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ABSTRACT

MODELING OF DIFFUSIONAL CREEP AND STRESS RELAXATION 
IN COPPER GRAINS DURING MANUFACTURING OF 

MICROELECTRONIC INTEGRATED CIRCUITS

by

VASYL M. GRYCHANYUK 

University of New Hampshire, December 2006

The finite element technique was developed to study diffusional creep and stress 

relaxation in Cu grains with several atomic monolayers thick grain boundary region of 

enhanced diffusivity. The model was motivated by the need to study nanoscale back-end 

interconnect structures of microelectronic circuits. These structures have the length scale 

that does not conform to the assumptions of classical dimensional theories of diffusional 

creep.

Both diffusion and elasticity governing equations are considered in the coupled 

formulation of mass flow and stress analysis. Vacancy concentration field in the grains 

subjected to external load is coupled to stress field through diffusional creep strains. The 

formulation has been implemented in the commercially available finite element software 

package MSC.Marc.

We validated the model for the case of stress relaxation in one-dimensional grain 

array by comparing the finite element simulations to the predictions of classical Nabarro- 

Herring and Coble theories. The numerical results show good correspondence to 

analytical predictions, suggesting that this model may be used to predict diffusive stress

- xv -
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relaxation in more advanced systems of practical importance, such as Cu interconnects at 

elevated temperatures. We have used our model to study the effect of grain size on creep 

rate in a polycrystal under external load. The approach has been applied to study the 

stress relaxation in a typical Cu-Ta-dielectric structure subjected to thermal loads.

To improve the computational efficiency of the diffusional creep modeling, we 

developed the numerical technique of equivalent viscoplastic finite elements. This 

approach was found to improve the computational efficiency by reducing the coupled 

elasticity-mass flow problem to the equivalent mechanical creep analysis. The predictions 

of the equivalent element viscoplastic model showed good correspondence to the stress 

relaxation results obtained with coupled elasticity-mass flow FEA approach.
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CHAPTER 1

INTRODUCTION

1.1. Copper interconnects in the integrated circuit technology

Interconnect lines form the back-end structure in the integrated circuit technology 

and distribute electric signals to various systems on a chip. An example of a Cu 

interconnect line is shown in Figure 1.1. The manufacturing process of Cu-damascene 

interconnects has become an important field of research since early 1990’s. Much 

technological effort has been applied to reduce the feature size in accordance with the 

Moore's law. Currently, typical dimension of the interconnect cross-section is on the 

order of a 100 nm (about 400 atomic radii of Cu).

| 6 .0  im i

1— < 0.0  nM

Typical 
Cu grain 
Grain 
boundary 
Ta liner 
Low-k 
dielectric

2 .5 0

2.50 5.00

Figure 1.1. Atomic force microscope topographical map of Cu interconnect line sample supplied 
by IBM Corporation.

-  1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As the minituarization of back-end structures continues, the interconnect signal 

delay time becomes a limiting factor for the integrated circuit performance. Thus copper 

replaced aluminum as the interconnect line material due to lower resistivity and improved 

signal delay characteristics. Copper interconnect lines are manufactured using the dual

damascene technique. The name "damascene" originates from Damascus, a place in 

Syria where ancient jewelers used similar method to deposit precious metals for 

ornaments. The process flow is schematically shown in Figure 1.2.

1) Deposition of films
. t c h - s t o p  ( S i l i c o n  iNit ride)

l o w - k  d i e l e c t r i c

silicon water

2) Etching dielectric

3) Deposition of diffusion

4) Deposition of Cu

5) CMP

Figure 1.2. Outline of major steps in the dual damascene interconnect metallization technique.

- 2 -
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The dielectric blanket is patterned using reactive ion etching. Chemical vapor 

deposition or physical vapor deposition is then used to create the diffusion barrier and 

seed layers. Copper is deposited by filling the trenches using electroplating as the 

currently preferred method, according to Rathore and Chanda [1]. It is followed by 

chemomechanical polishing to flatten the layer and thus produce a planar layered 

structure. Thermal cycle from room temperature to 350-400°C is used to anneal out the 

device damage from the reactive ion etch. Finally, the surface is capped with a dielectric 

and another interconnect level is manufactured. The dual damascene technique, in which 

both via and line are deposited simultaneously, results in 30% fewer manufacturing steps 

compared to single damascene technique where lines and vias are deposited separately 

(see, for example, Sullivan [2]).

1.2. Failures in copper interconnects attributed to diffusional creep

The reliability issues for interconnect lines have become increasingly important 

after the introduction of Cu as the material of choice. For example, Cu does not have a 

self-passivating oxide, therefore the integrity of cap layers is vital to the reliability of 

integrated circuits. Other manufacturing trends that contribute to the reliability risks 

include the increasing density of back-end interconnect lines and the introduction of low- 

k dielectrics which have low Young's moduli and high coefficients of thermal expansion.

The deformed shape due to thermal strains in the typical single-level interconnect 

structure subjected to elevated temperatures is schematically shown in Figure 1.3. 

Considerable stresses develop in the interconnect lines during the thermal cycle due to 

the mismatch of thermal expansion coefficients between the substrate, the dielectric and 

the diffusion barrier (Kamsah et al. [3]). For the dielectric material, thermal stresses may

-3 -
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result in such negative impact as thermomechanically induced cracking and adhesion 

loss, i.e. delamination. For the conductor, understanding of the impact of thermal stress 

on the reliability requires the consideration of the interconnect line length scale.

Room temperature

Thermal 
processing: 
350-400 °C

Figure 1.3. Schematic illustration of the deformed shape in a typical uncapped single-level 
interconnect line subjected to the elevated temperature during thermal cycle.

We may assume that dislocation activity is not relevant at interconnect size length 

scales and processing temperature ranges, as suggested, for example, by Kobrinsky et al. 

[4]. We believe that some of the failure mechanisms in Cu interconnects could be based 

on the phenomenon of nanoscale diffusion-based deformation. This deformation may be 

attributed to the Cu-Cu grain boundary and Cu-Ta interfacial sliding, as well as to the 

material buildup due to diffusional creep. The experimental background for this

- 4 -
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assumption was provided by Gross et al. [5], who developed an AFM method to measure 

out-of-plane deformation resulting from thermal cycling and applied this technique to 

observe the Cu-polyimide interconnect structure. Stress-induced diftusional creep 

mechanisms have been shown to contribute to failures in Cu interconnect structures (see, 

for example, Lee et al. [6], Hussein and He [7]). The coalescence of vacancies may result 

in the void nucleation. Further stress-driven vacancy flow contributes to the void growth 

which can result in the increase of line resistance or complete line failure. In this thesis 

we focus on the impact of the diffusional mass flow on the nanoscale deformation and the 

resulting transient stress relaxation.

1.3. Overview of existing approaches to the modeling of diffusional creep processes

Diffusional creep is traditionally described using the models of Nabarro, Herring 

and Coble [8-10]. These classical models assume that creep deformation occurs as a 

result of vacancy diffusion in response to stress induced vacancy concentration gradients. 

The Nabarro-Herring model estimates the creep rate based on vacancy diffusion through 

the grain bulk as defined by the diffusivity in the grain interior. The model predicts the 

dependence of the creep rate on the grain size d  as \ /d 2 . Coble creep model extended 

this approach by considering the grain boundary as the only diffusion path. The activation 

energies for grain boundary diffusion are assumed smaller than the corresponding values 

in the grain interior, based on the physical concept of the grain boundaries as the regions 

with much faster diffusion due to less regular atomic structure. The model predicts 1/d* 

creep rate dependence on grain size. Both Nabarro-Herring and Coble theories present 

dimensional models lumping grain geometry into linear constants and focusing on the

- 5 -
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dependence of creep rate on grain size, temperature and stress for a polycrystalline 

material. The constitutive (creep strain rate vs stress) equations are derived for both 

models using the assumptions that the grains of idealized square shape are loaded as 

shown in Figure 1.4, and the behavior of an individual grain is representing the behavior 

of a polycrystal. Note that although Nabarro-Herring and Coble models are widely 

accepted to describe the diffusional creep phenomena, the experimental verification of 

diffusional creep has been a subject of debates in the literature [11-13]. Recent reviews of 

the mechanisms and models of diffusional creep/plasticity are presented in [14-16].

Several investigators have used the principles of these models, namely vacancy 

migration in response to stress gradients, to predict stress relaxation in discrete structures. 

Gao et al. [17] modeled grain boundary (GB) diffusion in polycrystalline thin metal films 

through introduction of crack-like boundary wedges which evolve by the transport of 

material from free surface along the grain boundary. Their analysis assumed no surface 

diffusion and grain boundary grooving in the films subjected to in-plane stresses. This 

model was applied to study the deformation of thin Cu films in the works of Weiss et al. 

[18] and Buehler et al. [ 19].

The impact of stress-driven diffusion on GB sliding was studied in the classical 

paper of Raj and Ashby [20]. More recent efforts to model diffusion-accomodated GB 

sliding and grain rotation were presented in [21-23]. Experimental and numerical 

modeling of GB sliding was provided by Kamsah [24], Dutta et al. [25] introduced a 

shear lag model to study the diffusional creep/plasticity and GB sliding in Cu 

interconnect lines.
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Nabarro-Herring model Coble creep model
Vacancy <7^  
diffusion 

path

Figure 1.4. Nabarro-Herring and Coble diffusional creep models.

Garikipati et al. [26] presented advanced coupled formulation of the vacancy 

concentration and elasticity problems in polycrystalline solids. Their model was applied 

to array of square grains and they considered the variation of vacancy formation energy 

over the finite width of GB region. While the formulation of their model accurately 

captures the physics of the problem, their example used unrealistically thick GB regions 

(100 nm vs typical thicknesses of ~1 nm corresponding to 3-4 Cu monolayers).

The work of Bower and coworkers represents one of the most long-term and 

comprehensive efforts to model inelastic deformation in interconnects. The finite element 

formulation developed by Bower and Craft [27] addressed stress driven interface 

diffusion, electromigration and void growth using the concept of sharp grain boundaries. 

The stress field evolution was assumed to be caused by separation between grains due to
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material deposited on or removed from grain boundary. Zhang et al. [28] extended the 

formulation to a 3D model that accounts for strain and electromigration-induced surface 

diffusion. They implemented their formulation into a finite element program and 

performed simulations to analyze evolution of voids in idealized interconnects and 

surface roughening of thin films. Recent work of Singh et al. [29] employs a similar 

formulation to model stress relaxation in copper damascene structure and to estimate the 

diffusivities along interfaces. The effect of passivation layer on stress relaxation and the 

corresponding experimental estimate of GB diffusivity was also provided by Gan et al. 

[30].

The modeling effort described above is based on the continuum treatment of 

nanoscale diffusion creep deformation. The alternative approach is to predict the 

deformation by modeling the motion of individual atoms. The major techniques of 

atomistic simulation are lattice statics, lattice dynamics, Monte-Carlo and molecular 

dynamics. Many authors including Swygenhoven et al. [31], Shiotz et al. [32], Wolf et al. 

[33] applied molecular dynamics methods to model nanoscale deformation. The biggest 

advantage of atomistic modeling is the ability to gain insight into the atomic-level 

structure and thermomechanical deformation behavior. In addition, it is convenient to 

model large inelastic deformations which would require remeshing in continuum FEA 

treatment. However, atomistic approach has several limitations. Most importantly, the 

maximum grain size that can be modeled with molecular dynamics is dictated by 

computer capacity and speed. Current supercomputers are capable of handling the 

simulation cells that contain several millions of individual atoms. For example, the 

computer that allows to run the simulation for one million atoms of copper is able to
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model the cubic simulation cell of approximately 22.8 nm lateral size. In addition, the 

requirement of small time steps to track the atomic motion limits the time period for 

molecular dynamics simulations. The number of time steps typically does not exceed 107 

which results in the modeling time window ~10 ns [33]. To model nanoscale deformation 

dining this time period, it is necessary to consider the simulation cells with artificially 

high strain rate by applying large external stress. Although it was argued [34] that high 

strain rate molecular dynamics computations are close to Coble creep theoretical 

predictions, the atomistics simulations are deformation rate dependent, therefore care 

must be taken to select the applied stress and time step to adequately model nanoscale 

deformation during the short time period. The next important concern is empirical or 

semiempirical nature of interatomic potentials which may not precisely describe the 

atomic bonds and forces.

Other modeling efforts which consider diffusion processes in polycrystalline 

metals include the studies of stress-induced diffusive fracture by Guo et al. [35] and triple 

junction diffusion by Fedorov et al. [36]. One of the first modeling efforts of surface 

diffusion which contributes to the GB grooving was presented in the classical paper of 

Mullins [37]. More recent GB grooving, surface diffusion and interface motion modeling 

includes the work of Thouless [38] and Sun and Suo [39]. Cocks and Gill [40] presented 

the variational formulation to describe the grain growth. Pan et al [41] introduced the 

FEA approach to model the grain boundary grooving and grain interface migration due to 

coupled grain boundary and surface diffusion mechanisms. Their approach is based on 

the classical treatment of GB diffusive cavitation by Needleman and Rice [42]. This
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model is applied to study the diffusion-based evolution of voids in Cu polycrystals. 

Modeling of voids in polycrystalline materials was also investigated in [43-45].

We believe that it is inappropriate to use dimensional models for polycrystalline 

behavior of structures that are 1-2 grain diameters wide and have dimensions of 100 nm 

or less. The complex stress state in each individual grain and geometrical constraints of 

the problem necessitate the finite element solution. The work of Rzepka et al. [46] is one 

of the successful applications of commercially available software to predict diffusive 

flow in Al(Cu) lines due to gradients in stress, electric potential, temperature and surface 

curvature. We believe that it is desirable to employ commercial finite element codes to 

tackle these potentially numerically unstable transient processes. In this thesis, we 

employ the FEA package MSC.Marc to study the diffusion-based mechanical response of 

Cu interconnects to thermomechanical loads.

1.4. Objective and scope

In this thesis, we present the model of diffusion-accommodated creep in Cu grains 

that has the unique feature of a finite thickness grain boundary region with enhanced 

diffiisivity. This approach is somewhat similar to the theoretical framework of Garikipati 

et al. [26] that includes the concept of finite thickness GB region with reduced vacancy 

formation energy. However, the consideration of enhanced diffusivity in GB region 

enables us to estimate the impact of interface roughness, interface impurity, deposition 

conditions, and feature size on stress relaxation in nanoscale interconnect structures.

Since diffusion of vacancies in the region adjacent to grain boundary is thought to be 

faster than in the bulk, it is expected to have a prominent effect on stress relaxation for 

nanoscale grains and structures. We compare our numerical predictions for stress
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relaxation and creep in a simple structure to the analytical predictions of Nabarro-Herring 

and Coble. Commercial FEA software MSC.Marc is employed to make the computations 

tractable. Some concepts of our numerical technique were presented in [47]. We explore 

the possibility to enhance the formulation and introduce purely mechanical FEA 

treatment that captures the stress-strain response to the diffusional vacancy flow process 

in Cu polycrystalline material. This can be done by incorporating the numerically 

obtained effective creep laws into the mechanical finite element stress analysis.

To provide the mechanical formulation of creep process, it is required to specify a 

creep law as a material property. The available diffusional creep law expressions of 

Nabarro-Herring and Coble classical theories are based on the assumptions of the 

idealized square grain geometry. In addition, these expressions are derived assuming the 

orthogonal compressive and tensile externally applied loads. Although it is not possible 

to obtain the diffusion creep law in a closed-form for the general case of grain geometry 

and external load, we note that numerical techniques can be developed to approximate 

such general creep laws as a material property for arbitrary grains. The resulting purely 

mechanical simulations provide a considerable increase of computational efficiency 

compared to the coupled elasticity-mass flow model. Therefore, an attempt is made in 

this dissertation to obtain numerically the effective creep laws which approximate the 

diffusion behavior within Cu grains. The equivalent creep laws are computed using the 

coupled elasticity-mass flow formulation developed in this dissertation. The modeling of 

nanoscale deformation is then performed by incorporating the numerically obtained 

effective creep laws into the mechanical finite element stress analysis.
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The numerical predictions of the coupled elasticity-mass flow model were 

obtained for the grain geometry and external loading that correspond to the assumptions 

of classical diffusion creep theories. We found that the predictions are close to Nabarro- 

Herring and Coble theories for small values of grain size. It may be concluded that the 

coupled formulation presented in this thesis and the equivalent viscoplastic finite element 

technique developed on its basis may serve as a numerical extension of classical theories. 

The proposed technique relaxes several assumption of classical theories at the expense of 

the requirements for numerical computations and the calibration of model parameters 

such as GB region thickness. First, this technique relaxes the assumption of square 

geometry, allowing to consider the grain of arbitrary shapes. Second, the technique 

allows to model the grains subjected to arbitrary externally applied loading. Another 

assumption of the classical theories which is relaxed in our formulation is the pre-defined 

vacancy diffusion path. Although we found that creep behavior varies throughout the 

grain and needs to be represented by more than one creep relation, the technique provides 

the convenience of specifying the creep behavior as a material property in a mechanical 

finite element procedure.

The outline of the thesis is as follows. In Chapter 2 we present the thermodynamic 

basis for equilibrium vacancy concentration analysis. The vacancy diffusion problem is 

then coupled to elasticity formulation through creep strains computed from vacancy 

fluxes. Chapter 3 presents the finite elements formulation as well as the details of its 

numerical implementation. The attempts to reduce the computation time using the mesh 

refinement multipoint constraints and time series extrapolation are also described. We 

validate the numerical approach in Chapter 4 by modeling the stress relaxation in one-
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dimensional linear array of square grains. We compare the numerical predictions for the 

stress relaxation in the periodic square grain array to the analytical estimates based on 

Nabarro-Herring and Coble models. The effect of grain size on the diffusional creep 

response is studied using the model of 3x3 grain array subjected to externally applied 

stress. In Chapter 5 we present the model of a typical Cu-Ta-dielectric structure to 

illustrate the application of the technique to stress relaxation in interconnect structures 

subjected to thermal loads during manufacturing. The numerical results are compared 

with analytical predictions based on Nabarro-Herring and Coble mechanisms. Chapter 6 

presents our effort to develop the numerical technique of equivalent viscoplastic finite 

elements to improve the efficiency of the diffusional creep modeling. Numerical 

experiments were performed to explore the creep behavior in various areas throughout 

the grain. Numerically obtained creep laws were then applied to the modeling of the 

stress relaxation in Cu grain assembly using the equivalent FEA creep analysis.

- 13 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

COUPLED FORMULATION OF TRANSIENT ELASTICITY-VACANCY 

DIFFUSION PROBLEM

The purpose of this chapter is to present the physical and mathematical 

formulation of the model for stress-driven mass flow in metals. This model must be able 

to predict both the vacancy diffusion as well as the thermomechanical stresses and strains 

that arise when modeled structures are subjected to elevated temperatures. The gradients 

in the stress field create the driving forces for mass flow which result in diffusional creep 

strains. These strains change geometry and affect the subsequent evolution of the stress 

field. This highly interdependent multiphysics process requires the coupled mathematical 

formulation that takes into account both diffusion and elasticity governing laws. The 

target implementation of the model presented in this chapter is the commercial software 

package MSC.Marc available in the Mechanical Engineering Department of the 

University of New Hampshire under the academic license.

Note that the diffusive mass flow occurs under certain ranges of stress, 

temperature and characteristic size of the structure in question, thus the important role of 

this chapter is to clearly outline the assumptions, limitations and ranges of applicability 

for the proposed model. In subsequent chapters, we will validate the model for idealized 

cases of grain assemblies and then apply the model to typical Cu interconnect structures.
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2.1. Equilibrium vacancy concentration and stress-induced mass flow

We develop the model which predicts inelastic deformations that arise from 

vacancy diffusion. The dififusivity of vacancies is defined by the frequency of attempts of 

an atom to jump into a neighboring vacancy site times Boltzmann factor exp (—Qm/kT ), 

which is essentially a probability that the atom's energy at temperature T is no less than 

activation energy for vacancy motion Qm. We assume that the kinetics of species in a

material is governed by Fick's law and vacancy fluxes are driven by vacancy 

concentration gradients. Physically the presence of vacancies is strongly dependent on the 

stress state. Vacancy formation is associated with broken bonds and the increase in 

internal energy and configurational entropy. To consider these effects, vacancy 

concentration is defined as minimum of Gibbs free energy according to the traditional 

treatment of equilibrium thermodynamics. In the model presented here the role of grain 

boundaries is emphasized as infinite sources/sinks of vacancies. Furthermore, the finite 

thickness regions adjacent to grain boundaries are treated as the regions of enhanced 

diffusivity.

2.1.1. Thermodynamic approach to equilibrium vacancy concentration

Thermodynamic relation between stress and the equilibrium concentration of 

vacancies Cevq is one of the key components for modelling of stress-driven diffusional

mass flow. Porter and Easterling [48] provided the Arrhenius-type relation between 

atomic volume Q , stress-free vacancy concentration C0, temperature T , mean stress (Th

and Cevq in bulk metals
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C? =C0exp(ahQ /kT) (2.1)

where k  is the Boltzmann constant. This formula is obtained by considering the phase 

equilibrium of a solid in which the only two phases are material atoms and vacancies. 

The Gibbs free energy AG of such a solid can be written for dilute vacancy 

concentration Cv as

AG = NVAGV + kT (N alnCA+NvlnCv) (2.2)

In this expression, Na is number of atoms, Nv is number of vacancies,

CA = 1 - Cy and AGv is the Gibbs free energy of vacancies in a solid. Energy AG has a

minimum at equilibrium, thus C‘q is obtained by minimizing AG with respect to Nv

Ce:= exp (A G v/kT)  (2.3)

The Gibbs free energy of vacancies AGv is related to the enthalpy and entropy of

vacancy formation AHv and ASv as AGV = AHV-T A S V. The estimate of ASV for Cu is

typically given in the literature as exp(ASv/k )  = 3. The enthalpy of vacancy formation is

understood as the sum of energy of vacancy formation Qf  and the work required to

create a vacancy that occupies atomic volume G

AHv =Qf +ahQ. (2.4)

It is important to understand the role of stress crh in Eqs. (2.1) and (2.4) to

adequately model the stress-driven mass flow. The classical thermodynamics treatment 

presented so far assumed uniform properties of stress and vacancy concentration 

throughout a system. Conceptually, the process of vacancy creation/annihilation occurs 

throughout the grain and vacancy concentration is defined by the Boltzmann probability
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that energy in a point is no less than activation energy for vacancy generation, in this case 

<taQ according to Eq.(2.1). However, we must depart from this assumption if we desire

to model mass flow process which is driven by vacancy concentration gradients. The 

need for an alternative assumption can be illustrated by the idealized model of square 

grain solid subjected to uniform remotely applied load. Since there are no mean stress 

gradients in this example, the vacancy concentration gradients that drive Nabarro-Herring 

and Coble creep should not exist in this model. To account for the gradients in vacancy 

concentration, the theories developed by Nabarro, Herring and Coble [8-10] assumed that 

the equilibrium concentration in the region adjacent to the grain boundary is defined by 

an, the stress normal to the boundary. This implicit assumption of classical diffusional

creep theories is consistent with the physical description of the process of vacancy 

creation/annihilation, which can only take place at grain boundaries and not in the grain 

interior. With grain boundaries acting as vacancy sources/sinks, the vacancies are 

introduced or removed in the presence of a local normal traction a n. The qualitative

difference in concentration fields produced by <Jh and <Tn is illustrated in Figure 2.1.

Assuming that the vacancy concentration depends on o n, higher vacancy concentration is

predicted at the grain boundaries with tensile normal traction as compared to the grain 

boundaries with compressive normal traction.

In what follows we assume that the local enthalpy of vacancy formation is 

AHv =Qf + <r„Q which is consistent with the implicit assumptions of Nabarro, Herring, 

and Coble. Defining the temperature dependent stress-free vacancy concentration as 

Co=exp((rASv- e / )/*7’) = 3exp(-0 / /A:r) (2.5)
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we arrive at the following equation for local equilibrium vacancy concentration in grain 

boundary vacancy source/sink sites

C? =C0exp(ann /k T )  (2.6)

Higher vacancy concentration

Lower
vacancy

concentration

Figure 2.1. Qualitative illustration of equilibrium vacancy concentration defined by a) mean stress 
<7h and b) traction <Tn normal to grain boundary.

Note that we ignore the contribution of dislocations in the grain interior as 

vacancy sources and sinks since they are rarely observed for nanoscale grains (see Kong 

et al. [14] and references therein). This assumption will still allow the applicability of 

our model to high density interconnect structures, since dislocation activity may not be 

relevant at interconnect size scales and processing temperature ranges, as suggested, for 

example, by Kobrinsky et al. [4], Nevertheless, dislocations may be present at grain 

boundaries due to disordered atomic arrangement at grain interfaces which arises from 

misorientation of neighboring grains. Vacancy creation/annihilation at the grain boundary
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may result in the extension/contraction of dislocation atomic half-planes, causing the 

lattice planes to be created or destroyed by vacancy movement that results in lattice drift. 

Our model assumes the absence of lattice drift for the sake of simplified treatment.

2.1.2. Kinetics of stress-induced mass flow

The differences in vacancy concentration lead to vacancy fluxes jv. This is shown

schematically in Figure 2.2 for the example case when horizontal compressive and 

vertical tensile stresses are externally applied to the idealized square grain. The vacancy 

fluxes obey the Fick’s constitutive equation

j v= -D vVCw (2.7)

Figure 2.2. Vacancy fluxes due to concentration gradients within a grain.

The vacancy diffusivity in grain interior is given by Dv L = DQL exp(~QmL ! kT} 

where Qm L is the activation energy for vacancy motion. We assume that Qm L is less in a
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region adjacent to the grain boundary due to disorder near the interface and reduced 

elastic constraint. We choose the thickness of the enhanced diffiisivity region as 3-4 

atomic monolayers as schematically shown in Figure 2.3.

Figure 2.3. Schematic illustration of the enhanced diffiisivity region at grain boundaries

We define the vacancy diffiisivity at interfaces as Dvgb = D0gb exp(-Q mgb/k T ) 

where Qm gb = ocQm L (a<  1). This reduction of activation energy for vacancy motion at

grain boundaries and free surfaces has been postulated by Frost and Ashby [49]. We are 

not aware of a precise method to measure the activation energy for vacancy motion 

through the grain boundary and will treat it as an adjustable parameter that may be 

affected by impurities, grain boundary roughness, crystallographic orientation and 

whether the opposing interface has similar diffiisivity. The selection of coefficient a  

dramatically affects the value of diffiisivity in finite thickness grain boundary region, as 

shown in Figure 2.4 for D0L = D0gb = 2.0 10“5 m2/ s , Qmb= 109.7 kJ/m ol.

The vacancy flow is governed by the following conservation law
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^ + v - j v = 0 (2.8)
at

Assuming that only vacancy defects are present in the polycrystal, the mass flow occurs 

by jumping of atoms into nearby empty lattice sites. The vacancy flux jv and atomic flux

\a are related as

1E-7

1E-8-

1E-9-;

1E-10-:

1E-11-

1E-12-

1E-13

1E-14-

1E-15

1E-16
200 400 600 800

TerrperatureT, K
1000 1200 1400

Figure 2.4. The enhancement of diffiisivity in grain boundary region due to the reduction of the 
activation energy for vacancy motion.

J . = -  Jv (2.9)

Atomic flux is responsible for the inelastic deformation and stress relaxation that occurs 

in Cu grains.
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2.2. Coupled governing equations of elasticity and vacancy diffusion

The purpose of the model introduced here is to predict diffusional creep and stress 

relaxation, which can occur in a body subjected to prescribed displacements or tractions. 

Usually, in stress relaxation problems, fixed displacement boundary condition is 

preserved throughout the simulation, while fixed traction applied to the boundary must be 

held constant to model creep.

Due to the diffusive nature of inelastic deformation, it is necessary to consider a 

coupled problem of vacancy diffusion and elasticity to track both the mass flow and the 

evolution of displacements and stresses. We have considered two scenarios of coupled 

formulation to account for this phenomenon. The first scenario considers coupling 

through vacancy fluxes. The second way to formulate the coupled problem is through 

diffusional creep strains. The results of both approaches are approximately identical, 

however the second approach is preferred because it allows to reduce the computation

We note that the formulation proposed here is based on the physical nature of 

diffusional creep process and does not assume any phenomenological relations between 

stresses and diffusional creep strains.

2.2.1. Coupling through grain boundary vacancy flux

We consider a solid under the following boundary conditions applied at time

time.

t = 0

u =u0, x€ £2a (2 .10)

« n  = t0, x e Q
S

(2 .11)
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where £lu and Qs are the parts of the boundary with prescribed displacements u0 and 

tractions t0. We assume that the initial application of boundary conditions (2.10) or

(2.11) results in a purely elastic response. For the elastic stress and strain fields o and e , 

the traditional set of governing equations is valid

where C is the elastic stiffness matrix. Note that Eq. (2.12) is written assuming the 

absence of body forces and Eq. (2.13) assumes small elastic strains.

We now discuss the approach to couple the elasticity formulation (2.12)-(2.14) 

and the vacancy flow problem governed by Eqs. (2.7)-(2.8). The idea of such coupling is 

to consider the effect of vacancy flow on inelastic strains and corresponding stress field. 

Introducing the notation ucr for diffusion mass flow displacement, we propose to treat 

the atomic flux field ja as the mass flow velocity field dvT / dt in the interior of a body 

that is statically fixed. Thus, we arrive to the equation

Equations (2.6) and (2.15) represent the coupling between the mass flow problem 

and mechanical problem. It is important to note that this method of coupling does not 

give explicit mathematical relation between the field variables of elasticity problem, such 

as elastic displacement u , stress <r, elastic strain e , and the field variables of vacancy 

flow problem, such as vacancy concentration Cv and vacancy flux jv. Taking into

V<r = 0 (2 .12)

(2.13)

a = C :s (2.14)
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consideration the transient nature of the process, it is necessary to solve each of the 

boundary value problems independently on each time step while holding the variables of 

the other subproblem fixed, i.e. apply the so-called staggered procedure.

We start by assuming that at time t = 0 the concentration field is uniform and 

corresponds to zero stress. Note that some authors argue that stress-free vacancy 

concentration is higher in grain boundary regions, which may be attributed to segregation 

of vacancies in grain boundary regions to achieve equilibrium (see, for example, 

Garikipati et al. [26]). After the external boundary conditions (2.10) or (2.11) are applied, 

the vacancy concentration gradient leads to diffusive flow and accumulation or depletion 

of material in grain boundary regions, as shown schematically in Figure 2.5 for the case 

of horizontal compression. We assume that the accumulation of displacements caused by 

mass flow occurs in so-called “unloaded” configuration shown with dashed lines in 

Figure 2.5. This assumption is introduced for the purpose of tracking the stress relaxation 

due to mass flow. By reapplying boundary conditions to the “unloaded” configuration, 

the mass flow velocity field given by Eq. (2.15) will affect the evolution of stress field in 

the model. It is important to note that the coupling equations (2.15) and (2.6) do not 

ensure the evolution of stress field, hence it is necessary to keep track of unloaded 

configuration throughout the simulation.

- 24-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Unloaded configuration v̂o exP
<7„Q

Vacancy flux j v

fTTM P l \

Mass flux j a= -jv Externally applied displacement

¥■
' Mass flow ' 

displacement
f+At

&ucr = -  \  j vdt

■I

Inelastic 
deformation is 
accumulated in 

unloaded 
configuration

Figure 2.5. Simulation sequence performed on each time step. Elastic loading is followed by the 
solution of transient concentration problem resulting in the accumulation of 
diffusional creep displacements in the unloaded configuration.

The following sequence is performed on each time step:

1) The mechanical boundary conditions are applied, and the elasticity subproblem is 

solved to obtain the distribution of elastic stresses and strains, as well as the deformed 

shape of the solid.

2) The deformed shape obtained on the previous step is used as a domain to run the 

transient m ass flow  subproblem. The concentration boundary conditions are obtained  

from the coupling relation Eq. (2.6).
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3) The vacancy flux, obtained from transient mass flow subproblem, is integrated to give 

the displacements due to mass flow. We accumulate the mass flow deformations by 

applying these displacements to the original unloaded domain.

We then return to the first step of the sequence and obtain the deformed shape by 

applying the boundary conditions to the unloaded domain and enforcing the compatibility 

constraints between individual grains to ensure the continuity of deformed configuration. 

It is important to specify consistently the compatibility constraints in case of a body that 

contains several grains. This is schematically illustrated in Figure 2.6 for two neighboring 

grains. The accumulation/depletion of mass occurs in the neighboring grains leading to 

the formation of “gaps” or “overlaps” in unloaded configuration. The purpose of 

compatibility constraints is to account for such mass accumulation/depletion for

Unloaded configuration at time t Unloaded configuration at time t+At

Free surface

Compatibility
constraints

Symmetry

External boundary conditions

Figure 2.6. Schematic illustration of compatibility constraints that need to be applied in addition 
to external boundary conditions in a body that contains several neighboring grains.
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neighboring grains at the time the unloaded configuration is subjected to external 

boundary conditions (2.10)-(2.11) on each time step. The process is repeated for the 

prescribed number of steps to predict the time evolution of stress field and inelastic 

deformations.

Equation (2.15) provides the velocity field associated with mass flow in the grain 

interior. Further assumptions need to be introduced to define the relation of mass flux to 

mass flow velocity at grain boundaries. The velocity normal to the interface is the 

variable that reflects the mass accumulation/depletion and affects the stress relaxation or 

creep.

Figure 2.7. Normal and tangent components of surface vacancy flux at a grain boundary.

Let us consider normal and tangent components j n and j s of surface vacancy 

flux shown schematically in Figure 2.7. The velocity of mass flow normal to the grain 

boundary surface is derived from mass conservation written for the surface element [50].
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The velocity is affected by the divergence of flux tangent to the grain boundary and the 

component of vacancy flux normal to the grain boundary

Ucr,n = '■+£ i  ( 2 - 1 6 )V.  3/

To simplify the coupling of inelastic displacements to GB vacancy flux, we may assume 

that ucr „ = - j„ .

We note that mass flow and resulting stress relaxation occurs in current loaded 

configuration. Hence the introduction of “unloaded” configuration is an artificial 

assumption which is necessary to implement the transient coupled formulation, when 

coupling is done through vacancy fluxes. The artificial nature of this concept leads to 

implementation difficulties illustrated here for the body consisting of several grains. In 

this case, the difficulties arise, which are associated with keeping track of unloaded 

configuration. The total elastic displacement will be a superposition of displacement 

arising from each individual compatibility constraint, as depicted in Figure 2.8. The 

compatibility constraints for this case need to be specified in the local coordinate system 

relative to each grain to obtain current loaded configuration from updated unloaded 

configuration.

Note that we limit ourselves to the small strains theory, and account for finite 

deformation by adjusting the shape of the domain. More rigorous formulation of the 

algorithm would account for large deformation and require computation of finite strain 

tensor.
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Figure 2.8. Unloaded and current loaded configurations for a body that contains multiple grains.

2.2.2. Couplin2 through diffusional creep strain rate

It is possible to provide an alternative way of coupling for the elasticity problem

(2.12)-(2.14) and the vacancy flow problem (2.7)-(2.8). Following the assumption of the 

previous subsection, the atomic flux field can be treated as the velocity of diffusive mass 

flow in a body that is statically fixed. Assuming that the inelastic flow velocity is defined 

in this manner, the rate of diffusional creep deformation can be written as

^ = - l /2 (V jv+ V j/) (2.17)
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This equation defines the Eulerian strain rate tensor (see, for example, [51]), and 

represents the symmetric part of the Eulerian gradient of the mass flow velocity. The 

creep strain field is defined by Eq. (2.17) in every point of the body under consideration, 

as schematically illustrated in Figure 2.9.

t + A t

Figure 2.9. Schematic illustration of diffusion creep strain rate concept. The arrows that illustrate 
atomic flux j0 are understood as the mass flow velocities of material element faces.

Note that we implicitly assumed the Lagrangian kinematic description for 

elasticity subproblem. This is done for the sake of the simplicity to implement the 

elasticity governing equations in commercial finite element code, presented in the next 

chapter. However we anticipate that mass flow displacements may become large and the 

assumptions of small strains introduced for Eq. (2.13) may no longer be valid. It is 

possible to resolve this issue by adopting the updated Lagrandian formulation. We note 

that the updated Lagrangian technique enables to resolve the conflicting assumptions of 

Eulerian description for Eq. (2.16) and Lagrangian description for Eq. (2.13). The 

Eulerian description can be viewed as Lagrangian description at time t referred to the 

current fixed configuration. Thus, the elasticity equations (2.12)-(2.14) and kinematic
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mass flow description (2.17) can be used simultaneously in the incremental updated 

Lagrangian formulation.

The accumulation of pointwise creep strain can be obtained by integration of Eq. 

(2.17) on every time step. The accumulated creep strains will affect the evolution of 

stress state in the body. Assuming that total pointwise strain 8 consists of elastic and 

creep components, the elastic part of the strain can be related to the total stress a by 

Hooke’s law

® =.C :(s-s(T) (2.18)

where C is the elastic stiffness matrix. Equation (2.18) gives explicit relation between 

the stress and vacancy flux, providing more direct coupling between two subproblems 

than the approach suggested in the previous subsection. One of the most significant 

advantages of coupling through creep strains is that this technique does not require to 

keep track of unloaded configuration throughout the simulation, eliminating the need to 

specify compatibility constraints between neighboring grains. Since both mass flow and 

stress relaxation occur in current loaded configuration, the formulation suggested here is 

consistent with the physics of the phenomenon. The coupled vacancy diffusion -  

elasticity problem governed by Eqs. (2.7)-(2.8), (2.12)-(2.14) and (2.17) is solved by the 

finite element technique presented in the next chapter.
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CHAPTER 3

NUMERICAL MODELING OF DIFFUSIONAL CREEP USING 

COMMERCIAL FINITE ELEMENT PACKAGE MSC.MARC

This chapter presents the details of the numerical implementation of coupled 

elasticity-mass flow boundary value problem adapted for commercial finite element 

package MSC.Marc. We describe the finite element types, features of mesh geometry and 

numerical procedures to solve the governing equations of the coupled problem. The 

numerical implementation presented in this chapter is later applied to the prediction of 

diffusional creep and stress relaxation response of typical interconnect structures, hence 

we expect to develop the procedures that demand reasonably affordable computer time 

and provide the time-stepping procedure which is computationally stable.

The length scale of grain boundary regions is several orders of magnitude smaller 

than the grain size. To account for the multiscale nature of the mass flow problem, we 

need to consider mesh refinement at grain boundaries and coarse mesh in grain interior. 

Because the model contains elements of different orders of magnitude and the diffusion is 

greatly enhanced in the nanoscale grain boundary region, the stability of time integration 

procedure is strongly dependent on the time step selection. We also note that although the 

finite element implementation assumes continuum treatment of coupled problem 

variables, typical interconnect line may contain several distinct grains per line width. This
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chapter presents the approach to consider the discrete structure in a continuum model 

using multipoint constraints.

3.1. Incremental solution of transient coupled governing equations

The finite element implementation of transient continuum mechanics problem 

typically involves the time integration of governing equation and the solution of 

boundary value problem on each time step. The procedure of time integration can be 

implicit, when the governing equation is written for time ts+l and the values of unknown

variables are found based on their values at time ts . The procedure is unconditionally

stable and allows for large time increments. However, we adopt the explicit time 

integration for the coupled formulation presented in the previous chapter due to the lack 

of general phenomenological constitutive relation between stress and creep strain rate. 

Rather, the coupling is based on kinematically defined creep strain rate, which 

necessitates the forward time integration of coupled equations written for time ts. The 

elasticity and mass flow boundary value problems are treated in a staggered manner, 

when each subproblem is solved independently while holding the variables of the other 

subproblem fixed. We discuss the stability issues associated with the integration scheme, 

along with the details of incremental equation for principle of virtual work.

3.1.1. Incremental principle of virtual work and explicit time integration

During time step At the creep strain is incremented by Aecr and total strain is 

incremented by Ae . We choose the displacement as the independent variable, hence Ae 

needs to be expressed in terms of displacement increments Au. We employ the relation
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A£- .1 /2 ( A < + A » J )  (3.1)

where comma denotes partial differentiation with respect to the corresponding 

coordinate. Note that the small incremental strain assumption in Eq. (3.1) imposes small 

time step requirement to maintain the accuracy of iterative solution. For the simplicity of 

MSC.Marc implementation we employ the trapezoidal rule to compute the increment of 

inelastic displacement

Au" =1/2(1,+ j1+af)Al (3.2)

Thus we only use the vacancy fluxes j/+A, computed at the end of the increment, and 

reuse them as j, at the beginning of the next increment.

The principle of virtual work may be written in incremental form as

J#£r : C : (Ac -  Accr }dV = AP • <£u (3.3)
V

where AP is the increment of the externally applied load. This equation is the basis for 

the finite element formulation of mechanical part of the problem. The following remarks 

should be made concerning the implementation of Eq. (3.3). The formulation is reduced 

to classical elasticity small strain problem by employing the initial strain technique, 

where a pseudo-load vector due to the creep strain increment is added to the right-hand 

side of the stiffness equation

KAu = A P+JprCAscr̂ F  (3.4)
v

In this equation. K is the stiffness matrix and ft is the strain-displacement matrix. The 

transient creep strain increment is obtained from the mass flow problem.

In MSC.Marc, the integration of Eq. (3.4) is done through explicit time 

integration procedure. For this scheme, the stiffness matrix and load vector in Eq.(3.4)
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are written at time t , and the equation is solved for displacement that occurs due to creep 

strain increment Azcr during time A t . The drawback of explicit integration procedure is

the requirement to select the time step small enough to ensure the stability of the 

integration and the absence of oscillations that lead to divergence.

3.1.2. MSC.Marc finite element mesh and element types

We consider the plane strain geometry to model the interconnect lines with length 

at least an order of magnitude greater than width and height (see Figure 2.3c). The 

element type of our choice is 4-node quadrilateral. We select this element both for the 

simplicity of meshing and for computationally efficient implementation. Since we expect 

to have fine mesh with element size on the order of Cu atomic radius in the grain 

boundary region, the number of elements will be large and the low-order element such as 

4-node quadrilateral is desired. The typical finite element mesh of a single grain is shown 

in Figure 3.1. It consists of 1168 elements with 1256 nodes. Only a quarter of the grain 

may be modeled due to symmetry. Also, it is convenient to reduce the number of 

elements by using larger elements in the grain interior. This can be done without any 

significant loss of accuracy since the diffusivity in the grain interior is at least an order of 

magnitude smaller than in the grain boundary region where Coble creep strains are 

localized.
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Figure 3.1. Finite element mesh o f idealized square grain. The shaded area represents the grain 
boundary region with a typical thickness o f 1 nm.

3.1.3. Treatment of discrete grain assembly in a continuum model using multipoint 
constraints

We note that in case the multigrain assembly is modeled as a single continuous 

body, the normal component of vacancy flux in the grain boundary nodes is canceled out 

as the integration point values of flux are averaged to compute nodal values. As a result, 

the creep strain increments are affected in the elements adjacent to the grain boundary 

assuming that these increments are computed from nodal mass flow displacements 

according to the Eq. (3.1). In order to adequately compute the interfacial vacancy flux 

and creep strain for adjacent grains we model each individual grain as a separate body. It 

is important to consider both the non-penetration condition and the atomic bonding that 

exists at grain interfaces. To avoid the computationally intensive implementation of 

contact body finite element procedures, we model bonded boundaries of grains using
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multipoint constraints between the tied degrees of freedom of two adjacent surfaces. Such 

implementation allows to specify different orientations for each individual grain.

In this treatment, the corresponding nodes of two adjacent grains are constrained 

for the displacement increments normal to the grain interface

{AuA -A u B)-n = Q (3.5)

The constrained degrees of freedom are schematically illustrated in Figure 3.2. This 

approach considers the non-penetration condition of adjacent grains and takes into 

account the atomic bonding which prevents grains from separation under tension.

A U
I i

Grain B

Grain A

Figure 3.2. Degrees o f  freedom for adjacent nodes o f  neighboring grains constrained by Eq. (3.5).

To account for grain boundary sliding, it is possible to specify the relative 

velocity between adjacent grains and introduce another multipoint constraint for the 

component of displacement tangent to the grain interface:

(AuA- A u B) t  = U(T,T,A,h)At (3 .6)
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Here, U (r ,T,X,h) is the sliding velocity that depends on shear stress r  and temperature

T , as well as grain interface parameters. Example of such parameters may be periodic 

wavelength X and amplitude h/2 schematically shown in Figure 3.3. The effect of these 

parameters was taken into account in the sliding rate formula given by Raj and Ashby 

[20]

8 7O
U =  -\XDl + k8Dgb 1 (3.7)

7tkThlV 1 GBl v '

Flow of matter

Figure 3.3. Grain boundary sliding model suggested by Raj and Ashby [20].

3.2. Reduction of computer computation time

It is important to note that the MSC.Marc finite element implementation outlined 

above requires a large amount of computer time. The computation is expensive due to 

multiple length scales present in the model with grain boundary region thickness 1-2 

orders o f  magnitude smaller than the size o f  a typical nanoscale grain. Furthermore, a 

large difference between the diffusivities in grain interior and grain boundary region 

leads to ill-defined system of linear equations. Both the size of the smallest finite element
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in the model and the value of grain boundary diffusivity are limiting the maximum

allowable time step, which can be estimated for a diffusion problem as (Huebner et al. 

[52])

1L/D* (3-8)

We also note that the diffusional creep feature is not common in the commercially 

available FEA packages. The implementation of this feature in MSC.Marc can be done 

through two alternative ways. The first method is to launch the FEA program separately 

on each time step for elasticity and mass flow subproblems. The output of each 

subproblem is adjusted to become the input data used by another subproblem. This can be 

done for the formulation where coupling is provided through grain boundary vacancy 

fluxes. The drawback of this implementation is the large amount of overhead computer 

time needed to launch the program twice on each iteration, as well as large amount of 

disk read/write operations.

An alternative method can be used for the formulation where coupling is done 

through diffusional creep strain rate. Both subproblems can be solved in a single launch 

of FEA code. The exchange of data between mass flow and elasticity subproblems is 

performed through user-defined subroutines listed in Appendix A.

We have implemented both approaches in MSC.Marc and used the simple test 

problem to compare the computation time it takes to run the simulation over the 

prescribed number of steps. Table 3.1 provides the test computation for the finite element 

model of a single Cu grain shown in the inset of Figure 3.4. As can be seen from the 

table, for this particular model the diffusional creep strain rate coupling approach
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provides more than 10-fold reduction of computation time. Figure 3.4 illustrates that the 

predictions of both coupling approaches are very close.

To further reduce the computation time, we employ the mesh refinement 

multipoint constraints, adjustable time step and time series extrapolation. The test 

simulations for these techniques use the values of temperature selected in the range from 

673 K to 1000 K since the maximum allowable time step becomes particularly small at 

elevated temperatures according to Eq. (3.8).

1.00
Free surface —  Coupling through GB 

vacancy flux
—  Coupling through diffusion 

creep strain rate0.97 d-

0.94

Free surface

0.91

0.2 0.4
Distance y/d

0.6 0.8

Figure 3.4. The predictions o f concentration profile are close for both coupling approaches 
through GB vacancy flux and through creep strain rate.
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Table 3.1. Parameters o f test computation to compare the performance o f coupling approach 
through grain boundary flux and coupling through diffusional creep strain rate

Parameter
Number of elements 2232
Number of nodes 2389
Temperature, K 873
Grain size, pm 1.0
Young’s modulus, GPa 128
Poisson’s ratio 0.33
Grain interior diffusivity, m2/s 5.46* 10’12
Grain boundary diffusivity, m2/s 1.12*10"'°
Horizontally applied fixed displacement, nm 0.1
Number of transient time steps 10000
Computation time with coupling through grain 
boundary fluxes, min 1200

Computation time with coupling through 
diffusional creep strain rate, min 90

3.2.1. Mesh refinement multipoint constraints

To reduce the number of finite elements in the grain interior mesh, we introduce 

the first order mesh refinement multipoint constraints into our finite element model. 

Figure 3.5 shows the mesh refinement approach for two-dimensional quadrilateral 

element with interior nodes on refined side tied to the comer nodes on the coarse side. 

The displacement and vacancy concentration of tied node is linearly interpolated between 

displacements and vacancy concentrations of retained nodes.

Note that the aforementioned mesh refinement multipoint constraints produce 

continuous displacement and concentration fields. We compare the predictions of two 

finite element models for periodic grain array subjected to fixed horizontal compressive 

strain ex = 0.001. The model with mesh refinement multipoint constraints contains 448

elements, and the model with continuous mesh has 648 elements. The simulation is
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performed for the temperature 800 K with time period of 0.01 s. The vacancy 

concentration field predictions are close for both models as shown in Figure 3.6. 

However the mesh refinement leads to discontinuities in stress field, as shown in Figure 

3.7. This observation does not prevent the use of mesh refinement to predict the average 

stress relaxation since the evolution of the stress averaged over the volume of the model 

is not significantly different for continuous and refined meshes, as shown in Figure 3.7b.

Retained node

Tied
node

Retained node

Figure 3.5. First order mesh refinement multipoint constraint.

The advantage of mesh refinement multipoint constraints in saving the 

computation cost is obvious considering that the time required to go through direct SLE 

solver in MSC.Marc varies roughly linearly with number of degrees of freedom 

(MSC.Marc manual [53]).
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8 .3 6 0 0 -0 6  
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7 . 6 8 0 e-0 6  

7 . 3 4 0 e-0 6  

7 . 0 0 0 e-0 6

Free y
surface ‘

—
Internal X

GB

Figure 3.6. Comparison o f  vacancy concentration field predictions for FEA models with
continuous mesh and mesh refinement multipoint constraints at temperature 800 K, 
time t = 0.01 s.
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Figure 3.7. Comparison o f  stress predictions for FEA models with continuous mesh and
mesh refinement multipoint constraints at temperature 800 K, time t = 0.01 s. (a) 
Distribution o f  stresses, (b) Evolution o f  average stress.
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3.2.2. Selection of adjustable time step and stability of incremental procedure

The explicit time integration procedure outlined above requires the selection of 

the time step which is below some critical value. If the time step exceeds the critical 

value, the loss of stability occurs and oscillations are observed in the variables of the 

model such as displacements, stresses, vacancy concentrations. The example computation 

is shown in Figure 3.8 to illustrate the oscillations that signify the loss of stability in the 

finite element solution. The periodic array of 500 nm square grains is subjected to 

externally applied compressive displacements 0.1 nm at temperature 673 K. The time 

step is selected as 6.0-10”5 s which results in the maximum increments of equivalent 

creep strain in the model Af™  = 3.7 • 10-3. Figure 3.8 shows that the time step has to be 

smaller to avoid the growth of oscillations over a period of time At = 0.012 s.

It was determined through numerical experiments that the critical time step A/* 

that ensures stability of time integration should be such that the maximum equivalent 

creep strain increment in the model A e ^  during the time step does not exceed the

critical value Ae*r = 10”4. The creep strain rate strongly depends on temperature and 

applied stress, thus when the time step is selected based on the threshold value A e 'r , the 

effects of temperature and applied stress on the critical time step are taken into account.

Note that in stress relaxation problems, the vacancy fluxes and corresponding 

diffusional creep strain increments are reduced with time, due to the reduction in stress 

gradients that drive the mass flow. Accordingly, the time step may be increased to 

maintain the maximum equivalent creep strain increment that occurs dining time At as
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A e 'r . We increase the time step proportionally to the reduction in creep strain increment 

to reduce the computation time without the loss of stability.

1.00

0.95-

'g 0.80-
<DO
O 0.75- 

U

Free surface f  y

Test node ;
symmetry :0.70-

0.65- symmetry

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Time t, s

Figure 3.8. Example o f the growth o f  oscillations that occurs during forward time integration
when time step exceeds the critical value required for stability o f explicit procedure.

3.2.3. Increase of computation efficiency using extrapolation

The computation time can be reduced by increasing the time step. H owever, as 

presented in the previous subchapter, there is a critical time step dependent on applied 

stress and temperature that must not be exceeded to maintain stability. Thus we turn to
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the time series extrapolation as an alternative method to reduce the computation cost. By 

extrapolating the nodal quantities such as displacements and vacancy concentrations, it is 

possible to reduce the number of time increments required to achieve stress relaxation.

This is done by using the FEA-computed results from several time steps to “skip” 

a certain number of time increments. The extrapolation of nodal variables in time predicts 

the values of nodal variables that contain errors depending on the length of extrapolation 

interval. To ensure the stability of the subsequent integration, a certain number of after

extrapolation stabilization steps or “recovery” steps is needed.

In stress relaxation problems, we assume that external fixed displacement is 

applied instantaneously. Sudden application of boundary conditions results in initially 

large rates of change for nodal concentration, stress and creep strain. These rates are 

dramatically reduced on later stages of stress relaxation, as illustrated in Figure 3.9 for 

vacancy concentration. Thus it is particularly attractive to apply the extrapolation for 

stress relaxation problems at the stage when the effect of sudden application of external 

fixed displacement is smoothed out.

When extrapolation is applied to coupled elasticity-mass flow boundary value 

problem, it is important to consider, among other technical issues, which method to use to 

minimize the extrapolation error, what number of steps to specify for after-extrapolation 

stabilization, and what variables to extrapolate. Regarding the selection of extrapolation 

variables, it is necessary to provide the extrapolation for both displacements and vacancy 

concentration in every node, since the coupled formulation presented in the previous • 

chapter assumes both displacements and vacancy concentrations as primitive variables. 

Note that total nodal displacements can be obtained from finite element equations (3.4) if
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the creep strains that occur during the time step are known. Since creep strains can be 

integrated from Eqs (3.1)-(3.2) given the evolution of vacancy fluxes, we conclude that 

the variables that need to be extrapolated are the concentrations and vacancy fluxes.

1.000
Calculated values used for error estimate

Start of 
extrapolation

0.995-

Data used for 
extrapolation Free surface

0.990-

$ Test /  jjij 
node

0.985-

Free surface
0.980

0.0 2.0x10 4.0x10
Time t, s

6.0x10 8.0x10

Figure 3.9. Test problem used to evaluate the performance o f  vacancy flux and concentration 
nodal time series extrapolation.

We have explored the stability and accuracy performance of several extrapolation 

methods through a number of numerical experiments. The computations have been 

performed for the test problem of single l|xm grain subjected to the compressive strains 

£x =5-10^* at temperature 1000 K. We selected the individual time step 10“8 s for the 

explicit time integration procedure. The extrapolating function is specified in the form of
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a Taylor series expansion around base point that corresponds to time 8-10-5 s, i.e. 8000 

time steps. The extrapolation base point A for explicitly integrated test node vacancy 

concentration Ctrue is shown in Figure 3.9. The time derivatives of function /  in point A

are evaluated using the finite difference expressions for equally spaced data points 

separated by interval h [54]:

^  = - 7 2 /2 +225/3 - 4 0 0 /  + 4 5 0 / - 3 6 0 /  +147/ 7)
at o vti

l f = ~ 97?fl + 2970/3 "5 0 8 °^  +5265^  -3132/6 + 812/7) (3.9)

^ £  = - L ( 1 5 /  -104/ 2 + 3 0 7 / "4 9 6 /4 + 461/5 -2 3 2 /6 + 49 /7) 
at an

These expressions are obtained by constructing the 6-th order interpolating 

polynomial that passes through 7 equally spaced data points taken from the computed 

extrapolation data preceding point A as indicated in Figure 3.9. The 7-point expression 

(3.9) uses backward interpolation from base point A, and results in the estimation of

derivatives with the error Oih1'" ), where n is the order of the derivative.

Note that the extrapolation error depends on the method used, the smoothness of 

data, the interval of extrapolation and other parameters. We have observed that if the 

error introduced into the explicit time integration scheme is sufficiently small, the 

numerical time integration procedure is self-stabilizing. Thus the error in extrapolated 

nodal quantities can be reduced if a number of "recovery" time integration steps is 

performed after extrapolation. However, if the extrapolation is repeated without sufficient 

number of “recovery” steps, the extrapolation error is growing and stability is not 

preserved. Thus, for each extrapolation method, after the concentration and vacancy flux 

are extrapolated, a certain number of "recovery" explicit time integration steps Nr is
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needed before the extrapolation can repeated. In what follows, we refer to both the 

extrapolation and subsequent “recovery” steps as the extrapolation sequence. For the first 

order Taylor series expansion of extrapolating function at base point A, Figure 3.10 

shows how the error (C -  ) / Clnie at the end of the extrapolation sequence depends on

the fraction of recovery steps in total number of extrapolation sequence steps Ns. The

error estimated at the end of the extrapolation sequence is vanishing as this ratio exceeds 

0.5, i.e. the “recovery” time interval is the same as the extrapolation time interval. Such 

extrapolation sequence already results in twofold decrease of computation time. Note that 

the extrapolation sequence with the ratio Nr/N s = 0.5 is stable up to the 3rd order 

extrapolating polynomial, as illustrated in Figure 3.11(a).

For practical applications, it is attractive to maximize the extrapolation interval 

and minimize the number of “recovery” steps. We explore the stability of extrapolation 

sequence with Nr/N s =0.1 which gives an order of magnitude saving for computation

time. Figure 3.1 l(b)-(d) shows that for the extrapolation sequence with longer 

extrapolation intervals and smaller number of "recovery" steps, only the first order 

extrapolating polynomials provide stability for repeating extrapolation procedure. We 

attribute this behavior to better accuracy of 1st order extrapolating polynomial for the 

initial stage of stress relaxation, as shown in Figure 3.12(a). Less accurate predictions of 

higher order extrapolating polynomials for this stage may be explained by the sensitivity 

of finite difference expressions (3.9) to the deviation in the values of datapoints.

At later stages of stress relaxation, higher-order extrapolation polynomials 

provide more accurate extrapolation, as shown in Figure 3.12(b). Note that this 

observation prevents us from making a conclusion about which order of extrapolation
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polynomial is more appropriate since the extrapolation accuracy depends on the time that 

has elapsed since the sudden application of external load. However, we have observed 

that linear extrapolation ensures the stability for both initial and later stages of stress 

relaxation. Although it is clear that more efficient procedure would switch from linear to 

higher order extrapolation polynomial once the time derivatives of vacancy 

concentrations and fluxes is sufficiently small, we note that the transition between these 

regimes differs from node to node. For simplicity, we use linear extrapolation in the 

numerical models presented in the next chapters.

1.2x10

1.0x10

8.0x10

6.0x10

4.0x10

2.0x10

0 .0 -

0.60.0 0.1 0.2
Nj/N,

0.3 0.4 0.5

Figure 3.10. Dependence o f  the extrapolation error on the fraction o f “recovery” steps in 
extrapolation sequence.
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Figure 3.11. Stability o f repeating extrapolation sequence for total number o f sequence steps 
N s —1000. (a) third order extrapolation polynomial, Nr = 500. (b) third order

extrapolation polynomial, N r = 900. (c) second order extrapolation polynomial, N r =

900. (d) first order extrapolation polynomial, N r = 900.
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Figure 3.12. Dependence o f extrapolation accuracy on the selection o f extrapolation base point.
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CHAPTER 4

DIFFUSIONAL CREEP AND STRESS RELAXATION IN PERIODIC 

GRAIN ASSEMBLIES AND VALIDATION OF FINITE ELEMENT

PROCEDURE

In this chapter we apply the coupled elasticity-mass flow finite element procedure 

to test problems of a single grain, linear grain array and two-dimensional 3x3 grain 

assembly. The primary purpose of the numerical computations is to validate the 

procedure presented in Chapter 3. To meet this goal, we provide the comparison of our 

finite element predictions to the modeling results of Garikipati et al. [26] and Gao et al. 

[17]. We also compare the numerical results to the theoretical predictions of established 

Nabarro-Herring and Coble creep models.

In the process of validation, we establish the patterns of strain, displacement and 

stress evolution. The idealized geometry of the problems considered in this chapter 

facilitates the observation of the effect of model parameters such as grain size and the 

thickness of enhanced diffusivity grain boundary region on the transient creep and stress 

relaxation response. We also study the dependence of the response on physical 

parameters such as temperature and activation energy of vacancy motion. We complete 

the chapter by applying the finite element model to the problem of grain boundary 

grooving for the grain array subjected to constant externally applied stress.
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4.1. Stress relaxation of Cu linear square grain array

We consider the simplified two-dimensional plane strain model of copper linear 

grain array in which a single layer of grains is periodically arranged along the horizontal 

direction. The grains are assumed to have idealized square shape, see Figure 4.1. To take 

advantage of the symmetry, we model the square grain array with the upper half resting 

on the substrate. This is equivalent to modeling of the entire grain array with vertical 

displacements fixed along the horizontal axis of symmetry. Similar simplified models are 

frequently used in the literature. The examples include the studies of displacement, strain 

and stress response by Gao et al. [17], Buehler et al. [19], and the investigation of the 

behavior of grain boundary grooving and surface diffusion in [37], [38], [41], Possible 

practical applications of this simplified model include the stress relaxation and creep 

analysis of Cu thin films. However the computations presented here are used primarily 

for validation purposes and for establishing the patterns of mass flow and mechanical 

response that could be used to analyze the behavior of interconnect lines with several 

grains per line width.
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Free surface ‘ ' ̂ x

Grain
boundary 5symmetry

symmetry

Figure 4.1. Model of periodic square grain array used for validation of finite element procedure. 

4.1.1. Modeling assumptions and parameters

We consider the stress relaxation in a 2D (plane strain) grain array shown in 

Figure 4.1. The square shape of the grains allows to consider the periodic problem for 

only half of a single grain. Furthermore, if the vertical displacement is fixed along the 

horizontal axis of symmetry, it is possible to consider only a quarter of a grain. However, 

we choose to model two quarter-grains to test the performance of the multipoint 

constraints implementation of discrete grain assembly in a continuum model, presented in 

Section 3.1.3.

The numerical values of the parameters used in the computation are listed in 

Table 4.1. The value of atomic volume Q is taken from Frost and Ashby [49], the
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activation energy for vacancy motion in the grain interior Qm b is estimated as

Qmb~Qb~Qf where Qb = 197 kJ/mol is the activation energy of vacancy diffusion in

copper (Frost and Ashby [49]) that includes both the energies of vacancy formation and 

motion. The estimate of the energy of vacancy formation Qf  is the subject of ongoing

research in the scientific community [55-58]. Measurements of this quantity are not 

readily available. However, the first-principles calculations for energy of vacancy 

formation exist in the literature. For the computations presented here we estimate Qf  as

an intermediate value between the reported calculations for the temperature of 0 K (Sato 

et al. [57]) and 1000 K (Grochola et al. [58]). The thickness of enhanced diffusivity grain 

boundary region is selected as 1 nm which corresponds to ~4 Cu atomic monolayers. As 

described in Chapter 2, the activation energy for vacancy motion in the grain boundary 

region Qmgb is treated as an adjustable parameter that may be affected by impurities,

grain boundary roughness, crystallographic orientation and other factors. For the 

calculations presented in this chapter, we assume Qm gb = 0.6Qm b to explore the stress

relaxation response when the grain boundary activation energy is significantly reduced. 

This assumption results in considerable increase of grain boundary vacancy diffusivity 

compared to the diffusivity in the grain interior, as indicated in Figure 2.4. Thus, we can 

expect the dominance of Coble creep mode.

The model is subjected to instantaneously applied compressive strain ex = 0.002. 

The initial purely elastic deformation is schematically shown in Figure 4.2(a). 

Application of fixed horizontal strain ex results in initially uniform horizontal
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compressive stress o x = -236.8 MPa and vertical stress cry = 0. The out-of-plane stress is 

<JZ =v(<Jx + o y ) = -78.1 MPa due to plane strain assumption.

Table 4.1. Values o f  parameters used in the stress relaxation modeling o f periodic copper grain 
array to compare numerical and theoretical predictions.

Parameter ' •’ ’ 's'.'- ftfAlue*, -
Grain width d 100 nm
Burgers vector b 0.25 nm
Grain boundary region thickness 8 1 nm
Atomic volume Q 1.18-10'29 m3
Melting temperature Tm 1356 K
Young’s modulus E 128 GPa
Poisson’s ratio v 0.33
Grain interior vacancy diffusion pre-exponential D0L 2 -10‘5 m2/s
Grain interior activation energy for vacancy motion Qm b 113.3 kJ/mole
Grain boundary vacancy diffusion pre-exponential SeDagb 5 -10'15 m3/s
Grain boundary activation energy for vacancy motion Qm gb 67.98 kJ/mole
Grain boundary activation energy for vacancy formation Qf 83.7 kJ/mole

According to the coupled formulation presented in Chapter 2, the material flows 

towards the interfaces with the lowest magnitude of interfacial normal stress. For the 

periodic grain array considered in this chapter, the smallest magnitude of normal stress is 

at the free surface. Thus we expect the evolution of the deformed shape during stress 

relaxation as schematically illustrated in Figure 4.2(b).
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Initial elastic 
deformation

Unloaded
shape

(a)

Figure 4.2. Periodic grain array subjected to fixed strain, (a) Initial purely elastic deformation 
after instantaneous application o f  £x at time t = 0. (b) Schematic o f  expected 
evolution o f  free surface profile due to mass flow.

4.1.2. Evolution of stress field in the grain array

We assume that the time dependence of stress averaged over volume V 

{crxx) = \/V jcradV can be approximated by Maxwell model relaxation function
V

(a )  = (cr0)exp(-t/T )  (4 .1)
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where r  is the Maxwell model relaxation time and <̂x0̂  is the average stress at time t = 

0. Relaxation time T corresponds to (<r)/(cr0) = e~x, i.e. approximately 63% of averaged

stress relaxation. We use the concept of relaxation time to characterize the time period of 

relaxation of average stress in the model and to scale the time t in the graphs throughout 

the rest of this section.

Figure 4.3 shows the stress a xx distribution along the internal grain boundary at

different time instances (f = 6- 10^T, 0.0 I t ,  O.lr and 0.5r) at two different 

temperatures (T  = 0.3Tm and 0JTm, where Tm =1356 K  is the melting temperature of

Cu). It can be seen that the stress relaxation occurs almost instantaneously at the junction 

between grain boundary and free surface, and gradually advances along the internal grain 

boundary. We observe that the stress gradients are lower at high temperatures. This effect 

may be attributed to the contribution of Nabarro-Herring mechanism towards stress 

relaxation. Note that relaxation time t  is different for different temperatures, for example 

T ~ 1 s for T  = 0.5T and t  ~ 0.001 s for T = 0 J T  . Such variation is due to the fact that
tyi m

the vacancy diffusivities are strongly dependent on temperature and the diffusional creep 

strain rate responsible for stress relaxation is much higher at elevated temperatures.

We expect that the choice of tensile or compressive direction for externally 

applied strain affects the directions of elastic displacements and vacancy fluxes rather 

than their magnitudes. Therefore we assume that the predictions of time evolution for 

non-dim ensionalized horizontal stress /<T0 are approximately the sam e for 

compression and tension. With this assumption at hand, we compare our results to the 

predictions for the polycrystalline film subjected to tensile externally applied strain
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according to the model of grain boundary diffusion wedges (Gao et al. [17]). Their model 

is schematically illustrated in Figure 4.4. The normal tractions on internal grain boundary 

were assumed to be relaxed by transporting the crack-like wedges from free surface into 

the grain boundary. The integro-differential eigenvalue problem was formulated to obtain 

the solution for opening displacement of the crack-like wedges and calculate the 

corresponding evolution of stress along the internal grain boundary. The stresses reported 

by Gao et al. [17] are depicted by triangles for time instances 0.011  and 0.1 z  in Figure 

4.3 , and demonstrate good correspondence of results obtained by two different methods.

1.4

o

3  0.8

Stress gradients are higher ^ —  
at lower temperatures ■

 T = 0.3Tm
  T = 0.7Tm
Gao etal (1999) 
A t = 0.01x
▲ t = 0.1x

-1 - 0.8

Stresses relax almost 
instantaneously at the 

junction
- 0.6 -0.4 - 0.2

Distance y/h

Figure 4.3. Evolution of normal stress distribution along the internal grain boundary (x = 0) at 
temperatures T = 0.7Tm (solid lines) and T = 0.37^ (dashed lines). Predictions of 
Gao et al. [17] shown by triangles are reported as approximately independent of 
temperature.

As seen in Figure 4.3, the difference in stress evolution at different temperatures 

is not substantial for a one-dimensional array of grains. Hence the relaxation of average
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stress (<7 J )  as a function of t j t  can be plotted as a single curve, see Figure 4.5. The 

insets illustrate the time evolution of stress distribution <7̂  in the grain.

A (treated poiyccyvtallme meld film

crw^lifogMinbcnndHywtttem

Figure 4.4. Grain boundary diffusion wedge model o f  polycrystalline film subjected to uniform 
externally applied strain (Gao et al. [17]).

t =  T
— 0.10

0.8 -

0.40
0.6  -
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0 .9 0 - -0 .6 5 '

0 .8 0 -
0.4 - 1.10

1.00
0.95to/) A o cd 0 .2  -

t =  0.01T t =  0 .1 t
0.0

0.80.4
Time t /t

0.60.0 0.2

Figure 4.5. Relaxation o f average stress (cy^) ■ Insets show the distribution o f <7  ̂ at selected 

time instances.
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4.1.3. Temperature dependence of free surface profile and contribution of Nabarro- 
Herring and Coble creep mechanisms

The free surface profiles resulting from the accumulation of material along the 

free surface due to stress-driven mass flow at various temperatures are shown in Figure 

4.6. The lump at the grain junction region results from material migration along the grain 

boundary (Coble mechanism). The height of the lump is approximately the same for all 

considered temperatures. This observation can be explained by the fact that the increased 

diffiisivity at elevated temperatures is compensated by higher rate of vacancy flow 

according to Fick’s law (2.7). We also observe the increased accumulation of material 

along the free surface at high temperatures ( T > 0.5Tm ). This effect can be explained by 

contribution of vacancy diffusion in the grain interior (Nabarro-Herring mechanism).

10.000

1.0 0 0 ,

§  0, 
a
O
cd
a o ,zn

100 i

010 ,

0.001

Coble creep is dominant at 
low temperatures

-50.0 -30.0

■T = 0.3Tm 
■T = 0.5Tm 
•T = 0.6Tm 
T = 0.7Tm 
•T = 0.8Tm 
T = 0.9Tm 

—  loaded att = 0

Both Nabarro-Herring and 
Coble mechanisms operate 

at high temperatures

- 10.0 10.0 
x, nm

30.0 50.0

Figure 4.6. Free surface profile at time t — t  for stress relaxation at different temperatures.
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4.1.4. Estimate of relaxation time

The finite element prediction of relaxation curve for average stress shown in 

Figure 4.5 can be conveniently approximated by Maxwell model relaxation function 

given by Eq. (4.1). Maxwell model is an idealized model of a viscoelastic material that 

consists of linear elastic spring element and linear viscous dashpot element connected in 

a series, as in Figure 4.7. The stress-strain relation of spring and stress-strain rate relation 

of dashpot are, respectively

<j = Ee (4.2)

<T = Tjy (4.3)

where E  is the Young's modulus of the spring and Tj is the dashpot viscosity. The 

relaxation time r  used in Maxwell model relaxation function (4.1) can be estimated as

r  = rilE  (4.4)

E T]

a < --------•—K A A A A ^  • ► a

Figure 4.7. Maxwell model of a solid.

Using Eq. (4.4), it is possible to obtain the theoretical estimate of relaxation time 

according to classical dimensional creep models of Nabarro-Herring and Coble. For 

simultaneously acting Nabarro-Herring and Coble creep mechanisms, the creep rate 

formula is given by Frost and Ashby [49] as

■ 4 2 o Q  r»y=  -D ,
kTd L

8 D h'
1 +  7t '  Sb

dDL j
(4.5)
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where y  is the diffusional creep strain rate, d  is the grain width, Se is the effective 

thickness of the grain boundary (on the order of magnitude of Burgers vector b ) and a  

is the applied stress. Note that the diffusivities DL and Dgb in (4.5) are based on the 

energy of both formation and motion of vacancies

These diffusivities are different from the ‘Vacancy motion only” diffusivities Dv b and 

Dvgb used in our finite element formulation. The effect of vacancy formation energy Qf

is considered in the finite element approach through Eqs. (2.5)-(2.6) for stress 

dependence of equilibrium vacancy concentration.

We obtain the theoretical estimate of relaxation time t  from Eqs. (4.3)-(4.5) as

The estimate of t  from Eq. (4.8) is compared to the finite element predictions in Figure

4.8. To obtain the relaxation time from the finite element solution, we have performed a 

number of stress relaxation simulations for a range of temperatures between 0.3Tm and

Tm. The numerical prediction of r  is estimated by fitting the exponential function (4.1) 

to the FEA average stress relaxation curve.

Figure 4.8 shows good agreement of theoretical (Frost and Ashby [49] results 

combined with Maxwell model) and numerical predictions for stress relaxation time. The 

largest difference is in the range of 600-900 K, and does not exceed 30% of theoretical

(4.6)

(4.7)
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values. Note that the creep strain rate in Eq. (4.5) accounts for the contribution of both 

Nabarro-Herring and Coble mechanisms to creep rate, which is consistent with the finite 

element computations performed in this chapter since both diffusion within grain interior 

and grain boundary region contributes to the mass flow.

1.0E+09
  Maxwell model

1.0E+07 FEA

1.0E+05

1.0E+03

1.0E+01

1.0E-01

1.0E-03

1.0E-05
400 500 600 700 800 900 1000 1100 1200 1300

Temperature T, K

Figure 4.8. Comparison of diffusional creep theoretical estimate of relaxation time T to the finite 
element predictions.

4.2. Diffusional creep in 3x3 grain assembly

The classical models of Nabarro, Herring and Coble diffusional creep (Nabarro 

[8], Herring [9], Coble [10]) provide the analytical expressions for macroscopic 

diffusional creep rate of a polycrystalline material. These expressions are derived by 

considering a single grain of idealized shape assuming that the macroscopic body is 

represented by infinitely periodic grain arrangement. In this section, we study the 

dependence of macroscopic creep rate on grain size and grain boundary region thickness
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using the FEA modeling approach presented in the previous chapter. To ensure that the 

finite element model predictions can be compared to the response from classical 

dimensional models, we need to reduce the effect of boundaries in the FEA simulation. 

For this purpose, we consider the simplified two-dimensional plane strain model of 3x3 

copper grain assembly. The response of internal grain is assumed to represent the 

behavior of individual grain within a polycrystal.

4.2.1. Evolution of tractions on internal erain boundaries

Let us consider the creep of an idealized two-dimensional (plane strain) periodic 

array of square grains subjected to biaxial externally applied stress as shown in Figure

4.9. The external loading consists of compressive stress a  applied horizontally and 

tensile stress of the same magnitude applied vertically. Due to the symmetry of the square 

grain shape, it is possible to consider only a quarter of the model with appropriate 

displacement and vacancy flux boundary conditions. Uniform isotropic elastic properties 

are assumed. The Young’s modulus, Poisson ratio and other parameters used in this 

computation are specified in Table 4.2. Note that the 100 rnn thickness of grain boundary 

region is physically unrealistic and is used in this work exclusively for subsequent 

comparison of internal grain boundary tractions to the published predictions of Garikipati 

et al. [26],

We assume initial stress in the solid to be equal to zero. Application of external 

load results in purely elastic deformation and initially uniform stress state. Creep strains 

accumulating with time result in the horizontal contraction and vertical elongation of 

each individual grain in the periodic array while the rectangular shape of the grains is 

preserved. Thus, to model the periodic grain array, we need to ensure that the grains
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adjacent to the boundary of the 3x3 grain assembly are properly constrained. For this 

purpose we employ multipoint constraints for the top, bottom and lateral surfaces of the 

3x3 grain model.

Figure 4.9. FEA model o f  3x3 grain assembly. Symmetry allows to reduce the number o f  
elements in the model by 75 %.

The contour plots in Figure 4.10 present the stress field at time t = 500 s for 

external load a at = 60 MPa applied to the grain assembly containing the grains of size 1

|im. Finite element simulation results show that the magnitude of normal stress on the 

plane orthogonal to the direction of a grain boundary is rapidly decreasing in grain 

boundary regions due to diffusional creep strains. The behavior of traction normal to the 

boundary of center grain is shown in Figure 4.11 at time t = 500 s. Since the externally 

applied load is constant, the reduction of traction in the vicinity of the grain boundary 

junctions is compensated by the increase of traction in the central part of the grain.
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Table 4.2. Numerical values of parameters for creep response modeling of 3x3 grain assembly to 
compare the model predictions to the results of Garikipati et al. [26].

Parameter ^Ns f̂liSPI
Grain width d 1 |im
Grain boundary region thickness 5 100 nm
Externally applied traction <Jal 60 MPa
Temperature T 473 K
Young’s modulus E 60 GPa
Poisson’s ratio v 0.3
Vacancy diffusion pre-exponential D0L 2 - 10'5 m2/s
Grain interior activation energy for vacancy motion QmJ> 64.7 kJ/mole
Grain boundary activation energy for vacancy motion Qmgb 60.1 kJ/mole

We provide the comparison of our finite element predictions to numerical 

computations presented in Garikipati et al. [26] for the model with the same geometry 

and elastic material properties. The diffusion is considered by Garikipati et al. [26] using 

the concept of chemical potential and spatial distribution of vacancy formation energy 

(rather than vacancy motion energy, as in our model). The values for vacancy motion 

activation energies in our computation are taken based on their published vacancy 

formation energy parameters.

The finite element approach adopted by Garikipati et al. [26] is based on the 

formulation of coupled elasticity and vacancy flow problems and subsequent staggered 

numerical solution of the governing equations. However, they assume that the grain 

boundaries as sources/sinks of vacancies have a certain strength, or effectivity. Note that 

the finite element prediction of traction evolution in our model has been obtained 

assuming that the grain boundaries act as infinite sources/sinks of vacancies. In 

Garikipati’s approach, the vacancy flow governing equation (2.8) is modified to include 

the vacancy source/sink term
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Figure 4.10. Stress distribution at time t = 500 s in 3x3 grain assembly subjected to externally 
applied biaxial traction. Parameters for this computation are specified in Table 4.2.
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Figure 4.11. Traction normal to internal grain boundary of center grain at time t = 500 s.
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Here, % = 1 at grain boundaries and % = 0 elsewhere. Large values of parameter t  are 

used to specify a slow-acting source/sink and smaller values of r  results in a more 

rapidly acting source/sink. Even though the normal stress averaged over the grain 

boundary is predicted to be approximately the same in both simulations, the approach of 

Garikipati et al. [26] predicts slower evolution of grain boundary traction, as shown in 

Figure 4.11. A possible explanation of this behavior is the finite value of vacancy 

source/sink strength used in their calculations, in addition to the different theoretical
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background for vacancy diffusion treatment in their approach. We also note that the 

redistribution of traction along the internal grain boundary is moderate compared to the 

model with infinite sources/sinks of vacancies, since the tractions on internal boundaries 

are not decreasing to zero value at the grain boundary junctions.

4.2.2. Dependence of diffusional creep rate on grain size

Grain size is one of the parameters that affect creep in metals. Burton and 

Greenwood [59] provided the experimental evidence for Nabarro-Herring and Coble 

creep rate dependence on grain size. This effect is also present beyond the range of 

stresses and temperatures where diffusional creep is believed to be dominant, as observed 

by Wilshire and Palmer [60],

To study the dependence of diffusional creep rate predictions on grain size for our 

modeling approach, we perform finite element simulations for the 3x3 grain assembly 

shown in Figure 4.9. The elastic and diffusion properties of the material are specified in 

Table 4.1. Series of computations is performed for various values of grain size subjected 

to externally applied load a ai =100 MPa at temperature 673 K.

Figure 4.12 shows how the numerical predictions of creep rate depend on grain 

size. Since for all considered cases of grain size the grain boundary region thickness was 

taken as 1 nm, the fraction of GB region varies from 36% to 0.8% for the grain size range 

of 10-500 nm. Dashed lines in Figure 4.12 correspond to analytical predictions of 

Nabarro-Herring and Coble given by the first and second term of Eq. (4.5), 

correspondingly. As can be seen, the FEA results for smaller grain size are in good 

agreement with the Coble creep predictions of 1/a?3 dependence of creep rate. Note that
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the behavior of nanoscale Cu grains is of practical interest as the current technology is 

capable of manufacturing the first level interconnect lines having thickness on the order 

of 100 nm. These lines typically exhibit the bamboo structure, i.e. single grain per line 

width, which is caused by abnormal grain growth in electroplated Cu (see, for example, 

Harper et al. [61]).
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Figure 4.12. Creep rate dependence on grain size at temperature T = 673 K and applied stress 100 
MPa. Comparison of finite element results to theoretical predictions of Nabarro- 
Herring and Coble.

4.2.3. Effect of grain boundary thickness on diffusional creep rate predictions

To illustrate how the choice of GB region thickness affects the predicted creep 

rate, we have varied the value of this parameter from b to 8b for the grain size of 100 

nm, where b is the length of Burgers vector for copper. The finite element simulations
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are performed for the 3x3 grain assembly shown in Figure 4.9. The model subjected to 

externally applied load cr^ = 100 MPa at temperature 673 K. Elastic and diffusion 

properties of the material are specified in Table 4.1. The results of numerical simulations 

presented in Figure 4.13 show that the increase in grain boundary region thickness, which 

results in larger area of enhanced vacancy flow, facilitates diffusional creep in the grain. 

Note that the theoretical predictions of Coble creep model can be affected in a similar 

way when parameter 8  of Eq. (4.5) is varied. We have assumed that 8  is equal to the 

magnitude of Burgers vector of copper [49] to obtain Coble creep model strain rate 

shown in Figure 4.13. Since measured values of GB thickness for polycrystalline Cu are 

not readily available, it is recommended to calibrate the FEA models for this parameter 

using the appropriate experimental data.
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Figure 4.13. Creep rate dependence on the choice of grain boundary region thickness for 
the 100 nm grain.
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CHAPTER 5

SEVERAL EXAMPLES OF FINITE ELEMENT PREDICTIONS OF 

STRESS RELAXATION IN TYPICAL COPPER INTERCONNECT

STRUCTURES

In this chapter we apply the coupled elasticity-mass flow finite element technique 

to predict the stress relaxation response in copper interconnect structures. The behavior of 

interconnects is of practical interest for microelectronics industry. Interconnect lines are 

encapsulated and annealed at high temperatures up to 400 °C. Due to the mismatch of 

thermal expansion coefficients of Cu, Ta, dielectric and passivation materials, high 

stresses develop during processing stage that may lead to the initiation of voids and 

cracks while the circuit is heated to elevated temperature and then cooled to room 

temperature. To control the stress state in copper lines during the processing stage, it is of 

practical interest to predict the time needed for stress relaxation of Cu interconnect lines 

at elevated temperatures.

We apply our approach to predict the stress field evolution with time. During the 

stress relaxation modeling, we study the accumulation of material at the free surface. We 

also provide the FEA computations that reveal the dependence of stress relaxation on the 

activation energy for vacancy motion in the grain boundary region as an adjustable 

parameter of the finite element model.
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5.1. Modeling of single-level structure subjected to thermal load

A typical single-level copper interconnect structure is shown in Figure 5.1. The 

figure shows the periodicity cell assuming the structure is periodic in the horizontal 

direction. We can assume plane strain model since the length of a typical interconnect 

line is about an order of magnitude larger than line thickness and width. Copper is 

encapsulated in thin Ta layer which acts as the diffusion barrier between Cu and 

dielectric. For simplicity, we consider the case of a single Cu grain per line width. This is 

typical for nanoscale interconnect structures with line thickness less than 100 nm. We 

will consider both cases of free surface and passivation layer on top of Cu in a typical 

interconnect structure. Table 5.1 adapted from [3] lists the properties of the materials in a 

typical interconnect line.

Si

Figure 5.1. Schematic illustration o f cross-section o f  a typical single-level interconnect structure.

Note that the selection of dielectric material is an important design parameter that 

affects the performance and reliability of integrated circuits. The current trend in
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microelectronics industry is to select the dielectric material with lower dielectric 

constants to minimize the product of interconnect line resistance and capacitance (RC) 

which is responsible for signal propagation delay. Low-k dielectrics have low Young's 

moduli and high coefficients of thermal expansion, which makes the integrated circuits 

susceptible to failure and necessitates additional research on reliability of such structures.

Table 5.1. Mechanical properties of materials used in a typical interconnect line.

1 Material Young’s modulus 
E(GPa) W B W M

Copper (Cu) 128 0.36 16.5
Tantalum (Ta) 186 0.34 6.5
Silicon dioxide (SiC>2) 66 0.25 2.5
Low-k dielectric —1-10 -0.3 -10-100
Silicon (Si) 165 0.22 2.3

5.1.1. Elastic stress field in interconnect lines subjected to thermal load

We begin this chapter by studying the difference in the character of stress and 

deformation between the previous technology where SK>2 was used as the dielectric, and 

current technology where low-k dielectric material is used. The FEA modeling is 

performed for the sample structure with the geometry shown in Figure 5.2a. It is assumed 

that the structure is initially stress-free at room temperature T = 293 K. We assume that 

the thermal expansion of the Si base layer is not constrained. Therefore the stress state in 

the Si wafer is zero at elevated temperatures with the exception of the thin layer on top of 

Si where the back-end interconnect lines and front-end devices are located. To m odel the 

thermomechanical loading for the single-level interconnect structure, it is necessary to 

apply both the increase in temperature AT  and the horizontal displacement
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Am x = ( l+ vSi) a SiLAT which is the kinematic constraint that arises due to the thermal 

expansion of the Si base layer. The coefficient (l+ vSl) arises due to the plane strain

assumption. Using the symmetry of the periodic structure we model only a half of the 

interconnect line. The mechanical boundary conditions are shown in Figure 5.2b.

Figure 5.2. Two-dimensional plane strain model of periodic interconnect unit cell, (a) 
Geometry and (b) thermomechanical loading.

We model the response of the structure to applied temperature increment AT = 

380 K which gives rise to thermal strains and stresses due to the mismatch in thermal 

expansion coefficients of interconnect line materials. The Young’s modulus, Poisson’s 

ratio and CTE of low-k material are taken as E = 2.5 GPa, v = 0.34 and a  = 60 ppm/K.
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Figures 5.3-5.5 illustrate the stress oa , a  and a ’ as well as the deformed shape of

thermally loaded interconnect structure. The results are obtained using the FEA mesh 

with 715 elements. Due to significant difference in elastic properties and coefficients of 

thermal expansion, the deformation of low-k dielectric material is much larger than the 

deformation of SiC>2, which results in opposite direction of grain boundary sliding. We 

also note higher stress <7̂  at the free surface-Cu-Ta junction for the low-k dielectric

structure compared to the stress in SiCh structure. Thermal stress <7W is approximately 2

times larger in the structure containing low-k material.

3 . 0e+08 
2 .0e+08 
1.0e+08 
0.0e+00 

-1 .0 e+ 0 8  
-2 .0e+ 08  
- 3 .0e+08  

- 4 .0e+08 
- 5 .0e+08 
-6 .0e+ 08  
- ? .0e+08 
- 8 .0e+08

Deformed shape 
magnification factor: 10

Deformed shape 
magnification factor: 1

Figure 5.3. Contour plots of stress <7̂  in thermally loaded single-level interconnect structure.
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Figure 5.4. Contour plots o f  stress <7' in thermally loaded single-level interconnect structure.
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Figure 5.5. Contour plots o f stress (7' in thermally loaded single-level interconnect structure.

- 8 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1.2. Modeling of transient stress relaxation using coupled finite element approach

After the integrated circuit is thermally loaded, relaxation of thermal stresses in 

interconnect lines occurs with time. Stress relaxation can be attributed to various 

mechanisms, including diffusional creep and grain boundary sliding. In this chapter we 

study only the effect of diffusional mass flow on stress relaxation. We consider the test 

structure shown in Figure 5.2 with SiC>2 selected as the dielectric material. The 

mechanical properties of interconnect line materials are specified in Table 5.1. To model 

the stress-driven diffusional mass flow in copper, we select the thickness of enhanced 

diffixsivity grain boundary region to be 1 nm. The vacancy diffusion properties of copper 

are selected as specified in Table 4.1.

We assume that the structure was initially stress-free at room temperature T = 293 

K. We model the transient stress relaxation that occurs after the structure is 

instantaneously subjected to elevated temperature 673 K. Figure 5.6 depicts the evolution 

of stress a a averaged over volume of the structure. Thus the coupled finite element

procedure predicts stress relaxation in interconnects when diffusional creep is assumed as 

the only acting mechanism of nanoscale deformation.

The insets in Figure 5.6 illustrate the accumulation of material at the free surface 

due to diffusional mass flow. Note that the increased diffusivity in the Cu grain boundary 

region results in the preferential accumulation of material at the free surface -  grain 

boundary junction. The height of the accumulated material is predicted as ~ 1 nm. Note 

that due to simultaneously acting diffusional creep and grain boundary sliding it would 

not be possible to distinguish between these two modes in case experiments are 

performed to measure nanoscale deformation during thermal cycle. In order to
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experimentally verify the effect of diffusional creep, the FEA simulation that considers 

both nanoscale deformation mechanisms is needed.

6.0
T im e t, s

Figure 5.6. Evolution of average stress and deformed shape for a typical Cu-Ta-dielectric 
structure under thermal loading.

Before we proceed with the study of interconnect stress relaxation dependence on 

design parameters, it is of interest to compare the finite element predictions to the 

experimental observations reported in the literature for stress relaxation in copper 

interconnect lines. We consider the interconnect structure experimentally studied by 

Singh et al. [29] which is shown in Figure 5.7a. The copper line is encapsulated in a Ta 

diffusion barrier deposited on top of Si02 base layer. SiOF is used as a dielectric. For this 

material, the Young's modulus is E = l \ . l  GPa, Poisson's ratio is v  =0.16 and the 

coefficient of thermal expansion is
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Figure 5.7. Two-dimensional model of periodic interconnect line structure experimentally studied 
by Singh et al. [29]. (a) Geometry, (b) Finite element mesh, (c) Initial stress O„  after 
application of thermal load.
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a  = 0.94 ppm/K. The structure is periodic in the horizontal direction and only half of the 

structure needs to be modeled due to symmetry. In the experimental procedure of Singh 

et al. [29], the specimen was heated from room temperature to 430 °C at the rate of 4 °C 

per minute. The structure is then thermally annealed at 430 °C, followed by cooling to 

200 °C at the rate of 2 °C per minute. Although some stress may be present when the 

cooling starts, we follow the assumption of Singh et al. [29] that the structure is fully 

relaxed after the thermal annealing. Therefore the tensile stress is predicted to develop 

with cooling due to the thermal contraction. The assumptions of zero stress state at 430 

°C and instantaneous cooling to 200 °C give a conservative estimate of the stress 

relaxation time.

Due to large thickness-to-width ratio of the copper line in the specimen and the 

modeling requirement of 1 nm thickness of the enhanced diffusivity region in copper, the 

number of elements in the finite element mesh for this model may be on the order of 

thousands of elements, which makes the calculations very lengthy. We reduce the number 

of elements by using first order mesh refinement multipoint constraints described in 

Section 3.2.1 and employing the elements with a large aspect ratio, as shown in Figure 

5.7b. The contour plots in Figure 5.7c present the stress field after the thermal load is 

instantaneously applied to the structure.

The finite element predictions of average stress relaxation are shown in Figure 5.8 

for two values of vacancy motion activation energy in grain boundary region. Note that in 

order to obtain correspondence with experimental results, we selected the values of 

vacancy motion energy which are considerably lower than the values reported in the 

literature (as, for example, in Frost and Ashby [49]). This may be attributed to the
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assumption of our modeling approach to consider diffusional creep as the only 

mechanism of stress relaxation. We believe that the consideration of grain boundary 

sliding would facilitate stress relaxation and allow us to use higher values of grain 

boundary vacancy motion activation energy (between 0.6Qmb and 0.8Qmb) to obtain

correspondence with experimental predictions.

1.0

0.9

D 0.8

0.7

m,b

Singh et al (2005)
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0.5
100 150

Time t ,  min
200 250 300

Figure 5.8. Comparison o f  finite element predictions to experimental results o f  Singh et al. [29].
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CHAPTER 6

MODELING OF DIFFUSIONAL CREEP CONSTITUTIVE BEHAVIOR 

WITH EQUIVALENT VISCOPLASTIC FINITE ELEMENTS

In this chapter we describe the numerical technique of equivalent viscoplastic 

finite elements to improve the computational efficiency of the diffiisional creep 

modeling. We explore the possibility of the mechanical FEA treatment that captures the 

manner in which the vacancy flow phenomenon affects the stress-strain state in the 

model. We adopt the approach developed by the classical Nabarro-Herring and Coble 

theories, where the diffiisional creep mechanical response is described with the stress- 

strain rate constitutive relation. The consideration of the diffiisional creep process from 

purely mechanical point of view must improve the efficiency of computation by reducing 

the coupled elasticity-mass flow problem to the equivalent mechanical creep analysis.

We perform a series of numerical experiments to explore the variation of the 

creep behavior throughout the grain and to establish the equivalent creep laws. The 

numerically obtained creep laws are then applied to model the stress relaxation of Cu 

grain using the equivalent FEA creep analysis. The predictions of the equivalent model 

are compared to the stress relaxation results obtained through coupled elasticity-mass 

flow FEA procedure presented in the previous chapters.
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6.1. Computational challenges of diffusional creep modeling

The direct finite element modeling of diffusional creep for nanoscale copper 

grains with realistic values of grain boundary (GB) region thickness (=1 nm) requires 

excessively large amount of computer time. The test computations were made using the 

high-performance computing server with dual core Intel Xeon 1.8 GHz, 400 MHz front 

side bus processor and 4 Gb RAM available in the Department of Mechanical 

Engineering, University of New Hampshire. The simulation of the stress relaxation 

response for the periodic square grain array described in the previous chapter required the 

average computer time of 50 hours. The coupled FEA simulation of stress relaxation for 

typical Cu interconnect structure presented in Chapter 6 took approximately 120 hours.

As noted previously, the transient solution of coupled elasticity-mass flow 

problem using the procedure presented in Chapter 3 requires small time steps. The key 

factors that contribute to this requirement include (a) the small size of elements needed to 

model the 1 nm thick GB region, and (b) the large difference in the diffusivities of GB 

region and grain interior (see Eq. 3.8). It is possible to enhance the computational 

efficiency using the equivalent elastoplastic elements to model the region adjacent to the 

grain boundary.

The proposed equivalent finite elements allow to reduce the computation time by 

approximating the coupled description of diffusional creep with equivalent mechanical 

formulation. Therefore the computational efficiency can be increased without changing 

the FEA mesh used in the coupled simulation. We also consider the equivalent elements 

that are larger than the thickness of GB region, and represent the grain boundary layer 

which is understood as both a portion of GB region and the adjacent portion of grain
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interior. There are at least two advantages of using large equivalent elements in the finite 

element simulation of diffusional creep. First, large maximum allowable time step, which 

is roughly proportional to the element area according to Eq. (3.8), results in fewer time 

steps required for the transient simulation. Second, using the elements of larger size leads 

to the reduction of the number of degrees of freedom in the finite element model, and 

consequently the reduction of the time needed for the solution of SLE in the finite 

element procedure.

Large equivalent elements represent the areas with inhomogeneous diffusivities. 

Such elements must be assigned the effective material properties that provide the 

diffusional creep response equivalent to the response of the approximated region. In this 

chapter, we consider two possible ways to introduce the average (or effective) material 

properties of equivalent elements. The first approach is to approximate the diffusion- 

based mechanical response of the area adjacent to the grain boundaries with the average 

or equivalent creep law. An alternative way is to compute effective diffusivities of the 

grain boundary layer and apply the coupled elasticity-mass flow procedure presented in 

the previous Chapters to the finite element model containing equivalent elements.

6.2. Mathematical description of diffusional creep constitutive behavior

We note that the creep phenomenon can be treated mechanically if the vacancy 

flow effects are directly incorporated in the diffusional creep law of the material. The 

general formula for creep law can be presented as

rr = F ( f f , r r ,T,t) (6.i)
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where equivalent creep strain rate e cr is dependent on equivalent stress cr, accumulated

equivalent creep strain e cr, temperature T and time t .

The equivalent strain rate, equivalent strain and equivalent stress are computed as

t  = ̂ A  ’ ° = (6-2)

Here, £tj is the strain tensor, £~ is the strain rate tensor and a i  is the stress deviator 

defined as

° i  = a i j - \ Saa i* (6-3)

In Eqs. (6.2) and (6.3), summation is performed over repeating indices and Sjj is the 

Kronecker symbol.

The general creep law equation (6.1) is implemented in MSC.Marc in the form 

r  = A g ' f ( F ' ) g ( T ) h ( t )  (6.4)

Here, A and n axe material constants, and / ( t ? crJ, g{T),  h(t) can be given in the form

of a power-law dependence or more general user-supplied function. An alternative way to 

specify a creep law is to provide the piecewise-linear dependence between equivalent 

creep strain rate £ ,  equivalent stress a  and, possibly, other variables. In the following 

sections we explore various methods to approximate the effective (averaged) behavior of 

Cu within the grain and at the grain boundary by the diffusional creep law in the form of 

Eq. (6.4) and piecewise-linear £ ~ o  dependence.
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6.3. Effective diffusional creep law for grain boundary layer and grain interior

To establish the effective diffusional creep law we perform the numerical 

experiment of stress relaxation in the region of interest. Creep strain rate t  and stress a  

are averaged over (1) the grain comer region, (2) grain boundary layer and then (3) over 

the grain interior. We use the computations for one-dimensional linear grain array 

described in the previous chapter to validate the predictions of equivalent element 

technique. Therefore, the grain boundary region thickness, temperature and material 

properties are selected to match the computation described in Section 4.1. Note that the 

average (or effective) creep law or diffusivity can be dependent on the geometry of the 

approximated region, i.e. size, aspect ratio, selection of grain boundary thickness, 

location of the approximated region in the grain and other parameters. The choice of 

these parameters has to be justified for each particular simulation.

6.3.1. Stress relaxation numerical experiment for grain corner region

At the initial application of compressive load, the vacancy concentration gradient 

in the square grain array considered previously is the highest at the grain boundary-free 

surface junction. This effect, combined with the enhanced diffusivity of grain boundary 

region, results in large creep strain rate in the comer of a square grain model. Besides, 

intense accumulation of creep strains occurs only in the comer adjacent to the free 

surface, as shown in Figure 4.6. This leads to additional computational challenges 

associated with remeshing. It would be a considerable saving of computation time to 

approximate the diffusional creep response of this area using the equivalent finite element 

with effective creep law.
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The size of the comer region has been selected as 5 nm x 5 nm. This area is 

comparable with the geometric dimensions of the entire grain model, thus the 

representation of this region with an equivalent finite element increases the 

computational efficiency. The finite element model and boundary conditions are shown 

in Figure 6.1. The model is subjected to externally applied compressive strain ex = 0.002.

The vacancy concentrations on left and on top surfaces are dependent on the stress 

normal to the grain boundary plane according to Eq. (2.6). We assume that the 

concentration gradient is small and therefore vacancy fluxes can be neglected at the 

distance SS away from grain boundary, where S  is the GB region thickness. Thus zero 

fluxes are specified on the right edge of the grain comer model. Although the fluxes on 

the bottom surface of the grain comer region may be significant, it is not clear how to 

specify these fluxes when the grain comer region is considered separately from the rest of 

the grain. In our initial effort to establish the effective creep law, we neglect the fluxes at 

the bottom surface of the grain comer region and assume that vacancy flow occurs from 

top surface to lateral internal grain boundary. More accurate representation of vacancy 

fluxes will be provided later for the model of grain boundary layer.

The application of externally applied strain ex is followed by the transient stress

relaxation. At each time increment we compute the equivalent stress (<^(0) and

equivalent strain rate (e (/)) averaged over the area of the grain comer region.

Eliminating the parametric time variable t and plotting average strain rate versus average 

stress in Figure 6.2, we obtain the piecewise-linear approximation of the creep law.
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Figure 6.1. Finite element model used to establish effective creep law for grain comer region 
assuming that stress relaxation occurs due to vacancy fluxes from top surface to 
internal grain boundary.

The logarithmic plot reveals similar shape of isothermal creep law curves for 

temperatures in the range 473 K - 1073 K. We found that these curves can be 

approximated by the power law dependence

£ ~ - £ ( T )  .  y,
A(T)  V '

(6.5)

where A{T),  e„(T),  <J„, n are the material parameters that can be determined from the

numerical experiments. The physical meaning of fitting parameters cf_ and e  could be 

the average residual stress in the grain after a long period of stress relaxation and the 

average strain rate corresponding to the residual stress . The creep law curves
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computed for the temperature range between 473 K and 1073 K were fitted with Eq. (6.5) 

as shown by the dashed lines in Figure 6.2. The fitting was performed using fixed values 

of n = 0.737 and = 21.8 MPa. To obtain these numerical values for n and cf„, we 

fitted the creep law curve computed for temperature T  = 473 K and varied all four 

parameters and n in Eq. (6.5). To reproduce the creep law curves computed

for temperatures above 473 K, we varied only A and . The fitted values of these two 

temperature-dependent parameters are shown in Figure 6.3. Thus the power coefficient n 

and residual stress (X. in the approximate expression (6.5) for equivalent creep law were 

found to be independent from temperature T for grain comer region.

FEA
1073 K

973

873 K

773

673 K

573 K

473 K

1 10
Average equivalent stress {a), MPa

100

Figure 6.2. FEA predictions o f effective creep law for grain comer region in the temperature 
range from 473K to 1073K. The computed data is fitted with power law equation 
(6.5).
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As depicted in Figure 6.2, the FEA predictions of creep law can be fitted with Eq. 

(6.5) except for the portion of the creep law curves that corresponds to initial stage of 

stress relaxation (the right side of the graph which corresponds to the stress levels 

(a )  >200MPa). We attribute this deviation of FEA predictions from Eq. (6.5) to the

effect of idealized application of external strain. As the average equivalent stress in the 

grain comer model is reduced, the effect of instantaneously applied external load is 

smoothed out and Eq. (6.5) accurately fits the creep law curves.

The performance of the effective creep law established for the grain comer region 

is tested by modeling the stress relaxation of Cu grain at temperature T = 673 K. We 

create the finite element model shown in Figure 6.4a with the creep behavior in the grain 

comer element specified according to Eq. (6.5).

The adjustable parameters of Eq. (6.5) were found using the coupled FEA 

analysis of 5nm x 5nm grain comer region at temperature 673 K. The following values 

were obtained: n -  0.737, cf„, = 21.8 MPa, =0.158 s-1 and A = 1.87 • 10-6. For 

simplicity, the material properties for the rest of the model are assumed purely elastic. 

Note that the explicitly specified diffusional creep law in the model is assumed to 

reproduce the transient mechanical response to diffusional mass flow. Therefore we 

consider only mechanical FEA analysis for the model shown in Figure 6.4a. The 

geometry, boundary conditions and the elastic material properties are as specified in 

Chapter 4 for the model of one-dimensional linear grain array.

After the application of external strain ex = 0.002, stress relaxation occurs due to

diffusional creep in the grain comer. The distribution of stress <7̂  at time t = 3-10-3 s is 

shown in Fig.6.4b. The "benchmark" simulation of chapter 4 shown in Figure 6.4(c)-(d)
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for comparison. We conclude that it is possible to approximate the coupled “benchmark” 

predictions for the initial stages of stress relaxation with purely mechanical solution 

obtained using the effective creep law specified in the grain comer. In the following 

sections we compute the effective creep law in the grain boundary layer and grain interior 

to model the stress relaxation elsewhere in the grain.

10
400 500 600 700 800 900

Temperature T, K
1000 1100

1 0 '2 n

400 500 600 700 800

Temperature T, K
900 1000 1100

Figure 6.3. Temperature dependence o f  parameters A and £x obtained by fitting Eq. (6.5) to 
FEA predictions o f creep law curves shown in Figure 6.2.
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Figure 6.4. Comparison o f  stress <7̂  at time t  — 3 .0 • 10 3 s computed according to (a,b) 
equivalent viscoplastic element technique and (c,d) coupled FEA formulation.

6.3.2. Stress relaxation numerical experiment for grain boundary layer

In the numerical experiment shown in Figure 6.4, the stress relaxation is restricted 

only to the top layer of Cu grain. This is due to our assumption of purely elastic material 

properties outside of grain comer region. To consider the stress relaxation elsewhere in
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the grain, it is necessary to obtain the equivalent diffiisional creep law for the regions 

other than the grain comer. The creep law can be established by modeling the region of 

interest using the coupled finite element technique with appropriate mechanical and mass 

flow boundary conditions.

In this section, we compute the creep law for the middle portion of the grain in the 

vicinity of internal grain boundary. Unlike the grain comer area considered in the 

previous section, this region does not have the free surface. Therefore, care must be taken 

to ensure that the mass flow boundary conditions correspond to the appropriate vacancy 

concentration gradient across the region. For example, it is incorrect to specify zero 

fluxes at the boundaries of the region as in the previous section, since in this case the 

stress relaxation does not occur due to the absence of mass flow. The stress relaxation 

would be possible if nonuniform vacancy concentrations or nonuniform vacancy fluxes 

are specified along the boundary of the region. It is not immediately clear how to select 

the adequate distribution of boundary concentrations or vacancy fluxes for the region 

selected inside the grain. This ambiguity can be avoided by considering the coupled FEA 

model of the grain boundary layer shown in Figure 6.5.

The width of the layer is selected as 5 nm. This choice is dictated by the following 

two considerations. First, the size of the region has to be comparable with the geometric 

dimensions of the entire grain to increase the computational efficiency of the equivalent 

model as compared to the coupled model with thin GB region that requires the finite 

elem ents o f  bad aspect ratio. Second, the selection o f  the GB layer width equal to 5 8 , 

where 8  is the thickness of the GB region, allows to assume zero vacancy fluxes at the 

right edge of the GB layer. The mechanical and mass flow boundary conditions for this
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model are specified in the same way as for the grain comer region considered in the 

previous section.

Free surface
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Figure 6.5. Finite element model used to establish effective creep law behavior for GB layer.
Equivalent stress and strain rate are averaged over the regions numbered 1 through 10.

We performed the stress relaxation FEA simulation for the GB layer with 

temperature selected as T = 673 K. To ensure stability of time integration, the time step 

was selected as 1.9-10-5 s. Full stress relaxation in the model was achieved after 8 104 

increments at time t = 1.52 s. To complete this simulation for the GB layer model 

containing 295 nodes and 216 elements, the computation time on Intel Xeon dual core 

2.66 GHz, 667 MHz front side bus processor was 4793.28 s. We conclude that the
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coupled elasticity-mass flow simulation for the FEA model of GB layer is 

computationally affordable compared to the coupled simulation of the entire grain.

The coupled FEA simulation for the internal GB layer allows to establish the 

effective creep law for this area. To explore whether the creep law varies along the GB 

layer, we divide the layer into the regions numbered 1 through 10 as shown in Figure 6.5. 

The equivalent creep strain rate and equivalent stress were averaged separately over each 

of these areas. To obtain the effective creep law FEA predictions we eliminate the 

parametric time variable and relate each value of equivalent stress to the corresponding 

value of equivalent strain rate. Figure 6.6 shows the equivalent creep strain rate plotted vs 

equivalent stress for each of the regions 1-10. The following remarks can be made 

regarding the effective creep law for GB layer.

cr

10

Average equivalent stress (a ), Pa

Figure 6.6. FEA predictions o f effective creep law for grain boundary layer at temperature 673 K. 
Creep laws are shown for the regions numbered 1 through 10 in Figure 6.5.
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The creep law is different for each of the considered regions. This may be 

attributed to the difference in vacancy concentration gradients over the height of GB 

layer. As shown in Figure 6.7, the vacancy concentration gradient is higher near the free 

surface compared to the concentration gradient in the middle of internal GB at each time 

instance throughout the FEA simulation. The vacancy concentration gradient affects the 

vacancy flux (Eq. 2.7) and thus determines the diffusional creep strain rate (Eq. 2.17). 

Thus for the same value of equivalent stress a , the creep strain rate is in the regions 

close to the free surface than in the middle of the internal grain boundary, as depicted in 

Figure 6.6.

As shown in Fig. 6.6, the strain rate is close to zero when the equivalent stress <7 

is equal to £?0. This value of equivalent stress corresponds to the uniform distribution of 

stress <7̂  immediately after the sudden application of external compressive strain. The 

nearly small value of creep strain rate at rf = cf0 may be attributed to negligibly small 

vacancy concentration gradients everywhere except near the free surface. This is shown 

in Figure 6.7b for time t = 0.001 s which corresponds to the initial stage of stress 

relaxation. Therefore at a  = <x0 the vacancy fluxes arise only near the free surface and

creep strains are nonzero only in region 10.

Note that the straight lines on log-log plot in Figure 6.6 indicate that the creep law 

curves for regions 1 through 10 may be approximated by power law equation similar to 

Eq. (6.5). Since the slope of the creep law curves is approximately the same, we may 

conclude that the exponent of power law approximation is not dependent on the location 

within the GB layer model. We can make another interesting observation if we compare 

the predictions of the effective creep law for region 10 of GB layer and for the grain
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comer model considered in the previous section. The power law approximation of the 

equivalent creep laws for both models is approximately the same as shown in Figure 6.8. 

Therefore, we conclude that it is possible to use the grain comer model to predict the 

power law exponent which can be used to approximate effective creep law in the entire 

GB layer.

O
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a o
c3
a  aa> o C o  o
>> u
ocO

(a)

1.05

1.00 -

0.90-

0.85-
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0.001 S
0.01 S 
0.1 s 
0.5 s

-0.5 -0.4 -0.3 -0.2 -0.1
Distance along internal grain boundary y/d

o.o

0.001 s 
0.01 s 
0.1 s 
0.5 s 
1 s

Eb

(b)
-0.5 -0.4 -0.3 -0.2 -0.1 0.0

Distance along internal grain boundary y/d

Figure 6.7. Distribution o f (a) vacancy concentration and (b) concentration gradient along the 
internal grain boundary during the transient stress relaxation o f GB layer.
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Figure 6.8. Comparison o f  equivalent creep law predictions for GB layer and grain comer region.

We explore the performance of effective creep law computed for the GB layer by 

modeling the stress relaxation of Cu grain at temperature T = 673 K. The equivalent FEA 

model is shown in Figure 6.9a. The creep behavior for each of the GB layer equivalent 

elements is specified using the piecewise-linear creep law dependence shown in Figure 

6.6. Coupled simulations could be performed to establish the effective creep laws for the 

rest of the Cu grain model. However we expect that the contribution of creep strains in 

the GB layer is dominant for the stress relaxation in the model shown in Figure 6.9, 

therefore we assume elastic material properties for the grain interior. The mechanical 

FEA analysis for the model shown in Figure 6.9a is compared to the coupled FEA
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analysis of "benchmark" model depicted in Figure 6.9b. The geometry, boundary 

conditions and the elastic material properties are as specified in Chapter 4 for the model 

of one-dimensional linear grain array.

After the application of external strain £x = 0.002, the stress relaxation occurs in 

the equivalent FEA model of Cu grain due to diffusional creep in the GB layer. The 

distribution of stress <7̂  corresponding to the initial, intermediate and final stages of

stress relaxation is shown in Fig.6.10 (a-c) for time instances f = 0.1 s, t = 1 s and 

t = 2.5 s. The stress field is compared to the "benchmark" simulation of chapter 4 shown 

in Figure 6.10(d)-(e). It can be seen that the evolution of stress field in the coupled 

problem can be qualitatively reproduced by the equivalent FEA model with diffusional 

creep law in the GB layer.

0.0020.002

5~15 O—O
|  Elastic Cu

Effective c reep  law

U~0 <5~~0 o o o o o o o o o o

1 2 3 4 5 6 7 8 9  10 ICu grain interior with diffusivity Du 

Cu grain boundary with diffusivity Dgb

Figure 6.9. (a) Equivalent FEA model o f  Cu 'A grain with diffusional creep laws in the GB layer 
as shown in Figure 6.6 (b) “benchmark” coupled elasticity-mass flow FEA model.
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Figure 6.10. Comparison of stress <7̂  at the initial, intermediate and final stages of stress
relaxation; (a)-(c): equivalent FEA model with effective creep law in GB layer, 
(d)-(f): “benchmark” coupled elasticity-mass flow FEA model.

The quantitative comparison of stress relaxation predictions is given in Figure 

6.11 for the average stress in the model ( c ^ )  and in Figure 6.12 for the stress cr^ in the

- 104-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



top left comer and in the center of the model. The stress evolution computed using the 

equivalent FEA model follows the predictions of coupled elasticity-mass flow simulation.

Coupled "benchmark" FEA model
Equivalent FEA model with 
effective creep law in the GB layer

0 .8 -

v

0 .6 -

0.4-

0.0 2.0 3.0
Time t, s

Figure 6.11. Time evolution o f  average stress in the V* grain model. Predictions o f equivalent 
element technique are compared to the “benchmark”coupled FEA simulation.

We note that the stress relaxation curves exhibit jumps in the first derivative with 

respect to time for the average stress as well as for the stress in the individual nodes. We 

attribute this behavior to large element size in the equivalent model, as well as to our 

assumption of purely elastic material properties in the grain interior. As the creep strains 

are accumulated in the grain boundary layer, the elements in the equivalent FEA model
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experience large shear strain at the interface between elastic grain interior and the GB 

layer, as shown in Figure 6.13. These rotations, as well as the absence of creep 

deformations in the grain interior, contribute to the sudden release of stress in the model.

1 .0 -v Coupled "benchmark" FEA model
Equivalent FEA model with 
effective creep law in the GB layer

0 .8 -

Node B0 . 6 -

0 .2 -

Nbde A

0 .0
o.o 2.0 3.0

Time t, s

Figure 6.12. Time evolution of nodal stress in the % grain model. Predictions of equivalent 
element technique are compared to the “benchmark”coupled FEA simulation.

It may be possible to eliminate the jumps in the first time derivative of stress 

using the following approach. First, the mesh may be refined to model more accurately 

the accumulation of diffiisional creep strain that occurs in the equivalent viscoplastic 

elements. Second, the creep law may be computed for the grain interior to apply the
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equivalent viscoplastic finite element technique to all the elements in the equivalent FEA 

model. This approach is considered in the following section.

Displacement y, m t= 3.0 s

1 .3 6 e - 0 9  

1 .2 2 e - 0 9  
1 . 0 9 e - 0 9  

9 .5 2 e - 1 0  

8 .1 6 e - 1 0  

6 .8 0 e - 1 0  

5 .4 4 e - 1 0  

4 .0 8 e - 1 0  

2 .7 2 e - 1 0  
1 .3 6 e - 1 0  

0 .0 0 e + 0 0

r

Figure 6.13. Deformed shape and vertical displacements in the equivalent GB layer finite element 
model at the final stage of stress relaxation.

6.4. Approximation of diffusional creep behavior in the entire Cu grain with four
effective creep laws

We have considered the equivalent FEA models of Cu grain to explore the 

distribution of effective creep laws in the GB region, GB layer and grain interior. The 

diffusional creep behavior was approximated with equivalent stress vs creep strain rate 

relations averaged over 10 areas in the GB layer. The predictions of effective creep laws 

were different for each of the considered regions, which is attributed to the transient non- 

uniform distribution of concentration gradient throughout the model. Therefore the 

attempt to reduce the coupled elasticity-mass flow problem to purely mechanical 

simulation leads to the non-uniform distribution of effective diffusional creep relations in 

the Cu grain model.
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The application of the established creep laws in the equivalent FEA model 

approximates the stress relaxation predictions of coupled elasticity-mass flow model. 

Although the stress relaxation results follow the character of the coupled "benchmark" 

model predictions, the representation of creep behavior with a distribution of creep 

relations is not practical. Furthermore, Cu material is assumed uniform throughout the 

grain interior and GB region, therefore, physically speaking, the concept of diffusional 

creep law distribution is artificial.

To address these concerns, we need to adjust the proposed FEA technique to 

represent the distribution of effective creep laws as the averaged material properties 

assigned to the regions with the most significant difference in the effective diffusional 

creep behavior. We suggest to distinguish between the grain comers, GB region/layer and 

grain interior as the areas with the largest variation in the creep laws. The effective creep 

laws averaged over these areas are established through the numerical experiments 

described in this section. We consider the following two cases of effective creep law 

distribution. First, we establish the effective creep law for thin lnm area in the GB region 

and lnm x lnm grain comers, assuming that the creep behavior for the rest of the grain 

area may be represented with a single grain interior effective creep law. Second, the 

effective creep law is established for the GB layer and grain comers which are 

comparable with the geometric dimensions of the entire grain. We compare the 

predictions of equivalent FEA models with 4 effective creep laws to the "benchmark" 

coupled simulation as w ell as the predictions of the m odel with the distribution of creep 

laws found in the previous sections.
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6.4.1. Effective creep laws in Cu grain corners, grain boundary region and grain 
interior

We model the stress relaxation of Cu grain using the effective diffusional creep 

material properties in the GB region, grain comers and grain interior as shown in Figure 

6.14. To establish the effective creep laws over the GB regions 1-3, we perform the 

coupled FEA stress relaxation numerical experiment for the GB layer in the manner 

described earlier in this chapter. Although the coupled stress relaxation problem is solved 

for the GB layer, the equivalent stress and creep strain rate are averaged only over the GB 

regions 1-3. The effective creep laws established through this procedure are shown in 

Figure 6.15.

To obtain the creep law in the grain interior, we employ the following two 

approaches. (A) We compute two effective creep laws averaged over the GB layer and 

the rest of the grain interior. These creep laws are shown in Figure 6.16. They are 

established by performing two coupled simulations for the areas shown in the inset of 

Figure 6.16. The effective creep law is then obtained through the weighted average over 

the area of the entire grain interior. (B) The creep law is computed in a coupled 

simulation for the entire grain interior area. This creep law is shown in Figure 6.17. Note 

that in the creep law obtained according to the approach (A) the strain rate is 

approximately 2-3 orders of magnitude larger compared to the corresponding strain rate 

in creep law obtained through procedure (B).

The stress relaxation predictions for both m ethods (A) and (B) are shown in 

Figures 6.18-6.20. Compared to the numerical results of coupled "benchmark" 

simulation and the equivalent FEA model of section 6.3, the stress relaxation occurs 

faster for approach (A) and slower for approach (B). Since the only difference between
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these two approaches is the selection of the creep law assigned to the grain interior, we 

conclude that additional investigation is necessary to provide the adequate approximation 

for the grain interior effective creep law. Figures 6.18-6.20 show that it may be possible 

to reproduce the stress relaxation behavior of the “benchmark” problem with the 

equivalent model shown in Figure 6.14, but it is not clear how to obtain average creep 

law for the grain interior with large variation in effective creep behavior.
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Figure 6.14. Equivalent FEA model o f Cu grain with four effective diffiisional creep laws and 
lnm GB region.
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Average equivalent stress (a), Pa '

Figure 6.15. FEA predictions o f  effective creep laws in the grain comers and the rest o f lnm  GB 
region at temperature 673 K.
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Figure 6.16. Approximation o f creep behavior in the grain interior with a single effective creep 
law averaged over the areas o f  GB layer and the rest o f  the grain interior.
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— Nabarro-Herring creep law
— a —  Numerical predictions averaged over entire grain interior
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Figure 6.17. Approximation of creep behavior in the grain interior with a single effective creep 
law averaged over the entire area of the grain interior.
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Figure 6.18. Time evolution of average stress in the equivalent model of Cu grain with the creep 
behavior approximated by four creep laws in the GB region and the grain interior.
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— — Coupled "benchmark" FEA mode) 
•  Equivalent FEA model with the 

creep law shown in Figure 6.16 
—r — Equivalent FEA model with the 

creep law shown in Figure 6.17

Figure 6.19. Predictions of time evolution of stress CTXX in the grain comer node A for the
equivalent FEA model with four creep laws in the GB region and the grain interior.

- • —Equivalent FEA model with the 
creep law shown in Figure 6.16 
Equivalent FEA model with the 
creep law shown in Figure 6.17 

-  —Coupled "benchmark" FEA model

Figure 6.20. Predictions of time evolution of stress cr^ in the grain center node B for the
equivalent FEA model with four creep laws in the GB region and the grain interior.
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We believe that the consideration of GB layer rather than GB region would 

provide the adequate representation of effective creep law averaged over the grain 

interior since the areas with high creep strain rate in the vicinity of GB region will be 

incorporated into the GB layer. The following section considers the equivalent FEA 

model with four effective creep laws averaged over the GB layer, grain comers and the 

grain interior.

6.4.2. Effective creep laws in Cu grain corners, grain boundary laver and grain 
interior

In this section, the stress relaxation of Cu grain is modeled using the effective 

diffusional creep material properties in the GB layer, grain comers and grain interior as 

shown in Figure 6.21. To establish the effective creep laws for these areas, we perform 

the coupled FEA stress relaxation numerical experiment for the GB layer and grain 

interior in the manner described in Section 6.3.2. Figure 6.22 shows the effective creep 

laws obtained for the GB layer and grain interior and averaged over the areas shown in 

Figure 6.21. The predictions of the equivalent model for the stress relaxation of the 

entire grain are shown in Figures 6.23-6.25. The results are compared to the numerical 

predictions of coupled "benchmark" simulation and the equivalent FEA model of section

4.1.

We observe that the introduction of the material properties averaged only in 4 

regions results in the stress relaxation curves which are smooth compared to the 

predictions obtained in Section 6.2.3 for the model with the distribution of 10 different 

creep laws over the GB layer. However the prediction of the average stress is not as close
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to the result of the benchmark simulation at the end of the stress relaxation as in the case 

of 10 different GB layer creep law material properties.
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Figure 6.21. Equivalent FEA model o f  Cu grain with coarse mesh, 5nm GB layer and four 
effective diffiisional creep laws.

We also explore whether the model with refined mesh shown in Figure 6.26 

allows to obtain better correspondence with the benchmark problem for the same 

distribution of effective material properties. The results of equivalent FEA simulation for 

this model are shown in Figures 6.27-6.29. In addition, we considered the stress 

relaxation of the model with linearly approximated creep laws shown by the dashed lines 

in Figure 6.22. This approximation neglects the effect of sudden application of the
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external load. The model predicts the slower stress relaxation compared to the results of 

the benchmark simulation, while the simplified creep laws result in faster stress 

relaxation. The numerical predictions follow the results of the benchmark model and the 

curves are smooth compared to the coarse mesh.

Although was not possible to represent accurately the results of coupled 

"benchmark" simulation, we found that the prediction of the average stress at the end of 

the stress relaxation falls within 10% difference for the model with four effective creep 

laws averaged over the GB layer, grain comers and the grain interior.

 Effective c reep  laws in the  GB layer
 Linear approximation of c reep  laws

.2x10
1.0 - — — Effective c reep  law 

in the grain interior 
 Unear approximationCU

6.0x10'

0.5-

0.0
0.0 1.0x10' 2.0x10'

bO

0.0
0.0 1.0x10

Average equivalent stress (<x), Pa
2.0x10

Figure 6.22. FEA predictions o f four effective creep laws in the grain comers, 5nm GB layer and 
grain interior at temperature 673 K.
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— — Coupled "benchmark" FEA model
 Equivalent FEA model with coarse mesh and

4 effective creep laws
— - -  Equivalent FEA model of section 6.3.2
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Figure 6.23. Average stress in the equivalent Cu grain model with coarse mesh and the creep 
behavior approximated by four creep laws in the GB layer and the grain interior.

1.0 -

— — Coupled "benchmark" FEA model 
—  Equivalent FEA model with coarse mesh and 

4 effective creep laws 
■ - -  Equivalent FEA model of section 6.3.2

J - 'rt t l ’i 1 ■:

* W - -

Time t, s

Figure 6.24. Stress <7̂  in the grain comer node A predicted by the equivalent FEA model with 
coarse mesh and four creep laws in the GB layer and the grain interior.
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Figure 6.25. Stress <7̂  in the grain center node B predicted by the equivalent FEA model with 
coarse mesh and four creep laws in the GB layer and the grain interior.
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Figure 6.26. Equivalent FEA model of Cu grain with refined mesh, 5nm GB layer and four 
effective diffusional creep laws.
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Coupled 'benchm ark* FEA model 
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with full creep laws
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Figure 6.27. Average stress in the equivalent Cu grain model with refined mesh and the creep 
behavior approximated by four creep laws in the GB layer and the grain interior.
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Figure 6.28. Stress <7̂  in the grain comer node A predicted by the equivalent FEA model with 
refined mesh and four creep laws in the GB layer and the grain interior.
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Coupled "benchm ark' FEA model 
Equivalent FEA model shown in Figure 6.26 
w ith fu ll creep laws
Equivalent FEA model shown in Figure 6.26 
w ith linearly approximated creep laws

Figure 6.29. Stress (7^ in the grain center node B predicted by the equivalent FEA model with 
refined mesh and four creep laws in the GB layer and the grain interior.
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CHAPTER 7

CONCLUSION

The diffusional creep due to stress-induced vacancy flow constitutes one of the 

major deformation mechanisms in Cu-damascene interconnects dining thermal 

processing of integrated circuit devices. The phenomenon of diffusional creep and stress 

relaxation in polycrystalline metals can be modeled with the finite element technique that 

accounts for the enhanced vacancy diffusivity in the grain boundary region of finite 

thickness. The model introduced in this thesis is multiscale because the thickness of grain 

boundary region (~1 nm for Cu) is at least an order of magnitude smaller than the 

analyzed domain of one or more grains. The formulation couples the elasticity and 

vacancy concentration problems through diffusive creep strains. Transient solution is 

obtained using the iterative procedure with stress-dependent equilibrium vacancy 

concentration updated at each time step.

The numerical procedure has been implemented into a commercial finite element 

program MSC.Marc and validated by comparing its numerical predictions with analytical 

models and results of other authors obtained by different techniques. We used the stress 

relaxation of linear grain array model with grains of idealized square shape as the 

"benchmark" problem. The numerical results for evolution of normal stress distribution 

along the internal grain boundary are in good correspondence with the predictions 

existing in the literature. The numerically computed estimate of relaxation time is within
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30% correspondence to the estimate obtained using Nabarro-Herring and Coble theories. 

This suggests that the model presented in this thesis may be used to predict diffusive 

stress relaxation in more advanced systems of practical importance, such as Cu 

interconnects at elevated temperatures. We also considered the example of diffusional 

creep in 3x3 grain assembly subjected to the externally applied tractions. We found that 

the FEA results for smaller grain size (<100 nm) are in good agreement with the 

theoretical creep predictions. The study of the creep rate dependence on the choice of 

grain boundary region thickness suggests that the predictions of the diffusional creep 

strain rate are sensitive to the selection of the GB region thickness. Therefore the 

thickness of enhanced diffiisivity region may be used as a parameter to calibrate the 

model and account for the interface characteristics such as impurities and deposition 

conditions.

We applied the coupled elasticity-mass flow FEA technique to predict the stress 

relaxation of typical uncapped Cu interconnect structures. The stress relaxation 

predictions as well as the material buildup in the grain boundary-free surface junction are 

experimentally verifiable using, for example, the wafer curvature measurement to 

investigate the stress relaxation and AFM image subtraction technique for nanoscale 

deformation measurement.

We used the first order mesh refinement multipoint constraints to coarsen the 

mesh in the grain bulk and mitigate the computational challenge while preserving the 

implementation of the m odel in the com m ercial FEA package. Further enhancement of 

the efficiency for diffusional creep modeling technique was done by the development of 

the equivalent viscoplastic finite element approach. The computational efficiency was
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significantly improved by the reduction of the coupled diffusional creep formulation to 

equivalent purely mechanical creep analysis. We explored the behavior of the 

numerically obtained equivalent creep laws in different areas of Cu grain. We found that 

due to the non-uniform distribution of vacancy concentration gradient in the model of the 

grain, the creep law distribution is highly nonuniform. However we obtained good 

correspondence to the coupled "benchmark" problem for the equivalent viscoplastic 

element model containing only four averaged equivalent creep laws computed for GB 

layer, grain comers and the rest of the grain interior. The difference for average stress 

relaxation predictions after the period that corresponds to the relaxation time x  is within 

10% of initial value of stress in the model.

The equivalent finite element technique was developed in an effort to improve the 

computational efficiency of the FEA approach introduced in this thesis. Based on the 

numerical predictions for the test problems considered in the previous Section, we 

believe that this technique is capable of reducing the computation time while keeping 

reasonable accuracy of the numerical predictions. The enhancement of the computational 

capability allows to extend the work presented in this thesis to consider several possible 

future directions.

First, the equivalent viscoplastic finite element technique could be developed 

further. The directions of this development may include the exploration of the possibility 

to represent the diffusion creep behavior of an entire grain by some approximation of the 

creep law  for arbitrary grain geom etry and external loading.

'Next, it may be of significant interest to consider the contribution of other 

important nanoscale deformation mechanisms to inelastic deformation, in addition to the
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diffusion-based mass flow mechanism studied in this dissertation. These mechanisms 

include the diffusion-assisted GB sliding and dislocation motion.

In addition to the stress-relaxation and creep, the phenomena of modeling and 

experimental interest include the void growth and hillock formation. The numerical 

predictions of the model which accounts for the combination of deformation mechanisms 

may become a subject for experimental verification. We strongly believe in the 

importance of experimental investigations, while recognizing all the technical, logistical 

and financial challenges involved in the organization, management and execution of 

nanoscale deformation measurements.

Another important direction of future work is motivated by the new developments 

and design solutions in the interconnect manufacturing. Because of the fast pace of 

progress in microelectronics industry, the selection of objects for modeling and 

experimental investigation needs to be constantly revised to maintain the practical 

significance of the research. For example, the emerging technology of air-gap 

interconnects may become a considerable interest of research to understand the nanoscale 

deformation in these structures. This may require the extension of the model presented in 

this dissertation to consider the three dimensional geometry of free-standing lines and 

vias.

Finally, the technique may be applied to study the parameter sensitivity for 

various interconnect structures of possible interest. Some of the design parameters that 

may affect the stress relaxation include the selection o f  the dielectric material, passivation  

layer material and interconnect line thickness. The predictions of stress relaxation may 

also depend on the internal parameters of the model such as the grain boundary region
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thickness and activation energy of vacancy motion. In addition, stress relaxation may be 

affected by anisotropy and orientation of Cu grains, grain boundary surface roughness 

and other parameters of interconnect line microstructure.

A remark should be made about the aforementioned directions of future work, 

considering that the research presented in this dissertation is motivated by the industry 

needs for the reliability of interconnect structures. The directions mentioned above 

represent only a tentative outlook on the possible future of this research. As the 

technology evolves to continue the minituarization of on-chip microelectronic systems, 

new topics may emerge and the suggested future directions may be revised to become 

more relevant and applicable.
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APPENDIX A

LISTING FOR MSC.MARC FORTRAN USER SUBROUTINES

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c  USER-DEFINED COMMON BLOCKS
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

s u b r o u t i n e  u s d a t a ( k i n , k o u , i c )  
i m p l i c i t  r e a l * 8  ( A - H , 0 - Z )  
i n c l u d e  ' d i m e n 1
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R I P S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,
2 USRINI TSHA PE( 2 0 0 0 , 2 ) , USRC0, USRTEMP,USRPREVTIME,
3 USRAVESTRESS( 10 0 )

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) , USRNEDGE, USREDGE( 2 0 0 0 , 2 ) ,
1 USRNITERPEROUTPUT, USRCRFLAG, USREND,
2 USRFREE(2 0 0 0 )  

common/USDACM/
c  I n e l a s t i c  m a ss  f lo w  n o d a l  d i s p l a c e m e n t

USR INDISP,
c  E le m e n t  s t r e s s  c o m p u te d  i n  4 i n t e g r a t i o n  p o i n t s

USRIPSTR,
c  E le m e n t  f l u x  c o m p u te d  i n  4 i n t e g r a t i o n  p o i n t s

USRIPFLUX,
c  A r r a y  t o  s t o r e  v a l u e s  o f  d i s p l a c e m e n t  a n d  c o n c e n t r a t i o n  b o u n d a ry

c o n d i t i o n s
USRBC,

c  F lu x  o n  p r e v i o u s  t im e  s t e p  u s e d  f o r  n u m e r i c a l  i n t e g r a t i o n
USRPREVNODFLUX, 

c  T im e in c r e m e n t
USRTIMINC, 

c  C o n n e c t i v i t y
USRNCM,

c  A u x i l i a r y  v a r i a b l e  f o r  c r e e p  s t r a i n  c o m p u ta t io n
USRCRFLAG,

c  A v e ra g e  s t r e s s  c o m p u te d  o n  e a c h  t im e  s t e p
USRAVESTRESS,

c  N um ber o f  e d g e s  w h ic h  b e lo n g  t o  g r a i n  b o u n d a ry
USRNEDGE,

c  E d g e s  w h ic h  b e l o n g  t o  g r a i n  b o u n d a r y
USREDGE,

c  I n i t i a l  u n i f o r m  v a l u e  o f  c o n c e n t r a t i o n
USRC0, 

c  T e m p e r a tu r e
USRTEMP,

c  N um ber o f  i t e r a t i o n s  p e r  o u t p u t
USRNITERPEROUTPUT, 

c  G lo b a l  t im e  v a r i a b l e
USRPREVTIME, 

c  I n i t i a l  g e o m e t r i c a l  c o n f i g u r a t i o n
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USRINITSHAPE,  
c  T o t a l  n u m b er o f  I n c r e m e n ts

USREND,
c  I n d i c a t o r  a r r a y  t o  i d e n t i f y  f r e e  s u r f a c e  n o d e s

USRFREE

C INITIALIZATION
i f ( i c . e q . 2 )  t h e n  

d o  i  = 1 , NUMNP
r e a d ( 3 4 , * )  ( U S R I N I T S H A P E ( i , j ) , j = l , 2 )  
U S R I N D I S P ( i , 1)  = O.OdO 
U S R I N D I S P ( i , 2)  = O.OdO 
USRPREVNODFLUX( i , 1 )  = 0 . OdO 
USRPREVNODFLUX( i , 2 )  = 0 . OdO 
U S R B C ( i , l )  = O.OdO 
U S R B C ( i , 2)  = O.OdO 

e n d  d o  
r e w i n d (26)  
d o  i  = 1 , NUMEL

r e a d ( 2 6 , * )  ( U S R N C M ( i , j ) , j = l , 4)  
e n d  d o
r e a d ( 2 7 , * )  USRNEDGE 
d o  i  = 1 , USRNEDGE

r e a d ( 2 7 , * )  USREDGE( i , 1 ) , USREDGE( i , 2 )  
e n d  d o
r e a d ( 2 7 , * )  USRCO 
r e a d ( 2 7 , * )  USRTEMP 
r e a d ( 2 7 , * )  USREND 
d o  i  = 1 , numn p

r e a d ( 2 7 , *)  U SR FR EE( i )  
e n d  d o
r e a d ( 2 2 , * )  USRTIMINC 
r e a d ( 2 4 , * )  USRNITERPEROUTPUT 
USRPREVTIME = O.OdO 
USRCRFLAG = 0
o p e n ( 2 5 , f i l e  = 1 f o r t . 2 5 1, p o s i t i o n  = ' a p p e n d ' )  

e n d  i f  
r e t u r n  
e n d

c  ASSIGNMENT OF STRESS-DEPENDENT
C CONCENTRATION BOUNDARY CONDITIONS

s u b r o u t  i n e  f o r c d t (u , v , a , d p , d u , t  i m e , d t  i m e , n d e g l , n o d e ,
1 u g , x o r d , n c r d l , i a c f l g , i n c , i p a s s )  

i m p l i c i t  r e a l * 8  ( A - H , 0 - Z )  
i n c l u d e  ' d i m e n '  
i n c l u d e  ' s p a c e v e c ' 
i n c l u d e  ' s t r v a r '

d i m e n s i o n  u ( n d e g l ) , v ( n d e g l ) , a ( n d e g l ) , d p ( n d e g l ) , d u ( n d e g l ) ,
1 u g ( 1 ) , x o r d (1)

DIMENSION CCNODE(1 2)
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,  

1 USRBC( 2 0 0 0 , 3 )
common/USDACM/ USRINDISP,USRIPSTR,USRIPFLUX,USRBC
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i f ( I N C . e q . O )  t h e n  
d p (1)  = O.OdO 
d p (2)  = O.OdO 

e n d  i f
i f ( I P A S S . e q . 2 )  t h e n  

d u (1)  = U S R B C ( n o d e , 3) 
d p (1)  = O.OdO 
d p (2)  = O.OdO 

e n d  i f  
r e t u r n  
e n d

C COMPUTATION OF CREEP STRAIN INCREMENTS FROM VACANCY FLUXES

SUBROUTINE CRPLAW(EQCP,EQCPNC,STR,CRPE,T ,DT,TIMINC,CPTIM,M,
1 NN, KC, MATUS, N D I , NSHEAR)

IM PL I C I T  REAL*8 (A-H,  O-Z)  
i n c l u d e  ' d i m e n ' 
i n c l u d e  ' c o n c o m '  
i n c l u d e  ' s p a c e v e c ' 
i n c l u d e  ' s t r v a r '
DIMENSION T ( 3 ) , D T ( 1 ) , S T R ( 4 ) , CRPE( 4 ) , MATUS(2)
DIMENSION CCNODE(12)
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,
2 USRAVESTRESS( 1 0 0 ) , USRC0, USRTEMP,USRPREVTIME 

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) , USRCRFLAG,
1 USRNEDGE, USREDGE( 2 0 0 0 , 2 ) , USRNITERPEROUTPUT 

Comrnon/USDACM/ USR INDISP,USRIPSTR,USRIPFLUX,USRBC,
1 USRPREVNODFLUX, USRTIMINC, USRNCM, USRCRFLAG, USRAVESTRESS,
2 USRNEDGE, USREDGE, USRC0, USRTEMP, USRNITERPEROUTPUT,
3 USRPREVTIME

c  l o c a l  v a r i a b l e s
r e a l *8 USRSTRAIN(3)  
r e a l *8 USRDETJ 
r e a l * 8  m n o d ( n u m n p , 2)
r e a l * 8  U S R f l u x v a l , U S R v a l , U S R v a l s t r , U S R i p c r d ( 2 )

c  i n i t i a l i z e  USRAVESTRESS t o  z e r o
i f ( ( M . e q . 1 ) . a n d . ( N N . e q . 1 ) )  t h e n  

d o  i  = 1 , 1 0 0
USRAVESTRESS(i )  = O.OdO 

e n d  d o  
e n d  i f

c  m ake s u r e  n o d a l  f l u x e s  a r e  c o m p u te d  o n l y  o n c e  p e r  t im e  in c r e m e n t
i f ( ( ( M . e q . l ) . a n d . ( N N . e q . 1 ) ) . a n d . (USR CR FL A G. eq . 0 ) )  t h e n  

USRCRFLAG = 1 
e l s e

i f ( ( ( M . e q . 1 ) . a n d . ( N N . e q . 1 ) ) . a n d . ( U S R C R F L A G . e q . 1 ) )  t h e n  
USRCRFLAG = 0 

e n d  i f  
e n d  i f
i f ( ( ( M . e q . l ) . a n d . ( N N . e q . 1 ) ) . a n d . (U SR CR F L A G. eq .1 ) )  t h e n  

C EXTRACT ELEMENT FLUXES FROM FEA RESULTS DATABASE
d o  i  = 1 , NUMEL
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d o  j  = 1 , 4  
c a l l  ELMVAR( 1 8 4 , i , j , 1 , U S R f l u x v a l )
U S R I P F L U X ( i , j , l )  = U S R f l u x v a l  
c a l l  ELMVAR( 1 8 5 , i , j , 1 , U S R f l u x v a l )
U S R I P F L U X ( i , j , 2 )  = U S R f l u x v a l  
c a l l  E L M V A R ( 1 8 1 , i , j , l , U S R f l u x v a l )
U S R I P F L U X ( i , j , 3 )  = U S R f l u x v a l  
c a l l  E L M V A R ( 1 8 2 , i , j , l , U S R f l u x v a l )
U S R I P F L U X ( i , j , 4 )  = U S R f l u x v a l  

e n d  d o  
e n d  d o

c  c o m p u t e  n o d a l  f l u x  a n d  I n e l a s t i c  d i s p l a c e m e n t
CALL USRCODE_NODFLUX_INDISP(mnod) 

c  u p d a t e  t i m e
i f  ( I N C . g t . O )  t h e n

USRPREVTIME = USRPREVTIME + USRTIMINC 
e n d  i f

c  u p d a t e  p r e v i o u s  t i m e  i n c r e m e n t  f l u x  v a l u e s
d o  i  = 1 , NUMNP 

d o  j  = 1 , 2
USRPREVNODFLUX(i , j ) = m n o d ( i , j )  

e n d  d o  
e n d  d o  

e n d  i f
c  c o m p u t e  c r e e p  s t r a i n  i n  M - t h  e l e m e n t ,  N N - t h  i n t e g r a t i o n  p o i n t

CALL USRCODE_CREEPSTRAINIP(M, NN, USRSTRAIN, USRDETJ) 
c  O u t p u t  c r e e p  s t r a i n  i n c r e m e n t s  i n t o  MS C. Ma rc  w o r k s p a c e

EQCPNC = O.OdO 
CR PE (1)  = USRSTRAIN(1)
CR PE (2)  = USRSTRAIN(2)
CR PE (3)  = O.OdO 
C R PE (4)  = USRSTRAIN(3)  

c  c o n t r i b u t i o n  o f  M - t h  e l e m e n t ,  N N - t h  i n t e g r a t i o n  p o i n t  t o  a v e r a g e
s t r e s s  
d o  i  = 1 , 3

USRAVESTRESS(i )  = USRAVESTRESS( i ) + U SR D E T J* U S R IP S T R (M ,N N , i ) 
e n d  d o
USRAVESTRESS(4)  = USRAVESTRESS(4) + USRDETJ
RETURN
END

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c  COMPUTATIONS OF CONCENTRATION BOUNDARY CONDITIONS
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE UEDINC( INC, INCSUB)
IM P L I C I T  REAL*8 (A-H,  O-Z)  
i n c l u d e  1 d i m e n 1 
i n c l u d e  ' s p a c e v e c 1 
i n c l u d e  1s t r v a r 1
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,
2 USRINITSHAPE( 2 0 0 0 , 2 ) ,  USRC0, USRTEMP,USRPREVTIME,
3 USRAVESTRESS( 1 0 0 )

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) , USRNEDGE,USREDGE( 2 0 0 0 , 2 ) ,
1 USRNITERPEROUTPUT, USRCRFLAG, USREND,
2 USRFREE(2 0 0 0 )

Common/USDACM/ USRINDISP,USRIPSTR,USRIPFLUX,USRBC,
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1 USRPREVNODFLUX,USRTIMINC,USRNCM,USRCRFLAG,USRAVESTRESS,
2 USRNEDGE,USREDGE,USRCO, USRTEMP,USRNITERPEROUTPUT,
3 USRPREVTIME, USRINITSHAPE, USREND, USRFREE 

c  i n t e r n a l  v a r i a b l e s
r e a l * 8  c r d ( N U M N P ,2 )  
r e a l * 8  U S R v a l , U S R v e c v a l (2)  
i n t e g e r  U S R I n t V a l  
DIMENSION CCNODE( 1 2 ) , DDNODE(12)

c  e x t r a c t  c u r r e n t  c o n f i g u r a t i o n  c o o r d i n a t e s  f ro m  FEA d a t a b a s e
d o  i  = 1 , NUMNP 

JRDPRE = 0
c a l l  VECFTC(CCNODE, XORD_D, NCRDMX, NCRD, i , JR D P R E , 2 , 1 )
JRDPRE = 0
CALL VECFTC(DDNODE,DSXTS_D,NDEGMX,NDEG,i , J R D P R E , 2 , 5 )  
c r d ( i , 1) = CCNODE(1)  + DDNODE(1) 
c r d ( i , 2 )  = CCNODE(2)  + DDNODE(2) 

e n d  d o
c  u p d a t e  v a c a n c y  c o n c e n t r a t i o n  b o u n d a r y  c o n d i t i o n s

CALL USRCODE_NEWCONCENTRATIONBC(crd) 
c  o u t p u t  r e s u l t s  t o  f i l e

U S R I n t V a l  = INC/USRNITERPEROUTPUT 
i f (USRIn tVa l*USRNITERPEROUTPUT. e g . INC) t h e n  

CALL USRCODE_WRITEOUTPUTFILE(INC,crd)  
c  o u t p u t  a v e r a g e  s t r e s s

d o  i  = 1 , 3
USRAVESTRESS( i ) = USRAVESTRESS( i ) /USRAVESTRESS(4) 

e n d  d o
w r i t e ( 3 1 , ' ( 4 E 1 5 . 6 ) ' )  USRPREVTIME,USRAVESTRESS(1) 

e n d  i f  
RETURN 
END

C EXTRACTING ELEMENT STRESS FROM FEA RESULTS DATABASE

SUBROUTINE ELEVAR(N,NN,KC,GSTRAN,GSTRES, STRESS, PSTRAN,
1 CSTRAN,VSTRAN, CAUCHY, EPLAS, EQUIVC, SWELL, KRTYP, PRANG, DT,
2 GSV,NGENS, NGEN1, NSTATS, NSTASS, THERM)

IM P L I C I T  REAL*8 (A-H,  O - Z )
i n c l u d e  ' c o n c o m 1
DIMENSION GSTRAN(NGENS), GSTRES(NGENS) ,

1 STR ESS (NGEN1) , PSTRAN(NGEN1) , CSTRAN(NGEN1), VSTRAN(NGEN1) ,
2 CAUCHY (NGEN1) , DT (NSTATS) , GSV (1)  , THERM (NGEN1) , KRTYP (4)  ,
3 PRANG( 3 , 2 )

r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 )  
common/USDACM/ U SR IN D ISP ,U SR IPS TR

i f ( I P A S S . e q . l )  t h e n
U S R I P S T R ( N , N N , 1) = ST R E SS(1)
U S R I P S T R ( N , N N , 2)  = STR ESS (2)
U S R I P S T R ( N , N N , 3) = S TR E SS (4) 

e n d  i f  
RETURN 
END

- 134-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c COMPUTATION OF INITIAL THERMAL STRAINS

SUBROUTINE ANEXP ( N , N N , K C , T , T I N C ,C O E D 1 , N D I , NSHEAR,EQEXP)
I M PL IC IT  REAL*8 (A-H,  O-Z)  
i n c l u d e  ' c o n c o m '  
i n c l u d e  ' m a t d a t '
DIMENSION EQEXP( 3 ) , T I N C ( 1 ) , T ( 1 ) , C O E D l ( N D I ) , N ( 2 )
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R I P S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,USRC0, USRTEMP,
2 USRAVESTRESS( 1 0 0)

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) , USRNEDGE, USREDGE( 2 0 0 0 , 2 ) ,
1 USRCRFLAG

common/USDACM/ USRINDISP,USRIPSTR,USRIPFLUX,USRBC,
1 USRPREVNODFLUX,USRTIMINC,USRNCM,USRCRFLAG,USRAVESTRESS,
2 USRNEDGE, USREDGE, USRC0, USRTEMP

I F ( I N C . e q . O )  t h e n
EQEXP(1)  = ( l . O d O  + XU( 1 ) ) * C O E D l( 1 ) * (USRTEMP -  2 9 3 . OdO) 
EQEXP(2)  = EQEXP(1)
EQEXP(3)  = O.OdO 

ELSE
EQEXP(1)  = O.OdO 
EQEXP(2)  = O.OdO 
EQEXP(3)  = O.OdO 

END I F  
RETURN 
END

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C COMPUTATION OF NODAL FLUXES AND INELASTIC DISPLACEMENTS
c  ( n o d a l  v a l u e s  a r e  a v e r a g e d  o v e r  n e i g h b o r i n g  i n t e g r a t i o n  p o i n t
c  v a l u e s )
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE USRCODE_NODFLUX_INDISP(mnod)
IM PL IC IT  REAL*8 (A-H,  O-Z)  
i n c l u d e  1 d i m e n 1 
r e a l * 8  mnod(NUMNP,2)
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) .USRTIMINC 
i n t e g e r  USRNCM( 2 0 0 0 , 4 )
common/USDACM/ USR IND ISP,USRIPSTR,USRIPFLUX,USRBC,

1 USRPREVNODFLUX, USRTIMINC, USRNCM 
c  l o c a l  v a r i a b l e s

i n t e g e r  i , j
i n t e g e r  a d d s ( N U M N P ) . U S R i n t v a l

c  C om pute n o d a l  f l u x e s  b y  a v e r a g i n g  o v e r  n e i g h b o r i n g  i n t e g r a t i o n
p o i n t  v a l u e s

d o  i  = 1 , NUMNP 
a d d s ( i ) -  0
d o  j  = 1 , 2

m n o d ( i , j )  = O.OdO 
e n d  d o  

e n d  d o
d o  i  = l . n u m e l  

d o  j  = 1 , 2
m n o d ( U S R N C M ( i , 1 ) , j ) = m n o d ( U S R N C M ( i , 1 ) , j ) + U S R I P F L U X ( i , l , j )
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mnod(USRNCM(i , 2 )  , j )  = m n o d (U SR NCM (i ,2 ) , j )  + U S R I P F L U X ( i , 2 , j )
m n o d ( U S R N C M (i , 3 ) , j )  = m n o d ( U S R N C M (i , 3 ) , j ) + U S R I P F L U X ( i , 4 , j )
m n o d (USR NCM (i ,4 ) , j )  = m n o d ( U S R N C M (i , 4 ) , j )  + U S R I P F L U X ( i , 3 , j )

e n d  d o  
d o  j  = 1 , 4

add s ( U SR N CM ( 1 , j ) )  = a d d s ( U S R N C M ( i , j ) ) + 1 
e n d  d o  

e n d  d o
d o  i  = 1 , NUMNP 

d o  j  = 1 , 2
i f ( a d d s ( i ) . g t . 0 )  t h e n

m n o d ( i , j )  = m n o d ( i , j ) / ( 1 . 0 d 0 * a d d s ( i ) ) 
e n d  i f  

e n d  d o  
e n d  d o

c  C o m p u t e  i n c r e m e n t  o f  m a s s  f l o w  d i s p l a c e m e n t
d o  i  = 1 , NUMNP 

d o  j  = 1 , 2
U S R I N D I S P ( i , j ) = - 5 . O d- 1  

1 * ( m n o d ( i , j ) +USRPREVNODFLUX( i , j ) ) *USRTIMINC
e n d  d o  

e n d  d o  
END SUBROUTINE

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C COMPUTATION OF CREEP STRAIN I N  M-TH ELEMENT, NN-TH INTEGRATION POINT 
c  ( u s i n g  FEA e l e m e n t  s h a p e  f u n c t i o n s  t o  c o m p u t e  s t r a i n s  f r o m  n o d a l  
c  i n e l a s t i c  d i s p l a c e m e n t s )  
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE USRCODE_CREEPSTRAINIP(M,NN,USRSTRAIN,USRDETJ)
I M PL IC IT  REAL*8 (A-H,  O-Z)  
i n c l u d e  ' d i m e n ' 
i n c l u d e  ' s p a c e v e c 1 
i n c l u d e  ' s t r v a r '
DIMENSION CCNODE( 1 2 ) , DDNODE(12)
INTEGER M,NN
REAL*8 USRSTRAIN( 3 ) , USRDETJ
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,
2 USRAVESTRESS( 1 0 0 ) , USRC0, USRTEMP, USRPREVTIME, USRINITSHAPE( 2 0 0 0 , 2 )  

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) , USRCRFLAG,
1 USRNEDGE, USREDGE( 2 0 0 0 , 2 ) , USRNITERPEROUTPUT, USREND 

common/USDACM/ USRINDISP,USRIPSTR,USRIPFLUX,USRBC,
1 USRPREVNODFLUX,USRTIMINC,USRNCM,USRCRFLAG,USRAVESTRESS,
2 USRNEDGE,USREDGE,USRC0, USRTEMP,USRNITERPEROUTPUT,
3 USRPREVTIME, USRINITSHAPE, USREND 

c  l o c a l  v a r i a b l e s
r e a l * 8  U S R C R D ( 4 , 2 ) , U S R I P ( 4 , 2 ) , U S R Q ( 8 )  
r e a l * 8  U S R A ( 3 , 4 ) , U S R D I F F 1 ( 2 , 4 ) , U S R D I F F 2 ( 4 , 8 )  
r e a l *8 USRJM( 2 , 2 ) , USRB( 3 , 8 )  
r e a l *8 v a l
i n t e g e r  i , j , I I , J J , K K

v a l  = 1 . O d O / s q r t ( 3 . OdO)
U S R I P ( 1 , 1 )  = - v a l  
U S R I P ( 1 , 2 )  = - v a l  
U S R I P ( 2 , 1 )  = v a l
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U S R I P ( 2 , 2 )  = - v a l  
U S R I P ( 3 , 1 )  = - v a l  
U S R I P ( 3 , 2 )  = v a l  
U S R I P ( 4 , 1 )  = v a l  
U S R I P ( 4 , 2 )  = v a l  
d o  i  = 1 , 4  

JRDPRE = 0
c a l l  VECFTC(CCNODE,XORD_D,NCRDMX,NCRD,USRNCM(M,i) , J R D P R E , 2 , 1 )  
JRDPRE = 0
CALL VECFTC(DDNODE, DSXTS_D, NDEGMX, NDEG,USRNCM(M, i) , JRDPRE, 2 , 5 )  
USRCRD( i , 1 )  = CCNODE(1)  + DDNODE(1)
USRCRD( i , 2 )  = CCNODE(2) + DDNODE(2)  

e n d  d o  
d o  i  = 1 , 4

U S R Q ( 2 * i - l )  = U S R IN D IS P (U SR N CM (M , i ) , 1 )
USRQ(2 * i ) = U S R IN D IS P (U SR N CM (M , i ) , 2 )  

e n d  d o  
d o  i  = 1 , 3  

d o  j  = 1 , 4
U S R A ( i , j ) = O.OdO 

e n d  d o  
e n d  d o  
d o  i  = 1 , 4  

d o  j  = 1 , 8
U S R D I F F 2 ( i , j ) = O.OdO 

e n d  d o  
e n d  d o

S t r a i n  I n  I n t e g r a t i o n  p o i n t  NN
- 0 . 2 5 d 0 * ( 1 . O d O -U S R IP ( N N ,2 ) )  
- U S R D I F F 1 ( 1 , 1 )
0 . 2 5 d 0 * ( 1 . OdO+USRIP(NN,2 ) )  
- U S R D I F F 1 ( 1 , 3 )
- 0 . 2 5 d 0 * ( 1 . O dO -U S R IP ( N N , 1 ) )  
- 0 . 2 5 d 0 * ( 1 . O d O + U S R I P ( N N , 1 ) ) 
- U S R D I F F 1 ( 2 , 2 )
- U S R D I F F 1 ( 2 , 1 )

'  1

U S R D I F F 1 ( 1 , 1 )
U S R D I F F 1 ( 1 , 2 )
U S R D I F F 1 ( 1 , 3 )
U S R D I F F 1 ( 1 , 4 )
U S R D I F F 1 ( 2 , 1 )
U S R D I F F 1 ( 2 , 2 )
U S R D I F F 1 ( 2 , 3 )
U S R D I F F 1 ( 2 , 4 )
DO I I  = 1 , 2  

DO J J  = 1 , 2
USRJM( I I , J J )  = O.OdO 
DO KK = 1 , 4

U S R J M ( I I , J J )  = U S R J M ( I I , J J )  + 
U S R D I F F 1 ( I I , K K ) * U S R C R D ( K K , J J )  

END DO 
END DO 

END DO
USRDETJ = USRJM( 1 , 1 ) *USRJM( 2 , 2 )  

USRJM( 2 , 2 ) /USRDETJ 
-USRJM( 1 , 2 ) /USRDETJ 
-USRJM( 2 , 1 ) /USRDETJ 
U S R J M ( 1 , 1 ) / U S R D E T J  
-USRJM( 2 , 1 ) /USRDETJ 
USRJM( 1 , 1 ) /USRDETJ 
USRJM( 2 , 2 ) /USRDETJ 
-US RJM ( 1 , 2 ) /USRDETJ

USRA( 1 , 1 )
USRA( 1 , 2 )
USRA( 2 , 3 )
U S R A ( 2 , 4 )
USRA( 3 , 1 )
USRA( 3 , 2 )
USRA( 3 , 3 )
USRA( 3 , 4 )
DO I  = 1 , 4

U S R D I F F 2 ( 1 , 2 * 1 - 1 )  = U S R D I F F 1 ( 1 , 1 )  
U S R D I F F 2 ( 2 , 2 * 1 - 1 )  = U S R D I F F 1 ( 2 , I )

USRJM( 1 , 2 ) *USRJM( 2 , 1 )
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U S R D I F F 2 ( 3 , 2 * 1 )  = U S R D I F F 1 ( 1 , 1 )
U S R D I F F 2 ( 4 , 2 * 1 )  = U S R D I F F 1 ( 2 , I )

END DO
c  S t r a i n - d i s p l a c e m e n t  m a t r i x

DO I I  = 1 , 3  
DO J J  = 1 , 8

U S R B ( I I , J J )  = O.OdO 
DO KK = 1 , 4

U S R B ( I I , J J )  = U S R B ( I I , J J )  + USRA( I I , K K ) * U S R D IF F 2 ( K K , J J )  
END DO 

END DO 
END DO

c  D i f f u s i o n  c r e e p  s t r a i n  i n  e le m e n t  i n t e g r a t i o n  p o i n t s
DO I I  = 1 , 3

U S R S T R A I N (I I )  = O.OdO 
DO KK = 1 , 8

U S R S T R A I N (I I )  = U S R S T R A I N (I I )  + U S R B ( I I , KK)*USRQ(KK)
END DO 

END DO 
END SUBROUTINE

C COMPUTATION OF CONCENTRATION BOUNDARY CONDITIONS

SUBROUTINE USRCODE_NEWCONCENTRATIONBC(crd)
I M P L I C I T  REAL*8 (A-H,  O-Z)  
i n c l u d e  1 d i m e n 1 
REAL*8 CRD(NUMNP,2)
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) .USRTIMINC,
2 USR INI TSHAPE( 2 0 0 0 , 2 ) , USRC0, USRTEMP, USRPREVTIME, USRAVESTRESS( 1 00 )  

i n t e g e r  USRNCM( 2 0 0 0 , 4 ) .USRNEDGE,USREDGE( 2 0 0 0 , 2 ) ,
1 USRNITERPEROUTPUT, USRCRFLAG, USREND,

2 USRFREE(2 0 0 0 )
common/USDACM/ USRINDISP,USRIPSTR,USRIPFLUX,USRBC,

1 USRPREVNODFLUX,USRTIMINC,USRNCM,USRCRFLAG,USRAVESTRESS,
2 USRNEDGE, USREDGE, USRC0, USRTEMP, USRNITERPEROUTPUT,
3 USRPREVTIME,USRINITSHAPE,USREND,USRFREE 

c  i n t e r n a l  v a r i a b l e s
r e a l *8  mnod(NUMNP, 3)
r e a l * 8  s t r e s s p r o d ( N U M N P )
r e a l * 8  K B , O M E G A ,n o r m a l ( 2 ) , l e n , U S R v a l
i n t e g e r  a d d s ( N U M N P ) . U S R i n t v a l

KB = 1 . 3 8 0 6 d - 2 3  
OMEGA = 1 . 1 8 d - 2 9

C COMPUTATION OF NODAL STRESSES BY AVERAGING OVER INTEGRATION POINT
VALUES
DO i  -  1 , NUMNP 

a d d s ( i ) = 0 
d o  j  = 1 , 3

m n o d ( i , j ) = 0 . OdO 
e n d  d o  

END DO
d o  i  = l . n u m e l  

d o  j  = 1 , 3
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U S R IP S T R ( i , 1 , j ). 
U S R I P S T R ( i , 2 , j )  
U S R I P S T R ( i , 4 , j )  
U S R I P S T R ( i , 3 , j )

-  c r d ( U S R E D G E ( i , l ) , 2 )
-  c r d ( U S R E D G E ( i , 2 ) , 1 )

m n o d (U SR NC M (i ,1)  , j ) = m n o d ( U S R N C M (i , 1 ) , j )  + 
m n o d ( U S R N C M ( i , 2 ) , j )  = m n o d ( U S R N C M (i , 2 ) , j ) + 
m n o d ( U S R N C M ( i , 3 ) , j ) = m n o d ( U S R N C M (i , 3 ) , j ) + 
m n o d ( U S R N C M (i , 4 ) , j )  = m n o d ( U S R N C M (i , 4 ) , j ) + 

e n d  d o  
d o  j  = 1 , 4

a d d s ( U S R N C M ( i , j ) ) = a d d s ( U S R N C M ( i , j ) )  + 1 
e n d  d o  

e n d  d o
d o  i  = 1 , NUMNP 

d o  j  = 1 , 3
i f ( a d d s ( i ) . g t . 0 )  t h e n

m n o d ( i , j )  = m n o d ( i , j ) / ( 1 . 0 d 0 * a d d s ( i ) ) 
e n d  i f  

e n d  d o  
e n d  d o
COMPUTATION OF NORMALS TO BOUNDARY, AND NORMAL TRACTIONS
d o  i  = 1 , NUMNP 

a d d s ( i )  = 0 
s t r e s s p r o d ( i )  = O.OdO 

e n d  d o
d o  i  = 1 , USRNEDGE

n o r m a l (1)  = c r d ( U S R E D G E ( i , 2 ) , 2 )  
n o r m a l (2)  = c r d ( U S R E D G E ( i , 1 ) , 1 )  
l e n  = s g r t ( n o r m a l ( 1 ) * * 2  + n o r m a l ( 2 ) * * 2 )  
i f  ( l e n . n e . 0 . OdO) t h e n

n o r m a l (1)  = n o r m a l ( 1 ) / l e n  
n o r m a l (2)  = n o r m a l ( 2 ) / l e n  

e n d  i f  
d o  j  = 1 , 2

s t r e s s p r o d ( U S R E D G E ( i , j ) )  = s t r e s s p r o d ( U S R E D G E ( i , j ) )
1 + m n o d ( U S R E D G E ( i , j ) , 1 ) * n o r m a l ( 1 ) * * 2
2 + m n o d ( U S R E D G E ( i , j ) , 2 ) * n o r m a l ( 2 ) * * 2
3 + 2 . 0 * m n o d ( U S R E D G E ( i , j ) , 3 ) * n o r m a l ( 1 ) * n o r m a l (2)

a d d s ( U S R E D G E ( i , j ) )  = a d d s ( U S R E D G E ( i , j ) )  +1
e n d  d o  

e n d  d o
U S R i n t v a l  = 0
STRESS-DEPENDENT BOUNDARY VACANCY CONCENTRATIONS
d o  i  = 1 , NUMNP

i f ( a d d s ( i ) . g t . 0 )  t h e n
s t r e s s p r o d ( i )  = s t r e s s p r o d ( i ) / ( 1 . 0 d 0 * a d d s ( i ) ) 
s t r e s s p r o d ( i )  = U S R C 0 * e x p ( s t r e s s p r o d ( i ) * O M E G A / ( k b * U S R T E M P ) ) 
U S R B C ( i , 3)  = s t r e s s p r o d ( i )  
i f ( U S R F R E E ( i ) . n e . O )  t h e n  

U S R B C ( i , 3) = USRCO 
e n d  i f  

e n d  i f  
e n d  d o
END SUBROUTINE

c
c
c*

OUTPUT OF RESULTS INTO JO B .T 19 F IL E  FOR MENTAT2005

SUBROUTINE USRCODE_WRITEOUTPUTFILE( I N C , c r d )  
I M PL IC IT  REAL*8 (A-H,  O-Z)  
i n c l u d e  ' d i m e n 1
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INTEGER INC
REAL*8 CRD(NUMNP,2)
r e a l * 8  U S R I N D I S P ( 2 0 0 0 , 2 ) , U S R IP S T R ( 2 0 0 0 , 4 , 3 ) , USRIPFLUX( 2 0 0 0 , 4 , 4 ) ,

1 USRBC( 2 0 0 0 , 3 ) , USRPREVNODFLUX( 2 0 0 0 , 2 ) , USRTIMINC,
2 USRINITSHAPE( 2 0 0 0 , 2 ) , USRCO, USRTEMP,USRPREVTIME,USRAVESTRESS( 1 0 0 )  

i n t e g e r  USR NCM(2000 ,4 ) , USRNEDGE,USREDGE( 2 0 0 0 ,  2 )  ,
1 .USRNITERPEROUTPUT,USRCRFLAG 

common/USDACM/ USR IND ISP,USRIPSTR,USRIPFLUX,USRBC,
1 USRPREVNODFLUX,USRTIMINC,USRNCM,USRCRFLAG,USRAVESTRESS,
2 USRNEDGE,USREDGE,USRCO,USRTEMP,USRNITERPEROUTPUT,
3 USRPREVTIME, USRINITSHAPE 

c  i n t e r n a l  v a r i a b l e s
r e a l * 8 m n o d ( n u m n p , 3) 
r e a l * 8  U S R v a l

b a c k s p a c e (25)
w r i t e ( 2 5 , 1 ( A 4 ) 1) ' * * * * '
w r i t e ( 2 5 , ' ( A 2 7 , A 4 3 ) 1) ’ = b e g = 5 1 6 0 0  ( L o a d c a s e  T i t l e ) ' , '  1
w r i t e ( 2 5 , ' ( A 1 0 , A 6 0 ) ' ) ' j o b  •
w r i t e ( 2 5 , ' ( A 5 ) ' )  1= e n d = 1
w r i t e ( 2 5 , ' ( A 4 8 , A 2 2 ) ' )

1 ' = b e g = 5 1 7 0 1  ( I n t e g e r  I n c r e m e n t  V e r i f i c a t i o n  D a t a ) 1, '  1
w r i t e ( 2 5 ,  ' ( 6 1 1 3 )  ' )  0 , I N C , 0 , 1 2 0 , 3 , 0  
w r i t e ( 2 5 ,  ' ( 6 1 1 3 )  1) 0 , 1 , 0 , 0 , 0 , 0  
w r i t e ( 2 5 , ' ( A 5 ) ' )  ' = e n d = '
w r i t e ( 2 5 , ' ( A 4 5 , A 2 5 ) ' )

1 ' = b e g = 5 1 8 0 1  ( R e a l  I n c r e m e n t  V e r i f i c a t i o n  D a t a ) ' , '  '
w r i t e ( 2 5 ,  ' ( 11 3 )  ’ ) 24
w r i t e ( 2 5 , ' ( 6 E 1 3 . 6 ) ' )  USRPREVTIME,0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0  
w r i t e ( 2 5 ,  ' ( 6 E 1 3 . 6 )  ' )  0 . 0 , 0  . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0  
w r i t e  ( 2 5 ,  ' ( 6 E 1 3 . 6 )  ' )  0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0  
w r i t e ( 2 5 ,  * ( 6 E 1 3 . 6 ) ' )  0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0  
w r i t e ( 2 5 , 1 ( A 5 ) ' )  1= e n d = '
w r i t e ( 2 5 , 1 (A 43 , A 2 7 ) ' )

1 ' = b e g = 5 2 0 0 0  ( M a g n i t u d e  o f  D i s t r i b u t e d  L o a d s ) ' , 1 '
w r i t e ( 2 5 , ' ( 3 E 1 3 . 6 ) ' )  0 . 0 , 0 . 0 , 0 . 0  
w r i t e ( 2 5 , ' ( A 5 ) ' )  ' = e n d = '
w r i t e ( 2 5 , 1 ( A 4 5 , A 2 5 ) ' )

1 ' = b e g = 5 2 3 0 0  ( E l e m e n t  I n t e g r a t i o n  P o i n t  V a l u e s ) 1, '  '
d o  i  = l , n u m e l  

d o  j  = 1 , 4
w r i t e ( 2 5 , ' ( 5 E 1 3 . 6 ) ' )  ( U S R I P S T R ( i , j , k ) , k = l , 3 ) ,

1 ( U S R I P F L U X ( i , j , k ) , k = l , 2 )
e n d  d o  

e n d  d o
w r i t e ( 2 5 , 1 ( A 5 ) ' )  ' = e n d = '
w r i t e ( 2 5 , ' ( A 2 6 , A 4 4 ) 1) ' = b e g = 5 2 4 0 1  ( N o d a l  R e s u l t s ) ' , '  ' 
w r i t e ( 2 5 ,  ! ( 2 1 1 3 )  ' )  2 , 3
w r i t e ( 2 5 , ' ( A 1 2 , A 3 6 ) ' )  ' D i s p l a c e m e n t ' , ' ' 
w r i t e ( 2 5 ,  ' ( 6 1 1 3 )  ' )  1 , 0 , 0 , 2 , 0 , 0
w r i t e ( 2 5 ,  ' ( 6 1 1 3 )  ' )  - 1 , 0 , 0 , 0 , 0 , 0  
d o  i  = 1 , NUMNP

m n o d ( i , 1 )  = c r d ( i , l )  -  U S R IN I T S H A P E ( i ,  1) 
m n o d ( i , 2 )  = c r d ( i , 2 )  -  U S R I N I T S H A P E ( i , 2) 

e n d  d o
w r i t e ( 2 5 ,  ' ( 6 E 1 3 . 6 )  ' )  ( ( m n o d ( i , j ) , j  = 1 , 2 ) , i= l , N U M N P )
w r i t e ( 2 5 , ' ( A l l , A 3 7 ) ' )  ' T e m p e r a t u r e ' , '  '
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w r i t e ( 2 5 , ' ( 6 1 1 3 ) ' )  1 4 , 0 , 0 , 1 , 0 , 0  
w r i t e ( 2 5 ,  ' ( 6 1 1 3 )  ' )  - 1 , 0 , 0 , 0 , 0 , 0  
d o  i  = 1 , nu m n p

c a l l  n o d v a r ( 1 4 , i , U S R v a l , 1 , 0 )  
m n o d ( i , 3 )  = U S R v a l  

e n d  d o
w r i t e ( 2 5 , ' ( 6 E 1 3 . 6 ) ' )  ( m n o d ( i , 3 ) , i = l , N U M N P )  
w r i t e ( 2 5 , 1 ( A 5 ) ' )  ' = e n d = '
w r i t e ( 2 5 , ' ( A 2 9 , A 4 1 ) ' )  ' = b e g = 5 2 9 0 0  ( G l o b a l  V a r i a b l e s ) ' 
w r i t e ( 2 5 , ’ ( 2 1 1 3 )  ' )  1 , 1
w r i t e ( 2 5 , ' ( A 3 0 , A 1 8 ) ' )  ' L o a d c a s e  P e r c e n t a g e  C o m p l e t i o n  
w r i t e ( 2 5 , ' ( 6 1 1 3 )  •) 7 , 0 , 0 , 1 , 0 , 0  
w r i t e ( 2 5 , ' ( E 1 3 . 6 ) ' )  0 . 0  
w r i t e ( 2 5 , ' ( A 5 ) ' )  ' = e n d = '
w r i t e ( 2 5 , ' ( A 4 ) ' )  ' -------- 1
w r i t e ( 2 5 , ' ( A 4 ) ' )  ' + + + + '

END SUBROUTINE
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