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ABSTRACT

NONLINEAR DYNAMICS OF BLOOD FLOW IN SIMPLE MICROVASCULAR

NETWORKS 

BY 

Fan Wu

University of New Hampshire, December, 2005

It has been found that spontaneous oscillations of nodal pressures, hematocrit, 

and blood velocity can occur in microvascular networks in the absence of biological 

control. In this paper, both analytical and numerical methods have been used to 

investigate the nonlinear dynamics of microvascular blood flow in simple networks. 

First, the steady state solutions for the system are found. Then the governing coupled 

PDE's are transformed into state dependent time delay differential equations, DDE’s. 

The DDE’s are then linearized about a steady state and normalized.

The characteristic equation for the network is found by assuming the linearized 

DDE’s have a nontrivial exponential solution. The solutions of the characteristic 

equation are also called the eigenvalues for the network dynamics at that steady state. 

It is known that the steady state is unstable when the real part of the rightmost 

eigenvalue is positive. Thus, a theoretical prediction of the stability of the blood flow 

in the network can be based on the rightmost eigenvalues. The analysis has been 

performed on the networks with two node topology and with three node topology.

Due to the nonlinearity o f the characteristic equation, solutions are found 

numerically using a software package called “DDE-BIFTOOL”. After the 

eigenvalues are found, predictions of the stability of steady states are compared to

xiii
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direct numerical simulations for blood flow in the networks. Effects of physical 

parameters and inlet conditions on hemodynamics are investigated in the two node 

microvascular networks and the three node microvascular networks (2 inlets).

For the two node networks, the region of instability in parameter space is quite 

narrow. This means that experimental verification of spontaneous blood flow 

oscillations will be very difficult for the two node topology. The numerical results 

for the three node networks showed the three node system has instabilities over a 

much wider parameter ranges than the two node network. However, one of the most 

critical parameters, inlet hematocrit, is still quite high. This means such experiments 

are still very challenging.

Future work may involve continuing the search in wider parameter ranges and 

testing more complicated topologies to find realized conditions. Then in vitro 

experiments may be conducted to verify results of the linear stability analysis.

xiv
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Purposes

The aim of this paper is to theoretically investigate the nonlinear dynamics of 

blood flow in simple microvascular networks via linear stability analysis. For a long 

time, the fluctuations in microvessel networks have been thought to result from 

biological actions, but recent numerical simulations suggest that spontaneous 

oscillations in microvessel networks could be caused by the nonlinear physical 

properties of the systems with no biological controls. (Kiani et al., 1994; Carr and 

LeCoin, 2000) *’ 2 However, the underlying mechanisms for the oscillations are still 

unclear, motivating further theoretical studies of this phenomenon. This paper 

investigates the nonlinear dynamics of blood flow by combining analytical and 

numerical approaches.

A computational model is formulated, which consists of a set of partial 

differential equations and initial and boundary conditions. A linear stability analysis 

around steady-state solutions of the mathematical model is performed. The stability 

results can be utilized to predict the nonlinear dynamic behavior of the systems. The 

predictions can be further verified in future in vitro experimental work, which can be 

conducted in replicas of simple microvascular networks. Here, simple networks 

include the two node network, three node network or more complex ones. Necessary 

conditions for the oscillations are considered. The effects of physical parameters on 

the dynamic behavior are also investigated.

1
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1.2 Rheological Properties of Blood Flow

1.2.1 Blood Composition and Rehology

In vivo blood can be regarded as a suspension of cells in fluid. The fluid portion 

is named plasma that is nearly 90% water and 10% solutes, such as proteins, glucose, 

minerals, and other substances. The cellular portion consists of different types of 

cells and is divided into two major classifications, erythrocytes and leukocytes, 

which are also called red blood cells (RBCs) and white blood cells (WBCs) 

respectively. (McCall and Tankersley, 2002)3 Typical values of red blood cells, 

plasma, and whole blood are 1125 kg/m3, 1025 kg/m3, and 1056 ~ 1066 kg/m3 

respectively.4 In a normal adult body, RBCs are the most numerous cells in blood 

(4.5 ~ 5 million/cm3 of blood), and compared with the number of WBCs (5,000 ~ 

10,000/cm3 of blood), we neglect the effects of WBCs during in vitro rheological 

studies of blood.

In microcirculation systems consisting of tubes < 0.3mm diameter, non-uniform 

distribution of the red cells was observed, which intend to migrate toward tube axis. 

(Goldsmith et al., 1989)5 This non-uniform distribution of RBCs in microvessels 

leads to blood rheological characteristics, including the Fahraeus effect, the 

Fahraeus-Lindqvist effect, and plasma skimming. Here, the microcirculation 

comprised microvessels including arterioles (10 to 100 microns), venules (< 100 

microns), and capillaries (> 5 microns).

Some researchers have tried to explain the redistribution of the red blood cells in 

microvessels by considering fluid mechanical mechanisms. (Fung, 1969; Lew and 

Fung, 1970; Goldsmith et al., 1971)6,7,8 It was found that fluid stresses play an 

important role in a dilute solution of neutrally buoyant particles, which drive 

deformable particles like red blood cells move laterally toward the tube axis.

2
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(Goldsmith et al., 1989)5 However, particle collisions are probably more important 

in concentrated solutions. Goldsmith investigated interactions between red cells and 

rigid walls in tube flow, and discovered inward immigration of red blood cells take 

places over a very wide range of Reynolds number and results in cell-free layers 

close to walls, but when the cells are crowded, the collisions and interactions among 

red blood cells lead to their sideways and radial movements. Goldsmith further 

analyzed the sideways movements as Brownian motion of small particles in 

suspension and calculated a dispersion coefficient for RBCs, which is equal to 

3.9xlO'10 cm2/sec. (Goldsmith, 1971)8 Based on Goldsmith’s observation, Carr 

modeled the dispersion of blood cells in microvessels as a diffusion process, and 

found that red cells frequently exhibit asymmetric distributions in the 

microcirculation. (Carr, 1989)9

1.2.2 Fahraeus Effect

The Fahraeus effect is used to name a phenomenon that plasma and red blood 

cells move along vessels with a different average velocity in the blood circulation 

(Fahraeus, 1929).10 The tube and discharge hematocrits are defined respectively to 

illustrate this effect as follows, where H  denotes local hematocrit and A refers to a 

cross sectional area of the tube.

•  Tube hematocrits

( 1.2 . 1)

A

•  Discharge hematocrits

$H(A)v(A)dA
( 1.2 .2)

A

3
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The tube hematocrit is defined as the volumetric proportion of RBCs in a vessel, 

while the discharge hematocrit is defined as the ratio of RBC flow rate to the whole 

blood flow rate. In vessels with large diameters, the RBCs (about 7 to 8 microns in 

diameter) are comparatively small, so the tube and discharge hematocrits have little 

difference. For smaller blood vessels, RBCs are excluded from the wall and 

accordingly flow in the center region of the vessels. Since the cells tend to flow in 

the faster flow regions, the discharge hematocrit is greater than the tube hematocrit. 

For capillaries with diameter near to the RBC’s, plasma and RBC have 

approximately the same velocity since almost the whole vessel section is occupied 

by the RBC.

1.2.3 Fahraeus-Lindqvist Effect

The Fahraeus-Lindqvist effect refers to the functional dependence of the 

apparent viscosity on hematocrit and vessel diameter (Fahraeus and Lindqvist, 

193 l ) u . In small bore vessels, cells tend to flow in the regions closer to the axis, 

plasma acts as a lubricating layer near the wall and thus the apparent viscosity of the 

blood flow is reduced in the tube. Both cell and tube diameters determine the 

thickness of the lubricating layer. Blood is a suspension of cells in fluid, and the 

blood viscosity depends on hematocrit, i.e. the concentration of the suspended RBCs. 

The above causes lead to the Fahraeus-Lindqvist effect.

Several empirical correlations are available based on in vitro tube flow 

measurements (Kiani and Hudetz, 1991; Pries et al., 1992)12’13. Pries et al. have also 

published an empirical in vivo viscosity correlation via indirect in vivo experiments 

(Pries et a l, 1994)14. Both the Pries’s in vitro and the Pries’s in vivo viscosity models 

are adopted in this paper and listed below.

4
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•  Pries’s in vivo viscosity model:

’' =(7 7 T )!|1+(^ ' _1)a — 1.1

( \ - H d)c - \  d 
( l-0 .4 5 )c -1  a -1.1

(1.2.3)

•  Pries’s in vitro viscosity model:

C =
l + \0-lld 12+(l + l0~n d u+(■ -l)(0 .8  + e“°'075rf)

7]oa* =220e~'3d + 3 .2 -2 .4 4 e ^ “ rf0 645 (1.2.4)

In the above two correlations, ijr is the relative apparent viscosity. The apparent 

viscosity is

ijp is the viscosity of plasma (1.3 -  1.7 cp). H  D is the hematocrit in the vessel and

d is the diameter of the vessel with a unit of “micron”. Once the apparent viscosity 

is obtained, assuming Poiseuille flow in a blood vessel, the hydraulic resistance of a 

vessel derived from the Hagen-Poiseuille equation (Bird et. al., 2002)15 is

where R and /denote hydraulic resistance and length of the vessel respectively, 

AP is the pressure drop over the vessel and Q is the flow rate of blood in the vessel.

(1.2.5)

5
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Pries 's in vivo viscosity model
40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.10
Tube H em atocrit

Figure 1.1 Pries’s In Vivo Viscosity Model.
Curves of relative apparent viscosity versus hematocrit are plotted with three

different tube diameters.

P rie s 's  in vitro viscosity  m odel
10

9

8

7
80 </>

1 e
(V
CL
CL
® 5 0>
>75
or 4

3

2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Tube H em atocrit

Figure 1.2 Pries’s In Vitro Viscosity Model.
Curves of relative apparent viscosity versus hematocrit are plotted with three

different tube diameters.

6
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1.2.4 Plasma Skimming Phenomena

Plasma skimming is a rheological peculiarity of microcirculation. This 

phenomenon was first stated in Krogh’s book (Krogh, 1929)16. At a diverging node, 

if a downstream branch receives a higher fraction of flow, it receives an even higher 

fraction of RBCs. The phenomenon is related closely to the cell depleted region near 

the vessel wall again. Some researchers have made a thorough investigation into the 

underlying mechanism (Cokelet, 1986; Carr, 1984; Pries et a l, 1989)17’18’19. Briefly, 

the blood flow splits at the bifurcation and forms a separation surface. If the flow 

split is not half to half, the cell depleted layer causes the blood to flow into daughter 

branches in different proportions (see Figure 1.3).

Figure 1.3 Cross-Section of the Parent Vessel Far Upstream from the 
Bifurcation. The shadow region represents a core of high hematocrit blood. The gap

area is the cell depleted region.

Some reasonable models are available now. In this paper, two plasma skimming 

models are used, a linear model (Fenton et al., 1985)20 and a logit model (Dellimore 

et al., 1983)21. Both models are given below, with F , Q denoting the fractional 

RBC flow and the fractional volumetric flow entering a daughter branch respectively,

7
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and p  denoting the plasma skimming parameter. Graphical illustrations of the two 

models are shown in Figure 1.4.

•  The linear plasma skimming model:

F = p Q  + ( \ - p ) / 2

P — r— ■> s  — dftsQ / d .
1 .4-

(1.2.7)

Here dRBC is the diameter of a mature red blood cell (7 ~ 8 microns), and d is the 

diameter of the parent branch. The plasma skimming parameter p  must be greater 

than or equal to 1 according to Fenton et al..

•  The logit plasma skimming model:

2 "
F 'q p+ ( \ - q y

Generally, a reasonable value of p  is between 1 and 3.

( 1.2 .8 )

 T he  linear model
  The logit m odel
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Figure 1.4 Curves of Plasma Skimming Models when p  = 2.0.
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1.3 Oscillation Phenomena in Microcirculation Systems

1.3.1 Spontaneous Oscillations in Large Microvascular Networks

It has been noted for a long time that the temporal oscillations in blood flow 

exist in microcirculation. Based on observations, researchers have sought the causes 

o f the fluctuations in blood flow parameters, such as hematocrit, velocity, and 

pressure etc.. Special techniques are required to measure those parameters. The dual 

slit device was invented in 1960s (Wayland and Johnson, 1967)22, and this technique 

was shortly used shortly thereafter to measure RBC velocities in vivo. Another 

widely used technique of velocity measurement is laser Doppler velocimetry

23(Rodgers et al., 1984) . The servo-nulling micropipette pressure measuring system 

can be used to monitor pressure variability in vivo (Wiederhielm et al., 1964)24. It is 

reported recently that transcranial Doppler ultrasound has been extensively used to 

study cerebral hemodynamics (Giller and Mueller, 2003)25. All these methods show 

evidence of the temporal variability of blood flow parameters in the 

microcirculation.

Johnson and Wayland applied the dual slit method and reported that 7 out of 27 

capillaries displayed periodic flow patterns in the cat mesentery, and the dynamics 

found in microvessels include steady flow, periodic flow, fluctuating aperiodic flow, 

and intermittent flow (Johnson and Wayland, 1967)26. They also reported that 

changes in the inlet flow rate changed the dynamics considerably.

Instead of focusing on a single blood vessel to observe oscillations, the laser 

Doppler velocimeter can generate results by averaging signals from several vessels. 

Rodger et al. applied the velocimeter to measure blood flow in the forearm skin of 

sickle cell and control patients. Periodic flow patterns were found in sickle cell 

patients without crisis, which was explained as a compensatory mechanism for the

9
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increased viscosity of sickle cell blood (Rodgers et al., 1984)15.

Weiderhielm’s pressure measuring system has been applied in various living 

animals to track the micro vessel pressure (Weiderhielm et al., 1964; Intaglietta et a l, 

1969; Zweifach, 1974; Slaaf et a l, 1987)24’27’28’29. All the experimental records 

display temporal fluctuations. The frequencies of the observed oscillations range 

from about 300 cycles per minute (Zweifach, 1974)20 to 0.14 cycles per minute 

(Slaaf etal., 1987)21.

An advantage of Doppler ultrasound method is its excellent temporal resolution, 

thus it has been widely used to validate mathematical model of interactions between 

blood velocity in the cerebral microvessels and blood pressure. The time analyses 

exhibited the non-linear and oscillatory behavior of cerebral hemodynamics, and the 

computer models produced spontaneous oscillations similar to observed phenomena 

in humans (Giller and Mueller, 2003).

One possible cause of these temporal fluctuations is respiration rhythms and 

heart beat rates. Weiderhielm has identified the range of observed oscillation is from 

-300 cycles/min to -0.14 cycles/min. Some of the oscillations are found to be 

related to pulse of the heart beat (120 to 300 cycles/min), while breathing rhythms 

may be closely connected to some frequencies around 45 cycles/min. Other lower 

frequencies from 6 cycles/min to 0.14 cycles/min may be caused by temporal 

variations in vessel diameters.

Variations in vessel diameters, i.e., vasomotion, can be observed directly in in 

vivo experiments (Colantuoni et a l, 1984; Slaaf et a l, 1987; Parthimos et a l, 

1996)30’31’32, and can also be characterized in vitro using isobaric and isometric 

methods (Hessellund et a l, 2003)33. Colantuoni et al. found vasomotion frequencies 

of 2.7 cycles/min in arteries and of 9.5 cycles/min in terminal arterioles. Slaaf and
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his collegues noted that the frequencies range from 5 to 32 cycles/min in first order 

side branch arterioles (Slaaf et al., 1987)31. Meyer et al. found a fundamental 

frequency of 20 cycles/min in terminal arterioles by examining rabbit tenuissimus 

muscle (Meyer et a l, 1987)34

Since the range of reported vasomotion frequencies coincides with the range of 

observed oscillation frequencies of blood pressure, it seems plausible to attribute the 

temporal fluctuations in the microcirculation to the vasomotion. However, by 

performing a nonlinear analysis of fluctuations in RBC velocity and arteriolar 

diameters in anaesthetized rat, Parthimos et al. reported that both correlation 

dimensions and largest Lyapunov exponents were higher for RBC velocity than 

diameter variations, thus hinting that different mechanisms regulates the 

microvascular flow (Parthimos et al., 2004)35. Some researchers have been focused 

on the relationship between the fluctuations and biological control signals, such as 

the release of NO (Letinene et al., 1998)36, pressure, oxygen concentration, tension, 

temperature, etc. However, the numerical research strongly indicates the oscillatory 

phenomena are not only due to the biological control, but also due to the rheological 

properties, geometry and topology of the microvascular networks.

1.3.2 Numerical Simulations for Microvascular Networks

Kiani et al. presented a simulation model based on the rheological properties 

and applied the model to microvascular networks that mimicked a part of in vivo 

mesentery networks (Kiani et al., 1994)1. The model contained information about 

plasma skimming, the Fahraeus effect, the Fahraeus-Lindqvist effect, and network 

topology and geometry. Amazingly, even though no biological control was 

considered in the model and the boundary conditions were kept constant, the results

1 1
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showed that about 30% of the vessels exhibited spontaneous oscillations in blood 

flow parameters, such as pressure, hematocrit, and flow rate.

One possible cause of the oscillation is the numerical instability, but Kiani et al. 

found that the results were not changed when smaller time step was used, thus the 

oscillatory behavior may be explained as an intrinsic property of a nonlinear system 

(Kiani et al., 1994)1. Nonlinear systems can exhibit various dynamic behaviors, such 

as fix points, limit cycle, and chaos etc. (Moon, 1992; Strogatz, 2000)37’38. In fact, 

Fung pointed out that flow fluctuations in the microcirculation might be a result of 

either physical properties or physiological variables (Fung, 1973) . In his paper, 

Fung also claimed the significant influence of network topology on the dynamic 

behaviors, which has been examined by a series of work done by Pries and his 

coworkers (Pries et al., 1986; Pries et al., 1995; Pries et al., 1996)40’41’42.

Since Kiani et al. investigated large networks containing between 383 and 913 

vessel segments, they were unable to identity the cause of the oscillations. Carr and 

LeCoin extended the computational research by focusing on small networks (less 

than 15 vessel segments) and their results provided further understanding of 

underlying mechanisms of these spontaneous oscillations. (Carr and LeCoin, 2000)2 

The simulation model consisted of nonlinear coupled partial differentiation equations 

(PDE’s) with boundary and initial conditions. Carr and LeCoin reported that possible 

dynamic behaviors in small microvascular networks include steady states, sustained 

oscillations and damped oscillations.

Carr and LeCoin’s work discussed some necessary features for oscillations to 

take place: the Fahraeus-Lindqvist effect and plasma skimming are necessary, but the 

Fahraeus effect is not necessary. Instead of using an in vitro viscosity model as 

Kiani et al. did, Carr and LeCoin applied the Pries’s in vivo viscosity model and still
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observed oscillations in their simulations. Even when a linearized viscosity law was 

used, the oscillation still occurred, so it seems that the form of the viscosity law is 

not crucial. Plasma skimming was found to influence both the amplitude and the 

frequency of oscillations. If no plasma skimming was included, oscillations did not 

occur. The Fahraeus effect was found to impact the frequency o f the oscillation, but 

even when the Fahraeus effect was excluded, the qualitative features of the dynamic 

behaviors were not altered.

Carr and LeCoin also found both geometry and topology of the networks were 

of significance to determine the dynamic behaviors (Carr and LeCoin, 2000)2. 

However, the interactions between the geometrical and topological properties and 

the dynamics were too complicated to be understood well. According to Carr and 

LeCoin’s paper, the simplest microvascular network to exhibit oscillations was a four 

node network with three inlets. Due to the considerably time-consuming property of 

the simulation program and high dimension of the system, it was impractical to mn it 

to discover boundaries of oscillations in spaces of physical parameters.

Therefore, it is reasonable to focus on simpler networks where oscillation can 

occur. Based on these simple networks, some mathematical techniques like stability 

analysis may be applied to discover the physical parameters that affect the 

oscillatory behavior, and to further identify the necessary conditions that initiate the 

oscillations. Such small networks might be constructed by using techniques like soft 

lithography (Duffy et al., 1998; Xia and Whitesides, 1998; Clamer, 2000)43’44’45, and 

then some in vitro experiments may be conducted to verify the corresponding 

numerical results.
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CHAPTER II

STABILITY ANALYSIS OF BLOOD FLOW IN SIMPLE MICROVASCULAR
NETWORKS

2.1 Topological Properties of the Simple Networks

Obviously, the simplest networks include two node networks with one inlet, 

three node networks with two inlets or outlets, four node networks with an

intersecting branch, four node networks with three inlets. The illustrations of these 

networks are presented in Figure 2.1.

Topology 1 Topology 2

Topology 3 Topology 4

Figure 2.1 Four Topologies for Simple Microvascular Networks.
(Topology 1: two node networks; Topology 2: three node networks with two inlets; 
Topology 3: four node networks with an intersecting branch; Topology 4: four node

networks with three inlets.)

The two node topology shown in Figure 2.1 consists of one inlet, one outlet, and 

two branches. While blood flows through the network, it diverges at the inlet 

junction and joins together at the outlet junction.
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For the three node topology, it has two inlet junctions, and divergence can 

happen at either of them at one time. The node pressures at the two inlet junctions 

determine which one is a diverging node. When the pressure at node 1 is higher, 

divergence occurs, and blood flows from node 1 to node 2. A special case is that the 

pressures are equal at both inlet junctions, and then there is no flow in the branch 

between them. To conclude, there are always one divergence and two convergences 

taking place in the three node network except when no blood flows in the middle 

branch.

The four node topology with an intersecting branch possesses a more 

complicated situation -  divergence may take place at three junctions. The inlet 

junction is always a diverging node, but only one of the two interior junctions can be 

a diverging node at one time, and pressures need to be computed to determine which 

the diverging one is. Therefore, two divergences exist for this type of network, and it 

is possible for a reverse flow to happen in the intersecting branch.

The fourth topology in Figure 2.1 is another type of four node network, which 

processes three inlet junctions. Different from the former one, there is only one 

diverging node existing among the three inlet junctions in the four node network.

From the above brief descriptions, we notice that different topological structure 

may mean distinct dynamics characteristics accordingly. However, all four networks 

have at least one diverging node where plasma skimming can take place, so it is still 

possible for spontaneous oscillations to occur in these simple networks under certain 

conditions.
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2.2 Complexity Measure and Delays

To mathematically model a system, it is necessary to know its degree of freedom, 

i.e., how many state-dependent variables need to be included in the governing 

equations. Also, the number of time delays in the system are of great interest since 

they may appear somewhere in the model. However, if the studied system possesses 

more complicated topologies, it may not be easy to determine the degrees of freedom 

and the number of time delays a priori. This section presents an initial discussion on 

general ways to analyze complexity and delays of a given system.

Some definitions are made here. A network may possess m exterior nodes - 

which are defined as junctions connecting inlet or outlet branches, and n interior 

nodes - which are defined as junctions joined by branches excluding inlets or outlets. 

Each node connects three branches.

2.2.1 Complexity Measure

In microvascular networks, the distribution of blood flow rates determines the 

hematocrit of blood entering branches at each node. The average hematocrit 

influences resistance in each branch, which changes the distribution of flow rates in 

turn. Therefore, the flow rates are state-dependent variables, and the degree of 

freedom of a system can be discovered by combining mass balance and topology 

analysis.

Suppose the degree of freedom is denoted as N f ,  which equals to the minimum 

number of state-dependent variables required to decide the state of the system. The
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variables may be solved through NF relations, for instance, momentum balances.

When status of blood flow in each branch is determined, status of a whole

microvascular network is known. Thus, the number of total variables is equal to the

total number of branches. Note that each node connects three branches. If the total 

number of the nodes are tripled, each branch except an inlet or an outlet is double 

counted, thus the number of total variables

Ny = [3 (m + n) + m\l2 = 2m + 3«/2, (2-2.1)

Mass balances are conducted at each node, so the number of the total equations

Ne = m + n. (2.2.2)

Let Nc denote the specified flows at external nodes, it is easily found that

Nc = m - 1. (2.2.3)

Therefore, the degrees of freedom can be determined from

NF = N v - N E- N c = n/2 + \, (2.2.4)

which means NF state-dependent variables are unknown on the basis of mass balance,

and NF additional functional relationships are required to determine the status of the

system.

The result is somewhat surprisingly neat, which means the degree of freedom is 

only related to the number of the interior nodes. To verify the above conclusion, 

some examples are examined.

•  Example 1: The two node network

For the topology 1, n = 0, so NF = 0/2 + 1 = 1, which means one state-dependent 

variable is needed to determine the system status. Obviously, if a flow rate in one
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branch or a flow rate ratio is determined, the system status is known.

•  Example 2: The three node network with two inlets

For the topology 2, n = 0, so Nf = 0/2 + 1 = 1, and therefore one state-dependent 

variable is required. It is consistent with the fact that a flow rate in one branch or a 

flow rate ratio suffices to determine the status of the whole system.

•  Example 3: The four node network with a middle branch

For the topology 3, n = 2, so Nf = 2/2 + 1 = 2, which means two state-dependent 

variable is needed to determine the system status. For instance, if two flow rate ratios 

are determined, the system status is known.

•  Example 4: The four node network with three inlets

For the topology 4, n = 0, so Nf -  0/2 + 1 = 1, which means one state-dependent 

variable is needed to determine the system status. By comparing this example with 

the four node network in Example 3, it is evident that although total nodes is equal, 

but the complexity of the two four node networks is entirely different.

2.2.2 Number of Delays of the Systems

Obviously, each branch represents a delay, which means the blood flow at the 

exit contains the same information as the blood flow at entrance some time ago. 

Since on each pathway, certain combinations of the delays on adjacent branches 

generate new delays, the number of delays is closely related to pathways the blood 

flows take in the networks. Therefore, the possible pathways need to be found to 

determine the total delays of the system.
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There are several basic rules to obey when determining the pathways.

1) Each node must not be convergence and divergence;

2) A closed loop for blood flow must not happen in the pathways;

3) A pathway must start from an inlet and end at an outlet.

Suppose in a network, there are Np pathways and ki nodes on the zth pathway. 

Obviously, there are ki -1  segments on the ith pathway. The number of the combined 

delays on the z'th pathway is computed by

K om = Z  J ~ -1 ) = ( ^  ~ 1)(*, / 2 -1) (2.2.5)
M

The total number of branches can be computed using Eq.(2.2.1). The number of 

total delays is equal to the sum of the total number of branches and the total number 

of the combined delays

Nlotal = 2m + 3« / 2 + £  (*, - 1)(*, / 2 -1 ) . (2.2.6)
1=1

Some examinations can be performed on the topologies in Figure 2.1. For 

topology 1, there are two branches, two pathways, and two nodes on each pathway, 

so the number of delays is equal to two, i.e. each delay on each branch. For the 

topology 2, there are three branches, two pathways, one pathway possess two nodes, 

and the other possesses three nodes, so the system has three delays. Likewise, it is 

computed that ten delays exist for the topology 3. The case of topology 4 is a little 

more complex, and there are seven or six delays depending at which node the 

divergence takes place.
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2.3 Procedures of Stability Analysis around Steady States

Determining the stability of a network with simple topology is an intriguing 

issue, which is useful in discovering the underlying mechanism of the oscillation 

phenomena. The simple topologies studied in this paper include a two node arcade 

network and a three node network with two inlets. Although these networks have 

different topologies, general analysis procedures can be summarized as following 

(Wu et al., 2005 (1); Wu et al., 2005 (2); Carr et al., 2005; Geddes et al., 

2003)46’47’48’49:

1) First, the governing equations are established as coupled partial differential 

equations (PDE’s) with boundary and initial conditions, and then PDE’s are 

transformed into state dependent delay differential equation(s) DDE(’s) with 

threshold conditions.

2) Second, possible steady state solutions of the equation(s) are found numerically.

3) Then, the DDE(’s) is(are) linearized about steady states and normalized, and the 

characteristic equation(s) can be obtained based on the DDE(’s) after manipulations.

4) Finally, numerical methods are applied to find rightmost roots of the 

characteristic equation(s), i.e. the rightmost eigenvalues, at that steady state. Thus 

the local stability around the steady states can be predicted theoretically according to 

the sign of the real part of the rightmost eigen values -  positive real part means the 

steady state is unstable, or vice versa (Class and Mackey, 1988)50.

In the following sections, each step of the procedure is explained with examples 

provided for the two node network (see Figure 2.2) and the three node network (see
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Figure 2.3). The related mathematical derivations of the characteristic equations are 

lengthy and tedious, and they are included in the appendixes.

Branch A

O u tle tI n l e t

Branch B

Figure 2.2 An Illustration of a Two Node Network

Branch A
I n l e t  1

O u tle t
Branch C

I n l e t  2
Branch

Figure 2.3 An Illustration of a Three Node Network with Two Inlets
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2.4 Governing Equations

In each vessel in the networks, a convection equation can be obtained via a red

cell balance done by Carr and LeCoin (Carr and LeCoin, 2000)2,

^  + v;. - ^  = 0 , (2.4.1)
dt ' dx

where is the hematocrit in branch i, and v,- is the velocity of the blood flow in 

branch i. By neglecting the Fahreous effect, the distinction between tube hematocrit 

and discharge hematocrit is lost in Eq.(2.4.1), and accordingly the bulk velocity of 

the blood flow is equal to red blood cell velocity. In the governing equations, the 

hematocrit is a continuous function of position and time, which does not 

approximate the discrete nature of RBC flow over short time very well. However, 

since the discrete nature of the flow is to be eliminated over longer time scales, the 

model provides a good description (Carr and LeCoin, 2000) .

Since all the blood in a branch at any time corresponds to the blood entering it a 

certain time ago, the certain time is defined as a delay time r, for the branch i so that

H i(l.,t) = H ,(0 , t -T t),  (2.4.2)

where r, is a function of time and can be determined from the following integral, and 

dj and I, are diameters and lengths of branch i respectively

[ _ T ( l ) v i ^ d s  ■ ( 2 A 3 )

Integrating Hi{x„;,) over the length of the branch by using equation Eq.(2.4.1), 

and use H i to denote the average hematocrit in branch i at a time, =>

“  = y [ H , ( Q d ) - H i (/,, 0] (2.4.4)
dt I
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~ ~  ~ ~~[H,(0, t)-Hj(0, t - Ti)]. 
dt /,

(2.4.5)

From a plasma skimming model and a mass balance

Hi(0,t) = H i (Q- (t), par) (2.4.6)

where Qi denotes a dimensionless flow rate ratio and par  denotes physical 

parameters, such as plasma skimming model parameters, inlet or outlet flow rates, 

inlet or outlet hematocrits, branch diameters, and branch lengths.

From a mass and momentum balance

where R j  can be represented using Eq.(1.2.4) combined with a certain viscosity 

model.

From the chain rule (Kreyszig, 1993)51,

Since dRk /dH k can be computed from Eq.(1.2.4) combined with a viscosity 

function and dHi I dt is available from Eq.(2.4.5), Eq.(2.4.8) can be transformed to 

the DDE’s, which are also called retarded functional differential equations (RFDE’s) 

in some mathematics references (Hale and Lunel, 1993)52. This kind of DDEs is 

called threshold type delay differential equations due to additional threshold 

conditions/, = J* ( vt(s)ds ( Luzyanina et al., 2001)53.

Illustrations of transforming the governing PDE’s to DDE’s in the simple 

networks are shown as follows.

(2.4.7)

dQ dRk dHk 
dRk dHk dt

(2.4.8)
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•  The two node network

From Eq.(2.4.5)

dH± = A 3 M 1 {Ha ( 0 ,f ) -H a (0,1 -  r , )] 
at

dHB 4g, (1 -6 (0 )
dt 7tdBlB

(2.4.9)

where ta, tb are defined by

^  = I  = , ,Q(s)ds4 -^ (0  ndA •*-^(0

4 0
7cdB

(2.4.10)

where Q(t) = QA(t) IQX, Qx is the inlet flow rate.

From a momentum balance,

Ap  = q ar a = q br b 

R B ( t )
• 0(0 =

Ra ( 0 +RB(t)

(2.4.11)

(2.4.12)

where Ra and Rb are hydraulic resistance of blood flow in branch A and branch B

respectively.

Plug Eq.(2.4.12) into Eq.(2.4.8)

1dQ = ____________
dt (l + RA/R B)2

From Eq.(1.2.6)

1 dRA Ra dRB
RH dt Rb dt

Q_
r d dt dt

(2.4.13)

dRA
dt n d

128/, dHA
4 P a dt

dRD
dt n d

128/B dHB
P b4 H B dt

(2.4.14)
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where Pa = ^ A ,  (iB =-^S_
dHA dHB

From a plasma skimming model,

H A(0,t) = H l
0(0

H B(0d) = H x- — ^ K  (2.4.15)
1- 0(0

where // /  is the inlet hematocrit and F  denotes the fractional RBC flow entering 

branch A.

Combine Eq.(2.4.13), Eq.(2.4.14), Eq.(2.4.15), and Eq.(2.4.9)

<*0(0 = 4Q £ A L 0 ( t m _ 0U)Y & (0 A - m i O )  i ~ H Q ( t - T R)) 
dt * K)) dB6 1 - 0 ( 0  l - Q ( t  — rB)

vz PA(i) , F(Q{t)) F ( Q ( t - r j )  
d A6 0 (0  Q ( t -T A)

with threshold conditions (2.4.10).

In Part 2.2, it is shown that one state dependent variable and two delays are need 

to describe the two node system, and Eq.(2.4.16) satisfies this requirement.

•  The three node network

From the Part 2.1, it is known that either node 1 or node 2 can be a diverging 

node (see Figure 2.3), but due to their topological symmetry, we can assume one of 

them is a diverging node and establish the governing PDE’s and DDE’s. After the 

governing equations are obtained, symmetrical physical parameters can be switched 

and another set of governing equations are available readily, which are 

corresponding to the other assumption.
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Assume node 1 is diverging, and from Eq.(2.4.5)

dBj_ = 4 g ^ 0  {Ha (0; ̂  _ H a (Qj t _ r^  
dt n d d .

dHB 4Qt ( l -Q ( t )  + yf ) 
dt n d 2BlB 1“ ^ '  " bV

dHc _ 40,(1 e ( O ) [ / / c (0 ) 0 _ i /c (o ^ _ rc )L  (2A17)
dt n d clc

where ta , Tb , 7 c  are defined by threshold conditions,

^  = f  , ' ? ^ ds = ~ k l  , , Q ^ ds4 - ^ ( 0  f i d  i - T A (t)

,(0  4-rB(0 '

/c = f  f vc( ^ 4 l  (l-0(s))<fc, (2.4.18)
4-rc (0 ttd  ̂ 4 -rc(/)

where Q = QA/Ql , y q = Q21 Q{, Qi and 0? are the flow rates in Inlet 1 and Inlet 2 

respectively.

From mass and momentum balances, we can find an expression in the form of 

Eq.(2.4.7), but the process is a little lengthy, so only results are given here.

(1+v )RJ t )  + Rc (t)
6 (0  = - -  - -- -  -- -----—  (2.4.19)

/0 (0  + * B(0 + *c(0

Since node 1 is assumed to be a diverging node, from plasma skimming and 

mass balance,

H A(0,t) = H l

H c (0,t) = H l

0(0

i - ^ (0 (O )
1- 0(0
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Combine Eq.(1.2.4), (2.4.19), (2.4.20), (2.4.17), and yh = HlQl

" h:d\ MciO

dQ(t) 4  4QXH X 2 fiA(t) F(Q(t)) F (Q ( t -T Am

dt /c//c (0  *(1 + ̂ ( 0 )  4  0 (0  Q (t~ rA(t))

37, +0 “ 0(0)
2 PB( t ) r_____________ 1—Q(t—Tc (0)

+ ( i + ^ - 0 ( o r ^ F [
4  1+ ^  - 0 ( 0

^  -  F(Q(t -  rB(t) -  Tc (t)))
(2.4.21)

>7, +(i-0(^-7s(O)):
i - i / i r - r _ i r i - r _ i r nl - 0 ( / - r a(O-Tc(O)

1 + J , - Q ( t - T B(t))

1( 1  0 ( t ) ) 2 /3c{t ) \ l ~ F m ) )  ^ ^ ^ - ^ ( O O p

4  1 -0 (0  l - 0 ( f - r c(O)

with threshold conditions Eq.(2.4.18).

It is pointed out in Part 2.2 that one state dependent variable and four delays are 

needed to describe the three node system. Since rB + tc can be regarded as a 

combined delay, the Eq.(2.4.21) combined with Eq.(2.4.18) suffices to describe the 

three node system.
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2.5 Steady-state Solutions

Since it is known that when a system is at equilibrium, all state-dependent 

variables are unchanged with time, the hematocrit in a branch is uniform. Thus 

Eq.(2.4.7) can be rewritten as

Qi(t) = Ql(Rl(Hl),...iRm(Hm),par)t (2.5.1)

where H j denotes the hematocrit in branch i at steady states.

Suppose the values of Q, at a steady state are guessed, the flow rate and the 

average hematocrit in each branch can be calculated according to the mass balance 

and the plasma skimming model. Then the hydraulic resistance of each branch can 

be computed. By conducting momentum balance, the flow rate in each branch is 

calculated again, which renews the value of Q. The guessed Q must be equal to the 

calculated Q at steady states. To conclude, to find out equilibrium solutions in a 

certain network, roots of

Q = G( Q) (2.5.2)

need to be found, where Q is a ^-dimensional vector consisting of Q„ G is a

continuous function on Rk.

Because G(Q) integrates information of viscosity models and plasma skimming 

models, it is a group of coupled nonlinear expressions of Q. Due to the nonlinear 

properties of Eq.(2.5.2), it is difficult to solve analytically and numerical approaches 

need to be applied to seek solutions.

Illustrations of determining steady states in the two node network and the three 

node network are shown as follows. Since only one state dependent variable is
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required for these two simple networks, Eq.(2.5.2) is written as

Q = g(Q),  (2-5.3)

where Q is a scalar and g  is a continuous function on R 1.

A straightforward approach is a graphing method. In the graphing method, g(Q) 

is plotted versus Q which ranges from 0 to 1, the curves ought be continuous. If the 

curves intersect with an identical line, the crossing points correspond to the 

equilibrium solutions, which satisfy Eq.(2.5.3).

An advantage of the graphing method is that all existing roots can be caught 

with enough small searching steps, but its shortcoming is also obvious -  low 

efficiency. When the graphing method is used to find equilibrium solutions in many 

sets of parameters, the algorithm is too sluggish to be acceptable. Therefore, in this 

paper the practical algorithm is to combine the graphing method with a bisection 

method. The former is used to find small regions of Q where the steady states exist, 

and then the latter is applied in these regions to find the roots readily. A good balance 

between efficiency and accuracy is of importance -  if the searching steps of graphing 

method are too large, some roots may be missed; if the searching steps are too small, 

there is no improvement of efficiency. Examples about finding steady states are 

given as follows.
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•  The two node network

At steady states, Eq.(2.4.12) is rewritten as

Rb{Q)Q = ------------------ (2.5.4)
Ra{Q) + Rb(Q)

and the right hand side of Eq.(2.5.4) is the form of f(Q) in Eq.(2.5.3). RA(Q) and 

Rb(Q) can be computed by

128 Iajua(Ha(Q))
Ra(Q) = : nd\

(2.5.5)
nd\

Since Node 1 is a diverging node,

h A Q) = h , ^

n  .<0 , = n ,  ( 2 5 6 )

According to the definition Q = QA/Ql , the value of Q is always between 0 and 

1, and the values of the RHS of Eq.(2.5.4) are always between 0 and 1 because of the 

positive signs of resistance. It can be concluded that at least one steady state exist 

because of the RHS continuity of Eq.(2.5.4). Figure 2.4 and Figure 2.5 present a one 

steady state situation and a three steady states situation respectively.
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Seeking Steady States

0.9
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Q = 0.77033

0.3

0.2

0.5 
Q Guessed

0.6 0.70.2 0.3 0.4

Figure 2.4 An Equilibrium Solutions Q *=* 0.77 Obtained.
The parameter values are logit plasma skimming parameter p = 2.0, Pries’s in vitro 

viscosity model, Hi = 0.80, dA = 35/xm, de = 20/rm, 1a = 500/xm, 1b = 2500/xm.

Seeking Steady States
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0.7
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3  0.5
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Q= 0.67718
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0.80267

0.2

0.90285
0.1
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Q Guessed
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Figure 2.5 Three Equilibrium Solutions Q 0.68, 0.80, 0.90 Obtained.
The parameter values are logit plasma skimming parameter p  = 2.0, Pries’s in vitro 

viscosity model, Hi = 0.82, ^  = 32/xm, dg = 14/nn, lA = 900/xm, lB = 2500/rm.
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•  The three node network

At steady states, Eq.(2.4.19) can be rewritten as

-  (1 + y q)RB{Q) + Rc(Q) (2 5 7)

Ra{Q) + Rb(Q) + Rc{Q)

and the right hand side of Eq.(2.5.4) is the form of f(Q) in Eq.(2.5.3). R:(Q) 

(i=A,B,C) can be computed by

= (2.5.8,
n a i

Since either node 1 or node 2 can be a diverging node, assume divergence occurs at 

Node 1,

n :i o , - n  ^

H { Q) = H A Q m \ - Q ) + H &  ( 2 5 9 )
e,o-e)+&

According to the definition Q - Q AIQX, this time the value of Q is not always 

between 0 and 1, so a modified Q is defined as Q* -  QA i(Ql + Q2) whose values are 

always between 0 and 1. When Q* < Qx /(Qi +Q2) , Node 1 is a diverging node, and 

the Eq.(2.5.8,9) can be used to calculate the RHS of Eq.(2.5.7); when 

Q" = Qx /(Q{ +Q2),  no blood flows through the branch C; when Q* > Qx /(Qx +Q2) , 

Node 2 is a diverging node, so in Eq.(2.5.8, 9) accordingly the physical parameters 

of branch A and branch B need to be switched, and those properties of Inlet 1 and 

Inlet 2 are also exchanged. Figure 2.6 and Figure 2.7 present an asymmetric system 

case and a symmetric system case respectively.
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Figure 2.6 Five Equilibrium Solutions Obtained for an Asymmetric Three 
Node Network. Logit plasma skimming, parameter p  = 2.1 at both node 1 and 2, 

Pries’s in vitro viscosity model, Hi = 0.80, //?=  0.80, Qi = lOnl/min, Q2 = 0.05nl/min, 
dA = 35pm, dB = 20pm, dc = 20pm, lA = 500pm, lB = lOOOjam, Iq = 1500/rm.

Seeking Steady States
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Figure 2.7 Three Equilibrium Solutions Obtained for a Symmetric Three 
Node Network. Qi = lOnl/min, Qi = lOnl/min. Other parameters are kept constant as

those in Figure 2.6.
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2.6 Characteristic Equations

Consider the delay differential equations with constant delays,

dx
—  =  / ( * ( 0 » (2.6.1)

where rx,..., rm are time delays.

To reduce the parameters of DDEs, the Eq.(2.6.1) is normalized by substituting 

s = t / f m, 9i =z i / f m ( /=  0,1,..., m)  into it, where f m is the mth time delay at the

steady state, yielding

dx
—  = f ( x (s ) ,  x ( s - 0 ) , . . . , x ( s - 0 m)). (2.6.2)
as

Expand the equation (2.6.2) to Taylor series around a steady state x  and neglect 

second derivatives or higher order items (Kreyszig, 1993)54 =>

( x ( s - 9 i) -x* ) .  (2.6.3)
dx . . .  ». d f
—  = f ( x  ,...,x ) + f -  
ds ox

( *\ Of( x - x  ) + 2 /

Let A  = - df
dx{s-Oi)

and lety { s - 9 i) = x { s - 0 i) - x  (i=l,
( X

dv m
- f  = A y ( s ) + H 4 y ( s - 9 i), (2.6.4)
as /=,

which is called varational equation (Hale, 1977)55.

To obtain the characteristic equation, substitute the form y(s) = CeM into the

equation (2.6.4), where C is constant. The equation (2.6.4) has a nontrivial solution

Cex? if and only if

A = Ao + ' Z A ie~A0' . (2.6.5)
(=0

Eq. (2.6.5) is called the characteristic equation of the system. Illustrations of 

derivation of the characteristic equations for the networks are shown as follows.
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•  The two node network

Substitute s = t / f B into the equation (2.4.16)

dQ(t) _ H x Q(s)
ds jub(s) 1 - Q ( s)

[(l~ 0 (s))2/ W (
1 -F (0 (s ) )  1 - F ( Q ( s - 9 B))

2 J3a(s) F(Q(s)) F(Q{s - 9a)) 
d A6 Q(s) Q ( s - 9 A)

1 -Q(s)  

)]

1 - Q { s ~Ob)
)

Linearize the equation (2.6.6) around a steady state Q , and let y(s) = Q(s) -

Mb( Q ) ' - Q  

H,

p Am - f - n ■
dF{Q)

dQ
F{Q)

0

c = -
M Q )

dy

x- ^ Q P Bm
dF{Q)

dQ

Q

1- ^ ( 0 )
1-0

ds
= - ( b + c)y(s) + by(s - y )  + cy(s -1) ,

where r  = f A/ f B= d 2AlA (1 -  Q) /(d 2BlBQ).

Substitute into the equation (2.6.9)

X = -(b + c) + be~rl + ce~x ,

which is the characteristic equation of the two node network.

•  The three node network

Substitute s = t / f c into the equation (2.4.21) =>

dQ (s )_ d bcH x Q(s) 2| / ? »  F(Q(s)) F ( Q ( s - 9 A))
ds V c W  + ycom) 1 - 0  dA Q(s) Q(s - 9a)

+ (i -  Q(s))
+(i + ya ~ Q { s ) f ^ [

1 - F ( Q ( s - 9 c ))
2 PB(s) r______________1 - Q ( s - 9 C)

9 d \  1 + y - Q ( s )

yh+ ( i - Q ( s - 9 B(s)))

<1
1 - F { Q { s - 9 b - 9c )) 

1 - Q i s - 9 B- 9 C)
l +yq- Q ( s - 9 B)

+a -  o(s))2 _ 1 - n Q ( s - 9 c))
d 6c 1 -Q (s)  1 - Q ( s - 9 C)
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Linearize the equation (2.6.11) around the steady state Q,  and let y ( s )  = Q ( s ) - Q

and

a = (l + y , - e x ^
M Q )( l + y c o m (0)1-G b  dQ

l - F

1-0

 Hi ( Q ) ( ^ n ^
Fc (0)0 + y Com (0))1 -  0 d A dQ

c =  ! -----  QPc (0)(—//c(0)(l + Lcom(0)) dQ

Q

l - F

1-0

</ =  -
0

- A ( 0 ) ( ^ ) 6lo(
F c ( 0 ) ( l  +  ^ m( 0 ) ) l - 0

,dF
d B dQ

) (2 .6 .12)

(2.6.13)

(2.6.14)

(2.6.15)

= -(6  + c + d ) y ( s )  +  6y(s -  x) +  ^L(5 — £) + a_y(s — £ - 1) +  (c -  tf)y(s -1 ) , (2.6.17)

S
_ d \ l B 1 - Qwhere y = f ,  / f,, = PA±]_Q_

d clc 0

y (0  = (l + y ) ^  ^Scom\ ' ' *Q ' i 14
C  B  F c ( 0

Substitute C/e^ into the equation (2.6.17), C/ is a constant =>

A =  - ( b  + c + d )  + b e yA + d e SA + { c -  a ) e A +  aeHS+l)A,

y»
H2Q2

(2.6.18)

which is the characteristic equation of the three node network with two inlets and

one outlet.
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2.7 “DDE-BIFTOOL” and Eigenvalues

“DDE-BIFTOOL” package consists of a set of MatLAB® routines and provides 

a tool for numerical stability and bifurcation analysis of steady state solutions and 

other aims (Engelborghs et al., 2001)56. All analyses are based on the computation of 

characteristic roots of systems of DDEs by using linear multi-step (LMS) methods. 

Instead of solving the nonlinear characteristic equation directly, LMS methods turn 

to estimate the characteristic roots by solving a large but standard eigenvalue 

problem, then a Newton-Raphson iteration is used to improve the accuracy of the 

roots (Engelborghs et al., 2002)57. The package also includes other bifurcation 

analysis functions, but in this paper, we mainly use DDE-BIFTOOL to calculate the 

characteristic roots of the DDEs derived from the mathematical models describing 

the simple networks.

DDE-BIFTOOL can deal with both DDEs with constant delays and DDEs with 

state-dependent delays (sd-DDEs). Obviously, the DDEs (2.6.10) and (2.6.18) 

describing the simple networks are both sd-DDEs. However, it is found that treating 

the delays as constant does not effect the results at all (Luzyanina et al., 2001)53, 

which is illustrated in the two node network case (see Appendix C).

Inside a user manual of the DDE-BIFTOOL, it is required to define systems 

using MatLAB® functions. Details of the specification are available from the user 

manual -  Report TW 330 (Engelborghs et al., 2001)56. The required RHS functions 

and the first order derivatives of RHS functions with respect to state variables in the 

simple networks are presented in Appendix A.

37

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



We should notice that in DDE-BIFTOOL, the eigenvalues are found for the 

characteristic equations in form of Eq.(2.6.5) instead of normalized ones like 

Eq.(2.6.10) or Eq.(2.6.18). But these two kinds of characteristic equations are 

equivalent in nature, and their eigenvalues are equal after being multipled by a 

scaling factor (see Appendix C). An example of finding the rightmost eigenvalues of 

a given system is presented below. Here, “rightmost” means at the most right part of 

a profile of characteristic roots.

A two node network is investigated. The Pries’s in vitro viscosity model and the 

logit plasma skimming model are used here. The physical parameters are: p  = 2.0, Hi 

= 0.80, Qi = lOnFmin, dA — 35/un, Jg = 20/un, Ia = 500/un, /g= 2500/un. It is found 

at equilibrium, Q -  0.77033 , f A = 3.746sec , f B = 20.51sec . For the characteristic 

equation

A = 4) + A e~Ar' + Aie~lT2 (2-7.1)

where A0 = 0.3070, Aj = -0.3232, A2 = 0.01614.

The profile of eigenvalues generated by DDE-BIFTOOL are presented in Figure 

2.7, and the rightmost roots are A = 0.012103 ±0.089663/. Symbol (x) denotes 

approximated roots computed from LMS methods and symbol (*) denotes corrected 

roots via the Newton-Raphson approach.

In fact, Eq.(2.6.10) and Eq.(2.6.18) can be arranged and written as iteration 

forms

Re(A) = F(Re(A),Im(A))

Im(A) = G(Re(A),Im(A)) (2.7.2)
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58and successive substitution methods (Rice and Do, 1994) can be applied to

Eq.(2.7.2) to produce the characteristic roots. Since DDE-BIFTOOL provides a 

general way to produce the characteristic roots and it is also convenient to generate 

graphical results as well, the numerical results discussed in the following section are 

mostly generated from this MatLAB® package. The application of successive 

substitution method in solving Eq.(2.6.10) and Eq.(2.6.18) are included in Appendix 

C and the comparisons between results from two methods are also included there.

Search in Re=(-8, 8]

Aq=0.3070 A1 =-0.3232 A,=0.01614

-0.2 -0.15
W)

0.05

Figure 2.8 A Graphical Illustration of Eigenvalues Profiles Generated by 
DDE-BIFTOOL. These eigenvalues correspond to a two node network withp=2.0, 
Hi = 0.80, Qi = lOnl/min, d^ = 35/xm, dB = 20/rm, U = 500pm, lB= 2500/xm with the 

in vitro viscosity model and the logit plasma skimming model.
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CHAPTER III

NUMERICAL RESULTS ABOUT TWO NODE MICROVASCULAR
NETWORKS

The two node topology shown in the Figure 2.2 is investigated numerically using 

DDE-BIFTOOL. By varying physical parameters or blood rheology models, flow in 

different networks is studied. Characteristic roots of systems are calculated via the 

MatLAB® subroutines (included in Appendix B). The predicted stability of the 

system around steady states is examined by a simulation program (Carr and LeCoin, 

2000)2 written in FORTRAN.

3.1 Effects of Viscosity Models

Pries and his colleagues have published empirical correlations of both the in vitro 

viscosity model (Pries et al., 1992)13 and the in vivo viscosity model (Pries et a l, 

1994)14. Effects of both viscosity models on the instability of the system are checked 

here. Characteristic roots of the system are computed based on the two different 

viscosity models. The physical parameters are given as following: the logit plasma 

skimming parameter p  = 2.0, Hi -  0.8, Qi = lOnl/min, d,i = 35/rm, ds = 20/xm, I a = 

500/mi, Ib = 2500/im.

When the in vitro viscosity model is applied, one steady state exists and

<2=0.77033; when the in vivo viscosity model is applied, one steady state exists and 

0=0.80826. Accordingly, the coefficients in Eq.(2.6.10) are different.
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The characteristic roots are computed by DDE-BIFTOOL and presented in 

Figure 3.1 and Figure 3.2 respectively.

0.05

Figure 3.1 Characteristic Roots Generated with the In Vitro Viscosity Model.
Other parameters are: the logit plasma skimming parameter p  = 2.0, Hi = 0.8, 

Qi = lOnl/min, dA = 35/xm, dg = 20pm, Ia = 500/tm, lg = 2500/rm.

15 r

10

-10

-15
-0.7 - 0.6 -0.5 -0.4 -0.3

«(X)
- 0.2 - 0.1

Figure 3.2 Characteristic Roots Generated with the In Vivo Viscosity Model.
Other parameters are the same as those in Figure 3.1.
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The graphs show that the two viscosity models lead to different profiles of 

characteristic roots, i.e. eigenvalues. We need to note zero roots are always trivial 

ones (Carr et al., 2005)48, so the rightmost eigenvalues are also different. Therefore, 

different viscosity models impact the stability of microvascular networks. Since the 

theoretical work done in this paper is expected to be verified by future experiments 

in in vitro replicas of microvascular networks, the in vitro viscosity model is applied 

in following parts of this paper.

3.2 Effects of Plasma Skimming Parameters

Two plasma skimming models are used in this paper -  one is the linear model 

(Fenton et al., 1985)20, and the other is the logit model (Dellimore et al., 1983)21. 

From Figure 1.4, the two models do possess different functional characteristics, 

especially at two ends of the range of volumetric flow ratios. This section identifies 

the effects of the two plasma skimming models on the systems’ stability, and plasma 

skimming parameters are also varied for both plasma skimming models.

The in vitro viscosity model is used during an investigation process. Other 

physical parameters are Hi = 0.8, Qi = lOnl/min, dA = 35/«n, dg = 20/am, lA =

500/Mm, lB = 2500/xm. The steady states Q are plotted with varying plasma 

skimming parameter p. It is noticed from Figure 3.3 and Figure 3.4 that single steady 

states exist with given physical parameters.
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The linear plasma skimming model
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2.2 2.3 2.4 2.5

Plasma skimming parameter p

Figure 3.3 Steady States Q versus Linear Plasma Skimming Parameter.
Other physical parameters are Hi = 0.8, Qi = lOnl/min, d/ = 35/xm, dB = 20/mi, I a

500/rm, lB = 2500/rm.

The logit plasma skimming model
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Figure 3.4 Steady States Q versus Logit Plasma Skimming Parameter.
Other physical parameters are the same as those in Figure 3.3.
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At the computed steady states, the real parts of the rightmost eigenvalues are 

computed from DDE-BIFTOOL and are plotted against varying plasma skimming 

parameter p. (See Figure 3.5 and Figure 3.6)

From Figure 3.5, it seems that the real parts of rightmost eigenvalues are 

negative where plasma skimming parameter p  ranges from 1.5 to 2.5. However, 

Figure 3.6 shows that the real parts of rightmost eigenvalues are positive in a small 

range where p  =2.0. The curves in the two graphs also show quite different shapes. 

A potential explanation is that the two plasma skimming models have distinct 

definitions where the volumetric flow ratio Q is close to 0 or 1. We can notice in 

Figure 3.3 and Figure 3.4 that when p < 2.1 the values of computed Q at equilibrium 

are quite different from each other and are close to 1 as well. Since coefficients in 

characteristic equations are all computed based on plasma skimming correlations and 

corresponding derivatives at steady states, the above differences will result in the 

various characteristic roots. It is hard to say which one of the two models is more 

accurate because they are both empirical correlations. The logit plasma skimming 

correlation is mainly used in the following due to its smooth shape and continuous 

first derivatives with respect to Q, which are thought to be more convenient for 

analytical studies.
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The linear plasma skimming model
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Plasma skimming parameter p

Figure 3.5 Re(A) versus Linear Plasma Skimming Parameter.
Other physical parameters are Hi = 0.8, Q/ = lOnl/min, dA = 35/xm, (Ib = 20/rm, lA =

500/rm, lB = 2500/rm.

The logit plasma skimming model
0.2

- 0.2

- 0.6

2.2 2.3 2.4 2.5
Plasma skimming parameter p

Figure 3.6 Re(A) versus Logit Plasma Skimming Parameter.
Other physical parameters are the same as those in Figure 3.5.
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3.3 Effects of Inlet Hematocrit

In a normal human body, the red blood cell concentration, i.e., hematocrit, is 

about 0.40 ~ 0.45. However, the hematocrit is adjustable for experiments. The 

procedures in detail are available in Carr’s Ph.D. dissertation (Carr, 1984)18. Briefly, 

RBCs in blood are separated from plasma after centrifugation and then washed 

several times using a buffer solution. According to the hematocrit desired, a certain 

amount of buffer solutions is added to RBCs to form a suspension after mixing. 

Finally, the hematocrit in the new “blood” is measured by a capillary method.

Obviously, the inlet hematocrit is an important physical parameter that is 

adjustable in experiments. The following numerical research focuses on the impact 

of inlet hematocrits on the system stability at steady states. The in vitro viscosity 

model and the logit plasma skimming model are used here.

The inlet hematocrits are changed during the numerical studies, and other 

constant parameters are given as follows: Logit plasma skimming parameter p  = 2.0, 

Qi = lOnl/min, dA = 35pm, dn = 20pm, lA = 500pm, Ib = 2500/tm. First, steady 

states of the system are calculated with various inlet hematocrits (see Figure 3.7). 

Then the rightmost eigenvalues are computed at the steady states using 

DDE-BIFTOOL package (see Figure 3.8a and Figure 3.8b).

Figure 3.7 shows that when inlet hematocrits increase to more than 0.70, the 

flow ratio at equilibrium decreases quickly against increasing inlet hematocrit Hi. 

Accordingly, the curves of the real parts of rightmost eigenvalues exhibit sharp 

changes against the inlet hematocrit where Hi is about 0.8. A whole profile is 

presented in Figure 3.8a and more detail is shown in Figure 3.8b. These abrupt 

changes can be explained as the very nonlinear inherent properties of the system. 

From Figure 3.8b, it is noticed that the real parts of rightmost eigenvalues are greater
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than zero in a very narrow range of inlet hematocrits Hi (about 0.798 ~ 0.802). 

Figure 3.8a and Figure 3.8b convey two pieces of information: the stability analysis 

around steady states predicts possible oscillations in the two node network; the inlet 

hematocrits corresponding to oscillations are quite high and the range of hematocrits 

is very narrow, thus experimental verifications are difficult to perform for these 

theoretical predictions.

The logit plasma skimming model
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Figure 3.7 Steady State Q versus Inlet Hematocrit.
Other physical parameters are the logit plasma skimming parameter p  = 2.0, Qi = 

lOnl/min, dA = 35/xm, dB = 20 pm, lA = 500pm, lB = 2500/rm.
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The logit plasma skimming model
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Figure 3.8a Re(A) versus Inlet Hematocrit with Ht Ranging from 0.1 to 0.9.
Other physical parameters are the logit plasma skimming parameter p  = 2.0, Qi = 

lOnl/min, dA = 35/mi, de = 20pm, Ia -  500pm, Is = 2500/xm.

The logit plasma skimming model
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Figure 3.8b Re(A) versus Inlet Hematocrits with Hi Ranging from 0.78 to 0.82.
Other physical parameters are the same as those in Figure 3.8a.
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3.4 Effects of Diameters of Branches

To build a practical in vitro simple microvascular networks that can exhibit 

spontaneous oscillations, effects of diameters and lengths of branches ought to be 

investigated. In this section, the effect of diameters of branches is studied, and the 

influence of lengths of branches is examined in the next.

During the investigation, the diameter of branch A (see Figure 2.2) is varied, 

while the diameter of branch B and other physical parameters are fixed. The values 

of these fixed parameters are listed as following: p  = 2.0, Hi = 0.8, Qi = lOnl/min, 

dB = 20pm, lA = 500pm, lB = 2500/xm. The in vitro viscosity model and the logit 

plasma skimming model are applied here. The volumetric flow ratios Q at steady 

states are computed first (see Figure 3.9), and then the real parts of rightmost 

eigenvalues are computed at each steady state against varying diameters of branch A 

(see Figure 3.10a and Figure 3.10b).

The logit plasma skimming model
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Figure 3.9 Steady States Q versus Diameter of Branch A.
Other physical parameters are Logit plasma skimming parameterp  = 2.0, Hi = 0.8, 

Qi = lOnl/min, dB = 20pm, lA = 500pm, lB = 2500/rm.
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The logit plasma skimming model
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Diameter of branch A (pm)

Figure 3.10a Re(A) versus Diameter of Branch A with dA Ranging from 25 pm
to 50/tm. Other physical parameters are Logit plasma skimming parameter p  = 2.0, 

Hi = 0.8, Qi = lOnl/min, d% = 20jiim, lA = 500pm, h  = 2500/rm.

The logit plasma skimming model
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Figure 3.10b Re(A) Versus Diameter of Branch A with dA Ranging from 
34pm  to 36pm. Other physical parameters are the same as those in Figure 3.10a.
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Figure 3.10a and 3.10b show that when other physical parameters are fixed at 

certain values, the real parts of rightmost eigenvalues are positive in a narrow range 

of diameters of branch A (about 34.8/xm ~ 35.2/xm). This means that during 

manufacture of micro channels, errors of diameters of branches are required to be 

controlled under half a micron. The requirement is strict but still achievable using 

soft lithography methods, for it was reported that the technique can replicate features 

as small as 30nm (Xia et al., 1997)59. From Eq.(2.6.7) and Eq.(2.6.8) that define the 

coefficients in the characteristic equation Eq.(2.6.10), we observe the information of 

diameters are integrated in the viscosity correlations, and one of coefficients contains 

the sixth power of diameter ratio. Thus, it is reasonable to find the rightmost 

eigenvalues are sensitive to the diameters. However, the wide ranges of the 

diameters corresponding oscillations are still preferable to the narrow ones, because 

the experimental systems are easier to be built.

3.5 Effects of Lengths of Branches

The influence of lengths of branches on the stability of the systems is 

investigated in this part. The length of branch A (see Figure 2.2) is varied, and 

meanwhile the diameter of branch B and other physical parameters are kept constant. 

The values of these fixed parameters are: p  = 2.0, Hi = 0.8, Q/ = lOnl/min, dA = 

35pm, dB = 20pm, lB = 2500/un. The in vitro viscosity model and the logit plasma 

skimming model are both applied. The volumetric flow ratios Q at steady states are 

computed and plotted against varying I a in Figure 3.11, and the real parts of 

rightmost eigenvalues versus varying I a are presented in Figure 3.12.
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Figure 3.12a and Figure 3.12b show that the system possesses rightmost 

eigenvalues with positive real parts and the corresponding length of branch A ranges 

from 470/rm to 530/rm. Compared with the requirements for diameters of branch A, 

the length during the manufacture can be easily controlled and bounded in the range 

using the soft lithography method.

The logit plasma skimming model
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Figure 3.11 Steady States Q versus Length of Branch A.
Other physical parameters are Logit plasma skimming parameter p  = 2.0, Hi = 0.8, 

Qi = lOnl/min, dA = 35/xm , dn = 20pm, lB = 2500/xm.
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The logit p lasm a skimming model
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Figure 3.12a Re(A) versus Length of Branch A with lA Ranging from 100/im 
to 1000/im. Other physical parameters are Logit plasma skimming parameter p  = 2.0, 

Hi = 0.8, Qi = lOnl/min, dA = 35pm , dg = 20pm, lg = 2500/tim.

The logit plasma skimming model
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Figure 3.12b Re(A) versus Length of Branch A with lA Ranging from 470/rm 
to 530pm. Other physical parameters are the same as those in Figure 3.12a.
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3.6 Instability Regions of the Two Node Network

The proceeding work in this chapter has focused on the effects of a physical 

parameter on the stability of the two node microvascular network around steady 

states. It is meaningful to generate plots that illustrate regions of instability on two 

dimensional parameter spaces. The plasma skimming parameter p  and inlet 

hematocrit Hi are chosen to construct the parameter space.

The in vitro viscosity model and the logit plasma skimming model are applied 

here. The fixed parameters are listed as following: Qi = lOnl/min, ^  = 35pm, dB = 

20pm, IA = 500pm, lB = 2500/rm. The results are presented in Figure 3.13, and it is 

noticed that the instability region on the p-Hi plane is very narrow and hints at the 

potential difficulties for future experimental verifications.

P r ie s 's  in vitro v isco s ity  m odel
0 .8 1 5

• R eg ion  o f  instability 
n P o in t o f  p  = 2 .0 , H 1 =  0 .8
o P o in t o f  p  = 1 .95 , H =  0 .8
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0 .8 0 5
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E
ID
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0 .7 8 5
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Logit p la sm a  skim m ing m ode l p
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Figure 3.13 An Instability Region in the p-Hi Plane.
The other fixed parameters are: the logit plasma skimming model, the in vitro 

viscosity model, Qi = lOnl/min, dA = 35pm, dB = 20pm, lA = 500pm, lB = 2500/un.
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To verify the predicted stability on Figure 3.13, Carr and LeCoin’s procedure 

can be followed to generate numerical simulation results (Carr and LeCoin, 2000)'. 

A point within the instability region in Figure 3.14a is checked, the pressure at node 

1 is plotted against increasing time and initially all branches are filled with blood at a 

steady state hematocrits.

To illustrate the dynamics structure more clearly, Figure 3.14b presents a phase 

portrait with averaged hematocrits in branch A and branch B as parameters, which 

show the dynamics of the two node system. Obviously, a spontaneous fluctuation of 

pressure at node 1 occurs even without biological controls, and the oscillation 

appears to have a single frequency. On the phase portrait, the dynamic structure 

looks like a stable limit cycle where any trajectory starting from inside or outside 

finally approaches it. Limit cycles are necessarily due to nonlinear dynamics and 

never occurs in a linear system (Strogatz, 2000)38. The limit cycle seems like a two 

dimensional one, but the time series coming from simulations need to be analyzed by 

calculating correlation dimensions (Grassberger and Procaccia, 1983)60, which may 

be a part of future work on the nonlinear dynamics of microvascular blood flow.

It is of interest to estimate an initial growth rate of pressure change at node 1. As 

shown in Figure 3.14c, the initial doubling time estimated from the simulation 

results is Tin «117.4 -98 .0  = 19.4(sec). Also, the doubling time can be computed

from the obtained rightmost eigenvalues X = 0.012103±0.089663i for the given 

physical parameters (refer to section 2.7). The computed doubling time is

7j/2* = ®57.3(sec). There may be several potential reasons for unmatched
Re(/l)

values of the doubling time: 1) Steady-state solutions are not accurate enough. 

Generally, errors of flow ratio at steady states are controlled within +/-0.0001, but at
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high hematocrits, a small change of the steady states may lead to a considerable 

change of resistance in each branch, and then of pressure at nodes; 2) In this 

dissertation, resistance of inlet and outlet branches are not considered, while Carr 

and LeCoin's simulation program did include information of the inlets and outlets. 

Even though influences of the inlets and outlets could be weakened by shortening 

their length, some small deviations still existed; 3) As for the computed rightmost 

eigenvalue, its imaginary part is not close to zero, which means the growth rate 

computed from the real part may be different from observed simulation results. In 

any future in vitro experiments, it will be meaningful to compare time scales of 

predicted doubling time with those of external disturbances to examine validity of 

the simplified mathematical models.

Pries's in vitro viscosity model
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Figure 3.14a Time Series showing the Fluctuation of Pressure at Node 1.
The other fixed parameters are: the logit plasma skimming model, the in vitro 

viscosity model,p  = 2.0, Hi = 0.8, Qi = lOnl/min, dA = 35/xm, ds = 20/xm, Ia =
500/tm, Ib = 2500/mi.
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Pries 's in vitro viscosity model
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Figure 3.14b A Phase Portrait with Averaged HA and Averaged HB as 
Parameters. The other fixed parameters are the same as those in Figure 3.14a.
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Figure 3.14c Estimation of the Doubling Time from the Simulation Result.
The other fixed parameters are the same as those in Figure 3.14a.
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A point outside the instability region is examined by the simulation program 

directly. The time series of pressure at node 1 is shown in Figure 3.15. Logit plasma 

skimming parameter is changed to p  = 1.95, and other parameters keep constant as in 

Figure 3.14a. The initial hematocrit in each branch is around the steady state 

approximately. After a tiny fluctuation at the beginning, the pressure at node 1 gets 

back to the steady state. The result verifies the prediction and indicates again that the 

two node system is very sensitive to change of physical parameters.

When the plasma skimming model is switched to the linear model, while 

keeping the same viscosity model and physical parameters, there is no instability 

region found on the p  - Hi plane. It seems that if the nonlinearity of the plasma 

skimming model is lost, the two node system tends to be always stable at steady 

states.
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Figure 3.15 Time Series Showing Stable Pressure at Node 1.
The other fixed parameters are the same as those in Figure 3 .14a.
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3.7 Necessary Conditions for Spontaneous Oscillations

By analyzing the linearized DDE Eq.(2.6.6) for the two node topology necessary 

conditions for oscillations can be found (Carr et a l,  2005)48. Note that some

definitions in Carr et al. ’s paper are slightly different from the ones presented in

Eq.(2.6.7) and Eq.(2.6.8), and the necessary conditions are listed below:

-b c >  0 (3.7.1)

- b c { \ - y ) 2 > \ .  (3.7.2)

In fact, as a dimensionless time, y is always greater than zero, so the condition 

Eq.(3.7.2) contains the information in Eq. (3.7.1).

The less strict necessary condition Eq.(3.7.1) indicates b and c possess opposite

signs. If the definitions of b and c are examined in Eq.(2.6.7) and Eq.(2.6.8)

respectively, it is found that all items are always positive except in Eq.(2.6.7) for b

dF F  d (F  / Q) d { H J H x)
d Q 'o Q *  dQ v  dQ 'o ’

and in Eq.(2.6.8) for c

^ L \  1~ F \ m - F W - Q ) )  d (H B / H Q ,
dQ 0 1 - Q  0 dQ * dQ

If the inlet hematocrit ratio is plotted against the flow ratio Q, the graph may 

show regions satisfying the necessary condition Eq.(3.7.1). An example is presented 

in Figure 3.16a, where Logit plasma skimming model is applied and the plasma 

skimming parameter p  is equal to 2.0. With the given p, two critical values of flow 

ratio Q are computed: Qcri —0.2929, Qcr2 *0.7071. The left shaded region is located 

between 0 and Qcri, where b > 0, c < 0, and -be  > 0; the right shaded region is 

located between Qcr2 and 1, where b < 0, c > 0, and -be > 0; the middle un-shaded 

region is located between Qcri and Qcr2, where b > 0, c > 0 and -be < 0. Thus, the
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first necessary condition for oscillation is not obeyed in the un-shaded region and no 

oscillation can occur there.

To verify the necessary conditions, each point satisfying the conditions is plotted 

in the p-Hi plane (see Figure 3.17). All fixed parameters and related models are the 

same as those in Figure 3.13. From the Figure 3.17, it is noticed that the region of 

instability is bounded in the parameter space where both necessary conditions for 

oscillations are satisfied.

When the plasmas skimming model is changed to the linear model, the inlet 

hematocrit ratio is plotted versus the flow ratio Q in Figure 3.16b. Also two critical 

values are calculated: Qcri = 0.25, Qcr2 = 0.75. When 0 < Q < Qcri, b = 0, c < 0, and 

be = 0; when Qcri < Q < Qcr2, b > 0, c > 0, and be > 0; when Qcr2 < Q < \ , b < Q , c := 

0, and be = 0. Obviously, the necessary condition Eq.(3.7.1) is satisfied nowhere for 

the two node system when the linear plasma skimming model is applied. Therefore, 

this system will always be stable.

The logit plasma skimming model
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Figure 3.16a Inlet Hematocrit Ratio versus Flow Ratio Q when Logit Plasma 
Skimming Parameter p  = 2.0. Shadowed area corresponds to oscillation regions.
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The linear plasma skimming model
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Figure 3.16b Inlet Hematocrit Ratio versus Flow Ratio Q when Linear 
Plasmas Skimming Parameter p  = 2.0.
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Figure 3.17 Points Satisfying Necessary Conditions for oscillations in the p-Hi 
Plane. All fixed parameters and related models are the same as those in Figure 3.13.
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C H A P T E R  IV

NUMERICAL RESULTS ABOUT THREE NODE MICROVASCULAR
NETWORKS

The numerical studies in the last chapter show that parameter spaces of possible 

oscillations are quite narrow and hint that experimental verification for those 

theoretical predictions may be difficult. Therefore, it is reasonable to move to more 

complicated topological structures such as three node network with two inlets (see 

Figure 2.3), where a practical system for experiments is hoped to be found. Again, 

DDE-BIFTOOL is applied during the numerical investigation. Carr and LeCoin’s 

simulation program is again used to examine stability of the system. Pries’s in vitro 

viscosity model is applied in this chapter.

Through the first five sections (from Section 4.1 to Section 4.5), effects of 

geometry and inlet conditions are investigated in symmetric systems. Advantages of 

investigating a symmetric system are as follows.

First, the number of investigated parameters is reduced greatly. For an 

asymmetric system, there are ten parameters for analysis -  dA, dB, dc, Ia (or lB), lc, Hi, 

H2 , Qi (or Q i),pi, P2, etc; while for a symmetric system, the number of the parameters 

are decreased to five, and they are dA (or dB), dc, IcIIa (or IcJh), Hi (or //?), and pi (or 

P2)-
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Second, since the symmetric system is defined to have symmetric geometry as 

well as symmetric inlet conditions, it always possesses a trivial steady state -  no 

blood flow in branch C, and other existing steady states appear in pairs. 

Theoretically the paired steady states have exactly the same stability, thus 

investigation of half of the steady states will suffice.

Third, experimental models for the symmetric system can be built more easily 

than for an asymmetric system.

To have a preliminary idea about asymmetric systems, effects of heterogeneity 

of inlet conditions on dynamics are studied for the three node system in Section 4.6.

4.1 Effects of Plasma Skimming Parameters

It is found that in the two node network, the steady states and corresponding 

stability are sensitive to the plasma skimming model and the plasma skimming 

parameter applied. For the three node network, the effects of plasma skimming 

models and parameters are under investigation. Likewise, both the linear model 

(Fenton et al., 1985)20 and the logit model (Dellimore et al., 1983)21 are examined 

for the three node system. The investigation is performed in geometrically 

symmetric systems with identical inlet conditions in two inlet branches. To avoid 

destroying the symmetry, the plasma skimming parameters at node 1 and node 2 are 

always changed simultaneously, i.e.,/?/ - p 2 -

Pries’s in vitro viscosity model is used during the investigation. Other physical 

parameters are Hi = H2 = 0.8, Qi = Q2 = lOnl/min, diameters dA = ds = 35/xm, dc = 

50/xm, lengths lA = Ib = 500/xm, lc = 1000pm. The steady state Q' = QA /(£?, +Q2) is 

plotted against varying plasma skimming parameters pi, P2 for the two models in 

Figure 4.1 and Figure 4.2 respectively. In these figures, a black point denotes stable
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one and a grey point denotes unstable one. At Q* = 0.5, the stability is always 

uncertain due to the functional limitation of DDE-BIFTOOL.

Both of the above two graphs present only slight differences in the shapes of the 

Q-p curves. This is reasonable since the computed steady state flow ratios fall in the 

central regions of the plasma skimming graphs where the two are similar However, 

the unstable steady states appear at lower values of the plasma skimming parameter 

for the linear model than for the logit model.

It is also noticed from Figure 4.1 and Figure 4.2 that there are two symmetric 

branches of steady states and a middle one corresponding to steady states Q* = 0.5, 

which means no blood flow in the branch C at the steady states. At steady states Q* = 

0.5, the coefficients in Eq.(2.6.5) are calculated to be zero, with which 

DDE-BIFTOOL fails to continue the further computation and thus the corresponding 

stability is undetermined. It is sufficient to compute the rightmost eigenvalues along 

one of branches of non-zero steady states due to their symmetry. The rightmost 

eigenvalues versus the plasma skimming parameters for both models are presented in 

Figure 4.3 and Figure 4.4 respectively.
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The linear plasma skimming model
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Figure 4.1 Steady State Q* versus Linear Plasma Skimming Parameter.
Other physical parameters are Hj = H2 = 0.8, Qj = Q2 = lOnl/min, d A = ch = 35/rm, 

dc = 50/xm, lengths 1A = h  = 500/xm, lc = 1000/xm.

The logit plasma skimming model
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Figure 4.2 Steady State Q* versus Logit Plasma Skimming Parameter.
Other physical parameters are Hi = H 2 = 0.8, Qi = Q2 -  lOnl/min, dA = ds = 35/tm, 

d c  = 50/xm, lengths I  a = Ib = 500/rm, lc = 1000/rm.
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The linear plasm a skimming model
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Figure 4.3 Re(A) versus Linear Plasma Skimming Parameter.
Other physical parameters are Hj = Hi = 0.8, Qi = Q2 = lOnl/min, = ds = 35/am, 

dc = 50/mi, lengths Ia~ h ~  500/rm, lc -  1000/rm.
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Figure 4.4 Re(A) versus Logit Plasma Skimming Parameter.
Other physical parameters are Hi = H 2 = 0.8, Qi = Q2 = lOnl/min, d^ = dg = 35/mi, 

dc -  50/nm, lengths Ia~ h ~  500/mi, lc = 1000/xm.
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The results of Figure 4.3 and Figure 4.4 explain why the linear model has a 

wider range of plasma skimming parameters corresponding to unstable steady states. 

There are two branches of eigenvalues whose real parts are greater than zero in 

Figure 4.3, but only one branch of eigenvalues has positive real parts in Figure 4.4. 

Figure 4.3 also shows that the two positive eigenvalue branches exist simultaneously 

where p  ranges from about 1.9 to about 2.2. When the imaginary parts corresponding 

to the two branches are plotted against p  in Figure 4.5, it is found that the two 

branches possess different imaginary parts in the overlapping range. When the real 

parts are greater than zero, the value of an imaginary part is related to oscillation 

frequencies. Oscillations with two frequencies are anticipated. This has been 

checked with the simulation program.

The linear p lasm a skimming m odel
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Figure 4.5 Im(A) versus Linear Plasma Skimming Parameter for Positive 
Eigenvalue Branches. Other physical parameters are Hi = Hi = 0.8, Qi = Q2 -  

lOnl/min, (Ia = d s  = 35/xm, d c  = 50pm, lengths Ia = Ib  = 500pm, l c  = 1000pm.
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Linear plasma skimming parameter p f = p 2 = 1.8
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Figure 4.6a Time Series Showing Fluctuation of Pressure at Node 1 when p i =
P2  = 1.8. The linear plasma skimming model. Other physical parameters are Hi = H2 

= 0.8, Q i  -  Q 2 = lOnl/min, cIa = d s ~  35/im, d c  -  50/xm, lengths I a ~ I b ~  500/am, l c

= 1000/un.
Linear plasma skimming parameter p ( = p ? = 2.1
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Figure 4.6b Time Series Showing Fluctuation of Pressure at Node 1 when p i =
p 2 = 2.1. Other physical parameters are the same as those in Figure 4.6a.
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The point at p i = p 2 = 1.8 and 2.1 are checked respectively. At pi = p 2 = 1.8 only 

one frequency is expected, while two frequencies are expected at/?/ = />? = 2.1. The 

simulation program proceeds for enough time so that the dynamic behavior develops 

completely. The time series of pressure at node 1 are plotted in Figure 4.6(a,b). It is 

found that Figure 4.6a only presents the oscillation with a single frequency. In 

contrast, Figure 4.6b shows the oscillation at pi = p 2 = 2.1 with two frequencies as 

predicted.

4.2 Effects of Inlet Hematocrits

As stated previously, it is expected that oscillations will occur at a lower inlet 

hematocrit and wider ranges of inlet hematocrit for the three node network than for 

the two node network. Thus, the effects of inlet hematocrits on the hemodynamics 

are studied here. Pries et al. ’s in vitro viscosity model and the logit plasma skimming 

model are applied. To utilize the symmetric properties of the three node system, the 

two inlet hematocrits and the plasma skimming parameters at two inlet nodes are 

chosen to be identical, and the diameters and lengths of branch A and branch B are 

the same as well.

First, the steady state flow ratio Q* is plotted against the varying inlet 

hematocrits (see Figure 4.7), and different line styles represent unstable, stable, and 

undetermined stability at steady state. The fixed physical parameters are pi = p 2 = 

2.0, Qi = Q2 = lOnl/min, diameters dA = dB = 35/xm, dc = 50/mi, lengths lA = h ~  

500/im, lc=  1000/rm.
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Pries 's in vitro viscosity model
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Inlet hematocrit H v H2

Figure 4.7 Steady State Q* versus Inlet Hematocrit Hlt H2.
Other physical parameters are the logit plasma skimming parameters pi = p 2 = 2.0, 

Qi = Q2 = lOnl/min, d,\ = du = 35pm, dc = 50pm, Ia = I b ~  500pm, lc = 1000/mi.

The rightmost eigenvalues are computed for one branch of non-zero steady 

states due to the symmetric properties of the system. The real parts of the

eigenvalues are plotted against the hematocrits in both inlets in Figure 4.8, and the

graph presents more details of change of eigenvalues at steady states. It is found that 

rightmost eigenvalues may come from various eigenvalue branches, and eigenvalues 

on one branch can grow to a positive value and then become negative as hematocrits 

increase.
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Figure 4.8 Re(A) versus Inlet Hematocrit Hi, H2.
The other parameters are the logit plasma skimming parameters p i = P2 = 2.0, Qi = 

Q2 = lOnl/min, dA = dg = 35pm, dc = 50pm, lA = I b  = 500pm, lc = 1000pm.

At the first glance, it is found that the rightmost eigenvalues with positive real 

parts exist around relatively low inlet hematocrits (about 0.56 to 0.58). When the 

simulation program is carried out at a value in that range (H/ = H2 = 0.57), no 

spontaneous oscillation occurs as expected (see Figure 4.9a), while at the higher inlet 

hematocrit values {Hi = H 2 = 0.80), the oscillation with two frequencies is observed 

(see Figure 4.9b). The stability analysis is based on the linearized DDE’s around 

steady states (see Eq.2.6.3), and higher order items are neglected during the linear 

analysis. When the real parts the rightmost eigenvalues are slightly greater than zero, 

the ignored higher orders may damper linear instabilities; when the real parts are 

slightly less than zero, the higher orders may destabilize the system at the steady 

states.
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Figure 4.9a Time Series Showing Stable Pressure at Node 1 when Hi = H2
0.57. The other parameters are the same as those in Figure 4.8.
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Figure 4.9b Time Series Showing Stable Pressure at Node 1 when Hi = H2
0.82. The other parameters are the same as those in Figure 4.8.
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4.3 Effects of Diameter of Branch C

As pointed out in Section 3.4 and 3.5, it is important to know instability ranges 

of geometrical parameters for a system to determine whether it is practical to be built. 

In this section, effects of diameters of branch C are investigated.

The steady state flow ratio Q* is plotted against the varying diameter of branch 

C in Figure 4.10 with given fixed parameters. Pries’s in vitro viscosity model and the 

logit plasma skimming model are used and the constant physical parameters are: pi 

= P2 = 2.0, Qi = Q2 -  lOnl/min, d A = d n  = 35pm, Ia =  I b ~  500pm, lc = 1000/mi.

As seen in the preceding parts, the symmetric system possesses two symmetric 

branches of steady states and one trivial branch corresponding to no blood flow in 

branch C. Either of the two symmetric branches of steady states is under the 

observation. It is found that the stability changes three times as dc increases from 

25 pm  to 65/zm: from stability to instability at d c  ~40pm ;  then from instability to 

stability at dc =43/mi; and again from stability to instability at dc =45/tm. The three 

instability ranges of d c  shown in Figure 4.10 are about 3 pm, 1.5pm,  and 18/mi 

respectively. The diameters of branches can be easily controlled in these ranges via 

soft lithography method (Xia et al., 1998)44.

In Figure 4.11, the real parts of the rightmost eigenvalues are plotted against the 

growing diameter of branch C. From the graph, it is found that multiple branches of 

eigenvalues become the rightmost one with positive real parts in turn, and segments 

corresponding to positive real parts are isolated initially, but then overlap at higher 

dc values. Accordingly, the three node system possesses unstable steady states in a 

wider range of diameters compared with the two node topology case (see Figure 

3.12a, 3.12b).
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Figure 4.10 Steady State Q versus Diameter of Branch C.
The other parameters are the logit plasma skimming parameters p i  = p 2 = 2.0, Q/ 

Q2 = lOnl/min, H : = H2 = 0.8, dA = ds = 35pm, lA = Ib = 500pm, lc = lOOO^m.

Pries's in  vitro viscosity model
0.5

<<
o:

-0.5

Diameter of branch C (iim)

Figure 4.11 Re(A) versus Diameter of Branch C.
The other parameters are the logit plasma skimming parameters p i -  P2 -  2.0, Qi 

Q2 = lOnl/min, Hi = H2 = 0.8, dA = ds = 35pm, lA = h  = 500pm, lc = 1000pm.
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4.4 Effects of Len2ths of Branch C

Another geometrical parameter examined here is the length of branch C. Pries’s 

in vitro viscosity model and the logit plasma skimming model are used and the 

constant physical parameters are: pi = p 2 = 2.0, Q/ = Q2 = lOnl/min, dA = dB = 

35pm, dc = 50pm, Ia = l Ib  = 500pm.

The steady state flow ratio Q* is plotted against the varying length of branch C 

in Figure 4.12 first. Similar to Figure 4.10, the stability at the steady states changes 

several times along the increasing lc along either the upper branch or the lower 

branch. Interestingly, the discrete non-oscillation regions look like “windows”. In 

Figure 4.13, the real parts of the rightmost eigenvalues are plotted versus lc, and the 

non-oscillation windows exist between two branches of the rightmost eigenvalues.

P rie s 's  in vitro v iscosity  model
0.75

0.7

0.65

0.6Oo
2 0.55jU

§  0.5

0.35

0.3

0.25
300 400 500 600 700 800

Length o f branch C  (nm)
900 1000 1100 1200

Figure 4.12 Steady State Q* versus Length of Branch C.
The other parameters are the logit plasma skimming parameters pi = p 2 = 2.0, Qi = 

Q2 = lOnl/min, H i = H .2 = 0.8, dA = dB = 35pm, dc = 50pm, lA = Ir = 500pm.
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Figure 4.13 Re(A) versus Length of Branch C.
The other parameters are the logit plasma skimming parameters pi = p 2 = 2.0, Qi = 

Qi = lOnl/min, Hi = H2 = 0.8, c/4 = (Ib = 35/cm, dc = 50/un, Ia~ Ib~  500/im.

The simulation program is carried out to examine the stability inside and outside 

the non-oscillation windows, and the results are shown in Figure 4.14(a-g), which 

corresponds to lc -  400/tm, 500/un, 600/un, 700/un, 800/im, 900/un and 1000/un in 

sequence. The simulation results match the prediction very well as shown in the 

figures. The steady state at lc = 800/tm is supposed to be stable according to the 

stability analysis, but Figure 4.14e shows that oscillation with a very small amplitude 

still occur. As pointed out in Section 4.3, deviations may occur between the linear 

stability analysis and the direct numerical simulation. Figure 4.14g presents a similar 

situation to Figure 4.14e. The oscillation in Figure 4.14g appears to possess two 

frequencies, where an eigenvalue with positive part exists along with another 

eigenvalue with negative real part close to zero.
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Figure 4.14a Time series Showing Stable Pressure at Node 1 when lc = 400/rm.
The other parameters are the same as those in Figure 4.13.
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Figure 4.14b Time series Showing Unstable Pressure at Node 1 when lc '■ 
500/tm. The other parameters are the same as those in Figure 4.13.
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Figure 4.14c Time series Showing Stable Pressure at Node 1 when lc = 600/im.
The other parameters are the same as those in Figure 4.13.
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Figure 4.14d Time series Showing Unstable Pressure at Node 1 when lc = 
700/tm. The other parameters are the same as those in Figure 4.13.
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9UU/tm. The other parameters are the same as those in Figure 4.13.
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Figure 4.14g Time series Showing Slightly Unstable Pressure at Node 1 when lc 
= 1000/tm. The other parameters are the same as those in Figure 4.13.

4.5 Instability Regions of the Three Node Network

As shown in Section 3.6, an instability region on a p ~ H  plane is found to be 

quite narrow for the two node system. Both tight tolerances and high inlet hematocrit 

values suggest that it is impractical to build such an in vitro model for experimental 

verification

Following the approach in Section 3.6, the instability region is constructed on 

the p  -  H  plane for the three node system in Figure 4.15. Here, p  denotes the logit 

plasma skimming parameters, p  = pi = pr, H  represents the inlet hematocrits, H  = 

Hi = H2 . Other physical parameters are Qi = Q2 = lOnl/min, cIa = da = 35pm, dc = 

50 pm, I a = hi ~ 500pm, lc = 1000/xm. Pries’s in vitro viscosity model and the logit 

plasma skimming parameters are applied.
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Figure 4.15 displays the much broader instability range on the p  -  H  plane for 

the three node system than that for the two node system. Also, compared to the two 

node system, inlet hematocrits Hi, H2 required for instability decrease. For example, 

the minimum inlet hematocrits are about 0.76 at pi = P2 ~ 2.0 for the three node 

system as shown in Figure 4.15 while the minimum inlet hematocrit is about 0.8 atp  

=2.0 for the two node system as shown in Figure 3.13.

Pries's in vitro viscosity model
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1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Logit plasma skimming parameter p f  p 2

Figure 4.15 An Instability Region in the p -  H  Plane with the Logit Plasma 
Skimming Model. The other parameters are: Pries’s in vitro viscosity model, Qi = 

Q2 = lOnl/min, dA = dB = 35pm, dc = 50pm, lA = lB = lc = 500pm.

For the two node system, when the linear plasma skimming model is applied, 

the necessary conditions are not satisfied, and thus no instability region can be found 

(see Section 3.7). However, from Section 4.1, it is found the linear model can also 

lead to spontaneous oscillations in the three node system, which means the three 

node system is more robust than the two node system.
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Again, when the linear plasma skimming model is applied, the program 

containing DDE-BIFTOOL subroutines are carried out to generate the instability 

region in thep  -  //p lane in Figure 4.16. Interestingly, the instability region shown in 

Figure 4.16 is slightly larger than the one show in Figure 4.15 with lower minimum 

inlet hematocrits. It is suggested that even though the plasma skimming model lost 

the nonlinearity, additional nonlinear behaviors are introduced by combining the 

plasma skimming model and the topological complexity of the three node system. 

This also means that the necessary conditions Eq.(3.7.1) for the two node system is 

unsuitable for the three node system.

Pries's in  vitro viscosity model
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Linear plasma skimming parameter p  p 2

Figure 4.16 An Instability Region in the p  - H  Plane with the Linear Plasma 
Skimming Model. The other parameters are the same as those in Figure 4.15.

Under certain conditions, several separated instability regions appear in the p  - 

H  plane. For instance, when lc is changed to 1000/xm but other parameters remain 

constant, three instability regions are shown in Figure 4.17. Region I has been
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verified as unstable by the simulation program, but the other two regions have not 

been verified. It is found Region II corresponds to positive real rightmost 

eigenvalues. For example, at p i -  p 2 = 1.5, Hi = Hi = 0.55, a profile of the 

characteristic roots is shown in Figure 4.18a. Region III corresponds to complex 

rightmost eigenvalues with positive real parts, but the real parts are slightly greater 

than zero. For example, at pi = p i = 2.0, Hi = H 2 = 0.55, the profile of the 

characteristic roots is shown in Figure 4.18b. In future numerical investigations, a 

promising direction is to adjust physical parameters to find the lower regions 

corresponding to complex rightmost eigenvalues with considerably positive real 

parts, which may be verified by the simulation program.
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Figure 4.17 Multiple Instability Regions in thep - H Plane.
The logit plasma skimming model, Pries’s in vitro viscosity model, Qi = Q2 = 

lOnl/min, dA = dn = 3 5/mi, dc = 50/im, I a ~ I b ~  500/im, lc = 1000/un.
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Figure 4.18a A Profile of Characteristic Roots of a Point in Region II atp i  = 
P2  = 1.5, Hi = H2 = 0.55. The other parameters are the same as those in Figure 4.17.

0.05

Figure 4.18b A Profile of Characteristic Roots of a Point in Region III at p i~  
P2 -  2.0, Hi = H2= 0.55. The other parameters are the same as those on Figure 4.17.
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4.6 Effects of Heterogeneity of Inlet Conditions

Proceeding investigations in the two node system exhibit impacts of geometric 

parameters like diameters or lengths. However, the three node system has two inlet 

branches that allow the inlet hematocrits and volumetric flow rates to be different. It 

is of interest to know effects of heterogeneity of inlet conditions on the 

hemodynamics.

To observe the effects of heterogeneity of inlet conditions better, the 

investigation is performed for the three node system with symmetrical geometric 

parameters, for example, the three node system with the logit plasma skimming 

parameters pi = p 2 = 2.0, diameters dA = dH = 35/im, dc = 50/rm, lengths lA = lg = 

500pm, lc = lOOOjUm.

The hematocrits in inlet 1 and inlet 2 are denoted as Hi and H2 respectively; 

accordingly, the flow rates are denoted as Qi and Qj respectively. From the 

governing DDE of Eq.(2.6.11), it is found that the two inlet flow rates always appear 

as a ratio of one to the other, i.e., y q = Q2/Q 1, thus instead of the flow rates, the 

changing ratio is studied here. Since some information of the inlet hematocrits is 

contained in the viscosity correlations, in the following numerical studies, the Hi is 

kept a constant value, while the H2 is varied.

In Figure 4.19 and Figure 4.20, the steady state flow ratio Q* = Qa/Q i is potted 

against the varying yq and H2 respectively with other physical parameters fixed. Due 

to the symmetry of the system, yq ranges from 1 to 10 instead of from 0.1 from 10. 

Again, in these figures, a black point denotes a stable steady state, a grey point 

denotes unstable one, and a black point with a smaller size denotes uncertainty due 

to the functional limitation of DDE-BIFTOOL.
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Figure 4.19 Stability of Steady States versus Varying Ratio of Inlet Flow Rates 
y q = Q /Q h  The other parameters are: H i = H .2 = 0.8, Logit plasma skimming 

parameters pi = p 2 = 2.0, d A = d s  = 35pm, d c  = 50pm, I a ~ I b ~  500pm, l c  = 1000pm.

From Figure 4.19, it is noticed that when y q = 1, i.e., Qi = Q2 , the system has 

three steady state flow ratios: one is equal to 1 and the others are exchangeable due 

to symmetry of the system. Then the increasing yq destroys the symmetry, but there 

are still three steady states existing until y q grows to a critical value about 3.5. When 

yq is greater than about 3.5, the lower two branches of steady states disappear, and 

only one steady state remains. Meanwhile, the stability of steady states also changes 

with varying y q. At the beginning, the middle steady state is stable, and the other two 

are unstable. Then the middle one turns to be unstable, and when yq keeps increasing, 

the upper branch of steady states becomes stable. The lower branch is unstable but it 

switches to be stable when the ratio gets close to about 2.5.
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Figure 4.20 Stability Of Steady States versus Varying Hematocrit
The other parameters are: Hi = 0.8, Qi — Q2 , Logit plasma skimming parameter pi = 

P 2 = 2.0, d/i = dB = 35 pm, dc = 50pm, Ia = Ib = 500pm, lc = \000pm.

Figure 4.20 shows relatively complex changes of stability around steady states 

versus increasing inlet hematocrit //? as well. At first, one stable branch of steady 

states exists for the system. When the value of H2 increases to about 0.68, two new 

branches emerge as unstable ones in the upper part of the graph. The middle branch 

turns to be stable first at H2 *=0.76 and unstable again at H2 =0.83. The upper branch 

is mostly unstable but stable in a few discrete segments. The lower branch becomes 

unstable at H2 =0.8.

All the above numerical results indicate that the effects of heterogeneity of the 

conditions are complex. When one inlet condition changes, not only the number of 

steady states may change, but also the stability around steady states may change 

multiple times. Therefore, to facilitate the numerical studies on the three node 

system, the irregularity of inlet conditions will not considered, and the flow rates and 

hematocrits in two inlet branches can be set to be exactly equal.
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C H A P T E R V

CONCLUSIONS AND FUTURE WORK

By performing the stability analysis around steady states, it is found that 

spontaneous oscillations can occur in the simple microvascular networks with either 

the two node topology or the three node topology (two inlets). Fahraeus effect and 

plasma skimming phenomena are considered in the mathematical modeling.

It is found that the dynamic behavior of the two node system is sensitive to 

physical parameters such as plasma skimming parameters, inlet hematocrits, inlet 

blood flow rates, diameters and lengths of branches, etc. The instability regions can be 

found when the logit plasma skimming model is applied. When the linear plasma 

skimming model is used instead, the necessary conditions for oscillations are not 

satisfied, and the system is stable around steady states always. The obtained instability 

regions are quite narrow in the p  - H  plane, and the inlet hematocrits are quite high 

(about 0.8 when p  = 2.0). These strict physical conditions make experimental 

verification of this phenomenon very difficult in a two node network.

Numerical results for the three node system are more promising than those for the 

two node system. The three node system has instabilities over much wider parameter 

ranges than the two node system with lower inlet hematocrits. Besides, the three node 

system is more robust for plasma skimming models than the two node system, and 

when either the logit model or the linear one is applied, the three node system can 

exhibit instability over certain parameter ranges.
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Some interesting dynamic behaviors like multiple frequency oscillations and 

non-oscillation windows are found in the three node system, which are absent in the 

two node system. These changes may be as a result of the increasing topological 

complexity of the three node network. Unfortunately, the inlet hematocrits are still 

quite high (about 0.76 when using the logit plasma skimming model with p = 2.0; 

about 0.74 when using the linear plasma skimming model with p = 2.0), and 

experimental verification under the inlet conditions are still too difficult to be carried 

out.

To conclude, the stability analysis approach presented in this thesis is reasonable 

and feasible, and stability predictions produced by the approach can mostly be 

verified by the direct simulation program (Carr and LeCoin, 2 0 0 0 ) Since the 

stability analysis is based on the linearization around steady states, and higher order 

terms are neglected during the process, the theoretical prediction may not be accurate 

in some cases. For example, when the real parts of rightmost characteristic roots are 

close to zero, deviations exist between the results of the stability analysis and the 

direct simulation. Although the linear stability analysis shows slight deviation from 

the direct numerical simulation in a few cases, the approach does provide meaningful 

directions toward finding instability regions for the future experimental verifications.

There are some directions for the future work: continuing the search in wider 

parameter ranges for the symmetric three node system; examining the three node 

systems with asymmetric structures; moving to new topologies, for instance, three 

node networks with one inlet and two outlets, four node networks, etc; building 

simple microvascular networks using soft lithography approach, and conducting in 

vitro experiments when realizable conditions are discovered.
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APPENDIX A. DEFINITIONS OF RHS FUNCTIONS AND THEIR FIRST 
ORDER DERIVATIVES OF GOVERNING DDE’S

Details of the specification required by DDE-BIFTOOL are available from the 
user manual -  Report TW 330 (Engelborghs e t  a l . , 2001)50. Definitions of right hand 
sides (RHS) functions and their first order derivatives of governing DDE’s are given 
as follows.

•  The two node network

First, we treat the delays as state-dependent ones. Let x [ denote Q, i  denote ta , t,

denote tb , the following equations are obtained from (2.4.16) and (2.4.10),

d x x( t )  d* 4QXH X ( t ) )  ^  F ( x x( t ) )  F (x ,(f-r,(Q ))
dt l Bd 6A n  p B(H  B ( t ) )  1 x x( t )  x x( t - T x( t ) )

+  1 b ( 0 )  _  {t))2 ( A 1 )

lBd \  n  v B { H B { t ) )

l-F (x ,(Q ) l - F ( x , ( t - r 2(Q))
1 - ^ ( 0  1 - x , ( / - t2( 0 )

J   ̂ k̂xxx(t)ds -1  (A.2)

f_r,(0^2C1 - xx{t)]ds -  \ , (A.3)

where kx = 4Qx l{nd]lA), k2 = 4Qx !{nd\lB).

By differentiating the threshold conditions, and let x2(t) = rx(t), x3(t) = r2(t) , 

Eq.(A.2) and Eq.(A.3) are transformed into Eq.(A.4) and Eq.(A.5) respectively.

dx2(t) _ x x,(Q
dt xx (t -  r, (/))

dx3(t) =1 1 - ^ ( 0
dt 1 - x x{ t -  r 2 (t))

Letx4(f) = H A(t),x5(t) = H B(t), (2.4.9) combined with (2.4.15) are rewritten as

(A.6)
dt xx (t) x, (t -  r, (())

(a .?)
dt 1 -  x, (t) 1 -  x, (/ -  t 2 (/))
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A P P E N D I X  A  (C O N T IN U E D )

The definitions of the two node network are given by Eq.(A.l) and Eq.(A.4-7). To 

conclude, the above system has five state variables (xlsx2,x3,x4,x5) , two

state-dependent delays ( r , , r 2) , and six parameters (p ,H l,d A,dB,k l,k2) .

Note RHS of Eq.(A.l) and Eq.(A.4-7) in order.
The first order derivatives of the RHS function/fi,l) with respect to state variables are

listed as follows , where J l ] ~ d f  (/, 1 )/ck; .

1) With respect to x (Z ) ,

(A.8)

+k2H x & f r ^ -{(l -  x , (0)(1 -  3 x , (/))[■ 
/ W 5(0 )

l - F ( x , ( Q )  l - F ( x , ( Z - r 2(Z))) 

l - x , ( Z )  l - x , ( Z - r 2(Z))

l-F (x ,(Z )) dF(x.(0)
1 -  X, (Z) fi?X, (Z)

dPA(xA(t))l dxA(t)

(A. 10)

l - F ( x , ( Z ) )  1 — F ( x ,  (Z — r 2 (Z))) j

1 -  x,  (Z) 1 -  x,  (Z -  t 2 ( Z) )

J.2,1 xi (z— ri (z))
(A .ll)

J3’1 l - x , ( Z - r 2(Z))
(A. 12)

j  / , / / f ^ ( x 1(Z)) F ( x , ( Z - r , ( Z ) ) )

4,1 1 1 ^Xj(Z) x , ( Z - r , ( Z ) )
(A. 13)
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j  . (a . 14)
l - x , ( / - r 2(0 ) dxx(t)

2) With respect to x ( t - z x(t ))

J  j j  P a ( x M ) )  *?(0 dF(xx( t - T xm  F (xx( t - T x(t)))
11 dA 2 1 fiB(xs(t)) Xx{ t - T x{t ) )  dxx( t - r , ( t )) Xx( t - T x(t ))

A '  =  < A ' 1 6 )

x ' { , )  (A 1 7 ) 
Xx( t - T x( t ))  Xx( t - T x( t ))  dxx( t - T x( t ))

3) With respect to x ( t - r 2( t ))

j  _  j- n  Pb (*5 (0) *i (0(1 ~ *i (0)2 r dF(xi (t -  t 2 (())) 1 -  F (x t (t -  r 2 (/))) t
11 2 1 ^ ( x 5(0 ) 1- x , ( / - t 2(0 ) dxx( t - z 2(t)) l - x , ( / - r 2(0 )

 ! - * , « )

,  t  »  '-*.(<> [^ l( ' - i - ; ( 0 ) ) _ l - F ( ^ ( t - r ; (Q))] (A2Q)
1 -  xx (t -  t 2 (t)) dxx( t - r 2(t)) 1 -  x, (t -  t 2 (t))

The other undefined first derivatives are equal to zero.

It is noticed that J t . = 0 ( /  > 1) at steady states, which means RHS functions

do not change with the delays and the average hematocrit at steady states. Therefore, 
the delays and the average hematocrit can be treated as constants for the use of 
DDE-BIFTOOL. The definition of the two node system is rewritten as

^ . ( 0  = _ A  )6k H  Pa( H a) x 3 - ? , ) ) ,
d t  d A 2 1 m b ( H b) 1 x x{ t )  x x( t - f x)

M » . )  ■ -* ,« ) 1

where H A , H B , f , , f 2 are H A , H R , r , , r 2 evaluated at steady states.
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The first derivatives of the RHS functions

1) With respect to x{t)

J  - M U _ £ W 0 )]
11 V /  l n , ( H , )  dx,(tj *,</)

!-* ,(<) * ,(< )

(A.22)

2) With respect to x(t -  r, (t))

j  _  ( d B  y >  k  j ;  P a ( H a )  ^ ( 0  F ( x i ( f ~ r , ( 0 ) ) ] M 2 3 )

11 V  2 1/**(#*) * ,( '-* ,(0 ) dxx( t - r x{t)) * (* -7 ,(0 )

3) With respect to x { t - r 2{t))

j  _ /- / /  Pb (&b ) x, (t)(l -  x, (Q)2 r/F(* (f -  t 2 (0 )) 1 -  F (*  (i -  r 2 (Q)) 2 <[
' Mb(H b) l - * ( * - r 2(0 ) dxx( t - t 2{t)) 1 - x x( t - r 2(t))

•  The three node network with two inlets and one outlet

Based on the same argument, the definitions are given by assuming constant 
delays in the two three node networks.

Let Tj denote ta, t ,  denote tb, t} denote Tc, t = Tb + Tc, =>

dxx( t ) _ d Ac _ 4QXH X *(Q  2 f}A{HA) F { x x(t)) F  (*  (t -  f ,))

dt lCMc(HC) n  l+ ycom 1 d\  *1 (0  * (* “ * )
1 - F ( x , ( t - f 3))

P * + ( l - * ( 0 ) :
2 ^ b ( H b ) { l ~ Xl V - h )

dB \ + y q - x x(t)

yh+Q-Xii t -f i ))1
l - F ( * ( t - f 4))

(A.25)

l - * ( f - f 4)

+(1- ,,( ,) )=  M e )
dc l - * ( f )  l - * ( r - r 3)

where H A,H B ,H C y comb are H  A , H  B , H c , r , , r2 , r3, y com evaluated at

steady states.
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The first derivatives of the RHS functions

1) With respect to x(t)

J  d c „  4 a ^ .  j 2x2 ( t ) M H A) F ( x M  Fj x . j t - f . ) )
1,1 lcM c0c) x(l + ycom) 1 d\ JC,(0 x . i t - r . )

d A dx.it) x.{t) dB

y , H ^  + (i-x ,(r-f2))1~F(x;(?~/;))
j -   1  ~ X . i t - T ^  1 - X . j t - T j  1

l + y q - * i i t )  i + y , - X i i t - r 2)

a a 1 -  x, (f -  r3) ac

l-F (x ,(Q ) _ l - F ( x , ( f - f 3)) + ̂  ^ /?C(F C) l-FCx.CQ) _ r/F(x,(Q)
1 -x .it)  l - x , ( f - r 3) ' 1 d6c l-x ,(f) dx.it)

2) With respect to x(t -  t. it))

j  4 _  4 Q.H. PAjH A) x\jt) {d F ix .it-v .))  F (x ,( /-f ,) )
1,1 lc^c iH c)  7ti\ + ycom) dA x . i t - r .)  dx.it- i . )  x . i t - f . )

3) With respect to xit -  r2{t))

- 4  4aw , m b . )  m  ].
’ icM H c) xO- + y Com) d B ^-+yq - x . i t - r 2)

4) With respect to x(t -  r3 (/))

j  ~ — — 4^ / / ' * i(0 (i-* i(0 )  [(1 _ W )M | s )
M lcfic iH c ) n i\ + y com) \ - x . i t - r 3) yq dB6

1 c/c6 l - x , ( r - f 3) dx.it- f 3)

5) With respect to x(f -  r4(/))

-</* 4 Q # , l fl( # B) x, (f)(l -  x. (/))(! + y q~x. jt))2
lcMc (Hc ) 7ti\ + ycom) dB i \ - x . i t - f 4))i\ + y q - x . i t - f 2)) 

[l - F ( x , ( t - f 4)) dFjx.jt - f A))  ̂
l - X j ( t - f 4) dx .it- f 4)
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APPENDIX B. DEFINITIONS FOR DDE-BIFTOOL WRITTEN IN 
MATLAB® SUBROUTINES

According to specification available from Report TW 330 (Engelborghs et al., 
2001), the required RHS functions and the first order derivatives of RHS functions 
presented in Appendix A need to be written in MatLAB® (Mathworks, Natick, MA)1 
subroutines for DDE-BIFTOOL. The MatLAB® subroutines as well as other required 
definitions are partially listed here.

•  Two node networks

Here the subroutines for the two node topology are only given when delays are 
dealt with as state-dependent ones.

function [name,dim]=sys_init()
name-twonode';
dim=5;
pathfpath/mypat/Addebiftool'); 
return;

function ntau=sys_ntau()
% xx: xl,x2,xl_taul,xl_tau2,x3,x4,x5
% par: p,Hin,da,db,kl ,k2
ntau=2;
return;

function tau=sys_tau(delay_nr,xx,par)
% xx: xl,x2(taul),x3(tau2),x4,x5,xl_taul,xl_tau2 
% par: p,Hin,da,db,kl,k2 
if delay n r = l  

tau=xx(2,l); 
elseif delay_nr=2 

tau=xx(3,l);
end;
return;

function dtau=sys_dtau(delay_nr, xx, par, nx,np)
% xx: x l,x2 ,x l_ tau l,x l_ tau2 ,x3 ,x4 ,x5  

% par: p,Hin,da,db,kl ,k2 
% dtau result of derivatives on delay function 
dtau=[];
% first order derivatives wrt state variables: 
if length(nx)==l & length(np)==0 

if nx==0 % derivative wrt x(t) 
if delayjnr=T
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dtau(l:3)=0; 
dtau(2)=l; 

elseif delay nr=-2 
dtau(l:3)=0; 
dtau(3)=l; 

else
dtau(l:3)=0;

end;
elseif n x = l  % derivative wrt x(t-taul) 

dtau(l:3)=0; 
elseif n x = 2  % derivative wrt x(t-tau2) 

dtau(l:3)=0; 
else

dtau( 1:3)=0; 
end;

% first order derivatives wrt parameters: 
elseif length(nx)==0 & length(np)=l 

dtau(l:3)=0;
% second order derivatives wrt state variables: 
elseif length(nx)==2 & length(np)=0 

dtau=zeros(3);
% mixed state parameter derivatives: 
elseif length(nx)==l & length(np)=l 

dtau(l:3)=0; 
end;
if isempty(dtau)

[delaynr nx np]
error('SYS DTAU: requested derivative does not exist!'); 

end; 
return;

function f=sys_rhs(xx,par)
% xx: xl,x2,xl taul,xl_tau2,x3,x4,x5 
% par: p,Hin,da,db,kl ,k2
xl=xx(l,l); x2=xx(2,l); x3=xx(3,l); x4=xx(4,l); x5=xx(5,l); 
xl_taul=xx(l,2); xl_tau2=xx(l,3);
p=par(l); Hin=par(2); da=par(3); db=par(4); kl=par(5); k2=par(6);
f( l,l)=-(db/da)A6*k2*Hin*dmu(x4,da)/mu(x5,db)*xlA3*(Fs(xl,p)/xl-Fs(xl_taul,p)/xl_taul)...
+k2*Hin*dmu(x5,db)/mu(x5,db)*xl*(l-xl)A2*((l-Fs(xl,p))/(l-xl)-(l-Fs(xl_tau2,p))/(l-xl_tau2

));
f(2,l)=l-xl/xl_taul;
f(3,l)= l-(l-xl)/(l-xl_tau2);
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f(4,1 )=k 1 *Hin*x 1 *(Fs(x 1 ,p)/x 1 -F s(x l t a u  1 ,p)/x l t a u  1);
f(5,l)=k2*Hin*(l-xl)*((l-Fs(xl,p))/(l-xl)-(l-Fs(xltau2,p))/(l-xltau2));
return;

function J=sys_deri(xx,par,nx,np,v)
% xx: xl,x2,xl_taul,xl_tau2,x3,x4,x5 
% par: p,Hin,da,db,kl,k2
% J result of derivatives on right hand side multiplied with v

J=0;
xl=xx(l,l); x2=xx(2,l); x3=xx(3,l); x4=xx(4,l); x5=xx(5,l); 
xl_taul=xx(l,2); xl_tau2=xx(l,3);
p=par(l); Hin=par(2); da=par(3); db=par(4); kl=par(5); k2=par(6);
% first order derivative discretisation parameters: 
n=size(xx,l);
% first order derivatives wrt state variables 
if length(nx)==l & length(np)==0 & isempty(v) 

if n x = 0  % derivative wrt x(t)
J( 1,1 )=-(db/da)A6*k2 *FIin*dmu(x4,da)/mu(x5,db)...
*(3*xlA2*(Fs(xl,p)/xl-Fs(xl_taul,p)/xl_taul)+xlA2*(dFs(xl,p)-Fs(xl,p)/xl))...
+k2*Hin*dmu(x5,db)/mu(x5,db)*((l-xl)*(l-3*xl)*((l-Fs(xl,p))/(l-xl)-(l-Fs(xl_tau2,p))/(
l-xl_tau2))...
+x 1 *( 1 -x 1) *(( 1 -Fs(x 1 ,p))/( 1 -x 1 )-dFs(xl ,p)));
J(1,2)=0;J(1,3)=0;

J(l,4)=-(db/da)A6*k2*Hin*ddmu(x4,da)/mu(x5,db)*xlA3*(Fs(xl,p)/xl-Fs(xl_taul,p)/xl_tau

i ) ;

J(l,5)=(db/da)A6*k2*Hin*dmu(x4,da)*dmu(x5,db)/mu(x5,db)A2*xlA3*(Fs(xl,p)/xl-Fs(xl_t
aul,p)/'xltaul)...
+k2*Hin*(ddmu(x5,db)/mu(x5,db)-dmu(x5,db)A2/mu(x5,db)A2)*xl*(l-xl)A2 ...

*(( 1 -Fs(x 1 ,p))/( 1 -x 1)-(1 -F s(x 1 _tau2 ,p))/( 1 -xltau2));
J(2,l)=-l/xl_taul;
J(2,2)=0; J(2,3)=0; J(2,4)=0; J(2,5)=0;
J(3,l)=l/(l-xl_tau2);
J(3,2)=0; J(3,3)=0; J(3,4)=0; J(3,5)=0;
J(4,1 )=k 1 *Hin*(dF s(xl ,p)-F s(x l t a u l  ,p)/x 1 _tau 1);
J(4,2)=0; J(4,3)=0; J(4,4)=0; J(4,5)=0;
J(5,1 )=k2 *Hin*(( 1 -F s(x l_tau2,p))/( 1 -x l_tau2)-dFs(x 1 ,p));

J(5,2)=0; J(5,3)=0; J(5,4)=0; J(5,5)=0; 
elseif n x = l  % derivative wrt x(t-taul) 

J(l,l)=(db/da)A6*k2*Hin*dmu(x4,da)/mu(x5,db)*xlA3/xl_taul...
*(dFs(x 1 _taul,p)-Fs(xl tau 1 ,p)/x 1 _tau 1);

J(l,2)=0; J(l,3)=0; J(l,4)=0; J(l,5)=0;
J(2,l)=xl/xl_taulA2;
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J(2,2)=0; J(2,3)=0; J(2,4)=0; J(2,5)=0;
J(3,l)=0; J(3,2)=0; J(3,3)=0; J(3,4)=0; J(3,5)=0; 
J(4,l)=kl*Hin*xl/xl_taul*(Fs(xl_taul,p)/xl_taul-dFs(xl_taul,p));
J(4,2)=0; J(4,3)=0; J(4,4)=0; J(4,5)=0;
J(5,l)=0; J(5,2)=0; J(5,3)=0; J(5,4)=0; J(5,5)=0; 

elseif nx— 2 % derivative wrt x(t-tau2) 
J(l,l)=k2*Hin*dmu(x5,db)/mu(x5,db)*xl*(l-xl)A2/(l-xl_tau2)...

* (dFs(x 1 _tau2 ,p)-(l-Fs(xl _tau2 ,p))/(l-xl _tau2));
J(l,2)=0; J(l,3)=0; J(l,4)=0; J(l,5)=0;
J(2,l)=0; J(2,2)=0; J(2,3)=0; J(2,4)=0; J(2,5)=0;
J(3,1 )=-( 1 -x 1)/(1 -xl_tau2) A2;
J(3,2)=0; J(3,3)=0; J(3,4)=0; J(3,5)=0;
J(4,l)=0; J(4,2)=0; J(4,3)=0; J(4,4)=0; J(4,5)=0;
J(5,l)=k2*Hin*(l-xl)/(l-xl_tau2)*(dFs(xl_tau2,p)-(l-Fs(xl_tau2,p))/(l-xl_tau2));
J(5,2)=0; J(5,3)=0; J(5,4)=0; J(5,5)=0; 

end; 
return;

•  Three node networks with two inlets
Here the subroutines for the three node topology are only given when delays are 

dealt with as state-dependent ones.

function [name,dim]=sys_init()
name='three_node';
dim=l;
path(p ath,' t/iddeb iftoo 1');
return;

function ntau=sys_ntau()
% xx: x 1,x l jau  1 ,x 1 _tau2,x l_tau3,x 1 tau4
% par: pl,p2,Hl,H2,Ql,Q2,da,db,dc,la,lb,lc,taul,tau2,tau3,tau4,Qs
ntau=4;
return;

function tau=sys_tau(delay_nr,xx,par)
% xx: xl,xl_taul,xl_tau2,xl_tau3,xl_tau4 
% par: pl,p2,Hl,H2,Ql,Q2,da,db,dc,la,lb,lc,taul,tau2,tau3,tau4,Qs 
if delay_nr==l 

tau=par(13); 
elseif delay_ru=2 

tau=par(14); 
elseif delaynr==3
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tau=par(15); 
elseif delay_nr==4 

tau=par(16); 
end; 
return;

function f=sys rhs(xx,par)
% xx: xl,xl_taul,xl_tau2,xl_tau3,xl_tau4
% par: pl,p2,FIl,H2,Ql,Q2,da,db,dc,la,lb,lc,taul,tau2,tau3,tau4,Qs
xl=xx(l,l);
xl_taul=xx(l,2); xl_tau2=xx(l,3); xl_tau3=xx(l,4); xl_tau4=xx(l,5); 
pl=par(l); p2=par(2); Hl=par(3); H2=par(4);
Ql=par(5); Q2=par(6); da=par(7); db=par(8); dc=par(9);
la=par(10); lb=par(ll); lc=par(12);
taul=par(13); tau2=par(14); tau3=par(15); tau4=par(16);
Qs=par(17);
Has=Hl*Fs(Qs,pl);
Hbs=(Q2*H2+Q 1 *H 1 *( 1 -Fs(Qs,p 1 )))/(Q2+Q 1 *( 1 -Qs));
Hcs=H 1 *( 1 -Fs(Qs,p 1))/(1 -Qs); 
correctH(Has); 
correctH(Hbs); 
correctH(Hcs);

yq=Q2/Qi; 
yh=H2 *Q2/(H1*Q1);
ycombs=(l+yq)*mu(Hbs,db)*lb*dcA4/(mu(Hcs,dc)*lc*dbA4); 
f( 1, l)=dcA4/(lc*mu(Hcs,dc))*4*Q 1 *H l/pi*x l/( 1 +ycombs)...

*(-xlA2*dmu(Has,da)/daA6*(FsQs(xl,pl)-FsQs(xl_taul,pl))...
+(l+yq-xl)A2*dmu(Hbs,db)/dbA6*((yh+(l-xl)*Fs_Qs(xl_tau3,pl))/(l+yq-xl)...
-(yh+(l-xl_tau2)*Fs_Qs(xl_tau4,pl))/(l+yq-xl_tau2))...

+(1 -x 1) A2 *dmu(Hcs,dc)/dc A6*(F s_Qs(x 1 ,p 1 )-F sQs(xl_tau3 ,p 1)));

return;

function J=sys_deri(xx,par,nx,np,v)
% calculate the derivatives of rhs functions wrt state variables and par 
% variables in the three node system
% J result of derivatives on righthandside multiplied with v
% xx: xl,xl_taul,xl_tau2,xl_tau3,xl_tau4
% par: p 1 ,p2,H 1,112,Q1 ,Q2,da,db,dc,la,lb,lc,tau 1 ,tau2,tau3,tau4,Qs
xl=xx(l,l);
xl_taul=xx(l,2);
xl_tau2=xx(l,3);
xl_tau3=xx(l,4);
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xl_tau4=xx(l,5); 
pl=par(l); p2=par(2);
Hl=par(3); H2=par(4); Ql=par(5); Q2=par(6); 
da=par(7); db=par(8); dc=par(9); 
la=par(10); lb=par( 11); lc=par(12); 
taul=par(13); tau2=par(14); tau3=par(15); tau4=par(16);
Qs=par(17);
Has=H 1 *Fs(Qs,p 1 )/Qs;
Hbs=(Q2 *H2+Q 1 *H 1 *( 1 -Fs(Qs,p 1 )))/(Q2+Q 1 *( 1 -Qs));
Hcs=Hl*(l -Fs(Qs,p 1))/(1 -Qs); 
correctH(Has); correctH(Hbs); correctFI(Hcs); 
yq=Q2/Ql; yh=H2*Q2/(Hl*Ql);
ycombs=(l+yq)*mu(Hbs,db)*lb*dcA4/(mu(Hcs,dc)*lc*dbA4);
% first order derivative discretisation parameters: 
n=size(xx,l);
alpha=dcA4/(lc*mu(Hcs,dc))*4*Q 1 *H 1 /(pi*( 1 +ycombs));
% first order derivatives wrt state variables 
if length(nx)==l & length(np)==0 & isempty(v) 

if n x = 0  % derivative wrt x(t)
J( 1,1 )=dcA4/(lc*mu(Hcs,dc))*4 *Q 1 *H 1 /(pi*( 1 +ycombs))... 
*(-3*xlA2*dmu(FIas,da)/daA6*(FsQs(xl,pl)-FsQs(xl_taul,pl))...
-x 1A2 *dmu(Has,da)/daA6*(dFs(x 1 ,p 1 )-F sQs(x 1 ,p 1))...
+(l+yq-xl)*(l+yq-3*xl)*dmu(Hbs,db)/dbA6*((yh+(l-xl)*Fs_Qs(xl_tau3,pl))/(l+yq-xl)... 
-(yh+(l-xltau2)*Fs_Qs(xltau4,pl))/(l+yq-xl_tau2))... 
+xl*dmu(Hbs,db)/dbA6*(yh-yq*Fs_Qs(xl_tau3,pl))... 
+(l-xl)*(l-3*xl)*dmu(Hcs,dc)/dcA6*(Fs_Qs(xl,pl)-Fs_Qs(xl_tau3,pl))... 
+xl*(l-xl)*dmu(Hcs,dc)/dcA6*(Fs_Qs(xl,pl)-dFs(xl,pl))); 

elseif n x = l  % derivative wrt x(t-taul) 
J(l,l)=dcA4/(lc*mu(Hcs,dc))*4*Ql*Hl/(pi*(l+ycombs))*dmu(Has,da)/daA6*xlA3/xl_taul... 
*(dFs(x 1 _tau 1 ,p 1 )-F sQs(x 1 _tau 1 ,p 1)); 

elseif n x = 2  % derivative wrt x(t-tau2)
J( 1,1 )=-dcA4/(lc*mu(FIcs,dc))*4*Q 1 *H l/(pi*( 1 +ycombs))*dmu(Hbs,db)/dbA6*x 1... 

*((l+yq-xl)/(l+yq-xl_tau2))A2*(yh-yq*Fs_Qs(xl_tau4,pl)); 
elseif n x = 3  % derivative wrt x(t-tau3) 

J(l,l)=dcA4/(lc*mu(Hcs,dc))*4*Ql*Hl/(pi*(l+ycombs))*xl*(l-xl)/(l-xl_tau3)... 
*((l+yq-xl)*dmu(Hbs,db)/dbA6-(l-xl)*dmu(Hcs,dc)/dcA6)*(Fs_Qs(xl_tau3,pl)-dFs(xl_tau
3,pi));

elseif nx==4 % derivative wrt x(t-tau4) 
J(l,l)=-dcA4/(lc*mu(Hcs,dc))*4*Ql*FIl/(pi*(l+ycombs))*dmu(Hbs,db)/dbA6... 

*xl*(l-xl)/(l-xl_tau4)*(l+yq-xl)A2/(l+yq-xl_tau2)*(Fs_Qs(xl_tau4,pl)-dFs(xl_tau4,pl)); 
end; 
return;
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APPENDIX C. APPLICATIONS OF SUCCESSIVE SUBSTITUTION 
METHODS IN FINDING CHARACTERISTIC ROOTS

Two numerical approaches can be applied to obtain the rightmost roots of the 
characteristic equations of the simple networks, i.e., eigenvalues of the dynamics of 
the systems. One is the successive substitution method (Rice and Do, 1994)52. The 
other is to utilize a MatLAB® package “DDE-BIFTOOL” to find out the rightmost 
eight values of the systems. The first method is discussed briefly here and its 
computational results are compared with those from DDE-BIFTOOL by an example 
in the two node network. Obviously, the characteristic equations in a form of (2.6.10) 
and (2.6.18) are nonlinear.

Since X is a complex number, the equation

/t = F(/I) (C.l)

can be manipulated into iteration forms as

r = f x{r,co) (C.2)

(o = f 2(r,co). (C.3)

r and o> are the real and imaginary part of the eigen value X respectively. A
well-known disadvantage of the successive substitution method is that there is no
guarantee of convergence. By making some improvement, the equations (C.2) and 
(C.3) can be solved using the modified successive substitution method.

The computational approach is as follows:

1) Guess initial values r{0),com  and calculate rn>,oj<]) from the iteration equation 

(C.2) and (C.3).

2) Repeating the above procedure and compute r ,m  from r (k),a>(k), where the 

superscript k  denotes the iteration number.

3) If ^ \F ~ r{k)\2 +\co-co{k)\2 > ^ \rw  +\a>w  , let r{k+" =7  ,

co{k+l)=co and go to step 2); otherwise, let r (*+1) =</>¥ + ( l - ^ ) r w and

co(M) = $ y  + (l-^)&>w to satisfy the inequality, where <j> is a real number less 

than 1.

4) When both r (n) and 0)(n> converges satisfyingly, stop the computation and 

return r<n> and co(n) as the final roots of the characteristic equation.
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•  Application in the two node network

Substitute X = r + ico into the characteristic equation (2.6.10) =>

r + ia> = - b - c  + b e y(rM<0) + c e (rV><0) (C.4)

=>(1 + a ) + i(3 = e yre iyw (C.5)

V C C CO c
where a  = — +  e r cosco and B = — + — e r smco.

b b b b b

From the nature of complex numbers =>

r  = ~ l n [ ( l  + a )2+ fi2] (C.6)
2 r

co = - —arc tan ( ^  ) (C. 7)
y  1 + a

The equations (C.6) and (C.7) are applied to perform the successive substitution 
method.

Although we have the iteration forms on hand, how to guess good initial values
remains an issue. If at is available, \  is used as an initial one for computing X/ at
7/. Finally, X at Ym=Ycan be obtained by repeating the process with increasing % where

Xk -  k£±X, k e □ .

Especially, at y=0, the equation (2.6.10) is reduced to

X = -c  + ce~x (C.8)

Let X '- X  + c and c' ~ ce‘ , the equation (C.8) is rewritten as

X' = c'e~r . (C.9)

Replace X ' = r '+ ico' into (C.9)
r' = -co/t&nco (C.10)

<y' =| c | e®'00'18 / Vl + cot2 co' . (C .ll)

The above two equations can be solved to get X’ using graphical methods without 
difficulties, and consequently lead to Xat Y-0.
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•  Application in the three node network

Substitute X = r + ico into the characteristic equation (2.6.18) and conduct 
several algebraic manipulations. =i>

r = - ^ l n [ ( l  + « )2+ /?2] (C.12)
2 y

co — —— arctan( ^  ) , (C.13)
y  1 + a

, KXK3 -  K2Ka K2K3 + KxK4 _r
where a  = — ---- y-2- , p  = - A-~-----y-2- , and kx -  a + ae cos co, K2 =ae smco,

kx +k2 kx + k2

k3 = t -  be~rr cos {coy) -  ce~r cos co + b + c , k4 = co + be"n  sin(«x) + ce~r sin co.

Like the two node situation, good initial value of X is preferred while using the 
iteration form (C.12) and (C.13). Similarly, if  X) at bo is available, X at 8m = 8 can be 
obtained by the modified successive substitution method with increasing 5, where

Xk = k A S , k e N1.

Especially, at 5=0, the equation (2.6.18) is reduced to

X = -(b  + c) + be~rA + ce~ \ (C.14)

which is the same as (2 .6 .10), thus the procedures used in the last part can be applied 
to compute the initial value of Xat 5=0.

•  Comparison between results from the successive substitution method and 
DDE-BIFTOOL

In the application of successive substitution methods, the DDEs are linearized 
and normalized around steady states to generate characteristic equations; while in the 
DDE-BIFTOOL, the characteristic equations are derived from linearized DDEs 
directly. Thus, some correlations exist between the eigenvalues found from the two 
methods, which is shown in the below example.

The investigated system is the two node network with Pries’s in vitro viscosity 
model and Logit plasma skimming model. The physical parameters are

(p , H x,Qx,d A,d BJ A,lB) = (2.0,0.80,105,35,20,50,250).

The unit of diameters and are pm, those of lengths are mm, and the unit of flow rate is 
pm  /sec.
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It is found at the steady state,

0  = 0.77033, rA = ^ d \ l A!QxQ = 0.62448s e c , = ^ d 2BlB/ 0 , ( l - 0  = 3.4197sec .

y = f A/ i B = 0.18257 

and

b =-6.63193,c = 0.33104.

Solve the characteristic equation Eq.(C.14)

X = -(b  + c) + b e rl + c e x 

using the successive substitution method => X = 0.24882 ± 1.83747/.

In the application of DDE-BIFTOOL, it is calculated that Aq = 1.8419, A/ = 
-1.9388, Ai=  0.0968 in the characteristic equation

X = A 0+Aie~XTA +A2e-Zr“, (C.15)

and the rightmost roots are X = 0.07260 + 0.5379/ generated from the
DDE-BIFTOOL.

Check the relationship between the two methods,

X — Aq + A^e A + A2B B

; '  r — t

o  —  = A0 + Aie t*Ta +A2e ^  (C.16)
Tg

<=> X ' = A^tb + AxrBe~l 'r + A2TBe (C.17)
y =z a ^ b

<=> X ' = -(b  + c) + be~rr +ce~r . (C.18)
A q t B = - ( b + c )  A t i B =b A2t s =c

Coefficents b, c, y, Ao, A/, A 2 and rightmost eigenvalues Xand X’are listed in the 
Table C.l. From the table, it is found that eigenvalues generated from the two 
methods are inherently equal to each other.

Table C .l Compare Results Generated from Successive Substitution 
Methods and DDE-BIFTOOL Package

DDE-BIFTOOL Package Successive Substitution Methods
A0 t b = 6.29874 - (b + c)  = 6.30068
Aitb= - 6.63011 b = -6.63193
A2 t b =  0.33103 c = 0.33104

Re(\) Tb — 0.2483 Re(X’) = 0.2489
Im(\) tb = 1.839 Im(X’) = 1.838
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APPENDIX D. SOFT LITHOGRAPHY PROCEDURE FOR 
MANUFACTURING SIMPLE MICRO VASCULAR NETWORKS

Soft lithography approach has been under rapid development over the past decade, 
which can be used to generate micro-structures with critical dimensions of about 
30nm to 500pm. (Y. Xia and G. M. Whitesides, 199 8)38. Compared with traditional 
photolithography used in microelectronics, the soft lithography is a low cost and 
simple technique, and it is ideal for common laboratories to carry out. Several soft 
lithography techniques can be used to construct microchannels. Among these 
techniques, a strategy called rapid prototyping is less expensive and has a quicker 
tum-around-time, which is suitable to develop systems with feature sizes greater or 
equal to 20pm.

Some experiments have been conducted to fabricate in vitro replicas of two node 
networks and three node networks (see Figure 2.2 and Figure 2.3). A general 
procedure for manufacturing the simple micro vascular networks via rapid prototyping 
techniques are stated briefly as following.

1) Design patterns
Desired patterns were drawn by using Adobe® Illustrator® (Adobe, San Jose, 

CA), which were save in high quality Portable Document Format (PDF) files. 
Negative images of designed patterns for the two node network and the three node 
network are demonstrated in Figure D. 1 and Figure D.2 respectively.

Figure D .l A Negative Image Showing Two Node Network Patterns

1 1 1
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Figure D.2 A Negative Image Showing Three Node Network Patterns

These patterns are shown here as their actual sizes. Dimensions of each image are 
equal to those of a silicon substrate with diameter about 3.2 inches. Each image 
presents two same patterns but different dimensions. The bigger one includes 
microchannels with 50/rm width and the smaller one includes the ones with 35/xm 
width.

2) Prepare mask
The saved PDF files were sent to Page Works Company (Page Works, Cambridge, 

MA)U. The files were then printed onto transparent as positive films on a 5080 dpi 
laser printer. A positive film displays the images in black with a clear background. 
Usually, eight images may be included on a 9” x 12” sheet, and a cost of each sheet is 
$47.95.

After the transparent with designed images were ready, a desired image was cut 
off from a sheet for use in the following step.

3) Fabricate master
Negative photoresist SU-8 2000111,1V (MicroChem, Newton, MA)V was used to 

fabricate masters. A normal process of applying SU-8 2000 can be found in process 
guidelines provided by MicroChem, Inc..vl Roughly, the process consists of steps 
such as pretreating substrate, spin coating, soft baking, exposure under UV, post 
expose baking (PEB), developing, and follow-up steps.

This fabrication process began with cleaning a silicon substrate (diameter =3.2 
inches) with acetone, isopropyl alcohol (IPA), and ethanol. After the substrate was dry, 
it was put into 40% NaOH solution to treat the smoother surface for about ten minutes. 
The substrate was then washed with water and baked in an oven (temperature 60 -  70 
°C) to remove moisture.
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The substrate was placed on a spin coater with the smoother face up, and around 
3mL photoresist was poured directly on to the surface. To obtain channels with 
desired 50/mi depth, spin speeds were set to be 500 RPM for 7 seconds and 2000RPM 
for next 30 seconds.

The substrate with coated photoresist was heated in the oven (temperature 6 0 - 7 0  
°C) for 3 minutes and then in another oven (temperature 9 0 -  100 °C) for 15 minutes.

A prepared negative film was put on the substrate and covered by a large glass 
slides (around 0.25 inches thickness) to keep them in place, and they were placed 
below a UV light source (Chemical Engineering Department, UNH, Dr. Nivedita 
Gupta). The exposure time was 4 x 20 seconds, and the substrate was rotated 90 
degrees every 20 seconds to ensure uniform exposure.

PEB was done in the oven (temperature 60 -  70 °C) for 3 minutes and then in the 
oven (temperature 90 -  100 °C) for 5 minutes.

The substrate was placed in SU-8 developer after PEB. The developing time was 
approximately ten minutes and probably longer until white film on the master was 
gone. The substrate was rinsed by IPA and then heated to be dry, and a pattern master 
was obtained.

4) Make stamps
Silicon polydimethylsiloxane (PDMS) (Dow, Sylgard 184 Elastomer) were mixed 

with a curing agent (Dow, Sylgard 184 Elastomer Curing Agent) at a 10:1 ratio. The 
master was placed in a Petri dish. After all bubbled were removed in a vacuum oven, 
approximate 6 mL PDMS solution was poured over the master to form a thin layer. 
The Petri dish was placed in the vacuum oven to remove possible bubbles, and then it 
was placed in the oven (temperature 60 -  70 °C) for about 1 hour or until fully cured. 
When the PDMS layer was peeled off the master, a stamp with etched channels in 
desired pattern were obtained.

5) Finish models
The obtained stamp needed to be sealed before experimental uses. A hole puncher 

was used to punch out wells as entrances or exits for fluid on the stamp. A second 
layer was cured for 30 minutes and them the stamp was placed on its top with 
channels face down. The two layers were heated for around 60 minutes until they 
were bonded tightly. A third layer was used to seal the wells by repeat the preceding 
steps. Tiny plastic tubes were then inserted into the wells to create entrances and exits. 
Drops of PDMS solution were then placed on the joints, and the PDMS model was 
heated for about 1 hour to seal the joints.

6) Check sealing and connectivity
After the PDMS models were finished, a syringe filled with water was used to 

check the sealing and connectivity of the models under an Olympus BHS microscope 
(Olympus Optical, Tokyo, Japan). Any models with leaks or poor connectivity were 
discarded.

Images of microchannels with designed 50/im width and 3 5/mi width are shown 
in Figure D.3 and Figure D.4. It is found that the actual sizes are equal to 90 +  2/im 
and 65 ±2/im . Several factors may be potential reasons leading to deviation of sizes, 
such as the exposure time under UV, baking time, and the PEB time. Future 
adjustment needs to be done on the process parameters to achieve optimal results.
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A P P E N D I X  D  (C O N T IN U E D )

Figure D.3 An Image of Microchannels with 90 ±  2/im Width.
The designed width is 50/im.

Figure D.4 An Image of Microchannels with 65 +  2/un Width.
The designed width is 35/xm.
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i. http://www.mathworks.com/

ii. http://www.pageworks.com/

iii. http://www.microchem.com/resources/su8 process capability paper l.pdf

iv. http://www.microchem.com/resources/su8 process capability paper 2.pdf

v. http://www.microchem.com/

vi. http://www.microchem.com/products/pdf/SU8 2035-2100.pdf
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