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ABSTRACT

THE MAINTENANCE, EVOLUTION, AND IMPACTS OF INDUCIBLE 

MORPHOLOGICAL DEFENSES IN MYTILUS EDULIS: RESPONSES TO 

MULTIPLE AND INVASIVE PREDATORS.

by

Aaren Scott Freeman 

University of New Hampshire, May, 2007

The burgeoning field of phenotypic plasticity and inducible defenses has 

documented a wide variety of predator-induced defenses. I this dissertation I 

have explored induced defenses in the marine mussel Mytilus edulis as they are 

affected by (a) shared evolutionary history with invasive crab predators, (b) 

specificity of responses to multiple predators (singly and combined) with different 

foraging strategies, and (c) spatial and temporal variation in the expression of 

predator specific induced defenses in situ.

Mytilus from southern New England expressed induced shell thickening 

when exposed to waterborne cues from the crab Hemigrapsus, but “naive” 

northern mussel populations do not respond. Yet, both populations thicken their 

shells in response to a long-established crab, Carcinus. These results are 

consistent with the rapid evolution of an induced response to the recent invader 

Hemigrapsus.

xi
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Mytilus developed significantly heavier shells only in the presence of 

waterborne cues from Carcinus, thicker shells in response to Carcinus, the 

seastar Asterias, and the whelk Nucella, and heavier adductor muscles in 

response to cues from Nucella and Asterias. These induced defenses 

subsequently protected mussels from Carcinus, but only Asterias exposed 

mussel were defended from Asterias. However, mussels exposed to the 

combined cues from Asterias and Carcinus expressed neither inducible defense 

nor deterred foraging by the sea star or crab. Furthermore, Mytilus did not 

thicken shells in response to cues from the native crab Cancer irroratus or the 

combined cues from Carcinus and Cancer; yet mussels did increase adductor 

muscle in response to combined cues from Asterias and Cancer. Thus, multiple 

predator assemblages can disrupt predator specific induced defenses (resulting 

in risk enhancement for mussels), but these effects cannot be reliably predicted 

from the predator’s functional grouping.

Finally, in field experiments, I found that mussels expressed predator 

specific responses to Carcinus in mid-intertidal cages (but not Asterias) and 

mussels in low intertidal cages increased adductor muscle only in response to 

Asterias, and only during a year with high tissue growth. Together these results 

suggest that inducible defenses can be influenced by shared evolutionary history 

with predators and the functional diversity of predator assemblages.

xii
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CHAPTER I

DIVERGENT INDUCED RESPONSES TO AN INVASIVE PREDATOR IN 

MARINE MUSSEL POPULATIONS

Abstract

Invasive species may precipitate evolutionary change in invaded 

communities. In southern New England (USA) the invasive Asian shore crab, 

Hemigrapsus sanguineus, preys on mussels (Mytlius edulis), but the crab has not 

yet invaded northern New England. We show that southern New England 

mussels express inducible shell thickening when exposed to waterborne cues 

from Hemigrapsus, while “naive” northern mussel populations do not respond. 

Yet, both populations thicken their shells in response to a long-established crab, 

Carcinus maenas. Our findings are consistent with the rapid evolution of an 

inducible morphological response to Hemigrapsus within 15 years of its 

introduction.

Introduction

Anthropogenic introductions increasingly bring organisms into contact that 

have no shared evolutionary history, resulting in novel interactions between non-

1
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native and native competitors, prey and predators (Cox 2004). These novel 

species combinations create potentially strong selection pressure that can drive 

evolutionary change of heritable traits (Reznick and Endler 1982, Cox 2004, 

Strauss et al. 2006). While several studies have shown invaders can evolve 

rapidly in a novel, invaded environment (Cox 2004), examples of invader driven, 

rapid evolutionary change in native species are rarer (Cox 2004, Phillips and 

Shine 2004, Strauss et al. 2006). Rapid evolutionary change may particularly 

influence the ability of native prey to recognize and respond to novel invasive 

predators with inducible morphological defenses.

Inducible defenses are the expression of alternative forms (phenotypic 

plasticity) by organisms in response to cues from a predator or competitor.

Some commonly noted inducible defenses include shape changes in barnacles, 

spines on bryozoans and cladocerans, thickened shells of mollusks, defensive 

chemicals in plants, and morphological and behavioral characters in anuran 

tadpoles (Tollrian and Harvell 1998, Trussell and Smith 2000). Although 

selection may act on inducible defenses (Trussell and Smith 2000), in terms of 

both the degree of plasticity (Trussell and Nicklin 2002) and the prey’s capacity to 

recognize cues from predators (Kiesecker and Blaustein 1997, Schlichting and 

Pigliucci 1998), to date there have been no examples of an invasive species 

driving the rapid evolution and emergence of an inducible morphological 

response. To test for the evolution of predator recognition and expression of 

inducible morphological defenses in a marine mussel (Mytilus edulis), we

2
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juxtaposed the induced defenses of two mussel populations having different 

historical contact with two invasive crab predators.

The Asian Shore Crab, Hemigrapsus sanguineus, was first reported in 

North America in New Jersey in 1988 and currently ranges from North Carolina 

to the mid-coast of Maine, U.S.A. (McDermott 1998; R. Seeley pers com). M. 

edulis is a large component of H. sanguineus’ diet (Lohrer and Whitlatch 2002), 

but perhaps because this is a novel predator in the North Atlantic Ocean, nothing 

is known about inducible defenses by mussels to this crab. A longer term 

resident of New England, the green crab, Carcinus maenas, was introduced from 

Europe to the Mid-Atlantic United States in 1817 and currently ranges from New 

Jersey, U.S.A., to Prince Edward Island, Canada (Carlton and Cohen 2003). C. 

maenas has had significant impacts on native communities throughout its 

introduced range (Leonard et al. 1999, Trussell et al. 2002, Carlton and Cohen 

2003) and is known to induce defenses in M. edulis from several populations 

(Leonard e ta l. 1999, Smith and Jennings 2000, Reimerand Harms-Ringdahl

2001). Small mussels are vulnerable to both crab species (Lohrer and Whitlatch

2002), show high relative growth amenable to detecting induced defenses, and 

represent a crucial, pre-reproductive stage under strong selection.

Given the invasion history of these two crabs, M. edulis in northern New 

England (specifically northeastern Maine) have never experienced predation by 

H. sanguineus. Because the genus Hemigrapsus is not native to the Atlantic, 

neither have they been exposed to any Hemigrapsus congeners. However, they 

have experienced predation by C. maenas for over 50 years. In contrast,

3
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mussels in southern New England have experienced predation by C. maenas 

and H. sanguineus tor 100+ and approximately 15 years, respectively. To 

determine if natural selection has altered the mussels' capacity to respond to 

these two crabs, we quantified the responses of mussels from these northern 

and southern populations to these two crab predators. If predator cues are 

species-specific and if selection has altered the capacity of mussels to recognize 

and respond to these invasive predators, we expected that mussels from 

southern New England would respond to cues from both crabs, while northern 

mussels would respond to cues from C. maenas but not H. sanguineus.

Materials and Methods 

Mussel Collections and Initial Measurements. To juxtapose the 

inducible responses of mussels from northern and southern New England to the 

two crab predators we began a laboratory induction experiment in May 2002. 

Mussels within the size range consumed by Hemigrapsus sanguineus and 

Carcinus maenas (i.e. 13-20 mm shell length) were collected from floating docks 

at least 15 km apart at 6 sites in northern Maine and 6 sites southern New 

England (Table 1, Figure 1), taken to Northeastern University’s Marine Science 

Center, Nahant, MA (hereafter: Nahant) and allowed to acclimate for 2-3 weeks 

in tanks supplied with flowing, unfiltered seawater from the ocean. Mussels were 

always collected from the vertical or bottom sides of the docks, and at the end of 

the floating dock most exposed to waves or current. Collecting mussels from 

floating docks had the benefit of being a consistent habitat between sites with

4
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few crabs (Freeman pers obs), suggesting low predation and background cues 

affected these mussels.

A Shell Thickness Index (STI) was used to compare mussel shell growth 

between treatments and populations (Reimerand Tedengren 1996, Frandsen 

and Dolmer 2002): STI = 1000 * dry shell wt/ [L*(H2 + W2)0 5 * t t /2], where L, H 

and W are length, height and width, respectively. As a measurement of shell 

weight/surface area, STI provides a valuable estimate of each living mussel’s 

shell thickness at the beginning of the experiment and was highly correlated with 

measurements of actual shell thickness, but with less measurement error. A 

multiple regression of shell thicknesses measured at 4 locations (left and right 

valves, center and lip) on mussels not used in these experiments was well 

correlated with their STI (P<0.0001, R2 = 0.911, n = 48). Similarly, the surface 

area of mussels estimated using the denominator in the STI equation was highly 

correlated with direct estimates of mussel shell volume using an immersed- 

displacement technique (surface area1/2 vs. volume 1/3: P < 0.0001, R2 = 0.97, n = 

165). The dry shell weight of living mussels was obtained using a method 

described by Palmer (1982); specifically, the immersed mass of each live mussel 

was obtained while suspended in sea water below a balance. These immersed 

weights were then converted to dry shell weights using individual destructive 

regressions for each of the 12 sites (16 mussels/site). Regressions from each 

site of immersed, live mussel weight to dry shell weight were highly correlated 

(R2 always > 0.99). Length, width, and height of mussel shells were measured 

using digital calipers (+ 0.01 mm) and used to calculate the initial STI. Mussels

5
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were then individually marked with paint dots for re-identification and the paint 

sealed with cyanoacrylate glue.

2002 Experiment - To examine the effects of waterborne cues from the 

two crabs on both mussel populations, we employed a factorial design crossing 

mussel populations with various predator exposures. 60 - 3.5 liter buckets 

arranged in two sea-tables at Nahant (30 buckets/table) were each supplied with 

flowing, unfiltered seawater from an overhead manifold via vinyl tubing (1.5 to 2.0 

liters/minute) and aerated from a common source. Seawater for these 

experiments originated in the shallow subtidal 20-40 m from shore before 

passing through a large settling tank and the rest of the seawater system. 

Because the seawater intake was away from shoreline and because in 2002 H. 

sanguineus was not abundant in the subtidal zone at Nahant, few background 

cues from H. sanguineus were likely present in the ambient water (particularly 

relative to the subsequent Woods Hole experiment). Water drained from each 

bucket through holes drilled ~ 2 cm below the bucket lip and ~ 4 cm above the 

surrounding water level, such that water never flowed back into buckets. 50 pre

measured mussels from each site were divided among 5 buckets. To expose 

these mussels to waterborne cues from crabs, without actual predation, crabs 

were housed in a single perforated container placed in each bucket. Control 

buckets had a similar, but empty, perforated container. Of the 30 buckets in 

each of the two sea-tables, 12 were assigned to contain H. sanguineus, 12 were 

controls, and 6 were assigned to contain C. maenas. Thus, H. sanguineus and 

controls were replicated twice from each of the 12 collection sites; C. maenas

6
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exposed mussels were used as a positive control and were only replicated 

once/site. A similar biomass of crabs was used in respective cue treatments; to 

compensate for the small size of H. sanguineus, we used 4 H. 

sanguineus/container and 1 C. maenas/container. Every 4 weeks the buckets 

were cleaned to remove sediment and randomly rearranged within each sea- 

table. At this time, crabs were also removed from the buckets, fed crushed 

mussels, and returned to respective cue containers within 8 hours. Thus, by 

feeding crabs in a separate container mussels were exposed to minimal cues 

from crushed conspecifics. Cues from crushed conspecifics can also trigger 

induced shell thickening in M. edulis (Leonard et al. 1999), and magnify crab 

specific responses to improve the protection of some mollusks (Trussell and 

Nicklin 2002). After 84 days, mussels were removed from the experiment and 

frozen for later measurement. Measurements were conducted the same as initial 

measurements with the exception that dry shell weight was measured directly.

To compare the final STI of mussels raised with the various crab cue 

treatments we conducted a 3-factor, split-plot analysis of covariance with 

predator treatment (Control, H. sanguineus, and C. maenas) and population 

(North and South) as fixed effects, sites (6 northern and 6 southern) as random 

effects nested within population, and initial STI as a covariate. Initially, sea-table 

was used as a block, but was removed from the model because it and related 

higher order interactions were not significant (P > 0.15). Interactions of initial STI 

with all fixed effects (i.e. predator treatment, population, and predator treatment X 

population) were initially tested and removed from the model when they proved

7
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non-significant (P > 0.20). A priori linear contrasts compared the 2 predator cue 

treatments to controls within each population (a = 0.05). All analyses were 

conducted using JMP IN 5.1 (SAS Institute, Inc), which performs the 

Satterthwaite approximation for the denominator degrees of freedom.

2003 in situ Experiment -To determine if the previous results were robust 

or influenced by a laboratory setting more similar to northern collection sites 

(e.g., in regards to water temperature, higher concentration of background cues 

from H. sanguineus, etc.), we ran an additional induction experiment under field 

conditions more similar to southern sites (Woods Hole, MA). H. sanguineus was 

well established in the Woods Hole region prior to the experiment (McDermott 

1998). In September 2003, mussels were collected from floating docks (as 

described above) at 5 sites in northern Maine and 5 sites in southern New 

England (Table 1), and held in seawater tanks (without flowing seawater) for 3-4 

weeks at 9-10°C. Initial and final morphological measurements were made of 

mussels as in 2002. To estimate initial dry shell weights of mussels in 2003, 

separate destructive regressions of shell dry weight vs. immersed weight for 

northern and southern mussels were created by pooling the 2002 regressions for 

northern and southern mussels, respectively (both R2> 0.999). 30 pre-measured 

mussels from each site were divided among 3 cages with either 1 C. maenas, 4 

H. sanguineus or no crabs in respective treatments. Each cage was constructed 

of stainless steel mesh (20cm x 20cm x 9cm, I x w x h: 0.5 cm mesh opening) 

with a large “arena” for crabs and a small (7 cm x 10 cm) stainless steel mesh 

compartment housing 10 pre-measured mussels from an individual site (as

8
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described above). The 30 cages were then randomly suspended on ropes (2 

cages/rope) under a floating dock in Eel Pond, Woods Hole, MA, with cages 0.5 

m and ~2 m below the water surface. All ropes were spaced > 2 m apart and >

15 m from shore. Cages were deployed in October 2003; thereafter, every 2 

weeks they were cleaned and any dead crabs replaced. Although the crabs 

were not fed, none died during the first two months of the experiment and very 

few died during the third month. Because crabs were not fed in this experiment, 

but minimally fed in the previous lab experiment, similar and robust responses in 

the two experiments indicate that responses of mussels to crabs are similar 

regardless of the crabs’ past diet. Every 4 weeks cage positions were randomly 

rearranged. After 81 days all experimental mussels were removed and frozen, 

and final morphological measurements conducted within 2 months. Statistical 

analysis was conducted as for the 2002 laboratory experiment (with no blocking 

factor). Excessive mortality of mussels collected from Niantic, CT, resulted in the 

loss of 2 cages from that collection site. Thus, final analysis of the field 

experiment consisted of mussels from 5 northern sites and only 4 southern sites.

Some populations of M. edulis in northern Maine and Eastern Canada co

occur with a cryptic congener, Mytilus trossulus. When we excluded sites 

sympatric with M. trossulus (i.e. Lubec and Cutler, ME) from our 2002 analysis 

our results and conclusions were no different. In addition, all mussels for the 

2003 experiment were collected from populations consisting of negligible M. 

trossulus (Rawson et al. 2001).

9
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Figure 1. Collection and experimental sites. Sites of the induction experiments at 
Nahant in 2002 and Woods Hole in 2003 (asterisk). Also indicated are collection 
sites for mussels used in the Nahant laboratory experiment (open squares) and 
the Woods Hole field induction experiment (filled circles).
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Table 1. Collection sites for mussels.

Nahant (MA) 2002 laboratory

Site Latitude Longitude
Source

Population
Pt. Judith, Rl (PJRI) 41° 22.6 71° 31.0 South
Stonnington, CT (SCT) 41° 20.1 71° 54.5 South
Niantic, CT (NCT) 41° 19.4 72° 10.5 South
Moriches, NY (MNY) 40° 47.6 72° 44.8 South
Captree, NY (CNY) 40° 38.5 73° 15.3 South
Pt. Lookout, NY (PLNY) 40° 35.5 73° 35.1 South
Lubec, ME (LME) 44° 51.7 66° 59.2 North
Cutler, ME (CME) 44° 39.4 67° 12.2 North
Jonesport, ME (JME) 44° 31.7 67° 36.9 North
Millbridge, ME (MME) 44° 32.7 67° 52.7 North
Prospect Harbor, ME (PHME) 44° 23.9 68° 01.4 North
Bernard, ME (BME) 44° 14.4 68° 21.1 North

Woods Hole (MA) 2003 in situ
Jamestown, Rl (JRI) 41° 28.0 71°23.0 South
Pt. Judith, Rl (PJRI) 41° 22.6 71° 31.0 South
Avery Pt, CT (APCT) 41° 19.0 72° 03.6 South
Stonnington, CT (SCT) 41° 20.1 71° 54.5 South
Niantic, CT (NCT) 41° 19.4 72° 10.5 South
Stonnington, ME (SME) 44° 09.0 68° 40.0 North
Jonesport, ME (JME) 44° 31.7 67° 36.9 North
Bernard, ME (BME) 44° 14.4 68° 21.1 North
Prospect Harbor, ME (PHME) 44° 23.9 68° 01.4 North
Wyman, ME (WME) 44° 30.5 67° 51.5 North
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Results

After being raised for 3 months at Nahant, mussels had grown and 

mussels from northern and southern New England had thickened their shells 

differently in response to water-borne cues from the two invasive crab predators 

(i.e. there was a significant population by predator treatment interaction)(Table 2; 

Figure 2). Mussels from southern sites thickened their shells in response to 

waterborne cues from H. sanguineus relative to controls (P=0.011), and mussels 

appeared to thicken their shells in response to C. maenas, though the trend was 

not significant (P=0.145; Table 2; Fig. 2 f. In contrast, although mussels from 

northern sites developed significantly thicker shells in response to cues from C. 

maenas (P=0.001), they did not respond to cues from H. sanguineus (P=0.573; 

Table 2; Fig. 2). In addition, there were clear population differences in the 

temperature sensitive process of shell accretion, with mussels from northern 

populations thickening their shells more than mussels from southern populations 

(Fig. 2). These findings suggest that northern and southern mussel populations 

are genetically distinct. This pattern of warm water-adapted mollusks secreting 

shell more slowly than northern conspecifics is consistent with counter-gradient 

variation, a pattern seen in the New England snail Littorina obtusata (Trussell 

2000). Finally, in 2003, mussels raised in cages suspended from a floating dock 

in Woods Hole also responded to waterborne cues from the above crabs. These 

mussels responded to the cue crabs nearly identically to the previous laboratory
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experiment, with only northern mussels not responding to H. sanguineus (Table 

3; Figure 3).
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Table 2. ANOVA of Nahant (2002) induction experiment. Split plot analysis of 
covariance of final Shell Thickness Index (STI) of mussels raised as controls or 
with cues from Carcinus maenas or Hemigrapsus sanguineus in a laboratory 
induction experiment at Nahant, MA (2002). Also, results of a priori linear 
contrasts comparing predator cue treatments to respective controls, ( f: a = 
residual used as denominator, b = Site(Population) used to generate the 
denominator df using Satterthwaite’s method, c = Site (Population) * Predator 
used to generate the denominator df using Satterthwaite’s method). See Table 
A1 (Appendix) for unadjusted means for each site.

Source df MS F P t
Response variable: Final STI

Site (Population) 10, 22.9 0.0168 12.36 <0.0001 c
Predator 2, 21.5 0.0103 7.53 0.0033 c
Population 1, 10.2 0.1067 7.45 0.0207 b
Predator * Population 2, 20.6 0.0061 4.44 0.0249 c
Site (Population) * Predator 20, 253 0.0014 1.11 0.3378 a
Initial STI 1, 253 1.8452 1499.9 <0.0001 a
Residual 253 0.0012

Linear contrasts: Carcinus (North) vs. Control (North) p=0.0011; Carcinus 
(South) vs. Control (South) p=0.145 <1 -p = 0 -3 0 4 - l s N i = 4 9 0 ) .  H e m ig r a p s u s

(North) vs. Control (North) p=0.5729 (1‘p=0-085' LSN=3392>; Hemigrapsus 
(South) vs. Control (South) p=0.011
LSN=Least Significant Number, i.e. the minimum number of observations 
needed to achieve a = 0.05 for the measured o and 6.
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Table 3. ANOVA of Woods Hole (2003) induction experiment. Analysis of 
covariance of final Shell Thickness Index (STI) of mussels raised as controls or 
with cues from Carcinus maenas or Hemigrapsus sanguineus in cages 
suspended from a floating dock in Woods Hole, MA (2003). ( f: a = residual used 
as denominator, b = Site(Population) used to generate the denominator df using 
Satterthwaite’s method, c = Site (Population) * Predator used to generate the 
denominator df using Satterthwaite’s method). See Table A2 (Appendix) for 
unadjusted means.

Source df MS F P t
Response variable: Final STI

Site (Population) 7, 15.4 0.0134 3.81 0.0135 c
Predator 2, 14.7 0.0440 12.62 0.0006 c
Population 1, 10.0 0.1841 17.64 0.0018 b
Predator * Population 2, 14.7 0.0158 4.54 0.0292 c
Site (Population) * 14,207
Predator 0.0035 0.71 0.7647 a
Initial STI 1, 207 1.0469 214.19 < 0.0001 a
Initial STI * Population 1, 207 0.0163 3.34 0.0692 a
Residual 207 0.0050

Linear contrasts: Carcinus (North) vs. Control (North) P=0.0031; 
Carcinus (South) vs. Control (South) P=0.0049; Hemigrapsus (North) vs. 
Control (North) P=0.3996 <H=*-i28.Lsfc=i206). Hemigrapsus (South) vs.
Control (South) P=0.0006
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Figure 2. Final STI of Nahant (2002) induction experiment. Adjusted final Shell 
Thickness Index (LSM) of mussels raised in a laboratory induction experiment at 
Nahant, Massachusetts, Gulf of Maine. Mussels from northern and southern 
populations were raised as controls or in the presence of cues from Carcinus 
maenas or Hemigrapsus sanguineus. Values are adjusted least square means 
(LSM) from an analysis of covariance with initial STI as a covariate. Error bars 
indicate 1 SE.
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Figure 3. Final STI of Woods Hole (2003) induction experiment. Adjusted final 
Shell Thickness Index (LSM) of mussels raised in situ in cages suspended from 
floating dock in Woods Hole, MA, in 2003. Details as in Figure 2.
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Discussion

Our results clearly indicate that mussels from populations in northern and 

southern New England respond differently to waterborne cues from H. 

sanguineus. Yet, mussels in both regions express similar induced shell 

thickening in response to C. maenas, a resident throughout this coast for more 

than 50 years. Although brief, we believe the historical contact with and 

predation by H. sanguineus accounts for the divergent mussel responses. The 

mussel’s inducible response to H. sanguineus may reflect a novel mechanism of 

shell thickening, however it more likely reflects natural selection favoring the 

recognition of this novel predator through rapid evolution of cue specificity or 

thresholds (Payne et al. 2004), relying on mechanismsfor induced defenses to 

other crabs (Schlichting and Pigliucci 1998). Our experiments do not distinguish 

between these possibilities. Despite the mussel’s planktonic larvae, the 

response to H. sanguineus manifested by southern M. edulis has not spread to 

northern mussels. This suggests strong local adaptation and/or mostly 

unidirectional gene flow due to dispersal barriers such as the predominantly 

southwestward currents in northern New England (Byers and Pringle 2006).

Although invasive predatory crabs can induce defenses in native mollusks 

(Leonard et al. 1999, Smith and Jennings 2000, Trussell and Smith 2000), these 

previous examples did not establish that predator recognition and an inducible 

morphological defense emerged due to selection from the invasive predator. 

Inducible morphological defenses are distinct from other prey defenses (i.e.
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behavioral responses and fixed traits) because they are often irreversible and 

they may require a sizeable time lag to develop after predator cues are detected 

(Padilla and Adolph 1996, Sih 2004). The few examples of natural selection by 

invasive predators deal with the alteration of existing predator specific responses, 

fixed traits, and adaptive behavioral responses (Trussell and Nicklin 2002, Cox 

2004, Phillips and Shine 2004, Strauss et al. 2006).

While recent historical contact with H. sanguineus appears to have 

selected for predator recognition in M. edulis, we cannot rule out non-heritable 

processes in individual mussels, such as learning by native prey (Maloney and 

Mclean 1995) or conditioned predator recognition. However, there are no 

examples of inducible morphological defenses resulting strictly from learning. In 

addition, in situ background cues necessary for learning (Brown and Chivers 

2005) appeared to have a negligible effect in our system, although they likely 

differed between our experimental arrangements. At the time of the experiments, 

H. sanguineus was only recently established and thus much less abundant in 

Nahant compared to southern New England where the crab had been 

established for several years. If background cues were influential in our system, 

southern control mussels in the in situ experiment would have thickened their 

shells, diminishing the difference between control and H. sanguineus exposed 

mussels in our Woods Hole field experiment relative to the Nahant laboratory 

experiment. However, this difference was greater in the in situ field experiment 

than the Nahant lab experiment, suggesting that ambient background cues were
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not sufficient to influence our experiments or learning in southern mussels prior 

to collection.

Alternatively, the differing mussel responses to the two crabs may be 

related to heritable population differences in H. sanguineus recognition unrelated 

to the introduction of H. sanguineus. However, because the genus Hemigrapsus 

is novel to the Atlantic Ocean there is little reason to believe that any Atlantic 

mussels recognized it prior to its invasion. Thus, even if the extremely limited 

gene flow of M. edulis between Europe and North America (Riginos et al. 2004) 

disproportionately influenced northern or southern New England mussels, this 

effect would not help to explain a population’s predisposition to recognize 

Hemigrapsus. Moreover, even if M. edulis recognized H. sanguineus prior to its 

invasion, it is doubtful that the trait would be lost only in northern New England 

mussels, given the capacity of mussels to maintain cue recognition in the 

absence of reinforcing predation (Reimer and Harms-Ringdahl 2001). 

Alternatively, northern New England mollusks may generally experience lower 

predation than southern conspecifics (Bertness et al. 1981). Thus, although prior 

recognition of H. sanguineus (per se) seems unlikely, southern New England 

mussels may more readily express inducible defenses to many predator species 

by responding to a lower threshold of cues or with decreased specificity to 

predators (Brown and Chivers 2005). In fact, this potential gradient in cue 

thresholds and sensitivities may promote the rapid evolution of recognition of a 

novel, invasive predator in southern New England mussels.

20
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Species interactions can differ on various geographic scales due to local 

selection and other processes (Dethier and Duggins 1988, Sanford et al. 2003). 

Similarly, there is considerable potential for the evolutionary history of invasive 

and native species interactions to vary spatially and temporally. Although we 

have only a nascent understanding of the role of inducible defenses in marine 

systems (Raimondi et al. 2000, Trussell et al. 2002), this phenomenon is likely 

highly influenced by the evolutionary history of the interacting species. The 

confluence of evolutionary and ecological interactions represents an essential 

field of inquiry to understand fully the impacts of invasive species.
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CHAPTER II

SPECIFICITY OF INDUCED DEFENSES IN MYTILUS EDULIS AND 

ASYMMETRICAL PREDATOR DETERRENCE.

Abstract

Induced defenses of prey have become widely recognized in several 

marine taxa, yet their specificity to particular predators and impacts on 

subsequent predation are seldom investigated. In this study, Mytilus edulis 

showed highly specific induced defenses in response to predators with different 

attack strategies. The mussels developed significantly heavier shells only in the 

presence of waterborne cues from Carcinus maenas, a crushing crab predator; 

and significantly heavier adductor muscles only in the presence of waterborne 

cues from Asterias vulgaris (=A. rubens), a predatory sea star that pries open 

bivalves. However, mussels effectively thickened their shells in response to cues 

from predators by either increasing allocation to shell (in response to C. 

maenas), or reducing linear shell growth (in response to A. vulgaris and, to a 

lesser extent, the predatory whelk Nucella lapillus). These different mechanisms 

of shell thickening in response to all three predators defended the mussels from 

subsequent crab predation; increasing handling times of mussels by predatory C.
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maenas by more than 48%. In contrast, only mussels with increased adductor 

muscle weight (an induced response to A. vulgaris) were subsequently defended 

from the sea star. These results suggest that although induced defenses in M. 

edulis are specific to predators with different attack strategies, diffuse selection 

by C. maenas may allow predator specific responses to be adaptive even when 

predator composition changes.

Introduction

Inducible defenses are an adaptive response of prey to environments in 

which predation pressure varies spatially or temporally. Among marine taxa 

induced defenses in response to predator cues are widespread and observed in 

barnacles (Lively 1986b), bryozoans (Harvell 1984), gastropods (Appleton and 

Palmer 1988, Trussell 1996, Trussell and Smith 2000), and bivalves (Reimerand 

Tedengren 1996, Leonard et al. 1999, Smith and Jennings 2000, Whitlow et al. 

2003). The effectiveness of induced defenses is potentially limited by the ability 

of prey to correctly identify predator cues and express appropriate defensive 

phenotypes (Moran 1992, DeWitt et al. 1998). Correctly identifying predator cues 

allows prey to express appropriate defensive phenotypes without the added 

costs of incongruous, ineffective, or mistakenly expressed defenses (Langerhans 

and DeWitt 2002). Although, there have been several tests of the specificity of 

induced defenses elicited by different predators in marine systems (Harvell 1990, 

Smith and Jennings 2000, Reimer and Harms-Ringdahl 2001, Iyengar and 

Harvell 2002, Cheung et al. 2004), fully understanding the benefits,
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disadvantages, and possible selection pressure on induced defenses requires 

knowing their effectiveness against various predators with different foraging 

strategies.

Because the expression of many induced morphological defenses require 

time lags, mismatches can occur between a new predation environment and the 

prey’s induced phenotype (Clark and Harvell 1992, Padilla and Adolph 1996, Van 

Buskirk 2002). In particular, when prey have evolved specific defenses to 

predators with differing attack strategies, inducible defenses to one predator 

may: 1) provide protection from a second predator with a different attack strategy 

(Van Buskirk 2001, Laforsch and Tollrian 2004), 2) leave prey more vulnerable to 

a second predator (Matsuda et al. 1993, Smith and Van Buskirk 1995, Turner et 

al. 1999, DeWitt et al. 2000, Relyea 2001), or 3) have no effect on predation by a 

different predator. The outcome of predation experiments in systems with 

multiple predators has only recently been explored, even in well-studied systems 

such as Daphnia spp. cyclomorphosis (Laforsch and Tollrian 2004), but may 

provide a more full understanding of the adaptive value of inducible defenses in 

multiple predator environments (i.e. the diffuse selection acting on inducible 

defenses)(Cipollini 2004, Strauss et al. 2005).

To address the question of specificity of induced defenses and the 

consequences of this specificity in subsequent predator-prey encounters, I focus 

on the common, intertidal marine bivalve Mytilus edulis. M. edulis is ideal for the 

study of specificity of induced defenses because it responds to several predators 

with very different attack strategies. Several independent studies have shown
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that M. edulis develops thicker, more rounded shells and stronger adductor 

muscles in response to cues from Asterias spp. (a sea star that pries open 

mussels) (Reimerand Tedengren 1996, Reimerand Harms-Ringdahl 2001) and 

increases shell thickness in response to cues from the introduced crab Carcinus 

maenas (a crab that crushes the mussel’s shell) (Leonard et al. 1999, Smith and 

Jennings 2000, Reimer and Harms-Ringdahl 2001, Frandsen and Dolmer 2002) 

and Nucella lapillus (a whelk that drills through mussel shells) (Smith and 

Jennings 2000). Without direct comparisons of induced morphologies it is 

difficult to determine if the mussel responds to all predators with varying degrees 

of a similar defensive strategy (Smith and Jennings 2000), or if different 

predators induce different traits (Reimer and Harms-Ringdahl 2001).

Finally, due to annual and inter-annual variation in abundance of various 

predators (Navarrete et al. 2000, Saier 2001, Witman et al. 2003) the induced 

morphological defenses of individual mussels may be subjected to disparate 

predator foraging strategies. Although it is clear that mussels expressing 

induced defenses to Asterias sp. take longer for the sea star to consume (Reimer 

and Tedengren 1996); and it is inferred from increased shell strength that 

mussels expressing induced defenses to Carcinus maenas take longer for the 

crab to consume (Leonard et al. 1999); it is not clear how these predator specific 

responses affect handling times when attacked by a predator with a different 

attack strategy. Until recently, there have been remarkably few estimates of 

effectiveness of induced defenses in mollusks through actual predation trials (but
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see (Reimer and Tedengren 1996, Cheung et al. 2004) and no tests of their 

effectiveness against predators with different attack strategies.

Research presented in this study simultaneously documents the induced 

defenses of Mytilus edulis in response to waterborne cues from several individual 

predators: a whelk (Nucella lapillus), a sea star (Asterias vulgaris=A. rubens), 

and a crab (Carcinus maenas). In addition to having differing attack strategies, 

these predators differ in the sizes of mussels consumed; crabs are gape limited 

creating a size refuge for mussels (Ebling et al. 1964), whereas mussel do not 

have an absolute size refuge from whelk and sea star predation (Hunt and 

Scheibling 1998, Saier 2001). By contrasting the mussel’s responses to these 

predators, I elucidate the ability of these bivalves to distinguish between 

predators and express defenses appropriate to predators with differing attack 

strategies. I further determine the effectiveness of these predator specific 

induced defenses against predators with disparate attack strategies, i.e. the crab, 

C. maenas and the sea star A. vulgaris.

Materials and Methods 

Mussel Collection and Measurement - To determine the specificity and 

effectiveness of induced defenses I evaluated the morphology of Mytilus edulis 

raised with waterborne cues from predators, then exposed similarly induced 

mussels to predation by Carcinus maenas and Asterias vulgaris. In late June 

2002, I collected several hundred mussels from the low intertidal zone at Hilton 

Park, Great Bay Estuary, New Hampshire, USA (43° 7’ N, 70° 50’ W). From
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these I randomly selected mussels (12-17 mm shell length, 10 replicate'1) to be 

pre-measured for shell mass, length, width, and height. For these 

measurements length was the greatest anterior to posterior shell dimension, 

width was the axis perpendicular to the plane formed by left and right shells held 

firmly closed, and height was measured along the dorso-ventral axis, 

perpendicular to the hinge. To obtain the dry shell mass of live mussels I used 

the following technique described by (Palmer 1982): While a live mussel was 

suspended in seawater on a mesh net hung beneath a balance (Mettler-Toledo 

AG204, Greifensee, Switzerland) its immersed mass was measured. For a 

separate group of immerse-weighed mussels, all tissue was removed and their 

dry shell weights measured. A regression of these dry shell weights against 

immersed weights was then used to estimate the dry shell weight of the living, 

experimental mussels (Mussel dry shell weight = 1.5993*immersed weight + 

0.0015, R square > 0.9999, n=29). Experimental mussel shells were also 

measured with digital calipers (length, width and height; + 0.01 mm). For 

subsequent identification, I marked each mussel shell with paint pens (916 Brite- 

Mark, Roseland, N.J., USA) and sealed paint marks with cyanoacrylate glue.

Experimental Apparatus - In a sea table at the University of New 

Hampshire’s Coastal Marine Laboratory (Newcastle, N.H.) I arranged 20, 3.5 

liter buckets (16 cm tall x 18 cm diameter). All buckets were supplied with a 

continuous flow of unfiltered seawater via vinyl tubing (1.5 to 2 liters/minute).

The 20 buckets were divided into three predator cue levels (Nucella iapillus, 

Asterias vulgaris, Carcinus maenas) and a no-predator control. I collected
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predators from the rocky intertidal zone adjacent to the marine laboratory and 

placed predators individually in a single mesh-sided container in each replicate 

bucket. Seawater escaped each bucket through a dozen holes drilled 2 cm 

below the lip of each bucket. All holes were 5 cm above the water level of the 

rest of the sea table, such that water from the sea table did not flow back into the 

buckets and mix predator cues. I used one individual of A. vulgaris and one of C. 

maenas in their respective cue treatments. To provide similar cue levels to all 

treatments, I compensated for the small size of N. lapillus by using 6 whelks 

replicate'1. In addition to the 10 pre-measured mussels in each growth chamber,

I also raised 32 extra mussels (length 12-17 mm) for use in a predation 

experiment (described below).

The experiment began on July 7, 2002 and ran for 91 days. Every 4 

weeks I randomly rearranged buckets in the sea table and fed crushed mussels 

to the predators. Predators were fed monthly in a separate container and 

returned to cue containers within 6 hours. One Carcinus maenas replicate was 

excluded from analysis because the crab escaped the mesh-sided container and 

consumed all the pre-measured mussels. At the end of the experiment, I froze 

all pre-measured mussels for later morphological measurements. Final 

morphological measurements were based on the 139 mussels surviving to the 

end of the experiment (of the original 200 pre-measured mussels).

M orpho log ica l S ta tis tics  - 1 collected the following final morphological 

measurements on all pre-measured mussels: shell length, shell width, shell
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height, shell dry weight, tissue dry weight, and posterior adductor muscle dry 

weight. In order to examine the growth and morphological changes of mussels 

during the experiments I compared the following means of each replicate 

container (dependent variables are listed first): 1) The residuals of a regression 

of the final shell weight against the initial shell weight of each mussel, 2) The 

changes in shell length, width, and height (final -in itia l) of each mussel, 3) The 

residuals of a regression of the final shell thickness index (STI) against initial STI. 

STI is an integrative estimate of shell thickness and correlates well with multiple 

measurements of actual shell thickness. STI = dry shell wt x [L x (H2 + W2)0 5 x 

tt/2]'1, where L, H and W are length, height and width, respectively (Reimer and 

Tedengren 1996, Frandsen and Dolmer 2002). A multiple regression of 

measurements of the shell thickness (left and right valves, center and lip) from 48 

mussels against STI was well correlated (P<0.0001, R2 = 0.911), 4) The 

residuals of a regression of final tissue weights against initial shell weights to 

compare relative tissue growth, and 5) The residuals of a regression of the 

posterior adductor muscle (dry weight) against the total tissue (dry weight) to 

determine the amount of tissue allocated to the posterior adductor muscle. In 

order to preserve experiment-wide Type-I error I compared the replicate mean 

residuals from the above data using a multivariate analysis of variance 

(MANOVA) and subsequent univariate analyses of variance (ANOVAs). If there 

was a significant treatment effect in univariate ANOVAs (p<0.05), I used a priori 

linear contrasts to compare the means of each predator cue treatment to the 

control treatment. Because graphs of the above residuals can be difficult to
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interpret, I have used adjusted least square means from a nested analysis of 

covariance of the same relationships to produce Figure 4. I also compared the 

outcome of a nested ANCOVA of the above relationships and a nested ANOVA 

of the residuals from the above regressions to address concerns of potential 

biases of this residuals technique. These analyses produced similar results, 

confirmed the homogeneity of regression line slopes, and indicated the residuals 

technique was appropriate for this data set. Data used in these regressions were 

untransformed, because exploratory analysis of these data indicated that square- 

root or log transforming data did not improve the linear fit of bivariate plots.

Finally, initial dimensions of mussels did not differ between treatments (all p > 

0.70).

Predation Experiment - At the end of the 91-day experimental growth 

period, after removing the pre-measured mussels, I combined the extra 32 

mussels from each replicate chamber into a common pool of mussels for each 

predator cue treatment. In a temperature-controlled room (9-10° C), I arranged a 

series of ten, 3.5-liter predation chambers (16 cm tall x 18 cm diameter) such that 

each replicate chamber could be viewed from above through a video camera 

housed on a tripod. Black plastic hung around the tripod and predation 

chambers also minimized visual disturbance of crabs. I placed one male 

Carcinus maenas (carapace width 48-59 mm) in each chamber and began 

predation trials. All crabs were healthy, with intact claws etc. After commencing 

recording with the video camera, a single pre-measured, mussel randomly 

selected from the various predator treatments was placed in each predation
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chamber with a crab. Each predation trial lasted 12 hours with the first 1.5 hours 

recorded on video. The water in each predation chamber was replaced between 

trials and another handling time observation begun using randomly selected 

mussels and the same crabs. This process was repeated, allowing all 10 crabs 

multiple opportunities to consume mussels from each predator cue treatment. 

After all trials were complete, 7 crabs had consumed 1 to 5 mussels from each of 

the 4 cue treatments and 3 crabs had consumed 1 to 3 mussels from each of the 

3 cue treatments. A total of 74 observations were made of crabs consuming 

mussels. Previous trials indicated that similar sized C. maenas can consume > 

10 mussels in the size range used in this experiment in a 12 hour period, 

suggesting that the crabs were not satiated during the above trials. I later 

examined videos and estimated handling time from the moment the crab picked 

up the mussel until shell fragments were discarded and the crab continued 

searching. I then compared the handling times using an analysis of covariance 

with each crab as a blocking factor and mussel length as a covariate; followed by 

a priori linear contrasts to compare the handling times of each predator treatment 

to controls. I also attempted to obtain handling times for Nucella lapillus; 

however, the whelk did not feed in the laboratory and was not used in 

subsequent predation trials.

Similar attempts to quantify handling times for Asterias vulgaris were 

visually obscured because the sea stars’ oral (i.e. lower) surface was not visible 

to the camera above; however, recording predation trials from below yielded 

reliable estimates of handling times. In 2004, after raising mussels in a second
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cue experiment with A. vulgaris, Carcinus maenas or no-predator controls, and 

observing similar, predator specific induced defenses (Freeman in prep), I ran a 

second predation experiment with A. vulgaris. For this I placed a rack of 9 glass 

bowls (15 cm diameter x 7 cm tall) in a temperature controlled growth chamber 

(15° C; 1.4 m high x 0.6 m x 0.7 m, internal dimensions), each containing 5 cm 

depth of unfiltered sea water and a single A. vulgaris (5.3-7.5 cm, arm tip across 

oral disk). I obtained I x w x h measurements of randomly selected mussels 

raised in the cue experiment, placed a single mussel in each glass bowl and 

began recording time-lapse video from a camera placed 50 cm below the 9 glass 

bowls. These predation trials were run at least 8 hrs apart with no more than 2 

trials in 24 hrs. These trials were repeated until each of the 9 sea stars had 

consumed 1 to 5 mussels from each of the 3 cue treatments. A total of 73 

predation events were observed. By viewing the oral surface of sea stars 

preying on mussels, I was able to estimate handling time from the moment the 

sea star began opening the mussel to when the mussel valves opened and the 

sea star changed position and began digesting the mussel. These handling 

times were analyzed using an analysis of variance with A. vulgaris identity as a 

blocking factor and mussel shell height as a covariate; followed by a priori linear 

contrasts to compare the handling times of each predator treatment to controls.

Results

The multivariate analysis of variance indicated that waterborne cues from 

the various predators significantly affected mussel morphology and growth (Table
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4). A subsequent univariate analysis of variance indicated that final shell weight 

was affected by cue treatment (Figure 4a, Table 4). Mussels raised in the 

presence of cues from Carcinus maenas significantly increased their shell 

weights, while shell weights of Asterias vulgaris and Nucella lapillus exposed 

mussels were not affected. All changes in shell length, width, and height showed 

similar patterns, but the change in shell length and change in shell width showed 

a significant treatment effect (Figure 4b-d, Table 4). A. vulgaris exposed mussels 

had significantly reduced changes in shell length and width relative to control 

mussels, whereas N. lapillus exposed mussels had nearly significant reduced 

shell widths (p=0.058). The type of predator cue also had a significant effect on 

the shell thickness index (Figure 4e, Table 4). Linear contrasts indicated that 

mussels exposed to C. maenas or A. vulgaris had higher shell thickness indexes 

than control mussels, while N. lapillus exposed mussels showed similar trends. 

Total tissue weights of mussels showed no treatment effect (Table 4); however, 

the amount of soft tissue allocated towards adductor muscle was significantly 

greater in A. vulgaris exposed mussels (and N. lapillus to a lesser degree) than 

control mussels (Table 4, Figure 4g).

Predation experiments revealed asymmetrical benefits of specific 

inducible defenses. When exposed to lethal Carcinus maenas, the mussels’ 

predator cue treatment had a significant effect on handling time (Table 5). 

Compared to handling times of control mussels that were not exposed to 

predator cues, C. maenas took approximately 48% longer to consume mussels 

previously exposed to cues from C. maenas (p = 0.041), 72% longer to consume
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mussels previously exposed to cues from Asterias vulgaris (p = 0.007), and 

approximately 67% longer to consume mussels previously exposed to cues from 

Nucella lapillus (p = 0.052). Similarly, the mussels’ cue treatment significantly 

affected handling times of A. vulgaris (Table 6). However, only mussels 

previously exposed to A. vulgaris cues had increased handling times relative to 

control mussels (i.e. 36%, p = 0.019).
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Table 4. (M)ANOVA of mussel morphology -  specificity. Mytilus edulis growth 
responses to cues from C. maenas, A. vulgaris, N. lapillus and controls. 
Univariate and multivariate tests were conducted on the means of each replicate. 
Degrees of freedom for univariate ANOVA treatment and error terms were 3 and 
15, respectively. Where regressions were used as scaling variables the 
covariate appears in parentheses after the dependent variable.

Full MANOVA 
Source of variation df Wilks’ X F P
Treatment 21,26.39 0.0078 5.5562 <0.0001

Univariate ANOVAs

Response variable F P A priori linear contrasts

Final Shell Weight 
(Initial Shell Weight)

3.656 0.0370 Carcinus > Control p = 0.051; 
Asterias vs. Control p = 0.367; 
Nucella vs Control p = 0.454

Change in Shell Length 4.462 0.0198 Carcinus vs. Control p = 0.343; 
Asterias < Control p = 0.030; 
Nucella vs Control p = 0.109

Change in Shell Height 3.129 0.0571

Change in Shell Width 6.425 0.0052 Carcinus vs. Control p = 0.189; 
Asterias < Control p = 0.018; 
Nucella vs Control p = 0.058

Final STI (Initial STI) 7.923 0.0021 Carcinus > Control p=0.0003; 
Asterias > Control p=0.009; 
Nucella vs Control p=0.068

Final Tissue Weight, mg 
(Initial Shell Weight)

0.910 0.4597

Adductor Muscle 
Weight, mg (Total

6.158 0.0061 Carcinus vs. Control p = 0.838; 
Asterias > Control p = 0.002;

Tissue Weight) Nucella vs Control p = 0.053
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Table 5. Carcinus maenas handling times -  specificity, (a) Analysis of handling 
times of Carcinus maenas consuming mussels raised with waterborne cues from 
C. maenas, A. vulgaris, or N. lapillus (ANCOVA). Final Shell Length*Treatment 
was not significant (p=0.12). (b) C. maenas handling times, SE, and a priori 
linear contrasts (vs. Control) when consuming mussels raised under 4 cue 
treatments. Handling time is the least squares mean (LSM) with final shell length 
as a covariate.

5a. Carcinus Handling Time
Source df MS F P
Treatment 3 115.871 3.1261 0.0323
Crab ID 9 278.758 7.5207 <0.0001
Final Shell Length 1 156.228 4.2150 0.0444
Error 60 37.065

5b.
Mussel Cue Treatment Control Carcinus Asterias Nucella
Handling time, min (LSM) 7.9 11.7 13.5 13.2
SE 1.3 1.3 1.5 2.2
Post-hoc linear contrasts
(vs. Control) p = 0.041 p = 0.007 p = 0.052
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Table 6. Asterias vulgaris handling times -  specificity. Analysis of handling times 
of Asterias vulgaris consuming mussels raised with waterborne cues from C. 
maenas, A. vulgaris or no predator (ANCOVA). Final Shell Height*Treatment was 
not significant (p > 0.20). 6b. A. vulgaris handling times, SE, and a priori linear 
contrasts (vs. Control) when consuming mussels raised under 3 cue treatments. 
Handling time is the least squares mean (LSM) with final shell height as a 
covariate.

6a. Asterias Handling Time
Source df MS F P
Treatment 2 5406.3 5.4481 0.0066
Asterias ID 8 1378.6 1.3892 0.2190
Final Shell Height 1 11691.7 11.7822 0.0011
Error 62 992.32

6b.
Mussel Cue Treatment Control Carcinus Asterias
Handling time, min (LSM) 59.5 49.8 81.2
SE 6.0 6.9 6.8
Post-hoc linear contrasts
(vs. Control) p = 0.290 p = 0.019
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Figure 4. Morphological measurements -  Specificity. Final morphological 
measurements of mussels raised with various predator cues. Values for final 
shell dry weight (4a) and final tissue weight (4f) are least square means (+ SE) 
from a nested ANCOVA with initial shell weight as covariate. Values for final 
shell thickness index (4e) and final adductor muscle weight (4g) are the least 
square means (+ SE) from an ANCOVA with final shell length and final tissue 
weight, respectively, as covariates. Values for change in shell length, width and 
height (4b-d) are least square means from an ANOVA. Error bars are + 1 SE. An 

indicates significant difference from control treatment.
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Discussion

Mytilus edulis can distinguish among the three predators and express 

inducible defenses appropriate to each predator’s foraging strategy. However, 

the resulting effectiveness of these defenses is asymmetrical; the mussels’ 

response to Carcinus maenas does not deter Asterias vulgaris, yet responses to 

all 3 predators deter C. maenas. That these differing inducible defenses deter 

the crab, C. maenas, is due to distinct mechanisms of shell thickening. In the 

presence of cues from C. maenas, mussels develop thicker shells by allocating 

more to shell weight (see also Leonard et al. 1999). Accretion of shell CaC0 3  is 

not energetically costly relative to respiration costs; however, it is normally 

presumed to proceed at, or near, a maximum rate in other mollusks (Palmer 

1992, but see Trussell 2002). In mussels, it appears that shell accretion is not 

maximized in the absence of predators, given that it increased in the presence of 

cues from C. maenas.

Unlike the response to Carcinus maenas, mussels thickened shells in 

response to cues from A. vulgaris (and to a lesser extent, Nucella lapillus) by 

decreasing linear shell growth but not altering shell accretion (i.e. adjusted final 

shell weights did not differ between predator cue treatments). Moreover, 

mussels developed relatively larger adductor muscles in response to waterborne 

cues from A. vulgaris (and to a lesser extent, N. lapillus) but not in response to C. 

maenas (Figure 4g, Table 4). Although this increase in adductor muscle is 

accompanied by a decrease in linear shell growth, this is probably not an
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energetic trade-off, as the adjusted final shell weight remained unchanged in the 

presence of A. vulgaris (Figure 4a, Table 4). This apparent trade-off may 

represent an adaptive response (providing less surface area for the sea star to 

grasp) or a mechanical necessity (a thicker shell is less likely to break when 

resisting the stronger adductor muscle) (Kautsky et al. 1990, Reimer and 

Tedengren 1996).

In contrast to the significant and specific responses of mussels to Asterias 

vulgaris and Carcinus maenas, mussels did not show such strong responses to 

Nucella lapillus. In response to the whelk, mussels did not alter shell weight but 

showed reductions in linear growth (L, W, or H); effectively thickening their shells 

and deterring C. maenas predation. In addition, mussels increased relative 

adductor muscle weight in response to N. lapillus, suggesting that these mussels 

would be defended from sea star predation. Given that N. lapillus largely drills 

through mussel shells to access soft tissue the adaptive significance of mussels 

increasing adductor muscle size is perplexing. Occasionally, N. lapillus feeds on 

mussels through their gaping shell (Ebling et al. 1964), suggesting that shell 

closure is an adaptive response to the whelk. However, another whelk in the 

region (Buccinum spp.) often feeds on mussels by prying their valves open to 

access soft tissue, causing mussels to close tightly (Thompson 2002). If mussels 

express an induced defense to Buccinum spp., increasing their adductor muscle 

would likely deter the whelk. As such, mussels may have imperfect cue 

recognition, be unable to distinguish between N. lapillus and Buccinum spp., and 

show an over-generalized response to any whelk. Although no costs of induced
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defenses were observed in this study, similar cases of mistaken identity in 

mollusk predators can entail costs of induced defense with no defensive benefit 

(Langerhans and DeWitt 2002).

Predator specific responses may also be influenced by size specific 

predation (e.g Black 1993). For instance, gastropods responding to chemical 

cues from gape limited decapod predators can increase their growth rates to 

attain a size refuge from these predators (Crowl and Covich 1990). While 

mussels can attain a size refuge from Carcinus maenas (Ebling et al. 1964) they 

generally do not have a size refuge from whelks and sea stars (Hunt and 

Scheibling 1998, Saier 2001). Thus, there is likely an adaptive advantage for 

mussels to maintain high growth rates and shell accretion in response to cues 

from C. maenas. In contrast, there is little or no adaptive advantage to rapid 

growth in responses to Nucella lapillus and Asterias vulgaris. Indeed, reduced 

linear shell growth may be an adaptive response to Asterias spp. as it provides a 

sea star with less surface area against which to pull the mussel valves open 

(Reimer and Tedengren 1996). Finally, mussels may be under pervasive 

selection to maximize feeding rates, growth rates, and reproductive output 

through high immediate growth. Any reduction in growth may result in 

“opportunity costs” of reduced future growth and reproduction (Harvell 1990).

Although these induced defenses are specific to a predator’s attack 

strategy, they may also influence predator behaviors, and indirectly affect 

handling times. For instance, sea stars adjust their position and the pulse 

duration of shell pulling based on the size and shape of a mussel’s shell (Norberg
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and Tedengren 1995). As a consequence, mussels with large, rigid shells but 

relatively weak adductor muscles (e.g. Carcinus maenas exposed mussels) are 

consumed rapidly by a sea star, while mussels with small, rigid shells and strong 

adductor muscles may be consumed by a slower, “siege strategy” (Norberg and 

Tedengren 1995). Similarly, C. maenas feeding is influenced by shell thickness 

and shape, but may also be affected by the ability to resist perimeter assaults 

(prying, gape entry etc) (Moody and Steneck 1993). The effectiveness of a 

perimeter assault is likely influenced by valve closure ability and adductor muscle 

strength.

In many situations, predator species may be segregated by habitats; sea 

stars rarely forage in the high intertidal (Lubchenco and Menge 1978), whereas 

crabs predation is less intense in high flow sites (Leonard et al 1999). This leads 

to spatially predictable patterns in the expression of inducible defenses (Leonard 

et al. 1999, Frandsen and Dolmer 2002). Similarly, sea star and crab 

populations often fluctuate seasonally and annually, tracking mussel populations 

(e.g. Navarrete et al. 2000, Saier 2001, Witman et al. 2003), creating temporal 

variation in induced defenses that may influence their adaptive value. Because 

many inducible defenses develop slowly relative to community changes in 

predator assemblage, time lags in the expression of inducible defenses may 

represent fitness costs not normally considered in adaptive phenotypic plasticity 

(Padilla and Adolph 1996, DeWitt et al. 1998, Van Buskirk 2002).

Temporal variation in predator abundance and time lags in the expression 

of induce defenses can be detrimental to mollusks expressing induced defenses
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to specific predators (DeWitt et al. 2000). This can be seen in the current study 

as mussels exposed to Carcinus maenas cues and subsequently preyed upon by 

Asterias vulgaris were not defended (and possibly may have been more 

vulnerable to the sea star). In contrast, mussels were effectively defended 

against C. maenas regardless of the previous predator cues (i.e. C. maenas, A. 

vulgaris, or Nucella lapillus). Due to this asymmetrical benefit of the induced 

defense, predation by C. maenas may reinforce the inducible defenses specific 

to A. vulgaris and N. lapillus, a pattern consistent with diffuse selection. Diffuse 

selection is often indicated when the adaptive value of traits influencing 

interactions with a predator species are altered through interactions with 

additional predator species (Strauss et al. 2005). Findings in this study are of 

interest, as the adaptive value of induced defenses are frequently interpreted as 

only being influenced by a single target predator (but see Cipollini 2004). 

Moreover, although diffuse selection is often invoked to describe how responses 

to similar predators can be reinforced (Stinchcombe and Rausher 2001, Van 

Buskirk 2001, Laforsch and Tollrian 2004), the present study is the first to 

suggest that specific responses to a predator can be reinforced by a predator 

with a different attack strategy.

Finally, because M. edulis expresses inducible defenses appropriate to 

the predator’s foraging strategy, both when predators are feeding (Reimer and 

Harms-Ringdahl 2001) and when the predators are not feeding, the present 

study suggests that cues are emanating directly from the predators. Temporary 

reductions in mussel feeding behavior occur in response to crushed conspecifics,
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but not to predator cues per se (Freeman and Meszaros in prep). Accordingly, if 

cue predators are feeding on crushed conspecifics, behaviorally mediated 

reduced growth could be confounded with predator specific induced defenses. 

Mussels in the present study were able to actually increase shell weight without 

slowing linear growth in response to C. maenas, perhaps because the predators 

were not fed (for comparisons see: Smith and Jennings 2000, Reimer and 

Harms-Rindgahl 2001). The ability of mussels to respond to non-feeding 

predators allows them to express these induced defenses even though predators 

may be in the area but feeding on alternative prey (barnacles etc.). Because 

mussels will also respond to crushed conspecifics (Leonard et al. 1999), 

responding to these additional cues may additively increase the defensive 

morphology expressed (Trussell and Nicklin 2002).

In conclusion, although several studies have independently examined the 

effects of individual predators on induced defenses of Mytilus edulis, a 

comparison of the impacts of different predators reveals that mussels can 

distinguish between non-feeding predators and respond with induced defenses 

appropriate to the predator’s attack strategy. The induced response to several 

predators effectively increased handling time by the crab, Carcinus maenas, but 

not the sea star Asterias vulgaris. Thus, in addition to an apparent absence of 

costs of the inducible defense (i.e. no reduced tissue growth), costs associated 

with time lags in the expression of induced defenses are also minimized, as 

mussels responding to all three predators are defended from the invasive crab,

C. maenas. The high specificity of the mussel’s response to predators and the
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apparent general effectiveness of the various defenses may facilitate the diffuse 

selection of these inducible defenses; however, it will also be important to 

examine the simultaneous effect of these predator cues.
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CHAPTER III

MULTIPLE PREDATOR RESPONSES IN BLUE MUSSELS: RISK 

ENHANCEMENT DUE TO POOR INTEGRATION OF INDUCIBLE 

MORPHOLOGICAL DEFENSES.

Abstract

Prey are commonly exposed to multiple predators in natural environments, 

yet we know little about how prey integrate different predator-specific inducible 

morphological defenses. We experimentally compared the inducible defenses of 

the common marine mussel (Mytilus edulis) to waterborne cues from 2 predators 

with different attack strategies, the sea star, Asterias vulgaris (=A. rubens), and 

the crab, Carcinus maenas, both individually and together. The mussels 

expressed specific inducible defenses appropriate to each predator’s attack 

strategy; they increased adductor muscle weight in response to cues from the 

sea star, a predator that pulls mussel shells open, and increased shell thickness 

in response to the crushing predatory crab. Both predator-specific responses 

successfully increased handling times by the respective predator. However, 

mussels exposed to the combined cues from both predators expressed neither 

inducible defense nor deterred foraging by the sea star or crab. These results
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suggest that poor phenotypic integration of two predator-specific responses 

(induced adductor muscle and shell growth) underlie the diminished response to 

combined predators and resulting risk enhancement. The degree that prey can 

integrate potentially disparate defenses in a multiple predator environment may 

represent a seldom explored facet of the evolution of inducible defenses.

Introduction

When predation threat varies spatially or temporally many prey organisms 

advantageously alter their defensive behaviors or morphologies based on cues 

from various predators. To date there have been hundreds of documented cases 

of phenotypic plasticity (behavioral and morphological) in response to the 

presence or absence of cues from single predator species (reviewed in Lima and 

Dill 1989, Tollrian and Harvell 1998). Inducible morphological defenses can take 

the form of increased spines on cladocerans and bryozoans (Tollrian and Harvell 

1998), thickened shells of mollusks, (Appleton and Palmer 1988, Trussell 1996) 

and defensive chemicals in plants (Karban and Baldwin 1997). Most predator- 

prey systems involve multiple predators (Sih et al 1998) and a growing body of 

work has shown that behavioral responses to multiple predators interact to affect 

prey mortality through risk enhancement or reduction (Rahel and Stein 1988, 

Martin etal. 1989, Crowder e ta l. 1997, Loseyand Denno 1998, McIntosh and 

Peckarsky 1999, Meyer and Byers 2005, Griffen and Byers 2006b). However, 

very few studies have examined inducible morphological defenses in situations 

involving simultaneous exposure to multiple predators (reviewed in Relyea 2003).
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The increasing recognition of predator diversity on ecosystem function (Duffy

2002) points to our need to firmly understand influences of multiple predators on 

the ecology and evolution of inducible morphological traits (Relyea 2004b).

Several general predictions have emerged from studies of behavioral and 

morphological prey responses to multiple predators with different attack 

strategies. First, if two predator species have similar predation strategies, prey 

can effectively respond to both predators simultaneously and the combined 

impact of two predator species will induce prey phenotypes in the same direction 

(reviewed in Sih et al. 1998, Relyea 2003). These similar defenses may result in 

risk reduction for prey (Sih et al. 1998, Vance and Soluk 2005). A second 

situation occurs if predators have different predation strategies, and prey respond 

with defenses specific to the predator’s attack strategy. Here, prey are often 

faced with conflicting defensive responses (reviewed in Sih et al. 1998, Turner et 

al. 1999) and can either respond to the most threatening predator species (Sih 

1987, Rahel and Stein 1988, Lima 1992, McIntosh and Peckarsky 1999, Eklov 

and Werner 2000, reviewed in Relyea 2003, Teplitsky et al. 2004) or, if the threat 

from the two predators is similar, prey can compromise with an intermediate 

response (McIntosh and Peckarsky 1999, Turner et al. 2000). Sometimes, prey 

can effectively reduce predation from multiple predators with different attack 

strategies by exhibiting unique responses not expressed for either predator, 

individually (e.g. reduced movement instead of migrating to avoid habitat specific 

predators) (Crowder et al. 1997, Krupa and Sih 1998). However, it is also 

possible that these opposing defensive responses may not be effectively
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integrated into a cohesive response, resulting in risk enhancement for the prey 

(Soluk 1993, Losey and Denno 1998).

The majority of the above examples are mediated by behavioral 

responses, with relatively few examples of morphological responses to 

simultaneous exposure to multiple predators (but see Relyea 2003, Teplitsky et 

al. 2004). Moreover, to date, there have been no examples of risk enhancement 

resulting from inducible morphological defenses to combined cues from multiple 

predators. The degree that prey can integrate potentially disparate defenses in a 

multiple predator environment may represent an important fitness component 

that has rarely been considered in the evolution of inducible defenses (DeWitt 

and Langerhans 2003).

Presumably, adaptive phenotypic plasticity allows organisms that can 

adjust their behaviors or morphologies with inducible defenses to maintain higher 

average fitness across various environments than organisms with constitutive 

defenses (Via and Lande 1985). Viewed in the context of adaptive phenotypic 

plasticity, the ability of prey to integrate distinct defensive phenotypes will have 

direct bearing on the overall net benefit of predator-sensitive inducible defenses, 

particularly when predators employ different attack strategies and elicit conflicting 

prey responses (Schlichting and Pigliucci 1998, Sih et al. 1998). Thus, while 

reduced vulnerability to a single predator species is a clear fitness benefit of 

induced defenses, if multiple predator environments are encountered frequently, 

prey responses to multiple predators should be considered in the overall fitness 

value of phenotypic plasticity. For instance, inducible defenses that are effective
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against individual predators and integrate well in multiple predator environments 

may be more favored than predator specific responses that do not integrate well 

and result in risk enhancement in multiple predator environments.

The interacting influences of multiple predator species generate novel 

evolutionary forces on inducible traits, resulting in selection regimes that are 

often not predictable from pair-wise species interactions (DeWitt and Langerhans

2003); i.e., a form of diffuse selection by multiple predators (Strauss et al. 2005). 

However, this multi-species, diffuse selection paradigm has been largely 

neglected in the study of inducible defenses, despite clear ecological relevance 

(Agrawal 2001, Relyea 2004a). In this study, we compare defenses induced 

under various single and combined predator cues and their effectiveness in 

deterring subsequent predation to explore how multiple predator species 

interactively influence the value of inducible morphological defenses.

Study System - To examine the impact of multiple predators on induced 

defenses we used the common marine bivalve, Mytilus edulis and two important 

predators on this mussel, Asterias vulgaris (=Asterias rubens (Wares 2001)), a 

sea star, and Carcinus maenas, an introduced, but long-established, crab in the 

Northwest Atlantic. Mytilus is a common species in many near-shore marine 

communities and ideal for investigating the impacts of multiple predators on 

induced defenses because it responds with specificity to several predators 

employing different attack strategies. For example, mussels develop thicker, 

heavier shells in response to waterborne cues from Carcinus (a predator that 

breaks open mussel shells to access tissue) and allocate more towards adductor
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muscle growth in the presence of cues from Asterias (a sea star that pries open 

mussel shells to access tissue; Reimer and Harms-Ringdahl 2001, Freeman 

2007). High specificity of inducible morphological defenses have been observed 

in other systems (Relyea 2001, Iyengar and Harvell 2002, DeWitt and 

Langerhans 2003) and may indicate trade-offs associated with induced defenses 

in the presence of multiple predators with different attack strategies (Sih et al. 

1998). We determine if mussels express appropriate morphological defenses in 

response to waterborne cues from this crab and seastar (in single and multiple 

predator situations) and subsequently quantify how effectively these inducible 

defenses deter the predators.

Materials and Methods 

Mussel collection and measurement - In June 2003, mussels were 

collected from a floating dock at the University of New Hampshire’s Coastal 

Marine Laboratory (Newcastle, NH). Mussel shells were measured with digital 

calipers (length, width and height; + 0.01 mm). Six mussels (14.4-19.3 mm shell 

length) were randomly assigned to each of 40 experimental replicate buckets. 

Using a technique described by Palmer (1982), the dry mass of each mussel 

shell was estimated by measuring the immersed mass of each live mussel using 

a below beam balance (Mettler-Toledo AG204, Greifensee, Switzerland) while 

the mussel was suspended in seawater on a mesh net. Because the mussel 

tissue is neutrally buoyant, this technique isolates the weight of the mussel shell. 

The dry shell weights of experimental mussels were then accurately estimated
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from their immersed weights using a separately quantified relationship of 

immersed weight and dry shell weight. This regression relationship was 

generated through destructive sampling of immersed and dry shell weights of a 

group of mussels subsampled from the experimental source pool (mussel dry 

shell weight = 1.599*immersed weight + 0.002, R2 > 0.999, n=28). Finally, the 

pre-measured, experimental mussels were marked with small color-coded dots 

using paint pens (916 Brite-Mark, Roseland, N.J., USA), and dots covered with 

cyanoacrylate glue to increase the mark’s durability.

Induction Experiment Set-up - Forty replicate buckets (3.5 L) were 

arranged in a sea table at the University of New Flampshire’s Coastal Marine 

Laboratory. Each bucket was independently supplied with flowing, unfiltered 

seawater (1.5-1.9 L minute1) and aerated from overhead sources. Predators 

were collected from the intertidal and shallow subtidal zones at Fort Stark, NH. 

Each predator was placed into a small, perforated container, and two of these 

containers were randomly assigned to each bucket according to the 4 predator 

cue treatments: 2 Carcinus, 2 Asterias, 1 Carcinus & 1 Asterias, or a no predator 

control (2 empty containers). The perforated containers allowed cues from 

predators to permeate the bucket but prevented access of the predators to the 

mussels or interactions between predators. Having two predators in all predator 

addition treatments (a substitutive design) ensured that predator composition and 

predator density were not confounded (Relyea 2003). In previous work, the 

mussel’s response to two predators of the same species is not different from their 

response to one individual (Freeman 2007). Every 4 weeks, the buckets were
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cleaned and randomly rearranged on the sea table to diminish any effect of 

irregular air or water flow. At each 4-week cleaning, predators were removed to 

a separate container and fed crushed mussels. Within 8 hours, predators were 

returned to appropriate cue containers in experimental buckets. At the end of the 

experiment (i.e. after 104 days), all mussels were frozen for later morphological 

measurement. In one replicate from each of three treatments (i.e. Asterias, 

Asterias/Carcinus, and Control) all mussels died due to escaped predators or a 

lethal reduction in water and air flow. These replicates were not used in 

analyses.

Morphological Statistics - To determine whether mussels responded 

differentially to the various predator combinations, six different measures of 

growth were tracked: final shell weight (adjusted to initial shell weight), change in 

shell surface area, dry tissue weight (adjusted to initial dry shell weight), as well 

as final measurements of shell thickness at two locations (lip and center), and 

adductor muscle dry weight (adjusted to final shell surface area). Dry shell and 

tissue weights were obtained after samples were dried at 70°C for 36 hours.

First, the measurements of shell length, width and height were used to calculate 

the initial and final shell surface area using the following equation: Surface Area 

= L2 x (W2 + H2)-2 x jt/2 (Reimer and Tedengren 1996, Frandsen and Dolmer 

2002). This estimate of surface area correlated well with direct measures of the 

displaced shell volume upon immersion using a separate group of mussels 

(surface area1/2 vs. volume 1/3: P < 0.0001, R2 = 0.97, n = 165). Second, to 

standardize analyses of shell weight, the final shell weights (the dependent
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variable) were regressed against the initial dry shell weights and residuals used 

for subsequent statistical analyses. Next, using a micrometer, shell thickness 

was measured on the right and left shells at the lip and center of each shell (6.4 

mm from the ventral, posterior shell margin and where the axis perpendicular the 

mussel’s sagittal plane meets the shell, respectively). The lip thicknesses of left 

and right valves were averaged together and used in analyses, as were the 

average center thicknesses of left and right valves. Next, to gain a relative 

measure of tissue growth during the experiment, final tissue dry weights (the 

dependent variable) were regressed against initial shell weights and residuals 

used for subsequent analyses. Finally, as a measure of the relative size of the 

adductor muscle, adductor muscle dry weights (the dependent variable) were 

regressed against final shell surface areas and residuals used for subsequent 

analyses. Adjusting adductor muscle weight to total tissue weight instead of final 

shell surface area did not change the observed pattern (Freeman unpublished 

data).

Statistical analysis of the above measurements is similar to that described 

by (Relyea 2003). To preserve experiment-wide significance values (a=0.05) the 

replicate means of change in shell surface area, final shell thicknesses, and 

residuals from each of the regressions described above were analyzed using a 

one way multivariate analysis of variance (MANOVA). Upon finding a significant 

MANOVA (Table 7), univariate effects were then examined using individual 

analyses of variance (ANOVAs) of the replicate means. If a univariate ANOVA 

was significant, the replicate means of each predator exposed treatment were
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then compared to controls using a priori linear contrasts (a=0.05). All analyses 

were conducted using JMP IN version 5.1 (SAS Institute).

Predation experiments - To examine the effect of these various inducible 

traits on predation, predators were allowed to consume mussels previously 

raised with waterborne cues from the 4 relevant cue treatments (control,

Carcinus, Asterias, and both predators). Mussels used in the predation trials had 

been raised with waterborne cues from the same 4 cue treatments for 118 days 

(July-September 2004), and expressed identical inducible defenses (Freeman in 

prep).

For the Asterias predation experiments, 9 glass bowls (15 cm diameter x 7 

cm tall) were placed on a rack in a lit, temperature controlled growth chamber 

(15° C; 1.4 m high x 0.6 m x 0.7 m, internal dimensions). Each bowl contained 5 

cm depth of unfiltered seawater and a single Asterias (5.3-7.5 cm, arm tip across 

oral disk). Individual mussels were then randomly selected from predator cue 

induction treatments, measured with calipers (length, width, and height). These 

linear measurements were later used to adjust predator-handling times relative to 

mussel size. After mussels were placed singly into a glass bowl with a sea star, 

recording began using a time-lapse video camera placed 50 cm below the rack of 

bowls. Each of these predation trials lasted at least 8 hrs, with no more than 2 

trials in 24 hrs. The same 9 sea stars were used in all predation trials, and trials 

were repeated until each sea star had consumed 2-5 mussels from each 

predator cue treatment level. Later, upon viewing the videos, handling time was 

estimated for each sea star as beginning the moment it began opening the
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mussel and ending when the mussel shell opened and the sea star relaxed and 

began digesting mussel tissue. Log transformed handling times were analyzed 

using an analysis of variance with Asterias identity as a random blocking factor 

and mussel shell height and width as covariates (shell length was removed 

because it was not significant, p>0.20). Interactions of the covariates and 

treatment were examined to determine homogeneity of slopes and discarded 

from the model if p > 0.20. Asterias identity was designated a random effect, 

thus the Restricted Maximum Likelihood (REML) technique rather than the 

traditional method of moments technique (i.e. Expected Mean Squares, EMS) 

was used to analyze its effect. REML was developed for unbalanced, incomplete 

blocks with random effects, and uses an iterative process in which the sample 

mean converges on the grand mean when computing variance components. As 

a result, F-statistics and P-values for the random effect are “shrunken” towards 

zero (SASJnstitute 2003). Subsequent a priori linear contrasts compared the 

handling times of mussels from each of the 3 predator induction treatment to 

controls.

For the Carcinus predation experiment, seven, 3.5 liter predation 

chambers (16 cm tall x 18 cm diameter) were placed 1 m beneath a video 

camera housed on a tripod such that each chamber could be viewed easily.

Black plastic sheets hung around the tripod minimized visual disturbance of the 

chambers. One crab (approximately 4-5 cm carapace width) was placed in each 

chamber at the beginning of each trial. Mussels randomly selected from the four 

cue induction treatments were placed individually in predation chambers as
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videotaping commenced (1 crab & 1 mussel chamber'1). Each predation trial 

was recorded for 1.5 hours on video, with 8 hours between trials and no more 

than 2 trials in 24 hours. Between predation trials, the water in each chamber 

was changed and crabs were returned to the chambers. Videos were later 

examined and mussel handling time estimated as beginning when the crab 

picked the mussel up and ending when the crab discarded shell fragments and 

continued foraging. To improve sample sizes, data from a previous Carcinus 

predation experiment conducted in the fall of 2002 were added to the analysis; 

these predation experiments represented all treatments of predator-exposed 

mussels except the multiple predator-induced mussels (Freeman 2007). Thus, 

handling times from 9 crabs consuming 48 mussels from 3 treatments in 2002 

were combined with handling times from 6 crabs consuming 30 mussels from 4 

treatments. Combining these experiments was appropriate because year was a 

blocking factor and the effect of treatment was consistent between years for the 3 

shared levels (i.e there was no interaction of year*treatment for control mussels, 

Asterias mussels or Carcinus mussels, p »  0.20). The influence of predator cue 

treatment on handling time was analyzed using an analysis of variance with year 

as a blocking factor and crab identity as a random blocking factor, for which JMP 

used the REML function to estimate variance components, resulting in 

“shrunken” F-statistics and P-values for the random factor. The ANOVA was 

followed by a priori linear contrasts to compare the handling times of each 

predator treatment to control.
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Results

Induction experiment - An initial MANOVA of the 6 response variables 

revealed a significant effect of predator treatment (Table 7). Univariate ANOVAs 

indicated that predator cue had a significant effect on shell mass and shell 

surface area (Table 7a-b, Figure 5a-b). Specifically, linear contrasts revealed 

that mussels exposed to only Asterias or both Asterias and Carcinus had 

significantly lower shell growth (mass and surface area) than control mussels, but 

mussels exposed to only Carcinus did not differ from controls. Predator cue also 

had a significant effect on mussel shell thickness (Table 7c-d, Figure 5c-d).

Linear contrasts indicated that only mussels exposed to Carcinus had 

significantly thicker shells than control mussels, while mussels exposed to only 

Asterias and mussels exposed to combined Asterias and Carcinus did not differ 

from controls. In addition, the type of predator cue had a significant effect on the 

adjusted total tissue weight (Table 7e, Figure 5e). Only in the presence of 

combined cues from both Carcinus and Asterias did mussels show significantly 

reduced tissue growth. Finally, adductor muscle weight (relative to final shell 

surface area) differed among treatments; adjusted adductor muscle weight was 

only significantly greater for mussels exposed to Asterias alone relative to control 

mussels (Table 7f, Figure 5f).

Predation experiments - Mussels raised with cues from Asterias for 4 

months took significantly longer for the sea star to consume than control mussels 

(Table 8a, Figure 6a). In contrast, mussels exposed to Carcinus (alone or 

combined with Asterias) did not take longer than control mussels for the sea star
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to consume. Mussels raised with cues from Carcinus took significantly longer for 

crabs to consume, as did Asterias exposed mussels (Table 8b, Figure 6b). 

However, mussels raised with cues from both predators (combined) did not 

subsequently deter predation by crabs.
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Table 7. (M)ANOVA of mussel morphology - multiple predator experiment. 
Growth of Mytilus edulis in response to experimental predator treatments. These 
analyses were performed on the unadjusted means from each replicate bucket 
(b, c, & d) or the mean residuals from each replicate bucket adjusted to initial 
shell weight or final shell surface area (a, e & f). Initial measurements or scaling 
variables used to generate regressions for residuals appear in parentheses after 
the dependent variable. Linear contrasts represent a priori t-tests.

Multivariate test

Source of variation df_______ Wilks’ X F_______ p______
Treatment 18,79.7 0.149 4.2457 <0.0001

Univariate test

Source of variation df MS
a. Shell Weight (Initial Shell Wt.)
Treatment 3 0.0223 6.5533 0.0013
Error 33 0.0034
Linear contrasts: Control = Carcinus (p=0.482), Control > Asterias 
(p=0.028), Control > Asterias & Carcinus (p=0.005)__________________
b. Change in Shell Surface Area
Treatment 3 30047 6.9924 0.0009
Error 33 4297
Linear contrasts: Control = Carcinus (p=0.7176), Control < Asterias 
(p=0.0152), Control < Asterias & Carcinus (p=0.0021)________________
c. Shell Thickness at Center
Treatment 3 0.0049 5.8803 0.0025
Error 33 0.0008
Linear contrasts: Control < Carcinus (p=0.045), Control = Asterias 
(p=0.239), Control = Asterias & Carcinus (p=0.098)__________________
d. Shell Thickness at Lip
Treatment 3 0.0060 7.0781 0.0008
Error 33 0.0008
Linear contrasts: Control < Carcinus (p=0.004), Control = Asterias 
(p=0.241), Control = Asterias & Carcinus (p=0.803)__________________
e. Total Tissue Weight mg (Initial Shell Weight mg)
Treatment 3 75.079 2.9308 0.0479
Error 33 25.617
Linear contrasts: Control = Carcinus (p=0.652), Control = Asterias 
(p=0.406), Control > Asterias & Carcinus (p=0.01)___________________
f. Adductor Weight (Final Shell Surface Area)
Treatment 3 9.37x10‘7 9.4897 0.0001
Error 33 9.88x1 O'8
Linear contrasts: Control = Carcinus (p=0.959), Control < Asterias 
(p=0.0002), Control = Asterias & Carcinus (p=0.7097)

60

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Table 8. Handling times for A  vulgaris and C. maenas. Laboratory handling 
times of a) Asterias vulgaris and b) Carcinus maenas consuming mussels raised 
under the 4 cue treatments.

8a. Asterias Handling times (min, log transformed)
Source of variation df F P
T reatment 3 3.0958 0.0114
Asterias ID&Random 8 - Shrunk
Mussel Height 1 18.6868 <0.0001
Mussel Width 1 3.2361 0.0755
Error 88
Carcinus = Control (p=0.3573), Asterias > Control 
(p=0.0142), Asterias & Carcinus = Control (p=0.4366)

8b. Carcinus Handling times (min, log transformed)
Source of variation df F P
T reatment 3 5.3359 0.0026
Crab ID&Random 15 - Shrunk
Year 1 4.3956 0.0405
Length 1 0.0966 0.7571
Length*Treatment 3 4.026 0.0115
Error 57
Carcinus > Control (p=0.0045), Asterias > Control 
(p=0.0006), Asterias & Carcinus -  Control (p=0.5224)
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Figure 5. Morphological measurements -  Multiple Predators. The relative growth 
and morphology of M. edulis when reared as Controls, with Carcinus maenas 
(Carcinus), Asterias vulgaris (Asterias), or C. maenas and A. vulgaris (Ast-Carc). 
Asterisks indicate when a level is significantly different from control using a priori 
t-tests (P<0.05). Data are means for each replicate of the change in shell 
surface area (5b), final shell thickness (5c-d), or residuals removing the effect of 
initial size (5a & 5e) or final shell surface area (5f; See text for details). Error 
bars indicate SE.

5a. S h e ll W e ig h t 5e. T issue  W e ig h t

£  0.05 •

o

-4

-8

5 b . C ha n g e  in  S h e ll S u rfa c e  A re a  5 f . A d d u c to r  m u s c le

!
f t

a
E

a
2

*
I...g 0.5 

V

* I
* 01 » _ -o---  <

-0.5

5 c . S h e ll T h ic k n e s s  a t  C e n te r

C ontro l Carcinus A ste rias  Ast-Carc

5 d . S h e ll T h ic k n e s s  a t  U p

E 0.4
E

Control Carcinus Asterias Ast-Carc

62

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Figure 6. Handling times- Multiple Predator. Handling times (adjusted least 
square means) of a) Asterias rubens and b) Carcinus maenas when consuming 
mussels raised under various predator cue treatments for four months. Asterisks 
indicate treatment levels that are significantly different from controls using a priori 
t-tests (P<0.05). “ND” indicates no data. Note: handling times are log scale.
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Discussion

Consistent with previous studies, mussels developed larger adductor 

muscles in the presence of waterborne cues from the sea star Asterias alone, 

and thicker shells in the presence of cues from the crab Carcinus alone (Reimer 

and Harms-Ringdahl 2001, Freeman 2007). These induced traits affected the 

mussel’s ability to deter these same predators: mussels exposed only to 

Asterias successfully hindered the sea star, while those exposed to Carcinus or 

Asterias successfully hindered crab predation. However, in response to 

combined cues from both Asterias and Carcinus, mussels developed neither 

larger adductor muscles nor significantly thicker shells. In subsequent predation 

trials, either predator consumed these latter mussels as easily as control 

mussels. In contrast to prior predictions, the mussels did not show an 

intermediate response to both predators (i.e. increasing both shell thickness and 

adductor muscle weight) or a predator specific response to the most threatening 

of the two predators. Thus, the combined effect of sea star and crab cues 

inhibited the appropriate expression of induced morphological defense to either 

predator, resulting in risk enhancement.

The inability of mussels to simultaneously express shell growth and 

adductor muscle growth (Figure 5a, b, c, d, & f) indicate that the induced 

characters are incompatible or that there is an energetic trade-off. That the 

characters are incompatible suggests poor phenotypic integration of the predator 

specific defenses (sensu Schlichting 1989), i.e. trait integration (DeWitt and
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Langerhans 2003). In this case, mechanisms of linear shell growth may directly 

interfere with adductor muscle growth. Shell accretion occurs in the mussel’s 

extrapallial space (near the shell margin), and progresses more rapidly at the 

shell margins than near the shell center (Wilbur and Saleuddin 1983). Thus, 

induced shell thickening and linear shell growth may be coupled. However, as a 

mussel shell grows, the adductor muscle does not retain the same attachment 

points on the interior of the shell; instead, as the shell grows linearly the adductor 

muscle migrates away from the shell hinge, toward the posterior shell margin. 

Thus, simultaneously maintaining linear shell growth and increasing adductor 

muscle may be in opposition, indeed, in the Asterias alone treatment mussels 

reduced linear shell growth when increasing adductor muscle growth. Finally, 

integration of responses to Asterias and Carcinus together may be 

mechanistically undermined by direct interactions controlling their expression and 

development (i.e. hormones or other pleiotropic effects) (e.g. Cipollini 2004).

In addition, the incompatible response to both predators may indicate an 

energetic trade-off between adductor muscle and shell growth. An energetic 

trade-off is supported in the current experiment as mussels exposed to Asterias 

cues (alone) increased adductor muscle but showed reduced shell growth. In a 

separate induction experiment, mussels in the presence of cues from Asterias 

(alone) similarly increased adductor muscle mass and reduced linear shell 

growth relative to control mussels (Freeman 2007). However, mussels in that 

study also continued adding shell material (i.e. they did not alter shell weight 

change relative to control mussels), suggesting an energetic trade-off between
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increasing adductor muscle and generally adding shell material is not invariant.

In many mollusks, shell accretion is not metabolically expensive relative to other 

metabolic costs (Palmer 1983); in fact, starved mollusks can continue building 

shell material (Galstoff 1934, Palmer 1981). These facts suggest that the conflict 

between shell accretion and adductor tissue allocation is not solely an energetic 

limitation. In fact, under some circumstances it is possible that the two inducible 

traits can be limited by different resources; e.g., induced shell thickening is likely 

limited by water chemistry and temperature, while induced adductor muscle 

growth is likely limited by food intake (Rundle et al. 2004, Freeman in prep). 

However, under circumstances of food limitation the organic matrix of shells may 

limit allocation to shell material, especially when mussels also allocate to 

adductor muscle.

Finally, the mussels’ inability to respond to both Carcinus and Asterias 

could be explained by reduced growth potential in the presence of both 

predators. Responses to predators can affect prey growth by reducing 

assimilation efficiency and/or increasing metabolic rate (Stoks 2001), potentially 

influencing the expression of inducible defenses and the costs of predator 

responses. Similarly, responses to particular waterborne cue combinations can 

result in lower tissue weights and diminished inducible defenses due to reduced 

feeding (Palmer 1990). In other well-studied systems of inducible defenses (e.g. 

anuran larvae) the mechanism underlying reduced growth in predator-exposed 

individuals has only recently been identified and linked to reduced digestive 

efficiency of the predator-exposed phenotypes (Relyea and Auld 2004).
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However, observations of mussels feeding in the presence of cues from these 

predator combinations yielded no evidence of a behavioral response that 

reduces feeding, although mussels did reduce feeding in response to crushed 

conspecific cues (Freeman and Meszaros in prep) (but seeReimer et al. 1995).

In addition to the above constraints, there are at least three potential 

ecological explanations for the absence of integrated response to the two 

predators. First, the current and historical exposure of Mytilus to Carcinus and 

Asterias (individually and together) may influence natural selection of appropriate 

responses to the combined predators. For instance, in their current distribution 

crabs are less common at high flow sites (Leonard et al. 1999), while sea stars 

can be abundant in low intertidal, high flow sites (Lubchenco and Menge 1978). 

Hence, in many habitats mussels may only be exposed to one of the predators 

and, as a result diffuse (co)evolution of a response to both predators may not 

occur because the combined cue represents a rare environment (Moran 1992, 

Strauss et al. 2005). Second, even when Asterias and Carcinus co-occur, 

interference between them and other interaction modifications may reduce the 

realized threat to the mussels, altering subsequent selection pressure on traits 

(Inouye and Stinchcombe 2001).

Third, because Carcinus was introduced from Europe to New England 

less than 200 years ago, Mytilus in the NW Atlantic share relatively little 

evolutionary history with Carcinus (Wares and Cunningham 2001, Carlton and 

Cohen 2003). When prey have only limited recent evolutionary history with a 

predator, selection may not have had time to integrate the prey’s response to
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multiple predator scenarios involving the novel predator. Evolution of an optimal 

response to unique or rare environments (i.e. multiple predator combinations) 

likely occurs after selection has formed the response to the more common, single 

predator environment (Via and Lande 1985, Stearns 1989, Van Tienderen 1997, 

DeWitt and Langerhans 2003). Consequently, evolution may have successfully 

formed the mussel’s specific response to either Carcinus or Asterias, but has not 

yet successfully formed an appropriate response (with minimal costs in terms of 

reduced tissue growth) to multiple predator situations including the invasive crab 

Carcinus. This explanation suggests the testable prediction that where both 

predators are native in Europe Mytilus should demonstrate better trait integration.

The predator specific responses exhibited by Mytilus provide some 

asymmetrical benefits in deterring the predators: only mussels exposed to 

Asterias are defended from the sea star while mussels exposed to either Asterias 

or Carcinus are defended from Carcinus. This may be due to a stronger 

adductor muscle making mussels more difficult for crabs to consume (Freeman 

2007), particularly when crabs consume mussels by prying shells open instead of 

crushing them (Moody and Steneck 1993). Although the mussel’s response to 

sea stars may appear to be a good universal response (because it defends 

against both crabs and sea stars), growth limitations imposed by the response to 

Asterias may detract from the benefit of this over-generalized response. Mussels 

experience reduced shell growth in response to Asterias. In fact, reduced shell 

size allows less surface area for sea stars to grasp and, in addition to increased 

adductor muscle size, may be a trait under selection as an induced response to
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sea stars (Reimer and Tedengren 1996). However, reduced shell growth may 

represent a cost of expressing a “sea star response”, because it reduces future 

reproductive output (i.e. an opportunity cost) and delays the attainment of a size 

refuge and ensuing protection from Carcinus (Elner and Hughes 1978). Mussels 

experience a size refuge from both crabs (Ebling et al. 1964) and sea stars 

(Paine 1976, Sommer et al. 1999, but seeSaier 2001). Thus, when not 

responding to sea stars, mussels may advantageously maximize shell growth to 

attain a size refuge, particularly in response to crabs (e.g. Crowl and Covich 

1990).

Although this may be the first example of poor phenotypic integration of 

inducible morphological defenses to simultaneous exposure to multiple 

predators, there are several examples of poor phenotypic integration of 

behavioral responses to combinations of predators with differing foraging 

strategies or inducible morphological defenses to individual predators. For 

instance, some induced defenses can improve competitive ability or predator 

avoidance, but not both simultaneously (Smith and Van Buskirk 1995, Cipoliini 

2004, Relyea and Auld 2005). Similarly, wide or narrow snail apertures can 

defend against crushing or gape-entry predators (respectively), but these traits 

cannot be expressed simultaneously (DeWitt et al. 2000, Hoverman et al. 2005). 

Behaviorally, prey can switch habitats to avoid habitat-associated predators or 

alter life histories to avoid size-selective predators; but when multiple predators 

share complementary foraging strategies these alterations may make prey more 

vulnerable to either predator (Rahel and Stein 1988, Black 1993, Turner et al.
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2000). Moreover, because poorly integrated traits are often not independent, 

correlations between plastic traits across environments can result in behavioral 

syndromes (Sih 2004) and trait correlations (Thompson 1997, DeWitt and 

Langerhans 2003) that are non-adaptive when expressed in inappropriate 

environments. Ecologically, these examples of poor phenotypic integration often 

result in risk enhancement. While many examples of risk enhancement are 

mediated by behaviors (Losey and Denno 1998, Sih et al. 1998), ours is the first 

example mediated by an induced morphological defense.

The patterns of multiple predator induced defenses observed in this study 

also illustrate how diffuse evolution may inform explorations of the adaptive value 

of inducible defenses. To explain why induced defenses are not always 

expressed, most models of the evolution of inducible defenses incorporate only 

two environments, i.e. the presence and absence of individual predators (Via and 

Lande 1985, Padilla and Adolph 1996, Van Tienderen 1997). Consistent with 

these models, studies of single predator systems have occasionally revealed 

trade-offs of induced defenses in terms of architectural constraints on growth 

(Lively 1986a, Trussell and Nicklin 2002), reduced competitive ability (Pettersson 

and Bronmark 1997), reduced growth rates (Harvell 1986), and trade-offs 

between acquiring energy and avoiding predators (Skelly 1992, Anholt and 

Werner 1995, Relyea and Werner 1999, Van Buskirk 2000, Relyea 2001). 

However, trade-offs of inducible defenses may become apparent if prey possess 

incompatible induced traits to multiple predators or if induced traits are disfavored 

under certain environmental conditions (Lima 1992, Agrawal and Karban 1999,
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Relyea 2003, 2004a). For the mussels in the present study, continuously 

expressing elevated shell growth (the response to Carcinus) may preclude an 

induced response to Asterias. Similarly, maintaining high adductor muscle 

growth (the response to Asterias) may preclude an inducible response to 

Carcinus. These observations meet the criteria to explain the conditional 

expression of mussel-induced traits, particularly given the conspicuous absence 

of traditionally defined costs in single predator environments (Reimer et al. 1995, 

Smith and Jennings 2000, Frandsen and Dolmer 2002). Gaining a more realistic 

understanding of the selection pressures acting on inducible defenses may 

require assessing the trade-offs of inducible defenses in non-adaptive (Stearns 

1989) and multiple predator scenarios (Sih et al. 1998, Relyea 2003, Hoverman 

et al. 2005), particularly when prey show specific and conflicting responses to 

predators with differing attack strategies.

Although there are numerous examples of induced defenses in marine 

systems, their trophic implications and expression under multiple predator 

conditions have been largely unresolved. Multiple predator effects are gaining 

recognition as essential in predicting numerous predator prey interactions, yet 

similar principles have not been applied to our understanding of the evolution of 

defensive responses. This study has shown that while mussels can express 

specific induced defenses to cues from Asterias or Carcinus, the combined 

exposure to cues from these two predators effectively negates the mussel’s 

ability to respond to either predator appropriately. Thus, the adaptive value of
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induced defenses may be influenced by diffuse evolutionary pressure from 

multiple predator species.
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CHAPTER IV

MULTIPLE-PREDATOR INDUCED DEFENSES IN MYTILUS EDULIS'. A TEST 

OF THE FUNCTIONAL SIMILARITY OF TWO CRAB SPECIES

Abstract

In this study, I compared the inducible defenses of blue mussels (Mytilus 

edulis) in response to cues from a sea star, Asterias vulgaris (=rubens), and two 

predatory crabs, Carcinus maenas and Cancer irroratus. The mussels 

expressed predator specific inducible defenses in response to Asterias and C. 

maenas, increasing adductor muscle weight and shell thickness, respectively. 

However, when exposed to cues from both predators simultaneously, mussels 

express neither induced defense. Moreover, mussels did not thicken shells in 

response to combined cues from C. maenas and C. irroratus, or from C. irroratus 

alone; yet mussels did increase adductor muscle in response to combined cues 

from Asterias and C. irroratus, but not in response to C. irroratus alone. Thus, 

despite the functional similarity of these crabs their effects on mussel induced 

defenses were not substitutable and often interfere with the mussel’s predator 

specific responses. These results are discussed in terms of cue specificity,
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possible explanations for these differing responses, and resulting complexity of 

trophic interactions involving these inducible traits.

Introduction

Inducible defenses, a type of phenotypic plasticity, allow organisms to 

express defensive phenotypes in response to predation threats that may vary 

within the organism’s lifetime. Some examples of aquatic inducible defenses 

include spines on bryozoans, rotifers and cladocerans (Tollrian and Harvell 

1999), morphologies affecting vulnerability to predators in fish and anurans 

(Bronmark and Miner 1992, Relyea 2001), shell morphology in gastropod 

mollusks (Appleton and Palmer 1988, Trussell 1996), and defended 

morphologies of barnacles (Lively 1986b). While there are numerous examples 

of inducible defenses, only a few studies have shown that prey can distinguish 

between water borne cues from predators with different foraging strategies and 

express unique responses appropriate to those strategies (Turner et al. 1999, 

Relyea 2001, Van Buskirk 2001, Teplitsky et al. 2005, Freeman 2007) and even 

fewer have examined the combined effects of multiple predators (Relyea 2003, 

Teplitsky et al. 2004)(Freeman and Byers in prep). The ability of prey to 

distinguish between predators with different foraging strategies can be 

ecologically important when prey respond to combined predators with conflicting, 

predator-specific defenses (Sih et al. 1998). Theoretically, the effects of 

responding to multiple predators may be predictable a priori in the absence of 

interactions between predator specific responses (Bolker et al. 2003); however,
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prey responses to multiple predators may interact and be unpredictable if 

combined predators elicit poorly integrated responses (Sih et al. 1998, DeWitt 

and Langerhans 2003). Although predator specific behavioral responses to 

functionally redundant predators can be poorly integrated (Lawton and Brown 

1993, Kurzava and Morin 1998) no studies have explored predator specific 

morphological defenses to functionally redundant predators.

In this study I compared the induced defenses of the marine, blue mussel 

(Mytilus edulis) in response to the predatory sea star (Asterias) and two 

functionally similar predatory crabs (C. maenas and C. irroratus), in isolation and 

together. M. edulis is a good study organism as it responds to several predators 

with induced morphological defenses highly specific to the predators foraging 

strategy (Smith and Jennings 2000, Reimer and Harms-Ringdahl 2001, Freeman 

2007). In response to cues from C. maenas, mussels increase shell weight and 

thickness, and in response to cues from Asterias they increase adductor muscle 

size (Reimer and Harms-Ringdahl 2001, Freeman 2007). These induced traits 

increase handling time by the respective predators (Freeman 2007). However, 

the predator specific responses appear to be incompatible, as mussels raised 

with combined cues from both predators express neither induced defense and 

are no better defended than mussels raised without predator cues (Freeman and 

Byers in prep). Furthermore, mussels can distinguish between crab species 

(Freeman and Byers 2006), suggesting the possibility that different crab species 

may add further complexity to this collection of inducible traits.
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While the sea star AstGrias occupies a different functional group from 

Cancer irroratus (a brachyuran crab) and Carcinus maenas (a portunid crab), it is 

not clear if the mussel’s response to various combinations of these predators 

depends in a straightforward way on the predator assemblage’s functional 

groups. Seastars and crabs can be considered functionally distinct because 

Asterias pries mussels open to feed but normally does not break mussel shells, 

whereas the crabs must break mussel shells to access soft tissue. C. irroratus 

and C. maenas occupy similar trophic positions relative to mussels and have 

overlapping intertidal and subtidal distributions of the NW Atlantic (with C. 

maenas often migrating high in the intertidal)(Hunter and Naylor 1993). In 

addition, C. irroratus and C. maenas use dexterous chelae, whereas the two 

other decapod predators of mussels in the region, lobsters (Homarus 

americanus) and Jonah crabs {Cancer borealis), use their relatively larger claws 

solely for crushing mussel shells (Moody and Steneck 1993). An important 

distinction between these crabs may be that C. irroratus is native to the NE 

Atlantic but C. maenas was introduced in the mid-1800’s (Carlton and Cohen

2003). Ironically, several studies have addressed the influence of C. maenas on 

the M. edulis inducible defenses in the NE Atlantic (Leonard et al. 1999, Smith 

and Jennings 2000)(Freeman in press), but none have examined induced 

defenses to C. irroratus. However, in Europe M. edulis does respond to a 

congener (Cancer pagarus) by increasing byssal thread width and count (Cote 

1995). If the ecologically and functionally similarity of these crab’s functional 

grouping corresponds to the inducible defense triggered in mussels, I expected
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mussels would respond similarly to the crab predators, and responses to both 

crabs would be incompatible with a response to the sea star. However, if 

mussels distinguish between crab species they may respond differently to the 

two crabs (alone and in combination with Asterias) due to evolutionary history or 

current, nuanced ecological differences between the crabs. I have used a 

factorial experiment to address the following questions: 1) Do the mussels 

respond to C. irroratus with inducible defenses? 2) Do the mussels have 

different responses to these functionally similar crabs? 3) Are cues from the two 

crabs substitutable, i.e. do they elicit similar responses when the two crabs are 

together, or in combination with Asterias?

Materials and Methods 

Collection and measurement - In June 2004 I collected small (15-26 

mm) mussels from Nubble Light, York (Maine). Mussels used in the induction 

experiment were initially measured and labeled as follows: Approximately 450 

mussels were cleaned of epiphytes and divided into 10 size categories and 

mussels in each size category received similar color-coded dots on each valve. 

To improve durability, dots were covered with cyanoacrylate glue. All mussels 

were then combined into a common pool and, to insure each replicate received a 

similar size range of mussels, a single mussel from each color-coded group was 

haphazardly selected. The immersed mass of each mussel was taken with a 

below beam balance using a method similar to Palmer (1982). Care was taken
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to ensure no bubbles in the mantle cavity would interfere with the immersed 

measurement. The length, width, and height of each mussel were taken using 

digital calipers. Ten mussels (each with distinct color dots) were measured in 

this way for each replicate and the process was repeated until there were 42 

replicate mussel groups, all representing a similar size range (15-26 mm). In 

addition, I measured the immersed mass of several additional mussels for use in 

a destructive regression to determine the initial dry weight of the live 

experimental mussels at the beginning of the experiment. The immersed to dry 

weight of these mussels was highly correlated (R2>0.999, dry weight =

1,557*(immersed weight)+0.0061, n=19).

Experimental apparatus - At the University of New Hampshire’s Coastal 

Marine Lab (Newcastle, NH) I arranged 42, 3.5 liter buckets in a sea table. Each 

bucket was aerated with an airstone and supplied from an overhead manifold 

with flowing, unfiltered seawater. To protect mussels from possible escaped 

predators, groups of 10 pre-measured mussels were placed in stainless steel 

cages (5 cm x 5 cm x 8 cm, with 0.5 cm mesh size) in buckets. Each bucket also 

contained 2 mesh sided cue containers housing predators. Pairs of cue 

containers were randomly assigned to contain the following predator cue 

combinations: Control (no predator), 2 C. maenas, 2 Asterias, 2 C. irroratus, 1 C. 

maenas and 1 C. irroratus , 1 C. maenas and 1 Asterias, and 1 C. irroratus and 

1 Asterias. Thus, 2 predators, in separate mesh-sided containers, resided in 

each replicate bucket. Predators were collected from the shallow subtidal and 

intertidal at Fort Stark (NH). The experiment ran for 118 days. Approximately
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every 4 weeks buckets were cleaned and randomly rearranged in the sea table. 

When buckets were rearranged, predators were removed, fed crushed mussels, 

and returned to the apparatus within 6 hours. Each bucket also contained 

approximately 30 additional mussels (loose in the bucket) for use in a predation 

experiment reported elsewhere (Freeman and Byers in prep). At the end of the 

experiment, all mussels were re-measured for shell length, width, and height. 

After separating the posterior adductor muscle from remaining tissue and shell, 

all materials were dried in an oven at 60°C for at least 48 hrs and weighed.

Statistical analysis - I used a Shell Thickness Index (STI) as a measure 

of shell thickness at the beginning and end of the experiment. This STI is simply 

the shell weight divided by the surface area. Surface area was calculated using 

the equation: SA=[L*(H2 + W2)0 5 * t t /2]. This surface area estimate correlated 

well with measures of mussel shell volume using an immersed-displacement 

technique (surface area1/2 vs. volume 1/3: P < 0.0001, R2 = 0.97, n = 165). 

Furthermore, in a multiple regression STI correlated well with actual 

measurements of shell thickness at 4 locations (left and right valves, center and 

lip thickness: p<0.0001, R2=0.911, n=48). To compare shell thickness between 

cue treatments, I ran analysis of covariance of final STI with initial STI as a 

covariate. Similarly, to examine relative changes in adductor muscle between 

treatments I ran an ANCOVA of the final adductor muscle weight with shell 

surface area as a covariate. To test for homogeneity of slopes, I examined the 

covariate by treatment interaction and retained them if p < 0.20, although they 

were not significant if p > 0.05. Group (i.e. mussels in a replicate bucket) was
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nested within treatment and designated a random variable, causing the 

denominator degrees of freedom to be estimated using Satterthwaite’s 

approximation to test for the treatment effect. Residuals were visually inspected 

to insure homogeneity of variances. All statistical analyses were conducted in 

JM PIN 5.1.

Results

An ANCOVA indicated that there was a nearly significant effect of cue 

treatment on shell thickness index (p=0.06; Table 9, Figure 7a). A priori post hoc 

comparisons revealed that only mussels exposed to cues from C. maenas 

thickened their shells relative to controls (p=0.012). Mussels did not thicken 

shells in response to either C. irroratus (p > 0.90) or the both crab species 

together (p > 0.90). An ANCOVA of the relative adductor muscle weight 

indicated a significant effect of predator cue (p=0.0058; Table 10, Figure 7b). 

Only mussels exposed to Asterias or both Asterias and C. irroratus developed 

significantly heavier adductor muscles relative to controls (p=0.0103 and 

p=0.0036, respectively).
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Table 9. ANCOVA Shell thickness index. Results of an analysis of covariance of 
sell thickness index (adjusted to initial shell thickness index) and a priori linear 
contrasts of each cue treatment to the control treatment.

Source of variation df MS Num F Prob > F
Cue Treatment 6, 35.3 0.00269 2.2571 0.0601
Group (Treatment) [RANDOM 35, 273 0.00122 4.6927 <.0001
Initial STI 1,273 3.53368 13634.04 <.0001
Initial STI * Treatment 6, 273 0.00039 1.5101 0.1748
Error 273 2.59x1 O'4
linear contrasts: Control < C. maenas (p=C 
A. vulgaris (p=0.652), = C. maenas and C. 
and A. vulgaris (p=0.847), = C. irroratus an

1.012), = C. irroratus (p=0 
irroratus (p=0.990), = C. 
d A. vulgaris (p=0.272).

.990), = 
maenas
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Table 10. ANCOVA Adductor muscle. Results of an analysis of covariance of 
final adductor muscle weight (adjusted to mussel shell surface area) and a priori 
linear contrasts of each cue treatment to the control treatment.

Source of variation Df MS Num F Ratio Prob > F
Cue Treatment 6, 35.7 1.1171 3.7025 0.0058
Group (Treatment) RANDOM 35, 273 0.3053 2.1567 0.0003
Final SA 1,273 67.3478 475.7408 <.0001
Final SA * Treatment 6, 273 0.2889 2.0404 0.0606
Error 273 0.1416
linear contrasts: Control = C. maenas (p=0.1786), = C. irroratus (p= 
A. vulgaris (p=0.0103), = C. maenas and C. irroratus (p=0.9675), = 
maenas and A. vulgaris (p=0.2877), < C. irroratus and A. vulgaris 
(p=0.0036).

0.6088), < 
C.
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Figure 7a. Final shell thickness index (STI, Adjusted Least Square Mean) 
adjusted to the initial STI. Mussels were raised for 118 days while exposed to 
cues from no predator (Control), Carcinus maenas, Cancer irroratus, Asterias 
vulgaris, A. vulgaris & C. maenas, A. vulgaris & C. irroratus, or C. maenas & C. 
irroratus. Asterisks (*) indicate treatments significantly different from controls.
7b. Final adductor muscle weight (ALSM) adjusted to the total shell surface area. 
Notations as in 7a.
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Discussion

In this experiment, mussels increased shell thickness in response to the 

crab Carcinus maenas alone, but did not respond to cues from Cancer irroratus 

alone. In addition, mussels increased adductor muscle in response to cues from 

Asterias alone or the combined cues of Asterias and C. irroratus, yet they did not 

express shell thickening in response to the combined cues of C. maenas and C. 

irroratus. Mussels also did not express induced shell thickening or adductor 

muscle growth in response to combined cues from Asterias and C. maenas. In 

other words, the simultaneous cues from various 2-predator combinations often 

interfered with predator specific response to each predator. This indicates that 

although both crabs share similar foraging strategies (Moody and Steneck 1993), 

cues from the two crabs did not induce similar responses in mussels and are not 

substitutable. The differing response to the two crabs is not unprecedented 

given that gastropod and bivalve mollusks can distinguish between crab species 

(Marko and Palmer 1991, Freeman and Byers 2006). However, the lack of 

induced shell thickening in response to cues from C. irroratus may be interpreted 

as maladaptive (e.g.Caudill and Peckarsky 2003) because thicker shells are an 

adaptive trait in mollusks to deter Cancer spp. predation (Palmer 1985). The lack 

of a response to C. irroratus may be related to the differing shared evolutionary 

histories of these crabs and mussels in the NW Atlantic or current ecological 

differences between crabs (not considered in their a priori categorization) that
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suggest different requisite cues for induction of shell thickening (i.e. not just the 

crabs per se).

Shared evolutionary history between predators and prey can influence the 

expression of inducible traits (Case and Bolger 1991, Magurran et al. 1992, 

Freeman and Byers 2006) and may explain the mussels’ differing response to 

these crabs. In the NW Atlantic C. irroratus is native, however M. edulis here 

have been exposed to the invasive, European green crab (C. maenas) for less 

than 200 years. Several trade-offs associated with inducible defenses may 

diminish their adaptive value, such as architectural constraints (Trussell and 

Nicklin 2002), time lags in the expression of inducible defenses (Padilla and 

Adolph 1996), and other costs associated with maintaining inducible defenses 

(DeWitt et al. 1998, Ernande and Dieckmann 2004). Over time, due to these 

constraints and costs of inducible defenses, selection may favor fixed or 

canalized shell thickness over an inducible defense (Van Tienderen 1991, 

Meiklejohn and Hartl 2002, Trussell and Nicklin 2002). It is also noteworthy that 

C. maenas cues interfere with the mussel’s response to Asterias and responses 

to both predators are therefore not phenotypically integrated, whereas mussels in 

the presence of C. irroratus and Asterias can effectively respond to the sea star. 

Because the interaction of traits expressed in multiple predator environments 

influences selection on those traits (DeWitt and Langerhans 2003) poor 

phenotypic integration of inducible defense to C. maenas and Asterias may 

indicate a cost of induced responses to C. maenas. Thus, even if mussels once 

expressed induced shell thickening in response to C. irroratus this capacity may
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have been lost if it was not integrated with the “seastar” response or any of the 

above trade-offs diminished its adaptive value, ultimately favoring canalized shell 

thicknesses.

Current differences in the mussels’ response to the two crabs may also be 

related to habitat specific predation threat or the absence of required secondary 

predation cues. Several sources indicate that the C. maenas invasion has had a 

substantial impact on mollusks (Vermeij 1982, Seeley 1986), presumably greater 

than C. irroratus’ historical impact. The greater threat of the invader may lead to 

greater required inducible defenses (Lima and Bednekoff 1999). Moreover, C. 

maenas often migrates high in the intertidal zone (Hunter and Naylor 1993) but 

C. irroratus normally forage in the low intertidal or subtidal zones (Ellis et al. 

2005). Because mussels develop thicker shells in the low intertidal than in higher 

intertidal sites with or without predator cues (Freeman in prep), the adaptive 

value of induced shell thickening in response to C. irroratus may be lower than 

for C. maenas. Alternatively, although C. irroratus has a similar foraging mode to 

C. maenas and may be a less voracious predator, several Cancer spp. have far 

more formidable claws than the invader (Palmer et al. 1999) and can likely crush 

even mussels induced to thicken shells. Such formidable crushing predation by 

members the genus may overwhelm induced shell thickening in mussels, 

reducing its adaptive value. Finally, shell thickening in several molluscan prey 

can also be induced by crushed conspecifics (Appleton and Palmer 1988, 

Behrens et al. 1998, Leonard et al. 1999, Trussell and Nicklin 2002). In the 

present study, predators were fed in separate containers before being returned to
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the experimental apparatus, minimizing any influence of consumed conspecifics.

If the mussel's response to Cancer required the additional cue of crushed 

conspecifics an induced response to the crab would not be detected in my 

experimental arrangement. In contrast, the mussels’ response to C. maenas 

may additively incorporate their response to crushed conspecifics with their 

response to the crab (e.g.Trussell and Nicklin 2002) creating a stronger defense 

against this more threatening, durophagous predator.

Finally, the absence of a response in mussels to C. irroratus may also be 

explained by an ability of the crabs to mask or break down cues detectable by 

mussels (e.g.Getty 1996, Adler and Grunbaum 1999). C. irroratus is native to 

the NW Atlantic and selection may have favored reduced cue emission from the 

crab. In contrast, selection has had less time to act on the invasive C. maenas to 

reduce cue emission; or lower genetic diversity of the invading population may 

constrain the evolution of reduced cue emission. However, consideration of the 

above explanation for the absence of a response to C. irroratus should be 

tempered by the facts that such selection: (1) is mediated by the mussel’s time- 

lagged response to the crab (e.g.Padilla and Adolph 1996) and therefore can 

only weakly influence selection on the crab’s cues, (2) is inherently weaker than 

the selection acting on the mussel’s inducible defense, partly because the 

consequence of the crab being detected by the mussel is less severe than the 

mussel not detecting the crab (Brodie and Brodie 1999), (3) is likely also acting 

on C. maenas in Europe to limit detectable cues emanating from the invader, and
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(4) would have to act on all C. irroratus individuals present in a mussel’s vicinity 

to reduce cues.

The traits induced in this experiment largely agree with previous studies 

using a similar design (Freeman in prep), however mussels in previous 

experiments grew 31-49% more shell and 53-74% more tissue in 12-23% less 

time than mussels in the current experiment (Freeman pers obs). Reduced 

growth in the current experiment may have been due to the fact that in the 

current experiment mussels were housed in steel cages, whereas in previous 

experiments mussels were free in buckets and often climbed the bucket walls 

(Freeman pers obs). However, in the current experiment, mussels responded to 

two Asterias as well as a single Asterias (i.e. in the AsteriaslCancer treatment). 

This similar response to one or two sea stars suggest two things: 1) that predator 

cues were saturating the containers and were not reduced by cages in the 

current experiment; and 2) the mussels’ lack of a response to the single C. 

maenas (i.e. in the C. maenas & C. irroratus treatment) is not due to reduced 

cues from C. maenas, assuming prey respond to similar predator cue thresholds; 

but more likely due to interference of cues from the two crabs. Thus, although 

the magnitude of growth in this experiment was reduced the relative expression 

of induced defenses was similar to previous experiments; only mussels exposed 

to C. maenas thickened their shells, and mussels exposed to Asterias increased 

their adductor muscle (Freeman and Byers in prep) as did mussels exposed to 

Asterias and C. irroratus. The concurrence of these induced traits with previous
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experiments lends credence to the absence or shell thickening in response to C. 

irroratus, and the interaction of multiple predator cues.

While the evolutionary processes underlying the differing responses to 

these two crabs cannot be identified well from this study, the mussel responses 

suggest relatively clear ecological differences, individually and in conjunction with 

the seastar Asterias. Induced responses to C. maenas or Asterias increase 

handling time by C. maenas by 34-75%, and induced responses to Asterias 

increase handling times by Asterias by approximately 33% (Freeman 2007, 

Freeman and Byers in prep). In contrast, mussels exposed to C. maenas and 

Asterias, simultaneously, are not better defended from either predator than 

control mussels. Similarly, mussels exposed to C. irroratus (alone and with C. 

maenas) are not likely to be better defended from the crabs than controls 

(although the effects of any responses to C. irroratus have not been tested in 

predation experiments). Thus, C. maenas and C. irroratus may be functional 

equivalents (sensuLawton and Brown 1993), share similar foraging strategies on 

mussels (Moody and Steneck 1993), and have overlapping short term ecological 

effects on mussels. However, given time for the mussels to express induced 

responses, the two crabs likely initiate different indirect effects; C. maenas 

exposed mussels will be better defended than C. irroratus exposed mussels. 

Moreover, because the mussel’s response to the seastar differs depending on 

the crab species, the indirect effects of multiple predators are difficult to predict 

based on predator’s functional grouping.
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Induced defenses in response to multiple predators can elicit responses 

not predicable from their individual effects (Relyea 2003, Teplitsky et al.

2004)(Freeman and Byers in prep). The effects of multiple predators can leave 

prey more vulnerable (i.e. risk enhancement)(Hixon and Carr 1997, Losey and 

Denno 1998, Sih et al. 1998, Meyer and Byers 2005) or make prey less 

vulnerable to predators (i.e. risk reduction)(Crowder et al. 1997, Sih et al. 1998, 

Vonesh and Bolker 2005, Griffen and Byers 2006a). Because many prey 

responses to multiple predators are mediated by chemical (or other) cues, they 

may reveal distinct trait-mediated interactions (TMIs) not readily apparent from 

the functional similarity of predators. As such, mutable traits that influence 

predation (such as inducible morphological defenses) will defy a priori 

classification schemes (Chalcraft and Resetarits 2003, Naeem and Wright 2003), 

unless they uniformly respond to predators of a functional group. In the current 

experiment, differing responses to the two crab cues (alone and with the seastar) 

undermine the utility of functional classification systems. In other 

examples,inducible traits are influenced by over-generalized prey responses 

(Langerhans and DeWitt 2002), predator attack strategies (Sih et al. 

1998)(Hoverman et al 2005)(Teplitsky et al. 2005)(Schmitz (Barbosa & 

Castellanos)), or predator specific cues and prey alarm responses (Trussell and 

Nicklin 2002, LaFiandra and Babbitt 2004). When these traits have appreciable 

ecological effects the biologically relevant information lost by abstracting species 

into functional groups (Schmitz and Suttle 2001, Naeem and Wright 2003) draws 

into question the predictive power of functional groupings. However, the
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accuracy of functional groupings may depend on the traits examined and their 

importance in transmitting indirect effect (Black 1993, Kurzava and Morin 1998, 

Nystrom et al. 2001, Bolker et al. 2003). For instance, in the current experiment 

mussel induced defenses depended on the initiating species of crab. In contrast, 

alterations in foraging behavior of two Pacific Ocean herbivores (a crab and a 

sea urchin) were identical, regardless of the initiating crab species (Cancer 

productus or Cancer magister){Byrnes et al. 2006).

Currently, there is considerable debate over the importance of functional 

groups and the role of species identity (within and between functional groups) as 

it influences ecosystem function (Naeem and Wright 2003, Ives et al. 2005). This 

debate is clearly relevant to the integrity of ecosystems as extirpation is 

diminishing diversity, particularly in higher trophic levels (Duffy 2002), and these 

factors influence ecosystem function (Micheli and Halpern 2005). The emergent 

impacts of multiple predators not predictable from individual species functional 

groupings (Sih et al. 1998) is relevant to the debate of biodiversity and 

ecosystem function, particularly when trait mediated interactions influence 

community dynamics and are mediated by species specific cues.
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CHAPTER V

TEMPORAL AND SPATIAL VARIABILITY OF BLUE MUSSEL INDUCIBLE 

DEFENSES IN INTERTIDAL LANDSCAPES

Abstract

Spatial and temporal variation in predation threat are theoretical 

underpinnings of inducible defenses, yet the influence of these factors on the 

expression of inducible defenses is largely unexplored. In this study, I exposed 

blue mussels (Mytilus edulis) to waterborne cues from the crab, Carcinus 

maenas, the seastar, Asterias vulgaris (=rubens) or both predators in mid and 

low intertidal heights on Appledore Island (Maine) during two years. After 3 

months, these mussels generally increased shell thickness and adductor muscle 

more in the low intertidal than in the mid intertidal. However, the expression of 

predator specific induced defenses differed between mid and low intertidal: mid- 

intertidal mussels responded to Carcinus (but not Asterias) with induced shell 

thickening. Furthermore, mussels in low intertidal cages increased adductor 

muscle only in response to Asterias, but only during the year with high tissue 

growth. In an additional experiment testing the influence of ambient predator 

cues, mussels in low intertidal cages also responded to Asterias cues by

increasing adductor muscle weight. These experiments show that ambient
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predator cues influence induced defenses, but expression of these defenses may 

be limited by overriding environmental limitations.

Introduction

A wide variety of organisms have been shown to adaptively alter their 

morphologies to accommodate changes in their local environment and predation 

threat (Tollrian and Harvell 1998). For instance, in response to cues from 

predators several prey species alter behaviors (Lima and Dill 1989) or defensive 

morphologies, such as test shape in barnacles (Lively 1986b), molluscan shell 

thickness and sculpting (Appleton and Palmer 1988, Trussell 1996, Leonard et 

al. 1999) and spines on cladocerans and bryozoans (Harvell 1984, Tollrian 

1995). While there has been a proliferation of studies documenting phenotypic 

plasticity in the presence or absence of relevant predator cues in constant 

environments, the influence of variable environments on inducible defenses has 

been largely un-explored (but seeRelyea 2004a, Hoverman et al. 2005). 

Moreover, there is a paucity of studies exploring these factors outside of 

laboratory settings, in realistic/natural settings. Only by further exploring the 

influences of temporal and fine spatial variability on phenotypic plasticity 

(e.g.Huber et al. 2004, Miner and Vonesh 2004) can we understand the ecology 

and evolution of phenotypic plasticity (Miner et al. 2005) and the latter’s role in 

processes such as invasions (Richards et al 2006).Fine spatially and temporally 

variable environmental factors (e.g in resources, predators, and competitors) are

93

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



likely a very important evolutionary influence on phenotypic plasticity of sessile 

organisms (Travis 1996, Huber et al. 2004).

Sessile organisms are greatly affected by habitat heterogeneity as each 

successive generation may be exposed to environmental conditions differing 

from the previous. Dispersal between heterogeneous environments can 

overwhelm traits locally favored by selection (Storfer and Sih 1998, Johannesson 

2003) or lead to local adaptation to conditions (Bertness and Gaines 1993, 

Stachowicz and Hay 2000, Sotka 2005). Besides affecting selection on fixed 

traits dispersal can greatly favor the evolution of phenotypic plasticity (Moran 

1992, Scheiner 1998, Sultan and Spencer 2002), ultimately allowing organisms 

to persist in these variable environments and altering interactions with 

competitors and predators (Travis 1996). Moreover, inducible responses to 

many predators have evolved within settings of heterogeneous environmental 

factors that may directly influence their expression.

The capacities to express predator sensitive behaviors and morphologies 

can be directly influenced by various environmental factors. For instance, when 

provided with more food, larval anurans can more effectively express predator 

avoidance behaviors (Anholt and Werner 1995). Similarly, limiting resources or 

stresses associated with strong abiotic and biotic gradients can modify or 

constrain the expression of inducible defenses ( Rundle et al. 2004, Wiackowski 

and Szkarlat 1996, (Reiyea 2004a). Moreover, alterations of available resources 

for growth or abiotic stress can erode the adaptive advantages of induced 

defenses by altering costs and benefits of induced phenotypes (Dawidowicz and
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Loose 1992, DeWitt et al. 1998, Wiackowski and Szarlat 1996). However, these 

patterns are rarely tested in natural conditions (Huber et al. 2004). To address 

temporal and spatial heterogeneity in the expression of inducible defenses I 

manipulated several factors that could influence the expression of inducible 

defenses in blue mussels (Mytilus edulis).

Marine mussels, such as Mytilus edulis, are sessile invertebrates and 

frequently subject to both temporal and fine spatial variability in factors affecting 

growth (Eckman and Duggins 1991, Mallet and Carver 1993, Frandsen and 

Dolmer 2002). Under these circumstances, mussels have also evolved 

morphological defenses specific to a predator’s mode of feeding on mussels.

The specificity of mussel’s induced defenses have been well established in 

laboratory studies: when raised with cues from the seastar, Asterias vulgaris 

(=rubens (Wares 2001)), they increase adductor muscle growth, but when 

exposed to cues from the crab, Carcinus maenas, they increase shell thickness 

(Leonard et al. 1999, Smith and Jennings 2000, Reimerand Harms-Ringdahl

2001). However, when exposed to the combined cues from Asterias and 

Carcinus mussels allocate toward neither inducible defense (Freeman and Byers 

in prep). Although the genus Mytilus has figured prominently in intertidal ecology 

and a few studies have compared mussel morphology as it pertains to induced 

defenses and local predator assemblage (Theisen 1982, Kautsky et al. 1990, 

Leonard et al. 1999), none have induced morphological defenses in intertidal 

Mytilus. In situ observations may be essential as these organisms often occupy

95

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



an intertidal landscape where gradients in productivity may have considerable 

influence on the expression of several predator specific inducible defenses.

Intertidal gradients may directly influence the expression of inducible 

defenses. Many marine organisms in the low intertidal are immersed longer and 

have more feeding time than higher in the intertidal. As a result, filter feeders 

experience higher growth rates in the lower intertidal zone (Robles et al. 1990, 

Bertness et al. 1998) as well as greater predation pressure (Lubchenco 1980, 

Menge 1983, Robles et al. 1995). In addition, intertidal organisms can 

experience annual variation in resource availability and subsequent growth 

(Mallet and Carver 1993). Because inducible defenses in Mytilus require growth 

and resources, one could predict that in habitats with higher growth mussels will 

be better able to allocate to inducible defenses. Alternatively, different Mytilus 

induced defenses (e.g. adductor muscle and shell thickness) may be more easily 

expressed provided specific resources. Through the variable temporal and 

spatial expression of induced defenses in mussels, these factors may influence 

the evolution and ecological impacts of inducible defenses across intertidal 

landscapes.

To address temporal and spatial variability in the expression of mussel- 

induced defenses in response to predator cues, I raised mussels under differing 

habitat conditions, when exposed to non-lethal, caged predator cues. Mussels 

were raised for approximately 3 months in mid and low intertidal cages while 

exposed to cues from Asterias, Carcinus, both predators, or no predator. In 

addition, I raised mussels in intertidal cages at 10 sited in coastal Maine, New
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Hampshire, and Massachusetts to address how they responded to ambient 

predator cues. Through these experiments, I found that annual variation in 

growth, intertidal gradients, and ambient predator cues affected species-specific 

induced defenses.

Materials and Methods 

2004 Mid and Low Cages - During the summer of 2004, I ran the first of 

two intertidal caged predator and mussel induction experiment at Shoals (i.e. 

Appledore Island, ME). I collected mussels (14.5-23.6 mm shell length) from the 

low intertidal zone at Nubble Light (York, ME) in late June 2004 and returned 

them to the laboratory for measurement. To quantify the dry shell weight of each 

live mussel, I used a technique describe by Palmer (1982). With each mussel 

suspended in seawater under a below-beam balance, I measured its immersed 

mass. I similarly obtained the immersed masses of an additional 25 mussels 

(drawn from the same pools of mussels) to create a destructive regression that 

could be used to calculate the dry shell weight of living mussels (Dry Shell 

Weight = lmmersed*1.5794-0.000037, R2>0.999, n=25) (Palmer 1982). In 

addition, using digital calipers (0.01mm), I measured the shell length of each 

mussel (the greatest anterior to posterior shell dimension), then separated the 

mussels into 48 replicate groups of 6, and marked each mussel with color-coded 

paint dots. I then transplanted mussels to mid and low intertidal cages on three 

rock ledges on both sides of Smith’s Cove, Appledore Island (42.98573° N, 

70.61910° W). Cages were constructed of stainless steel mesh (20cm x 20cm x
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9cm, I x w x h :  0.5 cm mesh opening) with a large “arena” for crabs and seastars 

and a small (7 cm x 10 cm) stainless steel mesh internal compartment housing 

and protecting the pre-measured mussels. Cages were bolted to the rock 

substrate with mid intertidal cages at approximately +1.7m, and low intertidal 

cages at approximately +0.75m (above MLW).

Cages were randomly assigned to contain 2 C. maenas, 2 A. vulgaris, 1 of 

each, or no predator (controls), such that a random series of the 4 treatments 

was repeated every 4 cages, i.e. 6 times at each tidal height. In addition, each 

cage in the mid intertidal was paired with an adjacent low intertidal cage directly 

below. This was done to allow pairs of cages sites in the mid and low to remove 

some variability in mussel growth associated with cage placement. Although, I 

removed rockweed (Ascophyllum nodosum) in order to attach cages, adjacent 

rockweed often rested on and covered mid-intertidal cages (low intertidal cages 

were below the rockweed zone). I also added a large handful of rockweed 

(Ascophyllum nodosum) to the large “arena” in each cage to mitigate predator 

desiccation. Predators were added to cages on July 4, 2004 and every two 

weeks afterward cages were monitored and any dead predators replaced. 

Ambient Asterias or Carcinus near these cage sites were removed with each 

visit. Cages were removed 76 days later and mussels frozen for later 

morphological measurements. All mussels in 5 mid and 13 low intertidal cages 

were dead at the end of the experiment (many due to predation by small whelks, 

Nucella lapillus). In addition, two cages from the low intertidal zone washed 

away. Tidbit data loggers (Onset Corporation, Bourne, MA) attached to the
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inside, bottom of one mid and one low recorded the air and water temperature 

inside the cage at 15 minute intervals.

2005 Mid and Low Cages - To determine patterns of temporal variability, 

in 2005 I repeated cage transplants as in 2004. In May 2005, I collected mussels 

(15.3-25 mm shell length) from the low intertidal zone at Nubble Light (York, 

Maine) and maintained them in non-flowing seawater until measured. Initial 

measurements included: initial dry shell weight (estimated as in 2004) and shell 

length. To insure repeated estimates of spatial factors in the second year, I 

attached the same 48 cages used in 2004 in mid and low intertidal zones, using 

the same bolt-holes used in 2004. Cages were also randomly assigned to 

contain 2 C. maenas, 2 A. vulgaris, 1 of each, or no predator (controls).

Predators and 10 mussels cage'1 were added in mid-June and removed 81 days 

later. In this iteration of the experiment, the internal cages housing mussels were 

positioned with >1 cm from the exterior cage wall to prevent ambient Nucella 

from attacking mussels. During the experiment, cages were checked 

approximately every 2 weeks and any dead predators replaced. Ambient Asterias 

or Carcinus near these cage sites were removed with each visit. Mussel loss to 

Nucella predation was again substantial; all mussels were consumed in15 low 

intertidal cages and 1 high intertidal cages and were not used in the analyses. 

Tidbit data loggers (Onset Corporation, Bourne, MA) in one mid and one low 

intertidal cage recorded the temperature inside cages at 15 minutes intervals.

Statistical Analysis of Shoals Cages - 1 summarized the following 

temperature data from the mid and low intertidal cages in 2004 and 2005:
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average daily maximum temperature, average daily temperature, and average 

daily temperature range (maximum -  minimum temperature). These summary 

temperatures were then analyzed using a two-way analysis of variance with year 

and tidal height as factors. In this model, date was nested within year because 

temperature measurements in high and low intertidal cages were not 

independent on any given day, relative to the temperature measurements made 

in different years. I used Tukey tests to make post hoc comparisons.

After the experiments, I measured all mussels from 2004 & 2005 mid and 

low intertidal cages (shell length, width and height; as in Freeman in press) then 

separated and dried adductor muscle tissue and remaining tissue. Linear shell 

measurements provided a good estimate of shell surface area using the 

equation: L2 x (W2 + H2)'2 x1/2 pi (Reimer and Tedengren 1996, Freeman and 

Byers 2006). In order to examine how shell thickness was influenced by tidal 

height, year, and predator cue treatment I used a nested analysis of covariance 

(ANCOVA) of final shell thickness with initial shell thickness as a covariate to 

adjust for initial shell thickness. For this analysis a shell thickness index (STI= 

dry shell weight/ shell surface area) was the response variable with an estimate 

of shell thickness (initial shell weight'2/ shell length) as a covariate. In addition, to 

examine how year, treatment, and tidal height affected adductor muscle growth I 

used an ANCOVA of final adductor muscle weight with final shell surface area as 

a covariate (to adjust for mussel overall size). Lastly, I determined if final mussel 

tissue weight (adductor and remaining tissues) were affected by these factors, I 

used a 3-way, ANCOVA with initial shell weight as a covariate. Initially, these
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models included all higher order interactions of fixed factors (Year, Treatment, 

and Tidal Height) with the covariate. All interactions of these factors were first 

tested against the covariate to insure homogeneity of slopes and then discarded 

if their P> 0.20. Because the paired placement of mid and low intertidal cages 

had a substantial effect on several growth parameters, I used cage pair 

(“Placement”) as a blocking factor across tidal height and years. To recognize 

cage as a replicate, cue treatment, tidal height, and year were nested within cage 

(i.e. Cage (Treatment, Tidal Height, Year)) and designated a random effect. For 

this random, nested factor the statistical program JMP use the REML technique 

to estimate variance components, thus F-statistics and P-values are “shrunken” 

to 0. To determine which predator cue combination had an effect on mussel 

induced defenses, I then compared each predator cue treatment to controls 

using a priori contrasts. I also compared tissue growth between tidal heights and 

years using a Tukey test.

Ambient Predator Cue Effects - To examine the influence of un

manipulated, ambient predator cues and spatial variability in abiotic factors on 

the expression of induced defenses, I raised mussels at 10 intertidal sites with 

differing predator assemblages. In July 2005, I collected small mussels ( 1 5 - 2 3  

mm) from an exposed shore in the rocky, low intertidal zone near Nubble Light 

(ME). I then labeled and measured the mussels using the following technique: 

500+ mussels were haphazardly divided into 10 groups of similar sized mussels. 

Mussels were weighed while suspended from a below beam balance to obtain 

immersed shell weights (later used to estimate initial shell weights; see below)
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and measured for shell length, width, and height and individually marked with 

colored dots. Mussels for a total of 50 cages were measured in this manner. At 

each of 10 sites (Table 11), I placed 5 cages (each containing 10 mussels) at 

least 2 meters apart on large rocky ledges approximately 0.5m above MLW. 

Cages containing mussels were enclosed within a second cage, and both were 

bolted to the rock substrate. The cage-within-a-cage arrangement better 

protected the mussels from actual predation, particularly by Nucella lapillus that 

can reach through single cages and drill mussel shells (Freeman pers. obs.). A 

single temperature logger (Tidbit) was placed in the middle cage at each site and 

logged temperature every 15 minutes during the experiment.

Cages were in place for approximately 88 days beginning in late-July 

2005. Three times during the experiment (at the beginning of the experiment and 

once a month thereafter), I surveyed the sites during low tide and counted all 

mobile fauna (mostly Nucella) within a 1 m2, circular quadrat centered on each 

cage. I also surveyed each site twice while snorkeling just prior to high tide. 

During each immersed survey of the sites, I counted the number of large mobile 

fauna (crabs and sea stars) within a 1 m2, circular quadrat centered on each 

cage. At the end of the experiment, I collected the surviving 167 mussels and 

froze them for later morphological measurements. By the end of the experiment 

all mussels in 13 of the 50 cages had been killed by small Nucella recruits, and 

were not used in analyses.

Ambient Predator Cue Analysis - In order to analyze mussel 

morphological changes in response to ambient predator cues, I categorized each
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of the 37 cages based on predator presence, temperature, and wave exposure. I 

categorized 19 cage locations as having no Carcinus if Carcinus was not found 

within a meter2 during any survey of cages, and the remaining 18 cages were 

categorized as having been exposed to Carcinus. Similarly, 21 cages were 

categorized as having no Asterias, and 16 cages were categorized as exposed to 

Asterias. Because only 8 cages had no Nucella within the meter2 during surveys, 

I used the median Nucella density (4.5 Nucella meter'2) as an objective cut-off for 

considering Nucella present. As such, 19 cages were categorized as having 

negligible Nucella present (i.e. <5 individuals m'2) and 18 were categorized as 

having Nucella present (i.e. 5 to 30 individuals m'2). By categorizing the cage 

sites in this way, each treatment level conveniently subdivided other treatment 

levels. For instance, of the 18 cage locations with Nucella present, 12 also had 

Carcinus; and of the these 12 cages with both Carcinus and Nucella, 7 also had 

Asterias. Using this categorization scheme 5 of the 6 predator combinations 

were represented by at least 3 cages, however a single cage was exposed to 

both Asterias and Nucella but no Carcinus. Thus, most predator categories were 

represented within each other predator category allowing comparisons of the 

influence of each predator’s presence on the expression of inducible defenses.

Using the above predator categories I examined the influence of ambient 

predator cues on mussel morphology. To determine initial shell dry weights from 

immersed weights I used the same destructive regression as in 2004 Shoals 

cages. I removed adductor muscle tissue and remaining tissue and dried shells 

and tissues in a drying oven overnight. I then obtained dry adductor muscle
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weight, dry tissue weight, final dry shell weight, shell length, width, and height of 

mussels and used the shell dimensions to calculate their shell thickness index 

(see above). Initial and final shell length, width, height, and weight were used to 

calculate initial and final STI (see above equation). The morphological data from 

mussel growth was analyzed using an analysis of variance (ANOVA) of the mean 

residuals for each cage of the shell thickness index, adjusted to initial STI, and 

the mean residual for each cage of the adductor muscle weight, adjusted to shell 

surface area. Because predator assemblages were quantified for each cage, I 

considered cages to be independent replicates when analyzing mussel 

morphological data and predator assemblage. Moreover, when I incorporated 

predator assemblage nested within the 10 sites (i.e. Site (Asterias, Nucella, 

Carcinus)) as a random factor it was not significant (P>0.20.).

I also incorporated temperature in the above Analysis of Variance using 

the mean for each site of the daily minimum temperature, daily average 

temperature, daily temperature range, and daily maximum temperature. I 

categorized these site temperatures “high” if they were at or above the median of 

that metric (for all sites combined), or “low” if they were below the median of that 

metric. I also subjectively categorized the wave exposure of each site as “high” 

or “low”. I then individually added each of these 5 abiotic factors to the above 

analysis of variance with ambient predator assemblages to determine if they 

influenced shell thickness index or adductor muscle weight. Because each 

abiotic factor was measured once for each site, I included a random nested level 

(site nested within the abiotic factor category). The statistical program JMP used
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the random nested level to generate the denominator mean squares and degrees 

of freedom when testing the abiotic factor, however, second-order interactions 

were tested over the error term.

Results

Shoals Mid and Low Intertidal Cages - Induction of shell thickening, 

adductor muscle growth, and overall tissue growth showed differing patterns in 

Shoals mid and low intertidal cages. Shell thickness index showed a (nearly) 

significant interaction of tidal height and cue treatment (Fi,56=2.65, P=0.0572; 

Table 12). While mussels in the low intertidal developed generally thicker shells 

(Figure 8), only mussels in the mid intertidal thickened shells in response to cues 

from Carcinus (a priori contrast, P<0.05). In addition, mussels in 2005 had 

consistently thicker shells than in 2004 (F1i56=125.53, P<0.0001; Table 12, Figure 

8). In contrast, adductor muscle weight was influenced by an interaction of cue 

treatment, tidal height, and year (Fi,48=3.997, P=0.0127; Table 13, Figure 9). 

Mussels responded to cues from Asterias with increased adductor muscle growth 

relative to controls, but only in low intertidal cages in 2005 (Table 13, Figure 9). 

However, because of high mortality, the latter results are based on only 3 

mussels (2 cages) in low intertidal Asterias cages in 2004 and 4 mussels (1 

cage) in 2005. None of the mussels in mid intertidal cages allocated more 

towards their adductor muscles than controls. In fact, in 2004, mussels in low 

and mid intertidal cages had significantly reduced adductor muscle growth when 

they were raised with cues from Carcinus, as did mussels in mid-intertidal cages
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in 2005 when raised with Asterias (Figure 9, P<0.05). At no point did mussels 

exposed to both Asterias and Carcinus cues increase their adductor muscle or 

shell thickness. Mussel tissue growth was influenced by the interactive effect of 

tidal height and year (F-i,54=5.41, P=0.0236) but not predator cue treatment 

(Table 14, Figure 10). Mussel tissue increased similarly in mid and low intertidal 

cages in 2004, but in 2005 mussels in the low intertidal grew faster than those in 

the mid intertidal. (I observed similar tidal height and year effects on shell 

weight.). Thus, in spite of relative lower tissue (and shell) growth in the mid- 

intertidal, mussels responded positively to cues from Carcinus by increasing shell 

thickness only in mid intertidal cages (Table 12, Figure 8). However, mussels 

responded to Asterias with increased adductor muscle growth but only in the low 

intertidal in the year with high tissue growth rates (Tables 13 & 14, Figures 9 & 

10).

Mid and Low Intertidal Cages. Temperatures - Average Daily 

Temperatures, Average Maximum Daily Temperatures and Average Daily 

Temperature Ranges were influenced by interactions of year and tidal height 

(F1i174=4.623, P=0.0329, F1,i74=20.192, P<0.0001 and F1,i74=21.792, P<0.0001, 

respectively, Table 15). In 2004, the temperature differences between mid and 

low cages were more pronounced than in 2005. For instance, the average daily 

temperatures were warmer in the mid than the low intertidal and warmer in 2005 

than in 2004, but these differences were more pronounced in 2004 (Figure 11). 

Moreover, the maximum daily temperature and daily temperature range did not 

differ between mid and low intertidal cages in 2005, but they did differ in 2004
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(Figure 11). Thus although average temperatures were consistently warmer in 

mid than low intertidal cages, animals in the mid intertidal cages did not 

consistently experience greater stress (as indicated by the daily maximum and 

range in 2005) than low intertidal mussels.

Ambient Predator Cues - In response to ambient predator cues in low 

intertidal cages, mussels responded to Asterias cues, but showed little effect of 

Carcinus or abiotic factors. A 3-way analysis of variance of residual adductor 

muscle weight (adjusted to total shell surface area) indicated that there was a 

significant interaction of Asterias and Carcinus presence (Table 16, P=0.0062).

A priori contrasts indicated that Asterias/No Carcinus had significantly larger 

relative adductor muscles than all other cue exposures (Figure 12; P<0.002). 

Moreover, mussels in cages exposed to Nucella cues had significantly larger 

adductor muscles than those not exposed to Nucella, but there was no 

interaction of Nucella presence and Carcinus or Asterias presence (Table 16, 

Figure 12). A 3-way ANOVA of shell thickness (STI) of mussels exposed to 

ambient predator cues indicated there was an interaction of Asterias and 

Carcinus cues on caged mussels (Table 17, Figure 13). However, a Tukey test 

indicated that none of these predator categories had a significant effect. Finally, 

none of the abiotic factors (wave exposure or temperature metrics) or 

interactions of abiotic factors and predator cues influenced induction of shell 

thickness index (all Ps>0.15) or adductor muscle (all Ps>0.18).
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Table 11. Transplant sites. Transplant sites examining ambient predator cue 
effects. Exposure indicates the subjective categories of wave exposure. 
Max/Min of temperature and Average/Range of temperature indicate categories 
of Low and High if the average of the daily temperatures were below or above 
the median of all sites for that metric.

Site
Latitude (°N) 

Longitude (°W)
Exposure Max/Min 

Temp. (°C)
Average/Range 

Temp. (°C)
Nahant Dive 
Beach East

42.41990
70.90240

High Low/High High/Low

Nahant Dive 
Beach West

42.41980
70.90340

Medium Low/Low Low/Low

Nahant Pump 
House Beach

42.41710
70.90570

High High/High High/Low

Odiorne North
43.05275
70.71664

High High/High High/High

Odiorne South
43.03658
70.71373

High High/High High/High

Fort Stark East
43.05920
70.71290

Medium Low/Low Low/High

Fort Stark West
43.05820
70.71150

Medium Low/Low Low/Low

Shoals Appledore 
Ledges

42.98583
70.61174

High High/High High/Low

Shoals Larus 
North

42.99117
70.61680

Medium Low/Low Low/High

Shoals Smith’s 
North

42.98573
70.61910

Medium High/Low High/High
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Table 12. ANCOVA STI of Shoals experiment. Nested ANCOVA of final shell 
thickness index (STI) with initial shell weight'2/ shell length as a covariate for 320 
mussels raised in mid and low intertidal cages at Shoals. Factors include 
Treatment (Control, Carcinus, Asterias, and both), tidal height (mid and low), 
year (2004 &2005), and placement (low cages paired with cages in the mid- 
intertidal zone). Higher order interactions were excluded if they were not 
significant (P>0.11). “a” indicates factors that have variance components 
shrunken to zero using the REML technique.

Source of variation DF SS F-Ratio P

T reatment 3, 56 0.0122 1.1634 0.3319

Tidal Height 1,56 0.1033 29.465 <.0001
Tr*TH 3, 56 0.0279 2.6560 0.0572

Year 1, 56 0.4402 125.53 <.0001
Cage [Tr,Y,TH]&Random 55, 59 0.0022 a
placement 23, 172 0.1164 1.4427 0.0972
Initial Shell Weight/Length 1, 59 3.8894 1109.09 <.0001
CageX ISW/L [Tr,Y,TH]&Random 59, 172 0.00819 a
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Table 13. ANCOVA Adductor muscle mass of Shoals experiment. Nested 
ANCOVA of final adductor muscle weight adjusted to the surface area of each 
mussel. Higher order interactions excluded if P> 0.16. Factors and notations as 
in Table 12.

Source DF SS F Ratio P

T reatment 3,49 0.00001208 6.4819 0.0009
Tidal Height 1,49 0.00000783 12.605 0.0009
Tr*TH 3, 49 0.00000339 1.8171 0.1563

Year 1,49 0.00000115 1.8589 0.1790
Tr*Y 3,49 0.00000694 3.7263 0.0172

TH*Y 1, 49 0.00000363 5.8444 0.0194

T r*TH*Y 3,49 0.00000745 3.9969 0.0127

Cage[T r,Y,TH]&Random 48, 52 0.00000216 a a

placement 23, 173 0.00004195 2.9365 <.0001

Final Shell Surface Area 1, 52 0.00010436 168.04 <.0001
Tr*FSSA 3, 52 0.00000463 2.4875 0.0707
TH*FSSA 1, 52 0.00000196 3.1618 0.0812
Year*FSSA 1, 52 0.00000353 5.6813 0.0208

TH*Y*FSSA 1, 52 0.00000079 1.2684 0.2652
Cage*FSSA[T r,Y,TH]&Random 52, 173 0.00002239 a a
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Table 14. ANCOVA Tissue mass of Shoals experiment. Nested ANCOVA of final 
tissue dry weights with initial shell dry weights as a covariate of 320 mussels 
raised in mid and low intertidal cages at Shoals. Factors and notations as in 
Table 12. A posteriori Tukey tests indicated that in 2005 mussels raised in the 
low intertidal grew faster than those in the mid intertidal (P<0.05), but not in 2004.

Source of variation DF SS F-Ratio P

T reatment 3, 57 0.00043 1.0288 0.3868

Tidal Height 1, 57 0.00130 9.283 0.0035

Year 1, 57 0.00442 31.625 <0.0001
TH*Year 1, 57 0.00076 5.410 0.0236
Cage*[Y,Tr,TH] random 58, 57 0.00209 a
placement 23, 173 0.00379 1.190 0.2696
Initial Shell Dry Weight 1,57 0.01848 132.23 <0.0001

Y*ISDW 1, 57 0.00124 8.8812 0.0042

Cage* ISDW[Tr,Y,TH] random 57, 173 0.00047 a
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Table 15. Shoals temperatures. Comparisons of temperatures in Shoals mid and 
low intertidal cages for 2004 and 2005. ANOVAs of 3 temperature metrics. See 
Figure 11 for post-hoc Tukey-tests.

Source DF

Average Daily 

Temperature

F P

Maximum Daily 

Temperature

F P

Daily 

Temperature 

Range 

F P

Year 1, 174 39.7697 <.0001 44.5845 <.0001 18.6820 <.0001

Tidal Height 1, 174 149.9656 <.0001 57.2284 <.0001 35.7328 <.0001

Yr*TH 1, 174 4.6232 0.0329 20.1921 <.0001 21.7922 <.0001

Date[Yr]&Rnd 174 21.6827 <.0001 4.1329 <.0001 3.7452 <.0001
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Table 16. ANCOVA Adductor muscle mass- Ambient Cues. Ambient predator 
cue effects on transplanted mussels; ANOVA of adductor muscle weights 
(residuals adjusted to shell surface area). Site (Asterias, Nucella, Carcinus) was 
excluded because it was not significant (P>0.20).

Source DF SS F-Ratio P
Nucella 1, 32 1.31E-05 9.462 0.0043
Asterias 1, 32 2.05E-05 14.803 0.0005
Carcinus 1, 32 8.20E-06 5.914 0.0208
Asterias ‘ Carcinus 1, 32 1.19E-05 8.593 0.0062
Error 32 3.91 E-05
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Table 17. ANCOVA STI- Ambient Cues. Ambient predator cue effects on 
transplanted mussels; ANOVA of final shell thickness index (STI). Final STI 
values are the residuals of a regression of initial STI (x-axis) against final STI (y- 
axis). Site(Asterias, Nucella, Carcinus) was excluded because it was not 
significant (P>0.20).

Source DF
Sum of 

Squares F-Ratio P
Nucella 1,32 2.06E-04 0.0633 0.8029
Asterias 1,32 0.00494 1.5195 0.2267
Carcinus 1,32 0.00548 1.6843 0.2036
Carcinus*Asterias 1,32 0.0203 6.2427 0.0178
Error 32 0.10404
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Figure 8. Final STI- Shoals Experiment. Final shell thickness index (STI) of 
mussels raised in middle and low intertidal cages with various (non-lethal) 
predators. Years are graphed separately to depict annual differences, however 
contrasts are done on both years together (no factor showed higher order 
interactions with year). Cue treatments significantly different from controls in a 
priori contrasts (after pooling the effect of Year) are indicated by an

20 04  Final shell thickness (S T I)
■  Control
■  Carcinus 

□  Asterias
■  Asterias/Carcinus

Z  l  •

P  0.95 • 
VI

20 05  Final shell thickness (S T I)
□  Control 
■  Carcinus
□  Asterias 

Asterias/Carcinus

P 0.95  - 
V)

ii
High

115

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Figure 9. Final Adductor Muscle Mass- Shoals Experiment. Final adductor 
muscle weight of mussels raised in intertidal cages at Shoals with various (non- 
lethal) predators. Values are adductor muscle weights adjusted to the total shell 
surface area. A indicates a treatment level that is significantly different from 
the control for that year and tidal height in a priori contrasts (P<0.05).
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Figure 10. Final Tissue weight- Shoals Experiment. Tissue growth of mussels 
transplanted to the mid and low intertidal in cages at Shoals. Final tissue weight 
is the least square mean (LSM) adjusted to the initial shell weight. Predator cue 
treatment had no effect on growth. Mussels in 2005 grew significantly faster than 
in 2004, and there was an interactions between year and tidal height. Bars 
sharing letters were not significantly different in a Tukey test.
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Figure 11. Temperatures- Shoals Experiment, a) Average Daily Temperature, b) 
Maximum Daily Temperature, and c) Daily Temperature Range for mid and low 
intertidal cages at Shoals. Results are means (+ SE). Bars sharing letters were 
not significantly different in a Tukey test.
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Figure 12. Adductor Muscle Weight-Ambient Predators. Adductor muscle weight 
(residuals adjusted to total shell surface area) of mussels raised in 37 in situ 
cages, with and without Carcinus and Asterias and with Nucella (a) or without 
Nucella (b). Numbers above bars indicate the number of cages in each 
treatment level at the end of the experiment.
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Figure 13. Final STI - Ambient Predators. Values are the residuals of a regression 
against initial STI (Shell thickness index). Notations as in Figure 12.
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Discussion

In this series of experiments, the capacity of mussels to express predator 

specific responses in an intertidal landscape was influenced by proximity to 

predator cues, but induced defenses were only expressed under specific habitat 

conditions. In mid and low intertidal cages at Shoals, the mussels responded to 

Carcinus in the mid intertidal but not in the low intertidal. In addition, these 

patterns of shell thickening in mid and low intertidal cages were very similar 

between years despite annual differences in temperature (Table 15, Figure 11) 

and tissue growth rates (Table 14, Figure 10). In contrast, mussels only 

expressed induced adductor muscle increase in response to Asterias in low 

intertidal cages and during the year that they exhibited high growth rates (Figures 

9 and 10). Similarly, mussels raised in low intertidal cages in sites exposed to 

ambient cues from both Carcinus and Asterias expressed neither predator 

specific induced defense, however mussels did increase adductor muscle in 

response to Asterias alone. In addition, mussels in sites with Nucella 

consistently increased adductor muscle. However, in these low intertidal cages 

mussels did not thicken shells in response to ambient Carcinus cues. These 

patterns of differential expression of inducible defenses may be related to 

phenotypic integration, differing requirements of induced shell thickening and 

adductor muscle growth, background cues, and the relationship of these 

inducible traits across immersion and productivity gradients.
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Phenotypic Integration - In Shoals cages, mussels exposed to Asterias 

in the low intertidal allocated more towards their adductor muscles but did not 

increase their shell thicknesses (STI), while mussels exposed to Carcinus in the 

mid intertidal increased shell thickness but showed evidence of reduced adductor 

muscle growth. However, mussels did not express these predator specific 

responses to combined cues from Asterias and Carcinus. This disruption of 

opposing predator specific responses suggests poor phenotypic integration of 

these defenses (sensu Schlichting 1989), i.e. that increasing shell thickness in 

response to Carcinus is not compatible with increasing adductor muscle in 

response to Asterias. Although reduced feeding in the presence of either 

predator could explain some patterns (i.e. reduced adductor muscle in response 

to Carcinus in the mid and low or to Asterias in 2004 mid intertidal cages), there 

was no predator cue treatment effect on tissue growth. If the lack of this 

response was due to reduced feeding (Palmer 1990) or “lowered assimilation 

efficiency and/or a higher metabolic rate” (e.g.Stoks 2001), one would expect that 

mussels with higher growth rates (i.e. low intertidal mussels with more available 

food) could express both defenses simultaneously (e.g.Andersson et al. 2006), 

yet the mussels did not. Moreover, mussels do not appear to reduce feeding 

behavior in response to Asterias and Carcinus (individually or together), but they 

do reduced feeding in response to crushed conspecifics (Meszarros and 

Freeman in prep) further suggesting poor phenotypic integration of these 

defenses.
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Shell Growth - The occurrence of induced shell thickening in response to 

Carcinus may be overridden by interactive effects of relative tissue and shell 

growth, but also influenced by factors directly affecting shell deposition 

(temperature, immersion time etc.). Molluscan shell growth is often maintained 

at constant shell accretion rates resulting in a trade-off between linear shell 

growth and shell thickening. But this trade-off is regulated by tissue growth; 

conditions of high tissue growth result inhigher linear shell growth, and reduced 

shell thickening (Kemp and Bertness 1984, Trussed 2000). High tissue (and 

shell) growth rates in low intertidal mussels may have obscured any apparent 

induced shell thickening in response to Carcinus. Moreover, fast growing 

mussels have lower risk of predation as they reach a size refuge quickly (Mallet 

and Carver 1993), suggesting and adaptive advantage for low intertidal mussels 

to maintain high growth. However, for a given size, mid-intertidal mussels may 

have thicker shells than low intertidal mussels (e.gBeadman et al. 2003); this 

pattern reflects the limited tissue growth of high intertidal mussels that results in 

thick-shelled phenotypes (e.g.Kemp and Bertness 1984).

In addition to interactions with tissue growth, changes in shell thickness 

during this experiment were likely influenced by factors directly influencing shell 

growth, i.e. organic resources to build shell, temperature, and immersion time. 

About 50% of carbon incorporated in bivalve shells is contributed from metabolic 

carbon (Tanaka et al. 1986), suggesting that factors increasing metabolism may 

increase shell deposition. However, shell accretion can often proceed when food 

is low or absent (Palmer 1990, Alluno-Bruschia et al. 2001) and because mussel
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shells are < 5% organic this ionic process is influenced by temperature. Shell 

calcification rates are facilitated by increases in temperature (Malone and Dodd 

1967) and impeded by greater dissolution rates in colder water due to lower 

CaCC>3 saturation (Trussell 2000). Through these mechanisms, higher average 

daily temperatures may have contributed to greater increases in shell thickness 

in 2005 (Figures 8 & 11). Yet despite annual temperature difference (Figure 11) 

mussels in the mid intertidal in both years responded to Carcinus with increased 

shell thickness, suggesting that detection of induced shell thickening in response 

to Carcinus may have been obscured in low intertidal mussels by greater 

dissolution due to longer immersion times in cold water. Collectively, shell 

growth may be facilitated by higher food availability and interact with tissue 

growth rates, but detection of induced defenses may be limited by interactions of 

water temperature, immersion times, and overall growth rates.

Productivity and Somatic Induced Defenses - In intertidal Shoals 

cages, there were clear differences in the expression of induced defenses related 

to tidal height (immersion time) and annual differences in growth rate. Although 

induced shell thickening in low intertidal mussels may have been obscured partly 

by higher growth rates, increased growth rates due to higher food availability may 

have facilitated the expression of induced defense involving somatic growth (i.e. 

an increase in adductor muscle due to cues from Asterias sp.). In mussels, 

tissue synthesis precedes shell growth (Mallet and Carver 1993, Alluno-Bruschia 

et al. 2001) but is largely limited by quantity and quality of food and seston (Page 

and Richard 1990, Ross and Nisbet 1990, Lesser et al. 1994). Low intertidal
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mussels in Shoals cages in 2005 had higher tissue growth rates likely related to 

higher chlorophyll a levels during the experiment in 2005 than 2004. Estimates 

of Chla m3 based on Modis satellite images indicated average Chla levels of 5.0 

mg m3 in 2005 and 3.5 mg m3 in 2004, during the experiments. However, higher 

growth rates only translated to larger adductor muscles for mussels raised with 

cues from Asterias. These factors suggest there is considerable potential for fine 

spatial and temporal variation in the expression of induced defenses and their 

influence on trophic interactions.

Although tidal height, annual differences in growth and ambient predator 

cues clearly affected the mussel’s induced responses, the lack of significant site- 

to-site differences in abiotic factors may be partly due to lower replication or 

insufficient range of these abiotic factors. Mussel growth can vary regionally and 

seasonally (Alluno-Bruschia et al. 2001) and locally with supplements from kelp 

fragments (Duggins and Eckman 1994). Areas with higher coastal productivity 

can support higher growth rates of suspension feeders (Menge 1992, Sanford 

and Menge 2001, Phillips 2005, Blanchette et al. 2006). Results in the present 

study indicate that high productivity alone does not result in increased adductor 

muscle, but may facilitate the expression of induced adductor muscle increase in 

responses to Asterias. However, in situ, patterns of productivity and prey’s 

induced responses to predators may be difficult to disentangle. For instance, 

near-shore circulation patterns may promote higher recruitment and result in 

greater competitive interactions between sessile adults (Connolly and 

Roughgarden 1998). Increased mussel density influences both the effectiveness
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of predators (Dolmer 1998) and competition for available seston can vary 

considerably within patches of filter-feeders (Bertness et al. 1998). A 

combination of high growth rates and high recruitment may allow mussel beds to 

persist despite sea star predation, if growth rates allow mussels to attain a size 

refuge (Mallet and Carver 1993, Reusch and Chapman 1997). Finally, predators 

may aggregate in areas with high prey abundances resulting in stronger top- 

down control of this bottom-up process (Robles et al. 1995). These influences 

may obscure many ecological effects of induced responses to predator presence.

While the responses of prey to predators are informative of their strategies 

for a particular set of environmental conditions, gaining a more complete picture 

of the evolutionary pressures on predator sensitive inducible defenses requires 

exploring the expression of these defenses across the various environments prey 

populations experience. For instance, numerous studies have demonstrated 

Mytilus’ induced responses in homogeneous laboratory (Leonard et al. 1999, 

Smith and Jennings 2000) or subtidal settings (Reimer and Tedengren 1996, 

Reimer 1999, Reimer and Harms-Ringdahl 2001, Freeman and Byers 2006), but 

detection of similar induced responses was influenced by tidal height and annual 

growth. Interactions between resources and predator induced behaviors and 

defenses can clearly alter the impacts of predator sensitive behaviors (Turner

2004). If active foraging by prey increases predation, mortality of prey can be 

reduced at higher resource levels (Anholt and Werner 1995), or if reduced 

foraging by prey increases resources prey can have increased growth (Peacor 

2002). Although, mussel induced defenses largely appear to be independent of
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predator induced reductions in feeding (Meszaros and Freeman in prep), in 

general resource availability can clearly affect the expression of inducible 

defenses (Peckol et al. 1996), shape of the reaction norm (Pigliucci 2001, DeWitt 

and Scheiner 2004), and costs of induced defenses (Dawidowicz and Loose 

1992). Finally, several studies suggest that at low resource levels costs of 

induced defenses can be more pronounced than at high resource levels 

(Dawidowicz and Loose 1992, Turner 2004). By altering the adaptive advantage 

of induced defenses, environmental factors likely influence their selection, 

particularly in sessile, intertidal organisms.

Background Cues - Although ambient predator cues from all 4 predators 

appear to influence induced defenses in mussels, these patterns likely have 

differing implications for the observed patterns in the two experiments. In field 

surveys, ambient predator density estimates were likely more accurate for slower 

predators (i.e. Asterias and Nucella) than for more mobile predators (i.e. 

Carcinus). This difference in accuracy may partly explain the lack of shell 

thickening in response to ambient Carcinus. However, low intertidal Shoals 

caged mussels also did not respond to caged Carcinus by thickening their shells. 

While these coincident patterns further suggest that induced shell thickening is 

difficult to detect in the low intertidal (due to high growth), interference from 

ambient cues may have been a factor for several reasons. First, although I 

removed Asterias and Carcinus from this Shoals site, Carcinus likely migrated to 

the site at appreciable numbers (approx. 2-3 m2; Freeman pers obs; Ellis et al.

2005). Ambient Carcinus cues may have influenced the mussel’s response to
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Asterias in the low intertidal in 2004, but it did not negate a response to Asterias 

in the low intertidal in 2005. In addition, cues from Carcinus may have affected 

all low intertidal treatments and diminished any difference between Controls and 

Carcinus exposed mussels, particularly if crabs congregated around cages. 

Background cues from mobile decapod predators are more likely to affect low 

intertidal cages than higher shore cages, simply because these predators must 

pass through the low intertidal and are less likely to make it into the higher 

intertidal. Finally, Nucella was present among these low intertidal cages at 

Shoals, but ambient Nucella cues did not have an interactive, or overriding effect 

on the observed response to Asterias cues (Tables 16 & 17).

Environment Frequency and Selection on Induced Defenses - Clearly, 

the exposure of a prey population to predation pressure will influence the 

evolution of novel inducible morphological defenses (Freeman and Byers 2006) 

and behaviors (Magurran et al. 1992); and the canalization of these defenses to 

fixed defenses (Trussell and Nicklin 2002, Dalziel and Boulding 2005). Because 

each successive generation of sessile mussels settles in the subtidal zone or 

along an intertidal gradient, local selection in these habits will influence the level 

of plasticity for the whole population. While the frequency at which prey 

encounter predator environments affects selection for plasticity (Van Tienderen 

1991, Tufto 2000, Sultan and Spencer 2002), selection can only act on inducible 

defense when environmental factors allow defenses to be expressed (Ernande 

and Dieckmann 2004). Thus, the ability of mussels to express induced defenses 

under environmental conditions where predators are encountered will affect their

128

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



ecological and evolutionary effects. These environmental factors can alter the 

costs and benefits of an inducible phenotype (Dawidowicz and Loose 1992,

Huber et al. 2004, Turner 2004) or directly limit their expression (Rundle et al. 

2004). While it is advantageous for an organism to only express an induced 

defense when a predator is present (de Jong and van der Meijden 2000), if local 

environmental factors reduced costs or limitations of inducible defenses it may be 

advantageous for prey to spontaneously allocate towards these defenses, even 

when predators are not present. Although it is unlikely that intertidal and subtidal 

mussels are locally adapted, more rapid shell thickening in low intertidal mussels, 

regardless of predator cues, may be a favored strategy if costs of induced 

defenses are reduced or mussels there predictably experience more intense 

predation.

The vast majority of studies of plasticity have placed organisms in a single 

environment and observed responses. However, unlike the locally reproducing 

organisms that have received much attention regarding inducible defenses in 

marine systems (i.e. Nucella spp. (Appleton and Palmer 1988) and Littorina 

obtusata (Trussell 1996)), Mytilus has widely dispersing larvae that recruit into 

locations with different predator assemblages, tidal heights, and coastal 

productivities. Like many sessile organisms with pelagically dispersed larvae, 

these mussels experience highly variable environments between generations, 

which favors phenotypic plasticity (Sultan and Spencer 2002), but underscores 

the importance of spatial and temporal variability in the expression of these 

defenses. Ultimately, exogenous restrictions on the ability to express induced
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defenses will impact the ecological effects of similar inducible defenses across 

these habitats. Variable control of the expression of induced defenses by abiotic 

factors will influence the evolution and maintenance of inducible defenses within 

(meta)population of mussels.
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Table A1. Unadjusted STI (Nahant 2002). Initial and final unadjusted treatment 
mean Shell Thickness Indexes used in the ANCOVA of Nahant (MA) 2002 
laboratory induction experiment. Site abbreviations as in Table 1. Mussels grew 
in all treatments.*

Initial
STI
Control

Initial
STI
Carcinus

Initial STI 
Hemi
grapsus

Final
STI
Control

Final
STI
Carcinus

Final STI 
Hemi
grapsus

Source,
Site

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

South,
PJRI

0.591
(0.027)

0.673
(0.036)

0.633
(0.028)

0.614
(0.028)

0.685
(0.038)

0.655
(0.029)

South,
SCT

0.741
(0.027)

0.728
(0.036)

0.705
(0.03)

0.678
(0.028)

0.671
(0.038)

0.682
(0.031)

South,
NCT

0.687
(0.028)

0.726
(0.04)

0.648
(0.031)

0.708
(0.029)

0.770
(0.041)

0.698
(0.033)

South,
MNY

0.593
(0.031)

0.656
(0.036)

0.612
(0.028)

0.616
(0.033)

0.708
(0.038)

0.669
(0.029)

South,
CNY

0.680
(0.027)

0.763
(0.044)

0.665
(0.028)

0.687
(0.028)

0.772
(0.046)

0.661
(0.029)

South,
PLNY

0.561
(0.028)

0.710
(0.04)

0.584
(0.036)

0.594
(0.029)

0.752
(0.041)

0.643
(0.038)

North,
LME

0.562
(0.031)

0.577
(0.04)

0.578
(0.03)

0.608
(0.033)

0.653
(0.041)

0.649
(0.031)

North,
CME

0.595
(0.031)

0.681
(0.04)

0.650
(0.03)

0.660
(0.033)

0.753
(0.041)

0.680
(0.031)

North,
JME

0.566
(0.027)

0.633
(0.051)

0.545
(0.027)

0.664
(0.028)

0.760
(0.053)

0.635
(0.028)

North,
MME

0.552
(0.027)

0.575
(0.04)

0.531
(0.028)

0.581
(0.028)

0.644
(0.041)

0.592
(0.029)

North,
PHME

0.618
(0.03)

0.611
(0.04)

0.589
(0.034)

0.646
(0.031)

0.682
(0.041)

0.619
(0.035)

North,
BME

0.559
(0.026)

0.598
(0.036)

0.533
(0.028)

0.613
(0.027)

0.689
(0.038)

0.594
(0.029)

*The following are mussel shell weight changes [g LSM (SE)] from an ANOVA of 
the Nahant (MA) 2002 laboratory induction experiment: North Control = 0.064 
(0.004), South Control = 0.048 (0.004), North Carcinus = 0.077 (0.006), South 
Carcinus = 0.065 (0.006), North Hemigrapsus = 0.065 (0.004), South 
Hemigrapsus 0.059 (0.004).
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Table A2. Unadjusted STI (Woods Hole 2003). Initial and final (unadjusted) 
treatment mean Shell Thickness Index used in the ANCOVA of Woods Hole (MA) 
2003 in situ induction experiment. Mussels grew in all treatments.*

Initial
STI
Control

Initial
STI
Carcinus

Initial STI 
Hemi
grapsus

Final
STI
C ontro l

Final STI 
Carcinus

Final STI 
Hemi
grapsus

Source,
Site

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

Mean
(SE)

South,
JRI

0.766
(0.032)

0.730
(0.032)

0.725
(0.034)

0.713
(0.032)

0.752
(0.032)

0.766
(0.033)

South,
PJRI

0.767
(0.036)

0.794
(0.032)

0.773
(0.034)

0.732
(0.035)

0.789
(0.032)

0.764
(0.033)

South,
APCT

0.820
(0.032)

0.822
(0.032)

0.798
(0.032)

0.751
(0.032)

0.805
(0.032)

0.807
(0.032)

South,
SCT

0.770
(0.032)

0.720
(0.034)

0.764
(0.032)

0.762
(0.032)

0.747
(0.033)

0.807
(0.032)

South,
NCT high mortality - all discarded
North,
SME

0.655
(0.032)

0.644
(0.032)

0.657
(0.032)

0.733
(0.032)

0.734
(0.032)

0.724
(0.032)

North,
JME

0.586
(0.051)

0.547
(0.051)

0.642
(0.042)

0.696
(0.05)

0.786
(0.05)

0.781
(0.041)

North,
BME

0.638
(0.042)

0.602
(0.036)

0.607
(0.032)

0.705
(0.041)

0.700
(0.035)

0.698
(0.032)

North,
PHME

0.686
(0.034)

0.718
(0.032)

0.644
(0.039)

0.741
(0.033)

0.798
(0.032)

0.738
(0.038)

North,
WME

0.557
(0.034)

0.587
(0.036)

0.582
(0.032)

0.706
(0.033)

0.798
(0.035)

0.704
(0.032)

*The following are mussel shell weight changes [g LSM (SE)] from an ANOVA of 
the Woods Hole in situ induction experiment: North Control = 0.254 (0.033), 
South Control = 0.201 (0.031), North Carcinus = 0.332 (0.032), South Carcinus = 
0.280 (0.030), North Hemigrapsus = 0.259 (0.030), South Hemigrapsus 0.290 
(0.031).
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