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ABSTRACT

Nonunital Multiplier Pairs and Remarks on Generalized Group
C*-algebras
by

Sandra E. Zak
University of New Hampshire, September, 2005

In the first part of this paper we will consider a generalization of D. Hadwin and E.
Nordgren’s work on multiplier pairs. Here we will not assume the existence of an identity,
but rather just ask for the existence of a bounded approximate identity. Without the
assumption of the identity, we find a new result concerning the relationship between the
norm closure of the left multiplication operators and the approximate double commutant
of the left multiplication operators.

In the second part we will suppose f,g : T — T are continuous functions on the unit
circle T and let B (f, g) denote the universal C*-algebra generated by U and V subject to
the conditions that U and V are a unitary, and U f(V)U~! = g(V). We then will prove that
this C*-algebra may be represented as a crossed product. Next we will show that under
certain conditions on f or g, B(f, g) will be nuclear, weakly quasidiagonal and we will be
able to compute its Ext group. In the last two sections we will give a partial description
of the Ki-group of B(f,g) and then using the results from [DH] calculate the free entropy
dimension of B (f,g).

In the third and last part of this paper we show that the standard family of independent
unitary n x n random matrices remains an asymptotically free Haar unitary with respect to
any state ¢ : M,, (C) — C. The result was originally stated by Voiculescu for the normalized
trace. Qur work here will follow the modified version of Voiculescu’s theorem given by D.

Hadwin and M. Dostdl in [DH].

vi
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Chapter 1

Nonunital Multiplier Pairs

D. Hadwin and E. Nordgren in [HN] constructed a general setting in which to study com-
position operators and multiplication operators. Their work covered examples in many
fields including measure-theoretic, function-theoretic and noncommutative measure theory
for finite von Neumann algebras. In this work we will generalize their work to include many
examples their work did not address. Specifically we will not assume the existence of an
identity but rather just ask for the existence of a bounded net.

We will call a pair (X,Y) a nonunital multiplier pair provided X is a Banach space,
Y is a Hausdorff topological vector space, X C Y , and the inclusion map is continuous.
Moreover, we suppose we have a bilinear map (multiplication) m : X x X — Y | with the

notation m (u,v) = u - v such that
1. m is separately continuous.
2. Thesets Lo={re€ X |z-XCX}and Ro={r€ X | X -2 C X} are dense in X.
3. There is a net {ex},cp C Lo N Ro that such that ,

(a) for every z € X we have liin |t — 2 -ey|| =0 and liin |z —ex-z|| =0,

(b) sup{[lexz| + llzeall | A € A,z € X, [lzf] <1} < oo

4. There are dense subsets E C Lo , F C X , G C Rg such that (u-v) - w=u-(v-w)

whenever u € E ,veE F ,w e G.

If 2z € X we define L, and R, on X by

Lyow=xz wand R,w=w -z,
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where the domain of L, is Dom(L,) = {w € X | z-w € X} and the domain of R, is

Dom(R,) ={we X |w-z€ X}. Wedefine L={L, |z € Lo} and R ={R, |z € Ro}.

Theorem 1 The following are true:

1. The multiplication - is jointly continuous from X x X to Y.
2. For every x € X, L, and R, are densely defined closed operators.

3. L, is bounded on Rg if and only if x € Lo, and R, is bounded on Ly if and only if

x € Ro.
4. L, RCB(X).
5. Ifu,veLygorv,weRporuely, we Ry, then

(u-v) - w=u-(v-w).

sot

6. £/ =R and R = (L)

7. LyLy = Ly if v,w € Ly and Ry Ry = Ry if v, w0 € Ry.

Proof. The proofs for 1, 3, 4, 5 and 7 are identical as those given by D. Hadwin and E.

Nordgren in [HN]. Thus we need only show the proofs of 2 and 6.

2. For any w € Ry we see that X -w C X, thus Ry C Dom(L,) and therefore L, is densely
defined. Suppose {w,} is a sequence in Dom(L.), w,v € X, ||lwp, —w| — 0 and
|z - wn, —v]] — 0. From our assumption that - is separately continuous we see that
z-w, — r-win Y. and since the inclusion map is continuous z - w, — v in Y. But

Y is Hausdorff, so - w = v. Thus L, is closed. The proof for R, is similar.
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6. Suppose T € B(X) and T € L. For any z € Lo,

1i§n]]RT€A:v—Tm]$ = li/{nH:c-TeA — Tzl
= li/{nHLmTe)\—TxH
= liinHTLmeA - Tx||

= Ii/{n 1T (z-ex) = Tl

INA

lim |7 Jjz - ex — ]} = 0.

—==<sot

Since {ex}yea € Lo N Ry, then {Rc, } .4 € R. Thus it follows that '€ (R)" and

therefore £ C (R)SOt. The reverse inclusion follows from (5). The proof for R! = (£)

sot

is similar.

To prove the main result of this section we need to consider a special case of a result
contained in [CM]. It concerns a class of normed associative complex algebras A which

satisfies, for some positive constant +,

vdist (4,Z (A4)) < sup [|[AX — XA
1Xli<1
XeA

for all A € A, where Z(A) is the center of A. The class is that of ultraprime normed

algebras which may be defined as follows:

Definition 2 Suppose A is a normed associative complex algebra, then A is said to be

ultraprime if there is a positive number K such that
K| A[IBI < |Ma,zl

for all A, B in the algebra, where M4 p denotes the linear operator defined by Map (X) =
AXB. The largest possible K for which the above is true is called the constant of ultra-

primeness.

The theorem M.Cabrera and J. Martinez prove says that this collection will satisfy the

above property for a v dependent only on the constant of ultraprimeness. For a more precise
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statemnent along with the history of the problem the reader should refer to [CM]. For our

purposes we need only the following proposition.

Proposition 3 For any ultraprime algebra A whose associated constant K satisfies 0 <
K <1, then

dist(A, Z (A)) < sup [|[AX — XA
lxlI<1

for any A € A,

Corollary 4 For T € B(X), dist(T,C-1) < sup |TS —ST|.
Isi<1

Proof. Suppose z,y € X such that ||z| =1 and |[y|| = 1 also let A,B € B(X). By the

Hahn-Banach theorem choose o € X* such that o (By) = ||By||, and ||a|] = 1. Then it

follows
|A(z@a) Bl > A (z @ ) Byl
— || A (a(By) o)
= |l (By) Ac|
— |1Byll || Az]|.
Since [l¢ ® o] = |12l |af| = 1

IMasll = [[Map (z® )
= || Az[| || By||

and this holds for all z,y € X. Therefore B (X) is ultraprime, K < 1 and our result follows

from the paper of M. Cabrera and J. Martinez.[CM]. m

The main result in this chapter shows a relationship with the approximate double com-
mutant which is a notion developed by D. Hadwin in [Had3]. From this paper we have the

following definition and proposition.

Definition 5 The approximate double commutant of S C B (X) is the set of operators T
for whaich

lim | AT = T Ayl = 0
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whenever { Ay} is a bounded net such that
lim [| 4,8 — SA,|| =0
for every § € S.

We will denote the approximate double commutant of S by appr (S )” . The next propo-
sition shows the relation between the approximate double commutant and the double com-

mutant. The result can be found in [Had3].

Proposition 6 If S C B(X), then appr (S)” is a (norm) closed subalgebra of S” .
We now prove the ”approximate” version of part 6 of Theorem 1.

Theorem 7 If ey is an idempotent for every A € A, li/r\n |Leyz—zl] =0, liinHLzerac” =0

il

and Ro (exXex) C exRoey, then appr (L)' = —(f) +C-1.

Proof. Suppose T € appr {L£}". From our assumption it follows that TR,, = R,,T for all
A € A and thus

Teyzey = T Re, exzey
= R., T (exzey)

=T (exzey) ex.
This calculation along with the fact that
L, T (exzey) = exT (exzey) ex,
and
li/I\n | Le, T (exzen)| = li}r\n |7 Le, (eazen)||
=l T (exzen)l

implies that

Le)\T (6,\X€)\) g 6)\X€>\.
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Since eyzen € Ro(exXey) and we are assuming Rg (exXeyn) C e \Ropey, we can find a

w € Rg such that eyxey = eywey. Because of the commuting relationship,
Loy, TReywey lexxer= Reywey Ley T ey xey
and thus we can apply the results from D. Hadwin and E. Nordgren [HN] to show
Lo, T |eyxey= Ly |ey Xe,
for some v € Ly (exXey). Thus we can write v = eyuyex where uy € Ly and therefore
Le,T e, xex= Leyuyey lexxey -
For any W € B (X) and any z € Lo
li/{an (1=Ley,Re,) W(1=Le,R.,) =0

and

Hm (1 = Le,Re,) W (1 = Ley Re,) Re = 0.

Thus if we let Ty = (1 = Le, Re, )T (1 — Le, Re, ), we find for all W € B(X) that T)
commutes asymptotically with (1 — Le, Re, ) W (1 — L, Re, ) . Hence if we choose a bounded

net {W{} C B(X) and let W = (1 — L¢, R, ) Wj (1 = Le, R, ) it follows
li)r\n AWy — Wi TH|| = 0.
This statement along with our Lemma gives us a net {ny} C C such that
li/{n (1= Le,Re,)T (1 — Le, Re,) ‘(I—LEARQ)(X) —ny =10
thus proving our theorem. m
The first example comes from our original motivating example from measure theory.

Example 8 Suppose (), %, 1) is a measure space such that, for every E € ¥ with u(E) > 0
there is an F C E such that 0 < p(F) < oco. Let 1 <p < oo and X = LP(u). Let Y be

the set of all (equivalence classes of ) measurable functions on ) topologized by convergence
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in measure. Let A be the collection of all sets of finite measure directed by C . It is clear
that {xg | E € A} is an approzimate identity in LY (u). It is also clear that Lo = Ry =
Lo (p)NLP (p) . Thus (X, Y) is a multiplier pair and {xp | E € A}satisfies the conditions of
Theorem 7. Moreover, it is clear that | L¢|| = |Rs|| = || il for every f € Lo. It follows from
Theorem 1 that L7 = {Ly | f € L= (u)} is a mazimal abelian subalgebra of B (LP (u)).
Also appr (L) is the set of Ly with f in the || || -closure of L™ () N LP (1), which is the

set of all f € L™ (u) such that, for every ¢ > 0 we have p({w e Q| [f (w)| > €}) < oo.

The next example comes from an operator analogue of the discrete measure-theoretic

example above.

Example 9 Suppose H is a separable infinite-dimensional Hilbert space. The minimal
nonzero two-sided ideal in B (H) is F (H), the set of all finite-rank operators. The largest
proper ideal in B (H) is IC(H) , the set of all compact operators. There are many two-sided
ideals between F (H) and K (H), many of which are Banach spaces with respect to some

natural norms. Among these are the ideals defined in terms of unitarily invariant norms.

We say that ||| ||| is o unitarily invariant norm on F (H) provided
1. ||JOTVI|| = |ITH|| for all T € F (H) and all unitary operators U, V.
2. 1P|l = 1 whenever P is a rank-one projection.

The completion of F (H) with respect to such a norm is a two-sided ideal Zj || in
B(H) such that Ty | C K(H). Since ||T||| = ‘H(T*T)% l for every T € F(H) (polar
decomposition), and since (T*T)% is unitarily equivalent to a diagonal operator, ||| ||| is
completely determined by its values on the diagonal operators. This way ||| ||| induces a
permutationally invariant norm on a sequence Banach space Y|y contained in co (the

null sequences) and containing coo (the finitely nonzero sequences) such that the norm is
unchanged when the entries of the sequence are replaced by their absolute values. Conversely,
every such Banach space yields a unitarily invariant norm on F (H) that, in turn, gives a

two-sided 1deal.
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It follows from condition 1 above that
AT BI[| < [[AIITHI B

for every A, B € B(H) and every T € Ly . It follows that if A,B € B(H) and La, Rp :
Ty — Iy are defined by Lo(T) = AT and Rp(T) = TB, then | Lall < ||Al|l and
|Re|l < ||BJl. It follows from condition 2 above that |L 4|l = ||A}l and ||Rg| = ||B||.

We let X =7y, |y =Y with - defined to be the usual operator product. If M is a closed
linear subspace H, let Pys be the orthogonal projection onto M. Let A denote the directed
(by inclusion) set of all nonzero finite-dimensional linear subspaces of H. If T' € F (H) and
M contains ran (T) Uran (T*), then PyT = TPy = T. Since | Lp,,|| =1 and F (H) is
I l[I-dense in Zyy| yy, it follows that {Pnr | M € A} is an approzimate identity in Iy |y that
satisfies the hypothesis of Theorem 7.

Suppose T € B(H). Then Ly € B(X) and Lt is the strong limit in B (X) of the net
{LpyT}prenr which is in L. Conversely, suppose S € L75% Then there is a net {F,},c; €
F (H) such that Lgp, — S in the strong operator topology on B (X). Suppose M € A;
then Lp, r,py, — Lpy,SLp, in the strong operator topology. Since Py F (H) Py is finite-

dimensional, it follows that there is an Fypy € Py F (H) Py such that
Lp,SLp, = LF,,.

Since |[Fall = |Lp, SLpy,ll < ||ISI, it follows that there is a subnet of {Fp}yen that
converges in the weak operator topology to an operator T € B (H). It clearly follows that
S = Lp. Hence the strong operator closure of L is {Lp | T € B(H)}. It follows from the
fact that |Lp|| = ||T|| whenever T € B(H) and the norm closure of F (H) is K (H) that

appr (£)" is {Ly | T € K(H) +C-1}. The analogues for R hold as well.

The next example contains aspects of both of the preceding two examples.

Example 10 For an elementary introduction to noncommutative LP-theory, we refer the

reader to the paper of Nelson [Nel]. Suppose M is a Il factor von Neumann algebra on
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a separable Hilbert space, and 1 < p < oo. Then there is type II; factor N on a separable
Hilbert space K such that M is isomorphic to B (62) ®N CB (€2 ® K) , which is the same
as the algebra of all of the bounded operators A on H = K @ K & --- with an operator
matriz (Ai;) with each Ajj € N. Let 7 : N —C be the unique faithful trace on N, and
define tr : Mt — [0, 00] by
tr((Ay)) = Z T (Ann) -
n=1
It is well-known that tr is invariant under unitary conjugation and that the set I, of all

elements T of M such that

3 [

= [tr ((T*Tﬁ)] <

is a two-sided ideal in M and that || ||, is a norm on I,. Moreover, there is a notion of
convergence in measure on M and the completion Y of M in this topology has many useful
properties. In particular, the completion LP (M, tr) of (Ip, I ||p) is naturally contained in
Y. It is also well known that F ({*) ® N is dense in LP (M, tr). We define A (parallel to
the preceding examples) as the net of all projections P in M with tr (P) < co. Then A is
an approximate identity in LP (M, tr). The natural multiplication (from M) on I, extends
to a multiplication on LP (M, tr), where the product is in Y. Thus (X,Y,") is a nonunital

multiplier pair. It is well-known that
AT B, < AT, B

for all A;B € M and T € 1,. Following the unpublished paper of Hadwin and Nordgren
[HN2], it is easy to show that ||L4|| = ||Al] = ||Rall whenever A € M, where L4, Rs €
B (LP (M, tr)). Following the arguments in the preceding example, we can show that L™ =
{Lr| T € M} andappr (£)" = {Lr | T € (F () @ N)™ +C-1=C" (F(£2) ® V) } , where
(F (22) ®N) "~ is the spatial C*-algebraic tensor product K (42) ®N. Similarly, R™% =
{Rr: T € M}. Thus we have {Lp | T € M} and {Rr | T € M}, which extends von Neu-
mann’s double commutant theorem (when p = 2). Similarly, when p = 2, our approximate

results reduce to Hadwin’s approzimate double commutant theorem for C*-algebras [Had3)].
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Chapter 2
Preliminaries on C*-algebras

2.1 Generators and Relations

In this chapter we wish to study B(f,g), the universal group C*-algebra generated by
two unitaries U and V subject to the one relation U*f (V)U = g (V), where f and g are
continuous functions from the circle to the to the circle. This class of algebras contains
many important examples, such as the Baumslag-Solitar algebra and the irrational rotation
algebra.

To begin, we will review generators and relations in both a group and then in our
primary object of study, a C*-algebra. In the next section we will show that our C*-algebra
may be represented as a crossed product. With this representation and certain restrictions
on the functions f and ¢ we will be able to discuss the amenability, quasidiagonality and
Ext groups of B (f,g). Following this we will give a partial result concerning the Kj-group
of B(f,g) and then in the last section discuss the free entropy dimension of B (f, g).

Suppose X is a subset of a group G. Then the subgroup of G generated by X is denoted

by (X), and is by definition the least subgroup of G containing X. It follows that
(X) ={z7 .. a5 |z € X, e = £1}.

We call the expression of the form

En

€1
Ty

an X-word, or simply a word. A word is termed reduced if

Ty =Tip1 = & +Ei41#0, fori=1,...,n-1

10
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11

If ¢ = (X) and every non-empty reduced word is not equal to the identity then we
term X a free set of generators of G and G itself is termed free. A group is termed finitely
generated when the cardinality of X is finite, and denoted F, when it is both free and
finitely generated, where n is the cardinality of X.

Let G again be a group, F a free group on a set X and 6 a map from X into G such
that

G = (6(X)).
There will then exist a group epimorphism ¢ : F' — G, such that ¢x = 6. Suppose there
is a subset R in F such that

kerp =< R > .

We then write

G=(X|R) (1)

and term (X | R) a presentation of G with relations R. Notice that such a presentation (1)
comes with an explicit map € such that the extension of 8 to the free group F on X yields
an onto homomorphism ¢ with kernel (R). Also if we identify X with its image in G then
(1) simply means that X generates G and everything about G can be deduced from the

fact that r = 1 in G for every r € R.
Definition 11 A group is finitely presented if it has a finite presentation, i.e. if
G=(X|R)
where X and R are both finite.
Example 12 Suppose m,n € Z™ and let
G = (u,v| u ")

Note that in G

We will notate this group B (m,n) and refer to the collection B (m,n), for all choices of

m,n € 7, as the Baumslag-Solitar groups.
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12

2.2 Generators and Relations in a C*-algebra

In the following A will be an algebra over C and H will be a complex Hilbert space, B(H)

the algebra of operators on H and U(H) group of unitaries on H.

Definition 13 We say that A is a C*-algebra if A is a Banach algebra and A has an

involution, denoted by » satisfying
1. (ab)* = b*a*
2. (a+b)*=a"+ b
3. (a*)* =a
4. (Ma)* = Xa*, for all A € C
5. For alla € A, |la*a| = |ja|*.

Example 14 Suppose H is a Hilbert space and B (H) is the algebra of (bounded linear)

operators on H. For each T € B (H) there is a unique operator T* € B (H) defined by
(Tz,y) = (2, T"y)
for every x,y € H. With this involution and the operator norm
1T = sup{|[Tz| | z € H, ||z[| <1},

B (H) becomes a C*-algebra. A famous theorem of Gelfand and Naimark and Segal says
that every C*-algebra is isomorphic to a subalgebra of B (H) for some Hilbert space H. We

will refer this as the GNS construction.

When defining a C*-algebra by generators and relations, we must be very careful. Pre-
cisely what does ”the universal C*-algebra generated by X with relations R” actually mean?
We will discuss the precise notion of "relation” last, so, for the moment, assume that you
know what a "relation” on elements of a C*-algebra means. Suppose X is the generating

set for our "universal C*-algebra” and R is a family of relations on the elements of X. A
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13

representation of the relations R is a function f : X — B (H) for some Hilbert space H so
that the relations R hold with each € X replaced with f(z). Note that a representation is
a function on X, but if X is a singleton each representation corresponds to a single operator,
and if X has two points, each representation corresponds to a pair of operators, etc.... The
universal C*-algebra C* (X | R) generated by X subject to the relations R should satisfy
the property that, whenever f is a representation of the relations, then there is a unital
x-homomorphism 7 : C* (X | R) — B (H) such that 7|x = f.

Suppose {f, | ¢ € I} is a family of functions f, : X — B (H,). If
sup{||f. (z)|] | t € I} < oo for each z € X, we can define the function
f:X — ®crH by f(z) = ®erf. (x). We call f the direct sum of the f’s. Suppose
{fr: A€ A} is anet of functions from X to B (H). We say that fy — f in the point-norm
topology if and only if

12 (@) = f (@) =0

for every z € X.

Now let us turn to the notion of a ”"relation”. Are relations just equations in the
variables? In some sense the answer is affirmative. However, the condition "z = z* and
o (z) is contained in the Cantor set” is a relation, and it’s expression as an equation would

be complicated and not too useful. However, ”

o (z) is contained in the Cantor set” is not
a relation. So how do we tell what a relation is? This question was answered in [HKN]
where it was shown that to be a relation it must be preserved under unitary equivalence,
direct sums and direct summands, and it must be preserved under norm limits. In [HKN] a

necessary and sufficient condition was given on a set R of relations in order for the universal

C*-algebra generated by X defined by the relations R to make sense.

Proposition 15 Suppose X is a nonempty set and R is a set of relations on X. Then

C* (X | R) exists if and only if all of the following are true:
1. A direct sum of functions is a representation of R if and only if each summand is.

2. A point-norm limit of representations of R is a representation of R.
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3. For each x € X, we have sup {||f (z)(| | f is a representation of R} < co.
4. There ts at least one representation of R.

5. A function that is unitarily equivalent to a representation of R is a representation of

R.

Also in [HKN] the notion of "noncommutative continuous function” was introduced,
and it was shown that relations could be describe completely in terms of equations of the
form ¢ = 0 where ¢ is a noncommutative continuous function of the variable in X.

The necessity of these conditions comes from the fact that a direct sum of representations
of a C*-algebra is a representation, that every unital x-homomorphism of a C*-algebra is a
contraction, and that a point-norm limit of *-homomorphisms is a *-homomorphism.

To illustrate the conditions in the preceding proposition, consider the following examples.
Example 16 Let A be the C*-algebra generated by a, such that a is nilpotent, that is
A=C"({a} | a" =0 for some n € N).

Let
0 n

Ay =

00

Then a,, is a representation of the nilpotent relation, so there should be a unital *-homomorphism
Tt A — My (C) with 7, (a) = an. However, this forces n = |lan|| ||7]| < |la]| for every
n € N. We might try to remedy this by adding the restriction ||a|| < 1. However, on a sep-
arable infinite-dimensional Hilbert space, the norm closure of the set of nilpotent operators
with norm at most 1 contains every normal operator T with ||T|| < 1 whose spectrum is
connected and contains O [Her]. Moreover, if J,, is the n x n nilpotent Jordan cell, then
each J,, is nilpotent, ||J, |l = 1, but ©penJ, is not nilpotent. This example also shows that

C*({a} | o (a) = {0}) is not defined.

Example 17 Let A be the C*-algebra generated by x and y subject to the following relations
R:
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Lo lz)l €1, fyll <1,
2. xy = yw,
3. oy -yl <2

It is easily seen that the conditions in Proposition 15 are satisfied and thus the universal

C*-algebra, C* ({z,y} | R) will exist.
2.3 Group C*-algebras and Crossed Products

If we insist that the generators are unitary elements, then there is automatically a bound

on the norms of each of the generators, so we need only consider the remaining conditions.

Definition 18 Suppose G is a discrete group and G = (X | Rp), then we define the group
C*-algebra as
CHG)=C" (X | R),

where R is Rg along with * = z7!.

It is clear that a representation of the relations R amounts to a unitary representation
of G. It follows that every unitary representation of G extends uniquely to a unital *-
homomorphism on C* (G). This last property is the usual defining property for C* (G).
If G is an abelian group, then C*(G) is an abelian C*-algebra and C*(G) = C(X), where
X the dual group of G, i.e., the group of homomorphisms from G to the circle group
{AeC||A =1},

Suppose G is a discrete group. We will define

e(G) = {f :G— C||ifll; = Zglf(g)Q\ < 00} :
g€

For any f,¢ € £*(G) if we define their inner product as

(f.9) = 3 f(R)g(h),

heG
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we then see that ¢2(G) is a Hilbert space. Identifying each g € G with the characteristic
function Xjgyin £2(G), it follows that {X{g}}geG is an orthonormal basis for £2(G). We now

define for each g € G, Ly on the orthonormal basis {X{g}}geG as

L, (X{h}) = Xygp.

We can now extend L, to a unitary operator on £2(G). Equivalently, we may define L, on

¢?(G) as the unitary operator

(Lg(f)) (h) = f (97 h) .

Thus we have a x-representation of G into B(H). This representation is known as the left

reqular representation. This shows that there is at least one representation of the relations

defining C* (G) .

Definition 19 The reduced group C*-algebra of G is defined as

C'(Ly19€G) =Sp(iL, Tg €GN |
and is denoted C}(QG).

Crossed products in C*-algebra’s were introduced to study the action of groups on
compact Hausdorff spaces, and later group-actions on C*-algebras. They provide a larger
algebra which encodes the original C*-algebra and the group action. To ease our explana-
tion, we will assume G is a discrete group with identity e, A is a unital C*-algebra, and
a: G — Aut(A) is a group homomorphism. We now will give a definition of the crossed

product C*-algebra for this special case.

Definition 20 We define the crossed product C*-algebra, denoted by Ax,G as C* (AUG | R)

where L is the disjoint union and R consists of :

1. all relations of A that are true for A,

9. g* =g forallge @G,
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3. e=1, and
4. for alla € A and for g € G, gag™* = a(g)(a).
Note that the last condition in our definition is known as the covariance relation.

As in the case of the group C*-algebra, the crossed product C*-algebra also has a left
regular representation. This will give rise to the reduced crossed product.

A standard construction in the theory of C*-algebra’s is that of the Gelfand-Naimark-
Segal, for short the GNS construction. It says that given an abstract C*-algebra A, there
exists a Hilbert space H, and an isometric x-isomorphism 7 : A — B(H). Thus we may use
the GNS construction to view an abstract C*-algebra, as a concrete algebra of operators.

Suppose A is a unital C*-algebra, G is a discrete group and « : G — Aut(A) is a group
homomorphism. From the above remark we may assume that A C B(M), where M is a

Hilbert space. Let
H=0*(G,M)
= {f G- MIIfl;= T If @l < OO}-
geG

H is easily seen to be a Hilbert space. Similar to the construction for the reduced group

C*-algebra we define for each g € G an operator Ly on B(H) as

Ly(f)(z) = f(g™'x).

To see that each L4 is a unitary operator, consider the orthonormal basis {X{m}}zeG of H

and the following computation

Ly (Xpay (h) - M) = Xgzy (97 'h) - M

= X{gay (h) - M.
Since L, maps an orthonormal basis to itself, it follows that

{Lglge Gy CU(H).
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We now need to see that the covariance relation holds, thus for each A4 € A, define A € B(H)

by

Now from the calculation,

(LoALer) (5) @) = Lo (4 (Lo () (@)
ALy (D) (g7'2)
(a((572) ™) 4) (B (1) (s7")
1)) A
(9)

= (a(272g) 4) (f (2))
((al04) () @),

we see that the covariance relation 4 holds. Therefore, if 7 : A — B(K) is a unital *-

homomorphism and K a Hilbert space, p : G — U(K) a group homomorphism and for all

a € A and for all g € G,
p(@)m(a)p(g7!) =7 (alg)(a),

then there exists 7 : Ax, G — B(K) such that 7|4 = 7 and 7|¢ = p. We define the reduced
group C*-algebra of A x, G as

T,jgeap !

and denote it as A x4, G.

It is clear that there is a natural *-homomorphism from A x, G onto A x4, G. If G
is amenable, this * -homomorphism is actually an isomorphism. We can say a little more.
Suppose v : A — B (M) is a unital *-embedding. Then 8 = vya(-)y™! : G — Aut (7 (A))
is a homomorphism. The following proposition says that if G is amenable, then the left

regular representation A4 X, G is independent of the faithful representation of A.

Proposition 21 If G is an amenable discrete group and v : A — B (M) is a unital *-

embedding, then A X, G and v (A) g, G are naturally isomorphic.
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Chapter 3

The algebras B (f,g) and B (m,n).

3.1 The Basic Properties

We now will introduce the main ideas in this paper. If m,n € Z, the Baumslag-Solitar
group B (m,n) is the group generated by w,v with the relation uv™u™! = v*. We let
B (m,n) = C* (B (m,n)).

Suppose f,g: T — T are continuous functions on the unit circle T in the complex plane
with f(T)Ng(T) # @. Let B(f, g) denote the universal C*-algebra generated by U and
V subject to the conditions: U and V are unitary, and U f(V)U™! = g(V). Note that if
f(z) = 2" and g(z) = 2™, then B(f,g) = B(m,n). If f(z) = z and g(2) = e*™®2 where ¢
is an irrational real number, then B (f, g) is the irrational rotation algebra Ag.

Let A (f,g) denote the universal C*-algebra generated by unitaries W,, (n € Z) subject
to the conditions f(Wy_1) = g(Wx) (k € Z). It is clear that there is an automorphism
a: A(f,9) — A(f,g) such that a(Wy) = Wys1 (K € Z). In the C*-crossed product

A(f,g) Xq Z there is a unitary U, such that
a(A) = U, AU
for every A € A(f,9).

Theorem 22 There is a *-isomorphism from B(f,g) to A(f,g) %o Z that sends U to U,

and V to Wy. The inverse of this isomorphism sends Wy, to USVUF (k € Z).

Proof. We will define a group homomorphism 7 from B (f, g) to A(f, g) X« Z, by this we
19
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mean on the group generated by generators, as follows,
U~ vur — wy
U—U,.

Using the Spectral Mapping Theorem we can then verify the condition on A (f, g) x4 Z with

a simple calculation,
F(Wim) = U= DVUET)

= gD p ()R-

=UHUfviou

=U"*g(v U*

= g(U™*VU¥)

= g(Wk).
We may now extend the above map to a *-homomorphism of B (f, g) to A(f,g) X Z such
that when restricted to the group of generators it is the same and we will call this map .

To see that 7 is a *-isomorphism, we first note that by defining the map from the group

generated by the unitaries W, into B (f, g) by
Wir — UFVU¥,
we will get a group homomorphism. This then will induce a *-homomorphism from
C*((Wn | f(Wi—1) = g(Wk))

into B (f, g), which we will call 7. Since « acts as conjugation in the C*-crossed product, it

follows that
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Hence there will exist a *-homomorphism p: B(f,g) — A(f,g) X4 Z such that
p(Wy) = U FVU*

and

p(Ua) =U.

Thus p = 7! and B (f, g) is isomorphic to A (f,g) X, Z. m

Suppose f,g: T — T. Let T = H eZT with the product topology, and let X;, =

{{ )} € T | f(Ax) = g(Akg1) for k € Z}. Define a homeomorphism 3 : Xy, — Xy, by

B = {Aeqa}

Proposition 23 Let T be the commutator ideal of A (f,g). Then A(f,g) /T is isomorphic

to C(Xyq) and the automorphism ¢ on A(f,g) /Z induced by o is given on C(Xy4) by
@(F)=Fof.

Lemma 24 Thus C(Xj,4) Xy, Z is a x-homomorphic image of B(f, g). If A(f,g) is com-

mutative, then B (f, g) is isomorphic to C(Xy4) Xy Z.

Proof. Let ¥ be the maximal ideal space of A(f, g)/Z and ¢ a nonzero functional in 3. It

then follows by the Spectral Mapping Theorem that

fl@(We)) = o(f(Wy))
= ¢(g(Wi1))

= 9(¢(Wiy1))

and thus {¢(W,,)} is an element of X ;. Given a {\,} € Xy, we can easily see that it easily
gives rise to ¢ in X, by defining

Thus the isomorphism follows. Now we note that the automorphism « gives us that,

e({#(Wi)}) = {o(Wet1)},
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for any ¢ in ¥ and hence for any F in C(Xy,),

P(F({p(Wn)})) = Fle({¢(Wn)}))
= F(B{¢(Wn)})).

Corollary 25 If either f or g is injective, then B (f, g) is isomorphic to C(Xyf4) Xy Z.

Proof. In the proof of Theorem 22 we have f (Wjy_1) = g (Wy), and if either f or g is
injective, it follows that W commutes with Wy_1 (i.e., either Wy_; = f~1(g(Wi)) or

We=g"'(f (Wi-1)) ). =

Lemma 26 If h is an injective continuous complex function on f (T)Ng(T), then B(f,g)

is x-isomorphic to B (ho f,hog).

Proof. To see this we will define a map ¢ from B (f,g) to B(ho f,hog) by

U — h(U)
Since,
g(V) =Uf(V)U = RUFVYU) = UL (VU = h(g(V)),
and

g(V) — h(g(V))
it is clear that ¢ is a *-homomorphism. The inverse will follow easily from the fact that h

is injective, and thus is invertible on a restricted range. =

Lemma 27 B(f,g) is isomorphic to B (g, f).
Proof. This lemma will follow by defining a map ¢ from B (f, g) to B (g, f) by

U— Ut

V -V
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3.2 Nuclearity and Amenability

The next result will enable us to conclude that in certain instances, the Baumslag-Solitar
groups are amenable, but to conclude this we will need the concept of nuclearity. While this
concept is of much importance in the study of operator algebras, it will only play a small
role in our work. Thus, we will only mention the definition and results needed to conclude
our work. We would however suggest to the reader to seek out one of the many books on

operator algebras to further study this topic.

Definition 28 A C*-algebra A is nuclear when, for each C*-algebra B, there is only one

norm on A®B. such that AQB is a C*-algebra.
The following proposition is a result of J Rosenberg and can be found in [Ros].

Proposition 29 If A is an abelian C*-algebra with an automorphism o, then A Xy Z is

nuclear.

The next result establishes the equivalence of discrete amenable groups and the nucle-
arity of their related group C*-algebra. This result is due to U. Haagerup and can be found

in [Hal
Theorem 30 Let G be a discrete group. Then the following are equivalent:

1. G s amenable
2. CXG) = C*(G)
3. C*(G) is nuclear.

It should be noted that the above theorem can be extended to a more general situation,

but for our purposes the above presentation will suffice.

Theorem 31 If f or g is injective, then A (f, g) is abelian, B (f, g) is isomorphic to B (2, h)

for some h, and B (f, g) is nuclear.
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Proof. Without loss of generality we may assume f is injective and thus f(z) = z on a
restricted domain. Clearly B(f,g) is isomorphic to B(z,h), where h = f~! o g. It then

follows that the relation on A (f, g) becomes

f(Wi—1) = Wi—1 = g(Wi),
and

W iWn = g(Wn)g(Wria)

= Q(Wn+1)9(Wn)

= W Wn-1.

Therefore A (f, g) is abelian and it follows then that A (f, g) x4 Z is nuclear and thus from

Proposition 29 B(f, g) is nuclear. m

Corollary 32 If m =1 or n =1, then B(m,n) is amenable.

While the following result is known, we include here a new and harder proof. Each

element of B(m,n) can be uniquely written as:
vivavhyevi.. gy where l € Z,e; = %1,

;| <m-—1,ife, =1

and

Ll <n—1,ife=—1.

Thus it easily follows that B(m,n) is an i.c.c. group.

Lemma 33 The group homomorphism o : B(m,n) — B(m,n) defined by mapping U — U

and V. — V=1 will extend to an outer autormorphism on L(B(m,n)), such that o* = id.

Proof. Clearly o is a group automorphism and o? = id. We may then extend a to an

automorphism of the group von Neumann algebra, £(B(m,n)) such that a? = id. To see
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that o is an outer automorphism, suppose « is inner. Thus there is a W € L(B(m,n))
such that W is unitary and «(4) = W*AW for all A € L(B(m,n)). We may then write
W = Z Agg, and note that o(U) =U = W*UW and (V) = V* = W*VW. Hence,

gEB(m,n)

UWU* = Y NUgU™!
gEeB(m,n)

= Z Augu-19

geB(m,n)

= Z /\gg
geB(m,n)
=W

and,

VIV = > AVgV

Since ||W] = 1, then there exists a g € B(m,n) such that A\ # 0 and thus A\j = A\y-1,p =

Ay-14v. Thus we see that for all n,
g=U"1gU =U"T"gU"

and,

g=V gVl =y gV
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With g = U ™gU™, and from the canonical form for an element in B(m,n) we see that

g = UF, for some k. But if k > 0, then

Uk — V—QUkV~2

=V2U...UV?
k

=V (UvThEly,

which is a contradiction. If k < 0, then a similar argument will also produce a contradiction.
Thus we see that £ =0, and g = 1. Therefore « is an outer automorphism. ®

To apply the work of A. Connes we will need to show that « is not in the sot-closure
of the inner automorphisms of the group von Neumann algebra £ (B (m,n)), notated as
o ¢ I_ﬁﬁSOT(ﬁ(B(m, n))). In other words we will need to prove that for every ¢ > 0 there
is a unitary W, € L (B (m,n)) such that [|[W.UW —U|| < € and ||[W. VW - V*|| <€ or

U*W.U — W, <eand |[VW.V - W,| <e.

Theorem 34 B(m,n) is a nuclear C*-algebra if and only if min(jm|, |n]) = 1.

Proof. As stated prior to this theorem we will show that a ¢ mSOT(E(B(m,n))) and

then this theorem will follow from A. Connes work in [Con].
Suppose £ > 0 and that there exists a unitary W, € L(B(m,n)) such that ||U*W.U — W,|| <

g and [VW.V — W, < e. Define the following sets:

Slz{geB('m,n)lg:UkV... , where k > 0}
SEZ{QGB(m,an:UkV---,wherek<0}

S3 = B(m,n)\{S1 U S2}.

It is easily seen that the sets partition G thus we can write

We = Z Agg

geB(m,n)
=D A0+ D Mg+ D Al
9€51 gES2 9€Ss
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and

UW.U= Y AU'gU

g€B(m,n)
=D AUTgU+ Y AU U + > AU U
ge€S] geS2 gESS3

From our assumption,

Z)\gg—l— Z/\gg — ZAQU'lgU < g,
geESy g€S3 gES2
and using a version of the triangle inequality it follows that

D 2ag+ > Al = 1D A UTIU| <

g€Sa g&Ss gES2

Since Z Agg | L Z Agg |, and Z Agg | is unitarily equivalent to Z AUTgU |,
gEeS? geSs gEeS2 g€ Sy
it will follow via some simple calculations that

Z Agg|| < 3e.

g€Ss

If we now define the sets

SQZ{QEB(W,H)!Q=V]“U---,Wherek>0}
Sy={g€ B(m,n)| g=V*U -, where k <0}

Sy = B(m,n)\{S1 U Sa},

and express W, and VW,V as above, we can conclude using a similar argument that

D AVgV| < 3e.
geS;

From what we have shown, we see that the part of W, beginning with either V* or UFhas
norm less than one. Thus the norm of W, is less than one, which contradicts the fact that

W. is a unitary. Therefore the result follows from A. Connes in [Con]. ®
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3.3 Quasidiagonality

The concept of a quasidiagonal operator was first introduced by P.R. Halmos. Unlike
quasitriangularity, quasidiagonality will not be preserved under similarity. Also, if T is a
quasidiagonal operator, then so is every operator in the unital C*-algebra generated by T.

The notion of quasidiagonality was later extended to a quasidiagonal C*-algebra of op-
erators and of a quasidiagonal representation of an arbitrary C*-algebra. Since there are
x-isomorphic C*-algebras such that one is quasidiagonal and the other is not, quasidiago-
nality is not a C*-algebraic property. However, a weaker version was later introduce and
then further expanded on by D. Hadwin in [Had2]. It will be from [Had2] which most of

our work here will follow.

Definition 35 Let H be a separable Hilbert space, then a C*-subalgebra A of B(H) is
quasidiagonal if there is an orthogonal sequence {P,} of finite-rank projections whose sum

is 1 such that A — Y P,AP, is a compact operator for every A in A.

To see an example of quasidiagonal C*-algebra, suppose H is #2 and let S be the uni-
lateral shift operator of multiplicity 1. Let A = S @ S*. Since A is the sum of of a diagonal
operator and a compact operator A is quasidiagonal and hence C* (A) is a quasidiagonal
C*-algebra.

Next we introduce the notion of a quasidiagonal representation of a C*-algebra and a

weakly quasidiagonal C*-algebra.

Definition 36 A representation of an arbitrary C*-algebra is quasidiagonal if its range is

quasidiagonal.

Definition 37 A separable C*-algebra is weakly quasidiagonal if it is x-isomorphic to a

quasidiagonal C*-algebra of operators.

With these notions, we will now consider the results in this sectiomn.
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Suppose f,g: T — T. Let T* = T with the product topology, and let X, =

{{n} € T®| f(Ag) = g(Ag41) for k € Z}. Define a homeomorphism 8 : Xy, — X7, by

B{Ak}) = {Aesa}

Theorem 38 If g : T — T satisfies either g or g~' has no nontrivial closed invariant
subsets of T, then B(z,g) is weakly quasidiagonal, and has a faithful quasidiagonal repre-
sentation 7 so that m(V) is a diagonal operator on £?(Z) and w(U) is the bilateral shift

operator.

Proof. We know from theorem 31 that B(z,g) is *-isomorphic to A = C (X, 4) X, Z.
where the action ¢ is given by a homeomorphism on X, ,. We define a x-representation
W:A—>B(€2(Z)) by

T (h) = diag {h (" (z))}

forall he C(X), n€Z and

where W is the bilateral shift. It follows from Proposition 21 that the direct sum of all the
7 'sis faithful, i.e., () ZKer(my) = 0. Thereis then an zg € X, 4, such that for all ng > m,
{p" (o™ (z9)) | ;S)}(zlé dense in X, 4. Thus for any z € X, g, there is a subsequence such
that ™ (zo) — x. Hence it follows that W™, (-) W™ converges -strongly to 7 (-).
This says that Ker (m,,) C Ker (r;) and thus Ker (7,,) € [\ Ker(mz) = 0. Therefore
Tz, is faithful on A, and our result follows from [Smuj. m T

Since B(z, g) is weakly quasidiagonal we note for zg € Xy 4 and for allm > 0, {¢"(zo) | n > m}

is dense in Xy 4. We will then define 7 on U and V' as,

m(V) = diag {g(¢" (20))}
and 7(U) is the bilateral shift.

Corollary 39 If m =1 or n =1, then B(m,n) is weakly quasidiagonal
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3.4 FExt Group of C*(B(m,n))

Brown, Douglas and Fillmore initiated the study of the semigroup Ezt in [BDF]. They
were interested in the question of unitary equivalence in the Calkin algebra, C = B (H) /K,
where H is a separable complex Hilbert space and K is the compact operators. The question
arises naturally from the work of Weyl, von Neumann and Berg who showed that normal
operators S and T in B (H) will have the same limit points in their spectrum if and only if
there is a compact operator K such that S+ K and T are unitarily equivalent.

If 7 : B(H) — C is the Calkin map, then it is clear that the essential spectrum of T',
0. (T) = o (w (T)), is a unitary invariant. Also if N is normal in B (H) then o (7 (N)) is
the set of limit points of the spectrum of N. Thus we see that the spectrum is a unitary
invariant for elements of C that are determined by normal operators from B (H).

Brown, Douglas and Fillmore considered all operators 7' in B ( H) that give rise to normal
operators in C. These operators we will call essentially normal operators. While it may be
shown that some of these operators arise as compact perturbations of normals, not all of
them do. An example of this would be of the unilateral shift operator S. If § = N+ K, with
N normal and K compact, then the (Fredholm) index of S, that is dimker S — dimker S*,
would be —1, which would say that index of N is ~1. But this is a contradiction since
IIN (h)]] = |IN* (h)|| for every h € H which says that ker N = ker N* and hence must have
index 0. Brown, Douglas and Fillmore classified unitary equivalence, in C, of essentially
normal operators solely in terms of the essential spectrum and the Fredholm index.

With this motivation, we will now define the object of study in this section.

Note that we will say that A is a separable C*-algebra if there is a faithful %-representation

of A into B(H), where H is a separable Hilbert space.

Definition 40 Suppose that A is a separable C*algebra. We then define Ext(A) to be
the equivalence classes of faithful x-representations of A into C, where the equivalence of
faithful x-representations 71 and Ty are equivalent if there is a unitary U on H such that

T9 = 7 (U) Tom (U). We define the sum of two equivalence classes [T1] + [12] = [T1 & T2].
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From Voiculescu’s generalization of the Weyl-von Neumann-Berg Theorem in [Voi6]
Ext will always have an identity. Thus Ext (A) will always be a unital semigroup. Arveson

proved that if 4 is nuclear, then Ext (A) is a group.
Theorem 41 Suppose A is a unital separable C*-algebra, o € Aut (A) such that
1. Ext (C(S?) ® A) = Ext (C (S1)) x Ext (A)
2. Ext (A x4 Z) is homotopy invariant.
Then the map o : Ext (A xo Z) — (Ext (A)) x Z 1is injective.

Proof. Let 7 : B(H) — C (H) be the Calkin map. Suppose 7 is invertible in Ext (A x4 Z),
ie. 7: AxyZ — C(H) is a s-embedding, [r4] = 0 in Ext (A) and ind (7 (U)) = 0, where
U is the unitary conjugate as a in A X, Z.

We wish to show [7] = 0 in Ext(A x4 Z). To see this we will begin by choosing a
representation (p,v) : A X4 Z — B(H) which is faithful. It then follows p® I = p &®
pDp v =vHurvdv-- and mo (p®I) are all faithful representations. Since
[TM] = 0 and the representations 7|4 and 7o (p® I) are unitarily equivalent, we find
that (1o (p®@ I)] = 0. So without of loss of generality we may assume 74 = 7o (p®I).
Let N be a diagonal unitary in B (H) such that, o (N) = S, 1 is in the point spectrum
of N and N = diag (1 = A1, A2, A3, -+ ) where each A; has infinite multiplicity. Consider

r@N=XMVEXNV OV & - and let

§=(p®,v®N)

=(p, ) & (p, Ao0) @ (0, A3V) & - - - .

Since each (p, \;v) is faithful, it follows that ¢ is faithful and thus [7 0 §] = 0in Ext (A x4 Z).
It will therefore be enough to show that [7 @ (7 0 d)] = 0, since this equivalent to showing
(7] =0in Ext (A, Z).

With ind (7 (U)) = 0, we can find a U in B (H) such that 7 (U) = 7(U). Let Uy =

Ug(wveoN)and W = (v®I)® (v ®1I), and consider the unitary ZW* = U (v ®I)" @
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(I ® N). Then <7r (ULhW*),mo(p® I)M) is a faithful representation of C (S') ® A and

ind (m (U3 W*)) = 0. Since we know [7 o (p®I)] =0 in ExtA, then
[T (UW?*),mo(p@I)]=0

in Ext (C (S1)) ® A, and therefore we can find a representation 3 : C (SYY® A— B(H)
such that mo 8 = (n (U1W*),mo (p®I)). We will write 8 as (X,B‘A>, where X € 3 (A)
and X is a unitary on C (Sl) . Since 8 (A)" is a von Neumann algebra, there is a self adjoint

T in 8 (A) such that X = e7. Thus
T(UWW*) =7 (eiT)

— eivr(T) '

together with
T(B(A) = (mo(p®I))(A)

and that the exponent is a norm continuous function gives us 7 (T) € (mo (p®I))(A).
Hence 7 (U W*) = ¢™(T) and this implies 7 (U) = ™D (W)

We now define for 0 < s <1,
Os = ((7’ ®(mo 6)|A> e (M (W))

which clearly defines a homotopic path from

o = ((T@(Woé)lA) ,7T(W)>

and
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Therefore we [T @ (7 06)] =0 and thus [7] =0. =

The following results follows from 41.

Corollary 42 Ext(C*(B(m,n))=Z xZ, ifm=1 orn=1..

3.5 Ki(B(f9).

The first notions of K-Theory arose in the setting of Grothendieck’s work on the Riemann-
Roch theorem. Atiyah and Hirzebruch then developed K-Theory in algebraic topology as
a way to study vector bundles. Operator algebraists further generalized the K-Theory,
setting it in a "noncommutative” topological space.

Noncommutative spaces arise in a natural way. If X is a compact Hausdorff space,
then associated with it is a commutative C*-algebra of continuous functions on X. Since
this relation is bijective, we can then view these spaces as the "commutative” topological
spaces. Replacing the commutative C*-algebra with one that is noncommutative gives us
a way to view noncommutative spaces.

In the context of algebraic topology, one considers first the K-group Kj, and then by
using the suspension is able to define the other K-groups. Bott periodicity limits the need to
define K-groups of higher order than six. For operator algebra’s, Bott periodicity limits us
to just two groups Ky and K. Furthermore, due to the properties inherent in C*-algebras,
we can define K completely in terms of direct limits, without defining suspensions, K¢ or
the Grothendieck construction.

Suppose A is a unital C*-algebra and n is a positive integer. Let M, (A) C B (H")
be the C*-algebra of n x n matrices with entries from A and standard matrix operations
and norm. Then let U, (A) be the unitary elements of M, (A), and U, (A), the connected
component of the identity. We can define an embedding of the group Uy, (A) — Uny1 (A)

by

U —
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We then define Uy, (A) to be the C*-algebraic direct limit group(being ascending unions).
Thus Use (A) = U2 Uy (A) . The distance given by the norm defines a natural topology on

U (A) . We now will give a definition of K (A).
Definition 43 Suppose A is a unital C*-algebra. Then
K, (-A) = U (-A) /uoo (-’4)0

where U (A), 5 the connected component of the identity. Note that when u is a unitary

n x n matriz, [u] € Ky (A) denotes image of u in K (A).
The following is a list of basic facts concerning K:

1. K is a functor from the category of unital C*-algebras with unital *-homomorphisms

as morphisms to the category of abelian groups.

2. For each unital C*-algebra A, there is a canonical homomorphism k4 : U (A) —
K1 (A) such that whenever 7 : A — B is a unital x-homomorphism and 7, : K7 (4) —

K (B) is the induced map, we have
T OKA=KBO (WIU(A)) }
3. If C is the Calkin algebra, then K3 (C) = (Z,+) and k¢ is the Fredholm index map.
4. Ki(AeB)=K, (A& K, (B).

While we are unable to compute the K7 group exactly, we can say something about its

structure.

Theorem 44 If A =B (f,g), then k4 (U) has infinite order and generates a direct sum-
mand of Ky {A)

Proof. Let D be a diagonal unitary operator with eigenvalues Aq, Mg, . .. satisfying

Fk) = 9(Aetr),
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and let S be the unilateral shift operator. We then have
S*f(D)S=g(D).

The operator S is not unitary, but its image s in the Calkin algebra is unitary. Thus
the elements s* and d (the image of D in the calkin algebra) satisfy the defining relations
of B(f,g). Hence there is a unital *-homomorphism 7 : A — C with 7(U) = s* and
7 (V) = d. However, 7, (k4 (U)) = ke(s*) = ind(s*) = 1. Thus 74 : K1 (A) — Z is a

surjective homomorphism, and the theorem now follows from elementary group theory, i.e.,

Ky (A) ~ (ka(U)) ®kerm, ~Z ® kerm,.

3.6 Free Entropy Dimension and B(f, g).

D. Voiculescu [Voil]-[Void] introduced the notion of free entropy and free entropy dimension
in a finite von Neumann algebra with a faithful trace. Voiculescu and later Ge [Gel],[Ge2]
and Ge and Shen [GS] used free entropy to solve many old open problems. We do not need
to define the free entropy dimension ég (M) of a von Neumann algebra M; we need only
quote a result of Hadwin [Had1], which is a modification of a result of Ge and Shen [GS].

Here o, (A) denotes the point spectrum (i.e., set of eigenvalues) of the operator A.
Proposition 45 Suppose M is a finite von Neumann algebra, with faithful trace T, and M
is generated by a (finite or infinite) sequence {T1,Ts, ...} of nonzero operators such that

1. W*(Ty) is hyperfinite

2. For each j € N, there are normal elements A;, B € W* ({T1,...,T;}) such that, for

i=12...,

(a) AjTj+1 = Tj+1B;
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(b) A, and Bj have no common eigenvalues, i.e. ap(A;) Noy(B;) = @.

Then 6o (M) < 1.

Theorem 46 If 7 : B(f,g) — M is a unital x-homomorphism where M is a II factor

von Neumann algebra, and
op(m (V) =0ap(n(f (V) Nop(n(g(V)) =2
then the free entropy dimension of ™ (B (f,g))" is at most 1.

Proof. Let Ty =7, (V), Ty = f (7:(V)), T3 = g (n-(V)), and Ty = U. Since ToTy = T1 T3,

T3T, = T1T3, and TyTy = T3Ty, the conditions of the preceding theorem are satisfied. m

The following corollary was proved in [GS] (Ge-Shen)

Corollary 47 If M is the von Neumann algebra generated by the left reqular representation

of B(m,n), then §o (M) < 1.
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Chapter 4

Observation about Random

Matrices

In [Voi5] D. Voiculescu proved a theorem about the asymptotic freeness in the limit as
n — oo of a randomly chosen (with respect to Haar measure) k-tuple of n x n unitary
matrices, with respect to the normalized trace 7,0n M, (C) averaged with respect to Haar
measure. A very elementary proof of this result was given by Dostal and Hadwin [DH]. In
this section we show that Voiculescu’s result holds when 7, is replaced with any state on
M, (C).

Let U,, denote the group of unitary n X n matrices with Haar measure p,,. If £ € N, let
U* denote the Cartesian product of k copies of U, and let pk denote the corresponding
product measure. Let @ = (uq,...,ux) € Z/{ﬁ; then we can view uq, ..., ug as matrix-valued

variables on U¥. Voiculescu’s result concerns limits of expressions of the form
. th, b tm ko[
/ Tn (usll u522 e usm> d:un (u) )
Jus
where 1 <s1,...,8m <kandty,...,tm € Z.

Theorem 48 Suppose ¢ : M,, (C) — C is a state and 1 < s1,...,8;, <k and t1,...,tm €

Z. Then

' - ko~ ' ty,t tm k(=
JUE JUuk
Proof. First we note that any linear functional ¢ on M, (C) can be represented as

¢ (T) = trace (TK)

37
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for some unique n x n matrix K. Saying that ¢ is a state is the same as saying that
K > 0 and trace (K) = 1. We can write K = WDW~! with W € U,, and D a diagonal
matrix with nonnegative diagonal entries p, ..., p,. Note that 7, is the special case where
p1 = pp = 1/n. Let D; be the diagonal n x n matrix with a 1 in the ji* diagonal entry
and O elsewhere. Then there is a unitary n x n matrix V; such that D; = Vlevj_l. Since
i, is Haar measure, an integral [Ur’f h (@) duk (4) is unchanged when each u; is replaced by

ajusbj, where ay, by, ..., ag, by € Uy. It follows that

/ o (uuls - udn) i ()
trace ul2 - ulm WDW ) duk (@)

sl sg

§1 782

3(?

= / trace (W lultu2 - ulm WD) duk (i)
71
J

trace (W~ ule)tl (W”lusQVV)t2 e (W_lusmW)tm D) dyk (1)

;!?r

= / trace utt 2 uz”T;D) duﬁ (@)

Ug, 52
n .
m -1 k(=
= ij /uk trace (u’;llu?z . -uémVjDﬂ/j ) du, ()
7=1 U

and, using the same reasoning, each of the integrals in the last sum, and thus the whole

sum, equals
' t1,t tm k(=
/ trace (vl u - ulm Dy) dpy () .
JUE

Hence the integral does not depend on K. m
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