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A B ST R A C T

CHARACTERIZATION OF THE SPATIAL A N D  TEM PORAL  

VARIABILITY IN PAN-ARCTIC, TERRESTRIAL HYDROLOGY

by

M ichael A. Rawlins 
University of New Hampshire, December, 2006

Arctic hydrology represents an important component of the larger global climate sys

tem, and there are signs that significant water-cycle changes, involving complex feedbacks, 

have occurred. This dissertation explores the methods to estimate components of the arctic 

hydrological cycle, the numerous biases and uncertainties associated with the techniques, 

and suggestions for future research needs. The studies described here focus on quantita

tive models and methods for predicting the spatial and temporal variability in pan-Arctic 

hydrology.

This dissertation discusses pan-Arctic water budgets drawn from a hydrological model 

which is appropriate for applications across the terrestrial Arctic. Including effects from 

soil-water phase changes results in increases in simulated annual runoff of 7% to 27%. A 

sensitivity analysis reveals that simulated runoff is far more sensitive to the time-varying cli

mate drivers than to parameterization of the landscape. When appropriate climate data are 

used, the Pan-Arctic Water Balance Model (PWBM) is able to capture well the variability 

in seasonal river discharge at the scale of arctic sea basins.

xii
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This dissertation also demonstrated a method to estimate snowpack thaw timing from 

radar data. Discrepancies between thaw timing inferred from the microwave backscatter 

data and the hydrological model are less than one week. The backscatter signal-to-noise 

values are highest in areas of higher seasonal snow accumulation, low to moderate tree cover 

and low topographic complexity. An evaluation of snow water equivalent (SWE) estimates 

drawn from land surface models and microwave remote sensing data suggests that simulated 

SWE from a hydrological model like PWBM, when forced with appropriate climate data, 

is far superior to current snow mass estimate derived from passive microwave data.

Biases arising from interpolations from sparse, uneven networks can be significant. A 

bias of well over + 10 mm yr-1 was found in the early network representations of spatial 

precipitation across Eurasia. When examining linkages between precipitation and river 

discharge, these biases limit our confidence in the accuracy of historical precipitation re

constructions. This dissertation assess our current capabilities in estimating components of 

arctic water cycle and reducing the uncertainties in predictions of arctic climate change.

xiii
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IN T R O D U C T IO N

The terrestrial Arctic is vast and remote region which has has experienced unprecedented 

change. The arctic water cycle is an integral component of the larger, global energy and 

water cycles, and alterations in the arctic system can feedback or impact global climate in 

ways which are not fully understood. Although the Arctic Ocean contains only 1% of the 

world ocean water, it receives 11% of the world runoff (Shiklomanov et al., 2000). It also has 

the largest contributing basin area, relative to the ocean surface area, of any of the world’s 

oceans. Yet, despite its prominent role in the global climate system, observations of key 

hydrological quantities across the terrestrial arctic drainage basin have recently declined. 

Between 1986 and 1999, the area monitored has declined approximately 7%, from 74% 

to 67% of the pan-Arctic (Shiklomanov et al., 2002). This loss of information— vitally  

important for modeling calibration and validation efforts— seriously compromise our ability 

to understanding the pan-Arctic system at this critical time.

More than a century ago, scientists speculated that combustion of fossil fuels will in

crease the level of CO2 in the atmosphere. Over the past century, mean global, surface 

air temperature has increased by about 0.6°C (Houghton et ah, 2001). Model projections 

suggest an increase in global temperature, relative to 1990, of about 2°C by 2100. General 

circulation models (GCMs) generally agree that warming will be most pronounced across 

northern high latitudes during winter. Observations since 1960 confirm that warming in 

the Arctic has been strongest in winter and spring, amounting to as much as 2°C decade-1

1
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for areas of greatest warming. Although the most recent warming may be attributable to 

multiple causes, paleoclimatic reconstructions indicate that the Arctic was warmer during 

the 20th century than at any time since 1600 (Overpeck et al., 1997).

Although polar amplification of global warming is a well known feature, of potentially 

greater importance are hydrologic changes that are likely to accompany a warmed Arctic. 

Recent assessments of 20th-century precipitation (Houghton et al., 1996) show that precip

itation has increased by a greater percentage in the Arctic (65°N-85°N) than in any other 

latitudinal zone on the globe. The Arctic has become wetter as well as a warmer, sug

gesting an acceleration of the hydrologic cycle. Annual river discharge across the 6 largest 

Eurasian river basins has increased by 7% from 1936 to 1999 (Peterson et al., 2002), and 

there are indications that river discharge is occurring earlier in the spring in many arctic 

rivers (Lammers et al., 2001).

Climate change has the potential to affect arctic hydrology further through complex 

linkages and feedbacks. Warming air temperature has been implicated in the record sea ice 

minimums of the past several years. The significant downward trend of 8% decade-1 since 

the late 1970s has led to a reduction of approximately 20% in sea ice extent in September, 

when the annual minimum occurs (Manabe et al., 2005). Thawing of ice-rich permafrost— a 

consequence of increasing air and soil temperatures— may lead to significant increases in 

river discharge. Simulations with the Community Land Model (CLM3) show an increase 

in discharge of 28% by 2100, mostly due to increases in precipitation that exceed increases 

in evaporation (Lawrence and Slater, 2005). Approximately 15% of the increase, however, 

is attributed to contributions from thawing permafrost. These increases in river discharge

2
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may lead to a freshening of the Arctic Ocean, reduction of the North Atlantic Deep Water 

formation, and a slowing of the Atlantic thermohaline circulation (Broecker, 1997).

Current climate models are unable to capture sufficiently the spatial and temporal dy

namics in pan-Arctic hydrology (Waliser et al., 2005). Most state-of-the-art climate models 

significantly overestimate the snow mass across the Northern Hemisphere, particularly in 

spring (Roesch, 2006). Regional climate models (RCMs) or offline land-surface models 

(LSMs) run at higher spatial scales may offer improvements over GCMs. However, since 

they are usually driven by a GCM, water balances predicted by RCMs and LSMs may not 

be much better. On the other hand, hydrological models— data-rich and suitably physically 

based—currently offer the best tools for estimating arctic water budgets at small to medium  

scales. Although simple bucket models (Robock et al., 1995) have performed comparably 

to complex biosphere models, the equations used are often empirical, which limits their use 

in simulations involving future climate scenarios. The desire to implement physically-based 

algorithms is challenged by the lack of input data required to parameterize the relevant 

model equations. Moreover, hydrological models and LSMs are more sensitive to climate- 

driven perturbations than to the chosen biotic surface parameters (Beringer et al., 2002; 

Federer et al., 2003). Understanding the degree of complexity in model structure neces

sary to obtain reasonable water budget predictions is central to our goal of developing a 

predictive capability in arctic change studies.

Across the terrestrial Arctic, in situ  snow depth observations are biased toward pop

ulated areas and lower elevations, and gauge undercatch can be severe (Groisman et al., 

1991; Yang et al., 2005). Remote sensing techniques offer the potential to overcome many of 

the challenges in direct monitoring across remote arctic lands. Evapotranspiration has been

3
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estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

(Nishida et al., 2003). Low spatial resolution, high temporal revisit microwave radiometers 

and scatterometers are well-suited for quantifying the timing of landscape freeze/thaw state 

(Kimball et al., 2001; McDonald et al., 2004).

Among all hydrological quantities, estimation of snow mass currently has the best po

tential from a remote-sensing perspective. A critical component of the arctic hydrological 

cycle, seasonal snow cover stores large amounts of energy and provides the principle source 

of freshwater in many arctic communities (White et al., 2004). Snow cover is involved in 

many feedbacks (Randall, 1994), the most critical being the surface albedo feedback (Hall, 

2004). Remote sensing of snow mass at microwave wavelengths can be achieved without 

the limitations of optical-infrared sensors such as MODIS. Passive microwave sensors such 

as the Special Sensor Microwave Imager (SSM /I) have proven particularly useful for re

trieving information on snowpack water storage (Armstrong and Brodzik, 2001; Derksen 

et al., 2003). Snowpack thaw timing can be inferred from passive radiometers and from 

active instruments (eg., SeaWinds on NASA QuikScat). Uncertainties in snow water equiv

alent (SWE) and snow thaw timing estimates arise due to the integration of many different 

terrain and land cover features into a single grid-cell brightness temperature value. These 

sub-pixel-scale features include grain size variability, high-density snow layers or ice lenses, 

and a significant lake cover fraction (Rees et al., 2006). Filling the gap in snow observations 

with remotely sensed data is dependent on a better understanding of regional biases due to 

landcover effects.

4
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The primary objective of this study is to evaluate our current ability to characterize 

the arctic terrestrial hydrological cycle. The following research objectives help achieve this 

goal:

•  To modify an existing hydrological model for application to the pan-Arctic basin

•  To estimate the timing in landscape thaw from remote sensing data

•  To understand the driving mechanisms behind observed hydrological changes

By assembling the requisite input data, a hydrological model, and remote sensing fields, 

the main objectives of this study can be addressed through a series of specific research 

questions:

1. What is the spatial and temporal distribution of runoff across the pan-Arctic drainage 

basin

2. What is the effect of incorporating soil freeze/thaw processes in a hydrological model? 

Are the effects on simulated runoff due to climate driver data more important than 

differences due to specification of landscape properties?

3. How do uncertainties and errors in model forcing data affect simulated water budgets?

4. Can remote sensing provide information about landscape thaw timing sufficient to 

improve hydrological forecast and biogeochemical modeling of the Arctic? W hat are 

the primary influences on thaw timing estimates across the pan-Arctic basin?

5
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5. Have changes in precipitation played a prominent role in the observed discharge trends 

across Eurasia? How does the sparse observing network impact our ability to monitor 

the region?

6. Are current SWE estimates derived from passive microwave observations able to cap

ture the spatial and temporal variability in pan-Arctic SWE? Are SWE estimates 

derived from a suitable hydrological model superior at this time?

This dissertation is organized into five chapters. The first chapter describes the develop

ment, coding, and testing of a version of the Water Balance Model (WBM, Vorosmarty et 

al., 1996) suitable for simulations across the pan-Arctic drainage basin. Details of a new soil 

moisture phase-change submodel—added to more accurately represent the daily changes to 

soil liquid and solid water fractions— are also presented. Results of a sensitivity experiment 

illustrate the most important model components for simulating the arctic water cycle. A 

version of this chapter was published in the journal Hydrological Processes (Rawlins et al., 

2003) in 2003.

The second chapter presents an evaluation pan-Arctic snow thaw timing estimates 

which are derived from the SeaWinds instrument. Timing of thaw inferred from SeaWinds 

backscatter is compared with observed river discharge and runoff from the hydrological 

model described in Chapter 1. An examination of landscape factors which influence the 

backscatter signal provides information on the applicability of this instrument for monitor

ing the timing of landscape thaw at the pan-Arctic scale. This study was published in the 

Journal of Hydrology (Rawlins et al., 2004) in 2005.

6
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The third chapter examines the role of precipitation in the observed discharge trends 

across Eurasia. Several recent studies (Ye et al., 1998; Frey and Smith, 2003; McClelland 

et al., 2004) suggest that increased precipitation is the most plausible source for the dis

charge anomaly. In this study, trends is both annual snowfall and rainfall— derived from 

common precipitation data sets— is examined and compared with the discharge trends. The 

effect of changing station networks on trends drawn from common gridded data sets is also 

explored. A version of this study was published in Geophysical Research Letters (Rawlins 

et al., 2006) in 2006.

The fourth chapter describes how several configurations of climate driver and potential 

evapotranspiration function affect simulated water budgets. This study also examine several 

biases in common climate data sets and how these uncertainties propagate through the 

simulated water budgets. Identifying these biases is important given known problems in 

commonly-used, large-scale precipitation data sets. Results from this study were published 

in the journal Earth Interactions (Rawlins et al., 2005) in 2006.

The fifth chapter presents a method for evaluating SWE data through the use of monthly 

river discharge data. Comparisons of agreements between river discharge and snow mass 

drawn from (i) the hydrological model described in Chapter 1, (ii) another land surface 

model, and (iii) SSM /I data are presented. The study also explores the linkages between 

precipitation input to the landscape and the freshwater flux through the basin. A journal 

article submitted to a special issue of Hydrological Processes (Rawlins et al., 2005) focusing 

on work presented at the 63rd Eastern Snow Conference has been accepted for publication.

7
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C H A PT E R  1

SIM ULATING  PA N -A R C TIC  R U N O FF W ITH  A  

M ACRO-SCALE TERRESTRIAL W ATER BA LA N C E  

M ODEL  

1.1 H ydrological M odeling

Global-change scenarios have predicted significant positive increases in surface air temper

ature, with the greatest increases expected to occur in the Arctic (Manabe et al., 1991; 

Nicholls et al., 1996). Although much speculation surrounds the causes, feedbacks, and 

uncertainty in Arctic environmental change, a large body of evidence suggests that major 

changes have already occurred (Serreze et al., 2000; Vorosmarty et al., 2001). Increases in 

surface air temperature over the next several decades may lead to significant changes in per

mafrost active-layer thickness (Anisimov et al., 1997). Thawing of permafrost-rich soils can 

dramatically alter landscape patterns, with a potential to release water and carbon stored 

in soils (Hinzman and Kane, 1992; Waelbroeck et al., 1997). Given the linkages between 

Arctic hydrology and numerous geophysical systems over a wide range of scales, along with 

recent evidence of significant change (Chapman and Walsh, 1993; Groisman et al., 1994; 

Oechel et al., 1993; SEARCH SCC, 2001), the mechanisms underlying major hydrological 

processes across the Pan-Arctic deserve considerable attention. Large variations in river-

8
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ine exports to the Arctic Ocean have the potential to alter global ocean and atmospheric 

circulations (Broecker, 1997; Schiller et al., 1997) as well as oceanic net carbon storage 

(Anderson et al., 1998). Major changes in runoff and freshwater export can also affect the 

biogeochemistry of Arctic aquatic ecosystems (Holmes et al., 2000; Wolheim et al., 2001). 

And although it contains only 1 % of the world ocean water, the Arctic Ocean receives 11 % 

of the global river runoff (Shiklomanov, 1998).

Models that simulate water budgets at continental and global scales have been widely 

used in hydrology and earth science research (Roads et al., 1994; Vorosmarty et al., 1998; 

Nijssen et al., 2001). Mintz and Walker (1993) applied a simple bucket model to derive 

global fields of monthly soil moisture. Pitman et al. (1999) employed a land surface model 

to estimate the effects of frozen soil moisture parameterizations on simulated runoff. A 

hydrology model was used to evaluate the water budgets of climate model simulations 

(Maurer et al., 2001), revealing significant biases in the climate model fields. A similar 

overprediction of evapotranspiration and underprediction of runoff from a climate model 

land-surface scheme was found across the Yenisei, Lena, and Amur basins in Asia (Arora, 

2001). Improvement in global estimates of river discharge were obtained using a new method 

to determine runoff calibration parameters (Nijssen et al., 2001). Given the lack of observed 

river discharge data across large portions of the Pan-Arctic basin (Shiklomanov et al., 2002; 

Lammers et al., 2001), hydrological models which adequately capture the Arctic water 

cycle are needed to provide accurate benchmarks and aid in environmental change studies. 

Further, given the significant bias in runoff generated by current GCMs (Walsh et al., 1998), 

accurate time series of simulated seasonal runoff routed through a Simulated Topological

9
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Network (STN) (Vorosmarty et al., 2000a; Vorosmarty et al., 2000b) offers the potential to 

improve freshwater forcing in coupled ocean models.

Thawing and freezing of Arctic soils is affected by many factors, with soil surface tem

perature, vegetation, and soil moisture among the more significant (Zhang and Stamnes,

1998). Soil texture and slope/aspect also strongly influence active-layer dynamics, which 

can vary considerably over short lateral distances. Indeed, differences in end-of-season mean 

thaw depths up to 50 % have been found when comparing two sites even in close ( < 1 0  km) 

proximity (Nelson et al., 1997).

Investigations of active-layer thickness (ALT) have traditionally been performed through 

field studies at point locations (Romanovsky and Osterkamp, 1995; Zhang et al., 1996). 

Given the difficulty in compiling spatially coherent data sets of key input drivers, few studies 

have been conducted to model seasonal active-layer changes at the regional scale. Anisimov 

et al. (1997) applied a semi-empirical method to calculate the depth of seasonal freezing and 

thawing using annual air temperature, snowcover, vegetation, soil moisture, and thermal 

conductivity parameterizations. More complicated models, which simulate heat flow and 

phase change, have been used to investigate the sensitivity of soil thermal processes to air 

temperature, seasonal snow cover, and soil moisture (Zhang and Stamnes, 1998), Although 

detailed models are helpful in understanding the effects of climatic and landscape factors, 

simple models may be useful in estimating changes in ALT, particularly for large-scale 

applications. The Stefan solution to the differential equation of heat transfer with phase 

change under constant conditions (e.g. Lunardini, 1981) shows that ALT progresses as the 

square root of time. This approach has been applied across the Kuparuk basin (2100 km2) 

in northern Alaska (Nelson et al., 1997). Klene et al. (2001) found that incorporating the
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effects of vegetation on soil temperatures could improve this method. In addition to the 

difficulty in compiling accurate input data sets to model soil thawing and freezing, a lack 

of empirical observations for validation of simulated estimates presents a further challenge 

for Pan-Arctic applications (Vorosmarty et al., 2001).

Our focus in this paper is the estimation of runoff across the Pan-Arctic drainage basin 

for the period 1980-2001. A simple sub-model for estimating phase changes in soil moisture 

is described and evaluated by comparing model-estimated active-layer thickness to field 

measurements from several locations in Alaska. Model simulated runoff is then presented 

and compared to observed data. Sensitivity of simulated runoff to variations in climate 

inputs and model parameterization are also investigated to identify the most sensitive model 

requirements.

1.2 The Pan-A rctic W ater Balance M odel

Large-scale numerical models which simulate the hydrologic cycle have recently been devel

oped to characterize moisture fluxes and storage across diverse landscapes (Nijssen et al., 

2001; Zhuang et al., 2001). A modified version of the water balance model (W B M ) 

(Vorosmarty et al., 1996; Vorosmarty et al., 1998) was applied across the Pan-Arctic to 

study the spatial and temporal variability of the high-latitude terrestrial water cycle, with 

significant changes incorporated into this version— henceforth referred to as the Pan-Arctic 

W ater B alan ce M odel (P W B M )— d eta iled  in th e  A p p en d ix  A.

Models which simulate water and energy balance at fine vertical resolution within the 

soil have been developed and show promise in estimating soil thermal regimes (Zhuang et al.,
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2001) as well as water balance (Bruland et al., 2001) in Arctic regions. Simple “bucket” 

models, however, have been shown to perform comparably to complex biosphere models in 

estimating soil moisture (Robock et al., 1995). A fundamental premise in the development 

and modification of the PW BM  is that for large-scale spatial applications there are severe 

limitations in basic data quality needed to parameterize and drive a hydrological model 

(e.g., precipitation, soil properties, vegetation characteristics such as leaf area and rooting 

depth), so developing a simple, suitably-scaled model is appropriate. The model should 

balance physically-based simulations of hydrological processes with the practical limits of 

soil and vegetation parameterizations and meteorological drivers. To this end, PW BM  

is data-rich, suitably physically based, and well scaled to the challenges of water budget 

estimation over the Pan-Arctic. Our model does not explicitly simulate glacier accumulation 

and melt. Therefore, runoff for areas dominated by glaciers and ice fields are expected to 

have substantial error.

In this study, estimates of snow water equivalent, soil ice and water stores, along with 

fluxes such as evaporation, evapotranspiration, and runoff are made with the PW BM  at 

explicit daily time steps across the Pan-Arctic drainage basin, defined as all land areas 

draining to the Arctic Ocean in Russia and Canada, as well as Hudson Bay and the Bering 

Sea (Figure 1-1). The PW BM  requires spatial data sets of vegetation cover, plant rooting 

depth, soil texture, soil depth, and soil carbon content. Gridded fields of daily air tempera

ture and precipitation drive the PWBM. Input data (parameter fields, air temperature, and 

precipitation) and model output is gridded at 25 km resolution on the Lambert Azimuthal 

equal area EASE-Grid (NSIDC, 1995; Brodzik and Knowles, 2002). A total of 39,926 EASE- 

Grid pixels defines the Pan-Arctic drainage basin, which extends as far south as 45° N in
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Figure 1-1: Pan-Arctic domain by sea basin boundaries. Basin boundaries are derived from 
a digital river network at 30 minute grid cell resolution.

southern Canada (Nelson Basin) and southern Siberia (Ob Basin). Air temperature and 

precipitation inputs are derived from the National Center for Environmental Prediction 

(NCEP) reanalysis project (Kalnay et al., 1996; Uppala et al., 2000). The NCEP-NCAR  

reanalysis constitutes a retrospective record of numerical weather prediction (NW P) anal

ysis and forecasts, with the added advantage of being constantly updated with minimal (1 

month) time lag. Six-hourly NCEP data are aggregated to daily means and interpolated to 

the 25 km EASE-Grid using a statistical downscaling approach (Serreze et al., 2002). Usage 

of data sets for vegetation cover (Mellilo et al., 1993), soil texture (Food and Agriculture 

Organization/UNESCO, 1995), and rooting depth is based on the methodologies originally 

reported in Vorosmarty et al. (1989). Data for soil organic content were obtained from the 

Oak Ridge National Laboratory (ORNL) (Global Soil Data Task, 2000).
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Figure 1-2: Schematic of the PW BM  soil zones and water fluxes in W inter/Spring and Sum
mer. Root Zone represents the spatially-variable vegetation rooting depth. Water in root 
and deep soil zones can be all frozen, partially frozen, or all liquid. In some locations/cells, 
the deep zone never fully thaws and in others, it never fully freezes.(Modified from (Holden,
1999)).

PWBM has two soil layers, a root zone that gains water from infiltration and loses water 

via evapotranspiration and horizontal and vertical drainage, and a deep zone that gains 

water via root zone vertical drainage and loses water via horizontal drainage (Figure 1-2). 

Seasonal changes in soil water/ice content are an important component of Arctic hydrology 

(Woo, 1998), so specification of phase changes in soil moisture is a key component of the 

PWBM. Soil liquid water and ice contents of each soil layer are calculated in a submodel 

referred to as the Thaw-Freeze Model (TFM ). Because PWBM does not simulate vertical 

heterogeneity within either soil layer, it does not explicitly track the depth of thawing or 

freezing, but instead uses the Stefan solution to update daily changes in the amount of liquid 

and frozen water of each soil layer. The sign of the daily thaw/freeze increment determines 

the exchange of water and ice within each layer. Details of the TFM  are presented in 

Appendix A.
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1.3 M odel R esults

1.3.1 Active-layer M odeling

To evaluate the efficacy of the Stefan solution, simulated active-layer estimates from the two- 

layer TFM (equations A.4 and A .5) within the PW BM  framework are examined. Simulated 

active-layer development (for a single grid located in northern Alaska) progresses from the 

organic layer (depth =  23 cm) to mineral soil through the warm season (Figure l-3a). This 

Figure also shows the effect of soil moisture variability. After 600°C-days had accumulated, 

ALT for this grid was 38.4 cm for 1999 (drier) and 42.9 cm for 1996 (wetter) conditions, with 

the variation attributed to differences in thermal conductivity of wet and dry soils. For the 

purposes of comparison to data in Zhang (1997), a linear regression model fit through the 

estimates in Figure l-3a  reveals a rate of change approximated by ALT =  0.058 DDT (r =  

0.99), where DD T is accumulation of degree days of thawing (°C-day). Zhang et al. (1997) 

examined 17 observation at 3 locations across northern Alaska (1987-1992), and found ALT 

=  0.046 DDT (r =  0.75), a difference of 1.2 mm per 10°C-days from the TFM  estimates.

The Stefan solution to heat transfer with phase change in one dimension (vertical) 

provides a simple estimate of ALT (Lunardini, 1981). Nelson et al. (1997) used an empirical 

ALT similar to the Stefan solution to determine ALT estimates within ~6cm  of observed 

values. Here we compare gridded estimates from the two-layer Stefan solution (in the TFM) 

to a set of observed data from the Circumpolar Active Layer Monitoring network (CALM) 

(Brown et al., 2000). Various sampling strategies are represented in the CALM data set, 

with maximum summer ALT determined as an average of samples across relatively small 

areas (10 m lattice within a 100 m2 area) as well as larger sampling designs (100m  lattice
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Figure 1-3: Simulated active layer thickness (ALT) as a function of degree days for one 
EASE-Grid over North Slope, AK (a); and model predicted active-layer thickness vs. CALM 
observed depth (b ). Horizontal lines in lower panel represent one standard deviation on each 
side of observed ALT for the 1 km2 CALM sites.
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within a 1 km2 area) in some locations. Simulated ALT values on the 25 km EASE-Grid 

encompassing each CALM validation site are compared to the maximum summer CALM  

ALT for 27 sites in Alaska (years 1999 and 2000). Specifically, we use the TFM model value 

for the day on which the CALM estimate was made. Model estimates are generally within 

one standard deviation of the observed value (Figure l-3b). A bias (underestimation) 

in simulated ALT is evident, which is likely attributable, in part, to a bias in the air 

temperature field that is adjusted to 25 km grid mean elevation, which is higher, and thus 

cooler, than CALM site elevation in most cases (data not shown). It should be noted that 

the CALM value used in each comparison represents a single point sample within the 625 

km2 EASE-Grid and grid-to-point comparisons are known to create interpretation problems 

(Bloschl and Sivapalan, 1995; Klene et al., 2001; Vorbsmarty et al., 1998). And although 

an increasing number of CALM sites have begun to employ a gridded sampling design, the 

use of observed active-layer thickness estimates made from a single observation should be 

undertaken with caution (Brown et al., 2000). Nonetheless, the average absolute error of 

the TFM model versus observations is 12.4cm (observed data range 32 cm to 72 cm), while 

the average standard deviation of samples from the 1 km2 grids (100 m lattice) is 12.0 cm. 

Given the variance in the observed data, TFM estimates are within the variability seen 

in these field samples. Improvements in ALT estimates using the Stefan solution in this 

manner have been achieved using higher resolution data sets across the Kuparuk basin in 

Alaska (Klene et al., 2001). Although there is no apparent bias between the comparisons 

with the 1 km2 CALM sites and those from smaller areas, there is evidence that the 100 m 

spacing is unable to resolve the variability in ALT at upland (North Slope, AK) sites (Nelson 

et al., 1999).
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1.3.2 Pan-Arctic Runoff

To estimate runoff over the Pan-Arctic drainage basin, the PW BM  was used to simulate 

the water cycle at daily time steps for each EASE-Grid across the domain. The model 

was run with inputs of air temperature and precipitation for the year 1980, repeated for 

50 years to stabilize soil moisture content, followed by a transient run for the years 1980- 

2001. Climatologies of monthly total runoff (Figure 1-4) show the progression of the annual 

pattern of runoff, from the spring snowmelt pulse, to low flow conditions, to freeze-up. 

Monthly runoff is relatively low across much of the terrestrial Arctic in winter with the 

exception of coastal western Canada and southern Alaska. Snowmelt contributes to higher 

runoff across Eurasia in April. Runoff increases in both magnitude and extent during 

May in both hemispheres. The most northern areas of Eurasia see the snowmelt driven 

runoff peak in June. In a general sense, this peak runoff progresses northward toward the 

Arctic Ocean through spring in central Eurasia, indicative of seasonal changes in surface air 

temperature. Summer rainfall then contributes to runoff through summer, however, higher 

evapotranspiration tends to produce relatively dry conditions. The water cycle in fall and 

winter is dominated by snowpack accumulation and low runoff amounts.

Simulated long-term annual runoff (1980-2001) is highest across southern Alaska, coastal 

Norway, and Iceland. Higher runoffs are also found across southern parts of Canada in 

the Nelson basin and the Eurasian part of Russian. Lower runoffs are evident across the 

Canadian archipelago and Siberia (Figure 1-5). Runoffs exceeding 400 mm year-1 are noted 

across northeastern Canada and southern Alaska. Simulated long-term annual runoff across 

the largest Arctic drainage basins is approximately 100 to 180mm year-1 (Table 1.1). More
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Figure 1-4: PWBM long-term monthly runoff climatology 1980-2001. This figure includes 
runoff for southern Alaska, which is not part of the Pan-Arctic drainage per se. Grids with 
zero runoff for the month are shaded in blue. Runoff for areas with glaciers should be inter
preted with caution, as the PW BM  does not model glacier accumulation and m elt/ablation.
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Figure 1-5: PWBM simulated annual, long-term mean runoff for years 1980-2001 across 
the 2 5 x l0 6 km2 land area of the Pan-Arctic drainage basin. Annual runoff is estimated at 
the 39,926 EASE-Grids (equal area 25 km x 25 km) defining the domain. Grids with zero 
annual runoff are shaded in blue.

variability, however, is seen in runoff to individual Arctic sea basins; runoff ranges from 90 

mm year-1 (East Siberian Sea, Table 1.1) to as much as 300 mm year-1 (Hudson Strait).

Spatially-averaged simulated runoff is approximately 180 mm year-1 across the entire 

Pan-Arctic drainage basin. Simulated annual runoff is approximately 40-70 % of the annual 

downscaled precipitation (Serreze et al., 2002) across many regions and is highly correlated 

with precipitation (r =0.90). Higher variability in observed runoff is apparent (Figure 1-6), 

while the correlation with precipitation is lower (r  =0.56). Observed runoff is generated by 

distributing a basin’s discharge across the monitored region, including areas between gaging 

stations (inter-station areas) (Lammers et al., 2001). Observed discharge estimates for the 

period 1980-1997 are from a data set of 650 gaging stations across the Pan-Arctic (Lammers 

et al., 2001; Shiklomanov et al., 2002). Discrepancies due to the use of different averaging 

periods (simulated runoff from 1980-2001, observed from 1980-1997) are assumed to be
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River Basin Basin Sizea Gaged Area6 S im u la ted  
A n n u a l RunofiF

(km2) (km2) (mm year- 1 )
Ob 2,994,238 2,965,100 180
Yenisei 2,537,404 2,452,300 170
Lena 2,460,742 2,460,000 100
Mackenzie 1,783,972 1,769,200 150
Yukon 833,232 831,391 120
Nelson 1,106,578 1,050,300 160

S ea  B a sin C o n tr ib u tin g  A rea a

(km2)

G aged  A rea 6

(km2)

S im u la ted  
A n n u a l Runoflff

(mm year- 1 )
Arctic Archipelago 1,134,856 209,270 40
Hudson Bay 3,304,025 2,613,320 270
Barents Sea 1,322,741 984,830 300
Hudson Strait 468,050 285,480 410
Beaufort Sea 2,139,635 1,860,100 130
South Greenland 1,174,444 10,800 250
Bering Strait 1,205,234 1,010,940 170
Kara Sea 6,631,308 5,159,700 200
Chukchi Sea 282,143 56,160 190
Laptev Sea 3,639,584 3,232,480 100
East Siberian Sea 1,329,025 941,500 90

Pan-Arcticd 22,611,659 16,460,080 180

Table 1.1: Simulated long-term annual runoff for selected Arctic drainage basins and ter
restrial runoff integrated across basins draining to selected Arctic Ocean sea basins. 
aTotal area for river or sea basin on the EASE-Grid (NSIDC, 1995) 
bArea captured by observed gaging stations (Lammers et al., 2001). 
cAnnual runoffs in Table represent an integration across all EASE grids in a given basin. 
dThe Pan-Arctic value represents the spatially-averaged runoff for all land areas draining to 
the Arctic Ocean in Russia, Canada, and Alaska, as well as Hudson Bay and the northern 
Bering Sea.
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negligible. Mean values of the simulated and observed runoff distributions for precipitation 

between 300-900 mm (80% of total samples) are comparable (Figure 1-6). PW BM  simu

lated runoff is conservative (does not exceed precipitation) and the residual of precipitation 

minus runoff represents modeled evapotranspiration. Observed runoff, however, exceeds 

the inter-station-area precipitation in some regions, implying either considerable interbasin 

groundwater transfers or significant problems with the spatial precipitation and/or runoff 

data (Vorosmarty et al., 1998; Fekete et al., 1999).

Simulated and observed runoffs are further compared by aggregating to long-term sea

sonal runoff for each Arctic sea basin. Seasonal runoff represents the total stock of freshwater 

which contributes to the sea basin’s seasonal riverine input. Here we compare the integrated 

runoff across all EASE grids in a given basin to the observed runoff over the monitored por

tion of that basin. Although underestimates are again more common than overestimates, 

good correlation is evident (r =  0.84, Figure 1-7). The PWBM runoff estimates are near 

zero in winter, and underestimate most observed basin values. This is likely due to sev

eral factors, including groundwater inputs that do not freeze in winter, and lags in water 

transport that generate winter flow (observed at gaging stations) from fall runoff. For some 

basins, the monitored area is only a small fraction of the total basin (Table 1.1), which 

could introduce a bias into the observed runoff, evidence that the decline in river discharge 

monitoring across both North America and Asia (Shiklomanov et al., 2002) complicates our 

model verification efforts.
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Figure 1-6: Distribution of simulated and observed annual (long-term) runoff at (n=579) 
inter-station areas for groupings of annual long-term precipitation. The top and bottom  of 
each box are the 25th and 75th percentiles, respectively. Boxplot whiskers represent the 
5th and 95th percentiles. The spatial mean is the thick line and the median is the thin 
line. Maximum and minimum runoff for each distribution is marked with an asterisk. The 
number of observed and simulated runoffs in each grouping is listed along the top of the 
Figure. Maximum value of observed runoff for 500-700 precipitation is 1915 mm and is not 
plotted. Note that in all bins except 900-1100 mm yr- 1 , the maximum observed runoff is 
greater than annual precipitation.
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Figure 1-7: Long-term seasonal runoff for Arctic sea basins. Winter is December, January, 
February, March; spring is April, May, June, July; summer/fall is August, September, 
October, November.

1.4 Sensitivity Analysis

Biogeophysical characteristics such as plant rooting depth, organic-layer thickness, and soil 

texture affect water flow paths and are integral factors in hydrological models. In addition, 

climate data (precipitation and air temperature) are essential inputs with both spatial and 

temporal variations and uncertainties. Precipitation and air temperature data for the Arc

tic, however, are more poorly resolved (owing to the the sparsity of meteorological stations), 

relative to other parts of the world. In addition to being undersampled, biases in Arctic 

precipitation records are known to be large, particularly at higher latitudes. Underestimates 

of 20-25 % (Karl et al., 1993) and 10-140 % (Yang et al., 1998) have been determined across 

North America and at 10 locations in Alaska, respectively. Substantial gage undercatch 

across the Arctic has also been estimated by applying a hydrological model (Fekete et al.,
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1999). Although NCEP reanalysis data have been adjusted for measurement biases (Serreze 

et al., 2002), some uncertainty in the model input can be assumed. Comparison of daily 

gridded NCEP air temperatures in summer with observed meteorological data yielded ab

solute differences from 1.6°C for an Arctic continental location and 6.6°C at a coastal site. 

In general, NCEP air temperatures are consistently cooler than the station observations 

throughout summer.

To investigate the sensitivity of the PWBM to model parameterizations and climate 

inputs, long-term annual runoff (1980-2001) was compared against the long-term annual 

runoff produced in a series of model perturbations runs. The following perturbation ex

periments were performed: (i) model organic-layer depths were halved [0.5x Org] and (ii) 

doubled [2x Org]; (iii) vegetation rooting depths were halved [0.5x RD] and (iv) doubled [2x 

RD]; (v) soil field capacity was increased by 0.05 cm3/cm 3 of pore space [FC +  25%]; (vi) 

horizontal and downward water flux from rooting zone (Figure 1-2) was increased to 40 % 

(from 20%) of water over field capacity [RF =  40%]; (vi) TFM  submodel was not applied 

[No TFM]; (viii) summer air temperatures were increased by 4°C [T +  4°C] and (ix) daily 

precipitation was increased by 25 % [P +  25 %]. The control run represents our best esti

mate of annual runoff (e.g., Figure 1-5) (with associated error characteristics as discussed 

above) using available fields of soil characteristics, NCEP-derived air temperature and pre

cipitation, and the TFM-generated active-layer behavior. Comparisons were examined for 

the Yukon, Nelson, MacKenzie, Ob, Yenisei, and Lena River basins. Differences between 

the control and sensitivity runs also were determined for the entire Pan-Arctic basin.

Of the nine sensitivity experiments performed, an increase in precipitation produces the 

most significant changes in basin-average runoff. Adding 25% to each daily precipitation
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occurrence increases Arctic-wide and basin runoff well over 50% (Figure 1-8), as additional 

precipitation is more likely to be diverted to runoff than evapotranspiration. Bias in pre

cipitation inputs has been noted as a primary source of error in other large-scale hydrology 

models (Nijssen et al., 2001).

Increasing daily summer air temperatures by 4°C also has a significant effect (albeit 

smaller than precipitation) across much of the Pan-Arctic. Annual runoff is reduced by more 

than 20 % across the Yukon, Lena, and Nelson basins (Figure 1-8). Warmer air temperatures 

result in higher rates of evapotraspiration (Equation A .l) , enhanced development of the 

active layer each spring/summer, an increased water holding capacity (which allows for 

more evapotranspiration) and, therefore, less runoff. The larger changes across the Yukon 

and Lena basins are expected considering the greater extent of permafrost conditions in 

these areas, relative to the other basins. A similar mechanism and magnitude of effect 

occurs when the TFM sub-model is not used, effectively neglecting the seasonal thawing 

and freezing (i.e., changes to water-holding capacity) of Arctic soils. In this case, the absence 

of a shallow active-layer in late spring and early summer results in higher infiltration and 

summer evaporation, with a resultant reduction in annual runoff of 7 % for the Yenisei basin 

(least effect) to 27% for the Yukon basin (greatest effect). This result is consistent with a 

recent investigation of soil frost effects on catchment runoff, which found that ignoring soil 

frost tends to decrease total runoff (Stahli et al., 2001). However, two recent studies have 

questioned the importance of modeling soil ice for runoff estimation in forested environs 

(Nyberg et al., 2001) and at large basin scales (Pitman et al., 1999).

As opposed to the perturbations to climate inputs (and the TFM ), changes to other 

model parameterizations result in relatively smaller changes (generally <  15 %) in annual
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Figure 1-8: Sensitivity of simulated annual runoff to various alterations of input parameters. 
Relative percent differences are defined by A R O  =  (RO c — R 0 P) /  R O c * 100 % where A RO  
is the relative difference in percent, R O c is the 1980-2001 runoff climatology, and ROp is the 
1980-2001 runoff climatology for perturbation or sensitivity run. Basins in analysis are O =  
Ob, Y =  Yenisei, L =  Lena, M =  Mackenzie, N =  Nelson, K =  Yukon, A —» =  Pan-Arctic. 
Perturbation experiments are as follows: model organic-layer depths are halved [0.5x Org], 
doubled [2x Org], vegetation rooting depths are halved [0.5x RD], and doubled [2x RD], 
soil field capacity is increased by 0.05 cm3/cm 3 of pore space [FC +  25%], horizontal and 
downward water flux from rooting zone is increased to 40 % (from 20 %) [RF =  40%], TFM  
submodel is not applied [No TFM], summer air temperatures are increased by 4°C [T +  
4°C], and daily precipitation is increased by 25% [P +  25%].
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runoff. Reducing organic layer depths enhances active-layer development, reducing runoff 

(Figure 1-8). A doubling of rooting depths, (as well as an increase in field capacity) also 

increases soil water-holding capacity, which lowers runoff. Runoff changes are negligible 

when the flux from the rooting zone is increased. These differences from the control runoff 

are significantly less than the standard deviation in annual runoff, further emphasizing the 

relatively small impact of these model parameterization compared to the climate inputs.

1.5 Sum m ary and Discussion o f R esults

A comprehensive understanding of Arctic hydrological systems has become important in 

light of recent evidence of the region’s environmental changes. Given the linkages involving 

water and carbon in terrestrial landscapes, the atmosphere and oceans, quantifying the Arc

tic water cycle at continental scales allows us to establish baseline conditions and explore 

changes predicted to occur (SEARCH SCC, 2001). River discharge is highly undersampled 

across many of the higher latitudes in the Pan-Arctic drainage basin. W ith recent closures 

to a number of observed discharge monitoring stations (Shiklomanov et al., 2002), model

ing efforts which simulate runoff and freshwater flux to the Arctic Ocean can provide the 

requisite inputs to ocean models in lieu of observed data.

A Pan-Arctic Water Balance Model (PWBM) has been developed and applied to esti

mate the water cycle at daily time steps for the 25 million km2 land area of the Pan-Arctic 

drainage basin  for th e  period  1980-2001 . P h a se  changes in  so il m oistu re w ere sim u lated  

with the Thaw-Freeze Model (TFM). These linked models utilize spatial fields of vegetation 

rooting depth, organic-layer depth, and soil textures, and are driven with climate data from
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the NCEP reanalysis project. These spatial data sets are of varying quality, and many 

regions are severely undersampled in all variables. Nonetheless, their compilation and anal

ysis provides a framework for evaluating consistencies between data sets (eg. runoff and 

precipitation) as well as a means for simulating the hydrological cycle.

Active-layer thicknesses generated with the TFM  were compared with observed data 

from the Circumpolar Active Layer Monitoring (CALM) network. Simulated end-of-season 

active-layer thickness was generally within the range of variability seen in the observed data; 

model biases were 12.4 cm, while the average standard deviation of the observed CALM 

estimates is 12.0 cm. In large-scale studies of this nature, observed data validation sites, 

even 1 km2 grid sampling, represent point estimates within the larger (625 km2) PWBM  

grid. Considerable variability exist at this scale in all biophysical parameters, including 

seasonal n-factors, with soil-surface degree-day sums varying up to 100 % within 1-ha plots 

(Klene et al., 2001). Although simulated maximum summer ALT estimates are generally 

within the variability observed in the field samples, our interest centers on the day-to-day 

changes in active layer development used to determine phase changes of soil water. Recent 

studies (Anisimov et al., 1997; Klene et al., 2001) have suggested that improvements in 

active-layer simulation are dependent on the development of more spatially coherent data 

sets of air temperature, vegetation, and soil moisture.

Simulated monthly runoff is relatively low during winter when precipitation accumu

lates as snow. A spring melt pulse is evident in a south-to-north progression across the 

Arctic basin, with the majority of runoff occurring between the months of April-June. An

nual long-termrunoff is highest across coastal western Canada, northeastern Canada and 

west central Eurasia. Lowest annual runoffs are seen across the Canadian archipelago and
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Siberia. Simulated long-term annual runoff is less variable than observed runoff, and is 

highly correlated with precipitation. Good correspondence was found when comparing sim

ulated and observed seasonal runoff at individual Arctic sea basins (r  =0.84). This suggests 

that the PW BM  has the potential to provide the seasonal (temporal) variations in freshwa

ter discharge to ocean circulation models. Our sensitivity analyses show this model to be 

strongly influenced by climate drivers as well as the absence or presence of modeled active- 

layer changes, and that uncertainties in parameters such as rooting depth and organic layer 

thickness may be less problematic. As important as model development, it is essential for 

the research community to work to improve spatial data sets for fundamental biophysical 

variables and climatic drivers, and to maintain and expand river gaging in the Pan-Arctic 

to provide more complete data sets for model evaluation. Simulation of the Arctic water 

cycle is notably influenced by specification of active-layer changes. This finding suggests 

that modeling and analyses which depend on hydrological drivers such as ocean circulation, 

coastal processes, ecosystem biogeochemistry, and climate models will benefit from incor

poration of thawing and freezing of Arctic soils. Gridded runoff fields are available from 

the Water Systems Analysis Group, University of New Hampshire (http://w sag.unh.edu).
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C H A PT E R  2

REM O TE SEN SIN G  OF SNO W  THAW  AT TH E  

PA N -A R C T IC  SCALE U SIN G  THE SEAW INDS  

SCATTEROM ETER

2.1 R em ote Sensing of Snow

The climate and hydrological cycle of the Arctic have undergone rapid change in recent 

decades (Serreze et al., 2000). Among the changes are increased winter air temperatures 

(Chapman and Walsh, 1993; Rawlins and Willmott, 2003; Robeson, 2004), reduced snow 

cover (Serreze et al., 2000), warming of permafrost (Osterkamp and Romanovsky, 1999; 

Romanovsky et al., 2002), increased runoff and river discharge (Peterson et al., 2002), and 

reduced extent of sea ice cover (Serreze et al., 2002; Rothrock et al., 2003). These sig

nificant changes are occurring over large spatial domains. The combination of remoteness 

and extreme climate have led to a relatively low density of ground-based hydrological and 

meteorological observation stations. This sparse network hinders the development of strong 

baseline hydrological and meteorological time series data, the ability to detect change oc

curring across large regions, and the search for strong explanatory relationships linking the 

changing components of the arctic hydroclimatic system. Satellite-borne remote sensing 

can provide large spatial coverage at high temporal resolution, and thus may be able to
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contribute to our ability to observe and understand the pan-Arctic system. The expanded 

use of remotely sensed data has recently been cited as a vital component in the study of 

Arctic environmental change (Vorosmarty et al., 2001).

Satellite-borne microwave radars provide year-round all-weather capability for moni

toring high latitude ecosystems. Wide-swath coverage provided by current scatterometer 

instruments (~1800 km for SeaWinds at ~ 2 5  km spatial resolution) allows observations 

of the polar regions at sub-daily timescales. Combined with their day/night measurement 

capability, and high sensitivity to the freeze/thaw state of water within the landscape, 

these instruments offer distinct advantages over optical and near-IR sensors for monitoring 

hydrologic processes across the pan-Arctic land mass.

Microwave backscatter is sensitive to structural and dielectric properties of water and 

vegetation in the scanned swath (Elachi, 1987). Short wavelength radar such as the current 

Ku band SeaWinds scatterometer (wavelength= 2.2 cm; frequency =  13.4 GHz) and the 

earlier NASA scatterometer (NSCAT; 2.1cm; 14 GHz), can exhibit significant diffuse or 

volume scattering from dry snow (Raney, 1998; Ulaby et al., 1986) and thus should be able 

to monitor seasonal snow cover at large scales (Nghiem and Tsai, 2001). At snow thaw, the 

ripening snow will contain a significant quantity of liquid water (with a very high dielectric 

constant), surface scattering will dominate the microwave interaction with the snow, and 

backscatter should decreases dramatically. It is likely that the lowest backscatter signals 

occur on days when the landscape surface element (resolution is an ellipse of roughly 37 x 

25 km) has near-continuous, very wet snow cover (Nghiem and Tsai, 2001).
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Nghiem and Tsai (2001) compared winter 1996-1997, weekly-averaged NSCAT backscat

ter data, binned to 25 km resolution, to a northern hemisphere, weekly 2° resolution snow 

cover data set based on optical remote sensing data (Northern Hemisphere Snow Cover 

Data, 1999), and to maps of snow-cover class (tundra, taiga, prairie, alpine, maritime, and 

ephemeral). They concluded that Ku-band backscatter was insensitive to vegetation cover 

across the taiga/tundra zone, and that backscatter dropped rapidly at snow thaw, as in

ferred both from hemispheric snow-cover and from weather station data from three sites in 

Alaska, three sites in Canada, and five sites in Siberia.

Wiseman (2000a) examined 8 years of ERS scatterometer (C-band; 5.3 GHz; 5.5 cm) 

data for a spring thaw signal in Siberia. Data were averaged to 3-days, and the spatial res

olution was approximately 50 x 50 km. The thaw detection algorithm used an intermediate 

threshold based on local mean backscatter for winter and summer. He found that the onset 

of thaw varied locally by about one month over 1992-1999, that it took about 4 months for 

the thaw signal to move from the southern part of the study region (50° N) to the northern 

part (75°N), and that onset of thaw correlated well with the geographical variability of air 

temperature. Wiseman (2000b) also studied the Greenland snow thaw signal with ERS 

scatterometer data over this same period. Thaw detection was based on a backscatter off

set of 3 dB from a winter (November-March) mean, corresponding to a 7 cm layer of snow 

having an 0.5 % liquid water content, based on a modeling analysis by Winebrenner et al. 

(1994). He found a strong correlation between annually integrated positive air temperature 

and an annually integrated backscatter offset. In the 1992-1999 ERS scatterometer record, 

Wiseman (2000b) found a 3-fold range in the thaw extent on Greenland.
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Hillard et al. (2003) compared spatial patterns of spring thaw signals from NSCAT 

(active between 15 September 1996 and 29 June 1997) with simulated snow surface temper

ature and liquid water content from the Variable Infiltration Capacity (VIC) hydrological 

model (Liang et al., 1994), driven by station meteorological data (maximum and minimum  

air temperature and precipitation) at daily time resolution for the Upper Mississippi Basin 

and the BOREAS study region in central Canada. They found that only occasionally was 

there a similar spatial pattern in their maps of simulated snow liquid water content and 

scatterometer backscatter. They attributed this lack of correlation to time of day of NSCAT 

overpass (10:00 am and 10:00 pm, not optimal times for maximum and minimum snow liq

uid water content), interference from vegetation cover, and signal noise. However, their 

approach did not employ temporal change detection schemes to classify freeze-thaw events. 

Such schemes have been shown to provide effective detection of springtime thaw onset and 

subsequent thaw-freeze cycles when applied to active and passive microwave remote sensing 

data (Kimball et al., 2004a, 2004b; McDonald et al., 2004). Using scatterometer estimated 

freeze-thaw as an additional driver for the VIC model improved simulations only slightly in 

the Upper Mississippi Basin, which has a high-density network of meteorological stations 

providing daily driving data for the model, allowing little opportunity for improvement 

utilizing the 25 km resolution scatterometer data.

Kimball et al. (2004a) developed a temporal change detection algorithm for identifying 

springtime thaw across a 1-million km2 region in central Canada, using daily scatterometer 

backscatter data from the earlier NSCAT instrument. During spring (defined as 1 March- 

31 May in their analysis), initial and final thaw dates were identified as the first and last 

days when the daily mean backscatter was 2.9 dB below the average backscatter of the five
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previous days. They also defined a day of primary thaw as the day with the lowest (i.e., 

most negative) daily backscatter difference of the spring period. These thaw dates were 

compared to daily meteorological data from 31 field stations, and were within 1 day of 

mean daily air temperature transitions from frozen (Tavg <  0°C ) to non-frozen (Tavg >  

0°C ) conditions 97% of the time for initial and primary thaw, and 84% of the time for 

final thaw.

Kimball et al., (2004b) used a similar algorithm with 2000 and 2001 SeaWinds data 

to determine the timing and length of growing season across a North American latitudi

nal transect of boreal and subalpine evergreen forest stands. In this case, minimum radar 

backscatter thresholds were first determined as the absolute value of twice the standard de

viation of daily radar backscatter differences from a moving window average of the previous 

5-day period during fall (1 September-30 November) and spring (1 March-31 May). For 

each study site, significant positive and negative daily radar backscatter differences were 

identified as those exceeding prescribed thresholds. They then identified the date of the fi

nal significant backscatter difference in spring as a surrogate for the date of growing season 

initiation, and the date of the initial significant backscatter difference in fall as a surrogate 

for the date of growing season cessation. Site growing season initiation and cessation were 

determined from site measurements of the first and last days of the calendar year when the 

evergreen trees show significant trunk (xylem) sap flow and canopy net daily CO2 uptake. 

Scatterometer-derived dates and independent ground measurements of growing season onset 

and length were correlated, with a mean difference of about ±  5 days.

In this study we compare the timing of spring 2000 snow thaw determined from the Sea

Winds backscatter data with daily discharge observations across 52 small (5000-10,000 km2)
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basins in Canada and Alaska. Our analysis then expands to the entire pan-Arctic drainage 

basin, where we compare the scatterometer-derived thaw timing with timing of daily sim

ulated snow water content from the pan-Arctic Water Balance Model (PW BM) (Rawlins 

et al., 2003). Landscape and climatic factors that influence the radar backscatter temporal 

response and the agreement in thaw timing between the remotely sensed (scatterometer), 

observed (discharge), and modeled (PW BM  snow content) data are explored. SeaWinds 

scatterometer data are evaluated here to better understand the potential benefits as well as 

the limitations of using microwave scatterometer data in the study of high-latitude hydrol

ogy-

2.2 D ata Sources and M ethods

Timing of snow thaw is derived from daily SeaWinds backscatter time series, daily river 

discharge data, and model simulated daily snow water content during spring of 2000. The 

spatial data is gridded to a 25 x 25 km Lambert Azimuthal equal area EASE-Grid (NSIDC, 

1995; Brodzik and Knowles, 2002). Our large-scale analysis encompasses the pan-Arctic 

drainage basin, which extends as far south as 45° N in southern Canada and southern Siberia 

(Figure 2-1). Given a lack of seasonal snow thaw, regions of permanent ice are excluded 

from our analysis. Areas with insufficient model snow water (described below) are also 

eliminated. The resulting 32,896 grid points (~21 million km2) are used to compare the 

estimates of snow thaw timing for 2000. To compare timing of thaw from the radar, river 

discharge, and model snowwater data, we identify a year-day (DOY) in each time series that 

marks the exceedence of a critical threshold indicative of thaw and/or subsequent runoff.
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Land Cover Fractions from MODIS 
0.5 km Product Aggregated to EASE—Grid

Tree H erbacious Bare

Figure 2-1: Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation 
cover (Hansen et al., 2003) across the pan-Arctic drainage basin. Colored regions show 
land areas which drain northward to the Arctic Ocean. MODIS cover fractions of tree, 
herbaceous, and bare ground sum to 100% and are shown following aggregation to the 25 
km EASE-Grid. Each grid is colored with red, green, and blue intensities representing 
fractions o f  tree, herbaceous, and bare ground, respectively . C ircles lo ca te  th e  52 stu d y  
basins (5000-10000 km2) with observed daily hydrographic data used in this study. Grids 
with missing MODIS data are shaded in gray.
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2.2.1 Radar Backscatter

The SeaWinds scatterometer was launched onboard the QuikSCAT satellite on June 19, 

1999 as a follow-on instrument to the NSCAT sensor, and continues to operate into 2004. 

The SeaWinds instrument consists of a rotating, pencil-beam antenna, which provides con

tiguous measurement swaths of 1400km (inner-beam) and 1800km (outer-beam), coverage 

of approximately 70 % of the Earth on a daily basis and 90 % global coverage every 2 days. 

Overlapping orbit tracks at higher latitudes improve SeaWinds temporal coverage, provid

ing multiple backscatter measurements each day for much of the pan-Arctic land mass. We 

are thus able to partition the daily measurements by ascending and descending node tracks, 

while maintaining daily observations for each node. Ascending node data correspond to  

early morning observations (~6:00 am equator crossing time) and descending node data  

correspond to late-day observations (~6:00 pm equator crossing time). The instrument has 

mean incidence angles of 54° (outer-beam) and 46° (inner-beam) and a spatial resolution 

ranging from approximately 37 x 25-km (”egg” data) to 6 x  25-km (’’slice” data). The 

SeaWinds scatterometer transmits at a frequency of 13.4GHz (2.1cm  wavelength). Sur

face backscatter measurements have a 0.25 dB relative accuracy (King and Greenstone,

1999). In addition to landscape factors, backscatter from active radar systems is strongly 

affected by the dielectric properties of a snow (Elachi, 1987). High microwave frequencies 

(i.e. shorter microwave wavelengths) are best suited for observing snow processes owing 

to the increased scattering albedo for snow observed at these wavelengths (e.g. Ulaby et 

al., 1986; Raney, 1998). As water transitions from a solid to a liquid phase, its dielectric 

properties change significantly (Kraszewski, 1996), giving rise to a dynamic response in the 

surface backscatter as the snow thaws, though the magnitude of the backscatter response is
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Figure 2-2: Behavior of Ku-band radar backscatter with increasing snow wetness derived 
using a radiative transfer radar backscatter model for a wet snow (Shi and Dozier, 1995). 
The model was applied at Ku-band and an incidence angle of 54 degrees, corresponding to 
the parameters of the QuikSCAT data applied in this study.

dependent on sensor wavelength, polarization and surface heterogeneity (Ulaby et al., 1986; 

Waring et al., 1995). At Ku-band, the effect of snow cover on backscatter is significant 

(Nghiem and Tsai, 2001). Figure 2-2 illustrates the response of Ku-band radar backscat

ter to increasing snow wetness as predicted with a radar backscatter model applied to a 

pure, wet snow (Shi and Dozier, 1995). For illustrative purposes, this theoretical snow was 

assigned properties of the type found in tundra landscapes (Sturm et al., 1995). For dry 

snow, extinction of the radar energy is small. Increases in the fractional content of liquid 

water in the snow result in increasing extinction, and a corresponding decrease in the radar 

signal penetration. This leads to a diminishing contribution of diffuse (volume) scatter to 

the total backscatter signal, and an increase in the scattering from the snow surface. At 

Ku-band, backscatter thus exhibits a marked decrease with the thaw onset. This effect is 

readily apparent for snow-covered tundra with little or no exposed vegetation. The magni

tude of this decrease will diminish in more complex, heterogeneous landscapes where other 

landscape constituents affect the backscatter.
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Snow thaw at each EASE-Grid cell is determined by an algorithm which identifies the 

temporal backscatter response in reference to background frozen conditions. Although the 

backscatter signal is affected by water phase transitions over the entire landscape surface 

element (snowcover, lakes, glaciers), we refer to the process as “snow thaw”, as lakes and 

glaciers make up a small fraction in each scan swath. Snow thaw events are characterized by 

significant daily departures (negative) from a 30 day running mean backscatter. We identify 

the timing of thaw based on the time-series daily ascending node data utilizing a moving 

window classifier. For each EASE-Grid cell, a five-day moving window is then applied to 

the daily ascending node measurements to produce a running five-day mean backscatter. 

To determine critical thaw events, each daily value is compared to the previous five-day 

mean. We define the primary thaw date (t p ) as the day between DOY 60 and 182 for which 

the decrease in daily backscatter from the five-day mean is a maximum. More explicitly, 

we define the threshold

6 =  a^(t -  5 < t 0 < t  — l ) -  a°(t)  (2.1)

where cr®(t — 5 <  to <  t  — 1) is the five day mean ascending node backscatter computed over 

the five day moving window preceding day (t ), and a°(t)  is the ascending node backscatter 

for day t  immediately following the five-day window. The primary thaw day ( tp)  corre

sponds to the day 60 <  t  <  182 where 5 is a maximum. This thaw detection algorithm is 

used to define t p  for year 2000 across all EASE-Grid cells defining the pan-Arctic drainage 

basin. Since river discharge is an integration of physical processes across a given water

shed, t p  for each of the 52 basins is taken as the average of all EASE-Grid t p  within the
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basin. Basin extent is determined from a digital river network developed specifically for 

high latitude research.

2.2.2 Hydrological Data

Observed daily river discharges for year 2000 are a subset of daily and monthly records for 

the Arctic (Lammers et al., 2001; Shiklomanov et al., 2002). Basins with a drainage area 

between 5,000 and 10,000 km2, were selected, since delays in thawed snow water reaching 

the gage at the basin outlet are known to occur in relatively larger basins. A total of 55 

basin represented in R-ArcticNET have daily discharge records in 2000; all are in North 

America. Of these, 3 were removed from our analysis; one due to discrepancies in gage 

metadata for basin characteristics and two due to the known presence of impoundments. 

Each basin is defined by 8-16 EASE-Grid cells.

At high latitudes, thawing of the winter snow contributes the majority of freshwater 

input to river systems and, eventually, the Arctic Ocean (Kane, 1997; Shiklomanov et al.,

2000). As with the SeaWinds backscatter data, a thresholding scheme was employed to 

identify a snow thaw signal in the daily discharge data; ie., the time of significant change 

in the discharge (Q ) time series. For each of the 52 study basins, the day of year in 2000 

marking the snow thaw discharge pulse (£q) is the day when Q reaches a critical threshold

Q',
Q' — [(Qmax ~ Q) X  ^ q ]  +  Q ( 2 - 2 )

where Qmax is the maximum daily discharge rate during January-June (m3 s -1 ), Q  is 

January-February average daily discharge rate (m3 s -1 ), and u>q is the fraction defining
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a critical exceedence (unitless). This algorithm is constrained to identify the critical ex- 

ceedence following the seasonal (January-June) discharge minimum. For ten study basins 

with zero or missing discharge during January-February, Q becomes the average March 

Q. We chose ujq — 0.1 to determine tq  in this study. This thaw detection algorithm is 

not calibrated to the respective basin discharge. Rather, the algorithms for determining 

SeaWinds-based snow thaw (equation 2.1) and basin discharge increase (equation 2.2) were 

independently chosen based on our understanding of the processes controlling backscatter 

temporal response and subsequent discharge increase.

Observed daily discharge data provide a key measure of spring thaw timing to evaluate 

the SeaWinds backscatter. Daily discharge data, however, are available for only a fraction of 

the pan-Arctic basin. Therefore we use snow liquid water content from the pan-Arctic Water 

Balance Model (PW BM) (Rawlins et al., 2003). The PW BM  is driven by climate time series 

(precipitation and air temperature) from the National Center for Environmental Prediction 

(NCEP) reanalysis project (Kalnay et al., 1996; Uppala et al., 2000), along with gridded 

fields of plant rooting depth (Vorosmarty et al., 1989) and soil characteristics of texture 

(Food and Agriculture Organization/UNESCO, 1995) and organic content (Global Soil 

Data Task, 2000). The NC EP/N C A R  Reanalysis (NNR) Project is an effort to reanalyze 

historical data using state-of-the-art models. Reanalysis provides a modern depiction of 

the atmospheric hydrological budget using the Medium Range Forecasting (MRF) spectral 

model and the operational NCEP spectral statistical interpolation (SSI, Parish and Derber 

1992). Input and output data sets, like the scatterometer data, are gridded on the 25 km 

EASE-Grid across the pan-Arctic basin, and the model is run at an explicit daily time step 

for the year 2000. Estimates of PWBM winter 1999-2000 snowfall are determined using
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air temperatures from NCEP and rescaled NNR precipitation products. Six-hourly NNR  

precipitation forecasts (at 2° x 2° resolution) are aggregated to daily means and interpolated 

to the 25 km resolution EASE-Grid using a statistical downscaling approach based on a 

probability transformation (Serreze et al., 2003b). Precipitation occurring on days with 

a mean surface air temperature of <  — 1°C is considered snow and is accumulated from 

October through May to estimate total winter snowfall as snow water equivalent (S W E , 

mm). PWBM snow thaw is driven by NNR air temperature in a simple temperature index 

method (Willmott et al., 1985). Prom the snow liquid water content we define date of 

snowwater initiation (£m) as the DOY when snow water is greater than zero for three 

consecutive days.

2.2.3 Land Surface Data

Continuous fields of land cover fraction from the Moderate Resolution Imaging Spectrora- 

diometer (MODIS) 0.5 km vegetation continuous field data set (Hansen et al., 2003) were 

aggregated to the pan-Arctic EASE-Grid. The MODIS land cover data set is an annual 

representation of tree, herbaceous, and bare ground cover for the period November 2000 to 

November 2001. Continuous fields of vegetation fraction offer better representation than 

discrete classifications in areas of high spatial heterogeneity. The three cover fractions sum  

to 100%, and the 0.5 km MODIS grid cells were aggregated to the EASE-Grid (Figure 2-1) 

using spatial averaging. Given a high degree of uncertainty in the backscatter temporal 

response across ice, a data set which depicts the distribution and properties of permafrost 

and ground ice in the Northern Hemisphere (Brown et al., 1998) is used to mask these 

regions from our statistical analysis. Elevation and elevation standard deviation estimates
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are scaled to the EASE-Grid from the GTOPO30 data set (Gesch et al., 1999; USGS EROS 

Data Center, 1996). High variations in regional elevation or “topographic complexity” is 

determined by calculating the standard deviation of 5 minute GTOPO30 digital elevation 

model (DEM) elevations within each EASE-Grid cell.

2.3 Comparison o f SeaW inds-D erived Thaw Tim ing and H y

drological R esponse

Methods described in section 2.2 were used to estimate timing of snow thaw inferred from 

the SeaWinds scatterometer (tp),  observed discharge (tQ), and PW BM  simulated snow 

liquid water content (£m) for each of the 52 study basins. River discharge is converted to  

a basin-averaged runoff depth (per unit area) by dividing a basin’s discharge by the basin 

area (Lammers et al., 2001). Across the Kuparuk basin (Figure 2-3a), a stable early season 

backscatter signal precedes a large signal decrease (~ 8  dB) during snow thaw. PWBM snow 

water increase is well timed with the scatterometer response. Observed runoff increases 

soon thereafter. As opposed to the stable winter and large signal decrease seen across 

the Kuparuk, the Murray basin (mountainous, forested) experienced several backscatter 

decreases near DOY 50 (mid February), 62 (early March), 80-90 (late March), and DOY  

~  110 (mid April) (Figure 2-3b). Model snow water increases are noted for the latter 3 

events, resulting in a basin average tM =  DOY 101. Although the time series is quite

dissim ilar from  th e  b ack scatter sign al across th e  K uparuk, basin-average values for t p  and  

tM are nearly coincident. Observed basin runoff lags snow thaw in this region by ~10  days. 

The Whitemud basin in southern Manitoba, Canada experienced low snowfall and runoff
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F igure 2-3: O bserved basin-average runoff, m od el snow  w ater con ten t, and  d a ily  SeaW inds  
backscatter for three of the 52 study basins, the Kuparuk (a), Murray (b), and Whitemud 
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model snow water initiation (£m)> and scatterometer-derived primary thaw ( tp)
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during the first half of 2000 (Figure 2-3c). Snow water initiation date (fju) is undefined 

across this basin, as relatively shallow snowcover is lost primarily through sublimation, with 

little or no simulated snow liquid water content. The backscatter signal lacks a stable winter 

signature and strong response during thaw which is noted in regions with continuous, ample 

snowcover (eg, Kuparuk River basin, figure 2-3a). Although the signal response is fairly 

confused, possible thaw events near days 65 and 90 are reflected in both the SeaWinds 

backscatter and observed runoff. Across the Kuparuk, Murray, and, to some extent, the 

Whitemud basin, decreases in backscatter correlate with the PW BM  snow water content, 

which is strongly influenced by the simulated air temperatures. This agrees with the results 

of Wiseman (2000a) who found that the onset of scatterometer-derived thaw was correlated 

with air temperature and snow cover.

Our analysis here focuses on timing of scatterometer-derived primary thaw and basin 

runoff increase across a wide range of North American climate and landscape zones. This 

comparison is based on the assumption that thaw observed by the SeaWinds scatterometer 

has an effect on the local streamflow measured by the discharge gage. In order to represent 

an amount of discharge attributed to snow thaw, a snow runoff index (snow R O ) is defined 

snow R O  — R O s — 3 R O \y, where R O $  is total basin-average runoff from January-June and 

R O \y  is total January-February runoff, all in mm for a given river basin. A large positive 

value of snow R O  indicates proportionally more of the basin’s river discharge occurs after 

February and therefore is more likely to be the result of snow thaw. Abundant snow is 

an important factor in the backscatter response, since the lowest backscatter values are 

likely to occur when the basin has an extensive, wet snow. Thin or inhomogeneous snow 

will compromise the determination of thaw timing. In addition, discharge increases are not

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



always dominated by snow thaw processes. Across the 52 study basins, correspondence 

between tp  and tQ is best for later thawing basins (Figure 2-4a). Across the 52 basins, 

the mean absolute difference (M A D  =  ^  Kq — tp\)  is 21.5 days (r =  0.45). The

mean bias ( M B  =  ^  J2i=i^Q ~  tp )  is ^.1 days. Poorer agreement is evident for the 

basins where discharge increase occurs earliest ( tg  <  73). Agreement between tp  and 

(M A D  =  14.1 days, r =  0.75) is comparable to the t p , t g  relationship. M B  for the t p  

and tM comparison is only —2.2 days. Sensitivity to the choice of ljq is not substantial. 

Defining u q  =  0.1 results in r =  0.50 and M AD=19.2 days. For ojq — 0.15, r =0.41 and 

M A D  =  24 days. Discrepancies are lower across basins with moderate-high snow R O  index 

(Figure 2-4b). The discrepancy or difference between the two dates is largely a result of 

lags in snow thaw at the soil surface reaching the river system. Although the study basin 

sizes have been minimized to eliminate longer travel times, a bias between snow thaw and 

observed discharge increase is expected. Lags such as damming of snow thaw runoff has 

been shown to cause delays in streamflow increases during spring at high latitudes (eg, 

Hinzman and Kane, 1991). Since tp  and t m  are determined for the same process, the bias 

(—2.1 days) is lower. Considerable discrepancies are found for the basins with the lower 

snow R O  index. These larger discrepancies may result from errors in the scatterometer snow 

thaw identification as well as deficiencies in the discharge algorithm for the driest basins. 

For example, the thresholding scheme to identify tQ (Equation 2.2) is unable to capture 

discharge/runoff increases across the basins with variable winter flow and small increases 

during spring. Large negative discrepancies occur predominately across the basins with 

lower tree cover (Figure 2-4c), many of which are drier prairie basins with low snow R O  

(open circles in Figure 2-4c). Good agreement is noted for moderate (20-50%) tree cover,
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Figure 2-4: Comparison of hydrological event dates (tQ, tM) and scatterometer-derived 
thaw date ( tp)  for the 52 study basins with observed discharge data. Comparisons between 
tQ and t p  are in black, t p  vs. tM relations are shown in red. Open circles in (a-d) identify 
the 10 basins with the lowest snow thaw runoff values. Discrepancies (tQ — Tp,  tQ — Tp)  
are expressed as a function of snow thaw-driven runoff (b), MODIS fractional tree cover 
(c), and latitude (d).

with the largest positive discrepancies for basins with highest tree cover. Higher latitude 

sites have lower discrepancies (Figure 2-4d). This is intuitively expected, as high latitude 

basins with frozen soils during thaw season have a lower soil infiltration capacity, causing a 

quicker streamflow response following snow thaw.
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2.4 Comparison o f Snow Thaw Tim ing across the Pan-A rctic

Dom ain

Given a lack of observed daily discharge data across much of the pan-Arctic drainage basin, 

we make use of the relatively good correspondence between scatterometer thaw timing 

( tp)  and timing from the PW BM  snow water content (tjv/)— determined across the 52 

study basins with observed discharge— to examine the spatial pattern of the pan-Arctic 

discrepancies (tM — tp) .  Across the pan-Arctic basin, a spatially-coherent pattern in t p  is 

evident (Figure 2-5). Areas of permanent ice (shown in gray) are excluded from the large- 

scale statistical analysis. Across Canada, a noticeable gradient exists where the boreal 

forest transitions to high-latitude tundra. Across the prairies, t p  >  160 are suspiciously 

late. Snow thaw occurs earliest in the boreal forest ( tp  ~  80) in Canada and western 

Eurasia, while thaw progresses in a general south to north pattern across the entire pan- 

Arctic. High elevations in eastern Asia are well resolved, with thaw occurring 7-10 days 

later than the surrounding lowlands. High spatial variations are noted in the boreal forest 

and mountainous areas in central Eurasia.

The spatial pattern in tM (Figure 2-6) is, in general, similar to the pattern in tp. In 

addition to regions of permanent ice, areas lacking three consecutive days of PWBM snow 

water (shaded in yellow) are eliminated from the statistical analysis. In contrast to t p  

patterns, the tM field is more smooth, lacking the high spatial variations (speckled pattern) 

across m uch o f th e  A rctic . T h is  resu lt is a ttr ib u tab le  to  course N N R  clim ate  in p u ts (derived  

from sparse weather stations) driving the PWBM model. High spatial variations in tp across 

central Eurasia arise from the effects of tree cover and elevation variations on the backscatter
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D ate of P rim ary  Thaw in  2000  from  SeaW inds

60  90  120 150 180
DOY

Figure 2-5: Primary thaw date ( tp)  derived from the SeaWinds scatterometer for year 
2000. A moving window algorithm is used to determine timing of final thaw from SeaWinds 
ascending pass data at each EASE-Grid cell of the pan-Arctic drainage basin (see text for 
details). Grid cells across Greenland and other areas of permanent ice are masked in gray 
due to the limited presence of snow thaw.
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Date of Snow m elt In itiation  in  2000 from  PWBM

^m issing value 

perm anent ice

60 90 120 150 180
DOY

Figure 2-6: Snow water initiation date (t^f) for year 2000 derived from the pan-Arctic Water 
Balance Model (PW BM ) (Rawlins et al., 2003). Gray shading masks regions of permanent 
ice and yellow shows grid cells where tM is undefined, ie., PW BM  snow water is never >  0 
mm for 3 consecutive days during spring 2000. Gray and yellow regions are excluded in our 
statistical analysis. These regions generally have low total 1999-2000 snowfall, additionally 
limiting both our analysis and the SeaWinds backscatter response.
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D ifference B etw een PWBM Snow m elt In itiation  Date 

and S c a tter o m ete r —Derived Prim ary Thaw Date
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perm anent ice

- 3 0  - 1 5  0 15 30
days

Figure 2-7: Difference between PW BM  snow water initiation date (£m) and scatterometer 
derived primary thaw date ( tp)  for 2000 across the pan-Arctic drainage basin. Gray and 
yellow grids are excluded from statistical analysis (see Figure 2-6). Areas with large (MAD  
>  15 days) differences are characterized by several thaw events throughout spring, and are 
largely due to identification of two thaw events (tM for one event, t p  for another) separated 
by 2-3 weeks.
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Figure 2-8: Observed basin-average runoff, model snow water content, and daily SeaWinds 
backscatter for the Hanbury basin. This basin experienced significant thawing near DOY 
126 and 141, with a final basin thaw close to DOY 155.

response. Along coastal sections, fju tends to occur early due to the wet maritime climate 

and frequent early spring freeze/thaw conditions. Best agreement between tM and t p  is 

found across the tundra of central and northwestern North America, eastern Russia, and 

eastern Siberia (Figure 2-7). Large negative discrepancies dominate the coastal locations—  

southern Alaska, across Iceland and Norway. Across the pan-Arctic basin, 49.4% of the 

grid cells have discrepancies of less than one week. The spatially averaged mean absolute 

difference ( M A D )  is 11.7 days across Eurasia and 15.1 days over North America. Mean 

biases ( M B )  are low across Eurasia (1.2 days) and North America (—3.1 days) regions. 

Larger discrepancies ( M A D  >  15 days) tend to occur in regions which experienced two 

or three distinct thaw events during spring of 2000. For example, the nature of large 

discrepancies can be illustrated by examining the scatterometer and hydrographic data 

across the Hanbury River basin in central Canada (Figure 2-8).
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Although the algorithms for identifying t p  (equation 2.1) and tM both identify primary 

thaw near DOY 126, the scatterometer response in neighboring grid cells results in tp  

(primary thaw) being defined as the second thaw event near DOY 141. Based on the 

observed discharge data, final snow ablation across the Hunbury basin and nearby regions 

may in fact occur shortly after DOY 150. The majority of large discrepancies across the 

pan-Arctic arise under similar conditions; multiple thaw-freeze events are captured by the 

t p  (for one event) and tM (a second event) algorithms. Nonetheless, approximately 60% of 

the discrepancies (tM — t p  at each EASE-Grid) are between ± 10  days (Figure 2-9). Over 

15% of the pan-Arctic annual runoff occurs at grids with discrepancies in excess of —15 days 

(primarily coastal regions). This leads to approximately 60% of the annual runoff occurring 

at grids cells with discrepancies between —22 and 10 days. Thus, the wet coastal locations 

tend to decrease the correspondence (ie., spatial statistics) between PW BM  snow thaw- and 

scatterometer-derived estimates of pan-Arctic snow thaw timing. Grid cells encompassing 

over half of the 21 million km2 area analyzed have discrepancies of less than 1 week (inset 

of Figure 2-9).

Landcover effects on the backscatter signal can be explored by defining a signal-to-noise 

value (R,  unitless). We use the maximum decrease in daily backscatter from the five-day 

mean (used to obtain tp,  equation 2.1) for signal, with noise defined as the average abso

lute deviation of daily backscatter (December 1999-February 2000) from the backscatter 

running 5-day mean. Areas with stable snow cover seen by repeated instrument scans are 

expected to have low backscatter variability during Dec-Feb (see Figure 2-3a). Values of 

R  are strongly correlated with tree cover, seasonal snowfall, and topographic complexity 

across the pan-Arctic, excluding Greenland. Across relatively flat regions (Figure 2-10a), the
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Figure 2-9: Cumulative area histograms for t u  — t p  discrepancies (solid line) and annual 
runoff climatology (dashed line). Curves are generated by summing the area for ordered 
discrepancies from least to greatest across all 32,896 analyzed grid cells (Figure 2-7). His
togram of total area for discrepancies is shown in inset.

largest R  values occur with low tree cover and moderate-high snowfall. Strong correlations 

are also noted for moderately complex topography (Figure 2-10b). Regions with the highest 

topographic complexity generally have low R  values for all tree cover/snowfall classes (Fig

ure 2-10c). High snowfall in this group occur in grid cells across southeast Alaska, a region 

dominated by a highly variable maritime polar climate and high topographic complexity. 

Grid cells for Alaska in this group (snowfall >  1000 mm) do not drain directly to the Arctic 

Ocean. Wet winter storms along with frequent thaw events cause relatively high backscatter 

variability during winter and spring, leading to lower R  values. For southeastern Alaska and 

similar regions, variable snow cover across opposing slopes, the presence of permanent ice 

and glaciers, and a h igh ly  d yn am ic, m aritim e w in ter /sp r in g  p recip itation  regim e adversely  

affect our ability to extract a single, consistent radar backscatter spring thaw response.
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Figure 2-10: Average signal to noise value (R ) grouped by percent tree cover and total 
1999-2000 winter snowfall for (a) low (elevation standard deviation <  14.8 m), (b) moderate 
(14.8 m <  elevation standard deviation >  52.2 m), and (c) high (elevation standard deviation 
>  52.2 m) topographic complexity. R  =  Smax — a d j f ,  where Smax is the maximum daily 
backscatter departure from previous 5-day backscatter average (Equation 2.1) and a  d j f  is 
th e  average ab so lu te  d ev ia tion  o f d a ily  b ackscatter (D ecem ber 1999—February 2000) from  
the running 5-day mean. Plotted values are the average of all data in the two-dimensional 
tree cover/snowfall bin. The horizontal dotted line in (c) represents the extent of ordinate 
in (a) and (b).
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2.5 D iscussion o f Results

Approaches to estimating spring snow thaw at regional and continental scales are usually 

dependent on meteorological data (air temperature, precipitation, radiation) from a network 

of stations which, one assumes, can resolve the complex spatial variations in thaw. Across 

the pan-Arctic drainage basin, meteorological station density is sparse, which introduces 

a degree of uncertainty in thaw estimates. Timing of spring snow thaw inferred from the 

the SeaWinds scatterometer was compared to timing from two hydrological measures at 52 

basins (5,000-10,000 km2) in Canada and Alaska to evaluate the correspondence between 

timing estimates from the remotely sensed, observed, and modeled data.

Agreement between timing of discharge increase (tQ) and scatterometer-derived thaw  

date (tp),  determined as mean absolute deviation ( M A D ) ,  averages 21.5 days (r =  0.45). 

The mean bias M B  is 6.1 days. The M A D  is not unexpected given delays in snow thaw  

reaching stream systems which are known to occur, but difficult to model. Future stud

ies which use field snow thaw snow water equivalent and snow thaw timing information 

will be useful in further evaluating the discrepancies presented here. The M A D  between 

PWBM snow water initiation (tM) and t p  are lower (14.1 days, r =  0.75), since tM and 

t p  are identifying the same process (snow thaw) which should precede the spring increase 

in discharge. Both comparisons show good correlations for basins with moderate to high 

runoff attributed to snow thaw. Individual discrepancies tend to be higher for more heavily 

forested watersheds (tree cover >  50%) and the dry prairie basins. The correspondence 

between tQ and t p  (and tM, t p)  is best for high latitude basins. A critical component 

of our comparisons using tQ involves the assumed presence of a measured hydrographic re-
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sponse to snow thaw. The analysis here included several watersheds with low snow amounts 

and small discharge increases in spring. These relatively low river flows introduce a degree 

of error in our identification of discharge increase. Moreover, in many areas, particularly 

along warmer southerly margins and maritime regions of the pan-Arctic, our assumption 

of a single major snow thaw and discharge event in spring may not be valid. These areas 

tend to exhibit frequent snow thaw and discharge responses during winter and early spring 

from periodic warming events. The timing of tQ and t p  across many regions suggest lags in 

the discharge increase following snow thaw, with shorter delays in high-latitude basins and 

longer lags to the south. Lags in the discharge response to snow thaw are expected due to 

known delays such as snow damming and lags in groundwater transport. Lags in timing are 

also related to differences in the infiltration capacity of permafrost and seasonally frozen 

soils. Future studies in specific moderate-sized watersheds involving scatterometer-derived 

timing of snow thaw could be useful in understanding the spatial pattern of lags between 

snow thaw and hydrological response as well as the factors contributing to the delays in 

snow thaw reaching Arctic river systems.

Good agreement between tM and t p  across the 52 North American basins provide the 

motivation for expanding our analysis to the entire pan-Arctic drainage basin. Of the 32,896 

analyzed grid cells almost half (49.4%) have tM — t p  discrepancies of less than one week. 

Correspondence is slightly better across the Eurasia (M A D  =  11.7 days) as opposed to 

North America (15.1 days). Biases across both Eurasia and North America are low; 1.2 and 

—3.1 days, respectively. Agreement between tM and t p  is generally higher across tundra 

regions and lower along coastal margins. Larger discrepancies are primarily due to the 

identification of two separate thaw events by the tM and t p  algorithms. That is, regions

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with higher discrepancies tend to be characterized by multiple thaw events through spring 

of 2000 and our algorithms selected different events. A majority of the t ^  — t p  discrepancies 

are within ± 10  days.

Although signal-to-noise values are highest for regions of low tree cover, low topographic 

complexity, and high winter snowfall, the spatial pattern of discrepancies in timing is influ

enced by climatic type (eg, the presence of multiple spring freeze/thaw cycles) as well as 

landscape factors. Our analysis show that the best correspondence occurs at high latitude 

interior basins, areas which are most lacking in meteorological observation stations. Results 

of this study suggest that the SeaWinds backscatter is correlated with observed discharge 

(given lags between snow thaw and hydrographic response) and model simulated snow thaw. 

Further studies are needed to determine if active radar instruments will be more useful for 

estimating spatial patterns of thaw than a absolute data of thaw. Research focusing on the 

influence of geophysical factors on radar response are also warranted. Although not studied 

here, future studies examining thaw timing from passive microwave time series may prove 

useful for trend analysis of pan-Arctic snow thaw timing.
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C H A PT E R  3

EVALUATION OF T R E N D S IN D ER IV ED  SNOW FALL  

A N D  RAINFALL ACROSS E U R A SIA

3.1 Changes in the A rctic H ydrological Cycle

Changes are occurring in the Arctic climate and hydrological cycles (Serreze et al., 2000; 

Peterson et al., 2002). Increasing winter-average air temperatures (Rawlins and W illmott, 

2003), reductions in sea-ice thickness and extent (Serreze et al., 2003b), and a signifi

cant increase in river discharge of 0.22 mm yr-1 from 1936-1999 across Eurasia (Peterson 

et al., 2002) have been documented. River discharge increases have the potential to impact 

global climate through alterations in the oceanic thermohaline circulation (Rahmstorf, 1995; 

Broecker, 1997). Warming is predicted to enhance atmospheric moisture storage resulting 

in increased net precipitation, since precipitation increases will likely exceed evaporative 

losses (ACIA, 2005).

W ith the potential for increased net freshwater input to the terrestrial Arctic, precipita

tion emerges as a likely source for the observed discharge trend. In a study of the possible 

effects of dams, melting of permafrost, and fires on river discharge, McClelland et al. (2004) 

suggested that increased precipitation is the most plausible source for the observed discharge 

trend. Annual total precipitation, however, has generally decreased across the three largest
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Eurasian basins since 1936 (Berezovskaya et al., 2004). Given this apparent disagreement 

between precipitation and river discharge, analysis of changes in seasonal precipitation is 

relevant to our understanding of the discharge trends. Indeed, increases in spring runoff 

across the Yenisey basin in central Eurasia during the period 1960-1999 have been linked 

with an increase in winter precipitation and earlier snowmelt (Serreze et al., 2003a). Ac

knowledging the challenges in deriving climate change signals from a sparse network of 

observations which contain numerous uncertainties, our study analyzes seasonal precipita

tion drawn from historical station data to better understand the role of precipitation in the 

river discharge increases from Eurasia.

3.2 D ata and M ethods

Monthly station precipitation (P ) time series are taken from NCDC’s Dataset 9813, “Daily 

and Sub-daily Precipitation for the Former USSR” (National Climatic Data Center, 2005), 

which originated at the Russian Institute for Hydrometeorological Information-World Data  

Center of the Federal Service for Hydrometeorology and Environmental Monitoring, Ob

ninsk, Russian Federation. Precipitation records in this archive (hereinafter TD9813) con

tain adjustments to account for wetting losses i.e. moisture on the gauge walls, changes in 

gauge type and observing practices, and wind-induced errors (see TD9813 documentation 

and references therein). Among these inconsistencies, the undercatch errors due to aero

dynamic effects of wind are generally greatest, particularly in winter (Table 1, Groisman 

et al., 1991). Bias due to change in gauge type are also significant, while wetting losses 

are typically smallest. Biases adjustments are vital in order to accurately ascertain “true”
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changes in precipitation over time (Yang et al., 2005; Forland and Hanssen-Bauer, 2000). 

We also use monthly P  and air temperature ( T)  data from the W illmott-M atsuura (WM) 

archive (Willmott and Matsuura, 2001) and from CRU v2.0 data (Mitchell et al., 2004). 

Monthly P  from TD9813 were interpolated to the 25 km x25 km EASE-Grid using inverse- 

distance-weighted interpolation. CRU T  and P  at 0.5° x 0.5° resolution were sampled at 

each EASE-Grid. In contrast to the new TD9813 archive, CRU and WM data contain no 

adjustments for biases in the precipitation records. Spatial aggregations of the gridded data 

are made across the 6 largest Eurasian river basins; the Severnaya Divina, Pechora, Ob, 

Yenisey, Lena, and Kolyma. Annual snowfall (water equivalent) at each grid is calculated 

by examining T  each month to estimate the fraction of monthly P  as snowfall, and then 

summing those monthly snowfall amounts over the year. The ratio (R ) of monthly snowfall 

to total monthly P  is: R  — [1 .0+  1.61 • (1.35)r ]- 1 , where T  is the monthly mean in °C 

and 0 < R  <  1 (Legates and W illmott, 1990a). This function was derived using a logistic 

curve fit to monthly data and has a reported mean absolute deviation of 0.06 mm month- 1 . 

Annual rainfall in a given year is total from the monthly amounts using P  ■ (1 — R ). River 

discharge (Q) records are drawn from an updated version of R-ArcticNET (Lammers et al., 

2001).

Slope and significance from ordinary least squares regression are computed for spatially 

averaged annual rainfall across the Eurasian basin and for rainfall/snowfall at each EASE- 

grid over the region. A change-point regression method (Draper and Smith, 1981; Muller 

et al., 1994) was applied for annual snowfall integrated over the Eurasian basin given the 

shape of the time series. This method determines optimal mid-series change-points by 

minimizing the sum of squared residuals of all possible change-point regressions. Serial
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autocorrelation was assessed graphically by plotting autocorrelation functions and numer

ically by calculating Durbin-Watson test statistics. Temporal correlations were not found 

at a 5% significance level.

Potential biases in spatial P  induced when gridding from irregular station networks was 

estimated by attempting to recreate total precipitation in 1972 using the available station 

networks each year from 1936-1999. In 1972 the station network was most dense, with 1549 

and 341 stations having complete records across the former USSR and within the Eurasian 

basin, respectively. Starting from the 1972 station network, we sampled annual P  at only 

those stations in operation each year for 1936, 1937... 1999. Those subsets of station P  were 

then interpolated to the grids prior to spatial averaging across the Eurasian basin.

3.3 Linkages between Precipitation and Discharge

A significant correlation (p<0.01) is noted among all three precipitation time series for 

the Eurasian basin (Figure 3-1). Annual precipitation is also correlated with annual dis

charge (p~0.05 for TD9813), although the Pearson’s correlation coefficient is low (r =  0.26, 

0.41, 0.35, for TD9813, CRU, and WM respectively.) Correlations are not expected to be 

high given year-to-year changes in water storage over the landscape. The correlation over 

the period 1936-1970, however, is 0.55, 0.56, and 0.53, respectively. Thereafter, annual dis

charge increases yet precipitation declines. Discharge/precipitation (Q /P ) ratios are highest 

between 1970-1990 (inset Figure 3-1).

Estimating snowfall increases over northern lands is important, since snowmelt there 

occurs on frozen soils with low infiltration rates. A relatively small fraction of this water
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Figure 3-1: Five-year running means of spatially averaged river discharge (Q, mm yr-1 ) 
and precipitation (P, mm yr-1 ) across the 6 largest Eurasian river basins from 1936-1999. 
Inset shows the ratio of annual discharge to annual precipitation.

will evaporate and a larger proportion will run off. The ratio of runoff volume to snowmelt 

volume was found to have averaged 34% greater than the ratio for cumulative summer 

runoff and rainfall (Kane et al., 2003). Precipitation occurring during summer undergos 

considerably more recycling to the atmosphere and contributes more to soil recharge. It 

has been estimated that approximately 25% of July precipitation across northern Eurasia 

is of local origin (Serreze et al., 2003a), i.e., associated with the recycling of water vapor 

within the domain.

Annual snowfall derived from TD9813 precipitation exhibits a strongly significant in

crease (0.75 mm yr-1 ) until the late 1950s followed by a moderately significant decrease
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Figure 3-2: Spatially averaged water equivalent of annual rainfall and snowfall across the 6 
largest Eurasian basins. Snowfall is derived using monthly gridded P  data from TD9813, 
CRU, and WM datasets. Annual rainfall is computed using 1 — R.

(—0.30 mm yr- 1 ) thereafter (Figure 3-2, Table 3.1). Strongly significant early increases 

(1.19, 0.96) are also noted for derived snowfall from CRU and WM, with insignificant de

creases during the latter period. No significant change is noted in snowfall derived from 

TD9813 over the entire 1936-1999 period. The early snowfall increases derived from CRU 

and WM precipitation are liekly influenced by change in gauge type during the 1948-1953 

period (Groisman et al., 1991), and homogenization of the station records would tend to 

reduce the early trends. Such bias adjustments likely make the TD9813 data more represen

tative of the true precipitation changes over time. It should also be noted that means and 

trends from CRU and WM are remarkably similar, despite differing methods used to grid
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Ann. P Ann. Snowfall Ann. Rainfall
Data Set Trend 

(mm yr-1 )
Trendl 

(mm yr-1 )
Trend2 

(mm yr-1 )
Change-point

(year)
Trend 

(mm yr- 1 )
TD9813 -0.49** 0.75** -0.30* 1955.5 -0.46**
CRU -0 .0 6 1.19** -0 .2 0 1960.5 -0.30**
WM 0.07 0.96** -0 .0 4 1959.5 -0.23**

Table 3.1: Trends in annual precipitation, annual snowfall, and annual rainfall derived from 
TD9813, WM, and CRU P  for 1936-1999. Trendl and Trend2 are the change-point regres
sion slopes for the early and late periods, respectively (see Figure 2a). Trends significant at 
p <  0.01 and p <  0.05 are indicated by ** and *, respectively.

the station data. Spatially, positive local trends drawn from the entire 1936-1999 period 

are noted primarily across north-central Eurasia, while negative trends occur across east

ern Siberia (Figure 3-3a). These increases in derived snowfall are consistent with positive 

trends in winter P  (4-13% decade-1 ) across western Siberia (Frey and Smith, 2003) and 

snow depth across most of northern Russia (Ye et al., 1998). The geography of the snowfall 

changes is important to note, since they occur primarily across colder, northerly regions 

where soils have a limited capacity for infiltration during snowmelt.

Consistent decreases in spatially averaged rainfall over the entire Eurasian basin have 

occurred (Figure 3-2). The magnitude of the rainfall decrease is greater than the snowfall 

increase (Table 3.1), consistent with the reported (Berezovskaya et al., 2004) decline in total 

precipitation. Rainfall decreases are greatest across north-central Eurasia (Figure 3-3b), the 

area where positive snowfall trends are noted. A positive trend in 500 hPa height anomalies 

across much of northern Eurasia between 1960-1999 (Serreze et al., 2003a) may be linked 

with the rainfall decrease during that time.

Biases arising when interpolating from spatially uneven networks can be significant 

(Willmott et al., 1994). Station networks across Eurasia, for example, give rise to an
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Figure 3-3: Trends in derived annual snowfall (a) and in derived annual rainfall (b) (1936- 
1999) from TD9813 P  at each 25 x 25 km EASE-Grid cell encompassing the 6 largest 
Eurasian basins. Shaded areas are part of the larger pan-Arctic drainage basin of Eurasia. 
Spatially averaged values presented in this study (see Figures 1, 2, and 4) represent inte
grations across the 6 basins (west to east: Severnaya Divina, Pechora, Ob, Yenisey, Lena, 
Kolym a) outlined in bold.

overestimation of annual precipitation during earlier years (Figure 3-4). Early networks 

originated in the south and gradually expanded northward. Although true precipitation 

derived from the best Arctic networks is difficult, if not impossible, to know with cer

tainty, we estimate a bias of well over + 10 mm in the early network representations of 

spatial precipitation. A similar bias is noted when alternate base years are used. For as

sessments of continental-scale precipitation aggregations, early station networks essentially 

over-represent precipitation due to their uneven spatial arrangement.

Spatially, the bias assumed when interpolating from the sparse network is complex. For 

example, both overestimates and underestimates are noted when attempting to recreate 

1972 annual P from the 1936 station network. Interestingly, some of the largest overesti-
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Figure 3-4: Annual total P  for 1972 (dots) interpolated and spatially averaged from each 
yearly station network. The dashed line represents spatially averaged P  for 1972, a year 
with the highest number of stations in the network between 1936-1999. The number of 
stations each year (solid line, right axis) mirrors the yearly network estimates of 1972 total 
precipitation, represented by the dash line.
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mates are in the far northern part of Eurasia. A further examination of the bias magnitudes 

was performed by choosing different years other than 1972 as the baseline network. For ex

ample when 1970 or 1974 is used as the baseline network, the patterns in the spatially 

averaged bias are similar to those obtained when the baseline network is the configuration 

from 1972 (see above). Thus it is reasonable to assume that 1972 network is appropriate 

for deriving these bias “scenarios” .

Biases at grid locations (and for each year used to subset the 1972 network) were used 

to  adjust the TD9813 monthly P estimates. The bias determined from annual P  was evenly 

distributed and applied across the monthly P using the fraction of each month’s P to the 

annual P total. Thus, if May P at a grid was 10% of the annual P  at that grid, 10% of 

the annual bias was applied to May P. Following adjustment of the precipitation fields, a 

new time series of spatially averaged P across the Eurasian pan-Arctic was produced. The 

slope of the linear least squares trend line fit to the new adjusted P is -0.37 mm yr- 2  vs. 

-0.49 mm yr- 2  computed from the default TD9813 curve. The trend in discharge is 0.22 

mm yr- 2 .

The adjusted P fields were used in PWBM simulations, and simulated runoff was com

pared with observed gauge records across the Eurasian pan-Arctic and the 6  basins individ

ually. Simulated runoff from PW BM  runs using the original, default P  data was used for 

the comparisons. Surprisingly, the goodness of fit (simulated vs. observed runoff) decreases 

when new adjusted P data are used to drive PWBM. For aggregate simulated runoff across 

the entire Eurasian pan-Arctic, the Pearson correlation coefficient (R) decreases from 0.41 

to 0.37 (default vs. new adjusted).
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3.4 Sum m ary of R esults

Annual precipitation across the Eurasian basin drawn from the gridded data are correlated 

with observed river discharge over the period 1936-1999. Annual discharge has become a 

larger fraction of total precipitation during this time. Annual snowfall derived from the 

new bias-adjusted TD9813 precipitation data set exhibits a highly statistically significant 

increase until the late 1950s and a moderately significant decrease thereafter. Annual rainfall 

has declined significantly. Interpolations from the uneven, early station networks result 

in a biased depiction of spatially averaged precipitation, meaning that real local snowfall 

increases over the region were likely greater, and the rainfall decreases were possibly less, 

than the changes determined from analysis of gridded data sets such as CRU and WM. While 

we believe that our partitioning of rainfall and snowfall contains no systematic bias, the 

method itself is crude, and we emphasize that the computed trends depend on the quality 

interpolations from sparse precipitation and air temperature observations. Although our 

study suggests that increased cold season precipitation may be a significant driver of the 

discharge change, inherent biases in early meteorological networks and uncertainties in the 

historical precipitation observations render this finding intriguing, yet inconclusive.
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C H A PT E R  4

EFFECTS OF U N C ER TA IN TY  IN  CLIMATE IN P U T S ON  

SIM ULATED EV A PO T R A N SPIR A TIO N  A N D  R U N O FF  

IN  THE W E ST E R N  ARCTIC

4.1 Introduction

Changes are occurring to high latitude environments with further alteration likely under 

several global change scenarios. Responses in the arctic environment may include alterations 

to the landscape and in water fluxes and stores. While conceptual water balance models 

have proved useful in assessing contemporary hydrological conditions and in modeling future 

states, general circulation models have not proved accurate enough to close water budgets 

in hydrological applications. Precipitation simulated in GCMs tends to be overestimated 

and seasonal dynamics are often inaccurate (Kite and Haberlandt, 1999; Toyra et al., 2005). 

Hydrological models which account for phase changes in soil water (Rawlins et al., 2003; 

Su et al., 2005) have recently been adopted in hopes of improving simulated water budgets 

across high-latitude regions.

Water budget models are dependent on accurate inputs of air temperature and especially 

precipitation in order to adequately depict the spatial and temporal dynamics of Arctic wa-
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ter fluxes. Deficiencies leading to biases in model input data can significantly impact the 

usefulness of the data for climate change research and other efforts to solve environmental 

problems. In a sensitivity experiment, an arctic hydrological model was more sensitive to 

changes in daily precipitation than in the prescribed land surface parameterizations (Rawl

ins et al., 2003). Uncertainties in precipitation data used to drive hydrological models are a 

particular problem in the Arctic where gauge undercatch is often substantial. Precipitation 

underestimates of 20 to 25% have been determined across North America (Karl et al., 1993), 

while biases of 80 to 120% (in winter) have been estimated for the terrestrial Arctic north of 

45°N (Yang et al., 2005). In regions where precipitation exceeded potential evapotranspi- 

ration (PET), uncertainty in precipitation translated to an uncertainty in simulated runoff 

of roughly similar magnitude (Fekete et al., 2004). In order to better understand the effect 

of data biases and uncertainties on simulated water budgets, we perform a series of model 

simulations using three climate drivers and three methods for estimating PET across the 

Western Arctic Linkage Experiment (WALE) domain. Goals of the WALE project include 

identification of uncertainties in regional hydrology and carbon estimates with respect to 

uncertainties in (i) driving data sets and (ii) among different models. The present paper 

focuses on how the limitations and uncertainties in 3 climate data sets affect our abilty to 

accurately simulate water budgets across the terrestrial Arctic. Additional details of the 

WALE project can be found in (McGuire, 2005).
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4.2 M ethods

4.2.1 Overview

A series of simulations using three climate drivers and three methods for estimating PET  

(nine model runs) were made for the period 1980-2001 with a hydrological model (subsec

tion 4.2.2). We use commonly available data sets (subsection 4.2.3) to judge the impact of 

climate on the simulated water budgets. PET is estimated using the Hamon method (Ha- 

mon, 1963) (equation B .l in Appendix B), the surface-dependent Penman-Monteith method 

(PM) (Monteith, 1965) (equation B.2 in Appendix B), and the PM method with adjusted 

vapor pressure data, described in section 4.2.4. Details of the simulations to produce the 

nine scenarios and the comparisons with observed evapotranspiration (ET) and runoff are 

described in subsection 4.2.4.

4.2.2 Model Description

We use the Pan-Arctic Water Balance Model (PWBM, Rawlins et al., 2003) to simulate 

runoff and ET at an implicit daily time step across the Western Arctic Linkage Experiment 

(WALE) domain. This hydrological model uses gridded fields of plant rooting depth, soil 

characteristics (texture, organic content), vegetation, and is driven with daily time series 

of precipitation and air temperature. The PWBM incorporates a soil organic layer and a 

soil moisture phase-change submodel which partitions water to  solid and liquid amounts. 

Spatial fields of air temperature, vegetation, and soil characteristics provide the inputs to 

the thaw/freeze submodel. A detailed description of the model was provided in Rawlins et 

al. (2003). Simulations in the present study were performed on the Equal-Area Scalable
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Earth Grid (EASE-Grid) at a resolution of 25 km x 25 km across 3511 grid cells which 

define the domain. The WALE domain encompasses Alaska and the upper headwaters 

of the Yukon basin in northwestern Canada. Simulations are performed over the period 

1980-2001.

4.2.3 Input Datasets

Water budget simulations are made using three climate driver data sets. We use precipita

tion and air temperature from the N C EP/N C A R  reanalysis project (NNR) (Kistler et al.,

2001), hereinafter referred to as NCEP1. We also use precipitation data (NCEP2) which 

represents an improvement to the standard NNR fields through application of a statisti

cal downscaling approach based on a probability transformation for precipitation (Serreze 

et al., 2003b). The NCEP2 air temperature grids are derived from NNR data using a 

method which accounts for elevation effects. The third climate driver set is the Willmott- 

Matsuura archive (Willmott and Matsuura, 2001), hereinafter referred to as WM. The WM  

archive was produced using the Global Historical Climatology Network (GHCN) version 2 

data (Vose et al., 1992) and Legates and W illm ott’s (Legates and W illmott, 1990a; Legates 

and Willmott, 1990b) station records of monthly and annual air temperature and total 

precipitation. WM climate data are available through year 2000. Table 4.1 summarizes the 

climate data sets used in the PW BM  simulations. Mean annual precipitation across the 

WALE domain is highest for NCEP1 (650 mm yr-1 ) and lowest for the WM archive (510 

mm yr-1 , Figure 4-1, Table 4.2). A significant problem with the NCEP reanalysis model is 

a severe over-simulation of summer precipitation over land areas due to excessive convective 

precipitation (Serreze and Hurst, 2000). The statistical method used to create the NCEP2
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precipitation reduces this bias, and the NCEP2 precipitation average (580 mm yr 1) falls 

between the excessive NCEP1 data and the unadjusted WM data (Figure 4-1).

Land cover is defined from a new 1 km resolution vegetation classification for Alaska that 

prescribes fractional cover for 6  vegetation types in each 25 km x 25 km EASE-Grid cell. 

Two AVHRR-based land cover classifications for Alaska (Fleming, 1997) and Canada (Cihlar 

and Beaubien, 1998) were merged and aggregated into five major vegetation types using an 

expert model (Calef et al., 2005). The cover types are black spruce, white spruce, deciduous 

forest, tundra, coastal forest, and bare ground (encompasses areas of rock and ice). With 

1991 as the base year, transient land cover was interpolated backward and forward for 

1950 to 2000 using a hierarchical logistic regression approach, the historic fire record, and 

ecological knowledge on succession. Tundra vegetation comprises the majority (55%) of 

the WALE domain, with coniferous forest (black spruce, white spruce, and coastal forest) 

second most prevalent. The same parameter specifications are used for these coniferous 

forest grids in the PW BM  runs. Across the Yukon basin, tundra again is dominant, with 

slightly more coniferous forest (39%) than the entire WALE domain contains (22%). For 

a given climate driver and PET method configuration, the PWBM was run separately for 

each land cover type over the 1980-2001 period. A 50-year spinup was first performed to 

stabilize model soil moisture. Runoff and ET for each grid cell is a weighted average of 

runoff or ET across each land cover type in the grid. We use this “mosaic” of ET or runoff 

in the analysis to follow. Simulated ET is the total water loss from the surface, which 

includes transpiration from plants, evaporation from soils, and sublimation from snow.
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Data Set Precipitation Air Temperature Vapor Pressure
NCEP1 NNR NNR N N R /N N R C
NCEP2 NNRa NNRb NNRC
WM WM WM NNRC

Table 4.1: Climate data sets used in PW BM  simulations and original source for precipita
tion, air temperature, and vapor pressure data used in the model runs. NNR is the N C E P -  
NCAR reanalysis (NNR). NNRa indicates NNR data adjusted by methods in Serreze et al. 
(2003); NNRb is NNR adjusted for effects of elevation on air temperature interpolations; 
and NNRC denotes NNR vapor pressures which are reduced by the difference with CRU 
vapor pressure data.

Data Set Climate (mm yr 1, °C)
P T a T s

ET (mm yr J) 
Hamon PM PM*

Runoff (mm yr J) 
Hamon PM PM*

NCEP1 650 -6 .9 9.2 267 115 146 366 504 474
NCEP2 580 -5 .8 9.7 263 116 143 296 443 418
WM 510 - 3 .8 12.5 275 1 1 2 139 243 403 373

Table 4.2: Long-term mean simulated ET, runoff, and climate across the WALE domain 
from the three climate drivers and three PET methods. P is mean annual precipitation (mm  
yr-1 ); Ta and Tg are mean annual and summer (JJA) air temperature, respectively. PET  
methods (described in section 4.2.4) are: Hamon method (Hamon, 1963) (equation B.2 
in Appendix B), the Penman-Monteith method (PM) (Monteith, 1965) (equation B.2 in 
Appendix B), and the PM method with adjusted vapor pressure data (PM*). Averages for 
ET are taken from the time series in Figure 4-3, and runoff averages are derived from time 
series in Figure 4-4.
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Figure 4-1: Annual total precipitation (upper panel) and mean annual air temperature 
(lower panel) across the WALE domain for the years 1980-2001. Precipitation and air 
temperatures are drawn from NC EP/N C A R  reanalysis (NCEP1) (Kistler et al., 2001), 
a version based on a statistical downscaling (Serreze et al., 2003b) of the NC EP/N C A R  
reanalysis (NCEP2), and the Willmott-Matsuura archive (Willmott and Matsuura, 2001) 
(WM).
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Location ET (mm season l ) Period
Obs Hamon PM PM*

Council 97 93 81 81 6 /1 8 /9 9 -8 /2 2 /9 9
Delta Junction 178 142 55 61 6 /1 /0 2 -8 /3 1 /0 2

Table 4.3: Observed June-August ET at 2 sites in Alaska and simulated June-August ET  
for 25x25 km EASE-Grid in which site is located. Simulated ET is taken from model runs 
using using the Hamon method, the Penman-Monteith method (PM ), and the adjusted PM  
method (PM*). For each PET method we averaged simulated ET over the three climate 
driver (NCEP1, NCEP2, and WM) runs. Eddy covariance measurements of latent heat 
were reported for Council (64.8°N , 163.7°W) (Beringer et al., 2005) and Delta Junction 
(63.9°N , 145.7°W ) (Liu et al., 2005). Observations were taken from June-August 1999 at 
Council and from June-August 2002 at Delta Junction.

4.2.4 M odel Application and Analysis

Simulated water fluxes of runoff and ET were evaluated and compared with observed data 

where available. We use discharge data from the downstream site (Pilot Station) on the 

Yukon River for comparison with the simulated runoff across the Yukon basin. Observed 

ET data are drawn from 2 sites across Alaska (Table 4.3). We compare PWBM simulated 

summer total (June-August) ET at the grid cell in which the observed site is located with 

the observed value, which was measured using flux towers eddy covariance measurements 

(Beringer et al., 2005; Liu et al., 2005).

Within the PWBM simulated PE T was estimated using the relatively simple Hamon 

function (Hamon, 1963) (equation B .l in Appendix B), a physically-based, surface-dependent 

combination approach (Penman-Monteith, PM) (Monteith, 1965) (equation B.2 in Ap

pendix B); and the PM method forced with adjusted vapor pressure data. These ad

justments were made after problems were identified with the NNR humidity data. The 

Hamon method falls into a class known as reference-surface PET methods, i.e., methods
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which produce evaporation that would result from a specific land surface known as a ref

erence crop. In contrast, the PM approach is known as a surface-dependent PE T method, 

i.e., it produces the evaporation which would occur from any of a variety of designated land 

surfaces. In the PM method, parameterizations for quantities such as leaf conductance and 

aerodynamic resistance are a function of the landcover type as described by Federer et al. 

(1996). Aerodynamic resistances are taken from the neutral wind profile equation. Net 

radiation time series from the NNR data set are used in the PM approach. We chose the 

Penman-Monteith method since it was found to be the least biased of 1 1  methods applied 

over the conterminous US (Vorosmarty et al., 1998). Our analysis focuses on simulated 

runoff and ET obtained from a model run using a specific combination of climate driver 

and PET method. Although we mention PET method when discussing model implemen

tation, analysis of model output is restricted to simulated ET, which is distinguished from 

PET through limitations imposed by soil water deficit within the model run. Vapor pressure 

data required for the PM function are not available from the NCEP2 and WM data sets, 

and we use those from the NNR project in all simulations involving the PM PET method.

Surface-dependent PET functions such as PM use air temperature, vapor pressure data 

and other climate drivers to estimate the potential flux of water from vegetated surfaces. 

Observed meteorological station data for several sites in Alaska were compared with rel

ative humidities derived from NNR vapor pressure and air temperatures. Mean daily air 

temperature and dew point at the sites for year 2000 were taken from stations in the Global 

S um m ary o f th e  D ay  (S O D ) d ata b a se  d istr ib u ted  by th e  N ation a l C lim atic  D a ta  C enter. 

Relative humidities derived from NNR data are near 100% during summer, while lower 

values and greater variability are present in the station data (Figure 4-2). High humidities
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Figure 4-2: Daily average relative humidity for July 2000 derived from NCEP-NCAR re
analysis vapor pressure (VP) data (NCEP), reanalysis VP adjusted using CRU monthly 
VP (NCEPadj), and from air temperature and dewpoint in the Summary of the Day data 
set (OBS).

are consistent with excessive surface evaporation rates in the NNR, a problem which may 

be related to excessive soil moisture and solar radiation during summer in the reanalysis 

data (Serreze and Hurst, 2000).

In order to better understand the effect of NNR moisture biases, gridded vapor pressures 

from the University of East Anglia’s Climate Research Unit (CRU; http://www.cru.uea.ac.uk) 

are used to adjust the NNR vapor pressure data at each EASE-grid cell. The CRU data 

are monthly averages, and the adjustment to the gridded NNR daily vapor pressure data is

V P D =  V PjsfNR -  (V P M - V P cR u ) (4-1)
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where V P p  are the adjusted daily NNR vapor pressures (kPa) at the EASE-grid, 

is the daily NNR vapor pressure, V P m  is monthly average vapor pressure from NNR, 

and U P q rjj is monthly CRU vapor pressure. CRU vapor pressures are generally lower 

than NNR values across most of interior Alaska, while similar vapor pressures occur across 

coastal regions. These adjusted V P p  values are used in a third suite of PW BM  simulations 

involving each climate driver set. We refer to the PET method for these simulations as the 

“adjusted PM m ethod” (PM* in Tables 2,3,4). When the adjusted NNR vapor pressures 

( V P d ) are used, simulated ET increases an average of 30 mm yr- 1  over the default PM  

configuration (Table 4.2).

4.3 R esults

4.3.1 Simulated Evapotranspiration

Comparisons between simulated and observed ET rates illustrate the effect of biases in the 

vapor pressure data. Table 4.3 shows observed ET along with the average simulated ET  

for the Hamon, PM , and adjusted PM PET methods, where the average for each PET  

method is calculated across the three climate driver simulations. At the coastal tundra 

site (Council), small dilferences (no greater than 16 mm summer-1 ) in ET are noted. 

Indeed, differences between NNR and CRU vapor pressures across coastal regions are small; 

therefore, simulated ET using the default and the adjusted vapor pressures, for the Council 

grid cell, are identical (81 mm season-1 ). At interior site (Delta Junction) greater differences 

are evident. Simulations using the PM method lead to ET rates much lower than observed
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values. When the adjusted vapor pressures are used, ET increases 6  mm summer 1 for the 

Delta Junction grid cell.

Across the WALE domain, low NNR-derived vapor pressure deficits cause reduced PET  

and ET rates. For the three climate driver simulations, the ET average (1980-2001) when 

using PM is 113 mm yr- 1 , whereas the simulations using Hamon are over 100% higher, 

averaging 268 mm yr- 1  (Figure 4-3a). ET rates when PM method is used are less than 

half of the Hamon ET values. Differences in annual ET when PM is used are also rela

tively small, averaging 115, 116, and 112 mm yr- 1  for NCEP1, NCEP2, and WM climate 

(Table 4.2). Long-term mean monthly ET is 15-20 mm month- 1  lower for PM method vs. 

Hamon (Figure 4-3b). For NCEP2 climate, simulated ET from the adjusted PM method 

is 23% higher than the ET rates from the model run using default PM PET method (Fig

ure 4-3c, Table 4.2), while the Hamon method again is approxiamtely 100% higher. These 

comparisons illustrate well the underestimation of ET in simulations using the default PM  

method and NNR vapor pressures.

4.3.2 Simulated Runoff

Differences between the climate data inputs as well as the NNR humidity anomaly are 

evident in PWBM runoff simulations. Annual runoff is highest when NCEP1 data are used 

and lowest with WM. Long-term mean simulated runoff across the WALE domain averages 

366, 296, and 243 mm yr- 1  from the NCEP1, NCEP2, and WM simulations respectively 

(Table 4.2). Correlation between NCEP1 and NCEP2 runoff is 0.92— which is expected, 

whereas the correlation between NCEP2 and WM is 0.55 (Figure 4-4a). When the PM  

method is used, runoff averages 504, 443, and 403 mm yr- 1 , respectively. Correlations
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Figure 4-3: PWBM simulated annual ET across the WALE domain for the period 1980- 
2001. In Figures 4-3, 4-4, and 4-5, NCEP1 indicates climate data from NNR, NCEP2 is the 
m odified  N N R  d ata  set from  Serreze e t al. (2003) and W M  are sim u lation s u sin g  W illm ott  
and Matsuura data, (a) Annual totals of ET from the 3 climate drivers and Hamon and 
PM PET for 1980-2001. (b) Monthly climatology from the standard simulation runs, (c) 
Annual ET from simulations with NCEP2 climate and Hamon, PM, and adjusted PM PET  
methods
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here are 0.92 (NCEP1/NCEP2) and 0.21 (NCEP2/W M ) (Figure 4-4b). Although less well 

correlated in time, the NCEP2 and WM climate data produce runoff of similar magnitude. 

Differences between runoff from simulations using NCEP2 or WM climate and Hamon 

PET (Figure 4-4a) are attributable, in part, to colder air temperatures (lower ET —> higher 

runoff) in the NCEP2 data set (Figure 4-1). Use of the NCEP1 climate data results in the 

highest runoff, WM climate inputs produce the lowest runoff, and all three simulations using 

the PM PET method show higher runoff than the model runs using Hamon. Runoff from 

the NCEP1 simulations is 13-24% higher than NCEP2 runoff depending on PE T method 

(Table 4.2), since incorporation of observed data reduces the excessive NCEP1 precipitation. 

Arctic precipitation in the NNR has been shown to be systematically too high (particularly 

in summer ) due mostly to excessive convective precipitation (Serreze and Hurst, 2000). 

When the adjusted PM method is used to account for the vapor pressure bias, simulated 

runoff decreases by 25-30 mm yr- 1  or 6-7%.

Runoff from simulations using the PM method show a higher snow melt peak than those 

using Hamon (Figure 4-5). Observed runoff (i.e., discharge measured at the downstream  

site) lags the simulated melt peak by one month in all simulations. This is expected, as 

snowmelt-driven runoff from upstream areas often takes several weeks to reach the down

stream gauge in large basins. Simulated runoff is less than observed (underestimate) for 

NCEP2 and WM climate with the Hamon function (Table 4.4). The PM  method generates 

excess runoff for each climate driver, a result of higher vapor pressure and low simulated 

ET. Adjusting the NNR vapor pressures lowers runoff (7-13%). Across the Yukon River 

basin generally good agreement between simulated and observed runoff is noted; simulated 

runoff differs from the observed by 7% for the NCEP2 and WM climate drivers when the
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Figure 4-4: Simulated annual runoff across the WALE domain for 1980-2001. (a) Three 
climate driver simulations using Hamon method for PET. (b) Simulations using PM method, 
(c) NCEP2 climate together with each PET method.
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Figure 4-5: Long-term mean monthly runoff across the Yukon basin simulated for the 
period 1980-2001. Observed runoff is discharge as a unit depth across the Yukon river 
basin. Simulated runoff taken from model runs using the NCEP2 climate with each of the 
PET methods.

adjusted PM PET method is used (Figure 4-6). Runoff generated with NCEP1 climate 

exceeds observed values regardless of the PET method used. The average MAD is 200, 60, 

and 70 mm yr- 1  for NCEP1, NCEP2, and WM climate, respectively.

4.4 D iscussion

Model simulations of evapotranspiration across forested interior regions are more strongly 

affected by synoptic weather conditions (e.g. vapor pressure deficits) than tundra locations. 

This is expected, as transpiration is the dominant source of water loss in forested regions
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Figure 4-6: Observed and simulated annual runoff across the Yukon basin 1980-2000. Sim
ulated runoff is drawn from model runs using each climate driver along with adjusted PM  
PET method.

Data Set MAD (mm yr 1)
Hamon PM PM* Average

NCEP1 1 1 0 | 260 T 230 T 2 0 0

NCEP2 1 3 0 | 3 0 1 3 0 1 60
WM 1 7 0 | 2 0  T 30 [ 70
Average 137 103 93 -

Table 4.4: Mean absolute difference (MAD) in simulated annual runoff as compared to ob
served runoff across the Yukon basin. M A D  =  ^  i l-Rs ~-R„|, where R s is the simulated 
annual runoff, R a is the observed, and MAD is in mm yr- 1 . Using signed differences, overes
timation Rs
shown with j.

o n
R 0 >  0 ) is indicated with | ,  and underestimation (X)i=i Rs — Ro < 0 )
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(soil evaporation is dominant in tundra locations), and synoptic controls such as vapor 

pressure deficit are an important driver in these areas (Beringer et al., 2005). Feedbacks 

between radiation, precipitation, and soil moisture in the NNR affect the near surface 

moisture amounts (Serreze and Hurst, 2000). The relatively high vapor pressures result 

in small vapor pressure deficits, which tend to reduce ET rates when used in land surface 

and hydrologic models. Modeled ET rates in simulations using Hamon PET method more 

closely match observed ET values across interior regions of Alaska. Downwelling shortwave 

fluxes in the NNR are also reportedly too high (Serreze and Hurst, 2000). As opposed to  

the effect of elevated vapor pressure (leads to reduced ET), the biased radiation data (used 

in the PM PET method) would tend to increase estimated ET rates, and reduce runoff. 

ET rates for the PM and Hamon simulations converge toward observed values along coastal 

regions where evaporation from tundra vegetation dominates the surface ET flux. When the 

PM PET method is used, differences between simulated and observed ET at Delta Junction 

(forest site) suggest that greater uncertainties in simulated budgets are likely across these 

forest regions. Comparisons with the observed values also show that ET estimated in model 

runs using the Hamon PE T method represent an upper bound on simulated ET rates, with 

lower rates when the PM method is chosen.

Monthly climatologies of simulated ET from PM are nearly identical across the three 

climate drivers. Differences in ET from simulations using the PM and Hamon methods 

are largely due to low vapor pressure deficits which drive the surface-dependent PM PET  

method. Simulated ET rates across the WALE domain are strongly influenced by both 

the vapor pressure data and the PET method chosen, with less effect from differences in
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precipitation data. A thorough evaluation of model simulated ET fluxes is hampered by 

the paucity of observed, high-latitude ET measurements.

Simulated annual runoff show substantial variations between model runs, with long-term  

means strongly dependent on which climate driver and PET function is implemented. When 

the PM method is used, lower ET leads to increased soil moisture storage and higher runoff 

estimates. The highest mean runoff (from NCEP1 climate with PM PET) is double the 

lowest runoff rate (WM climate with Hamon PET). Simulations using the raw NNR climate 

drivers (NCEP1) result in the highest runoff independent of PET function. This is due to 

higher summer precipitation in the NNR data. The WM climate data—which is produced 

from observed station records— generates the lowest runoff, as expected, since the WM 

archive does not incorporate precipitation gauge corrections. Precipitation in the NCEP2 

data set was produced through downscaling of the NCEP1 data based on observed data; 

therefore, NCEP2-derived water fluxes represetn a combination of Arctic reanalysis and 

observed climate. Model simulations with the PM method generate runoff which exceeds 

the observed Yukon runoff due to low ET rates. Using the adjusted vapor pressure data 

lowers runoff across the WALE and Yukon domains. Across all PET methods, average 

M A D  for NCEP1 climate is a factor of 3 greater than M A D  for NCEP2 or WM due to 

excessive precipitation in the NCEP-NCAR reanalysis.

Although good correspondence with observed runoff is noted for NCEP2 and WM cli

mate with adjusted PM PET method, the accuracy of these precipitation data—the most 

important variable for Arctic hydrological models— cannot be verified. Adjustment for 

biases such as gauge undercatch would likely significantly change simulated water fluxes.
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Other sources of climate data such as the new ERA-40 reanalysis may prove useful in 

improving closure of water budgets across the WALE region.

4.5 Conclusions

Three climate drivers and three methods for estimating PET were used in simulations with 

a water budget model to better understand our ability to simulate arctic water balances 

across the western arctic. High surface vapor pressures in the NNR tend to limit modeled 

PM PET and result in PWBM-simulated ET rates that are less than half the rates found 

when the Hamon PET function is used. Differences in precipitation have much less influence 

on simulated ET rates than do the vapor pressure inputs and type of model PET method 

used. High simulated runoff noted in simulations driven by NCEP1 climate reflects the 

excessive precipitation in the NNR. More modest runoff rates are noted in simulations using 

NCEP2 precipitation— a combination of atmospheric reanalysis and station observations. 

Agreement between simulated and observed runoff to within 7% occurs with NCEP2 and 

WM climate drivers when the adjusted PM PET method is used. We find that simulations 

of arctic evapotranspiration and runoff are strongly dependent on the quality of time series 

data used to drive the model. These results suggest that closure of simulated water budgets 

across arctic regions is strongly dependant on thorough evaluations of model requirements, 

potential biases in climatic data sets, and comparisons with observed data where available.
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C H A PT E R  5

ON TH E EVALUATION OF SNO W  W ATER  

EQUIVALENT ESTIM ATES OVER THE TERRESTRIA L  

ARCTIC D R A IN A G E  B A SIN

5.1 Introduction

Winter snow storage and its subsequent melt are integral components of the climate system. 

Much remains unknown regarding the magnitudes and interannual variations of this key 

feature of the arctic water and energy cycles. Across large parts of the terrestrial Arctic 

direct snow observations are unavailable, and this lack of information limits our ability to 

monitor a region which is exhibiting signs of change (Peterson et al., 2002; Vorosmarty 

et al., 2001). Yet, amid declines in Pan-Arctic station observations (Shiklomanov et al.,

2 0 0 2 ), a growing number of models and remote sensing data are being brought to bear 

for studying the arctic hydrological cycle. Retrospective analysis or “reanalysis” of the 

atmospheric state such as the National Centers for Environmental Prediction (NCEP) and 

the National Center for Atmospheric Research (NCAR) Reanalysis Project (Kalnay et al., 

1996) provide benchmark, temporally-consistent data sets for water cycle studies. Remote 

sensing techniques offer the potential for more complete coverage at regional scales (Derksen 

et al., 2003; McDonald et al., 2004).
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High quality estimates of snow storage and melt can be used to validate the behavior 

of hydrological models and GCMs, which have difficulty reproducing solid precipitation 

dynamics (Waliser et al., 2005). Snow cover and snow water equivalent (SWE) estimates 

are also needed for climate change analysis and flood prediction studies. Approximately 

8000 (daily) snow depth observations were analyzed to create monthly snow depth and 

SWE climatologies for North America (Brown et al., 2003) for use in evaluating Atmo

spheric Model Intercomparison Project II (AMIP II) snow cover simulations. Comparisons 

of continental-scale snow parameters with river discharge time series are useful to improving 

our understanding of the role of snow accumulation and melt in runoff generation processes. 

Yang et al. (2002), examining the snow-discharge relationship, noted a weak correlation (R 

=  0.14 to 0.27) between winter precipitation (a proxy for snow thickness) and streamflow 

between May and July across the Lena river basin in Siberia. Across the Ob basin, winter 

snow depth derived from Special Sensor Microwave Imager (SSM /I) agrees well with runoff 

in June (R=0.61), with lower correlations for comparisons using May or July discharge 

(Grippa et al., 2005). Strong links have been reported between end-of-winter SWE and 

spring/early summer river discharge in the Churchill River and Chesterfield Inlet Basins of 

Northern Canada (Dery et al., 2005). Frappart et al. (2006) recently compared snow mass 

derived from SSM /I data and three land surface models with snow solutions derived from 

GRACE geoid data. GRACE (Gravity Recovery and Climate Experiment) is a geodesy mis

sion to quantify the terrestrial hydrological cycle through measurements of Earth’s gravity 

field. They found that GRACE solutions correlate well with the high-latitude zones of 

strong accumulation of snow at the seasonal scale.
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To better understand the agreement between SWE and observed river discharge, we 

examine comparisons of their year-to-year changes across 179 river basins over the period 

1988-2000. Gridded SWE estimates across the Pan-Arctic drainage basin are taken from 

both satellite microwave data and land surface model estimates. The objective of our study  

is to evaluate several common SWE data sets using monthly discharge for watersheds across 

the terrestrial arctic basin.

5.2 D ata and M ethods

Spatial, gridded estimates of monthly SWE and discharge for river basins across the Pan- 

Arctic were analyzed for the period 1988-2000. Monthly SWE is drawn from the analysis 

scheme described by Brown et al. (2003) and archived at the Canadian Cryospheric Infor

mation Network (CCIN, http://w w w .ccin.ca); from simulations using the Pan-Arctic Water 

Balance Model (PW BM) (Rawlins et al., 2003); from snowpack water storage in the Land 

Dynamics Model (LaD) (Milly and Shmakin, 2002); and from SSM /I brightness tempera

tures (Armstrong and Brodzik, 1995; Armstrong et al., 2006). PW BM  uses gridded fields of 

plant rooting depth, soil characteristics (texture, organic content), vegetation, and is driven 

with daily time series of climate (precipitation (P ) and air temperature (T)) variables. 

Monthly PW BM  SWE is obtained from model runs using P  and T  from 3 different sources 

(i) ERA-40 (ECMWF, 2002), (ii) NCEP-NCAR Reanalysis (NNR) (Kalnay et al., 1996), 

(iii) Willmott-Matsuura (WM) (W illmott and Matsuura, 2001). We refer to these SWE 

estimates as PW BM /ERA-40, PW BM /NN R, and PW BM /W M , respectively. The NNR  

P  data have been adjusted based on a statistical downscaling approach (Serreze et al.,
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2003b). Implemented in an effort to minimize biases through the use of observed P  data, 

this method involved (1 ) interpolation of observed monthly totals from available station 

records with bias adjustments and (2 ) disaggregation of the monthly totals to daily totals, 

making use of daily P  forecasts from the NC EP/N C A R  Reanalysis. PW BM  simulations 

were performed on the 25x25 km Equal Area Scalable Earth Grid (EASE-Grid) (Brodzik 

and Knowles, 2002). The LaD has previously been found to explain half of the interannual 

variance of the runoff/precipitation ratio of 44 major river basins (Shmakin et al., 2002). In 

a study of SWE derived from GRACE and from three LSMs, LaD estimates most closely 

matched those from GRACE, with a good correspondence at seasonal time scales (Frap- 

part et al., 2006). Our analysis also includes SWE (0.25° resolution for years 1988-1997) 

from the analysis scheme described by Brown et al. (2003) and archived at the Canadian 

Cryospheric Information Network (CCIN, http://w ww .ccin.ca). LaD SWE at 1° resolution 

was mapped to the EASE-Grid using inverse-distance weighted interpolation, while CCIN 

SWE was aggregated to the EASE-Grid using the average of all 0.25° grids falling within 

each EASE-Grid cell. The PW BM-, LaD-, and SSM/I-derived SWE estimates are Pan- 

Arctic in nature, ie. defined at all 39,926 EASE-Grid cells encompassing the Pan-Arctic 

drainage basin (Figure 5-1). CCIN SWE are available across EASE-Grid cells over North 

America only.

Passive microwave radiances from SSM /I— aboard the Defense Meteorological Satellite 

Program satellite series since 1987— have been used to produce maps of SWE across large 

regions (Armstrong and Brodzik, 2001; Armstrong and Brodzik, 2002; Derksen et al., 2003; 

Goita et al., 2003). Monthly SWE estimated from SSM /I radiances for the period 1988-1999 

(on the EASE-Grid) were acquired from the US National Snow and Ice Data Center (M. J.
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Figure 5-1: Locations of stations used in study. Pan-Arctic land mass (north of 45°N, 
dark gray), the arctic drainage basin (light gray), and locations of 179 river basins are 
shown. Dot sizes are scaled by basin area. A total of 39,926 EASE-Grid cells comprise the 
approximately 25 million km2 drainage basin. Areas for the 179 river basins range from 
20,000 km2 to 486,000 km2.

Brodzik, personal communication, March 2, 2004) and are archived under the ArcticRIMS 

project (http://R IM S.unh.edu). The snow depth algorithm (Armstrong and Brodzik, 2001) 

is: snow depth (cm) =  1.59 * [(Tig// — 6 ) — (T37/7  — 1)], where Tig// is the brightness 

temperature at 19 GHz and Tig// is the brightness temperature at 37 GHz. Water equivalent 

is obtained from the product of snow depth and density.

Our analysis involves the use of what we term “pre-melt” SWE (the average of February 

and March monthly SWE) and spring total Q  (the total discharge flow over the months 

April-June). We chose an average of two months of SWE over one month (or maximal 

monthly) to better represent mid-winter conditions. The SWE and Q  time series are 

prewhitened to remove any trends prior to the covariance analysis. The Q  records are 

drawn from an updated version of R-ArcticNET (Lammers et al., 2001). Although SWE
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estimates are available for more recent years, our analysis here ends in 2 0 0 0  due to a lack 

of more recent river discharge data for river basins across Eurasia. Alternate comparisons 

using SWE and Q  which vary depending thaw timing derived from SSM /I data, and by 

simulated snowmelt, are described in the Results section. In this study, all SWE data sets 

have valid data at each grid defining the Pan-Arctic drainage basin. For each of the 179 river 

basins, pre-melt SWE is then determined as an average over all EASE-Grid cells defining 

the respective the basin.

Satellite-borne remote sensing at microwave wavelengths can be used to monitor land

scape freeze/thaw state (Ulaby et al., 1986; Way et al., 1997; Frolking et al., 1999; Kimball 

et al., 2001). A step edge detection scheme applied to SSM /I brightness temperatures 

(McDonald et al., 2004) was used to identify the predominant springtime thaw transition 

event for each EASE-Grid cell. As with SWE, we derived a basin average date of thaw by 

averaging thaw event dates across the basin grid cells. Snow thaw across arctic basins often 

can occur over a period of weeks or months. Therefore, for large watersheds, our timing 

estimates derived from SSM /I brightness temperatrures must be interpreted with caution. 

Nonetheless they provide a general approximation of the timing in landscape thaw for use in 

estimating pre-melt SWE and spring Q. As an illustration, monthly river discharge, SWE, 

and thaw date for the Yukon basin are shown in Figure 5-2a-d).

A simulated topological network (Vorosmarty et al., 2000a), recently implemented at 6  

minute resolution, defines river basins over the approximately 25 million km2 of the Pan- 

Arctic basin. The degree to which SWE and Q covary over the period 1988-2000 is evaluated 

using the coefficient of determination, R 2 (squared correlation). Throughout our analysis 

we assume a significance level of 0.05 (5%) as the cutoff to determine whether a given SWE
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vs. Q  comparison is statistically significant, and not due to chance. For a sample size of 13 

years this correspondes to R 2 >  0.22.

5.3 R esults

Interannual variability in basin averaged, pre-melt SWE is compared with spring Q for 

179 basins over the period 1988-2000. W ith the exception of SWE derived from SSM /I 

data, interannual variability in pre-melt SWE agrees well with spring Q  variability across 

the Yukon basin in Alaska (Figure 5-2). Variability in basin SWE from the CCIN analysis 

scheme explains nearly 75% of the variability in spring Q. When reanalysis data drives the 

PWBM (PW BM /ERA-40 or PW B M /N N R ), pre-melt SWE explains well over 50% of the 

variability in spring Q. Across the Yukon basin, the greater SWE variability and magnitude 

(among all SWE products) is noted for LaD SWE, along with a lower R 2 (Figure 5-2c-d). 

Basin averaged SWE derived from SSM /I, however, shows little interannual variability and 

relatively low magnitude. For snow packs above 100 mm, the bias in SWE estimated from 

Scanning Multichannel Microwave Radiometer (SMMR) data was shown to be linearly 

related to the snow pack mass, with root-mean-square errors approaching 150 mm (Dong 

et al., 2005).

In contrast to the result over the Yukon basin, strong agreements in pre-melt SWE and 

spring Q variability are not noted across many of the study basins. Although R 2s for a 

m ajority  of th e  N orth  A m erican  b asin s are sign ificant (m ean values b etw een  0 .26 and 0.36, 

Table 1), agreements across eastern Eurasia are generally low (Figure 5-3, Table 1). Of the 

comparisons involving SWE from PW BM, more than half (130 of 231) are significant. Mean
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Figure 5-2: Monthly total SWE and mean discharge (Q ) across the Yukon basin for (a) 
1992, a year with relatively high SWE and Q, and (b) 1998, a year with low SWE and 
Q  totals. Vertical bars show SWE—  in this case from PWBM driven with ERA-40 data 
(PW BM /ERA-40). February and March SWE values (in mm, gray bars here) are averaged 
to give “pre-melt” SWE in this study. April-June SWE are depicted by white bars. Spring 
Q (in mm day- 1 , monthly values indicated by dots at middle of month) is the integration 
of the monthly Q  for April through June (hatched area), and is used for comparisons with 
the pre-melt SWE. A “thaw date” (marked Thaw) estimated from SSM /I data are used 
in alternate Q integrations, (c) Scatterplot of pre-melt SWE from each data set, for years 
1988-2000. The best fit line based on linear least squares regression is shown, (d) Time 
series of SWE and Q. Statistics [B? and associated p-value) for each covariance comparison 
are shown in parenthesis.
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R 2s from comparisons using the PW BM  are comparable to those involving CCIN SWE 

estimates, which were developed using observed snow depth observations (Brown et al., 

2003). Across all basins analyzed, the highest proportion of negative correlations (very 

poor agreement) and lowest overall R 2 are associated with SSM /I SWE. The algorithm  

used to produce these estimates, like many of the early passive-microwave SWE algorithms, 

tends to underestimate SWE in forested regions. Models which account for the differing 

influences on the microwave signature have shown promise in reducing errors in forested 

regions (Goita et al., 2003). The best agreements involving SSM /I SWE are found across 

the prairies of south-central Canada. This is expected, as the SSM /I SWE algorithm was 

developed for application across the non-forested prairie provinces of Canada.

Comparisons using SWE from the PW BM  simulations (PW BM /ERA-40, PW BM /NN R, 

and PW BM /W M ), produce similar R 2 values across each region, with mean value by region 

ranging from 0.15 to 0.36. Given that water budget models like PW BM  are most sensi

tive to time-varying climatic inputs (Rawlins et al., 2003), small differences in R 2 among 

these SWE estimates suggest similar spatial and temporal variability among the underlying 

precipitation data. Basin R 2s obtained from comparisons using LaD SWE are comparable 

with those from the comparisons using PW BM  SWE across North America, while lower 

correlations are noted for Eurasia. Mean R 2s are higher across eastern Eurasia (east of 

longitude 90° E) as compared with western Eurasia. The better agreement across Siberia 

is likely attributable to the higher fraction of precipitation which falls as snow and the 

higher discharge/precipitation ratios across the colder east. When the PW BM  is driven 

with precipitation data from a new gauge-corrected archive for the former USSR ( “Daily 

and Sub-daily Precipitation for the Former USSR”) (National Climatic Data Center, 2005),
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coefficient of determination (R2)

Figure 5-3: Explained variance (R 2) for pre-melt SWE and spring Q  comparisons (1988- 
2000) at the 179 river basins and for the 6  SWE products. SWE is taken from the CCIN 
SWE analysis; PW BM  simulations driven by ERA-40, NNR and WM; LaD model; and 
SSM /I data. The ’X ’s mark basins with a negative correlation. Average R 2 values across 
all basins, North America (NA), western Eurasia (WE), and eastern Eurasia (EE) are shown 
in Table 1. The vertical line in colorbar is level (R 2 =  0.22) at which R? is significant at 5% 
level. P-values associated with each R 2 interval are shown above the colorbar. Note that p 
<  0.01 for all R 2 >  0.40.
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basin R 2s are generally no higher (figure not shown). This suggests that precipitation-gauge 

undercatch is not a significant influence on the computed SWE vs. Q  agreements.

Snowmelt and subsequent rises in river Q  begins in southerly regions of the terrestrial 

arctic and progresses northward each spring. Comparisons of winter SWE storage and Q 

over a fixed interval (e.g. April-June) are complicated when inputs from rainfall are sig

nificant, or a large fraction of the snowmelt occurs outside of the April-June period. A 

more meaningful comparison of SWE and river Q  would be restricted to that fraction of 

Q  which is attributable to the melting of snow. For example, simulated spring Q  from 

PW BM — driven by ERA-40 data—explains a much higher proportion of observed spring Q 

than does the pre-melt SWE across the study basins (Figure 5-4, Table 1). The correspon

dence between simulated and observed spring Q  suggests the model— to some degree— is 

accounting for processes connecting the snowpack and spring river flow, e.g. sublimation, 

rainfall, and soil infiltration.

To better understand the covariance between SWE and Q, alternate comparisons were 

made using PW BM /ERA-40 monthly SWE and an estimate of when thaw is assumed to 

have occurred. The month of thaw (T M , with T M  — 1, and T M  +  1 indicating the month 

preceding and postceding the thaw month, respectively) was determined with a step edge 

detection scheme applied to SSM /I brightness temperatures (McDonald et al., 2004). Then, 

S W E tm  becomes monthly basin SWE during T M  (or T M  — 1 ), and Q tm  is discharge in 

month T M . These alternate comparisons (across all 179 basins) are defined (a) jSWEtm  

vs. spring Q, (b) S W E r M-i vs. spring Q, (c) S W E TM-1 vs. Q t m + i ,  (d) S W E Tm - i  v s .  

Q t m + i , 2 '  R 2s  are highest for alternate comparison (b), which compared SWE in the month 

before thaw (T M  — 1) with spring (April-June) Q  (Table 1). Yet, despite the fact that the
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SWE Data
Feb-Mar 

SWE (mm) % neg.
Min, Max, 

All
md Mean Coeffici 

North Am.
ent of Variation, 

W. Eurasia
R2

E. Eurasia
CCIN N /A 15.6 N /A 0.00, 0.87, 0.35 N /A N /A
PWBM/ERA-40 103 8.5 0.00, 0.91, 0.28 0.00, 0.91, 0.36 0.00, 0.45, 0.15 0.00, 0.66, 0.27
PW BM /NNR 109 1 2 .6 0.00, 0.87, 0.25 0.00, 0.87, 0.33 0.00, 0.56, 0.15 0.00, 0.71, 0.23
PWBM/WM 109 11.9 0.00, 0.91, 0.26 0.00, 0.91, 0.33 0.00, 0.75, 0.22 0.00, 0.53, 0.17
LaD 144 2 0 .1 0.00, 0.83, 0.24 0.00, 0.83, 0.33 0.00, 0.49, 0.12 0.00, 0.69, 0.16
SSM/I 80 72.1 0.00, 0.76, 0.20 0.00, 0.76, 0.26 0.00, 0.40, 0.10 0.00, 0.57, 0.14
SimRO 103 5.3 0.00, 0.92, 0.46 0.01, 0.91, 0.44 0.00, 0.79, 0.35 0.05, 0.92, 0.57
P WBM/ERA-40a 103 1 0 .0 0.00, 0.80, 0.27 0.00, 0.80, 0.33 0 .0 0 , 0.61, 0 .2 2 0.00, 0.64, 0.22
PW BM/ERA-40b 103 18.7 0.00, 0.93, 0.34 0.00, 0.93, 0.37 0.00, 0.86, 0.38 0.00, 0.70, 0.26
PW BM/ERA-40C 103 1 0 .0 0.00, 0.80, 0.27 0.00, 0.80, 0.33 0 .0 0 , 0.61, 0 .2 2 0.00, 0.64, 0.22
PW BM/ERA-40d 103 1 0 .0 0.00, 0.80, 0.27 0.00, 0.80, 0.33 0 .0 0 , 0.61, 0 .2 2 0.00, 0.64, 0.22
PW BM/ERA-40e 103 2 2 .8 0.00, 0.76, 0.25 0.00, 0.76, 0.35 0 .0 0 , 0.28, 0 .1 2 0.00, 0.58, 0.19

Table 5.1: Mean February-March SWE, percent negative correlations, and minimum, maximum, and mean coefficient of determina
tion (R 2) from the pre-melt SWE and spring Q  comparisons. SWE (mm) is taken from data sets described in Data and Methods 
and shown in Figure 5-3. Percentage of negative correlations, and mean explained variance is also tabulated for simulated spring Q 
vs. observed spring Q (row SimRO), where simulated Q is from PW BM /ERA-40 model simulation. Mean February-March SWE is 
averaged across the terrestrial arctic basin, excluding Greenland. Individual R 2 values for each study basin (shown in Figure 5-3) are 
averaged (excluding negative correlations) over all 179 river basins (All), and the basins across North America, western Eurasia, and 
eastern Eurasia, with the latter two separated by the 90°E meridian. Mean R 2 for CCIN SWE are determined for North American 
sector only. PW BM/ERA-40a_e represent the alternate comparisons, defined in Results section.



mean R 2 across western Eurasia improves from 0.15 (using default PW BM /ERA-40) to 0.38 

(alternate comparison b), little difference is noted with the remianing alternate comparisons 

and other regions.

Lastly, we scaled spring Q using a factor S, where S  =  PW BM  monthly snow melt-runoff 

ratio, with 0 <  S <  1. Then, snowmelt Q  each month is Qs =  Q S . Each occurrence of Qs 

was then summed resulting in a total Qs each spring, for each basin. Using Qs in place of 

the default Q  (and PW BM /ERA-40 SWE), we note a decrease in agreement across eastern 

Eurasia, with no change across most of the domain. And although SWE from simulations 

with ERA-40, in general, explains more than a third of the variation in Q, a large propor

tion of the interannual variability is not due to SWE variability. When considering these 

results, it is interesting to note that Lammers et al. (2006) recently found that annual sim

ulated discharge across Alaska (drawn from three separate models) was in poor agreement 

with observed discharge data between 1980-2001. Better agreements across northwestern 

North America, eastern Eurasia (EE in Figure 5-3), and parts of western Eurasia (WE) 

in this study are attributable to relatively higher snowfall rates and a greater interannual 

variability in spring discharge (Figure 5-4b). Conversely, the region of eastern Eurasia 

with numerous negative correlations is characterized by low spring discharge variability. 

Delays in snowmelt water reaching river systems, which can be significant (Hinzman and 

Kane, 1991), are likely an additional influence on these reported correlations. For large 

arctic basins, comparisons between snow storage and discharge volume are complicated by 

the large temporal variation in basin thaw and the delays in snowmelt water reaching the 

gauge. More meaningful comparisons between spatial SWE and river discharge are possible 

through the use of hydrograph separation to partition discharge into overland and baseflow
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Figure 5-4: (a) R 2 for PW BM  simulated spring total Q  vs. observed spring total Q. The 
vertical line in colorbar is level at which R 2 is significant. Minimum, maximum, and mean 
R 2s across all basins, North America (NA), western Eurasia (WE), and eastern Eurasia 
(EE) are shown in Table 1. The ’X ’s mark basins with a negative correlation, (b) Standard 
deviation of spring (April-June) discharge for the period 1988-2000.
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components. This, however, requires the use of daily discharge data which are more limited 

for the Pan-Arctic region.

5.4 Conclusions

In our comparisons of interannual variations in pre-melt SWE and spring Q , R 2 values are 

highest (mean of 0.25 to 0.28 over all basins) when PW BM  is driven by ERA-40, NNR  

or WM climate data. Similar agreements are noted when SWE from the observed data  

analysis scheme are used, which suggests that the hydrological model is capturing as much 

variability in the spring flow as does the observed SWE scheme. Average R 2 determined 

from the SSM /I SWE and spring Q  comparisons are generally low, and a sizable majority 

(over 72%) of these correlations are negative. The low variability and magnitude is likely 

related to saturation of the SSM /I algorithm at high SWE values. Continued development 

of new regional schemes which account for microwave emmission from forests should improve 

large-scale SWE estimates. Poor agreements among all SWE products —particularly across 

parts of western Eurasia— are noted in areas with low discharge variability. Pre-screening 

to eliminate basins with low flow or insufficient variability would likely improve the SWE 

vs. Q  agreements.

Results of the covariance analysis using alternate temporal integrations to derive pre

melt SWE (or Q) suggest that our choice of a fixed interval for spring, ie. April-June, 

is not th e  prim ary cause of th e  rela tively  low  R 2s. Furtherm ore, w e conclude th a t m uch  

of the interannual variability in river discharge must be influenced by factors other than 

basin SWE storage variations. The unexplained variability is likely due to a combination of

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



effects from physical processes (sublimation, infiltration) and errors in spatial SWE. Rela

tively good agreement between simulated and observed spring Q  suggests that hydrological 

models can be useful in understanding the SWE-to-Q linkages. Our results provide a bench

mark of the relationship between the solid precipitation input and spring discharge flux, 

and demonstrate that hydrological models driven with reanalysis data can provide SWE 

estimates sufficient for use in validation of remote-sensing and GCM SWE fields. Additional 

studies using daily discharge data to better quantify snowmelt runoff will further facilitate 

SWE product evaluations and the understanding of linkages in arctic hydrological system.
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SUM M A R Y

This dissertation was undertaken in an effort to improve our understanding of the be

havior of the Arctic system, specifically the hydroclimatology of the pan-Arctic drainage 

basin. A sparse and declining observational network limits our ability to improve quan

titative models of the arctic system. A key development resulting from this study was a 

hydrological model (the Pan-Arctic Water Balance Model, PWBM) appropriate for simu

lations of the arctic hydrological cycle. The studies described here examined several data 

sets developed specifically to provide better estimates of climate drivers used to force the 

model. This dissertation examined our ability to monitor elements of the arctic hydrolog

ical, discussed limitations in common modeling approaches and remote sensing data sets, 

and offered suggestions for future studies.

As described in Chapter 1, the PW BM  has been modified to include a scheme for 

simulating changes in freezing and thawing of water in the soil. PWBM-generated maximum  

summer active-layer thickness estimates differed from observed values by approximately 1 

a. Thus the model captured spatial variations in thaw depth to within the variability seen 

in observed data. Seasonal and permanent frost reduces infiltration into soils and severely 

limits the amount of water that can be stored. Simulating this process results in higher 

(10-25%) runoff as compared to simulations with the soil freeze/thaw submodel disabled. 

Processes involving groundwater are represented in the lowest soil layer, and no inter-grid 

connectivity is currently implemented. W ith recent research suggesting that groundwater
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contributions to discharge during winter may be changing, improvements in simulation 

of winter discharge are likely with the implementation of more physically-based soil and 

groundwater algorithms.

Although good agreement was noted between simulated and observed long-term seasonal 

runoff to the 10 arctic sea basins, budget closure at the basin scale remains a problem. 

Simulated annual runoff is most sensitive to changes in climate driver data— precipitation 

and air temperature— while less effect is noted when other model parameters are altered. It 

is clear that improvements in the performance of conceptual and quantitative hydrological 

models will be achieved best with the use of more accurate time-varying climate forcings, 

rather than from more detailed specification of landscape attributes. Although the merits 

of model complexity were not fully tested here, comparisons between the BROOK90 and 

WBM (Federer et al., 2003) suggest that more detailed physical parameterizations do not 

increase model performance. A declining observational network limits the usefulness of 

spatial fields derived from point observations, while inaccuracies in satellite precipitation 

retrievals preclude their use at this time. Therefore, climate data from the NCEP-NCAR  

reanalysis (or the more recent ERA-40 reanalysis), when adjusted based on observed data 

(Serreze et al., 2003b), currently offer the best forcings for model simulations.

The analysis of snow thaw timing shows that, for much of the pan-Arctic, backscatter 

from SeaWinds offers the potential for monitoring high-latitude snow thaw at spatial scales 

appropriate for pan-Arctic applications. The study described a method to estimate the 

spatial and temporal dynamics of daily landscape freeze/thaw determined from low spatial 

resolution, high frequency (Ku-band) backscatter data. Daily river discharge for some 

52 basins was used to represent observed landscape thaw. For nearly half of the pan-
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Arctic grid cells analyzed, timing of snow thaw from SeaWinds data differed from timing 

noted in PW BM  by less than one week. Scattering of the microwave signal is sensitive to  

other surface properties than snow and ground. Not surprisingly, the most unambiguous 

backscatter response in this study is noted across regions with (i) high snow accumulation, 

(ii) low to moderate tree cover and (iii) low topographic complexity.

Given that algorithms used to estimate snow thaw timing have not been tested under a 

wide variation of snow cover properties, land cover and terrain conditions, future validation 

studies will depend upon the collection of consistent and reliable ground truth hydrological 

measurements across a wide range of arctic landscapes. A paucity of daily river discharge 

observations across the arctic basin (Shiklomanov et al., 2002) hinders these efforts. To 

be useful for large-scale hydrological applications, remote sensing thaw timing estimates 

must account for the partitioning of freeze-thaw over different regions with highly variable 

landscape attributes. Unanswered in this study is the question of precisely how thaw timing 

information can be used to constrain hydrological and ecological processes models. Devel

opment of novel assimilation techniques which incorporate thaw timing estimates in model 

simulations may prove useful. Predictions of flood timing, for example, could be improved 

using the backscatter signal across large regions which lack observed meteorological stations.

This dissertation also explores whether observed increases in freshwater discharge from 

Eurasia (1936-1999) are attributable to changes in precipitation seasonality. As Earth’s 

climate warms, the rate of water exchange in the land-atmosphere-ocean system is expected 

to increase. This analysis was motivated under the premise that high-latitude precipitation 

and, consequently, river runoff, is expected to increase under a warmed climate. Increases
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in snowfall over the pan-Arctic may be particularly important since snowmelt there occurs 

on frozen soils with low infiltration rates (Kane and Stein, 1983; Stahli et al., 2001).

Analysis of the precipitation and discharge data revealed that annual discharge has be

come a larger fraction of total precipitation over the region during the period 1936-1999. 

Although basin-averaged rainfall has declined significantly, no significant change was noted 

in basin snowfall over the entire period. Significant snowfall increases were noted, how

ever, across north-central Eurasia where soils have a limited capacity for infiltration during 

snowmelt. In addition, this study described the bias likely to occur when interpolating from 

point observations to a regular grid, which is due primarily to changes in station locations 

over time. Although the results, and those from other recent studies (Ye et al., 1998; Prey 

and Smith, 2003), suggest that increased cold season precipitation may be a significant 

driver of the discharge change, biases in early meteorological networks preclude a confident 

assessment of the precipitation-discharge linkages. However, the analysis of the effects of 

changing station network configurations indicates that real local snowfall increases over the 

region were likely greater, and the rainfall decreases were possibly less, than the changes de

termined from analysis of gridded data sets such as CRU and WM. Future studies related 

to the sharp decline in rainfall— which is consistent with projections of a general drying 

over most mid-latitude continental interiors— should focus on biological effects (increased 

risk of fires, changes to soil carbon stores) and human impacts. Reconstructing historical 

fields of arctic precipitation, to  within tolerances required to  properly address the discharge 

increase, may not be possible. However, by restricting evaluations to more recent decades, 

and through the use of “temporally-consistent” precipitation estimates available from arctic
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reanalysis, more useful examinations of precipitation-discharge trends and other linkages in 

the land-atmosphere-ocean system  can be made.

Issues surrounding our ability to simulate arctic water budgets were explored in a sen

sitivity study by forcing the PW BM  (in 9 separate simulation runs) with three common 

climate data sets and three methods of estimating potential evapotranspiration (PET). 

Evaluations of simulated water budgets are important in developing a capability to predict 

and understand future changes in the arctic system. Biases in NCEP-NCAR reanalysis 

precipitation and vapor pressure— related to model convective feedbacks involving precipi

tation, radiation, and soil moisture (Serreze and Hurst, 2000)— cause an excess of simulated 

runoff. When precipitation from interpolations of station data, or from adjusted NCEP- 

NCAR reanalysis data are used, budget closure to within 7% is noted across the Yukon 

basin in Alaska. Runoff differences due to specification of landcover type are an order 

of magnitude smaller than differences due to biases in precipitation or in choice of PET  

function used. Validation of simulated water budgets in this manner helps to ensure that 

high-quality, robust model results are available for comparisons with observed data expected 

to be gathered during upcoming International Polar Year (IPY) campaign of 2007-2008.

The final chapter of this dissertation focused on the use of common gridded SWE data 

sets to understand linkages in the land-atmosphere system. Comparisons of SWE drawn 

from land surface models and microwave remote sensing with measured river discharge 

reveal that basin-averaged SWE prior to snowmelt explains a relatively small (yet statisti

cally significant) fraction of interannual variability in spring (April-June) discharge. Much 

of the interannual variability in river discharge, therefore, must be influenced by factors 

other than basin SWE storage variations, such as sublimation and infiltration into the soil.
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Variability and magnitude in SWE derived from SSM /I data are considerably lower than 

the variability and magnitude in SWE drawn from the land surface models, and generally 

poor agreement is noted between SSM /I SWE and spring discharge. To produce their global 

SWE product, Armstrong and Brodzik (2001) applied a single snow depth algorithm over 

the entire globe. Physically-based models (Wiesmann and Matzler, 1998) which take into 

account the different contributions to the measured microwave radiation can improve spa

tial estimates of SWE. Development of new regional schemes which define the relationship 

between lake ice, snow cover, and microwave brightness temperature at the scale of satellite 

passive microwave observations are needed to improve large-scale SWE estimates. The next 

step in this research will be to compare new SWE estimates from the Advanced Microwave 

Scanning Radiometer (AMSR-E) instrument with river discharge data. A subset of the 

gauge records, from stations which have sufficient interannual variability, will be used for 

future comparisons, as low interannual variability impedes our ability to understand the 

SWE-discharge linkages.

Research plans involving the PW BM  include simulations of future hydrological condi

tions driven with climate inputs drawn from IPCC scenarios. Model updates which help 

account for human influences on the water cycle are needed to improve regional simula

tions, particularly for areas where arctic populations have significant interaction with water 

resources. The addition of relatively simple routines to account for hydrological characteris

tics of mosses and other surface organic material should improve water budget simulations, 

particularly those with a changing vegetation structure. Impacts to arctic hydrology under 

climate change are the next focus of research involving the PWBM. This research will in-
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volve accounting for the effects of impoundments, irrigation, groundwater withdrawls, and 

other anthropogenic effects.

Remote sensing of the arctic hydrosphere is in its infancy. Yet, the low density of in situ  

hydrometeorological observations, as well as problems with the use of optical sensors, make 

satellite-borne active and passive microwave observations promising options for monitoring 

of the arctic environment. Although addressed only briefly here, there is much potential for 

improvements in deriving snow mass budgets from remote sensing. Assessment of regional 

uncertainties will help to improve our understanding of a critical component in many high- 

latitude feedback processes. This dissertation and other similar efforts are important steps 

in our understanding of arctic change and the uncertainties inherent in projections of future 

change.
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A P P E N D IX  A

PA N -A R C T IC  W ATER B A L A N C E  M ODEL

The Pan-Arctic Water Balance Model (PWBM) is a daily explicit hydrologic model, whereas 

the Water Balance Model (WBM) contains an optimized soil moisture routine and is run 

using monthly inputs and a quasi-daily, statistically-equivalent daily time step (Vorosmarty 

et al., 1998). The significant changes to the original algorithms which comprise the PW BM  

are described below.

A .l  Snow D ynam ics

Daily precipitation for each grid is partitioned into either rain or snow based on a daily air 

temperature threshold of 0°C. The simulated snowpack contains both a solid (frozen) and 

liquid portion, providing a total model value for snow water equivalent (SW E). Sublimation 

from the frozen snow is determined through a simple function (Hamon, 1963), which allows 

for a small amount of sublimation at air temperatures below freezing. The function is

Et =  715.5 A e * (Tt) /  (Tt +  273.2) (A .l)
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where Et is sublimation (or potential evapotranspiration when snow is absent) (mm day- 1 ), 

A is daylength (fraction of day), and e * (Tt) is daily saturated vapor pressure (kPa) at 

temperature Tt (°C).

Daily snowmelt, a function of rainfall and/or air temperature, is

M t =  f v ■ (2.63 +  2.55 Tt +  0.0912 Tt Pt ) (A.2)

where M t is snowmelt (mm day- 1 ), f v is a vegetation factor that accounts for the differ

ential absorption of radiation for different landcover types (dimensionless, range 0.4 to 1.0) 

(Federer and Lash, 1978), Tt represents daily air temperature (°C) and Pt is precipitation 

(mm day- 1 ), all on day t  (W illmott et al., 1985). Snowmelt and/or rainfall contributes to 

the liquid portion of the snowpack. Damming of snowmelt runoff is a complex process which 

delays the timing of streamflow during spring (Hinzman and Kane, 1991). In the PWBM, 

the snowpack is assumed to retain liquid water until this liquid content exceeds 80% of 

the snowpack frozen portion’s water equivalent (S W E t), whereupon a fraction (60%) of 

the snowpack liquid water is released to the soil surface. The value of 80 % represents all 

processes of delay to release of liquid water within the 625 km2 grid cell. This process is 

determined through
/

S W t'y , S W t >  a  S W E t
A W t =  (A.3)

0 , otherwise

where AW t is water made available to the soil surface (mm day- 1 ), S W t is the snowpack 

liquid water content (mm), S W E t is snowpack frozen water content (mm), 7  is the per-
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centage of SW t released from snowpack (0 .6  or 60% day x), and a  is the critical threshold 

(80%).

A .2 Soil Subm odel

Daily changes in the PW BM  soil liquid water and ice content are made by using gridded 

fields of soil properties and daily air temperature and the Stefan solution to heat transfer 

with phase change in a uniform semi-infinite medium (Lunardini, 1981), defined

where zt is the depth of the phase change boundary (m), k is the soil thermal conductivity

air temperature to integrated soil-surface temperature (Lunardini, 1978) (dimensionless),

within the TFM includes an assumption of saturation at the interface between thawed 

and frozen soils. Although used frequently in engineering applications involving paved 

surfaces, few scientific studies have estimated spatially-variable n-factors across large areas. 

A constant value of 0.8 was assigned for all EASE-Grids, which represents an average n- 

factor across several vegetative classes determined using multiply observations of air and 

soil-surface temperatures at sites in northern Alaska (Klene et al., 2001).

2 k (n D D T (t) )
(A.4)

above the phase change boundary (Jm  1 C 1 d '), n is the n-factor, relating integrated

D D T (t)  is the accumulated degree days of thaw (or freeze) (°C-day), w  is the soil water 

content at the phase change boundary (kgkg - 1  dry soil), p  is the soil bulk density (kg m -3 ), 

and L  is the latent heat of fusion of water (J kg-1 ). Our implementation of Equation A.4
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Organic soils have very different thermal properties than mineral soils (van Wijk and de 

Vries, 1963), , and since many soils in the Pan-Arctic have a surface organic layer, we used 

the two-layered-soil Stefan solution (Jumikis, 1997). If the freeze/thaw depth calculation is 

within the surface layer, Equation A.4 applies with organic soil thermal properties (kQ, k;0, 

and, p0), otherwise the depth is given (after Jumikins, 1977) by,

z (t)  =  z0 [ l  -  M  +,/(̂ 0 M  2-  f z 2 ^mW0 Po\  _  2 km n D D T ( t)  (A g)
/  V  V o /  \  o P m }  P m  L

where the subscript o refers to organic soil properties and the subscript m  refers to mineral 

soil properties. Soil thermal conductivity for organic (ka, J m - 1  C _ 1  d_1) and mineral (km, 

J m - 1  C_ 1  d_1) soils is a function of soil moisture and soil texture (Table A .l) . Organic-layer 

thickness was estimated by assuming half of the total soil organic matter (Global Soil Data  

Task, 2000) is in the surface organic layer, with a bulk density of 100 kg m ~3. Organic-layer 

thicknesses across the Pan-Arctic range from 0.10 to 0.70 m, with a Pan-Arctic mean of 

0 .2 2  m.

Daily soil conductivity (ka and krn) for each grid cell is obtained by using the PWBM- 

generated soil moisture and linearly interpolating between conductivity associated with two 

of the three moisture classes; dry (soil moisture ~ 0  %), wet (50%) and saturated (100%) 

(Table A .l) .

Soil moisture (water and ice) is determined from interactions between the changing 

active  layer th ickness, snow m elt a n d /o r  rainfall, and evap otran sp iration . R unoff occurs  

when (i) soil moisture exceeds field capacity or (ii) snowmelt and/or rainfall exceeds a 

predefined critical value (described below). While changes in soil water content have a
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Texture porosity 

cm3 /cm3

field capacity 

cm3/cm3

wilting point 

cm3 /cm 3

bulk density 

g/cm3

thermal conductivity 
(Saturated, Wet, Dry) *

cal cm- 1  s_1  °C_1

Coarse 0.39 0.05 0.04 1 .6 5.2, 4.2, 0.7
Coarse+med. 0.43 0.14 0.05 1.5 4.8, 3.8, 0.7
Medium 0.45 0.24 0.09 1.44 4.3, 3.3, 0.6
Coarse-rfine 0.45 0.24 0.09 1.44 4.3, 3.3, 0.6
Coarse-f-med. +fine 0.45 0.24 0.09 1.44 4.3, 3.3, 0.6
Medium+fine 0.48 0.32 0.17 1.35 3.9, 2.9, 0.6
Fine 0.53 0.35 0 .2 2 1 .2 1 3.8, 2.8, 0.6
Organic 0.92 0.5 0 .1 0 .1 1.2, 0.7, 0.14

Table A .l: PWBM soil texture classes and model parameters. * Data from Van Wijk and de Vries (1963).



significant effect on ALT, variations in seasonal snow cover have a relatively slight impact 

(Zhang and Stamnes, 1998). The PWBM accounts for the insulating effects of snowcover 

through a delay to soil thawing in spring when model snowcover is present.

Change in active-layer thickness (ALT) is used to determine the amount of water which 

changes phase (melt or freeze) on a daily basis. Soil ice (water) which melts (freezes) is also 

dependent on the relative saturation of the zone. The amount of ice that melts (freezes) is 

thus

L t — A  zt R t (A.6 )

where Lt is melt (freeze) (mm day- 1 ) on day t, A  z t is the increase (decrease) in active- 

layer thickness (mm day- 1 ) on day t, and R t is the relative saturation of the zone ( 0  to 1 ). 

Relative saturation is defined

I t - l  +  Wt_!
Rt ~  S D   (A '7)

where It- i  is soil ice (mm) and Wt- 1 is soil water (mm), both from the previous day, and

S D  is the total pore space of the soil layer (mm). If A  z t >  0, ice is melted. Liquid water

is converted to ice when A zt <  0. This algorithm is used to change the phase of water in

the deep soil layer when all water has been converted in the overlying root zone.

Daily snow drainage and/or rainfall infiltrates the root zone to recharge soil moisture 

storage to a maximum of 1 2  mm day- 1 . Surface inputs (snow drainage and rain) greater 

than this threshold contribute to runoff. Soil recharge is defined

R w =  I W F w • (A .8 )
W  +  I
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where R w is recharge (mm day-1 ) to the soil reservoir of water, I W  represents water 

infiltrating the soil (mm day- 1 ), W  is root zone soil water (mm), and I  is root zone ice 

content (mm). The remaining fraction of infiltration water contributes to soil ice storage.

The upper soil (root) zone loses water through evapotranspiration, lateral movement, 

and vertical drainage to the deep soil zone. Potential evapotraspiration (PE) is estimated 

with the Hamon function (Hamon, 1963) (Equation A .l) . Vegetation is assumed to utilize 

soil moisture at the potential rate when soil water >  field capacity. In times of moisture 

stress, evapotranspiration is a fraction of the potential rate, and is determined through a 

soil-retention function (Vorosmarty et al., 1989). The field capacity for each layer is

F C r =  (S D r -  Ir ) a  (A.9)

where F C r is field capacity in the root zone (mm), S D r is pore space (mm), Ir is ice content 

(mm), and a  is field capacity (%) (Table A .l). Water draining vertically is proportioned 

into liquid water and ice in the deep zone

d-  = B w ^ W i <A-10>

where dw (mm) is the vertical flux per day which contributes to water in the deep zone, B  

is the excess water from the root zone (mm), W j is water in the deep zone (mm), and Wi 

is ice in the deep zone (mm). The contribution to deep zone ice, dx (mm), is

<A-n >

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A P P E N D IX  B

PE T  FU N C T IO N S U SED IN  P W B M

Hamon as given by Hamon (1963)

P E r =  715.5 A e* (Tm)/(T m +  273.2)

Penman-Monteith (PM) as given by M onteith  (1965) (R n — R n — S  with 5  =  0 )

A.Rn Cp P R a jTa('t Lv pw PEs —
A +  7  +  7  (rc/ r a)

Cp heat capacity of air, 1005 Jk g - 1  K - 1  

ct conversion constant , 0.01157 W  m d ,M J_ 1mm ' 1 

D a vapor pressure deficit in air, kPa, e*(Ta) — ea 

e*(T) saturated vapor pressure at temperature T, kPa 

Lv latent heat of vaporization, 2448.0 M J/m 2 

P E r reference-surface potential evapotranspiration, m m /d  

P E S surface-dependent potential evapotranspiration, m m /d
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ra aerodynamic resistance, s/m  

rc surface or canopy resistance, s /m  

Rn net radiation above the surface, W /m 2 

Tm mean air temperature for day, °C 

za reference height, m 

7  psychrometer constant, 0.067 kPa/K

A  rate of change of vapor pressure with temperature, kPa/K  

A daylength, days 

p density of air, 1.234 kg/m 3 

pw density of water, 1.0 M g/m 3
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A P P E N D IX  C

PW B M  SOURCE CODE

program wbm 

implicit none

integer narray,nbasins,ncells,kyr,iyrindex,inum 
parameter (narray=39926,nbasins=7645) 
real r_lat,r_lon,rlat(narray),rlon(narray)
integer lengthl,length2,length3,length4,length5,length6,imon 
integer length7,length8,length9,ispinupyr,ispinupday,lengthout 
integer i,j,k,l,m,mm,nn,icell,irec,ii,jj,ntime,ibad,julday 
integer iindx(narray),jindx(narray),id,ibasin,idrain2,kl,k2,k3,iyr 
integer ihave_basinout,init.nspinup,intrnl_bas,idryriv,idata 
integer ifrstyr,ilstyr,ifrstmon,iday,ndays,nmons,ivegcov,imondayl 
integer ntotdays.ivegitation(narray),n_days,isoilclass,iwrite 
integer igetcell,ithawflag(narray),navs,ichosen,ioutput,iflag 
integer ntemp_point.nthawdays(narray),ihave_basin(nbasins) 
integer fallflag(narray).springflag(narray).iphase 
integer ifrstfrz(narray),iseason(narray),iaccumulate(narray) 
integer ndegdays_summed(narray),monlastday(12),lastday 
integer ioutyrl,ioutmonl,ioutyr2,ioutmon2,idailyout(50) 
integer monthlyout(50),ievapfunc,inewvegl(narray,120) 
integer iwetland(narray) 
parameter(igetcell=2256,navs=10)
dimension ihave_basinout(narray),intrnl_bas(79),idryriv(narray) 
dimension id(narray+l),ibasin(narray),idrain2(neirray),imondayl(12) 
data imondayl / 0, 31, 59, 90, 120, 151, 181, 212, 243, 273,
$ 304, 334 /

d a t a  m o n l a s t d a y  / 3 i , 2 8 ,  3 1 ,  3 0 ,  3 1 ,  3 0 ,  3 1 ,  3 1 ,  3 0 ,  3 1 ,  3 0 ,  3 1 /  

real*8 evap,totwat,sum,km_per_mm,globe_cloud,rmissing,totjunk 
real*8 total_initial_water,total_land_water.effective_e,pr0_new 
real*8 wal,wa2,dwa,et,h_d,q ,qs,prO,precip,prain,psnow,sum2ocean 
real*8 tminvals.tmaxvals,vaporvals.windvals.radvals,wetlandstore 
real*8 tmin,tmax,vaporpress,windsp,radnet,years,wetlandstoreprev
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real*8 rootwatprev.rootwat,ds.rootwater,wgl,wg2,dg,wg,xg,xr 
real*8 deepwatprev.deepwat,rooticeprev,rootice,rootices 
real*8 deepwater,deepiceprev,deepice,deepices,sum_deepices 
real*8 ro,rol,ro2,wrl,wr2,dr,wr,da,dbl,db2,wt,d3,d3s,disch,area 
real*8 wsnwl,wsnw2,wsnow,temp,tair,tsnow_cutoff,potent_et 
real*8 F L ,sheat,rLAI,wetlandwat,sum_wetlandstore 
realms sum_p,sum_wsnow,sum_rootwater,sum_deepwater,sum_wr,sum_et 
real*8 check,sum_intrnl,basin_outlet,sum2ocean_alltime,total 
real*8 snowpkl,snowpk2,snowpack,sum_snowpk,snowretain,snowrelease 
real*8 avail_wat,snow_subl,snowpet,sum_snowsubl.PminusE,snowmelt 
real*8 surf_evap,evap_unmet,sum_surfevap,rad_2_melt,rad_melt 
real*8 temp_array(3,narray),sum2,tavg,sum_rootices,sum_runoff 
real*8 soildepth(narray),sumtair2(narray),soilconduct,soildensity 
real*8 rootdepth(narray),soilwatvolume,root_excess,deep_excess 
real*8 root_depth,fieldcapacity,depthout,sumprecip 
real*8 soil_depth,soilwatvol.grndwatvol,basin_av,root2deep 
real*8 overlandRO,rootbaseflow,deepbaseflow,initialstate 
real*8 sumtair(narray).soilporosity.wiltingpoint,infiltration 
real*8 field_capac(narray),soil_porosity(narray),zfrzmax(narray) 
real*8 abs_sumtair,wilt_point(narray).zthawmax(narray) 
real*8 rootbaseflowfact.deepbaseflowfact,diff,sumro,sumatocean 
real*8 sumtair_prev,sumpet,sumsnow,sumsubl,sumavailwat,sumsurfevap 
real*8 sumrunoff,sumriver,sumet,summerthaw,active_layer 
real*8 bulkdensity.thermcondwet.thermcondsat.thermconddry 
realms bulk_dens,therm_conddry,therm_condwet,therm_condsat 
real*8 therm_condpeatdry,therm_condpeatwet,therm_condpeatsat 
real*8 therm_condpeat.peatdensity,soilcarbon,activelayer,sumbas 
real*8 active_layer_prev,basin_area(nbasins),varjunk 
real*8 conduct_av,conduct_sum,conductpeat_av,conductpeat_sum 
real*8 depth_space(narray),depth_phys(narray),depth_space_prev 
real*8 depth_phys_prev,rootwatl(narray,31),thawfreezeDl(narray,31) 
real*8 rooticel(narray,31),deepwatl(narray,31),deepicel(narray,31) 
real*8 runoff1 (narray,31),evapl(narray,31),snowwateql(narray,31) 
real*8 monthrunoff(narray,12),monthevap(narray,12) 
real*8 monthrootwat(narray,12),monthrootice(narray,12) 
real*8 monthdeepwat(narray,12),monthdeepice(narray,12) 
real*8 monthswe(narray,12),monthroot2deep(narray,12),pfactor(12) 
real*8 monthsub(narray,12),snowice(narray,31),snowwater(narray,31) 
real*8 snowmeltl(narray,31),monthmeltwat(narray,12) 
real snow4pet.prndayf,sngl_lai,sngl_snow,sngl_FL,sngl_wind,sngl_rad 
real sngl_tair,sngl_vap,sngl_sheat,sngl_tmax,sngl_tmin 
real sngl_lat,sngl_lon,laivals,lai
dimension evap(31,narray),basin_outlet(narray),temp(31.narray) 
dimension prO(31.narray),wsnow(narray).snowpack(narray) 
dimension tminvals(31,narray).tmaxvals(31.narray) 
dimension vaporvals(31.narray).windvals(31.narray)
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dimension radvals(31,narray),laivals(12,31,narray) 
dimension disch(0:narray),ro(narray),qs(narray).deepwater(narray) 
dimension rootwater(narray),wg(narray),wr(narray),d3s(narray) 
dimension rootices(narray),deepices(narray),summerthaw(narray) 
dimension bulk_dens (narray) ,therm_condwet (narray) 
dimension therm_conddry (narray) ,therm_condsat(narray) 
dimension soilcarbon(narray),activelayer(31.narray) 
dimension active_layer(narray),initialstate(nbasins) 
dimension basin_av(navs,nbasins),sumbas(navs,nbasins) 
dimension conductpeat_sum(narray),conduct_sum(narray) 
dimension prO_new(31.narray).wetlandwat(narray) 
character header*60,datestring*7,datestring2*11,fmt*40 
character*100 pathl,path2,path3,namel,name2,name3,yrstring*4 
character*100 path4,path5,path6,name4,name5,name6 
character*100 path7,path8,path9,name7,name8,name9 
character tname(900)*100.pname(900)*100,thawname(900)*100 
character tmaxname(900)*100,tminname(900)*100,vaporname(900)*100 
character windname(900)*100.radname(900)*100,lainame(200)*100 
character ename(900)*100,runoffname*60,fname*80,domain_file*100 
character*100 rootfile,carbonfile.temvegfile,soiltextfile 
character*100 spinupfile,prcppath,temppath,altpath,outpath 
character*100 tmaxpath,tminpath,vaporpath,windpath,radpath,laipath 
character yearchk*4,yearstr*4,homedir*100,str1*120,str2*200 
character headerPfile*20,headerTfile*20
logical read_evapdat,read_thawdat,printflag,ctrl_thaw,no_thaw 
logical read_penmandat
data read_evapdat,read_thawdat,ctrl_thaw,no_thaw 

$ /.false.,.false.,.false.,.false./

C DEFINE CONSTANTS
km_per_mm=l.Od-6

C OPEN CONTROL FILE AND READ RECORDS 
call getenv(’HOME', homedir) 
inum = index(homedir, ’ O - l  
0PEN(11,FILE=,pwbm.initialize.txt’)
READ (11,'(alOO)’) strl 
lengthl = index (strl, ’ O - l  
domain_file = strl(1:lengthl)
READ (11,’(alOO)’) strl 
lengthl = index (strl, ’ O  - 1 
rootfile = strl(1:lengthl)
READ (11,'(alOO)’) strl 
lengthl = index (strl, ’ ’) - 1 
carbonfile = strl(1:lengthl)
READ (11,’(alOO)O strl

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lengthl = index (strl, ’ ’) - 1 
temvegfile = strl(1:lengthl)
READ (11,'(alOO)’) strl 
lengthl = index (strl, ’  ’ )  - 1 
soiltextfile = strl(1:lengthl)
READ (11,’(alOO)O strl
lengthl = index (strl, ’ ’) - 1
spinupfile = strl(1:lengthl)
length2 = index (strl, ’spinup.’) - 1
READ (11,’(alOO)’) strl
lengthl = index (strl, ’ ’) - 1
prcppath = strl(1:lengthl)
READ (11,»(alOO)») strl 
lengthl = index (strl, ’ ’) - 1 
temppath = strl(1:lengthl)
READ (11,’(alOO)’) strl 
lengthl = index (strl, ’ ’) - 1 
altpath = strl(1:lengthl)
READ (11,>(alOO)’) strl 
lengthout = index (strl, ' ’) - 1 
outpath = strl(1:lengthout)

c Read path names for time series used to get Penman-Monteith PET 
READ (11, ’(alOO)’) strl 
lengthl = index (strl, ’  ’) - 1 
tmaxpath = strl(1:lengthl)
READ (11,’(alOO)’) strl 
lengthl = index (strl, ’ ’) - 1 
tminpath = strl(1:lengthl)
READ (11,’(alOO)’) strl 
lengthl = index (strl, ’ ’) - 1 
vaporpath = strl(1:lengthl)
READ (11,’(alOO)’) strl 
lengthl = index (strl, ’ ’) - 1 
windpath = strl(1:lengthl)
READ (11,»(alOO ) > )  strl 
lengthl = index (strl, ’ ’) - 1 
radpath = strl(1:lengthl)
READ (11,»(alOO)») strl 
lengthl = index (strl, ’ 0 - 1  
laipath = strl(1:lengthl)

READ (11,*) ! read blank line in init file
READ (11,*) area
READ (11,*) peatdensity

c print*, ’Peat’, peatdensity
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READ (11,*) therm_condpeatdry,therm_condpeatwet,therm_condpeatsat 
c print*, ’Conduct’,therm_condpeatdry,therm_condpeatwet,
c $ therm_condpeatsat

READ (11,*) tsnow_cutoff 
c print*, ’Snow cutoff’, tsnow_cutoff

READ (11,*) snowretain 
c print*, snowretain

READ (11,*) snowrelease 
c print*, snowrelease

READ (11,*) infiltration 
c print*, infiltration

READ (11,*) rootbaseflowfact,deepbaseflowfact 
c print*, rootbaseflowfact.deepbaseflowfact

READ (11,*) ievapfunc 
c print*, ievapfunc

READ (11,*) nspinup 
c print*, nspinup

READ (11,*)
READ (11,*) pfactor(1)
READ (11,*) pfactor(2)
READ (11,*) pfactor(3)
READ (11,*) pfactor(4)
READ (U,*) pfactor(5)
READ (U,*) pfactor(6)
READ (U,*) pfactor(7)
READ (U,*) pfactor(8)
READ (11,*) pfactor(9)
READ (11,*) pfactor(10)
READ (U,*) pfactor(11)
READ (11,*) pfactor(12)

READ (11,*)
READ (11,*) ifrstyr
READ (11,*) ilstyr
READ (11,*) ioutyrl,ioutmonl
READ (11,*) ioutyr2,ioutmon2
READ (11,*) idailyout(l)
READ (11,*) idailyout(2)
READ (11,*) idailyout(3)
READ (11,*) idailyout(4)
READ (11,*) idailyout(5)
READ (11,*) idailyout(6)
READ (11,*) idailyout(7)
READ (11,*) idailyout(8)
READ (11,*) idailyout(9)

! read blank line in itit file

! read blank line in init file
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READ (11,*) idailyout(10)
READ (11,*) monthlyout(l)
READ (11,*) monthlyout(2)
READ (11,*) monthlyout(3)
READ (11,*) monthlyout(4)
READ (11,*) monthlyout(5)
READ (11,*) monthlyout(6)
READ (11,*) monthlyout(7)

write(yearchk,’(i4)’) ifrstyr
if (yearchk .ne. spinupfile(length2+8:length2+ll)) then 

write(6,*)
$ ’** ERROR: mismatched spinup file and first year of simulation **’ 

print*, ifrstyr, yearchk, spinupfile(length2+8:length2+ll) 
stop 

endif

if (ievapfunc .ge. 2) then 
read_penmandat = .true. 

else
read_penmandat = .false, 

endif

c Get precipitation and air temperature filename string to use in 
c output file headers.

lengthl = index (prcppath, ’ ’) - 1 
do i = lengthl, lengthl-100, -1

if (prcppath(i:i) .eq. ’/ ’) then
headerPfile = prcppath(i+l:lengthl-1) 
goto 222 

endif 
enddo

222 lengthl = index (temppath, ’ ’) - 1 
do i = lengthl, lengthl-100, -1

if (temppath(i:i) .eq. ’/ ’) then
headerTfile = temppath(i+l:lengthl-1) 
goto 333 

endif 
enddo 

333 continue

open (unit=14,file=domain_file) 
c open (unit=14,file=’ease_drainage.txt’)
c open (unit=14,file=’ease_drainage.txt.subset’)

c Read drainage cell information from table. Indicies for
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c latitude and longitude are read in from file, j is for lat, i for 
c Ion. They are not used in model. Fill arrays for basin info.

read(14,*) header ! skipping header/label
do icell=l, 100000

read (14,16,end=99) id(icell), jindx(icell), iindx(icell),
$ r_lat, r_lon, ibasin(icell), idrain2(icell)

16 format (i6,2i5,2f9.4,2i6)
rlat(icell) = r_lat 
rlon(icell) = r_lon 

c write(*,16) id(icell), jindx(icell), iindx(icell),
c $ r_lat, r_lon, ibasin(icell), idrain2(icell)

enddo
99 ncells = icell - 1

print*, ncells, ’ Arctic Basin records read’

c Initialize all disch(grid#) to zero, grid ID # went from 62242 to 4446
c for previous geographic grid. Now go from 1 to 39926 for EASE drainage

do m=0, ncells ! grid ID # go from 1 to 39926
disch(m) = O.OdO 

enddo
do m=l, ncells ! previously had 6267 basin outlet. Now all

ihave_basinout(m) = 0 ! are outlets with current EASE basin file
basin_outlet(m) = O.OdO 

enddo

c Sum up basin areas for each basin in domain. Then calculate the basin 
c area for each of the basins. Also determine which numbers (1-nbasins) are
c designated as a basin. For example, 0b is 5 and Yenisei is 7, but
c numbers 3, 4, and 6 (and more) are not associated with a particular basin, 

do m = 1, nbasins
basin_area(m) = O.OdO 
ihave_basin(m) = 0
initialstate(m) = O.OdO ! initial state variables for each basin 

enddo
do icell = 1, ncells ! next line sums area for each basin

basin_area(ibasin(icell)) = basin_area(ibasin(icell)) + area 
if (basin_area(ibasin(icell)) .gt. O.OdO)

$ ihave_basin(ibasin(icell)) = 1 ! flag numbers for basins
enddo

c Read in cell ids for "internal basin"; those that drain nowhere, 
c Will account for this water in water balance calculations.

c open(16,file=’arctic.internalbasins.txt’)
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c do i=l, 79
c read(16,*) intrnl_bas(i)
c enddo

k=0
precip=O.OdO 
q=0.OdO 
d3=0.OdO 
xr=0.OdO 
xg=0.OdO 
da=0.OdO 
et=0.OdO 
da=0.OdO 
dg=0.OdO 
dr=0.OdO 
ds=0.OdO
sum_intrnl=0. OdO 
sum2ocean=0.OdO 
sum2ocean_alltime=0.OdO 
sumatocean = O.OdO 
total_initial_water = O.OdO
globe_cloud=0.OdO ! setting the global cloud water content
totjunk = O.OdO

c Initialize arrays and fill array with rootdepth and maxthawdepth from file 
c Limit root/soil zone to 60'/, of the maxthawdepth that was calculated 
c from Stephan solution. Read in initial soil and ground water storage, 
c snowpack, and snow water.
c Also read soil texture from file and call lookup.f to get soil porosity, 
c fieldcapacity, and wilting point. Convert root and max thaw depths to 
c their water equivalent based on soil porosity. Also open file of 
c soil carbon data.

print* , 3 *****************************************************7 
c print*,’global cloud set to zero’
c print*,’ ’

print*,’******************************************************’
open(50,file=rootfile)
open(51,file=temvegfile)
read(51,*) years
kyr = int(years)
varjunk = years - real(kyr)
mm = (ilstyr - ifrstyr) + 1 !run years from frst and 1st yr of init file 

c if (kyr.gt.1.and.kyr.ne.mm)stop ’Mismatch in run years & veg file’
if (varjunk .gt. 0.01) stop ’years of vegetation read as real num’ 
if (kyr .It. 10) write(fmt,’(’’(2fl0.4,i3)’’) ’)
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if (kyr .ge. 10 .and. kyr .It. 100)
$ write(fmt,’(’’(2f10.4, ”  ,i2,’’i3) ”  ) ’) kyr
if (kyr .ge. 100) write(fmt,’(’’(2fl0.4,’’,i3,’’i3)’’) ’) kyr 
print*, ’Reading ’,kyr,’ annual values of vegetation from file’ 

c print*, years, kyr, varjunk
c open(52,file=’spinup.1980.output’) !output from model spinup

open(52,file=spinupfile)
open(53,file=soiltextfile) ! soil textures at gridcells 
open(54,file=carbonfile)
open(55,file=homedir(1:inum)//’/Model/wetlands.dat’) 
read(52,*) ! read header
do icell = 1, ncells

read(50,*) r_lat, r_lon, rootdepth(icell),soildepth(icell) 
c if (icell.eq.igetcell)print*,rootdepth(icell),soildepth(icell)
20 format(20x,3f8.2,2i3)

c print*,rootdepth(icell), soildepth(icell)
if (rootdepth(icell) .eq. O.OdO) rootdepth(icell) = 50.OdO 

c rootdepth(icell) = rootdepth(icell) * 2.OdO
c soildepth(icell) = soildepth(icell) * 2.OdO

if (rootdepth(icell) .gt. soildepth(icell)) then !adjust if rootdepth 
rootdepth(icell) = soildepth(icell) * 0.80d0 ! is < max soildepth

c write(95,*) rlat(icell), rlon(icell), rootdepth(icell)
endif
if (soildepth(icell)-rootdepth(icell) .It. 50.OdO) ! adjust if deep 

$ soildepth(icell) = rootdepth(icell) + 50.OdO ! capacity is small

c read(51,*) r_lat, r_lon, ivegitation(icell)
read(51,fmt) r_lat, r_lon, (inewvegl(icell,j ) ,j=l,kyr) 
if (kyr .eq. 1) then

do nn = 1, 120 ! 120 is dimension of inewvegl(ngrid,120)
mm = inewvegl(icell,1) 
inewvegl(icell,nn) = inewvegl(icell,1) 

c write(88,*) inewvegl(icell,1)
enddo 

endif

read(52,21) rootwat, rootice, deepwat, deepice, wetlandstore,
$ snowpkl, wsnwl, wrl, sumtair(icell), depth_phys(icell),
$ depth_space(icell), conduct_sum(icell),
$ conductpeat_sum(icell), ndegdays_summed(icell),
$ iseason(icell), iaccumulate(icell)

c print*, rootwat, rootice, deepwat, deepice, wetlandstore

c write(94,23) icell, rlat(icell), rlon(icell), depth_phys(icell)
23 format(i5,2f10.4,f8.1)
21 format(llx,13f16.8,i6,2i2)
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22 format(i5,2i3,8f8.2,i2)

c Handle conversion of soil carbon content to depth in mm 
read(53,*) r_lat, r_lon, isoilclass 

c isoilclass = 2 ! set all soils to ‘medium’
read(54,*) r_lat, r_lon, soilcarbon(icell)
soilcarbon(icell) = soilcarbon(icell) * 10.OdO ! in mm

c soilcarbon(icell) = soilcarbon(icell) * 5.OdO ! set C to half
c soilcarbon(icell) = soilcarbon(icell) * 20.OdO ! set C to twice
c write(96,*) soilcarbon(icell) / 10.

read(55,*) r_lat, r_lon, iwetland(icell)

c Look up soil characteristics for given soil class. Convert units for soil 
c variables. Also set some array values, 
c

call lookup(isoilclass,soilporosity,fieldcapacity,
$ wiltingpoint,bulkdensity,thermcondwet.thermcondsat,
$ thermconddry)

c fieldcapacity = fieldcapacity + 0.05d0 ! increase field capacity
rootdepth(icell) = rootdepth(icell) * soilporosity 
soildepth(icell) = soildepth(icell) * soilporosity 
field_capac(icell) = fieldcapacity / soilporosity 
wilt_point(icell) = wiltingpoint / soilporosity 
soil_porosity(icell) = soilporosity 
bulk_dens(icell) = bulkdensity 
therm_conddry(icell) = thermconddry 
therm_condwet(icell) = thermcondwet 
therm_condsat(icell) = thermcondsat 

c write ( 9 7 , ’(f8.1)’) (rootdepth(icell) * field_capac(icell) -
c $ rootdepth(icell) * wilt_point(icell)) / 10.

c Ensure that deep ice does not exceed deep capacity. This should not 
c happen after spinup has run!!!

root_excess = (rootwat+rootice) - rootdepth(icell) 
deep_excess = (deepwat+deepice) - 

$ (soildepth(icell)-rootdepth(icell))
if (root_excess .gt. 1.0d-l) then

c print*,’Warning: Water+ice in rootzone > rootdepth on grid’,
c $ icell

rootice = rootdepth(icell) * 0.5 
rootwat = 0. 

endif
if (deep_excess .gt. 1.0d-l) then

c print*,’Warning: Water+ice in deepzone > deepdepth on grid’,

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c $ icell
deepice = (soildepth(icell) - rootdepth(icell)) * 0.5 
deepwat = 0. 

endif

c Place each initial value in a spatial array, 
wsnow(icell)=wsnwl 
snowpack(icell)=snowpkl 
rootwater(icell)=rootwat 
deepwater(icell)=deepwat 
rootices(icell)=rootice 
deepices(icell)=deepice 
wet1andwat(icell)=wet1andst ore 
ro(icell)=0.OdO 
wr(icell)=wrl 
d3s(icell)=0.OdO

! next block sets initial water in input state variables 
total_initial_water = total_initial_water +

$ snowpkl*km_per_mm*area + wsnwl*km_per_mm*area +
$ rootwat*km_per_mm*area + rootice*km_per_mm*area +
$ deepwat*km_per_mm*area + deepice*km_per_mm*area +
$ wetlandstore*km_per_mm*area + wrl

initialstate(ibasin(icell)) = initialstate(ibasin(icell)) +
$ (snowpkl+wsnwl+rootwat+rootice+deepwat+deepice+wetlandstore) * 
$ km_per_mm*area

enddo
444 total_initial_water = total_initial_water + globe_cloud

c Create a list of input file names. These files will be opened 
c by a read subroutine. Must be same number of temp and prep files. 
c NOT READING EVAP FILES AT THIS TIME.

pathl = prcppath 
path2 = temppath 
path3 = altpath 
path4 = tmaxpath 
path5 = tmiitpath 
path6 = vaporpath 
path7 = windpath 
path8 = radpath 
path9 = laipath

lengthl = index (pathl, ’ ’) - 1
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Iength2
length.3
length4
length5
length6
length7
length8
length9

index (path2, ’ ’) - 1
index (path3, ’ ’) - 1
index (path4, ’ ’) - 1
index (path5, ’ ’) - 1
index (path6, ’ ’) - 1
index (path7, ’ ’) - 1
index (path8, ’ ’) - 1
index (path9, ’ ’) - 1

ii=0
c ifrstyr = 1980
c ilstyr = 2001

ifrstmon = 1 
do i=ifrstyr, ilstyr

iyrindex = (i - ifrstyr + 1) 
write(yrstring,’(i4)’) i
lainame(iyrindex) = path9(l:length9)//yrstring//'.txt1 
do j=ifrstmon, 12 

ii=ii+l
write(datestring, ’(i4,’’.’’,i2.2)’) i, j 
pname(ii) =

$ pathl(1:lengthl)//datestring//’.txt’
tname(ii) =

$ path2(l:length2)//datestring//’.txt’
thawname(ii) =

$ path3(l:length3)//datestring//’.txt’
tmaxname(ii) =

$ path4(l:length4)//datestring//’.txt’
tminname(ii) =

$ path5(1:length5)//datestring//’.txt’
vaporname(ii) =

$ path6 C1:length6)//datestring//’.txt’
windname(ii) =

$ path7(l:length7)//datestring//’.txt’
radname(ii) =

$ path8(1:length8)//datestring//’.txt’

98

enddo
enddo
nmons = ii

c Start outmost loop for spinup. NEED TO EDIT *N0SPIN* Wraps around time loop 
c Inner loop processes water balance at gridcells.

ispinupday = 365 
if (mod(ifrstyr,4) .eq. 0) ispinupday = 366
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ntotdays=0
do init = 1, nspinup+1 ! a "spinup" loop around the time loop

! usually won’t use in this time series program
iyr = ifrstyr 
imon = ifrstmon
rmissing=-9999.OOdO ! missing value code for input data

do k=l, nmons
iyrindex = (iyr - ifrstyr + 1) ! iyr incremented @ bottom of mon loop

c Fill arrays to missing...will fill them with values below.
if ( imon.e q .2.o r .imon.e q .4.o r .imon.e q .6 .or.imon.e q .9.o r .

$ imon.eq.11) then

do icell=l, ncells 
do iday=l, 31

evapl(icell,iday) = -9999. 
runoff1 (icell,iday) = -9999. 
snowwateql(icell,iday) = -9999. 
rootwatl(icell,iday) = -9999.
rooticel(icell,iday) = -9999. ! set all to missing in months
deepwatl(icell,iday) = -9999. ! with less than 31 days so
deepicel(icell,iday) = -9999. ! days 31, 30, ... are missing
thawfreezeDl(icell,iday) = -9999. 
snowice(icell,iday) = -9999. 
snowwater(icell,iday) = -9999. 
snowmelt1(icell,iday) = -9999. 

enddo 
enddo 

endif

c if (iyr .eq. 1999) stop
if (imon .eq. ifrstmon) then 

c if (iyr .ge. 1950) then ! open thaw depth files for output
c write(fname,’ (’’summerthaw.’’,i4)’) iyr
c open(98,file=fname)
c endif

do i=l, ncells ! zero out max summer thaw
summerthaw(i) = O.OdO ! on Jan 1 each year

enddo 
endif

c Zero out the monthly runoff accumulation for each of the basins in domain, 
c Also zero out variable accumulations for other parameters. These are not 
c currently being summed for all the individual basins, 

do i=l, nbasins 
do j=l, navs
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sumbas(j,i) = O.OdO 
enddo 

enddo

c Call subroutine to read data from files. A two-dimensional array 
c (time,gridcell index) is returned, 
c Subroutine inputs are:
c pname(k) - path/filename (39 characters) for input data
c rmissing - missing value code (real). Values are screened in subr.
c Outputs are:
c idata - number of vaild data, ie. days in month, since missing
c values fill empty spots at end of 31-element series for
c months having less than 31 days
c evap, prO, temp - (idata,ncells) for each day at every grid cell,
c Note: This is reading all 39926 EASE cells, regardless of
c how many grids are used based on input drainage table,

print*, ’Reading data file: ’, pname(k) 
call read_data(pname(k).rmissing,idata,prO)

print*, ’Reading data file: ’, tname(k) 
call read_data(tname(k).rmissing,idata,temp)

if (read_evapdat) then
print*, ’Reading data file: ’, ename(k) 
call read_data(ename(k).rmissing,idata,evap) 

endif

if (read_thawdat) then
print*, ’Reading data file: ’, thawname(k) 
call read_data(thawname(k).rmissing,idata,activelayer) 

endif

if(ievapfunc .eq. 2) then
print*, ’Reading data files to calculate Penman PET’ 
call read_data(tmaxname(k).rmissing,idata,tmaxvals) 
call read_data(tminname(k),rmissing,idata,tminvals) 
call read_data(vaporname(k).rmissing,idata,vaporvals) 
call read_data(windname(k).rmissing,idata,windvals) 
call read_data(radname(k).rmissing,idata,radvals) 
if(imon.eq.1)call read^LAI(lainame(iyrindex),ncells.laivals) 

endif

ndays = monlastday(imon)
if (mod(iyr,4) .eq. 0 .and. imon .eq. 2) then 

ndays = 29 
endif
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if (ndays .It. 1 .or. ndays .gt. 31) stop ’ndays < 1 or > 31’

c Call subroutine to repartition precip into N events
c call precipmod(ndays,rmissing,prO,prO_new)

c Begin daily calculations, 
do iday=l, ndays

ntotdays = ntotdays + 1 ! a count of total days for model run.
! it’s reset for each spinup loop (if any)

! zero out the horizontal flux sum variable 
do m=0, ncells ! grid ID # went from 62242 to 4446 (geographic)

disch(m) = O.OdO ! changed to 0 to 39926 for EASE drainage
enddo

sum_wsnow = O.OdO 
sum_snowpk = O.OdO 
sum_p = O.OdO 
sum_et= O.OdO 
sum_rootwater= O.OdO 
sum_rootices = O.OdO 
sum_deepwater= O.OdO 
sum_deepices = O.OdO 
sum_wetlandstore = O.OdO 
sum_runoff = O.OdO 
sum_wr = O.OdO 
sum_snowsubl = O.OdO 
sum_surfevap = O.OdO

c Begin water balance calculations by gridcell. 
do icell = 1, ncells

if (imon .eq. ifrstmon.and.iday.eq.1) then 
ithawflag(icell) = 0 
nthawdays(icell) = 0

if (icell .eq. igetcell) then
sumprecip = O.OdO ! these are for annual total 
sumpet = O.OdO ! testing now on one cell 
sumsnow = O.OdO 
sumsubl = 0.OdO 
sumsurfevap = O.OdO 
sumavailwat = 0.OdO 
sumrunoff = O.OdO 
sumriver = 0.OdO 

endif

endif
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c Initialize monthly runoff to zero and open output file, 
if (iday .eq. 1) then

monthrunoff(icell,imon) = O.OdO 
monthevap(icell,imon) = O.OdO 
monthsub(icell,imon) = O.OdO 
monthrootwat(icell,imon) = O.OdO 
monthrootice(icell,imon) = O.OdO 
monthdeepwat(icell,imon) = O.OdO 
monthdeepice(icell,imon) = O.OdO 
monthswe(icell,imon) = O.OdO 
monthroot2deep(icell,imon) = O.OdO 
monthmeltwat(icell,imon) = O.OdO 

c write(runoffname,’(’JGrid/pwbm.vl.runoff.’ ’ ,i4)’) iyr
c open(90,file=runoffname)

endif

c Set scaler precip, tair, et, ALT from arrays. Read tseries data to get PET.
c Also scale precip if so desired for the run.

precip = prO(iday,icell) !put prep(time,gridcell) into scaler var.
c precip = prO_new(iday,icell)

if (precip .It. O.OdO) precip = O.OdO

if (temp(iday,icell) .gt. 150.OdO) then
tair = temp(iday,icell) - 273.16d0 ! set "tair" from array 

else
tair = temp(iday,icell) 

endif

active_layer(icell) = activelayer(iday,icell) ! define ALT spatial
tmin = tminvals(iday,icell) - 273.16d0
tmax = tmaxvals(iday,icell) - 273.16d0
vaporpress = vaporvals(iday,icell) * O.ldO
windsp = windvals(iday,icell)
radnet = radvals(iday,icell)
lai = laivals(imon,iday,icell)

c Set up array to store the last 3 days of tair at each grid cell,
c then check to see if the past three days have been above zero. If yes,
c then set a flag to "1", indicating yes.
c Check for 3 days > 0 will only be done after February.

ntemp_point = mod(ntotdays-1,3) + 1 
temp_array(ntemp_point,icell) = tair 
if (ithawflag(icell) .eq. 1) goto 50
if (imon .ge. 3 .and. temp_array(l,icell) .gt. O.OdO .and.
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$ temp_array(2,icell) .gt. O.OdO .and. temp_array(3,icell)
$ .gt. O.OdO) then

ithawflag(icell) = 1 
endif

50 if (ithawflag(icell) .eq. 1)
$ nthawdays(icell) = nthawdays(icell) + 1

c Check for 3 days below 0 in/after August.
if (imon .ge. 8 .and. temp_array(l,icell) .le. O.OdO .and.

$ temp_array(2,icell) .le. O.OdO .and. temp_array(3,icell)
$ .le. O.OdO) then

ithawflag(icell) = 0 
endif

c Set air temperature 4 degree C cooler in summer
c if (ithawflag(icell) .eq. 1) tair = tair - 4.OdO
c if (ithawflag(icell) .eq. 1) tair = tair + 4.OdO

julday = imondayl(imon) + iday ! set julian day of year 
if (mod(iyr,4) -eq. 0 .and. imon .gt. 2) julday = julday + 1

c Set last day of month. Also used as number of days in month
if (iday.eq.1.and.icell.eq.1) then 

lastday = monlastday(imon)
if (mod(iyr,4) .eq. 0 .and. imon .eq. 2) then 

lastday = lastday + 1 
endif 

endif

c *********************** get Potential ET **************************** 
c ivegcov = ivegitation(icell)

ivegcov = inewvegl(icell,iyrindex) 
if (ivegcov .eq. 0) then 

print*, icell, imon, iday 
stop ’Veg = O ’ 

endif

if (read_evapdat) then
et = evap(iday,icell) ! set "et" from array

else
if(ievapfunc.eq.1) call hamon(rlat(icell).julday,tair,et) 
if(ievapfunc.eq.2) then

if (ivegcov .gt. 8) ivegcov = 8 
FL = 0.5d0 ; sheat = O.OdO ; rLAI = 6.OdO

c write(97,*) julday,rlat(icell),rlon(icell),ivegcov
c write(97,*) rLAI,FL,windsp,radnet,tair,vaporpress
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sngl_lat=rlat(icell) ; sngl_lon=rlon(icell) 
sngl_lai=sngl(rLAI) ; sngl_sheat=sngl(sheat) 
sngl_snow=sngl(snowpkl+wsnwl) ; sngl_FL=sngl(FL) 
sngl_wind=sngl(windsp) ; sngl_rad=sngl(radnet) 
sngl_vap=sngl(vaporpress)
sngl_tmax=sngl(tmax) ; sngl_tmin=sngl(tmin) 
sngl_tair = (sngl_tmax + sngl_tmin) / 2.

iflag = 0
et = pmdayf(julday,sngl_lat,sngl_lon,ivegcov,

$ sngl_lai,sngl_snow,sngl_FL,sngl_wind,sngl_rad,
$ sngl_tair,sngl_vap,sngl_sheat,sngl_tmax,
$ sngl_tmin,iflag)

endif 
endif
if (et .It. 0.0) et = 0.0 
potent_et = dble(et)

c Set kl, k2, k3 equal to cell ID, basin ID, and "next" cell, respectively. 
kl=id(icell) 
k2=ibasin(icell) 
k3=idrain2(icell)

c ATMOS ROUTINE GOES HERE

wsnwl=wsnow(icell) 
snowpkl=snowpack(icell)
rootwatprev=rootwater(icell) !put soilwater, groundwat, and runoff
deepwatprev=deepwater(icell) ! into scaler variables for input
rooticeprev=rootices(icell) ! to subroutine
deepiceprev=deepices(icell)
wetlandstoreprev=wetlandwat(icell)
wrl=wr(icell)
rol=ro(icell)

c print*, iday,icell,snowpkl, wsnwl

c Call subroutine to calculate a snowmelt from solar radiation,
c *******x«*BYPASSED**********
c call solarmelt(julday, rlat(icell), rad_2_melt, rad_melt)

rad_melt = 0 .OdO

c Call snow subroutine. Need to decide if we run it when no snowpack 

if (tair .It. tsnow_cutoff) then
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psnow = precip 
prain=0.OdO 

else
prain = precip 
psnow = O.OdO 

endif

write(97,’(3i6)’) icell, imon, iday

call snow (snowpkl,wsnwl,snowretain,snowrelease,rad_melt,
$ tair,tsnow_cutof f ,precip,potent_et,ivegcov,snowpk2,
$ wsnw2,avail_wat,snowmelt,snow_subl,surf_evap,evap_unmet)

write(97, ’ (3i6,2f7.1)’) icell, imon, iday, snowpk2, snowmelt 
et = evap_unmet

printflag = .false.

111
112

555

if (printflag) 
if (icell .eq. 
write(95,111 
write(95,111 
write(95,lll 
write(95,lll 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,112 
write(95,*) 
format(a8,i4 
format(a23,f 
stop 

endif 
endif 
continue

ivegcov 
snowpkl 

wsnwl

then
igetcell) then 
'Year = ’, iyr 
'Month = ’, imon 
’DAY = ’,iday
'Vegcover =
'Snowpack prev =
'Wsnow prev =
'Air temp = ’, tair
'Psnow = ’,psnow
'Prain = ’,prain
'Potential ET = ’, potent_et
'Radmelt = ’, rad_melt
'LAI = », lai
'ET not satisfied by snow = ’,
’snowpack new = ’, snowpk2
’Watsnow_new = ’, wsnw2
'Snowmelt or rain’, avail_wat
’Snow subl. = ’,snow_subl
'Surface evap = ’,surf_evap

0.4)

et

! evap from snowwat
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c Reset these at beginning of 4th spinup loop. Won't need this after spinup 
if (iyr .eq. 2000 .and. julday .eq. 1) then 

zthawmax(icell) = -10000.OdO 
endif
if (iyr .eq. 2000 .and. julday .eq. 183) then 

zfrzmax(icell) = -10000.OdO 
endif

c Next block executed on first day of simulation only. Same block is
c repeated after call to soil routine.
c Setting previous days thawdepth. These values are input above from spinup
c Sumtair(icell) and sumtair2(icell) have been read and are available, 
c If logical indicates reading ALD from file, then do assignment if ALD 
c is non-missing.

if (read_thawdat .and. active_layer(icell) .ne. -9999.OdO 
$ .and. ntotdays .eq. 1) then

depth_phys_prev = active_layer(icell) 
c if (icell .eq. 5842) print*, imon, active_layer(icell)

depth_space_prev=depth_phys_prev*soil_porosity(icell) 
endif
if ((read_thawdat .eqv. .false.) .or.

$ (active_layer(icell) .eq. -9999.0d0)) then
depth_phys_prev = depth_phys(icell) ! ‘depth‘ on previous day 
depth_space_prev = depth_space(icell) 
sumtair_prev = sumtair(icell) 

endif
c if (read_thawdat) then
c active_layer_prev = active_layer(icell)

c Skip next several blocks if TFM is turned off.
if (no_thaw) goto 700

c Set code to force lOmm/day thaw (10mm PHYSICAL depth) at each grid cell
c after 3 days above zero. The second block can be used to
c ‘cap' thaw depth at 1000mm (PHYSICAL depth).
300 if (ctrl_thaw) then

c if (icell .eq. igetcell) print*,'here1 ’,imon,iday,
c $ ithawflag(icell),nthawdays(icell)

if (ithawflag(icell) .eq. 1) then 
if(nthawdays(icell) .eq. 1) then 

depth_phys_prev = O.OdO 
sumtair(icell) = O.OdO 
conduct_sum(icell) = O.OdO 
conductpeat_sum(icell) = O.OdO 
ndegdays_summed(icell) = 0 
iseason(icell) = 1 ! 1 means summer

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iaccumulate(icell) = 0 
endif
depth_phys(icell) = depth_phys_prev + 5.OdO 

c if (depth_phys(icell) .gt. 1000.OdO)
c $ depth_phys(icell) = 1000. OdO

depth_space(icell) = depth_phys(icell) *
$ soil_porosity(icell)

endif 
endif

c If both root zone and deep zone ice is gone, reset degree days 
c accumulation to zero and set season variable to summer.

if (rooticeprev .eq. O.OdO .and. deepiceprev .eq.0.OdO)then 
sumtair(icell) = O.OdO 

c summerthaw(icell) = 0 .  ! reset to get summer thaw
conduct_sum(icell) = O.OdO 
conductpeat_sum(icell) = O.OdO 
ndegdays_summed(icell) = 0
iseason(icell) = 1  ! 1 means summer
iaccumulate(icell) = 0 

endif

c If both root zone and deep zone water is gone, reset degree days 
c accumulation to zero and set season variable to winter.
400 if (rootwatprev .eq. O.OdO .and. deepwatprev .eq.O.OdO)then

sumtair(icell) = O.OdO 
conduct_sum(icell) = O.OdO 
conductpeat_sum(icell) = O.OdO 
ndegdays_summed(icell) = 0
iseason(icell) = 0  ! 0 means winter
iaccumulate(icell) = 0 

endif

c Set flag to allow for degree day accumulation if 1) it's summer and 
c air temp drops below (or equal to) zero or 2) it's winter and air temp 
c goes above zero. In either case accumulate both negative and positive air 
c temps. Soil routine will freeze or thaw dependant on degree day variable, 
c If it is positive, thaw ice. If negative, freeze water 

if (ctrl_thaw .eqv. .true.) then
if (ithawflag(icell) .eq. 1) goto 500 

endif
if (iseason(icell) .eq. 1 .and. tair .le. O.OdO) then 

iaccumulate(icell) = 1 
if (sumtair(icell) .eq. O.OdO) then 

depth_space_prev = O.OdO 
depth_phys_prev = 0.OdO 

endif
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endif
500 if (iseason(icell) .eq. 0 .and. tair .gt. O.OdO) then

iaccumulate(icell) = 1 
if (sumtair(icell) .eq. O.OdO) then 

depth_space_prev = O.OdO 
depth_phys_prev = O.OdO 

endif 
endif
if (iaccumulate(icell) .eq. 1) then

sumtair(icell) = sumtair(icell) + tair 
ndegdays_summed(icell) = ndegdays_summed(icell) + 1 

endif

c Phase is an indicator of positive or negative degree day accumulation, 
c When there’s positive degree days, phase is 1. When negative DD, it’s 0 
c If DD is zero, check the days air temperature to set phase, 
c Soil routine looks for phase to compute ET, overland runoff, etc. 

if (sumtair(icell) .It. O.OdO) then 
iphase = 0

else if (sumtair(icell) .gt. O.OdO) then 
iphase = 1

else if (sumtair(icell) .eq. O.OdO) then 
if (tair .gt. O.OdO) then 

iphase = 1 
else

iphase = 0 
endif 

endif

c If degree days changes from positive to negative, set previous depth 
c to zero.
c If degree days changes from negative to positive, set previous depth 
c to zero. NOTE: NEED TO BE SURE THAT THE "EQUAL TO" CASES HERE ARE RIGHT 
c NOTE: BYPASS THESE STATEMENTS IF USING INPUT ACTIVE-LAYER THICKNESSES 

if (read_thawdat) goto 700

if(sumtair_prev .ge. O.OdO .and. sumtair(icell) .It. O.OdO 
$ .or. sumtair_prev .le. O.OdO .and. sumtair(icell) .gt.O.OdO)
$ then

depth_space_prev = O.OdO 
depth_phys_prev = O.OdO 

endif

c Set parameters to turn off thaw/freeze permafrost simulation.
700 if (no_thaw) then

iseason(icell) = 1 ! season is summer
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iphase = 1 ! positive accumulation of degree days
iaccumulate(icell) = 1 ! active mode
depth_phys(icell) = soildepth(icell)
depth_space(icell) =soildepth(icell)*soil_porosity(icell) 
sumtair(icell) = 30.OdO 
ndegdays_summed(icell) = ntotdays 

endif

c Set volume of water in soil from previous day’s root water and ice, and 
c root zone availablr space.

call bound(0.0d0,(rootwatprev+rooticeprev)/rootdepth(icell),
$ 1 .OdO,soilwatvolume)

c soilwatvolume = 0 . 4

c Some print statements if soil water is less than 0’/,.

if(soilwatvolume .It. 0.OdO.or.soilwatvolume.gt.1.OdO)then 
print*,’On ’,imon,iday,icell,’, soilwat out of range’ 
if (sumtair(icell) .le. O.OdO)

$ print*,’Frozen state ’,rootwatprev,deepwatprev
if(sumtair(icell) .gt. O.OdO)

$ print*,’Thawed state ’,rooticeprev,deepicepreV
stop 

endif

c Call routine to interpolate between dry, wet, and saturated 
c soil thermal conductivities for mineral and then peat soils

varjunk=soilwatvolume ! junk variable to write out soilwater 
call conductivity(soilwatvolume,therm_conddry(icell),

$ therm_condwet(icell),therm_condsat(icell),soilconduct)

call conductivity(soilwatvolume,therm_condpeatdry,
$ therm_condpeatwet,therm_condpeatsat,therm_condpeat)

c Define average conductivity since first of year.
conduct_sum(icell) = conduct_sum(icell) + soilconduct 
conduct_av = conduct_sum(icell) /

$ real(max(ndegdays_summed(icell),1))
c if (icell .eq.igetcell)print*,soilconduct,conduct_sum(icell)

conductpeat_sum(icell)=conductpeat_sum(icell)+therm_condpeat 
conductpeat_av = conductpeat_sum(icell) /

$ real(max(ndegdays_summed(icell),1))

c if (read_thawdat) goto 114 ! skip if using other data
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c if (ctrl_thaw) goto 300 ! skip if creating control thaw

c Get thaw front, or freeze front depth from Stephan solution, 
c Routine is driven with the accumulated degree day value, 
c "Depth" encompasses, essentially, a thaw or freeze depth, 
c Thaw or freeze depth is non-explicit —  it’s implied by looking at 
c accumulated degree days. Positive DD implies thawed state, negative frozen.

c Skip Stephan, calculation if snow is present and it’s spring, 
c if(icell.eq.igetcell)print*,snowpk2,imon,iday,sumtair(icell)
c New version, implemented 2/27/03:

if (snowpk2 .gt. O.OdO .and. tair .gt. O.OdO) then 
depth_phys(icell) = depth_phys_prev 
depth_space(icell) = depth_space_prev 

goto 250 
endif

c Previously:
c if (snowpk2 .gt. O.OdO .and. imon .It. 7 .and.
c $ sumtair(icell) .eq. O.OdO) then
c depth_phys(icell) = depth_phys_prev
c depth_space(icell) = depth_space_prev
c goto 250
c endif

if (ctrl_thaw .eqv. .true.) then
if (ithawflag(icell) .eq. 1) goto 250 

endif

if (no_thaw) goto 250 ! TFM is disabled
if (read_thawdat .and. ! ALT gotten from input files

$ active_layer(icell) .ne. -9999.OdO) goto 250

if (iaccumulate(icell) .eq. 1) then 
if (sumtair(icell) .eq. O.OdO) then 

depth_phys(icell) = depth_phys_prev 
depth_space(icell) = depth_space_prev 

c print*, ’Warning: DD = 0 ’
c if(icell.eq.igetcell)
c $ write(94,*) ’Sum DD is zero and accumulation is ON!’

goto 250 
endif

abs_sumtair = abs(sumtair(icell))
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call thaw21ayer(abs_sumtair,ivegcov,bulk_dens(icell),
$ soilwatvolume,conduct_av,conductpeat_av,
$ soilcarbon(icell),soil_porosity(icell),
$ depth_phys_prev,depthout,iwrite)

c if(icell.eq.igetcell)print*,snowpk2,iday,tair,depthout
deptb_phys(icell) = depthout
depth_space(icell) = depthout * soil_porosity(icell) 

c if(icell.eq.igetcell)print*.depthout

750 if(sumtair(icell) .gt. O.OdO)
$ zthawmax(icell) = max(depthout,zthawmax(icell))

if(sumtair(icell) .le. O.OdO)
$ zfrzmax(icell) = max(depthout,zfrzmax (icell))

c if (icell .eq. igetcell)print*.depthout,zthawmax(icell),
c $ zfrzmax(icell)
c if(icell.eq.igetcell) then
c if (sumtair(icell) .le. O.OdO) then
c write(94,*)’PDepth from negative DD = ’, depthout
c else
c write(94,*)’PDepth from positive DD = ’ , depthout
c endif
c endif

else
depth_phys(icell) = depth_phys_prev 
depth_space(icell) = depth_space_prev 

c if(icell.eq.igetcell)
c $ write(94,*) ’Sum DD is zero and accumulation is off’

endif

c Set root-zone depth to the thawdepth or rootzone depth from file.
250 root_depth = rootdepth(icell)

if (root_depth .eq. O.OdO) root_depth = 100.OdO 
soil_depth = soildepth(icell)

c Set active-layer thickness from file, if so desired.
if (read_thawdat .and. active_layer(icell) .ne. -9999.OdO)

$ depth_phys(icell) = active_layer(icell)
c if(icell.eq.igetcell)print*, imon, iday,depth_phys(icell)

depth_space(icell) = depth_phys(icell) *
$ soil_porosity(icell)

c Make check for maximum summer thaw depth.
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if (read_thawdat) then
summerthaw(icell) = max(summerthaw(icell), 

varjunk)
else

summerthaw(icell) = max(summerthaw(icell),
depth_phys(icell))

endif

$

$

$

$

write(95,112) 
write(95,112) 
write(95,112) 
write(95,112)

printflag = .false, 
if (printflag) then 
if (icell .eq. igetcell) then 
write(95,112) ’Rootdepth (physical) = ’,

root_depth / soil_porosity(icell) 
write(95,112)’soil_depth = ’,soil_depth/soil_porosity(icell) 
write(95,112) ’Soil Porosity = ’, soil_porosity(icell) 
write(95,112) ’Fieldcapacity(FC/por.) = ’, 

field_capac(icell) 
write(95,112) ’Air temperature = ’, tair

’Sum degree days thaw = ’, sumtair(icell)
’Sum degree days freeze = ’, rmissing 
’Soil wat fraction(O-l) = ’, varjunk 
’Soil avg. conduct. = ’, conduct_av 

write(95,112) ’Depth physical prev = ’, 
depth_phys_prev 

write(95,112) ’Today's physical depth = ’, 
depth_phys(icell) 

write(95,112) ’Freeze front depth prev = ’, 
rmissing

write(95,112) ’Freeze front depth = ’, 
rmissing

write(95,112) ’Infiltration rate = ’, infiltration 
write(95,112) ’Wilting point(WP/por.) = ’,

wilt_point(icell)
’Root water previous = ’, rootwatprev 
’Root ice previous = ’, rooticeprev 
’Deep water previous =
’Deep ice previous = ’,

write(95,112) 
write(95,112) 
write(95,112) 
write(95,112) 
write(95,*) ’ 
endif 
endif

’, deepwatprev 
deepiceprev

Call soil subroutine 
iwrite = 0

c Always call this function, 
c inside subroutine.

If frozen soil, values will be set to previous
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c Call soil function to thaw or freeze water based on accumulated 
c degree day value AND change in "depth", which encompasses, essentially, a 
c thaw or freeze depth. Thaw or freeze depth is non-explicit —  it’s implied, 

if (ivegcov .ne. 10) then
call soilzone(root_depth,soil_depth,iwetland(icell),

$ field_capac(icell),
$ wilt_point(icell),et,infiltration,rootbaseflowfact,
$ deepbaseflowfact,depth_space(icell),depth_space_prev,
$ tair,iseason(icell),iphase,avail_wat,rootwatprev,
$ rooticeprev,deepwatprev,deepiceprev,wetlandstoreprev,
$ rootwat.rootice,
$ deepwat,deepice,wetlandstore,ro2,effective_e,
$ overlandRO,rootbaseflow,deepbaseflow,root2deep,iwrite)

else
call waterzone(root_depth,soil_depth,et,avail_wat,

$ rootwatprev,root i ceprev,deepwatprev,deepi ceprev,
$ rootwat,rootice,deepwat,deepice,ro2,effective_e,iwrite)

wetlandstore = O.OdO
endif
if (read_thawdat .and.

$ active_layer(icell) .ne. -9999.OdO) then
depth_phys_prev = active_layer(icell) 

c if (icell .eq. 5842) print*, imon, active_layer(icell)
depth_space_prev=depth_phys_prev*soil_porosity(icell) 

endif
c if (icell .eq. igetcell) write(94,*)’ ’

350 check=(avail_wat+rootwatprev+rooticeprev+
$ deepwatprev + deepiceprev + wetlandstoreprev) -
$ (rootwat+rootice+deepwat+ deepice+ wetlandstore +
$ ro2+effective_e) ! was + xr after ro2

if (abs(check) .gt. 1.0d-8) then 
print*,

$ (avail_wat+rootwatprev+rooticeprev+
$ deepwatprev+deepiceprev+wetlandstoreprev),
$ (rootwat+rootice+deepwat+deepice+wetlandstore+
$ ro2+effective_e)

write(*,*)’ ’
write(*,*)’Gridcell water balance check failed’ 
write(*,*)’Check should equal 0. Yet, check = ’, check 
write(*,*)’ ’
write(*,30)icell,avail_wat,precip,rootwatprev.rootwat 

$ ,rooticeprev,rootice,deepwatprev,deepwat,
$ wetlandstoreprev.wetlandstore,ro2,effective_e

stop 
endif
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30 format(i5,lOf10.2)

200 snowpack(icell)=snowpk2
wsnow(icell)=wsnw2
rootwater(icell)=rootwat ! put soilwater, groundwater, and runoff
deepwater(icell)=deepwat ! into spatial "holding" arrays for
rootices(icell)=rootice ! use at next time step.
deepices(icell)=deepice
wetlandwat(icell)=wetlandstore
ro(icell)=ro2
monthsub(icell,imon) = monthsub(icell,imon) +

$ snow_subl + surf_evap
monthevap(icell,imon) = monthevap(icell,imon) +

$ effective_e + snow_subl + surf_evap
c monthevap(icell,imon) = monthevap(icell,imon) + potent_et !for PET

monthrunoff(icell,imon) = monthrunoff(icell,imon) + ro2 
monthrootwat(icell,imon) = monthrootwat(icell,imon) +rootwat 
monthrootice(icell,imon) = monthrootice(icell,imon) +rootice 
monthdeepwat(icell,imon) = monthdeepwat(icell,imon) +deepwat 
monthdeepice(icell,imon) = monthdeepice(icell,imon) +deepice 
monthswe(icell,imon) = monthswe(icell,imon) + snowpk2 +wsnw2 
monthroot2deep(icell,imon) = monthroot2deep(icell,imon) +

$ root2deep
monthmeltwat(icell,imon) = monthmeltwat(icell,imon)+snowmelt

c Write snow for a grid in Greenland to file, 
c if (icell .eq. 33230)
c $ write(97,’(3i4,f10.1)’) iyr,imon,iday,snowpk2

c Put horiz. discharge for previous time (summed below) into da variable 

da=disch(kl) ! gridcell horiz. discharge, previous time

c Call river subroutine. Inputs are:
c xr - excess river water (mm) NOT CURRENTLY USED
c ro2 - runoff computed in subroutine soil_ground 
c da - gridcell horizontal upstream input
c wrl - water in river for previous time step
c Outputs are:
c wr2 - water in river output from routine (current time)
c db2 - gridcell horizontal downstream discharge
c dr - change in river water

c print*, iday,icell,xr,ro2,da,wrl ! TTT!
call river.discharge(area,km_per_mm,x r ,ro2,d a ,wr1,wr2, 

$ db2,dr)
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wr(icell) = wr2 
if (wr2 .It. O.OdO) idryriv(icell) = idryriv(icell) + 1

printflag=.false. 
if (printflag) then

if (icell .eq. igetcell) then
write(95,112) ’Evapotranspiration = ’, effective_e 
write(95,112) ’Root water new = ’, rootwat 
write(95,112) ’Root ice new = ’, rootice 
write(95,112) ’Deep water new = ’, deepwat 
write(95,112) ’Deep ice new = ’, deepice 
write(95,112) ’runoff previous = ’, rol 
write(95,112) ’runoff new = ’, ro2 
write(95,112) ’river water previous = ’, wrl 
write(95,112) ’river water new = ’, wr2 
write(95,*) ’ ’ 

endif 
endif

c Next statements check water balance (at each cell) to 10 decimal points

check=(wrl + ro2*km_per_mm*area + xr*km_per_mm*area + da) - 
$ (wr2 + db2)

if (abs(check) .ge. 1.0d-10) then 
write(*,*)’ ’
write(*,*)’Gridcell river-water balance check failed’ 
write(*,*)’Check should equal 0. Yet, check = ’, check 
write(*,*)’ ’
write(*,’(6f14.10)’)wrl,ro2,ro2*km_per_mm*area,da,wr2,db2 
write(*,107) k, icell, avail_wat*km_per_mm*area,

$ rooticeprev*km_per_mm*area,
$ rootwatprev*km_per_mm*area,deepwatprev*km_per_mm*area,
$ deepiceprev*km_per_mm*area,wrl,
$ rootice*km_per_mm*area,rootwat*km_per_mm*area,
$ deepwat*km_per_mm*area,deepice*km_per_mm*area,
$ eff ective_e*km_per_mm*area,wr2,db2,da

write(*,*)’ ’ 
stop 

endif
107 format(2i6,14f16.4)

c Accumulate water in "next cell" (k3) grid. Also sum water accumulated at 
c each Arctic basin_outlet over time.

disch(k3) = disch(k3) + db2 
d3 = db2 - da
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c
d3s(icell) = d3s(icell) + d3 
print*, icell, k3, db2, disch(k3)

if(k3 .eq. 0) then ! basin_outlet is sum at each Arctic outlets 
basin_outlet(k2) = basin_outlet(k2) + db2 
ihave_basinout(k2) = 1 

endif

c Track water in outlets that do not drain in Arctic (they are not k3=0) 
c sum_intrnl is the total stock (accumulated over all time steps) for 
c non_Arctic basin outlets. NOTE: WAS USED PREVIOUSLY ON GEOGRAPHIC 
C BASIN TABLE. NOT USING NOW ON EASE TABLE
c do mm=l, 79
c if (k3 .eq. intrnl_bas(mm)) then
c sum_intrnl = sum_intrnl + db2
c basin_outlet(k2) = basin_outlet(k2) + db2
c ihave_basinout(k2) = 1
c endif
c enddo
c write(98,*) k3, db2, sum_intrnl
c if (k3.eq.43030 .or. k3.eq.43029)
c $ write(98,*) k,j,i,kl,k3,db2,disch(k3)

runoff1(icell,iday) = ro2
evapl(icell,iday) = effective_e + snow_subl + surf_evap 

c evapl(icell,iday) = potent_et
snowwateql(icell,iday) = snowpk2 + wsnw2 
snowice(icell,iday) = snowpk2 
snowwater(icell,iday) = wsnw2
rootwatl(icell,iday) = rootwat !snowmelt !rootwat
rooticel(icell,iday) = rootice
deepwatl(icell,iday) = deepwat
deepicel(icell,iday) = deepice
thawfreezeDl(icell,iday) = depth_phys(icell)
snowmeltl(icell,iday) = snowmelt

if (nspinup .gt. 0 .and. init .eq. nspinup+1 .and.
$ julday .eq. ispinupday) then

if (icell .eq. 1) write ( 9 9 , ’(a200)’) ’"ID" "Month" "Day" 
$ "rootwater" "rootice" "deepwat" "deepice" "wetlandstore" 
$ "snowpkl" "wsnwl" "wrl" "sumtair" "depth_phys" "depth_space" 
$ "conduct_sum" "conductpeat_sum" "ndegdays_summed" "iseason"
$ "iaccumulate"’

write ( 9 9 , 35) icell, imon, iday, rootwat, rootice,
$ deepwat, deepice, wetlandstore, snowpk2, wsnw2, wr2,
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$ sumtair(icell), depth_phys(icell),
$ depth_space(icell), conduct_sum(icell),
$ conductpeat_sum(icell), ndegdays_summed(icell),
$ iseason(icell), iaccumulate(icell)

endif
35 format(i5,2i3,13f16.8,i6,2i2)

c These sums are temporary for simple checking. Remove when finished
if (icell .eq. igetcell.and.iyr.g e .1995) then Isums for Yukon basin 

sumprecip = sumprecip + precip ! * 1.0d-6 * area 
sumpet = sumpet + effective_e ! * 1.0d-6 * area 
sumsnow = sumsnow + snowpk2 * 1.Od-6 * area +

$ wsnw2 * 1.Od-6 * area
sumsubl = sumsubl + snow_subl ! * 1.0d-6 * area 
sumsurfevap = sumsurfevap + surf_evap ! * 1.0d-6 * area
sumavailwat = sumavailwat + avail_wat ! * 1.Od-6 * area
sumrunoff = sumrunoff + ro2 ! * l.0d-6 * area 
sumriver = sumriver + wr2
if (k3 .eq. 0) sumatocean = sumatocean + db2 

c print*, imon, iday, sumprecip, sumpet, sumsubl,
c $ sumsurfevap, sumrunoff

endif

! sum runoff for all basins in domain 
sumbas(1,ibasin(icell)) = sumbas(l,ibasin(icell)) +

$ precip * 1.0d-6 * area
sumbas(2,ibasin(icell)) = sumbas(2,ibasin(icell)) +

$ effective_e * 1.0d-6 * area + snow_subl * 1.0d-6 * area +
$ surf_evap * 1.0d-6 * area

sumbas(3,ibasin(icell)) = sumbas(3,ibasin(icell)) +
$ ro2 * 1.Od-6 * area

if (iday .eq. lastday) then
sumbas(4,ibasin(icell)) = sumbas(4,ibasin(icell)) +

$ (snowpk2+wsnw2+rootwat+rootice+deepwat+deepice)*l.0d-6*area

sumbas(5,ibasin(icell)) = sumbas(5,ibasin(icell)) +
$ snowpk2 * 1.Od-6 * area

sumbas(6,ibasin(icell)) = sumbas(6,ibasin(icell)) +
$ wsnw2 * 1.Od-6 * area

sumbas(7,ibasin(icell)) = sumbas(7,ibasin(icell)) +
$ rootwat * 1.Od-6 * area

sumbas(8,ibasin(icell)) = sumbas(8,ibasin(icell)) +
$ rootice * 1.0d-6 * area

sumbas(9,ibasin(icell)) = sumbas(9,ibasin(icell)) +
$ deepwat * 1.Od-6 * area

sumbas(10,ibasin(icell)) = sumbas(10,ibasin(icell)) +
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$ deepice * 1.Od-6 * area
endif

c Sum all land water across all grid cells
sum_snowpk = sum_snowpk + snowpk2*km_per_mm*area 
sum_wsnow = sum_wsnow + wsnw2*km_per_mm*area 

sum_rootwater = sum_rootwater + rootwat*km_per_mm*area
sum_rootices = sum_rootices + rootice*km_per_mm*area 

sum_deepwater = sum_deepwater + deepwat*km_per_mm*area
sum_deepices = sum_deepices + deepice*km_per_mm*area 
sum_wetlandstore = sum_wetlandstore +

$ wetlandstore *km_per_mm*area
sum_wr = sum_wr + wr2

c Sum runoff
sum_runoff = sum_runoff + ro2

c Sum the fluxes that will be added/subtracted from the "global cloud 
sum_p = sum_p + precip*km_per_mm*area 
sum_et = sum_et + effective_e*km_per_mm*area

sum_snowsubl = sum_snowsubl + snow_subl*km_per_mm*area 
sum_surfevap = sum_surfevap + surf_evap*km_per_mm*area

100 enddo ! end of drainage cell loop

PminusE = sum_p - (sum_et + sum_snowsubl + sum_surfevap) 
globe_cloud = globe_cloud - PminusE 
sum2ocean = sum2ocean + disch(O)
total_land_water = sum_snowpk + sum_wsnow + sum_rootwater +

$ sum_deepwater + sum_rootices + sum_deepices +
$ sum_wetlandstore + sum_wr

totjunk = totjunk + PminusE

c Initial water plus P-E over time minus current water state 
c (soil, snow, river) equals sum of flux to ocean over time 

check = total_initial_water - (globe_cloud +
$ total_land_water + sum_intrnl + sum2ocean)

if (abs(check) .gt. 1.0d-6) then 
write(*,*)’ ’
write(*,*)’Domain water balance check failed’
write(*,109)’Check should equal 0. Yet, check = ’, check
write(*,*)’ ’
write(*,*)’ initial water Globalcloud

$ storage internal basins to-ocean check
write(*,108) total_initial_water, globe_cloud,

$ total_land_water, sum_intrnl, sum2ocean, check
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108 format(6f20.10)
109 format(a,f14.10) 

write(*,*)’ ’ 
stop

endif
enddo ! end of day loop
write(*,110) ’Year ’, iyr, ’, Month ’, imon, ’ processed’

110 format(a,i4,a,i2,a)

c This block writes monthly basin averages to monthly files 
goto 119 ! skip these write statments

do i=l, nbasins
write(91,’(i4,f10.1,i2)’) i, basin_area(i), ihave_basin(i) 
if (ihave_basin(i) .eq. 0) goto 115 
if (init .eq. 1 .and. k .eq. 1)

$ write(85,’Cf9.1)’) (initialstate(i) / basin_area(i)) * 1.0d6 
do j=l, navs 

c print*, i, j, sumbas(j,i)
c basin_av(j,i) = (sumbas(j,i))

basin_av(j,i) = (sumbas(j,i) / basin_area(i)) * 1.0d6 
enddo
write(85,116) iyr, imon, i, (basin_av(j,i), j=l, navs)

116 format(i4,i3,i5,3f7.1,2f9.1,5f7.1)

c Next line writes volume (km~3) of all storage water at each basin each month 
c write(87,122) iyr, imon, i, sumbas(4,i)
c 122 format(i4,i2,i5,f7.1)
115 enddo

119 continue

C************************************************************************* 
c**************************** OUTPUT SECTION *************************** 
c Write monthly totals for chosen fields, 
c goto 120

if (imon .eq. 12 .and. iyr .ge. ioutyrl .and. imon .ge. ioutmonl
$ .and. iyr .le. ioutyr2 .and. imon .le. ioutmon2) then

c write(85,117) sumprecip,sumpet,sumsubl,sumsurfevap,sumrunoff
c 117 format(5f10.2)

c Set output year string
write(yearstr, ’(i4)’) iyr 

c Evapotranspiration
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if (monthlyout(1) .eq. 1) then
fname = outpath(l:lengthout)//,pwbm_monthlyevap,//yearstr 
open(90,file=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly total ET(mm); Data: ’//headerPfile//’
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell), 

$ (monthevap(icell,nn) , nn=l,12)
118 format(i6,2f9.4,12f8.1)

enddo 
close(90) 

endif

c Runoff
if (monthlyout(2) .eq. 1) then 

c fname = outpath(l:lengthout)//’willmats_monthlyRO’//yearstr
fname = outpath(l:lengthout)//’pwbm_monthlyrunoffV/yearstr 
open(90,f ile=fname) 
write(90,’(i4,a)’)

$ iyr,' PWBM vl monthly runoff(mm); Data: ’//headerPfile//’
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthrunoff(icell,nn), nn=l,12)
enddo 
close(90) 

endif

c Root zone water
if (monthlyout(3) .eq. 1) then

fname = outpath(l:lengthout)//’pwbm_monthlyrootwat’//yearstr 
open(90,f ile=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly rootzone water(mm); Data: ’//headerPfile//’ 
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’
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do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthrootwat(icell,nn) / real(lastday), nn=l,12)
enddo 
close(90) 

endif

c Root zone ice
if (monthlyout(4) .eq. 1) then

fname = outpathd: lengthout)//’pwbm_monthlyrootice’//yearstr 
open(90,f ile=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly rootzone ice(mm); Data: ’//headerPfile//’
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthrootice(icell,nn) / real(lastday), nn=l,12)
enddo 
close(90) 

endif

c Deep zone water
if (monthlyout(5) .eq. 1) then

fname = outpath(l:lengthout)//’pwbm_monthlydeepwat’//yearstr 
open(90,file=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly deepzone water(mm); Data: ’//headerPfile//’ 
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthdeepwat(icell,nn) / real(lastday), nn=l,12)
enddo 
close(90) 

endif

c Deep zone ice
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if (monthlyout(6) .eq. 1) then
fname = outpathd: lengthout)//’pwbm_monthlydeepice’//yearstr 
open(90,file=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly rootzone ice(mm); Data: ’//headerPfile//’
$ ’//headerTfile//’ (i6,2fl0.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthdeepice(icell,nn) / real(lastday), nn=l,12)
enddo 
close(90) 

endif

c Snow water equivalent
if (monthlyout(7) .eq. 1) then

fname = o u t p a t h d :lengthout)//’pwbm_monthlyswe’//yearstr 
open(90,file=fname) 
write(90,’(i4,a)’)

$ iyr,’ PWBM vl monthly snow water eq.(mm); Data: ’//headerPfile//’ 
$ ’//headerTfile//’ (i6,2f10.4,12f8.1)’

write(90,’(a)’) ’"CelllD" "Lat" "Long" "01" "02" "03" "04" 
$"05" "06" "07" "08" "09" "10" "11" "12"’ 

do icell = 1, ncells
if (rlon(icell) .It. 0.0)

$ rlon(icell) = 180. + (180. + rlon(icell))
write(90,118) icell, rlat(icell), rlon(icell),

$ (monthswe(icell,nn) / real(lastday), nn=l,12)
enddo 
close(90) 

endif

endif ! end of if for month 12

120 continue

c Write daily values for chosen fields.
c goto 130

if (iyr .ge. ioutyrl .and. imon .ge. ioutmonl .and. iyr .le.
$ ioutyr2 .and. imon .le. ioutmon2) then

c Set output year/month string
write(datestring2, ’(i4,’’.’’,i2.2,’’.txt’’) ’) iyr, imon
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str2='"CelllD" "Lat" "Long" "01" "02" "03" "04" "05" "06" "07" 
$"08" "09" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "20" " 
$21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31"'

121 format(i6,2f10.4,31f8.1)

c Write chosen daily output fields

c Evaporation
if (idailyout(l) .eq. 1) then

fname = o u t p a t h d : lengthout)//’pwbm_dailyevap. V/datestring2 
open(32, f ile=fname) 
write(strl,’(i4,

$ ’ ’ PWBM vl daily evaporation (mm); Data: ” ,a,”
$ a,’’ (i6,2fl0.4,12f8.1) ' ’ ) ’ )  iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (evapl(icell,nn), nn=l,31)

enddo 
close(32) 

endif
c Runoff

if (idailyout(2) .eq. 1) then
fname=outpath(l:lengthout)//’pwbm_dailyrunoff.’//datestring2 
open(32,f ile=fname) 
write(strl,’(i4,

$ '' PWBM vl daily runoff (mm); Datai’d a , ’’ 'da,
$ a , "  (i6,2fl0.4,12f8.1),,) ,) iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32, ’ (al80)') str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (runoff1 (icell,nn), nn=l,31)

enddo 
close(32) 

endif
c Root zone water

if (idailyout(3) .eq. 1) then ! rootwat meltmelt
fname=outpath(l:lengthout)//’pwbm_dailyrootwat.’//datestring2 
open(32,f ile=fname)
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write(strl,’(i4,
$ ’ ’ PWBM vl daily root zone water (mm); Data:,,,a,,> ’’,a,
$ a,’’ (i6,2fl0.4,12f8.1) ’  ’ )  ’ )  iyr, headerPfile, headerTfile 

write(32,5(al40)’) strl ! root zone water snowmelt 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (rootwatl(icell,nn), nn=l,31)

enddo 
close(32) 

endif 
c Root zone ice

if (idailyout(4) .eq. 1) then
fname=outpath(1:lengthout)//'pwbm_dailyrootice.’//datestring2 
open(32,f ile=fname) 
write(strl,’(i4,

$ ’’ PWBM vl daily root zone ice (mm); Data:,,,a,,, ’’,a,
$ a,’’ (i6,2f10.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32, ’ (al40)’) strl 
write(32,’(al80 ) ’ )  str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell) ,
$ (rooticel(icell,nn), nn=l,31)

enddo 
close(32) 

endif 
c Deep zone water

if (idailyout(5) .eq. 1) then
fname=outpath(l:lengthout)//’pwbm.dailydeepwat.’//datestring2 
open(32,file=fname) 

write(strl, ’ (i4,
$ ’ ’ PWBM vl daily deep zone water (mm); Data:’’,a,’’ ’’,a,
$ a,’’ (i6,2f10.4,12f8.1)’’)') iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (deepwatl(icell,nn), nn=l,31)

enddo 
close(32)
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endif 
c Deep zone ice

if (idailyout(6) .eq. 1) then
fname=outpath(l:lengthout)//’pwbm_dailydeepice.’//datestring2 
open(32,file=fname) 
write(strl, ’ (i4,

$ PWBM vl daily deep zone ice (mm); Data:,,,a,,J ’ ’ ,a,
$ a,’’ (i6,2f10.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32, ’ (al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (deepicel(icell,nn), nn=l,31)

enddo 
close(32) 

endif
c Snow water equivalent

if (idailyout(7) .eq. 1) then
fname = o u t p a t h d :lengthout)//’pwbm_dailyswe.’//datestring2 
open(32,f ile=fname) 
write(strl, ’ (i4,

$ ’’ PWBM vl daily snow water eq. (mm); Datai’d a , ’’ ’ ’ ,a,
$ a,’’ (i6,2fl0.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (snowwateql(icell,nn), nn=l,31)

enddo 
close(32) 

endif

c Thaw (or freeze) depth
if (idailyout(8) .eq. 1) then

fname =outpath(l:lengthout)//’pwbm_dailydepth.’//datestring2 
open(32,file=fname) 
write(strl,’(i4,

$ PWBM vl daily thaw/freeze depth (mm); D a t a : ' ’da,
$ a,’’ (i6,2f10.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32,’(al80)O str2 
do icell = 1, ncells
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if (rlon(icell) .It. 0.0)
rlon(icell) = 180. + (180. + rlon(icell)) 

write(32,121) icell, rlat(icell), rlon(icell), 
(thawfreezeDl(icell,nn), nn=l,31)

enddo
close(32)

endif

c Snowpack soild portion 
c goto 122

if (idailyout(9) .eq. 1) then
fname = outpath(l:lengthout)//’pwbm_dailysnowice.’//datestring2 
open(32,f ile=fname) 
write(strl, ’ (i4,

$ ’ ’ PWBM vl daily snow frozen portion (mm); Data:,,,a>,, ’ ’ ,a,
$ a,’’ (i6,2fl0.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32,’(al40)') strl 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (snowice(icell,nn), nn=l,31)

enddo 
close(32) 
endif

c Snowpack liquid portion
if (idailyout(lO) .eq. 1) then
fname = outpath(l:lengthout)//’pwbm_dailysnowwat.’//datestring2 
open(32,f ile=fname) 
write(strl,’(i4,

$ ’ ’ PWBM vl daily snow liquid portion (mm); Data:,,,a,’’ ’’.a,
$ a,’’ (i6,2f10.4,12f8.1)’’) ’) iyr, headerPfile, headerTfile 

write(32,’(al40)’) strl 
write(32,’(al80)’) str2 
do icell = 1, ncells

if (rlon(icell) .It. 0.0)
$ rlon(icell) = 180. + (180. + rlon(icell))

write(32,121) icell, rlat(icell), rlon(icell),
$ (snowwater(icell,nn), nn=l,31)

enddo 
close(32) 
endif

endif ! end of if for desired years and month to output
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130 imon = imon + 1 ! increment month
if (imon .gt. 12) then ! make resets when month becomes 13

imon = 1 
iyr = iyr + 1 

endif
write(*,*) ’ ’ 

c print*, ’For test stopping at end of month 1 ’
c stop

enddo ! end of month loop

sum2ocean_alltime=sum2ocean_alltime+sum2ocean !sum ocean dis. over time 
globe_cloud = globe_cloud + sum2ocean ! Evaporate ocean every time
sum2ocean = O.OdO ! So, ocean is now empty

if (init .ge. 2) print*, init, ’ times through spinup loop’

enddo ! end of spinup loop

c Sum the variable storing each basins’ total (over time) discharge, 
c Then compare this value to the total export for Arctic drainage 
c (sum2ocean_alltime) and the non_Arctic drainages (sum_intrnl)

600 sum = O.OdO ! next loop sums the variable storing each basins’ disch. 
do m = 1, nbasins 

c write(99,*) ihave_basinout(m), basin_outlet(i)
if (ihave_basinout(m) .eq. 1) sum = sum + basin_outlet(m) 

enddo
total = sum2ocean_alltime + sum_intrnl 

c call check(total, 1.0d-5, O.OdO, ’eq’)
if ( abs(sum - total) .gt. 1.0d-5) then

print*, ’Water at all discharge points not balanced with sum’ 
print*, ’of Arctic drainage + non_arctic discharges’ 
print*, sum_intrnl, sum2ocean_alltime, total, sum 

endif

c enddo

stop
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine read_data(fname,rmiss,idata.dataval)
c
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c Subroutine opens the specified input file and reads data into an array, 
c Returns array to main program. The array (time,j,i) is a continuous 
c record of valid values in the file, i.e., Missing values representing 
c padded days 31, 30, or 29 at end of a month have been screened out. 
c This version inputs one file (one month) and returns the 28, 29, 30, or 31 
c values to main program.
c Note: format must be set in this subroutine 
c
c Inputs: fname - Character string designating path and file name for input
c rmiss - Missing vaue code. Values will be screened out
c Outputs: idata - Number of non-missing data returned to main program
c data - Array of data values returned to main program
c Dimensions are (time, lat index, Ion index)

implicit none
integer i,j,k,m,nfiles,igrid,ifrstday,idata,nvals 
parameter (nvals=39926) 

c parameter (nvals=39926)
real rlat,rlon
real*8 dataval(31,nvals),rmiss,dat(31) 
character fname*100,fmt*19,header*60

open(10,file=fname) 
read(10,’ (a60)’) header 
read(10,’(a60)’) header
write(fmt,’(’ ’ (24x,31f8.1 ) ’ ’ ) ’ )  !set format here 
do m=l, nvals 

c read(10,fmt) (dat(k), k=l,31)
read(10,*) igrid, rlat, rlon, (dat(k), k=l,31) 

c print*, m, dat(l), dat(31)
idata = 0 
do k=l, 31

dat(k) = dat(k) 
idata=idata+l 
dataval(idata,m) = dat(k) 

c write(99,*) m,k,idata,dat(k),dataval(idata,m)
enddo 

enddo

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine snow (snowpack,snowwatpack,snowholdfactor,meltwat_fact,
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$ radmelt,temp,crittemp,prcp,pet,icovertype,snowpack_new,
$ snowwat_new,water2soil,snowmelt_direct,snowsubl,surface_et,
$ unmet_pet)

c ! was meltwat where snowmelt_direct is
c
c This routine is a translation of snowpack.c written by R. Lammers 
c

implicit none 
integer icovertype
real*8 pr_rain,pr_snow,snowpack,snowwatpack,water2soil 
real*8 meltwat,potentmelt,snowsubl,snowpet,snowpackprm 
real*8 snowmelt,crittemp,snowholdfactor,snowdamming,temp,prep,pet 
real*8 snowpack_new,snowwat_new,meltwat_fact,surface_et,unmet_pet 
real*8 radmelt,diff.snowadj,totalin,totalout,check,potentfreeze 
real*8 snowfreeze,snowmelt_direct

snowmelt_direct = O.OdO
totalin = snowpack + snowwatpack + prep

c Calculate moisture flux from atmosphere 
c if cold -> get snow, if warm -> get rain 

if (temp .It. crittemp) then 
pr_snow = prep 
pr_rain = O.OdO 

else
pr_snow = O.OdO 
pr_rain = prep 

endif

c Determine flux to the atmosphere from snowpack; dependent only on 
c existence of snowpack.
c This is something not in original model, which will reduce PET 
c when sublimation greater than snowpack. The difference is not put 
c into pet.

c !! TT possible numerical errors with using min() then adding to snowpack 
if (snowpack .gt. O.OdO) then 

snowsubl = min(pet, snowpack) 
if (snowsubl .It. pet) then 

unmet_pet = pet - snowsubl 
else

unmet_pet = O.OdO 
endif 

else
unmet_pet = pet 
snowsubl = O.OdO
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endif

c Set new values of snowpack, snowpack water, available water (melt), and
c surface water ET to previous values. Then make adjustments based on inputs.

snowpack_new = snowpack 
snowwat_new = snowwatpack 
water2soil = 0.OdO 
surface_et = O.OdO

c Calculate change in snowpack from precipitation 
c if cold, add to snowpack
c if warm and a snowpack exists, add rain to watpack
c if warm and no snowpack exists, add rain to available water (to soil)

if (pr_snow .eq. O.OdO .and. pr_rain .eq. O.OdO) goto 200 
if (temp .It. crittemp) then

snowpack_new = snowpack_new + pr_snow ! add snowfall to snowpack 
else

if (snowpack .gt. O.OdO) then
snowwat_new = snowwat_new + pr_rain ! add rain to snowwater 

else
water2soil = water2soil + pr_rain ! add rain to avail water 

endif 
endif 

200 continue

c Calculate change in snowpack from sublimation flux to atmosphere 
if(snowpack_new .gt. O.OdO) then

diff = snowpack_new - snowsubl !was: diff = snowwat_new - snowsubl
if (diff .ge. O.OdO) then

snowpack_new = snowpack_new - snowsubl 
else

snowsubl = snowpack_new 
snowpack_new = O.OdO 

endif 
endif

c Calculate change from solar radiation melt of snowpack, if a snowpack 
c exists. If the potential radiation melt exceeds the snowpack, melt all 
c snow and make it snowwater.

if(snowpack_new .gt. O.OdO) then 
diff = snowpack_new - radmelt 
if (diff .ge. O.OdO) then

snowpack_new = snowpack_new - radmelt 
snowwat_new = snowwat_new + radmelt 

else
snowwat_new = snowwat_new + snowpack_new
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snowpack_new = 0.OdO 
endif 

endif

c Take unmet PET from snowpack water, if any present 
c Check: IS THIS NEEDED? DOES THIS EVER HAPPEN???

if (unmet_pet .gt. O.OdO .and. snowwat_new .gt. O.OdO) then 
diff = snowwat_new - unmet_pet

if (diff .ge. O.OdO) then
snowwat_new = snowwat_new - unmet_pet 
surface_et = unmet_pet 
unmet_pet = O.OdO 

else
unmet_pet = abs(diff) 
surface_et = snowwat_new 
snowwat_new = O.OdO 

endif 
endif

c Calculate melt from snowpack and add to watpack * OR * 
c refreeze some snowwater to solid snow, 
c Note: Should this be a check of temp vs. crittemp?????

if (temp .ge. O.OdO) then
snowdamming = snowadj(icovertype)
potentmelt = snowdamming * (2.63d0 + (2.55d0 * temp)

$ + (0.0912d0 * temp * prep))

snowmelt = min(potentmelt, snowpack_new) 
snowpack_new = snowpack_new - snowmelt 
snowwat_new = snowwat_new + snowmelt 

else
potentfreeze = 2.63d0 + (2.55d0 * abs(temp)) 
snowfreeze = min(potentfreeze, snowwat_new) 
snowpack_new = snowpack_new + snowfreeze 
snowwat_new = snowwat_new - snowfreeze 

endif

c Compute meltwat from watpack 
meltwat = O.OdO
snowpackprm = snowholdfactor * snowpack_new

if (snowwat_new .gt. snowpackprm) then 
if (meltwat_fact .eq. O.OdO) then

write(*,*) 'Error - - Snowwater meltwat factor = O ’ 
stop
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endif
meltwat = snowwat_new * meltwat_fact

if (snowpack_new .le. O.OdO) ! if no snowpack, meltwat all water
$ meltwat = snowwat_new

meltwat = min(meltwat, snowwat_new) 
snowwat_new = snowwat_new - meltwat 
water2soil = water2soil + meltwat 

endif
snowmelt_direct = max(meltwat-pr_rain,O.OdO) 

c write(97,*) snowwat_new, meltwat_fact, snowwat_new, meltwat

totalout = snowpack_new + snowwat_new + water2soil + snowsubl +
$ + surface_et
check = totalin - totalout 
if (abs(check) .gt. 1.0e-6) then

write(*,*) ’Water balance not preserved in snow routine’ 
write(*,*) ’Check = ’, check 
stop 

endif

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine soilzone(soilrootdepth,soilmaxdepth,iwetland,
$ soilfieldcapacity,soilwiltingpoint,soil_pet,infiltrationrate,
$ rootbaseflowfactor.deepbaseflowfactor,dailydepth,prev_depth,
$ airtemp,i_season,i_phase,soil_availwater,root_prev_water,
$ root_prev_ice,deep_prev_water,deep_prev_ice,wetlandstoreprev,
$ root_water,root_ice,
$ deep_water,deep_ice,wetlandstore,soil_runoff,soil_transpiration,
$ soil_overlandRO,root_baseflow,deep_baseflow,soil_downflux,iwrite)

c
c Subroutine to determine disposition of water based on set of water balance 
c variables. Inputs are:
c soilrootdepth (mm) - Depth of upper soil (root) zone. Was converted to
c an absolute water depth in main program using porosity,
c soilmaxdepth (mm) - Depth to bottom of lower (groundwater) zone. Was
c converted to absolute depth same as SoilRootDepth.
c soilfieldcapacity (0-1) Percentge (decimal) that the soil can hold,
c soilwiltingpoint (0-1) Percentge (decimal) below which plants can not
c pull water from soil
c soil_pet (mm)
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c THIS SUBROUNTINE IS AS MODIFIED IN FEBRUARY 2006
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c Finish comments..........

implicit none
integer ii,iflag,i_season,i_phase,iwrite,iwetland
real*8 soilrootdepth,soilf ieldcapacity,soilwiltingpoint
real*8 soilwiltingpoint2,deep_available,downwatfrac,downicefrac
real*8 infiltrationrate,rootbaseflowfactor,deepbaseflowfactor
real*8 soilmaxdepth,dailydepth,prev_depth,soil_surplusl
real*8 airtemp,depthchange,soil_transpiration,soil_pet
real*8 soil_availwater,soil_overlandR0,soil_infiltration
real*8 infiltrate_water,water2water,water2ice,rootzone_excess
real*8 soil_downflux,soil_runoff,deep_capacity,deepzone_excess
real*8 root_maxfieldcapacity,deep_meLxfieldcapacity,extra
real*8 root_ice,root_water,root_prev_water,extrawater,a
real*8 root_melt,root_prev_ice,deep_prev_ice,root_waterratio
real*8 root_fieldcapacity,root_baseflow,deep_baseflow,ddiff
real*8 deep_fieldcapacity,deep_water,deep_prev_water,deep_ice
real*8 deep_melt,deep_waterratio,balance,water_in,water_out
real*8 totwatratio,root_freeze,deep_freeze,absval_depthchange
real*8 watvoliimn,difference,rmissng,varjunk,rootwatchange
real*8 infil_watfrac,infil_icefrac,infiltrate_watratio,wat2wetland
real*8 infiltrate_factor,fraction,wetlandstoreprev.wetlandstore
real*8 potential_infiltration,wat2surfacezone
real*8 vartmpl,vartmp2,vartmp3,vartmp4,vartmp5,vartmp6,vartmp7
real*8 vartmp8,vartmp9,rootbaseflowfactor2,deepbaseflowfactor2
parameter (rmissng=-9999.OdO)

c root_prev_ice = 200.OdO
c root_prev_water = O.OdO
c soilrootdepth = 200.OdO
c soilmaxdepth = 600.OdO
c deep_prev_water = O.OdO
c deep_prev_ice = 400.OdO
c prev_depth = 40.OdO
c dailydepth = 5.OdO
c soil_availwater = O.OdO

rootwatchange = O.OdO 
vartmpl = O.OdO 
vartmp2 = O.OdO 
vartmp3 = 0.OdO
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vartmp4 = 0.OdO 
vartmp5 = O.OdO 
vartmp6 = O.OdO 
vartmp7 = 0.OdO 
vartmp8 = O.OdO 
vartmp9 = O.OdO

c Set some stuff
ddiff = O.OdO 
soil_surplusl = O.OdO 
rootzone_excess = O.OdO 
deepzone_excess = O.OdO 
soil_overlandRO = O.OdO
rootbaseflowfactor2 = rootbaseflowfactor ! dummy local variable
deepbaseflowfactor2 = deepbaseflowfactor ! dummy local variable

c Determine the thawdepth change from previous day. Cain be a negative change 
depthchange = dailydepth - prev_depth

c Calculate field capacity in [mm]. Soilmaxdepth and rootdepth are 
c input to subroutine in units of WATER EQUIVALENT DEPTH.

deep_capacity = max((soilmaxdepth - soilrootdepth), O.OdO) 
root_maxfieldcapacity = soilrootdepth * soilfieldcapacity 
deep_maxfieldcapacity =

$ max(deep_capacity * soilfieldcapacity, O.OdO)

c if (iwrite .eq. 1) write(*,*) i_season, i_phase
C stop

water_in = root_prev_water + root_prev_ice + deep_prev_water +
$ deep_prev_ice + wetlandstoreprev + soil_availwater

C

c Frozen Soil/Unfrozen Soil Calculations 
c WHY HAVE INFILTRATION IF LAYER IS FROZEN ???

c Set initial infiltration to lesser of max infiltration rate or the available 
c water, provided AIR TEMPERATURE is positive. If it’s negative, there’s 
c no infiltration and only overland runoff (done above) 
c Will not allow any infiltration to exceed thawdepth in later checks, 
c Overland runoff is excess over max infiltration rate, if any excess, 
c (Don’t use AvailWater after this - it becomes Infiltration)

if (root_prev_water .eq. O.OdO.and.root_prev_ice.eq.O.OdO) then
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infiltrate_watratio = O.OdO 
c print*, ’ERROR: Root water and ice equals zero’
c stop

else
infiltrate_watratio = root_prev_water / (root_prev_water +

$ root_prev_ice)
endif

c This section handles the infiltration into the soil. It also treats 
c the wetland storage, if grid has wetland designation. Need to be sure 
c of logic for infiltration if a wetland. Same as other grids??? 
c Double infiltration potential rate if a wetland grid???? 
c if (iwetland .eq. 1) infiltrationrate = infiltrationrate * 2.OdO

infiltrate_factor = min(0.5d0 + infiltrate_watratio, l.OdO) 
potential_infiltration = min(soil_availwater, ! infiltrate potent same 

$ infiltrationrate*infiltrate_factor) ! for wetland and non-wetland

wat2surfacezone = soil_availwater
if (iwetland .eq. 0) then ! *** not a wetland cell ***

soil_overlandR0 = ! drain the surface zone at non-wetland grid
$ max((wat2surfacezone - potential_infiltration), O.OdO)

wetlandstore = wetlandstoreprev

else ! wetlandstore is the same as overlandRO for non-wetland cell 
wetlandstore = wetlandstoreprev + wat2surfacezone 
if (wetlandstore .gt. 1000.OdO) then

soil_overlandR0 = wetlandstore - 1000.OdO 
wetlandstore = 1000.OdO 

endif
c wat2wetland = max((soil_availwater - potential_infiltration),
c $ 0.OdO)

endif

root_melt = O.OdO 
deep_melt = 0.OdO 
root_freeze = O.OdO 
deep_freeze = O.OdO 

C Melt ice or freeze water, 
ii = 0
absval_depthchange = abs(depthchange) 

c This next block melts ice.
if (i_phase .eq. 1 .and. depthchange .gt. O.OdO .or.

$ i_phase .eq. 0 .and. depthchange .It. O.OdO) then
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ii=ii+l
if (root_prev_ice .gt. O.OdO) then

totwatratio = (root_prev_ice + root_prev_water) /
$ soilrootdepth

root_melt = min(totwatratio * absval_depthchange,
$ root_prev_ice)

if (dailydepth .ge. soilrootdepth.and.i_phase.eq. 1) then 
root_melt = root_prev_ice 

endif
root_water = root_prev_water + root_melt 
root_ice = root_prev_ice - root_melt 
deep_water = deep_prev_water 
deep_ice = deep_prev_ice 

c if(iwrite.eq.1) write(97,112) ’Rootmelt = ’, root_melt
else

totwatratio = (deep_prev_ice + deep_prev_water) /
$ deep_capacity

deep_melt = min(totwatratio * absval_depthchange,
$ deep_prev_ice)

if (dailydepth .ge. soilmaxdepth.and.i_phase.eq.l) then 
deep_melt = deep_prev_ice 

endif
root_water = root_prev_water 
root_ice = root_prev_ice 
deep_water = deep_prev_water + deep_melt 
deep_ice = deep_prev_ice - deep_melt 

c if(iwrite.eq.1) write(97,112) ’Deepmelt = ’, deep_melt
endif

c This block freezes water.
else if (i_phase .eq. 1 .and. depthchange .It. O.OdO .or.

$ i_phase .eq. 0 .and. depthchange .gt. O.OdO) then
ii=ii+l
if (root_prev_water .gt. O.OdO) then

totwatratio = (root_prev_ice + root_prev_water) / 
soilrootdepth 

root_freeze = min(totwatratio * absval_depthchange, 
root_prev_water) 

if (dailydepth .ge. soilrootdepth.and.i_phase.eq. 0) then 
root_freeze = root_prev_water 

endif
if(iwrite.eq.1) write(97,’(3f20.16)’) totwatratio * 
absval_depthchange, root_prev_water, root_freeze 

root_water = root_prev_water - root_freeze 
root_ice = root_prev_ice + root_freeze 
deep_water = deep_prev_water 
deep_ice = deep_prev_ice

$

$

c
c $
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c if(iwrite.eq.l)write(97,112)’Rootfreeze = ’,root_freeze
else

totwatratio = (deep_prev_ice + deep_prev_water) /
$ deep_capacity

deep_freeze = min(totwatratio * absval_depthchange,
$ deep_prev_water)

if (dailydepth .ge. soilmaxdepth.and.i_phase.eq. 0) then 
deep_freeze = deep_prev_water 

endif
root_water = root_prev_water 
root_ice = root_prev_ice
deep_water = deep_prev_water - deep_freeze 
deep_ice = deep_prev_ice + deep_freeze

c if(iwrite.eq.l)write(97,*) deep_prev_ice,deep_prev_water,
c $ totwatratio, deep_freeze, deep_water, deep_ice

endif
c if(iwrite.eq.1) write(97,112) ’Deepfreeze = ’, deep_freeze

else if (depthchange .eq. O.OdO) then 
ii=ii+l
totwatratio = O.OdO 
root_melt = O.OdO 
root_freeze = O.OdO 
root_water = root_prev_water 
root_ice = root_prev_ice 
deep_freeze = O.OdO 
deep_melt = 0.OdO 
deep_water = deep_prev_water 
deep_ice = deep_prev_ice 

endif
if (ii .ne. 1) then

print*, ii, depthchange, i_phase, dailydepth, prev_depth 
stop ’If checks not executed or executed > 1 ’ 

endif

vartmpl=root_water+root_ice+deep_water+deep_ice
if(iwrite.eq.1) write(97,112) ’Totwater after frz/melt = ’,

$ vartmpl 
if(iwrite.eq.2) then 

vartmpl = root_melt
rootwatchange = rootwatchange + root_melt 

endif

c Calculate ratio of water and ice
c root_waterratio = depth of thawed soil / total root depth
c root_waterratio not currently used.
c call bound (O.OdO, (dailydepth / soilrootdepth), l.OdO,
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c $ root_waterratio)

c ******* INFILTRATION INTO SOIL **************
c
c Old way.
c infiltrate_water = potential_infiltration *
c $ (l.OdO - (root_ice / soilrootdepth))
c water2water = min(dailydepth,infiltrate_water)
c water2ice = potential_infiltration - water2water
c root_water = root_water + water2water
c root_ice = root_ice + water2ice

c New way. Put some infiltration to liquid water and some to ice based 
c on current amounts of liquid water and ice.
c If root water and root ice are both zero, put half of infiltration to each, 
c write(*,’(2f16.10) ’ )root_water,root_ice

if ((root_water + root_ice) .eq. O.OdO) then 
infil_watfrac = 0.5d0 

else
infil_watfrac = (root_water / (root_water + root_ice)) 

endif

if (iwetland .eq. 0) then

root_water = root^water + potential_infiltration*infil_watfrac 
infil_icefrac = l.OdO - infil_watfrac
root_ice = root_ice + potential_infiltration * infil_icefrac 

else
root_water = root_water + potential_infiltration*infil_watfrac 
wetlandstore = wetlandstore - 

$ potential_infiltration*infil_watfrac
infil_icefrac = l.OdO - infil_watfrac
root_ice = root_ice + potential_infiltration * infil_icefrac 
wetlandstore = wetlandstore - 

$ potential_infiltration*infil_icefrac
endif

$
c write(*,’(4f16.10)’)infil_watfrac,root_water,infil_icefrac,
c $ root_ice

if(iwrite.eq.2) then 
vartmp2 = water2water
rootwatchange = rootwatchange + water2water 

endif
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if (iwrite.eq.l) then
write(97,112) ’Infil as F(ice/rootdepth)=’,

$ potential_infiltration * infil_watfrac
write(97,112) ’Root water (after infilt.) = ’, root_water 
write(97,112) ’Root ice (after infilt.) = ’, root_ice 

endif

c Ensure that root ice does not exceed root depth. This cam occur by way of
c the section above that partitions infiltration to liquid and frozen parts,

if (root_ice .gt. soilrootdepth) then
soil_surplusl = soil_surplusl + (root_ice - soilrootdepth) 
root_ice = soilrootdepth 

c write(97,*) soil_surplusl, root_ice, soilrootdepth
soil_surplusl = soil_surplusl + (root_ice - soilrootdepth) 

c write(97,112) ’root_ice > soilrootdepth’, soil_surplusl Irmove after
endif

c ********* FLUX FROM ROOT ZONE TO DEEP SOIL *********
c Calculate root to deep water flux, No flux if ice present, 
c TEST THE BOUND FUNCTION HERE !!!
c Add code to restrict amount going to deep by capacity,
c if (root_ice .gt. O.OdO .or. deep_capacity .eq. O.OdO) then

if (deep_capacity .eq. O.OdO .or. root_ice .gt. O.OdO) then 
soil_downflux = O.OdO 

else
soil_downflux = max(O.OdO,

$ (root_water - root_maxfieldcapacity) * rootbaseflowfactor2)
call bound(0.OdO,deep_capacity-deep_prev_water- 

$ deep_prev_ice,soil_downflux,soil_downflux)
c if (iwrite .eq. l)print*,soil_downflux,deep_water, deep_ice,
c $ deep_capacity

endif

c Drain root Zone into deep Soil. The next 4 lines are old way. 
c deep_water = deep_water + soil_downflux * deep_waterratio 
c deep_water = max(deep_water, O.OdO)
c deep_ice = deep_ice + soil_downflux * (l.OdO - deep_waterratio) 
c deep_ice = max(deep_ice, O.OdO)

c New way. Put a fraction of downflux to water and some to ice based on 
c proportion of water and ice at this time.

if (deep_water .eq. O.OdO .and. deep_ice .eq. O.OdO) then 
downwatfrac = soil_downflux * 0.5d0 
downicefrac = soil_downflux - downwatfrac
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else if (deep_water .eq. O.OdO) then ! was no water...all downflux
downwatfrac = O.OdO ! goes to ice
downicefrac = soil_downflux 

else if (deep_ice .eq. O.OdO) then ! was no ice...all downflux
downwatfrac = soil_downflux ! goes to water
downicefrac = O.OdO 

else
downwatfrac = soil_downflux *

$ (deep_water / (deep_water + deep_ice))
downicefrac = soil_downflux *

$ (deep_ice / (deep_water + deep_ice))
endif
if(iwrite.eq.1) write(97,112) ’Down Water Frac = ’, downwatfrac 
if(iwrite.eq. 1) write(97,112) ’Down Ice Frac = ’, downicefrac 
deep_water = deep_water + downwatfrac 
deep_ice = deep_ice + downicefrac

c Pull the soil "downflux" from root zone.
root_water = root_water - (downwatfrac + downicefrac) 
vartmp8=root_water+root_ice+deep_water+deep_ice 
if(iwrite.eq.1) then

write(97,112) ’Deep water (after downflux) = ’, deep_water 
write(97,112) ’Deep ice (after downflux) = deep_ice 
write(97,112) ’Soil down flux = soil_downflux 
write(97,112) ’Total water after downflux = ’, vartmp8 

endif

c ****** SOIL TRANSPIRATION FROM ROOT ZONE ******
c Up to this point PET has had sublimation removed, now remove 
c transpiration from root zone water, up to the wilting point.

soilwiltingpoint2 = max((soilrootdepth - root_ice), O.OdO) 
$ * soilwiltingpoint

c Define field capacity in mm, and water amount above field capacity. 
root_fieldcapacity = max((soilrootdepth - root_ice)

$ * soilfieldcapacity, O.OdO)
extrawater = root_water - root_fieldcapacity

if(iwrite.eq.1) then 
print*, ’here’ 

write(98,*) ’ ’
write(98,*) ’Field capacity = ’, root_fieldcapacity 
write(98,*) ’Wilting point = ’, soilwiltingpoint2 
write(98,*) ’Root depth (space) = ’, soilrootdepth 
write(98,*) ’Root ice = ’, root_ice 
write(98,*) ’Root water = ’, root_water
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write(98,*) ’Root_water - field_capacity = ’, extrawater 
write(98,*) ’PET = soil_pet 
write(98,*) ’Air Temp = ’, airtemp 
write(98,*) ’Wetland storage = ’, wetlandstore 

endif

c Handle evapotranspiration. Need to finalize logic.
c Currently not taking ET from the wetland storage, instead just allowing 
c PET from the soil
c **** Check if ET for wetland is OK if PET is zero *****

c This block, commented out, will allow evap from the wetland storage zone, 
c if (iwetland .eq. 1 .and. wetlandstore .ge. soil_pet) then
c soil_transpiration = soil_pet
c wetlandstore = wetlandstore - soil_transpiration
c ii=ii+l
c goto 200
c else if (iwetland .eq. 1 .and. wetlandstore .gt. O.OdO) then
c soil_transpiration = soil_pet ! is this OK if PET is zero???
c wetlandstore = wetlandstore - soil_transpiration
c ii=ii+l
c goto 200
c endif

ii=0
if (airtemp .le. O.OdO .or. root_water .le. soilwiltingpoint2 .or.

$ soilwiltingpoint2 .It. 1.0d-2 .or. root_fieldcapacity .It.
$ 1.0d-2 )then !checks for wiltpt and fieldcapac added July06

soil_transpiration = O.OdO ! to handle when ice fills porespace 
ii=ii+l 

else
if (extrawater .ge. soil_pet .or. iwetland .eq. 1) then

soil_transpiration = soil_pet ! rootwater is above FC
ii=ii+l ! or grid is a wetland

else ! allow ET at PET rate
if (root_fieldcapacity .gt. O.OdO) then 

c a = dlog(root_fieldcapacity) /
c $ (1.1282d0 * root_fieldcapacity) ** 1.2756d0
c a = max(a,O.OdO)

fraction = ((root_water - soilwiltingpoint2) /
$ (root_fieldcapacity - soilwiltingpoint2))

if (fraction .gt. l.OdO) then
soil_transpiration = extrawater 

else
soil_transpiration = soil_pet * fraction 
if (soil_transpiration .gt. root_water)
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$ soil_transpiration = max(root_water,soilwiltingpoint2)
endif 

else
a = O.OdO
soil_transpiration = O.OdO 

endif
soil_transpiration = max(soil_transpiration, O.OdO)

ii=ii+l
endif

endif
if (ii .ne. 1) stop ’If checks not executed or executed > 1’

c Pull transpiration amount from root water (if air temp > 0). 
c Restrict transpiration to interval 0 < transpiration < root_water 
c This block is skipped if grid is wetland

call bound (O.OdO, soil_transpiration, root_water,
$ soil_transpiration) 

c if(iwrite.eq.1) write(98,*) soil_transpiration, root_water
if (soil_transpiration .gt. root_water) stop ’ET > rootwat’ !moved here 
root_water = root_water - soil_transpiration ! Jul06

200 continue
if(iwrite.eq.2) then

vartmp6 = soil_transpiration
rootwatchange = rootwatchange - soil_transpiration 

endif
vartmp8=root_water+root_ice+deep_water+deep_ice+soil_transpiration

if(iwrite.eq.1) then
write(97,112) ’Soil PET = ’, soil_pet
write(97,112) ’Soil wiltingpoint = ’, soilwiltingpoint2 
write(97,112) ’Soil transpiration = ’, soil_transpiration 
write(97,112) ’Total water after transpiration = ’,vartmp8 

endif

c Thawdepth exceeds soilmaxdepth often. Check why we need soilmaxdepth??? 
if (dailydepth .ge. soilmaxdepth) then 

if (i_phase .eq. 1) then 
c print*, ’WARNING ### Thaw depth exceeds soilmaxdepth’

deep_water = deep_water + deep_ice 
deep_ice = O.OdO 

else if (i_phase .eq. 0) then
deep_ice = deep_ice + deep_water 
deep_water = O.OdO 

else

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



print*, 'ERROR: PHASE IN SOIL ROUTINE IS NOT 0 OR 1 ’ 
stop 

endif 
endif

c Here, if root water plus ice exceeds rootdepth, make adjustments, 
c Excess in rootzone will be computed as negative. Take the negative 
c of it and subtract from root water or ice.

if(iwrite.eq.2) then
vartmp7 = soil_downflux
rootwatchange = rootwatchange - soil_downflux 

endif
c write(97,*) soilrootdepth - root_water - root_ice

rootzone_excess = min(O.OdO,soilrootdepth-root_water-root_ice) 
if (rootzone_excess .It. O.OdO)

$ rootzone_excess = (-l.OdO) * rootzone_excess
! the next check occurs often???

c if (soil_surplus ,ne. O.OdO) print*, ’NOTE: surplus > 0 ’

if (rootzone_excess .gt. O.OdO) then
if(rootzone.excess.g t .20.OdO) then

write(*,*) ’Zonewat excess(>20mm) = ’, rootzone_excess 
endif
if(rootzone.excess.gt.40.OdO) print*,’* Soil excess > 40mm * ’ 
if (root.ice .gt. root.water) then

root.ice = root.ice - rootzone.excess 
else

root.water = root.water - rootzone.excess 
if(iwrite.eq.2) then

vartmp8 = rootzone.excess
rootwatchange = rootwatchange - rootzone.excess 

endif 
endif 

endif

if(iwrite.eq.l) then
write(97,112)’Rootzone excess = ’, rootzone.excess 

endif

c Adjustments for deepzone excess
deepzone.excess=min(0.OdO,deep_capacity-deep_water~deep_ice) 
if (deepzone.excess .It. O.OdO)

$ deepzone.excess = (-l.OdO) * deepzone.excess

if (deepzone.excess .gt. O.OdO) then
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if (deep_ice .gt. deep_capacity .and. deep_water .gt.
$ deep_capacity) then

print*,’Warning: Deepwat&deepice>capacity’,deepzone.excess 
deep.ice = deep.capacity 
deep.water = O.OdO 

else if (deep.ice .gt. deep.capacity) then
print*,’Warning: Deep ice > capacity’, deepzone.excess 
deep.ice = deep.capacity 
deep.water = O.OdO 

else if (deep.water .gt. deep.capacity) then
print*,’Warning: Deep water > capacity’, deepzone.excess 
deep.water = deep.capacity 
deep.ice = O.OdO 

else
extra = deep.ice - deepzone.excess 
if (deep.ice - deepzone.excess .gt. O.OdO) then 

deep.ice = deep.ice - deepzone.excess 
else

extra = deep.water - deepzone.excess 
deep.water = deep.water - deepzone.excess 

endif 
endif 

endif
if(iwrite.eq.l)write(97,1 1 2 ) ’Deepzone excess = ’,deepzone.excess

root.fieldcapacity = max((soilrootdepth - root.ice)
$ * soilfieldcapacity, O.OdO)
deep.fieldcapacity = max((soilmaxdepth - soilrootdepth 

$ - deep.ice) * soilfieldcapacity, O.OdO)

c TTT add reduction ’a ’ as per Vorosmarty article
c BaseFlowFactor is multiplied by water less the current fieldcapacity
c If grid is wetland, halve the base flow factors, 

if (iwetland .eq. 1) then
rootbaseflowfactor2 = rootbaseflowfactor * 0.5d0 
deepbaseflowfactor2 = deepbaseflowfactor * 0.5d0 

endif
root.baseflow = rootbaseflowfactor2 
$ * max(O.OdO, root.water - root.fieldcapacity)
deep.baseflow = deepbaseflowfactor2 

$ * max(O.OdO, deep.water - deep.fieldcapacity)

c Update water levels after baseflow 
c print*, root.water

root.water = root.water - root.baseflow
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deep_water = deep.water - deep.baseflow 
c if (iwrite .eq. 1) print*, deep_baseflow, ddiff, deep.water

if(iwrite.eq.2) then
vartmp9 = root.baseflow
rootwatchange = rootwatchange - root.baseflow 

endif

c Don’t forget the difference from above
deep.baseflow = deep.baseflow + deepzone.excess

c Finally, move any deep water or ice to surplus if deep capacity is Omm. 
c Can’t have any deep water/ice if there is no deep zone.... 

if (deep.capacity .eq. O.OdO) then
rootzone.excess = rootzone.excess + deep.water + deep.ice 
deep.water = O.OdO 
deep.ice = O.OdO 

c print*, deep.capacity, deep.water, deep.ice, soil.surplus
endif

if(iwrite.eq.i) 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,112 
write(97,*) 

endif

then
’Overland runoff = ’, soil.overlandRO
’Soil infiltration = ’, potential.infiltration
’Soil surplusl = ’, soil.surplusl
’Root baseflow = ’, root.baseflow
’Root wat(after baseflow = ’, root.water
’Root ice = ’, root.ice
’Deep baseflow = ’,deep.baseflow
’Deep wat(after baseflow = ’, deep.water
’Deep ice = ’, deep.ice
’Wetland storage = ’, wetlandstore

100 soil.runoff = soil.surplusl + rootzone.excess +
$ soil.overlandRO + root.baseflow + deep.baseflow
water.out = root.water + root.ice + deep.water + deep.ice 
$ + wetlandstore + soil.runoff + soil.transpiration
if (abs(water_in - water.out) .gt. 1.0d-8) then

print*, ’Water Balance not Maintained in SoilZone routine’ 
’Total input water = ’, water.in 
’Total output water = ’, water.out 
’Root Water = ’, root.water 
’Root Ice = ’, root.ice 
’Deep Water = ’, deep.water 
’Deep Ice = ’, deep.ice 
’Wetlandstore = ’, wetlandstore

write(* *)
write(* *)
write(* *)
write(* *)
write(* *)
write(* *)
write(* *)
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write(*,*) ’Runoff = ’, soil_runoff 
write(*,*) ’Transpiration = ’, soil_transpiration 
stop 

endif

call check(root.water, 1.0d-8, O.OdO, ’It’) 
call check(root_ice, 1.0d-8, O.OdO, ’It’) 
call check(deep_water, 1.0d-8, O.OdO, ’It’) 
call check(deep_ice, 1.0d-8, O.OdO, ’It’)

c if (iwrite.eq.2) write(91,201) potential_infiltration, rootwatchange,
c $ vartmpl,vartmp2,vartmp3,vartmp4,vartmp5,vartmp6,vartmp7,
c $ vartmp8,vartmp9
c 201 format(llf14.7)

if (iwrite .eq. 2) then
write(96,’(6f6.2)’) soil.overlandRO, potential.infiltration,
$ soil.downflux, soil_surplusl+rootzone_excess+deepzone_excess,
$ root.baseflow, deep.baseflow

c write(96,’(7f6.2)’)soil.overlandRO,soil.downflux,
c $ soil.surplus, root.baseflow, deep.baseflow,
c $ soil.availwater,soil_transpiration

endif

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine river.discharge (area,kilometer_per_mm,extra_rivwat,
$ runoff,watupstrm,rivwat_prev,rivwat.new,wat2nextgrid,
$ rivwat.change)

implicit none
real*8 extra.rivwat,runoff,watupstrm,rivwat_prev,rivwat.new
real*8 rivwat.change,fraction2nextgrid,runoff.volume
real*8 tot.water,sum,outwat,wat2nextgrid,area,kilometer.per.mm

fraction2nextgrid = 0.5d0

c Convert extra river water and runoff to a volume based on gridcell area 
c Then add the upstream inputs (volume) and previous storage to get 
c total water in channel.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



runoff_volume = (extra_rivwat + runoff) * kilometer_per_mm * area 
tot_water = rivwat.prev + runoff.volume + watupstrm

if (tot_water .gt. O.OdO) then
wat2nextgrid = fraction2nextgrid * tot_water 
rivwat_new = tot_water - wat2nextgrid 

else
rivwat_new = rivwat_prev 
wat2nextgrid = O.OdO 

endif

rivwat.change = rivwat.new - rivwat.prev 
outwat = rivwat.new + wat2nextgrid

if (outwat 
write(* 
write(* 
write(* 
write(* 
write(* 
write(* 
write(* 
stop 

endif

ne. tot.water) then
(a,f14.10) 
(a,f14.10) 
(a,f14.10) 
(a,f14.10) 
(a,f14.10) 
(a,f 14.10)

) 'Upstream input = ’, watupstrm 
) 'Previous river water = ', rivwat.prev 
) 'Extra river water = ', extra.rivwat 
) 'Runoff input = ', runoff 
) 'Flux downstream out = ', wat2nextgrid 
) 'New river water = ’, rivwat.new

*) 'Water balance failed inside river routine’

return
end

real*8 function snowadj(icover)

Function to return value for snow damming coefficient. This 
coefficient varies with cover type. Cover type is an integer for 
one of the following:

Cover Type

1 Ice
2 Polar Desert
3 Tundra
4 Forest-Tundra
5 Taiga/Boreal
6 Grassland/Steppe/Shrubland
7 Wetland   discontinued
8 Deciduous/Mixed Forest
9 Non-Arctic   discontinued

10 Lakes/Seas
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implicit none 
integer icover 
real*8 coeff(5)

c data coeff /l.OdO, l.OdO, l.OdO, 0.7d0, 0.4d0, 0.8d0, l.OdO,
c $ 0.4d0, l.OdO, l.OdO /

if (icover .gt. 5) stop ’Vegetation cover is > # 5 ’ 
data coeff /0.6d0, l.OdO, l.OdO, l.OdO, 0.4d0/

snowadj = coeff(icover)

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine hamon(r_lat, idayofyr, temp, pet)

implicit none 
integer i, idayofyr 
real r_lat
real*8 r_latl, temp, pet, es, day, daylngth, rhosat

c Calculate stauration vapor pressure
c Input temperature is in degrees C and vapor pressure output in kPa

if (temp .It. O.OdO) then
es = exp( temp*21.87456d0 / (temp + 265.5d0))

$ * 0.61078d0
else

es = exp(temp * 17.26939d0 / (temp + 237.3d0))
$ * 0.61078d0
endif

c Call routine to compute length of day (sun above horizon). Number
c returned is in interval [0,1]

day = dble(idayofyr) ! this is the day of year (1 to 365)
r_latl = dble(r_lat)
call daylength(r_latl, day, daylngth)

c Calculate density
rhosat = es * 2.167d0 / (temp + 273.15d0)

c Compute the potential evaporation
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pet = daylngth * 330.2d0 * rhosat 
c pet = 715.5d0 * daylngth * rhosat / (temp + 273.15d0)
c print*, temp, es, day, r_lat, rhosat, daylngth, pet

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine daylength(r_lat2, dayofyr, day_lngth)

implicit none
real*8 r_lat2, radlat, pi, arg, h, dayofyr, day_lngth, dec, dtor 
parameter (pi=3.14159d0)

dtor = pi / 180.OdO ! parameter to convert lat/lon from degs to rads 
radlat = r_lat2 * dtor

dec = asin(0.39785d0 * sin(4.868961d0 + 0.017203d0 * dayofyr 
$ + 0.033446d0 * sin(6.224111d0 + 0.017202d0 * dayofyr)))

if (abs(radlat) .ge. pi/2.OdO) then 
if (radlat .ge. O.OdO) then

radlat = abs(pi / 2.OdO - O.OldO) 
else

radlat = (-1) * (abs(pi / 2.OdO - O.OldO)) 
endif 

endif

arg = -tan(dec) * tan(radlat)

if (arg .ge. l.OdO) then ! sun stays below horizon
h = O.OdO

else if (arg .It. -l.OdO) then ! sun stays above horizon
h = pi 

else
h = acos(arg) 

endif

day_lngth = h / pi

return
end
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c From lookup.f by J.B. Holden 
c Converted to C and rewritten by 
c R.B. Lammers July, 1997

c Converted to FORTRAN by M. Rawlins, July 2001
c Modified Aug 2006 to assign non-zero values for Open Water class,

c void soillookup(struct parmsstruct *parms, int soiltext) ! check this

c values in this table are derived from 
c figure 6-9 Dunne and Leopold (1978) 
c figure 6.4 Dingman (1994) 
c
c porosity, wilting point, and field capacity are in fraction [0-1]
c bulk density is in kg/m3
c conductivities are in cal/m/s/degC

subroutine lookup(isoiltype,SoilPorosity.FieldCapacity,
$ WiltingPoint,BulkDensity,ThermCondWet,ThermCondSat,ThermCondDry)

implicit none 
integer isoiltype
real*8 SoilPorosity,FieldCapacity.WiltingPoint,BulkDensity 
real*8 ThermCondWet,ThermCondSat,ThermCondDry

if (isoiltype .eq. 1) then ! sand
SoilPorosity = 0.39d0 
FieldCapacity = 0.05d0 
WiltingPoint = 0.04d0 
BulkDensity = 1.60d3 
ThermCondWet = 4.20d-l 
ThermCondSat = 5.20d-l 
ThermCondDry = 0.70d-l 

else if (isoiltype .eq. 2 .or. isoiltype .eq. 5 .or. isoiltype 
$ .eq. 7 .or. isoiltype .eq. 8) then

SoilPorosity = 0.45d0 ! loam
FieldCapacity = 0.24d0 
WiltingPoint = 0.09d0 
BulkDensity = 1.44d3 
ThermCondWet = 3.30d-l 
ThermCondSat = 4.30d-l 
ThermCondDry = 0.60d-l 

else if (isoiltype .eq. 3) then ! clay
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SoilPorosity = 0.53d0
FieldCapacity = 0.35d0
WiltingPoint = 0.22d0
BulkDensity = 1.21d3
ThermCondWet = 2.80d-l
ThermCondSat = 3.80d-l
ThermCondDry = 0.60d-l

else if (isoiltype .eq. 4) then ! sandy loam
SoilPorosity = 0.43d0
FieldCapacity = 0.14d0
WiltingPoint = 0.05d0
BulkDensity = 1.50d3
ThermCondWet = 3.80d-l
ThermCondSat = 4.80d-l
ThermCondDry = 0.70d-l

else if (isoiltype .eq. 6) then ! clay loam
SoilPorosity = 0.48d0
FieldCapacity = 0.32d0
WiltingPoint = 0.17d0
BulkDensity = 1.35d3
ThermCondWet = 2.90d-l
ThermCondSat = 3.90d-l
ThermCondDry = 0.60d-l

else if (isoiltype .eq. -99) then ! Open Water
SoilPorosity = 0.39d0 ! modified to assign non-zero
FieldCapacity = 0.05d0 ! values for this class
WiltingPoint = 0.04d0
BulkDensity = 1.60d3 ! plan to treat -99 types in
ThermCondWet = 4.20d-l ! a water subroutine
ThermCondSat = 5.20d-l
ThermCondDry = 

else
0.70d-l

print*, ’ERROR: 
stop 

endif

soil texture should not be ’, isoiltype

c Are these test cases???
c parms->SoilRootDepth = 0.15 * 1000.0; */ /* [m] to [mm] */
c parms->SoilPorosity = 0.7 ; */
c parms->FieldCapacity = 0.3 ' , * / / *  [%] */

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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subroutine bound(rminval, rmidval, rmaxval, returnval)

implicit none
real*8 rminval, rmidval, rmaxval, rnewvall, returnval

rnewvall = max(rminval, rmidval) ! lower constraint

returnval = min(rnewvall, rmaxval) ! upper constraint

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Calculate thaw depth BASED ON A PREVIOUS DEPTH AND AN OBSERVED 
C DAILY AIR TEMPERATURE
c Equation (???) from Nelson and Outcalt (1987) 
c Arctic & Alpine Res. 19:279-288 
c Original code from thaw.c by J.B. Holden 
c Rewritten in C by R.B. Lammers, July, 1997 
c Rewritten by M. Rawlins to FORTRAN, June, 2001 
c Note: latent heat is in cals kg~-l
c soil bulk density input in g/cm~3; converted here to kg/m~3
c The resultant thaw depth in meters is converted to mm
c prior to return to calling program
c ivegcov is vegitation cover, which is used to access
c n-factors used in Stephan solution. May need to re-evaluate
c n-factors .........
c NOTE: IF TMAX = 0C, THEN 
c 1) BETA IS 0

2) tavg + tamp ~= 0 => Ts = 0c

subroutine thaw21ayer(ts,ivegcov,soil_density,soil_watvolume, 
$ soil_conductivity,peat_conductivity,soil_carbon,
$ porosity,depth_prev,stephandepth,iwrite)

implicit none

integer ivegcov,iwrite 
real*8 rl, r2
real*8 t s ,air_temp,secperday,stephandepth,depth_prev,porosity 
real*8 latentheat,soil_density,bulkdensity,soil_watvolume 
real*8 soil_conductivity,peat_conductivity,soil_carbon,peatdepth 
real*8 thawdepth_prev,r_nfactor(10),peatporosity,conduct_ratio
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real*8 terml,term2,term3,term4,terms,rootterm 
real*8 soil_watvolume2
data r_nfactor /0.8d0,0.8d0,0.8d0,0.8d0,0.8d0,0.8d0,

$ 0.8d0,0.8d0,1.OdO,1.OdO/
parameter(secperday = 86400.OdO, latentheat = 7.974474d4) 
parameter(peatporosity = 0.92d0)

soil_watvolume2 = l.OdO ! set water content in denominator of eq. to

conduct_ratio = soil_conductivity / peat_conductivity
peatdepth = soil_carbon / 1000.OdO ! convert depth in mm to meters

c If Ts (daily air temperature) is > 0C, set thaw_depth to previous plus
c value from Stephan soultion. If Ts < 0C, thaw_depthv is previous minus
c Stephan solution. If Ts=0C, set thaw_depth = previous
c Converting thawdepth in meters to mm.

if (ts .ge. O.OdO) then
if (depth_prev .gt. soil_carbon) then

terml = peatdepth * (l.OdO - conduct_ratio) 
term2 = (peatdepth * conduct_ratio) ** 2.OdO 
term3 = (peatdepth**2.OdO) * conduct_ratio *

$ ((soil_watvolume2 * 1000.OdO * peatporosity) /
$ (soil_watvolume2 * 1000.OdO * porosity))

term4 = 2.OdO * r_nfactor(ivegcov) * ts * secperday /
$ (latentheat * (soil_watvolume2 * 1000.OdO * porosity) /
$ soil_conductivity)

terms = term2 - (term3 - term4) 
if (terms .It. 1.0d-6) terms = 1.0d-6 
rootterm = sqrt(terms) 
if (iwrite .eq. 1) then

write(93,*)peatdepth,conduct_ratio.porosity.peatporosity,
$ soil_watvolume2,soil_conductivity

write(93,*)’below peat’.terml,term2,term3,term4,rootterm,
$ (term3 - term4), term2 - (term3 - term4)

endif
stephandepth = (terml + rootterm) * 1000.OdO 
if (porosity .eq. O.OdO) stephandepth = O.OdO 
if (stephandepth .It. O.OdO) then 

c print*, ’Warning: Calculated Stephan Depth < 0 ’
stephandepth = O.OdO 

c write(99,*) ’Thawdepth < 0 in two-layer solution’
endif 

else
terml = 2.OdO * r_nfactor(ivegcov) * peat_conductivity 

$ * secperday * ts
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term2 = soil_watvolume2 * 1000.OdO * peatporosity
$ * latentheat

stephandepth = sqrt(terml / term2) * 1000.OdO
if(iwrite.eq.l)write(93,*)’in peat’,terml,term2,stephandepth 

endif
else if (ts .It. O.OdO) then 

write(*,*) ’ERROR: Ts < zero’ 
endif

if (iwrite .eq. 1) then 
write(93,*)’ ’
write(93,*)’Thaw depth (mm) = ’, stephandepth 
write(93,*)’ ’ 

endif

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Routine computes soil conductivity as a function of soil water 
c content. Interpolates between dry, wet, and saturated conductivities 
c from de Vries, 1966. Linear interpolation is performed between dry 
c and wet classes when soil water content is <= 50%, and interpolates between 
c wet and saturated classes when water content > 50%. 
c

subroutine conductivity(wat_content,conduct_dry,conduct_wet,
$ conduct_sat,soil_conductivity)

implicit none
real*8 wat_content,conduct_dry,conduct_wet,conduct_sat 
real*8 soil_conductivity,range,percent_of_range

if (wat_content .eq. O.OdO) then 
soil_conductivity = conduct_dry 

else if (wat_content .gt. O.OdO ,and.wat_content.le.0.5d0) then 
range = conduct_wet - conduct_dry 
percent_of_range = range * (wat_content / 0.5) 
soil_conductivity = conduct_dry + percent_of_range 

else if (wat_content .gt. 0.5d0 .and.wat_content.lt.1.OdO) then 
range = conduct_sat - conduct_wet
percent_of_range = range * ((wat_content - 0.5d0)/ 0.5) 
soil_conductivity = conduct_wet + percent_of_range 

else if (wat_content .eq. l.OdO) then 
soil_conductivity = conduct_sat
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else
write(6,*) ’Soil water content not in range 0-1 (decimal '/,) ’ 
stop 

endif

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Subroutine checks to see if an input value satisfies an input criteria 
c to within a specified input tolerance, 
c Inputs:
c value - the value to be checked (double precision real variable)
c precision - a specified allowable tolerance (double precision real)
c critval - the threshold (double precision real)
c criteria - a character*2 string (eg., It, gt, eq)
c

subroutine check(value.precision,critval,criteria) 

implicit none
real*8 value.precision,critval.threshold 
character*2 criteria

if (critval .eq. O.OdO .and. criteria .eq. ’It’) then 
threshold = critval - precision
if (value .It. threshold) stop ’Less than zero check violated’ 

else if (critval .eq. O.OdO .and. criteria .eq. ’g t ’) then
if (value .gt. threshold)stop’Greater than zero check violated’ 

else if (critval .eq. l.OdO .and. criteria .eq. ’g t ’) then 
threshold = critval + precision
if (value .gt. threshold) stop’Greater than one check violated’ 

else if (critval .eq. l.OdO .and. criteria .eq. ’It’) then 
threshold = critval - precision
if (value .It. threshold) stop ’Less than one check violated’ 

else if (critval .eq. O.OdO .and. criteria .eq. ’eq’) then 
threshold = critval + precision
if (value .gt. threshold)stop’Not equal to zero check violated’ 
threshold = critval - precision
if (value .It. threshold)stop’Not equal to zero check violated’ 

endif

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine precipmod(ndays,rmiss,prcp,prcp_new)
c
c Subroutine inputs array of precipitation each day of month at each drid 
c and sums to monthly total. It then partitions the monthly total into N 
c events specified in parameter statement.

c Inputs: ndays - number of days in month. Not needed at this time
c rmiss - Missing vaue code. Values will be screened out
c prep - 2-D array of precipitation each day each grid
c Outputs: prcp_new - Returned precipitation array.

implicit none
integer i, j ,ndays,igrid,iday,nvals,idata,nevents
parameter (nvals=39926,nevents=5)
real*8 prcp(31,nvals),prcp_new(31,nvals),rmiss,sum

do igrid = 1, nvals 
idata = 0 
sum = O.OdO 
do iday = 1 , 3 1

if (prep(iday,igrid) .ne. rmiss) then 
sum = sum + prep(iday,igrid) 
idata = idata + 1 

c if (igrid .eq. 1) print*, iday, prcp(iday,igrid)
else

prcp_new(iday,igrid) = rmiss 
endif 

enddo
c write(99,*) sum

do iday = 1, 31

c For 5 events:
if (nevents .eq. 5) then

if (iday .eq. 3 .or. iday .eq. 9 .or. iday .eq. 15 .or.
$ iday .eq. 21 .or. iday .eq. 27) then

prcp_new(iday,igrid) = sum / dble(nevents) 
else

prcp_new(iday,igrid) = O.OdO 
endif

c write(99,*) iday, prcp_new(iday,igrid)
endif
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enddo ! end of day loop
c write(99,*) ’************************************************’

enddo ! end of grid loop

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine getvegvals(iveg,ALB,ALBEDO,C R ,HEIGHT,LPMAX,GLMAX,R 5 ,
$ CVPD,LWIDTH,ZOG,RSS,FETCH,ZW,ZOW)

integer iveg,nveg,inewveg 
parameter (nveg=8)

real ALB,ALBEDO,C R ,HEIGHT,LPMAX,GLMAX,R 5 ,CVPD,LWIDTH,ZOG,RSS 
real FETCH,ZW,ZOW

real ALBl(nveg).ALBED01(nveg),CRl(nveg).HEIGHT1(nveg),LPMAX1(nveg) 
real GLMAXl(nveg),R51(nveg).CVPDl(nveg).LWIDTH1(nveg).ZOGl(nveg) 
real RSSl(nveg),FETCH1(nveg),ZWl(nveg),ZOWl(nveg)

data ALB1 /0.14, 0.18, 0.18, 0.2, 0.2, 0.22, 0.26, 0.1/
data ALBED01 /0.14, 0.23, 0.35, 0.5, 0.5, 0.5, 0.5, 0.5/
data CR1 /0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.7, 0.01/
data HEIGHT1 /25., 25., 8., 0.5, 0.3, 0.3, 0.1, 0.01/
data LPMAX1 /6., 6., 3., 3., 4., 3., 1., 0.00001/
data GLMAX1 /0.0053, 0.0053, 0.0053, 0.008, 0.0066, 0.011, 0.005,

$ 0 . 001/  
data R51 /100., 100., 100., 100., 100., 100., 100., 10/ 
data CVPD1 /2., 2., 2., 2., 2., 2., 2., 0.1/ 
data LWIDTH1 /0.004, 0.1, 0.03, 0.01, 0.01, 0.1, 0.02, 0.001/ 
data Z0G1 /0.02, 0.02, 0.02, 0.01, 0.01, 0.005, 0.001, 0.001/
data RSS1 /500., 500., 500., 500., 500., 500., 500., 500./
data FETCH1/5000., 5000., 5000., 5000., 5000., 5000., 5000., 5000/ 
data ZW1 /10., 10., 10., 10., 10., 10., 10., 10./ 
data Z0W1 /0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005/

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ******************************************* 
c Map input UAF classes into the WBM parameters defined here.

c WBM classes:

c The landcover types are: 
c 1-conifer forest
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c 2-broadleaf forest 
C 3-savannah 
c 4-grassland
c 5-tundra/non-forested wetlands 
c 6-cultivated 
c 7-desert 
c 8-water

c New UAF Vegetation

c 1 Black Spruce
c 2 Coastal Forest
c 3 Deciduous Forest
c 4 Tundra
c 5 White Spruce

c Mapping UAF into the parameters defined for WBM classes.

c UAF -> WBM class
c 1 -> 1
c 2 -> 1
c 3 -> 2
c 4 -> 5
c 5 -> 1

if (iveg .eq. 1 .or. iveg .eq. 2 .or. iveg .eq. 5)
if (iveg .eq. 3) inewveg = 2
if (iveg .eq. 4) inewveg = 5

if (iveg .gt. 5) stop ’Vegetation designation > 5 ’

c****************************************************************************

ALB = ALBl(inewveg)
ALBEDO = ALBEDOl(inewveg)
CR = CRl(inewveg)
HEIGHT = HEIGHT1(inewveg)
LPMAX = LPMAX1(inewveg)
GLMAX = GLMAX1(inewveg)
R5 = R51(inewveg)
CVPD = CVPD1(inewveg)

' LWIDTH = LWIDTH1(inewveg)
ZOG = Z0G1(inewveg)
RSS = RSS1 (inewveg)
FETCH = FETCH1(inewveg)
ZW = ZW1(inewveg)
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ZOW = ZOW1(inewveg)

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE ESATF (TA, ES, DELTA)
c calculates saturated vp and DELTA from
c Murray (1967)
c input
c TA air temperature, degC
c output
c ES vapor pressure at TA, kPa
c DELTA dES/dTA at TA, kPa/K

IMPLICIT NONE 
REAL TA, ES, DELTA 
REAL EXP 
INTRINSIC EXP
ES = 0.61078 * EXP(17.26939 * TA / (TA + 237.3))
DELTA = 4098. * ES / (TA + 237.3)**2 
IF (TA .LT. 0.0) THEN

ES = 0.61078 * EXP(21.87456 * TA / (TA + 265.5))
DELTA = 5808. * ES / (TA + 265.5)**2 

END IF 
END
REAL FUNCTION NETLONGF (TA, EA, RATIO, Cl, C2, C3)

C net longwave radiation, W/m2
C emissivity of the surface taken as 1.0 to also account for reflected
C all equations and parameters from Brutsaert (1982)
C input
C TA air temperature, degC
C EA vapor pressure, kPa
C RATIO ratio of actual to potential solar radiation
C Cl intercept of actual/potential relation to n/N
C C2 slope of actual/potential relation to n/N
C C3 longwave cloud correction coefficient
C local
C SIGMA Stefan-Boltzmann constant, W/(m2/K4)
C NOVERN sunshine duration fraction of daylength
C EFFEM effective emissivity from clear sky
C CLDCOR cloud cover correction to net longwave under clear sky

IMPLICIT NONE
REAL TA, EA, RATIO, Cl, C2, C3, SIGMA, NOVERN, EFFEM, CLDCOR 
REAL SQRT, EXP
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INTRINSIC SQRT, EXP

SIGMA = 5.67E-08 
C Brutsaert method

EFFEM = 1.24 * (EA * 10. / (TA + 273.15)) ** (1. / 7.)
C
C additional methods not used 
C Brunt method
C BRUNTA Brunt intercept
C BRUNTB Brunt EA coefficient, for kPa (value for mb * 10)
C BRUNTA = .44
C BRUNTB = .253
C EFFEM = BRUNTA + BRUNTB * SQRT(EA)
C Satterlund method
C EFFEM = 1.08 * (1 - EXP(-(10. * EA) ** ((TA + 273.15) / 2016.)))
C Swinbank method
C EFFEM = .0000092 * (TA + 273.15) ** 2.
C Idso-Jackson method
C EFFEM = 1. - .261 * EXP(-.000777 * TA ** 2.)
C

NOVERN = (RATIO - Cl) / C2 
IF (NOVERN .GT. 1.) NOVERN = 1.
IF (NOVERN .LT. 0.) NOVERN = 0.
CLDCOR = C3 + (1. - C3) * NOVERN
NETLONGF = (EFFEM - 1.) * CLDCOR * SIGMA * (TA + 273.15) ** 4

c print*, ’here lb’, TA, EA, SIGMA, EFFEM
c print*, ’here 2b’, RATIO, Cl, C2, C3
c print*, ’here 3 b ’, NOVERN, CLDCOR, NETLONGF

END
REAL FUNCTION PMF (AA, DD, DELTA, RA, RC) 

C Penman-Monteith evapotranspiration, W/m2
c input
c AA net energy input, Rn - S , W/m2
c DD vapor pressure deficit, kPa
c DELTA dEsat/dTair, kPa/K
c RA boundary layer resistance, s/m
c RC canopy resistance, s/m
c local constants
c GAMMA psychrometric constant, kPa/K
c CPRHO volumetric heat capacity of air, J/(K m3)

IMPLICIT NONE

c
REAL AA, DD, DELTA, RA, RC, GAMMA, CPRHO
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GAMMA = .067 
CPRHO = 1240
PMF = (DELTA * AA + CPRHO * DD / RA) /
* (DELTA + GAMMA + GAMMA * RC / RA)
END
REAL FUNCTION SRSCF (RAD, TMIN, DD, LAI, SAI, R5, CVPD, RM,
* CR, GLMAX, GLMIN)

C canopy surface resistance, RSC, s/m
C after Shuttleworth and Gurney (1990) and Stewart (1988)
c input
c RS solar radiation on canopy, W/m2
c TMIN minimum air temperature for the day, degC
c DD vapor pressure deficit, kPa
c LAI projected leaf area index
c SAI projected stem area index
c R5 solar radiation at which conductance is halved, W/m2
c CVPD vpd at which conductance is halved, kPa
c RM maximum solar radiation, at which FR = 1, W/m2
c CR light extinction coefficient for projected LAI
c GLMAX maximum leaf surface conductance for all sides of leaf, m/s
c GLMIN cuticular leaf surface conductance for all sides of leaf, m/s
c local
c FS correction for stem area
c RO a light response parameter
c FRINT integral of fR dL over Lp
c FD dependence of leaf conductance on vpd, 0 to 1
c FT dependence of leaf conductance on temperature, 0 to 1
c GSC canopy conductance, m/s

IMPLICIT NONE
REAL RAD, TMIN, DD, LAI, SAI, R5, CVPD, RM, CR, GLMAX,
* GLMIN, FS, RO, FRINT, FD, FT, GSC
REAL MAX, EXP, LOG

c
c

INTRINSIC MAX, EXP, LOG - FBM SGI did not like

c solar radiation limitation integrated down through canopy
c Stewart (1988) and Saugier and Katerji (1991)

FS = (LAI + SAI) / LAI
IF (RAD .LE. IE-10) THEN

FRINT
ELSE

= 0

RO = RM * R5 / (RM - 2 * R5)
FRINT = ((RM + RO) / (RM * CR * FS)) *

* L0G((RO + CR * RAD) /
*
END IF

(RO + CR * RAD * EXP(-CR * FS * LAI)))
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C vapor deficit limitation
C Lohammar et al. (1980) and Stannard (1993)

FD = 1 / (1 + DD / CVPD)
C temperature limitation
C limitation only by low minimum daily temperature (TMIN)

IF (TMIN .GT. 0.) THEN 
FT = 1

ELSEIF (TMIN .LT. -5.) THEN 
FT = 0.

ELSE
FT = 1. + TMIN / 5.

END IF

GSC = FD * FT * FRINT * (GLMAX - GLMIN) + LAI * GLMIN 
C not less than cuticular conductance

SRSCF = 1 / GSC

END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE SUNDHF (LAT, DOY, DAYLEN, IOHDAY)
c daylength, and potential daily solar radiation on a horizontal
c Lee (1978) , Swift (1976)
c inputs
c LAT latitude, radians
c DOY day of the year
c outputs
c DAYLEN daylength fraction of day, d
c IOHDAY daily potential solar radiation (horizontal) MJ/m2
c local
c DEC declination
c PI Pi
c ARG, H
c ISC solar constant

IMPLICIT NONE
INTEGER DOY
REAL LAT, DAYLEN, IOHDAY, REALDOY
REAL DEC, PI, ARG, H, ISC
REAL ABS, ASIN, SIN, SIGN, TAN, ACOS, COS

n
INTRINSIC ABS, ASIN, SIN, SIGN, TAN, ACOS, COS

u
REALDOY = real(DOY)
PI = 3.14159
ISC = 1367. / (1. - .0167 * C0S(.0172 * (REALDOY - 3.))) ** 2
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DEC = ASIN(.39785 * SIN(4.868961 + .017203 * REALDOY +
* .033446 * SIN(6.224111 + .017202 * REALDOY)))

C halfday length
IF (ABS(LAT) .GE. PI / 2.) LAT = SIGN(PI / 2. - .01, LAT)
ARG = -TAN(DEC) * TAN(LAT)
IF (ARG .GE. 1.) THEN 

C sun stays below horizon
H = 0

ELSE IF (ARG .LT. -1.) THEN 
C sun stays above horizon

H = PI 
ELSE

H = ACOS(ARG)
END IF
DAYLEN = H / PI 

C daily potential from Sellers (1965)
IOHDAY = .000001 * ISC * (86400. / PI) *

* (H * SIN(LAT) * SIN(DEC) + COS(LAT) * COS(DEC) * SIN(H))

END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

REAL FUNCTION WNDADJF (ZA, DISP, ZO, FETCH, ZW, ZOW)
c ratio of wind speed at reference height (above canopy)
c wind speed at weather station
c after Brutsaert (1982)
c input
c ZA reference height, m
c DISP height of zero-plane, m
c ZO roughness parameter, m
c FETCH fetch to weather station, m
c ZW height of wind sensor at weather station, m
c ZOW roughness parameter at weather station, m
c local
c HIBL height of internal boundary layer, m
c
f

AA exponent
V_/

INTRINSIC LOG
c Brutsaert equation 7-39

HIBL = .334 * FETCH ** .875 * ZOW ** .125
c Brutsaert equations 7-41 and 4 -3

WNDADJF = LOG(HIBL / ZOW) * L0G((ZA - DISP) / ZO) /
* (LOG(HIBL / ZO) * L0G(ZW / ZOW))
END
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE ROUGHF (CZS, CZR, HS, HR, LPC, CS, LAI, SAI, HEIGHT,
* ZOG, ZO, DISP, ZOC, DISPC)

c roughness parameter and zero-plane displacement
c input
c LAI projected leaf area index
c SAI projected stem area index
c LPC projected leaf area index for closed canopy
c CZS ratio of roughness to height for smooth closed canopies
c CZR ratio of roughness to height for rough closed canopies
c HR height above which CZR applies, m
c HS height below which CZS applies, m
c HEIGHT canopy height, m
c ZOG ground surface roughness, m
c output
c ZO roughness parameter, m
c DISP zero-plane displacement, m
c ZOC roughness length for closed canopy, m
c DISPC zero-plane displacement for closed canopy, m
c local
c XX, CDRAG

IMPLICIT NONE
REAL CS,:LAI, SAI, LPC, CZS, CZR, HR, HS, HEIGHT, ZOG
REAL ZO, DISP, ZOC, DISPC
REAL XX, CDRAG
REAL MIN , EXP, LOG

c
r*

INTRINSIC MIN, EXP, LOG - FBM SGI did not like
L/

IF (HEIGHT .GE. HR) THEN
ZOC = CZR * HEIGHT

ELSE IF (HEIGHT .LE. HS) THEN
ZOC = CZS * HEIGHT

ELSE
ZOC = CZS * HS + (CZR * HR - CZS * HS) *

* (HEIGHT - HS) / (HR - HS)
END IF

c Limit ZOC to ZOG 2001-05-23 Tony and FBM
IF (ZOC .LT. ZOG) THEN

ZOC = ZOG
END IF

DISPC = :HEIGHT - ZOC / .3
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C Changed the if statement IF (LAI .GE. LPC) 2001-05-23 Tony and FBM 
IF (LAI + SAI .GE. LPC + CS * HEIGHT) THEN 

C closed canopy
ZO = ZOC 
DISP = DISPC 

ELSE
C sparse canopy
C from Shuttleworth and Gurney (1990)

CDRAG = (-1 + EXP(.909 - 3.03 * ZOC / HEIGHT)) ** 4
* / (LPC + CS * HEIGHT)

XX = CDRAG * (LAI + SAI)
DISP = 1.1 * HEIGHT * L0G(1 + XX ** .25)
ZO = MIN(.3 * (HEIGHT - DISP), ZOG + .3 * HEIGHT * XX ** .5)

END IF 
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine net2solrad(RADnet,T A ,E A ,ALBEDO,C l ,C 2 ,C3,RIOHDAY,SOLRAD,
$ iflag)

c Here is how to get solar radiation (SOLRAD, W/m2) from net radiation 
c (NETRAD, W/m2). SOLRAD is needed for the light dependence of the canopy 
c resistance.

c Cl, C2, and C3 are parameters that are already input somehow, 
c Values should be 0.25, 0.5, 0.2 respectively,
c IOHDAY is required from the call to SUNDHF.
c NETRAD is the input.

RI0HDAY2 = RIOHDAY * (1./0.0864) ! convert from MJ/m2 to W/m2
c RI0HDAY2 = 399.456
c RADnet2 = RADnet * (1./0.0864) ! convert from MJ/m2 to W/m2

CB = (1. - C3) / C2
CA = (C3 * (C1+C2) - Cl) / C2
SIGMA = 5.67E-8 !W/(m2 K4)
EFFEM = 1.24 * (10. * EA /. ( TA + 273.15)) ** (1./7.)
RNETLONGCLEAR = (EFFEM - 1.) * SIGMA * (TA + 273.15) ** 4.
SOLRAD = (RADnet - CA * RNETLONGCLEAR) /

$ ((1. - ALBEDO) + CB * RNETLONGCLEAR / RI0HDAY2)

c if (iflag .eq. 1) then
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write(96, *) ’here 1’, RADnet,EA,TA,CB,CA,EFFEM,RNETLONGCLEAR
c write(96,*) C1,C2,C3
c write(96,*) 10. * EA / ( TA + 273.15),
c $ (10. * EA / ( TA + 273.15)) ** (0.14285714)
c write(96,*) ’here 2 ’, 1., ALBEDO, RNETLONGCLEAR, RI0HDAY2
c write(96,*) ’here 3 ’, RADnet2 - CA * RNETLONGCLEAR
c write(96,*) ’here 4 ’,((1. - ALBEDO) +
c $ CB * RNETLONGCLEAR / RI0HDAY2)
c write(96,*) SOLRAD

c write(*,*) ’CB = ’, CB
c write(*,*) ’CA = ’, CA
c write(*,*) ’I0HDAY2 = ’, RI0HDAY2
c write(*,*) ’SIGMA = ’, SIGMA
c write(*,*) ’EFFEM = ’, EFFEM
c write(*,*) ’ALBEDO = ’, ALBEDO
c write(*,*) ’RNETLONGCLEAR = ’, RNETLONGCLEAR
c write(*,*) ’SOLRAD (W/m2) = ’, SOLRAD
c write(*,*) ’ ’
c endif

return
end

REAL FUNCTION PMDAYF(DOY,LATD,LONGD,iveg,LAI,SNOW,FL,UW,
$ RADNET,T A ,E A ,SHEAT,TMAX,TMIN,iflag)

c daily Penman-Monteith PE in mm for day
c local
c ALBEDO albedo
c DAYLEN daylength in fraction of day
c DISP zero-plane displacement, m
c DISPC zero-plane displacement for closed canopy, m
c IOHDAY daily potential insolation on horizontal, MJ/m2
c LAI projected leaf area index
c LAT latitude, radians, south negative
c SAI projected stem area index
c UA average wind speed for the day, m/s
c ZA reference height, m
c ZO surface roughness parameter, m
c ZOC surface roughness parameter for closed canopy, m
c SOLNET average net solar radiation for daytime, W/m2
c LNGNET average net longwave radiation for day,-* W/m2
c AA available energy, W/m2
c DD vapor pressure deficit, kPa
c RC canopy or surface resistance, s/m
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C RA aerodynamic resistance, s/m
C LE latent heat, W/m2
C constant
C IGRATE integrates W/m2 over 1 d to MJ/m2, 86400 s/d *
C .000001 MJ/J * 1 d
C ETOM converts MJ/m2 to mm of water
#include "HLC0MM_4arctic.INC"

INTEGER DOY,iveg,iflag
REAL LATD, LONGD, RADNET, test, testval
REAL ALBEDO, DAYLEN, DISP, DISPC, IOHDAY, LAI, LAT, SAI
REAL UA, ZA, ZO, ZOC
REAL ES, DELTA, SOLNET, LNGNET, AA, DD, RC, RA, LE 
REAL IGRATE, ETOM
REAL NETLONGF, SRSCF, PMF, WNDADJF 
REAL LOG

C INTRINSIC LOG - FBM SGI did not like it
EXTERNAL NETLONGF, ESATF, SRSCF, PMF, WNDADJF, SUNDHF, ROUGHF 

#include "HLPECOMM.INC"

IGRATE = .0864 
ETOM = .4085

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Call subroutine to access vegetation-specific parameters
call getvegvals(iveg,ALB,ALBEDO,C R ,HEIGHT,LPMAX,GLMAX,R 5 ,CVPD,

$ LWIDTH,ZOG,RSS,FETCH,ZW,ZOW)

LAT = LATD / 57.296 
CALL SUNDHF(LAT, DOY, DAYLEN, IOHDAY) 
if (iflag .eq. 1) print*, LAT, DOY, DAYLEN, IOHDAY 

IF (SNOW .GT. 0) THEN 
ALBEDO = ALBSN 

ELSE
ALBEDO = ALB 

END IF
IF (R5 .GT. RM / 2) THEN

PRINT*, ’R5 must be < RM/2’
STOP 

END IF
IF (LPMAX .GT. LPC) THEN 

SAI = CS * HEIGHT
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ELSE
SAI = (LPMAX / LPC) * CS * HEIGHT 

END IF

c LAI = FL * LPMAX
c LAI = MAX(0.001, LAI)

c LAI is read in input from calling program, instead of calculating it
c from LPMAX.

CALL ROUGHF(CZS, CZR, HS, HR, LPC, CS, LAI, SAI, HEIGHT, ZOG, 
* ZO, DISP, ZOC, DISPC)

c print*, CZS, CZR, HS, HR, LPC, CS, LAI, SAI, HEIGHT, ZOG
c print*, ZO, DISP, ZOC, DISPC

ZA = HEIGHT + ZMINH 
IF (UW .LT. 0.2) UW = 0.2
UA = UW * WNDADJF(ZA, DISP, ZO, FETCH, ZW, ZOW)

c Call subroutine to get solrad from netrad
call net2solrad(RADNET,T A ,E A ,ALBEDO,Cl,C2,C3,IOHDAY,SOLRAD,iflag) 

c SOLNET = (1 - ALBEDO) * SOLRAD / IGRATE
c LNGNET = NETLONGF(TA, EA, SOLRAD / IOHDAY, Cl, C2, C3)
c AA = SOLNET + LNGNET - SHEAT
c write(96,*) TA, EA, SOLRAD / IOHDAY, Cl, C2, C3, LNGNET

c Using input net radiation.
AA = RADNET

CALL ESATF(TA, ES, DELTA)
DD = ES - EA

c if (iflag .eq. 1) SOLRAD = 177.23
RC = SRSCF(SOLRAD, TMIN, DD, LAI, SAI, R5, CVPD, RM,
* CR, GLMAX, GLMIN)
RA = (LOG ((ZA - DISP) / ZO)) ** 2 / (0.16 * UA)

LE = PMF(AA, DD, DELTA, RA, RC)
PMDAYF = ETOM * IGRATE * LE

END

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2006

	Characterization of the spatial and temporal variability in pan-Arctic, terrestrial hydrology
	Michael A. Rawlins
	Recommended Citation


	tmp.1521741622.pdf.PuxBQ

