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ABSTRACT

UNDERSTANDING OF ABSTRACT ALGEBRA CONCEPTS

by

Anna Titova 

University of New Hampshire, May, 2007 

This study discusses various theoretical perspectives on abstract concept 

formation. Students’ reasoning about abstract objects is described based on 

theoretical proposition that abstraction is a shift from abstract to concrete. 

Existing literature suggested a theoretical framework for the study. The 

framework describes process of abstraction through its elements: assembling, 

theoretical generalization into abstract entity, and articulation. The elements of 

the theoretical framework are identified from students’ interpretations of and 

manipulations with elementary abstract algebra concepts including the concepts 

of binary operation, identity and inverse element, group, subgroup, cyclic group. 

To accomplish this, students participating in the abstract algebra class were 

observed during one semester. Analysis of interviews conducted with seven 

students and written artifacts collected from seventeen participants revealed 

different aspects of students’ reasoning about abstract objects. Discussion of the

xiv
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analysis allowed formulating characteristics of processes of abstraction and 

generalization.

The data showed that the students often find it difficult to reason about 

abstract algebra concepts. They prefer to deal with “concrete” objects and often 

are confused if the problem is stated in more general terms. Moreover, number of 

students based their arguments about a certain object on their understanding of 

a concrete structure. For example, some students said that if integer 1 does not 

belong to a given structure then this structure cannot be a group. Also, since 

abstract algebra concepts are complex structures, participating students 

repeatedly missed some elements of these structures during problem solving. 

One of the frequently missed elements was quantification of objects. Students 

often were confused how to use quantifiers.

The study elaborates on these problems and offers theoretical 

explanations of the difficulties. The explanations, therefore, provide implications 

for instructions and future research.

X V
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INTRODUCTION

Abstract thought is considered to be the highest accomplishment of the 

human’s intellect as well as its most powerful tool (Ohlsson, Lehitinen, 1997). 

Most people consider mathematics as abstract and it is difficult to argue with this 

opinion. Even though mathematical problems can be solved by guessing, trial 

and error, experimenting (Halmos, 1982), there is still a need for abstract 

thought.

One can notice that there exists a fear of mathematics, when students 

believe that mathematics is not for them because they failed to understand 

something on the first try. There is support (Ferguson, 1986) to the hypothesis 

that abstraction anxiety is an important factor of mathematics anxiety, especially 

in topics which are introduced in the middle grades. Students’ statements such 

as “I understand 2 and 3, but I don’t understand x and y.” were observed by 

Ferguson (1986). I think if we understand the nature of abstraction, its 

acquisition, we can help students not to reduce the level of abstraction but, to the 

contrary, to bridge the gap from the abstract to concrete. This study aims to 

explore the process of abstraction, to give a description of its components and 

outcomes. My goal is to understand certain cognitive processes through 

empirical observations including classroom observations, interviews, and written 

artifacts collection. During the study I observed certain learning phenomena and 

made a theoretical analysis of these phenomena. “A theory should help us say

1
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that if certain phenomena are observed, then other phenomena, are likely to 

occur as consequences” (Dubinsky, 2000a; p. 11). I select a qualitative approach 

to my research. I attempt to analyze students’ construction of knowledge 

(knowledge of abstract/mathematical object, in particular) in the tradition of a 

grounded theory (Charmaz, 2003; Glaser & Strauss, 1967) in the content of 

group theory.

The importance of knowing abstract algebra and group theory in 

particular, is widely acknowledged. Undergraduate students use mathematical 

ideas, learned in these courses, in many scientific areas, such as physics, 

computer science and chemistry. Abstract algebra is also is an essential part of 

middle and secondary school teachers’ preparation. However, students often find 

the course difficult and many researches indicate problems and gaps in students’ 

understanding of group theory concepts (Dubinsky et al, 1994, 1997; Hazzan, 

1999; Nardi, 2000). Only recently has serious research been directed towards 

learning and teaching of abstract algebra: “A literature search revealed 15 

articles on the learning of abstract algebra. Eleven of them had been published 

since 1994, of which 9 grew from the work of Dubinsky, Leron, and their 

collaborators” (Findell, 2001; p. 6). These arguments reason my choice of 

investigating students’ cognitive processes of abstraction and generalization in 

the context of group theory. The goal of this study is not to fill all possible gaps 

but to suggest some theoretical constructs which may help to understand and 

possibly avoid some of students’ difficulties in the future.

2
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The following chapter reviews theoretical perspectives on the notion of 

abstraction and generalization and on students’ learning of group theory 

concepts. Chapter 2 describes theoretical guiding of the study or the theoretical 

framework. Chapter 3 and 4 propose research questions and methodology for 

searching answers. Detailed data analysis, illustrated by the data excerpts is 

described in Chapter 5, followed by the discussion of the findings and main 

conclusions in Chapter 6. Finally, I share my ideas for implications of the study 

for teaching and future research in Chapter 7.

3
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CHAPTER I

LITERATURE REVIEW

This chapter includes a review of recent and classical theories on learning 

abstract objects. Studies that were guided by these perspectives are also 

discussed.

Philosophical View

There exist many definitions of abstraction. I would like to start this 

literature review with a brief description of the first known perspectives on this 

notion. Attempts by philosophers and cognitive psychologists to explore the 

meaning of the process of abstraction date back to Aristotle and Plato. If we think 

about an object as concrete as an apple it does not mean we necessarily must 

see the object in front of us. In other words, we would call this mental “apple” 

abstract. Abstract entity, in a philosophical sense, is “an object lacking 

spatiotemporal properties, but supposed to have being, to exist... Abstracta, 

sometimes collected under the category of universals, include mathematical 

objects, such as numbers, sets, and geometrical figures, propositions, properties, 

and relations... The abstract triangle has only properties common to all triangles” 

(Audi, 1999, p.3). From the empirical point of view, abstract ideas are universals, 

i.e. relations, types or properties of objects:

4
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We should only know what is now present to our senses: we could not know 
anything about the past - not even that there was a past - nor could we know any 
truths about our sense-data, for all knowledge of truths, as we shall show, 
demands acquaintance with things which are of an essentially different character 
from sense-data, the things which are sometimes called 'abstract ideas', but 
which we shall call 'universals'. We have therefore to consider acquaintance with 
other things besides sense-data if we are to obtain any tolerably adequate 
analysis of our knowledge. (Russell, 1998, p.22)

For example (Russell, 1998) in geometry, when we wish to prove 

something about all triangles, we draw a particular triangle yet we do not to use 

any characteristics which it does not share with every other triangle. According to 

Russell,

The beginner, in order to avoid error, often finds it useful to draw several 
triangles, as unlike each other as possible, in order to make sure that his 
reasoning is equally applicable to all of them. But a difficulty emerges as soon as 
we ask ourselves how we know that a thing is a triangle. If we wish to avoid the 
universal triangularity, we shall choose some particular triangle, and say that 
anything is a triangle if it has the right sort of resemblance to our chosen 
particular. But then the resemblance required will have to be a universal (p.46).

Hence, for this philosopher, abstractions are created by extracting all 

properties common for all objects (universals), which the individual has 

experienced. These abstractions are needed to recognize a specific object 

among other objects.

Classical View by J. Piaget

Respecting the classico-philosophical point of view, Piaget (1970a, 1970b) 

says that mathematical abstraction (as also abstraction, marked by 

extraordinarily detailed and vivid recall of visual images, which gives rise to the 

knowledge of universals) implies certain operations, which were not considered 

by Aristotle.

5
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Piaget (1970a) is searching for the answer to the very difficult and 

important question about the formation of human knowledge. Referring to the 

classical view of the problem researchers wonder if all cognitive information has 

its source in objects, so that the learner is “instructed” by the objects or another 

individual in the world outside him; or, on the contrary, the subject possesses a 

form produced or growing from within structures which the subject imposes on 

objects. The first assumption is coming from the traditional empiricism; the 

second is maintained by the varieties of a priories or innatism. Although these 

are two different statements, Piaget noticed common trends of established 

epistemologies: there exists a subject aware of its power in various degrees 

(even just a perception of objects); objects exist for a subject (even such object 

as ‘phenomena’); and the most important is a mediation between the subject and 

the object and vice versa.

Further, Piaget (1970a) studies characteristics of cognition: association 

and assimilation. He criticizes the concept of association by claiming that this 

concept only refers to an external bond between the associated elements (it does 

not give a learner a deep knowledge about object and its properties), “whereas 

the idea of assimilation implies that of the integration of the given within a prior 

structure or even a formation of a new structure under the elementary form of a 

scheme” (p.22).

Piaget distinguishes three aspects of the process of assimilation: 

repetition, recognition and generalization, which can closely follow each other. By 

repetition he understands a reproduction of the same movement (or reproductive

6
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assimilation) and the formation of the beginning of a cognitive scheme; 

recognition or recognitive assimilation is the applying of previously created 

scheme to a new object or situation; and when the subject repeats the action in 

this new situation we deal with generalizing assimilation or generalization.

Even in the very beginning of an individual’s cognitive development one 

can observe the construction of new combinations by a union of abstractions 

derived either from objects themselves, or from schemes of actions applied to 

them. For Piaget (1970a) the child’s recognition of an object, as something 

having specific properties, requires an abstraction starting from objects. On the 

other hand learners’ coordination of means and ends, taking to account the 

proper sequence of required movements, is a new form of behavior “compared 

with the global acts...” (p.23); but this new behavior is naturally acquired from 

such acts by a process of deriving from them the relations of order, overlapping, 

etc., necessary for this coordination. This coordination Piaget does no longer 

consider as appearance of abstraction from concrete object but rather as an 

abstraction, which derives higher-order structures from the previously acquired 

lower-order structures.

Working further, Piaget (1970b) studies the details of the notion of 

abstraction and discusses it in terms of mathematical knowledge formation and 

logic. The author agrees that logical and mathematical structures are abstract, 

whereas physical knowledge -  the knowledge based on experience -  is 

concrete. He is struggling to find answers to the question about human 

knowledge formation and, since mathematical and logical structures are defined

7
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as abstract structures, he asks: “What are these structures abstracted from?” 

One view on abstraction comes from an empirical ideology, that is -  our 

knowledge is derived from the concrete object itself; in this case the question 

remains -  What are the concrete objects in mathematics? A second view claims 

that, since the transformation of the object can be carried mentally, we can take 

into the account the actions itself or our actions upon the object. In that way the 

abstraction is derived from the action itself. This position seems for Piaget as a 

basis of logical and mathematical abstraction. The first type of abstraction from 

object he defined as a simple abstraction, for instance, when a child lifts objects 

and realizes that smaller objects are usually lighter then bigger objects, so the 

idea of weight, as a characteristic of an object is abstracted from the objects 

themselves. The second type he called the reflective abstraction, for example 

when a child counts five marbles in different ways, he notices that it does not 

matter how he places them, he always gets the same number. This way the child 

discovers the mathematical property of addition -  commutativity, and this 

knowledge is drawn not from the physical properties of marbles but from the 

actions the child carried out on the marbles. Piaget uses the word “reflective” in a 

double sense in terms of psychology and, in addition, of physics. The following 

citation helps to understand how Piaget makes a distinction between the two

types of abstraction,

On the one hand, there are individual actions such as throwing, pushing, 
touching, rubbing. It is these Individual actions that give rise most of the time to 
abstraction from object. This is the simple type of abstraction...Reflective 
abstraction, however, is based not on individual actions but on coordinated 
actions. Actions can be coordinated in a number of different ways. (Piaget, 1970,
p. 18)

8
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The intermediate step between empirical and reflective abstraction that 

occurs after the action(s) have taken place on the object, Piaget calls a pseudo- 

empirical abstraction. During pseudo-empirical abstraction, the subject engages 

with an external object and extracts properties of the actions introduced into the 

object during empirical abstraction.

From this argument it is necessary to suppose that abstraction starting 

from actions and operations -  reflective abstraction -  differs from abstraction 

from perceived objects -  simple abstraction (in the book “Mathematical 

Epistemology and Psychology” (Beth, Piaget, 1966) Piaget calls simple 

abstraction -  “empirical abstraction”, p. 188-189) - in the sense that reflective 

abstraction is constructive, while on the contrary simple or empirical abstraction 

consists of deriving commonalities from class of objects by combination of 

abstraction and simple generalization. By generalization Piaget (1966, p.243) 

means “the simple observation that several objects posses a common character.” 

Thus, Piagetian position on the process by which the subject derives new 

knowledge from the results of his/her own actions is as follow:

a) logico-mathematical experience consists of observing actions 

performed upon any object;

b) the results are determined by the schemes of the actions;

c) in order to observe these results, the subject has to perform other 

actions using the same schemes as those the product of which 

must be examined;

d) the knowledge acquired is new for the subject;

9
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e) the abstraction, by means of which the subject acquires new 

knowledge as a result of his actions -  involves some construction. 

(Beth, Piaget, 1966)

From Piagetian (1966, 1970a, 1970b) view, the axiomatization is based on 

the reflective abstraction. It occurs when a thinker derives conceptually 

elementary principles, for example identities. In the early stages the axioms were 

still accepted as intuitive and were borrowed from the natural thought, but later 

theories become less and less intuitive. More precisely,

If we analyze the reflective abstraction into ‘reflection’ in the quasy-geometric 
sense of the projection of certain previously given relationships on to a new 
plane of thought, and ‘reflection’ in the noetic (originating in the intellect) sense of 
reorganization necessitated by the reconstruction of these relationships on this 
new plane, then this later aspect prevails over the former (p. 64).

Therefore, according to Piaget, even before the first mathematical entity 

was formed, the process of reflective abstraction gives rise to the initial concepts 

and operations in mathematics.

Theories Based on Piagetian Idea of Reflective Abstraction

In his papers about advanced mathematical thinking, Dubinsky (1991a, 

1991) proposes that the concept of reflective abstraction, introduced by Piaget, 

can be a powerful tool in the process of investigating mathematical thinking and 

advanced thinking in particular.

Dubinsky (1991a) presents a brief description of his theory of 

mathematical knowledge and its acquisition in the area of mathematics that is 

more advanced then Piaget considered for his research. He takes a view that 

knowledge and its acquisition are not easily distinguishable. According to
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Dubinsky there are three aspects which must be investigated in order to 

understand mathematical knowledge and its acquisition: problem situations, 

schemas (more or less coherent collections of cognitive objects and internal 

mental processes for manipulating these objects), and responses.

One must consider the difference in the problem situation as it is intended by the 
observer and as it appears to the subject. One must understand the nature of 
schemas and the means by which they are constructed. Finally, it is necessary to 
explain how the subjects select the schema to be used in the response and what 
determines the kinds of new constructions (if any) that are made (p.5).

Elaborating further, Dubinsky (1991a) uses two observations made by 

Piaget to form his general theory: 1) reflective abstraction is present in the very 

early ages in the coordination of sensory-motor structures; 2) the entire history of 

the development of mathematics may be considered as an example of the 

process of reflective abstraction. Although Piaget concentrated on the 

development of mathematical knowledge at the early age, Dubinsky suggests 

that the same approach can be extended to more advanced undergraduate 

mathematical topics such as mathematical induction, predicate calculus, 

functions, topological spaces and vector spaces, etc., so they all can be analyzed 

in terms of extensions of the same notions Piaget used. Dubinsky lists various 

kinds of construction in reflective abstraction, which is heavily based on the work 

by Piaget: interiorization - the process of construction internal processes as a 

way of making sense out of perceived phenomena; coordination of two or more 

processes to construct a new one; encapsulation of a dynamic process into a 

static object; generalization of existing construction to a wider collection of 

phenomena; reversing the original processes to construct a new process. The

11
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final construction process of reflective abstraction is proposed by Dubinsky (not 

Piaget).

Dubinsky (1991) extends Piagetian ideas and reorganizes them into a 

general theory of mathematical knowledge and relates his theory in specific 

mathematical topics, such as vector spaces and functions, to explain some 

processes which may occur in the learning process. He proposes a notion of 

genetic decomposition. According to Dubinsky (1991, p. 96), the genetic 

decomposition of a concept is a description of the mathematics involved and how 

a subject might make the construction(s) that would lead to an understanding of 

the concept. Dubinsky describes examples of genetic decomposition for 

mathematical induction, predicate calculus, and function.

In terms of educational implications, Dubinsky’s position is that learning 

consists of applying reflective abstraction to existing schemas in order to 

construct new schemas for understanding concepts, thus the schema can not be 

constructed in the absence of previously existed schemas. In this way Dubinsky 

suggests the following instructional approach to foster conceptual thinking in 

mathematics: 1) observe students to see their developing of concept images; 2) 

analyze the data and develop a genetic decomposition for each topic; 3) design 

instruction that moves students through the steps of the genetic decomposition, 

develop activities that will induce students to make a specific reflective 

abstractions; 4) repeat the process and continue until stabilization occurs.

Another line of research based on Piagetian theory of reflective 

abstraction is a study conducted and developed by Goodson-Espy (1998). She
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observed abstraction process during problem solving and examined the transition 

that students make from arithmetic to algebra. Although her study is framed in 

Sfard’s (1991) theory of reification, Goodson-Espy’s framework includes an idea 

of reflective abstraction proposed by Piaget and, further, the notion of levels of 

reflective abstraction, proposed by Cifarelli (as cited in Goodson-Espy, 1998). 

The first level is defined as Recognition - the ability to recognize characteristics 

of a previously solved problem in a new situation and to believe that one can do 

again what one did before. The second level of reflective abstraction is Re­

presentation. At this level the student becomes able to run through a problem 

mentally and is able to anticipate potential sources of difficulty and promise. The 

third level of reflective abstraction is Structural abstraction. Structural abstraction 

occurs when a student evaluates solution prospects based on mental ‘run- 

throughs’ of potential methods as well as methods that have been used 

previously. Goodson-Espy in her paper suggests that there are strong relations 

between the theory of reification and the levels of reflective abstraction. 

Moreover, she suggests that Cifarelli’s levels of reflective abstraction may be 

used to illustrate how the transition from one stage of concept formation (from 

reification theory) to the next stage could take place.

Theoretical framework of Nardy’s (2000) study lies primarily in the 

Piagetian concept of reflective abstraction. The author explores the difficulties in 

students understanding of abstract algebra, group theory, in particular. She 

refers this understanding to advanced mathematical thinking in Dubinsky’s (1991, 

1991a) sense. The study reported conceptual difficulties with some concepts of
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group theory, which resonates with the findings in the area of investigation of 

learning advanced mathematics. The author and her colleagues are involved in 

further research in this area.

In his unpublished work, Harel (1995) elaborates more on the notion of 

abstraction and exemplifies Piagetian empirical (or simple) and reflective 

abstractions using epistemology of the concept of function. In this paper Harel 

illustrates some aspects of the theory using examples of interviews he conducted 

with college students and his observations.

Alternative views on the notion of abstraction

Recently several authors have critically analyzed classical and Piagetian 

approach and proposed alternative outlook on the notion of abstraction. 

(Hershkowitz, Schwarz, Dreyfus, 2001; Ohlsson, Lehitinen, 1997; Mitchelmore 

and White, 1995, 1999; Harel and Tall, 1991).

Making a fresh start, Ohlsson and Lehitinen (1997) approached the 

problematic of high-order cognition via distinguishing abstraction and 

generalization. This observation led Ohlsson and Lehitinen (1997) to the 

reevaluation of the role of generality in learning process. For them “to generalize” 

means to extract “commonalities from exemplars” (p. 38), while the main 

cognitive function of abstraction is to enable the assembly of previously existed 

ideas into more complex structure. Ohlsson and Lehitinen (1997) suggest that 

“people experience particulars as similar precisely to the extent that, and 

because, those particulars are recognized as instances of the same abstraction" 

(p. 41).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By reviewing the classical Aristotelian ideas Ohlsson and Lehitinen (1997)

bring our attention to the fact that scientific theories (as good examples of higher

order knowledge) do not fit the generalization idea:

Consider for example, the law of mechanical motion. On the Aristotelian view,
Isaac Newton shouid have arrived at the equation

F  = m x a
by measuring F, m and a many times in different situations and noticing that the 
product of m and a equals F in each instance, (p. 38)

The formulation of Darwin’s theory, for example, preceded its application 

to particular cases; hence, this theory can not be generalization in the classical 

sense. Ohlsson and Lehitinen (1997) conclude:

In summary, important examples of higher order knowledge in science, 
mathematics, and other fields are not, in fact, created by extracting 
commonalities across particular objects or events. In case after case, key 
ideas...were not as a matter of historical fact, discovered via generalization and 
could not, even in principle, be discovered that way (p. 40).

Ohlsson and Lehitinen (1997) claim that in order to recognize an object as 

an instance of an abstraction, the learner must already possess that abstraction. 

In other words, adopting Hayek’s (1952, 1978) terminology, the abstract has 

primacy over the concrete. According to Hayek (1952, pp. 42-43; 1978, pp. 165- 

172), the general concept is a “presupposition” of experience rather than the 

product of abstraction from what is presented in experience.

The authors assume that the deep idea is complex, i.e. has other ideas as 

parts. For example, to understand the idea of a group the learner must have an 

idea of a set, function, and a binary operation. The observation about complex 

idea suggests that new ideas are created by assembling previously acquired ides 

into new structure. As a result of assembling we have a new structure, more 

complex then its components, and it follows that if these components are
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abstract so is their combination. Hence, according to Ohlsson and Lehitinen, we 

create a new abstraction, operating on existed abstractions, not on concrete 

experience.

In this case assembling is not mere association -  a link between cue and 

associate, where activation of the cue evokes the association (Halford at at., 

1997). Halford distinguishes two types of associations: (1) Elemental association, 

which comprises links between pairs of entities; and (2) Configural association, 

which entails two stimuli each of which modifies the link between the other 

stimulus and the response. The first type does “not require any representation 

other than input and output and, therefore, cannot achieve any abstraction” 

(p.22); the second type “cannot support transfer between problem isomorphs. 

Therefore, a configural association can achieve only the minimal level of 

abstraction” (p.22); on the contrary, the result of assembling is a more complex 

idea -  an abstract idea. The application of this complex abstract idea moves from 

the abstract toward the concrete. The term articulation is used by Ohlsson and 

Lehitinen (1997) to refer to this process. In other words, articulation is a process 

through which “abstract schema (knowledge structures, which regulate thinking 

which goes beyond immediate experience) functions as a plan, a form to be filled 

with content” (Ohlsson, 1993, p. 61).

In the present view, abstraction is prerequisite for learning, whereas 

generalization is a product of learning process. In fact, abstract ideas are 

generated from other abstract ideas. But how do learners acquire these
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abstractions in the first place? Ohlsson and Lehitinen (1997) review several 

possible answers:

(1) Postulating innate abstraction.

The universal structure of a single object becomes a figure. For example, 

“mathematicians know only one number system, but careful analysis has 

produced a representation that has become an object of inquiry in its own right. 

The result is a new field, abstract algebra” (p.44).

(2) Seeking the origin of initial abstraction in discourse.

(3) Process of induction.

In summary, two cognitive processes were postulated by Ohlsson and 

Lehitinen (1997). First, to learn a complex idea is to assemble available abstract 

ideas into new structure. This process moves from the simple toward complex 

(not from concrete to general). Second, abstractions are applied to concrete 

objects via articulation. This process moves from abstract toward concrete.

A soviet educator Davydov (1972/1990) approaches the problem of 

human cognition by distinguishing empirical and theoretical thoughts. To clarify 

the meaning and the difference between the two kinds, the author starts with the 

analysis of the nature of human thought in traditional formal logic. In this view, 

subject is extracting similarities from the set of particular objects (which exists 

independently of subject), so that particular objects can be combined into a class 

after comparison according to the sort of similar properties. A class is a mental 

formation -  repeating properties of many objects, which has become a particular 

and independent object of thoughts. Thus, formal logic defines (formal)
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abstraction and (formal) generalization as processes of identifying sensorially 

given, observable, external properties of an individual object.

Formal logic considers a thought as a transition from concrete and 

individual to the abstract together with the reverse transition. Concrete (as 

distinct from abstract) is defined as individually given, directly observable object 

itself. The thought that accomplishes previously mentioned transitions through 

formal generalization and abstraction forms empirical concepts. This theory is 

usually called the empirical theory of thinking (the notion is proposed by an 

English philosopher John Locke) and in these terms formal abstraction and 

generalization are called empirical abstraction and generalization. These 

processes solve problems of classifying objects by the external attributes and 

problems of identifying these attributes.

Davydov (1972/1990) is concerned with limitations of the empirical 

interpretation of abstraction and generalization. It follows from the definition, that 

in science, for example, traditional empirical abstraction and generalization is 

limited by directly observable phenomena. In general, the fundamental weakness 

of empirical theory is that every concept can be reduced to some concrete data. 

It means that we can find the appropriate concrete for any abstract attribute. 

From this position students can learn only what they can observe and experience 

(together with the teacher’s knowledge, which is imposed on students’ life 

experience).

Davydov (1972/1990) argues that scientific knowledge is not a simple 

extension and expansion of people’s everyday experiences. “It requires the
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cultivation of particular means of abstraction, a particular analysis, and 

generalization, which permits the internal connections of things, their essence 

and particular ways of idealizing the objects of cognition to be established” 

(p. 86). Following this argument, the author proposes a theoretical approach to 

the theory of thinking -  theoretical abstraction and generalization.

Theoretical abstraction is a theoretical analysis of objects (concrete or 

previously abstracted) and construction of a system that outlines the whole 

picture of the new concept being studied so it is ready to be applied for the 

correct recognition of particular objects. Theoretical generalization defined as a 

process of identification of deep, structural similarities, which identify the inner 

connections with previously learned ideas. According to Davydov (1972/1990), 

theoretical abstraction is linked to theoretical generalization in a following way: 

theoretical abstraction starts from initial abstracts -  ready-made empirical 

abstractions; “the investigator can find it only in studying actual data and their 

relationships” (p.289). Further, from the simple, undeveloped, inconsistent first 

form of abstraction, the development proceeds with the analysis of these initials 

to obtain the necessary (theoretical) generalizations, which then will be 

synthesized to obtain a consistent final form -  abstract idea. So, for Davydov, the 

process of abstraction does not proceed from concrete to abstract, but from 

undeveloped to developed abstraction, which allows learners to see the new 

features in concrete objects, when this abstraction is applied.

If the transition from general and abstract to particular has been mastered, 

then students bridge the gap between the concrete and the abstract. For
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Davydov (1972/1990), “the more abstract the initial generalization, the more 

concretization its thorough mastery requires” (p.23). In other words, the stage of 

transition from abstract to particular should include more concrete problems for 

better articulation. The development of abstract, thus, depends on the 

accumulation of conceptions and perceptions.

In summary, Davydov (1972/1990) distinguishes two types of abstraction 

and generalization: theoretical and empirical. However, theoretical and empirical 

processes are linked to each other. From his argument it follows that for the 

learning of mathematics empirical theory is not enough. The main characteristics 

of empirical and theoretical thoughts are summarized in Table 1:

Empirical Simple External

Theoretical Complex Internal

Table 1. Characteristics of Thoughts.

Mitchelmore and White (1999) constructed the theoretical framework 

following Davydov’s principles of generalization and abstraction, borrowing the 

notion of content-related or theoretical generalization. Also Hershkowitz, 

Schwarz, Dreyfus (2001) proposing an approach to the theoretical and empirical 

identification of a process of abstraction, build their functional definition of 

abstraction on Davydov’s theory.

Mitchelmore and White (1995) noted that students often divide 

mathematical problems into two categories: “abstract” and “real-life” or “concrete” 

problems. Although “concrete” usually means an easier problem -  a problem 

involving concrete objects, students seemed to prefer “abstract” exercises, given
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in a symbolic form. On the other hand, according to the authors, there is strong

evidence that abstractness of mathematics is its well-known difficulty. Ideas

become more difficult as they become more abstract. Mitchelmore and White see

a conflict here and to find an explanation for this phenomenon they turn to the

very definitions of abstraction and abstract:

Abstract (adj): Apart from the concrete; general as opposed to particular; 
expressed without references to particular examples.
Abstract idea: Mental representation or concept that isolates and generalizes an 
aspect of an object or group of objects from which relationships may be 
perceived.
Abstract (ver.): To consider apart from particular instances; to form a general 
notion of.

In terms of these definitions, the authors distinguish two types of 

abstraction: “abstract-general” -  when a mathematical idea is linked to concrete 

objects (or other mathematical ideas); and “abstract-apart” -  when a 

mathematical idea is separated from the context.

Reviewing the theories and studies of abstraction conducted by other 

researchers, the authors derived a general abstraction cycle: recognition —»• 

manipulation —► reification, where by reification they mean a process of 

converting a concept into an object of thought, extending Sfard’s definition. 

Mitchelmore and White believe that the degree of abstraction increases as their 

“abstraction cycle” is repeated several times:

For example, the physical act of counting is reified to whole numbers. Other 
numbers such as fraction and negative numbers are then reified and a general 
concept of number emerges. Study of the properties of number systems and 
other similar structures leads eventually to concepts such as groups, fields and 
spaces, each concept encapsulating a specific set of properties present in the 
various systems. Finally, the concept of a category is formed to abstract the 
common features of all such structures. Each step is an abstraction, and each 
new concept is experienced as more abstract than the concepts from which it is 
abstracted.
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Dienes (as cited in Mitchelmore and White, 1995), states that the degree 

of abstraction of a concept is in direct proportion to the amount of variety of the 

experiences from which it has been abstracted. Hiebert and Lefevre (as cited in 

Mitchelmore and White, 1995) state that abstractness increases as knowledge 

becomes freed from specific contexts. In Mitchelmore’s and White’s opinion 

those statements are equating abstractness and generality.

Mitchelmore (1994), stimulated by Skemp’s (as cited in Mitchelmore 1994) 

work, proposed a model of conceptual development, consisting of two important 

phases: abstraction and generalization. Generalization appears as a never- 

ending process as more and more situations are brought in under the same 

abstraction. Later, however, White and Mitchelmore (1999) critically analyzed 

generalization as a shift from concrete to abstract, where students are involved 

into their pattern-seeking activities. They pointed out that, from this perspective, 

teaching model states “always proceed from particular to general”. This model is 

criticized by White and Mitchelmore with support of Davydov’s definition of 

generalization. The critique comes from the statement that classification of 

objects on the basis of external characteristics does not identify inner 

connections.

In summary, the authors believe in “abstract -  to -  concrete” (“general -  to 

-  particular”) learning order. Moreover, they do not equate abstraction and 

generalization

We note that the terms generalization and abstraction are often used 
interchangeably in the literature. The essential difference, as we see it, is that 
abstraction creates a new mental object (a concept) whereas generalization 
extends the meaning of an existing concept. The act of abstracting is based on 
generalizing, but is seen as qualitatively different from simply identifying patterns

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in a set of examples. It is a many to one function where generalizations are 
synthesized from many inputs to form a new abstraction (p. 5).

Harel and Tall (1991) were also investigating the meaning of the terms 

abstraction and generalization. They defined generalization as a process of 

applying a given argument in a broader context. In mathematics, in particular, 

this process depends on the individual’s current knowledge. From their 

observations of the students, the authors distinguish three different kinds of 

generalization, depending on individual’s mental constructions:

1. Expansive generalization occurs when the subject expands the applicability 
range of an existing schema without reconstructing it.
2. Reconstructive generalization occurs when the subject reconstructs an 
existing schema in order to widen its applicability range.
3. Disjunctive generalization occurs when, on moving from the familiar context to 
a new one, the subject constructs a new, disjoint schema to deal with the new 
context and adds it to the array of schemas available, (p. 38)

The last type of generalization is not considered by Harel and Tall as a 

cognitive generalization “in the sense that the earlier examples are not seen by 

the individual as special cases of the general procedure” (p. 38), however the 

first two seem for them more appropriate for cognitive development. Also they 

argue that in a short term expansive generalization is cognitively easier, but in a 

long run there are times when reorganization of knowledge becomes essential 

which means that reconstructive generalization becomes more appropriate.

Harel and Tall (1991) define abstraction as a process which occurs when 

subject focuses attention on specific properties of a given object and considers 

these properties as isolated from the original. The authors attribute the 

abstraction theory to reconstructive generalization, “because the abstracted 

properties are reconstructions of the original properties, now applied to broader
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domain” (p.39). In mathematics, abstraction of specific properties to form the 

basis of the definition of a new mathematical object is one constituent of the two 

distinct processes which form the process of formal definition. The second 

process is construction of an abstract concept through logical deduction from the 

definition. Harel and Tall call the first process formal abstraction -  the abstraction 

of a new concept through the selection of properties of one or more specific 

situations. They, however, admit the difficulty of a formal abstraction for the 

learner and to help students to pass the difficulties they introduce another form of 

abstraction -  generic abstraction. In this case concept formation starts with so- 

called prototypes -  more specific examples, so students can see the properties 

required for the new concept and apply it to a wider range of examples, 

embodying an abstract concept.

The next section discusses how some of the theoretical perspectives can 

be applied to the abstract algebra content. It reviews studies of abstract 

knowledge acquisition focusing on abstract algebra courses.

Mathematical Knowledge Acquisition: Learning Abstract Algebra Concepts

The first undergraduate course of Abstract Algebra is always the great 

concern of mathematics department communities. It is explained by the 

importance of concepts and methods of problem solving in abstract algebra and 

the obvious learning difficulties which most of students usually experience. Clark 

et al. (1997) assumes that “perhaps even more troubling is the fact that during 

this course many of these students come to dislike mathematics even though, for 

a variety of reasons, mathematics continues to be their major. It seems this is
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especially the case for many pre-service secondary mathematics teachers.” 

Indeed, the students develop a negative attitude toward mathematics in general 

and a fear of abstraction. With their mathematical background the students often 

have little experience thinking about the concepts that are dealing with 

structures, or proving theorems. Secondary education reforms or/and specially 

designed undergraduate courses are aimed to bridge this gap in students’ 

learning. Another approach to solving the problems with the abstract algebra 

course was started in the late 1980s by Ed Dubinsky and his colleagues (Clark at 

al., 1997). They chose to confront the problems they saw in the content and 

pedagogy of traditional abstract algebra courses by applying a framework for 

curriculum development and research in mathematics education that they had 

been developing for several years. This section introduces the main ideas of the 

framework.

APOS Theory and Researches Based on It

In recent years, mathematics education community started to work on 

developing a theoretical framework and a curriculum for undergraduate 

mathematics education. Asiala et al. (1996) reported the results on their work in 

this area. The authors are concerned with theoretical analyses which model 

mathematical understanding, instruction based on the results of these analyses, 

and empirical data, both quantitative and qualitative, that can be used to refine 

the theoretical perspective and assess the effects of the instruction. Finally, the 

authors of this article are in the process of producing a number of studies of
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topics in calculus and abstract algebra (Zazkis & Dubinsky, 1996; Dubinsky at al, 

1994; Brown at al, 1997; etc) using their framework.

For the author’s research framework, research begins with a theoretical 

analysis. This initial analysis is based primarily on the researchers' understanding 

of the concept in question and on their experiences as learners and teachers of 

the concept. Then the analysis informs the design of instruction. Implementing 

the instruction provides an opportunity for gathering data and for reconsidering 

the initial theoretical analysis with respect to this data. These repetitions are 

continued for as long as it appears to be necessary to achieve stability in the 

researchers' understanding of the epistemology of the concept.

The authors noted that each time the researcher cycles through the 

components of the framework, every component is reconsidered and, if possible, 

revised. In other words, the research builds on previous implementations of the 

framework.

Based on the theories of cognitive construction developed by Piaget for 

younger children, Dubinsky proposed APOS (action -  process -  object -  

schema) theory. In terms of this framework, understanding of a mathematical 

concept begins with manipulating previously constructed mental or physical 

objects to form actions; actions are then interiorized to form processes which are 

then encapsulated to form objects. Objects can be de-encapsulated back to the 

processes from which they were formed. Finally, actions, processes and objects 

can be organized in schemas. This assumption about mental constructions is 

based on a specific notions described by Piaget.
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In a more detailed discussion, the authors explain that “an action is a 

transformation of objects which is perceived by the individual as being at least 

somewhat external”, (p.9). In the context of Abstract Algebra, for example, if the 

elements of a group can be listed explicitly, then it is not difficult to find its 

subgroup and work with cosets. “Understanding a coset as a set of calculations 

that are actually performed to obtain a definite set is an action conception.” 

(p. 10). However, more is required to work with cosets in a group such as Sn, the 

group of all permutations on n objects where simple formulas are not available. In 

terms of the theoretical framework being discussed, students who have no more 

than an action conception will have difficulty in reasoning about cosets: “In the 

context of our theoretical perspective, these difficulties are related to a student's 

inability to interiorize these actions to processes, or encapsulate the processes to 

objects.” (p. 10)

Further, when an action is repeated, and the individual reflects upon it, it 

may be interiorized into a process. In abstract algebra, a process understanding 

of cosets includes thinking about the formation of a set by operating a fixed 

element with every element in a particular subgroup.

When an individual reflects on operations applied to a particular process, 

becomes aware of the process as a totality, realizes that transformations, can act 

on it, and is able to actually construct such transformations, then he or she is 

thinking of this process as an object. In an abstract algebra context, given an 

element x and a subgroup H of a group G, “if an individual thinks generally of the 

(left) coset of x modulo H as a process of operating with x on each element of H,
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then this process can be encapsulated to an object xH. Then, cosets are named, 

operations can be performed on them and various actions on cosets of H, such 

as counting their number, comparing their cardinality, and checking their 

intersections can make sense to the individual”, (p. 11).

A collection of processes and objects can be organized in a structured 

manner to form a schema. Schemas, at the same time, can be treated as objects 

and included in the organization of "higher level" schemas.

In order to illustrate that the discussed mental constructions take place 

during learning mathematical concepts, Asiala et al. (1996) suggest to gather 

data using three kinds of instruments: written questions and answers in the form 

of examinations in the course or specially designed question sets; in-depth 

interviews of students; and a combination of written instruments and interviews. 

Their written instruments contain fairly standard questions about the 

mathematical content and they are analyzed in relatively traditional ways. This 

information shows what the students may or may not learn. It also illustrates the 

possible mental constructions. To access the full range of understanding, the 

authors select interviewee’s group by including students who gave correct, 

partially correct, and incorrect answers on the written instruments. They also 

routinely select students who appear to be in the process of learning some 

particular idea rather than those who have clearly mastered it or those who had 

obviously missed the point.

The most important part of qualitative research is to collect the needed 

data and analyze it properly. Asiala, et al. (1996), in their framework, divided data
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analysis into 5 steps: 1. Script the transcript. 2. Make the table of content. 3. List 

the issues. By an issue they mean some very specific mathematical point, an 

idea, a procedure, or a fact, for which the interviewee may or may not construct 

an understanding. For example, in the context of group theory one issue might 

be whether the student understands that a group is more than just a set, that is, it 

is a set together with a binary operation. 4. Relate to the theoretical perspective. 

At this step theoretical perspectives are revised. 5. Summarize performance. 

“The mathematical performance of the students as indicated in the transcripts is 

summarized and incorporated in the consideration of performance resulting from 

the other kinds of data that are gathered”(p. 27). It should be noted that in the 

design of instruction, the authors specially highlight the use of cooperative 

learning and computer programming language.

To highlight the importance of created framework, Dubinsky (2000) makes 

the point that working with abstraction in mathematics in general can help 

students to understand some complex situations with which they have to deal in 

everyday life, so that APOS theory can help to explain why people have difficulty 

in understanding some aspects of everyday life in society. The described 

theoretical framework is illustrating the theoretical and methodological approach 

which was used by the number of authors in their study of students’ knowledge 

acquisition in abstract algebra. According to Clark et al. (1997), there are two 

central questions which can be explored in light of these theoretical perspectives: 

(1) if students’ attitude toward mathematics in general and abstract algebra in 

particular has been improved as a result of a new treatment; and (2) what
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students understand about the content (basic structures of abstract algebra) as a 

result of the instructions. The following reports describe students’ understanding 

of basic notions of abstract algebra course.

Dubinsky et al. (1994) explore the nature of students’ understanding of 

group theory, focusing on the concepts of groups, subgroups, cosets, normality 

and quotient groups. They attempt to illustrate the APOS pattern of learning. The 

observations were collected during a workshop for high-school teachers who had 

taken a course in Abstract Algebra. In their analysis, the authors categorized 

students’ ways of understanding concepts of group theory, considering the role of 

misconceptions. For example, the understanding of a group was categorized as: 

(1) Group as a set; (2) Group as a set with operation. The first category 

demonstrates the assimilation of a new idea to existing schema of sets, before it 

was reconstructed to achieve a higher level of abstraction. The important step 

toward avoiding this situation is the introducing binary operation as a function of 

two variables, “...the conclusion of this development is the encapsulation of two 

objects, a set and a function (binary operation) coordinated in a pair which may 

be students’ first real understanding of a group” (p.292). For pedagogical 

implications, the authors suggest that it may be effective to go through APOS 

steps in instructional design. Their computer activities (designed, following 

APOS) showed a certain amount of success. They also feel that an essential 

requirement is that students reflect on the action they are performing, during the 

study. To reach this goal, Dubinsky et al. suggest practicing a small group class 

work together with computer based activities. Burn (1996) criticizes this article by
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arguing about the listed concepts being fundamental. He also discusses 

disadvantages of the computer based learning. Dubinsky et al. (1997) have tried 

to clarify the distinction between their and Burn’s approaches to this important 

work and look forward to seeing a continuation of this exchange in appropriate 

forums.

Further, Brown et al. (1997) explore students’ learning of binary 

operations, groups and subgroups, using APOS perspectives. Asiala et al. (1998) 

study the nature of abstract algebra students’ understanding of permutations and 

symmetries. They claim that APOS is useful for understanding the mental 

constructions made by students learning about permutations and symmetries, 

and serves to increase our understanding of how learning about permutations 

and symmetries might take place. Zazkis and Dubinsky (1996) are interested in 

mathematical and psychological aspects of constructing dihedral group. The 

authors observe students’ intension to connect the dihedral group and the group 

of permutations (for example D 4  and S 4 ) .

Studies framed in different perspectives

The research, described in Hazzan’s (1999) paper explores possible 

trends of undergraduate students' mental processes as they get involved in 

problem solving activities in abstract algebra course. In this research, the data 

have guided the theory organization, in the spirit of grounded theory. The author 

focused on five fundamental abstract algebra concepts: groups, subgroups, 

cosets, Lagrange's theorem, and quotient groups. The data for the study was
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collected via written research questionnaires, regular classroom tests and 

homework collection; incidental discussions with students.

Theoretical framework was developed during the study. The author titled 

his framework as “reduction of the level of abstraction”. The term “reducing 

abstraction”, presented in this paper, is based on three interpretations for levels 

of abstraction discussed in literature. First interpretation defines the abstraction 

level as the quality of the relationships between the object of thought and the 

thinking person. This interpretation is illustrated in the paper by discussing 

students' tendency to base their argument on more familiar mathematical objects, 

with which they have had previous mathematical experience. The second 

interpretation is - abstraction level as reflection of the process-object duality. “The 

more one works with an unfamiliar concept initially being conceived as a process, 

the more familiar one becomes with it and may proceed toward its conception as 

an object.” (p.79) Hazzan noticed two additional aspects of process conception: 

(a) students' personalization of formal expressions and logical arguments by 

using first-person language, and (b) students' tendency to work with canonical 

procedures in problem solving situations. Finally, abstraction level, defined as the 

degree of complexity of the concept of thought. The working assumption here is 

that the more compound the entity is, the more abstract it is.

In summary, the author claims that the lack of time for activities which may 

help students grasp abstract algebra concepts, many students fail in constructing 

mental objects for the new ideas and in assimilating them with their existing 

knowledge. The mental mechanism of reducing the level of abstraction enables
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students to base their understanding on their current knowledge, and to proceed 

towards mental construction of mathematical concepts conceived on higher level 

of abstraction.

Leron et al. (1995) are concerned with students’ understanding the group 

isomorphism. Reported research is part of a series of studies in advanced 

mathematical thinking.

Nardi (2000) reports about students’ difficulties with mathematical 

abstraction while studying abstract algebra concepts. She observed 

undergraduate students during weekly tutorials (30 -  60 minute sessions given to 

one or two students; tutor and students discussed problems). Nardi focused on 

the following group theory concepts: coset, order of an element, and 

isomorphism. She explains her choice by stating that “the concept of group is an 

example of a new mental object the construction of which causes fundamental 

difficulties in the transition from school to university mathematics” (p. 169). 

Particularly, the concept of coset emerged as paradigmatically problematic 

during observations. While constructing cosets the students appeared to be in 

difficulty with the abstract nature of the operation between elements of a group: 

references to the properties of numerical operations were observed to generate a 

concern of the tutors who discourage the students from using metaphorical 

expressions such as “divided by”, for example in the context of quotient groups. 

However, the author noticed that they do not discourage them from saying 

“multiply with the inverse” in the context of group operations. Similarly 

problematic turned out to be the use of expressions such as “times” and “powers
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o f  - also used sometimes vaguely interchangeably by the students - with regard 

to cyclic groups.

Nardi (2000) notices that “linguistic condensation of meaning” causes 

difficulties, for instance in the context of the concept of order of an element of a 

group. As an implication of the theorem I <g> \ = \ g I, the term “order of an 

element of a group” can be seen as an abbreviation for the term “the order of the 

group generated by an element”.

Another problem, which was observed with the notion of order of an 

element, seems for Nardi to be in “static and operational duality”: I gr | is the 

number of elements in <g> and, at the same time, the number of times the power 

of g has to be taken in order to cover all the elements of <g>. So, in a sense, 

order of an element is a notion containing both information about a static 

characteristic of <g> (its cardinality) and information about a way to construct 

<g> (take the power of g, I g I times). “This type of duality is commonly seen as a 

source of cognitive strain for students and it is likely that order of an element is 

not an exception.” (p. 185)

The students often inquire about the “raison-d'-etre” (the reason for 

justification or existence) of the concepts. For example, the author observed 

students’ try to understand the notion of cosets, using geometrical images, 

aiming to construct a meaning of the new concept. The students also appeared 

to be in difficulty in conceptualizing a mapping between elements of a group and 

sets of elements of the group. The difficulty is explained by the shift of 

abstraction from one level to another, involved in the definition of a mapping
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between elements of a group or the cosets of a subgroup and the elements of 

the group.
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CHAPTER II

THEORETICAL FRAMEWORK

The literature review shows that although there are few published studies 

on abstract algebra knowledge acquisition, a theoretical base still exists. This 

chapter is aimed to illustrate the theoretical and conceptual perspectives that 

guided this study. The literature review included different opinions, views, and 

theories on the problem of human cognition, and on human ability to abstract and 

generalize, in particular. This section explains how the theoretical constructs 

described in the previous chapter helped me to form my theoretical perspectives. 

For the purpose of this study, I intend to explore the relationships between 

processes of abstraction and generalization and, further, the construction of 

students’ knowledge about abstract mathematical object.

Theoretical approach, described by Davydov (1972/1990) is highly 

relevant to educational research and practice. His theory seems incompatible 

with the classical Aristotelian theory, where abstraction is considered to be a 

mental shift from concrete objects to its mental representation -  abstract objects. 

In contrary, for Davydov, as well as for Ohlsson, Lehitinen (1997), Mitchelmore 

and White (1994, 1999), Harel and Tall (1991, 1995), abstraction is a shift from 

abstract to concrete. Ohlsson and Lehitinen provide us with historical example of
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scientific theories development; Davydov also gives historical examples and, at 

the same time criticizes the empirical view on instruction by claiming that 

empirical character of generalization may cause difficulties in students’ 

mathematical understanding.

Following Piaget (1970 a), I consider the process of abstraction as a 

derivation of higher-order structures form the previously acquired lower-order 

structures. Further, I distinguish two types of abstraction. One of these types is 

simple or empirical abstraction -  from concrete instances to abstract idea. The 

second type then is more isolated from the concrete. Davydov (1972/1990) calls 

this type of abstraction -  theoretical abstraction. Theoretical abstraction, based 

on Davydov’s theory, is the theoretical analysis of objects (concrete or previously 

abstracted) and the construction of a system that summarizes the previous 

knowledge into the new concept (mathematical object) so it is ready to be applied 

to particular objects. This abstraction appears from abstract toward concrete and 

its function is the object’s recognition. According to present research the second 

type of abstraction is commonly accepted as essential in the process of learning 

deep mathematical ideas. Similarly, I distinguish two types of generalization -  

generalization in a sense of Ohlsson and Lehitinen perspectives (which coincides 

with empirical perspective, described by Davydov); and theoretical 

generalization. Theoretical generalization is the process of identification of deep, 

structural similarities, which identify the inner connections with previously learned 

ideas. The process of theoretical abstraction leads us to the creation of a new 

mental object, while the process of theoretical generalization extends the
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meaning of this new object, searching for inner connections and connections with 

other structures. To understand the role these processes play in students’ 

knowledge construction and to analyze the connections between them is the goal 

of a future study. However, working with literature I formed my perspectives on 

knowledge formation in mathematics. I will introduce the framework, grounded in 

discussed theoretical perspectives, which will guide the study.

First, I assume the existence of initial abstraction -  empirical abstraction 

or generalization. Second, I assume that to understand a complex idea we must 

have other ideas as parts. When students understand the reason why and how 

particular ideas are connected to each other, when, through the process of 

generalization, inner connections between them are established in students’ 

minds -  then the new, more complex idea is formed. This is the description of 

assembling (Ohlsson and Lehitinen, 1997), however, for the convenience of this 

theoretical guide I divide the assembling into two processes (these processes 

can follow each other or simultaneously take place): assembling (or grouping) 

ideas and seeking for inner connections between them (generalizing), to make 

sense of different ideas participating in a certain whole. Finally, the individual 

“completes” this new structure by applying the newly created idea to concrete 

(examples, problems), extracting properties and making connections within the 

new concept.

In summary, the genesis of new abstract idea looks like following: (0) 

initial abstractions; (1) grouping previously acquired abstractions (initial 

abstractions in a very elementary level); (2) generalization to identify inner
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connections with previously learned ideas; (3) the shift from abstract idea to a 

particular example to articulate a new concept. Note that at some level of 

cognitive development initial abstractions become obsolete, since enough more 

complex and concrete-independent ideas are already acquired. The result of this 

genesis is a new structure which is more complex and of higher abstraction 

comparing to the assembled ideas. Hence, we have hierarchical construction of 

knowledge, where every next idea is more advanced than the previous one. 

Moreover, cognitive function of abstraction (from now, by abstraction and 

generalization I mean theoretical abstraction and generalization, defined above) 

is to enable the assembly of previously existed ideas into more complex 

structure. The main function of abstraction is recognition of the object as 

belonging to a certain class; while construction of a certain class is the main 

function of generalization, which is making connections between objects. Figure 

1 shows the theoretical construct described above:

Assembling Articulation
Assembling-Grouping

Objl

Recognition
Generalization

Obj2
A B ST R A C T

entity
P 2

Obj3

P KObjA

Figure 1. The Process of Abstraction.
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The theoretical perspectives evolved from the literature. It helps to identify 

the key concepts and conceptual relationships that set the stage for framing the 

research questions that follow. Further, the framework suggests the design of 

study and helps to ground the methodology and data collection.
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CHAPTER III

RESEARCH QUESTIONS

The above theoretical framework claims that if a concrete goal or problem 

was stated, then it can be resolved by describing new abstract constructions 

(formulas or mathematical objects), understanding its inner and outer 

connections and applying the new knowledge to the concrete situations to check 

the validity of the construction for the stated goal. By the statements of the 

theoretical framework this abstraction is created by assembling of previously 

learned ideas into a new structure and then by articulating this new structure, 

moving toward concrete examples.

In order to understand students’ mathematical knowledge and its 

acquisition we need to investigate problem situations, an ability to recognize a 

new object, and an ability to work with different contexts where the object is 

presented or can be used as an additional construct. The main questions for my 

study follow from theoretical ideas and needs:

■ What are the main characteristics of the cognitive processes 

involved in the development of students’ understanding of 

Group Theory concepts?

■ What notions and ideas do students use when they recognize

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a mathematical object, and why? (what are students using: 

definitions, properties, visualization, previously learned 

constructs, or something else)

■ What are the characteristics of students’ mathematical 

knowledge acquisition in the transition from more concrete to 

more theoretical problem solving activity?

Seeking answers to my questions I attempt to clarify the place of 

generalization and abstraction in the process of learning. It is important to find 

answers to these questions because I believe they can help me to construct an 

understanding of what students need when studying mathematical concepts. 

Also it may suggest a new approach for classroom practices. To define and 

clarify my research questions I performed a pilot study, which helped me to 

identify some specific problems and phenomena which I explore more closely.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

METHODOLOGY 

Introduction

To find answers to the research questions proposed in this study I chose 

to analyze actions of undergraduate students participating in a mathematical 

course. According to Strauss (1987), without grounding in data, any hypothesis 

or theoretical assumptions will be speculative, hence ineffective. To collect the 

needed data, undergraduate students participating in an abstract algebra course 

will be observed. My concern, as follows from the research questions, is to 

understand certain cognitive processes, involved in construction of knowledge 

and give them a plausible explanation. To understand these processes I 

analyzed students’ actions during learning a new concept and problem solving 

activity. I elaborate on the theory saturation in an empirically grounded way. 

From Glaser’s and Strauss’s (1967) point of view, generating grounded theory is 

a way of arriving at theory suited to its supposed uses. The methodology of 

Grounded Theory approach from this perspective gives a possibility to generate 

a theory that would be functional for the intended purposes.
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Settings and Instructional Context

Students participating in the abstract algebra course, which content 

includes basic properties of groups, rings, fields, and their homomorphism, were 

observed. Abstract algebra concepts were selected because of my own 

observations and experiences as an algebra course participant, and because of 

research reports (such as Dubinsky (1991), Hazzan (1999), Nardi (2000), Asiala 

at al. (1997, 1998), etc.) which highlighted students’ difficulties in learning certain 

abstract algebra concepts. Another reason was that students taking this course 

were assumed to have a good background in Mathematics, since several other 

courses such as “Mathematical Proofs”, “Calculus”, “Discrete Mathematics” were 

prerequisites for this abstract algebra course. The knowledge of students’ 

background can clarify some misinterpretations or possible learning obstacles.

The course was offered in the fall term of 2005. The class met for 50 

minute sessions three times a week. A standard text (Fraleigh, 2003) was used 

as a source for explanation, examples, homework problems and self-study 

projects. The instructor was a professor of mathematics at the Department of 

Mathematics and Statistics of University of New Hampshire. The class did not 

require teaching assistant. The instructional approach was considered to be 

classical without the use of technology. No special treatment was suggested to 

instructional approach or problems’ design.

Participants

The participants’ pool for the study comprised UNH students taking the 

undergraduate abstract algebra course. Most of them were mathematics majors
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and students who planned to receive high school teaching certificates. The 

students were asked to sign a consent form (see Appendix D) to show their 

decision to participate in the study. Methodology excludes any specific risks of 

effects on participants.

Data Collection Procedure

To answer my research questions and to gain as wide and varied image 

as possible, I collected the data from various sources. I observed the classroom, 

took field notes and audio recorded the lectures. I conducted a series of 3 semi­

structured interviews (see Appendix B for questions sampler) with key 

participants, collected written work (homework, quizzes, tests) and copied one 

student’s lecture notes.

Students Artifacts

Non-graded copies of students’ homework, quizzes, and exams (including 

final exam) were collected for analysis. Students’ work was collected through the 

whole semester. The assignments reflected on requirements of the course. I 

expected to observe some repeated phenomena and refine my interview 

questionnaires based on these phenomena. I also expected to follow up on some 

issues raised by the written artifacts. 20 students agreed to participate in the 

study by giving the permission to collect their written work.

Students Interviews

Out of 20 students 7 agreed to participate in the interview sequence. I 

created 3 semi-structured interviews. Semi-structuring gave me the desired 

flexibility, since qualitative interviews must be flexible and exploratory.
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Researcher adjusts later questions depending on how the interviewee answers 

earlier questions in order to clarify the responses or to probe for more details. 

Each interview consisted of scripted questions, common to all participants, and 

non-scripted, individual questions, raised by student’s response.

I conducted three interviews (about 50 minutes each) in a form of a dialog. 

The interviews will focus on five fundamental abstract algebra notions and 

structures: binary operations, groups, cyclic groups and subgroups. The first 

interview focused on students’ understanding of a binary operation; the second -  

on groups and cyclic groups, the third -  on subgroups. Questionnaires were 

created based on pilot study findings as well as on classroom observations and 

my experience.

Interviews took place outside of the classroom. I audiotaped each 

interview for future analysis. I also collected students’ scrap paper they used 

during the interviews. During the interviews, the students were encouraged to 

explain every action they perform to answer a question or solve a problem. In 

other words, students were asked to “think aloud”. I included two different types 

of questions:

1) Content related questions -  mainly mathematical problems on key 

concepts, open-ended questions about definitions and properties of 

the key concepts.

2) Attitudes and Believes questions -  questions about students’ 

personal experiences and relationships to the concept they just 

learned.
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Observations

Although I narrowed my study to a specific abstract algebra part - 

understanding fundamental concepts of group theory, I also observed classes on 

other topics. I tried to get more information about students’ background and 

make students comfortable with my presence. During the observations, I took 

field notes and audiotaped classes to have a chance to relate on observations 

during the analysis.

Instruments

To create a scripted part of my questionnaires, I followed my observations 

and experiences in the Abstract Algebra course. I reviewed a number of Abstract 

Algebra text books and carefully selected my questions.

Data Analysis

Strauss (1987) suggests several types of qualitative data coding. Initial 

type is termed open coding -  unrestricted coding of the data. This is done by 

critically inspecting the field notes, interview transcripts, etc. very carefully: line 

by line, word by word. The aim is to produce concepts that seem to fit the data. 

Initial coding categorizes the data. Axial coding consists of intense analysis done 

around one category at a time. It results in knowledge about relationships 

between categories and subcategories. Selective coding is concerned with 

analysis of the core category.

Students’ artifacts and interview transcripts were analyzed and 

categorized. According to Strauss (1987), the generation of theory occurs around
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a core category, “since a core category accounts for most of the variation in a 

pattern of behavior” (p.34), and most other categories are related to it.

To understand the data I started with transcribing the interviews. The 

transcriptions suggested some initial codes and categories for further analysis. 

Moreover, during this process I finally narrowed my research to the selected 

topics of group theory. The second step was to analyze the written work. I chose 

to analyze the data in chronological order. Each quiz and Exam 1 was analyzed 

by categories. However, Exam 2 included more complicated problems and I 

chose to analyze it problem by problem. After written work was considered, I 

returned to the analysis of the interviews. I reviewed my notes, codes and 

categories I generated before for more detailed analysis.
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CHAPTER V

DATA ANALYSIS 

Quiz 1

Quiz 1 covered the introductory topics of group theory. It concentrated on 

students’ understanding of a binary operation and its properties. In general, all 

the responses showed that students struggle with understanding the connections 

and relations between set, its elements and a binary operation, assigned to the 

set.

A set together with its operation is not a simple collection of elements but 

a structure with specific properties. For the students it is not a new concept. They 

already know several operations, such as addition, multiplication, subtraction, 

division, defined on different sets, such as whole numbers, integers, rational 

numbers, set of matrices, etc. However, the data suggested that students’ 

previous mathematical experience did not include a necessity of defining an 

operation within a certain set. Moreover, the operation is usually pre-assumed to 

be defined on a suitable set. For example, if the problem is asking to divide two 

integers, the result is not necessarily an integer and the problem is referred to the 

set of rational numbers. In the context of abstract algebra we want to generalize 

the concept of operation and stress the importance of its connection to the set it
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is defined on. The data suggested a lack of understanding of the restrictions that

a certain set puts on its operation or the extensions that are required for the set

to be appropriate for its operation. The textbook, used in class (Fraleigh, 2003),

attempted to clarify the notion of a binary operation using “every day” language.

In the following citation, the author discusses the idea how the operation and the

set are connected:

“In our attempt to analyze addition and multiplication of numbers, we are, thus, 
led to the idea that addition is basically just a rule that people learn, enabling 
them to associate, with two numbers in a given order, some number as the 
answer. Multiplication is also such a rule, but a different rule. Note finally that in 
playing this game with students, teachers have to be a little careful of what two 
things they give to the class. If a first grade teacher suddenly inserts ten, sky, the 
class will be very confused. The rule is only defined for pairs of things from some 
specified set.” (p. 1)

In the textbook, examples of sets together with binary operations are given 

in a rather descriptive manner: “On Q, let a*b = (p. 37); or “Let + and • be

the usual binary operations of addition and multiplication on the set Z ’ (p.33). The 

data shows that the notations are symbolically new and difficult for students to 

interpret and to translate into familiar terms. As a result, the students seem to be 

so concentrated on understanding of a certain operation that they miss the part 

about the set completely. In other words, students’ previous experience suggests 

that the result of an operation is always in the set. After defining a binary 

structure, the author uses the following notation for the description of a binary 

structure: < S, * >. This notation stresses, that students must see operation and 

set together, as a whole. However, I have noticed that, although some students 

adopted this notation, they still did not think about a set’s closure under the 

operation.
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Set -  operation relations: universal quantifications

First, I attempt to analyze the students’ understanding of connections 

between a set and its binary operation. I have noticed that some students have 

difficulty understanding “universality” of binary structure properties. In other 

words, the students do not see that all properties that a binary structure has are 

distributed over all its elements. Consider the following figure:

(b) an a s s o c ia tiv e  operation *  on a set S.

Figure 2. Student's definition of an associative operation.

In the excerpt we observe that the student is missing the part about 

“universality” of associativity. Indeed, it is not clear for the reader if the student 

meant associativity to hold for every triplet or it is enough to check associativity 

for a single triplet. It seems like associativity is not a universal quantification for a 

binary structure. In other words, the students do not clarify if associativity is the 

property which holds for all elements in the set. The missing quantifier actually 

raises a big problem for the interpreter. Do the students understand that 

associativity is universal quantification or not? If we turn to the students’ 

background, we could find evidence to support their understanding of 

universality. All students in an abstract algebra course are familiar with 

operations such as addition and multiplication of real numbers and their subsets. 

Without loss of generality inside the students’ pool, I may assume that these
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operations, as well as their properties, are well known. Students would not have 

difficulty answering the question about commutativity (or associativity) of addition 

of integers (Baroody, Herbert, Waxman, 1983). Previously it was enough to show 

one or two computations, or, possibly, create an operation table to make a 

general conclusion that addition (or multiplication) is associative for any three 

numbers of your choice. So, it is possible that the students understand the 

universality of associativity for a given binary structure. In this case they would 

have no doubts that, as soon as associativity is proven for some triplets, every 

triplet from the binary structure will satisfy the property. The question remains, 

however, how the definition of associativity is applied to problems where the 

students are asked to prove or disprove that a given binary structure is 

associative. In other words, the definition we see in Figure 2 could mislead the 

students toward acceptance of associativity for the whole binary structure by only 

checking it for one triplet. Even further, students’ interpretation of the definition 

could possibly include the condition of existence: if there exist a, b, c from S such 

that a * (b * c) = (a * b) * c then the operation is associative. From students’ 

responses, it looks like the students may have difficulty in distinguishing and 

understanding the meaning of quantifiers “for all”, and “there exists”. 

Unfortunately, Quiz 1 did not provide a strong data support for this assumption. 

However, Figure 3 explicitly illustrates the problem of quantifiers the students are 

dealing with.
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(b) an associative operation ♦ on a set S',

1Ur<. (,<nt5 «-,b, C. i S ,  J»cV tw6t

Figure 3. Student’s reasoning with the quantifier.

In Figure 2 it seemed like the student did not think about universality of 

associativity. Probably, at this point students do not recognize the importance of 

universality so they do not mention it in their responses. It is also possible that 

they think about universality as being given for granted, meaning that no matter 

what the set is, if it works for one set of elements then it automatically works for 

other sets. So, the property is distributed on all elements of the set. In Figure 3, 

however, the student insists on existence of at least one triplet for which the 

property holds. This definition can be explained by a simple misinterpretation of 

logical quantifiers. Again, the phrases “there exists” and “for all” (or “for every”) 

perhaps are not accepted by the students as valuable mathematical arguments. 

However, it is possible that the student recognizes an operation to be associative 

even if the statement (a * b) * c = a * (b * c) is true for at least one triplet. I 

already discussed that the students’ connection to familiar binary structures is 

very strong. They may not show it explicitly, but many instances in their 

responses suggest that they reason using familiar structures. Nevertheless, they 

do not necessarily see the conceptual differences that occur between familiar 

structures and other binary structures. I may assume that for the student in 

Figure 3 the existence means the existence “for all” elements of a given set. In 

other words, it is enough to check if the statement is true for only one triplet but it
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means for the student that, if true, the statement holds for all triplets of a given 

binary structure (if one triplet exists then all possible triplets satisfy).

(b) an associative  operation *  on a set S, » n  fc,
An n^oci'A’nYO- a^wcdicf) % an  <l 3  •fkce* V

0X *V ^% C

"fŷ ft̂CanrHvt SkoVtei M<1 $>f fill I fr «A *0*- 5,

Figure 4. Student’s definition and quantifiers.

The problem of quantifiers appears in different places in students’ 

responses. In the excerpt shown in Figure 4 the use of quantifier “for all” in the 

last row suggests that, in the student’s view, if associativity holds for all triplets in 

the binary structure (S, *), then it holds for all possible operations on S. It is clear 

that the sentence “for all *” is incorrect. However, I would like to discuss what it 

could mean in terms of students’ understanding of a binary operation in general. I 

discussed earlier that the shift from “concrete” or familiar examples of operation 

to general, more abstract operations is very complicated for students. I think 

Figure 4 illustrates student’s understanding of binary operation in the general 

sense. Symbolically, represents an operation defined on the set and this 

operation can be defined as addition, or multiplication. It could be defined as a 

combination of familiar operations or as none of the above. Perhaps, by using the 

quantifier “for all” the student wanted to stress that she/he knows that 

represents all possible operations on S.

On the other hand, the first part of the student’s response is correct; 

however, it did not seem enough for her/him and the student added the comment
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about universality of associative property for all defined on S. The data 

demonstrated that almost all students understand associativity as a property of 

operation defined on the set. In the case illustrated in Figure 4, it looks like the 

student assigns the property to the set. In other words, in the set S, if 

associativity holds for the defined operation *, then it would hold for all other 

operations. It follows that if a particular binary structure is associative then all 

binary structures, defined on the set S are associative. In this case we observe 

the following logical contract: if (a *b) * c -  a * (b * c), for all a, b, c from S, then 

any operation * on S is associative.

It is also possible that the role of quantifiers is unclear to the student. 

She/he may not fully understand the strength and value of quantifiers in 

mathematical statements. It may be difficult to see the difference in two 

statements with different quantifiers but similar equations or formulas. In this 

case, statements with or without quantifiers are not significantly different from 

one another and, for the students, using the quantifiers does not change the 

meaning of the mathematical sentence.

In general, for most students the relations within binary structures are 

confusing. Students’ knowledge about sets, their elements and operations often 

is not systematized and thus is not represented as an object. This causes the 

students to struggle with understanding the set and the binary operation defined 

on it as a whole - as a single mathematical construct.
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Set -  operation relations: closure

The concept of closure is one important connection between a set and its 

binary operation. When working with binary structures, it is crucial to understand 

that in a binary structure a result of the operation performed on a pair of elements 

of the set must belong to the set. Nevertheless, this section Figures show that 

sometimes students are so concentrated on finding an operation that would 

satisfy the conditions of the problem that they forget about an algebraic structure 

the problem is restricted to:

2. Give an example of an operation on Z which has a right identity but no left identity. [Hint: 
You*v< known about this a very long time!]

- o **- i 4 *3  ̂ ~ i 4  '4 *

n' **“ 9 * i nr- 2̂̂ 4
^  A**,su* 4  ‘ ' '  '***'£<, 'P -̂ \ J

U \ ottf ftyo'.ver.

Figure 5. Student’s definition of operation on Z.

In Figure 5 student finds an operation which fails to have a left identity. It 

looks like she/he assumed that the operation is defined on Z, since a chosen pair

belongs to ZxZ. It also looks like the quantification is clear for the student: an

identity (left or right) must satisfy the identity condition (a * e = a or e * a = a) for 

all elements of Z, which means if we need to prove otherwise it is enough to find 

one counter example. The student found the example: it looks like 1 works as a 

right identity on (Z, +) and 1eZ. However, “Division on Z...” is not defined, since 

the result is not always in Z and division by 0 is undefined. It does not seem to be
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a significant part of the problem. It is more important to find a familiar operation 

which would satisfy the problem’s conditions. The student wrote that “1 divided 

by the same number is 1 over that number”, or 1/a. In Figure 5, she/he is dividing 

1 by 7, so the result is 1/7. Obviously, 1/7 is not an integer and the student does 

not claim that it is. It suggests that she/he simply missed the part about closure. 

In other words, it seems that for the student a binary operation on Z is 

understood as a map ZxZ A, where A could be any set, not necessarily Z. A 

similar problem was observed in Figure 6.

2. Give an example of an operation on Z which has a right identity but no left identity. [Hint:
You’ve known about this a very long time!)

V>
W v. t  ,

ri\j ^

Figure 6. Student’s reasoning about division as a binary operation on Z.

The student chooses division as an operation on Z, which has right but no 

left identity. In Figure 6, the student is reasoning about identity using the fact that

division is not commutative. Indeed, ^  is not the same as ^/a for all but one

element of Z. Again, the reasoning about existence of a right but not a left identity 

in the structure (Z, +) is logically correct. However, the closure is missed again. 

Note that the symbolic notation (Z, h-), which the student is using to describe the 

binary structure, suggests that for her/him the operation is connected to the set. 

They form a structure together rather than separately. It could mean that for the
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student a set is connected to its operation only in “half”: a pair must be from the

set but the result of operation is not important. In Figure 7 we observe the same

inaccuracy.

2. Give an example of an operation on 7, which has a right identity but no left identity. {Hint:
You've known about this a very long time!] „  ,

Figure 7. Student’s symbolical reasoning about division being binary operation on Z.

The student used more general symbols to represent an identity element 

and operation. It suggests that the student understood the abstraction of the 

problem but still did not carefully think about the result of division of elements of 

Z. Nonetheless, during Interview 1, which I conducted after Quiz 1, the student 

defines a binary operation:

Question 1: Define what it means to say that * is a binary operation on a set A.
S3: It means that if >4x4...OK...if a and b belong to...if (a, b) belongs to >4x4,
then * is a*b in...in Sand...so, its closed and it has to be well defined.

The student recalls that the set must be closed under its binary operation, 

and a * b is in S. She/he might not realize however, that it is not always the case. 

Perhaps the student assumes that if an operation is defined on Z, and a, b are

from Z, then a * b is necessarily in Z for every ordered pair of elements of Z. In

this case there is no need to check for closure. However, her/his answer to the 

quiz problem suggests otherwise and I came out with another assumption. It is 

possible that for the student the most important part of the binary operation

a l b

€ ♦ 5  f  5
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definition was that (a, b) must belong to ZxZ. Alternatively, the student may think 

that the closure must hold only for SOME, but not necessarily for all ordered 

pairs from ZxZ. In this case it is clear why the student answered the question in

Figure 7 this way. She/he was satisfied with the answer since is in Z at least

for some a, b from Z. Note that she/he uses neither a quantifier “V”, nor gives a 

verbal explanation for her/his choice of elements.

The hint, given in the problem, suggests that students think of familiar 

operations. In Figure 8 we can see the list of familiar operations most students 

had in mind.

2, Give an example of'an operation on Z  which has a right identity but no left identity. [Hint:
You’ve known about this a very long time!)

C z '  W S £

tO-A,

Figure 8. Choosing an operation.

The student considered each of them and crossed out ones that did not 

work. Most likely, the students did not consider addition and multiplication in this 

problem since they know these operations are commutative and then have both 

right and left identity. (Note that these two operations are crossed with one line). 

So the reasonable candidates are subtraction and division. The student didn’t 

provide any explanation why she/he crosses out division. I may only assume that 

it is because Z is not closed under division. The student’s argument about 

subtraction seems to be misleading for her/him, and the student decided to cross
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it out. The notation suggests that the student was looking for different 

elements to the right and left identity. She/he perhaps thought that the right 

identity exists only if the left identity also exists but in this problem they cannot 

coincide. Still, the student gives subtraction as an example of such operation on 

Z but it is possible that the participant answers this way rather by exclusion.

In Figure 9 the student tries to determine which operation would work by 

listing all the possible familiar operations. The only exclusion is addition. I think 

that it is just too obvious for the student that it is commutative and thus cannot 

satisfy the problem’s conditions:

2. uive an cxampte or an operation on % wlwn has a right identity bat no lett identity. \Hmt:
You've known about this a very long time!] i . •_ - 1 ,<**• yo-

fl £ f  <K
7 -1 - ' !

i '1

Figure 9. Student’s definition of identity and reasoning about binary operations.

First, I would like to discuss the definition of the right/left identity, given by 

the student. It looks like, by “right identity”, the student means the right side of 

equality in her/his identity definition (a = a * e); consequently, the left identity is 

defined by the left equality (a * e = a). It seems like for the student the words 

“left” and “right” are most significant in the definition of identity and she/he 

understands left identity as a left side of equation a * e  = a = e * a  and the right 

side respectively defines right identity. In general, the concept of right or left 

operations is new to the students, while an identity element is the concept they

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



studied before but in different settings. The students are used to work with the 

notions of “right side”, “left side” only when working with equations. Moreover, 

addition and multiplication, as “standard” and well known operations, are 

commutative and the addition/multiplication from left or right side did not make a 

difference. Further in Figure 9, the student is trying to find an operation which 

would satisfy problem’s condition. The response suggests that she/he confuses 

subtraction with division: when writing 7 - 1 = 7 ,  the student really means 

7 -r 1 = 7. Alternatively, the student may be confusing an additive identity 0 with 

multiplicative identity 1. Then her/his line 7 - 1 = 7  really means 7 - 0  = 7 and “1” 

in the first equation is the symbolic representation for an identity. Unfortunately, 

we see that the student left the problem unanswered which made a further 

analysis impossible or speculative.

Note, that in this problem it was not asked explicitly to check if the 

operation is binary. It is possible that for the students the notions of a binary 

operation and operation in general are not the same. I have mentioned that 

during the first interview, when asked to state the definition of a binary operation 

almost all of the interviewees recalled that the set must be closed under a binary 

operation, defined on it. Perhaps the sentence “binary operation” sounds like an 

alarm for the students to check for closure, since they are in the process of 

learning what a binary operation is. Nevertheless, the term “operation” is a well 

known and familiar term. It suggests thinking of familiar operations - overcoming 

set restrictions. If the problem is asking to check if the set is closed under the 

operation, the students would not miss the part about closure. However, for many
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students closure is still not a part of a binary structure as is in the case of 

Problem 2 (Quiz 1) where students need to define an operation on Z. As I 

observed, the students are not concerned with the result of the operation. For 

them to “give an example of an operation on Z ’ means taking two elements of Z 

and perform an operation of students’ choice. In this quiz, 14 out of 19 students 

thought of either subtraction or division, while 5 out of 14 decided that division is 

the required operation. The excerpts showed that some students do not 

recognize the algebraic structure -  a set together with its operation - as a whole. 

They separate static object -  a set, from structural or operational part -  an 

operation on the set.

Interesting response

The uniqueness of the following response is that the student ignored the 

hint and did not consider familiar operations:

2. Give an example of an operation on 2 which has a fight identity but no left identity, [Hint: ‘ '
You've known about this a very long time!j

k  ~ e, IU«h w«. W t  <k

Figure 10. Student’s definition of binary operation with special property on Z.

As I mentioned above, the hint gave the students a clear idea what 

operations to consider as candidates. However, Figure 10 shows a rather 

unusual way of thinking. There may be several reasons for that. Perhaps the
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student did think about familiar operations but decided that none of them would 

work: both addition and multiplication are commutative; division does not satisfy 

closure condition. Possibly, subtraction was a suspect in terms of closure but the 

student did not want to make a mistake and tried a new approach. Another 

possibility may be that the student really understands the definition of a binary 

operation and appreciates its “freedom”: he could actually create an operation to 

satisfy the conditions of problem 2, without tying it to the familiar operations. 

Note, that in the student’s solution the concept of closure is secured -  the result 

is always a member of an ordered pair from Z. The last observation suggests that 

the student is, in fact, thinking in terms of a binary operation in connection to the 

set it is defined on. For her/him these notions are inseparable and the 

understanding of a binary structure is complete.

Quiz 2

Quiz 2 concentrated on students’ understanding of a concept of subgroup. 

The analysis of the quizzes revealed several interesting aspects of students 

reasoning about groups and subgroups. Since groups and subgroups are not 

only related as sets but also connected by a binary operation defined on the sets,

I found a great deal of overlap between categories I discussed previously and 

problems I found in this quiz.

Set -  operation relations. Groups and their subgroups

A group (as well as a subgroup) is, first of all, a binary structure and the 

understanding of relations between the set and the operation defined on the set 

is crucial for understanding of the concept. For many students this is a huge
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obstacle. Analyzing this quiz, I distinguished several types of students’ 

understanding of binary structures and “set -  operation” relations in particular. I 

grouped them in three categories. First, some students do not consider an 

operation in relation to the set at all (or the other way around). For this group of 

students it is enough to have a set and for them the operation does not really 

affect the elements of the set; or, the student could be concerned with the 

operation but ignore the set completely. Second, for some students it is difficult to 

decide what operation is plausible for the given set. For this group it is 

problematic to understand that there is only one operation defined on a binary 

structure and as soon as the operation is defined it cannot be changed. Finally, 

the third group is formed of students who comprehend a binary structure as a 

set, closed under its operation but still do not completely understand properties 

that the operation assigns to the set. In other words, they have difficulty 

understanding closure of a binary structure. This misunderstanding implies 

difficulties in reasoning about properties of a binary structure that depend on both 

operation and the set.

Students’ responses to the questions about groups and subgroups 

supported the partition I described above. Consider the following fragment:

** J|" J> 4 C
OfP rn.1 *. ( ’ (p.

Figure 11. Student’s definition of a subgroup.
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The student carefully described what a subgroup is and how it is 

connected to the group. However, the connection is viewed only in terms of 

operation *. It looks like the student understands that a group and its subgroup 

have the same operation, since “a subgroup of G is closed under the binary 

operation of G”. Nonetheless, she/he only connects a group G and its subgroup 

H via the operation and identity element. The student’s understanding of a 

subgroup is rather unclear. The word “subgroup” suggests that it exists somehow 

“inside” the group. Perhaps, to the student, the term “subgroup” implies 

automatically that a subgroup is a subset of the group under the group operation.

I found 2 responses (out of 5 “problematic” responses) that address the same 

issue.

Figure 12 illustrates the example from the same group of students 

(group 1). This time, however, the student misses the “operational” part of a 

subgroup definition.

£\. ©Sp Cl £y  ^  S V & J &  4  0 ~

s^<>) 4  Is R ie f  4  i j

t n t y e -  tr k it ty  cu-4  5  G t jn h m  fiv '
t i l l  Oe&A

Figure 12. Missing “operational” part in subgroup definition.

In the excerpt the student connected a group with its subgroup in terms of 

elements but did not mention how they are connected operationally. I think that 

by saying that A is a group, the student somehow tried to indicate that the 

operation on A is defined, but still the relations between this operation and a
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group operation are not described in any way. This response suggests that the 

student possibly does not perceive a binary structure as a set together with the 

binary operation. It implies that she/he would not be concerned with both, set and 

operation, connections between a group and its subgroup. It is possible, that the 

student does have a good sense of what a binary structure is but does not think 

that a group and its subgroup must have the same binary operation. In this case 

it is important that a subgroup is a subset of the group but the operation may be 

different.

Figure 13 (definition of the General Linear Group GL(n, Q)) illustrates one 

of the responses with a similar problem.

A l l

V* *1-* *0+1 I f t :

Figure 13. Student’s definition of the General Linear Group GL (n, Q).

Out of 17 students’ quizzes I have analyzed, 13 happened to have this 

problem -  ignoring the operation. In Figure 13 the student is trying to recall what 

the elements of a group GL(n, Q)\ are; however, she/he does not think about an 

operation, while the question is to define a general linear group. It appears 

possible that the student’s group concept formation is excluding the operation 

part. It is only important to describe the elements of the set GL(n, Q) in this case. 

Perhaps for the students who gave similar responses, the operation was given 

for granted, since GL(n, Q) was presumed to be a structure rather then a set. In 

general, only 2 out of 17 students did not ignore the operation part and described 

GL(n, Q) as a group of all invertible n by n matrices with entries from Q, under
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the ordinary matrix multiplication. Other students (12) struggled with the 

description of the set and omitted the operation completely. Two students left the 

problem blank. One of the responses, however, I could not relate to any of the 

previously described groups. I found it rather interesting and worth considering:

f f l / l  ? r \  C  * * ,  ^ 0

Figure 14. Student’s definition of the General Linear Group GL (n, Q).

Note that the words “involves the use of matrices” suggest that the

student, perhaps, understands the group as a process. She/he still did not

identify the operation and did not describe the set explicitly, but defined the

binary structure via its elements which are “involved” and “used” somehow.

The following responses give support for the second category I described.

The example shows the confusion students often have about an operation

defined in a binary structure. Out of 17 quizzes, 4 papers demonstrated an

uncertainty when dealing with a question which operation to use.

Question 3. Recall that nZ is precisely the set of integers which are multiples of 
the given integer n. Use the “subgroup criterion” to determine whether or not the 
set 2Z u  3Zis a subgroup of (Z, +)
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Figure 15. Student’s reasoning about subgroups. Confusion with operation.

In this problem, the group is defined to be (Z, +) -  the group on integers

under addition. We observe that, while working on the problem, the student

suddenly switched from addition to multiplication. Note that the switch took place 

as soon as the student started to think about identity element. I could think of 

several reasons for that. Perhaps the student recalled the definition of an identity 

element (Equation 1) and interpreted the symbol * as multiplication.

a * e  = a = e * a  (1)

Moreover, some books, as well as most of mathematicians do not use a

symbol between elements of a set at all (write it as ab). So, the notation may

suggest using operation of multiplication. In the beginning the student seems to 

be more concentrated on the defined binary structure but later in the process 

she/he “looses” the structure and concentrates on elements of the given sets. 

Another reason for the confusion could be that the symbolic representation of the 

structure is misleading the student. The set, the problem describes, is given by
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2Z u  3Z where each element is a multiple of 2 or 3. In other words each element 

is described via multiplication of an integer and 2 or 3: x = 2zorx = 3z. Thus, an 

element of the given set is not a “static” object, but rather a process -  the result 

of multiplication of an integer by 2 or 3, and, while the group operation is still 

addition, the student switched to multiplication when he needed to think about an 

identity element. Note that in the first part of the solution the student 

wrote a + b = 2n + 2n = 4n = 2 • 2 n . So, the problem of addition is now the 

problem of multiplication. After that the student started to use multiplication. From 

this point, it is clear why the student chose 1 to be an identity and her/his 

conclusion about 2Z u  3Z not being a subgroup of (Z, +) is accurate (1 is not an 

element of 2Z u  3Z).

As students learn more abstract algebra objects, the problems become 

more and more abstract. By getting more abstract I mean that the problems 

include more and more abstract objects the students must analyze while solving 

them. Previously they only needed to think about one or two concepts to solve a 

problem. In the problem above, however, the students need to understand a 

concept of a binary structure, group, subgroup, identity, inverse elements, etc. 

Moreover, it is not enough to know the definitions; the students must understand 

how to apply them to the concrete objects defined in the problem.

The next example illustrates similar difficulty:
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Figure 16. Example of the change of the operation

The student finds it confusing to choose the operation when working with 

a “subgroup criterion”. When analyzing this fragment I noticed how the student

formulates the criterion: x, y  e Z and x y '1eZ. It looks like the student 

misunderstands the criterion conditions. Perhaps, the student is determined to 

see if a certain product of elements from 2Z and 3Z will belong to Z. Obviously, in 

the student’s view, expression xy_1 is a product of two elements. It suggests that 

the criterion is isolated from the defined operation. After the student switched to 

multiplication, it was reasonable for her/him to argue that 3 Z 1 was not an 

element of Z and from the argument it followed that the given structure was not 

closed.

Note that the student correctly solved the problem, using the definition of a 

subgroup. After this, however, the student noticed that the problem asked to 

determine if a given set was a subgroup of (Z, +) using a “subgroup criterion”. 

From the excerpt it looks like the student got confused by the criterion and could
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not properly prove the statement once again. I have noticed that for some study 

participants it was always easier to use definition while others found the criterion 

more useful since sometimes it made the proof shorter.

In my opinion, Figure 17 also supports the second category rather than 

the first:

At first it may look like the student is missing “operation” part and the 

response seems to be close to the one in Figure 12. Flowever, I think that the 

student understands the role of operation in a binary structure. She/he also 

seems to understand that a subgroup is connected to the group operationally. 

However, the student still finds it difficult to determine what operation she/he 

should think of if no operation is given explicitly. The phrase “a subset of G that is 

closed under G” suggests that the student perhaps thinks about the operation of 

G. Since the operation is not given explicitly, she/he chose to say that a 

subgroup must be closed under the whole binary structure. However, it appears 

possible that the student does not perceive operational connection between a 

group and its subgroup and the phrase “a subset of G that is closed under G” is 

just an attempt to recall a correct definition without understanding the meaning of 

it.

JK'Of &  / /

/ t »7 ; /

f r  l _ . „/
c  . /

>) theC K N B R A L  UNS3AK C ltOOf* G L (n ,Q )

Figure 17. Student’s definition of a subgroup. Missing “group” part.
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Finally, sometimes students think about a subgroup as a subset together 

with an operation of a group. However, they ignore special conditions which an 

operation must assign to the binary structure.

ft a l  W C i$  a. «aeb n o n e ^ p fu  t  14

SaCk ^  H  » 3 C & W
U  w d  6* v  s o  f> e rc c h  o r t .

Figure 18. Missing “group” part example.

In Figure 18 the student mentioned closure under the operation of G. The 

student understands that a subgroup H is also a subset of G. However, it looks 

like she/he is not sure what kind of structure H is. Probably, for the student, the 

fact of being closed and being a subset gives H a required structure and in the 

student’s opinion it is a group without any additional conditions.

In general, the students’ responses for group/subgroup questions were 

rather problematic. I think that a subgroup concept formation is more complicated 

since it involves many other concepts. The responses showed a correspondence 

between students’ understanding of a binary structure and a subgroup.

Exam 1

The exam covered the following concepts of group theory: binary 

operation, identity and inverse elements, and isomorphism. The analysis of the 

responses revealed similar problems in students’ understanding of set-operation 

relations, previously discussed. In addition, I observed students’ difficulties 

working with such important concepts of group theory as identity and inverse 

elements.
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Generally speaking, the concept of identity element is familiar to students.

Indeed, from early grades the students know that adding 0 to any number does

not change the number. Similarly, multiplication by 1 does not change a number.

However, in the context of group theory, the identity element is a more

complicated and structured concept. In the attempt to learn the concepts, it is

important to understand the relations between an identity element, the set it

belongs to, and a binary operation defined on the set. Another problematic issue

of the students’ responses was the use of quantifiers. In many cases the

students did not use quantifiers at all; some misplaced quantifiers and by all

means changed the whole logical construct they described; finally, some

students used one quantifier instead of another. I want to discuss the problem of

quantifiers first since it seems to have a strong connection with later responses.

Identity -  quantifiers

Understanding of quantifiers is crucial in the context of abstract algebra.

Very often students find it difficult to decide why and when they should use

quantifiers. Sometimes it is purely a symbolic problem. It is not a requirement to

use quantifiers symbolically, and the students are simply not used to adding

quantifiers into their responses. Moreover, most textbooks do not use quantifiers

symbolically but rather in a descriptive manner: For example in Fraleigh (2003),

3.12 DEFINITION (Identity Element for *). Let <S, *> be a binary structure. An 
element e of S is an identity for * if e *  s =  s *  e =  s for all s e S. (p.32 )

In some responses the incorrect use of quantifiers in definitions later 

affected problem solving. Consider different students’ responses to the question: 

“define an identity element in a set with binary operation * ” in Figure 19:
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Figure 19. Illustration of V3 -  3V problem in identity definition.

In Figure 19 the student is saying that for all elements in the given set (S, 

*), there exists an element e, such that e *a  = a *e  = a. Clearly, the response 

states that there can be more then one identity element in the set, in fact, there 

could be infinitely many of them, if the set is infinite. It looks like the student is 

thinking that if a binary structure has an identity, then the identity must exist for 

every element of the set. Assuming that the student placed the quantifiers in 

such a way consciously, I present several explanation of possible students 

reasoning about the notion of identity. On one hand, the student may understand 

that there is (if exists) only one identity in a binary structure. Then the way she/he 

used the quantifiers stresses that this identity element must work for every 

element. In this case the quantifiers play a significant role in student’s definition 

of identity while the order of quantifiers is not important and does not change the 

meaning of the definition. On other hand, if we take a look at Figure 19 and 

interpret it literary, it would mean that for the student an identity element depends 

on elements of the set, or that for every element of the set there exists a special 

element, called identity (e), with a certain property. In this case, it does not matter

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



how many distinct identity elements a binary structure has, it is important that 

every element has one. Thus, generally speaking, the statement “3V” is being 

replaced by “V3”. It could mean that the student does not understand and, thus, 

ignores the change of “dependent/independent” element; or, in contrary, stresses 

the dependence of identity element on set’s elements. Students may not fully 

understand the meaning and strength of quantifiers. It may not occur to them that 

the order in which they write the quantifiers can change the meaning of a 

mathematical expression. In this case, the student’s way of thinking in Figure 19 

is not different from the other student’s response in Figure 20 and the mistake we 

observe in Figure 19 is nothing else than misplacing symbols (quantifiers).

*3e *:Sy s t  V<=v f;> e - rcj

Figure 20. Correct order of quantifiers.

Note, in Figure 20 the student does not really give a definition of identity 

but rather states the axiom (group axiom) which we need to check in order to 

show that a binary structure has an identity element. I have noticed that students 

often do not distinguish definitions from theorems, properties and axioms. It 

suggests that the students often keep in mind only the “formula” part of a 

definition or property, theorem, axiom and do not try to analyze the descriptive 

part.

Nevertheless, coming back to Figure 19 and recalling that “V3” is a logical 

construct for the notion of inverse, it is possible that the student confuses the
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concept of identity and the concept of inverse. Unfortunately, there are not 

enough evidences in the data at this point to verify or contradict this assumption.

Analyzing the response in Figure 19, I should mention that the problem 

could be caused by students’ lack of ability to use quantifiers. In this case, the 

student uses quantifiers because she/he probably has seen others (textbook, the 

instructor or peers) did so and for her/him the statement “V3” or “3V” does not 

make any difference in statements as if the student would not use quantifiers at 

all. The students are not required to take any mathematical logic courses except 

“Mathematical Proofs” prior to the abstract algebra course. However, quantifiers, 

such as V (for every, or for all) and 3 (there exists), have been used in many 

classes they have taken before. The textbook uses the “quantifying words and 

phrases only, there exists, for all, for every, for each, and for some. (Fraleigh, 

1998, p.5)”.

Figure 21 also illustrates disregardful use of quantifiers:

k  A in  am. a. 5

Figure 21. Response with misplaced quantifier.

Again, it is not clear why the student used quantifier this way. If we accept 

the assumption that a represents “any” element of S and “e” is reserved for 

identity, then it looks like the student may think that there is more then one 

identity element. So, if there are several identities “e” in S then they all must 

satisfy the equation. This definition cannot be accepted as correct and accurate;
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however, it does not really contradict the concept of identity. In the textbook used 

for the class, the theorem about uniqueness of identity is coming after the 

definition. However, it is possible that the student did not use the symbol “V” in 

the sense I described above. She/he perhaps only meant to say that e is also an 

element of S and the quantifier does not play any role in the definition.

While reading students’ responses, I was surprised by the fact that many 

students used quantifiers in their answers. In spite of the fact that many of them 

did not use quantifiers in an appropriate way, the responses show that the 

students started to appreciate the role quantifiers play in the content. In the 

previous section (Quiz 1) universal quantification of properties or definitions of 

binary structures was a major problem. In Exam 1, many students used 

quantifiers to show that an identity is a universal quantification:

£) e m . d i t f  *S w&yv *
 ̂ ^  I S % €

Figure 22. Illustration of student’s use of universal quantifier.

However, the problem of universal quantification still persists in some 

responses:

b) m m  k . m  s K m *,, , r i ,«*•„« i f  « s„
j  b • + , t t 0L -  CL*t ~

Figure 23. Missing quantifier.

As we can see the student did not specify at all where the element “a” 

comes from. I think that the student was very concentrated on recalling the
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equation, which describes identity property and she/he simply ignored the fact 

that there is no information about “a”. Moreover, I think that the fact that the 

student did not use quantifier “for every” could in fact mean that “a” is “any” 

element of the set S, not a specific or the only element of S which satisfies the 

property above.

As we can see, the problem of quantifiers continues through the students’ 

learning process. If in the first set of students’ work (Quiz 1) the main problem 

was “to use or not to use” quantifiers, then in the second set (Exam 1) the 

dilemma is more complicated: “to use or not to use and if to use, then how”. 

Identity -  uniqueness

The problem of quantifiers, observed in the responses, suggests that 

some students do not see an identity element as a unique element for a binary 

structure. When the students were asked to define an identity, all the students 

wrote some form of Equation 1. However, looking at the equation it is difficult to 

say if the students understand that an identity element is unique for every binary 

structure. The use of quantifiers clarified some responses, while made others 

even more confusing. In the next problem the students were asked to find an 

identity, using the definition and properties of identity.

Consider first the following definition of identity element:

y e  t  ■'•f s  - tu .4  K<u 4Ux -P>l(ou,y

prop-e/\4-<3 kf £  S  - e, ck — ex. c..

Figure 24. Student’s definition of an identity element, stressing its uniqueness.
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Note that the student explicitly added to the definition that an identity 

element is unique. The statement about uniqueness, however, requires a proof. I 

think that sometimes students want to represent all their knowledge about an 

object they define, although a uniqueness part is not a part of the definition and it 

needs to be proven. Nevertheless, it is possible that for the student uniqueness 

of an identity element is obvious. Figure 25, however, contradicts the 

assumption. Consider the same student’s response to the following question: 

Define a binary operation * on Q* by the rule:

a* b = -T^k(abf

where k is an integer. For which value(s) of k will (Q* * )  have an identity 
element, and what will that identity (or those identity) element(s) would be?
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Figure 25. Student’s solution for identity.

The student is looking for an element of the given set with the defined 

operation, which would satisfy Equation 1. She/he is solving the equation for e. 

When the result is found the student is analyzing it. She/he noted that the result

aH)
e = — —  must be satisfied by Vae Q*. Universality of identity element is

d

explicitly stated in the definition exemplified above (Figure 24). With this 

condition, the student concludes that k must be an odd number, since otherwise 

it would not work for negative elements of Q*. However, for such k, the result
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would still depend on the element a. In other words, the element, which the 

student found to be the identity, could only satisfy Equation (1) for a single 

element -  a itself. Note that in this case we observe misunderstanding of 

correspondence of quantifier “for every” in the identity definition: for the student, 

“for every a from Q*” means that every a from Q* must satisfy the equation for e, 

while the actual meaning is the opposite -  the element e must satisfy Equation 

(1) for every a from Q*. So, together with making sure that every element of Q* 

would satisfy the formula for e, the student had to make sure that Equation (1) is 

satisfied by this e for every a from Q*, instead, the conclusion is based on 

formula for e only. Thus, in this problem, the identity element depends on the 

element itself and on the operation, defined on the set. It looks like the student is 

losing the uniqueness part in her/his response, while it is added to the student’s 

definition of identity. Due to these controversial responses, it seems like the 

student does not connect a uniqueness of identity element and its independence 

of other elements of the set. Possibly for her/him the uniqueness is corresponded 

to an element of the binary structure. In other words, for every element of a 

binary structure there is (if exists) a unique identity element which satisfies 

Equation 1. If we look back at the definition, the final explanation I gave would 

look opposing. However, I think that the way the student used the definition to 

find an identity element in the problem above suggests that the assumption 

makes sense. In general, I have found 3 similar responses to the problem when 

analyzing Exam 1. However, only one more exam showed the disagreement 

between the solution for this problem and student’s definition of an identity
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element. In Figure 26, the student’s statement about uniqueness of an identity 

element is not included in the definition at first.

t w ,  O  x ,  ’ * 4 M % t W J  f i r "'■* vrv* c -a

* C '  e, 0, ; 0
•*%

^ c,,‘ n «At»vhf,f ^Utw.vt !W , .1

- ^ U i  to  e w .j ew,-.,:,,! s.

Figure 26. Student’s definition of an identity, stressing uniqueness.

By the last sentence the student perhaps wanted to clarify the definition, to 

show more details, or to represent her/his own understanding and knowledge. 

So, together with the definition the student gives additional information, which is, 

however, contradicted by her/his response to the next problem:

l-x * b -  JL . v •, *  5
(fxb)te

eUvvw^i1 t\ % e * e 'it <k ~
< ? > . * £ -  JL. S cx
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^  ^  W V .ti  t d ( > n  - f  I f  v ^ -V  ♦ I ' l  *A )V CA 1 I V o l  L, -f  I

' ^ C £ j p i  VC ~ O  f  I t  4  . T H .4 1 Ra\ jo  \  V K |, €' t-C £f. *

*T? i  ̂-
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Figure 27. Multiple identity solution.
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In the response the identity element again depends on a, which means 

that there could be more then one identity element. Moreover, in this case even 

values of k would not work for negative elements of Q*. Most likely the student 

did not use the whole definition of an identity element during problem solving. 

Perhaps the definition and uniqueness theorem did not come to the student’s 

mind, since the problem was not asking to check if there is an identity explicitly. 

Equation (1), however, is used in both cases and I assume it is considered to be 

the most important part of the identity definition. Equation (1) gives the problem 

an algebraic (computational) solution and it was treated as an algebraic problem 

which did not require more analysis then finding a domain for A:.

The “definition -  problem” sequence in Figure 28 does not look 

controversial.
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Figure 28. Student’s definition identity and its application.

Definition of identity, the student stated, claims the existence of an 

element e which for sfrom S would satisfy the condition s * e  = s o r e * s  = s. The 

definition does not specify at all how an identity element is related to the set 

elements, other than s (missing quantifier). In this case, in spite of the symbolical 

problems (I assume the student is taking natural logarithm of both sides of 

equation since she/he unconsciously saw e as an exponent, which also is 

interesting and would require more investigation in the future), the student solved 

the problem without contradicting the definition above. She/he proved that there 

exists an identity element which satisfies Equation 1 for some element a.
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In general, only one student states explicitly the fact that identity cannot 

depend on the element a.

k. &  i
- •  C *  =  = - i ra  or-

C j W  tndapti*.d ion+  0 /  Ot 

&  ' T K ' i  1 3  ;  U e .  f c r  J L  a=  —  i .

Figure 29. Independent Identity element.

However, the student’s definition of identity I analyzed earlier (Figure 19) 

was not exactly correct. The definition suggested the opposite conclusion for the 

problem above: VaeS 3es e S implies that identity element depends on a. The

disagreement suggests that the student is having difficulty understanding 

quantifiers, rather than the concept of identity in a binary structure. By adding a 

subscript “s” to identity symbol, I assume, the student wanted to stress that the 

identity e is a property of a binary structure and it is independent of an elements 

of the structure.

Set -  operation relations. Closure

The analysis of Exam 1 revealed that the problem of closure of a binary 

structure under its operation still persists. Students’ responses show 

misunderstanding of the concept of closure or simply overlooking this part of a 

binary structure definition. In Figure 25 and Figure 27, the students were so 

concentrated on finding an identity element that they missed the important and 

unfortunately more “global” problem of closure. While defining an identity element
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of a binary structure all the students wrote that e, identity element, is an element 

of a binary structure. However, in both Figure 25 and Figure 27 the students did 

not think about a binary structure, element of which e is. Obviously, the obtained 

result does not satisfy the definition of identity but also does not always belong to 

Q*. When a binary structure is defined, it looks like the students combine (all or 

some) elements of the binary structure by using the defined operation but not 

always checking if the result of such combination belongs to the binary structure. 

Moreover, in Figure 25 I discussed that the student tried to make the formula to 

work for all elements of Q*, while she/he completely ignored the result of the 

formula -  the identity element per say. It looks like the student did not connect 

the identity element and the binary structure. Only one response shows explicitly 

the student’s reasoning about the connection between the identity element and a 

binary structure (Q*,*), given in the problem:

The problem that the student is trying to solve suggests that the idea of 

closure is more or less clear to the student. I also noticed that when the question 

is to define a binary operation or structure (such as group), students’ responses 

include the part about closure: a result of the operation performed on two 

elements of the binary structure must belong to the set. However, the responses

Figure 30. Consideration of the closure.
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to other questions (Figure 25, Figure 27) show that the identity element is not a 

candidate for closure consideration. The last assumption suggests that students 

sometimes do not consider an identity element as an element of the set. This 

could be the reason why students often say that 1 is an identity element for a 

structure that does not include the element 1; or conclude that a binary structure 

is not a group since 1 does not belong to it. So, in a way, identity element is more 

connected to the operation of a binary structure rather then to the set.

Concrete examples

When solving problems in mathematics, it is natural to try to lower a 

degree of mathematical abstraction. It did not surprise me that some of the 

students found it difficult to reason about an abstract set or binary operation. 

Often they need to work with a couple of “concrete”, more familiar examples 

before they actually solve a problem in a more general form. However, I was 

surprised to find some responses which illustrated the reverse way of thinking. In 

the following excerpt the student felt that there is a need for “more thoughts” after 

she/he already solved the problem and had the answer:
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Figure 31. Student’s reasoning with concrete examples.

The solution demonstrates that the student solved the problem rather 

intuitively, although the conclusion is correct. There is no elaboration on the 

result that shows the student’s analysis of the binary structure closure with 

respect to the result or identity uniqueness. It is possible that the student could 

not confirm the result rigorously but the concrete examples made her/him more 

confident that the final conclusion is right. Note that in the example the student
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began with k = 0 and for a = 3 got e = 1/3. The fact that the student did not 

consider this answer as a correct one advocates her/his understanding of identity 

uniqueness for a binary structure and its independency of an element a.

In the following excerpt, however, the turn to concrete numbers was rather 

misleading:

b  =  ^ * * 2 :

X  t c  C  =  X  *  €

S ~ 3  — So ■3̂  3

*i  *
*

a ^

\ 2-* Co**
■Ju * *  *•

I ^  z   ̂ ^

 ___  . V- - o  Vt-^o
j_,.y .if,_ ?«■%„,a

Figure 32. Misleading ’’concrete” argument.

It looks like by switching to concrete numbers, the student is trying to 

make sense of the problem, to understand the operation. I think that her/his last 

argument is rather interesting. First, note that from the beginning the student 

presumed that b = 3 is an identity. At this point it looks like the strategy is to find 

an identity by simply trying several pairs of numbers. I think, however, that the 

original understanding of an identity is rather ambiguous; even though Equation 1
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is stated correctly. The student is trying to find ke  Z, such that it would satisfy 

equation }2 = 6k - The next row suggests that she/he realized that it is not

possible and tries a different pair of rational numbers. She/he chose a pair (1, 2). 

There could be several reasons for that: first, the presence of the number 1/4 in 

her/his previous equation may have affected the choice; second, she/he might 

have chosen to work with numbers (1, 2) since they looked simple to the student; 

finally, the student could simply presume that 1 is an identity, since the operation 

“star” is defined in terms of multiplication. In the last case the choice of 2 is just 

random. Note that the last two equations both have 1 on the left side of the 

equality sign. That could mean a simple misinterpretation of the definition of 

identity. Also, the student might think about the inverse element instead. The last 

equations have a solution for k in Z, so the student concluded that k must be 0, 

and 1 is an identity. Unfortunately, the student did not come back to the problem 

to verify her/his answer for the general formula and it is difficult to say if the 

switch to concrete numbers confused the student or the problem originally was 

not clear at all.

Identity element -  group axioms

Identity is an important concept of abstract algebra because one of axioms 

in the definition of a group requires a binary structure to have an identity, in order 

to be a group. However, during the data analysis I have noticed that some 

students did not distinguish between the definition of identity and one of the 

group axioms. The following example illustrates the confusion:
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Figure 33. Definition -  group axiom controversy

I think that the reason for the uncertainty is that both definition of identity 

and “identity” group axiom use the same equation - Equation 1. As I discussed 

earlier, the “algebraic” part of both mathematical statement seems to be the most 

important part for the students and the difference between the definition and the 

axiom could be really veiled for them. Students use the definition of identity when 

they need to figure out if a given element is the identity of (S, *) or not. During the 

problem solving activities, students are usually dealing with problems including 

“determine if the certain set has an identity” or “find an identity...”. In other words, 

they are asked to check IF there is an identity and what element of the set is the 

identity. This could explain the confusion. I do not think that it automatically 

implies misunderstanding of an identity element, but rather misunderstanding of 

the particular problem’s conditions and questions. However, it could imply even 

stronger misinterpretation of problems and dramatically affect the way of thinking. 

The next excerpt (Figure 34) illustrates how the student is trying to answer the 

question while using the incorrect concept in the solution process:
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Figure 34. Student’s reasoning about binary operation starting with group axioms.

The attempt to check for commutativity and associativity of the defined

operation is noticed in several responses. I think the reason is that an identity

element is not considered as a concept itself but rather a part of a bigger concept

(group) and cannot exist without some special restriction on a binary structure.

The textbook (Fraleigh, 2003, p. 37) defines a group in the following way:

4.1 Definition. A group <G, *> is a set G, closed under a binary operation *, such 
that the following axioms are satisfied:
G1: For all a,b , c&G,  we have 
{ a * b ) * c  = a * ( b * c ) .  associativity of *
G2: There is an element e in G such that 
e*x = x*e = x. identity element e for *
G3. Corresponding to each aeG, there is an element a' in G such 
that
a'*a = a* a' = e. inverse a1 o f  a

It is possible that for the student a binary structure can have an identity 

element if and only if the previous axioms (G1 in this case) hold. So, without 

checking for associativity, the identity problem would not make sense. I guess,
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for the student, the fact that the operation is not associative does not affect 

existence of identity.

The definition of an identity in students’ minds has a strong connection to 

commutativity of an operation. Obviously, if the operation is commutative and a 

binary structure has an identity, then it must be both right and left identity. This 

observation may suggest that problems about identity require checking 

commutativity of operation first. However, the idea of commutativity may lead the 

student to the wrong conclusion about the existence of an identity element. Even 

if an operation is not commutative it is still possible to have a two-sided identity.

Exam 2

The second exam was centered on the concepts of a subgroup and a 

cyclic group. At this point the students seemed to feel more comfortable dealing 

with binary structures. Some students, for example, did not write a binary 

operation as a*b  in the responses but used the notation ab to represent an 

operation, without automatically assigning multiplication to it.

In this section I discuss students’ reasoning about subgroups and 

students’ understanding of a cyclic group (subgroup). At this point the students 

have to deal with a lot of new concepts including the order of a group, generator, 

and “degree” in the context of group theory. New theorems were introduced. The 

data suggested that for some students it was important to see all the elements of 

a subgroup to understand it and its connections to the group, while some 

students used the new theorems and avoided listing all possible outcomes. 

Sometimes it was necessary for the students to choose a concrete example and
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then consider the general case. The problem of quantifiers still persisted in 

students’ work. Since problems became more abstract and structurally more 

complicated, the connection between quantifiers and students’ reasoning about 

the problems became even more significant. The use of quantifiers considerably 

affected students’ responses. Because of the complexity of the problems, I 

decided to analyze the exam problem by problem rather then category by 

category.

Analysis of Problems 1 and 2

Problem 1: Give a definition of a cyclic group that is as complete and 

accurate as possible.

Problem 2: Exhibit all the subgroups of (Z12,+12J, and indicate which of 

these are subgroups of others of these.

In general, students easily accept the concept of a cyclic group. I 

observed that they showed good understanding of its elements. It also looks like 

the students understood the connection between the elements of a group and its 

generator. However, I think that in some cases their understanding of a cyclic 

group was rather intuitive. The students tried to adjust the concept of a cyclic 

group to the ones they had learned before. Perhaps, for some of them, reasoning 

about a cyclic group is more or less like observing patterns in middle school 

when students are studying functions. I think that is why some responses (as in 

Figure 35) were intuitively descriptive:
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^  A _ cT ' lc- -  3 " * r  i w * -
'A Cl P ^M enn w id e n  <S tr e^er-^c, y

Figure 35. Student’s description of a cyclic group

This response cannot be considered as a definition of a cyclic group, since 

the student did not describe how exactly the “elements repeat in pattern”. It looks 

like the student tried to express the idea of a cyclic group.

In most responses, however, I observed more symbolical approach to the 

definition. All but 3 responses imply that the students are familiar and 

comfortable with the symbolic construction of a cyclic group (G = (a) and

G = {an,n<= Z}) while there is evidence of obstacles in understanding of its 

elements (Figure 36).

Cr u i A r . j f  of ^  ^  c  ,  t

\% O- -v-er Qt f “Hi®, t  ^  ̂  ^  ^

Figure 36. Student’s definition of a cyclic group.

The student did not indicate if the element a belongs to the group. 

Perhaps it is obvious for the student. She/He states that a is a generator for G 

and G = (a). It looks like the student is confident that a belongs to the group. Out 

of 18 students, 9 did not state explicitly that a is from G. I still think that for the 

most students a, in fact, is an element of G. It is simply too obvious for them to 

write it down, since no other set is involved in the definition. I assume that the 

students’ reasoning is based on the symbolic representation of a cyclic subgroup

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G = (a). The representation stresses that group G is generated in some way by a 

certain element and this element cannot be considered apart from the group.

Nevertheless, understanding of the fact that a is an element of G is not 

enough for understanding a concept of a generator. Consider the following 

response:

b) ft g /o u f  C, is cycUt  ,+ ,‘s by an  U t n u . ^  a. ,v i c

/.(. cn- [ a  Cn a a y o u f  a a  , * t c7.

Figure 37. Student’s definition lacking quantifier.

From the response it looks like any element of our choice a of G is a 

generator. Choose one element of G = Z 12, say 4, and, by the definition above, 

Z ]2 is not a cyclic group since 4 does not generate Z 12. I see two possible 

explanations for the case. The first one is due to lack of understanding of 

quantifiers. When we use a definition to determine if a group is cyclic or not, we 

need to show that there EXISTS an element such that G = (a). The student may 

have not formed the concept of a generator yet and does not understand its 

“existence” in the group. If every element of a group does not generate the 

group, then it is not cyclic. Second explanation is coming out of a definition of a 

cyclic subgroup of a group. Cyclic subgroup is a subgroup which is generated by 

an element of G. Moreover, any element of G is a generator for a certain cyclic 

subgroup and it looks like the definition above satisfies this concept. The above 

response could be considered an example of confusion between a cyclic group 

and a cyclic subgroup. These concepts are very close to each other and very
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easy to confuse. Every cyclic group has only cyclic subgroups whereas a cyclic 

subgroup is not necessarily a subgroup of a cyclic group. The analysis of 

problem 4 will provide more data support for the assumption. Actually, this idea 

was suggested by several students’ responses:

f l')  ') f_f ! d>, I  y'C I \ C c». fB  j  ^  ' -p ( j  \ S ^  -J ^

 ̂ A € f%cr \ .e.i Cr iv(K 1W~4- **'>. ~ Cr - IV o

u i Q  r ,  \ \ \  /jy f  (-■» fW  v  y* C \ • C ^

H  " ,■ a*1!/!. Q .  s. i S <k  c 'U * H y  a.K . i S -A ^ns-^

Of*" (r UV,>̂  ir - H So I t  ~ * -̂5 .

Figure 38. Defining cyclic group as improper cyclic subgroup.

While describing a cyclic group and its generator, the student probably 

recalled the definition of a cyclic subgroup. It might have confused the student at 

first but her/his last sentence shows how she/he made sense of both cyclic group 

and subgroup. Thus, for some students the difference between a cyclic group 

and cyclic subgroup of a group (not necessarily cyclic) is not clear. This 

uncertainty could be a result of misunderstanding of the role of generator: in the 

first case it must EXIST and in the second case ANY element of a group 

generates its cyclic subgroup. Again we deal with quantification. This time 

however, the situation is different from previously considered quantifier problems. 

Previously I observed how use of quantifiers affected the concept formation and 

now we see how the concept controls the quantifiers.
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The analysis of the second problem cannot be distinguished from the first 

problem analysis in “subgroup” sense. Almost all the students described 

subgroups of Z !2 explicitly (Figure 39).

i )

\i t

/
y

< 3 ? -  — ----------  "

< ^ >    ■,

< 0 =

^  ^  -7 ^ c . q I  i  ^y ) /
<<' ' >=  ----------------

O oM o^ V j v } — ------

< \?  ~C\\>~ ~~fr ~~y
2-n  £__ i

< M > C O » U t
< < 0 % *  AO, AS?,0 7 , ^ 7

< 0 - 0 0 ^ ,  I
< L ^^(a ,u  ^ '7 A )< o 7

H I

J ---\

t 1

Figure 39. Student’s reasoning about subgroups of Z12

The student took each element of the group and generated a subgroup

using operation +12. It looks like the student’ way of reasoning about cyclic
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groups/subgroups satisfies the definition. The fact that some of the subgroups 

are not the same as the group itself did not suggest that the definition may not be 

accurate. The student in the excerpt above realized that some of the subgroups 

coincide with the group. It could affect the definition of a cyclic group. Cyclic 

group can have more than one generator while the quantifier “there exists” could 

mean “exactly one” for the students and they do not think that it is appropriate to 

use it.

The next excerpt (Figure 40) supports “cyclic group/subgroup” assumption 

symbolically:

Commonly, a group is denoted by G and its subgroup is denoted by H. 

The way the student denoted a group this time suggests that she/he may 

confuse the definition of a cyclic group with the definition of a cyclic subgroup. In 

this case, “a is a generator for the cyclic group” means generator of the 

subgroup. Note the picture the student added to her/his response. The picture 

illustrates a cycle and suggests that the student understands the way a cyclic 

group/subgroup is generated. I think that the picture also implies that the student 

is thinking in terms of a finite cyclic group/subgroup. In further analysis I will

Figure 40. Student’s definition of a cyclic group.
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discuss that sometimes the notions of a finite group and a cyclic group coincide 

in students’ view.

During data analysis I observed a phenomenon, which occurred in many 

students’ responses. It looks like the most important part of all definitions or 

theorems is the formula (if there is a formula) or algebraic expression. The 

conditions, for which the formula is true, are not considered to be as important as 

the formula. In all previous examples the students are in a hurry to write the 

definition algebraically, using symbols without describing them. Often the formula 

does not make sense if the description is not given or given in wrong terms. 

However, in some cases (Figure 41) the students did describe the conditions but 

did not give the formula:

Figure 41. Definition of a cyclic subgroup without symbolic description of its elements.

The definition does not give the way of generating a cyclic group. This is 

rather unusual. I found 5 out of 18 responses which did not include precise 

description of G (in terms of its generator). Still, it looks like the student 

understands the generation of a cyclic group. Out of 5 responses of this type, 4 

responses contained explicitly generated cyclic subgroups of Z )2, using its 

elements as generators. Figure 39 exemplifies the same student’s response for 

problem 2 where she/he generated the subgroups using the formula. This 

response suggests that the students who did not state the algebraic part of the
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definition of a cyclic group still understand how to generate the group. Absence 

of the formula could be a result of misunderstanding of symbols. For example, 

the notation an suggests that element a is multiplied by itself n times while the 

operation could be different (as in problem 2 the students needed to use addition 

to generate the subgroups of Z 12). The students perhaps were confused by the

notation and preferred to avoid writing what they did not completely understand. 

Another reason could be that the students simply forgot the algebraic notation. 

However, the correct solution of problem 2 suggests that the assumption is not 

accurate. The students may have difficulty in symbolic interpretation of the 

formulas. They seem to understand the concept but find it difficult to operate the 

symbols which they need for the concepts description. Nevertheless, the 

difficulties disappear as soon as the students are solving a “concrete” problem 

(by concrete problem I mean a problem that involves concrete numbers and 

operations rather then symbols), when they are dealing with a concrete cyclic 

group and listing all the elements of the group and performing the group 

operation on them.

The analysis of problems 1 and 2 suggested that the concepts of a cyclic 

group and its subgroups make sense for the students and they can operate with 

the notions while solving “concrete” problems. Further analysis however, 

revealed difficulties when the students are dealing with more abstract settings.

I already mentioned that almost all the students explicitly generated all the 

subgroups of Z I2 and then concluded that some of them coincide and that some 

are the subgroups of others. At this stage, however, the students already
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covered the theorems which were aimed to eliminate the unneeded steps. The 

fact that the students prefer not to use the theorems suggests that they are not 

used to the theorems and prefer to use definitions; or, they do not understand 

and, thus, do not appreciate conclusions of the theorems. Consider the following 

series of examples.

Explicit List of Elements

In this group the students preferred to generate all the subgroups 

explicitly, using all group elements. After the exercise some students noticed 

some kind of “pattern” in their subgroups and recalled several theorems. In 

Figure 42 the subgroups are generated for all elements of Z n :

<A

*  > f a' ' ' ■ * '  %  5'  6 ,  7,  2,  «t/ tcf „ ]  A i? s A 5> ~ Aj y
4, *  I  S, t0) __________________________________ __ __ X ~

J- * f * • 6. “  ] A i
*», <•»*
=■ > { * . ! ,  t o . , . * , ,  ,

{ o ^ l  ' ' ' ' 1 4s»
7 ... /  7 J 4s-> 4
;• , ^  ' 3' * w « >
s-

< 1 . «  >  {  O .  l t /  4  , J  j

' » > '  I ’ f. 'C , j ]

Figure 42. Computations of subgroups of Z12.

The student listed all subgroups and made the final conclusion based on 

the list she/he developed. Out of 18 responses, 12 students chose the direct way
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of reasoning about subgroups of Z l2. Note that the students did not explain why 

the listed subgroups represent the complete list of subgroups. They generated 

them using all elements of Z 12 and definition of a cyclic group. However, if the 

given group would not be cyclic, the list of all subgroups would be incomplete. 

Only one student looked confident that these are all possible subgroups of Z u :

< z  it5 i>  ^ o o i , o o , o a  , 0 - n , 1 c c r ,

< c \ q > o d ^ d i  , c s i . c - o ,  c o o ,  c a m ,  m  c a , e

iS-Cuplicso QAl s ib q tlijp s  d  (XKako
CjljcMC O xj

Figure 43. Computations of subgroups of Z12 with references to some theorems.

<  M 1 V - 1 03 0 ,0 (0 1 ,0 3 1

< tb l>  « t f o l>  <  % a >  = < ts> 3>  < ^ 2 , a.
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One student in the group of 12 recalled another theorem about cyclic 

group order and its generators (but first the student generated all the subgroups 

explicitly):

r o .n ) S >aml 'TVs s c /"<’ \<*x \ \  Vy

r v V V

~ Y "A \/ 
30 -£*7  f>3

V
J> 7 ,

Figure 44. Reasoning about subgroups of Z12, using the theorems.

Note, however, that the student recalled the theorem after she/he listed all 

subgroups of Z 12. It suggests that the student might notice her/himself that 1, 5, 

7, and 11 are relatively prime to 12 and this is the reason the subgroups 

generated by the elements coincide. By performing these steps the student 

recalled the theorem but she/he needed to “prove” it for Z 12 first. After that the

student stated the theorem’s condition and confirmed the conclusion.

Use of theorems

Nevertheless, some students recalled several helpful theorems. The 

following response suggests that the student still did not feel very comfortable
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using the theorems and needed to write theorem conditions for each case she/he 

considers:

%
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Figure 45. Reasoning with theorems.
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Figure 45 illustrates only a partial solution since the rest is repetition of the 

same steps with the other number. We can observe what theorems the student 

used and how. It looks like the student had a deep understanding of a cyclic 

group and its subgroups. For the student a cyclic group is not merely a list of 

elements each of which is some power of the generator, but rather a structure 

which has various characteristics such as group order, or element order. The 

responses showed the understanding of relations between generators, group 

order, operation and element order which implies the understanding of 

connections between a cyclic group and its subgroups. In other words the 

concept of a cyclic group and its subgroups is learned in a coherent form. 

Analysis o f Problem 3

Problem 3: Is it possible to find two nontrivial subgroups H and K of (Z, +) 

such that HnK={0}? If so, give an example. If not, why not?

The problem was aimed to verify students’ understanding of subgroups 

and subgroups of Z in particular. Most of the students recalled that all subgroups 

of (Z, +) are described by (nZ, +), where n is an integer. However, I found several 

interesting responses with misleading ideas. The major problem was again a 

subgroup concept. First, I would like to discuss the misconceptions caused by 

the situation when a certain group is a subgroup of another group. The fact that a 

structure is a group and a subset of another structure still does not imply that the 

first structure is a subgroup of the second. As I discussed previously, a “set -  

operation” problem was very common for all binary structure concepts. Consider 

Figure 46:

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3) TVtS p o s s e t * ?  W c-k

( ^ \ x  i + ' )  C. C 2 \ * 0  ^K*fATtOK Csca<. U e ^  ui.-rv

a > \ d  W n d  +rt
x T Ctm flisa#  owsT-c* >“i*v-«.\
& « > , 0  ^  O , , , * )

-' • ( <10 , c  ( n ,  +■)
<xir™

( < 3 > , 0  C ( l , £ / + >

■•■ ( < 3 > , + . A  ^  ( ? , + ■ }

V <“W°
-  t

0 > - ^  d,

<Au/ < 8  "> 0  ~ 'i o’?,

„ ' .  £~e <" \r\ r  ( <  + v O

^  Y -

^ l'1 H A K  £24tL U T H  Tn"vfa( AuVj-ef o j* + ^

Figure 46. Using groups that are not subgroups.

It looks like the student ignored operational part of the structures (Z, +) 

and (Z12, + 12). Note that she/he does not use + u at first but uses the symbol 

when she/he talks about subgroups of Z u . However, it seems like the symbolical 

difference in operations the student indicated did not provide a sufficient reason 

for distinguishing the two structures. The student calls it a “notation issue” (in 

parenthesis on the right hand side) rather then operational difference. It looks like 

the response was in a big way affected by the previous problem. As I discussed 

in analysis of Figure 45 (solution of Problem 2 by the same student), the student
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wrote all the details in the solution of Problem 2 and spent a lot of time on the 

problem. Therefore, the student’s mind was still occupied with the previous 

problem and she/he was in a hurry to complete the work. Nonetheless, solid 

understanding of a binary structure as a set, together with the defined operation 

is not formed yet and one of the parts (set or operational) of a binary structure is 

often sacrificed due to certain circumstances such as time limit.

Another issue I observed analyzing this problem is illustrated in Figure 47.

The student described two nontrivial sets whose intersection is 0. 

However, only one of the sets is actually a subgroup of (Z, +). The set of odd 

integers together with 0 is not a group to begin with. In this case we observe the 

lack of understanding of a binary structure closure under the operation. Indeed, 

the set, described by the student, is not closed under addition of integers. 

Perhaps the definition of a cyclic group (subgroup) and its generator is confusing 

for the student: it looks like she/he thinks about generation of the set of odd 

numbers by adding 2 to the next element. Probably, in the student’s view, 2 is a 

generator of the set of odd numbers and even numbers, so, the sets are 

generated in a similar way. Consider the definition of a cyclic group given by the

M e , n d  J l m U  o \

Figure 47. Using sets which are not subgroups.
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student (Figure 41). The definition does not explain how a cyclic group is 

generated, so it is possible that, for the student, number 2 generates the set of 

odd number in a following way: 1 + 2 = 3, 3 + 2 = 5, etc. Further, the student 

adds one more element (element 0) to the set, since the intersection of the two 

sets must be 0. Zero is an identity element for (Z, +) and does not affect other 

elements in terms of closure. Thus, we observe not only a misleading argument 

about a group (closure matter) but also one about cyclic groups and their 

generators. Figure 48 demonstrates corresponding problem.

noiMvivi<U 4 *  k / 30 H 4
H  ■ * - ft- bo-f k  L la i i J  UA.dJr 4 ,  -£ . -0  i n  boffo su-bj f t  u f S , \  : 

! ) 0  H  *  \  Ol  4  ft- t \ 0 $  \
( fp v y tv -ty , j f  +  P- f a t  /O r ffs  { J lf  + )   ̂ A Ia j ^  SVu m A

CordfaM five  id x /U iU f t t  tVHxvd
—  aJt (C«a+-

H coviTa.ryu a r %f  £.] a / U  P < U  l - L c u f

i b ’/ 0$ \fAJLOMJut 1 .^ 1  fk f  y
(Vivtn<L fb/ tvt/y tv K iiU  4 <L cc fkiy art $u&q/Qupj
4  CZ, f )  4  ( o j , T f u n  f f  k ,  H  a  4  = \ o ]  y & c s u a a a ^

/ I  '5 iW  *>*Uy U e m jiU -  rU x d  tYrt^ irUK-rS u J ti* * .

I k  US, t'f if f e S S J b l * .  fi'/U  fwa ytO iU v/V id  S u b j r ' O U f S  ft 4  £ 0 A

Figure 48. Using sets that are not closed under addition.

Two structures the student described are not closed under addition for any 

integers. Moreover, they are finite, which suggests that the student probably 

thought about cyclic groups. Note how the student is checking that the structures 

are subgroups: “they must have e and an inverse for every element *  e since 

they are subgroups.” Indeed, identity and an inverse are important elements of a
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subgroup but there are more conditions to discuss. Also the student did not 

connect the structures she/he described to the given group (Z, +). This is rather 

interesting. I observed students attempts to give concrete examples for the 

problem (Figure 49).

In Figure 49 we observe the same misleading argument but in terms of 

concrete numbers. In Figure 48, however, the student seems to describe a more 

general case. If we assume that by a, b she/he meant some numbers (not 

necessarily integers) then the problem of closure is not similar to one in fragment 

15. Note, that if we apply standard addition of integers to the elements {0, a, -a} 

only, without repetition, then the structure would be closed. However, a binary 

operation is applied to all pairs of elements of a set and to a pair (a, a) as well.

H c u k A  U- a x o  'two vloMrivr c J L  ^\Zbc^r</v|^

k  W --  \ o ) VV |3  f a t . 2r I  H- €■ G ]

Figure 49. Student’s Reasoning about subgroups.
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The student did not think about it. Thus, the problem of understanding of closure 

in this case is rather the problem of understanding of a binary operation.

Analyzing the problem I have noticed that many arguments (correct or 

incorrect) are based on concrete numerical examples. I already illustrated the 

misleading argument in Figure 49. I want to discuss more responses with 

concrete examples where the examples helped the students to understand the 

problem and led them to a more or less accurate conclusion (Figure 50).

°̂» ^  fi i-6 tioo nantmvai H

. So mam tv- i <$ 2 ,w hcd&
1 r\K#< ioda-T ht- ?. >i),

Figure 50. Student's argument with concrete examples.

In Figure 50 the student comes out with two concrete examples of 

subgroups of Z and finds it impossible to get the {0} intersection. Further, she/he
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checks if there is a possibility for finite subset. Note that the argument again 

involves concrete numeric examples. Finally, the conclusion is more or less 

general. The conclusion does not involve symbolical notations of subgroups of 2  

(multiples of Z). It suggests that the student may not feel comfortable using 

symbolic notation and prefers to give a concrete or descriptive solution. However, 

in Figure 51 the student’s final argument looks accurate and reasonable and it is 

based on the concrete example:

-i up ̂  e  - £> € q r
£

i-e  •> a  &  7Z ^ qt£, p, s . i  . <•; y<om

' T U p to  > v ,b  f  , / - I  ,
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r  c,-.
O -< ; c>

D u l a *- //  Q rV*u ^ | c, c> *

*><> ;-f - Q  t h 5 .

I*  * -H-■ *-> 2? s.* rs *■ '2 '

tf= s.-i.

■

F .„  ,
s.-n >r ~ v
e>vv> <? -t a ^  ~i ,  t/ , -j~ J dx 6 r/ j  y  ^  It-

/

v'iV

Figure 51. Student’s attempt to prove her/his statement.
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It looks like the student did not know how to solve the problem although 

the conclusion is given in the very beginning. It also looks like none of the 

theorems, which could be used in the problem, emerged in the beginning. The 

student simply reasons about a subgroup of (Z, +), as she/he tries to imagine 

how it should look. At first she/he tries to avoid concrete numbers and works with 

generic element of (Z, +). However, later it became difficult to observe all the 

elements in terms of a and b, so the student decided to make the argument more 

concrete and clear. After that a more general conclusion comes to mind and the 

student continues the solution in a more abstract manner.

I already discussed that for some students a general conclusion based on 

previously learned theorems or previously solved problems does not seem valid 

enough. I think it is possible that the students cannot fully perceive the general 

argument and try to give a concrete example to justify the answer. Maybe they 

just want to illustrate the accurateness of the argument, to show that it is, indeed, 

correct since the concrete example supports the case (Figure 52).
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Figure 52. Supporting of the argument.
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The student proves the statement in general terms. It is possible that the 

student gives the example because she/he is not sure how to describe the 

conclusion symbolically.

Nevertheless, sometimes the concrete examples could be misleading 

rather than helpful (Figure 53).

|P  is  fb fo s s r. -f\> p n d  Q r v ^ V w i^  f £  N <2 ad  fcT

o -f C M j  - O  *4 h f c  f o l .

£ 2 2  Z. ^  ^  <5 _ /0 , _j; 0 / ^  / o , .  -  - ^
5  2  7/ ' f  6̂ 3 4 'K / ^ r r  n n u rC  t n  4- c *

15; 3 0 ;  ^ 4  t. . -
n 2? ^  ^
n  g  n  YY\ 22 n  Q o d  rv> Q / x

tA/CMfd qjrvf^j t nV<sr4rtf...cj#- «?+• O.

■e*/ i 2 £  n  2  =  < % 5

^ Q/ V ^ ;  14- i d  p lx s x > b le .  4o ^HasL h yA 't'A  V i.a \ J v b j y f - i ,

14 n. t  J t C 5 ,4  f iO  >5 -  / O j

Figure 53. Finding counterexample.

The student gives the concrete example of two subgroups with nontrivial 

intersection. Further, the student attempts to discuss the solution in more general 

terms and that is when the concrete example confuses her/him. It looks like the 

reason for confusion is coming from the student’s background. Perhaps she/he is 

uncertain about the definitions of a common multiple and a common factor of two 

numbers. This is a widespread confusion. I observed it many cases when 

teaching operations on fractions. To simplify fraction we need to find common
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factors of numerator and denominator, while to add fractions we need a common 

denominator which is a common multiple of the denominators. My personal 

teaching experience suggests that the confusion could still cause problems in 

students’ understanding of more advanced mathematical concepts. Note that the 

first example in Figure 53 also involves relatively prime numbers (5 and 3). 

However, the student makes correct conclusion and finds common multiples. For 

some reason she/he makes the wrong statement right after the example. It may 

be difficult for the student to operate with more abstract terms and she/he simply 

got confused and referred to the next example with bigger numbers. I think that in 

the second example the multiples are less obvious because of the choice of 

numbers.

Analysis of Problem 4

Problem 4: Prove or disprove: If G is a finite group and a s  G, then there is

some integer n such that an=e.

Considering the fact that the students just learned the concept of cyclic 

groups, the common problem in the solutions for problem 4 is more or less 

understandable. Symbolically, an element a of a finite group G, raised to some 

power n is associated with students’ definitions of a cyclic group. Not surprisingly, 

some students decided that since G is finite then it is cyclic. Consider Figure 54:
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Figure 54. Argument about finite and cyclic groups.

The order of G is less than infinity and an = e , and the student concluded 

that G is cyclic, while her/his definition of a cyclic group states: “A group G is 

cyclic if and only if there exists some element ae G such that< a >= G, where

< a >= {a"|VA7e zj.”

It seems that for the student (as for many other students) the most 

significant part of the definition is the one that states that a" belongs to the group 

for every integer n. She/he understands that if a belongs to G then every power 

of a must be in G, so the concept of closure does not appear to be a problem for 

the student. However, it looks like she/he misses the opposite inclusion. That is, 

if an element g belongs to the group G and G is cyclic and generated by a, then 

there exists n such that an = g . Also, for a finite cyclic group generated by a of

order n, an = e . I would like to note that at this point the students are starting to 

feel more comfortable about finite groups. I discussed previously that students’ 

connection to familiar objects (sets, operation) was very strong and the idea of a
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set being closed under an operation and being finite at the same time was 

difficult to accept and understand. It was too abstract for the students and did not 

have a “concrete” basis. However, with the appearance of cyclic groups of type 

Z n, the idea of closed finite structure started to make more sense. I already

discussed in the analysis of Problem 2 that the students feel comfortable with 

generating finite cyclic subgroups using addition mod 12 and listed all elements 

of (Z12, + 12). The students are looking for the subgroups of Z 12, by taking each 

element of Z 12 and using it to generate a subgroup. We can see that they

proceed till, for some n, an is equal to 0. So, now they really can make sense of 

a finite group (as a closed binary structure) based on the concrete examples: 

raising an element to any power, you still are inside the same cycle, since, for 

some n, an = e . Perhaps at this point the students associate any finite group with 

a cyclic group (such as Z n) since they do not know examples of finite groups that

are not cyclic. Moreover, one of the group theory theorems states that every finite 

cyclic group of order n is isomorphic to Z nfor some integer n. The theorem could

also suggest thinking about G as a cyclic group. So, the algebraic commonality: 

a" = e  associated a finite group G with a cyclic group.

I also think that the knowledge about cyclic subgroups may suggest that 

some students could think of a group as the set of its cyclic subgroups where 

every element of a finite group generates one of the cyclic subgroups. Moreover, 

since the group is finite, its cyclic subgroups are finite and isomorphic to Z n, for 

some n. So, the group as a set which contains its cyclic subgroups (in other
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words G = jf-/a] ,Hg2 Hgk }, where by Ha. I mean a subgroup generated by an

element a/ of G, if G ={a1,...a/f } )  is considered to be cyclic. Even further, a 

group G could be viewed as a union of its cyclic subgroups 

(G = Haj U H a2 U ...UHa ) and considered to be cyclic for this reason. (I also

discussed the opposite view in connection with Figure 48, where the student was 

only concerned with the result of operation on two distinct elements and did not

consider an for any integer n). However, not all finite groups are cyclic. The data 

suggested (as I discussed previously) that many students need a concrete 

example to make sense of abstract algebra statements. Before they learn a 

cyclic group of integers mod n, it was difficult to accept the existence of a finite 

group in general. Now they are having difficulty accepting the existence of a finite 

group which is not cyclic. As soon as the students learn a group of permutations, 

they could find a way to overcome this problem.

As I discussed previously some students assume that a finite group must 

be necessarily cyclic. In some cases (Figure 55) the conclusion was the opposite 

-  cyclic seems to imply finite.
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Figure 55. Reasoning about finite group and its subgroup.

The student did not explain why H is finite and why there exists an integer

n, such that an = e . It is possible, however, that the student took it for granted: 

she/he concluded that the subgroup is finite, since the group is finite. This 

assumption is supported by examples that suggest that some students better 

understand “set” relations between a group and its subgroup then “operation” 

relations. It follows that for the student a subgroup of a finite group cannot be 

infinite since it must be a subset of the group.

I have noticed that several students tried to reason about the problem 

using an operation table. It looks like the students could not recall theorems 

which would suggest the solution strategy. In this case an operation table could 

give some ideas about a binary structure the problem describes. The fact that G 

is finite makes it possible to imagine the operation table. I have noticed that the
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students often attempted to reason through operation tables when a given 

structure is finite. Consider Figure 56:

H p; ’ ^ Ha a. a'' ~ t  , n 1- O

*  o. % <A '*   ... c
fv H--. , <%*•

H>. •
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fU  Uf&.; ...lY 0 >\x:.£. US Pu oh v tvv C:.
o f  Lt ' U  C . ' ^ . r a l - '  .. x r ; x b U c >  , £  ‘x  v■* ' '• • ’ • o  a  c«?

m c\’ i. r , • a. . A ’ < v-» » <,* yL xvppx.'* ,• s
<5\'+ c \ , cH' e -a-i ‘t i t - -i .

Figure 56. Table argumentation.

It looks like the student concluded that aaa a = e implies a*a=e.
n times

Perhaps the operation table above provoked this misleading idea. The student

had difficulty expressing the operation aaa a via operation table and decided
n times

that aa must result e, the identity element. Since G is a group the student

concludes that identity element must appear once in each column and each row

but then assumes that in case a’s row and a’s column the identity e must belong 

to their intersection. This discussion supported the student’s assumption
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that a*a=e. I also think that the statement about that aaa a = e is possible if
v---------

n times

a *a=e could be explained by the student’s background knowledge. If I assume 

that for the student the symbol is related to the multiplication of real numbers 

and e corresponds to the multiplicative identity 1 (or possibly 0), then the

conclusion seems to be true: an = 1o  a*a = 1.

I have noticed that for some students a concrete example often serves as 

a valid proof of a statement. A general conclusion is based on one or two 

examples. Note that I already described the cases when the students used 

concrete examples to understand a general proof or to justify their proofs. In the 

following situation (Figure 57), however, the conclusion is based on one concrete 

case:

(XftA Of •W \0*L «VU*“C ^  1H . !. /Ji A tl

( I , " \S) \$ a.

AS O'- fmvK cpmp undtr

-VwuNL CX'SH o n =-€. uJmvh. h tO

Por-m. ^rovp I Is eUjvcnn

and \ ‘=. \ av\A -A' ^ \ so t w n

a n ~-e. fo r AVXfi (v*"0

Figure 57. Proof of the concrete case.
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First note that the student defines a finite group as a group with countable 

number of elements. I think that it is because the student is not sure what 

countable means or may be she/he does not realize that there exist countable 

infinite sets. This statement, however, does not affect the solution in any way. 

Further, the student says that the important elements of a group are the inverse 

and identity and comes up with the example (1, -1). I think that the example is 

suggested by the operation of addition of integers, since 1, and -1 are inverses of 

each other. Later however, the student realized that there is no additive identity 

and figures that the set is a group under multiplication. Note that the group is

cyclic and it is easy to conclude that there is an n such that an = 0 .

Analyzing Exam I have noticed that the identity element plays a crucial 

role in students’ understanding of a binary structure. For instance, in the previous 

paragraph it looks like the student’s reasoning about the group operation is 

based on the identity element the student chose. So, an identity element is not 

only a property of a structure but also the identity element defines the structure it 

belongs to.

In the following response (Figure 58) the student uses the way of 

contradiction to prove the statement.
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Figure 58. Proof by way of contradiction.

The contradictory argument is constructed correctly, however, for some 

reason the student considered all elements of G but identity e, while she/he 

states that if G is a group, then e must be in G. Further, the student concludes

that e &G,  based on the argument that Vn,an * e .  So, it looks like for the 

student, an element belongs to G only if it can be generated by another element 

of the group.

I also would like to include some additional notes about quantifiers. In 

Figure 58 the student’s construction of opposite statement is correct in terms of 

quantification: she/he avoids quantifier “for every” but uses “does not exists” 

instead. These quantifiers are equivalent. However, “for every” is more suitable in 

the context. Nevertheless, it illustrates the student’s understanding of quantifiers 

and their role in mathematical statements.
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Analysis of Problem 5

Problem 5: Let (G, *) be a group and H be a non-empty subset o f G. 

Suppose H is closed under the operation of G and that (H, *) has an identity 

element eH . Prove that eH = e G.

The problem brings us back to the students’ understanding of a subgroup. 

Almost all responses showed that the students see H as a subgroup (group in 

most cases) with some differences in argumentation. I already discussed several 

problematic ways of the students’ reasoning about groups and their subgroups. 

Some students see a subgroup only as a subset, others just as a group, where 

set relations between G and H are unclear. In problem 5 it was given that H is a 

subset of G, closed under G’s operation. Moreover, it has an identity. It looked 

like all the responses that claimed that H is a group could be divided into two 

clusters. The first group of students simply stated that H is a group without 

proving it (Figure 59).
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Figure 59. Misleading subgroup argument.

It looks like structure H, described in the problem is associated by the 

student with a group (or rather a subgroup) definition. I have noticed that, in 

general, the students often make such conclusions. In this case, the student 

included inverse element in the argument, although it was not necessary for the 

particular problem. Since the student decided that H is a subgroup, then her/his
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proof looks like a proof for the theorem on group and subgroup identity 

coinciding.

The second group of students although considered H to be a group but 

still did not take it for granted and tried to prove it. All the students were 

concerned with the fact that it is not given that inverse elements belong to H for 

every elements of H. Some students made a misleading conclusion about 

inverse elements based on the fact that H has an identity (Figure 60).
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Figure 60. Proof of the statement about H being subgroup of G.
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Note that for the student the identity element e belongs to H only if e can 

be expressed as a combination of some (in this particular case of two) elements 

of H. I think that the confusion can be explained by the fact that the students 

often try a “concrete” approach to the closure problem. In other words they are 

thinking about continuous generation of elements by combining them in different 

ways, in different powers. Thus, if an element belongs to the set, then it can be 

expressed in terms of other (or only two) elements. Therefore, the identity

element is a * a '1. After this argument, it looks like the student generalized the 

observation and concluded that for every element of H there exists the inverse 

element which is also in H and that H is a subgroup by the definition or subgroup 

criterion. In Figure 61 the student also uses a subgroup criterion:

w * . s W >  - w , * *  VN \ s  c.

W  ^  ^  w  ^  >

V =  » . c ^ .  m V ,  4 ^  a . v - ' T u

„ - Nt 0% ^  ^
W :«

Figure 61. Proof based on H being a subgroup.
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Note that the student recalls that if H is a subgroup of G they must have 

the same identity elements. As for inverse elements, the student “supposed” that 

at least for b, its inverse is inside H. It looks like the student is not sure about 

inverses for all elements of H and states that Zr1 belongs to H rather carefully. 

Still, she/he concludes that H is a subgroup, based on the fact that b_1 is in H 

and then subgroup criterion works for this specific pair ab~1. Perhaps the student 

has difficulty understanding the difference between a certain element of the set, 

namely b (or a) and “any” element b of H. These difficulties cause the 

conclusions which are based on non-given facts, which are impossible to prove.

Interview I

The goal of the first interview was to get familiar with the study 

participants, to make them comfortable when talking in front of me and to get an 

idea about the students’ style of answering questions (for example if a student is 

using definitions and follows them during problem solving, gives a quick 

response first and then starts to recall needed definitions and statements, or 

does not use definitions but tries to define objects by him/herself).

In terms of content, Interview I questions helped me to get a sense of the 

students’ knowledge of a binary operation defined on a set and connections 

between a set and a binary operation. In particular, I concentrated on students’ 

understanding of a concept of a set being (or not being) closed under the 

operation and their understanding of “failure” of operation to be binary. Finally, 

based on existing study reports, I wanted to explore the students’ perception of a 

set together with an operation defined on the set as a single object.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Asking the first question, I aimed to understand how the students define 

binary operation by their own words. Next questions (2 -  4) referred to the 

understanding of students’ ability to recognize a binary operation defined on a 

set. Question 5 is monitoring student’s understanding of “binary operation - 

closure" connections. In Question 6 students were asked to manipulate with 

concrete numbers and to define an operation on a set of concrete numbers.

I will illustrate the analysis of one typical response question by question 

with some additional examples from other responses to support my analysis or to 

add other opinions on the problems:

Question 1. Define what it means to say that * is a binary operation on a set A.

S1: I am going to call it * then? The asterisk? * is a binary operation on a set A. It 
would mean that you take two elements in A then you can apply this operation it 
could be anything like addition multiplication. I do not know the exact definition to 
be honest with you. On a set A if you take like two elements a and b then a * b is 
always be in the set.

I: Does this mean that it is a closed set?

S1: I do not know. What else do you want me to say? Do you want me to go to 
#2?

The student immediately thought about two elements from the set A. It 

looks like the student tried to imagine the situation. She/he decided not to write 

anything down for this question although before the interview I gave the student a 

piece of paper and a pencil. At this stage the students reason a lot in terms of 

concrete examples. It seems difficult for them to consider the objects they study 

without reference to a particular example. In the response above the student had 

to think about addition and multiplication before she/he defined a binary 

operation. Note that the student, as well as other interviewees, does not define a 

binary operation for all pairs of elements of the set. However, during the

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interviews, students often give less rigorous definitions compared to the ones 

they write on paper. I think that it simply does not appear in their minds at the 

time, or/and seems less important to mention compared to the structure of the 

definition (two elements, operation, result). In other words, universality does not 

seem to be a component of the binary operation definition. From the responses I 

could distinguish several main components of a binary operation in students’ 

definitions: a set, two elements, a “star” (*) or operation, and a result. 

Nevertheless, universality of a binary operation for the set and closure of the set 

is often omitted. I observed that in this response the student needed to refer to 

specific binary operations to think about closure. In the following fragment

S2: What does it mean to say that *is a binary operation on a set A? Just that it’s
closed and well defined.

the student immediately says that “it” is closed. Later, however, she/he had 

trouble explaining what it means for the set to be closed. Also the way the 

student is talking about closure suggests that she/he does not fully understand 

the meaning of closure. “Just that it’s closed and well defined” does not clarify 

what exactly is closed: operation or set? It looks like for the students at this point 

a binary operation is merely a general symbolic representation of operations they 

have studied before. Connections between a set and a binary operation defined 

on it seem unclear. The idea of a binary operation seems to consist of isolated 

pieces of information about several objects.

The second question was very confusing for the students. It was a multiple 

choice question. Each part was different from another by possible number of 

results of a binary operation.
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Question 2. Decide which of the following statements are correct, please explain 
your reasoning:
a) a binary operation on a set S assigns at least one element of S to each 
ordered pair of elements of S.
b) a binary operation on a set S assigns at most one element of S to each 
ordered pair of elements of S.
c) a binary operation on a set S assigns exactly one element of S to each 
ordered pair of elements of S.

S1: [reading] I would think that... it sounds right to my ears.

I: Just read all of them

S1: All? [reading] I’m going to get my definition confused because I know that it 
has to be...I am not sure it has to be one to one and onto this is kind of saying 
like at most one element would mean ...that it is kind of be one to one right? and 
onto. I think it would be at least one element of S to each ordered pair because if 
you look at the operation table, some times there is ...NOPE! It would be exactly 
one element. I think it would be it. I was thinking about it in my head to kind of 
see what it might look like, and I am like., you can not have more than one 
element at a * b. This is my process even in the bathroom I am still like...Oh! I 
am thinking in different ways...to even get an idea but I am getting there.

The association many students had when answering the question is

coming from a definition of function, one-to-one function, and bijective function. It

looks like in the response above the student is starting to think about functions

but then said that she/he “is going to get [her/his] definitions confused”. It

suggests that the student did not reflect on binary operations as on functions,

while the students’ background could suggest this correspondence. In the

following fragment the student relied on function definition in order to get the

answer:

S3: ...binary operation is a function and for any given combination of elements in 
S we can only have one output. And so, if we have a binary operation on the set
S then we can only have “at most” one element of S to each ordered pair.

Nevertheless, the student “S1” resolved the confusion using an operation 

table. Reasoning with an operation table gave her/him a chance to realize that it 

is impossible to have more then one entry or no entries in a single cell.

Reasoning with an operation table enhances the students’ understanding of a
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binary operation. It gives the possibility to represent an abstract object in a more 

concrete way.

I observed two ways of thinking about the question: operation table or 

definition of a binary operation. Note that in question 1 only 2 students used the 

words “ordered pairs” to define a binary operation. Others simply said that we 

take two elements of the set. Question 2 is formulated in terms of “ordered pairs” 

and it confused some students:

S4: I do not think about ordered pairs when I think about a binary operation.

It suggests that the students are used to think in less abstract or more 

descriptive terms. Perhaps the words “ordered pair of elements of A" makes less 

sense then, for instance, “two elements of A" or “elements a and b from A”.

Question 3. Give an example of binary operation on Z.

S1: [reading] that could be...addition, that could be multiplication, a * b could be 
a times b\ 3 times 2 is 6.

All the students answered the question correctly since it was asking about 

familiar objects: set of integers and operation defined on it. Note that the student 

felt like she/he needed to support the answer by the concrete computation. 

Although the question asked for one example of a binary operation, some 

students (3 out of 7) give both addition and multiplication examples. One of them 

even thought about subtraction. I think that the students simply prefer to choose 

familiar examples. Both addition and multiplication are such examples and the 

students do not know which one to choose. Also, these are typical examples of 

commutative and associative operations. Subtraction and division serve mostly
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as counter examples illustrating operations which are not binary or which are not 

commutative or associative.

Question 4. Give an example of operation on Z which is not a binary operation on
Z?

The responses to the question could be divided into two groups. The first 

group of students immediately thought about division and showed a 

counterexample:

S4: I’d have to say that division is not a binary operation, since if you divide 1 by 
2 the result is not in Z any more.

For the second group the answer was not so obvious and they needed to 

think about definition of a binary operation in order to answer the question.

S1: [reading] That could be may be something like...so it’s going to be something 
...that’s not in the integers. Would that be like if you take a square root of 
something? Would that not work? Or that would work?...For me to be a binary 
operation that means that ...I really don’t know this is confusing me for some 
reason.

I: Why addition and multiplication were your examples for the previous question?

S1: We always work with them, I kind of assumed that... Oh, because if you add 
two numbers together you going to get one number. If you add two integers 
together you get integer and if you multiply two integers together you’ll get 
integer. So I am trying to think about something that...it is probably really easy 
and simple but I am a little nervous. If you take two numbers in Z you are not 
going to get another number in Z. So, I know what does it mean but I am 
like...Oh! Division! I am sorry it is taking me forever. It takes me a while. The 
result is not integer.

It looks like the form of the question suggested that the students should be 

concerned with the result of the operation. In both responses the students are 

looking for an operation which can have an outcome which does not belong to 

the integers. Perhaps in the second excerpt the student’s background caused 

her/him to think about square root since only a set of complex numbers is closed 

under this operation and obviously a result of taking a square root out of an
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integer is not necessarily in Z. Then, however, the student gets confused by the

operation. Something bothers her/him about the answer. Perhaps the reason is

that the student understands that the operation of taking a square root is applied

to a single element of a set, whereas a binary operation involves a pair of

elements. However, this idea was not said aloud and I think the student simply

could not formulate it. I decided to bring the student’s attention to the definition of

a binary operation and her/his previous responses. Thinking about well-known

operations of addition and multiplication as examples of binary operations she/he

created a simple logical construct for looking for an operation which is not a

binary operation on Z: “If you take two numbers in Z you are not going to get another number

in z.” Following this statement the student figures out the example.

Question 5. Let S be a set. Let * be an operation on S. What does it mean if for 
some elements a, b of S a * b is not in S? In your words, what does it mean for 
the set to be closed under the operation?

S1: [reading] It means the set isn’t closed, [reading] It means that for all the
elements when you apply a binary operation to it the single element that results
would be in S also.

Although I observed that many students have difficulty understanding the 

concept of closure, the responses to the next question showed that they know 

the definition of closure. Every student answered the question similarly to “S1”. 

None of them, though, gave the exact definition of closure. Using the required 

quantifiers to stress that closure is a universal quantification.

Question 6. Define a binary operation on S = {0,1,2,3,4}.

S1: [reading] So, it does not have to be closed necessarily right? or it is implying 
that ...may be if you took two elements in there like 0 and 1 and applied a binary 
operation to them...

I: How did you usually define a binary operation in class?
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S1: Addition or even easier then that?

I: No, not the operation but the way you defined it.

S1: This is odd, I do not remember. Oh, ok...like if you use the operation table 
again and you have 0, 1, 2, 3, 4 on top and 0,1, 2, 3, 4 on left hand side [filling 
out the table]. You could have one, a binary operation that just always returns a 
single one of the values. So I mean it could just be “everything comes back 0”. It 
would technically be a binary operation, right?

I: Yes.

S1: It would just be ... You could have one that returns the min of two values.
That would be another binary operation, [writing symbolically: a * b  = Q o r a * b  = 
min{a, b}].

The main problem I observed in the responses to this question was the 

necessity of closure. The given set is finite and the students seemed to be 

confused at first. Although the question is asking to define a binary operation and 

the definition of a binary operation was already discussed in previous questions, 

the student is not sure if the set is supposed to be closed or not. It looks like the 

student is thinking about familiar operations but feels that something like addition 

or multiplication would not work because of closure. I tried to suggest to the 

student to construct the operation table for the situation. I think that in the initial 

stage of learning abstract algebra concepts a table representation gives a more 

“visual” and concrete description of an operation. Another reason for my 

suggestion was that the student successfully used an operation table to reason 

about question 2. As soon as the student started constructing a table she/he 

figured out what operation could be used. However, note that although the table 

was created successfully and did not contradict the definition of a binary 

operation, the student is not sure that this operation could be considered as a 

correct answer. She/he asked if it “technically” is a binary operation. Perhaps the 

fact that an operation the student found was not one of the familiar operations,
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such as addition, multiplication, division, etc, was the reason for doubting the 

answer. I have noticed that it is very difficult for the students to become 

unattached from their prior experiences, especially when problems involve 

familiar objects such as subsets of natural numbers.

To support this assumption and to illustrate more issues, I transcribed the 

following response:

S2: I do not understand what I am supposed to do. Do I need to take two 
elements from there? OK, so one star two equals three, I guess, if star is 
addition?

The student assigns the operation to only one pair of elements. Perhaps 

she/he feels that addition would not work for all pairs, or, it is possible that for the 

student the idea of a binary operation does not involve universality of the 

operation. In other words, the operation is not considered to be a universal 

quantification for a set it is defined on. Moreover, the student’s response for 

question 1 (about binary operation) did not involve universal quantifier. However, 

it did not seem important because none of the interviewees used quantifiers in 

their responses. I assumed that it was a matter of talking about the definition, not 

writing the definition. As I observed in the students’ written work, Quiz 1 in 

particular, some students used a universal quantifier in response to the question 

about binary operations. Nevertheless, in this response I could see a strong 

connection between a lost quantifier and misleading thoughts about the problem.

I had to recall the definition of a binary operation and stress its universality for the 

set:

S2: Oh! If I check 2 and 4, I would assign subtraction? Just any operation? Oh I 
have to assign a binary operation which would work for ALL of them? Ok, well 
not all of them would work. Like for addition... So I have to think about a binary
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operation that makes all of those work. Well, I feel like I could have a lot of them!
I would have to do something that would say like...a, oh a plus the identity 
element? Something like that? a * e = b where e is...I mean a * e = a, where e is 
the identity element or something like that.

I think that the last statement is also motivated by students understanding 

of a binary operation and her/his misunderstanding of universality of ordered 

pairs in particular. Her/his definition of a binary operation on a set A was the 

following: “It takes two elements from A, assigns star to it and has to be...Oh, 

confused with...Result must be in A”. As we can see, the first and the second 

responses to question 6 do not contradict the definition. Addition works for 1 and 

3. If it does not work for 2 and 4, then we will assign subtraction to them and so 

on. However, it did not seem to be right for the student and she/he attempted to 

find an operation which would work for all elements of the given set. Perhaps the 

attempt to describe the operation as “a * e = b" was meant to illustrate the 

operation on a pair of elements since two generic elements of A (a and b) are 

involved, but it did not make sense for the student and she automatically referred 

to the definition of an identity element. Before she/he continued, I mentioned that 

a binary operation is supposed to work for all possible ordered pairs not only for 

(a, e). The student reasoned further:

S2: So, I just have to make up a binary operation, I can’t just use addition, 
multiplication, division or subtraction, cause it’s not closed. So I just have to 
make one up? I feel like there is no one answer. Can it be something like 
this...Its just taking the first element. It would just be the first element, whatever 
you are doing. Is it not allowed? It's not a real operation...If you always take the 
first element and you assign * to, you always get the element from the set.

The final part of the response suggests that again it was too difficult for the 

student to avoid thinking about familiar operations. In the end she/he described a 

binary operation but was not certain about it. The student asked me if it really
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worked since she/he stated that it was not a “real” operation. This link to familiar

operations and consideration of these operations as the only “real” ones is a big

obstacle in the students’ learning. If I call the “real” operations “concrete”

operations, then in most cases the student cannot bridge the gap between

concrete to more abstract operations.

Question 7. Determine if the following binary operation is associative. Does it 

have an identity element? Decide if it is commutative. Operation is defined on Z + 
by a * b  =  2 ah.

S1: [reading] The operation on the positive integers? [writing] And if it is 
associative it would mean that a *b  * c  with a and b in parentheses would equal 
to a * b * c  with b and c in parentheses, [writing computations]. And I think if you 
do this out it would not be associative ... this might be totally wrong with my 
algebra...yeah this is not associative. And then, if it does have an identity 
element? It would be saying does there exist an “e” belonging to positive integers 
such that for all “a” belonging to those integers, a * e  = a = e * a so it would be 
both sides or right and left side identity, [writing computations], E would have to 
equal... is it possible?

I: This is an exponential equation.

S: Yeah, so that means that there is no...I remember doing it in homework but it 
was not asking about identity...

I: If you take a log from both sides?

S: Oh! Simple algebra! But I thought you cannot have an identity element that 
had...that was defined in terms of a? Cause would not this leave “log based 2 a”.

a

Identity cannot be a function of the variable, because it has to be identity element 
for all a belonging to those, so it would be a different element for every element.
And if it’s commutative? That would mean that a * b = b * a and in which case it 
is since multiplication is commutative.

The interviewees did not have much difficulty with this question. Although 

the operation was not from the list of the familiar ones, it was described in terms 

of these operations: multiplication, in particular. I have noticed that if the problem 

required algebraic computations, the students felt more confident, and it looked
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like they were working in familiar settings. All of them easily made conclusion in 

terms of abstract algebra notions. In the response above, the student gives the 

definition of associativity, describing the solution procedure. The definition does 

not include quantifiers in any form and it does not affect the solution. The notion 

of associativity is, of course, an abstract object. However, the definition involves 

an algebraic expression, which is usually considered by students as more 

concrete. The concrete computations give the answer to the problem. Since the 

operation * was defined in terms of multiplication, all the students recognized 

operation * to be commutative, since multiplication of positive integers is. I 

honestly expected to hear some responses that * is associative for the same 

reason it is commutative -  because multiplication is associative. However, none 

of the interviewed students got into the trap. All but one of the interviewees 

noticed that computations of an identity element did not result in an answer 

independent of elements of the set. It means that the students were aware of 

uniqueness of an identity element and its independence of any element of the 

set. The reason I included the problem in my questionnaire was to see how the 

students distinguish the defined operation * and the traditional operation of 

multiplication in which terms * was defined. As I already mentioned, at this level 

of learning abstract algebra, the students preferred to follow the definitions rather 

then base their answers on first impression. However, one response began with 

this predicted misconception:

S2: a * b = b * a and its associative because a and b are being multiplied and 
associativity is a property of multiplication....The set is of positive integers so the 
identity element ...just going to be 1 , because 1 is in the set of all positive 
integers.
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At the beginning the student confused associativity and commutativity. 

However, she/he soon realized the problem and made the conclusion similar to 

the one I already described above. When thinking about an identity element the 

student preferred to base his reasoning on the operation rather than on the 

definition of the identity element. The first response was that the identity is 1. 

This response advocates a strong connection to familiar sets and operations. I 

asked the student to give me a definition of identity element and she/he 

concluded that the set of positive integers together with the defined operation 

does not have an identity element.

As I already mentioned, I was rather surprised by the responses, 

especially taking into the account students’ previous answers and connection to 

familiar objects. In this problem they are stepping out of a rudimental way of 

thinking about a binary operation in terms of simple formulas and familiar 

operations and think on a different level - using definitions as a basis for the 

responses.

Interview II

The second interview was aimed to explore students’ reasoning about 

groups. It showed continued problems with understanding of closure, identity 

element and inverse. I also noticed that it was difficult for the students to 

recognize a group as a set together with its binary operation and to understand 

the effect of a binary operation on the set. As was the first interview, I will present 

the analysis of interview II in “question by question” format, illustrating students’ 

most significant and interesting responses.
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Question 1: In your own words, what does it mean that G is a group?

Only 2 students out of 7 started the definition with a description of a group 

as a set together with its binary operation. All other students were so concerned 

recalling all the axioms that they simply did not consider the description of group 

components: a set and an operation. In the following response the student also 

added that a group is closed under its binary operation, which implies that she/he 

understands a group as a set with its binary operation, although the student does 

not describe them explicitly:

S2: It has an identity, I mean...It’s a ...it’s closed under a binary operation, it has 
an identity element and an inverse and its associative?

Almost all the students used the word “it” referring to a group, or an 

operation, or a set. It suggested that they may be uncertain about what must be 

associative, what exactly has an identity element and an inverse. Later, during 

problem solving activities this could be the cause for misconceptions and 

misleading ideas. For example, the sentence “it has an identity element and an 

inverse” does not make it clear if the identity is a property of a binary structure, or 

a single element, or all elements in the set. As I already assumed in the first 

interview analysis, it seems that a procedural part of a definition or algebraic part 

of a definition is the most significant, especially for problem solving. It may seem 

obvious to the students that a definition of a group involves a set with an 

operation. The responses to question 2 support this assumption.
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1 1 .
Question 2: Let — Z be a set { — z|ze Z}. (a) Is it a group? (b) Give an example

'1
of a binary operation on the set. Is it a group now? (c) Confirm that — Z is a

1
group under addition. Is — Z a group under multiplication? Explain.

In the first part of the question no operation is defined. However, most of 

the students I interviewed said that it was a group since it satisfied all three group 

axioms. By default most of them chose addition to be the operation:

S1: So, it’s asking if the set Vz Z is associative for all elements a, b belonging to 
Z. The impression is that it’s closed and not empty. So, yes it’s associative cause 
its addition and addition is associative. And the inverse, it would be...z has to 
belong to the integers. If z were 4, 4/2 is 2 and the inverse of 2 is -2 and it 
belongs to the integers. I am trying to answer if it is a group and I think it is a 
group because it satisfies all three axioms.

I have also noticed that the student had difficulty understanding the set. It 

looks like at first she/he reasons correctly about it but later the student states that 

the inverse of 2 is -2 and it belongs to the set of integers, not the one the problem 

defines. I think that it is a common difficulty, especially when the set is defined in 

terms of familiar sets. Also, as I mentioned above, the student was so concerned 

with finding out if the group axioms work for the set that she/he did not even 

notice that there was no operation defined, and started thinking about addition 

since it was a common example (integers and addition). Some students thought 

that the operation is multiplication and the operation IS defined, since the

description of the set involves multiplication by :

S5: It is closed.

I: Under what operation?

S5: I am thinking about multiplication...so when you do 1/4 times Z, so, 
multiplicative.
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It looks like after my question about a binary operation, the students felt 

obligated to find or to define a binary operation. The next student, however, was 

confused by the question:

S2: No! Wait, is it a group? No, it’s not closed, cause it could be a decimal and 
then it would not be an integer, like 3 over 2 is 1.5 is not an integer.

I: Note, the set is 'A Z, the set of all integers divided by 2.

S2: Oh! This is the set! I was looking at the first part. OK. So, yes it’s a group.

I: Under what operation?

S2: Multiplication? Hold on a minute. I don’t see why it’s... 1/2 -  the set of all 
integers divided by two. So...What do you mean “under what operation”? It could 
be either one.

I: What operation is defined?

S2: None, Oh! It’s not a group!

At first the student had trouble understanding the set. Somehow, she/he 

recognized the set as a part of the set of integers. Perhaps at first the student 

decided that the operation is defined as division (or multiplication by V2) and in 

this case 3/2 is not in the set. This is a “background” problem - number 

representations. Usually, the operation is defined on a given set. However, it 

could not be a binary operation. In this problem I only described a set and the 

student said that the operation could be “either one”, but I think the student tried 

to say that the operation is not defined. The responses suggest that for some 

students a group is simply a set which satisfies the axioms under an operation of 

their choice.

The problem with operation continues in part (b):

S2: Under multiplication, for example, it is. Because multiplication is assoc., it 
has an identity element 1, which could be in the set and it has an inverse. An 
inverse could exist, because it is a set of all integers - positive and negative.
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I: Under multiplication?

S2: Ph, I though about addition.

It looks like the student thought about multiplication first. She/he did not 

check if the set was closed under multiplication but started with axioms. The 

response again supports the assumption about the significant role of axioms in 

the students’ reasoning about groups. The realization of the fact that 

multiplication would not work comes only when the student tries to describe 

inverse elements. Opposite numbers look like the most common example of 

inverse elements. The student again does not think about the operation but about 

plausible elements of the set: if the inverse under multiplication does not work, 

then additive inverse is the right one. After she/he described inverse element as 

opposite numbers, I asked about the operation again and the student realized 

that she/he was thinking about addition.

Also, I noted how the student talked about identity and inverse elements. I 

think it was an important detail since many students fell into the same trap. The 

student says that “it has an identity element”. I think by “IT” she/he means the 

set, later, however, the student again says that “It has an inverse”. It still appears 

that by “IT” the student means the set, not elements of the set. The phenomenon 

may be explained by the uncertainty of referring identity and inverse element to a 

certain set or to a certain element. Moreover, it is a difficult concept for students 

to understand that an identity element is unique to the set, meaning that it must 

work for all elements (in other words it is a property of the set), while the inverse 

is unique for each element (it is a property of the element).
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In part (c) I decided to come back to the operation of multiplication in the 

context of the closure of 14 Z under this operation. The student “S2” did not seem 

to have problems answering the question since we more or less discussed the 

details in previous parts. In general the final part of the question did not raise any 

interesting issues since the students already worked out the set and understood 

its elements, and the operation of addition is one of the familiar and well known 

operations. The following is S2’s response for part (c):

S2: Same deal. It has an Identity element 0 and inverse and addition is
associative.

I: Is it closed?

S2: Yes, it is closed. Cause if you take two elements from there and add them 
together you get another element from the set.

I: What about multiplication?

S2: No, so multiplication...well, it might be. It's not closed for all element of the 
set though. If you had 14 and 14 and you multiply them together you have % and 
it’s not in the set.

Although the student did not even consider closure in the previous 

responses, she/he understands what closure means. After I specifically asked if 

the set is closed under addition and later under multiplication, the interviewee 

answered based on concrete numbers.

I have noticed that the operation of multiplication was a very popular 

response. I think in this particular problem it could be explained by the form of the 

given set. Elements of the set involve multiplication by 14 and this could be the 

reason why the students think about multiplication, especially since the operation 

was not defined at all in part (a). I found a similar problem in the following 

questions.
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Question 3: Let G be a group, let a e  G. How many inverses can a have? Why?

All the students recalled the theorem they learned in class about 

uniqueness of identity element. However, only few of them could briefly explain 

why it is taking place and wrote it down. Maybe the reason is that they tried to tell 

me the proof which was difficult, and to do so the students decided to use more 

general terms in order to explain the uniqueness of an inverse element. The 

question also did not ask to prove the uniqueness but to explain why the students 

think this way. Consider the following response:

S4: Exactly one. Otherwise we would not know which one to pick... if it did (have 
more then one inverse element) then we would have an operation table, the role 
of 'a’...that would be more then... If you would take the identity element and you 
operate it with ‘a’ you get the identity. I think this is wrong...’a’ and the inverse of 
‘a’ you get an identity and if there is another inverse you get the identity again 
then it would not be a group.

The student’s reasoning about the uniqueness of the inverse for each 

element is based on an operation table. The student used the fact that G is given 

to be a group and concluded that if an element would have more than one 

inverse, then it would contradict that fact.

Question 4: Give an example of Abelian and non-Abelian group.

Almost all of the interviewed students gave a definition of Abelian and 

non-Abelian group. However, when giving the examples of these groups they 

were concentrated on exemplifying commutative and non-commutative 

operations, not groups:

S1: An Abelian group, which is commutative group, would be the integers 
under...multiplication...there is no inverse of 0. Integers without 0, no not the 
integers, real numbers without 0 under multiplication is a group would be Abelian, 
because a time b is the same as b times a. And non-Abelian group is non- 
commutative group, so anything with the operation like...I mean sort of like a -  
b...if star were a -  b, then (R, *) would be non-Abelian group.
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The student gives a definition of an Abelian group and then thinks about 

an example of a non-Abelian group. Note that she/he thinks about multiplication 

of integers at first, and then the student realizes that 0 cannot have an inverse. It 

looks like the student feels comfortable with multiplication since she/he preferres 

to change the set instead of simply changing multiplication to addition. From 

other responses I concluded that the students usually find it easier to think about 

a different operation rather than to think about special restrictions or conditions 

for the set they chose to work with. In many cases the students chose Z to be a 

set and multiplication to be a group operation. Not all of them realized that it 

would not be a group but certainly a commutative operation on integers. 

Nevertheless, the student in the above excerpt did not avoid the same 

misconception in the second part of the problem. She/he did not check if defined 

structure is indeed a group. The operation was the only consideration and the 

student simply chose non-commutative operation on the set of real numbers. 

Other students had similar difficulties. In general, the most popular example for 

the first part was (Z, +) (or (Z,x)) and for the second part most of the students 

just gave me an operation they had in mind. All of the operations were non- 

commutative and the student claimed that they are parts of non-commutative 

groups (the operations were defined on the set of integers). Here are examples

of these operations: division, a * b = a + b e , a *b  = a2 + b . Again, the students 

are concentrated on the operational or the algebraic part of the problem, leaving 

object’s conditions outside.
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In the following excerpt the student gives an example of non-commutative 

operation, then overcomes obstacles and gives an example of commutative

group but can not give an example of a non-Abelian group and explains the

difficulty:

S2: An Abelian group is commutative and non-Abelian is not. OK. [Writing
a * b = a + be]. If you are talking about...

I: What is the set?

S2: Ok, you could do...the set of all integers under multiplication is commutative.

I: is (Z, *) a group?

S2: Yes

I: What is the inverse of 0?

S2: Oh, no, it’s not a group. Ok, Z under addition is. I am trying to think about not 
commutative...

I: You defined an operation which is not commutative, what else do you need to 
form a group?

S2: identity, inverse...form the set...Are we done number 4? I cannot think of...I 
just, I do not know...what I remember Abelian, I remember setting up like tables 
table. Finding it this way. Like giving a specific example I can tell if it is Abelian or 
not. I cannot think about it this way!

It looks like for the student the problem was more abstract then the one 

asking to check if a specific structure is an Abelian group. In case of a particular 

example, the problem requires the student to know the definition of 

commutativity. As I previously noted the students did not have trouble with 

definitions which involve formulas or algebraic statements. For them 

commutativity is merely the fact that a * b = b * a, and the other conditions and 

setting description seem unimportant. I think that the responses (giving non- 

commutative operation) fully support this assumption. As soon as the problem 

requires deeper understanding of an object (or structure) the students feel
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uncertain. It is also possible that the problem is that the students cannot easily 

stop thinking about familiar structures, such as sets of integers or real numbers 

and operations of addition or multiplication. It is possible that the students are so 

confident about their knowledge of these structures that they do not find it 

important to check if the structure is indeed a group with certain properties.

Question 5: Determine whether {4, 8 , 12, 16} is a group under multiplication (mod
20).

Analyzing this problem I have noticed several common approaches. At 

first students had difficulty understanding the set and its operation. They were 

used to working with groups of integers under addition mod n. The students 

already were familiar with the concept of cyclic group, and the set above 

suggests to think about it as a cyclic group but the operation is not suitable for 

this case. Another popular misconception was that it was not a group since the 

set did not include 1, which was necessarily a multiplicative identity, and without 

the identity the structure was not a group. Only one student out of 7 interviewees 

actually used the definition of a group, followed every step, showed that every 

axiom holds, and concluded that it is a group. The student did not use an 

operation table, just wrote the computations (underlined “16” is the found identity 

element) in Figure 62.
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Figure 62. Student’s computations.

In the following excerpt I observed how the student tried to make sense of 

the set and its operation:

S 1 : I feel like it would be a subgroup, not a group. I do not really know what is 
this asking? Is it taking the integers like that and then, what is this set? Is it just a 
set generated by 4? If it generated by 4 wouldn’t it be...oh, its multiplication. 4 
squared is 16, 4 to the third is 64...which is...I do not really know how to do it 
multiplication; we usually do it like addition. So, it’s not generated by 4...

The first sentence shows that the student starts with an idea about cyclic 

groups and their subgroups generated by elements of the group. It seems that at 

first the student confused the operation with addition mod 20. In case of addition 

it would not be a group (not closed) but it looks like for the student at this point a 

subgroup is not necessarily a group so it does not have to satisfy the axioms. I 

think in this response we observe the understanding of a subgroup as a subset. 

The given structure is not cyclic and it seems to be confusing for the student (as 

well as for other students), since an operation mod n is usually assigned to a 

cyclic group. Also, the students used to work with finite groups but most of them 

were cyclic groups of integers, mod n. The student in the excerpt could not 

overcome the difficulties and asked to move forward with the other questions. 

Unfortunately, we did not have time to come back to question 5.
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In the following excerpt the student started with the same misleading 

idea -  he tried to think about the structure as the one generated by 4 under 

addition mod 20. At first the student concluded that it was a group but then 

noticed that, in case of addition, the set “needed 0”:

S2: That would be yes, its 4. If you start with element 4 and mod 20, then yes it 
is. Well...it needs 0. If you want to say 4 mod 20: 4, 8 , 12, 16, and this is...

I: the operation is multiplication

S2: Then its not. Does not have an identity or inverse. Wait, I am confused with 
this. It’s not a group. Well it’s under multiplication it does not have an identity or 
inverse. Multiplicative identity is 1.

After I reminded to him that the operation is multiplication, the student said 

that it was not a group since it did not have identity and inverse. It seems that the 

student thinks about multiplicative inverse of given integers as of inverses in the 

set of rational numbers where the inverses are the reciprocals. The given set 

only includes integers and this fact misleads the student. The final conclusion is 

based on absence of the multiplicative identity 1 in the set.

The phenomenon I observe in this problem is again the difficulty to think in 

more abstract terms, since the students’ understanding of abstract structures is 

attached to the structures they know and they worked with. It also suggests that 

most students prefer to base their conclusions on their background rather then 

just follow the definitions of objects. I think it means that often the students do not 

understand the information examples are aimed to give. The examples are 

important for students’ understanding but it appears that they usually concentrate 

on rather unimportant issues and cannot generalize the examples up to a certain 

abstract level. Somehow the examples are processed in a more static way and
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are generalized similarly. For example, the multiplicative identity 1 of real 

numbers is generalized to be an identity for other structures which involve real 

numbers and some type of multiplication. The next excerpt supports this 

assumption:

I: “What would be identity element?”

S4: “OK, Id element has to be 1, but under mod 20 it would be 19, so then it 
would not have an identity element so it would not be group.”

To my question about identity element, I got a quick response that the 

identity had to be 1 without any consideration of the given operation and set.

Question 7: Give an example of cyclic and non-cyclic group.

As I expected the problem was not difficult for the students. The reason I 

added the problem was that I wanted to see how the students understood a 

cyclic group and how they defined it.

S1: “A cyclic group is one that can be generated by an element a. So the only 
cyclic groups are integers under addition and congruence mod n. So, non-cyclic 
group - reals without 0  under multiplication.

However, in spite of the fact that all the interviewees had a more or less 

formed idea about a cyclic group, it seemed that one of the students confused a 

cyclic group with a subgroup. Consider the excerpt from the student’s interview:

S5: If G is a group and H is a subgroup, then H must be a group under a G 
operation. It means H has to be associative; H needs to have an identity element.
There needs to be an inverse which is the same inverse as in G.

I: Ok, this is the def of a subgroup. When a subgroup is cyclic?

S5: O, wait! Cyclic...is it the one that has a generator. So the cyclic group 
means that...if you had Z 4  ...I can’t remember the exact definition...it’s like the 
group... I mean an element of the group that generates the group?

It appears that the students may confuse a cyclic group with a subgroup 

since as soon as they learn a cyclic group they learn a cyclic subgroup.
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Moreover, they proved a theorem that every subgroup of a cyclic group is also 

cyclic. It seems to make sense to the students since their written work showed no 

difficulty with generating subgroups of Z 12. Another theorem about cyclic 

subgroups says that every element of a group generates its cyclic subgroup. This 

theorem is more difficult to understand and, furthermore, it bridges the concepts 

of a non-cyclic group, cyclic group and subgroup. Perhaps this is the reason that 

instead of giving a definition of a cyclic group the student started to define a 

subgroup. It is always possible, however, that the student gave this definition by 

error without really thinking about the problem.

Since the previous question discussed cyclic groups, I will jump to 

analysis of questions 9 and 10 as they both discuss cyclic groups.

Question 9: Find the order of the cyclic subgroup of Z 5  , generated by 2.

The problem could be solved by listing all the elements of a subgroup 

generated by 2 and then calculating how many elements there are. Only 2 

students out of 7 interviewed recalled a theorem that allows bypassing 

unnecessary calculations and concluded that, since 2 and 5 are relatively prime, 

element 2 generates improper subgroup of Z 5. This observation implies that the

definition of a cyclic group and its subgroups make sense to the students and 

they prefer to use it instead of thinking about additional theorems.

Question 10: Is Z a subgroup of (Z 4 , +)? What are all the subgroups?

All the students answered that Z is not a subgroup of Z 4 , since “it has 

more elements”. Some students, however, added that Z 4 is a subgroup of Z:
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S5: No, Z is not a subgroup of Z 4 . Z 4  is a subgroup of Z! Because no 
negatives.

It seems that the student made a quick conclusion about Z not being a 

subgroup of Z 4 , because Z is not a subset of Z 4 and the word subgroup 

presumes it to be a subset of another group. However, the student seems to 

forget about the operation of Z 4 and Z. They both are under addition but in case 

of Z 4 it is addition mod 4. This case suggests that the operational part of a 

subgroup definition is not considered in the solution.

In the following response the student preferred to start with definition of a 

subgroup:

S4: A subgroup would mean that it is a sub...the set but we have talked about a 
subset of it. It's under the same operation, it has to be closed under that 
operation, it has to be associative, and have inverse elements, and has the 
identity element, the inverse element with respect to identity element. Z is not a 
subgroup. Z has more elements then Z 4 . So, the subgroups of Z 4  would be...
Z 2  would give us 2 and 4, no 2 and 0 and it would be a subgroup. I think it would 
be the only subgroup, because 1 would give us like everything. So I would say 
the subgroup would be Z 4 .

In this case the student follows the definition of a subgroup. She/he did not 

forget about the operation, and then generated the only proper non-trivial 

subgroup of Z 4 . Note that the student calls the subgroup Z 2 . Perhaps the 

reason for this is that it is generated by 2, but then for other cyclic subgroups 

containing 2 this would be wrong. Another reason is the number of elements of a 

subgroup generated by 2. It has 2 elements under addition mod 4 and is 

isomorphic to Z 2 , but Z 2 and Z 4have different operations. Since the student did 

not provide any reasoning why {0, 2} is the only subgroup, I decided to talk a little 

more about this problem:
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l:W hyZ 3  is not a subgroup? Z 3  is a subset of Z 4 ?

S4: I think because Z 3  to be a subgroup it has to have the same operation. So, it 
would have...it would not be closed, because like 2 + 3 would be 5, or even 3 + 3 
would be...OK, we have Z 4 . Like there is 4 possible cyclic subgroups. Which 
would be 1, which would give us all 4, and then there would be 2, which would 
give us whatever, and there would be 3, and there would be 4 which is 0 which 
would give us just the id element. So, there are 4 subgroups which are 
cyclic...Which are generated by 1, 2, 3, 4.

Note that at first the student doubts the operation but then tries to find 

something else and finally again bases the conclusion on the fact that if elements 

of Z 4are used to generate subgroups, then none of the subgroups would have 3 

elements. Again, the student did not mention that all the subgroups of Z 4 must 

also be cyclic. I asked the student to list all the elements of the subgroups she 

was just talking about. Z 3 was not in the list.

S4: ...because it would generate different... Z 3  has a different operation.

So, the student came back to operation reasoning to prove that Z 3 is not 

a subgroup of Z 4.

Question 8 : Consider the group (Z5 - {0 } ,x 5)=  {1,2,3,4}. Please add one or two
sentences explaining your answer to the following questions:
a) What is the identity element of this group?
b) What is the inverse of 3 in this group?

The question was aimed to explore students’ reasoning about identity and 

inverse elements in a finite group. Students’ background supported their 

responses for the first part of the question. Most of the interviewees said that 1 

was an identity element of the group. Some, however, had trouble understanding 

the operation. The problem was that they were used to thinking about Z 5 as a 

group under addition mod 5:
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S1: Identity element for this group...I want to say 5. We say...take mod 10, 1 is a
generator, go up to 1 0 , then 1 0  equals to 0  - identity.

In this case I had to suggest stepping out of a cyclic group and thinking 

about the set and the defined operation. I also suggested creating an operation 

table since for this student operation table provided a good reasoning during 

interview 1. Following my hints the student found out that the identity is 1. In a 

way the student thought that the only possible finite groups were the cyclic ones 

under modular addition.

Things became more complicated with inverse element of 3:

S2: It should be 1/3, so I guess it does not have one. But it has to...Is it negative
2? I forgot...3 is the same thing as...not in this group. Is it 2? Because...if you
keep adding 3 + 3 + 3... I do not know.

I: Is 1 inverse of 3?

S2: No, 1 is the identity element. Inverse is like if you multiply it by 3 you get one.
It has to be 1/3 but its not there but it has to be...

I: What about 2?

S2: its 6  mod 5...its 1! Ok, so its 2! It makes sense! I forgot about this.

I repeatedly observed the difficulties with connecting new mathematical 

ideas to the old ones. The students made incorrect parallels with their previous 

experience and got into the same trap over and over again. In the excerpt the 

student understood that the identity must exist in the set since it was given to be 

a group under multiplication mod 5. However, the background suggests that the 

multiplicative inverse of 3 is its reciprocal, and it seems impossible for the student 

to think that the inverse element may be different. It also implies that at this stage 

it is difficult for the students to think about every condition of the problem: the set 

and the operation. In order to find the inverse element I suggested checking
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every element of the set. Before the student found the inverse, she/he again 

came back to 1/3 which showed a strong attachment to standard multiplication.

Interview III

The goal of this interview was to see how the student work with subgroups 

and how they understand them as mathematical objects. In the previous 

interview the students were asked to generate subgroups and reason about 

cyclic subgroups. This time they are asked to determine if a structure with 

specific properties is a subgroup. I also wanted to understand the students’ vision 

of a subgroup within the group and how the students distinguish elements of a 

subgroup from other elements of a group. I chose the most significant and 

interesting questions of the interview for the analysis.

Question 1: Let G be a group, define the center of G to be the set Z(G) = {x e G \
gx = xg for all g e G}. Determine whether Z(G) is a subgroup of G.

Out of 7 students 3 used a subgroup criterion to prove that Z(G) is a 

subgroup. One of the students started to work with the definition of a subgroup 

but then gave a comment that a subgroup criterion would probably be easier. In 

general, the students did not have any problems with computational or algebraic 

part of the problem. However, the most difficult part was to understand the set 

that the problem defines. The notation confused many of the students:

S3: So this a Z or this is “integer” Z?

The student might not be familiar with the idea of the center of a group. 

They referred to the familiar object denoted by Z -  set of integers.
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The following excerpt represents a common way to reason about the 

problem using a definition of a subgroup:

S5: In order for it to be a subgroup it has to be assoc under G, has to be closed, 
and have an identity, and inverse and an identity element has to be in G. So Z(G) 
is associative, cause its multiplication...

The student started with definition of a subgroup. Note that she/he said 

that a subgroup has to be associative “under G”. At first I thought that this was 

caused by miswording but later it became clear that the student intentionally 

avoided the word “operation” since she/he did not see an explicit description of 

an operation in the problem. I asked about the operation as soon as the student 

said that Z(G) is associative under multiplication.

I: What is the operation?

S5: Multiplication. The same operation as G? I do not know what G is.

I: G is a group. What does it mean?

S5: It means that it’s closed and that’s associative and has identity and inverse 
element.

I: Is operation defined on G?

S5: No. Well there is a binary operation but it does not say it to me...

I: But the group is a set together with its operation...

S5: What’s operation? The same operation, so that is assoc, Z(G) is closed 
because x is in G and g is in G and they both are in group so it’s closed. And the 
identity is in G, so g must be the identity and the inverse is just...I do not know 
the inverse of G. Does inverse has to be in G. O, it’s a group so it has an inverse.

It seems difficult for the student to think about some abstract operation 

that is not explicitly defined. Moreover, the notation “xg” probably suggested to 

connect the operation to multiplication as this notation was used to represent this 

operation before. Relying on her/his background the student concluded that 

multiplication must be the operation. After some discussion, the student decided
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to say that it is the same operation. However, she/he did not seem to understand 

the meaning of this. It seems that the student agreed to think about an abstract 

operation following the instructions but she/he still decided to think about it as 

multiplication, just for the sake of her/his own reasoning. Further the student was 

thinking about the closure. From the response it looks like the student still had 

trouble understanding the difference between the group G and its subset Z(G). 

She/he proved closure based on the fact that G is a group. In other words, the 

student proved G’s closure instead of Z(G). I think the reason is that the student 

cannot understand how elements of Z(G) are different from all other elements of 

G, and it follows that she/he had a misleading idea about the whole structure 

Z(G). Furthermore, the student concluded that G has an identity element and 

then g must be the identity. It looks like the conclusion was coming from the 

definition of elements of Z(G): gx = xg. It is possible however, that the student 

simply meant to say “e from G” and said "g" by accident.

I have also noticed that the student might have difficulty understanding 

that an inverse is a property of an element of a group, not the group itself. She/he 

was confused by the fact that there is no “inverse of G”. Unfortunately, there is 

not enough evidence to understand why the student used this statement. It is 

possible that the student worded the statement this way since it is unusual for 

her/him to talk aloud about abstract mathematical objects. Perhaps the problem 

is more serious and conceptual. I have noticed that many students used inverse 

elements in reference to a group but it is still unclear what effect it may have on 

problem solving. It also could be a quantifier problem, since both identity and

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inverse elements are universal quantifications for a group, while the quantifiers 

are used in a different order when defining inverse and identity. For an identity it 

is: Bee G,s.tVae G: ae = ea = a;  while for the inverse

V a e  G,B a ' 1e G,s.t. : aa '1 = a"1a = e . So it is a matter of using V3 or 3 V .

The student’s concern was to understand if “the inverse is in G". She/he 

had no information on structure of G. It was given that G is a group and the 

student concluded that in this case “the inverse belongs to G”. It seems that it is 

difficult for the student to think in abstract terms but she/he, in a way, agreed to 

accept that all elements of G have the inverse elements. I tried to encourage the 

student to elaborate more on identity/inverse elements of Z(G):

I: Does an identity of G belong to Z(G)7 

S5: Hm...That e is ...e times gx equals gx.

This excerpt suggests that the student still had difficulty understanding 

elements of Z(G) and their properties. It looks like when the student thinks about 

Z(G), her/his attention is turned to operational description of the subset. I think 

that a concrete example of a group and its center would make the general 

construction clearer for the student:

S5: I guess what I don’t understand what a center of G is...

I: It is just a subset of G, defined this way under the operation of G.

S5: So, if e is x then eg equals g times e and this is true. So since e is in G then it 
is the same identity.

I: Let’s check if every element of Z(G) has an inverse.

S5: So x is in G, then g times x inverse equals x inverse times g? So gx times x 
inverse, which is g. you have x times x inverse g which is just eg = g. So, inverse 
exists.
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I: Can you repeat you computations? [The student writes down the correct 
computations and concludes that Z(G) is a subgroup of G.]

After making sure that the identity element belongs to Z(G), it looks like 

the subset Z(G) started to make sense for the student. She/he seemed to realize 

what must be done to check if an element is a part of Z(G). In other words, the 

student understood the property of elements of Z(G) and what exactly makes 

them special. The student concluded that Z(G) is a subgroup, however, she/he 

did not check if it is closed, while closure was a part of the definition the student 

gave in the very beginning. This situation is not unique. Often the students give 

the definition at first and then did not follow it. It looks like they just tried to tell me 

as much as they remember without really making sense of what they are talking 

about. In several cases (during the first interview) I asked the students to write 

the verbal response/definition down and not all of them could right it: “I do not really 

know what you want me to write”. Perhaps it is a lack of ability to reason symbolically. 

May be the formation of the object, the students define, is not complete and it is 

complicated for the student to talk about the object and write its description 

symbolically.

In the next excerpt the student also gave the definition of a subgroup and 

did not forget about closure:

S2: It's closed under the operation of G and has an inverse and identity element 
in G.

However, she/he did not check if Z(G) is indeed closed under G’s 

operation. I asked the student if it is closed:

S2: I do not know what the operation of G is. How can I check closure?
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It looks like the student initially avoided talking about closure since she/he 

did not understand the operation of G. The fact that the interviewee tried to 

define the operation in the beginning also supports this assumption:

S2: Is it a subgroup? I do not see why not. Cause it has...We need to see if it has 
an identity element and an inverse in G. Doesn’t it depend on...? So are they 
saying ...that the operation is ...you know...it depends on addition or 
multiplication. Yes, it has an identity element, how do you know if it has an 
identity element? Well, if an identity element is 1, cause we are multiplying...

As in many responses I already illustrated it looks like the students could 

not think about any operations other than addition or multiplication. The 

assumption about an identity 1 means that she/he chose multiplication. I think it 

happened for the reason I previously described -  because of the notation xg.

Question 2. Prove or find a counterexample.

a) If G is an Abelian group, then the set {ge Gg = e } is a subgroup of G.
o

b) If G is a group, then the set {g e. G g = e} is a subgroup of G.

Although the question was formulated differently, the method of solving 

this problem was similar to the question 1 solution. However, 3 out 7 students 

considered the problem without relying on the previous. These students were not 

sure at first if the situation described in the problem is possible. Consider the 

following responses:

I. S1: The elements in this group...it has g and it has e, so the inverse 
element is g itself... So, Abelian is commutative...So G is like an Abelian group, 
integers under addition, I may just try and you chose little g to be 2 or something, 
then 2 squared equals e, which means 2 + 2 = e but 2 + 2 is 4 and 4 is not 
identity element of Z. I do not think that it is going to be a subgroup of all Abelian 
groups.

II. S2: If G is Abelian it is commutative, so we are saying g times g equals e.
But that's not true because g times g inverse equals e, unless g is it’ s own 
inverse! It is true only if g equals g inverse. It’s only true if g equals 1 or 0.
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In the first excerpt the student seemed confident about the objects she/he 

was describing. However, the whole idea is misleading. The student did not think 

of an example of a subgroup with the described properties within an Abelian 

group but on the contrary, gave an example of an Abelian group and proved that

it cannot have none-zero elements g such that g 2 = e . It seems like the student 

misunderstood the idea of a subgroup as a set under the same operation and 

specified properties within the group. Perhaps, she/he thought about it as about 

an existing object but this object cannot be present in the set of integers. She/he 

proved that the group of integers under addition does not have non-trivial

subgroups of the type: {g e G g2 = e }.

In the second excerpt the student is trapped in the “familiar objects”. It 

seems that the only operations she/he could think about are addition and 

multiplication, and for these concrete situations the only elements that satisfy the 

conditions of the problem are 0 and 1 respectively.

In the end of the analysis of the interviews I want to say several words 

about students’ proofs. First, I have noticed the difficulties students have proving 

the statement following definitions or theorems. I find it interesting because it is 

easier to follow definitions since they suggest some kind of algorithm for the 

proof. Secondly, I have noticed that some students start a proof with the 

statement they actually need to prove (Figure 63).
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Figure 63. Student's proof.

In some cases the students noticed the problem and did the proof 

correctly, basing their new proof on one with the wrong order.

The discussion of the analysis and the conclusions are presented in the 

next Chapter.
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CHAPTER VI

DISCUSSIONS AND CONCLUSIONS

The goal of this dissertation is to describe students’ understanding of 

mathematical objects in the context of group theory at the undergraduate level. 

The following research questions have been formulated based on the theoretical 

framework of this study:

■ What are the main characteristics of the cognitive processes 

involved in the development of students’ understanding of 

group theory concepts?

■ What notions and ideas do students use when they recognize 

a mathematical object, and why? (what students are using: 

definitions, properties, visualization, previously learned 

constructs, or something else)

■ What are the characteristics of students’ mathematical 

knowledge acquisition in the transition from a more concrete 

to a more theoretical problem solving activity?

To answer these questions, students’ actions and reasoning about 

abstract algebra concepts during problem solving activities have been analyzed. 

The detailed analysis of the data described in the previous chapter provided
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answers to the research inquiry. In this section I summarize my findings and 

discuss them to make appropriate conclusions.

Summary

The results of my study were derived from two general types of analysis: 

global analysis of students’ symbolical and verbal descriptions of mathematical 

objects and conceptual analysis of the ways in which these concepts were 

applied to problems. At the initial stage I analyzed students’ interviews in 

chronological order. I formed several preliminary categories so that they could 

guide my further analysis. Later on I analyzed students’ written work to support 

the categories and to form new ones. Written work is qualitatively different from 

verbal responses. I noticed that students tried to be more careful and more 

rigorous when writing down their solutions. It can be explained simply by the fact 

that the written work was aimed to evaluate students’ progress in the course and 

they were more careful in their writing. I also observed that even if a student did 

not know the exact definition or a way to solve the problem he or she always tried 

to give some response. I consider these responses to be a significant source of 

information about students’ concept formation. During data analysis I was looking 

for those responses that showed students’ understanding of a concept rather 

than students’ level of preparation. Moreover, sometimes the students gave a 

correct definition of a concept but later did not use it in the problem solving 

process or used it in an incorrect way. During the interviews the students were 

not affected by evaluation pressure and better expressed their own view of the 

concepts they were asked to describe or use. After a detailed analysis of
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students’ written artifacts I came back to the interview analysis, looking for 

support of the new assumptions. I arranged the analysis by the students’ 

responses: each work (quiz, exam, and interview) is analyzed problem by 

problem with several highlighted categories.

Problematic issues that have been found during my analysis can be 

summarized into several main categories: 1) a correspondence between a set 

and an operation defined on the set; 2 ) properties of sets, operations, structures, 

or elements; 3) use of properties of concrete objects for general conclusions; 4) 

understanding of abstract algebra statements involving quantifiers; 5) use of 

definitions -  algebraic part versus structural part. In this chapter I discuss these 

categories in terms of the theoretical assumptions suggested by the theoretical 

framework that guided this study. Following the theoretical framework, an 

abstract object is formed via assembling previously abstracted ideas into a new, 

more advanced concept. Further, the main function of abstraction is recognition, 

and during this process the concept is articulated and it leads to the formation of 

the abstract idea.

Discussion

Students are familiar with binary structures from the very beginning of their 

learning experience. For many, if not for all, the first mathematics experience is 

counting. Children are getting a sense of the number system and operations on 

them. Flowever, binary structure in a more general sense includes more 

complicated relations between elements of a set and an operation defined on this 

set. While previously it was necessary to apply the operation to any two elements
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of a given set, now a result of the operation is also an important element of the 

structure. The data showed that often the question of a result of a certain 

operation belonging to the set was not considered. The data also suggested that 

it was not a matter of forgetting the definition of a binary structure. In most cases, 

students’ responses to tasks such as “Prove (or disprove) that a certain structure 

is a binary structure” were more or less accurate. Nevertheless, if the question 

did not specifically ask to check whether a certain element belongs to the 

structure, then this part was often omitted. In some cases the conclusion about 

closure was presented in the solution but was based on a different operation.

I think that the term “binary structure” and the notation (S, *) normally 

used to represent a binary structure is usually understood by students as a 

mathematical object with two entrees: a set and an operation. The term and 

notation do not imply any necessary correspondence or relations between them. 

Dubinsky et al. (1994) discussed this problem analyzing students’ understanding 

of groups and their subgroups. The study proposed that there are two different 

visions of a group: 1) a group as a set; and 2 ) a group as a set with an operation. 

Similarly for a subgroup: 1) a subgroup as a subset; and 2) a subgroup as a 

subset with an operation. Analysis of the data I collected showed related trends. I 

discuss my results in the following section.

Understanding concept of a binary structure

Binary Operation. Closure

The first connection of a set to its operation appears when the students 

learn the concept of closure. That is, a set must be closed under the induced
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operation. The question is why the concept of closure is difficult and how 

students overcome the problem. First of all, the idea of a binary operation is not 

completely novel to the students. They have been working with operations from 

the very beginning of their mathematical experience. It is very well understood by 

every student that if you take two elements of a set and perform an operation on 

them the result is another element. Everything the students had to think about 

was the accurateness of the result. What happens in abstract algebra is that now 

sets are required to be closed, i.e. the result of an operation performed on any 

two numbers must still be in the set. A concept of closure brings a concept of a 

binary operation to a conceptually different level of abstraction and the previous 

experience is not a guarantee of success. The number of mistakes I observed in 

the data (see for example Figure 6 and Figure 7) suggested that the students still 

try to assimilate the concept of a binary operation to “operational concepts”. 

Davydov (1972/1990) proposed that the students who experience this problem 

try to make sense of a binary structure using empirical thoughts (empirical 

generalization and abstraction). For them a binary operation defined on a set A is 

a functionf: A *  A -> B, where B is some set, not necessarily A. The students 

assemble ideas of a set, its elements, an operation on any two elements, and a 

result of the operation on any two elements. By a simple generalization process 

they develop a simple abstract idea or, in other words, there is a shift from 

concrete operations (such that addition or multiplication, for instance) to abstract 

(such as operation “star” defined on set {a, b, c}). However, often students 

overlook one important and conceptually different connection among previously
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known sets and operations and take the definition of an operation on a set for 

granted. This connection is the link between the result of the operation and the 

original set. Realization of this connection would provide the concept of an 

operation with more structural meaning. I would refer this process to theoretical 

abstraction since there is a derivation of higher-order structures from the 

previously acquired lower-order structures (Piaget, 1970 a).

Thus, often the process of understanding a binary operation is empirical 

rather than theoretical. The data provided evidence for the failure of empirical 

thought about binary operation during the object recognition stage. As I illustrated 

in the analysis chapter, when answering the following question: “Give an 

example of an operation on Z which has a right identity but no left identity”, the 

students often responded that division is this type of operation on Z (Figure 6 ). 

Indeed, division is not defined on Z, since Z is not closed under division and 

division by 0 is undefined. However, many students recognize division as a 

binary operation on Z and the reason is that the idea of closure (connection 

between a result of the operation and a given set) was not a part of students’ 

analysis of the structure (Z,-0_ It follows that a theoretical thought is essential in 

the process of learning deep, structural mathematical ideas.

The interesting phenomenon occurs when students are struggling with 

assigning a binary operation to a finite subset of the set of integers (Interview 1, 

question 6 , for example). It does not seem possible for many students to accept 

the existence of such binary structure. The reason is the closure. Students 

connect the given finite subset and the operation but for some reason the
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operation is always addition. Most of the students noticed that the subset cannot 

be closed under addition but concluded that it was not possible to assign the 

binary operation to the given set. In this case it appears that students are 

cognitively placing the objects of recognition to the set of objects for assembling. 

Operation is the object of recognition, the outcome of the theoretical thinking 

process. However, the students try to place the concept of operation in the initial 

stage - assembling process. That is why operation is not a result of the 

theoretical analysis of previously occurred and given ideas. The conclusion about 

addition for example is brought to the problem in a rather superficial way, 

probably due to the elemental association (Halford at al., 1997) of a subset of 

integers with the binary structure (Z, +).

Binary Structures. Group as a set of discrete elements 

Understanding of a group as a structure consisting of two objects that 

interact with each other is complicated and novel for students. The data collected 

during this study suggests that some students understand a group as a set of 

elements. The operation in this case does not play an important role in the 

structure. In the previous chapter, I illustrated some responses where students 

switched from one operation to another (see Figure 16). It suggests that for the 

students operation is not an attribute of a binary structure but rather a separate 

object which may be used if needed.

Another example of students’ responses which emphasize understanding 

of a group as a set occurred in Quiz 2 where the students were asked to define a 

General Linear group (Figure 13). During the interviews most of the students
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mentioned both a set and an operation when defining a group. However, only a 

few students defined a General Linear group GL(n, Q) in terms of a set and an 

operation. Most of them limit the response to the description of the set of 

invertible nxn matrices with entries from Q. Further, in response to the following 

question from Interview 2: Determine whether {4, 8 , 12, 16} is a group under 

multiplication (mod 20), many students noticed that it cannot be a group since 1 

(or 0 in some responses) does not belong to the set. The conclusion is based on 

the elements of the set, not on the given binary structure.

At the early stage of understanding the binary structure concept, students 

construct their knowledge based on previously learned objects. In order to 

understand a complex idea such as binary structure, students must have other 

ideas as parts. So, the elements of a binary structure represent these ideas. The 

process of generalization initializes connections between the elements, and 

groups these elements in a set. Thus, the new created abstract entity simply 

repeats the one that already exists. In this case operation defined on a binary 

structure is not a part of the assembling process and exists disjointedly from the 

set. This is the process of generalization in Ohlsson’s, Lehitinen’s (1997) sense, 

or Davydov’s (1972/1990) empirical generalization. The idea of a group as a set 

is formed via extraction commonalities from concrete examples, based on visual 

representations, symbols, discourse, etc. For example, (Z, +), (Z2 , + 2), (Z3 , + 3) 

as group examples have integer elements in common, 0 as identity element, and 

based on these examples the idea of a group is empirically generalized. In this 

case the abstract idea is not complete and further the main function of
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abstraction fails. According to Davydov (1972/1990), the main function of 

abstraction is object recognition. So, the abstraction moves from abstract (formed 

entity) toward concrete (recognition) (Ohlsson S, Lehitinen E., 1997). In this 

sense recognition is the main function of theoretical abstraction. I already 

illustrated how the students recognized a General Linear group as merely a set 

of invertible n by n matrices. Also a structure ({4, 8 , 12, 16}x2o) was not 

recognized as a group since 1 (or/and 0 in some responses) is not in the set. In 

both cases the operation is not considered to be a part of the structure and the 

conclusion is based only on the elements of the set.

In these cases we deal with empirical type of generalization, or simple 

generalization, using Piagetian (1970) terms. Students assembled examples of 

groups they studied and extracted commonalities from the sets. According to 

Piaget (1966, 1970), simple generalization is a part of the empirical abstraction 

process. In the literature, abstract algebra objects, like many other objects in 

mathematics, require advanced thinking. Mathematical ideas are complex 

structures and require a theoretical thought (Davydov, 1972/90). The data 

illustrated a failure of empirical abstraction to recognize correct objects during 

problem solving (or working with concrete examples). It follows that at this level 

of mathematics the main function of abstraction (recognition) is not supported by 

empirical abstraction. Theoretical thought gives a chance to think about abstract 

algebra problems without extracting commonalities from previously learned 

ideas. Again, in the problem about the set {4, 8 , 12, 16} under multiplication mod 

2 0 , assuming that students’ view on this structure is bounded by the set only, we
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observe a process of simple generalization as merely a search for commonalities 

between the given set and other structures which are known to be groups. 

Element 1 is not in the set, so the structure is not a group. The process of 

assembling in situations like this is not complete and it causes the ignition of 

empirical generalization as a replacement for theoretical generalization.

While solving the problem about the set {4, 8 , 12, 16}, many students tried 

to find a generator for the set to prove that this is a cyclic group. This way of 

thinking is unusual but correct. However, the students are thinking about the 

structure without considering a given operation at all. They try to play around with 

numbers, using the familiar operations of addition or multiplication. Some 

students at first stated that 4 is a generator since 4 + 4 is 8 , 8 + 4 is 12, etc. This 

demonstrates a misconception caused by assembling wrong ideas into the 

generalization process. Obviously, the assembled ideas include the ideas of a 

set, an element, a generator, a cyclic group, addition/multiplication, closure. I 

think that in this case we deal with the process of theoretical generalization and 

further with theoretical abstraction. For this group of participants, the structure is 

recognized to be a group if it is isomorphic (although I do not think that the 

students really had a thought about isomorphic structures but they obviously had 

an idea about structures with similar properties: a cyclic group is a group) to a 

cyclic group (or itself is cyclic). Now the problem is restrained to the following: 

find a generator for the set; and the process of thinking goes as following: 1) find 

a generator; 2) if a generator is found, the structure is cyclic; 3) it is a group. It 

means that the process of theoretical generalization is completed, or the inner
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connections between the objects of assembling were analyzed. Under this 

assumption the recognition and conclusion are not at all controversial and we 

observe all stages of the process of theoretical abstraction. However, the 

operational part of the thinking process is misleading, since the operation is not 

standard addition/multiplication. Thus, the initial assembling is not quite right and 

the conclusion either can not be drawn, or is drawn incorrectly. Although the 

operation of addition/multiplication is a part of this assembling process, I still refer 

this understanding of groups to the “group as a set” type, since the actual 

operation, defined on the structure, was not considered, or at least was not 

considered in connection with the set.

Groups and their subgroups

Understanding o f  a subgroup in general 

Since a subgroup is a group itself with some additional conditions, it is 

difficult to distinguish students’ understanding of groups and subgroups. 

Moreover, some problems in understanding of a subgroup are caused by 

misunderstanding of the concept of group. Data analysis showed that even if a 

group or a subgroup is considered to be a binary structure (set together with the 

operation), the problem of “closure” often persists. Repeatedly students did not 

consider operation as part of the subgroup concept, or did not connect a group 

and its subgroup operationally. Dubinsky et al. (1994) suggests that “an 

individual’s development of the concepts of group and subgroup may be 

synthesized simultaneously” (p. 273). Indeed, in order to learn the concept of a 

subgroup, the ideas of a group, a subset, and a group operation are assembled
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and theoretically generalized into an abstract entity for recognition and final 

concept formation. At the same time, group as a part of the assembling process 

has a complicated nature. Students must have an idea of a group in assembling 

, not only because a subgroup itself is a group by definition, but also because a 

subgroup is a substructure of a bigger structure which is also a group. This is a 

very interesting issue. Assuming that the concept of a group is already learned 

(previously learned abstract ideas such as set, operation, closure, associativity, 

identity element, inverse element, etc. are assembled, generalized into an 

abstract entity and mastered on concrete examples), then the bigger structure 

which is given to be a group must be recognized as a structure with specific 

properties which are affecting a substructure. During data collection and analysis 

I noticed that if a problem stated “Let G be a group”, students did not always 

realize what properties it must have. During the interviews some students said 

that they cannot say anything about G since they do not know what G is. So, 

without having a concrete structure the students had difficulty understanding 

group’s axioms and properties. I think it means that initial assembling was not 

complete and/or the generalization process was empirical rather than theoretical, 

and concrete examples played the role of abstract ideas in the assembling 

process. I do not claim that concrete examples cannot be a part of the 

assembling process. Moreover, the analysis showed otherwise in many cases 

(see Figure 31): students need both abstract ideas and concrete examples to 

understand a more complex idea but the shift from these ideas and objects to the 

new abstract entity must be a result of theoretical, not empirical, generalization.
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The analysis showed that students have difficulty understanding 

connections between a group and its subgroups, both operational and via 

element. Student’s responses revealed three major misconceptions about the 

concept of a subgroup. First, for some students understanding of a subgroup is 

similar to the understanding of groups as sets. Unfortunately, I did not have a 

chance to make a deep and careful analysis of the data in “student by student” 

way. I did not want to limit my study to special cases only. However, I still made 

some connections between the responses of the same student. For instance, 

those students who at first understood a group as a set would not necessarily 

transfer this understanding onto subgroups and vice versa. For some students a 

group is a set with the operation while a subgroup is just a subset, a part of a 

bigger structure. A subgroup exists if a subset exists. For example, several 

students claimed that the set of odd integers is a subgroup of (Z, +).

The study has also shown that students have problems seeing structural 

connections between groups and its subgroups. Sometimes they only 

comprehend elements connection. Note that this case is different from the one I 

described above. This time students realize that a subgroup is a group itself 

under an assigned operation. It is not merely a subset of a bigger set, it is a 

structure. Nevertheless, the assigned operation is not necessarily the group 

operation. For example, some of the responses defended that (Z n +n ) is a 

subgroup of (Z, +), since it is a group and Z n is a subset of Z. I also observed a 

change of the subgroup operation from the group operation to a different 

operation during problem solving activity (Figure 16).
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In addition, I observed responses that not only demonstrate students’ 

understanding of a subgroup as a subset of a given structure but, in addition, a 

subgroup is understood as a group and a subgroup has the group operation. 

However, the concept of binary operation is causing difficulty. It is well illustrated 

by the following response (Figure 47): the set of odd integers together with 0 is a 

subgroup of (Z, +). Note that I already referred to this example in a different 

category. However this time there is a conceptual difference. Element 0 is added 

to the set. It suggests that the students who gave this answer understand that the 

structure has an identity element. It follows from the fact that a subgroup is a 

group itself. Moreover, it looks like they understand that the operation is addition, 

since 0 is the additive identity. So, the only problem is the closure of the 

structure.

In light of theoretical perspectives it seems that in the standard learning 

sequence “group -  subgroup” the concept of a subgroup is the merger of two 

concepts. One can have an abstract idea of a subgroup only if the idea of a 

group has already emerged. At the same time a subgroup being a group has 

special properties which define the subgroup, therefore it is important that 

students understand these characteristics. It suggests that to construct the 

abstract idea of a subgroup students need more ideas for assembling than for 

understanding the concept of groups.

When students are solving problems involving groups and subgroups they 

are acting upon given objects and operations using abstract ideas they already 

have. At this stage, the concept of a subgroup is not abstracted yet. It requires
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more mastery: more concrete examples. At this stage students already have the 

required minimum of assembled ideas, for instance: set, operation, closure, 

subset, identity, inverse and group. Still, assembling of various ideas is not 

enough. There is also the process of theoretical generalization but what if the 

recognition of a subgroup still fails? I think that the problem is in articulation. The 

concept of a subgroup is not articulated enough yet. It seems from the data that 

there is a lack of counterexamples in the articulation process. Theoretical 

generalization as a part of theoretical thought suggests that, for instance, the 

existence of an inverse element for every element of the set must be proved and 

is not given for granted. Students prove the statement using false arguments 

simply because they are absolutely sure that objects described in the problem 

cannot exist. It is difficult to recognize since the concept is not mastered to the 

extent when one can shift from abstractly defined structures to concrete 

examples of such structures. It follows that the abstract idea is not formed yet 

since the process of abstraction is a shift from abstract to concrete.

Cyclic groups and cyclic subgroups.

The analysis showed that students find it easy to work with concrete 

examples of cyclic groups. Moreover, they are very comfortable listing their 

subgroups and describing them. Not all the students however, appreciate 

theorems which help to minimize steps in the problem solving process. The fact 

that students often used cyclic groups as concrete examples during problem 

solving suggests that cyclic groups proved themselves very useful objects for the 

articulation process in the group concept formation. The cyclic groups of integers
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mod n are good examples of finite groups. Cyclic groups are also good examples 

for illustrating the connections between elements of a group and for many other 

aspects which may seem unclear at first. It also seems obvious for the students 

that all subgroups of a cyclic group must be cyclic. Nevertheless, sometimes this 

understanding is coming from empirical generalization (students observe several 

examples of subgroups of a cyclic group and conclude that they all must be 

cyclic), rather than from analysis of the inner connection within the structure. As a 

result, students accept the idea that if G is a group, then it is closed under the 

assigned operation. It follows that every nonidentity element generates a 

nontrivial cyclic subgroup. However, students’ view of the inner connections is 

still not comprehensive and a group is perceived as a union of such cyclic 

subgroups (see for example Figure 54).

Data analysis and theoretical perspectives suggest that when learning 

concepts of cyclic groups, their subgroups and cyclic subgroups, students often 

rely on empirical generalization since the concepts are well illustrated by a 

variety of concrete examples. Instead of recognizing concepts in the examples, 

students are looking for commonalities via empirical thought rather than 

theoretical.

Making conclusions based on concrete objects: more cases of empirical 

generalization

According to the literature (including the authors Piaget, Mitchelmore, 

White, Davydov) abstract ideas in mathematics cannot be learned through 

empirical generalization. It means that it is not possible to learn by extracting
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commonalities from concrete examples. I should mention that “concreteness” of 

ideas is usually defined by students themselves. Indeed the set of integers 

modulo n is hardly concrete. However, in mathematics it is often considered to be 

concrete. Ferguson (1986), for example, reported that for students numbers are 

concrete and understandable. Operations with numbers as well as results of 

these operations are also concrete in students’ sense. However, as soon as 

variable is involved the problem becomes more abstract and confusing. Under 

this assumption it is clear why during the assembling process students often use 

concrete objects. For example, many responses showed that no matter what 

group is defined, students most likely would choose 0 or 1 to be an identity 

element. Similar for inverse, one of the students I interviewed kept looking for 1/3 

in the set of integers mod 5, since she/he “knew” that it is multiplicative inverse of

3. At the same time the student knew that (Z5 - {0}, * 5) is a group and there must

be an inverse element for 3. It looks like examples of multiplicative groups such 

as (Q - {0},x)or (R - {0},*) are the objects in the assembling process. There is 

nothing wrong with this. However, it is still necessary for students to bring other 

ideas for assembling for understanding the inner connections of the objects and 

concrete examples. I have mentioned before that neither a researcher nor an 

instructor can predict a number and type of ideas one needs to assemble to 

understand a certain concept. During my teaching practice, I had a student who 

needed to think about a clock to understand the concept of angle. So, I assume, 

the assembling process is individual. It is also difficult to say if assembling of 

certain ideas would result in the needed abstract entity formation. Nevertheless,
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there are some ideas which must be learned before and must be assembled in 

order to understand a new concept. This result depends on students’ actions 

upon the assembled ideas, or generalization. The example about 1/3 being the 

inverse element of 3 in (Z5- {0}, ><5 ) (this common misconception was not only 

observed in the data I collected but also in some other reports, for example 

Hazzan (1999)) suggests that the student is basing the conclusion on the 

concrete structures. However, it looks like the concepts of inverse element and 

identity element are also presented in students’ assembling process. Based on 

the definition of these concepts and several examples (such as (Q - {0}, *)or (R -

{0},*)) students often observe that 1 is a common identity element which 

satisfies the definition. Similarly for inverse, a common pattern in the structures:

for every element a from the structure its inverse element is —. These common
a

features are easy to extract out of other properties and elements. The process of 

observing patterns and simple commonalities is described by Davydov 

(1972/1990) as empirical generalization. The result of this type of generalization 

is an empirical abstract idea. An individual, who possesses the empirical idea, 

has difficulty recognizing objects, since she/he is trying to find same 

commonalities in the object of recognition. The recognition often fails and the 

abstract idea is not complete or has a misleading form. This abstract idea can 

confuse students, as one of the interviewees, who realized that 1/3 is not an 

element of the structure (Z5 - {0}, * 5) but knew that it was a group and there must 

be the inverse of element 3. Sometimes the empirical thought simply misleads an
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individual to the wrong conclusion without realization. In this case the conclusion 

would be that the structure (Z5- {0},x5) is not a group since 1/3 is the only 

possible inverse of 3.

Since theoretical abstraction does not go from concrete to abstract but 

rather backwards, is it possible to rely on concrete objects and still produce a 

theoretical thought. It looks like the problem is not entirely in the assembling 

process. Concrete examples together with previously abstracted ideas are 

necessary for the correct and solid concept formation. Nevertheless, 

generalization is the problem. What does it mean to generalize theoretically 

versus empirically? According to Davydov we must look for inner connections 

between the assembled objects. Such a connection in the illustrated example 

with 1/3 would be, for instance, the analysis of the question why 1 is an identity 

element in the exemplified structure, why 1 is also an identity element in another 

structure, and how the operation affects the choice.

Sometimes students use concrete examples to make sense of a problem 

or to help themselves to understand what to do next when solving a problem. I 

think that, if the examples indeed represent objects described in the problem, this 

way of reasoning really helps students to solve the problem. Moreover, it verifies 

the deep understanding of the abstract concept being used. It illustrates that the 

concept is already abstracted and well articulated. I would call the ability to not 

only recognize but also to produce a concrete object which exemplifies a certain 

abstract entity as a high-order articulation. Often students have difficulty not with 

recognition of an object but rather with producing an object with certain
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properties (Interview II, Question 4). This is a conceptually different problem. 

Students have to go from the definition of the object to some concrete 

representation of the object and then back to the definition. The process of 

abstraction in this case goes from assembling of needed ideas to concrete object 

production (not abstract entity as usual) and then recognition. The difference 

between the usual recognition problems and this type of problem is that the 

second one requires “two stages” of theoretical thought: first, understanding of 

assembled ideas and producing the concrete object; and second, recognition of 

the object as satisfying the given conditions. Indeed, the more complex 

theoretical thought is required for more advanced problems, such as producing 

examples and counter examples.

Definitions of objects. How students use them

The data (both written artifacts and interviews) illustrated that the students 

mostly used informal definitions of the concepts they study. Normally, an exam or 

a quiz in the course included questions about definitions, and it was always 

announced in class before the test so that they could study the definitions. Every 

quiz and exam was structured in such a way that students had to give a definition 

of a concept and then solve problems involving this concept. This strategy of 

testing helped me to identify some interesting patterns. It showed whether the 

students used a definition they just formulated, and if they did, in what way and 

what parts of the definition the students considered being the most important and 

significant for concept recognition and handling.
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The theoretical framework suggests that a definition is the initial stage of 

concept formation. A definition suggests ideas for assembling. For example: a 

group is a set, closed under an assigned operation, the operation must be 

associative, an identity element must be in the set and every element of the set 

must have an inverse. The definition puts forward some previously abstracted 

ideas for assembling. Analysis of the connections between the ideas, and 

articulation follow the assembling. Later, when concepts are being recognized in 

concrete problems student also must refer to definitions to collect objects from 

the assembling process, which must be recognized first.

It was mentioned above that evaluation material for the class I worked with 

included questions to state a definition of a certain object. I also included 

questions of this type in the questionnaires I created for the interviews. I noticed 

that the students did not like these questions. One of my interviewees noted that 

they “just use it” but she/he was not sure how to state the requested definition. 

Also I noticed that even if a definition was given almost completely students 

infrequently used it in their problem solving; or used it partially. It suggests that 

there is a gap between the abstract entity students have constructed from the 

definition and the articulation process, the recognition per se. Recalling my 

assumptions that definitions suggest ideas for assembling, it follows that not all 

ideas are being generalized into an abstract entity. Further, when recognizing 

objects using definitions, students simply recognize the objects that were parts of 

the assembling process. However, some of these objects may not find their place
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in the abstract entity (and thus will not be recognized) or could be considered as 

unimportant. It results in failure of the recognition using the definition.

Now I would like to return to the interview questions about definitions. I 

think that in response to such a question students’ reasoning is supposed to shift 

back from the object that is recognized to be, for instance, a group, to the objects 

that make it a group. In a way it is the reverse process of abstraction I described 

in the theoretical perspectives. We are looking for main ideas, which would be 

assembling participants in the beginning of the learning of the concept. This 

problem unfortunately is often difficult for students. Most often they recall the 

symbolic (or algebraic) part of definitions (consider excerpt in Figure 28, for 

example). I think it makes more sense to them, and it looks more precise to 

students than words and other conditions. It is always easier to understand a 

formula, or use a formula. It follows that if a definition includes a certain algebraic 

(symbolic) statement, then it is always a part of assembling process and 

necessarily a part of the abstract entity. This explains why students, when asked 

to exemplify an Abelian group, usually come up with an operation that is non- 

commutative but fail to notice that this operation is often not binary for the given 

set or the set they define.

Another important issue that came from the analysis and must be 

discussed is the use of quantifiers and understanding of quantification in general. 

The following section is addressing this issue.
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Quantifiers

Understanding of quantifications is crucial for understanding of 

mathematical concepts, and abstract algebra concepts in particular. Indeed, 

when students learn the concept of a binary operation, for instance, it is 

important to grasp that the operation must be defined for ALL ordered pairs of 

elements of the set. One of my interviewees when defining a binary operation on 

the set {1, 2, 3, 4} assumed that it is possible to add 1 and 2, but subtract 3 and

4. The student assumed that every pair can have a different operation assigned 

to it. I noticed that at first almost no one used quantifiers when writing definitions 

or problem solution (including proofs). It does not always mean that the students 

do not understand quantification. It is possible that they just do not feel 

comfortable using standard symbols to describe quantification. Note that all 

students in the class I observed were required to take a course on mathematical 

proofs as a prerequisite for abstract algebra, so they are familiar with 

quantification and its role in proofs and definitions of mathematical objects. Later 

on many students started to use symbolical notations for quantifiers.

When I started analyzing the interviews data, I was surprised that students 

did not use quantifiers at all when defining objects. I already mentioned in the 

previous section how students usually defined objects especially when doing it 

verbally. However, missing quantifiers did not mean that the concept was not 

recognized or used properly during problem solving process. The preliminary 

analysis of the interviews suggested to look more carefully at the written work in 

terms of the presence of quantifiers. I noticed that students used quantifiers more
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often when writing statements but I observed some other problems. Sometimes 

the students changed the order of quantifiers they used. For example, instead of 

writing V3 statement they had 3V statement (Figure 19). I have also noticed that 

sometimes a quantifier corresponding to a different concept is used (Figure 21). 

Further analysis implied that the problem is not only symbolical but more global -  

misunderstanding of quantification.

Several studies that explore students’ understanding of quantifiers are 

Dubinsky, Yirparaki (2000); Epp (2003); Durand-Guerrier, Arsac (2005). Most of 

them explore students’ ways of proving statements and as a consequence their 

view on quantification since it provides the basis for formal logic. Flazzan and 

Leron (1996) report students’ difficulty using definitions or theorems since they 

do not understand the quantification. Even if a person has knowledge about the 

logical principals used in the problem it is still difficult for students to employ the 

principles for the valid reasoning (Epp, 2003). Literature (Dubinsky, Yirparaki 

(2000); Epp (2003); Durand-Guerrier, Arsac (2005)) questions the connections 

and differences between formal and informal discourse concerning quantified 

statements.

As I previously noticed, I did not have a chance to study students’ 

solutions in detail, since it was not a part of my research questions. However, I 

formed my view on students’ understanding of quantification by studying their 

ways of defining abstract algebra objects. All objects in abstract algebra are 

complex structures that involve many other objects as parts and quantification 

helps to understand the relations between the objects and the structure that is
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being defined. The data revealed three major issues with understanding of 

quantification: missing quantifiers; V3 statements versus 3V statements; and 

misplaced quantifiers. The following paragraphs discuss these issues.

Since the study was aimed to understand students’ formation of abstract 

object I did not attempt to analyze students’ mathematical logic and their ways of 

proving statements. I believe this analysis would help me to identify students’ 

understanding of the role of quantifiers. It looks for me that students do not 

comprehend the power that quantifiers have over mathematical statements that 

they can change the statements dramatically, from true to false. It is a thought for 

future studies.

Referring to students’ written work I attempt to understand why the 

students do not use quantifiers in their responses and how it effects their problem 

solving. First, I have noticed that it is not possible to draw a parallel between 

students’ use of quantifiers in the definitions of objects and their use of 

quantifiers in problem solving. Most often students use quantifiers in a definition 

and then do not employ them in the problem solving. In this case it looks like the 

students rather memorize the definition without making sense of every aspect of 

it (including language, terms, formulas, concepts). Quantifiers are a part of the 

logical construct. It means that, following the theoretical framework, 

understanding of the quantification of a certain mathematical object should 

probably appear during theoretical generalization process and further during 

articulation process when students recognize the object or understand why the 

given object cannot be identified as a certain structure, for instance a subgroup.
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It follows that quantification is not employed during generalization process. 

Respectively, it is not employed in the articulation. Further, the structure is not 

properly recognized. So, the process of abstraction fails. Similar scenario occurs 

when students misplace quantifiers.

The problem with V3 statements versus 3V statements suggests that 

quantification is a part of generalization and articulation process. However, the 

data showed that often students do not see the difference between these logical 

statements. The most significant concepts for this matter are the concepts of 

identity and inverse elements. The concepts are very close to each other 

symbolically. Identity is a part of the definition of an inverse. Also, both of these 

concepts are parts of the bigger concept of group. It partially explains why 

students sometimes mistakenly start to think about an identity while they are 

asked for an inverse element. Also, sometimes they claim that if there is an 

identity in a certain structure then every element must have an inverse (see 

Figure 61). Furthermore, sometimes students confuse logical structure of the 

concepts of identity and inverse. The definition of identity element e in (G, *) is 

3V statement while the definition of inverse element is V 3, but students do not 

pay attention to this difference and do not attend to the meaning of both 

statements and often do not see the difference in the meanings. As a result, 

students may find more then one identity element in structures defined in the 

problems.
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Dubinsky, Yiparaki (2003) compared the use of V3 statements versus 3V

statements in natural language and in mathematics. Analyzing their data they

have noticed two main trends:

Those students who did not pay attention to quantifiers in the natural language 
statements, continued to ignore quantifiers in the mathematical statements; and, 
some students who had attended to the quantifiers in the natural language 
statements failed to do so in the mathematical statements. There were no 
students who attended to quantifiers in mathematics but failed to notice them in 
the natural language statements, (p. 264)

I found similar trends to this phenomenon.-1 noticed that the students who 

did not pay attention to quantifiers when defining objects continued to ignore 

quantifiers when solving problems and applying the definition. Some students 

who had attended to quantifiers in the definition failed to do so during problem 

solving. However, Dubinsky, Yiparaki (2003) further noticed that “there were no 

students who attended to quantifiers in mathematics but failed to notice them in 

the natural language statements.” (p.264), while there are cases in my data when 

students did not use quantifiers in definitions but they attended to quantification 

during problem solving.

It is difficult to make conclusions about how quantifiers (both in natural 

language and mathematical statements) affect concept formation and what stage 

of abstraction is responsible for fitting in logical construction. My data showed 

only the top of this iceberg and pointed out what types of problems may emerge 

when students work with statements involving quantification. Further data 

collection with modified questions is needed to come closer to understanding the 

role quantifiers are playing in concept formation.
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Conclusions

The study was aimed to understand how students reason about abstract 

algebra concepts, how they operate with abstract objects, how abstract concepts 

are generated in general, and what connections between abstract concepts and 

concrete examples students see. The study is guided by the theoretical 

framework that is based on Piaget, Ohlsson, Lehitinen, and Davydov’s view on 

students’ reasoning and the processes of abstraction and generalization.

The study showed that one needs to have previously abstracted ideas to 

understand a new abstract structure. Moreover, data analysis and further 

discussion ascertained that an abstract concept cannot be learned without 

concrete examples and problems that involve the concept. In other words the 

articulation of an abstract concept is required for coherent structure formation. In 

this section I summarize the discussion of the findings and make several 

conclusions about students’ understanding of abstract objects. I also summarize 

the causes of major problems in students’ learning that can lead to 

misconceptions and inability to solve abstract algebra problems.

The data and theoretical framework suggested the model of abstract 

concept formation -  process of abstraction (Figure 64).
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Examples
Definition Examples

Stage 1

Articulation -  
First 

Recognition
Preliminary
Assembling

Preliminary <|------ (►
Generalization

Problems

Stage 2
Assembling Generalization Articulation

Figure 64. Process of Abstraction

At the first stage of the learning process students are often given a 

definition of a concept being studied. Sometimes several simple examples 

precede the definition. These activities give students a chance to generate a 

preliminary set of objects for assembling. All these objects are previously learned 

abstract ideas. The process of assembling is followed up by the process of 

theoretical generalization. Since a definition usually gives only a preliminary set 

of ideas for assembling, it is most likely impossible to coherently understand 

inner connections between the ideas and form a plausible abstract entity. For this 

reason, I describe this process as a preliminary generalization. The next 

standard instructional step is illustration of the concept via various examples. 

During this stage students are getting the first articulation experience and make 

first attempts to concept recognition. The first stage does not necessarily lead to 

consistent concept formation. I consider the concept to be generated if it is 

recognized during problem solving together with all its properties. At this stage a
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student should be able to exemplify and counter exemplify the concept. It means 

that when the concept is learned the process of abstraction of these objects gets 

into the following static form: 1) connected assembled ideas; 2 ) complete 

understanding of meaningful inner connections; 3) open-minded recognition of 

the object. At this stage, students should be able to move easily from object 

recognition to assembled ideas, if needed. Most of the time, if not always, the 

first stage does not give the result of the static form I just described. After the 

concept was defined and exemplified, instructions usually are followed up by a 

problem solving activity where the concept that is being studied interacts with 

other concepts and ideas. This is the second stage of the concept formation 

process. At this stage students are exposed to additional ideas for assembling, 

and make more thorough theoretical generalization for the correct recognition of 

the object. Also this stage provides students with understanding of properties of 

the concept and they again could add ideas for assembling. These stages are 

repeated as many times as needed.

Now I would like to summarize possible quandaries that are coming out of 

the theoretical configuration described above. As I have noticed all the stages of 

abstract concept formation are interconnected. There is a constant interaction 

between processes (assembling and articulation) within the process of 

abstraction. This observation implies that if there is a problem with one process 

the abstract concept cannot be appropriately formed. The discussion of my 

findings led me to the following summary of possible predicaments for concept 

formation:

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Empirical generalization and abstraction instead of theoretical. 

Students are trying to learn concepts by extracting commonalities 

from given concrete objects and examples.

2. Assembling of unsuitable ideas. Students mistakenly assemble 

some ideas which are not supposed to be assembled to learn a 

certain concept. As a result, theoretical generalization results in a 

misleading abstract entity and further in false conclusions which 

look true under students’ arguments.

3. Insufficient number of assembled ideas.

4. Making the object of recognition (during problem solving) one of the 

ideas for assembling (see page 172 for discussion).

5. Insufficient articulation. Students find it difficult to provide examples 

and especially counterexamples.

6. Isolation of concrete examples from objects of assembling. 

Sometimes students do not see the interaction between the 

concrete examples and the abstract structure. A concrete example 

is considered to be a static object with fixed properties. For 

instance, students know that (Z, +) is a group with identity 0 and the 

inverse for any element is its opposite integer, but they do not 

question it, they simply take it for granted.

The list above summarized my findings. The summary provides a basis for 

study implications. The next chapter discusses the implications and future study 

propositions.
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CHAPTER VII

IMPLICATIONS OF THE STUDY

The focus of this section is on implications of the study for future research 

and for teaching abstract algebra and mathematics in general at both, college 

and school levels. The suggestions for future research are motivated in part by 

the limits of one study. Ideas for implication evolve from the data and theoretical 

discussion.

The analysis and further discussion elucidated the importance of the 

assembling process for concept formation. The study showed that it is not 

possible to describe or define the set of ideas for assembling when learning a 

new concept. In other words, the assembling process is individual. A student may 

have personal associations with the object of study which make sense only for 

her/him. However, to understand students’ concept formation more deeply one 

must study the process of assembling in more detail. I would formulate the 

following questions for future exploration: Why are certain ideas are assembled? 

How do students connect the ideas in the assembling process to generalize them 

into the new abstract entity? Finally, it would be interesting to study if it is 

possible to create the set of objects which must be a part of the assembling 

process for learning a certain concept (call it concept decomposition). If yes, how
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it would affect instructions and students’ understanding of mathematical 

concepts.

The data illustrated the difficulties students have when learning quantified 

statements. The proposed theoretical framework did not provide rational 

explanation for this phenomenon. The framework needs to be modified for the 

future exploration of quantifiers. As I mentioned before the data pointed out the 

problem but was not aimed to concentrate on this problem which was rather 

unexpected. In the future I would like to understand what the possible reasons for 

the difficulties are and how these difficulties effect students’ concept formation. I 

want to find answers to the question: what is exactly missing: mathematical logic, 

symbolic notation, interpretation of quantifiers, or something else.

The study also suggested several implications for teaching. First, the 

teacher must be aware of the problems that students could possibly have when 

studying abstract algebra. The study is rich in data and it includes explicit 

examples of learning situations which are common for abstract algebra course 

participants. These examples can help a teacher to prepare for certain obstacles 

and think about problems or examples which may help the students to overcome 

these difficulties. Moreover, the study may suggest some problems or examples 

for the instructor’s consideration.

The study also may suggest possible instructional approaches, following 

the cognitive problems I indicated in the previous chapter.

1. Writing definitions during problem solving activities and 

exemplifying concepts. I believe it would help to compel the
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appreciation of formal logic and make definitions more explicit. It 

would allow students to properly use definitions when proving 

statements. It is especially important for teachers’ preparation since 

NCTM Standards (2000) suggest that students should be able to 

develop and evaluate mathematical arguments and proofs.

2. Discussions of possible ideas for assembling. Preparation of sets of 

questions to stress the connections between assembled ideas.

3. Collaborative activities. Group discussions where students can put 

together more ideas for assembling and discuss connections 

between the ideas.

4. Understanding the time limits of every course it is not possible to 

suggest doing more problems for articulation. However, I suggest 

more “problem posing” activities and special attention to 

counterexamples.

The last suggestion also contains an additional question for possible 

future exploration. I have noticed that the students have difficulty with producing 

examples of certain objects. I would like to study how the instructional approach, 

based on variety of such problems would influence students’ understanding of 

abstract algebra objects and abstract concept formation in general.
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APPENDIX A

DATA COLLECTION TIME TABLE

Order Date Type of artifact

1 09/23/05 Quiz 1

2 09/30/05 Exam 1

3 10/17-10/21/05 Interview 1

4 10/19/05 Quiz 2

5 10/26/05 Exam 2

6 11/07-11/17/05 Interview 2

7 11/28-12/07/05 Interview 3
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APPENDIX B

SAMPLES OF INTERVIEW QUESTIONS AND WRITTEN ASSIGNMENTS

• Quiz 1 Problems

• Quiz 2 Problems

• Exam 1 Problems

• Exam 2 Problems

• Interview I Questions

• Interview II Questions

• Interview III Questions

• Students’ Questioner
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MATH 761: QUIZ 1 
23 September 2005

1. Define each of the following terms as completely and accurately as you 
can.

(a) a TRANSITIVE relation M'on a set A.
(b) an ASSOCIATIVE operation * on a set S.
(c) a ONE-TO-ONE function f  from A to B.

2. Give an example of an operation on Z which has a right but no left 
identity. [Hint: You’ve known about this a very long time!]

3. Consider equivalence relations on a set A, where|A| = 8. What is the 
greatest number of equivalence classes such an equivalence relation 
can have?

MATH 761: QUIZ 2 
19 October 2005
1. Define each of the following terms as completely and accurately as you

can.
(a) a SUBGROUP of a group G.
(b) the GENERAL LINEAR GROUP GL (n, Q).

2. State the LEFT CANCELLATION PROPERTY for a group G.
3. Recall that nZ is precisely the set of integers which are multiples of the 

given integer n. Use the “subgroup criterion” to determine whether or not the set 
2Z U 3Z is a subgroup of (Z, +).

Math 761: FIRST HOUR EXAM 
Friday 30 September 2005
Instructions: Work all five problems on this exam as completely as you 

can. Show your work, since partial credit will be awarded where appropriate. 
Work steadily, not allowing yourself to get hung up on any one question. Please 
cross out any work that you do not want me to consider. Good luck!

1. (8 points each) Give a definition for each of the following 
terms that is as complete and accurate as possible.

(a) a PARTITION of a nonempty set S;
(b) an IDENTITY ELEMENT in a set S with binary operation *;
(c) a PERMUTATION of a nonempty set S.
2. (16 points) Let S = {a, b, c}. How many distinct binary 

operations exist on S which have “a” as a (two -  sided) 
identity element? [Hint: Think in terms of completing
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operation tables. Warning: This problem does not involve 
isomorphism in any way!]

3. (15 points) Define a binary operation 0 on Q* by the rule

a O b=—[ —
(ab)

where k is an integer. For which value(s) of k will (Q*, 0) have an
identity element, and what will that identity element (or those
identity elements) be?

4. (20 points) Use the cancellation property of groups to 
prove that every element of a group has exactly one 
inverse.

5. Below is a table giving a binary operation * for 5  = {a, b, 
c}.

(a) (8 points) Produce an operation table for S which is not 
isomorphic to (S, *). Justify your answer.

(b) (10 points) Produce an operation table for S -  different from 
the original one -  which is isomorphic to ( S ,  *). Justify your 
answer.

(c) (7 points) Assume the operation * below is associative. Do 
there exist two distinct operations which make it a group? 
Justify your answer.

Math 761: SECOND HOUR EXAM 
WEDNESDAY 26 October 2005
Instructions: Work all five problems on this exam as completely as you 

can. Show your work, since partial credit will be awarded where appropriate. 
Work steadily, not allowing yourself to get hung up on any one question. Please 
cross out any work that you do not want me to consider. Good luck!

1. (6 points each) Give a definition for each of the following terms 
that is as complete and accurate as possible.

(a) an ABELIAN group G;
(b) A CYCLIC group G;
(c) The TRIVIAL SUBGROUP of a group G.
2. (22 points) Exhibit all the subgroups of(z12,+12), and indicate 

which of these are subgroups of other of these.
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3. (20 points) Is it possible to find two nontrivial subgroups H and K 
of (Z, +) such that H f l K = {0}? If not, why not?

4. (20 points) Prove or disprove: If G is a finite group and ae G, 
then there is some integer n such that an = e.

5. (20 points) Let (G, *) be a group and H be a nonempty subset of 
G. Suppose H is closed under the operation of G and that (H, *) 
has an identity element eH. Prove thateH = eG.

INTEVIEW I QUESTIONS.

TOPIC: Binary operation.

TIME: ~ 40 minutes.
Please specify all the details aloud. Say if you are using a definition, or property, 
or theorem to proof your statements.
I.
1. Define what it means to say that * is a binary operation on a set A.

2. Decide which of the following statements are correct, please explain your 
reasoning:

a) a binary operation on a set S assigns at least one element of S to 
each ordered pair of elements of S.

b) a binary operation on a set S assigns at most one element of S to each 
ordered pair of elements of S.

c) a binary operation on a set S assigns exactly one element of S to 
each ordered pair of elements of S.

3. Give an example of binary operation on Z.

4. Give an example of operation on Z which is not a binary operation on Z?

5. Let S be a set. Let * be an operation on S. What does it mean if for some 
elements a, b of S a*b is not in S?
In your words, what does it mean for the set to be closed under the operation?

6. Define a binary operation on S = {0,1,2,3,4}.

7. Determine if the following binary operation is associative. Does it have an 
identity element? Decide if it is commutative. Operation is defined on Z + by
a * b  = 2ah.

8. What do you understand by a binary structure?

INTERVIEW II QUESTIONS
1. In your own words, what does it mean that G is a group?
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2. Let - Z  be the set {-zlzeZ}.
2 2 1

(a) is it a group?
(b) Give an example of a binary operation on the set. Is it a group now?

(b) Confirm that ^ Z  is a group under addition.

(b) Is i z a  group under multiplication? Explain.

3. Let G be a group, let aeG. How many inverses can a have? Why?

4. Give me an example of Abelian and non-Abelian group.

5. Determine whether {4, 8, 12, 16} is a group under multiplication (mod 20).

6. Give a table for a binary operation on the set {e,a,b} satisfying axioms A2, A3 
for a group but not A1 ,(A1. the binary operation is associative;

A2. there is an element e in G, s.t. e*x = x*e = x for all xeG.
A3, for each aeG, there is an element a’eG, s.t. a*a  = a*a’ = e)

7. Give an example of cyclic and non-cyclic group.

8. Consider the group (z5 - { 0} , x 5) =  {1,2,3,4}. Please add one or two sentences 
explaining your answer to the following questions:
a) What is the identity element of this group?
b) What is the inverse of 3 in this group?

9. Find the order of the cyclic subgroup ofz5, generated by 2.

10. Is Z a subgroup of ( Z 4 , +)? What are all the subgroups?

11. Is z3 a subgroup of z6?

12. If not find a subgroup ofz6, containing 3 elements? Is this group isomorphic 
toz3 ? How would you answer 13 now?

13. Are Z5 and Z7 isomorphic? If yes, find an isomorphism.

14*. Let (G,*)be an Abelian group, t is a fixed element of G. Define a binary 
operation 0 by (x, y) -> x*y*t~l -,x,y eG Prove or disprove that (G, 0) is a group.

15*. Prove that if a2 =efor any element a of a group G, then G is Abelian.
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INTERVIEW III QUESTIONS 

TOPICS: Subgroups, group operation, group of permutations.

1. Let G be a group, define the center of G to be the set Z(G) = {x e G | gx = xg
for all g e G}. Determine whether Z(G) is a subgroups of G.

2. Prove or find a counterexample.
a) If G is an Abelian group, then the set {geG|g2 =e}is a subgroup of G.

b) If G is a group, then the set {g e G|g2 = e} is a subgroup of G.

3. Find the subgroup generated by the given element in the specified group: the 
subgroup of s4 generated by (134).

4. Find a subgroup of s4that is the same as s3.

5. Is every subset of a group a subgroup under the induced operation?

6. Is s3 a subgroup ofs6 ?

7. Determine whether the given function is a permutation of R, explain:

a) A ( x )  = x + \

b ) / 3=«'

8. Please give a brief answers to the following questions:
(a) How do you study for this math class?
(b) Do you use a textbook? How often?
(c) Do you take detailed notes? In your opinion, how helpful it is to you?
(d) What is you main source of information for the course?
(d) Can you say several words about your experience with Abstract 

Algebra?

9. Let H, K be two subgroups of G. Prove that HuK is a subgroup of G <=> one 
subgroup contains another.

10. Give a proof or disprove the following statement: Every subgroup of a non- 
Abelian group is non-Abelian.
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16*. If * is a binary operation on a set S, an element x of S is an idempotent for * 
if jc*x = x . Prove that a group has exactly one idempotent element.

Questionnaire for Math 761.

Please provide the following information:

1. Name:

2. Major/concentration:

4. Past Math classes:

6. Future plans:

7. Questions, goals, hopes, concerns you have about Abstract Algebra, or 
mathematics in general:
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APPENDIX C

MAIN DEFINITIONS AND THEOREMS USED

Definition. A binary operation * on a set S is a function mapping S * S into S. 
For each (a, b)e G there exists ce G such that a *  b = c.

Definition. A binary operation * on a set S is commutative if (and only if) a*b = 
b*a for all a, be S.

Definition. A binary operation * on a set S is associative if (a*b) *c = a*(b*c) for 
all a, b, ce  S.

Definition: Let (S, *) be a binary structure. An element eof S is an identity 
element for * if e*s = s*e = s for all se S .

Definition: A group <G, *> is a set G, closed under a binary operation *, such that 
the following axioms are satisfied:

G1: For all a ,b , ce  G, we have
( a * b ) * c  = a * ( b * c ) .  associativity of *
G2: There is an element e in G such that 
e*x = x* e = x. identity element e for *
G3. Corresponding to each aeG, there is an element a' in G such that
a' *  a = a* a' = e. inverse a' of a

Definition (as was given in class): Let G be a group. A subset H of G is a
subgroup of G if H is itself a group under the operation of G, denoted 
H < G.

Theorem: Let G be a group, H * 0 ,  H ^ G . Then H is a subgroup of G if and 
only if V a, b e H, abA e H

Definition: Let G be a group and let ae G . Then the subgroup {a” |A7e z } of G is 
called the cyclic subgroup of G generated by a, and denoted by (a).
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Definition: An element a of a group G generates G and is a generator for G if 
(a) = G. A group G is cyclic if there is some element a in G that 
generates G.

Theorem: A subgroup of a cyclic group is cyclic.

Theorem: Let G be a cyclic group with generator a. If the order of G is infinite, 
then G is isomorphic to (Z, +). If G has finite order n, then G is 
isomorphic to [Zn,+n).

Theorem: Let G be a cyclic group with n elements and generated by a. Let be G 
and let b = as . Then b generates a cyclic subgroup H of G containing 
n/d  elements, where d is the greatest common divisor of n and s.

Also, (as) = (af ) if and only if gcd(s, n) = gcd(t, n).

Corollary: If a is a generator of a finite cyclic group G of order n, then the other
generators of G are the elements of the form ar , where r is relatively 
prime to n.
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APPENDIX D

IRB APPROVAL AND CONSENT FORM

■ IRB Approval

■ Informed Consent Form
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U n i v e r s i t y  o f N e w  H a m p s h i r e

September 8, 2004

Titova, Anna S 
Mathematics, Kingsbury Hall 
33 College Road 
Durham, NH 03824

IR B  # :  3274
Study: Understanding Abstract Objects in the Context of Group Theory
Approval Date: 09/02/2004

The Institutional Review Board for the Protection of Human Subjects in Research (IRB) 
has reviewed and approved the protocol for your study as Expedited as described in 
Title 45, Code of Federal Regulations (CFR), Part 46, Subsection 110.

Approval is granted to  conduct your study as described in your protocol for 
one year from the  approval date above. At the end of the approval period, you will 
be asked to submit a report with regard to the involvement of human subjects in this 
study. If  your study is still active, you may request an extension of IRB approval.

Researchers who conduct studies involving human subjects have responsibilities as 
outlined in the attached document, Responsibilities o f Directors o f Research Studies 
Involving Human Subjects. (This document is also available at 
http://www.unh.edu/osr/comDliance/IRB.html. 1 Please read this document carefully 
before commencing your work involving human subjects.

I f  you have questions or concerns about your study or this approval, please feel free to 
contact me at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB #  
above in all correspondence related to this study. The IRB wishes you success with your 
research.

Sonia Hristovitch

Research Conduct and Compliance Services, Office of Sponsored Research, Service 
Building, 51 College Road, Durham, NH 03824-3585 *  Fax: 603-862-3564

Manager

cc: File
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A ’U n iv e r s i t y  of N e w  H a m p s h ire

September 8, 2004

Titova, Anna S 
Mathematics, Kingsbury Hall 
33 College Road 
Durham, NH 03824

IRB # :  3274
Study: Understanding Abstract Objects in the Context of Group Theory
Approval Date: 09 /02 /2 004

The Institutional Review Board for the Protection of Human Subjects in Research (IRB) 
has reviewed and approved the protocol for your study as Expedited as described in 
Title 45, Code of Federal Regulations (CFR), Part 46, Subsection 110.

Approval is granted to conduct your study as described in your protocol for 
one year from the approval date above. At the end of the approval period, you will 
be asked to submit a report with regard to the involvement o f human subjects in this 
study. I f  your study is still active, you may request an extension of IRB approval.

Researchers who conduct studies involving human subjects have responsibilities as 
outlined in the attached document, R e s p o n s ib ilitie s  o f  D ir e c to r s  o f  R e s e a rc h  S tu d ie s  

In v o lv in g  H u m a n  S u b je c ts .  (This document is also available at 
h tto ://www.unh.edu/osr/comoliance/IRB.html.I Please read this document carefully 
before commencing your work involving human subjects.

I f  you have questions or concerns about your study or this approval, please feel free to 
contact me at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB #  
above in all correspondence related to this study. The IRB wishes you success with your 
research.

Sonia Hristovitch

Research Conduct and Compliance Services, Office of Sponsored Research, Service 
Building, 51 College Road, Durham, NH 03824-3585 *  Fax: 603-862-3564

Manager

cc: File

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.unh.edu/osr/comoliance/IRB.html.I
mailto:Julie.simpson@unh.edu


University of New Hampshire

Research Conduct and Compliance Services, Office of Sponsored Research 
Service Building, 51 College Road, Durham, NH 03824-3585 

Fax: 603-862-3564

8/21/2006

Jitova, Anna S 
Mathematics, Kingsbury Hall 
33 College Road 
Durham, NH 03824

IRB #: 3274
Study: Understanding Abstract Objects in the Context of Group Theory
Review Level: Expedited
Approval Expiration Date: 9/2/2007

The Institutional Review Board for the Protection of Human Subjects in Research (IRB) has 
reviewed and approved your request for time extension for this study. Approval for this study 
expires on the date indicated above. At the end of the approval period you will be asked to submit 
a report with regard to the involvement of human subjects. If your study is still active, you may 
apply for extension of IRB approval through this office.

Researchers who conduct studies involving human subjects have responsibilities as outlined in the 
document, Responsibilities of Directors o f Research Studies Involving Human Subjects. This 
document is available at http://www.unh.edu/osr/comDliance/irb.html or from me.

If you have questions or concerns about your study or this approval, please feel free to contact me 
at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB # above in all correspondence 
related to this study. The IRB wishes you success with your research.

Julie F. Simpson 
Manager

cc: File
Sonia Hristovitch

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.unh.edu/osr/comDliance/irb.html
mailto:Julie.simpson@unh.edu


IFORMED CONSENT FORM

Dear Student:

“Understanding of Abstract Algebra concepts” is a dissertation research in the 
area of mathematics education. The aim of the dissertation is to explore 
undergraduate students’ learning experiences and clarify certain cognitive 
processes during these experiences. I hope this dissertation will lead to better 
understanding of students’ learning process and, consequently, to better 
teaching of Abstract Algebra and undergraduate mathematics in general.

I would like to ask you to participate in this study in any, all, or none of the 
following ways:

> by allowing copies of your written work (i.e. questioners, quizzes, 
homework, exams, lecture notes) to be included as data;

> by participating in 3-4 audiotaped interviews approximately one hour 
length with the researcher during the semester (there will be only 2 
one hour interviews conducted with the pilot study participants):

> by allowing to be videotaped during the lectures.

Many students who participate in research of this type typically find the process 
to be helpful in their own learning. They benefit because in order to communicate 
with the
researcher and with other students, they reflect upon and deepen their 
understandings of
the mathematical concepts involved.

Audio and video data collected during this study will be transcribed and analyzed 
with coded names so that the identity of participants will be confidential. It will be 
stored in a locked cabinet for 2 years till researcher’s dissertation work is 
complete. After the data is transcribed and analyzed audio and video tapes will 
be stored for one more year as evidence in support of researcher’s dissertation 
findings after which audio/video data will be destroyed.

PLEASE READ THE FOLLOWING STATEMENTS AND RESPOND AS TO 
WHETHER OR NOT YOU ARE WILLING TO PARTICIPATE.

1. I understand that the use of human subjects in this project has been approved 
by the UNH Institutional Review Board (IRB) for the Protection of Human 
Subjects in Research.

2. I understand the scope, aims, and purposes of this research project and the 
procedures to be followed and the expected duration of my participation.
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3. I have received a description of any potential benefits that may be accrued 
from this research and understand how they may affect me or others.

4. I understand that my consent to participate in this research is entirely 
voluntary, and that my refusal to participate will have no effect on my grade in 
Math 761.

5. I further understand that if I consent to participate, I may discontinue or modify 
my participation at any time with no effect on my grade in Math 761.

6. I understand that if I decline to participate in the research I will remain in the 
class for the lecture, but will be excluded (digitally hidden) from the videotape.

7. I confirm that no coercion of any kind was used in seeking my participation in 
this research project.

8. I understand that if I have any questions pertaining to the research or my rights 
as a research subject, I have the right to contact Anna S. Titova at 
titova@cisunix.unh.edu or Dr. Sonia P. Hristovitch at
Sonia.Hristovitch@unh.edu (or 862-2027). I may also contact the UNH Office 
of Sponsored Research (862-2003) and be given the opportunity to discuss 
such questions.

9. I understand that I will not be paid for participation in interviews to be 
conducted outside of classtime. I further understand that there will be no 
financial compensation for other participation.

10. I understand that anonymity and confidentiality of all data records associated 
with my participation in this research, including my identity, will be fully 
maintained to the best of the researcher’s ability. I understand, however, that 
the investigator is required by law to report certain information to government 
and/or law enforcement officials (e.g., child abuse, threatened violence 
against self or others, communicable diseases).

11.1 understand that data from this study may be used in presentations for 
audiences of researchers and teachers.

12. I agree to respect the confidentiality and anonymity of the other participants 
to the best of my ability.

13. I certify that I have read and fully understand the purpose of this research 
project and its risks and benefits for me as stated above.

I ,________________________ , CONSENT to participate in this research project
in the following ways. (Initial all that apply.)
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 by allowing to videotape me during regular classes;

 by allowing copies of my written work (i.e. questioners, quizzes,
homework, exams, lecture notes) to be included as data;

 by participating in audiotaped interviews with the researcher
periodically during the semester.

I ,________________________ , DECLINE to participate in this research project.

  © ____________________________
Signature of Student Date
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