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ABSTRACT

TROPICAL FOREST STRUCTURE: GROUND MEASUREMENTS OF COARSE 

NECROMASS AND SATELLITE OBSERVATIONS OF CROWN GEOMETRY

by

Michael W. Palace 

University of New Hampshire, December, 2006

Forests are structurally diverse, but these structures derive from the same processes of 

disturbance and growth. Understanding forest structure can help unlock the history, 

function, and future of a forested ecosystem. Components of forest structure include tree 

size distributions, foliage distributions and variation in canopy density, and coarse woody 

debris (coarse necromass). Tropical rainforests are structurally the most complex of all 

ecosystems. In addition to having high biological diversity, Amazon forests are marked 

by complex vegetation dynamics and a diverse forest stand structures, which play an 

important role in the interactions of water and carbon between the biosphere and 

atmosphere. Two aspects of forest structure in Amazonia are examined in this thesis, 

canopy geometry and coarse necromass. A crown delineation algorithm was developed 

that uses high resolution satellite image data. This algorithm was applied to two forests 

with field based data on forest structure and then applied at seven locations across the 

Amazon basin. The algorithm provided forest structure based on crown geometry across

xi
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vast areas the where field based studies would be prohibitive due to cost and time.

Coarse necromass dynamics were studied through a combination of field work using 

novel techniques that measured necromass density, volume, and calculated mass for 

fallen and standing coarse necromass stocks at two tropical forested sites. For both sites, 

the effect that reduced impact logging (RIL) had on coarse necromass pools was found to 

generate 50% more coarse necromass. Density and void space estimates were found to 

not be significantly different between sites. Standing dead and fallen coarse necromass 

were found to be proportionally related across sites and forest types. The production of 

necromass at one site, Tapajos, was examined over a 4.5 year period, providing an 

estimate of necromass cycling. RIL and undisturbed forests were found to similar coarse 

necromass production. Mortality rates used to estimate coarse necromass production tend 

to underestimate the amount by about 55%. Finally a review of current literature dealing 

with coarse necromass dynamics in tropical forests was conducted.
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CHAPTER I

INTRODUCTION

Forests play important roles in the ecosystem functioning and biological diversity 

throughout the world (Spies 1998). The complexity of forest floristics and structure are 

results of autecological properties of species and the responses of these species to 

patterns in space and time (Watts 1947). Spatial and temporal variation in disturbances 

and growth influence forest types and their unique assemblages of species, but the 

physical, chemical, and biological processes that these forest types function in are similar 

(Tansley 1935, Whitmore 1982). The history, function, and future tracks of a forested 

ecosystem are understood by examination and understanding the forest structure (Spies 

1998). Components of forest structure to name a few include canopy geometry and tree 

architecture, size distributions of trees, species diversity, and even the dead and decay 

material from trees, termed necromass (Spies 1998).

Tropical rainforests are structurally the most complex of all ecosystems (Whitmore 

1982). Terborgh et al. (1996) wrote that tropical forests are not “it would be better to 

argue that tropical forests are not qualitatively different from temperate forests, only 

more complex.” Flying over the Amazon forest gives the viewer the impression of a vast 

carpet of smooth simple green vegetation. However this can not be further from the
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truth. The Amazonian forest is made up of heterogeneous canopies and forest types with 

unique assemblages of tree species, complex vegetation dynamics and history, and high 

biodiversity (Brown et al. 1995, Chave et al. 2001, Houghton et al. 2001, Salati and 

Vose, 1984, Terborgh et al. 1996, Terborgh 1992).

The Amazonian forest is the largest continuous tropical forest in the world and accounts 

for 40% of this remaining ecotype (Melillo et al. 1993). The biodiversity of this forest is 

immense, providing haven to 30% of all plant species and 40% of all bird species (Silva 

et al. 2005). Compilations indicate that within Amazonia there are 40,000 plant species, 

30,000 fish species, and 427 mammals, 1294 birds, 378 reptiles, 427 amphibians (Silva et 

al. 2005).

The Amazonian forest plays an important role in the interactions of water and carbon 

between the biosphere and the atmosphere (Melillo et al. 1993). The forest is a huge 

reservoir for carbon due to biomass and necromass stocks and highly productive due to 

photosynthesis, both approximately 10% of the global total (Melillo et al. 1993). With 

ongoing deforestation and logging, regional and global climate change, and the influence 

that these have on the carbon cycle the Amazon forest has become the focus of much 

scientific research and debate (Keller et al. 2004b, Nobre et al. 7991, Werth and Avissar 

2002).

The historical sequence of forest degradation and loss has accelerated in the Brazilian 

Amazon (Keller et al. 2004b, Davidson and Artaxo 2004). This is primarily due to the
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immense natural resources that this region contains. Factors driving these changes are 

selective logging, land clearing for agriculture and pasture for cattle, mining, 

hydroelectric power, and road and infrastructure (Keller et al. 2004b, Davidson and 

Artaxo 2004).

Selective logging affects 15,000 to 20,000 km2 y '1 in the Brazilian Amazon (Asner et al. 

2005), changing the storage and cycling of carbon in the necromass pools (Keller et al, 

2004a, Gerwing 2002, Palace et al. in press). Selective logging impacts vary with the 

intensity of extraction (Asner et al. 2004). Forests are revisited many times when loggers 

return to harvest additional trees as the markets develop (Matricardi et al. 2001). 

Conventional selective harvesting practices involved the creation of roads, patios, and 

skid trails to extract selective tree species. There tends to be little planning and much 

damage is done to the canopy. As much as 6 additional trees may be killed for each tree 

harvested and ground damage can be 8.9-11.2% (Matricardi et al. 2001, Pereira et al. 

2002).

Reduced impact logging (RIL) is a method of selective logging that attempts to minimize 

the damage due to logging. Methods employed include tree surveys, cutting of vines, 

road planning, protective devices on treads, and planned directional felling (Pereira et al. 

2002). Though RIL is increasing in use, the majority of logging in the Brazilian Amazon 

is not done with RIL practices (personal communication).

Three major question that the scientific community are exploring are; (1) what is the
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Amazon carbon stock? (2) how is it changing? and (3) what are the rates of carbon 

cycling? This thesis explores these three questions by examining the forest structure of 

Amazonia forests through the analysis of crown geometry and necromass stocks and 

fluxes. This was done using field measurements of coarse woody debris and satellite 

observations of crown geometry using high resolution image data. For the purpose of 

this thesis, tree geometry is defined as crown width, area, depth, and shape. Necromass is 

defined as all organic dead material. Necromass that is greater then 2 cm in diameter, 

from tree trunks, vines, and branches is termed coarse necromass or coarse woody debris 

(CWD).

This thesis has four main components. First, an automated algorithm that detects crown 

structure in forests using of high resolution image data was developed. An examination 

of 51 (1 km2) areas from seven (NASA Large Scale Biosphere Atmosphere Experiment 

in Amazonia LBA) sites located throughout the Amazon using this algorithm was 

conducted. Second, the measurement of coarse necromass and it role in the carbon budget 

was done through a combination of field work using novel techniques that measured 

coarse necromass density, volume, and calculated mass for fallen and standing necromass 

stocks at two tropical forested sites. For both sites, the effect reduced impact logging had 

on the coarse necromass pool was examined. Third, the production of necromass at one 

site was examined over a 4.5 year period, providing an estimate of necromass cycling. 

Finally, a literature review of above ground coarse necromass in tropical forests was 

conducted.
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Chapter 2; Amazon Forest Structure from IKONOS Satellite Data and Automated
Crown Delineation

The height and architectural complexity of the canopy, along with the logistical 

challenges of tropical field research and methodologies, limit studies of tropical forest 

structure. Remote sensing can supplement traditional ecological studies by providing 

observations of large areas (Roughgarden et al. 1991, Shugart et al. 2001). In this 

chapter we developed a new automated tree crown detection algorithm with 1-m 

panchromatic IKONOS satellite images to examine forest canopy structure in the 

Brazilian Amazon. The algorithm was calibrated with tree geometry and forest stand 

data at the Fazenda Cauaxi (3.75° S, 48.37° W) in the eastern Amazon, and then 

compared with field data at Tapajos National Forest (3.08° S, 54.94° W) in the central 

Amazon. We used the remote sensing algorithm to estimate crown dimensions and 

aboveground biomass in 51 forest stands (1 km2) throughout the Brazilian Amazon.

This remote sensing method is a first step toward automated analysis of crown width 

distributions and stem frequency using high spatial resolution panchromatic imagery 

from IKONOS over remote tropical forest ecosystems. Using allometric relations, we 

estimated DBH distributions and biomass of these forests. We found that the remotely 

sensed crown width and DBH distributions tended to overlook small trees and 

overestimate the size and frequency of large trees. These errors are probably caused by 

the merging of smaller tree crowns, division of larger tree crowns, and the inability to
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view smaller understory trees with optical remote sensing data. High spatial resolution 

satellite data are increasingly available. With such data, it is possible to randomly sample 

large areas and develop estimates of forest structure for regions such as the Amazon 

basin, where ground based information is severely limited.

Chapter 3: Necromass in Undisturbed and LoggecLForests in the Brazilian Amazon

In this chapter we estimated volume, density, and mass of fallen and standing coarse 

necromass in undisturbed and selectively logged forests at Juruena, Mato Grosso, Brazil 

(10.48° S, 58.47° W). We also measured standing dead trees at the Tapajos National 

Forest, Para, Brazil (3.08° S, 54.94° W) complementing our earlier study there on fallen 

coarse necromass. We compared forest that was selectively logged using reduced-impact 

logging methods and undisturbed forest. We estimated coarse necromass density 

accounting for void volume for necromass greater than 10 cm diameter at Juruena for five 

decay classes that ranged from freshly fallen to highly decayed material.

Coarse necromass represents about 19-26% of the aboveground carbon for undisturbed 

forests at these sites. With RIL harvest management, logged forests had approximately

1.5 times as much total coarse necromass as undisturbed forests. Density and void space 

estimates for decay classes were similar at the two sites, indicating that these 

measurements may be usefully applied for necromass studies conducted in similar forest 

types in Amazonia. Proportions of standing dead and fallen small, medium, and large 

coarse necromass size classes were similar across sites within treatments (RIL vs. UF).
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Decay class proportions were also similar across sites within treatments. RIL treatments 

showed a proportionate increase in both fallen and standing coarse necromass across sites 

compared to UF. Small and medium size classes make up about 12-21% percent of total 

coarse fallen necromass. Standing dead made up 12-17% of the total coarse necromass. 

Comprehensive studies of necromass in tropical forests need to include both standing 

dead and smaller size class measurements (< 10 cm diameter) because collectively these 

contribute a large proportion of the overall coarse necromass pool. A simple 

compartment model with the assumption of steady state for undisturbed forests indicates 

that coarse necromass at our two study sites has a residence time of about 7 y in the 

forests studied. The rapid decay of this necromass suggests that the flux of carbon 

dioxide from necromass may account for approximately 15% of the gross CO2 efflux 

from these undisturbed forests.

Chapter 4: Necromass Production in an Amazon Forest: Examination of 
Undisturbed and Logged Forest Sites

In this chapter we developed methodology to examine the production of coarse 

necromass in tropical forests. We examined production of fallen coarse necromass over 

four and a half years using repeated surveys in forest areas that had been subjected to 

reduced impact logging and in an undisturbed forest at the Tapajos National Forest, 

Belterra, Brazil (3.08° S, 54.94° W). We also estimated fallen coarse necromass and 

standing dead stocks at two times during our study. For both production and stock 

estimates of fallen necromass, we identified the source of each piece of necromass as 

either trunk, branch, or unidentifiable. We grouped fallen necromass into three diameter

7
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size classes; large (>10 cm), medium (5-10 cm) and small (2-5 cm) for both production 

and stock estimates. Decay class densities were used to determine mass from volume 

measurements.

Findings indicate that select logging in the form of RIL alters the stock of fallen 

necromass, but not the standing dead stock. RIL also has no influence on production 

dynamics in the few years following logging. We found that the production and decay of 

necromass are approximately 12% of the total above ground respiration. Necromass 

accounts for 14% of the total above ground biomass in an undisturbed forest. Smaller 

diameter necromass decays more quickly than larger necromass and account for 30% of 

the fallen necromass created. Standing dead necromass accounts for up to 15% of the 

total necromass. Based on these findings, we encourage the tally of standing dead and 

fallen necromass into distinct size classes. We also suggest that production estimates 

may prove useful and better than the use of mortality rates in understanding necromass 

dynamics. Finally, a better knowledge of necromass dynamics in tropical forests will aid 

in regional and carbon ecosystem models.

Coarse necromass production was 55% greater than an estimate based on mortality rate 

of 0.015 y’1 and a biomass estimate of 282 Mg ha’1. Use of mortality alone ignores 

branchfall and differential mortality rates of biomass components such as vines, small 

trees, and shrubs that also generate coarse necromass. For carbon cycling studies, we 

believe that direct measurement of the production of coarse necromass is preferable to the 

estimation of necromass production from mortality statistics.

8
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Chapter 5: A review of above ground coarse necromass in tropical forests

We reviewed and analyzed current literature pertaining to coarse necromass dynamics in 

tropical forests in this last chapter. We examined literature pertaining to stocks or pools 

of above ground coarse necromass, the disturbance and the episodic production of coarse 

necromass, and the slower process of decomposition in tropical forests. We present a set 

of definitions and a review of current literature pertaining to coarse necromass and we 

examine methodologies and tools that aid coarse necromass study. Data was compiled 

from existing studies and pools and fluxes were compared among tropical forest sites.

We compiled data from existing studies and compared pools and fluxes of coarse 

necromass among tropical forest sites. General relationships among coarse necromass 

components were explored such as necromass to biomass proportions and fallen to 

standing dead necromass. Methodology was comparable across the literature for 

necromass production and stock estimates. Coarse fallen stock was almost two times 

more frequently measured than standing dead. We calculated production and 

decomposition rate estimates through the use of a simple model when these values are not 

available. General relations and proportions between necromass components were 

explored and were found to vary greatly. No definitive relations were found among 

necromass components across sites. In undisturbed forests there appears to be a peak in 

the coarse necromass with middle values of the biomass distribution. Beyond that peak 

as biomass increases the proportion of coarse necromass decreases. The ratio of coarse 

necromass to biomass ranged from 0.4 % in an undisturbed forest to 304% in a disturbed

9
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forest. Standing dead necromass accounts for a large proportion of the total coarse 

necromass stock, up to 66% in an undisturbed forest and 98% at a heavily disturbed site, 

and should be included in further field estimates. We found that localized variability is 

high and complicates or hinders the development of general relationships of coarse 

necromass components across the tropics. Many of the studies (42%) only examined 

only one component of coarse necromass dynamics. We stress the importance of 

measuring multiple coarse necromass components and ideally conducting these 

measurements over years or even decades in order to improve our knowledge of 

necromass dynamics in tropical forests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10



CHAPTER II

AMAZON FOREST STRUCTURE FROM IKONOS SATELLITE DATA AND 
AUTOMATED CROWN DELINEATION1

Introduction

Amazon forests are marked by high biological diversity and complex vegetation 

dynamics that result in a spatially diverse array of forest stand structures (Richards 1952, 

Denslow 1980, Salati and Vose 1984, Terborgh 1992, Terborgh et al. 1996, Ozanne et al. 

2004). Knowledge of the forest structure in the region is vital for estimation of carbon 

stocks and fluxes (Houghton et al. 2000; Houghton et al. 2001), habitat and faunal 

distributions (Schwarzkopt and Rylands 1989), and interactions between the biosphere 

and atmosphere (Keller et al. 2004b). However, the height and architectural complexity 

of the canopy, along with the logistical challenges of tropical field research and 

methodologies, limit studies of tropical forest structure. Remote sensing can supplement 

traditional ecological studies by providing observations of large areas (Roughgarden et 

al. 1991, Shugart et al. 2001).

A series of Landsat sensors have provided the data most often used in remote sensing 

studies of land cover in the humid tropics (Roberts et al. 2003). The spatial resolution (~

1 This chapter is based on and contains material from a manuscript that will be submitted for publication in 
2006. M. Palace, M. Keller, G.P. Asner, S. Hagen, B. Braswell. Amazon Forest Structure from IKONOS 
Satellite Data and Automated Crown Delineation. Soon to be submitted to Biotropica..
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30 m) and spectral coverage (7 bands) of Landsat data allow identification of broad land- 

cover features and changes such as deforestation (e.g., Skole and Tucker 1993). More 

subtle changes resulting from logging can be discerned in spectral mixture model analysis 

of Landsat and similar data (Asner et al. 2005, Souza et al. 2003). However, extraction 

of tropical forest structural properties from Landsat data is challenging because the image 

resolution is comparable to the size of the largest tree crowns (Moran et al. 1994; 

Steininger 1996, Scarth and Phinn 2000). Higher spatial resolution imagery with a pixel 

size much smaller then the average crown width is thus desirable for examining forest 

structure (Culvenor 2002, Pouliot et al. 2002, Read et al. 2003, Leckie et al. 2003).

Crown delineation from satellite images can be performed using visual interpretation or 

automated methods (Wulder et al. 2000, Culvenor 2002, Pouliot et al. 2002). Visual 

interpretation approaches are resource intensive and difficult to implement consistently 

(Asner et al. 2002), whereas existing automated routines can be readily replicated but 

also may be inaccurate (Culvenor 2002). Three sources of high resolution imagery that 

have been used in crown geometric analysis are aerial photographs, videography, and 

satellite images. Due to its high spatial resolution, photographic imagery has primarily 

been used for the estimation of stand density and crown width (Dawkins 1962, Bolduc et 

al. 1999, Fensham et al. 2002). Videography has also been used along transects to 

analyze forest structural components, including individual crowns (Culvenor 2002,

Brown et al. 2005). Newer satellite instruments, such as IKONOS and Quickbird, 

provide relatively inexpensive high-resolution images for remote areas. These high 

resolution satellite image data have been used to estimate the number of trees per area,

12
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individual crowns widths, and gap structure in tropical forests (Asner et al. 2002, Read et 

al. 2003, Clark et al. 2004). However, previous studies have covered small geographic 

areas (<10 km ) because only labor-intensive manual methods were used. Moreover, the 

high-resolution satellite methods have not examined site variation of biomass in tropical 

forests.

We developed an automated detection technique to estimate crown sizes from IKONOS 

satellite images collected over tropical forests in Brazil. We compared the remotely 

sensed crown measurements to field surveys at two forest sites in the central and eastern 

Amazon, and used allometric equations to extend the remote sensing estimates to 

biomass. We then applied and evaluated the detection algorithm and allometric equations 

to 51 forest stands from IKONOS images spread throughout the Brazilian Amazon to 

estimate crown dimensions and biomass across a range of mature forest conditions.

Methods 

Satellite Imagery

We used seven IKONOS satellite images (Space Imaging Inc., Thorton, CO, USA) 

collected throughout the Brazilian Amazon. The 1-m panchromatic data were acquired 

through the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project 

(Hurtt et al. 2003, Keller et al. 2004b; http://eos-webster.sr.unh.edu/home.isp). The 

IKONOS images were subset to 51 one km areas containing intact, closed-canopy forest 

for subsequent analysis using our crown detection and analysis algorithm (Table 2.1). 

Two of these areas, Cauaxi and Tapajos were used to develop our automated crown

13
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detection algorithm, through comparisons with field data. No cross validation was 

conducted because we only collected field data for Cauaxi that included crown widths. 

Geographical coordinates for all of the IKONOS areas analyzed are presented in Table 

2 . 1.

Table 2.1. Center coordinates of each lx l km IKONOS image subset used in the analysis.
Image/Site Longitude Latitude Site Longitude Latitude
Cauaxi -48.315 -3.745 Alta Floresta -55.955 -9.575
Cauaxi -48.315 -3.765 Alta Floresta -55.955 -9.595
Cauaxi -48.315 -3.775 Alta Floresta -55.955 -9.605
Cauaxi -48.315 -3.785 Alta Floresta -55.945 -9.595
Cauaxi -48.305 -3.725 Alta Floresta -55.945 -9.605
Cauaxi -48.305 -3.735 Alta Floresta -55.925 -9.605
Cauaxi -48.305 -3.755 Alta Floresta -55.925 -9.615
Cauaxi -48.305 -3.775 Alta Floresta -55.915 -9.605
Cauaxi -48.295 -3.725 Alta Floresta -55.915 -9.615
Cauaxi -48.295 -3.735 Alta Floresta -55.915 -9.625
Cauaxi -48.295 -3.755 Santarem km 67 -54.975 -2.835
Cauaxi -48.295 -3.775 Santarem km 67 -54.975 -2.875
Cauaxi -48.275 -3.735 Santarem km 67 -54.965 -2.865
Cauaxi -48.275 -3.745 Santarem km 67 -54.965 -2.875
Caxiuana -51.455 -1.745 Santarem km 67 -54.955 -2.875
Jaru -61.945 -10.075 Santarem km 67 -54.945 -2.855
Jaru -61.935 -10.055 Santarem km 67 -54.945 -2.865
Manaus -60.225 -2.615 Santarem km 67 -54.945 -2.875
Manaus -60.225 -2.625 Santarem km 67 -54.935 -2.865
Manaus -60.215 -2.605 Santarem km 67 -54.935 -2.875
Manaus -60.215 -2.615 Santarem km 83 -54.985 -3.055
Manaus -60.205 -2.585 Santarem km 83 -54.975 -3.055
Manaus -60.205 -2.635 Santarem km 83 -54.965 -3.065
Manaus -60.195 -2.615 Santarem km 83 -54.955 -3.065
Manaus -60.195 -2.635 Santarem km 83 -54.945 -3.065
Manaus -60.185 -2.585

Crown Detection and Analysis

We developed an automated crown detection algorithm for use with high spatial 

resolution remote sensing data from IKONOS and similar spacebome sensors, based on 

spatial analysis of the brightness patterns in the image (visible reflectance, DN). There 

are two preprocessing steps. First, the modal, maximum and minimum brightness value 

of each IKONOS image is calculated. These statistics are used to set the dynamic range 

of an iterative, local-maximum finding step, as explained later. Second, a 3 x 3 pixel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



moving window averaging filter is used to smooth the image.

After preprocessing, local maximum brightness values are identified by searching the 

entire image for the highest brightness value. After a local maximum is selected, image 

brightness values are analyzed in 360 directions (ordinates) from each local maximum or 

nodal pixel. Each individual ordinal transect is terminated when the digital number (DN) 

difference between a pixel and the next pixel along is greater than a threshold value (the 

derivative threshold) (Figure 2.1). The ordinate length is limited to 40 m based on 

maximum crown dimensions observed in field studies and knowledge that an ordinate 

can cascade down adjacent canopies, thus not detecting the crown edge.

800

700

600

§ 500

400

300

200
0 5 10 15 20 25 30 35 40 45

800

700

600

400

300

200
0 105 15 20 25 30 35 40 45

Ordinate Length

Figure 2.1. Digital number data used for termination of an ordinate, (a) The crown edge is 
estimated to be 8 pixels from the local maxima, (b) The crown edge is estimated to be 20 pixels 
from local maxima.
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For simplicity, tree crowns are approximated as circles centered on the local maximum, 

based on the assumption that an undamaged tree has branches that radiate evenly out 

from the central stem or trunk (Brandtberg and Walker 1998). The estimated crown is 

centered at the local maximum and has a radius of half the sum of the two longest 

opposing ordinal transects (Figure 2.2). After a crown is located and delineated, the 

pixels within the crown area are removed from further analysis. No new ordinal transects 

are extended into an existing crown, and local maxima are prohibited from being 

analyzed in the circular crown area. Crowns overlap when ordinal transects from a 

neighboring tree create a large enough crown width, and thus a large enough circular 

canopy, to create crown overlap (Figure 2.3). Once all local maxima of a specific 

brightness value are analyzed throughout an image, the algorithm proceeds to the next 

lower brightness value and begins 

finding local image pixel brightness 

maxima again.

Figure 2.2. An example of ordinal transects 
used in the automated crown detection 
algorithm. Length of ordinal transects are 
used to determine crown radius.

—■—Transect Data Endpoints 

 Average of All Transects

lalf of Maximum Radius

 Average of Longest Two Opposing
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Figure 2.3. Sample output from crown detection algorithm. Green circles represent crown edge 
determined by the average of the two longest opposing transects. This is the 64 ha area on the 
Fazenda Cauaxi (eastern Amazon).

Field Data and Allometric Equations

Field data on crown dimensions are extremely sparse for Amazon forests; however,

Asner et al. (2002) collected measurements of crown width, depth, tree height and 

diameter at breast height (DBH) for -300 trees in a 50 ha stand on the Fazenda Cauaxi in 

the eastern Brazilian Amazon. We also measured the DBH and crown position

17
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(understory or canopy) of over 2,700 trees as part of our stratified sampling methodology. 

We therefore relied on these measurements to test and calibrate our remote sensing 

algorithm. Additional stand data for the Tapajos National Forest in the central Brazilian 

Amazon were provided by Keller et al. (2001) and Rice et al. (2004) to test the algorithm 

in a second forest stand.

Most tree allometric equations utilize DBH, tree height, or both for estimating 

aboveground biomass and carbon stocks in tropical forests (e.g., Brown 1997, Chave et 

al. 2001). However, optical remote sensing data from IKONOS cannot be used to 

directly measure either height or DBH for trees in closed canopies, so other allometric 

equations based on crown diameter are needed. We developed a relation between crown 

width (m) and DBH (cm) from 300 individual trees measured using a stratified sampling 

method (Asner et al. 2002).

DBH = 0.038 * (crown width)2 + 2.33 * (crown width) + 15.58 (1)

A commonly used allometric equation for tropical forests developed by Brown (1997) 

was then used to extend the remote sensing observations of crown width to biomass (kg 

dry matter) via DBH:

Biomass = (42.69 -  12.80*DBH + 1.242*DBH2) / 1000 (2)

18
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Calibration at Cauaxi

A calibration of the algorithm was performed on the two parameters: (1) the derivative 

threshold and (2) the local maximum analysis range using data from 64 ha (800 by 800 

m) of undisturbed forest at Cauaxi (Figure 2.4). Crown size distributions (binned in 2 m 

classes) from our automated crown delineation algorithm were compared with field 

measurements from Asner et al. (2002). We measured goodness of fit using the root 

mean squared error of crown width distribution to examine algorithm parameters that best 

simulated Cauaxi field data. Automated algorithm results were also compared to mean 

DBH (cm) and trees per unit area (frequency of trees; trees/ha) from the Cauaxi field 

data.

Figure 2.4. IKONOS image of the 64 ha area on the Fazenda Cauaxi (eastern Amazon) analyzed 
using the automated crown detection algorithm. Field data were collected at this site and first 
presented by Asner et al. (2002). This is the same area as Figure 2.3.
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Analysis at Tapaios and 51 Other Locations

Following the Cauaxi calibration step, we ran the algorithm on an IKONOS image taken 

of the Tapajos National Forest in the central Brazilian Amazon (Figure 2.5). Only the 

local maximum analysis range, which is determined as the difference between the 

maximum and mode of DN values, was set to a different value during pre-processing of 

the Tapajos image. We then compared the results from the Tapajos image analysis to 

field data provided by Keller et al. (2001). To estimate differences in forest structure

among a wider variety of forest sites, we examined 51 IKONOS image subsets listed in 

Table 2.1. Comparisons of the results from each site were done using an ANOVA with 

Tukey-Kramer HSD comparison (a = 0.05).

Figure 2.5. IKONOS image of the 64 ha area at the Tapajos National Forest (central Amazon) 
analyzed using the automated crown detection algorithm. Field data were collected at this site 
and presented by Keller et al. (2001).
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Results

Calibration (Cauaxi)

Forest structural parameters for the Cauaxi image analysis are presented in Table 2.2. 

Average estimated crown width was 13 + 6 m (mean + s.d.), with a minimum of 2 m and 

a maximum of 34 m. The distribution of crown widths (Figure 2.6a) was similar in 

magnitude and in overall pattern with the observed values, although a Kolmogorov- 

Smimov test for difference between distributions indicated a significant difference (a= 

0.05) between the field-measured tree crowns width distribution and the remotely sensed 

estimates. The frequency of trees for the automated algorithm was 76.6 trees/ha. Taking 

into account the allometric relation between crown width and DBH presented by Asner et 

al. (2002), DBH estimates from IKONOS were 54.0 + 19 cm, with a distribution similar 

to that measured in the field (Figure 2.6b). Biomass estimated from the algorithm and eq. 

(2) was 262 Mg/ha. The tree areal frequency and biomass estimates compared well with 

field data (Tables 2.2-2.3). Significant differences were determined between mean field 

estimated crown width (for both all trees and no understory) and our automated mean 

crown estimate. These differences are due to large sample numbers which create an 

extremely small standard error of the mean. Our automated algorithm provided better 

estimates of the mean crown width and mean DBH than that of manual crown delineation 

from Asner et al. (2002) (Table 2.2a-b).
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Table 2.2a. Crown characteristics derived from the automated crown detection algorithm for the Cauaxi and Tapajos forest stands.

Cauaxi
Crown Width (m) IKONOS IKONOS Field Data

Tapajos 
Field Data Crown Width (m) IKONOS Field Data

Quantiles Automated Manual* No Understory* All* Quantiles Automated Derived from ***
maximum 34 40 41 41 maximum 38 30
upper quartile 16 20 15 13 upper quartile 18 15
median 12 16 11 9 median 12 13
lower quartile 8 10 8 7 lower quartile 8 11
minimum 2 3 1 1 minimum 2 6

Crown Width IKONOS IKONOS Field Data Field Data Crown Width IKONOS Field Data
Moments Automated Manual* No Understory* All* Moments Automated All
Mean 13 16 12 11 Mean 13 13
Std Dev 6 8 2 2 Std Dev 6 3
N 3972 1675 1370 2127 N 3963 5869

le 2.2b. DBH estimates from automated crown detection algorithm.

Cauaxi Tapajos
DBH (cm) IKONOS Field Data Field Data DBH (cm) IKONOS Field Data
Quantiles Automated No Understory* All* Quantiles Automated All**
maximum 138.7 172.0 172 maximum 159.0 190.0
upper quartile 66.1 53.0 44 upper quartile 69.7 59.6
median 52.3 37.0 30 median 52.2 47.0
lower quartile 39.6 26.0 23.8 lower quartile 39.6 39.6
minimum 22.9 20.0 20 minimum 22.9 15.0

DBH IKONOS Field Data Field Data DBH IKONOS Field Data
Moments 
Mean 
Std Dev 
N

Automated
54.0
19.0 

3972

No Understory 
43.1 

3.6 
1370

All Moments 
37.4 Mean 

3.4 Std Dev 
2127 N

Automated
55.8
22.1

3963

All
51.9
16.9 

5869
NJto
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Table 2.3. Remotely sensed estimates and field data of stand density and biomass from Cauaxi and Tapajos in the Brazilian Amazon.

Source Site Size of Survey (ha) Density (trees ha'1) Biomass (Mg ha'1)

Keller et al. 2001 Tapajos km 83 (1997) 392 55.0 > 3 5  cm DBH

168.0 > 15 cm DBH2

177

224

> 35 cm DBH 

> 1 5  cm DBH 2

Rice et al. 2004 Tapajos km 67 (2001) 4 496.0 > 10 cm DBH 311 > 1 0  cm DBH

Tapajos km 67 (2001) 20 43.8 > 3 5  cm DBH 193 > 35 cm DBH

Field Data 1 Cauaxi (2000) 15.8 137.3 >20 cm DBH 249 > 20 cm DBH

Cauaxi (2000) 15.8 55.1 > 3 5  cm DBH 203 > 35 cm DBH

Automated Estimate Cauaxi 51.8 76.6 262

Automated Estimate Tapajos 51.8 76.4 290

1 New data from Cauaxi based on original data presented by Asner et al. (2002)

2 Estimates of DBH > 15 cm include smaller classes using de Liocourt quotient (Keller et al. 2001)
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Figure 2.6. (a) Cumulative frequency distribution for field observed canopy diameters and 
automated crown estimate at Cauaxi. (b) Comparison of DBH size class distribution for field 
observed and automated estimates at Cauaxi. (c) Comparison of field measured and observed and 
automated estimation of DBH size class distribution at Tapajos. Observed DBH class 12 includes 
all DBH classes (10 cm DBH classes) summed > 120 cm DBH.
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Comparison with Tapajos

The automated algorithm estimated a mean crown width at Tapajos of 13 + 6 m, with a 

minimum of 2 m and a maximum of 38 m (Table 2.2a). The estimated frequency of 

trees was 76.4 trees/ha, and the mean DBH was 56 + 22 cm. The distribution of DBH 

size classes was determined using crown widths from the automated algorithm (Figure 

2.6c). The automated estimate for above-ground biomass was 290 Mg/ha at Tapajos. 

Significant differences were determined between mean field estimated crown width (for 

both all trees and no understory trees) and our automated mean crown estimate. Once 

again this difference is likely due to large sample numbers (Table 2.2a-b). Though we 

lack actual field estimates of crown width at Tapajos, our automated algorithm compared 

well with field estimated mean DBH and mean crown width developed from Keller et al. 

2001 and Eqn. (1) of this paper.

Multi-site Analysis

Estimates of crown width, frequency of trees, DBH, and biomass derived from the 

automated crown detection algorithm on 51 stands sub-set from seven IKONOS images 

in the Brazilian Amazon are presented in Table 2.4. The Jaru image had the largest 

estimated average crown width and DBH (16 m and 65 cm), whereas Manaus had the 

smallest of these two estimates (11m  and 49 cm). Manaus had the highest tree frequency 

(99 trees/ha) and Jaru had the lowest (53 trees/ha). Aboveground biomass was estimated 

to be lowest at Tapajos km 67 (258 Mg/ha), whereas Caxiuana and Jaru were remarkably 

similar (281 Mg/ha). Santarem km-83 and Alta Floresta also had similar biomass
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estimates (275 Mg/ha). The algorithm indicated that aboveground biomass ranged 

between 258 and 281 Mg/ha across all sites. Biomass showed less variation between 

sites than crown width, tree frequency and DBH.

Manaus and Jaru had markedly different structural characteristics from all other sites 

(Table 2.5). There was an inverse relationship between mean crown width and the tree 

frequency. Alta Floresta showed a significant difference in estimated crown width and 

average DBH from Jaru and the two Tapajos sites. Biomass was found to be significantly 

different only between Santarem km-67 and Manaus, and Santarem km-67 and Alta 

Floresta.

Table 2.4. Results from automated algorithm run on IKONOS image data at different LBA-ECO 
sites throughout the Brazilian Amazon.

IKONOS Average Crown Widith (m) Average DBH (cm) Biom ass (Mg ha '1) Areal Frequency (num ber ha '1)

Site Name Tiles Mean Std Error Mean Std Error Mean Std Error Mean Std Error

Cauaxi 14 13.3 0.1 56 0.4 266 2 70 1

Caxiuana 1 12.3 53 281 83

Jaru 2 15.6 0.2 65 0.5 281 5 53 2

M anaus 9 11.3 0.1 49 0.5 279 2 99 3

Alta Floresta 10 13.0 0.2 55 1.0 275 2 76 2

Santarem  67 10 13.8 0.1 58 0.5 258 3 65 2

Santarem  83 5 13.7 0.3 58 0.8 275 5 68 3
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Table 2.5. Comparisons of crown detection algorithm results between different LB A 
forest sites using ANOVA. All comparison pairs use Tukey-Kramer HSD with an alpha 
value of 0.05. [+] indicates a significant difference between sites.
Crown Width

Jaru Santarem 83 Santarem 67 Cauaxi Mato Grosso Caxiuana Manaus

Jaru - + + + + + +

Santarem 83 - - - + + +

Santarem 67 - - + - +

Cauaxi - - - +

Mato Grosso - - +

Caxiuana - -

Manaus -

DBH

Jaru Santarem 83 Santarem 67 Cauaxi Mato Grosso Caxiuana Manaus

Jaru - + + + + + +

Santarem 83 - - - + - +

Santarem 67 - - + + +

Cauaxi - - - +

Mato Grosso - - +

Caxiuana - -

Manaus -

Density

Manaus Caxiuana Mato Grosso Cauaxi Santarem 83 Santarem 67 Jaru

Manaus - - + + + + +

Caxiuana - - - - - +

Mato Grosso - - - + +

Cauaxi - - - +

Santarem 83 - - -

Santarem 67 - -

Jaru -

Biomass

Caxiuana Manaus Mato Grosso Jaru Santarem 83 Cauaxi Santarem 67

Caxiuana - - - - - - -

Manaus - - - - - +

Mato Grosso - - - - +

Jaru - - - -

Santarem 83 - - -

Cauaxi - -

Santarem 67 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Discussion

Our algorithm for automated characterization of tropical forest canopy properties 

combines local maximum filtering and local minima value-finding methods, with 

analysis of ordinal transect data radiating outward from a crown apex (local maximum). 

Our method differs from an earlier approach (Pouliot et al. 2002) because we use a 

derivative threshold to end ordinal transect length instead of a regression analysis. Using 

the derivative threshold allowed us to account for crown overlap and varied crown 

shapes, sizes and spacing inherent in old-growth tropical forests. Iterative local 

maximum filtering allows for more of the canopy trees in an image to be examined, since 

some canopy trees with variation in color and brightness (due to leaf phenology and 

flowering) might overwhelm a single local maximum analysis.

Our algorithm estimated crown widths and areal frequency (trees/ha) from the IKONOS 

satellite imagery. Crown widths measured in the field for all trees at Cauaxi were 

generally smaller than automated estimates. Mean field-estimated crown width that 

excludes understory trees, matched more closely with automated crown detection 

algorithm (Table 2.2a) than with manual interpretation of the same IKONOS data (Asner 

et al. 2002). At both Cauaxi and Tapajos, the remotely sensed average crown widths 

were within 3 percent of the crown widths derived from field measurements (Table 2.2). 

Although, significant differences were determined at Cauaxi between mean field 

estimated crown width (for both all trees and no understory) and our automated mean 

crown estimate, our automated algorithm provided better estimates of the mean crown
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width and mean DBH than that of manual crown delineation from Asner et al. (2002) 

(Table 2.2a-b). Considering the complexity of tropical forest structure and the inability 

to view understory trees in IKONOS image data, our algorithm compared well with field 

data (Table 2.3).

At Cauaxi, field-measured stem frequency was 55 trees/ha for trees greater then 35 cm 

DBH and 137 trees/ha for trees greater then 20 cm DBH. Our detection algorithm 

identified 77 trees/ha, whereas manual interpretation of the same IKONOS image (Asner 

et al. 2002) yielded 47 trees/ha. Field-measured stem frequency at Tapajos ranged from 

44 to 55 trees/ha for trees greater then 35 cm DBH to 168 trees/ha for trees greater then 

15 cm DBH (Table 2.2), whereas the automated crown detection algorithm counted 76 

trees/ha at that site. Clearly, the automated crown detection algorithm is unable to count 

understory trees; the algorithm measured stem frequency with an apparent cut-off 

diameter near 28 cm.

We used allometric equations to estimate stand structural properties including the 

distribution of stem diameters (DBH) and stand biomass. Examination of the DBH 

distributions for Cauaxi indicated that the remote sensing underestimated the frequency 

of smaller trees (< 40 cm DBH) and overestimated the frequency of larger trees with 

DBHs > 120 cm (Figure 2.2a, Table 2.2). These errors are likely the result of the 

merging of smaller tree crowns, division of larger tree crowns, and the inability to view 

smaller understory trees with optical remote sensing data. At Tapajos, we compared the 

mean DBH for trees surveyed in the field (>35 cm DBH) to the estimates from the
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automated crown detection algorithm and found very similar results (field: 5 2+17  cm; 

remote sensing: 53 + 20 cm).

Aboveground biomass was estimated via two allometric equations: (1) crown width to 

DBH from field work done at Cauaxi; and (2) DBH to biomass (Brown 1997), and is thus 

subject to compounded errors. Nonetheless, field-estimated aboveground biomass at 

Cauaxi was 249 Mg/ha for trees greater then 20 cm DBH, whereas biomass estimated 

using automated crown detection algorithm was only 5 percent higher (Table 2.2).

' j

An examination of 51 (1 km ) areas from seven LB A sites located throughout the 

Amazon differed considerably in estimates of crown width, DBH distribution, and stem 

frequency. Analysis of variance showed that crown widths at Jaru and Manaus differed 

from all other sites as well as with each other. Forest stands converged to similar 

biomass despite different structure parameters such as frequency and tree size (Table 

2.3). The similarity of biomass across sites appears to result from a trade-off of stem 

frequency and maximum tree sizes. We note that we made no attempt to adjust our 

biomass estimates for wood density as has been suggested by recent studies (e.g., Baker 

et al. 2004), and we acknowledge the preliminary nature of these estimates. 

Comprehensive validation data do not exist for most of the sites that we analyzed 

throughout the Amazon. Field forest structure data are rare across the Amazon.

However, we note that our estimates for Tapajos and Manaus show trends that are similar 

to field data collected by Viera et al. (2004). Our interest here was to develop baseline 

estimates that can guide future field measurements, and to exercise our algorithm as a
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proof-of-concept for future analyses of forest structure over larger areas of remote 

tropical forests.

The frequency of gap-phase disturbance is a key regulator of forest dynamics in the 

lowland tropics (West etal. 1981, Denslow 1987, Brokaw 1985, 1987, Svenning 2000). 

Crown width is an important variable that we have examined using high resolution 

satellite imagery. Crown width distributions estimated by our automated crown detection 

algorithm may be a useful indicator for ecosystem disturbance regimes.

Conclusions

We developed and tested an automated forest tree crown detection algorithm that uses 

high spatial resolution imagery with a combination of techniques for crown size 

estimation. This remote sensing method is a first step toward automated analysis of 

crown width distributions and stem frequency using high spatial resolution panchromatic 

imagery from IKONOS over remote tropical forest ecosystems. Using allometric 

relations, we have estimated DBH distributions and biomass of these forests. We found 

that the remotely sensed crown width and DBH distributions tended to overlook small 

trees and overestimate the size and frequency of large trees. These errors are probably 

caused by the merging of smaller tree crowns, division of larger tree crowns, and the 

inability to view smaller understory trees with optical remote sensing data. High spatial 

resolution satellite data are increasingly available. With such data, it is possible to 

randomly sample large areas and develop estimates of forest structure for regions such as 

the Amazon basin, where ground based information is severely limited.
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CHAPTER III

NECROMASS IN UNDISTURBED AND LOGGED FORESTS IN THE
BRAZILIAN AMAZON2

Introduction

The death and subsequent decomposition of trees is an important component in forest 

ecosystem carbon cycling (Denslow, 1987; Harmon and Franklin, 1989). Dead trees or 

portions of dead trees are termed necromass. Necromass in tropical forests is rarely 

studied although it contributes a large proportion of the total carbon pool in tropical 

forests (Clark et al., 2002; Chambers et al., 2000; Keller et al., 2004a). Necromass is 

important in nutrient cycling and it serves as habitat for some organisms (MacNally et al., 

2001; Norden and Paltto, 2001).

Necromass or coarse woody debris (CWD) is often divided into two categories: (1) 

fallen or downed necromass and (2) standing dead wood (snags) (Harmon et al., 1986).

In the Brazilian Amazon, previous estimates of CWD mass in undisturbed upland {terra 

firme) forests have ranged from 42.8 Mg C ha'1 (Summers 1998 as cited by Rice et al., 

2004) to 15 Mg C ha'1 (Brown et al., 1995). Brown (1997) estimated that necromass 

accounts for 5% to 40% of the total carbon in a tropical forests, exclusive of soil carbon.

2 This chapter is based on and contains material from an accepted manuscript. M. Palace, M. Keller, G.P. 
Asner, J. Silva, C. Passos. Necromass in Undisturbed and Logged Forests in the Brazilian Amazon. 
Accepted in Forest Ecology and Management.
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In the Tapajos National Forest near Santarem, Brazil, the ratio of necromass to biomass 

ranged from 18% to 25% (Keller et al., 2004a; Rice et al., 2004). For tropical forested 

areas outside of the Brazilian Amazon, researchers have found CWD ranging from 3.8 to

6.0 Mg C ha'1 in Jamaica (Tanner, 1980), 22.3 Mg C ha'1 in Costa Rica (Clark et al., 

2002) and 22.5 Mg C ha'1 in Malaysia (Yoda and Kira, 1982). Estimates of standing 

dead necromass are infrequent in tropical forests. Rice et al. (2004) found standing dead 

mass to be 8.6 Mg C ha'1 or 18% of the total necromass, while Clark et al. (2002) found

3.1 Mg C ha'1 or 12% of the total necromass.

The Amazon region contains the largest continuous expanse of tropical forest in the 

world and is important to carbon cycling on a global scale (Keller et al., 2004b).

Selective logging is a widespread practice in the Brazilian Amazon (Asner et al., 2005). 

Although still uncommon in the Amazon region of Brazil, reduced impact logging (RIL) 

is a method of selective logging that limits the damage to the forest by use of tree 

surveys, vine cutting, road planning, articulated wheeled skidders, and planned 

directional felling (Pereira et al., 2002). Canopy damage in RIL is about half that in 

conventional logging (Pereira et al., 2002; Asner et al., 2004). At the Fazenda Cauaxi in 

Para State, Brazil, Keller et al. (2004a) estimated that conventional logging created 2.7 

times more fallen necromass than that of RIL.

The mass of fallen CWD may be calculated from the product of measured volumes and 

estimates of CWD density (Keller et al., 2004a). A difficulty in determining necromass 

density in tropical forests is the large number of tree species. Past studies in the tropics
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have estimated CWD density using the average density of living trees or samples of 

decayed wood to estimate necromass density (Gerwing, 2002; Chambers et al., 2000). 

Division of necromass into decay classes based on field inspection has been used to 

improve the quantification of CWD mass in forests (Harmon et al,. 1995, Eaton and 

Lawrence, 2006). Average density stratified by decay class facilitates the calculation of 

mass from necromass volume (Keller et al., 2004a). Decay classes are easily recorded 

during measurements of volume and are critical for an accurate estimation of CWD mass 

because decayed logs have lower density than freshly fallen CWD (Harmon et al., 1995). 

Void spaces in logs must be accounted for in density measurements either by using large 

pieces of necromass (e.g., Chambers et al., 2000, Clark et al., 2002) or by separately 

quantifying void space (Keller et al., 2004a).

We measured fallen CWD volume and density at undisturbed and logged sites in Juruena, 

Mato Grosso, Brazil and compared these data to measurements from the Tapajos 

National Forest using identical methods (Keller et al., 2004a). For this study, we 

measured the standing dead pool at both Juruena and Tapajos. For both sites, we 

examined the effect that reduced impact logging had on necromass pools. We include 

detailed error estimates for both densities and masses.

Methods 

Sites

We measured density, void space, and volume of fallen and standing necromass at 

Juruena, Mato Grosso, Brazil (10.48° S, 58.47° W). We also measured standing
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necromass at Juruena and Tapajos National Forest, Para, Brazil (3.08° S, 54.94° W). 

Biomass estimates were conducted in undisturbed forests (UF) at Juruena and compared 

with biomass estimates at Tapajos (Keller et al., 2001). For the study of necromass we 

examined two forest types: areas that were selectively logged using RIL methods and 

undisturbed forest. A detailed site description for Tapajos is found in Keller et al. 

(2004a). A comprehensive description of the Juruena forest is presented in Feldpausch et 

al. (2005), although logging practices at our study sites were not identical to those 

described by Feldpausch et al. (2005).

Sample units at both sites were approximately 100 ha blocks with no historical clearing. 

The forest at Tapajos had suffered limited felling of Manilkara huberi for latex extraction 

about 25 years prior to our study. At Juruena, it is likely that some mahogany (Swietenia 

macrophylla) had been harvested in the last two decades. Logging took place about one 

year prior to our measurements. The amount of timber extracted, at Tapajos was between 

20 and 30 m3 ha'1, while only about 6.4 -  15.0 m3 ha'1 were harvested at Juruena 

(Feldpausch et al., 2005).

Measurements of CWD volume and subsequent mass estimates were compared between 

the new site, Juruena, and the Tapajos site (Keller et al., 2004a). Density estimates for 

Tapajos were presented in Keller et al. (2004a) and are included in this paper for 

comparison with Juruena density estimates. Standing necromass results for Tapajos and 

Juruena are both presented for the first time in this paper.
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Density and Void Space Estimation

Necromass density was determined using a plug extraction technique for large CWD 

(>10 cm diameter) in November 2003. This plug extraction method (Keller et al., 2004a) 

uses a plug and tenon extractor attached to a portable power drill. Plugs were extracted 

every 5 cm from the center of a disk cut from a log in one of eight directions, 0 °, 45°,

90°, 135°,180°, 225°, 270°, and 315° selected randomly.

Each piece of CWD greater than 10 cm diameter (large CWD) was classified into one of 

five decay classes. These decay classes ranged from newly fallen necromass (Class 1) to 

highly decayed material that could be broken apart by hand (Class 5) (Harmon et al.,

1995; Keller et al., 2004a). Decay class 1 material included newly fallen solid wood with 

leaves and/or fine twigs still attached. Necromass in decay class 2 was solid and had 

intact bark but no fine twigs or leaves. Decay class 3 necromass resembled class 2 except 

the bark was rotten or sloughing. Decay class 4 material was rotten and could be broken 

when kicked. Decay class 5 necromass was highly friable and rotten and it could be 

broken apart with bare hands. For pieces of CWD > 2 cm and <10 cm, we did not assign 

decay classes. Sampling of these small (2-5 cm dia) and medium (5-10 cm dia) pieces 

was done either by plug extraction or by cutting with a knife. All necromass pieces were 

randomly selected along a transect with stratified probabilities to allow us to collect a 

sufficient sample number based on size, decay class, and treatment (RIL vs. UF).

For large fallen CWD, decay class, diameter, and other features such as large voids and 

the presence of termites or fungi were noted. We sketched each sample cross-section for
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comparison to digital images (see below). We measured plug lengths and calculated 

volume for the cylindrical plugs. Plugs were stored in plastic bags and transported to the 

laboratory where they were dried at 60° C until reaching constant weight (up to 3 

months). Plugs were then weighed and density was determined based on fresh volume 

and dry mass.

Void space was measured from digital images of each disk sampled for density. For each 

image we digitized the areas of wood and void. The smallest identified voids had 

diameters of ~ 5 mm. The proportion of void space was used to calculate the adjusted 

density for void space.

Fallen CWD Estimation

Line intercept sampling for fallen CWD volume was conducted at Juruena in November 

2003 and in June 2004 (Brown, 1974; De Vries, 1986; Ringvall and Stahl, 1999). Most 

logged sites were sampled about six months following logging operations. CWD was 

separated into the same three diameter groups used in density estimation. Woody 

material with diameter < 2 cm was disregarded as it is normally included in litterfall 

studies. A tape was used to measure distance and then left on the ground to create the 

transect line. All wood pieces, with a diameter greater then 10 cm, intersecting the 

transect line, were recorded for diameter. Each transect was divided into 50 m segments. 

For each 50 m segment, a 10 m sub-sample was selected at random and the smaller 

classes (2-5 cm and 5-10 cm) were tallied. Large CWD was classified by decay class 

using identical criteria as those used in density estimates. A median diameter (3.5 cm for
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small necromass pieces and 7.5 cm for medium necromass pieces) was used to calculate 

volume for the small and medium size classes. Use of median diameters for these two 

classes expedited estimates by allowing tallies of the numerous pieces on a line intersect 

transect using a go-no-go gauge (Brown, 1974).

Volume (V) (m3 ha'1) of CWD for an individual transect was determined using the 

following equation:

V = n2 S (dn)2

(8 * L) (1)

where dn is the diameter of a piece of necromass at the line intercept and L is the length 

of the transect used in sampling. For each decay class, we determined the mean fallen 

CWD volume for each treatment that we sampled, with the contribution of each transect 

weighted based on its length (DeVries, 1986, p. 256; Keller et al., 2004a). We sampled 

four forest blocks with three randomly located 1 km transects per block for a total of 12 

km of line intercept sampling at Juruena.

Strip Plot Sampling (Snags)

Measurements of standing dead trees (snags) were conducted in July 2002 and June 2004 

at Tapajos and Juruena, respectively. We measured standing dead trees along 10 m wide 

strip plots that followed the line transects for fallen CWD. We used the same five-group 

decay classification and the associated densities for each decay class for mass 

calculations. A laser ranger finder with built-in clinometer was used to measure the
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heights of snags (Impulse-200LR, Laser Technology Inc., Englewood, Colorado). A tape 

was used to measure diameter at breast height (DBH, 1.3 m). If the snag was shorter than

1.3 m, the diameter was measured at the highest point. We estimated volume for snags 

by disk integration of a taper function around the vertical axis of the snag with height and 

diameter measurements. The taper function was

Dh = 1.59 * dbh * (h'0'091) (2)

where Dh is the diameter at a specific height based on the dbh (diameter at breast height =

1.3 m) and height (h) of the snag (Chambers et al., 2000). Mass was calculated using the 

decay class density multiplied by snag-volume. Snags with buttresses were measured 

above the buttress whenever possible, otherwise we estimated diameter from two 

perpendicular positions.

The total area of strip plots sampled for standing dead was 11.1 ha for Tapajos and 12 ha 

for Juruena. At Tapajos, we sampled duplicate blocks of UF and RIL treatments with a 

transect sampling design similar to the one in Juruena (Keller et al., 2004a). The areas of 

the strip plots were approximately evenly divided between UF and RIL treatments.

Biomass Plots

We estimated biomass at Juruena in undisturbed forests using the same strip plots used 

for standing necromass sampling. We sampled areas 5 meters on either side of the line 

intersect transects for all trees greater than 30 cm DBH. Every 50 meters along the strip,
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a 10 meter section was chosen randomly for sampling trees greater than 10 cm DBH. 

Final biomass estimates were adjusted for area sampled. DBH was recorded for all trees 

sampled. We estimated biomass for each tree using the allometric relation for tropical 

moist forests developed by Brown (1997):

where B is the biomass (kg) for a given DBH (cm) for each individual tree measured in

Mass Calculations and Estimation of Error

Fallen C W D  mass and standing dead mass (M i) were each determined from the product 

of the volume of material (Vi) and the respective density for the material class (pi)

Transect necromass mean estimates were weighted based on the length of each line 

intercept transect, as done in DeVries (1986). We calculated the standard error using 

weighted means from each block (Keller et al., 2004a).

Statistical Analysis

Plug density and density adjusted for void space were compared by one-way analysis of 

variance (ANOVA) across seven classes of material (five decay classes for large material

B = (42.69 - 12.80 * DBH + 1.242 * DBH 2) /1000 (3)

the field.

M i =  p i • V i (4).
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and medium and small size classes). A Wilcoxon / Kruskal-Wallis Rank Sum test was 

conducted to examine void space at Juruena across the five decay classes. This non- 

parameteric test was used because many of the necromass pieces had no void space and 

thus the data was not normally distributed nor could it be easily transformed. Because we 

performed multiple tests on density data, we conservatively selected the probability of a 

= 0.01 as a threshold for significance for differences in density.

We examined plug density and adjusted density for void space using a two-way analysis 

of variance (ANOVA) with categories for decay/size class and site (Juruena and 

Tapajos). Void space was compared between sites for each decay class using a Wilcoxon 

/ Kruskal-Wallis Rank Sum test.

CWD was sampled for density from a disk cut from a log along 8 radii (0°, 45°, 90°, 135°, 

180°, 225°, 270°, and 315°) and then reduced to 5 different groups: top (0°), bottom 

(180°), B (45° + 315°), C (90° + 270°) and D (135° + 225°). We tested the effect of this 

radial position on a residual plug density with a one-way ANOVA. We defined the 

residual plug density as the density of a plug minus the average density of all plugs taken 

from the disk. A one-way ANOVA was also used to test the residual plug density based 

on the distance from the center of each sampled disk.

We conducted a series of two-way ANOVAs for the variables of volume and mass 

according to the categories of site (Juruena, Tapajos), treatment (UF, RIL), and site by 

treatment interaction for the pools that we measured (small, medium and large size
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classes, total fallen CWD, standing dead, and total necromass). Mass and volume tests 

all used a = 0.05 for indication of significant differences.

Overall density for both fallen and standing necromass for each site-treatment 

combination was calculated from total mass divided by total volume. Overall density 

was compared using two-way ANOVAs that examined site, treatment, and site by 

treatment interaction. We also examined the proportion of decay class 1-3 mass to total 

fallen mass, as well as small and medium size class mass to total fallen mass using two- 

way ANOVAs that examined site, treatment, and site by treatment interaction.

Orthogonal linear regression (JMP IN 5.1) was used to examine the relation between 

standing dead and fallen CWD for site and treatment. This regression uses an estimate of 

the ratio of variance of the two variables including analytical and sampling uncertainties 

(Tan and Iglewicz, 1999). The variance ratio is different for each sampled block. We 

tested the sensitivity of the orthogonal regression to variance ratio using maximum, 

mean, and minimum values.

Simple Model of Necromass

We used a simple compartment model for the necromass of undisturbed forests at 

Tapajos and Juruena. This model was parameterized using data from this study and from 

other research conducted at Tapajos and Juruena. The model uses estimates of biomass
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and necromass pools, literature estimates for mortality (Rice et al., 2004) and decay 

(Chambers et al., 2000, 2001b), and the assumption of steady state (Table 3.4). The basic 

model is

dM/dt = -kM + F (5)

where M is the necromass pool (Mg), F is the rate of necromass production (Mg y '1), and 

k is the instantaneous decay rate (y’1). By definition at steady state kM = F. The 

residence time (x) for necromass at steady state is M/F.

Results 

Density and Void Space

For necromass density and void space at Juruena we sampled 273 disks and removed 609 

plugs. In addition, 113 small (2-5 cm dia) and 43 (5-10 cm dia) medium sized pieces of 

CWD were sampled for necromass density. Plug densities for large pieces of CWD at 

Juruena, were significantly different by decay class, with a decreasing density for 

increasing decay classes (ANOVA, p < 0.001) (Table 3.1). Void space was significantly 

different across decay classes with decay classes 1 and 2 having little void space and 4 

and 5 having the most (Wilcoxon test, p < 0.001) (Table 3.1). We found no relation 

between the diameter of the larger CWD and density. On average small and medium size 

classes had densities similar to decay class 4, with densities of 0.52 g cm"3 for the small 

size class and 0.50 g cm" for the medium size class. We found no significant difference 

among relative densities based on the distance from the log center or among the radial 

directions.
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Table 3.1. Comparison of density and void space by site and decay class. Tapajos DC 5 differs 
from Keller et al. (2004a) because some pieces of necromass in DC 5 were not included in this 
analysis. In Keller et al. (2004a) we sampled small highly friable pieces of CWD to examine if 
these differed from whole logs classified as DC 5. We excluded these small DC 5 pieces in this 
analysis to be consistent with our methods using at Juruena. Numbers in parenthesis are standard 
errors of the mean.

N u m b er P lug Void D en sity
D ecay S a m p le d D ensity P ro p o rtio n A d ju s te d  fo r  Void

S ite C la s s (Mg m- 3) (%) (Mg m -3)
J u ru e n a 1 31 0.72 (0.03) * 0.01 (0.00) 0.71 (0.02) *

2 26 0.70 (0.04) 0.02 (0.01) 0.69 (0.04)
3 24 0.66 (0.04) 0.08 (0.03) 0.60 (0.04)
4 18 0.67 (0.07) 0.12 (0.04) 0.59 (0.06)
5 18 0.44 (0.05) 0.20 (0.04) 0.33 (0.05)

Small 113 0.52 (0.02) * NA NA 0.52 (0.02) *
Medium 43 0.50 (0.04) NA NA 0.50 (0.04)

T ap a jo s 1 88 0.61 (0.02) * 0.02 (0.01) 0.60 (0.02) *
2 35 0.71 (0.03) 0.02 (0.01) 0.70 (0.03)
3 48 0.63 (0.02) 0.08 (0.02) 0.58 (0.03)
4 52 0.58 (0.03) 0.21 (0.03) 0.45 (0.03)
5 21 0.46 (0.05) 0.26 (0.04) 0.34 (0.05)

Small 103 0.36 (0.01) * NA NA 0.36 (0.01) *
Medium 86 0.45 (0.02) NA NA 0.45 (0.02)

* indicates significant d ifference be tw een  d ecay  c la s s e s  or size  c la ss  betw een  s ites  (t-test) 
** indicates significant difference betw een  d ecay  c la s s e s  or size  c la ss  
betw een  s ites  (Wilcoxon / Kruskal-Wallis T est)

Comparison within decay classes between the two sites, Juruena and Tapajos, found that 

decay classes 1 had a significant difference between sites (ANOVA, p < 0.0407). The 

small size class also had a significantly different plug density (not adjusted for void 

space) between Tapajos and Juruena (ANOVA, p < 0.0024). No significant difference 

was found for void space within each decay class compared between sites. Adjusted 

density for void space was found to have a significant difference between decay class 1 

(ANOVA, p < 0.0024) and the small size class between sites (ANOVA, p <0.001).

Volume and Mass

We measured a total of 1093 snags at the two sites, 640 at Tapajos and 453 at Juruena. 

Standing dead volume estimates by block ranged from 9.3 m3 ha'1 to 22.4 m3 ha'1 and
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standing dead mass ranged from 5.3 to 13.9 Mg ha'1 for all blocks sampled at Juruena and 

Tapajos. Comparison of standing dead volume or mass yielded no significant differences 

for site or treatment although RIL treatments had a slightly greater standing dead mass 

(Table 3.2).

Table 3.2. Comparison between treatments and sites for necromass pool components. All 
estimates are in Mg ha"1. Numbers in parenthesis are standard errors of the mean. Significant 
differences found by ANOVA are indicated by s -  site, t -  treatment, and t*s -  treatment site 
interaction.

S ite
T re a tm e n t 
M easu rem en t

Ju ru e n a  
RIL 

(Mg /ha)

T ap a jo s  
RIL 

(Mg /ha)

Ju ru e n a  
UF 

(Mg /ha)

T ap a jo s  
UF 

(Mg /ha)

S ta ts  

(s, t, t*s)
Standing Dead 8.8 (2.3) 12.9 (4.6) 5.3 (1.0) 7.7 (2.0)
Total Fallen 67.0 (10.1) 72.6 (10.4) 44.9 (0.2) 50.7 (1.1) t
Fallen Small 3.6 (1.0) 5.3 (1.4) 3.3 (0.3) 1.9 (0.4)
Fallen Medium 5.0 (1.2) 10.0 (0.1) 3.7 (0.6) 4.0 (1.0) s, t
Fallen Large 58.5 (7.9) 57.4 (9.0) 37.9 (0.6) 44.7 (0.4)
Total All N ecrom ass 75.9 (7.8) 85.5 (14.9) 50.2 (1.2) 58.4 (0.9) t

At Juruena, we sampled a total of 2,650 pieces of necromass for volume estimation using 

line intercept sampling. Of these, 49% (n=1298) were in the large size class and 51% 

(n=1352) were in the small and medium size classes. Total fallen CWD volume 

estimates for Juruena were 90.6 (1.6) m3 ha'1 for UF and 121.1 (19.5) m'3 ha'1 for RIL 

treatments. We found no significant difference for total fallen CWD volume for 

treatment, site or site x treatment interaction. Total fallen CWD mass was 44.9 (0.2) Mg 

ha'1 for UF treatments at Juruena, and 67.0 (10.1) Mg ha'1 for RIL. Total fallen CWD 

mass showed a significant difference by treatment, but no significant difference for site or 

site x treatment interaction (ANOVA, p < 0.0384) (Table 3.2). Total necromass 

combining fallen CWD and standing dead for UF treatments was 50.2 (1.2) Mg ha'1 at 

Juruena and 58.4 (0.9) Mg ha'1 at Tapajos (Table 3.2). We estimated total necromass at 

RIL treatments to be 75.9 (7.8) Mg ha'1 for Juruena and 86.5 (14.9) Mg ha'1 for Tapajos. 

Total necromass for all components showed a significant difference for treatment, but not
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for site or site x treatment interaction (ANOVA, p < 0.03854). Fallen CWD and standing 

dead mass showed a clear proportional relation independent of site and treatment (Figure 

3.1). The relation between fallen CWD and standing dead across sites and treatments 

was examined using orthogonal linear regression. Although the relation was not 

statistically significant, there was a high coefficient of determination (r2 = 0.84, p < 

0.0862). The orthogonal regression was not sensitive to the variance ratio when we used 

maximum, mean, and minimum values of variance.

100

O)

40
0  Juruena RIL
\ 7  Tapajos RIL
■  Juruena UF

Tapajos UFLL

0 5 10 15 20

Standing D ead  (Mg ha"^)

Figure 3.1. Fallen vs. standing necromass for sites and treatments. Error bars represent standard 

errors.

We estimated that aboveground biomass at Juruena was 281 (32) Mg ha'1 for undisturbed 

forest for trees greater then 10 cm DBH, 263 (34) Mg ha'1 for trees greater then 15 cm, 

and 186 (20) Mg ha'1 for trees greater then 35 cm DBH. The number of trees greater than 

35 cm DBH was 63 (10) ha'1. Basal area for trees greater then 10 cm DBH was 25 (3)
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m2 h a 1.

Total standing density of necromass, derived from standing dead mass divided by 

standing dead volume showed no significant difference between site, treatment, or site x 

treatment interaction. Total fallen necromass density showed a significant difference for 

site, treatment, and site x treatment interaction (ANOVA, p <0.0036). Density for all 

necromass was also found to be significant for site, treatment and site x treatment 

interaction (ANOVA, p <0.0101). The proportion of small and medium size classes to 

total fallen necromass was found to be only significantly different for site x treatment 

interaction (ANOVA, p <0.0263).

Discussion 

Density Sampling and Void Space Estimation

We found that plug density, void space, and density adjusted for void space decreased 

with higher decay classes and were significantly different between decay classes at 

Juruena. This finding agrees with results at Tapajos (Keller et al., 2004a). In our 

sampling design, we randomized the radial position for extraction of plugs. Our previous 

study at Tapajos had shown that radial position had a significant influence on plug 

density (Keller et al., 2004a). Interestingly, this was not the case in Juruena. We had 

observed in the field that wood soundness was highly variable within a fallen log. At 

Tapajos, there was a significant correlation between plug density and distance from the 

fallen log center (Keller et al., 2004a), whereas we found no difference at Juruena.
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The densities of necromass decay classes are quite similar for Juruena and Tapajos. 

Comparison across sites showed significant differences only for decay class 1. In the 

case of class 1, initial live tree density may be an important influence. Recent studies 

have discussed the importance of spatial variation in density to biomass estimates (Baker 

et al., 2004; Nogueira et al., 2005). We lack data for live biomass average density 

estimates for Tapajos and Juruena, but comparison with such data might aid in 

understanding the differences in the density of decay class 1 between our two study sites. 

All other decay classes show no significant difference between our two sites. Density for 

the small size class also differed significantly between sites. Because the small size class 

decays rapidly, the density of small material may vary seasonally.

Seasonal variability in decomposition is likely to be greatest for fine as opposed to coarse 

material because of its shorter lifetime, lower initial density, and easier decomposer 

access to interior portions of the wood. Variation in wood moisture content tends to be 

greater in small diameter size classes, likely influencing the rate of decomposition (Silva, 

M.S. Thesis, 2005). In the varzea forest in the Brazilian Amazon, the time that the wood 

falls influences its immediate and longer term decomposition (Martius, 1997). Juruena 

samples were collected at the beginning of the dry season. Fine litter decomposition in 

tropical moist forests is limited by moisture (Goulden et al., 2004). We believe that the 

small and medium sized material collected at the beginning of the dry season had been 

exposed to a long period of optimal decay conditions and therefore tended to be less 

dense at Juruena than similar material collected at Tapajos.
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The division of CWD into classes must bring some arbitrary divisions because decay is a 

continual process. However, as long as densities are matched with the decay 

classification at a given site, the classification will be useful for mass determination. The 

densities determined for Juruena are very similar to densities found at Tapajos. It is 

possible that our density estimates can be used in other areas of the Amazon with similar 

vegetation types although we caution that the necromass densities found in this study will 

not be applicable to all forest types in Amazonia. In particular, they would be 

inappropriate for secondary forests or forests of the western Amazon where the density of 

live wood is considerably less than in old growth forests of the eastern Amazon (Baker et 

al., 2004).

Fallen and Standing Necromass

In the two undisturbed forests, the proportion of necromass to aboveground biomass (>15 

cm DBH) is 26% at Tapajos and 19% at Juruena. This is similar to results from Rice et 

al. (2004), where necromass account for 25% of the aboveground estimate. We lack 

biomass measurements for the logged forest, but obviously the proportion of necromass 

would be higher, since the logging occurred less than one year prior to our field work.

Our estimates for fallen CWD created by logging in the Juruena RIL areas were greater 

than those reported by Feldpausch et al. (2005) for the same field site, although we 

conducted field work in areas that were logged during different years. Rohden Industria 

Lignea, the company that owns and manages the site, had been adopting RIL techniques
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in preparation for FSC certification. Possibly, we encountered more damage because our 

measurements were made only at the beginning of the company’s conversion from 

conventional to RIL practice prior to the study by Feldpausch et al. (2005). In addition, 

we note that we measured CWD and snag volume directly for entire logged blocks 

converting volume to biomass based on our intensive study of CWD densities.

Feldpausch et al. (2005) used an indirect method. They measured ground damage (decks, 

skids, and treefall gaps) by line intercept sampling. CWD production in treefall gaps was 

measured only for single tree gaps whereas we observed that multiple treefall gaps were 

common in the field. Necromass production in the damaged skid and deck areas was 

estimated based on average biomass calculated from belt transects. The total biomass 

loss estimate depended upon multiplication of these two factors. The approach taken by 

Feldpausch et al. (2005) necessarily compounds errors, and may have led to 

underestimation of total necromass production.

For fallen necromass, we found a significant difference between treatments, but no 

difference between sites and site x treatment interaction. There were no significant 

differences for standing dead mass or large fallen necromass. The total necromass 

component was different between treatments, but not for site or site x treatment 

interaction. Despite the lack of significance for standing dead, it still increases roughly in 

proportion with fallen necromass for all site-treatment combinations studied. While this 

may be a chance result, we think the lack of significance is simply an artifact of our 

sampling intensity. We measured five times as many pieces of fallen necromass as we 

did snags.
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The proportion of necromass in decay classes 1, 2 and 3 is higher in RIL treatments than

the undisturbed treatments, though not significantly different (Table 3.3). Immediately

following logging, less decayed wood was present on the forest floor. The density of

total fallen necromass and all necromass components were both significantly different for

site, treatment, and site x treatment interaction. This indicates that fallen necromass

decay classes are different between sites and treatments, and are likely to indicate

different disturbance histories and possible difference in future decomposition rates.

Table 3.3. Comparison of site and treatments for average site densities generated from total site 
volume and total site mass. Proportions of necromass components are also compared. Numbers 
in parenthesis are standard errors of the mean. Significant differences found by ANOVA are 
indicated by s -  site, t -  treatment, and t*s -  treatment site interaction.

S ite
T rea tm e n t

J u ru e n a
RIL

T a p a jo s
RIL

J u ru e n a
UF

T a p a jo s
UF

S ta ts  
(s , t, t*s)

Total Fallen Density 0.55 (0.01) 0.47 (0.01) 0.50 (0.01) 0.47 (0.00) s, t, t*s

S tanding D ead Density 0.61 (0.02) 0.56 (0.03) 0.56 (0.04) 0.57 (0.00) s, t, t*s
A verage Density All 
N ecrom ass 0.56 (0.01) 0.48 (0.00) 0.50 (0.01) 0.48 (0.01)

Proportion of Standing 
Dead vs. Total Fallen 
N ecrom ass 0.14 (0.06) 0.17 (0.04) 0.12 (0.02) 0.15 (0.04)
Proportion of Small and  
Medium S ize  C la sse s  
vs. Total Fallen 
N ecrom ass 0.13 (0.01) 0.21 (0.01) 0.16 (0.02) 0.12 (0.03) t*s
Proportion of DC 1-3 
vs. Total Fallen 
N ecrom ass 0.65 (0.16) 0.78 (0.02) 0.42 (0.03) 0.59 (0.02) t

Reports of the mass of standing dead trees are rare in tropical forests. We found that 

standing dead made up 12-17% of the total necromass (Table 3.3). This estimate is 

similar to that found by Rice et al. (2004) and Clark et al. (2002). We did not measure 

attached dead wood or dead coarse roots. We are not aware of any measurements of 

these pools in tropical forests.
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Small and medium size classes make up about 12-21% percent of total fallen necromass 

(Table 3.3). The portion of small and medium size classes to total fallen necromass were 

significantly different for site x treatment interaction and are likely related to the seasonal 

timing of sampling. Another study in the Amazon region estimated that smaller diameter 

(<10 cm) fallen necromass (<10 cm) to accounted for 12% of the total fallen necromass 

(Rice et al., 2004). Our findings are slightly higher than other estimates in the literature 

and we stress the importance of including smaller necromass size classes in pool 

estimates.

Much small and medium sized material may not be accounted for if mortality alone is 

used to estimate necromass production. Many tree mortality studies only examine trees 

larger than 10 cm dbh, and thus do not include smaller stems that were an important 

component of coarse woody debris in our study. Contribution to the necromass pool by 

fallen branches may be an important component of necromass that is missed using 

mortality based estimates. Trees may lose branches through several processes that do not 

lead to whole tree mortality. For example, shaded lower branches may be shed and 

physical damage may result from crown interactions or animal activity. Chambers et al. 

(2001) considered limb-loss in a moist tropical forest outside Manaus. He estimated 

branch-fall to be 0.9 Mg ha'1 y '1 based upon a comparison of field measured allometries 

and an optimized model tree structure based on the hydraulic constraints to tree 

architecture.
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Simple Model of Necromass

If we assume that the forest necromass pool is in steady state then we can estimate both 

the production and decay of necromass to evaluate its role in the forest carbon budget. 

The assumption of steady state for the necromass pool is reasonable for old growth 

forests when a large area is sampled except for the case of infrequent very large 

disturbances such as blow-downs (Nelson, 1994). Gap formation and other local 

perturbations will be averaged over a large sampling area. We used a DBH cutoff of 15 

cm for live biomass to accommodate the data available at our two sites. Disregarding 

small trees in the live aboveground biomass pool creates a bias that tends to emphasize 

the role of necromass. Studies at other tropical sites suggest that trees less than 15 cm 

DBH and lianas contribute about 20% of the aboveground biomass (Keller et al., 2001). 

We acknowledge this bias and attempt to capture only the general pattern of the 

necromass cycle for the ecosystems. Greater biomass estimates would result in greater 

modelled rates of necromass production and decay at steady state.

We calculated that necromass production (F) was 8.5 Mg ha'1 y '1 at Tapajos and 7.9 Mg 

ha"1 y"1 at Juruena (Table 3.4) using mortality rates of 0.03 (Silva et al., 1995; Rice et al.,

2004). Although that mortality rate used is at the upper end of the range for old-growth 

tropical forests (Philips and Gentry, 1994), it yields results consistent with known decay 

rates for CWD. Decay rates (k) were estimated to be 0.14 y"1 at Tapajos and 0.16 y"1 at 

Juruena, with corresponding residence times (x) of 6.9 y and 6.4 y (Table 3.4). If one 

uses an estimate of about 30 Mg C ha'1 yr"1 for total ecosystem respiration (Chambers et
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al., 2004), our estimates of necromass decay are approximately 15% of the total 

ecosystem respiration (Chambers et al., 2004). This estimate of necromass respiration is 

similar to those found in Chambers et al. (2004) and Rice et al. (2004).

Table 3.4. Estimation of pools and fluxes of necromass for an undisturbed forest assuming 

steady state. Bold numbers are estimated from the steady state model.

Mortality R a te  of 0.03 Mortality R ate  of 0.01
Site Tapajos Juruena Tapajos Juruena
Biomass* 282 2 263 1 282 2 263
Mortality (%) 0.03 4 0.03 4 0.01 0.01
Estim ated C reation of CWD and Snags** 8.46 7.89 2.82 2.63
Standing D ead 7.7 1 5.3 7.7 1 5.3
Fallen CWD 50.7 3 44.9 cn o 3 44.9
N ecrom ass Pool (fallen and  snags)* 58.4 1 50.2 1 58.4 1 50.2
E stim ated D ecay R ate  if a t S tead y  S ta te 0.14 0.16 0.05 0.05
R esidence  T im e (y) 6.90 6.36 20.71 19.09
E stim ate C reation if k = .13 and S tead y  State** 7.59 5 6.53 5 7.59 5 6.53
E stim ate C reation if k = .17 and S tead y  State** 9.93 6 8.53 6 9.93 6 8.53
* all pool e s tim a te s  in Mg h a '1
** assum ing  d ecay  am ount eq u als  creation am ount
1 field d a ta  from this p ap er (>= 15cm DBH)
2 field d a ta  from Keller e t al. (2001) (>= 15cm  DBH)
3 field d a ta  from Keller e t al. (2004)
4  field d a ta  from Rice e t al. (2004)
5 field d a ta  from C ham bers e t al. (2000)
6  field d a ta  from C ham bers e t al. (2001)

Estimates for decay rates from our steady state model using a mortality rate of 0.01 were 

more common for old-growth forests in the Eastern Amazon, but were not consistent with 

literature values for CWD decay rates (Table 3.4). The mortality rate of 0.03 used in our 

simple model is at the high end of disturbances rates from the Amazon (Philips and 

Gentry, 1994), although it is derived from field data from Tapajos (Silva et al., 1995;

Rice et al., 2004). A high mortality rate (0.03) partly compensates for the 

underestimation of biomass caused by exclusion of trees < 15 cm DBH, and the exclusion 

of other potential CWD inputs such as branchfall and partial tree disturbance. Estimates 

of decay rates using a 0.03 mortality rate are similar to field estimates by Chambers et al.
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(2000 and 2001b) (Table 3.4).

Ideally field estimates of the necromass production would divide pools into small, 

medium and large size classes improving model accuracy and flux estimates. Chambers 

et al. (2000) showed that diameter influences decay rates. We lacked data for inputs or 

specific decay rates for individual size classes, therefore, for simplicity, we grouped 

small, medium and large diameter size classes into one necromass pool.

We can also examine necromass production using the necromass pool data and decay rate 

estimates. The estimates of CWD production and resulting residence time of necromass 

calculated from literature decay rates, and our necromass pool, are similar to our 

estimates of the model parameters when biomass and mortality rates are used in the 

modeling exercise (Table 3.4). This suggests that our assumptions of steady state, pool 

estimate, and use of mortality and decay rates are reasonable.

Disturbances that cause tree mortality and create necromass function on different 

temporal and spatial scales. An understanding of the mortality patterns and age structure 

of a forest and its variation in time and space can aid in estimation of the production of 

necromass. Alhough rainforest mortality is driven by many factors (includes large scale 

blowdowns), on the individual tree level mortality is influenced by competition, for 

nutrients and light (Prance,1985; Martinez- Ramos et al., 1998; Lieberman et al., 1989). 

Field estimates of necromass production would provide an understanding of necromass 

carbon dynamics. Field measurements of necromass decay rates would also help us to
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constrain carbon fluxes.

Our model does not include a separate standing dead necromass cycle and production of 

smaller necromass that may result from branch-fall rather than tree mortality. Standing 

dead material is likely to have a lower decay rate in moist tropical forest compared to 

large fallen CWD due to the lack of contact with the soil and periodic shortages of 

moisture. Contact with the soil allows fungi to transmit nutrients from the soil to the 

necromass promoting decomposition. Frey et al. (2003) found that fungal mycelia 

extended from the soil to CWD and translocated nutrients via the mycelia from soil to 

decaying wood. In addition, necromass on the forest floor is likely to have higher 

moisture content (Goulden et al., 2004). Decay of smaller litter is rapid compared to 

larger CWD (Mackensen et al., 2003). Small and medium size classes of necromass 

probably decay more quickly than larger fallen logs or snags and therefore contribute 

disproportionately to the carbon dioxide emission from the forest ecosystem. Smaller 

diameter necromass decay more quickly due to lower initial density,(Noguiera et al.,

2005) and easier access of decomposers to the interior wood (Mackensen et al., 2003).

Conclusions

We examined necromass density, volume, and mass at two sites in the Brazilian Amazon. 

Necromass represents about 19-26% of the aboveground carbon for undisturbed forests at 

these sites. With RIL harvest management, logged forests had approximately 1.5 times 

as much total necromass as undisturbed forests. Density and void space estimates for 

decay classes were similar at the two sites, indicating that these measurements may be
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usefully applied for necromass studies conducted in similar forest types in Amazonia. 

Proportions of standing dead and fallen small, medium, and large CWD size classes were 

similar across sites within treatments (RIL vs. UF). Decay class proportions were also 

similar across sites within treatments. RIL treatments showed a proportionate increase in 

both fallen and standing necromass across sites compared to UF. Small and medium size 

classes make up about 12-21% percent of total fallen necromass. Standing dead made up 

12-17% of the total necromass. Comprehensive studies of necromass in tropical forests 

need to include both standing dead and smaller size class measurements (< 10 cm 

diameter) because collectively these contribute a large proportion of the overall 

necromass pool. A simple compartment model with the assumption of steady state for 

undisturbed forests indicates that necromass at our two study sites has a residence time of 

about 7 y in the forests studied. The rapid decay of this necromass suggests that the flux 

of carbon dioxide from necromass may account for approximately 15% of the gross CO2 

efflux from these undisturbed forests.
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CHAPTER IV

NECROMASS PRODUCTION: STUDIES IN UNDISTURBED AND LOGGED
AMAZON FORESTS STUDIES3

Introduction

Necromass, including fallen and standing dead wood, is a major component of the carbon 

cycle in tropical forests. Above-ground coarse necromass (> 2 cm diameter) accounts for 

up to 20% of carbon stored above ground and for 14-19% of the annual above-ground 

carbon flux in tropical forests (Kira 1976, Clark et al. 2002, Grove 2001, Palace et al. in 

press, Chambers et al. 2004, Rice et al. 2004). The decomposition and production of 

necromass in tropical forests is important in understanding carbon dynamics, yet it is 

infrequently studied (Kira 1976, Harmon et al. 1995, Keller et al. 2004a).

In recent studies in the Brazilian Amazon, necromass decomposition rates have been 

measured directly and estimated using simple models. Chambers et al. (2000 and 2001a) 

used two different measurement approaches (closed chambers using an infra-red gas 

analyzer and directly measured density changes to approximate mass loss) and estimated 

decomposition rates of necromass to be 0.13 and 0.17 y '1 in forest sites near Manaus.

Rice et al. (2004) combined measured tree mortality rates of 1.7 % per year and an

3 This chapter is based on and contains material from a manuscript that will be submitted for publication in 
2006. M. Palace, M. Keller, H. Silva. Necromass Production: Studies in Undisturbed and Logged Amazon 
Forests. Submitted to Ecological Applications.
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empirical decomposition model (Chambers et al. 2000) to estimate decomposition rates 

of 0.12 y '1. Palace et al. (in press) estimated decomposition of necromass at Tapajos to 

be 0.14 y '1, using measurements of the biomass and necromass pools and literature 

estimates of the mortality rate for the Tapajos site.

Few studies have examined necromass production rates in tropical forest. In some recent 

studies, both direct measurements of fallen debris and mortality data have been used to 

estimate coarse necromass production. Clark et al. (2002) measured production of fallen 

coarse necromass of 4.8 Mg ha'1 yr'1 using three repeated surveys in Costa Rica. Eaton 

and Lawrence (2006), using repeated surveys, found necromass production to be 0.91 Mg 

ha*1 y '1 in an undisturbed dry tropical forest in Mexico. Rice et al. (2004) estimated a 

coarse necromass production of 4.8 Mg ha'1 using mortality rates from the Tapajos 

National Forest near Santarem, Brazil. Chambers et al. (2000) estimated the production 

of dead wood in a forest near Manaus to be 4.2 Mg ha'1 y '1, based on observed mortality 

rates as well. Using a steady state model, biomass stock measurements, published 

mortality data, and measurements of necromass stocks, Palace et al. (in press) estimated 

coarse necromass production at the Tapajos National Forest to be 8.5 Mg ha'1 y '1.

The Amazon region is undergoing drastic changes in land use (Roberts et al. 2003, Keller 

et al., 2004b). Land use change directly alters carbon cycling in terrestrial ecosystems, 

both in terms of storage and exchange with the atmosphere. One land use practice, 

selective logging, affects 15,000 to 20,000 km2 y '1 in the Brazilian Amazon (Asner et al. 

2005; Asner et al. 2006), changing the storage and cycling of carbon in the coarse
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necromass pools (Gerwing 2002, Keller et al, 2004a, Feldpausch et al. 2005, Palace et al. 

in press). Selective logging actively fells a few trees per hectare, but much of the impact 

associated with logging results from clearing of roads, log landings, and skid trails 

(Pereira et al. 2002). These activities generate coarse necromass directly, as well as 

potentially altering tree mortality, and therefore coarse necromass production for at least 

2 years after logging (Schulze and Zweede 2006).

Reduced Impact Logging (RIL) is an approach to selective logging that minimizes the 

damage to the forest as compared to conventional selective logging (CL). Methods 

employed include tree surveys, vine cutting, road and skid planning, wheeled skidders, 

and planned directional felling (Pereira et al. 2002). Palace et al. (in press) found that 

coarse necromass stocks were 1.5 times greater than in RIL sites one year following 

logging compared to undisturbed forests in Northwest Mato Grosso, Brazil. Keller et al. 

(2004a) found that CL generated 2.7 times as much fallen coarse necromass compared to 

RIL sites in Eastern Para, Brazil.

As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA; Keller 

et al. 2004b), studies are underway to refine estimates of forest ecosystem carbon storage 

and fluxes at regional and local scales (Ometto et al. 2005; Miller et al. 2004, Keller et 

al. 2004b, Rice et al. 2004). In LBA plot-based studies of forest stands, as in other forest 

studies, living biomass is separated from both standing and fallen necromass (e.g. Baker 

et al. 2004). Net carbon flux in forest stands has been expressed as the difference 

between the carbon increment from the growth of woody biomass minus the carbon lost
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through tree mortality. By convention, both of these quantities are most frequently 

measured for trees greater than 10 cm diameter-at-breast-height (dbh =1.3 m). It is 

recognized that carbon fluxes measured this way in stand studies and quantified on an 

annual basis do not account for the variable production and the relatively slow 

decomposition of dead wood (Chave et al. 2003; Rice et al. 2004). Comparisons that 

have indicated reasonable agreement between plot studies and the net ecosystem 

exchange measurements made using the eddy covariance technique have accounted for 

coarse necromass stocks and adjusted fluxes to account for coarse necromass 

decomposition (e.g. Saleska et al. 2003).

Clark et al. (2001b) pointed out that forest productivity measurements do not necessarily 

account for branch fall and other sub-lethal mortality such as crown damage or heart-rot. 

It is difficult to account for all sub-lethal mortality directly. For example, branches may 

die and remain attached to trees. Heart rot is concealed within a tree. We note that in a 

recent study by Nogueira et al. (2006), hollows accounted for only 0.6% of stem volume 

for a forest near Manaus, Brazil.

In the present study, we quantified the production of fallen coarse necromass in a tropical 

forest over 4.5 y using repeated surveys and attempted to separate the components of this 

flux owing to branches and stems. We also looked separately at the stocks and loss of 

standing dead material. We studied the dynamics of coarse necromass in both 

undisturbed forest (UF) and forests logged using reduced impact logging (RIL) 

techniques. We compared necromass production estimates calculated from mortality
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rates to our field survey data.

Methods 

Sites

We examined coarse necromass production and stocks at the Tapajos National Forest, 

located south of Santarem, Para, Brazil (3.08° S, 54.94° W). The mean annual 

temperature is about 25° C and the mean annual precipitation is about 2000 mm y '1, with 

a six month-long dry season (Silver et al. 2000). The forest above-ground live biomass is 

about 282 Mg ha'1 (Keller et al. 2001). Our study area included two forest treatment 

types; one area that was selectively logged using RIL methods and an undisturbed forest 

(UF). RIL treatments were logged in 2000. Within each forest type, we sampled two 

approximately 100 ha management blocks. These same areas were examined in Keller et 

al. (2004a) for coarse necromass density and our initial fallen coarse necromass volume 

and mass measured in 2001. The initial standing dead pool, measured in January 2002, 

was presented in Palace et al. (in press). Comprehensive descriptions of the study sites 

and the logging techniques are found in Keller et a l (2001, 2004a).

Production of Fallen Coarse Necromass

Fallen coarse necromass production in two treatments (RIL and UF) was measured using 

repeated line intercept transects conducted approximately every six months during 4.5 y 

from November 2001 through to February 2006. Because of differences among sampling 

intervals (105 to 257 day), reported values have been adjusted to annual rates. We 

repeatedly sampled the same line intercept transects (total length 11.1 km) with two 

blocks per treatment,each containing 3 or 4 transects. The two RIL blocks were sampled
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using 2.3 km and 2.8 km of line intercept transects, and the two UF blocks were each 

sampled using 3 km of line intercept transects. We established the transects six months 

before our initial measurements conducted in November 2001 by painting and marking 

all initial necromass crossing the transect lines using the methods described below.

Coarse necromass volume measurements were made using line-intersect transects 

(Brown 1974, de Vries 1986, Ringvall and Stahl 1999). We separated coarse necromass 

into three diameter groups, greater then 10 cm diameter {large), 5-10 cm {medium) and 2- 

5 cm {small). Fallen coarse necromass with a diameter < 2 cm was disregarded, as it is 

generally included in litter-fall studies (Keller et al. 2004a). We recorded diameters for 

all large necromass pieces intersecting the vertical plane defined by the transect line 

(Brown 1974). We divided each transect into 50 m segments. Within each 50 m segment 

of the transect line, we selected at random a 10 m section and counted the number of 

small and medium necromass pieces intersecting this sub-sample. All large coarse 

necromass was painted with durable spray enamel during each survey so that the existing 

necromass could be separated from newly fallen necromass on subsequent surveys; small 

and medium necromass material was removed from the sample line because painting was 

impractical. In order to precisely identify the 10 m sub-sampling locations, during every 

repeat survey, we attached nylon mason line to two large nails pushed into the soil and 

marked the area with flagging tape. Occasionally between surveys, nylon lines 

disappeared or were cut by leaf cutter ants, peccaries, or human hunters. If a sub-sample 

nylon line was cut or if it could not be found, a new sub-sample was randomly selected 

within the 50 m section and no data on small and medium classes were collected for that
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sub-sample for that time interval with an adjustment made to account of the lower 

number of sub-samples collected.

Each large coarse necromass pieces was classified into one of five decay classes (Harmon 

et al. 1986), ranging from newly fallen necromass with twigs and dead leaves attached 

(Class 1) to highly decayed material that could be broken apart by hand (Class 5) 

(Harmon et al., 1995; Keller et al., 2004a). We assigned a mean bulk density value to 

each class using the same decay class densities measured at Tapajos by Keller et al. 

(2004a) and used in our initial stock estimates. For the two smaller size coarse 

necromass classes we used a single mean bulk density measurement for each size class 

determined at Tapajos (Keller et al. 2004a). During the final five surveys (January 2003 

to November 2004), we classified the sources of each piece of coarse necromass 

measured as either trunk, branch, or unidentifiable.

Coarse necromass was determined from the product of the volume of material and the 

respective density of each piece’s decay class or size class for small and medium 

diameter pieces (Harmon et al., 1995; Keller et a l, 2004a). When we calculated 

necromass volume, median diameters for small and medium size classes were used (3.5 

and 7.5 cm, respectively) (Keller et al. 2004a). We used means weighted by transect 

length when calculating volume and mass measured from line intercept transects (de 

Vries 1986).

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Coarse Necromass Pool Estimation

In 2004, three years after our initial coarse necromass pool estimates presented in Keller 

et al. (2004a), we conducted a new series of line intersect transects to estimate the fallen 

coarse necromass pool. These new line intersect transects were randomly selected and 

parallel to existing lines. We did not resample the same line transects used in the initial 

coarse necromass pool estimate because foot traffic and removal of coarse necromass 

from the repeated survey lines would have introduced biases for a resurvey of fallen 

coarse necromass. For the new fallen coarse necromass pool estimates we sampled a 

total 12 km of line intercept transects (2 treatments x 2 blocks x 3 one km transects per 

block). We used the same method to estimate coarse necromass volume and mass as 

described in our repeated sampling surveys. We classified the source of each piece of 

necromass in our new line intersect transects as trunk, branch or unidentifiable. 

Determination of coarse necromass source was not done in our initial pool measurements 

(Keller et al. 2004a).

We also resurveyed the standing dead (snag) pool in 2004, to compare with initial pool 

measurements made in 2002 (Palace et al. in press). Standing dead volume measurement 

used strip plots that were 10 m wide along the length of the line intercept transects 

(~1000 m). The total area resampled for the standing dead necromass pool was 11.1 ha, 

5.1 ha were sampled in the RIL treatment (2.3 ha and 2.8 ha in two blocks) and 6 ha were 

sampled in the undisturbed forest (3 ha each of in two blocks). We used the same five- 

group decay class classification used in fallen coarse necromass surveys. A laser ranger 

finder with a built-in clinometer was used to measure snag height (Impulse-200LR, Laser
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Technology Inc., Englewood, Colorado). The dbh was recorded for all snags taller than 

1.3 m. For snags shorter than 1.3 m, we measured the highest point of the snag and the 

diameter at the highest point. Volume estimates for snags used the disc method of 

integration, a taper function (Chambers et al. 2000), and height and diameter 

measurements (Palace et al. in press). Mass was calculated by multiplying by the volume 

of a snag by its respective decay class density (Palace et al. in press, Keller et al. 2004a).

When we conducted our initial sample of standing dead in 2002, we placed a 20 cm long 

steel nail attached with numbered flagging tape at the base of each snag. In 2004, we 

used a metal detector to locate nails and differentiate new snags and from those 

previously measured. The repeated sampling allowed us to determine changes in the pool 

of standing necromass and residence time in this pool. In order to avoid double counting, 

we did not use this data to calculate the decomposition and residence time for the overall 

fallen necromass pool, because some standing dead falls between survey periods.

Statistical Analysis

We conducted two-way analysis of variance (ANOVA) for treatment (UF and RIL), time, 

and treatment x time interaction for each of the pool components that we measured 

(small, medium and large size classes, total fallen coarse necromass, and standing dead). 

Comparisons were made for treatments for the production of coarse necromass over our 

4.5 y study using Tukey-Kramer HSD tests. Statistical significance was considered for 

results using a < 0.05. The total coarse necromass (fallen coarse necromass plus standing 

dead) was not examined with statistical tests because of different sample areas and
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methods in data collection between fallen and standing necromass.

We conducted a series of Chi-square tests to examine the proportions of fallen coarse 

necromass that came from branches, trunks, or undefined sources. We examined 

production and pool necromass estimates using proportions of total mass for each source 

to normalize for variable mass (RIL and UF) and different methodology between pool 

and production measurements. Our analyses examined; (1) proportions between 

treatments within a source (pool or production), and (2) proportions within treatment and 

between sources. Results were considered statistically significant for a < 0.05.

Simple Model to Examine Dynamics

A simple compartmental model of necromass dynamics was developed with three 

compartments, one for each of the three size classes of fallen necromass. We did not 

consider transfers among size classes. We also used s single-box model that combined 

all fallen coarse necromass size classes. The basic model is:

dMi/dt= -kiMi +Fi (1)

where M; is the necromass pool (Mg) for a given size class (i) or the aggregate necromass 

pool, Fj is the rate of necromass production (Mg y '1), and ki is the decomposition rate (y' 

'). By definition, at steady state dM/dt is zero, meaning that the amount of necromass 

produced is the same as the amount that decays. The residence time ( ii)  for necromass is 

M divided F.
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Results

Necromass Production

We measured 668 large, 252 medium and 1168 small pieces of necromass in our repeated 

line intersect surveys. The mean (std. err.) fallen coarse necromass generated during the 

study for the RIL treatment was 8.5 (1.3) Mg ha'1 y '1 and was 6.7 (0.8) Mg ha'1 yr'1 for 

the UF treatment (Table 4.1). The sum of the small and medium size classes made up 30 

% of the total fallen coarse necromass produced in UF treatments and 25% in RIL 

treatments (Table 4.1). We found no significant difference between treatments for the 

production of fallen coarse necromass.

Table 4.1. Production of necromass over a four and a half year period at Tapajos 
National Forest, Para, Brazil.

RIL UF
Mass Percent Mass Percent

Size Class (Mg ha'1 yr'1) SE of Total (Mg ha'1 yr'1) SE of Total
Large 6.4 (1.5) 75% 4.7 (0.7) 70%
Small 0.9 (0.0) 10% 0.8 (0.2) 12%
Medium 1.3 (0.3) 15% 1.2 (0.1) 18%
Total Fallen 8.5 (1.3) 100% 6.7 (0.8) 100%
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Figure 4.1. Flux of newly fallen coarse necromass shown for RIL (closed circles) and UF (open 
circles) treatments for nine sampling periods. The fluxes have been annualized for comparison 
among variable time sampling periods. Error bars are standard errors of the mean. Error bars are 
not included for the first time period because only one transect was measured in each treatment. 
Medium and small fallen necromass classes are presented on a different scale compared to large 
and total fallen coarse necromass.
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The time series showed a larger amount of fallen coarse necromass produced at the 

beginning of the study followed by a nearly constant rate of production in both RIL and 

UF treatments (Figure 4.1). The initial production estimate only included one transect 

from RIL and one transect from the UF treatment. Because of this standard error could 

not be estimated and the mean might be inflated due to under-sampling. The maximum 

annualized total fallen coarse necromass produced for a single sampling period for the 

RIL treatment was 22.3 (16.2) Mg ha'1 y 'l and for the UF treatment was 8.4 (0.7) Mg ha'1 

y '1. The high value for the RIL forest type in November 2004 sample period was due to 

one large newly fallen 155 cm diameter tree. Removal of this single extremely large 

diameter fallen necromass piece changed the RIL necromass production estimate of 22.3 

(16.2) to 9.1 (3.0) Mg ha'1 y '1 for that sample period. RIL and UF did not always have 

correspondingly high and low production measurements. In addition, small and medium 

necromass production estimates did not follow the same pattern as large necromass 

production estimates (Figure 4.1). The minimum annualized coarse necromass 

production was 4.1 (0.5) Mg ha'1 yr'1 and 3.5 (0.4) Mg ha'1 y '1 for RIL and UF 

respectively.

Necromass Pool Estimates

We measured the volume of 578 snags in November 2004 compared to 640 snags 

measured in the same 11.1 ha in 2002 (Palace et al. in press). Standing dead mass in the 

RIL treatment was not found to be significantly different between 2002 and 2004 from 

our initial measurement of 12.9 (4.6) Mg ha'1 and our measurement two years later at the
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end of this study at 10.0 (1.9) Mg ha'1 (Table 4.2). The same was true for standing dead 

measured in undisturbed forest, with 7.7 (2.0) Mg ha'1 2002 and 8.1 (3.2) Mg ha'1 in 2004 

(ANOVA, p < 0.2918) (Table 4.2). The logging treatment had no significant effect on 

the standing dead stocks when compared to the undisturbed forest.

Logging treatment had a significant effect on the mass for all components of fallen coarse 

necromass when compared to undisturbed forest (Table 4.2). Total fallen coarse 

necromass was 74.4 (14.2) Mg ha'1 for RIL treatments and 40.8 (4.7) Mg ha'1 for UF 

treatments in 2004 (Table 4.2). Mass of large fallen coarse necromass and total fallen 

coarse necromass showed no significant differences for time or time x treatment 

interaction. Small and medium size classes were found to be significantly different for 

time, treatment, and time x treatment interaction (ANOVA, p < 0.001). In our 2004 

resurvey, small and medium size classes for fallen coarse necromass made up 7% of the 

total fallen coarse necromass in RIL treatments and 11% in UF treatments. RIL 

treatments had 58% more total coarse necromass (total fallen and standing dead) than UF 

treatments (Table 4.2). No statistical comparison was conducted on total coarse 

necromass because of differences in methodology and sampling area between standing 

dead and fallen coarse necromass pools.
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Table 4.2. Coarse necromass pools at Tapajos from two sample periods (2001 and 2004). 
Standard errors of the mean are in parenthesis. 'Standing dead was measured in 2002 
and 2004. Significant differences among sampling period (p), treatment (t) and sampling 
period x treatment interaction (p*t) in the ANOVA model.

Treatment RIL (2001) RIL (2004) UF(2001) UF(2001) Statistics2
Measurement Mg ha'1 Mg ha'1 Mg ha'1 Mg ha'1 (P. t, t*p)
Standing Dead1 12.9 (4.6) 10.0 (1.9) 7.7 (2.0) 8.1 (3.2)
Total Fallen 72.6 (10.4) 74.4 (14.2) 50.7 (1.1) 40.8 (4.7) t
Fallen Small 5.3 (1.4) 1.2 (0.1) 1.9 (0.4) 1.4 (0.0) P .t .p * t
Fallen Medium 10.0 (0.1) 3.5 (0.4) 4.0 (1.0) 3.2 (0.3) P,t,P*t
Fallen Large 57.4 (9.0) 69.7 (14.7) 44.7 (0.4) 36.3 (1.8) t
Total All Necromass 85.5 (14.9) 84.4 (16.1) 58.4 (3.1) 49.0 (1.1) NA

Proportion of Necromass Source

Necromass derived from tree trunks dominated the large size class in both necromass

production and in pools (Table 4.3). The other size classes were more evenly distributed

among sources. We found significant differences between treatments for the proportions

of trunk, branch, and unidentified material within both production and pool necromass (X

, p < 0.0001). Within a treatment proportions between groups (production and pool

estimates) were also found to be significantly different (X 2, p < 0.0001).

Table 4.3. Source proportions of fallen coarse necromass from production and pool 
measurements.

Treatment Source Production Pool
Large Medium Small Large Medium Small

RIL Branch 0.16 0.46 0.38 0.32 0.47 0.66
Unidentified 0.05 0.32 0.41 0.05 0.22 0.25
Trunk 0.79 0.22 0.20 0.63 0.31 0.09

UF Branch 0.35 0.57 0.53 0.23 0.49 0.71
Unidentified 0.08 0.22 0.39 0.03 0.29 0.25
Trunk 0.57 0.21 0.08 0.74 0.22 0.04
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Simple Model Outputs

We used measured necromass production (Table 4.1) together with the mean of stock 

estimates from 2001 and 2004 (Table 4.2) and the assumption of steady state to calculate 

decomposition rates for necromass using our simple compartment model (Equation 1; 

Table 4.4). We calculated CWD decomposition rates (k) to be 0.12 y '1 for the large size 

class, 0.33 y '1 for the medium size class, and 0.47 y '1 for the small size class; the overall 

decomposition rate for all fallen coarse necromass was 0.15 y '1. Calculated residence 

times (x = 1/k) are 8.6 y, 3.0 y, and 2.1 y for the large, medium, and small size classes, 

respectively (Table 4.4, 4.5).

Table 4.4. Results from a simple model to estimate pools and fluxes of coarse 
fallen necromass in an undisturbed forest assuming steady state. Measured 
values are show in bold face type.

Site Large Medium Small Total
Production of Fallen Coarse Necromass (Mg ha'1 y'1) 4.7 1.2 0.8 6.7
Fallen Coarse Necromass Pool (Mg ha"1 y'1) 40.5 3.6 1.7 45.8
Estimated Decay Rate if at Steady State (y'1) 0.12 0.33 0.47 0.15
Residence Time (y) 8.6 3.0 2.1 6.8

Table 4.5. Production and mortality calculations are based on above-ground biomass 
of 282 Mg ha'1 (Keller et al. 2001). Measured values are show in bold face type. 
aSchulze and Zweede (2006), bSilva et al. (1995).

Mortality Necromass Production Decomposition Rate

(y1)__________________ (Mg y'1)___________________ (y 1)
0.015a 4.2 0.08
0.024 6.7 0.15

0.030b 85 O-18

For standing dead, in undisturbed forests, we based our model on the pool values and the 

measurement of new standing dead during two years of study (Table 4.6). We found that

1.9 Mg ha'1 of standing dead was produced each year. Considering this value, we 

calculated the rate of movement through the pool to be 0.24 y '1 with a corresponding
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residence time of 4.2 y. Using the decomposition rate estimated for large fallen 

necromass we estimate respiration while in the standing dead pool to be 0.9 Mg ha'1 y '1. 

Standing dead necromass dynamics in a RIL treatment was similar to undisturbed forest 

standing dead (Table 4.6).

Table 4.6. Examination of standing dead and estimation of time in pool and 
respiration from the pool. Only one RIL treatment was used in this analysis
due to missing data.

Necromass Component______________________________ UF
Standing Dead Pool (Mg ha'1) 7.9

Standing Dead Production (Mg ha'1 y'1) 1.9
Rate of movement through pool (y'1) 0.24
Time in Pool (y) 4.2
Estimated Decomposition while in pool (Mg ha'1 y~1)*_______ 0.9
* using decay rate from large fallen coarse necromass

Discussion 

Production and Decomposition of Necromass

Measurements of total fallen necromass stocks and large fallen necromass in 2001 and 

2004 showed no significant difference between the two sample periods for each treatment 

type (Table 4.2). In contrast, there were significant differences for the small and medium 

categories. The RIL treatments were first examined approximately one year after 

logging therefore the difference in pool size between the treatments may be attributed to 

the effects of logging. Large fallen necromass stocks were always greater at the RIL 

treatment compared to the UF treatment. After the initial impact of logging, it appears 

that the forests functioned similarly with respect to the production and decomposition of 

large necromass. However, small and medium sized fallen necromass stocks decreased 

notably in the RIL treatments between 2001 and 2004, leading to a treatment effect and a 

period by treatment interaction in the ANOVA model. The rapid decomposition of small
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and medium sized necromass is consistent with our residence time estimates for 

necromass size classes derived from our simple model (Table 4.5).

Fallen CWD production measured over a 4.5 year period indicated no significant 

difference between RIL logged (8.5 (1.3) Mg ha'1 y '1) and undisturbed treatments (6.7 

(0.8) Mg ha'1 y '1). There was tendency for greater amount of necromass created at the 

initial stages of our study for both RIL and UF treatments. Possibly a disturbance, not 

specific to the logged site, may have occurred on a landscape level. It has been suggested 

that large-scale mortality occurred at Tapajos in the late 1990’s resulting from drought 

during the 1997-1998 El Nino (Saleska et al. 2003; Rice et al. 2004). The elevated 

production of fallen coarse necromass early in our study may represent a delayed 

response to a landscape level disturbance. This long delay is plausible in light of the 

approximately 4 year residence time of standing dead. Alternatively, it is possible that 

the initial estimate of necromass production may be elevated simply because of under

sampling.

Other direct measurements of coarse necromass production include 0.91 Ma ha'1 y '1 in a 

dry tropical forest in Mexico (Eaton and Lawrence 2006), 2 Mg ha'1 yr'1 in Jamaica 

(Tanner 1980), 14.4 Mg ha'1 yr'1 in Pasoh Forest in Western Malaysia (Kira 1976) and

4.9 Mg ha'1 in Costa Rica (Clark et al. 2002). Eaton and Lawrence (2006) examined 

coarse necromass production in a dry tropical forest and found a higher amount of input 

during the dry season using four repeated measurements at 6 month intervals. In our 4.5 

year study, with 9 repeated measurements conducted in a moist tropical forest at Tapajos,
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no seasonality was found in the production of fallen coarse necromass for both RIL and 

undisturbed treatments for any of the size classes.

In the Tapajos forest, Rice et al. (2004) calculated a coarse necromass production value 

of 4.8 Mg ha'1 y '1 using a mortality rate of 1.7% y '1 for trees greater than 10 cm DBH. 

Vieira et al. (2004) estimated a steady state live wood production in the Tapajos National 

forest of 3.0 Mg ha'1 y '1 based on diameter increments implying that coarse necromass 

was also 3.0 Mg ha'1 y '1. These two estimates are 2 to 4 Mg ha'1 yr"1 lower than our 

measurement of coarse necromass production for undisturbed forest at Tapajos. The 

difference between mortality based estimates of wood or coarse necromass creation and 

our measurements may reflect two problems with using mortality rates to estimate 

necromass production. First, mortality-based estimates of necromass creation are most 

frequently applied to biomass of trees only above 10 cm, ignoring smaller trees, shrubs, 

and vines. These biomass components may be important components of overall forest 

productivity (Chave et a l 2003). Second, mortality based estimates do not include non- 

lethal mortality wherein only a portion of a tree dies. Clark et al. (200 lab) noted the 

potential importance of branch-fall to estimation of net primary productivity. Chave et 

al. (2003) found that branch falls and crown damage contributed about 0.5 Mg ha'1 y '1 to 

above ground biomass loss in a 50 ha forest plot at Barro Colorado, Panama. Chambers 

et al. (2001b) estimated that branchfall at an old-growth forest site near Manaus, Brazil 

was 0.9 Mg ha'1 y '1 based upon allometric arguments.

Palace et al. (in press) estimated necromass production to be 8.5 Mg ha"1 y '1 using a
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mortality rate of 0.03 y '1 and measured biomass from Keller et al. (2001) (Table 4.5).

The mortality rate used in that work was selected from the high end of available mortality 

measurements for tropical moist forests in order to generate agreement with published 

estimates of coarse necromass decomposition (Silva et al. 1995).

We calculated production of 4.2 Mg ha'1 y '1 for coarse necromass using a using mortality 

rate of 1.5% y '1 from Schulze and Zweede (2006) and an above-ground biomass of 282 

Mg ha'1 from Keller et al. (2001) that includes non-tree components. This approach 

underestimates coarse necromass production by 2.5 Mg ha'1 y '1 (Table 4.5). Using this 

production amount and assuming steady state, the decomposition rates would be 0.08 y '1, 

only about half the decomposition rate we found using our production and stock 

measurements.

If we take measurements of coarse necromass production divided by an above-ground 

biomass of 282 Mg ha'1 from Keller et al. (2001) (Table 4.5) then we calculate a 

mortality rate of 2.4% y '1, 0.9% higher than the mortality rate of 1.5% y '1 observed by 

Schulze and Zweede (2006) (Table 4.5). We stress that using a mortality rate to estimate 

necromass production may lead to a substantial underestimation. This 0.9% of 

unaccounted for mortality based on our measurements of coarse necromass production 

may result from branchfall and other non-lethal disturbances.

Although our study was more extensive spatially and temporally than any other study 

discussed here, the effect of a single large tree fall (>150 cm diameter) nonetheless had a
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substantial effect on the necromass production measurement for the RIL treatment in 

November 2004. Trees of this size or greater occur with a frequency of only about 0.079 

ha'1 at Tapajos based on a 400 ha survey (Keller et al. 2001). Assuming that we 

adequately sampled our 100 ha blocks, we would have only 7.9 trees of this size class per 

100 ha block. If these trees have a 1.7 % annual mortality rate (Rice et al. 2004) then our 

chance of seeing a fall of this size is (1-0.9837'9) or 12.7% per year per 100 ha block. 

Considering that our study was conducted over a 4.5 year period, our estimate of the 

probability of encountering a treefall over 150 cm DBH is (1 - 0.8734'5) or 45.7% per 

block. In order to have a 95% chance of measuring the death of a 150 cm diameter tree 

in a single year, we would need to sample an area that contained about 175 trees of this 

size equivalent to about 2215 ha. Our coarse necromass production estimate may 

represent a slight underestimate. About 0.8% of the biomass at Tapajos is found in trees 

>150 cm DBH. If trees in this size class die on average with the same frequency of other 

trees, then their contribution (by complete mortality) to coarse necromass production 

would be about 2.4 Mg ha’1 x 0.017 y '1 equal to about 0.5% of the annual coarse 

necromass production that we measured.

Necromass Pools

Our two pool measurements of necromass (Table 4.2) are consistent with literature values 

for tropical forests. Edwards and Grubb (1977) found fallen dead wood mass of 10.9 Mg 

ha'1 in a rainforest in New Guinea. In a tropical forest in Australia, dead wood mass was 

12 Mg ha'1 (Grove 2001). In the Brazilian Amazon, measurements of fallen coarse 

necromass in undisturbed forests in terra firma include 48.0 Mg C ha’1 (Rice et al. 2004)
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and 42.8 Mg C ha"1 (Summers 1998) on the higher end, 27.6 Mg C ha"1 (Keller et al. 

2004a), 15 Mg C ha'1 (Brown et al. 1995), and 16.5 Mg C ha"1 (Gerwing 2002) for more 

central values, and 9.5 Mg ha'1 (Martius and Bandeira 1998) and 5.8 Mg ha"1 Scott et al. 

(1992) on the lower end. In the floodplains of the Amazon, necromass was 1.8 to 5.7 

Mg C ha"1 (Martius 1997). Other studies have examined coarse necromass in secondary 

forests and logged forests (Gerwing 2002, Uhl et al 1988, Keller et al. 2004a, Palace et 

al. in press).

The proportion of carbon in coarse necromass to total carbon in tropical forests has a 

wide range, 2% to 40%, with much variability (Edwards and Grubb 1977, Brown 1997). 

The proportion of above ground coarse necromass to above ground biomass in tropical 

forests was measured recently at a range of tropical forest sites including 18% (Keller et 

al. 2004a) to 33% Rice et al. 2004) at the Tapajos National Forest, 33% at the wet forest 

at La Selva in Costa Rica (Clark et al. 2002), and 2-18% for an altitudinal transect in 

Venezuela (Delaney et al. 1998).

Standing dead stock was found to add an additional 11 to 30% to the total above ground 

coarse necromass stock in central Amazonia (Klinge et al. 1975, Higuchi and Biot 1995). 

Gerwing (2002) found standing dead to be 40% of the total coarse wood necromass stock 

in a disturbed forest that had been lightly logged and burned.

Measurements of standing dead stock often do not include stumps. We found that 

standing dead less than 1.3 m in height accounted for 1.7 to 27.2% of the standing dead
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stock for our survey plots with an average of 4.9%. This high proportion for both 

standing dead and stumps to necromass suggests that necromass measurements in moist 

tropical forests should always include standing dead and preferably should also include 

stumps.

Necromass Sources

Our examination of the proportions of fallen necromass source (trunk, branch, and 

unidentified) indicated that there is a significant difference between treatments within a 

production estimate or a pool estimate. We also found that the source proportions of 

fallen necromass were significantly different between production and pool estimates 

within treatments. RIL may have more material created from trunks than UF because the 

RIL logging process includes vine cutting which may strip out senescent branches. Also, 

logging damages trees, which leads to subsequent mortality and greater whole tree death 

(Verissimo et al. 1992). Small and medium size class production proportionally had 

more branches in UF than RIL treatments. The small size class production source was 

made up of more trunks in RIL than UF. When we compare source proportions for 

production compared to pools, we do not find consistent proportions. UF treatments had 

more branch produced than in the pool, and RIL treatments had more trunks produced 

than in the pool. This could both show the influence of branchfall in an undisturbed 

forest and the influence of RIL methods of vine cutting and tree canopy loss due to tree 

felling.

We believe that branchfall from both live and standing dead trees is an important source
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of necromass production. Our field observations of standing dead necromass indicated 

that many trunks remain upright after limbs fall to the ground. Branches also fall from 

live trees. While we separated branches from trunks in our study, we did not directly 

measure branchfall because in the field it was frequently difficult to identify whether a 

branch had broken off from a tree before or after a whole tree fell. Ideally, measurements 

of coarse necromass source and pool would determine not just the source (trunk, 

unidentified, and branch), but also the mechanism that produced the coarse necromass 

(sub-lethal disturbance or whole tree death).

Simple Model of Production and Decomposition

The stock of necromass in a forest depends upon both the production and the 

decomposition of dead wood. The production of coarse necromass is an episodic event 

and decomposition of wood is a gradual process. We found it was easier to measure 

necromass production compared to decomposition so we modeled necromass with a 

simple first-order differential equation (Equation 1) in order to estimate size-specific 

rates of decomposition. Stock estimates for necromass at the beginning and end of our 

study indicate only a small and statistically insignificant change in total necromass, 

therefore we believe that our steady-state assumption provides reasonable estimates, 

though the production data show some notable fluctuations, especially in 2004, as 

discussed above.

For comparison with studies at other tropical forest sites, we focus on the necromass 

dynamics of undisturbed old-growth forests (UF). Our finding for the overall necromass
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pool decomposition rate (0.15 y '1), based on the steady state assumption, are similar to 

those found in Chambers et al. (2000, 2001a) and Rice et al. (2004), 0.13 y '1 and 0.12 y '1 

respectively. Chambers et al. (2000, 2001a) estimated decomposition rates for material 

greater than 10 cm diameter, and Rice et al. (2004) based their estimates on work by 

Chambers et al. (2001a). Given the much more rapid decomposition of necromass less 

than 10 cm diameter, the apparent agreement between our study and these others is 

fortuitous. A comparison of our results and those of Chambers et al. (2001a) suggests 

that coarse necromass greater than 10 cm diameter decomposes more rapidly in the forest 

studied at Manaus than at the Tapajos National Forest. This may be a result of the 

moister environment near Manaus or it could also be related to wood properties such as 

density.

Decomposition rates varied from 0.03 to 0.52 y’1 across six life zones in tropical forests 

in Venezuela (Delaney et al. 1998). In a dry tropical forest in Mexico, decomposition 

rates for coarse necromass varied from 0.008 to 0.615 y '1 (Harmon et al. 1995). Wilcke 

et al. (2005) estimated a decomposition rate of 0.09 y '1 in a montane forest in Ecuador. A 

dry tropical forest study by Eaton and Lawrence (2006) yielded decomposition rates for 

large coarse necromass ranging from 0.134 to 0.643 y’1 and decomposition rates from 

0.368 to 0.857 y '1 for small and medium necromass (with a minimum diameter of 1.8 

cm).

We summarize fluxes of coarse necromass in undisturbed forest in Figure 4.2. There is a 

fundamental difference between our measured necromass production (a + b + c’ = 6.7 Mg
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ha"1 y"1) and the estimation of necromass production based on mortality rates (b + c). 

Necromass production from sub-lethal mortality (a) was found to be 3.4 Mg ha"1 y '1 using 

a combination of our measured production of standing dead (c) and coarse necromass 

production from mortality rates (b + c). When we compare the estimate of necromass 

production by a mortality estimate (0.015 y"1) multiplied by the above-ground biomass 

(282 Mg ha"1), we find the resulting value (4.2 Mg ha"1 y"1) is only 55% of the sum of our 

measured annual fallen necromass production (6.7 Mg ha"1 y"1) plus the decomposition of 

standing necromass (0.9 Mg ha"1 y"1).

NPP
woody

1.9 Mg

2.3 Mg

3.4 Mg
ha-1 y-1

Standing
Dead

7 .9  Mg ha"1

Above
ground

biomass

2 8 2  Mg ha-1

Coarse Fallen 
Necromass

4 5 .8  Mg ha-1

Figure 4.2. A compartmental model of measured and estimated coarse necromass components 
where:

a = sub-lethal mortality;
b = fallen mortality that is not a and c;
c = mortality that goes into the standing dead pool;
c’ = standing dead that falls to forest floor (assumed steady state);
ri = decomposition from standing dead;
T2 = decomposition from fallen coarse necromass (assumed steady state);
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Our measurement of coarse necromass production is close to the measurement of woody 

increment in living trees at Tapajos (6.4 Mg ha'1 y '1) found by Rice et al. (2004). The 

woody increment includes growth of branches and trunks based on allometric equations. 

Based on carbon balance from studies near Manaus, Brazil, Malhi et al. (2004) estimated 

that above ground coarse wood production is 6.2 Mg ha'1 y '1.

Based on field measurements, the annual production of necromass pool was 8.5 (1.3) Mg 

ha'1 y '1 in the RIL treatment and 6.7 (0.8) Mg ha'1 y '1 in the undisturbed forest. Using the 

estimate from Chambers et al (2001a) that approximately 80% of necromass 

decomposition is lost to the atmosphere, we estimate carbon dioxide flux from fallen 

coarse necromass to be 3.4 Mg-C ha'1 y '1 for RIL sites and 2.7 Mg-C ha'1 y '1 for UF sites. 

Also we get an estimate of 20% or 1.7 for RIL sites and 1.3 for UF sites leached out of 

necromass or contributing to soil organic matter. When we add 0.3 Mg-C ha'1 y '1 for 

standing dead decomposition, total necromass carbon dioxide flux to the atmosphere is 

equivalent to about 11 to 13% of the gross primary productivity based on a measurement 

of 30 Mg-C ha'1 y '1 by Miller et al. (2004) from the Tapajos National Forest. Coarse 

necromass production is 63% as large as the far more frequently measured fine litter 

production (6.0 Mg-C ha'1 y '1 at Tapajos; Rice et al. (2004)).

Conclusions

RIL selective logging altered the stock of fallen necromass, but not the standing dead 

stock. Compared to the undisturbed forest, we found that RIL also had no significant 

influence on coarse necromass production from the time we started measurement about
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one year following logging. In the undisturbed forest, necromass was equal to 14% of 

the total above ground biomass and accounted for about 13% of the total ecosystem 

respiration. Small diameter necromass (2 to 5 cm) and medium diameter (5 to 10 cm) 

necromass respectively decomposed 4.2 and 3.0 times more rapidly than large (> 10 cm 

diameter) fallen necromass. The small and medium size classes accounted for 30% of the 

fallen necromass created, but only 14% of the total fallen coarse woody debris pools. 

Standing dead necromass accounts for up to 15% of the total necromass. Based on these 

findings, we encourage the inclusion of standing dead and fallen necromass less than 10 

cm diameter in future studies of coarse necromass in tropical forests.

We measured coarse necromass production to be 1.8 times greater than an estimate based 

on measured mortality rate and biomass stocks. Use of tree mortality alone to estimate 

coarse necromass production ignores branchfall, crown damage, and other sub-lethal 

processes and leads to a substantial (45% in our case) underestimate of coarse necromass 

production.. For carbon cycling studies, direct measurement of the production of coarse 

necromass is more comprehensive than the estimation of necromass production from 

mortality statistics.
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CHAPTER V

REVIEW OF COARSE NECROMASS IN TROPICAL FORESTS

Introduction

Necromass, dead organic material, is an important component in the carbon cycle of 

forests accounting for 20-40% of carbon stocks and 12% of the total above ground 

respiration (Harmon and Sexton 1996, Brown 1997, Palace et al. in press). Coarse 

necromass or coarse woody debris (CWD) is defined as large pieces of necromass, 

greater then 2 cm DBH, from tree trunks, vines, and branches (Maser et al. 1979).

Coarse necromass is also important in nutrient cycling and provides habitat for many 

organisms (MacNally et al. 2001; Norden and Paltto 2001). With deforestation and land- 

use change occurring throughout the tropics, improved understanding of these dynamic 

and complex forests and their carbon cycles are vital for the development of regional 

carbon budgets (Nobre et al. 1991, Werth and Avissar 2002, Houghton et al. 2001, 

Davidson and Artaxo 2004). Knowledge of coarse necromass production, decay, and 

stocks prove useful in quantifying carbon dynamics in tropical forests.

The dynamics of necromass production and loss, through disturbance and decay, are 

poorly understood and quantified in tropical forests in regard to biomass estimates and 

leaf litter studies (Martius and Banderia 1998, Eaton and Lawrence 2006). The slow
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process of decomposition is dependent upon the chemical and structural complexity of 

wood as well as the influence of a multitude of organisms involved with decomposition.

Decomposition rates depend upon physical climate properties that vary over time 

(Harmon et al. 1995, Chambers et al. 2000). The production of necromass through the 

death of whole trees or portions of trees is episodic, ranging greatly over temporal and 

spatial scales (Wessman 1992). The ranges in scale makes necromass measurement 

difficult, requiring large plots or long transects to catch rare large tree falls, and long 

periods of study to estimate both necromass production and decomposition (Harmon et 

al. 1986).

In this chapter, we review corase necromass studies conducted in tropical forested 

ecosystems. We define and describe important terms and components in necromass 

research. In conjunction with this discussion, we examined various methodologies 

designed to measure these components and current literature involved with field based 

estimates of necromass. A simple model was developed to examine pool and decay 

estimates throughout these forested regions where literature estimates were unavailable. 

General relationships between coarse necromass components were explored such as 

proportion of coarse necromass to biomass and fallen to standing dead necromass.

Methods

We reviewed peer-reviewed literature that dealt with field measurements of above ground 

coarse necromass stocks, production of dead wood, and decomposition of coarse
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necromass. We gathered sources on necromass, with a focus on tropical forests, through 

library searches, references cited in seminal ecological articles, peer suggestion, Web of 

Science©, a necromass database (compiled by Mark Harmon, OSU, personal 

communication), and an Yahoo© newsgroup focusing on dead wood. We excluded the 

abundant studies focused on fine litter dynamics or soil respiration, although these 

aspects of carbon cycling would be important for comprehensive review and site 

comparison of carbon budgets. This study did not examine remote sensing or modeling 

literature with regard to coarse necromass, although these two approaches may provide 

fruitful means for estimation and understanding of necromass production and cycling.

More than 100 papers were examined for coarse necromass stock, production and decay 

information and field estimated values. Data relevant to tropical forests is presented in 

Table 5.1 and 5.2. Data in Table 5.1 presents measured coarse necromass components 

and information about the site location. Table 5.2 includes site information along with 

measured and estimated values of production and decomposition rates. Methodology was 

included in our database and is presented in Table 5.3. We recorded stocks of necromass, 

production of dead wood, and decomposition rates when available. A few papers did not 

include biomass estimates so we attempted to gather biomass estimates from other papers 

and in some cases we were able to contact authors directly for biomass information 

(personal communications, Simon Grove and Michael Liddell). In each of the following 

three sections, coarse necromass stocks, production of coarse necromass, and 

decomposition of coarse necromass, we review the component, present methodologies, 

and review the literature pertaining to the tropical forests.
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Table 5.1. Reviewed literature for tropical coarse necromass, field measurements of coarse 
necromass, biomass, fallen and standing pools, and production and decomposition rates.

Reference Location typo o f alto UForDF ForootTypo CWD Biomass

(Mg ha-1) (Mg ha-1)
B em hard -R eversa t s t a t . ,  1978 Banco, Ivory C o ast UF U F TRF 3.8 538.3
B em hard -R eversa t e t  a l., 1976 Yapo, Ivory C o ast light d is tu rbance D F TRF 3.6 429 .4

Brown e t al., 1992 Acre, Brazil UF U F TMF 43 .0 320.0
Brown e t al., 1992 Acre, Brazil regrow th forest D F TMF 13.0 95.0
Brown e t al.. 1995 R ondonia, Brazil UF U F TMF 4 0 .0 285.0

B u x to n  1981 T s a v o  N a tio n a l P a rk , K en y a 2 n d -g ro w th  (fire  a n d  e le p h a n ts ) D F D T F 3 .2
C a re y  e t  a l. 1 9 9 4 V enezuela U F U F T M F 3 2 6 .0
C a re y  e t  a l. 1 9 9 4 V enezuela U F U F LM M F 3 9 7 .0

C h am b ers  e t  al., 2000 M anaus. Brazil UF U F LEF 21.0
C lark e t  a l .,2 0 0 2 La Setva, C o s ta  Rica UF U F TRF 52.8 155.6

C o ch ran e  e t al. 1999 Tailandia, P ara , Brazil UF U F TMF 5 3 .0 242.0
C o ch ran e  e t al. 1999 Tailandia, P ara , Brazil first burn D F TMF 5 0 .0 220.0
C o ch ran e  e t al. 1999 Tailandia, P ara , Brazil se c o n d  burn D F TMF 7 1 .0 129.0
C o ch ran e  e ta l .  1999 Tailandia, P ara , Brazil thrid burn D F TMF 1 1 6 .0 47 .0

C o llin s  1981 S o u th e rn  G u in e a  S a v a n n a ,  N ig e ria U F ( s a v a n n a  fire s) D F S a v a n n a 2 .5
D elaney  e ta l . ,  1998 V enezue la UF U F TTW 2.4 13.1
D elaney  e ta l . ,  1998 V enezuela UF U F TDF 4 .8 141.2
D elaney  e ta l . ,  1998 V enezue la UF U F TMDF 6 6 330.0
D elaney  e ta l . ,  1998 V enezue la UF U F TMF 33.3 346.9
D elaney  e ta l . ,  1998 V enezuela UF U F TLMF 42 .3 341.1
D elaney  e ta l . ,  1998 V enezuela UF U F TMF 34.5 325.5

E a to n  a n d  L a w re n c e  2 0 0 6 S o u th e rn  M ex ico M ilpa c le a r e d  for M o n ta n a D F D T F 5 1 .6
E a to n  a n d  L a w re n c e  2 0 0 6 S o u th e rn  M ex ico 2 n d -g ro w th  1 -5 D F D T F 1 9 .9
E a to n  a n d  L a w re n c e  2 0 0 6 S o u th e rn  M ex ico 2 n d -g ro w th  6 -1 2 D F D T F 1 1 .4
E a to n  a n d  L a w re n c e  2 0 0 6 S o u th e rn  M ex ico 2 n d -g ro w th  1 2 -1 6 D F D T F 15 .0
E a to n  a n d  L a w re n c e  2 0 0 6 S o u th e rn  M ex ico M o n ta n a D F D T F 3 7 .5 1 4 7 .0
E d w a rd s  a n d  G ru b b  1 9 7 7 N ew  G u in e a U F U F T M o n F 10 .9 4 9 0 .0

Gerwing, 2002 P aragom inas, Brazil UF UF TMF 55.0 309.0
Gerwing, 2002 P arag o m in as, Brazil m o d e ra te  int. log. D F TMF 76.0 245.0
Gerwing, 2002 P arag o m in as, Brazil high intensity  log. D F TMF 149.0 168.0
Gerwing, 2002 P arag o m in as, Brazil logged  lightly burned D F TMF 101.0 177.0
Gerwing, 2002 P aragom inas, Brazil logged  a n d  heavily burned DF TMF 152.0 50.0

G o lle y e ta l.  1 9 7 3 ,1 9 6 9 Darien, P an am a UF U F TMF 17.6 370.5
Golley e t  al. 1973, 1969 Darien, P an am a UF U F TMF 6.2 263.5
G o lle y e ta l.  1973, 1969 Darien, P an am a UF U F TMF 4.8 271.4
G o lle y e ta l.  1973, 1969 Darien. P an am a UF U F TMF 19.1 176.6
G o lle y e ta l.  1973. 1969 Darien, P an am a UF U F TMF 102.1 279.2

G olley e t al. 1975 D arien. P an am a UF U F TMF 14.6 377.8
Golley e t a l .  1975 D arien, P an am a UF U F Riverine F o rest 4 .9 264.1

G re e n la n d  a n d  K ow al 1 9 6 0 K a d e , G h a n a 2 n d -g ro w th  5 0  y D F M T F 7 1 .8 2 1 3 .7
G re e n la n d  a n d  K ow al 1 9 6 0 Y a n g a m b i, B e lg ian  C o n g o 2 n d -g ro w th  18  y D F M TF 17 .4 1 2 8 .7

G ro v e  2 0 0 1 , b io m a s s  L iddell p e r s o n a l A u s tra lia U F U F T R F 9 .3 2 7 0 .0
G ro v e  2 0 0 1 , b io m a s s  L iddell p e r s o n a l A u s tra lia L o g g e d D F T R F 7 .3
G ro v e  2 0 0 1 , b io m a s s  L iddell p e r s o n a l A u s tra lia reg ro w th  fo re s t D F T R F 5.1

H arm on e ta l . ,  1995 Q uin tana Roo, Mexico m od e ra te  d istur (hurricane) D F TDF 4 8  5 112.0
Harm on e ta l . ,  1995 Q uin tana Roo, Mexico m od e ra te  d istu r (fire) D F TDF 128.2 112.0
H arm on e ta l . ,  1995 Q uin tana Roo, Mexico UF U F TDF 38.0 209.0
Harm on e ta l . ,  1995 Q uin tana Roo, Mexico m od e ra te  d istur (hurricane) D F TDF 60.6 133.0
Harm on e ta l . ,  1995 Q uin tana Roo, Mexico m od e ra te  d istur (fire) D F TDF 122.5 133.0
Harm on e t al., 1995 Q uin tana Roo, M exico heavy  d isturb (hurricane) D F TDF 28.0 94 .0
Harm on e t al., 1995 Q uin tana Roo, Mexico heavy  d isturb  (fire) D F TDF 118.6 94 .0

H u g h e s  e t  al. 2 0 0 0 T u x tla s , M ex ico U F U F T E F 1 4 .0 3 8 2 .5
Kauffm an e ta l . ,  1988 Rio N egro, V enezue la UF U F TRF 1.6 1 1 4
Kauffm an e ta l . ,  1968 Rio N egro, V enezue la UF U F TRF 5.3 38 .7
Kauffm an e ta l . ,  1968 Rio N egro, V enezue la UF U F TRF 42.4 20 .6
Kauffm an e ta l . ,  1968 Rio N egro, V enezue la UF U F TRF 12.9 51.1
Kauffm an e ta l . ,  1988 Rio N egro, V enezue la d isturbed D F TRF 48.5 47 .5
Kauffm an e t al., 1968 Rio N egro, V enezue la d isturbed D F TRF 26.9 80.1
Kauffm an e t al., 1988 Rio N egro, V enezue la UF U F TRF 14.4 238.6

K a u ffm a n  e t  a l., 1 9 9 3 S e r r a  T a th a d a ,  P e rn a m b u c o ,  B razil 2 n d -g ro w th  p re -fire D F T D F 7 2 .0
K a u ffm a n  e t  a l., 1 9 9 3 S e r r a  T a lh a d a ,  P e rn a m b u c o ,  B razil 2 n d -g ro w th  p re -p o s t D F T D F 7 2 .0

Keller e t  al.. 2004 , A sn e r e t  al. 2002 Cauaxi, Brazil UF U F TMF 6 6 .2 203.0
Keller e t al., 2004 , A sner e t  al. 2002 Cauaxi, Brazil RIL D F TMF 6 9 .6 203.0
Keller e t  al., 2004, A sner e t  al. 2002 Cauaxi, Brazil CL D F TMF 1 2 9 .4 203.0
Keller e ta l . ,  2004 , Keller e ta l .  2001 T apajos, Brazil UF U F TMF 6 0 .8 262.0
Keller e ta l . ,  2004 , Keller e t  al. 2001 T apajos, Brazil RIL D F TMF 9 1 .4 2 8 2 0
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Table 5.1 (continued).
R eferen ce Fallen CWD S tan d in g  D ead C rea tio n  A m ount

(Mg ha-1)__________ (Mg ha-1)_____(Mg ha-1 y-1)

k

(Y-1)
B e rn h a rd -R e v e rs a te ta t ,  1978
B ern h ard -R ev ersa t e t  al., 1978

Brown e t  al., 1992
Brown e t  al., 1992
Brown e ta l . ,  1995

B u x to n  1981 0 .31 0 .0 7
C a r e y  e t  a l. 1 9 9 4 8 .8 0
C a r e y  e t  a l. 1 9 9 4 9 .5 3

C h am b ers  e t al., 2000 4 .20 0.17
Clark e t al., 2002 46.3 6.5 4 .90 0.09

C o ch ran e  e t al. 1999
C o ch ran e  e ta l .  1999
C o ch ran e  e t al. 1999
C o ch ran e  e t al. 1999

C o llin s  1981 1 .4 1.1 1 .2 7 0 .51
D elaney  e t al., 1998 1 .0 1.4 0 .06
D elaney e t a l., 1998 1 .9 2.9 0 .20
D elaney e t al., 1998 3 .8 2.8 0 .52
D elaney e t al., 1998 1 8 .5 14.8 0.03
D elaney e ta l . ,  1998 2 1 .0 21.3 0.13
D elaney e t a t ,  1998 8 .2 26.3 0.11

E a to n  a n d  L a w re n c e  2 0 0 6 5 1 .6 0 .3 8
E a to n  a n d  L a w re n c e  2 0 0 6 1 9 .9 0 .11 0 .3 8
E a to n  a n d  L a w re n c e  2 0 0 6 1 1 .4 0 .11 0 .3 8
E a to n  a n d  L a w re n c e  2 0 0 6 1 5 .0 0 .11 0 .3 8
E a to n  a n d  L a w re n c e  2 0 0 6 3 7 .5 0 .91 0 .3 8
E d w a rd s  a n d  G ru b b  1 9 7 7

G erwing, 2002 33.0 22.0
G erwing, 2002 68.0 8.0
G erwing, 2002 140.0 9.0
Gerwing, 2002 70.0 31.0
G erwing, 2002 128.0 24.0

Golley e t al. 1973, 1969
G o lle y e ta l .  1973, 1969
G o lle y e ta l .  1973, 1969
G o lle y e ta l .  1973, 1969
G o lle y e ta l .  1973, 1969

Golley e t  al. 1975
G o lle y e ta l .  1975

G re e n la n d  a n d  K ow al 1 9 6 0
G re e n la n d  a n d  K ow al 1 9 6 0

G ro v e  2 0 0 1 , b io m a s s  Liddell p e r s o n a l
G ro v e  2 0 0 1 , b io m a s s  Liddell p e r s o n a l
G ro v e  2 0 0 1 , b io m a s s  Liddell p e r s o n a l

H arm on e t  a t ,  1995 45.7 2.8
H arm on e t  a t ,  1995 72.4 55.8
H arm on e t a t ,  1995 24.8 13.2
H arm on e t a t ,  1995 47.3 13.5
H arm on e t  a t ,  1995 1.6 120.9
H arm on e t  a t ,  1995 21.2 6.8
H arm on e ta l . ,  1995 25.8 92.8
H u g h e s  e t  a t  2 0 0 0 1 4 .0
Kauffm an e t a t ,  1988
Kauffm an e t a t ,  1988
Kauffm an e t a t ,  1988
Kauffm an e t  a t ,  1988
K auffm an e t  a t ,  1988
Kauffm an e t  a t ,  1988
Kauffm an e t a t ,  1988

K a u ffm a n  e t  a t ,  1 9 9 3 63 .1
K a u ffm a n  e t  a t ,  1 9 9 3 1 1 .9

Keller e t a t ,  2004 , A sn e r e t a t  2002 55.2
Keller e t a t ,  2004 , A sn e r e t  a t  2002 74.7
Keller e t a t .  2004, A sn e r e t  a t  2002 107.8
Keller e t a t ,  2004, Keller e t  a t  2001 50.7
Keller e t a t ,  2004, Keller e t  a t  2001 76.2
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Table 5.1 (continued).
Reference Location

Kira, 1978 
Kira, 1978 
Kira, 1978 

Klinge 1973  
Lang and  K night 1979  
Lang and  K night 1983  

M artius 1997  
Martius and Bandeira 1998 

N asc im en to  a n d  L a u re n c e  200 2  
P a lac e  e t  al. in p re s s  
P a la c e  e t  al. in p re s s  

P a la c e  e t al. in p ress, K eller e t  al. 2001 , 2004  
P a la c e  e t al. in p re s s , K eller e t  al. 2001 , 2004  

Rice e t al., 2003 
Rice e t al., 2003 

R oberston  a n d  D aniel 1989 
R oberston  a n d  D aniel 1989  

Scott e ta l .  1992 
Summ ers, 1998 

Tanner, 1980 
Tanner, 1980 

Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990

Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988
Uhl e t al. 1988

Wilcke et al. 2005 
Yoda & Kira, 1982

Pasoh Forest, W est Malaysia 
Pasoh Forest, W est Malaysia 
Pasoh Forest, W est Malaysia 

C en tra l A m azo n , Brazil 
B arro  C o lo rado , P a n a m a  

P a n a m a  
C en tra l A m azo n , Brazil 

R eserva Ducke, M anaus, Brazil 
M au a u s , Brazil 

J u ru e n a , M ato  G ro s so , Brazil 
J u ru e n a , M ato  G ro s so , Brazil 

Tapajos, Brazil 
Tapajos, Brazil 
Tapajos, Brazil 
Tapajos, Brazil 

A ustra lia  
A ustra lia  

Roraima, Brazil 
Central Amazon, Brazil 

Jam aica  (a)
Jam aica  (b)

Vitoria Ranch,Paragom inas,Brazil 
Vitoria Ranch,Paragom inas,Brazil 
Vitoria Ranch,Paragom inas,Brazil 
Vitoria Ranch,Paragom inas,Brazil 

Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 
Paragom inas, Brazil 

E c u a d o ria n  A n d e s , E c u a d o r 
_____________Malaysia____________

ko

type of site  UForDF Forest Type CWD
(Mg ha-1)

UF UF TRF 50.9
UF UF TRF
UF UF TRF
U F UF T R F 18.0
U F UF T R F

2 n d -g ro w th  6 0  y DF TM F
U F UF V a rz ea  F o re s t 11.4
UF UF TMF 9.5
UF UF TMF 30 .95
RIL DF TMF 6 7 .0
U F UF TMF 4 4 .9
RIL DF TMF 72 .6
UF UF TMF 50.7
UF UF TMF 70.0
UF UF TRF 99.6
U F UF Y oung M an g ro v e 1.8
UF UF Old M an g ro v e 14 .3
UF UF LEF 5.1

DF TMF 88.8
UF UF DTF 7.6
UF UF DTF 12.0

pastu re DF TMF 4 0 .0
UF UF TMF 51 .0

logged forest DF TMF 173 .0
2nd-growth for DF TMF 2 3 .0

UF UF TMF 41.9
light/young DF TMF 78.3

light/old DF TMF 87.8
light/old DF TMF 49.9

m oderate/young DF TMF 16.3
m oderate/young DF TMF 21.6
m oderate/young DF TMF 47.4
m oderate/young DF TMF 11.2

m oderate/old DF TMF 20.3
m oderate/old DF TMF 20.4
heavy/young DF TMF 10.4
heavy/young DF TMF 8.6

heavy/old DF TMF 5.7
UF UF TMF 35.6
UF UF TMF 48.1
U F UF T M onF 9.1

DF TRF 46.7

B iom ass 
(Mg ha-1)

421.3
374.2
379.8
7 3 1 .7

3 56 .2
2 6 3 .0
2 8 1 .0  
282.0 
282.0
298.1
298.1
3 8 7 .0
4 6 5 .0

231.0
338.0

250.0

28.0 
300.0
29.4 
86.1 
88.9
5.8 
8.3
16.8
17.0
37.0 
32.8
7.6
15.5
4.7

327.6
284.7



Table 5.1 (continued).
R eferen ce  Fallen  CWD S ta n d in g  D ead  C rea tio n  A m oun t k

(Mg ha-1) (Mg ha-1) (Mg ha-1 y-1) (y-1)
Kira, 1978 3 .30  0 .30
Kira, 1978 
Kira, 1978

K linge 1 9 7 3  1 8 .0
L a n g  a n d  K nigh t 1 9 7 9  0 .4 6
L a n g  a n d  K n igh t 1 9 8 3

M artiu s  1 9 9 7  6 .0 0  0 .3 3
M artius and  B andeira  1998 9.5

N a s c im e n to  a n d  L a u re n c e  2 0 0 2  2 4 .8 1  6 .1 4
P a la c e  e t  al. in p r e s s  6 7 .0  8 .8
P a la c e  e t  a l. in p r e s s  4 4 .9  5 .3

P a la c e  e t  a l. in p r e s s ,  K e lle r e t  al. 2 0 0 1 , 2 0 0 4  7 2 .6  1 2 .9
P a la c e  e t  a l. in p r e s s ,  K e lle r e t  a l. 2 0 0 1 , 2 0 0 4  5 0 .7  7 .7

R ice e ta l . ,  20 0 3  5 .00  0 .17
Rice e ta l . ,  2003  5 .00  0.12

R o b e r s to n  a n d  D a n ie l 1 9 8 9  1 .0  0 .8  0 .1 0  0 .0 6
R o b e r s to n  a n d  D a n ie l 1 9 8 9  4 .8  9 .4  0 .9 7  2 .0 0

S co tt e t a l .  1992 4.1 1.0
S um m ers, 1998

T anner, 1980 2 .00  0 .26
T anner, 1980 2 .00  0 .17

an d  Uhl 1990 51.5
an d  Uhl 1990 55.6
an d  Uhl 1990 178.8
an d  Uhl 1990 27.7

Uhl e ta l . , 1988
Uhl e ta l . , 1988
Uhl e ta l . , 1988
Uhl e ta l . , 1988
Uhl e ta l ., 1988
Uhl e ta l . , 1988
Uhl e ta l ., 1988
Uhl e ta l . , 1988
Uhl e ta l . , 1988
Uhl e t al., 1988
Uhl e t al., 1988
Uhl e ta l . , 1988
Uhl e t al., 1988
Uhl e ta l . , 1988
Uhl e ta l . , 1988

W ilc k e  e t  a l. 2 0 0 5
Y oda & Kira, 1982

7 .6  1 .5  0 .8 2  0 .0 9
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Table 5.2. Reviewed literature for tropical coarse necromass, coarse necromass to
biomass ratio, field measurements of production and decomposition rates compared with
estimate production and decomposition rates.

Reference Location type of site UF or DF Forest Type Necro/Bio Creation
Measured

(Mg ha-1 y-1)

k
Measure

(Y-1)
Bemhard-Reversat et al., 1978 Banco, Ivory Coast UF UF TRP 0.01
Bemhard-Reversat et al., 1976 Yapo, Ivory Coast light disturbance DF TRF 0.01

Brown e ta l., 1992 Acre, Brazil UF UF TMF 0.13
Brown e ta l., 1992 Acre, Brazil regrowth forest DF TMF 0.14
Brown e ta l., 1995 Rondonia, Brazil UF UF TMF 0.14

Buxton 1981 T sav o  N ational Park, Kenya 2nd-grow th (fire a n d  e lephants] DF DTF 0.31 0.07
C arey  e t a l .  1994 Venezuela UF UF TMF 0.00 6.80
C arey  e t a l .  1994 Venezuela UF UF LMMF 0.00 9.53

Chambers et al., 2000 Manaus, Brazil UF UF LEF 4.20 0.17
Clark e t a t ,  2002 La Selva. Costa Rica UF UF TRF 0.34 4.90 0.09

Cochrane et al. 1999 Tailandia, Para, Brazil UF UF TMF 0.22
Cochrane et a t  1999 Tailandia, Para, Brazil first burn DF TMF 0.23
Cochrane e t al. 1999 Tailandia, Para, Brazil second burn DF TMF 0.55
Cochrane e ta l.  1999 Tailandia, Para, Brazil thrid bum DF TMF 2.47

Collins 1981 Sou thern  G uinea  S av an n a , Nigeria UF (sa v a n n a  fires) DF S av an n a 1.27 0.51
Delaney e t a t ,  1998 Venezuela UF UF TTW 0.18 0.06
Delaney e ta l., 1998 Venezuela UF UF TDF 0.03 0.20
Delaney e ta l.,  1998 Venezuela UF UF TMDF 0.02 0.52
O elan ey e ta f, 1998 Venezuela UF UF TMF 0.10 0.03
Delaney e ta l., 1998 Venezuela UF UF TLMF 0.12 0.13
Delaney et a t ,  1998 Venezuela UF UF TMF 0.11 0.11

Eaton  and  L aurence  2006 Sou thern  Mexico Milpa c leared  for M ontana DF DTF 0.11 0.38
Eaton  a n d  L au ren ce  2 006 Sou thern  Mexico 2nd-grow th 1-5 DF DTF 0.11 0.38
Eaton  and  L au ren ce  2 006 Sou thern  Mexico 2nd-grow th 6 -12 DF DTF 0.11 0.38
Eaton  a n d  L aurence  2006 Sou thern  Mexico 2nd-grow th 12-16 DF DTF 0 25 0 91 0 38

L aurence  2 006, b io m ass  from R ead  a n d  Lawt Sou thern  Mexico M ontana DF DTF 0.38
E dw ards a n d  G rubb 1977 N ew  G uinea UF UF TM onF 0.02

Gerwing, 2002 Paragominas, Brazil UF UF TMF 0.18
Gerwing, 2002 Paragominas, Brazil moderate int. log. DF TMF 0.31
Gerwing, 2002 Paragominas, Brazil high intensity log. DF TMF 0.89
Gerwing, 2002 Paragominas, Brazil logged lightly burned OF TMF 0.57
Gerwing, 2002 Paragominas, Brazil logged and heavily burned DF TMF 3.04

G olleyetal. 1973, 1969 Darien, Panama UF UF TMF 0.05
Golley e ta l.  1973, 1969 Darien, Panama UF UF TMF 0.02
G olleyetal. 1973, 1969 Darien, Panama UF UF TMF 0.02
G olleyetal. 1973, 1969 Darien, Panama UF UF TMF 0.11
G olleyetal. 1973,1969 Darien, Panama UF UF TMF 0.37

Golley et al. 1975 Darien, Panama UF UF TMF 0.04
G olleyetal. 1975 Darien, Panama UF UF Riverine Forest 0.02

G reen land  a n d  Kowal 1960 Kade, G hana 2nd-grow th 50 y DF MTF 0.34
G reenland  a n d  Kowal 1960 Y angam bi, Belgian C ongo 2nd-grow th 18 y DF MTF 0.14

G rove 2 001, b io m ass  Liddell persona l A ustralia UF UF TRF 0.03
G rove 2 001, b io m ass  Liddell persona l A ustralia Logged DF TRF
G rove 2 001, b io m ass  Liddell persona l A ustralia regrow th fo rest DF TRF

Harmon et a t ,  1995 Quintana Roo. Mexico m oderate distur (hurricane) DF TDF 0.43
Harmon e ta l., 1995 Quintana Roo, Mexico moderate distur (fire) DF TDF 1.14
Harmon et a t ,  1995 Quintana Roo, Mexico UF UF TDF 0.18
H arm onetal., 1995 Quintana Roo. Mexico m oderate distur (hurricane) DF TDF 0.46
H a rm o n e ta t, 1995 Quintana Roo. Mexico moderate distur (fire) DF TOF 0.92
Harmon e t a t ,  1995 Quintana Roo. Mexico heavy disturb (hurricane) DF TDF 0.30
H arm o n e ta t,  1995 Quintana Roo, Mexico heavy disturb (fire) DF TDF 1.26
H u g h es e t  al. 2000 Tuxtias, M exico UF UF TEF 0.04
Kauffman e t a t ,  1988 Rio Negro. V enezuela UF UF TRF 0.14
Kauffman e t a t ,  1988 Rio Negro. V enezuela UF UF TRF 0.14
Kauffman et a t ,  1988 Rio Negro, V enezuela UF UF TRF 2.06
Kauffman e t a t .  1988 Rio Negro. V enezuela UF UF TRF 0.25
Kauffman et a t ,  1988 Rio Negro, V enezuela disturbed DF TRF 1.02
Kauffman e t a t ,  1988 Rio Negro. V enezuela disturbed DF TRF 0.34
KaufTm anetat, 1988 Rio Negro. V enezuela UF UF TRF 0.06

Kauffman e ta l . ,  1993 S e rra  T alhada , P ernam buco , Brazil 2nd-grow th pre-fire DF TOF 0.00
Kauffman e ta l . ,  1993 S e rra  T alhada , P ernam buco , Brazil 2nd-grow th p re-post DF TDF 0.00

KeHer et a t .  2004, Asner et a t  2002 Cauaxi, Brazil UF UF TMF 0.33
Keller et a t .  2004, Asner et al. 2002 Cauaxi, Brazil RIL DF TMF 0.44
Keller et a t .  2004, Asner et al. 2002 Cauaxi, Brazil CL DF TMF 0.64
Keller et a t .  2004, Keller et a t  2001 Tapajos. Brazil UF UF TMF 0.22
Keller et a t .  2004, Keller et a t  2001 Tapajos, Brazil RIL DF TMF 0.32
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Table 5.2 (continued).
R e f e r e n c e C re a t io n  E s t im a te d  

(b io m a s s  * 0 .02 ) 
(M g ha-1  y-1)

k
E s t im a te d  ( b io m a s s )

(y-1)
C re a t io n  E s t im a te d  
( n e c r o m a s s  * 0 .15 ) 

(M g ha-1  y-1)
B ernhard-R eversat e t al., 1978 10 .77 2 .83 0.57
Bernhard-Reversat e t al., 1978 8 .5 9 2 .39 0.54

Brown e t al., 1992 6 .4 0 0 .15 6.45
Brown e t al., 1992 1 .90 0 .15 1.95
Brown e t al., 1995 5 .70 0 .14 6.00

B uxton 1981 0.48
C arey  e t  al. 1994 6 .5 2
C arey  e t a l .  1994 7 .9 4

C ham bers e t al., 2000 3.15
Clark e ta l .,  2002 3 .12 0 .06 7.92

C ochrane e t al. 1999 4 .8 4 0 .09 7.95
C ochrane e t al. 1999 4 .4 0 0.09 7.50
C ochrane e t al. 1999 2 .5 8 0 .04 10.65
C ochrane e t al. 1999 0 .94 0.01 17.40

C ollins 1981 0.37
Delaney et al., 1998 0 .26 0.11 0.36
Delaney et al., 1998 2 .8 2 0 .59 0.72
Delaney et al., 1998 6 .6 0 1.00 0.99
Delaney et al., 1998 6 .9 4 0.21 5.00
Delaney et al., 1998 6 .8 2 0.16 6.35
Delaney et al., 1998 6.51 0.19 5.18

E a to n  a n d  L a u re n c e  200 6 7.74
E a to n  a n d  L a u re n c e  200 6 2.98
E a to n  a n d  L a u re n c e  2 0 0 6 1.71
E a to n  a n d  L a u re n c e  2 0 0 6 2 .9 4 0 .08 2.25

L a u ren ce  2 0 0 6 , b io m a s s  from  R e a d  a n d  Lawr 5.62
E d w ard s  a n d  G ru b b  1977 9 .80 0 .90 1.64

Gerwing, 2002 6 .1 8 0.11 8.25
Gerwing, 2002 4 .9 0 0 .06 11.40
Gerwing, 2002 3 .36 0 .02 22.35
Gerwing, 2002 3 .54 0 .04 15.15
Gerwing, 2002 1.00 0.01 22.80

G o lley e ta l. 1973, 1969 7.41 0.42 2.64
G o lley e ta l. 1973, 1969 5 .27 0 .85 0.93
G o lley e ta l. 1973, 1969 5 .43 1.13 0.72
G o lley e ta l. 1973, 1969 3 .53 0 .18 2.87
G o lley e ta l. 1973, 1969 5 .58 0.05 15.32

Golley e t al. 1975 7 .56 0 .52 2.19
Golley e t al. 1975 5 .68 1.16 0.74

G re e n lan d  a n d  Kowal 1960 4 .2 7 0 .06 10.77
G re e n lan d  a n d  Kowal 1960 2 .57 0 .15 2.61

G ro v e  2 0 0 1 , b io m a s s  Liddell p e rso n a l 5 .40 0 .58 1.40
G rove  2 0 0 1 , b io m a s s  Liddell p e rso n a l 1.09
G rove  2 0 0 1 , b io m a s s  Liddell p e rso n a l 0.76

Harmon e t al., 1995 2 .2 4 0 .05 7.28
Harmon e t al., 1995 2 .2 4 0 .02 19.23
Harmon e t al., 1995 4 .1 8 0.11 5.70
Harmon e t al., 1995 2 .66 0 .04 9.12
Harmon e t al., 1995 2 .6 6 0 .02 18.38
Harmon e t al., 1995 1 .88 0 .07 4.20
Harmon e t al., 1995 1 .88 0 .02 17.79
H u g h e s  e t  al. 2 0 0 0 7 .6 5 0 .55 2.10
Kauffman e t al., 1988 0 .2 3 0 .14 0.24
Kauffman e t al., 1988 0 .77 0 .15 0.80
Kauffman e t al., 1988 0.41 0.01 6.36
Kauffman e t al., 1988 1.02 0 .08 1.94
Kauffman e t al., 1988 0 .95 0 .02 7.28
Kauffman et al., 1988 1.60 0 .06 4.04
Kauffman et al., 1988 4 .7 7 0 .33 2.16

K auffm an e t  al., 1993 1.44
K auffm an e t  al., 1993 1.44

Keller e t al., 2004, A sner e t al. 2002 4 .0 6 0 .06 9.94
Keller e t al., 2004, A sner e t al. 2002 4 .0 6 0 .05 13.45
Keller e t al., 2004, A sner e t al. 2002 4 .0 6 0 .03 19.40
Keller e t al., 2004, Keller e t al. 2001 5 .64 0 .09 9.13
Keller e t al., 2004, Keller e t al. 2001 5 .64 0 .06 13.72
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Table 5.2 (continued).

Reference Location

Kira, 1978 
Kira, 1978 
Kira, 1978 

Klinge 1973 
Lang and Knight 1979 
Lang and Knight 1983 

Martius 1997 
Martius and Bandeira 1998 

Nascim ento and Laurence 2002 
Palace et al. in review 
Palace e ta l. in review 

P alace e t al. in review, Keller et al. 2001, 2004 
Palace e t al. in review, Keller e t al. 2001, 2004 

Riceet al., 2004 
Riceet al., 2004 

Roberston and Daniel 1989 
Roberston and Daniel 1989 

Scott etal. 1992 
Summers, 1998 

Tanner, 1980 
Tanner, 1980 

Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 
Uhl & Kauffman, 1990, Kauffman and Uhl 1990

Pasoh Forest, West Malaysia 
Pasoh Forest, West Malaysia 
Pasoh Forest, West Malaysia 

Central Amazon, Brazil 
Barro Colorado, Panam a 

Panam a 
Central Amazon, Brazil 

Reserva Ducke, Manaus, Brazil 
M auaus, Brazil 

Juruena, Mato G rosso, Brazil 
Juruena, Mato G rosso, Brazil 

Tapajos, Brazil 
Tapajos, Brazil 
Tapajos, Brazil 
Tapajos, Brazil 

Australia 
Australia 

Roraima, Brazil 
Central Amazon, Brazil 

Jamaica (a)
Jamaica (b)

Vitoria Ranch,Paragominas,Brazil 
Vitoria Ranch,Paragominas,Brazil 
Vitoria Ranch,Paragominas,Brazil 
Vitoria Ranch,Paragominas,Brazil

Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil
Uhl etal., 1988 Paragominas, Brazil

Wilcke e t al. 2005 Ecuadorian A ndes, Ecuador
Yoda & Kira, 1982 Malaysia

v©

type of site UForDF Forest Type Necro/Bio reation Measure Measured 
_____________________________________ (Mg ha-1 y-1) (y-1)

UF UF TRF 0.12 3.30 0.30
UF UF TRF 0.00
UF UF TRF 0.00
UF UF TRF 0.02
UF UF TRF 0.46

2nd-growth 60 y DF TMF
UF UF V arzea Forest 6.00 0.33
UF UF TMF
UF UF TMF 0.09
RIL DF TMF 0.29
UF UF TMF 0.18
RIL DF TMF 0.30
UF UF TMF 0.21
UF UF TMF 0.23 5.00 0.17
UF UF TRF 0.33 5.00 0.12
UF UF Young M angrove 0.00 0.10 0.06
UF UF Old M angrove 0.03 0.97 2.00
UF UF LEF

DF TMF
UF UF DTF 0.03 2.00 0.26
UF UF DTF 0.04 2.00 0.17

pasture DF TMF
UF UF TMF 0.20

logged forest DF TMF
2nd-growth for DF TMF 0.82

UF UF TMF 0.14
light/young DF TMF 2.66

light/old DF TMF 1.02
light/old DF TMF 0.56

moderate/young DF TMF 2.81
moderate/young DF TMF 2.60
moderate/young DF TMF 2.82
moderate/young DF TMF 0.66

moderate/old DF TMF 0.55
moderate/old DF TMF 0.62
heavy/young DF TMF 1.37
heavy/young DF TMF 0.55

heavy/old DF TMF 1.21
UF UF TMF 0.11
UF UF TMF 0.17
UF UF TMonF 0.82 0.09

DF TRF



Table 5.2 (continued).

R e f e r e n c e ( b io m a s s  * 0 .02 ) 
(M g ha-1  y-1)

E s t im a te d  ( b io m a s s )
(y-1)

( n e c r o m a s s  * 
(M g ha-1

Kira, 1978 8 .4 3 0 .17 7.64
Kira, 1978 7 .48
Kira, 1978 7 .60

Klinge 1973 14 .63 0.81 2.70
Lang a n d  Knight 1979
Lang  a n d  Knight 1983

M artius 1997 1.71
Martius and Bandeira 1998 1.43

N a sc im en to  a n d  L a u re n c e  20 0 2 7 .1 2 4 0 .2 3 0 1 7 7 7 0 6 4 .6 4
P a la c e  e t  al. in review 5.26 0.07 10.05
P a la c e  e t  al. in review 5.62 0.11 6.74

P a la c e  e t  al. in review , Keller e t  al. 2 0 0 1 , 2004 5 .64 0.07 10.89
P a la c e  e t  al. in review , Keller e t  al. 2 0 0 1 , 2004 5 .64 0 .10 7.61

Rice e t al., 2004 5 .96 0 .09 10.50
Rice e t al., 2004 5 .96 0 .06 14.94

R o b e rs to n  a n d  D aniel 1989 7 .7 4 4 .2 7 0.27
R o b e rs to n  a n d  D aniel 1989 9.30 0 .65 2.14

Scott e t al. 1992 0.76
Sum m ers, 1998 13.32

Tanner, 1980 4 .6 2 0.61 1.14
Tanner, 1980 6 .76 0 .56 1.80

Uhl & Kauffman, 1990, Kauffman and Uhl 1990 6.00
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 5 .00 0 .10 7.65
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 25.95
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 0 .56 0 .02 3.45

Uhl e ta l.,  1988 6 .0 0 0 .14 6.28
Uhl e ta l.,  1988 0 .5 9 0.01 11.75
Uhl e ta l.,  1988 1.72 0.02 13.17
Uhl e t al., 1988 1.78 0.04 7.49
Uhl e ta l.,  1988 0 .1 2 0.01 2.45
Uhl e ta l.,  1988 0 .17 0.01 3.24
Uhl e t al., 1988 0 .3 4 0.01 7.11
Uhl e t al., 1988 0 .34 0.03 1.68
Uhl e t al.. 1988 0 .74 0.04 3.05
Uhl e ta l.,  1988 0 .6 6 0.03 3.06
Uhl e ta l.,  1988 0 .1 5 0.01 1.56
Uhl e ta l.,  1988 0.31 0.04 1.29
Uhl e ta l.,  1988 0 .0 9 0.02 0.86
Uhl e ta l.,  1988 6 .5 5 0.18 5.34
Uhl e ta l.,  1988 5 .69 0.12 7.22

W ilcke e t  al. 200 5 1.37
Yoda & Kira, 1982 7.01
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Table 5.3. Literature reviewed with methods presented.

Reference Method Coarse Woody Debris Size Classes Standing Dead Size Cutoff Density or decay class density
Brown et al. 1995 LIS > 10 cm > 10 cm Yes
Buxton 1981 Plot m easured  all W eighed Dead Wood
C ham bers e t al. 2000 Plot 10-20 cm, 20 - 50 cm, > 50 cm Yes
Clark et al.. 2002 Plot >10 cm > 10 cm Yes
Collins 1981 Plot < 2 cm, > 2 cm > 5 cm W eighed Dead Wood
Delaney e ta l. 1998 LIS 2.5 - 4.99 cm, 5 - 9.99 cm, 10 - 29.9 cm, 30 - 49.9 cm, > 50 cm > 10 cm Yes
Eaton and Lawrence 2006 Plot 1 .8 -1 0  cm, > 10 cm Yes
Edwards and Grubb 1977 Plot m easured  all m easured  all W eighed Dead Wood
Gerwing 2002 LIS > 10 cm Yes
Golley et al. 1975 Plot m easured  all W eighed Dead Wood
Greenland and Kowal 1960 Plot m easured  all m easured all W eighed Dead Wood
Grove 2001 Plot LIS > 7 .5 > 7 .5 Yes
Hannon et al. 1995 Plot < 10cm, > 10cm Yes
Hughes et al. 2000 LIS 2.45 - 7.6 cm , > 7.6 cm > 10 cm Yes
Kauffman e t al. 1993 LIS 0.6-2.5 cm, 2.5-7 6 cm, > 7.6 cm No
Keller e t al. 2004 LIS 2 - 4.99 cm, 5 - 9.99 cm, > 10 cm Yes
Kira 1978 Plot >10 cm Yes
Martius 1997, Martius 1980 Plot >10 cm No
Martius and Bandeira 1998 Plot 1 -3 cm, > 3 cm Yes
Nascimento and Laurence 2002 Plot LIS 2 5-9.9, gt 10 Yes
Palace e t al. in press Plot LIS 2 - 4.99 cm, 5 - 9.99 cm, > 10 cm > 10 cm Yes
Rice e t al. 2004 Plot LIS 2 - 1 0  cm ,10 - 30 cm, > 3 0  cm > 10 cm Yes
Roberston and Daniel 1989 Plot m easured  all m easured  all Yes
Scott e t al. 1992 Plot 2 - 4.99 cm, 5 - 9.99 cm, > 10 cm, palm fragm ents > 5 cm Yes
Uhl & Kauffman, 1990, Kauffman and Uhl 1990 LIS < 0.64 cm, 0.65 - 2.54 cm, 2.55 - 7.6 cm, > 7.6cm
Uhl e ta l. 1988 Plot >10 cm
Wilcke e t al. 2005 Plot >10 cm, length limits Yes
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Coarse Necromass Stocks

Necromass stocks aboveground include fine litter and coarse necromass where coarse 

necromass has generally been defined as necromass with a diameter greater than 2 cm 

(Harmon et al. 1986). Coarse necromass is often divided into two categories: (1) fallen 

or downed necromass and (2) standing dead wood (snags) (Harmon et al., 1986). Similar 

stocks for coarse and fine material are found below ground. Below ground necromass is 

not treated in this review. The diameter of coarse necromass and the degree of 

decomposition (decay class) have been used to further refine coarse necromass categories 

(Harmon etal. 1986).

Measurement of fallen coarse necromass is done primarily by one of two methods, line 

intercept or plot sampling (Harmon et al. 1986). Another method, relascope sampling 

(Gove et al. 2002) has not been used in tropical field studies and is not discussed here. 

Line intercept sampling (also termed planar intercept sampling) uses a straight line where 

all pieces of coarse necromass that intersect a two dimensional plane defined by the line 

and perpendicular to the earth’s gravity. Volume (V) (m3 ha'1) of CWD for an individual 

transect is calculated using the following equation:

V  =  7t2 S ( d n ) 2

(8 * L)

where dn is the diameter of a piece of necromass at the line intercept and L is the length 

of the transect used in sampling (De Vries, 1986).
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In plot based sampling a fixed area is identified and all pieces of CWD are measured in 

that area. Plot measurements of coarse necromass often require more work, but retain 

spatial information that can be compared with other biometric or other environmental 

variables. Plot estimates of fallen and standing dead coarse necromass use a variety of 

methods to estimate volume. These include the assumption that a piece of necromass is a 

cylinder or frustum, or using multiple measurements along the length of the log to 

calculate volume. Taper functions have also been used to calculate the volume of fallen 

and standing dead (Rice et al. 2004; Palace et al. in press).

Some studies divide fallen coarse necromass has been divided into diameter size classes. 

Depending on the sampling methodology, diameter can have different meanings. In line 

intercept sampling, the fallen necromass diameter is only measured at the point in which 

the two-dimensional plane is intersected by the piece of necromass (Brown 1974). If the 

necromass curves back across the plan it is measured again (De Vries 1986). For plot 

level sampling, diameter often refers to the average diameter of the entire log, along 

which multiple diameters have been measured (Harmon et al. 1986). In order to save 

time and effort, small diameter fallen coarse necromass is often grouped into a range of 

diameters, tallied, and a median diameter is used in calculations (Brown 1974, Keller et 

al. 2004a). Many studies have used a diameter of 2 cm as a low-end cutoff for sampling, 

although there are a few exceptions (Table 5.4).

Plot and line intercept sampling provide measurements of volume, except when all pieces
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of necromass are weighed in a plot. Five studies in our review, all published prior to 

1980, weighed all pieces of necromass (Table 5.1). In order to quantify coarse necromass 

from volume estimates, measurements of the densities of necromass pieces are required. 

More highly decayed logs theoretically should have less mass (Harmon et al. 1995). A 

common approach to quantification of coarse necromass is the stratification of necromass 

into decay classes and the application of decay-class-wide densities to the volume 

quantified by decay class. Other approaches to the estimation of necromass density 

include application of average density of live trees (Gerwig 2002, Nascimento and 

Laurence 2002), application of guesses (Gerwing 2002), and use of values from other 

sites (Rice et al. 2004). One study did not mention how mass was derived from volume 

estimates (Uhl and Kauffman 1990). Another used measured values for classes of coarse 

necromass, such as trunks, prop roots, branches, and twigs (Roberston and Daniel 1989)

Decay classes are easily determined by the data collector and allow for a stratification of 

coarse necromass sampling. Densities are measured for a sample of all coarse necromass 

by decay class. Measurement approaches for density include weighing entire pieces of 

coarse necromass, disks cut out of a log, and smaller plugs or samples across a cut disk 

(Harmon et al. 1986, Chambers et al. 2001, Keller et al. 2004a). In all cases, samples 

must be dried to a constant weight for disk and plug sampling. Large void spaces, 

created by organisms like termites or beetles, are often not considered in necromass 

density estimates. Larger samples used in density estimate include these void spaces, but 

smaller samples need to account for this. Keller et al. (2004a) used digitized images of 

disks cut through large pieces of fallen coarse necromass in order to measure void spaces
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and adjust density estimates accordingly.

Decay classes usually consist of two or more categories (Harmon et al. 1986, Chambers 

et al. 2000), ranging from newly fallen coarse necromass to highly decayed material that 

can be broken apart by hand (Harmon et al., 1995; Keller et al., 2004a). A description of 

each of five decay classes is found in Table 5.4.

Table 5.4. Description of five decay classes used in numerous coarse necromass studies.

Decay Class Description__________________________________________________________
1 newly fallen solid wood with leaves and/or fine twigs still attached
2 solid and has intact bark but no fine twigs or leaves
3 necromass resembles class 2 except the bark is rotten or sloughing
4 material is rotten and can be broken when kicked 

____________5 highly friable and rotten and it can be broken apart with bare hands

Decay class estimates of density were used in 20 studies, 5 studies weighed all material, 

and 10 did not use decay class density estimates, but density site averages or were unclear 

as to their methodology. We compiled eleven studies and reported their decay class 

density estimates in detail (Table 5.5). Decay classes and density measurements for such 

decay classes were similar across many studies (Table 5.5). Harmon et al. (1995), Eaton 

and Lawrence (2006), Keller et al. (2004a), and Palace et al. (in press), all used five 

decay classes in their studies. Although Palace et al. (in press) and Keller et al. (2004a) 

conducted field work in the same biome, moist tropical forest, Eaton and Lawrence 

(2006) w orked in a dry tropical forest. These studies had consistent decay class density 

estimates between biomes suggesting that the apparently arbitrary classification is robust. 

Clearly, site specific density measurements will be the most accurate approach, however, 

we have suggested based on studies at two sites in the Amazon, that coarse necromass
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density measurements may be applied across broad areas provided that the decay classes 

are defined uniformly across sites (Palace et al. in press). This remains to be tested.

Standing dead trees or snags include whole dead trees and portions of dead trees that 

remain upright (Harmon et al. 1986). In tropical forests, standing dead was measured 

47% less frequently than fallen coarse necromass. Many studies use a percentage of total 

fallen coarse necromass to estimate standing dead necromass (Keller et al. 2004a). The 

size of standing dead included in tallies differs between studies. Palace et al. (in press) 

and others have used a cutoff of 10 cm dbh, while others have measured standing dead 

down to 2 cm dbh (Edwards and Grubb 1997).

The methodology of height measurement also varies among studies. Visual estimates or 

average heights (Rice et al. 2004) are used when standing dead heights are not measured. 

For more precise studies, measuring tapes and clinometers or laser range finders have 

been used (Palace et al. in press). Only Palace et al. (in press) included in their 

methodology specific mention of stumps or standing dead less than 1.3 m in height in 

estimates of standing dead.
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Table 5.5. Comparison of coarse necromass density based on decay groups or classes for different studies in tropical forests

Location and Reference Forest Type_____________Group_______________________________________________ Decay G roups or Classes
Manaus, Brazil 

Chambers et al., 2000 LEF
Heavy Wood

0.85
Light W ood

0.45
La Selva, Costa Rica Sound Partial Decomp. Full Decomp

Clark et al.,2002 TRF 0.45 0.35 0.25
Venezuela Sound Intermed. Rotten small 2.5-4.99 med 5-9.99

Delaney et al., 1998 TTW NW 0.69 NW 0.29 NW
Delaney et al., 1996 TDF NW 0.59 0.40 0.29 0.70
Delaney et al., 1998 TMDF 0.42 0.37 0.25 0.24 0.22
Delaney etal., 1998 TMF 0.58 0.59 0.50 0.29 0.29
Delaney et al., 1998 TLMF 0.52 0.39 0.31 0.20 0.12
Delaney et al., 1998 TMF NW 0.48 0.32 0.19 0.13
Southern Mexico DC1 DC2 DC3 DC4 DC5

Eaton and Laurence 2006 DTF None 0.74 0.78 0.62 0.36
Australia DC1 DC2 DC3 DC4 None

Grove 2001 TRF Yellow  fibrous 0.29 0.23 0.18 0.11 None
Grove 2001 TRF Hard 0.35 0.36 0.38 0.35 None
Grove 2001 TRF Brown crumbly 0.29 0.23 0.20 0.16 None
Grove 2001 TRF Brown fibrous 0.29 0.23 0.20 0.23 None
Grove 2001 TRF Red Block None 0.23 0.19 0.17 None

Quintana Roo, Mexico By Species DC1 DC2 DC3 DC4 DC5
Harmon et al., 1995 TDF Used Range 0.25-0.81 0.19-0.84 0.06-0.81 0.49-0.64 0.22

Australia Mod. Decayed Very Decayed Extremely Decayed
Roberston and Daniel 1989 Mangrove Trunk 0.34 0.34 0.23
Roberston and Daniel 1989 Prop Roots 0.51 0.28 0.39
Roberston and Daniel 1989 Branches 0.60 0.43 0.28
Roberston and Daniel 1989 Twigs 0.63 0.41 0.35

Reserva Ducke, Manaus, Brazil Fine Wood Coarse Wood
Martius and Bandeira 1998 TMF Fresh to Dry Mass 0.55 0.46

Ecuadorian Andes, Ecuador Intact Rotten Full Decomp. Bark
Wilcke et al. 2005 TMonF 0.38 0.22 0.25 0.37

Tapajos, Brazil DC1 DC2 DC3 DC4 DC5 Small 2*5 cm M ed. 5-10
Keller et al.,2004 TMF Plug Density 0.61 0.71 0.63 0.58 0.46 0.36 0.45
Keller et al.,2004 TMF Void Density 0.02 0.02 0.08 0.21 0.26 NA NA
Keller et al.. 2004 TMF Density Adjusted for Void 0.60 0.70 0.58 0.45 0.34 0.36 0.45
Juruena, Brazil DC1 DC2 DC3 DC4 DC5 Small 2-5 cm M ed. 5-10

Palace et al. in press TMF Plug Density 0.72 0.70 0.66 0.67 0.44 0.52 0.50
Palace et al. in press TMF Void Density 0.01 0.02 0.08 0.12 0.20 NA NA
Palace et al. in press TMF Density Adjusted for Void 0.71 0.69 0.60 0.59 0.33 0.52 0.50

Ou>



Out of a total of 39 papers that examined coarse necromass in tropical forests, 35 reported 

stock measurements. All but five of the 35 papers used a volume sampling method, 

either plots (19 studies) or line intercepts (7 studies) or both methods (4 studies). Fallen 

coarse necromass was measured using line intercept sampling and standing dead was 

measured using plots in a few studies (Nascimento and Laurence 2002, Palace et al.

2004). One study used plots except for one area in which dense understory prohibited 

movement and line intercept sampling was used (Grove 2001). Reported values of coarse 

necromass stock were evenly distributed between disturbed and undisturbed sites. 

Standing dead and fallen coarse necromass were both measured at 29 sites in only 10 

articles, with the ratio of standing dead to total coarse necromass ranging from 6% in a 

disturbed forest and 98% at a heavily disturbed site (Gerwing 2002, Harmon et al., 1995). 

In undisturbed forests, standing dead to total coarse necromass stock measurements 

ranged from 11% to 76% (Palace et al. in press, Delaney et al., 1998). We do not present 

averages of coarse necromass stock or other components because this would be 

misleading; the literature examined do not represent a valid statistical sample of the 

necromass or forest types found in the tropics.

Size class criteria differed slightly among studies (Table 5.3). Of the 39 studies that 

reported stock estimates, only 28 explained their size class methodology. A cutoff of less 

than 2 cm was used in 5 of 28 studies that reported size class methodology. Five studies 

used a cutoff of 2.5 cm. Many (18 %) used a cutoff greater than 10 cm. Five studies 

used a 10 cm cutoff to define the difference between small and large diameter coarse 

necromass. Half of all studies used a cutoff of 10 cm for standing dead measurement.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We suggest standardization, with the use of three size classes, small diameter (2-5 cm), 

medium diameter (5-10 cm), and large diameter (greater than 10 cm) for fallen coarse 

necromass. For standing dead measurements, we suggest the use of a standardized cutoff 

of greater than 10 cm at diameter at breast height.

The stock of coarse necromass makes up a large percentage of the carbon pool in a forest, 

including tropical forests. Coarse necromass was found to range from 1.6 to 173 Mg ha'1 

(Table 5.1). In dry tropical forests, coarse necromass amounts tended to be lower than 

moist tropical forests, with dry forests ranging from 2.5 (Collins 1981) to 118.6 Mg ha'1 

(Harmon et al., 1995) in a heavy logged area. In moist tropical forests coarse necromass 

ranged from 2.4 (Delaney et al., 1998) to 213.7 Mg ha'1 (Greenland and Kowal 1960) 

(Table 5.2). In tropical forest areas outside of the Brazilian Amazon researchers found 

coarse necromass ranging from 3.8 to 6.0 Mg C ha'1 in montane forest in Jamaica 

(Tanner 1980), 22.4 Mg C ha'1 in wet forest in Costa Rica (Clark et al 2002) and 22.5 Mg 

C ha'1 in dipterocarp forests in Malaysia (Yoda and Kira 1982). In the Brazilian 

Amazon, where much recent work on coarse necromass is concentrated, estimates of 

fallen coarse necromass in undisturbed moist forests in terra firma included 42.8 Mg C 

ha'1 (Summers 1998) and 48.0 Mg C ha'1 (Rice et al in press) on the high end and 27.6 

Mg C ha'1 (Keller et al. 2004a), 15 Mg C ha'1 (Brown et al 1995), and 16.5 Mg C ha'1 

(Gerwing 2002) on the low end. Other studies examined coarse necromass in secondary 

forests and the effects o f logging on coarse necromass (Gerwing 2002, Uhl et al 1988, 

Keller et al. 2004a). The proportion of coarse necromass to total above ground biomass 

can be surprisingly high, 18 to 25% (Keller et al. 2004a; Rice et al. (2004) even in

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unmanaged forests. These values are for the Tapajos National Forest near Santarem, 

Brazil where Saleska et al. (2003) hypothesized that the 1997-1998 El Nino drought led 

to substantial mortality prior to the coarse necromass measurements cited above.

Production of Necromass

Death of whole trees or portions of trees creates necromass and the mechanisms that lead 

to tree death are termed disturbances. The processes and influences of these disturbances 

function on different temporal and spatial scales and are variable in the impact they have 

on tropical forests. The spatial scale of disturbances ranges from branch-falls and small 

gaps to landscape level blowdowns due to microbursts that can cover thousands of 

hectares (Nelson et al. 1994). Tree mortality in tropical forest plots ranges from 0.001 to 

0.07 y"1 (Carey 1994, Phillips and Gentry 1994). Disturbance in tropical forests includes 

individual tree processes, landscape level processes, and regional and climate influences.

Tree mortality in tropical forests is driven on the individual tree level by competition, 

primarily for water, nutrients and light (Prance 1985, Martinez- Ramos et al. 1998, 

Lieberman et al. 1989). As a tree dies and falls to the forest floor a gap in the canopy is 

created (Denslow 1987). These gaps are important in an ecological sense because they 

are involved with tree regeneration dynamics and species diversity and distribution 

(Schemske and Browkaw 1981, Denslow 1987, and Vitousek and Denslow 1986). Gaps 

increase light levels in understory, enhance nutrient mineralization, and create structural 

habitat for some species of flora, fauna, and fungi (Schemske and Browkaw 1981, 

Denslow 1987, and Vitousek and Denslow 1986, Dickinson et al. 2000, Svenning 2000).
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Blackburn et al. (1996) examined gap generation and progressive enlargement of gaps as 

natural disturbances instead of catastrophic events. Young and Hubbell (1991) also 

found that trees were more likely to fall into gaps and suggested that gaps may be more 

persistent in tropical forests then previously thought. The persistence of gaps also 

predicts the locations where necromass is likely to collect. This spatial coincidence has 

not been tested.

Mortality of trees in the tropics is also influenced by fungi, insects and other animals, and 

the trees themselves (Denslow 1987). Branch fall as a source of necromass has rarely 

been quantified although, it has been recognized as is a major disturbance for seedlings 

growing in the understory (Lang and Knight 1983, Aide 1987, Clark and Clark 1991, van 

der Meer and Bongers 1996, Scariot 2000). The diversity of trees in the mosaic that is a 

tropical forest landscape makes it rare for a single insect infestation to create denuded 

canopies and cause the death of many trees (Janzen 1985). Vines entangling adjacent 

crowns may cause the death of a single tree to result in tree falls that involve several 

neighboring trees (personal observation). Some species of Ficus, strangler figs, have 

constricting vines that eventually kill the host tree (Windsor et al. 1989). Epiphytic 

vegetation load has also been tied to tree mortality (Prance 1985). Trees can also die as a 

result of genetic programming as is the case for monocarpic trees such as Tachigalia 

versicolor (Kitajima and Augspurger, 1989).
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On non-degraded moist and wet forests, fires are rare events that do not propagate easily 

(Prance 1985). However, this belief is being challenged with studies of forest drying 

during El Nino events (Nepstad et al. 2002). Fire has also been shown to be an 

influential disturbance on white-sand forests in the Amazon (Anderson 1981). Fire in the 

Amazon is strongly influenced by people. Lightning may also cause fires and localized 

mortality in tropical forests (Magnusson et al. 1996).

Disturbances are also influenced by weather and topography (Bellingham and Tanner

2000). Topography was found to be influential on disturbances and thus was reflected in 

the local species distributions (Gale 2000). Tropical trees tend to have shallow root mass 

for nutrient exploitation and buttresses for structural support and have been shown to 

topple easily (Prance 1985). In the tropics, disturbances also include larger scale 

processes such as microbursts, blowdowns, volcanoes, and landslides (Nelson et al. 1994, 

Sanford et al. 1986, Lawton and Putz 1988, Garwood et al. 1979). Hurricanes have been 

shown to have an influence on tropical forests in the Caribbean and elsewhere (Lugo and 

Scatena 1996, Walker et al. 1996). Spatial patterns and recent trends in tree mortality 

have been attributed to ENSO events (Condit et al. 1995, Malhi et al. 2004).

Approximately half of the studies we reviewed compared undisturbed forests with forests 

experiencing disturbance due to anthropogenic factors, such as selective logging.

Selective logging is a practice that fells a few trees per hectare (Peireira et al 2002). This 

type of logging has been shown to affect substantial areas in the Brazilian Amazon and in 

tropical Asia (Asner et al. 2005; Curran et al. 2004). Other human influenced
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disturbances in the literature of tropical necromass included fire, agriculture, conversion 

to pasture through deforestation, and repeated disturbances due to a combination of fire 

and agricultural practices (Table 5.1). The number of sites in our literature review was 

evenly distributed among undisturbed and disturbed forests. We excluded a study by 

Feldpausch et al. (2005) because that study measured the amount of necromass created 

by selective logging, but did not measure total coarse necromass stocks in either logged 

or undisturbed forests.

Few studies have measured the production of necromass in tropical forests. Approaches 

to the estimation of necromass production include allocating a portion of Net Primary 

Productivity (NPP), a portion of existing biomass (Palace et al. in press), or mortality 

estimates of trees (Rice et al. 2004). Flaws associated with these methods include the 

lack of variation over time, lack of spatial influence, lack of size class estimates, and a 

lack of knowledge of the proportion of necromass that remains standing.

Necromass production has been directly measured using repeated surveys on the same 

plots by marking necromass or removing it at each survey period (Harmon et al. 1986, 

Clark et al. 2002). All but three necromass production studies examined had only one 

repeated survey (Palace et al. to be submitted, Clark et al. 2002, Eaton and Lawrence 

2006). This lack of repeated sampling limits the understanding of longer term influences 

of weather patterns such as El Nino or ability to assess if the forest is at steady state or if 

it is recovering from a larger scale disturbance (e.g. Saleska et al. 2003).
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Rare events such as blowdowns or even large tree falls complicate sampling design and 

interpretation of coarse necromass data. For example, a tree fall of diameter 150 cm 

DBH drastically altered the measured flux of coarse necromass in one sampling interval 

from a study at the Tapajos National Forest in Brazil (Palace et al. to be submitted).

Trees of this size occur with a frequency of only about 0.079 per ha at Tapajos (Keller et 

al. 2001). Assuming adequate sampling of 100 ha blocks, there are only 7.9 trees of this 

size class per block. If these trees have a 1.7 % annual mortality rate (Rice et al. 2004) 

then the chance of seeing a fall of this size is (1-0.9837 9) or 12.7% per year. In the study 

of Palace et al., a much larger sample area would have been required to record a large 

tree death annually. Larger but less frequent disturbances such as blowdowns (Nelson et 

al. 1994) require even more extensive sampling designs.

A compilation of studies that directly measured coarse necromass production is present in 

Table 5.3. Of the 39 papers reviewed here only 38 % measured coarse necromass 

production. Eaton and Lawrence (2006) measured coarse production in several disturbed 

sites and in one undisturbed site in dry tropical forest in southern Mexico. They removed 

and measured new coarse necromass four times over a two year period for an undisturbed 

forest and estimated a coarse necromass production of 0.91 Mg ha'1 yr'1. Tanner (1980) 

estimated coarse necromass production in a Jamaican forest to be 2.0 Mg ha'1 yr'1 using 

repeated samples over four years. Other estimates in dry tropical studies include 0.1 and 

0.97 Mg ha"1 yr'1 conducted by Buxton (1981) and Collins (1981) respectively. Kira 

(1978) directly measured coarse necromass production of 3.3 Mg ha'1 yr'1 in Pasoh Forest 

in western Malaysia. Clark et al (2002) measured influx of coarse necromass to be 4.8
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Mg ha'1 yr'1 using a repeated survey in Costa Rica. In a 4.5 year study in the Brazilian 

Amazon, Palace et al. (to be submitted), measured coarse necromass production to be 6.7 

Mg ha'1 yr'1. Large size class CWD (>10 cm DBH) production was 4.7 Mg ha'1 yr'1. The 

production of small size class CWD (2-5 cm) was 0.8 Mg ha'1 yr'1 and medium size class 

CWD (5-10 cm) was 1.2 Mg ha'1 yr'1. Interestingly, Rice et a l (2004) estimated coarse 

necromass production based on mortality of trees > 10 cm DBH at 4.8 Mg ha'1 yr'1 for a 

nearby forest area. This suggests that mortality based approaches potentially 

underestimate coarse necromass production.

Decomposition of Necromass

Decomposition of wood is generally a slow process that involves biological, chemical, 

and physical processes. The sequence that these processes act on dead wood varies over 

time due to changes in physical climate and the chemical and physical makeup of the 

wood over its decay life. Each piece of CWD has a unique chemical and physical 

makeup (Kaarik 1974). The difference in chemical and physical composition starts with 

differences in live trees. Differences among trees depend on tree species (wood 

characteristics), nutrient composition of soil, climate, tree health (including infections by 

insects, microbes, and fungus), and how the tree died (Harmon et al. 1986, Martius 

1997). Differences within an individual tree may also be important due to internal 

variation in wood density (Noguiera et al. 2005).

Temperature and moisture have been tied to microbial activity and decomposition 

processes in necromass (Kaarik 1974, Harmon et al. 1986). Moisture levels and
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temperature are not directly measurements of the decomposition process, their correlation 

with decomposition have been used to develop regression and model necromass decay 

(Harmon et al. 1986, Chambers et al. 2000). Too much moisture can create low levels of 

oxygen inhibiting decomposition and lack of water slows or halts decomposition 

(Harmon et al. 1986). An exponential relationship has been shown between microbial 

activity and temperature, until temperature is so high that proteins are damaged and 

enzymes denature (Mackensen et al. 2003).

Wood decay organism can be grouped into three categories, bacteria, fungi, and 

macroorganisms (Dickinson and Pugh 1974). The presence of fauna and their own 

growth efficiencies, nutrient requirements, and temperature and moisture requirements 

control the overall decomposition. Each of these categories of organisms acts on wood 

differently and are important at different time in the temporal sequence of wood decay 

(Kaarik 1974). In the tropics, wood fragmentation is primarily caused by termites 

(Buxton 1981). This fragmentation occurs on highly decayed logs or parts of logs. In 

addition, termites remove the wood to other places (Collins 1981).

The placement of the wood on the ground can influence the rate of its decay. Logs on 

hills tend to accumulate more soil on the uphill side, creating a wetter microclimate 

beneficial for many decomposing soil organisms (Harmon et al. 1986). In the Brazilian 

varzea forest, (a flooded forest type), the season that the wood falls is influential on its 

immediate and longer term decomposition rate (Martius 1997). Decomposition of 

smaller litter occurs rapidly, often less than one year, while larger coarse necromass can
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have a turnover time close to a century (Harmon et al. 1986, Mackensen et al. 2003).

Estimation of coarse necromass decomposition rates uses two major approaches, 

chronosequences and time series (Harmon and Sexton 1996). In a time series, individual 

pieces of wood are followed over time (Harmon and Sexton 1996). In chronosequence 

studies, varying ages of coarse necromass are examined at a single point in time (Harmon 

et al. 1999). Dates of coarse necromass production have been made using disturbance 

records, living stumps, seedlings, dendrochronology, fall scars, and bent trees (Harmon et 

al. 1999). Some researchers have conducted a combination of chronosequences and time 

series (Harmon and Sexton 1996, Chambers et al. 2000).

Within sample chronosequences or time series, decomposition may be studied by mass 

loss, density change, uniform substrate decomposition, radioisotopes, respiration rates, 

mineralization, enzyme activity, and selective inhibition experiments (Swift et al. 1979, 

Harmon and Sexton 1996, Harmon et al. 1999). The majority of studies in the tropics 

have used mass loss, density change, or chamber systems to measure respiration.

Measurement of decomposition through mass loss requires multiple measurements of 

coarse necromass over time (Buxton 1981, Harmon et al. 1999, Chambers et al. 2000). 

This can only be done accurately if moisture content can be measured accurately and 

non-destructively. Alternatively, changes in density can be used as a surrogate for mass 

loss. It is important for density measurements to account for void spaces. Void spaces in 

logs must be accounted for in density measurements either by using large pieces of
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necromass (e.g., Chambers et al., 2000, Clark et al., 2002) or by separately quantifying 

void space (Keller et al., 2004a, Palace et al. in press). Direct measurements have also 

been made in the laboratory with coarse necromass removed from the field (Richards 

1962, Chambers 2000).

Respiration studies have been conducted on coarse necromass in a number of ways. 

Essentially all methods depend upon isolating sections, full pieces, or extracted samples 

of coarse necromass in a chamber. Chambers may be attached to the surface of coarse 

necromass or pieces may be inserted into chambers. The chambers are sealed and the rise 

in CO2 concentration is measured directly by infra-red detection (Chambers et al. 2001) 

or, in older studies, CO2 emitted is absorbed in alkali (Swift et al. 1979; Marra and 

Edmonds 1994). Respiration will underestimate coarse necromass loss because it does 

not account for dissolution and fragmentation. However, there are indications that for 

tropical moist forests, respiration is the major pathway for CO2 loss. Chambers et al. 

(2004) estimated that 80% of mass loss in CWD resulted for respiration. This was done 

by using the ratio from a respiration study and a mass loss study (Chambers et al. 2000, 

2001)

Two methods mentioned here but not used in tropical forest necromass decompoisiont are 

substrate decomposition and radioisotopes. Substrate decomposition studies have also 

been conducted (Harmon et al. 1999). In this method, uniform substrates such as 

Popsicle sticks or wooden dowels are placed in the field and measured over time. These 

studies provide information on the temporal variability of decomposition and also
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provide a standard for comparison of decomposition rates across sites. These results only 

provide relative rates that may lack the complexity of decomposition of larger logs or 

interaction of decay organisms. Radioisotopes have been used as tagging agents for 

materials to estimate leaching and soil organic matter formation (Wedin et al. 1995, 

Carvalho et al. 2003). Studies have been done by injecting isotopes into litter, but for 

coarse necromass this is difficult (Harmon et al. 1999).

A compilation of field measured decay rates and estimated decay rates based on a 

mortality estimate of 0.02 yr'1 are presented in Table 5.2. Of the 39 papers we reviewed 

only 33 % made measurement of necromass decomposition. Estimates of CWD 

decomposition rates in the Brazilian Amazon include only three studies. Chambers et al. 

(2001 and 2000) used two different methods (closed chamber using an infra-red analyzer 

and measured mass loss) for estimates of 0.13 y '1 and 0.17 y '1 for each method. Rice et 

al. (2004) estimated decomposition of coarse necromass using stock measurements and 

the decomposition model developed in Chambers et al. (2000). Palace et al. (to be 

submitted) estimated decomposition rates using a steady state model. Their estimates of 

decay rates is 0.17 y '1 for large (>10 cm diameter), 0.21 y '1 for medium (5-10 cm 

diameter), and 0.47 y '1 for small size (2-5 cm diameter) class coarse necromass. No other 

study that we know of has data for these smaller size classes and their production 

decomposition rates for tropical forests. Other tropical forest necromass decomposition 

rates range from 0.03 y '1 (Delaney et al. 1998) to 0.51 yr'1 (Collins 1981). An extremely 

high decay rate of 2.0 y '1 was estimated in a tropical mangrove forest by Robertson and 

Daniel (1989). We found only two studies that estimated decomposition rates for
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standing dead with estimates being 0.461 y '1 (Lang and Knight 1979) and 0.115 y '1 

(Odum 1971). Palace et al. (to be submitted) estimated the movement of standing dead 

through the pool to be 0.24 y '1.

A Simple Model to Expand and Compare Literature Results

We used a simple model that is a first order differential equation to examine coarse 

necromass dynamics.

dM/dt = -kM + F

where M is the necromass pool (Mg ha'1), F is the rate of necromass production (Mg ha'1 

y '1), and k is the instantaneous decay rate (y’1). By definition at steady state dM/dt is 

zero. The residence time for necromass is M/F.

We solved this differential equation using a series of values ranging from 0.1 to 8 Mg 

ha'1 y '1 for necromass production and 0.01 to 0.5 for decomposition rate (y'1). Our result 

is a conceptual model comparing stocks, decomposition rates, and production rates for 

steady state systems is shown in Figure 5.1.
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Figure 5.1. A simple model solved for many values in parameters.

When production or decomposition rates were lacking in the literature that we reviewed, 

estimates were generated using the following methods and rationale. A production 

estimate of necromass was generated using the biomass value and a mortality rate of 0.02 

y‘\  We used a mortality rate at the upper end of the range for old-growth tropical forests 

(Philips and Gentry, 1994) but feel that this is a reasonable estimate, since most biomass 

studies do not include smaller diameter trees and lianas. In addition, mortality rates we 

used to estimate necromass production often underestimate necromass production 

because branch fall is not included (Palace et al. in press).
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Using the production estimate divided by the stock measured values we calculated 

decomposition rates. If no biomass estimate was available, we estimated necromass 

production to be 0.15 y '1 of the total necromass stock. Though these estimates of decay 

and production amounts are prone to error and hypothetical in nature, they allow us to 

attempt to compare sites and biomes in tropical forests (Table 5.3). Comparison of field 

data and model estimates also allow us to evaluate the assumption of steady state for a 

variety of sites.

Discussion 

Methodology

Methodology was comparable among sites with similarity in decay classes and size 

classes used (Table 5.3, Table 5.4). Although there are some discrepancies among 

papers, stock estimates are broadly comparable between studies. Biomass estimates were 

not done at all sites and we suggest that biomass be measured whenever necromass is 

examined. Production and decomposition measurements were both lacking at many sites 

and existing measurements lacked consistency. We suggest longer temporal studies that 

would allow for a better understanding of the dynamics of these fluxes and their relation 

to meteorological parameters. We would also like to see decomposition studies 

conducted at one site use multiple methods to allow for comparison between such 

methodologies.

Different methods for fallen necromass quantification may be used depending upon the 

question being asked by the researcher, such as fuel load amount (Uhl and Kauffman
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1990) or biometry and respiration estimates (Chambers et al. 2000, Keller et a l 2004a).

In concert with previous evaluations for other regions, we find that line intercept 

sampling is generally easier to adapt to field conditions where sufficient area is available 

for sampling. For example, Grove (2001) switched from plot based work to line intercept 

sampling when confronted with dense understory (Grove 2001). We conducted line 

intercept sampling at the same site as Rice et al. (2004) and had similar estimates with 

similar uncertainties. Our line intercept sampling was six times as efficient; it took about 

one third the amount of time and with half the field crew. Plot estimates require more 

movement than line intercept sampling and become especially difficult in logged sites or 

in sites with dense under-story.

Fallen coarse necromass stock was measured almost two times more frequently than 

standing dead. This is likely due to difficulty measuring the height of standing dead in a 

complex and dense forest canopies common in many tropical sites. Although standing 

dead stock is more difficult to measure than fallen coarse necromass stocks, stock 

estimates tend to be the easiest and most accurate coarse necromass component to 

measure when compared to decomposition and production rates, which require multiple 

samples over time.

Methodology for decay classes was similar among studies. Much of the recent literature 

cites Harmon et al. (1995) in regard to decay classification. It is likely that this paper has 

set the standard for decay classes terminology used. Implementation of the decay 

classification may vary across sites in necromass studies. We do not know of tests for
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field classification differences across sites in tropical forests other than Palace et al. (in 

press). A number of studies we examined had similar decay class definitions (Harmon et 

al. 1995, Eaton and Lawrence 2006, Keller et al. 2004a, and Palace et al. in press). In 

addition, some studies had similar decay class density measurements (Table 5.4).

Decomposition and production estimates of dead wood both have unique difficulties. 

Decomposition is a complex process; however estimates for decomposition rates based 

on a variety of methods often give similar results (Palace et al. in press, Chambers et al.

2001). Production estimates need to cover a large enough area to capture the rare 

episodic tree fall events. While trading space for time is helpful for quantifying coarse 

necromass production, long term studies that could link necromass to weather changes 

and other aspects of interannual variability would help us understand interannual 

variability in carbon dynamics.

Tropical forests contain a large number of tree species and this creates difficulty when 

measuring decomposition rates (Chambers et al. 2000). Decomposition rate 

measurements maybe be misleading when only a few species of trees or a few trees are 

only examined for a short period of time. Chambers et al. (2000) developed a regression 

for decay that incorporates temperature, moisture, and necromass diameter.

Many of the studies (42%) only examined one component of coarse necromass dynamics. 

A combination of methods and components measured is preferable, allowing for the 

comparison of production and decomposition rates with stock estimates at the beginning
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and end of the study. Comparison to other measurable ecological parameters, such as 

NPP, woody increment, and mortality rates proves helpful in better understanding 

necromass dynamics. Necromass and biomass estimates should be done in conjunction at 

research sites. Finally, similar studies using the same methodology are beneficial to 

coarse necromass research (Palace et al. in press). Studies that examined more than 

three coarse necromass components are Rice et al. (2004), Chambers et al. (2000), 

Harmon et al. (1995), Nascimento and Laurence (2002), Clark et al., (2002), Collins 

(1981), Roberston and Daniel (1989), Palace et al. (to be submitted), Delaney et al., 

(1998), Eaton and Laurence (2006).

Comparison among sites

Necromass studies in tropical forests are few in number and concentrated in Central 

American dry forests and areas of the Eastern Amazon, especially in the State of Para, 

Brazil. Many of the sites were highly disturbed due to logging activity, agriculture, fire, 

and in one case elephants (Buxton 1981, Uhl et al. 1988, Eaton and Lawrence 2006). We 

estimated production and decay estimates for these areas, but admit that our steady state 

approach is ill-suited to these sites.

The proportion of coarse necromass to biomass is highly variable among sites (Figure 

5.2) ranging from 0.01 in an undisturbed site in the Ivory Coast (Bemhard-Reversat et a l, 

1978) to 3.04 (Gerwing, 2002) in a heavy logged and burned site in Paragominas, Brazil. 

In undisturbed forests there appears to be a peak in the coarse necromass with middle 

values of the biomass distribution (Figure 5.2b). Beyond that peak as biomass increases
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the proportion of necromass decreases. The highest biomass sites may have been 

undisturbed for long periods resulting in low necromass. We drew a hypothetical limit to 

illustrate such a relationship. High biomass and low necromass sites were often from 

studies that used small plots that do not reflect the landscape spatial distribution of 

biomass and necromass. Small plots may be chosen with the “majestic forest bias” that 

tends toward high biomass and little recent disturbance (Keller et al. 2001, Chave et al. 

2001).
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Figure 5.2a. Biomass and Necromass field measured values in undisturbed and 
disturbed tropical forests.
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Figure 5.2b. Biomass and Necromass field measured values in undisturbed tropical forests 
showing areas of high and low disturbance. Line is not a limit or regression, but 
draw to show the upper bound of data.

Standing dead and fallen coarse necromass have been found to be proportionally related, 

even at disturbed sites (Palace et al. in press; Figure 5.3). However, the proportional 

relation found at two sites using the same methodology did not hold when compared 

across tropical sites and studies (Figure 5.4). A regression comparing just undisturbed 

sites had a higher r value (0.06) than when disturbed sites were included in the analysis 

(0.00007) (Figure 5.4). Nonetheless, standing necromass accounts for a large proportion 

of the total coarse necromass stock, up to 66% in an undisturbed forest and 98% at a 

heavily disturbed site, and should be included in future field estimates (Palace et al. in 

press, Harmon et al. 1995).
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undisturbed and disturbed tropical forests.
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We did not make comparisons of size classes among sites because few studies separated 

data by size class. In addition, comparisons among studies for necromass size classes are 

difficult because of differences in the limits for size classes themselves (Table 5.3). Still 

some studies indicate that smaller size classes (generally less than 10 cm diameter) 

contribute up to 21% of the total coarse necromass stock (Uhl and Kauffman 1990,

Palace et al. in press) and we suggest that smaller size classes be included in field 

measurements. Smaller size classes decay more quickly and may contribute more to the 

overall site respiration budget (Harmon et al. 1986, Palace et al. to be submitted). 

Chambers et al. (2000), showed a relation with decomposition rates and necromass 

diameter. Palace et al. (to be submitted) using production and stock estimates grouped by 

size classes were able to estimate decomposition rates for the size classes using a simple 

model.

Trees lose branches through several processes that do not lead to whole tree mortality.

For example, shaded lower branches may be shed and physical damage may result from 

crown interactions or animal activity. Mortality estimates used to determine coarse 

necromass may underestimate production due to branch fall that is not associated with the 

death of a tree. Determination of the source of coarse necromass would aid in 

quantifying branchfall. These small and medium classes are likely to include a 

substantial component from branchfall. Chambers et al. (2001) estimated branch-fall to 

be 0.9 Mg ha"1 y"1 based upon a comparison of field measured allometries and an 

optimized model tree structure based on the hydraulic constraints to tree architecture. 

Palace et al. (to be submitted) examined the source of necromass by field classification of
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coarse necromass as either branch, trunk, or unidentifiable. Coarse necromass derived 

from tree trunks dominated the large size class in both necromass production and in pools 

(Table 5.3). The other size classes were more evenly distributed among sources. They 

found significant differences between logged and undisturbed forest treatments for the 

proportions of trunk, branch, and unidentified material within both the production and 

pool of coarse necromass (X 2, p < 0.0001). Proportions between groups (production and 

pool estimates) and within a treatment were also found to be significantly different (X 2, p 

< 0 .0001).

We used measured coarse necromass stock and either an estimated production (biomass * 

0.02) or decomposition rate (coarse necromass * 0.15) to generate production and decay 

rates when they were missing from the literature. Using these rates and stocks, we 

examined if sites were at steady state. No sites were found to be at steady state. Either 

these sites were not at steady state or the generalized assumptions of production and 

decomposition rates may not accurately reflect real world values. It is not reasonable to 

expect all sites to be at steady state. Plots were often too small to represent landscape 

coarse necromass dynamics.

We found that measured decomposition rates and those estimated by our simple model 

were similar (Figure 5.5). Higher decomposition rates associated with lower coarse 

necromass stocks suggests that decomposition rates are an important control. We caution 

that this conclusion depends upon our model estimates using necromass production equal 

to a fixed proportion of biomass (0.02 y '1). Higher decomposition rates may be
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associated with forests that experience higher disturbance rates as hypothesized by Baker 

et al. (2004) and Mahli et al. (2004) based upon a comparison between western and 

eastern Amazon forests. Baker et al. (2004) discussed the variation in wood density and 

how this determines the biomass in Amazonian forests. Wood density variation is 

attributed to nutrient cycling influences on species assemblages. The syndrome suggested 

by these two studies is that high-tumover forests have low density wood that in turn 

decomposes faster.
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Figure 5.5. A comparison of estimated decay rates ((biomass *0.2 y '1) / necromass stock) 
and field measured decay rates verses CWD stocks.
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Conclusions

We compiled data from existing studies and compared pools and fluxes of coarse 

necromass among tropical forest sites. General relationships among necromass 

components were explored such as coarse necromass to biomass proportions and fallen to 

standing dead coarse necromass. Methodology was comparable across the literature for 

coarse necromass production and stock estimates. Fallen stock was almost two times 

more frequently measured than standing dead. We calculated production and 

decomposition rate estimates through the use of a simple model when these values are not 

available. General relations and proportions between coarse necromass components were 

explored and were found to vary greatly. No definitive relations were found among 

coarse necromass components across sites. In undisturbed forests there appears to be a 

peak in the coarse necromass with middle values of the biomass distribution. Beyond 

that peak as biomass increases the proportion of coarse necromass decreases. The ratio 

of coarse necromass to biomass ranged from 0.4 % in an undisturbed forest to 304% in a 

disturbed forest. Standing dead necromass accounts for a large proportion of the total 

CWD stock, up to 66% in an undisturbed forest and 98% at a heavily disturbed site, and 

should be included in further field estimates. We found that localized variability is high 

and complicates or hinders the development of general relationships of coarse necromass 

components across the tropics. Many of the studies (42%) only examined only one 

component of necromass dynamics. We stress the importance of measuring multiple 

coarse necromass components and ideally conducting these measurements over years or 

even decades in order to improve our knowledge of coarse necromass dynamics in 

tropical forests.
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