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ABSTRACT 

ON THE RAYLEIGH-BRILLOUIN SCATTERING IN AIR

by

Qiuhua Zheng 

University of New Hampshire, December, 2004 

GroundWinds lidar system is a high-spectral-resolution lidar system that can 

directly measure the Rayleigh-Brillouin scattering (RBS) spectra, from which the wind, 

temperature, and turbulence in the troposphere can be measured. Its transmitter is a 

double-frequency Nd-YAG laser at 532nm. Most of the data used in this research were 

taken on 31 July 2002.

A widely used mathematic model—the S6 model—is fitted to the measured RBS 

spectra. The discrepancies between the measured temperature from the Rayleigh- 

Brillouin spectra and from the radiosonde, combined with the discrepancies between the 

model and the measured RBS spectra, indicate that there is room for the S6 model to be 

improved. On the other hand, they also reveal that air turbulence information, which— 

along with the variance analysis—can be used in the turbulence measurements. The 

change in Rayleigh-Brillouin scattering spectra in fluids under external forces was 

theoretically investigated and can be used for acoustic wave detections, low-frequency 

plasma studies and other applications.

In addition, Rayleigh backscatter coefficients in air, for the first time, were 

measured using the molecular photometric returns. The measured molecular backscatter 

coefficients are approximately twice as large as their theoretical counteiparts. This could 

be related to the collective effects of air molecules, i.e., the scattering structure factor.

xiii
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CHAPTER 1

INTRODUCTION

1.1 The Problem

Rayleigh scattering is important in the analysis of chemical solutions, temperature 

measurements of flares, and other applications in physics, chemistry, and engineering. 

The blue sky and red sunset are a result of this phenomenon. The differential cross 

section for Rayleigh scattering in a homogenous gas can be calculated using 

electromagnetic theory, both classically and quantum mechanically. However, Rayleigh 

scattering spectra in many gas species, particularly when they are in the kinetic regime, 

are complicated. Things become more complicated when different gas species are 

present—as with Rayleigh scattering in air—because of depolarization (the scattered 

photons have a polarization different from that of incident photons) and inter-diffusion of 

the two species.

We will study a component of Rayleigh scattering, Brillouin scattering, using the 

GroundWinds lidar system. Rayleigh-Brillouin scattering spectra are difficult to measure 

because of the required spectral resolution. The emergence of laser technology in 1960s, 

however, has provided the necessary monochromatic radiation. Rough Rayleigh-Brillouin 

scattering spectra were measured (G. Fiocco 1968; Schwiesow R. 1981) with early lidar 

systems. The modem (GroundWinds) lidar system is able to acquire much better 

measurements of Rayleigh-Brillouin scattering spectra. .

1
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1.1.1 Rayleigh Scattering and Wind Measurement

When a monochromatic light beam propagates in the atmosphere at a frequency 

different from that of molecular and atomic transitions, it will be scattered by the 

molecules in its path. If the scattered light frequency is unchanged, we call this Rayleigh 

scattering. However, this is never exactly the case, because the scattered light always 

disperses in frequency. In addition, there are also two distinct shifted components arising, 

respectively, from stochastic pressure fluctuations in the atmosphere; these are known as 

the Stokes and anti-Stokes components. The scattering due to the pressure fluctuations 

can be viewed as a process in which the incident light is scattered by acoustic phonons. 

This is called Brillouin scattering.

E,
A

Figure 1.1 During a Rayleigh-Brillouin scattering process, an incident photon was 
scattered by a molecule. It is first absorbed by the molecule, induces a dipole electric field, 
and then reemitted at the same frequency. The differential cross-section is proportional to 

the fourth power of the incident photon frequency

2
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Young (1983) demonstrated that Brillouin scattering is a component of Rayleigh 

scattering, since Lord Rayleigh treated both of them in his celebrated work. Technically 

speaking, whenever we mention Rayleigh scattering or Rayleigh-Brillouin scattering 

(RBS), we are actually referring to the same phenomenon, although a distinction 

commonly exists in the vernacular of radiative transfer.

Figure 1.2 Wind velocity is determined by the Doppler shift between the unshifted 
Rayleigh-Brillouin scattering (RBS) model and the measured RBS spectrum. GroundWinds 
lidar is the first lidar system that provides a chance to directly measure the RBS spectra in

the air.

Dopper shift caused by wind

3
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Measuring tropospheric winds was the design goal for the GroundWinds 

instrument. The measurement of wind velocity by a. lidar system makes use of the 

Doppler effect (as shown in Figure 1.2). The bulk motion of a parcel of air molecules in 

the wind scatters the light systematically to a higher or lower frequency, depending on 

the wind direction. If we know the unshifted frequency, we can compare it to the 

spectrum produced by the wind. This simple idea as described below is complicated by 

the fact that the shape of the scattered spectrum is more complicated than the original 

monochromatic beam. Knowledge of the shape of the frequency dispersion for Raleigh 

and Brillouin scattering will allow better measurements of the wind velocity.

1.1.2 Three Scattering Regimes

Before we proceed to discuss Rayleigh-Brillouin scattering in the atmosphere, it is 

helpful to define three different scattering regimes by comparing the molecular mean free 

path to the wavelength of the light. If the mean free path of a scattering gas medium is 

much larger than the wavelength of the incident light (very tenuous gas), we say the 

scattering occurs in the Knudsen regime. In this regime, the Rayleigh scattering 

spectrum is approximately Gaussian, because the gas is collisionless with no collective 

effects. If the mean free path of the scattering gas medium is much smaller than the 

wavelength of the incident light (dense gases or liquids), we call this the hydrodynamic 

regime; in this case, the Rayleigh-Brillouin scattering spectrum is composed of three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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~  Knudsen regime s Hydrodynamic
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10aoi ai
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Figure 13 Three regimes are categorized by the kinetic parameter y, whose physical 
meaning is the ratio of the incident light wavelength and the mean free path of the 

scattering medium — for our purposes, the atmosphere

Lorentzians displaced by the corresponding sound velocity of the scattering medium. If 

the mean free path of the scattering gas medium is comparable to the wavelength o f the 

incident light, we call this the kinetic regime (pressure of 1 atm and lower); the 

Rayleigh-Brillouin scattering spectrum is a complicated mixture o f the Knudsen and 

hydrodynamic spectra. Figure 1.3 shows the three different spectra with respect to 

standard lidar wavelengths. The parameter y  is a dimensionless pressure quantity 

described in chapter 3.

5
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When a scattering process occurs in the Knudsen regime, it implies the scattering 

medium (gas) is dilute and the scattering spectrum is a Gaussian with a width determined 

by the average thermal speed, appropriately Doppler shifted by the bulk velocity. By 

contrast, the hydrodynamic regime applies to or very dense gases, The three-Lorentzian 

distribution (Figure 1.4) occurs. We don’t know exactly the RBS spectrum of the air 

because it is in the kinetic regime for visible, near infrared and near ultraviolet. What we 

do know is that the larger the kinetic parameter y is, the more structured the RBS spectra 

are. The light spectra in the Knudsen regime and the hydrodynamic regime are simple 

and can be described analytically. The equations that describe the processes in the 

hydrodynamic regime are mass conservation equation, momentum conservation (Navier- 

Stokes) equation and energy conservation equation. Unfortunately, the mean free path in 

the atmosphere is comparable to the wavelength for all lidar applications. Thus Rayleigh- 

Brillouin backscattering as a remote sensing probe of the atmosphere typically falls into 

the kinetic regime. In the kinetic regime, Boltzmann or Boltzman-like equations are 

necessary to describe the scattering phenomenon.

When Rayleigh first studied the elastic light scattering in the air (Rayleigh 1871; 

Rayleigh 1899), the Rayleigh line could not be resolved. Mandelshtam and Brillouin 

independently found that frequency of the scattered light was shifted by an amount 

proportional to the sound speed in air (Mandelshtam 1913; Brillouin 1922). After the 

discovery of Raman scattering (Raman, 1928), Gross (1930), in his studies on Raman 

scattering in liquids, discovered a triplet structure (ref. Figure 1.4). This triplet structure 

was later explained (Landau 1934) as two shifted Brillouin scattering peaks and one 

undisplaced part—the Gross line. Landau and Placzek (1934) also showed that, in

6
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liquids, the ratio of the outer Brillouin components to the intensity of the whole triplets is 

approximately the ratio of specific heats. They also claimed that the width of the Gross 

line, caused by non-propagating entropy fluctuations, was proportional to the thermal 

diffusivity of the scattering medium.

632 .8  i n
U its iilfted

P bo non Creation P ho non Annihilation

3 .8  GHz

Frequency
0 .0 50 52  cm

Figure 1.4 This is a typical Rayleigh-Brillouin Scattering spectrum in the hydrodynamic 
regime. A He-Ne laser with a 632.8 nm wavelength is beamed into the water and Benedek et 

al (1971) measured the Rayleigh-Brillouin scattering spectrum. The distance between the 
sideband peaks and the central peak depends on the sound velocity of water.
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1.1.3 Current Rayleigh-Brillouin Scattering Models

The Rayleigh-Brillouin scattering spectrum in the atmosphere has long been 

assumed to be a Gaussian by many researchers. That assumption is not correct; the 

molecular scattering spectrum in gases is more structured than previously considered. 

Since 1964, Yip (1964,1965,1967,1971) and his collaborators published a series of well- 

known papers on the Rayleigh-Brillouin scattering in rarefied gases. In these studies, they 

employed current kinetic theory and the BGK (1954) model to solve the linearized 

Boltzmann equation. They obtained a Rayleigh-Brillouin Scattering spectrum for 

monatomic gases, and showed that the RBS spectrum in monatomic gases with pressure 

below one bar had more structure than was commonly assumed. Tenti (1974) extended 

this research to molecular gases by making use of the linearized kinetic Wang-Chang and 

Ulenbeck (WCU) equation that includes molecular internal energies not considered in the 

earlier BGK model. Several experiments (May 1980, Sandoval 1976, Lao 1976) were 

conducted in the lab to verify this model with some molecular gases and the results 

showed a better fit to the data. However, among these verifications, there was apparently 

only one experiment in the literature conducted on nitrogen in the hydrodynamic regime 

and none under typical atmospheric conditions. Kattawar and Young (1983) concluded 

that Tenti’s S6 model (shown in Figure 1.5) is the best model available for atmospheric 

applications based on those experimental results. Since then the S6 model has not only 

been used in the Lidar measurements of atmospheric parameters but also applied to many 

other studies such as aerospace engineering researches (Fielding 2002; Xingguo Pan 

2002).

8
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Comparison of S6 model and Gaussian

0.6

y
«
i
t
n 0.4
e
t
n
I

0.2

1 2-2 ■1 0
FREQUENCY

Figure 1.5 Plot of the kinetic S6 model with a fitted Gaussian of the same area. There are 
two components on the ‘shoulder’ of the model compared to the Gaussian distribution

Kattawar and Young (1983) expressed two concerns about the kinetic S6 model. 

Firstly, air is a molecular mixture of nitrogen and oxygen rattier than a single molecular 

species. Secondly, there should be an incoherent scattering component due to molecular 

anisotropies. This part might be small -  less than 5 percent -- but it could affect some 

measurements. These two issues are not included or discussed in any current models. 

Kattawar and Young also raised some other problems with the kinetic S6 model. They 

then concluded that because of approximation in the S6 model it would be difficult to 

measure the temperature profile to better than 1 K. In addition, since neither the

9
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Boltzmann nor Boltzmann-like (such as WCU equation) equation can be solved 

analytically, any of the models we discussed here will be an approximation. Another 

important fact is that to date there is no lab experiment known that was performed on the 

two main species of the air—oxygen and nitrogen, either pure or mixed, under typical 

atmospheric conditions. Altogether, without a controlled laboratory experiment or, more 

importantly, atmospheric measurements on air, we cannot judge how these effects listed 

above will depart from the kinetic S6 model.

1.1.4 Light Transmission in the Atmosphere

Light transmission in the atmosphere is an important issue in space science 

research and atmospheric research. The turbulent atmosphere has a large effect on the 

backscattered signal. Rayleigh scattering, in which light is scattered by air molecules, 

therefore is important to light transmission studies.

The GroundWinds incoherent lidar system has more than twenty spectral channels 

for the lidar returns. This feature allows us to study the molecular backscatter coefficients 

which have been taken to be those predicted by classical electromagnetic theory (Yan 

2000; Chen 2002; Sicard 2002).

The attenuation of a light beam in the molecular air free of aerosols is determined 

by the Rayleigh scattering cross sections or molecular extinction coefficients. This was 

first calculated by Lord Rayleigh in 1880’s and later by Cabannes (1921), who included 

the effects of the anisotropy of gas molecules. Tabulations of Rayleigh scattering 

coefficients for different frequencies are based on electromagnetic theory (Penndorf

10
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1957; Bates 1984; Bucholtz 1995) and measurements of air anisotropies. One 

experimental measurement (Hans Naus 2000) was performed on nitrogen gas in the lab. 

However, so far there is not any experiment verification conducted on the real 

atmosphere. With the incoherent GroundWinds lidar systems, we are able to measure the 

backscatter and extinction coefficients for air.

1.2 Molecular Scattering Spectrum

Figure 1.6 Scattering components from laser illumination molecular gases (not to scale). 
For Nitrogen, Vibrational Raman accounts for about 0.1% of the total and 2000cm'1 away 
from the central. Rotational Raman raman lines accounts for 1-2% of the total and off by 
10-lOOcm'1 from the Cabannes line. The width of Rayleigh-Brillouin line: about 0.03-
0.04cm”.

Although we are only interested in Rayleigh-Brillouin scattering in the air, it is 

necessary to appreciate other molecular scattering processes. Moreover, these scattering 

processes are historically intertwined with Rayleigh scattering. When Lord Rayleigh 

treated light scattering in the air, Raman scattering and Brillouin scattering were still

Rotational Ram an lines

vtbrational Raman 
tine

Rayieigft-Britlouin tine
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unknown. Figure 1.6 shows a spectral distribution of molecular light scattering 

components. The spectral lines far outside are vibrational Raman lines. These are related 

to the vibrational energy of molecules. The Rayleigh-Brillouin line is located in the 

middle with its fine structure—three Lorentzians in hydrodynamic regime. Rotational 

Raman lines, in figure 1.6, are usually not far from elastic Rayleigh-Brillouin scattering 

line spectrally. Rotational Raman scattering is produced by rotational transitions o f the 

(diatomic) molecules during the scattering process. Normally the backscattered 

intensities of shifted Raman scattering components—including both translational and 

vibrational Raman scattering—are weak compared to the ‘‘unshifted” Rayleigh-Brillouin 

scattering (RBS) counterparts in the middle. This is because RBS intensity is proportional 

to the molecular polarizability while the intensities of Raman scatterings are proportional 

to the spatial gradient of molecular polarizability. For the main molecular species in air, 

such as nitrogen and oxygen, their polarizabilities are nearly uniform. Therefore the 

Raman scattering is a weak process compared to Rayleigh-Brillouin scattering, our 

interest in this study.

12
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1.3 W ind M easurem ents
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Figure 1.7 The atmosphere of the earth

13.1 The Atmosphere

A gaseous layer called the atmosphere surrounds the Earth. Scientists divide the 

atmosphere into several sub layers according to the temperature changes and gas motion. 

These are the troposphere, stratosphere, mesosphere and thermosphere. From the surface 

of the Earth to about 8-14 kilometers high is the troposphere. Almost all weather occurs

13
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here. The gases in this layer are relatively dense. The temperature decreases with altitude 

in this region. The lapse rate is about 8-12 K per kilometer. The temperature decrease 

halts at the tropopause, which divides the troposphere and the stratosphere. The 

tropopause and the troposphere together are called the lower atmosphere. This part of the 

atmosphere is important because it provides the basic constitutional needs o f  the life. As 

stated earlier, GroundWinds lidar system is a ground based lidar system whose main goal 

is to obtain better measurements of the wind velocity with the goal of improving the 

quality of weather forecasts. Its working region is mostly in the troposphere. So when 

‘the air’ or ‘the atmosphere’ is mentioned, we are referring to the lower atmosphere.

The air is mainly composed of nitrogen (78%), oxygen (21%) and argon (1%). 

Other than these, there is also some water vapor (0~5%), ozone and carbon dioxide. 

Among these components, nitrogen and oxygen are dual-atom molecular gases. They 

constitute 99% of dry air. Water, ozone and carbon dioxide are polyatomic molecular 

gases. In addition to these molecular and atomic gases, there is dust and molecular 

clusters named aerosols suspended in the air. These aerosols play a significant role in 

light scattering. The planetary boundary layer (PBL) of the atmosphere is rich in aerosols, 

many produced by the human activity. These aerosols enhance the scattering by air 

molecules most aerosols lie below the boundary layer.

1.3.2 The GroundWinds Lidar System

As the name suggests, a Doppler lidar system utilizes the Doppler shift to 

determine the wind velocities. Generally, a Doppler lidar system has four key elements:

14
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1) a laser system to generate the light source, 2) a transmitting telescope that sends the 

laser beam into the scattering media, 3) a receiver that includes a receiving telescope and 

related optical subsystems, and 4) a data acquisition system.

Basically, there are two types Doppler wind lidar systems: incoherent (Abreu 

1981; Chanin 1989; Tepley 1991; Flesia 1999; Gentry 2000) and coherent (Huffaker 

1966; Huffaker 1976; Kavaya 1989) Doppler wind lidar systems. Among the incoherent 

lidar systems, fringe imaging direct lidar system and double-edge lidar system are the 

most common wind lidar systems. For direct lidar measurements, molecular lidar 

measurements have many advantages over the aerosol lidar measurements (Fischer 1995; 

McKay 2000), since it is sensitive to the entire troposphere—not just the PBL. Double

edge method (Chanin 1989; Korb 1998; Flesia 1999; Gentry 2000) was also designed to 

be used in a direct molecular lidar system to measure the wind velocities.

The double-edge technology uses two edge filters on the two shoulders of the 

Rayleigh scattering spectra, respectively. The wind velocity can be deduced when the 

photometric returns in two channels are known. The knowledge of the shape of the 

Rayleigh-Brillouin scattering is crucial to this technology. GroundWinds lidar systems 

are also direct lidar systems. Except for coherent Doppler lidar systems, all the lidar 

systems mentioned above use either the whole or part of the Rayleigh-Brillouin 

backscattering spectra in the atmosphere. Therefore, a better understanding of the 

Rayleigh-Brillouin scattering in the air is critical to many lidar measurements as well as 

air dynamics.

15
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Figure 1.8 Direct detection Doppler lidar.

The GroundWinds lidar system is an incoherent lidar system. It makes use of a 

high spectral resolution Fabiy-Perot interferometer capable of detecting Doppler shifts of 

the backscattered signal that correspond to velocities less than 1 m/s. It also employs a 

CCD detector, which has a high detection quantum efficiency, and a Circle to Line 

Interferometer Optical system (CLIO), which converts the circular fringes from the 

Febry-Perot interferometer into a linear pattern.

The GroundWinds lidar system can be divided into three parts (see figure 1.8): 

laser system, telescope and detection system. A Nd:YAG laser is used as the probe 

source. The whole system works in the following way: The laser beam is transmitted to 

the air, the backscattered photons are gathered by the receiving telescope, then the 

photons guided through an optical system where the Fabry-Perot interferometer spreads

16
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these photons into a circular pattern; and finally, the expected signal coming from the 

CLIO is recorded by the CCD detector. If there are few aerosols, the recorded signal on 

the CCD is actually the Rayleigh-Brillouin spectrum from which the Doppler shifts, 

hence the wind velocity, can be calculated. However, the aerosol density in the boundary 

layer is usually high, so a strong aerosol signal is commonly seen superposed on the 

Rayleigh-Brillouin line.

Two slightly different lidar systems are used in GroundWinds project. Their laser 

wavelengths are different. The GroundWinds lidar system at Bartlett, NH makes use of a 

frequency-doulbed 532 nm Nd:YAG laser while the GroundWinds lidar system at Mauna 

Loa, HI makes use of a frequency-tripled Nd:YAG laser whose wavelength is 355nm. 

Since Brillouin scattering effects are more pronounced (Tenti 1974; Rye 1998) with a 

long wavelength laser, New Hampshire data were primarily used in the following data 

processing and related atmospheric researches.

Global wind measurements are of great importance in the study of meteorology 

and climate change (Atlas 1997; Baker 1998). The immediate, major benefit from wind 

measurements is the improvement of mid-term and long-term weather forecasts.

The GroundWinds lidar system was designed to measure the incoherent light 

backscattering spectrum in air. In real measurements, there are many factors that affect 

the line shape of the Rayleigh-Brillouin scattering. We need to know exactly how these 

factors will affect our measurements and if  so, how much and in what way they will 

change the line shape. To be clear, we should divide these factors into two categories. 

The first category includes all the effects that caused by the light source—the
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monochromatic laser beam. The second one includes all effects that caused by the 

atmospheric air, the probed gas medium.

Table 1.1 Type of Factors affecting Rayleigh Scattering in Air

Atmospheric cause Instrument and laser atom interaction

Mixed air Raman scattering

Turbulence broadening Resonance fluorescence

Aerosol Thermal blooming

Instrument broadening

Beam divergence and jitter

1.4 Objective of Research

The primary goal of this thesis is to study the Rayleigh-Brillouin scattering spectra in 

the air. This will be done through: the discrepancies between the mathematic model and 

real measurements and: the discrepancies between the measured temperature profiles by 

lidar and by radiosonde (balloon). We will use the measured RBS spectra to measure the 

temperature profile of the air and then evaluate the current mathematical models of RBS 

spectrum for diatomic molecules. From temperature profiling and variance analysis, wind 

turbulence can also be studied. A theoretical derivation of the change of the Rayleigh 

Brillouin scattering lineshape due to external forces or latent energy in the atmosphere 

will be presented for further analysis of RBS spectral data.

18
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In addition, we can use the photometric returns at different altitudes from molecular 

channels to, for the first time, measure the molecular backscatter coefficients in air.

1.5 Preview

In chapter 2 we are going to review the molecular scattering power spectrum from the 

basic Maxwell equations. To solve for a theoretical molecular scattering spectrum 

expression in the kinetic regime, we need to first find the connection between the 

Boltzmann distribution function f(r,v,t) of the model equation -  that is, from linearized 

Boltzmann or Boltzmann like equations -  and the electric field of the incident light of the 

Maxwell equations. The density correlation function G(r,t), invented by Van Gove for 

studying neutron scattering, is an appropriate candidate which, in the kinetic regime, 

renders the backscattering power spectrum in the atmosphere capable of expressing a 

space-time Fourier transformation of the Boltzmann distribution function. We also show 

that the molecular scattering spectrum is proportional to the Fourier transformation of the 

instantaneous density fluctuations.

In chapter 3, the molecular scattering spectrum is solved using the Navier-Stokes 

equation and the energy conservation equation in the hydrodynamic regime and the 

linearized Boltzmann equation for diatomic gases in the kinetic regime, respectively; the 

relation between equations of the two models in the two different regimes is also 

discussed. We show that the resulting Rayleigh-Brillouin scattering spectrum for the 

kinetic regime is composed of two parts: polarized Rayleigh-Brillouin scattering and 

depolarized Rayleigh-Brillouin scattering, with the depolarized part contributing a small
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portion of the total. Tenti’s kinetic model is discussed afterwards; pointing out that the 

model only includes the polarized part of the Rayleigh-Brillouin scattering.

In chapter 4, data analysis is performed and temperature retrieved using the S6 

model. The GroundWinds lidar system is first introduced; the main components and data 

acquisition method of the incoherent Doppler lidar system are discussed. The thermal 

blooming effect is analyzed afterwards. It is shown that thermal blooming is not an issue 

for the GroundWinds data products.

In chapter 5, Molecular backscatter coefficients for air are measured for the first

time.

In chapter 6, the Rayleigh-Brillouin scattering spectrum of air molecules subject 

to external forces is investigated theoretically by solving the corresponding linearized 

Boltzmann equation. This general case could be applied to Rayleigh-Brillouin scattering 

with a strong acoustic field and to the retrieval of the turbulence information and other 

forms of latent energy in the air.

20
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CHAPTER 2

RAYLEIGH-BRILLOUIN SCATTERING IN AIR

Rayleigh scattering spectra in dilute gases can be described with a Doppler shift 

and an assumed Maxwellian distribution of gas molecules (Loudon 2000). In this case the 

resulting Rayleigh line is a Gaussian, with a width determined by gas temperature. This 

model, however, is not rigorous because it ignores the specific gas properties, gas 

dynamics and molecular inner energy. Rayleigh scattering spectra should be understood 

from the perspective of gas dynamics (kinetics) and gas properties. For fluids and dense 

gases, Rayleigh scattering spectra can be computed from hydrodynamic equations, 

including the Navier-Stokes equation. The Rayleigh scattering spectra in the 

hydrodynamic regime were shown to be (Pecora 1964; Mountain 1966) the Fourier 

transform of density correlations. For dilute molecular gases (kinetic regime), 

hydrodynamic equations are not appropriate and in the kinetic regime, the kinetic 

Boltzmann equation should be employed to calculate the Rayleigh line shape.

Pecora (1964) showed that Rayleigh scattering spectrum, represented by S(k,a>) , 

is the Fourier transform of the density correlation function G(r,t) which was proposed 

by Van Hove (1954). In the hydrodynamic regime, the density correlation function is 

represented as an ensemble average of density correlations with respect to space ( r )  and 

time (f )•
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It is more complicated to calculate the Rayleigh scattering spectra in the kinetic 

regime. The connection between the density correlation function G(r,t) and the phase 

space distribution f{r ,v ,t)  in kinetic Boltzmann or Boltzmann-like equation is not 

obvious as it in the hydrodynamic regime. Their relationship was finally established by 

Van Leeuwen (1965). Therefore we are able to calculate the Rayleigh scattering spectrum 

from the kinetic equations.

Although the connection between Rayleigh scattering spectra and the kinetic 

equation has been established, solving the kinetic Boltzmann or Boltzmann equation is 

still difficult or impossible. Therefore one must first linearize it by assuming the 

scattering gas medium is near equilibrium.

To better understand Rayleigh scattering in molecular gases, we examine the 

Rayleigh spectra from the perspective of the kinetic Boltzmann equation and the 

hydrodynamic model equations. We include the hydrodynamic approach because it is 

simpler yet informative. Because the unshifted Rayleigh line and Brillouin lines are well 

separated, the physics behind the scattering phenomenon can be easily understood.

2.1 Rayleigh Scattering Spectra

Before proceeding to derive the expression for Rayleigh scattering, we should 

consider light scattering by a homogeneous distribution of gas atoms where the incident 

light is assumed to be a monochromatic laser beam with frequency ©. We further 

assumed the beam density is well defined and the beam does not suffer any absorptions 

or losses with laser atom interactions. If the atoms are uniformly distributed and the
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distance between any two atoms is larger than the wavelength of the incident light, then 

the components of the scattered field within a half-wavelength will cancel the counterpart 

one wavelength away. Thus there will be no scattering incurred and the incident light will 

go straight through the gas without any losses; the gas itself is 100% transparent.

However, in a molecular gas, optical inhomogeneities arise from statistical 

fluctuations of some physical quantities (e.g., pressure and temperature). This leads to the 

fluctuations of the dielectric constant s of the gas. Light is thus scattered.

The studies of spectra of light scattering in gases, from one perspective, are 

extensions of the studies of spectra of light scattering in solid states and liquids. It 

became necessary to know the exact spectrum of rarefied gases for many applications to 

the atmosphere after the invention of laser technology. People (G. Fiocco 1971; 

Schwiesow R. 1981) assumed a Gaussian line shape, based on a Doppler shift and 

Maxwellian distribution of gas molecules, to describe the Rayleigh-Brillouin scattering 

spectrum. In the 1960’s, Sidney Yip and his colleagues successfully proved that the 

density correlation function G(r,t) (where r is the position vector) as employed by Van 

Hove in 1954 to study neutron scattering, was related to the density distribution function 

/(r ,v ,r) in the linearized Boltzmann equation. The molecular scattering spectrum, 

represented by£(k,©), was shown to be the Fourier transform of G(r,t) by Komarov 

and Pecora (1963, 1964).

00
S(k,co) =  2R e  jd t  J d V  exp(z k- r -  (ot)G(rd) 2̂.i)

0
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In the following section, we will present a derivation obtaining equation (2.1).

2.1.1 The Relations Between Spectrum of Light Scattering in Gases and G(r,t)

We should consider the general case in which incident light is scattered by a 

group of neutral molecules. Assume that dielectric constant e  is a function of the local 

density p , which itself is a function of position r  and time t, i.e., s = E(p(r,f)). We shall 

then, following Pecora (1963) and Komarov (1964), use perturbation method to solve the 

Maxwell equations.

For the total electric field in the scattering process,

Here E is the sum of the incident light electric field E inc and the scattered electric 

field E Jc, E = Ejn<. + E Jf, D is the Maxwell displacement vector, D = eE . Equations (2.2) 

and (2.33) can be written as,

V x V x E  = - ( l / c 2)(52 D /dt2) (2.2)

where, because there are no free charges

V-D=0. (2.3)

(2.4)

and

V -(sE) = 0. (2.5)
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Expanding the electric field E in terms of the incident light electric field E 0 and higher 

orders term and assuming |EJC| «  |E0| :

The dielectric constant s can be expanded in a Taylor series around the average gas 

density, p0

Here we have assumed that the dielectric constant is a scalar, i.e., the tensor part of the 

instaneous dielectric constant is much smaller than the diagonal terms.

Substituting the two expressions (2.6) and (2.7) into (2.4) and (2.5) and 

comparing terms of equal order of magnitude, we obtain a series o f successive equations, 

one for each term in the expansion of the scattered field. The ones we are interested in are 

given below:

E — E q + Ej + E 2 + (2.6)

^(p) — 0̂ 1̂ ~ ^0 (^p)p0 (p Po) + • (2.7)

Zeroth order (the non-attenuated term):

(2 .8)

First order (scattering with no damping):

V2E Sq d2E, ^  1 d2(s ,E 0) VlV-e, E0)
1 c2 dt2 c2 dt2 en

(2.9)

Second order:
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V2 E s ° d E2 _ 1 d (s, E, + e2 E 0) V(V-(S| E l + s 2 E 0)) ^
2 c2 dt2 c2 dt2 sg

Equation (2.10) is a standard non-damping electromagnetic wave equation. Equation 

(2.9) is the first order scattered field vector due to first order density fluctuations or single 

scattering process. We only consider the zero-order and the first-order equations. The 

expression for E becomes,

E. = E n, E = E , .me 0 > sc *

The solution to the equation (2.8) is a plane wave propagating on the direction k,.:

E me = Eo exp(/k, • r -  /©,/) (2.11)

with

|k<| = 7c •

Here k, is the propagation vector of the incident light wave, ©, is its angular frequency,

and c is the velocity of light in vacuum.

To solve equation (2.9), it is easier if we use a Fourier transform representation of

E« 5 i-e-?

EJC(r ,0  = \\d td r2 (k / ,©/ )©xp(-i©/ /)exp(-zk/  r) (2.12)
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Where k r and a>f  are the wave vector and angular frequency of scattered wave,

respectively. Substituting into (2.11) and (2.12) into (2.9), and rearranging and we 

obtain,

E sc(k,w/ ) = ~ ^ ^ 7 eXP(/k/ R ) |*exp(ico / o | ^ 3 e x p ( ik r ) ^ [ e ,  (r,f)exp(-i<V)]

(2.13)

With

k = k i- k /  and |k,.| = |k/ |

Here vj/ is the angle between two propagating vectors k , and k ; . With the expression 

for the scattered field, the spectral density can be written as:

J(k,ffl/ ) = ~  |(E jc(* ,/')  • E'sc(k,t’+o)exp(i(at)dt (2.14)

or equivalently

/(k ,© /) = |^E*(k,OE(k,T)exp[/o)/ (t - 1)] = —■
w  l v 2  y t y  X

Here T denotes a time period o f integration and is assumed to be much greater than the 

coherence time of the scattered light.
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The angular brackets in the above expression denote a correlation of two field 

vectors at different time, which is an ensemble average of the electric field. As we stated 

earlier, the whole system we consider here is close to equilibrium. The Ergodic theory in 

the statistical mechanics implies,

{Esc (k ,f  ) • e ;c (k,t + 0 ) = <E„ (k,0) • e ;  (k,o) (2.15)

Using equations (2.13), (2.14) and (2.15), we obtained the scattered power spectrum 

7(k,cof ) = JdfexpO'ay)* J r/V  Jr/V exp(/k- ( r -  r")l

The number density may be written as a summation of Dirac delta functions

p(r,0  = i ;S [ r - r . ( 0 ]  (2.17)
/=!

where r7 (t) is the position of the j*  molecule at time t, and the sum is taken over all 

molecules in the system.

Replacing p(r,t) in equation (2.7) by the expression (2.17)
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Substituting (2.18) into (2.16), we get

/(k,©, N 2 ( 8s^ 2 • 2 sm \\i
R 2 (dp j no 32nV

P ~ P o

d 4
7

N  N

x ( S Z exp [ - ik  (ry (°) -  r/ (O ]-(27t)36(k)p02F  )exp(-zco0O
i i

(2.19)

The density correlation function proposed by Van Hove (1954) is 

G(r, 0 = ^  J< X  X exp {- i k [r.(0> -  r,(r)l> exp( - i  k r)d3k

(2 .20)

where N  is the number of total scattering particles. The angular brackets ■ •) indicate an 

ensemble average over the initial states of the system. Generally G(r,t) is complex and 

has no simple physical meaning (Van Hove, 1958). However, when considered in 

classical terms, it gives the probability per unit volume o f finding an atom resides at 

position r  and time t provided an atom at the origin at / = 0 . These two atoms cannot be
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the same one. We will discuss more about G(r,f) in the following sections of this 

chapter.

The inverse Fourier transform representation of G(r,<) is:

F(k,0 =< X  Z  exp{-* k b  (0) -  ri <0j >= N  JG(r,OexpO k r ) J V . (2.21)
j t

Rewriting equation (2.19) by making use of the expression (2.21), we obtain

/(k ,© ,) = lE«
R 2

sm i|/
ydpj  32n3c\  r y p=Po

| dr3 exp(ik r)^j-{wG (r,0 -  p02F]exp(-ia>,/)} 
J ot

(2 .22)

In most cases the G(r,t) function will vary slowly compared to the frequency of the

incident electromagnetic wave ( IQ14 ~ 1015 Hz). Therefore we can treat the density 

correlation function G(r,t) as a constant and remove it from the time derivative

fwG(r,/) -  p02V]exp(-ico,t)}* [wG(r,/) -  p/rJ^-lexpH co,./)}
ot

(2.23)

Using this approximation and knowing that N  = p QV , we obtain the spectral density
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(2.24)

This equation shows that the scattering spectrum is simply the space-time Fourier 

transform of the density correlation G(r,t) .

2.1.2 The Van Hove Space-Time Density Correlation Function G(r,t)

The density correlation function, proposed by Van Hove (1954), was defined by 

expression (2.19). With the help of the convolution formulae for the Fourier transform, 

we obtain an equivalent form of equation (2.19):

G(r,t) = J d r 'S ( r+ r .(0 ) - r )5 ( r '- r /(0) (2.25)

(• • ■) stands for ensemble average of the initial state. For long times and large r , the

density correlation function G(r,t) reduces to the autocorrelated density

(2.26)
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Since the spectra density of the light scattering in gases is just a Fourier transform of 

G(r,t) , we can obtain the power spectrum S(k,ro) using equation (2.26).

5(k,®) qc /(k,co) cc (pf k,0)p(k,co) = (p* (k,o)p(k,©)) (2.27)

However, since we have assumed long times and large r (or large collision frequency) in 

the derivation of (2.26), the power spectrum representation in (2.27) can only be used in 

the hydrodynamic regime in which the gas medium must be dense. This implies that the 

collision time of the gas molecules must be much less than the light pulse and the mean 

free path must be much shorter than the incident light wavelength.

In the kinetic regime, the light wavelength is comparable to the mean free path of 

the gas molecules; thus the expression (2.27) cannot be used in general. Sidney et al. 

(1964) solved this problem by successfully linking the density correlation function 

G(r,t) with the linearized Boltzmann-like equations. Therefore if we can solve the 

related linearized Boltzmann-like equations, we can obtain G(r,t) hence the spectrum of 

light scattering S(k,©)(ref. Equation 2.24), in which the information about the density 

fluctuations is contained.

In a rarefied gas such as air, where the system deviates only slightly from 

equilibrium, it can be described by a kinetic equation such as Boltzmann equation. To 

explain the connection between G(r,t) and the linearized Boltzmann-like equations, we 

use a simplified kinetic equation proposed by Bhatnagar, Gross and Krook (1954) to 

describe a monatomic dilute gas. The equation satisfies mass, energy and momentum 

conservation as well as the Boltzmann H theorem, which states that the total entropy of a
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closed system increases with time. The kinetic equation BGK used to treat the monatomic 

neutral gas is (Bhatnagar 1954):

dt
+ v-V A(r,v,t) = a -v-q(r,r) + vl _ 2

2 2 V ” 0  J

t( r ,0

(2.28)

where h(r,v,t) is the distribution of density fluctuation from p0. Others are defined as

follows:

/o(v) = Orv02r 3,2exp(-v2/v02),

v _ WK
V M  ’

q(r,/)= Jrf3vvA(r,v,/), (2.29)

p (iy )=  \ d lvh(r,\,t),

r o' !T(r,0 = ld3w 2/j(r,v,0- Z(r,t)
3v0
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where M is the atomic mass, kB is the Boltzmann constant, T0 is the equilibrium 

temperature of the gas, and x is the deviation of the temperature T, r = T  / T0 - 1. a  is 

uniform collision frequency. We consider one particle sitting at the origin at t = 0 , i.e.

A(r,v,0) = S(r). (2.30)

Now, bearing in mind that G(r,f) is the density correlation function describes 

relationship between one particle at origin and another particle was found at r  after a 

specific time gap t. Now we assert

G(r,t) = (p(r,t) + l)p0 = ( j d 3vh(r,v,t) + l)p0 (2.31)

since the two quantities have the same physical meaning. So we can solve the groups of 

equations (2.28), (2.29), (2.30) and (2.31) for the expected G(r,t) .

From equations (2.24), (2.27) and (2.31), one can easily tell that the power 

spectrum 5(k,o)), in the kinetic regime, is proportional to the Fourier transform of the 

instantaneous change of the gas densities. It seems the scattering spectra from the kinetic 

Boltzmann equation is different from the power spectrum—we got in equation (2.27)—in 

which 5'(k,fi)) is proportional to the square of the Fourier transform of the instantaneous 

change of gas density, for the hydrodynamic instances. However, it is not true; the 

ensemble average of the initial state will average out one 8p(k,®), the scattering 

spectrum in the hydrodynamic regime is still proportional to 8p(k,w), Fourier transform 

of the instantaneous change of the gas density.
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CHAPTER 3

MODELING OF RAYLEIGH-BRILLOUIN SCATTERING SPECTRUM

3.1 Hydrodynamics Approach -  Rayleigh-Brillouin Scattering

In last section we derived an expression for the spectrum of light scattering in 

gases. Rayleigh-Brillouin scattering spectrum in the gases can be divided into two 

categories: 1) when light is scattered by the dilute gases, i.e., in the kinetic regime, a 

linearized Boltzmann or Boltzmann-like equation should be used to calculate the 

spectrum; 2) when light was scattered by the dense gas, the model equations for the 

Rayleigh-Brillouin scattering spectra are a group of hydrodynamic equations; although 

the kinetic Boltzmann equation can still be used in this regime, the hydrodynamic 

equations provide a simpler picture of the physics in Rayleigh-Brillouin scattering. It is 

therefore a better choice for us to discuss Rayleigh-Brillouin scattering in the 

hydrodynamic regime first before we have to deal with the more sophisticated kinetic 

equations in the kinetic regime.

From Chapter 2, we learned that the scattered density spectra is a function of the 

dielectric constant, i.e.,

(3-1)
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In order to calculate the scattering spectrum, we need to evaluate the instantaneous 

dielectric constant. We take the density p and temperature T as the independent 

thermodynamic variables and express the instantaneous change of the dielectric constant 

as

As = — )T Ap + — -)p T (3.2)
dp dT 9

Fabelinskii (1968) estimated that the dielectric constant typically depends much more 

strongly on density than on temperature (less than 2%); therefore we can use the 

following expression:

As = — )Ap. (3.3)
ap

Now the problem has changed to evaluate the instantaneous change of density. We 

choose the entropy S  and pressure P  as our independent thermodynamic variables. We 

then have,

Ap = — )s AP + — )» A S . (3.4)
d P s dS

The first term on the right hand side describes adiabatic density fluctuations, that is, 

undamped acoustic wave that produce Brillouin scattering. The last term on the right
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hand side describes isobaric density fluctuations (entropy fluctuations) and accounts for 

unshifted Gross line. We will see that these two parts lead to different spectral 

distributions of the scattered light because the equations of motion for pressure and 

entropy are different: for AP , the equation of motion is a damped acoustic wave 

equation; for AS , the corresponding equation of motion is a diffusion equation. A 

Rayleigh-Brillouin spectrum in the hydrodynamic regime is shown in Figure 3.2.

If the incident light electric field represented by E 0(r,t) and the scattered light 

electric field is E^ ( r , f ) , we set

Esc S E 0(|>(r,0 (3.5)

From section 2.1 we know that </>{t) has the following properties:

<t>(r,0 oc Ae qc AP(r,t) (3.6)

Then the Stokes equation of motion for a pressure wave propagating in liquids is shown 

to be (Fabelinskii 1997)

M _ r v 2- ^ - v J2V2<() = 0 (3.7)
d t1 at 1

or
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i ^ . _ r V 2 ^ ^ - v j 2V 2 ( A P )  =  0  ( 3 . 8 )
d t2 dt s x f

by making use of the expression (3.6). Here F is the acoustic wave damping constant, 

denotes the velocity of sounds, which is

v. ’ = 7 T > , - £  (3'9)dp p

for ideal gases.

To solve a wave equation like equation (3.7), a common used method is to set

<j> = <(>0 exp(i q- r -  Qt) +c.c. (3.9)

For convenience, we assume the scattered wave is propagating along the z-axis, 

4> = <!>q exp(iqz -  Qt) +c.c. (3.10)

Substituting (3.10) into (3.7), we get a dispersion relation for Q ,

Q 2 = q 2( v 2 -iQ F ) ' (3.11)

The solution to equation (3.7) is of the form

= Y j expO '^M O  (3.12a)

w ith
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Tq2q/(t) = ^(0) exp(— ^ —t)cosQ.t (3.12b)

The power spectrum related to (3.12) is

/(CD) oc E02 J (ip (0 )i|/(f ))exp(-zcof)cfr =  E 21 T [Z* ) j~^  T 2 ■
o ( CD—O j + F ^ C D

(3.13)

If Tq2 « Q  then

i s  \  A  1 Tq2121(a)  oc A- —  r j ------— — . ( 3 . 1 4 )
* (co-fi)2+ r y / 4

From (3.11) Q = qvs . This is a shifted Lorentzian distribution with a width equals to 

Tq 2. This is the Stokes part of the Brillouin scattering.

k

Figure 3.1 Relationship between q , k and k K

If the incident light wave vector and frequency arek and the scattered light wave 

field wave vector is k sc, they are differed by the vector q because the light photons were 

scattered by the propagating pressure wave (see figure 3.1). So we have

q = k —k K, |k| = | k j  = — . (3.15)
c
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n is the refractive index. Since Q = qvs and q has to satisfy

q = 2 |k |sin(|) (3.16)

according to the geometry and configuration in figure 3.3. Combining (3.11), (3.15) and 

(3.16), we obtain

v 0
fi = 2«co— sin(—) (3.17)

c 2

As we have shown in (3.14), due to the attenuation of the acoustic wave, the scattered 

light is not monochromatic but has a spread power spectrum.

The equation of motion for the entropy fluctuations are described by a diffusion 

equation, which is,

Pcp ^ - kV 2S = 0. (3.18)
at

Here cp is the specific heat at constant pressure for the gas, k  is the thermal 

conductivity. It is easy to solve this equation. A solution is

S = SQ+ £(0)exp(— t) exp(i q- r), (3.19)
P°p

where S0 is the average entropy.

The corresponding spectrum is simply the Fourier transform of (3.19)

/(a>) = / ,  , . (3.20)
o r +(Kq l pcp)
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Figure 3.2 Representation of molecular light scattering spectrum.
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It is also a Lorentzian distribution but it is not shifted. This forms the Rayleigh central 

line.

We have known so far that the Rayleigh-Brillouin scattering in dense gases or 

liquids is due to entropy fluctuations that account for the unshifted Rayleigh line (also 

Gross line). Pressure fluctuations (i.e., acoustic wave) account for the Brillouin side 

bands. We now switch to a more rigorous and general theoretical model that can be 

applied on spontaneous Rayleigh-Brillouin scattering and stimulated Rayleigh-Brillouin 

scattering. We will only develop a theoretical model for spontaneous Rayleigh-Brillouin 

scattering here because it is our interest. However, this model can be easily extended into 

one for the stimulated Rayleigh-Brillouin scattering.

This model is based on three hydrodynamic equations. They are the equation of 

mass, momentum, and energy conservation, respectively:

(3.21a)

(3.21b)

(3.21c)

1 i3o
Here tjs is the shear viscosity, £ is the bulk viscosity and p =  )p is the thermal

p dT

expansion coefficient. No damping of wave energy was assumed in equation (3.21). As 

we can see, there are four unknowns in the three equations: p , T, P  and u . Taking the 

pressure as a function of density and temperature, we have,

42

dt
p + pV-ii+u- Vp = 0

p ~ -  + p(u- V)u = -V P  + ( j t i  + )v(v ■ u ) - n,v  x (v x u)

pCv ^  + pCv(u • VP) + pCv(-̂ ——-)(V -u)=  k V 2jT .
at p
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From statistical mechanics, we know

8P \ l ^ P  ̂ 1 2
— ) t = — — ) s = - v ,  (3.23)
op y op y

and

3PX 1 3 i \  3p. p 2
~ P ^  PT f  _ V-S Po • (3.24)OF y dp dT y

Substituting into (3.22), we obtain an expression for the pressure P  in terms of p , T,

2

P = — (P + $P0T) (3.25)
y

The fundamental idea to solve equations (3.21) is to assume small density perturbation. 

The three equations can then be linearized. We take

P  =  P o + P i Pi « Po (3.26a)

T = T0 +T} Ty « T0 (3.26b)

P = P0 +pi P, « P 0- (3.26c)
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Each symbol with subscript zero represents the local average of the thermodynamic 

variable it stands for. They are all constants. Thus equation (3.25) can be rewritten as

2

=  — (Pi + P p 07i) (3 -2 7 )
y

Substituting equations (3.26) and (3.27) into the three hydrodynamic equations (3.21), we 

obtain a group of linearized mass, momentum and energy conservation equations:

~ L + P0V-u = 0
at

(3.28a)

Po ^ — v p ,  +  £ ^ - v r 1 ~ ( U , +  m ( v - « )  =  o
dt y y 3

(3.28b)

P<A ~  + Po ^ ( V  • « ) -  kV 2Tt = 0 (3.28c)

Bearing in mind that we are pursuing an expression of density, i.e., the solution of p , . To 

do this, we need first to eliminate variable u by taking the divergence of equation (3.28b) 

then substitute (3.28a) to (3.28b) and (3.29c) to get two equations for p, and 7]. We get

\

—V2 = 0  (3.29a)
~2 2 o  2 f 7 * 1 , + S
0 Pi ^ v Jp, - i L _

1 1  Pod t 2 I dt

p0cv —  Tt -  kV2T} -   = 0
0 v d t  ' 1 p  d t

(3.29b)
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We notice that equation (3.29a) is a damped wave equation for density variation 

p, with a coupled term of temperature Tt while equation (3.29b) is a diffusion equation 

of temperature (entropy) 7j with a coupled term of density p ,. The difference between 

equations (3.29a,b) and equations (3.8), (3.18) is that the two equations o f (3.29) have 

additional coupled terms.

Some properties, e.g. dispersion relations, can be estimated by assuming both 

p and 7j have a plane wave description. Nonetheless, to obtain an explicit solution of

p , we must include the initial conditions. A common but effective method is to apply 

the Fourier-Laplace transform on the two unknown variables, i.e.,

p (M ) = j d  r  J" dtexp(-ik- r)exp(-st)p, (r,t) (3.30a)

m

r(k ,5) = Jc? r  Jefrexp(-z k- r)exp(-sf)jr, (r,t) (3.30b)
o

Substituting (3.30) into (3.29), we obtain

t v ,‘k> t (4/3 p(k,^) + ' v . W r(k,j) = P(k,0)r ( 4 / 3 n , + ^ 2s ls -i---------------------
y Po J Y L Po J

X 'M k p(k»i) + [p0cv5 + id:2]r(k ,s) = -p(k ,0) p0cvr(k ,0)

(3-31)
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The solution to eqution (3.31) for p(k,s) is

p (M ) = P(k,0)
s 2 + (a + b)k2 $ + abk4 + v,2[(y-l)/y]fc2

(3.32)
s 3 +(a + b)k2s 2 +(k2v 2 + abk4)s + ak4vs2 / y

The new symbols are

Ka =
Poc v

and

A _ 4/3x1, 

Po

We have discarded one addition term of r(k,0)on the right hand side of (3.32) because 

we have been assuming that density and temperature are independent in the whole 

derivation. The derivation of the inverse Laplace transform of p(k,s) is tricky and 

lengthy (Mountain 1966). However, after some approximations being made during the 

inverse process, the result is:

t + —®%$(-Yk2t)cm(vskt) (3.33)

where

(3.34)
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is often called the acoustic attenuation coefficients. The spectrum, using the result in 

chapter 2, can be obtained as follows:

co

S(k,co) = 2 Re Jc//exp(z'cof) p̂*(k>0)p(k,/)^

= (p (-k ,0)p(k,0)>
y -1  k l p 0c l

F + —
y co + ( k±  / p 0cp) y

Tk2 T k2
- +  -

((o + k v j  +(Tk2)2 ( t o - k v j  +(Tk2)2 
Doppler shift

(3-35)

It appears that the whole spectrum is composed of three Lorentzian distributions. The 

first term within the braces on the right hand side of expressure (3.35) is identified as the 

Rayleigh line. The left two terms are the Brillouin doublet; the first one of the Brillouin 

terms is called anti-Stokes Brillouin scattering part and the second one is the Stokes part. 

The area under the unshfited Rayleigh line I R and the area under the Brillouin sidebands 

I B have a well-known relationship: the ratio of I R and I B is a constant, i.e.,

21B 1- A  = ----------------------------------------------------------------- (3.36)
i R y - i

which is called Landau-Placzek ratio.
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3.2 The Kinetic Approach of Rayleigh-Brillouin Scattering

For gases, when the gas density is not too dense, the Boltzmann equation turns out 

to be appropriate to describe the gas kinetics. However, there are several issues on the 

Boltzmann equation: First, the Boltzmann equation cannot be solved analytically; second, 

Boltzmann equation has its limitation because it assumes the gas cannot be too dense 

because only binary collisions between gas molecules are taken into account. Because of 

this, researchers have been using the linearized Boltzmann equation and other 

Boltzmann-like kinetic equations to describe Rayleigh-Brillouin scattering in gases.

We assume the gas is just a little off from the equilibrium state, so we can use the 

linearized Boltzmann equation in our application to the gas. The kinetic theory for the 

dilute gases is complicated so our approach below employs perturbation theory, as in 

quantum mechanics. We can easily see the many important properties of the linearized 

Boltzmann equation without even knowing the exact form of the collision operator.

3.2.1 Linearized Boltzmann Equation

We first treat the case in which the gas is monatomic; therefore we don’t need to 

include the internal effects of the molecules such as rotational effects. So the distribution 

function in the Boltzmann equation is just a function of time, position and velocity, i.e.,

f  = f(t,v,r).
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Generally, the linearized Boltzmann equation reads,

—  + v- V / + a- V /  = —
*  & r a / ,

or explicitly

| ^  + v-V / + a- Vv/  = « | J p 3v, £ KdQ J[ct(v ,9) v re/® /° (v ,) [ /(v ')  + / ( v j ) -  / ( v ) -  / ( v , )]
CO

(3.37)

Here, cy(vre/,0) is the collision cross section. v rW is the relative velocity of the colliding 

particles:

VrW ~ V— V1 • (3.38)

Figure 3.3 Two molecules/atoms colliding process
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In the case where there is no external force, i.e. at = 0 , we obtained from equation (3.37) 

the following equation,

| - + v . V /  = n J J p 3v1| V f i | ta (v ,e)v re/. / ° ( v 1) |/ ( v f) + / ( v ; ) - / ( v ) - / ( v 1)] = ii:/
dt 

(3.39)

The right hand side of this equation defines a linear integro-differential operator K . K  

is usually called the linearized collision operator.

3.2.2 Homogeneous Case

For the sake of simplicity, we first assume /  = f ( v , t ) ;  it is independent of r  for 

a homogeneous case. Further, we assume the distribution function to be of the form,

r
/  = / > ) [ l  + A(v,0]

Small nerturbation

(3.40)

Where /° (v )  is the Maxwellion equilibrium distribution,

/ > )  = m
2nKBT j

exp f  mv2  ̂
I K J j

(3-41)

Substituting (3.40) and (3.41) into equation (3.39), and remembering that /  is only 

function of vand /,
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—  = Kh (3.42)
dt

We define an inner product (hA ,hB) of two real functions of v by

(hA,hB)= J £3r f v /0(v )^ (v )M v ). (3.43)

Where E3 denotes the three-dimensional Euclid space. One can to prove that the operator 

K is self-adjoint:

(hA,KhB)=(KhA,hB) (3.44)

An important consequence follows from a self-adjoint operator is that K  has real 

eigenvalues. Therefore, let <J>„(v) be the eigenfunction and Xn be the corresponding 

eigenvalue of K, we have

K®n =An<t>„, . (3.45)

where is a real function and a discrete <E> was assumed for simplicity. <t>n is 

normalized as follows,

j r f v / 0(v)|O)n|2= l .  (3.46)
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The function {<t\} form a complete orthogonal basis over the interval (0,oo),

(€»„9€ » J = p v 4 > n<Dm/° (v ) = 0. (3-47)

It has been proved that Xn = 0 is an eigenvalue (From the Boltzmann H theorem, all

homogeous, it is not surprising one of the linearized collision operator K  ’s eigenvalues 

is zero that corresponds to collisionless gas. It is degenerate and has five eigenfunctions: 

a constant, three components of velocity, and kinetic energy. Since we are dealing with 

the case in which the wavelength of the incident light is large (This will be clearer in the 

next part), they are, in feet, five hydrodynamic modes that correspond to the conservation 

of mass, momentum and energy. For an ideal monatomic gas an orthonomal set of 

eigenfunctions can be written as:

other eigenvalues have to be negative). In fact, since we have assumed the gas is

A ,  =  0 <D, =1

v.X

x3 =o vy

x 4 =o
( \ % m

v.
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As - 0 0>5 = r2s K
+

f  \m v2
u .1 2, {2 K bT )

V

( 3 . 4 8 )

3 . 2 . 3  Inhomogeneous Case

Since the distribution function is now a function of position so:

f  = = /°(v)[l + A(r, v,*)] (3.49)

Do the same as what we did in part 1), we get

dh dh v ,—  + v .-----= Kh
dt ' cbc,

( 3 . 5 0 )

We take the Fourier transform of equation (3.50),

d'h + iq - \h  = K/i(/,q,v) . ( 3 . 5 1 )

i f W  are the eigenfunctions of operator K - i q - y , we have

(K - iq -v K (v )  = ^ ( v ) . (3.52)
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Still, K - i q-v satisfies

( h A , [ K - iq- vjfc,) =  ( [ K -  iq v jfc ,, h B) ,  (3 .5 3 )

but it is no longer Hermitian.

Suppose q  is small which means that the wavelength is very large and we 

consider ( - i q -  v) as a small perturbation and for simplicity, q  vector is aligned on the x-

axis. Let X = Xi0) + X(I) + X(2) h— , then we have

(3.54)

with

5

W = Y  a 0) . (3.55)n /  j nm m \  /
m=\

Substituting (3.55) into (3.54) and knowing that, K<b„ = 0 , we obtained a set of algebraic 

equations,

5 _

- i H & j m a n n , = ^ a nj > • • • • • • j = l  v ■ • 5 , n = l , . . . 5   (3 .5 6 )
m=\

where &Jm = jd v f0(v)<Dy(v)qvx<£>m(v) .
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Using the eigen-functions, we got in part (2.1). The determinant of the coefficients matrix 

must be 0 to ensure non-trivial solutions of anm,

-X -iqu 0 0 0

-iqu - X 0 0 -- 4 f ) V
0 0 - X 0 0

0 0 0 - X 0

0 - i f f i q u 0 0 - X

0,

(3.57)

( k g T Y 2 
Here u -  - s—

\  m

Finally, we got

= +iqvs , 'Fj = 2-1/2[(|),/20)] - 0>2 + (f)1/2<I>5

K
> II 1 f T 2 = 2-1/2[(})1/2<D, +<D2 + (f)1/205

II O ¥ 3= ® , ,

-S
* II o * II e

A.j  = 0  , T 5= ( | ) 1/2[-<D1+ ( D i/2(D5]

(3.58)

with

(s
i=\3 m )
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This is actually the velocity of sound of an ideal monatomic gas. Remember we 

have assumed the gas was ideal and monatomic at the beginning. For more general case, 

we can choose different coefficients for the homogeneous eigenfunctions and make sure 

it is still orthonormal. Then we can go over part 2) and get a set of eigenfunctions:

1^+ iqV s,

K  =-iqvs, 

I ,  = o ,

* 4 = 0 ,

£ 5 = o ,

1

% = { c j c p) 1 / 2 i +(cp/cvy i2vxiu+^ =E - E  
E

V 2=(CV/C ,) 1/2

% = v y lu,

% = ( c v/cp)U2 E - E

(3.59)

where E  = —mv ; E  = cvT . cp and cv are the specific heats at constant pressure and

constant volume respectively; the sound velocity now is defined as

s M
(3.60)

The eigenfunctions constitute a properly normalized set of mutually orthogonal 

functions. To this extent, there are still three degenerate states where the eigenvalues 

equal zero.
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We can tell from above results that the first two modes are traveling with the 

velocity of sounds. There are three stationary hydrodynamic modes. If we go further to 

the second perturbation order, which we will show in the next, there will be damping 

effects in the first two traveling modes that are reflected in the power spectrum and 

correspond to the Brillouin scattering sidebands.

So far we have treated the homogeneous case and the inhomogeneous case using 

perturbative methods without considering the internal structure of molecules. Now we 

shall consider an ideal diatomic gas in which only the rotational and translational degree 

are allowed.

3.2.4 Diatomic Gases

For the case of light scattering by gas molecules, the scattering spectrum is well 

described by the Fourier transform of the density correlation function G (|r- r '| , f ) :

f  (®»q)°°Re(e,,i24eue2m \ \d rd tG iklm exp(i(ot -  iq- r ) ) . (3.61)

Here, e , , e2 are unit vectors of the polarizations of the incident light photons and 

scattered light photons, respectively.

Since we include the rotational freedom of molecules, the distribution function 

now becomes,

/  = / ( / ,  r ,v ,J ) . (3.62)
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The new variable J  = J(n,M) describes the rotational effect; n is a unit vector directed 

along the axis of the molecule; M is the angular momentum of a molecule. Based on the 

assumption that the gas is nonequilibrium, but it is not far from the equilibrium state, the 

distribution function can be approximated as:

/  = /°(v )(l + A(t,r,v, J)) (3.63)

The linearized Boltzmann equation is now

—  + \ .V h  + (Slx n)—  = Kh (3.64)
dt dn

with initial condition

h( Q,r,v, J) = f 2(t8(r) (3.65)

Here, £l = MJ I  is the molecule rotation frequency and /  is the molecule moment of 

inertia; a ik is the polarizability tensor of the diatomic gas molecules and it can be 

represented as follows (Landau, 1985),

a,'k(J) (3.66)
= «o5,a + a is ,v ( / mJ  + a 2 (»/"* -  ? 5* ) + -

We take the Fourier transform of equation (3.64), then integrate over the rotation circle, 

we have

( K- i q -  v+ico)A(®,q,v,J) = JrfcpC(n,M) (3.67)
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where

C(n,M) = l ua ik(m,M)t2k (3.68)

The scattering spectrum will take the form

I(tn,q) oc Re jj jc (n , M ) / °  (v)A(co, q, v, J)d Sid J  d \ (3-69)

aThe rotational term Six n- (— ) has disappeared after the integration because we are now
dn

focusing on the unshifted Rayleigh-Brillouin scattering therefore the function h is 

independent of the unit vector n .

Using the explicit representation the polarizibility tensor a ik above, the right hand 

side o f equation (3.69) turns out to be,

(3.70)

CQ and C2 are given explicitly as

C0 = a 0(e1*e2)

and

C2 = -y c t2[(e, *M)(e2 ®M) / M 2 — y (e ,  •  e 2)] (3-71)

Finally the linearized Boltzmann equation takes the form
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( K - i  q- v+ m)h(tp,q,v, J) = C0 + C2 (3.72)

with the scattering spectrum

I(«),q) cc Re J J j j  J d(C0 + C2)/°(v)A(g),q, v, J) (3.73)

Now, we shall expand function h by the eigenfunctions of the linearized collision 

operator K  in the Hilbert space, i.e.,

A(G),q, v, J) = an (to,q )hn (v,J) (3.74)
n~\

where the first five eigenfunctions are what we got in section 2.3 which corresponding to 

the five hydrodynamic modes

hn =^„ n = 1,—,5

while the eigenfunctions for the non-hydrodynamic modes satisfy

K/*„ = P A  n >5  (3.75)

Pn is the corresponding eigenvalue. The s obviously have to be solved through the 

explicit form of the linearized collision operator K .
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It changes nothing if we let the direction of vector q be parallel to the x-axis. 

Note that we still assume iq-v is small so we can use the perturbation theory and the 

results we got in part 2.2. One point we want to note here is so far we have only 

discussed the solution to the kinetic linearized Boltzmann equation in which we assumed 

the amplitude of the vector q is small therefore we could safely use perturbation theory.

Actually, since |q| = — sin(012),  0 is the scattering angle and X is the wavelength of the
X

incident light and the scattered light, so if we want to make q small, either the scattering 

angle 0 is small or the wavelength of the employed laser must be large. For the forward 

scattering, 0 is small; it is in the hydrodynamic regime. In the case of backscattering, if 

the light wavelength is not large compared to the mean free path, this perturbation 

method that we are using here fails and we have to use other methods to solve the 

linearized Boltzmann equation.

Multiply the equation (3.74) by hx and integrate it over the space, using the fact 

that A, is the eigenfunction of K  and the corresponding eigenvalue is iqvs we obtain

(3.76a)
n>5

with

(3.77)

Then we can go through for h2, /z3..., we obtain a set of equations:
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i(co — qvs )a2 - i ^ ( q v j 2„an = C 0(Cv/ 2 C p)A (3.76b)
n>5

- m a 3 +iYJ^ vx)inan =0 (3.76c)
n>5

- ima4 + i Y d(qvx)4„an =0 (3.76d)
n>5

~ + )s. «„ = 0 (3.76e)
n>5

( - m  + $„)an+ iYJ{qvx)nmam =C2n ■ (3.76f)

with

C!. = ( A J C ! ) = J * / ' ‘C2«fe. (3.78)

The scattering power spectrum changes accordingly to

I(co,q) oc Ke[C0{Cv/2Cp){ax + a2) + C0C;'Aa5] + Re]TC2„a„ (3.79)
n>5

We can solve this set of equations by first solving equation (3.76f) for a„ and 

substituting it into other equations to get the first five an s. Finally, we get the Rayleigh 

scattering spectrum as follows:

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I(co,q) = I0(co,q) + I2((o,q) (3.80)

I,(<o,q) = (C. / 2Cr )C0!i r ' +   r  + / [ I , - , . !
(o)+ (jvs) -+■ Tj (co- )  * ^ " ^ 2 Cv(co + i j )

+ (- ^ . )MClAc ,{  w + “:- , --------2c p l\®+qvs)2+ r ,2 (a-^) +r,

(3.81)

I2(«,q) = Z (C 2„)2 - # V ~ ( AC32 + AC4)-T^-r2
w>5 ®  +  p  U  +  I 3

-  (ac , f  {-------- — r + ------------ ^4— T}(® + ?vj2 +r,2 (co-^vj2 +r,2

where AC„ s are given by

(3.82)

P„ (3.83)
n>5

These T ’s are damping coefficients that couple the five hydrodynamic modes and those 

infinite number of non-hydrodynamic modes. Some of them are given by

r, = (g2 /2p){(4/3)q + ^ + k /m[(1/ Cv) —(1/ Cp)]}

r3 = (^2/2p)rj r5 = q2(m !pC  )k (3.84)
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T| , \  , and k  are the shear viscosity, bulk viscosity and the thermal conductivity 

respectively.

From the scattering spectrum above, lo describes the polarized Rayleigh-Brillouin 

scattering while h  part describes the depolarized Rayleigh scattering where there is a dip 

right in the middle and two dips on the Brillouin sidebands. If the polarization of the 

scattered light is parallel to the polarization of the incident light photons— (e, ■e2)=l , 

according to equation (3.71)—the coefficient C0 is not 0 and then both the I0 and h  parts 

exist in equations (3.81) and (3.82) and they describe the total Rayleigh-Brillouin 

scattering. On the other hand, if polarization of the scattered light is perpendicular to the 

polarization of the incident light, i.e., it was depolarized, since e, • e2 =0, according to 

equations (3.71), Co is now equal to 0, only the h,  the depolarized part, survives. It can be 

seen from the representation of the polarization tensor of molecules and the related 

derivation that depolarized Rayleigh scattering is due to a tensorial fluctuation. Since the 

polarization of the scattered light has been changed during this scattering, it is no longer 

coherent anymore. The proportion of depolarized part in the total Rayleigh scattering 

varies from different species of gases. For gas species in the air like O2  and N?, their 

molecular anisotropies are comparatively large; the depolarized parts in these gases will 

be large too (Table 4.4).

We also find that Io is composed of three Lorentzian distributions and two 

additional asymmetric components that are small compared to the three Lorentzian shape 

terms because AC, is usually small. We can also get these three components using the 

Navier-Stokes equation. In fact, Navier-Stokes equation can be derived from the 

Boltzmann equation by making several appropriate approximations. Since F5 is only
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related to the thermal conductivity, the third Lorentzian actually is one component of 

Rayleigh scattering which is due to ‘thermal fluctuations”. The other two components are 

called “Brillouin Scattering” which is due to pressure fluctuations. The integrated 

intensities of them obey the famous Landau-Placzek relationship

1  thermal =  y  .  fl (3.85)
^Brillouin

here y is known to be the ratio of specific heats of molecules. However, with other two 

additional terms and the depolarized part of Rayleigh scattering, when the gas is not ideal 

gas, Landau-Placzek ratio will not stick to the above value, it will increase. The increased 

value varies from the different gases. More details can be found from additional 

references and our data analysis later on.

3.3 An Alternative Approach and Tenti’s Model

We have known that from part 3.2.2 that the perturbation method fails when the 

mean free path of the gases is comparable with the light wavelength when the scattering 

angle 0 is not very small. However, by introducing the non-hydrodynamic modes in part 

3.2.3, we were being able to get a clear picture of the Rayleigh-Brillouin Scattering. 

Some alternative methods had been developed in solving the kinetic equations since 

1950s. One of them was used to solve the renowned linearized Wang-Chang Uhlenbeck 

equation is discussed as below.

The linearized Wang-Chang Uhlenbeck (WCU) equation reads,
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^ + v.V A ,(v ) = « X * J f p v. f  * dQ j" Oy (vd, 0) vre/ • / °  (v, )[/tt (v1)  + A, (vj) -  A. (v) -  h} (v,)]
vt jkl m

s  nKh (3.86)

where x,- is the average fraction of molecules with internal energy Ej, 

exp(-2s, / k„T)
x • =  I - B (3.87)

'  I e x p ( - £ , : / ^ r )
i

K  is the linearized collision operator. The only difference between the linearized 

Boltzmann equation equation (3.37) and linearized WCU equation (3.86) is that the WCU 

equation averages over the different internal energies of the gas molecules.

Using the explicit differential cross sector form and some approximations, one 

can expand the right-hand side of equation (3.86) by the hydrodynamic-mode 

eigenfunctions we got in section 3.2.2. Different approximations give different models. 

One famous model that has been widely used is Tenti’s S6 model. In the S6 model, the 

linearized WCU equation generates six moment equations with appropriate 

approximations. One has to solve the six moment equations to obtain the density 

fluctuation spectrum. The polarized Rayleigh-Brillouin scattering spectrum is described 

by four dimensionless parameters: x,y,z ,  and / :

X = fi>/y]2qv0 , y  = nkBT / ^2r]kv0 , z = 3 £ /2 y r j ,  /  = mX/r\kB( -  + c J  (3.88)

where © is the light frequency, v0 is the average molecule velocity, kB is the Boltzmann 

constant, rj and i; are the shear and bulk viscosity respectively, cv is the molecular

3
specific heat and y  = c„ /(—+ cv) . By standard kinetic theory, y  is a measure of the ratio
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of the wavelength to the molecular mean free path, and x/y gives the ratio of the 

frequency to the collison frequency.

The linearized WCU equation, however, lose its validity when it is applied on the 

gas molecules with degenerate internal states. For some cases, correlations between two 

degenerate states could be affected by the so-called reorienting collisions among 

molecules. In fact, those correlations are involved mainly in phenomena of a tensorial 

character, which is related to the depolarized Rayleigh Scattering as we have shown in 

part 3.2.3.

The more appropriate kinetic equation is the linearized Waldmann-Snider (WS) 

equation, which treats the internal degrees of freedom quantum mechanically. However, 

in the actual measurements of atmosphere properties by lidar technology, since our 

interest is mainly the polarized Rayleigh-Brillouin scattering caused the density 

fluctuations, the linearized WCU equation is a good enough and it is much simpler than 

the linearized WS equation.

The kinetic S6 model has been widely used in various atmospheric researches. It 

is good on diatomic molecules with no internal degenerate energy levels. Shown in figure

3.4 is the change of the Rayleigh Brillouin scattering line shape by S6 model.
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Figure 3.4 Change of S6 model from kinetic regime to hydrodynamic regime. The first one 
is S6 model in kinetic regime and the bottom one illustrates S6 model in the hydrodynamic 

regime, while the middle one is in between (y=5.0).
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CHAPTER 4

RAYLEIGH-BRILLOUIN SCATTERING SPECTRUM AND 
TEMPERATURE PROFILE

4.1 Introduction

Global wind measurements are important for improving long-term weather 

forecasts as well as for other atmospheric research on aerosol and pollution. Active 

remote sensing is an effective way to achieve the goal of observing the global wind field. 

There are two different optical methods both utilizing the wind-induced Doppler shift of 

backscattered laser light. They are coherent detection lidar systems and direct detection 

lidar systems. For the latter, there are two kinds of direct lidar systems: fringe imaging 

and edge technology. GroundWinds lidar is a modem fringe imaging incoherent Doppler 

lidar, which detects the Doppler shift from the altered spectra of backscattered light.

The GroundWinds lidar system, like most of other lidar systems, is composed of 

four key elements: 1) the laser, 2) the transmitting telescope, 3) the receiving telescope, 

and 4) optics and detection system. In the next section, we will discuss these four 

elements.
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4.2 Instrument Description/Specifications

4.2.1 Laser

The GroundWinds lidar system uses a commercial pulsed Nd:YAG 

(NeodymiumYttrium-Aluminum-Gamet) laser. Before the laser beam emerges from the 

instrument, it passes through a beam expander that reduces the divergence of the 

emerging light. The laser is fired at a repetition rate of 10 Hz. Its specifications are listed 

in table 4.1.

Table 4.1 Laser Specifications

Manufacturer Model Continuum 8010

Type Nd:YAG

Pulse Lengths 8 ns

Power output 4 W

Central wavelength 532 nm Doubled

Type Multicavity, dielectric

4.2.2 Telescope

The telescopes—transmitting telescope and receiving telescope—are mounted 

together on a common gimbal, which can rotate azimuthally and is fixed at 45° elevation. 

The receiving telescope specifications are listed below (Table 4.2)
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Table 4.2 Telescope Specifications

Manufacturer / Type Torus / Cassegrain (receiving)

Telescope diameter 0.5 m

Effective telescope collecting area 1963 cm2

Focal Length 2.0 m

Telescope FOV (half angle) 0.10 mrad

Tolerance on Focus and Alignment 0.02mrad

Telescope Transmission 0.81

Etendue (area * solid angle product) 6.17xl0~5 cm2-sr

Zenith Angle 45"

Type of view Slew & Stare

4 .2 .3  Spectrometer

GroundWinds lidar systems use a specialized Fabry-Perot (FP) interferometer that 

is based on the High Resolution Doppler Imager (HRDI) instrument (Hays 1993). The 

backscattered light collected by the receiving telescope is fed to the interferometer 

through an optical fiber. The reflected light from Fabry-Perot etalon is reused. This is 

called light recycling; a new feature first implemented in the GroundWinds lidar systems. 

Light recycling enhances the efficiency of the interferometer subsystem. A Fabry-Perot 

interferometer is typically composed o f a Fabry-Perot etalon—two flat parallel plates— 

whose surfaces are coated with reflective materials and auxiliary lens. The GroundWinds 

lidar molecular and aerosol etalons specifications are listed in table 4.3.
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Table 4 3  Molecular and Aerosol Etalon Specifications

Molecular Etalon Aerosol Etalon

Plate spacing 1.85 cm 15 cm

Number of orders 7.8 6.5

Free spectral range 0.3333 cnT1 0.03333 cm"1

Plate diameter 6.0 cm 6.0 cm

Coated aperture 4.0 cm 4.4 cm

Working aperture 2.6 cm. 4.4 cm.

Doppler dynamic range 2660 ms'Vorder 266 ms~7order

Reflectivity 0.86 0.86

Etalon defects (1/e) 5 nm 5 nm

Loss per plate 0.01 0.01

Number of channels 312 312

Focal Length of Collimator 6.0 cm (GPX-25-60-2) 10.0 cm (GPX-50-150-5)

Focal length of objective 26.0 cm (DBL14182 JML) 70.0 cm (CPX10506 JML)

f/number 2.3 2.3

Spacing type PZT tunable PZT tunable

Index of Refraction 1.0 1.0

4.2.4 Optics

After the backscattered photons emerge from the Fabry-Perot interferometer and 

focused by the lens, they form a set of concentric rings. These concentric fringes are 

then converted to a linear pattern (Figure 4.1) by an optical device called Circle to 

Line Interferometer Optical system (CLIO)(Hays 1990). Figure 4.2 illustrates how the 

CLIO works.
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Figure 4.1 Transformation of Fabry-Perot circular fringes to linear.
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Figure 4.2 Conceptual ray trace illustrating the CLIO concept 

4.2.5 Detector

A Charge-Coupled Device (CCD) detects the spectra produced by the CLIO.
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Figure 4.3 CCD Lidar Detector 
time history. As the light scatters 

from different attitudes, the image is 
shifted across the detector (steps a 
through e). At the end the image is 
shifted back to the start for the next 

laser pulse (step e to a). Only the 
segment of the CCD marked “open”

is actually exposed to light

4.3 Clean Spectra

Our main goal of this research is to obtain and study Rayleigh-Brillouin 

backscattering spectra in air. As we stated earlier, the GroundWinds lidar system can 

measure the molecular RBS backscattering spectra in the atmosphere making it useful at 

high resolution at high altitude when the air is clear. However, in real measurements, we 

cannot avoid noise, instrument-broadening effects, and other factors (for example, in our 

measurements, aerosol contamination) that compromise the true molecular RBS spectra. 

We discuss these effects and how to eliminate or minimize them so as to acquire genuine 

RBS spectra to which we can compare current models.
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4.3.1 Description of GroundWinds Data

The back-scattered photons received by the telescope processed through the 

Fabry-Perot interferometer and CLIO will register on a narrow wedge region in the center 

of a high quantum efficiency CCD. The circular fringes produced by the Fabry-Perot 

interferometer are converted into a linear pattern that can be detected with a conventional 

linear detector. For the molecular channel, the CCD records the six outmost fringes of the 

interferometer. The variation of photon number density across each fringe is the 

Rayleigh-Brillouin backscattering spectrum convolved with the instrument function.

The first fringe, the innermost in all of the fringes, is always the best measured 

Rayleigh-Brillouin lineshape for the following reasons: first, its spatial distribution is 

broader than any other fringe due to the cosine dependence of the spectral response as the 

distance (angle) off the optical axis of the Fabry-Perot interferometer is increased; 

second, the illumination pattern of the fiber optics used to transmit the signal does not 

obstruct the first fringe.

To measure the Rayleigh-Brillouin scattering spectrum at different altitudes, the 

exposed stripe on the detecting CCD is shifted up at a fixed rate when the outgoing laser 

beams is on. Before the laser is fired, the CCD begins shifting at a high rate. For any row 

of returned signals, the corresponding altitude can be determined by the shifting rate of 

the CCD and the time when laser was fired. A reference signal can also be obtained by 

making a small portion of transmitted laser light pass through the same optical path as the 

returned signal from the telescope. Therefore this reference signal provides a measure of 

the entire instrument broadening effects and system information. By comparing the
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observed backscattered spectrum with the reference spectrum the Rayleigh Brillouin 

backscattering spectrum can thus be obtained.

As was stated above, the CCD detector is shifting upwards at a high rate to record 

the backscattering spectrum at different altitudes. Two rows of measured data next to 

each other may not be totally exclusive or independent; in other words, a row of data 

might be contaminated by some photon counts from adjacent rows. This cross talk of 

different rows of data must also be considered in the data analysis.

Another important issue that must be carefully treated is the optical defects 

described earlier. Most of the optical defects are instrumental because many optical 

devices are astigmatic and not strictly linear. The asymmetries appear in the measured 

spectrum. For the GroundWinds data, asymmetries can be seen in the measured 

Rayleigh-Brillouin scattering spectra. However, these asymmetries can be eliminated if 

the causes and sufficient background information are known. For example, the 

asymmetry caused by projecting the circular fringe data onto the linear detector CCD can 

be corrected analytically.

43.1.1 Criteria for Data Selection

Several other factors have significant effects on the data. One of them is the overlap of 

the telescope field-of-view with the laser beam. The degree of overlap has a large effect 

on the photometric return. The returned signal is related to the angle between the laser 

beam and the optical axis of the receiving telescope. Furthermore, the receiving telescope 

is focused at infinity, therefore, a portion of returned photons scattered by air molecules 

at low altitudes will not be focused into the fiber optics receiver at the focal plane of the
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telescope. The overlap function is complicated and more detail can be found in Measures 

(1984) and Irgang (2000). For GroundWinds lidar system, the overlap function is steep 

below 2 km (ref. Figure 5.3). For this reason, we will basically focus on the data above 2 

km in our analysis.

4.3.2 Broadening Effects, Turbulence and Line-of-Sight Winds

Normally, we must consider the following two broadening effects for a light 

scattering experiment in the air: Instrument broadening and turbulence broadening. Other 

broadening effects such as radiative broadening are small.

When a monochromatic light beam passing through an optical system—assuming 

there is not any frequency-changing optical device in the optical system—imaged 

through an optical (e.g. Fabry-Perot) interferometer, then detected by a common electro- 

optical detector, the power spectrum measured is a Lorentzian while the power spectrum 

of the incident light is a delta funtion. The reason is that when a light beam is directing 

through an optical system, it is subject to some power dissipation, which can usually be 

represented as an exponential function of time ( e~at). After this exponential function 

being Fourier transformed into frequency space, the corresponding power spectrum is a 

Lorentzian (expression 4.2) with its width determined by the power loss coefficients 

(Figure 4.4).

The interferometer disperses light in frequency or wavelength along the axis of 

the detector. A spectrum is obtained by plotting the integrated photon intensities across 

the detector. The distance between any two points on this axis represents a mapping of 

the frequency difference depending on several optical parameters. In the ideal case, all
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the registered the photons on the detector fall into a rectangular slab. We know this is not 

so for the real measurements. For the real measurements with less than perfect optical 

devices and alignments, the registered photons form an elliptic area with its long axis 

being the frequency axis (figure 4.5b) aligned with the spatial x-axis of the detector 

(rows). Usually the photon intensity is low along the boundary and high in the center of 

the ellipse. However, with the limited resolution of current optical devices and 

technologies, we will obtain a pseudo-elliptic area as shown in figure 4.5 (a).

Incident monochromatic light output spectrum

Optical System

deita-function Lorentzian

Figure 4.4 A delta-function is broadened after passing through an optical system.

(a)

I I
<M

Figure 4.5 Illustration of distribution of registered photons on the detector with (a) a real 
measurement and (b) a perfect measurement.
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This pseudo-elliptic area will cause some asymmetry and, in some cases, non-linearity. 

Depending on the degree of the vertical spreading (in the direction o f the short axis of the 

ellipse) and detection method, a small portion of photons of a fringe could be mixed with 

neighboring fringes.

For GroundWinds lidar system, the reference signal is obtained by directing a 

small fraction of outgoing laser light to the receiver without any molecular scattering by 

air. Both the reference signal and the measured molecular signal will be subject to the 

problems described above.

43.2.1 Instrument Broadening

The measured spectra are broadened by the interferometer instrument function, 

which is normally an Airy function (Lothian 1975; Hernandez 1986) as well as other 

instrument broadening effects, described by a Lorentzian distribution, of the form

^(®) = ~ j — 2 ■ (4-2)% ® +a

where a is the width. The full width at half maximum (FWHM) of a Lorentzian line 

is 2a.  A combination of Lorentzians can be used to describe the total broadening 

effects (Vaughan 1989).
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4.3.3 Elimination of Broadening Effects and Deconvolve Algorithm

The broadening effect of FP interferometer, computable from known FP parameters, 

can be removed by inverse transform methods (Killeen 1984). We will use a similar 

method to partially remove the GroundWinds broadening effects. The inversion problem 

including deconvolution for many cases can be described by the following Fredholm 

integral equation of the first kind,

b
jk(x,x')f(x ')dx'= g(x) a < x < b  (4.3)
a

Here k(x -  x’) is the kernel, functions f(x) is the unknown real photon spectrum and g(x) 

is the measured spectrum respectively. The simplest non-trivial deconvolution case is of 

the following form

co

\k (x  -  x')f(x')dx'= g(x) (4.4)
—co

By writing equation (4.2) in the form of (4.3), we assume that the kernel k ( x - x ' )  

introduces no additional dispersion.
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The GroundWinds data are also contaminated by white noise from the CCD and 

the readout-creating an ill posed problem. Miller (1974) pointed out that many ill-posed 

problems have been quite well tackled by expansion methods.

Expanding function/ as,

/ ( * )  = £ ( /> < p,-)<p,(*)
t-Q

where functions {cp,.} are arbitrary but must form a complete set of orthonormal 

functions.

Substituting into equation (4.3), we get

a, j & ( x - x > ,  ( * ') < & ' = g(x)
i ~  0  —co

with

a i =  ( / > , )

In our data, function k (x - x ' )  embodies all broadening effects. Function g(x) is the raw 

data. We chose

<P; ( x )  =  1 I < x < i + 1

=0 otherwise

We know k ( x - x ’), q>t and g(x), the only unknowns are the coefficients {a;} . Since 

any measured spectrum is composed of discrete data points, the set {a,.} is therefore the 

corresponding deconvolved spectrum. We can fit the raw data to get {«,.} .
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Figure 4.6 Illustration of a function broadened by a Lorentzian function

4.33.1 Thermal Blooming

Thermal blooming was first observed and discussed by Leite (1964). When a laser 

beam is propagating through the atmosphere, it heats the air. The air was in thermal 

equilibrium before the laser beam was turned on, the local heating will then produce a 

local change of the refractive index, which in turn will change or redirect the propagating 

laser beam. This is called thermal blooming. Thermal blooming is a critical issue for high 

power laser beam.

For a CW (continuous wave) laser beam of total power P  being emitted from an 

aperture of diameter d into air at 1 atm, Ulrich and Walsh (1978) estimated the threshold 

power Pth for the onset of thermal blooming in a transverse flow
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p  ~ % lp 1 x2y
,h 2 y — 1 a(n - 1) d

(4.6)

Here p  is the air pressure, y is the specific heats ratio, a  is the laser beam absorption

in SI units. If we choose

a  = l.OxlO^&wT1 v = 0.3 m/s (relatively quiet air)

and rf=7 mm for GroundWinds lidar system laser beam, we predict a power threshold for 

thermal blooming to be Pth =2200.0W. The GroundWinds laser power is 4W. We will 

therefore neglect the thermal blooming effect in our analysis.

coefficient, v is the airflow velocity. For the GroundWinds NH lidar system, we have

p  = 10s pascal H - l s S x l O " 4

y = 1.4 A = 532OxlO~10m.

Substituting these values into (4.1), we obtain

(4.7)
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4.3.4 Aerosol and Planetary Boundary Layer (PBL)

One important issue, in GroundWinds data analysis as well as in many other 

direct lidar systems is aerosol contamination of the molecular Rayleigh-Brillouin 

backscattering spectrum. For a direct lidar system as GroundWinds lidar system, it is 

important to separate the molecular and aerosol signals. Ideally the aerosol signal can be 

isolated from the molecular signal because the aerosol signal, a result of the Mie 

scattering in the air, is normally a narrow Gaussian, much narrower than the 

corresponding molecular RBS spectrum. However, this is not the case in the real lidar 

measurements because of instrumental broadening. This broadening is not necessarily 

well behaved and will likely spread in the y-direction on the detector plane. Shown in 

figure 4.7 (a) and (b) are measured Rayleigh spectra at different 2.3km and 7.8km 

respectively. We can easily see that in figure 4.7(a), which corresponds to an altitude 

2.3km, a strong aerosol signal is mixed with the molecular signal. In figure 4.7 (b), the 

aerosol signal is too weak to be apparent.

The planetary boundary layer (PBL) is the lower part of the troposphere. The PBL 

is directly influenced by the friction drag of the Earth, solar heating, and human 

activities, etc. The thickness of PBL is not constant. Due to the solar heating and related 

vertical/horizontal mixing, diffusion, and turbulence, usually the PBL is thicker during 

the daytime or in warm weather. The height of PBL can reach 3 kilometers but its upper 

surface is often not well defined. Above the PBL is the free atmosphere.

One characteristic of the PBL is that it is turbulent, as compared to the 

troposphere above it. But the most important feature of PBL for lidar measurements is
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that it has a much greater aerosol concentration that attenuates the backscattered lidar 

signals. The aerosol extinction coefficient is normally 30 to 40 times larger than the 

molecular extinction coefficients. On the other hand, one can also use the aerosol signal 

at low altitude to measure line-of-sight wind velocity.

For the wind measurements, the existence of an aerosol signal in the molecule 

signal might not be bad if we can separate them apart because aerosol signal can help to 

calibrate the molecular signal; the line-of-sight velocities from aerosol signal and 

molecular signal should be the same. As we know, the aerosol backscattering spectra, a 

Gaussian in most cases, is much narrower than the molecular RBS spectra and we can 

“model out” the aerosol component. In doing so, we can also obtain the 

aerosol/molecular ratio of the air, which can be used in other atmospheric studies. 

However, when the mixed aerosol/molecular signal is broadened by the instrument, it is 

more difficult to separate them.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.30784image at
0.04

0.02aw

0.01

0.00
ISO 1000 20 SO

frsqueney

(a)

7.79675image at
£5.04

0.02

0.01

0.00 so0 20 40
fraquwtq?

(b)

Figure 4.7 Measured RBS spectrum with little (ignorable) aerosol signals. Blue solid line is 
the fit of kinetic S6 model. Black solid line is the measured RBS spectrum. Pink lines are the 

molecular, aerosol, and background components, (a) Aerosol signal is large, (b) Aerosol
signal is very small (ignorable).
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4.4 Modified Hydrodynamic Model

We know that Brillouin peaks, or Brillouin doublets, in the hydrodynamic regime,

2v
are displaced from the central Gross line of RBS spectra by —-  times the incident light

c

frequency, where c is the light speed and vs is the velocity of sound in the air. All three 

peaks are Lorentzians and are fully resolved in the hydrodynamic regime. They are not 

resolved under typical atmospheric conditions in the hydrodynamic model because the 

sound velocity in the air is small compared to its counterparts in water or dense gases. 

Furthermore, in the kinetic regime, the hydrodynamic model cannot be used because the 

mean free path of the air molecules and incident light wavelength are comparable or of 

the same order. Therefore the resulting Rayleigh-Brillouin scattering spectrum is not 

simply three lines~a sum of two Brillouin lines and the central Gross line with their 

widths being determined by the thermal conduction and acoustic attenuation coefficients 

for air in the hydrodynamic regime, but it is just one complex Rayleigh-Brillouin line. It 

turns out that the three-line hydrodynamic solution is just the first order expansion the 

kinetic solution that can be used in our analysis. The physics image here is hence not so 

clear as it in the hydrodynamic model, but is blurred by many superposed terms. 

However, as we have shown in chapter 3, despite the first order expansion, higher-order 

terms are all expanded upon the Brillouin lines although these terms are not necessarily 

symmetric themselves. We also know that in the kinetic regime, the Landau-Placzek 

ratio—the ratio between central Gross line and Brillouin doublets—is not fixed. It varies 

with the temperature, pressure, and other atmospheric parameters. For this reason, we 

employ a modified hydrodynamic model consisting of three Lorentzian peaks, as in the

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ideal hydrodynamic model, but their amplitudes as well as their widths—determined by 

thermal conduction and acoustic attenuation coefficients of the air—are variable. The use 

of a modified hydrodynamic model is based on the philosophy that if a hierarchy of 

models, from simple to complex, can be used for understanding and predicting 

atmospheric behavior, in some occasions, the simpler model provides direct insight into 

physics and some important properties of the atmosphere.

The modified hydrodynamic model (MHM) is illustrated in figure 4.8. The 

frequency of the central Gross line is unchanged. Two Brillouin lines are displaced by 

twice of the sound velocity of the air from the central Gross line. The amplitude and 

widths for all three lines are adjustable when the model is fit to the data. Since the widths 

are related to the thermal conduction and acoustic attenuation coefficients as well as 

thermal relaxations, it is of interest to see how these coefficients vary with altitude.

1,5

0,5

0,0
- 2 - 1 0 21

Figure 4.8 The modified hydrodynamic model. Three Lorentzian lineshapes are overlapped 
and their superposition is shown as the thick black line. The displaced length is determined

by the sound speed of the air molecules
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Figure 4.9 Shown above is the kinetic model. The white line is the S6 kinetic model is
compared with a Gaussian.

4.5 Tenti’s S6 Model and Temperature Profiling

Tenti’s S6 model has been widely accepted as the best model by most lidar 

researchers. The model was proposed in 1974 and was tested in under different 

circumstances (May 1975; Lao 1976; Sandoval 1976; May 1980). Laboratory results 

agree well with the theoretical S6 model in the hydrodynamic regime and intermediate 

part. However, in the pure kinetic regime, there were discrepancies between the model 

and laboratory results (Sandoval 1976). The kinetic model depends on two dimensionless 

parameters x  and y  as we mentioned in last chapter. Temperature and pressure of air 

molecules are combined in they parameter. An empirical formula is calculated from the 

standard air model for parameter y  in S6 model, which takes the form

y  = 0.2308 x(T + 1 1 0 .4 )^  (4.8)
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From the above formula, even if pressure and temperature are changed, it is possible to 

have y  unchanged. This means it is difficult to determine the temperature and pressure 

simultaneously only by experiment. On the other hand, we can easily see that when 

temperature is extremely high or pressure is very low, y  approaches to zero and the model 

will be approximately a thermal-broadened Gaussian. It can be easily understood. When 

the temperature is extremely high or the pressure is very low, the motion gas molecules 

are totally random. Neighboring molecules do not impose any effects on single 

molecule’s motion.

To evaluate the performance of the kinetic S6 model for the air, we must verify 

two things: first, we must compare the S6 model to a measured clean Rayleigh-Brillouin 

backscattering spectrum of the air; second, probably more important and useful in real 

application, is to test the kinetic S6 model performance on real atmospheric properties, 

such as the temperature profile in the air. That is, the change of S6 model over the 

altitude—so temperature and pressure change in S6 model—should agree with the 

measured Rayleigh-Brillouin backscattering spectra at different altitude. In another 

words, if  we use the kinetic S6 model to fit to the GroundWinds data to retrieve a 

temperature profile and it agrees with the temperature profile from radiosonde or balloon 

data, this suggests we have a fairly good model. The first verification method is to ensure 

the shape of the kinetic S6 model agrees with that of measured RBS spectra. The second 

verification is to ensure the inherent nature of S6 model—the change of the model over 

the gradual temperature and pressure change in the air—is eorrect. The laboratory 

experiments so far have done only the first kind under higher pressure (>latm).
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Altogether, if we can retrieve a correct temperature profile to assure we have a 

good RBS model, then this will remove a source of systematic error in a wind 

measurement: the main goal for the GroundWinds instrument. Conversely, if  we cannot 

retrieve a good temperature profile, this implies that the shape is not correct and one 

should use a better model when fitting data to avoid the introduction of more errors.

4.6 Landau-Placzek Ratio

Landau and Placzek (Landau 1934; Landau 1985) found that for Rayleigh- 

Brillouin scattering the ratio between the intensity of Brillouin doublets, 2I B , and the 

intensity of the unshifted Gross line, I R, is fixed and is

where y  is the ratio of specific heats.

Although many (Yip 1967; Yip 1971; Young 1982) claimed this relationship 

(4.9) holds for both the hydrodynamic regime and the kinetic regime, it has not been 

supported by experiments (O'Connor 1975) or by theoretical calculations of thermal 

relaxation theory (P. C. Wait 1996; Fabelinskii 1997). Equation (4.9) is derived from a 

group of hydrodynamic equations with standard assumptions; the most important being 

that the scattering medium does not absorb heat, i.e., sound transport is adiabatic. In 

reality, the Landau-Placzek ratio is close to y -1  even in the hydrodynamic regime.

It is a different case in the kinetic regime. First, in the kinetic regime, the 

Rayleigh-Brillouin scattering spectrum does not display three clear lines as it in the 

hydrodynamic regime. The Brillouin lines and the unshifted Gross line are unresolved.
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Therefore, there is no way to accurately retrieve the Landau-Placzek ratio directly from 

the RBS spectrum. Second, thermal broadening effect (the cause of unshifted Gross line) 

is becoming relatively more intense compared to acoustic fluctuations (the cause of 

Brillouin scattering) as the scattering gas medium gets thinner. Thus, the Landau-Placzek 

ratio will deviate from y - l  when in the kinetic regime.

4.7 RBS Spectra and Temperature Profile

4.7.1 Rayleigh Spectra

The data to be analyzed were taken during the AirMap compaign on July 31, 

2002. It was a typical sunny summer day and the data had been taken continuously over 

the entire day. Every two-hour data set was recorded. Three datasets were chosen for data 

analysis. They were taken at 3:40am, 5:40am, and 7:40am respectively. The integration 

time for the measurements is 10 seconds. The aerosol level above the boundary layer is 

normally lower than at any other time in a day before sunrise. On this specific day, 

radiosonde data were also taken at 12:00am and 12:00pm respectively. The 

corresponding aerosol and molecular signal strength at different altitudes are shown in 

figure 4.10 and 4.11. The color bar indicates different photon intensities. For both of 

them, yellow stands for the highest photometric return (greater than 107 photons) while 

blue stands for the lowest photometric returns (lower than 100 photons). One can see that 

the planetary boundary layer (PBL) is formed just above the ground and extends to an 

altitude of approximately two and a half kilometers thick. The aerosol level is weak 

above the PBL. For the molecular channel, the photometric return attenuates as the 

altitudes increases. At 15km, the photometric return is less than 100. For the sake of data
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analysis of molecular Rayleigh-Brillouin scattering spectra, we will put the emphasis on 

the data whose corresponding altitudes are above the PBL and below 15km.

The main interest of this research is the measured Rayleigh-Brillouin scattering 

(RBS) spectra. Basically the real air is not in local thermodynamic equilibrium (LTE) and 

the scattering itself is an example of non-local thermodynamic equilibrium. For this 

reason, in addition to temperature, many atmospheric properties are reflected in the RBS 

spectra, such as thermal conductivity, viscosity, and turbulence. Therefore the RBS 

spectra in the air could be a useful tool in related atmospheric researches.

Aerosol Signql S treng th  [c o u n ts ]

240 260 280  ̂ 300
Time of Day [m in i 

Azimuths = 294:354#20 dea

Figure 4.10 Aerosol signal strength
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Figure 4.11 Molecular signal strength

A measured RBS spectrum is plotted in figure 4.13. The associated reference 

signal is also shown in figure 4.12. The reference signal embodies all broadening effects 

of the instrument, provided the laser line width is negligible (ref. Table 4.3). We can then 

apply the inverse method discussed in the former chapter to remove the instrumental 

broadening from the measured RBS spectrum. However, care must be taken when 

removing the broadening effects. We cannot remove the entire reference signal from the 

RBS line, only part of it. The reason lies in the fact that, first, the measured RBS 

lineshape is not perfectly symmetric—as we have argued earlier, second, the spectrum 

might be overhauled or over-deconvolved by taking off the whole reference signal since 

the resolution of the data was not high enough besides the laser has a small width. To 

avoid this, we have chosen to remove a Lorentzian broadening effect with a width that,
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after the removal of broadening effects, there was only one non-zero data point in the 

deconvolved reference signal (figure 4.15 ).

Figure 4.14 and 4.15 illustrate the measured Rayleigh-Brillouin scattering 

spectrum after we removed the instrumental broadening effects. The temperature when 

the data were taken was 280K as measured by a RadioSonde. The altitude was 3.5 

kilometer. Pressure was 0.8 atm from the standard model.
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Figure 4.12 A plot of reference fringe
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Figure 4.13 A plot of raw fringe. The corresponding altitude is 3.5 km
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Figure 4 .1 4  One deconvolved Rayleigh-Brillouin scattering spectrum
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Figure 4.15 Deconvolved Rayleigh-Brillouin scattering spectrum(upper) and deconvolved
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Figure 4.16 Comparison of raw RBS fringe and deconvolved RBS spectrum.
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Although it is difficult to resolve the Brillouin peaks from the measured RBS 

spectrum (figure 4.14), the sound velocity can still be derived from the RBS spectrum by 

measuring the Doppler shift between two Brillouin side bands. From gas dynamics, 

velocity of sound is given by,

where y  is the specific heat ratio, R  is the universal gas constant, T  is the temperature 

and M  is the molar mass of air. For r=300K, y = 1.4 , R = 8.31 JK^moT 

\ M  = 0.029Kg/mol, we get vs » 330m/s  . Since the Brillouin peak is shifted by twice 

the sound velocity in a RBS spectrum, this corresponds to a wave number separation of

= 0.04347 cm'1
ck

Here X (532 nm) is the incident light wavelength and c(  3 x 108 m/s) is the speed of light.

From figure 4.14, by fitting the modified hydrodynamic model to the RBS 

spectrum, the distance between two side lobes is approximately 0.09 cm*1. From above 

analysis, it corresponds to a sound velocity of 350m/s. This is slight larger than one could 

compute from the temperature and pressure. However, from the thermal relaxation 

theory, the Brillouin parts will be pushed outwards by the effect of thermal relaxation. It 

happens too in the hydrodynamic regime (Mountain 1966). It can also be seen in Tenti’s 

S6 model when Brillouin peaks can be singled out (ref. Fig 3.3).

In figure 4.17, the difference between thermal broadening effects, which displays 

as a Gaussian, and the corresponding Tenti’s S6 model under same atmospheric 

conditions (300K, 1 bar) is plotted. Compared to the Gaussian, there are two symmetric
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side lobes on the shoulders of the S6 model. These two parts are significant in the 

temperature profiling and wind measurements. Shown in figure 4.18 are two plot of S6 

models at same atmospheric conditions that only differ in temperature by  40 K. The 

temperature difference between the black solid line and the blue dashed line is 40K. It is 

straightforward that a 40K temperature change induced difference of S6 models in figure 

4.18, compared to the difference between S6 model and pure thermal broadening 

Gaussian in figure 4.16, is rather small.

difference between S6 model and thermal broadening
1.2

1.0

i 0.8
? 0.6

0.4

0.0 0.1 0.2 OJ 04
frequency

Figure 4.17 Comparison of S6 model and a thermal broadening Gaussian. They are plotted
under same temperature
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Figure 4.18 Plot of S6 model at same atmospheric conditions except the temperature. Black 
solid line corresponds to a temperature 300K while the blue dash line corresponds to 260K

The Landau-Placzek ratio will not be a constant for the Rayleigh-Brillouin 

scattering in the atmosphere as it is in the hydrodynamic regime. Using the modified 

hydrodynamic model, we can measure a Landau-Placzek ratio profile as a function of 

altitude.

Figure 4.19 shows the changes of the Landau-Placzek ratio as a function of 

altitude. Lower than 4km, the aerosol signal is fairly strong. It is difficult to remove the 

all the aerosol signal so we will ignore this part in our discussion. Above 4 km with 

increasing altitude, the ratio decreases as the temperature drops. This means the Brillouin 

components induced by pressure fluctuations are shrinking while the centered Rayleigh 

component, broadened by thermal effects, is growing. In the free streaming limit, i.e., 

when the scattering gas medium is dilute, the Landau-Placzek ratio approaches zero as 

the Rayleigh scattering induced by thermal motions of air molecules dominates.
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Figure 4.19 Landau Placzek ratio vs. altitude (km)

4.72  Temperature Profile

Figures 4.20 and 4.21 are measured temperature profiles obtained from one-day 

data we have been using in this chapter using the kinetic S6 model. In the retrieval of 

temperature profile, pressure was calculated from the US Standard Atmosphere 1976. 

The measured temperature profiles are compared to the temperature profile from a 

RadioSonde launched 2 hours before the data were taken. Each profile in figures 4.20 and 

4.21 corresponds to an integrated data subset of 7 minutes. Multiple temperature profiles, 

which are retrieved from a series of consecutive 7-minute integrated data, are shown in 

figure 4.20 with a single 7-minute integrated temperature profile is shown in figure 4.21. 

In figure 4.23, two fitting plots at different altitudes show the molecular part and aerosol 

part are separated from the backscattered RBS spectra and the kinetic S6 model was
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employed in those fittings. The molecular part was separated from the measured fringe 

using S6 model hence the aerosol return can also be estimated. The pink line stands for 

the molecular part and purple line is the aerosol signal. The fitting applies the model to 

the raw RBS fringe, which includes all the broadening effects. Therefore, the separated 

molecular spectra in both plots in figure 4.21 are broadened. A temperature profile can 

also be retrieved from deconvolved RBS spectra. However, the inner nature of 

deconvolution method determines that its performance is affected when the signal noise 

ratio is low, although it may give better results when backscattered signal is strong. This 

can be seen from figure 4.21.

We can tell from these plots that the temperature profiles retrieved from 

GroundWinds data agree with the radiosonde, though there is a time gap between launch 

of the radiosonde and lidar measurements; the temperature from the GroundWinds data 

are systematically off by 5-1 OK higher. However, the lapse rate is approximately the 

same. Most importantly, the turning point of temperature, an indicator of end of the 

troposphere, is clearly shown in our measured temperature profiles, given the 

backscattered signals at this altitude are relatively weak and degraded.

It is exciting that the temperature measurements offer us a chance to measure 

other air quantities and ongoing processes. Despite instrumental broadening effects and 

other impact factors from measurements, turbulence and other latent energies could also 

affect the Rayleigh-Brillouin scattering spectra in the air. For example, in figure 4.21, 

which contains just one temperature profile from GroundWinds data, shows considerable 

scatter. These fluctuations may be statistical or due to some real physical motions (air 

pockets, turbulence, etc) in the air. One efficient and practical way is to have more
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consecutive measurements. From figure 4.20 that contains multiple temperature profiles, 

we can see a strong indication that these fluctuations are real because all these 

temperature profiles are varying in a repeatable way. We can then study these 

fluctuations to retrieve other air quantities or investigate other processes such as wind 

turbulence and sound propagations. The effects of an external force to the Rayleigh- 

Brillouin scattering spectra will be studied in chapter 6.
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Figure 4.20 Retrieved temperature profile at 6:00am on July 31**, 2002
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Figure 4.22 Retrieved temperature profile from deconvolved RBS spectra. The data was
taken on Feb 20,2003 at 2:15am EST
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Figure 4.23 Fit the kinetic S6 model to the measured RBS fringe. The black solid line is the 
raw RBS spectrum, the red line is the molecular part and purple line stands for the aerosol 

part The upper fitting image is corresponding to an altitude of 4.93 km and the lower is
corresponding to an altitude of 4km
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The main interest in temperature profiling is to see how it reflects the Rayleigh- 

Brillouin scattering spectra in the air. From the temperature profiling, the kinetic S6 

model is much better than another common used model—a Gaussian with its width 

determined by thermal motions of air molecules. The difference between these two 

models was given in figure 4.17. Such a difference among the models leads to large 

errors in the temperature measurements particularly at higher altitudes for lidar 

measurements. It is possible that a temperature profile up to 5 km high could be 

measured using the thermal broadened Gaussian model (G. Fiocco 1971; Schwiesow R. 

1981)—given a good calibration to the measured temperature, because different kinds of 

errors could be overlooked. The problems can be easily seen when the measurements are 

extended to 15 kilometers into the stratosphere. At a matter of fact, we know from the 

kinetic theory that the temperature cannot be measured by an assumed Gaussian 

lineshape. The temperature measurement is very sensitive to the Rayleigh-Brillouin 

lineshape, as we can tell from figure 4.17 and 4.18. Compared to the thermal broadened 

Gaussian, the kinetic S6 model gives a much better lapse rate besides providing a good fit 

to the measured RBS spectrum. This was also displayed in the Landau-Placzek ratio plot 

in figure 4.19. The Brillouin proportions are shrinking when the air is getting thinner. 

That makes the width of the Rayleigh-Brillouin scattering spectra not proportional to 

square root o f temperature as it in thermal broadened Gaussian model.

However, despite the fluctuations and aerosol effect in the lower atmosphere, 

there are still differences between the temperature profile given by radiosonde data and 

measured temperature profile from GroundWinds data, and between the measured 

Rayleigh-Brillouin scattering spectra and the kinetic S6 model. The prerequisites of the
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kinetic S6 model is that the scattering is polarized, which means it requires the 

backscattered signals are in a same polarization plane with that of incident photons from 

the laser transmitter. Since there is a small part (1-3 %) of backscattered photons are 

depolarized (polarization direction is changed) during the single scattering process, and 

this part will not account for the Brillouin part from chapter 3 by kinetic theory, this will 

make the central Rayleigh line or Gross line have a larger intensity than what it is with 

pure polarized Rayleigh-Brillouin scattering. In addition, how the inter-diflusion between 

two main gas species occurs is still unknown. Altogether, it would be interesting to 

measure ‘pure’ polarized Rayleigh-Brillouin scattering in the air in the future on the 

GroundWinds incoherent lidar systems.

4.7.3 Temperature Bias Caused by Non-Uniform Lidar Returns

The photometric returns of the lidar system decreases with altitude. For 

GroundWinds NH lidar system, depending on how often the backscattered photons 

register on the CCD, it bins one-quarter kilometer data vertically so that we have 

approximately four data points for every kilometer. On the other hand, the temperature 

drops with altitude. Therefore, for one bin data corresponding to one specific altitude, the 

temperature retrieved from it will be slightly larger than it should be because this non- 

uniform photon distribution at different altitude.

The temperature shift caused by the non-uniform photon returns at different 

altitude can be calculated using the lidar equation (chapter 5),
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If we assume the real lapse rate of air is around 9.0K/km, then we can roughly get the 

temperature is systematically shifted up by about 2.0~3.5 K. Caculated temperature 

biases caused by non-uniform lidar returns from GroundWinds data are shown in Figure 

4.24.

M  10

2 3
Temperature (K)

Figure 4 .2 4  Temperatures are biased up by the non-uniform distribution of photometric
returns a t different altitude
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4.8 Discussion

The kinetic S6 model is considered the best Rayleigh-Brillouin scattering (RBS) 

model for the atmospheric studies. However, with no measurement verification for the 

real air, it is unconvincing and possibly misleading for its use in many ongoing 

atmospheric studies. With GroundWinds lidar measurements, for the first time, we were 

able to compare the measured high-resolution Rayleigh-Brillouin scattering spectra to the 

kinetic S6 model. In addition, for the reasons that we explained in this chapter, 

temperature profiling from the measured RBS spectra is necessary for the verification of 

S6 model. Measured RBS backscattering spectra in the air were shown and compared to 

the current model. By using the kinetic S6 model, we have successfully retrieved the 

temperature profile from GroundWinds lidar data products. It was shown that the kinetic 

S6 model has a much better performance than a simplified thermal broadening Gaussian 

model.

Although the kinetic S6 model has shown itself to be the best model so far to 

describe the Rayleigh-Brillouin scattering spectra in the air, the comparison of it with the 

measured molecular backscatter spectra as well as the temperature profiling in the air still 

shows that there is room for the S6 model to be improved. Almost all the temperature 

profiles, summer and winter, show larger lapse rates. It is also straightforward to see that 

the side lobe of spectra is lower than in the kinetic S6 model.

The GroundWinds lidar systems have shown they can be used to measure many 

other air quantities in addition to its main goal is wind measurements. Through the 

measurement of temperature profile, we can retrieve other atmospheric properties and
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quantities like wind turbulences and other latent energies. Variance analyses can help us 

to study the turbulence and wind retrieval. Two plots are shown in figure 4.25. They 

reveal that a much stronger wind at 10:00 am on that day than 6:00am. In addition, as we 

will show in the next chapter, the molecular photometric returns will help us, for the first 

time to our knowledge, to measure the Rayleigh scattering backscatter coefficients and 

extinction coefficients in the real air.

Since the kinetic S6 model was formulated for polarized Rayleigh scattering, as 

we have shown in chapter 2, it would be very useful and interesting for GoundWinds 

lidar systems to measure the polarized Rayleigh-Brillouin scattering spectra in the air, not 

only for the better measurements of winds and temperature as well as other atmospheric 

quantities, but also for the physical insight of Rayleigh-Brillouin scattering in the air. 

Related atmospheric studies will benefit from the polarized RBS spectra measurements.

Two variance plots are shown in figure 4.25. These variances were calculated 

from 40 consecutive measured Rayleigh-Brillouin spectra—corresponding to 7 minutes 

data—at the same altitude. For example, the altitude for plot (a) is 5.17km (row# 39). The 

data associated plot (a) was taken on 9:45am EST, July 31st, 2002 while that of plot (b) 

was taken on 5:40am EST of the same day. For case (a), it implies there possibly was 

wind turbulence at the time the data were taken. The wind turbulence caused large 

variance on the shoulders of the corresponding Rayleigh-Brillouin spectrum.
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Figure 425 Plot of variance over 40 consecutive measurements of RBS spectra, they are 
a) a variance plot from data taken at 10:00 EST July 31,2002 and 

b) a variance plot from data taken at 6:00 EST July 31,2002
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The depolarization ratio is defined as the ratio of the perpendicular and parallel 

(the same polarization of the incident laser light) polarized photon intensities. It can be 

written as,

The depolarization process is due to the fact that molecules are not perfect spheres 

(isotropic). Therefore their polarization coefficient is a tensor. In other words, during the 

molecular scattering process, the direction of induced dipole is not parallel to the 

polarization of the incident photons. The depolarization ratio for some gas species of air 

is tabulated below.

Table 4.4 Depolarization Ratios for Major Air Species at Various Wavelength*

p A % )

Gas species 532nm 514.5nm

n 2 (1.02 ± 0.02)%

o 2 (2.70 ±0.10)%

C 02 (3.91 ±0.04)%

h 2o N/A (0.0299 ±0.00135)%

* (Fielding 2002)

The kinetic S6 model does not include the depolarized part of backscattered light. 

We can see from table 4.4 the depolarized part accounts for approximately 1.3-1.4

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



percent of the total photometric returns, considering the weights of nitrogen and oxygen 

in the air. This part of light will increase the temperature that we measured from 

GroundWinds data because the spectrum of the depolarized broad according to related 

theories (Tenti, 1976).
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CHAPTER 5

MOLECULAR BACKSCATTERING COEFFICIENTS IN THE AIR

The GroundWinds lidar system is a fringe imaging direct lidar system that 

provides twenty molecular channels to describe the entire Rayleigh-Brillouin scattering 

spectrum. Compared to other incoherent lidar systems, GroundWinds lidar can isolate the 

molecular photometric returns. This is because the aerosol backscatter width is much 

narrower than Rayleigh-Brillouin width. That means we have many molecular channels 

in which only the molecular signal resides. We can therefore use this part data to 

calculate the molecular backscatter coefficients for Rayleigh-Brillouin scattering in air.

5.1 Lidar Equation and Lidar Ratio

The general lidar equation reads (Klett, 1981, Piironen, 1994),

(5 .1)

where

P{r) =lidar power incident on receiver from range r, W;

E0 = laser pulse energy, J;

c -  speed of light 

A =area of receiver
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pm (r) = molecular scattering cross-section per unit volume from range r, m '1; 

P0 (r) -  aerosol scattering cross-section per unit volume from range r, m"1; 

a z (r) = extinction cross-section per unit volume from range r, m"1;

r \
——-— = aerosol backscatter phase function from range r, sr'1 (0 = n for

4%
backscatter);

3—  = molecular backscatter phase function from range r, sr'1;
8 n

0(r) = Lidar overlap function.

The column optical depth 6(r) is related to the extinction cross-section by

r
5 (r )  =  \a(r')dr' (52)

o

with

a ( r )  =  a j r )  +  a m ( r ) .  (5.3)

Here a m and a a are the molecular extinction coefficient and the aerosol extinction

coefficient for air, respectively. Measurements of individual optical properties are not 

possible with a single channel lidar due to the coupling of extinction cross-section with 

the aerosol and molecular backscatter cross-sections. However, it can be accomplished 

with the separation of equation (5.1) into individual molecular and aerosol components,

P Jr) = E. (5.4)
2 r 8n
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and

cO(r)A p(n,r) (5.5)

respectively; where 8(r) was given in (5.2). Multiple scattering and the background 

contribution have been neglected.

For the photometric return in the molecular channels, the total photometric lidar 

return at altitute r is Pm (r) . However, the aerosol extinction coefficient a a (r) must still 

be included.

The definition of the lidar ratio is the ratio between the extinction coefficient and 

backscatter coefficient of aerosols layers or clouds. This can be given as

5.2 Retrieval o f Molecular Backscatter Coefficients and Extinction 

Coefficients

5.2.1 Backscatter Coefficients by Rayleigh Theory

The modem formulation of the molecular scattering cross section per molecule of 

a gas is (Bucholtz 1995; Hans Naus 2000)

S - - a a /Pfl3 a
(5.6)
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CT = ■
24n v 4

N
n2 - I  
n2 +2 f k , (5.7)

where n is the refractive index, N  is the molecular density, and FK is the King correction 

factor that depends on the depolarization ratio for the air. For a collection of molecular 

scatterers, assuming no multiple scattering, the total cross section is (Jackson, 1998),

= ^ (q )a . (5.8)

m  is called structure factor and can be expanded as,

F (  q )  =

where q is the vectorial change in wave vector during the scattering. Xj is the position of 

/ h scatter.

If we assume that the scattererers are randomly distributed and each individual 

scatterer is independent from each other, the terms with j ±  f  give no contribution. 

Therefore, only the terms with j= j' are significant and F(q)=N, the total number of 

scatterers. The extinction coefficient for a gas is the total cross section, i.e.,

/q-x
(5.9)

j J

a  =Na = 24%V
N

n 2- I  
n2 +2

Fk , (5.10)
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and the backscatter coefficients is

8tt m N  i^n2 +2
( 5 . 1 1 )

3
Here, —  is the Rayleigh phase function for backscattering. However, Chandrasekhar

8 n

3(1960) showed that it is not exactly — , but is slightly changed by depolarization of the
8 7t

scattering gas molecules. Since the difference is small, we will neglect it in our following 

analysis.

5.2.2 Backscatter Coefficients from GroundWinds Data

A typical molecular channel signal is shown in figure 5.1. Depending on altitude, 

it has more than twenty molecular channels. The channels correspond to different wave 

numbers. The counts in each channel represent the molecular backscatter photon intensity 

at that wave number. For GroundWinds data, the aerosol signal spans 10 channels in the 

middle part, so we have at least 10 clean molecular channels to use to retrieve the optical 

properties of the air.
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Figure 5.1 A typical Rayleigh spectrum: photon returns versus different channels

Because pm is a coefficient and the integrand of the exponential, the lidar

equation (5.1) is nonlinear and must be solved numerically. Klett (1981) proposed a 

stable analytic inversion method, for the general case, to calculate the aerosol backscatter 

and extinction coefficients. Fortunately, unlike the aerosol backscatter signal in most 

cases, molecular backscattering signals are continuous and well behaved. Using the 

molecular backscattered photon returns of GroundWinds data, we can calculate the 

molecular backscatter coefficient in a simplified way instead of solving the M l lidar 

equation (5.1).

A molecular photometric return versus altitude is plotted in figure 5.2. This data 

set was the same dataset that we used in chapter 4 and 5. It was taken around 0600 am 

EST on 31 July 2002. From figure 5.2, the largest photon return occurs near 1.2 km. 

From lidar equation 5.4 for molecular returns, the photometric returns at different
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altitudes are subject to four major effects: the overlap function O(r) , the — dependence,
r

molecular backscatter coefficients Pm(r) , and the exponential attenuation function 

e~25(r). Except for Pm ( r ) , the other three functions are rapid varying functions below 4 

kilometers. Shown in figure 5.4 is a plot the overlap function 0(r)  varying with the 

altitudes. It can be seen that the overlap function is monotonically increasing and steep 

below 4 km. So the photometric returns will be increasing first. But with the counter

effects of and attenuation loss e~1Hr), the photometric returns increasing ceases at
r

about 1.2 km. After this, the photometric return is monotonically decreasing with altitude. 

For the later data analysis, we will use the photometric return data above 4 km since these 

data are well behaved numerically.
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Figure 5.2 One lidar photometric returns of the molecular channels.
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Figure 5.3 the overlap function of GroundWinds NH lidar system.
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Figure 5.4 Fitting scheme.

For returns above 4 km (figure 5.2), we can retrieve the molecular backscatter and 

extinction coefficients for Rayleigh scattering using the lidar equation (5.4). First, we 

manipulate the equation (5.4) leaving the exponential term on the right hand side. It 

becomes,

cE.O(r)Afi,(r)

With known quantities on the left hand side of equation (5.12), we plot expression 

(5.12) as a function of altitude and then fit an exponential function to the curve to 

measure 8 (r). From the fitting, we can retrieve the molecular extinction coefficients for
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Rayleigh scattering. By (5.11) we know the backscatter coefficients as well. The fitting 

scheme is illustrated by figure 5.3. For example, suppose we fit it from z=2km to infinity, 

then we fit it from z=2.25km and so on. The step length is 0.25km, which is determined 

by the binning of the data. Then from each fitting, we can compute the molecular 

extinction coefficients as well as the backscatter coefficients at different altitudes. The 

backscatter coefficients versus altitudes are plotted in figure 5.6 and 5.7. For the analysis, 

the data can be chosen so that the aerosol level is low above the boundary layer.

Molecular Backscatter Coefficient
10

•a

 ,--------------- 1--------- 1— * - j— 1—  — k — — 1— ■-----------------— “ *— ' ‘—

10 6
Molecular Backscatter Coefficient [1/m/sr]

,-510

Figure 5.5 Theoretical molecular backscatter coefficients of air (by eq. 5.11)

Theoretical Rayleigh (molecular) backscatter coefficients can be computed from 

equation (5.11). It is a function of the molecular density N, the refractive index of the air 

n, and the incident light frequency, i.e., the laser frequency in our analysis. A plot of 

theoretical molecular backscatter coefficient for air with altitude is shown in figure 5.5.
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Using the slope method described above, we obtained a Rayleigh backscatter 

coefficient profile of air. It is shown with its theoretical counterparts in figure 5.6. The 

pink dotted line is the theoretical value and the black solid line represents the measured 

value. Focusing on the results above 4 km, there is an obvious discrepancy between these 

two curves: the measured molecular backscatter coefficient is twice as large as the 

theoretical one.

The possible cause of a larger measured Rayleigh or molecular backscatter 

coefficients is Brillouin scattering. Brillouin scattering was ignored in the Rayleigh cross- 

section calculation of the collective effects of air molecules. If we assume, in the 

Rayleigh cross-section calculation, the weight of the Brillouin scattering of the total 

Rayleigh-Brillouin scattering can be represented by the Landau-Placzek ratio, we can add 

this part to the theoretical Rayleigh backscatter coefficients. This is shown in figure 5.7. 

The purple line is the calculated Rayleigh backscatter coefficients using Landau-Placzek 

ratio from GroundWinds data. It is still smaller than the measured value but they roughly 

agree with each other. The blue dotted line stands for the calculated Rayleigh backscatter 

coefficients using an ideal Landau-Placzek ratio, a constant value o f 2.5. The pink dotted 

line and the black line are the theoretical value and the measured value, respectively, 

same as in figure 5.6.
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Figure 5.6 Comparison between measured backscatter coefficients (black solid line) and
that from theory (pink dotted line)

8

6

4

2

0
0.000 0.002 0.004 0.006 0.008 0.010

Backscatter coefficients (K m -1sr—1)

Figure 5.7 Comparison o f backscatter coefficients from GroundW inds lidar measurements, 
from theory, and calculated by using Landau-Placzek ratio. Red line stands for theoretical 
BC (Backscatter Coefs) for the air. Black line stands for calculated BC from photometric 
returns of GWNH data. Purple line stands for calculated BC using Landau-Placzek ratio 

from GWNH data. Blue square line stands for theoretical BC value assuming the a ir in the
hydrodynamic regime
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5 3  An Alternative Method to Retrieve the Backscattering Coefficients

For the retrieval of backscatter coefficients, despite the slope method that we have 

used above, another method called ratio method (Brown 1979; Kohl 1979) can be used. 

Given two lidar power returns Px and P2 at different altitude r, and r2 respectively, we 

can calculate the extinction coefficient a m (r,) at rx using the lidar equation (5.4) for the 

molecular channel, that is,

, . 3 lnS, - I n S,o ,  (r.) = -------------------
8 7 1  2 (r2 -  r,)

with

Sl =ClP2r220(rl)Pm(rl) and S2 = C2Pxrx20(r2)$m(r2)

where C, and C2 are the correction caused by the shape change of Rayleigh line in the 

air.

Using this ratio method, we obtained a group of Rayleigh backscatter coefficients. 

From 4 km to 6 km, these measured values 0.0021, 0.0023, 0.0018, 0.0025, 0.0017, 

0.0024 sr^km'1 agree well with what we retrieved from GroundWinds data using slope 

method in the last section. However, this method requires strong and well-behaved 

backscatter signals. The relative weaker signal above 6 km leads to large errors on the 

measured backscatter coefficients.
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Figure 5.8 Simulation of photometric returns using (a) theoretical value and (b) Twice of 
the theoretical value of molecular backscatter coefficients.
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Because of the surprisingly large values of the backscatter coefficients that we 

have measured we have performed a check of standard coefficients, as they would affect 

the photometric return in the raw data. In Fig. 5.8, starting with the same measured 

photometric return at 4 km, we computed the return at higher altitudes from the lidar 

formula and related parameters using different groups of backscatter coefficients. In 

(5.8a) the theoretical value of molecular backscatter coefficients—as we shown in figure 

5.5—was used. The divergence of the simulation and the data suggests that the molecular 

backscatter coefficients should be larger. This is because larger backscatter coefficients 

will bring back more photometric returns at lower altitudes but attenuate quickly as the 

altitude goes up as opposed that smaller backscatter coefficients lead to a smaller—if 

same light source is used—but flatter photometric-retum profile. In (5.8b) we arbitrarily 

doubled the backscatter coefficients to approximate our results. A similar simulation 

with these coefficients agrees with the data supporting our conclusion that the backscatter 

coefficients must be significantly larger than what has been assumed to date in the 

literature.

5.4 Conclusions and Discussions

Molecular backscatter coefficients were measured by GroundWinds lidar system 

with two methods: slope and ratio methods. It is, to the best of our knowledge, the first in 

situ molecular backscatter coefficients measurements of air. It is shown the measured 

backscatter coefficients values could be 1.5-2.0 times as large as the theoretical values. 

The simulation of the photometric returns agrees with our measurements (figure 5.8).
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Figure 5.9 Retrieved aerosol molecular ratio by fitting the S6 model to the measured RBS
spectra.

From the radiative transfer theory, due to the anisotropy of air molecules, 

molecular backscatter coefficients in the air should be slightly larger than the theoretical 

value calculated including the effects of the molecular anisotropies, but it should not be 

that large as what we have measured. The result is significant for many lidar experiments 

in the terrestrial atmosphere because it implies a strong backscattered signal can be 

achieved without enhancing the lidar transmitting power. It is worth noting that, 

however, the only lab verification of Rayleigh scattering cross section (Hans Naus 2000) 

for N2 and Ar gases with temperature at 294 K in the 560-650 nm region, agreed the 

theoretical estimates without Brillouin scattering. However, backscatter coefficients were 

not measured due to the technology used in this lab experiment. It was estimated instead.

In the analysis above, we have assumed the aerosol signal is weak. The 

assumption is reasonable. Because from figure 5.9, the measured aerosol backscatter 

signal is less than one twentieth of the molecular signal. This aerosol backscatter 

coefficient will account for at most 20% of the measured molecular backscatter
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coefficients. This will bring down the Rayleigh backscatter coefficients to a range of 

1.2- 1.6 times of its theoretical value.

The reason we have a large backscatter coefficients for the air, to my opinion, is 

due to the rough calculation of the collective effect. For a monochromatic light being 

scattered by a single molecule, the differential cross section is a dipole radiation and 

related calculation is straightforward. For a collection of this kind of molecules that 

involve the scattering process, it has been assumed that each single molecule is 

independent from any others and the structure factors, denoted as F(q) in many 

literatures, is therefore the number of all the molecules, N. Thus, the total cross section is 

N times the cross section for one individual molecule. The air is not under 

thermodynamic equilibrium and it is not appropriate to assume each molecule is 

independent from its neighbor molecules. This can be seen from the Rayleigh-Brillouin 

spectra of the air. Only when the pressure is close to zero or the temperature is extremely 

high that we can conclude that the air can be described by one thermodynamic 

parameter—temperature. For the real air, the structure factor F(q) is larger than N  and it 

should be related to the Landau-Placzek ratio, i.e., the ratio between the intensities of 

Brillouin doublets and unshifted Gross line.

From above analysis, for a group of gas molecules, assuming their density and 

pressure are not changed, the higher the temperature, the smaller the backscatter 

coefficients., Because when the temperature goes up, each molecule becomes more 

independent of others. In the mean time, the Brillouin scattering component also 

approaches to zero as the temperature goes up. This is exactly same as the low-pressure 

case where Brillouin scattering attenuates and molecules become more independent.
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CHAPTER 6

ON THE RAYLEIGH-BRILLOUIN SCATTERING WITH EXTERNAL 
FORCES

6.1 Introduction

We have noticed in Chapter 5 that the temperature profile retrieved from the 

measured Rayleigh-Brillouin lines is not as smooth as what we got from the radioSonde. 

Is it real or not? Or in other words, is it just statistical or real measurements of some 

unknown disturbances that we have not totally been clear? If it is real, what could be the 

causes? We can not determine these possible causes just by the data, however, we can 

investigate one special case in which the gas molecules—the scattering medium-subject 

to an external force, or light scattering in plasma and see how the Rayleigh-Brillouin 

scattering lineshape responds to the external forces or energy. In particular, by solving for 

the appropriate kinetic equations, we are able to learn how a propagating acoustic wave 

changes the shape of RBS line for the air.
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6.2 Sound

Sound propagates as a longitudinal wave in air. The sound speed is about 340 

meters per second. There must be a medium that is able to support the propagation of 

sound. It is also a longitudinal wave in which the direction of moving particles is parallel 

to the direction of sound energy transport. Usually human beings can hear sound with a 

frequency between 20 Hz and 20,000 Hz. If a sound frequency is exceeding 20,000 Hz, it 

is called an ultrasound or hyper-sound for very large sound frequencies. If a sound 

frequency is lower than 20 Hz, it is called an infrasound.

As a sound wave propagates in air, it will cause density variations that are usually 

small. The sound pressure level (SPL) is a measure of the mean square level of 

fluctuations and is defined as

SP L (dB h  201og ,l f  1 . (6.1)
V 2 x l 0  N /m  y

Here p  is the mean square average of the pressure fluctuations. If the instantaneous 

pressure at a specific location is p , the average pressure is p 0, then p ' satisfies

P '2 = ( P - P J  (6-2)

By expression (6.1) the threshold of hearing is 2 x 10~5 N  / m2. There is another common 

measure of sound level which is defined as,

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PWL{dB) = 101og10 — ^  I (6.3)
10 2 watts J

w denotes the power of the sound wave. These two scales are approximately same in 

most cases.

In the air, a 130db sound wave will give a 30Pa pressure to the air and the air 

molecules are pushed by the sound wave with a maximum displacement at

AP 30Pa , , 1a-5A =  —- - =  ;------- :---------------------------- « l . lx  10 m
p v s2nf 1.2kg/m  x 330m/ s x  2# x 1000

where p  is the mass density of air, vs is the sound speed, f  is the sound frequency.

6.3 Rayleigh-Brillouin Scattering in Gases with External Forces

It is known that Rayleigh-Brillouin scattering in neutral gases can be tackled 

using the linearized Boltzmann equation or a linearized Boltzmann like equation from the 

former chapters. Two acoustic wave modes were shown in solving the Boltzmann 

equation in chapter 2. The gas molecules in those cases are not subjected to any external 

forces, that is, F = 0 in the linearized Boltzmann equation.

When there is a propagating acoustic wave or pressure wave in the air, it will 

impose a force on each molecule that supports the wave propagation. The air density 

disturbances due to the propagating pressure wave are usually small, so we can still use 

the linearized Boltzmann equation to describe the gas dynamics. Under this circumstance,
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an additional term has to be added to the formerly used linearized Boltzmann equation. In 

the following derivations, we will be using the famous BGK model, because it has 

several advantages: it is relatively simple to be solved; and it satisfies the Boltzmann H 

theorem; it satisfies the mass, momentum and entropy conservation. However, since only 

the translational energy was considered in the BGK model, it can only be applicable to 

the monatomic gas. For molecular gases or mixed gases like air, the internal energy must 

be included to get a more rigorous result to the light scattering spectrum. However, we 

want to show qualitively, by using the kinetic BGK model, that how the light scattering 

spectrum will change when an acoustic wave is propagating in the scatters.

The force on each interacting air molecules due to the sound wave can be 

described by

Here A is the amplitude of the acceleration and m is the average mass of molecules. 

The linearized Boltzmann equation by BGK model is

F =m a = m Aexp(/Cif) (6.4)

+
m . , . ,,m v 2 3 .,v .q(r ,0 ^ ( r , / ) ( - - - ) }

(6.5)
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with initial value /i(r,v,0 = 5(r) , where h(r,v,t) satisfies 

/ ( r ,v ,t)  = / 0(v)(l + h(r,v,t)). ( 6 . 6 )

f ( r ,v , t )  is the one particle distribution function. / 0(v) is the equalibrium Maxwellian

distribution which has the form

fo (v) = -----— exp(- — — ) - (6.7)
m 2 kBi 0

T0 is the equilibrium temperature of the gas medium. Other symbols in equation (6.5) are 

. p(r,0= jd v h (r ,\,t) f0 (6.8)

q(r*0 = jd v \h (r ,v ,t ) f0 (6.9)

^ ■ ( p ( r ,0 + T(r,0)=  \d w 2 h ( r ,\ , t ) f0(v) (6.10)
m J

x is the deviation of temperature in unit, i.e., the instantaneous local temperature

T = T0( 1 + t ) .

Now, since the density variations due to the sound wave is small, and that the gas 

treated here is not far from the equilibrium—actually that’s why we can linearize the
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kinetic Boltzmann equation here, we can then set the third term on the left side of 

equation (6.5) to

a f / o W  _
a / ( r ,v , / ) / /0(v) a a- — ------- = ---------a (6.11)

d v JX JoX * f 0 2kT0

Taking Fourier transformation of equation (6.5) to (6.10) with respect to the space 

variable r , using expression (6.11), we obtain

with

d . , . , 2 , v 2 3 .. 2v  a- h k(\,t) + ik - \h k =X{pk ~hk + — v-q. + x ,(— - - ) }  + .----
ot v0 v0 2 v0

(6 .12)

Pk+Xk= 7-7 \ dvv2foK  (6.13)
3v0

2 = 2 k J
vo m

Here, A* (v,f)is a different representation of A(k,v,t). Do the Fourier transformation 

again to the time variable t of equation (6.12) and (6.13), we find

Ol ^ 2 V" SI
( l - m  + ik - \ )h k + —  v- q + Xx ( - - - )  + hk (v,0) + • k’m

vo vo 2 vo

( 6 . 1 4 )
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3v0

Here hk (v,0) is the Fourier transform of time of the initial velocity distribution. For

convenience, we set the direction of velocity to be parallel to the z direction, and we can 

discard the arrow bar from now.

Multiplying (6.14) by f 0 and integrating over the velocity space, we obtain

~ + ikqk, 00 = J W o  (V)K  (v,0) =pk (0) (6.16)

From the initial condition given above, p* (0) = hk (v,0) = 1 

Let

co X
x = j — , y  = —~ , z  = x + iy

kv0 kv0

and

S = -

We find two equations for p(A,co) and t(£,®) :
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^ J ^ 5 7 r p K ! - 3 /2 )k . “)

J ^ s a f c i V ^

r  f ̂  ̂  +2xA*k'm)

^2 £XP( -̂ } (1 -  2yi%) (6.18)
3kv0 n J z - \

■ In chapter 2 we have got the relationship between the light scattering spectrum 

5(k,co) and density fluctuation p (r,/), and it is

S(k,©) = 2 Re JJc/rc/co exp(/ k- r -  i«f)p(r,f) (6.19)

Solving equation (6.17) and (6.18), we get
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S(k,ft>) oc P(k,03) = 2 yi y ^ 4
H  y 3 + y 4

with

y, = 4 ,5 , -  4 4 , + y{A3Cl -  J 4 C2) 

y2 = J 65, + 4-®2 +y(^4C, +4sC2) 

y3 = 4 5 , - 4 4  + y(A3a 1 - A 4a 2) 

y 4 = ^ 2 5, + A\I$2 + j ( 4 a i + A2a 2)

P, = 2(x2 -  / ) ( x t /  -  >/F) + 4xy(l - y U -  xV)

P2 = 2(x2 - y 2)(xV + y U - l )  + 4 x y (xU -y V )~  1 

e, = x U - y V  

e2 = xF  + j t Z - l

83 — (x2 -  y 2)U -  2xyV + y

84 = (x2 -  y 2 )F + 2xy£/ -  x

2
a , = 1— _y(s3 +xp, + U + 2x8,) 

3

2a 2 = — j( e 4 +xP2 + F + 2xs2) 
3

A, = 1 —>>£/-2xys1 

4  = —y(V  + 2xs2)

4  = 8 3  - U 12
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A4 = e4 - V 12

A5 = U 12 + yz-, + azx 

A6 = V I2 -  yzx + az2

Bi = l - ^ y ( e 3 + ^P, + U - y $ 2)

B 2 = - y j ( s 4 +xp2 + F  + Jp ,)

C\ ~ “(s3 +y &2 +U + 2yz2 + a((3x + 2zx)) 

c 2 =̂ (S4 ~ jPi + V - 2 y z x +a(p2 +2e2))

W = U + iV

And W is the plasma dispersion function that is defined as

It i
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Figure 6.1 The spectral change when an external force is applied. The blue line is the RBS 
spectrum of standard air at 300K and latm  without an external force. The black line is the 

RBS spectrum of air, which subjects to an external force.

RBS with/without sound
2.0

I f  1J5

W

0.0
0.0 OS
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Figure 6.2 A plot of change of the RBS spectrum when an acoustic wave is propagating in 
the air. The blue line is for the normal air. The black line is the RBS spectrum for the air 

with a propagating sound wave. The sound power level is lOOdb and the sound frequency is
1000Hz.
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CHAPTER 7 

CONCLUSIONS

Rayleigh-Brillouin-scattering spectral analysis is an important tool for lidar 

measurements of the atmosphere (wind, temperature, turbulence, etc). Additionally, the 

intensity of Rayleigh-Brillouin scattering can be used to measure the aerosol distribution 

and velocity-flow field in the troposphere. Our study of Rayleigh-Brillouin scattering in 

air indicates that the photometric returns of Rayleigh-Brillouin scattering are related to its 

spectra. We observed and described the decreasing contribution of Brillouin scattering 

with altitude. We also have indications that the existence of the Brillouin spectral 

components increases the intensity of backscattered light.

Temperature profiles were obtained using Rayleigh-Brillouin spectra measured by 

a high-resolution direct detection incoherent lidar system—the GroundWinds lidar 

system. Wind turbulence can also be measured using variance analysis o f the time series 

of the measured Rayleigh-Brillouin spectra. By the theory of Rayleigh-Brillouin 

scattering with external forces developed in chapter 6, acoustic wave, Rayleigh-Brillouin 

scattering spectra in low-temperature plasma, and latent energy will change the shape of 

Rayleigh-Brillouin scattering spectra. Therefore, future measurements of these properties 

and phenomena can be performed—in some cases, with improved optical technology.

For temperature retrieval in the lower atmosphere, using a simplified Gaussian 

lineshape to describe the elastic part o f Rayleigh scattering—the Cabannes line—is risky 

in the kinetic regime that applies in the lower atmosphere. This is because the Cabannes 

(also Rayleigh-Brillouin) line shape has two components: one is due to the pressure 

fluctuations (Brillouin scattering) and the other is due to the temperature dependent
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molecular velocity distribution (thermal fluctuations). Thus, the width of the Cabannes 

line is not only a function of temperature, but also a function of pressure. The Brillouin 

component tends to increase the width of the Cabannes line. Therefore, using a 

simplified Gaussian in air temperature retrievals leads to incorrect lapse rates and 

anomalously large temperatures. At very high altitudes the pressure-fluctuation induced 

Brillouin scattering component is small, so a Gaussian may then be adequate for the 

temperature measurements using Rayleigh spectra. The temperature measured with 

GroundWinds, with the exception of a positive offset, tracks the temperature lapse rate as 

measured with radiosondes showing that the RBS spectrum can be effectively used for 

remote temperature measurements.

Molecular backscatter coefficients were measured using the molecular 

photometric returns of GroundWinds lidar system. From our measurements, the 

molecular backscatter coefficients are at least 1.5 times of the theoretical counterparts. 

So, if  this can be confirmed, it will have a significant effect on the space-lidar power or 

other mission components.

Future measurements of polarized Rayleigh-Brillouin spectra in air by 

GroundWinds lidar system are necessary to further assess the current Tenti S6 model as a 

basis for improving its capabilities and performance for temperature and other 

atmospheric measurements.
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APPENDIX  

The Plasma Dispersion Function
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The Hilbert transform of a Gaussian function is defined as plasma dispersion

junction:

(A.1)

Here S, is complex. The plasma dispersion function is commonly encountered in the 

plasma physics, where different kinds of kinetic equations are used to study the properties 

of ionized gases.

The plasma dispersion function is very important in many kinetic theories and 

plasma physics; it is useful for us to list its main properties here:

This is because,

W'(£) = -

n

 / ,2^ 00 ^
— ITT j — ^ e x p ( - t 2)dt = 2 ( & r - i ) .  

n  i t - c—00 iZ
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Proof. This can be seen from 1).

Proof.

-ITT JlT~7exP(~*2) ^  = 3 7 7 \ j — t  ~ V { ex? { ~ t 2 ) d t  = ^  *  - i s - *  ^  - i s -*

4) 377 j/-exp(^2)* = #2(^-i)- / /2  
*  -is

5) 4 7  J ^ - e x p ( - * 2 )<* = <f3 (<fJP -  o  -  4  
11 - i s - * 2

6) An alternative representation of the plasma dispersion function is:

i{
W(^) = ~2 exp(-£2) Jexp(-/2 )d t .

Using this expression, we can get,
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7) For small £,, the plasma dispersion function can be expanded to:

fF(£) = - V /2ex p (-< n -2 /£
( , 2<f2 4£2 8^6 ^1 + ̂ — + —------ 2— + . . .

3 15 105
(A.2)

8) For large £ , where £ = x + iy , the plasma dispersion function IF(£) can be expanded 

asymptotically into,

W(i)  = - n  r)<zxp(-E, ) -  2i£,~ r. 1 3 15 A
  r-H  r - +  ••

2£> 41; 8<f6
(A.3)

Here,

TJ =
y  > 1/x 
|y| < 1 / x , 
y  < -1 /x

x > 0
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