G be a finite group and to € Z 3 (G, k x). Let Vec@ be the 

category of finite-dimensional vector spaces over k graded by the group G with mor­

phisms being linear transformations that respect the grading. Then Vecq becomes a 

pointed category with tensor product given by:

(V 0  W)g := ®x,y£G:xy=gVx Wy,

for all V, W  £ Obj(Vec^), and associativity constraint given by:

(Ugi 0 Vg2) 0 Wg3 ->  Ugi 0  {Vg2 0  Wg,) {U 0  V )  0  W  X, 03 ) ' (ii ® (V ® II})) .

A category is called skeletal if all isomorphic objects in the category are actually 

equal. Every category is equivalent to a skeletal category. It is convenient to work
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with a skeletal category VG equivalent to VecG. Let VG be the fusion category with 

simple objects g, g G G. The tensor product is defined by g\ 0  52 =  9 x9 2 > and the 

associativity isomorphisms are 9 2 , 9 s)idgigM3. The unit object is 1G. The left 

and right unit isomorphisms are tu(lG, l G,g)idg and u(g,  1G, 1 G)idg, respectively. The 

previous statement follows from the triangle axiom for tensor categories. Since we 

can assume that all cocycles are normalized, the left and right unit isomorphisms are 

the identity morphisms. The left and right dual objects of g are g* =  *g =  g~l . If 

G' is another group and u/ G Z 3 (G' , kx ), then VG =  Vq, if and only if there is an 

isomorphism a : G —* G' such that u/ and uia are cohomologous.

Remark 2.5.13. Every pointed category is equivalent to VecG for some finite group 

G and 3-cocycle oj G Z 3 (G, fcx).

Sketch of proof: Let C =  (C, ®, 1, a, A, p) be a pointed category. A skeleton of a 

category T> is any full subcategory V  such that each object of V  is isomorphic (in V) 

to exactly one object of V.  Every category is equivalent to any of its skeletons. Let 

us constructs a skeleton C of C: choose one object from each isomorphism class of 

objects in C. Let Obj(C) be the set of all objects chosen above. For any X  G Obj(C), 

by X  we mean the object in C that represents the object X .  Define Hom^-(X, Y)  := 

Homc(A”, Y ). Define tensor product 0  in C: XQ )Y  for all X ,  Y  G Obj(C).

Fix isomorphisms (3(X, Y)  : X  Q Y - ^ X  ® Y  in C, for all X ,  Y  G Obj(C). We now 

define associativity constraint a  in C. For any X,  Y, Z  G Obj(C) define a x , Y , z  to be 

the following composition.
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(X Q Y)  0  Z ^ x&Y'S l  ( X 0 Y ) ® Z  (X »  Y)  ® Z  ^ f ,  X <8 (Y «  Z)

» ^ M ( r 0 Z ) « ™ : x 0 ( r 0 4

Left and right unit constraints are defined in the obvious way. It can be shown that 

the necessary axioms (pentagon, triangle) are satisfied. Then C is a fusion category 

that is equivalent to C. Since C is pointed, the simple objects of C form a finite group 

G and the associativity constraint a  in V  gives rise to a 3-cocycle u  G Z 3 (G, k x ). 

The cohomology class of this 3-cocycle does not depend on the choices made in the 

construction of C. Then C =  C =  Vec£) as fusion categories.

Definition 2.5.14. The Grothendieck ring Kq(C) of a fusion category C is the free 

Z-module generated by the isomorphism classes of simple objects of C with the mul­

tiplication coming from the tensor product in C.

Remark 2.5.15. The Grothendieck ring of a fusion category is a based unital ring 

(see [0 1 ]).

Exam ple 2.5.16. The Grothendieck ring of the fusion category Vec£), where G is a 

finite group and u  is a 3-cocycle on G, is isomorphic to the group ring Z[G].

Definition 2.5.17. Let C be a fusion category. Let Kq(C) be the Grothendieck 

ring of C. For any object X  G Obj(C), define the Frobenius-Perron dimension of 

X ,  FPdim(X), to be the largest positive eigenvalue (which exists by the Frobenius- 

Perron theorem, see [Ga]) of the matrix [X] of multiplication by X  in JCq(C), where 

X  is the image of X  in /Co(C). The Frobenius-Perron dimension of C, FPdim(C), is
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the sum of squares of the Frobenius-Perron dimension of the objects in any complete 

set of representatives of simple objects of C.

Exam ple 2.5.18. Consider the fusion category Rep(H),  where H  is a semisimple 

finite-dimensional Hopf algebra over an algebraically closed field F. Then FPdim(V) =  

dimif’(F), for all V  G Obj(Rep(l/)).

2.6 Module categories

A module category over a tensor category can be thought of as the “categorifica- 

tion” of the notion of a module over a ring. Recall some definitions from [01]:

Definition 2.6.1. A right module category over a tensor category (C, ®, lc, a, A, p) 

is a category A i  together with a bifunctor ® : M. x C —► At and functorial associativity 

and unit isomorphisms: hm,x,y  ■ M  ® (X  ® Y)  —* (M  <g> X )  ® Y, tm ■ M  ® lc M  

for all X , Y  G Obj(C), M  G Obj(Al) such that the diagrams

M  ® { X  ® Y ) ®  Z)  (2.14)
i d -M, X ® Y ,  Z

M ® ( X ® ( Y ® Z )) ( M ® ( X  ® Y ) ) ® Z

H m , x , y ® z  h m , x , y ® i d z

( M ® X ) ® { Y ®  Z)  — ....... - ----------- —  ((M

M ® { 1 C® Y ) ----------------------^(M<8) l c ) ® y  (2.15)
t m  ®  i d  v

M  ® Y

commute for all M  G Obj(A4), X , Y , Z  G Obj(C).
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N ote 2.6.2. In the previous definition, if C is an abelian tensor category, then we will 

additionally require Ad to be an abelian category and 0  to be additive on the space 

of morphisms. If C is a F-linear category for some field F, then we will additionally 

require Ad to be a F-linear category and 0  to be F-bilinear on the space of morphisms.

Definition 2.6.3. Let (Adi, and (Ad2, P2 , t 2) be two right module categories

over a tensor category C. A module functor from Adi to Ad2 is a functor F  : Adi —> 

Ad2 together with functorial isomorphisms 7 m , x  '■ F (M  0  X )  —> F ( M ) 0  X  for all 

X  G Obj(C), M  G Obj(Adi) such that the diagrams

F ( M  0  (X 0  Y))  (2.16)
M ,  X ,X. y1

F ( ( M ® X ) ® Y )  F ( M ) ® { X  ® Y )

7  M ® X , Y  ^ F ( M ) . X , V

F ( M  0 1 ) 0 7 -------------- TMw îdy------------^ (F(M)  0  X )  0  Y

F ( M  ® l c) —-------------  >■ F( M)  (2.17)
7 M ,  l c  t F ( M )

F(M)  0  lc

commute for all M  G O bj(A d i),X ,y  G Obj(C).

Two module categories Adi and Ad2 over C are equivalent if there exists a module 

functor from Adi to Ad2 which is an equivalence of categories. For two module 

categories Adi and Ad2 over a tensor category C their direct sum is the category Adi 0 

Ad2 with the obvious module category structure. A module category is indecomposable 

if it is not equivalent to a direct sum of two non-trivial module categories.
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Definition 2.6.4. Let M.\ and M 2 be two right module categories over a tensor 

category C. Let (F 1, 7 1) and (F 2, y2) be module functors from AAi to AA2. A 

natural module transformation from (F 1, 7 1) to (F 2, 7 2) is a natural transformation 

77 : F 1 —> F 2 such that the square

F 1 ( M ® X ) V- ^ F 2 { M ® X )  (2.18)

T'm , x  I 'm , x

c o m m u t e s  for  a l l  M  G Obj(Ad), X  G Obj(C).

Exam ple 2.6.5. Let us recall a description of semisimple indecomposable module 

categories over Vq (the skeletal fusion category defined in Example 2.5.12) given in 

[02]. Let A i  be a semisimple indecomposable right module category over Vq with 

module category structure /z. Without loss of generality we may assume that A i  is 

skeletal. The set of simple objects of A i  is a transitive right (7-set and hence can be 

identified with the set of right cosets H \G  for some subgroup H  of G. So the set of 

all simple objects of Ai ,  Irr(Ad) =  H\G.  All the isomorphisms f^x,gi,g2, x  G H\G,  

Si> 92 G G are given by scalars. So we can regard /z as an element of C2 (G, Coind^fc*):

M S i ,  9 z ) ( x )  : =  x  G H \ G ,g u g2 G G.

We may assume that the 2-cochain /z is normalized. Since the unit constraint in Vq 

is trivial, the commutativity of Triangle 2.15 implies that the unit constraint in M.
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is trivial. Let us regard u  as an element of Z 3 (G, Coind#/rx) C C 3 (G, Coind%kx ) 

by treating u>(gi, g2, 03) as a constant function on H\G,  for all gi, g2, 03 G G. The 

commutativity of the Pentagon 2.14 implies that

52fi = u  (2.19)

i.e.,

K92, 9 3 ) ( x < 9 i) h(9i92, 9 s ) ( x y 1 MSA 0203Hz) Msh, 02)(z )_1 =  w(pi, g2, 9 3 ),

(2 .20 )

for all 01, 02,03 e G , x  e  H\G.

The previous equation, in particular, means that u  restricted to H  x H  x H  

represents the trivial class in H 3 (H, k x ). So semisimple indecomposable right module 

categories over Vq are given by pairs (H, g),  where H  is a subgroup of G such 

that oj\hxHxh is cohomologically trivial and fj, G C 2 (G, Coind#/cx) is a 2-cochain 

satisfying 52g = (V, where cj is regarded as an element of Z 3 (G, Coind#fcx).

Let H  be a subgroup of G such that uj\hxHxh is cohomologically trivial. Let 

:= {fi G C2(G, Coind^/cx) | 52g =  cu}. Two elements in A#)W give rise to 

equivalent module categories if they differ by some element in B 2 (G, Coind^fcx); we 

will say that such elements are equivalent. Let A#jW denote the equivalence classes of 

Ah,io- There is a (in general non-canonical) bijection between Ah,uj and H 2(H, k x ). 

Note that Ah ,i =  H 2(G, Coind£fcx) ^  H 2 (H, k x ).
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2.7 The dual category

Let C be a tensor category and let M  be a right module category over C. The 

notion of the dual of C with respect to A i  is analogous to the notion of the dual of 

a ring R  with respect to an F-module M,  which is defined to be the endomorphism 

ring Endft(M).

Definition 2.7.1. The dual category of C with respect to A i  is the category C*M : =  

Func(A/f, Ai)  whose objects are C-module functors from A i  to itself and morphisms 

are natural module transformations.

The category C*M is a tensor category with tensor product being composition 

of module functors. Let (7 1, F 1), (7 s, F 2) G 06j(CjL)> where 7 1, 7 2 represent the 

module functor structure on the functors F 1 and F 2, respectively. Then, (7 1, F 1) ® 

(72, F 2) = (7, F 1 o F 2), where 7  is defined by: := 7f2(M),X ° ^ ( 7 ^ ^ )  for

all M  G M ,  X  £ C. Let 7 : (7 1, F 1) -> (72, F 2) and i  : (7 3, F 3) (74, F 4) be

morphisms in CJ^, i.e., natural module transformations. Then their tensor product 

7 ®?/ is defined by: (rj <g> rf){M)  := r]F 4(M) ° F 1 {r}lM). Denote by (1, id ^ )  the obvious 

unit object.

Remark 2.7.2. It is kn,own that if C is a fusion category and A i  is a semisimple 

indecomposable module category over C, then C*M is a fusion category. In this case, 

it is known that FPdim(C) =  FPdim(C^) (see [ENO]).
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Definition 2.7.3. Two fusion categories C and V  are said to be weakly Morita equiv­

alent if there exists an indecomposable semisimple right module category A i  over C 

such that the categories C*M and T> are equivalent as fusion categories.

Remark 2.7.4. It was shown by Miiger that the above relation is indeed an equiva­

lence relation.

Definition 2.7.5. A fusion category C is said to be group theoretical if it is weakly 

Morita equivalent to a pointed category.

Remark 2.7.6. A fusion category is group-theoretical if and only if it is equivalent 

to the fusion category (Vecq)*m  for some finite group G and u  G Z 3 (G, k x) and 

some semisimple indecomposable module category A i  over Vec£h A classification of 

semisimple indecomposable module categories over Vec£. was given in Example 2.6.5. 

A finite-dimensional semisimple Hopf algebra H  is said to be group-theoretical if its 

representation category Rep(H) is group-theoretical. It is not known to the author, 

at the time of writing, if there exists a finite-dimensional semisimple Hopf algebra 

that is not group-theoretical.

2.8 Graded and nilpotent fusion categories

The following is taken from [GN].

Let (R, B)  denote a based ring R  with basis B  and let C be a fusion category.
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Definition 2.8.1. (R, B)  is said to be graded by a finite group G if there is a partition 

B  =  UeeG-5g, such that R  =  ©ffeG Rgi where R g is a Z-submodule of R  generated by 

B g and R giR 92 C R gi92, R*g = R g -1, for all g,gi ,g2 G G.

Definition 2.8.2. C is said to be graded by a finite group G if C decomposes into a 

direct sum of full abelian subcategories C = ®geoCg such that Cg ^  0, C* =  Cg- 1 and 

the tensor product maps Cgi x Cg2 to Cgi92., for all g,gi ,g2 G G.

Let R ad denote the based subring of R generated by all basic elements of R  con­

tained in XX * ,  X  G B. Let R ^  := R, R&  := R ad, and R ^  := (R(ri_1))ad, for every 

positive integer n. Similarly, let Cad denote the full tensor subcategory of C generated 

by all simple subobjects of X  ® X *, X  simple object of C. Let := C, C^  := Cad, 

and C ^  := (C('n~1̂ )ad, for every positive integer n.

Definition 2.8.3. R  is said to be nilpotent if R ^  — Z l, for some n. The smallest n 

for which this happens is called the nilpotency class of R.

Definition 2.8.4. C is said to be nilpotent if C^  — Vec, for some n. The smallest n 

for which this happens is called the nilpotency class of C.

N ote 2.8.5. Note that a fusion category is nilpotent if and only if its Grothendieck 

ring is nilpotent.

Exam ple 2.8.6. (1) The fusion category Vec£., where G is a finite group and w is a 

3-cocycle on G, is nilpotent. Its nilpotency class is equal to 1.

(2) Let G be a finite group and C := Rep(G). Then Cad — Rep(G/Z(G)),  where Z(G)
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is the center of G. Furthermore, C is nilpotent if and only if G is nilpotent.

(3) The Tambara-Yamagami categories [TY] are nilpotent with nilpotency class equal 

to 2 .

2.9 Braided tensor categories, ribbon categories, and modu­

lar categories

Definition 2.9.1. A braided tensor category C is a tensor category (C, <S>, 1, a, A, p) 

equipped with a natural isomorphism called braiding: a : <g> —* <g>r (where r  : C x C —> 

C x C : (X , Y) i—> (Y, X )  is the flip functor) satisfying the following commutative 

diagrams called hexagon axiom:

X ® (Y (8) Z) ( Y ® Z ) ®  X)

{X ® Y ) ® Z Y ® ( Z ® X )

{ Y ® X ) ® Z  aY'x 'z > Y ® { X ® Z )
i d y ®  a x , Z

{X ® Y)  ® Z) Z  ® ( X ® Y )

X  ® (Y eg) Z) ( Z ® X ) ® Y

X ® ( Z ® Y ) {X ® Z ) ® Y

for all objects X , Y , Z  in C.

Definition 2.9.2. A braided tensor category C with braiding a is called symmetric

if <jy,x 0 &x,y — id*®*) for all objects X  and Y in C.
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Definition 2.9.3. A tensor functor (F, (f, u) from a braided tensor category C (with 

braiding a) to a braided tensor category C' (with braiding a') is braided, if for any 

pair X , Y  of objects in C, the square

F( X)  <8> F ( Y / - ^  F ( X  ® Y)

J F ( X ) , F ( Y ) F{<j x ,y )

F [ Y ) ® F ( X ) ^ r F( Y<SX)

commutes.

Definition 2.9.4. Let C be a tensor category with associativity constraint a. The 

center Z(C)  of C is the category whose objects are pairs (V, cr_y), where V E Obj(C) 

and a_y is a family of natural isomorphisms ax ,v : X  <g> V V  ® X  defined for all 

objects X  E Obj(C) such that for all X , Y  E Obj(C) the following diagram commutes.

( X ® Y ) ® V

X ® ( Y ® V )

idx®oy,V'

V ®  ( X ® Y )

*v ,x ,y

X ® (V ® Y)  ( X ® V ) ® Y  ax'v0i%  ( V ® X ) ® Y

A morphism from (V, a_y) to {W, <t.,w) is a morpshism /  : V  —> W  in C such 

that for each X  E Obj(C) we have ( /  ® idx ) c x y  = crx,w(idv <S> /)•

Remark 2.9.5. The center Z(C) of a tensor category C has a canonical structure of 

a braided tensor category.
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Definition 2.9.6. Let C — (C, <8 >, 1, a , A, p) be a rigid tensor category. For any 

morphism /  E Homc(X, Y),  the dual of /  is a morphism /* in Homc(V*, X*) defined 

by: /* := y* X  Y '® 1  r » ( W )  y ^ y ® * * )  f r b v ,

(y* cgi y) X* y ® x" A*% X*, where e aud c are the evaluation and

coevaluation morphisms, respectively.

Definition 2.9.7. A rigid braided tensor category C (with braiding a) is said to 

be ribbon if it is equipped with a natural isomorphism called twist: 9 : idc —► idc, 

satisfying 9x ®y =  cryx ° &x,Y 0 (Ox <S> 9y), 9i =  idx, and 6 X* = (Ox)*, for all X , Y  E 

Obj(C).

Definition 2.9.8. Let C be a F-linear ribbon category with braiding a, twist 9, 

and neutral object 1 such that Homc(l, 1) =  F. For any endomorphism f  & 

Homc(X, X), define its trace, t r ( f )  := 1 —̂  X  ® X* (dx°^®ldx*> x  <S> X* x,x >

X* ® X l e F  =  Homc(l, 1), where e and c are the evaluation and coevaluation 

morphisms, respectively. For any object X E Obj(C), the value tr(idx) is called the 

dimension of X  and denoted d(X).

Remark 2.9.9. In the previous definition, the identification of Homc(l, 1) with F 

is by the isomorphism F Homc(l, 1) : A i—> A • idj..

D efinition 2.9.10. A ribbon fusion category C with isomorphism classes of simple 

objects enumerated as {Xi =  1 ,X 2,- • • , X n} is said to be modular if the S-matrix 

with entries Sij  := tr(ax . Xi o aXiiXj) is invertible.
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Remark 2.9.11. The name “modular” comes from the fact that modular categories 

give rise to projective representations of the modular group S L (2, Z).

Exam ple 2.9.12. Let G be a finite group. Its group algebra k[G\ over k is a Hopf 

algebra with fc-basis {x \ x E G} and

multiplication x  &> y i—► xy, x , y  € G,

unit  1g,

comultiplication A(x)  = x  x, x  G G,

counit e(x) = 1 , x  £ G,

antipode ^{x) ~  x~l x  G G.

The Hopf algebra dual to k[G] is isomorphic to the function algebra F(G)  of the

group G. It has fc-basis {<5e | g G G} where

_1 for g =  x,
3 g { x ) d g , x  —  ^

0 for g ^  x.

It has

multiplication 6gSh =  &g,h$gi 9 >h E G,

unit 1 =  5g,
g&G

comultiplication & ( f i g )  =  E Sg  j <g> S g 2 i Q E G ,
9 1 3 2 = 3

counit e(5g) =

antipode ^(5g) — 5g-i x , g E G .
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As a vector space the Drinfeld double D(G)  of G is F(G) k[G]. D(G)  is a Hopf 

algebra with

The category Rep(D(G))  of finite-dimensional representations of D(G)  as a fc-algebra 

is a modular category. A description of simple object and explicit formulas for the 

S-matrix and twist of Rep(D((?)) are mentioned in Chapter 5.

R em ark  2.9.13. It is known that for any finite group G, the categories Z(Veco) 

and Rep(D(G))  are equivalent as braided tensor categories. A twisted version (called 

twisted quantum, double of (?) DW(G), where a; is a 3-cocycle on the finite group G was 

introduced in [DPR1]. Note that DM(G) is a quasi-triangular quasi-Hopf algebra. It 

is known that Rep(DM(G)) is a modular category. It is also known that Rep(Z?w((?)) 

is equivalent to iH(Vec£.) as a braided tensor category.

2.10 Centralizers in modular categories

Let C be a modular category with braiding a, twist 6, and S-matrix S  (see [BK]). 

Let T> be a full (not necessarily tensor) subcategory of C. Its dimension is defined by

multiplication (8g x)(Sh <8> y) =  dg^hx- 1 (dg ® xu)-, x ,y>9 , h £ G ,

unit

comultiplication
gi32=g

counit e(5g ® x)  =  5g,ia , x ,g  E G,

antipode 7 (5g ® x) =  Sx- ig- ix <g> x  1 x , y  G G.
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dim(£>) := Sxelrr(-p) ^ ( ^ ) 2> where Irr('D) is the set of isomorphism classes of simple 

objects in V .  In [Mu2], Miiger introduced the notion of the centralizer V  =  Cc{T>) 

of V  in C as the full subcategory defined by

Obj(D') := { X  e C  \ ay,x 0 &x,Y =  idx®y, for all Y  G V ) .

It was shown that V  is a fusion subcategory of C and that

dim(2?) • dim (P') =  dim(C). (2 -21)

Following M. Muger, we will say that two objects X , Y  G C centralize each other if 

a Y , x  °  a x , Y  =  idx®r- For simple X  and Y  this condition is equivalent to S(X,  Y)  =  

d(X)d(Y)  [Mu2, Corollary 2.14].

Remark 2.10.1. If V  is a full subcategory of C such that all objects in V  centralize 

each other, i.e., V  C V '  then (dim('D) )2 < dim(C). Indeed, we have dim(X?) < 

dim(Z};) and so it follows from (2.21) that (dim(X>))2 < dim(C). In particular, if V  is 

a symmetric fusion subcategory of C, then (dim('D) )2 < dim(C).

Lemma 2.10.2. Let T> be a full subcategory of C (which is not apriori assumed to 

be closed under the tensor product or duality) such that V  C V ' . Then the fusion 

subcategory V  C C generated by V  is symmetric.

Proof. We may assume that V  is closed under taking duals. Indeed, it follows from 

[ENO, Proposition 2.12] that X  centralizes Y  if and only if X  centralizes Y* for any 

two simple objects X , Y  in C.
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Let Z \ , Z 2 be simple objects in V.  There exist simple objects X \ ^ X 2 ,Y i ,Y2 in 

V  such that Z\  is contained in X i  <8> Y\ and Z2 is contained in X 2 ® Y 2. By [Mu2, 

Lemma 2.4 (i)], it follows that Z\ centralizes X 2 ® Y 2, and hence Z i , Z 2 centralize 

each other. ■

C oro llary  2.10.3. Let T> be a full subcategory of C such that T> C V' and dim(T>)2 =  

dim(C). Then V  is a symmetric fusion subcategory.

2.11 Lagrangian subcategories and braided equivalences of 

twisted group doubles

Let C be a modular category. Let us assume that C has integral Frobenius-Perron 

dimensions of simple objects. It was shown in [ENO] that any such category is 

equivalent to the representation category of a semisimple quasi-Hopf algebra and has 

a canonical spherical structure with respect to which the categorical dimension of 

any object is equal to its Frobenius-Perron dimension. In particular, all categorical 

dimensions are positive integers. Let us recall some definitions and results from 

[DGNO],

D efin ition  2 .1 1 .1 . A fusion subcategory V  of C is said to be isotropic if the twist 6  

of C restricts to identity on V.

D efin ition  2.11.2. A fusion subcategory V  of C is said to be Lagrangian if it is 

isotropic and (dim(X>))2 =  dim(C).
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R em ark  2.11.3. (i) The definitions of isotropic and Lagrangian subcategories above 

are motivated by the example below.

(ii) Isotropic subcategories are necessarily symmetric.

E xam ple 2.11.4 ([DGNO]). Let G be a finite abelian group. Let q : G —» k x be a 

quadratic form, i.e., for all g G G, g(g-1) =  q{g) and the map

b : G x G k x : (g1} g2) ■ >
q(gi)q{g2

is a symmetric bicharacter. The pair (G, q) is known in literature as a metric group. 

A subgroup H  of G is called isotropic is q\jj =  1. An isotropic subgroup H  of G 

is called Lagrangian if H 1 — H. Let C(G, q) := Vq (the skeletal pointed category 

defined in Example 2.5.12), The quadratic form q gives C(G, q) the structure of a 

braided category (see [Q]):

k = Home(G,q)(gig2 , g m )  3 g\ ® 92 —> 92 ® gi ■= g(^ip2)id919a,

for all gi,g2 £ G. The category C(G, q) is modular if and only if the symmetric 

bicharacter b associated to q is non-degenerate. It is also know that isotropic and 

Lagrangian subcategories of C(G, q) correspondence to isotropic and Lagrangian sub­

groups of (G, q), respectively.

Consider the set of all braided tensor equivalences F : C —> 2( V) ,  where V  is a 

pointed fusion category. There is an equivalence relation on this set defined as follows.
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We say that F\ : C ^  Z{V\)  and F2 : C —> Z ( V 2) are equivalent if there exits a tensor 

equivalence l : V 1 V 2 such that T 2 °Fi =  ioT\oF\,  where Ti  : Z(Vi) —* Vi, i — 1, 2 , 

are the canonical forgetful functors. Let E(C) be the collection of equivalence classes 

of such equivalences. Informally, E(C) is the set of all “different” braided equivalences 

between C and representation categories of twisted group doubles.

Let Lagr(C) be the set of all Lagrangian subcategories of C.

In [DGNO, Theorem 4.5] it was proved that there is a bijection

/  : E(C) ^  Lagr(C) (2 .22)

defined as follows. Note that each braided tensor equivalence F  : C —>■ Z( V)  gives rise 

to the Lagrangian subcategory f ( F)  of C formed by all objects sent to multiples of 

the unit object 1 under the forgetful functor Z( V)  —> V.  This subcategory is clearly 

the same for all equivalent choices of F.

In particular, the center of a fusion category V  contains a Lagrangian subcategory 

if and only if V  is group-theoretical [DGNO].
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CHAPTER 3

CATEGORICAL MORITA EQUIVALENCE FOR 
GROUP-THEORETICAL CATEGORIES

The results presented in this Chapter are based on [N]. The organization of this 

Chapter is as follows. In Section 3.1 we give necessary and sufficient conditions for 

the dual of a pointed category with respect to an indecomposable module category 

to be pointed. In Section 3.2 we show that the Grothendieck ring of the dual of a 

pointed category with respect to an indecomposable module category when the dual 

is pointed is the group ring of a certain crossed product of groups. We also find an 

explicit formula for the 3-cocycle associated to the dual category. In Section 3.3 we 

introduce the notion of categorical Morita equivalence on the set of all finite groups 

and on the set of all pairs (G , u),  where G is a finite group and cv G H 3 (G, k x ). 

We give a group-theoretical and cohomological interpretation of these relations. In 

the final section, Section 3.4, we give a series of examples of pairs of groups that are 

categorically Morita equivalent but have non-isomorphic Grothendieck rings.

3.1 Necessary and sufficient condition for the dual of a pointed 

category to be pointed

We fix the following notation for this and the next Section. Let G be a finite group 

and u  G Z 3 (G, k x ). Let H  be a subgroup of G such that oj\hxHxH is cohomologically
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trivial. Let K  := H \ G  and C := Coind#/cx. Let u : K  —> G be a function satisfying 

p  o  u = i d K  and u ( p ( 1 g ) )  =  1g> where p  : G —+ K  is the usual surjection. Denote 

P(1g) by 1. Let k : K  x G H  be the function satisfying (2.2). Let C := Vq 

and let M. =  Ai(H ,  p) denote the right module category constructed from the pair 

(H, p) (see Examples 2.5.12 and 2.6.5), where p G C 2 (G, C) is a 2-cochain satisfying 

52p =  u>. In the previous equation we regarded co as an element of Z 3 (G, C ) by 

treating co(gi, g2 , g?) as a constant function on K , for all'pi, p2, P3 G G. The module 

category structure of A4 is given by p. If u  = 1, then we will assume that p belongs 

to Z 2 (H, k x ) and that the module category structure of A/l(H, p) is given by ip(p) 

(see (2.7)).

Lem m a 3.1.1. For each x  G K H, ^  is an element of Z 2 (G, Coind^AF).

Proof. We have 52p —  o j , where u  is regarded as an element of Z 3 (G, Coind^A;x). 

It suffices to show that S2 (xp) =  u>, for all x  G K H. This follows from the fact that 

p(u(x)u(y ))  <  g =  p(u(x)u(y <s g)), for all x  G K H,y G K,  and g G G. Indeed,

(S2 {xp))(9u 92, Ps)(y)

= x p{92,  93 ) ( y < g i )  x p{ g i g 2 ,  g 3) { y ) ~ 1 x p { g i ,  p2Ps)(y) x p ( g i ,  g 2 ) { y ) ~ 1

=  9(92, 9 3 )(p{u(x)u(y < gi))) p(gi9 2 , g?)(p(u(x)u(y) ) ) - 1

x P(9i, 9 2gz)(p(u(x)u{y))) p(g i , g2)(p(u(x)u(y ) ) ) - 1 

= 9(92, 9 s)(p(u(x)u(y)) < g) 9 (9 1 9 2 , g3)(p(u(x)u(y ) ) ) ~ 1

x p ( g i ,  9293) ( p ( u ( x ) u { y ) ) )  p ( g i ,  g 2 ) ( p ( u ( x ) u ( y ) ) ) ~ 1 
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=  (tfV)(3i, 92, 9 z){p{u{x)u(y)))

=  w(9i ,  92, g3)(p(u(x)u(y)))

=  w(9i ,  92, 93)-

So 8 2 (xn) — u, for all x  G K H and the Lemma is proved. ■

Definition 3.1.2. For each x  G K H, define the set Funx =  Funx(G, G):

Funx := 1 7  G C l {G, C) = j } -  (3-1)

Lemma 3.1.3. Invertible objects in C*M are given by pairs (7 , x), where x  G K H and 

7  G Fun*.

Proof. We associate an invertible objects in C*M to each pair (7 , x), where x  G K H 

and 7  G Funx as follows: define a map f x : K  —> K  by f x (y) — p(u(x)u(y))  for all 

y G K.  Extend the map f x to a functor Fx : M. —» M.. The module functor structure 

on F x , which is also denoted by 7 , is: : =  7 (ff)(2 /)^ (p («W u(j)))<s  for all 5  G G and

y G K.  The pentagon axiom for a module functor (2.16) is:

x p { g i ,  92) ( y )  i { g i 92) { y )  =  i ( g i ) ( y )  ' v (92) ( v < 9 i )  p { g i ,  92) { y ) ,

for all gi, G G and y G K.

This condition is satisfied because 7  G Funx. The inverse of (7 , Fx) is the module

functor associated to the pair ((p(u(F P(u (x )~1))- All invertible objects in C*M

arise in this way and the Lemma is proved. ■
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Two invertible C-module functors (7 1, x\) and (7 2, x2) are isomorphic in C*M if and 

only if X\ — x 2 and there exists an element a  G C such that 7 1 (g){y) — 2 (9)(y)

for all g G G and y G K.

This motivates us to define an equivalence relation on the set Funx: we define two 

elements 7 1, 7 2 G Funx to be equivalent if there exists an a  G C  such that

7 l (g)(y) = a ^ ( y f l 2 (9^ y^

for all g G G and y G K.

Let Funx denote the set of equivalence classes of Fun^ under the aforementioned 

equivalence relation.

Lem m a 3.1.4. For each x  G K H, if Fun^ yf 0, then there is a bijection between the 

sets Funx and H 1(G, C) and hence there is a bijection between the sets Funx and H.

Proof. Suppose Funx /  0, x  G K H. Fix some 7 G Funx. Then the maps

Funx ZUG, C ) : p \ - + -
V

and

Z 1 (G, C) —>■ Funx : 7  1-4 77

are inverse to each other. These maps induce a bijections between the sets Funx and 

H l (G, C ). The second statement of the Lemma follows from Shapiro’s Lemma. ■
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Theorem  3.1.5. The fusion category C*M  (where C = Vq and A i  = Ai(H,  g)) is 

pointed if  and only if  the following three conditions hold:

1. H is abelian,

2. H  is normal in G and

3. the restriction ip{9g/g)  is trivial in H 2 (H, k x ), for all g G G,

\

where ip is the restriction map defined in (2.9). I f  to =  1 , then we assume that g 

belongs to Z 2 (H, k x ) and the module category structure on M. is given by <p(g) (see 

(2.7)). The third condition above is then replaced with:

3! \i represents a G-invariant class in H 2 (H, k x ).

Proof. Suppose that C*M  is pointed and let S  =  K H, where K  =  H\G.  The set of 

isomorphism classes of simple objects in C*M  is given by the set (Js€(S (Funs x {s}). 

By the previous Lemma, we have FPdim(Cjbf) < \H\ |«S|. Note that \H\ < \H\ and 

|«5| < \K\ = {f|. By Remark 2.7.2, FPdim(C^) =  FPdim(C) =  |G|. It follows that 

we must have Fum,,. ^  0 for all x  G K, \H\ =  \H\ and S  =  K.  The second condition 

in the previous sentence means that H  is abelian. The third condition means that 

H  is normal in G. The first condition is equivalent to saying that ^  is trivial in 

H 2 (G, C ), for all x  G K.  This is equivalent to saying that the restriction if is 

trivial in H 2 (H, k x ), for all g G G.

Conversely, suppose that H  is abelian and normal in G and that ip {jff'j is trivial 

in H 2 (H, k x ), for all g G G. Let C  denote the full fusion subcategory generated by
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invertible objects of C*M . The isomorphism classes of simple objects in C  are given 

by elements of the set [jx£K (Funx x The size of each set in the previous union

is \H\. So FPdim(C/) =  |G|. It follows that C*M =  C . In other words, every simple 

object in C'*M is invertible, that is, the category C*M is pointed.

The last statement of the theorem follows from Lemma 2.1.3. ■

R em ark  3.1.6. The 2-cocycle ip(9f i jg) that appears in the previous Theorem is 

cohomologous to a 2-cocycle (defined in the Lemma below) that appears in several 

places in literature, in particular in [DPR1].

For each x  G G, define T x : G x G —> k x by

v  , x u{xg-yx l , xg2x  \  x ) u ( x ,  gu g2)
M 0 i, 92) := -------------  zt------— - — > for a11 9u92 e  G. 3.2)x (xgxx  i, x, g2)

It is straightforward to verify that §2T x =  for all x  G G, where x x(gi, g2, c/3 ) = 

u(xg ix_1, xg2x~l , xg^x”1), for all gi ,g2 ,g3 G G.

L em m a 3.1.7. Let H  be a normal subgroup of G and let /i G C 2 (G, Coind^A:x) be a 

2-cochain that satisfies $2ji — tx, where u  is regarded as an element of Z 3 (G, Coind#fcx). 

The 2-cocycles ip ( j j f j  and x Xe|Hxflj define the same class in H 2 (H, k x ).

Proof. We have

f  W
V i>(p)

X T x (hi, h2)

^ ( ^ ( x h i x -1, xh 2x~l ) x (x h \x ~ l , xh 2x~x, x)u(x, h\, h2)
ip(/i)(hi, h2) x (xh ix~1, x, h2)

ip(xfx)(hi, h2) ip(fj)(x, hih2) ip(g)(xhix~l , x) ip(g)(xh2x ~l , x)
ip(fi)(hu h2) 4>(fi)(x, hi) ip(g)(x, h2) ip(fi)(xhih2x~l , x)
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for all x £ G,hi ,h ,2 € H.  In the second equality above we used (2.20) with 

(di, 9 2 , 9 3 , x) =  (x, hu h2, 1 h \ g ) ,  {xhiX-1, x, h2, 1 h \ g ) ,  ( x h ix ~ \  xh 2x~l , x, 1 H \ g ) 

and canceled some factors. Observe that the second and third factors in the last 

expression in the equalities above define coboundaries and the Lemma is proved. ■

Exam ple 3.1.8. If G is a finite cyclic group, then H 2(H, k x ) = {1} for any subgroup 

H  of G. Hence the dual of Vecq with respect to any indecomposable module category 

for any 3-cocycle u  on G is pointed. Also, if G is finite abelian group, then the dual of 

Vecc with respect to any indecomposable module category is pointed. The previous 

statement is not true for Vec£. if u  is a non-trivial 3-cocycle on the abelian group G. 

Indeed, consider the dihedral group Dg — {r, s | r 4 =  s2 =  1, rs =  s r -1} and the 

subgroup < r 2 > of it. It can be shown that (VecD8)*M(<r2> i) ~  ^ ecz/2z)3> where u  

is a certain non-trivial 3-cocycle on (Z/2Z)3. Now, we know that Vec£)g is dual to the 

representation category Rep(D8). Hence, there must exist an indecomposable module 

category over Vecg/ 2Z)3 with respect to which the dual of V e c ^ z )3 is equivalent to 

the non-pointed fusion category Rep {Dg). We refer the reader to [CGR] and [GMN] 

for similar results.

3.2 The dual of a pointed category (when it is pointed)

In this Section, we follow the notation fixed at the beginning of Section 3.1. We 

will assume that H  is abelian and normal in G and that ~  is trivial in H 2(G, C), 

for all x  G K,  i.e., we will assume the the conditions of Theorem 3.1.5 hold.
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3.2.1 Tensor product and com position of m orphism s

It suffices to restrict ourselves to simple objects in C*M . Recall that simple objects 

in C*M are given by pairs (7 , x), where 7  £ Funx (the set defined in (3.1)) and 

x  G K.  The element x  G K  determines a C-module functor Fx \ A i M. given 

by Fx(y) =  xy,  for all y G K.  The C-module functor structure on Fx is given by 7 . 

Tensor product (=composition of module functors) in C*M \ for any two simple objects 

(7 1, x\)  and (y2, X2 ), (7 1, x\)  ® (y2, X2) = (X2y 1y 2, X\X2)- It is straightforward to 

check that x^yl y 2 is an element of the set F u n ^^ .

Now let us look at morphisms in C*M . It suffices to restrict ourselves to iso­

morphisms between simple objects. Recall that an isomorphism between two sim­

ple objects (7 1, x) and (y2, x) (note that the second coordinates have to be equal 

for an isomorphism to exist) in C*M is given by an element a  G C which satisfies:

l l {g){y) =  72(p)(y), for all g G G and y G K.

N ote 3.2.1. An isomorphism a  : (7 1, x) —> (y2, x) is completely determined by 

ct(l). If ot is an automorphism, then a(y) =  a(  1) for all y E K.  Indeed, we have 

7 l {g){y) =  ^ ^ l 2 {g){y), for a ll  p  G G an d y  e  K.  So we have a(y<g) =  a(y).

Now let y =  1 and g = u(y).  Then, a(y) =  a (!)■ ^  is easy to show that

the above equality is independent of the choice of the function u : K  —► G.

Let a : (7 1, Xi) —> (y2, x{) and (3 : (y3, x 2) —> (y4, x 2) be any two isomorphisms 

between simple objects in C*M . The tensor product of a  and (3\

(a <g> P)(x) =  (X2a P)(x) = a ( x 2x)P(x),
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for all x £ K.  If 7 2 =  7 3, then the composition of /3 and a  is given by {(3 o a)(x)  =  

f3(x)a(x), for all x  G K.

3.2.2 The G rothendieck ring

The set of isomorphism classes of simple objects in C*M forms a group A:

A =  M (FurL x M )  (T1) x i ) * (72, x 2) = (^T 17 2> xiX2), (3.3)
x &K

where for any 7  € Fun^, by 7  we mean the equivalence class of 7  in Fun^. The inverse 

of any (7 , x) G A is ^ E~17 ~ 1, The Grothendieck ring K q{C*m ) is isomorphic to

the group ring Z[A].

The rest of this Section is devoted to showing that A is isomorphic to a certain 

crossed product of the groups H  and K.

Since is trivial in H 2 (G, C), for each 1  G i f  we have a maps rjx € C 1(G, C), 

x  € K  such that:

Define a function

u - . K x . K - *  C 1(G, C), u(xu x 2) =  (3.5)
V x i X 2

Lemma 3.2.2. The function u defines an element in H?(K, H 1(G, C)).
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Proof. Let us first show that v{x\, xf)  G Z 1 (G, C), for all x\,  X2 G K.  We have

s \ , „  = ~ *  = P P  = = S T ‘ri„) f c ) .

So v(x\,  X2) G Z 1 (G, C),  for all Xi, X2 & K.  Now let us show that 52P =  1. We have 

{ f ? v ) { x i ,  x 2 , x 3 ) =  u ( x 2 , x 3 ) u ( x i x 2 , x 3 ) ~ l D ( x i ,  x 2x 3) ( X3u ( x i ,  x 2 ) T 1

3 ' 3 ' M  *Y) /y-) XQ,X2> ry> ^ 3 / M
_  ' 1X2 ' f x  3  w  ' f x  1X 2^ 3  w  ' f x  1 ' f x  2 X 3  w  '  f X\ X2

X ------------------- X--- ----------------------  X
Vx2xs X3Vx i x2 Vx3 VxiX2X3 XB (X2Vx i )  X3Vx2

The cohomology class of u does not depend on the choice of the family of maps 

{r)x I x  G K}.  Indeed, let {rj'x \ x  G K }  be another family of maps satisfying (S1̂ )  = 

X- R , for all x  G K.  We contend that v(xi,  x2) =  2V x i and u'(xi, x 2) =  Vp  Vx2t* Vx jsa V ’ ’ V'x1X2

define the same class in JTfi(K, Z 1(G, C )). We have, 5l — 1, he. G Z l (G, C ), 

for all x  G K.  Define (3 : K  —» Z l (G, C )  by /3(x) :=  ^f, for all a: G i f .  Then, 

P(a;i, rc2) =  2̂ * 2 = =  ( ^ X ^ i ,  x i) ^ ( ^ 1, T2) and the Lemma

is proved. ■

Corollary 3.2.3. The fimction u = ipi o 0 defines an element in Hfi{K, H) (where 

if 1 is defined in (2.5)) .

Proof. This follows immediately from Lemmas 2.1.3 and 3.2.2. ■

Remark 3.2.4. If u  =  1, then the element u in the previous Corollary is the image 

of (i under the following composition.

H 2 (H7 k x )K — > H 2 (G, C)k  — > H 2 ( K , H l {G, C)) — > H 2 (K, H).  (3.6)
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The first map in the above composition comes from <p (2.7), the second from (3.5) 

and third is induced from the map (2.5). Maps similar to the one in (3.6) appears 

in [Da] and [EG].

Let us put a group structure on the set H  x K.  For any two pairs (pi, xi), (p2 , X2) 

define their product by:

(Pi, Xi)(p2 , x 2) =  (u(xx, x 2) pxi p 2 , x xx 2). (3.7)

Associativity follows from Corollary 3.2.3. We denote this group by H  x„ K.

As mentioned in Lemma 3.1.4, the set Fun^ and H  are in bijection for each x  € K.  

The following maps induce this bijection.

H -> Funx, ( x(p) := px ipx(p), (3.8)

ex : Funx H, Qx(l)  :=

where the maps <px and ipx are defined in (2.4) and (2.5), respectively.

T heorem  3.2.5. The Grothendieck ring /Co(C/d) =  Z[A] is isomorphic to the group 

ring X{H * v K}.

Proof. Suffices to show that the groups A and H y\v K  are isomorphic. Define a map 

T  : H xiu K  -» A by T((p, x)) ~  ((x(p), x). For all (pu x x), (p2, x 2) € H x\p K,  we 

have
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T((pi,  X i ) ( p 2 , X 2 ) )  = T((l /(xu X 2 ) pTp 2 i X i X 2 ) )

=  (Cx ix2 ( ^ ( ^ l ,  X 2 ) p Xi P 2 ) ,  X i X 2 )

and

T((pu  ® i))*T((P2, X 2 ) )  =  (Cxi(pi), 2?l)* (Cx2 (P2 ), X 2 )

=  (X2{ ( x 1 ( p l ) ) ( x 2 ( P2) ,  X ! X 2 )

We contend that (9xlx2(X2Cxi(pi) (x2{P2)) =  ^(^1, x 2) p*2p2. Indeed, for all h G H,  we 

have

0™ ("(O ,O > .))O s(p2) )M  =  r ( C ' l(^ i>̂ ) ((? ) )(/i)(1)

=  ( C x i ( P l ) ( f c ) ) ( ^ 2 )  (Cxa ( P 2 ) ( f e ) ) ( l )

?7X1X2(^)(1)
=  ( ^ i ( p i ) ( ^ ) ) ( ^ 2 ) r i x x i h ) { x 2 ) ( < p i { P 2 ) ( h ) ) (  1 )  ^ ( ^ ( l )

= ®2) p f  P2)(/i)

Hence, CXlX3 (i/{xi, x 2) p xx 2p 2 ) =  ^(CsiO’i)) ( x 2 ( p 2 )- This shows that T is a group 

homomorphism. It is evident that T  is a bijection and the Theorem is proved. ■

Exam ple 3.2.6. Suppose the order of H  is relatively prime to the order of the group 

K  and suppose ip{xp/p)  is trivial in H 2 (H, k x ), for all x  £ K.  Then the Grothendieck 

ring of C*M is isomorphic to Z [H x K]. Indeed, since \H\ and \K\ are relatively prime 

we have H 2 ( K , H)  =  {1} which implies that v is trivial in H 2 (K, H ).
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3.2.3 A Skeleton

A skeleton of a category V  is any full subcategory V  such that each object of V  is 

isomorphic (in V)  to exactly one object of V.  Every category is equivalent to any of 

its skeletons. Let us recall how one constructs a skeleton V  of any tensor category T> 

with associativity constraint a and tensor product ©. The construction is as follows: 

choose one object from each isomorphism class of objects in V.  Let Obj(P) be the 

set of all objects chosen above. For any X  G Obj(X>), by X  we mean the object in V  

that represents the object X.

Define Eom^(X,  Y)  := Homx>(X, Y).  Define tensor product © in V: X  © Y  :=

X  © y , for all I ,  h e  Obj('D). Fix isomorphisms (3(X, Y)  : X  Q Y - ^ X  ® Y  in V,  

for all X ,  Y  G Obj('D). For any /  G Homp(X, Y)  and g G Hom^-(A/, Y')  define its 

tensor product:/ © g =  (3{X', Y ' )~l o ( /  © g) o f3(X, Y).

We now define associativity constraint a in V.  For any X,  Y, Z  G Obj(P) define 

& x , y , z  to be the following composition:

( X @ Y ) @ Z  ( X @ Y ) ® Z  * x ’r >®‘de  {X ® Y ) ®  Z  X  ® (Y ® Z)

X » < x 0 Z)  wx'yez): t  I 6 ( y e Z).

Left and right unit constraints are defined in the obvious way. It can be shown 

that the necessary axioms (pentagon, triangle) are satisfied. Hence V  is a tensor 

category. The tensor categories V  and V  are equivalent as tensor categories. Indeed, 

define a functor F  : T> —> V  by F( X)  — X  and F( f )  =  /  for any object X  and
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any morphism /  in V .  It is evident that this functor is essentially surjective and

fully faithful. Thus F  establishes an equivalence of the categories T> and T>. Let

us put a tensor functor structure on F. We need natural isomorphisms J(X,  Y ) : 

F ( X  Q Y )  = X Q  Y ^ X  0  Y  =  F (X ) 0  F(Y). Let J(X , Y) =  /3(X, Y). Then it is 

straightforward to show that J  is a natural isomorphism and that all the necessary 

axioms are satisfied.

Remark 3.2.7. If V  is a pointed fusion category, then the simple objects of a skeleton 

V  of V  form a group and the associativity constraint in V  gives rise to a 3-cocycle. 

The cohomology class of this 3-cocycle does not depend on the choices made in the 

construction of V.

The function k  defines an element in Z 2 (K, H):

k{X\  ̂ X2) . I^xi,u(x2)' ('^• )̂

Note that the cohomology class of k is independent on the choice of the function

u. Also note that the cohomology class that k  defines in H 2 (K, H)  is equal to the 

cohomology class associated to the the exact sequence 1 —> H  —> G —> K  —>1. 

Define a 3-cocycle w  on the group H  Xj, K  (see (3.7) and (3.5)):

M (p i, ^ i ) ,  ( p 2 ,  x 2 ) ,  { p 3 , x 3 ) )  : =  ( % i ,  z 2 ) ( u ( : e 3 ) ) ) ( 1 )  P i {k ( x 2 , x 3 ) ) ,  (3.10)

for all (pi, art), (p2, x 2), (p3, x 3) e  H K.
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R em ark  3.2.8. (i) It is routine to check that zu does indeed define a 3-cocycle and 

that its cohomology class does not depend on the choice of the function u : K  —* G.

(ii) A special case, with v =  1, of the formula in (3.10) appeared in [GMN].

T h eo rem  3.2.9. The fusion categories C*M and VeP~A K are equivalent.

Proof. Let us construct a skeleton C*M of the category C*M .

Let A =  Use/c x ) I P ^ H}  denote the set of all simple objects of C*M (see

(3.8) for definition of (x). Tensor product 0  in C*M \ {(X1{pi), x x) © {(x2(P2), x 2) =

( C x x O l ) ,  XX) © (Cx2 ( />2) ,  X2) =  ( X2( C i ( P l ) ) C x 2 ( P 2 ) ,  XXX2) =  ( C s i x a M ^ l ,  X2)p*2p2), XXX2). 

Note that A forms a group (multiplication coming from ©) that is isomorphic to 

H x v K.'

Fix isomorphisms in C*M \ C 9  / ( ( C x i ( p i ) ,  x x), ((X2 {p2), x 2)) : ( C * i ( P i ) >  ^ h )  ©

{Cx2(p2), X2) =  {(Xlx2( v ( x  1, X2) p f p 2), Xi X2)-=*{x*((Xl(pi ) )Cx3{p2), Xl X2) =

( C x i ( P i ) ,  x L) © ( (X2(p2 ), X2), for all ( C x i ( p i ) ,  XX), {(X2(p2), X2) G A. The following 

equality holds:

X9.(/- ( - W „s(.A _f ((<xi(pi ) ,xi )A<xAP2) , x 2 ))(y<g)
© x i l P i j j (,x2{P2)){g)[y) —— j777~i— \— \ ,/■ 1 i w y

/ ( ( C x i ( p i ) ,  X i ) ,  (Cx2 (/52 ) ,  X2))(y)

^  Cx i x2 { y { x x, x 2 )px12p2){g)(y),

for all g G G, y G K.  After using the definition of £X1, (X2, Cxix2 and P, canceling and 

rearranging, the above equality becomes:

/ ( ( C x x ( p i ) ,  Xi) ,  ((X2 (p2), x 2))(y<g)  =  u{xu x 2)(g){y) p\{nX2y,g)
/ ( ( C x i ( p i ) ,  ® i ) ,  (Cx3 ( P 2 ) ,  X2))(y) u{xU X2){Kytg) p x2{Ky,g) '
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Putting y — 1 and g =  u{y) in the above relation and canceling, we obtain:

t u r  < \ \ t \  ̂ H x i> x 2 ){u(y))(l) PifaxtMv)) ro
m °M ' x , ) ' { < M ’ x M v )  = m m ,  xi),  ( 3 - n )

Remains to calculate the associativity constraint in C*M which we denote by w ' . 

For any {(X1(pi), x y), ((X2 (p2), x 2), ((xs(p3), x3) E A, w'  is defined by:

^ ' ( ( C xApi),  x x), ((X2{p2), x 2), {(X3 (p3), x 3))

=  ( / ( ( C x x ( p i ) ,  x i ) ,  ( C x M ,  x 2 ) ) )  0  Jrf(c83(W) ,x3))

/ ( ( C * i ( / > l ) ,  X x ) ,  ( C x 2 ( p 2 ) ,  X 2 )  ©  ( ( x 3 ( p 3 ) ,  ^ 3 ) )

x i) ® (Cx2(p2), x 2), (CxatPa), S3))
( M < * 10 > i ) . * i ) ® / ( ( C x 2 ( P 2 ) ,  Z 2 ) ,  (Cx3 ( t f » ) ,  T i ) ) )

_  _______ X3( / ( ( C x i ( P i ) ,  a?i), (Cx2 ( p 2 ) ,  a?2)))
/((Cxi(/h)> 2?i), (CxtiPi), x 2) © (Cxs(/>3), Ts))

X
fdCxAPl),  X i )  Q ( C x a ( P 2 ) ,  Tp, (Cxa(P3')» ^ 3)) 

/((Cx2(P2), a?2), (Cxa^s), a?3))

Note that ^ ((C a^P i), x i)j (Cx2 ( / j2 )> ^ 2), ((X3 (p3), x 3)) is an automorphism of a 

simple object in C*M . By Note 3.2.1, w'({(,xi{px), afi), (( X2 {p2), x 2), ((X3 (p3), x 3))(y) 

is constant for all y E K.  Thus, it suffices to calculate

w '((Cm(Pi), xx), (Cx2(^2) j x 2), (Cx3(ps), ®3))(1).

We have,

^( ( ( xAPl ) ,  xi),  {(X2 {p2), x 2), (CxS(p3), x 3) ) ( l )

M x M ,  ®l)> (Cx2(^2), x2)) (x3)
/((Cxx(pi), X x ) ,  ((X2 {p2), x 2) © (Cx3(ps), a?3))(l)

f((Cxx(Pl), X x )  © (Cx2(P2), X 2 ) ,  i(X3 {p3), x3))(l)
X

f ( « x 2(p2), aj2), (Ccs(Ps), x 3))(f )
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= f  {{Cxi {Pi) i Xl), {(X2 {p2), ^2))(1)
f  {{Cxi (Pl)> ^l); {Cx2 {p2 )̂i ^2) © {Cxa{p3̂  ■> ®3))(1)

fiiCxxiPl), Xl) © (Cx2(p2), ^ 2), (Cx3(Ps), ^3))(1) 
f{{Cx2 {p2), X2), { C x M ) ) ,  Z3)(l)

x u(x 1, a:2)(w(a?3))(l) pi{ ̂ X2, "U (a©)-

We used (3.11) to obtain the last equality.

Since the cohomology class of w'  does not depend on the choice of the isomor­

phisms /(•, •), we can assume that /(•, -)(1) =  1. Also, regard w'  as a 3-cocycle on 

H  Xj, K . Then we get:

Z u ' d p ! ,  X i ) ,  ( p 2 , X 2 ) ,  (P3, Z3)) =  i>(Xi ,  X 2 ) ( u ( x 3) ) ( l )  pl(t^(x2, X 3 ) ) ,

for all (pi, x i ) ,  (p2 , x 2 ) ,  (p3, x 3) G H )AV K.  That is, w'  =  w  and the Theorem is 

proved. ■

Exam ple 3.2.10. Let G =  Z/4Z =  {0,1,2,3}, uj — 1, H  =  {0,2}, and ji = 1. 

Since /i =  1 we can assume that u =  1 (see (3.5)) and v = 1 (see Corollary 3.2.3). By 

Theorem 3.2.5 it follows that Kq(C*m ) =  Z[Z/2ZxZ/2Z]. Let Z /2Z =  {po, pi}, where 

Pi represents the non-trivial homomorphism. We have, K  =  { H + 0, H + l} .  We claim 

that the associativity constraint w  in C*M is non-trivial. It suffices to show that the 

restriction of w  to some non-trivial subgroup of Z /2Z  x Z /2Z is non-trivial. Consider 

the restriction of w  to the subgroup K  =  {(po> H  +  0), (pi, H  +  1)}. It suffices to 

show that there exists a triple of elements in this subgroup such that w  evaluated 

at this triple is not equal to 1. Define the function u : K  —» G by u(H  +  0) =  0 

and u(H  +  1) =  1. Since u =  1, the first factor in the definition of w  vanishes. We
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have, za((pi, H  +  1), (pi, H  +  1), (pi, H  +  1)) — pi(n(H +  1, H  +  1)) — pi(2) — —1. 

Thus, the 3-cocycle zu is non-trivial. In particular, the fusion categories Vec^/^ and 

Vec! /2ZxZ/2Z are dual to each other.

3.3 Categorical Morita equivalence

Using the notion of weak Morita equivalence for fusion categories we put an 

equivalence relation on the set of all pairs (G, u>), where G is a finite group and 

u  e  H 3 (G, k x ):

D efin ition  3.3.1. We say that two pairs (G, u)  and (G', Io’) are categorically Morita 

equivalent and write (G, lj) «  (G', uj1) if the fusion categories Vec^ and V e c a r e  

weakly Morita equivalent.

R em ark  3.3.2. Note that finding categorically Morita equivalence classes of the set 

of all pairs (G , u),  where G is a finite group and u  G H3 (G, k x ) amounts to finding 

weakly Morita equivalence classes of the set of all group-theoretical categories.

We also define an equivalence relation on the set of all groups:

D efin ition  3.3.3. We say that two groups G and G! are categorically Morita equiv­

alent and write G «  G' if the pairs (G, 1) and (G1, 1) are categorically Morita equiv­

alent.

R em ark  3.3.4. Two finite groups G and G1 are called isocategorical if their repre­

sentation categories Rep(G) and Rep(G') are tensor equivalent [EG]. If two groups G 

and G1 are isocategorical, then they are categorically Morita equivalent (this follows
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from the fact that for any group G the categories Rep(G) and (Vecjh)]^^ ^ are tensor 

equivalent). We show in Section 3.4 that the converse is not true, that is, there do 

exist groups that are categorically Morita equivalent but not isocategorical.

R em ark  3.3.5. It was shown in [02] that if two fusion categories C and T> are weakly 

Morita equivalent, then their centers are equivalent as braided tensor categories. It 

follows that if two groups are categorically Morita equivalent, then the centers of their 

representation categories are equivalent as braided tensor categories.

D efin ition  3.3.6. We say that a group G is categorically Morita rigid if any group 

that is categorically Morita equivalent to G is actually isomorphic to G.

R em ark  3.3.7. By remark 3.3.5 it follows that abelian groups are categorically 

Morita rigid. In particular, an abelian group can not be categorically Morita equiva­

lent to a non-abelian group.

The next theorem gives a group-theoretical and cohomological interpretation of cat­

egorical Morita equivalence.

T h eo rem  3.3.8. Two pairs (G, u )  and (G1, To') are categorically Morita equivalent 

if and only if the following conditions hold:

1 . G contains a normal abelian subgroup H  such that oj\hxHxH is trivial in 

H 3 (H, k x ),

2. there is a 2-cochain p G G2(G, Coindffjk*) such that 8 2p =  ui and f>(xp/p)  is 

trivial in H 2 (H, k x ), for all x  G H \ G  and there is an isomorphism
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a: G '-^H  x„ (H \G ) (where u  is regarded as an element of Z 3 (G, Coindffikx ), 

4> and H  x„ (H \G ) are defined in (2.9) and (3.7), respectively) and

3. the 3-cocycle is trivial in H 3 (G', k x ) (where w  is the 3-cocycle associated to 

the dual (Vedfi)*M Ĥ defined in (3.10)).

Proof. Suppose the pairs (G, od) and (G1, u 1) are categorically Morita equivalent. 

Then there exists an indecomposable right module category A4 over Vec£. such that 

the categories (V ec^)^ and Vec£), are tensor equivalent. So there exists a subgroup 

H  of G such that u>\hxHxH represents the trivial class in H 3 (H, K x ) and 2-cochain 

p G C 2 (G, Coind^/cx) (satisfying 52p — u>) which together produce the module 

category Ai .  Note that (Vecff)*M must be pointed. By Theorem 3.1.5, it follows 

that H  is abelian and normal in G and that fi>(xfi/ia) is trivial in H 2 (H, k x ), for all 

x  G H \G . Theorem 3.2.9 says that (Vec^)^ =  Vec^^ (H\Gy If now follows that 

there must exist an isomorphism a : G' —» H  x^ (H \ G ) such that zua is cohomologous 

to u'. The converse is evident and the Theorem is proved. ■

C oro llary  3.3.9. Two groups G and G' are categorically Morita equivalent if and 

only if the following conditions hold:

1. G contains a normal abelian subgroup H ,

2. there exists a G-invariant p, G H 2 (H, k x ) such that the groups G' and

H  x„ (H \ G ) are isomorphic (where H  Xj, (H \ G ) is defined in (3.7)) and

3. the 3-cocycle w  associated to the dual (Veca)*M Ĥ defined in (3.10), is trivial.
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3.4 Examples of categorically Morita equivalent groups with 

non-isomorphic Grothendieck rings

Let p and q be odd primes such that p — 1 is divisible by q. Then there exists 

a unique upto isomorphism non-trivial semidirect product of the groups Z/pZ and 

Z/gZ. Let a and b be generators of the groups Z /pZ and Z/gZ, respectively. Let us 

fix an action of Z/gZ on Z/pZ: fix a t G Z (t ^  1 mod p) such that tq — 1 is divisible 

by p. Such a t  of course exists because p — 1 is divisible by q. Then the action of 

Z/gZ on Z /pZ is defined by: a < b := at . Let p be a generator of the groups Z/pZ. 

Then the induced action of TLjqL on Z/pZ is given by: (p<b)(a) := p(a<b~l ). But 

b~l =  bq~1. So p <l b = ptq 1.

The subgroup Z/pZ (identified with Z /pZ x {1}) of Z /p Z x Z /g Z  can be considered 

as a right (Z/pZ x Z/gZ)-module where the action is via conjugation. The dual 

group Z/pZ is also a right (Z/pZ X Z/gZ)-module with the action being induced 

from the action of Z /pZ x Z/gZ on Z/pZ. Let G := Z /pZ  x (Z/pZ x Z/gZ) and 

G' := Z /pZ x (Z/pZ x Z/gZ).

Lem m a 3.4.1. The groups G and G' have different number of normal subgroups of 

order p.

Proof. Note that both groups have the same number of subgroups of order p. We 

claim that all subgroups of order p in G are normal whereas there exists a non-normal 

subgroup of order p in G '. The generator of any subgroup of G of order p is of the form 

(a1, (am, 1)), where I, m  G { 1 ,... ,p} with I and m  not simultaneously equal to p.
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The elements (a, (1, 1)), (1, (a, 1)), and (1, (1, b)) generate the group G. Note that 

the element (al, (am, 1)) is stable under conjugation by the first two generators of G. 

While conjugation by the third generator gives: (1, (1, &))- 1(a4, (am, 1))(1, (1, b)) = 

(1, (1, M 1))(alt, (amt, b)) =  (alt, (amt, 1)) =  (a1, (am, l))4. This shows that all sub­

groups of order p in G are normal. Consider the subgroup of G' of order p generated 

by the element (p , (a, 1)). We have

(!> (!> h))~l {p, (a > i))!!, (!, h)) =  (1, (!> b~l ))(ptq~ \  (a4, 6)) =  (p4̂ \  (a4, 1)). Note 

that the element (ptq 1, (a4, 1)) is not a power of (p, (a, 1)) because ^kt  mod p. 

This shows that the subgroup of G' of order p generated by the element (p, (a, 1)) is 

not normal and the Lemma is proved. ■

C oro llary  3.4.2. The groups G and G' are categorically Morita equivalent but have 

non-isomorphic Grothendieck rings.

Proof. To see that these two groups G and G1 satisfy the conditions in Corollary 

3.3.9, take H  to be the subgroup Z/pZ of G and take p  =  1. Observe that the groups 

H *\(H \G ) and G' are isomorphic. Since the exact sequence 1 —» H —> G —> H \G  —> 1 

splits and p  =  1, it follows that the 3-cocycle associated to the dual (Vecg)*^h  pp 

defined in (3.10), is trivial. So the conditions in Corollary 3.3.9 hold and it follows that 

the groups G and G' are categorically Morita equivalent. To see that these groups have 

non-isomorphic Grothendieck rings note that the previous Lemma implies that these 

groups have different number of quotient groups of order pq. By [Nik, Proposition
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3.11] it follows that the Grothendieck rings Ko(Kep(G)) and Ko(Rep(G/)) are not 

isomorphic. ■

C oro llary  3.4.3. The groups G and G' are not isocategorical.

Proof. This follows immediately from the above Corollary. ■

R em ark  3.4.4. (i) By Remark 3.3.5 the representation categories Rep(G(G)) and 

Rep(D(G')) of the Drinfeld doubles of the groups G and G' are equivalent as braided 

tensor categories and hence these groups define the same modular data.

(ii) Equivalence of certain twisted doubles of groups was investigated in [GMN].

(iii) The above examples of categorically Morita equivalent groups come from a 

more general construction: start with any finite group G and a finite right G-module 

H.  Consider the semidirect product H  x G. We can regard H  as a right G-module 

with the action being induced from the action of G on H. Then the groups H  x G 

and H  x G are categorically Morita equivalent. Note however that these two groups 

are not always non-isomorphic.

(iv) By Ito’s theorem [Gr, Theorem 6.3.9] it follows that the possible dimensions 

of irreducible representations of the groups G and G1 are 1 and q. It can be shown 

that the order of the commutator subgroup is p2 for both groups. Therefore, the 

order of the abelianization (equal to the number of 1-dimensional representations) 

of both groups is q. So the group algebras k[G] and k\G'] are both isomorphic to 

k © k © • • • © k © Tfq(fc) © Mqifk') 0  • • • © ik/g(/c).
'---------V---------' V-------------------v------------------ /

q co p ies  (p2 — l)/q cop ies
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(v) It follows from Corollary 3.4.2 that the groups G and G' have different charac­

ter tables. This provides a counter-example to the hunch, mentioned in [CGR], that 

groups defining the same modular data will have the same character table.
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CHAPTER 4 

NILPOTENCY AND GRADING OF 
GROUP-THEORETICAL CATEGORIES

The main result of this Chapter is Proposition 4.1.9 in which we give sufficient 

conditions for a group-theoretical category to be nilpotent.

We fix the following notation for this Chapter. Let C V£, where G is a fi­

nite group and u  G Z 3(G, k x ) and let A4 Ml(H,  / i )  denote the right module 

category over C constructed from the pair (H , fi) (see Examples 2.5.12 and 2.6.5), 

where H  is a subgroup of G such that uj\hxHxH is cohomologically trivial and 

(j. G C 2 {G, CoindGHk x ) is a 2-cochain satisfying 52/j, =  u. In the previous equa­

tion we regarded to as an element of Z 3 {G, Coind^/cx) by treating w(g-i, g2 , P3) as a 

constant function on H \G , for all gi, g2 , 93 G G. Let K  := H \G . Then Irr(A4) =  K  

and Obj(A4) =  {®x&Knxx \ nx is a, non-negative integer}, where nxx  =  0 "=^. 

Horn(®x<zKnxx, ®yeKmyy) := ®x£K ®yz k  Horn(nxx, m yy ) and

Hom(nxa:, m yy) \-
{0}, i i x ^ y

[ Mnx,ny(k), if x = y

where Mnx<ny is the space of nx x ny matrices with entries from k. Recall that the 

action of C on A4 is given by the right action (denoted by <) of G on K  and the 

module category structure is given by //.
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Let u : K  —> G be a function satisfying p o  u =  idx  and u(p( 1^)) =  1 g ,  where 

p : G —> K  is the usual surjection. We denote by 1^  the object p ( 1 g ) in the category 

A4. Let k : K  x G —> H  be the function satisfying (2.2). We will denote by Kl the 

Kronecker tensor product of matrices. I„ will denote the n x n identity matrix.

If H  is normal in G, define R x, for each x  G K,  to be the set of all projective 

matrix representations of H  with 2-cocycle ^  ( — ) (where ip is the map defined in

(2.9)). Note that if H  is normal in G , by Lemma 3.1.1, ip y-ff ) is indeed a 2-cocycle 

on H.

R x := < P p is a projective matrix representation of H  with 2-cocycle ip

Also, let

■Lp ,

A ,

(4.1)

Rx =  the set

Irr(i?x) =  the set

Irr (Rx) =  the set

Obj (C*M ) =  the set

Irr (C*M) = the set

R<Cm ) = the set

(4.2)

Let V  be a semisimple category having finitely many isomorphism classes of simple 

objects. For any object X  of V  let us denote by ppX the number of simple objects 

(counting multiplicities) in the decomposition of X.
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Lemma 4.1.1. The FP-dimension of any object (F, 7 ) G Obj(C^) is given by 

# (F (s )) , where s is any simple object in Ad.

Proof. First, observe that #(F(s) )  =  # ( F ( I k ) )  for any simple object s in Ad: Indeed, 

# (F (s ))  =  # ( F ( 1 k  <u(s))) = # ( F ( 1 k)  <u(s)) = #(F(1k)) -  The second equality 

above is because there is an isomorphism 71 K,u(s) between F ( I k  <u(s)) and F(1k)  < 

u(s). It is clear that f f  extends to a ring homomorphism from the Grothendieck ring 

/C0{C*M ) of C*M to Z. The statement of the Lemma now follows from [ENO, Lemma 

8.3]. ■

Suppose H  is normal in G. Then the 2-cocycles ^  and tp (p) (where tp and

ip are defined in (2.7) and (2.9), respectively) are cohomologous, for all x  G K. So 

for each x  G K , there exists rjx G C 1(G, Coind#/cx) which satisfies:

We assume that rjiK = 1.

Lemma 4.1.2. The following map is well defined.

C, : Rx -  Obj(CX,) : P ~  U p )  = (F, 7 ), (4.4)

where (F, 7 )  is defined by: F(s) := dim(p) :cs =  xs  ® xs  ® • • • 0  x s for all s G K  =
dim(p) summands

Irr(A4) and 7 s g := r)x(g)(s) p(«s,g), for all s G K,  g G G =  Irr(C). The Frobenius-

Perron dimension of (x(p) is equal to dim(p), for all p G R x.
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Proof. To show that 7  is a module functor structure on F, it suffices to show that 

equation below holds for all g i , g 2 G G, s G F .

L em m a 4.1.3. Let (x , x  G K  be the maps defined in (4.4). The following statements 

hold.

(i) If p i , P2 G Rx are isomorphic, then (x(pi) is isomorphic to (x(p2).

(ii) If (x(pi) is isomorphic to (x(p2) for any pi ,p2 G Rx, then p\ is isomorphic to p2.

(iii) If p G R x is irreducible, then (x{p) is simple.

Proof, (i) Suppose p\ ,p2 G R x are isomorphic and let £(/h) :== ( F1, 7 1) and ((P2) ■= 

(F 2, q2). Let n = dim(pi) =  dim(p2)- T° see that (F 1, 7 1) is isomorphic to (F 2, 7 2)

xp{9i, 92)(s) 
p(gi, 9 2 ) (s) •s, g i g 2 (4.5)

The right hand side of the above equation is equal to

Vx(gi){s) pi^s.gi) Vx{g2){s ^ 9l) pi^sOgi.gz)

'■<9 1 , 9 2  )  P ( K s, 9 1 3 2 )

= Vx(gi92){s) (5lr)x){gi, 9 2 ){s) p  ^  j  (^1, g2 )(s) p(ks,9i92

which is the left hand side of (4.5). We used (2.3) in the second equality above. The

last statement of the Lemma follows from Lemma 4.1.1.
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it suffices to show that these exists a (3 £ Fun(F, GL(n, k)) such that the equation 

below holds for all s £ K,  g £ G.

71 9 = P{s)l lg(3(s<g)

Since pi is isomorphic to p2, there exists A £ GL(n, k) such that p2 (h) = A pi(h) A-1,

for all h £ H.  Put f3(s) := A,  for all s £ K.  Then,

7l g  = V x ( g ) ( s )  p2{Ks,g)

= Vx{g){s) Api(K3t9) A-1 

=  A y x(g)(s) Pi (ks,9) A-1

=  P(S) l l , 9 0 (s<g)~1-

It follows th a t (F 1, 7 1) is isom orphic to  (F 2, q 2).

(ii) Suppose Cx(pi) and Cx{p2) are isomorphic, pi ,p2 G R x. Let C(Pi) := (F 1, 7 1) 

and ( (p2) := (F 2, 7 2). Since (F 1, 7 1) is isomorphic to (F 2, 7 2), there exists (3 £ 

Fun(F, GL(n , fc)) such that the equation 7 2g =  (3(s)r)ls g (3{s <1 g) -1  holds for all

s £ K,  g £ G. Put s := 1 k , 9  =  h £ H  in the previous equation to get

P2 {h) =  {r,x{h){lK) y l l l Kth

= /3{Ik) pi(h) P (1 k ) * 1- 

It follows that pi is isomorphic to p2.
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(iii) Suppose p G R x is irreducible and let ( x(p) '■= (F, 7 ). Suppose, in order to ob­

tain a contradiction, that (F, 7 ) is not simple. Then, there exists (F 1, 7 1), (F 2, 7 2) G 

Obj(Cj^) such that F  =  F 1 © F 2, 7  =  7 1 ® 7 2 where F 1 (s) = n \xs, F 2(s) =  n^xs  

for all s G K  and n 1; n 2 are positive integers satisfying n\  +  n 2 =  dim(p). We 

have, p(/i) =  (77a.(/i)(lK ))"17iK,/. =  M W * ) ) -1 l \ Kth © {rjx{h){lK ) ) - 1 7 ^ ,  for all 

h G H.  Put px(h) := (7x(^)(lir))“ 17i1K,fe and p2(/i) := 7ik ,/1> for a11

h G H.  It follows from Lemma 2.1.5 and (4.5) that pi ,p2 are elements of Rx. So 

P — Pi © P‘2 - This contradicts our supposition that p is irreducible. Hence, (x(p) is 

simple whenever p G R x is irreducible. ■

Lem m a 4.1.4. There is a bijection between the sets (Jx£/<r Irr(HL) and Irr(C^).

Proof. It follows from Lemma 4.1.3 that the maps (x , x  G K  in (4.4) induces injections

Cx : Irr(Rx) ^  (4.6)

for all x  G K,  defined by: ( x(p) (x(p) where p is the isomorphism class represented

by p and (x (p) is the isomorphism class represented by (.E(p). Now, the sum of squares 

of the Frobenius-Perron dimensions of the objects of the set (Ja,e^Im (('x) is equal to

XI E  (dta(p))2= E l t f M A'Mffl = lGl-
x e K p£lrr(Rx) xeK

The Lemma now follows from the fact that FPdim(Cj^) =  FPdim(C) =  |G|. ■
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For each x  E K,  let (C ^)x denote the full abelian subcategory of C*M with objects 

given by the set

{(F, 7 ) | (F, 7 ) is isomorphic to a direct sum of objects of the set Cx(Irr(Fx))}

R em ark  4.1.5. (i) Let (F, 7 ) E C*M . Then, (F, 7 ) E {C*M )X if an only if there is a

non-negative integer n such that F(s) =  nxs,  for all s & K.

(ii) (Cjvj) iK forms a semisimple tensor category with finitely many isomorphism classes 

of simple objects. The unit object (1 , id^r) of C*M is contained in (C*M )\K.

(iii) R \k is a semiring with basis Irr(F i^). The multiplicative structure is given by

the tensor product of representations.

(iv) The set O bj((C ^)iK) of isomorphism classes of Obj((Cjh,)iJf) forms a semiring 

with basis Im(£lif).

Lem m a 4.1.6. The map ££ (defined in (4.6)) induces a unit preserving semiring 

isomorphism between R \K and Obj((Cjh,)iK).

Proof. It follows from Lemma 4.1.4 and Remark 4.1.5 that the map defined below is 

a bijection.

T  : Obj((CX,)iK) : p h M  W

Note that T preserves the unit. Let (F, 7 ) E Obj((Cjhf)1/f). Then, 7  satisfies the 

equation ̂ s. gig2 =  % , 91 7^ 1,92 > for all s e  K,  gu g2 E G. Put s = 1K and gx =

h \ , g<i — h2 G H  in the previous equation to get the equation 71 K,hih2 =  71k,/u

Define

T  : O bj((C'm )1k) R 1k : (F, 7 ) ~  T'((F, 7 )) (4.8)
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where (T '((F, 7 )))(h) 71 Kth, for all h G H.  We have Y' o ( 1k = i d ^ .  So T '

induces a map O bj((C ^)1/c) —> R j k which is inverse to the map T defined in (4.7). 

Let us show that Y is a semiring isomorphism. It is clear tha t Y preserves the additive 

structure. To see that it preserves the multiplicative structure note that is suffices 

to show that P'(( iK(pi) ° CiK(P^)) — Pi ® Pi (= tensor product of representations 

Pi and p2), for all pu p2 G R \K. Let Ci*(Pi) := ( F1, A ) ,  CiApi) ~  ( ^ 2> 72), and

(F 1, 7 1) o (F 2, 7 2) := (F, 7 ) for p i,p 2 S R \K- We have,

t '(Cik(Pi) 0 CiK{P2)){h) =  -nK}h

=  7f 2(1kU o F 1(7 ?fcifc)

7dim(p2)lif 1 h ® {HIk , h ^  fdim(pi))

— (Idim(p2) ^  1 l K,h) ( 7 l ^  Idim(/3i))

= (7iJf,/J ^ 7 i1KlJ  

=  p2(/l) Kpl(/i)

for all h G H. This shows that Y/(Ci/c(pi) 0 Cijc(P2)) =  P2 <S> Pi — Pi <S> p2 and the 

Lemma is proved. ■

P ro p o sitio n  4.1.7. I f  H  is normal in G, then the fusion category C*M (where C =  Vg 

and A4 = A4(H, p,)) is graded by the group K  = H \G .

Proof. From Lemma 4 .1 .4 , it is clear that C*M — ®xeK(CXi)x- Pick any (F, 7 ) G

{C*M )X, ( F \  7 1) G [C*M )xX, (F 2, 7 2) G (C%i ) X2. We need to show that
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(i) (F, 7 )* G {Cj^)x-i where (F, 7 )* is the dual of (F, 7 ).

(ii)

There exists non-negative integers n , n i , n 2 such that F(s) =  n x s ,  F 1 (s) = n \ X \ s ,  

F 2 (s) = n 2x 2s ,  for all s G K.  Statement (ii) above follows from Remark 4.1.5 and 

the fact that (F 1 o F 2)(s) =  n i n 2x i x 2 s , for all s  G K.  To see that Statement (i) 

above holds, define an object (F' , 7 ') G {Ĉ ) x- 1 as follows: let F'(s) := n x ~ l s ,  for 

all s  G K,  and let 7 ' :=  {{'~fx-is,g) T ) ~ 1 , for all s  G K, g G G. Then 7 ' defines a

module functor structure on F'  if and only if the equation below is satisfied for all

s £ K, 9 i, g2 G G.

9 2 ) { s )  u  \ T \ - 1  ({„,  \ T \ - 1  / / „ ,  \ T \ - 1
 G ^ 1s’9192) ) = [ U x ^ S,gi) ) {(7(x-^s)<igi, g2 ) ) •

Now, 7  satisfies (4.5) for all s G K, g i ,g 2 G G. Replace s with x -1s in (4.5) to get 

xK 9 i , 92){x~1s)
» ( 9 i ,  9 2 ) ( x - 1 s )  7 " " l s ' s i  ^ ^ 1 , 9 2

, . P > ( 9 i ,  9 2 ) ( s )

^  ^  X " 1  p 2 ) ( f i )  ^  1 S ’ 9 1 9 2  7 X  1 S ’ 9 1  1 S 1 < 5 1 ’ 9 2 '

Taking the transpose and inverse of both sides of the above equation, we get

Mffl) ^2) (-s) , /  \ T \  —1 _  / /  - \ T \ -1  //■„,
^ { 9 1  9 2 ) { s )  1 s l g i g 2 )  )  ( w x  1s ,  g i )  )  ( w ( x  1 s ) < g i , g 2)  )  >

which is precisely what we need. Now, we claim that (F', Y )  is the right dual of (F, 7 ), 

i.e., (F, 7 )* =  (F ;, Y ) .  Note that if (F, 7 ) is simple, then so is (F', Y ) -  So it suffices to

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



show that the unit object of C*M is contained in the decomposition of (F, 7 ) o (F ;, 7 ') 

into simple objects. In view of Lemma 4.1.6, it suffices to show that the identity 

element (=trivial representation of H) of R\K is contained in T '((F, 7 ) o (F ', 7 ')), 

where T ' is defined in (4.8). Let (F, 7 ) o (F1, 7 ') =  (F", 7 "). Then,

r { { F " , i ' ) ) { h )  = i { K<h

= F{n'lK'h)

^ i nx^ , h o ( i l K h m \ n)

= (\n ® l x - ^ hm l x ^ , h)Ty l m n)

=  ( { l x ~ \ h ) T ) ~ l ^ l x - \ h

for all h £ H.  Define a map p : H —> GL(n, k) by p(h) := 7 x- i th. Then p is a projec­

tive representation of H  with 2-coycle ip So p* is a projective representation

of H  with 2-cocycle ip ■ So, we have T ((F", 7 ")) =  p* <g> p. By Lemma

2.3.3, it follows that the decomposition of p* <S> p into irreducible representations of 

H  contains the trivial representation and the Proposition is proved. ■

Note that lvv(RxK) generates a based ring that is isomorphic to the Grothendieck 

ring /Co(Rep(H))  of the representation category Rep(H)  of H . Also, note that (C*M )\K 

is a fusion sub-category of C*M .

C oro llary  4.1.8. The based rings /Co(Rep(H)) and K,q{{C*m )\k ) are isomorphic.
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Proof. In view of Lemma 4.1.6 and Proposition 4.1.7 we only need to show that the 

map T defined in (4.7) preserves duals. But this follows immediately by noting that 

T '((iK(p)*) =  p*, for all p G R \ k where T ' is the map defined in (4.8). ■

P ro p o sitio n  4.1.9. If  H is normal in G and H is nilpotent, then the fusion category 

C*M (where C =  Vq and Ai  =  Ai (H,  p)) is nilpotent.

Proof. First note that /Co(Rep(H))  is nilpotent because H  is nilpotent. Also, note 

that (C*M )iK is a nilpotent fusion category since by the previous corollary K-q{{C*m )ik ) =  

/Co(Rep(i7)). Now observe that (C*M )ad is a fusion sub-category of (C^i)iK. By [GN, 

Proposition 4.6] it follows that (C*M )ad is nilpotent and hence C*M is nilpotent. ■

R em ark  4.1.10. (i) If the conditions of Proposition 4.1.9 hold, then the nilpotency 

class of C*M is less than of equal to 1+ (nilpotency class of H).

(ii) If C'M (where C = Vq and M  =  M.(H, p)) is nilpotent, then H  is nilpotent. This 

follows from the fact that fCo{C*M ) contains /C0(Rep(i7)) as a subring.
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CHAPTER 5

LAGRANGIAN SUBCATEGORIES AND BRAIDED 
TENSOR EQUIVALENCES OF TWISTED QUANTUM  

DOUBLES OF FINITE GROUPS

The results presented in this Chapter are based on [NN].

In Section 5.1 (respectively, Section 5.2) we classify Lagrangian categories of the 

representation category of the Drinfeld double (respectively, twisted double) of a fi­

nite group. The reason we prefer to treat untwisted and twisted cases separately is 

because our constructions in the former case do not involve rather technical cohomo- 

logical computations present in the latter. We feel that a reader might get a better 

understanding of our results by exploring the untwisted case first. Of course when 

u) =  1 the results of Section 5.2 reduce to those of Section 5.1.

5.1 Lagrangian subcategories in the untwisted case

We fix notation for this Section. Let G be a finite group. For any g £ G, let 

K g denote the conjugacy class of G containing g. Let R  denote a complete set of 

representatives of conjugacy classes of G. Let C denote the representation category 

Rep(G(G)) of the Drinfeld double of the group G:

C := Rep(D(G)).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The category C is equivalent to Z{Wqcg), the center of VecG. It is well known that C is 

a modular category. Let T denote a complete set of representatives of simple objects 

of C. The set T is in bijection with the set {(a, y) | a G R  and y  is an irreducible 

character of Cg(cl)},  where Cg(ci) is the centralizer of a in G (see [CGR]). In what 

follows we will identify T with the previous set.

T := {(a, y) | a G R  and y  is an irreducible character of CG(a)}. (5.1)

Let S  and 0 be (see, e.g. [BK], [CGR]) the S-matrix and twist, respectively, of C. 

Recall that we take the canonical twist. It is known that the entries of the S-matrix lie 

in a cyclotomic field. Also, the values of characters of a finite group are sums of roots 

of unity, so they are algebraic numbers. So we may assume that all scalars appearing 

herein are complex numbers; in particular, complex conjugation and absolute values 

make sense. We have the following formulas for the A-matrix, twist and dimensions:

S((a, x). (b, x')) = E ^ ^ S - t x V 1̂ ) ,

0 ( a ,  y )  =
d eg y

d({a,  y ))  =  \ K a\ d e g y  =  degy ,
| 0 G (a ) |

for all (a, y), (6, y ') G T, where G(a, 6) =  {g G G \ agbg~l =  g b g ^ a ) .

5.1.1 C lassification  of L agrang ian  subcatego ries  of R e p (D(G))

L em m a 5.1.1. Two objects (a, y), (b, y ') G T centralize each other if and only if the 

following conditions hold:
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(i) The conjugacy classes K a,Kb commute element-wise,

(ii) X i g b g ^ x ' i g ^ a g )  = degy degy', for all g e  G.

Proof. By [Mu2, Corollary 2.14] two objects (a, y), (b, y') 6 T centralize each other 

if and only if

S{{a, y), (b, x')) =  degy degy'.

This is equivalent to the equation

x{gbg~l)x!{g~Xag) = \G\ degy degy', (5.2)
g G G ( a ,  b)

where G(a, b) =  {g G G \ agbg-1 =  gbg~la}. It is clear that if the two conditions of 

the Lemma hold, then (5.2) holds since G(a, b) = G.

Now suppose that (5.2) holds. We will show that this implies the two conditions 

in the statement of the Lemma. We have

|G| degy degy' = | x{gbg~l ) x!{g~Xag)I
g & G ( a , b )

< \^9bg~l )\\x!{g~lag)\
g £ G ( a ,  b)

< \G\ degy degy'.

S o  E 9 e O ( a , b )  \x{gbg~l )\ Wigwag)]  =  |<?| degy degy'. Since

IG(a, b)| < |G|, \x(gbg~l)\ < degy, and \xf{g~lag)\ < degy',

we must have G(a, b) = G, | y ( ^ _1)| =  degy, and |y ' { g^ ag^  =  degy'. The 

equality G(a, b) = G implies that the conjugacy classes K a,Kb commute element-
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wise, which is Condition (i) in the statement of the Lemma. Since \x{9^9~l)\ =  degy, 

and I'x!{g~l ag)\ =  degx/, there exist roots of unity a g and (3g such that x(9^g~1) =  

ag deg%, and x!{9~la9) — Pg degy', for all g G G. Put this in (5.2) to get the 

equation

5 > A = | G | -  (5.3)
s e c

Note that (5.3) holds if and only if ag(3g — 1, for all g E G. This is equivalent to saying 

that x(9^9~l) x'{9~la9) — degx degx', for all g G G and the Lemma is proved. ■

L em m a 5.1.2. Let E  be a normal subgroup of a finite group K.  Let Irr(iL) denote 

the set of irreducible characters of K.  Let p be a IL-invariant character of E  of degree 

one. Then

(degx)2 = | f | .
xeIrr(/C):x|j3 =  (degx) p

Proof. Suppose x  is any irreducible character of K.  Since p  is iL-invariant, by Clif­

ford’s Theorem, if p  is an irreducible constituent of x \e , then

x \ e  = (degx)p. (5.4)

By Frobenius reciprocity, the multiplicity of any irreducible x  in In d fp  is equal to 

the multiplicity of p  in x \e - The latter is equal to deg% if x  satisfies (5.4) and 0 

otherwise. Therefore,

(deSX)2 =  deg lnd fp  =
xeIrr(/C):x|B = (degx)p

as required. ■
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Let H  be a normal Abelian subgroup of G and let B  be a G-invariant alternating 

bicharacter on H. Then H  =  UaeffnK^“- ^et

£ ( h , b ) '■= full Abelian subcategory of C generated by

a G H  Pi R  and x is an irreducible character of Cc{o) 

such that x(h) =  B(a, h) degx, for all h <E H
K  x)  £ r

(5.5)

Proposition  5.1.3. The subcategory jC(h,b) ^ Rep(D(G)) is Lagrangian.

Proof. We have

X{gbg~l)x!{g~lag) = B(a, gbg-1) degx  B{b, g~lag) degx'

=  B(a, gbg~l) B{gbg~\ a) degx degx'

=  degy degx',

for all (a, x), (b, x') £ £(h,b) Ll T,g € G. The second equality above is due to G- 

invariance of B  and the third equality holds since B  is alternating. By Lemma 5.1.1, 

it follows that objects in C(h,b) centralize each other.

Also, we have d(a,x) = ^  =  degx =  1, for all (a, x) G C { h , b ) H T .

Therefore, 0\C(H B) =  id.

The dimension of jC(h.b) is equal to |G|. Indeed,

dim(£(H,B))= 5 ^  d(a, x)2
( a ,  x ) € £ ( H , B ) O r

l^ a |2 (degx)2
(a, x)e£(H,s)or
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=  Z  \Ka\2 Z  (des ^ ) 2
aeHnR x:(a> x)s£(h, s)(~| r

=  V  IK  P |Cg(q)I 
1̂ 1

=  M  \k  i
1^1 J J

=  | G | .

The fourth equality above is explained as follows. Fix a G H  fl /?. Define p : H  —>■ /cx 

by p(/i) := J3(a, /i). Observe that p is a Cc?(a)-invariant character of H  of degree 1 

and then apply Lemma 5.1.2.

It follows from Lemma 2.10.2 that £ ( h , b )  is a Lagrangian subcategory of Rep(D(G)) 

and the Proposition is proved. ■

Now, let £  be a Lagrangian subcategory of C. So, in particular, the two conditions 

in Lemma 5.1.1 hold for all simple objects in £. Define

He := 1J K a. (5.6)
a £ R : ( a ,  x ) £ £  f o r  s o m e  x

Note that He is a normal Abelian subgroup of G. Indeed, that He is a subgroup 

follows from the fact that C contains the unit object and is closed under tensor 

products. The subgroup He is normal in G because it is a union of conjugacy classes 

of G. Finally, that He is Abelian follows by Condition (i) of Lemma 5.1.1.

For each a G H  fl R, define £a : He k x by

U Q  == degy
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for h E He, where x is any irreducible character of Cg{o) such that (a, x)  £ £ n T . To 

see that this definition does not depend on the choice of %, let (a, %), (a, x'), ( b ,  x") G 

£ n r  and apply Condition (ii) of Lemma 5.1.1 to pairs (a, x),  ( b ,  x") and (<T ( b ,  x")

to get

x ( g b g -1) = f  ^ \ g - 1a g )\ -1 and x ! {g b g ~ l ) = / x " { g ~ l a g )\ _1 
deg X V deg x "  )  deg x! \  deg x "  )

for all g E G. This implies that ^  =  5^ - ,  for any two pairs (a, x), (a , x!) G £ n F .

For any a, b E He H R, by Condition (ii) of Lemma 5.1.1, £a and satisfy the 

equation:

ia{gbg~l ) =  for all g E G. (5.7)

Define a map Be ■ He x He —» k x by

B c {hi, h2) ■■= £a(g~1h2g), (5.8)

where h\ = gag_1, g E G, a E He D i?.

P ro p o sitio n  5.1.4. Be is a well-defined G-invariant alternating bicharacter on He-

Proof. First, let us show that Be  is well-defined. Suppose gag”1 = kak”1, where 

a E He C R, g, k E G. Then

Bc{gag~\ Ibl”1) =  C a d g ^ l M g ^ l ) ”1)

=  Cbiig^iy'aig-H))”1 

= £b{l~1(gag~1) i y 1
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=  ^ ( i " 1(fcafc"1)Z) " 1 

=  ta { { r1k)~1b ( r 1k))

= U k ~ l { ibr l )k)

=  Bc{kak~l , IbH1),

for all b G # £  fl R, I G G. The second and the fifth equalities above are due to (5.7).

Let hi  = /cafc-1 , h 2 G He, g  £ G, where a G He fl i7, k  G G. Then

B c i g h i g - 1 , g h 2g ~ l ) =  B c ( g k a k ~ l g ~ l , g h 2g ~ 1)

=  £ a { { g k ) ~ 1 { g h 2g ~ 1 ) ( g k ) )

=  &(&"%*:)

=  B c ( k a k _1, h2)

=  B c (hi ,  h 2).

So Be is G-invariant.

Now,

Be{gag~l , ga g '1) = B c {a, a)

£a(®)

X(a)
degx

^(a.x)

=  1,

for all a G He C\ R, g £ G. The first equality above is due to the G-invariance of 

So Be(h, h) =  1, for all h G iTc.
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Also, B c {g\agl \  g2bg2 1)Bc {g2bg2 \  giagx *) =  £a{gi 1Q2bg2 1gi)&(g2 1giag1 lg2) = 

1, for all g\,g2 G G,a,b  G H D R. We used (5.7) in the last equality.

To see that Be  is a bicharacter, observe first that £0 is a homomorphism, for all 

a G He f l R. We have

B c {gag~l , hi) Bc (gag~\ h2) =  £0 (3 “ % s )

=  ia(g~lhih2g)

=  B c {gag_1, ^ 1^2),

for all a G H e D  R ,g  G G ,h \ ,h 2 G He- We conclude that is a G-invariant 

alternating bicharacter on and the Proposition is proved. ■

Recall that Lagr(C) denotes the set of Lagrangian subcategories of a modular 

category C.

Theorem  5.1.5. Lagrangian subcategories of the representation category of the Drin­

feld double D(G) are classified by pairs (H , B), where H is a normal Abelian subgroup 

of G and B  is an alternating G-invariant bicharacter on H.

Proof. Let 8 := {(H, B) \ H  is a normal Abelian subgroup of G and B  G (A2H )G}. 

Define a map T : 8 —>• Lagr(C) : (H, B)  1—> C(h,b)> where C =  Rep(D(G)) and C(h,b) 

is defined in (5.5). It was shown in Proposition 5.1.3 that C(h,b) is a Lagrangian 

subcategory.

To see that T is injective pick any (H, B),  (H ' , B') G 8 and assume that ^((H,  B)) 

=  B 1)). So in particular we will have C(h,b) H T =  C{h ',b>) H T. Note that
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H  =  U{a<x)zC(H,B)nrKa and H'  =  \J(a,x)ec{H,iBl)nrKa- Since £(#,b) HT — C(h' ,b>) HT, 

it follows that H  — H ' . Also note that for any (a, x)  £ £(h,b) HT =  C{H',B') G b, 

we have x(h)  =  B(a, h) degy =  B'(a, h) degx, for all h £ H  — H ' . Since B , B '  are 

G-invariant, it follows that B  =  B ' . So T is injective.

To see that T is surjective pick any C £ Lagr(C). Consider the pair (Be, Be), 

where Hc and Be  are defined in (5.6) and (5.8), respectively. Proposition 5.1.4 showed 

that (He, Be) belongs to the set S. We contend that ty((He, Be)) = £• It suffices 

to show that £  fl T C jC(hc,bc)- But this hold by definition of C(hc,bc) and the 

observation that for any two pairs (a, x ) ,  (a, x ' )  € £  H F, a £  Hc n jR.

So T is surjective and the Theorem is proved. ■

5.1.2 B ijective correspondence betw een Lagrangian subcategories and 

m odule categories w ith  pointed duals

Let V  be a fusion category and let M. be an indecomposable P-module category.

There is a canonical braided tensor equivalence [EO]

i M  : Z ( V )  Z ( W M ) (5.9)

defined by identifying both centers with the category of V  IEI (Z>)^)rev-module endo- 

functors of AL

Let /  : E(C) Lagr(C) be the bijection between the set of (equivalence classes 

of) braided tensor equivalences between C and centers of pointed fusion categories 

and the set of Lagrangian subcategories of C defined in [DGNO], see (2.22).
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T heorem  5.1.6. The assignment M. r-» lm restricts to a bijection between the set 

of equivalence classes of indecomposable VecG-module categories M. with respect to 

which the dual fusion category ( Vecc)jbt is pointed and E(Rep(D(G))).

Proof. By Theorem 3.1.5, Theorem 5.1.5 and taking into account that the isomor­

phism alt ; H 2( H ,k x ) Ad (A2H) is G-linear, we see that the two sets in question 

have the same cardinality. Thus, to prove the theorem it suffices to check that for 

M  := M ( H , p )  one has f { iM ) ^  where C^.ait^)) is the Lagrangian sub­

category defined in (5.5).

By definition, /(pm) consists of all objects Z  in C = Z(VecG) (identified with 

Rep(jD(G))) such that the Vecc-module endofunctor Fz : M  —> M  : M  i—> M  <g) Z  is 

isomorphic to a multiple of id ^ . Note that here we abuse notation and write Z  for 

both object of the center and its forgetful image.

Let us recall the parametrization of simple objects of Z(VecG) in (5.1). Suppose 

that a simple Z  corresponds to the conjugacy class K a represented by a G R  and the 

character afforded by the irreducible representation 7r : CG(a) —> GL(Vn). Then as a 

G-graded vector space Z  — (Bx^xa V-f and th e permutation isomorphism

c3tz  : g Z  Z  Z  <g> g

is induced from it, where we identify simple objects of VecG with the elements of the 

group G.
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It is clear that Fz  is isomorphic to a multiple of id ^  as an ordinary functor if 

and only if K a C H . Note that this implies that H  C Cg (o)- Note that for every 

Vecc-module functor F  : Ad —> M. the module functor structure on F  is completely 

determined by the collection of isomorphisms F(H l® h )  ^  F (H l )® h ,  h G H, where 

HI  denotes the trivial coset in H \G  = Irr(AI).

For F  =  Fz  the latter isomorphism is given by the composition

{Hl®h)®Z M h 'x) lldv#> Hl®{h®Z)  ia" |Xr,!£ , Hl®{Z®h) ®x̂ x'h)ldv* > (Hl®Z)®h.

Note that the restriction of c^z  to h ® V® is given by w(h), for all h G Cg(ci). If the 

above composition equals identity, then ir(h) =  alt(fi)(a, h ) id ^ , for all h G H. So 

Z  G and, therefore, f{vM ) C C{H!alt{fl)), as required. ■

5.2 Lagrangian subcategories in the twisted case

In this Section we extend the constructions in the previous Section when the 

associativity is given by a 3-cocycle to G Z 3(G, k x ). Note that the results of this 

Section reduce to the results in the previous Section when to = 1.

For this Section we follow the notation fixed at the beginning of the previous 

section. Let w be a normalized 3-cocycle on G, i.e., to is a map from G x G x G to 

k x satisfying:

^(02, 93, 0 4 M 0 1 , g2gs, 92 , 93) = ^{9x92, 9s, 9 t)u{g\,  92 , 9s9*), (5.10)

u (9, 1g, 0 =  L 
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for all g,l,gi,g2,93,9A G G.

Let C denote the representation category Rep(DUJ(G)) of the twisted quantum 

double of the group G [DPR1, DPR2]:

C := Rep(D"(G)).

The category C is equivalent to Z(VeCq). It is well known that C is a modular 

category. Replacing u  by a cohomologous 3-cocycle we may assume that the values 

of uj are roots of unity.

For all a, g,h  G G, define

Pa{h,g) ■= u)(a, h, g)u(h , h~lah, ^)_1c (̂/z, g , (hg)~lahg). (5.11)

The PaS satisfy the following equation:

Pa(x, y)(3a{xy, z) = Pa(x, yz)Px- iax(y, z ) , for all x , y , z  € G. (5.12)

Observe that the restriction of each Pa to the centralizer Cg {o)  of a in G is a normal­

ized 2-cocycle. Let T denote a complete set of representatives of simple objects of C. 

The set T is in bijection with the set

{(a, x )  I a G R  and x  is an irreducible /3a-character of Cg{o.)}.  In what follows we

will identify T with the previous set:

T := {(a, x )  I a € R  and x  is an irreducible /3a-character of Cc{a)}- (5.13)
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Let S  and 0 be the S-matrix and twist, respectively, of C. It is known that the entries

of the S-matrix lie in a cyclotomic field. Also, the values of ct-characters of a finite

group are sums of roots of unity, so they are algebraic numbers, where a  is any 2- 

cocycle whose values are roots of unity. So we may assume that all scalars appearing 

herein are complex numbers; in particular, complex conjugation and absolute values 

make sense. We have the following formulas for the 5-matrix, twist, and dimensions

for all (a, y), (b, y') £ h, where g — x 1ax,gl =  y lby.

5.2.1 Classification of Lagrangian subcategories of R ep(D UJ(G))

Remark 5.2.1. Let p : K  —> GL(V)  be a finite-dimensional projective representation 

with 2-cocycle a  on the finite group K.  Let y be the projective character afforded 

by p, i.e., y(x) =  Trace(p(a:)), for all x £ K.  Suppose that the values of a  are roots 

of unity. Then |y(a?) | < degy, for all x £ K  and we have equality if and only if 

p(x) G k x ■ idy.

(see [CGR]):

S((a, X), (b, X’))

g€Ka,g' r̂\b' î G\y)

g^Pajxg1, ^~x)/3b(y, g)fib(yg, y~l )
pa{x, x~l )(3b{y, y - 1) ^Jxixg'x l )x!(ygy
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Lemma 5.2.2. Two objects (a, x)> (b, x') € T centralize each other if and only if the 

following conditions hold:

(i) The conjugacy classes K a, K t commute element-wise,

(ii) x 'U /tt-W )/3a(x,x 1)/3b(y,y-1)

— degx degx! , for all x , y  E G.

Proof. Two objects (a, x), (6, xO £ T centralize each other if and only if

S((a, x),(6, X1)) =  degx degx'.

This is equivalent to the equation:

e  (A(*- 9')pi t i ~ ^ ' v T 9'r 3 )  x{xs'x~'] l )g £ K a , g ' e K b n C G ( g )  '  V  )  /

=  \Ka\\Kb\ degx degx ' ,

(5.14)

where g = x 1ax ,g f — y 1by. It is clear that if the two conditions of the Lemma 

hold, then (5.14) holds since the set over which the above sum is taken is equal to 

Pa X Pfo.

Now suppose that (5.14) holds. We will show that this implies the two conditions 

in the statement of the Lemma. We have

\Ka\\Kb\ degx degx!

Pa{x, g')i 
pa{x, x~l )j3b(y, y~l )E ( Mx' g,)p:(f  x: Z f '  -ff”’ ir‘)) *w*“> x'few1)

g£Ka,g’&Kbr\CG{g) x
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< £  |x W O | | y (TO-.)|
^  ' Po(®, a  ^Pbiy, y l ) I 1seiWe/Ct,ncG(s)

X I  | x O ^  *)| |x '(ysy *)|
g Q K a , g > £ K bC\ CG ( g)

< \Ka\\Kb\ d e g x  d e g x '

So

X  | x ( V ^ _1)| I x '^ j T 1)! =  \Ka\\Kb\ d e g x  d e g x ' .
g £ K a , g '  € K bn C a ( g)

Since \{{g, g’) \ g £ K a,g' £ K b (~\CG{g)}\ < \Ka\\Kb\, \x (xg 'x - l )\ < degx, and 

\)d{V9y~l)\ < degx', we must have \{{g, g') \ g £ K a,g' £ K b n CG(g)}\ = \Ka\\Kb\, 

i.e. {{g, g') | g e  K a,g' £ K b n CG(g)} = K a x K b, \x{xg 'x- l )\ = degx, and 

Ix!(ygy~l)\ =  degx'. The equality {(g, g!) \ g £ K a,g' £ K b n CG{g)} =  K a x K b 

implies that K b C CG{g), for all g £ K a . This is equivalent to the condition that 

K a, K b commute element-wise which is Condition (i) in the statement of the Lemma. 

Now, (5.14) becomes:

y -  ( Paix , 9' )Pa {xsf ,  x ~ l ) p b{y,  g)Pb{yg,  y ~ 1) \  x j x g ' x ~ x) x \ y g y - 1 ) l l K  ,
P a ( x , x - ' ) p b( y , y - i )  )  d e g x  d e g x '  1 6l>

(5.15)

where g =  x~lax,g'  =  y~lby. Since \x{xg'x~l )\ =  degx, and \x!{ygy~l )\ =  degx', by 

Remark 5.2.1, and x deg x7~ are rocds undy- Note that (5.15) holds if and

only if

Pa {x,  g' )Pa (xg' ,  x  x) p b{y,  g ) Pb{yg,  y  x) \  , , _ u  , ,  - w  A a <
 ----- —   ...- " ^ X T (  m   x { x g  X x  Um  =  d e g x  d e g x  ,p a (x,  x  l ) p b( y , y  1 J
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for all g G K a, g' G Kb, where g =  x lax,g' =  y 1by. This is equivalent to Condition

(ii) in the statement of the Lemma. ■

N ote  5.2.3. Let E  be a subgroup of a finite group K.  Let a  be a 2-cocycle on K.

Let x be a projective cr-character of E. For any x  G K,  define x x by

y x(7) := a(lx, x~ l )~la(x, x~1lx)~1a(x, x~l ) x{x ~llx),

for all I G E. Then x x is a projective ct-character of x E x ~ J. Suppose E  is normal in 

K.  Then x  is said to be K-invariant if x x — X, for all x  G K.

Lem m a 5.2.4. Let if be a normal subgroup of a finite group K.  Let ct be a 2-cocycle 

on K.  Let Irr(iL) denote the set of irreducible projective a-characters of K.  Let p 

be a iL-invariant projective cv|£x£-character of E  of degree 1. Then

E  (de« ) 2 = jif-
xeIrr(iC):x|j3 = (degx)p

Proof. The proof is completely similar to the one given in Lemma 5.1.2 except in this 

case we apply Clifford’s Theorem [Ka, Theorem 8.1] and Frobenius reciprocity [Ka, 

Proposition 4.8] for projective characters. ■

Let H  be a normal Abelian subgroup of G.

Recall that u  G Z 3(G, k x ) gives rise to a collection (5.12) of 2-cochains j3a, a G G.
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D efinition 5.2.5. We will say that a map B : H  x H —» k x is an alternating u>- 

bicharacter on H  if it satisfies the following three conditions:

B (h 1, h 2) = B(h2, h 1) - \  (5.16)

B(h, h) =  1, (5.17)

51Bh = f3h\nxH, (5.18)

for all h, hi, h2 € H, where the map Bh '■ H  —» k x is defined by Bh(h\) := B(h, hi),

for all h, hi E H.

Definition 5.2.6. We will say that an alternating w-bicharacter B : H  x H  —> k x 

on H is G-invariant if it satisfies the following condition:

B(x~1ax, h) =  —“ —-?■-------  B(a, xhx~l ), for all x E G, a E H  fl R, h E H.
Pa{x, x - 1)

(5.19)

Define

A2mH {B  : H  x H  —> fcx | B  is an alternating u> — bicharacter on H},  (5.20)

and

(Ai H f  := {B E Al H  | B  is G-invariant}. (5.21)
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R em ark  5.2.7. If u  =  1, then (Al H ) G is the Abelian group of G-invariant alternat­

ing bicharacters on H .

R em ark  5.2.8. If B  is an alternating cu-bicharacter on H, then the restriction 

w\HxHxH must be cohomologically trivial. Indeed, let u h  '■= oj\hxHxH- Then B  

defines a braiding on the fusion category Vecf f . The isomorphism h1<^h2 h2® h x 

is given by B(hj,  h2), for all hx,h 2 G H , where we identify simple objects of Vecff  

with elements of H. It is known ( see, e.g., [Q], [FRS]) that in this case uh  is an 

Abelian 3-cocycle on H. By a classical result of Eilenberg and MacLane [EM] the 

third Abelian cohomology group of H  is isomorphic to the (multiplicative) group of 

quadratic forms on H. The value of the corresponding quadratic form q on h E H  is 

given by q(h) =  B(h,h).  Since B  is alternating we have q =  1 and so cu# must be 

cohomologically trivial.

Let B  E (AIjH )g and define:

£ ( h , b ) '■= full Abelian subcategory of C generated by

a G H  fl R  and x  is an irreducible /^-character of Cc{a) 

such that x(h)  =  -®(a ) degx, f°r all /i E R
(a, x )  G T

(5.22)

P ro p o sitio n  5.2.9. The subcategory C { h , b )  Q Rep{Dw(G)) is Lagrangian. 

Proof. Pick any (a, %), (b, x!) £ £ ( h , b ) H T. We have
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/3a(x, y 1by)(3a{xy 1by, x x  lax)(3b{yx 1ax, y x)
Pa(x, x~l )pb(y, y - 1)

x ( x y~1byx~1) x 1 (yx*1 axy-1)

Pa(x, y~1by)f3a(xy~1by, x ' 1) _x _x
Pa(x, X -1)

-B(a, xy byx )

6b(y, x  1ax)8b(yx 1ax, y *) ,
x ^  ----- '-2— LB(b, yx axy 1 x degx degx'

P b i y ,  V B

B(x~ lax , y-16?/) B(y~lby, x_1ax) degx degx' 

X degx',

for all x , y  £ G. The second equality above is due to (5.19) while the third equality 

is due to (5.16). Note that K a, K b commute element-wise since H  is Abelian. By 

Lemma 5.2.2, it follows that objects in C ( h , b ) centralize each other.

Also, 0\c(H B) — id. The proof of this assertion is exactly the one given in Propo­

sition 5.1.3.

Now, fix a € H D R  and observe that B a defines a C c^ -in v arian t /3a-character of 

H  of degree 1. Indeed,

/ D  P a i , X 1 X  ) T J /  —  1 7 \

{B‘ ] {h) = M h * .  x - < m x , x ->hX) B(a’ x  hx)

= B(x~ lax , x~1hx)~1 B(a, h) B(a, x~ lhx)

=  B(a, h),

for all x  € Cc(a), h € H. The second equality above is due to (5.19).

The dimension of £ (h,b) is equal to |G|. The proof of this assertion is exactly the 

one given in Proposition 5.1.3 except we appeal to Lemma 5.2.4 in this case.
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It follows from Lemma 2.10.2 that C(h, b ) is a Lagrangian subcategory of Rep(DUJ(G)) 

and the Proposition is proved. ■

L em m a 5.2.10. Let H  be a normal Abelian subgroup of G. Let B  : H  x H  —> fcx be 

a map satisfying (5.16),(5.17), and (5.19). Suppose 51B a =  Po\hxH, for all a <G Hf)R.  

Then B  e  (Al H ) ° .

Proof. We only need to verify that (5.18) holds. We have

{5lBx- iax){hl , h2)

B(x~1ax, h i)B(x~1ax, h2)
B(x~1ax, h\h2)

Pa{x,  h ^ P a i x h i ,  x - x) \  f p a ( x , h 2) p g ( x h 2, x ~ 1) \
 — ----- —-- B(a, xh xx  x   — -——   B(a, xh2x

P a { X ,  X  l ) J  \  P a { x ,  X  ! )  J

P ° ( X ’ X ~ l )  \  I.x — —  - --    tyy B(a, xhxh2x )
\ P a{x, hihtfPaijch-LhQ, x  l )J

pa(x, h1)Pa{xhl , x~1)Pa(x, h2)/3a(xh2, x~l )pa(xhix~1, x h ^ " 1)
Pa(x, x - 1)pa(x, hih2)pa(xhl h2, x - 1)

Px-'axjhi, h2)Pa(xhi, x~l ){3a{x, h2)Pa(xh2, x~l )Pa{xhix~l , xh2x~l )
P a ( x h i ,  h 2) pg( x ,  X ~ l ) P a ( x h i h 2 , x - 1)

Px^axjh ,  hyjPajxhi, h2x~l )px- iax(x~1, xh2x~l )pa(x, h2x~l )Px- iax{h2, j;-1)
Pa{xhi, h2)Pa(x, x~l )pa{xhih2, x - 1)

Px~1ax(fo 1) ^2)7

for all a: G G, a G H  fi i?, /ii, h2 € H. In the second equality above, we used (5.19). In 

the third equality we used 81Ba =  /30|h xh- and canceled some factors. In the fourth 

equality we used (5.12) with (re, y, z) =  (x, hi, h2). In the fifth equality we used 

(5.12) twice with (x, y, z) = (x, h2, a;-1), (xhi, x ~l , xh2x~l ). In the last equality we 

used (5.12) twice with (x, y, z) =  (xhi, h2, a;-1), (x, x ~l , xh-zx"1). ■
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Now, let £  be a Lagrangian subcategory of C. So, in particular, the two conditions 

in Lemma 5.2.2 hold for all objects in £  fl L. Define

He ■■= U  Ka. (5.23)
a £ R : ( a ,  x ) € £ n r  f o r  s o m e  x

Note that He is a normal Abelian subgroup of G. 

Define a map Be ■ He x He —»■ k x by

D tu U \ . &(*> h2)pa(xh2, x  x) x (xh 2x  x)
B d h "  M  ■= & G G D ------------x - d & T '  (5’24)

where h\ =  x~1ax, x  G G,a  G He H R  and x is any /3a-character of Cc(a) such that 

(a, y) G £  fl T. The above definition does not depend on the choice of y. The proof 

of this assertion is similar to the proof given for the corresponding assertion in the 

untwisted case.

P ro p o sitio n  5.2.11. The map Be defined in (5.24) is an element of (KfiH)G.

Proof. First, let us show that B c is well-defined. Suppose x~xax =  z~1az, where 

a G He H R ,x ,  z G G. Then

r, , - 1  - u  \ Pa(x,  y - ^ p a i x y - H y ,  X - 1 )  x i x y ^ b y x - 1)

aX' V  X deg x
( Pb{y,  x ~ l a x ) Pb{ y x ~ l a x , y ~ Y) \  ( x ' ( y x ~ 1a x y ~ 1)^

V Pb{y, y_1) J  \  degx '
_  / Pb(y, z~1az)pb(yz~1az, y-1) ^ -1 / x!{yz~lazy~l ) \ ~ l

V Pb(y,  y ~ l ) J  \  degx'
_  Pa(z, y - lby)Pa{zy~lby, z*1) x j z y ^ b y z ”1)

Pa(z, z - 1) degx

=  B c {z~laz , y~lby),
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for all b G He H R ,y  G G, where x'  is anY irreducible /^-character of Cc(b) such that 

(b, x') G L  fl T. The second and the fourth equalities above are due to Condition (ii) 

of Lemma 5.2.2.

The map Be  satisfies (5.16) because Condition (ii) of Lemma 5.2.2 holds. Let us 

show that (5.17) holds for Be'-

Be{x-1ax, x -1ax)

_  Pa{x, x~1ax)Pa(ax, x~l ) x ( a)
X

l3a(x, x~l ) degx
, , u(a, ax, x~1)u(ax, x~1, a) u>(x, x~1ax, x -1)

u(a, x, x ax) x ------------  —--— ------x —-----------— - ------—— - x 0(OiX)
uj{ax, x  lax ,x  x) a;(a, x, x  l )u(x,  x  p a )

u(a, x, x~1a)to(ax, x -1, a)
u(a, x, x~1)tx(x, x " 1, a)

1,

for all x  G G, a G He fl R. In the second equality we used the definition of (3a- In 

the third equality we used (5.10) with (gi, g2, g$, gP) =  (a, x, x~1ax, x~l ) and used 

the fact that #(«, x) =  1 . In the fourth equality we used (5.10) with (gi, g2, gz, gP) =  

(a, x , re-1 , a).

The map Be  satisfies (5.19) because Bc(a , xhx~x) =  x^ g x  ̂’ ôr a £ H 0  

R ,x  e  G ,h  e  H.  We have B£ (o, h , )B c (a, h,) = S g g g  =  &(Ai, =

Pa{hi) h2) Be(a, h \h2), for all a G H  fl R , h i , h 2 G H. The second last equality 

above is because H  acts as scalars on the projective /^-representation of Cc(a) whose 

projective character is x- By Lemma 5.2.10 it follows that Be  £ H  and the 

Proposition is proved. ■
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Theorem  5.2.12. Lagrangian subcategories of the representation category of the 

twisted double D M(G) are classified by pairs (H , B ), where H is a normal Abelian 

subgroup of G such that u \ h x H x h  is cohomologically trivial and B  : H  x H  —> k x is 

a G-invariant alternating u-bicharacter in the sense of Definition 5.2.6.

Proof. The proof is completely similar to the one given in Theorem 5.1.5. ■

5.2.2 B ijective correspondence betw een Lagrangian subcategories and 

m odule categories w ith pointed duals

Let H  be a subgroup of G such that u>\ h x H x H  is cohomologically trivial. Consider

the set {p E C2(H , k x ) \ 52p =  u \ h x H x h } -  An element p. of the previous set satisfies:

p(h2, h3) fx(hih2, h ) " 1 p(hi, h2h3) p{hx, h2)~l =  u(hi,  h2, h3). (5.25)

for all hi, h2,h 3 E H.

We will say that two elements of {p E C 2(H, k x ) \ 82p — l o \ h x H x h }  are equivalent 

if they differ by a coboundary. Let

'■= equivalence classes of {p E C2(H, k x ) \ 52p — o j \ h x H x H }  • (5.26)

For each x E G, define ux : G x G —> k x by

* . ( * , * ) : =  forau 9 l , 9 2 €G.
i, gixg2 , 9 2 )
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It is easy to verify that the following relation holds:

r xiX2(gu  g2) ^ g i ( x i ,  X 2 ) u g2{ x 1 , x 2)
for all x 1, x 2,g1,g2 G G,

T x i fa g iX z 1, x 2g2x 2 1)T X2(gi, g2) Vgigi (x, , X2 )
(5.27)

where T is defined in (3.2).

Suppose that H  is normal in G. For any x e  G and fi G C2(H, k x) such that 

82jj, — a;|hxHx h , define fj, < x := /R x T x|hxh - It is easy to verify that 82(g<x)  =  

wlHxHxH- This induces an action of G on (defined in (5.26)). Indeed, that this 

is an action follows from (5.27). Let (Qh,oj)G denote the set of G-invariant elements 

of 1*®' ?

~  x T x|hxh is trivial in H 2(H , k x ), for all x  G G j .
(5.28)

It can be deduced from Theorem 3.1.5 that the set of equivalence classes of inde­

composable module categories over Vecq such that the dual is pointed is in bijection 

with the set of all pairs (H, //), where H  is a normal Abelian subgroup of G such that 

w\HxHxH is cohomologically trivial and \i G {Glu,S)G•

Theorem 5.2.12 showed that the set of Lagrangian subcategories of Rep(DW(G)) 

is in bijection with the set of pairs (H, B ), where H  be a normal Abelian subgroup of 

G such that uj\hxHxH is cohomologically trivial and B  G (A^H )G (defined in (5.20)).

In this Subsection we will first show that the set of equivalence classes of indecom­

posable module categories over Vecjf, such the dual is pointed is in bijection with the 

set of Lagrangian subcategories of Rep(DM(G)). We will establish the aforementioned
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bijection by showing that there is a bijection between (defined in (5.26)) and 

A ( d e f i n e d  in (5.20)) that restricts to a bijection between (S2h,w)G and (Al H ) G, 

where H  is any normal Abelian subgroup of G such that u \hxHxh is cohomologically 

trivial.

Let H  be a normal Abelian subgroup of G such that uj\hxHxh is cohomologically 

trivial. Let ji G C2(H, k x ) be a 2-cochain satisfying 52{i =  oj\hxHxh- Define altfji) 

by

h2) :=
h(h i, h2)

Lem m a 5.2.13. The map alt'(fi) : H  x H —>■ k x defined above is an element of A2WH.

Proof. Clearly alt'(ii)(hx, h2) — alt'(n)(h2, hi)~l and alt'(ji)(h, h) =  1, 

for all h, hx,h2 G H. We have

alt'(fx)(h, hi) alt'(n)(h, h2) f^(hx, h) ^  fi(h2, h) ^ ji(h, hxh2
X ”  : r  X

alt'(n)(h, hih2) fi(h, hi) fi(h, h2) n(hxh2, h)
_  fi(hi, h)[i(h2, h)fi(hhx, h2)

f j , (h,  h 2 ) [ i { h xh 2 , h ) f i ( h x , h 2 ) 

H ( h x , h ) n ( h h x , h 2

x u(h, hx, h2)

»(h, h , U h 1, h h , ) Xuj{h' hu  h )  x ^ ( h u h2, h)

__ u(h, hx, h2)u(hx, h2, h) 
m(hi, h, h2)

=  Ph(hx, h2),

for all h, hx, h2 G H. In the second, third, and fourth equalities above we used (5.25) 

with (hx, h2, h3) — (h, hx, h2), (hx, h2, h), (hx, h, h2), respectively. ■
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The map alt' induces a map between Qh,w and A^H.  By abuse of notation we 

denote this map also by alt':

alt' : A : fi > alt'(fi). (5.29)

L em m a 5.2.14. The map alt' defined above is a bijection.

Proof. First note that alt' is well-defined. Fix f i 0 G C 2(H, k x ) satisfying 8 2 f i o =  

w\H x H x H -  Let Bq alt'{fto). Define bijections f i  : A - A >  A2H : B  i—► and

/2 : -A  H 2(H, k x ) \ f i  ( / i o ) 1 Note that the cardinality of the two sets Q h ,w

and A2H  are equal. Injectivity, and hence bijectivity, of alt' follows from the equality

f i  o alt1 =  alt o f 2.

U

Lem m a 5.2.15. The following relation holds:

  Pxhix"1 (-D hf)Pxh\x~^(p'h2 , x  )
h 2 )  0 x h \ x  1 (•£>

, for all hi, h2 G H.

Proof. We have

T x(h2, hi) pxhix-i(x,  x  x)
X

/̂ 'a:(hl, h2) Pxhix 1 (-F (xh2, a? )
uj(xh2x~1, xh \x~ l , x) oj(xh1x~1, x, x ~ 1 ) o j ( x , x ~l , xh ix-1)

ui(xfi2X~1, x, hi)u>(xhix~l , xh,2X~1, x) u(x,  hi, a:-1)
to(xli2 , hi, x~x)

c j^ h i o m 1, a;h2, x ~ 1) u ( x h , 2 , x ~ l , x h i x ~ l ) 

u j ( x l i 2X ~ l , x h \ x - 1 , x ) u j ( x h \ x ~ x , x ,  x ~ 1) u ( x ,  x ~l , x h i x ~ 1) u ( x h 2x ~ 1 , x h i ,  % ~ l ) 

o j ( x h i x ~ l , x h 2 X - 1 , x ) u ( x h i x ~ l , x h 2, x ~ x) u ) ( x h 2 , x ~ l , x h i X ~ 1) u ( x h 2X ~ 1 , x ,  h i x ~ x )

o j ( x ,  x ~ l , x h i x ~ l ) u ( x h i h 2x ~ l , a:, a;- 1 ) 
u { x h i x ~ x, x h 2am1, x ) o j { x h i X ~ l , a:h2, x ~ l ) u ( x h 2 , am1, x h i x ~ 1) u ( x h 2x ~ 1 , x ,  h i x ~ x )
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u>(x ,  x  x, x h \ x  l ) u > ( x h 2X  1 , x ,  x  *) 
c o ( x h 2 , x ~ x , x h i x ~ 1) u ( x h 2x ~ 1 , x ,  h \ X ~ l )

=  1 ,

for all x  & G, h i ,  h 2 G H. In the first equality above we used the definition of T and 

P and canceled some factors. In the second, third, fourth, and fifth equalities we used 

(5.10) with (gi, g2, g$, gf) =  { x h 2x ~ l , x ,  h i ,  x ~l ), ( x h 2x ~ l , x h \ x ~l , x ,  rc-1),

( x h \ x ~ l , x h 2x ~ l , x , x _1), and ( x h 2x ~ l , x ,  x ~ 1, x h \ x ~ l ) ,  respectively. ■

L em m a 5.2.16. The map alt' defined in (5.29) restricts to a bijection between 

and (Ai H  f .

Proof. Let us first show that alt1 ((£Ih,u,)G) anY h £ { ^ h,w)G- So

alt x T x|H xnj — fi f°r all x  & G. We have 

alt' ( j j ) ( x ~ l a x ) h )  x alt'(ji)(a, x h x ~ l ) ~ l

fi(h, x~ lax) ji{a, xhx~l )
g.(x~1ax, h) g,(xhx~1, a)
fxx{x~1ax, h) x~lax)

X
fi{x~lax, h) fix{h, x~xax)
u ( >\ , u - 1   ̂ TX( h ,x ~ lax)= al t \  —  x T x\hxh {h, x  ax) x ------ rr

\  H J T X(x~lax, h)
T x(h, x~lax)
Yx(x_1a:r, /i)

_  (3g(x, h)f3a(xh, x~l )
(3g(x, X ~ l )

for all x  G G,a  € H  D R ,h  £ H. In the fourth equality above we used the fact 

that alt ( ^ -  x T x\hxH) =  1 and In the fifth equality we used Lemma 5.2.15. So 

alt'{{PLji,u)G) Y , as desired.
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Now let us show that (A^H)0 C alt' ((Qh^ ) 0 )- Pick any /a G SIh,w and suppose

=  xh2x - 1)l3a(yh2x - \  xy~l ) f3a(y, y~l )
Paiyx-1, xy~l ) X pa(y, h2)p(yh2, y - 1)

= = _________P a j y x * 1, x h 2)Pa{yh2, x~1)Pa(yh2x - 1, x y - 1 )_________
PxhlX- p x h 2, x~ l )Pa(y, y~l)Pa{yx~1, xy~l )pa{y, h2)Pa(yh2, y~l)

=  Pa{yx~\ x)pg(yh2, x~1)Pa(yh2x - 1, xy~1)Pa(y, y~l )
PxhlX- p x ,  h2)pxhix- i (xh2, x~1)Pa(yx~1, xy~l )pa{yh2, y~l )

=  Pxfnx-ijx, ^ p P a j y h ^  x~1)Pa(yh2x~1, xy~1)Pa{y, y - 1 )

Pxhix-'ix, h2)pxhix-i{xh2, x~l)Pa(y, x - 1)pa(yx~1) x y - ^ P ^ y h ^  y~l )

=  h2) x ^ -1)
T x(/i2, hi) Pa{y, x~1)Pa(yx~1, x y - 1)

— ^ ( ^ l ;  ^2)
“  T x(h2, /n ) ’

for all x € G ,h i ,h 2 £ H. In the fourth through eight equalities above we used (5.12) 

with (re, y, z) — {yx~1, xh2, x _1), (y a T 1, re, h2), ( y a T 1, x , a;- 1 ) , (yh2, x~1, rcy- 1 ), and 

(y , a:- 1 , a^y"-1 ), respectively. It follows that (A^H )G C alt'((fijyw)G) and the Lemma 

is proved. ■

Recall that E(C) denotes the set of (equivalence classes of) braided tensor equiv­

alences between a modular category C and the centers of pointed fusion categories.

that alt'(jj) G (A 1H)G. Suffices to show that alt x =  1, for all x  G G.

Let B alt'(y). We have

B(xh \x  xh2x 1)B(hi,  h2)

B((yx  *) l a{yx l ) , x h 2x 1)B(y la y , h 2) 1 (where h\ =  y lay)
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Theorem  5.2.17. The assignment M. ij.̂  (defined in (5.9)) restricts to a bijection

between equivalence classes of indecomposable VecQ-module categories M. with respect 

to which the dual fusion category ( Vec%)*M is pointed and E(Rep(DUJ(G))).

Proof. The proof is completely similar to the one given in Theorem 5.1.6. ■

Theorem  5.2.18. Let Ci,C2 be group-theoretical fusion categories. Then C\,Ci are 

weakly Morita equivalent i f and only if  their centers Z(Cfi) and Z(Cfi) are equivalent 

as braided fusion categories.

Proof. The “if ’ part is true for all fusion categories by [EO]. For the “only if’ part, let 

(Gi, uq), (G2, CO2) be two pairs of groups and 3-cocycles such that C\ is weakly Morita 

equivalent to VecJT and C2 is weakly Morita equivalent to V ec^. If Z(C\) =  -Z(C2) (as 

braided fusion categories) then Ziyecfff)  =  Z(Vecf?2) (as braided fusion categories) 

and therefore, Vec^1 and Vec^ are weakly Morita equivalent by Theorem 5.2.17 and 

hence, C\ and C2 are weakly Morita equivalent. ■

Corollary 5.2.19. Let G,G' be finite groups, to G Z 3(G, k x ), and u 1 E Z 3(G', k x ). 

Then the representation categories of twisted doubles DUJ(G) and DM'(Gr) are equiva­

lent as braided tensor categories if  and only if  G contains a normal Abelian subgroup 

H such the following conditions are satisfied:

(1) o:\hxHxH is cohomologically trivial,

(2) there is a G-invariant (see (5.28)) 2-cochain p E C2(H , k x ) such that that 

52p  =  lv\hxHxH, and
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(3) there is an isomorphism a : G' ^  H  xi„ (H \ G ) such that w o  (a x a x a) and 

u/  are cohomologically equivalent.

Here u is a certain 2-cocyle in Z 2( H \G , H ) coming from the G-invariance of /a and 

w  is a certain 3-cocycle on H  (H \ G ) depending on u and on the exact sequence 

1 —> H  —> G —*• H \ G  —> 1 (see Theorem 3.3.8 for precise definitions).

I l l
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