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A B S T R A C T

N o n u n i ta l  M u l t ip l ie r  P a irs  a n d  R e m a rk s  o n  G e n e ra liz e d  G ro u p

C * -a lg e b ra s

by

Sandra E. Zak 
University of New Hampshire, September, 2005

In the firs t part of this paper we w ill consider a generalization of D. Hadwin and E. 

Nordgren’s work on m ultip lie r pairs. Here we w ill not assume the existence of an identity, 

but rather ju s t ask for the existence of a bounded approximate identity. W ithout the 

assumption of the identity, we find a new result concerning the relationship between the 

norm closure of the left m ultip lication operators and the approximate double commutant 

of the left m u ltip lica tion  operators.

In  the second part we w ill suppose / ,  g ; T  —> T  are continuous functions on the un it 

circle T  and let B ( / ,  g) denote the universal C*-algebra generated by U  and V  subject to 

the conditions tha t U  and V  are a unitary, and U f{V )U ^ ^  =  g{V ). We then w ill prove that 

this C*-algebra may be represented as a crossed product. Next we w ill show that under 

certain conditions on /  or g, B ( / ,  g) w ill be nuclear, weakly quasidiagonal and we w ill be 

able to compute its E x t  group. In  the last two sections we w ill give a partia l description 

of the -group o f B ( / ,  g) and then using the results from [DH] calculate the free entropy 

dimension of B ( / ,  g ) .

In the th ird  and last part of this paper we show tha t the standard fam ily of independent 

unita ry n x n random matrices remains an asymptotically free Haar un ita ry w ith  respect to 

any state y  ; A d „ (C) C. The result was orig inally stated by Voiculescu for the normalized 

trace. Our work here w ill follow the modified version of Voiculescu's theorem given by D. 

Hadwin and M. Dostal in [DH].

VI
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C hapter 1

Nonunital M ultiplier Pairs

D. Hadwin and E. Nordgren in [HN] constructed a general setting in which to study com­

position operators and m ultip lication operators. Their work covered examples in many 

fields including measure-theoretic, function-theoretic and noncommutative measure theory 

for fin ite von Neumann algebras. In  this work we w ill generalize the ir work to include many 

examples the ir work did not address. Specifically we w ill not assume the existence of an 

identity but rather jus t ask for the existence of a bounded net.

We w ill call a pair {X , Y) a nonunital m u ltip lie r pa ir provided V  is a Banach space,

y  is a Hausdorff topological vector space, X  C Y  , and the inclusion map is continuous.

Moreover, we suppose we have a bilinear map (m ultip lication) m : V  x V  —> Y  , w ith  the 

notation m {u, v) =  u ■ v such that

1 . m is separately continuous.

2. The sets Co =  { x ^ X \ x - X < Z  X }  and TZq =  { x  e X  \ X  ■ x C X }  are dense in  X .

3. There is a net {eA};^gA C To H TLq that such tha t ,

(a) for every x ^  X  we have lim  \\x — x ■ ex\\ = 0  and lim  ||æ — ex ■ x\\ =  0,

(b) sup{||eAz|| - f  11̂ 6x11 I A G A ,x  G X , ||æ|| <  1} <  oc.

4. There are dense subsets E<Z C o, F c X , G c  TZo such tha t [ u ■ v) ■ w =  u ■ {v ■ w) 

whenever u ^ E , v e F , w e G .

I f  X G X  we define and on X  by

L tW =  X ■ w and RxW =  w ■ x,
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where the domain of is Dom(La;) =  {w  X  \ x ■ w & X }  and the domain of is 

Dom(Ra;) =  {w  i=i X  \ vj ■ X E X }  . We define C =  {L ^  | x € To} and TZ =  {R^ \ x € %o} ■

T h e o re m  1 The following are true:

T T/re mrrZfipZicafmn - ia jomfZg coMfmworrs /rom  X  x X  fo T .  

.2. f o r  ererg æ E X , and Rz are denae/g de/rned cZoaed operafora.

3. Lx is bounded on TZq i f  and only i f  x G To, and R^ is bounded on To i f  and only i f  

X G TZo-

T  T  , %  C B  ( X ) .

5. I f  u , V e Co or V , w e TZo o ru  E Co , w e TZo , then

{u ■ v) ■ w =  u ■ {v ■ w ) .

d. T ' =  (% ) and =  (T ) .

T. LyLxj  Ty.yj î f  V, w  G Tq uud RyRyj  — Ry-m î f  V, uj E TZo-

P ro o f. The proofs for 1, 3, 4, 5 and 7 are identical as those given by D. Hadwin and E. 

Nordgren in [HN]. Thus we need only show the proofs of 2 and 6 .

2. For any m G 77q we see tha t X  -w Ç X , thus TZq Ç Dom (Tx) and therefore is densely

defined. Suppose {w n} is a sequence in Dom(Ta,) , w ,v  G X , |[rc„ — rc|| —̂ 0 and

||,T ■ Wn — r jj 0. From our assumption tha t • is separately continuous we see tha t 

X ■ Wn X ■ w in Y . and since the inclusion map is continuous x ■ Wn v in Y. But 

Y  is Hausdorff, so x ■ w =  v. Thus is closed. The proof for R^ is similar.
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6. Suppose T  E B  (X ) and T  E C'. For any x E To,

lim  -  Tx ll =  lim

=  lim  
A

=  lim
A

=  lim  
A

< lim  
A

||x ■ Tex ~  Tx\\  

||TxTeA — T 2;|| 

IITT^GA -  r ^ l l

| | r ( T . e A ) - r T | |

||r || ||a ;.e A -T || =  0 .

rs o t
Since {ca Iaça C Tq n 77q, then C TZ. Thus i t  follows tha t T  E (TZ) and

therefore T  C {TZ) \  The reverse inclusion follows from (5). The proof for TZ' =  (T) 

is similar.

To prove the main result of this section we need to consider a special case of a result 

contained in [CM]. I t  concerns a class of normed associative complex algebras A  which 

satisfies, for some positive constant 7 ,

yd ist (A, Z  (A )) <  sup ||A X  -  X A || 
llx||< i

for all A E A , where Z  (M) is the center of A. The class is tha t of ultraprime normed 

algebras which may be defined as follows:

D e f in it io n  2 Suppose A  is a normed associative complex algebra, then A  is said to be 

u ltraprim e i f  there is a positive number K  such that

X ||A || ||B ||< ||M A ,B ||

/o r  all A, B  m  f/re algebra, wfiere derrofes f/re linear operator de/lned bp (X )  =

A X E . The largest possible K  fo r which the above is true is called the constant of u ltra ­

primeness.

The theorem M.Cabrera and J. Martinez prove says tha t this collection w ill satisfy the 

above property for a 7  dependent only on the constant of ultraprimeness. For a more precise
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statement along w ith  the history of the problem the reader should refer to [CM], For our 

purposes we need only the following proposition.

P ro p o s it io n  3 For any ultraprime algebra A  whose associated constant K  satisfies 0 < 

X  <  1 , t/ien

dist{A , Z  {A )) <  sup ||A X  -  X A ||
IXII<i

fo r  any A E A,

C oro llary  4 fo r  T  E B  ( X ) , dwf(T, C -1) <  sup ||T,9 -  B f  || .
I|5||<i

P ro o f. Suppose x ,y  E X  such that ||x|| — 1 and ||y|| =  1 also let A, B  E B  (X ) . By the 

Hahn-Banach theorem choose o  E X * such tha t a (B y) =  \\By\\ , and ||a|| =  1. Then it  

follows

\\A {x ® a) B jj >  ||v4 (x ® a) By\\

=  \ \ A{ a { By )  x)|[

=  11“  (-Bp) Ax||

=  llBpll ||A z ||.

Since ||x ® a|| — ||x|| ||o|| =  1

\\XIa ,b \\ >  \\A'Ia ,b  (x(g)Q:)||

=  ||By||

and this holds for all x , y  E X. Therefore B  (X ) is u ltraprim e, X  <  1 and our result follows 

from the paper of M. Cabrera and J. Martinez.[CM ]. ■

The main result in this chapter shows a relationship w ith  the approximate double com­

mutant which is a notion developed by D. Hadwin in [Had3]. From this paper we have the 

following definition and proposition.

D e f in it io n  5 The approximate double commutant of S C B  (X )  is the set of operators T  

/o7' which

l im | |A A T - rA A ||  = 0
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whenever a bounded nef auch that

lim ||A A B -B A A || = 0

/o r  eueTT/ B E B.

We w ill denote the approximate double commutant of S by appr (B) . The next propo­

sition shows the relation between the approximate double commutant and the double com­

mutant. The result can be found in [Had3].

P ro p o s it io n  6  I f  S Ç B  {X) ,  then appr (S) is a (norm ) closed subalgebra o f S " .

We now prove the ’’ approximate” version of part 6 of Theorem 1.

T h e o re m  7 I f  e\ is an idempotent fo r  every A E A, lim  ULe^aî-xH =  0 , lim  HXeA-zll =  0 

and TZq {exX e \) Ç e\TZoex, then appr (£ )"  =  -f C ■ 1.

P ro o f. Suppose T  E appr {C }” . From our assumption it  follows tha t for all

A E A and thus

=  Rg^T {cxxex)

=  T  (eAXGA) 6A.

This calculation along w ith  the fact that

(eA^GA) =  6AT (eA^GA) 6A,

and

lim  IIX ^T  (eAXGA)ll =  Hm ||TLeA (eAZGA)||

=  lim ||T  (gaxga)!! ,

implies that

Te,^T(GAXGA) Ç GAXeA.
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6

Since e \x e \ G TZo{e\Xe\) and we are assuming ^ ^ {e x X e x )  Ç exTZoex, we can find a 

w e TZq such tha t exxex =  exwex- Because of the commuting relationship,

Lg^TRg^wex \e\Xex~ Rexwex^ex'^ \e\Xex 

and thus we can apply the results from D. Hadwin and E. Nordgren [HN] to show

h^exR \exXex— Cy \exXex 

for some u G To (^aXca) . Thus we can write v =  exuxex where ux G Tq and therefore

\ex^ex~ ^exuxex \exXex ■

For any W  E B  (X )  and any x G Tq

lim  Rx (1 — Lg^Rex) W  {1 — LgxRex) =  0

and

lim  (1 — Lg^Rex) W  (1 ~  Lg^Rgx) Rx =  0 .

Thus if  we let Tx =  { I  ~  Lg^Rg^)T { I  -  Lg^Rg^), we find for all W  E B  (X )  tha t T \ 

commutes asym ptotically w ith  (1 — Lg^Rg^) VF (1 — Lg^Rg^ ) . Hence if  we choose a bounded 

net {VF}} C B  (X ) and let VF> =  (1 -  Lg^Rg^) VF} (1 — Lg^Rg^) i t  follows

lim llT x lF A -W A T A ll = 0 .

This statement along w ith  our Lemma gives us a net {« a}  C C such tha t

lim  (1 — Lg^Rg^) T  (1 — Lg^Rg^) ~  ^

thus proving our theorem. ■

The first example comes from our original m otivating example from measure theory.

E xam p le  8  Suppose (D, E, p) is a measure space such that, fo r  every T  G E with p (E ) >  0 

(here is an f  C B  guch that 0 <  p (B ) <  oo. Let 1 <  p <  oo and X  =  d /  ( p ) . Let E  be 

the get o /a ll Cegmualence c/aggeg o/^ meagurable /unctiong on D fopologized by conuergence
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7

m meogure. Tef A be fhe coTecfzon 0/  aZZ gefg 0/  /im fe  meogure diriecfed by C . db ig clear

that {x e  I df G A } is an approximate identity in  (p). I t  is also clear that Tq =  TZo — 

d,°° (p )ndA  (p) . Thus (X , Y ) is a m ultip lie r pa ir and {x e  | E  G K}satisfies the conditions of 

Theorem 7. Moreover, i t  is clear that \\Lf\\ =  ||d?/|| =  ||/||g^ fo r  every f  G To- I t  follows from  

Theorem 1 that T “ ^°* =  { T /  | /  G L°° (p )} is a maximal abelian subalgebra of B { IT {p ) ) .  

Also appr (C)" is the set of L f  with f  in  the || \\^-closure o f L°° (p) f l dA ( p ) , which is the

set of all f  G L°° (p) such that, fo r  every s >  0 we have p ( {c j G D | |/(cc )| >  e}) <  0 0 .

The next example comes from an operator analogue of the discrete measure-theoretic 

example above.

E xa m p le  9 Suppose H  is a separable infinite-dim ensional H ilbert space. The m inim al 

nonzero two-sided ideal in  B  (H ) is T  ( H ) , the set o f all fin ite -rank operators. The largest 

proper ideal in  B  (id ) is K, ( id ) , the set o f all compact operators. There are many two-sided 

ideals between T  (id ) and K, (dd), many o f which are Banach spaces with respect to some 

natural norms. Among these are the ideals defined in  terms o f un ita rily  invariant norms. 

We say that ||| ||| is a un ita rily  invariant norm on T  (dd) provided

1. |j|d/TE||| =  |||T||| fo r  all T  G f  (dd) and all un ita ry operators U,V.

2. I IT ill =  1 whenever P  is a rank-one projection.

The completion o f JF (dd) with respect to such a norm  is a two-sided ideal %||| m in  

B  (dd) such that jy C dC (dd). Since |||T||| =  (T *T ) 2 fo r  every T  G JF(dd) (polar

decomposition), and since (T *T ) 2 is un ita rily  equivalent to a diagonal operator, ||| ||| is 

completely determined by its values on the diagonal operators. This way ||| ||| induces a 

permutationally invariant norm on a sequence Banach space Y||| m contained in  cq (the 

nu ll geguenceg^ and containing coo (̂ the /In ite ly  nonzero geguencegj guch that the norm ig 

unchanged when the entneg 0/  the geguence are replaced by the ir abgolute ualueg. Conuergely, 

er;ery guch Banach gpace yields a un ita rily  inuardant norvn on f  (dd) that, in  turn, giueg a 

two-gided ideal.
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I t  follows from  condition 1 above that

| | |A T B | | |< P | | l l | r | | l | |B | l

fo r  every A, B  E B  {H ) and every T  E I\\\ |||. I t  follows that i f  A, B  E B  {H ) and L a , R b ’■ 

%j|| III %|| III are defined by L a {T) =  A T  and R b  {T) =  T B , then \\La \\ <  ||A|| and 

IT b II <  IT II . I t  follows from  condition 2 above that \\La \\ =  ||A|| and \\Rb \\ =  ||B|| •

We let X  — %||| III =  y  with ■ defined to be the usual operator product. I f  M  is a closed 

linear sub space H, let Pm  be the orthogonal projection onto M . Let A denote the directed 

(by inclusion) set o f a ll nonzero finite-dimensional linear subspaces of H. I f T  E T  (id ) and 

Ad contains ran  (T) U ran  (T * ) , then Pm T  =  T P m  =  T. Since |lLp^|| =  1 and T  (id) is 

III III-dense in  %||| |||, it  follows that {P m  | Ad G A } is an approximate identity  in  J||| m that 

satisfies the hypothesis of Theorem 7.

Suppose T  E B  (id ) . Then L t  E B  (X ) and L t  is the strong lim it in  B  (X ) of the net 

{ L p^ t } m gA’ is in  L. Conversely, suppose S E Then there is a net G

P  ( i f )  such that —> B in  the strong operator topology on B  ( X ) . Suppose Ad G A;

then Lp^p^p^j ^  L p^S L p j^  in  the strong operator topology. Since Pm B  (id ) Pm  B fin ite ­

dimensional, it  follows that there is an Fm  G Pm R  (dd) Pm  such that

Rpm ̂ ^ P m ^Pm ■

Since \\Fm\\ =  \\Lpm^^Pm\\ -  ITU, ^  follows that there is a subnet of {BmIm gA 

converges in  the weak operator topology to an operator T  E B  ( id ) . I t  clearly follows that 

S =  Lp. Hence the strong operator closure of C is {L p  \ T  E B  ( id ) }  . I t  follows from  the 

fact that \\Lp\\ =  ||T|| whenever T  E B  (id ) and the norm closure o / X  ( i f )  is X  ( i f )  that 

appr {£ )”  is [L p  \ T  E K  ( i f )  +  C • 1} . The analogues fo r  TZ hold as well.

The next example contains aspects of both of the preceding two examples.

E xam p le  10 For an elementary introduction to noncommutative IP-theory, we refer the 

reader to the paper o / Xelson /Xel/. Buppose A i  is a iio o  /ac to r uon Xeumann algebra on
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a separable H ilbert space, and I  <  p < oo. Then there is type H i  facto r N  on a separable 

ifilbe rt space X  such that A4 is isomorphic to B  (T )  (giAi C B  (T  (gi X ) , which is the same

as the algebra of all of the bounded operators A  on H  =  K  ® K  ® ■ ■ ■ with an operator 

m atrix {Ap)  with each A ij G Àf. Let r  : M  — be the unique fa ith fu l trace on J\f, and 

de/ine t r  : A4"'' — [0 , oo] by

U  ( fA i j ) )  =  'y ] T {Ann) .
n = l

I t  IS well-known that t r  is invariant under unitary conjugation and that the set Xp of all

elements T  o f M . such that

m ip  = t r
1

<  OO

is a two-sided ideal in  A4 and that || ||p is a norm on Xp. Moreover, there is a notion of 

convergence in measure on A4 and the completion Y  o f A4 in  this topology has many useful 

properties. In  particular, the completion dA (A4, t r )  of (Xp, || is naturally contained in  

Y. I t  is also well known that T  (d^) ® A f is dense in  IP  (A4, t r ) . We define A (parallel to 

the preceding examples) as the net of all projections B  in  A4 with t r  {P ) <  oo. Then A is 

an approximate identity in  LP (A4, t r ) . The natural m ultip lication (from M )  onXp extends 

to a m ultip lication on IP  (A4, t r ) , where the product is in  Y. Thus { X, Y,  ■) is a nonunital 

m ultip lie r pair. I t  is well-known that

IIATBlIp <  IT I I IT I IT T I I

fo r  a ll A ,B  E A4 and T  E Xp. Following the unpublished paper o f Hadwin and Nordgren 

[HN2], it  is easy to show that \\La\\ =  ||A|| =  ITaH whenever A  E A4, where La, Ha G 

B  {PP {A4, t r ) )  . Following the arguments in  the preceding example, we can show that =  

{B r  I T  G A4} and appr (T )" =  | T  E ( f  (T) g) A / ) "  +  C -1  =  C* (:F (i^ ) (g, Ad) j , wher^

(A  (T )  (g) Ad) is the spatial C*-algebraic tensor product X  (i'^) gi Ad. Bim ilarly, =

{ R t  : T  G A4}. Thus we have { L t  | T  G A4} and { R t  | T  E A4} , which extends von Neu­

mann’s double commutant theorem (when p =  2). S im ilarly, when p =  2, our approximate 

results reduce to Badwin's approximate double commutant theorem /o r  C*-algebras /Bad,^.
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C hapter 2

Prelim inaries on C*-algebras

2.1 G en erators and R elation s

In  this chapter we wish to study B ( / ,  g ) , the universal group C*-algebra generated by 

two unitaries U  and V  subject to the one relation l / * f  (V ) U — g ( V ) , where /  and g are 

continuous functions from the circle to the to the circle. This class of algebras contains 

many im portant examples, such as the Baumslag-Solitar algebra and the irrational rotation 

algebra.

To begin, we w ill review generators and relations in both a group and then in our 

prim ary object of study, a C*-algebra. In  the next section we w ill show tha t our C*-algebra 

may be represented as a crossed product. W ith  this representation and certain restrictions 

on the functions /  and g we w ill be able to discuss the amenability, quasidiagonality and 

E x t groups of B ( / ,  g). Following this we w ill give a partia l result concerning the -group 

of B ( / ,  g) and then in the last section discuss the free entropy dimension of B ( / ,  g).

Suppose X  is a subset of a group G. Then the subgroup of G  generated by X  is denoted 

by (X ) , and is by definition the least subgroup of G containing X . I t  follows that

(X ) =  { x f  . . .  x j f  \ Xi E X ,£ i =: ± 1 }  .

We call the expression of the form

an X -w ord , or s im p ly  a word. A  word is term ed reduced i f

Xi —  Xi.j - 1  ~h A  0, f o r  i  1 ,. . . ,  n  1.

10
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I f  G =  (X ) and every non-empty reduced word is not equal to the identity then we 

term X  a free set o f generators of G and G itse lf is termed free. A  group is termed fin ite ly  

generated when the cardinality of X  is finite, and denoted F „  when it  is both free and 

fin ite ly  generated, where n is the cardinality of X .

Let G again be a group, F  a free group on a set X  and 9 a map from X  into G such 

that

G =  (g (X ) ) .

There w ill then exist a group epimorphism : F  G, such tha t (ft^x — Suppose there 

is a subset B  in F  such that

kertp = <  R >  .

We then write

G = ( X | B )  (1)

and term  (X  j B) a presentation of G w ith  relations R. Notice tha t such a presentation (1) 

comes w ith  an explic it map 6 such that the extension of 9 to  the free group B  on X  yields 

an onto homomorphism p  w ith  kernel (B) . Also i f  we identify X  w ith  its image in G then 

(1) simply means tha t X  generates G and everything about G can be deduced from the 

fact tha t r  =  1 in G for every r  E R.

D e fin it io n  11 A group is fin ite ly  presented i f  it  has a fin ite  presentation, i.e. i f

G =  ( X  I B)

w/iere X  omf B  are boffi /im fe .

E xa m p le  12 Suppose m ,n  e XA and let

G =  (u ,V  \ .

Note that tn G

We wiN nofafe group B  (m , n ) and re /er fo f/ie collection B  (m , n ) , /o r  a ll clioices o / 

m, E Z"*", as tlie  B a u m s la g -fo lita r groups.
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2.2 G en erators and R ela tion s in a C *-algebra

In  the following A  w ill be an algebra over C  and H  w ill be a complex H ilbert space, B { H)  

the algebra of operators on H  and U{ H)  group of unitaries on H .

D e fin it io n  13 We say that A  is a C*-algebra i f  A  is a Banach algebra and A  has an 

involution, denoted by *  satis/ying

1 . (nb)* =  b*a*

2 . (a +  b)* =  n* +  b*

3. (a*)* =  a

4- (Aa)* =  Xa*, fo r  a ll X E C 

5. For all a E A , ||a*a|| =  ||aT  •

E xa m p le  14 Suppose H  is a Hilbert space and B  (H ) is the algebra o f (hounded linear) 

operators on H . For each T  E B  (H ) there is a unique operator T * E B  (H ) defined by

(T x ,y ) =  (x ,T *y )

fo r  every x ,y  E H . With this involution and the operator norm

||T|| = s u p { ||T x || I X € B , ||x|| <  1} ,

B  (B ) becomes a C*-algebra. A famous theorem of Gelfand and Naimark and Segal says 

that every C*-algebra is isomorphic to a subalgebra of B  (B )  fo r  some Hilbert space H . We 

w ill refer this as the GNS construction.

When defining a C*-algebra by generators and relations, we must be very careful. Pre­

cisely what does ’’ the universal C*-algebra generated by X  w ith  relations B ” actually mean? 

We w ill discuss the precise notion of ’’ relation” last, so, for the moment, assume that you 

know what a ” re la tion” on elements of a C*-algebra means. Suppose X  is the generating 

set for our ’’universal C*-algebra” and B  is a fam ily of relations on the elements of X . A
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representation of the relations B  is a function f  : X  ^  B  (H )  for some H ilbert space H  so

that the relations B  hold w ith  each x E X  replaced w ith  f { x ) .  Note tha t a representation is

a function on X ,  but i f  X  is a singleton each representation corresponds to a single operator, 

and i f  X  has two points, each representation corresponds to  a pair of operators, e tc .... The 

universal C*-algebra C* (X  | B ) generated by X  subject to the relations B  should satisfy 

the property that, whenever /  is a representation of the relations, then there is a unita l 

^-homomorphism vr : G* (X  | B )  —» B  (B ) such tha t 7t|x =  /■

Suppose { / t  I r G 7} is a fam ily of functions A  : X  —> B  (B J  . I f  

sup {IIA  (x)|| I r G 7 } <  oo for each x G X , we can define the function

/  : X  © tg/B^ by f  (x) =  © tg iA  (x) . We call /  the direct sum of the / /s .  Suppose 

{ / a ; a g A } is a net of functions from X  to B  ( B ) . We say tha t / a —>■ /  in the point-norm  

topology i f  and only i f

IIA  W  - / ( x ) | |  - ^ 0

for every x E X .

Now let us tu rn  to the notion of a ’’re lation” . Are relations jus t equations in the 

variables? In  some sense the answer is affirmative. However, the condition ” x =  x* and 

cr (x) is contained in  the Cantor set” is a relation, and i t ’s expression as an equation would 

be complicated and not too useful. However, ” <% (x) is contained in  the Cantor set” is not 

a relation. So how do we te ll what a relation is? This question was answered in [HKN] 

where it was shown tha t to be a relation it  must be preserved under unita ry equivalence, 

direct sums and direct summands, and it  must be preserved under norm lim its. In [HKN] a 

necessary and sufficient condition was given on a set B  of relations in  order for the universal 

C*-algebra generated by X  defined by the relations B  to make sense.

P ro p o s it io n  15 Suppose X  is a nonempty set and TZ is a set o f relations on X . Then 

G* (X  I B ) exfgfg f /  and only a ll o / t/ie /oHowing are true.'

1. A direct awm o / /anctiona ia a repreaentation o / B  i /  and only i /  eacb anmmand ia.

2. A point-norm  lim it o f representations of TZ is a representation o f TZ.
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3. For each x E X , we have sup { | | /  (x)|| \ f  is a representation o f TZ} <  oo.

Tfiere ia at leaat one repreaentation o /B .

5. A function  that is un ita rily  equivalent to a representation o f TZ is a representation of 

TZ.

Also in [HKN] the notion of ’’noncommutative continuous function” was introduced, 

and it  was shown that relations could be describe completely in  terms of equations of the 

form f  =  0 where f  is a. noncommutative continuous function of the variable in X .

The necessity of these conditions comes from the fact tha t a direct sum of representations 

of a C*-algebra is a representation, that every unita l ^-homomorphism of a C*-algebra is a 

contraction, and tha t a point-norm  lim it of *-homomorphisms is a ^-homomorphism.

To illustra te  the conditions in the preceding proposition, consider the following examples.

E xam p le  16 Let A  be the C*-algebra generated by a, such that a is nilpotent, that is

A  =  C * ({a ]  I a " =  0 fo r  some n E N).

Let

I  t) n \
dn —

V» » /
Then a „ is a representation of the nilpotent relation, so there should be a unita l * -homomorphism 

Tin : A  ^  M .2 (C) with TTn (u) =  . Howcver, this forces n  =  ||a„|[ ||7r|| <  ||a|| fo r  every

n E N. We might try  to remedy this by adding the restriction  ||a|| <  1. However, on a sep- 

arable m^mfe-dfmeTrsmTial Bdberf gpace, f/ie nor-m clogare o / f/ie gef o / mlpoferif operaforg 

with norm, at most 1 contains every normal operator T  with  ||T|| <  1 whose spectrum is 

cmmecfed and confairig 0 /Ber/. Moreover, (Ae m x n mlpofenf Jordan cell, f/ien

each Jn IS nilpotent, \\Jn\\ =  1, but ® nm Jn is not nilpotent. This example also shows that 

C* ({a }  I cr (a) =  {0 }) fg no! de/lned.

E xam p le  17 Let A  be the C*-algebra generated by x  and y subject to the following relations 

TZ:
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1- IT II <  1, ||y|| <  1,

2 . xy =  yx,

& ||xy* -  y*x|| <

I t  is easily seen that the conditions in  Proposition 15 are satisfied and thus the universal 

G* ( { x , y }  | B )  w ill exial.

2.3 G roup C *-algebras and C rossed  P ro d u c ts

I f  we insist tha t the generators are unitary elements, then there is automatically a bound 

on the norms of each of the generators, so we need only consider the remaining conditions.

D e fin it io n  18 Suppose G is a discrete group and G =  {X  \ Rq) , then we define the group 

C*-algebra as

G*(G) =  G* (X  I B > ,

where R is R q along with x* =  x~^.

I t  is clear tha t a representation of the relations R  amounts to a un ita ry representation 

of G. I t  follows tha t every un ita ry representation of G extends uniquely to a unita l *- 

homomorphism on C* (G). This last property is the usual defining property for G* (G). 

I f  G is an abelian group, then C*{G ) is an abelian C*-algebra and G *(G ) % G (X ), where 

X  the dual group o f G, i.e., the group of homomorphisms from G to the circle group 

{A E C  I |A| =  1 }.

Suppose G is a discrete group. We w ill define

^2(G) =  j / : G ^ C  111/ 11̂ =  E  | / W |

For any f ,g  € A {G )  i f  we define their inner product as

( / ,g )  =  E  / W g W ,
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we then see that A {G )  is a H ilbert space. Identifying each g E G w ith  the characteristic 

function T g j in  f ‘ {G), it  follows tha t {-T ig}) gg is an orthonormal basis for A {G ). We now 

define for each g E G, Lg on the orthonormal basis gg as

bg {A{h}) — 4dgh-

We can now extend Lg to a unita ry operator on A {G ). Equivalently, we may define Lg on 

A {G ) as the un ita ry  operator

(T g ( /) )  (/i) =  /  .

Thus we have a ^-representation of G into B{ H) .  This representation is known as the left 

regular representation. This shows tha t there is at least one representation of the relations 

defining G* [G) .

D e fin it io n  19 The reduced group C*-algebra of G is defined as

C * ( T g | y E G )  =  f p ( { T g | g € G } ) "  "

ond 75 denoted G /(G ).

Crossed products in C*-algebra’s were introduced to study the action of groups on 

compact Hausdorff spaces, and later group-actions on C*-algebras. They provide a larger 

algebra which encodes the original C*-algebra and the group action. To ease our explana­

tion, we w ill assume G is a discrete group w ith  identity e, A. is a un ita l C*-algebra, and 

a  : G —» A u t{A ) is a group homomorphism. We now w ill give a defin ition of the crossed 

product C*-algebra for this special case.

D e fin it io n  20 We define the crossed product C*-algebra, denoted by M x ^ G  as C* {Ai d G \ TV) 

wAere U w t/ie d isjo int union ond B  consists o / ;

1 . a ll relations o / A. tlia t are true /o r

2. y* =  y "^  /o r  a ll y E G,
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J. e =  1, and

4 . fo r  a ll a E A  and fo r  g E G, gag~^ =  a(g)(a),

Bote tdat t&e last condition in our de/inition is A;nown as tAe couariance relation.

As in the case of the group C*-algebra, the crossed product C*-algebra also has a left 

regular representation. This w ill give rise to the reduced crossed product.

A standard construction in the theory of C*-algebra’s is tha t of the Gelfand-Naimark- 

Segal, for short the GNS construction. I t  says tha t given an abstract G*-algebra A, there 

exists a H ilbert space H , and an isometric ^-isomorphism vr : M ^  B (B ) .  Thus we may use 

the GNS construction to view an abstract C*-algebra, as a concrete algebra of operators.

Suppose A  is a unita l C*-algebra, G is a discrete group and a  : G —> A u t{A )  is a group 

homomorphism. From the above remark we may assume tha t A  Ç B { M ) ,  where M  is a 

H ilbert space. Let

B  =  f  (G, M )

=  j /  : G ^  M  I I I / I I 2  =  I ^ | | / ( g ) f  <  o c j  .

B  is easily seen to be a H ilbert space. Similar to the construction for the reduced group 

C*-algebra we define for each g G G an operator Lg on B { H )  as

To see that each Lg is a un ita ry operator, consider the orthonorm al basis ^  of B

and the following computation

Lg ( f i ) . M )  =  ( g - T )  . M

=  Tga;} {h) ■ M.

Since Lg maps an orthonormal basis to itself, it  follows that

{Lg I g G G } Ç ZY ( B ) .
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We now need to see tha t the covariance relation holds, thus for each A E A, define A E B {H )  

by

Now from the calculation,

(L g Â L g _ i) ( / )  (x) ^  Lg (Â  (L,_1 ( / ) ) )  (x)

= ^  (4 -1  (/))

=  ^ ( g - 4 ) ' ^ )  A ) (Lg_i ( / ) )  ( g - 4 )

=  (a  (a ; -^ )  ( /  (x ))

=  ^ ^ a (g )A )  ( / )^  (x ) ,

we see tha t the covariance relation 4 holds. Therefore, i f  rr : M > B { K )  is a unita l *- 

homomorphism and K  a H ilbert space, p : G —» U {K )  a group homomorphism and for all 

a E A  and for all g E G,

p (g) 7T (a) p (g -^ )  =  7T (a  (g) ( a ) ) ,

then there exists T : M x ^ G  —̂ B (B )  such tha t t \a  =  tf and t |g  =  p. We define the reduced 

group C*-algebra of A  Xq G as

{Lg I g E G ) ,

and denote it  as A  x^^r G.

I t  is clear tha t there is a natural ^-homomorphism from M x „  G onto A  Xa,r G. I f  G 

is amenable, this * -homomorphism is actually an isomorphism. We can say a lit t le  more. 

Suppose X : A  B  (M ) is a un ita l ^-embedding. Then =  y a  ( - )7 ”  ̂ : G Aut (7  (A )) 

is a homomorphism. The following proposition says tha t i f  G is amenable, then the left 

regular representation A  xia,r G is independent of the fa ith fu l representation of A.

P ro p o s it io n  21 I f  G is an amenable discrete group and 7  : A  —> B  (M ) is a unital *- 

embeddmg, ffien A  Xa,r G  and 7 (A ) x^^r G are naturally Isomorpfiic.
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C hapter 3

The algebras B (/, g) and B (m, n ) .

3.1 T h e B asic  P ro p ertie s

We now w ill introduce the main ideas in this paper. I f  m, n G Z, the Baumslag-Solitar 

group B { m ,n )  is the group generated by u ,v  w ith  the relation uv'^u~^ =  u". We let 

B (m, n) =  C* {B  (m, n ) ) .

Suppose / ,  5  ; T  —> T are continuous functions on the un it circle T  in  the complex plane 

w ith  /  (T) n g (T) 0 . Let B ( / ,  g) denote the universal C*-algebra generated by U and

V  subject to the conditions: U  and V  are unitary, and U f{V )U '~^  =  g ( l/) .  Note that if  

f { z )  =  z" and g{z) =  z^ ,  then B ( / ,( /)  =  B (m , n). I f  f { z )  =  z and g{z) — e^^^^z where 6 

is an irrational real number, then B ( / ,  g) is the irrational rotation algebra Ag.

Let A  ( / ,  g) denote the universal C*-algebra generated by unitaries Wn {n  G Z) subject 

to the conditions f { W k - i )  =  g{Wk) {k G Z). I t  is clear tha t there is an automorphism 

a : A { f , g )  —>■ A ( / , g) such tha t a { W k )  =  W k+i {k G Z). In  the C*-crossed product 

A ( / ,  g) Xa Z there is a un ita ry Ua such that

- 1
aa{A )  =  UaAU^ 

for every A G A  ( / ,  g ) .

T h e o re m  22 There is a ^-isomorphism from  B ( / ,  g) to A ( / ,  g) xIq Z  that sends U to Ua 

and y  to Wi). TAe o /tM s  womorpAwm aenda W t to (A; G Z).

P ro o f. We w ill define a group homomorphism tt from B ( / ,  g) to A  ( / ,  g) x ^ Z ,  by this we

19
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mean on the group generated by generators, as follows,

a •

Using the Spectral Mapping Theorem we can then verify the condition on A  ( / ,  g) Xq,Z w ith 

a simple calculation,

=  (7-''g(y)(7'=

=  g (p - '= y [/^ )

=

We may now extend the above map to a ^-homomorphism of B ( / ,  g) to  A ( / ,  g) x« Z such 

that when restricted to the group of generators it  is the same and we w ill call this map vr.

To see that tt is a ^-isomorphism, we first note tha t by defining the map from the group 

generated by the unitaries into B ( / ,  g) by

we w ill get a group homomorphism. This then w ill induce a ^-homomorphism from

into B ( / ,  g ) , which we w ill call r .  Since a  acts as conjugation in the C*-crossed product, it  

follows that

T (a (W t)) =  T(W t)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Hence there w ill exist a ^-homomorphism p : B ( / ,  g) —» A  ( / ,  g) Z  such that

p(Wk) =

and

g (% ) =  (7.

Thus p =  and B ( / ,  g) is isomorphic to A ( / ,  g j x ^ Z .  ■

Suppose / ,  g : T  ^  T. Let T°° =  w ith  the product topology, and let Xf^g =

{{A n } E I /(Afc) =  g(Afc+i) for k G Z |.  Define a homeomorphism (3 : Xj^g Xj^g by

0 ({A k}) =  {A&+i}.

P ro p o s it io n  23 Let X be the commutator ideal of A  ( / ,  g) . Then A  ( / ,  g) /% w isomorphic 

to C (Xf^g) and the automorphism p  on A ( / ,  g) /X  induced by a  is given on C {Xf^g) by

i f  (F )  =  F  o (3.

L em m a  24 Thus C{Xf^g) x ^ Z i s a  *-homomorphic image o /B ( / ,  g) . / / A ( / ,  g) is com- 

t/iem B ( / ,  g) is isomorpMc to C  x,^ Z.

P ro o f. Let S be the maximal ideal space of A { f , g ) /X  and f  a nonzero functional in  S. I t  

then follows by the Spectral Mapping Theorem that

=  <6(g (iyk+ i))

and thus {<f>{Wn)} is an element of Xf^g. Given a {An} G Xj^g we can easily see tha t i t  easily 

gives rise to çi in E, by defining

Thus the isomorphism follows. Now we note tha t the automorphism a  gives us that,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

for any 0 in E and hence for any F  in C{Xf^g),

=  F(;8 ({<^(Wn)})).

C o ro lla ry  25 I f  either f  or g is injective, then B ( / ,  g) is isomorphic to C (Xf^g) Xy Z.

P ro o f. In  the proof of Theorem 22 we have f  {W k^i) =  g {W k ) , and if  either /  or g is 

injective, it  follows tha t IT^ commutes w ith  ITfc_i (i.e., either W k - i  =  / “ ^(g(hPfc)) or

L e m m a  26 I f  h is an injective continuous complex function on f  (T) f l g ( T ) , then B ( / ,  g) 

is ^-isomorphic to M {h o  f , k o  g) .

P ro o f. To see this we w ill define a map f  from B ( / ,  g) t o M { h o  f , h o  g) by

17 ^  /i(17) 

y  ii(y).

Since,

g(y) = c//(y)(7-: ^

and

g(y) ir(g(y))

it  is clear that 0 is a ^-homomorphism. The inverse w ill follow easily from the fact tha t h 

is injective, and thus is invertible on a restricted range. ■

L e m m a  27 .B ( / ,  g) is isomorphic to B (g, / ) .

P ro o f. This lemma w ill follow by defining a map <p from B ( / ,  g) to  B (g, / )  by

17 

y ^  y.
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3.2 N u c lea r ity  and A m en ab ility

The next result w ill enable us to conclude tha t in certain instances, the Baumslag-Solitar 

groups are amenable, but to conclude this we w ill need the concept of nuclearity. W hile this 

concept is o f much importance in the study of operator algebras, i t  w ill only play a small 

role in our work. Thus, we w ill only mention the definition and results needed to conclude 

our work. We would however suggest to the reader to seek out one of the many books on 

operator algebras to further study this topic.

D e fin it io n  28 A C*-algebra A  is nuclear when, fo r  each C*-algebra B, there is only one 

norm on snc/i t/mt is a C*-a/ge6ro.

The following proposition is a result of J Rosenberg and can be found in [Ros].

P ro p o s itio n  29 I f  A  is an abelian C*-algebra with an automorphism a, then A. x „  Z  is 

nncienr.

The next result establishes the equivalence of discrete amenable groups and the nucle­

arity of the ir related group C*-algebra. This result is due to U. Haagerup and can be found 

in [Ha]

T h e o re m  30 Let G be a discrete group. Then the following are equivalent:

T G is amenoWe 

,9. G *(G ) is nuclear.

I t  should be noted tha t the above theorem can be extended to a more general situation, 

but for our purposes the above presentation w ill suffice.

T h e o re m  31 I f  f  or g is injective, then A  ( / ,  g) is abelian, B ( / ,  g) is isomorphic to B (z, h) 

/o r  some A, and B ( / ,  g) is nuclear.
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P ro o f. W ithout loss of generality we may assume /  is injective and thus / ( z )  =  z on a 

restricted domain. Clearly B ( / ,  g) is isomorphic to B ( z , / i ) ,  where h =  o g. I t  then 

follows tha t the relation on A  ( / ,  g) becomes

=  W k- i  =  g{Wk),

and

W n-lW ri =  g(W n)g(W ^+l)

=  W n W n ^ l -

Therefore A  ( / ,  g) is abelian and i t  follows then tha t A  ( / ,  g) Xq, Z  is nuclear and thus from 

Proposition 29 B { f ,g )  is nuclear. ■

C o ro lla ry  32 I f  m  =  1 or n =  1, then B {m ,n )  is amenable.

W hile the following result is known, we include here a new and harder proof. Each 

element of B {m ,n )  can be uniquely w ritten  as:

where 1 G Z, =  ±1 ,

\k\ <  m  -  1, if  e, =  1

and

|lj| <  n — 1 , i f  =  — 1 .

Thus it easily follows tha t B {m ,n )  is an i.c.c. group.

L e m m a  33 The group homomorphism a  : B {m ,n )  —> B {rn ,n )  defined by mapping U  

and V  V~^ will extend to an outer autormorphism on C {B {m ,n ) ) ,  such that c? =  id.

P ro o f. Clearly a is a group automorphism and =  id. We may then extend a  to an 

automorphism of the group von Neumann algebra, C {B {m ,n ))  such tha t o? =  id. To see
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tha t Q is an outer automorphism, suppose a is inner. Thus there is a IT  E C {B{m ,n ))  

such tha t W  is unitary and a (A) =  W *A W  for all A  G C {B {m ,n )) .  We may then write 

W  =  Xgp, and note tha t a {U ) =  U =  W *U W  and a (V ) =  V* =  W *VW . Hence,

g e B ( m , n )

— ^  ^UgU-^9
g e B { m , n )

g & B ( m , n )

=  W

and,

y i r y  =  ^  A gTgy
g e B ( m , n )

=  ^V-^gV9
g ^ B { m , n )

— ^  ^a9
g e B { m , n )

=  W.

Since ||IT|| =  1, then there exists a g G B {m ,n )  such tha t Ag 0 and thus Ag =  Xu-ig jj =  

X y - i g V  Thus we see tha t for all n,

g =  G -^gG  =  [ / - " g c r

and,
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W ith  g =  and from the canonical form for an element in B {m ,n )  we see that

g =  U^, for some k. B u t i f  A; >  0, then

k

which is a contradiction. I f  & < 0, then a sim ilar argument w ill also produce a contradiction. 

Thus we see that k =  0, and g =  1. Therefore a  is an outer automorphism. ■

To apply the work of A. Connes we w ill need to show tha t a  is not in the sot-closure 

of the inner automorphisms of the group von Neumann algebra C { B  { m ,n ) ) , notated as

Q ^  {C {B {m ,n )) ) .  In  other words we w ill need to prove tha t for every e >  0 there

is a unitary We G £  (B  (m, n)) such tha t \\WeUWf — U \ \ < e  and || W g l/W / — y * || <  c or 

-  Well <  6 and H^WeR -  Wc.ll <  E.

T h e o re m  34 B(m, n) is a nuclear C*-algebra i f  and only i /m in ( |m | , |n|) =  1.

- S O T ,
P ro o f. As stated prior to this theorem we w ill show that a  ^  I n n  (C {B {m ,n )))  and 

then this theorem w ill follow from A. Connes work in [Con].

Suppose e >  0 and tha t there exists a un ita ry W^ G £ (B (m , n))  such tha t \\U*WeU — Wg|| <

e and \\VWeV — Wa|| <  e. Define the following sets:

51 =  {g G B {m ,  n) I g =  U ^V  • ■ ■ , where A; >  0}

52 =  {g G B{m ,  n) I g =  U ^V  ■ • ■ , where A: <  0}

5g =  B{m , n ) \ { S i  U 52}.

I t  is easily seen tha t the sets partition  G thus we can write

We =  ^a9
g £ B { m , n )

=  ^ a 9  +  ' ^  ^ g 9  +  ^ g 9 ,

g e S i  g e S 2  g e S s
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and

g & B ( m , n )

=  ^  A g [ / - :g P +  A g [/-^ g [ /+  g  AgU-^gU.
goSi geS2 @6%

From our assumption,

^a9 +  ^a9 I ~  ^
vgeS2 geSs )  geS2

and using a version of the triangle inequality it  follows that

< E,

\ 9  +  ^9 9
— <  E

g ^ S 2  gGSs g&S2

Since I ^  Agg _L I ^  Agg , and I ^  Agg is un ita rily  equivalent to I ^  XgU ^gU
\geS2 /  \geS3 J  \ 96S2 /  \gGS2

i t  w ill follow via some simple calculations tha t

E  ^s9
geSs

<  3E.

I f  we now define the sets

S'l =  {g E B {m ,  n) I g =  V ^U  • • ■ , where /c >  0}

"̂2 =  {g G B{m ,  n) I g =  V ^U  ■ • • , where A: <  0}

5 ; =  B (m ,n ) \ {5 iU 5 2 } ,

and express We and VWeV as above, we can conclude using a sim ilar argument that

Z  AgPgy <  3E.

From what we have shown, we see tha t the part of We beginning w ith  either or I/^has 

norm less than one. Thus the norm of We is less than one, which contradicts the fact that 

We is a unitary. Therefore the result follows from A. Connes in  [Con]. ■
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3.3 Q u asid iagon ality

The concept of a quasidiagonal operator was first introduced by P.R. Halmos. Unlike 

quasitriangularity, quasidiagonality w ill not be preserved under sim ilarity. Also, if  T  is a 

quasidiagonal operator, then so is every operator in the unita l C*-algebra generated by T.

The notion of quasidiagonality was later extended to a quasidiagonal C*-algebra of op­

erators and of a quasidiagonal representation of an arb itrary C*-algebra. Since there are 

^-isomorphic C*-algebras such tha t one is quasidiagonal and the other is not, quasidiago­

nality is not a C*-algebraic property. However, a weaker version was later introduce and 

then further expanded on by D. Hadwin in [Had2]. I t  w ill be from [Had2] which most of 

our work here w ill follow.

D e f in it io n  35 Let H  be a separable Hilbert space, then a C*-subalgebra A  of B {H )  is 

quasidiagonal i f  there is an orthogonal sequence {Pn} of finite-rank projections whose sum 

is 1 such that A  — PuAP^ is a compact operator fo r  every A  in  A.

To see an example of quasidiagonal C*-algebra, suppose H  is and let S be the uni­

lateral shift operator of m u ltip lic ity  1. Let A =  S ® S*. Since A  is the sum of o f a diagonal 

operator and a compact operator A  is quasidiagonal and hence C* (A) is a quasidiagonal 

C*-algebra.

Next we introduce the notion of a quasidiagonal representation of a C*-algebra and a 

weakly quasidiagonal C*-algebra.

D e fin it io n  36 A representation of an arbitrary C*-algebra is quasidiagonal i f  its range is 

gwoaWmgoMaZ.

D e fin it io n  37 A separable C*-algebra is weakly quasidiagonal i f  i t  is ^-isomorphic to a 

guaaidiagonaZ G*-aZge6m o / operators.

W ith  these notions, we w ill now consider the results in th is section.
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Suppose / ,  g : T ^  T. Let T°° ~  P I  w ith  the product topology, and let Xf^g =

{{A n } E T°° I /(Afc) =  g{Xk+i) for k € Z }. Define a homeomorphism /3 : Xf^g Xj^g by

({A t}) =  {A t+ i}.

T h e o re m  38 7/ g : T  —> T satisfies either g or g~^ has no nontrivial closed invariant 

subsets o / T, t/ieu B (z, g) is weaA:Zg guosidiagouaf, and Aas a /ait/i/aZ guasidiagonaf repre-

sentation tt so that n {V ) is a diagonal operator on (Z ) and tt{U ) is the bilateral shift 

operator.

P ro o f. We know from theorem 31 tha t B (z,g) is ^-isomorphic to A  =  C {Xz,g) Xy, Z. 

where the action p  is given by a homeomorphism on Xz,g- We define a ^-representation 

TT : A  ^  B  (Z )) by

TTa; (/l) =  diog { / l ((p" ( l ) ) }

for all L E C  ( X ) , n G Z  and

7T̂  (77) =  W,

where W  is the bila tera l shift. I t  follows from Proposition 21 tha t the direct sum of all the 

TTfis is fa ith fu l, i.e., f ]  K e r  =  0. There is then an xq G Xz^g, such tha t for all ng >  m,

{p "  (p"o (xo)) I n >  0} is dense in Xz^g- Thus for any x  G Xz,g, there is a subsequence such 

that (g"* (xo) X. Hence i t  follows tha t (•) W " " *  converges ^-strongly to vr  ̂(•).

This says tha t K e r  (tTxo) Ç TLer (ttj,) and thus K e r  {tTxo) Ç H  Tfer (tt^) =  0. Therefore
X̂ Xz^g

TTxo is fa ith fu l on A, and our result follows from [Smu]. ■

Since B (z, g) is weakly quasidiagonal we note for xq G Xf^g and for all m  >  0, {p "(xo ) | n >  m }  

is dense in g. We w ill then define tt on U  and V  as,

7r (y )  =  diag{g(<p'"(xo))}

and tt{U) is the b ilateral shift.

C o ro lla ry  39 I f  rn =  1 or n =  1, then B (m ,n ) is weakly quasidiagonal
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3.4  E x t  G roup o f C*{B{m,n))

Brown, Douglas and Fillmore in itia ted the study of the semigroup E x t  in [BDF], They 

were interested in the question of unita ry equivalence in  the Calkin algebra, C =  B  (H )  //C, 

where H  is a separable complex H ilbert space and /C is the compact operators. The question 

arises natura lly from the work of Weyl, von Neumann and Berg who showed that normal 

operators S and T  in B  (H )  w ill have the same lim it points in the ir spectrum if  and only if  

there is a compact operator K  such tha t S +  K  and T  are un ita rily  equivalent.

I Î  TT : B  (H )  —» C is the Calkin map, then i t  is clear tha t the essential spectrum of T, 

<%e (T) =  cr (tt ( T ) ) , is a unita ry invariant. Also i f  N  is normal in B  {H )  then a (vr {N ))  is 

the set of lim it points of the spectrum of N. Thus we see tha t the spectrum is a unitary 

invariant for elements of C tha t are determined by normal operators from B  (H).

Brown, Douglas and F illm ore considered all operators T  in B  (H )  tha t give rise to normal 

operators in C. These operators we w ill call essentially normal operators. W hile it  may be 

shown tha t some of these operators arise as compact perturbations of normals, not all of 

them do. An example of this would be of the unilateral shift operator S. l î  S =  N  +  K ,  w ith  

N  normal and K  compact, then the (Fredholm) index of 5, tha t is d im  ker 5  — dim  ker 5*, 

would be —1, which would say tha t index of N  is —1. B u t this is a contradiction since 

IIA  (h)|| =  II A *  (/i)l| for every h e H  which says tha t ker TV =  ker A *  and hence must have 

index 0. Brown, Douglas and F illm ore classified unita ry equivalence, in C, of essentially 

normal operators solely in  terms of the essential spectrum and the Fredholm index.

W ith  this motivation, we w ill now define the object of study in this section.

Note that we w ill say tha t A  is a separable C*-algebra i f  there is a fa ith fu l ^-representation 

of A  into B  ( H ) , where A  is a separable H ilbert space.

D e fin itio n  40 Suppose that A  is a separable C*algebra. We then define E x t  (A) to be 

t/ie egmw/ence classes o / /mth/uf o / A  W o  C, where the egmWeuce o/

faithful * -representations t \  and T2 are equivalent i f  there is a unitary U on H  such that 

T2 =  TT* (B ) T27T ( A ) . ITe de_^ne the aum o / two eguzmZemoe cW.;ea [ r i ]  4- [ r 2] =  [ f i  @ T2] .
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From Voiculescu’s generalization of the Weyl-von Neumann-Berg Theorem in [Voi6] 

E x t  w ill always have an identity. Thus E x t  (A) w ill always be a un ita l semigroup. Arveson 

proved that i f  A  is nuclear, then E x t  {A)  is a group.

T h e o re m  41 Suppose A  is a unital separable C*-algebra, a  G A u t  (M) such that 

T. E x t (G  (5^) ®  =  E x t (G  (5^ )) x E x t

.0. B x t (y4 Xo Z) is homotopg m w nou t.

Then the map a : E x t  {A  x „  Z) {E x t  (M)) x Z is injective.

P ro o f. Let vr : B  (A ) —̂ C (A ) be the Calkin map. Suppose r  is invertib le in E x t  {A  Z),

i.e. T : M Xq Z —> C (A )  is a ^-embedding, =  0 in E x t  {A) and in d  ( r  (A )) =  0, where 

A  is the unita ry conjugate as a in  M x „  Z.

We wish to show [r] =  0 in E x t  (M x „  Z ) . To see this we w ill begin by choosing a 

representation {p,v)  : M Xq, Z —> B  (A ) which is fa ith fu l. I t  then follows p ® I  =  p ® 

p ® p - ■ ■ , 10® !  =  and tt  o {p ® I )  are all fa ith fu l representations. Since

[r |^ ] =  0 and the representations T |_4 and vr o { p® I )  are un ita rily  equivalent, we find 

that [ t t  o (p ® /) ]  =  0. So w ithout of loss of generality we may assume T|_4 =  vr o  (p ® / )  . 

Let A  be a diagonal un ita ry in B  (A ) such that, a (A ) =  5^, 1 is in  the point spectrum 

of A  and A  =  diag (1 =  Ai, A2, A3, • • • ) where each A, has in fin ite  m ultip lic ity . Consider 

(g A  =  A iF  @ AgF @ AgF @ - and let

(̂  =  (p igi 7 ,1/ ® A )

=  (p, !/) @ (p, Agu) e  (p, Asz/) @ .

Since each (p, A a ) is fa ith fu l, it  follows tha t 5 is fa ith fu l and thus [vr o 5] =  0 in  E x t  (M x ^  Z). 

I t  w ill therefore be enough to show tha t [r  © ( t t  o <5)] =  0, since this equivalent to showing 

[r] =  0 in E x t  (M Xq Z) .

W ith  ind  ( t  (A )) =  0, we can find a A  in  B  (A ) such tha t tt (Â ) =  t  (A ) . Let A i =  

A  © (u ® A )  and IF  =  (r/ (gi 7) © (1/ g) 7 ), and consider the un ita ry  A iIF *  =  A  (z/ ® 7)* ©
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{ I  ® N ) . Then (A iIT * )  , tt o (p © is a fa ith fu l representation of C  (5^) 8  A and

ind  (tt {U \W *))  =  0. Since we know [tt o (p 8  I ) ]  =  0 in E x tA ,  then

[ 7 T ( A i I F * ) , 7 r o ( p 8  7 ) ]  =  0

in E x t  (C  (5 ^ )) 8  A, and therefore we can find a representation /? : C  (5^) 8  M —> B  (B )

such that TT o d =  (tt (B i W *) , tt o (p 8  / ) )  • We w ill w rite  /3 as , where X  e (3 (4.)'

and A  is a un ita ry on C  (5^) . Since (3 {A ) ' is a von Neumann algebra, there is a self adjoint 

T  in j3 {A ) ' such tha t A  =  Thus

7 r ( A i W * )  = 7 r ( e ' ^ )

=  e - m .

together w ith

TT ( / 3  ( M ) )  =  (TT O ( p  8 )  / ) )  ( p l )

and th a t the exponent is a norm  continuous function  gives us tt (T ) G (tt o (p 8  7)) (M )'. 

Hence tt (B iIT * )  =  and th is  im plies tt (B i ) =  e'Tr(T)^ ( IT ) .

We now define for 0 <  s <  1,

(Tg =  ©  (TT O J ) | ^ ^  , ( I T ) ^

which clearly defines a homotopic path from

and

(To =  ( ( l " ©  (7TO(^)|^j ,7 r ( M

=  ((T © (7T O (f)|^^  ,T ^

( T l  =  ©  ( T T  O  ^ ) j ^ ^  ,  e ' ^ ( ^ ) 7T  ( IT )

= (^T© (7TÔ )|̂ j ,7r(Al))

=  © (?r O  ,  T (A ) © T

=  r  ®  (tt o J ) .
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Therefore we [r  © ( t t  o 5)] =  0 and thus [r] =  0. ■

The following results follows from 41.

C o ro lla ry  42 E x t{C * {B {m , n)) =  Z  x Z, i f  m =  1 or n =  I..

3.5 K i ( B ( / , 5 ) ) .

The first notions of A -Theory arose in the setting of Grothendieck’s work on the Riemann- 

Roch theorem. A tiyah and Hirzebruch then developed A -Theory in  algebraic topology as 

a way to study vector bundles. Operator algebraists further generalized the A-Theory, 

setting i t  in a ’’ noncommutative” topological space.

Noncommutative spaces arise in a natural way. I f  A  is a compact Hausdorff space, 

then associated w ith  i t  is a commutative C*-algebra o f continuous functions on A . Since 

this relation is bijective, we can then view these spaces as the ’’ commutative” topological 

spaces. Replacing the commutative C*-algebra w ith  one tha t is noncommutative gives us 

a way to view noncommutative spaces.

In the context of algebraic topology, one considers first the A -group A q , and then by 

using the suspension is able to define the other A-groups. B o tt period ic ity lim its the need to 

define A-groups of higher order than six. For operator algebra’s, B o tt periodicity lim its us 

to just two groups Aq and K \ .  Furthermore, due to the properties inherent in C*-algebras, 

we can define K \  completely in terms of direct lim its, w ithout defining suspensions, A q  or 

the Grothendieck construction.

Suppose M is a unita l C*-algebra and n is a positive integer. Let Mn  (M) C B  (A ” ) 

be the C*-algebra of n x n matrices w ith  entries from A  and standard m atrix  operations 

and norm. Then let (M) be the un ita ry  elements of {A ) , and Un (x4.)o the connected 

component of the identity. We can define an embedding of the group Un {A)  ^  Un+i (4.) 

by

u
d o
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We then define Uoo (4.) to be the C*-algebraic direct lim it group (being ascending unions). 

Thus Uoo {A)  =  (71) ■ The distance given by the norm defines a natural topology on

Uoo (7 l) . We now w ill give a definition of K \  (M) .

D e f in it io n  43 Suppose A  is a unital C*-algebra. Then

(71) =  Aoc (71) /Aoc (7l)o

where Uoo (7i)o U the connected component of the identity. Note that when u is a unitary 

n X n matrix, [u] G K \  (A) denotes image of u in K \  (7l).

The following is a list of basic facts concerning Kp.

1. A i  is a functor from the category of un ita l C*-algebras w ith  un ita l *-homomorphisms 

as morphisms to the category of abelian groups.

2. For each unita l C*-algebra A, there is a canonical homomorphism k j , : U (A)

A i (7l) such tha t whenever tt : A  ^  B is a unita l ^-homomorphism and tt* : A i  (7l) —> 

A i (B) is the induced map, we have

T T *  O  n y T  =  K s  O ( 7r | j y ^ _ 4 ^ )  .

3. I f  C is the Calkin algebra, then K \  (C) =  (Z, 4-) and kq is the Fredholm index map.

4. A i ( 7 l© B )  =  A i ( .A ) © A i ( B ) .

W hile we are unable to  compute the K \  group exactly, we can say something about its 

structure.

T h e o re m  44 / /  7l =  B ( / ,  g) , then (U) has infinite order and generates a direct sum- 

maruf o/ A i (M.)

P ro o f. Let D  be a diagonal unita ry operator w ith  eigenvalues A i, A2 , • • • satisfying

/ (A t )  =  g (A t-n),
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and let S be the unilateral shift operator. We then have

5 V ( D ) 5  =  g (D ) .

The operator S is not unitary, but its image s in the Calkin algebra is unitary. Thus 

the elements s* and d (the image of D  in  the calkin algebra) satisfy the defining relations 

of B ( / ,  g) . Hence there is a unita l ^-homomorphism tt : 7 l —> C w ith  vr (A ) =  s* and 

TT (F ) =  d. However, 7t * ( k ^ ( A ) )  =  Kg(a*) =  ind {s*)  =  1. Thus vr* : K \ { A )  —» Z  is a 

surjective homomorphism, and the theorem now follows from elementary group theory, i.e.,

A i  (M) ~  (A) )  © keryr* ~ Z © k e r 7 r * .

3.6 Free E n trop y  D im en sion  and B(/,gf).

D. Voiculescu [Voil]-[Vol4] introduced the notion of free entropy and free entropy dimension 

in a fin ite  von Neumann algebra w ith  a fa ith fu l trace. Voiculescu and later Ce [Cel],[Ge2] 

and Ce and Shen [CS] used free entropy to solve many old open problems. We do not need 

to define the free entropy dimension (A4) of a von Neumann algebra M \  we need only 

quote a result of Hadwin [Hadl], which is a modification of a result of Ce and Shen [CS]. 

Here (Tp (H) denotes the p o i n t  s p e c t r u m  (i.e., set of eigenvalues) of the operator A .

P ro p o s it io n  45 Suppose M. is a fin ite von Neumann algebra, with faithfu l trace r ,  and M. 

is generated by a (finite or infin ite) sequence {T i,  Tg ,. . . }  of nonzero operators such that

1. W *  (T i) is hyperfinite

2. For each j  G N, there are normal elements A j ,  B j  G W *  ( { T i , . . .  , T j } )  such that, fo r  

j  =  1, 2 ,. . .,

(a) A jT j j^ i  =  T j+ \B j
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( b )  A j  a n d  B j  h a v e  n o  c o m m o n  e ig e n v a lu e s ,  i . e .  U p { A j )  r \ a p { B j )  =  0 .

Then { M )  <  1.

T h e o re m  46 I f  tt : M{ f , g )  M  is a unital * -homomorphism where M. is a I I \  factor

(% (F ) )  =  CTp (TT ( /  (F ) ) )  n CTp (TT (g (F ) ) )  =  0

t h e n  t h e  f r e e  e n t r o p y  d i m e n s i o n  o f  t t  {TB> { f , g))" i s  a t  m o s t  1 .

P ro o f. Let T i =  tTt- (F ) , T2 =  /  (TrT-(F)), T3 =  g (7T r(F ) ) , and £4 =  U. Since T2T1 =  T1T2, 

T3T1 =  TiTs, and T4T 2 =  Î 3T4 , the conditions of the preceding theorem are satisfied. ■

The following corollary was proved in [GS] (Ge-Shen)

C o ro lla ry  47 I f  M. is the von Neumann algebra generated by the left regular representation 

of B  (m, n ) , then Jq (A4) <  1.
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C hapter 4

Observation about Random

M atrices

In [Voi5] D. Voiculescu proved a theorem about the asymptotic freeness in the lim it as 

71 DO of a randomly chosen (w ith  respect to Haar measure) fc-tuple of t i x n unitary 

matrices, w ith  respect to the normalized trace T„on A4n (C) averaged w ith  respect to Haar 

measure. A  very elementary proof of this result was given by Dostal and Hadwin [DH]. In 

this section we show that Voiculescu’s result holds when Tn is replaced w ith  any state on

M ;, (C) .

Let Un denote the group of unita ry n x n matrices w ith  Haar measure / i„ .  I f  fc G N, let 

U f  denote the Cartesian product of k copies of and let denote the corresponding 

product measure. Let Ü =  ( u i , . . . ,  Uk) G U f]  then we can view u \ , . . .  ,Uk as matrix-valued

variables on Uf .  Voiculescu’s result concerns lim its  of expressions of the form

where I  <  s \ , .. ., Sm <  k and £ , . . . ,  G Z.

T h e o re m  48 Suppose p : M n  (C) —> C is a state and 1 <  s i , .. ., Sm <  ̂  o,nd £ , . . . ,  G

Z. T/ieu

/  T., ( 4  =  /  ' - - ^ 1%) ( 4  -

P ro o f. First we note tha t any linear functional p  on M n  (C) can be represented as

p  (T ) =  trace ( T K )

37
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for some unique n x n m atrix  K.  Saying tha t is a state is the same as saying that

A  >  0 and trace (K )  =  1. We can w rite  A  =  W D W ~ ^  w ith  W  E Un and D  a diagonal 

m atrix  w ith  nonnegative diagonal entries Pi, ■ ■ ■ ,Pn- Note tha t is the special case where 

- =  1/n. Let D j  be the diagonal n x n  m a trix  w ith  a 1 in  the diagonal entry

and 0 elsewhere. Then there is a unitary n x n  m a trix  Vj such tha t D j  =  VjD\Vf~^. Since 

is Haar measure, an integral h (u) dp!f {u) is unchanged when each Uj is replaced by 

üjUjbj ,  where a i, 6i , . . . ,  a^, 6  ̂ EUn-  I t  follows that

y, (u)

truce (iZ)

truce (u)

truce P )  d^^ (u)

truce d/r{; (u)

Z P j  /   ̂(ruce d^^ (u)

and, using the same reasoning, each of the integrals in the last sum, and thus the whole 

sum, equals

truce d^j{ ( u ) .

Hence the integral does not depend on A .
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