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ABSTRACT

CUPOLETS: Chaotic Unstable Periodic Orbits 
Theory and Applications

by

Kourosh Zarringhalam
University of New Hampshire, September, 2006

Recent theoretical work suggests that periodic orbits of chaotic systems are a 

rich source of qualitative information about the dynamical system. The presence of 

unstable periodic orbits located densely on the attractor is a typical characteristic 

of chaotic systems. This abundance of unstable periodic orbits can be utilized in 

a wide variety of theoretical and practical applications [19]. In particular, chaotic 

communication techniques and methods of controlling chaos depend on this property 

of chaotic attractors [12, 13].

In the first part of this thesis, a control scheme for stabilizing the unstable pe

riodic orbits of chaotic systems is presented and the properties of these orbits are 

investigated. The technique allows for creation of thousands of periodic orbits. These 

approximated chaotic unstable periodic orbits are called cupolets (Chaotic Unstable 

Periodic Orbit-lets ). We show that these orbits can be passed through a phase trans

formation to a compact cupolet state that possesses a wavelet-like structure and can 

be used to construct adaptive bases. The cupolet transformation can be regarded as 

an alternative to Fourier and wavelet transformations. In fact, this new framework

xi
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provides a continuum between Fourier and wavelet transformations and can be used 

in variety of applications such as data and music compression, as well as image and 

video processing.

The key point in this method is that all of these different dynamical behaviors 

are easily accessible via small controls. This technique is implemented in order to 

produce cupolets which are essentially approximate periodic orbits of the chaotic 

system. The orbits are produced with small perturbations which in turn suggests 

that these orbits might not be very far away from true periodic orbits. The controls 

can be considered as external numerical errors that happen at some points along the 

computer generated orbits. This raises the question of shadowability of these orbits. 

It is very interesting to know if there exists a true orbit of the system with a slightly 

different initial condition that stays close to the computer generated orbit. This true 

orbit, if it exists, is called a shadow and the computer generated orbit is then said 

to be shadowable by a true orbit.

We will present two general purpose shadowing theorems for periodic and non

periodic orbits of ordinary differential equations. The theorems provide a way to 

establish the existence of true periodic and non-periodic orbits near the approximated 

ones. Both theorems are suitable for computations and the shadowing distances, i.e., 

the distance between the true orbits and approximated orbits are given by quantities 

computable form the vector field of the differential equation.

xii
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CHAPTER 1

BACKGROUND

1.1 Introduction

Periodic orbits of chaotic systems are a rich source of qualitative information 

about the dynamical system. The presence of unstable periodic orbits located densely 

on the attractor is a typical characteristic of chaotic systems. In this chapter we pro

vide the necessary background materials and discuss a control scheme for stabilizing 

the unstable periodic orbits of chaotic systems.A nonlinear dynamical system is a 

system that can be modeled by nonlinear algebraic or differential equations. The 

state of a dynamical system evolves with time t, which could be a continuous or a 

discrete variable. A discrete time system is usually described by a map and a con

tinuous time system is described by a set of differential equations. As t —> oo, the 

system may reach a steady state which is often a fixed point, a periodic solution or 

some other bounded set. One of the greatest breakthroughs in mathematics in the 

last century has been the realization that even the simplest dynamical systems may 

behave extremely unpredictably, where the dynamics is deterministic but aperiodic 

and sensitive dependence on initial conditions and noise means that long term pre-

1
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diction is impossible. For instance consider the Logistics map

x.„+i =  r ( l  -  xn) , (1.1)

where 0 <  r  < 4 is a parameter and n > 0. Fig. 1-1 shows some plots of the time 

series f°r different values of the parameter r  and a fixed initial condition x.

For r  <  1, xn —> 0 as n  —> oo for any given initial condition x. For 1 < r < 3, 

the time series xn grows until it reaches some steady state that varies as a function 

of r. As r  increases above 3, the time series x n will produce a period-2 cycle, a 

period-4 cycle and so on. Here we use the term 2 cycle to indicate that the steady 

state behavior jumps between 2 points in a cyclic fashion. This phenomena is called 

period-doubling bifurcation, cascade or route to chaos. Table 1.1 shows the values of 

r, where 2"-cycle first appears. Note that the successive bifurcations appear faster 

and faster until rn converges to a limiting value r ^ .  For large values of n, the distance 

between the successive transitions shrinks by a constant factor

d = lim r"~r"-i =  4.669 • • • . (1-2)
n -*ooTn+1 Tn

The number 5 is a universal constant called the Feigenbaum constant. The period 

doubling is not unique to the Logistics map. In fact, Metropolis et al. [16] proved that 

all unimodal maps of the form a;n+i =  r f ( x n), where f (x )  satisfies / ( 0) =  / ( l )  =  0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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F igure  1-1. Time series of the Logistic map for different values of the parameter r. 
The r values are, (a) r =  2.8, (b) r  =  3.3, (c) r  =  3.5 and (d) r =  3.9 respectively.
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r value periods
n 3 (period 2 is born)
1~2 3.449 • • ■ (period 4 is born)
r3 3.54409 • • • (period 8 is born)
r± 3.5644 • • • (period 16 is born)
r5 3.568759 • • • (period 32 is born)

7*00 3.569946 • •• (period oo is born)

T able 1.1. Period doubling bifurcation in Logistic map.

have the same property. As r is varied, the order in which the stable periodic solutions 

appear is independent of the unimodal map used.

For values of r > r ^ ,  the sequence {xn} never settles down to a fixed point or 

a periodic orbit. This can be very well illustrated by the bifurcation diagram of the 

logistics map. Fig.l-2(a) shows the interesting part of the diagram where 3.4 < r < 4. 

At r =  3.4, the attractor is a period-2 cycle as indicated by the two branches. As 

r  increases, both branches split simultaneously, yielding a period-4 cycle, a cascade 

of future period doublings occurs as r increases, yielding period-8, period-16, and so 

on, until at r  =  r ^  ps 3.57, the map becomes chaotic and the attractor changes from 

a finite to an infinite set of points.

For r >  Too, the diagram shows a mixture of order and chaos with periodic 

windows between chaotic clouds of dots. The large window beginning near r w 3.83 

contains a stable period-3 cycle. A blow up of part of the period-3 window is shown 

in Fig.l-2(b).

4
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(a) (b)

F ig u re  1-2. Bifurcation diagram of the logistics map.

A famous example of a continuous time chaotic system is the Lorenz system. The 

differential equations describing the Lorenz system are:

x  =  a ( y - x ) ,

y = p x - y - x z ,  (1-3)

z — —f3z + xy,

where (x, y, z) e  R3, a  and (5 are positive constants and p is a parameter. For certain

values of parameters, this system appears to behave unpredictably. For example

if we numerically integrate this system with parameter values a  =  10, f3 =  |  and 

p — 28, we observe that after an initial transient, the solutions settle into an irregular, 

aperiodic oscillation that persists as t —> oo. Figure 1-3 shows a plot of x(t) for a 

typical initial condition.

5
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1 x I O 4

F ig u re  1-3. The solution x(t) of the Lorenz system.

When we view the trajectories of the Lorenz system in three dimensions in the 

phase space, it appears that the trajectories settle onto a thin set. This limiting 

set is an attracting set of zero volume but infinite surface area. In fact numerical 

experiments suggest that this set has a fractal dimension of about 2.05. Figure 1-4 

shows the limiting behavior of a typical trajectory of the Lorenz system in two and 

three dimensions.

1.1.1 A sy m p to tic  B ehavior

In this section we present the necessary definitions to deal with the notion of 

“long-term” behavior of dynamical systems. We will consider only Cr , (r >  1) maps 

and autonomous vector fields on M” ,

6
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F igu re  1-4. (a) The attractor of the Lorenz system and its projections to (b) x  — y, 
(c) x — z  and (d) y — z  planes.

7
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Vector Field : x  =  f i x ) ,  x  G R",

Map : x  i—► g(x), x  G R”.

The flow generated by the above vector field will be denoted by tp(t,x) — ipt{x). 

If we think of the initial condition rr0 as being fixed, then the mapping <£>(•, x0) de

fines a solution curve of the system through the point x0. If we identify the mapping

</?(• , x0) with its graph, then the trajectory can be visualized as a motion along a 

graph in R" passing through the point x 0. On the other hand, if we think of the 

point xq as varying through a set DC where K C 1 "  is the domain of the vector field 

/ ,  then the flow of the system ipt : K  —> R" can be viewed as the motion of all the 

points in the set K.

D efin ition  1. A point Xo G Rn is called an u-lim it point o fx  G R", denoted by lo(x), 

if  there exist a sequence {tj}, U —> oo, such that

ip(ti,x) -> X q . (1.4)

Similarly, an a-lim it point of x  E W 1 is a point xq G R" denoted by a{x) such that

ip(ti,x) -» a;0. (1.5)

for a sequence {ti}, with t{ —> — oo

8
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D efin ition  2. The set of all co-limit points of a flow or map is called the co-limit set. 

Similarly the set of all a-lim it points of a flow or ma is called the a-lim it set.

D efin ition  3. A point x Q is called non-wandering if  the following holds.

Flows: For any neighborhood U of x0 and T  > 0, there exist some t with \t\ > T  such 

that

<p(t,U)C\U ^  0.

Maps: for any neighborhood U of Xq, there exist some n with n /  0 such that

gn( U ) n U ^ t

D efin ition  4. The set of all non-wandering points of a map or a flow is called the 

non-wandering set of that particular map or flow.

As mentioned earlier, as t  —> oo the dynamical system will reach its steady state 

behavior, which is often a fixed point, a limit cycle or some attracting set. Loosely 

speaking, an attractor is a set to which all neighboring trajectories converge. More 

precisely, an attracting set A  is an invariant set contained in an open set U such that 

for any trajectory <p(t, xo) starting in U, the distance from ip(t, Xq) to A  tends to 0 

as t —> oo. An attractor is a minimal attracting set. We now present the formal 

definitions.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D efin ition  5. A closed invariant set A  C Rn is called an attracting set i f  there is 

some neighborhood U of A such that:

Flows:

V:r € U, V£ > 0 i p ( t , x ) E U  and i p ( t , x ) - > A  as t —> oo. (1.6)

Maps:

Vx € U, Vt > 0 gn (x) £ U and gn (x) —> A as t o o .  (1.7)

There is no universally accepted definition for chaos, but there is large consensus 

that every chaotic system satisfies certain properties. The essential ingredients of a 

chaotic system are:

1. A period ic  lo n g -te rm  behavior: Given a random initial condition, the prob

ability of occurrence of trajectories which do not settle down to fixed points, 

periodic orbits, or quasi-periodic orbits is nonzero.

2. D e te rm in is tic : System has no random or noisy parameters and the irregular 

behavior of the system arises from the nonlinearity of the system.

3. S ensitive d ep en d en ce  on in itia l conditions: Nearby trajectories separate 

exponentially fast.

One of the most basic tools for studying the stability and bifurcation of periodic 

orbits of dynamical systems, in particular chaotic systems, is the Poincare map or

10
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F ig u re  1-5. The Poincare map.

the first return map. The idea of the Poincare map is simple. Suppose that T is a 

periodic orbit through the point xq for the system

x = f (  x), (1.8)

and suppose that E is a hyperplane perpendicular to T at x q .  Here /  E C X{E) where 

E  is an open subset of K". For any point x  E  E sufficiently close to a;0, the solution 

of (1.8) through x, (pt(x), will cross E again at a point P(x)  near x q .  The mapping 

x  I—> P(x)  is called the Poincare map. Fig. 1-5 shows a plot of this map.

The Poincare map can be used to determine the stability of a periodic orbit of the 

dynamical system (1.8). Assume that (1.8) has a periodic orbit of period T, passing 

through a point x0 E E ,

11
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<p(t,x0) — 7 (f), 0 < t < T. (1.9)

The linearization of (1.8) about T is defined as the non-autonomous linear system

x  = A(t)x,  (1-10)

where

A(t) =  D f  . (1.11)

The n x n  matrix A(t) is a continuous T —periodic function of t for all t € M. The 

equation (1.10) is called the variational flow of (1.8). A fundamental matrix for 

(1.10) is a nonsingular n  x n  matrix d>(£) which satisfies the matrix differential equa

tion

${t)  =  A(t)$,  (1.12)

for all t G R. The columns of <3>(t) are linearly independent solutions of (1.10) and 

the solution of (1.10) satisfying the initial condition a;(0) =  x Q is given by

x(t) =  $ ( t)$ - 1(0)rro- (1-13)

12
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For a periodic matrix A (t) we have the following result known as Floquet’s Theorem. 

A proof of the theorem can be found, for example, in [21].

T heorem  6. I f  A(t) is a continuous, T —periodic matrix, then for all t € M any 

fundamental matrix for (1.10) can be written in the form

4>(f) =  Q(f)eSi, (1.14)

where Q(t) is a nonsingular, differentiable, T —periodic matrix and B  is a constant 

matrix. Furthermore, i f&(0) =  I  then Q(0) =  I.

It can be shown that if &(t) is a fundamental matrix for (1.10) which satisfies 

4>(0) =  / ,  then ||JDP(a;o)|| =  ||$(T)|| for any point x 0 G T where P  denotes the 

Poincare map [21]. It then follows from Theorem 6 that ||DP(aro)|| =  ||eBT||. The 

eigenvalues of eBT are given by eXjT where X j ,  j  — 1, • • • , n, are the eigenvalues of the 

matrix B. The eigenvalues of B  are called characteristic exponents of y(t) and the 

eigenvalues of eBt are called the characteristic multipliers of y(£). It is well known 

that if ||PP(a;o)|| <  1, then the periodic orbit y(t) is asymptotically stable.

In the next section we present a control scheme for stabilizing the unstable pe

riodic orbits of chaotic systems. The technique allows for creation of thousands of 

approximate periodic orbits. We will then investigate the properties of these orbits 

and discuss their applications.

13
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CHAPTER 2

CUPOLETS

2.1 Introduction

In this chapter, we will introduce a control scheme for stabilizing the unstable 

periodic orbits of chaotic systems and discuss the properties of these orbits. The 

technique allows for creation of thousands of periodic orbits. These chaotic unstable 

periodic orbits are called cupolets. In chapter 3 we will discuss the properties of 

cupolets and we will show how cupolets can be passed through a phase transformation 

to a compact cupolet state that possesses a wavelet-like structure.

The chaotic control approach is adapted from a communication scheme developed 

by Hayes, Grebogi, and Ott, HGO [12, 13]. In their paper, the authors used small 

perturbations to steer the trajectories of the double scroll oscillator around each of 

the two loops in the attractor. In this way an analog signal is obtained and the 

bit value can be determined by observing whether the oscillation is above or below 

a reference value. This scheme was not meant to be secure. However, Parker and 

Short [28] later showed that this scheme can be adapted for secure communication. In 

the course of this work, they discovered that the receiver can be initialized remotely 

by sending sequences of initializing codes that would cause the chaotic system to

14
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stabilize onto a cupolet regardless of the initial state of the system. Furthermore, 

this process allowed for the creation of tens of thousands of unique cupolets.

The key point in this method is that all these different dynamical behaviors are 

easily accessible via small controls. We implement this technique in order to produce 

cupolets which are essentially approximate periodic orbits of the chaotic system. The 

orbits are produced with small perturbations which in turn suggests that these orbits 

might not be very far away from true periodic orbits. We will investigate more on 

this in chapter 4.

2.2 Generating Controlled Stabilized Periodic Orbits

In this section we present a way of producing controlled periodic orbits, in [12], 

HGO introduced a control scheme that can be utilized to induce a chaotic system 

to produce a signal bearing a desired information stream. In this section, we will 

show how this realization that chaos can be controlled with small perturbations can 

be utilized to drive a chaotic system onto a periodic orbit. The controls we use are 

arbitrarily small. Consequently, these controls cannot grossly alter the topological 

structure of the orbits on the chaotic attractor.

In their paper, HGO controlled the double scroll oscillator to follow a prescribed 

symbolic sequence which contains the encoded information. Figure 2-1 (a) shows a 

schematic diagram of the circuit generating the double scroll chaotic attractor. The 

nonlinearity comes from a nonlinear negative resistance represented by the function 

g in Figure 2-1 (b).

15
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(a)

F igu re  2-1. Double scroll oscillator, (a) Electrical schematic and (b) nonlinear 
negative resistance g.

The differential equations describing the double scroll oscillator are:

where

CivCl =  G(vc2 - v Cl) ~  g(vCl),

C^VCi =  G(vCl — Vc2) + iLi

L il  =  —  vc2,

g(v) =  <

rriiv, if

m 0 (v + Bp) -  miBp, if 

m 0 (v -  Bp) + miBp, if

-Bp < v <  Bp,

v < —B,pi

v > Bp,

(2 .1)

(2 .2)

with parameter values, C\ =  C2 =  1, L = G =  0.7, m 0 = —0.5, m i =  —0.8, and 

Bp = 1. The attractor of this system contains two loops, each of which surrounds an 

unstable fixed point. Fig. 2-2 shows a typical trajectory of this system.

16
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Figure
(b) x — 
straight

2-2. (a) The Attractor of the Double Scroll oscillator and its projections to 
y , (c) x  — z and (d) y — z  planes. Here x  = vCl, y = vC2 and z = %l - The 
lines in part (c) of the figure are the Poincare cross sections.
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To generate the desired symbolic sequence, a Poincare surface of section is defined 

on each lobe by

iL = ±GF, \vCl\ < F ,  (2.3)

where F  — • These half-planes intersect the attractor with an edge at the

unstable point at the center of each lobe. The Poincare surface is two dimensional, 

but because the attractor is also nearly two dimensional close to this surface, the 

intersection between the attractor and the Poincare surface is approximately one 

dimensional. The asterisks in Fig. 2-3 mark the intersection of the trajectory with 

the Poincare half plane. This set of points may be approximated quite accurately by 

a line extending from the unstable fixed point fitted with the least squares method. 

Fig. 2-3 shows a top view of this line.

This line segment is then partitioned into M  bins and the distance x  from the 

center of each bin to the center of the corresponding lobe is recorded. Each one of 

these points is then used as a starting point and computer simulations are run with

out control. The obtained trajectory will result in a symbolic sequence which is the 

sequence of lobes visited by the trajectory. These symbolic sequences are associated 

with their start point and then stored in a bit register where 0 and 1 values are 

recorded each tile a Poincare surface is crossed. The symbolic state of the system 

can be represented by a function r  which maps the symbolic state space coordinate x

18
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Figure 2-3. Top view of the intersection of the Poincare surface with one of the 
lobes of the double scroll attractor. The asterisks show the places where the trajectory 
pierces the Poincare surface.

on the Poincare surface to a binary representation of the symbol sequence obtained 

from x. More precisely, if x  results in a binary sequence bib2b3 . . .  , this sequence is 

mapped to the binary decimal 0.b\b2b3 . . . ,  and r(x) is defined by

OO ,

r (x ) =  J 2 ^  (2-4)
71=1

This function r(x)  is referred to as the coding function. Fig 2-4 shows a plot of this 

function.

In practice the coding function r(x) has to be truncated to some finite value N.  

Given a point x 0 on the Poincare line, there exists a neighborhood Ns(x0), 5 > 0 

of the point xo on the Poincare line such that for any point x  G N$(xo, the sym-
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Figure 2-4. Coding function r (x )

bolic sequence of x  is the same as the symbolic sequence of x0 for N  loops around 

the attractor. This truncated version of the coding function r(x)  is denoted by rN(x).

M * )  =  Y l hf n (2-5)
n =  1

In order to control the system to follow a desired symbolic sequence, we run the 

simulation and wait until the trajectory crosses a Poincare surface, say at x 0. Recall 

that the symbolic sequence of Xo up to N  loops around the attractor is given by 

rN(x). The goal is to steer the future trajectory through rr0 so that it will trace 

out the desired symbolic sequence. So, if the last digit of the symbolic sequence 

of x0 is different from the first digit of the desired sequence, we can search rN(x) 

for nearest point on the section which has the same symbolic sequence as xo except
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for the last digit. More precisely, we look for an Xi on the Poincare line such that 

|rjv(xo) — 'HvOei)! =  2~N. This is guaranteed to occur in an adjacent level of the 

rpf (x ) section. So the perturbations are guaranteed to be small and the trajectory is 

then perturbed so that it starts at x\.

If the last digit of the symbolic sequence of x 0 is the same as the first digit of 

the desired sequence, we let the trajectory pass through unperturbed. In a situation 

like this the trajectory may be reset to the center of whatever bin it is in without 

changing the dynamics for the N  loops. This resetting process may be thought of as 

applying microcontrols. This has the effect of removing any accumulation of round 

off error and minimizing the effect of sensitive dependence on initial conditions when 

the simulations are run.

The process of perturbing or not perturbing the trajectory can be described by 

a binary sequence with 1 meaning apply the control and 0 meaning no control. It 

was shown by Parker and Short [28] that this binary sequence bears no correlation to 

the original message and hence if an identical transmitter and receiver are used, the 

communication can be achieved by transmitting the control sequence only. However, 

in order to make the system work, the transmitter and the receiver must be initialized 

to the same state. It was discovered that this could be achieved without knowledge 

of the initial state of the transmitter and receiver. To do this, a control sequence is 

repeatedly applied to the system. It was found that independent of the initial state 

of the system, the trajectory will closes up on itself. The obtained controlled periodic 

orbit is independent of the choice of initial condition and so it turns out that there
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is usually a unique correlation between a control sequence and a particular periodic 

orbit. This makes remote initialization of the receiver possible by transmitting the 

same initializing sequence that was used to bring the transm itter to the initial state.

At a fundamental level, when the binary sequence of controls are applied in this 

manner, there are only a finite number of orbits on the attractor, so the periodicity 

of the dynamics would eventually be guaranteed even if no controls were applied. 

However, when the initializing controls are applied, the system rapidly stabilizes 

onto the periodic orbits that we call cupolets. Fig. 2-5 shows a few cupolets.

We have found the cupolets to be useful in a variety of applications, such as 

signal processing, data and music compression and image processing. In chapter 3, 

we investigate the properties of the cupolets and show how they can be utilized to 

approximate discrete signals.
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Figure 2-5. This figure shows a few of the cupolets of the double scroll system with 
different periods. The control sequences applied to obtain the cupolets are, (a)00,
(b) 11, (c) 01 and (d) 001.
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CHAPTER 3

ADAPTIVE MULTIRESOLUTION ANALYSIS

3.1 Introduction

In this chapter we show that cupolets can be used effectively to produce an 

adaptive basis for the space of real-valued functions of a discrete variable. From this 

basis, we construct a multiresolution analysis which allows for the approximation of 

signals at different resolutions and we apply it to image compression. This adaptive 

multiresolution analysis provides an interesting continuum between Fourier analysis 

and wavelet analysis.

Two of the most effective signal analysis techniques for compression are windowed 

Fourier and wavelet transforms. The building blocks of windowed Fourier analysis are 

sines and cosines or their complex equivalents, and when applied to signal processing 

of digital data, the analysis is done with sliding data windows. The fundamental 

idea behind wavelets is analysis based on scale. Wavelet analysis can be thought 

of as an alternative to classical Fourier analysis. In wavelet analysis the building 

block is called a mother wavelet and is generally compact and oscillatory. There 

are three basic wavelet operators that play the role of sliding windows in Fourier 

analysis. These operators are translation by h, defined by (Thf)(x) =  f ( x  — h),
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dilation by r  >  0, defined by (prf ) ( x ) =  f (rx ) ,  and modulation by m, defined by 

(pmf)(x)  = etmxf(x) .  These operators are then applied to the mother wavelet to 

produce other wavelets.

We will now show that cupolets can be used in a similar manner to produce a 

multiresolution analysis. In fact, cupolets can be transformed between an oscillatory 

state similar to the sinusoidal basis of the Fourier analysis and a compact cupolet 

state that is wavelet-like.

We denote the space of real-valued N — periodic functions of a discrete variable 

by R N, i.e.,

R n  =  { /  : N -> R  | f ( n  + N) = f  (n) , n  G N} .

Here N  represents the number of discrete samples in one period of the function. 

Suppose that y(t) € (M.3)N is a periodic orbit of chaotic system,

x  = f (x ) ,  (3.1)

Here

t 3)^  == { f  :N  ->R* \ f ( n  + N) = f  ( n ) , n  G N} . (3.2)

Assume that y(t) =  (x (t ) , y ( t ) , z  ( t) ) . We take one of the components of 7 , say x  

and compute its discrete Fourier transform x. Let o.\~ represent the Fourier coefficients
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of the signal x. More specifically

For a real valued signal x  E M.N, the Fourier coefficients a *., k — 0, • • • , TV — 1, are 

complex valued numbers

ak =  exp {ip (k) ) ,

where tp (k ) in the above equation is the phase term. To convert the cupolet into a 

compact state we perform a phase transformation on the cupolet, designed to align 

all of the frequency components so that they add constructively at the center of the 

window. In order to concentrate the energy of the cupolet at the p — th position of 

the window, we change the phase term to 2irkff. For the case p =  y ,  this gives a 

final phase term of the form irk . Define ctk as

O i k  =  \ o i k I exp (m k ) ,

and define the signal x  E by

N

x  (n) =  ^d fcex p  (ik ( ^ )  nj  for n  =  0, • • ■ , N  — 1.
k = 1
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In this way we obtain a discrete periodic signal x  with period N,  that has most of its 

energy concentrated in the center of the window. Figure 3-1 shows a few examples 

of cupolets and their corresponding compact form.

We call these wavelet-like signals compact cupolets.

In the following, we present three different approaches to the construction of an 

adaptive multiresolution analysis from compact cupolets. In the first approach, we 

construct the basis using a recursive process similar to the process of creating a 

Walsh basis [2]. In the second approach, we present a definition of a partial periodic 

multiresolution analysis and discuss the properties of the basis elements at different 

resolution-levels. In the third, a periodic multiresolution analysis is constructed with 

each resolution-level being created by translations of an appropriately chosen scaling 

function. In each case we will approximate arbitrary signals at different resolution- 

levels and compress a sample image.

3.2 A Walsh Transform-like approach

In this section, we show how the method of creating a Walsh basis can be used 

with compact cupolets to approximate elements of the space of discrete functions 

over N  — 2n samples, R N. Let tpo be a given compact cupolet defined over a sample 

window, and assume N  = 2n samples are taken in the window. We define V'o to be 

zero outside the window. Define a sequence of functions i/jj, j  = 0,1, • • • , n — 1, as 

follows.
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F igu re  3-1. The compact cupolets in the second column of this figure are created 
by using the phase transformation to conroact form of the corresponding cupolets 
the first column of the figure.
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ifaj (x) = 0 ,- {2x) +  ( - 1)J i)j [2 (x -  f )] , ^  ^

faj+i (x) = ifjj (2x) -  ( - 1)J 0 ,- [2 (rr -  f )] ,

In (3.3) we take x  to range over the N  samples in the sample window, and remember 

that the extension of the function is zero outside the window. Let vf =  [fpjl • ■ • |\l/„_i] 

where 'Fj, j  =  ! ,•••  ,n  — 1 is a matrix whose columns are 0 2j-1, - "  >023- i ,  i-e->

=*  j 02J-1 ’ ' ' 02i — 1 One can easily verify that the columns of \Etj construct 

an orthogonal set. Let V j be the closure of the linear span of the columns of tyj. In 

this way we obtain a sequence of linear spaces V° C V 1 C • • • C V n~l =  M2". The 

basis elements for the space V 2 are shown in Figure 3-2. A direct application of this 

basis produces a fair representation of images; however there are strong, persistent 

artifacts where the basis functions overlap, so a direct use of this adapted Walsh 

transform is not optimal. Instead we extend the technique as described below.

Next, given an integer 0 < j  < n — 2, we complexify the basis elements in the 

space as follows. Assume that Tj is a matrix whose columns are the Fourier 

coefficients of the corresponding column in tF,-, i.e.,

• =  *  3 0 2 j - l  • • • ' 0 2 3  — 1 (3.4)

where 0*,, k = 2J 1, - • • ,2^ — 1 are column vectors containing the Fourier coefficients
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F ig u re  3-2. Basis element for the space V 2.
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of ipk. We then write as

'H, =  * ;  + (3.5)

where and are two matrices whose columns consist of positive frequencies 

and negative frequencies of columns of d'j. More precisely, if is represented by the 

matrix

tir. =  *1

a00 °10 

a0i On

a02 o12 

a oi On

O (23 - 1 ) 0

0 (2 3 -1 )1

O (23 - 1 ) 2  

0 (2 3 -1 )1

(3.6)

then,

b + =

Ooo OlO • • 0 ( 2 3 - 1 ) 0 0 0 •• 0

Ooi O i l  • 0 ( 2 3 - 1 ) 1

and =

0 0 •• 0

0 0 • 0 0 0 2 0 1 2  ‘ ‘ 0 ( 2 3 - 1 ) 2

0 0 • 0 Ooi O n  • ' 0 ( 2 3 —l ) l_

(3.7)

We then take the inverse Fourier transform of the columns of the matrices and
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to obtain two new matrices and with complex elements. Note that

^  =  *+ +  *7 . (3.8)

We now create a (2" x 2j+1) —complex matrix <f>j by filling the first half of the 

columns with the columns of * 7  and the second half of the columns with the columns 

of but reversing the order of the columns. More precisely,

*+ (0,0)
* + (1,0)

d>. =^ 3
* t  (2n — 2,0)
*+ (2 1,0)

* + (0, 2̂ '- l)
* + ( l , 2̂ - l )

*7(0 ,2^-1) 
*7 (1,2^ - 1)

* t  (2" -  2,2* -  1) *7 (2n -  2,2J -  1)
* t  (2n -  1,2i -  1) *7 (2n -1 ,23 -1 )

*7(0,0) - 
* 7 ( i ,0)

* 7  (2" - 2,0) 
* 7  (2n — 1,0)_

Here * 7  (I, k) means the (I, k) — th element of the matrices *7-

Given a function /  E M2” representing N  =  2” samples of a signal, we then try 

to obtain the best approximation to /  in the least squares sense using the columns 

of the matrix Qj. One way this can be achieved is by performing a singular value 

decomposition, SVD, of the matrix d>j and solving the system of the linear equations

=  / ,  (3.9)

where c is the vector of coefficients and /  is viewed as a column vector. In Figures
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3-3 and 3-4 two different compact cupolets are used to approximate the arbitrary 

signal /  at different resolution-levels. We can see that in the first level, the overall 

structure of the signal /  is fit reasonably well but the finer structures of the signal 

are not fit until we move to higher levels.

Fundamentally, when approximating a given signal /  with a given compact cupo

let c, the complexification process will introduce a complex number a  such that

/  «  ac+ +  ac~. (3.10)

Here a  denotes the complex conjugate of a. The term ac+ +  ac~ can be viewed as 

a nonlinear phase deformation of the compact cupolet c that will result in the best 

approximation of the signal.

This method can be used in image compression as follows. Given an image, we first 

transform it to a color space such as YCbCr  or YUV.  For the ease of computations we 

assume that the image has side lengths equal to powers of 2. We then use a scanning 

method to scan each layer of the image. In this way we obtain 3 one-dimensional 

signals representing each layer of the image. Using similar techniques as in windowed 

Fourier analysis we partition these signals into desirable windows and represent each 

window using our compact cupolet transform. Figure 3-5 shows compressions of a 

sample image along with the original image. The size of the image used is 256 x 256 

and the size of the windowed data is a single scan line or 256. The compressions are
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Figure 3-3. An arbitrary signal /  is approximated using the compact cupolets shown 
in (a). There are 256 sample points in the signal / .  The approximations are done at 
levels 0, 4, and 8. The number of basis elements for each of these resolution-level is 
1, 16, and 256 respectively.
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Figure 3-4. An arbitrary signal /  is approximated using the compact cupolets shown 
in (a). There are 256 sample points in the signal / .  The approximations are done at 
levels 0, 4, and 8. The number of basis elements for each of these resolution-level is 
1, 16, and 256 respectively.
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done in resolution-levels 4, 6 and 8. The number of basis elements per data window 

is 15, 63 and 254.

There are several other possible ways of implementing this method for image 

compression such as using different scanning techniques or creating two dimensional 

bases. In the next section we present another method for creating a multiresolution 

analysis.

3.3 Partial Periodic Multiresolution Analysis

In this section, we define a Partial Periodic Multiresolution Analysis (PPMRA)  

and we show how the compact cupolets can be used to construct a P P M R A .  Our 

approach to the construction of P P M R A  is inspired by the work of Petukhov [22]. 

In this section the basis functions are sampled N  =  2" times in a data window, but 

we assume that they are extended periodically outside of the window. So, whenever 

an index ranges beyond N,  the value is taken from the periodic extension.

D efin ition  7. A sequence of linear function spaces { }™=s , s > 0, is called a partial 

periodic multiresolution analysis, PPMRA, of the space M.N, N  =  2” i f  the following 

conditions are satisfied:

1 y s  c  P s+1 C • • • C V j C • • • V n = E N; dim V j = 2j , j  = s, • • • , n.

2. I f  f ( x )  G V j , then f  (2x) G V j+1.

3. I f  f  (r;) G V^+1, then there exists g (r;) G V j such that g (2x) = f  (x) + f ( x +  y ) .
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Figure 3-5. (a) Original 256 x 256 Image, (b) fourth resolution-level with 16 basis 
elements, (c) Sixth resolution-level with 63 basis elements and (d) eighth resolution- 
level with 254 basis elements. The size of the windowed data is one scan line (256).
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f .  The spaces V 3, j  = s, ■ ■ ■ ,n, are invariant under the shift by 2n 3 samples i.e.,

for any function f  £ V 3 and any k £ Z we have f  (x + k2n 3) £ V 3.

Note that the index s may be strictly bigger that 0, i.e., the first resolution-level 

may include more than 1 basis element. This is because the shifts at levels lower than 

s may result in a degenerate cupolet representation. Also, property (3) above defines 

the relationship between a finer and coarser resolution. This process can be thought 

of as an up-sampling of the finer resolution, and then truncation to N  samples. For 

a given cupolet, and a fixed sample window length, a set of sampled versions will 

exist that preserve the cupolet structure. This defines the total number of available 

resolutions. More precisely, for N  = 2” and a cupolet that must have 2k samples to 

preserve its structure, the number P  of non-degenerate resolutions is given by the 

formula

(3.11)

For a function <pl £ V 1, I =  s, • • • , n, we denote by 0 1 the vector function

$  (*) =  (? ' (:r) 2""‘) , • • ■ , ^  (x -  (2‘ -  l)  2- ' ) ) T .
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In order to construct the basis for each resolution-level with a given compact cupolet 

7 , we first rescale and resample the compact cupolet as follows. For the given com

pact cupolet 7 , assume that it is sampled N  =  2" times over the data window. Let 

ips — 7 . The scaling function tps and its shift define the coarsest resolution-level. The 

next finer resolution level is defined by regenerating (resampling) 7 so that it has y  

samples. We then define

<ps+1 (to ) =
7 (to) for 0 < to < y  — 1.

0 for Y  < k < N.
(3.12)

This process continues up to the finest available resolution. At this level choose 

an integer h < n  and regenerate the compact cupolet 7 with 2n points and define the 

function tps+p (to) =  ipn (to) by,

1 7 (m ) f°r 0 <  m  <  2n — 1,
<psp (to) =  ipn (m) =   ̂ (3.13)

0 for 2" < to < 2",

The functions ip1 (to), i =  s, s +  1, • • • ,s  + P  are normalized by dividing them with 

their Euclidian norm. Figure 3-6 shows a few of the functions <pn and 7 for the case 

n = 10 and h  =  7. Note that the finest resolution-level has 2” basis elements.
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Figure 3-6. The functions in the first column of the figure represent examples of 
compact cupolets at the coarsest resolution. The versions in the second column of 
the figure, correspond to the level 4 scalirl^ function.
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The scaling functions satisfy the following recursion relation:

p i -1 (2to) =  pi (m) + pi (m + 2"_1) , j  =  s +  1, • • • n. (3-14)

At each resolution-level j  we construct a linearly independent set by shifting the 

corresponding scaling function by 2n~i units. Let span (pi) denote the subspace VJ 

spanned by the components of pi.  This space can be used to approximate all the 

functions /  G in a least squares sense. More precisely, suppose that M 3 is a 

matrix whose columns are the components of pi. Then to get an approximation of /  

in the space V j we solve the set of linear equations,

M j X  — / ,  (3.15)

in the least squares sense. Here X  =  (aq, • • • , x 2j) are the coefficients. In this way 

we get that

2 i
f  (x) & ^ 2 x mpi (x +  m2n~3) . (3.16)

m —  1

We now show how the P P M R A  can be utilized in compressing a signal. Suppose 

/  G M.n  is an arbitrary signal. In order to approximate this signal in the space V 3,
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we first compute the scaling function ip3 and form a matrix M 3 whose columns are 

shifted versions of the scaling function ip3. For the j  — th resolution-level, we shift 

the scaling function if3 by m2n~3, for m  — 0,1, • • • ,23 — 1. More precisely, let

M 3 = ^ ( ■ ) ,  + 2- 1),  ^  (• + (2* -  1)2"-*) (3.17)

where

ip3 (• +  m2n- j ) = (tpj (1 +  m2n~3) , p 3 (2 +  m2n~3) , • • • , ip3 (2n + m2n~3) ) T .

In practice, when we are doing the computations, the matrix M 3 may not be of full 

rank. To overcome this problem we perform a singular value decomposition of the 

matrix M 3. Assume that

M j = U W V T. (3.18)

Here, U and V  are orthogonal matrices. The degree of singularity of the matrix 

M 3 can be determined by monitoring the diagonal elements of the matrix W  which 

are close to zero (up to machine precision). We choose a sufficiently small positive 

number £ and replace the zero diagonal elements with s. This gives us a new matrix 

W  which in turn  gives rise to a nonsingular matrix M 3. The new columns of the 

matrix M 3 are very similar to the old ones except for some small changes. We use
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the new matrix AP to solve the linear equation

M j X  = f .  (3.19)

The solution X  of the above equation can be interpreted as the spectrum of the 

compact cupolet transformation of the signal / .  It appears that this spectrum of the 

signal /  has very desirable structure for compression purposes. Figure 3-7 shows an 

arbitrary signal /  and its approximations at different resolution-levels. The actual 

length of the signal used is 256 samples and there are 4 different resolution-levels 

available. The number of basis elements in the resolution-levels are 32, 64, 128 and 

256 respectively. The spectral values of a typical signal f  are oscillatory and bounded 

by an envelope function (see Figure 3-8). This envelope function is almost periodic 

and has only low frequency components.

A more robust variation in approximating a signal is to form a basis matrix 

as follows. Assume that there are a total number of 2k basis elements, of length 

2”, available in the coarsest resolution-level. This will give us a total number of 

n — k +  1 available resolution-levels. The goal is to pick certain basis elements from 

each resolution-level and construct a new basis matrix. In this way, we will obtain a 

matrix that will be able to fit the coarser structure as well as the fine structures in 

a given signal. To do this, we select a subset of the columns from the AP matrices 

at each resolution- level. Since M k has 2k columns, we can choose 2l columns, I < k,
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F igu re  3-7. These figures illustrate approximations of an arbitrary signal / .  There 
are 4 different available resolution-levels and the number of basis elements in the 
resolution-levels are 32, 64, 128 and 256 respectively.
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Figure 3-8. These figures illustrate spectral values as well as the enclosing envelop 
function of the signal /  in Figure (3-7) in the 4 available resolution-levels.
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and define a matrix by

W 1 =  [<pk{- +  0 x 2k~l2n~k), <pk{- +  1 x 2k~l2n~k), ■ ■ ■

. . .  j¥,*(. +  (2*_  i) x 2k- l2n~k)\

=  [</(• +  0 x 2 n- i) , / ( '  +  l x 2 " - i)r "

. . .  , / ( .  +  (2Z -  1) x 2n~1)}.

We then define a sequence of matrices {WJ'}™_2+1 by picking 2J+/_1 columns from 

the (k + j  — 1) — basis matrix

+  0 x 2fc-/2"-dfc+j-1)); • • •

• • • , ipk+i~ l (- +  1 x 2k~l2n-(k+j- 1)), • • •

• • • , <pk+ i~ \. +  (2j+l~1 -  1) x 2fe- z2"_(fc+i_1)j 

=  [ / +i_1(' +  0 x 2',- j - i+1)r '

. . .  +  1 x 2”-J'-i+1), • • ■

. . . ? y,fc+i-l(. +  (2J+*-1 -  1) x 2ra- J'- i+1] .

for j  =  2, • • • ,n  — k + 1. We then complexify these newly obtained matrices us

ing the same technique described in the previous section and then we insert a column 

of ones at the beginning of the matrix. When we perform a least squares approx

imation with this matrix, the compact cupolets will go through a nonlinear phase 

deformation that will adjust the compact cupolets to approximate the signal in the 

best possible way for this one-parameter phase deformation. In order to get higher 

resolution-levels, the same process can be applied by picking more basis elements 

from each resolution-level, i.e., by choosing a smaller step size. Figure 3-9 shows the
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approximation of an arbitrary signal using this method. The total number of basis 

elements used is 4, 8 and 16 respectively and the number of samples in the signal is 

256. The convergence is extremely rapid for such a small number of basis elements.

Similarly, we can use this technique in image compression. Figure 3-10 shows the 

successive approximation of a sample image. The size of the image is 256 x 256 and 

the processing is done on single scan lines, so the length of the windowed data is 

256. The number of basis elements used in each level is 24, 56 and 120 per window 

respectively. We observe that by adding the phase deformation freedom, the image 

reconstruction becomes of significantly higher quality using fewer basis elements. 

This effect is particularly noticeable on full-sized images.

The number of different compact cupolets that can be utilized is practically infi

nite. Compact cupolets have rich structure and a wide array of oscillatory behaviors. 

By adding a pre-selection step to choose the most appropriate cupolet, more rapid 

convergence is expected. This demonstrates the potential for the use of the compact 

cupolets in different areas of signal processing.

3.4 Scaling and Shifting

In this section we present a third approach to creating a multiresolution analysis 

using the compact cupolets. The approach is based on scaling and shifting a given 

compact cupolet. Let c\ be a compact cupolet of length 2". We can view c\ as the 

scaling function for our lowest (coarsest) resolution-level. In fact c\ will be represent

ing the lowest frequencies in the spectrum of a given signal of length 2". Let V 1 be
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Figure 3-9. The total number of basis elements used is 4, 8 and 16 respectively.
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(C) (d)

Figure 3-10. (a) Original 256 x 256 Image, (b) level 2, (c) level 3 and (d) level 4. 
The size of the windowed data is 256 and the number of basis elements used in each 
resolution-level is 24, 54 and 120 per window.
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the closure of the linear space spanned by the vector c\. We then define the higher 

(finer) resolution-levels VJ", j  =  2, • • • , 2"_1 by introducing appropriate versions of 

the scaling function in each resolution-level. The scaling functions cj, j  =  2, ■ • • , 2"_1 

are defined recursively as follows. In order to obtain the scaling function cl, we regen

erate the original compact cupolet with step size 2^_1 times bigger than the original 

step size. This will result in a down-sampling of the compact cupolet c\. If the 

windowed data is of length 2", we can shift the down-sampled compact cupolet by 

2"_1 points at a time, thus obtaining 2J orthogonal vectors c], c^, • • • , c?\ Similarly, 

define VJ" to be the closure of the linear span of the orthogonal vectors c), c|, • • • , c?3. 

This process will give us a total number of n  available resolution-levels. In order 

to approximate a given signal / ,  up to the k — th  resolution-level, we construct a 

2n x (2fc — 1) matrix M  by

M =  v 1, V 2 , • • • , Vk ,

and then in a manner similar to the previous sections, we complexify this matrix 

and insert a column of ones at the beginning of the complexified matrix. Figure 

3-11 shows the successive approximations of an arbitrary signal / .  The length of the 

signal /  is 256 and the approximations are done up to resolution-levels 2, 5 and 7. 

The number of basis elements in the resolution-levels is 3, 31 and 127 respectively.
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F ig u re  3-11. The length of the signal /  is 256 and the approximations are done up 
to resolution-levels (a) 3, (b) 5 and (c) 7. The number of basis elements used in each 
case is 7, 31 and 127 respectively. ^
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F igu re  3-12. (a) Original 256 x 256 Image, (b) reconstruction up to resolution level 
4, (c) reconstruction up to resolution-level 6 and (d) reconstruction up to resolution- 
level 7. The length of the windowed data is 256 and the number of basis elements 
used in each resolution-level is 15, 63 and 127 per windowed data respectively.

Similarly, we can implement this technique in image compression. Figure 3-12 

shows the successive approximations of a sample image in different resolution-levels. 

The size of the original image is 256 x 256, the length of the data window is 256 and 

the number of basis elements used in each resolution-level is 15, 63 and 127 per data 

window respectively.
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We believe that cupolets have the potential to provide a framework for developing 

new techniques in signal processing that bridge the gap between Fourier analysis and 

wavelet analysis. The rich structure of cupolets allows for processing global as well as 

the local behavior of discrete signals. The potential exists for a beneficial interchange 

between chaotic systems and the processing of discrete signals but there is much more 

work left to be done.

Several different approaches of using cupolets in multiresolution analysis were 

presented in this chapter. In our initial investigations, the most efficient approach 

is that which produced Figure 3-10. However, in the next stage of research, it will 

be important to consider secondary compression of the coefficients, and one can see 

that things like the regular envelope structure of Figure 3-8 may allow for greater 

efficiency overall. Hence, it is important not to limit the focus on only one approach. 

Further research will investigate these issues, as well as looking at the evolution of 

the cupolet transform coefficients over a sequence of frames from video data.

On the more theoretical side, we can investigate the question of shadowability of 

cupolets by true unstable periodic orbits. By establishing the relationship between 

cupolets and shadowing, a deeper understanding of the structure of attractors may 

be achieved, while also providing a practical means to generate shadows of unstable 

periodic orbits. Certain restrictive results have been achieved in this area, such 

as the periodic shadowing theorem of Coomes, Kogak and Palmer [4], while other 

shadowing results such as the containment method [9] are not directly applicable
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to periodic orbits. In the next chapter, we will present a new tool to verify the 

shadowability in such cases.

In summary, the study of periodic orbits of chaotic systems appears to be ex

tremely promising from both theoretical and applied perspectives. It will be inter

esting to see if technological developments benefit more from using chaos to produce 

periodicity than from the typical aperiodic dynamics.
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CHAPTER 4

THEORETICAL RESULTS 

4.1 Introduction

Computational techniques are among the most important tools in understanding 

and analyzing the nature of chaotic systems of ordinary differential equations and 

computer simulations have greatly broadened our understanding in the field. How

ever, since chaotic systems exhibit sensitive dependence on initial conditions, it is 

important to develop analytical techniques to verify the reliability of computer gen

erated trajectories of such systems [10]. It is very interesting to know if a computer 

generated orbit is tracked closely by a true orbit of the dynamical system, perhaps 

with a slightly different initial condition. This true orbit, if it exists, is called a 

shadow and the computer generated orbit is then said to be shadowable by a true 

orbit. It was proved by Anosov and Bowen in their famous shadowing lemma [1] that 

if A is a hyperbolic set for a diffeomorphism (j) , then the orbits of <fr are shadowable 

in some neighborhood of the set A. Later Frank and Selgrade extended this result to 

hyperbolic sets of vector fields [6].

• S
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•  u

The hyperbolicity is very difficult to verify in general and many chaotic systems do not 

possess this property. In [3], Coomes, Kogak and Palmer, CKP, proved a shadowing 

theorem that does not require the assumption of hyperbolicity. The idea of their 

theorem is as follows. Suppose that pt(x) denotes the flow of a dynamical system 

x — f(x )  where /  is a C2 vector field on R". Suppose tha t 8 is a positive number 

and {y»}^0 is a computer generated orbit of the dynamical system with associated 

times { h i } ? =jj1, and error bound <5, i.e. ||iphAVi) ~  V i+ ill <  <5 for i =  0, • • • , IV -  1. 

This computer generated orbit is referred to as a 8-pseudo orbit. They then choose 

Poincare surfaces at each point yi on the 5-pseudo orbit normal to the vector field at 

that point. The problem then becomes finding a true orbit of the dynamical system 

that passes through some local neighborhoods of the points of the <5-pseudo orbit 

on the Poincare surfaces. This approach reduces to proving the existence of a fixed 

point of a suitably chosen map. In their paper, CKP utilized the Brouwer fixed point 

theorem. The Brouwer fixed point theorem requires the map to be non-expansive in 

order to have a fixed point. This puts a serious restrictions on the allowed numerical 

integration error 8.

In some application of chaos, for example in communications, encoding and stabi

lization of unstable periodic orbits (see Chapter 1), we have to perturb the trajectories 

by small amounts in order to make the trajectory follow a desired symbolic dynamics. 

These perturbations can be considered as external numerical error that happens at
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some points along the orbits. These types of external errors are generally much larger 

than 5 and the conditions of the shadowing theorem of CKP cannot be satisfied.

The method of containments introduced by Grebogi, Hammel, Yorke and Sauer, 

GHYS, [9] does not depend too much on the integration error 5. The idea of the 

containment method is as follows. Consider a sequence of parallelograms around 

each point on the 5-pseudo orbit. Each parallelogram is projected to the next paral

lelogram by the flow of the dynamical system and as long as the intersections of the 

parallelograms make a plus sign shape, a shadow of the J-pseudo orbit can be ob

tained via the backward flow. For this method to work the system needs to be pseudo 

hyperbolic. GHYS used this method to show the shadowability of two dimensional 

chaotic maps. Later, Hayes and Jackson generalized this to higher dimensional flows 

[7, 8],

In this chapter we present two new shadowing theorems for periodic and non

periodic shadowing of pseudo orbits of ordinary differential equations that reduces 

the restrictions on the error bound 8. Also, new notions of periodic and non-periodic 

shadowing of pseudo orbits of autonomous system of ordinary differential equations 

are defined. We begin this chapter by introducing the quantities and reviewing the 

background material required in our shadowing theorems.

4.2 Background Materials

In this section we provide the background materials and present the definitions 

and quantities required in our shadowing theorems. We will define the notion of
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pseudo-hyperbolicity and briefly discuss the containment method of GHYS. We will 

also discuss the fixed point method of CKP. Both methods have some advantages 

and disadvantages. For example, both methods do not require the system to be 

hyperbolic. Instead, they use the assumption of pseudo-hyperbolicity. One advantage 

of the containment method over the fixed point method is that, unlike the latter it 

does not put restrictive bounds on the computational error 8. On the other hand, with 

a a slight modification, the fixed point method can handle the periodic shadowing 

where as the containment method is limited to non-periodic shadowing [4].

In this chapter our intention is to prove general periodic and non-periodic shad

owing theorems that take advantage of both methods and improve the points of 

weakness. We also require the systems to be pseudo-hyperbolic. The numerical ver

ification of our methods is similar to that of the containment method where some 

interval arithmetic and Validate ODE integration is required [17].

4.2.1 Definitions

In this chapter all norms are assumed to be Euclidian norms unless otherwise 

stated. By a solution we mean a continuous exact or approximated solution curve, 

an orbit is a discrete set of points on a solution, and a trajectory refers to either an 

orbit or a solution depending on the context. For a given positive number 8, the 

notion of a 5-pseudo orbit is defined in order to provide a measure of closeness of 

a computer generated orbit to a true underlying orbit. More precisely, assume that 

/  : R" —► R™ is a C 1 vector field. Consider the autonomous differential equation

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x  = f (x) , (4.1)

with the associated flow q>t{x) =  Consider a sequence of points

on the solution x ( t)  =  ipt (x0) of system (4.1) with x i+1 = x (ti+1) =  q>ti{x i) for

% — 0,1, • • • , ./V — 1. Here a sequence of time steps. We can view the

solution x  (t ) as an iterative map defined by x i+\ =  <pt. (Xi).

In practice, when a close form solution is not available, a numerical method such 

as a Runge-Kutta method is used to approximate the solution x  (t ). In this way we 

obtain a sequence of points {yi}^=0 in M” with y, approximating x t and a sequence 

of positive numbers with hl approximating tt.

In order to have a measure the accuracy of a computer generated orbit, the notion 

of 5-pseudo orbit is defined to provide a measure of closeness of the computed orbit 

to the true orbit. More precisely,

Definition 8. For a given positive number 5, a sequence of points with

f(y i)  /  0 is said to be a S-pseudo orbit of (4-1) i f  there is an associated sequence

{ h i } ^ 1 of positive times such that

hi+ i -  VhtiVi)II < S  fo r  i =  0, • • • , iV — 1. (4.2)

Definition 9. For a given positive number 8, a sequence of points {yi}^=0 with

f(y i) ^  0 is said to be a 5-pseudo periodic orbit of (4-1) i f  there is an associated
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sequence {hi}^_0 of positive times such that

\\Vi+i -  <Phi(yi)\\ < 5 fo r  * =  0, - - ■ , N -  1, (4.3)

and

I l S t o - V ’f c j v W I I  (4 -4 )

It is well known that due to sensitive dependence on initial conditions in chaotic 

systems, the computer generated orbits may be faraway from the true underlying 

orbit that starts from the same initial condition. The notion of e-shadowing is defined 

in order to verify, whether there exist some other true orbit of the system possibly 

with a different initial condition that stays closed to the computer generated one. 

More precisely,

D efin ition  10. For a given positive number e, an orbit of (4-1) is said to e-shadow 

a 5-pseudo orbit {yi}f=0 with associated times {hj}f=̂  i f  there are points on

the true orbit and times { U } ^ 1 with <pti(%i) =  ^i+i such that

\ \ x i - y i \ \< £  fo r  i =  0,- • • , N, (4.5)

and

IU — hi\ < e fo r  i =  0, • • • , N  — 1. (4.6)

The constant e in the above definition is referred to as the shadowing distance. 

This definition of e-shadowing may be generalized by allowing the shadowing distance 

e to vary from point to point along the 5-pseudo orbit. More precisely,
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D efin ition  11. For a given sequence of positive numbers {e;}^0, an orbit of (4-1) 

is said to {s i}^ -sh a d o w  a 5-pseudo orbit {yi}^=0 with associated times */

there are points {#i}£L0 on the true orbit and times with Fu(x i) — x i+1 such

that

\x, — 2/i || < £ i  fo r  * =  0, - * - ,N , (4.7)

and

|ti -  h{\ < £i fo r  i =  0, • • • , N  -  1. (4.8)

Note that for

(4.9)
0<i<N

a {5j} ^ 0-shadow of the 5-pseudo orbit {yi}^=0 is also an e-shadow of the 5-pseudo 

orbit.

In a similar manner, we can define the notion of e-shadowing for the periodic 

case.

D efin ition  12. For a given positive numbers, an periodic orbit of (4-1) is said to 

e-shadow a 5-pseudo periodic orbit {yi\^=Q with associated times {hi}f_0 if there are 

points on the true 0Tt>it and times {ti}^=0 with <pti{x i) =  x%+1 , i =  0, ■■ ■ , N —l,
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and iptN(xN) =  x 0 such that

\ \ x i - y i \ \ < £  fo r  i =  0, ••• ,N , (4.10)

and

IU — hi\ < e fo r  i = 0, • • • ,N . (4-11)

Similar to the non-periodic case, this definition of e-shadowing may be generalized

as follows.

D efin ition  13. For a given sequence of positive numbers a periodic orbit

of (4-1) is said to {£i}^_0-shadow a 5-pseudo periodic orbit {yi}^=0 with associated 

times {hi}^=0 if  there are points {xi\^=Q on the true orbit and times { U } ^  with 

<fti{xi) — x i+1; i — 0, • • • , N  — and ptN(xn ) =  %o such that

\\x i - y i \ \ < £ i  fo r  t =  0, ••• ,N ,  (4.12)

and

\U — hi\ < £i fo r  i =  0, • • • , N  — 1. (4-13)

Again, for

e =  max£j, (4.14)
0 <i<N  V ’

a {£j}^0-shadow of the 5-pseudo periodic orbit {yi}^=0 is also an e-shadow of the 

5-pseudo periodic orbit.
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We now define hyperbolicity and pseudo-hyperbolicity of a dynamical system. A 

system of ODE’s is said to be hyperbolic if for any given solution y(t) of the system, 

a S perturbation of the solution at time t — to,z(to) — y (to) +  5 produces a new 

solution z(t) that either converges or diverges exponentially to y(t) depending on 

whether the perturbation 6 is on the stable or unstable manifold of the solution y(t) 

respectively. More precisely,

D efin ition  14. A set A is called hyperbolic for system ( f . l )  if

1. A is compact and ip-invariant.

2. There exist numbers C  >  0, Ao € (0,1), and continuous families of linear 

subspaces S  (p ) and U (p) of Rn for each p £ A such that,

(a) The families S  and U are Dip-invariant, i.e.,

D p t (p)U(p) = U(tpt (p)),

Dipt(p)S(p) =  S(cpt(p)),

for p £  A and for t  G M. Here D denotes the derivative with respect to the 

spatial variable.

(b) For p E A, we have,

S(p)®u(p) = R» i f  f ( P) =  0,

S(p) © U(p)® < f(p) > =  R" i f  f (p)  ±  0.
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Here < f ( p ) > denotes the one dimensional linear space spanned by f(p).

(c) The following inequalities hold,

\\Dipt (p)v\\ < CXq ||u|| for v G S(p) , t > 0, 

\\D(pt (p)v\\ < CAqMMI f or v € U(p) , t > 0.

See [23].

The constants C, Ao are called the hyperbolicity constants of A and the families 

S  and U are called the hyperbolic structure of A. The hyperbolicity forces the angle 

between the stable and the unstable manifolds to be bounded away from 0 [9].

We do not intend to use the assumption of hyperbolicity, but we require the 

system to exhibit pseudo-hyperbolicity. A system of ODE’s is pseudo hyperbolic if 

trajectories of the system tend to have solutions to the variational equation of the 

system which can be split into two classes, one of which tends to expand exponen

tially, while the other tends to contract exponentially, both simultaneously and for 

nontrivial lengths of time. In other words, the system behaves like a hyperbolic 

system for finite but nontrivial periods of time [8].

4.2.2 Fixed Point Theorem s

In this section we review some of the fixed point theorems that are used in CKP 

shadowing theorems as well as our shadowing results. Fixed point theorems play 

a fundamental role in existence and uniqueness theorems in ordinary differential 

equations.
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Suppose that (X, d) is a complete metric space and /  : X  —> X  is any function.

D efin ition  15. The function f  is said to satisfy a Lipschitz condition with constant 

K  if

d (f(x) ,  f (y))  < Kd(x,  y), (4.15)

holds for all x ,y  G X . I f  K  < 1, then f  is called a contraction mapping.

The following theorem is called The Principle of Contraction Mapping .

T h eo rem  16. I f  f  is a contraction mapping with constant K  on a complete metric 

space (X , d), then there exist a unique fixed point x 0 of f  and if  x  is any point in X  

and xn = f n(x) then

• d(xn, x 0) <

•  lim x n =  xo-
n —»o o

The following theorem is a modification of Newton Bisection method. See [3] for 

a proof.

T heorem  17. Let X  and Y  be finite-dimensional topological vector spaces of the 

same dimension. Let B  be an open subset of X  and let Q : B  —> Y  be a mapping of 

class C2 with the following properties

• The derivative DQ(vo), vo € B  has an inverse K,,
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The set B  contains the closed ball Ne(v0) centered at v0 with radius

£ =  2 | | / c i i i i a w i i , (4.16)

• The inequality

(4.17)

holds, where

M  — max || D 2Q(v
v € N £ ( v  o )

(4.18)

Then the equation

Q(v) = 0, (4.19)

has a unique solution in the ball N£(vo).

In our shadowing theorem we utilize a generalized version of the Schauder fixed 

point theorem obtained by Browder in 1967 [15].

T h eo rem  18. (B row der) Let X  be a locally convex topological linear space, C a 

compact convex subset of X  and f  : C —* X  be a continuous mapping. Suppose that 

for each u in the boundary of C there is an element v G C and a A > 0 (both v and 

A depending on u) such that

f  (u) = u +  \ { v  — u ) . (4.20)

Then f  has a fixed point in C .
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The same result holds if we replace A > 0 with A < 0. The equation (4.20) can 

be reformulated as

u — f  (u) e K + (u — C) for all u G dC. (4-21)

Here dC  denotes the boundary of the set C. For example consider a cube C  in R2 as 

shown in Figure (4-1). Let u be a point on the boundary of the cube C. For example 

if u is on the top edge of the cube, the condition

u -  /  (u) G R+ (u -  C ) ,

implies that u — f (u)  belongs to the top half plane in R2.

4.2.3 M ethod o f containm ent

In this section we give an informal description of containment method. Con

tainment was first introduced by Grebogi, Hammel, Yorke and Sauer, GHYS [9], 

for proving the existence of finite time shadows of two dimensional orbits. It was 

then generalized to higher dimensions by Hayes and Jackson [8, 7]. The containment 

method is a simple, elegant method for verification of the existence of true orbits of 

the system near computer generated orbits. It will provide a distance between the 

true orbit and the approximate one. We restrict our attention to two dimensional 

orbits for ease of presentation.
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u

(a) (b)

F igu re  4-1. Geometric interpretation of the Browder fixed point theorem. For 
example if the point u on the boundary of the box C  lives on the upper edge of the 
box as shown in part (a) of the figure, then the map u — f (u)  has to live in the upper 
half plane in M2, i.e., the dashed area shown if part (b) of the figure.
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Assume that /  : M3 —*• M3 is a C 1 vector field and consider the autonomous 

differential equation (4.1), with the associated flow p t{x) =  <p(t,x). This system is 

required to be pseudo-hyperbolic. Assume that {yi}^=0 is a J-pseudo orbit of this 

system with associated times { h i } ^ f .  Then the set of points {yi}f=0 is a pseudo- 

hyperbolic set for (4.1). This means that at each point y* we will have a contracting 

direction and an expanding direction. Perturbations to the point yi along the expand

ing direction will diverge from each other while perturbations along the contracting 

direction will converge to each other on average. The containment process consists of 

building a parallelogram Mj around each point yi with the following property. Each 

parallelogram has two sides C f  approximately normal to the contracting direction at 

y{. The sides C f  and C f  should be separated from each other. The other two sides 

E f  of the parallelogram Mi are approximately normal to the expanding direction 

and are also separated from each other. The maximum value of the diameters of the 

parallelograms Mi will be the shadowing distance s.

In order to prove the existence of a shadow, the image p (M f  of the parallelogram 

Mi under the flow <p must intersect Ml+1 such that their intersection makes a plus 

sign. In other words, the image of the contracting sides of Mt under p  should not 

intersect the contracting sides of M i+1 and the image of the expanding sides of Mi 

under p  should not intersect the expanding sides of Ml+\. Figure 4-2 illustrates this 

process. To ensure this property, GHYS require a bound on the second derivative 

of p. The amounts of the expansion and contraction also need to be bounded away 

from the range of the machine precision. Next consider a continuous curve q* in Mi
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<P(Y,

c;1

F ig u re  4-2. Containment Method

connecting the expanding sides E f  and E ~ . The image p  (7*) of 7j under ip is a curve 

lying in ip (Mi). In particular there is a section of <p (ji) lying in Mj+i connecting 

the expanding sides at two points. Let 7 be this part of <p ( j i ) .  Continuing in this 

way along the 5-pseudo orbit {?/i}^0, we obtain a sequence of curves {7i}^l0 with 7* 

lying wholly in Mi and connecting the expanding sides E f  for i =  0, • • • , N.  Choose 

a point x n  on 77V and trace it backward via p~ l . In this way we obtain an orbit 

{ ^ } ^ 0 of (4.1) with Xi G 7i C M* for i =  0, • • • , N . Thus {^i} ^ 0 an ^-shadow of

M i o -

We note that the angle between the stable and the unstable directions should be 

bounded away from 0. If the angle gets too small then the parallelogram Mj loses 

one dimension and image ip (Mi) of Mi under ip will fail to make a plus sign with 

Mj+1. This will happen when the angle becomes comparable with the error 8. Hence 

the more accurate the orbit, the longer it can be shadowed.
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4.2.4 A fixed point m ethod

In this section we review the shadowing theorems obtained by Coomes, Kogak 

and Palmer, CKP [3, 4], based on fixed point theory. The rough idea is to choose 

Poincare surfaces at each point yi on the 5-pseudo orbit {yi}*L0, normal to the vector 

field at that point and prove the existence of a true orbit of the dynamical system that 

passes through some local neighborhoods of the points y  ̂ on the Poincare surfaces. 

In their paper, CKP reduced this problem to proving the existence of a fixed point of 

a suitably chosen map Q. For a fixed point theorem, CKP utilized the Brouwer fixed 

point theorem. As our approach is very similar to this one, we will shortly discuss 

the methods here. We will first review the shadowing theorem for aperiodic orbits 

and then discuss the periodic shadowing theorem.

4.2.4.1 N on-periodic shadowing

In this section we discuss the non-periodic shadowing theorem obtained by CKP 

[3]. This result is one of the most impressive tools for verifying the shadowability of 

non-periodic ^-pseudo orbits.

Consider the autonomous system

x  = f (x) ,  (4.22)

Suppose that S is a positive number and {yi}^=0 is a 5-pseudo orbit of (4.22) with
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associated times Let

and let

hmax max h i ,
0 < i < N —l

/ im in  =  min hi .  
m ln 0 < i < N —l  1

If we choose a fixed time step, then all hj’s will be a same number h .  Consider the 

variational flow

*  = D f M i ) ) Y ' (4.23)
Y(0)  =  I,

where I  is the identity matrix. This system is the linearization of (4.22) around the 

solution ipt {y i ). Let

Yi = Dipt {yt), i =  0, • • • , N,  (4.24)

be the fundamental matrix of solutions of the variational system. Next consider 

a sequence of hyperplanes Hi passing through yi and orthogonal to f  {yi). The 

hyperplanes Hi can be thought of as Poincare surfaces. Assume that Si is an n x  (n—1) 

matrix whose columns form an orthogonal basis for the hyperplane Hi. In their 

paper, CKP chose initial coordinate systems on each hyperplane Hi and then used
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the Gram-Schmidt orthogonalization to obtain orthogonal bases for the hyperplanes. 

This method does not provide natural coordinate systems for the hyperplanes and 

ignores the rotations of the flow of the system. As mentioned earlier, the problem of 

establishing the existence of true orbits near (!)-pseudo orbits is reduced to establishing 

the existence of a fixed point of a suitably chosen map. This map, which will be 

defined shortly, is essentially a combination of forward and backward flows of the 

original system and the variational equation. Choosing the coordinate systems on 

the hyperplanes in a way consistent with these flows will prevent the rotations of the 

flows from causing the map to expand and hence increase the chances of obtaining 

a fixed point. In our theorems in sections 4.3.1 and 4.3.2 we will introduce a way to 

obtain coordinates consistent with the flow of the system.

The hyperplane Hi can be identified with R"_1 via the transformation x  i—> yi +  

Six. Define

A i = S([+1YiSi, ? =  0, • • • ,N  — 1. (4.25)

Here S^.1 is the transpose of the matrix 5i+i. Geometrically, Ai is Yi restricted to 

Hi and then projected to Hl+\.

The problem of finding a shadow of the 5-pseudo orbit {y2} ^ 0 can be formulated 

as follows. For a given positive number £, CKP look for a true orbit {rrj}£l0 of (4.22) 

with the associated times {U}1̂ 1 such that,

1. Xi G Hi for i =  0, • • • , N,
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F ig u re  4-3. Pseudo orbit y^ and shadowing orbit Xk-

2. <pu (xi) = x i+1 for i = 0,- ■ ■ ,N  -  1,

3. ||Xi -  yi\\ < £ for i =  0, • • • , N,

4. |hi — U\ < e for * =  0, ■ • • , AT — 1.

The points x j can be represented by

Xi — y{ + SiWi, (4.26)

for some Wi in M"-1 . Let X =  R N x (W l~1)N+1 with norm

(M ilo1> WjLo) | = max {o<™_! lSil ’0™<n M  } ’ (42?)

and let Y =  (WLn)N with norm

N - 1{Pi}-Lo =  max Hod 
0 < i < N - l  11 1

(4.28)
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Let U be an open convex set containing the set

U tp([0,hmax],yi). (4.29)i=0

For this set U, define

M0 =  sup | | / (x ) | | , Mi =  sup \\D f (x ) ||, M ‘2 = su.p\\D f ( x ) \ \ ,
x € U  x € U  x € U

and choose a positive number £0 in the interval (0, hmin) with the following property:

€ U for t G [0,o:], (4.30)

provided that ||rc — yk\\ <  £o- Here a = hmax +  e0.

Let B  be an open set in X with radius e0 and assume that v = 

is a point in B. Define the function Q : B  —* Y by

(Q (v))i = Vi+i + Si+1wi+1 -  ipSi {yi +  SiWi) for i =  0, ••• , N -  1. (4.31)

Now let

L =  I  — A n  • • • A0. (4.32)
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Figure 4-4. The convex set U containing the 5— pseudo orbit {2/Ar}fcLo •

CKP, require this map to be invertible. Since the Brouwer fixed point theorem 

requires the map to be non-expansive, they have utilized the inverse of the map L  to 

obtain a Newton bisection method which in turn is used to prove the existence of a 

zero of the map Q. Obviously the problem will be solved if we find a zero of the map 

Q. For this to happen, a few inequalities on the error 5 are required.

Theorem  19. Let {yi}^=0 be a 5-pseudo orbit of the autonomous system x  = f  (x)

and let

C  =  max (4.33)

I f  S satisfies the inequalities

2. 4SC < min < min hi, £0
0 < i < J V - l

3. 8 (M0Mi +  2M \e2Mlh +  2M2eAMlh) C25 < 1.
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then the 8-pseudo orbit {yi}^=0 is e-shadowed by a true orbit {a?i}i=0 with £ < ACS.

The third condition of the above theorem shows that 6 has to be very small in 

order to control the exponential parts of the condition. In practice these conditions 

are difficult to meet. In particular, in situations such as chaotic communications, 

encoding using chaos or stabilization of unstable periodic orbits, the error bound S 

becomes much bigger than the acceptable error bound of the theorem, (see chapter 

1) This dependency on the error bound S makes the theorem impractical in such 

situations.

In the next section we discuss the periodic shadowing theorem obtained by CKP 

[4], which is also one of the most impressive results in shadowing theory.

4.2.4.2 Periodic shadowing

In this section we review a method for periodic shadowing obtained by CKP

[4]. This method allows for proving the existence of a true periodic orbit near an 

approximated one. The method also provides the shadowing distance in terms of 

computable quantities.

Assume that {yi}?=0, is a 5-pseudo periodic orbit of (4.22). Let {Ti}^0 be a se

quence o f n x n  matrices that approximate the fundamental matrices of solutions of 

the variational equation,

*  =  D f M Y ' (4.34)
y  (o) = i .
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In other words, assume that

\Yi -  D<pu (Vi) | < 0 for 0 < i < N. (4.35)

Assume tha t Hi, Si, Ai, hmin, hmax and U are defined as in section (4.3.1). Define

M0 =  sup | | / (x) | | , Mi =  sup ||D f (x) | | , M2 =  sup \\D f  ( x ) ||, (4.36)
x£U x£U x&U

(4.37)

Finally let €q (0,/imin) be such that if ||rr — yi || <  £o5 then the solution is

defined for t G [0, x] and

(pt(x) e U  for t e  [0,x], (4.38)

where

X h-max 4” £o- (4.39)

Theorem  20. Assum e that {yi}^=Q is a S-pseudo periodic orbit fo r  the system  (4-22) 

such that the m atrix

L = I - A N  ' • Aq,
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is invertible. Let

C\ — max ( ||Aj_i • • • A q|| \\L *|| (1  +  Y  \\An • • • Anil') +  Y  II A - i  * • • A
0<i<N  \  \  m=1 J m=i

C  =  max ( ^ -(1̂ l)+i , Ciyf l  + d[) , 

dfc = C (d  (Mi  +  ^ /T+df )  +  3dli^.1ĉ ^L+ a-2))  >

M  = M qM i +  2Mi exp M ix V l  +  di + M2 exp 2 M \\  (1 +  A ) •

Assume that for the introduced quantities the following inequalities hold.

1. (1 +  A 2) di <  1,

2. df( < 1 ;

(4.41)

3. 2 Cd ( l  — Ac) 1 \ / 1 +  A < £0,

4 . 2 M C 2d( l  -  dK )~2 <  1.

Then there exist a poin t xq and numbers ti, i  =  0, • • • , N , such that the trajectory of 

Xq is closed and

IIt i - h i W,  \\xi -  Vi\\ <  L0d fo r i =  0, • • • , N, (4.42)
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where x i+i = ipti{x i), and

or*
Lo =  ■:---- — \ / l  +  d\. (4-43)

I — ax

Similar to the CK P’s non-periodic shadowing theorem, the error 5 has to control 

the exponential part of the constant M . Again, this makes the theorem impractical 

in situations where chaos is controlled via small perturbations.

In the next section we introduce new shadowing theorems. The idea is to com

bine both the containment method and the fixed point method, in conjugation with 

Browder fixed point theorem, in order to obtain a theorem that can be applied in 

broader situations.

4.3 Finite time shadowing theorem

We devote this section to new theorems of non-periodic and periodic shadowing. 

This method provides a possible technique to establish the existence of real trajec

tories near approximate ones and gives error bounds for the distance between the 

true and the approximate trajectories in terms of computable quantities associated 

with the variational flow along the approximated trajectory. We first start with the 

non-periodic case.
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4.3.1 N on-periodic shadowing theorem

We now present our finite time shadowing theorem. All the index computations 

are done in the additive group Z/y+i, i.e., all index operations are done mod N  +  1.

As mentioned earlier, our motivation is to provide a general purpose shadowing 

theorem that can be applied in broader situations. The idea of the theorem is similar 

to the shadowing theorem of CKP discussed in section 4.2.4.1. We will define a map 

that takes an interval around the points on the 5-pseudo orbit on each of the Poincare 

hyperplanes and projects the interval back to itself passing through all the other 

hyperplanes. The rotations of the flow of the dynamical system are implemented 

in the definitions of the map. The coordinates are chosen very carefully and are 

implicitly used in the map. Similar to the CKP method, the existence of a true orbit 

of the system that will shadow the computer generated 5-pseudo orbit, depends on 

the existence of a fixed point of our map. For a fixed point theorem, we have chosen 

a more natural fixed point theorem, i.e., the Browder fixed point theorem 18 that 

fits naturally with the set up of the problem.

Suppose that 8 is a positive number and {yi}^.0 is a 5-pseudo orbit of (4.22) with 

associated times Consider the variational flow

Y  = D f ( M l n ) ) Y . ,
(4.44)

y  (o) =  i ,

where I  is the identity matrix. Recall that this system is the linearization of (4.22)
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around the solution y>t (yi). Let

Yi = D<pt (yi) ,  i = 0 , - - - , N ,  (4.45)

be the fundamental matrices of solutions of the above variational systems.

Similar to the shadowing theorems of CKP, we consider a sequence of hyperplanes 

H i  passing through y x and orthogonal to /  ( y i )  as Poincare surfaces and assume that 

Si is an n  x (n — 1) matrix whose columns form an orthogonal basis for the hyperplane 

Hi. We choose the matrices Si in a way consistent with the flow of the system. The 

Singular Value Decomposition, SVD, provides one way of obtaining appropriate basis 

matrices 5 j’s. First choose a coordinate system with origin at y{ and the n — th  axis in 

the f(yi)  direction. Assume that T is the projection of the representation of Yi in the 

new coordinates into the hyperplane H Performing a singular value decomposition 

on the matrix T, we obtain two orthogonal matrices U and V  and a diagonal matrix 

W  such that

T =  U W V T. (4.46)

The Null space of the matrix V  is spanned by the unit vector along the f(yi) 

direction. The columns of V  whose same numbered diagonal elements of the matrix 

W  axe nonzero, are an orthonormal basis for the Poincare surface H Choose Si to be 

the n x (n — 1) matrix whose columns are this ortho normal basis for the hyperplane
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f(y.)

F ig u re  4-5. Pseudo orbit y*. and shadowing orbit x^.

Hi. Recall that the hyperplane Hi can be identified with Mn_1 via the transformation 

% yi +  SiX. For the ease of notation, we denote yi +  Six  by x. Define the matrices 

Ai ,  % =  0, • • • , N ,  to be

Ai = Sf+1YiSi. (4.47)

Here is the transpose of the matrix *Si+i. Recall that the matrices Ai can be 

geometrically interpreted as a map that restricts Yi to Hi and then projects it to 

Hi+1. We require the matrices Ai to be invertible.

problem of finding a shadow of the 4-pseudo orbit {yi}^=0 can be formulated as 

follows. For a given sequence {£i}^l0 of positive numbers, we are looking for a true 

orbit {^ i}^0 (4.22) with the associated times such that,

1. Xi G Hi  for i — 0, • • • , N ,
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2. ipti (xi) =  x i+1 for i =  0, • • • , N  -  1,

3. ||a?i -  yi\\ < Si for i =  0, • • • , N.

4. |hi — < £i for i — 0, • • • , N  — 1.

The point Xi can be represented by

Xi =  Wi =  yi +  SiWh

for some Wi in Rra 1. Let X =  (R71 1)JV+1 with the norm

r(wi}i=0 =  m ax wd , 
0 < i < N

(4.48)

Define the map Q : X —»■ X to be Q =  (go, • • • , 9 n ) with

9i (wq, • • • , w n ) = W i -  S f  [ ip ^  (Wi-1) -  , (4.49)

for i =  0, • • • ,N  — 1 and

9 n (w  o, ••• , w N ) =  w N . (4.50)

Here U is the time required for the point Wi on the hyperplane Hi to go to the next 

hyperplane Hi+1 via ip. The time U — (Wi) depends on the point Wi, but for the

ease of notation we do not explicitly write this dependency.
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Geometrically we can think of the map S j  (wi-1) — yi\ as a map which

projects the image of the hyperplane i?j_i under the flow p  to the hyperplane 

The derivative of the map Q at point 0 is given by

DQ (0)

- A 0 I  0 • • • 0 0

0 - A i  I  • • • 0 0

(4.51)

0 0 0 • • • —a n — i I

0 0 0 ••• 0 I

Note that DQ (0) is an invertible matrix. We can easily show that the inverse

operator DQ (0)-1 is given by

Zi = (DQiOy ' i vo , - - -  , vN)).

=  A i X (A "+l (• • • A Nl- 2  ( A N - 1  (VN  -  VN - 1 ) -  VN - 2) • • • « i + l )  -  Vi)  ,

for % =  0, • • • , N  — 1 and

Zn  — {DQ (0) (v0, - • ■ ,vN)) N = vN.

Here (v0, • ■ ■ , v ^ )  and (^0, • • • , Zn ) are two points in X and DQ (0) 1 (uo, • • • , v m ) =  

(Zo,  • • • , Z n )-

Given a sequence {£i}£L0 of positive numbers, let e  =  max e* and let C  (£j) de-0<i<N

note the cube centered at the origin in M”-1 and side lengths equal to £{. Define the
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compact convex set B to be

N

B = I F ( * ) .  (4-52)
i=0

Here denotes the Cartesian product. We restrict the map Q to the compact convex 

set B.

Now define the map T  : B —» X to be

T { w )  =  D Q  { o y 1 g  { w ) , (4.53)

and define the map H  : B —> X to be

H  (w ) =  w  — T  (w ) ,  (4.54)

for w =  (wo, • • • , wm) in B. We note that the problem of finding a shadow of the 

5-pseudo orbit {yi}(l0 is solved if we can show the existence of a fixed point of the 

map Tt. In order to obtain a set of conditions under which the map H  has a fixed 

point, we apply the Browder fixed point theorem (18) to this map along with the

compact convex set B. Assume that u =  (uq, • • • , u n) € <9B. Let C : X —> R”-1 be

Ci(w) =  W i -  A ^ S j^  -  y i+ 1) , (4.55)
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for i =  0, • • • , N.  Here w = (w0, • • • , w^)  is a point in X. We can easily verify that 

if £ =  (£o, • • • , &v) = F( u ) ,  then H  (u ) =  («o -  £0, • • • , uN -  £N) with

U i - i i  =  Ci(M) +  A“1Ci+i(«) +  --- +  A "1A“f11- - - ^ 1_2C^-i(M), (4.56)

for i =  0, • • • , N  — 1 and

un — £n  =  0. (4-57)

The boundary of the set C(£i), i.e., dC(£i) consists of 2(n — 1) faces in Rn_1. In 

particular we may consider the set C(£i) as the Cartesian product of its faces. If we 

denote the k — th  face by F f, then,

2 (n —1)

c ^ i )  =  n
k=0

We now check the conditions of the Browder fixed point theorem for our map 7i

on c®. Consider the space M"-1 with the infinity norm H'H^. For each 0 < j  < N,

define the set ®j to be

Bj =  C (eo) x • • • x C (£j-1) x dC (£j) x  C  (£j+i) x • • • x C (e n ) (4.58)

and define the mapping Fj  : —> M"_1 by

T i  =  , (4.59)
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where (.FIb -̂) • denotes the j  — th component of the map T  restricted to By. For an 

arbitrary point u =  (wo, • • • , u^)  G <9B, there exists at least one 0 < j  < N,  such 

that u G Bj, i.e., Uk G dC(£j).  In particular if Uj =  («), • • • , u"_1), we get that uk- is 

either Ej or —Ej for some 1 < k < n — 1. In order for (4.21) to be satisfied, we need 

to have that {T{u))k- > 0 or [T  (u))k < 0 depending on uk — Ej or uk =  —Ej. This 

needs to be true for all 0 < j  < N  and for all 1 <  k < n — 1 which in turn implies 

that the image F k of the k —th  face of the cube C(£j) under the map Fk,  i.e., Fk{Fj),  

has to live in the same half-space as F k. In order to verify this condition we need to 

use interval arithmetic and a validate numerical ODE solver. The computations are 

quite similar to the containment method.

In order to obtain a shadowing distance s, we need to estimate the times that 

it takes to go from the neighborhood C (yi,£i) on the hyperplane Hi to the next 

hyperplane Hi+i under the flow tp. The hyperplane Hi can be described as

H i  =  { x  G X  ; Gk(x) =  0} , (4.60)

where Gk ■ R" —> M is a linear functional defined by

Gk(x) = {x\ f  (yk) ) . (4.61)
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Let (xi, ■ ■ ■ , x n) E Mn and let xnJti =  Gk(x). Define a function /  : R" —> by

f  =  (/> f n+i ) ,  where /  is the vector field of the system (4.22) and

f n + 1 (a?i, ■■■ , x n) = Gk(x) =  ( f  (x) | /  (yk) ) . (4.62)

We now introduce the new system of differential equations

x — f  (x ) .  (4.63)

Interchanging the role of the independent variable t with the new variable xn+i, we

obtain the following new system

dx i ____  f i
dxn+l fn+1 ’

(4.64)
dxn __  fn

dx„,+1 fn+1 ’

dt _  1
dxn+l fn+1 ’

Let v =  (v\, ■ ■ • , vn+x) =  (xi, • • • , x n,t) and let g : M"+1 M"+1 be the function

Then the system (4.64) can then be written as
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V =  g {v) (4.66)

which is equivalent to (4.63). Denote the flow of this system by i)Xn+1{v). We are 

interested in the behavior of this flow between the hyperplanes Hi and Hi+1. Note 

that in this new system the hyperplane Hi+1 is defined by vn+1 =  0. Let U be an

N
open convex set containing the set U y?([0, fomax] ,?/»). Choose a positive number £*

i= 0

in the interval (0, hmin) with the property that <̂t(x) G U for t G [0, a], provided that 

11̂  ~ Vk|| <  £*• Here a  =  /zmax +  £*. Then define a convex open set U with

U =  {(^M) ; x  G U and t G [0, /imax +  £*]} , (4-67)

and let

M  = su.p\\Dip(v)\\. (4.68)
v£U

If we denote the coordinates of the points t/j and yi +  SiWi on the hyperplane Hi by 

(Vi i ' '  ‘ iV?) an(i  ( z j , • ■ ■ , z") respectively, then their corresponding representation in 

the new system are a  = (yj, ■ • • , y", 0) and (3 =  (zj, ■ ■ ■ , z", 0) respectively. Also

IU -  K \  <  ||Vb (a )  -  -00 (/?)lloo <  ll-D^oll \\<X ~  PW^ <  M e ^  (4.69)

Define

e = max < max Me*, e >. (4.70)
[ 0 < i < N  J  v ’
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This e is the shadowing distance. So we have proved the following theorem.

T h eo rem  21. Assume that 5 is a positive number and f  : M" —> E ” is a C 2 vector 

field such that the dynamical system

x = f (x) ,

is pseudo-hyperbolic. Let {yk)k=o be a 5-pseudo orbit of this system with associated 

times {hk}^~Q . For a given sequence {Sj}^_0 of positive numbers, let C (efi denote 

the cube in Mn_1 centered at the origin with side lengths £j. Let

Bj =  C  (£0) x • • • x C  x dC (£j) x C (sj+i) x • • • x C (sN) .

Define Q =  (g0, ■ ■ • , gN) with g{ (w0, ■■■ , wN) = wt -  S j  ( w ^ )  -  yt] , for i =  

0, • • • , N  — 1 and gm (w0, ■ ■ ■ , wn ) = wn . Let T  (w ) =  DQ (0)_1 Q (w ). Assume that 

u =  (w0, • • • ,% )  G Bj for some 0 < j  < N . Then for the mapping !Fj =  If

{J-{u))kj >  0 or ( T  (u))k < 0 depending on Uj = £j or u* = —£j, for all 0 < j  < N  

and for all 1 <  k < n  — I, the 5-pseudo orbit can be {£j}^=0-shadowed by a true orbit 

of the system.

4.3.2 P erio d ic  shadow ing  th eo rem

In this section we present our finite time periodic shadowing theorem. The the

orem provides the shadowing distance in terms of computable quantities from the
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vector field and the variational flow of the system.It is generally very difficult to 

prove the existence of a certain periodic orbit in a chaotic system and stabilization 

and computational techniques are normally used to obtain periodic orbits. Shadow

ing techniques are among the most useful and practical tools in proving the existence 

of periodic orbits. Many of the quantities and constants are similar to the pervious 

section. Recall that all the index computations are done mod N  + 1.

The periodic shadowing is a simple modification of the non-periodic case. The 

map Q has to be redefined in order to obtain a closed orbit. Some of the assumptions 

need to be modified and the conditions of the periodic shadowing theorem are slightly 

different from the non-periodic case. All other quantities are almost identical to the 

non-periodic case. In particular the numerical computations are done using the same 

ideas as in the non-periodic case.

Recall that all norms are assumed to be Euclidian norms unless otherwise stated. 

Assume that /  : M” —> Mn is a C 1 vector field. Consider the autonomous differential 

equation

x  = f (x )  (4.71)

with the associated flow ipt = </>(£, •). By a periodic orbit we mean a solution 

x(t) =  ipt (xo), for some x0 G Mn such that there exists a positive number T  with
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x(t) = x(t  4- T),  for t £  M. (4.72)

Suppose that 5 is a positive number and {yi}^-0 is a ^-pseudo periodic orbit of 

(4.71) with associated times {/i*} 1 • Assume that Hi, Si, Yi and Ai are defined as 

in the pervious section. Assume that a given sequence of positive numbers

and let X =  with the norm

=  max 
o <i<N

(4.73)

Define the map Q : X —> X to be Q — (go, • • • , 9 n ) with

gi  ( w q ,  ■ ■ ■ , w N) =  Wi+i -  S>[+1 Ypu (Wi) -  Vi+ i ]  , (4.74)

for i = 0, • • • , N  — 1 and

9 n  ( w 0 , ■■■ , w N ) =  w 0 -  S q  \iptN ( w N ) -  y 0] . (4.75)

Here U is the time required for the point Wi on the hyperplane Hi to go to the next 

hyperplane Hi+i via ip. The time =  tj (ibi) depends on the point Wi, but for the 

ease of notation we do not explicitly write this dependency.

Geometrically we can think of the map S j  \pti-x (w;_i) — y*] as a map which 

projects the image of the hyperplane under the flow <p to the hyperplane Hi.
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The derivative of the map Q at point 0 is given by

DG (0) =

-Ao I

0 - i4 i

0 0

/  0

Define the linear operators {L i}q by

0

I

0

0

0

0

-An - i

0

0

0

I

-An

(4.76)

Li = I  -  A i-iA i - 2  ■ • ■ A i-N -i, for * =  0,1, • • • ,N ,  (4.77)

where all the index computation are done in the additive group Zjv+i , he., mod

N  +  1. Note that the matrix DQ (0) is invertible if and only if one of the operators 

Li: i = 0,1, • • • ,N ,  is invertible. In this case the inverse operator DQ (0)-1 is given by

& =  (D £ (0 ) -> o ,- - -  , vN))i 

= L71ST[Yi- 1Yi- 2 ---Y i- N (Wi-N -

+  Y i - i Y i - 2  • • • Y i - N + l  ( W i - N + l  -  (pt i_ N ( W i - N ) )  H--------

+  f o i  -  ^ i i - i K - i ) ) ] ,

for i = 0, ••• ,N .  Here (no,-- - , vn ) and (^0, • • • ,Zn ) are two points in X and

DQ (0)-1 [v0, • • • , vn ) =  (£o, • • • , Z,n )-
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Let i  = max ^  and let C (sA denote the cube centered at the origin in R” 1 with
o<i<N  ' '

side lengths equal to Define the compact convex set B to be

N

B = J ] C  (*■<). (4.78)
i=0

Here denotes the Cartesian product. We restrict the map Q to the compact convex 

set B.

Now define the map T  : B —»■ X to be

T { w )  = DQ{$)~xQ{w),  (4.79)

and define the map Tt : B —► X to be

7i  (w) = w — T  (w ) , (4.80)

for w =  (wq, • • ■ ,Wn ) in B. We note that the problem of finding a shadow of the

5-pseudo orbit { y i } ^ =0 is solved if we can show the existence of a fixed point of the

map H.

We now apply the Browder fixed point theorem 18 to the map H  along with the

compact convex set B. Assume that u =  (u0, ■ ■ ■ , u^ )  G <9B. Let Q : X —»■ Rn_1 be
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C.('j') =  V 1 , - A i ‘.S'''' , {tph (Wi) -  yi+I) , (4 .81)

for i — 0, • • • , N.  Here w = (wq, • • ■ , ru/y) is a point in X. We can easily verify that 

if £ =  (Co, • • • , 6v) =  T  (u), then H  (u) = (u0 -  £0, • • • , uN -  £N) with

=  Q{u) + A~1Ci+i(u) + --- + A - 1A ^ 1-- -A ^ 1_2CN_1(u), (4.82)

for i =  0, • • • , N .

The boundary of the set C(£i), i.e., dC(£i) consists of 2(n — 1) faces in Rra_1. In 

particular we may consider the set C(£i) as the Cartesian product of its faces. If we 

denote the k — th  face by F*, then,

2(ra—1)

C(e,) = n  F "’ <4-83)
k = 0

We now check the conditions of the Browder fixed point theorem for our map H  

on <9B. Consider the space Mn_1 with the infinity norm || • H^. For each 0 < j  <  N, 

define the set Bj to be

Bj  =  C (eo) x  ■■■ x  C ( e j - i )  x  dC  (£ j ) x  C  (£j+i) x  ■ ■ ■ x  C (en) (4.84)

and define the mapping Tj  : Bj IR.” 1 by

T i =  ( ^ | » , ) j , (4 .85)
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where (jF|B_.)̂ . denotes the j  — th component of the map T  restricted to ®j. For an 

arbitrary point u = (wo, ■ • • , un)  G <9B, there exists at least one 0 < j  < N,  such 

that u G Bj, i.e., uk G dC(£j).  In particular if Uj =  (uj, • • • , we get that uk- is

either £j or —£j for some 1 < k < n — 1. In order for (4.21) to be satisfied, we need to 

have that {T{u))k- > 0 or {T  (u))k < 0 depending on u k = £j or u k =  —£j. This needs 

to be true for all 0 <  j  < N  and for all 1 < k < n — 1, which in turn implies that 

the image F k of the k — th face of the cube C(£j) under the map i.e., Fk{Fk), 

has to live in the same half-space as F k. In order to verify this condition we need to 

use interval arithmetic and a validate numerical ODE solver. The computations are 

quite similar to the containment method.

Similar to the pervious section, we estimate the times tha t it takes to go from the 

neighborhood C  (Vi,£i) on the hyperplane Hi to the next hyperplane ifj+i under the 

flow (p. This will provide a way to estimate a lower bound for £j’s.

Let ipXn+1(v ) denote the flow of 4.63. Let U be an open convex set containing
N

the set U  </?([0, /imax] , Vi)-  Choose a positive number £* in the interval (0, hmin) withi=0

the property that ipt(:r) G U for t E [0,ct], provided that ||rc — 2/fcll <  £*• Here 

a  =  hmax +  £*■ Then define a convex open set U with

U — {(x, t) ; x  G U and t G [0, /imax +  £*]}, (4.86)

and let
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M  =  sup ||.D^(u)||
v£U

(4.87)

If we denote the coordinates of the points yi and yi +  SiWi on the hyperplane Hi by 

(vh  ’ ’ ' , Vi) and (zj, ■ ■ ■ , zf)  respectively, then their corresponding representation in 

the new system are a  = (yj, • • • , y", 0) and (3 =  (zj, ■ ■ ■ ,z™, 0) respectively. Also

\U - h k | <  HVto (<*) ~  V'o (^Hoo < l l^ o ll  ||ot -  ^Hoo < Mei. (4.88)

Define

s — max < max Me;, e \ . (4.89)
(0<i<iV J V ’

This e is the shadowing distance. So we have proved the following theorem.

T h eo rem  22. Assume that 6 is a positive number and f  : R" —*• R" is a C2 vector

field such that the dynamical system

x = f (x) ,

is pseudo-hyperbolic. Let {yh}k=o ^e a ^-pseudo periodic orbit of this system with 

associated times {hk}k=0- For a given sequence {£j}^=0 of positive numbers, let C (efi 

denote the cube in M"_1 centered at the origin with side lengths £j. Let

B j =  C  (e0) x  • • • x  C (E j - 1) x  dC (ej )  x  C  (e^+ i) x  • • • x  C  (£n) •
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Define Q =  (g0, • • • , gN) with (w0, • • • , wN) = w{ -  S f  -  yi\ , for % =

0, • • • , iV. Let T ( w )  = DQ (0)-1 Q (w ). Assume u — (u0, ■ ■ ■ , uN) G Bj for some

0 < j < N .  Then for the mapping T j  =  if  (F{ u))kj >  0 or {T  (u))k- < 0

depending on u\■ =  £j  or uk- =  —£j,  for all 0 <  j  <  N  and for all I <  k  <  n — I,  the 

5-pseudo orbit can be {£j}^=0-shadowed by a true orbit of the system.
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CHAPTER 5

CONCLUSION

We believe that cupolets have the potential to provide a framework for developing 

new techniques in signal processing that bridge the gap between Fourier analysis and 

wavelet analysis. The rich structure of cupolets allows for processing global as well as 

the local behavior of discrete signals. The potential exists for a beneficial interchange 

between chaotic systems and the processing of discrete signals.

The key point is that the vast dynamical behaviors produced by cupolets, are 

easily accessible via small controls and can be generated with very few bits of infor

mation. We believe that the investigation of properties of cupolets can potentially 

lead to the creation of new techniques that will impact on next generation technolo

gies, while also enabling us to gain a better understanding of the nature of chaotic 

systems.

We presented several different approaches for the use of cupolets in image com

pression. We intend to pursue these different techniques further, until it becomes 

clear which method will produce the most efficient compression. In the next stage 

of the research, it is important to examine other constructions of adaptive bases for 

the space of periodic discrete functions using cupolets. One such construction is a
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two dimensional cupolet transform. Further research will investigate these issues as 

well as looking at the evolution of the cupolet transform coefficients over a sequence 

of frames from video data.

On the more theoretical side, our investigations of shadowability of cupolets by 

true unstable periodic orbits establishes a relationship between cupolets and shadow

ing. This work will allow formal verification that numerically computed orbits and 

cupolets are uniformly accurate approximations of true solutions. Further, since the 

unstable periodic orbits that are associated with cupolets are generally dense on an 

attractor, an analysis of a set of cupolets can be used to characterize the framework 

of the attractor. This will result in a deeper understanding of the structure of attrac

tors, while also providing a practical means to generate shadows of unstable periodic 

orbits.

In summary, the study of periodic orbits of chaotic systems appears to be ex

tremely promising from both theoretical and applied perspectives. It will be inter

esting to see if technological developments benefit more from using chaos to produce 

periodicity than from the typical aperiodic dynamics.
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