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ABSTRACT

IMPROVING ESTIMATION OF GROSS PRIMARY PRODUCTIVITY OF
TERRESTRIAL ECOSYSTEMS
BY
Qingyuan Zhang
University of New Hampshire, May, 2006
The MOderate Resolution Imaging Spectroradiometer (MODIS) provides an
unprecedented opportunity to monitor and quantify seasonal changes of vegetation and
phenology. MODIS has the potential to improve the estimation, which is based on the
algorithms for the NOAA Advanced Very High Resolution Radiometer (AVHRR), of
biophysical/ biochemical variables of vegetation. My doctoral study improves estimation
of gross primary productivity (GPP) through two aspects: first, my study improved the
detection of vegetation phenology by distinguishing MODIS contaminated observations
and contamination-free observations, and secondly, I inverted the fraction of absorbed
photosynthetically active radiation (PAR) by chlorophyll using radiative transfer models
and daily MODIS data.

My dissertation has five aspects: (1) to develop a procedure to distinguish
atmospherically contaminated observations, snow contaminated observations and
contamination-free observations; (2) to monitor vegetation phenology using reflectance
of the seven MODIS spectral bands for land and relative vegetation indices; (3) to clarify

the concepts of fractions of PAR absorbed by canopy, leaf and chlorophyll; (4) to explore
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the potential of estimating the fractions of PAR absorbed at different scales; and (5) to
check if vegetation seasonal MODIS spectral variations during plant growing season are
only due to vegetation’s anisotropic nature.

A procedure to extract contamination-free daily MODIS observations is proposed
and developed. It has been employed for the Harvard Forest site, the Howland Forest site,
the Walker Branch Watershed Forest site, the km67 Forest site in tropic, a soybean site in
Nebraska, the Xilingol grassland site in China, the Bartlett Experimental Forest site, and
two broadleaf deciduous forest sites in Missouri. The extracted MODIS signals
(reflectance and vegetation indices) provide rich information for interpretation. The
richness of information from the results goes beyond the widely used normalized
difference vegetation index (NDVI) and leaf area index (L AI). The more precise
phenology information can be used for seasonal GPP estimation.

The concepts of fractions of PAR absorbed by canopy, leaf and chlorophyll are
described. I extracted fraction of PAR absorbed by chlorophyll for the Harvard Forest site,
the Bartlett Experimental Forest site and the two deciduous broadleaf forest sites in
Missouri using a coupled canopy-leaf radiative transfer model and daily MODIS data.
Metropolis algorithm is used to invert the variables in the radiative transfer model. It
provides posterior distributions for individual variables. Some of the inverted variables,
have been partly evaluated though validation for all variables is extremely expensive.
Using the values of inverted variables of the)two forest sites in Missouri, I calculated
reflectance for the seven MODIS spectral ranges with real MODIS viewing geometries

through whole growing season. I found that there should be other factors, except
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vegetation’s anisotropic nature, due to seasonal MODIS spectral variations of the forests

during the plant growing season.

My study suggests that in addition to measurements of canopy-level variables
(e.g., LAI), field measurements of leaf-level variables (e.g., chlorophyll, other pigments,
leaf dry matter, and leaf water content) will be useful for both remote sensing and

ecological research.
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CHAPTER 1

INTRODUCTION

1.1 Benefits of the MODIS for land study

The MOderate Resolution Imaging Spectroradiometer (MODIS), combining some
of the characteristics of the two widely used satellite sensors - the National Oceanic and
Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer
(AVHRR) and the Landsat Thematic Mapper (TM) - and offering products with spatial
resolution of 250m, 500m and 1000m respectively, provided improved monitoring for
land. The MODIS has seven atmospheric corrected spectral bands reflectance mainly for
land study, centered at 648, 858, 470, 555, 1240, 1640 and 2130 nm, for land study. They
are hereafter called red, NIR;, blue, green, NIR,, SWIR; and SWIR, of MODIS (Table
1.1) (Justice et al., 1998; Xiao et al., 2004a).

The MODIS has more spectral bands than AVHRR, and MODIS red and NIR, are
narrower than AVHRR CH1 (channel 1) and CH2 (channel 2) respectively. MODIS red
and NIR; have finer spatial resolution of 250 m while AVHRR CH1 and CH2 have the
spatial resolution of 1000 m. MODIS blue can be used in atmospheric correction (King et
al., 1999) and help in determining if an observation of dark vegetation pixel is affected by
clouds (please see chapter 4 of the dissertation). MODIS green, NIR;, SWIR;, and
SWIR; can be useful in monitoring and distinguishing land vegetation. Gitelson and

others (Gitelson et al., 1996, 1997) have reported that the green spectral band could still
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be sensitive when vegetation chlorophyll content is high, even the red band could be
saturated then. Short-wavé infrared (SWIR) spectral band could be used to detect water
status of land surface (Tucker, 1980; Gao, 1996; Xiao et al., 2002a, 2002b; Xiao et al.,
2003; Zarco-Tejada et al., 2003; Xiao et al., 2004b; Xiao et al., 2004c; Xiao et al., 2005a;
Xiao et al., 2005¢). King et al. (1999) reported that MODIS SWIR; was even more
sensitive to a subpixel water body.

MODIS has coarser spatial resolution than TM (30 m). However, MODIS has a
shorter revisit time and so has more observations than TM. During a connective 16-day
period, MODIS can possibly have observations with different observation geometries. So
it is possible to consider the bi-directional distribution function (BRDF) effect with
MODIS observations (Strahler, 1999). In a brief summary, TM may provide more
detailed spatial information than MODIS, and MODIS may provide more detailed

seasonal information and more detailed BRDF effect information than TM.

1.2 Review on FAPAR study

Net ecosystem exchange (NEE) of CO, between terrestrial ecosystems and the
atmosphere, indicating a carbon sink or source, is the difference between gross primary
production (GPP) and ecosystem respiration. Plant photosynthesis requires
photosynthetically active radiation (PAR), water, nutrients and CO,. The fraction of
PAR absorbed by vegetation canopy (FAPAR anopy) is an important biophysical variable.
Two pioneering studies (Goward et al., 1992 and Myneni et al., 1992) studied the
relationship between FAPAR anopy and normalized difference vegetation index (NDVI)

(Tucker, 1979; equation 1.1, where ppir, Preq are reflectance values of near infrared (NIR)
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and red bands respectively) using canopy radiative transfer models. The latter one is one
of the fundamental papers for the MODIS standard FAPAR product. FAPAR canopy 1S

usually estimated as a linear or non-linear function (e.g., Prince et al., 1995; Diner et al.,
1999) of NDVI. The study for Multi-angle Imaging Spectro-Radiometer (MISR) (Diner

et al., 1999) reported a linear relationship between them.

NDVI = Lrir ~ Prea. (1.1
pnir + pred

FAPARnopy is also related to leaf area index (LAI), and usually estimated as a function
of LAI and light extinction coefficient (k) in a number of process-based biogeochemical
models (e.g., Ruimy et al., 1999). MODIS (Myneni et al., 1997) and MISR (Diner et al,,
1999) used the NDVI — FAPAR (a00py and LAI — FAPAR canopy relationships as their back-
up algorithms respectively. The NDVI — FAPAR aq0py and LAI — FAPAR caqopy
relationships have been the paradigm that dominates the literature for estimating GPP and
net primary production (NPP) of terrestrial vegetation at various spatial scales (e.g. Field
et al., 1995; Running et al., 2004). Many remote-sensing-based Production Efficiency
Models (e.g., Potter et al., 1993; Prince et al., 1995; Ruimy et al., 1996; Running et al.,
2004) have applied the relationships to estimate GPP or NPP:

GPP =&, x FAPAR x PAR (1.2)

canopy

NPP = ¢, x FAPAR X PAR (1.3)

canopy

where €, and £, is the radiation use efficiency.
Some European researchers (Gobron et al., 2000b; Gobron et al., 2002; Taberner
et al., 2002) developed unique procedures for producing FAPAR canepy for GLobal Imager

(GLIL on ADEOS-II), SPOT VEGETATION (VGT) (Table 1.1), Sea Wide Field-of-view

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sensor (SeaWiFS on ORBVIEW-II), and MEdium Resolution Imaging Spectrometer
Instrument (MERIS, on ENVISAT). They did BRDF correction with the Rahman, Pinty,
Verstraete (RPV) model (Rahman et al., 1993a; Rahman et al., 1993b). They considered
the atmospheric and soil background effect (Gobron et al., 1997) by combining sensor
blue band with red and near infrared (NIR) bands. FAPAR a,0py Was optimized as a ratio
of polynomials of corrected NIR and red reflectance. The technique is more complex than
the simple linear or non-linear NDVI — FAPAR ¢qu0py and LAI — FAPAR ca0py relation
functions. Moreover, the technique was more physically based and more factors were
considered. However, one limit of the technique is that its input reflectance should be the

reflectance before atmospheric correction.

1.3 Review on radiative transfer theory and the estimation of biephysical/

biochemical parameters by inverting radiative transfer models

1.3.1 Brief introduction of radiative transfer and radiative transfer equation

The radiative transfer (RT) theory was first formulated for stellar atmospheres and
has been extensively studied (e.g., Chandrasekhar, 1960) and widely applied in many
disciplines including high energy astrophysics, biomedical applications, atmosphere
remote sensing (€.g., cloud, aerosols), land remote sensing (e.g., canopy, leaf, soil), ocean
remote sensing, climate study and ice and snow remote sensing (e.g., Ishimaru, 1978a,
1978b; Verhoef, 1998). The radiative transfer equation (RTE) is known as the core of the
RT theory. Reflected, transmitted and absorbed radiation can be calculated with RTE
from the object’s propetties (e.g., leaf reflectance is determined partly by pigments

content, dry matter content, water thickness; canopy reflectance is determined partly by
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leaf area index, leaf angle distribution etc.), the incident radiation and observation
geometry. All canopy-level and leaf-level RT reflectance models are based on the RT
theory; The RTE describes the differential change of the radiance in one directiori due to
absorption and scattering. There is no generally analytic solution to RTE, so RT models
specify the scattering phase function in terms of the properties of the medium and solve
the RTE for given boundary conditions (Goel et al., 1984a; Goel et al., 1984c, 1984d,

1984b; Goel et al., 1985; Goel, 1988; Verhoef, 1998).

1.3.2 Introduction of leaf radiative transfer models

As early as in 1913, some scientists were trying to develop a leaf reflectance
model (e.g., Willstatter et al., 1913). It is a relatively long history of the development of
leaf reflectance models. Beginning from 1913, there have been many papers reporting
their efforts to describe their RT based leaf models, (e.g., Willstatter et al., 1913; Allen et
al., 1968; Allen et al., 1969; Allen et al., 1970; Gausman et al., 1970; Breece et al., 1971;
Yamada et al., 1988; Jacquemoud et al., 1990; Baret et al., 1997; Dawson et al., 1998;
Ganapol et al., 1998; Zarco-Tejada et al., 2000a; Zarco-Tejada et al., 2000b; Verhoef et
al., 2003; Di Bella et al., 2004).

I used the five-variable PROSPECT model - leaf internal structure variable (N),
leaf chlorophyll content (C,p), leaf dry matter content (Cy,), leaf water thickness (C,) and
leaf brown pigment (Cyrown) (Baret et al., 1997; Verhoef et al., 2003; Di Bella et al., 2004)
for my doctorate study. The five-variable PROSPECT model was developed from
previous studies (Kubelka et al., 1931; Allen et al., 1968; Allen et al., 1969; Allen et al.,

1970; Gausman et al., 1970; Jacquemoud et al., 1990; Hosgood et al., 1995; Jacquemoud
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et al., 1996). Withiﬁ these efforts, some scientists extended one single compact leaf layer
to N spaces (Allen et al., 1970; Gausman et al., 1970) by introducing the VAI index
(Void Area Index, a leaf internal structure parameter) where VAI = N — 1 (N means the
number of spaces or “plates”), and with subsequent improvements and development by
discretization of the medium (PROSPECT, Jacquemoud et al., 1990). For a non-
senescent monocotyledons leaf grown in a greenhouse, N ranges between 1 and 1.5; for a
non-senescent dicotyledonous leaf grown in a greenhouse, N ranges between 1.5 and 2.5;
leaves with N values greater than 2.5 are senescent (Jacquemoud et al., 1990). For natural
grown plants, the discrimination disappears (Jacquemoud et al., 1996).

LIBERTY (Dawson et al., 1998) and LEAFMOD (Ganapol et al., 1998; Ganapol
et al., 1999) were recently presented. LIBERTY was a conifer needle (pine needle)
reflectance model. No report on extensions of LIBERTY to other species presented. Both
LIBERTY and LEAFMOD use leaf thickness, a field-measurable indicator, as a leaf
variable, rather than N in PROSPECT. Both LIBERTY and LEAFMOD models lack
extensive validation of PROSPECT (e.g., Jacquemoud et al., 1990; Hosgood et al., 1995;
Jacquemoud et al., 1996; Demarez et al., 1999; Newnham et al., 2001). Zarco-Tejada
(Zarco-Tejada et al., 2000a; Zarco-Tejada et al., 2000b) added the consideration of
chlorophyll fluorescence effect to the PROSPECT model for hyper-spectral data
simulation and inversion.

The earliest bi-directional reflectance distribution function (BRDF) consideration
for leaf optical characteristics in literature is presented in October, 2005 (Bousquet et al.,

2005). The efforts are useful even though the results are preliminary. I expect their
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continuing studies will be coupled to the PROSPECT model or other leaf models in the

future.

Different vegetations have different canopy structure characteristics, hence
different anisotropic natures. Turbid medium canopy reflectance models, geometric
canopy reflectance models, and computer-based simulation canopy models are three
major types according to the different assumptions and model complexity of canopy
radiative transfer reflectance models. There are also some hybrid canopy models which
combine two of the types.

In turbid medium radiative transfer canopy models, the elements of canopy are
randomly distributed except leaf area index (LLAI) and leaf angle distribution function
(LAD). For instance, the SAIL (Scattering by Arbitrarily Inclined Leaves) model
(Verhoef, 1984) assumes that leaf azimuths are randomly distributed. It can compute the
absorption and scattering coefficients for any leaf inclination. Kussk (Kussk, 1985) added
a hotspot effect for SAIL. The SAIL model has been validated over soybeans, orchards,
maize, sugar beet, etc (Goel et al., 1984c, 1984d; Badhwar et al., 1985; Goel et al., 1985;
Major et al., 1992; Andrieu et al., 1997; Jacquemoud et al., 2000). Braswell and others
(Braswell et al., 1996) developed the SAIL model. It decomposes a canopy into stems
and leaves. Stems and leaves have different spectral characteristics. Inclination angles
and hot spot effect of both leaves and stems were considered. The turbid RT models do

not care about some canopy architecture variables. For example, the SAIL model does
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not use canopy height as an input parameter, but it does use leaf hotspot (leaf length:
canopy height) and stem hotspot (stem length: canopy height) as input parameters.

Geometric models represent the canopy reflectance as a linear combination of the
reflectance spectra from sunlit and shaded objects within the field of view of the sensor
(observer): sunlit crown, sunlit background, shadowed crown and shadowed background.
Some models apply principles of random set overlap. The fractions of all elements
viewed by the sensor are modeled as functions of canopy characteristics: for example,
canopy LAI, canopy height, crown geometry, leaf angle distribution, and crown
horizontal area and so on. Their component’s spectra are often from field measurements
(e.g., Jahnke et al., 1965; Terjung et al., 1972; Jackson et al., 1979; Li et al., 1986;
Strahler et al., 1990; Li et al., 1992).

Computer-based simulation canopy models often use the Monte Carto method,
three-dimensional photo transport and simulation with radiosity to calculate reflectance,
transmittance and absorption at both leaf level and canopy level (e.g., Govaerts et al.,
1996; North, 1996; Govaerts et al., 1998; Chelle et al., 1999; Garcia-Haro et al., 1999;
Ustin et al., 2001; Combal et al., 2002). These models simulate photo activities within
leaf and canopy based on the explicit representation of position, shape, orientation, and
optical properties of all relevant scatters in the canopy. A great need of computer time is
expected.

There are some models that combine radiative transfer models from different
categories. For instance, some hybrid models represent a canopy by combining the large-
scale structure (geometric considering) with a radiative transfer approximation for crown

internal microstructure and multiple scattering within and between crowns, trunk and
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ground. Li et al. (Li etal., 1995) was one example of the hybrid models and is used by
the MODIS scientific team to do terrestrial reflectance BRDF correction (Justice et al.,
1998; Strahler, 1999). Lacaze and Roujean (Lacaze et al., 2001) and Garcia-Haro and

Sommer (Garcia-Haro et al., 2002) are two other examples.

1.3.4 Introduction of canopy radiative transfer models coupled with leaf RT models

Canopy models can be coupled with leaf RT models to account for vegetation
chemistry. There are some studies that coupled canopy models with leaf RT models. For
example, Jacquemoud and others (Jacquemoud, 1993; Jacquemoud et al., 1995;
Jacquemoud et al., 2000) coupled SAIL with PROSPECT (called PROSAIL). They
(Jacquemoud et al., 2000) also coupled PROSPECT with Gobron et al. (1997), Kuusk
(1998) and another canopy RT model. Among the four models coupled, the authors
concluded that PROSAIL was the best one based on their simulation data. LIBERTY and
LEAFMOD have also been coupled with other canopy models (e.g. Ganapol et al., 1999).
But LIBERTY, LEAFMOD, and the other canopy models lack wide validation. And
PROSAIL has been shown to be a good level of comprise between simplicity and

accuracy (Jacquemoud et al., 1996; 1995; 1993; Andrieu et al., 1997).

1.3.5 _Review on Applications of Radiative Transfer Theory on estimation of

biophysical/biochemical parameters

The canopy/leaf radiative transfer model inversion is complicated. Iteration
algorithm (e.g., quasi-Newton optimization algorithm) is one of the methods to invert

canopy/leaf radiative transfer models (Jacquemoud et al., 2000; Bacour et al., 2001;
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Bacour et al., 2002a; Bacour et al., 2002b). Iteration algorithm is easy to describe and to
code. Recently, look-up table approaches (Knyazikhin et al., 1998a; Knyazikhin et al.,
1998b; Gobron et al., 2000a; Weiss et al., 2000) and neutral network methods (Baret et
al., 1995; Weiss et al., 1999; Fang et al., 2003) are studied. The iterative optimization
procedures are local optimization techniques and they have limited potential to search
‘global’ optimal solutions. For instance, if there are a few minimum points within a
search space, the iterative procedures could offer a local extreme-point solution and

might fail to provide a global extreme-point solution given an initial guessed value.

1.4 __ Why should FAPAR by Chlorephyll (FAPAR,) be proposed

Photosynthesis occurs in the chloroplasts of plant (forest, grass, and crop) leaves
and is composed of (1) a light reaction in which chlorophyll absorbs photosynthetically
active radiation (PAR) from sunlight; and (2) a dark reaction (the carbon fixation process)
in which the absorbed energy is then used to combine water and CO, to produce sugar.
To estimate GPP is to estimate plant photosynthesis. Chloroplasts of mesophyll cells, in
which photosynthesis occurs, contain photosynthetic pigments. For fresh green leaves
during the summer, chlorophylls in chloroplasts dominate, resulting in leaves of plants
being green; therefore PAR by chlorophylls is the most important part used for leaf
photosynthesis. When a senescent season begins, chlorophyll content in chloroplasts of
deciduous plants decreases. This results in the bright red and orange colors of fall foliage.
The capability of a single leaf to convert solar energy to photosynthesis is mainly

determined by its chlorophylls (see Figure 1.1).
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From the perspective of canopy, FAPAR.nepy can be partitioned into two parts:
FAPAR by leaf and FAPAR by stem. The presence of stem has a significant effect on
FAPAR an0py- For example, in forests with a leaf area index of <3.0, stem increased
canopy FAPAR by 10-40% (Asner et al., 1998b). Furthermore, a leaf is composed of
chlorophyll and some proportions of non-photosynthetic components (e.g., non-
photosynthetic pigments in the leaf, primary, secondary, tertiary veins, and cell walls),
dependent upon leaf type and leaf age. Non-photosynthetic absorption can vary in
magnitude (e.g., 20-50%) among different species, leaf morphology, leaf age and growth
history (Hanan et al., 1998; Lambers et al., 1998; Hanan et al., 2002). FAPAR canopy
should be partitioned into the fraction of PAR absorbed by chlorophyll (FAPARyy) in
leaf and by non-photosynthetic vegetation, i.e., NPV (FAPARypyv, including non-
photosynthetic pigments in leaf, stems, branches, cell walls and veins).

FAPAR,, =FAPAR, + FAPAR,,, (1.4)

canopy
Figure 1.1 also shows that it is necessary to partition FAPAR..s hence FAPAR canopy-
Hence, a FAPAR -centered vegetation photosynthesis model (VPM) was proposed

GPP = £, x FAPAR ,, X PAR : (1.5)

xW (1.6)

scalar

X P

scalar

€ = Eg X T yier
where light use efficiency (&) is affected by temperature, water and phenology of leaf, g
is the apparent quantum yield or maximum light use efficiency (umol CO,/umol PAR),

Tscatars Wscatar and Pscarar are the downward regulation scalars for the effect of temperature,

water and leaf phenology (leaf age) on light use efficiency of vegetation, respectively

(Xiao et al., 2004b; Xiao et al., 2004c; Xiao et al., 2005b; Xiao et al., 2005¢).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5 How to get FAPAR bv chlorophvll (FAPAR,;,

How to quantify seasonal FAPARy of a terrestrial ecosystem poses a great
challenge to remote sensing and ecology researchers, as it is an extremely difficult task to
measure FAPAR, and FAPARypy at the leaf and canopy levels on large scales over
plant growing seasons. Canopy NPV parts confound optical methods. Some studies
(Demarez et al., 1999; Rock et al., unpublished data) have shown there exist seasonal
variations of leaf/canopy reflectance for deciduous leaves and needle leaves. So canopy
leaves may vary their photosynthetic capacity and PAR absorption through the growing
season. Until now, no field and laboratory experiments to measure FAPARy; at the leaf
and canopy levels over plant growing seasons have been reported, and there has been no
literature reported efforts to calculate FAPARy; with physics-based radiative transfer
models.

Eddy flux approach has been used to measure CO,, H,O and energy at Harvard
Forest site since 1991 and the records of Harvard Forest represent the longest available
records in the world (Wofsy et al., 1993; Goulden et al., 1996; Barford et al., 2001). A
pioneering study (Hanan et al., 2002) using CO, measurements of a native tallgrass
prairie site and a wheat site in Oklahoma described a brand new way to estimate
FAPARn;, hence the study reported some interesting results. They did regression analysis
with the net ecosystem exchange (NEEco, umol m™ s™) at low PAR intensity:

PAR-FAPAR,, -a, = NEE., +R,, (1.5)
where @, is the ‘actual quantum yield’ (i.e., thé amount of moles of CO; fixed per mole

of PAR by chlorophylls in the canopy, unit: mol mol™) and Reco (umol m?s™?) is

12
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ecosystem respiration. When PAR , &, , NEE, ,and R, are available by

measurements, observations or estimations from other ways, FAPARy,; can be estimated.
Their results showed that FAPAR.yy of tall grass is around 0.63 — 0.65 times of FAPAR
by ‘green’ tall grass leaves, and FAPARy, of wheat is around 0.5 — 0.54 times of
FAPAR by ‘green’ wheat leaves (see Figure 5 of Hanan et al., 2002). Their results hint
that the PAR absorbed by green leaves is not totally used for photosynthesis.

Another way to estimate FAPARy, is to use canopy/leaf radiative transfer models
(Asner et al., 1998b; Hanan et al., 2002), i.e., to calculate FAPAR 4, by radiative transfer
models. Canopy/leaf radiative transfer models have many variables. To estimate
FAPAR .y by radiative transfer models, one needs to know the values of the variables.
Some of the values can be measured and some cannot. However, if there are enough
observations, some of all of the variables can be first inverted with canopy/leaf radiative

transfer models. Then FAPAR,; can be calculated with the estimated variables.

1.6 Objectives of my dissertation research and structure of my dissertation

The PROSPECT+SAIL model was used in my research to estimate FAPARs
(FAPAR;, FAPAR s and FAPAR inopy). The objectives of this research are six-fold: (1)
to develop a procedure to distinguish atmospherically contaminated MODIS observations,
snow contaminated observations and contamination-free observations; (2) to monitor
vegetation phenology using daily MODIS; (3) to check if the PROSAIL model can
predict the MODIS reflectance well; (4) to clarify the concepts of FAPAR 1, FAPAR je,¢
and FAPAR canepy; (5) to explore the potential of estimating FAPAR canopy, FAPAR.qf and

FAPAR,, using PROSAIL with daily images from MODIS onboard NASA Terra/Aqua
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satellite; and (6) to check if seasonal MODIS spectral variations of vegetation during
plant growing season are only due to vegetation’s anisotropic nature. The National
Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR), particularly Normalized Difference Vegetation Index (NDVI,
Tucker, 1979) of AVHRR, was the most widely used sensor in all sensors for land remote
sensing while its inherent data and sensor problems and other noises limited its utility in
change analyses in detail for short-terms (Goward et al., 1995; Prince et al., 1996; Lovell
et al., 2001; Pettorelli et al., 2005), e.g., for each day, for ten days, for a month. The
algorithms and practical operations to produce NDVI, LAI, and FAPAR c;40py of MODIS
are based on the experiences of usage of NDVI AVHRR/NOAA. The AVHRR NDVI
series don’t provide atmospheric-contamination or snow-cover information through
themselves (Justice et al, 1998). Phenology study based only on NDVI is questionable
(Xiao et al., 2004b, 2004c, 2005a, 2005b, 2005c¢). There isn’t a report about the
relationship between NDVI and FAPARy, in literature. My study is to explore the
potential to extract phenology information, leaf level information and FAPAR 4, based on
real MODIS observations. This study of radiative transfer models will help us to address
an important scaling issue — light absorption from chlorophyll to leaf and to canopy; and
may provide guidance for designing and conducting field measurement and observations
of forest canopies in the near future. Chapter 2 describes the procedure to distinguish
contamination observations and contamination-free observations and the application of
the procedure in various sites. Chapter 3 documents the lessons about what MODIS
observations and what PROSPECT leaf variables should be included in the radiative

transfer model inversion procedure. Based on experiences from Chapter 3, Chapter 4
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reports the radiative transfer model inversion results for the Harvard Forest. Chapter 5
depicts the seasonal spectral dynamics of the Bartlett Experimental Forest using the
application of the procedure of Chapter 2 and the application of the radiative transfer
model inversion method from Chapter 4. Chapter 6 tries to answer the question: Are
seasonal MODIS spectral variations of vegetation during plant growing season only due
to vegetation’s anisotropic nature? Chapter 7 summarizes the findings and results of my

doctoral study.
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Table 1.1 A comparison among Terra/Aqua MODIS, Landsat TM, NOAA AVHRR and SPOT-4
VEGETATION (VGT) optical sensors
MODIS Landsat TM AVHRR VGT
Characteristics (nm) (nm) (nm) (nm)
red red (620-670)" TM3 (630-690) | CHI1 (580-680) B2 (610-680)
NIR NIR; (841-876)" TM4 (760-900) | CH2 (725-1100) | B3 (780-890)
NIR; (1230-1250)
blue blue (459-479) TMI1 (450-520) B0 (430-470)
green green (545-565) TM2 (520-600)
SWIR SWIR; (1628-1652) | TMS (1550-1750) SWIR @580-1750)
SWIR; (2105-2155) | TM7 (2080-2350)
spatial resolution | 250 m’, 500 m 30m 1 km 1 km
revisit time daily 16 days daily daily

*Spectral bands with 250 m spatial resolution
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Figure 1.1 Spectral Absorption (%) (400nm - 2400nm) of leaf brown pigment (senescence), leaf dry matter,
leaf water and leaf chlorophyll of a leaf with chlorophyll=40 pg/cm?, leaf water=0.012g/cm?, leaf dry
matter=0.005g/cm? and brown pigment=1 (courtesy of Fred Baret)
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CHAPTER 2

IMPROVING MONITORING OF SEASONAL SPECTRAL SIGNAL DYNAMICS OF

TYPICAL VEGETATION TYPES FROM MODIS

2.1 Introduction

The MODIS leaf area index / fraction of PAR absorbed by canopy (MODIS
LAI/FPAR) science team assumes a constant standard leaf spectral property for each
biome type (Myneni et al., 2002; Wang, 2002; Figure 2.1) when they do estimation of
LAI/FPAR. The European researchers (Gobron et al., 2000b; Gobron et al., 2002;
Taberner et al., 2002) assume a single spectra profile for all leaves when they retrieve
FPAR. Both the MODIS LAI/FPAR science team and the European researchers did not
considerate seasonal leaf spectral variation. However, both experiments and theories
show that vegetation leaves have seasonal spectral variation. Some experiments
(Demarez et al., 1999; Kodani et al., 2002) showed that the chlorophyll concentration of
leaves changed during the growing season. Another experiment (Gond et al., 1999) also
showed the variations of leaf water thickness and dry matter during the growing season.
In theory, Xanthophyll pigment cycle should also be considered when photon flux
density (PFD) over canopy is very high. Xanthophyll pigment cycle is commonly
referred as the inter-conversion of antheraxanthin, zeaxanthin and violaxanthin. The

violaxanthin of the leaf decreases and the zeaxanthin content of the leaf increases via
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antheraxanthin when a green healthy leaf is exposed to a PFD that is in excess of
capability of photosynthetic tissues to utilize. The role of zeaxanthin and antheraxanthin
is to dissipate the excessive light and to protect the photosynthetic tissues and the leaf
(Gamon et al., 1997; Young et al., 1997; Gamon et al., 1999; Stylinski et al., 2002).
During leaf senescence stage, chlorophyll content decreases while proportion of
carotenoid content in total leaf pigment content increases (Waring et al., 1995; Merzlyak
et al., 1997; Demarez et al., 1999; Cavender-Bares et al., 2000; Gitelson et al., 2002b). If
the proportion 6f leaf pigments and/or leaf internal structure changes, the leaf spectra
may also change. Other vegetation stress factors can also cause leaf spectra to change
(Ceccato et al., 2001).

Some researchers reported that their spectral measurements of leaves changed
over the growing season (e.g., Demarez et al., 1999; Rock et al., unpublished data;
Gitelson et al., 2002a; Stylinski et al., 2002). Ustin, Duan and Hart dbcumented the
canopy reflectance of the grass vegetation, deciduous vegetation and evergreen
vegetation in June, September and October of 1992 (Ustin et al., 1994). Kodani et al.
documented the seasonal reflectance of Japanese beech in April — November of 1999
(Kodani et al., 2002). Richardson and Berlyn reported their measurements of leaf
reflectance of paper beech at different elevation level on a mountain (Richardson et al.,
2002). Remer, Wald and Kaufman collected the spectra of various ground surface targets,
including some forests, while flying on March 12, 1997, April 22, 1996, May 22, 1996,
July 30, 1997 and October 16, 1996(Remer et al., 2001).

MODIS has seven spectral bands for land study (Table 1.1). Both MODIS/Terra

and MODIS/Aqua can revisit daily. MODIS has daily, 8-day, 16-day, and monthly
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products, including the daily reflectance products, 8-day reflectance products. The daily
MODIS products provide the opportunities to record the seasonal spectral reflectance of
the MODIS seven bands for typical vegetation biome types. However, the opportunities
have not been utilized extensively by remote sensing researchers and other users.

It can be concluded from the above investigation that the seasonal spectral
variation of a MODIS pixel is not only possibly because of canopy LAI variation but also
possibly because of the seasonal spectral variation of leaves. Both of the factors should
be considered when we interpret seasonal canopy spectral signal. A study (Stylinski et al.,
2002) reported that both the canopy reflectance and leaf reflectance of two evergreen
chaparral species changed during the growing season. In this chapter, the MODIS
spectral signal dynamics of some forests, grassland, and crop in 2002 were collected and
analyzed. The yearly collection of MODIS daily reflectance data can be used to check if

the MODIS spectral signals of the biome types change during the growing season of 2002.
2.2  Methods

2.2.1 Daily MODIS data and preprocessing

Three MODIS standard products are used in this study: the MODIS daily surface
reflectance (MODO9GHK of MODIS/Terra and MYDO9GHK of MODIS/Aqua, v004),
the MODIS daily observation viewing geometry (MODMGGAD of MODIS/Terra and
MYDMGGAD of MODIS/Aqua, v004), and the MODIS daily observation pointers
(MODPTHKM of MODIS/Terra and MYDPTHKM of MODIS/Aqua, v004). The
MODO09GHK/MYD09GHK product has surface reflectance values of seven spectral

bands (500m spatial resolution) that are primarily designed for study of vegetation and
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land surface: red (620-670 nm), near infrared (NIR;, 841-875 nm and NIR,, 1230 - 1250
nm), blue (459 — 479 nm), green (545-565 nm), short-wave infrared (SWIR;, 1628 —
1652 nm, and SWIR;, 2105-2155 nm) (Table 1.1). The MODMGGAD/ MYDMGGAD
has information of observation sun-sensor-target geometry (view zenith angle, view
azimuth angle, sun zenith angle and sun azimuth angle) and information related to the
row and column numbers of location in the tile (see details in equations (2.1) and (2.2)
below) at nominal 1-km scale. The MODPTHKM/MYDPTHKM has pointers, at 500 m
scale, to observations that intersect each pixel of MODO9OGHK/MYDO09GHK in
MODMGGAD/MYDMGGAD (see details in equations (2.1) and (2.2) below) (personal
communication with Dr. Robert Wolfe). All these three MODIS data products are freely

available at USGS EROS Data Center (http://www.edc.usgs.gov/).

MOD09GHK/MYD09GHK, MODMGGAD/MYDMGGAD, and MODPTHKM/
MYDPTHKM have spatial resolutions of 500-m, 1-km and 500-m, respectively. The
MODO09GHK/ MYDO09GHK data are provided in a tile fashion, and each tile has 2400
pixels by 2400 pixels, covering approximately an area of 10° (latitude) by 10°
(longitude). To get an observation including reflectance and its observation sun-sen-
target geometry, we utilized the pointer file (MODPTHKM/ MYDPTHKM) to extract the
reflectance of seven MODIS bands from MODO9GHK/MYDO9GHK and to extract the
relative observation angles from MODMGGAD/ MYDMGGAD. The steps to extract the

observation are as follows:

r_lkm = (r_500m/ 2) - r_offset 2.1)
c_lkm = (c_500m/ 2) - c_offset 2.2)
21
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r_500m and c_500m are the row and column numbers of a location in 500-m
product (MODO9GHK/MYDO9GHK), r_1km and c_lkm are the row and column
numbers of the location that are needed to be determined in 1-km product
(MODMGGAD/MYDMGGAD), r_offset and c_offset are decoded from pointer file
(MODPTHKM/MYDPTHKM). Then iobs_res value from
MODPTHKM/MYDPTHKM is used to pick up the observation layer of one day in
MODMGGAD /MYDMGGAD at this location (personal communication with Dr. Robert
Wolfe).

The quality control (QC) value from MODO9GHK/MYDO09GHK includes
conclusions of quality assessment of total MODO9GHK/MYDO9GHK product, quality
assessment of each of the seven MODIS bands, information about if atmospheric
correction is performed, and information if adjacency correction performed. If the QC

value indicates any quality problem, the observation is not used in the analysis.

2.2.2__Sites

In this study, six sites were selected: a seasonally moist tropical evergreen forest
in Brazil (thereafter called km67 site), the Walker Branch Watershed Forest site
(thereafter called Walker site), the Harvard Forest site, the Howland Forest site, one
soybean site and one grassland site (Table 2.1). For each site except km67 site, the
MODIS Terra and Aqua observations in 2002 covering the site were collected (one pixel).
Because it is not easy to collect cloud-free MODIS observations for the seasonally wet
tropical area, the MODIS Terra and Aqua observations in 2001-2004 covering the km67

site were collected (one pixel).
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The seasonally wet tropical evergreen forest site is located in the Tapajos National
Forest near km67 of the Santarém-Cuiaba highway, south of Santarém, Par4, Brazil. An
eddy covariance flux tower has been operating nearly continuously at the site to measure
CO;, H;O and energy fluxes since April 2001. This site is dominated by old-growth
forests. Soils in the site are primarily nutrient-poor clay oxisols with some sandy utisols
(Silver et al., 2000). It has an annual mean temperature of 25°C, annual mean humidity of
85%, and an annual precipitation of about 1920 mm with strong seasonal dynamics (Rice
et al., 2004). The 7-month wet season is usually from December through June, and the
dry season is from July to November (Xiao et al., 2005¢c). A recent study (Saleska et al.,
2003) reported that the forest site acted as a carbon source in the wet season and a carbon
sink in the dry season, largely attributed to more ecosystem respiration (including soil
respiration) in the wet season than in the dry season. High daytime net ecosystem
exchange (NEE) flux and H,O flux in the dry seaéon were observed, and high GPP in the
dry season were inferred. The spectral signal from MODIS during 2001-2004 over the
site are collected, analyzed and compared with the flux results (Saleska et al., 2003).

The Walker site is located on the United States Department of Energy reservation
near Oak Ridge, Tennessee (335m elevation). Its vegetation is primarily a mixed-species,
eastern North American broad-leaved deciduous forest, dominated by 6ak (Quercus alba
L., Q. prinus L.), hickory (Carya ovata (Mill.) K. Koch), maple (Acer rubrum 1..), tulip
poplar (Liriodendron tulipifera L.) and loblolly pine (Pinus taeda L.). The canopy height
was about 26 m, a little bit higher than the canopy height of the Harvard Forest site. The
peak leaf area index of the canopy typically occurs by day of year (DOY) 140 and

reaches about 6.0. The annual mean precipitation is about 137.2 cm and the annual mean
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air temperature is 13.9° C. The soil is an infertile cherty silt-loam. The mean leaf
inclination angle is about 40° above crown closure and 10° below crown closure. The
forest has been growing since agricultural abandonment in 1940 (Baldocchi et al., 2001).

It is part of the AmeriFlux network (http://public.ornl.gov/ameriflux/Data/index.cfm).

The Harvard Forest site (180 - 490 m elevation) is located in Massachusetts, USA.
Vegetation is primarily a deciduous broadleaf forest, dominated by red oak (Quercus
rubra), red maple (Acer rubrum), black birch (Betula lenta) and white pine (Pinus
strobus). There are also some evergreen needleleaf species within the forest, for example,
eastern hemlock (Tsuga canadensis) (Waring et al., 1995). Totally, deciduous broadleaf
forest occupied 56% of the land, conifer forest occupied 12%, and mixed forest occupied
20% (Turner et al., 2003). Canopy height is approximately 20 —24m. Soils are mainly
sandy loam glacial till with some alluvial and colluvial deposits. The climate is cool,
moist temperate with July mean temperature 20°C. Annual mean precipitation is about
110 cm and precipitation is distributed evenly throughout the year. Most areas are drained
from moderately to well. Eddy flux measurements of CO,, H,O and energy at Harvard
Forest site have been collected since 1991 and represent the longest available records in
the world (Wofsy et al., 1993; Goulden et al., 1996; Barford et al., 2001). It is part of the

AmeriFlux network (http://public.ornl.gov/ameriflux/Data/index.cfm).

The evergreen coniferous Howland Forest site (60 m elevation) is located in
Maine, USA. The vegetation of this 90-year-old evergreen needleleaf forest is about
41% red spruce (Pinus rubens Sarg), 25% eastern hemlock (7Tsuga canadensis (L.) Carr.),
23% other conifers and 11% hardwoods (Hollinger et al., 1999). Canopy height is about

19.5 m.The leaf area index (LAI) of the forest stand is about 5.3. Plant growing season
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usually starts around mid-April (~ day of year (DOY) 100) and lasts about 180-days.
Soils throughout the forest are glacial tills, acid in reaction, with low fertility and high
organic composition. Eddy flux measurements of CO;, H,O and energy at the site have
being conducted since 1996 (Hollinger et al., 1999). It is part of the AmeriFlux network

(http://public.ornl.gov/ameriflux/Data/index.cfm).

The soybean field site is a University of Nebraska-Lincoln research facility,
located 58 km northeast of Lincoln Nebraska, U.S.A. Its area is about 65-ha (806m x
806m). The field was uniformly tilled prior to the initiation of the research program, and
has not been further tilled. The field is equipped with center pivot irrigation systems.
Water application was to maintain a minimum soil moisture availability of 50% within
the root depth zone by using predicted crop water use and daily monitoring of rainfall,
irrigation, soil evaporation, and soil moisture (Vina et al., 2004 and personal
communication with Dr. Anatoly Gitelson).

The Xilingol site, established for long-term ecological research by the Inner
Mongolia Grassland Ecosystem Research Station (IMGERS)of Chinese Academy of
Sciences in 1979, is located in the Xilin river basin, middle Inner Mongolia, China, about
60 km south-east of Xilinhot. It is representative of about 210,000 km’ of "typical steppe”
(i.e., L. chinense steppe and S. grandis steppe) grasslands, out of a total grassland area of
about 800,000 km’ in Inner Mongolia. With a warm, wet growing season from the end of
April to early October, these typical steppe grasslands provide good quality forage for
livestock and are used primarily for grazing. Its winter is cold and dry. Dominant soils
are chestnut and chernozem. The study site has been fenced since 1980 and was lightly

grazed before that time (Xiao et al., 1995).
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2.2.3 _MODIS daily data processing

Observations of vegetation can be affected by cloud, covering snow,
water/rainfall over soil and vegetation, and other soil factors, etc. I used the Xilingol
grassland site as the first and km67 site in tropical area as the last to describe the
processing procedure for the MODIS daily data.

If one observation over vegetation and/or soil is only contaminated by cloud, the
MODIS blue and SWIR; reflectance will increase. If the observation is only
contaminated by snow, the MODIS blue will increase; meanwhile, if the soil in the pixel
is wet, the SWIR; reflectance will be less than 0.25 (Kaufman et al., 2002).

Reflectance of ground target should not be greater than 100%. Figure 2.2 showed
all the observations of the Xilingol grassland site that have no any quality problems
showed by QC in 2002. Some of the observations have reflectance values of the MODIS
blue, green, red, and/or NIR; greater than 100%. One possible reason for why reflectance
value is greater than 1.0 is that atmospheric correction is not perfect. The observations
with reflectance value greater than 1.0 were discarded (please see Figure 2.3).

The annual observation distribution pattern of the Xilingol grassland site has the
following characteristics: there are observations with the MODIS blue reflectance less
than 20% from day of year (DOY) 50 to DOY 270 which show an clustering pattern, and
the MODIS blue reflectance patterns of observations before DOY 50 or after DOY 270
are different from the one from DOY 50-270 (Figure 2.3). First, the observations from
DOY 50-270 will be processed (Figure 2.4); secondly, the observations before DOY 50

or after 270 will be processed.
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The observations with MODIS blue reflectance greater than 20% from DOY 50-
270 were discarded (Figure 2.5). The observations have blue reflectance value greater
than 0.2 possibly because they were contaminated by clouds or snow. The observations
with scattering blue reflectance values were also discarded (Figure 2.6). There were some
observations with very low reflectance values for all the seven MODIS spectral bands in
Figure 2.6. Maybe the reason is that MODIS “observed” some standing rain water or
some soil with water. The observations with SWIR, less than 0.2 or SWIR; less than 0.1
were discarded (Figure 2.7).

The observations in Figure 2.7 and the observations from before DOY 50 or after
DOY 270 were put together to get Figure 2.8. I calculated NDVI (equation 1.1),
enhanced vegetation index (EVI; Huete et al., 1997), and land surface water index (LSWI;

Xiao et al., 2004b; Xiao et al., 2004c; Xiao et al., 2005a; Xiao et al., 2005¢):

pMR1 ~ Prep (2.3)

EVI =2.5x%
pNIRl + (6XpRED _7'5xpBLUE) +1

rswi = Prm "~ Pswir (2.4)
Puir, T Pswir,

where o is reflectance.

Reflectance of green vegetation (cover fraction > 0.6 ) and snow at 2.1 um is less
than 0.25 (Tucker, 1979; Karnieli et al., 2001; Xiao et al., 2004a). Reflectance of sparse
vegetation (cover fraction <0.4) and bare dry soil at 2.1 pum is greater than 0.25 (Tucker,
1979; Karnieli et al., 2001). I partitioned the observations into two parts: the observations
with MODIS SWIR; less than 0.25; the others with MODIS SWIR, greater than 0.25
(Figure 2.9). The relative NDVI, EVI and LSWI of the two parts were calculated (Figure

2.10). The relative period of the observations with MODIS SWIR, greater than 0.25

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



matched the non-growing season period of the grassland (Xiao et al., 1995). These
observations were composed with two parts: the observations with reflectance at blue less
than 0.2 which signals were mainly contributed by bright soils, standing litter/debris or
the mixtures of soil/litter/debris/frost, and the observations with reflectance at blue
greater than 0.2 which signals were possibly due to bright bare soil.

To detect how much fraction of the observations with MODIS SWIR,; less than
0.25 were covered by snow, the algorithm from Kaufman et al. (Kaufman et al., 2002)

was utilized. The fraction of snow cover (fsnow) is defined as:

Prea — O°5pswm2

0.6
Fonow = 2.5)
snow _ 0.5
0.51+0.07x Prea 0 6” SWIR,

Figure 2.11 showed the observations (SWIR; less than 0.25) without snow contamination.

Following the above procedure, I got relative results of the Harvard Forest site.
Figure 2.12 partitioned the observations of the Harvard Forest site into two parts: one part
with SWIR; less than 0.25 and another part with SWIR, greater than 0.25. Figure 2.13
showed related NDVI, EVI and LSWI of the two parts. Figure 2.14 showed the
observations (SWIR; less than 0.25) of the Harvard Forest site without snow
contamination.

Also with the same procedure, I got relative results of the Howland Forest site.
Figure 2.15 showed the observations with SWIR; less than 0.25 of the Howland Forest
site. Figure 2.16 showed the observations (SWIR; less than 0.25) of the Howland Forest

site without snow contamination.
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The case for the Walker site in 2002 was simpler. All the clustering observations
had SWIR,; reflectance less than 0.25 and no snow covered. Figure 2.17 showed all the
clustering observations of the Walker site in 2002.

For agriculture areas, there is possible aerosol in the air. The formula

Prea —0.504yz, in equation 2.5 can also be used to detect if there is significant

contribution from aerosol to the MODIS observed reflectance. For an observation, if

absolute value of the difference is less than 0.025* oy, , then the observation can be

treated as no significant aerosol/other atmospheric effect; otherwise the observation can
be treated as atmospherically contaminated. Using the criteria in place of equation 2.5
for the soybean crop site, I got the subset observations from the clustering observations
(SWIR;, less than 0.25) without atmospheric effect (Figure 2.19). All clustering
observations of the Soybean site in 2002 were showed in Figure 2.18.

For the tropical km67 forest site, I downloaded MODIS daily reflectance from
1/1/2001 - 7/10/2004. Figure 2.20 showed all the reflectance data. The reflectance
patterns of the MODIS seven bands of the km67 site are very different from the Xilingol
grassland site, the Harvard Forest site, the Howland Forest site, the Walker Branch
Watershed, and the Soybean site I have done in the above description. The MODIS blue,
red and green had much noise and had no clear or obvious clustering patterns (Figure
2.20). The plant area index (PAI) at the Tapajés National Forest varies between 5 -7 over
space and green vegetation cover is over 90% (Huete et al., 2002). Note that the canopy
of seasonally moist tropical evergreen forests has little change in leaf area index over
seasons. The vegetation of km67 is dense and dark over the whole year (Karnieli et al.,

2001). MODIS SWIR; band can be less influenced by atmospheric gases and the most
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common types of aerosols even if there is much high possibility of atmospheric
contamination over the km67 site than other sites I have described. So I tried to use the
MODIS SWIR; band to extract seasonal spectral signals of the km67 site through the
following steps. I collected together all the contamination free observations of the
Xilingol grassland site, the Harvard Forest site, the Howland Forest site, the Walker
Branch Watershed, and the Soybean site without atmospheric effects and/or snow effect,
and compared their blue, red and SWIR; reflectance (Figure 2.21). The MODOS red,

blue and SWIR; are highly correlated and I got the following formula:

Preg =0.521205, (2.6)

Poie = 02653 gy, (2.7)

The SWIR; can be used to replace red and blue when SWIR; can penetrates the

atmospheric column and a modified EVI (MEV]) is defined as:

Pnir, ~ 0.5212x Pswir,

28
P, + 6X0.5212X Py, —1-5X0.2653X Dy ) +1 (2.8)

MEVI =2.5x

All the contamination free observations I collected in Figure 2.21 were used to calculated
EVI and MEVI (Figure 2.22). I also compared NIR; reflectance and NDVI (Figure 2.23)

for all the contamination free observations I collected in Figure 2.21. EVI and MEVI are

highly correlated when there is no atmospheric effect or snow effect. Figure 2.20 showed
that there were observations of the km67 site with SWIR; reflectance between 0.03 and

0.1. I used the following criteria to select the observations for analysis of the km67 site:
(1)0.03 < pgye, 0.1 (2) pyy,, <0.3; (3) NDVI 2 %; (4) if Py 20.45,NDVI 2 % ; (5)

~0.004 < py,,, —0.2505;, <0.04 and (6) ~0.004< p,,, —0.50,,, <0.04. The red
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reflectance without atmospheric or snow effect of the Harvard Forest site, and the Walker
Branch Watershed site during the growing season from after leaf full expansion to before
leaf senescence, and the one of the Howland Forest site have a range between 0.015 —
0.05. The relative SWIR; range is 0.03 — 0.1. This is the reason for criteria (1). Criteria (2)
and (3) were from a past European study (Taberner et al., 2002). I used criteria (4)
according to Figure 2.23. The selected observations of the km67 site following tﬁe above

criteria (1) — (5) were shown in Figure 2.24. The relative NDVI, LSWI, EVI and MEVI

were in Figure 2.25.

2.3 Results

The spectral reflectance time series of MODIS seven bands (SWIR; reflectance
<0.25) without snow covered or atmospheric effects at the Xilingol grassland site in 2002
are in Figure 2.11. Reflectance of all the seven MODIS spectral bands has distinct
seasonal cycles. Blue, red, green, SWIR; and SWIR; began to decrease in middle to late
June and reached their minimum in early to middle August in 2002. Then they increased.
NIR; and NIR; had inverse tendency. NIR; and NIR; began to increase in middle to late
June and reached their peaks in early to middle August. After they reached their peaks,
they decreased rapidly. Only from day of year (DOY) 168 to 282 (about 115 days) in
2002 had the kind of observations (SWIR; reflectance <0.25) without snow covered or
atmospheric effects at the Xilingol grassland site (Figure 2.11). The pink points in Figure

2.9 are observations with SWIR; reflectance >= 0.25 which could be partitioned into two
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parts: the ones with blue reflectance >0.2 and the ones with blue reflectance <= 0.2. The
black blue points in Figure 2.9 minus the observations in Figure 2.11 were the
observations contaminated by snow with low NDVI, low EVI and high LSWI (Figure
2.10). To analyze vegetation activity at the grassland site, one may just use the
observations in Figure 2.11.

The spectral reflectance time series of MODIS seven bands (SWIR; reflectance
<0.25) without snow covered or atmospheric effects at the Harvard Forest in 2002 were
in Figure 2.14. The MODIS blue, red, green, NIR,, NIR, and SWIR, reflectance series in
2002 had a distinct seasonal cycle while SWIR; did not. The SWIR; reflectance curve
had a plateau. There were rare observations without snow covered or atmospheric effects
during the winter season (January, February and December). The available observations
without snow covered or atmospheric effects during the winter season had NIR; and
NIR; reflectance around 0.2. The NIR; and NIR; reflectance began to increase in late
March and reached their peaks in June to July. The NIR; and NIR, reflectance declined
after their peaks. The blue, red and SWIR; had inversely tendency. The blue, red and
SWIR; reflectance began to decrease in late March and reached their minimum in June to
July. The blue, red and SWIR; reflectance increased after their minimum. The green had
a different seasonal cycle from all others. The green reflectance began to increase in late
March and reached its peak in late May to early June. The green declined after its peak.
The MODIS reflectance of all the seven bands of snow contaminated observations
(Figure 2.12 and Figure 2.14) at the Harvard Forest site was different from snow un-

contaminated observations. With the different spectral characteristics between snow and
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vegetation/soil, the snow contaminated observations could be kicked off and the snow
contamination free observations could be kept for vegetation phenology analysis in detail.

The spectral reflectance time series of the MODIS seven bands (SWIR;
reflectance <0.25) without snow covered or atmospheric effects at the Howland Forest in
2002 were in Figure 2.16. The observations covered period from DOY 115 to DOY 318
in 2002. The MODIS blue, red and SWIR; reflectance series in 2002 had a distinct and
similar seasonal cycle. They decreased from DOY 115 to DOY 318. The MODIS green,
NIR;, NIR; and SWIR, reflectance series in 2002 had a distinct and similar seasonal
cycle, but different from the cycle of the blue, red and SWIR; reflectance. The MODIS
green, NIR;, NIR, and SWIR, reflectance increased from DOY 115, reached their peaks
around DOY 191, and then decreased until DOY 318. The observations in Figure 2.15
minus the observations in Figure 2.16 were the observations contaminated by snow. The
snow contaminated observations at the Howland Forest site had similar spectral
characteristics as the snow contaminated observations at the Harvard Forest site.

The spectral reflectance time series of the MODIS seven bands (SWIR;
reflectance <0.25) without snow covered or atmospheric effects at the Walker Branch
Watershed Forest site in 2002 were in Figure 2.17. The observations covered the whole
year of 2002. All the clustering observations were snow free. The MODIS blue, red,
SWIR; and SWIR; reflectance series in 2002 had a distinct and similar seasonal cycle.
They decreased from January, reached their minimum, continued their minimum from
May to September, and then increased until end of year 2002. The MODIS green

reflectance series were almost flat otherwise decreased very slightly through the year.
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The spectral Vreﬂectance time series of the MODIS seven bands (SWIR,
reflectance <0.25) without snow covered or atmospheric effects at the Soybean site in
2002 were in Figure 2.19. The observations covered the whole year of 2002. The MODIS
blue, red, green, SWIR; and SWIR; reflectance series in 2002 had a distinct and similar
seasonal cycle. They increased in January and February, reached their maximum values
in end of February to early March, then decreased, continued their minimum from May to
September, and then increased until end of year 2002. The MODIS NIR; reflectance
series were almost flat otherwise decreased very slightly through the year. The MODIS
NIR; reflectance series began to increase in March, reached its peak in July, and then
decreased. By comparing Figures 2.18 and 2.19, one can see some observations (the ones
in Figure 2.18 minus the ones in Figure 2.19) had significant contributions from
atmosphere.

The spectral reflectance time series of MODIS seven bands of all observations at
the km67 Forest site in 2002 were in Figure 2.20. One cannot visually distinguish which
ones are clustering observations without atmospheric effect, especially when keeping in
mind that the evergreen forest should have low reflectance in blue, red, green and SWIR;
bands (see peak growing seasons in Figures 2.14, 2.16 and 2.17). When using the
monthly precipitation threshold of <100 mm/month for definition of dry season (Saleska
et al., 2003), the dry-wet season change was clearly showed in Figures 2.24 and 2.26.
Figure 2.24 showed that there were a few atmospheric clear observations (red reflectance
<=0.04) during dry seasons. One has difficulties to interpret the tendency of the MODIS
blue, red and green reflectance with the atmospheric clear observations. However, the

MODIS NIR; and NIR; had obvious increasing tendency during the dry seasons. The
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SWIR, reflectance range was 0.03 — 0.1 which was as similar as the range of peak

growing seasons in Figures 2.14, 2.16 and 2.17.

2.3.2 Seasonal NDVI, EVI, LSWI and MEVI Dynamics of Typical Vegetation Types

from MODIS

The MODIS NDV], EVI and LSWI time series without snow covered or
atmospheric effects at the Xilingol grassland in 2002 were in Figure 2.11. The time series
of the three indices had distinct and almost same seasonal cycle with almost same spring
troughs and fall troughs. Following the change of NIR; reflectance curve, the three
indices began to increase in middle to late June and reached their peaks in early to middle
August. After they reached their peaks, they decreased rapidly. Figure 2.10 (a) showed
the NDVI, EVI and LSWI pattern of snow contaminated ground (January, November and
December). Figure 2.10 (b) showed the NDVI, EVI and LSWI pattern of dry bare ground
(February-middle June and late October).

The MODIS NDVI, EVI and LSWI time series without snow covered or
atmospheric effects at the Harvard Forest site in 2002 were in Figure 2.14. The time
series of NDVI and LSWI had distinct and similar seasonal cycle with similar spring
troughs and similar fall troughs. The reason of why NDVI was flat from June to
September is that the red reflectance during this period was much less than NIR,
reflectance and had no significant effect in calculation of NDVI. LSWI was also flat
during peak growing season because SWIR, reflectance was flat during peak growing
season. However, EVI had a different tendency from NDVI and LSWI. EVI began to

increase in late March and reach its peak in late June to early July. EVI decreased after its
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peak. EVI had the greatest variation in a short time range (e.g. in one day or a few days)
among the three indices during June to September. That is to say, EVI kept more of the
bi-directional distribution function (BRDF) effect than LSWI and NDVI. Snow
contaminated observations (Figure 2.13 and Figure 2.14) at the Harvard Forest site had
NDVI, EVI and LSWI as high as the ones of clear peak growing season observations. To
analyze vegetation activity, one needs to screen the snow contaminated observations.
Function 2.5 from Kaufman et al. (2002) offers one approach to do it.

The MODIS NDVI, EVI and LSWI time series without snow covered or
atmospheric effects at the Howland Forest site in 2002 were in Figure 2.16. The time
series of NDVI had least variation from DOY 115 to DOY 318 among the three indices.
Most of the NDVI curve had values greater than 0.8. LSWI and EVI time series had a
distinct and almost same seasonal cycle with almost same spring troughs and fall troughs.
Following the change of NIR; and SWIR; reflectance curves, LSWI and EVI increased
from DOY 115, reached their peaks around DOY 191, then decreased until DOY 318.
The snow contaminated observations (the ones in Figure 2.15 minus the ones in Figure
2.16) had similar NDVI, EVI and LSWI as the snow contaminated observations at the
Harvard Forest site.

The MODIS NDVI, EVI and LSWI time series without snow covered or
atmospheric effects at the Walker Branch Watershed Forest in 2002 were in Figure 2.17.
The time series of the three indices had a distinct and almost same seasonal cycle with
almost same spring troughs and fall troughs. LSWI during January-March and December
were negative. NDVI from late May to middle October were flat and greater than 0.8.

LSWI from late May to middle October were a little slightly decreasing. EVI from June
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to October were most strongly decreasing among the three indices. EVI had the greatest
variation in a short time range (e.g. in one day or a few days) among the three indices
during May to October. That is to say, EVI kept more of the BRDF effect than LSWI and
NDVI. The site could get snow free observations for the whole year.

The MODIS NDVI, EVI and LSWI time series without snow covered or
atmospheric effects at the Soybean site in 2002 were in Figure 2.19. The time series of
the three indices had a distinct and almost same seasonal cycle with almost same spring
troughs and fall troughs. They began to increase in April, reached their peaks in July-
August, and then decreased. The site could get snow free observations for the whole year.

The LSWI of the km67 forest site in Figure 2.25 showed the increasing tendency
during the dry seasons because of the same tendency of NIR; reflectance. EVI and MEVI
in Figure 2.25 also had increasing tendency during the dry seasons. It is difficult to say
NDVT had this kind of tendency. The leaf litterfall in Figure 2.26 was measured for every
two weeks. There were more litter-fall in the dry seasons than in wet seasons. Figure 2.26
showed that, during a dry season, the more cumulative litterfall, the higher NIR,
reflectance, hence the greater LSWI, EVI and MEVI (Figure 2.25). Note that the
evergreen forest canopy is composed of mixed-age leaves. NIR; increasing during dry
seasons may be attributed to both leaf fall of old leaves and emergence of new leaves,
resulting in dynamic changes in proportions of young and old leaves within a vegetation
canopy over seasons. Leaf fall of old leaves reduces self-shading, resulting in more
sunlight penetrating into the canopy to the remaining younger leaves, in other words, a
higher proportion of young leaves within the canopy are observed by the satellite. In

general, old leaves have less chlorophyll and water content but more structural materials
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(e.g., lignin, cellulose), in comparison to young leaves, which_could lead to significant
changes in absorbance, transmittance, and reflectance of leaves as the aging processes of
leaves progresses. In a field study that conducted leaf optical measurements of a number
of tropical evergreen species near Manaus in the Amazon basin (Roberts et al., 1998), the
NIR absorbance showed significant change, increasing from near zero for young leaves
to 10% for old leaves. Canopy reflectance is largely determined by light absorption of
leaf pigments, liquid water and leaf dry matter and light scattering of non-photosynthetic
vegetation (NPV). The NPV proportion at the leaf scale increases as (1) the leaf ages and
(2) the leaf responds to various environmental stresses (e.g., drought, O3, fungi).
Increased NIR absorbance at the leaf scale may have a larger impact at the canopy scale
by dampening NIR scattering within a canopy and thereby reducing canopy reflectance.
Thus, removal of old leaves from the canopy (leaf litter-fall) is likely to result in an
increase of NIR reflectance at the canopy level. NIR; continued to increase after leaf
litter-fall peaked in the middle of the dry seaéon at the km67 site (Figure 2.26), which
may be attributed to continuing removal of old leaves throughout the dry season,
followed by emergence (flushing) of new leaves in the late dry season. The peak NIR;
values had a time lag of one to 2 months after the peak leaf litter-fall. Although no
seasonal field data of leaf emergence at the km67 site are available, however, field
observations from other seasonal tropical forest sites suggested that many drought-
tolerant species with deep roots tended to produce new leaves in the late dry season (Van
Schaik et al., 1993; Wright et al., 1994). Field data at the Tapajos ~ s National Forest
showed a pulse of stem growth prior to the initiation of the wet season; and increments of

aboveground woody biomass (stem growth) were larger in the wet season than in the dry
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season (Saleska et al., 2003), which suggest that construction of new leaves may be
largely done during the late part of the dry season. For the field site in Manaus, Roberts et
al. (1998) reported that new leaf flush occurred mostly within the dry season. Field
observations also recorded that epiphylls (fungi, lichens, algae, and bacteria) colonized
the mature leaves, which affected light transmittance and absorption (Roberts et al.,
1998). Young leaves have a higher photosynthetic capacity than older leaves (Field,
1987), and therefore, it is essential to track changes of the age-structure of leaves in the
canopy, which could substantially improve modeling of the seasonal dynamics of

photosynthesis. In summary, during the dry seasons, LSWI, EVI and MEVI followed the

increasing tendency of NIR;.
2.4 Discussion and conclusions

In this chapter, I described an approach to acquire contamination-free
observations of MODIS daily image, i.e. the observations without snow cover and/or
atmospheric contamination (Figures 2.11, 2.14, 2.16, 2.17 and 2.19). The contamination-
free observations of the Xilingol grassland site with SWIR, greater than 0.25 (Figures 2.9
and 2.10), which suggested that the observed target was very dry and had no vegetation
covered, were also distinguished from other contamination-free observations. The
procedure screened the snow or cloud contaminated observations out and kept the
observations that held information of vegetation and /or background soil. The previous
analysis about the Harvard Forest, the Howland Forest and the km67 tropical seasonal
moist forest(Xiao et al., 2004b; Xiao et al., 2004c; Xiao et al., 2005b; Xiao et al., 2005c)

can be updated with the results of this chapter.
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The MODIS red, blue and SWIR; of the clustering observations in Figures 2.11,
2.14, 2.16, 2.17 and 2.19 have very good linear relationships (Figure 2.21) that fall in the
estimated relationship functions by a previous study (Kaufman et al., 1997). Functions
2.6 and 2.7 can be reasonably used as criteria to check if the observations are
contaminated by aerosols/snow. If so, left sides of equations 2.6 and 2.7 would be greater
than their right sides. The criteria can be used in the processing of MODIS to select the
best observations for 8-day composite reflectance data (e.g. MOD(09A1) or 16-day
products (MOD13).

The MODIS NIR; reflectance series of the clustering observations in Figures 2.11,
2.14, 2.16, 2.17 and 2.19 had the strongest seasonal variations among the seven spectral
bands reflectance series. They had obvious peak signals: before the period, NIR;
increased; after the period, NIR,; decreased. The peak NIR; reflectance values ranged 0.4
—0.5. The minimum NIR,; reflectance values ranged 0.15 — 0.2. However, the maximum
blue, green and red reflectance values of the clustering observations in Figures 2.11, 2.14,
2.16, and 2.17 were less than 0.15, and the maximum one in Figure 2.19 were less than
0.17. In a summary, the seasonal variation range of NIR; and NIR, reflectance in Figures
2.11,2.14, 2.16, 2.17 and 2.19 was greater than the ones of SWIR and visible reflectance,
and the seasonal variation range of SWIR reflectance was greater than the one of visible
reflectance.

The MODIS NIR, reflectance series of the clustering observations in Figures 2.11,
2.14, 2.16, 2.17 and 2.19 increased before they reached peaks. The increasing tendency
was accompanied with the increasing younger leaves proportion in pixels, i.e., decreasing

average leaf age at pixel scale. The MODIS NIR, reflectance series at the km67 site
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(Figure 2.26) showed that NIR; reflectance increased during dry seasons in 2001-2004.
Both the falling of old leaves and emergence of new leaves could possibly decrease the
average leaf age at pixel scale. The SWIR; reflectance of the Xilingol grassland site and
the Soybean site during peak growing season in 2002 was 0.2 - 0.3, the SWIR;
reflectance of the Harvard Forest, and the Howland Forest was 0.1 — 0.2, and the SWIR;
reflectance of the Walker Branch Watershed site was 0.1 — 0.25 (Figures 2.11, 2.14, 2.16,
2.17 and 2.19). Most observations of the km67 site in Figure 2.26 had SWIR; reflectance
0.1 - 0.2, a few others had SWIR; reflectance 0.2 -0.25. So there was no SWIR; signal
that showed any drought signal or less water content in leaf at the km67 site during dry
seasons.

All MODIS seven bands reflectance values changed with varying sun-target-
satellite geometry (Figures 2.11, 2.14, 2.16, 2.17, 2.19 and 2.24). NDVI, EVI and LSWI
were also affected by the BRDF effects. NIR; was the most strongly BRDF affected
among the seven bands. The difference between maximum reflectance and minimum
reflectance of NIR; on same day can be as high as absolute 0.2. EVI was the most
strongly BRDF affected among the three indices. The difference between maximum EVI
and minimum EVI on same day can be as great as absolute 0.2. Note that the greatest
EVI at the five non-tropical sites of this chapter was less than 0.75. When EVI is used for
quantitative calculation or estimation, the BRDF effect should be considered because
BRDF can possibly change EVI by relative more than 25% (0.2/0.75 > 25%).

Another concern about reflectance and indices is that it is somehow difficult to
compare them because of the worry of BRDF effect on them. The concern is somehow

reasonable. However, if one looks at the signal of reflectance and indices at whole
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seasonal scale (Figures 2.11, 2.14, 2.16, 2.17, 2.19, 2.25 and 2.26), one can find that
seasonal variation tendency can not be changed by BRDF effect even BRDF effect can
make confusion if the temporal scale is less than a whole growing season. For example,
Figure 2.17 clearly showed the seasonal variation tendency of spectral reflectance of the
MODIS seven bands and NDVI, EVI and LSWI even though NIR;, SWIR,; reflectance
and EVI had obviously strong BRDF effects. In a short summary, one does not need to
concern about the BRDF effect if he/she only wants to check seasonal tendency or
phenology with seasonal reflectance or NDVI, EVI or LSWI; one needs to consider
BRDF effect if he/she wants to use reflectance or EVI in quantitative analysis or
estimation.

If the assumption that the leaf spectral property of each biome type is constant
(Myneni et al., 2002; Wang, 2002) is correct, leaf area index (LAI) should follow the
NIR; reflectance seasonal pattern, i.e. LAI should follow the NIR; reflectance seasonal
patterns in Figures 2.11, 2.14, 2.16, 2.17, 2.19 and 2.26. However, the standard MODIS
LAI products at the Harvard Forest site, the Howland Forest site, the Walker Branch
Watershed Forest site and the km67 site (see Figure 2.27) did not follow the NIR;
reflectance seasonal patterns in Figures 2.14, 2.16, 2.17 and 2.26. The inconsistence
between the assumption by the MODIS LAI/FPAR standard product team and standard
MODIS LAI product suggests that the assumption is not correct, or the LAI product is

not correct, or both.
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Table 2.1 The latitude and longitude of the six sites for study in this chapter

site Land cover Latitude Longitude

km67 tropical evergreen forest 2.85694°S  54.95903° W

Walker Branch Watershed deciduous forest 35.95877°N  84.28743° W
Harvard Forest deciduous forest 42.53572° N 72.17200° W
Howland evergreen needle forest ~ 45.20407° N 68.7402° W
Soybean crop 41.16494°N  96.46861° W
Xilingol grassland 43.63222" N 116.70497° E
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Mean reflectance of six biome types
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Figure 2.1 Mean reflectance of six biome types used by MODIS LAI/FPAR science team (from Wang,
2002)
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Figure 2.2 MODIS daily observations of the Xilingol grassland site in 2002 (reflectance scale=0.0001)
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Figure 2.2 (continued) ~ MODIS daily observations of the Xilingol grassland site in 2002 (reflectance
scale=0.0001)
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Figure 2.3 MODIS daily observations (all reflectance<=1) of the Xilingol grassland site in 2002
(reflectance scale=0.0001)
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Figure 2.3 (continued) ~ MODIS daily observations (all reflectance<=1) of the Xilingol grassland site in
2002 (reflectance scale=0.0001)
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Figure 2.4 MODIS daily observations (all reflectance<=1) of the Xilingol grassland site in DOY 50 to 270,
2002 (reflectance scale=0.0001)
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Figure 2.4 (continued) ~ MODIS daily observations (all reflectance<=1) of the Xilingol grassland site in
DOY 50 to 270, 2002 (reflectance scale=0.0001)
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Figure 2.5 MODIS daily observations (blue reflectance<=0.2) of the Xilingol grassland site in DOY 50 to
270, 2002 (reflectance scale=0.0001)
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Figure 2.5 (continued) ~ MODIS daily observations (blue reflectance<=0.2) of Xilingol grassland site in
DOY 50 to 270, 2002 (reflectance scale=0.0001)
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Figure 2.6 MODIS daily observations of the Xilingol grassland site in DOY 50 to 270, 2002 (reflectance
scale=0.0001) after discarding the observations with scattering blue reflectance
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Figure 2.6 (continued) ~ MODIS daily observations of the Xilingol grassland site in DOY 50 to 270,
2002 (reflectance scale=0.0001) after discarding the observations with scattering blue reflectance

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MCODIS blue reflectance MODIS SWIR.retlectance
2500 - 5000 -
2000 < 4000 4
# 8 -
S 1500 € 3000 4
kX T
<1000 J £ 2000 4
o M -
500 - 1000 -
i} ; . 0 Y Y
50 150 250 50 150 250
ooy in 2002 0OY in 2002
MODIS red reflectance BAODIS NIR , reflectance
25001 BOOD e oo e
2000 i 4000 -
1]
% 1500 - § 3000 -
g 2 0
< 1000 £ 2000
- 1)
500 1000 4
04 T T a T T
a0 150 250 50 150 280
DOy in 2002 DoY in 2002

Figure 2.7 MODIS daily observations of the Xilingol grassland site in DOY 50 to 270, 2002 (reflectance
scale=0.0001) after discarding the observations with scattering too low reflectance of all the seven bands
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Figure 2.7 (continued) ~ MODIS daily observations of the Xilingol grassland site in DOY 50 to 270,
2002 (reflectance scale=0.0001) after discarding the observations with scattering too low reflectance of all
the seven bands
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Figure 2.8 MODIS daily observations of the Xilingol grassland site in DOY 50 to 270 (reflectance
scale=0.0001) in Figure 2.7, observations before DOY 50, observations after DOY 270 and relative annual

NDVI, EVI and LSWT in 2002
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Figure 2.8 (continued) =~ MODIS daily observations of the Xilingol grassland site in DOY 50 to 270
(reflectance scale=0.0001) in Figure 2.7, observations before DOY 50, observations after DOY 270 and
relative annual NDVI, EVI and LSWI in 2002
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Figure 2.9 MODIS daily observations of the Xilingol grassland site in Figure 2.8 (reflectance scale=0.0001)
were partitioned into two parts: the observations with SWIR; less than 0.25 (black blue points); the others

with SWIR; greater than 0.25 (pink points)
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Figure 2.9 (continued) = MODIS daily observations of the Xilingol grassland site in Figure 2.8
(reflectance scale=0.0001) were partitioned into two parts: the observations with SWIR; less than 0.25
(black blue points); the others with SWIR, greater than 0.25 (pink points)
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Figure 2.10 (a) NDVI, EVI and LSWI of the observations in Figure 2.9 with SWIR,; less than 0.25; (b)
NDVI, EVI, and LSWI of the others in Figure 2.9 with SWIR, greater than 0.25
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Figure 2.11 Subset (SWIR,<0.25) of MODIS daily clustering observations of the Xilingol grassland site in
2002 (reflectance scale=0.0001) without snow covered and relative NDVI, EVI, LSWI and snow cover

fraction (cfsnow)
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Figure 2.11 (continued)  Subset (SWIR,<0.25) of MODIS daily clustering observations of the Xilingol
grassland site in 2002 (reflectance scale=0.0001) without snow covered and relative NDVI, EVI, LSWI and

snow cover fraction (cfsnow)
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Figure 2.12 MODIS daily observations of the Harvard Forest site in 2002 (reflectance scale=0.0001) were
collected as atmospheric contamination free observations from DOY 90 to 318 plus observations before
and after the period, and were partitioned into two parts: the observations with SWIR, less than 0.25 (black
blue points); the others with SWIR greater than 0.25 (pink points)
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Figure 2.12 (continued) MODIS daily observations of the Harvard Forest site in 2002 (reflectance
scale=0.0001) were collected as atmospheric contamination free observations from DOY 90 to 318 plus
observations before and after the period, and were partitioned into two parts: the observations with SWIR,
less than 0.25 (black blue points); the others with SWIR; greater than 0.25 (pink points)
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Figure 2.13 (a) NDVI, EVI and LSWI of the observations with SWIR; less than 0.25 in Figure 2.12; (b)
NDVI, EVI, and LSWI of the others with SWIR; greater than 0.25 in Figure 2.12

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MODIS blue retiectance MODIS SVYUR; retlectance
2500 GO0
z 2000 8 5000
€ 1500 g 4000
g o g 3000
v 00 T 2000
500 1000
0+ . ’ . 04 : . .
0 100 200 300 a 104 200 300
DOY in 2002 DOV in 2002
MODIS red retfiectance MODIS NIR, reflectance
2500 6000 -
" 2000 2 iggg 1
£ 1500 & 1
‘ g § 3000 4
v§ 1000 § 2000 -
500 1000 -
04 . . . 0 , . .
0 100 200 300 0 100 200 300
DOV in 2002 DOY in 2002

Figure 2.14 Subset (SWIR;<0.25) of MODIS daily observations (reflectance scale=0.0001) of the Harvard

Forest site in 2002 in Figure 2.12 without snow covered and relative NDVI, EVI, and LSWI
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Figure 2.14 (continued)  Subset (SWIR,<0.25) of MODIS daily observations (reflectance scale=0.0001)
of the Harvard Forest site in 2002 in Figure 2.12 without snow covered and relative NDVI, EVI, and LSWI
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Figure 2.15 MODIS daily observations of the Howland Forest site 111 2002 (reflectance scale=0.0001) were
collected as atmospheric contamination free observations from DOY 115 to 318 plus observations before

and after the period, and relative NDVI, EVI and LSWI were calculated
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Figure 2.15 (continued) MODIS daily observations of the Howland Forest site in 2002 (reflectance
scale=0.0001) were collected as atmospheric contamination free observations from DOY 115 to 318 plus
observations before and after the period, and relative NDVI, EVI and LSWI were calculated

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MODIS blue Reflectance MODIS SWIR . Refiectance
2500 - 3000 -
8 2000 1 o 001
T 1500 | g 20007
%’ 1000 J ] "g 1500 -
£ 100 E, 1000 4
500 4 500 A

1] ¥ T v 1] Y v r
0 160 200 300 0 100 200 300
DOY m 2002 DOY in 2002
MODIS red Reflectance MODIS NIR, Reflectance
2500 - S000 4
2000 4 o 2000 4
3 g
£ 1500 ; % 3000 4
3 1000 | 2 2000 -
E [t
500 1 1000
o - ¥ v Q x * v
a 100 200 300 0 100 200 300
DOY in 2002 DOY in 2002

Figure 2.16 Subset (SWIR;<0.25) of MODIS daily observations (reflectance scale=0.0001) of the Howland

Forest site in 2002 without snow covered and relative NDVI, EVI, and LSWI
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_Figure 2.16 (continued) ~ Subset (SWIR,<0.25) of MODIS daily observations (reflectance scale=0.0001)
of the Howland Forest site in 2002 without snow covered and relative NDVI, EVI, and LSWI
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Figure 2.17 MODIS daily atmospheric contamination free observations of the Walker Branch Watershed
Forest site in 2002 (reflectance scale=0.0001) and relativée NDVI, EVI and LSWI. Note that all of the
observations were snow free
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Figure 2.17 (continued) MODIS daily atmospheric contamination free observations of the Walker
Branch Watershed Forest site in 2002 (reflectance scale=0.0001) and relative NDVI, EVI and LSWL. Note

that all of the observations were snow free
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Figure 2.18 MODIS daily clustering observations of the Soybean site in 2002 (reflectance scale=0.0001)
and relative NDVI, EVI and LSWI
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Figure 2.18 (continued) MODIS daily clustering observations of the Soybean site in 2002 (reflectance
scale=0.0001) and relative NDVI, EVI and LSWI
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Figure 2.19 Subset (SWIR;<0.25) of MODIS daily clustering observations (reflectance scale=0.0001) of
the Soybean site in 2002 in Figure 2.18 after discarding the observations that have atmospheric effect and

relative NDVI, EVI and LSWI
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Figure 2.19 (continued)  Subset (SWIR,<0.25) of MODIS daily clustering observations (reflectance
scale=0.0001) of the Soybean site in 2002 in Figure 2.18 after discarding the observations that have
atmospheric effect and relative NDVI, EVI and LSWI
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Figure 2.20 All MODIS daily observations (reflectance scale =0.0001) of the tropical km67 seasonal moist
forest site since 1/1/2001 to 7/10/2004. DOY calculated beginning from 1/1/2001
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Figure 2.20 (continued) ~ All MODIS daily observations (reflectance scale =0.0001) of the tropical km67
seasonal moist forest site since 1/1/2001 to 7/10/2004. DOY calculated beginning from 1/1/2001
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Figure 2.21 Comparison of MODIS blue, red and SWIRz reflectance of all contamination free observations
of the Xilingol grassland site, Harvard Forest site, Howland Forest site, Walker Branch Watershed site and

Soybean site in 2002 (reflectance scale=0.0001)
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Figure 2.22 Comparison of MEVI and EVI of all contamination free observations of the Xilingol grassland
site, Harvard Forest site, Howland Forest site, Walker Branch Watershed site and Soybean site in 2002
(reflectance scale=0.0001)
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Figure 2.23 Comparison of NDVI and NIR,; of all contamination free observations of the Xilingol grassland
site, Harvard Forest site, Howland Forest site, Walker Branch Watershed site and Soybean site in 2002

(reflectance scale=0.0001)
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Figure 2.24 Selected MODIS daily observations (reflectance scale =0.0001) of the tropical km67 seasonal
moist forest site since 1/1/2001 to 7/10/2004 (DOY calculated beginning from 1/1/2001) that satisfy the

following criteria: (1)0.03 < pyyye, <0.15 () 0, < 0.3 G)NDVI 2 %; 4)if p,, 2045 NDVI % : 5)

-0.004 < p,. —~ 0'25pSWIR2 <0.04 and (6) -0.004 < Prea ™~ O-Sioswm2 <0.04
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Figure 2.24 (continued) ~ Selected MODIS daily observations (reflectance scale =0.0001) of the tropical
km67 seasonal moist forest site since 1/1/2001 to 7/10/2004 (DOY calculated beginning from 1/1/2001)

that satisfy the above criteria
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Figure 2.25 NDVI, ISWI, EVI and MEVI of the selected MODIS daily observations (reflectance scale
. =0.0001) of the tropical km67 seasonal moist forest site since 1/1/2001 to 7/10/2004 (DOY calculated
beginning from 1/1/2001)
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Figure 2.26 MODIS daily NIR, reflectance from Figure 2.24 and seasonal dynamics of precipitation and
leaf litterfall at the km67 site (precipitation and leaf litterfail from Saleska et al., 2003)
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Figure 2.27 Standard LAI product in 2002 of: (a) the Harvard Forest site; (b) the Howland Forest site; (c)
the Walker Branch Watershed Forest site and (d) the km67 site
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CHAPTER 3

LESSONS LEARNED FROM INVERSION OF PROSAIL WITH MULTIPLE DAILY

MODIS DATA

3.1 Introduction

The analysis of Chapter 2 showed that the assumption that the leaf spectral
reflectance of a given biome type is constant anywhere and anytime should be modified,
otherwise one will see the conflicting results: LAI from the MODIS FPAR/LAI products
does not follow the seasonal patterns of MODIS NIR;. Therefore I soften the assumption;
hence leaf optical properties and spectral characteristics are not constant during the plant
growing season. Following seasonal variations of leaf structure and chemistry, fraction of
absorption of photosynthetically active radiation by chlorophyll in leaves (FAPAR )
will change during the plant growing season. To estimate LAI, FAPAR, and other
biophysical/biochemical variables, a canopy radiative transfer model and a leaf radiative
transfer model need to be coupled. Bobby Braswell kindly offered me his SAIL version
(SAIL-2) and PROSPECT version in Matlab. The SAIL-2 model is credited to the former
studies (Goel et al., 1984c; Badhwar et al., 1985; Goel et al., 1985; Major et al., 1992;
Braswell et al., 1996; Andrieu et al., 1997; Jacquemoud et al., 2000). The SAIL-2 model
decomposes a canopy into stems and leaves. Stems and leaves have different spectral

characteristics. Inclination angles and BRDF (bi-directional reflectance distribution
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function) effect of both leaves and stems were considered. The PROSPECT offered by
Bobby Braswell has four leaf-level variables: leaf internal structure variable (N), leaf
chlorophyll content (Cyp), leaf dry matter content (Cy,), and leaf water thickness (Cy)
(Jacquemoud et al., 1990; Hosgood et al., 1995; Baret et al., 1997; Demarez et al., 1999).
I coupled the leaf-canopy PROSPECT+SAIL-2 model by replacing the component of
leaves in the SAIL-2 model with the four-variable PROSPECT model. I also got the
information about the leaf brown pigment (Cyrown) from Fred Baret in France and added it
to the code. The PROSPECT+SAIL-2 model has three groups of variables: (1)
observation viewing geometry variables, (2) atmospheric condition variable (visibility)
and (3) biophysical and biochemical variables (Table 1). Because the MODIS data used
here were well but not perfectly atmospherically corrected, the atmospheric visibility
variable (VIS, in Table 1) was assumed as a constant during inversion. The other sixteen
variables are plant area index (PAI), stem fraction (SFRAC), leaf inclination angle
(LFINC), stem inclination angle (STINC), leaf hot spot parameter (LFHOT), stem
hotspot parameter (STHOT), cover fraction (CF), five leaf parameters (N, Cyp, C, Cy,
Corown) , tWO parameters to simulate soil optical properties (SOILA, SOILg), and two
parameters to simulate stem optical properties (STEMa, STEMg).

The objective of this chapter is to record the steps I have performed and the
lessons I have learned from the experiments: how fast the Matlab version runs; which
daily MODIS observations may be used as inputs to invert the radiative transfer model;
can all the seven MODIS bands be used to do inversion; should the brown pigment

consideration be added into the PROSPECT model?
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3.2 Metropolis algorithm for inversion

Inversion of a radiative transfer model is computation intensive and requires
careful choice of optimization procedures. The iterative optimization procedures, the
most common approaches to invert a radiative transfer model (e.g., Bacour et al., 2002a),
were not used in this study. The iterative optimization procedures are local optimization
techniques and they have limited potential to search ‘global’ optimal solutions. For
instance, if there are a few minimum points within a search space, the iterative
procedures could offer a local extreme-point solution and might fail to provide a global
extreme-point solution given an initial guess. As an alternative, a new method based on a
Metropolis algorithm (Metropolis et al., 1953; Hurtt et al., 1996; Braswell et al., 2005)
was developed. This method simulates the distribution of variables and can provide
estimates of uncertainty (i.e., standard deviation) of individual variables. The Metropolis
algorithm is computation intensive.

The inversion algorithm we used in this study is a modified version of the
Metropolis algorithm (Metropolis et al., 1953), one algorithm often used in Markov
Chain Monte Carlo (MCMC) estimation. In each iteration, the algorithm uses the current
variable estimate to randomly generate a new “proposal” estimate in variable space. This
new variable estimate will be the input for a new model run. Model-retrieved and
observed reflectance values are used to calculate the likelihood of an error probability
model. The Metropolis algorithm then accepts the new variable point with a certain
probability. The resulting Markov chain of accepted variable values converges after a
certain burn-in period to the posterior distribution of the variables conditional on the

observations. In the following, Pr denotes Probability in a general sense, or, more
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specifically, the value of a probability density function. Pr(new|data) and Pr(old|data)

mean conditional probabilities of “new” and “old” variable estimates (points) given the

known “data”.

According to Bayes’ theorem,

Pr(variable point | data) = Pr(variable point)Pr(data | variable point)
Let L(variable point) = Pr(data| variable point),then

Pr(variable point |data) < Pr(variable point)L(variable point)

where L(-) is the likelihood function. Pr(variable point) denotes the prior distribution

assumed for the set of variables. In this study we assume a set of independent uniform

prior distributions for the variables. Let X, = [x,.l,---,x,.p ] (p>1), iis the subscript of data

point, subscripts 1, ..., p mean spectral bands, and x is reflectance.

This study assumes that the observed spectral values X, differ from the model
predicted values U, = [uﬂ RENTS ] according to a mean zero p-variate Gaussian error model

that results in the likelihood function

H A(XUNENX U2
ey

Ny Y he ’

where n is the number of data points and 2 is the variance - covariance matrix of X. ¥,

is estimated by the usual sample variances — covariances in each step of the algorithm:

Z, =),

. i j=1..,p @
Sij :;;(in —uki)('xkj —uki)
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The natural logarithm of the likelihood, the “log-likelihood” (log(L)), is used in the
algorithm during operation(e.g., Bishop, 1995).

The algorithm defines the probability to accept the new point as following:

— min ( ! Pr(new | data) J, 3)

Pr )
Pr(old | data)

accept

If the algorithm accepts the new point, it will become “old” point in next iteration;
otherwise, the old point will still be the “old” point in next iteration.
To accelerate the speed of convergence of the Metropolis algorithm, we modified
the adaptive algorithm used in other studies (e.g., Hurtt et al., 1996; Braswell et al., 2005)
- as following:
In each iteration, one variable is selected to change as

variable,,, . = variable,, +rX(variable,,, , — variable ) )]

new,s

where s=1, ... , 16, the number of variables in PROSAIL-2 model that are allowed to

search for solutions, r is randomly selected at each step between *0.5 - ftemperature_,

variable_,,  ,variable ;  are the maximum and minimum values allowed to search. If

variable,,, . is accepted, then temperature, is increased by a factor of 1.006569

(personal communication with Dr. William Sacks). If it is rejected, then temperature is

decreased by a factor of 0.99. By changing the temperatures in this way, the
temperatures of all variables are adjusted until varying any given variable leads to
acceptance of about 23% to 44% of the time, which is considered an ideal acceptance rate

for the Metropolis algorithm (Gelman et al., 2000).
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3.3 Results

TASK 1: How fast does the Matlab version run?

I simulated ten MODIS observations as input for inversion of all the fifteen
variables in Table 1 with the Metropolis algorithm. It spent 4 hours, 39 minutes and 27
seconds on workstation dragon of Complex Systems Research Center, UNH to run 42000

iterations. If I want to run 2,250,000 iterations, it will need 10days, 10 hours, 3 minutes

and 50 seconds.

TASK 2: Which daily MODIS observations may be used as inputs to invert the radiative

transfer model?

In Chapter 2, I described and analyzed the procedures in detail about how to
determine if one daily MODIS observation is cloud-free and snow-free, or if it is a noise-
contaminated observation. For example, the cloud-free and snow-free daily MODIS
observations of the Harvard Forest site in 2002 had BLUE reflectance less than 0.05
(Figure 2.14). The SWIR; reflectance of cloud-free and snow-free observations over
Harvard Forest site should be not greater than 0.25. Following the procedures in Chapter

I1, one can select the cloud-free and snow-free observations as input of radiative transfer

models.

In order to test which MODIS bands should be used and if brown pigments in leaf

should be considered, I collected daily MODIS observations from day of year (DOY) 201
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to 211 in 2001 over Harvard Forest site (see description of the site in Chapter 4), a
deciduous broadleaf forest site. The data collection set was used for the task. Description
about daily MODIS observations in detail is available in Chapters 2 and 4. The strength
of the Metropolis inversion algorithm is to provide distributions for individual variables.

The posterior distributions offer histograms of the variables and their standard deviations

(uncertainties).

Here I reported the histograms of the sixteen variables (see Figure 3.1) from
inversion of the MODIS data collection using all the seven MODIS bands with the
as\sumption that leaf brown pigments be zero. The mode of cover fraction histogram
(Figure 3.1 (c)) is close to its allowable right range, i.e. 100%. It is reasonable because
the Harvard Forest was almost completely covered by forests (Turner et al., 2003).
However, the LAI (LAI=PAI*(1-SFRAC)) (see Figures 3.1 (a) and (b)) is much lower
than the field measurements (Xiao et al., 2004¢) and the estimates from intensive field
measurements and Landsat ETM + (Cohen et al., 2003) during summer peak growing
season. Leaf chlorophyll mean value (Figure 3.1 (e)) was greater than 110 pg/cm®. The
value is much greater than the measurements in the Harvard Forest reported by other
researchers in earlier studies (Waring et al., 1995; Cavender-Bares et al., 2000) and
greater than the measurements of needles reported earlier (Zarco-Tejada et al., 2004).

Aber and colleagues (Aber et al., 1996) used specific leaf weight 0.028 g/cm’ for pine
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and 0.01 g/cm’ for deciduous leaf. The mean value of inverted leaf dry matter was around
0.052 g/cm® (Figure 3.1 (g)), much greater than the former. Using mean values of the
retrieved variable distributions, the reflectance was reproduced with PROSAIL-2. Blue,

NIR; and SWIR; were not well reproduced (Figure 3.1 (p)).

Compared with the results in Figure 3.1, the results with the consideration of
brown pigments in leaf (Figure 3.2) improved in some aspects. LAI and leaf dry matter
(Figures 3.2 (a), (b) and (h)) were more consistent with other research results in literature
(Aber et al., 1996; Cohen et al., 2003). Leaf chlorophyll estimates (Figure 3.2 (e)),
compared to the literature results, were reasonable. However, Reproduced blue and
SWIR; were much less than observed data (Figure 3.2 (q)). The results hint that it is a
better choice to use only five-spectral information with the consideration of brown
pigments. Actually, we may expect some yellow/dead leaves of forests at the scale of

500m, the MODIS scale used in this study.

TASK 3.3 inverted results using five MODIS bands excluding blue and

The reproduced red, green and SWIR; reflectance matched well with observed
data while the reproduced NIR; and NIR; were lower than observed data (Figure 3.3 (p)).
However, the retrieved chlorophyll concentration (Figure 3.3 (e)) hit the right edge of the

allowable search range. The estimate of chlorophyll could not match the reality. Without
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including of brown pigment in inversion at the 500m scale of MODIS data, some of the

inverted results will be unreasonable.

Comparing the LAI, chlorophyll concentration, leaf dry matter and reproduced
reflectance of Figures 3.1 -3.4, the results using only five MODIS bands and with the
consideration of leaf brown pigments were the most reasonable. The retrieved mean LAI
was 4.44 that is reasonable when compared to 4.9 reported by Cohen and colleagues
(Cohen et al., 2003). The retrieved mean chlorophyll content was 49.89ug/cm’ that fall
between the measurements of broadleaf species and needles from the literatures (Waring
et al., 1995; Cavender-Bares et al., 2000; Zarco-Tejada et al., 2004). Retrieved mean leaf
dry matter also fall between specific leaf weight 0.028 g/cm’ for pine and 0.01 g/cm’ for
deciduous leaf (Aber et al., 1996). The reproduced reflectance matched well with the

observed MODIS five bands data.

34 Conclusions and summary

The blue band is very sensitive to aerosols in the atmosphere. The SWIR; band is
very sensitive to water and it can be saturated if there is sub-pixel water body under clear
atmospheric condition (King et al., 1999). The MODIS daily reflectance data are not
perfectly atmospherically corrected. Based on the above experiments the blue and SWIR,

bands should be excluded from the inversion.
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There are still some non-green pigments of the forests that can be detected by the
MODIS optical sensors at 500m scale in spite of the common assumption that the forest
leaves in summer are green. When brown pigments are not considered, green pigments
will be treated as both green pigments and non-green pigments in the inversion
procedures. It can be a source of error and uncertainties of the inversion.

Hereafter, I will use only five MODIS bands and consider brown pigments during

inversion procedures.
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Table 3.1 A list of variables in the PROSAIL-2 model and their search ranges
Variable | Description Unit Search
range
Biophysical | PAI plant area index, i.¢., leaf +stem area 1-75
/biochemical index
variables SFRAC | Stem fraction 0-1
CF Cover fraction: area of land covered 0.5-1
by vegetation/ total area of land
Ca Leaf chlorophyll a+b content pg/cm’ | 0-80
N Leaf structure variable: measure of 1.0-4.5
the internal structure of the leaf
Cw Leaf equivalent water thickness cm 0.001 -
0.15
Cm Leaf dry matter content g/em’ 0.001 -
’ 0.04
Chrown Leaf brown pigment content 0.00001 -8
LFINC Mean leaf inclination angle degree | 10-89
STINC Mean stem inclination angle degree | 10— 89
LFHOT | Leaf BRDF variable: length of leaf/ 0-09
height of vegetation
STHOT | Stem BRDF variable: length of stem 0-0.9
/ height of vegetation
STEM4 Stem reflectance variable: maximum 0.2-20
(for a fitted function)
STEMg | Stem reflectance variable range (for 50 — 5000
same fitted function)
SOILA Soil reflectance variable: maximum 0.2-20
(for a fitted function)
SOILg Soil reflectance variable: range (for 50 — 5000
same fitted function)
Atmospheric | VIS Diffuse/ direct variable: scope of km 50
condition atmospheric clarity
variable
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Figure 3.1 Retrieved results using seven MODIS bands without consideration of brown pigments for the
Harvard Forest for MODIS data collection from day of year (DOY) 201 to 214 in 2001: retrieved
histograms: (a) plant area index (PAI), (b) stem fraction, and (c) cover fraction
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Figure 3.1 (continued) Retrieved histograms: (d) leaf internal structure parameter (N), and (e) leaf
chlorophyll content (C: pg/cm?)
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Figure 3.1(continued) Retrieved histograms: (f) leaf water content (C,, : cm), and (g) leaf dry matter Cn:
glem?)
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Figure 3.1 (continued) Retrieved histograms: (h) leaf hot spot parameter, (i) stem hot spot parameter, G)
leaf inclination angle (degree), and (k) stem inclination angle (degree)
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Figure 3.1 (continued) Retrieved histograms: (1) stem optical parameter (StemA), (m) stem optical
parameter (StemB), (n) soil optical parameter (SoilA), and (o) soil optical parameter (SoilB)
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reproduced MODIS refiectance vs MODIS observed reflectance (p)

reproduced reflectance

Figure 3.1(continued) (p) a comparison between the reproduced reflectance using retrieved mean values of
(a) — (0) and MODIS observed reflectance '
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Figure 3.2 Retrieved results using seven MODIS bands with consideration of brown pigments for the
Harvard Forest for MODIS data collection from day of year (DOY) 201 to 214 in 2001: retrieved
histograms: (a) plant area index (PAI), (b) stem fraction, and (c) cover fraction
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Figure 3.2 (continued) Retrieved histograms: (d) leaf internal structure parameter (N) , (¢) leaf chlorophyll
content (Cy,: p.g/cmz), and (f) brown pigment
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Figure 3.2 (continued) Retrieved histograms: (g) leaf water content (C,, : cm), and (h) leaf dry matter (Cy, :
glem’)
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Figure 3.2 (continued) Retrieved histograms: (i) leaf hot spot parameter, (j) stem hot spot parameter, (k)

leaf inclination angle (degree), and (1) stem inclination angle (degree)
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Figure 3.2 (continued) Retrieved histograms: (m) stem optical parameter (StemA), (n) stem optical
parameter (StemB), (0) soil optical parameter (SoilA), and (p) soil optical parameter (SoilB)
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Figure 3.2 (continued) (q): a comparison between the reproduced reflectance using retrieved mean values of
(a) - (p) and MODIS observed reflectance
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Figure 3.3 Retrieved results using MODIS bands except blue and SWIR; without consideration of brown
pigment for the Harvard Forest for MODIS data collection from day of year (DOY) 201 to 214 in 2001:
retrieved histograms: (a) plant area index (PAI), (b) stem fraction, and (c) cover fraction
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Figure 3.3 (continued) Retrieved histograms: (d) leaf internal structure parameter (N) , and (e) leaf
chlorophyil content (Cy,: ug/cm2)
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Figure 3.3 (continued) Retrieved histograms: (f) leaf water content (C., : cm), and (g) leaf dry matter (Cy, :
g/em®)
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Figure 3.3 (continued) Retrieved histograms: (h) leaf hot spot parameter, (i) stem hot spot parameter, (j)
leaf inclination angle (degree), and (k) stem inclination angle (degree)
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Figure 3.3 (continued) Retrieved histograms: (1) stem optical parametér (StemA), (m) stem optical
parameter (StemB), (n) soil optical parameter (SoilA), and (o) soil optical parameter (SoilB)
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Figure 3.3 (continued) (p) a comparison between the reproduced reflectance using retrieved mean values of
(a) — (0) and MODIS observed reflectance .
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Figure 3.4 Retrieved results using MODIS bands except blue and SWIR; with consideration of brown
pigments for the Harvard Forest for MODIS data collection from day of year (DOY) 201 to 214 in 2001:
retrieved histograms: (a) plant area index (PAI), (b) stem fraction, and (c) cover fraction
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Figure 3.4 (continued) Retrieved histograms: (d) leaf internal structure parameter (N) , (e) leaf
chlorophyll content (Cyp: pg/cm?), and (f) brown pigment
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Figure 3.4 (continued) Retrieved histograms: (i) leaf hot spot parameter, (j) stem hot spot parameter, k)
leaf inclination angle (degree), and (1) stem inclination angle (degree)
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Figure 3.4 (continued) Retrieved histograms: (m) stem optical parameter (StemA), (n) stem optical
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CHAPTER 4
ESTIMATING LIGHT ABSORPTION BY CHLOROPHYLL, LEAF AND CANOPY |
IN A DECIDUOUS BROADLEAF FOREST USING MODIS DATA AND A

RADIATIVE TRANSFER MODEL'

4.1 Introduction

Gross primary production (GPP) is a key terrestrial ecophysiological process that
links atmospheric composition and vegetation processes. One of the most important of
these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 um range
(also known as photosynthetically active radiation or PAR), water, carbon dioxide (COs),
and nutrients. The fraction of PAR absorbed by the vegetation canopy (FAPAR anopy) 1S
therefore an important biophysical variable and is widely used in satellite-based
Production Efficiency Models (Potter et al., 1993; Prince et al., 1995; Ruimy et al., 1996;
Running et al., 2004) to estimate GPP or net primary production (NPP). In remote sensing
studies, FAPAR anopy is usually estimated as a linear or non-linear function of Normalized
Difference Vegetation Index (NDVI) (Prince et al., 1995; Tucker, 1979). FAPAR canopy 18
also related to leaf area index (LAI), and is estimated as a function of LAI and a light
extinction coefficient in a number of process-based biogeochemical models (Ruimy et al.,

1999). The LAI-FAPAR canopy and NDVI-FAPAR caropy relationships have been the

! This chapter is already published in Remote Sensing of Environment (2005), vol. 99, 357-371
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dominant paradigm in the literature for estimating GPP and NPP of terrestrial vegetation
at various spatial scales (Field et al., 1995; Running et al., 2004).

A vegetation canopy is composed primarily of photosynthetically active
vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage,
branches and stems). The presence of NPV has a significant effect on FAPARcanopy. For
example, in forests with an LAI less than 3.0, an earlier study (Asner et al., 1998b) found
that stems increased canopy FAPAR by 10-40%. There is then, in principal, a need to
partition FAPAR ..0py into the fractions of PAR absorbed by green leaves and by NPV.

Furthermore, it is important to note that a green leaf is composed of chlorophyll
and various proportions of non-photosynthetic components (e.g., other pigments in the
leaf, primary/secondary/tertiary veins, and cell walls). Non-photosynthetic absorption in
PAR wavelengths can vary in magnitude (e.g., 20-50%) among different species, leaf
morphology, leaf age and growth history (Hanan et al., 1998; Lambers et al., 1998; Hanan
et al., 2002). We argue that FAPAR ca,0p, should be partitioned into the fractions of PAR
absorbed by chlorophyll (FAPAR) and by NPV (FAPARypyv, including all the non-
chlorophyll pigments in leaf, cell walls, veins, branches and stems).

Only the PAR absorbed by chlorophyll (a product of FAPAR, x PAR) is used
for photosynthesis. Therefore, remote sensing-driven biogeochemical models that use
FAPARy in estimating GPP are more likely to be consistent with plant photosynthesis
processes (Xiao et al., 2004b, b). It is important to understand to what extent FAPAR canopy
can be partitioned into FAPAR.; and FAPARypv given imperfect models and data. In an
earlier study (Depury et al., 1997), a process-based leaf photosynthesis model estimated

PAR effectively absorbed by PSII system per unit leaf area. However, the partitioning
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issue has not been studied extensively in both remote sensing and ecological communities
that focus on large scales.

Quantifying the temporal evolution of FAPAR.y; for a forest ecosystem represents
an important challenge for remote sensing and ecology researchers, as it is extremely
difficult to directly measure FAPAR; and FAPARypy at the leaf and canopy levels on
large scales over plant growing seasons. To our knowledge, no field and laboratory
experiments to measure FAPARy, at the leaf and canopy levels over plant growing
seasons have been reported, and similarly we found no published efforts to calculate
FAPAR_ with physics-based radiative transfer models.

In this study, we aim to develop a theoretical and technical framework for
quantifying and evaluating the fractions of PAR absorbed by chlorophyll, leaf and
canopy. The specific objectives of this study are twofold: (1) to clarify the concepts of
FAPARw, FAPAReas and FAPAR canopy; (2) to explore the potential of estimating

FAPAR canopy; FAPAR cas and FAPAR ,, , using a coupled leaf-canopy radiative transfer

model with multiple daily images from the MODerate resolution Imaging
Spectroradiometer (MODIS) onboard NASA Terra satellite. We used a coupled leaf-
canopy radiative transfer model (PROSPECT model +SAIL-2 model) to calculate
FAPAR, FAPAR canopy and FAPAR .. These models have been discussed extensively in
the published literature, both separately and in combination (Verhoef, 1984; Kuusk,

1985; Verhoef, 1985; Jacquemoud et al., 1990; Braswell et al., 1996; Jacquemoud et al.,
1996; Baret et al., 1997; Gond et al., 1999; Jacquemoud et al., 2000; Weiss et al., 2000;
Bacour et al., 2002a; Combal et al., 2002; Verhoef et al., 2003; Zarco-Tejada et al., 2003;

Di Bella et al., 2004). As a case study, we selected a deciduous broadleaf forest at the
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Harvard Forest in Massachusetts, USA, where earlier studies reported field-based
observations of leaf chlorophyll content (Waring et al., 1995) and LAI (Cohen et al.,
2003; Xiao et al., 2004c¢).This radiative transfer based modeling exercise will help us to
address an important scaling issue — light absorption from chlorophyll to leaf and to
canopy. Our analysis also provides guidance for designing and conducting field

measurement and observations of forest canopies in the near future.

4.2 Description of the radiative transfer model and the inversion algorithm

4.2.1 Brief description of the PROSPECT+SAIL-2 model

The PROSPECT model is a leaf radiative transfer model. Previous studies used
the PROSPECT model with four variables - leaf internal structure variable (N), leaf
chlorophyll content (Cy), leaf dry matter content (Cy,), and leaf water thickness (Cy)
(Jacquemoud et al., 1990; Hosgood et al., 1995; Demarez et al., 1999; Newnham et al.,
2001). A number of other studies used the PROSPECT model with five variables - leaf
internal structure variable (N), leaf chlorophyll content (C,,), leaf dry matter content (Cy,),
leaf water thickness (Cy) and leaf brown pigment (Cirown) (Baret et al., 1997; Verhoef et
al., 2003; Di Bella et al., 2004). We used the five-variable PROSPECT model in this
study because the addition of brown pigment is useful for discriminating between
photosynthetic and non-photosynthetic light absorption.

The SAIL (Scattering from Arbitrarily Inclined Leaves) model is a canopy
radiative transfer model. The SAIL model has been developed by several earlier
researchers, evolving gradually over time with minor changes reflecting individual study

objectives (e.g., Goel et al., 1984c; Verhoef, 1984; Badhwar et al., 1985; Goel et al., 1985;
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Kuusk, 1985; Verhoef, 1985; Major et al., 1992; Braswell et al., 1996; Andrieu et al.,
1997; Jacquemoud et al., 2000). In this study we used the version of SAIL presented by
Braswell et al. (SAIL-2; Braswell et al., 1996). The SAIL-2 model decomposes a
vegetation canopy into stems and leaves. In a typical parameterization, stems have
spectral properties that are more similar to soil and litter than leaves. Leaf and stem mean
inclination angles, and the self-shading effect of both leaves and stems are also
considered.

In this study, we coupled the modified PROSPECT model with the SAIL-2 model
(hereafter called PROS AIL-2) by replacing the leaf reflectance component in the SAIL-2
model with the five-variable PROSPECT model. The coupled PROSAIL-2 model was
used to describe optical characteristics (reflectance, absorption and transmittance) of the
canopy and its components. The PROSAIL-2 model has three groups of parameters: (1)
observation viewing geometry variables; (2) an atmospheric condition (visibility)
variable; and (3) biophysical and biochemical variables (Table 1). Table 1 lists the
search range of the sixteen biophysical/ biochemical variables, based on an extensive
literature review. The sixteen biophysical and biochemical variables are plant area index
(PAI), stem fraction (SFRAC), cover fraction (CF), stem inclination angle (STINC), stem
BRDF effect variable (STHOT), leaf inclination angle (LFINC), leaf BRDF effect
variable (LFHOT), five leaf variables that simulate leaf optical properties (N, Cyp, Cim, Cy,
Corown), two soil/litter variables that simulate soil/litter optical properties (SOILA, SOILgp),
and two stem variables that simulate stem optical properties (STEM,a, STEMp). Because

the MODIS data used in the study were atmospherically corrected, we set the
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atmospheric visibility variable (VIS, in Table 4.1) to be large and constant throughout

this analysis.

4.2.2 Description of inversion algorithm -- the Metropolis algorithm

Inversion of a radiative transfer model is computationally intensive and requires
careful choices of optimization procedures. Iterative steepest-descent optimization
procedures, the most commonly used approaches to invert radiative transfer models (e.g.,
Bacour et al., 2002a), were not used in this study. These procedures are local
optimization techniques with limited potential to locate globally optimal solutions. For
example, if there are a few minimum points within a search space, the iterative
procedures could offer a local extreme-point solution and might fail to provide a global
extreme-point solution given an initial guess. As an alternative, a method based on the
Metropolis algorithm (Metropolis et al., 1953; Hurtt et al., 1996; Braswell et al., 2005)
was employed. This method estimates posterior probability distributions of the variables
and thus can provide estimates of uncertainty (such as standard deviations and confidence
intervals) of individual variables, by inspection of the retrieved distributions. The
Metropolis algorithm is relatively computationally intensive, owing to the need for
simulation of a large number of samples required to obtain a reliable estimate of the
variables’ distributions.

The Metropolis algorithm (Metropolis et al., 1953), is a type of Markov Chain
Monte Carlo (MCMC) estimation procedure. At each step out of a predetermined number
of iterations, the algorithm uses the current variable estimate to randomly generate a new

“proposal” estimate in variable space. This new variable estimate will be the input for a
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new model run. Model-retrieved and observed reflectance values are used to calculate
the likelihood of an error probability model. The Metropolis algorithm then accepts the
new variable estimate with a certain probability. The resulting Markov Chain of accepted
variable values converges to the posterior distribution of the variables conditional on the
observations after a transient “burn-in” period. MCMC theory assures that such a
sampling scheme provides Markov chains whose values represent draws from the
posterior distributions. In the following formalism, Pr([} denotes probability in a general
sense, or more specifically, the value of a probability density function. Pr(v) denotes the
prior distribution assumed for the set of variables. Pr(vyew|data) and Pr(vgg|data) refer to
the conditional probabilities of “new” and “old” variable estimates (variable points) given
the known “data”.

According to Bayes’ theorem,

Pr(v | data) =< Pr(v) Pr(data | v)

Let L(v) =Pr(data|v)

Pr(v | data) o< Pr(v)L(v)
where L(:) is the likelihood function. In this study we assume a set of independent

uniform prior distributions for the variables. Let X, = [xﬂ )t X ] (p>1), iis the subscript

of data point, subscripts 1, ..., p mean spectral bands, and x is reflectance.

This study assumes that the observed spectral values X, differ from the model
predicted values U, = [uﬂ bl ] according to a mean zero p-variate Gaussian error model

that results in the likelihood function
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where n is the number of data points and 2 is the variance-covariance matrix of X. 2 is

estimated by the usual sample variances and covariances in each step of the algorithm:

z:e z(sij)pxp
1 L,j=L...p )
S :;kz—l(xki — Uy )Xy —Uy)

The natural logarithm of the likelihood, the “log-likelihood” (log(L)), is used in the
algorithm during its operation(e.g., Bishop, 1995).

The algorithm defines the probability to accept the new point as following:

_ mm( ) Pr(v,,, | data)} 3)

Pr, )
Pr(v,, | data)

accept

If the algorithm accepts the new point, it will become the “old” point in next iteration;
otherwise, the old point will still be the “old” point in next iteration.
To accelerate the speed of convergence of the Metropolis algorithm, we modified

the adaptive algorithm used in other studies (e.g., Hurtt et al., 1996; Braswell et al., 2005)

as following:

In each iteration, one variable is selected to change as

% =V X (vm,s ~Viins) @)

new.,s

where s=1, ... , 16, is the number of variables in PROSAIL-2 model that are allowed to

search for solutions, r is randomly selected at each step between +0.5-T,, v . ., v... are

the maximum and minimum values allowed to search, and 7 is temperature. If v, is
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accepted, then T, is increased by a factor of 1.006569. If it is rejected, then T, is

s

decreased by a factor of 0.99. By changing the temperatures in this way, the T; (s=1, ...,
16) of all variables are adjusted until varying any given variable leads to acceptance of
about 23% to 44% of the time, which is considered an ideal acceptance rate for the

Metropolis algorithm (Gelman et al., 2000).

4.2.3__Calculation of FAPAR canopy. FAPAR i1, and FAPAR .y

To calculate FAPAR 11, FAPAR;c.r and FAPAR canopy using the PROSAIL-2
model, we need to know the values of the input variables used in the model. Our strategy
is to first invert the biophysical and biochemical variables using the coupled PROSAIL-2
model with observed spectral reflectance data (reflectance plus relative observation
geometry), and then to calculate FAPAR ¢y, FAPAR eos and FAPAR canopy using forward
simulations.

We calculated FAPAR canopy (Goward et al., 1992), FAPAR.,; (Braswell et al.,
1996), and FAPAR; (see equations 5 - 9 ) using the PROSAIL-2 model with the

variable values from the inversion.

APARMMPy
FAPARCMOW = —PA—RS—— (5)
0

APAR
leaf ( 6)

FAPAR = — —
0

APAR,,
PAR,

FAPAR,,, = M

APAR.,,, = APAR,,; + APAR (8)

canopy stem
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APAR,, = APAR,, + APAR + APAR ©)

dry matter brown pigment

where PAR is the incoming PAR at the top of the canopy, and APAR is the absorbed
PAR. AP ARcanopy, AP ARleaf, AP ARstem, AP ARChla AP ARdry matters and AP ARbrown pigment are
absorbed PAR by canopy, leaf, stem, chlorophyll in leaf, dry matter in leaf, and brown

pigment in leaf, respectively.

After integration of the coupled PROSAIL-2 model with the Metropolis inversion
algorithm, we conducted a number of model inversion runs with simulated data to
examine the performance of the modeling framework. Here we report results from one
typical group of these model-simulated data (Table 4.2). We used the values of individual
variables in Table 4.2 to simulate reflectance as the first simulated data set. For the
second simulated data set, we added random noise (mean=0, standard deviation=5% of
reflectance) to represent error in the reflectance prior to inversion. In the third simulated
data set, we added a different amount of random noise (mean=0, standard deviation=10%
of reflectance) to the reflectance. Inversion of the PROSAIL-2 model was conducted for
the three simulated data sets, using the MCMC algorithm (see Section 2.2). All the
sixteen variables (Table 4.1) were estimated simultaneously for the three simulated data
sets.

The strength of the Metropolis algorithm is that it provides posterior distributions

of retrieved variables, which present a detailed picture of the behavior and uncertainty of
individual variables, conditioned on both the model and the observed data. Therefore the

retrieved distributions provide information about the parameter sensitivity of the
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PROSAIL-2 model. For simplicity, we have grouped variable behavior into three major
categories: well-constrained, edge-hitting and poorly-constrained (Braswell, et al., 2005).
The “well-constrained” variables usually have a well-defined distribution, with small
standard deviations relative to their allowable ranges. The “poorly-constrained” variables
have relatively flat distributions with large standard deviations relative to their allowable
ranges. Edge-hitting variables are those for which the modes of their retrieved values
occurred near one of the edges of their allowable ranges and most of the retrieved values
were clustered near this edge. As shown in Table 4.2, among the 16
biophysical/biochemical variables in the PROSAIL-2 model, nine variables had “well-
constrained” distributions, six variables had “poorly-constrained” distributions, and one
variable had “‘edge-hitting” distribution. By forward calculation with the retrieved
distributions, we found that FAPAR canopy, FAPARear and FAPAR,; were also “well-
constrained”. Because of page limits we did not present the graphs to show the histograms
of individual variables from the simulated data. Graphs showing the histograms of
individual variables retrieved from the MODIS data (see Section 3.2) illustrate the

parameter behaviors we discussed in this section.

4.3 Description of the Harvard Forest site and multiple daily MODIS data

collections

4.3.1 Brief description of the Harvard Forest site

The Harvard Forest eddy flux tower site (42.54°N and 72.18°W, 180 - 490 m
elevation) is located in western Massachusetts, USA. The vegetation is primarily

deciduous broadleaf forest, dominated by red oak (Quercus rubra), red maple (Acer
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rubrum), black birch (Betula lenta) and white pine (Pinus strobus). There are also some
evergreen needleleaf species within the forest, for example, eastern hemlock (7Tsuga
canadensis) (Waring et al., 1995). Altogether, deciduous broadleaf forest occupies 56%
of the land, conifer forest occupies 12%, and mixed forest occupies 20% (Turner et al.,
2003). The canopy height is approximately 20 —24m. Soils are mainly sandy loam glacial
till with some alluvial and colluvial deposits. The climate is cool, moist temperate with
July mean temperature 20°C. Annual mean precipitation is about 110 cm, and the
precipitation is distributed approximately evenly throughout the year. Most areas are at
least moderately well-drained (Wofsy et al., 1993; Goulden et al., 1996; Barford et al.,
2001). The major deciduous species of Harvard Forest commenced senescence on about
September 17" in 1991 and 1992 (Bassow et al., 1998). Intensive field work has been
conducted at the site for measuring leaf chlorophyll content by species (Waring et al.,
1995) and LAI (Cohen et al., 2003; Xiao et al., 2004c). These field data are useful and
available for evaluating estimated values of chlorophyll content and LAI from inversion

of the PROSAIL-2 model.

Three MODIS standard products are used in this study: MODIS daily surface
reflectance (MODO9GHK, v004), MODIS daily observation viewing geometry
(MODMGGAD, v004), and MODIS daily observation pointers (MODPTHKM, v004).
The MODIS daily surface reﬂecfance product has surface reflectance values of seven
spectral bands (500m spatial resolution) that are primarily designed for study of

vegetation and land surface: red (620-670 nm), blue (459 — 479 nm), green (545-565 nm),
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near infrared (NIR,, 841-875 nm, and NIR,, 1230 — 1250 nm), short-wave infrared
(SWIR,, 1628 — 1652 nm, and SWIR;, 2105-2155 nm). The MODIS daily observation
viewing geometry product contains observation viewing geometry information (view
zenith angle, view azimuth angle, sun zenith angle and sun azimuth angle) at a nominal
1-km scale. The MODIS daily observation pointers product provides a reference, at the
500 m scale, to observations that intersect each pixel of MODIS daily surface reflectance
product in MODIS daily observation viewing geometry product (personal communication
with Dr. Robert Wolfe). All these three MODIS data products are freely available at

USGS EROS Data Center (http://www.edc.usgs.gov/).

The quality control (QC) data layer from the MODIS daily surface reflectance
product includes information about errors and missing data in the daily surface
reflectance product, for each of the seven MODIS bands, as well as information about
whether an atmospheric correction was performed, and information about whether an
adjacency correction was performed. If the QC value indicates any quality problem, the
observation was not used in our analysis. In addition, we tried to avoid residual cloud-
contaminated observations by carefully screening reflectance values of the MODIS blue
band (459 — 479 nm). The reflectance of forested and other vegetated areas is generally
less than 0.05 (Kaufman et al., 1997) under cloud-free conditions. If the MODIS blue
band reflectance is greater than 0.05, and the QC flag indicates no quality problem, the
observation is still excluded from the analysis. In addition, the blue band is very sensitive
to residual aerosol, and the SWIR; band is very sensitive to subpixel water bodies (King
et al., 1999). Therefore, both the blue and SWIR; bands were not used for inversion of

PROSAIL-2 model. In this study, we used information from the other five MODIS bands
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to invert PROSAIL-2 model. Thus, in Equations (1) and (2), p is equal to five,
X, =[x, %00 %30 X %5 ] » and U, =luy 00,5, 1,5,1,,;5] , Where subscripts 1, 2, 3, 4, 5 refer
to red, NIR;, green, NIR;, and SWIR, bands of MODIS, respectively.

We acquired daily MODIS data (year 2001 through year 2003) from the NASA
data archive, for an area containing the Harvard Forest site. To invert all the sixteen
variables of the PROSAIL-2 model simultaneously with daily MODIS data, one needs to
have sufficient satellite observations of adequate quality. For the MODIS sensor onboard
the Terra satellite, there are'not enough satellite observations over Harvard Forest site
within one day to allow a stable inversion of the PROSAIL-2 model (the problem is
underdetermined). One solution is to collect satellite observations over a longer period of
time, for example, over a 16 days period as is done in the production of the standard
MODIS nadir-adjusted product (MOD43; Strahler, 1999). To balance the need for many
satellite observations and the need for collecting observations over a short period of time,
we used a flexible scheme for organizing observations for inversion of the PROSAIL-2
model (Table 4.3). We assumed that there is negligible variation of the canopy and the
leaf within the period of each data collection in Table 4.3. This assumption is commonly
used when researchers need many observations during a short period (e.g., Strahler,
1999). Each of the six data collections in Table 4.3 has 10 to 17 good-quality
observations and covers no more than sixteen consecutive days. The MODIS
observations associated with the individual data collections have large variations in
observation géometry. For example, Figure 4.1 shows the variation of observation

geometry for the data collection from DOY 201 to 214 in 2001.
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4.3.3 Inversion of the PROSAIL-2 model with MODIS data

For this paper, we designed an inversion scheme to estimate the sixteen
biophysical and biochemical variables using observed spectral reflectance data. We
performed inversions of the PROSAIL-2 model for each of the six data collections using
the Metropolis algorithm, resulting in the distributions of individual variables for each
data collection. We evaluated the inversions of the PROSAIL-2 model in three ways.
First, we compared observed surface reflectance from the MODIS image with surface
reflectance retrieved using PROSAIL-2. For the forward calculations of reflectance we
used the mean values of variables taken from the posterior distributions. Secondly, we
examined the temporal variations of a few key variables from inversion of the PROSAIL-
2 model, with available data about LAI and chlorophyll content from the literature.
Thirdly, we examined the temporal variation of FAPAR canopy, FAPAReor and FAPAR ),
and compared them with two commonly used vegetation indices, NDVI and the
Enhanced Vegetation Index (EVI, Huete et al., 1997), showing their temporal patterns

and magnitudes with respect to FAPAR values.

NDVI = Pvm ~ Prea (10)
Prir, t Prea
EVI =25x Prig, ~ Pred (11)

Prig, + 06X 0ppq =T.5X Oy +1

where 0,0, and Py are reflectance values of the blue, red and NIR; bands.
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4.4 Results

4 4.1 Comparison between retrieved and observed reflectance values

After the inversions of the PROSAIL-2 model, we utilized the mean values of the
retrieved variable distributions for each data collection as inputs to calculate the
reflectance with forward simulations of the PROS AIL-2 model. Figure 4.2 shows a
comparison of PROSAIL-2 retrieved reflectance with observed reflectance of MODIS
green, red, NIR;, NIR;, and SWIR, bands. The correlation coefficient between retrieved
and observed MODIS visible reflectance is 0.75 for green band and 0.54 for red band.
The root mean squared error (RMSE) between observed and retrieved MODIS visible
reflectance is 0.9% for green band and 0.9% for red band. The correlation coefficient
between retrieved and obser_ved NIR/SWIR reflectance is 0.83, 0.67, and 0.50 for NIR;,
NIR; and SWIR;, respectively. The RMSE between observed and retrieved NIR/SWIR
reflectance is 2.8%, 4.0%, and 3.7% for NIR;, NIR; and SWIR,, respectively. Note that
each data collection spanned approximately two weeks, and any variation of leaf and
canopy during the period may have contributed to the discrepancies between our
retrieved reflectance and MODIS observed reflectance. Possible errors introduced during
MODIS pre-processing may also contribute to the discrepancies (e.g. imperfect
atmospheric correction). The comparison suggests that PROSAIL-2 model with the
retrieved mean values of individual variables reasonably reproduces the surface

reflectance of the deciduous broadleaf forest site in 2001-2003.
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in the PROS AIL.-2 model

The strength of the Metropolis inversion algorithm is that it estimates probability
distributions for individual model variables. Inspection of these posterior distributions
offers a measure of uncertainty in the form of their standard deviations or other quantile
intervals. As discussed previously, the shape of the distributions provide a measure of
compatibility between model and data. We examined the histograms of the sixteen
variables from inversion of each MODIS data collection, and ranked them into the
categories of “well-constrained”, “poorly-constrained” and “edge-hitting”. For the
MODIS data collection in DOY 147-162, nine variables belong to “well-constrained”, six
variables to “poor-constrained” and one variable to “edge-hitting” (Table 4.4). For
example, leaf chlorophyll content (C,p) has a bell-shaped “well-constrained” distribution
(Figure 4.3), with a mean value of 35.9 pg/cm’ and a standard deviation of 5.6 pg/cm’.
Stem fraction (SFRAC) has a relatively “well-constrained” distribution (Figure 4.4) with
a mean value of 8.8% and a standard deviation of 5.6%. In comparison, cover fraction
(CF) has a distribution that clearly belongs to the “edge-hitting” category (Figure 4.5),
with a mean value of 92% and a standard deviation of 7%. The soil variable (SOIL,) is
“poorly-constrained” (Figure 4.6) and has a mean value of 9.94 and a standard deviation
of 5.79. We calculated LAI, based on estimated values of PAI and SFRAC, and we see
that its resultant distribution is “well constrained” (Figure 4.7) with a mean value of 4.2
and a standard deviation of 1.3. For the other five MODIS data collections, the results
were similar. Both sgem and soil variables contributed relatively little to surface

reflectance, largely due to a very high percentage of forest cover and large values (4.9 in
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peak growing season of 2001) of leaf area index in the Harvard Forest site (Cohen et al.,
2003).

Figure 4.8 shows the temporal variation of the mean and standard deviation of
three canopy-level variables in the PROSAIL-2 model. The mean value of plant area
index (PAI) from DOY 147 to 260 in 2001 to 2003 varies between 4 and 5 (Figure 4.8a),
with a slightly increasing tendency of PAI from DOY 147 to 210, and a slightly
decreasing tendency of PAI from DOY 230 to DOY 260. The mean value of stem
fraction from DOY 147 to 260 in 2001 to 2003 was within the range of about 2%-10%,
and the data collection from DOY 147 t0162 in 2002 had the largest value of stem
fraction among the six data collections (Figure 4.8b). Stem fraction explained why the
difference between the mean value of FAPAR ,npy and the mean value of FAPARc,¢ of
the data collection from DOY 147 to 162 in 2002 was the greatest among all the six data
collections (Figure 4.10a). The mean value of cover fraction from DOY 147 to 260 in
2001 to 2003 was within the range of 92% - 99%, and the data collection from DOY 147
t0162 in 2002 had the smallest value of cover fraction among the six data collections
(Figure 4.8¢). The cover fraction histogram of the data collection from DOY 147 t0162 in
2002 is shown in Figure 4.5. Its mode appears the near the right edge of its allowable
range (Table 4.1). All other modes of cover fraction for the six data collections also
appear near the right edge. This is why some of the “mean plus standard deviation”
values are greater than 1.0 in Figure 4.8c. We calculated LAI using the equation LAI =
(1- SFRAC) x PALI. The resultant LAI mean values vary between 3.9 in DOY 147-162 in

2002 and 4.4 in DOY 201-214 in 2001 (Figure 4.8d).
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Figure 4.9 shows the temporal variation of the mean and standard deviation of the
five leaf-level variables in the PROSAIL-2 model. At leaf level, the estimated mean leaf
chlorophyll content (C,) among the six data collections ranges from 35.9 - 51.7 pg/cm®.
The C,;, content of the ata collection from DOY 147 to162 in 2002 is the lowest retrieved
value, and is statistically different from the other five data collections. The mean values
of C,p, content for the five data collections from DOY 172 to 260 have only a slight
variation, well within the range of 10% (Figure 4.9a). Leaf brown pigment (Cyrown)
shows a distinct seasonality with an increasing tendency from DOY 150 to DOY 260
(Figure 4.9b). The data collection from DOY 172 to 187 in 2003 had the lowest mean
value of leaf dry matter (Cy,), which is significantly different from the other five
collections. The mean values of Cy, vary between 0.009 and 0.015 g/m’ among the other
five data collections (Figure 4.9c). The structural variable of leaf (N) had a distinct
seasonality with an increasing tendency from DOY 147 to 260 (Figure 4.9d). Leaf
equivalent water thickness (Cy) ranged between 0.015 cm and 0.032 cm, with a distinct

temporal variation (Figure 4.9¢).

We estimated the distributions of FAPAR cnopy, FAPARcs¢, and FAPARy, for
each data collection, and extracted their mean and standard deviation (Figure 4.10). The
maximum mean values of FAPAR canopy, FAPARe.r, and FAPAR; were 0.92, 0.90, and
0.74, respectively. The minimum mean values were 0.83, 0.74, and 0.57, respectively.
The ratios of minimum value to maximum value, a quantitative indicator of data

dispersion, were 0.91, 0.83, and 0.77, respectively. FAPARcinopy, FAPARcq1, and
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FAPAR_y; exhibited different magnitudes of temporal variations, with FAPAR canopy and
FAPAR,..s showing only slight changes throughout the peak growing season from DOY
172 to DOY 260, and FAPAR, showing a strong seasonal variation.

The difference between FAPAR c4nopy and FAP AR+ 1s attributed to light
absorption by stem (APAR.n), i.€., the non-leaf part of the canopy. During the peak
growing season (mid-June to mid-September), the vegetation canopy is dominated by
leaves, and only a very small proportion of stems are observed by the MODIS sensor.
This may explain why FAPAR .q0py Values are only slightly higher than FAPAR;c.¢ for
the five data collections from DOY 172 to 260 (Figure 4.10a). In comparison,

FAPAR canopy in DOY147-162 in 2002 is much larger than FAPAR.r, which is likely to
be due to a slightly higher proportion of stems observed by the MODIS sensor.

The difference between FAPARe,s and FAPARyy is attributed to light absorption
by the non-chlorophyll component of the leaf. FAPARy values are substantially lower
than FAPARe,¢ (Figure 4. 10.a). Furthermore, the difference between FAPAR..¢ and
FAPAR,y; increased over time from DOY172 to DOY260 (Figure 4.10a), which is
attributed to increases of light absorption by NPV components within the leaves. This
suggests that leaf age and associated changes in dry matter and brown pigment
components may affect the proportions of light absorption by NPV in the leaf and by
chlorophyll.

NDVT has been widely used for estimation of FAPAR canopy and GPP. In recent
years, EVI has been used frequently as well (Justice et al., 1998). We calculated the mean

and standard deviation of NDVI and EVI using the same MODIS images for each data

collection.
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For the five data collections from DOY 172 to DOY 260, mean NDVI values are very
similar to FAPAR.,s (Figure 4.10b), which supports the earlier studies that used NDVI to
approximate FAPAR canopy (€.8., Goward et al., 1992), as FAPAR .t and FAPAR canopy
values are close to each other in those five data collections. However, the NDVI
associated with the data collection from DOY 147 to162 in 2002 is much greater than
FAPARc.t, but close t0 FAPAR canopy (Figure 4.10b). In general, mean EVI values vary
substantially over time and are much closer to FAPAR,; values than mean NDVI values
(Figure 4.10c). Note that reflectance values in daily MODIS images are not BRDF
corrected reflectance; therefore, the observation viewing geometry has an effect on the
dynamics of NDVI and EVI. The standard deviation of EVI varies among the six data
collections. For example, the EVI from DOY 248 to 255 in 2003 has a standard deviation
of 0.057 (about 10% of mean EVI value). Therefore, caution should be taken when

selecting daily MODIS images to calculate vegetation indices for use in estimation of

FAPAR canopy and FAPAR .

4.5 __ Discussion

Satellite-based optical sensors provide daily observations of the land surface at
moderate spatial resolution. Numerous studies have used various radiative transfer
models (RTM) to retrieve LAI and estimate FAPAR canopy (€.8., Myneni et al., 1997;
Asner et al., 1998b; Bicheron et al., 1999). The MODIS Land Science Team has used a
3-dimenstional radiative transfer model to provide standard products of FARAR canopy and
LAI at 1-km spatial resolution (Justice et al., 1998; Knyazikhin et al., 1998b). In this

study we used a relatively simple RTM (PROSAIL-2 model) to study light absorption by
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chlorophyll, leaf and canopy over time. Our modified version of the PROSAIL-2 based
inversion includes brown pigments for better characterization of leaf absorption, and the
Metropolis inversion algorithm for estimation of variable uncertainties and model-data
compatibility.

There is currently a paucity of in situ independent data for evaluation of retrieved
LAI and FAPAR a0y at moderate (500-m to 1-km) spatial resolution (e.g., Cohen et al.,
2003; Turner et al., 2003). Though field-based analyses are currently underway, we have
no field-based data of chlorophyll, leaf water content and leaf dry matter in 2001-2003. In
addition, the scaling problems associated with translating leaf chlorophyll to an image
pixel at 500-m spatial resolution have yet to be addressed. Here we discuss two variables
(LLAI and chlorophyll content) that are important for interpreting the results of inversion
of the PROSAIL-2 model in this study. |

LAI is an important canopy-level biophysical variable. In an effort to evaluate the
standard product of LAI and FAPAR y50py from the MODIS Land Science Team, the
BigFoot project was funded to study the spatial variation of LAI through a combination
of extensive field sampling and Landsat images across a number of sites in North
America. As part of the BigFoot project, the field study (Cohen et al., 2003) estimated
spatial distributions of LAI at Harvard Forest and reported an LAI value of 4.9 during its
mid growing season in 2001. Field researchers at Harvard Forest also conducted multi-
temporal measurements of LAI in 1998 and 1999, which ranged from 3.4 to 4.2 in June -
September of 1998, and from 3.8 to 4.7 in June - September of 1999 (Xiao et al., 2004c).
Our estimated LAI mean values are within the range of LAI measured in 1998-1999

(Figures 4.7 and 4.8d). The MODIS standard LAI/FPAR product (MOD15A2, v004)
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estimates LAI values of > 6.0 at the Harvard Forest during June — September of 2001 —
2003. In this study, estimated mean LAI value from inversion of the PROSAIL-2 model
for the data collection from DOY 201 to 214 in 2001 is about 4.4 (Figure 4.8d), which is
more consistent with the field-based estimate from Cohen et al. (2003). The differences
in LAI values between the MOD15A2 standard product and PROSAIL-2 based estimates
in this study are often larger than 1 at the Harvard Forest. It is beyond the scope of this
paper to diagnose the errors of either LAI algorithm in detail, but we note that the
MOD15A2 estimate assumes constant standard leaf optical properties for deciduous
broadleaf forests throughout the entire plant growing season (Myneni et al., 2002). For
inversions of the PROSAIL-2 model in this study, we assume that leaf-level variables
(e.g., brown pigments, leaf dry matter) change over time. The good agreement between
PROSAIL-2-retrieved LAI and observed field LAI values suggests that inversions of the
PROSAIL-2 model in this study works reasonably well.

Leaf chlorophyll content (C,p) is an important biochemical variable and one of the
major control factors of photosynthesis. Given light intensity and atmospheric CO;
concentration, it has been reported that the chlorophyll content of red oak, one of the
major species of Harvard Forest, would not change during the peak plant growing season
prior to senescence (Cavender-Bares et al., 2000). Furthermore, there was no observed
significant inter-annual change of chlorophyll content of the major species of Harvard
Forest between 1995 and 1996 during plant growing periods before senescence (personal
communication with Dr. Jeannine Cavender-Bares). The chlorophyll content of red oak at

Harvard Forest in August of 1991 was measured to be 36.8 pg/cm’, red maple 35.5

pg/cm’, white birch 38.1 pg/cm’, and yellow birch 41.2 pg/cm’ (Waring et al., 1995). A
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research group recently reported that their measurement of chlorophyll content of needles
in late July of 1998 and 1999 was 60.2 pg/cm’ (Zarco-Tejada et al., 2004), which was
higher than the reported values of chlorophyll content of hardwood species of Harvard
Forest by other studies (Cavender-Bares et al., 2000 and Waring et al., 1995). Needleleaf
trees are distributed in parts of the Harvard Forest site. The chlorophyll content of
Harvard Forest leaves at the MODIS scale (500-m) is therefore likely to fall between the
hardwood and needleleaf values, dependent upon the mixing ratio of hardwood trees and
needleleaf trees. In this study, the estimated mean C,, value for the data collection from
DOY 147 to162 in 2002 was 35.9 ug/cmz, and the estimated mean C,; values for the
other five data collections were 44.9 — 51.7 pg/cm’. These C,, estimates fall within the
range between the C,, of hardwood trees and C,, of needles reported by other researchers.
While measurement of leaf chlorophyll content at individual leaves is tractable, scaling
measurements of individual leaves to a MODIS image pixel (500-m) represents a major
leap requiring a rigorous field sampling design. The results of this study suggest that
future field work in deciduous broadleaf forests should include multi-temporal
measurements of leaf-level variables (chlorophyll and other pigments, leaf dry matter and
leaf water content).

The number of variables in the PROS AIL-2 model that can be reasonably inverted
simultaneously is still an unresolved issue. An earlier model simulation study
(Jacquemoud et al., 2000) argued that the leaf structure variable (N) should be held at a
fixed value during inversion of the other variables. Their inversion was conducted for the
spectral range from 430 nm to 880 nm. Another study (Zarco-Tejada et al., 2003)

inverted N, Cp,, and Cy, with the other variables held constant, using a MODIS 8-day
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composite reflectance data (MODO09A1) and MODIS LAI data (MOD15A2). Inversion of
the PROSAIL-2 in our study has a broader spectral range from 555 nm to 1640 nm. In
this study, inversion of the PROSAIL-2 model estimates simultaneously both canopy-
level variables (e.g., PAI) and leaf-level variables, using multiple daily MODIS data. To
our knowledge, this is the first study that simultaneously retrieves both canopy- and leaf-
level variables through inversion of the PROSAIL-2 model and multiple daily MODIS
data. The results of this study have demonstrated the potential of the PROSAIL-2 model
as a tool for quantifying biophysical and biochemical variables of vegetation at leaf- and
canopy-levels over time.

The results of this study highlight the differences among FAPAR nopy, FAPAReat
and FAPAR, over time for a deciduous broadleaf forest. The substantial difference
between FAPAR canopy and EAPARcm may have significant implication for those
biogeochemical models that estimate light absorption, GPP, and NPP using satellite data.
A number of satellite-based Production Efficiency Models (Potter et al., 1993; Prince et
al., 1995; Ruimy et al., 1996; Running et al., 2004) use FAPAR ca0py to estimate the

amount of PAR absorbed by canopies.

4.6 Summary

This study has demonstrated the potential for combining radiative transfer
modeling with a Bayesian parameter estimation scheme, utilizing real satellite data for
estimating leaf- and canopy-level biophysical and biochemical properties of a deciduous
broadleaf forest. We estimated the PROSAIL-2 model variables based on the surface

reflectance of the five MODIS spectral bands (green, red, NIR,;, NIR; and SWIR,). We
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also estimated the seasonal dynamics of FAPAR at canopy-, leaf- and chlorophyll- levels,
respectively. Our results show that FAPARy and FAPAR can0py €xhibit different
behaviors for a deciduous broadleaf forest. This study represents our effort in using a
radiative transfer model to partition canopy-level FAPAR into FAPAR.y and FAPARNpy,
following previous studies that proposed the conceptual partitioning (FAPAR canopy =
FAPARy; + FAPARypy) and showed the potential of FAPARy in improving the
quantification of GPP for forests. This study is another step that enables us to go beyond
the LAI-FAPAR canopy-NDVI paradigm and explore the alternative chlorophyll-FAPAR
approach that takes advantage of moderate resolution optical sensors (e.g. MODIS) in the
era of the Earth Observing System. This study also suggests that both remote sensing and
ecological research would benefit from season-long measurements of leaf-level variables
(e.g., chlorophyll, other pigments, leaf dry matter, and leaf water content), in addition to

measurements of canopy-level variables (e.g., LAI).
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Table 4.1 A list of variables in the PROSAIL-2 model and their search ranges
Variable | Description Unit Search
range
Biophysical | PAI plant area index, i.e., leaf +stem area 1-75
/biochemical index
variables SFRAC | Stem fraction 0-1
CF Cover fraction: area of land covered 0.5-1
by vegetation/ total area of land
Cap Leaf chlorophyll a+b content ug/em® | 080
N Leaf structure variable: measure of 1.0-4.5
the internal structure of the leaf
Cw Leaf equivalent water thickness cm 0.001 —
0.15
Cn Leaf dry matter content g/em’ 0.001 -
0.04
Corown Leaf brown pigment content 0.00001 -8
LFINC Mean leaf inclination angle degree | 10-89
STINC Mean stem inclination angle degree | 10-89
LFHOT | Leaf BRDF variable: length of leaf/ 0-0.9
height of vegetation
STHOT | Stem BRDF variable: length of stem 0-0.9
/ height of vegetation
STEM, | Stem reflectance variable: maximum 0.2-20
(for a fitted function) |
STEMg | Stem reflectance variable range (for 50 - 5000
same fitted function)
SOILA Soil reflectance variable: maximum 0.2-20
(for a fitted function)
SOILg Soil reflectance variable: range (for 50 - 5000
same fitted function)
Atmospheric | VIS Diffuse/ direct variable: scope of km 50
condition atmospheric clarity
variable
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Table 4.2 Posterior means, standard deviations, variable behavior from inversion of the PROSAIL-
2 model with the three simulated data sets: no data error, noise standard deviation 6=5%%* data,
noise standard deviation ¢ = 10%*data

1O error
Variable actual { mean + standard | Variable class
deviation
PAI 45 443+ 125 well-
constrained
SFRAC 0.1 0.10210.070 well-
constrained
CF 0.9 0.88 1+ 0.09 well-
constrained
Can 350 | 36.361+8.89 well-
constrained
N 15 1431 0.19 well-
constrained
Cy 0.03 | 0.03271+0.0087 | well-
constrained
Cn 0.01 | 0.0109+ 0.007 | well-
constrained
Corovn 0.7 0.7000+ 0.240 | well-
constrained
LFINC 45.0 41.69+ 8.36 well-
constrained
STINC 500 |43511+21.84 poorly-
constrained
LFHOT 0.05 | 0.18964:0.1998 | edge-hitting
STHOT 0.05 | 0.398240.2575 | poorly-
constrained
STEM, 10.0 | 9.7928 + 57782 | poorly-
constrained
STEMg 2820 | 3025+ 1210 poorly-
constrained
SOIL, 10.0 | 9.9686+ 5.8055 | poorly-
constrained
SOILg 3525 | 320411139 poorly-
constrained
FAPAR uopy | 0.84 | 0.8410.10 well-
constrained
FAPAReu 0.76 | 0.7610.11 well-
constrained
FAPAR 059 {o0s58to0.11 well-
constrained
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Table 4.2 (continued)

o=5%* data o = 10% *data
mean T standard Variable class | mean T standard Variable class
deviation deviation
4421129 well- 457+133 well-
constrained constrained
0.090 % 0.070 well- 0.088  0.070 well-
constrained constrained
0.8710.11 well- 0.871+0.14 well-
constrained constrained
37.01 891 well- 36.61+9.16 well-
constrained constrained
1.4310.19 well- 1421+ 0.19 well-
constrained constrained
0.0328 % 0.0084 well- 0.033 + 0.0086 well-
constrained constrained
0.0115+ 0.007 well- 0.0115 % 0.0068 well-
constrained constrained
0.7264 1+ 0.246 well- 0.7346 1 0.243 well-
constrained constrained
42201837 well- 41.401 850 well-
constrained constrained
43.54+22.15 poorly- 43.28+22.04 poorly-
constrained constrained
0.1784 £ 0.1844 edge-hitting 0.2021%0.2108 edge-hitting
0.4074 1 0.2552 poorly- 0.4156 1 0.2598 poorly-
constrained constrained
9.7494 % 5.7937 poorly- 9.7993 1 5.7817 poorly-
constrained constrained
3061 % 1207 poorly- 3014+ 1222 poorly-
constrained constrained
9.8590 + 5.6977 poorly- 9.9686F 5.8054 poorly-
constrained . constrained
3205+ 1123 poorly- 3149+ 1148 poorly-
constrained constrained
0.8310.11 well- 0.8310.11 well-
constrained constrained
0741 0.12 well- 0.73+0.11 well-
constrained constrained
0.56+0.13 well- 0.56+0.14 well-
constrained constrained
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Table 4.3 A list of MODIS multiple daily data collections in 2001 through 2003 for inversion of the
PROSAIL-2 model. DOY - day of year

YEAR DOY # of valid
~period observations
2001 201-214 17
250-260 13
2002 147-162 10
219-230 10
2003 172-187 13
248-255 13
153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.4 Variable behavior from inversion of the PROSAIL-2 model with the MODIS data
collection from DOY 147 t0162 in 2002

Variable variable behavior
PAI well-constrained
SFRAC well-constrained
CF edge-hitting

Cap well-constrained

N well-constrained
Cy well-constrained
Cin well-constrained
Chrown well-constrained
LFINC well-constrained
STINC Poorly-constrained
LFHOT well-constrained
STHOT Poorly-constrained
STEM},4 Poorly-constrained
STEMg Poorly-constrained
SOIL, Poorly-constrained
SOIlLg Poorly-constrained
FAPAR cnopy | Well-constrained
FAPAR ot well-constrained
FAPAR well-constrained
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Figure 4.9 Temporal variation of leaf-level variables from inversion of PROSAIL-2 model at Harvard

Forest in 2001, 2002 and 2003:(a) leaf chlorophyll content (Cy,, ug/cmz) {b) leaf brown pigment (Cprown);
(c) leaf dry matter (Cy, g/cm2); (d) N (structural parameter of leaf); and (e) leaf equivalent water thickness
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Figure 4.10 Temporal variations of the fraction of photosynthetically active radiation absorbed by
chlorophyll, leaf and canopy, and vegetation indices at Harvard Forest in 2001, 2002, 2003. (a) A
comparison of estimated FAPAR anopy , FAPAR;cor and FAPAR,y;; (b) a2 comparison between estimated
FAPAR.,s and NDVI; and (c) a comparison between estimated FAPAR .y, and EVI
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CHAPTER 5

CHARACTERIZATION OF SEASONAL SPECTRAL VARIATION OF FOREST
CANOPY IN A TEMPERATE DECIDUOUS BROADLEAF FOREST USING DAILY

MODIS DATA?

5.1 Introduction

Seasonal variations of vegetation dynamics (e.g., leaf area index [LLAI], fraction
of photosynthetically active radiation [PAR] absorbed by vegétation canopy [FPAR canopyl
and leaf phenology) have profound impacts on ecosystem fluxes of matter and energy,
including carbon sinks and sources (Pielke et al., 1998; Fitzjarrald et al., 2001; Arora,
2002; Defries et al., 2002; Lawrence et al., 2004; Osborne et al., 2004; Zhang et al.,
2004a; Linderman et al., 2005). While the National Oceanic and Atmospheric
Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR),
particularly Normalized Difference Vegetation Index (NDVI, Tucker, 1979) of AVHRR,
has been widely used to monitor long-term and/or large-scale vegetation trends, its
inherent data and sensor problems and other noises limited its utility in change analyses
in detail for short-terms, for example, daily, monthly or seasonally (Goward et al., 1995;

Prince et al., 1996; Lovell et al., 2001; Pettorelli et al., 2005).

2 This chapter is under review by Remote Sensing of Environment
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The Moderate Imaging Spectrometer (MODIS) onboard Terra and Aqua satellites
provides unprecedented data to monitor and quantify seasonal changes of forest canopy
and phenology at local, regional and global scales. The MODIS science team provides
standard products of LAI and fraction of PAR absorbed by canopy (FPAR canopy)
(Knyazikhin et al., 1998a; Knyazikhin et al., 1998b). The MODIS-based LAI and
FPAR canopy at 1-km spatial resolution were generated by inversion of a radiative transfer
model that uses surface reflectance of red and near infrared bands or by an empirical
model that describes the relationships among NDVI-LAI-FPAR cinopy When there are not
enough good-quality observations for inversion of the radiative transfer model. The
retrieval algorithms are based on the assumption that leaf spectral properties for each
biome type are constant (Myneni et al., 2002; Wang, 2002). Similarly, Gobron and
colleagues assumed a single spectra profile for all leaves when they retrieved FP AR canopy
(Gobron et al., 2000b; Gobron et al., 2002; Taberner et al., 2002).

However, many experiments showed that leaf structure and chemistry vary
seasonally, resulting in seasonal dynamics of spectral properties. For example, some
experiments showed that the chlorophyll concentration of leaves changed during the plant
growing season (Demarez et al., 1999; Kodani et al., 2002). Another experiment also
showed the variations of leaf water thickness and dry matter during the plant growing
season (Gond et al., 1999). Accordingly, some researchers reported that their spectral
measurements of leaves changed over the plant growing season (e.g., Demarez et al.,
1999; Gitelson et al., 2002a; Stylinski et al., 2002). Ustin, Duan and Hart documented the
changes of the canopy reflectance of the grass vegetation, deciduous vegetation and

evergreen vegetation over a plant growing season (Ustin et al., 1994). Kodani and
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colleagues documented the seasonal reflectance variation of Japanese beech from spring
to autumn (Kodani et al., 2002), whereas Remer, Wald and Kaufman demonstrated
changes in reflectance spectra of various ground surface targets, including forests, across
three seasons (Remer et al., 2001). Work by Richardson and coauthors demonstrates that
leaf reflectance properties change along elevational and latitudinal gradients; presumably
this variation is driven by physiological differences resulting from differences in climate
and site quality (Richardson et al., 2002; Richardson et al., 2003). So the seasonal and
geographic variations of observed MODIS reflectance can be possibly attributed to
variations of both canopy-level and leaf level characteristics of vegetation.

The specific objectives of this study are threefold: (1) to develop an improved
procedure that identifies snow-contaminated, atmosphere-contaminated or other poor
quality observations in daily MODIS images; (2) to study the seasonal dynamics of
surface reflectance and some widely used vegetation indices, using contamination-free-
or-less MODIS time series data collection; and (3) to estimate LAI and the fractions of
PAR absorbed by chlorophyll, leaf and canopy , i.e., FAPAR anopy, FAPAR e, and

FAPAR,,, with contamination-free multiple daily MODIS images. We used a coupled

leaf-canopy radiative transfer model (PROSPECT model +SAIL-2 model; Zhang et al.,
2005). Both the leaf-level PROSPECT model and canopy-level SAIL model have been
discussed extensively in the published literature, both separately and in combination
(Verhoef, 1984; Kuusk, 1985; Verhoef, 1985; Jacquemoud et al., 1990; Braswell et al.,
1996; Jacquemoud et al., 1996; Baret et al., 1997; Gond et al., 1999; Jacquemoud et al.,
2000; Weiss et al., 2000; Bacour et al., 2002a; Combal et al., 2002; Verhoef et al., 2003;

Zarco-Tejada et al., 2003; Di Bella et al., 2004). Our coupled PROSPECT+SAIL-2

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



model (hereafter called PROSAIL-2 model) retrieves simultaneously both leaf-level
variables and canopy-level variables (Zhang et al., 2005). As a case study, we selected a
temperate deciduous broadleaf forest at the Bartlett Experimental Forest in the White
Mountains of New Hampshire, USA, where field-based measurements of 1.Al, leaf dry
matter, leaf chlorophyll content and FAPARcanopy are available for evaluating the inverted

model variables.

5.2 Brief description of the Bartlett Experimental Forest site

The Bartlett Experimental Forest eddy flux tower site (44.06° N, 71.29° W, 272 m
elevation) is within the White Mountain National Forest in north central New Hampshire,
USA. Established in 1932 as a USDA Forest Service research forest, the Bartlett
Experimental Forest is a 1050 ha tract of secondary successional northern deciduous and
mixed northern coniferous forest. The vegetation is primarily deciduous forest,
dominated by American beech (Fagus grandifolia), yellow birch (Betula alleghaniensis),
sugar maple (Acer saccharum), red maple (Acer rubum), paper birch (Betula papyrifera),
white ash (Fraxinus Americana), and pin cherry (Prunus pennsylvanica). There are also
some evergreen needleleaf species within the forest, for example, eastern hemlock (7suga
canadensis), red spruce (Picea rubens), white pine (Pinus strobus) and balsam fir (Abies
balsamea). Soils are mainly moist but well drained spodosols. The climate is warm in
summer and cold in winter. Annual mean precipitation is about 127 cm, and the
precipitation is distributed throughout the year. Winter snow can accumulate to the

depths of 150 to 180 cm. Winter season covers from November to next May. Additional
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information of the study site are available elsewhere (Ollinger et al., 2005;

http://www.fs.fed.us/ne/durham/4155/bartlett. vt m#MPC ).

The area surrounding on the eddy flux tower site is relatively flat. Instruments to
measure incident and canopy-reflected radiation (PPFD, LI-190 quantum sensor, Li-Cor
Biosciences, Lincoln, NE; global radiation, CM-3 pyranometer, Kipp & Zonen, Delft,
Netherlands) are located at the top of a 25 m eddy covariance flux tower. A below-
canopy network of six quantum sensors is located in a circle (radius = 15 m) around the
base of the tower. Instruments are sampled every 10 seconds, and half-hourly means are

output to a data logger (CR-10, Campbell Scientific, Logan, UT).

5.3 _ Method to remove snow- or atmosphere-contaminated MODIS dail

observations

The MODIS daily surface reflectance (MOD0O9GHK and MYDO09GHK, v004),
MODIS daily observatidn viewing geometry (MODMGGAD and MYDMGGAD, v(04),
and MODIS daily observation pointers (MODPTHKM and MYDPTHKM, v004) are
used in this study. There are reflectance values of the seven spectral bands (500m spatial
resolution) in the MODIS daily surface reflectance product: red (620-670 nm), blue (459
— 479 nm), green (545-565 nm), near infrared (NIR;, 841-875 nm, and NIR,, 1230 — 1250
nm), and short-wave infrared (SWIR, 1628 — 1652 nm, and SWIR;, 2105-2155 nm).

The MODIS daily observation viewing geometry product contains observation viewing
geometry information (view zenith angle, view azimuth angle, sun zenith angle and sun
azimuth angle) at a nominal 1-km scale. The MODIS daily observation pointers product

provides a reference, at the 500 m scale, to observations that intersect each pixel of
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MODIS daily surface reflectance product in MODIS daily observation viewing geometry
product (Zhang et al., 2005). All the MODIS data products are freely available at USGS
Earth Observing System Data Gateway

(http://edcimswww.cr.usgs. gov/pub/imswelcome/).

We acquired daily MODIS data (tile H12V04) from the NASA data archive for an
area containing the Bartlett Experimental Forest eddy flux tower site. Using the geo-
location information of the eddy flux tower site, we extracted time series data of daily
MODIS images for one MODIS pixel that centers on the flux tower site. All daily
MODIS data in 2004 are used to study the seasonal dynamics of reflectance and
phenology, and the daily MODIS data over date of year (DOY) of 184-201 in 2005 were
used for inversion of the PROSAIL-2 model.

The MODIS daily surface reflectance product has product quality information.
The quality control (QC) data layer of the reflectance product includes information about
errors and missing data in the daily surface reflectance product, for each of the seven
MODIS bands, as well as information about whether an atmospheric correction was
performed, and information about whether an adjacency correction was performed. If the
QC value indicated any quality problem, the observation was not used in our analysis.

Furthermore, we examined reflectance values of SWIR, and blue bands for
additional quality inspection. If one observation has SWIR; reflectance greater than 0.15
or blue reflectance greater than 0.2, the observation is identified as a bad observation and
excluded for analysis. Figure 5.1a-b shows the MODIS blue and SWIR; reflectance for
those observations in 2004 with blue reflectance of £ 0.2 and SWIR; of < 0.15. Some

observations having both blue band < 0.1 and SWIR; band < 0.15 appear as clusters in
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Figure 5.1c-d, while the other observations are randomly scattered. Contaminated
atmosphere (e.g., partial cloud cover or residual aerosols) is one likely source that
contributed to the scattering, though there are possibly other sources. We continued to
remove those scattering observations, and Figure 5.2 shows the reflectance of the MODIS
seven bands for the remaining clustering observations or atmospheric-contamination-free
observations.

We calculated NDVI, Enhanced Vegetation Index (EVI, Huete et al., 1997), Land

Surface Water Index (LSWI, Xiao et al., 2004c), and snow cover fraction ( f,,,, .

Kaufman et al., 2002) for those observations in Figure 5.2a — g. The vegetation indices

and snow cover fraction are shown in Figure 5.2h and Figure 5.3.

NDVI = Pt " Prea. )
pNIR, +pred
EVI =2.5x P, ~Prea Q)
pNIRI +6 Xpred —7‘5Xpblue +1
LSWI = P, ~ Pswir,_ 3)
Pur, T Pswir
( pred - O'SpSWIRZ
0.6 .
, 050 and p <0.15
- J _ 0.5 l.f pred > SWIR, SWIR, (4)
Fw =1 0,514 0,07 x Lret =2 Pswnm,
0.6
0, otherwise

where 01,. s Pred» Puir, » Pswir, » a0d Psye are reflectance values of the blue, red, NIR,,

SWIR; and SWIR; bands. Figure 5.4a — g showed the observations in Figure 5.2a - g
except the snow affected observations. Figure 5.4h shows the NDVI, EVI and LSWI in

Figure 5.2h except the snow affected observations.
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5.4 Description of the radiative transfer model and the inversion algorithm

5.4.1 Brief description of the PROSPECT+SAIL-2 model

We used the same PROSPECT+SAIL-2 model as in our previous study (Zhang et
al., 2005). The PROSPECT model we used has five variables - leaf internal structure
variable (N), leaf chlorophyll content (C,), leaf dry matter content (Cy,), leaf water
thickness (Cy) and leaf brown pigment (Curown) (Baret et al., 1997; Verhoef et al., 2003;
Di Bella et al., 2004). The brown pigment in the five-variable PROSPECT model is
needed for light absorption by non-chlorophyll (or non-photosynthetic) pigments in leaf.
The SAIL (Scattering from Arbitrarily Inclined Leaves) model is a canopy radiative
transfer model. The SAIL model has evolved gradually over time with minor changes
reflecting individual study objectives in earlier studies (e.g., Goel et al., 1984c¢; Verhoef,
1984; Badhwar et al., 1985; Goel et al., 1985; Kuusk, 1985; Verhoef, 1985; Major et al.,
1992; Braswell et al., 1996; Andrieu et al., 1997; Jacquemoud et al., 2000). The version
of SAIL model described by Braswell and others (SAIL-2; Braswell et al., 1996) was
used in this study. The SAIL-2 model decomposes a vegetation canopy into stems and
leaves. In a typical parameterization, stems have spectral properties that are more similar
to soil and litter than leaves. Leaf and stem mean inclination angles, and the self-shading
effect of both leaves and stems are also considered.

The five-variable PROSPECT model was coupled with the SAIL-2 model
(hereafter called PROS AIL-2) through replacing the leaf reflectance component in the
SAIL-2 model with the PROSPECT model. The coupled PROSAIL-2 model was used to

describe optical characteristics (reflectance, absorption and transmittance) of the canopy
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and its components. The search ranges of the sixteen biophysical/ biochemical variables
of the PROSAIL-2 model, based on an extensive literature review, were listed in Table 1.
The sixteen biophysical and biochemical variables are plant area index (PAI), stem
fraction (SFRAC), cover fraction (CF), stem inclination angle (STINC), stem
bidirectional reflectance distribution function (BRDF) effect variable (STHOT), leaf
inclination angle (LFINC), leaf BRDF effect variable (LFHOT), five leaf variables that
simulate leaf optical properties (N, Cab, Cm, Cw, Corown), two soil/litter variables that
simulate soil/litter optical properties (SOILa, SOIL3), and two stem variables that
simulate stem optical properties (STEMa, STEMg). Because the MODIS data used in the
study were atmospherically corrected, we do not consider atmospheric effect when we do

inversion of the PROSAIL-2 model.

A method based on the Metropolis algorithm (Metropolis et al., 1953; Hurtt et al.,
1996; Braswell et al., 2005; Zhang et al., 2005) was employed for inversion of the
MODIS data. Figure 4 (a) shows that the MODIS blue reflectance over the site under
cloud-free condition is less than 0.05 during plant growing season in 2004. There are
thirteen observations for the period (DOY 184 to 201 in 2005) after discarding the
observations with MODIS blue reflectance greater than 0.05. The thirteen observations
are used for inversion. All mathematical description of the method can be found in the
previous paper (Zhang et al., 2005). The strength of the method is that it can estimate
posterior probability distributions of the variables and thus the retrieved distributions can

provide estimates of uncertainty (such as standard deviations and confidence intervals) of
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individual variables, conditioned on both the model and the observed data. The retrieved
distributions can also provide information about the variable sensitivity of the model. The
Metropolis algorithm is relatively computationally intensive, owing to the need for
simulation of a large number of samples required to obtain a reliable estimate of the
variables’ distributions.

The Metropolis algorithm (Metropolis et al., 1953), is a type of Markov Chain
Monte Carlo (MCMC) estimation procedure. It arises within a Bayesian statistical
estimation framework (Gelman et al., 2000) and reflects the remaining uncertainty after
the model has been constrained (inverted) with data. The Bayesian framework also
requires quantification of prior information about the variables as prior probability
densities and the prior to posterior scheme of calculations following Bayes’ theorem. The
MCMC constructs a random walk (Markov chain) through two steps: first at the current
iteration, generating a new randomly generated “proposal” value and secondly testing an
acceptance as follows: if the posterior density increases, the proposed value is accepted,
i.e. it becomes the new value of the random walk, if the posterior density decreases, the
proposed value is only accepted with probability equals the ratio of the new value
posterior density over current value posterior density. MODIS red, green, NIR,, NIR; and
SWIR; reflectance are used to calculate likelihood function. We also employed the same
adaptive annealing temperate algorithm as in our previous study (Zhang et al., 2005). All

mathematical description can be found in the previous paper.
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We developed a two-step procedure to calculate FAPAR i, FAPAR e, and
FAPAR canopy using the PROSAIL-2 model. The first step is to invert the biophysical and
biochemical variables using the coupled PROSAIL-2 model with observed spectral
reflectance data (reflectance plus relative observation geometry), and the second is to
calculate FAPAR canopy (Goward et al., 1992), FAPAR ¢ (Braswell et al., 1996), and
FAPAR y; (see equations 9 - 13 ) using forward simulations.

APAR

FAP canopy = _P-A_—Rim (9)
APAR,

F AP ARteaf S — (10)
PAR,

FAPAR,, = APARw (11)
PAR,

AP ARcanopy = AP ARleaf + AP ARstem (12)

APAR, , = APAR , + APAR iry maer T APARbmwn pigment (13)

where PARy is the incoming PAR at the top of the canopy, and APAR is the absorbed
PAR. APARcanopy, APARear, APARste, APARchi, APARdry matter, ald AP AR prown pigment are
absorbed PAR by canopy, leaf, stem, chlorophyll in leaf, dry matter in leaf, and brown

pigment in leaf, respectively.
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5.5 _ Results

Figure 5.2 exhibits the time series of surface reflectance for the seven spectral
bands among the clustering MODIS daily data that covered the Bartlett Experimental
Forest flux tower site. The blue surface reflectance values for the period after DOY 122
are {nuch lower than those for the period before DOY 122 (Figure 5.2a). Similar seasonal
patterns are also observed for surface reflectance in the green and red bands (Figure 5.2c,
e). In comparison, surface reflectance values of NIR;, NIR; and SWIR; bands have a
strong seasonal dynamics with peaks values in mid summer (Figure 5.2d, f, g).

Higher surface reflectance values of the visible bands (blue, green and red) and
lower surface reflectance values of the SWIR bands (SWIR; and SWIR;) in the early
period of the ;'ear suggest that snow cover occurs over that period and thus affects
surface reflectance. There exists fractional snow cover through much of winter and early
spring (Figure 5.3). We further exclude those observations with a fractional snow cover
and Figure 5.4 shows the surface reflectance values of those observations without snow
cover. Among the three visible bands, surface reflectance of green band has a distinct
seasonal dynamics with peak values in late-June to early July (Figure 5.4¢).

The seasonal dynamics of surface reflectance of individual spectral bands provide
rich information for interpreting vegetation indices from the MODIS data and
understanding the impacts of snow cover on vegetation indices. Our analysis identifies
those daily observations that were partially covered by snow (Figure 5.3). The snow-

covered season in 2004 for the study site ended around DOY 110. Without knowing
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information of both the fraction of snow cover and surface reflectance over a MODIS
pixel, one will have some difficulties in accurately interpreting NDVI, EVI and LSWI
during the winter/spring seasons. There is very little green vegetation for the periods of
DOY 1-100 and DOY 300 - 365 (Figure 5.4d). However, many observations in the
winter/spring seasons still have high NDVI values, for example, one MODIS observation
on DOY 57 has NDVI value of 0.856 (Figure 5.2h). The high NDVI values in the
winter/spring seasons are likely attributed to both the wetness of soil/canopy background
and higher solar zenith angles in winter/spring seasons (than solar zenith angles in
summer/autumn). Note that SWIR; reflectance was low during the winter/spring seasons,
which clearly suggests a wet soil/canopy background in that period. Moderate LSWI
values in that period also suggest a wet soil/canopy background. The NIR; reflectance
was low during the period, which suggests that there is little green vegetation during the
period. Observations of bare or sparse vegetation targets with higher solar zenith angles
have higher NDVI values than observations of same targets with lower solar zenith
angles (Goward et al., 1992; Huete et al., 1992). Although the NIR; reflectance was low
during the same period, but reflectance values of blue, green, and red bands were much
smaller than NIR; reflectance (Figure 5.4a, ¢, d, and e). As the result, the mathematic
formulation of NDVI still gives high NDVI values for some observations in the
winter/spring seasons. This is consistent with earlier studies that examined the impacts of
soil background and solar-view geometry on NDVI (Huete et al., 1997). Caution should
be taken when using only NDVI to monitor vegetation phenology because NDVI is very
sensitive to soil/canopy background wetness and solar-view geometry when vegetation

cover fraction is small.
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5.5.2__Comparison between retrieved and observed reflectance values of MODIS daily

data collection from DOY 184 to 201 in 2005

The mean values of the retrieved variable distributions for the data collection
from DOY 184 to 201 in 2005 were utilized as inputs to calculate the reflectance with
forward simulations of the PROSAIL-2 model. Figure 5.5 shows a comparison of

- PROSAIL-2 retrieved reflectance with observed reflectance of MODIS green, red, NIR;,
NIR;, and SWIR; bands. The correlation coefficient between retrieved and observed
MODIS visible reflectance is 0.92 for the green band and 0.93 for the red band,
respectively. The root mean squared error (RMSE) between observed and retrieved
MODIS visible reflectance is 0.0023 for the green band and 0.0040 for the red band. The
correlation coefficient between retrieved and observed NIR/SWIR reflectance is 0.92,
0.89, and 0.90 for NIR;, NIR; and SWIR;, respectively. The RMSE between observed
and retrieved NIR/SWIR reflectance is 0.025, 0.025, and 0.016 for NIR;, NIR, and
SWIR;, respectively. Note that the data collection spanned eighteen days, and any
variation of leaf and canopy during the period may have contributed to the discrepancies
between the retrieved reflectance and MODIS observed reflectance though we would not
expect large changes at either leaf or canopy level because the canopy was well fully
developed during early July. Possible errors introduced during MODIS pre-processing
may also contribute to the discrepancies (e.g. imperfect atmospheric correction). The
comparison suggests that the PROSAIL-2 model with the retrieved mean values of
individual variables reasonably reproduces the surface reflectance of the temperate

deciduous broadleaf forest site.
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5.5.3 Uncertainty of individual variables from inversion of the PROSAIL.-2 model with

MODIS daily data collection from DOY 184 to 201 in 2005

The Metropolis inversion algorithm estimated probability distributions for
individual model variables for the data collection from DOY 184 to 201 in 2005. The
posterior distributions offer a measure of uncertainty in the form of their standard
deviations or other quantile intervals, and the shape of the distributions provide a measure
of compatibility between model and data. We examined the histograms of the sixteen
variables from inversion of PROSAIL-2 for the MODIS data collection, and simply
ranked them into three categories: “well-constrained”, “poorly-constrained” and “edge-
hitting” (Braswell et al., 2005; Zhang et al., 2005). The “well-constrained” variables
usually have a well-defined distribution, with small standard deviations relative to their
allowable ranges. The “poorly-constrained” variables have relatively flat distributions
with large standard deviations relative to their allowable ranges. The “edge-hitting”
variables are those for which the modes of their retrieved values occurred near one of the
edges of their allowable ranges and most of the retrieved values were clustered near this
edge. Figures 5.6 — 5.10 showed the histograms of the sixteen variables in the PROSAIL-
2 model and the histogram of leaf area index (LAI). Eight variables belong to “well-
constrained”: plant area index (Figure 5.6a), five leaf variables (leaf internal structure
variable, leaf chlorophyll content, leaf brown pigment content, leaf dry matter and leaf
equivalent water thickness, Figure 5.8), average leaf inclination angle and leaf BRDF
effect variable (Figure 5.9a and c). Six variables belong to “poor-constrained”: average
stem inclination angle, stem BRDF effect variable (Figure 5.9b and d), two soil variables

and two stem variables in SAIL-2 model (Figure 5.10). Stem fraction and cover fraction
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belong to “edge-hitting” (Figure 5.7). Because stem fraction was distributed near zero
and cover fraction was distributed near one, stem and soil had little effect on the canopy
optical characteristics and consequently little information about stem and soil could be
retrieved from MODIS observations. We calculated LAI using the equation LAI = (1-
SFRAC) x PAI. LAI is also a well-constrained variable (Figure 5.6b) with mean value of

3.99 and standard deviation of 0.66.

collection from DOY 184 to 201 in 2005

We estimated the distributions of FAPAR canopy, FAPAR|car, and FAPAR oy for the
data collection of MODIS daily data from DOY 184 to 201 in 2005 using the retrieved
distributions of individual variables in PROSAIL-2, and extracted their mean and
standard deviation values (Figure 5.11). The mean values of FAPAR agopy: FAPARear,
and FAPAR 1 were 0.879, 0.858, and 0.707, respectively. The standard deviation values
were 0.033, 0.035, and 0.026, respectively. FAPAR canopy, FAPAR|es, and FAPAR .y, were
well-constrained variables.

The difference between FAPAR canopy and FAPAR 4 is attributed to light
absorption by stem (APARGm), i.€., the non-leaf part of the canopy. During DOY 184 to
201 in 2005, the vegetation canopy is dominated by leaves, and only a very small
proportion of stems are observed by the MODIS sensor. This may explain why the mean
FAPAR canopy Value is only slightly higher than the mean value of FAPAR .. The

difference between FAPAR|r and FAPAR.y is attributed to light absorption by the non-
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chlorophyll component of the leaf. The mean FAPARy value is 15% lower than the
- mean value of FAPARe.r and 17% lower than the mean value of FAPAR canopy-

NDVI has been widely used for estimation of FAPAR canopy and GPP (Potter et al.,
1993; Prince et al., 1995; Ruimy et al., 1996; Running et al., 2004). In recent years, EVI
has been used frequently as well (Justice et al., 1998). We calculated the mean and
standard deviation of NDVI and EVI using the same MODIS images for the data
collection from DOY 184 to 201 in 2005. The mean values of NDVI and EVI were 0.853
and 0.578, respectively. The standard deviations of NDVI and EVI were 0.010 and 0.073,
respectively. The mean NDVI values are very similar to FAPARe.s , which supports the
earlier studies that used NDVI to approximate FAPAR canopy (€.2., Goward et al., 1992), as
FAPARc,r and FAPARanopy values are close to each other. The mean EVI value is close
to the mean FAPARy, values. Note that reflectance values in daily MODIS images are
not BRDF corrected reflectance; therefore, the observation viewing geometry has an

effect on the ranges of NDVI and EVI.

5.6 Discussion

The MODIS sensors on the Terra and Aqua platforms provide daily observations
of the land surface at moderate spatial resolution (250m -1000m). MODIS has been used
to monitor phenology (e.g., Zhang et al., 2003; Xiao et al., 2004c; Zhang et al., 2004a;
Zhang et al., 2004b; Xiao et al., 2005c). However there is a snowy winter season over
temperate forest areas like Harvard Forest in MA, Howland Forest in ME, and Bartlett
Experimental Forest in NH, USA. Through better screening out of the observations

contaminated by snow and atmosphere, one can construct high quality time series data for
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identifying forest green-up and leaf-off more accurately (Figures 5.2, 5.3 and 5.4). The
plant growing period at the study site was from around DOY 122 to 282 in 2004. EVI
values during the growing period was greater than 0.3. Figure 5.4h shows that NDVI,
EVI and LSWI had a rapid increase during DOY 122 to DOY 135, and also had a quick
decrease after DOY 275 in 2004 over the Bartlett Experimental Forest site. The field
measured daily FAPARanepy and NDVI over the Bartlett Experimental Forest flux tower
site in 2004 (unpublished results and they will be reported in another paper) shows
similar green-up increase and leaf-senescence tendencies during same periods. The
MODIS measurements were consistent with field measurements.

Many radiative transfer models have been used to retrieve LAI and estimate
FAPAR canopy (€-8., Myneni et al., 1997; Asner et al., 1998b; Bicherpn et al., 1999). The
MODIS LAI/FPAR team has used MODIS red and NIR, bands as inputs to a 3-
dimenstional radiative transfer model to provide standard products of FARAR canopy and
LAI at 1-km spatial resolution (Justice et al., 1998; Knyazikhin et al., 1998b, and
personal communication with Dr. Ranga Myneni). The PROSAIL-2 model we used in
this study is relatively simple in structure (one dimension in space) and but complex in
chemistry. The input data of PROSAIL-2 are from five MODIS spectral bands. We leave
the combination of complex canopy radiative transfer models and PROSPECT for future
studies.

Little independent in situ data for evaluation of biophysical/biochemical variables
at moderate (250m to 1000m) spatial resolution, including both canopy variables and leaf
variables, have been collected because of expensive financial and human resource cost

(e.g., Cohen et al., 2003; Turner et al., 2003). Here we discuss four variables (LAI, leaf
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dry matter, leaf chlorophyll content and FAPAR canopy) that are important for interpreting
the results of inversion of PROSAIL-2 in this study. The inversion of the PROSAIL-2
model estimated LAI with a mean of 3.99 m’/ m” and a standard deviation of 0.66. The
field measured LAI around the footprint of the Bartlett Experimental Forest flux tower
site during the peak growing season in 2004 varied between 3.6 and 5.1 m’/m’ (Smith et
al. unpublished data). The model-based estimation of LAI overlapped with the range of
field measured LAI. Leaf dry matter (Cp, g/cmz), another widely used variable in
biogeochemical models, had a mean of 0.0105 g/cm’ and standard deviation of 0.0041
g/cm®. The top-canopy leaf specific weight used for the deciduous trees in the Bartlett
Experimental Forest by Ollinger and Smith (2005) was 0.01 g/cm?, which was very close
to the model-based estimate of the mean value of leaf dry matter. The histogram of
inverted leaf chlorophyll content has a mean of 52.3 Mg/cm2 and standard deviation of
2.6pg/cm’. The field measured leaf chlorophyll content for the leaves of mid to upper
canopy of the deciduous species in early July of 2005 has a range of 23.5 - 52.6 pg/cm?.
The range of inverted leaf chlorophyll content overlapped with the range of field
measurements. Field measured leaf chlorophyll content for top, middle and bottom leaves
of forest canopy are proposed to conduct in future. We suspect MODIS observed leaf
chlorophyll content is closer to top-leaf chlorophyll content than to middle-leaf and
bottom-leaf contents. The model-based FAPAR canopy (Figure 5.11) had a range from 0.72
to 0.95 (most in the range from 0.77 to 0.95). The FAPAR canopy calculated from field
measurements of radiation above- and below- canopy at the Bartlett Experimental Forest
flux tower site, had a range from 0.798 to 0.930 during 11:00am to 1:00pm of DOY 184

to 201 in 2005. The range of field measured FAP AR canopy falls within the inverted range
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of FAP AR nopy » although the field radius is 15m and the MODIS pixel has a spatial
resolution of 500m.

The results of this study plus the results from our previous study (Zhang et al.,
2005) highlight the substantial difference between FAPAR canopy and FAPAR o for the
two temperate deciduous broadleaf forests (the Harvard Forest and the Bartlett
Experimental Forest). The results suggest that the Production Efficiency Models (e.g.,
Potter et al., 1993; Prince et al., 1995; Ruimy et al., 1996; Running et al., 2004) that use
FAPAR canopy to estimate the amount of PAR for photosynthesis may potentially
overestimate light absorption for photosynthesis, hence GPP.

In summary, this study provides an improved procedure for selecting atmosphere-
contamination and snow-contamination free MODIS observations. With a contamination-
free (atmospheric-contamination-free and/or snow-contamination-free) time series of
daily MODIS observations, the seasonal variations of NDVI, EVI, LSWI and snow cover
fraction of a temperate deciduous broadleaf forest site is better interpreted through the
seasonal dynamics of surface reflectance of MODIS seven spectral bands This study
retested an innovative methodology presented our previous study (Zhang et al., 2005) that
combined radiative transfer model with the Metropolis statistical method to estimate leaf-
and canopy-level biophysical/biochemical properties of the forest utilizing real MODIS
data. This study also enhances the suggestion that both measurements of canopy-level
variables (e.g., LAI) and field measurements of leaf-level variables (e.g., chlorophyll,
other pigments, leaf dry matter, and leaf water content) will be useful for remote sensing

and ecological research.
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Table 5.1 A list of variables in the PROSAIL-2 model and their search ranges
Variable | Description Unit Search
range
Biophysical | PAI plant area index, i.e., leaf +stem area 1-75
/biochemical index
variables SFRAC | Stem fraction 0-1
CF Cover fraction; area of land covered 0.5-1
by vegetation/ total area of land
Cab Leaf chlorophyll a+b content pg/em’ | 0 - 80
N Leaf structure variable: measure of 1.0-45
_the internal structure of the leaf
Cw Leaf equivalent water thickness cm 0.001 -
0.15
Cn Leaf dry matter content g/em’ 0.001 -
0.04
Corown Leaf brown pigment content 0.00001 - 8
LFINC Mean leaf inclination angle degree | 10- 89
STINC Mean stem inclination angle degree | 10-89
LFHOT | Leaf BRDF variable: length of leaf/ 0-09
height of vegetation
STHOT | Stem BRDF variable: length of stem 0-09
/ height of vegetation
STEM, Stem reflectance variable: maximum 0.2-20
(for a fitted function)
STEMg | Stem reflectance variable range (for 50 - 5000
same fitted function)
SOIL4 Soil reflectance variable: maximum 0.2-20
(for a fitted function)
SOILp Soil reflectance variable: range (for 50 - 5000

same fitted function)
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Figure 5.1 Reflectance of (a) blue and (b) SWIR, of MODIS daily observations of the Bartlett
Experimental Forest tower site in 2004 (reflectance scale=0.0001) with blue less than 0.2 and SWIR; less
than 0.15; reflectance of (¢) blue and (d) SWIR; of MODIS daily observations in 2004 (reflectance

scale=0.0001) with blue less than 0.1 and SWIR,; less than 0.15
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Figure 5.2 Clustering MODIS daily observations of the Bartlett Experimental Forest tower site in 2004
(reflectance scale=0.0001) and related NDVL, EVI and LSWI
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Figure 5.2 (continned)  Clustering MODIS daily observations of the Bartlett Experimental Forest tower

site in 2004 (reflectance scale=0.0001) and related NDVI, EVI and LSWI
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Figure 5.3 Snow cover fraction calculated with clustering MODIS daily observations of the Bartlett
Experimental Forest tower site in 2004
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Figure 5.4 Contamination free MODIS daily observations of the Bartlett Experimental Forest tower site in
2004 (reflectance scale=0.0001) and related NDVI, EVI and LSWI
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Figure 5.4 (continued) ~ Contamination free MODIS daily observations of the Bartlett Experimental

Forest tower site in 2004 (reflectance scale=0.0001) and related NDVIL, EVI and LSWI
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 Figure 5.5 A comparison between the observed reflectance and PROSAIL-2-reproduced reflectance for five
MODIS spectral bands (red, green, NIR,, NIR; and SWIR,). Surface reflectances were reproduced with the
mean values of inverted variables from the PROSAIL-2 model using MODIS from DOY 184 to 201 in

2005.
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Figure 5.6 (a) Histogram of plant area index (PAI) for MODIS data collection of the Bartlett Experimental
Forest tower site from DOY 184 to 201 in 2005; (b) Histogram of leaf area index (LAI) for MODIS data
collection of the Bartlett Experimental Forest tower site from DOY 184 to 201 in 2005
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Figure 5.7 (a) Histogram of stem fraction for MODIS data collection of the Bartlett Experimental Forest
tower site from DOY 184 to 201 in 2005; (b) Histogram of cover fraction for MODIS data collection of
the Bartlett Experimental Forest tower site from DOY 184 to 201 in 2005
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Figure 5.8 Histograms of Jeaf variables for MODIS data collection of the Bartlett Experimental Forest
tower site from DOY 184 to 201 in 2005
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Figure 5.8 (continued) Histograms of (d) leaf equivalent water thickness (C,,, cm); and (e) leaf dry
matter (Cp, g/cm® ) for MODIS data collection of the Bartlett Experimental Forest tower site from DOY
184 to 201 in 2005
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data collection of the Bartlett Experimental Forest tower site from DOY 184 to 201 in 2005
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(FAPAR ;0py); (D) by leaf (FAPAR,.p) ; () by chlorophyll (FAPAR.,) for MODIS data collection of the
Bartlett Experimental Forest tower site from DOY 184 to 201 in 2005
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CHAPTER 6
ARE SEASONAL MODIS SPECTRAL VARIATIONS OF TWO TEMPERATE
DECIDUOUS BROADLEAF FOREST CANOPIES DURING PLANT GROWING

SEASON ONLY DUE TO VEGETATION’S ANISOTROPIC NATURE?

6.1 Introduction

Normalized Difference Vegetation Index (NDVI, Tucker, 1979) of the National
Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) has been widely used to monitor large-scale and/or long-term land
cover studies (e.g., Sellers et al., 1995; Prince et al., 1996; Batista et al., 1997; Chen et al.,
1999; Liu et al., 1999; Rodriguez-Yi et al., 2000; Shimabukuro et al., 2000; Dessay et al.,
2004; Pettorelli et al., 2005). However, AVHRR NDVI has two kinds of limitations: one
is related to the quality of the sensors and data pre-processing procedures (e.g., Cihlar et
al., 1997; Cihlar, 2000); another one is related to the inherent problem of NDVI itself
(Huete et al., 1994; Huete et al., 2002). The AVHRR NDVI is easy to be affected by
atmosphere, canopy/soil background, and viewing geometry, and it is also easy to
saturate (Cihlar et al., 1994a; Cihlar et al., 1994b; Cihlar et al., 1994c; Huete et al., 1997).
Some experiemnts and radiative transfer model simulation studies studied the relationship

between vegetation indices (e.g. NDVI) and sun-sensor-target or viewing geometry (e.g.,

3 This chapter will be submitted to Remote Sensing of Environment soon
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Goward et al., 1992; Huete et al., 1992; Cihlar et al., 1994c; Epiphanio et al., 1995;
Chopping, 2001). Huete and colleagues proposed an ‘enhanced vegetation index’ (EVI)
for sensors that have red, near infrared and blue bands to overcome the effect of
atmosphere and canopy/soil background (Huete et al., 1997). Literature showed that
many studies have contributed great efforts on the consideration of viewing geometry
effect for different study objectives(e.g., Baret et al., 1991; Cihlar et al., 1994c; Roujean
et al., 1995; Braswell et al., 1996; Asner et al., 1998a; Gobron et al., 2000b; White et al.,
2002; Latifovic et al., 2003).

The Moderate Imaging Spectrometer (MODIS) has finer spatial, spectral
resolution and better calibrated and atmospherically corrected observations than AVHRR
and offer an unprecedented opportunity to monitor and quantify seasonal changes of
vegetation canopy and phenology at local, regional and global scales for both short-term
and long-term periods. Ever though many efforts have been contributed to the
consideration of viewing geometry effect of land targets, it is still a question to debate
that: is seasonal spectral variation of a land target only due to the viewing geometry
effect after the well calibration and atmospheric correction data processing? Specially,
are seasonal MODIS spectral variations of a temperate broadleaf deciduous forest during
the plant growing season only due to the viewing geometry effect (i.e., the anisotropic
nature of the forest)? Note that Myneni and others (Knyazikhin et al., 1998a; Knyazikhin
et al., 1998b; Myneni et al., 2002; Wang, 2002), in order to derive leaf area index [LAI}
and fraction of photosynthetically active radiation [PAR] absorbed by canopy
[FPARanopy] from bidirectional reflectance, assumed that leaf spectral properties for each

biome type are constant; Gobron and colleagues assumed a single spectra profile for any
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leaf to derive FPAR canopy (Gobron et al., 2000b; Gobron et al., 2002; Taberner et al.,
2002). The former efforts were based on the up-to-date exploration of AVHRR and were
useful. When these assumptions are relaxed, we may be possible to see more details of
canopy and leaf with MODIS.

Vegetation has anisotropic nature, i.e., the bidirectional reflectance distribution

function (BRDF). The origins of BRDF of vegetation canopy are mainly microscopic
shadow casting of the canopy and volume scattering in the vegetation canopy. The
bidirectional reflectance provided by wide-swath satellite sensors (e.g., AVHRR/NOAA
and MODIS) combines the BRDF effect and the information of the seasonal changes of
canopy and leaf together. Some studies documented canopy reflectance changing during
the plant growing season, or along elevational and latitudinal gradients (Ustin et al., 1994;
Remer et al., 2001; Kodani et al., 2002; Richardson et al., 2002; Richardson et al., 2003).
Leaf structure and chemistry was reported to vary seasonally, resulting in seasonal
patterns of spectral variation (Demarez et al., 1999; Gond et al., 1999; Kodani et al., 2002;
Gitelson et al., 2002a; Stylinski et al., 2002). So the seasonal variation of observed
MODIS reflectance of vegetation, hence the seasonal change of retrieved LAI,
FP AR canopy, and vegetation indices (e.g., NDVI, EVI, and land surface water index
[LLSWI], Huete et al., 1997, Xiéo et al., 2004c) can be possibly contributed from
variations of canopy level characteristics, leaf level characteristics and/or BRDF effect.
To uncouple BRDF effect from bidirectional reflectance for quantitative analysis of
seasonal changes of the vegetation and its leaves is a challenging task (Chopping, 2000).

The objectives of this study are threefold: (1) to study the seasonal dynamics of

surface reflectance and NDVI, EVI and LSWI, using contamination free MODIS time
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series data collection; (2) to estimate LLAI and the fractions of PAR absorbed by
chlorophyll, leaf and canopy , i.e., FAPARnopy, FAPAR|ea¢ and FAPAR.;m with
contamination-free multiple daily MODIS images; and (3) to evaluate if the seasonal
variations of observed contamination free MODIS reflectance, NDVI, EVI and LSWI are
only because of the BRDF effect. Selected seasonal reflectance dynamics from (1) and
inverted variables from (2) are useful for our evaluation in (3). A coupled leaf-canopy
radiative transfer model was utilized in the study (PROSPECT+SAIL-2 model; Zhang et
al., 2005). Our coupled PROSPECT-SAIL-2 model estimates simultaneously both leaf-
level variables and canopy-level variables (Zhang et al., 2005). As a case study, we
selected two research sites of the Missouri Ozark Forest (MOF) in the southeastern
Missouri, USA, where field-based observations leaf chlorophyll concentration and leaf

dry matter are available for evaluating the inverted model variables.
6.2 _ Brief description of two research sites of the Missouri Ozark Forest (MOF

The two research sites in the Missouri Ozark Forest (MOF) locate in the
southeastern Missouri Ozarks. One site (37°11'53.12"N, 91%0'29.75"W; hereafter called
site 1) has a 100m*100m intermediate forest stand (~ 20 years old) surrounded by mature
forest (~70 years old); and another site (37°10'38.26"N, 91°7'53.17"W; hereafter called
site 2) is occupied totally by mature forest (~70 years old). White oak (Quercus alba) and
black oak (Quercus velutina), along with scarlet oak (Quercus coccinea) and hickory
(Carya spp.), dominate the forest canopy of MOF. The oak species are little resilient to

drought and fire. Mean annual temperature and mean annual precipitation is 13.3°C and
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1120 mm, respectively. Soils were formed mostly in residuum. More than 90% of MOF

has an elevation less than 300m (Xu et al., 2004).

6.3 Method to get contamination free MODIS daily observations

The MODIS daily surface reflectance (MODO9GHK and MYD09GHK, v004),
MODIS daily observation viewing geometry (MODMGGAD and MYDMGGAD, v004),
and MODIS daily observation pointers (MODPTHKM and MYDPTHKM, v004) are
used in this study. There are reflectance values of the seven spectral bands (500m spatial
resolution) in the MODIS daily surface reflectance product: red (620-670 nm), blue (459
— 479 nm), green (545-565 nm), near infrared (NIR;, 841-875 nm, and NIR;, 1230 — 1250
nm), short-wave infrared (SWIR;, 1628 —- 1652 nm, and SWIR;, 2105-2155 nm). The
MODIS daily surface reflectance product has product quality information. The quality
control (QC) data layer of the reflectance product includes information about errors and
missing data in the daily surface reflectance product, for each of the seven MODIS bands,
as well as information about whether an atmospheric correction was performed, and
information about whether an adjacency correction was performed. If the QC value
indicates any quality problem, the observation was excluded in our analysis. The MODIS
daily observation viewing geometry product contains observation viewing geometry
information (view zenith angle, view azimuth angle, sun zenith angle and sun azimuth
angle) at a nominal 1-km scale. The MODIS daily observation pointers product provides
a reference, at the 500 m scale, to observations that intersect each pixel of MODIS daily

surface reflectance product in MODIS daily observation viewing geometry product
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(Zhang et al., 2005). All the MODIS data products are freely available at USGS Earth

Observing System Data Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/).

We acquired daily MODIS data (year 2003) from the NASA data archive for one
MODIS tile that covers both MOF site 1 and site 2. The blue reflectance of a pixel with
vegetation and/or soil covered will increase if cloud or residual aerosol contaminates
(King et al., 1999). Green vegetation, wet soil and snow have low SWIR; reflectance. If
one observation has SWIR; reflectance greater than 0.15 or blue greater than 0.2, the
observation is identified as a bad observation and excluded for analysis. Figure 6.1a-b
showed the MODIS blue and SWIR; reflectance of the observations of site 1 for the
whole year of 2003 with blue reflectance not greater than 0.2 and SWIR; not greater than
0.15. Some of observations in both blue band (less than 0.065) and SWIR; band (less
than 0.15) are clustering in Figure 6.1c-d. Other observations are randomly scattering
(Figure 6.1). Figure 6.9a-b showed the MODIS blue and SWIR; reflectance of the
observations of site 2 for the whole year of 2003 with blue reflectance not greater than
0.2 and SWIR; not greater than 0.15. Some of observations in both blue band (less than
0.051) and SWIR; band (less than 0.15) are clustering in Figure 6.9c-d. Other
observations are randomly scattering (Figure 6.9). Contaminated atmosphere (e.g., partial
cloud cover or residual aerosols) is one likely source that contributed to the scattering of
those scattering observations. There possibly are some other unknown sources. After
removing the scattering observations, we got the clustering observations and calculated
NDVI, EVI (Huete et al., 1997), LSWI, (Xiao et al., 2004c), and snow cover fraction

(f,..., » Kaufman et al., 2002) with the clustering observations. There were a few

observations of sites 1 and 2 that were affected by snow. The snow-affected observations
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were discarded. Figure 6.2a—g showed the reflectance of MODIS seven bands for the
remaining contamination-free observations of site 1. Figure 6.10a~g showed the
reflectance of MODIS seven bands for the remaining contamination-free observations of

site 2. The indices were shown in Figure 6.2h and Figure 6.10h.

pMRl ~Prea (1)
p NIR, +p red

NDVI =

Y NIR; 4 red (2)
Py, + 06X 0, —7.5X Py, +1

EVI =2.5x

_ pNIRl “‘pSWIRl 3)
Pwr, Pswir,

Lrea — 0-51";'5»'11?2
0.6
Pred —0-3Psyr,

A Preg > 050, Wik, and Pgyp <0.25 )

Fanow =10.5140.07x

0,otherwise

where Oy, > Prea> Puir, > Pswir, » a0d Py are reflectance values of the blue, red, NIR;,

SWIR; and SWIR; bands.

6.4 Description of the radiative transfer model, the inversion algorithm and

forward simulation

6.4.1 _Brief description of the coupled leaf-canopy radiative transfer model PROSPECT

This study used the PROSPECT+SAIL-2 model presented in our previous study

(Zhang et al., 2005). We simply depict the model here. We used the PROSPECT model
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with five variables - leaf internal structure variable (N), leaf chlorophyll content (Cyp),
leaf dry matter content (Cp), leaf water thickness (C,,) and leaf brown pigment (Cerown)
(Baret et al., 1997; Verhoef et al., 2003; Di Bella et al., 2004). The version of SAIL
(Scattering from Arbitrarily Inclined Leaves) model, a canopy radiative transfer model,
described by Braswell and others (SAIL-2; Braswell et al., 1996) was utilized in this
study. The PROSPECT model was coupled with the SAIL-2 model (hereafter called
PROSAIL-2) through replacing the leaf reflectance component in the SAIL-2 model with
the PROSPECT model. The sixteen biophysical/ biochemical variables of the PROS AIL-

2 model and their search ranges, based on an extensive literature review, were listed in

Table 6.1.

6.4.2 _Brief description of the Metropolis algorithm for inversion

The daily MODIS/Terra and MODIS/Aqua data from day of year (DOY) 193 to
216 in 2003 for MOF site 1 were extracted. Twelve contamination-free observations were
collected for site 1. The daily MODIS data from DOY 201 to 216 in 2003 for MOF site 2
were also extracted. Twelve contamination-free observations were collected for site 2.
The Metropolis algorithm in our previous study (Metropolis et al., 1953; Zhang et al.,
2005), a type of Markov Chain Monte Carlo (MCMC) estimation procedure, was
employed for inversion of the MODIS data. The strength of the method is that it can
reflect the remaining uncertainty after the model has been constrained (inverted) with
data and estimate posterior probability distributions of the variables conditioned on both
the model and the observed data. The retrieved distributions will provide both estimates

of uncertainty (such as standard deviations and confidence intervals) of individual
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variables and the information about the variable sensitivity of the model. The Metropolis
algorithm is relatively computationally intensive, owing to the need for simulation of a
large number of samples required to obtain a reliable estimate of the variables’
distributions. Reflectance of red, NIR;, green, NIR;, and SWIR; bands and relative
viewing geometries of the MODIS observations are used as input to invert the PROSAIL-
2 model. Details about the Metropolis algorithm for inversion can be found in Zhang et al.
(2005).

With the estimates of the biophysical and biochemical variables by inverting
PROSAIL-2 with observed spectral reflectance data (reflectance plus relative observation
geometry) using the Metropolis algorithm, we calculate FAPAR canopy (Goward et al,,
1992), FAPARer (Braswell et al., 1996), and FAPAR (Zhang et al., 2005) using

forward simulations.

6.4.3 Reproducing bidirectional MODIS five band reflectance with seasonal MODIS

observation geometry

We estimated the biophysical/ biochemical variables using the observed twelve
daily MODIS observations from DOY 193 — 216 in 2003 (reflectance plus relative
observation geometry) in section 6.4.2 for site 1. We also did the inversion with twelve
daily MODIS data from DOY 201 — 216 in 2003 in section 6.4.2 for site 2. We collected
all contamination free daily MODIS observations in the whole year of 2003 for both site
1 and site 2 (see Figures 6.2 and 6.10). We forwardly simulated the red, green, NIR;,

NIR, and SWIR; reflectance of MODIS, for sites 1 and 2, with the mean values of the
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inverted variables for sites 1 and 2 and observation geometries of the observations in

Figures 6.2 and 6.10, respectively (see Figures 6.8 and 6.16).

6.5 Results

6.5.1__Temporal analyses of MODIS daily reflectance data in 2003

Figure 6.2 exhibited the time series of surface reflectance of the seven spectral
bands among the clustering MODIS daily data that covered MOF site 1 in 2003. The
blue reflectance values for the period from DOY 125 to 280 are much lower than those
for the periods before DOY 125 or after DOY 280 (Figure 6.2a). Similar seasonal
patterns were also observed for the SWIR; and red reflectance (Figure 6.2b, c). In
comparison, the seasonal NIR; and NIR; reflectance values have a strong seasonal
dynamics with peaks values in n;id summer (Figure 6.2d, f). Figure 6.10 exhibited the
time series of the seven MODIS spectral reflectance among the clustering MODIS daily
data that covered MOF site 2 in 2003. The MODIS reflectance values of site 2 have
similar seasonal patterns of the spectral reflectance values of site 1.

The seasonal reflectance dynamics of individual spectral bands provide rich
information for interpreting vegetation indices from the MODIS data. There was very
little green vegetation for the periods of DOY 1-100 and DOY 300 - 365 over sites 1 and
2 (Figure 6.2d and Figure 6.10d). MODIS observed less water content for the periods
than the period from DOY 125 — 280 (Figure 6.2b and Figure 6.10b). However, one
observation on DOY 19 over site 1 has blue, red, NIR; and SWIR; reflectance values as
0.0105, 0.0272, 0.2202 and 0.0771, and has NDVI, EVI and LSWI as 0.7801, 0.3698,

and 0.2020. One observation on DOY 23 over site 2 has blue, red, NIR; and SWIR,
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reflectance values as 0.0096, 0.0279, 0.2173 and 0.0840, and has NDVI, EVI and LSWI
as 0.7724, 0.3607, and 0.1946. The two observations have high NDVI, relatively high
EVI and LSWI in winter/spring season. Some other similar observations in winter/spring
seasons were also exhibited in Figures 6.2 and 6.10. One should take caution when

interpreting NDVI, EVI and LSWI of these observations.

6.5.2__Comparison between retrieved and observed reflectance values of MODIS daily

data collections from DOY 193-216 for site 1 and from DOY 201-216 for site 2 in 2003

The mean values from the retrieved variable distributions for the data collection
from DOY 193 to 216 in 2003 for site 1 were utilized as inputs to calculate the
reflectance with forward simulations of the PROSAIL-2 model. Figure 6.3 shows a
comparison of the PROSAIL-2 retrieved reflectance with the observed reflectance of the
MODIS green, red, NIR;, NIR;, and SWIR; bands. The correlation coefficient between
the retrieved and observed MODIS visible reflectance is 0.90 for the green band and 0.84
for the red band, respectively. The root mean squared error (RMSE) between the
observed and retrieved MODIS visible reflectance is 0.38% for the green band and 0.35%
for the red band. The correlation coefficient between the retrieved and observed
NIR/SWIR reflectance is 0.87, 0.92, and 0.93 for NIR;, NIR; and SWIR;, respectively.
The RMSE between the observed and retrieved NIR/SWIR reflectance is 2.1%, 1.6%,
and 1.0% for NIR;, NIR; and SWIR,, respectively. The mean values from the retrieved
variable distributions for the data collection from DOY 201 to 216 in 2003 for site 2 were
utilized as inputs to calculate the reflectance with forward simulations of PROSAIL-2.

Figure 6.11 shows a comparison of the PROSAIL-2 retrieved reflectance with the
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observed reflectance of the MODIS green, red, NIR;, NIR,, and SWIR; bands. The
correlation coefficient between the retrieved and observed MODIS visible reflectance is
0.95 for both the green band and red band. The RMSE between the observed and
retrieved MODIS visible reflectance is 0.29% for the green band and 0.18% for the red
band. The correlation coefficient between retrieved and observed NIR/SWIR reflectance
is 0.91, 0.90, and 0.94 for NIR;, NIR; and SWIR|, respectively. The RMSE between the
observed and retrieved NIR/SWIR reflectance is 2.5%, 2.8%, and 1.3% for NIR;, NIR,
and SWIR;, respectively. Note that the data collections spanned twenty-four days and
sixteen days, respectively, and any variation of leaf and canopy during the periods may
have contributed to the discrepancies between the retrieved reflectance and MODIS
observed reflectance though we would not expect very large changes at either leaf or
canopy level because the canopy was well fully developed during early July. Possible
errors introduced during MODIS pre-processing may also contribute to the discrepancies
(e.g. imperfect atmospheric correction). The comparison suggests that the PROSAIL-2
model with the retrieved mean values of individual variables reasonably reproduces the

surface reflectance of the temperate deciduous broadleaf forest sites.

6.5.3  Uncertainty of individual variables from inversion of the PROSAIL-2 model with

MODIS daily data collections from DOY 193-216 for site 1 and from DOY 201-216 for

site 2 in 2003

The Metropolis algorithm retrieved posterior probability distributions for
individual variables for the data collections from DOY 193 to 216 for site 1 and from

DOY 201 to 216 for site 2 in 2003. The posterior distributions offer a measure of
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uncertainty in the form of their standard deviations or other quantile intervals, and the
shape of the distributions provide a measure of compatibility between model and data.
We simply ranked the sixteen variables into three categories: “well-constrained”,
“poorly-constrained” and “edge-hitting” through examining their histograms from
inversion (Braswell et al., 2005; Zhang et al., 2005). The “well-constrained” variables
usually have a well-defined distribution, with small standard deviations relative to their
allowable ranges. The “poorly-constrained” variables have relatively flat distributions
with large standard deviations relative to their allowable ranges. Edge-hitting variables
are those for which the modes of their retrieved values occurred near one of the edges of
their allowable ranges and most of the retrieved values were clustered near this edge.
Figures 6.4 and 6.6 for site 1 and figures 6.12 and 6.14 for site 2 show that the histograms
of plant area index (PAI), LAI, and five leaf variables (leaf internal structure variable,
leaf chlorophyll concentration, leaf brown pigment concentration, leaf dry matter and leaf
equivalent water thickness) are “well-constrained” variables. Cover fraction of both site 1
and site 2 is “edge-hitting” variable (Figures 6.5b and 6.13b). Stem fraction for site 1 is
“well-constrained” while stem fraction for site 2 is “edge-hitting” (Figures 6.5a and
6.13a). Because stem fraction is distributed near 0.03 for site 1 and near 0.0 for site 2 and
cover fraction is distributed near 1.0 for both sites 1 and 2, stem and soil have little effect
on the canopy optical characteristics and consequently little information about stem and

soil could be retrieved from the MODIS observations.
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6.5.4 __Distribution of FAPAR canopy, FAPARear, and FAPAR .y using MODIS daily data

collections from DOY 193-216 for site 1 and from DOY 201-216 for site 2 in 2003

The histograms of fractions of absorbed PAR by canopy, leaf and chlorophyll are
“well-constrained” variables (figure 6.7 for site 1 and Figure 6.15 for site 2). We
estimated the distributions of FAPAR canopy, FAPARear, and FAPARy for the data
collections of the MODIS daily data from DOY 193 to 216 for site 1 and from DOY 201
to 216 for site 2 in 2003 using the retrieved distributions of individual variables in
PROSAIL-2. We also extracted mean and standard deviation values of the fractions. The
mean values of FAPAR capopy, FAPAResr, and FAPARyy for the data collection of the
MODIS daily data from DOY 193 to 216 in 2003 for site 1 were 0.915, 0.865, and 0.707,
respectively. Their standard deviation values were 0.029, 0.042, and 0.028, respectively.
The mean values of FAPAR canopy, FAPAR|car, and FAPARyy for the data collection of the
MODIS daily data from DOY 201 to 216 in 2003 for site 2 were 0.912, 0.885, and 0.729,
respectively. Their standard deviation values were 0.029, 0.035, and 0.025, respectively.

The FAPAR canopy and FAPAR ;¢ for site 1 from DOY 193 to 216 in 2003 have
difference, and the FAPAR canopy and FAP ARt for site 2 from DOY 201 to 216 in 2003
have difference, too. The differences are attributed to light absorption by stem
(APARgem), i.€., the non-leaf part of the canopy. During DOY 193 to 216 in 2003, the
vegetation canopies over the two sites are dominated by leaves, and only a very small
proportion of stems are observed by the MODIS sensor. This may explain why the mean
FAPARGnopy Values are only slightly higher than the mean values of FAPAR..s. The
differences between FAPAR|..r and FAPARyy are attributed to light absorption by the

non-chlorophyll component of the leaf.
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NDVI and EVI are two MODIS standard products that have been used frequently
(Justice et al., 1998). We calculated the mean and standard deviation of NDVI and EVI
using the same MODIS images for the two data collections. The mean values of NDVI
and EVI for the data collection of the MODIS daily data from DOY 193 to 216 in 2003
for site 1 were 0.863 and 0.607, respectively. The standard deviations of NDVI and EVI
were 0.020 and 0.041, respectively. The mean values of NDVI and EVI for the data
collection of the MODIS daily data from DOY 201 to 216 in 2003 for site 2 were 0.881
and 0.591, respectively. The standard deviations of NDVI and EVI were 0.012 and 0.062,
respectively. The mean NDVI values are very similar to FAPAR,¢,¢ , which supports the
earlier studies that used NDVI to approximate FAPAR canopy (€.g., Goward et al., 1992), as
FAPAR s and FAPAR canopy Values are close to each other. The mean EVI values are
lower than the mean FAPARy,; values. Note that reflectance values in daily MODIS
images are not BRDF corrected reflectance; therefore, the observation viewing geometry

has an effect on the ranges of NDVI and EVI.

6.5.5__Comparison of reflectance, related NDVI, EVI and LSWI in 2003 and reproduced

reflectance and related NDVI, EVI and LSWI with the inverted mean variables in

PROSAIL-2 and with the viewing geometries from MODIS daily data collection

Figures 6.8 and 6.16 show comparison of reflectance, related NDVI, EVI and
LSWI and reproduced reflectance, related NDVI, EVI and LSWI using the inverted mean
values of the variables in PROSAIL-2 and the viewing geometries for the data collection
of the MODIS daily data from DOY 193 to 216 in 2003 for site 1 and the data collection

of the MODIS daily data from DOY 201 to 216 in 2003 for site 2, respectively. During
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the MODIS daily data collections’ periods, canopies were fully developed. The
reflectance difference for red and green bands because of viewing geometries can be 0.01
and the reflectance difference for NIR;, NIR; and SWIR; can be 0.1. For fully developed
canopies, viewing geometry has the least effect on NDVI, medium effect on LSWI and
the greatest effect on EVI. The difference between real reflectance, related NDVI, EVI
and LSWI in 2003 and reproduced reflectance, related NDVI, EVI and LSWI 'during
before DOY 116 and after DOY 258 could be explained by leaf-on and leaf-off-
senescence processes. There is still significant difference between real reflectance, related
NDVI, EVI and LSWI and reproduced reflectance, related NDVI, EVI and LSWI during

DOY 116 - DOY 258 in 2003 that has not been studied widely.

6.6 Discussion

MODIS observations during winter/spring season have higher solar zenith angles
than during other seasons. Reproduced NDVI (Figures 6.8 and 6.16) shows weak
variation between observations with high zenith angles and observations with low zenith
angles. Our results about NDVI are consistent with Goward and Huemmrich (1992) that
reported that NDVI of vegetation with high L AI changed little. Variation of solar zenith
angles does not affect NDVI of dense vegetation very much. Similarly, variation of solar
zenith angles does not affect LSWI of dense vegetation very much even though its
variation is greater than the variation of NDVI. Because we did not reproduce blue band
reflectance, we could not conclude completely that the variation of reproduced EVI is
completely because of solar-earth-target geometry variation. We speculate that the

viewing geometry has the greatest effect on EVL
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Forests are believed to have unchanged LAI during plant growing season (e.g.,
DOY 116 — 258 in 2003 for the MOF). If there is no variation in canopy or leaf during
the plant growing season, what are the reasons that the real reflectance and reproduced
reflectance are obviously different during the period? If the BRDF effect is the only
reason, there should be no such significant difference. So some other factors should be
also responsible for the difference. And the assumption that leaf optical variations can not
be observed or leaf optical characteristics do not change during plant growing season
need to be argued.

Even though there is a central 100m* 100m intermediate forest plot in the mature
forests of site 1 while the whole site 2 is totally covered by mature forests, little
difference of MODIS spectral range optics between the two sites was observed except
that MODIS can observe around 3% stem in canopy for site 1 and 0% stem in canopy for
site 2. MODIS has little capability to distinguish the two sites as there is only four
percent of vegetation of the two sites having different ages. To detect the age difference
of such small plots, we recommend use finer spatial and/or finer spectral resolution data.

Leaf dry matter and leaf chlorophyll content that are important for interpreting the
results of inversion of the PROSAIL-2 model in this study are discussed here though it is
hard to validate all variables at 500m scale. Leaf chlorophyll content is an important leaf-
level biophysical variable. The inversion of the PROSAIL-2 model using the data
collection from DOY 193 -216 in 2003 for site 1 has estimated leaf chlorophyll content
with mean of 69.17pvg/cm2 and standard deviation of 5.99ug/cm’, and leaf dry matter
with mean of 0.00786 g/cm2 and standard deviation of 0.00432 g/cm®. The inversion of

the PROSAIL-2 model using the data collection from DOY 201 - 216 in 2003 for site 2
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has estimated leaf chlorophyll content with mean of 70.955;A,g/cm2 and standard deviation
of 4.36ug/cm2, and leaf dry matter with mean of 0.00684g/cm® and standard deviation of
0.00361 g/cmz. We measured leaf chlorophyll content and leaf dry matter for major
species in MOF in August 1 —7 in 2003. The field measured ranges of top leaf
chlorophyll content are as following: white oak 65.538 — 67.110, hickory 38.730 — 56.100,
black oak 59.918 — 70.365, and scarlet oak 85.922 — 90.048ug/cm®. The field measured
ranges of top leaf dry matter are white oak 0.00516 — 0.00644, hickory 0.00888 —
0.01054, black oak 0.00226 — 0.01025, and scarlet oak 0.00507 — 0.01281 g/cm®. Our
estimated leaf chlorophyll content and leaf dry matter ranges (mean + standard deviation)
are overlapped by the field measurement ranges. In future when we have more sources to
evaluate the area fractions of major forest species, we may evaluate our inversion
algorithm in more details.

The results of this study highlight the substantial variations of the red, green,
NIR;, NIR; and SWIR, bands except viewing geometry effect during the plant growing
season. NDVI and LSWI do not provide much information about these variations. More
study about the physiological basis of the variations in the future will be useful. The
variations suggest that in addition to measurements of canopy-level variables (e.g., LAI),
field measurements of leaf-level variables (e.g., chlorophyll, other pigments, leaf dry
matter, and leaf water content) during the plant growing season will be useful for both

remote sensing and ecological research.
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Table 6.1 A list of variables in the PROSAIL-2 model and their search ranges
Variable | Description Unit Search
range
Biophysical | PAI plant area index, i.e., leaf +stem area 1-75
/biochemical index
variables SFRAC | Stem fraction 0-1
CF Cover fraction: area of land covered 0.5-1
by vegetation/ total area of land
Cab Leaf chlorophyll a+b content ug/cm’ | 0— 80
N Leaf structure variable: measure of 1.0-45
the internal structure of the leaf
Cw Leaf equivalent water thickness cm 0.001 -
0.15
Cn Leaf dry matter content glem’ 0.001 -
0.04
Chrown Leaf brown pigment content 0.00001 - 8
LFINC Mean leaf inclination angle degree | 10-89
STINC Mean stem inclination angle degree | 10-89
LFHOT | Leaf BRDF variable: length of leaf/ 0-09
height of vegetation
STHOT | Stem BRDF variable: length of stem 0-09
/ height of vegetation
STEM, | Stem reflectance variable: maximum 0.2-20
(for a fitted function)
STEMg | Stem reflectance variable range (for 50 - 5000
same fitted function)
SOILA | Soil reflectance variable: maximum 0.2-20
(for a fitted function)
SOILg Soil reflectance variable: range (for 50 - 5000
same fitted function)
Atmospheric | VIS Diffuse/ direct variable: scope of km 50
condition atmospheric clarity
variable
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Figure 6.1 Reflectance of (a) blue and (b) SWIR; of MODIS daily observations of the Missouri Ozark
Forest (MOF) site 1 in 2003 (reflectance scale=0.0001) with blue less than 0.2 and SWIR; less than 0.15;
reflectance of (c) blue and (d) SWIR; of MODIS daily observations in 2003 with blue less than 0.065 and
SWIR; less than 0.15
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Figure 6.2 Reflectance of clustering MODIS daily observations of the MO Forest site 1 in 2003 (reflectance
scale=0.0001) and related NDVI, EVI and LSWI
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Figure 6.2 (continued)  Reflectance of clustering MODIS daily observations of the MO Forest site 1 in
2003 (reflectance scale=0.0001) and related NDVL, EVI and LSWI
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Figure 6.3 A comparison between the observed reflectance and PROSAIL-2 reproduced reflectance for five
MODIS spectral bands (red, green, NIR,, NIR, and SWIR,;). Surface reflectance were reproduced with the
mean values of inverted variables from the PROSAIL-2 model using MODIS over the MO forest site 1

from DOY 193 to 216 in 2003.
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Figure 6.4 (a) Histogram of plant area index (PAI) for MODIS data collection of the MO forest site 1 from
DOY 193 to 216 in 2003; (b) Histogram of leaf area index (LAI) for MODIS data collection of the MO
forest site 1 from DOY 193 to 216 in 2003

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




43X 10 ' , ‘ . (a)

05 ey ]

0 0.05 0.1 0.15 02 025
Stem Fraction

x 10

(b)

O 1
0.85 0.9 0.95 1
cover fraction

Figure 6.5 (a) Histogram of stem fraction for MODIS data collection of the MO forest site 1 from DOY
193 to 216 in 2003; (b) Histogram of cover fraction for MODIS data collection of the MO forest site 1 from

DOY 193 to 216 in 2003
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Figure 6.6 Histograms of leaf variables for MODIS data collection of the MO forest site 1 from DOY 193
to 216 in 2003

(a) leaf internal variable (N); (b) leaf chlorophyll content (Cyp, pg/cm?);(c)leaf brown pigment (Corown)
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Figure 6.6 (continued)  Histograms of (d) leaf equivalent water thickness (Cw, cm); and (e) leaf dry
matter (Cg, g/cm2 ) for MODIS data collection of the MO forest site 1 from DOY 193 to 216 in 2003
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Figure 6.7 Histograms of fraction of photosynthetically active radiation absorbed by (a) canopy
(FAPAR 11epy); () by leaf (FAPAR,..s) ; (c) by chlorophyll (FAPAR,;) for MODIS data collection of the
MO forest site 1 from DOY 193 to 216 in 2003

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MODIS red reflectance MODIS NIR, reflectance
708 6000
© 600 ] 5000
g 500 & a000
§ 40q red 1 N1
5 % 3000
= 300 Orep_red = Crep NIR1
o w <2000
100 1000 "
04 T —~ 1 0+ . 1 .
1 10t 201 3 1 101 200 301
DOV in 2003
DOY in 2003
MOCDIS green reflectance MODIS NIR: retiectance
700 5000
600
4000
& 500 o ‘
g 400 green § 3000 NIR?
5 300 ' i Orep_green S 2000 - o rep_NIR2
L 200 g
100 1000 t
o+ F v T o+ v T T
1 101 201 301 10t 201 3%
GOy in 2003 COY an 2003

Figure 6.8 A comparison of reflectance, related NDVI, EVI and LSWI of MODIS clustering daily
observations of the MO Forest site 1 in 2003 (reflectance scale=0.0001) and reproduced reflectance and
related NDVI, EVI and LSWI with the inverted mean variables in PROSPECT-SAIL-2 of data collection
from DOY 196 — 216 in 2003 and with the same viewing geometries.
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Figure 6.8 (continued) A comparison of reflectance, related NDVI, EVI and LSWI of MODIS
clustering daily observations of the MO Forest site 1 in 2003 (reflectance scale=0.0001) and reproduced
reflectance and related NDVI, EVI and LSWI with the inverted mean variables in PROSPECT-SAIL-2 of
data collection from DOY 196 — 216 in 2003 and with the same viewing geometries.

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MODIS blue reflectance (a) MODIS SWIR, reflectance (b)
2500 2500 -
Q Q
2 2000 . 2 2000
. Q &
g 1500 = 1500 ' % Sotee, »e R A :.. -
[ o enee s . e oS ®
= i .6 L =o“. >’ * K o % e
1000 - 1000 1% . S e, » e
% e . o3 %58 .
. .5.'0\.:' o °
500 - S 500 1 $Se {" .
‘-.‘.‘_.‘
0= 0 . - .
1 1 101 201 301
DOY in 2003 DOY in 2003
MODIS blue reflectance (c) MODIS SWIR, reflectance (d)
2500 - 2500 -
[3]
g 2000 - 8 2000 1
8 g
Q =
= 1500 g 15004 . O .
8 S
1000 4 =
. § . 0 , , .
1 101 201 301 1 101 201 301
DOY in 2003 DOY in 2003

Figure 6.9 Reflectance of (a) blue and (b) SWIR; of MODIS daily observations of the Missouri Ozark
Forest (MOF) site 2 in 2003 (reflectance scale=0.0001) with blue less than 0.2 and SWIR, less than 0.15;
reflectance of (c) blue and (d) SWIR, of MODIS daily observations in 2003 with blue less than 0.051 and

SWIR?2 less than 0.15
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Figure 6.10 Reflectance of clustering MODIS daily observations of the MO Forest site 2 in 2003
(reflectance scale=0.0001) and related NDVI, EVI and LSWI
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Figure 6.10 (continued)  Reflectance of clustering MODIS daily observations of the MO Forest site 2 in

2003 (reflectance scale=0.0001) and related NDVI, EVI and LSWI
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Figure 6.11 A comparison between the observed reflectance and PROSAIL-2 reproduced reflectance for
five MODIS spectral bands (red, green, NIR,, NIR, and SWIR,). Surface reflectance were reproduced with
the mean values of inverted variables from the PROSAIL-2 model using MODIS over the MO forest site 2

from DOY 201 to 216 in 2003.
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Figure 6.12 (a) Histogram of plant area index (PAT) for MODIS data collection of the MO forest site 2
from DOY 201 to 216 in 2003; (b) Histogram of leaf area index (LAI) for MODIS data collection of the
MO forest site 2 from DOY 201 to 216 in 2003
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Figure 6.13 (a) Histogram of stem fraction for MODIS data collection of the MO forest site 2 from DOY
201 to 216 in 2003; (b) Histogram of cover fraction for MODIS data collection of the MO forest site 2

from DOY 201 to 216 in 2003
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Figure 6.14 Histograms of leaf variables for MODIS data collection of the MO forest site 2 from DOY 201
to 216 in 2003

(a) leaf internal variable (N); (b) leaf chiorophyll content (Ca,ug/ cm?); (c) leaf brown pigment (Cyroun)
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Figure 6.14 (continued)  Histograms of (d) leaf equivalent water thickness (C,,, cm); and (e) leaf dry
matter (Cy, g/cmz) for MODIS data collection of the MO forest site 2 from DOY 201 to 216 in 2003
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Figure 6.15 Histograms of fraction of photosynthetically active radiation absorbed by (a) canopy
(FAPAR s0py); (b) by leaf (FAPAR,) ; (c) by chlorophyll (FAPAR_) for MODIS data collection of the
MO forest site 2 from DOY 201 to 216 in 2003
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Figure 6.16 A comparison of reflectance, related NDVIL, EVI and LSWI of MODIS clustering daily

observations of the MO Forest site 2 in 2003 (reflectance scale=0.0001) and reproduced reflectance and
related NDVI, EVI and LSWI with the inverted mean variables in PROSPECT-SAIL-2 of data collection
from DOY 201 — 216 in 2003 and with the same viewing geomelries.
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Figure 6.16 (continued)

data collection from DOY 201 — 216 in 2003 and with the same viewing geometries
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CHAPTER 7
SUMMARY AND CONCLUSIONS

This doctoral research is to provide new insight about physiology that is critical to better
understanding of primary productivity and carbon dynamics on the land. The daily
MODIS data and radiative transfer models are the major employed tools.

The first topic of this dissertation is how to get atmospheric-contamination and
snow-contamination free daily MODIS observations. I developed a procedure using daily
MODIS reflectance of blue and SWIR; bands to detect atmospheric-contaminated
observations and using daily MODIS reflectance of red and SWIR; bands to detect snow-
contaminated observations. MODIS SWIR; band is also used to track phenology in
tropical vegetation areas where fire smoke often occurs and visible bands are severely
contaminated by aerosol. Discussion on this topic is important because scientists have
difficulties to distinguish contamination free observations and contaminated observations
with only widely used vegetation indices, e.g. NDVI, EVI, and LSWI. This dissertation
provides a procedure to distinguish them. The procedure can provide seasonal snow
cover fraction for temperate forest areas. To check the MODIS spectral reflectance of all
seven bands is a useful tool to distinguish contamination free observations and
contaminated observations. I suspect it is also a potential tool to classify land cover types
and monitor land use change.

The second topic of this dissertation is to monitor phenology using daily MODIS

data. Seasonal MODIS observations after filtered with the procedure improve the
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capability of phenology analysis in three perspectives: (1) providing daily MODIS seven
spectral reflectance without atmospheric or snow contamination; (2) providing daily
MODIS vegetation indices (e.g., NDVI. EVI and LSWI) without atmospheric or snow
contamination; and (3) providing concise dates about leaf-on and leaf-off. Figures 2.11,
2.14,2.16, 2.17, 2.19, 5.4, 6.2 and 6.10 showed concise phenology signals of the
Xillingol grassland site, the Harvard Forest, the Howland Forest, the Walker Branch
Watershed Forest, the Nebraska Soybean, the Bartlett Experimental Forest, and the two
Missouri Ozark Forests, respectively. Through the summary statistical analysis using the
procedure in Chapter 2, I also find it is possible to monitor seasonal phenology of tropical
forest areas using the MODIS NIR; and SWIR; bands, at least for no rain days (Figure
2.26). This finding may be expanded to use in the Amazon area and other tropical
vegetation areas. The contamination free phenology signals obtained by this method will
not mix with the atmospheric and/or snow contaminated signals while AVHRR NDVI
series cannot partition them. The contamination free phenology signals can be used in
GPP models (c.g., Vegetation Photosynthesis Model) without worrying about easily
confusing signals in spring/winter seasons. If fund is available, I would like to produce
these contamination free products at various time scales (daily, 8-day composite, etc.)
and spatial scales (local, regional, continental) in future.

The third topic is about a question: are seasonal MODIS spectral variations of
forests during the plant growing season only due to vegetation’s anisotropic nature? This
is an open question since satellite remote sensing was available. Whether “yes” or “no”,
no direct or indirect evidences in literature was provided to support or argue. In Chapters

2, 5, and 6, obvious seasonal MODIS spectral dynamics are observed during the plant

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



growing season. The simulation study of this dissertation suggests that vegetation’s
BRDF effect does not éompletely cover the seasonal MODIS spectral dynamics during
the plant growing seasons and there should be other factors except the BRDF effect that
are due to the seasonal variations. LAI and FAPAR anopy Of forests generally don’t change
during the period from leaf full expansion to leaf senescence. Some factors related to leaf
are hinted to be partly in charge of the variations. Seasonal NDVI series don’t have the
obvious seasonal dynamics during the plant growing season because NDVI is saturated
during the period. Using only AVHRR NDVI has no way to detect this kind of seasonal
variations. My suggestion is that seasonal BRDF field measurements and physiological
study for the seasonal variations may start in future. I expect some interesting findings.
Very few studies reported the findings of seasonal spectral variations of forests or other
vegetations in literature; hence scientists do not know the reasons of the variations yet.
The fourth topic is FAPAR gy, the central point of this dissertation. Partitioning
FAPAR canopy into FAPAR .y and FAPARNpv has not really been explicitly discussed
before. To calculate FAPAR 4y with MODIS observations, I did two major things in this
dissertation: (1) improving PROSPECT model through including brown pigment and
coupling the improved PROSPECT with the SAIL-2 code from Rob; (2) inverting the
variables with the Metropolis algorithm that can provide distributions of individual
variables. Studies in Chapters 4-6 illustrate that little stem and soil in the Harvard Forest,
the Bartlett Experimental Forest and the two Missouri Ozark Forest sites is observed by
MODIS during peak of the plant growing season and there is little difference between
FAPAR cinopy and FAPARes¢ during the peak. The SAIL-2 model can be simplified next

time by assuming no stem or soil is observed over forests like the Bartlett Experimental
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Forest during summer peaks. However, there is significant difference between FAPAR et
and FAPAR . This finding suggests that the amount of absorbed PAR for
photosynthesis estimated using FAPAR canopy may be overestimated. This finding can
reduce some uncertainty/error in the estimating of GPP. LAI of the Harvard Forest
estimated through the Metropolis algorithm (in Chapter 4) is less than LAI from the
MODIS standard product of LAI and is much closer to field measurement. L.AI of the
Bartlett Experimental Forest estimated through the Metropolis algorithm is covered by
field measurement range (Chapter 5). Leaf chlorophyll concentration and leaf dry matter
(leaf specific weight) estimated through the Metropolis algorithm are in the same order of
literature reporting and field measurements. The Metropolis algorithm has potential to be
applied in local scale to regional scale in the future.

In the future, this research could continue along the following directions: to
implement the procedure of getting atmospheric-contamination and snow-contamination
free MODIS (daily) observations for whole MODIS tiles; to produce an alternative
phenology datasets from contamination free observations; to measure leaf biophysical
and biochemical variables to study which would contribute to the seasonal spectral
variations; to continue to improve the radiative transfer models; to conduct more
evaluation for the inversion of PROSAIL-2; to invent new instruments to measure

FAPAR_y in the field; and to expand the above methodology to USA and the globe.
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