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ABSTRACT

ANALYSIS OF THE ROLE OF POLY (A) BINDING PROTEIN ( PAB1) IN 

THE mRNA DEGRADATION PROCESS IN YEAST

b y

GANG YAO 

University of New Hampshire, December, 2006

The mRNA deadenylation process influences multiple aspects of protein 

synthesis and is known to be the major factor controlling mRNA decay rates. My 

data demonstrates that yeast PAB1 plays both positive and negative roles in 

controlling deadenylation, and I have identified particular regions of PAB1 

involved in controlling different aspects of the mRNA degradative process. I 

have found that yeast PAB1 does not play a simple, obstructionist role in 

regulating CCR4 deadenylation. Instead, PAB1-PAB1 protein interactions, as 

mediated by the PAB1 proline-rich region (P domain) and the RRM1 domain, are 

required for the CCR4 deadenylase activity. The P and RRM1 domains were 

shown to mediate PAB1-PAB1 binding, suggesting that enhancing CCR4 

function entails the rearrangement of the PAB1-mRNP structure. I have also 

established that PAB1 contacts to the poly (A) tail made by the RRM2 domain 

are critical to stabilizing the CCR4-NOT complex and promoting deadenylation. 

The C-terminal globular domain of PAB1 through its contacts to eRF3 is also 

required for CCR4 deadenylation. In contrast, the RRM3 domain of PAB1 

inhibits deadenylation and decapping. mRNP structures involving the terminal

ix
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PAB1 bound to poly (A) are also affected by RRM3 and control the end to 

deadenylation and apparently the commencement of decapping. These results 

indicate that PAB1 integrates and controls the transition from deadenylation to 

decapping and from a translationally competent state to an mRNA degradative 

state.

X
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CHAPTER 1 

INTRODUCTION

mRNA degradation is a process involving the interaction and exchange of 

multiple multi-subunit complexes and RNA binding proteins (Coller and Parker 

2004). Central to mRNA degradation is the removal of the poly (A) tail 

(deadenylation) that is controlled by a number of proteins associating with the 

mRNA in a structure termed the mRNP. Principal among these factors present in 

the mRNP, in the cytoplasm, are the poly (A) binding protein (PAB1), translation 

initiation and termination factors, the cytoplasmic deadenylases, and the factors 

that bind to the mRNA and elicit alterations in the mRNA degradative rate. The 

processes of mRNA degradation and deadenylation and the protein complexes 

that are involved are highly evolutionarily conserved from yeast to humans.

The principal pathway for mRNA degradation in yeast proceeds through 

several steps (see Figure 1). First, there is an initial trimming of about 15-20 nt 

of the poly (A) tail to a length of about 60-80 nt that is specific for each mRNA 

and that is carried out by PAN2/PAN3, presumably a cytoplasmic process 

(Brown and Sachs 1998; Tucker et al 2001; Dheur et al 2005). This trimming 

requires PAB1 and the translation termination factors eRF1 and eRF3 (Hosoda 

et al 2003; Caponigro and Parker 1995), and all these factors appear to be in a 

complex (Hosoda et al 2003; Hoshino et al 1999). Second, the major part of

i
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deadenylation utilizes the CCR4-NOT deadenylase complex (Tucker et al 2001). 

CCR4 is the catalytic component of this complex (Tucker et al 2002; Chen et al 

2002) and shortens the poly (A) tail of mRNA to an end-point size of about 8-12 

nt (Decker and Parker 1993). For more rapidly deadenylated mRNA, CCR4 

deadenylation initially proceeds distributive^, and at about 35-50 A’s CCR4 

switches to a processive mode of action (Decker and Parker 1993; Viswanathan 

et al 2004). Poly (A) tail shortening down to an oligo (A) form (8-12 A’s) 

apparently leads, in turn, to the reduced ability of poly (A) binding protein (PAB1) 

to bind the poly (A) tail that presumably alters the translation initiation complex 

association with the mRNA cap structure (Mangus et al 2003; Tucker and Parker

2000). Changes in the mRNP structure around the cap lead to decapping by 

DCP1/DCP2 (Tharun and Parker 2001; Caponigro and Parker 1995; Tucker and 

Parker 2000) and 5'-3' degradation of the RNA by the exonuclease XRN1 

(Muhlrad et al 1994). The transition from deadenylation to decapping occurs with 

apparent sequestering of the oligoadenylated mRNA in P-bodies where 

decapping takes place (Sheth and Parker 2003). The yeast exosome can also 

degrade the deadenylated mRNA in a 3-5' direction, a process that may take 

place in nonsense mediated decay, for instance (van Hoof and Parker 1999; 

Mitchell and Tollervey 2003; Cao and Parker 2003). In higher eukaryotes both 

these pathways exist, as does a poly (A)-independent decapping pathway that 

leads to 5' to 3' decay (Tucker and Parker 2000; Parker and Song 2004). Poly 

(A)-independent decapping has also recently been demonstrated in yeast for at 

least one mRNA (Muhlrad and Parker 2005).

2
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FIGURE 1: mRNA Deadenylation dependent decay pathway in eukaryotes. The 
mRNA degradation starts with the poly (A) tail shortening ( deadenylation), 
followed by decapping and 5’-3’ decay, or 3’-5’ decay by exonucleases and/ or 
endonucleases. Adapted from Beelman & Parker (1995).
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The rate of deadenylation of the mRNA is to the stability of most mRNA. 

Analyses of the relative contributions to total mRNA degradation of deadenylation, 

decapping, and 5'-3' degradation, clearly indicates that changes in rates of 

deadenylation lead to the largest changes in mRNA degradation (Cao and Parker

2001). Specific and global analysis of mRNA deadenylation rates (Decker and 

Parker 1993; Wang et al 2002) indicated that they vary over a 20-fold range. 

CCR4, the catalytic component of the CCR4-NOT deadenylase (Chen et al 2002; 

Tucker et al 2002), has been shown to be necessary for both rapid and slow 

deadenylation for a number of mRNA (Daugeron et al 2001; Tucker et al 2001, 

2002; Chen et al 2002; Viswanathan et al 2004), suggesting that it affects 

deadenylation of most, if not all, mRNA in yeast.

Several factors have previously been shown to control the deadenylation 

process. Of the two deadenylases in yeast, defects in PAN2/3 alone do not affect 

the deadenylation rate whereas defects in the CCR4-NOT complex, specifically 

CCR4 and CAF1, slow the deadenylation process (Tucker et al 2001; Daugeron 

et al 2001). The substrate recognition features of CCR4 indicate that its in vivo 

activity may be directly controlled by its accessibility to a certain length of RNA 

and that mRNP structures involving the poly (A) tail and its adjacent 3 ’ UTR 

sequences may limit these interactions and thereby significantly affect CCR4 

activity (Viswanathan et al 2003, 2004).

4
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In addition to the deadenylases, a number of components of the poly (A) 

mRNP structure have been implicated in controlling deadenylation. Notable 

among these proteins is PAB1. PAB1tconsists of four RNA binding motifs (RRM 

domains) and a C-terminal region comprising the penultimate proline-rich (P) 

domain and a terminal structured region (C) (see Figure 2). The C region binds 

PAN3, which is required for PAN2 activity, eRF3, and other proteins (Mangus et 

al 2004; Hosoda et al 2003; Kuhn and Wahle 2004). The unstructured Proline 

rich domain of human and xenopus PAB1 is responsible for PAB1-PAB1 

cooperative interactions (Kuhn and Pieler 1996; Melo et al 2003). While RRM1 

and RRM2 of PAB1 appear to bind most strongly to poly (A), RRM3 and RRM4 

can also make critical contacts and may bind U-rich regions located adjacent to 

the poly (A) tail (Mullin et al 2004; Sladic et al 2004). RRM2 contacts elF4G, 

which is believed to be important in forming the closed loop structure between 

the mRNA cap, elF4E, elF4G, PAB1 and the poly (A) tail (Tarun et al 1997; 

Sachs and Variani 2000). Some of the key residues for this interaction are 184- 

187 of RRM2, whose alterations in vitro block PAB1-elF4G contacts and also 

translation (Otero et al 1999). The functions of the other RRM domains remain 

less clear, although deletion of RRM4 has been shown recently to reduce by 

30% mRNA transport to the cytoplasm (Brune et al 2005). RRM1, 2, 3, and the 

P and C-terminal regions play no apparent role in mRNA transport (Brune et al 

2005; K. Weis, pers. comm.).

5
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Previous studies concerning the role of PAB1 in deadenylation indicated 

that PAB1 is inhibitory to CCR4 in vitro (Tucker et al 2002). In contrast, a pab1 

deletion strain has been shown to severely block CCR4 deadenylation in vivo 

(Capronigro and Parker 1995), supporting a positive role for PAB1 in this process. 

More recent studies indicate that part of the pab1 deletion defect on 

deadenylation may result from a delay in mRNA transport into the cytoplasm 

(Dunn et al 2005). A couple of other less comprehensive PAB1 defects have 

also been shown to block deadenylation (Morrissey et al 1999), supporting a 

positive role for PAB1 in promoting deadenylation.

In addition to PAB1, the translation initiation status of the mRNA, and, 

hence, the mRNP structure involving these proteins can also inhibit 

deadenylation (Schwartz and Parker 1999; Lagrandeur and Parker 1999). In 

addition, a number of specific RNA binding proteins are known or presumed to 

make contact to 3’ UTR sequences of certain mRNA and thereby accelerate the 

mRNA degradative process (Tran et al 2004; Lykke-Andersen and Wagner 2005; 

Smeotok et al 2005). Several of these proteins appear to enhance the rate of 

deadenylation (Olivas and Parker 2000; Smeotok et al 2005).

In this study we addressed the role of PAB1 in the deadenylation process. 

Using a set of precise domain deletions and point mutations in PAB1, we find 

that particular regions of PAB1 play either negative or positive roles in the 

deadenylation process. Different aspects of the deadenylation process are

6
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affected by the interaction of PAB1 with itself, with translation termination and 

initiation factors, with the CCR4-NOT deadenylase, and with decapping factors. 

The multiple roles of PAB1 implicate it in the integration of the deadenylation to 

decapping process and the conversion of a translationally competent mRNA to 

one that is bound for degradation.

PAB1

PAB1 consists of an N-terminal region comprising four RNA recognition 

motifs (RRM domains) and a C-terminal region comprising the penultimate P 

domain and a terminal globular C region (see Figure 2). Different regions of 

PAB1 play different roles in the deadenylation process. The C domain binds 

PAN2/3 and is required for PAN2/3 deadenylation activity. eRF3, also contacts 

the C region, regulating CCR4 deadenylation (Prelim. Res.). The P domain, 

which has a critical role in regulating deadenylation, is responsible for PAB1- 

PAB1 cooperative interactions, and also binds poly (A) binding protein binding 

protein 1, PBP1, which negatively regulates PAN2/3 activity. While RRM1 and 

RRM2 of PAB1 appear to bind most strongly to poly (A), RRM3 and RRM4 can 

also make contacts to Poly (A) and bind U-rich regions located adjacent to the 

poly (A) tail (Mullin et al 2004; Sladic et al 2004). Multiple PAB1 regions appear 

to be involved in contacting the translation initiation complex. RRM2 contacts 

elF4G, which is believed to be important in forming the closed loop structure 

between the mRNA cap, elF4E, elF4G, PAB1 and the poly (A) tail. Our data, 

however, indicates the elF4E can also contact PAB1 and RRM2 is not required

7
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for this interaction (Y. Chiang, pers. comm.) Deleting RRM4 has been shown to 

reduce mRNA transport to the cytoplasm, although RRM1, 2, 3, and the C- 

terminal region play no apparent role in mRNA transport (Brune et al 2005; K. 

Weis, pers. comm.). Other functions for the RRM domains remain unknown.

8
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FIGURE 2: PAB1 variants that are discussed in this study. Residues for each 
domain are indicated at the top. Progenitors to PAB1-184, that has residues 
184DAL187 replaced with EKM, and PAB-134, which has 134HPD137 replaced 
with DKS (Otero et al 1999), were provided by D. Mangus.
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The CCR4-NOT deadenvlase complex

The CCR4-NOT proteins are evolutionarily conserved across eukaryotes 

(Denis and Chen 2003). Two forms of the complex exist in yeast: 1 .0 and 1 .9 

MDa (Liu et al 1998). The smaller core complex contains the following proteins: 

CCR4, CAF1, five NOT proteins (NOT1 -NO T5), CAF40, CAF130, and BTT1. 

(Chen et al 2001; Cui et al 2006) Several other proteins, which associate with the 

CCR4-NOT complex, may be present in the 1 .9 MDa complex, but they are not 

integral components of the 1 .0 MDa complex (Hata et al 1998; Maillet and 

Collart 2002; Liu et al 1997, 2001). Of these latter proteins, DHH1 is related to 

CCR4-NOT functions in mRNA degradation in that it also associates with factors 

involved in mRNA decapping and can enhance decapping in vitro (Cotter et al 

2001; Fischer and Weis 2002).

mRNA deadenylation rates can vary over a 20-fold range between different 

mRNAs in yeast cells. CCR4, the catalytic component of the CCR4-NOT  

deadenylase, has been shown to be required for both rapid and slow 

deadenylation processes for most, if not all, mRNA in yeast (Daugeron et al 2001; 

Tucker et al 2001, 2002; Chen et al 2002; Viswanathan et al 2004 ). While yeast CAF1 

protein, expressed from E.coli cell, displays deadenylase activity in vitro 

(Daugeron et al 2001; Thore et al 2003), we have established that CAF1 

deadenylase function is not required in vivo for its role in mRNA deadenylation 

(Viswanathan et al 2004). CAF1 probably acts in other ways to aid the

10
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degradation process. Defects in other NOT proteins also affect mRNA 

deadenylation, albeit to a much lesser extent (Tucker et al 2002).

In mammalian cells, the deadenylation is still the key first step that triggers 

decay of both wild-type stable and nonsense cordon-containing unstable mRNAs 

(Amashita and Shyu 2005). Following the initial trimming by PAN2, CCR4 

replaces the PAN2 and continuously shortens the poly (A) tail to reach the oligo 

form. DCP2-mediated decapping takes place after deadenylation and may serve 

as a backup mechanism for triggering mRNA decay when initial deadenylation by 

PAN2 is compromised (Amashita and Shyu 2005).

The mRNA Decappinq Process

In eukaryotes, the second step of mRNA degradation process following 

deadenylation is the decapping process. This process is carried out by the 

Dcplp and Dcp2p decapping holoenzyme. Dcp2p has been shown to be the 

catalytic subunit (Dunckley and Parker 1999; Lykke-Andersen 2002; She et al 

2004). Dcplp primarily functions to enhance Dcp2p activity by an unclear 

mechanism (She et al 2004). Dcplp is also conserved in eukaryotes, and two 

human homologs, hDcpla and hDcplb, have been identified (Lykke-Andersen

2002). The human homologs appear functional because hDcpla copurifies with 

decapping activity (Lykke-Andersen 2002). Mapping the sequence conservation 

on the molecular surface of Dcplp has revealed two prominent sites, one of 

which is required for function of the Dcp1p/Dcp2p complex, and a second,

li
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corresponding to the the proline-rich sequence (PRS) binding site, that is likely to 

be a binding site for decapping regulatory proteins (She et al 2004 ). Moreover, a 

conserved hydrophobic patch has been revealed to be critical for decapping.

The decapping process is also regulated by some other proteins. The 

poly(A)-binding protein (Pablp) inhibits the decapping process and is required to 

couple decapping to prior deadenylation (Caponigro and Parker 1995. Morrissey 

and Sachs 1999.). In addition, components of the translation initiation complex 

also impede decapping (Schwartz and Parker 2003. Schwartz and Parker 1999.). 

Most notably, the cap-binding protein, elF-4E, inhibits decapping both in vitro and 

in vivo. Several proteins are required for the efficient decapping of most normal 

mRNAs in vivo, but they are not absolutely required for decapping per se. These 

proteins include the LSM1-7 complex, which is a presumed RNA-binding 

complex, Patlp, which is of unknown biochemical properties, and Dhhlp, which 

is a member of the DEAD box ATPase family (Boeck and Sachs 1998, Bouveret 

and Se'raphin 2000. Fischer and Weis 2002. Tijsterman and Plasterk 2002.).

In eukaryotes, the proteins involved in mRNA decapping and 5’ to 3' 

exonucleolytic decay are found in specific cytoplasmic foci, referred to as P 

bodies. In yeast, GFP-tagged Dcplp, Dcp2p, Lsmlp, Patlp, Dhhlp, and Xrnlp  

have been localized to P bodies (Sheth and Parker 2003) In contrast, Ccr4p, 

Ski7p, Puf3p, and translation factors are not concentrated or show only small 

concentrations in P bodies (Sheth and Parker 2003). In mammalian cells, the

12
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Lsm1-7 complex, Xrnlp, Dcplp, and Dcp2p have been localized to analogous 

structures (Bashkirov and Heyer 1997, Ingelfinger and Achsel 2002, Lykke- 

Andersen 2002, Van and Seraphin 2002 ).

Two experimental observations in yeast cells indicate that P bodies are

specific sites wherein mRNAs can be decapped and degraded 5' to 3' (Sheth and

Parker 2003). First, the size and number of P bodies varies in a manner

correlating with the flux of mRNA molecules through the decapping step.

Inhibiting mRNA decay at the deadenylation step in a ccr4A strain leads to a
»

reduction in P-body size and number. Similarly, inhibiting decapping by deleting 

the PAT1 gene or by adding cyclohexamide leads to a reduction or loss of P 

bodies. In contrast, inhibiting the enzymatic steps of decapping or 5' to 3' 

exonuclease digestion leads to an increase in the size and number of P bodies 

(Sheth and Parker 2003). The second key observation is that mRNA decay 

intermediates, trapped either by the insertion of strong secondary structures or 

by deletion of the gene for the 5' to 3' exonuclease Xrnlp, can be specifically 

localized to P bodies. The simplest interpretation of these observations is that P 

bodies are sites of mRNA decapping and 5’ to 3' exonucleolytic decay. However, 

because the mRNA decapping factors are also found distributed throughout the 

cytoplasm, decapping and degradation may also occur outside of P bodies.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Translation Initiation in Eukaryotes

The synthesis of a protein is one of the most central and basic events in the 

life of every cell. It contains three main steps: translation initiation, elongation and 

termination. Among these steps, translation initiation has been shown to be the 

overall rate-limiting step (Legocki and Marcus 1970; Wolin and Walter 1988) and 

also the most important target of regulation.

In eukaryotes, cap-dependent initiation is the major translation initiation 

pathway. Most mRNAs in yeast are capped at the 5' end and polyadenylated at 

the 3' end. The initiation factor elFG binds elF4E and associates with the cap 

structure and poly(A)-binding protein (PABP) which is itself bound to the poly (A) 

tail leading to circularization of the mRNA. Recruitment of elF4A and elF4B 

prepares the 5' end of the mRNA for ribosome binding through ATP-dependent 

local mRNA unwinding. 80S ribosomes dissociate into 40S and 60S subunits, 

40S subunits bind a protein complex containing elF1, elF3, elF5 and the ternary 

complex elF2-GTP-Met-tRNAi. The resulting 40S preinitiation complex then 

associates with the mRNA through interaction of elF3 with elF4G at the cap 

structure. From there the initiation complex moves in the 5' to 3' direction 

(scanning) and recognizes the AUG initiator codon through AUG-Met-tRNAi 

base-pairing. The factors elF5 and elF5B then trigger GTP hydrolysis, elF2-GDP  

release, ejection of bound factors and joining of the 60S subunit to the 40S 

initiation complex to form an 80S ribosome competent for polypeptide elongation.

14
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The cap structure plays an important role in initiation of translation on most 

mRNAs. It serves as an assembly site for a translation initiation factor complex. 

elF4E complexed to elF4G binds directly to the cap structure. This interaction 

requires functional elF4A (Svitkin and Sonenberg 2001) and is blocked by cap 

analogues such as m7GDP. Bound elF4E-elF4G-elF4A complex binds elF4B 

and PAB1 and melts mRNA secondary structure close to the cap to generate a 

ribosome binding site. This requires ATP-binding to elF4A and ATP hydrolysis by 

elF4A.

The poly(A) tail also plays a role in translation initiation. It acts as an 

enhancer of translation (Gallie and Tanguay, 1994 ). PABP interacts with the 

amino terminal domain of the initiation factor elF4G. This interaction is required 

for efficient translation of mRNA (Tarun and Sachs., 1997), and it stimulates 40S  

ribosome binding to mRNA (Tarun and Sachs, 1995).

Since in the circularized mRNP structure in the cytoplasm, the 5 ’ cap 

translation initiation complex contacts the poly (A) tail through PAB1, it is 

believed that the translation initiation machinery may play a role in regulating the 

deadenylation process. First, severe defects in translation initiation factors, such 

as elF4E and elF4G, accelerate deadenylation for both CCR4 and PAN2 

(Schwartz and Parker 1999, unpublished data), Second, the deadenylase 

domain of CCR4 interacts with elF4G in two-hybrid analysis (Y.-C.Chiang, pers. 

comm.). Third, the CCR4-NOT complex makes contacts to DHH1 and DCP1.

15
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These proteins help displace the translation initiation complex and finally 

removing the 5’ cap structure from the mRNA. It would therefore be expected 

that the mRNP structure involving translation initiation factors, decapping factors 

and PAB1 all influent either positively or negatively the CCR4/PAN2 

deadenylation process.

eRF3

Translation termination in eukaryotes is mediated by two factors, eRF1 and 

eRF3. eRF1 recognizes each of the three stop codons ( UAA, UAG, and UGA) 

and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that 

stimulates the translation process by a poorly characterized mechanism. 

Blocking the contact between eRF1 and eRF3 or the contact between eRF3 and 

PAB1 results in increased mRNA stability and decreased deadenylation rates 

(Hoshino, et al 1999). The eRF3 protein contains three distinct regions. The N 

and M regions, which occupy amino acid residues 1 to 253, and which contacts 

the C-terminus of PAB1, are dispensable for both translation termination and cell 

viability. In contrast, the C region, amino acid residues 254 to 685, contains the 

GTPase fold, and associates with eRF1 in a GTP-dependant manner. (Tetsuo, et 

al 2004). Defects in the GTPase activity of eRF3 not only compromises cell 

viability and affects the proper translation termination, but increases the stability 

of PGK1 mRNA and significantly slows the deadenylation rate of GAL1-S mRNA 

(Joe et al 2004; Tetsuo, et al 2004 and Prelim. Res).

16
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In this dissertation research, I studied PAB1 functions in the mRNA 

degradation process, especially in deadenylation and decapping processes, by 

using a series precisely mutated PAB1 variants. We observed the following 

results:

1. Proper poly (A) contact by PAB1 is required for CCR4-NOT deadenylation 

in vivo.

2. PAB1-PAB1 interactions, through the RRM1 and P domains, are required 

for the deadenylation.

3. The CCR4-NOT complex is destabilized in the cell by loss of RNA contact 

by RRM2.

4. RRM3 of PAB1 inhibits deadenylation and decapping and affects the 

mRNP structure of the terminal PAB1 bound to poly (A).

5. eRF3 contacts to the C-terminus of PAB1 and the proper translation 

termination are required for deadenylation.
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CHAPTER 2 

MATERIALS AND METHODS 

Yeast strains and growth conditions

Saccharomyces cerevisiae strain AS319 (M A T . ade2 ura3 Ieu2 trp1 his3 

pab1::HIS3 pAS77 [PAB1-CEN-URA3]) (Kessler et al 1998) was used for 

transforming PAB1 variants expressed under their own promoter on plasmid 

YC504 (pRS314: PAB1-CEN-TRP1) as indicated in Figure 2. Other strains 

isogenic to AS319 were DB267tL/pAS77 (contains pan3::trp1::LEU2), AS319-1a- 

uN/pAS77 (contains ccr4::ura3::Neo), and AS319-d1-uL/pAS377 (contains 

dhh1::ura3::LEU2). Strain AS319 with the RP485 plasmid was used for 

quantitating rates of deadenylation for MFA2pG (Tucker et al 2001). Strain 1716- 

1 (MATa ura3 Ieu2 trp1 his3 pab1::HIS3 dcp1::Neo pAS77) was used for 

analyzing the effect of PAB1 derivatives on suppression of dcp1 and is 75%  

identical to AS319. Strain 1729-3-wt (MAT  . gst1-1 his3 trp1 ura3 pab1::HIS3 

YCplac22-Flag-SUP35/WT YC504) and 1729-3-N106I (isogenic to 1729-3-wt 

except YCplac22-Flag-SUP35/N406l) (Kobayashi et al 2004) and strains 

YDB498/pDB663 (MATa ura3-1 Ieu2-3,112 his3-11,15 trp1-1 ade1-14

sup35::HIS3 [psi-] pDB663 [wt SUP35]) (Salas-Marco and Bedwell 2004), 

YDB498/pDB783 (isogenic to YDB484 except pDB783 [sup35-R419G]), and 

YDB498/pD670 (isogenic to YDB484 except pDB670 [sup35-H348L]) were used 

for analyzing eRF3 effects on deadenylation.
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Plasmids

PAB1 variants were constructed by PCR techniques and were expressed in 

yeast on a pRS314 vector (YC504) as Flag-tagged versions under control of the 

PAB1 promoter, except for PAB1-AP.C which was expressed from a pRS424 

plasmid under the control of a G3PDH promoter in order to obtain PAB1 levels 

comparable to the other PAB1 variants. The following amino acid residues were 

removed with each PAB1 variant: PAB1-ARRM1 (removed 1-124), PAB1- 

ARRM2 (removed 124-211), PAB1- RRM3 (removed 211-309), PAB1-ARRM4 

(removed 309- 416), PAB1-AP (removed 416-492), PAB1-AC (removed 492-577), 

PAB1-AP,C (removed 416-577), and PAB1,2,1,2,P,C (removed 211-416 and 

replaced it with 1-211).

RNA analysis

Transcriptional pulse-chase and steady-state analyses for GAL1 and 

MFA2pG  mRNA were conducted as previously described (Viswanathan et al 

2004; Tucker et al 2001). Briefly, for the transcriptional pulse-chase analysis, 

cells were grown to middle-log phase in medium containing 2% raffinose, and 

then induced the transcript by addition of galactose to a final concentration of 2%  

galactose for 10 min. The transcription was shut off with addition of glucose to a 

final concentration of 4% at time 0 min, and then harvested cells at each 

indicated time point. For the steady-state analysis, cells were grown to middle-log 

phase in medium containing 2% raffinose, and then induced the transcript by 

addition of galactose to a final concentration of 2% galactose for 3 hours.
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Harvested cells and frozen in -80°C. Total RNA was isolated by hot acid phenol 

method. Analysis of poly (A) tail lengths was performed by running 10ug of total 

RNA on a 6% polyacrylamide/ 7 M urea gel that was electroblotted and probed 

by standard techniques. The dT sample is RNA sample subjected to an oligo 

dT/RNase H cleavage to indicate the fully deadenylated species, and it marks the 

0 A’s position. Rates of deadenylation were determined on only those poly (A) 

tails that were being distributively deadenylated, that is, which were being 

shortened as a synchronous pool.

In vitro gel shift assays

In vitro gel shift assays were conducted as described (Deardorff et al 1997) 

using PAB1 variants expressed in E. coli from a pET28 vector. Recombinant 

PAB1 variants were purified to greater than 90% purity using Ni-agarose 

chromatography (Kessler et al 1998).

Non-denaturing gel electrophoresis was conducted on purified PAB1 

proteins to identify the presence of non-specific RNAs that might interfere with 

the RNA binding measurements. No such interactions were detected. BSA was 

used as a standard to determine PAB1 protein abundance, and the Kd values 

were determined as described (Deardorff et al 1997).

For the in vitro gel shift assay, a fix amount of 5 ’ labeled 7N+23A RNA 

substrate was incubated with purified PAB1 protein at indicated PAB1
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concentration at room temperature for 10 min, and then fractionated on a 4%  

non-denaturing polyacrylamide/ 0.5 X TBE gel at 4%. The RNA sequence is 5’- 

UCU AAA U + 23A-3’.

Native Gel Electrophoresis and Western Blot Analysis

Yeast PAB1 variants were purified by Flag immunoprecipitation as 

previously described (Chen et al 2002) and analyzed by nondenaturing PAGE as 

described (Denis and Young 1983) except that the bisacrylamide/acrylamide 

ratio was 1:60. Prior to non-denaturing PAGE, the PAB1 samples were incubated 

with either 0.1 mg/ml RNase A or 1 U/pl RNase I at room temperature for 45 min 

to remove endogenous mRNA attached to the PAB1. PAB1 species were 

identified by western blotting with anti-Flag antibody.
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CHAPTER 3 

RESULTS

Increased PAB1 binding to poly (A) does not inhibit CCR4 deadenylation in 

vivo

Previous analysis of the role of PAB1 in CCR4 deadenylation showed that 

PAB1 was inhibitory to CCR4 activity in vitro, presumably by restricting CCR4 

access to the poly (A) tail (Tucker et al 2002). We tested whether PAB1 binding 

to the poly (A) tail plays an inhibitory role for CCR4-NOT deadenylation in vivo by 

constructing a PAB1 protein that would be predicted to bind much better to poly 

(A) than the wild-type protein (PAB1-1,2,3,4,P,C: contains 4 RRM domains and 

the C-terminal P and C regions (Figure 2). Since RRM domains 1 and 2 bind 

better to poly (A) than RRM3.4 (Kessler and Sachs 1998), we replaced the 

RRM3,4 cassette with that of RRM1,2, resulting in the construction of PAB1- 

1,2,1,2,P,C (Figure 2). This PAB1 version and other PAB1 plasmid variants 

constructed below were subsequently swapped into a strain deleted for the PAB1 

gene (Kessler and Sachs 1998). The expression of each PAB1 version in yeast 

was monitored by Western analysis, and all versions were found to be 

comparably expressed (Yueh-Chin Chiang, pers. comm).

The ability of each of these PAB1 variants to bind poly (A) in vitro was 

monitored using a gel shift assay (Kessler and Sachs 1998; Deardorff and Sachs 

1997). Wild-type PAB1 was found to bind poly (A) with a Kd of 11 nM (Figure 3;
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Table 1) that is within the range previously observed for yeast PAB1 binding to 

poly (A) (7-30 nM) (Kessler and Sachs 1998; Deardorff and Sachs 1997; Sachs 

et al 1987). As predicted, PAB1-1,2,1,2,P,C bound to poly (A) six-fold better than 

PAB1, with a KD of 1.9 nM (Figure 3; Table 1). We subsequently analyzed in vivo 

the effect of the increased binding ability of PAB1-1,2,1,2,P,C on CCR4-NOT  

deadenylation.

We examined directly the effect of PAB1-1,2,1,2,P,C on MFA2pG  and 

GAL1 mRNA deadenylation rates by using pulse-chase experiments (Tucker et 

al 2001; Viswanathan et al 2004). MFA2pG mRNA was chosen for analysis 

because of its extensive characterization, and it is rapidly turned over (Decker 

and Parker 1993). Two GAL1 mRNA species are produced in vivo that result 

from differential poly (A) site usage and differ by 110 nt in their 3’ UTR (Miyajima 

et al 1984; Cui and Denis 2003). GAL1-L (long) deadenylates more rapidly than 

GAL1-S (short) (Viswanathan et al 2004). Following a brief induction of 

MFA2pG and GAL1 mRNA synthesis with the addition of galactose to the 

medium, mRNA synthesis was shut off with glucose, and the length of MFA2pG  

and GAL1 mRNA poly (A) tails was followed as a function of time by Northern 

analysis. As shown in Figure 4 and Table 1, we found that PAB1-1,2,1,2,P,C did 

not reduce the rate of deadenylation for MFA2pG or GAL1. The results of these 

experiments argue against a simple obstructionist, inhibitory model for PAB1 

control of CCR4-NOT deadenylation in vivo.
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PAB1-1,2,3,4,P,C (WT) PAB1-1,2,1,2,P,C

0.5 2 4  8 16 32 64 128 nM 0.5 2 4  8 16 32 64  128 nM

FIGURE 3: In vitro PAB1-poly (A) binding analyses. In vitro gel shift assays 
were conducted between recombinant PAB1 and the 7N+23A substrate. The 
concentration of each PAB1 variant was determined by Coomassie staining 
following SDS-PAGE using BSA as a standard. The lower band represents the 
RNA substrate and the upper band represents the RNA-PAB1 product.
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B. GAL1-L
PAB1-WT PAB1-1,2,1I2,PIC

dT 0 2 4 6 8 12 20 30 dT dT 0 2 4 6 8 12 20 30 dT

80A-

0A-

C. MFA2pG

80A-

OA-

PAB1-WT PAB1-1,2,1,2.P.C
dT 0 1 2 4 8 15 30 dT dT 0 1 2 4 8 15 30 dT

.^MJNlHMla .m  «■ * i p  v  m  i f  oa- H  p  w  p i  p  >  p

FIGURE 4. Increased PAB1 binding to poly (A) does not inhibit CCR4 
deadenylation in vivo. Pulse-chase analysis was used for determination of rates 
of mRNA deadenylation. Northern analysis of GAL1 and MFA2pG  mRNA was 
conducted following induction of synthesis with galactose for 8 min and shutting 
off of synthesis at time zero with glucose. Times are in min. The poly (A) tail 
lengths are indicated on the left. dT- RNA sample, which had been pretreated 
with oligo d(T) and RNase to remove the poly (A) tail prior to Northern analysis. 
A- GAL1-S; B- GAL-L\ and C- MFA2pG.
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Decreased PAB1 binding to poly (A) inhibits CCR4 deadenylation in vivo

To further test the PAB1 inhibitory model, we analyzed the effect of several 

PAB1 variants that contained mutations in their RRM domains that have been 

previously found to reduce PAB1 association with poly (A) (Deardorff and Sachs 

1997). If PAB1 were simply inhibiting CCR4-NOT function, we would predict that 

decreased PAB1 binding to the poly (A) tail would be expected to alow increased 

rates of deadenylation. Using PAB1-Y83V, containing an RNA binding mutation 

in RRM1, and PAB1-F170V, a mutation in RNA binding for RRM2, we found that 

in vitro binding to poly (A) was reduced (Table 1) as previously shown (Deardorff 

and Sachs 1997). The effect of PAB1-Y83V and PAB1-F170V on in vivo 

deadenylation was initially visualized by analyzing their effects on the steady 

state levels of GAL1-L mRNA (Figure 5A). Mutations in RRM1 or RRM2 that 

reduced RNA binding in vitro caused the shortest poly (A) tails to be longer than 

that observed for wild-type PAB1 (Figure 5A, lanes 2 and 3 as compared to lane 

1), suggesting that the rate of deadenylation was being slowed. Similar results 

were obtained for GAL1-S (data not shown).

Although the vast majority of the deadenylation observed in Figure 5A is 

due to CCR4-NOT, the PAB1 mutants could also be affecting PAN2/3. We 

subsequently tested whether these effects on deadenylation were solely 

mediated by CCR4. In a strain carrying a pan3 deletion in which PAN2 is 

apparently not functional (Mangus et al 2004) and CCR4 is the only deadenylase 

(Tucker et al 2001), mutating the RNA binding residue in RRM1 (PAB1-Y83V) or
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in RRM2 (PAB1-F170V) still caused the shortest lengths of the poly (A) tails to be 

longer than observed for wild-type PAB1 (Figure 5A, lanes 5 and 6 as compared 

to lane 4). In contrast, in a Accr4 strain where PAN2/3 is the only functional 

deadenylase, PAB1-Y83V (lane 8) and PAB1-F170V (lane 9) had no effect on 

the tail length (compared to lane 7, PAB1, Accr4), implying that they were not 

affecting PAN2/3. These results support a role for PAB1 binding to poly (A) in 

CCR4 deadenylation.

Pulse-chase analysis of GAL1 and MFA2pG RNA deadenylation was used 

to determine if these PAB1 binding mutants did affect the deadenylation rate. As 

shown in Figure 5B, 5C, and Table 1, PAB1-Y83V and PAB1-F170V significantly 

slowed the rate of MFA2pG and GAL1 mRNA deadenylation. Single point 

mutations in the RNA contacts in RRM3 (F263V) or RRM4 (F366V) had lesser 

effects on the deadenylation rate (Table 1) or steady state mRNA levels (data not 

shown). The RRM1 and RRM2 effects appeared specific to PAB1 defective in 

contacting the poly (A) tail: PAB1-184 and PAB1-134 (each contains 3 amino 

acid alterations in RRM2 that affect its ability to associate with elF4G in vitro 

and/or to affect translation initiation in vitro, Otero et al 1999) were unaffected in 

the MFA2pG  mRNA deadenylation rate (Table 1) or in the poly (A) length for 

MFA2pG  or GAL1 steady state mRNA levels (data not shown). The above 

results and those described below with other RNA binding mutants indicate that 

PAB1 does not play a primarily inhibitory role for CCR4-NOT deadenylation but 

actually must make proper contacts to the poly (A) tail to aid CCR4-NOT action.
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This effect also appears specific to the CCR4-NOT deadenylase, suggesting that 

there may exist some type of communication between CCR4-NOT and PAB1 

(see below).
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FIGURE 5A. Steady state analysis of GAL1-L mRNA poly (A) lengths as a 
function of PAB1 defects. Steady state levels of the mRNA were obtained 
following a 3 hr growth under galactose growth conditions. WT- AS319; pan3- 
DB267-tL; and ccr4- AS319-1a-uN. Poly (A) lengths are given on the sides.
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FIGURE 5B. Decreased PAB1 binding to poly (A) inhibits CCR4 deadenylation 
in vivo. Pulse-chase analysis was used for determination of rates of mRNA 
deadenylation. Northern analysis of GAL1 mRNA was conducted following 
induction of synthesis with galactose for 8 min and shutting off of synthesis at
time zero with glucose. Times are in min. The poly (A) tail lengths are indicated
on the left. dT- RNA sample, which had been pretreated with oligo d(T) and 
RNase to remove the poly (A) tail prior to Northern analysis. The asterisks in 
PAB1-WT indicate the presence of the oligo poly (A) species present at the same 
time as the longer poly (A) species indicative of processive deadenylation.
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FIGURE 5C. Decreased PAB1 binding to poly (A) inhibits CCR4 deadenylation 
in vivo. Pulse-chase analysis was used for determination of rates of mRNA 
deadenylation. Northern analysis of MFA2pG mRNA was conducted following 
induction of synthesis with galactose for 8 min and shutting off of synthesis at 
time zero with glucose. Times are in min. The asterisks in PAB1-WT indicate the 
presence of the oligo poly (A) species present at the same time as the longer 
poly (A) species indicative of processive deadenylation.
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The proline-rich C-terminal region of PAB1 is required for CCR4

deadenylation and its transition from a distributive to a processive state

To further address the roles of PAB1 in mRNA deadenylation, we chose to 

delete each of the six known domains in the protein. This systematic approach 

would allow us to determine if individual regions of PAB1 displayed particular 

functions. RRM domains 1 through 4 were individually deleted (Kessler and 

Sachs 1998), and we additionally constructed PAB1 lacking the complete C- 

terminus (PAB1-AP,C), lacking the proline-rich penultimate region (PAB1-AP), 

and lacking the globular, terminal C-domain (PAB1-AC) (Figure 2). Each of 

these seven PAB1 alleles was analyzed for in vitro poly (A) binding (Table 1), 

effect in vivo on steady state GAL1 and MFA2pG mRNA levels (Figures 6A and 

6B; data not shown), and effect in vivo on the rate of deadenylation (Figure 7A 

and 7B; Table 1; data not shown).

Deleting RRM1 or RRM2 was found to slow the rate of deadenylation 

(Figure 8A and 8B, Table 1). The effects of ARRM1 and ARRM2 on 

deadenylation were attributable to CCR4-NOT and not PAN2/3 as ARRM1 and 

ARRM2 did not affect the steady state distribution of poly (A) tails of GAL1 mRNA 

in a Accr4 background but did affect the distribution in a Apan3 strain (data not 

shown). As we noted above, PAB1-184 (defective in binding elF4G) did not 

affect CCR4-NOT deadenylation (Table 1), and thus the effect of ARRM2 on 

CCR4-NOT deadenylation is most likely attributed to its decreased binding to the 

poly (A) tail. Interestingly, we observed that both the RRM1 deletion and the
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Y83V alteration in RRM1 displayed slower rates of deadenylation than the 

corresponding defects in RRM2. One implication of this is that RRM1 has a 

different function in deadenylation than does RRM2 (see below).

Deleting the complete C-terminus of PAB1 very significantly slowed the rate 

of deadenylation (data not shown), indicating that contacts that this region makes 

play a required role for stimulating CCR4-NOT activity. The majority of this effect 

was localized to the P region, as PAB1-AP caused a most significant block in 

both the distributive and processive deadenylation for both GAL1 and for 

MFA2pG  (Figure 7A and 7B; Table 1). Significantly, deleting the P region did not 

reduce poly (A) binding, and, in fact, the P region appeared inhibitory for PAB1 

contacts to the poly (A) tail (Table 1). As the P domain is known to be required 

for cooperative interactions among higher eukaryotic PAB1 molecules (Melo et al 

2003; Kuhn and Pieler 1996), its effects on deadenylation might be occurring 

through a separate mechanism than that observed for the RNA binding mutations. 

PAB1-AC also reduced the rate of deadenylation, suggesting that the C-terminal 

globular domain of PAB1 plays a role in this process (see below). Since it has 

been previously shown that deleting RRM1, RRM2, or the P and C-terminus of 

PAB1 does not affect the transport of mRNA into the cytoplasm (Brune et al 2005, 

K. Weis, pers. comm.), we interpret these results to indicate that multiple regions 

and functions of PAB1 are required for CCR4 deadenylation.
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The results shown in Figure 7A and 7B indicate that CCR4 transitions 

from a distributive to a processive deadenylase when the poly (A) tail length 

reaches about 35-40 nt for MFA2pG (at about 1-2 min, wild-type, Figure 7B) and 

GAL1-L (at about 6-8 min for wild-type, Figure 7A). This result is in agreement 

with previous observations for rapidly deadenylated species (Decker and Parker 

1993; Viswanathan et al 2004). It is therefore noteworthy that PAB1-AP failed to 

transition well from distributive to processive deadenylation for either mRNA 

(Figure 7A and 7B), even though the poly (A) tail lengths reached 30-36 A’s (20 

min for GAL1-L and 8-15 min for MFA2pG). For the RNA binding defects PAB1- 

Y83V and PAB1-F170V, even when the length of GAL1-L poly (A) reached about 

30-35 A’s, 12-20 min for PAB1-Y83V, and 12 min for PAB1-F170V (Figure 5A) 

there was no clear processive reaction occurring. Similarly, when the poly (A) tail 

length of MFA2pG  was at about 30 nt for PAB1-Y83V (8 min) and for PAB1- 

F170V (15 min) there is little processive deadenylation (Figure 6B). Similar 

observations were obtained for PAB1-ARRM1 and PAB1-ARRM2 (Figure 7A  and 

7B). These results in general suggest that these regions of PAB1 are necessary 

for the formation of an mRNP structure that aids CCR4 activity in its transition 

from distributivity to processivity, as well as for its distributive activity.
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FIGURE 6. Steady state analysis of GAL1-L and MFA2pG mRNA poly (A) 
lengths as a function of PAB1 defects. Steady state levels of the mRNA were 
obtained following a 3 hr growth under galactose growth conditions. Poly (A) 
lengths are given on the sides. A- GAL1-L, B- MFA2pG
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present at the same time as the longer poly (A) species indicative of processive 
deadenylation.
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processive deadenylation.
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PAB1-PAB1 protein interaction is mediated bv the P and RRM1 domains, 

implicating it in the control of CCR4 deadenylation

Because deleting the P domain reduced the rate of deadenylation, we 

subsequently tested the model that the reduction in the rates of deadenylation 

caused by deletion of certain PAB1 domains was the result of PAB1 unable to 

interact with itself. We examined yeast PAB1 self-association following non­

denaturing gel electrophoresis. Purified PAB1-wt was found as analyzed by SDS- 

PAGE to migrate as a single band of the expected molecular weight (Figure 8A), 

but under non-denaturing gel conditions, PAB1-wt was found to form a series 

slower migrating species (Figure 8B). Western analysis with antibody specific to 

PAB1 identified eight distinct species of PAB1 (Figure 8B). These slower 

migrating species are indicative of the formation of multimeric PAB1 species as 

previously observed with higher eukaryotic PAB1 (Kuhn and Pieler 1996; Melo et 

al 2003). Four additional observations support the identification of these species 

as multimers of PAB1: 1) the eight identified species of PAB1 migrate relatively 

linearly in relation to the expected logarithmic value of their molecular weights 

(data not shown), 2) the original PAB1 sample was 90% pure, 3) PAB1 migrates 

as a single, cohesive species following SDS-PAGE that is inconsistent with 

multiple phosphorylation of PAB1 (Vallari et al 1992), and 4) other experiments 

indicate that post-translational modifications such as acetylation do not result in 

the multiple species displayed by PAB1 that are observed following non­

denaturing gel electrophoresis (Denis and Young 1983; Denis 1982).
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We subsequently analyzed whether PAB1-PAB1 association was important 

for deadenylation by determining whether deletions in PAB1 that affected
1

deadenylation were defective in PAB1-PAB1 interactions. As shown in Figure 8A 

and 8B, PAB1-AP failed to form the multimeric species that PAB1-wt did, forming 

only the dimeric form, albeit in much reduced amounts. This result is in 

agreement with previous observations demonstrating that the P domain of higher 

eukaryotic PAB1 is required for PAB1 multimerization (Kuhn and Pieler 1996; 

Melo et al 2003). Surprisingly, deleting the RRM1 domain also blocked the 

formation of the multimeric species (Figure 8B). As PAB1-AP and PAB1-ARRM1 

were specifically defective in both the distributive and processive deadenylation, 

we interpret these results to indicate that PAB1-PAB1 self-association is one 

factor required for deadenylation by CCR4 to occur. Other PAB1 deletions that 

affected the rate of deadenylation to a lesser extent, such as ARRM2 and AC, did 

not affect the ability of PAB1 to form multimers (Figure 8B). These other 

domains are probably acting by other means to affect deadenylation, as 

observed below.
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The CCR4-NOT complex is destabilized in the cell bv loss of RNA contact

bv RRM2.

Because a defect in RRM2 contact to poly (A) reduced the rate of 

deadenylation (PAB1-F170V), we subsequently examined the model that PAB1 

integrity and specifically its contacts to the poly (A) tail are being communicated 

to the CCR4-NOT complex. One mechanism for this may be that PAB1-RNA 

contacts establish an mRNP structure that influences CCR4-NOT function. 

Although there may be several ways that this communication may be evinced, 

we initially tested this model by determining whether there was any effect of 

PAB1 defects on the formation of the CCR4-NOT complex. To this end, in 

collaboration with Yueh-Chin Chiang, we analyzed whether the various PAB1 

deletions that we constructed affected the CCR4-NOT complex by 

immunoprecipitating the complex with antibody directed against CAF40 (Chen et 

al 2001). We found that deletion of RRM2, but not other regions of PAB1 (Figure 

9C, ARRM2, lane 3, as compared to wild-type, lane 1, ARRM1, lane 2, or the 

other PAB1 deletions, Y.-C. Chiang, pers. comm.) resulted in diminished 

quantities of the CCR4, CAF1, NOT4, and NOT1 components and therefore the 

whole CCR4-NOT complex in the cell as ascertained by immunoprecipitation of 

CAF40. RRM2 contact to RNA was required for this phenotype as PAB1-F170V 

also reduced the amount of the complex in the cell (Figure 9C, lane 4) whereas 

abrogating RRM2 contacts to elF4G (PAB1-184) or other RRM2 defects (PAB1- 

134) had little impact on the CCR4-NOT complex (lanes 5 and 6). Three 

additional observations suggest that RRM2 contacts to the poly (A) tail are
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required for stabilizing the CCR4-NOT complex. First, the abundance of the 

CCR4-NOT components but not that of other non-specific proteins is reduced in 

crude extracts in the strains carrying the RRM2 RNA binding defect or RRM2 

deletion (Figure 9A; Y.-C. Chiang, pers. comm.). Because in this strain 

background, CCR4 could not readily be detected in crude extracts we also 

conducted immunoprecipitations with CCR4 antibody to verify its presence. We 

found that in PAB1-ARRM2 and PAB1-F170V backgrounds that CCR4 protein 

concentration was also less than in the controls (Figure 9B). CAF40 protein 

abundance appears to be unaffected by PAB1-ARRM2 because its concentration 

in the cell is about 6-10-fold greater than that of each of the other CCR4-NOT  

components. The fact that CAF40 abundance is not affected by PAB1 defects 

indicates that only the CCR4-NOT complex is being affected. Second, the rate of 

protein translation was quantitated in each of these strains carrying the PAB1 

deletion variants and PAB1-F170V and what was found not to significantly affect 

the rate of incorporation of [35S]-methionine into newly synthesized proteins as 

compared to that observed with wild-type PAB1 (D. Lee, pers. comm. ). It is 

unlikely, therefore, that the specific loss of CCR4-NOT complex components 

observed with PAB1-F170V and PAB1-ARRM2 are the result of general effects 

on protein translation. Third, mRNA levels of CCR4, CAF1, and NOT4 were not 

affected by these RRM2 defects as analyzed by S1 analysis (D. Lee, pers. 

comm.). These observations suggest that the CCR4-NOT complex associates 

with a PAB1-mRNP in such a way that it is protected from proteolytic degradation. 

These data support an additional positive role for the PAB1 mRNP structure in
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signaling deadenylation and a specific role for RRM2 in deadenylation separate 

from that of RRM1.
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The RRM3 domain of PAB1 plays multiple roles in inhibiting deadenylation

and decappinq

a. RRM3 domain of PAB1 inhibits the deadenylation activity of both CCR4 

and PAN2/3

In contrast to deleting RRM1 and RRM2 and portions of the C-terminus, 

deleting RRM3 resulted in augmentation of several different aspects of the 

deadenylation process. First, as shown in Figure 7A, B and Table 1, PAB1- 

ARRM3 accelerated the rate of deadenylation of GAL1-L, GAL1-S, and MFA2pG  

by 1.6- to 1.7-fold. The RNA binding mutation in RRM3 (F263V), in contrast, 

slowed the deadenylation rate, implying it was RRM3 contacts to other proteins 

that inhibited the rate of deadenylation (Table 1). As replacing RRM3.4 with 

RRM1,2 also augmented the rate of deadenylation for the GAL1-S mRNA (Figure 

4; Table 1), RRM3 appears to be playing an inhibitory role in CCR4 

deadenylation.

In order to study the mechanism by which the RRM3 region of PAB1 inhibits 

deadenylation, I examined whether RRM3 could inhibit CCR4 or PA2/3 or both. 

Using a ccr4 strain in which PAN2/3 is the only yeast deadenylase, I showed that 

the rate of PAN2/3 deadenylation of GAL1 was augmented with a RRM3 deletion 

(from 1.3 A’s/min to 2.1 A’s/min); on the other hand, in a pan3 strain, when CCR4 

is the only deadenylase, deleting RRM3 also accelerates the deadenylation rate 

of GAL1 (from 1.6 A’s/min to 2.1 A’s/min). These results indicate that RRM3 

inhibition of deadenylation is most likely affecting some general feature of the
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mRNP structure and is not specifically targeting the CCR4-NOT complex or 

PAN2/3 alone.

b. RRM3 affects the CCR4-NOT deadenylation endpoint

Second, an RRM3 deletion caused GAL1 steady state poly (A) lengths to be 

shorter (0-6 A’s) (Figure 6A, lane 4) than that found in wild-type PAB1 (lane 1) (8- 

12 A’s). Similar effects were also observed on MFA2pG poly (A) lengths (Figure 

6B, lane 5 as compared to lane 1). Mutating the RRM3 contact to RNA (PAB1- 

F263V) did not result in this phenotype (Figure 6A, lane 8; data not shown), 

again suggesting that RRM3 is making other critical protein contacts. Deleting 

RRM4 also tended to result in shorter steady state lengths for the poly (A) 

(Figure 6A, lane 5). As the analysis of a number of different mRNA poly (A) 

lengths (Decker and Parker 1993; Viswanathan et al 2004) has indicated that 

CCR4-NOT deadenylation stops at 8-12 A’s, these results implicate RRM3, and 

to a lesser extent RRM4, in establishing a terminal mRNP structure that resists 

CCR4-NOT deadenylation. Since it is predicted that RRM3,4 would bind about 

12 nt of RNA in a manner similar to that observed for RRM1,2 (Deo et al 1999), 

our data suggest that RRM3 and RRM4 are being retained on the poly (A) tail 

when CCR4-NOT ceases deadenylation (see Discussion, Figure 12, step 4).
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c. RRM3 of PAB1 is required for formation of a terminal PAB1-mRNP 

structure that inhibits PAN2/3

PAN2/3 by itself can not deadenylate past 24 nt when CCR4 is absent 

(Tucker et al 2001), suggesting that PAN2/3 are blocked by a terminal PAB1- 

mRNP structure. If this were true, I hypothesized that PAB1 deletions might 

affect this structure and allow further deadenylation in a ccr4 background. I found 

that ARRM3 but not other PAB1 deletions allowed PAN2/3 to deadenylate down 

to about 13-14 A’s (Figure 6A, lane 10 as compared to lane 9). These results 

suggest that the RRM3 domain of PAB1 is also critical to making contacts that 

establishes a particular terminal mRNP structure that CCR4 can partially 

deadenylate through (to about 10 nt) but which blocks PAN2/3 (24 nt).

d. RRM3 of PAB1 inhibits decapping

As defects in decapping factors also result in deadenylation to proceed to 

about 0 A’s (Tharun et al 2000; Schwarz and Parker 2000; Dunckley and Parker 

1999)), it may be that RRM3 of PAB1 is involved with decapping factors at this 

stage of deadenylation in the transition and signaling from deadenylation to 

decapping. We consequently examined if any of the PAB1 variants increased 

the conversion of full-length MFA2pG mRNA to that of the pG fragment, a typical 

assay used to quantitate the extent of decapping (Coller et al 2001). As shown in 

Figure 10, PAB1-ARRM3 resulted in increased levels of the pG fragment relative 

to that of the full-length mRNA (lane 3), suggesting that it was accelerating the 

rate of decapping. This result would be consistent with an inhibitory role for
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PAB1 in decapping. A dhhl control is displayed in lane 1 in which the decapping 

process is severely compromised.

Significantly, we observed that swapping of the RRM1,2 cassette for that of 

RRM3,4 in PAB1-1,2,1,2,P,C caused a substantial augmentation (2.2-fold) in the 

formation of the pG  fragment from MFA2pG relative to that of the full-length 

mRNA (Figure 10, lane 8 compared to lane 7). Moreover, PAB1-1,2,1,2,AP, 

which displayed as slow of a rate of deadenylation of the full-length MFA2pG  

transcript as did PAB1-AP (data not shown), still displayed a large increase (lane 

10) in the formation of the pG  fragment as compared to PAB1-AP (lane 6). These 

results implicate PAB1, specifically the RRM3 domain, in playing a critical role in 

inhibiting the decapping process.

We subsequently tested whether there was any genetic linkage between 

RRM3 and decapping factors by ascertaining if any of the PAB1 variants 

genetically interacted with loss of the decapping regulators DHH1 or DCP1. A 

dhhl or dcp1 deletion results in temperature sensitive growth. Deletion of either 

RRM3 or RRM4, but not of any other PAB1 region, was found to suppress dhhl 

or dcp1 temperature sensitive lethality (Table 1). Also, PAB1-1,2,1,2,P,C was 

capable of suppressing the dhhl or dcp1 lethality. These data support a 

functional connection between RRM3 and RRM4 and that of the decapping 

process.

48

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



FIGURE 10. Formation of the pG fragment from MFA2pG is accelerated by 
PAB1 alterations. Steady state levels of the MFA2pG mRNA were obtained 
following a 3 hr growth under galactose conditions using the PAB1 variants in 
strain AS319. The pG/F.L. ratio refers to the abundance of the pG fragment 
relative to that of the full-length mRNA. The wild-type ratio was set 1.0. Values 
represent the average of two separate experiments. The SEM values were less 
than 15%.
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Translation termination factor eRF3 contacts to the C-terminus of PAB1 are

required for CCR4 deadenylation

As shown in Table 1, deleting the globular C-terminal region of PAB1 

slowed CCR4-NOT deadenylation. Contacts made by the C domain include 

those made to PAN2/3 (Mangus et al 2004a) or to translation termination factor 

eRF3. Of these two known contacts, the most likely factor that would be required 

for CCR4-NOT deadenylation would be eRF3 since deletion of either PAN2 or 

PAN3 does not affect the deadenylation rate. As translation termination may be a 

signal that initiates deadenylation, I decided to test whether the slowing of 

deadenylation that was observed in PAB1-AC was due to loss of the ability of 

PAB1 to bind eRF3.

To test this hypothesis, I overexpressed in yeast either the N-terminus of 

eRF3 (N-eRF3) that abrogates wild-type eRF3 contacts to the C-terminal region 

of PAB1 or the C-terminus of eRF3 that does not interfere with any interactions 

(Hoshino et al 2004). After a 1.5 hr induction of eRF3 expression and of GAL1 

mRNA with galactose, transcription was shut off with the addition of glucose. 

Because this methodology does not produce a pulse of GAL1 synthesis, the 

deadenylation of the GAL1 poly (A) tail can best be followed by observing the 

shortening of the longest length poly (A) tails (Figure 11 A). Overexpression of N- 

eRF3 as compared to C-eRF3 slowed the rate of deadenylation of GAL1 mRNA. 

In the C-eRF3 the majority of the poly (A) tails are shortened to an oligo (A) size 

within 10-15 mm (deadenylation rate of 3.7 A’s/mm) whereas with
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overexpression of N-eRF3 deadenylation was not complete until about 30 mm 

(deadenylation rate of 2.0 A’s/mm). The same results were obtained when 

overexpression of N-eRF3 was compared to a control plasmid that did not 

express either segment of eRF3. Moreover, overexpression of N-eRF3 in 

conjunction with several different PAB1 RNA binding defects severely slowed 

CCR4 deadenylation (Figure 11 A, for PAB1-ARRM1: deadenylation rate of 

2.4’s/min with C-eRF3 and 1.4A’s/min with N-eRF3).

We subsequently examined whether other mutants that interfered with 

translation termination also reduced deadenylation. Using an eRF3 variants 

(gst1-N106l) that fails to bind well to eRF1 (Hosoda et al 2003), we found that 

both GAL1-L deadenylation was severely compromised (Figure 11B, C: 6.5 

A’s/min for GST1 and 4.2 A’s for gst1-N106l). Similar results were found for 

GAL1-S (4.9 A’s/min for GST1 and 4.0 A’s for gst1-N106l). Because gst1-N106l 

interferes with translation termination (Hosoda et al 2003), our results support the 

model that translation termination is one signal required for the onset of CCR4- 

NOT deadenylation.
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FIGURE 11 A: Blocking PAB1-eRF3 interactions slows deadenylation. Time 
course of GAL1-L poly (A) lengths as determined in Figure 4. Yeast (strain 1729- 
3 with the indicated PAB1 variant) were grown for 1.5 hr in galactose and shut off 
at time zero with the addition of glucose. Effect of overexpression of the N- 
terminus of eRF3 on CCR4 deadenylation. C-eRF3 and N-eRF3 represent the 
carboxy and amino terminal halves of the eRF3 protein expressed from a GAL1 
promoter (Hoshino et al 2004).
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FIGURE 11B, C: Blocking eRF1-eRF3 interactions slows deadenylation. The 
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Time course of GAL1-L poly (A) lengths was determined as described in Figure 4. 
C- Average poly (A) tail length as a function of time.
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CHAPTER 4 

DISCUSSION

PAB1 plays multiple roles in the mRNA deqradative process

The results presented herein demonstrate that PAB1 plays a number of key 

roles in integrating the mRNA turnover process. It conjoins and links translation 

initiation, termination, deadenylation, and decapping. Our results establish that 

PAB1 does not simply inhibit deadenylation, although the RRM3 domain plays an 

inhibitory role. Instead, we have identified four critical mechanisms by which 

regions of PAB1 are required for the deadenylation process: proper PAB1 

binding to the poly (A) tail, PAB1-PAB1 protein interactions, contacts to 

translation termination factors, and stabilization of the CCR4-NOT deadenylase 

complex.

Several pieces of evidence indicate that PAB1 must be bound to the poly (A) 

tail in order for CCR4-NOT to deadenylate. Defects in RRM1 and RRM2 that 

reduce PAB1 ability to bind RNA (Deardorff and Sachs 1997; Kessler and Sachs 

1998) significantly reduced CCR4-NOT deadenylation. These effects occurred 

for both rapidly deadenylated mRNA (MFA2pG) and for slowly deadenylated 

mRNA (GAL1-S). Other mutations in RRM2 such as PAB1-134 or PAB1- 184 

that do not affect RNA binding but do affect other translation related functions of 

PAB1 (Otero et al 1999) had no effect on deadenylation. Importantly, PAB1-
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1,2,1,2,P,C, that could bind 6-fold better in vitro to poly (A) than wild-type PAB1, 

did not reduce deadenylation and instead resulted in faster rates of 

deadenylation for GAL1-S mRNA. PAB1 clearly does not simply play an 

obstructionist, inhibitory role in regards to CCR4-NOT deadenylation in vivo.

PAB1-PAB1 interactions are required for the distributive to processive 

transition during deadenylation

Our results (Figure 4, Figure 5 and Figure 7) and those of others (Decker 

and Parker 1993) indicate that the CCR4-NOT complex undergoes a switch from 

a primarily distributive to a processive state once the poly (A) tail has reached a 

length of about 35-50 A’s for rapidly deadenylated mRNA (see, for example, 

Figure 7B, 1-2 min for MFA2pG, and 7A, 6-8 min for GAL1-L, when both long 

and short poly (A) tails are present indicative of a processive deadenylation 

reaction). This switch not only significantly accelerates deadenylation of a 

particular mRNA and hence the degradation of the mRNA but also can be 

envisaged as a major site for controlling the vastly different rates at which mRNA 

are degraded. For instance, PGK1 and GAL1-S are primarily deadenylated 

distributively, resulting in a slower turnover of the mRNA (Decker and Parker 

1993; Viswanathan et al 2004) whereas processively deadenylated mRNA 

turnover more rapidly (MFA2, STE3, COX17, GAL1-L) (Decker and Parker 1993; 

Viswanathan et al 2004; Olivas and Parker 2000).
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We have identified parts of PAB1 that are important to this transition: the P 

domain and the RRM1 and RRM2 domains. Deletions or defects within these 

regions produced PAB1 proteins that failed to transition well from the distributive 

to processive phase for both MFA2pG and GAL1-L mRNA. These observations 

suggest that the mRNP undergoes a significant PAB1-dependent transition 

during deadenylation at about the 40 A stage in regards to altering the ability of 

CCR4-NOT to switch from a primarily distributive to a processive mode of action. 

As we have shown that CCR4 can itself move from the distributive to the 

processive mode as it sees greater lengths of the RNA substrate (at least 30 nt) 

(Viswanathan et al 2003, 2004), the rearrangement of PAB1 on a long stretch of 

RNA might aid CCR4 in becoming a processive enzyme. Our observations and 

those made previously that the P domain of PAB1 functions to promote 

cooperative PAB1-PAB1 intermolecular interactions (Melo et al 2003; Kuhn and 

Pieler 1996) support a role for the P domain in this transition. An attractive model 

for this transition would be that PAB1-PAB1 interactions enhance the sequential 

removal (unzipping) or rearrangement of PAB1 on the poly (A) tail allowing 

CCR4-NOT to switch from the distributive to processive mode (see Figure 12, 

step 3).

The model that PAB1-PAB1 interactions are critical to the distributive to 

processive transition is supported by our demonstration that both PAB1-AP and 

PAB1-ARRM1 were severely deficient in their ability to multimerize. The P region, 

based on its sequence, is an apparently unstructured domain that is known to
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make two types of protein contacts: to PBP1, an inhibitor of PAN2/3 (Mangus et 

al 2004), and to the P region in other PAB1 molecules. It is very unlikely that 

PBP1 is required for CCR4-NOT function, as defects in PAN2/3 do not affect the 

deadenylation rate (Tucker et al 2001; unpublished observations). We 

hypothesize, therefore, that it is the inability of the P region to interact with other 

PAB1 proteins in PAB1- P that causes the severe defect in CCR4-NOT  

deadenylation. RRM1, located as it is, at one end of the PAB1 molecule, may 

help stabilize adjacent PAB1-PAB1 protein contacts (see Figure 12).

The extensive PAB1-PAB1 interactions that we observed may also 

influence a number of other aspects of mRNA metabolism. For example, the P 

domain restricted PAB1 association with the RNA (Table 1), suggesting that 

PAB1 multimerization may be inhibitory or regulatory for PAB1-poly (A) 

associations. Also, intracellular localization of mRNA is critical to a number of key 

cellular processes (Shepard et al 2003; Gu et al 2004). Proper association of the 

mRNA at particular sites may be influenced by PAB1-PAB1 self-association as 

governed by other particular RNA binding factors (Gu et al 2004).

In contrast to deletion of RRM1 or the P domain, we observed that deletion 

of RRM2 did not affect PAB1 multimerization, although it did slow the rate of 

deadenylation and the distributive to procession transition. In this case, however, 

deleting RRM2 or altering its ability to bind RNA (PAB1-F170V) resulted in 

destabilization and reduced levels of the CCR4-NOT complex. Other mutations in
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RRM2, such as evidenced in the PAB1-184 or -1 3 4  proteins, did not affect the 

formation of the CCR4-NOT complex. It appears, therefore, that it is the contact 

to poly (A) that affects the CCR4-NOT complex abundance in the cell, thereby 

explaining why such RRM2 defects would be defective in deadenylation. One 

model in agreement with these observations would be that the integrity of the 

mRNP structure involving PAB1 bound to the poly (A) tail is 'read by’ or 

influences the state of the CCR4-NOT complex. The RRM2 domain contact to 

the RNA must be critical for the formation of this mRNP structure. In this regard, 

it may be significant that the deadenylase domain of CCR4 is known to make 

contact to elF4G (Y.-C. Chiang, pers. comm.), one of the factors that would be 

expected to be within this mRNP structure.

Deletion of the terminal C globular domain of PAB1 also slowed the rate of 

CCR4-NOT deadenylation, and we demonstrated that contacts to the translation 

termination factor eRF3 were likely to mediate this process. Interference with the 

eRF3 contact to eRF1, a defect that is known to block translation termination 

(Hosoda et al 2003), also slowed deadenylation as did mutations that interfered 

with the GTPase activity of eRF3 and hence its ability to terminate translation 

(Salas-Marco and Bedwell 2005). Proper protein translation termination is, 

therefore, one of the steps that ensure complete CCR4-NOT deadenylation of 

the mRNA. However, loss of the P region of PAB1 and interfering with PAB1 

RRM1 contact to the RNA resulted in much more significant declines in mRNA 

deadenylation than did deleting the C region. Translation termination appears to
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play a more minor role in initiating deadenylation. The exact role of translation 

termination in deadenylation is also made problematic given that for the average 

yeast mRNA there are a very large number of translation termination events per 

mRNA. While it is unlikely that each of these specific transversals of the mRNA 

by the ribosome directly affects deadenylation, there may be some type of 

requirement or interplay between the presence of translation termination factors, 

the reinitiation of translation, and the deadenylation process.

RRM3 of PAB1 inhibits deadenylation and decappinq and affects the mRNP 

structure of the terminal PAB1 bound to poly (A)

Deletion of RRM3 of PAB1 accelerated deadenylation of each of the mRNA 

that we analyzed. In that deleting RRM3 also resulted in increased abundance of 

the pG fragment relative to full-length MFA2pG, a sign of an increased decapping 

rate (Coller et al 2001), RRM3 appears to be critical for restricting both 

deadenylation and decapping. Our observation that a defect in RRM3 binding to 

RNA did not elicit the same phenotypes as that of deleting RRM3 argues for a 

critical protein contact made by RRM3 in these processes. Previously, it had 

been shown that defects in translation initiation factors also enhance both the 

deadenylation rate and the decapping process (Schwarz and Parker 1999). It is 

hence possible that RRM3 exerts its effect on deadenylation/decapping by 

interacting with or affecting some aspect of the translation initiation process. 

Alternatively, RRM3 may be required to form a general mRNP structure required 

for both processes. It is also possible that ARRM3 accelerates decapping by
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accelerating deadenyltion, although PAB1-1,2,1,2,P,C accelerated decapping 

without affecting deadenylation.

Another novel role that was observed for RRM3 was that its deletion 

resulted in significantly shorter poly (A) tails (0-6 A’s) at the end of the 

deadenylation process than were observed with wild-type PAB1 (8-12 A’s) or 

other PAB1 defects. Deletion of RRM4 also elicited a similar phenotype. These 

results are consistent with the model that RRM3 and RRM4 are actually retained 

on the poly (A) tail at the cessation of CCR4-NOT deadenylation, even though 

RRM2 and RRM1 are presumably no longer making contact with the poly (A) 

(see Figure 12, step 4). The size of the poly (A) tail at this juncture would be 

consistent with the expected occlusion size of RRM3 and RRM4 (8-12 A’s) (Deo 

et al 1999). These observations would suggest that the terminal PAB1 does not 

come off the poly (A) tail at the end of deadenylation and is instead bound to the 

poly (A) tail in a terminal mRNP structure as mediated by RRM3 and RRM4. The 

inhibition of decapping that we observed with RRM3 is consistent with it playing a 

role in the mRNP structure that restricts decapping. Substitution of RRM1,2 

domains (as in PAB1-1,2,1,2,P,C) for that of RRM3.4 also caused a substantial 

increase in decapping, suggesting that RRM3,4 are inhibitors of this process.

Model for the deadenylation process

Our data and that of others suggest the following model for the 

deadenylation process. Following the initial trimming of the poly (A) tail by
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PAN2/PAN3 (Brown and Sachs 1998; Tucker et al 2001) (Figure 12, step 1), the 

major process of deadenylation requires CCR4 as it shortens the poly (A) tail 

down to an end-point size of about 8-12 nt (Decker and Parker 1993) (Figure 12, 

steps 2 and 3). Dissociation of the first PAB1 may promote in a cooperative 

manner at the 40-50 A stage, through intermolecular P domain contacts as 

mediated by RRM1, the subsequent rearrangement of the next PAB1 and the 

shift of CCR4-NOT to a processive mode of action (step 3). CCR4 deadenylation 

is finally blocked at the 8-12 nt stage by a terminal PAB1 that is stabilized by 

other proteins, possibly decapping factors (step 4). These 8-12 nt of poly (A) may 

still be associated with RRM3 and 4 domains of PAB1.

Specific mRNA binding proteins that are known to regulate mRNA turnover 

(Olivas and Parker 2000; Lykke-Andersen and Wagner 2005; Semotok et al 2005; 

Tran et al 2004) may also be envisaged as controlling PAB1 interactions with the 

poly (A), with itself, with decapping proteins, with translation initiation factors, and 

with the CCR4-NOT deadenylase. Any alteration in the mRNP structures 

involving PAB1 could be used as a potent method for selectively controlling 

deadenylation, translation, and degradation of the mRNA. Our studies indicate 

that PAB1, far from being a simple block to deadenylation, integrates various 

signals to control the fate of the poly (A) tail and hence the expression and 

destiny of the mRNA. Importantly, they indicate that, although RRM1 and RRM2 

domains of PAB1 are clearly needed for RNA binding (Deo et al 1999), multiple 

regions of PAB1 are integral to the control of several critical aspects of mRNA
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metabolism. Future studies will be directed towards understanding the regulation 

of PAB1 protein and RNA contacts in the merging and transmission of these 

signals and interactions.
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Step 1: PAN2/3 
trims poly (A) tail to 
60-80A's.

Step 2: CCR4 replaces 
PAN2/3 and shortens 
the poly (A) tail 
distributively. •RF3

Step 3: At about 35-50A’s 
CCR4 switches to 
processive deadenylation, 
possibly mediated by P 
domain interactions. W f? v

Step 4: CCR4 stops at 8-12A's.

FIGURE 12. Model for the deadenylation process in yeast as described in the 
text. The binding of elF4G to the rightmost PAB1 is conjectural and it may bind 
to other PAB1s. Three PAB1 molecules are assumed to bind each poly (A) tail, in 
an anti-parallel fashion, as each PAB1 is expected to occlude about 25 nt (Deo et 
al 1999). The P domain of PAB1 is about 100 residues long and based on its 
sequence would be unlikely to form the most common secondary elements. 
Depending on the form it would take, it could extend at least 150-350 angstroms, 
sufficient to span the predicted length of four contiguous RRM domains (100 
angstroms, Deo et al 1999). The P domain of one PAB1 would therefore be able 
to interact with an adjacent P domain.
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Table 1. PAB1 effects on Poly (A) Binding, Deadenylation and Yeast 

lethality

PAB1
variant

poly (A) 
binding 

Kd 
(nM)

Deadenylation
rate,

MFA2pG,
A’s/min

Deadenylation 
rate, GAL1-L, 

A’s/min

Deadenylation 
rate, GAL1-S, 

A’s/min

dhhl or 
dcp1 

suppression

PAB1 (wt) 11 11 3.7 2.8 -

PAB1-
1,2,1,2,P,C

1.9 11 4.1 3.3 +

PAB1-Y83V 220 2.6 2.0 1.8
PAB1-
F170V

270 3.0 2.3 2.1

PAB1-
F263V

99 4.6 ND ND

PAB1-
F366V

39 7.9 ND ND

PAB1-
ARRM1

29 3.4 2.0 2.0

PAB1-
ARRM2

35 4.2 3.2 2.4

PAB1-
ARRM3

15 18 6.3 4.6 +

PAB1-
ARRM4

22 11 3.9 2.9 +

PAB1-AP 7.4 2.1 1.5 1.1 -

PAB1-AC 18 7.5 3.2 2.1 -

PAB1-AP.C 6.0 ND ND ND
PAB1-184 12 9.7 ND ND -

PAB1-134 18 9.5 ND ND +
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Table 1: PAB1 effects on Poly (A) Binding, Deadenylation and Yeast lethality 
PAB1. PAB1 variants are depicted as in Figure 1. Poly (A) binding was 
conducted in vitro using a gel shift assay with a 7N+23A radiolabeled RNA 
(Kessler and Sachs 1998). Our KD values for PAB1 variants binding to poly (A) 
agreed very well with those of published values (Kessler and Sachs 1998; 
Deardorff et al 1997). Deadenylation rates were conducted in strain AS319 with 
the indicated PAB1 variant expressed from a pRS314 vector (TRP1-PAB1) 
replacing that of pAS77 by measuring the lengths of the shortest poly (A) tail as a 
function of time after transcriptional shut off. GAL1-L (long) and GAL1-S (short) 
refer to the two GAL1 mRNA that result from differential poly (A) site usage and 
differ by 110 nt in their 3’ UTR end (Cui and Denis 2003). Poly (A) binding 
assays are the average of 2-3 determinations with SEMs less than 20%. 
Deadenylation rates are the average of two to three determinations and the 
SEMs were less than 10% except for MFA2pG PAB1-ARRM4 it was 25%, PAB1- 
AP it was 21%, and PAB1-AC it was 19% and for GAL1-L PAB1-ARRM4 it was 
12%, and for GAL1-S PAB1-AC it was 12%. The SEMs for the deadenylation 
rates for wild-type PAB1 were less than 4% for MFA2pG and GAL1-L and less 
than 2% for GAL1-S. Deadenylation rate values in bold differ significantly from 
wild-type. ND- not done, dhhl suppression was conducted in strain AS319-d1- 
uL and dcp1 was conducted in strain 1716-1: no growth at 37°C; ‘+ ’: growth
at 37°C.
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CHAPTER 5 

SUMMARY

The major objective of this study was to explore the function of poly (A) 

binding protein (PAB1) in mRNA degradation process in yeast and to determine 

the mechanism by which it regulates the mRNA degradation process.

First, we clarified the role PAB1 in the CCR4 deadenylation process. PAB1 

does not simply inhibit the CCR4 deadenylation. In contrast, PAB1 protein must 

be properly bound to the poly (A) tail in order to allow CCR4 deadenylation. 

Increasing the PAB1 poly (A) binding by 6-fold better does not reduce the 

deadenylation rate in vivo, although defects in PAB1 poly (A) binding ability slow 

the CCR4 deadenylation rate for both rapidly deadenylated mRNA ( MFA2pG  

and GAL1-L) and slow deadenylated mRNA ( GAL1-S).

Second, we established that the PAB1-PAB1 interaction exists in yeast as 

mediated by the RRM1 and P domains. In addition we found that the PAB1- 

PAB1 interaction is important for the CCR4 transition from the distributive 

deadenylation to the processive deadenylation. Previous research shows that the 

CCR4 deadenylation undergoes a switch from the distributive deadenylation to 

the processive deadenylation when the CCR4 shortens the poly (A) tail reach 

about 35-50 nt for the rapidly deadenylated mRNA (MFA2pG and GAL1-L). Our 

studies showed that deleting the PAB1 RRM1 or P domain, which displayed
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weakened PAB1-PAB1 interaction failed to either distributive deadenylation or to 

transition from the distributive to the processive deadenyltion state. We propose 

that the PAB1-PAB1 interaction is one factor required for the CCR4 

deadenylation.

Third, deleting RRM2 or altering its ability to bind RNA (PAB1-F170V) 

resulted in destabilization and reduced levels of the CCR4-NOT complex. Other 

mutations in RRM2, such as evidenced in the PAB1-184 or -1 3 4  proteins, did not 

affect the formation of the CCR4-NOT complex. In addition the mRNA levels of 

CCR4, CAF1, and NOT4 were not affected by these RRM2 defects. These data 

explain why such RRM2 defects would be defective in deadenylation and support 

an additional positive role for the PAB1 mRNP structure in signaling 

deadenylation and a specific role for RRM2 in deadenylation separate from the 

other PAB1 domains.

Fourth, RRM3 of PAB1 inhibits deadenylation and decapping and affects the 

mRNP structure of the terminal PAB1 bound to poly (A). Deleting the PAB1 

RRM2 accelerates the deadenylation rate for all RNA reporters which were used 

in this study. In contrast, PAB1-F263V which is specifically defective in Poly (A) 

binding slowed the deadenylation rate. It implies that a RRM3-protein interaction 

or the contribution of RRM3 to an important mRNP structure inhibits or regulates 

the mRNA deadenylation process. Deleing PAB1-RRM3 also causes the CCR4 

deadenylation end point to reach 0-6 A’s and PAN2/3 deadenylation end point to
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13-14A’s. These results indicated that the terminal PAB1 is making a specific 

PAB1-mRNP structure which blocks the PAN2/3 deadenylation at 24 A’s in the 

absence of CCR4 and also blocks the CCR4 deadenylation at 8-12 A’s. In 

addition, after the poly (A) length reached the oligo A form, CCR4 stops 

deadenylating, and at this point this terminal PAB1 is still bound to the poly (A) 

tail through the RRM3 and RRM4 domains. From both biochemical and genetic 

analysis it seems that PAB1 RRM3 domain also play a role in the decapping 

process, which is consistent with PAB1 inhibitory function in decapping process.

Fifth, translation termination factor eRF3 contacts to the C-terminus of PAB1 

are required for CCR4 deadenylation. Defects in PAB1 contacts to the translation 

termination factor eRF3 decreased the mRNA deadenylation rates. In addition, 

interference with the eRF3 contact to eRF1 and defects in the eRF3 GTPase 

activity which block translation termination also cause decreased deadenylation 

rates in vivo. These results indicate that proper protein translation termination is 

one of the steps that ensure complete CCR4-NOT deadenylation of the mRNA.

Although our work has made a significant advance in our understanding of 

the function of poly (A) binding protein in the mRNA degradation process in yeast, 

there are still many questions need to be answered. For example, what is the 

composition of the terminal PAB1-mRNP structure, which regulates the end of 

deadenylation? What kind of PAB1-protein contact through PAB1 RRM3 inhibits 

both the deadenylation and decapping processes? What specific protein contacts
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does PAB1 make through each individual domain? All of these questions will be 

subjects of future study.
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