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ABSTRACT 

CELLULAR UPTAKE AND ACTIONS OF BILBERRY 

ANTHOCYANINS IN RETINAL PIGMENT EPITHELIAL CELLS

by

Paul Everett Milbury, Jr., M.S., CFII 

University of New Hampshire, September, 2006 

Inflammation and oxidative stress play a significant role in the pathogenesis of 

age-related macular degeneration (AMD). In AMD, retinal pigment epithelium (RPE) 

cells are damaged by oxidative stress and die via the process o f apoptosis. Anthocyanins 

from fruits and berries, such as bilberry (Vaccinium myrtillus), possess significant 

antioxidant activity in vitro and have been used in “traditional medicine” to treat AMD.

It is not clear whether intracellular concentrations of anthocyanins are sufficient to 

quench radical species and mitigate oxidative stress in vivo. In this research project, 

human RPE cells in vitro were used to establish an oxidative stress model in which the 

effects of anthocyanin and phenolics from a bilberry extract could be tested for their 

antioxidant potential and ability to inhibit hydrogen peroxide-induced apoptosis. High- 

pressure liquid chromatography with ultraviolet, electrochemical, and mass spectroscopic 

detection was used to characterize the bilberry extract and to measure uptake, transport, 

and metabolism in RPE cells. Results suggest that RPE cells internalize and metabolize 

anthocyanins. Although ineffective in preventing apoptosis, bilberry extract inhibited 

intracellular radical generation by as much as 60%. Western blot analysis revealed that

xi
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physiological concentrations of bilberry anthocyanins up-regulate the oxidative stress 

protective enzymes heme oxygenase-1 (HO-1) and glutathione S-transferase (GSTP1) 

proteins in RPE cells by 1.5- to 2-fold over untreated cells in 6 hours and, at 

pharmacologic doses, up-regulate HO-1 as much as 10-fold over a 24-hour period. 

Bilberry anthocyanins and phenolics were shown to induced increases in HO-1 and 

GSTP1 messenger RNA. The observed increases were similar to that observed for 

protein. Bilberry anthocyanin induction of phase II detoxifying and oxidative stress 

protective enzymes suggest more significant protective effects than direct radical 

quenching suggesting these phytochemicals may thus enhance glutathione levels or 

altered cellular redox states.
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INTRODUCTION

By age 65, approximately one in three elderly persons experiences vision loss due 

to an age-related eye disease (Ganley and Roberts, 1983). The four most common causes 

of vision impairment in the elderly include cataracts, age-related macular degeneration 

(AMD), glaucoma, and diabetic retinopathy (Hyman, 1987; Klaver et al., 1998). While 

cataract is the most common cause of vision impairment and blindness in the elderly 

worldwide, AMD is the leading cause of irreversible vision loss in the United States 

(US).

The inability to defend against oxidative damage is a leading hypothesis as to the 

possible cause of aging and systemic diseases of aging, including cataract and AMD. 

Determining whether dietary antioxidants can prevent initiation, progression, or 

ameliorate the effects of age-related diseases has been an area of extensive research in the 

last decade. While many epidemiologic, intervention, and mechanistic studies have 

investigated the effects of antioxidants in eye-related disorders, relatively little attention 

has been paid to anthocyanins. Anthocyanins are defined as a class of phytochemicals 

ubiquitous in dietary fruits (especially berries) and vegetables. Bilberry, a member of the 

Vaccinium genus, is rich in anthocyanin and has a long history in traditional folk 

medicine for the treatment of eye disorders. Reports from Europe suggest improved 

night vision after use of bilberry supplements (Canter & Ernst, 2004). However, recent 

eye and nutritional research efforts have overlooked bilberry and other anthocyanins due

1
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to low anthocyanin bioavailability as well as null results from a high-profile study on the 

visual effects of bilberry conducted by the US Air Force (Muth et al., 2000).

Despite conflicting data from human trials, evidence of the potential health- 

promoting bioactivity of bilberry continues to mount from animal and in vitro 

mechanistic studies. Mechanistic evidence from in vitro studies suggests anthocyanins 

may protect against age-related disorders including ischemic heart disease, diabetes, 

inflammation, allergy, angiogenesis, and cancer (Ghosh, 2005). However, the 

mechanisms by which bilberry may exert protective effects against AMD remain 

unknown. This research project outlines three hypotheses, both a priori and derived:

1) Bilberry anthocyanins can be taken up and transported by retinal pigment

epithelium (RPE) cells;

2) Bilberry anthocyanins protect RPE cells from oxidative stress-induced

apoptotic cell death;

3) Bilberry anthocyanins induce up-regulation of oxidative stress-protective

enzymes, such as heme oxygenase-1 (HO-1) and glutathione S-transferase 

(GSTP1).

To test these hypotheses, an in vitro RPE model was established to study the 

relationship between dose and time for uptake, transport, and possible metabolism of 

bilberry anthocyanins. For hypothesis 1, “Transwell” cultures of RPE cells that exhibited 

complete confluent monolayers with tight junctions were used to determine electrical 

resistance and for cellular staining and western blot analysis of tight junction proteins

2
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(e.g., zonula occludens-1 (ZO-1)). Transwell cultures not only permitted testing of 

electrical resistance across an RPE monolayer but also permitted sampling both above 

and below the monolayer for anthocyanins in media. Chromatographic methodology — 

high pressure liquid chromatography with electrochemical detection (HPLC/ECD) and 

high pressure liquid chromatography with tandem mass spectroscopic detection 

(HPLC/MS/MS) — was developed for application in the task of measuring anthocyanin 

flavonoids uptake and metabolism.

For hypothesis 2, a stable oxidative stress model of RPE was established. RPE 

cell cultures were produced in which a reliable apoptotic response could be generated; 

bilberry extracts and the anthocyanin component of the extract were then tested against 

the reliable apoptotic responses. It became clear early in the research that establishing 

this model would not be straightforward. Data suggested that a stable, predictable model 

of oxidative stress could only be established in non-dividing RPE cells that exhibited 

markers of RPE differentiation (e.g., expression of retinal pigment epithelium-specific 

protein (RPE-65)). To monitor oxidative stress-induced apoptosis, mitochondrial 

function and viability assays, such as MTT (a tetrazolium-based colorimetric cell 

viability assay) and adenine tri-phosphate (ATP), were selected and validated in RPE. 

Apoptosis was also monitored using western blot analysis of the mitochondrial apoptosis- 

related proteins Bcl-2 (an anti-apoptotic member of the Bcl-2 family of proteins) and Bax 

(a pro-apoptotic member of the Bcl-2 family of proteins). Quantitative real-time 

polymerase chain reaction (rt-PCR) was used to monitor changes in expression of the 

genes for these proteins. When it was determined that bilberry extract had no effect on 

oxidative stress-induced apoptosis in RPE, direct radical quenching properties of bilberry

3
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extract in RPE were examined. Bilberry antioxidant capabilities within RPE cells were 

monitored using the intracellular dichlorofluorescein assay.

For hypothesis 3, bilberry anthocyanins were separated from other phenolic 

components within the 25% anthocyanin-enriched bilberry extract used in this project. 

This separation was accomplished using semi-preparative low-pressure chromatography 

verified by HPLC\ECD analysis. Here, the goal was to examine the effects of both 

bilberry extract and its anthocyanin component on up-regulation of the expression of 

heme oxygenase-1 (HO-1) and glutathione S-transferase (GSTP1). Western blot analysis 

was again used to monitor changes in protein level, and rt-PCR used to determine up- 

regulation of the genes.

This research aimed to determine whether bilberry anthocyanins prevent oxidative 

stress-induced apoptosis in RPE cells. While results indicate that bilberry extract did not 

prevent apoptosis in this model, bilberry extract diminished intracellular radical levels 

while increasing levels o f HO-1 protein. Here, the third hypothesis was outlined and 

tested to determine whether bilberry extract and/or the anthocyanin content of this extract 

up-regulated the HO-1 and GSTP1 genes. If evidence for this relationship existed, 

bilberry might affect RPE cells in a manner that would influence the etiology or 

progression of AMD.
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CHAPTER I

VACCINUM MYRTILLUS: THE BILBERRY

The Botany of the Vaccinium Genus

Bilberry, or European blueberry (Vaccinium myrtillus L.), belongs to the family 

Ericaceae and to the genus Vaccinium that comprises some 450 species worldwide. The 

genus Vaccinium includes many economically important cultivated small fruit species, 

including cranberry (Vaccinium macrocarpon) and the domesticated blueberry 

{Vaccinium corymbosum). While bilberry is abundant on alpine heaths and arctic tundra, 

it is most commonly located in boreal forests and bogs. In these habitats, it is 

characterized as an ericaceous dwarf shrub in the herbaceous layer of boreal forests 

(Jaderlund et al., 1998). Bilberry grows over a wide terrain due to insect-pollinated 

flowers and bird-dispersed seeds. Bilberry, considered a polyploid species, is distributed 

completely circumpolar and boreal with extension to more southern mountain ranges 

(Brochmann et al., 2004). Vaccinium myrtillus L. grows in acid soils and is nutrient 

resilient, permitting it to grow in soil conditions ranging from nutrient-sparse 

mountainous heaths to nutrient-rich soils of forests and ancient peat bogs (Ritchie, 1956). 

It grows most abundantly in Scandinavia, Eastern Europe, and at higher elevations in 

Southern Europe. Bilberry and Lingonberry {Vaccinium vitisidaea L.), together, 

represent the most significant number of wild berries in many northern latitudes and 

alpine areas (Morazzoni & Bombardelli, 1996). Bilberry’s habit as a deciduous dwarf

5
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shrub and as a ground cover often permits it to dominate the field layer in boreal 

coniferous forests, as in Scandinavia (Atlegrim & Sjoberg, 1996; Kardell, 1997).

Bilberry grows to approximately 60 cm and has multiple branched stems, the finer 

of which are angular and green in color. The leaves alter from oval to elliptical in shape; 

they are 6-18 mm wide by 10-30 mm long and green with a finely serrulate margin and 

short petiole. The plant flowers from April to June and produces either white or light 

green and pink tinted flowers in the leaf axils, which are either solitary or paired. They 

have short-lobed corolla tubes 3-7 mm in diameter and pink in color, with the ovary 

located inferior and generally containing 10 stamens. Bilberry fruits are round bluish- 

black berries measuring 5-10 mm in diameter and containing numerous seeds. Unlike 

the common blueberry (Vaccinium corymbosum), which has a cream-colored berry pulp, 

the pulp of the Bilberry is purple in color indicating a higher anthocyanin content. 

Compared to the common blueberry, the bilberry also possesses a generally more 

pleasing aroma.

Bilberry as Food and Traditional Medicine

In bilberry habitats, a wide variety of animals — ranging from moose (Afces alces 

L .) and deer (Capreolus capreolus) (Cederlund et al., 1980; Morellet & Guibert, 1999) to 

gray-sided voles (Clethrionomys rufocanus) (Hamback et al., 2002) — feed on bilberry. 

Bilberry usually produces high seed crops at intervals of 3-4 years. Therefore, vole 

populations, which feed heavily on bilberry shoots in winter, peak in years following 

high bilberry seed yielding years. Many birds and insect species populations are also tied 

to variations in bilberry production. This is because both birds and insect herbivores feed

6
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on bilberry fruits (Atlegrim, 1989; Atlegrim, 1991). The bilberry is, therefore, of central 

importance in boreal forest ecosystems.

Given its availability, bilberry also serves as an important food source for 

humans. Bilberries, as with so many other berries (e.g., buckberries, huckleberries, 

farkleberry, cranberry, whortleberry, and crowberry), have been collected for millennia 

and either eaten from hand or, in more recent centuries, cooked into tarts, pies, or jams. 

Evidence of prehistoric human Vaccinium berry consumption comes from DNA analysis 

of the intestinal content of a 5000-year-old Neolithic glacier mummy (Rollo et al., 2002) 

and from ancient preserved bog bodies (Wood, 2000). Additional evidence exists from 

prehistoric archaeological sites throughout northern Europe, where carbonized berry 

seeds have been recovered, as well as in storage pits, where un-carbonized seeds have 

been sealed from microorganisms and other decay-inducing forces.

Prehistoric evidence cannot determine with certainty whether bilberry was used 

for the purpose of medicine. Ancient man learned over millennia by trial and error that 

certain plants were edible and others were poisonous and perhaps lethal. Similarly, early 

man determined that some plants were useful for treating illness. If these plants served as 

staple foods prior to their entry into pharmacopeias, they would have continued to serve 

this purpose even when used medicinally. Perhaps the strongest argument for this belief 

stems from western medicine’s paradigm shift over the past 100 years, in which 

healthcare has moved toward a pharmacologic view of treating illness. From the time of 

the writings of Hippocrates (circa 400 BC) to the recent period of “modem medicine”, 

philosophers and physicians made little or no distinction between food and drugs.

Indeed, a physician or healer treating a medical condition during this period would often

7
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prescribe not only common herbs but also increased consumption of particular natural 

foods (Andlauer & Fiirst, 2002).

During the Middle Ages in the Roman Empire, the Greek physician/herbalist 

Dioscorides cataloged the curative properties of plants in a five-book collection entitled 

De Materia Medica. These books on the preparation, properties, and testing of drugs 

functioned as the preeminent written record of the use of botanicals as medicines and 

remained the foundation for pharmaceutical and herbal practice until the sixteenth 

century. However, not until the invention of the printing press did De Materia Medica 

become generally accessible to the European masses. Indeed, the importance of herbs 

and specific foods in the treatment of illness became apparent by the sheer number of 

herbals published in the fifteenth century.

Works by the German herbalist Hildegarde von Bingen (1098-1179 C.E.) 

(Morazzoni & Bombardelli, 1996) reveal that by the twelfth century, bilberry served as a 

common medicinal. Among the first herbals translated for publication in English was the 

anonymous Grete Herbal (Treveris, 1526). This herbal text prescribed the fruit of the 

Mirte (bilberry) for the treatment of vomiting, bruising and bleeding, and staunching 

“flux of the wombe” and “flux of menstrue”. Bilberry was also used to treat bad breath 

stemming from apparent stomach ulcers, and it was commonly used as an aid to combat 

fever (Tunon et al., 1995). Although its active ingredients were unknown at the time, 

bilberry’s high vitamin C content made it a useful food throughout Europe for the 

treatment of scurvy. Both the leaves and dried berries were used in a syrupy tea to 

combat diarrhea and dysentery.

8
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During the 16th century, the German herbalist Hieronymus Bock and others 

recommended bilberry for the treatment of bladder stones and liver disorders. Bilberries 

were also used in syrups for treating coughs and lung ailments (Arber, 1938; Harris, 

1972). By the 1800s, German physicians and herbalists prescribed bilberry preparations 

for ailments including intestinal conditions, urinary tract infections, typhoid fever, gout, 

and rheumatism. Bilberry was also used topically to treat infections of the mouth and 

skin, and to stop bleeding.

Traditional medicinal use of bilberry was not limited to Europe. Prior to the 

European influx to the New World, the Native American people of the Kashaya Porno in 

Northern California used bilberry as a treatment for diabetes and eye disorders (Goodrish 

et al., 1980). Centimes of observation by shamans, healers, and priests separated on two 

continents led to bilberry use in the treatment of surprisingly similar ailments. In those 

times, medicinal knowledge was transmitted orally and bilberry was considered by native 

Americans as both food and “healing herb”. Its status among the healing herbs implies 

that prehistoric or “primitive” medical practitioners as well as many physicians in this 

century considered the plant to have medicinal value.

Bilberry: the Vision Legend

Modem medical interest in bilberry arose serendipitously after the Second World 

War. During night bombing missions, British Royal Air Force pilots reportedly 

experienced an improvement in night vision after eating bilberry jam, according to the 

legend. However, the British and United States (US) war departments have no records of 

issuance of bilberry in pilot diets. Undoubtedly, some pilots received jams, a cultural

9
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commodity, from home. Of interest is whether the berries or berry jams provided the 

benefits that advocates claimed.

In the mid 1960s, bilberry’s purported beneficial properties prompted French 

scientists to conduct the first laboratory and clinical studies on the effects o f bilberry fruit 

extracts on visual function and vascular systems. In recent years, bilberry has been used 

for the treatment of eye ailments such as cataracts, glaucoma, macular degeneration, poor 

night vision, and retinopathy. However, the current majority of the medical community 

considers this dietary/supplement therapy to remain in the realm of alternative medicine.

However, modem claims have been made that bilberry prevents or controls 

interstitial fluid formation; contributes to controlling blood flow redistribution in the 

microvascular network; modulates capillary resistance and permeability; improves visual 

function by promoting dark adaptation after dazzling; promotes wound-healing; and has 

anti-ulcer and anti-atherosclerotic activity (Morazzoni & Bombardelli, 1996). These 

claims, and the fact that European doctors continue to prescribe bilberry prompted the 

European Scientific Cooperative on Phytotherapy to commission a monograph on 

bilberry for inclusion in the European Scientific Cooperative on Phytotherapy 

(E/S/C/O/P) Monographs (2003). Bilberry’s importance in non-pharmaceutical medicine 

is highlighted by its inclusion in Pharmacopoeia, including the British Pharmacopoeia, 

the European Pharmacopoeia, the German Commission E Monographs, the Food 

Chemical Codex, and the United States Pharmacopeia.

10
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CHAPTER II

AGE-RELATED MACULAR DEGENERATION

Pathophysiology of AMD

Age-related macular degeneration (AMD) is a relatively common degenerative 

visual disability among the elderly age 50 years and over, affecting over 8 million 

individuals worldwide (Chopdar et al., 2003). As the name implies, the disease is 

progressive with age, and it is ultimately diagnosed in one out of every four persons over 

80 years. With the present global trend of an aging population, the importance of 

macular degeneration as a public health problem will undoubtedly increase.

The disorder is diagnosed by loss of vision and the presence of fundal features, 

the most significant being the presence of drusen (i.e., deposits of extracellular material 

lying between the retinal pigment epithelium (RPE) and the inner collagenous zone of the 

Bruch’s membrane). Early AMD is characterized by alteration of RPE pigmentation 

without angiogenesis or visible signs of inflammation. Although drusen are the hallmark 

of AMD, one or more drusen are found in at least 95% of aged Caucasian populations, 

with small drusen common in all age groups (McConnell & Silvestri, 2005). Late-stage 

AMD includes two forms —  exudative/neovascular (wet form) or non­

exudative/geographic atrophy (dry form) — with an 80:20 ratio observed in the majority 

of AMD prevalence studies. Exudative AMD is characterized by choroidal 

neovascularization and the presence of extensive inflammation. At this point in the 

progression of the disorder, extensive retinal deformation and damage, as well as
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extensive drusen, lead to much greater vision loss than experienced in the dry form of 

AMD.

The Role of RPE in AMD

Several theories elucidate the role of RPE in AMD. Traditional theories o f AMD 

pathogenesis hold that senescence of the RPE, which metabolically supports and 

maintains the photoreceptors, leads to AMD (Young, 1987; Eagle, 1984). Some 

speculate that senescent RPE accumulate metabolic debris as remnants o f incomplete 

degradation of phagocytosed rod and cone membranes; progressive engorgement of these 

RPE cells leads to drusen formation with subsequent progressive dysfunction of the 

remaining RPE. This theory explains RPE senescence through the contribution of 

sunlight-induced photochemical damage, damage by activated forms of oxygen and 

metabolic radicals, and other potentially damaging mechanisms (e.g., dietary 

deficiencies). While the “theory of RPE senescence” is attractive, it arose primarily to 

explain AMD morphology. It thus may be mechanistically close to actuality but does not 

account for all clinical presentations of AMD. Indeed, other age-related vision disorders 

present multiple forms of drusen formation, yet all drusen formations do not necessarily 

lead to AMD.

As noted above, two forms of late-stage AMD exist: There are two forms of 

AMD; non-exudative AMD or (i.e., “dry” AMD) and exudative AMD or (i.e., “wet” 

AMD). These pPhysiologic observations of these two forms led to another pathogenesis 

theory of pathogenesis that, which suggests that primary vascular changes in the choroids 

are the etiologic events in AMD and that these changes produce secondary effects in RPE
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that lead leading to AMD development of AMD. In all likelihood, both theories may 

apply to AMD, especially if  one considers the two AMD forms as representing distinct 

disorders with as yet to be differentiated pathogenic events. Alternatively, the observable 

forms of AMD may represent varying degrees o f a multi-etiological disorder highly 

dependent on individual genetic and environmental factors.

It is possible that RPE senescence, choroidal vascular defects, and photoreceptor 

defects represent primary events in different AMD subsets. In fact, when genetic factors 

are considered, it is difficult to envision a single etiological explanation for AMD since 

only 16% of patients with AMD have a known genetic defect in the ABCA4 (ABCR) 

gene encoding for a retinal rod photoreceptor protein (Allikmets et al., 1997).

In terms of choroidal vascular defects, the choriocapillaris supplies the metabolic 

needs of the RPE and the outer retina. Perfusion defects in the choriocapillaris serve as 

the basis for the “vascular pathogenesis theory” of AMD. Studies suggest that delayed 

choroidal filling may correlate with thickening of Bruch’s membrane (Pauleikhoff et al., 

1990). Further, delayed choroidal filling and abnormal choroidal blood flow have been 

reported in both nonexudative and exudative AMD patients. Delayed choroidal filling 

has also been found to be independently associated with vision loss in 52% of eyes in 

which it has been detected (Piguet et al., 1992).

Using Doppler imaging, Friedman et al. (1995) measured ocular flow velocities 

and vessel pulsatilities (a function of the compliance of the vessel wall and the resistance 

of the capillary bed) in subjects with and without AMD; the investigators found evidence 

of increased vascular resistance in the choroidal vasculature in AMD patients. As a result 

of their findings, the authors proposed a hemodynamic AMD pathogenesis, in which lipid

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deposition in the Bruch’s membrane leads to impaired choroidal perfusion; impaired 

choroidal perfursion, in turn, adversely affects the metabolic transport function of the 

RPE. Although choroidal perfusion abnormalities have been associated with AMD, no 

experimental evidence exists demonstrating that alteration in blood flow causes AMD. 

While this theory may have relevance to AMD progression, it does not account 

pathogenically for the initial lipid deposition in sclera and thickening of Bruch’s 

membrane that lead to impaired choroidal perfusion. It is possible that an initial nutrient 

transport dysfunction in capillary endothelial cells leads to either deficient transport or 

inappropriate transport of plasma constituents; these defects would then injure RPE 

resulting in RPE cell dysfunction. Here, events of the senescent RPE theory proceed to 

produce AMD pathology.

RPE Death by Apoptosis

Cells eventually die. This is a direct consequence of the way life evolved on this 

planet. The events and signals triggering cell death, the mechanism(s) by which cell 

death occurs, and the regulation of cell death constitute one of the fastest growing fields 

in modem research. To date, we know that cells die by one of two general processes: 

necrosis or apoptosis. Chaotic and catastrophic, necrosis results from toxic stress or 

profound cellular damage, and it usually elicits an inflammatory response. Apoptosis, on 

the other hand, appears orderly and regulated, occurs normally during development, and 

does not generally elicit inflammation. The latter type of cell death has been observed 

during retinal development.
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The term apoptosis was coined in a now-classic paper by Kerr, Wyllie, and Currie 

(1972) to describe the form of cell death associated with normal physiological 

development in which the mitochondria remain relatively unchanged morphologically. 

Apoptosis, unlike necrosis, involves active participation of the dying cell in its own 

demise: synthesis of specific messenger RNA (mRNA) encoding “killer proteins”, 

orchestration of an orderly karyorrhexis (nucleus condensation and disassembly), and 

cytoplasmic fragmentation with relative preservation of organelles. In mammals, 

phosphatidylserine appears on the outer plasma membrane as cells shrink; the cells then 

fragment into membrane-bound apoptotic bodies and “label” the dying cell for 

macrophage-mediated removal. In some cases, apoptotic cells are more easily removed 

from tissues due to their detachment from surrounding tissue.

In the last half-decade, changes in the physiological patterns of apoptotic cell 

death have attracted attention as potentially important factors in pathological conditions. 

Apoptosis has been recognized as an aspect of retinal degeneration and of photoreceptor 

loss after retinal detachment. It also has been observed after therapeutic irradiation, 

suggesting that apoptosis may occur after ultraviolet (UV) light-induced damage. 

Apoptotic death can be triggered by a wide variety of stimuli, and not all cells will 

necessarily die in response to the same stimulus. Among the most studied is DNA 

damage induced by irradiation, which in many cells leads to apoptotic death via a 

pathway dependent on the tumor suppressor protein p53.

Other stimuli — including hormones, caspases, mitochondria, and flavonoids and 

carotenoids — have also been linked with apoptotic death. Some hormones (e.g., 

corticosteroids) lead to apoptotic death in particular cells (e.g., thymocytes) while
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stimulating necessary physiological functions in other cell types. Some cell types express 

Fas, a surface protein which initiates an intracellular death signal in response to cross 

linking. In other cells, a survival factor actively blocks cell surface receptors that appear 

to be linked to a default death pathway. Here, when the survival factor is removed, the 

default apoptotic death program is triggered and the cell goes into apoptosis.

Apoptotic death also involves activation of caspases. Caspases are cysteine 

proteases that have a high degree of homology with ced-3, the product of the so-called 

“death gene” of the nematode Caenorhabditis elegans. In most cells, caspases are 

expressed in an inactive proenzyme form. They are unusual among proteases in that their 

proteolytic activity is directed toward aspartic acid residues, with individual specificities 

determined by the recognition of neighboring amino acids. Upon activation, many 

caspases can activate other pro-caspases, resulting in a protease cascade. The importance 

of proteases to apoptosis and normal development is reinforced by the fact that knockout 

mice lacking caspase-3, -8, or -9 fail to complete normal embryonic development.

Activation of caspases appears to trigger a cell’s apoptotic death. Aggregation of 

some pro-caspases (those with large pro-domains) allows them to “auto activate”. Much 

evidence suggests that mitochondria are involved in one major pathway involving 

activation of pro-caspase-9 (Hengartner, 2000). Other research shows ligands that cross­

link death receptors, such as Fas, trigger formation of a cytoplasmic complex in which 

pro-caspase-8 is aggregated and activated (Budihardjo et al., 1999). In both cases, these 

initiator caspases activate the previously mentioned cascade of other pro-caspases, 

leading eventually to apoptotic cell death. As the study of apoptosis progresses, it is

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



becoming clear that the molecular pathways leading to apoptotic cell death are indeed 

complex.

Mitochondria also play critical roles in apoptosis. This is not surprising since 

apoptosis is a eukaryotic process and is regulated by highly conserved pathways 

involving ancient cell death activators and inhibitors, namely EGL-1 and BH3-domain 

only proteins; CED-9 and Bcl-2; CED-4 and Apaf-1; and CED-3 and caspases, in 

nematodes and mammals, respectively. Apoptotic degradation of chromosomal DNA 

involves a mitochondrial endonuclease (endonuclease G (EndoG)) in mammals. EndoG 

is a mitochondrial pro-apoptotic factor, as are cytochrome c, apoptosis-inducing factor 

(AIF), second mitochondria-derived activator o f caspase/direct IAP-binding protein with 

low PI (Smac/DIABLO), and Omi/HtrA2 (Gulbins et al., 2003). These pro-apoptotic 

factors are liberated to the cytosol during mammalian apoptotic progression. These 

factors are either caspase-dependent (cytochrome c and Smac/DIABLO) or caspase- 

independent (AIF and EndoG).

Abundant evidence supports a role for mitochondria in regulating apoptosis. 

Specifically, a number of death triggers may target these organelles and stimulate, by an 

unknown mechanism, the release of several proteins, including cytochrome c. Once 

released from mitochondria into the cytosol, cytochrome c binds to its adaptor molecule, 

apoptotic protease activating factor-1, which oligomerizes and then activates pro-caspase- 

9. Caspase-9, in him, signals downstream and activates pro-caspase-3 and -7. The 

release of cytochrome c can be influenced by different Bcl-2 family member proteins, 

including Bax, Bid, Bcl-2, and Bcl-X(L). Bax and Bid potentiate cytochrome c release, 

whereas Bcl-2 and Bcl-X(L) antagonize this event.
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AIF may be a particularly important mitochondrial contribution to apoptosis. 

When released from mitochondria, it is translocated to both the cytosol and the cell 

nucleus. Within the mitochondria, AIF is a flavin-adenine dinucleotide (FAD)-binding 

oxidoreductase essential to operation of the electron transport chain and reduction of 

cytochrome c. When released, however, neither AIF’s FAD-binding ability nor its 

oxidoreductase activity is required for apoptotic activity. In the nucleus, AIF induces 

condensation and fragmentation of chromatin. Exactly how AIF induces DNA 

fragmentation or apoptosis is unclear and is an area of current study. However, current 

evidence suggests that AIF translocation to the nucleus remains a general feature of 

apoptosis in mammalian cells. Once in proximity to DNA, AIF binds to DNA and 

induces chromatin condensation; however, the complete process of DNA fragmentation 

is still not clear. It has been postulated that AIF may have some nuclease activity, that 

AIF binding to DNA renders DNA more susceptible to latent nucleases, or that, once AIF 

binds to DNA, nucleases are recruited to induce partial chromatinolysis.

AIF also can act as a caspase-independent death effector, driving a cell to 

apoptosis. However, the process appears to be complex since crosstalk takes place 

between AIF and the caspase cascade on multiple levels. Studies have shown apoptosis 

initiation by activation of caspase-8 or caspase-2, where release of AIF occurs as a 

subsequent event. In other cases, AIF release precedes caspase initiation and triggers the 

release of cytochrome c from mitochondria for cytochrome c-dependent caspase 

activation cascade. Conversely, studies have revealed that mitochondrial release of AIF 

can occur well after cytochrome c (Amoult et al., 2002). These findings support the
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concept that different modes of mitochondrial membrane permeability may control 

apoptosis in different cells or in response to different stimuli.

Finally, flavonoids and carotenoids affect apoptosis (Watson et al., 2000). As 

research progresses, data support the notion that apoptosis functions as a normal part of 

natural biological processes as well as a part of disease pathology, including cancer, heart 

disease, and AMD. However, little is known regarding an association between dietary 

flavonoids or carotenoids and apoptosis. Evidence does exist, though, that links diet and 

tumor development in cancer initiation and progression. Indeed, lycopene, lutein, and P- 

carotene (but not a-carotene) have been shown to inhibit the development of aberrant 

colonic crypt foci induced by N-methylnitrosourea in Sprague-Dawley rats. This implies 

involvement of anticancer mechanisms apart from the transactivation of the retinoic acid 

responsive promoter of retinoic acid receptor beta2 (RAR-beta2). Furthermore, since P- 

carotene oxidizes much more readily than other carotenoids, simple free radical 

scavenging appears to be less important.

Since the realization that flavonoid-rich foods (e.g., tea) are associated with 

decreased incidence of cancer risk (Le Marchand, 2002), more research has been devoted 

to these phytochemicals. In the last two decades, in vitro biological effects have been 

observed in flavonoids, including free-radical scavenging; modulation of enzymatic 

activity; inhibition of cellular proliferation; and antibiotic, antiallergic, antidiarrheal, 

antiulcer, and anti-inflammatory properties (Middleton et al., 1982; Moon et al., 2006). 

Among the flavonoid classes, flavones, flavonols, flavanones, and isoflavonones have 

demonstrated anti-proliferative activity in the absence of cell cytotoxicity; however, 

anthocyanins have not been tested per se, and no notable structure-activity relationships
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have been noted on the basis of subclass. Yang et al. (1997) have shown that tea 

polyphenols inhibit growth and induce apoptosis in human cancer cell lines. Wenzel et 

al. (2005) evaluated the effect of flavones on the expression of cell cycle and apoptosis- 

related genes in a human colon cancer cell line and reported dramatic changes in mRNA 

levels of cyclo-oxygenase-2, nuclear transcription factor kappa B (NF-kB), and Bcl-X. 

These effects were, however, highly selective for apoptosis in the transformed cells.

This evidence implies a potential mechanism for the anticancer effects of 

flavonoids; however, it also suggests flavonoids may impact genomic events very 

differently in healthy cells compared to transformed cells. Indeed, one of the few studies 

testing the effects of anthocyanins on apoptosis found that Ginkgo biloba, a complex 

proanthocyanidin mixture, inhibits apoptosis (Ni et al., 1996). While the mechanism was 

undetermined, the authors attributed the results to the antioxidant properties of the 

mixture. Regardless of the mechanistic explanation, it is evident that speculation 

concerning the possible anti-apoptotic roles of the active constituents of Ginkgo biloba 

requires confirmation.

Since apoptosis is intimately linked to oxidative stress, and since oxidative stress 

appears to be a major process involved in AMD pathology, the marketers of EGb 761 (a 

commercial extract of Ginkgo biloba) are funding research into its possible beneficial 

effects in treating diseases whose pathogenesis may involve oxidative stress and 

apoptosis (Maclennan et al., 2002). Additional studies have determined that the 

mechanism of action of EGb 761 on cell survival may be due to the prevention of 

mitochondrial damage, attenuating release of cytochrome c and DNA fragmentation 

(Eckertet al., 2003). Further, DNA microarray assay results indicate that transcription of
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multiple apoptosis-related genes is either up- or down-regulated in cells treated with EGb 

761; this suggests that inhibition of apoptotic machinery by this complex mixture is 

mediated via several apoptotic pathways (Smith et al., 2002). Still more recent research 

indicates that Ginkgo biloba effectively inhibits chemically induced apoptosis, but it does 

not modulate the activities of endogenous antioxidant enzymes. While anthocyanins are 

present in this mixture, these effects are more likely due to the ginkolides that represent a 

much higher proportion o f the mixture (Altiok et al. 2006).

Other flavonoids, specifically those in tea, inhibit NF-kB, a complex of proteins 

that binds to DNA and activates gene transcription. Here, the flavonoids prevent 

phosphorylation of the inhibitory protein, thereby inhibiting release of NF-kB from its 

bound and inactive form in the cytoplasm. Consequently, NF-kB fails to translocate to 

the nucleus and bind to DNA. This “blockade” activates the transcription of multiple 

inflammatory genes and is the putative mechanism whereby flavonoids from tea play 

important roles in the etiology of diseases with inflammation components, including 

cardiovascular disease and cancer. However, NF-kB inhibition could block the 

downstream expression of survival factors and this could be a downside of flavonoid 

action in preventing apoptosis.

Flavonoids also exhibit more or less potent and selective effects on some 

signaling enzymes. Among the identified signal transducers, both phosphoinositide 3- 

kinase (PI 3-kinase) and protein kinase C (PKC) are considered components in many 

cellular responses, including cell multiplication, apoptosis, and transformation (Gamet- 

Payrastre et al., 1999). Despite their lack of specificity, some flavonoids provide
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valuable bases for design of analogues intended to block particular isoforms of PI 3- 

kinase or PKC and their downstream-dependent cellular responses (Stoclet et al., 2004).

Finally, some evidence suggests that flavonoids may play a role in inducing 

apoptosis in cancer cells. Unlike normal cells, cancer cells lose the ability to undergo 

programmed cell death (i.e., apoptosis). Flavonoids have been found to induce apoptosis 

in cancer cells in vivo; however, it is unclear whether they induce apoptosis in pre- 

cancerous cells or cancer cells in living organisms. For most cells, once they divide, they 

pass through the cell cycle before they divide again. However, cells in vivo have a 

limited number of cell cycles before they no longer divide and some cells (e.g., nerve 

cells) having undergone cell cycle arrest will never divide again. In a seminal paper in 

this field, Bodnar et al. (1998) linked the inability to continue to divide with cell 

senescence and demonstrated that telomere loss in the absence of telomerase is the 

intrinsic timing mechanism that controls the number of cell divisions prior to senescence. 

Here, exogenous stimulation of the induction of telomerase expression contributed to 

telomere maintenance and cellular lifespan. This prevented cellular senescence and some 

age-related cellular decline, which contributed to AMD (caused by accumulation of 

lipofuscin and down-regulation of a neuronal survival factor in RPE) as well as 

atherosclerosis (caused by loss of proliferative capacity and over expression of 

hypertensive and thrombotic factors in endothelial cells).

Unlike normal cells, cancer cells divide and grow rapidly. However, flavonoids, 

such as the catechins, appear to induce cell cycle arrest, thereby preventing cancer cells 

from continuing to divide and proliferate in a manner akin to certain tumor suppressor 

proteins (Manson, 2005; Sah et al., 2004). Of note, flavonoids do not appear to have

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lethal or even deleterious effects on normal cells during development or differentiation; 

this suggests fundamental differences may exist between cancer and normal, non-cancer 

cells with respect to flavonoid influence on apoptosis and cell signaling. These 

differences have yet to be fully explored.

Anthocvanins and Apoptosis

Acetaminophen (AAP) induces liver injury leading to apoptosis. In one of the 

few polyphenolic-related in vivo apoptosis studies conducted, mice were placed on short- 

or long-term grape seed proanthocyanidin extract (GSPE) feeding prior to induction of 

liver apoptosis (Bagchi et al., 1998). Studies have demonstrated that during digestion 

proanthocyanidins are converted to anthocyanins and absorbed (Deprez et al., 2000). 

Since it was demonstrated that hepatocytes do not express Bcl-2, other apoptosis- 

regulating genes, such as the anti-apoptotic gene, Bcl-xL, were investigated. AAP 

metabolism triggers production of reactive oxygen species (ROS), which when coupled 

with disturbances in cellular calcium homeostasis, leads to oxidative stress and ultimately 

to down-regulation and modification of Bcl-xL expression that results in apoptotic death. 

Western blot analysis of the level of expression of Bcl-xL revealed that GSPE alone 

significantly enhanced Bcl-xL expression compared to control and completely prevented 

the effects of AAP, while AAP-treated mice poorly expressed Bcl-xL, indicating 

diminished anti-apoptotic power. Although experiments have not been performed to test 

the hypothesis, the authors felt that the pattern of subunit expression and Bcl-xL reflects 

the inactivation of Bcl-xL by phosphorylation. This assumption is entirely plausible, 

given that flavonoids inhibit some kinases (Bagchi et al., 2002, Ray et al., 2004).
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In contrast, in a recent study on the effects of ethanol extracts of 10 edible berries, 

bilberry extract induced apoptotic cell bodies and nucleosomal DNA fragmentation in 

HL60 human leukemia cells (Katsube et al., 2003). Pure delphinidin and malvidin, like 

the glycosides isolated from the bilberry extract, also induced apoptosis in HL60 cells. 

These findings indicate that anthocyanins can play a protective role against apoptosis in 

initially healthy cells and a deleterious role in cancer cells. However, major gaps in our 

understanding of apoptosis regulation — including the chain of events connecting 

intracellular calcium dysregulation, ROS production, oxidative stress, perturbation in 

cellular energy status, DNA fragmentation, poly(ADP-ribose)polymerase activation, and 

select expression of death retarding genes (e.g., Bcl-2 or Bcl-xL) — limit identification of 

the mechanisms by and extent to which anthocyanins regulate apoptosis. Indeed, 

anthocyanins may play a role in all of these elements; however, studies to evaluate these 

possible interactions are only just beginning. A cause-and-effect relationship between 

oxidative stress, apoptosis, and expression of Bcl-xL appears likely.

Induction of apoptosis in endothelial cells has been shown to occur by at least two 

pathways exhibiting differential sensitivity to the anti-apoptotic protein Bcl-2. The first 

pathway involves activation by transduction signals originating from the tumor necrosis 

factor (TNF) receptor family; this activates upstream caspases (-6, -8, -9), which in turn 

activate pro-caspase-3 and which have been shown to be Bcl-2 insensitive. The second 

pathway involves signals originating from numerous other stimuli (including ultraviolet- 

B (UVB) irradiation), which are potently inhibited by Bcl-2. Endothelial cells are 

relatively apoptotic resistant in another manner that separates them from other cells.

They are protected by anti-apoptotic proteins, such as the family of viral inhibitors of

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



death receptor-mediated cell death (specifically, FADD-like IL 16-converting enzymes 

(FLICE) and caspase-8 inhibitory proteins, which interfere with the Fas-induced 

apoptotic pathways) (Sata & Walsh, 1998). No studies have investigated the role of Bcl- 

2, Bcl-xL, or FLICE in RPE. The cellular and molecular mechanisms underlying retinal 

cell death in AMD remain poorly understood other than the recognition that apoptosis 

plays a significant role.

Anthocyanins have the potential to positively influence expression of the anti- 

apoptotic genes, particularly Bcl-2 and Bcl-xL, which can have significant downstream 

effects in preventing mitochondrial release of cytochrome c and AIF. Thus, anthocyanins 

may have effects on kinases, including isoforms of PI 3-kinase or PKC, that could have 

beneficial effects in preventing transglutamase activation and activation of the caspase- 

activated DNase (CAD) pathway or in preventing endonuclease activation, which affect 

DNA fragmentation. It is yet unclear what effect NF-kB activation will have on healthy 

RPE. It may turn out that anthocyanins will in effect “push” compromised RPE cells 

toward apoptosis.

While the preceding discussion suggests that flavonoids, including anthocyanins, 

may possess specific properties that could benefit human health, the experimental in vivo 

and in vitro data have produced conflicting results. Data from epidemiological studies 

regarding flavonoids in human health are also far from convincing. More studies at all 

levels are needed to characterize both the potential health benefits and potential harmful 

attributes of individual flavonoids. It is possible that the sum of the parts (e.g., total fruit 

and vegetable intake) is more important in providing a health benefit to humans than any 

particular plant phytochemical.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Oxidative Stress. Redox Biology. Aging and AMD

Evolution has produced a fascinating paradox that exists in the biochemistry of all 

existing aerobic organisms. The emergence of photosynthesis three and a half billion 

years ago, along with cyanobacterial dominance over the preceding billion years, 

fundamentally changed the earth’s atmosphere from a reducing environment to an 

oxidizing environment through the atomospheric introduction of oxygen. Beginning in 

the middle proterozoic period, oxygen build-up in the atmosphere led to widespread 

bacterial extinction while driving evolution of antioxidant defensive biochemical 

pathways in the bacterial survivors and eukaryotic life forms, including multi-cellular 

algae (Kaufman et al., 1997; Knoll, 1991; Rye et al., 1995). By the late proterozoic 

period, the first animals evolved. Rapid evolution was possible by the availability of 

cellular energy in excess of fundamental needs, a condition set in motion by the 

symbiotic relationship that lead to mitochondria and oxidative phosphorylation in 

eukaryotes.

This biochemical paradox in aerobic organism biochemistry represents a complex 

series of tradeoffs that leave an organism with survival advantages and disadvantages.

The net result provides organisms with a survival advantage in their in situ environment 

(Lang et al., 1999; Searcy, 2003; Vellai & Vida, 1999). However, the tradeoff in 

producing cellular energy (ATP) by mitochondria via oxidative phosphorylation is the 

production of toxic ROS (Baija, 1998; 1999; Lennaz et al., 1999). ROS are defined as 

free radical species that, if  not well controlled by cellular processes, can react with and/or 

modify or damage other critical cellular molecules (Cutler & Rodriguez, 2003). On the
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other hand ROS can be useful to organisms as, later in evolutionary history, animals 

evolved strategies to incorporate ROS in immune defense mechanisms, as secondary 

messengers, and in redox signaling. Thus, we see the paradoxical result that animals 

cannot live without oxygen, yet oxygen leads to eventual demise.

For the past decade, one theory of aging has suggested that aging ensues from the 

damaging effects of life’s normal, essential processes (Rose & Finch, 1994). This 

proposal —  that free radical-induced damage leads to the aging process — implies the 

process is not evolutionarily driven but instead is a process and consequence of the 

natural laws of increasing entropy and chemical stability. The “theory of longevity” 

(defined as duration of life), on the other hand, maintains that a species survival 

advantage for longer life drives the evolution of anti-aging or longevity processes. These 

processes may include increased resistance to or protection from biomolecular radical 

damage. Alternative longevity processes include enhanced repair processes. Indeed, 

when comparing human centenarians with other age classes, studies show an association 

between longevity and a phenotype characterized by enhanced redox defense status, 

including high glutathione reductase activity and higher levels of reduced glutathione 

(Andersen et al., 1998; Lang, 2001; Marcotte & Wang, 2001).

The major source of ROS in eukaryotic cells is the mitochondria, where ROS are 

the byproducts of oxidative phosphorylation reactions (Sohal, Sohal & Orr, 1995). In 

more highly evolved animals, another important ROS source is the production of 

byproducts of the “oxidative burst” process performed by macrophage cells in the course 

of their destruction of foreign organisms (Libby & Ridker, 2004). Perhaps more 

significant, cellular damage pertinent to the aging process originates from radicals
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produced by chronic, low-grade inflammation. This appears to be an exacerbating 

component of many age-related related diseases (Finch & Crimmins, 2004).

ROS are, in most cases, tightly controlled within living systems; however, this 

control is not perfect and the occasional stray radicals cause inevitable “collateral” 

damage to critical cellular components. To prevent organism dysfunction, endogenous 

defense and repair systems evolved, particularly for nuclear DNA and mitochondrial 

DNA. With time, however, un-repaired damage accumulates throughout the entire cell, 

with the damage build-up resulting in loss of functional capacity of most physiological 

processes. This gradual loss of functionality has been referred to as the “wear-and-tear 

oxidative stress hypothesis of aging” or the “free radical theory of aging”. Theories 

postulate that loss of functionality leads to increasing cellular/organism dysfunction on 

many levels and eventual system failure (Beckman & Ames, 1998; Harman, 1998).

The concept that free radical-mediated damage accumulates in older organisms 

and leads to dysfunction (Finkel & Holbrook, 2000) has given rise to the idea that 

removal of damaged components might restore function (Gray et al., 2004). Another 

concept of free radical-induced aging includes the dysdifferentiation hypothesis of aging 

(Cutler, 1991). This theory postulates that low levels of free radicals exert their most 

devastating effects on functionality and progression of the aging process by damaging 

sensitive and critical processes within a cell, thereby controlling and maintaining the 

proper state of cell differentiation. Free radicals cause changes in regulatory proteins, 

signal transduction pathways, transcription factors, and even the structure of chromatin 

protein, resulting in altered transcription profiles. The changes can produce stable but 

less efficient or perhaps improperly differentiated cellular states (Sohal & Allen, 1985).
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Further, recent evidence supports the important role o f these epigenetic processes, 

in addition to or in place of mutational events, in the etiology of aberrant disease states, 

including cancer (Sutherland & Costa, 2003). In this light, one could conceive of cancer 

increasing in prevalence with increasing age; increased cancer prevalence would arise 

from the general aging process, where dysdifferentiation would involve genes 

(particularly oncogenes) controlling cellular proliferation and apoptotic ability.

Oxidative stress, or the imbalance between free radical production and adequate 

protective control leading to radical-induced damage, perturbs the cell’s differentiation 

state through epigenetic mechanisms. Researchers already know that a cell’s oxidative 

stress state or oxidative/reductive status plays a role in those processes that control cell 

growth, development, signaling, and state of differentiation (Schafer & Buettner, 2001). 

Stem cell research has demonstrated that general tissue maintenance depends on the 

existence of particular stem cells specific for each tissue type (Reya et al., 2001). Over 

time, due to epigenetic drift, stem cells gradually lose their special state of differentiation, 

and the tissues dependent on their renewal become increasingly defective (Tzukerman et 

al., 2002). Epigenetic alterations in stem cells also occur by free radical mechanisms. 

Thus, oxidative stress may impact an organism’s aging process by affecting the stem cell 

tissue renewal system in a maimer that results in altered or “aged” tissue.

Longevity can be interpreted as a measure o f the ability of an individual or a 

species to stave off the debilitating effects of age-related disorders, which lead to organ 

or tissue dysfunction and death. While it is not true of all species, notably nematodes and 

drosophila, the longevity of mammalian species is dependent upon stem cell renewal 

maintenance. Therefore, it might be expected that the ability of a species to protect stem
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cells from free radical-mediated dysdifferentiation would correlate with longevity. This 

line of reasoning led to the concept of longevity determinant genes (Calabrese et al., 

2006; Cutler, 1991; Vijg & Suh, 2005). A positive correlation exists between the tissue 

concentration of specific antioxidants and mammalian lifespan (Borras et al., 2003; 

Sohal, Sohal & Brunk, 1990). Furthermore, markers of oxidative damage, such as 

oxidative damage to DNA and tissue resistance to spontaneous autoxidation, are 

inversely correlated with lifespan in mammals. Compelling data also indicate that 

disease (more generally) and age-related disease (in particular), as well as the aging rate, 

are all associated with the general intensity of oxidative stress occurring within an 

organism (Cutter, 1992). These data suggest that radical damage may play a causative 

role in aging and that the antioxidant status, whether determined by endogenous or 

exogenous factors, could be important in determining the risk of age-dependent diseases.

During the conversion of earth’s atmosphere from a reducing environment to an 

oxidizing one, and during the evolution of oxidative phosphorylation, organism survival 

depended on the co-evolution of processes to reduce the destructive effects of ROS. A 

number of such protective/defense processes have been identified (Fridovich, 1989; 

Sohal & Weindruch, 1996; Sundquist & Fahey, 1989). Phylogenic evidence indicates 

that organisms with more efficient mitochondria and reduced metabolic rates enjoy a 

longer lifespan (Criscuolo et al., 2005; Papa, 1996). However, mammals, such as 

humans, that fall outside the correlative curve between size and lifespan appear to have 

higher tissue levels of antioxidant protection (Baija, 1998).

Many studies show that increases in tissue antioxidants — through dietary 

supplementation, antioxidant induction, or gene transfection — can increase survival or
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mean lifespan (Cutler, 1991b) but not maximum potential lifespan. Recently, both 

caloric restriction and genetic manipulations in the nematode C. elegans resulted in 

lifespan extension up to 500% (Houthoofd et al., 2004; Vanfleteren & Braeckman, 1999). 

As organisms evolved, increased resistance to membrane peroxidizability and to 

structural oxidative damage afforded increased lifespans. For example, this phenomenon 

is most evident in the evolutionary trend toward decreases in peroxidizable fatty acid 

molecules, such as the unsaturated fatty acids, in cellular membranes. Once radical 

production decreases and molecular targets “harden”, further protection occurs by 

“quenching” (i.e., removing) radicals using antioxidants (Sundquist & Fahey, 1989). The 

classic definition of antioxidants defines them as molecules that react more readily with 

free radicals than with critical cellular components. Such classic antioxidant molecules 

(e.g., a-tocopherol, ascorbate, urate, and glutathione ) are thus “sacrificed” in the act of 

removing radicals and in so doing, provide the cell with less reactive and less lethal 

alternative radicals. These antioxidants are either synthesized endogenously or taken in 

as dietary components.

If these “quenching and removal” mechanisms fail and damage is inflicted on 

critical cellular components, elaborate repair systems have evolved to repair cellular 

nucleic acid, protein, and lipid components. Repair mechanisms, such as DNA excision 

repair, are highly specific in recognizing oxidative damage and in repairing damage, 

thereby restoring molecular function (Lombard et al., 2005). In phylogeny, lifespans are 

longer where these repair systems are more active (Promislow, 1994). As a last resort, 

cells damaged by oxidative mechanisms are removed, and normal function is restored via 

general tissue renewal and remodeling processes (i.e., cell division).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Several definitions of oxidative stress exist. Sies (1997) described oxidative 

stress as a level of oxidatively mediated damage that is above a cell’s or an organism’s 

normal level. This definition implies that oxidative damage to cellular components 

occurs at a given rate appropriate for a particular organ or organism and that repair and 

removal mechanisms within that organ or organism cope with the damage to maintain 

normal function. When those mechanisms fail to cope adequately, a state o f oxidative 

stress exists. Others have defined oxidative stress as an absolute level of oxidative stress 

rather than as a measure o f the flux of damage; here, oxidative stress occurs when any 

damage is done (Cutler, 1992). The debate over these two definitions may be academic, 

as the crux of the matter lies perhaps more in the fate of the damaged molecules rather 

than in whether the damaging radicals originate under a state of redox balance or redox 

imbalance. If a damaged molecule is repaired or removed and replaced adequately, 

normal function is restored. If a damaged molecule cannot be repaired or removed, then 

dysfunction is likely and the processes of aging and disease ensues.

While oxidative stress is associated with most human diseases (Halliwell & 

Gutteridge, 1999), evidence does not suggest that oxidative stress causes most diseases. 

In many cases, increased free radical levels and/or increased oxidative stress are 

secondary to the disease process. Increased free radicals and oxidative stress exist in 

many age-related diseases, including diabetes, cancer, cardiovascular, pulmonary, and 

neurological diseases, such as Alzheimer’s and Parkinson’s disease. Additionally, free 

radicals are associated with inflammatory processes (e.g., arthritis). Reduction in both 

cardiovascular disease and cancer risk are associated with diets rich in fruits and 

vegetables (McDermott, 2000). While antioxidant phytochemicals present in these foods
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may be responsible for this protective effect, proving the underlying mechanisms of these 

protective effects as antioxidant effects has been difficult. This lack of convincing and 

overwhelming evidence has led to a controversy about the use of antioxidant 

supplementation as therapy for age-related disorders (Heinecke, 2001; Witzum, 2000).

Increased oxidative stress likely plays an important role in AMD pathogenesis 

(Beatty et al., 2000). The retina is particularly susceptible to oxidative stress for several 

reasons. Retinal oxygen consumption is high compared to oxygen consumption in other 

tissue (Yu & Cringle, 2005). The retina is exposed to high levels of cumulative 

irradiation (Glickman, 2002; Godley et al., 2005; Young, 1988), and photoreceptor outer 

segment membranes in the retina are high in polyunsaturated fatty acid content. When 

oxidation events occurs, these lipids are easily oxidized leading to initiation of lipid 

peroxidation chain-reactions (SanGiovanni & Chew, 2005). Furthermore, as 

neurosensory retinal tissues and the RPE age, lipofuscin is deposited even in normally 

functioning eyes. These compounds exhibit significant photoreactivity, and in high 

oxygen partial pressure environments form potentially cytotoxic end products 

(Rozanowska et al., 1995). Among the more overlooked ROS-generating mechanisms in 

the eye is the process of phagocytosis. Within the retina, the RPE removes debris and 

spent metabolites from photoreceptor outer segments (Miceli et al., 1994; Tate et al., 

1995).

Moreover, the RPE is exposed to high levels of radicals produced by the cones 

and rods as byproducts of the visual process. For example, studies in canine eyes showed 

remarkable compartmentalization of enzymes involved in the production or degradation 

of peroxides in the eye. Whereas the retina seems well-protected against superoxide free
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radicals and hydrogen peroxide by virtue of the presence of superoxide dismutase, 

peroxidases, and catalases, the rod outer segments are only protected by superoxide 

dismutase (Armstrong et al., 1981). This lack of protection implies that, after 

phagocytosis of rod outer segments, any peroxidized lipids, organic peroxides, or 

unconverted superoxide radicals contained within the rod outer segments must be 

detoxified by a specific peroxidase in the RPE.

Evidence from trials and meta-analyses suggests that the antioxidant vitamin E, 

used alone, does not have a protective effect against AMD; however, in vitro and animal 

studies provide evidence that a combination of vitamin E and vitamin C can protect the 

retina against photochemical damage. Two xanthophylls with antioxidant properties, 

lutein and zeaxanthin, are concentrated as macular pigment in the fovea of the retina and 

are thought to protect the retina from oxidative damage by filtering out short wavelength 

light. As in the case of cardiovascular disease, results from AMD risk-related 

observational studies of antioxidant intake or antioxidant blood levels have been 

inconsistent (Delcourt et al., 1999; Seddon et al.,1995; Smith et al., 1999; 

VandenLangenberg et al., 1998; West et al.,1994). Over the past decade, several 

randomized controlled trials have been conducted to explore uncertainty about the role of 

antioxidants.

Epidemiology and Intervention Studies in AMD 

Antioxidant Effects on AMD. Epidemiologic evidence suggests a genetic basis for 

AMD (Heiba et al., 1994). People of young age with macular diseases have mutations 

also found in AMD-susceptible populations (Allikmets et al., 1997); however, it is
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unknown whether these mutations cause AMD or merely contribute to AMD 

susceptibility. Several studies of risk factors associated with cardiovascular disease and 

AMD found common associations but these findings are inconsistent (Hyman et al.,

1983; Vingerling et al., 1995). As with cardiovascular disease, cigarette smoking is 

associated with higher risk of AMD development and progression (Smith et al., 2001), 

which suggests that both oxidative stress and inflammation play a significant role in the 

disease. Other epidemiological evidence reveals an association between sunlight 

exposure and AMD development (Taylor et al., 1992), but not all studies have found this 

relationship (Mitchell et al., 1998). These findings combined with pathophysiologic 

changes in the RPE have led investigators to conclude that RPE failure to repair oxidative 

damage may play a role in AMD etiology.

In the past decade, mounting evidence suggests that diet and/or dietary 

supplements may prevent the onset and progression of both AMD and cataracts. To 

investigate this possibility, case-control and cross-sectional studies have been undertaken 

to determine associations between AMD and antioxidant vitamin intake or plasma 

concentrations (Delcourt et al., 1999; West et al., 1994). Results have been inconclusive 

and contradictory. These inconsistent and disconcordant conclusions have been 

attributed to methodological issues, inadequacies in dietary ascertainment, and/or 

biochemical measurements of antioxidants.

Two nutritional studies, a population-based case-control study of serum 

antioxidant levels and AMD (Mares et al., 1995) and the multi-center Eye Disease Case- 

Control Study (Seddon et al., 1995) support the theory that increased intake of dietary 

antioxidants, specifically carotenoids, reduces advanced AMD risk. However, findings
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from these studies regarding vitamin intake other than carotenoids were less consistent. 

Data suggest an inverse association between vitamin A intake and AMD risk. However, 

this association appears to result from the carotenoid component, since a beneficial effect 

for high vitamin C intake, particularly through foods, cannot be ruled out. Interestingly, 

study data offer no evidence of a vitamin E protective effect; in fact, overall results are in 

the opposite direction. Nevertheless, these epidemiologic observations indicate that 

nutrition may play a role in macular degeneration.

Despite this evidence, speculation persists that the antioxidants vitamin C and 

vitamin E as well as the carotenoids, especially lutein and zeaxanthin, may have a 

protective effect against AMD by limiting oxidative damage. These speculations 

motivated design of the Age-Related Eye Disease Study (AREDS), in which the value of 

long-term dietary antioxidant supplementation for severe AMD development was 

investigated. AREDS results provide some evidence that antioxidants, vitamins, and 

minerals may prevent or treat AMD. Results also indicate a protective effect of 

antioxidant supplements; here, antioxidant supplements prevented either progression of 

moderately advanced dry macular degeneration cases or vision loss in individuals with 

. unilateral wet macular degeneration (Age-Related Eye Disease Study Research Group, 

2001).

As previously mentioned, prior epidemiologic studies suggest antioxidants reduce 

the risk o f eye diseases (Taylor et al., 1992); however, results from a small clinical trial 

indicate that zinc may delay AMD development and progression (Newsome et al., 1988). 

Evidence from these two studies, combined with lack of AMD treatments as well as with 

enthusiastic commercial supplements marketing, led to increased use of high-dose
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antioxidant vitamins and zinc for self-medicated AMD prevention/treatment. The 

efficacy and safety of such a “nutritional intervention” was unknown; therefore, AREDS 

offered an opportunity to assess these factors in a controlled clinical trial.

Because AMD and cataract are chronic aging-related diseases with slow 

progression rates, AREDS was designed as a large and lengthy study in order to test the 

effect of nutritional supplementation on these conditions and other eye disorders. 

However, because lutein and zeaxanthin were unavailable commercially, AREDS made a 

controversial decision by using the antioxidant carotenoid P-carotene in the study. While 

seemingly not an optimal choice, it was a rational one in that pharmaceutical companies 

were already marketing P-carotene supplements, it was already used in heart disease and 

cancer clinical trials, and it was commercially available. Vitamins C and E were also 

included in the study as known antioxidants.

While the literature revealed zinc’s protective effect against AMD, no evidence 

existed regarding its usefulness with regard to cataracts. Therefore, researchers tested 

zinc only with regard to AMD. Further, zinc supplementation was tested only in those 

study subjects who manifested risk of AMD-related vision loss as determined by 

evidence of drusen or RPE anomalies.

Eligible participants included individuals aged 55- to 80-years-old and free of 

illness, such as cancer or cardiovascular disease (CVD), at enrollment. Participants were 

enrolled in one of five AMD categories based on fundus photograph grading (i.e., the 

central reading center) o f drusen size, number, and area on corrected visual acuity 

(defined as less than 20/32 and either due to AMD or not); participants were also 

categorized based on ophthalmologic evaluations. Categories are defined in Table 1 of
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the AREDS report no. 8 (Age-Related Eye Disease Study Research Group, 2001a).

Other health measures also were collected on the state of eye health.

AREDS study outcome variables included (1) change in visual acuity and (2) 

change in AMD status or lens opacities. The relationship between antioxidant and no 

antioxidant groups, as well as between zinc and no zinc groups for visual acuity or AMD 

progression was tested. For cataracts, the comparison was between antioxidant and no 

antioxidant groups for any progression of lens opacity or for cataract surgery.

Descriptive results o f the study follow. A total of 3,640 participants enrolled in 

this 2 x 2  factorial design o f antioxidants and zinc. At entry, 57% of participants used 

vitamins, zinc, or multivitamin supplements and half of patients took the recommended 

daily allowance dosages below the pharmacologic dosages of the study medication. A 

standardized multivitamin (Centrum) was provided to those subjects (95%) who chose to 

continue using multivitamins. Subjects in the placebo or active groups who chose to use 

Centrum had intakes of vitamins C, E, beta-carotene, and zinc, from both dietary sources 

and Centrum, as well as, in the case of active treatment, the pharmaceutical dose 

provided. This decision weakened the study’s statistical power in testing its primary 

hypothesis on pharmacologic doses; however, it was thought that inclusion of RDA level 

supplementation on top of the study doses would better reflect the supplementation habits 

of the population 55 to 80 years.

AREDS results confirmed prior findings regarding smoking, hypertension, 

hyperopia, lens opacities, education level, gender, increased body mass index, and white 

race. New findings included a risk of developing geographic atrophy associated with use 

of thyroid hormones and antacids, as well as an increased AMD risk for persons with

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



extensive intermediate or large drusen who have arthritis or who use hydrochlorothiazide 

(Age-Related Eye Disease Study Research Group, 2000).

Regarding antioxidant supplementation, AREDS found that people at high risk of 

developing advanced stages o f AMD lowered their risk by approximately 25% when 

treated with a high-dose combination of vitamin C, vitamin E, beta-carotene, and zinc. In 

the same high-risk group, which included people with intermediate AMD or advanced 

AMD in one eye but not the other eye, the nutrients reduced the risk of vision loss caused 

by advanced AMD by about 19%. For those study participants who had either no AMD 

or early AMD, the supplements did not provide an apparent benefit (Age-Related Eye 

Disease Study Research Group, 2001a). In the cataract portion of the study, the same 

nutrients had no statistically significant effect on age-related cataract development or 

progression (Age-Related Eye Disease Study Research Group, 2001b).

Data from AREDS suggest that once AMD pathogenesis has begun (as evidenced 

by the presence of intermediate drusen, large drusen, or noncentral geographic atrophy), 

zinc alone or in combination with antioxidants can reduce advanced AMD progression. 

Too few individuals with early AMD (i.e., milder drusen and retinal pigment epithelial 

abnormalities) advanced sufficiently within the study’s timeframe to assess whether any 

treatment tested could slow progression to advanced AMD. Of note, AREDS results did 

not validate results from a prior (small) randomized trial that suggested a benefit of large 

doses of zinc on visual acuity in persons with AMD (Newsome et al., 1988).

In contrast to the AREDS findings, another randomized trial of 1,193 subjects 

reported that after 4 years of supplementation, 500IU per day of vitamin E had little 

benefit in reducing the risk of AMD development or progression (Taylor et al., 2001).
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The suggestion has been offered by AREDS investigators that, as in the AREDS study, 

too few of the subjects in this study progressed to advanced AMD. Indeed, at present this 

study may validate the AREDS finding that antioxidant vitamins at the tested dose appear 

to be of little benefit in the early stages of AMD.

AREDS could not prove the safety of high dose antioxidant supplementation; 

however, AREDS reported mortality of half that observed in the general population. 

Decreased mortality may be due to several factors: First, the typical volunteer for this 

study was healthy, mobile, and motivated. Second, the vitamin C dose (500 mg) used in 

formulation was approximately 5 times what the general population receives from diet 

alone. Third, the 400-IU vitamin E dosage was approximately 13 times the 

recommended daily allowance (RDA) and the dose of zinc as zinc oxide was 

approximately 5 times the RDA. These levels of zinc and vitamins C and E can generally 

be obtained only by supplementation.

AREDS lacked the power to address whether either zinc or antioxidants held 

differing abilities to reduce the risk of developing advanced AMD. Practically, however, 

evidence indicated that individuals older than age 70 who risk developing advanced 

AMD should take zinc/copper and multivitamin supplements. Further, the study’s 

findings led to two major recommendations: (1) persons >55 years should undergo 

dilated eye examinations to determine risk of developing advanced AMD and (2) those 

with extensive intermediate size drusen, >1 large drusen, or noncentral geographic 

atrophy in one or both eyes or those with advanced AMD, should take a supplement of 

antioxidants plus zinc.
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The AREDS study found no benefit on cataract progression from supplementation 

with antioxidants plus zinc. In contrast to the AREDS study are results of a double-blind, 

placebo-controlled pilot study testing the effect o f long-term antioxidant lutein and cx- 

tocopherol supplementation on serum levels and visual performance in cataract patients 

(Olmedilla et al., 2003). The study involved dietary supplementation of subjects with 

lutein (15 mg; n = 5), alpha-tocopherol (100 mg; n = 6), or placebo (n = 6), three times a 

week for up to 2 years. Serum carotenoid and tocopherol concentrations were 

determined, and visual performance (i.e., visual acuity and glare sensitivity), 

biochemical, and hematologic indexes were monitored. Findings indicated that serum 

concentrations of lutein and alpha-tocopherol increased with supplementation, although 

statistical significance was reached only in the lutein group; visual performance (visual 

acuity and glare sensitivity) improved only in the lutein group. There was a trend toward 

the maintenance of and decrease in visual acuity with alpha-tocopherol and placebo 

supplementation, respectively. This study suggests that a higher lutein intake, through 

lutein-rich fruits and vegetables or through supplements, may improve visual 

performance in individuals with age-related cataracts.

With regard to cataracts, results reported by both the AREDS and Olmedilla et al. 

indicate fundamental differences between the carotenoids P-carotene and lutein in 

preventing ocular oxidative stress. Indeed, lutein as well as zeaxanthin, also a carotenoid 

xanthophyll, are thought to have two AMD-related beneficial effects. Lutein and 

zeaxanthin, both yellow in color, filter short wavelength light; this is considered a 

primary protection mechanism from free radical damage to the photoreceptor cells (rods 

and cones). Photooxidative damage is induced by the formation of reactive oxygen
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species such as singlet molecular oxygen ( '0 2 ), superoxide radical anion (O2*-), and 

peroxyl radicals (Darr & Fridovich, 1994). Lutein and zeaxanthin can also act as 

antioxidants in the photooxidation process by physically quenching radicals, especially 

singlet oxygen (Foote & Denny, 1968). Lutein is 10 times more effective than Vitamin E 

in quenching photo-induced radicals. It is probable that lutein and zeaxanthin have other 

significant cellular effects not yet substantiated.

A study out of Johns Hopkins University (Dagnelie et al., 2000) examined the 

effects of lutein supplementation on visual acuity, central visual-field area, and subjective 

visual disturbances in retinitis pigmentosa and related retinal degenerations. Participants 

tested their own visual acuity via a computer screen test and their central visual-field 

extent via a wall chart. These remote monitoring techniques of 23 subjects demonstrated 

that short-term (26-weeks) lutein supplementation (40 mg/day for 9 weeks, 20 mg/day 

thereafter) produced vision improvements. These results imply that if  lutein had been 

used in the AREDS study, AMD progression may have slowed to an extent capable of 

impacting the study’s primary outcome measures .

Another 12-month randomized, doublemasked, placebo-controlled clinical trial 

was conducted in 90 subjects to determine whether supplementation with lutein or lutein 

in combination with other antioxidants, vitamins, and minerals improved vision and 

decreased AMD symptoms (Richer et al., 2004). On average, study subjects were older 

and had more severe disease than subjects enrolled in AREDS. Results showed that 

visual function, including Snellen equivalent visual acuity and contrast sensitivity, 

improved with lutein alone or with other antioxidants. While the data were promising 

regarding visual function improvements using both lutein and other antioxidants on
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visual function, a larger and longer study is needed to determine the long-term effect of 

these compounds on AMD prevention and pathogenesis.

Wolfberry, Lycium barbarum L., is rich in zeaxanthin dipalmitate, and is valued 

in Chinese culture for providing “visual benefits”. In a single-blinded, placebo- 

controlled human intervention trial of parallel design, consumption of whole 15 g/d 

wolfberries (containing an estimated 3 mg zeaxanthin) for 28 days increased plasma 

zeaxanthin concentration in healthy subjects (Cheng et al., 2005). This human 

supplementation trial showed that zeaxanthin in whole wolfberries was bioavailable and 

that intake of a modest daily amount markedly increased fasting plasma zeaxanthin 

levels.

While this particular wolfberry study was a bioavailability study and did not 

address the question of efficacy of zeaxanthin, a recent animal model study investigated 

the efficacy of another antioxidant containing berry, bilberry, on AMD and cataracts. To 

determine the effects of antioxidant flavonoids on senile cataract and macular generation, 

Fursova et al. (2005) undertook one of the first in vivo bilberry intervention studies in 

animals. Senescence-accelerated OXYS rats exhibit early senile cataract and macular 

degeneration. The diet o f OXYS rats was supplemented with 25% bilberry extract. By 

age 3 months, 70% of the control OXYS rats had cataract and macular degeneration 

while those OXYS rats whose diets were supplemented with bilberry extract suffered no 

impairments in the lenses and retina. Vitamin E supplementation had no statistically 

significant protection against impairments in the lenses and retina. However, both 

bilberry extract and vitamin E decreased lipid peroxides in the retina and serum of OXYS
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rats. The authors offered no hypotheses to explain the mechanisms of dietary 

antioxidants in preventing AMD in OXYS rats.

Bilberry Studies. Few in vivo studies exist on the effects of bilberry flavonoids. 

Searches of document databases internal to the National Institutes of Health (NIH) reveal 

the Institutes’ consensus of mixed scientific evidence for bilberry use as an herbal 

medicine. To date, bilberry extract has been evaluated for efficacy as an antioxidant, 

anti-inflammatory, “vasoprotectant”, mucostimulant, hypoglycemic, and lipid-lowering 

agent. Pre-clinical studies show promise, but data from human studies remain sparse and 

of poor quality. Existing data neither prove nor disprove the case for bilberry efficacy.

While the mechanisms of action behind bilberry flavonoid’s beneficial effects on 

the eye are not completely understood, traditional uses of bilberry suggest its ability to 

improve oxygen and blood delivery to the eye, scavenge free radicals, and stabilize 

collagen structures, thus contributing to cataract and macular degeneration prevention. 

Anthocyanidins also appear to have effects related to light and dark visual adjustments 

(Caselli, 1985; Wegmann et al., 1969). Such findings have prompted approximately 30 

trials of bilberry effects on night vision in Europe and the US since the early 1960s. In a 

systematic review of 30 studies by Canter & Ernst (2004), only 12 studies were placebo- 

controlled, and 4 randomized controlled trials yielded null outcomes. Improvements in 

night vision were found in eight controlled trials, including one randomized controlled 

trial. Study investigators concluded that the data do not support the theory that bilberry 

flavonoids improve night vision in subjects with normal healthy eyes (Canter & Ernst,

2004).
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While studies have been conducted on the association between bilberry flavonoids 

and night vision in healthy subjects, no trials exist regarding the effect of bilberry extract 

on vision in subjects with impaired night vision or pathological eye conditions. In 

contrast to studies in healthy eyes, Fursova et al. (2005) investigated long-term bilberry 

extract supplementation in OXYS rats and found decreases in oxidative stress markers, 

cataract formation, and AMD development. If one extends the search for the effects of 

anthocyanins to include those of commercially produced Vaccinium species, studies in 

rats with blueberry feeding show reversals of age-related declines in neuronal signal 

transduction, cognitive, and motor behavioral deficits (Joseph et al., 1999).

Evidence suggests that bilberry flavonoids offer some relief from glaucoma, 

although few studies have investigated facilitating aqueous outflow in response to 

bilberry intake (Caselli, 1985). More convincing data show the effect of bilberry extracts 

on delaying cataract development in both animals (Hess et al., 1985; Pautler & Ennis, 

1984) and humans (Bravetti, 1989). An Italian study showed that 260 mg/day of a 25% 

anthocyanin extract in combination with vitamin E arrests cataract formation patients 

with senile cortical cataracts. In addition, several European clinical studies showed 

bilberry anthocyanin efficacy against diabetic retinopathy (Chaundry et al., 1983; 

Perossini et al., 1987; Scharrer & Ober, 1981; Varma et al., 1977). Indeed, one-month 

bilberry extract supplementation significantly improved ophthalmoscopic parameters in 

patients with diabetic and/or hypertensive retinopathy.

Traditional uses of bilberry also include treatment of vascular fragility and 

microcirculation. Animal studies (Colantuoni et al., 1991; Lietti et al., 1976) and clinical 

trials in humans (Ghiringhelli et al., 1978) have shown bilberry extracts to decrease
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vascular permeability and improve vascular tone and blood flow. Many uncontrolled 

trials of patients with venous insufficiency indicate bilberry extract effectiveness in 

improving symptoms; however, controlled studies are required before non-European 

medical practice will adopt bilberry use for treating microcirculation disorders.

Bilberry extracts have been shown to possess anti-inflammatory properties in 

animals (Rao et al., 1981) and to have strong anti-platelet aggregating activity in humans 

when supplemented for a month at 480 mg/day (Puilleiro et al., 1989). Despite 

traditional medicine’s centuries of bilberry use for eye-related disorders, few well- 

controlled bilberry trials of sufficient duration have been conducted in populations with 

eye disease risk.
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CHAPTER III

BILBERRY ANTHOCYANINS

Anthocvanins as Antioxidants

Anthocyanins exist as glycosides o f polyhydroxy and polymethoxy derivatives of 

the 2-phenylbenzopyrylium cation. They are distinct from other flavonoid classes due to 

an electron deficiency in their ring structure. Structural differences among flavonoid 

classes can account for differences in their bioavailability and bioactivity (Figure 1). In 

addition, variations in the substitution patterns of hydroxyl and methoxy groups as well 

as differences in sugars attached at the 3 position of the B ring can confer significantly 

different bioavailability and bioactivity. Anthocyanins and their aglycones, the
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Figure 1. Basic flavonoid and anthocyanin structure. Panel A shows the basic structures 
of the classes of flavonoids. Flavonoids contain two aromatic rings (A and B) linked by an 
oxygenated heterocycle (ring C). R substitutions include hydroxy, methyl, and mono- or 
disaccharide groups. Panel B shows the structure of the basic anthocyanidin flavylium 
cation and the substitution patterns of bilberry’s major anthocyanidins.
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anthocyanidins, may differ in bioavailability and bioactivity from other flavonoids, since 

they contain a flavylium nucleus with a positively charged oxygen atom as well as appear 

to be more amphipathic than other flavonoids.

In 1936, Szent-Gyorgyi and colleagues found lemon juice extract to decrease 

capillary wall permeability and called the active ingredient “vitamin P” (later identified 

as the flavonoids hesperidin and eriodictiol glycoside). Though flavonoids were 

subsequently found to be nonessential and, therefore, not vitamin candidates, this early 

work did note a synergy between flavonoids and vitamin C and suggested their activity as 

antioxidants. In vitro, flavonoid aglycones, including the anthocyanidins, are potent 

antioxidants due to their degree of hydroxylation and the presence of a B-ring catechol 

group. However, the B-ring catechol is metabolized in vivo, principally by O- 

glucuronidation and formation of sulfate esters (Bors et al., 2001). The literature contains 

little information on antioxidant capacity of flavonoid conjugates in vitro, although these 

metabolites predominate in vivo and have different properties than their parent 

compounds.

The non-catechol hydroxyl groups on flavonoids can chelate transition minerals 

such as copper and iron; this inhibits Fenton-Weiss-Haber reactions and the generation of 

reactive oxygen species. Some dietary flavonoids may serve as sufficiently effective 

chelators of non-heme iron in the gut to aggravate or precipitate iron-deficiency anemia 

(Zijp et al., 2000).

Interventions with some flavonoid-rich foods have revealed an increase in plasma 

measures of “total antioxidant capacity” (e.g., by using the ferric reducing antioxidant 

power and oxygen radical absorbance activity assays) and a reduction in biomarkers of
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oxidative stress (e.g., phospholipid peroxides, malondialdehyde, and F2 -isoprostanes in 

plasma and 8 -OH-deoxyguanosine in leukocytes). However, other studies have found no 

statistically significant antioxidant action by these compounds in vivo (Lean et al., 1999; 

Widlansky et al., 2005; Wiswedel et al., 2004). Such contrasting reports may reflect 

differences in the specific flavonoids tested, as well as differences in patient-level health 

or oxidative stress status, dosing, and treatment duration. Nonetheless, the direct 

stoichiometric contribution of intracellular flavonoids to quenching reactive species in 

vivo appears small in relation to contributions from other dietary antioxidants whose in 

vivo concentrations are significantly higher. For example, supplementation with 50 mg 

of epigallocatechin gallate results in peak plasma concentrations of approximately 0.15 

pmol/L, while the usual status of ascorbate is 3-7 mmol/L. Anthocyanins are among the 

lowest of flavonoids with regard to their absorption (Milbury et al., 2002; Wu et al.,

2005). However, a marked synergy between flavonoids and other components of the 

antioxidant defense network, including vitamins C and E via mutual recycling, sparing, 

or other mechanisms, may result in a significant impact on the quenching of reactive 

oxygen and nitrogen species (Chen et al., 2005).

Flavonoids may act indirectly to increase antioxidant defenses and redox status by 

inducing phase II enzymes, including those regulating glutathione synthetase, peroxidase, 

and S-transferase (Kong et al., 2001). For example, using transgenic mice, berry fruit 

flavonoids have been found to increase the activity of the heavy subunit promoter 

(GCSh) of y-glutamylcysteine synthetase, the rate limiting step in GSH synthesis 

(Carlsen et al., 2003). Flavonoids may act as pro-oxidants by reducing Fe+3 to Fe+2 to 

yield hydroxyl radicals, although no such effects have been demonstrated in vivo. While
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flavonoid catechols can be oxidized to quinones, which may generate reactive species 

through redox cycling, enzymes such as quinone reductase and catechol-O- 

methyltransferase limit their formation in tissue.

Some theorize that anthocyanins and their aglycones, anthocyanidins, contribute 

to the prevention of age-related diseases via antioxidant mechanisms (Renaud & 

DeLorgeril, 1992). However, no epidemiological evidence proves this mechanistic 

connection. As mentioned for other flavonoids, anthocyanidins are potent antioxidants 

due to their high degree of hydroxylation and conjugation. This property has been 

demonstrated in vitro by oxygen radical scavenging assays (Tsuda et al., 1996; Yamasaki 

et al., 1996) and their metal chelation properties (Amorini et al., 2001). Several studies 

also have shown that anthocyanins inhibit lipoprotein oxidation in vitro (Kerry & Abbey, 

1997; Ghiselli et al., 1998; Tsuda et al., 1996a). Further, studies have investigated foods, 

especially fruits and berries, for their anthocyanin content and antioxidant activity in vitro 

using radical interception assays such as the oxygen radical absorbance capacity (ORAC) 

or ferric ion reducing antioxidant power (FRAP) assays (Gabrielska & Oszmianski, 2005; 

Fukomoto & Mazza, 2000; Kahkonen et al., 1999; Moyer et al., 2002; Prior et al., 1998; 

Wang et al., 1996).

In the most general terms, these in vitro assays determine an antioxidant’s ability 

to protect a target molecule from oxidation by quenching radicals generated within the 

assay. The studies suggest that, as with other flavonoids, anthocyanins or anthocyanidins 

entering the vascular circulatory system exhibit an antioxidant effect by quenching 

radicals. Indeed, investigators theorized that lowering radical load would decrease the
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risk of developing age-related diseases associated with oxidative stress. This hypothesis 

has proven difficult to substantiate.

In comparison to the numerous studies on flavonoids, such as catechins and 

quercetin, relatively few studies have addressed anthocyanidin antioxidant activity in vivo 

or in isolated cells. Duthie et al. (1997) demonstrated that myrecetin acts as a pro­

oxidant by increasing DNA damage and inhibiting proliferation in some human cells 

exposed to >100 pM concentrations. These effects were not observed at lower 

concentrations; therefore, the relevance of these studies to the in vivo conditions are 

unknown, especially considering that anthocyanidins may not circulate freely in vivo.

Even fewer publications focus on the antioxidant activity of anthocyanins, which 

represent the form found in plants and in human diets. The literature has revealed red 

wine’s ability to alter ex vivo antioxidant capacity of human serum; however, wine is also 

a complex mixture of which anthocyanins are only one component class showing 

antioxidant properties in vitro (Whitehead et al., 1995). To determine intracellular 

antioxidative capacity of anthocyanin, Pool-Zobel et al. (1999) assessed the ability of 

anthocyanin-enriched fruit juice concentrates from fresh berries — i.e., aronia 

(Aroniamelanocarpa), elderberry (Sambucus nigra), macqui (Aristotelia chilensis), and 

the tintorera grape — to prevent in vitro oxidative damage to DNA in HT29 primary 

human colon cells. In non-cellular assessment, results showed that pure anthocyanidins 

and anthocyanins were 2- to 5-fold more potent antioxidants than equimolar 

concentrations of ascorbic acid or the water-soluble vitamin E analogue Trolox. 

Antioxidant activity of aglycon cyanidin, measured using the FRAP assay, was less than 

that of the glycosides, cyanin, and idaein. In this study, however, the mechanism for
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preventing DNA damage was not determined. Intracellular oxidative stress was only 

weakly affected by the anthocyanin/anthocyanidin concentrates. Interestingly, this study 

demonstrated that glycosides are as effective or even more effective than the aglycons in 

the FRAP assay. This suggests that, while direct radical quenching capabilities of 

anthocyanins are less than that of their aglycones, their iron chelation capability is not 

impaired by the presence of a sugar moiety.

Several studies have used a highly purified extract of Vaccinium myrtillus L., 

labeled Myrtocyan®, which contains 36% anthocyanosides of which cyanidin 3- 

glucoside predominates (Morazzoni & Bombardelli, 1996). This study found that 

cyanidin 3-glucoside inhibited tetrachloride-induced lipoperoxidation (Morazzoni & 

Bombardelli, 1996). In vivo, Myrtocyan® has been shown to promote wound healing, 

inhibit ulcer formation, and display anti-atherosclerotic activity. Myrtocyan® has 

displayed effects on microvascular vascular control and capillary resistance and 

permeability, improving dark adaptation after dazzling. This and other studies have not 

determined mechanisms; however, Wang et al. (1997) showed that Myrtocyan® 

displayed high radical quenching capability via the ORAC test.

Berry phenolic inhibition of both protein and lipid oxidation in liposomes in vitro 

was measured by determining the loss of tryptophan fluorescence, formation of protein 

carbonyl compounds, and by conjugated diene hydroperoxides and hexanal analysis 

(Viljanen et al., 2004). This study and others like it, though, did not distinguish between 

proanthocyanidins, anthocyanins, and other phenolics. A recent study demonstrated the 

ability of bilberry anthocyanins to inhibit oxidation of the pyridinium bisretinoid, A2E, in 

vitro. A2E, an autofluorescent pigment that accumulates in retinal pigment epithelial
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cells with age and in some retinal disorders, can mediate perturbation of cell membranes 

and light-induced damage to the cell. The authors suggest that cells taking up 

anthocyanins also exhibited a resistance to the membrane permeabilization occurring 

from the detergent-like action of A2E.

Anthocyanins from bilberry extracts also show in vitro antioxidant activity toward 

nitric oxide (NO) and peroxynitrite (ONOO-) (Ichiyanagi et al., 2004). With the 

exception of delphinidin glycosides, anthocyanins exhibit slightly less antioxidant 

activity toward these radicals than does the flavonoid catechin. These effects have yet to 

be verified in vivo.

Enzyme Activity and Cell Signaling Effects

In addition to their role as antioxidants, flavonoid, and likely anthocyanin, 

bioactivity modulate enzyme activity and affect cell signaling events (Williams et al., 

2004). Many activities shown for other flavonoids have not been tested for anthocyanins; 

however, some flavonoid functionalities appear to be shared across classes and may well 

extend to anthocyanins and anthocyanidins.

Flavonoids have been shown to interact with all major enzyme classes, including 

hydrolases, isomerases, ligases, lyases, oxidoreductases, and transferases, although the 

majority of investigations on which these findings are based have been conducted in vitro 

(Middleton et al., 2000). Flavonoids selectively inhibit kinases by binding directly to 

enzymes or associated membrane receptors; in so doing, they influence signal 

transduction pathways (Hollosy & Keri, 2004). By activating the antioxidant response 

element (ARE), flavonoids may induce phase II detoxification enzymes such as
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glutathione S-transferase, UDP-glucuronosyltransferase, NAD(P)H:quinone 

oxidoreductase 1, and epoxide hydrolase (Song et al., 1999; Zhang & Gordon, 2004).

The gene promoter regions for these enzymes are transcriptionally regulated by 

several xenobiotic response elements, including the antioxidant and electrophile response 

elements (ARE and EpRE, respectively) (Nguyen et al., 2003). Upstream regulation of 

ARE and EpRE is partly coordinated through binding of NF-E2-related transcription 

factor (Nr£2). Nrf2 translocation from the cytosol to the nucleus is inhibited by the 

cytoskeleton-associated protein Keapl. Nrf2 binding depends on thiols in Keapl and, 

thus, on feedback control of ARE- and EpRE-regulated enzyme systems. Flavonoid 

oxidation products (e.g., quinones and quinone methides) not recycled by ascorbate or 

other antioxidants may arylate protein thiols and thereby affect enzyme expression.

In addition to their potential for quenching reactive oxygen species, flavonoids 

can affect cellular redox status via other mechanisms. For example, flavonoids with a B- 

ring catechol moiety can inhibit succinoxidase and promote a mitochondrial respiratory 

burst of hydrogen peroxide and superoxide anion. Flavonoids with a 2,3 double bond/3- 

OH, in conjugation with the 4-oxo function on the C-ring, can reduce mitochondrial 

membrane fluidity and cause uncoupling or, particularly in compounds with a B-ring o- 

di-OH, inhibit the respiratory chain (Dorta et al., 2005). Other flavonoids may induce 

mitochondrial permeability transition and release of Ca2+. Anthocyanins likely share 

many of these activities.

Anthocyanin-rich extracts of grape, bilberry, and chokecherry have been 

investigated for their chemopreventive activity against colon cancer cells (Zhao et al., 

2004). Extracts inhibited the growth of colon cancer, as compared to non-tumorigenic
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colon cells. The data suggested varying compositions and degrees of growth inhibition 

were dependent on anthocyanin chemical structure. Using more refined materials, five 

anthocyanidins and four anthocyanins were tested for cell proliferation inhibitory activity 

against six human cancer cell lines representing stomach, colon, breast, lung, and central 

nervous system (Zhang et al., 2005). Cell viability after exposure to anthocyanins and 

anthocyanidins was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5- 

diphenyltetrazolium bromide) colorimetric methods. Anthocyanidins, but not 

anthocyanins, showed cell proliferation inhibitory activity.

Likewise, anthocyanidin delphinidin exerts anti-proliferative effects on basal and 

VEGF-induced proliferation of aortic endothelial cells in culture (Martin et al., 2003). 

Here, the data suggest that the mechanism involved in cell cycle progression arrest for 

Go/Gi phase occurs via ERK-11-2 pathways. Delphinidin was shown to inhibit 

angiogenesis via alteration of the expression of proteins key to cell migration and 

proliferation (Favot et al., 2003).

Cyanidin and delphinidin are both potent inhibitors of the tyrosine kinase activity 

of the epidermal growth-factor receptor in carcinoma cells (Meiers et al., 2001). Shutting 

off downstream signaling from growth factor receptors might contribute substantially to 

the growth-inhibitory properties of anthocyanidins. These signal transduction effects that 

involve Elk-1 phosphorylation and MAP kinase pathway activity resemble those of 

chemopreventive flavonoid Epigalocatechin galate (EGCG). The extent to which the 

anthocyanins share the effects of anthocyanidins on these systems is relatively unknown. 

One report on anti-tumor effects in vitro and in vivo of red soybean extracts attributed the 

effect to cyanin conjugated with glucose and rhamnose, since these were the major
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cyanin forms within the extract (Koide et al., 1997). The anti-proliferative effects of 

anthocyanins in neoplastic and non-neoplastic cells warrant further investigation.

Evidence reveals anthocyanins to be both pro- and anti-apoptotic. For example, 

hibiscus anthocyanins induced apoptosis in human promyelocytic leukemia cells (Chang 

et al., 2005). The authors attributed this pro-apoptotic mechanism to activation of p38 

MAP kinase, which resulted in protein c-jun phosphorylation and signal transduction to 

further activate the apoptotic protein cascades containing Fas-mediated signaling. The 

resulting mitochondrial cytochrome c release led to cleavage of caspase-3 and apoptosis. 

The literature also suggests anthocyanins are pro-apoptotic in human gastric 

adenocarcinoma cells (Shih et al., 2005).

In contrast to evidence on anthocyanin pro-apoptotic activities, data indicate that 

the phenolic extract of strawberries is neuroprotective by preventing apoptosis in vitro on 

PC 12 cells treated with hydrogen peroxide (H2 O2) (Heo & Lee, 2005). Anthocyanin 

effects on differing cell types and apoptotic conditions require further investigation to 

resolve mechanistic or experimental differences that account for variations in apoptotic 

modulation.

Those flavonoids exhibiting anti-inflammatory properties act via interactions with 

tyrosine and serine-threonine protein kinases, as well as via other elements of signal 

transduction pathways (Middleton et al., 2000). In vitro, flavanols and procyanidins 

modulate the interleukin transcription in activated peripheral blood mononuclear cells 

and inhibit mitogen-induced T-cell proliferation and polyclonal Ig B-cell production 

(Sanbongi et al., 1997). Bioavailability studies suggest that procyanidins are broken 

down to monomers prior to absorption. Some of the metabolites are anthocyanidins and
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anthocyanins that may contribute to the anti-inflammatory effects. The putative 

antioxidant and anti-inflammatory effects of blueberry and cranberry anthocyanins and 

hydroxycinnamic acids against H2O2 and tumor necrosis factor-a (TNF-a)-induced 

damage to human microvascular endothelial cells have been investigated (Youdim et al.,

2002). These berry polyphenols reduced TNF-a-induced up-regulation of various 

inflammatory mediators (i.e., IL-8 , MCP-1 and ICAM-1). While these actions suggest 

health benefits against vascular disease initiation and development as well as age-related 

related deficits in neurological impairments, they also suggest signal pathway regulation 

that may prevent other diseases with inflammation components, such as wet AMD.

Red wine flavonoids, polyphenols, and possibly anthocyanins inhibit platelet- 

derived growth factor-induced vascular smooth muscle cell migration through inhibition 

of signaling cascades of phosphatidylinositol-3 kinase and p38 mitogen-activated protein 

kinase (Iijima et al., 2002). Modulation of these same kinases may also affect 

inflammatory responses. The dietary anthocyanin, cyanidin 3-glucoside, naturally 

activates endothelial nitric oxide synthase (eNOS) in endothelial cells by promoting its 

phosphorylation at Seri 179 and dephosphorylation at Seri 16 (Xu et al., 2004). 

Ameliorating endothelial dysfunction may explain, in part, the cardiovascular protective 

effects of anthocyanin-rich foods like berries and wine.

While the literature lacks a large body of research on anthocyanin biochemical 

and molecular effects on mammalian cells, research to date suggests that anthocyanins 

have many potential mechanistic actions. Data exist showing physiological activities of 

flavonoids on mammalian cells. Common effects have been observed between 

anthocyanidins and other flavonoids, although these may not translate to the glycosylated
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anthocyanins. Evidence also exists suggesting that the presence of sugar moieties 

significantly affect activities. Nevertheless, as the review above indicates, semi-purified 

anthocyanin mixtures affect signal transduction pathways and enzyme activities in 

manners that can significantly affect cellular states. Much research remains regarding the 

nature and extent of anthocyanin bioactivities.
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CHAPTER IV 

METHODS AND MATERIALS

Materials and Chemicals

The bilberry extract material used in these studies was a commercial extract of 

bilberry ( Vaccinium myrtillus). The extract was enriched in anthocyanin content to 

approximately 25% of the final product weight and was obtained as a gift from Artemis 

International, Inc. (Fort Wayne, IN, USA). This product is currently the same product 

incorporated into bilberry dietary supplements alleged to promote eye health. All 

chemicals not otherwise specified in the sections below were purchased from Sigma- 

Aldrich Co. (St. Louis, MO, USA). All reagents were of the highest purity available.

Chromatography. Polyphenolic. and Glutathione Assays 

Sepak Separation of Anthocyanins. To determine whether effects resulted from 

anthocyanins or other polyphenolic compounds present in the bilberry extract, 

anthocyanins were recovered by solid phase extraction using an octadecylsilane (ODS) 

solid phase extraction cartridge (Sep-Pak C l 8 ), as previously described (Cao & Prior, 

1999). Briefly, anthocyanins in the bilberry extract were extracted using an ODS solid- 

phase extraction cartridge (Sep-Pak C l 8 ). The cartridge was washed with 10 mL of 

methanol and equilibrated with 10 mL of 0.44 mol/L trifluoroacetic acid (TFA) before 

use. TFA was obtained from Pierce Biotechnology, Inc. (Rockford, IL, USA). One mg 

of bilberry extract was dissolved in 1 mL of 0.44 mol/L TFA, then centrifuged, and the
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supernatant applied to the cartridge. Water-soluble compounds, polar lipids, and neutral 

lipids were eluted from samples with 10 mL of 0.44 mol/L TFA, 10 mL of 

dichloromethane, and 10 mL of benzene, respectively. Finally, samples were eluted with 

5 mL of 0.44 mol/L TFA in methanol. The methanol phase, collected and dried under 

nitrogen, contained anthocyanins. Samples were redissolved in buffers or mobile phase 

for anthocyanin analysis and used either the total anthocyanin method or high pressure 

liquid chromatography (HPLC) methods, as described below.

HPLC with ECD and UV Detection. Chromatographic separation and compound 

identification by HPLC with electrochemical detection (ECD) was accomplished using a 

coulometric array system and modifications of methods previously described (Milbury, 

2001). Anthocyanin separation was achieved on a Zorbox SB-C18, 4.6 x 250 mm- 

column with a complex mobile phase gradient. The gradient ran at a 1.0 mL/min flow 

rate over 130 minutes from 25 mM sodium acetate (pH 1.5) to 25 mM sodium acetate in 

methanol carrying equivalent trichloroacetic acid.

Liquid Chromatographic Mass Spectrometry (LC/MS/MSV To verify compound 

identities, dried samples were reconstituted in 200 pL 1% Formic acicLTLO and separated 

on an Agilent 1100 HPLC. A dual column system was utilized, with a switching valve 

between the columns to segregate the anthocyanin “region” eluting from the first column 

for passage to the second analytical column. Chromatography was conducted at a 0.3 

mL/minute flow rate using a complex gradient from acidified H2O (9% Formic acid) to 

100% acidified acetonitrile (9% Formic acid) over a 120-minute analytical run. 

Anthocyanin elution was monitored on an Agilent G1315A diode array detector at A520. 

Mass fragmentation and detection were accomplished using a Brucker Esquire ion trap
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LC/MS/MS fitted with an electrospray interface; the instrument operated in positive ion 

mode using selected reaction monitoring. Based on elution times established in each 

analytical run, selected reaction monitoring windows were determined. Anthocyanins 

were quantified by calculating the area under the curve in the extracted ion 

chromatogram of fragmentation ions.

Total Phenolics Assay, Total phenolics were assayed colorimetrically via the Folin- 

Ciocalteu method, as modified by Singleton & Rossi (1965) and Singleton et al. (1999). 

Two and a half mL of ten-fold diluted Folin-Ciocalteu reagent, 2 mL of 7.5% sodium 

carbonate, and 0.5 mL of phenolic extract were mixed. Absorbance was measured at 765 

nm after 15 minutes of heating at 45 °C. A mixture of water and reagents was used as a 

blank. The phenolics content was expressed as g/kg powder using catechin as a standard 

phenolic material.

Total Anthocyanins Assay. Total anthocyanins were estimated by a pH differential 

method (Cheng & Breen, 1991). Absorbance was measured in a Shimadsu UV-1601 

spectrophotometer at 510 nm and at 700 nm in buffers at pH 1.0 and 4.5, using [(A510- 

A700)pH1.0-(A510-A700)pH4.5] with a molar extinction coefficient of cyanidin 3- 

glucoside of 29,600. Results were expressed as grams of cyanidin 3-glucoside equivalent 

per 1 0 0  g of dry weight (i.e., percent dry weight).

Glutathione Analysis. For glutathione (GSH) studies, media were removed from the 

cultures by aspiration and culture plates were washed with phosphate-buffered saline 

(PBS) (pH 7.4) before addition of 1 mL perchloric acid (5% vol/vol) containing 0.2 M 

boric acid. Contents were scraped and stored in 1.5-mL microcentrifuge tubes at -80°C 

until analysis. GSH was derivatized by mixing 300 pL sample supernatant with 60 pL
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iodoacetic acid (7.4 mg/mL H2O) and adjusted to pH 9.0 with a KOH/tetraborate solution 

(1 M KOH in saturated K 2 B 4 O 7 ) .  The samples were incubated for 20 minutes at room 

temperature before addition of 300 pL dansyl chloride solution (20 mg/mL acetone) and 

mixed thoroughly on a votex. The mixture was stored at room temperature in the dark 

for 24 hours before addition of 500 pL chloroform. These samples were then stored at 

0°C without further processing until analysis via HPLC.

After centrifugation, aliquots of the aqueous layer were injected onto a 3- 

aminopropyl column (Custom LC, Houston, TX, USA) for separation. Initial mobile 

phase conditions consisted of a mixture of 80% methanol (solvent A) and 20% 4 M 

sodium acetate (pH 4.6) containing 64% methanol (solvent B) delivered at a flow rate of 

1 mL/min. After 10 minutes, a linear gradient was established to achieve 20% solvent A 

and 80% solvent B by a 30-minute chromatogaphic time point. At this point, the 

20%: 80% A:B mixture was run isocratically to 46 minutes before returning to 80% A and 

20% B in 2 minutes for equilibration prior to the next analysis. The GSH derivative was 

detected by fluorescence (305-395 nm excitation and 510-650 nm emission; Gilson 

Medical Electronics, Middleton, WI, USA). GSH quantitation was obtained by 

integration relative to a derivatized GSH standard curve.

RPE Cell Culture Model Characterization 

APRE-19 Cell Culture. ARPE-19 cells were obtained from the American Type Culture 

Collection (ATCC) (ATCC, Manassas, VA, USA), grown, and routinely passaged under 

conditions previously described (Dunn et al., 1996). Passage 15 ARPE-19 cells were 

seeded at 2 0 , 0 0 0  cells/cm2 (sub-confluent) and grown 1 0  days to confluence (80,000
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cells/cm2). Cells were plated in a growth medium comprised of a 1:1 mixture of 

Dulbecco’s modified Eagle’s medium and Ham’s F12 (DMEM/Hams F12) medium, 

which contained 1.2 g/L sodium bicarbonate, 2.5 mM L-glutamine, 15 mM HEPES and 

0.5 mM sodium pyruvate, and 10% fetal bovine serum. Cells were cultured at 37°C 

under 5% carbon dioxide (CO2). After three days in culture, the medium’s fetal bovine 

serum concentration was decreased to 5% in order to slow division and encourage 

differentiation. At 10 days in culture, the medium was removed and the cells washed 

twice with Hanks balanced salt solution (HBSS) (Gibco BRL, Bethesda, MD, USA). 

Chemical treatments were performed in 1:1 DMEM/Hams F12 medium without phenol 

red, and cells were harvested after 4 hours. Hydrogen peroxide (H2O2) (30%; Fisher 

Scientific Company LLC, Pittsburgh, PA, USA) was diluted in water; the dilution was 

then placed into a final treatment concentration of 1:1 DMEM/Hams F12 medium 

without phenol red. Tert-butyl hydroxide (TBH) (70% aqueous solution; Sigma Inc., St. 

Louis, MO, USA), bilberry extracts, and bilberry anthocyanins were diluted in 1:1 

DMEM/Hams F12 medium without phenol red immediately prior to addition to cells. 

Microscopy. Retinal pigment epithelium (RPE) cells grown on Transwell membranes 

(described above) were fixed and stained using a Diff-Quik Stain Set (Dade Behring AG, 

Dudingen, Switzerland). The membranes were then rinsed with water, cut from the 

Transwells, and mounted onto glass slides for photomicroscopy. The cultures were 

photographed using an Olympus 1X70 inverted microscope, with 40x and lOOx high n.a. 

oil-immersion objectives. The microscope was fitted with a Qlmaging Retiga 1300 CCD 

digital camera and images captured using QCapture Software for Windows.
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Uptake and Transepithelial Electrical Resistance. To determine transepithelial 

resistance and bilberry anthocyanin uptake and transport, ARPE-19 cells were plated at a
c  j

density of 2 x 10 cells/cm on a 24 mm permeable membrane insert (12 mm diameter, 

0.4 mm pore size, Transwell; Costar, Cambridge, MA, USA). The insert was coated with 

laminin (5 mg/cm2; Becton Dickinson Laboratory, Franklin Lakes, NJ, USA) in 

DMEM/Hams F12 medium with 20% fetal bovine serum (FBS). After the RPE cells 

became confluent, the medium was changed to DMEM/Hams F12 medium with 5% FBS 

until the transepithelial electrical resistance (TER) stabilized. At this stage of culture, the 

RPE was tested for expression of the tight junction proteins zonula occludens-1 (ZO-1) 

and retinal pigment epithelium-specific protein (RPE-65). TER was measured with an 

epithelial voltohmmeter (World Precision Instruments, New Haven, CT, USA) at regular 

intervals and was corrected for background resistance contributed by the blank filter and 

culture medium. Three independent experiments were performed. Results were 

expressed as mean ohms x cm2 ± SD and compared by Student’s t-test. Statistical 

significance was set at p<0.05.

Redox Status and Apoptosis Assay 

Dichlorofluorescein Assay. Intracellular oxidative stress was determined using a 

dichlorofluorescein (DCF) assay similar to the method described by Rota et al. (1999) 

and Marchesi et al. (1999). The fluorescent probe, 2',7',-dichlorofluorescin (DCFH)- 

diacetate (DA) (Molecular Probes, Inc., Eugene, OR, USA) diffuses freely into cells 

where it becomes trapped after deacylation as the non-fluorescent DCFH. Dining 

oxidative stress, DCFH is oxidized to fluorescent dichlorofluorescein (DCF) (Wan et al.,
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2003). DCFHDA, aliquotted in dimethyl sulfoxide (DMSO) at a stock solution of 5 M 

and stored in a desiccator in the dark at -20°C, was diluted in PBS immediately before the 

experiment. Sterile, 96-well tissue culture plates (black plates with clear bottoms) 

(Costar, El Sobrante, CA, USA) were seeded with ARPE-19 cells and grown as described 

above. After culture for 10 days, the cells were washed twice with DMEM/Hams F12 

medium without phenol red. ARPE-19 cells were exposed to media with treatment 

chemicals for 4 hours followed by exposure to 500 pM H2O2 for 2 hours. After rinsing 

with PBS, cells were incubated with DCFH-DA (5 mM) at 37°C for 30 minutes. 

Fluorescence was measured using a FLUOstar Optima multifunctional plate reader 

(BMG Labtech GmbH, Offenburg, Germany) set to excitation and emission wavelengths 

of 485 and 528 nm. After measurements were obtained, an excess of H2 O2 (500 pM) was 

added to each well to determine maximum fluorescence and assure equivalent DCF 

loading.

MTT Cell Viability Assay. Following treatment with bilberry anthocyanins or H2O2 , 

cell viability was determined using the MTT assay, as previously described (Ballinger et 

al., 1999; Hansen et al., 1989; Hussain et al., 1993). The assay cleaves tetrazolium salt 

MTT to formazan by mitochondrial dehydrogenases in viable cells. The MTT assay was 

purchased from Molecular Probes (Eugene, OR, USA). Cells, grown in 96-well plates as 

described above, were treated with serum-free medium containing doses of bilberry 

extracts or H2O2 for 2 or 4 hours; they were then allowed to recover in conditioned 

medium for either 1 hour with MTT or for 24 hours where MTT was incorporated in the 

last hour. The cells were lysed and absorbance measured at 570 nm using a FLUOstar 

Optima multifunctional plate reader (BMG Labtech GmbH, Offenburg, Germany).
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Absorbance values were converted to MTT reduction using a standard curve generated 

with known numbers of viable cells. MTT reduction for treated samples was then 

normalized to non-treated control samples and was reported as a control fraction.

JC -f Assay. The JC-1 assay is an apoptotic cell death assay capable o f indicating early 

changes in mitochondrial membrane permeability. The cationic carbocyanin dye, JC-1 

(5,5',6,6-tetrachloro-1,1 ',3,3-tetraethylbenzimidazolyl-carbocyanine iodide), obtained 

from Molecular Probes, Inc. (Eugene, OR, USA) has been used to determine apoptosis 

and changes in mitochondrial trans-membrane potential, an index of mitochondrial 

integrity (Woollacott & Simpson, 2001). JC-1 is present as a green-fluorescent monomer 

at low concentrations, and on excitation at 490 nm, it emits light at 527 nm. At high 

concentrations, i.e., >0.1 mM, and in a reducing environment “J-aggregates” form; these 

aggregates can be excited at 490 nm to emit light at 590 nm resulting in red fluorescence 

(Cossarizza et al., 1993; Reers et al., 1995). Typical healthy cells possessing high 

mitochondrial transmembrane potential are capable of concentrating JC-1 dye and thus 

generating a red-fluorescent signal. Assessing the ratio of green to red fluorescence in a 

plate reader assay provides a measure of a cell population’s relative health. Those cells 

having lost capacity to maintain high membrane potentials cannot concentrate the JC-1 

dye. After treatment with bilberry and H2O2 , adherent cells were incubated in 1 mL 

phenol- and serum-free DMEM/Hams F I2 medium containing JC-1 (1 pg/ml) for 30 

minutes at 37°C. The cells were then rinsed with PBS and fluorescence read in a 

FLUOstar Optima multifunctional plate reader (BMG Labtech GmbH, Offenburg, 

Germany).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ATP/ADP assay. The adenine tri-phosphate (ATP) and adenosine di-phosphate (ADP) 

assay measures the relative levels of adenylate nucleotides and allows calculation of an 

ATP/ADP ratio reflective of the cell state. Cells were grown in 96-well microplates for 

10 days, as described previously. The cells were rinsed twice with PBS and then 

incubated with the test compounds in serum- and phenol red-free medium prior to 

assaying for ATP and ADP. Utilizing a luciferase reaction that consumes ATP, the 

intensity of light emission (luminescence) was monitored on a FLUOstar Optima 

multifunctional plate reader (BMG Labtech GmbH, Offenburg, Germany ). ADP was 

then measured in the same well after its conversion to ATP. The lucerin-luciferase 

method was conducted with a validated, commercially available kit (ApoGlow™, 

Adenylate nucleotide ratio assay kit, Cambrex; Alexis Biochemicals, San Diego, CA, 

USA) per manufacturer instructions.

In brief, the culture plate was removed from the incubator and cooled to room 

temperature for at least 5 minutes. The assay was conducted at ambient temperature (18- 

22°C), the optimal temperature for the luciferase enzyme. One hundred pL of Nucleotide 

Releasing Reagent (NRR) were added to each plate well, and the plate was allowed to 

stand at room temperature for 5 minutes. A baseline 1-second integrated luminescence 

reading was made at an emission of 565 nm for each well prior to addition of 20 pL 

Nucleotide Monitoring Reagent (NMR) per well; this was followed by an immediate 1- 

second integrated reading (Reading A). After 10 minutes, another 1-second integrated 

reading was made (Reading B). At this point, 20 pL ADP-Converting Reagent was 

added to each well and allowed to stand for 5 minutes; the final 1-second integrated 

luminescence reading was then made (Reading C).
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For viability assay purposes, ATP values were sufficient. Comparing ATP 

concentration and ATP/ADP ratio to appropriate controls allowed for differentiation 

between apoptosis, cell growth arrest, cell proliferation, and necrosis in the same assay 

(Bradbury et al., 2000). The ADP/ATP ratio was calculated from measurements A, B, 

and C as follows: (C -  B)/A. Thus, not only were potentially beneficial actions o f the 

test botanical products examined, but their potentially toxic actions were examined as 

well.

Protein and mRNA Analysis 

Western Blot Analysis. Test culture medium was removed from the RPE cells, and cells 

were washed twice with PBS and then aspirated dry. ZO-1, RPE-65, Bcl-2, Bax, and 

pro-caspase-3, heme oxygenase-1 (HO-1), glutathione S-transferase pi class P-l form 

(GSTP1), and P-actin protein levels were determined by western blot analysis; this was 

done by homogenizing cells with CytoBuster Protein Extraction Reagent (Novagen via 

CALBIOCHEM, A Brand of EMD Bioscience, Inc., La Jolla, CA, USA), which 

contained protease inhibitors (Protease Inhibitor Cocktail Set III, CALBIOCHEM, A 

Brand of EMD Bioscience, Inc., La Jolla, CA, USA) at a dilution of 1:100 (10 fxL 

protease inhibitor cocktail in 1 mL Cytobuster). Cytobuster volumes were adjusted to 

yield a protein concentration of about 20 ng protein in 15 /xL solution, and the cellular 

protein mixture was centrifuged in eppendorf tubes for 5 minutes at 10,000 revolutions 

per minute. The retained supernatant was stored at -80°C until electrophoresis.

Protein concentration was determined using the Pierce BCA Protein Assay (Pierce 

Biotechnology Inc., Rockford, IL, USA) per company instructions. Samples were boiled
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in loading buffer for 5 minutes prior to gel loading. Loading buffer — comprised of Tris 

HC10.05 M (pH 6 .8 ), glycerol, 1 % sodium dodecyl sulfate (SDS), phenol blue (0.01 

g/mL) and beta-mercaptoethanol (50 pL/mL) —  was added to 20% (v/v). Samples 

containing 30 pg protein were loaded for electrophoretic resolution on a 12% SDS- 

PAGE gel and separated under reducing conditions at constant 200 V, 80 mA, 16 W for 

approximately 40 minutes. Separated protein was electro-transferred onto polyvinylidene 

difluoride (PVDF) membrane (Invitrogen Corporation, Carlsbad, CA, USA) at 4°C and 

30 V overnight. The membranes were blocked with 5% nonfat dry milk powder in PBS 

containing 0.05% Tween 20 for 60 minutes at room temperature or incubated overnight at 

4°C. Primary antibodies, anti human ZO-1, Bcl-2, Bax, pro-caspase-3, HO-1 and 

GSTP1, were IgGl isotype from mouse and were obtained from BD Biosciences (San 

Jose, CA, USA). These antibodies were diluted 1:1000 from the supplied concentration 

for use on the western blot membranes.

To control for protein loading, the membranes were probed with P-actin mouse 

monoclonal antibody obtained from Novus Biologicals, Inc. (Littleton, CO, USA), used 

at 1:50,000 dilution. After rinsing, blots were incubated for 60 minutes at room 

temperature, with a horseradish peroxidase-conjugated secondary antibody. Secondary 

antibody was sheep anti-mouse IgG and was obtained from GE Healthcare Biosciences 

Corp. (formerly Amersham Biosciences; Piscataway, NJ, USA), and used at 1:5000 

dilution. The primary antibody against human RPE-65 was a polyclonal rabbit serum and 

was obtained as a gift from Dr. Rosalie Crouch (Medical University of South Carolina, 

Charleston, SC, USA) and used at either 1:250 or 1:1000 dilutions. The secondary 

antibody used to visualize the RPE-65 antibody was a stabilized goat anti-rabbit HRP-
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conjugated antibody obtained from Pierce Biotechnology, Inc. (Rockford, IL, USA), and 

used at a 1:1000 dilution. The secondary antibody substrate was dura, femto, or pico 

SuperSignal West Chemiluminescent Substrates from Pierce Biotechnology, Inc. 

(Rockford, IL, USA), and was matched to the primary signal empirically. Exposed x-ray 

film was quantified by densitometry analysis using the Quantity One software (Bio-Rad 

Laboratories, Inc., Hercules, CA, USA).

Quantitative Real-Time Polymerase Chain Reaction. Total RNA was extracted from 

RPE cell cultures using the RNeasy Kits (QIAGEN Inc., Valencia, CA, USA) according 

to the manufacturer’s protocol. Briefly, cell-culture medium was completely aspirated 

and cells were washed with PBS; 0.10-0.25% trypsin in PBS was added. After cells 

detached from the dish or flask, medium containing serum was added to inactivate the 

trypsin and cells were transferred to a centrifuge tube and pelletted by centrifugation at 

300 x g for 5 minutes. Supernatant was completely aspirated. Cells were lysed and 

cellular RNA was stabilized by addition of RNeasy guanine thiocyanate buffer. RNA 

was isolated from the samples by binding to a silica gel based membrane in an ethanolic 

mixture and then eluted with water. Collected RNA was stored at -80°C until used for 

quantitative real-time polymerase chain reaction (rt-PCR) determinations.

First-Strand cDNA synthesis from 500 ng RNA from RPE cells was 

accomplished using Superscript™ III Reverse Transcriptase (RT) (Invitrogen 

Corporation, Carlsbad, CA, USA) in a 20-pL reaction volume. Briefly, 250 ng of 

random primers, 500 ng total RPE RNA, 1 pL 10 mM dNTP Mix (10 mM each dATP, 

dGTP, dCTP and dTTP at neutral pH), and 13 pL sterile, distilled diethylpyrocarbonate- 

treated water were added to a nuclease-free microcentrifuge tube. The reaction mixture

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was heated to 65°C for 5 minutes and then placed on ice for at least 1 minute. After a 

brief centrifugation, 4 pL 5X First-Strand Buffer, 1 pL 0.1 M DTT, 1 pL RNaseOUT 

(Recombinant RNase Inhibitor (40 units/pL, Invitrogen Corporation, Carlsbad, CA, 

USA), and 1 pL of Superscript III RT (200 units/pL) were added to the reaction; this was 

followed by further incubation at 25°C for 5 minutes before a temperature increase to 

42°C for 50 minutes. The enzyme was inactivated by heating at 70°C for 15 minutes. To 

remove RNA complementary to the cDNA, 1 pL (2 units) of E. coli RNase H was added 

and the mixture incubated at 37°C for 20 minutes. The resulting cDNA was used as a 

template for amplification in rt-PCR.

An ABI PRISM® 7000 instrument was used to conduct rt-PCR using LUX™ 

Fluorogenic Primers. Both certified LUX housekeeping gene primers and custom LUX 

primers were obtained from Invitogen Corporation (Carlsbad, CA, USA) for use in rt- 

PCR reactions. GAPDH and P-actin were Invitrogen proprietary 6-carboxy-4',5 '- 

dichloro-2',7'-dimethoxyfluorescein (JOE) dye-labeled housekeepng primers. HO-1 and 

GSTP1 primers were sequence designed and displayed in Table 1. These primers were 6 - 

carboxyfluorescein (FAM)-labeled to permit concurrent use with the JOE-labeled 

housekeeping primers.

Table 1. Heme oxygenase and glutathione S-transferase Lux Primer definitions and sequences

Gene Primer Strand 3’ Loc Sequence

HO-l X06985.1 633RL Reverse 633 cgcatATCTCCAGGGAGTTCATGcG
HO-1 X06985.1_633RL/611FU Forward 611 ACATTGCCAGTGCCACCAAG
GST-pi NM_000852.2_135FL Forward 135 cggtcGAAGGAGGAGGT GGT GACcG
GST-pi NM 000852.2 135FIV155RU Reverse 155 TAGGCAGGAGGCTTTGAGTGAG
GAPDH NM 002046 Invitrogen Certified LUX™ Primer Set
/3-Actin NM_001101 Invitrogen Certified LUX™ Primer Set
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A Master Mix was prepared (reaction volume of 50 pL) containg Platinum® 

qPCR SuperMix-UDG 25 pi (IX), LUX labeled #1 primer 100 nM, Unlabeled #1 primer 

100 nM, LUX™ labeled #2 (housekeeping) primer 100 nM, Unlabeled #2 

(housekeeping) primer 100 nM, ROX Reference Dye 500 nM., MgC12 3 mM, and 

autoclaved distilled water to 40 pL. Ten pL of cDNA generated from 500 ng of total 

RPE mRNA was added to the reaction and the mixture placed in the ABI PRISM® 7000 

programmed to cycle as follows: UDG reaction 50°C for 2 minutes; UDG 

inactivation/template denaturation 95°C for 2 minutes; 45 cycles of denaturation 95°C for 

15 seconds, hybridization at 55°C for 30 seconds, elongation at 72°C for 30 seconds; a 

hold at 60°C for 30 second; and a final melting curve analysis. Rt-PCR analysis of gene 

expression data was accomplished using the 2-AACT method as described by Livak & 

Schmittgen (2001). The HO-1 mRNA levels were normalized to that of GAPDH mRNA 

and expressed relative to control using the AACt method.

Data Analysis and Statistics. Results are expressed as means ± standard 

deviation (S.D.). Where appropriate, data were expressed as fold increases over values 

obtained under control conditions. Baseline characteristics of the treatment groups were 

compared using independent paired t-tests. Treatment effects as well as interactions were 

determined by repeated measures analysis of variance (ANOVA) using the Statistical 

Analysis Systems statistical software (SAS Institute, Inc., Cary, NC, USA). Linear 

regression analysis was also conducted using SAS. Minimum established criterion for 

data inclusion involved at least three independent experiments using independent cell 

cultures, with each condition within an experiment performed in triplicate. Differences 

ofp<0.05 were considered statistically significant.
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CHAPTER V

RESULTS 

Bilberry Extract

Bilberry Anthocvanin Material. Using a spectrum pH differetial method, total 

anthocyanins in the bilberry extract material was calculated as 26.1%. When determined 

by high pressure liquid chromatography/ultraviolet (HPLC/UV) and expressed as cyanin 

3-glucoside equivalents, anthocyanin content was 27.7% of dry weight. Total 

polyphenols, as determined with the Folin- 

Ciocalteu assay and using catechin as the 

reference phenol, showed 620 g/kg 

phenolics content. This suggests that the 

anthocyanins represented approximately 

45% of the extract’s phenolic content.

Analysis using high-pressure liquid 

chromatography/electrochemical detection 

(HPLC/ECD) (Figure 2) shows a typical 

anthocyanin pattern with resolution in the 60-110 minute retention time region for the 15 

bilberry anthocyanins previously reported. Using authentic standards (obtained from 

Polyphenols Laboratories AS, Sandnes, Norway), the following anthocyanins, in order of 

elution, were identified in the bilberry extract: delphinidin 3-galactoside, delphinidin 3- 

glucoside, cyanidin 3-galactoside, delphinidin 3-arabinoside, cyanidin 3-glucoside,
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petunidin 3-galactoside, petunidin 3-glucoside, cyanidin 3-arabinoside, peonidin 3-

galactoside, malvidin 3-galactoside, peonidin 3-glucoside, malvidin 3-glucoside, and 

malvidin 3-arabinoside.

monitoring. Figure 3 shows a typical

elution pattern of bilberry anthocyanin glycosides from HPLC using a UV detector 

monitoring at 520 nm. Chromatographic methods were synchronized by monitoring 

retention time patterns of eluting compounds; montoring was performed using 

photodiode array detection on both the HPLC/ECD and LC/MS/MS systems. This 

enabled determination of four chemical properties (i.e., retention time, UV absorption, 

oxidation potential, and mass fragmentation patterns) for identification of compounds in 

the bilberry extract or experimental samples.

Portions of the study required securing an anthocyanin-only fraction. Here, the 

original extract material was dissolved and applied to a semi-preparative low-pressure 

chromatography column packed with C l 8  solid phase. Eluted fractions were analyzed 

using HPLC/ECD and appropriate fractions combined to yield two pools: an anthocyanin 

pool and a pool containing the extract’s other phenolic components.

Figure 4A (upper panel) shows the HPLC/ECD analysis of fraction 72, which 

represents compounds isolated in fractions 70-75. These compounds were collected,

800_

bilberry extract’s compound identities was

accomplished using liquid

Anthocyanin confirmation of the
delphinidin 3-ghi petunidin 3-gala 

I petunidin 3-glu
peonidin 3-glu

moM din 3-ara

 J ‘ L r̂A. _/\J \ J
peonidin 3-g«la 3 -gala

chromatographic mass spectrometry 70.0 80.0 90.0 100.0

(LC/MS/MS) with selected ion Figure 3. UV 520 nm spectogram of 
anthocyanins from bilberry extract.
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combined into an anthocyanin pool, dried down, and reconstituted in the original bilberry 

extract concentration for cell treatment. Figure 4B (middle panel) shows fraction 58, 

which represents fractions 55-70 containing compounds other than anthocyanins (e.g., 

phenolic acids) in the bilberry extract material. Figure 4C (lower panel) shows five 

authentic purified anthocyanin standards. The standards were, in order of elution, 

cyanidin 3-galactoside, cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3- 

glucoside, and malvidin 3-glucoside.

Semi Prep Fraction 72

Semi Prep Fraction 58 
Ac and Phenolic Acids

Q.

Anthocyanin Standards

“ !/v'- !

Retention Time (min)

Figure 4. Fractionation of bilberry extract. Panel A represents HPLC/ECD pattern from a n 
anthocyanin-containing fraction. Panel B represents an analysis of a phenolic acid-containing 
fraction. Panel C is an injection containing five authentic purified anthocyanins: (1) cyanidin 3- 
galactoside, (2) cyanidin 3-glucoside, (3) petunidin 3-glucoside, (4) peonidin 3-glucoside, and (5) 
malvidin 3-glucoside..
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RPE in Vitro Model and Anthocyanin Cellular Uptake 

RPE Cell Culture. Initial experiments established a stable or reproducible hydrogen 

peroxide (H2 O2) lethal dose 50% (LD50) within the retinal pigment epithelium (RPE) cell 

culture model and measured resulting changes in glutatione (GSH) levels. Inducing a 

reproducible level of H2 0 2 -induced oxidative stress proved difficult as time changes in 

culture of as little as half a day resulted in dramatic changes in H2O2 LD5 0 . ARPE cells 

were grown as described by Dunn et al. (1996) until sufficient cell numbers were 

produced to permit plating for experimentation. A review of the literature regarding 

H2O2 treatment of RPE cell cultures revealed a wide range of culture times, which varied 

from undefined to sub-confluent overnight cultures to several months in culture 

(Choudhary et al., 2005; Garg & Chang, 2003; Geiger et al., 2005; Godley et al., 2002; 

Jarrett & Boulton, 2005; Kasahara et al., 2005; King et al., 2005; Lu et al., 2006; Marin- 

Castano et al., 2005; Sreekumar et al., 2005; Tate et al., 1999; Tsao et al., 2006; Yu et al., 

2005; Zareba et al., 2006). Likewise, data reported from RPE experiments revealed

B.

Figure 5. RPE cells grown on Transwell membranes for 10 days. Panel A shows 20x 
objective magnification. Panel B shows 80x objective magnification).
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differences in the observed H2O2 LD5 0 concentrations, which varied 60-800 pM. Many 

researchers did not establish the LD5 0 , and chose to work against a defined H2 O2 level 

with degree of damage defined by loss of cell viability versus time. However, in order to 

investigate bilberry extract’s potential protective properties against H2 0 2 -induced 

oxidative stress, it was necessary to establish a stable and reproducible level of oxidative 

stress in RPE cell cultures. Defining culture conditions that would yield a reproducible 

or reliable oxidative stress level became crucial to the outcome of these studies.

Therefore, studies were initiated to determine the conditions (primarily time required in 

culture after cell plating) that would result in a state of ARPE-19 cell differentiation of 

sufficient reproducibility for repeated oxidative stress experiments.

ARPE-19 cells can be cultured on plastic culture dishes or on Transwell
‘j

membranes. When plated sub-confluent at densities of 20,000 cells/cm , as reported by 

Dunn et al. (1996), and grown for 3 days, the monolayer appeared confluent and 

exhibited a “cobblestone” pattern. Cell counts at this point were approximately 60,000 

cells/cm2; however, when maintained in culture an additional 7 days (total 10 days in 

culture) cell counts approached 80,000 cells/cm2, and the cells appeared smaller and more 

tightly packed in the cobblestone pattern. The ARPE-19 cells were cultured per the 

American Type Culture Collection, (ATCC, Manassas, VA, USA); ATCC instructions 

called for a growth medium comprised of 1:1 mixture of Dulbecco’s modified Eagle’s 

medium and Ham’s F12 (DMEM/Hams F I2) medium containing 10% fetal bovine 

serum. While this seemed a high serum concentration, the cells tolerated it well and grew 

rapidly. After 3 days in culture, the medium’s fetal bovine serum concentration was 

decreased to 5% to slow division and encourage differentiation. Figure 5 (above) shows
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the typical RPE monolayer appearance similar to that described by the line originators 

(Dunn et al., 1996). The Transwell membrane pores are visible below the cell monolayer 

as small light dots (lower magnification) or as black holes (higher magnification). Cell 

nuclei are dark stained and oval in shape. During apoptosis, they exhibit “blebbing” prior 

to fragmentation.

Determining the State of RPE Differentiation. Evidence suggests that differentiated 

RPE cells in vivo remain quiescent, in G o  phase, and that they do not undergo significant 

cell division (Ts’o & Friedman, 1967). When placed in culture, however, RPE cells do 

reenter the cell cycle and proliferate (Korte et al., 1994; Stroeva & Mitashov, 1983). 

While in vitro RPE cells do not exhibit the complete complement of in vivo phenotypic 

characteristics, enough RPE characteristics remain to permit study of transport, injury, 

and survival (Newsome, 1983). As mentioned above, most studies examining effects of 

oxidative stress on RPE have been performed in vitro with RPE cells actively 

proliferating. These cells cannot conduct many functions of their differentiated 

phenotype the moment they leave the G o  phase. RPE cells play a critical role in the 

development and maintenance of adjacent photoreceptors by acting as a formed polarized 

epithelial barrier and by supporting the photoreceptors, where they provide nutrients and 

remove metabolic debris. When native “differentiated” and cultured dedifferentiated 

human RPE cells are compared in proteomic analysis, two proteins (a putative receptor 

for plasma retinol-binding protein (RPE-65) and cellular retinaldehyde-binding protein 

(CRALBP)) are present in native differentiated RPE cells (Alge et al., 2003). RPE cells 

exhibit differentiated properties when displaying cuboidal morphology, functional 

polarity, and expression of RPE-specific gene markers, including CRALBP and RPE-65.
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Alizadeh et al. (2001) used northern blot analysis to show that ARPE-19 cells 

cultured for 3 months displayed messenger RNA (mRNA) expression of CRALBP and 

RPE 65 while those grown only 3 days in culture did not. RPE-65 is a 61-kDa protein 

originally identified in RPE cells (Bavik et al., 1992; Hamel et al., 1993; Nicoletti et al.,

1995). Unlike observations by Alizadeh et al. (2001), our study detected human RPE-65 

and zona occludens-1 (ZO-1), a protein associated with tight junctions, by western blot 

analysis in ARPE-19 cultures as early as 1 day in culture (Figure 6 ), though the levels 

were very low. By 12 days in culture, RPE-65 reached 85.6 ± 5.2% percent of maximal 

expression. The antibody used against RPE-65 was a polyclonal rabbit serum rather than 

monoclonal antibody; therefore, 

determination of RPE-65 levels in cultures 

of human umbilical vein endothelial cells 

(HUVEC), human intestinal epithelial 

cells (Caco-2), and human-derived colonic 

epithelial cells (NCM460) were used as 

controls. RPE-65 levels in these 

endothelial and epithelial cells were 

minimal and did not exceed levels seen 

in 1 day-old RPE cultures.

Tight junctions are essential for 

establishing epithelial cell surface 

polarity and preventing lipid diffusion in 

the outer leaflet of the plasma membrane

RPE6S

a zo-1

Figure 6. Western blot analysis of RPE-65 
and ZO-1 in cultured RPE cells. RPE-65 and 
ZO-1 increase with time in culture. Other 
epithelial cells express little of these proteins. 
Human umbilical vein endothelial cells 
(HUVEC), human intestinal epithelial cells 
(Caco-2), and human-derived colonic epithelial 
cells (NCM460) were used as control 
endothelial and epithelial cells. Means + 
standard deviation (S.D.) represent at least 
three cultures (n=3). For 12-day and 23-day 
values (n=6), no statistical significance was 
detected.
a and b = significance (p<0.05) for RPE-65 and 
ZO-1, respectively, vs. 1 day mean and vs. 
means for other cell types.
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between apical and basolateral membrane domains (Jin et al., 2002). To confirm the 

culture time during which ARPE-19 differentiated to establish intact tight junctions 

capable o f barrier function, western blot analysis was conducted to determine the 

presence of ZO-1 (Tserentsoodol et al., 1998). Like RPE-65, ZO-1 was detected as early 

as 1 day in culture and increased in culture through day 12 (see Figure 5).

Z O -l’s presence is required for, but does not prove the existence of, established 

tight junctions. When combined with transepithelial resistance (TER) results, the 

existence of functional tight junctions could be established with more certainty. Both 

RPE-65 and ZO-1 reached 80% of their maximal value 10-12 days in culture. Continued 

culture to 63 days did not significantly increase levels of ZO-1. However, at 63 days a 

statistically significant decrease was observed in RPE-65, which suggested a possible loss 

of some RPE functions with increasing RPE age in culture.

TER experiments were performed to establish the existence of RPE tight 

junctions capable of inhibiting ion flow. RPE cells were grown on Transwell 

membranes, which allowed them to be moved into an apparatus permitting the 

application of a potential across the membrane and any monolayer barrier growing upon 

it. When tight junctions were present and functioning, electrical resistance could thus be 

measured.
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Figure 7 displays the results of 

TER experiments conducted in four 

independent cultures. TER was 

established and stabilized in RPE cultures 

by 10 days. TER measurements ranged 

from 50 to 120 ohms/cm in these

experiments; levels were lower than
Figure 7. Transepithelial resistance of cultured

those reported by Kannan et al. (2001) cells- Transepithelial resistance increases
with time in culture. All values are mean ± S.D.

for primary human RPE cultures, but in of four “ 'P” ?® ' “ »“■«> (”“ ?)•
a = significant (p<0.05) vs. 1 and 3 days;

, b = significant vs. 1, 3, and 6  days and not
agreement w.th values reported by signiflcan, (n.s.) vs 1 0 , 1 2 , and 2 1  days.

others for ARPE-19 cells (Dunn et al.,

1996).

It has been suggested that when fully differentiated, RPE cells in vivo withstand 

oxidative stress levels among the highest in the mammalian body. The cellular redox 

potential of most cells depends upon GSH maintenance as the primary source for 

reducing cell equivalents (Cotgreave et al., 2002). Alteration of intracellular GSH levels 

has been associated with both the production of reactive oxygen intermediates and 

activation of signal transduction pathways critical to cellular activity (e.g., division and 

proliferation arising from an oxidative stress defense, apoptosis) (Armstrong et al., 2002). 

RPE cells produce among the highest GSH levels in the body, illustrated by the 

additional requirement for inclusion of L-glutamine at 2 mM in the media to support both 

the high-energy requirements and serve as precursor for high GSH production (Evans et 

al., 2003; Newsholme et al., 2003); however, little is said of it in the original manuscripts
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regarding RPE culture. When sufficient precursor metabolites are present, RPE cells are 

normally well-protected against oxidative damage, and GSH levels are regenerated by 

recycling and sparing reactions through their antioxidant complements, such as catalase, 

superoxide dismutase, glutathione peroxidase, and vitamins E and C (Newsome et al., 

1994). To determine if, upon full differentiation, RPE cells displayed the greatest 

resistance to oxidative stress by exhibiting higher levels of GSH production, GSH levels 

were monitored at varying times in culture (Figure 8 ).
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Figure 8. Effect of time in culture on GSH levels in cultured RPE cells. All values are mean 
± S.D. of three independent cultures (n=3). a = significant vs. 1 and 3 days (p<0.05); b = 
significant vs. 1, 3, and 7 days and n.s. vs. 10 days.
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In Vitro Anthocvanin Uptake and 

Metabolism. Transwell chambers were 

utilized to investigate the basal to apical 

anthocyanin transport across membranes 

exhibiting a minimum TER of 100 

ohms/cm2. Serum-free DMEM/Hams F12 

media without phenol red and containing 1 

pg/mL bilberry extract were placed in the 

lower chamber of the Transwell apparatus. 

The upper chamber was equalized to the 

media level in the lower chamber with 

media containing no anthocyanins. At 30, 

60,120, and 240 minutes after loading 

bilberry into the lower chamber of the 

Transwell, 0.1 mL was withdrawn from 

the upper and lower chambers for analysis 

by HPLC/ECD (Figure 9). At 4 hours, the 

integrity of the tight junctions was tested 

by TER measurement and found to be 

intact at approximately 1 0 0  ohms/cm2.

Anthocyanin values in the upper 

chamber are plotted versus time (Figure 

10) for Transwell chambers with and

ST: 3.C * 7 » tA  0*t»

Delphlnldln-3-GlucoslM

I h m i w m

Figure 9. Representative anthocyanin 
movement across the RPE monolayer. 
Typical HPLC-ECD tracing of multiple 
analysis runs showing channel 6 (analysis at 
350 mV potential) of samples collected from 
the upper Transwell chamber.
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a t■
r> a  b

a b
With RPEab
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Figure 10. Delphinidin-3-glucoside crossing 
the RPE monolayer. Plot of Anthocyanin 
delphinidin-3-glucoside transport across the 
Transwell membrane with RPE cells 
(diamonds) and without RPE by passive 
diffusion through pores in Transwell membrane 
(squares). Data represent the mean + S.D. of 
three independent cultures (n=3). a = 
significant vs. samples from the preceding time 
period (p<0.05); b = significant vs. the 
corresponding time period samples from 
membranes without RPE cells. RPE cells 
maintained barrier function for over four hours.
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without cells. Transwell chambers without cells represented passive diffusion across the 

transwell membrane and showed system equilibrium by 2  hours; differences between 

system equilibria by 2 hours and 4 hours were not statistically significant. Transwell 

chambers carrying membranes on which an intact RPE monolayer was grown displayed a 

barrier function, but permitted the anthocyanin passage albeit at a rate slower that that of 

passive diffusion. Equilibrium was not achieved between the two chambers within the 4- 

hour experimental period; this suggests that bilberry extract in the media at 1 pg/mL did 

not perturb the cell sufficiently to disrupt tight junction integrity. Instead, it shows only 

that bilberry anthocyanins can pass through the RPE monolayer. These results do not 

prove that bilberry anthocyanins are internalized.

To determine if  anthocyanins were internalized in RPE, cells were grown for a 

total of 10 days (i.e., to confluence (3 days) plus 7 days) in T150 flasks and treated with 

bilberry extract. Although anthocyanins were detected in the apical chamber of the RPE 

transwell experiments within 30 minutes using 1 pg/mL bilberry extract, a concentration 

of 100 pg/mL bilberry extract was used to determine intracellular uptake levels. RPE 

cells exposed to this level for periods over 24 hours did not show signs of toxicity. 

Anticipated levels of intracellular anthocyanins were expected to be low.

Other cell types, such as enterocytes, take up and transport less than 5% of 

available anthocyanins in an in vitro system (McDougall et al., 2005). In this study, the 

combination of the larger cell numbers available from T150 flasks and use of 100 pg/mL 

bilberry extract resulted in sufficient anthocyanin extraction to permit HPLC/ECD and 

LC/MS/MS detection of individual anthocyanins from intracellular samples. Similar 

experiments have been conducted in bovine aortic endothelial cells in vitro using the
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flavonol morin at a concentration of 200 pmol/L where flavonoid uptake was 

demonstrated after 8  minutes of incubation (Schramm et al., 1999).

Little evidence exists regarding flavonoid uptake and sequestration into cellular 

organelles. Elderberry anthocyanins have been shown to localize both within the cell 

membrane and the cytosol of vascular 

endothelial cells in vitro following 

supplementation; this occurred as quickly 

as 1 hour, though this was the shortest 

incubation time used (Youdim et al.,

2000). Elderberry anthocyanins were used

at 1 mg/mL, with incorporation levels at 1 Flgnre n  of media ^  cytoso,
from RPE cells exposed to bilberry. This 

hour over 50% of the maximum values figure shows analysis of media containing
100 pg/mL bilberry and cell cytosol from 

observed after 4-hour incubations. cells exposed to bilberry-containing media

Elderberry anthocyanin levels incorporated after incubation with 100 pg/mL were 60% of

the maximum levels observed between 400 pg/mL and 1 mg/mL. Therefore, initial

bilberry anthocyanin incubations were conducted at 100 pg/mL. Although RPE cells are

not endothelial cells, calculations from evidence presented by Youdim et al. (2000)

suggest that, either by pinocytosis or GLUT/SLGT1 transporters, RPE could internalize

1.5 pg anthocyanins/mg protein to the cell interior in 15 minutes. Indeed, anthocyanins

were internalized and were sufficient for analytical detection by HPLC/ECD and

LC/MS/MS.

RPE cells were exposed to DMEM/Hams F12 media without phenol that 

contained 100 pg/mL bilberry extract for 15 minutes, with the cells subsequently rinsed 3
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times with DMEM/Hams F12 media free of bilberry. Cells were collected by careful 

scraping from the flask surface. The cells were lysed by the method of Youdim et al. 

(2000) and the cytosolic and microsomal components then isolated. Briefly, following 

incubation, culture plates were placed onto ice, the media removed, and the cells washed 

3 times with cold phosphate-buffered saline (PBS). Cells were collected by scraping with 

a teflon policeman into 1 mL PBS and centrifuged for 10 minutes at 8,000 g in a 

microfuge, after which time the supernatant was removed.

Cells were washed twice more with PBS and the pellet finally reconstituted in 300 

pL of 1% iced Triton X-100 in PBS. Cells were then disrupted by sonication in a chilled 

Eppendorf tube in an ice bath with a series of three 5-second pulses every 30 seconds 

(output 6 , Sonicator M234; MSE). Cell membranes and debris were pelletted at 10,000 g 

using a table-top ultracentrifuge (TL-100; Beckmann Coulter, Inc., Fullerton, CA, USA) 

and allowed to stand at 4°C for 30 minutes. Cell membranes and cytosol were again 

separated by centrifugation at 10,000 g for 15 minutes. A small amount of cytosol was 

removed for protein determination. An aliquot (60 pL) of IN HC1 was added per 300 pL 

cytosol prepraration prior to centrifugation and injected onto HPLC/ECD. Membrane 

pellets were extracted with 300 pL acidic 50% methanol in PBS; this was dried and any 

residue resuspended in mobile phase for HPLC analysis.

Un-metabolized anthocyanins were detected via HPLC/ECD in the cytosolic 

preparation of cells exposed to bilberry-containing media (Figure 11). Although the 

membrane-containing pellet was not analyzed for anthocyanins, the pellet from cells 

exposed to anthocyanins exhibited a blue/red color that was not elutable or washed away 

with repeated rinsing using either PBS or 50% methanol in PBS. Anthocyanins were not
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detected in the pellet’s methanolic extract. This suggests that, in addition to localization 

in cytoplasm, anthocyanins may also bind tightly to membrane proteins. Samples were 

analyzed by LC/MS/MS. Data from a 15-minute exposure to bilberry-containing media 

showed no detectable methylated or glucuronated products in the cytosolic or media 

preparations. However, the detection limits of both the HPLC/ECD and the LC/MS/MS 

may have precluded results for metabolites at this time point.

In experiments conducted in phosphate buffer at physiological pH, some purified 

anthocyanins standards become unstable with losses evident in as little as 2 hours (Dr. 

Wilhelmina Kalts, Agriculture and Agri-Food Canada, personal communication). During 

the conduct of this research, malvidin glycoside standards appeared to be more stable 

than other anthocyanins; therefore, a malvidin metabolite was selected in the effort to 

detect the presence of.anthocyanin metabolism in RPE cells in vitro. Kay et al., (2004) 

have demonstrated these metabolites in humans after consumption of a chokecherry 

extract. The proposed metabolic pathway for malvidin glucuronide production begins 

with hydrolysis of cyanidin 3-galactoside by p-galactosidease or lactase-phlorizin 

hydrolase producing the aglycone cyanidin. Cyanidin then undergoes glucuronidation by 

UDP-glucuronosyltransferase. Addition of methoxy groups at the 3' and 4' positions by 

catechol-O-methyltransferase followed by oxidation by cytochromes-P450 yields 

mavidin glucuronide, with a molecular formula of C23H2 3O13 and a m/z = 507/331. A 

mass/fragment table is shown in Table 2.

RPE-19 cells were cultured for 10 days in T150 flasks and exposed to 100 pg/mL 

bilberry extract in DMEM/Hams F12 media without phenol red for 4 hours. All media 

were collected and pooled for analysis by LC/MS/MS. An initial LC/MS scan of total
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ions showed several compounds with m/e 507 as well as m/e equivalent to those seen for 

anthocyanin aglycones. To confirm that these could be glucuronidated anthocyanidins, 

samples were committed to LC/MS/MS analysis using selected ion monitoring at m/e 

507. Chromatography revealed two compounds with molecular weights of 507 at 

retention times of 69.5 and 65 minutes and with fragments of 331.1 and 317.1 

respectively (Figure 12). These molecular weights and fragmentation patterns were 

expected from malvidin glucuronides and from methyl petunidin glucuronide.

Table 2. M/Z chart for LC/MS/MS selected ion analysis of anthocyanin metabolites

Aglycone Gal or Glu 
Plus 162

Glucuronide 
Plus 176

Methyl 
Plus 14

Glucuronide 
And Methyl 

Plus 190
Pelargonidin 271 433 447 285 461

Cyanidin 287 449 463 301 477

Peonidin 301 463 477 315 491

Delphinidin 303 465 479 317 493

Petunidin 317 479 493 331 507
Malvidin 331 493 507 345 521

Comparison of compound retention times in feeding media exposed to cells and 

reserved versus not exposed to cells signifies that these compounds formed as a result of 

RPE cell metabolism. The compounds were not present in the original feeding medium 

or in the bilberry extract material.
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These findings indicate that some bilberry anthocyanins are taken into the cytosol 

of RPE cells and metabolized by phase II enzymes. Both products are methylated, and of 

all the anthocyanins, malvidin is the most highly methylated anthocyanin. It is possible 

that other anthocyanins may have been hydrolyzed and subsequently glucuronidated and 

methylated, which would
A.

form malvidin glucuronides 

and methyl petunidin 

glucuronide products not 

immediately derived from 

malvidin or petunidin. If 

indeed malvidin products 

are the most stable, it is not 

surprising that they are 

found most easily in 

sufficient detectable 

quantities, especially if 

their concentrations are 

enhanced by derivation 

resulting from other 

anthocyanin methylation.
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Figure 12. Phase II metabolites in media from RPE cells 
exposed to bilberry. Panel A shows malvidin glucuronide. 
Panel B shows methyl petunidin glucuronide. Each panel 
shows the total UV chromatogram, parent 507 ion scan at 
respective retention times, and the primary fragment ion on 
the lower portion of the panel.
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RPE Oxidative Stress and Apoptosis 

Characterization of the RPE Oxidative Stress Model. As mentioned above, plating 

RPE cells at 20,000 cells/cm2 produced RPE cultures that reached confluence by 3-4 

days. Upon replacing the media, which contained 10% fetal calf serum, at 3 days with 

media containing 5% serum, RPE differentiated by 10 days in culture. As shown 

previously (Figures 6-8), by 10 days in 

culture RPE had developed tight junctions, 

expressed RPE-65, and reached near 

maximal GSH production. By 10 days in 

culture, RPE cultures also exhibited 

increased H2O2 tolerance and with a 

stabilized H2O2 LD50 of aproximately 500 

pM across all experiments conducted at 10 

days (Table 3).

Cell viability can be determined using MTT, JC-1, or ATP assays, as well as 

many other assays that depend upon cellular reductive capability. The majority of cell 

viability tests performed in this study were accomplished using the MTT and ATP assays. 

A typical MTT assay conducted on a 9-day-old culture is shown in Figure 13. Values are 

expressed as percent absorbed at 485 nm for control cells (i.e., cells not treated with 

H2O2). Values were corrected for the amount of absorbance in wells not treated with 

bilberry extract and that had been exposed to 2000 pM H2O2 (the dose found to be 100% 

lethal in these experiments).

Table 3. RPE days in culture versus H20 2 
L D 5o determined by MTT, JC-1, and ATP 
assays

Day in Culture Assay Type H202 LD50 Number of Dose 
Response Curves

3 MTT 41 ±14 8
3 ATP 108± 13 8
4 ATP 150 ±34 4
7 ATP 119±42 8
7 ATP 123 ±38 8
9 MTT 342 ±15 7
10 MTT 566± 14 8
10 JC1 493 ±39 8
10 JC1 520 ±34 8
10 JC1 527 ±34 8
10 ATP 473 ± 35 8
10 ATP 508 ±21 8
10 ATP 519 ± 17 8
12 ATP 585± 13 8
35 MTT 583 ±14 9
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Figure 13 shows a typical result from RPE cells exposed to bilberry extract in 

decreasing doses (from 1 to 10"5 mg/mL extract material) for 4 hours followed by a 2- 

hour exposure to H2O2 (doses increasing from 0 to 1000 fiM H2 O2). Neither these 

individual data (within a single experiment) nor the combined data across the three 

independent experiments showed statistically significant differences in cell viability 

when comparing bilberry extract-treated cells and -non-treated cells at any H2 O2 dose.

B ilberry  E x trac t
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—•— 0 E x trac t 
- - 1 m g/m L
- a -  10'1 m g/m L 
—■ -  10-2 m g/m L 
—o - 10-3 m g/m L 
—□ - 10-4 m g/m L 
— a -  10 - *  m g/m L
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Figure 13. H20 2-induced glurathione decreases in RPE: a dose response. Viability is 
expressed as percent control absorbance at 485 nm. Values were corrected for the amount of 
absorbance in non-bilberry extract-treated wells exposed to 2000 pM H20 2 and expressed as 
means. S.D. bars were excluded for clarity. Controls (0 H20 2) included n=8 wells, while the 
comparator(s) included each combined condition (extract followed by H20 2) in n=4 wells.
For 500 and 1000 pM H20 2, all conditions (0-1 mg/mL extract) were significant (p<0.05) vs. 
all conditions at or below 100 pM H20 2. No bilberry treatment differed significantly from its 
corresponding control (0 bilberry) at any H20 2 concentration.
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Whenever GSH utilization exceeds cellular capacity to produce it, levels of GSH decline. 

Glutathione-dependent enzymes glutathione peroxidase (GSH-Px) and glutathione 

reductase (GSHR), as well as the NADPH-producing enzymes glucose-6-phosphate 

dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) participate in 

the mechanism of defense against oxidation. GSH-Px reduces H2 O2 to water or alkyl 

peroxides to alcohols, at the expense of reduced GSH. GSH oxidation provides, 

therefore, an important protection against endogenous and exogenous peroxides. 

Oxidized glutathione (GSSG) is reduced back to GSH by the NADPH-dependent 

reductase, GSHR. GSHR is important not only for the maintaining required GSH levels 

but also for reducing protein thiols to their

native state.

While a trend toward decreasing 

cellular GSH levels is observed by 100 

pM H2O2 , no statistically significant 

difference (p<0.05) was reached between 

control cells and exposed cells until 500 

pM H2O2 (Figure 14). Oxidized GSSH 

levels show an increase over control 

values after treatmenmt with 100 pM 

H2 O2 . Of note, cellular GSSH levels are 

normally much lower than GSH levels.
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Figure 14. MTT assay for viability of cells 
exposed to H20 2. Here, H20 2 decreases 
GSH levels reaching significance at 500 pM. 
Data represent the mean ± S.D. of three 
independent experiments (n=3) except for 
1000 pM H20 2 where n=l precluding 
statistics, a = GSH significant (p<0.05) vs. 
control (0 pM H20 2); b = Oxidized 
glutathione (GSSG) significant (p<0.05) vs. 
control (0 pM H20 2).
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Bilberry Extract Effects on Radical Formation. RPE cells are damaged by oxidant 

treatment and undergo apoptosis, a possible fate during the early phase of retinal 

pathologies (e.g., AMD). The main injury target is mitochondria, an organelle which 

undergoes increasing genomic damage in other post-mitotic tissues during aging. RPE 

oxidative stress is induced by generators of reactive oygen species (ROS), including 

H2O2 (Jahngen-Hodge et al., 1997), high glucose concentrations (Du et al., 2003), UV 

radiation (Liu et al., 1995), and the industrial radical generators 2,2'-azobis(2- 

amidinopropane)dihydrochloride (AAPH) and 2,2'-azobis(2,4-dimethylvaleronitrile) 

(AMVN) (Ballinger et al., 1999). Anthocyanins are porent quenchers of radicals in vitro', 

however, in this project, pre-incubation with bilberry extract did not protect RPE cells 

from H^CVinduced mortality. Therefore, 

we sought to determine whether bilberry 

extract could inhibit lUC^-induced 

intracellular radical generation in ARPE- 

19. Using the dichlorodihydrofluorescein 

(DCF) assay, experiments were conducted 

to determine whether pre-exposure of RPE 

cells to bilberry extract resulted in an 

intracellular quenching of radicals.

Confluent 10 day-old cultures 

were challenged with H2O2 , the cells 

rinsed with PBS, and then loaded with 5 

pM 2 f,7 -dichlorodihydrofluorescein
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Figure 15. Bilberry prevention of H20 2- 
induced intracellular radicals. Here, ARPE-19 
cells were pre-incubated with bilberry extract for 
4 hours prior to exposure to 500 pM H20 2, 
showing lower levels of intracellular radical 
generation. Data represent the means ± S.D. of 
three independent experiments, 
a = significant (p<0.05) vs. control (0 extract); 
b =significant (p<0.05) vs. 10'3 and 10'5 mg/mL 
bilberry extract.
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diacetate (DCF-DA). At 30 minutes, fluorescence was measured. Pre-incubation with 

bilberry containing-media diminished intracellular radical formation induced by 500 pM 

H2O2 . Low bilberry extract levels (10~5 mg/mL) decreased radical formation by 18% 

(Figure 15); however, even high bilberry extract levels (0.1 mg/mL) failed to abolish 

radical formation induced by by 500 pM H2O2 .

Bilberry Extract Effects on Mitochondrial Function. Oxidative stress-induced

apoptosis involves alterations in the 

mitochondrial membrane pores that will 

result in pore opening and mitochondrial 

potential loss. When this happens, the 

mitochondria lose the ability to produce 

ATP. Figure 16 shows ATP levels in a

representative experiment; here, RPE cells 

of differing times in culture were pre­

incubated with varying doses of bilberry 

extract for four hours before a two-hour 

exposure to increasing H2O2 levels. As 

shown earlier, culture time affected RPE 

cell viability after H2 O2 treatment. 

Comparing RPE cells grown to 10 days in 

culture to those grown to seven days in 

culture, Figure 16 reveals differing 

capability to resist F^CVinduced loss of
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Figure 16. ATP levels in ARPE-19 cells 
after H20 2 treatment and after pre-incubation 
with doses of bilberry extract. ARPE-19 
cells were pre-incubated with doses of 
bilberry extract for 4 hours and then exposed 
to H20 2 for 2 hours. Values are expressed as 
means. S.D. bars are excluded for clarity. 
Controls (0 H20 2) n=8 wells and each 
combined condition (extract followed by 
H20 2) n=4 wells. In 7-day cultures, values 
for all points >100 pM H20 2 were 
significantly different (p<0.05) from control 
values. In 10-day cultures, values 
significantly different (p<0.05) from controls 
were not achieved until 500 pM H20 2. No 
bilberry treatment was significantly different 
from its corresponding control (0 bilberry) at 
any concentration of H20 2, with the 
exception of 7-day cultures pre-incubated 
with 10'3 and 10'5 mg/mL extract which were 
different from untreated controls (p<0.05).
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mitochondrial function. In independent 

experiments (four at 10 days in culture, 

three at seven days in culture, and three at 

three days in culture), no significant 

protection against EkCVinduced loss of 

mitochondrial function was detected, no 

matter the bilberry extract concentration. 

Bilberry Extract Effects on Apoptosis. 

The Bax/Bcl-2 ratio was altered in 10-day- 

old RPE cells by exposure to increasing 

H2O2 doses. As few as 2 hours of 

exposure to 500 fiM H2O2 altered the 

Bax/Bcl-2 ratio in favor of apoptosis 

(Figure 17). By 22 hours post-treatment, 

cells that had not succumbed to the 

treatment and entered apoptosis 

established an anti-apoptotic Bax/Bcl-2 

ratio. These cells were more apoptotis 

resistant upon a second H2O2 exposure. 

This is not an unrecognized phenomenon 

and it is referred to as preconditioning. 

Cells subjected to transient oxidative stress 

respond by up-regulating oxidative stress

Figure 17. Bax/Bcl-2 ratio in RPE cells 
exposed to H20 2. Treatment with either 500 
pM or 1000 fiM H20 2 altered the Bax/Bcl-2 
ratio in RPE cells in favor of apoptosis. 
Increasing the exposure from 2 hours to 4 
hours did not enhance the effect. Data are 
expressed as the mean of three experiments ± 
S.D. a = significance (p<0.01) vs. control.

Figure 18. Bax/Bcl-2 ratio in RPE cells pre- 
incubated with bilberry extract prior to H20 2 
exposure. Pre-incubating RPE cells for 4 
hours with bilberry extract did not inhibit 
changes in the Bax/Bcl-2 ratio induced by 2- 
hour incubation with either 200 or 500 pM 
H20 2. Data represent the mean of three 
experiments ± S.D. No treatment with 
bilberry extract was different from its 
corresponding 0 bilberry control, 
a = significance (p<0.05) vs. cells untreated 
with H20 2.
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defense systems (Jang et al., 2004). Increasing H2O2 concentration from 500 juM to 1000 

/xM, a dose producing 100% lethality, produced no additional change in the Bax/Bcl-2 

ratio, nor was there increased change with additional exposure time (Figure 17). Bax 

protein levels remained stable and unaffected by H2O2 exposure. However, the Bax/Bcl-

2 ratio was affected because Bcl-2 protein levels were down regulated by H2O2 . Bilberry 

extract down regulated Bcl-2 protein level but only slightly and not significantly. By 24 

hours, Bcl-2 levels recovered in those cells surviving H2O2 exposure.

Pre-incubating RPE cells with bilberry extract at concentrations between 10"6 

mg/mL and 1 mg/mL failed to prevent H2C>2-induced increase in Bax/Bcl-2 ratio (Figure 

18). To determine whether mitochondria membrane pores were affected by H2O2 , cells 

were exposed to 200-500 fiM H2O2 ; GSSG levels increased while GSH levels showed no 

significant decrease from control levels.suggesting increased oxidation, but not proving 

decreased reductive power in the RPE cells.

By four hours after H2O2 exposure, cleavage of procaspase-3 to its active caspase-

3 form is evident by western blot analysis. Only one experiment was conducted to verify 

that caspase cleavage occurred in response to H2O2 exposure. While just barely 

significant (p<0.046), pre-incubation with bilberry appeared to ameliorate but did not 

abolish procaspase-3 cleavage, even at 0.1 mg/mL bilberry extract.
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Bilberry Extract Induction of HO-1 and GSTP1 

Bilberry Extract Effects on Protein Levels. Western blot analysis of protein collected 

24 hours after treatment showed that RPE cell exposure to 500 pM H2O2 for 2 hours 

resulted in a 10-fold increase in HO-1
A

protein expression (Figure 19). RPE cells 

were cultured for 10 days and pre- 

incubated for four hours with either 

serum-free media or serum-free media 

containing 1 mg/mL bilberry extract. The 

media containing bilberry extract was 

washed from the cells with two washes of 

fresh media; the cells were then incubated 

an additional 2 hours with serum- and 

phenol red-free media containing the 

indicated H2O2 concentrations. Next, the
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media was replaced with media containing 

2% serum, and 24 hours after treatment 

the cells were harvested and protein 

extracts prepared for western blot analysis. 

HO-1 protein values were adjusted to 

corresponding /3-actin values for the 

sample obtained within the same gel. 

Results indicated that 24 hours after cell

0 200 500

H20 2 Concentration (^M)

Figure 19. Western analysis of HO-1 
protein in RPE cells cultured for 24 hours 
after exposure to bilberry extract and H20 2. 
Panel A shows an example of the western 
analysis gel. HO-1 levels were 10-fold 
higher than control levels when sampled 24 
hours after H20 2 exposure. This HO-1 up- 
regulation was not prevented by pre­
incubation for 4 hours with 1 mg/mL bilberry 
extract in media. Data represent the mean ± 
S.D. of three independent experiments, 
a = significant (p<0.05) vs. control cells (no 
treatment); b = significant (p<0.05) vs. cells 
treated with 200 pM H20 2; c = significant 
(p<0.05) vs. control cells (untreated cells).
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exposure to 200 pM H2O2 , HO-1 protein 

had not increased. RPE cells treated with 

500 pM H2O2 showed a 10-fold increase 

in HO-1 that was not prevented by bilberry 

extract pre-incubation. In the control and 

200 pM H2O2 treatment groups, a 4-hour 

pre-incubation with 1 mg/mL bilberry 

extract produced a significant increase in 

HO-1 protein expression at 24 hours.

Figure 20 shows a dose response 

relationship for up-regulation of HO-1 

protein levels in RPE cells in response to 4 

hours o f incubation with bilberry extract 

when observed 6 hours after exposure. 

Samples were treated with bilberry extract 

for 4 hours, rinsed, and then remained 2 

hours further in serum-free medium prior 

to sample collection for western blot 

analysis. At 6 hours after first exposure to 

bilberry extract, a 2- to 2.5-fold increase 

was noted for the highest levels of bilberry 

extract used (0.1 and 1 mg/mL).

Extending time in culture to 24 hours did

Figure 20. Bilberry dose response effect on 
HO-1 protein expression. Each displayed 
data point indicates the mean of at least three 
data points for a given dose of bilberry 
extract in different independent experiments. 
Only one experiment was conducted 
measuring HO-1, which contained a 1 
mg/mL extract level. Collectively the 
scattergram displays a bilberry extract dose 
dependent increase in HO-1 protein.
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Figure 21. Bilberry, BHT, and H20 2- 
induced increases in HO-1 protein. The 
figure shows increased HO-1 protein levels 
by western blot analysis in response to 
treatment with bilberry extract media 
containing 300 and 1000 [iM BHT or 500 
pM H20 2. Bars represent mean ± S.D. of at 
least three independent experiments, 
a = significance (p<0.05) vs. control 
(untreated cells).
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increase the level of bilberry induced-up-regulation (see Figure 19). Exposure to 

bilberry extract did not add more than a 2.5-fold increase to any treatment group; 

therefore, in all subsequent experiments cells were exposed to bilberry extract or pooled 

fractions of the extract for 4 hours and harvested for analysis at 6 hours after time of first 

exposure.

HO-1 protein levels increased in a 

dose dependent manner when assessed 

after 4 hours incubation with 10'1 or 10'2 

mg/mL bilberry extracts (Figure 21).

Butylated hydroxytoluene (BHT) a known 

up-regulator of the antioxidant response 

element controlled genes, was used at 300 

and 1000 pM as a positive control. RPE 

cells were also exposed to H2O2 at 500 pM 

for a 2-hour period. In similar 

experiments, these same treatments 

increased GSTP1 protein levels (Figure 22).

Bilberry Extract Effects on mRNA Levels. RPE cells cultured for 10 days were pre- 

incubated with increasing doses of either bilberry extract or the known antioxidant 

response element (ARE) agonists BHT or p-naphthoflavone (BNF) at 300 pM and 10 

pM, respectively, for 4 hours. Total RNA was immediately extracted, and RNA was 

analyzed by rt-PCR for human HO-1 mRNA, human GSTP1 mRNA, and normalized to 

both /3-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNAs.
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Figure 22. Bilberry-induced increase in 
GSTP1 protein levels in RPE. Data show an 
increase in GSTP1 protein by western blot 
analysis in response to treatment for 4 hours 
with media containing bilberry extract (10'2 
and 101 mg/mL), 300pM BHT, or 500 pM 
H20 2. Data bars represent mean + S.D. of at 
least three independent experiments, 
a = significance (p<0.05) vs. control 
('untreated cells'!.
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Crosschecking against two 

housekeeping genes 

assured data were not 

inadvertently corrected to a 

gene that might be altered 

by the experimental 

treatments. Data is 

expressed as fold increases 

over untreated controls 

using the AACt method.

Rt-PCR analysis by 

RPE mRNA exposed to 

bilberry extract doses 10"1 to 10'3 mg/mL showed up-regulation of HO-1 and GSTP1

•5
mRNA; however, while a general trend was observed, 10' mg/mL bilberry did not show 

a statistically significant up-regulation in these experiments (Figure 23). ARE agonists 

BHT and BNF also showed increases in mRNA for these two enzymes (Figure 23); 

however, BHT did not reach a significant difference (p<0.05) from controls for HO-1 

mRNA. While a trend is noted, lack of statistical significance was likely due to the 

limited number of experiments and a scatter in the data. It is also probable that an 

increased dose of BHT would have shown a difference. BNF, which activates 

antioxidant and xenobiotic response elements via the same mechanism but more potently 

than BHT, does show an up-regulation of HO-1 mRNA.
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Figure 23. Effects of bilberry extract on HO-1 and GSTP1 
mRNA levels in RPE cultures. Data bars represent the mean 
± S.D. of three independent experiments, a = significance 
(p<0.05) vs. control (untreated cells).
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To determine the extent to which anthocyanins or other phenolics in the bilberry 

extract up-regulate HO-1 and GSTP1 mRNA, the anthocyanin and the phenolics pools 

that were chromatographically isolated from the original bilberry extract were tested in 

RPE cells grown 10 days in culture. Cells were pre-incubated with respective pools at 

concentrations of phenolics 

or anthocyanins 

representative of (i.e., 

contained within) the 

original bilberry extract 

material. The RPE cells 

were treated with 10'1 to 10 

3 mg/mL bilberry extract 

equivalents for 4 hours and

total RNA was extracted.
Figure 24. Effects of bilberry anthocyanins and phenolics 

Rt-PCR was conducted for pools on HO-1 mRNA levels in RPE cultures. Data bars
represent the mean ± S.D. of three independent experiments, 

human HO-1 mRNA and a = significance (p<0.05) vs. control (untreated cells).

the housekeeping gene GADPH mRNA. HO-1 mRNA levels were normalized to 

GAPDH and expressed relative to that of untreated control culture samples using the 

AACt method.

Both the anthocyanin and the phenolics pools were able to induce the up-
i -y

regulation of HO-1 mRNA at concentrations contained within 10' to 10' mg/mL 

bilberry extract (Figure 24). Again, the 10'3 mg/mL equivalent level showed a trend but 

did not reach a statistically significant difference from untreated cells. The up-regulation
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observed at 4 hours was not different between the anthocyanin and phenolics pools. In 

fact, up-regulation was roughly equivalent, which suggests that the HO-1 up-regulation 

observed at 4 hours for the original bilberry extract (Figure 23) represents additive effects 

of both anthocyanins and phenolics fractions. While the data for 10'1 mg/mL bilberry 

treatment suggest a possible synergistic effect in up-regulating HO-1 mRNA for 

anthocyanin and phenolics components when combined in the intact bilberry extract, this 

synergistic effect was not observed in 10' mg/mL bilberry treated RPE cells. More 

investigation is required; however, this data implies that HO-1 up-regulation results only 

from polyphenolics and phenolic components of the mixture and not to other ingredients 

within the extract.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

Despite the high level of metabolic and environmental stresses to which retinal 

pigment epithelium (RPE) cells are subjected, some researchers do not believe that RPE 

undergo significant cell division (Ts’o & Friedman, 1967). Differentiated RPE cells are 

thought to be quiescent and to remain in Go phase for their lifetime in vivo. When placed 

in culture, however, it is clear that RPE cells re-enter the cell cycle and proliferate (Korte 

et al., 1994; Stroeva & Mitashov, 1983). While RPE cells in vitro have not yet been 

proven to fully complement in vivo functionalities, sufficient phenotypic characteristics 

are conserved in culture to make them extremely useful for study of RPE injury, survival, 

differentiation, and transport (Newsome, 1983).

Only a few studies examining the effects of oxidative stress on RPE have been 

performed with cultured, proliferating RPE cells. For example, tert-butylhydroperoxide 

(tBH), a chemical oxidant, induces cell death in cultured human RPE cells (Weigel et al., 

2002). In proliferating cells, glutathione (GSH), its amino acid precursors, and 

dimethylfumarate (an inducer of GSH synthesis) protect RPE cells from tBH-induced 

injury (Nelson et al., 1999). When tBH reaches sufficient concentrations, the resulting 

damage induces apoptosis via a Fas-mediated pathway. While these studies demonstrate 

induced oxidative damage to the RPE, in vivo observation of proliferating cells may not 

accurately reflect apoptosis as it occurs in quiescent cells.
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In the present study, fully differentiated, non-dividing, cultured RPE cells were 

used to study oxidant-induced injury and potential protective effects of bilberry 

anthocyanins. Differentiation was verified by monitoring the production of RPE-specific 

proteins and by observing maximum levels of antioxidant production (Figures 6, 7, and 

8). Results demonstrated that RPE cells were not fully differentiated when they reached 

confluence. In fact, reduction in culture media serum and continued culture to 10 days (7 

days beyond the point of visual confluence) were required to reach their optimal oxidant 

defense status as well as the highest levels of RPE-specific proteins (e.g., RPE-65). Cells 

grown 7 days in culture were easily damaged by relatively low levels of hydrogen 

peroxide (H2O2), while an additional 3 days in culture yielded cells containing higher 

levels of reduced GSH than most other mammalian cells. These cells can withstand 

extraordinary levels of H2O2 , in the 4-500 pM range.

Anthocyanins have physiological effects that include inhibition of cell 

proliferation (Katsube et al., 2003; Marko et al., 2004; Seeram et al., 2004; Shih et al., 

2005), antioxidant capacities (Faria et al., 2005), and modulation of inflammatory 

processes (Rossi et al., 2003). These physiological effects also arise from over­

expression of heme oxygenase-1 (HO-1) (Morita et al., 1997; Otterbein et al., 2003; Poss 

& Tonegawa, 1997; Willis et al., 1996). Results from the present study suggest that 

bilberry anthocyanins either prevent or slow the radical damage that could lead to age- 

related macular degeneration (AMD) pathology via their ability to up-regulate HO-1 

(Figures 19, 20, and 21) . The fact that anthocyanins can up-regulate genes for HO-1 and 

for glutathione S-transferase pi class P-l form (GSTP1), a phase II metabolic enzyme, 

indicates they may also be able to affect important intracellular signal transduction
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pathways, such as modulating phosphorylation events that could lead to other health 

benefits. At the very least, anthocyanin ability to up-regulate phase II metabolism hints 

that anthocyanins could serve as dietary anticancer agents (Bomser et al., 1996). This 

study supports the hypothesis that anthocyanins may be involved in mechanisms other 

than direct radical quenching. One possible mechanism includes enzyme system 

modulation normally regulated by redox status via signal transduction pathways.

Effects on RPE Apoptosis and Phase II Up-regulation

Consumption of fiuits and berries has been associated with decreased risk of 

developing age-related disorders. Moreover, epidemiological evidence suggests that 

anthocyanins in fiuits and berries may contribute to this protective activity. In vitro 

evidence demonstrates that anthocyanins and their aglycones produce a wide range of 

physiological effects in mammalian cells (Middleton et al., 2000). Indeed, the 

epidemiological evidence discussed earlier in this dissertation hints at health benefits 

derived from the consumption of anthocyanin-bearing fiuits and berries. Among berries, 

bilberries are highest in both anthocyanin content and anthocyanin variety (Wu & Prior, 

2005).

Legend and traditional medical practice purport an association between health 

benefits and bilberry consumption. However, modem medicine has yet to establish 

unequivocally either health benefits or mechanisms of action for bilberry anthocyanins. 

In the 1960s, scientific observations from Europe suggested that bilberry extract 

consumption improved dark adaptation and nighttime visual acuity (Gloria & Peria,

1966; Jayle & Aubert, 1964; Terrasse & Moinade, 1964). Several recent mechanistic
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studies suggest that anthocyanidins may stimulate rhodopsin regeneration (Bastide et al., 

1968; Matsumoto et al., 2003). Conversely, a double-blind, placebo-controlled, 

crossover study conducted on 15 young and healthy United States Navy personnel found 

no statistically significant improvement in either night visual acuity or night contrast 

sensitivity in response to a three-week supplementation of thrice daily administrations of 

160 mg bilberry extract containing 25% anthocyanin (Muth et al., 2000). A 2004 

systematic review on bilberry use to improve night vision concluded that, to date, 

controlled studies fail to demonstrate vision improvement in healthy eyes (Canter & 

Ernst, 2004). The authors noted, however, an absence of rigorous clinical interventions 

with bilberry in patients with impaired night vision or diagnosed eye disease. A literature 

review also revealed a lack of intervention studies of sufficient duration to determine 

effects of anthocyanin use on degenerative eye disorders (e.g., cataracts, AMD, or other 

retinopathies). Despite these mixed results, more recent trials have not been undertaken 

because of anthocyanin’s low bioavailability and the belief among researchers that no 

plausible mechanism of action has been presented for such low levels. The results of the 

present study, combined with the results of other cancer-related studies, suggest that 

anthocyanins could modulate protective enzyme systems at very low concentrations.

Several potential mechanisms exist regarding how bilberry anthocyanins could 

modify vision and long-term eye health. In addition to stimulating re-synthesis of 

rhodopsin, thereby aiding in dark adaptation and night vision, other proposed 

anthocyanin effects include: antioxidant activity, anti-inflammatory activity, retinal 

enzyme activity modulation, intracellular matrix stability, and microcirculation or
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vascular integrity. Many of these proposed mechanisms require more rigorous research 

or clinical trials in subjects with impaired vision or early signs of retinopathies.

Confounding factors —  including the age and visual function status of the 

subjects, the formulation of the supplement, and duration of the treatment — that were 

present in previous studies may have contributed to the mixed evidence presented above. 

While a deeper understanding of the biochemical effects of anthocyanins and other 

phenolics and polyphenolic antioxidants would improve future study design, little 

information exists regarding their distribution, metabolism, and action in the retina. 

Studies using tissues other than retinal tissue have demonstrated that anthocyanins 

suppress tumor growth (Kamei et al., 1998), inhibit the epidermal growth-factor receptor 

(Meiers et al., 2001), and reduce platelet aggregation and lipid peroxidation (Ghielli et 

al., 1998; Pawlowicz et al., 2000). Further, flavonoids have been shown to up-regulate 

phase II enzymes, including glutathione-S-transferase (GST), UDP- 

glucuronosyltransferase, NAD(P)H:quinone oxidoreductase 1, and epoxide hydrolase; 

however, these studies have not focused on anthocyanins (Zhang & Gordon, 2004).. The 

promoter regions of the genes for phase II enzymes are transcriptionally regulated by the 

xenobiotic response elements and antioxidant/electrophile response elements 

(ARE/EpRE) (Nguyen et al., 2003). In their quinone form, flavonoids, including 

anthocyanins, may influence redox-sensitive pathways by reacting directly with thiols 

(Boots et al., 2003) affecting GSH status (Carlsen et al., 20031; Kessler et al., 2003) or 

inducing oxidative respiratory bursts in mitochondria (Hodnick et al., 1986). These 

actions could trigger signal mechanisms that activate the ARE/EpRE and xenobiotic 

response elements.
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In our study, pre-incubation with bilberry extract did not significantly decrease 

hydrogen peroxide (H2O2) toxicity in fully differentiated RPE cells in vitro (Figures 14, 

16, and 18). In contrast, pre-incubation with bilberry extract, even at low concentrations 

(10 ng/mL extract), decreased intracellular radical formation (Figure 15). Western blot 

analysis showed that 500 pM H2 O2 (the observed LD50 in 10-day-old RPE cultures in 

these experiments) induced an increase in HO-1 protein expression that was not inhibited 

by pre-incubation with bilberry extract (Figure 19). Indeed, pretreatment with bilberry 

extract alone induced an increase in HO-1 protein expression in a dose-dependent manner 

within 4 hours (Figures 20 and 21). It is possible, then, that while bilberry extract 

internalized by RPE cells can diminish intracellular radical formation induced by H2 O2 , 

the concentrations of anthocyanins are insufficient or ineffective in preventing apoptosis 

induced by radical damage to cell surface proteins and lipids or induced via death 

receptor mechanisms. It is also possible that oxidative damage to surface receptors by 

H2O2 could modulate signal mechanisms that would be unaffected by reductions in 

intracellular radicals by anthocyanin pre-incubation.

Studies on anthocyanin bioavailability show that plasma anthocyanin levels can 

reach 10'8 tolO’7 M concentrations; however, studies of anthocyanin pharmacological 

effects, such as inhibition of cancer cell proliferation, show anthocyanin and 

anthocyanidin bioactivities at concentrations of 10'5 to 10'4 M. Anthocyanins barely 

inhibit growth at concentrations below 10'4 M. They have been shown to affect enzyme 

systems of importance in cancer research (e.g., tyrosine kinase, cyclooxygenase (COX) 

enzymes, and phosphodiesterases), where anthocyanins behave as second messenger 

modulators (Cross & Dexter, 1991; Marko et al., 2004; Mestre et al., 1999; Seeram et al.,
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2001; Wang et al., 1999). It is unknown whether anthocyanins, anthocyanidins, or their 

conjugate forms achieve in vivo concentrations sufficient to explain anti-carcinogenic, 

anti-proliferative, or pro-apoptotic mechanisms. The evidence that these same effects 

exist in vitro suggests a possible role for these compounds in AMD.

To date, numerous studies have been conducted on the potential health benefits of 

anthocyanidins, the aglycones of anthocyanins. However, these compounds, while 

produced by lactase phloridzin hydrolase (LPH) in the lumen before enterocyte 

absorption, are not likely to circulate or enter tissues in high concentrations relative to 

anthocyanins transported directly by the sodium-dependent intestinal glucose carrier 

(SLGT1) or relative to anthocyanin phase II metabolites circulating in plasma. Indeed, 

anthocyanidins are not the major form found in plasma after ingestion of anthocyanin- 

rich foods or extracts (Milbury et al, 2002; Kay et al., 2005).

Anthocyanins are unique among flavonoids in that they are absorbed and 

circulated in mammals as both parent plant-derived glycosides and as metabolites (Kay et 

al., 2004). However, at this time, little is known about concentrations in tissues such as 

the retina. Further study is necessary to determine which metabolic forms may be more 

active in vivo with regard to the cited effects. Due to the lack of purified phase II 

metabolites of bilberry anthocyanins, the studies cited cannot distinguish between the 

effects of parent glycosylated anthocyanins and RPE metabolites of these compounds 

with regard to quenching radicals or up-regulating HO-1 and GSTP1. However, this 

study’s in vitro data do suggest that bilberry anthocyanins absorbed from the diet and 

transported in circulation could be taken up and metabolized by RPE cells (Figures 9,10,
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11, and 12). Bilberry anthocyanins were detected unchanged in cytosolic fractions from 

bilberry extract exposed to RPE cells (Figure 11).

Obstacles to determining physiological concentrations of anthocyanins in such 

transport experiments are primarily a problem of analytical detection limits. The 

relevance of high anthocyanin concentrations tested in the uptake experiments to 

potential physiological bioactivity as antioxidants or as modulators of signal transduction 

and gene expression mechanisms is unknown. High doses of bilberry extract (1 fig to 1 

ng/mL) in these experiments were necessary for detection by high pressure liquid 

chromatography with electrochemical detection (HPLC/ECD) or liquid chromatographic 

mass spectrometry (LC/MS/MS). In all likelihood, such concentrations would not be 

achieved in eye tissue in vivo by dietary intake. The results do, however, show that 

anthocyanins can be internalized by RPE cells in vitro. Once radiolabeled anthocyanins 

become available to the research community, these experiments should be repeated to 

determine uptake at physiologically relevant levels. It is important to note that cell 

fractionation is seldom free from cross-contamination; it distinguishes only between what 

is inside the plasma membrane and what is bound to the membrane or external to the 

cells. For example, the “cytosolic” fraction from these experiments could also contain 

material that would have resided within vacuoles.

The key insight regarding RPE uptake of bilberry anthocyanins lies in phase II 

enzyme metabolism prior to media return. LC/MS/MS detection of anthocyanin 

metabolites in the culture media of RPE cells in vitro is evidence of such uptake, since 

glucuronide metabolites were not present in the media containing bilberry prior to the 

experiments (Figure 12). These glucuronide metabolites could only have been produced
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by RPE cells via metabolism of parent plant-produced anthocyanins. This study’s 

experiments do not identify whether anthocyanins or their metabolites serve as the active 

forms responsible for the observed effects, but they do establish that in vivo, if  

anthocyanins reach the retina, there is a reasonable chance that up-regulation of HO-1 

and GSTP1 occurs.

This research project aimed to investigate whether bilberry anthocyanins have 

protective effects against oxidative stress-induced apoptosis in RPE cells as well as 

possible mechanisms of bilberry anthocyanidins involvement in AMD prevention or 

amelioration. Among anthocyanidins, delphinidin generally has been shown to possess 

the most potent growth inhibition and pro-apoptotic activity, suggesting the structural 

importance of hydroxyl groups on the anthocyanidin B ring. Nevertheless, several cancer 

cell lines have been shown to be more sensitive to malvidin, suggesting the possibility of 

separate mechanisms of action among anthocyanidins with regard to anti-proliferative 

and pro-apoptotic activity. A study by Zhao et al. showed that malignant colon cancer 

cells are more sensitive to anthocyanin-containing extracts of bilberries, chokeberries and 

grapes than are non-malignant colon-derived cells (Zhao et al., 2004). This suggests that 

the actions of anthocyanins may be dependent on cell state-dependent mechanisms. The 

RPE cells subjected to oxidative damage were not malignant; nor could they be 

considered normal, since they are injured and will succumb via apoptosis. At the start, it 

was unknown whether bilberry anthocyanins would protect RPE from oxidative damage, 

thereby reducing the number of cells succumbing to apoptosis, or whether anthocyanins 

would instead exacerbate apoptosis in stressed RPE cells. The results described here 

indicate that apoptosis is induced in fully differentiated RPE cells by treatment with 500
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|0,M H2O2 (Figure 14, 16, 17, and 18). However, in vitro, pre- or co-treatment with even 

pharmacologic doses of bilberry anthocyanins did not alter the apoptotic demise of RPE 

cells (Figures 14,16, and 18).

In cancer cells, it has been established that flavonoids, of which anthocyanins are 

a class, generally inhibit proliferation or cell growth at pharmacologically achievable 

doses without causing immediate cell toxicity (Rosenberg et al., 2002). Indeed, many of 

the studies cited here show the ability of the aglycones of anthocyanins (the 

anthocyanidins) to inhibit tumor cell proliferation. Ferguson et al. (2004) showed that 

flavonoids extracted from cranberries, another Vaccinium species, could induce both cell 

cycle arrest and apoptosis in human breast, skin, colon, lung, and brain tumor cell lines. 

While the authors did not fully define the exact polyphenolics composition of the 

cranberry fraction, anthocyanins are present in both cranberries and bilberries even if in 

different ratios. In addition, non-anthocyanin polyphenolic compounds present in the 

cranberry fractionation included quercetin and epigallocatechin gallate, which inhibit 

tumor cell proliferation (Kampa et al., 2000; Chen et al., 1998; Choi et al., 2001). Two 

triterpene hydroxycinnamate compounds found in cranberries also inhibit tumor cell 

proliferation in vitro (Murphy et al., 2003).

Of note, the Ferguson study described above did not attempt to ascribe activity to 

any particular component within the cranberry extract fraction; hence, this example of 

cranberry flavonoid activity in tumor cell lines illustrated the difficulties o f working with 

berry extracts rather than purified individual compounds. When using extracts, observed 

activities could be attributed to anthocyanins, other non-anthocyanin polyphenolics, or to 

a combination of the two. For instance, Seeram et al. (2004) showed that the anti-
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proliferative activity of cranberry extract was additive or synergistic when anthocyanins, 

proanthocyanidins, and flavonol glycosides fractions were combined. The effects of 

bilberry anthocyanins on pro-apoptotic pathways in RPE cells were unknown; however, 

the cited work regarding the effects of cranberry extracts on the cell cycle signified that 

both anthocyanin fractions and non-anthocyanin fractions of the bilberry extract would 

have to be checked for possible contribution to any observed activities in RPE cells. 

Given previous research, then, the present study aimed to separate and determine the 

individual contribution of anthocyanins and other phenolics to observed activities 

(Figures 23 and 24).

As mentioned in Chapter III, apoptosis is intimately linked to oxidative stress. 

Since oxidative stress appears to be a major process involved in AMD pathology, the 

approach to this project seemed at first to be relatively straightforward. After stressing 

RPE cells with H2O2 to induce oxidative stress, tests were conducted to determine 

whether bilberry anthocyanins altered apoptosis induced by the oxidative challenge. A 

series of indicators o f mitochondrial dysfunction, which play a role in apoptosis, were 

also monitored. Indicators chosen include adenine tri-phosphate (ATP) production since 

it is highly dependent upon maintenance of mitochondrial membrane potential. When 

mitochondrial membrane potential is lost, so also is the ability of cells to reduce MTT; 

therefore, this cell viability assay is also a de facto measure of mitochondrial function. 

The Bcl-2/Bax ratio because it also indicates the opening of the mitochondrial membrane 

pores that lead to loss of mitochondrial membrane potential and release of mitochondrial 

factors (e.g., apoptosis-inducing factor (AIF) and cytochrome c); and activation of the 

caspase cascade and progression, resulting from mitochondrial factor release, to an
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irreversible stage in the apoptotic process. All of the chosen indicators are markers of 

early stage apoptosis.

As noted above, the Bcl-2/Bax ratio serves as the “death checkpoint” beyond 

which opening of mitochondrial membrane pores occurs. This leads to the eventual 

cleavage of “death substrates” (e.g., poly(ADP-ribose)polymerase (PARP)) and quickly 

brings a cell to a point of no return. If bilberry anthocyanins can modulate expression of 

Bcl-2, then mechanisms in apoptosis modulation could involve binding and inhibition of 

pro-apoptotic family members, such as Bax. Although Yeh & Yen (2005) used an 

anthocyanidin rather than an anthocyanin, they demonstrated that delphinidin-induced 

apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of 

Bcl-2 protein. Here, delphinidin-induced DNA fragmentation was blocked by N-acetyl-1- 

cysteine and catalase, suggesting that death signaling was triggered by oxidative stress. 

These data provided evidence that activation of c-Jun N-terminal kinase cascade was 

involved.

By monitoring the Bcl-2/Bax ratio, any observed action of bilberry anthocyanins 

in modulating apoptosis can be limited to signaling pathways converging directly at 

apoptotic-related mitochondrial involvement (e.g., c-Jun NH2-terminal kinase (JNK) or 

tyrosine kinase phosphorylation mediated mechanisms). It has been shown that the 

anthocyanidins cyanidin and delphinidin serve as potent inhibitors of epidermal growth- 

factor receptor, since they shut off downstream signaling cascades, including epidermal 

growth factor receptor (EGFR) protein tyrosine kinase activity and the MAP kinase 

pathway. Cyanidin 3-galactoside and malvidin 3-glucoside appear much less potent in 

this regard (Meiers et al., 2001). However, anthocyanins extracted from bilberry, such as
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delphinidin glycosides and cyanidin glycosides, have been shown to induce apoptosis in 

HL-60 cells (Katsube et al., 2003). Activity varies substantially and is highly dependent 

on anthocyanidin structure and sugar and hydroxyl group placement (Hou et al., 2004). 

Whether for the anthocyanins or their aglycones, presence of the ortho-dihydroxyphenyl 

structure on the B ring appears essential for apoptotic induction.

In cancer cells, anthocyanidins block kinase phosporylation in the MAP kinase­

pathway; they also inhibit cyclooxygenase (COX-1 and -2) at transcriptional levels by 

interfering with the signal pathways, blocking LPS-induced I/cB degradation, and 

suppressing NF-kB activation and COX-2 gene expression. Here again, delphinidin has 

been shown to be most potent. These anticancer mechanisms are of interest because they 

suggest that anthocyanins may interfere with pathways capable of affecting apoptosis in 

oxidatively injured cells.

Delphinidin treatment has been found to increase the levels of intracellular 

reactive oxygen species (ROS) in leukemia cells and to induce apoptosis through ROS/c- 

Jun NH2 -terminal kinase (JNK)-mediated caspase activation (Hou et al., 2003). N- 

acetyl-L-cysteine (NAC), an antioxidant, blocks delphinidin-induced apoptosis in 

leukemia cells. However, it is counterintuitive that as a potent antioxidant itself, 

delphinidin may induce apoptosis via an oxidative stress-mediated JNK signal 

transduction mechanism.

This research project, which used anthocyanins, observed no increase in 

intracellular radicals resulting from bilberry treatment (Figure 15). This suggests that, 

while anthocyanidins may well be pro-oxidant in cancer cells, anthocyanins are not pro­

oxidant in RPE. Moreover, because most in vitro mechanistic studies have been
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conducted using anthocyanidins rather than anthocyanins, relatively little is known about 

the effects of anthocyanins on cell signal mechanisms.

The study’s approach toward apoptosis in RPE cells involved several steps. First, 

we developed a predictable model in which apoptosis could be induced by oxidative 

stress. Using this model, bilberry extracts could be tested for their ability to prevent or 

exacerbate apoptosis. It proved more difficult than originally anticipated to establish a 

stable apoptosis model using ARPE-19 cells. Mimicking prior studies of oxidative stress 

in RPE cells in culture (Ballinger et al., 1999), RPE cells were grown to confluence at 3 

days in culture and then tested. The observed LD50 values in these cells (i.e., the cells 

reaching confluence and contact inhibition) ranged widely between 25 and 200 pM H2O2 . 

Evidence emerged revealing that beyond confluence, cellular age and state of 

differentiation play a role in the robustness of defense mechanisms that RPE mount 

against H2O2 exposure in vitro. The literature regarding the LD50 of H2 O2 also shows a 

wide range of values; however, upon closer examination of this study’s results, a weak 

correlation emerged between H2O2 levels RPE cells can withstand and the point after 

plating at which various investigators chose to conduct their experiments.

In order to test the ability of bilberry anthocyanins to either promote or inhibit 

RPE apoptosis, a stable and predictable oxidative stress model was required. The early 

experiments in this series did not afford a sufficiently stable platform for performing the 

apoptosis studies required. To stabilize the model and achieve a predictable H2O2 dose 

that would produce apoptosis, RPE was cultured beyond confluence and differentiated by 

lowering the serum providing growth factors in the media. RPE cells cultured to 

confluence, followed by 1 0  days in culture, reached defensive capability at least 80% of
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their maximal capability. Culture durations at least 2-3 times longer (i.e., up to a month 

in culture) were required to reach the highest levels of resistance to t^CVinduced 

oxidative damage. However, the extra time, expense, and contamination risk associated 

with maintaining RPE in culture for each three-week experiment were not justified; in 

fact, it was determined that only 1 0  days in culture were required to obtain a reliable and 

predictable LD5 0 of H2O2 between 450 and 500 pM. In addition, the 10 day-culture 

allowed for repeatable results, as evidenced by the shape of the LD50 curve, or the range 

over which mitochondrial function was lost and apoptosis ensued.

As noted previously, little uniformity exists in the literature concerning the length 

of time in culture or the level of H2O2 used in oxidative stress studies. Once 

contemplated, the realization that fully differentiated RPE cells are more resistant to 

oxidative stress than dividing cells was not surprising. However, the dispersed body of 

experimental results supporting this realization raises the possibility that oxidative 

damage may be more likely, and RPE cells more vulnerable, during turnover than when 

fully differentiated and quiescent. If RPE cells are damaged during turnover to a degree 

insufficient to cause apoptosis, and if this damage is not adequately repaired, damaged 

RPE cells may mishandle transport and therefore deposit lipofuscin or drusen, leading to 

AMD. Such an endpoint is also possible and indeed likely to occur in fully differentiated 

RPE. The literature on oxidative stress suggests that differences exist not only in the 

degree of resistance to oxidative stress among proliferating, arrested, and differentiated 

RPE, but also in the forms of damage and mechanisms of cellular response. One study 

found that long-term confluent culture creates non-dividing RPE cells more sensitive to 

oxidant-induced apoptosis than their proliferating counterparts (Jiang et al., 2002). The
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authors concluded that non-dividing RPE cells may be superior to proliferating and de- 

pigmented cells when studying oxidative injury of RPE cells. Results from this project, 

while conducted on non-transformed RPE cells, were not in accordance with the Jiang 

study. ARPE-19 cells cultured past confluence into quiescence at 10 days exhibited an 

LD50 of 500 pM H2O2 , while cells just reaching confluence and contact inhibition 

succumbed to apoptosis with much less H2O2 (Table 2).

The ATP experiments conducted here provide evidence that bilberry anthocyanin 

might protect undifferentiated RPE cells from f^CVinduced mitochondrial membrane 

permeability (Figure 16). However, it is more likely that observed ATP levels, which 

remained slightly above control levels in 7-day cultures, resulted from a slight pro- 

proliferative effect of anthocyanins, especially at very low concentrations. Indeed, in 7- 

day cultures treated with 10 ng/mL and 1 pg/mL bilberry extract but not treated with 

H2O2 , ATP levels were 120% of controls. Apoptotic protection was modest at best and 

not evident as concentrations of H2O2 increased beyond 400 pM. These effects were lost 

entirely as RPE cells aged past 10 days in culture and bilberry anthocyanins appeared to 

induce apoptosis; however, these effects did not reach statistical significance at p<0.05.

As in this in vitro study, cultured RPE cells can be triggered to undergo apoptosis. 

Several means can be utilized to induce RPE apoptosis, such as protein kinase inhibitors, 

peroxynitrite or H2O2 , experimental ischemia/reperfusion, or tumor necrosis factor 

(Behar-Cohen et al., 1996; Jorgensen et al., 1998; Kimura et al., 1997; Osborne et al., 

1997). This implies that multiple intrinsic apoptotic pathways are expressed by RPE cells 

in culture.
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Evidence also indicates that oxidative stress-induced apoptosis involves a 

signaling mechanism generated from mitochondria. An early event in the apoptotic 

process involves loss of mitochondrial membrane potential; this loss occurs prior to 

caspase activation and DNA fragmentation (Cai et al., 1999) and strongly implies a 

regulatory role for the mitochondria in apoptosis (Cai et al., 1998; Yang et al., 1997). 

Indeed, cytochrome c released from oxidatively damaged mitochondria has been 

implicated in the formation o f cytosolic apoptosomes and consequential caspase 

activation (Li et al., 1997; Mancini et al., 1998; Susin et al., 1999a; Susin et al., 1999b; 

Zou et al., 1999).

Release of cytochrome c involves the mitochondrial permeability transition 

(MPT) pore (Zoratti & Szabo, 1995). One MPT component is the adenine nucleotide 

transporter (ANT). Bax (a pro-apoptotic member of the Bcl-2 family of proteins) appears 

to interact with ANT (Marzo et al., 1998) to irreversibly open the mitochondrial 

permeability transition (MPT) pore, thereby decreasing mitochondrial membrane 

potential. The MPT pore also appears to be redox-sensitive and -responsive to the 

oxidative state of the thiol groups associated with the adenine nucleotide transporter 

(ANT) within its structure (Bemardi et al., 1994). Under states of oxidation, the MPT 

pore is opened (Majima et al., 1995; Zoratti & Szabo, 1995), facilitating other signals to 

promote apoptosis (Cai et al., 1999). Bilberry anthocyanins do not appear to directly 

interfere with this process. In fact, bilberry extract appears to modify expression of Bcl- 

2, but only slightly and in a manner insufficient to offer protection against mitochondrial 

permeabilization induced by H2O2 treatment.
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Data presented here demonstrate that cultured RPE cells, under conditions of high 

oxidant exposure, can undergo mitochondrial depolarization. Unlike data reported by 

Zhang et al. (2003), pro-caspase-3 cleavage was observed in western blot analysis of 

proteins harvested from ARPE-19 cells after H2O2 treatment. For lack o f additional 

primary antibody, the experiment was not repeated. The observation suggests that once 

H2O2 oxidative stress induces mitochondrial depolarization in RPE, the caspase cascade 

proceeds as in other apoptotic cells. Nevertheless, even though bilberry anthocyanins 

decreased intracellular radical formation (Figure 15), they could not prevent apoptosis 

induced by 500 pM H2O2 . This result implies that simply reducing tUCVinduced 

intracellular radical formation is insufficient to prevent apoptosis. It is possible that 

H2 0 2 -mediated damage leading to apoptosis begins by dismpting or modulating a signal 

transduction pathway and leads to disruption of thiol status and loss of mitochondrial 

potential via a pathway unaffected by anthocyanins.

In some cancer cells, such as human gastric adenocarcinoma cells (Shih et al., 

2005), human promyelocytic leukemia cells (Katsube et al., 2003) and human monocytic 

leukemia cells (Hyun & Chung, 2004), anthocyanidins inhibit proliferation and induction 

of apoptosis. In cancer cells, anthocyanins have been shown to induce apoptosis via loss 

of mitochondrial membrane permeability through a mitogen-activated protein kinase 

(MAPK) pathway. Furthermore, the anthocyanidin malvidin mediates continued 

reduction of mitochondrial membrane potential at the same time as it elevates the ratio of 

Bax/Bcl-2 expression, which represents pro-apoptotic functions. In RPE cells, we did not 

observe Bax elevation, and bilberry anthocyanins did not appear to modulate pathways
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affecting mitochondrial permiabilization. Results from this research suggest RPE does 

not respond to anthocyanins in the same manner as the cancer cells mentioned above.

Other signal transduction pathways potentially modulated in RPE by bilberry 

anthocyanins may have preventive AMD effects. As discussed in chapter III, oxidative 

stress is implicated in the pathogenesis of AMD (Beatty et al., 2000; Caiet et al., 2000). 

Supplementation with (3-carotene, vitamins C and E, and zinc (AREDS Research Group, 

2001), as well as dietary intake of these nutrients (van Leeuwen et al., 2005), is 

associated with reduced AMD risk; this implies that antioxidant mechanisms may play a 

role in preventing AMD progression.

Flavonoids are potent antioxidants in vitro (Rice-Evans et al., 1996) and may have 

a role in visual function (Schonlau & Rohdewald, 2001). However, little information is 

available regarding the antioxidant capacity or other mechanisms of flavonoid action in 

the retina. The relatively poor bioavailability and low cellular concentrations of most 

flavonoids, including anthocyanins, suggest that their most significant bioactivity may 

result less from quenching radical species than from modulating redox status indirectly 

(Fursova et al., 2005; Katsube et al., 2003; Kong et al., 2003; Wang et al., 1999). 

Recently, Fursova et al. (2005) found that bilberry anthocyanins decreased lipid 

peroxides in serum and retina, as well as slowed cataract development and macular 

degeneration in senescence-accelerated OXYS rats. The literature shows that 

anthocyanins are absorbed and excreted un-metabolized in their intact glycosylated form, 

although they are also biotransformed in vivo to glucuronidated and methylated 

derivatives (Kay et al., 2004; Kay et al., 2005; Milbury et al., 2002). Further studies are
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required to characterize anthocyanin distribution and retention in the retina in vivo, as 

well as to determine the bioactivity of parent and metabolized anthocyanins.

Up-regulation of stress proteins is a universal, protective response to adverse 

conditions, including oxidative stress (Jaattela, 1999). HO-1 is a small heat-shock 

protein (Hsp32) that catalyzes the rate-limiting first step in the catabolism of heme to 

biliverdin, free iron, and carbon monoxide (CO) (Tenhunen et al., 1968). Biliverdin is 

subsequently converted to the antioxidant bilirubin via biliverdin reductase (Stocker et 

al., 1987). Three isoforms of heme oxygenase (HO), each the product of individual 

genes, have been identified: the inducible HO-1 and the constitutive heme oxygenase-2 

(HO-2) and heme oxygenase-3 (HO-3) (Maines et al., 1986). Both HO-1 and HO-2 are 

found in human RPE cells (Kutty et al., 1994; Frank et al., 1999; Schwartzman et al., 

1987; Hunt et al., 1996). HO-1 in retina appears to be up-regulated by light exposure and 

is increased in RPE from eyes with neovascular AMD (Miyamura et al., 2004). While 

the impact of these changes in RPE is not understood, in other cells HO-1 is induced by a 

wide variety of stress stimuli including hyperoxia and heavy metals, and it acts to protect 

against oxidative damage in cell cultures and in vivo (Lee et al., 1996). HO-1 shares 

regulatory genomic mechanisms with other enzymes, including GST and 

NAD(P)H:quinone oxidoreductase (NQOl), which function to detoxify by-products of 

oxidative stress (Nguyen et al., 2003).

Three distinct genes encode HO-1, HO-2, and HO-3 (Willis, 1999; Maines, 1997). 

HO-3 encodes a protein whose function is unknown (Hayashi et al., 2004). HO-1 and 

HO-2 encode enzymes that catalyze the rate-limiting step in heme catabolism to produce 

equimolar amounts of biliverdin, Fe2+ and CO (Tenhunen et al., 1968). HO-2 is
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constitutively expressed in most cell types while HO-1 is inducible only in selected 

tissues. Increased cellular expression of HO-1 is generally thought to be a defense 

mechanism against oxidative stress (Jaattela, 1999; Keyse & Tyrrell, 1989; Maines et al., 

1993). Indeed, HO-1 messenger RNA (mRNA) and protein levels are elevated by known 

stress agents in human neuronal and retinal pigment epithelium cells in culture (Alizadeh 

et al., 2001; Kutty et al., 1992; Kutty et al., 1994; Ulyanova et al., 2001). HO-1 is up- 

regulated in rat retina exposed to visible light and exists in the retina at higher levels 

during daylight hours, suggesting a role in limiting light-induced radical damage 

(Organisciak et al., 2000; Kutty et al., 1995).

On the other hand, products, including Fe2+, biliverdin, and CO, of HO-1 heme 

degradation can all be cytotoxic. Whether these molecules are toxic or cytoprotective 

may depend upon whether they are generated at appropriate levels within a tissue. In 

some cells, high levels of HO-1 may be damaging, while induction at lower levels of 

expression can confer some resistance to oxidative stress (Kapitulnik, 2004; Tomaro & 

Batlle, 2002) and to apoptosis (Liu et al., 2004). In other instances, experimental protein 

suppression with HO-1 antisense transfection (Kushida et al., 2002) has been shown to 

increase oxidative injuries. In contrast, over-expression of HO-1 may elicit toxicity from 

excessive production of heme-derived free Fe (Suttner & Dennery, 1999).

During oxidative stress, HO-1 mRNA is induced rapidly and results in increased 

levels of biliverdin; biliverdin, in turn, is converted to bilirubin by biliverdin reductase, a 

protein with antioxidant properties (Singleton & Laster, 1965; Stocker et al., 1987). In 

addition to its capability to scavenge radicals, bilirubin can also scavenge degraded low 

density lipoprotein (LDL) cholesterol (Wagner et al., 1993) which may limit the pro-
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inflammatory effects of these molecules. Additionally, bilirubin inhibits activation of 

cell signal transduction pathways influenced by oxidative stress (i.e., activation of nuclear 

transcription factor kappa B (NF-kB)) (Soares et al., 2004). Inhibition of NF-kB inhibits 

cytokine tumor necrosis factor-a (TNF-a)-mediated expression of E-selectin and 

VCAM-1 receptors, thus decreasing extravasation of neutrophils, monocytes, activated T- 

helper and T-cytotoxic, and memory T and B cells to inflammation sites.

HO-1 activity also frees Fe2+ from heme, since Fe2+can cause oxidative damage 

via the Fenton reaction (Borg, 1993). However, heme-derived Fe2+ may also induce 

ferritin expression and activate the ATPase Fe2+-secreting pump to decrease intracellular 

free Fe2+ (Baranano et al., 2000).

CO, the third product of HO-1 activity, plays a significant role as an endogenous 

anti-inflammatory signaling molecule (Wagener et al., 2003). CO acts in vivo similar to 

nitric oxide (NO) as a signal transduction agent but absent its radical properties (Marks et 

al., 1991). Like NO, CO can mediate vasodilation, inhibit platelet aggregation, and 

suppress cytokine production, all factors beneficial in ameliorating AMD 

pathophysiology (Wu & Wang, 2005). Further, CO generated in the retina may play a 

role in dark adaptation and light sensitivity (von Restorff & Hebisch, 1988). In this 

study, we observed that bilberry extract induced HO-1 expression in RPE. While studies 

of the efficacy of bilberry in improving night vision have produced mixed results and 

have not been thoroughly conducted in populations with impaired vision (Canter & Ernst, 

2004), anthocyanins may stimulate rhodopsin regeneration through increased retinal CO 

production via HO-1 up-regulation (Matsumoto et al., 2003).
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An age-related decrease in HO-1, localized in the macula, has been demonstrated 

in human RPE cells (Frank et al., 1999; Miyamura et al., 2004). Further, a study of Asian 

Indian patients with Type 2 diabetes (especially those with microangiopathy) showed that 

oxidative damage was associated with increased nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase and decreased HO-1 gene expression (Adaikalakoteswari et 

al., 2006). Short-term experimental diabetes in rats has been shown to increase heme 

oxygenase (HO) expression in the retina (Cukiemik et al., 2003). However, 

hyperglycemia has also been shown to inhibit HO-1 protein and HO activity in human 

endothelial cells in culture (Abraham et al., 2003), as well as in diabetic rats; this 

condition may reflect a lower level o f antioxidant defense (Abraham et al., 1988; Bitar & 

Weiner, 1984). Experiments in rats and mice suggest that HO up-regulation decreases 

diabetes-induced dysfunction and injury (Goodman et al., 2006; Quan et al., 2004). Just 

as age and oxidative stress are associated with AMD and other retinopathies, diet or drug 

interventions that up-regulate HO-1 may be associated with diminished oxidative stress 

in the retina, especially in diabetics.

HO-1 induction at low levels of expression is associated with protection against 

oxidative stress. Similarly, HO-1 pre-induction in different injury models has been 

shown to confer increased resistance to oxidative stress (Kapitulnik, 2004; Tomaro & 

Batlle, 2002). But the evidence is mixed. For example, suppressing HO activity using 

antisense transfection or inhibitors worsens oxidative stress (Kushida et al., 2002). 

Moreover, high levels of HO-1 expression may be toxic, due to excessive cellular levels 

of heme-derived free iron (Suttner & Dennery, 1999).
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Of the three isoforms transcribed from separate mammalian tissue genes, HO-1 is 

the primary ubiquitous, inducible isoform under conditions of oxidative stress (Cruse & 

Maines, 1988). A common cellular response to oxidant stress is apoptosis; therefore, 

HO-1 up-regulation in response to oxidative stress raises the question of whether HO-1 is 

a potential anti-apoptotic molecule. Indeed, HO-1 up-regulation in cancer cells has been 

shown to confer apoptotic resistance (Liu et al., 2004). It is unknown whether HO-1 up- 

regulation also confers apoptotic resistance in RPE cells.

Data exists suggesting that flavonoids, possibly including anthocyanins, may 

significantly up-regulate phase II enzymes, including GST, UDP- 

glucuronosyltransferase, NQOl, and epoxide hydrolase (Zhang & Gordon, 2004). The 

gene promoter regions for these detoxifying enzymes are transcriptionally regulated in 

common by gene response elements, including the xenobiotic response elements and the 

antioxidant/electrophile response elements (AREs/EpREs) (Nguyen et al., 2003). 

Flavonoids, when in their quinone forms, may also influence redox-sensitive pathways by 

reacting directly with thiols (Boots et al., 2003), influencing cellular glutathione redox 

status (Kessler et al., 2003), or inducing mitochondrial respiratory bursts with resultant 

increased hydrogen peroxide and superoxide anion production (Hodnick et al., 1986). 

Recently, an elegant transgenic mouse imaging study showed that gamma- 

glutamylcysteine synthetase promoter activity increased with administration of berry 

flavonoids (Carlsen et al., 2003). The degree to which dietary anthocyanins can modulate 

cellular GSH concentrations among humans and the degree to which they influence 

regulation of major cellular signaling pathways in vivo is unknown.
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Studies suggest an association between oxidative stress-induced depletion of 

reduced GSH and HO-1 up-regulation (Lautier et al., 1992). Treating cells with 

compounds that complex easily with thiols results in HO-1 up-regulation (Foresti et al., 

1997; Hiwasa & Sakiyama, 1986; Keyse & Tyrrell, 1989). In contrast, increasing N- 

acetyl-L-cysteine, a precursor to GSH, inhibits HO-1 up-regulation in stressed cells 

(Borger & Essig, 1998), further supporting a role for GSH in HO-1 regulation.

Although its exact role is unclear, HO-1 appears to function with other enzymes 

such as GST and NQOl in the detoxification process of oxidative stress (Bao et al., 1997; 

Ketterer & Meyer, 1989; Ryter & Tyrrell, 2000; Talalay & Benson, 1982). The enhancer 

region of these enzymes’ genes, responding to oxidative stress, contains the antioxidant 

response element (ARE), so named because it is responsive to phenolic antioxidants such 

as butylated hydroxytoluene (BHT) (Rushmore & Pickett, 1990). At first, this may seem 

a contradiction; however, ARE mediates transcriptional responses to both oxidative 

stress-induced alterations in cellular redox status and pro-oxidant xenobiotics that are 

thiol reactive and mimic an oxidative insult. Further, ARE-regulated genes encode a 

wide variety of proteins that help control cellular redox status, defending against 

oxidative damage in phase II metabolism (Hayes & McLellan, 1999). Although we 

expected H2O2 to increase oxidative stress and up-regulate HO-1 in our model, we 

observed that bilberry extract elicited a significant increase in HO-1 expression (Figures 

19 and 21). Though it has been suggested that flavonoids can induce cellular radical 

formation, incubation with bilberry extract did not produce radicals in these experiments 

and even diminished those generated by H2O2 exposure (Figure 15).
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The observed HO-1 up-regulation in response to bilberry anthocyanins in this 

study appeared in the low over-expression range. Hence, bilberry-induced HO-1 up- 

regulation may confer protection against oxidative stress-induced damage in RPE. 

Furthermore, these observations suggest that while H2 O2 , bilberry polyphenolics, and 

bilberry anthocyanins induce HO-1 up-regulation, they do so by distinctly different 

mechanisms and pathways. The ability of bilberry anthocyanins to up-regulate both HO- 

1 and GSTP1 implies that anthocyanins can stimulate pathways leading to ARE 

stimulation, thereby boosting an array of endogenous antioxidant protective systems. We 

know that HO-1 up-regulation in response to conditions of oxidative stress has excess 

potential, and the iron release from heme degradation can exacerbate oxidative injury. 

Our study revealed that bilberry anthocyanins elicit a moderate HO-1 up-regulation and, 

therefore, a potentially protective response in RPE cells.

HO-1 shares regulatory genomic mechanisms with other enzymes, including GST 

and NQOl, both of which function to detoxify by-products of oxidative stress (Nguyen et 

al., 2003). Inducing enzymes involved in GSH biosynthesis provide further antioxidant 

protection in cells (Hayes & McLellan, 1999). Age-related declines in GSH are 

associated with increased AMD risk (Samiec et al., 1998). The purpose of the present 

study was to investigate the effects of phenolic antioxidants, primarily anthocyanins, 

from bilberry (Vaccinium myrtillus) on RPE cell cultures under quiescent conditions and 

oxidative stress.

As mentioned earlier, HO-1 induction at low levels of expression confers some 

resistance to oxidative stress (Tomaro & Batlle, 2002) and in so doing may also confer 

apoptotic resistance (Liu et al., 2004). Conversely, experimental suppression of the HO-1
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protein with anti-sense transfection or inhibitors such as Tin mesoporphyrin (SnMP) 

increases oxidative injuries (Kushida et al., 2002). However, over-expression of HO-1 

may elicit toxicity from excessive production of heme-derived free iron (Suttner & 

Dennery, 1999). In rats, HO-1 up-regulation promotes Muller cell survival after retinal 

ischemia by increasing intraocular pressure (Arai-Gaun et al., 2004). A similar study 

showed that sour cherry seed flavonoid-rich extract protects against reperfusion-induced 

injury; this occurs through reduced changes in retinal ion concentrations via HO-1- 

related endogenous CO production in the ischemic/reperfused retina (Szabo, 2004).

Sacca et al. (2003) investigated photic regulation of heme oxygenase activity in 

golden hamster retinas and found statistically significant differences in light-related 

enzymatic activity differences between midday and midnight. In vitro, inhibitor studies 

of this light-induced increase in HO-1 activity suggest that hamster retinal HO-1 activity 

is regulated by the photic stimulus, probably through a dopamine/cAMP/PKA-dependent 

pathway. Investigators also found that low bilirubin concentrations decreased retinal 

thiobarbituric acid reactive substances (TBARS) levels (an index of lipid peroxidation) in 

basal conditions and after exposing retinal cells to H2O2 . These studies suggest that HO- 

1 up-regulation serves as a response to oxidative stress in the retina, both in vivo and in 

vitro. Flavonoids also up-regulate HO-1 in intact retinas, and HO-1 up-regulation 

appears protective against radical-induced damage. Evidence does not, however, address 

whether HO-1 up-regulation occurs in RPE cells or whether it is protective in RPE.

One study by Jang et al. (2005) investigated the extent to which plant-derived 

anthocyanins modulate adverse effects of pyridinium bisretinoid A2E, an autofluorescent 

pigment accumulating in RPE cells with age and, in some disorders, in ARPE-19 cells.
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This study showed that anthocyanins serve as antioxidants that suppress photo-oxidative 

changes induced by short wavelength light in RPE cells via the lipofuscin fluorophore 

A2E. In so doing, anthocyanins thus reduce loss of RPE cell viability. These results may 

be specific to damage induced by singlet oxygen.

Tsuda et al. (1994) showed that cyanidin 3-galactose was more potent in 

inhibiting lipid peroxidation at neutral pH than either vitamin E or Trolox. It is 

hypothesized that antioxidant activity of anthocyanins involves many structural elements, 

including the ability to form stable quinonoidal anhydro bases, a C ring possessing a 

conjugated diene system capable of quenching singlet oxygen, hydroxyl groups on the B 

ring, and amphipathic behavior with a tendency toward hydrophobicity. Anthocyanins 

are polar in nature (Lamikama, 1987). The results reported here support Jang et al.

(2005) in that bilberry extract can be taken up by the RPE cell (Figures 9, 10, 11, and 12) 

and can act to quench intracellular radicals (Figure 15). Although H2O2 itself is not a free 

radical, it serves as an intermediary in the formation of highly reactive free radicals and 

reactive oxygen species, such as hydroxyl radicals (Fridovich, 1997). It is likely that the 

damage inflicted on RPE in studies using light differs from that induced by H2 O2 

exposure; nevertheless, H2O2 exposure is a relevant oxidative stress, considering the 

retinal levels generated by photoreceptor reactions and phagocytic processes.

Unlike the results described above , this study showed that despite the ability of 

bilberry anthocyanins to up-regulate phase II enzymes (Figures 19-24) and quench 

intracellular radicals, bilberry extract did not protect against H2 0 2 -induced apoptosis.

This suggests that H202-induced apoptosis in our RPE model may be mediated through 

damage to cell surface receptors or membranes that are unaffected by intracellular radical
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quenching or up-regulation of xenobiotic metabolism and endogenous antioxidant 

defenses.

GSH depletion through oxidative stress or agents that complex thiols is known to 

up-regulate HO-1 (Foresti, et al., 1997; Lautier et al., 1992). These effects were seen in 

this study as well (Figures 13,19, and 21). A role for GSH regulating HO-1 is also 

evident by the ability of N-acetyl-L-cysteine, a GSH pro-drug, to inhibit HO-1 up- 

regulation in hypoxic cardiomyocytes (Borger & Essig, 1998). HO-1 also functions in 

antioxidant defenses in coordination with GST (Ketterer & Meyer, 1989; Ryter & Tyrrell, 

2000; Talalay & Benson, 1982). Data presented here show that GSTP1 and HO-1 protein 

and mRNA are up-regulated in a coordinated manner. BHT and beta-naphthoflavone 

(BNF) have been reported to modify the expression of ARE-containing genes (Rushmore 

& Pickett, 1990), including those involved in phase II metabolism (Hayes & McLellan, 

1999), and they were used as positive controls in our quantitative real-time polymerase 

chain reaction (rt-PCR) experiments. Dietary antioxidant flavonoids, such as quercetin 

and epicatechin, are capable of inducing detoxifying enzymes by pathways mediated by 

ARE/EpRE (Benson et al., 1978, Gordon et al., 1991). While anthocyanins have not 

been tested for ARE/EpRE activation, their structural similarity to flavonoids and 

phenolics known to modulate ARE make the expectation of ARE/EpRE reasonable. A 

role for anthocyanins as polyphenolic xenobiotic compounds would not be surprising, 

considering their evolutionary history in plants as bitter deterrents for herbivores. The 

ability of anthocyanins to modulate ARE/EpRE requires more study, especially in light of 

their potential anticancer properties.
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The observation presented here of increases in HO-1 and GSTP1 expression in 

response to bilberry extract in RPE indicate a coordinated protective mechanism against 

oxidative stress. Both the HO-1 and GSTP1 genes are induced by reactive oxygen 

species, ultraviolet-radiation, and xenobiotics, all of which induce changes in cellular 

redox potential. These disturbances of intracellular redox equilibrium represent an 

adaptive stress response that ultimately changes gene expression to re-establish cellular 

homeostasis. Depletion of reduced GSH, either via oxidative stress or utilization in 

xenobiotic metabolism, appears to underlie the initiation of this response. GSH depletion 

has been shown to play a role in the translocation of NF-E2-related transcription factor 

(Nrf2) that activates ARE/EpRE gene transcription (Hayes & McLellan, 1999). In 

addition to kinase action, a protein designated Kelch-like-ECH-associated protein 1 

(Keapl) has been shown to repress Nrf2 activity within cells. It has been postulated that 

sulfhydryl group chemistry, modified by the cellular levels of reduced glutathione, may 

play an important part in the regulation of cell signaling pathways and in protein-protein 

interaction, such as between Keapl and Nrf2 (Nguyen et al., 2003). Anthocyanin 

interaction with redox-sensitive protein kinase cascades (e.g., mitogen-activated protein 

kinases) may serve as an initial mechanism whereby anthocyanins can up-regulate HO-1 

and GSTP1. These data imply that anthocyanins can modulate a pathway, or pathways, 

that lead to ARE stimulation, thereby stimulating an array of endogenous antioxidant 

protective systems potentially protective of RPE cells.

Anthocyanins have physiological effects, including inhibition of cell proliferation 

(Katsube, 2003; Marko et al., 2004), antioxidant capacities (Faria et al., 2005), and 

modulation of inflammatory processes (Rossi et al., 2003). These physiological effects
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also arise from over-expression of HO-1 (Morita et al., 1997; Willis et al., 1996). The 

results from this study suggest that the ability of bilberry anthocyanins to increase HO-1 

may provide beneficial effects in preventing or slowing other aspects of advanced AMD 

pathology (e.g., angiogenesis and inflammation). If such actions are substantiated in 

vitro and extended to in vivo models, anthocyanins and other flavonoids may promote 

retinal functions and/or treatment of degenerative retinal conditions such as AMD. In 

conclusion, this study supports the hypothesis that although anthocyanins are excellent 

radical quenchers in vitro and can quench radicals in vivo, they do not prevent apoptosis 

induced by high H2O2 doses. While radical quenching may play a role at lower 

concentrations of radical induction, low anthocyanin levels relative to other dietary and 

endogenous antioxidants make their role as a major contributor unlikely. However, these 

data suggest that other mechanisms involved in redox regulation may provide cellular 

benefit from consumption of berry anthocyanins.

Future Direction of Research

In recent in vitro experiments, bilberry anthocyanins were shown to serve as 

antioxidants to suppress photo-oxidative processes mediated by lipofuscin fluorophore 

A2E in RPE cells (Jang et al., 2005). Results of this project correspond with Jang et al.: 

that is, pre-incubation with bilberry extract quenches intracellular radicals in RPE that are 

oxidatively stressed with H2 O2 . Unlike evidence from cancer cell studies demonstrating 

anthocyanin-induced apoptosis (Nichenametla, 2006), our results show that in non­

transformed, differentiated RPE cells in vitro, bilberry anthocyanins and phenolics do not 

interfere with ^ (V in d u ced  apoptosis. However, the same treatments with H2 O2 up-
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regulated protective enzyme systems are modulated by oxidative stress, antioxidants, and 

xenoboitic compounds. This disconnect between the inability to modulate oxidative 

stress-induced apoptosis in “normal” cells and the ability to quench intracellular radicals 

and modulate protective enzymes needs further investigation. Indeed, the more important 

functions of anthocyanins may lie in their ability to restore pathways that permit 

apoptosis in those cells having lost or blocked apoptotic capability.

Apoptosis and cell-cycle arrest are two common outcomes induced by dietary 

anti-proliferative compounds effective against the promotion and progression of pre­

neoplastic or neoplastic cells. In contrast to death receptor-mediated cell apoptosis, 

chemopreventive compounds generally induce oxidative stress; oxidative stress, in turn, 

down-regulates anti-apoptotic molecules (e.g., Bcl-2 or Bcl-x) and up-regulates pro- 

apoptotic molecules (e.g., Bax or Bak). In this project, bilberry extracts neither increased 

intracellullar radicals nor altered Bcl-2 or Bcl-x in the non-transformed RPE cells.

Indeed, the extract performed as an antioxidant in ARPE-19 cells in culture. Future 

experiments could be performed using a carcinoma cell line to determine whether 

bilberry extract, rather than acting as an antioxidant, instead induces oxidative stress, 

down-regulates anti-apoptotic Bcl-2 or Bcl-x, and up-regulates pro-apoptotic Bax or Bak. 

Observation of anthocyanin response differences between ARPE-19 cells and carcinoma 

cell lines could lead to better understanding of the pathways involved.

Cancer-associated retinopathy (CAR) is an ocular manifestation of a 

paraneoplastic syndrome that has been linked to aberrant expression of recoverin, a 

retina-specific Ca2+-binding protein, that leads to retinal degeneration. Evidence also 

suggests involvement of G-protein-coupled receptor kinases (Miyagawa et al., 2003).
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Monitoring apoptotic re-establishment as well as G-protein-coupled receptor kinases 

could provide insight into whether this pathway is involved in anthocyanin-induced re­

establishment of cancer cell apoptosis. Since many cancers show aberrant recoverin 

expression, inhibiting associated retinopathies may be one way in which bilberry 

anthocyanins can assist in maintaining visual function. Implications for cancer treatment 

more generally could be extrapolated.

It has been established that the imbalance between anti-apoptotic and pro- 

apoptotic proteins affects the maintenance of mitochondrial potential and can lead to 

apoptosis (wherein the release of factors to the cytosol leads to activation of the caspase 

cascade, and, eventually, apoptosis). Flavonoids in general can activate JNK, inhibit 

anti-apoptotic NF-kB signaling pathways, and block growth factor-mediated anti- 

apoptotic signals by inhibiting growth factor binding to the receptor. Flavonoids also 

inhibit the downstream phosphatidylinositol 3-kinase (PI3K)-Akt pathway. These 

pathways have been defined in large part by studying flavonoid influence on cancer cells 

in vitro and are thought to be mediated by stress signals. In light of the evidence 

presented in this dissertation and by Jang et al. (2005), anthocyanins do not appear to 

induce oxidative stress signals within normal retinal cells. It is unclear whether 

anthocyanins induce cancer cell apoptosis. However, answering this question could help 

explain the differences observed between the actions of anthocyanin on normal and pre­

neoplastic or neoplastic cells.

Before proceeding into animal models, however, more research is required on 

anthocyanin uptake into tissues. In vivo evidence suggests that bilberry anthocyanin 

supplementation affects neurological function and memory (Andres-Lacueva et al., 2005;
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Ramirez et al., 2005). Recent research also indicates that berry anthocyanins pass 

through the blood-brain barrier (Youdim et al., 2003), and that anthocyanins are found in 

the eye after blueberry ingestion (Milbury et al., 2005; Milbury et al., 2006).

Determining dietarily achievable concentrations of individual anthocyanins in the eye and 

retina will be essential to determining whether bilberry consumption will affect 

physiological changes in RPE cells in vivo. However, analytic techniques are just 

emerging to allow analysis of low anthocyanin levels within tissue. This task of 

determining tissue distribution of both anthocyanins and their metabolites in vivo would 

be enhanced should individual radiolabeled anthocyanins become available. Discussions 

to address the issue are underway.

Future research could easily proceed in vivo on the subject of phase II induction, 

testing the effects of bilberry extract or anthocyanin by monitoring in vivo and ex vivo 

imaging of promoter activity in transgenic mice (Moskaug et al., 2005). Mice carrying 

reporter genes and injected with luciferin after feeding or lavaging with bilberry extracts 

or anthocyanins could be imaged and the luminescence emitted by each transgenic mouse 

could be quantified. This technique has been applied to investigate the effects of 

quercetin on transgenic mice strains expressing luciferase regulated by various 

transcription factor binding sites regulated by NF-kB, AP-1, or several binding sites in 

the gGCSh gene promoter (Moskaug et al., 2004). The approach could be adapted to 

study the anthocyanin effects on apoptosis-related or ARE-regulated genes.

In addition to verifying the results of anthocyanin effects in OXYS rats, studies of 

the effects of anthocyanins in preventing AMD in an Cu, Zn-superoxide dismutase 

deficient mouse model can be undertaken. Recent investigations show that senescent
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Sodl'7’ mice have drusen, thickened Bruch’s membrane, and choroidal neovascularization 

that increase with age, and exposure to excess light (Imamura, et al., 2006). The retinal 

pigment epithelial cells of Sod I "7' mice showed oxidative damage in a manner that affects 

junctional proteins necessary for RPE barrier integrity. These observations strongly 

suggest that oxidative stress may play a causative role in age-related retinal degeneration. 

The ability of bilberry anthocyanins in preventing this damage could easily be tested in 

this animal model.

As mentioned at the beginning of this thesis, anthocyanins are members of a 

diverse and profuse class of phytochemical: the flavonoids. They are ubiquitous in 

human diets, and possess potential health benefits that have yet to be unequivocally 

proven. Alone or in combination, these compounds appear to exhibit many cellular 

effects; however, it is difficult to predict the overall combinatorial effect of these 

compounds on gene expression in vivo. The emerging field nutrigenomics uses genomic 

techniques, such as gene chip analysis, to study the integrated effects of nutrients on gene 

regulation. However, use of in vivo bioluminescence imaging of gene expression 

presents a unique opportunity to directly observe effects of bioactive dietary compounds, 

such as anthocyanins, on biological systems where preliminary evidence of activity 

exists. In the case of anthocyanins, it would be tempting to study next the up-regulation 

of xenobiotic metabolism in the protection against retinal damage or in the defense 

against cancer. Uptake and metabolism of xanthophylls carotenoids in the retina is 

thought to be mediated by specific binding proteins and GSTP1 has been shown to be a 

zeaxanthin-binding protein in the retina (Bhosale et al., 2004). It is possible that long­

term bilberry consumption or other anthocyanin-rich foods may elevate levels of
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xenobiotic enzymes, including GSTP1; as a secondary consequence, xanthophyll 

concentrations could increase. While intervention trials are required to fully determine 

this possibility, our results suggest that the mechanism is plausible.
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