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ABSTRACT

SOIL MOISTURE DYNAMICS FROM SATELLITE OBSERVATIONS, LAND 

SURFACE MODELING, AND FIELD DATA

by

Minha Choi

University of New Hampshire, December, 2006

Knowledge of soil moisture variability is essential to understand hydrologic 

processes at a range of scales. In this study, spatio-temporal variability of soil 

moisture and inter-comparison among different soil moisture products were 

analyzed. The variability patterns were well characterized by negative 

exponential fitting as function of observed sampling extent scale. The simple 

physical soil moisture dynamics model was identified as an alternative approach 

to characterize statistical soil moisture variability. The soil moisture variability was 

strongly related to physical properties including rainfall and topography.

Normal and log-normal distributions were recognized as the most efficient 

probability density functions to capture soil moisture variability patterns for all 

conditions. Further, these variability patterns were well maintained for root zone 

profile and surface soil moisture time stable characteristics can be used to upper 

boundary for sub-surface time stability.

xi
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Through inter-comparison analysis, average soil moisture from remotely 

sensed measurements, ground-based measurements, and land surface model 

results showed excellent agreement. However, remotely sensed soil moisture 

had little variation, especially during the growing season. There were 

complementary benefits with low random errors for the land surface model and 

low system errors for the remotely sensed data.

The error characteristics of remotely sensed measurements can enhance 

the utility of satellite observations. The remote sensing measurements can 

provide relative soil moisture conditions to improve runoff predictions and 

analyze land surface-atmosphere interactions for regional climate predictions in 

data limited areas. However, their extremely limited variations must be refined 

prior to direct application in hydrological processes.

Overall, the identified soil moisture variability patterns provide a new 

understanding of soil moisture dynamics and spatio-temporal variability patterns 

as related to physical variables. These organized characteristics are essential to 

predict land-atmosphere interactions, rainfall-runoff processes, and groundwater 

recharge processes. Practically, these findings can be used to calibrate land 

surface models and to estimate heterogeneity effects of land surface processes. 

Additionally, statistical information as a function of scale is critical to develop up- 

scaling and down-scaling methodologies without significant loss of information. 

This dissertation’s findings provide critical insight to hydrologic processes related 

to soil moisture at a range of scales.

xii
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INTRODUCTION

Soil moisture is a significant hydrological and ecological variable that 

controls the exchange of water and heat energy between the land surface and 

the atmosphere. It has an important role for partitioning of precipitation into runoff, 

infiltration, and surface storage. It also has major effects on the partitioning of 

incoming solar radiation and long wave radiation into outgoing long wave 

radiation, latent heat flux, ground heat flux, and sensible heat flux (Pachepsky et 

al., 2003).

Recently, aircraft and satellite instruments have been used to provide mean 

surface soil moisture (0 - 5 cm) values at broad spatial scales (Jackson et al., 

1995, 1999; Schmugge et al., 2002). These instruments measure the natural 

thermal emission of the land surface and the intensity of this emission as a 

brightness temperature (TB). Surface soil moisture is retrieved from T B 

observations (Jackson et al., 1995, 1999). Even if remotely sensed soil moisture 

has many advantages, it cannot describe hydrology at the watershed or field 

scale because its scale is too large (Mohanty and Skaggs, 2001; Jacobs et al., 

2004). Additionally, remotely sensed soil moisture measurements are limited to a 

shallow depth and are not responsive at heavy vegetation cover (Schmugge et 

al., 2002; Margulis et al., 2002).

1
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Soil moisture variability across spatial-temporal scales must be understood 

to validate, calibrate, and downscale remotely sensed data. However, the 

satellite soil moisture product validation is complicated by the scale mismatch 

between satellite footprint (1 -  50 km) and ground based in-situ measurement (1 

-  5 cm) as soil moisture is highly heterogeneous (Cosh et al., 2004). Thus, a 

large number of distributed soil moisture measurements within the footprint are 

required to accurately estimate mean values. There are two approaches 

available to provide a large number of ground based in-situ samples. The first is 

intensive field experiments such as Washita'92, SGP97, SGP99, SMEX02, and 

SMEX03 (Jackson and Schiebe, 1993; Jackson et al., 1999; Mohanty et al., 

2002; Bosch et al., 2006). These experiments were conducted to provide 

validation data for satellite and aircraft based microwave remote sensing 

instruments over a wide range of vegetation conditions during short-term periods 

as a part of an integrated set of hydrological data. Moreover, these intensive field 

experiments allow us to develop effective approaches to monitor soil moisture 

variability in applicable areas as well as provide validation data (Mohanty and 

Skaggs, 2001; Jacobs et al., 2004; Cosh et al., 2004). The second validation 

approach uses in-situ networks such as the soil climate analysis network (SCAN) 

operated by Natural Resources Conservation Service (NRCS) (Cosh et al., 2004) 

and Steven-Vitel Hydra probes networks operated by USDA-ARS Southeast 

Watershed Research Lab (SEWRL) (Bosch et al., 2006). These networks provide 

a continuous longer-term dataset of soil moisture profiles. Even if ground-based 

measurements can provide more reasonable and direct values, the network’s

2
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density is very sparse aside from the intensive field experiments (Reichle et al., 

2004).

An alternative approach is to carefully select representative sampling sites. 

If Vauchaud et al.’s (1985) time stability concept demonstrates a constancy of 

spatial soil moisture patterns, then the number of observations may be minimized 

without considerable loss of information. Since the time stability concept was 

introduced, several studies have analyzed the temporal variability of soil moisture 

(Grayson and Western, 1998; Mohanty and Skaggs, 2001; Jacobs et al., 2004; 

Cosh et al., 2004). Grayson and Western (1998) found that a few time stable 

sites can represent mean soil moisture in small watersheds. Jacobs et al. (2004) 

and Cosh et al. (2004) validated the time stability concept in the SMEX02 (Soil 

Moisture Experiment 2002). Based on observations from the Little Washita 

watershed during SGP97 (Southern Great Plains Hydrology 1997), Mohanty and 

Skaggs (2001) pointed out that further studies are required to understand soil 

moisture dynamics with related to soil, topography, vegetation, and climate in a 

variety of places and over a large range of scales. Jacobs et al. (2004), during 

the SMEX02, also found that physical characteristics, soil texture, vegetation, 

land-cover, and topography could be used to understand of time stable soil 

moisture patterns.

At broad spatial scales, the improved assessment of land surface water 

and energy fluxes, and water storage is a key factor in understanding the 

complex interactions between the land surface and the atmosphere (Kustas et al., 

1996; Moulin et al., 1998; Boegh et al., 2004). Here, remotely sensed soil

3
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moisture and in-situ measurement provide two means to characterize regional 

soil water storage. Another approach is to use soil - vegetation - atmosphere 

transfer (SVAT) models at a regional or watershed scale (Lohmann et al., 1998; 

Liang et al., 1998; Dai et al., 2003). SVAT schemes use the water and energy 

balances to combine land surface and atmosphere processes (Sellers et al., 

1986; Dickinson et al., 1993). For robust assessment of water and energy flux, a 

more physical parameterization is required (Mohr et al., 2000). However, in-situ 

measurement of physical parameters outside of intensive field experiment is 

generally sparse. Thus, an alternative approach is the careful selection of SVAT 

models, which have adequately sophisticated parameterization for accurate 

simulation (Whitfield et al., 2006). The ability to apply SVAT models over a range 

of field conditions may improve our understanding of land-atmosphere 

interactions in data-limited regions.

Each of these soil moisture datasets has useful information and limitations. 

Effective soil moisture estimations may be conducted by data assimilation 

systems (i.e., data merging procedure) from remotely sensed measurements, 

ground-based measurements, and models (Margulis et al., 2002; Reichle et al.,

2004). There have been significant advances in assimilation methodologies, but 

a fundamental requirement is the characterization of error statistics from 

available sources for optimal soil moisture estimation (Crow and Wood, 2003; 

Reichle and Koster, 2003). Bias estimation by comparisons among different data 

types is effective for understanding the data errors and identifying significant 

obstacles to data assimilation.

4
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The first objective of this study is to broadly examine the variability of soil 

moisture as related to physical properties across a variety of landscapes. In this 

study, we address major issues; 1) How do soil moisture variability patterns differ 

by soil depth?; 2) How can we characterize the relationship between mean soil 

moisture and spatial variability of soil moisture measurements?; 3) What 

statistical distributions are appropriate to capture soil moisture variability by 

depth?; 4) What are the key physical parameters that control spatial-temporal 

dynamics of soil moisture at a range of scales?; 5) Is time stability a robust 

sampling design for surface and root zone soil moisture?; and 6) How well can a 

simple physical dynamics model predict variability patterns?

This study’s second objective is to examine the conformity of different data 

types (i.e., remotely sensed measurements, ground-based measurements, and 

models) at Little River, GA. For this study, we address major issues; 1) How do 

soil moisture estimates compare among sources at regional scale?; 2) How well 

do soil - vegetation - atmosphere transfer (SVAT) models simulate spatial and 

temporal variability of surface soil moisture?; 3) How well does Advanced 

Microwave Scanning Radiometer -  Earth Observing System (AMSR-E) on Aqua 

satellite replicate surface soil moisture patterns?; and 4) How can we 

characterize error statistics by bias estimation from the three data source?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1.

SOIL MOISTURE VARIABILITY OF ROOT ZONE 
PROFILES WITHIN SMEX02 REMOTE SENSING

FOOTPRINTS

Abstract

Remote sensing of soil moisture effectively provides soil moisture at a 

large scale, but does not explain highly heterogeneous soil moisture 

characteristics within remote sensing footprints. In this study, field scale spatio- 

temporal variability of root zone soil moisture was analyzed. During the Soil 

Moisture Experiment 2002 (SMEX02), daily soil moisture profiles (i.e., 0-6, 5-11, 

15-21, and 25-31 cm) were measured in two fields in Walnut Creek watershed, 

Ames, Iowa, USA. Theta probe measurements of the volumetric soil moisture 

profile data were used to analyze statistical moments and time stability and to 

validate soil moisture predicted by a simple physical model simulation. For all 

depths, the coefficient of variation of soil moisture is well explained by the mean 

soil moisture using an exponential relationship. The simple model simulated very 

similar variability patterns as those observed.

As soil depth increases, soil moisture distributions shift from skewed to 

normal patterns. At the surface depth, the soil moisture during dry down is log-

6
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normally distributed, while the soil moisture is normally distributed after rainfall. 

At all depths below the surface, the normal distribution captures the soil moisture 

variability for all conditions. Time stability analyses show that spatial patterns of 

sampling points are preserved for all depths and that time stability of surface 

measurements is a good indicator of subsurface time stability. The most time 

stable sampling sites estimate the field average root zone soil moisture value 

within ± 2.1% volumetric soil moisture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

Soil moisture is a significant variable in hydrologic and biologic processes. 

It is a controlling variable in the exchange of water and energy between the land 

surface and the atmosphere through evaporation and transpiration. It determines 

the partitioning of precipitation into runoff, infiltration, and surface storage, as well 

as the partitioning of incoming solar radiation and long wave radiation into 

outgoing long wave radiation, and latent heat, ground heat, and sensible heat 

fluxes (Pachepsky et al., 2003).

Aircraft and satellite instruments (i.e., various active and passive 

microwave sensors), which provide mean surface soil moisture (0 - 5 cm) values 

at large spatial scales, are only recently available (Jackson et al., 1995, 1999; 

Schmugge et al., 2002). Microwave sensors have many advantages including the 

ability to directly measure soil moisture regardless of weather conditions or time 

of day (Jackson, 1993; Jackson and Schmugge, 1995). However, sub-pixel 

variability at the surface layer is still not well understood (Mohanty and Skaggs, 

2001; Jacobs et al., 2004). Furthermore, retrieved soil moisture products can not 

describe variability at depths below the surface, as only a shallow depth (0 - 5 

cm) is observed (Schmugge et al., 2002).

An understanding of soil moisture variability across spatial-temporal scales 

is essential to validate, calibrate, and downscale remotely sensed soil moisture 

products. Information characterizing spatio-temporal variability of soil moisture

8
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within remote sensing footprints can provide a blueprint to design ground-based 

experiments and networks and to efficiently use remote sensing measurements 

(Famiglietti et al., 1999; Ryu and Famiglietti, 2005). To characterize soil moisture 

variability within remote sensing footprints, a large number of ground-based in- 

situ samples were gathered during Washita'92, SGP97, SGP99, SMEX02, and 

SMEX03 (Jackson and Schiebe, 1993; Jackson et al., 1999; Mohanty et al., 

2002; Narayan et al., 2004). Soil Moisture Experiments (SMEX) are a series of 

soil moisture field experiment conducted annually from 2002 to 2005 (SMEX02 - 

SMEX05) to validate aircraft and satellite soil moisture measurements, to provide 

datasets of hydrologic processes and land-atmosphere interactions, and to 

evaluate new instrument technologies for soil moisture remote sensing (Mohanty 

and Skaggs, 2001; Jacobs et al., 2004; Cosh et al., 2004).

For most practical applications, knowledge of soil moisture must be 

understood for layers deeper than the thin surface layers observed using remote 

sensing instruments. Entire soil moisture profiles provide an enhanced 

characterization for hydrologic applications (Western et al., 1998) and a more 

integral understanding of soil moisture dynamics (Bloschl and Sivapalan, 1995). 

Moreover, the dynamics of soil moisture at deeper layers may significantly 

influence surface soil moisture variability (Jacques et al., 2001). Most previous 

studies of soil moisture variability are restricted to a shallow depth (0-5 cm) with 

only a few studies considering different soil depths (i.e., 0-100 cm) (Kachanoski 

and Jong, 1988; Hupet and Vanclooster, 2002; Martinez-Fernandez and 

Ceballos, 2003). Hupet and Vanclooster’s (2002) and Martinez-Fernandez and

9
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Ceballos’ (2003) investigations of spatio-temporal root zone soil moisture 

dynamics showed that patterns vary with depth. However, none of these studies 

were conducted during large scale experiments.

The relationship between mean soil moisture and variability within a 

footprint has been investigated to identify appropriate statistical distributions and 

physical parameters for soil moisture dynamics, to minimize the number of 

sampling sites, and to determine the sampling periods required to limit error 

(Famiglietti et al., 1998, 1999; Hupet and Vanclooster, 2002; Ryu and Famiglietti,

2005). While numerous studies have characterized soil moisture field statistics 

(Famiglietti and Wood, 1991, 1994; Famiglietti et al., 1998, 1999; Wilson et al., 

2003; Ryu and Famiglietti, 2005), there is still no consensus as to which 

probability density function (PDF) is suitable. There is also no agreement as to 

whether soil moisture variability is positively (Hills and Reynolds, 1969; 

Henninger et al., 1976; Bell et al., 1980; Robinson and Dean, 1993; Famiglietti et 

al., 1998; Martinez-Fernandez and Ceballos, 2003) or negatively (Famiglietti et 

al., 1999; Hupet and Vanclooster, 2002) correlated to mean soil moisture content. 

Teuling and Troch’s (2005) simple soil moisture model provided a preliminary link 

between physical processes and statistical variability patterns.

An approach to characterize mean footprint using minimal measurements 

for the spatio-temporal variability of soil moisture is the time stability concept 

(Vauchaud et al., 1985). Grayson and Western (1998), Mohanty and Skaggs 

(2001), Jacobs et al. (2004), and Cosh et al. (2004) demonstrated that a few time 

stable sites well represent the mean soil moisture within small watersheds.

10
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During SGP97 (Southern Great Plains Hydrology 1997), Mohanty and Skaggs 

(2001) validated the time stability concept. Jacobs et al. (2004) and Cosh et al. 

(2004) also validated the time stability concept in the SMEX02 (Soil Moisture 

Experiment 2002). However, these studies only examined time stability for near 

surface soil moisture. Little is known about the concept’s validity for other depths 

or the relationship between surface time stability and profile time stability.

The main objective of this study is to better understand field scale soil 

moisture dynamics for two fields in central Iowa. This study (1) investigates how 

variability patterns differ by soil depth; (2) characterizes the relationship between 

mean soil moisture and spatial variability of soil moisture measurements over 

time; (3) tests a physical dynamics model to predict variability patterns; (4) 

identifies appropriate statistical distributions by depth; and (5) examines the 

temporal stability concept of soil moisture for a soil water profile.

11
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Study Region

SMEX02 was conducted in cooperation with National Aeronautic and 

Space Administration (NASA), National Oceanic and Atmospheric Administration 

(NOAA), and United States Department of Agriculture (USDA). Detailed 

descriptions of SMEX02 can be found at http://hvdrolab.arsusda.gov/smex02/. 

The Walnut Creek watershed (100 km2) in Ames, Iowa was the site for intensive 

investigations of soil moisture and hydro-meteorological samples during SMEX02. 

Approximately 95% of the watershed is used for row crop agriculture (corn and 

soybean). The climate is nearly humid and average annual rainfall is 835 mm. 

The heaviest rainfall usually occurs in May and June and amounts to about one 

third of the annual total. There are 20 recording rain gauges at 1-mile intervals in 

the watershed. The topography is characterized by low relief and poor surface 

drainage, resulting from prairie potholes that are water-holding depressions of 

glacial origin. The representative soils are loams and silty clay loams and have 

relatively low permeability (Iowa State University, 1996).

During the SMEX02 field campaigns, sampling was conducted between 

June 23 to July 12, 2002 in the Walnut Creek watershed and regional sites near 

Ames, Iowa. In the watershed sampling, ground sampling was conducted at 33, 

approximately 800 *  800 m, fields (WC01 - W C33) for ESTAR/2D-STAR/PSR  

aircraft remote sensing validation (Figure 1-1 (a)). For this study, we selected two 

watershed fields (WC11 and W C13) (Figure 1-1 (b)) whose locations and field

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://hvdrolab.arsusda.gov/smex02/


attributes are given in Table 1-1. While both fields had similar relief and soils, 

WC11 had a corn crop with a small area of soybean planted near the western 

edge of the field and WC13 had a soybean crop. Average crop root zone depths 

of corn and soybean are between 12 and 18 inch during second growth stage of 

vegetative growth and development (Smajstrla, 1990). The soil moisture of from 

0 to 31 cm depth should capture most of the root zone water dynamics during the 

SMEX02.

Soil moisture content was measured almost daily from June 26 to July 10, 

2002 at 25 points in the W C 11 field and from June 27 to July 8, 2002 at 31 points 

in the WC13 field. Measurements were conducted between 1200 and 1600 local 

time (CDST). Sampling points were located at 100 m intervals along four 

transects oriented east-west and north-south within each field (Figure 1-1 (b)). 

During the experiment, volumetric soil moisture contents were measured using 

theta probes (Dynamax, Inc., Texas). More detailed information for the theta 

probes can be found at http://www.dvnamax.com. The theta probe measures the 

average dielectric constant using 6 cm length tines. For subsurface 

measurements, an auger was used to extract soil to the required soil depth (i.e., 

5, 15, 25 cm) and the theta probe was pushed into the soil until the tines were 

fully covered. The average soil moisture from 0 to 31 cm was estimated by 

averaging the 4 measurements, 0-6, 5-11, 15-21, and 25-31 cm. In this study, we 

abbreviate theta probe measured soil moisture at 0-6 cm as 0 cm, 5-11 cm as 5 

cm, 15-21 cm as 15 cm, and 25-31 cm as 25 cm.
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Methods

Statistical Analysis

Statistical moments, mean, standard deviation, coefficient of variation, and 

skewness of soil moisture measurements were calculated daily by field and soil 

depth. Probability density functions (PDFs) were fit using the method of moments. 

The normal distribution and log-normal distribution were analyzed as they are the 

most widely used PDFs in hydrologic systems (Li and Avissar, 1994; Crow and 

Wood, 2002; Haan, 2002; Ryu and Famiglietti, 2005).

Probability plot correlation coefficient (PPCC) tests (Looney and 

Gulledge,1985; Vogel, 1986) were conducted to determine whether the data 

follow normal or lognormal distributions. In the PPCC test, if the correlation 

coefficient (r) between the data and standardized quantile for the specified 

distribution is smaller than the critical r*, the null hypothesis, Ho (Ho: the data are 

drawn from the named distribution) is rejected. A large a  level (i.e., 0.1) was 

applied to increase the power to detect non-normality, especially for small 

sample sizes (Helsel and Hirsch, 2002).
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Physical Soil Moisture Dynamics Model

A simple physical dynamics model was used to examine how well the 

observed statistical variability was predicted by physical soil moisture dynamics. 

For this study, the physical model is based on the previous studies (Guswa et al., 

2002; Teuling and Troch, 2005). Additional model parameter details are provided 

by the previous studies. The basic soil moisture dynamics equation (Guswa et al., 

2002; Teuling and Troch, 2005) is defined as

(1-D

where 0 is the average volumetric soil moisture over a depth, L is the root zone 

depth, / is the infiltration rate, q is the drainage, and S is the root water uptake.

Infiltration is calculated as the minimum of precipitation minus interception 

and unsaturated depth of the root zone (Guswa et al., 2002). Drainage is 

estimated by Darcy’s law and is parameterized by Campbell (1974) as

< l =  k s a t £ ) 2 b + 3  (1-2)
<P

where /rsaf is the saturated hydraulic conductivity,  ̂ is the porosity, and b is the 

pore size distribution index. The porosity {</>) and pore size distribution index (b)

were fitted by linear relationship with natural logarithm of the saturated hydraulic

conductivity (Acsar) (0  = -O.Ol47ln(fcja<) + 0.545 and b = -l.241n(&ia/) + l5 .3 ) (Clapp and 

Hornberger, 1978).

The root water uptake is defined by Teuling and Troch (2005) as

S  = f rP { l - exp (-ce )}E p (1-3)
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where f r is the root fraction, p is the soil moisture stress function, c is the light 

use efficiency parameter, e is the leaf area index (LAI), and Ep is the potential 

evapotranspiration [mm/day].

The root fraction ( f r ) was set equal to one and light use efficiency 

parameters (c) were 0.55 and 0.50 in WC11 and WC13, respectively (Teuling 

and Troch, 2005). The soil moisture stress function (p )  was modeled following 

Teuling and Troch (2005). Table 1-1 lists soil parameter values obtained from 

Iowa State University (1996) and LAI values from Anderson et al. (2004). 

Atmospheric forcing data (precipitation and evapotranspiration) were obtained 

from available data (SMEX02 datasets).

Both the leaf area index (£) and the natural logarithm of the saturated 

hydraulic conductivity (ksat) were assumed to follow a normal distribution (Teuling 

and Troch, 2005). One thousand samples were generated by Monte-Carlo 

simulations (Haan, 2002) based on the statistical mean and standard deviation 

for leaf area index (e) during three measurements periods (Anderson et al., 2004) 

and the natural logarithm of the saturated hydraulic conductivity (ksat) (Clapp and 

Hornberger, 1978) (Table 1-1).

Time stability analysis

Vachaud et al. (1985)’s time stability concept characterizes the time- 

invariant association between spatial location and statistical parametric values of
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a given soil property. In order to analyze the time stability of a soil moisture field, 

two statistical metrics, the mean relative difference and the root mean square 

error of mean relative difference, are determined. The field mean soil moisture 

( Gj, ), the mean relative difference ( < 5 ,j), and the variance of the relative

difference (<7(5),/) for each sampling point (Vachaud et al., 1985) are defined as

where t is the number of dates, j  is the number of fields, /' is the number of 

sample points within field j  at time t, Qi jf is a volumetric soil moisture at location / 

in field j  and time t.

The mean relative difference indicates whether a soil moisture 

measurement of a particular sample point is greater or less than the average soil 

moisture of the field. The mean relative difference plot, drawn by rank with an 

error boundary of one standard deviation of the relative difference, determines 

which sample points are the best time stable locations in the field.

The root mean square error (RMSE) of mean relative difference, which 

includes both bias and precision metrics (Jacobs et al., 2004), is defined as

(1-4)

i ^ 6lJt-eJt
(1-5)

(1-6)

RMSEi J = ( 8 if + a ( 8 \ J2)xl2 (1-7)
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This combination statistic identifies time stable locations in a field as those

having low RMSE values.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Results and Discussion

Statistical analysis

The time series of precipitation and the mean, standard deviation, and 

skewness of volumetric soil moisture by depth and field are shown in Figure 1-2. 

The mean soil moisture shows a dry down phase from the initiation of the 

SMEX02 campaign. After rainfall events, the mean soil moisture increases. The 

mean soil moisture content is highly dependent on depth, while the standard 

deviation and skewness of soil moisture are less dependent. The dependency 

may be related to surface evaporation, root water uptake, and soil properties. 

Deeper layers typically have somewhat less variability than shallower layers. 

Several environmental factors (i.e., evaporation and rainfall) may cause higher 

variability at the surface than the subsurface. During the experiment, the mean 

soil moisture varied by 23.5% at 0 cm, 18.8% at 5 cm, 16.2% at 15 cm, and 

14.5% at 25 cm in WC11. Smaller ranges, 14.6, 9.5, 7.6, and 6.8% at 0, 5, 15, 

and 25 cm depths were observed in WC13 (Figures 1-2(a) and 1-2(d)). The 

mean soil moistures changes were greater in shallower layers than in deeper 

layers.

The maximum standard deviations of the soil moisture were 8.0 and 

10.1% at WC11 and WC13, respectively. Between fields differences for the 

maximum standard deviation were likely caused by highly heterogeneous rainfall
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on June 30 and July 1. That the maximum standard deviation occurred during the 

dry down may be related to hysteresis effects (Figures 1-2(b) and 1-2(e)). 

Average soil moisture standard deviation values of 4.6, 5.7, 5.6, and 5.5% at 0, 5, 

15, and 25 cm depths were observed in WC11. Higher average values, 5.8, 7.5, 

7.1, and 6.5% at 0, 5, 15, and 25 cm depths, were observed in WC13. While soil 

moisture standard deviation tended to decrease as soil depth increased, the 

maximum standard deviation of the soil moisture did not occur at the surface, but 

at 5 cm.

The largest skewness occurred at or near the surface during the initial dry 

down (Figures 1-2(c) and 1-2(f)). For deeper depths, skewness was typically 

near zero or negative. Average soil moisture skewness of 0.18, 0.23, 0.00, and - 

0.10% at 0, 5, 15, and 25 cm depths were observed in WC11. Higher average 

values, 0.62, 0.36, -0.07, and -0.36 at 0, 5, 15, and 25 cm depths, were observed 

in WC13. Overall, WC13 had higher variability (i.e., standard deviation and skew) 

than WC11. The W C13’s higher sand content and lower vegetative cover of 

soybean likely enhanced variability. The soybean’s lower Normalized Difference 

Vegetation Index (NDVI) reflects a partial canopy cover as compared to corn 

(WC11) and more spatially varied soil water loss by evaporation (Jacobs et al.,

2004).

Figures 1-3(a) and 1-3(d) show the relationship between the mean soil 

moisture and the standard deviation by soil depth. While considerable scatter 

exists, negative relationships are evident for all soil depths. Interestingly, the 

relationship between the mean soil moisture and the standard deviation of soil

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



moisture at 0 cm depth showed a transition to a positive relationship with drier 

conditions (10-15%) in both fields. Overall, soil moisture variability showed the 

highest values at moderate moisture conditions (15-25%) and reduced values for 

drier and wetter conditions for all depths. Using 154 field scale samples of 

surface soil moisture for the SGP97 experiment, Ryu and Famiglietti (2005) also 

found that 20% mean soil moisture content showed the highest variability.

For surface measurements, our negative relationships are consistent with 

the previous study of Famiglietti et al. (1999) who found negative relationships 

between surface mean soil moisture and standard deviation of soil moisture 

content for six fields in SGP97. However, many previous studies found a positive 

relationship between the mean surface soil moisture content and the standard 

deviation of soil moisture (Hills and Reynolds, 1969; Henninger et al., 1976; Bell 

et al., 1980; Robinson and Dean, 1993; Famiglietti et al., 1998). These previous 

studies postulated that variability peaked under wet soil moisture conditions, 

because soil heterogeneity would be maximized after rainfall events (Famiglietti 

et al., 1998). Contradictory relationships may be also influenced by combined 

physical effects of soil texture, hysteresis effects, vegetation, topography, and 

sampling scale (Famiglietti et al., 1998). For the subsurface depths, our negative 

relationships are consistent with Hupet and Vanclooster’s (2002) finding that the 

standard deviation of soil moisture decreased with increasing mean soil moisture 

(20-45%) at depths from 0 to 125 cm in agricultural maize cropped field. However, 

Martinez-Fernandez and- Ceballos (2003) found a positive relationship between 

soil moisture mean (10-30%) and variance at depths from 0 to 100 cm for crops

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



grown in sandy soils (cereals and vineyards). This difference may be caused by 

their site’s sandy soils and fortnightly sampling that likely resulted in rapid 

drainage and relatively dry conditions.

The relationships between the coefficient of variation and the mean soil 

moisture content for the different depths are shown in Figure 1-3(b) and 1-3(e). 

The coefficient of variation exponentially decreases as the mean soil moisture 

increases for all depths. This result is consistent with the previous studies of Bell 

et al. (1980), Owe et al. (1982), Charpentier and Groffman (1992), and Famiglietti 

et al. (1999) for surface soil moisture. Jacobs et al. (2004) characterized the 

negative relationship between the surface mean soil moisture content and the 

coefficient of variation using an exponential fit for four fields of the SMEX02. Here, 

the profile results are well characterized by the exponential fit C V  = CeB0 (Table 1- 

2) with B and C varying by depth. The 0 cm depth has the least negative 

relationship (i.e., smallest B, C parameters, and R2) in both fields, with deeper 

layers having more obvious negative relationships. These small variability 

patterns for the 0 cm depth are affected by the high variation of mean soil 

moisture at the surface. WC13 had higher relative variability under dry conditions 

and more rapidly declining relative variability with increasing mean soil moisture 

for all depths as compared to WC11. This higher variability may be related to 

W C13’s relatively high sand content, low vegetation cover, and high topographic 

relief as compared to WC11 (Table 1-1). For both fields, the relationships 

converge under wet conditions.
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A fairly consistent relationship between soil moisture skewness and mean 

soil moisture was observed (Figures 1-3(c) and 1 -3(f)). As soil dried, a few sites 

remained wet resulting in a positive skew. These wet sites typically had higher 

clay content (30-31%) and were located in lower elevations. Following rainfall 

events, a few relatively dry sites caused a negative skew. These dry locations 

typically had a relatively high sand content (30-33%) and were located at hilltops. 

While, the average skewness of WC13 (0.62, 0.36, -0.07, and -0.36 at 0, 5, 15, 

and 25 cm depths) is relatively large compared to that of WC11 (0.18, 0.23, 0.00, 

-0.10 at 0, 5, 15, and 25 cm depths), the decreasing skewness with soil depths is 

similar to those.

Statistical results agree with observations of enhanced normality with 

increasing soil depth. Table 1-3 summarizes field statistics and the results of the 

PPCC test for normal and lognormal distributions. While the surface distributions 

were positively skewed during the inter-storm period, they were negatively 

skewed after rainfall events. The surface distributions were relatively well 

described by the log-normal distribution during the dry down phase, and by the 

normal distribution after rainfall. The distributions at other depths (i.e., 5, 15, 25, 

and 0-31 cm) differed from those at the surface. While positively skewed patterns 

decreased and normal patterns increased with increasing soil depth before 

rainfall events, the distributions showed normal or negatively skewed patterns 

after rainfall events.

Sixty six percent of the distributions were well described by both the 

normal and log-normal distributions. Normal and log-normal distributions were
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appropriate for 83 and 77% of the datasets, respectively. Neither a normal, nor a 

log-normal distribution was appropriate for 6% of the datasets. For the 0-31 cm 

profile, either the normal or the log-normal distributions can be used in all cases. 

These results are consistent with Famiglietti et al. (1999) who found normal 

patterns in the mid-range of mean soil moisture and positive/negative skewed 

patterns in the dry and extremely wet conditions at the surface, respectively for 

the SGP97 area. Ryu and Famiglietti (2005) also found that the normal 

distribution was appropriate to represent sub-pixel soil moisture variability under 

wet conditions for the SGP97 area. This study extends their findings and shows 

that the normal distribution captures the variability for all 0-31 cm profiles.

Physical soil moisture dynamics

Figure 1-4 shows the results from the simple dynamics model simulation. 

The simulated mean soil moisture versus day of year (DOY) plots for W C 11 and 

WC13 show good agreement with observed surface (0 cm) and root zone (0-31 

cm) measurements (Fig 1-4(a) and 1-4(c)). The RMSE of simulated mean soil 

moisture for the surface and the root zone were 6.6 and 4.4% for W C 11 and 1.8 

and 3.4% for WC13. W C H ’s high RMSE reflects a large overestimation on July 

10. Overestimated mean soil moisture on a rainy day is likely caused by a high 

infiltration estimate because the bucket model only uses a mean saturation 

amount regardless of the soil moisture spatial distribution (Guswa et al., 2002).
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The mean soil moisture and the coefficient of variation for the observed 

data and simulated results are shown in Figure 1-4(b) and 1-4(d). The simulated 

patterns are similar to those observed for the surface and the root zone. Both are 

well characterized by the exponential fit (Table 1-2). The model results 

successfully capture the higher variability patterns in W C13 as compared to 

WC11. The differences in variability appear to be primarily driven by LAI 

differences, because topographic processes were not considered in the physical 

model and the soil parameters were quite similar. Overall, these results support 

Teuling and Troch’s (2005) finding that a simple physically-based model can 

capture the relationship between mean soil moisture and variability.

Time stability of the soil moisture
t

Figures 1-5 and 1-6 show the time stability results by depth. Negative mean 

relative differences indicate that corresponding sites have drier spatial patterns 

compared to the field mean soil moisture while positive mean relative differences 

indicate that corresponding sites have wetter spatial patterns compared to the 

field mean soil moisture. The error bars, standard deviation of the mean relative 

difference, and RMSE values are also indicators as to which sites capture the 

best field mean soil moisture. The best locations have a mean relative difference 

and RMSE close to zero. The most stable locations in WC11 and WC13 

represent field mean soil moisture for all soil depths within ± 1.1% and ± 2.1%
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volumetric soil moisture (VSM), respectively. In both fields, time stability 

improved with increasing depth. The average values of standard deviation and 

RMSE decrease gradually with increasing soil depth. For example, the average 

values of standard deviation and RMSE decreased from 21.9 and 27.8 at the 

surface to 14.9 and 21.4% at 25 cm depth in WC11. While WC13 had greater 

variability at most levels than WC11, the variability at 25 cm was much lower 

than that at the surface. The W C 11 shows better time stability than W C13 for all 

depths.

Figures 1-5(f) and 1-6(f) show the mean relative difference values for all 

depths at each sampling location. Sampling locations are ordered by the 0-31 cm 

rank. In WC11, sampling points 13, 21, 70, 79, and 83 are the five most stable 

sampling locations for root zone soil moisture (0-31 cm). The most locations in 

WC13 are 17, 54, 58, 75, and 136 (Figure 1-1 (b)). Figures 1-5(f) and 1-6(f) show 

that each site maintains its spatial patterns regardless of soil depth. A 

comparison of the mean relative difference rankings between soil depths was 

conducted using a paired t-test and the signed rank test, a non parametric 

procedure used to identify differences in paired observations using the sign and 

magnitude of the differences (Helsel and Hirsch, 2002). Here, a pair is two 

depths at a single point and the stability ranks corresponding to those depths are 

compared. All possible combinations of depths were examined (e.g., 0 and 5 cm, 

0 and 15 cm, 0 and 25 cm, etc.). The paired t-test and signed rank test indicated 

that there was no significant difference in rank for any combination of depths. 

This result shows that time stable locations identified using surface
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measurements are also time stable for the root zone profiles under conditions of

no significant soil type variability by soil depths.

Temporal mean soil moisture of each sampling point for the best stable 

sampling sites had a relatively low standard deviation value for all depths. Here, 

we note that time stability is closed to zero as standard deviation and relative 

variability decreases. The majority of five most stable sampling points for root 

zone were located in hill slopes (Figure 1 -1 (b)). These results extend Jacobs et 

al.’s (2004) finding that mild slopes exhibit time stable characteristics for surface 

soil moisture. Hupet and Vanclooster (2002) found that dry periods had poor 

stability characteristics for depths from 0 to 125 cm. However, Martinez- 

Fernandez and Ceballos’s (2003) experiment in sandy soils found that for 

comparable absolute values of the mean relative differences, dry sites had lower 

standard deviations than wetter sites at all soil depths (i.e., 0 to 100 cm). Jacobs 

et al. (2004) and Mohanty and Skaggs (2001) confirmed this finding for surface 

soil moisture measurements. In our study, while the drier sites had lower 

standard deviations at the surface, this was not the case at many deeper depths 

at both sites. Based on this finding, recommended time stable sampling sites 

may include either slightly drier or wetter sites when root zone soil moisture is to 

be estimated.
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Conclusion

In this study, variability and time stability of soil moisture were considered 

for different soil depths in two fields in the Walnut Creek watershed, Iowa. The 

coefficient of variation of soil moisture decreased exponentially with increasing 

mean soil moisture content for all soil depths. The surface depth showed the 

least negative relationship between mean soil moisture and the coefficient of 

variation of soil moisture. Surface soil moisture was well described by a normal 

distribution, except during dry down phases when it is positively skewed. At 

deeper depths, the normal distribution generally captured the soil moisture 

variability. A simple physical model can provide insight to statistical relationships 

necessary to disaggregate physically based land surface model predictions. The 

most stable station represented the field mean soil moisture content within ± 

1.1% and ± 2.1% volumetric soil moisture (VSM) for WC11 and W C13 fields, 

respectively. The time stability patterns were maintained regardless of the soil 

depth. However, in contrast to earlier studies, better time stability is not always 

found at drier sites, as the deeper soils showed much poorer time stability. Here, 

the best sampling sites were either slightly drier or wetter sites. Earlier studies’ 

results regarding surface time stability may provide valuable insight to root zone 

time stability prediction.

This study also found less variability at deeper depths as compared to 

surface soil moisture observations. Surface soil moisture variability and

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



skewness may be used as an upper boundary for the root zone variability and 

skewness. Thus, care should be taken in extrapolating statistics from surface 

measurements to the entire root zone.
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Table 1-1. Geographic locations and field characteristics for the W C 11 and 
WC13 fields (Note: Values in parenthesis are the standard deviations)

Field

UTM 
coordinates of 

the NE comer of 
the field

No. of 
sampling 

points

Average soil 
texture

Sand Clay 
(%) (%)

Crop
type

Average
Ksat

(mm/day) 6/28

Average
LAI

7/2 7/8

Max
elevation
difference

(m)

WC11 442.616(E)
4,647,323(N) 25 24.5 28.6 Com 351.7

(190.5)
2.44

(0.41)
2.74

(0.45)
3.72

(0.44) 3.7

WC13 443.524(E) 
4,645,315(N) 31 26.3 28.6 Soybeans 424.9

(196.7)
0.65

(0.26)
0.92

(0.28)
1.70

(0.52) 6.1
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Table 1-2. Regression relationship between the coefficient of variation and the 
mean soil moisture of observed and simulated for the different soil depths in 
W C 11 and W C13 fields where C V  = Cem

In-situ Simulated
Field Depth C B R2 C B R2

WC11 0 cm 0.80 -0.061 0.80 0.47 -0.059 0.79

5 cm 2.07 -0.092 0.92
15 cm 1.84 -0.087 0.90
25 cm 1.92 -0.086 0.81

0-31 cm 1.49 -0.086 0.91 0.56 -0.050 0.67

WC13 0 cm 1.58 -0.091 0.81 1.22 -0.079 0.94

5 cm 2.86 -0.099 0.87
15 cm 4.02 -0.110 0.88
25 cm 9.75 -0.138 0.85

0-31 cm 3.38 -0.114 0.96 0.67 -0.047 0.87
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Table 1-3. Summary of field statistics and PPCC test (Fitness of PDF lists which
probability density functions are appropriate.)

Site Depth Date Number
of

Samples

Mean
(%)

Std.Dev.

(%)

CV Skewness PPCC
Normal

PPCC
Lognormal

Fitness 
of PDF 

N = normal 
LN = Lognormal

WC11 Ocm 6/26 25 16.73 6.73 0.40 0.67 Accept Accept N/LN
6/27 25 15.00 5.91 0.39 1.26 Reject Accept LN
6/28 25 16.93 6.31 0.37 0.68 Accept Accept N/LN
6/29 25 12.66 4.04 0.32 0.31 Accept Accept N/LN
6/30 25 13.24 4.44 0.34 0.44 Reject Accept LN
7/1 25 10.40 3.09 0.30 -0.14 Accept Reject N
7/3 25 12.31 5.03 0.41 1.07 Reject Accept LN
7/5 25 25.87 4.19 0.16 -0.44 Accept Accept N/LN
7/7 25 28.72 5.37 0.19 -1.53 Reject Reject -
7/8 25 25.18 3.57 0.14 -0.53 Accept Reject N
7/9 25 21.77 3.86 0.18 0.40 Accept Accept N/LN
7/10 25 33.85 2.89 0.09 -0.06 Accept Accept N/LN

5 cm 6/26 25 20.91 6.06 0.29 0.06 Accept Accept N/LN
6/27 25 20.10 7.07 0.35 0.15 Accept Reject N
6/28 25 21.23 7.09 0.33 0.52 Accept Accept N/LN
6/29 25 24.03 5.02 0.21 0.19 Accept Accept N/LN
6/30 24 19.09 7.99 0.42 0.30 Accept Accept N/LN
7/1 23 17.73 6.40 0.36 0.47 Accept Accept N/LN
7/3 24 17.07 6.11 0.36 0.49 Accept Accept N/LN
7/5 25 25.59 5.18 0.20 0.58 Accept Accept N/LN
7/7 25 29.80 5.42 0.18 -0.29 Accept Accept N/LN
7/8 25 25.72 4.40 0.17 -0.17 Accept Accept N/LN
7/9 25 22.86 5.59 0.24 0.41 Accept Accept N/LN
7/10 25 35.85 2.24 0.06 0.01 Accept Accept N/LN

15 cm 6/26 25 21.87 7.09 0.32 0.02 Accept Accept N/LN
6/27 25 23.78 6.01 0.25 0.02 Accept Accept N/LN
6/28 25 23.42 5.45 0.23 -0.02 Accept Accept N/LN
6/29 25 19.77 6.60 0.33 0.52 Accept Accept N/LN
6/30 24 20.13 6.33 0.31 0.03 Accept Accept N/LN
7/1 23 20.96 6.21 0.30 0.23 Accept Accept N/LN
7/3 24 18.81 6.60 0.35 0.39 Accept Accept N/LN
7/5 25 25.47 4.92 0.19 -0.24 Accept Accept N/LN
7/7 25 25.29 5.59 0.22 0.00 Accept Accept N/LN
7/8 25 25.24 3.70 0.15 -0.07 Accept Accept N/LN
7/9 25 24.90 4.99 0.20 -0.40 Accept Reject N
7/10 25 34.96 3.25 0.09 -0.43 Accept Accept N/LN

25 cm 6/26 25 24.47 7.69 0.31 -0.76 Reject Reject -
6/27 25 25.81 5.39 0.21 0.19 A ccept Accept N/LN
6/28 25 26.34 6.15 0.23 -0.28 Accept Reject N
6/29 25 24.53 5.73 0.23 -0.28 Accept Reject N
6/30 24 23.66 6.41 0.27 0.01 Accept Reject N
7/1 23 23.66 5.07 0.21 0.10 Accept Accept N/LN
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Table 1-3. Summary of field statistics and PPCC test (Fitness of PDF lists which
probability density functions are appropriate.) (Continued)

7/3 24 20.61 5.60 0.27 0.48 Accept Accept N/LN
7/5 25 26.36 4.92 0.19 0.05 Accept Accept N/LN
7/7 25 25.56 5.91 0.23 0.19 Accept Accept N/LN
7/8 25 25.68 4.91 0.19 -0.13 Accept Accept N/LN
7/9 24 25.73 4.94 0.19 -0.46 Accept Reject N
7/10 25 35.08 3.03 0.09 -0.29 Accept Accept N/LN

Total 6/26 25 21.40 5.69 0.27 -0.03. Accept Reject N
6/27 25 21.85 5.45 0.25 0.16 Accept Accept N/LN
6/28 25 22.49 5.63 0.25 0.25 Accept Accept N/LN
6/29 25 20.77 4.94 0.24 0.17 Accept Accept N/LN
6/30 24 19.59 5.68 0.29 0.14 Accept Accept N/LN
7/1 23 18.99 4.67 0.25 0.24 Accept Accept N/LN
7/3 24 17.59 5.06 0.29 0.49 Accept Accept N/LN
7/5 25 25.80 4.23 0.16 -0.12 Accept Accept N/LN
7/7 25 27.06 4.68 0.17 0.22 Accept Accept N/LN
7/8 25 25.46 3.42 0.13 -0.20 Accept Accept N/LN
7/9 24 24.29 4.27 0.18 -0.19 Accept Accept N/LN

7/10 25 35.01 2.32 0.07 0.12 Accept Accept N/LN
WC13 0 cm 6/27 30 14.49 7.65 0.53 0.77 Reject Accept LN

6/28 31 11.04 5.65 0.51 1.41 Reject Accept LN
6/29 31 10.14 4.76 0.47 0.66 Accept Accept N/LN
6/30 31 13.24 8.88 0.67 1.37 Reject Reject -
7/1 28 13.45 7.82 0.58 1.49 Reject Accept LN
7/3 23 9.83 5.84 0.59 1.19 Reject Accept LN
7/5 24 22.46 4.02 0.18 -0.09 Accept Accept N/LN
7/6 31 21.96 4.39 0.20 0.30 Accept Accept N/LN
7/7 31 24.44 5.39 0.22 -0.99 Reject Reject -
7/8 31 21.05 3.35 0.16 0.12 Accept Accept N/LN

5 cm 6/27 31 20.69 6.82 0.33 0.31 Accept Accept N/LN
6/28 31 20.91 7.85 0.38 0.41 Accept Accept N/LN
6/29 31 20.24 7.14 0.35 0.30 Accept Accept N/LN
6/30 31 16.33 8.48 0.52 1.10 Reject Accept LN
7/1 27 19.71 10.14 0.51 0.39 Reject Reject -
7/3 23 16.74 9.34 0.56 0.60 Reject Accept LN
7/5 22 22.98 5.70 0.25 0.36 Accept Accept N/LN
7/6 31 23.24 6.39 0.28 -0.07 Accept Accept N/LN
7/7 31 25.79 5.98 0.23 0.11 Accept Accept N/LN
7/8 30 23.28 6.87 0.29 0.12 Accept Accept N/LN

15 cm 6/27 31 27.00 6.18 0.23 -0.70 Accept Reject N
6/28 31 25.16 6.56 0.26 -0.76 Accept Reject N
6/29 31 24.04 7.33 0.30 -0.70 Accept Reject N
6/30 31 19.84 9.72 0.49 0.32 Reject Accept LN
7/1 28 20.66 9.18 0.44 0.37 Reject Accept LN
7/3 23 20.80 8.40 0.40 0.12 Accept Reject N
7/5 22 22.82 6.31 0.28 0.11 Accept Accept N/LN
7/6 31 25.83 6.15 0.24 0.20 Accept Accept N/LN
7/7 31 27.47 5.25 0.19 -0.01 Accept Accept N/LN
7/8 30 23.86 5.53 0.23 0.34 Accept Accept N/LN
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Table 1-3. Summary of field statistics and PPCC test (Fitness of PDF lists which
probability density functions are appropriate.) (Continued)

25 cm 6/27 31 30.15 4.68 0.16 -0.95 Reject Reject -
6/28 31 29.38 4.70 0.16 -0.47 Accept Reject N
6/29 31 28.13 7.35 0.26 -1.53 Reject Reject -
6/30 30 23.38 9.69 0.41 -0.11 Accept Reject N
7/1 26 26.36 7.28 0.28 0.13 Accept Accept N/LN
7/3 23 25.00 8.48 0.34 -0.83 Accept Reject N
7/5 22 24.60 7.04 0.29 -0.13 Accept Accept N/LN
7/6 30 28.61 5.23 0.18 0.04 Accept Accept N/LN
7/7 31 29.36 4.75 0.16 0.37 Accept Accept N/LN
7/8 29 26.56 5.31 0.20 -0.10 Accept Accept N/LN

Total 6/27 30 24.04 5.54 0.23 0.05 Accept Accept N/LN
6/28 31 22.72 5.52 0.24 0.29 Accept Accept N/LN
6/29 31 21.71 6.14 0.28 -0.55 Accept Reject N
6/30 31 18.97 7.39 0.39 0.68 Accept Accept N/LN
7/1 25 20.56 7.45 0.36 0.63 Reject Accept LN
7/3 23 18.96 7.29 0.38 0.33 Accept Reject N
7/5 22 23.28 5.12 0.22 0.22 Accept Accept N/LN
7/6 30 25.28 4.87 0.19 0.22 Accept Accept N/LN
7/7 31 27.01 4.43 0.18 0.54 Accept Accept N/LN
7/8 31 24.09 4.84 0.20 0.20 Accept Accept N/LN
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CHAPTER 2.

SCALED SPATIAL VARIABILITY OF SOIL MOISTURE
FIELDS

Abstract

Knowledge of spatial soil moisture variability is essential to understand the 

spatial variability of the land surface hydrologic cycle at a range of scales. In this 

study, soil moisture spatial variability patterns are identified using measurements 

across different scales (i.e., field, watershed, and basin scales) and depths (i.e., 

from surface to root zone profile) from 18 different soil moisture field experiments. 

The spatial variability patterns are well represented by negative exponential 

functions between the mean and the coefficient of variation of soil moisture. 

Rainfall and topography are the most important physical parameters to 

understand how surface soil moisture variability changes as soils dry. Soil 

parameters control the maximum relative variability. The soil moisture variability 

typically decreases as sampling scale increases, while the soil moisture 

variability increases as soil depth increases. These common soil moisture 

variability patterns can provide a feasible methodology to validate land surface 

models.
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Introduction

Knowledge of spatial soil moisture variability may provide the blueprint for 

future ground-based experiments and networks (Famiglietti et al., 1999; Ryu and 

Famiglietti, 2005). Moreover, its variability information is very crucial to 

understand and improve the parameterization for land surface hydrologic 

modeling (Giorgi and Avissar, 1997; Crow and Wood, 2002). However, soil 

moisture variability is not well understood over a range of scales and depth or 

across sites (Famiglietti et al., 1999; Martinez-Fernandez and Ceballos, 2003; 

Jacobs et al., 2004). Although numerous studies have characterized soil 

moisture, there is no agreement as to whether soil moisture variability is 

positively (Hills and Reynolds, 1969; Henninger et al., 1976; Bell et al., 1980; 

Robinson and Dean, 1993; Famiglietti et al., 1998; Martinez-Fernandez and 

Ceballos, 2003) or negatively (Famiglietti et al., 1999; Hupet and Vanclooster, 

2002) correlated to mean soil moisture content.

The spatial soil moisture variability is mainly affected by physical properties 

such as climate, soil texture, vegetation, and topography in natural catchment or 

agricultural land (Grayson and Western, 1998). Jacobs et al. (2004) and Mohanty 

and Skaggs (2001) concluded that topography is a crucial physical factor to 

understand surface soil moisture variability. Teuling and Troch (2005) pointed out 

that soil and vegetation may be important factors that increase or decrease soil 

moisture spatial variance. They concluded that a simple soil moisture model
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provides a preliminary link between physical process and statistical variability 

patterns. Choi and Jacobs (2006) also concluded that a simple physical model 

provides insight to statistical relationships necessary to disaggregate physical 

land surface model predictions. Additionally, soil moisture variability may differ by 

spatial scale (Crow and Wood, 1999).

The objective of this study is to identify common patterns among soil 

moisture statistics across a variety of landscapes. Specifically, the relationships 

between mean soil moisture and spatial variability of soil moisture measurements 

are quantified. Spatial variability patterns are examined in light of local physical 

properties including climate, soil, topography, scale, and vegetation. This study 

differs from previous studies in that it 1) brings together measurements from 18 

different experiments across the world, 2) includes both surface and root zone 

soil moisture, and 3) uses multivariate statistics to identify the effect of physical 

properties on soil moisture spatial variability.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Study Region

Table 2-1 identifies the 18 datasets (from 9 distinct field experiments) 

used in this study and provides detailed information for each study region and 

experiment. Additional information is available from the references listed in Table 

2-1. Thirteen of the soil moisture datasets were obtained from the Southern 

Great Plains 1997 (SGP97) experiment and Soil Moisture Experiments 2002 

(SMEX02), 2003 (SMEX03), 2004 (SMEX04), and 2005 (SMEX05) (Mohanty et 

al., 2002; Jacobs et al., 2004; Bosch et al., 2005; Cosh et al., 2006; Choi et al.,

2005). SMEX are a series of soil moisture field experiment conducted annually 

from 2002 to 2005 (SMEX02 - SMEX05) in Iowa, Georgia, Alabama, Oklahoma, 

and Arizona. Additional datasets are from Florida, Belgium (Hupet and 

Vanclooster, 2002), and Spain (Martinez-Fernandez and Ceballos, 2003). The 

sites are predominantly agricultural lands with some forests, pastures, and clear 

cuts. Eleven datasets have only surface soil moisture measurements from 

approximately 0-6 cm. The remaining datasets include a profile of measurements 

in the root zone. All locations were sampled using in-situ devices, except the 

Iowa basin (Data ID E) which uses Polarimetric Scanning Radiometer (PSR) 

instrument.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Methods

Statistical Analysis

Statistical moments of soil moisture measurements, mean and coefficient 

of variation, were calculated by site, soil depth, and time. Jacobs et al. (2004) 

quantified the negative relationship between the surface mean soil moisture 

content and the coefficient of variation using an exponential fit for four fields from

SMEX02. Exponential fits C V  = A e m  between mean soil moisture and coefficient 

of variation were conducted using observed standard deviation of soil moisture 

and temporal average standard deviation of soil moisture by site and soil depth. 

Comparisons between paired exponential fits using observed standard deviation 

of soil moisture and temporal average standard deviation of soil moisture at each 

site allow us to examine how fitting parameters, A and B, are significantly 

different from fitting parameters, A and B, using constant standard deviations.

Principal Component Analysis

A principal component analysis (PCA) was used to identify which physical 

properties were significant to understand hydrologic variability and how major 

principal components were related to surface soil moisture fitting parameters, A
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and B. The PCA is a multivariate statistics technique for data reduction and 

deciphering patterns within large sets of data (Stetzenbach et al., 2001; Farnham 

et al., 2003). It describes the variance-covariance structure of a number of 

variables by a few linear combinations of given variables (Johnson and Wichern, 

2002). The principal components of the p random variables, X 1t X 2,...., X P are 

determined by the p eigenvectors of the covariance matrix. The f h principal 

component (Johnson and Wichern, 2002) is defined as

Yi = e iX i (2-1)

where X, are random vectors and e, are eigenvectors. The variance of Y, can be 

determined by

Var(Y ) = e j e =  X, (2-2)

where Aj are eigenvalues of the covariance matrix. The maximum quantity of 

variance is explained by the first principal component (1st PC). Detailed 

descriptions for the PCA can be found in Johnson and Wichern (2002).

For this study, PCA was applied using standardized variables to ensure 

the same weight of each different physical parameter. Normalized scale, annual 

rainfall, soil porosity, wilting point, field capacity, percentage sand, leaf area 

index (LAI), and maximum difference of elevation for nine sites having sufficient 

physical parameters were used to conduct the PCA analysis (Table 2-1). 

Correlation coefficients between the first three principal components and the 

physical properties were calculated to quantify the physical variables’ importance 

for the principal components. Correlation coefficients between the first three
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principal components and the fitting parameters, A and B, were also conducted

to identify how the principal components are related to fitting parameters.
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Results and Discussion

Figure 2-1 shows the relationships between the mean soil moisture and 

the coefficient of variation of soil moisture by datasets and measurement depth. 

Figure 2-1 also shows superimposed lines derived from a postulation that soil 

moisture has constant standard deviations (i.e., standard deviation values range 

from 1 to 13). The coefficient of variation exponentially decreases as the mean 

soil moisture increases for all data sources except the Duero surface data. This 

result is consistent with the previous studies at individual sites (Bell et al., 1980; 

Owe et al., 1982; Charpentier and Groffman, 1992; Famiglietti et al., 1999).

Table 2-2 lists the exponential fit C V  = A eBe including parameters A, B, 

and the correlation coefficient. The parameter A is related to the maximum 

relative variability, while the parameter B is related to the slope of the relative 

variability. The fitting parameters, A and B, vary by site and depth. The average 

values of A, B, and R2 for all regions were 1.690, -0.061, and 0.656, respectively. 

All sites showed very strong correlations except Arizona (SMEX04), Boone 

County, and Duero. The magnitudes of A and B typically increase as the spatial 

scale decreases. For example, B values for surface measurement range from - 

0.091 to -0.061 for the field scale and from -0.037 to -0.001 at a watershed and 

basin scale, respectively in SMEX02. This result is explained by Rodriquez-lturbe 

et al.’s (1995) finding that the soil moisture variance decreases according to a 

power function as the sampling scale increases. Crow and Wood (1999) found
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that soil moisture statistics differed for the field and watershed scales during the 

SGP97. Our study shows that the SGP97 field scale does have a greater relative 

decrease in variability than the watershed scale. However, a consistent negative 

relationship between mean soil moisture and coefficient of variation exists at both 

scales (Table 2-2).

The absolute values of A and B also increase as soil depth increases. The 

surface has the least negative relationship (i.e., A and B parameters closest to 

zero). These results extend Choi and Jacobs’s (2006) finding that the surface 

has a smaller decrease in variability per change in soil moisture than the deeper 

layers.

Matched pair t-tests, commonly used to identify differences in paired 

observations, were conducted to determine if the exponential models using site 

specific constant standard deviation values differed from models derived from the 

observations. The null hypothesis, H0 was that the mean differences between a 

fitting parameter, A or B, from observational derived exponential model and that 

determining by fitting the average standard deviation were identical. Separate 

analyses were performed for each parameter, first using the 16 surface models 

parameters, then the 30 root zone models parameters (Table 2-2). At the surface, 

there was no significant difference for either A, or B (p values are 0.194 and 

0.086, respectively). However, for the root zone, there was a significant 

difference for both the A and B parameters (p values are 0.002 and 0.007, 

respectively). These results indicate that root zone soil moisture spatial variability 

is more heterogeneous than surface soil moisture spatial variability and its
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variability across sites cannot be captured by the average standard deviation of 

soil moisture. That the p value of B at surface comparison also indicates the 

average standard deviation may be problematic to represent soil moisture 

variability at surface and root zone.

Differences of soil moisture variability among sites are quantified as the 

standard deviation of soil moisture. The PCA was used to characterize these 

differences related to physical properties including climate, soil, and vegetation 

and to identify how the fitting parameters are related to physical properties. The 

first three PCs, collectively, accounted for 93.15% of the total variance (Table 2- 

3), capturing most of physical properties’ variability. Table 2-3 also shows that 

the most important controlling parameters for the first PC are porosity, wilting 

point, and field capacity, all soil factors. The second PC was equally well 

correlated with annual rainfall and the maximum difference of elevation. The third 

PC, highly correlated with scale, explains less of the variability. Famiglietti et al. 

(1995) and Syed et al. (2004) found that precipitation and potential evaporation 

were the major principal component to understand the spatial variability of 

hydrologic cycle in regional scale. Our results are consistent with these previous 

studies in that precipitation is one of the major principal components. In addition, 

our results provide another insight that soil related factors may be one of the 

most significant physical factors to understand hydrological variability.

The correlation between the major PCs and the surface soil moisture 

model fitting parameters shows that the A fitting parameter was most highly 

correlated with the first PC (Table 2-3). This indicates that soil parameters control
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the maximum coefficient of variation. The B fitting parameter was most strongly 

correlated with the second PC. The relative change in the soil moisture 

coefficient of variation with respect to mean moisture is better explained by 

rainfall and topography. Our results provide additional insight to Jacobs et al. 

(2004) and Mohanty and Skaggs (2001) findings that topography was the most 

important factor to understand surface soil moisture structure for the SMEX02 

and SGP97 experiment. That they found soil related factors to be significant 

during inter-storm periods is supported by the correlation between soil properties 

and the A parameter, which controls the relative variance under dry conditions.
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Conclusion

Our results show that the relationships between mean soil moisture and 

coefficient of variation are clearly explained by an exponential fit for a profile of 

soil moisture measurements. The surface soil moisture variability patterns 

characterized by the exponential fit are mostly affected by soil factors in terms of 

variability magnitude. The rainfall and topography are most significant factors to 

characterize how variability changes with mean surface soil moisture. Our 

statistical variability information is essential to identify appropriate statistical 

distributions and physical parameters for land surface hydrologic modeling over a 

range of scales (i.e., from sub-grid to whole grid scales). Further, the information 

on proper statistical distributions and parameter values can be used to validate 

land surface models’ ability to characterize heterogeneity effects by scale and 

soil depth.
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Table 2-1. Summary of field characteristics and data. Soil parameters are soil type, wilting point (ewp), field capacity (efc), 
and porosity (<j>) (Note: * indicates sites used for PCA analysis and *  indicates physical properties used for PCA.)

Sampling Approach Site Description

at-t*.

Locations I L>
Scale *  
(km2)

#of
Points Date Frequ

ency Depth Soil a *1 
Uwp aVfc r2 Sand*3

(% )
Relief Max.Diff

Elev.*4 Land Use LAI*
Annual

Rainfall*
(mm)

’ Reference

A* Basin
(5000) 48 6/02-

7/02 Daily Surface Loam 0.12 0.31 0.46 22 Low 138 Agriculture 2.19 835 SMEX02
Dataset

B* Watershed
(100) 33 6/02-

7/02 Daily Surface Loam 0.12 0.31 0.46 33 Low 47 Agriculture 2.65 835 SMEX02
Dataset

Iowa, US 
(SMEX02) C* Field 11 

(0.64) 25 6/02-
7/02 Daily Profile Loam 0.15 0.35 0.48 29 Rolling 3.7 Com 2.96 835 Choi & 

Jacobs, 2006

D* Field 13 
(0.64) 31 6/02-

7/02 Daily Profile Loam 0.15 0.35 0.48 29 Rolling 6.1 Soybeans 1.09 835 Choi & 
Jacobs, 2006

E Basin
(5000) 10080 6/02-

7/02 Daily Surface Loam 0.12 0.31 0.46 - Low ■ Agriculture - 835 SMEX02
Dataset

Georgia, US

F* Basin
(3750) 49 6 /0 3 -

7/03 Daily Surface Sand 0.05 0.10 0.40 75 Gently
sloping 58

Forest,
Pasture,

Agriculture
1.89 1160 Bosch et al, 

2005

(SMEX03)

G* Watershed
(334) 17 6 /0 3 -

7/03
Continu

ous Profile Loam 0.09 0.27 0.45 78 Gently
sloping 32

Forest,
Pasture,

Agriculture
2.07 1160 Bosch et al, 

2005

Arizona, US

H* Basin
(3750) 40 8 /0 4 -

8/04 Daily Surface
Loam,
Rock 0.09 0.27 0.45 41 Flat 568 Brush,

Rangeland 0.44 350 SMEX04
Dataset

(SMEX04)

Watershed
(150)

8 /0 4 -
8/04 Daily Surface Loam,

Rock 0.09 0.27 0.45 45 Flat Brush,
Rangeland 0.43 350 Cosh et al, 

2006
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Table 2-1. Summary of field characteristics and data. Soil parameters are soil type, wilting point (ewP), field capacity (efc), 
and porosity (0 ) (Note: * indicates sites used for PCA analysis and *  indicates physical properties used for PCA.) 
(Continued)

J Watershed
(100) 32 6 /0 5 -

7/05 Daily Surface Loam 0.12 0.31 0.46 33 Low 47 Agriculture . 835 SMEX05
Dataset

Iowa, US
(SMEX05)

K Watershed
(100) 10 6 /0 5 -

7/05 Daily Profile Loam 0.12 0.31 0.46 33 Low 47 Agriculture - 835 Choi et al, 
2005

L Field
(0,01) 40 2/98 -  

3/98 Daily Surface Sand 0.05 0.10 0.40 92 Flat 5 Clear-cut - 1315 Fischer, 1998

Florida, US

M
Field

(2.5X10-5) 72 2 /9 8 -
3/98 Daily Surface Sand 0.05 0.10 0.40 92 Flat 5 Slash pine 

forest - 1315 Fischer, 1998

Boone 
County, 

Iowa, US
N

Field
(2X |0J ) 30 5/00-

9/00 Weekly Profile Loam 0.15 0.33 0.47 37 Low 3.1 Agriculture - 800 Irmak et al, 
2002

Louvain-la-
Neuve,

Belgium
O

Field
(6.3X10J ) 28 5/99-

9/99 Daily Profile Silty
loam 0.13 0.33 0.49 6 Low 3.5 Agriculture 3.63 780

Hupet & 
Vanclooster, 

2002

Duero,
Spain P Basin

(1285) 23 6 /9 9 -
5/02

Fortnigh
%

Profile
Sandy
loam 0.05 0.15 0.44 71 Flat 200 Agriculture - 385

Martinez & 
Ceballos, 

2003

Oklahoma,U
S

(SGP97)

Q*
Watershed

(610) 23 6 /9 7 -
7/97 Daily Surface Silt,

Loam 0.09 0.22 0.44 58 Rolling 200 Rangeland,
Pasture

2.30 750 Crow& 
Wood, 1999

R Field 21
(0.64) 49 6/97 -  

7/97 Daily Surface Silty
loam 0.13 0.33 04 9 35 Flat -

Wheat,
Grass

1.10 750 Crow& 
Wood, 1999

1 Dunne and Leopold [1978]
2 Clapp and Homberger [1978]
3 STATSGO (http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/)
4 GTOPO30 (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html)

http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
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Table 2-2. Regression relationship between the coefficient of variation and the mean soil moisture where C V  = A e Be

Sites . Data ID Scale (km2)
In-situ ‘ 
Depth A B R2

A Basin (5000) surface 0.555 -0.036 0.729
B Watershed (100) surface 0.474 -0.037 0.341

surface 0.800 -0.061 0.801

P Field WC 11 (0.64)
5cm 2.066 -0.092 0.914

L
15cm 1.841 -0.087 0.904

SMEX02 25cm 1.918 -0.086 0.815
surface 1.581 -0.091 0.811

D Field WC13 (0.64)
5cm 2.858 -0.100 0.870
15cm 4.019 -0.110 0.881
25cm 9.751 -0.138 0.851

E Basin (5000) surface 0.372 -0.001 0.003
F Basin (3750) surface 1.637 -0.087 0.924

SMEX03
surface 0.885 -0.061 0.807

G Watershed (334) 20cm 1.539 -0.091 0.921
30cm 0.914 -0.054 0.585

SMEX04
H Basin (3750) surface 0.943 -0.058 0.569
I Watershed (150) surface 0.548 -0.021 0.202
J Watershed (100) surface 0.795 -0.066 0.845

surface 0.873 -0.055 0.795

SMEX05
5 cm 2.077 -0.085 0.927

K Watershed (100) 10cm 2.445 -0.089 0.921
15cm 2.863 -0.091 0.914
25 cm 8.152 -0.124 0.896
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Table 2-2. Regression relationship between the coefficient of variation and the mean soil moisture where C V  = A e B6 
(Continued)

50cm 3.069 -0.108 0.619
L Field Mize (0.01) surface 0.563 -0.018 0.423
M Field Donaldson (2.5x  10"5) surface 0.456 -0.049 0.897

0-15cm 0.240 -0.017 0.172
15-30cm 0.242 -0.003 0.090
30-45cm 0.359 -0.011 0.378

Boone County, Iowa N pi^iH a  v  1 45-60cm 0.271 -0.004 0.028
rie ia  )

60-75cm 0.381 -0.018 0.304
75-90cm 0.473 -0.021 0.868

90-105cm 0.563 -0.024 0.820
105-120cm 0.619 -0.027 0.703

0-20cm 1.436 -0.094 0.956
25m 0.925 -0.079 0.967

Louvain-la-Neuve 0 c ;ai/i ((L i  v  1 50cm 1.511 -0.100 0.917
(Belgium) rie ia  iu )

75cm 4.618 -0.123 0.937
100m 5.136 -0.109 0.951

125cm 2.206 -0.085 0.949
surface 0.423 0.000 0.000

Duero D 25cm 0.497 -0.007 0.023
(Spain) oaSin

50cm 0.590 -0.010 0.070
100cm 0.557 -0.014 0.180

Oklahoma, US Q Watershed (610) surface 1.035 -0.061 0.789
(SGP97) R Field LW21 (0.64) surface 1.681 -0.084 0.921



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 2-3. Correlation coefficients among the principal components, physical property, and fitting parameters, A and B, 
where CV = Aem

Correlation by Physical Property
Correlation by 

Fitting Parameter
Principal Variance

Max
LAI diff 

elevation

Component Explained Scale Porosity Rainfall Wilting Field Sand
point capacity A B

1st PC 50.33 -0.613 0.978 -0.203 0.982 0.964 -0.802 0.203 -0.277 - 0.348 0.178

2nd PC 32.60 -0.265 -0.097 0.934 0.088 -0.130 0.326 0.818 - 0.925 0.235 - 0.389

3rd PC 10.21 0.718 -0.036 0.097 0.089 0.012 -0.424 0.319 0.035 -0.168 0.101

cnoo
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Figure 2-1. Relationship between mean soil moisture and coefficient of variation 
(a) SMEX02 Basin ~ (r) SGP97 Field (LW21) (Note: Superimposed lines are 
derived from constant standard deviation values, 1, 3, 5, 7, 9 ,11 ,  and 13)
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CHAPTER 3.

LONG TERM CONFORMITY OF SURFACE SOIL 
MOISTURE FROM REMOTELY SENSED DATA, LAND 

SURFACE MODEL, AND GROUDN BASED DATA: 
SMEX03 LITTLE RIVER REGION

Abstract

Optimal soil moisture estimation may be characterized by inter

comparisons among remotely sensed measurements, ground-based 

measurements, and land surface models. In this study, we compared soil 

moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground- 

based measurements, and SVAT model (Common Land Model) at SMEX03 Little 

River region, GA. The comparison results showed that there is good agreement 

among different soil moisture products for short and long periods. The CLM 

reasonably replicated soil moisture patterns in dry down and wetting after rainfall 

though it had modest wet biases as compared to AMSR-E and ground data. 

While the AMSR-E average soil moisture agreed well with the other data sources, 

it had extremely low temporal variability, especially during the growing season 

from May to October. Overall, both CLM and AMSR-E had complementary 

strengths, low MAE and RMSE errors for CLM and very low biases for AMSR-E.
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Introduction

Soil moisture is an important variable in hydrologic and biologic processes. 

It is a controlling variable in the exchange of water and heat energy between the 

land surface and the atmosphere through evaporation and transpiration. It 

determines the partitioning of precipitation into runoff, infiltration, and surface 

storage, as well as the partitioning of incoming solar radiation and long wave 

radiation into outgoing long wave radiation, latent heat flux, ground heat flux, and 

sensible heat flux (Pachepsky et al., 2003).

There are three approaches to characterize regional soil moisture; remote 

sensing observations, land surface models, and in-situ field measurements. 

Aircraft and satellite instruments (i.e., various active and passive microwave 

sensors) capable of providing mean surface soil moisture ( 0 - 5  cm) values at 

large spatial scales are recently available (Jackson et al., 1995, 1999; Schmugge 

et al., 2002). The ability to monitor soil moisture at large spatial scales by passive 

microwave sensors has many advantages including the ability to directly 

measurement soil moisture regardless of weather conditions or time of day 

(Jackson, 1993; Jackson and Schmugge, 1995).

Ground based in-situ samples typically capture spatial or temporal 

variability at a range of scales. Intensive field experiments such as Washita'92, 

SGP97, SGP99, SMEX02, and SMEX03 (Jackson and Schiebe, 1993; Jackson 

et al., 1999; Mohanty et al., 2002; Bosch et al., 2006) have provided validation
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data for satellite and aircraft based microwave remote sensing instruments over 

a wide range of vegetation conditions for short periods. In-situ networks such as 

the soil climate analysis network (SCAN) operated by Natural Resources 

Conservation Service (NRCS) (Cosh et al., 2004) and Steven-Vitel Hydra probes 

networks operated by USDA-ARS Southeast Watershed Research Lab (SEWRL) 

(Bosch et al., 2006) provide continuous longer-term datasets of soil moisture 

profiles.

Finally, soil - vegetation - atmosphere transfer (SVAT) models can 

characterize soil moisture at a range of scales (Lohmann et al., 1998; Liang et al., 

1998; Dai et al., 2003). SVAT schemes combine land surface and atmosphere 

processes modeling using both the water and energy balances (Sellers et al., 

1986; Dickinson et al., 1993). There have been extensive efforts to improve 

SVAT parameterization of the land-surface schemes during the past two decades 

including the Project for Inter-comparison of Landsurface Parameterization 

schemes (PILPS) (Yang et al., 1995; Shao and Henderson-Sellers, 1996; Pitman 

and Henderson-Sellers, 1998; Lohmann etal., 1998; Liang etal., 1998).

Each of the three methods has unavoidable limitations. Remotely sensed 

soil moisture cannot describe hydrology at the watershed or field scale because 

its retrieved soil moisture scale is too large (Mohanty and Skaggs, 2001; Jacobs 

et al., 2004). Another critical issue regarding remotely sensed soil moisture 

measurements is that the retrieved soil moisture is for a shallow depth and may 

not be correct for heavily vegetated areas (Schmugge et al., 2002; Margulis et al., 

2002). Ground-based measurements can provide reasonable and direct values.
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However, aside from the short duration, intensive field experiments, these 

measurements are very sparse and field or regional mean soil moisture is not 

properly represented (Reichle et al., 2004). Modeled soil moisture also has 

inevitable restrictions due to limited measurements of model physical parameters 

(Mohr et al., 2000; Whitfield et al., 2006) and input data errors (Reichle and 

Koster, 2004; Reichle et al., 2004).

Given the inherent restrictions caused by scaling mismatch, network 

density, parameterization, and data errors, ultimately the most effective soil 

moisture estimations may be accomplished through data assimilation (i.e., data 

merging procedure) of the remotely sensed measurements, ground-based 

measurements, and models (Margulis et al., 2002; Reichle et al., 2004). A 

fundamental principal of assimilation requires the characterization of error 

statistics from available sources to optimally estimate soil moisture (Crow and 

Wood, 2003; Reichle and Koster, 2003). Reichle and Koster (2004) and Reichle 

et al. (2004) showed that bias estimation by comparisons among different data 

types can be effective for understanding the data errors and identifying significant 

obstacles to data assimilation.

The objective of this study is to examine the conformity of different soil 

moisture products (i.e., remotely sensed measurements, ground-based 

measurements, and modeled results) at Little River, GA region for 2003 as well 

as during an intensive field experiment. For this study, we address a series of 

issues; 1) How do surface soil moisture estimates compare among sources? (i.e., 

satellite data, ground-based measurements, and model soil moisture); 2) How
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well do soil - vegetation - atmosphere transfer (SVAT) models simulate spatial 

and temporal variability of surface soil moisture?; 3) How well do Advanced 

Microwave Scanning Radiometer -  Earth Observing System (AMSR-E) on Aqua 

satellite replicate surface soil moisture patterns?; 4) Are the results from the short 

duration field campaign robust?; and 5) What are the potential errors of different 

data sources for optimal soil moisture?
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Study Area and Ground Based Measurements

The study region covered a 50 km by 75 km area that was divided into six 

25 km by 25 km Equal-Area Scalable Earth Grids (EASE-Grids) (Figure 3-1). The 

Little River watershed (334 km2) was included in this region. The watershed, near 

Tifton, GA, is managed by the USDA-ARS Southeast Watershed Research Lab 

(SEWRL) to collect hydrologic and climatic data. The Little River is a tributary of 

the Withlacoochee River, which is one of two main tributaries of the Suwannee 

River. In the watershed, land use is predominantly row-crop agriculture (40%), 

pasture (18%), forest (36%), and wetlands and residential (6%) (Bosch et al., 

2006). The main crop types are cotton and peanuts with typical growing seasons 

from May to October. The climate is humid with average annual rainfall of 1160 

mm. The soils are mostly sand and well-drained at surface and have relatively 

high permeability (Miller and White, 1998). More detailed information on study 

area is provided by Bosch et al. (2006).

For this study, four EASE-Grids A, B, C, and D (25 by 25 km EASE-Grids) 

that include the Little River watershed were selected (Figure 3-1). Table 3-1 

describes the geographic locations and field attributes for four EASE-Grids. 

Major land uses for four EASE-Grids are cropland and pasture (58.1 -  71.8%), 

evergreen forest (18.0 -  35.8%), and wetland (4.3 -  8.0%). Surface soil texture 

for each EASE-Grid is almost identical (i.e., sand and clay contents are 78 and
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6%, respectively). In each of the grids, soil moisture data are available from in- 

situ measurements, satellite observations, and SVAT model predictions.

During SMEX03, intensive ground sampling was conducted at 49 regional 

sites within six EASE-Grids at Georgia region from June 20 to July 1, 2003  

(Figure 3-1). The intensive grounding sampling was conducted daily during the 

satellite overpass (11:30 am to 2:30 pm EST). Seven or more sampling points 

were included in each EASE-Grid (Table 3-1). During the experiment, volumetric 

soil moisture content was measured using theta probes (Dynamax, Inc., Texas). 

The theta probe measures the average dielectric constant using 6 cm length 

tines. Of the 49 total sampling points, nine, seven, eight, and thirteen sampling 

points were averaged to determine the mean soil moisture for EASE-Grids A, B, 

C, and D, respectively (Table 3-1).

Hydra soil moisture sensors were installed at 19 in-situ network sites in or 

near the watershed (Figure 3-1). Soil moisture data were provided every 30 

minutes at 5, 20, and 30 cm (Bosch et al., 2006). The Hydra probes measure the 

average dielectric constant using 6 cm length tines. Seven, three, one, and six in- 

situ network sites were include in EASE-Grids A, B, C, and D, respectively (Table 

3-1). There is one Soil Climate Analysis Network (SCAN 2027) site in Grid D 

(Figure 3-1).

For the 2003 period, a representative in-situ network site was selected for 

each EASE-Grid based on the results of a previous study (Bosch et al., 2006). 

Thirteen of 19 network sites were drier than the regional mean soil moisture 

content. Based on time stability analysis (Vachaud et al., 1985) conducted
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separately for each EASE-Grid and data conditions, sampling locations that have 

the most time stable characteristics were identified. These sites, RG50, RG32, 

and RG16, that best represent EASE-Grids mean soil moisture were selected for 

EASE-Grid A, B, and D, respectively (Bosch et al., 2006). EASE-Grid C has only 

one existing in-situ network, RG67, measured from 05/29/2003 to 07/13/2003  

(Figure 3-1).
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Satellite Observations (AMSR-E)

The Advanced Microwave Scanning Radiometer -  Earth Observing 

System (AMSR-E) on Aqua satellite was launched in May 2002. AMSR-E is a 

modified passive microwave radiometer deployed on Advanced Earth Observing 

S atellite-II(A D EO S-II) (Njoku et al., 2003). It provides brightness temperatures 

at six-frequencies ranging from 6.9 to 89.0 GHz in dual-polarized passive 

microwave radiometer systems. The 6.9 GHz (C band) and 10.7 GHz (X band) 

are the most useful channels to provide retrieved soil moisture products on a 

global scale at daily basis (Njoku et al., 2003). Currently, daily Level-3 land 

surface products in 25 km by 25 km EASE-Grids scale are accessible from the 

National Snow and Ice Data Center (NSIDC). These land surface products are 

stored in Hierarchical Data Format-Earth Observing System (HDF-EOS). Level-3 

land surface products are regenerated to a global cylindrical 25 km EASE-Grids 

cell spacing by the time composition of Level-2B parameters for ascending and 

descending passes. The level-3 soil moisture product that has 25 km grid 

spacing and daily temporal resolution (1:30 pm EST overpass) was used in this 

study (Njoku et al., 2003).
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Soil-Veqetation-Atmosphere Transfer (SVAT) Model

Common Land Model (CLM)

The Common Land Model (CLM) has been broadly examined with 

observation datasets over a wide range of fields (Dai et al., 2003). The CLM 

combines three existing models: Land surface model (LSM) (Bonan, 1996), 

Biosphere-atmosphere transfer scheme (BATS) (Dickinson et al., 1993), and 

Chinese academy of sciences institute of atmospheric physics LSM’s 1994 

version (Dai and Zeng, 1997).

The CLM requires preprocessed datasets of land surface type, soil and 

vegetation parameters, model initialization, and atmospheric boundary conditions 

as input (Dai et al., 2003). The energy and water balance are calculated for each 

tile at each time step using the general mosaic concept (Koster and Suarez, 

1992). The tiles are divided by every sub-grid fraction and each tile contains a 

single land cover type. The energy and water balance solution of each time step 

are conserved and integrated by an implicit time-integration scheme. The CLM 

has a 10 layer soil profile and its thickness increases with depth. A weighted 

average of the three top layers (0-6 cm) that coincide with in-situ network (5 cm), 

SMEX03 (0-6 cm), and AMSR-E (0-2 cm) was used for this study.

In this study, the CLM is applied as a single column model using tiles 

based on land cover to estimate the quantification of energy and water balance.
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The core single column of CLM can represent spatial extents as large as 28 km 

(0.25°) by 28 km (0.25°). The CLM’s required parameters are longitude, latitude, 

soil texture profile (percentage of sand/clay/loam), soil color index, and 

percentages of land cover types (based on International Geosphere-Biosphere 

Programme (IGBP) classification).

Forcing Data

The forcing data that are required by the model are net downward solar 

radiation, net downward long wave radiation, air temperature, wind speed (U and 

V), air pressure, specific humidity, and precipitation. These data were obtained 

from the North American Land Data Assimilation System (NLDAS) (Cosgrove et 

al., 2003). The NLDAS data have an hourly temporal resolution and a 0.125° 

(~15 km) resolution. Meteorological variables are derived from Eta Data 

Assimilation System (EDAS) and Geostationary Operational Environmental 

Satellite (GOES) radiation data. Precipitation is a combination of EDAS, National 

Center for Environmental Prediction Climate Prediction Center (CPC) gauge- 

based data, and National Weather Service Doppler radar-based (WSR-88D) data 

(Cosgrove et al., 2003). For this study, the forcing data (15 km) at each NLDAS 

grid point was re-gridded to match the EASE-Grids spatial resolution (25 km). 

Table 3-1 summarizes the forcing data for the 2003 study period (from 

01/01/2003 to 12/31/2003) by EASE-Grid. Forcing variables were similar across
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grids. Grid C had slightly more rain and Grid B had slightly less rain than the 

other grids.

Initialization and Parameterization

The initial subsurface soil temperature and moisture content values 

required by the model were obtained from the NRCS SCAN (2027) site, located 

in the southeast of the watershed (Figure 3-1). The SCAN site provides soil 

temperature and soil moisture content measured by Vitel Hydra Probe at 2, 4, 8, 

20, and 40 inch depths.

The land cover classification was obtained from the 1:250,000 scale 

USGS GIRAS dataset (Mitchell et al., 1977). Land cover classification was 

predominantly cropland, evergreen forest, and wetland (Table 3-1). In each grid, 

the sub-grid tile fractions were based on the land use percentages.

Soil sand and clay percentages at the soil layers were obtained from the 

CONUS-SOIL database (Miller and White, 1998). The predominant soil texture is 

sand (~78%) and clay (~6%) for surface (Table 3-1). Sand percentage decreased 

as soil depth increased. Clay percentage increased as soil depth increased. 

Sand and clay percentages were about 55% and 20%, respectively, for bottom 

layer. Soil parameters in CLM are characterized by the soil texture i.e., sand and 

clay percentages. CLM estimates soil matric potential and hydraulic conductivity 

based on Clapp and Hornberger’s (1978) relationship (Bonan, 1996).
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Results

Soil moisture products were compared for SMEX03 study period (from 

06/23/2003 to 07/02/2003) and 2003 study period (from 01/01/2003 to 

12/31/2003). To match the time of soil moisture products (Aqua overpass (1:30 

pm EST) and SMEX03 regional sampling (11:30 am to 2:30 pm EST)), network 

and CLM soil moisture values at 2:00 pm EST were used for the statistical 

analyses.

Comparison for SMEX03 Study Period

Figure 3-2 shows the time series of the four soil moisture products for the 

SMEX03 study period. The soil moisture time series showed surprisingly good 

agreements among four different sources and fairly consistent results across the 

grids. Statistical moments of the different soil moisture products for the SMEX03 

time period are given by grid (Table 3-2). Average soil moisture (0.092-0.151) 

and standard deviation (0.012-0.051) of soil moisture showed excellent 

agreement among different data sources. However, AMSR-E’s standard 

deviation values were much smaller than the other soil moisture values. All grids 

had a positive skew except for AMSR-E in Grid C.
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Table 3-3 shows the bias estimation using various statistical measures 

among the four data sources for SMEX03 study period. The CLM and AMSR-E  

soil moisture was slightly wetter than the in-situ values for all grids except Grid A.

The AMSR-E values were a little drier than the SMEX03 in Grid A. The AMSR-E
/

biases were consistently less than those for CLM. The worst MAE and RMSE 

values, 0.054 and 0.059 [cm3/cm3], respectively for the CLM comparison to the 

SMEX03 in grid D, were quite low. The correlation coefficients showed very 

strong agreement among the different soil moisture products. As compared to the 

in-situ measurements, AMSR-E’s correlation was similar to CLM when using the 

SMEX03 ground sampling sites, but much lower using the network data.

Overall, the CLM simulated soil moisture closely followed the drying and 

wetting patterns of the surface soil moisture measurements (Figure 3-2). While 

the CLM reasonably replicated dry down rate before rainfall and rapid rise after 

rainfall, it was consistently wetter than other soil moisture values (Tables 3-2 and 

3-3). The AMSR-E average soil moisture also showed good agreement among 

other soil moisture products (Table 3-2). However, it did not capture the temporal 

variability of observed dry down and wetting for any of the grids (Figure 3-2). The 

AMSR-E soil moisture did have a small rise from 0.14 to 0.16 [cm3/cm3] after 

rainfall on Julian day 181; a comparable increase occurred during a period with 

no rain.
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Comparison for 2003 Study Period

Figure 3-3 shows the time series of the four soil moisture products for the 

entire study period. The soil moisture time series agreed well in drying and 

wetting patterns among four different sources for all grids. Average soil moisture 

(0.122-0.167) had excellent agreement among the different data sources, though 

CLM and AMSR-E soil moisture were slightly wetter than ground based in-situ 

sampling (Table 3-2). As with the SMEX03 study period, the AMSR-E values had 

much lower variability than the other soil moisture values. With two exceptions, 

skew values were all positive.

Table 3-4 shows the biases using various statistical measures among 

three data sources for the entire year of 2003. The CLM and AMSR-E wet biases 

were typically less than 0.02 [cm3/cm3] and MAE values were less than 0.05 

[cm3/cm3]. RMSE values were approximately 20-25% greater than the MAE 

values, which suggests significant differences for the wettest conditions. The 

correlation coefficients for the comparison between CLM and in-situ sampling 

(0.416-0.654) showed that soil moisture agreed well between the two data 

sources. However, correlation coefficients including AMSR-E soil moisture had 

much lower values (0.027-0.298). These low correlation coefficients are likely 

caused by the low variation in AMSR-E soil moisture. Overall, the biases, MAE, 

and RMSE for the entire year of 2003 had similar values to those during the 

SMEX03 study period, but the annual correlations were much weaker.
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The CLM simulated soil moisture showed excellent agreement with 

surface soil moisture from the network at each EASE-Grid (Tables 3-2 and 3-4). 

However, the CLM simulated soil moisture was wetter than the observed soil 

moisture after rainfall events for all grids (Figure 3-3). While AMSR-E soil 

moisture was also within the range of the other data sources’ soil moisture values, 

it had almost no variation during the growing season from May to October 

(approximately DOY 130-280) (Figure 3-3).

These results show that CLM and AMSR-E have complementary 

strengths. The CLM had relatively low MAE and RMSE errors. The AMSR-E  

typically had very low biases as compared to the network measurements. 

Additionally, the weak correlation between CLM and AMSR-E suggests that the 

two metrics are fairly independent.
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Discussion

Based on our results, the CLM simulated soil moisture showed excellent 

agreement with ground based in-situ soil moisture for both the long and short 

periods (i.e., highest MAE and RMSE were 0.054 and 0.059 [cm3/cm3], 

respectively). Because there are inevitable limitations including scale mismatch 

and parameterization, a 5% error range for near surface volumetric soil moisture 

content is recognized as a reasonable error margin from previous studies (Shao 

and Henderson-Sellers, 1996; Mohr et al., 2000). Here, we notice that ground 

based in-situ sampling using impedance probes may also have 5% volumetric 

soil moisture error depending on the calibration methods (Cosh et al., 2005).

Several previous SVAT calibration/validation studies have identified typical 

errors and biases for different types of landscape and climate. Whitfield et al.’s 

(2006) comparison of two SVAT models, CLM and the Land Surface Process 

Model (LSP), showed that CLM’s soil moisture was slightly drier than ground 

based measurements, while LSP’s soil moisture was slightly wetter at field scale 

in southeastern U.S.. However, both the CLM and LSP provided reasonable soil 

moisture simulations (i.e., highest MAE and RMSE values were 0.032 and 0.033 

[cm3/cm3], respectively). Dai et al. (2003) also found that CLM’s soil moisture 

values were somewhat drier than observed ground data at a catchment in Russia 

for the period 1966-1983 even if its simulated soil moisture reasonably replicated 

observed soil moisture temporal variability. Mohr et al. (2000) demonstrated that
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the untuned PLACE model effectively simulated the spatio-temporal variability of 

soil moisture in Southern Great Plains Hydrology experiment (SGP97). Again, 

modeled soil moisture was slightly drier than ground based data. In contrast to 

these previous studies, CLM simulated soil moisture was slightly wetter than the 

ground based data for the long and short periods. This difference may be due to 

preferential siting of network sensors outside of active agricultural areas. This 

may result in soil type and vegetation differences between the EASE-Grid 

averaged values in CLM and the local values for the ground based data.

Several previous studies validated remote sensing measurements using 

SVAT models and ground based in-situ data for a variety field conditions and 

durations. Sahoo et al. (2006) showed similarly good agreement between the 

Noah land surface model and SMEX03 (r2 = 0.72) and between AMSR-E and 

SMEX03 (t2 -  0.56) as compared to our average values between CLM and 

SMEX03 (t2 = 0.72) and between AMSR-E and SMEX03 (r2 = 0.70). They also 

found that AMSR-E did not replicate the observed soil moisture temporal 

evolution as well during SMEX03 (Georgia) as during SMEX02 (Iowa) and 

SMEX04 (Arizona). Their Noah land surface model was consistently drier than 

AMSR-E and ground data during SMEX03. During the Southern Great Plains 

Hydrology 1997 (SGP97), Mohr et al. (2000) found that remotely sensed 

Electronically Scanned Thinned Array Radiometer (ESTAR) surface soil moisture 

had less temporal variation as compared to model and ground data. Reichle et al. 

(2004) found that SMMR soil moisture products had no agreement with NASA 

Catchment Land Surface model when Leaf Area Index (LAI) values exceeded
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unity. For lower LAI values, SMMR was able to capture the same global soil 

moisture patterns of wet and dry regions identified by models and ground data 

(1979-1987). These findings support our results that AMSR-E had limited 

variation annually and very poor agreement during the growing season.

Differences among soil moisture time evolutions are not readily apparent 

from standard statistics. AMSR-E had reasonable statistics and errors as well as 

temporal wetting and drying patterns that matched the CLM and ground based 

in-situ soil moisture values. However, AMSR-E had noteworthy less temporal 

variability compared to CLM and ground based in-situ soil moisture. A potential 

reason for the AMSR-E soil moisture’s low temporal variations during the growing 

season is the passive microwave sensors’ inability to capture reasonable 

brightness temperatures in densely vegetated surface conditions (Schmugge et 

al., 2002; Margulis et al., 2002). Another possible problem is that the sensitivity of 

AMSR-E retrieval algorithms may be reduced by vegetation and surface 

roughness effects (Njoku et al., 2003).
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Conclusion

In this study, inter-comparisons of surface soil moisture from remotely 

sensed data (AMSR-E), land surface model (CLM), and ground data were 

conducted for SMEX03 study period and entire year of the 2003 at SMEX03 Little 

River region. Overall, our results show that there are good agreements among 

the different soil moisture products with CLM and AMSR-E having 

complementary benefits even if each data source has its own restrictions. These 

findings are consistent across the EASE-Grids. The CLM simulated soil moisture 

agreed well with ground based in-situ soil moisture for long and short periods 

within reasonable error ranges (i.e., highest MAE and RMSE were 0.054 and

0.059 [cm3/cm3], respectively). While AMSR-E provided an unbiased estimate of 

average soil moisture, it did not capture the full range of observed soil moisture. 

Additionally, AMSR-E had almost no variation from May to October. As with the 

year long period, AMSR-E did not capture observed soil moisture temporal 

variability during SMEX03 period. This study’s characterization of each data 

source’s errors may provide improved recognition of data errors, identify the 

AMSR-E retrieval algorithm’s limitations, and facilitate data use in assimilation 

systems.
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Table 3-1. Geographic locations, field characteristics, and average and standard deviation of forcing data for the entire 
year of 2003 (from 01/01/2003 to 12/31/2003) obtained from NLDAS (Note: values in parenthesis are the standard 
deviations) for Grids A, B, C, and D (Note: values in parenthesis are the standard deviations)

Grid A GridB Grid C GridD
Latitude and longitude of the Grid’s NE 31.88°N, -83.69°W 31.88°N, -83.43°W 31.65°N, -83.69°W 31.65°N, -83.43°Wcorner
Major IGBP land use category (%)
Cropland and pasture 68.7 58.1 65.2 71.8
Evergreen forest 23.6 35.8 26.6 18.0
Wetland 4.3 4.8 7.4 8.0
Reservoir 1.3 - 0.1 0.2
Mixed forest 1.0 0.5 - -

Deciduous forest 0.6 0.2 - -

Residential/Urban 0.5 0.6 0.7 2.0
Surface soil texture
Sand(%) 78 79 78 78
Clay (%) 6 6 6 6
No. of in-situ sampling points
Network 7 3 1 6
SMEX03 9 7 8 13
Forcing data
Downward solar radiation [W/m2] 244.8 (327.4) 244.5 (327.0) 245.7 (328.2) 246.2 (328.7)
Downward long wave radiation [W/m2] 348.1 (62.1) 348.4 (62.2) 348.7(61.6) 349.7 (61.6)
Air temperature [K] 291.7 (8.7) 291.8(8.7) 292.1 (8.5) 292.5 (8.5)
U wind component [m/s] 0.3 (2.7) 0.4 (2.7) 0.3 (2.8) 0.3 (2.9)
V wind component [m/s] 0.3 (2.5) 0.3 (2.4) 0.3 (2.6) 0.3 (2.5)
Surface pressure [kPa] 100.6 (0.5) 100.7(0.5) 100.6 (0.5) 100.9(0.5)
Specific humidity [kg/kg] 0.011 (0.005) 0.011 (0.005) 0.011 (0.005) 0.011 (0.005)
Total precipitation [m] 1.41 1.31 1.49 1.38
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Table 3-2. Temporal statistical moments, mean, standard deviation, and skewness of different soil moisture products 
(cm3/cm3) by grid (Note: Moments were calculated using single daily measurements from SMEX03 and AMSR-E at time 
for the network and CLM)

Grid A Grid B Grid C Grid D
SMEX03 (06/23/2003-07/02/2003) (06/23/2003-07/02/2003) (06/23/2003-07/02/2003) (06/23/2003-07/02/2003)

period
Network SMEX03 AMSR-E CLM Network SMEX03 AMSR-E CLM Network SMEX03 AMSR-E CLM Network SMEX03 AMSR-E CLM

Mean 0.124 0.141 0.136 0.151 0.099 0.115 0.131 0.146 0.105 0.123 0.133 0.147 0.113 0.092 0.128 0.148

STDEV 0.035 0.037 0.014 0.038 0.044 0.041 0.013 0.044 0.051 0.048 0.013 0.040 0.036 0.042 0.012 0.050

Skewness 0.543 0.998 0.740 0.575 0.535 0.664 1.117 0.731 0.892 1.178 -0.328 0.662 0.179 1.809 1.162 1.064

2003
Grid A 

(01/01/2003 -12/31/2003)
Grid B 

(01/01/2003-12/31/2003)
Grid C

(05/29/2003-07/13/2003)
GridD 

(01/01/2003- 12/31/2003)
period

Network AMSR-E CLM Network AMSR-E CLM Network AMSR-E CLM Network AMSR-E CLM

Mean 0.138 0.142 0.145 0.123 0.138 0.140 0.122 0.139 0.167 0.135 0.138 0.141

STDEV 0.039 0.014 0.053 0.053 0.015 0.052 0.053 0.013 0.046 0.045 0.014 0.053

Skewness -0.011 0.727 0.440 0.722 0.834 0.468 1.239 0.306 -0.058 0.122 1.050 0.515
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Table 3-3. Error estimation among four soil moisture products (cm3/cm3) for the SMEX03 study period

Grid A Grid B
Statistical _________________(06/23/2003 -  07/02/2003)_________________  (06/23/2003 -  07/02/2003)
Measures CLM

Network
CLM

SMEX03
AMSR-E
Network

AMSR-E
SMEX03

CLM
AMSR-E

CLM
Network

CLM
SMEX03

AMSR-E
Network

AMSR-E
SMEX03

CLM
AMSR-E

Bias 0.027 0.013 0.015 -0.009 0.021 0.046 0.033 0.028 0.003 0.030

Mean Absolute 
Error (MAE) 0.028 0.018 0.029 0.022 0.036 0.047 0.033 0.035 0.024 0.035

Root Mean Squared 
Error (RMSE) 0.035 0.023 0.036 0.028 0.043 0.049 0.037 0.042 0.030 0.046

Correlation 
Coefficient (R2) 0.658 0.791 0.425 0.761 0.419 0.857 0.837 0.796 0.636 0.424

Statistical
Grid C

(06/23/2003-07/02/2003)
Grid D 

(06/23/2003 -  07/02/2003)
Measures CLM

Network
CLM

SMEX03
AMSR-E
Network

AMSR-E
SMEX03

CLM
AMSR-E

CLM
Network

CLM
SMEX03

AMSR-E
Network

AMSR-E
SMEX03

CLM
AMSR-E

Bias 0.041 0.023 0.031 0.004 0.016 0.035 0.054 0.017 0.026 0.031

Mean Absolute 
Error (MAE) 0.042 0.033 0.046 0.039 0.033 0.035 0.054 0.029 0.040 0.036

Root Mean Squared 
Error (RMSE) 0.047 0.039 0.052 0.041 0.039 0.051 0.059 0.036 0.043 0.046

Correlation 
Coefficient (R2) 0.824 0.530 0.473 0.638 0.333 0.462 0.714 0.500 0.745 0.443
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Table 3-4. Error estimation among three soil moisture products (cm3/cm3) for the entire year of 2003, except Grid C from 
05/29/2003 to 07/13/2003

Grid A Grid B Grid C Grid D
Statistical (01/01/2003-12/31/2003) (01/01/2003-12/31/2003) (05/29/2003-07/13/2003) (01/01/2003- 12/31/2003)
Measures CLM amsr-e c lm  

Network Network AMSR-E
CLM AMSR-E CLM 

Network Network AMSR-E
CLM AMSR-E CLM 

Network Network AMSR-E
CLM AMSR-E CLM 

Network Network AMSR-E

Bias 0.007 0.003 0.003

Mean Absolute Error A A, A A AAA A A. A 0.029 0.029 0.040(MAE)

Root Mem Squared 
Error (RMSE)

Correction 
Coefficient (R)

0.017 0.015 0.001 

0.038 0.040 0.039 

0.047 0.049 0.047 

0.416 0.263 0.138

0.045 0.023 0.029 

0.047 0.039 0.046 

0.055 0.046 0.058 

0.654 0.298 0.027

0.006 0.004 0.002 

0.032 0.027 0.038 

0.039 0.038 0.045 

0.495 0.288 0.213



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Grid A

Grid C

00U1

r ^ v i  i

i i i f e
%r

N

A

Grid B

 #■
■ '  - k A

GridfeO
r i"

i ;iy\m . .

•cf. o

-j | Little River watershed. 

□  SCAN 2027 

▲ Network 

•  SMEX03

 ----- NLDAS-Grid

□  Ease-Grid

Figure 3-1. Little River watershed, SMEX03 GA regional sampling sites, network sites, NLDAS-Grids, and EASE-Grids
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Figure 3-2. Time series of the four surface soil moisture products for the SMEX03 study period (06/23/2003 to
07/02/2003) by grid
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Figure 3-2. Time series of the four surface soil moisture products for the SMEX03 study period (06/23/2003 to
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CONCLUSION

In this study, soil moisture variability and time stability were considered 

across different soil depths and scales from a variety of field experiments. This 

chapter reviews the significant findings and sets a context for these findings 

within hydrological sciences. The major findings of this study are as follows:

1. The spatial variability patterns of surface and root zone soil moisture were 

well captured by negative exponential functions between mean and 

coefficient of variation of soil moisture. The surface depth showed the 

least negative relationship between the mean and the coefficient of 

variation of soil moisture. The soil moisture variability generally decreased 

as sampling extent scale increased. Additionally, its variability increased 

as soil depth increased.

2. The surface soil moisture was well described by a normal distribution, 

except during dry down phases when it was positively skewed. At deeper 

depths, the normal distribution generally captured the soil moisture 

variability.

3. The maximum surface soil moisture relative variability was mostly affected 

by soil factors. The rainfall and topography were the most significant
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factors to characterize how variability patterns change with mean surface 

soil moisture.

4. The time stability patterns were well maintained regardless of the soil 

depth. The surface time stability can provide valuable insight to root zone 

time stability patterns.

5. The simple physical model reasonably replicated observed soil moisture 

variability patterns. This model can be used to identify statistical 

relationships necessary to disaggregate physically based land surface 

model predictions.

Inter-comparisons of surface soil moisture from remotely sensed data 

(AMSR-E), land surface model (CLM), and ground data were conducted for 

SMEX03 study period and entire year of the 2003 at SMEX03 Little River region. 

The major findings of this study are as follows:

1. There was good agreement among the different soil moisture products, 

although each data source had its restrictions. The CLM simulated soil 

moisture values agreed well with ground based in-situ soil moisture for 

both the long and short periods.

2. The AMSR-E provided reasonable average soil moisture compared to the 

CLM and ground data, but it had almost no temporal variation during the
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growing seasons, May to October. The error characteristics of the AMSR- 

E data are strongly influenced by vegetation density.

3. Both the CLM and AMSR-E had complementary benefits with relative low 

MAE and RMSE errors for the CLM and very low biases for the AMSR-E.

Based on the inter-comparison analysis, each data source was identified as 

a reasonable approach to obtain regional soil moisture. Ultimately, the AMSR-E  

error characteristics identified here should be used to guide enhancement of 

retrieval algorithms and improve satellite observations for hydrological sciences. 

As they stand, the AMSR-E data products might be a valuable input to simulate 

land surface-atmosphere interactions for regional weather prediction systems, 

especially at data limited regions. Furthermore, the AMSR-E data can provide 

relative surface moisture to augment runoff predictions of rainfall-runoff 

processes. This is one of the few direct ways to identify antecedent soil moisture 

conditions (AMC) because of highly non-linear characteristics of soil moisture. 

However, direct application of refined moisture values is not possible due to the 

limited range of AMSR-E values.

Hydrological variability across spatial scales is poorly understood. Even 

without a full range of moisture values, AMSR-E can provide valuable datasets 

for validation of land surface modeling to examine sub-grid variability of soil 

moisture at large extents as well as the structure of this variability.

In a broader context, the statistical soil moisture variability results of this 

study are essential to understand numerous water and energy balance
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processes. For instance, this information can be used to characterize 

evapotranspiration processes, one of the least understood physical processes in 

hydrology. The evapotranspiration processes have spatial and temporal 

heterogeneity characteristics that are poorly understood, yet are strongly 

influenced by soil moisture availability. Furthermore, these heterogeneous latent 

heat fluxes contribute water and energy and drive cloud creation and 

precipitation in regional climate systems.

The current results for soil moisture variability information can also improve 

rainfall-runoff process. The predictive runoff approaches that use mean 

antecedent soil moisture conditions (AMC) might be enhanced by soil moisture 

variability estimates derived from this study’s exponential relationships. Similarly, 

groundwater recharge variability is also affected by spatial and temporal 

variability of soil moisture. Better characterization of the unsaturated zone’s 

moisture variability and distribution can improve infiltration predictions.

The soil moisture variability knowledge also can provide a practical 

approach to estimate the heterogeneity effects of land surface processes in 

modeling systems over a range of scales. Typically, the variability information 

has been used in an explicit mode that analyzes the heterogeneity effects by 

distinction of each model element in modeling systems. This study’s soil moisture 

variability patterns can be applied to both lumped and distributed modeling. First, 

the probability density function (PDF) of soil moisture at different depths can be 

used to represent variability that controls profile heterogeneity within a spatially 

lumped, but vertically stratified soil profile model such as TOP MODEL and VIC.
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The most efficient PDFs to represent soil moisture variability were a log-normal 

distribution in the surface layer and a normal distribution in subsurface layers. 

This information can provide an effective way to determine how well current soil 

moisture dynamics schemes characterize soil moisture variability patterns by soil 

depth.

Second, distributed modeling that contains grid or sub-grid variability can 

be improved by using spatially distributed soil moisture variability information. 

There are typically two approaches to represent sub-grid heterogeneity in 

distributed modeling systems, discrete and statistical approaches. In the 

statistical approach, my results can be used to develop grid or sub-grid statistical 

PDF representations. Several previous studies have concluded that this 

approach provided improved simulations, but it was practically quite complex due 

to numerical computations at each element. In simplified PDF representations, 

only the most critical variables should be considered. Additionally, model spatial 

distribution increasingly changed as a function of observed area or based on the 

process modeled. Allowing statistical behavior to change by scale may be a 

critical factor to develop up-scaling or down-scaling schemes in physically-based 

land surface processes.

The above ideas reflect several potential science areas in land surface 

processes might be better understood and predicted using research on soil 

moisture variability. These thoughts provide insight for potential inquiry and 

testable hypotheses for future research.
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FUTURE STUDY

Soil moisture variability patterns found in this study can provide better 

identification for the temporal and spatial behavior of hydrological processes. 

Physical modeling is essential to represent and predict hydrological processes 

because it is almost impossible to execute intensive field campaigns at large 

scales for long periods. Time stability analysis was recognized as a valuable tool 

to predict reasonable mean soil moisture without a significant sampling error. 

However, time stability and modeling in this study was conducted at a field scale 

for short duration. One of the most arguable issues in hydrology is how well 

variability patterns can be connected over a range of scales. Thus, future studies 

are needed that include larger scales, longer periods, and a variety of 

landscapes.

Several previous studies found that remotely sensed data had much less 

temporal variability compared to modeled and ground data. W e also found 

consistent results with the previous studies as the remotely sensed data had less 

temporal variability than modeled and observed soil moisture. For future studies, 

bias reduction methods such as Cumulative Distribution Function (CDF) 

matching technique can be used to reduce the error of the remotely sensed data. 

The CDF matching technique has been widely used in diverse disciplines. CDF 

matching between the model and remotely sensed data can be conducted for
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annual and seasonal periods based on the relationship between the remotely 

sensed soil moisture and Leaf Area Index (LAI) products. Scale factors will be 

calibrated based on the difference between the model and remotely sensed data. 

The scaled remotely sensed data will be validated using model and ground- 

based measurements. This process can improve current utilization of remotely 

sensed products.

Through these future studies, the parameterization requirements of 

hydrologic systems considering soil moisture heterogeneous characteristics as a 

function of physical properties can be better satisfied.
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