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ABSTRACT

STREAM COMMUNITY PATTERNS AND CLASSIFICATION OF MINIMALLY 

IMPACTED NEW HAMPSHIRE STREAMS AND A COMPARISON OF NOVEL 

APPROACHES FOR PREDICTING BIOLOGICAL AND PHYSICAL HABITAT

REFERENCE CONDITIONS 

by

Brian R. Frappier 

University o f New Hampshire, September, 2006

Reference conditions play a vital role in many challenges facing both conservation and 

natural resources management. This dissertation sought to establish minimally-impacted 

reference conditions for stream biota and habitat in New Hampshire and explore alternative 

statistical methodologies to predict reference conditions for biological and habitat assessments. 

The fish, stream-dwelling salamander, macroinvertebrate and periphyton assemblages as well as 

the co-occurring physical habitat and riparian conditions of 76 minimally -impacted first to 

fourth order streams in New Hampshire were estimated using USEPA Environmental Monitoring 

and Assessment Program protocols over a four year period. Several statistical approaches and 

data standardizations for classifying multi-taxonomic assemblages were investigated for the 

strength of the classification they produced; log transformed abundances classified using 

TWINSPAN produced the best classification as measured using specific criteria. Seven natural 

biotic community types primarily arranged along the longitudinal stream profile were classified. 

Geographic classifications based on ecoregions and watersheds poorly explained organism 

distributions and abundances. Organism distributions were primarily associated with substrate 

characteristics, elevation, latitude, and the proportion of mesohabitat types (e.g. pool, riffle, etc.).

xvi
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A new approach to constructing a biological assessment index that is based on the Bray-Curtis 

percent similarity between the observed and predicted communities was developed to allow taxa 

density information into the multivariate predictive assessments. Separate linear regression 

models to predict the densities of each taxon resulted in the most accurate predictions of expected 

community structure. Multivariate predictive models that included classification steps were not 

in general less accurate than approaches based on continuous prediction of taxon densities such as 

nearest-neighbor or ordination-based analyses. Including abundance information into the 

predictive models did not increase relative prediction error compared to an AusRivAS-style 

assessment index based solely on predicted taxon occurrences. Habitat prediction followed 

similar results. Inter-annual variation in three streams sampled every year of the study was 

highest in the vertebrates and lowest in the macroinvertebrates. In contrast, vertebrate 

assemblages were more resistant to a summer spate than the macroinvertebrates. Greater 

sampling intensity in the field and laboratory are probably the only remaining avenues for 

increasing assessment accuracies and reducing unexplained variation in reference conditions..
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INTRODUCTION

We rely on ecosystem goods and services (Costanza et al. 1997). On a human time-scale 

of hundreds of years, many ecosystems are naturally relatively stable compared to the dramatic 

changes in ecosystem characteristic that can accompany longer time frames (thousands to 

millions of years), such as glacial cycles and long-term changes in precipitation patterns. Thus, 

we have come to expect certain levels of ecosystem goods and services in our planning and 

natural resources management. While the exact nature of the relationship is far from clear, many 

ecosystem functions appear to be affected by changes in species composition and richness 

(Loreau et al. 2002, Schmid 2002). Changes in community structure and composition due to 

human-induced stresses or alterations to ecosystems have the potential to negatively impact our 

resource planning and conservation. This perspective on the interactions between humans and 

ecosystems has partly given rise to the concept of ecosystem management (Grumbine 1994, 

Christensen et al. 1996).

The concern for species and ecosystems goes beyond our need for goods and services. Many see 

an inherent value in natural ecosystems little altered by humans and believe that all species have 

an intrinsic right to exist. Understanding and appreciating the natural character of ecosystems is 

an important part of this concern. In addition, efforts to protect species depend on a firm 

understanding of the distributions of species and their interactions with each other and the 

physical environment. Ensuring that multiple representatives of each species, community, or 

ecosystem in a region are located in conservation areas has become a key goal of biological 

diversity conservation (Noss 1987). As many regions contain far more species than can be 

directly managed, assessment of representation has often been focused at the higher community 

and ecosystem level (Noss 1990, Franklin 1995, Grossman et al.1998).

1
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It is clear that conservation biology and natural resources management for our needs are 

often intertwined. In both of those pursuits, reference conditions play a vital role as they are the 

basis for answering many o f the questions and challenges facing both conservation and natural 

resources management:

• Are All Terrain Vehicles affecting this stream?

• Is this a good example of a natural community for conservation representation?

• Has fishing reduced the average size of the mature cod population?

• What should our large woody debris density targets be for restoring this stream’s

physical habitat?

• How do salamanders respond to human disturbance of forest cover?

• Are these newly instituted pollution controls reducing the impacts on this stream’s 

biota?

Understanding the natural conditions and functioning of ecosystems provides a baseline for 

assessing the resource impacts of management decision and changes wrought by humans on 

ecosystems. Yet, very little is known about the natural ecological patterns in New Hampshire 

streams, providing very little guidance as to the reference conditions needed to adequately answer 

the common questions facing lotic conservation and management in the State.

The collected papers that make up this dissertation represent a first attempt at providing 

vitally needed reference conditions, both biological and physical, for New Hampshire streams. 

The goals of this dissertation were to:

2
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1. Classify the natural stream communities in New Hampshire using the major 

taxonomic groups periphyton, macroinvertebrates, fish, and stream dwelling 

salamanders (Chapter 3)

2. Explore the ecological patterns in New Hampshire streams (Chapter 3)

3. Produce a statistical model to map community locations using GIS (Chapter 3)

4. Predict organism distributions for constructing the most accurate theoretical biotic 

reference conditions possible for biological monitoring (Chapter 4)

5. Similarly predict theoretical habitat conditions for habitat assessment (Chapter 5)

6. Explore the temporal dynamics in stream ecosystem composition and structure 

(Chapter 6)

The chief mechanism for accomplishing these goals was a database of the biotic, 

physical, and chemical characteristics of minimally impacted streams in New Hampshire built 

over a four year period from 2002 to 2005. Chapter 1 describes the field and laboratory methods 

for collecting this information. Along the way, it became clear that the conventional methods for 

estimating periphyton abundance were woefully inadequate. Hence, Chapter 2 describes an 

investigation seeking to improve estimation of periphyton biovolume by comparing estimation 

error resulting from the standard methods compared to a line-intercept technique.
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CHAPTER I

FIELD AND LABORATORY METHODS 

Reference Stream Selection

Locating minimally impacted sites is the most important step in establishing reference 

conditions for biological criteria (Hughes 1995) and identifying natural communities. Stream 

segments, defined as the length of stream between two tributaries, were randomly selected using 

the GRANIT hydrography GIS layer (Complex Systems Research Center 2001). To ensure 

adequate representation of the full range in stream types across New Hampshire, the selection of 

segments was stratified to be proportional to the total permanent stream length in each aquatic 

ecoregion (Omemik 1987).

Each randomly selected segment was evaluated for anthropogenic impact using GIS 

layers identifying known point and non-point source pollution, land-use, right-of-ways, dams, 

public and private water extraction, groundwater hazards, clear-cuts, underground storage tanks, 

and digitized recent aerial photos available from New Hampshire Department of Environmental 

Services or New Hampshire GRANIT. Segments identified as having any upstream water 

quality threats using those layers were discarded. Once a stream segment was selected and 

visited for field sampling, an additional assessment was made for any potential impacts not 

detected using the remotely collated GIS data.
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Field Data Collection

Stream Reach Location

Field methods, with only a few exceptions, followed the wade-able streams techniques 

developed by the United States Environmental Protection Agency’s Environmental Monitoring 

and Assessment Program (hereby known as USEPA-EMAP-SW; Lazorchak et al. 1998). What 

follows is a synopsis of the USEPA-EMAP-SW field methods along with a description of the 

slight modifications made to them. For a full description accompanied by explanatory figures 

and summary tables, consult the USEPA-EMAP-SW manual. Departures from the USEPA- 

EMAP-SW methods are typeset in italics to ease identification.

All sampling was performed during the base flow period of 15 June to August 30 every 

year between 2002 and 2005, inclusive. Sites that experienced a recent spate were not sampled 

for 6 weeks following the disturbance. In 2002, a regional drought caused small, normally 

permanent, streams to dry; consequently, field sampling was ended early. In 2003, a series of 

heavy summer rainstorms caused many streams in the White Mountains regions to reach flood- 

stage and sampling was abandoned early that year as well. Although the order in which segments 

were sampled in each base-flow period was randomized, for logistical reasons sampling in each 

year was clustered into the major regions of New Hampshire. Southern New Hampshire as far 

west as U.S. route 93 was sampled in 2002, the White mountain region in 2003, southwestern 

New Hampshire in 2004, and region north of the White Mountains in 2005. A few additional 

sites in the Seacoast region were sampled in 2005 to maintain the stratification proportions of the 

sampling design.

The basic sampling unit was the stream reach, defined as a length of stream 40 times the 

wetted width, with a minimum length of 150 m and a maximum width of 500 m. The reach 

center was randomly located along the selected stream segment at least 100 m upstream or

5
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downstream of the bounding tributaries and upstream of any roads or trails during the stream 

segment selection and screening process. The wetted width was determined by measuring the 

width at a few representative locations near the reach center and averaging the result to the 

nearest meter. Reaches were divided into 10 subsections delineated by 11 transects oriented 

perpendicular to the flow and spanning the width of the stream. The first downstream transect 

was placed at the lower boundary of the reach and the each successive transect was equally 

spaced along the reach (i.e. 4 wetted widths apart). Transects were placed and marked 

endeavoring to disturb the stream as little as possible. If an unknown stream confluence or 

impoundment (e.g. beaver pond) was found while setting the transects, the stream reach was 

moved upstream or downstream to accommodate the 100 m proximity limit to those features.

Water Chemistry

Water chemistry samples were collected at the reach center (middle transect) before any 

other sampling activities. Water was collected from the main flow using a 40 ml plastic syringe 

and filtered through a 0.7 pm pre-combusted (5+ hours at 450 C) glass fiber filter into an acid- 

washed 60 ml HDPE bottle. The filled bottled was capped and kept in a shady part of the stream 

to keep the sample cool. The water sample was frozen upon return to the laboratory at the end of 

the day. Water pH, temperature, and conductivity were measured in the same area the water 

chemistry sample was taken using an Oakton 35630 portable pH/conductivity/temperature meter.

Physical Habitat Measurements and Biological Sampling

Biological sampling was performed before most habitat measurements. A randomized, 

systematic spatial sampling design was used to locate biological sampling points on the transects. 

Starting at the downstream transect, a sampling point (left, center, or right) on the first transect
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was randomly chosen. Subsequent sample locations were assigned to each upstream transect, 

alternating in order as left, center, or right. The type of habitat present at the biological sampling 

point (i.e. pool, riffle, glide, or rapid) and the dominant substrate type (i.e. fine/sand, gravel, 

coarse, or macrophytes) were recorded.

Periphyton were collected at the transect sample points before macroinvertebrate 

sampling. In erosional habitats, a sample of rock or wood substrate was removed from the stream 

and a 12 cm2 area on the upper surface of the substrate brushed with a stiff-bristled toothbrush for 

30 seconds to dislodge periphyton. Dislodged periphyton were washed into a 500 ml bottle using 

stream water. In depositional habitats, the top 1 cm from a 12 cm2 area of soft sediment was 

vacuumed into a 60 ml syringe and placed in the 500 ml bottle. All periphyton samples were 

composited into the same 500 ml bottle and preserved with 10% formalin to a final concentration 

of 2%.

Macroinvertebrates were collected at each of the transect sample points using a 500 pm 

d-net (net). In flowing water habitats, the net was placed securely on the stream bottom. Large 

and small rocks in a 0.09 m2 sample area in front of the net were rubbed to dislodge organisms 

and large obvious organisms were hand-picked and placed into the net. A 20 second kick sample 

of the 0.09 m2 sample area was then taken. In wade-able pool habitats, large organisms in a 0.09 

m2 sample area were hand-picked and placed into a net. The same 0.09 m2 area of substrate was 

disturbed by vigorous kicking and a 20-second sample was collected by dragging the net 

repeatedly through the disturbed area just above the bottom while kicking. If the water was too 

shallow to use the net, the 0.09 m2 area of substrate was stirred by hand and a US Standard #30 

sieve used instead of the net. Net or sieve contents were rinsed into a bucket half filled with 

water that contained all of the samples as a single composite. The composite sample was 

elutriated to remove inorganic sediment, placed in large plastic containers, and preserved with 

95% ethanol.

7
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Latitude and longitude were measured using a Garmin portable GPS unit at the reach 

center. Discharge was measured using a small portable flow meter at 20 equally spaced points 

along a transect placed perpendicular to the flow. There was a minimum spacing of 10 cm 

between measurement points. This, some flow estimations were made using fewer than 20 

measurements. Depth at the flow-measurement points and the wetted width were recorded to 

calculate the cross-section. The discharge estimation transect was located in an area with flow 

characteristics that would yield the most accurate discharge estimation (e.g. confined weir-like 

flow). If there was no section of the segment that would yield a good estimate because the flow 

was too slow, then the neutral buoyant object approach was used.

The measurement of other habitat parameters can be broadly divided into those 

parameters measured along the transects, those measured using the stream area 5 m on either side 

of the transect, and those measured in the riparian area 5 m on either side of the transect to a 

distance of 10 m from the stream edge. The transect methods and between-transect area methods 

will be described for the first downstream transect; the methods were then repeated at each 

successive upstream transect and between-transect area.

The following physical habitat variables were measured along each transect: wetted 

width, angle of each bank, undercut length, bankfull channel width and height above water 

surface, and canopy cover in the stream center and edges. The embeddedness, size substrate 

particle size (in 11 categories), and water depth were measured at 5 equally spaced points along 

the transect starting at one bank. Additional transects labeled as ‘supplementary transects ’ to 

take additional substrate and depth measurements in the USEPA-EMAP-SW methods were not 

taken after the first sampling year due to time constraints.

In the area of stream 5 m on both sides of the transect, the following habitat 

measurements were made: Tally of large woody debris in the bankfull cross-section greater than 

10 cm in diameter at the large end into 4 classes based on large end diameter (0.1-0.3 m and >0.3 

m diameter) and length (1.5 -  5 m and >5 m). Additionally, large woody debris above the
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bankfull cross-section but over the stream area were tallied into the same diameter/length classes. 

The larger diameter/length classes described in the USEPA-EMAP-SW methods were not utilized 

as very few pieces of woody debris reach those sizes in the northeastern Unites States. The areal 

cover of several categories of fish cover habitat (small brush, large woody debris, undercut banks, 

overhanging vegetation [< 1 m from water surface], filamentous algae, macrophyte, boulders, and 

in-channel live trees or roots) were measured using four ordinal classes (0 = absent, 1 = 1-10%, 2 

= 11-40%, 3 = 41-75%, 4 = 76-100%). In a departure from the EPA-EMAP-SW methods, the 

areal cover o f live-trees or roots, overhanging vegetation, and undercut banks were measured as 

the percentage o f the bank on both sides o f the stream covered by those habitat features as the 

cover of those habitat features over the entire water surface area was never greater than 10%. The 

water surface gradient and directional bearing (aspect) were measured between pairs of transects 

for a total of 10 measurements. The thalweg profile was not measured.

For each side of the stream, the riparian zone bounded by an area 5 m upstream and 

downstream of the transect and a distance o f 10 m from the stream edge was visually inspected 

for riparian vegetation characteristics in 3 layers: canopy (>5 m), under-story (0.5-5 m), and 

ground cover (0-0.5 m). The dominant vegetation type o f the canopy (none, conifer, deciduous, 

evergreen, or mixed) was recorded and the areal coverage of vegetation in the separate layers 

measured using four ordinal categories (0 = absent, 1 = 1-11%, 2 = 11-40%, 3 = 41-75%, 4 = 76- 

100%).

Abundances of vertebrates (fish and amphibians) and crayfish (Decapoda: Cambaridae) 

were estimated after all other sampling activities using a backpack electroshocker. The USEPA- 

EMAP-SW methods did not estimate amphibian or crayfish abundances. A single-pass electro

fishing method attempting to fish all available cover in the entire reach was used starting at the 

downstream limit of the reach. An anode net was used and one additional person with a net 

followed behind the person electroshocking to catch organisms that bypassed the electroshocker 

in the flow. In contrast to the variable time-limit for electro-fishing in the USEPA-EMAP-SW
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methods, a consistent effort was applied throughout the reach fo r  50 minutes by fishing fo r  5 

minutes between each transect. Block nets were placed at the downstream and upstream limits of 

the sampling reach when the sample reach was a large continuous pool. Collected fish were 

placed in a bucket of water, identified, and returned to the stream; however, fish that were not 

caught but could be confidently identified by the shocker or netter were also tallied. An 

additional person was responsible for the bucket and recording the identifications. Fish of 

questionable taxonomy were killed and preserved in 70% ethanol for lab identification.

Lab Analyses

Physical Habitat

Basin- (watershed-) level physical factors were estimated using ArcView and the 

hydrography and digitized 1:24,000 USGS topographic quads datasets from New Hampshire 

GRANIT. The following basin-scale parameters were measured:

• Drainage area

• Elevation

• Maximum elevation

• Cumulative perennial stream length

• Cumulative intermittent stream length

• Distance from source (furthest point in network)

• Distance from nearest impoundment (wetland or lake in the hydrography layer)

• Level IV aquatic ecoregion membership (Omemik 1987)

• Stream order

• Percent of watershed as lakes
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• Percent of watershed as wetland,

• Length of roads per watershed area

• Percent watershed area in three bedrock types (metamorphic, plutonic, and 

volcanic)

Additionally, an index of the relative magnitude of the annual (spring) flood was calculated as the 

base-flow wetted cross-section divided by the bankfull cross-section. A listing of the habitat 

variables taken at all scales can be found in Table 1-1.

Vertebrate and Cambaridae Data Processing

Vertebrate and Cambaridae densities were calculated by dividing the number of 

organisms by taxon from the 50-minute electro-fishing by the length of stream sampled to yield a 

density per 100 m of stream length with a sampling effort of 50 minutes.

Macroinvertebrate Sample Processing

A fixed-count sub-sample procedure based on the USGS-NAWQA protocols (Moulton et 

al. 2000) was used to estimate abundances of aquatic macroinvertebrates. Each sample was 

rinsed and sieved using a 500 pm sieve. The sample was uniformly distributed in a sub-sampling 

frame (stage-1 sub-sampling frame) with 15 grids. The grids to be sorted were randomly selected 

from the stage-1 sub-sampling frame. An estimate of the average number of organisms per stage- 

1 grid was obtained using two grids and the number of grids needed to achieve a 500-organism 

fixed count calculated. Doberstein et al. (2000) found no significant differences in several taxa 

measurements between whole sample processing and 1000 count sample processing; lower count 

sub-samples showed decreased power to detect differences between sites. However, resource 

constraints necessitated sub-sampling to 500 organisms, which improved on the very poor
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precision of 100-300 fixed-count sub-samples with much less effort than doing a 1000-count sub

sampling. A second stage was not used as the stage 1 grid was large enough (30 cm by 18 cm) to 

consistently achieve the critical density required to sub-sample 500 organisms with at least 3 

grids. Grids were sorted using a dissecting microscope at 8x power. Large, rare organisms were 

collected from any remaining unsorted portions of the sample in a 15 minute search.

Most macroinvertebrates were identified to the family level, using keys by Peckarsky et 

al. (1990), Thorp and Covitch (2001), and Merritt and Cummins (1996), though some were only 

identified to higher taxonomic level (e.g. Oligochaeta, Hydrachnida, Turbellaria,

Nematomorpha). There has been a rich conversation regarding the role of taxonomic resolution 

in biological monitoring (Lenat and Resh 2001). Several studies have found that identification to 

genus-species level (also known as lowest-practical level) either classifies sites into biotic groups 

or detects suspected impacts better than family level (Barton 1996, Hawkins and Norris 2000, 

Hawkins et al. 2000, Marchant and Hehir 2002). In contrast other studies have found family- 

level as sensitive, or more so, than genus-species level identifications (Olsgard et al 1997,

Hewlett 2000).

Bowman and Bailey (1997) found a very high correlation between family-level 

communities and genus-level communities. They suggest that a possible explanation for the 

differences in impact sensitivity with taxonomic level found in other studies may be related to 

whether the data is qualitative (usually presence-absence) or quantitative; Bowman and Bailey 

found a high correspondence between family and genus-species communities only when they 

conducted their analyses with abundance data, not binary data. McCreadie et al. (1997) found 

that black fly species co-occurrences within a group of very similar streams were no different 

from random. The distributions of species within higher taxonomic levels in families other than 

blackflies may also be random with only the distributions of higher taxonomic levels following 

tightly defined habitat templates. Indeed, Reynoldson et al. (1997) found that AUSRIVAS, 

which uses family-level presence absence data, more reliably detected known pollution than
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multimetric approaches that use genus-species identifications. They suggest that the way in 

which reference sites are aggregated for comparison with potentially polluted sites plays a greater 

role in determining impact sensitivity than taxonomic resolution.

Other problems present themselves with the use of lower taxonomic levels. Volunteers 

almost certainly cannot identify to lower than family level. There is often much wasted effort in 

identifications to lower taxonomic levels. Ordination analyses usually drop rare taxa, which 

results in many more individuals dropped from analysis at lower taxonomic levels than higher. 

Additionally, damaged or very small individuals often preclude confident identifications to lower 

than family level that require aggregation to higher taxonomic levels for all of the individuals to 

be used in statistical analysis. Resource constraints, even in areas with high-quality genus- 

species level prediction approaches such as RTVPACS in the United Kingdom, often force local 

users to use the family-level versions in common practice.

The balance of evidence suggests that there is only a small decrease in impact sensitivity 

due to identifications at the family level compared to genus-species identifications, and that that 

decrease may not exist when quantitative abundance data is available. Doberstein et al. (2000), 

found that sub-sampling significantly increased the variance in component metrics. It appears 

that the use of high quality quantitative data, powerful approaches for explaining variation in the 

reference sites, and a high sub-sampling fixed-count target are much more important 

considerations than taxonomic level for increasing impact sensitivity of a bioassessment 

approach. Thus, the level of effort spent in sub-sampling was increased to 500 organisms from 

the usual 100-200 organisms, rather than increase the effort spent in taxonomic identification, as 

that resource trade-off was more likely to result in higher sensitivity to potential impacts.

Because exactly 1 m2 of stream benthos was sampled for macroinvertebrates, the density 

of macroinvertebrates (#/m2) in the stream reach and the estimated number of macroinvertebrates 

in the composite sample were equivalent and were calculated as:
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^  „ . . # grids sorted
Density = total # organisms m sub - sam ple---------------------

total # o f  grids

The same equation was used to calculate the densities of individual taxa as well. 

Macroinvertebrates from the large-rare search were added to the final density estimate only if no 

individuals of a large-rare taxon were collected in the 500-organism sub-sample.

Periphyton Sample Processing

Periphyton were processed in a blender at low speed for 10 seconds to break up 

filamentous algae and Lugol’s iodine added to help distinguish Chlorophyta from Cyanophyta. A 

line-intercept method using ten 50 mm transects in a 20 mm X 50 mm X 0.4 mm deep counting 

chamber (0.4 ml) was used to estimate periphyton biovolume. Transects were split between two 

counting chambers to reduce bias associated with using a single 0.4 ml aliquot. Periphyton were 

identified to the genus level for soft algae and morphometric type for the Bacillariophyta 

(naviculoid, cymbelloid, centroid, and a few genera that were easily distinguished such as 

Gyrosigma) using the key by Prescott (1978). Details of the development and testing of this 

novel application of the line-intercept method can be found in Chapter 2. Periphyton abundance 

was calculated in biovolume units of mm3 per m2 of stream benthos using the equations in 

Chapter 2.

Chemical Analyses

Water chemistry samples were analyzed for a full range of common constituents. Major 

anions were analyzed using ion chromatography with suppressed conductivity; major cations 

using ion chromatography; Ammonia using alkaline phenol method (Berthelot reaction) with 

discrete colorimetric analysis (based on EPA 350.1); Phosphate using molybdate blue method and
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discrete colorimetric analysis (based on EPA 365.2); Silica using discrete colorimetric analysis 

(based on EPA 370.1); dissolved organic Carbon as non-purgeable organic Carbon using high- 

temperature catalytic oxidation (E1TCO); total dissolved nitrogen using HTCO with 

chemiluminescent detection; and total alkalinity according to the standard color change titration 

method (Clesceri et al. 1989). Dissolved organic Nitrogen was calculated as the fraction of total 

dissolved Nitrogen remaining after subtracting Ammonia and Nitrate (all measured as mg N/L). 

A complete list of the individual compounds and ions analyzed along with their respective units 

can be found in Table 1 -1.
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Table 1-1. Habitat descriptors estimated for minimally impacted stream reaches in New 
Hampshire.

Brief variable name Description and Units
G ranitID GRANIT hydrography ArcView layer ID number
Ecoregion4 Level IV EPA Aquatic Ecoregion
Ecoregion3 Level III EPA Aquatic Ecoregion
Lat Latitude in decimal degrees
Long Longitude in decimal degrees
Order Stream order
Wetlands Proportion of watershed as wetlands
Lakes Proportion of watershed as lakes
Permanentstream Total length of permanent streams (m)
Intermittent_stream Total length of intermittent streams (m)
Highest_point Maximum elevation in watershed (m)
Distance impound Distance to nearest upstream impoundment (km)
Distancesource Distance to furthest point in the upstream stream network (km)
Area Watershed area (ha)
Metamor Proportion area of metamorphic bedrock
Volcan Proportion area of volcanic bedrock
Pluton Proportion area of plutonic bedrock
Length Reach length (m)
Elevation M
Discharge m3/sec
Slope Degrees
Aspect Degree deviation from south
Fine Proportion of 11 macroinvertebrate and periphyton sample sites classified 

as “fine” substrate
Gravel Proportion of 11 macroinvertebrate and periphyton sample sites classified 

as “gravel” substrate
Coarse Proportion of 11 macroinvertebrate and periphyton sample sites classified 

as “coarse” substrate
Macro Proportion of 11 macroinvertebrate and periphyton sample sites classified 

as “macrophyte” substrate
Pool Proportion of 11 macroinvertebrate and periphyton sample sites classified 

as “pool” habitat
Glide

t
Proportion of 11 macroinvertebrate and periphyton sample sites classified 
as “glide” habitat

Riffle Proportion of 11 macroinvertebrate and periphyton sample sites classified 
as “riffle” habitat

Rapid Proportion of 11 macroinvertebrate and periphyton sample sites classified 
as “rapids” habitat

pH Water Ph
Temp Water temperature (°C)
Cond Specific conductivity (uS)
Embedded Mean % embeddedness of substrate
Phi Mean phi value of substrate particles
SDphi Standard deviation of phi values for substrate particles
Fine sub Proportion of 55 substrate measurements classed as fine
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Table 1-1. Continued.

Brief variable name Description and Units
Sand Proportion of 55 substrate measurements classed as sand
Fine_gravel Proportion of 55 substrate measurements classed as fine gravel
Coarse_gravel Proportion of 55 substrate measurements classed as coarse gravel
Cobble Proportion of 55 substrate measurements classed as cobble
Bouldersub Proportion of 55 substrate measurements classed as boulder
Bedrock Proportion of 55 substrate measurements classed as bedrock
Depth Mean water depth (m)
Max depth Maximum water depth (m)
Width Mean channel width (m)
Crosssection Mean channel width x mean water depth (m2)
Bankfullwidth Mean bankfull channel width (m)
Bankfull_height Mean bankfull channel height (m)
Bankfull_crossection Mean bankfull channel width x mean bankfull channel height (m2)
Flood_mag Annual flood magnitude indexed by the bankfull cross-section divided by 

wetted cross-section (unit-less)
Undercut Mean undercut length (m)
Angle Mean Bank angle (degrees)
Filamentous Mean cover index of filamentous algae in the channel (1-4)
Macrophytes Mean cover index of macrophytes in the channel (1-4)
Woodydebris Mean cover index of large woody debris in the channel (1-4)
Brushwood Mean cover index of brush in the channel (1-4)
Livetrees Mean cover index of live trees along the bank (1-4)
Overhanging Mean cover index of overhanging vegetation along the bank (1-4)
Undercut banks Mean cover index of undercut along the bank (1-4)
Boulders Mean cover index of boulders in the channel (1-4)
Canopycover Mean % canopy cover
Bigtrees Mean cover index of large trees (>0.3 m DBH) in the canopy riparian 

vegetation (1-4)
Small_trees Mean cover index of small trees (<0.3 m DBH) in the canopy riparian 

vegetation (1-4)
Shrubs Mean cover index of shrubs in the under-story riparian vegetation (1-4)
Tall herbs Mean cover index of tall herbs (>0.5 m) in the under-story riparian 

vegetation (1-4)
Short_herbs Mean cover index of short herbs (<0.5 m) in the ground cover riparian 

vegetation (1-4)
Bare Mean cover index of bare ground in the under-story riparian vegetation 

(1-4)
Deciduous Proportion of riparian canopy vegetation classified as “deciduous”
Coniferous Proportion of riparian canopy vegetation classified as “coniferous”
Mixed Proportion of riparian canopy vegetation classified as “mixed” (>20% 

other)
None Proportion of riparian canopy vegetation classified as “none present”
INI .5-0.1 Density (per m of reach length) of large woody debris 0.1 -0.3 m in 

diameter and 1.5 -5 m in length in the bankfull channel
INI.5-0.3 Density (per m of reach length) of large woody debris >0.3 m in diameter 

and 1.5 -5 m in length in the bankfull channel
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Table 1-1. Continued.

Brief variable name Description and Units
IN5-0.1 Density (per m of reach length) of large woody debris 0.1-0.3 m in 

diameter and 5-15 m in length in the bankfull channel
IN5-0.3 Density (per m of reach length) of large woody debris 0.1-0.3 m in 

diameter and 5-15 m in length in the bankfull channel
INI 5-0.3 Density (per m of reach length) of large woody debris >0.3 m in diameter 

and >15 m in length in the bankfull channel
OUT1.5-0.1 Density (per m of reach length) of large woody debris 0.1-0.3 m in 

diameter and 1.5 -5 m in length above the bankfull channel
OUT1.5-0.3 Density (per m of reach length) of large woody debris >0.3 m in diameter 

and 1.5 -5 m in length above the bankfull channel
OUT5-0.1 Density (per m of reach length) of large woody debris 0.1-0.3 m in 

diameter and 5-15 m in length above the bankfull channel
OUT5-0.3 Density (per m of reach length) of large woody debris >0.3 m in diameter 

and 5-15 m in length above the bankfull channel
Total LWD Total tally of all large woody debris
IN LW D Density of all large woody debris within the bankfull channel (per m of 

reach length)
OUTLW D Density of all large woody debris above the bankfull channel (per m of 

reach length)
Chloride Chloride (mg Cl/L)
Nitrate Nitrate (mg N/L)
Sulfate Sulfate (mg S/L)
Sodium Sodium (mg Na/L)
Potassium Potassium (mg K/L)
Magnesium Magnesium (mg Mg/L)
Calcium Calcium (mg Ca/L)
Ammonia Ammonia (ug N/L)
Phosphate Phosphate (ug P/L)
Silica Silica (mg Si02/L)
DOC Dissolved organic Carbon (mg C/L)
TDN Total dissolved Nitrogen (mg N/L)
DON Dissolved organic Nitrogen (mg N/L)
Total_alkalinity Total alkalinity (mg CaC03/L)
Vertebrate taxa Number per 100 m of reach captured in 50 minutes of electro-fishing
Macroinvertebrate Number per m2 of benthos
taxa
Periphyton taxa Biovolume (mmVm2 benthos)
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CHAPTER II

LINE-INTERCEPT LABORATORY SUB-SAMPLING MORE EFFICIENTLY 

ESTIMATES PERIPHYTON BIOVOLUME

Summary

Algal communities have been included as a biological monitoring assemblage in a 

number of national, large-scale, and long-term biological monitoring and assessment 

programs o f streams, lakes, and wetlands. However, there has been no substantial 

investigation of alternative enumeration strategies.We compared the sampling efficiency of 

the common periphyton sub-sampling strategies of counting 300-cells by strip counts or 

random fields and measuring 10 cells per taxon for biovolume with line-intercept sampling 

(LIS) using samples collected from four streams differing in canopy cover and discharge. We 

also simulated the optimum ratio of cells tallied to cells measured for biovolume for all 

approaches. LIS was 1.6 to 5.5 times more efficient at estimating algal taxa biovolume than 

the 300 cell-count methods. LIS performed best relative to conventional 300-cell count 

methods in streams with high biovolume, though efficiency gains were still noticeable in low 

biovolume streams. In addition, LIS tended to detect more taxa than the conventional 300- 

cell target biological assessment methods.

In simulations, LIS was more efficient than the conventional methods for nearly all 

combinations of target cell-count and cells measured for biovolume. No single optimal ratio 

o f cells-counted to cells-measured was found. The target cell-count that resulted in the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



greatest efficiency was higher in assemblages with large variation in cell density. Likewise, 

assemblages with high variance in taxa biovolume were most efficiently sampled by measuring 

more cells.

An increase in sampling efficiency due to greater adoption of LIS sampling may result in 

more accurate estimation of the relationships between periphyton community composition and 

environmental factors and more sensitive detection of impacts using stream periphyton. 

Additionally, LIS may improve estimates in other ecological research fields employing 

microscopic counting chambers.

Introduction

Although algae have a long history of use as a potential biological indicator of ecosystem 

health and anthropogenic impact to aquatic systems (Patrick 1949), they have been gaining 

increasing attention in recent years (see recent reviews by McCormick & Cairns 1994; Lowe & 

Pan 1996; Danielson 1998; Stevenson & Smol 2002). To date, algae have been used to assess 

impacts in a variety of ecosystems (see for example Porter et al. 1993; Adamus 1996; Pan et al. 

1996; Jameson et al. 1998; Hill et al. 2001), with indications that they may respond differently to 

impacts and thus be complementary with other aquatic biological assemblages in those same 

systems. As a result, algal communities have been included as a biological monitoring 

assemblage in a number of national, large-scale, and long-term biological monitoring and 

assessment programs of streams, lakes, and wetlands (Porter et al. 1993; Lazorchak, Klemm & 

Peck 1998; Barbour et al. 1999; Biggs & Kilroy 2000). Despite the burgeoning application of 

algae to assessing aquatic ecosystem integrity, there have been few investigations of laboratory 

sub-sampling error (see Alverson et al. 2003) or alternative methodology. Although sampling 

efficiency is essential to a large-scale high-throughput monitoring program, there have been no
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attempts to evaluate alternative laboratory sub-sampling approaches for increased efficiency. An 

assessment of the potential contribution of measurement error to correlation strengths is necessary 

to gaining a complete understanding of the relationships between algal communities and the 

environment.

Currently, there is one basic template for the enumeration and biomass estimation of algal 

taxa for community composition in biomonitoring programs (Porter et al. 1993; Lowe and Pan 

1996; Gerritsen et al. 1998; Barbour et al. 1999; Biggs & Kilroy 2000; Hill et al. 2001).

Preserved algae, which could be phytoplankton, or periphyton scraped from an erosional substrate 

or siphoned from a depositional substrate, or periphyton scraped from colonized artificial 

substrates, are blended with the liquid they were stored in and a precise amount placed onto a 

counting chamber suitable for a high magnification compound microscope (e.g. Palmer-Maloney 

chamber). Cells are then counted and identified to a fixed-count of 300 cells either in random 

fields or in strips placed along the long axis of a counting chamber. High-density samples usually 

are counted with random fields to ensure that the 300-cell target is not surpassed. Algal 

community ecology investigations also use this basic template but with a wider range in cell- 

count targets (Alverson et al. 2003)

Because algae vary widely in size, some measurement of average biomass per cell of 

each taxon must be made to more accurately reflect dominance and energy transfer within the 

assemblage. The approach taken by most biomonitoring studies is to scan the sample after 

enumeration is complete to record measurements on 5 -15 cells per taxa identified in the 

enumeration for use in biovolume estimation. The target time allotment for completing the entire 

laboratory sub-sampling effort on a sample is 1 -2 hours, inclusive of the measurement of 

biovolume (Porter et al. 1993; Biggs & Kilroy 2000).

Line-intercept sampling (LIS) is one of the predominant sampling strategies for terrestrial 

plant ecology (Knapp 1984; Thompson 1992), with a long history of use (e.g. Canfield 1941). It 

may offer substantial benefits in sampling efficiency and accuracy compared to the plot-based

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



approach of random microscope fields or strips. LIS samples particles in a region if they intersect 

a line segment, here called a ‘transect.’ Particles are sampled in proportion to the perimeter of 

their convex hull, i.e. the smallest convex shape that encompasses the particle (Kendall and 

Moran 1963, p. 58). This method has been reviewed and a unified theory of its use constructed 

by Kaiser (1983). LIS has been found to be more efficient than plot-based sampling, of which 

random fields and strip counts are analogous, in many studies of macroscopic items, 

predominantly terrestrial vegetation (as cited by Kaiser 1983: Canfield 1941; Bauer 1943;

Warren & Olsen 1964; Bailey 1970). Any number of characteristics could be recorded for each 

cell that intersects a transect line, including taxon identity, whether the cell was alive or dead at 

capture, and cell measurements needed for biovolume calculation. Although Nedoma et al.

(2001) demonstrated that LIS can be used to reliably calculate total filamentous algae length in a 

counting chamber, no comparison was made with other approaches to assess the relative 

efficiency of LIS.

In this paper, we present a comparison of the relative efficiency o f three methods of 

estimating algal biovolume in a counting chamber: LIS, a 300-cell random fields count, and a 

300-cell strip count. Next, we evaluated the impact of the number of cells measured and number 

of cells tallied for fields, strips, and LIS using simulations based on observed cell densities and 

sizes.

Methods

Periphyton Biovolume Estimation

To compare the sampling efficiency of the traditional two fixed-count methods and a line 

intercept sampling, we selected four streams representing the full range of discharges and canopy
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cover available in the sampled stream population due to the large effects of those habitat 

parameters on algal communities (Biggs 1996). The four streams selected were: a high 

discharge - low canopy cover stream; a medium discharge - high canopy cover stream; a low 

discharge - low canopy cover stream; a low discharge -high canopy cover stream (Table 2-2-3, 

see Supplementary Material).

We blended the samples in a high-speed kitchen blender for approximately 10 seconds to 

break apart filamentous algae and placed 0.4 ml in a rectangular counting chamber measuring 20 

mm x 50 mm and 0.4 mm deep that we designed. We selected a rectangular counting chamber 

because a precise estimate of the length of line sampled is required for LIS. A round counting 

chamber would introduce additional measurement error by requiring the measurement of transect 

length . Dried Lugol’s iodine was present in the counting chamber before addition of the 0.4 ml 

sub-sample.

For each sample, three methods were applied to make separate estimates of periphyton 

biovolume: a 300 fixed-count random field approach; a 300 fixed-count strip count approach; a 

line-intercept approach using 7 transect lines. As in the usual biomonitoring approach to 

estimating periphyton biovolume, high density samples were estimated using random fields and 

low density samples using strip counts. We maintained this strategy so we could accurately 

assess the sampling efficiency of the current protocols that call for operator interpretation of 

which method to use. For the LIS approach, we randomly located transects along the short axis 

of the counting chamber and ran them parallel to the long axis, a transect length of 50 mm in our 

counting chamber, identifying only cells that intersected the transect. Transects were designated 

on the field of view using an eyepiece micrometer. We selected 7 transect lines based on initial 

estimates of density and mean cell size in the high discharge -  low cover sample such that we 

would expect to tally 300 cells using the LIS approach. However, in order to compare the 

efficiency of all methods, we also performed the alternate fixed-count method on each sample
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with limits of five strip counts on the high density samples and 40 random fields on the low 

density samples. Any more than 5 strip counts in high density samples would have required that 

we count thousands of cells, which we did not feel was necessary for accurate variance 

estimation. We counted only 40 random fields in the alternate method because attaining a 300- 

cell count using random fields would have required many more random fields than was necessary 

for variance estimation. We tallied each random field, counting strip, and transect separately for 

variance estimation and timed each approach.

Using the key by Prescott (1978), we identified soft algae to genus and diatoms to 

morphometric type (naviculoid, other pennate, cymbelloid, or centric; Porter et al. 1983; Lowe & 

Pan 1996) where genus could not be conclusively identified without acid treatment. We used the 

equations of Hillebrand et al. (1999) to calculate biovolume for all taxa tallied in each method. In 

the strip count and random field approaches, the biovolume of all encountered taxa was estimated 

by scanning the sample after counting and identification was complete, consistent with the 

methodology of the United States Geological Survey’s National Water Quality Assessment 

Program (Porter et al. 1993), the New Zealand National Institute of Water and Atmospheric 

Research (Biggs & Kilroy 2000), and the U.S. EPA Rapid Bioassessment Protocols (Barbour et 

al. 1999),. A maximum of 10 cells o f each taxa encountered were measured, but not greater than 

the number of cells encountered for that taxa if less than 10 were tallied.

Because it was already necessary to take measurements of cell size and shape for biovolume 

estimation, we were able to calculate the perimeter of a cell’s convex hull and, consequently, 

estimate the probability that a cell would be tallied using LIS (cf. Kaiser 1983, equations 2.5 and 

3.3). Thus, when using LIS, we took the necessary measurements for biovolume and perimeter of 

the convex hull as each taxon was encountered, to a limit of 10 cells per taxa. For example, 

Closterium (Prescott 1978), a sickle-shaped cell, normally would be measured for biovolume 

using equations for a double cone requiring only width at the median and total length; we added a
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measurement of the width of the of the total sickle including the indentation so as to calculate the 

perimeter of the convex hull using an equation for half the perimeter of an ellipse. The 

measurements and equations we used to estimate biovolume for all taxa recorded by LIS can be 

compared with the measurements and equations used to calculate the perimeter of the convex hull 

in Table 2-2-4 (see Supplmentaty Material)..

Data Analysis

We calculated the mean biovolume per mm2 of the counting chamber for each taxon in the 

random field and strip count approaches for each sample by multiplying the mean cell density 

mm'2 of counting chamber for a taxon by that taxon’s mean biovolume in pm3. Suppose that a 

total of n fields or strips have been evaluated, and that each field or strip has area A (mm'2). Let 

X ik be the number of cells of taxon i that are tallied in the Mi field or strip, let Yy be the 

biovolume (pm3) of they'th measured cell of taxon i, and let J, be the number of cells of taxon i 

that have been measured. Then the corresponding estimators of biovolume density are

Each of these estimates is associated with a sampling variance, which describes the reliability of 

inferences about biovolume by taxon or in total. Under the assumption that homogenization of 

samples makes the density and size distribution of each taxon independent, the variances for 

mean cell count per field or transect, and mean biovolume per cell, can be propagated by the 

chain rule (Goodman 1960), yielding

(1)
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(2)

A higher-order term in the exact variance for individual taxa is nearly always negligible and can 

be omitted (Goodman 1960).

LIS is an unequal probability method, sampling cells with probability proportional to the 

perimeter of their convex hull; computation of biovolume density differs slightly. Suppose that a 

total of n lines across the counting chamber have been evaluated, and that each line has length L 

(mm'2). As before, let Xlk be the number of cells of taxon i that are tallied on the Ath line, and let 

./, be the number of cells of taxon i that have been measured. Let Zy be the biovolume (pm3) of 

the/th cell of taxon i, divided by the perimeter of that cell’s convex hull (pm2). Now the 

corresponding estimators of biovolume density are

Equation (3) represents the usual unconditional estimator of density for LIS (Kaiser 1983), 

modified to account for sub-sampling for Zir

The efficiency of a method depends both on the time required to process a sample, and on 

the resulting sample variance. We calculated relative efficiency of an estimation method (i.e. 

fields or strips) compared to LIS as:

(3)

and the corresponding variance estimators are

(4)
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where CV; is the coefficient of variation of a fixed-count method, t, is the time in minutes of a 

fixed count method, CVUS coefficient of variation o f the LIS estimation for that same sample, and 

tUs is the time in minutes of performing the LIS for that sample. Coefficients of variation can be 

calculated simply as

CV = yls2( v ) /V 2 .

Efficiency gains found for LIS could be attributed to measuring biovolume as cells are 

encountered, as opposed to a second scan to measure the required number of individuals of each 

taxon. Thus, we estimated the time to measure each cell independent of tally time in LIS by 

regressing the total time to count against the number of cells counted and number of cells 

measured for biovolume for all four LIS samples. We used the unstandardized coefficients for 

the number of cells measured after controlling for the number of cells counted as the time to 

measure each cell for bio volume as encountered. To predict the time it would take to sample the 

fixed count methods as if we had measured cells for biovolume as encountered, we multiplied the 

time to measure for biovolume as encountered per cell by the number of measured cells in a 

fixed-count sample and adding the time it took to tally the unmeasured cells. We then re

calculated relative efficiencies between the fixed count methods and LIS based on the new times 

to compare any efficiency loss or gain of measuring cells as encountered.

To assess the variance impact of counting cells versus measuring cells for biovolume, we 

simulated the efficiency of sampling the stream periphyton using a range of target cell-count and 

cells measured for biovolume on all three methods. To do so, we randomly sampled the sampling 

units associated with each method (i.e. a field, strip, or 50 mm line-intercept line) from the dataset
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collected to compare relative efficiency above. We simulated target cell-counts ranging from 50 

to 1000. Random sampling of the parent dataset was completed when adding a sampling unit 

resulted in the target cell-count. We also altered the number of cells measured for each taxon in 

each simulated sample from 2 to 50 cells. We estimated the biovolume and variance in the 

biovolume estimate for each simulated sample using the methodology appropriate for each 

sampling approach. We also calculated the time to sample using the sampling time to count cells, 

measure cells, and examine each sampling unit derived from the time cost regressions described 

above. We calculated sampling efficiency for each simulated sample, using eqn 5, in which 

efficiency was relative to the most efficient simulated sample across all three sampling methods 

for a stream.

Results

Periphyton community structure differed greatly between streams, possibly reflecting the 

widely differing canopy covers and summer discharges; the three sub-sampling methods 

generally estimated similar assemblages (Table 2-1 and Figure 2-1). All three methods yielded 

similar biovolume estimates within streams and the relative ranking of streams by biovolume was 

the same for all three methods (Table 2-1). The high discharge -  low cover stream had the 

highest biovolume estimates, while the low discharge -  high cover stream consistently yielded the 

lowest periphyton biovolume(Table 2-1).

Taxa richness was slightly higher under LIS compared to those estimates made using the 

strict 300-count limit. In the high discharge -  low cover 300-count random field sample, LIS 

detected 3 more taxa, and in the low discharge -  low cover random field sample, LIS detected 5 

additional taxa. Taxa richnesses for the two 300-count strip count samples were identical to LIS
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(Table 2-1). It does not appear that any taxa are being missed by not counting 300 cells using 

LIS; to the contrary, LIS appears to detect more taxa.

LIS was more efficient than either of the fixed count methods for all streams. Relative 

efficiency ratios ranged from 1.6486 to 5.4564. LIS performed best relative to conventional 300- 

cell count methods in streams with high bio volume (Table 2-1). The efficiency gains were due to 

a combination of lowered time to sample in LIS, possibly because less time was spent searching 

empty fields or strips, and to lower coefficients of variation (C.V.) (Table 2-1). C.V.s for the LIS 

samples were generally half that of strip counts or random fields where the target 300-cells were 

counted. The only exception to this pattern was the low discharge -  low cover stream, which had 

an equivalent C.V. in all three methods. The LIS sample with the highest C.V was the stream 

with the lowest cell densities and total bio volume (low discharge-high cover). . Not surprisingly, 

this stream also displayed the lowest efficiency gains for LIS relative to the other methods in 

which the target 300-cells were counted, though LIS was still 2.807 times more efficient (Table 

2 - 1).

The mean time to both tally and measure cells for biovolume on an LIS transect was 

10.50 +/- 4.89 min. Multiple regression of the sampling times in LIS resulted in a time to 

measure independent of the time to count a cell of 0.71 min. After adjusting the sampling times 

for the fixed-count methods to reflect an estimated time to sample based on measuring cells as 

they were encountered, the relative efficiencies did not change substantially (Table 2-1). The 

relative efficiencies of LIS compared to all methods were still above 1.0 after adjusting the 

sampling times, potentially indicating that the relative efficiency gain of LIS versus the fixed- 

count methods were due primarily to LIS rather than to measuring cells for biovolume as 

encountered.

The relative sampling efficiency of the simulated samples varied widely (Figure 2-2). LIS 

was more efficient than the conventional methods for nearly all combinations of target cell-count
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and cells measured for biovolume (Figure 2-2) and resulted in the most efficient combination of 

target cell-count and cells measured for biovolume for all streams (Table 2-2). No single optimal 

ratio of cells-counted to cells-measured was found (Table 2-2). In general, the least efficient 

combination involved counting few cells while measuring many cells, although the high 

discharge-low cover stream and the conventional methods on the low discharge-low cover stream 

did not follow that pattern (Figure 2-2). The target cell-count that resulted in the greatest 

efficiency was higher in assemblages with large variation in cell density. Likewise, assemblages 

with high variance in taxa bio volume were most efficiently sampled by measuring more cells.

Discussion

Line-intercept sampling was consistently more efficient at measuring periphyton biovolume 

than fixed-count random fields or strip count approaches as sampling error was often lower even 

with less time spent sampling. Increased efficiency of LIS compared to fixed-area sampling, in 

this case random fields or strip counts, has been demonstrated in many studies sampling a variety 

of objects (as cited in Kaiser 1983: Canfield 1941; Bauer 1943; Warren and Olsen 1964; Bailey 

1970). There are a number of theoretical reasons why we would expect sampling proportional to 

some characteristic o f the target object to be more efficient than fixed-area sampling. First, there 

is no need to spend time finding random fields on the microscope stage. Secondly, because algae 

vary widely in size and with the large cells contributing the largest amount of biovolume usually 

rare in number, sampling proportional to the convex perimeter of the cell results in detection of 

large cells more reliably than in plot-based or frequency-proportional sampling methods. In this 

study, taxa richness using LIS was either equal to or greater than random fields or strip counts in
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all samples despite tallying far fewer cells (Table 2-1). Lastly, the LIS estimate of biovolume for 

a taxon is calculated in part using the ratio of biovolume to perimeter (eqn 2). We would expect 

that the biovolume to perimeter ratio (which scales as the square of the characteristic length scale 

of the cell) would exhibit a smaller variance over a wider range of cell sizes than mean 

bio volume, which increases with the third power of the characteristic length scale of a cell.

In our view, the coefficients of variation obtained for biovolume using seven transects are 

still high (Table 2-1). Fortunately, the seven transects we utilized for LIS took substantially less 

time to sample than either 300-cell count method. We would, therefore, suggest increasing the 

number of transects to match the suggested 1 -2 hour sampling target that the national programs 

are planning (Porter et a l 1993; Barbour et al. 1999; Biggs & Kilroy 2000). The additional 

transect length should continue to decrease error in the estimates, but with no additional resource 

cost compared to the fixed-count approaches. Because 10.5 minutes on average were required to 

perform one 50 mm transect in our counting chamber, a total of 500 mm, would fit into current 

program budgets. The increase in relative efficiency for LIS did not take into account the 

additional calculations required; we assume that the available algal biovolume computer 

programs could be easily modified to compute biovolume using LIS eliminating the need for 

additional computation time.

Although the simulations did not provide a single optimal ratio of target cell-count to 

number of cells measured for biovolume, they nonetheless are informative for designing an 

efficient sampling approach under varying expected assemblage conditions. They confirm that 

LIS remains more efficient than the conventional methods across a wide range of combinations of 

target cell-counts and cells measured. The simulations also confirm the intuitive expectation that 

more cells should be measured if one expects large within-taxa variation in cell biovolumes. 

Conversely, more cells should be counted if large variation in taxa cell densities is expected.

More filamentous or colonial forms could result in higher variation in cells densities because the
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attached cells would be less likely to be randomly distributed in the sample. However, the most 

efficient combination may require each research or monitoring program to evaluate its own most 

efficient combination tailored to the characteristics of the algal community it is investigating. 

Algal community ecology investigations with fewer budgetary constraints than monitoring and 

assessment programs may downplay sampling efficiency in favor of increased accuracy; 

however, given equal time spent sampling, LIS should provide greater accuracy than 

conventional high cell-count methods.

In theory these findings should apply to sub-sampling any algal assemblages stored in a 

liquid medium. However, given the different dominance of life-forms in marine versus freshwater 

or benthic versus pelagic taxa (Graham & Wilcox 2000), that assumption should be tested. 

Additionally, Alverson et al. (2003) found that unlike for the soft algae, valves in diatom mounts 

are often clustered towards the center of a counting chamber. The utility o f LIS for diatom 

mounts, while promising, also needs further examination. Perhaps most importantly for the 

large-scale efforts to use periphyton in long-term biological monitoring and assessment programs, 

we found error in total biovolume as high as 34.0% of the mean associated with the traditional 

300-cell fixed-count methods (Table 2-1). Furthermore, those high coefficients of variation were 

not offset by increased detection of taxa (Table 2-1). The U.S. EPA has forgone use of individual 

taxon biovolume estimation in its recent assessment of the Mid-Atlantic Highlands area in favor 

of chlorophyll a concentration (Hill et al. 2000), presumably in response to seemingly low 

correlations between periphyton community composition and environmental parameters or 

potential impacts. However, that decision may be premature, as we believe that the true strength 

of correlation between periphyton community composition and potential impacts may not have 

been accurately estimated using the traditional biomonitoring sub-sampling method.

Long-term datasets produced using consistent methodology that is accurate and resource efficient 

is a key goal of monitoring and adaptive ecosystem-based management (Ringold et al. 1999).
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Given that several large-scale programs are still developing their laboratory sub-sampling 

procedures for algae (Lazorchak, Klemm & Peck 1998; Jameson et al. 1998; Gibson et al. 2000; 

U.S. EPA 2002) continued research into the statistical sampling aspects of the measurement of 

algal biovolume such as we have presented here is needed to avoid costly mistakes and increase 

monitoring and assessment program efficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33



Table 2-1. A comparison of random field and strip fixed-count methods for estimating 
periphyton biovolume with line-intercept sampling. R.E. refers to relative efficiency where 
the most efficient approach for each stream was scaled to equal 1.

R.E. : 
biovolume R.E.:

Stream Method
Biovolume 
(mm3 m 2) C.V.

Time
(min.) Taxa*

post
counting**

biovolume
encountere>

High discharge 
-  low coverf

Fields 8,851 0.194 118 8 5.023 4.347

Low discharge 
-  high cover

Fields 33 1.054 22 2.719 2.89

Med. discharge 
-  high cover

Fields 300 0.348 70 2.305 1.339

Low discharge 
-  low coverf

Fields 2,991 0.296 167 6 5.456 3.028

High discharge 
-  low cover

LIS 6,122 0.086 119 11 1.0 1.0

Low discharge 
-  high cover

LIS 138 0.321 82 6 1.0 1.0

Med. discharge 
-  high cover

LIS 902 0.191 106 4 1.0 1.0

Low discharge 
-  low cover

LIS 1,262 0.186 78 11 1.0 1.0

High discharge 
-  low cover

Strips 5,636 0.074 266 - 1.649 1.387

Low discharge 
-  high coverf

Strips 19 0.307 267 6 2.807 2.724

Med. discharge 
-  high covert

Strips 274 0.34 123 4 3.852 2.438

Low discharge 
-  low cover

Strips 932 0.188 182 - 2.405 1.606

* Taxa richness was only presented for the fixed-count method that would have been chosen, 
based on overall cell density, by the conventional sub-sampling estimation techniques. Taxa 
richness was compared with LIS only for these method applications to control for the sample 
size effect. See methods for details.

** Relative efficiency of the fixed-count sample method to the LIS sample method where the 
time to measure was based on measuring for biovolume after the cells are tallied in the fixed- 
count method as per typical biomonitoring program protocol.

*** Relative efficiency o f the fixed-count sample method to the LIS sample method where 
the time to measure was based on the estimated time for measuring biovolume as cells are 
encountered.
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Table 2-2. Summary of simulations to calculate the most efficient target cell-count and cells 
measured for biovolume for three sub-sampling approaches. The efficiency of the most 
efficient combination of target cell-count and cells measured for biovolume for each stream 
irrespective of method was scaled to equal 1.

Cells
Estimation Target cell measured fo r

Stream____________________ method________ count_______biovolume Relative efficiency
75 40 2.954Low discharge-high Random

cover fields
Random 

strips 
Line-intercept 

High discharge-low cover Random
fields 

Random 
strips 

Line-intercept 
Low discharge-low cover Random

fields 
Random 

strips 
Line-intercept 

Random 
fields 

Random 
strips 

Line-intercept

200 40 2.0176

50 50 1
1000 4 6.4957

800 3 3.3879

200 4 1
900 5 3.5734

300 10 2.6543

400 50 1
75 40 2.2555

100 15 3.1588

450 15 1

Med. discharge-high 
cover
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Table 2-3. Descriptive physical habitat information for four streams used to compare the 
sampling efficiency of three methods for estimating periphyton biovolume: fixed-count 
random fields or strip counts and line-intercept sampling. Mean O-value refers to the 
average particle size on the phi scale of Krumbein (1934).

99.43 -4.36 0.03 1.94

Stream Discharge Canopy Mean Depth Width
identifier_______Latitude Longitude (m3 s e c 1) Cover (%) 0-value (m) (m)
Low
discharge -  
high cover 
High
discharge- 
low cover 
Low
discharge -  
low cover 
Medium 
discharge -  
high cover

43.35558 71.31392 <0.01

44.14039 71.26849 1.43

42.76310 71.29010 <0.01

43.19658 71.19557 0.09

39.75

4.01

-5.47 0.13 9.32

4.27 0.12 0.94

90.87 4.06 0.11 2.25
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Table 2-4. Equations used to calculate biovolume and perimeter of the convex hull for all 
taxa recorded by the line-intercept sampling method to illustrate the utilization of 
biovolume measurements for calculating the perimeter of the convex hull. The equations’ 
dimension parameters follow the conventions of Hillebrand etal. (1999), though generally a 
refers to length, b to width, and c to depth. Most equations are self-explanatory and follow 
the generally accepted formulas for calculating the perimeter of common shapes such as 
rectangles and circles. Closterium, cymbelloid diatoms, Gyrosigma, and naviculoid diatoms 
use a simplified formula for estimating the perimeter of an ellipse. See Prescott (1978) for 
genera references.

Anabaena

Bulbochaete

Closterium

Cymbelloid diatom

Eunotia

Gyrosigma

Lyngbya

Mougeotia

Naviculoid diatom

Oscillatoria 

Pennate diatom 

Rhizoclonium

Staurastrum

Tabellaria

Biovolume 

TV
•  b 2

•  b 2 a

Perimeter of the convex hull 

T f b

2 a + 2b

/ A

71 U2—  • o a 
12

2  2— ac  •  arcsinl 
3 V2c

— abc 
4

— abc 
4

TV

TV

2
V 2 + (b + d )2 a i i b + d

v2 y

f a )2 (b ^
2

—
v 2 . j L 2  J 2 12 2 y

2a + 2b

TV 2 •
v 2 y

b

v2y
_1
2 2 2

4
TV

4

<b2a

b 2a

2a + 2b 

2a + 2b

— abc 
4

71 U2— • b  a 
4

TV 12 *
' a

+
v ŷ 2

a b N 
2 _ 2 y

abc
TV

4

— • b  a 
4

71 U2—  *b  a 
12
abc

2a + 2b 

2a + 2b 

2a + 2b

b 

\ 2 y  
2 a + 2b
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Table 2-4. Continued.

Biovolume

Terpsinoe  —  abc
4
7V . 2

Ulothrix  —  •  b  a
4

Perimeter of the convex hull 

2a + 2b

2a + 2b
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Figure 2-1. Summary biovolumes for periphyton measured in four stream samples. The 
samples were sub-sampled using a 0.4 ml rectangular counting chamber and three 
different estimation methods: random fields, random strips, and line-intercept sampling.
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Figure 2-2. Simulated relative sub-sampling efficiency of varying target cell-counts and 
number of cells measured for periphyton samples from four streams using three different 
sub-sampling methods. Each combination was sampled from the original sampling 
distributions and bootstrapped 1000 times. Efficiency was calculated as relative to the 
most efficient combination within each stream across sub-sampling method; note that z- 
axes are on different scales.
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Random fieldsRandom fields

10 Cells 
measuredCells

measured
700 500 405 

Target cell count Target cell count
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Cells
measured measured
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Figure 2-2 coninued.
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CHAPTER III

MULTI-TAXONOMIC STREAM ASSEMBLAGES: METHODS OF ANALYSIS FOR 

COMMUNITY CLASSIFICATION, ECOLOGICAL PATTERNS, AND A TEST OF 

GEOGRAPHIC CLASSIFICATIONS

Summary

Many of the ecosystem types in which biological assessment is being pursued contain a 

variety of taxonomic groups that require diverse sampling and density estimation approaches 

which results in very different scales of measurement. Clustering procedures, a key step in many 

biological assessment analyses, are greatly influenced by differing measurement scales. This 

study investigated the classification strengths of minimally-impacted lotic community types in 

New Hampshire produced using several approaches to data standardization and clustering on a 

dataset that incorporated vertebrate, macroinvertebrate, and periphyton assemblages. Log 

transformation of densities resulted in higher classification strengths than relative abundance, 

species maximum, or two inherently scale-independent distance measures. TWINSPAN and 

SPSS’s Two-Stage Clustering displayed higher classification strengths than UPGMA or furthest- 

neighbor, without a high number of very small groups composed of single outliers. The 

classification produced using all of the taxonomic groups also appeared to adequately classify the 

taxonomic groups separately with no loss in classification strength for the macroinvertebrates and 

periphyton; the vertebrates were better classified using a classification produced using that 

taxonomic group separately. Seven community types were delineated that closely followed the
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longitudinal stream profile based primarily on position in the watershed. As a result of the strong 

influence of the longitudinal stream profile, a geographic classification of New Hampshire 

watersheds and a classification of aquatic ecoregions poorly explained organism distributions.

The sensitivity of biological assessment using the reference condition approach is greatly affected 

by the ability to explain natural variation in the reference sites. These results demonstrate that 

differing taxonomic groups can be adequately combined to produce one classification for 

biological assessment and natural resource management, rather than a complex set of separate 

classifications for each group, when appropriate statistical approaches are taken. Similar 

investigations are needed in other regions to test the generality of these findings.

Introduction

Biological assessment is being pursued in a variety of ecosystem types, particularly 

wetlands, coral reefs, streams, and lakes (Gerritsen et al. 1998, Danielson 1998, Jameson et al. 

1998, Gibson et al. 2000). All of these ecosystems contain very different taxonomic groups such 

as macroinvertebrates, fish, amphibians, algae, plants, and bacteria. Bioassessment has been 

pursued because organisms integrate impacts, make detection of multiple impacts easier, and 

indicate the ability of an ecosystem to provide the goods and services on which humans rely. As 

ecosystem goods and services and organism interactions span taxonomic groups, it seems 

artificial, and an unnecessary complication for resource management, to construct separate 

community classifications for each taxonomic component. Additionally, a general goal of 

conservation biology is to conserve and manage all species present in an ecosystem.

Collecting organisms from multiple sampling seasons improves the classification upon 

which RIVPACS-style predictive bioassessment models are reliant (Clarke et al. 2002).

Sampling from multiple habitat types also improves the impact sensitivity o f a bioassessment
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approach (Kerans et al. 1992) because habitats are differentially sensitive to anthropogenic 

impacts and contain different species (e.g. Bradley and Ormerod 2002). Similarly, taxonomic 

groups differ in their response to various impacts (see reviews by Davis and Simon 1995, Karr 

and Chu 1999). For example, Joy and Death (2002) found that a fish biotic index was not 

correlated to a macroinvertebrate biotic index in New Zealand, possibly because each group was 

responding differently to impacts. Thus, including all taxonomic groups present in an ecosystem 

increases the ability of a biological assessment to detect a wide range of impacts (Karr 1991, 

Metcalfe-Smith 1996). Additionally, differences in assemblage in one taxonomic group may 

propagate to other trophic levels resulting in a more discreet community classification when 

additional taxonomic groups are included. For example, the preferred macroinvertebrate prey 

species for an invertivorous fish will usually co-occur; by expanding the taxonomic groups 

included, a stream community that may not be distinguishable when only the fish are classified 

may become apparent when the macroinvertebrate prey are included.

Flowever, different taxonomic groups often require very different sampling approaches, 

which results in different scales of measurement for abundance estimates. Most clustering 

algorithms are based on distance measures that are sensitive to the differing scales of 

measurement. Unless a binary presence-absence approach is taken, Taxa that are measured in 

larger units exert artificially increased influence on distance measures and, therefore, the 

classification. Precise classification of communities is important for a variety of reasons. 

Resource management and species conservation are simplified and enhanced by focusing on 

community types rather than individual species, especially for less well known taxonomic groups 

such as macroinvertebrates and periphyton. It is a critical step in the process of RIVPACS-style 

predictive modeling for biological assessment (Moss et al. 1999). A classification that explains 

more natural variation results in greater sensitivity of a predictive bioassessment model to small 

deviations in expected community structure.
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A related issue is the use of geographic classifications to explain species abundances, i.e. 

classifications of land area or watersheds on the basis of physical landscape factors thought to 

influence the distribution and abundance of species (Omemik 1987, Higgins et al. 2005). 

Geographic classifications contrast with biotic classifications in which biological assemblages are 

classified into community types using either organism abundances or occurrences. The 

classification requirements for bioassessment and assessing representation of organisms or 

communities in conservation areas are similar; the classification framework should precisely 

explain organism distributions such that we can use the classification groups as a proxy for 

organism distributions and abundances (Hughes 1995, Omemik 1995). However, several studies 

have found that while geographic classifications such as ecoregions or stream order explain 

variation in organism distributions in stream ecosystems, they do not explain distributions as 

powerfully as biotic classifications (Marchant et al. 1999, Hawkins et al. 2000, Hawkins and 

Vinson 2000, Sandin and Johnson 2000, Waite et al. 2000).

This chapter examines the use of multi-taxonomic data for classifying biotic communities 

in minimally-impacted stream ecosystems in New Hampshire. Specifically, several clustering 

approaches and methods of standardizing abundance data to minimize measurement scale 

differences were investigated to assess which combination of standardization approach and 

clustering algorithm achieved the highest classification strength. The effect of including all 

taxonomic groups on classification strength was also investigated by comparing a classification 

produced using all taxonomic groups with separate classifications for each taxonomic group. 

Lastly, the strength of the biotic classifications was compared with geographic classifications.
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Methods

Field and laboratory data were collected from minimally-impacted first to fourth order 

streams using the USEPA-EMAP-SW methods described in Chapter 1.

Standardization and Clustering Approaches

Taxa that occurred in fewer than three reaches were not included in any statistical 

analyses. Five standardization approaches for combining the broad taxonomic groups measured 

on different scales were investigated for their effectiveness in classification:

1. Taxa maximum flVfax.l: Taxa abundances were standardized to taxon maximum 

by dividing each taxon’s abundance at a reach by the maximum abundance for 

that taxon across reaches.

2. Relative abundance (Reid: The relative abundance within the three broad 

taxonomic groups, vertebrates, macroinvertebrates, and periphyton. Thus, a 

reach’s total relative abundance totaled to 3.

3. Log abundance (Log): Taxa abundances were equal to logi0 of abundance plus 1. 

In addition, two distance measures that are scale independent, requiring no standardization, were 

investigated:

4. Mahalanobis distance (Digby and Kempton 1987).

5. Gower’s General Similarity Coefficient (Gower 19711.

Taxa were classified using four techniques: TWINSPAN (Jongman et al. 1995) using PC- 

Ord (McCune and Mefford 1997), furthest-neighbor clustering, UPGMA clustering, and Two- 

Stage clustering developed by SPSS (algorithm included in SPSS version 14.0; SPSS Inc. 2005). 

SPSS’s two stage clustering was included as it is a convenient pre-packaged algorithm for
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clustering data measured on different scales by standardizing variables to Z-scores. For furthest- 

neighbor and UPGMA clustering, all five standardization approaches were used. For the three 

linear transformation approaches to standardization (taxa maximum, relative abundance, and 

log+1), Bray-Curtis (Sorenson’s) percent dissimilarity was used as the distance metric for 

clustering (Faith et al. 1987). The distance metric standardization approaches (Gower’s and 

Mahalnobis) obviously did not require an additional distance measure and the values were 

directly used in the clustering approaches. Flowever, TWINSPAN could not be performed using 

the scale-independent distance measures (Mahalanobis and Gower’s) as it is a weighted averaging 

approach that does not require a distance matrix. Reaches were classified into 2 through 12 

groups/clusters for all classification approaches.

Classification approaches were compared using the LR-IND as an index of classification 

strength (Warton and Hudson 2004). LR-IND is defined as:

where, p  is the total number of taxa and SSh{} and SSh i denote the residual sum of squares of they'th 

taxon under H0 and //, respectively. Higher LR-IND thus indicates increased group homogeneity 

and difference between groups. LR-IND has been shown to be as powerful as distance-based 

approaches at detecting differences in organism abundances (Warton and Hudson 2004).

Although this may be an unorthodox measure of classification strength, Analysis of Similarity 

(ANOSIM) and Multi-Repsonse Permutation Procedure (MRPP) would have biased the 

comparison of classification approaches as both require the choice of a distance measure. 

Classification approaches that resulted in very small, if not single case, groups were to be avoided 

on the premise that they are sensitive to outliers and offer much less information than 

classifications with more even groups. Thus, Pielou’s J was calculated for each classification 

approach in which the abundances were the number o f reaches within each group/cluster. LR- 

IND and evenness were both used to assess the standardization and classification approaches.

equation 1
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The clustering performance of a classification built using the combined taxonomic groups 

was compared with classifications constructed using the same clustering method but on the 

separate taxonpmic groups. However, as there would have been no need to standardize the 

abundances of taxa within taxonomic groups, no standardization was applied in the separate 

taxonomic group classifications. LR-IND was used as the measure of classification strength and 

groups/clusters between 2 and 12 were produced.

The classification strength of three geographic classifications was assessed for 

comparison with biotic classifications:

1. Stream order: Horton-Strahler stream order.

2. Ecoregion: Level IV USEPA aquatic ecoregions (Omemik 1987).

3. HUC10 Watershed Classification: A classification of New Hampshire’s USGS 10- 

digit HUC scale watersheds into homogenous classes produced by The Nature 

Conservancy. The watersheds were clustered based on physical characteristics such 

as elevation, landform, bedrock, and stream network characteristics. In contrast to 

the generalized approach of the Nature Conservancy to freshwater classification 

(Higgins et al. 2005, TNC-SWI2006) the HUC 10 classifications were not nested 

within their Ecological Drainage Units. Two levels were available: a 14-group fine- 

scale classification and a coarser 7-group classification.

Again, LR-IND was used as the measure of classification strength.

Ecological Patterns

To investigate basic ecological relationships among taxa as well as among taxa and 

physical and chemical habitat, taxa densities were ordinated using Detrended Correspondence 

Analysis (DCA) in PC-Ord (McCune and Mefford 1997). The correlations between the DCA 

axes and environmental parameters were calculated. Environmental parameters were first
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screened to remove variables that were correlated with a Spearman’s rank R greater than 0.7; one 

environmental variable was chosen within each set of highly co-correlated variables.

Stepwise Discriminant Function Analyses was performed on the final community 

classification to investigate which environmental variables best separated community types and to 

construct predictive models for their occurrence. Two models were constructed. One model used 

all non-highly correlated environmental variables to assess congruence between the ecological 

patterns found in the DCA ordination and provide a template for predicting community 

occurrence in stream reaches where a site visit is feasible. The second model was designed to 

assess the accuracy o f mapping the community types across New Hampshire without a site visit. 

Thus, it was built using only large-scale variables commonly available for GIS analysis. The 

predictive accuracy of the two models would also inform the relative importance of local-scale 

habitat and watershed-scale environmental descriptors at separating community types. Both 

analyses used a/j-to-enter of 0.5 and ap-to-remove of 1.0 based on Wilks’ Lambda.

Lastly, the congruence of taxa abundances and distributions with the predictions of the 

trophic cascades hypothesis, which predicts negative correlations between adjacent trophic levels, 

was investigated. Taxa were grouped into five trophic guilds. The vertebrates were grouped into 

either fish or stream-dwelling amphibians. Macroinvertebrate functional feeding groups (e.g. 

predator, scraper) derived from Merritt and Cummings (1996) were used to group 

macroinvertebrate families into predator and non-predator macroinvertebrates. Periphyton 

biovolumes were summed for the primary producer level. Simple bivariate Spearman’s 

correlations were calculated between the trophic groups. The significance and sign of the rank 

correlation coefficients were used to assess the agreement of the relationships with the trophic 

cascades hypothesis. Additionally, the periphyton were grouped by growth form (e.g. 

filamentous, colonial) nested within the phylum level (Prescott 1978) to investigate the 

relationships between the macroinvertebrate functional feeding groups and periphyton growth 

form using bivariate Spearman’s correlations.
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Matlab 7.1 was used for statistical tests and computations not attributed to another

computer program.

Results

A total of 76 minimally impacted stream reaches were sampled. A total of 92 

environmental descriptors were measured; 30 were removed from further analysis for the 

multivariate statistical analysis because they were highly correlated. The full list of environmental 

descriptors and those excluded can be found in Table 3-1.

Standardization and Clustering Approaches

Two-Stage clustering and TWINSPAN tended to produce classifications with the highest 

classification strength, as measured by high positive values of LR-IND (Table 3-2). Furthest 

neighbor produced slightly better classifications than UPGMA clustering, though the trend was 

weak (Figure 3-1). Both TWINSPAN and Two-stage clustering produced very even groups, as 

denoted by a high Pielou’s J (Figure 3-1). Despite common suggestions that Furthest Neighbor 

tends to find tighter, smaller groups, it tended to produce more even group sizes than UPGMA 

(Figure 3-1).

Log and species maximum standardizations resulted in the best classifications compared 

to the other standardization approaches. There was a weak trend towards log transformation 

detecting more groups than species max as assessed by the number of groups where the peak in 

LR-IND was reached; this trend was more pronounced in the TWINSPAN and Furthest Neighbor 

clustering (Table 3-2). Relative abundance and Gower’s dissimilarity performed intermediate to
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the scale-independent distance measures and Log or species maximum. Mahalanobis 

dissimilarity measure resulted in very poor classifications (Table 3-2).

Gower’s similarity measure produced classifications with very unequal group sizes 

(Figure 3-2). Some groups in the Gower’s classifications had only one member. Species 

maximum, relative abundance within taxonomic group, and log standardizations displayed similar 

evenness values that were somewhat higher than Mahalanobis distance. Z-scores used within 

Two-Stage clustering produced highly even groups.

Overall, Two-Stage clustering and log-transformed TWNSPAN produced the most 

homogenous and even-sized groups. The combination of log transformation and TWINSPAN 

clustering was selected for community classification for two reasons. Their properties are better 

known (Jongman et al. 1995) and more widely used than SPSS’s Two-Stage clustering. 

Logarithmic transformation, unlike species maximum, maintains the relative differences in total 

abundance between sites and therefore more information available for subsequent ordinations 

(Digby and Kempton 1987).

Comparison with Geographic Classifications

USEPA Level IV Aquatic Ecoregions resulted in the most homogenous groups with an 

LR-IND of 45.2. The 7-group and 14-group HUC 10 classifications of the Nature Conservancy 

had values of 41.6 and 21.8, respectively. Biotic classifications produced with all distance 

measures and standardizations except Mahalanobis distance resulted in classifications that 

explained more variation in taxa distributions and abundances than the geographic classifications 

investigated (Table 3-2). For example the Log-transformed TWINSPAN 7-group classification 

had an LR-IND value of 99.2; because the LR-IND contains a natural log term, these differences 

roughly translate into a 4 to 6 times larger multivariate (MANOVA) F-ratio describing group 

differences than the geographic classifications (see equation 1).
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Cross-Taxonomic Group Classification Comparisons

A general scan of LR-IND values across all cluster sizes indicated than classifications 

built with one taxonomic group resulted in better classifications of that same group than 

classifications based on other taxonomic groups. For example, a TWINSPAN classification of 

vertebrates resulted in generally higher LR-IND values across all numbers of clusters on the 

vertebrate group, and therefore more homogenous groups, than a macroinvertebrate-based 

TWINSPAN applied to the vertebrates (Table 3-3). A TWINSPAN classification based on all 

taxa included together (‘all taxa’) resulted in as effective a classification when applied to the 

macroinvertebrate and periphyton groups separately as classifications based on each taxonomic 

group separately. Only the vertebrate classification resulted in a better classification when 

applied to its respective taxonomic group compared to the all taxa combined classification (Table 

3-3).

Community Descriptions

A community classification containing seven groups, produced using the log transformed 

abundances and TWINSPAN, was selected. Organism densities for the seven community types 

can be found in Table 3-3-4 and select environmental descriptors in Table 3-3-5. The first four 

communities were cold-water streams that, on average, were at higher elevations. These 

communities contained higher densities of the Siphlonuridae, Baetidae, and Rhyacophilidae.

They also had higher concentrations of sulfate.

1. Very steep scour streams (n= 6). usually at high elevation, with very coarse substrate 

and frequent bedrock exposure. The increase in water volume at the annual flood is very

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



large relative to the size of the base-flow stream. Water temperatures are very cold with 

low pH and calcium. Fish are largely absent, with the vertebrates dominated by the 

stream dwelling amphibians Eurycea bislineata and Gyrinophilus porphyriticus. The 

macroinvertebrate Nemouridae, Collembola, Simuliidae, Asellidae, and Acari occur in 

much higher densities than other communities. This community also had greater 

abundance of the Uenoidae, Leuctridae, Cladophora, and the periphyton Microspora. 

Hydropsychidae were largely absent.

2. High gradient, very cold streams (n= 211. higher average elevation with many rapids, but 

with less bedrock than type 1 and a smaller relative increase in flood volume.

Vertebrates were almost exclusively Salvelinus fontinalis, though this type contained the 

second highest densities of Eurycea bislineata. The Perlodidae, Peltoperlidae, and 

Gomphidae occurred in relatively high densities. There were fewer Hydropsychidae 

than in types 3 and 4.

3. Lower gradient cold-water streams (n= 17). This community is transitional between 

types 2 and 4. Vertebrates are dominated by Salvelinus fontinalis, though Rhinicthys 

atratulus can be found as well. In addition to the relatively high densities Perlodidae 

and Peltoperlidae, Perlidae also have higher densities. Ephemeroptera can be found in 

higher densities than type 2, especially the Leptophlebiidae and Leuctridae. Elmidae 

and Hydropsychidae reach much higher densities in this community compared to type 2.

4. Very large, shallow, low gradient cold-water rivers (n = 9). Although these are the 

largest rivers in the classification, they are still wade-able rivers with coarse substrate. 

The canopy is more open due to the higher stream width. The fish assemblage was more 

mixed, usually with several species of cold-water fish: Salvelinus fontinalis, Rhinicthys 

atratulus, Rhinicthys cataractae, and Cottus cognatus. There were higher densities of
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Leptophlebiidae, Perlidae, Corydalidae, Elmidae, Ceratopogonidae, as well as the 

periphyton Lyngbya and Cladophora.

The last three communities were lower elevation, warm-water streams. They had much 

higher densities of the Sphaeridae and their watersheds had greater percent cover of wetlands and 

lakes. Conductivity, DOC, TDN, and DON concentrations were higher. These communities 

were:

5. Warm-water. riffle streams (n = 13) with dense riparian tree cover. This community had 

higher densities of Ictalurus nebulosus and Luxilus cornutus with very few cold-water 

fish species. The Cambaridae were higher in density. The macroinvertebrate community 

was similar to the types 3 and 4, with higher densities of Hydropshychidae, Corydalidae, 

Simuliidae. However, this community was largely missing the families present only in 

the four cold-water types (Siphlonuridae and Rhyacophilidae), and had lower densities 

of the Chloroperlidae and Lepidostomatidae than the cold-water communities.

6. Sandy glide streams in -  6). These streams tended to have a high amount of 

overhanging vegetation and more open riparian tree cover. Fish that prefer low flow 

velocity, such as species of Esox and Lepomis, dominated the vertebrates. Gammaridae 

attained far higher densities in this community. The Psephenidae, Tabanidae, 

Molannidae, and Turbellaria also had somewhat higher densities in this community as 

well. The Heptageniidae were absent.

7. Low gradient fine-muck streams (n= 4) with very high proportion of fine mucky 

substrate, pool habitat and macrophytes. More open canopy on average with fewer trees 

in riparian zone, though this was very variable. Some streams had dense forest cover
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while others were completely devoid of trees in the riparian zone. The water had low 

Nitrate but higher Ammonia. The Asellidae were very prominent component of the 

macroinvertebrate assemblage; there were much higher densities of the Glossiphonidae 

and Dytiscidae as well. This community also had increased densities of the Hirudinidae, 

Phryganeidae, Sialidae, Ceratopogonidae, Libellulidae, Planorbidae, and Physidae. The 

diatoms (naviculoid diatoms, cymbelloid diatoms, and Gyrosigma) had much higher 

densities and there were increased densities of Closterium, Cosmarium, Ulothrix, and 

Mougeotia. Notophthalmus viridescens was the most common vertebrate. Ail 

Ephemeroptera densities were low compared to the other community types.

Ecological Patterns

Because log transformation of species abundances appeared to standardize species 

abundances best for classification, the combined taxa were log transformed for ordination to 

ensure that taxa measured on larger scales did not artificially influence the ordination. Three 

DCA axes were computed that explained 41% of the variation in taxa densities. The first axis 

explained 18.3% of the variance in taxa densities, only slightly more than the 11.2% of variance 

explained by the second axis (Figure 3-3).

The first axis was most highly correlated with substrate, elevation, and bankfull height 

(Figure 3-3). It represented a complex gradient of taxa preferring low-elevation slow velocity 

streams at one extreme and those taxa preferring high elevation streams with coarse substrate and 

rapids at the other. Taxa were distributed along this substrate/stream gradient/elevation gradient 

in ways that would be expected from their known habitat preferences (Merritt and Cummings 

1996). The Turbellaria, leech families, Gammaridae, and Asellidae were all associated with slow 

flowing streams. In addition, all of the Odonates except for Gomphidae had highest abundances
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in finer substrate streams. In contrast, the Rhyacophilidae, Plecoptera, Salvelinus fontinalis and 

Rhinichthys spp. were associated with coarse substrate and high elevation. Eurycea bislineata, 

Gyrinophilus porphyriticus, Nemouridae, Siphlonuridae, and Collembola were found in higher 

densities in small, low pH streams and their optimums clustered distant to those of the fish 

species (Figures 3-3 and 3-4).

The second DCA axis was primarily a temperature and pH axis (Figure 3-3). All of the 

fish species density optima were above the overall mean pH. In contrast, all of the stream- 

dwelling salamanders attained highest densities below the overall mean pH. Axis three was best 

correlated with measures of stream size such as mean width, bankfull height, and canopy cover. 

The amount of visible filamentous algae cover was also associated with this axis. Not 

surprisingly, the periphyton were associated with higher filamentous algae cover and a more open 

canopy.

Some of the community types were not very distinct. The stream communities 

overlapped with each other in ordination space (Figures 3 and 4). Reaches within a community 

varied substantially in their community composition as measured by the standard deviation in 

taxa densities (Table 3-4). In addition, the range in weighted-average reach scores was not as 

broad as the range in taxa optimums (Figures 3 and 4) indicating that many taxa optimums were 

highly influenced by their densities in only a few sites.

Large woody debris and purported measures of fish cover habitat (e.g. brush, undercut 

banks) were not highly correlated with assemblage structure. Additionally, DOC was the only 

chemical constituent correlated with an axis above an R2 of 0.2.

A stepwise discriminant model to predict community memberships using watershed-scale 

physical descriptors available for mapping community locations correctly classified 63.2% of the 

reaches. The model retained 6 variables (Table 3-6). The first axis explained 64% of the total 

variance explained by the model (Table 3-6) and was most highly correlated with elevation (R = 

0.484), membership in Omemik’s (1987) aquatic ecoregion 591 (R = 0.335), order (R = 0.326),
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and latitude (R = 0.323). Aquatic ecoregion 591 is transitional between the coastal plain and the 

White Mountains uplands. A stepwise discriminant model to predict community memberships 

that included local-scale physical habitat descriptors correctly classified 86.8% of the reaches.

The model retained 15 variables, 11 of which were local habitat descriptions (Table 3-7). The 

first axis explained 43% of the total variance explained by the model and was most highly 

correlated with bankfull height (R = 0.503), elevation (R = 0.373) and order (R = 0.366). Stream 

order, percent of watershed as lakes, and elevation were retained as important predictors in both 

models.

There was very little support for trophic abundance alternations predicted by the trophic 

cascade hypothesis (Table 3-8). There was a weak negative relationship between salamanders 

and fish followed by a highly significant positive relationship between fish and predator 

macroinvertebrates. However, in direct opposition to the predictions of the trophic cascade 

hypothesis, there was a strong positive relationship between predator macroinvertebrates and non

predators. The relationship between non-predator macroinvertebrates and periphyton densities 

also strongly deviated from the predictions of the trophic cascade hypothesis.

Discussion

Standardization and Clustering Approaches

Log transformation of species abundances appeared to result in stronger classification of 

multi-taxonomic group communities (Table 3-2 and Figure 3-2). Digby and Kempton (1987) 

argued that on theoretical grounds log transformation of species abundances was the best. 

standardization approach as it minimizes differences in measurement scale while, unlike species 

maximum or relative abundance, preserving differences in total abundance between sites. Warton
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and Hudson (2004) also found that log transformation of taxa abundances increases the power of 

multivariate analyses to detect assemblage differences. The results presented in this dissertation 

further extend the conclusion that log transformation may be the most appropriate standardization 

approach for multivariate analysis to broadly mixed taxonomic assemblages that differ in 

measurement scale.

TWINSPAN and SPSS’s Two-Stage clustering appear to achieve the greatest 

classification strength compared to other common methods for classification such as UPGMA 

and Furthest-Neighbor clustering (Table 3-2 and Figure 3-1). Additionally, those two methods 

tended to discriminate more community types. Moss et al. (1999) also found that TWINPSAN 

performed as well or better than the alternative classification approaches they studied for the 

classification step in the RIVPACS biological assessment predictive model. In the RTVPACS 

assessment of TWINSPAN’s classification strength, presence-absence data was used. This study 

expands the classification strength of TWINSPAN to quantitative abundance data as well. 

TWINSPAN has been used widely, been studied in detail, and it properties are well known. 

Before a general recommendation for SPSS’s Two-Stage clustering can be made for ecological 

data involving different taxonomic groups, it should be studied in greater detail.

Classifying communities using all taxonomic groups did not achieve stronger 

classification than separate classifications for each taxonomic group. The all taxonomic groups 

classification classified macroinvertebrates and periphyton as strongly as classifications using 

those groups separately. While the vertebrates classified themselves more strongly than the all 

taxonomic groups classification, the vertebrate classification did a poor job of classifying the 

other taxonomic groups (Table 3-3). Additionally, 10 of the 76 stream reaches did not contain 

vertebrates and were not classified by the vertebrate classification except as a ‘no-vertebrate’ 

group. Thus, a classification produced using all taxonomic groups is more flexible than separate 

classification and with only a small loss in classification strength solely for the vertebrates.
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There was high variation in group sizes between the classifications (Figures 3-1 or 3-2). 

Moss et al. (1999) also found high variation in group sizes between different classification 

approaches on the same dataset. Although the communities delineated using TWINSPAN 

differed significantly on the combined taxa (MANOVA F = 9.268, p < 0.001), the groups 

appeared to overlap to a great degree in ordination space (Figures 3-3 and 3-4). As has been 

often postulated for lotic ecosystems, taxa abundances appear to change more continuously rather 

than discreetly over environmental gradients (Vannote et al. 1980, Gauch 1982, Minshall and 

Robinson 1998). These results support the contention of Linke et al. (2005) that predictive 

modeling for biocriteria (Reynoldson et al. 1997) might be improved by using statistical 

techniques that do not require a classification step.

Ecological patterns

Stream assemblages in New Hampshire appear to be shaped primarily by substrate and 

water velocity (Figures 3-3 and 3-4). The community types delineated in this study arrange along 

the typical longitudinal stream profile. The community types ranged from the steep bedrock 

streams found at the upper end of the longitudinal profile to the sluggish wetland channels 

typically, though not always, found in the lower slopes of watersheds. The other community 

types were intermediate along the longitudinal profile.

It was surprising that measures of fish cover and large woody debris were so poorly 

correlated with assemblage structure. One potential reason for this lack of influence may be that 

the range in large woody debris densities may have been narrow, the ecological legacy of reduced 

region-wide forest clearance of the 19th century (Foster et al. 2003). The range in large woody 

debris density present today may not be wide enough to influence community structure; streams 

may require higher densities of large woody debris than currently found to influence stream 

habitat and community structure. As forests continue to mature in New Hampshire, the range in
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large woody debris densities found in streams may increase and its influence should be re

assessed.

Other alterations to stream ecosystems that could not be accounted for in this 

classification of minimally impacted stream communities were the presence of exotic species, 

anthropogenically increased regional acid and nitrogen deposition, and downstream dams and 

artificial impoundments as barriers to dispersal. Very few anadromous species were found in this 

survey. If dam removal becomes wide-spread, the possible re-introduction of anadromous 

vertebrates may alter community structure and classes. Because pH was an important correlate 

with stream assemblages, reductions in acid deposition may also change composition of 

communities in New Hampshire. Changes in any of the regional factors would require a re

examination of the minimally impacted community types in New Hampshire.

Geographic classifications

Most of the biotic classification approaches, particularly those that did not use 

Mahalanobis and Gower’s distances, produced stronger classifications of taxa distributions than 

geographic classifications. These results agree with a growing body of literature that has reached 

the same conclusion (Marchant et al. 1999, Hawkins et al. 2000, Hawkins and Vinson 2000, 

Sandin and Johnson 2000, Waite et al. 2000). The Level IV aquatic ecoregions of the USEPA 

had slightly higher classification strength than the HUC10 watershed classification The Nature 

Conservancy produced for New Hampshire. Mykra et al. (2004) also found that watersheds 

explained less variation in assemblage attributes than other geographical classifications.

The strong influence of stream gradient on substrate and, subsequently, on community 

patterns may be the reason that geographic classifications of watersheds, such as the HUC10 

classification examined here, did not explain variation as well as biotic classifications. Larger 

watersheds, like the HUC10 size, contain within them the gradient along which differences in
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taxa distributions are most apparent in New Hampshire -  the longitudinal profile. Because 

watersheds bound and contain the entire stream profile behind a drainage point, they cannot 

separate and classify along lines that will explain natural variation in taxa abundances as well as 

classifications that can split and classify along that gradient. Additionally, the factors watersheds 

are best at delineating, water chemistry (e.g. Vitousek 1977, Martin 1979), do not appear to play a 

large role in structuring stream assemblages in New Hampshire (Tables 3-5 and 3-6, Figures 3-3 

and 3-4). Ecoregions may have had a slightly stronger classification than the HUC10 

classification because they ignore watershed boundaries and were able to delineate boundaries 

that better followed profile changes.

In areas where biological data are scarce, physical classifications may be the only 

available proxy of taxonomic distributions for conservation planning or bioassessment. Higgins 

et al. (2005) proposed a hierarchical classification framework for aquatic resources in which 

aquatic ecosystems would be classified at finer scales within ecologically determined large 

drainages. They argue that increasingly finer-scale geographic classifications nested within 

higher levels may improve explanatory power. Indeed, in this study, a discriminant model 

accurately predicted stream reach community memberships using a combination of local and 

large-scale physical factors. However, the predictive model that used only large-scale factors was 

less accurate. Weigel et al. (2003) similarly found that reach-scale habitat was a more important 

influence on lotic species composition than catchment-scale factors. Clearly, local habitat exerts 

a strong influence on taxa distributions and any attempt to accurately predict distributions will 

require information on local habitat.

The ecological patterns seen in minimally-impacted New Hampshire streams suggest that 

a classification unit and scale sensitive to the local habitat effects of the longitudinal stream 

profile is required at the smaller scales described by Higgins et al. (2005) for New Hampshire and 

similar areas. The analyses in this paper indicate that watersheds as large as HUC10 are not a 

fine enough split of the ecoregion scale. Where local habitat information is just as limited as
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biological data, classifying individual stream segments, instead of watersheds, on the basis of 

physical coarse-scale characteristics such as elevation, slope, aspect, and stream order may better 

discriminate biological variation. Very small watersheds would be functionally similar for upper 

parts of the longitudinal profile, but might contain too large an area to adequately classify large 

stream order stream segments. Ecoregions (e.g. World Wildlife Federation ecoregions or USEPA 

Aquatic Ecoregions) and Ecological Drainage Units (Higgins et al. 2005) might form the higher- 

level stratification within which to refine and constrain the stream-segment classifications or 

predictive models and account for evolutionary processes in unglaciated areas.

Conclusions

In this study, log transformation with TWINSPAN divisive clustering was the best 

approach for clustering stream communities where biological abundances are measured on widely 

different scales. However, there was little support for the notion that including multiple 

taxonomic groups improved classification strength, though a classification based on multiple 

taxonomic groups did not substantially reduce classification strength on the separate taxa. The 

suggestion that including multiple taxonomic groups into a combined bioassessment would 

improve impact detection still remains to be examined. In addition, geographical classifications 

based on HUC10 watersheds and aquatic ecoregions poorly explained organism distributions and 

abundances compared to biotic classifications. The pattern of factors associated with stream 

organism distributions and community classification were primarily factors that vary within a 

catchment along the longitudinal stream profile, making it unlikely that watershed-based 

classifications would explain ecological variation well in New Hampshire. While a stream 

geographic classification based on classifying individual stream segments was proposed as an 

alternative for areas without adequate biological data, the assumption that this approach would 

better explain variation in lotic organism distributions and abundances than larger scale
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geographic classifications clearly needs to be rigorously tested using quality biological data. 

Lastly, the conclusions drawn in this paper were based on only one dataset and should be 

tempered. Warton and Hudson (2004) demonstrate that testing analysis methods on multiple 

datasets can alter the inferences drawn. As bioassessment datasets expand beyond streams to 

lakes, coral reefs, and wetlands and come to increasingly include multiple taxonomic groups, the 

conclusions reached in this paper should be re-examined with a greater number of datasets.
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Table 3-1. Environmental descriptors measured for minimally impacted streams in New 
Hampshire. Variables in bold were excluded from multivariate analysis because they had a 
bivariate Spearman’s R greater than 0.7 with another included variable.

Brief variable name Description and Units
|Ecoregion4 Level IV EPA Aquatic Ecoregion
fLat Latitude in decimal degrees
fLong Longitude in decimal degrees
fOrder Stream order
t  Wetlands Percent of watershed as wetlands
t  Lakes Percent of watershed as lakes
Permanentstream Total length of permanent streams (m)
Intermittentstream Total length of intermittent streams (m)
fHighestjpoint Maximum elevation in watershed (m)
Distanceimpound Distance to nearest upstream impoundment (km)
fDistance_source Distance to furthest point in the upstream stream network (km)
Area Watershed area (ha)
fMetamor Percent area of metamorphic bedrock
fVolcan Percent area of volcanic bedrock
jPluton Percent area of plutonic bedrock
Length Reach length (m)
fElevation M
Discharge m3/sec
t  Slope Degrees
tAspect Degree deviation from south
Fine Percent of 11 macroinvertebrate and periphyton sample sites 

classified as “fine” substrate
Gravel Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“gravel” substrate
Coarse Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“coarse” substrate
Macro Percent of 11 macroinvertebrate and periphyton sample sites 

classified as “macrophyte” substrate
Pool Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“pool” habitat
Glide Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“glide” habitat
Riffle Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“riffle” habitat
Rapid Percent of 11 macroinvertebrate and periphyton sample sites classified as 

“rapids” habitat
pH Water pH
Temp Water temperature (°C)
Cond Specific conductivity (uS)
Embedded Mean % embeddedness of substrate
Phi Mean phi value of substrate particles
SDphi Standard deviation of phi values for substrate particles
Fine sub Percent of 55 substrate measurements classed as fine
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Table 3-1. Continued.

Brief variable name Description and Units
Sand Percent of 55 substrate measurements classed as sand
Fine_gravel Percent of 55 substrate measurements classed as fine gravel
Coarsegravel Percent of 55 substrate measurements classed as coarse gravel
Cobble Percent of 55 substrate measurements classed as cobble
Bouldersub Percent of 55 substrate measurements classed as boulder
Bedrock Percent of 55 substrate measurements classed as bedrock
Depth Mean water depth (m)
Max depth Maximum water depth (m)
Width Mean channel width (m)
Crosssection Mean channel width x mean water depth (m2)
Bankfullwidth Mean bankfull channel width (m)
Bankfullheight Mean bankfull channel height (m)
Bankfullcrossection Mean bankfull channel width x mean bankfull channel height (m2)
Flood_mag Annual flood magnitude indexed by the bankfull cross-section divided 

by wetted cross-section (unit-less)
Undercut Mean undercut length (m)
Angle Mean Bank angle (degrees)
Filamentous Mean cover index of filamentous algae in the channel (1-4)
Macrophytes Mean cover index of macrophytes in the channel (1-4)
Woodydebris Mean cover index of large woody debris in the channel (1-4)
Brushwood Mean cover index of brush in the channel (1-4)
Live_trees Mean cover index of live trees along the bank (1-4)
Overhanging Mean cover index of overhanging vegetation along the bank (1-4)
Undercutbanks Mean cover index of undercut along the bank (1-4)
Boulders Mean cover index of boulders in the channel (1-4)
Canopy cover Mean % canopy cover
B igtrees Mean cover index of large trees (>0.3 m DBH) in the canopy riparian 

vegetation (1-4)
Small trees Mean cover index of small trees (<0.3 m DBH) in the canopy riparian 

vegetation (1-4)
Shrubs Mean cover index of shrubs in the under-story riparian vegetation (1-4)
Tall herbs Mean cover index of tall herbs (>0.5 m) in the under-story riparian 

vegetation (1-4)
Short_herbs Mean cover index of short herbs (<0.5 m) in the ground cover riparian 

vegetation (1-4)
Bare Mean cover index of bare ground in the under-story riparian 

vegetation (1-4)
Deciduous Percent of riparian canopy vegetation classified as “deciduous”
Coniferous Percent of riparian canopy vegetation classified as “coniferous”
Mixed Percent of riparian canopy vegetation classified as “evergreen”
None Percent of riparian canopy vegetation classified as “mixed” (>20% 

other)
IN1.5-0.1 Percent of riparian canopy vegetation classified as “none present”
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Table 3-1. Continued.

Brief variable name Description and Units
INI.5-0.3 Density (per m of reach length) of large woody debris 0.1-0.3 

diameter and 1.5 -5 m in length in the bankfull channel
ni in

IN5-0.1 Density (per m of reach length) of large woody debris >0.3 m 
diameter and 1.5 -5 m in length in the bankfull channel

in

IN5-0.3 Density (per m of reach length) of large woody debris 0.1-0.3 
diameter and 5-15 m in length in the bankfull channel

in in

INI 5-0.3 Density (per m of reach length) of large woody debris >0.3 m 
diameter and 5-15 m in length in the bankfull channel

in

OUT1.5-0.1 Density (per m of reach length) of large woody debris 0.1-0.3 
diameter and 1.5 -5 m in length above the bankfull channel

m in

OUT1.5-0.3 Density (per m of reach length) of large woody debris >0.3 m 
diameter and 1.5 -5 m in length above the bankfull channel

in

OUT5-0.1 Density (per m of reach length) of large woody debris 0.1-0.3 
diameter and 5-15 m in length above the bankfull channel

in in

OUT5-0.3 Density (per m of reach length) of large woody debris >0.3 m 
diameter and 5-15 m in length above the bankfull channel

in

Total LWD Total tally of all large woody debris
IN LW D Density of all large woody debris within the bankfull channel (per m of 

reach length)
OUTLWD Density of all large woody debris above the bankfull channel (per m of 

reach length)
Chloride Chloride (mg Cl/L)
Nitrate Nitrate (mg N/L)
Sulfate Sulfate (mg S/L)
Sodium Sodium (mg Na/L)
Potassium Potassium (mg K/L)
Magnesium Magnesium (mg Mg/L)
Calcium Calcium (mg Ca/L)
Ammonia Ammonia (ug N/L)
Phosphate Phosphate (ug P/L)
Silica Silica (mg S i02/L)
DOC Dissolved organic Carbon (mg C/L)
TDN Total dissolved Nitrogen (mg N/L)
DON Dissolved organic Nitrogen (mg N/L)
Total alkalinity Total alkalinity (mg CaC(VL)

f  Variables considered routinely available for GIS analysis to map community types.
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Table 3-2. Classification strength of differing data standardization and clustering approaches on combined abundance data of 
vertebrates, macroinvertebrates, and periphyton from minimally impacted streams in New Hampshire. The values are the sum of the 
natural log sums of squares ratios by taxa (LR-IND of Warton and Hudson 2004).

Clustering Algorithm Standardization 2 . 3 4 5
Number o f  groups 

6 7 8 9 10 11 12
TWINSPAN Log+1 63.9 73.3 103.6 93.7 92.9 99.2 92.0 92.1 86.6 83.7 83.8

Taxa max. 85.6 71.8 100.1 94.3 81.5 89.4 87.1 93.5 89.3 82.3 78.1
Rel. abund. 60.7 71.1 99.2 90.2 92.7 89.4 81.9 74.8 73.4 74.7 80.4

Two-stage Clustering Z-score 22.9 85.2 97.0 89.0 85.5 92.6 91.3 94.9 96.6 101.2 97.6
UPGMA Mahalanobis -142.1 -67.2 -46.0 -34.9 -28.9 -16.9 -10.6 -6.0 -4.8 -3.5 -1.8

Gower's -110.8 -44.8 -27.6 0.2 19.3 29.9 42.6 49.8 53.9 60.2 57.6
Log+1 -98.3 -71.1 36.6 26.5 51.9 41.0 51.3 56.3 57,5 62.8 65.4
Taxa max. -116.3 -19.3 -21.6 -13.0 40.1 31.4 46.4 44.3 60.2 60.8 57.5

♦ Rel. abund. -189.8 -43.1 -13.4 32.9 27.7 43.9 37.8 37.6 35.4 39.4 38.9
Furthest Neighbor Gower's -110.8 -16.5 53.6 58.0 73.2 73.6 72.3 72.5 71.0 66.9 77.3

Mahalanobis -117.2 -49.7 -37.3 -20.7 -17.2 -12.4 -10.0 -7.8 -9.6 0.0 0.0
Log+1 67.3 45.3 54.4 76.1 79.7 77.9 87.9 86.1 85.0 84.4 81.5
Taxa max. 11.8 83.0 69.1 103.2 88.6 85.9 82.8 80.0 81.8 87.1 83.9
Rel. abund. 17.0 34.4 51.6 53.0 59.0 48.0 55.9 56.8 57.5 59.3 58.6

0\~-0
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Table 3-3. Strengths of TWINSPAN classifications built using either all taxa together (‘All Taxa’) or the macroinvertebrates, vertebrates, 
and periphyton separately. The four classifications were then applied to the other taxonomic groups (taxonomic group applied to) to 
assess how well classifications built using one taxonomic group could explain variation in other stream taxonomic groups. The groups 
used to build the four classifications were also included for comparison purposes. The values are the sum of the natural log sums of 
squares ratios by taxa (LR-IND of Warton and Hudson 2004). Thus, comparison among taxonomic groups tested (e.g. classification 
strengths on Macroinvertebrates versus Periphyton) is inappropriate as taxonomic groups differed in the number of taxa within them.

TWINSPAN Classification Taxonomic group applied to: 2 3 4 5
Number o f  groups 

6 7 8 9 10 11 12
All Taxa All Taxa 63.9 73.3 103.6 93.7 92.9 99.2 92.0 92.1 86.6 83.7 83.8
Vertebrates All Taxa -43.9 20.1 42.2 52.1 48.8 54.8 59.6 58.3 52.9 60.1 55.8
Macroinvertebrates All Taxa 86.6 81.1 98.1 86.2 79.3 79.3 72.9 64.5 61.7 64.6 61.5
Periphyton All Taxa -68.6 -47.6 1.8 5.8 12.6 10.9 11.7 19.5 23.1 15.4 13.5
All Taxa Macroinvertebrates 55.5 50.8 69.0 65.7 63.5 63.9 60.8 60.8 58.6 51.0 49.7
Vertebrates Macroinvertebrates 30.1 31.6 36.8 39.8 35.5 38.8 40.3 36.9 34.9 30.7 28.1
Macroinvertebrates Macroinvertebrates 62.5 68.2 78.1 72.1 64.8 63.3 60.1 53.2 45.7 50.4 46.7
Periphyton Macroinvertebrates -37.0 -36.0 -14.6 -14.9 -9.3 -7.7 -6.7 -4.7 -2.8 -0.9 -1.5
All Taxa Vertebrates 16.5 10.4 15.3 13.5 12.4 14.9 15.0 13.8 12.7 8.3 6.8
Vertebrates Vertebrates 12.8 19.6 24.3 25.8 24.9 24.5 24.5 23.7 22.2 23.2 22.3
Macroinvertebrates Vertebrates 17.5 12.2 15.3 11.8 13.0 12.4 11.4 9.7 13.2 -1.3 -2.5
Periphyton Vertebrates -15.4 -16.8 -11.2 -8.0 -7.9 -7.4 -5.9 -6.1 -1.6 -2.7 -2.8
All Taxa Periphyton -8.2 12.1 19.3 14.5 17.1 19.2 16.2 17.6 15.3 15.9 13.7
Vertebrates Periphyton -26.3 -10.2 -11.1 -7.3 -3.7 -1.0 1.0 4.1 2.8 -2.7 -3.4
Macroinvertebrates Periphyton 6.5 0.7 4.6 2.3 1.5 3.6 1.4 1.6 2.7 -1.4 0.6
Periphyton Periphyton -11.4 -11.2 14.3 15.0 17.1 15.2 14.7 21.6 21.0 17.7 16.4

oo
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Table 3-4. Mean densities for all taxa by community type for minimally-impacted streams in New Hampshire. Vertebrates and 
Cambaridae are in number per 100 m of stream length captured in 50 min. of electro-fishing. Macroinvertebrates are in number per m2 
of stream benthos. Periphyton densities are in biovolume (mm3/m2).

Taxon

Very steep scour 
streams 

M ean S.D.

Lower gradient 
cold-water 

streams' 
Mean S.D.

Low gradient 
wetland streams 
M ean S.D.

Warm-water 
riffle streams 

Mean S.D.

Sandy glide 
streams 

Mean S.D.

High gradient 
cold-water 

streams 
Mean S.D.

Large, low 
gradient cold- 
water rivers 

M ean S.D.
Eurycea bislineata 28.4 30.4 0.9 1.0 0 0 1.0 2.9 7.6 14.3 8.1 25.1 0.2 0.4
Ictalurus nebulosus 0 0 0.1 0.5 0 0 0.8 1.9 0.1 0.3 0 0 0.0 0.1
Catostomus commersoni 0 0 0 0 0 0 0.3 1.1 0 0 0 0 0.4 0.6
Rhinichthys atratulus 0 0 3.1 7.2 0 0 2.7 9.8 0 0 0 0 7.3 7.9
Semotilus corporalis 0 0 0 0 0 0 0.1 0.4 0 0 0 0 0 0
Esox niger 0 0 0 0 0 0 0.2 0.6 0.3 0.6 0 0 0 0
Esox americanus 0 0 0 0 0 0 0.1 0.2 0 0 0 0 0 0
Perea flavescens 0 0 0 0 0 0 0.1 0.2 0 0 0 0 0 0
Decapoda: Cambaridae 0 0 0.2 0.6 0 0 3.2 10.9 0.9 2.2 0 0 0.4 1.0
Salvelinus fontinalis 1.1 2.8 14.2 16.6 2.0 4.0 0.1 0.4 0 0 13.6 15.5 6.4 7.3
Cottus cognatus 
Gyrinophilus

0 0 1.0 3.7 0 0 0 0 0 0 0.8 2.4 6.6 9.0

porphyriticus 0.8 1.6 0.0 0.1 0 0 0 0 0 0 0.1 0.5 0.2 0.4
Lepomis macrochirus 
Notophthalmus

0 0 0 0 0 0 0.1 0.4 0.3 0.6 0 0 0 0

viridescens 0 0 0.0 0.2 3.2 3.9 1.0 2.1 0.3 0.8 0 0 0.1 0.4
Luxilus cornutus 0 0 0 0 0.3 0.4 1.5 4.8 0 0 0 0 0.1 0.4
Lepomis gibbosus 0 0 0 0 0 0 0.1 0.4 0 0 0 0 0 0
Phoxinus eos 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2
Rhinichthys cataractae 0 0 0.2 0.9 0 0 0 0 0 0 0 0 2.6 5.2
Ambloplites rupestris 0 0 0 0 0 0 0 0 0.2 0.5 0 0 0 0
Salmo gairdneri 0 0 0.4 1.5 0 a 0.5 1.7 0 0 0 0 3.8 5.6
Desmognathus fuscus 0 0 0 0 0.5 1.0 0 0 0 0 0 0 0 0
Semotilus atromaculatus 0 0 0.2 0.6 0 0 0 0 0 0 0 0 0.9 2.5
Enneacanthus obesus 0 0 0 0 0 0 1.7 6.1 0 0 0 0 0 0
Anguilla rostrata 0 0 0 0 0 0 2.8 10.0 0 0 0 0 0 0
Notropis hudsonius 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.4
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Table 3-4. Continued.

Lower gradient 
Very steep scour cold-water

streams streams
Taxon Mean S.D. M ean S.D.
Oligochaeta 26.8 39.5 20.3 26.3
Hirudinidae 0 0 0.1 0.2
Glossiphonidae 0 0 0.2 0.5
Gammaridae 1.3 3.1 2.8 6.7
Heptageniidae 13.4 19.9 20.3 24.2
Siphlonuridae 16.6 23.5 0.1 0.2
Caenidae 0 0 0 0
Baetiscidae 0 0 0 0
Baetidae 5.0 12.2 21.1 17.1
Leptophlebiidae
Unknown

0.7 1.8 97.5 107.9

Ephemeroptera 0 0 0 0
Ephemerellidae 26.7 19.4 116.6 109.6
Nemouridae 42.9 56.9 4.7 10.2
Perlodidae 0.9 1.7 1.6 3.8
Perlidae 0 0 3.8 5.9
Peltoperlidae 0 0 2.8 4.4
Capniidae 0 0 0 0
Leuctridae 72.6 65.6 83.4 87.5
Rhyacophilidae 8.1 6.8 5.0 5.0
Chloroperlidae 22.4 35.2 34.2 34.7
Hydropsychidae 0 0 26.9 28.4
Hydroptilidae 0 0 1.9 4.5
Glossosomatidae 0 0 5.0 9.4
Brachycentridae 0.4 1.0 6.4 16.8
Phiyganeidae 0 0 2.2 2.7
Molannidae 0 0 0 0
Leptoceridae 0 0 0.3 0.9
Philopotamidae 1.9 4.6 20.9 38.2

High gradient Large, low 
Low gradient Warm-water Sandy glide cold-water gradient cold- 

wetland streams riffle streams streams streams water rivers
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
44.4 37.8 36.2 23.8 12.9 11.7 12.5 19.0 26.0 27.6
5.6 11.3 0.2 0.8 0 0 0 0 0 0
2.8 3.6 0.6 2.1 2.1 3.3 0.2 0.9 0 0

25.6 36.8 52.8 120.1 547.0 358.8 0.3 1.4 0 0
7.5 15.0 20.5 36.5 0 0 37.6 47.7 29.3 26.0
0 0 0.3 1.0 0 0 2.2 4.9 3.9 6.9
0 0 0.3 1.0 0 0 0 0 0 0
0 0 0 0 0 0 0.1 0,3 0.2 0.5

1.3 2.5 0.6 2.1 0 0 32.6 55.6 58.6 57.8
20.3 8.7 0.5 1.7 1.5 2.4 6.1 9.5 55.9 69.4

0 0 0 0 0 0 2.5 7.5 0 0
3.8 7.5 6.8 21.5 5.2 10.0 90.7 273.1 48.8 33.4
0 0 0.5 1.7 0.2 0.4 9.2 22.6 0 0
0 0 0 0 0 0 0.7 1.7 0 0

0.3 0.5 3.0 10.8 0 0 0.1 0.2 2.3 2.3
0 0 0 0 0 0 1.1 3.1 0 0
0 0 0 0 0 0 0 0 0.1 0.3

6.3 12.5 18.4 27.9 20.6 25.0 34.5 34.8 11.4 12.6
0 0 0 0 2.7 6.1 8.6 11.2 4.6 5.5

1.3 2.5 0 0 2.9 7.0 42.8 84.2 50.5 50.9
6.3 7.5 46.6 55.1 6.5 13.5 4.2 10.1 47.2 65.6
0 0 2.5 8.3 0 0 1.3 4.2 9.2 18.3
0 0 0 0 0 0 3.0 9.8 12.3 24.2
0 0 0.2 0.8 0 0 5.1 22.9 4.6 12.8

10.3 20.6 1.5 5.6 3.3 5.4 1.1 3.3 1.4 2.8
0 0 0.5 1.3 1.6 2.2 0 0 0.6 1.7
0 0 2.3 4.8 0 0 0 0 8.5 19.9

2.5 5.0 10.8 29.1 1.3 3.1 7.5 16.5 26.5 46.9



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table 3-4. Continued.

Lower gradient 
Very steep scour cold-water

streams streams
Taxon Mean S.D. Mean S.D.
Odontoceridae 1.9 4.6 3.6 5.0
Lepidostomatidae 22.7 20.3 18.9 20.6
Polycentropidae 0 0 11.6 12.3
Limnephilidae 15.8 22.4 1.9 3.0
Notonectidae 0 0 0 0
Belastomatidae 0 0 0 0
Corixidae 0 0 2.2 9.1
Sialidae 1.9 3.1 3.1 7.4
Corydalidae 0 0 5.3 7.8
Dytiscidae 8.0 10.9 0.7 2.0
Chrysolmelidae 0 0 0 0
Elmidae 1.6 3.0 51.7 37.1
Circulionidae 0.6 1.5 0 0
Haliplidae 0 0 0.6 1.9
Psephenidae 0 0 4.6 8.1
Empididae 2.6 4.6 1.3 2.6
Tipulidae 1.9 1.9 12.8 14.8
Tabanidae 0 0 3.2 7.5
Dixidae 0 0 0.4 1.1
Psychodidae 0 0 0 0
Culcidae 0 0 0.1 0.2
Simuliidae 142.4 135.6 28.4 79.6
Chironomidae 1238.7 1389.4 868.8 736.5
Ceratopogonidae 1.3 3.1 16.8 17.9
Blepharicidae 0 0 0.2 0.9
Libellulidae 0 0 0 0
Anoylidae 0 0 0.4 1.8
Physidae 0 0 0.1 0.2
Planorbidae 0 0 0.1 0.3

High gradient Large, low 
Low gradient Warm-water Sandy glide cold-water gradient cold- 

wetland streams riffle streams streams streams water rivers
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

2.8 5.6 15.2 29.6 3.7 8.7 3.5 6.6 5.2 7.5
0 0 4.1 10.4 33.8 29.5 15.2 14.0 16.4 30.6

5.6 7.2 4.0 6.7 0.2 0.4. 1.1 2.4 3.9 7.6
1.3 2.5 3.5 4.9 9.2 11.6 6.6 8.0 8.2 22.3
0 0 0 0 0.8 2.0 0 0 0 0

0.3 0.5 0 0 0.8 2.0 0 0 0 0
1.9 3.8 0.3 1.0 1.3 3.1 0 0 0 0
5.9 4.7 4.0 4.7 2.3 3.0 0 0 0.2 0.7
1.3 2.5 12.8 19.0 0 0 0 0 7.4 6.1

26.3 33.3 6.0 17.1 6.3 7.3 3.1 6.8 0.7 1.5
0 0 0 0 1.0 2.0 0.1 0.2 0 0

8.1 11.8 32.6 35.4 9.6 10.8 6.3 16.7 29.8 25.7
0 0 0 0 0 0 0.1 0.2 0 0
0 0 0 0 0 0 0 0 0 0
0 0 5.3 15.2 75.4 160.4 0.4 1.0 0 0

2.5 5.0 2.0 4.5 0 0 2.7 6.3 0.8 2.5
1.9 3.8 5.0 4.8 4.3 6.9 16.6 19.1 12.0 11.3
0.9 1.9 1.0 2.6 5.5 5.3 0.8 2.0 0.6 1.4
0 0 0 0 0 0 0.5 1.5 0 0
0 0 0 0 0.2 0.4 0.1 0.5 0.8 2.5
0 0 0 0 0 0 0 0 0 0

7.5 15.0 50.7 93.9 2.3 4.1 15.9 23.7 7.0 13.3
1065.6 629.4 881.8 877.7 698.9 650.1 534.0 528.0 1167.2 859.6
24.7 18.0 13.1 21.9 4.0 3.7 12.5 14.6 27.2 19.4

0 0 0 0 0 0 0.1 0.3 1.7 5.0
3.1 00 0 0 5.8 14.3 0 0 0 0
0 0 0.3 1.0 0 0 0 0 0 0

33.8 67.5 0 0 0 0 0 0 0 0
35.6 61.7 0.8 2.2 0.6 1.5 0 0 0 0
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Table 3-4. Continued.

Lower gradient 
Very steep scour cold-water

streams streams
Taxon Mean S.D. Mean S.D.
Sphaeridae 18.8 45.9 9.9 15.5
Collembola 12.2 17.2 1.1 2.5
Cordulegastridae 0 0 2.7 3.5
Corduliidae 0 0 0.9 3.6
Gomphidae 0 0 5.4 6.6
Aeshnidae 2.5 6.1 17.5 53.8
Calopterygidae 0 0 3.1 11.0
Ptychopteridae 0 0 0 0
Turbellaria 0.4 0.9 0 0
Nematomorpha 0 0 0.1 0.5
Hydrachnida 24.2 22.0 3.3 3.0
Pyralidae 1.8 2.9 0 0
Pteronarcyidae 0 0 0.4 1.1
Nymphomyiidae 0 0 0.1 0.4
Athericidae 0.6 1.5 1.8 5.6
Strationyidae 0 0 0 0
Uenoidae 6.3 8.4 1.5 5.4
Unknown Trichoptera 2.3 2.3 12.8 18.3
Sciomyzidae 0 0 0.1 0.4
Gerridae 0 0 0 0
Unknown Other 0 0 0 0
Asellidae 1.3 3.1 0 0
Unknown Diptera 0 0 0 0
Psychomyiidae 0 0 0.1 0.4
Ephemeridae 0 0 3.0 10.1
Lymnaeidae 0 0 0.1 0.2
Lestidae 0 0 0 0
Anabaena 0 0 0 0
Calothrix 0 0 0 0

High gradient Large, low 
Low gradient Warm-water Sandy glide cold-water gradient cold- 

wetland streams riffle streams streams streams water rivers
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
285.3 549.8 122.8 173.4 36.1 37.2 0.2 0.9 1.4 2.2

0 0 1.0 1.9 0 0 0.9 2.5 0.2 0.5
0 0 2.5 5.0 3.0 3.3 0.3 0.9 3.8 9.9
0 0 0.1 0.3 0 0 0 0 0 0
0 0 0.9 2.3 0 0 1.7 2.9 0.6 0.9

5.0 3.5 4.4 4.7 8.1 11.3 0.1 0.7 2.4 5.0
0 0 2.1 5.1 0 0 0.1 0.2 0.4 0.9

3.8 7.5 0 0 0.2 0.4 0 0 0 0
0 0 1.4 4.2 2.3 2.6 0 0 0 0
0 0 0.8 1.5 0 0 1.1 4.4 2.1 4.9

4.7 9.4 1.8 6.2 2.0 2.5 5.4 6.2 9.2 14.5
0 0 0.2 0.8 0.2 0.4 0.4 0.9 0.7 1.7
0 0 0 0 0 0 0.3 1.2 1.7 3.3
0 0 0 0 0 0 0.1 0.2 0 0
0 0 0 0 0 0 0.5 1.4 0.9 1.8
0 0 0 0 0 0 0.5 1.7 0.8 2.5
0 0 0 0 0 0 0.3 1.0 0.6 1.7

2.5 5.0 2.3 8.3 0 0 2.7 8.6 6.3 14.7
0 0 0 0 0 0 0.1 0.2 0 0
0 0 0 0 0 0 0.2 0.8 0 0
0 0 0 0 0 0 0 0 0.5 1.4

633.8 1267.5 5.8 18.7 0.4 1.0 0.1 0.5 0 0
0 0 0 0 0 0 0.1 0.4 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.1 0.2 3.0 9.1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.2 0.5

0.0 0.1 0.0 0.0 0.0 0.0 0 0 0 0
0 0 0 0 0 0 0.6 2.9 0 0
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Table 3-4. Continued.

Lower gradient 
Very steep cold-water

scour streams streams
Taxon Mean S.D. Mean S.D.
Gleocapsa 0 0 0 0
Lyngbya 0 0 3.0 8.6
Oscillatoria 0.3 0.5 1.2 2.6
Microcystis 0 0 0 0
Spirulina 0 0 0 0
Centroid diatom 0 0 0 0
Asterionella 0 0 0 0
Gleocapsa 0 0 0 0
Cymbelloid diatom 0.8 1.6 0.2 0.6
Eunotia 19.3 19.6 171.7 474.8
Fragillaria 0 0 1.5 5.6
Gomphonema 1.2 2.3 5.0 14.3
Melosira 0 0 0 0
Naviculoid diatom 10.1 14.2 14.8 26.0
Tabellaria 278.2 522.8 7.5 20.1
Terpsinoe 0 0 0 0
Gyrosigma 0 0 0.1 0.3
Batrachospermum 0 0 0 0
Bulbochaete 0 0 2.9 12.1
Closterium 6.9 17.0 5.5 15.3
Cosmarium 1.2 2.9 1.8 4.3
Cylindrocapsa 0 0 0 0
Cylindrocystis 0 0 0 0
Desmidium 0 0 0 0
Draparnaldia 0 0 0 0
Euastrum 0 0 0 0
Gloeocystis 0 0 0 0
Hyalotheca 0 0 0.3 1.3
Microspora 225.4 359.0 0 0

High gradient Large, low 
Low gradient Warm-water Sandy glide cold-water gradient cold-

wetland streams riffle streams streams streams water rivers
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

0.1 0.1 0 0 0 0 0 0 0 0
0 0 0.0 0.0 0 0 0.4 0.9 10.2 21.1

1.1 1.5 0.0 0.1 0.3 0.6 2.3 8.8 5.3 13.8
5.8 11.5 0 0 0 0 0 0 0 0
0 0 0.1 0.3 0 0 0.0 0.1 0 0
0 0 0.3 0.7 0 0 0 0 0 0

2.1 4.2 0.1 0.3 0 0 0 0 0 0
0.1 0.1 0 0 0 0 0 0 0 0
2.7 5.4 0.4 0.7 0.3 0.7 0 0 0.1 0.3
6.9 11.4 4.3 5.6 3.2 6.4 0.7 1.7 4.7 111
0 0 0 0 0.2 0.6 0 0 0.5 1.2

2.4 4.8 0 0 2.0 3.4 0.1 0.2 6.6 8.4
11.7 23.5 0 0 0 0 0 0 0 0
83.5 59.4 11.4 10.0 7.1 10.0 2.0 3.7 . 22.4 19.8
84.8 112.3 10.7 25.5 7.4 10.4 1.4 3.2 106.5 216.8

0 0 0 0 0.4 0.9 0 0 0 0
8.3 10.4 0.0 0.1 0 0 0 0 0.2 0.6
0 0 0 0 0 0 0 0 9.5 28.5

1.3 2.6 0 0 0 0 1.3 5.9 4.3 13.0
12.8 15.8 2.0 3.2 0 0 0 0 4.2 9.8
4.6 5.4 0.2 0.6 1.0 2.3 0.8 2.8 10.4 25.1
4.2 8.4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.8 3.7 6.8 20.5

3.7 7.4 0 0 0 0 0 0 0 0
157.2 314.5 0 0 0 0 0 0 0 0
2.0 3.9 1.0 3.6 0 0 0 0 0 0
0.1 0.1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1.2 1.9 0.1 0.2 0 0 1.0 4.2 8.2 24.5
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Table 3-4. Continued.

Lower
gradient

Very steep cold-water
scour streams streams

Taxon Mean S.D. M ean S.D.
M ougeotia 58.6 138.5 0.7 1.8
Oedigonium 0 0 0 0
Pediastrum 0 0 0 0
Plectonema 0 0 0.1 0.5
Rhizoclonium/Cladophora 2.8 2.3 0.3 0.7
Scenedesmus 0 0 0 0
Selenastrum 0 0 0 0
Arthrodesmus 0 0 0 0
Staurastrum 0 0 0 0
Ulothrix 57.3 103.5 21 3 89.4

Low gradient 
wetland 
streams

Warm-water 
riffle streams

Sandy glide 
streams

High
gradient

cold-water
streams

Large, low 
gradient 

cold-water 
rivers

Mean S.D. Mean Mean S.D. Mean S.D. Mean S.D. Mean
195.0 253.3 8.8 27.6 0 0 0.3 1.3 143.1 313.7
5.6 11.1 0 0 0 0 0 0 0 0
0 0 0.5 1.8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0.5 1.1 1.6 3.3 1.2 1.9 2.2 4.4 4.8 6.2
0.2 0.4 0.0 0.1 0.1 0.3 0 0 0.5 1.3
0 0 0 0 0 0 0 0 0.0 0.1

7.8 15.5 0 0 0 0 0 0 0.9 2.1
51.0 102.0 0 0 1.1 1.7 0 0 1.1 1.7

307.6 541.4 134.3 396.0 3.6 6.0 2.0 7.0 27.2 79.8
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Table 3-5. Select environmental descriptors for seven stream community types classified using minimally-impacted streams in New 
Hampshire. The environmental descriptors included in the table were mentioned in the community descriptions. See Table 3-1 for 
definitions.

Very steep scour 
streams 

Mean. S.D.

Lower gradient 
cold-water 

streams 
Mean S.D.

Low gradient 
wetland streams 
Mean S.D.

Warm-water 
riffle streams 

Mean S.D.

Sandy glide 
streams 

Mean S.D.

High gradient 
cold-water 

streams 
Mean S.D.

Very large, 
shallow, low 

gradient cold- 
water rivers 

Mean S.D.
Order 2.0 0.9 2.2 0.8 1.8 1.0 1.2 0.4 1.0 0.0 1.8 0.7 2.8 0.8
Wetlands 0.0 0.0 2.1 3.6 7.1 5.9 4.3 4.4 9.6 12.7 0.5 1.3 0.6 1.0
Lakes 0.5 1.0 0.8 1.0 2.9 3.9 1.9 2.1 0.7 1.1 0.0 0.0 0.3 0.5
Highest_Point 700 440 594 420 517 414 484 325 253 143 879 411 1005 426
Elevation 432 133 333 143 211 189 110 71 94 89 393 145 301 93
Width 4.72 5.25 4.13 1.66 3.14 1.34 2.54 1.11 1.48 0.88 4.07 2.99 6.63 2.60
Slope 8.62 3.66 3.76 2.54 . 2.00 1.59 3.76 1.84 2.20 2.65 6.01 3.55 2.47 1.27
pH 5.56 0.48 6.26 0.60 . 6.10 0.60 5.94 0.87 6.04 0.67 6.29 0.61 6.67 0.29
Temp 14.15 1.23 17.11 1.65 21.65 1.17 18.79 3.64 18.17 2.87 14.76 2.21 18.44 2.94
Cond 20.29 5.06 28.40 9.76 66.69 80.87 54.83 50.34 74.92 40.58 29.04 14.39 27.47 6.55
Phi -6.85 1.60 -3.43 3.10 3.39 4.89 -2.25 3.20 2.39 3.23 -4.13 2.09 -3.69 2.02
Pool 37.9 10.6 23.0 17.6 79.6 15.5 42.2 31.8 43.8 38.4 27.3 26.6 39.1 24.2
Glide 1.5 3.7 8.0 19.0 11.4 17.2 11.3 17.9 42.5 35.4 6.2 10.1 10.1 27.1
Riffle 15.2 9.4 49.7 26.5 9.0 10.5 34.7 23.1 3.0 4.7 37.8 25.5 40.2 27.3
Rapid 45.5 8.1 17.7 18.0 0.0 0.0 4.9 10.9 12.1 29.7 29.6 21.8 10.6 11.4
Fine_sub 2.1 5.2 7.1 15.9 48.5 49.8 9.1 15.2 17.8 13.7 4.1 9.2 4.4 6.0
Sand 2.1 1.8 8.3 8.0 20.3 23.7 21.8 20.1 52.0 29.6 7.9 7.7 12.4 10.7
Fine_gravel 6.7 5.4 9.5 6.4 6.3 7.9 5.0 4.9 4.4' 5.2 10.2 5.5 11.0 6.7
Coarse_gravel 18.5 6.0 27.2 14.4 4.8 7.8 14.9 10.3 7.6 13.8 26.0 8.9 26.7 13.3
Cobble 16.7 8.1 23.4 10.0 4.7 5.4 24.9 ' 12.3 6.3 9.1 23.2 9.3 19.3 13.7
Boulder 27.0 18.2 17.9 11.9 11.3 15.5 18.4 13.2 7.0 12.7 ■ 21.5 11.8 18.9 13.0
Bedrock 25.5 20.5 1.7 6.1 0.5 1.0 1.8 4.4 0.0 0.0 3.7 10.6 5.5 9.0
Bankfull_Height 1.01 0.47 0.62 0.25 0.30 0.16 0.33 0.15 0.25 0.06 0.64 0.25 1.06 0.28
Flood_ratio 5.03 2.48 3.16 1.56 1.60 0.89 3.20 1.32 1.55 0.60 3.63 2.24 3.23 1.55
Canopy Cover 75.43 24.53 91.26 4.87 63.23 37.53 91.56 17.18 80.75 37.69 90.59 6.56 60.73 28.32

CM



Table 3-6. A discriminant model to predict membership of minimally impacted stream 
reaches in New Hampshire into seven community types using predictors available for 
mapping community locations. The model correctly classified 63.2% of the stream reaches.

Unstandardized Coefficients fo r  Each Function
Predictors 1 2 3 4 5 6
Order 0.746 0.436 -0.472 0.910 -0.375 0.030
Lakes -33.698 20.702 25.106 24.837 -14.843 -43.781
Highest point 0.001 0.001 0.000 -0.001 0.001 -0.002
Area 0.000 0.001 0.000 -0.001 0.000 0.000
Elevation

0.002 -0.007 -0.002 0.001 -0.001 -0.003

Slope 0.097 -.114 0.138 -0.184 -0.238 0.006
Ecoregion 580 2.891 3.034 3.661 1.287 1.197 2.424
Ecoregion 581 3.042 2.109 3.756 0.707 2.302 1.445
Ecoregion 591 0.998 2.243 4.080 0.353 0.605 1.505
Constant -4.795 -1.779 -2.973 -1.096 0.727 0.615

Functions at Group Centroids
Communities 1 2 3 4 5 6
Very steep scour streams 1.284 -1.065 0.463 -0.262 -1.083 -0.011
Lower gradient cold-water 
streams 0.529 0.093 -0.071 0.796 0.028 0.234

Low gradient wetland streams -2.293 0.349 -0.149 1.078 -0.154 -0.761
Warm-water riffle streams -2.419 0.570 1.038 -0.336 0.064 0.083
Sandy glide streams -3.398 -1.079 -1.732 -0.411 -0.021 0.123
High gradient cold-water 
streams 1.426 -0.718 0.137 -0.246 0.338 -0.108

Very large, shallow, low 
gradient cold-water rivers 1.596 1.949 -0.773 -0.474 -0.129 -0.047

Eigenvalue 3.575 0.923 0.568 0.313 0.141 0.054

Percent o f  variance 64.1 16.6 10.2 5.6 2.5 1
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Table 3-7. A discriminant model to predict membership of minimally impacted stream 
reaches in New Hampshire into seven community types using all available local- and 
watershed-scale predictors for local site evaluation of the probability of stream reach 
membership in each community type. The model correctly classified 86.8% of the stream 
reaches.

Unstandardized Coefficients fo r  Each Function
Predictors 1 2 3 4 5 6
Order 0.796 0.239 -0.026 -0.249 0.08 -0.597
Lakes -5.921 60.169 28.48 -9.864 25.378 3.966
Distance from source -0.008 -0.063 -0.169 -0.195 0.026 0.261
Elevation 0.003 -0.005 -0.001 0.002 0.004 -0.002
Rapids -2.71 -3.46 -2.514 2.231 -0.444 -1.397
Fine 0.373 5.538 -3.475 2.166 5.404 2.632
Sand -3.366 2.02 -3.817 4.599 -1.051 1.249
Fine gravel 7.025 7.138 -8.014 -2.647 3.793 2.261
Boulder 0.174 5.885 1.427 3.036 2.891 5.334
Bedrock 7.305 7.912 5.784 8.446 1.39 2.591
Bankfull height 3.505 3.503 0.998 -0.55 -2.193 -0.083
Flood ratio -0.398 -0.34 0.196 0.089 0.055 0.079
Brush/wood cover -0.339 -0.475 1.636 0.035 -0.312 -0.772
Mixed canopy -0.528 -1.648 1.346 -0.643 0.169 0.439
Log DOC -0.614 0.282 2.883 -1.08 -0.918 -2.303
Constant -1.835 -1.054 -3.712 -0.266 -0.809 1.13

Functions at Group Centroids
Communities I 2 3 4 5 6
Very steep scour streams 2.397 0.544 1.782 2.446 -0.045 0.07
Lower gradient cold-water streams 0.502 -0.601 0.487 -0.602 0.095 -0.767
Low gradient wetland streams -0.8 3.821 -0.728 0.009 2.278 0.008
Warm-water riffle streams -2.57 0.397 1.292 -0.605 -0.278 0.448
Sandy glide streams -3.341 1.109 -1.776 1.339 -0.978 -0.5
High gradient cold-water streams 0.255 -1.783 -0.747 0.143 0.307 0.333
Very large, shallow, low gradient cold-water rivers 3.154 1.922 -0.724 -0.85 -0.825 0.307
Eigenvalue 4.131 2.547 1.193 0.935 0.518 0.251
Percent o f  variance 43.1 26.6 12.5 9.8 5.4 2.6
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Table 3-8. Spearman correlation coefficients between trophic level densities in minimally- 
impacted streams in New Hampshire.

Fish Salamanders
Predator

Macroinvertebrates
Non-predator

Macroinvertebrates

Salamanders -0.191

Predator
Macroinvertebrates
Non-predator
Macroinvertebrates

0.394*

0.196

-0.055

0.297* 0.523*

Periphyton Total -0.096 0.115 0.294* 0.409*

*P<0.01 (2-tailed)
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Figure 3-1. The classification strengths of four clustering approaches were compared to the 
evenness of the group sizes. UPGMA and furthest neighbor clustering were performed 
using five different standardization approaches. TWINSPAN clustering was performed 
using three standardization approaches. Two-stage clustering was performed directly on 
the raw organism densities. Each clustering approach was computed to each give a range in 
number of groups of between 2 and 12. See methods for more explanation. Classification 
strength was measured using the sum of the univariate F-ratios by taxon (Warton and 
Hudson 2004).
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Figure 3-2. The classification strengths of six approaches to standardizing densities from 
multiple taxonomic groups measured on different scales were compared to the evenness of 
the group sizes. Four clustering approaches were used for taxa maximum, log 
transformation, and relative abundance by taxonomic group. Gower’s and Mahalanobis 
each were clustered using only two clustering approaches. Two-stage clustering groups 
were computed directly from the raw organism densities. See methods for more 
explanation. Classification strength was measured using the sum of the univariate F-ratios 
by taxon (Warton and Hudson 2004).
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Figure 3-3. Axes 1 and 2 of a DCA ordination of minimally-impacted stream reaches in New 
Hampshire. Reaches are coded by the community type to which they were classified. The 
Dlotted environmental variables had correlations with the axes greater than 0.2 R2.
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Figure 3-4. Axes 1 and 3 of a DCA ordination of minimally-impacted stream reaches in New 
Hampshire. Reaches are coded by the community type to which they were classified. The 
plotted environmental variables had correlations with the axes greater than 0.2 R2.
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CHAPTER IV

EVALUATION OF SEVERAL METHODS TO PREDICT STREAM BIOLOGICAL

REFERENCE CONDITIONS

Summary

Sensitive biological assessment to detect and measure the level of human impacts to an 

ecosystem requires that natural variation in community structure can be constrained. As part of a 

program to construct biological monitoring reference conditions for New Hampshire streams, 76 

minimally-impacted streams were sampled for their fish, salamander, macroinvertebrate, and 

periphyton densities along with the physical habitat conditions of the streams and their 

watersheds. The predictive accuracies of eleven statistical analysis methods to predict 

macroinvertebrate, fish, and periphyton densities was investigated to identify those approaches 

that best constrain natural spatial variation for constructing biological assessment reference 

conditions. A new approach to constructing a biological assessment index that is based on the 

Bray-Curtis percent similarity between the observed and predicted communities was developed to 

allow taxa density information into the multivariate predictive assessments. Separate linear 

regression models to predict the densities of each taxon resulted in the most accurate predictions 

of expected community structure. Multivariate predictive models that included classification 

steps were not in general less accurate than approaches based on continuous prediction of taxon 

densities such as nearest-neighbor or ordination-based analyses. Including abundance 

information into the predictive models did not increase relative prediction error compared to an
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AusRivAS-style assessment index based solely on predicted taxon occurrences. While some 

approaches were better than others, most of the multivariate prediction approaches investigated in 

this study differed little in predictive accuracy. And although neural networks and Bayesian 

approaches may improve predictive accuracy, it seems that current biological assessment 

sensitivity may be more limited by the intensiveness and effort involved in field and laboratory 

sampling than statistical analysis techniques.

Introduction

The condition of the biological component of ecosystems is a powerful indicator of the 

level of human influence on ecosystems (Rosenberg and Resh 1993, Karr and Chu 1999) and the 

ability of ecosystems to sustainably provide the goods and services on which humans rely (Karr 

1999). To successfully carry out biological assessment and monitoring, the expected condition of 

an ecosystem and biological criteria must be set (Davis and Simons 1995). The definitions of 

biological diversity (Noss 1990) and biological integrity (Karr and Dudley 1981) both contain 

measures of function, composition, and the processes that sustain them (Davis and Simon 1995). 

Biological assessment and criteria are strongly linked to the community composition of 

minimally-impacted ecosystems (Hughes and Noss 1992). Given broad recognition of this link, 

the concept of reference conditions has risen to the forefront of the current conception of what 

constitutes appropriate biological criteria (Cairns et al. 1993, Hughes 1995). In the reference 

condition framework, biological criteria have been defined as expressions that describe the least 

impacted (reference) biological integrity of communities within a region (Caims et al. 1993, 

Hughes 1995, Reynoldson et al. 1997) such that the acceptable range in biological integrity is the 

variation among unimpaired reference sites (Linke et al. 1999).

Hence, the central goal of biological assessment is detecting a change or difference 

(differences for spatial comparisons and changes for temporal) in community structure compared
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to minimally-impacted conditions. Understanding background variation in community structure 

is important to determining whether observed differences or changes are due to human impacts or 

natural differences or changes (Philippi et al. 1998, Micheli et al. 1999, Schaefer et al. 2005). 

Bioassessment has most commonly been employed in stream ecosystems, often understood to be 

patchy and variable in space and time (Tonn 1990). The community structure of streams varies 

primarily along the physical gradients controlled by the longitudinal stream profile (Vannote et al. 

1980). They are also affected by differences in regional climate (Winterbourri et al. 1981), 

tributary inflows (Bruns et al. 1984), and hydrologic conditions (Corkum 1989). This 

background variation must be explained before any variation in species composition detected as 

part of a biological assessment can be concluded to be due to human influence.

There have been two main approaches to constraining and explaining natural variation 

within the reference conditions for biological assessment of streams: the multimetric approach 

and predictive modeling (both reviewed by Reynoldson et al. 1997). In the multimetric approach, 

potentially disturbed streams are compared with a batch of reference minimally impacted streams 

chosen because they are most similar to the potentially impacted stream (Barbour et al. 1995). 

Usually the choice of which streams to use for the comparison is made along ecoregion lines, 

stream order, or both, which primarily represents catchment-level constraint of physical habitat 

variation. Metrics describing community composition and structure are chosen by selecting those 

that are most related to the presumed pollution found in non-reference sites.

A number of criticisms have been leveled at the mutltimetric approach. Local habitat 

factors have been found to be more important for determining lotic species composition (Weigel 

et al. 2003). As such, geographic classifications, e.g. ecoregions (Omemik 1987) and stream 

order, do not constrain biological variation as well as biotic classifications (Marchant et al. 1999, 

Hawkins et al. 2000, Hawkins and Vinson 2000, Sandin and Johnson 2000, Waite et al. 2000). 

Finally, the process of selecting metrics as a measure of biological change and human impact is 

inherently circular as the metrics best correlated with presumed pollution (measured by discharge
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permits, amount of agriculture, and others) are selected over those that are not highly correlated 

(Reynoldson et al. 1997). As such, in the multimetric approach a given level of presumed 

pollution in a watershed is expected and assumed to have the same level of impact all streams.

By eliminating metrics that do not correlate with the presumed pollution in the majority of 

streams in a region, no possibility is allowed that a metric may be indicating biological change in 

some streams and not others due to an usual characteristic of the streams or their assemblages. 

The multimetric system thus is a proxy for the easily measured presumed pollution indicators 

included in the metric selection process and not necessarily a measure of community change in 

relation to reference conditions.

The multivariate predictive modeling approach attempts to predict and model the 

assemblage expected for a stream using the environmental conditions of the potentially impacted 

test stream that are minimally influenced by humans (Reynoldson et al. 1997). There are many 

examples of predictive models for bioassessment (Wright et al. 1984, Reynoldson et al. 1995, 

Marchant et al. 1997, Chessman 1999, Hawkins et al. 2000, Linke et al. 2005, Van Sickle et al. 

2005). The majority of predictive multivariate models (e.g. RTVPACS, AusRivAS, and BEAST 

in references above) constrain unexplained variation in species composition by classifying sites 

into relatively homogenous community types and then predicting which community type a test 

stream should belong to using environmental conditions minimally influenced by humans. By 

constraining more variation in assemblage attributes using biotic classifications than the 

geographic classification used in the multimetric approach and tailoring the biological criteria to 

better match the specific local habitat conditions of a site, predictive modeling should be more 

sensitive at detecting community alterations due to human impact. Comparisons of multimetric 

and predictive modeling approaches found that predictive modeling resulted in fewer 

misclassifications of reference sites and apparently more robust detection of impacts in 

potentially impacted sites (Reynoldson et al. 1997, Hawkins et al. 2000).
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RIVPACS and AusRivAS procedures have been criticized because they require 

classification of sites into communities as an intermediate step (Chessman 1999, Linke et al. 

2005). These researchers argue that classification is an artificial step in ecosystems, such as 

streams, where organisms display a continuum of variation and little evidence for discreet 

community types. Indeed, the RTVPACS procedures recognize the continuous nature of lotic 

organism distributions by weighting the probability an organism should be expected to occur in a 

test site by the probability of that test site’s membership within every community and the 

probability of that organism’s membership within every community type. This weighted 

probability of occurrence attempts to remove the artificial boundaries step up during classification 

and can thus be seen as an unnecessary complication that potentially introduces an additional 

source of prediction error; a direct means of predicting organism abundances directly from the 

reference sites might yield more accurate predictions (Chessman 1999). A nearest-neighbor 

approach to predicting reference organism abundances for a test site, ANNA, was developed in 

which the reference sites most closely matching the test site in environmental conditions were 

chosen for comparison with the observed test site assemblage (Linke et al. 2005). The developers 

compared the sensitivity and accuracy of ANNA with AusRivAS, but found no substantial 

improvement in correct classification of reference sites as reference or in detecting relatively well 

known impacts.

However, the largest criticism of the RTVPACS and AusRivAS approaches that ANNA 

did not respond to was that neither approach included taxa abundances in the assessment process. 

The indices they use for assessment are based on the presence of expected organisms; a taxon 

must be locally extirpated fo r  a change in condition to be measured. Any changes in relative 

abundance in response to an impact cannot be detected. Thus, the RTVPCAS O/E approach may 

decrease the sensitivity of impact compared to an assessment that took abundances into account 

(Reynoldson et al. 1997, Chessman 1999). Indeed, recently Schaefer et al. (2005) found that
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community change was detected more reliably in several datasets when abundance information 

was used compared to binary indices such as Jaccard’s metric.

The Benthic Assessment of Sediment (BEAST) predictive bioassessment approach takes 

taxa abundances into account during the assessment process (Reynoldson et al. 1995). However 

there is still a classification step where test sites are compared with a community type it is most 

likely to belong to based on physical conditions. The test site is then ordinated with the reference 

sites from the most likely community; a test site is impaired if  it is outside a pre-defined 

confidence interval around the reference sites. The authors of BEAST admit that there is a 

circularity problem as the test site is included in the ordination by which it is assessed. 

Additionally, there is no weighted averaging or method for allowing continuous change in 

organism abundances.

Chessman (1999) developed the first predictive bioassessment approach that did not 

involve classification, allowed for continuous change in species distributions, and assessed sites 

using abundance data. Chessman regressed differences in environmental conditions between 

pairs of reference sites against Bray-Curtis biological dissimilarity for each pair of reference sites 

to predict the expected dissimilarity of a test site. There are a few drawbacks to this approach. 

First, including differences, biological and environmental, between each pair of reference sites 

violates the assumption independence in regression to a large degree; X  reference sites becomes 

X. cases in the analysis. Second, if a test site differs from the expected dissimilarity, there is no 

explicit indication as to what is different in the test site assemblage from the expected reference 

conditions assemblage.

This chapter investigates several alternative methods of multivariate predictive modeling 

for bioassessment. The goals of all the methods developed were to include abundance data in the 

assessment. However, both classification and classification-less approaches were developed.

The approaches were compared for the accuracy of their predictions in the reference sites, 

measured by percent similarity between the observed and predicted assemblages, and for the
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precision of the prediction, measured as the standard deviation in the predicted percent similarity. 

The AusRivAS approach was included for comparison. In addition, the metrics usually used in 

the mutltimetric approach were also included and parsed by ecoregion and stream order to assess 

their relative variation with the multivariate predictions. These measures of accuracy and 

precision indicate which approach explained the greatest amount of variation in reference 

biological condition, a key step in determining the overall sensitivity of a bioassessment approach 

to detecting human influence.

Methods

The dataset of biological and physical attributes from minimally-impacted first to fourth 

order streams in New Hampshire (see Chapter 1) was used to compare multivariate predictive 

bioassessment approaches in their ability to accurately and precisely predict reference conditions 

in New Hampshire reference streams. Only minimally impacted streams were sampled. Any 

appeal to how often a bioassessment approach detects impact inherently has some circular logic 

involved (Reynoldson et al. 1997) as it is rarely ever truly known if a level of potential human 

impacts should or should not be altering organisms abundances in a particular site. Indeed, there 

are always two conclusions that may be drawn when a site is not found to be impacted by a 

bioassessment: either it was not impacted or the bioassessment approach was not sensitive 

enough to detect the changes in assemblage. This ambiguity limits the inferences that can be 

drawn from such an investigation. The only scientific basis for comparing the ability of 

bioassessment approaches to detect impacts would be to experimentally manipulate ecosystems 

with varying levels of specific impacts in a carefully controlled situation akin to estimating the 

minimum detection level for chemical analytic procedures (APHA 1992). What we are left is a 

comparison of the amount of unexplained variation in the reference conditions resulting from a
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bioassessment approach as the most logically secure basis for comparing bioassessment 

approaches.

Ten alternative approaches were investigated for the ability to constrain unexplained variation 

in the reference stream reach assemblages:

1. Weighted Averaging MPA of Communities: This was essentially the same process as 

the AusRivAS (Marchant et al. 1997) approach, except that organism densities were 

included. Streams were classified using log transformed taxa densities and 

TWINSPAN. The number of communities with the largest classification strength was 

chosen; classification strength was measured by the sum of the natural log sums of 

squares ratios by taxa among the groups (LR-IND of Warton and Hudson 2004). See 

Chapter 3 for a complete description of the communities and classification process. A 

stepwise multiple discriminant analysis (MDA) was run to predict community 

membership using environmental variables relatively robust to human influence (Table 

4-1). Each reference stream was then compared with an expected assemblage that was 

produced by weighting the average density for each taxon in each community by the 

probability of occurrence in that community. Taxa that were predicted to have a base 10 

log+1 abundance below 0.3 (less than 1 predicted) were scored as zero to reduce the 

number of marginally predicted species occurrences in the predicted community alone.

2. MDA of Communities: This was similar to the above approach except that the predicted

abundances were not weighted by probability of group membership. Each taxon density
*

in the predicted assemblage was equal to the mean density of that taxon in the 

community with the highest probability of occurrence in the discriminant model. It was 

expected that a lack of weighted averaging would increase prediction error because it 

would not control for continuous organism distributions (Chessman et al. 1999, Linke et 

al. 2005).
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3. Weighted Averaging CART Prediction of Communities: This was similar to approach 1 

except that a CRT classification and regression tree (CART) model was used to predict 

the probabilities of community membership for each reference stream instead of 

discriminant analysis. Classification and regression trees models do not require the 

normal distribution assumption that discriminant analysis requires. The CRT model was 

pruned with a maximum difference of risk of 1 standard error.

4. CART Prediction of Communities: Similar to approach 3, except each taxon’s density in 

the predicted assemblage was equal to the mean density of that taxon in the community 

with the highest probability of occurrence in the discriminant model. Just as in approach 

2, it was expected that a lack of weighted averaging would increase prediction error 

because it would not control for continuous organism distributions (Chessman et al.

1999, Linke et al. 2005). The CRT model was pruned with a maximum difference of 

risk of 1 standard error.

5. Linear Regression Habitat Models: In the simplest approach to a classification-less 

prediction, a habitat model for each taxon was constructed using least-squares stepwise 

multiple linear regression. Taxon density was the dependent variable and the same 

environmental variables robust to human influence used in the previous 4 approaches 

were the independent variables (Table 4-1). Taxon densities were log-transformed to 

reduce skew, though little could be done to reduce the occurrence of zero densities. The 

predicted assemblage was the combined densities predicted by the separate regression 

models for all taxa.

6. CART Habitat Models: This approach was similar to approach 5 except that 

classification and regression tree models were used to construct habitat models for each 

taxon instead of least-squares linear regression. CART models do not have the 

distributional assumptions of least-squares regression and might be expected to produce 

more accurate prediction models for non-linear relationships between taxa and
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environmental conditions. The CRT model was pruned with a maximum difference of 

risk of 1 standard error.

7. PCA Prediction: A principal components analysis (PCA) was used to ordinate the 

streams using the log transformed taxa densities. Scores on the first three axes were 

predicted for each site using three stepwise multiple linear least-squares regression with 

site scores on each axis as the dependent variables and environmental variables 

relatively robust to human influence as independent variables (Table 4-1). The predicted 

site scores were used to predict taxa densities for each reference stream.

8. PCA Gaussian prediction: This was similar to approach 7 except Detrended 

Correspondence Analysis (DCA) and quadratic log-linear regressions were used to 

approximate a Gaussian response of taxa densities to environmental conditions. Taxa 

densities were ordinated using DCA. To approximate a Gaussian ordination using DCA, 

two quadratic least-squares linear regressions were performed for each taxon with the 

log-transformed taxa densities as the dependent variables and site scores on each of the 

first two DCA axes as the independent variables in the two separate regressions 

(Jongman et al. 1995, p. 113). Scores for each reference reach on the first two axes were 

then predicted using two stepwise multiple linear least-squares regressions with site 

scores on each axis as the two separate dependent variables and environmental variables 

relatively robust to human influence as independent variables (Table 4-1). The predicted 

reach scores and the quadratic regression models were then used to predict taxa densities 

for each reference reach.

9. FA Nearest-Neighbor: Stream reaches were ordinated on the basis of environmental 

variables relatively robust to human influence (Table 4-1) using Factor Analysis. 

Environmental variables were standardized by dividing each value by the maximum 

value for each variable to remove measurement scale differences between the variables 

that could artificially influence the ordination. The nearest k neighbors were identified
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using Euclidean distance between the site scores on all axes. The predicted community 

was equal to the mean densities of each taxon in the k  nearest reaches. Values o f k  from 

2 to 10 were investigated to see which produced the most accurate and precise 

predictions. Because there was no stepwise selection process involving the 

environmental variables, this approach was expected to require the largest number of 

environmental predictors.

10. DCA Nearest-Neighbor: This approach was similar to approach 9, except that reaches 

were ordinated on the basis of log transformed taxa densities rather than environmental 

variables. As such, it is the approach most similar to the ANNA approach of Linke et al. 

(2005) with the only differences being that reaches were ordinated using density data 

rather than presence-absence and DCA was used for ordination instead of non=metric 

multidimensional scaling (NMDS). It was thought that this approach to nearest-neighbor 

prediction would result in more accurate predictions than the Factor Analysis nearest- 

neighbor because the nearest reaches would be as similar as possible on the basis of 

community composition. In the Factor Analysis approach above, reaches were nearby 

because they had similar environmental conditions. Environmental conditions are thus 

only a proxy for similar community composition. However, this approach, like ANNA, 

required the extra step of predicting the DCA axis scores. Multiple linear regressions 

were used to predict reach scores on the first three axes of the DCA ordination using 

environmental variables relatively robust to human influence. One advantage of this is 

that this approach would require fewer measured environmental predictors than 

approach 9. The predicted scores for each reach were used to identify the k nearest- 

neighbors on the first three DCA axes’ reach scores using Euclidean distance. The 

predicted community was equal to the mean densities of each taxon in the k  nearest 

reaches. Values of k  from 2 to 10 were investigated to see which produced the most 

accurate and precise predictions.
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The observed reference community and the predicted community log densities were 

compared using Bray-Curtis percent similarity (Faith et al. 1987), hereafter referred to as O/E 

similarity in this paper. However, taxa that were predicted to have a base 10 log+1 abundance 

below 0.3 (less than 1 organism predicted) were scored as zero to reduce the number of 

marginally predicted species occurrences in the predicted community. Cao et al. (2002) used 

mean and S.D. in similarity as basis for assessing sample representativeness for biological 

assemblages. As assessing the ability of multivariate models to predict community composition 

is conceptually similar, this study also used the mean and standard deviation in the Bray-Curtis 

similarity between the predicted and observed assemblages as the basis for comparing the 

prediction approaches.

An AusRivAS-style assessment based on classification and subsequent comparison of 

observed and expected organism occurrences was constructed to compare the precision of the 

reference predictions with the multivariate approaches that included organism abundances. The 

simplest predictive model would be to simply identify the aquatic ecoregion (Omemik 1987) to 

which test reaches belong and compare the observed assemblage with the average assemblage of 

reference reaches within an ecoregion. To quantify the ability of such a system to predict 

reference conditions, the similarities between the reaches and the mean taxon densities in the 

ecoregions to which they belong were calculated.

In the multimetric approach, the first steps are to place reference streams into classes that 

explain variation in assemblages and then assess variability in component metrics in reference 

reaches. Part of the selection process for component metrics looks at how much variability a 

metric displays in the reference reaches (Barbour et al. 1992). Thus, the coefficients of variation 

for some common component metrics describing community structure within two common 

classification schemes - ecoregion and stream order nested within ecoregion - were calculated to 

compare the precision of two of the usual multimetric approach to defining reference conditions
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(Barbour et al. 1995, Barbour et al. 1999) with multivariate predictive modeling. The metrics 

which were investigated were: vertebrate total density, macroinvertebrate total density, 

periphyton total density, vertebrate species richness, macroinvertebrate taxa richness, periphyton 

taxa richness, total richness, vertebrate diversity, vertebrate Simpson’s diversity, percent 

Ephemeroptera/Plecoptera/Trichoptera (EPT), percent Epehemeroptera (E), percent Plecoptera 

(P), percent Trichoptera (T), EPT taxa, EPT taxa, E taxa, P taxa, T taxa, percent Diptera, percent 

Chironomidae, percent Oligochaeta, percent gatherers, percent filterers, percent scrapers, percent 

shredders (Barbour et al. 1999).

Prediction of taxa densities using a Canonical Correspondence Analysis approach was not 

investigated because there were enough environmental predictor variables available for 

prediction; CCA is best used when there is some doubt that most o f the major explanatory 

variables have been measured for an assemblage (Jongman et al. 1995). Chessman’s (1999) 

regression of community distances approach was not investigated for the reasons given in the 

introduction and because Linke et al. (2002) found that this approach required excessive 

computing power to achieve accuracies that were equivalent to AusRivAS. The ANNA nearest- 

neighbor approach (Linke et al. 2005) was not investigated because it did not take taxa 

abundances into account in the assessment process.

The classification and regression tree models were produced using SPSS version 14.0 (SPSS 

Inc. 2005). DCA ordinations were performed using PC-ORD (McCune and Mefford 1997). All 

other statistical analyses were performed in Matlab 7.1. The FATHOM toolbox of Jones (2002) 

was used to calculate Bray-Curtis percent similarity in Matlab.
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Results

The multivariate approaches investigated for predicting reference conditions varied in 

their accuracy and precision (Table 4-2). Mean Bray-Curtis similarity between observed 

community composition and predicted composition (O/E similarity) ranged from 0.440 to 0.656. 

The coefficient o f variation was used to assess precision instead of the standard deviation so that 

models with higher mean O/E similarities were not penalized. The precision of the predictions, 

as measured using the coefficient of variation in the O/E similarities, ranged from 0.095 to 0.283.

The linear regression habitat models for each taxon predicted reference conditions with 

the highest accuracy and precision, achieving a mean O/E similarity of 0.656 with a low 

coefficient of variation of 0.095 (Table 4-2). While the CART habitat models for each taxon had 

higher accuracy, it also displayed the second highest range in prediction accuracy (C.V. = 0.217) 

with very poor predictions in some cases (min. = 0.19, Table 4-2).

The PCA prediction approach had the lowest accuracy (O/E similarity of 0.440, Table 4- 

2). Three PCA ordination axes were used for prediction in this approach; however, the ordination 

required more than 16 axes to explain more than half of the variation in taxa densities. While 

using an approximation of Gaussian ordination improved the prediction accuracy (O/E similarity 

of 0.518, Table 4-2), it still displayed a much lower accuracy than the linear regressions approach 

and resulted the worst prediction o f all the approaches (min. = 0.17). Thus, a Gaussian response 

model on an ordination did not substantially improve prediction ability in this dataset. The length 

of the gradients in DCA axes scores were low enough (Axis 1 = 2.638, Axis 2 = 1.943) that a 

linear model response model may just as accurately describe the taxon responses to 

environmental gradients (Jongman et al. 1995).

The majority of the approaches without a classification step did not predict community 

composition more accurately or with greater precision than procedures involving classifications 

(Table 4-2). The four approaches involving a classification step (Weighted Averaging MDA of
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Communities, MDA of Communities, Weighted Averaging CART Prediction of Communities, 

and CART Prediction of Communities) achieved prediction accuracies and precisions above the 

methods that did not require discreet classifications (Table 4-2). Additionally, weighting the 

taxon abundances by the probability of community membership as a means of approximating 

continuous change in taxon densities did not improve prediction accuracy or precision at all 

compared to weighted-average approaches (Table 4-2).

The nearest-neighbor approaches all performed poorly (Table 4-2). The nearest-neighbor 

approach that used an ordination based on taxon densities (DCA nearest-neighbor) had somewhat 

higher prediction accuracy than the nearest-neighbor approach based on an ordination of 

environmental variables (FA nearest-neighbor). This improvement in accuracy was achieved 

primarily through better minimum predictions, with minimums of 0.41 and 0.27, respectively.

While a full description of the model details and the environmental variables involved for 

each approach would not fit into the constraints of this paper, some general observations can be 

made. The most common environmental parameters in all approaches were stream substrate 

descriptors (e.g. percent bedrock, percent fine, etc). Habitat type descriptors (e.g. percent rapids) 

and elevation were also frequent predictor variables. Although the PCA ordination approach 

included all the environmental variables robust to human influence, the factor loadings for the 

previous variable types tended to be higher.

Using aquatic ecoregion membership to predict taxa composition in the reference reaches 

resulted in inaccurate and imprecise predictions. The mean percent similarity between reaches 

and the mean ecoregion community to which they belonged was 0.296 with a standard deviation 

of 0.104. Variation in component metrics were not well explained by aquatic ecoregions (mean 

C.V. = 0.837, s = 0.439). Stream order nested within ecoregion did not explain much more 

variation (mean C.V. = 0.761, s = 0.457). The multimetric approach would normally select only 

the metrics with low variation in reference reaches. However, only two metrics, total taxa
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richness and macroinvertebrate taxa richness, had average coefficients o f variation below 0.3, the 

C.V. in observed to expected similarity attained by predictive modeling.

Discussion

The highest Bray-Curtis percent similarity between an observed minimally-impacted 

stream assemblage and the assemblage predicted using multivariate techniques (O/E similarity) 

was 0.672. A perfect prediction would yield an O/E similarity very close to 1. Thus, all of the 

prediction approaches for taxon densities fell short (Table 4-2). In contrast, the AusRivAS 

analysis predicting taxon occurrence (rather than taxon densities) displayed a very high accuracy 

(O/E ratio = 0.981, Table 4-2). However, the mean prediction accuracy does not completely 

describe prediction performance. The coefficient of variation around the mean prediction 

accuracy for the best performing multivariate prediction of taxon densities (linear regression 

habitat models) was about half of that of the AusRivAS model (O/E of 0.095 versus 0.179, Table 

4-2).

This last observation is important because in any assessment approach, the range of the 

indicator or index in reference conditions needs to be accounted for when assessing whether there 

was a departure from reference conditions (Davis and Simon 1995, Barbour et al. 1995, Hughes 

1995, Linke et al. 1999). Typically, some description of variance in the index value in the 

reference sites, such as standard deviation or inter-quartile range, is chosen beyond which test 

sites are considered to be different from reference conditions (Davis and Simon 1995, Wright et 

al. 2000). For the index investigated in this study, O/E similarity, a decrease would indicate 

pollution. Thus, the number of standard deviation categories between the mean O/E similarity 

and zero range describes the upper limit on how sensitive an index might be at detecting impacts. 

For example, if an index that decreases in response to pollution had a mean of 1 and a standard
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deviation in the reference sites of 0.5 and two standard deviations is the assessment range, then 

only 1 category of impact below reference can be resolved. This analysis is similar to the one 

done by Doberstein et al. (2000) on measuring the impact on assessment sensitivity of variance 

due to sub-sampling. Clearly, a high percent similarity and low variance around that prediction 

are both desirable because those conditions are likely to increase sensitivity at detecting impacts.

The number o f standard deviation categories below the mean predicted O/E similarity can 

be quantified by dividing the mean prediction accuracies for each approach by their standard 

deviations. On this metric, the AusRivAS binary assessment approach might discriminate a 

maximum of 5.6 categories (Table 4-2). However, the classification approaches most similar to 

AusRivAS, but predicting taxon densities rather than occurrence, might discriminate a maximum 

of between 7.5 and 9.0 categories of impairment. The best performing multivariate prediction 

approach, linear regression habitat models, might discriminate 10.6 categories and thus was the 

prediction approach most likely to be the most sensitive at detecting impact.

The nearest-neighbor approaches were not among the best prediction approaches by any 

measure (Table 4-2). Linke et al. (2005) found that Assessment by Nearest Neighbor Analysis 

(ANNA) had roughly equivalent prediction accuracy compared to AusRivAS, which is based on 

classification and discriminant analysis. The same conclusion can also be reached when taxon 

abundances are included. The nearest-neighbor prediction approach most closely similar to 

ANNA, DCA Nearest-Neighbor, had similar, though slightly lower, prediction accuracies than 

the taxon abundance equivalent of AusRivAS, Weighted Averaging MDA of Communities and 

MDA of Communities (Table 4-2). Nearest neighbor approaches have the potential to include 

cases/sites that are very different from the test site because a constant number of cases/sites is 

always used for comparison. A nearest-neighbor approach that contained a cut-off on distance at 

which a nearby site would be included for analysis might improve prediction accuracy, but would 

take a fair amount of calculation and may result in an over-fit model.
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Weighting the predicted taxon densities in the approaches with a classification step did 

not substantially improve predictions of expected assemblages. From what is known about the 

lotic community types in New Hampshire (see Chapter 3), some communities that differ greatly 

from each other in taxa composition do not differ greatly on many of the environmental variables 

that discriminate the communities in a discriminant analysis. For example, a low-elevation 

warm-water riffle community type has a very different taxa composition than a cold-water riffle 

community. However, of the habitat precfictors in the discriminant model, only elevation 

contributed substantially to discriminating the two communities. Thus, a reach that is higher in 

elevation than the average for the warm-water community type may be given a large enough 

probability of belonging to the cold-water community that weighted averaging of the taxon 

densities introduces some prediction error that would not be present when taxon densities are 

simply equal to the average for the most likely community.

Variation in stream assemblages was not adequately explained by ecoregions or 

ecoregions nested within stream order. The utility of these classifications for reducing 

unexplained variation in reference conditions is low. Only two metrics achieved coefficients of 

variation as low as those in observed to expected similarity attained by the multivariate predictive 

models. A study examining the explanatory power of ecoregions compared to biotic 

classifications also found that ecoregions displayed relatively poor power to explain lotic 

organism distributions and abundances (Chapter 3).

Although predictive modeling explained organism distributions and abundances in these 

reference streams better than ecoregions, the percent similarities between the observed and 

predicted communities did not reach 100% in any predictive modeling approach (Table 4-2). 

There are a number of reasons the expected communities derived from the predictive models 

might not closely match observed communities. The prediction errors that result from predictive 

modeling for bioassessment are actually a combination of all of the error inherent in every step of 

the model building process, from initial data collection to statistical model construction.
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Sampling error in the field for both habitat conditions and biota, error due to sub-sampling the 

macroinvertebrates and periphyton in the laboratory, unexplained spatial variation due to 

inadequate predictor variables, unexplained temporal variability in assemblages, and error due to 

inappropriate assumptions in the statistical models all combine to produce the final prediction 

accuracy and error. Given the large number of quantitative habitat variables collected in this 

study, it is unlikely that the predictive models are limited by the availability of predictors of 

spatial variability. As of now, many of the potential statistical approaches to prediction have 

been explored and compared for prediction accuracy (Chessman 1999, Moss et al. 1999, Davies 

2000, Reynoldson et al. 2000, Linke et al. 2005, Van Sickle et al. 2005, Van Sickle et al. 2006). 

The only additional avenues for improvement of statistical techniques foreseeable at this point lie 

in artificial neural networks or Bayesian approaches (Johnson 2000, Walley and Fontama 2000), 

though those approaches are very complex compared to the approaches explored thus far.

Cao et al. (2002) have demonstrated that sampling effort greatly affects the multivariate 

comparison of lotic fish and macroinvertebrate assemblages. They found that classification and 

group separation only stabilize when replicate samples achieve a percent community similarity of 

100. Because Cao et al. analyzed the effects of sampling on Bray-Curtis distances, their results 

have broad implications for all multivariate approaches involving distances, including many of 

the approaches presented in this paper. In seeming contrast, Ostermiller and Hawkins (2004) 

found that predictions in a RTVPACS-style model in the Pacific Northwest of the United States 

were not greatly affected by sampling approach. They found that 50% of the prediction error was 

unexplained by either sub-sampling target (to 450 organisms) or combinations of sampling 

methods and collectors. However, additional samples or more accurate sampling methods are 

limited by the amount of sub-sampling of the collected samples in the laboratory when greater 

than 500 organisms are counted; sub-samples targets may need to be as high as 1000 for 

macroinvertebrates before the sub-samples resemble the whole sample and sub-samples below 

500 did not differ in the amount of error produced (Doberstein et al. 2000). Indeed, Wolda
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(1981) found that percent similarity of sub-samples compared to the whole sample in several 

datasets stayed between 0.6 and 0.7 for sub-samples of 500 organisms, which was used as the 

sub-sampling target in this study; only sub-sampling targets approaching the whole sample can 

achieve percent similarities near 1. Thus, the relatively low predicted percent similarity for all of 

the approaches except AusRivAS (Table 4-2), which was not based on community similarity, 

may be in part due to sub-sampling error. Greater sampling effort in the field and laboratory than 

has been conventionally exerted may be needed for accurate bioassessment.

Lastly, recent studies have found that temporal variation in lotic assemblages results in 

inter-annual Bray-Curtis similarities that are very close (mean similarity ranging between 0.49 to 

0.70) to those achieved by the predictive models presented here (Milner et al. 2006, Chapter 5). 

This suggests that the accuracies of statistical models may be limited by the amount of 

unexplained temporal variation in assemblages. However, every measure of temporal variability 

is based on replicate samples through time; thus it also includes field and laboratory sub-sampling 

error. The relative contributions to model error of all the possible sources of error from field to 

statistical model construction need to be fully decomposed and separated to identify where the 

largest contributions to error are arising and identify strategic changes to reduce the total 

prediction error (Clarke 2000).

Conclusions

Separate linear regressions for each taxon present in this survey of 76 m inim ally  

impacted stream reaches in New Hampshire using environmental variables relatively robust to 

human influence yielded the most accurate prediction of stream reach assemblages compared to 

nine other multivariate prediction approaches. The accuracy was not much greater than the 

traditional AusRivAS approach involving discriminant analysis prediction of community types. 

Nearest neighbor and ordination approaches generated relatively poor predictions. The low
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coefficient of variation in O/E similarity and high number of potential categories of impairment 

for the two best prediction approaches (MDA of Communities and Linear Regression Habitat 

Models) compared to the presence-absence AusRivAS approach indicate that variation or noise in 

lotic assemblages due to field sampling, sub-sampling, and natural variation is not great enough 

to reduce potential impact sensitivity. Thus, presence-absence does not appear to improve 

prediction of reference communities by reducing unexplained variation or noise in taxon 

abundances in these analyses (also see Chapter 5). A similar comparison of multivariate 

techniques for predicting organism abundances in other regions might yield different results,
I

primarily related to how variable organism abundances are in the region and how discreetly they 

classify into community types. While these results suggest that organism abundances can be 

accurately predicted under reference conditions, the ability of predictive models that include 

taxon abundances to improve sensitivity at detecting impacts should be further investigated. 

Lastly, given the imperfect prediction of reference communities for bioassessment despite many 

varied attempts to improve statistical analysis (e.g. Moss et al. 1999, Hawkins et al. 2000, Linke 

et al. 2002), the most fruitful directions for improving the accuracy and sensitivity of 

bioassessments may be greater sampling effort and accuracy in the field and laboratory 

(Doberstein et al. 2000, Cao et al. 2002, Ostermiller and Hawkins 2004) and better understanding 

of temporal variability (Linke et al. 1999, Milner et al. 2006).
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Table 4-1. Environmental descriptors that were determined to be robust enough to human 
influence to use for predictive modeling of expected reference assemblages for minimally 
impacted streams in New Hampshire. Variables in bold were excluded from multivariate 
analysis because they had a bivariate Spearman’s R greater than 0.7 with another included
robust habitat descriptor.__________________________________________________________
Robust Habitat Descriptors ____________________________________________________
Latitude in decimal degrees 
Longitude in decimal degrees 
Stream order
Percent of watershed as wetlands
Percent of watershed as lakes
Total length of permanent streams (m)
Total length of intermittent streams (m)
Maximum elevation in watershed (m)
Distance to nearest upstream impoundment (km)
Distance to furthest point in the upstream stream network (km)
Watershed area (ha)
Reach length (m)
Percent area of metamorphic bedrock 
Percent area of volcanic bedrock 
Percent area of plutonic bedrock 
M
m3/sec
Degrees
Degree deviation from south
Percent of 11 macroinvertebrate and periphyton sample sites classified as “fine” substrate
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Percent of 11 macroinvertebrate and periphyton sample sites classified 
Mean phi value of substrate particles 
Standard deviation of phi values for substrate particles 
Percent of 55 substrate measurements classed as fine 
Percent of 55 substrate measurements classed as sand 
Percent of 55 substrate measurements classed as fine gravel 
Percent of 55 substrate measurements classed as coarse gravel 
Percent of 55 substrate measurements classed as cobble 
Percent of 55 substrate measurements classed as boulder 
Percent of 55 substrate measurements classed as bedrock 
Mean water depth (m)
Maximum water depth (m)
Mean channel width (m)
Mean channel width x mean water depth (m2)
Mean bankfull channel width (m)
Mean bankfull channel height (m)
Mean bankfull channel width x mean bankfull channel height (m2)
Annual flood magnitude indexed by the ratio of the bankfull cross-section to the wetted cross- 
section (unit-less)________________________________________________________________
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4-2. The summary results presented compare the accuracy and precision of eleven 
multivariate approaches to predicting reference community composition in minimally- 
impacted New Hampshire streams. O/E similarity was the Bray-Curtis percent similarity 
between the predicted community for a minimally impacted stream and the observed 
community composition.

Categories o f  s
Mean O/E between mean O/E
similarity Min. Max. S‘ C.V.2 and zero

Weighted Averaging MDA 
of Communities 0.617 0.44 0.78 0.071 0.115 8.69

MDA of Communities 0.605 0.42 0.74 0.067 0.112 9.02
Weighted Averaging CART 
Prediction of Communities 0.612 0.38 0.74 0.077 0.125 7.95
CART Prediction of 
Communities 0.591 0.35 0.74 0.079 0.134 7.48
Linear Regression Habitat 
Models 0.656 0.51 0.79 0.062 0.095 10.58

CART Habitat Models 0.672 0.19 0.92 0.146 0.217 4.60

PCA Prediction 0.440 0.18 0.61 0.089 0.203 4.94

DCA Gaussian prediction 0.518 0.17 0.77 0.147 0.283 3.52

FA Nearest-Neighbor 0.536 0.27 0.74 0.081 0.151 6.62

DCA Nearest-Neighbor 0.561 0.41 0.68 0.068 0.120 8.25

AusRivAS Binary O/E 0.981 0.49 1.36 0.176 0.179 5.57

1 s = standard deviation
2 C.V. = coefficient of variation
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CHAPTER V

A COMPARISON OF APPROACHES TO PREDICT AND ASSESS STREAM HABITAT

Summary

Stream habitat quality assessment is complementary to biological assessment by 

providing a mechanism for ruling out habitat degradation as a potential stressor and as reference 

targets for the physical aspects of stream restoration projects. This chapter analyzed several 

multivariate statistical approaches for predicting reference stream habitat conditions in habitat 

assessments of potentially degraded streams based on discriminant analysis, linear regressions, 

ordination, and nearest neighbor analyses. Quantitative physical and chemical habitat and 

riparian conditions in minimally-impacted streams in New Hampshire were estimated using 

USEPA Environmental Monitoring and Assessment Program protocols. A new assessment index 

comparing and summarizing the degree of correspondence between predicted and observed 

habitat based on Euclidean distance between the standardized habitat factors is described; the new 

index avoids the erroneous prediction of multiple mutually exclusive habitat conditions that 

confused previous habitat assessment approaches. Separate linear regression models for each 

habitat descriptor yielded the most accurate and precise prediction of reference conditions with a 

coefficient of variation (C.V.) between predictions and observations for all reference sites of

0.269. However, for a unified implementation in regions where a classification-based approach 

has already been taken for biological assessment, a discriminant analysis approach that predicted 

membership in biotic communities and compared the mean habitat features in the biotic
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communities with the observed habitat features was a close second in prediction accuracy and 

precision. (C.V. = 0.293) As the best model still returned an error 27% of the mean index value 

for the reference sites, there still remains substantial room for improvement in habitat assessment 

techniques. Additional basin characteristics than were available for this analysis, such as average 

rainfall or winter snow-pack, surficial geological characteristics, or past land-use history, may 

improve the precision o f the predicted habitat features in the reference streams. Land-use history 

in New Hampshire and regional environmental impacts have greatly impacted stream habitat 

conditions even in streams considered minimally-impacted today; thus as regional environmental 

impacts change and riparian forests mature, reference habitat conditions should be re-evaluated.

Introduction

Considerable effort has been expended recently on measuring the quality of lotic systems 

using resident biota. The premise for biological monitoring is that biota respond to and 

temporally integrate a wide range of physical and chemical parameters (Rosenberg and Resh 

1993). Thus, they are the best indicator of the condition of an aquatic system (Reice and 

Wohlenberg 1993, Karr and Chu 1999). While measurement of river form and structure has a 

long history, the relative neglect recently of directly assessing the physical habitat of streams and 

rivers (hereafter ‘streams’) in ecosystem health assessments may stem from the view by some that 

physical (and chemical) measures may indicate causes of degradation rather than ecosystem 

condition or ‘health’ (Karr 1991, Chapman 1992). However, exactly because physical parameters 

indicate potential causes of degradation, this inattention has hampered assessment of a critical 

diagnostic of total stream ‘health’ (Maddock 1999, Norris and Thoms 1999).

Physical conditions, as separate from water chemistry, form the most central aspects of 

the habitat (the ‘habitat templet’ of Southwood [1977]) in which lotic organisms evolve, adapt,

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and interact to form the assemblages (Hildrew and Giller 1994) that biological monitoring uses 

for assessment of stream condition. That organisms adapt and respond to physical habitat is well 

known (Hynes 1970, Allan 1995, Cushing et al. 1995, Petts and Calow 1996) and given the wide 

variety of adaptations and strategies, a through review is beyond the scope of this question. 

However, I believe an understanding of spatial and temporal scale in stream ecosystems is 

necessary to understanding that habitat templet, particularly the hierarchical organization of 

stream systems. In this hierarchical system, higher scales impose constraints on the lower scales 

nested within those higher scales (Frissell et al. 1986, Minshall 1988, Hildrew and Giller 1994). 

The processes operating at each scale differ in the spatiotemporal scale at which they work. 

Higher scale processes act over longer time frames and larger spatial areas. Minshall (1988) 

noted that streams operate on spatial and temporal scales that spread over 16 orders of magnitude. 

At the highest scales, stream ecology merges with terrestrial ecology such that, ultimately, “the 

valley rules the stream” (Hynes 1975). This view of scale and connection with the surrounding 

landscape is the theoretical framework within which any system to assess physical stream 

condition must operate. Because the end point of stream health is biological (Reice and 

Wohlenberg 1993, Karr and Chu 1999), the measurement of physical habitat needs to include 

factors that influence biotic communities at scales relevant to the organism of interest (Weins 

1989; Cooper et al. 1998).

There are several avenues upon which stream habitat assessment has been pursued. 

Within a geomorphological perspective, measurement of habitat tends to relate fluvial processes 

to channel structure and form at scales that reflect the hierarchical organization of stream systems 

(Frissell et al. 1986; Harper and Everard 1998, Maddock, 1999). In this view, physical habitat is 

the result of predictable geomorphic processes (Harper and Everard 1998, Maddock, 1999). 

Because the stream habitat that forms is a result of these processes, the link between the 

biological perspective of habitat and the geomorphological perspective is that both consider a
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'healthy' habitat necessary for a 'healthy' stream ecosystem (Maddock 1999, Norris and Thoms

1999). Examples of this hydrogeomorphic approach include the Geomorphic River Styles 

(Brierly et al. 1996), the Index of Stream Condition (Ladson et al. 1999), and the detailed, 

rigorous, hydrogeomorphic approach of Fitzpatrick and Knox (2000). They require very 

intensive field and historical surveys to complete their assessments and are, as such, not readily 

applicable to an extensive survey. In addition, the expected conditions at a site in the 

Geomorphic River Styles and Index of Stream Condition assessments are somewhat subjective.

The physical habitat component of the United States Environmental Protection Agency’s 

(USEPA) Rapid Bioassessment Protocols (RBP) attempts to evaluate the structure of the 

surrounding physical habitat that influences the quality of the stream and the condition of the 

biological community (Barbour et al. 1999). The method is visually based and involves no 

quantitative sampling. Instead, the values for 10 components of stream habitat are assessed by 

consensus between 2 or more biologists after a walk of the 100 m stream segment. Each 

component metric is rated on a scale of 1 -20, with 20 being optimal, based on narrative 

descriptions. Pictures are provided to aid scoring and each operator is trained to ensure some 

modicum of consistency. Because high and low gradient stream differ greatly in expected habitat 

conditions, there are separate narrative descriptions for each type. Scores are summed to make 

the composite index (Barbour et ail. 1999).

There are a number of drawbacks to the rapid bioassessment approach. The reference 

conditions used are still based on highly subjective ideas of what an “ideal” stream looks like. 

Hannaford and Resh (1995) found very high inter-operability variance in metric scores even after 

training. Although low and high gradient streams are separated, there are still only two types of 

ideal stream conditions. However, the largest drawback of the habitat measurement of the rapid 

bioassessment protocol is that the measurements are not quantitative. Kaufmann and Hughes 

(2003) found that the RBP’s qualitative measures of habitat had a signal to noise ratio in
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reference sites that was only a tenth of the ratio for quantitative measurements of stream habitat. 

As a result, the scores of reference, minimally impacted streams in one study varied tremendously 

(Rabeni 2000), which reduces sensitivity at detecting alterations in lotic habitat.

There are several methods for describing stream habitat that use objective and 

quantitative measures. The USEPA’s Environmental Monitoring and Assessment Program 

(EMAP) has developed detailed methods for collecting mostly quantitative measurements of 

stream habitat in a single site visit (Lazorchak et al. 1998). Along a similar avenue, the nationally 

standardized system to measure, classify and report on the physical structure of rivers in the 

United Kingdom, the River Habitat Survey (RHS), also measures many quantitative and 

presence/absence descriptors of stream habitat (Raven et al., 1998). The end product of the RHS 

will be a prediction of the physical features of a stream that would occur under unmodified 

conditions for use in assessing potentially impacted streams for habitat degradation (Raven et al., 

1998). Kaufmann and Hughes (2003) found that the EMAP measurements explained double the 

amount of variance in biological metrics as the RBP methods. Clearly, quantitative 

measurements of habitat are required to represent habitat in a biologically meaningful manner and 

to produce an assessment process that is sensitive to habitat alterations that are not profound.

However, a method of assessing test streams in either program, EMAP or RHS, is still 

being developed. An approach similar to RIVPACS (Wright et al. 2000) for biological 

assessment may be taken in which the reference streams will be grouped into similar types and 

their occurrence predicted using predictor variables robust to human influence. New streams will 

be compared to the appropriate reference groups using those same predictor variables (Raven et 

al. 1998).

A RIVPACS-sfyle approach is taken in the most developed predictive model for 

assessing stream habitat in large-scale and extensive regional surveys, the Habitat Predictions 

Modeling (HPM; Davies et al. 2000). In HPM, local scale habitat features and catchment scale 

variables are measured, usually on a continuous ratio scale. The habitat descriptors were
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categorized into discreet categories and classified using UPGMA into groups of similar sites.

The group membership of sites was then predicted using the large scale variables, thought to be 

robust to human influence, as predictors in a multiple discriminant analysis. However, the 

authors of HPM recognize that categorizing the ratio and interval scale data produces results that 

are sometimes problematic. When expected discreet habitat conditions are predicted, there was 

often prediction of multiple levels of a particular habitat condition. For example, categories of 

less than 20% sand and 40-50% sand could both be predicted to occur for a site. Davies et al. 

(2000) show that O/E ratios can be adversely affected by such results and suggest that statistical 

analyses be explored to predict continuous variables and correct these anomalies in prediction.

This chapter reports an investigation of five multivariate prediction methods for 

predicting habitat variables in minimally-impacted stream reaches in New Hampshire. All five 

methods avoid categorizing interval-scale habitat into discreet categories. The goal was to 

evaluate alternative methods for their accuracy at predicting habitat using environmental 

descriptors that are very difficult for humans to alter without leaving obvious evidence of 

alteration.

Methods

The dataset of physical attributes from minimally-impacted first to fourth order streams 

in New Hampshire (see Chapter 1) was used to compare multivariate predictive approaches for 

their ability to accurately and precisely predict reference habitat conditions. In all models, the 

environmental variables used to predict habitat were highly robust to human influence. They 

represented a mix of catchment-scale and local-scale variables (Table 5-1). To predict habitat for 

the purposes of assessing the degree of potential habitat alteration by humans, it is important that
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the predictors are difficult to alter (Davies et al. 2000). Because there were four Level IV 

Aquatic Ecoregions in New Hampshire (Omemik 1987), ecoregion membership was transformed 

into three dummy-coded variables (Ecoregions 580, 581, 591) such that a 1 was assigned if a 

reach belonged to an ecoregion and a 0 if it did not. Measures of stream width and flood 

magnitude were not used to predictor habitat variables, despite their potential to be strong 

predictors, because they are often altered by flow regulation. The local-scale physical and 

chemical habitat features that were measured for prediction and assessment of habitat quality 

(Table 5-2) were thought to represent habitat features that are relevant to stream organisms 

(Weins 1989, Cooper et al. 1998).

In current bioassessment research, there is discussion about the role of classification in 

prediction of unimpaired or reference conditions. Streams are generally seen as transitioning 

continuously in physical and biological conditions from headwaters to mouth (Vannote et al. 

1980, Gauch 1982, Statzner and Higler 1986). Thus, classification into discreet types may not be 

a powerful method for constraining variation in reference conditions. Multivariate approaches 

that require classification of the stream reaches into homogenous groups and those that do not 

require a classification step were investigated. Five approaches were examined to predict local- 

scale physical and chemical habitat features:

1. MPA of Habitat Types: The reaches were classified on the basis of the habitat 

descriptors using Ward’s agglomerative clustering and Euclidean distance. To 

remove artificial effects on the classification of descriptors measured in units 

with different magnitudes, the habitat descriptors were transformed to a 

maximum magnitude of 1 by dividing each value by the maximum value for that 

descriptor. Membership in between 2 and 14 clusters were calculated. 

Classification strengths of the possible clusters were calculated using the sum of 

the univariate F-ratios for each habitat descriptor (Warton and Hudson 2004). A
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stepwise multiple discriminant analysis was used to predict stream reach 

membership in the habitat types. Environmental predictors highly robust to 

human influence were the predictor variables. An F-to-enter of 0.1 and F-to- 

remove of 0.15 were used for stepwise selection. The predicted habitat 

descriptors were equal to the mean for each descriptor in the group to which 

membership was predicted. This approach is very similar to HPM (Davies et al.

2000); the key difference is that habitat descriptors are predicted on a continuous 

basis, not in discreet categories.

2. MPA of Biotic Communities: This approach was similar to the first except that a 

stepwise multiple discriminant analysis was used to predict stream reach 

membership in the biotic community types delineated for New Hampshire 

streams (Chapter 3). Biotic groupings were used as the grouping variable, 

instead of classifying the reaches on the basis of habitat as in HPM and the first 

approach above, because biological assessments and resource management 

decisions are often made using biotic community classifications. Using the biotic 

classifications would thus be simpler than basing the habitat assessment on a 

separate, parallel classification for stream reaches for habitat. Seven community 

types were predicted using the robust environmental descriptors as the predictor 

variables. An F-to-enter of 0.1 and F-to-remove of 0.15 were used for stepwise 

selection. The predicted habitat descriptors were equal to the mean for each 

descriptor in the group to which membership was predicted.

3. Separate Linear Regressions: A least-square stepwise linear regression model 

was constructed to separately predict each habitat variable. The robust 

environmental predictors were the independent variables and the habitat
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descriptors were the separate dependent variables. The chemical concentrations 

were log transformed to improve their distributional characteristics, though the 

other variables were not substantially improved by log or square root 

transformations and were left in their original units._An F-to-enter of 0.1 and F- 

to-remove of 0.15 were used for stepwise selection.

4. Factor Analysis: The stream reaches were ordinated using principal axis 

factoring on the local-scale habitat descriptors to be predicted. The site scores on 

the first three axes were then predicted using separate stepwise least-squares 

linear regression models for each axis. The robust environmental predictors were 

the independent variables and the site scores were the dependent variables. An 

F-to-enter of 0.1 and F-to-remove of 0.15 were used for stepwise selection. The 

regression models were then used to predict the site scores for each reach and to 

calculate the predicted habitat descriptors based on the predicted site scores and 

their axis correlations.

5. Nearest-Neighbor: This approach is similar to the Analysis of Nearest Neighbor 

Assessment (ANNA) bioassessment approach (Linke et al. 2005) except that 

habitat is being predicted instead of organism occurrences. The reaches were 

ordinated using principle axis factoring, however, in contrast to the above 

ordination approach, the reaches were ordinated on the basis of the robust 

environmental predictors. The Euclidean distance between the reaches was 

calculated as the distance between the site scores. The predicted habitat was 

equal to the means for each habitat descriptor on the k  nearest reaches. Values of 

k from 2 to 10 were investigated.
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In all approaches, the predicted habitat for a reach was compared with the observed 

habitat using Euclidean distance. However, there were large differences in measurement units 

between habitat descriptors that could artificially influence the distance metric (Jongman et al. 

1995). The predicted and observed habitat descriptors were thus transformed to range between 0 

and 1 by dividing each value by the maximum observed value for each descriptor. As there is no 

m eaning  to the relative relationships between habitat descriptors, the loss of the absolute scale for 

each descriptor by this transformation was not as relevant as when organism abundances in an 

assemblage are transformed by the maximum abundance in each taxon. The use of a distance 

metric eliminates the need for categorizing the habitat descriptors into discreet categories to be 

predicted on a binary basis as in HPM (Davies et al. 2000).

The mean and standard deviation of the distances between the predicted and observed 

habitat for each reach were calculated for each of the four prediction approaches. Cao et al. 

(2002) used mean and standard deviation in similarity as basis for assessing sample 

representativeness for biological assemblages. As assessing the ability of multivariate models to 

predict multiple habitat descriptors is conceptually similar, this study also used the mean and 

standard deviation in the Euclidean distance between the predicted and observed habitat as the 

basis for comparing the accuracy and precision of prediction approaches. All statistical analyses 

were performed in Matlab 7.1.

Results

The multivariate approaches investigated for predicting reference conditions varied in 

their accuracy and precision (Table 5-3). Mean Euclidean distances between observed and 

predicted habitat descriptors ranged from 1.370 to 1.798. The coefficient of variation was used to 

assess precision instead of the standard deviation to separate the effects of higher mean distance
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from error around the prediction. The precision of the predictions, as measured using the 

coefficient of variation in the Euclidean distances, ranged from 0.269 to 0.341 (Table 5-3).

Separate linear regressions for each habitat descriptor resulted in the lowest distances 

between the observed habitat and the predicted habitat for each minimally-impacted stream reach 

(Table 5-3). The coefficient of variation around the mean predicted distance and maximum 

predicted distance were also lowest. However, the approaches that achieved the next highest 

prediction accuracies and precisions were the classification-based approaches MDA of habitat 

types and MDA of biotic communities (Table 5-3). Classifying the sites on the basis of habitat or 

biota did not seem to affect prediction ability much as both approaches displayed very similar 

prediction accuracies.

Nearest-neighbor clustering had an optimal number of neighbors of 11. However, the 

classification-based approaches and separate linear regressions yielded better predictions. Factor 

analysis resulted in the worst predictions (Table 5-3).

While a full description of the model details and the environmental predictor variables 

and their statistical parameters for each approach would not fit into the constraints of this chapter, 

some general observations can be made. Stream order, elevation, watershed area, and aquatic 

ecoregion membership were consistently powerful predictors of habitat in the stepwise models. 

Overall, stream order was the most powerful predictor variable across all of the models as 

measured by either p-values or correlation coefficients. Percent of watershed as lakes appeared 

solely in the discriminant function to predict biotic communities and was otherwise absent from 

the models or a weak predictor.
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Discussion

The Euclidean distance between the predicted habitat and the observed habitat at a test 

stream is the index upon which an assessment of habitat alteration would be based. As such, a 

sensitive method for predicting and assessing habitat quality or degree of alteration will display a 

low distance between predicted and observed habitat conditions in the reference reaches. 

Additionally, the coefficient of variation of the predicted distances in the reference reaches would 

ideally be low because it is the range of an index in reference conditions that partly determines 

how likely an assessment approach will detect alteration from expected reference conditions 

(Davis and Simon 1995, Barbour et al. 1995, Hughes 1995, Linke et al. 1999). Typically, some 

description of variance in the index value in the reference sites, such as standard deviation or 

inter-quartile range, is chosen beyond which test sites are considered to be different from 

reference conditions (Davis and Simon 1995, Wright et al. 2000).

Using these mechanics of assessment as a guide, separate linear regression models for 

each habitat descriptor yielded the most accurate and precise prediction of reference conditions 

(Table 5-3). However, in regions where a classification-based approach has already been taken 

for biological assessment, such as Australia’s AusRivAS and the United Kingdom’s RIVPACS, 

the discriminant analysis approach that predicted biotic communities and compared the mean 

habitat features in the biotic communities with the observed habitat features was a close second in 

prediction accuracy and precision (Table 5-3). The relative ranking of the prediction approaches 

on their accuracy is very similar to that found for predicting biological reference conditions; the 

separate linear regressions approach yielded the best prediction of reference assemblages for 

bioassessment (Chapter 4). Just as the discriminant analysis models resulted in the next best 

predictions habitat, they also yielded the next best predictions of organism densities (Chapter 4). 

The ordination approaches, i.e. factor analysis, produced the worst predictions. However, the 

habitat predictions had much higher coefficients of variation in the reference streams than even
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the worst multivariate prediction approaches for biological assemblages. Additional large-scale 

predictor variables, such as additional basin characteristics beyond size, may improve the 

precision of the predicted habitat features in the reference streams.

Unlike for organisms, the presence/absence of a habitat feature does not always make 

sense. For example, sand nearly always occurs in a stream, the real question is in what quantity 

or spatial arrangement. Thus, unlike biological assessment where the relative power of detecting 

impacts using presence/absence of organisms versus density information is a viable topic of 

discussion, habitat descriptors for streams should be largely be quantitatively predicted. The 

approach to predicting discreet categories of quantitative habitat features of Davies et al. (2000) 

sometimes resulted in contradictory and confusing predictions of habitat; the index that resulted 

from the predictions were adversely affected by that approach.

Using Euclidean distance to compare the predicted and observed habitat features 

eliminates the need for discreetly categorizing the habitat features. There is no possibility of 

contradictory predictions as in the HPM approach (Davies et al. 2000). As the distance increases, 

there is more deviation from the expected minimally-impacted habitat conditions and thus this 

index of habitat quality increases with the degree of habitat alteration. A test stream with a 

Euclidean distance between its predicted and observed habitat beyond the range of distances in 

the reference streams would be beyond the natural variation in habitat.

However, much information is lost in reducing the assessment index to a single value. 

With 62 habitat descriptors in this study, there are many possible permutations of which features 

were different from reference condition. A single index does not elucidate what were the specific 

deviations. One mechanism for assessing which features deviated from the expected range would 

be to calculate the magnitude of deviations between predicted values and observed values for 

every habitat descriptor for every reference stream. The standard deviation in the deviations 

between predicted and observed values for each descriptor would provide a metric to compare the 

magnitude of the deviation of each habitat feature in a test stream. If the magnitude of the
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observed deviation in a test stream was larger than the range o f deviations found in the reference 

streams, then that specific habitat feature would be considered altered in the test stream.

Both the Euclidean distance index and the deviations in the habitat features would 

provide information for diagnosing the cause or stressor in streams that were assessed to be 

biologically impaired. In the absence of water quality degradation, physical habitat will greatly 

influence biotic communities. As such, a parallel assessment of habitat can discriminate whether 

biotic impairment at a site is related to poor habitat quality or to water quality degradation by a 

process of elimination akin to medical diagnosis. Sites that are biologically impaired but do not 

show habitat impairment can be concluded to be impacted by chemical water quality degradation 

(Davies et al., 2000). The modeled habitat features also have the potential to form restoration 

targets for a stream that are not based on subjective judgment but on empirical relationships in 

minimally impacted streams (Davies et al. 2000).

Conclusions

Assessment of habitat provides powerful tools for ecosystem management, restoration, 

assessment, and monitoring. Considering the large amount of laboratory time that goes into each 

biological assessment of a stream using macroinvertebrates, making additional measurements of 

habitat features that takes on average four hours is not a substantial increase in the effort already 

being expended in stream ecosystem assessment. The benefits are potential stressor identification 

and restoration targets for impaired streams. However, probably even more than for stream biota, 

stream habitat has been greatly influenced by historical land management (Foster et al. 2003). 

Following land clearance, particularly in forested regions such as New England, streams change 

their morphology through bed and bank erosion and large woody debris is often decreased 

compared to forested catchments; often streams have coarser substrate and fewer pools. These
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changes persist and are detectable more than 100 years after prior land clearance (Foster et al. 

2003). As such, the reference habitat conditions and the restoration targets (e.g. number of large 

woody debris pieces or stream substrate characteristics) inferred using currently minimally 

impacted streams may be substantially different than before forest clearance. Additionally, 

changes in hydrology due to climate change may alter the habitat conditions to which streams in a 

region can attain even in the absence of direct human alteration. As lotic ecosystems and their 

watersheds mature following the abandonment of large-scale land clearance, stream habitat 

reference conditions will need to be re-assessed on a periodic basis and should in no way be taken 

as static or equivalent to pre-human conditions.
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Table 5-1. Environmental descriptors to predict local-scale physical and chemical habitat 
of stream reaches in New Hampshire that were considered to be very robust to human 
influence. Variables in bold were excluded from multivariate analysis due to high 
univariate correlations (R > 0.7) with other predictors.

Predictor Environmental Descriptors
Latitude
Longitude
Strahler stream order
Percent of watershed as wetlands
Percent of watershed as lakes
Total length of permanent streams (m)
Total length of intermittent streams (m) 
Maximum elevation in watershed (m)
Distance to nearest upstream impoundment (km) 
Distance from source (km)
Watershed area (ha)
Reach length (m)
Percent metamorphic bedrock 
Percent volcanic bedrock 
Percent plutonic bedrock 
Elevation (m)
Stream slope (%)
Degree deviation from south 
Aquatic ecoregion
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Table 5-2. Local-scale physical and chemical habitat conditions for stream reaches in New 
Hampshire that were predicted using robust environmental variables.__________________
Description and Units 
Discharge (m /sec)
Percent of 11 macroinvertebrate and periphyton sample sites classified as “pool” habitat 
Percent of 11 macroinvertebrate and periphyton sample sites classified as “glide” habitat 
Percent of 11 macroinvertebrate and periphyton sample sites classified as “riffle” habitat 
Percent of 11 macroinvertebrate and periphyton sample sites classified as “rapids” habitat 
Water pH
Water temperature (°C)
Specific conductivity (uS)
Mean percent embeddedness of substrate 
Mean phi value of substrate particles 
Standard deviation of phi values for substrate particles 
Percent of 55 substrate measurements classed as fine 
Percent of 55 substrate measurements classed as sand 
Percent of 55 substrate measurements classed as fine gravel 
Percent of 55 substrate measurements classed as coarse gravel 
Percent of 55 substrate measurements classed as cobble 
Percent of 55 substrate measurements classed as boulder 
Percent of 55 substrate measurements classed as bedrock 
Mean water depth (m)
Maximum water depth (m)
Mean channel width (m)
Mean channel width x mean water depth (m2)
Mean bankfull channel width (m)
Mean bankfull channel height (m)
Mean bankfull channel width x mean bankfull channel height (m2)
Annual flood magnitude indexed by the bankfull cross-section divided by wetted cross-section (unit-less) 
Mean undercut length (m)
Mean Bank angle (degrees)
Mean cover index of filamentous algae in the channel (1-4)
Mean cover index of macrophytes in the channel (1-4)
Mean cover index of large woody debris in the channel (1-4)
Mean cover index of brush in the channel (1-4)
Mean cover index of live trees along the bank (1-4)
Mean cover index of overhanging vegetation along the bank (1-4)
Mean cover index of undercut along the bank (1-4)
Mean cover index of boulders in the channel (1-4)
Mean % canopy cover
Mean cover index of large trees (>0.3 m DBH) in the canopy riparian vegetation (1-4)
Mean cover index of small trees (<0.3 m DBH) in the canopy riparian vegetation (1-4)
Mean cover index of shrubs in the under-story riparian vegetation (1-4)
Mean cover index of tall herbs (>0.5 m) in the under-story riparian vegetation (1-4)
Mean cover index of short herbs (<0.5 m) in the ground cover riparian vegetation (1-4)
Mean cover index of bare ground in the under-story riparian vegetation (1-4)
Percent of riparian canopy vegetation classified as “deciduous”
Percent of riparian canopy vegetation classified as “coniferous”
Percent of riparian canopy vegetation classified as “evergreen”
Percent of riparian canopy vegetation classified as “mixed” (>20% other)
Percent of riparian canopy vegetation classified as “none present”

122

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5-2. Continued.

Description and Units
Density (per m of reach length) of large woody debris 0.1 -0.3 m in diameter and 1.5 -5 m in length in the 
bankfull channel
Density (per m of reach length) of large woody debris >0.3 m in diameter and 1.5 -5 m in length in the 
bankfull channel
Density (per m of reach length) of large woody debris 0.1-0.3 m in diameter and 5-15 m in length in the 
bankfull channel
Density (per m of reach length) of large woody debris >0.3 m in diameter and 5-15 m in length in the 
bankfull channel
Density (per m of reach length) of large woody debris 0.1-0.3 m in diameter and 1.5 -5 m in length above 
the bankfull channel
Density (per m of reach length) of large woody debris >0.3 m in diameter and 1.5 -5 m in length above the 
bankfull channel
Density (per m of reach length) of large woody debris 0.1 -0.3 m in diameter and 5-15 m in length above the 
bankfull channel
Density (per m of reach length) of large woody debris >0.3 m in diameter and 5-15 m in length above the 
bankfull channel
Density of all large woody debris within the bankfull channel (per m of reach length)
Density of all large woody debris above the bankfull channel (per m of reach length)
Chloride (mg Cl/L)
Nitrate (mg N/L)
Sulfate (mg S/L)
Sodium (mg Na/L)
Potassium (mg K/L)
Magnesium (mg Mg/L)
Calcium (mg Ca/L)
Ammonia (ug N/L)
Phosphate (ug P/L)
Silica (mg Si02/L)
Dissolved organic Carbon (mg C/L)
Total dissolved Nitrogen (mg N/L)
Dissolved organic Nitrogen (mg N/L)
Total alkalinity (mg CaC03/L)
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Table 5-3. Summary statistics for the Euclidean distance between the observed and 
predicted habitat are presented for each multivariate prediction approach.

Mean
Distance Min. Max. s C.V.

Nearest-neighbor 1.700 0.873 3.555 0.552 0.325

Separate linear regressions 1.370 0.737 2.406 0.369 0.269

MDA of biotic communities 1.567 0.799 2.995 0.459 0.293

MDA of habitat types 1.617 0.861 3.306 0.552 0.341

Factor analysis 1.798 1.062 3.582 0.596 0.331
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CHAPTER VI

ANNUAL VARIATION AND SPATE RESPONSE OF STREAM ASSEMBLAGES IN NEW

HAMPSHIRE

Summary

The biological condition of ecosystems is increasingly being used to indicate the level of 

anthropogenic alteration to the ecosystems. However, the sensitivity of assessments to 

anthropogenic alteration is in part constrained by the degree of natural temporal variation in the 

reference ecosystems. This study quantified temporal variability in taxonomic composition and 

abundances for vertebrate (fish and stream-dwelling salamanders), macroinvertebrate, and 

periphyton assemblages in minimally-impacted streams in New Hampshire. Two types of 

temporal variability were investigated: inter-annual variability in base-flow summer assemblages 

over a four-year period and variability due to a natural flow disturbance resulting from unusually 

high rainfall during the summer base-flow period. The macroinvertebrate assemblages were the 

most stable taxonomic group on an inter-annual time scale, inter-annual Bray-Curtis percent 

similarities ranged between 0.133 and 0.400 in the vertebrates, 0.666 to 0.703 in the 

macroinvertebrates, and 0.122 and 0.616 in the periphyton. Sorenson’s similarities based on 

taxon occurrences were very similar indicating that most of the inter-annual variation was due to 

changes in taxon presence rather than abundance. In contrast, the vertebrates displayed the 

highest Bray-Curtis similarities (0.786 to 0.0.974) before and after a spate, periphyton the lowest 

(0 to 0.351), and macroinvertebrates intermediate resistance (0.493 to 0.725). A model to explain
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these taxonomic differences is described wherein lagged response of vertebrates to disturbance 

results in high inter-annual variability while relatively quick recovery by the periphyton to 

disturbance results in relatively higher inter-annual similarities. However, temporal variability as 

measured in this and other studies is a actually mix of sampling error in the field, error due to 

sub-sampling in the laboratory, and true temporal variability in assemblages. The relative 

contributions of those factors to variation need to be decomposed to quantify true temporal 

variability. Incorporating predictors of temporal variability, such as past rainfall, snow-pack, and 

other weather parameters, might increase our ability to explain temporal variation in reference 

streams and increase the sensitivity of biological assessments at detecting differences in 

biological condition due solely to anthropogenic impacts.

Introduction

The study of biological community persistence, the stability of organism occurrences and 

abundances over time, has a long history in ecology (Connell and Sousa 1983). The persistence 

and stability of ecological communities has broad level implications for our understanding of 

ecosystems, conservation biology, biological community classification, and more recently, 

ecosystem management and biological assessment (Weatherly and Ormerod 1990). The 

biological assemblages of ecosystems are increasingly being used to indicate the level of 

anthropogenic alteration to the ecosystem, and in the case of streams, also to the watershed 

surrounding it (Wright et al. 1984, Rosenberg and Resh 1993, Davis and Simon 1995, Karr and 

Chu 1999, Marchant et al. 1997, Yoder and Rankin 1998, Wright et al. 2000). The reference 

condition approach to biological assessment (Caims et al. 1993, Hughes 1995) has seen 

widespread adoption. In the reference condition framework, biological criteria have been defined 

as expressions that describe the least impacted (reference) biological integrity of communities
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within a region (Caims et al. 1993, Hughes 1995, Reynoldson et al. 1997) such that the 

acceptable range in biological integrity is the variation unimpaired reference sites (Linke et al. 

1999). Thus, the level of persistence communities display is a central aspect of the reference 

condition approach (Weatherly and Ormerod 1990, Humphrey et al. 2000).

Three conditions are required for accuracy and sensitive bioassessment using the 

reference condition approach: (1) low unexplained spatial variability o f community composition 

(taxa occurrences) and community structure (taxa abundances) in the reference sites (Caims et al. 

1993, Hughes 1995), (2) low unexplained temporal variability in community composition and 

structure (Weatherly and Ormerod 1990), and (3) large response of the taxa to human-caused 

stressors relative to the unexplained variability (Rosenberg and Resh 1993, Karr and Chu 1999). 

Many studies have examined ways to best explain spatial variation in the reference site 

assemblages through either predictive modeling or multimetric approaches (see Reynoldson et al. 

1997 for a review as well as Chessman 1999, Linke et al. 2005, and Chapter 4). Gauging the 

sensitivity of taxa to human induced stressors is a difficult task that requires experimentation and 

carefully controlled observation if circular logic is to be avoided (Reynoldson et al. 1997).

There have been many studies of temporal variability in streams in response to flow 

disturbance and variability such as droughts and floods (Townsend et al. 1987, Meffe and 

Minkley 1987, Richards and Minshall 1992, Bradt et al. 1999). To the extent that these 

disturbances are similar to those produced by human disturbance and alteration, they provide 

some measure of the response of taxa to anthropogenic stress. For example, Richards and 

Minshall (1992) found that communities in anthropogenically disturbed streams were more 

similar to one another than to reference streams and vice versa over a five year period and 

concluded that the response to catchment-wide disturbance was larger than temporal variability, a 

requisite for successful bioassessment. Recent emphasis is being placed on developing a greater 

understanding of temporal variability in the structure and composition of minimally disturbed 

communities (Humprhey et al. 2000, Robinson et al. 2000, Metzeling et al. 2002, Milner et al.
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2006) as low temporal variability in the biological reference conditions is also a requisite for 

sensitive bioassessment (Weatherly and Ormerod 1990) that has seen less attention (Metzeling et 

al. 2002).

However, the few studies of temporal variability in minimally-impacted stream 

ecosystems have focused on only one taxonomic group at a time. Limited resources in 

government agencies responsible for stream monitoring have often forced a decision as to which 

of the several major taxonomic groups in streams (e.g. fish, periphyton, and macroinvertebrates) 

to focus on for bioassessment. The taxonomic groups have been found to differ in their response 

to human impacts (Joy and Death 2002). Including all taxonomic groups present in an ecosystem 

increases the ability of a biological assessment to detect impacts (Karr 1991, Metcalfe-Smith 

1996). However, they may differ in their temporal stability. An understanding of the relative 

amount of temporal variability of the major taxonomic groups in reference streams within the 

same region would enhance reasonable decision making as to which groups to include when 

constructing predictive models for bioassessment.

The goal of this study was to quantify temporal variability in taxonomic composition and 

abundances for vertebrate (fish and stream-dwelling salamanders), macroinvertebrate, and 

periphyton assemblages in minimally-impacted streams in New Hampshire. Two types of 

temporal variability were investigated: inter-annual variability in base-flow, summer assemblages 

over a four-year period and variability due to a natural flow disturbance resulting from unusually 

high rainfall during the summer base-flow period. The temporal variability of the taxonomic 

groups were compared to provide a sound hasis for selecting which of the taxonomic groups to 

use in a biological assessment and monitoring system in New Hampshire and to inform the 

general question of whether aquatic assemblages in New Hampshire are stable enough to use for 

bioassessment of human impacts.
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Methods

All streams were sampled for biota and habitat descriptors using the methods described in 

Chapter 1.

Annual Variation

Three minimally-impacted stream reaches in New Hampshire were sampled annually for 

vertebrate and macroinvertebrate densities and periphyton biovolume in the summers between 

2002 and 2005 (see Chapter 1 for detailed field methods). The three sites were part of the initial 

batch of reaches sampled in 2002. They were selected to represent all three Level IV Aquatic 

Ecoregions (Omemik 1987) sampled in 2002 and a broad range in habitat types available in the 

first year of sampling (Table 6-1). Nelson Brook reach is a cold-water, high gradient brook with 

coarse substrate. The Oyster River reach is a small low-gradient, headwaters stream of a coastal 

river; water it drained a large wetland complex and the substrate varied between angular boulders 

and fine substrate. The Lovell River is a large river with alternating deep sandy pools and gravel 

riffles.

The annual stability of stream assemblages was quantified in several ways. Because the 

reaches differed greatly in the taxon composition, all calculations of annual variability were done 

within reaches. To examine annual variation in taxon occurrences (community composition), the 

number of years in which a taxon was present in the annual samples within a reach, hereafter 

termed co-occurrences, were calculated to quantify annual variation in community composition; 

as each reach was sampled for four consecutive years, four was the maximum co-occurrence 

value. The mean co-occurrence of taxa within a reach was calculated only for taxa that were 

detected at least once in a reach. Sorenson’s coefficients of community (Sorenson’s CC) were 

calculated on taxon occurrences between each year-pair within reaches. Bray-Curtis similarity
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reduces to Sorenson’s CC when presence/absence data is used (Jongman et al. 1995) and is thus 

the most similar binary similarity metric to compare with Bray-Curtis similarity. Similarities 

were calculated for all taxa combined and for the vertebrates, macroinvertebrates, and periphyton 

separately to investigate taxonomic differences in annual variation in community composition.

To examine annual variation organism abundances, the coefficients of variation in 

densities were calculated for each taxon within reaches (as was done by Robinson et al. 2000). 

Bray-Curtis percent similarities were calculated between each year-pair within reaches as it is the 

often seen as the best distance metric for ecological data (Faith et al. 1987) and to facilitate 

comparison with one of the few other studies of annual variation in stream assemblages for 

bioassessment (Metzeling et al. 2002, Milner et al. 2006). Bray-Curtis distance is also the 

bioassessment index in predictive multivariate bioassessment models developed for wade-able 

New Hampshire streams (Chapter 3). Bray-Curtis distances were calculated for all taxa 

combined and for the vertebrates, macroinvertebrates, and periphyton separately to investigate 

taxonomic differences in annual variation in community structure. To facilitate comparison with 

similar studies (Metzeling et al. 2002), Spearman rank correlation coefficients were calculated 

between taxon densities in year-pairs by reach (see Weatherly and Ormerod 1990).

Spate Response

During August of 2003, a series of large rainfall events raised many streams in the White 

Mountains region of New Hampshire above flood stage on August 10; stream flows during the 

usual summer base-flow period exceeded even the spring snowmelt (Figure 6-1). Five streams 

that were sampled for lotic assemblages no earlier than three weeks prior to the regional flooding 

were re-sampled no more than two weeks after the stream flow receded to the normal range
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discharges (after August 16) using the same sampling techniques. Habitat descriptions for each 

reach can be found in Table 6-1.

To test for effects of the spate on taxon densities before and after the spate, paired t-tests 

were performed on the pre- and post-spate log-transformed densities for each taxon. The 

additional descriptors of community composition and structure total vertebrate density and 

Shannon diversity, total macroinvertebrate density and Shannon diversity, total periphyton 

density and Shannon diversity, as well as density and family richness of macroinvertebrate orders 

were tested for spate effects using paired t-tests. Bray-Curtis similarities were also calculated 

between pre-spate and post-spate samples for each reach. To investigate taxonomic differences in 

spate response, similarities were calculated for all taxa combined and for the vertebrates, 

macroinvertebrates, and periphyton separately.

Results

Annual Variation

Community composition varied greatly between sampling years within a reach (Table 6-

2). The average number of times a taxon was detected within each reach over the four years of 

annual re-sampling (co-occurrences) ranged between 2.029 and 2.304. Thus, on average a taxon 

was detected in a reach in only half of the annual samples. The majority of taxa were detected 

only once within a reach (Table 6-2). Mean Bray-Curtis similarities (Sorenson’s index) between 

the year-pairs varied between 0 and 0.713 (Table 6-3). Community composition stability was 

highest for macroinvertebrates and lowest for vertebrates. Only three vertebrate individuals were 

detected in the four years of sampling the Oyster River (Table 6-2); the mean similarity for that 

reach for vertebrates is therefore misleadingly low. Nonetheless, community composition
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stability in the other two reaches, which had greater vertebrate densities, was low compared to the 

other taxonomic groups (Table 6-3).

Taxon densities varied substantially from year to year. The mean coefficients of 

variation in taxon densities in Nelson Brook, the Oyster River, and the Lovell River were 1.437,

1.469, and 1.249, respectively (Table 6-2). Even relatively common and abundant taxa such as 

Chironomidae and Salvelinus fontinalis had inter-annual variation in densities greater than 80% 

of the mean (Table 6-2). Common taxa contributed as much to total inter-annual variation as rare 

taxa (Figure 6-2).

As measured by inter-annual Bray-Curtis similarities, the three streams annually re

sampled were as stable in community structure as in community composition. Bray-Curtis 

similarities ranged between 0 and 0.703 (Table 6-3). There was very close agreement between 

community composition and community structure in relative taxonomic group stability; 

vertebrates were least stable in community structure and macroinvertebrates the most stable. The 

same caveat that the Oyster River reach had very few vertebrates (Table 6-2) applies to 

interpreting inter-annual stability in vertebrate densities. Spearman R2 between taxon densities in 

year-pairs followed the Bray-Curtis similarity results very closely (Table 6-4).

Spate Response

The only significant effects of the spate were on total periphyton abundance (p = 0.017, n 

= 5); periphyton biovolume density averaged 145 mm3/m2 prior to the spate and 8 mm3/m2 after. 

All other paired t-tests were not significant at thep  < 0.05 level. Bray-Curtis similarities between 

pre- and post-spate samples for all taxa combined ranged between 0.500 and 0.689 (Table 6-5).

In contrast to the taxonomic differences in annual variation in stream community composition 

and structure, the vertebrate similarities were very high compared to the other taxa. Periphyton
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community structure changed substantially in response to the spate, while macroinvertebrate 

community structure responses were intermediate between the taxonomic groups (Table 6-5).

Discussion

These patterns in temporal variability of lotic organisms provide valuable insights for 

interpreting ecological change and bioassessment in lotic ecosystems. The findings in this 

chapter are consistent in many respects with other studies of inter-annual variation in minimally- 

impacted stream macroinvertebrate communities. However, this was the first study of annual 

variation in stream assemblages that examined the major taxonomic groups together. There were 

stark differences between the response of the three major taxonomic groups to the summer spate 

and in temporal variability that have broad implications for bioassessment using those taxonomic 

groups.

Milner et al. (2006) found that the mean inter-annual variability in genus-level 

community composition (taxon occurrences), as measured using Jaccard’s similarity, in six sites 

sampled over a nine-year period ranged between 0.49 and 0.70. The similarities in minimally- 

impacted New Hampshire streams as measured using Sorenson’s CC were similar, though 

somewhat higher, to the Alaskan streams Milner et al. (2006) examined; mean similarity in 

community composition ranged between 0.59 and 0.71 (Table 6-3). An increase in stability at the 

family-level is consistent with other examinations of community stability in minimally impacted 

streams. For instance, family-level macroinvertebrate community stmcture was found to be more 

stable over time than genus-species community composition in Australian streams (Metzeling et 

al. 2002). As genus-level identifications were not available, no direct comparisons of stability 

between macroinvertebrate taxonomic identification levels can be made in this study.
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There was also some agreement with similar studies on inter-annual variation in 

minimally-impacted stream macroinvertebrate community stmcture. Metzeling et al. (2002) 

reported mean stability in family-level community stmcture, as measured by Spearman’s 

correlations, of 0.59. Spearman correlations between annual estimates of macroinvertebrate 

community stmcture in this study were very similar (Table 6-4). Robinson et al. (2000) found 

that coefficients of variation in individual taxon annual abundances in minimally-impacted Idaho 

streams were high and also greater than variation in community measures. This study also found 

high inter-annual variation in taxon densities. This study also found that community measures, 

such as Bray-Curtis similarity and Spearman correlations, varied less than individual taxon 

densities, which exhibited very high annual variation (Tables 2 and 3). Thus, it appears that 

community similarity measures for macroinvertebrates tend to be less variable than individual 

taxon abundances, though the number of studies is small.

However, there were some differences with previous studies with regard to the relative 

stabilities of community composition and stmcture. In previous comparisons of community 

stmcture and composition, community composition was found to be more stable over time than 

community stmcture. Milner et al. (2006) found that mean inter-annual variability in community 

stmcture (taxon abundances), as measured using Bray-Curtis similarities, was higher than for 

community composition and ranged between 0.28 and 0.44 (compare with community 

composition similarities above). In contrast, this study found that macroinvertebrate community 

stmcture, measured by Bray-Curtis similarity, was as stable as community composition measured 

using Sorenson’s CC (Table 6-3). In contrast to Robinson et al. (2000), rare taxa did not 

contribute a disproportionately high share of the total variation in community stmcture in the 

three minimally-impacted streams examined (Figure 6-2). Common taxa displayed very high 

coefficients of variation in annual samples (Table 6-2).

It was somewhat of a surprise that annual variation in vertebrate (primarily fish species) 

composition and stmcture seems to have been much higher than annual variation in
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macroinvertebrate families (Tables 3 and 4). Other studies have found high stability of fish 

community composition and structure (Ross et al. 1985, Matthews et al. 1988). Hoeinghaus et al. 

(2003) reported fish community structure stability between two samples years between 0.67 and 

0.87 (Morisita-Hom index). Fausch and Bramblett (1991) noted a difference in stability between 

streams of differing morphology; they concluded that fish species composition structure remained 

relatively constant in streams with deep pools and diverse habitats but more variable at sites with 

shallow and/or less diverse habitats. In contrast to Fausch and Bramblett’s conclusions, the site 

with the greatest number of pools in this study, the Lovell River, displayed the lowest inter

annual stability in fish community structure. However, the stream with the greatest diversity of 

habitat types and substrate, Nelson Brook, did indeed display the highest stability in fish 

community structure (Tables 1,3, and 4).

The vertebrates were hardly affected by the summer spate (Table 6-5), yet as already 

discussed, displayed high annual variation in community composition and structure at two of the 

three reaches sampled annually (Tables 3 and 4). The vertebrates in a species-poor region such as 

New Hampshire already faced challenges in their use for accurate bioassessment of lotic 

ecosystems (e.g. Lyons et al. 1996). Whether the low stability of vertebrate assemblages in this 

study is due to the low species richness is not clear from these data. It is unlikely that the 

sampling approach for the vertebrates was responsible for the low temporal community stability 

as very high similarities were attained between the pre- and post-spate sample estimates.

Whatever the cause, the large amount of unexplained temporal variability in the vertebrates 

assemblages makes them a poor choice for bioassessment.

In contrast, the macroinvertebrate community appeared to be the most stable on an annual 

scale (Tables 3 and 4) yet were substantially affected by the summer spate (Table 6-5). 

Macroinvertebrates have long been argued as the ideal choice for bioassessment as, unlike the 

vertebrates, they are present in all streams and are diverse enough in most regions to potentially 

respond in unique ways to different stressors, aiding stressor identification (Rosenberg and Resh
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1993). When temporal stability is also taken into account, it appears they may also be the best 

taxonomic group for bioassessment.

Inter-annual stability in periphyton community composition and structure differed by 

stream. It was surprising that the periphyton were as stable as the macroinvertebrates in two of 

the three streams (Tables 3 and 4). Periphyton in the Lovell River and Oyster River were as 

stable as macroinvertebrate assemblages. Though, the periphyton communities at Nelson Brook 

varied greatly from year to year (Tables 3 and 4). Nelson Brook had a higher gradient than the 

other streams studied. Spates dramatically reduce periphyton abundances and alter community 

structure over the scale of weeks (Table 6-5). As scouring is more likely in Nelson Brook during 

high-flows, stochastic high-flows may be responsible for high variation in periphyton community 

at Nelson Brook. The effects of normal variation in stream flow interacting with stream habitat 

on periphyton communities need more attention if they are to be used for stream bioassessment.

The differences in community stability by taxa in response to the summer spate and 

annual re-samples suggests a theoretical model for how these taxonomic groups respond to 

perturbations in New Hampshire (Figure 6-3). The periphyton’s large response to the spate but 

relatively stable assemblage in the annual re-samples suggests they are sensitive to flow 

perturbations, but recover quickly enough to present roughly the same assemblage in subsequent 

years. The macroinvertebrates displayed an intermediate response to the summer spate, but high 

stability from year to year. It is postulated that the macroinvertebrate community is substantially 

impacted by summer spates and continues to decline for a short while following the spate in 

response to lower periphyton biovolume and leaf-litter that has not yet been colonized by 

decomposing bacteria and fungi. However, the macroinvertebrate assemblage recovers to pre

spate structure through high fecundity and predominantly univoltine life-histories such that the 

community comes to resemble the pre-spate community after one year. In contrast, it is 

hypothesized that the vertebrates are not immediately affected by spate conditions due to their 

large body size. Instead, over a longer time frame, they experience population decline due to
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lowered food resources, primarily macroinvertebrates, following a summer spate. The lower 

fecundity and longer life-cycles of fish in cold, nutrient poor streams seem preclude a rapid 

recovery to pre-spate conditions. Thus, environmental variability causes the vertebrate 

assemblage to cycle more erratically on an annual scale, which would explain the high annual 

variability in vertebrate assemblages and low initial spate response (Tables 3 and 5). Clearly, this 

tentative hypothetical model for temporal change in New Hampshire streams will need to be 

tested with long-term monitoring and careful experiments (Franklin 1989).

The overall question for this paper is whether temporal variability in stream assemblages 

is stable enough for bioassessment? The high coefficients of variation in all individual taxa in 

this study (Table 6-2) suggest that interpretation of individual taxa to infer that a stress is present 

or infer the type of stressor would be highly suspect. Similarly, Milner et al. (2006) found that 

the usual metrics used in multimetric approaches to bioassessment varied over their entire range 

over nine years in reference sites in Alaska. However, the interpretation of community-level 

measures such as distance indices and other multivariate statistical approaches may be stable 

enough over time to detect alteration to community stmcture. Several studies have found that 

despite substantial temporal variability in macroinvertebrate community stmcture and 

composition, there is enough of a range in similarity metrics to allow for a response above and 

beyond temporal variability (Metzeling et al. 2002, Milner et al. 2006). The Bray-Curtis 

similarity between assemblages predicted for reference streams using several multivariate 

predictive models in New Hampshire streams and observed assemblages achieved a similarity of 

0.656 (S.D. = 0.062) in the most accurate approach (Chapter 4). The predicted similarities and 

temporal similarities in the macroinvertebrates (Table 6-3) are very similar and may indicate that 

the predictive models are limited in their prediction accuracy primarily by the amount of temporal 

variability and that the particular level of temporal variability observed in this study may not be 

enough to seriously impair multivariate predictions.
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What has been termed temporal variability in this study and previous studies like it is 

actually a mix of sampling error in the field, error due to sub— sampling the macroinvertebrates 

and periphyton in the laboratory, and unexplained temporal variability in assemblages. The 

amount of temporal variation may be over-estimated if substantial variation is also introduced by 

field sampling (Karr and Chu 1999) and laboratory sub-sampling (Doberstein et al. 2000). Thus, 

the relative contributions to variation of temporal change and sampling methods needs to be 

assessed before the true nature of temporal variability can be evaluated. The same is true for 

predictive multivariate model accuracies (Chapter 4). Most of the studies that have examined 

long-term trends in lotic assemblages have used relatively small sub-sampling targets and have 

sometime differed in sampling strategies over time, which may have over-estimated temporal 

variability in macroinvertebrates. Increasing sub-sampling targets for macroinvertebrates to 1000 

may eliminate the contribution of sub-sampling to measures of temporal variability (Doberstein et 

al. 2000).

If temporal variability in community structure remains as substantial as it currently seems 

with better sampling methods, then explanatory predictors of temporal variability will need to be 

incorporated into multivariate predictive modeling for bioassessment if prediction accuracies are 

to be improved. The substantial differences in temporal stability and spate responses between the 

streams (Tables 3, 4, and 5) argues that a greater understanding of the intersection of temporal 

variability and site conditions is necessary if temporal variability is to be accounted for in 

bioassessment. Poff and Ward (1989) offer a framework for investigating those interactions. 

However, incorporating predictors of temporal effects on assemblages into multivariate predictive 

models would require sampling reference sites for many consecutive years along with a variety of 

potential predictors, such as rainfall or winter snow pack (Bradt et al. 1999), to ascertain which 

are important to explaining hitherto unexplained temporal variability in lotic community 

structure. That task is enormous for any region, especially given that reference sites are usually 

remotes and difficult to access (Milner et al. 2006). It may be more efficient to focus on
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improving field and laboratory sampling and then use some long-term data collected using 

improved sampling methods to assess if temporal variability and the feasibility of controlling for 

it in predictive bioassessment models.
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Table 6-1. Habitat Description for the minimally-impacted New Hampshire stream reaches 
sampled on an annual basis and those sampled before and after a summer spate.

Annual
Nelson
Brook

Re-sample Reaches
Oyster Lovell 
River River Moriah

Spate Response Reaches

Mad Smarts Stony Wonalancet
Order 2 1 3 3 2 2 2 2
Elevation (m) 239 73 155 338 513 430 268 358
Discharge
(m3/sec) 0.036 1.905 0.702 1.026 0.969 0.427 0.063 0.516
Slope (%) 3.6 4.5 1.0 2.8 2.7 4.2 6.0 6.5
Pools 36% 9% 73% 0% 9% 18% 45% 18%
Glide 9% 18% 0% 0% 0% 0% 0% 18%
Riffle 55% 45% 27% 82% 73% 64% 27% 36%
Rapids 0% 36% 0% 18% 18% 18% 27% 27%
pH 7.02 4.42 6.42 . 7.08 6.84 6.64 6.01 6.95
Temp. (°C) 17.7 13.4 16.8 19.5 13.6 16.5 15.8 12.8
Fine 0% 14% 0% 0% 0% 0% 5% 4%
Sand 1% 4% 26% 0% 2% 4% 11% 25%
Fine gravel 6% 4% 1% 16% 16% 7% 13% 7%
Coarse gravel 37% 2% 55% 24% 25% 29% 31% 13%
Cobble 33% 17% 17% 25% 40% 31% 22% 22%
Boulder 23% 41% 1% 35% 16% 29% 16% 24%
Bedrock 0% 0% 0% 0% 0% 0% 0% 4%
Depth (m) 0.06 0.20 0.28 0.11 0.09 0.11 0.07 0.13
Width (m) 3.10 4.77 9.20 9.10 8.72 4.10 1.79 5.64
Bankfull width 
(m) 6.96 4.87 20.79 17.82 13.51 7.79 4.55 9.92
Bankfull Height 
(m) 0.45 0.47 0.97 1.46 1.22 1.24 0.73 0.63
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Table 6-2. Statistics describing inter-annual variability in taxon densities and occurrence over four years in minimally-impacted New 
Hampshire streams. Co-occurrences refers to the number annual samples within a stream reach in which a taxon was detected; as there 
were four annual samples, the maximum number of co-occurrences if the taxa was always present was four. The overall mean co
occurrences was based only on taxa that were detected at least once in a stream reach. C.V. refers to the inter-annual coefficient of 
variation in densities.

Nelson Brook Oyster River Lovell River
Taxon Mean C.V. Co-occurrences Mean C.V Co-occurrences Mem C.V Co-occur
Ictalurus nebulosus 0.0 - 0 0.1 2.000 1 0.1 2.000 1
Catostomus commersoni 0.0 - 0 0.0 - 0 0.6 1.641 2
Rhinichthys atratulus 2.3 2.000 1 0.0 - 0 3.8 1.245 2
Salvelirms fantinalis 35.7 0.800 3 0.1 2.000 1 1.3 1.350 2
Cottus cognatus 7.7 0.877 3 0.0 - 0 1.5 1.701 2
Phoxinus eos 0.0 - 0 0.0 - 0 0.2 2.000 1
Rhinichthys cataractae 0.0 - 0 0.0 - 0 0.1 2.000 1
Salmo gairdneri 0.0 - 0 0.0 - 0 0.1 2.000 1
Anguilla rostrata 0.0 - 0 0.1 2.000 1 0.0 - 0
Oligochaeta 4.2 0.791 3 64.7 1.312 4 32.0 1.277 4
Hirudinidae 0.3 2.000 1 0.0 - 0 0.0 - 0
Glossiphonidae 0.3 2.000 1 0.0 - 0 0.0 - 0
Gammaridae 0.0 - 0 440.6 0.387 4 0.0 - 0
Heptageniidae 4.2 1.330 2 0.0 - 0 6.5 0.399 4
Siphlonuridae 2.5 2.000 1 0.0 - 0 5.6 0.685 3
Baetidae 16.3 0.444 4 0.0 - 0 8.5 0.724 4
Leptophlebiidae 110.0 0.802 4 0.0 - 0 15.6 1.081 4
Ephemerellidae 41.5 0.522 4 0.0 - 0 5.0 0.771 4
Nemouridae 4.1 1.461 2 0.0 . 0 0.0 - 0
Perlodidae 5.7 0.745 3 0.0 _ 0 0.0 0
Perlidae 6.3 1.128 3 0.0 - 0 2.0 1.322 3
Leuctridae 14.2 0.624 4 0,0 - 0 12.2 0.965 4
Rhyacophilidae 4.4 0.729 3 0.0 - 0 0.3 2.000 1
Chloroperlidae 55.8 0.673 4 0.9 2.000 1 12.9 0.615 4
Hydropsy ehidae 4.5 0.825 3 4.7 1.200 2 2.7 1.190 2
Hydroptilidae 3.3 1.788 2 0.0 - 0 0.0 - 0
Glossosomatidae 1.7 1.169 2 0.0 . 0 2,4 1.468 2
Brachycentridae 17.5 1.095 4 0.0 - 0 11.5 1.596 2
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Table 6-2. Continued.

Nelson Brook
Taxon Mean C.V. Co-occurrences
Nymphomyiidae 0.0 - 0
Strationyidae 0.5 2.000 1
Uenoidae 1.3 2.000 1
Unkno wnT richoptera 6.1 1.057 3
UnknownOther 1.3 2.000 1
Asellidae 0.0 - 0
Anabaena 0.0 - 0
Lyngbya 8.1 2.000 1
Oscillatoria 19.3 1.930 2
Cymbelloid diatom 0.0 - 0
Eunotia 4.7 1.944 2
Gomphonema 0.7 2.000 1
Naviculoid diatoms 1.6 2.000 1
Tabellaria 3.2 0.877 3
Gyrosigma 0.0 - 0
Batrachospermum 0.0 - 0
Bulbochaete 0.0 - 0
Ciosterium 0.0 . 0
Cosmarium 0.0 . 0
Cylindrocapsa 0.0 - 0
Cylindrocystis 0.0 - 0
Hyalotheca 12.8 2.000 1
Mougeotia 5.0 1.630 2
Plectonema 0.5 2.000 1
Rhizoclonium/Cladaphora 22.5 1.724 2
Scenedesmus 0.0 . 0
Arthrodesmus 0.0 - 0
Ulothrix 0.0 - 0

Overall mean 14.4 L437 2.241
Overall standard deviation 77.4 0.567 1.189

UJ

Oyster River
Mean C.V. Co-occurrences

0.9 2.000 1
0.0 - 0
0.0 - 0
0.0 - 0
0.0 - 0

336.6 0.601 4
0.0 2.000 1
0.0 - 0
0.0 - 0
0.1 2.000 1
14.7 1.104 3
0.0 - 0
12.3 0.812 3
0.2 2.000 1
0.0 - 0
0.0 - 0
0.0 - 0
3.1 0.262 4
0.0 - 0
0.0 - 0
0.0 - 0
0.0 - 0
52.3 0.746 4
0.0 - 0
4.5 2.000 1
0.0 - 0
0.0 - 0
50.2 0.897 3

16.8 1.469 2.029
68.0 0.615 1.218

Lovell River
Mean C.V. Co -occurrences

0.3 2.000 1
0.0 - 0
0.0 - 0
0.5 2.000 1
0.0 - 0
0.0 - 0
0.0 - 0
0.0 - 0
3.0 1.572 4
0.0 - 0
0.0 - 0
0.0 - 0
26.8 0.937 4
99.4 0.981 4
0.4 2.000 1

21.4 2.000 1
6.1 0.936 3
0.0 - 0
4.4 1.988 2
1.6 2.000 1

15.4 2.000 1
0.0 - 0

295.7 1.509 3
0.0 - 0
4.9 0.870 4
0.9 2.000 1
1.6 2.000 1
3.9 2.000 1

9.9 1.443 2.304
38.1 0.533 1.249



Table 6-3. Mean inter-annual Bray-Curtis similarities of taxon abundances and Sorenson’s 
coefficient of community of taxon occurrences for each taxonomic group by stream reach.

Bray-Curtis Similarity Sorenson’s CC 
All Taxa Nelson Brook 0.571 0.622

Oyster River 0.679 0.580
Lovell River 0.587 0.652

Vertebrates Nelson Brook 0.400 0.433
Oyster River 0.000 0.000
Lovell River 0.133 0.153

Macroinvertebrates Nelson Brook 0.651 0.671
Oyster River 0.703 0.586
Lovell River 0.666 0.713

Periphyton Nelson Brook 0.122 0.256
Oyster River 0.616 0.643
Lovell River 0.479 0.676
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Table 6-4. Spearman rank correlations and standard deviation (s) in the squared 
coefficients by taxonomic group between annual samples of three minimally-impacted 
streams in New Hampshire.

Mean R2 s
All Taxa Nelson Brook 0.510 0.088

Oyster River 0.567 0.128
Lovell River 0.558 0.078

Vertebrates Nelson Brook 0.840 0.139
Oyster River -0.189 0
Lovell River -0.070 0.445

Macroinvertebrates Nelson Brook 0.581 0.133
Oyster River 0.590 0.125
Lovell River 0.660 0.035

Periphyton Nelson Brook 0.117 0.259
Oyster River 0.591 0.286
Lovell River 0.530 0.222
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Table 6-5. Bray-Curtis similarities between samples before and after a summer spate by 
taxonomic group in five minimally-impacted streams in New Hampshire.

All Taxa Vertebrates_________ Macroinvertebrates_________Periphyton
Wonalancet 0.660 0.974 0.692 0.000
Moriah 0.689 0.950 0.725 0.245
Mad 0.582 0.953 0.643 0.071
Stony 0.500 0.786 0.493 0.322
Smarts 0.541 0.791 0.563 0.351
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Figure 6-1. Stream flow in the Pemigewasset River of central New Hampshire showing the 
large spate during August of 2003 due to a period of heavy rainfall provided by A U.S. 
Geological Survey stream gauge in Lincoln, New Hampshire. The spate (see arrow) 
resulted in stream flows higher than the spring snowmelt. The previous August (2002) is 
more typical of August flow in the region.
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Figure 6-2. Cumulative contribution of taxa, ranked by relative abundance within each 
taxonomic group, to the total of the coefficients of variation (C.V.) within three minimally- 
impacted stream reach in New Hampshire. The coefficients of variation are based on the 
inter-annual variation in taxon abundances over four years of sampling.

♦  Nelson 

Oyster 

A Lovell

6  0.3

10 20 30 40 50
Cumulative Taxa Ranked by Relative Abundance

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148



Figure 6-3. This figure presents a conceptual model of the responses of minimally-impacted 
stream communities to summer base-flow disturbance that may account for the observed 
differences in community stability for each taxonomic group in response to short-term flow 
disturbance and inter-annual sampling. Relative abundance refers to the abundance before 
a spate, though the vertical axis could also be interpreted as community similarity as well.
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CONCLUSIONS

Minimally-impacted stream assemblages, encompassing periphyton, macroinvertebrates, 

stream-dwelling salamanders, and fish, in New Hampshire are primarily influenced by local-scale 

physical habitat conditions, especially benthic substrate characteristics and mesohabitat (e.g. pool, 

riffle, etc.; Figures 3-3 and 3-4). Stream benthic substrate and mesohabitats are primarily 

controlled by water flow (Minshal 1984, Naiman and Decamps 1997, Skinner 2003). In turn, 

hydrological conditions primarily vary along the longitudinal stream profile (Vannote et al.

1980). Thus, it seems that the longitudinal stream profile has a central influence on stream 

organism distributions and abundances in New Hampshire absent major human influence. Many 

other studies have found hydrological conditions and substrate to heavily influence stream 

organism ecology (see reviews by Allan 1975, Winget and Magnum 1991, Allan 1995).

Seven community types best described the pattern of variation in stream organism 

distributions in New Hampshire. As stream organisms individually varied in response to the 

longitudinal stream profile, so too did the community types arrange along a gradient from high 

elevation, steep, coarse substrate scour streams to flat, fine sediment, wetland streams (Chapter

3). The strong organizing influence of the stream longitudinal profile places constraints on the 

ability of geographic classifications of stream to explain organism distributions. Neither the 

aquatic ecoregions of Omemik (1987) nor a classification of New Hampshire’s USGS HUC10 

watersheds by The Nature Conservancy explained organism distributions even half as well as the 

biotic classification of streams (Chapter 3). By encompassing much of the range in variation of 

the primary controlling process in New Hampshire stream ecology, the changes inherent in the 

longitudinal stream profile, watersheds will fail to separate biological variation in stream unless
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they are very small. Indeed, aquatic ecoregions explained stream organisms distributions and 

abundances better than the HUC10 watershed classification (Chapter 3). Thus, resource 

management and the assessment of representation of stream biological diversity on conservation 

lands should be performed within the framework of the biotic community types and the 

longitudinal stream profile.

Both individual stream organisms and the general community types were predictable 

using local-scale and basin-scale environmental descriptors (Tables 3-6, 3-7, and 4-2). In 

addition, the taxon densities of the minimally-impacted streams sampled for this dissertation 

could also be predicted using environmental descriptors that were determined to be robust to 

human influence (Table 4-2). Thus, reference conditions for biological assessment and 

monitoring of other streams in New Hampshire can be accurately constmcted and tailored to each 

stream segment that is to be assessed for the level of human alteration to the biotic assemblage 

relatively independent of unexplained natural variation in community structure (Chapter 4).

While several statistical approaches could be used to predict reference conditions for a particular 

stream segment, separate habitat regression models for each taxon most accurately predicted 

stream community structure in the reference streams sampled in this dissertation.

Physical stream and riparian habitat in reference streams was also predictable using large- 

scale physical environment descriptors such as watershed area and elevation (Chapter 5; Table 5- 

??). In addition, a new index for comparing observed physical stream habitat and expected 

minimally-impacted habitat conditions based on the Euclidean distance between the standardized 

expected and observed habitat descriptors. This new index improved on previous attempts to 

index the degree of habitat alteration by eliminating the need to construct discreet pseudo-classes 

of habitats to predict that often resulted in multiple mutually exclusive habitat conditions 

predicted for a stream in the absence of human influence (Davies et al. 2000). An assessment of 

stream habitat condition parallel to a biological assessment would provide powerful information 

in identifying the stressor responsible for an altered community structure. A lack of habitat
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alteration as measured by the habitat assessment index would rule out habitat alteration 

potentially shift emphasis to chemical sources.

Cautions

The accuracies of both the biotic and habitat prediction approaches were not verified on 

an independent dataset of minimally-impacted streams and likely overestimate the accuracy as a 

result of potential model over-fitting to the training dataset. The accuracies of all prediction 

models presented in this dissertation should be tested on an independent set of minimally- 

impacted New Hampshire streams. However, finding additional reference streams will be 

difficult in the Seacoast area of the State as widespread development has greatly limited the 

number of streams that fall within the definition of minimally-impacted conditions used in this 

study.

However, the accurate prediction of reference conditions is only part of the conditions 

that produce a sensitive biological assessment system. The degree to which an assessment 

approach is sensitive to perturbations is also important and the ability of the biological and habitat 

assessment approaches outlined in this dissertation should be tested. However, the usual and easy 

approaches to measuring the sensitivity to impact of an assessment system are fraught with 

circular logic as the only metric for assessing the degree of alteration to the biotic community is 

often the prediction approach itself (Reynoldson et al. 1997). For example, one assessment 

system may find a stream to be unimpacted and another assessment system may find it impacted. 

Is the latter system more sensitive? If streams can differ in their response to similar levels of 

anthropogenic stress, then it cannot be assumed that any individual stream should be impacted by 

a particular level of human impact. To answer that question then, the prior community structure 

of a stream would need to be known. Something akin to a controlled experiment manipulating
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the level of alterations to a stream would need to be conducted on streams with known reference 

biological community structure; a sensitive system would detect impacts in this experiment at 

lower impact levels. However, assuming that stresses vary in their impact on stream biota, an 

additional treatment consisting of different impact types would also need to be included; 

multiplying the number of potential types of human impacts by a number of impact levels yields a 

very large experiment. That large experiment may also need to be run for years as some impacts 

may not show effects for multiple seasons. Also, three taxonomic groups were included in the 

predictive models generated in this dissertation; the taxonomic groups may differ in their 

sensitivity to various impacts. Clearly, the task of assessing the sensitivity to impact of a 

biological assessment approach without recourse to circular logic or tenuous assumptions is 

daunting.

Because the predictions of stream community structure and physical habitat derive from 

minimally-impacted streams, they can be used to establish restoration targets. However, there are 

a number of caveats attached to the use of these reference conditions for restoration targets. First, 

the impact of past land use on current stream condition even in stream that currently minimally- 

impacted cannot be overstated; land-use practices, primarily forest clearance of the majority of 

New Hampshire 150+ years ago, has left a legacy of alteration to stream habitat (Foster et al. ??) 

and possibly to stream assemblages, though the latter point is much less well known. Therefore, 

these reference conditions probably do not represent a stream’s biotic assemblage or physical 

habitat completely absent of any human influence. For example, predictions of large woody 

debris (LWD) densities for a restoration target would probably underestimate LWD densities as 

past forest clearance often increased river flows, washed out LWD, and removed downed LWD 

that might have contributed to in stream LWD (??). Additionally, the minimally-impacted 

streams sampled were potentially influenced by regional anthropogenic environmental changes 

such as acid precipitation, nitrate deposition, exotic species, dams, and climate change (Carpenter 

et al. 1992). Future policy modifications that reduce those large-scale, ongoing environmental
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changes by humans may require a re-assessment of stream reference conditions; otherwise, the 

reference conditions predicted for stream assemblages and habitat for assessment or restoration 

targets would no longer reflect the least altered stream ecosystems.

Another potential hindrance to interpreting predicted biotic reference conditions is annual 

temporal variation in minimally-impacted stream assemblages. When there is a deviation 

between the predicted and observed assemblages, annual temporal variation in reference 

conditions represents an alternative hypothesis to the inference that anthropogenic impacts have 

caused those deviations from predicted biotic assemblages. To the extent that annual variation in 

assemblages is typically greater than the prediction error of any predictive model, then annual 

variation represents the greatest constraint on the sensitivity of detecting alterations to stream 

assemblages. Inter-annual variation in three stream segments over four years, as measured by 

Bray-Curtis percent similarity, was high for fish, stream-dwelling salamanders, and periphyton 

(Table 6-3), but inter-annual variation in the macroinvertebrates were within the ranges of the 

Bray-Curtis percent similarity prediction errors displayed by the multivariate predictive models of 

biotic reference conditions (Table 4-2).

At this point, it does not seem that natural inter-annual variation in macroinvertebrate 

assemblages is limiting the sensitivity of any biological assessment using the predictive models 

described in Chapter 4; the vertebrates and periphyton may vary too much over an annual time 

scale in first to fourth order New Hampshire streams for use in bioassessment. However, only 

three stream segments were observed and over a short period of time, making this conclusion 

tentative. Additionally, as any analysis of temporal variation involves repeat sampling, sampling 

error is also a part of any estimate of temporal variation. The relative contributions of sampling 

error and natural temporal variability to the observed annual variability need to be decomposed 

before it is concluded that annual differences in assemblage are causing the observed temporal 

variability and not poor sampling methods; though, it is unlikely that the electroshocking
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sampling for the fish was responsible for the high inter-annual variability because samples taken 

immediately before and after a spate showed very high community similarity (Table ??).

The water chemistry parameters that the habitat predictions report are based on only one 

summer measurement. Stream water chemistry of streams of all size in the northeastern United 

States is highly variable over very short time spans (Chetelat and Pick 2001). Therefore, the 

individual predictions of chemical concentrations for a particular stream may be inaccurate for a 

specific time period. Collectively, as the collection of measurements was made over the course 

of four summers, the dataset may indicate general concentration ranges for all minimally- 

impacted streams in New Hampshire; those ranges are simply not tailored to any particular 

stream’s conditions and therefore may display higher unexplained spatial variability than other 

habitat parameters. More intensive temporal sampling of stream chemistry in the minimally- 

impacted stream segments sampled as part o f this dissertation might improve prediction of the 

expected reference range in chemical concentrations for other streams to be assessed for human 

impacts.

Future Work

The data and analyses presented in the previous two chapters represent a step forward in 

understanding the natural ecology of streams in New Hampshire. This hopefully will translate 

into a better understanding of anthropogenic alterations to stream ecology and ultimately ease 

resource management and conservation decisions. As always, avenues for additional work 

remain.

Although seven community types were chosen as the best description of stream organism 

distributions in New Hampshire, classifications that split the stream segments into additional 

groups also found substantial distinct biological differences between the groups (Table 3-2). 

Additional distinct natural community types may still exist. In particular, there may be rare
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community types nested within the described seven community types (Chapter 3) that were not 

encountered often enough to present a detectably distinct group in classification. Targeted 

sampling of additional minimally-impacted streams within the community types may find rare 

sub-types. The warm-water riffle community type showed substantial variation in taxon densities 

(Table 3-3) and as a result is a good candidate to investigate sub-types; sites along the coast that 

contain American eels (Anguilla rostrata) seemed particularly distinct from other stream 

segments within that community type (pers. obs.). At the time of this dissertation, several dam 

removal projects are scheduled in the Seacoast region of the State that would allow greater access 

to streams by anadromous vertebrates; their effects on the warm-water riffle communities that 

dominate the southeastern portion of New Hampshire should be investigated and tracked using a 

BACI (before-after control impact) design.

Ease of implementation is always a concern in applied research. Several statistical 

models were presented including models to construct biotic reference conditions, construct 

habitat reference conditions, and map community locations using available GIS data. Those 

models involved either elaborate or tedious calculations. Automated computer algorithms that 

could translate the required parameters for each model into predictions for biological or habitat 

assessment would make it much more likely that these models would be used by State agencies, 

environmental consultants, and water quality volunteer groups. Detailed and relevant information 

output and summary would also be crucial to ensuring that the model results are understood and 

placed in the proper context.

Volunteers are playing an increasing role in water quality assessment and monitoring, 

particularly for basic chemical parameters and macroinvertebrate bioassessments (USEPA 1997). 

Making the prediction of reference conditions easily accessible and automated is particularly 

important for volunteers who are unlikely to be skilled in statistical computing. There are several 

additional important considerations involved with translating this work into a volunteer program. 

The predictive models generated in this dissertation were based on 500-organism fixed-counts for
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the macroinvertebrates and identification to family-level in the laboratory. Live-sorting of fewer 

organisms by volunteers many not accurately compare with the model predictions or be sensitive 

to human impacts (Doberstein et al. 2000). Additionally, some families are difficult to 

distinguish in the field. Whether the predictions can be collapse up to order level and still be 

sensitive at detecting human impacts is uncertain; many studies indicate little information is lost 

at the family level versus genus-species, but higher taxonomic levels (order, class) often display a 

substantial loss of information (Chapter 1). It also takes substantial resources to train volunteers 

to accurately identify macroinvertebrates. It may actually be less costly overall to send volunteer 

collected samples to contract biological laboratories to perform similar counts to those performed 

in this dissertation as annually training a rotating cadre of volunteers to identify organisms if 

program staff time and salaries were included in the calculation. Additionally, the use of contract 

labs makes quality assurance requirements easier as most contract labs follow documented and 

detailed quality assurance and control procedures. For the predictive models presented here, then, 

volunteers would collect the habitat information needed to predict reference conditions for 

biological or habitat predictions and assessments; volunteers may find that habitat is easier to 

measure and more enjoyable, thereby increasing volunteer retention and further reducing program 

training needs. The periphyton are particularly ill suited to identification by volunteers as 

microscopes, dyes, blenders, and detailed biovolume calculations are needed beyond 

identification skills. Again however, volunteers can easily collect periphyton samples for which 

the identification and quantification for biovolume can be sub-contracted to a commercial 

biological lab.

When a volunteer program might lead to enforcement action, a period of parallel 

assessments by professionals to measure the degree of correspondence between the volunteer and 

professional assessments would be required (USEPA 1997). However, volunteers might be 

included as a screening step before any decision on punitive or remedial action by a State agency. 

Thus, although it is unlikely that a volunteer macroinvertebrate bioassessment program based on
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higher taxonomic levels or fewer organisms counted would be as sensitive as the 500-count 

version presented in this dissertation (Chapter 4), a reduced count or higher taxonomic level 

identification, may be sensitive enough to detect gross impairments in a low-cost screening 

program. A volunteer-based screening effort would target professional assessment efforts using 

the higher 500 fixed-count family level predictive model bioassessment and make monitoring of 

stream biotic integrity more efficient.

Biological assessments are being actively pursued in other ecosystem types (Genitsen et 

al. 1998, Danielson 1998, Jameson et al. 1998, Gibson et al. 2000). As biological assessment has 

been best developed in streams, there are several findings that may be translated to these efforts 

that might reduce development time. First, it is clear that every assessment of a site is a small 

scientific project subject to the usual rules of scientific inference; alternative hypotheses as to the 

causes of any deviation in expected condition need to be mled out before human alteration can be 

inferred to be the cause (Karr and Chu 1999). The reference condition concept (Hughes 1995) is 

central to eliminating the hypothesis that natural spatial or temporal variation is the cause of any 

observed alterations to biological condition.

Second, the ability of the reference conditions to explain natural spatial and temporal 

variation seems primarily constrained by the precision and accuracy of the sampling methods 

(Karr and Chu 1999, Doberstein et al. 2000, Cao et al. 2002, Ostermiller and Hawkins 2004) and 

the ability of statistical models to explain and control for natural variation (Reynoldson et al.

1997). Many attempts to improve the prediction of reference conditions suing sophisticated 

alternative multivariate statistical analyses have often resulted in little improvement for stream 

ecosystems compared to those developed 20 years ago such as RIVPACS (Moss et al. 1999, 

Hawkins et al. 2000, Linke et al. 2002, Linke et al. 2005). Yet, studies of the impact of sub

sampling on macroinvertebrate assessments consistently find major improvements in assessment 

accuracy due to higher sampling intensity when an adequate range in sampling intensity is
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examined (Doberstein et al. 2000). Thus, it seems that substantial attention should be paid to the 

precision and accuracy of sampling results

Third, the taxonomic groups found in streams often respond differently to various 

impacts (Karr 1991, Metcalfe-Smith 1996, Karr and Chu 1999). As most ecosystems contain 

multiple taxonomic groups, the widest possible range in taxonomic groups should be included in 

initial explorations into biological assessments of other ecosystem types to determine which 

groups are complementary and sensitive to detecting impacts. Similarly, sampling from multiple 

habitat types has also improved the impact sensitivity of stream bioassessments (Kerans et al. 

1992) because habitats are differentially sensitive to anthropogenic impacts and contain different 

species (e.g. Bradley and Ormerod 2002); thus a wide range of within-ecosystem habitat types 

should also be investigated early in the development process.

The variety and potential number of anthropogenic impacts to ecosystems seem to be 

increasing, particularly from relatively new chemical sources such as nanotechnology and 

pharmaceuticals. Additionally, the increasing global population is increasing resource utilization 

and stress on ecosystems. Much of human welfare ultimately derives from ecosystem good and 

services (Costanza et al. 1997) and those services may be linked to the biological condition of 

those systems (Loreau et al. 2002). Thus, close attention should be paid to the biological integrity 

of ecosystems to ensure their sustainability. Biological assessment and monitoring will play a 

substantial role in ensuring the sustainability of our natural resources.
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