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ABSTRACT

INTER-ANNUAL AND DECADAL VARIATION IN THE PELAGIC 

MARINE ECOSYSTEM OF THE YELLOW AND EAST CHINA 

SEAS

by

Seung-Hyun Son 

University of New Hampshire, December, 2004

The water-leaving radiance measurements and chlorophyll concentrations of the 

Coastal Zone Color Scanner (CZCS) and the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) were compared to investigate decadal trends in the Yellow and East China 

Seas (YECS). A unified bio-optical algorithm was derived to convert CZCS pigments to 

SeaWiFS chlorophyll concentrations. The conversion is applied to level-2 CZCS data. 

High increase of the water-leaving radiances at 443 and 555 nm and chlorophyll was 

shown in the area. There were increasing trends in temperature and zooplankton 

biomass, and decreasing trends in salinity and Secchi depth. However, in comparing 

CZCS with SeaWiFS data, no attempt was made to unify the atmospheric correction 

algorithms. Thus, it is likely that differences in the atmospheric correction between the 

ocean color sensors might account for the difference of water-leaving radiance at 443 nm.

xvii
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We established monthly variations in the stratified and well-mixed areas using a 

coupled ocean wave-circulation model and the ocean color satellite data for estimating 

primary productivity in the Yellow Sea using satellite observations. The model results 

were compared with remotely sensed sea surface temperature and water-leaving radiance 

at 667nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to 

develop a method to differentiate stratified and well-mixed waters using remote sensing 

data. Maps o f the well-mixed area were derived from MODIS nLw667 using the 

relationship between the nLw667 and the model AT in the southeastern Yellow Sea for 

the warmer months. The well-mixed areas were located where nLw667 is higher than 2 -

9  i i

4 W in ' •nm' -sr' depending on the month. These results provide the basis for modeling 

vertical biomass profiles in estimating primary production using satellite data in the 

Yellow Sea.

We used and modified an existing primary productivity algorithm to estimate 

phytoplankton primary production using satellite data in the Yellow Sea. The Yellow 

Sea was first partitioned into three subregions based on the bathymetry and physical 

features to parameterize the algorithm. A local empirical chlorophyll algorithm was 

applied to derive more accurate chlorophyll concentration in the Yellow Sea and an 

approach was presented for estimating the diffuse attenuation coefficient. We 

investigated whether it was necessary to model the vertical biomass profile. Finally, the 

algorithm was applied to derive the primary production in the Yellow Sea. The primary 

production derived using the local algorithm was higher in the middle o f the Yellow Sea 

in May and September than in the shallower (<50 m) coastal areas. The low primary

xviii
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production in the coastal areas is caused by high turbidity due to strong tides and shallow 

depths. Lower turbidity in the middle of the Yellow Sea allows the light energy for 

primary production to penetrate to a deeper depth. Our computation of daily total 

primary production for the entire the Yellow Sea is 19.7 x 104 tonC d"1 in May and 15.8 x 

104 tonC d '1 in September, and the annual total primary production in the Yellow Sea was 

50.1 x io 6 ton C yr'1. The resulting maps of primary production calculated from the 

remotely sensed data provide the first synoptic views of primary production in the 

Yellow Sea.

xix
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CHAPTER 1

INTRODUCTION, BACKGROUND AND SCIENCE OBJECTIVES

1.1. Introduction

The main goal of this research is to characterize and understand contemporary and 

long-term variations in the marine ecosystem of the Yellow Sea. The proposed research 

on the Yellow Sea has importance in two aspects: (i) Fishery in the Yellow Sea is one of 

the major food resources to adjacent countries. It has been reported that the overall 

biomass of fisheries has decreased considerably for the last 30 years (KORDI, 1998). 

Specifically, it appears rather clear that catch per unit effort in 1990s declined 

significantly compared to the 1970s. (ii) The Changjiang River influences the 

phytoplankton production and fisheries in the Yellow Sea. Variation in the discharge 

from the Changjiang River could be one of the main reasons for the ecological shift. In 

particular, the Three Gorges dam, which is being constructed in the Changjiang River, 

will be an issue for changes of the marine ecosystem.

First, a time series of ocean color remote sensing and in situ ecological variables 

is constructed. The next step for this study is to establish the stratified and well-mixed 

areas associated with monthly variations to examine the non-uniformity for the 

estimation of primary production using remote sensing data in this coastal water. Finally, 

a primary production model is applied to the Yellow Sea and a local primary production 

algorithm is developed for the Yellow Sea. This proposed study will help to understand

1
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phytoplankton production in the coastal waters, in general, more quantitatively as well as 

to address long-term variations o f the ecosystem and effects of climate change in the 

Yellow Sea.

1.2. Background

The coastal zone, in which 60% of the human population lives, is very important 

in the human life and activities (Pernetta and Milliman, 1995). Coastal waters play an 

important role as food resource. While the coastal ocean occupies 8% of the ocean 

surface, about 90% of world commercial fish is caught in coastal waters. It is reported 

that coastal primary production contributes 14-25% of the global oceanic primary 

production (Longhurst, et al., 1995; Pernetta and Milliman, 1995). Coastal areas are 

affected through riverine discharge and changes due to land-use and other activities. 

Coastal waters are also easily affected by internal and external forcing, and the properties 

change on short time scales. Periodic tidal forcing causes vertical mixing in shallow 

areas which causes re-suspension and the interactions with bottom organisms. The 

biomass profile in the tidally well-mixed area can be assumed as vertically uniform while 

there is a deep chlorophyll maximum in the stratified area. The area vertically well- 

mixed due to tidal force has importance on phytoplankton growth and distribution. In 

addition, light limitation due to high turbidity caused by tidal mixing can inhibit primary 

production. It has been reported that light transparency is most important factor on 

primary production in the tidal mixing area of the Yellow Sea (Kang, et al., 1992; Choi,

2
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1991; Choi, et al., 1995; Yoo and Shin, 1995). Thus, it is important to identify well- 

mixed and stratified regions for estimation of primary production using the ocean color 

satellite data.

Simpson and Hunter (1974) proposed a criterion to differentiate tidally well- 

mixed from stratified waters based on log (H/U3), where H is the water depth and U is the 

depth-mean velocity of the tidal current. The threshold value o f log (H/U ) less than 2 

was used for vertically well-mixed areas and the value greater than 2 for stratified areas. 

In order to establish the magnitude of the productivity associated with the well-mixed 

regions in the Gulf o f Maine, Yentsch and Garfield (1981) differentiated mixed and 

stratified waters in the Gulf o f Maine using the criterion proposed by Simpson and 

Hunter (1974). They compared maps of log (H/U3) with infrared satellite imagery and 

found a good correspondence of well-mixed areas with cooler nearshore areas. Others 

have compared satellite infrared imagery and/or ship-measured temperature with this 

criterion in other regions (Pingree and Griffiths, 1978; Garrett et al. 1978; Bowman and 

Esaias, 1981; Baines and Fandry, 1983; Lie, 1989).

Another criterion for well-mixed areas can be based on top-to-bottom temperature 

differences. Mixed layer depth (MLD) is generally defined as the depth where the 

temperature differs by 0.5°C from the sea surface temperature (Obata et ah, 1996; 

Monterey and Levitus, 1997). More recently, Kara et al. (2000) presented the “optimal” 

definition of MLD as the depth at the temperature difference of 0.8°C. In this work, we 

will regard waters as vertically well mixed if the temperature difference between surface 

and bottom (AT) is less than 0.8°C.

3
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An important contribution of ocean color remote sensing, which can overcome the 

temporal and spatial limitation in ship measurements (Smith, et al., 1982; Robinson, 

1985), is to understand primary productivity of the ocean. Ocean color remote sensing is 

now the only means to determine the basin to global scale phytoplankton abundance. 

Phytoplankton abundance is routinely derived from the satellite in the open ocean waters, 

so-called “Case 1 waters” whose optical properties are affected by the phytoplankton 

cells or their decay products (Morel and Prieur, 1977). However, optical properties in 

coastal waters are affected by non-algal materials such as suspended sediments as well as 

by phytoplankton pigment. These waters are called as “Case 2 waters.” These properties 

make it difficult to estimate phytoplankton biomass and primary productivity using the 

ocean color remote sensing in coastal waters. The Yellow Sea is a marginal sea and 

primarily Case 2 water although the middle area of the Yellow Sea in summer is 

characterized as Case 1 water (Yoo and Park, 1998). The Yellow Sea is affected by 

strong tidal currents and the discharge of fresh water from the Changjiang (Yangtze)

•3 t
River which is the largest river in Asia (annual mean inflow of 28,900 m s' ; freshwater 

discharge of 9.24 x 1011 m3 y '1; solid discharge of 4.86 x 108 tons y '1). The Kuroshio 

Current which is characterized by comparatively high temperature and salinity also 

influences the southeastern area of the Yellow Sea.

Previous studies of primary productivity in the Yellow Sea have been temporally 

and spatially limited. Choi et al. (1988) showed that high productivity in the western 

coastal waters o f Korea maintains the high abundance of zooplankton and fish larvae in 

summer. Kang et al. (1992) estimated that primary productivity along the mid-eastern

4
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coast of Korea varied from 37 to 1104 mgC-m'^d"1 and the assimilation numbers

(primary production per unit chlorophyll-a at saturated light) varied from 1.13 to 24.28 

1 1mgC-(mg-chl-a)' -hr' . In another study of the nearshore region (Chunsoo Bay) of the 

mid-eastern Yellow Sea, Yoo and Shin (1995) estimated primary productivity ranged 

from 28 to 197 mgC-m'^d'1 in January, and increased to 1324 mgC-m'^d"1 in July.

Studies describing the distribution of chlorophyll and primary productivity over 

all the Yellow Sea are also in the literature (Choi et al. 1995; Wu et al. 1995). Choi et al. 

(1995) measured primary productivity using C-14 methods and estimated depth- 

integrated primary production with the formula o f Platt et al. (1980). According to their 

work, primary production varied from 147 to 2694 (mean of 740) mgC-m^-d'1 in 

September, 1992, in the Yellow Sea. Wu et al. (1995) also measured primary production 

using C-14 method in September 1992, but used Cadee and Hegeman’s (1974) formula to 

estimate primary production which ranged from 65 to 927 (mean of 331) mgC-m^-d-1. 

The large differences between these primary production values may be because they used 

different methods to estimate primary production. In addition, they found very different 

chlorophyll levels (0.16 to 3.20 pg-/'1 with mean of 0.69 pg-f1 -  Choi et al.; 0.43 to 17.43 

mg-nT with mean of 1.362 mg-mf -  Wu et al.), which were curiously opposite in 

magnitude to the primary productivity differences.

There have been several attempts to investigate the seasonal and temporal 

distribution of chlorophyll using Coastal Zone Color Scanner (CZCS) data in the Yellow 

and East China Seas. Ning et al. (1998) used the full 7.5-year CZCS level-3 data set 

generated by the NASA Goddard Space Flight Center (GSFC) (Feldman et al., 1989). In

5
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that study, high values of surface pigment (> 5 mg-m"3) occurred in the western coastal 

areas of Korea and the Changjiang River front. In the central part of the Yellow Sea, 

CZCS pigment values were lower than those in the other areas in most months. The 

CZCS level-3 data set on CD-ROM published by the NASA GSFC and the Jet Propulsion 

Laboratory (JPL) was used by Wang et al. (1998) to study phytoplankton variation in the 

East China Sea. They also reported high pigment concentration around the Changjiang 

River. The satellite chlorophyll concentrations used in both of these studies were over

estimated because the chlorophyll algorithms do not consider the effects of non

chlorophyll materials in Case 2 waters. Improved ocean color remote sensing algorithms 

must account for optically active materials other than chlorophyll to estimate chlorophyll 

concentration more quantitatively. A local empirical algorithm of chlorophyll-a 

concentration for the Yellow Sea was developed using measured remote sensing 

reflectance and measured chlorophyll concentrations by Ahn (2004).

Some studies have suggested that there are indications of climate change in 

Korean waters. Kim and Yoo (1996) reported evidence that temperature increased in the 

mid-1970s and fisheries resources responded to the temperature changes. There were 

significant increases in zooplankton biomass within the last two decades in the Yellow 

Sea (Kang, 1998; Son et al., 2000), in the East/Japan Sea (Kim et al., 1998; Zhang et ah, 

2000), and along the southern coast o f Korea (Kim and Kang, 2000). Variations of 

fisheries biomass corresponding to climate change have also been reported during the last 

several decades. Reports indicate a decreased biomass of saury and increased biomass of 

sardine following the 1976 regime shift in the North Pacific (Zhang et al., 2000; Kang et

6
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al., 2000) and an increase in the catch of anchovy and mackerel along the southern coast 

o f Korea (Kim and Kang, 2000). These authors also studied the correlation between 

environmental variations and the chlorophyll concentration derived from water 

transparency (Secchi depth) in Korean waters. Ocean color remote sensing data now 

available provide a better means of understanding the long-term variations in primary 

production and phytoplankton biomass, and their relationship to environmental variables.

1.3. Science Objectives

The goal of this study is to characterize and understand inter-annual and decadal 

variation in the pelagic marine ecosystem of the Yellow and East China Seas using 

satellite ocean color data. In order to address this goal, three specific objectives were 

undertaken as follows:

(1) Create a multi-decadal time series of ocean color remote sensing and in situ 

ecological variables to provide the observational basis for understanding and 

predicting changes in marine ecosystems and biogeochemical cycles.

(2) Develop a method to differentiate stratified and well-mixed areas for the 

estimation of primary production using remote sensing data in coastal waters.

(3) Develop a local primary production algorithm to produce quantitative maps of 

satellite derived primary production in the Yellow Sea.

7
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This dissertation presents three chapters that address these objectives. The 

dissertation is presented in the context of three self-contained papers, chapters 2-4, with 

each chapter addressing one of the objectives stated above. Thus, each chapter contains 

its own abstract, methods, results, discussion, and conclusions sections. Some overlap 

and redundancy among the chapters is expected because of this format of the dissertation.

Objective (1) is addressed in Chapter 2, entitled “Decadal variability in the 

Yellow and East China Seas as revealed by satellite ocean color data (1979-2003).” In 

this chapter, we constructed satellite time series of water-leaving radiance and 

chlorophyll concentration as well as time series of the existing long-term temperature, 

salinity, zooplankton, and water transparency data in the Yellow Sea. The results showed 

changes in satellite-derived optical properties during the past two decades in the Yellow 

Sea as well as increasing trends in temperature and zooplankton biomass, and decreasing 

trends in salinity and transparency. Some of the results in this chapter were presented at 

the 5th Pacific Ocean Remote Sensing Conference in Goa, India, in 2000, and later at the 

Joint Global Ocean Flux Study (JGOFS) Ocean Science Conference in Washington D.C. 

in 2003.

Chapter 3, entitled “Classification of well-mixed and stratified waters in the 

Yellow Sea,” focuses on objective (2). In this chapter, we established monthly variations 

in the stratified and well-mixed areas using the criterion of the temperature difference 

between bottom and surface. Temperatures were based on a model (Moon 2004). We 

addressed a method to differentiate stratified and well-mixed areas for estimating primary
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productivity in the Yellow Sea using satellite observations. The results in this chapter 

were originally presented at the Ocean Optics XVI conference in Santa Fe, USA, in 2002.

Objective (3) was addressed in Chapter 4 under the title “Primary production by 

the ocean color remote sensing in the Yellow Sea.” In this chapter, we used and modified 

an existing primary productivity algorithm to estimate phytoplankton primary production 

in the Yellow Sea. Maps of primary production calculated from the remotely sensed data 

with the productivity algorithm provide the first synoptic views of primary production in 

the Yellow Sea.

In Chapter 5, we provide a brief summary of the thesis with the focus on the 

significance o f the thesis, and propose further work.

9
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Chapter 2

Decadal Variability in the Yellow and East China S eas as Revealed by 

Satellite Ocean Color Data (1979-2003)

(To be submitted to Remote Sensing o f  Environment by Seung-Hyun Son, Janet 

Campbell, Mark Dowell, and Sinjae Yoo)

ABSTRACT

Satellite ocean color data from the Coastal Zone Color Scanner (CZCS) and the 

Sea-vie wing Wide Field-of-view Sensor (SeaWiFS) are examined to investigate decadal 

trends in the Yellow and East China Seas (YECS). Our goal is to determine whether 

there have been changes in chlorophyll concentration and suspended sediment as 

indicated by changes in satellite-derived optical properties during the past two decades. 

We compare water-leaving radiance measurements at 443 nm and 555 nm,1 and discuss 

possible reasons for the changes observed (whether they are artifacts of the different 

sensors and algorithms or real changes in the water properties). We examine changes in 

the chlorophyll concentration that would be inferred from case-1 water algorithms if the 

water-leaving radiances are comparable and accurate. The CZCS pigment data were 

converted to chlorophyll concentration using an algorithm derived from in situ data to be 

comparable to the SeaWiFS chlorophyll derived by the OC4 algorithm (O’Reilly et al. 

2000).

1 The CZCS band is centered at 550 nm, but we consider this comparable to the SeaWiFS 555-nm band.
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The shallow coastal areas of the YEGS exhibited high water-leaving radiance in 

the 555-nm band (Lw555) during both time periods, indicating that these waters are 

sediment-dominated case-2 waters. Between the CZCS era (1978-1984) and the SeaWiFS 

era (1998-2002), Lw443 increased in these areas by 17%—61%, and Lw555 increased by 

67-108%. In the deeper waters that are considered case-1 during summer, Lw443 

decreased by 25%—31%, which would indicate an increase in absorbing materials such as 

chlorophyll and colored dissolved organic matter (CDOM). Between the CZCS and 

SeaWiFS eras, the average chlorophyll concentration (based on case-1 algorithms) 

increased by 15-60% in these offshore deep waters.

For comparison with the trends found in satellite data, we examined in situ data 

from 61 stations located off the western coast of Korea that had been sampled six times 

per year between 1978 and 2002. These measurements, made by the Korean National 

Fisheries Research and Development Institute, include temperature, salinity, Secchi 

depth, and zooplankton biomass. Between 1978 and 2002, there were increasing trends 

in temperature and zooplankton biomass, and decreasing trends in salinity and Secchi 

depth. The satellite data surrounding these stations showed an increase in Lw555 (49 %), 

a decrease in the Lw443 (-12 %), and an increase in chlorophyll (46 %).

No attempt was made to unify the atmospheric correction algorithms for the 

CZCS and SeaWiFS data. We evaluated the consequences of the differences for a 

limited period (November 2003) and concluded that differences in the atmospheric 

correction between the ocean color sensors might account for the differences we found in 

the water-leaving radiances.

11
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2.1. INTRODUCTION

Recent climatic oscillations, such as El Nino and La Nina, have drawn attention to 

the effects of climate change on marine ecosystems (Wallace and Vogel, 1994). The 

regime shift during 1977-1978 reported in the Northern Pacific Ocean (Trenberth and 

Hurrell, 1994), which caused changes in phytoplankton, zooplankton, and fish production 

(Polovina et al., 1994, 1995; Beamishi and Bouillon, 1993; McFarlane and Beamish, 

1992; Sugimoto and Tadokoro, 1997, 1998), is an example of ecological change brought 

about by climate change. In Korean waters, Kim and Yoo (1996) reported evidence that 

fisheries changed in the mid-1970s in association with increasing temperatures, and there 

have been other reports of climate shifts in Korean waters using zooplankton and fishery 

data (Kang, 1998; Kang et al., 2000; Kim and Kang, 2000; Kim et al., 1998; Park et al., 

1998; Zhang et al., 2000). Significant increases in zooplankton biomass during the past 

two decades have been observed in the East/Japan Sea (Kim et al., 1998; Zhang et al., 

2000), off the southern coast of Korea (Kim and Kang, 2000), and in the Yellow Sea 

(Kang, 1998). There was an apparent regime shift in Korean waters in 1976 at which time 

saury decreased and sardine biomass increased (Zhang et al., 2000; Kang et al., 2000); 

anchovy, mackerel, and sardine catches increased along the southern coast of Korea (Kim 

and Kang, 2000); and the catch of squid increased in Korean waters (Park et al., 1998).

The National Aeronautics and Space Administration (NASA) launched the first 

ocean color satellite sensor, the Coastal Zone Color Scanner (CZCS), in October, 1978. 

The CZCS collected ocean color data from November 1978 to June 1986. Following an 

11 -year gap, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was launched in
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August, 1997, and continues to provide ocean color data in 2004. To the extent that the 

data from these two ocean-color sensors can be compared, valuable information may be 

derived to understand decadal-scale variations in ocean ecosystems. However, a number 

of problems must be overcome before comparing data from these sensors. Among these 

are differences in sensor calibrations, atmospheric correction techniques, and the use of 

different bio-optical algorithms.

In this paper, we focus on the Yellow and the East China Seas (YECS) with the 

objective of comparing data from the CZCS and SeaWiFS satellite missions to determine 

whether there have been decadal trends in this region. The CZCS data provide a 

climatology of the bio-optical properties and phytoplankton pigment distributions during 

the period 1979-86, whereas the SeaWiFS data provide a contemporary picture of the 

same area. Our long-range goal is to create a multi-decadal global ocean biology time 

series to provide the observational basis for understanding and predicting changes in 

marine ecosystems and biogeochemical cycles.

We compare water-leaving radiances derived from the CZCS and SeaWiFS data 

in two bands, the 443-nm band centered at the chlorophyll-a absorption peak, and the 

555-nm (or 550-nm) band. These measurements are the result o f applying atmospheric- 

correction algorithms to the top-of-atmosphere radiances. Different atmospheric- 

correction techniques have been applied, but we did not correct for these differences. We 

simply offer the results here for speculation as to whether trends may be real or artifacts 

of sensor and algorithm differences, and later discuss possible reasons for the trends that 

are found.
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We also compare chlorophyll concentrations derived from the two sensors, but in 

this case, we have attempted to adjust for differences in the bio-optical algorithms. The 

algorithm applied to the SeaWiFS data was the OC4 algorithm (O’Reilly et al. 2000a). It 

was not possible to apply this algorithm directly to CZCS data because CZCS lacked 

several spectral bands needed for the OC4 algorithm. Instead, pigment concentrations 

were derived according to the standard CZCS algorithm (Gordon et al. 1983), and then 

converted to chlorophyll concentration using a relationship derived from the SeaWiFS 

Bio-optical Algorithm Mini-Workshop (SeaBAM) data (O’Reilly et al. 1998). This 

conversion yields a chlorophyll concentration comparable to that derived from the OC4 

algorithm.

We recognize that large areas of the YECS are case-2 waters, and thus the 

satellite retrievals do not give accurate chlorophyll concentrations in those areas. More 

realistically, the satellite-derived chlorophyll is a measure of the concentration of 

absorbing materials that include organic detritus and colored dissolved organic matter, as 

well as phytoplankton pigments. We present comparisons that suggest the possibility of 

decadal-scale changes in the water quality and productivity of the YECS ecosystem, but 

further studies will be needed to determine the nature of these changes, and whether they 

are real or artifacts of the differences in sensors and algorithms.

2.2. DATA and METHODS
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2.2.1. Satellite data

The CZCS level-0 data for the period (1978 - 1986) and all available SeaWiFS 

level-la version-4 data for the Yellow and East China Seas were obtained from the 

NASA Goddard Space Flight Center (GSFC). Because o f large gaps in the CZCS data 

after 1984, only the CZCS data from 1979 to 1984 were processed. The SeaWiFS data 

from 1998 to 2003 were processed. The data were processed from level 0 to level 2 and 

remapped using the SeaWiFS Data Analysis System (SeaDAS) software obtained from 

NASA GSFC. The standard algorithms in SeaDAS were used for the CZCS and 

SeaWiFS atmospheric corrections. The standard CZCS pigment algorithm and the 

SeaWiFS OC4 algorithm were also applied. Then a conversion algorithm was applied to 

the CZCS pigments to obtain a CZCS chlorophyll concentration comparable to the 

SeaWiFS chlorophyll concentration. Details of this conversion algorithm are described 

below.

Monthly composites were obtained by averaging all data within each month, and 

then annual composites of CZCS data from 1979 to 1984, and SeaWiFS data from 1998 

to 2003 were derived by averaging the monthly composites. Finally, long-term means 

were derived by averaging all yearly composites during each period. The YECS was 

divided into seven subregions based on bathymetric contours as shown in figure 2.1, and 

the mean and standard deviation of the long-term composited data were calculated within 

each subregion for the purpose of describing apparent changes that occurred over the two 

decades. The Bohai Sea (BS) was defined as a subregion distinct from the Yellow Sea. 

This shallow sea (depths < 50 m) is affected by the Yellow River discharge. The Yellow
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Sea was divided into three sub-regions: the western and eastern coastal regions shallower 

than 50 meters, and the middle Yellow Sea (MYS) deeper than 50 meters. The MYS 

stratifies in summer and is considered case-1 water at that time. The East China Sea was 

also divided into 3 sub-regions: the highly turbid, western coastal region shallower than 

50 m, that is affected by the Changjiang (Yangtze) River discharge and tidal mixing; the 

middle of the East China Sea between 50 and 100 meters depth, that is also affected by 

the buoyant Changjiang River plume, and the eastern subregion deeper than 100 meters 

characterized as clear waters and influenced by the warm and saline Kuroshio current.

2.2.2. Converting CZCS pigm ent to chlorophyll concentration

We consider the OC4.V4 chlorophyll algorithm (O’Reilly et al., 2000) used by 

the SeaWiFS Project to be the standard algorithm for chlorophyll. It gives chlorophyll by 

the formula:

. log1o(CHL) = aO + al • X + a2 • X 2 + a3 • X 3 + a4 • X 4 (1)

where X = logl0(max[Rrs (443),R rs(490),R rs(510)]/R rs (555)) and a = [0.366, -3.067,

1.930,0.649,-1.532],

The standard pigment algorithm applied to CZCS data (Gordon et al. 1983) was:

log10(P!G) = aO + al • X (2)

where X = logjo(Lw 443/L w 550) and a = [1.130,-1.705] if the value of PIG < 1.5;

otherwise, X = log]o(Lw520 /L w 550) and a = [3.327,-2.44], Note that this algorithm

created a discontinuity at PIG = 1.5 mg m'3.

To account for differences in the CZCS pigment and SeaWiFS chlorophyll 

algorithms, we used the original SeaBAM data (O’Reilly et al. 1998). This data set
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consists of remote sensing reflectance, Rrs(Z), at wavelengths = 412, 443, 490, 510, 520, 

555 and 565 nm, and surface chlorophyll-a concentration (CHL) measurements at 919 

stations widely distributed geographically. Our objective was to apply both algorithms to 

this data set, and then determine a set of equations to convert PIG to CHL. Most of the 

stations had either the 510-nm band used by the OC4 algorithm, or the 520-nm band used 

by the CZCS algorithm. We eliminated stations that did not have a measured reflectance 

at 510 nm, thus reducing the number of stations to n = 539. To obtain Rrs(520), 

corresponding to the CZCS band, we used the relationship:

R rs(520) = R rs(510)/[a0 + al • X 1 + a2 • X 2 + a3 • X 3 + a4 • X 4 ] (3)

where a = [1.0605321, -0.1721619, 0.0295192, 0.0150622, -0.004133924] and X = 

logio(CHL). This is based on the model of Morel and Maritorena (2001) as reported by 

O ’Reilly et al. (2000). The above-water Rrs(Z) values were multiplied by the 

extraterrestrial solar irradiance for each band to obtain the normalized water-leaving 

radiances, LW(Z). We assumed that the 555-nm band was equivalent to the 550-nm band 

o f CZCS. Using the LW(Z) values for X = 443, 520 and 555, we calculated the CZCS 

pigment (PIG) according to the standard algorithm (Gordon et al., 1983) given by 

equation 2, and using the Rrs(Z) values for the SeaWiFS bands, we calculated chlorophyll 

(CHL) by the OC4.V4 algorithm (O’Reilly et al., 2000) (equation 2).

Results of plotting CHL vs. PIG are shown in figure 2.2, A discontinuity occurs 

when the CZCS algorithm switches from the 443:550 ratio to the 520:555 ratio (PIG = 

1.5 mg m ' ). At pigment values less than about 0.12 mg in' , there is a deterministic 

relationship because both algorithms use the 443:550 ratio. The greatest scatter occurs 

where pigment is between 0.12 and 1.5 mg m’3. In this range, PIG is based on the
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443:550 radiance ratio whereas CHL is based on the 490:555 ratio. At pigment levels 

above 1.5 mg m '3 (the switching point), the OC4 algorithm is probably using the 510:555 

ratio, whereas PIG is using the 520:550 ratio. The scatter in this range is due to the 

differences between 510 and 520 nm. Also shown on figure 2.2 (dashed line) is the 

relationship between PIG and CHL recommended by O ’Reilly et al. (1998), that was 

subsequently used by Conkright and Gregg (2003) for blending CZCS and in situ data 

(see discussion).

For PIG < 1.5 mg m'3, and PIG > 5 mg m'3, the OC4-derived chlorophyll exceeds 

the CZCS pigment (despite the conventional view that pigment includes more than just 

chlorophyll, a view that is reflected in the O’Reilly relationship). However, pigment 

values in the Yellow Sea region generally fall within the range 1.5 to 5.0 mg m' where 

pigment exceeds the OC4 chlorophyll. From these results, we derived formuli for 

converting level-2 CZCS pigments to obtain a chlorophyll concentration analogous to the 

OC4-derived SeaWiFS chlorophyll. The lines drawn on figure 2.2 are the formuli:

log10CHL = -0.1813X4 -0 .1 043X3 + 0.6769X2 + 1 .7495X + 0.3007 P IG <0.112 

log10 CHL = 0.231 IX 2 + 1 .1916X + 0.1150 0.112 < PIG < 1.5

log10 CHL = 0.2165X2 + 1 .5233X -  0.5104 PIG > 1.5

where X = logio(PIG), and CHL is the SeaWiFS -compatible (OC4) chlorophyll 

concentration which we call the “CZCS chlorophyll.”

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.23. in situ data

For comparison with trends found in the satellite data, we examined temperature, 

salinity, transparency, and zooplankton data provided by the Korea Oceanographic Data 

Center (KODC). The serial oceanographic observations are carried out bimonthly 

(February, April, June, August, October, and December) in Korean waters by the 

National Fisheries Research and Development Institute (NFRDI). The data for 61 stations 

in the Yellow Sea from 1978 to 2002 were processed (Fig. 2.1).

Zooplankton data were available only from 1978 to 2000 and include the biomass 

o f copepoda, caetognatha, euphausia, and amphipoda within the water column. 

Zooplankton samples were collected with NORPAC net with 0.33 mm mesh size and a 

45 cm mouth diameter. The net was towed vertically from the bottom to the surface at a 

speed of 0.5 -  1.0 m s'1. Each sample was fixed in 5% formalin and the volume of 

zooplankton biomass (mg m '3) was measured excluding particles larger than 2 cm.

The surface temperature and salinity measurements, Secchi depth, and 

zooplankton biomass data at the 61 KODC stations were averaged within each year. In 

addition, the chlorophyll, Lw443, and Lw555 values were extracted within 3 x 3  pixel 

boxes around the 61 KODC stations from the yearly composited CZCS and SeaWiFS 

data.

2.3. RESULTS

Individual yearly composites of CZCS data for 1979-1984 and SeaWiFS data for 

1998-2002 are shown in figure 2.3. Between the two eras (or, more specifically, between
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the two satellite data sets), 443-nm radiance in the middle o f the Yellow Sea decreased 

while it increased around the Changjiang River, the southwest coast of Korea, and the 

Shandong Peninsula. Significant increases in 555nm radiance are seen in nearly all 

locations within the YECS. Likewise, chlorophyll increased nearly everywhere but the 

apparent increases in the shallow case-2 waters may be due to changes in other material 

loadings. The greater interannual variation exhibited by the CZCS data is probably due to 

its limited coverage.

Long-term composites of CZCS for 1979-1984 and SeaWiFS for 1998-2003 are 

shown in figures 2.4-2.6, and the ratios of SeaWiFS-to-CZCS long-term means are 

shown in figure 2.7. In terms o f 443nm radiance (fig. 2.4), the spatial distribution in the 

CZCS image is more uniform than that of the SeaWiFS composite image. Compared with 

the CZCS data, the SeaWiFS Lw443 values have decreased in the central Yellow Sea, but 

increased around the Changjiang River, along the western coast of Korea, and in the 

Bohai Sea. The spatial patterns of Lw550 and Lw555 are similar (fig. 2.5), with high 

values along the coastal regions and near the Changjiang River. However, Lw555 of the 

SeaWiFS is much higher around the Changjiang River, off the western coast o f Korea, 

and in the Bohai Sea, and has a wider range between the coastal highs and oceanic lows. 

The Lw555 and Lw550 values are almost the same, however, in the Sea of Japan/East Sea 

and eastern portions of the East China Sea.

The spatial pattern of chlorophyll (fig. 2.6) is similar in both data sets, with higher 

concentrations in coastal areas and near the Changjiang River, and relatively low values 

in the central area of the Yellow Sea. The higher chlorophyll concentrations near shore, 

especially in the western East China Sea and the Bohai Sea, are likely due to resuspended
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sediments and colored dissolved organic matter. The chlorophyll concentration of 

SeaWiFS is overall higher than that of CZCS, especially in the area near the Changjiang 

River, whereas there are slight decreases in the Bohai Sea and the mid-west coastal 

regions of Korea. Two patches o f significantly increased chlorophyll (~3x higher) appear 

in the Yellow Sea in figure 2.7. The more southerly patch is located around a Korean 

dump site where dumping has been occurring since 1992. The northerly one, located in 

North Korean waters, may be the location of another dump site, but this is unknown to 

the authors.

The means and standard deviations of these variables for the seven sub-regions 

are listed in Table 1. There were increases of 443 nm radiance in the year-round turbid 

waters of the Bohai Sea (57%), the west coast of the Yellow Sea (32%), the east coast of 

the Yellow Sea (17%), and the west-East China Sea (61%). Decreases of 443 nm 

radiance occurred in the middle of the Yellow Sea (-31 %) and the east-East China Sea 

(-25%), both areas that can be considered as having case-1 waters at least part of the 

year. There were dramatic increases in water-leaving radiance at 555 nm for the very 

turbid shallow regions, the Bohai Sea (92%), west and east margins of the Yellow Sea 

(68% and 67 %), and the west-East China Sea (108%). There was a smaller increase of 

555 nm radiance in the middle of the Yellow Sea (28%), and a decrease in the eastern 

East China Sea (-5%).

The chlorophyll concentration increased over the entire study area. The greatest 

increase was in the middle o f the Yellow Sea (60%), where the chlorophyll algorithm is 

more likely to be accurate than in turbid coastal (case-2) waters. The smallest increase 

(5%) was found in very turbid areas (the Bohai Sea and east coast of the Yellow Sea).
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The clearest waters in the region were found in the eastern East China Sea where 

chlorophyll increased by 15 %.

Unfortunately, there are no in situ measurements of optical properties or 

chlorophyll for the CZCS era that can be used to verify the changes seen in the satellite 

data. However, we were able to examine long-term monitoring data on temperature, 

salinity, and Secchi depth for the period 1978 - 2002, and zooplankton biomass for 1978 - 

1996 (fig. 2.8). Also shown in this figure are the yearly average chlorophyll, Lw443, and 

Lw555 values within 3 x 3 pixel boxes that were extracted around the 61 stations. There 

was an increasing trend in temperature and a decreasing trend in salinity and Secchi depth 

from 1978 to 2002. Zooplankton biomass showed a clear increasing trend beginning in 

the late 1980’s. Differences between mean values during the CZCS era (1979-1984) and 

the SeaWiFS era (1998-2002) also reveal changes. The changes between the two satellite 

eras were: +0.63°C for temperature, -0.57 psu for salinity, and -0.48 m for Secchi depth, 

while there were increases in the mean chlorophyll (46%) and Lw555 (49%), and a 

decrease in Lw443 (-12%).

2.4. DISCUSSION

In the results as presented, we have described differences between the CZCS and 

SeaWiFS data in terms of changes in the YECS rather than differences in the sensors or 

algorithms. However, we are fully aware that the apparent changes may be due to 

differences between the sensors and algorithms. There is probably no way to differentiate
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sensor and algorithm differences from true environmental changes. Here we will discuss 

possible reasons why the normalized water leaving radiances may be different. The 

changes in chlorophyll concentration are a direct result of differences in water-leaving 

radiances, since we have eliminated differences due to the bio-optical (chlorophyll vs. 

pigment) algorithms.

Water-leaving radiances are derived by applying an atmospheric correction to 

calibrated, top-of-atmosphere (TOA) radiances. Accurate calibration of the sensor is a 

critical requirement, and inaccurate calibrations are a potential source of differences 

between CZCS and SeaWiFS. The CZCS calibration was suspected of drifting during its 

8-year mission, but there was no means to calibrate the sensor in orbit. Its calibration 

was adjusted retrospectively by assuming that no real environmental changes had 

occurred in the global radiance distributions during its lifetime (Evans and Gordon, 

1994). The SeaWiFS has collected ocean color data since September 1997, and 

continues in 2004 to produce global products that are the best examples of climate quality 

ocean color data currently in existence. The SeaWiFS calibration is monitored regularly 

both for stability (by viewing the moon periodically) and vicariously whereby 

atmospherically corrected satellite radiances are compared with in situ water-leaving 

radiances, and adjustments made to the TOA calibration to force agreement.

We do not believe that diffences in calibration can explain the differences 

between the CZCS and SeaWiFS radiances. While there are undoubtedly differences, 

such differences would be manifest as systematic biases (i.e., one band being 

systematically high or low everywhere relative to its counterpart on the other sensor).
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The most likely sensor-related reason for differences in the water-leaving radiances are 

differences in the atmospheric corrections.

There are two major differences between the CZCS and SeaWiFS atmospheric 

correction algorithms. One concerns the aerosol model(s) used and the other concerns 

the “black pixel assumption” (namely, the assumption that water-leaving radiance is zero 

in the near-infrared). The CZCS used a single near-infrared band (670 nm), assumed to 

have zero water-leaving radiance, and a single marine aerosol scattering model which 

was non-spectral. Continental aerosols tend to scatter more efficiently in the blue region 

of the spectrum, and thus their contribution to the atmospheric scattering signal would 

have been underestimated at 443 nm by the CZCS. This would result in an 

overestimation of Lw443 by the CZCS, and consequent underestimation of chlorophyll. 

The black-pixel assumption, on the other hand, fails in turbid coastal waters. It certainly 

was not valid over the Changjiang River plume or in the Bohai Sea. The result of this 

assumption (by the CZCS) is that the aerosol optical thickness is overestimated, and thus 

Lw443 and Lw550 would be underestimated.

The SeaWiFS has two near-infrared bands that are used to estimate the aerosol 

optical thickness as well as to select an aerosol type. Furthermore, it uses an iterative 

algorithm developed by Siegel et al. (2000) which no longer makes the “black pixel” 

assumption. Neither sensor corrects for absorbing aerosols, however. Absorbing 

aerosols, such as the yellow dust often found over the YECS region, have the effect of 

reducing the atmospheric path radiance. If they are not included in the atmospheric 

correction, this reduction is attributed to absorbing materials in the water, and thus 

chlorophyll is overestimated (Lw443 underestimated).
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It is entirely possible that the trends seen in the radiances are due to differences 

between the atmospheric correction algorithms. The most likely reason is the CZCS 

algorithm’s use of the “black pixel” assumption. This could explain why the turbid 

coastal reasons have much lower water-leaving radiances in the CZCS data compared 

with the SeaWiFS data. As for differences due to the aerosol models used, this is not as 

likely to be a reason for the decadal trends observed (figs. 2.3-2.5) because the spatial 

patterns are more oceanic than atmospheric. Continental aerosols, for example, would 

not be confined to the shallow coastal areas but would extend across the entire region. 

The prominent Changjiang River river plume is clearly a feature in the water rather than 

the atmosphere. Its apparent increased turbidity between CZCS and SeaWiFS cannot be 

explained by differences in aerosol models, whereas it can be explained by the black 

pixel assumption o f CZCS. It might be possible to eliminate this problem by 

reprocessing the CZCS data using the iterative scheme of Siegel et al. (2000).

To investigate this further, we reprocessed 23 SeaWiFS images for November 

2003 from level la  to level 2 using the “single-scattering white aerosols (CZCS type)” 

atmospheric correction offered by SeaDAS. All results presented so far were processed. 

using the “multiple-scattering with 765/865 Gordon and Wang model and NIR (SeaWiFS 

type)” atmospheric correction algorithm. The reprocessed scenes were then remapped 

and averaged to simulate CZCS-like composite images, and the original November 

composites were ratioed to the new CZCS-like composites. These are shown in figure 

2.9 where they are compared with the ratios of SeaWiFS to CZCS long-term means (from 

fig. 2.7). There are similarities, particularly in the nLw443 ratios, suggesting that the 

differences we found between CZCS and SeaWiFS might well be the result of differences
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in the atmospheric correction. Histograms of the ratios shown in figure 2.9 and shown in 

figure 2.10.

Another important caviat that should be mentioned concerns the chlorophyll 

distributions. Much of the Yellow and East China Seas are case-2 waters throughout the 

year, and therefore the case-1 algorithms for pigment and chlorophyll are not accurate. 

Here we were not so much concerned with their accuracy as with the question of whether 

long-term environmental changes have occurred. If the water-leaving radiances were 

correct, these results would suggest that absorbing materials (including chlorophyll and 

CDOM) have increased everywhere in the YECS between the CZCS and SeaWiFS eras. 

The two regions that can be considered as case-1 waters, at least part o f the year, are the 

middle of the Yellow Sea in summer and the eastern East China Sea. The middle of the 

Yellow Sea showed the most extreme increase in chlorophyll (60%) whereas the eastern 

East China Sea had a smaller change (15%).

The CZCS climatology was compared to a large in situ database by Gregg and 

Conkright (2001), and a comprehensive comparison of CZCS and SeaWiFS chlorophyll 

climatologies has been presented by Conkright and Gregg (2003). They used the in situ 

measured chlorophyll as “internal boundary conditions” to blend with the CZCS data, 

thus producing a blended climatology that was considered to be a better representation of 

global chlorophyll distributions. The SeaWiFS climatology (October 1997- June 2001) 

was within -10%  of the blended climatology derived from CZCS and in situ data. In this 

work, the CZCS pigment was converted to chlorophyll using a formula prescribed by 

O ’Reilly et al. 1998 (shown as the dashed line in figure 2.2). They found that the CZCS
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chlorophyll, thus derived, was significantly lower than the in situ chlorophyll 

measurements. Here we ask whether this would apply to our comparisons.

The first thing to notice is that their formula for converting PIG to CHL was 

substantially different from ours (see fig. 2.2). The ratio of our CZCS chlorophyll to 

theirs (based on their formula) ranges from 0.76 to 2.5 with only a narrow PIG range 

where the ratio is below 1. In the open ocean, below the switching point of the CZCS 

algorithm, the ratio is always above 1 (ranging from 1.27 to 2.5). Thus,: presumably if 

Gregg and Conkright (2001) had used our formula, their CZCS chlorophyll values would 

be much higher, and the discrepancies with the in situ data would be less.

The difference between CZCS and SeaWiFS chlorophylls in the very turbid 

waters from our results is much smaller compared with that in Conkright and Gregg’s 

result (2003) while the range of the chlorophyll difference in the other areas is similar to 

the result of Conkright and Gregg (2003). The difference between CZCS and SeaWiFS 

chlorophyll was relatively small in the east-East China Sea characterized as open ocean

-i
which is affected by the Kuroshio current (+0.06 mg/m ).

The ratios of radiances at 443 and 555 nm between long-term composite SeaWiFS 

and CZCS show a very high increase in the SeaWiFS era in the same turbid areas. The 

Bohai Sea is affected by the Yellow (Hwanghe) River. It has been reported that 

construction of dams and low rainfall have led to about 50% decrease in both water and 

sediment discharge on the Yellow River in recent years, and the river was dry for four 

months in 1995 (Milliman, 1997). The Three Gorges dam, which is the largest one in the 

world, was being constructed on the Changjiang River since 1992 and recently completed 

(May, 2003). The dam will be operating in 2009. A recent study has shown that there was
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more than 20% decrease of sediment discharge in the Changjiang River from 1980s to 

1990s while there was increase of water discharge by 10% as a result of human activities 

such as deforestation and impoundments (Yang et al. 2002). Increases in water-leaving 

radiances at 443 and 555 nm are spatially coherent with higher turbidity occurring in 

shallow regions and in the river plumes. The changes in water-leaving radiances could be 

related to the changes of fresh water and sediment discharges. Changes of discharge in 

major rivers in Korea are not known, although the amount is smaller compared with that 

of the Changjiang River (Chen et al. 1994).

In the ratio o f SeaWiFS to CZCS chlorophyll, there were two chlorophyll patches 

in the middle of the Yellow Sea where the chlorophyll had increased much more than in 

the surrounding area. The more southerly patch is located around a Korean dump site 

that has been used since 1995. Organic matter dumped in the area could affect the 

increased chlorophyll concentration. The more northerly patch is located in North Korean 

waters, and thus it is difficult to know what caused the increase because there is no 

information for that area. The ratio of chlorophyll is relatively low in the very high turbid 

waters, the Bohai Sea, the mid-west coast of Korea, and along the east coast of China 

(especially, along the Shandong Peninsula and the Changjiang River).

From the comparison of year-to-year variation in July and November, we have 

seen that the chlorophyll values are clearly higher in SeaWiFS images in most of the 

region, and notably in the central waters of the Yellow Sea which are Case 1 in the 

summer. There were comparisons between two periods for the satellite ocean-color data 

and in situ data over the 61 KODC stations in the Yellow Sea. In the in situ data, there 

were increasing trends in temperatures and zooplankton biomass and decreasing trends in
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Secchi depth and salinity. While there were increases in the mean chlorophyll and Lw555, 

the Lw443 decreased. The increase of temperature and zooplankton could be associated 

with increases of chlorophyll, and the decrease of salinity and Secchi depth with 

increased turbidity due to increase of chlorophyll and/or river runoff. The central regions 

of the Yellow Sea may be affected by higher levels of atmospheric pollution (e.g., 

nitrogen species acting as a fertilizer and changes in the deposition o f Yellow Dust, 

which may enhance biomass increasing).

2.5. CONCLUSION

In comparing CZCS with SeaWiFS data, no attempt was made to unify the 

atmospheric correction algorithms. Thus, it is likely that differences in the atmospheric 

correction between the ocean color sensors might account for the difference of water- 

leaving radiance at 443 nm, especially in this area which is strongly affected by the high 

Yellow Dust. To resolve this we would need a unified algorithm that can correct for 

absorbing aerosols. Furthermore, for these Case 2 waters where mixtures o f organic and 

inorganic materials affect the color of the water, more sophisticated bio-optical 

algorithms must be developed to account for the unique optical characteristics and 

variation of environmental parameters.
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Table 2.1. Long-term means and standard deviations of the GZCS (1979-1984) and the 
SeaWiFS (1998-2002) chlorophyll, Lw443, and Lw555 for 6 sub-regions: the Bohai 
Sea, the western coast of the Yellow Sea, the middle of the Yellow Sea, the eastern 
coast of the Yellow Sea, the west-East China Sea, the middle of the East China Sea, 
and the east-East China Sea. Ratios and percentiles of SeaWiFS-to-CZCS long-term 
means were calculated. The units are mg/m3 for chlorophyll and W/m2/sr/nm for 
water-leaving radiances.

variable region
CZCS SeaW iFS

ratio %
mean stddev mean stddev

CM

BS 5.46 4.10 5.72 2.52 1.05 5
WYS 2.74 2.11 3.67 2.13 1.34 34
MYS 0.89 0.31 1.43 0.35 1.60 60
EYS 3.97 3.54 4.17 2.03 1.05 5

WECS 3.81 3.06 5.53 3.21 1.45 45
MECS 1.04 0.68 1.41 0.75 1.36 36

EECS 0.39 0.20 0.45 0.21 1.15 15

nLw443

BS 0.71 0.23 1.11 0.42 1.57 57
WYS 1.00 0.23 1 '■»'*> 1 . J J 0.67 1.32 32
MYS 0.89 0.15 0.62 0.22 0.69 -31
EYS 0.79 0.32 0.93 0.53 1.17 17

WECS 1.02 0.31 1.65 0.34 1.61 61
MECS 1.11 0.13 1.07 0.22 0.96 -4
EECS 1.16 0.14 0.87 0.16 0.75 -25

n L w 5 5 5

BS 1.50 0.39- 2.88 1.17 1.92 92
WYS 1.53 0.64 2.58 0.28 1.68 68
MYS 0.60 0.15 0.77 0.28 1.28 28
EYS 1.21 0.41 2.02 1.00 1.67 67

WECS 1.56 0.34 3.24 1.11 2.08 108
MECS 0.80 0.26 1.09 0.44 1.36 36
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Figure 2.1. Geography of the study area (BS: the Bohai Sea, WYS: the western coast of 
the Yellow Sea, MYS: the middle of the Yellow Sea, EYS: the eastern coast of 
the Yellow Sea, WECS: the western East China Sea, MECS: the middle of the 
East China Sea, and EECS: the eastest East China Sea) and the serial 

. oceanographic stations o f KODC (small squares, 61 stations).
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Figure 2.2. Results of applying the OC4 (SeaWiFS) chlorophyll algorithm (vertical axis) 
and the CZCS pigment algorithm (horizontal axis) to the original SeaBAM data of 
O’Reilly et al., (1998). The vertical dashed line marks the value pigment = 1.5 mg 
m 'J where the CZCS algorithm switched from using the 443:550 radiance ratio to 
the 520:550 ratio. The dashed line is the relationship CHL = 0.8 PIG proposed by 
O ’Reilly et al. (1998) that was subsequently used by Conkright and Gregg (2001).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1.00

.00

o.io

0.01

(c) chlorophyll
62.0

10.0

11.00

0.10

0.01

Figure 2.3. Yearly composite CZCS (1979-1984) and SeaWiFS (1998-2003) images of 
(a) nLw443, (b) nLw555 and (c) chlorophyll in the Yellow and East China Seas. 
The scales give water-leaving radiances in W/m2/sr/nm and chlorophyll in mg/m3.
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Figure 2.6. Long-term average of CZCS (1979-1984) and SeaWiFS (1998-2003) chlorophylls.
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Figure 2.7. Ratios o f SeaWiFS-to-CZCS long-term means, (a) Lw(443), (b) Lw(555) and 
(c) chlorophyll. Increases are shown in yellows and reds, decreases in greens and 
blues, and white indicates no change.
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Figure 2.8. The year-to-year variations of temperature, salinity, and Secchi depth from 
1978 to 2002, and zooplankton biomass from 1978 to 1996 at the 61 KODC 
stations in the Yellow Sea. Dashed lines are the trend lines and thick horizontal 
lines are the means values for the CZCS (1979-1984) and SeaWiFS (1998-2002) 
eras. The yearly averaged chlorophyll, nLw443, and nLw555 values of the CZCS 
(1979-1984) and the SeaWiFS (1998-2002) are also plotted.
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(a) nLwz143 (b) nLw555 (c) chlorophyll

Figure 2.9. Top row: Ratios o f monthly composite SeaWiFS data for November 2003 derived by two atmospheric 
correction algorithms. The standard algorithm products are divided by those using a CZCS-like atmospheric 
correction algorithm (see text). Bottom row are the SeaWiFS-to-CZCS long-term means presented for 
comparison, (a) Lw(443), (b) Lw(555) and (c) chlorophyll.
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Figure 2.10. Histograms of the ratios shown in figure 2.9.
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Chapter 3

Classification of Well-Mixed and Stratified Waters in the Yellow Sea

(To be submitted to International Journal o f Remote Sensing by Seung-Hyun Son, Janet 

Campbell, Il-Ju Moon, Mark Dowell, and Sinjae Yoo)

ABSTRACT

Information on the vertical profile of phytoplankton biomass is important to 

estimate primary production using ocean color satellite data. As a first step, 

identification of well-mixed and stratified regions in the coastal ocean is needed. In this 

paper, the criterion o f temperature difference between surface and bottom layer, |AT| < 

0.8°C, and the Simpson-Hunter criterion, log (H/U3) < 2, (where H is the water depth and 

U is the depth-mean velocity of the tidal current), have been used to identify well-mixed 

waters in the Yellow Sea. A coupled ocean wave-circulation model and bathymetry data 

are used to derive the temperature difference between surface and bottom layer and log 

(H/U3). Then model results were compared with remotely sensed sea surface temperature 

and water-leaving radiance at 667nm derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) to develop a method to differentiate stratified and well- 

mixed waters using remote sensing data.
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From the model results, the criterion based on surface-bottom AT threshold (AT <

0.8C) proved to be a better criterion. The log (H/U3) criterion which applies only to

mixing governed by tidal force is useful only during the summer season. In the winter,

the Yellow Sea is vertically well mixed due to strong winds and surface cooling. Even in

the summer, the H/U3 criterion does not work in the Chinese coasts because the buoyancy

of freshwater plume from the Changjiang River discharge creates a strong halocline in

the surface layer. Three-year (2000 to 2002) monthly composite images of MODIS SST

and nLw667 were compared with the model-based AT results in March to October to

investigate whether the satellite data can be used as the criterion. The nLw667 threshold

could be used reasonably along the southwest coast o f Korea during the warmer months.

Maps of the well-mixed area were derived from MODIS nLw667 using the relationship

between the nLw667 and the model AT in the southeastern Yellow Sea for the warmer

months (April to September). The well-mixed area is located in the area where the

0 1 1nLw667 is higher than 2-4  W-m' -nm‘ -sr' depending on the month.

3.1. INTRODUCTION

The Yellow Sea is strongly affected by tidal forces as well as fresh water 

discharge from the Changjiang (Yangtze) River. While the center of the Yellow Sea is 

thermally stratified from spring through fall, the coastal areas o f the Yellow Sea are 

vertically well-mixed due to tides throughout the year. Tidal fronts appear in April with
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surface heating by solar energy and become most clear in August. Then the fronts 

disappear in November with surface cooling (Seung et al., 1990). During winter months, 

most of the Yellow Sea is mixed due to surface cooling and strong winter winds. The 

southwestern part of the Yellow Sea is affected by the freshwater discharge from the 

Changjiang River. The annual mean freshwater discharge from the Changjiang River is 

about 2.9 x 104 m3 s'1 with minimum of 0.9 x 104 m3 s '1 in January and maximum of 5.4 x 

IQ4 m3 s '1 in July (Riedlinger and Preller, 1995). The mid-western coast of Korea 

(Kyunggi Bay) is also affected by freshwater discharge from the Han River with the total 

annual mean is about 1.0 x 103 m3 s '1 (Schubel et al., 1984).

Information on the vertical profile of phytoplankton biomass plays an important 

role in algorithms used to estimate ocean primary production within a water column 

using satellite-derived data. The biomass profile is generally dependent on the physical 

structure o f the water column. Coastal and shelf seas are divided into stratified and well- 

mixed areas during the warmer months. The biomass profile in the tidally well-mixed 

area can be assumed as vertically uniform while there are deep chlorophyll maxima in the 

stratified areas. The vertically well-mixed area due to tidal forces has importance on 

phytoplankton growth and distribution. In addition, light limitation due to high turbidity 

caused by tidal mixing can inhibit the primary production. It has been reported that light 

transparency is an important factor governing primary production in the tidally mixed 

areas of the Yellow Sea (Kang, et al., 1992; Choi, 1991; Choi, et al., 1995; Yoo and Shin, 

1995). Thus, it is important to identify well-mixed and stratified regions for estimation of 

primary production using the ocean color satellite data.
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1 '
Simpson and Hunter (1974) proposed a criterion, based on H/U , where H is the 

water depth and U is the depth-mean velocity of the tidal current, to differentiate tidally 

mixed and stratified waters. They proposed a threshold value of log (H/U3) less than 2 

for vertically well-mixed areas and a value greater than 2 for stratified areas. Yentsch 

and Garfield (1981) differentiated mixed and stratified waters in the Gulf of Maine using 

the criterion proposed by Simpson and Hunter (1974) in order to establish the magnitude 

of the productivity associated with well-mixed regions, and compared maps o f log (H/U3) 

with infrared satellite imagery. They found a good agreement with the SST maps. 

Others have compared satellite infrared imagery and/or ship-measured temperature with 

this criterion in other regions (Pingree and Griffiths, 1978; Garrett et al. 1978; Bowman 

and Esaias, 1981; Baines and Fandry, 1983; Lie, 1989).

There were several attempts to predict the location o f tidal fronts using the 

criterion, H/U3, in the Yellow Sea (Beardsley et al., 1983; Lie, 1989; Naimie et al., 2001). 

These authors demonstrated that tidal fronts were located along the mid-Chinese coast 

and in Kyunggi Bay and Seohan Bay, and that visual comparison with satellite SST was 

reasonably consistent. However, the log (H/U ) threshold varied with regions: it was 

between 2.0 and 2.4 over the shallow Yangtze Bank (Beardsley et al., 1983) and between 

1.0 and 1.4 in the region off the southwest coast of Korea (Lie, 1989).

The upper mixed layer is generally defined as the surface layer where the 

temperature differs by less than 0.5°C from the sea surface temperature (Obata et al., 

1996; Monterey and Levitus, 1997). Recently, Kara et al. (2000) defined an optimal 

mixed layer depth (MLD) as the depth at the temperature difference of 0.8°C. In this
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work, we regard the water column as vertically mixed if the temperature difference (AT) 

between surface and bottom is less than 0.8°C.

The main objectives of this study were to establish the stratified and well-mixed 

areas associated with monthly variations and to develop a method to differentiate those 

two areas using satellite observations. In the stratified water, there is commonly a deep 

chlorophyll maximum (DCM) at the base of the mixed layer that influences the vertical 

profile of productivity (Fig. 3.1). The primary production often peaks at the depth of 

DCM. In the mixed water where temperature and salinity are uniform, the chlorophyll 

profile is almost uniform and the primary production exponentially decreases with depth.

In this paper, the Yellow Sea was classified with the Simpson-Hunter criterion, 

H/U3, and also the criterion based on the temperature difference between surface and 

bottom. Both criteria were calculated from the results of the coupled ocean wave- 

circulation model developed by Moon (2004). The classifications were then compared 

with in-situ and remote sensing data to develop a method to differentiate stratified and 

well-mixed waters using remote sensing data.

3.2. METHODS

3.2.1. Model data

A coupled ocean wave-circulation model for the Yellow and East China Seas was 

developed by Moon (2004), which considered the effects of tide, winds, heat flux, river
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discharge from the Changjiang River, and the Kuroshio Current. Monthly three- 

dimensional temperature data were derived from the model. The temperature difference 

between surface and bottom layer (AT) was calculated from the model results to define 

the positions of the well-mixed and the stratified areas. The isoline AT = 0.8°C was then 

drawn as the boundary between well-mixed and stratified waters based on the “optimal” 

MLD definition of Kara et al. (2000).

In addition, mean values of velocity (U) within the water column derived from the 

Moon (2004) model were used to compute the Simpson and Hunter’s criterion. The log 

(H/U3) was calculated using the U-values and bathymetry data. The bathymetry (H) data 

were obtained from the National Geophysical Data Center.

The temporal resolution of the model results (temperature and U) is monthly and 

the spatial resolution is 1/6° x 1/6° degree (about 19.5 x 15 km). The vertical 

temperature from the model was divided into 11 layers. The spatial resolution of the 

bathymetry was the same as that o f the temperature and U. Since the model was forced 

by climatological tide, winds, heat flux, river discharge, the model results represent 

average properties.

3.2.2. Satellite data

The Moderate Resolution Imaging Spectroradiometer (MODIS) products are 

available from the National Aeronautics and Space Administration (NASA) Goddard 

Distributed Active Archive Center (DAAC). Three-years (2000 to 2002) MODIS 

monthly Level-3 mapped products were obtained at a resolution of 4x4 km. From each
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MODIS product, data surrounding the Yellow Sea (32-42°N, 118-128°E) were extracted. 

The monthly MODIS data were averaged for each month. The water-leaving radiance at 

667 nm (nLw667), SeaWiFS-analog chlorophyll concentration (Chla2), and the daytime 

sea surface temperature from the 11-12 pm band were used for this study.

3.2.3. Ship measurements

Geographical map of the Yellow Sea is shown in Fig. 3.2. Chlorophyll and 

suspended sediment data were measured from the Large Marine Ecosystem cruise in the 

Yellow Sea from June 14-21 in 2000. Temperature, salinity, and chlorophyll 

fluorescence profiles were also measured using CTD SBE25 as well. The spatial 

distributions and vertical profiles of the parameters obtained from the cruise were 

compared with log (H/U3) and the difference of the model temperature between surface 

and bottom, and with the MODIS observations.

3.3. RESULTS

3.3.1. Difference between surface and bottom temperature

The spatial distributions of well-mixed areas based on the AT < 0.8°C criterion 

are shown in Fig. 3.3. In the winter season (December, January, and February), most of 

the Yellow Sea is well mixed due to cooling at the surface and wind stirring. However,
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AT is greater than 0.8°C in a small area of the central and southeastern Yellow Sea in 

January and December. All of the Yellow Sea is well mixed in February except the 

southeastern Yellow Sea deeper than 100 m that is influenced by the warm Kuroshio 

current. Large areas of the Yellow Sea are still well mixed in March, but the northern 

Yellow Sea (around 38.5°N and 121-124 °E) is becoming stratified. In April, the area of 

the well-mixed regions was significantly decreased compared with March. The vertically 

mixed regions are restricted to the coastal regions of the Yellow Sea: along the west coast 

of Korea except for the middle coast between 36°N and 37°N, along the southeastern 

coast of China (near the Changjiang River), along the southern coast o f the Shandong 

Peninsula, and in the northeastern and the southwestern Bohai Sea.

The spatial distribution of the mixed area is similar from May to August although 

further reduced in size compared with April. The mixed area is smallest in July and 

August. The mixed regions in May to August are located along the southwest coast of 

Korea, and around the Kyunggi Bay and the Seohan Bay, along the Chinese coast (33- 

35°N, 36-37°N), and in the northeastern and southwestern Bohai Sea. The mixed area 

around the Changjiang River in April disappeared, where there is a strong halocline 

caused by the input of freshwater from the Changjiang River. The amount of the 

freshwater discharge is biggest in summer (Riedlinger and Preller, 1995; Yang et al. 

2002). The stratification is weakening in September as the surface cooling starts. The 

mixed areas are located along most of the coast of Korea and China, and the areas 

become larger. The water column in most of the Bohai Sea and around the Changjiang 

River becomes uniform in October. In November, the northern Yellow Sea above 37°N
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mixes and AT is greater than 0.8°C only in the middle o f the Yellow Sea deeper than 

about 70m.

3.3.2. Simpson and Hunter’s criterion

The distribution o f a range of log (H/U3) criteria (values 1.5, 2.0 and 2.5) are 

shown for two summer months (June and August) and compared with the AT = 0.8°C 

isoline in Fig. 3.4. The distribution of log (H/U3) is similar in both months. Low values 

of the criterion less than 2.0 appeared around the southwest coast of Korea, the mid-west 

coast o f Korea, the northeastern area of the Bohai Sea, and the mid-east coast of China, 

especially around the Changjiang River, while the values higher than 2.5 appeared in the 

central area of the Yellow Sea and the open seas of the East China Sea. The overall 

distribution is similar to the results of other studies (Lie, 1989; Naimie et al, 2001) 

although there are some discrepancies in the Bohai Sea.

The isoline line of AT = 0.8°C is also plotted on the map o f log (H/U3). The 

distribution of AT is coincident with the spatial pattern of log (H/U3), especially along the 

west coast of Korea and Bohai Sea where the isoline of AT = 0.8°C is between log (H/U3) 

= 1.5 and 2.0. The most notable difference between the H/U3 and AT criteria is in the 

area of the Changjiang River plume where the AT isoline is not present, but log (H/U3) <

2.5. Clearly, the log (H/U3) criteria does not account for the effects of the freshwater 

discharge since it is only based on tidal mixing.
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3.3.3. Satellite observations

Three-year (2000 - 2002) averages of monthly composite images of MODIS SST 

and nLw667 in March to October are shown in figures 3.5 and 3.6, respectively. In 

March, the SST is higher in the central area of the Yellow Sea and decreasing toward the 

north (Fig. 3.5). All except the central areas of the Yellow Sea are well-mixed (AT < 

0.8°C). The SST ranges from about 5°C in the northern Yellow Sea and to less than 

10°C in the middle of the Yellow Sea. In April and May, cooler SST appears in the 

Bohai Sea and the northern (above 37N) and mid-eastern Yellow Sea. The spatial 

distribution o f SST is similar in June to September although the temperature ranges vary 

with months. The distribution is approximately coincident with the result of AT and log

•j
(H/U ) in the eastern part of the Yellow Sea. Lower temperatures along the western 

coasts of Korea are indicative of vertical mixing appear, but the actual SST values in the 

well-mixed areas vary with months and regions. The SST off the east coasts of China 

and in the Bohai Sea, where the distributions of AT indicate a vertically mixed water 

column, is not lower compared with adjacent offshore areas. Higher temperatures, >19°C 

in June and >25°C in August, were associated with the northeastern areas of Kyunggi 

Bay and Seohan Bay. These areas are regarded as well-mixed from the model results. 

These waters are warmer than the offshore waters due to their shallow depth and solar 

heating. In addition, lower SST appearing in the eastern area of the Bohai Sea differs 

from the model results. In October, the SST was decreased and more uniformly 

distributed spatially.
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The MODIS nLw667 images show spatially similar patterns with months. While 

the nLw667 is comparatively low in the middle of the Yellow Sea, the value is much 

higher along the west coasts of Korea, Bohai Sea, and the east coast of China including 

the Changjiang River (Fig. 3.6). The images show a high nLw667 feature protruding 

offshore from near the Changjiang River (toward the east). However, nLw667 increases 

and the areas spread more offshore in March, April, and October. In April to September, 

the higher value regions are coincident with the model results (AT = 0.8°C) in the 

western coast of Korea. In areas regarded as well-mixed along the Korean coasts, the 

seasonal variation of nLw667 was relatively small whereas that o f the SST varied with 

months. The nLw667 values from April to September indicative of well-mixed waters 

were greater than 2-4 W-m'2-nm'1-sr'1. Off the eastern coast of China, especially in the 

summer months (May to September), high values of nLw667 extended farther offshore 

compared to the lines of AT = 0.8°C and log (H/U3) = 1.5 -  2.0. This may be caused by 

large amount of discharge from the Changjiang River in summer.

3.3.4. In situ measurements

The distribution o f in situ temperature, chlorophyll-a, and suspended sediment at 

the surface in the eastern Yellow Sea, which were measured from the LME cruise in June 

14-21, 2000, as well as the contour line o f AT = 0.8°C, are shown on the monthly 

composite MODIS images of SST, chlorophyll-a concentration, and nLw667 for June, 

2000 (Fig. 3.7). Lower values of ship-measured temperatures appeared in the southwest
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coastal area (around 34.5°N and 125-126°E) and mid-west coastal area (about 37°N and 

126°E) of Korea. The overall distribution is similar both in in situ chlorophyll-a and 

suspended sediment: higher concentrations in the southwest coasts of Korea and Kyunggi 

Bay. However higher chlorophyll area is located slightly northerly in the southwest coast 

o f Korea and higher suspended sediment appeared in the central area of the Yellow Sea 

as well. The stations of the in situ measurements were not located in the mixed area 

defined by AT < 0.8°C. However, the spatial patterns of in situ variables are 

approximately coincident with that of the criterion from the temperature difference in the 

southwest coast of Korea.

The spatial distribution of the MODIS images in June, 2000 is similar to that of 

the three-year composite MODIS images shown in Fig. 3.5 and 3.6. The overall 

distribution of in situ data was analogous to the satellite products although there is 

discrepancy in quantity and unit.

3.3.5. Comparison between model result and satellite data

As mentioned above, no significant horizontal gradient o f MODIS SST was 

shown along the Chinese coast and some o f the northwestern coast of Korea although the 

areas were well-mixed in the model result. This region seems to be homogeneous from 

bottom to surface due to the shallow bathymetry and solar heating. In addition, there is a 

large seasonal variability o f the SST values. Thus satellite SST images are not as 

applicable as the criterion for the classification in the Yellow Sea. In the tidally well-
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mixed and shallow waters, the concentration of suspended sediment would be higher by 

re-suspension from the bottom. The nLw667 has been used in single-band algorithms for 

suspended sediment concentration (Salisbury, 2003). Seasonal variability of the MODIS 

nlw667 is relatively small compared with the SST in the Yellow Sea. However, high 

values of nLw667 may also be affected by suspended sediments from the river discharges. 

The concentration o f suspended sediments in the Chinese coasts would be affected not 

only by tidal mixing but also by fresh waters from the Changjiang River. Meanwhile, the 

Yellow Sea is totally well-mixed during the winter season due to strong winds and 

surface cooling. As stated, the satellite nLw667 provides a better criterion to differentiate 

the Yellow Sea into well-mixed and stratified areas, particularly on the Korean side and 

in warmer months.

To derive the threshold for the classification using satellite data, nLw667 and AT 

were compared off the Korean coasts in April to September (Fig. 3.8). Bin averages of 

the composite MODIS nLw667 (2000-2002) were plotted against the model AT. The 

relationship varies with months but there is no seasonal trend. The nLw667 values at AT 

= 0.8°C, which are derived from these relationships, range from 2.1 -4 .1  W-m'^nm^-sr'1 

depending on the month. The maps of well-mixed area (AT < 0.8°C) were derived from 

the MODIS nLw667 images using the relationships between nLw667 and AT in the 

southeastern Yellow Sea (Fig. 3.9). The location of the well-mixed area derived from 

nLw667 agrees with the model result (isoline of AT = 0.8°C) in most of the months.
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3.4. DISCUSSION

In the results presented, temperature difference between surface and bottom layer 

(AT = 0.8°C) following Kara et al. (2000) was used as a criterion to differentiate the well- 

mixed and the stratified areas. The temperature differences were derived from the results 

o f the coupled ocean wave-circulation model (Moon, 2004). The AT criterion established 

well-mixed and stratified areas associated with monthly variations in the Yellow Sea. 

During the winter season, most of the Yellow Sea is totally well-mixed except for a small 

area in the middle of the Yellow Sea. The middle of the Yellow Sea is thermally 

stratified from spring through fall. The coastal areas of the Yellow Sea are vertically 

well-mixed year-around due to tidal force. This result is similar to that of Seung et al. 

(1990). However, the waters around the Changjiang River seem to be stratified during 

the warmer months (May to September) due to large input o f freshwater from the 

Changjiang River. The amount of the freshwater discharge is biggest in summer 

(Riedlinger and Preller, 1995; Yang et al. 2002).

The Simpson and Hunter (1974) criterion, log (H/U3), was compared with the 

distribution of AT, where the U values have been derived from the M oon’s model (Moon, 

2004), The Simpson-Hunter criterion is based on the situation where tidal force is solely 

responsible for vertical mixing in shallow seas. Since tidal forces do not change 

appreciably with seasons in the Yellow Sea, the log (H/U3) criterion for winter months 

was nearly identical to that in the summer months. Therefore, this criterion is useful only 

during the summer season, but is not useful in winter when mixing is governed largely by
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thermal convection and winds. Studies (Simpson and Hunter, 1974; Pingree and Griffiths,

1978; Bowman and Esaias, 1981) proposed a threshold value of log (H/U3) o f 1.5 or 2 to

differentiate vertically well-mixed areas from stratified areas. From our result, the isoline

of AT = Q.8°C, which divides well-mixed and stratified areas, is located approximately 

•>
between log (H/U ) = 1.5 and 2.0 in the warmer months although it varies with regions. 

However, there is discrepancy in the east coast of China, especially around the 

Changjiang River. It is inferred that the difference is caused by the buoyancy of 

freshwater discharge plume from the Changjiang River which makes the strong halocline 

in the surface layer as mentioned above.

In the result of Lie (1989), the boundary between stratified and well-mixed area 

was expected to be log (H/U3) = 1.0 -  1.4 in the southwest coastal water of Korea. This 

value was derived in a very small area and used observed tidal current data in a small 

island in the southwest of Korea. Thus the value may be different from our result due to 

the different temporal and spatial resolution. In addition, many tiny islands in that region 

were ignored in Moon’s model.

Ideally, one should use a time-dependent model forced by real winds and ambient 

conditions at the same time as the satellite data used for estimating primary production. 

In our case, we used a climatological model and therefore results are only general for the 

Yellow Sea. We do not have coincident in situ information about the stratification to 

compare with the MODIS satellite imagery. However, we have compared the isolines of 

AT = 0.8°C with SST and normalized water-leaving radiance (nLw667) values from the 

monthly composite MODIS images averaged over three years (2000-2002). These
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composite images should be comparable to the climatological model results. We believe 

that it is possible to base a criterion either on the SST or normalized water-leaving 

radiance in the red region. Cool temperatures would generally indicate vertical mixing. 

Yentsch and Garfield (1981) compared the Simpson-Hunter criterion with SST maps for 

the Gulf o f Maine and found a reasonable correspondence with their criterion.

The distribution of cool inshore MODIS SST in summer months corresponded 

with the model results along the western coastal areas of Korea although the lower SST 

region extended more offshore compared with the results of AT. Although mixing zones 

can generally be identified with the appearance of lower temperature, the inshore SST 

values in the Bohai Sea, the mid-east coast of China, and the northeastern area of 

Kyunggi Bay and Seohan Bay were higher than offshore values. It is possible that the 

shallow bathymetry in the Bohai Sea, the eastern coast of China, and the northeastern 

area of Kyunggi Bay and Seohan Bay make the water temperature homogeneously high 

from bottom to the surface by solar heating even though these areas are well mixed by 

tidal force in summer. In addition, the surface stratification due to the fresh water 

discharge from the Changjiang River occurs over the areas adjacent to the Changjiang 

River.

The nLw667 has been used by others in single-band algorithms for suspended 

sediment concentration (Salisbury, 2003). High sediment or turbidity would indicate 

shallow well-mixed regions, and thus a threshold for nLw667 could be used. The mixed 

waters in the Yellow and East China Seas are strongly affected by re-suspended sediment 

due to the vertical mixing and shallow depths. The distribution of MODIS nLw667 is
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higher along most of the coastal areas while the values are comparatively low in the 

middle of the Yellow Sea. The visual comparison between the MODIS nLw667 image 

and the model results showed correlated patterns along the western coast of Korea. 

While SST values varied with months, seasonal variation of the nLw667 values in the 

areas regarded as well-mixed was relatively small in the Korean coasts. Therefore, it was 

concluded that the nLw667 data would be used as a better criterion for differentiating 

well-mixed and stratified areas. Meanwhile, high values o f nLw667 may also be 

influenced by suspended sediments from the river discharges such as the Changjiang 

river for the southwest Yellow Sea and the Yellow (Hwang He) River for Bohai Sea. 

Thus, if  a high turbidity criterion were used as indicated by nLw667, the extent of well- 

mixed waters off the regions near the rivers, especially in the Changjiang River Bank, 

would be larger than the actual reality.

Similar pattern was shown in comparisons among the model results, the LME 

cruise data in 14-21 June, 2000, and the monthly composite MODIS images of June, 

2000 in the southeastern Yellow Sea although in situ data were spatially limited 

compared to model results. The areas of lower temperature and higher nLw667 from 

MODIS deviated from the threshold line o f the model results toward offshore. This 

discrepancy may be caused by temporal resolution. The model results were based on the 

climatological data, so the year-to-year variation is not considered in this model. The 

satellite images and in situ data vary with time and regions. Thus, satellite data can be 

better way to identify the mixed water.
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The maps of well-mixed area were derived from the MODIS nLw667 images 

using relationships between nLw667 and AT in the southeastern Yellow Sea in warmer 

months. The location of the well-mixed area derived from the nLw667 images and the 

model result compared reasonably well although there is some discrepancy with regions 

and months. As mentioned, the discrepancy may be caused by the difference of temporal 

resolution. In addition, it is needed to point out that the model result has spatial 

resolution of 1/6° x 1/6° (about 19.5 x 15 km), but that of the MODIS images is 4 x 4 

km and the in situ data is in a certain point. The model results are approximately 3.5 -  5 

times coarser than the MODIS data. Lie (1989) reported that the discrepancy between 

SST and his model result was probably due to the coarse grid system of his model

3.5. CONCLUSION

Using the model-based criterion o f temperature difference between surface and 

bottom layer (AT = 0.8°C), we established well-mixed and stratified area associated with 

monthly variations in the Yellow Sea. This was a first step for estimating primary 

production using remote sensing data. Most of the Yellow Sea is vertically well-mixed 

during winter season. The middle o f the Yellow Sea is thermally stratified from spring 

through fall. There is a rapid onset of stratification from March to April and breakdown 

of stratification from September to October. The coastal areas of the Yellow Sea remain 

vertically well-mixed year-around due to tidal forces. However, the area around the
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Changjiang River would be stratified in the surface layer due to strong halocline by the 

input of fresh waters from the Changjiang River during the summer season. The log 

(H/UJ) criterion for identifying tidally mixed areas is useful only during the summer 

season. However, this criterion does not work in the Chinese coasts because the 

buoyancy of the freshwater discharge from the Changjiang River creates a strong 

halocline in the surface layer.

The satellite data could be used as a criterion to discover the position of the well- 

mixed and the stratified areas. High sediment or turbidity would indicate shallow well- 

mixed regions, and thus a threshold for nLw667 might be used. However, since the 

Chinese coast is strongly influenced by the large input of freshwaters from the 

Changjiang River, the nLw667 threshold would work more reasonably along the Korean 

coasts, especially in the southwest coast o f Korea. Maps of the well-mixed area were 

derived from MODIS nLw667 using the relationship between the nLw667 and the model 

AT in the southeastern Yellow Sea for the warmer months (April to September). The 

well-mixed areas were located where nLw667 is higher than 2-4 W-m'2-nm"i-sr'1 

depending on the month. These results provide the basis for modeling vertical biomass 

profiles in estimating primary production using satellite data in the Yellow Sea.
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Figure 3.1. The profiles of (a) temperature (solid line) and salinity (dashed line), (b) 
primary production (solid line) and chlorophyll (dashed line), and (c) primary 
production divided by chlorophyll at a well-mixed area (126.0°E and 36.0°N; top 
figures) and at a stratified area (124.0°E and 36.0°E; bottom figures) in October, 
1992. The data were obtained from Choi et al. (1995).
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Figure 3.2. Study area and station maps with the bathymetry contours in the Yellow and 
East China Seas. The filled circles denote the stations observed in the Large 
Marine Ecosystem (LME) cruise in 14-21 June, 2000.
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Figure 3.3. Distribution of well-mixed areas (filled gray) based on the temperature 
difference between surface and bottom (AT < 0.8°C) from Moon’s model for the 
12 months from January to December.
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Figure 3.4. Contours o f log (H/U3) in (a) June and (b) August in the Yellow and East 
China Seas. Filled contours denote log (H/U3) = 1.5, 2.0, and 2.5 (darker -> 
lighter shades) and the isoline of AT = 0.8°C is shown as solid black line.
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F ig u re  3.5. Three-year (1998-2000) averaged monthly sea surface temperature images 
from MODIS for March to October with the isoline of AT = 0.8°C (black line). 
The scale shows SST in degrees Celsius (°C).
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Figure 3.6. Three-year (1998-2000) averaged monthly 667-nm water-leaving radiance 
images from MODIS for March to October with the isoline of AT = 0.8°C (black 
line). The scales is nLw667 in units of,W-m'2-nm ’̂ sr"1.
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Figure 3.7. Contours of in situ measured (a) temperature, (b) chlorophyll-a, and (c) suspended sediment at the surface 
(white lines) in the southeastern Yellow Sea (June 14-21. 2000) superimposed on the monthly SST, 
chlorophyll-a, and nLw667 images from MODIS in June, 2000. Black line denotes the isoline of AT = 0.8°C 
and red dotted lines are the isolines o f (H/U3) = 1.5 and 2.0.
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Chapter 4

Primary Production by Ocean Color Remote Sensing in the Yellow Sea

(To be submitted to Marine Ecology Progress Series by Seung-Hyun Son, Janet 

Campbell, Mark Dowell, Sinjae Yoo, and Jae-Hoon Noh)

ABSTRACT

The Yellow Sea is a shelf sea surrounded by the Korean peninsula and the eastern 

coast of China. The bordering countries derive a substantial share o f their food from 

fishing in these coastal waters. An existing primary production algorithm based on ocean 

color satellite data was used to derive the annual and daily rates o f primary production in 

the Yellow Sea. The Yellow Sea was divided into three sub-areas: Chinese coastal 

waters, middle of the Yellow Sea, and Korean coastal waters. Sea-vie wing Wide Field- 

of-view Sensor (SeaWiFS) data in 1998-2003 were processed after eliminating scenes on 

cloudy days. A local empirical chlorophyll algorithm was applied to derive more 

accurate chlorophyll concentration in the Yellow Sea. Diffuse attenuation was derived 

from a relationship between the SeaWiFS water-leaving radiance at 555nm and Secchi 

depth measured at more than 300 stations within ±1 day o f the satellite overpass.

Synoptic maps of water column integrated primary production were derived for 

the months of May and September because the only available in situ measurements were 

made in these two months. The middle of the Yellow Sea (MYS) was found to have 

higher levels of primary production in these months compared with the two shallower
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(<50 m) coastal areas. The low primary production in the coastal areas is caused by high

turbidity due to strong tides and shallow depths. Lower turbidity in the middle of the

Yellow Sea allows the light energy for primary production to penetrate to a deeper depth.

The mean daily rate of the integrated primary production in the middle of the Yellow Sea

(MYS) was 947 mgC m"2 d '1 in May and 723 mgC m"2 d"2 in September. The mean

values in Chinese coastal waters and Korean coastal waters were respectively 590 and

589 mgC m'2 d '1 in May, and 734 and 553 mgC m'2 d '1 in September. Our computation

of daily total primary production for the entire the Yellow Sea is 19.7 x 104 tonC d’1 in

May and 15.8 x 104 tonC d '1 in September.

By making assumptions regarding the vertical distribution of biomass and the

photosynthetic parameters in other months, we computed annual primary production for

2 1each year from 1998 to 2002. The average daily rate was 584.2 mgC nT d' , and the 

annual production ranged from 47.8 x 106 tonC y '1 in 2000 to 53.3 x 106 tonC y’1 in 

1998, with an average annual production of 50.1x 106 tonC y’1.

4.1. INTRODUCTION

Coastal waters play an important role as food resource. While the coastal ocean 

occupies 8% of the ocean surface, about 90% of world commercial fish is caught in 

coastal waters (Pernetta and Milliman, 1995). Primary production has an importance as 

the basis o f marine food webs and as a mediator o f carbon flux in the ocean. It is
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reported that the coastal primary production contributes 14-25% of the global oceanic 

primary production (Longhurst et al., 1995; Pernetta and Milliman, 1995).

The Yellow Sea is a shelf sea surrounded by the Korean peninsula and the eastern 

coasts of China, with a mean depth of 44 m and maximum depth o f 103 m. The Yellow 

Sea is affected by strong tidal currents and discharges of the fresh waters from the 

Changjiang (Yangtze) River which is the largest river in Asia. The Kuroshio Current 

characterized as comparatively high temperature and saline waters also influences the 

southeastern area o f the Yellow Sea.

There have been many studies of phytoplankton primary production based on 

field measurements in the Yellow Sea (Choi and Shim, 1986; Choi, 1991; Kang et al., 

1992; Choi et al., 1995; Wu et al., 1995; Yoo and Shin, 1995). However, these studies 

were temporally and spatially restricted, so it is not possible to estimate primary 

production for the entire Yellow Sea based on these measurements alone. Ocean color 

data now provide the only means to determine the basin- to global-scale phytoplankton 

chlorophyll-a even though there are still problems to be solved (Balch et al., 1992; 

Sathyendranath and Platt, 1993). The model studies based on the remotely-sensed 

chlorophyll-a concentration allow estimating the basin and global scale ocean primary 

productivity (Platt et al., 1991; Balch et al., 1992; Longhurst et al., 1995; Antoine et al., 

1995; Antoine and Morel, 1996; Behrenfeld and Falkowski, 1997; Hoepffner et al., 1999).

The standard algorithms for primary production rely on the remotely-sensed 

chlorophyll-a concentration, light attenuation, surface irradiance, and/or sea surface 

temperature. For the selection of the model for primary production at a local scale, there 

are other requirements such as vertical distribution of phytoplankton biomass and
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photosynthetic parameters to be considered. To handle non-uniformity of the chlorophyll 

profile in the thermally stratified waters, it has been customary to extrapolate from the 

remotely sensed pigment at the surface to the vertical profile o f phytoplankton biomass 

(Lewis et al., 1983; Platt et al., 1988b; Morel and Berthon, 1989). The shifted Gaussian 

distribution was proposed to derive the biomass profiles (Lewis et al., 1983; Platt et al., 

1988b).

There are two main approaches to achieve the photosynthetic parameters although 

both methods have weakness (Platt et al., 1995). One is to derive the required parameter 

as a function of environmental variables such as sea surface temperature (Behrenfeld and 

Falkowski, 1997; Gong and Liu, 2003). The other is to assign the parameters based on 

their location and season from an existing database prescribed for biogeochemical 

provinces (Platt and Sathyendranath, 1988a; Sathyendranath et al., 1995; Longhurst et al., 

1995; Hoepffner et al., 1999). The latter approach was applied to the Yellow Sea in this 

study.

We used the existing productivity algorithm of Platt and Sathyendranath (1988a) 

to estimate phytoplankton primary production in the Yellow Sea. We first partitioned the 

Yellow Sea into three subregions based on the bathymetry and physical features, and 

used in situ measurements from these subregions made in May and September to 

parameterize the algorithm. We explored several ways o f estimating the diffuse 

attenuation coefficient, K<j, and investigated whether it was necessary to model the 

vertical biomass profile. Finally, the algorithm was applied to derive the primary 

production in the Yellow Sea. The resulting maps of primary production calculated from
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the remotely sensed data provide the first synoptic views o f primary production in the 

Yellow Sea.

4.2. DATA and Methods

4.2.1. in situ data

The information on ship-measured data for phytoplankton biomass and primary 

production in the Yellow Sea (within 32-37°N and 122-127°E) is summarized in Table

4 .1. There were 141 photosynthesis-light (P versus E curve) parameters measured from 

six different cruises between 1992 and 1998. O f the parameters, 93 P-E parameters were 

obtained at the surface, 37 were between 10 and 30 meters, and 11 were between 40 and 

75 meters. All measurements of the P-E parameters were based on C-14 methods 

(Steemann Nielsen, 1952). Water samples were incubated for 2 hours on the deck of the 

ship under screened lights simulating 0 to 100% of the surface PAR with 9 to 10 levels. 

The P-E data were then fitted as described by Platt et al. (1980). For more details, see 

Park (2000) and Choi et al. (1995).

Chlorophyll-a fluorescence profiles were measured using CTD-SBE 25. There 

were 86 fluorescence profiles available for this study. The chlorophyll fluorescence was 

calibrated with discrete chlorophyll-a which was measured fluorometrically (Turner 

Design Inc.).

All in situ data were distributed in two months, May and September. Estimates of 

daily water column primary production were made only at 37 stations from the
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September 1992 cruise of Choi et al. (1995) (Fig. 4.1(b)). Column integrated primary 

production could not be estimated at the other stations because there was no information 

on the light profile or diffuse attenuation at those stations. The daily water column 

primary production at these 37 stations was compared with satellite-based primary 

production although the satellite data were not coincident in time with the in situ data.

Ship-measured transparency (Secchi depth) data for the southeastern area of the 

Yellow Sea was obtained from the Korea Oceanographic Data Center (KODC) and 

compared with the SeaWiFS water-leaving radiance at 555 nm to explore a means of 

estimating the diffuse attenuation. The serial oceanographic observations were carried 

out bimonthly (February, April, June, August, October, and December) in Korean waters 

by the National Fisheries Research and Development Institute (NFRDI). Transparency 

data for 71 stations in the Yellow Sea from 1998 to 2002 were used (Fig. 4.1(a)).

4.2.2. Satellite data

SeaWiFS level-1 a version-4 data from 1998 and 2003 for the Yellow Sea were 

obtained from the NASA Goddard Space Flight Center (GSFC). The daily SeaWiFS data

-y

with spatial resolution of 1x1 km were processed from level 0 to level 2 and remapped 

using the SeaWiFS Data Analysis System (SeaDAS) version 4.4 software offered by 

NASA GSFC. The standard algorithms in SeaDAS were used for SeaWiFS atmospheric 

corrections. After eliminating images on cloudy days, more than 1350 individual
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SeaWiFS scenes from 1998 to 2003 were used to derive primary production, and then the 

SeaWiFS products and primary production images were averaged monthly.

The standard algorithm of the remotely-sensed chlorophyll-a concentration is 

based on Case 1 waters, which are defined as those waters where phytoplankton pigments 

are the primary factor determining the color of the water (Morel and Prieur, 1977). In 

coastal waters (Case 2 waters), the water color is affected by suspended sediments and/or 

colored dissolved organic matter as well as chlorophyll-a concentration. Thus, the 

standard algorithms do not provide accurate chlorophyll concentrations in Case 2 waters.

Large areas o f the Yellow Sea are recognized as Case 2 waters due to their 

shallow depth, strong tidal mixing, and river discharges while the middle of the Yellow 

Sea is characterized as Case 1 waters in the warm seasons (spring to fall). Here we used 

a local empirical algorithm of chlorophyll-a concentration for the Yellow Sea developed 

by Ahn (2004) as follows:

C h i-a  = 1.30 x
f?rM 9 0 n_190

(4.1)
Rrs555 _

where, i?rs490 and Rrs555 are remote-sensing reflectance at 490 and 555nm. The 

algorithm was developed using measured remote sensing reflectance from the Dual 

UV/VNIR spectroradiometer at about 200 stations in the Korean Seas as well as 

measured chlorophyll concentrations. Although this is still a case-1 algorithm (since it 

doesn’t account for other independently varying materials) its accuracy was improved for 

the Yellow Sea (RMS error = 0.34 mg m"3) compared with the standard algorithms (RMS 

errors were 0.618 mg m '3 for OC2 ver. 3 and 0.663 mg m'3 for OC4).
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4.2.3. Parameterization of primary production model

4.2.3.1. Primary production model

Since there are no available spectral light or phytoplankton absorption 

measurements from the cruises, a non-spectral primary production model was used (Platt 

and Sathyendranath, 1988a) for estimating primary production in the Yellow Sea. Daily 

depth integrated primary production (IPP) was derived using the following equation:

and tj are the times of sunrise and sunset; and Zeu is the euphotic depth. The vertical PAR 

profile is given by E(z,t) = E(0,t) ■ exp(-Ad • z) were E(0) is PAR incident on the surface, 

and Kd is the diffuse attenuation coefficient for PAR. The input parameters used in the 

primary production model (eq. 4.2) are described in the following sections.

4.2.3.2. Biomass profile (DCM model)

The Yellow Sea was classified as well-mixed and stratified waters. To 

differentiate two waters, the method proposed in the previous chapter with the SeaWiFS

(4.2)

where B(z) is the chlorophyll-a concentration at depth z\ aB is the initial slope of the PB vs 

E  curve; E(z,t) is the irradiance at depth z and time t; PBm is the assimilation number; t\
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water-leaving radiance at 670nm was used. We assumed that the biomass profile was 

uniform in the well-mixed waters and non-uniform in the stratified waters. Chlorophyll-a 

concentration was taken as the biomass index.

In order to generalize the biomass profile and to obtain four parameters for the 

stratified waters, the shifted Gaussian distribution model (Platt et al., 1988b; 

Sathyendranath and Platt, 1989) was fitted to the 86 chlorophyll profiles. The biomass 

profile was parameterized as follows:

(m); a  is a measure of the thickness or vertical spread of the peak (m); h is the total

4.2.3.3. PAR profile

The photosynthetically available radiation (PAR) product of SeaWiFS was used 

for the incident surface light, E(0,t), and the PAR profile was E(z,t) = E{0,t) ■ exp{-K&-z). 

We still needed a way to estimate the diffuse attenuation coefficient, Kd- Unfortunately, 

there were very few available light measurements in the Yellow Sea for this study. Since 

large areas of the Yellow Sea are affected by colored dissolved organic matter and

(4.3)

where Bq is a background biomass (mg m"3); zm is the depth of the chlorophyll maximum

biomass above the background (mg m'2), and the peak height above the baseline is given
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suspended sediments, the diffuse attenuation model of Sathyendranath and Platt (1988) 

which is for Case 1 waters (i.e., based on chlorophyll) was not applicable for the Yellow 

Sea.

The Secchi depth data obtained from the serial oceanographic observations by the 

NFRDI provided the best source of information about light extinction in these coastal 

Korean waters. In addition, we had data from 17 stations where Kd and Secchi depth had 

been measured at the same time in the Yellow Sea. The Kd values were derived from 

measurements by a PAR sensor attached to the CTD SBE25. The relationship between 

Secchi depth and Kd for these stations is shown in figure 4.2. Also shown is the 

relationship Kd = 1.44/SD (Kirk, 1994), which appears to be in reasonable agreement 

with the data. Therefore, we used this relationship to derive Kd from the NRFDI Secchi 

depth data.

The Secchi depth (S.D.) data obtained from KODC in the period between 1998 

and 2002 in the eastern part of the Yellow Sea were matched with SeaWiFS data. About 

300 of 2100 Secchi depth measurements were matched up with SeaWiFS data acquired 

from one day before to one day after (one day before -  89 stations, same day -  149 

stations, and one day after -  62 stations).

We compared the SeaWiFS K490 and nLw555 products with the match-up Secchi 

depth (SD) measurements (Fig. 4.3 and 4.4). The SeaWiFS K490 with r2 -  0.5 (Fig. 4.3) 

was not well correlated to Secchi depth. However, the nLw555 with r2 = 0.78 (Fig. 4.4) 

was well correlated to the Secchi depths. Therefore, we used the derived relationship SD 

= 6.4023 x (nLw555)'0'7269 to estimate Secchi depth, which was then converted to diffuse 

attenuation coefficient by the relationship, Kd = 1.44/SD (Kirk, 1994).
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The euphotic depth (Zm) was defined as the depth at which PAR is 1 % of the 

surface PAR. Accordingly, the euphotic depth is g iv en  by 4.6/Ad with the assumption that 

Ad is approximately constant with depth (Kirk, 1994). Given the relationship with Secchi 

depth, the euphotic depth was then derived by Zeu = 3.2 x SD.

4.2.3.4. Photosynthetic parameters

Two approaches to estimate the photosynthetic parameters for primary production 

were mentioned above. To consider the first approach, we investigated the relationship 

between sea surface temperature and the photosynthetic parameter (PBm) (Behrenfeld and 

Falkowski, 1997). There was no apparent relationship in our data set from the Yellow 

Sea (Fig. 4.5). Thus, we chose to use the second approach whereby parameters are 

assigned based on a partitioning of the ocean into biogeochemical provinces (Longhurst 

et al. 1995; Platt et al. 1995; Sathyendranath et al. 1995).

To interpolate and extrapolate the measured parameters for estimating the primary 

production, which is spatially and temporarily limited in this study, to the scale of the 

satellite observations, the Yellow Sea between 32°N and 37°N latitude and between 

122°E and 127°E longitude was divided into 3 sub-regions based on bathymetry and 

physical oceanographic features such as current system (Fig. 4.1(b)): the Chinese Coastal 

Waters (CCW) and the Korean Coastal Waters (KCW) which are regions shallower than 

50 meters, and the Middle Of the Yellow Sea (MYS) deeper than 50 meter. Ning et al.
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(1998) did a similar partitioning of the major water masses in the Yellow Sea. Measured 

parameters within each region were averaged and these averages used in the algorithm.

4.2.4. Oceanographic sub-regions

The two coastal regions, CCW and KCW, are affected by strong tidal mixing. The 

area around the Changjiang River is also strongly influenced by freshwater discharge 

which causes surface layer stratification. The annual mean of freshwater discharge from 

the Changjiang River is about 2.9 x 104 m3 s"1 (Riedlinger and Preller, 1995). The KCW 

region is affected by freshwater discharge from the Han River and Keum River with 

mean annual discharge o f about 1.0 x 103 mJ s’1 (Schubel et al., 1984). The southern part 

of the KCW region is the strongest tidal mixing area all year round. The Korean Coastal 

Current flows southward along the southern edge of the Korean Peninsula year round 

(Mask et al., 1998). In the CCW, the Yellow Sea Cold Water flows southward year 

round along the Chinese coast, and the Changjiang Coastal Current, related to the 

Changjiang discharge, flows southward along the Chinese coast in winter and eastward in 

summer (Beardsley et al., 1983, 1985; Mask et al., 1998; Su, 1998).

In MYS, the Yellow Sea Warm Current, which is a branch of the Kuroshio 

Current, flows northward through the central area of the Yellow Sea. The southern part 

of the central Yellow Sea deeper than 50 m is more affected by the warm and saline 

waters of the Kuroshio Current. In the northern part of the MYS, the Yellow Sea Cold 

Water, which is formed by strong vertical mixing in winter, exists during the summer.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3. RESULTS

The means and standard deviations o f the photosynthetic parameters for the three 

sub-regions in May and September are listed in Table 4.2 and are shown in Fig. 4.6. The 

means of assimilation number (PmB) in September (5.49 -  6.69 mgC (mg Chl-a)'1 h r'1) 

are higher than those in May (3.90 -  6.50 mgC (mg Chl-a)'1 hr'1) over the regions. Mean 

values of P mB in the KCW (6.50 mgC (mg Chl-a)'1 h r'1) was much higher than in the 

CCW (3.90 mgC (mg Chl-a)'1 hr'1) and the MYS (3.99 mgC (mg Chl-a)'1 hr'1) in May. 

The pattern was similar (highest in KCW) in September, but the variation was smaller. 

The means of light utilization efficiency (or8) in September (0.0233 -  0.0293 mgC (mg 

Chl-a)'1 hr'1 [pEins m '2 s '1] '1) are higher than those in May (0.0176 -  0.0221 mgC (mg 

Chl-a)'1 hr'1 [pEins m'2 s '1] '1) as like P mB. The mean value is slightly higher in the MYS 

than in the coastal regions in May and September. Error bars shown in figure 4.6 are the 

95% confidence intervals. While the error bars for both P mB and cP are reasonably small 

in MYS, those in the coastal regions are very high, especially in the KCW, due to the 

small number of observations in those locations.

The Gaussian parameters derived from fitting equation (4.3) to the measured 

chlorophyll profiles were averaged within each month in the 3 subregions. The mean 

vertical profiles of biomass in the sub-regions of the Yellow Sea are shown in figure 4.7. 

The chlorophyll profiles in the coastal waters have higher chlorophyll, a shallower zm, 

and smaller h and a compared with the profiles in the MYS in both May and September.
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In the KCW and MYS, the mean zm is deeper in May (17 m in KCW and 30 m in MYS) 

than in September (7.8 m in the coastal regions and 24 m in MYS) whereas in the CCW 

the mean of zm is similar in both months. The mean of the chlorophyll concentration at 

surface is higher in May (0.79-1.76 mg m'3) than in September (0.44-0.96 mg m '3) and h 

is much higher in May (19-23 mg m"2) than in September (4.4-12.4 mg m'2). There is a 

large variability in the values of DCM parameters in the coastal regions.

To test the effect of the non-uniform biomass profile on primary production, we 

compared primary production calculated using a uniform biomass profile (equal to the 

surface chlorophyll) with the integrated primary production based on non-uniform 

biomass profiles measured at the 37 stations in September, 1992 (Choi et al. 1995). 

Except for the biomass profile, B(z), the same measured variables were used in both 

calculations to derive the primary production according to equation (4.2). The scatter plot 

of uniform-biomass primary production (PP1) versus non-uniform-biomass primary 

production (PP2) is shown in figure 4.8. Using uniform biomass profiles, the primary 

production is underestimated by an average of 15.6% in regions deeper than 50 m (with 

maximum of 39%). In the shallower waters (< 50 m), error between two primary 

productions was about 7%.

4.3.1. Satellite-derive primary production

Monthly primary production was calculated for May and September because the 

input parameters (PmB, a B and DCM parameters) were based on measurements made only 

in May and September (Table 4.1). The monthly composite images of PAR, Kd,
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chlorophyll, and primary production in 1998 -  2003 in May and September, as well as 

the 6-year average monthly composite images for these months, are shown in figures 4.9 

and 4.10. In addition, the year-to-year variations of the mean values in each area are 

shown in figure 4.11.

The overall spatial distribution of PAR is uniform in May, but is increasing from 

south to north in September. On average, PAR was 26% higher in May (6-year mean of 

58.3 -  58.6 Ein m '2 d '1) than in September (6-year mean of 45.9 -  46.6 Ein m '2 d '1). The 

PAR values varied interannually from 1998 to 2003. Lower values of PAR appeared in 

1999 and 2003 in both months. PAR in September was higher in the Chinese coasts than 

in the Korean coasts since 2000.

The Ka images were derived from the SeaWiFS nLw555 image using the 

procedure described above. The spatial distribution o f the 6-year average Kd in May and 

September are similar. High values of Kd were found near the Kyunggi Bay, the 

southwestern coastal regions of Korea, the Shangdong peninsula, and the Changjiang 

River in both months, while Kd was lower in the middle of the Yellow Sea. However, a 

comparatively high Kd patch appears in the middle of the Yellow Sea in May. The mean 

value of Kd based on the 6-year composite images for May ranged from 0.33 to 0.38 m '1 

in the coastal regions (CCW and KCW) to 0.13 m '1 in the central regions of the Yellow 

Sea (MYS). The mean value o f Kd in September in the central regions of the Yellow Sea 

are similar to those in May (0.12 m '1), but September values are slightly smaller in the 

coastal regions (0.30 m '1) compared to May. The interannual variability of Kd in the MYS 

is small while that in the coastal areas is comparatively strong.
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The spatial patterns of chlorophyll are similar in both months. Higher chlorophyll 

appeared in coastal areas and near the Changjiang River, and relatively low values in the 

central area o f the Yellow Sea. However, in May, a patch o f significantly increased 

chlorophyll appeared in the middle of the Yellow Sea, located around a Korean dump site 

that has been used since 1992. The 6-year mean chlorophyll is slightly higher in May 

(0.95 mg m"3) than in September (0.93 mg m '3), and the chlorophyll is slightly higher in 

the Korean coastal waters (1.74 in May and 1.81 mg m‘ in September) than in the 

Chinese coastal waters (1.61 in May and 1.46 mg m' in September). The chlorophyll in 

May (0.70 mg m'3) is slightly lower than in September in MYS (0.77 mg m '3). The high 

chlorophyll patch in the middle of the Yellow Sea is shown in every year although its 

area and concentration varies. The patch spread widely in 1999 and is highest in 2001. 

The mean chlorophyll of May in all regions was highest in 2002, but that in September 

varied with regions. Interannual variability is stronger in September than in May.

The depth-integrated daily primary production o f May and. September in the 

Yellow Sea is shown in figure 4.10, and the means and the standard deviations of the 

primary production calculated for each sub-region are given in Table 4.3. The spatial 

distribution of the primary production in the 6-year composite images is similar in both 

months, with lower primary production along the southwest coast of Korea, near the 

Kyunggi Bay, near the Shandong Peninsula and near the Changjiang river, and with 

higher primary production in the middle of the Yellow Sea. The primary production in 

the middle of the Yellow Sea is more uniform in May while the primary production is 

comparatively higher in the eastern area of the mid-Yellow Sea. The values of primary 

production overall the Yellow Sea are higher in May than in September. The mean of
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primary production in the middle of the Yellow Sea (MYS) is 947 mgC m'2 d’1 in May 

and 723 mgC m'2 d'2 in September. The mean o f the primary production in the coastal 

regions varies from 508 to 734 mgC m"2 d '1 in May and from 554 to 589 mgC n f2 d '1 in 

September, In May, the highest mean primary production levels in the middle of the 

Yellow Sea appeared in 2002 and the lowest levels in 2000. The high primary production 

patch in the middle of the Yellow Sea was significantly higher 1999. The mean IPP in 

both coastal regions, CCW and KCW, is highest in 1998 and lowest in 2003. In 

September, the highest IPP in the middle of the Yellow Sea appeared in 2003 and the 

lowest in 1999. While the variability pattern and values of IPP in May are similar in both 

coastal regions, those in September are significantly different in 2001 and 2002. The 

daily primary production estimated for the entire Yellow Sea is 19.7 x 104 tonC d '1 in 

May and 15.8 x 104 tonC d’1 in September.

We have in situ IPP measurements only in September, 1992 for the Yellow Sea. 

Thus there are no coincident measurements of primary production to validate the 

satellite-based primary production. However, we compared the measured IPP at 37 

stations in September, 1992 to the range of values at the same locations in the monthly- 

composite satellite data from 1998 to 2003 (Fig. 4.12). At about two-thirds of the 

stations, the measured-measured IPP falls within the range of the satellite-derived values. 

Exceptions occurred along the C-line (Fig. 4.1b) where the satellite values were much 

higher than the measured IPP. In contrast, the measured IPP was significantly higher 

than the satellite values at station F07.

R RThe input parameters such as Pm , a , and DCM parameters for the primary 

production were based on in situ measurements made only in May and September. To
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estimate annual primary production in the Yellow Sea required several assumptions about 

seasonal variability based on this limited information. From the results presented in 

Chapter 2, the Yellow Sea was regarded as totally well-mixed waters from November to 

March, and the average values of P-E parameters in May and September were used for 

the primary production. The input parameters based on in situ measurements in May 

were used for the primary production in May to August, and the values for September 

were used for April, September, and October. Primary production was then estimated 

from all the SeaWiFS data between 1998 and 2002. Monthly composites were formed

and then annual composites were produced by averaging the individual monthly

2 1composites (Table 4.4 and Fig. 4.13). The average daily rate was 584.2 mgC m' d' , and 

the annual production ranged from 47.8 x 106 tonC y '1 in 2000 to 53.3 x 106 tonC y '1 in 

1998, with an average annual production of 50.1 x 106 tonC y '1.

4.4. DISCUSSION and CONCLUSION

In this study, primary production using uniform biomass profile was 

underestimated by 15% with maximum of 40% in the deeper waters (>50m). However, 

error between primary production using uniform and non-uniform biomass profile was 

relatively small (mean o f 7%) in the coastal waters (<50m). This result is similar to 

others in different seas. The integrated primary production using uniform biomass profile 

was underestimated by about 20% compared with the primary production based on the 

vertically non-uniform biomass algorithm in the North Atlantic (Platt et al., 1991).
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Primary production derived from the uniform profile (wavelength-integrated) model was 

underestimated by 20 -  35 % in Kuroshio and the frontal regions of the East China Sea 

(Siswanto, et al., 2004).

Following Platt et al. (1988b), measurement technique cannot do better than ±5% 

for PmB and ±20% for a8. Another error is related to the aggregation of the parameters 

within provinces (Platt et al. 1995). The natural variability within each province is 

reflected in the 95% confidence intervals for the mean, which were in the range o f ±12% 

(MYS) to ±54% (KCW) for cxB and in the range of ±13% (MYS) to ±44% (KCW) for 

PmB. Some uncertainty in the coastal regions comes from the small number o f data points. 

It is reported that the computed primary production is more sensitive to changes o f the P- 

E parameters than chlorophyll-profile parameters in the North Atlantic (Sathyendranath, 

et al., 1995). Thus, more information on the distribution of P-E parameters would be 

required to improve estimations of primary production.

Spectrally- and depth-resolved primary production algorithms have been 

considered as benchmarks in estimating primary production (Platt et al., 1991; 

Kyewalyanga et al., 1992). Most of the studies were in open ocean waters and used a 

spectral model for the light field in the water column based on Case 1 waters. The Case 1 

spectral model is not applicable in the Yellow Sea because large areas of the Yellow Sea 

are Case 2 waters. Son et al. (2001) showed values of diffuse attenuation based on a 

Case 1 (chlorophyll-dependent) model underestimated Kd in case-2 waters by a factor of 

2 to 4. We had very few light measurements in our data base. From 17 coincident 

measurements of Secchi depth and Kd, we found that Kd = 1.44/SD (Kirk, 1994) was a 

reasonable relationship to use. Using this relationship and an empirical relationship
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between measured Secchi depth and satellite water-leaving radiances at 555 nm, we 

derived an algorithm for estimating K$. We considered using the SeaWiFS K490 product, 

but its comparison with Secchi depth did not prove to be consistent in the Yellow Sea. 

The standard algorithm of the SeaWiFS K490 produces large uncertainty in turbid water, 

especially where K490 is greater than 0.25 m '1 (O’Reilly et al., 2000b). Thus the K490 

product is not applicable in the Yellow Sea. The fitting of Secchi depth and the SeaWiFS 

nLw555 at about 300 stations in the southeastern Yellow Sea showed a good relationship 

with r2= 0.78.

The mean K& derived from the nLw555 was about 0 .12m '1 in the central area and 

varied from 0.3 to 0.38 m '1 with maximum value of 0.76 m '1 in the coastal waters of the 

Yellow Sea. These values are similar to results o f Son et al. (2001), where mean of K& 

was 0.20 m*1 with minimum of 0.09 m '1 and maximum of 0.74 m '1 in the Yellow Sea.

Errors o f the chlorophyll concentration derived from the ocean color satellites 

range from 50 to 100 % or more in the turbid waters found in the near-shore areas of the 

Northeastern Atlantic (Floepffner et al., 1999). Since a large part o f the Yellow Sea is 

characterized as Case 2 waters, the current standard chlorophyll algorithm overestimates 

the chlorophyll concentrations and consequently the primary production. Therefore, we 

chose a local empirical algorithm for chlorophyll-a concentration with lower RMS errors 

(Ahn, 2004). The SeaWiFS standard algorithms (OC2 and OC4) were compared with in 

situ measurements in the Korean waters (Ahn, 2004; Moon et al., 2002). The results 

showed that the SeaWiFS standard algorithms are suitable in the Sea of Japan and the 

Kuroshio waters which are characterized as Case 1 waters, but are not applicable for Case

-i

2 waters such as the Yellow and East China Seas (RMS errors were 0.618 mg m’ for
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0C 2 ver. 3 and 0.663 mg m'3 for OC4). Use of the empirical chlorophyll algorithm 

developed by Ahn (2004) was more reasonable for the estimation of the primary 

production in the Yellow Sea. Its accuracy was improved (RMS error = 0.34 mg m'3), 

although it is still a Case-1 algorithm since it does not account for variability in other 

optically active constituents.

In this study, we present monthly primary production only for two months, May 

and September, because input data such as photosynthetic and the vertical biomass 

distribution parameters were available only for these months. The estimate of primary 

production in the Yellow Sea includes new and regenerated production. In May, the IPP

9 1
varied from 590 to 947 (with the overall mean of 836) mgC m‘ d' , and in September it 

varies from 554 to 723 (with the overall mean o f 672) mgC m’2 d '1. In both months, the 

primary production was lower in the coastal waters and higher in the middle of the 

Yellow Sea. This pattern was caused by higher turbidity and shallow depth in the coastal 

regions. The overall mean of primary production was 24% higher in May than in 

September, largely due to the fact that PAR was 26% higher in May than September. 

Thus the seasonal variation of light may be the important factor in determining variations 

in primary production.

There was higher primary production in the middle o f the Yellow Sea (MYS) in 

May and September than in the coastal regions. There are only two studies describing the 

distribution of chlorophyll and primary productivity over all the Yellow Sea (Choi et al., 

1995; Wu et al., 1995). Both were based on cruises made in September, 1992. The result 

of Choi et al. (1995) showed the mean primary production to be 740 mgC m‘2 d '1 which is 

similar to our result. Wu et al. (1995) reported a much lower mean primary production
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2 1(331 mgC m' d ' ) for the same month and year and similar stations. The large 

differences between these primary production estimates may be because they used 

different methods to derive the depth-integrated primary production. Choi et al. (1995) 

measured primary productivity using C-14 methods and estimated depth-integrated 

primary production with the formula of Platt et al. (1980). Wu et al. (1995) also measured 

primary production using a C-14 method, but used Cadee and Hegeman’s (1974) formula 

to estimate depth-integrated primary production. In addition, they found very different 

chlorophyll levels (0.16 to 3.20 fag-/'1 with mean o f 0.69 p,g-f1 -  Choi et al.; 0.43 to 17.43 

mg-m"3 with mean of 1.362 mg-m"3 -  Wu et al.), which were curiously opposite in 

magnitude to the primary productivity differences. In this study, our primary production 

model is based on Platt et al. (1988), and we used the data measured by Choi et al. (1995) 

as input data for our algorithm. Thus, our result may be more comparable to that of Choi 

et al. (1995). In their results, the average primary production was 702 mgC m‘2 d '1 in off-

-y i

shore stratified waters and 620 mgC m' d' in the Korean coastal waters. Others reported 

that the primary production in the Kyunggi Bay was about 647 mgC m '2 d '1 in September 

(Chung and Park, 1988). The mean values are similar to our estimates; 740 mgC m'2 d '1 

in the middle of the Yellow Sea and 684 mgC m '2 d '1 in the Korean coastal waters.

The mean daily rate of the integrated primary production in the middle of the 

Yellow Sea (MYS) was 947 mgC m"2 d '1 in May and 723 mgC m"2 d'2 in September. The 

mean values in Chinese coastal waters and Korean coastal waters were 590 and 734 mgC 

m'2 d '1, respectively, in May, and 589 and 554 mgC m'2 d '1 in September. Our 

computation of daily primary production for the entire Yellow Sea is 19.7 x 104 tonC d*1 

in May and 15.8 x 104 tonC d"1 in September.
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Choi et al. (2004) measured primary production in the southeastern area of the 

Yellow Sea in five months o f 1997. However, there is no measurement in May and 

September, but in February, April, August, October and December. It is not possible to 

compare their results with our estimates quantitatively. However, the spatial distributions 

o f primary production are similar: lower primary production in the Kyunngi Bay and the 

southwestern coastal waters of Korea, and higher levels in the central waters of the 

Yellow Sea. The low primary production in the coastal areas is caused by the high 

turbidity caused by strong tides and shallow depths. Lower turbidity in the middle of the 

Yellow Sea allows for the penetration of light to greater depths.

We do not have any measured primary production data to validate the model 

primary production. However, we compared the primary production measured at 37 

stations in September, 1992 with the satellite-based monthly composite primary 

production in September from 1998 to 2003. The values of the measured IPP generally 

fall in the range of the satellite-derived IPP from 1998 to 2003 although about one third 

of the measured IPP was much lower than the satellite values. As mentioned above, we 

do not have in situ measured primary production that are coincident in time with the 

satellite data. However, from the results, estimates of the primary production seem to be 

reasonable.

Our calculation showed that the annual total primary production in the Yellow 

Sea varied from 47.8 to 53.3 x 106 ton C yr'1 with a mean of 50.1 3 x 106 ton C yr'1. The 

■ input parameters such as P-E and DCM parameters in May and September were used for 

the primary production in the other months. Thus, for more accurate estimates of the 

primary production in the Yellow Sea, obtaining more data is indispensable. However
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crude, our results provide the first synoptic maps of primary production in the Yellow

Sea.
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Table 4.1. Sources of data for the chlorophyll profiles and P-E parameters in the Yellow 
Sea (32-37°N and 122-127°E). Total number is 141 stations.

Cruise name Source Period
No. of 

P-E 
parameters

No. of 
chi. 

profiles

YS-9210 Choi et al. 
(1992)

17 Sep-  
2 Oct, 1992 38 38

COPEX(1) k o r d i(3) 29 Aug -  
5 Sep, 1994 n 10

COPEX KORDI 26 Apr -  
6 May, 1995 24 9

l m e (2) KORDI 20-24 May, 
1996 12 11

LME KORDI 20-31 May, 
1997 36 14

LME KORDI 15-19 May, 
1998 20 4

Total 141 86

(1) The Coastal Ocean Process Experiment cruise
(2) The Y ellow  Sea Large Marine Ecosystem cruise
(3) Korea Ocean Research and Development Institute, South Korea
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Table 4.2. P-E parameters for the 3 regions o f the Yellow Sea.

Sub-regions
a 8 P  Bm

no
mean stdev mean stdev

May

CCW 0.0176 0.0062 3.90 1.52 8

MYW 0.0221 0.0141 3.99 2.52 75

KCW 0.0204 0.0096 6.50 3.46 9

Sep.

CCW 0.0268 0.0068 6.24 1.99 14

MYW 0.0293 0.0097 5.49 2.01 31

KCW 0.0233 0.0079 6.69 1.87 4

Total 0.0239 0.0122 4.78 2.54 141
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Table 4.3. Primary production in the 3 regions of the Yellow Sea.

Sub-
region

Area
xlO3
km2

Mean Primary Production Rate 

mgC m'2 d '1 x 104 tonC d"1 

May Sep May Sep

CCW 58.9 , 590.3 589.3 3.5 3.5

MYW 147.4 946.5 722.6 13.9 10.6

KCW 28.9 734.2 553.7 2.1 1.6

mean 835.6 672.4

total 235.2 19.7 15.8

Table 4.4. Annual total primary production in the Yellow Sea.

Year
Area 

xlO3 km2

Daily mean PP 

mgC m'2 d '1

Annual total PP 

xlO6 ton C yr’1

1998 612.9 53.3

1999 559.6 48.0

2000 235.2 557.7 47.8

2001 586.2 50.3

2002 595.5 51.1

mean 584.2 50.1
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Figure 4.1. Geography of the study area. The Yellow Sea was divided into 3 sub-regions using bathymetry and physical 
features (CCW: Chinese Coastal Waters, MYS: Mid-Yellow Sea, and KCW: Korean Coastal Waters) in (b). The 
serial oceanographic stations of KODC for Secchi depth data are shown in (a) and the observatory stations for 
primary production o f the Yellow Sea cruise in September, 1992 (Choi et al., 1995) are shown in (b).
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Figure 4.2. Scatter plots of measured diffuse attenuation derived from PAR in the water 
column versus measured Secchi depth (SD) at 17 stations in the Yellow Sea. The 
line of Kd -  1.44/SD is also drawn on the scatter plots.
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Figure 4.3. Secchi depth data obtained in the southeastern Yellow Sea from KODC were 
plotted against the SeaWiFS K490 in 286 stations during the periods of 1998 to 
2002 (match up data is one day before to one day after).
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Figure 4.4. Secchi depth data obtained in the southeastern Yellow Sea from KODC were 
plotted against the SeaWiFS water-leaving radiances at 555nm in 286 stations 
during the periods o f 1998 to 2002 (match up data is one day before to one day 
after).
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Figure 4.5. Scatter plots of temperature and Pm in three different regions (CCW: 
Chinese Coastal Waters, MYS: Middle of Yellow Sea waters, and KCW: Korean 
Coastal Waters) in the Yellow Sea.
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Figure 4.6. Mean values of aB and P mB in three different regions (CCW, MYS, and 
KCW) in May (left three) and December (right three) with 95% confidence 
intervals.
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Figure 4.7. Mean fitted biomass (chlorophyll) profiles for the 3 sub-regions o f the 
Yellow Sea in (a) May and (b) September. Number of data used (n) and four 
parameters of DCM model are shown on each graph.
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Figure 4.8. Scatter plots of primary production calculated using a uniform biomass 
profile (PP1) versus primary production using non-uniform biomass profile (PP2) 
at 37 stations o f the Yellow Sea cruise in September, 1992 (Choi et al, 1995). 
Squares indicate primary production in deeper area (> 50m) and circles in the 

• shallower areas (< 50m).
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Figure 4.9 (a). Monthly composite SeaWiFS images from 1998 to 2003 in May (top) and September (bottom) as well as 
6-year composite images on the right of each row (a) PAR, (b) diffuse attenuation (IQ) derived from nLw555, 
(c) chlorophyll derived from Ahn’s algorithm.
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Figure 4.10. Monthly-composite images of primary production based on SeaWiFS from 1998 to 2003 in May (top) 
and September (bottom) as well as 6-year composite images on the right o f each row.
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F ig u re  4.11(a). Year-to-year variations of the mean values o f the SeaWiFS 
input values in the 3 sub-regions in May (top) and September 
(bottom), (a) PAR, (b) diffuse attenuation (Kd) derived from 
nLw555, (c) chlorophyll derived from Ahn’s algorithm, and (d) 
daily integrated primary production.
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Figure 4.12. The values extracted from the monthly primary production images in 1998 to 2003 compared with the 
measured primary production at 37 stations of the Yellow Sea cruise in September, 1992 (Choi et al. 1995).
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CHAPTER 5

SUMMARY, SIGNIFICANCE AND FUTURE RESEARCH

Coastal waters represent only about 10% of the ocean area, and yet coastal primary 

production contributes 15-30% of the global oceanic primary production. Coastal waters 

are vitally important for their role in fisheries. The coastal waters are influenced through 

human activities such as damming as well as by global-scale climate change. An 

important contribution of ocean color remote sensing data is to advance the 

understanding of long-term variations in primary production and phytoplankton biomass, 

and their relationship to environmental variables. This dissertation addresses primary 

production and decadal variation of ecological variables using remote sensing and in situ 

data in the Yellow Sea.

Two ocean color remote sensing data sets, Coastal Zone Color Scanner (CZCS) 

data from 1978-1984 and the Sea-vie wing Wide Field-of-view Sensor (SeaWiFS) from 

1998-2003, were compared in Chapter 2 to determine whether there have been decadal 

trends in the Yellow Sea. The water-leaving radiance measurements at 443 rnn (Lw443) 

and 555 run (Lw555) were compared, and chlorophyll derived from these values were 

also compared. CZCS pigment data were converted to chlorophyll concentration using 

an algorithm derived from in situ data to be comparable to the SeaWiFS OC4 

chlorophyll. High Lw555 exhibited in the shallow coastal areas, including waters near 

the Changjiang River, during both periods indicate that these waters are sediment- 

dominated case-2 waters. Lw443 increased in these areas by 17%—61 %, and Lw555 

increased by 67-108% between the CZCS and the SeaWiFS eras. In the deeper waters
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that are characterized as case-1 during summer, a decrease in Lw443 by 25-31%  during 

summer would indicate an increase in absorbing chlorophyll and colored dissolved 

organic matter (CDOM). The average chlorophyll concentration based on case-1 

algorithms increased by 15-60% in these offshore deep waters between the two eras. 

Time series of in situ measurements from 1978 to 2002 of temperature, salinity, Secchi 

depth, and zooplankton biomass were obtained from the Korea Oceanography Data 

Center for comparison with the trends found in the satellite data. Between 1978 and 

2002, there were increasing trends in temperature and zooplankton biomass, and 

decreasing trends in salinity and Secchi depth. The satellite data surrounding these 

stations showed an increase in Lw555 (49 %), a decrease in the Lw443 (-12 %), and an 

increase in chlorophyll (46 %). In this chapter, we discuss whether the decadal changes 

seen in the satellite data are real environmental changes, or whether they might be due to 

differences in the sensors and data processing methods. We cannot rule out the 

possibility that differences in the atmospheric correction might account for most of the 

differences.

In chapter three, we establish vertically well-mixed and stratified areas associated 

with monthly variations for the estimation of primary production and develop a method 

to differentiate those two areas using satellite, observations in the Yellow Sea. To 

identify well-mixed areas, the criterion of temperature difference between surface and 

bottom layer, |AT| < 0.8°C, and the Simpson-Hunter criterion, log (H/U3) < 2, where both 

derived from a coupled ocean wave-circulation model (Moon, 2004). To develop a 

method to differentiate stratified and well-mixed waters using satellite data, remotely 

sensed sea surface temperature (SST) and water-leaving radiance at 667 nm (nLw667)
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from the Moderate Resolution Imaging Spectroradiometer (MODIS) were compared with 

the model results. During the winter season, most of the Yellow Sea is totally well- 

mixed. From spring through fall, the middle of the Yellow Sea is thermally stratified 

whereas the coastal areas are vertically well-mixed year-around due to tidal forces. 

However, the waters around the Chang) iang River are stratified during the warmer 

months due to large amount of freshwater discharged from the river. A threshold based 

on nLw667 was found to work reasonably well along the southwest coast of Korea during 

the warmer months, where high nLw667 values indicate suspended sediments due to tidal 

mixing. Maps of the well-mixed area derived from the MODIS nLw667 using 

relationships between the nLw667 and the model AT in the southeastern Yellow Sea were 

produced for the warmer months (April to September). The well-mixed waters were

9 1 Ilocated in the areas where the nLw667 was higher than 2-4 Wan" -nnf -sr" (the threshold 

varying with the month).

In chapter four, a local primary production algorithm was developed based on the 

algorithm o f Platt and Sathyendranath (1988) parameterized with in situ data. The 

algorithm was applied to ocean color satellite data and primary production was estimated 

using for the Yellow Sea. To address the photosynthetic and the vertical biomass profile 

parameters, the Yellow Sea was divided into three sub-areas: Chinese coastal waters <50 

m deep, middle of the Yellow Sea, and Korean coastal waters < 50 m deep. More than 

1300 individual scenes of the SeaWiFS were used for estimating primary production. 

The standard chlorophyll algorithms overestimate chlorophyll concentration since a large 

part of the Yellow Sea is considered as case 2 waters. Therefore, a local empirical 

chlorophyll algorithm was applied to derive more accurate chlorophyll concentration in
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the Yellow Sea. A relationship was found between the SeaWiFS water-leaving radiance 

at 555nm and more than 300 measurements o f Secchi depth obtained from the Korea 

Ocean Data Center. These Secchi measurements and satellite data measured within one 

day of each other were used to derive an algorithm for the diffuse attenuation coefficient.

Primary production derived using the local algorithm was higher in the middle of 

the Yellow Sea than in the coastal regions. Lower primary production in coastal areas 

was caused by light limitation due to high turbidity and shallow depth. The mean daily

* 9 1 9 9primary production was 947 mgC m' d' in May and 723 mgC m' d’ in September in

the middle o f the Yellow Sea, and the values in Chinese coastal waters and Korean

2 1coastal waters were 590 and 589 mgC m" d‘ , respectively, in May, and 734 and 553 

2 1mgC m" d" in September. Our estimate of the daily primary production for the entire 

Yellow Sea was 19.7 x 104 tonC d"1 in May and 15.8 x 104 tonC d '1 in September, and 

the annual total primary production in the Yellow Sea was 50.1 x 106 ton C yr‘\

In this thesis, progress was made in characterizing and understanding 

contemporary and long-term variations in the marine ecosystem of the Yellow Sea. We 

compared different ocean color satellite data sets using a unified chlorophyll algorithm 

and constructed time series of environmental variables which reveal long-term variations 

o f the ecosystem in the Yellow Sea. In particular, this will provide a framework to 

understand influences o f the Changjiang River and the effect o f its changing discharge 

before and after the Three Gorges dam which completed construction in 2003. We 

developed a method to differentiate well-mixed and stratified areas using satellite 

observations and established maps of the well-mixed and stratified areas in the 

southeastern Yellow Sea. These maps provide the basis for modeling vertical biomass
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profiles for estimating primary production in these coastal waters. Finally, we developed 

a local primary production algorithm using ocean color satellite data for the Yellow Sea. 

The calculation using the local algorithm provides the first synoptic maps allowing a 

quantitative assessment of primary production in this coastal environment.

No attempt was made to unify the atmospheric correction algorithms for the 

CZCS and SeaWiFS data. We evaluated the consequences of the differences for a 

limited period (November 2003) and concluded that differences in the atmospheric 

correction between the ocean color sensors might account for the differences we found in 

the water-leaving radiances. Probably both atmospheric corrections need improvement in 

this area influenced by Asian dust. To resolve this we would need a unified algorithm that 

can correct for absorbing aerosols. Furthermore, for these Case 2 waters where mixtures 

of organic and inorganic materials affect the color of the water, more sophisticated bio- 

optical algorithms must be developed to account for their unique optical characteristics 

and variation of environmental parameters.

Our proposed method to classify well-mixed and stratified areas using satellite 

water-leaving radiance at 667nm can be applied only to limited regions and seasons. 

There is still a difficulty in applying satellite data for the classification in the shallow 

coastal regions which are affected by a large river discharge. The in situ measurements 

such as photosynthetic and DCM parameters for the primary production were spatially 

and temporally limited. We do not have ship-measured primary production data in the 

study area coincident with the operating period of the ocean color sensors for validation 

o f our algorithm results. In addition, there was no available bio-optical measurement to 

model the light fields associated with primary production in the Yellow Sea. Therefore,
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obtaining more data is really required for more accurate estimation of primary production 

as well as for validation. The development o f a more sophisticated chlorophyll algorithm 

for these case 2 waters which could be applied to unify different ocean color satellite data 

would provide better understating of long-term changes in primary production associated 

with climate change and human impacts in the Yellow and East China Seas.
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