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ABSTRACT

DEVELOPMENT OF MUSCLE STRUCTURE AND FUNCTION 
IN LOLIGINID SQUIDS

by

Gabriela Maria Martinez 

University of New Hampshire, December, 2004

Squid embryos are able to contract their mantle early during the 

embryonic period. These contractions are initially sporadic but become 

progressively more coordinated over the embryonic period and by hatching 

squids are able to locomote using jet propulsion. The ability to jet propulse and 

respire emerges during the pre-hatching stages of development and it requires, 

in part, the differentiation and organization of the circular and radial muscles of 

the mantle. How and when the musculature of the mantle, funnel and fins 

develops and acquires functional ability has not been investigated in cephalopod 

embryos.

This dissertation examines the onset of contractile capabilities and 

subsequent maturation of the main locomotor structures in embryos of two 

species of loligind squids with a focus on the mantle musculature. The functional 

implications of the differentiation and organization of the musculature is 

investigated using a combination of techniques including fluorescent labeling, 

light and transmission electron microscopy, high speed video and mathematical 

modeling

x
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The results of these series of studies indicate that the development and 

emergence of functional competence of the mantle musculature in loliginid 

squids is a dynamic process. Differentiation and organization of the musculature 

of the main locomotor structures does not occur simultaneously and has a 

precise sequence with the mantle developing first, then funnel and the fins 

developing and organizing last. This sequence applies to both gross 

morphological and ultrastructural levels of development. Additionally, the two 

circular fiber types found in the adult mantle have different temporal and spatial 

patterns of development. The superficial mitochodria rich (SMR) fibers that drive 

respiratory contractions differentiate first at the inner and outer surfaces of the 

mantle. The central mitochondria poor (CMP) muscle fibers, which are active 

during fast and escape jetting, differentiate second and in the central region of 

the mantle.

The mantle of embryonic loligind squids is able to produce contractions in the 

absence of a completely developed and organized musculature. Contractions 

are first observed and recorded in Arnold stage 25 embryos. These contractions 

are rare and sporadic. During subsequent stages, the mantle undergoes 

measurable ontogenetic kinematic changes as evidenced by an increase in the 

frequency and duration of the contractions. Moreover, mathematical modeling of 

these contractions indicates that the mantle in embryonic squids is capable of 

producing two distinct types of contractions. These different contraction types 

resemble the respiratory and locomotory contractions of the juveniles and adults. 

Furthermore, these functionally distinct contractions emerge at different times:

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the respiratory-like contractions emerge first and locomotory like contractions 

second.

When these data are examined in conjunction with the morphological data 

they show that mantle morphology and mantle functional ability appear to be 

developing in parallel. Additionally, stage 27 emerges as a morphologically and 

functionally significant point in development. Stage 27 embryos have a robust, 

differentiated mantle whose morphological organization and functional repertoire 

begins to reflect that of the adults.

xii
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CHAPTER I

INTRODUCTION

An inherent relationship between musculature and function is found 

throughout the animal kingdom. Similarly, there is a relationship between 

development and function. During development, three features change over 

time: morphology (size and structure), function, and the relationship between the 

structures and their underlying functions. During the embryonic period, changes 

occur in what an organism is capable of doing with its existing structures. All 

embryos go through several functional transitions from random, uncontrolled 

twitching to coordinated movement. How and when those transitions occur is 

directly influenced by the extent of muscle and neural development (Bekoff, 

1981; Drachman, 1963; Wu et al., 2001).

The development of different functional morphologies may not be as 

simple as the complete construction of a structure first, followed by a subsequent 

gain of function. It could well be that the process is more complex; structures 

and related functions may develop and mature in parallel rather than 

sequentially. This dissertation investigates the dynamic developmental 

relationship between form and function by looking at the differentiation and 

organization of the mantle musculature, as well as, its emerging functional 

abilities in embryonic loliginid squids.

1
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2

Cephalopods, and squids in particular, are ideal organisms on which to 

investigate questions regarding the development of morphology and the 

development of function. Cephalopods must be able to swim immediately upon 

hatching, and are composed primarily of muscular tissue (Budelman, 1994). 

They are direct developers that do not undergo a typical radical molluscan 

metamorphosis and thus do not emerge as miniature replicas of the adults. 

Cephalopods must go through several morphological and functional ontogenetic 

transitions in the post hatching period as direct responses to changing Reynolds 

number and hydrodynamic environments (Preuss and Gilly, 2000; Preuss et al., 

1997; Thompson and Kier, 2001a; Thompson and Kier, 2001b; Thompson and 

Kier, 2002). Moreover, the musculature of cephalopods is especially interesting 

because of the ability of a single structure to fulfill different functions, specifically 

the dual respiratory and locomotory functions of the mantle. All of these 

characteristics offer an excellent system in which to examine the development of 

form and function.

Cephalopod Overview 

Cephalopods are diverse and successful molluscs. There are 

approximately 700 species of cephalopods (Sweeney and Roper, 1998; Voss, 

1977) and all but one are exclusively marine (Lolliguncula brevis lives in brackish 

water). They are found in all of the world's ocean main zones from the Arctic 

Basin to Antarctica (Roper et al., 1984). Cephalopods differ dramatically from 

their molluscan cousins in almost all aspects of their biology including their
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embryology, ecology, behavior and locomotion. This class is characterized by a 

body plan that has retained the bilateral symmetry of its ancestors with an 

anterior portion that includes the head, funnel and the circumoral arm crown and 

a posterior portion that includes the mantle, mantle cavity and its organs 

(Beasley et al., 1998). Like other molluscs, all cephalopods have a radula and 

most have a shell remnant in the form of either an internal cuttlebone (cuttlefish) 

or a gladius (squids). Of all the extant cephalopods, only one genus, Nautilus, 

has retained an external shell (Beasley et al., 1998).

Cephalopods differ from other molluscs because they posses a 

sophisticated suite of behaviors, and a novel combination of methods for 

locomotion. These animals have successfully invaded all of the oceanic zones 

and this is reflected in their morphological adaptations. For example, some 

benthic octopods crawl using their arms (Beasley et al., 1998). Pelagic 

octopods, such as the Bolitinaids and Japatellids, use their webbed arms in a 

medusoid form of movement (Seibel et al., 1998). Cephalopods use jet 

propulsion to varying degrees as part of their locomotory repertoire. Squids are 

by far the most sophisticated cephalopod swimmers, and have evolved a highly 

proficient method of jet propulsion that allows them to swim with speed and 

agility that rivals fish(0'Dor and Webber, 1986; Wells and O'Dor, 1991). Squids 

can reach speeds of 10-15 knots (Packard, 1969; Young, 1975), swim continually 

for over two months, and can cover distances up to 2000 km (Gosline and 

DeMont, 1985; Packard, 1969). In fact, the locomotory system of squids
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produces the fastest locomotion of any aquatic invertebrate (Moon and Hulbert, 

1975; Packard, 1969).

Cephalopod Muscle Arrangement and Structure

Jet propulsion in squids is possible in part because of the arrangement 

and structure of the muscles in the squid mantle (Bone et al., 1981; Budelman et 

al., 1997; Gosline and Shadwick, 1983a; Gosline and Shadwick, 1983b; Gosline 

et al., 1983; Kier, 1988a). The mantle is also used for respiration, and its 

complex arrangement of muscle fibers allows it to function as a hydrostatic 

skeleton to provide movement and structural support. Hydrostatic skeletons are 

skeletal support systems that are normally comprised of two-dimensional or 

three-dimensional arrays of muscles surrounding fluid filled cavities (Kier, 1988a; 

Kier, 1992; Wainwright, 1982) that remain constant in volume. Hydrostatic 

skeletons create movement by shuttling fluid (which is incompressible at 

physiological pressures) in hydrostatic cavities from one part of the body to 

another (Kier, 1988a; Kier, 1992). In structures where fluid filled spaces are 

small or lacking, the muscles themselves serve as the incompressible fluid; 

changes in the dimensions of the muscular structures themselves create 

movement (Kier, 1988a; Kier, 1992; Kier and Smith, 1985; Smith and Kier, 1989).

The structure of the squid mantle is a complex, three-dimensional 

arrangement of muscle fibers between two stiff collagenous tunics that provide 

extra support (Bone et al., 1981; Budelman et al., 1997; Gosline and Shadwick, 

1983b; Kier, 1982; Kier, 1985; Kier, 1987; Kier, 1988b). Within the mantle
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5

muscles is a network of connective tissue fibers against which the muscle fibers 

can work. Squids possess different types of muscle fiber that are functionally and 

metabolically analogous to vertebrate red and white muscle (Bartol, 2001a; Bone 

et al., 1995b; Bone et al., 1981; Gosline and Shadwick, 1983b; Gosline et al., 

1983; Mommsen et al., 1981). These different fibers are distributed differently 

within the mantle enable the mantle and provide the ability to carryout the dual 

functions of locomotion and respiration (Bone et al., 1994; Wells, 1988; Wells 

and Wells, 1982). The muscle fibers responsible for quiet ventilation and 

respiration are located at the inner and outer zones of the mantle and are 

characterized by a core of multiple mitochondria. The muscle fibers that power 

escape jetting are found in the central zone of the mantle and are mitochondria- 

poor (Bartol, 2001a; Bartol, 2001b; Bone et al., 1981; Gosline et al., 1983; 

Hochachka et al., 1975; Mommsen et al., 1981; O'Dor, 1982).

Cephalopod Respiration and Locomotion 

In respiration, the mantle is mechanically responsible for the continual 

circulation of water in and out of the mantle (Bone et al., 1994; Wells, 1988; 

Wells and Wells, 1982), allowing water to pass across the gills where oxygen is 

extracted. During respiration, water is sucked into the mantle cavity by the 

expansion of the mantle (Packard, 1972). Water is expelled by contraction of the 

circular muscles and it is pushed through the funnel (Budelman et al., 1997). 

Respiration and locomotion are incompatible with one another because the 

sudden hyperinflation and exhalation required to produce a jet does not allow
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enough time for oxygen extraction (Wells, 1988). Oxygen measurements in 

octopods, cuttlefish and Nautilus, have shown that oxygen levels drop as soon as 

jetting behavior begins (Wells, 1988). Respiration movements are mostly 

restricted to the anterior portion of the mantle, in the gill region (Packard and 

Trueman, 1974). Respiratory movements are also seen in the posterior half of 

the mantle; these movements are smaller, have a different frequency and thus 

are out of phase from the movements in the anterior region (Packard, 1972).

Functionally, respiration requires the mantle muscles to execute two 

different patterns of activity based on the type of respiration, either passive (at 

rest, ventilation) or active (preparing for a jet escape) (Bone et al., 1994). As 

previously mentioned, the ability to perform the two phases of respiration rests in 

the ultrastructural and biochemical differences of the radial and circular muscles 

(Gosline et al., 1983; MacGillivray et al., 1999; Mommsen et al., 1981). The 

circular and radial muscles are active at different points of the cycle and neither 

type of muscle is active during the refilling phase (Gosline et al., 1983). The 

radial muscles are involved in the inhalation phase of the respiration cycle and 

circular muscles are active during the exhalation phase (Gosline et al., 1983).

Jet propulsion has three distinct phases: inhalation, expulsion and refilling. 

Jet propulsion is an expensive mode of locomotion because it requires continual 

cycles of acceleration and deceleration (Gosline and DeMont, 1985; Wells, 

1988). During inhalation the radial muscles contract, increasing the diameter of 

the mantle opening, sucking water into the mantle cavity, and filling it to its 

maximum capacity (Gosline et al., 1983). Expulsion is powered by the
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contraction of the circular muscles decreasing the diameter of the mantle forcing 

water through the funnel resulting in the jetting action. The jet phase is 

immediately followed by the refilling of the mantle through the elastic recoil of the 

intramuscular connective tissue system (Gosline and Shadwick, 1983a; Gosline 

and Shadwick, 1983b; Kier, 1988a; Ward and Wainwright, 1972). Neither the 

radial or circular muscles appear to participate in the refilling of the mantle cavity 

(Gosline et al., 1983).

Cephalopod Development 

Growth in cephalopods has traditionally been thought of in terms of overall 

body size and age, not necessarily as an increase in muscle mass (Forsythe and 

Van Heukelem, 1987). Recently however, growth has been studied as an 

increase in total muscle fiber growth and recruitment (Martinez and 

Moltschaniwskyj, 1999; Moltschaniwskyj, 1994). Several studies have 

determined that squids and cuttlefish grow continuously throughout their lifetime 

(Martinez, 2001; Martinez and Moltschaniwskyj, 1999; Peel and Moltschaniwskyj, 

1997). Moreover, this continual growth is due to a combination of hyperplasia 

and hypertrophy occurring at different rates at different stages during an animal’s 

life span (Martinez and Moltschaniwskyj, 1999; Moltschaniwskyj, 1994; Peel and 

Moltschaniwskyj, 1997). This continual addition of muscle fibers explains how 

cephalopods can have such rapid growth rates and can reach such extremely 

large sizes in a short period of time (Jackson and Choat, 1992; Moltschaniwskyj, 

1994; Peel and Moltschaniwskyj, 1997).
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Unlike other molluscs, cephalopods have direct development (Arnold, 

1965; Fields, 1965; Naef, 1928). They undergo meroblastic, radial cleavage that 

most closely resembles teleost development (Packard, 1972) as opposed to the 

developmental modes commonly seen in molluscs. Most cephalopod eggs are 

large - millimeters as opposed to micrometers - and telolecithal, with the embryo 

proper growing at the animal pole on top of a very rich yolk. They have no larval 

phase and thus no metamorphosis, yet they do not hatch out exactly as miniature 

adults (Boletzky, 1979; Nesis, 1979; Young and Harman, 1988). Cephalopods do 

undergo some noteable, if not dramatic, changes in their overall body shape and 

some structures (such as the tentacles) in response to their changing 

hydrodynamic environment and other functional demands (feeding) (Shea, in 

press; Vidal, 1994).

Cephalopod embryology has been well described in classical studies by 

Naef (1928) and Arnold (1965) and it continues to be studied in more species. 

Loliginid squids make up the bulk of the embryological literature and has become 

the ‘textbook” representative of cephalopod embryology (Wells, 1988). Both 

Naef (1928) and Arnold (1965) created staging tables based on explicit 

morphological characteristics and landmark events in order to standardize 

cephalopod embryology. These two staging schemes have been widely used 

and subsequently modified to accommodate the differences in development of 

the increasing number of species described (Blackburn et al., 1998; Shigeno et 

al., 2001a; Watanabe et al., 1996).
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Recently, there has been an increase in the number of developmental 

morphological descriptions of the organogenic period of many different species of 

cephalopods (Blackburn et al., 1998; Shigeno et al., 2001a; Shigeno et al., 

2001b; Shigeno and Yamamoto, 2002; Warnke, 1999; Watanabe et al., 1996). 

These descriptions tend to focus on the overall development of the animal or 

more specifically, the nervous system (Shigeno et al., 2001b; Shigeno and 

Yamamoto, 2002; Warnke, 1999; Watanabe et al., 1996). These and more 

recent studies of other cephalopod species have paid little attention to the 

development of muscles, except for brief references to the growth of the mantle 

and the fusion of the funnel folds into a tube. Muscle differentiation and growth is 

inferred but not described. Similarly, early embryonic movements displayed by 

cephalopod embryos are referred to in passing, with no elaboration or mention of 

possible functional significance (Arnold, 1965; Fields, 1965; Naef, 1928). 

Furthermore, little is known about respiration and other early embryonic 

movements. Aside from observations by Naef (1928) and oxygen consumption 

studies of egg masses (Parra et al., 2000), almost nothing is known about 

embryonic respiration in squids. Embryonic respiration is thought to occur by 

diffusion of oxygen through the outer epidermal epithelial layer (Cronin and 

Seymour, 2000; DeWachter et al., 1988; Ruppert et al., 2004)until the mantle is 

able to contract enough to effectively move water around within the chorion that 

encapsulates the embryo. Presumably, once the mantle has developed enough 

to contract and the gills can extract oxygen, then respiration is similar to that of 

adults.
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The muscular system of cephalopods offers an excellent opportunity to 

examine the development of form and function because it has been well studied 

in adults and juveniles, and thus offers a good comparative base. The available 

ontogenetic information about cephalopod musculature is based on studies that 

have been conducted on post-hatching juveniles and adults (Table 1-1) (Bone et 

al., 1981; Chen et al., 1996; Hoyle, 1964; Kier, 1988a; Preuss et al., 1997; Shea, 

in press; Thompson and Kier, 2001a; Thompson and Kier, 2001b; Thompson and 

Kier, 2002). Fundamental information such as the embryonic origins of muscle, 

muscle cell differentiation and muscle function are virtually unknown. Studies by 

Preuss (1997,2000), and Thompson (2001a, 2001b, 2002) have integrated 

development, morphology and function of the mantle musculature and 

connective tissue in paralarval squid. (Gilly et al., 1991; Preuss and Gilly, 2000; 

Preuss et al., 1997) have effectively shown the functional and morphological 

maturation of the circular mantle muscles in hatchling and paralarval Loligo 

opalescens by integrating structural, histological and functional data. Similarly, 

Thompson and kKer. (2001a, 2002) described the substantial morphological and 

functional changes that occur in the intermuscular collagen system in hatchling 

and paralarval Sepioteuthis lessoniana. The changes in these collagenous 

networks have significant effects on the kinematics and mechanics of jet 

propulsion in young squids that in turn affects not only their ecology, but also 

their behavior. Ontogenetic changes in somatic and muscle growth in juvenile 

and adult sepiolids and sepiids have been studied (Martinez and 

Moltschaniwskyj, 1999; Peel and Moltschaniwskyj, 1997). Gilly et al. (1991) have
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described the development of neural control of escape responses in embryos 

and hatchlings and inadvertently also mentions changes in muscles and their 

functional capacities.

Development of Function

Historically, the field of functional morphology has not been considered 

within a developmental context. Most functional morphologists conduct their 

studies on adult morphologies and adult functions (Savazzi, 1999). In general, 

there is more biomechanical and kinematic data for vertebrate systems than Fish 

swimming studies encompass everything from different modes of locomotion 

across a diverse group of fishes to startle/escape responses to the contribution of 

fins to locomotion (Beddow et al., 1995; Domenici and Blake, 1997; Drucker and 

Jensen, 1996; Hale, 1999; Hove et al., 2001; Jayne and Lauder, 1994; Johnston, 

1980; Johnston, 1991; Westneat et al., 1998). Different types of musculature in 

fish have also been identified and their role in fish locomotion as well as their 

physiology and growth has been well documented (Bone, 1966; Bone, 1978; 

Devoto et al., 1996; Jayne and Lauder, 1994; Veggetti et al., 1990; Weatherley 

and Gill, 1987; Weatherley et al., 1988; Zimmerman and Lowery, 1999).

Recently there has been a slight shift in the types of kinematic and 

biomechanicai studies being conducted on fish. There is an increasing body of 

literature regarding changes in locomotion and musculature in a wide variety of 

larval and juvenile fish (Batty, 1981; Batty, 1984; Hale, 1999; Johnston, 1994; 

Wakeling et al., 1999). This work ranges from changes in muscle fiber types to
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changes in function through ontogeny (Patruno et al., 1998; Rowlerson et al., 

1995; Sanger and Stoiber, 2001; Stoiber et al., 1998; Stoiber et al., 2002; Stoiber 

et al., 1999; Veggetti et al., 1990). Many studies however, focus either on 

changes in muscle morphology and structure or changes in swimming 

movements (Galloway et al., 1999; Osse, 1990; Webb and Weihs, 1986; 

Zimmerman and Lowery, 1999). Few delve into how changes in both 

morphology and function relate to one another.

One of the few studies examining the relationship between form and 

function during development was conducted on larval herring (Batty, 1984). 

Batty examined the changes in swimming kinematics and found that swimming 

style changed with growth and development. As the caudal and dorsal fins 

formed, the swimming style changed dramatically from what was first seen in 

early post-yolk sac larvae. Batty found that the distribution of red and white 

muscle fibers also changed, from a single layer on the outside of the myotomes 

to their adult distribution at the midline of the flank near the skin. This transition 

did not occur until after the gills had become fully functional (Batty, 1984).

Stoiber et al. (1999) took a different approach to investigating the 

development of morphology and function. Instead of looking at changes in 

kinematics they looked at changes in muscle cell morphology, muscle fiber 

growth and ultrastructure over the course of larval and juvenile ontogeny. 

Stoiber’s work looks at the formation of fish muscle and correlates it with 

significant developmental functional landmarks such as hatching, onset of free 

swimming, and exogenous feeding (Stoiber et al., 1999). Both Batty and Stoiber
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come to the same conclusions however, that changes in form and function of fish 

musculature are a direct result of the different functional demands experienced in 

changing Reynolds number environments (Batty, 1984; Stoiber et al., 1999).

Studies of functional morphology are generally conducted on juveniles or 

adults of the organism of interest, and seldom are form and function investigated 

together in an embryological context. Studies that have examined the dynamic 

between form, function, and development have shown that changes in 

morphology can have direct consequences on the proper development and 

function of several systems. For example, in chicken embryos, early embryonic 

movements are essential for the proper formation and development of a 

locomotor system (Wu et al., 2001). In fish embryos, studies have shown that 

progression through significant life stage transitions are directly linked to the 

extent of muscle formation and differentiation (Balon, 1985; Stoiber et al., 1998; 

Stoiber et al., 2002; Stoiber et al., 1999)

Functional morphological studies in post-hatched and juveniles of a 

number of invertebrate and vertebrate species have established that even in the 

post-embryonic period significant morphological changes continue to occur that 

in turn affect the ecology of the organism (Batty, 1984; Chen et al., 1996; Hunt 

and Seibel, 2000; Seibel et al., 1998; Shea, in press; Thompson and Kier, 2001b; 

Thompson and Kier, 2002).
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Dissertation Objectives 

Cephalopods use the same structure, the mantle, for locomotion and 

respiration. The biomechanics and kinematics of adult cephalopod jet 

propulsion, as well as, the physiology and ultrastructure of the musculature 

involved has been well studied. In contrast, there have been a limited number of 

similar investigations in juveniles and embryos. Fundamental questions 

pertaining to the ontogeny of the primary locomotor structures and subsequent 

functional capabilities remain to be investigated. The objectives of this study 

were (1) to describe the gross morphological and ultrastructural development of 

the mantle musculature in two species of loliginid squids; (2) to correlate 

muscular development and organization with the development of functional 

ability.

In addition to direct observations of developing embryos, I used 

fluorescent labeling to view emerging muscle development, transmission electron 

microscopy to analyze ultrastructural development, high-speed video and 

mathematical modeling to examine and quantify functional development. Though 

all of these techniques have been employed individually in functional morphology 

studies in a variety of different organisms, they have not been used together in a 

comprehensive attempt to address fundamental questions of cephalopod muscle 

differentiation and function. These data illustrate that functional ability can be 

measured both quantitatively and qualitatively prior to hatching and that 

biomechanical and kinematic experiments should no longer limited by stage. 

Moreover, these studies reveal that form and function develop in parallel. There
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are differences in the developmental timing of individual structures such that one 

structure may be further developed and therefore more functional prior to 

another, a process which is also species specific (Naef, 1928) (Balch et al., 1985; 

Blackburn et al., 1998).
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Table Ft . Compilation of previous work on cephalopod musculature.
Family Species Type of work Age Structure Reference (1)
LGKginklae AHoteuthis subulate 

Loligo fbrbesi 
Loligo opalescens 
Loligo p&steii 
Loligo vulgaris 
LoMguwiila brevis 
Photoioiigo sp, 
Sepioteuthis tessottmna

structure, biomechanics 
kinematics, physiology 
uttrastructure.growth 
swimming, behavior

adult
juvenile
hatch

arms
tentacles
mantle

Bone et al,1983,Gos)ine et al, 1963: 
Thompson&Kier,1999,2Q02,2Q01;Kier,1988; 
KierSCurtin,2002:Kter&Smift, 1985:
Preuss et al;1997:0% et at,1991:Packard 1969: 
Mommsen et al, 1981; Johnson et al. 1972: 
McGillivary et al, 1999;
Mollschanewskyj et al 2000; 
Moltschanewskyj, 1994; Bartol.2001 a.2001 b: 
Milligan et al, 199?;Finke et al.1996: 
Otis&Gilly,1990;Anderson et al, 2000:
Rogers et al, 1997;Cben et a!, 1996.

Ommastrepbidae lllax illeoebmsus 
Qmmastmphes tm/tmmii 
Qmmasimphes sp. 
Symplectoteotbis oualanensis

biomechanics
uiirastructure
growth

adult
juvenile
hatch

arms
tentacles
mantle

Perez et al,2000:
Mommsen et a l, 1981:
Shea,2001,2004;G'Dor, 1988

Gonatidae Berryteutbis rmgister ultrastructure adult mantle Mommsen at al,1981

Sepioldae Idtosepius pygrmeus growth adult mantle Pecl&Moltschanewskyj et a!,1997

Sepiidae Sepia eOiptica 
Sepia offidanalis

growth, physiology 
uttrastructure 
swimming behavior 
cel! differentiation

adult
juvenile
embryo

mantle
tentacles

Bone et al,1983;8one&Brown,19S4; 
Grimaldi et al,2004a,2004b; 
Martinez&Molischanewskyj, 1999:
Milligan et al, 1997;MoHschanewskyj, 1994; 
Nixon et al,1998;Rogers et al,1997

Vampyrotsuthidae Vatnpyfoteulbis infemalis swimming behavior
biomechanics
kinematics

adult amis
fins
mantle

Hunt. 1996; Seibel et al, 1999

Octopodidae Cimfhaurrm murrayi 
EMone cirrhosa 
Opisthteuthis caiifomam 
Octopus vulgaris

physiology 
ultrastructure 
swimming behavior

adult
juvenile
hatch

arms
fins
mantle

Graztadei.1986; 
Rogers et al, 1997; 
Seibel et al, 1999; 
Villanueva et al,1996

{1) Partial list of references



CHAPTER II

EMBRYONIC DEVELOPMENT AND ORGANIZATION OF MANTLE, FUNNEL
AND FIN MUSCULATURE IN LOLIGO PEALEII

Introduction

Although muscle tissue makes up a large percentage of the total body 

mass of cephalopods (Budelman et al., 1997; Gosline and DeMont, 1985; 

Hochachka et al., 1978; Martinez and Moltschaniwskyj, 1999) little is known 

about how muscle tissue develops and organizes during embryogenesis in this 

group. Previous developmental work in cephalopods has focused on descriptions 

of comparative morphology and overall formation of body structures and organs 

(Arnold, 1965; Fields, 1965; Naef, 1928) (Segawa et al., 1988; Shigeno et al., 

2001a) rather than on the finer details of muscle development and organization. 

Moreover, although there have been many recent studies examining the 

formation and organization of myo-anatomy in invertebrate taxa including 

molluscs (Wanninger and Haszprunar, 2002a; Wanninger and Haszprunar, 

2002b), flatworms (Hooge, 2001; Tyler and Hooge, 2004), phoronids (Santagata, 

2001) and gastrotrichs (Hochberg and Litvaitis, 2000), these studies either 

investigate the formation of specific muscles (such as the larval retractor muscles 

of gastropods) (Wanninger and Haszprunar, 2002a) or the gross morphology of 

adults (Hochberg and Litvaitis, 2000; Hooge, 2001; Tyler and Hooge, 2004).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

They therefore yield little information relevant to cephalopods, which have 

species with direct development and lack a larval phase.

The precise three-dimensional arrangement of musculature in the mantle, 

funnel and fins of cephalopods is the basis for how these structures function 

during respiration and locomotion (Budelman et al., 1997; Kier, 1988b; Kier, 

1992). Although much work has been done on adult and juvenile stages with 

regard to ultrastructure, morphology and function, (Bone et al., 1981; Martinez 

and Moltschaniwskyj, 1999; Mommsen et al., 1981; Peel and Moltschaniwskyj, 

1997; Thompson and Kier, 2001b; Thompson and Kier, 2002) (Curtain et al., 

2000) there remains a poor understanding of how and when the three- 

dimensional arrangements of musculature emerge during embryogenesis. 

Examining these processes is essential for both understanding the functional 

capabilities of these structures, and for relating the development of form to the 

development of function. Descriptions (Arnold, 1965; Fields, 1965; Naef, 1928) 

and observations (Martinez, pers .obs.) of morphological development of the 

mantle, funnel, and fin structures suggest that muscle development and 

organization occurs asynchronously in these structures. In order to better 

understand how and when muscle differentiation and organization occurs, and in 

particular to determine whether muscle development takes place in the mantle, 

funnel, and fins at different times, this project investigated the spatial and 

temporal development and organization of the mantle, funnel, and fin 

musculature in embryonic Loligo pealeii.
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Materials and Methods

Experimental Animals

Loligo pealeii egg cases were obtained from the Marine Resource Center, 

Marine Biological Laboratories, Woods Hole, MA. Egg cases containing embryos 

at different developmental stages were selected and kept in well-aerated 

seawater tanks at ambient temperature (13-14°C) at a salinity of 32ppt until 

needed, approximately 1-2 weeks. Normally developing embryos were selected 

and staged using Arnold’s (Arnold, 1965) staging scheme. Sampling of embryos 

began with those determined to be at Arnold stage 21 (i.e. embryos with 

rudimentary mantle and funnel placodes) and continued to stage 30 (hatching) to 

obtain a developmental series.

Fixation and F-Actin Labeling

While still inside their egg capsules, embryos from Arnold stages 21-30 

(Arnold, 1965) were fixed in 4% paraformaldehyde for 1.5 hours (Appendix A). 

After fixation, embryos were dechorionated and the mantle, funnel, and fins were 

removed. The individual structures were rinsed with 0.1 M Phosphate Buffered 

Saline (PBS) 3 times for ten minutes each rinse. Specimens were incubated in 

0.2% TritonX-100 in PBS (PBT) for 1hour to permeabilize tissue. Specimens 

were stained with Alexa-488 phallodin (Molecular Probes, Eugene, OR) in PBT 

for 1.5-2 hours. Samples were rinsed in 0.1 M PBS 3 times for ten minutes each 

rinse.
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4’6-diamidino-2-phenvlindole dihvdrochloride (DAPD Labeling

Specimens at stages 24-29 were doubled labeled with DAP I (Sigma- 

Aldrich.USA) to view the shape and orientation of muscle cell nuclei. Phalloidin 

labeled specimens were first rinsed twice with distilled water and then labeled 

with DAP I for 30 minutes (Appendix A).

Microscopy

For all samples (phalloidin and DAPI), individual structures were mounted 

on glass slides in Gel Mount antifade mounting medium (Biomeda Corporation, 

Foster City,CA) and viewed under fluorescence with a Nikon Axiophot compound 

microscope. Micrographs were captured with a SPOT digital camera mounted 

on the microscope. Adobe Photoshop v. 7.0 was used to adjust brightness and 

contrast.

The results of the present study have been divided into three major 

developmental phases, Phase I/Early (Arnold stages 21-23), Phase I I/Middle 

(Arnold stages 24-26) and Phase III /Late (Arnold stages 27-30), based on the 

extent of muscle fiber development and distribution prior to hatching.

Results

Gross Morphological Analysis of Muscle Formation

Phase l/Earlv Phase (Arnold Stages 21-231: Phase I of muscle

development and organization begins during organogenesis. The landmark
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morphological features of embryos at this phase include the presence of a 

rudimentary, cap shaped mantle, funnel folds that will begin to fuse and small, 

paddle shaped fins that have just emerged (Arnold, 1965). A thin epithelial layer 

(presumptive epidermis) with ciliary tufts surrounds the entire embryo.

Phase I is characterized by the complete lack of elongated muscle fibers 

in the mantle, funnel and fins. These structures, although present, are not 

composed of differentiated muscular tissue. Instead, phalloidin staining reveals a 

reticulated, mesh-like pattern (Fig. 11-1 a-c). The stained F-actin fibers are 

configured in a hexagonal array that is characteristic of cortical actin (Bray, 1992) 

(Fig. 11-1 a) located underneath the plasma membrane of cells. This reticulation is 

present in all planes of focus (Fig. 11-1 a-c) and in all three structures. The 

prevalence of this reticulated organization suggests that Phase I of muscle 

development is a period of cell proliferation rather than morphological 

differentiation of presumptive myoblasts.

Phase I I/Middle (Arnold Stages 24-26): At the gross morphological level 

L.pealeii embryos have formed all of their organs and structures and the mantle, 

funnel and fins are solid structures. The mantle has transitioned from a small 

cap-shaped structure to a larger, elongated shape as a result of downward 

growth. The funnel is fully fused into a tube and the fins have grown larger but 

remain paddle-shaped.

Phase II is a transitional period during which presumptive myoblasts 

begin to differentiate into myofibers. Prior to Phase II the mantle, funnel and fins
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are not composed of differentiated muscle tissue and exist only as scaffolding. 

During Phase II substantial muscle cell differentiation and organization occur. 

This differentiation manifests itself as the appearance of distinctive, elongated, 

muscle fibers. However, emergence of myofibers only occurs in the mantle (Fig. 

11-1 e). At the start of Phase II, the mantle is heavily reticulated and elongated 

fibers are rare (Fig. 11-1 d). The funnel (Fig. 11-1 d) and fins are also heavily 

reticulated, although they are larger in overall size (Fig. Il-1f).

As Phase II progresses there is an increase in both organization and the 

number of myofibers in the mantle (Fig. Il-2a). The muscle fibers that emerge 

are circularly oriented but not tightly associated with one another, as evidenced 

by the large spaces between the fibers themselves (Fig. 11-1 e-g). As the number 

of muscle fibers increases, less and less of the mantle is reticulated (Fig. Il-2a-c). 

During stage 25, muscle fibers emerge in the funnel (Fig. 11-1 f). The muscle 

fibers that first emerge are few but also circularly oriented. The fins remain 

predominantly reticulated except for one or two short fibers detected in a few 

specimens (Fig. Il-2a).

DAP I stained specimens support the phalloidin evidence that Phase II is 

transitional. Mantles of embryos at stage 24 (Fig. Il-3a) show labeled nuclei in 

different orientations, illustrating an overall lack of organization in this structure. 

By the end of Phase II, DAP I stained specimens show nuclei in distinctive 

circular orientation demonstrating the continued development of circular myofiber 

organization (Fig. Il-3b). Although no cell counts were made, DAP I staining
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shows (qualitatively) an increase in both the total number of nuclei and the 

number of circularly oriented nuclei (Fig. Il-3a-b).

The end of Phase II is marked by mantle structures that are composed 

mainly of differentiated circular muscle fibers. However, the persistence of the 

reticulated pattern indicates that the mantle is also composed of cells that remain 

undifferentiated (Fig. Il-1f-g; Fig ll-2a). The muscle fibers of the funnel also 

continue to organize and fibers in both circular and longitudinal orientation are 

distinguishable (Fig. Il-2f). However, there is a marked difference in both the 

extent of development and organization of the myofibers between the funnel and 

the mantle, but also in the number of fibers present. At the end of Phase II, the 

funnel is still heavily reticulated. Surprisingly, the funnel retractor muscles are 

very distinctive and composed largely of elongated myofibers (Fig. Il-1f). The fins 

at the end of Phase II remain essentially undifferentiated, though larger than in 

Phase I (Fig ll-2a).

Phase Ill/Late Phase (Arnold Stages 27-30): Squid embryos during the 

late stages of development are growing rapidly, and existing structures are 

acquiring functional capabilities (i.e. heart beat, mantle contraction) (Arnold, 

1965; Fields, 1965; Naef, 1928). Mantle contractions are initially sporadic, but 

gradually become more frequent and rhythmic (Arnold, 1965; Fields, 1965; Naef, 

1928).

Phase III is both a period of growth as well as a period of continued 

organization and differentiation depending on the structure. Phase III at the
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outset appears to be a period of growth and an overall increase in muscle fiber 

number and density based on the patterns seen in the mantle (Fig. Il-4a-b). By 

the start of Phase III, the mantle is a well formed, muscular structure with muscle 

fibers in their complex arrangements (Fig. Il-2d-f). There is no morphological 

evidence of remaining undifferentiated myoblasts in the mantle, based on the 

lack of reticulation (other than in epithelial cells of the skin).

The funnel and the fins change and organize significantly during Phase III. 

In essence they are overcoming their developmental delay relative to the mantle. 

The funnel continued to grow throughout Phases I and II and although muscle 

fibers were evident in the middle of Phase II there was no substantial change in 

the overall organization and differentiation of the funnel musculature. In Phase 

III, the funnel finally develops and organizes its muscles into characteristic three- 

dimensional arrangements; the muscle fibers are in longitudinal, circular and 

radial orientations (Fig. Il-4d). By hatching, the funnel, like the mantle, is a fully 

formed structure with densely arranged muscles.

The fins (Fig. Il-4c), like the funnel, were essentially unchanged during 

Phases I and II. They got bigger, but without muscle fiber growth or muscle fiber 

addition. Over the course of four developmental stages (approximately 4-5 days), 

the fins transition from non-muscular parts to complex three-dimensional 

muscular structures. By hatching the mantle, funnel, and fins are well developed 

and organized muscular structures.
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Discussion

The present study reveals that muscle development and organization do 

not occur simultaneously in the mantle, funnel, and fins of L.pealeii embryos. 

Although it was beyond the scope of this study it was noted that the rates of 

muscle development and organization differ among the three structures studied. 

This study also suggests that the development of muscle may be dependent in 

part, not only on the function of a structure but also on when that structure needs 

to be able to perform that function.

Timing

Most developmental staging tables, including those for cephalopods, 

assign stages based on easily identifiable morphological features and the timing 

of their appearance (Arnold, 1965; Fields, 1965; Martinez and Boker, 2003; Naef, 

1928; Shardo, 1995; Shigeno et al., 2001a; Shigeno et al., 2001b; Shigeno and 

Yamamoto, 2002). In cephalopods, morphological landmarks used to determine 

the extent of embryonic development include the mantle, funnel, and the fins. 

The mantle is always identifiable first, followed by the funnel and finally the fins, 

although they are all distinctive structures within a few stages of one another 

(Arnold, 1965; Fields, 1965; Naef, 1928). Therefore, it is not surprising that the 

development of the musculature of these structures follows the same sequence. 

What is surprising is the assumption that these structures are already composed 

of muscle (Arnold, 1965; Fields, 1965; Naef, 1928) and that the development of 

their musculature is the same as the emergence of their morphology. Data from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

this study show that in Loligo pealeii, muscle development and organization do 

not correspond with the initial morphological emergence of structures. Although 

the initiation the formation of each structure occurs simultaneously, the rate and 

timing of muscle development over the course of the embryonic period differ.

When muscle development and organization takes place in these 

structures seems to correlate not only to their underlying functional roles, but also 

to when the structures need to be active. At hatching, both respiration and 

locomotory capabilities must already be in place. The mantle is responsible for 

both respiration and locomotory functions and must therefore be well developed 

and functional prior to hatching. The mantle musculature is the first to emerge. 

Since newly hatched squids must locomote immediately at hatching by jet 

propulsion the funnel and fins must also be formed and functional, however, 

because the funnel and fins do not participate in respiration, the development of 

their musculature need not occur in synchrony with the development of the 

mantle musculature.

Because the three structures do not all have to be functional during the 

embryonic period, muscle development and organization can occur at different 

times and rates. Since the extent of development and function of the mantle is 

critical, the mantle musculature not only develops first, but also develops over a 

longer period of time. By comparison the funnel and the fin musculature develop 

later in embryogenesis and over a shorter period of time. The time it takes for 

development of the musculature in the mantle is reflected in how well formed the 

structure is and how well it can function at hatching. At hatching, the mantle is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

morphologically and functionally broadly similar to the juvenile and adult 

structure. The funnel, though functionally not as complex as the mantle, is also 

well formed and can execute a variety of different movements to steer the animal 

during jet propulsion. In contrast, although the fins have their three dimensional 

organization and can function, they are still rudimentary (Boletzky, 1974; Hoar et 

al., 1994; Okutani, 1987) and poorly developed both morphologically and 

functionally compared to adult fins. This parallels their functional capabilities and 

contributions to locomotion in the immediate post-hatching period: The fins at 

hatching contribute little more than balance during locomotion (Boletzky, 1977; 

Boletzky, 2003; Vecchione, 1981).

Growth

Another characteristic of gross morphological development is growth of 

the embryo. Growth in most organisms occurs by hyperplasia (addition of new 

fibers) or hypertrophy (growth of existing fibers) or a combination of both during 

different developmental periods (Weatherley et al., 1988) (Goldspink, 1972). In 

cephalopods, it has been determined that growth occurs by a combination of 

hyperplasia and hypertrophy at different rates for the duration of the animal’s 

lifespan (Martinez, 2001; Martinez and Moltschaniwskyj, 1999; Peel and 

Moltschaniwskyj, 1997). This would suggest that growth during the embryonic 

period is also a result of hyperplasia and hypertrophy at different rates, however, 

there is no data to support this in the current literature.
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Data gathered in this study strongly suggest that the primary mechanism 

by which loliginid embryos initially accumulate their body mass is a combination 

of hyperplasia and hypertrophy once the muscle differentiation program has 

begun. However, initial growth of the embryo appears to be a result of 

proliferation of undifferentiated myoblasts. Data from this study strongly points to 

this mechanism during the early phases of structure formation. This is supported 

by the presence of the reticulated pattern of F-actin seen in Phase I of muscle 

development. It is further supported because once elongated muscle fibers 

emerge in the mantle, the reticulated pattern still persists in all three structures 

and yet, they all continue to increase in size.

Continued growth of the funnel and fins continue even in the absence of 

differentiated muscle fibers suggests that loliginid embryos initially invest in 

accumulating size in these structures before differentiating muscle. In contrast, 

in the mantle both proliferation and differentiation occur simultaneously. The 

difference may be related to function (though that remains to be investigated). 

Because the mantle is involved in respiration as well as locomotion, and 

respiration starts well before hatching, it is critical for the mantle to get larger and 

differentiate faster than the other structures. Indeed, by Phase III, the 

musculature of the mantle is well organized into its characteristic arrangement 

and the only remaining task for the mantle is growth.
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Conclusions

In the present study, I document the spatial and temporal development of 

the musculature of the mantle, funnels and fins in L. pealeii. This is the first 

gross morphological description of muscle development and organization in the 

pre-hatching phases of squid development. The sequence of muscle 

development and organization in each of these structures strongly correlates with 

their ultimate functions, as well as, with when these functions need to occur. The 

mantle is the first structure in which the musculature develops and organizes, 

followed by the funnel and then the fins. The rate of muscle development also 

varies between structures; development is slower in the mantle, but relatively fast 

in the funnel and the fins. Although muscle develops and organizes 

asynchronously, by hatching developmental differences in muscular formation 

among the three structures have been overcome and the mantle, funnel, and fins 

all have their correct muscular organization and have functional ability. However, 

during the immediate post-hatching period, their contribution to jet propulsion 

varies; the mantle and funnel contribute significantly to jet propulsion while the 

fins contribute little (Boletzky, 1974; Hoar et al., 1994; Okutani, 1987; Vecchione, 

1981).

The results of this study do not provide proof that the ultimate functions of 

the structures examined cause them to develop when they do, indeed this study 

did not set out to test this: however, my results do suggest that at least to some 

degree function may influence developmental timing and should be tested 

further.
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Figure 11-1. Emergence of muscle fibers in L  pealeii mantle from Arnold Stages 23-25. a-c. 
Stage 23 mantle with distinct reticulated (ret) patter of F-actin. d-e. Stage 24 muscle fibers 
appear in mantle only, reticulated pattern still present, not funnel (Fu) has no muscle fibers, f-g . 
Stage 25 more muscle fibers present, but reticulation pattern not as prominent (arrowheads), 
funnel still reticulated. All scale bars 100 pm.
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Figure 11-2. Further organization and emergence of musculature in L.pealeii Arnold stage 26-27. 
a-c. Continued emergence of elongated muscle fibers in the mantle. Note fins (F)are still 
undifferentiated but proportionate in size to the rest of the structure. Reticulated pattern still 
present, d-f. Fins still lack muscle fibers. Muscle fibers mantle have increased in number and 
density. No reticulation. Funnel shows presence of both muscle fibers and reticulation. Scale 
bars-100(xm
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Figure 11-3. DAP I stained mantles at Arnold stages 24 and 28. a. Stage 24 mantle is structurally 
unorganized. DAPI stained nuclei in all orientations. Scale bar is 50pm. b. Stage 28 mantle, 
arrows point to circularly oriented nuclei belonging to circular muscle fibers. Scale bar is 20 iim.
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Figure 11-4. Final phase of muscle development and organization in mantle, funnel and 
fins. a-b. Stage 28 and 30 mantles. Note density of circular muscle arrangement and 
lack of any reticulation, c. Stage 28 fin still has evidence of reticulation as well as muscle 
fibers in several orientations, d. Stage 29 funnel has muscle fibers in 3 orientations and 
no reticulation. Scale bars are 100pm.
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CHAPTER HI

ULTRASTRUCTURAL DEVELOPMENT AND ORGANIZATION OF THE 
MANTLE MUSCULATURE IN LOLIGO PEALEII

Introduction

The squid mantle is a highly specialized structure that is used for both 

respiration and for locomotion. The mantle has a complex and precise 

arrangement of circular and radial muscles tightly associated with two layers of 

stiff collagenous tunics and a network of connective tissue fibers within its 

musculature (Bone et al., 1981; Gosline et al., 1983; Kier, 1988a; Wells, 1988). 

Additionally, the circular muscle mass is composed of two specialized fiber types 

with a specific distribution within the mantle. This organization and composition of 

muscle and connective tissue is the basis for the ability of the mantle to execute 

both respiration and locomotion (Clarke, 1962; Gosline and Shadwick, 1983a; 

Gosline and Shadwick, 1983b; Kier, 1988b; MacGillivray et al., 1999; Mommsen 

et al., 1981; Ward, 1972; Ward and Wainwright, 1972; Wells, 1988).

In the adults, the overall organization of the squid mantle is a dense 

arrangement of circular muscles divided at regular intervals into blocks by radial 

muscles (Bone et al., 1981; Gosline et al., 1983; Mommsen et al., 1981). The 

radial muscles extend from the outer to the inner surface of the mantie. The 

circular muscle mass is divided into three layers composed of two different

34
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muscle fiber types. The fiber types are metabolically distinct and are 

distinguishable from one another by the differences in mitochondrial content. 

There are two layers of oxidative, superficial mitochondrial-rich (SMR) fibers at 

the inner and outer surfaces of the mantle. The SMR muscles are used during 

slow jetting, hovering and respiration (Bone et al., 1995a). Between these layers 

is a central, thicker layer of glycolitic, mitochondria-poor (CMP) fibers (Bone et 

al., 1981; Hochachka et al., 1975; Mommsen et al., 1981) that are active during 

escape jetting and rapid locomotion (Bartol, 2001a; Bartol, 2001b) (Bone et al., 

1995a).

Although the physiology and ultrastructure of the mantle has been 

extensively studied in adult squids and to some extent in juveniles (Bone et al., 

1995b; Chen et al., 1996; Gilly et al., 1991; Gilly et al., 1996; Gosline and 

Shadwick, 1983a; Gosline and Shadwick, 1983b; Gosline et al., 1983; 

MacGillivray et al., 1999; Mommsen et al., 1981; Preuss and Gilly, 2000; Preuss 

et al., 1997) relevant work on the development and differentiation of muscle 

during the embryonic period has been largely neglected. At hatching, the mantle 

morphology and structural organization is similar to the adult form, however, the 

process by which this is achieved has not been addressed. Similar topics have 

been examined recently by Grimaldi et al. (2004) on developing tentacles and 

arms of Sepia officianalis using histochemical and molecular techniques, but 

again little is known with regard to squid mantle formation.

The aim of the present study was to describe the ultrastructural 

development and differentiation of muscle cells in the mantle of embryonic
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L. pea leii. Additionally, I wanted to determine not only where muscle cells first 

differentiated within the mantle but also when differentiated cells first appeared.

Materials and Methods 

The anatomy of the mantle musculature was examined by light and 

electron microscopy (Appendix B). Prior to fixation, embryos were removed from 

their egg cases and staged according to Arnold’s staging table (Arnold, 1965). 

Embryos at Arnold stages 22-30 were selected. All embryos were fixed while still 

inside their chorions in order to prevent excessive tissue damage as a result of 

handling.

Experimental Animals

Loligo pealeii egg cases were obtained from the Marine Resources center 

at the Marine Biological Laboratories in Woods Hole, MA. Eggs cases containing 

embryos at various developmental stages were selected and transferred to well- 

aerated tanks kept at ambient temperature (15°C) until needed.

Electron and Light Microscopy

Whole embryos were fixed in 2.5% gluteraldehyde for 3 hours and rinsed 

with 0.2M cacodylate buffer. During the cacodylate buffer rinses, the mantles 

(and funnels) were removed from the rest of the embryos. Whole embryos and 

mantles were then post fixed in 4% 0 s 0 4  for two hours at room temperature. 

Samples were then dehydrated in a graded series of ethanol and infiltrated and
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embedded with Embed 812 (EMS) (Appendix C). Samples were sectioned using 

a MT 6000-XL ultramicrotome for semi-thin (1pm) and a RMC-Boekler TM-XL 

ultramicrotome for ultra-thin (0.1pm) sections. Semi-thin sections were mounted 

on glass slides and stained with Richardson’s stain (methylene blue and azure II) 

(Appendix D). Semi-thin sections were viewed and digitized with an Olympus 

BX50 compound microscope with an attached Polaroid digital microscope 

camera and with a Nikon Axiophot compound microscope mounted with a SPOT 

digital camera. Images were captured using DMC Direct 2.0 and SPOT software 

for Macintosh, and adjusted for contrast/brightness using Adobe Photoshop v. 

6.0 or 7.0.

Ultra-thin sections were mounted on coated grids and stained with uranyl 

acetate and lead citrate (Appendix D). Sections were viewed and photographed 

with a JEOL JEM-100S transmission electron microscope. Kodak ESTAR Thick 

Base TEM film (4489) was developed according to manufacturers instructions. 

Negatives were scanned at 400 dpi on a HP Scan Jet 6300C with a transparency 

adapter (ScanJet XPA) and with an Epson Perfection 3200 scanner. Images 

were stored as .TIF and .JPEG files and adjusted for brightness and contrast 

with Adobe Photoshop v.6.0 or 7.0.

Definitions and Criteria

The development and differentiation of myoblasts into myocytes and 

myofibers begins during organogenesis and continues until just prior to hatching 

at which point development is more a matter of cell growth rather than cell
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proliferation. The complex process of muscle cell differentiation in the squid 

mantle can be divided into three discrete phases consisting of cell proliferation 

and cell arrangement (Phase I), cell differentiation (Phase II), and cell growth 

(Phase III). The criteria used to define each phase were based on obvious 

cytological landmark features including cell and nucleus morphology, as well as 

presence and absence of mitotic figures, cell division and contractile material. 

Since this study is entirely morphological and no molecular work was done, the 

term “differentiation” is defined as the process of a cell aquiring/exhibiting actin 

and myosin filaments.

Results

Morphological Analysis

Phase I (Stage 21-23. (Arnold. 1965fT Embryos at this stage of 

development have small, cap-shaped, rudimentary mantles with simple 

organization and few cell types (Fig. 111-1 a). The mantle is organized into four 

easily identifiable layers, a thin epidermal layer, a thin connective tissue layer 

immediately under the epidermal layer, the mantle tissue layer itself, and a thin 

epithelial layer beneath the mantle (Fig. 111-1 a). Except for the thick mantle tissue 

layer, all others are one cell thick.

During Phase I, the mantle is composed of proliferating, undifferentiated 

myoblasts (Fig. 111-1 a,c,e). Cell proliferation is determined by the presence of 

cells with nuclei containing high content of condensed chromatin as well as cells 

in different stages of mitosis including cytokinesis. Undifferentiated myoblasts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

are identifiable based on the absence of actin and myosin filaments in the 

cytoplasm and by large ovate, nuclei that are tightly associated with each other 

(Fig. 111-1 c) and are pseudostratified. TEM reveals few other organelles within the 

cell but there is high number of free ribosomes as well as rough endoplasmic 

reticulum suggesting an increased level of protein synthesis.

Phase II (Stages 24-26. (Arnold. 196511: The mantles of embryos in 

Phase II are substantial structures that have been growing in both length and 

width. Differentiated myoblasts are first detected in stage 24 embryos (Fig. III- 

1f). Differentiation is determined by the presence of actin and myosin filaments 

that appear in the apex of some of these cells (Fig. I!l-1f). Differentiation of 

myoblasts into myofibers is not uniform within the mantle. Although 

differentiation is occurring, it is only occurring at the basal laminas of the inner 

and outer epithelial layer (Fig. Ill-2b), no evidence of differentiated myoblasts is 

detectable in the central portion of the mantle layer. Along with the emergence of 

actin and myosin filaments, mitochondria are also present (Fig. Ill-1f). Cells that 

have differentiated have an average of 2 centrally located mitchondria and the 

nucleus is either displaced from the center or not in the plane of section (Fig. III- 

2g).

Undifferentiated cells are localized to the central region of the mantle. 

These cells are morphologically similar to the undifferentiated cells found in 

Phase I mantles. The cells have large nuclei but are they are oblong shaped 

rather than rounded (Fig. Ill-2a, d, g). Cells in the central region have either
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dispersed chromatin located at the edge of the nucleus or no chromatin is visible 

at all. In early Phase II, there are few mitotic figures and cells under going cell 

division.

Spatially, all cells both differentiated and undifferentiated within the mantle 

are being organized into rectangular blocks of tissue that reflect the organization 

of the adult musculature (Fig. III-2c,e). The emergence of “block” organization 

indicates that the radially oriented muscle fibers are differentiating (Fig. Ill-2d,g). 

However, the block organization is not yet well defined, only suggestive of the 

future organization. In longitudinal sections, the contractile material of the radial 

muscle fibers is only detected at the ends of the fibers and not in the middle 

portions of the fibers. Other characteristics of radial fibers such as mitochondrial 

content are not readily distinguishable (Fig. Ill-2d).

The muscular organization of circular muscle fibers divided into regular 

rectangular segments by the radial fibers is readily distinguishable by stage 27 

(Fig. Ill-2e). At this stage differentiated circular muscle fibers are easily 

identifiable at the basal laminas of the inner and outer tunics. These cells have 

increased myofibril content and have 2-3 mitochondria in the central portion of 

the cell. The myofribils are not organized into recognizable sarcomeric units (Fig.

IIl-2h). Based on this morphology, these circular muscle fibers are of the 

superficial mitochondria rich fiber (SMR) type. During stage 27, differentiated 

muscle cells appear in the central zone. These cells are of the central 

mitochondria poor (CMP) muscle fiber type. The CMP muscle fibers have a lower
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myofribil content compared to the SMR fibers and on average have only one 

mitochondrion in the center of the cell.

Phase III (Stages 27-30. (Arnold. 1965)): The mantles of embryos in 

Phase III are robust structures with circular and radial muscle fibers arranged in 

the characteristic adult form. The circular muscle fibers have also differentiated 

into the two metabolically different fiber types found in the adult, the SMR fibers 

and the CMP fibers. Phase III is a period of growth and further structural 

definition. The mantle becomes longer and wider and the muscle fiber 

arrangement becomes denser. During Phase III growth appears to be by addition 

of new muscle fibers within in the individual blocks rather than addition of more 

blocks. The myofibril content on the muscle fibers continues to increase but 

sarcomeric organization of the myofibrils is rare.

Longitudinal sections show a radical difference in the overall appearance 

of the mantle structure (Fig. Ill-3a,b). The inner and outer tunics are well defined 

and tightly associated with the mantle muscle mass. Whereas in the latter part of 

Phase II the mantle is clearly organized into muscle blocks, the different zones of 

circular muscles that are obvious in the adults are not distinguishable. However, 

this abruptly changes during Phase III with the clear emergence of the three 

zones of the circular muscle fibers and their respective muscle fiber types (Fig.

III-3a-d). The SMR circular fibers are located beneath the inner and outer tunics 

and the CMP muscle fibers are located in the central region of the mantle.
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In addition to the emergence of the different circular muscle zones and 

overall growth, the vascularization of the mantle also increases. The most 

noticeable is a large blood vessel that runs through the middle of the mantle 

muscle mass in the CMP fiber region (Fig. III-3c). The innervation of the mantle 

musculature is more pronounced as evidenced by the presence of large axonal 

profiles in association with muscle fiber blocks (Fig. III-3e).

Nervous System: Although examining the development of the nervous 

system was beyond the scope of this study it must still be briefly addressed. All 

embryos from stages 24- 30 examined at the TEM level had some degree of 

neural development within the mantle structure (Fig. 111-4). The most 

conspicuous were the axons from the stellate ganglia, which are ipsilateral 

structures that are involved in the neural control of the mantle musculature 

(Young, 1971). Evidence of stellate ganglion axons was seen in stage 24 

embryos beneath the skin epithelium (Fig. Ill-4a). Stage 25 embryos had easily 

distinguishable stellate ganglia that had more axons within the cluster than in the 

previous stage (Fig. lll-4b). In later stage embryos (stages 27-30), along with the 

stellate ganglia, other neural structures were evident such as small 

neuromuscular junctions (Fig. Ill-4c,d).

Discussion

The mantle musculature in adult loliginid squids is a complex structure. 

This complexity is the basis for understanding how it can carryout two different
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functions, respiration and locomotion (Bone et a!., 1995b; Bone et al., 1981; 

Budelman et al., 1997; Gosline et al., 1983; Kier, 1988b; MacGillivray et al., 

1999; Mommsen et al., 1981). There are few cases where one structure is 

responsible for performing two essentially incompatible functions and the squid 

mantle has been adapted to do so not only by its intricate arrangement of circular 

and radial muscle fibers and connective tissue fiber networks, but also by the 

presence and specific distribution of two metabolically distinct fiber types.

These different fiber types are analogous to the red and white muscle 

fibers found in vertebrate muscles (Hochachka et al., 1975; Mommsen et al., 

1981). In adult squids, muscular activity studies during respiration and 

locomotion have shown that each function is performed by the activation of one 

of the two muscle fiber types (Bartol, 2001a; Bartol, 2001b; Gosline and DeMont, 

1985; Gosline et al., 1983). The superficial mitochondrial rich fibers 

(SMR)(=white) are active during aerobic activities such as respiration and 

hovering. The central mitochondria poor fibers (CMP)(=red) are active during 

anaerobic activity such as rapid jet propulsion and escape jetting (Bartol, 2001a; 

Bartol, 2001b; Bone et al., 1995a; Bone et al., 1981; Mommsen et al., 1981). 

The roles of the SMR and CMP muscles in each of these functions are significant 

in the adults and their arrangement and distribution reflects this. Examining how 

the adult ultrastructure in the mantle musculature developed revealed that the 

structural/mechanical ability for the mantle to function in a dual capacity is 

established during embryogenesis by the precise sequence of the differentiation 

process itself.
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My results show that differentiation of the mantle muscle fibers and fiber 

types occurs in a specific sequence and at several levels of organization. Prior 

to the emergence of differentiated myoblasts the overall organization of the 

mantle is already present (Fig. 111-1 a,c,e). There are four distinct layers including 

the skin, the outer and inner tunics and a thick layer of undifferentiated mantle 

tissue. Additionally, the presumptive muscle cells begin to align themselves into 

parallel columns that span the width of the mantle layer from the inner surface to 

the outer surface. This alignment of the presumptive myoblasts is a precursor to 

the future organization of the circular and radial muscle fibers into distinct block 

units. The block organization occurs at the same time that muscle cell 

differentiation begins although my data suggest that the circular muscles start the 

differentiation process earlier than the radial fibers. Once muscle differentiation 

begins (Stage 24), it is not a uniform process within the mantle. Differentiated 

muscle fibers emerge at the basement membranes of the inner and outer tunics. 

The central portion of the mantle remains undifferentiated until stage 27. At stage 

27 differentiated muscle fibers are detected in the central portion of the mantle. 

During the later stages of development (28-30) the organization of the mantle 

begins to take on the appearance of the adult structure with defined segments of 

circular and radial muscles. Also, the three layers of SMR and CMP fibers are 

become well defined and by hatching are easily identifiable.

What is interesting about my study is that the patterns that are seen in the 

adult musculature that directly influence respiratory and locomotory function are 

laid down in the embryonic period. Not only is the overall organization of the
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mantle evident early, but my data show that the zonation of the circular muscles 

may also be predetermined. The SMR muscle fibers appear first and they 

appear at both surfaces of the mantle at the same stage. The CMP fibers appear 

second and significantly later than the SMR fibers. This pattern is significant 

because it strongly links the emergence of the specific fiber types with specific 

functions. Therefore, since SMR fibers are responsible for respiratory function 

and they appear first this would suggest that respiratory ability also emerges first. 

Similarly, since CMP fibers are active during locomotion, their appearance after 

SMR fibers indicates that locomotory capabilities emerge after the ability to 

respire (See Chapter 4).

The emergence of specific fiber types in the mantle at different period in 

development would suggest that two distinct muscle cell populations exist one 

giving rise to SMR fibers and the other to CMP fibers. Recent molecular studies 

looking at muscle differentiation in the arms and tentacles of Sepia officianalis 

have shown the existence of two distinct myoblast populations and that there is 

also a temporal difference in their differentiation (Grimaldi et al., 2004). 

Moreover, as was seen in the arms and tentacles of Sepia, muscle cell 

differentiation occurred in specific locations within the structure (Grimaldi et al., 

2004). Further exploration into the molecular differentiation of the SMR and CMP 

fibers is recommended.
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Figure 111-1. a,c,e. Early phase of mantle muscle differentiation. All Stages (22-hatch) show general mantle aggregation. Skin (Sk) 
epithelium, connective tissue layer (Ct), inner surface epithelium (Ep) layers and (M) tissue layer. Mantle has undifferentiated myoblasts in 
parallel. Nuclei (n) are large, ovate, with condensed chromatin. Stage 24 mantles considerably further organized than Stages 22+23. Scale 
bars = 10mm. b,d,f. No ultrastructural differentiation of muscle in Stage 22 and 23. Tissue is mostly cytoplasm with many multivesiculate 
bodies. Stage 24 mantle tissue has begun to differentiate. Myofilaments (in boxes) are recognizable beneath the basement membrane (bm) 
of the connective tissue laver. Scale bars = 1mm. 1mm and 0.5mm respectively. 4*.O)
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Stage 25 Stage 26 Stage 27

Figure 111-2. Further development and organization of mantle muscle ultrastructure. a,d,g. Main 
layers of the mantle more defined. Ciliated tufts (Ci) are present on skin layer. Further alignment 
of nuclei into parallel arrangement. Outer (Ot) and inner tunics (It) identifiable. Stage 26 mantles 
have radial fibers (rf) beginning to divide circular muscle mass into blocks. Scale bars 20 (j,m. 
b,e,h. Ultrastructural differentiation is advanced. Mitochondria (mi) present in differentiated 
muscle. All muscle fibers located beneath basement membrane of Ot and It. Scale bars 1 pm 
(b,e) and 5 p  (h). c,f,i. High magnification of muscle fiber development. High mitochondrial 
content. Scale bars 0.5 pm (c) and 1 pm for (f,l).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Stage 28 stage 30

Figure 111-3. Late phase differentiation and organization, a. Three layers of different muscle fiber 
types evident, two SMR layers surrounding a CMP layer, b. CMP fibers characterized by one 
large mitochondrion surrounded by high number of myofilaments, c. Appearance of blood 
vessels (bb). d. SMR layer defined by high mitochondrial content, e. Innervation of mantle, 
evidenced by stellate ganglion (sg). All scale bars 5 pm.
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Figure lli-4.a-e. Stellate ganglia (Sg) axonal profiles (in boxes) are the most conspicuous neural 
structures in the developing mantle. a,b. Stages 24 and 25 stellate ganglia surrounded by fibrillar 
and granular glial cells (fib.gl and gr.gl.). Axons are small in diameter, c. Stage 25, evidence of 
larger axons (*). d,e. Late stage embryos stellate ganglia tightly associated with differentiated 
muscle cells. All scale bars are 1 pm.
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CHAPTER IV

EMERGENCE OF RESPIRATORY AND LOCOMOTORY FUNCTIONAL 
ABILITY JN EMBRYONIC LOLIGINID SQUIDS

Introduction

Squids do not hatch out as miniature replicas of their adult counterparts. 

They do not experience a radical metamorphosis that involves shedding larval 

structures and constructing new ones. However, they still have to undergo 

several life history transitions as they develop from eggs to highly mobile adults. 

By hatching squids have all of their essential structures and morphologically 

resemble the adults, (Boletzky, 1974; Naef, 1928; Sweeney et al., 1992) 

however, newly hatched squids are still undergoing many dramatic changes in 

function (Thompson and Kier, 2001b; Thompson and Kier, 2002) in order to 

accommodate rapid growth that maybe related to changes in their immediate 

Reynolds number environment (Thompson and Kier, 2001b; Thompson and Kier, 

2002).

The significant functional changes that occur in the post-hatching period 

may be correlated with the morphological and physiological changes that take 

place during the pre-hatching period of development. The acquisition of 

functional capabilities requires the extensive development of both muscular and
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nervous systems (Chen et al., 1996; Gilly et al., 1991; Preuss and Gilly, 2000; 

Preuss et al .,  1997) ,  p rocesses  that  begin in the

early embryonic period and continue through hatching and into the paralarval 

periods.

Naef, (Naef, 1928) noted that the mantles of embryonic squids acquire 

contractile ability early in ontogeny. The mantle initially contracts sporadically and 

during subsequent stages exhibits coordinated, rhythmic movements suggesting 

a ventilatory/respiratory function (Naef, 1928), Martinez pers.obs). Additionally, a 

few stages prior to hatching (Arnold stage 27), embryos can contract the mantle 

with enough force to create locomotory-like movements both inside the chorion 

and when manually hatched. Though these movements are readily observable 

and other cephalopod embryologists have referred to them in passing (Arnold, 

1965; Fields, 1965; Naef, 1928), there is no body of work that has attempted to 

quantify and verify that these early movements are indeed respiration and 

locomotion and relevant studies only cover the post hatching period and beyond 

(Bartol, 2001a; Bartol, 2001b; Gilly et al., 1991; Preuss et al., 1997; Thompson 

and Kier, 2001b; Thompson and Kier, 2002).

The Mantle as a “Muscular-Hvdrostat”

Many invertebrates including cephalopods possess hydrostatic skeletons 

to provide the structural support necessary for locomotion and respiration. 

Hydrostatic skeletons are generally characterized by having a constant volume
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and movements are a result of muscle contractions shuttling the fluid in one 

dimension and generating a change in one or both of the other two dimensions 

(Kier, 1988b; Kier, 1992; Wainwright, 1982). Hydrostatic skeletons are 

commonly composed of muscles arranged in two-dimensional sheets or complex 

three-dimensional arrays surrounding fluid filled spaces (Kier, 1988b; Kier, 1992; 

Wainwright, 1982). Structures composed largely of muscle and few, if any, fluid 

filled cavities such as the arms of cephalopods are called muscular hydrostats 

because the muscles themselves serve as the incompressible fluid (Kier, 1988b; 

Kier, 1992; Wainwright, 1982). The squid mantle is an example of a muscular 

hydrostat. Respiration and locomotory movements are produced by the mantle 

by the antagonistic action of the radial and circular muscles against the inner and 

outer collegenous tunics and the intramuscular connective fiber networks (Bone 

et al., 1981; Gosline and Shadwick, 1983a; Gosline et al., 1983; Kier, 1988b; 

Ward and Wainwright, 1972; Wells, 1988).

Dual Functions of the Mantle

Respiratory and locomotory movements in adult decapods are easily 

distinguishable from each other not only qualitatively but also physiologically and 

mechanically (Bartol, 2001a; Bartol, 2001b; Bone et al., 1981; Gosline et al., 

1983; Hochachka et al., 1975; MacGillivray et al., 1999; Mommsen et a I., 1981). 

Respiration and locomotion contractions are similar because they consist of three 

distinct phases, an inhalant phase, an expulsion phase and a refilling phase (Fig.

IV-1). During respiration, the mantle expands and as a result of negative
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pressure, water gets sucked into the mantle cavity where it is shuttled back 

towards the gills. Water is then pushed out through the funnel by the contraction 

of the mantle (Gosline et al., 1983; Kier, 1988b; Ward and Wainwright, 1972; 

Wells, 1988; Wells and Wells, 1982). During locomotion, the inhalant and 

exhalant phases are more pronounced. The expansion of the mantle often is a 

hyperinflation (a bigger percent change from resting mantle diameter) and the 

exhalant phase can generate enough force to produce a jet as the water is 

expelled through the funnel (Gosline et al., 1983; Young, 1938).

Respiration and locomotion movements generated by the mantle may be 

inherently incompatible with each other (Wells, 1988). The rapid inhalation and 

expulsion of water into and out of the mantle cavity does not allow enough time 

for oxygen to be extracted by the gills, particularly during rapid jetting (Wells, 

1988). However, the mantle is able to perform rapid jetting and rhythmic 

respiration because of the arrangement of the circular and radial muscles, 

different muscle fiber types (SMR or CMP) (Bone et al., 1981; Mommsen et al., 

1981; Shadwick, 1994), the presence of connective tissue fiber networks within 

the musculature and two stiff collagenous inner and outer tunics (Gosline and 

Shadwick, 1983a)}(Bartol, 2001a; MacGillivray et al., 1999; Ward and 

Wainwright, 1972).

The mantle can thus function in a dual capacity by using each of these 

structural components in different combinations. For example, respiratory 

contractions are produced by the contraction of the circular or radial muscles 

(Gosline et al., 1983) or collar flaps, however not all of the circular muscles
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contribute to the contraction, only the superficial mitochondrial rich muscle fibers 

may be used (Bartol, 2001a). Moreover, respiratory movements only occur in the 

anterior portion of the mantle (in the area of the gills) (Packard and Trueman, 

1974). In contrast, jetting movements are also generated by the contraction of 

circular muscles of the central zone (Bartol, 2001a) and the whole mantle is used 

not just the anterior region (Bone et al., 1981; Mommsen et al., 1981).

In squids, the ability to function must be present at hatching. Therefore, 

functional capability must be established in the pre-hatching period. Functional 

capability then, like morphology, must be considered as a process with an 

ontogeny. The squid mantle must develop the functional capability for 

locomotion and respiration and the objective of this study was to identify when 

functional ability began to emerge and to describe its ontogeny into two different 

functions, respiration and locomotion.

To determine the emergence of mantle functional capability in pre

hatching teuthoid cephalopods I used a combination of modeling and kinematic 

methods. I examined mantle contraction frequencies, and mantle contraction 

duration to quantify and distinguish the functional transitions from sporadic 

movements to coordinated, rhythmic respiratory-like contractions to more 

powerful locomotory-like contractions.
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Material and Methods

Experimental Animals

Egg masses of Loligo opalescens were collected by SCUBA in Puget 

Sound near Old Dash Point, Seattle WA (summers 2002 and 2003) and in Coos 

Bay, OR (summer 2003). Egg masses were transferred to running seawater 

tables at the Friday Harbor Laboratories, Friday Harbor, WA and kept at ambient 

temperatures of approximately 13°C. Embryos in the egg cases collected in 

Puget Sound in 2002 were at different developmental stages ranging from 

epiboly (Arnold stage 16) to Arnold Stage 25. Those collected in Puget Sound in 

2003 were at Arnold stages 22-25 and those collected from Coos Bay in 2003 

were at Arnold stages 27-30. All embryos were kept in the running seawater 

tables until hatching (1-3weeks depending on batch) after which they were 

returned to the ocean.

High Speed Video (HSV)

HSV capture: Individual embryos at Arnold Stages 23-30 were chosen 

based on the condition of the animal. Only the embryos in the best condition 

were chosen at which point the chorion was manually removed (artificial 

hatching). Animals were placed in watch glasses filled with water from the sea 

tables and observed using a Nikon SMZ1500 dissecting microscope. For studies 

in 2003 individual animals were placed in chambers made from glass slides and 

coverslips and sealed with vacuum grease to keep the animal from moving away
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from the field of view, and observed under a Nikon SMZ1500 dissecting 

microscope.

Animals were filmed with either a Red Lake Motion Meter or with a Red 

Lake Motion Scope high-speed video camera mounted on the dissecting 

microscopes. All animals were filmed at 500 frames/second with playback at 30 

frames/second. Each recording was two seconds (2000 ms) in length. On 

average 10, two second film clips (of mantle contractions) per animal were 

recorded.

Digitizing: Contractions were recorded on mini DV cassettes using either 

a JVC GR-DVL digital camera or a Sony mini DV VCR. Film clips were imported 

and edited using Apple iMovie software. Once clips were edited they were 

exported as individual QuickTime movies and then transformed into image stacks 

of TIFF files. (Every frame of the QuickTime movies is one TIFF file). Only the 

pertinent TIFF files (frames)-inhalant, exhalant and refilling phases- were saved 

and analyzed

Measurements From HSV Images: Image files were analyzed using 

Image J v.3 software (NIH). Measurements of mantle length, mantle width (mid 

mantle width and mantle aperture) and internal yolk sac width (Fig IV-1) were 

taken at the three phases of a contraction cycle, inhalation, exhalation, and 

refilling. Length and frequency of contractions was calculated from the frame 

counter on the HSV camera.
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Model: A mathematical model for mantle function was developed using 

mantle cavity volume as a proxy for function. Loliginid embryos are small 

(approximately 1-2mm ML) and measuring volumes of water in the mantle cavity 

was not practical for the purposes of this study, instead, volumes were calculated 

using the mathematical model. Values collected from the HSV images were 

inserted into the model and used to generate volume estimates.

I made the following assumptions to model mantle function at different 

embryonic stages:

1. Mantle shape remains constant as the animal grows (although 

morphologically this does change)

2. The mantle is essentially an ellipsoid (actually a prolate spheroid) cut in half 

with a cylinder in the middle (internal yolk sac).

3. The mantle of embryonic squids functions as a muscular hydrostat as in the 

adults.

Generalizing the shape of the mantle into two geometric components, a half 

of an ellipsoid and a cylinder, allowed for the development of a model using the 

equations to calculate volume for half of an ellipsoid (prolate spheroid) and a 

cylinder (Fig IV-2).

Mantle cavity volume (Mv) was calculated using the following equations:

Mv=Vm-Vy
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Volume of prolate spheroid (Vm =mantle)= 2l3nah2 

Volume of cylinder (Vy =internal yolk sac) = jt^a

Where:

a =mantle length (ML) 

b =mantle diameter (MD) 

r internal yolk sac diameter (YS)

Therefore:

(2/33tab2-2/3jta(b-c)2)-3tr2a

(Mv= 2/3jt(ML)(MD/2)2-ji(YS/2)2(ML))

I was looking at changes in mantle cavity volumes (AV) between the different 

phases of a contraction cycle (i.e during a relaxed state vs. a contracted state) 

therefore changes in mantle cavity volumes (AV) were calculated as:

AV= [(Mvr-Myr)H(Mvc-Myc)]

Or

AV=[(2/3rt(ML)(MD/2)2)R-(3x(YS/2)2(ML))R3-[(2/3jt(ML)(MD/2)2)c-(jt(YS/2)2(ML))c] 

(Fig IV-2)
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The model was used to calculate AV/AT to differentiate between 

respiratory and locomotory contractions. Measurements from the HSV data were 

inserted into the mathematical model to generate estimates of mantle cavity 

volume output during mantle contractions. I predicted two distinct volume 

outputs one for locomotory-like contractions and one for respiratory-like 

contractions and these volumes would increase with stage. Because the model 

was created as a way to quantify differences between observed contractions in 

embryos, the data were sorted based on the following definitions of what 

constituted a respiratory-like or locomotory-like contraction. Locomotory-like 

contractions were defined as any contraction that caused the embryo to cover a 

distance (i.e. from one side of the watch glass to another). Respiratory-like 

contractions were defined as any contraction that did not cause the embryo to 

move from its starting position. The model was run using Microsoft Excel X for 

Mac.

Mantle Kinematics: To assess mantle function at different developmental 

stages prior to hatching, I examined the changes in mantle kinematics as the 

embryos acquired contractile capability. Mantle kinematics were examined 

during respiratory-like and locomotory-like contractions of pre-hatching L. 

opalescens . Measurements of mantle length (ML), mantle diameter (MD), and 

mid-mantle diameter (MMD) (Fig IV-1) were made from digitized HSV images 

using imageJ v.3 (NIH) image analysis software. Mantle length was measured 

from the junction of the fins to the edge of the mantle. Mid-mantle diameter
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(approximately!/3 of the ML) was measured because observations or “respiring” 

embryos indicated that this portion of the mantle was also involved in the 

contraction.

Changes in ML, MD and MMD during respiratory-like or locomotory-like 

contractions are expressed as the percent change from the corresponding 

measurements at rest (defined as the period before a contraction begins). On 

average 10 contractions per squid were analyzed. Mantle contraction durations 

were determined from the HSV frame counter and mantle contraction 

frequencies were calculated by counting the number of contractions per second 

per squid at each of the different stages (Arnold stages 25-30).

Statistics: Mantle kinematics data were analyzed with one-way AN OVA 

with a post-hoc Tukey’s test and linear regression using SYSTAT statistical 

software.

Results

Part I: Model

The data generated by the model showed that indeed respiration-like and 

locomotory-like contractions are distinct from each other and this distinction 

occurs prior to hatching. Respiratory-like movements were discernable at stage 

25 but were more frequent by stage 26 while locomotory-like movements 

consistently emerged by stage 27. Respiratory contraction volumes increased 

with stage. At stage 26 volume output was 0.2 p,l/ second (change in volume/
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change in time) and by stage 29/30 the volume output ranged from 1.7ptl/sec -  

2.3jil/sec (Fig. lV-3). The volume outputs for locomotory contractions were 

greater than those for respiratory contractions from 1.5pJ/sec in stage 27 

embryos to 2.1-2.4 pi/sec in stage 30 embryos.

These data indicate that respiration and locomotion are distinguishable 

prior to hatching and that volume output also increases with stage. Further, 

although respiratory volume outputs are lower than locomotory volumes, they 

increase approximately 2 times more per stage than locomotion outputs. Once 

an embryo has acquired the ability to locomote (stage 27) the volume output is 

greater than a respiratory-like contraction.

Part II - Mantle kinematics

Mantle Kinematics During Respiratorv-Like Contractions: Published 

values for changes in mantle length in adult squids during jetting or respiration 

are minimal (Gosline and Shadwick, 1983a; Gosline and Shadwick, 1983b; 

Gosline et al., 1983; Ward, 1972); in contrast my results indicate that mantle 

length is not constant during respiration contractions and does change between 

stages 26 and 30 (hatching) (Table IV-1). Though AN OVA results indicate that 

there is no significant percent change in ML length during respiration at any of 

the stages analyzed, with a P-value of 0.099, it still suggests that there is a 

noticeable difference in ML changes over the course of development. (When the 

AN OVA was run only on data from stages 26-29, the P-value = 0.022). More
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importantly however, is the range of the percent change over development (Fig

IV-4). In the earlier stages, when the average ML at rest was a 1mm, the range 

of percent change in ML was -8%-35% and by hatching the range of percent 

change is -2%-10% (although there is an outlier point at 20%). Thus, as 

development progresses the extent of percent change in ML during respiration 

decreased and approached 0% (no change) by hatching.

Percent changes in mantle diameter during respiration were significantly 

different (P=0.017) from stages 26-30 (Table IV-1). As the embryos developed, 

the range of mantle diameter change (Fig IV-3) was 3% -15% and by hatching 

the range of mantle diameter change had increased to 3-51% indicating that 

mantle width changes are stage dependant. Younger embryos (stages 26-27) 

can only expand or contract their mantles in a limited manner because they do 

not have the full complement of differentiated muscles thus younger squids can 

only experience small mantle width changes. Older embryos (stages 28-30) that 

possess more muscle fibers that are well differentiated are able to expand and 

contract the mantle width noticeably more.

Mid-mantle diameter did not have significantly different percent changes at 

any stage. The range of percent change (10%-35%) (Fig IV-4) remained 

relatively constant for all stages examined.

Mantle Kinematics During Locomotorv-Like Contractions: During

locomotory contractions, which can be distinguished by stage 27, there were no 

statistically significant changes in mantle length (P=0.117), mantle diameter
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(P=0.757) or mid-mantle diameter (P=0.485) at any stage. However, when the 

AN OVA was run between stages 27 and 29 the percent change of ML was 

significant (P=0.024) between the two stages, although none of the other 

dimensions showed significant changes. Regression results do show trends that 

show that the progression of function acquisition is similar to what occurs during 

respiration. For example, mantle length percent changes tended to decrease 

and approach zero with stage (Fig IV-5). Similarly, the range of percent changes 

of mantle diameter and mid mantle diameter increased with each successive 

stage. Unlike respiration, mantle kinematic changes during locomotion are not 

as pronounced. This indicates mantle kinematics become more stable with the 

onset of locomotion and must become so if the animal is to generate a powerful 

enough jet to move.

The maximum (hyperinflation) and minimum (contraction) mantle 

diameters that could be reached by a squid embryo during any type contraction 

were also measured (Fig IV-6 , Fig IV-7). In the younger embryos (Stage 26) the 

respiratory-like maximum mantle diameter expansion (1.055 mm) was smaller 

than in the older stage embryos (Stage 30, 2.397 mm). Similar patterns of 

mantle diameter change were recorded in locomotory-like movements for 

maximum mantle diameter expansion (Stage 27 = 1.448 mm, Stage 30 = 2.143 

mm) and contraction (Stage 27 = 0.947 mm, Stage 30 = 1.246 mm). These 

results complement those reported by Thompson (2001a, 2001b, 2002) for 

mantle diameter changes in jetting post-hatching stages of another loliginid 

squid, Sepioteuthis lessoniana. In smaller and younger S. lessoniana juveniles,
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the mantle diameter changes were higher than in larger older juveniles. Taken 

together, these data illustrate that the ontogenetic trajectory of mantle kinematics 

is composed of a gradual increase in mantle diameter changes with a peak 

attained at hatching and then a decrease during the paralarval period.

The durations of contractions (locomotory-like or respiratory-like) were 

also calculated (Fig. IV-8). Times were gathered from the start of the inhalant 

phase of the cycle to the refilling phase. At stage 26, an average respiration 

contraction took 650 ms to complete. By hatching an average full cycle 

respiratory contraction took 525 ms to complete. Locomotory-like contraction 

cycles remain constant, taking on average between 390- 520 ms to complete at 

any stage beginning at stage 27. A full respiratory-like contraction initially took 

longer to complete than a locomotory one, though by hatching both contraction 

types were of equal length.

Average contraction frequencies for both locomotion and respiration 

increased with stage (Fig. IV-9). The average respiration frequency at stage 26 

was 0.6 contractions per second and by hatching an average rate had increased 

to 1.06 contractions per second. Locomotion contractions were not discernable 

until stage 27 and the average contraction rate was 0.6 contractions per second 

and by 1day post hatching the rate increased to 1.5 locomotory contractions per 

second.
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Discussion

Mantle function in embryonic L. opalescens is a gradual process that 

emerges and differentiates into two distinct types of movement by hatching. The 

present study shows that mantle function during the embryonic period can be 

separated into respiration-like and locomotion-like contractions both kinematically 

and through modeling. Based on these data, I have determined that the onset of 

respiration by means of mantle contraction begins at stage 26 although at stage 

25 mantle contractions are evident, they are infrequent and sporadic and 

therefore difficult to measure. The onset of locomotion-type contractions of the 

mantle is stage 27.

Kinematically, the mantle changes with developmental stage in the pre

hatching period of development in four ways, amplitude, frequency, duration of 

contractions, as well as the percent change of two dimensions, mantle length and 

mantle diameter. All of these kinematic parameters were different during 

respiratory-like and locomotory-like contractions though the extent of the 

difference was variable.

That there were measurable changes in mantle kinematics between 

respiration and locomotion in pre-hatching squids suggests that mantle function 

is indeed a differentiation process that begins before hatching (stage 26 for 

respiration and stage 27 for locomotion) and continues through the post

hatching and juvenile periods of development (Thompson and Kier, 2001a; 

Thompson and Kier, 2001b; Thompson and Kier, 2002). Moreover, this 

differentiation of function affects how well pre-hatching embryos use the mantle
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as a muscular hydrostatic structure. That the mantle can perform its dual 

functions prior to hatching does not also mean that it is functioning as an 

proficient hydrostatic system, instead the ability to function as a muscular 

hydrostat is also maturing during the pre-hatching stages as indicated by the 

changes observed in ML and MD during respiration and locomotion.

The ability of the mantle to function as a hydrostat is a property of the 

mantle that is possible because of the dense, three dimensional arrangement of 

the circular and radial muscle fibers as well as the close interaction of the 

muscles with the intramuscular collagenous fiber systems and the two stiff 

collagenous tunics (Bone et al., 1995b; Bone et al., 1981; Gosline and Shadwick, 

1983a; Gosline and Shadwick, 1983b; Gosline et al., 1983; MacGillivray et al., 

1999; Ward, 1972; Ward and Wainwright, 1972). My results indicate that prior to 

hatching this dynamic relationship between muscle fibers, IM systems and the 

tunics is not present in its entirety. My results complement those of Thompson 

(Thompson and Kier, 2001a; Thompson and Kier, 2001b; Thompson and Kier, 

2002) whose work on the ontogenetic changes of the connective tissue in the 

mantle of hatchling and juvenile Sepioteuthis lessoniana, another member of the 

loliginid family of squids. Thompson (2001a, 2001b, 2002) have found that at 

hatching S.lessoniana paralarvae do not possess the full complement of IM 

fibers and that as the paralarvae grow, there is an increase in number of these 

IM fibers and their arrangement becomes more complex (Thompson and Kier, 

2001a; Thompson and Kier, 2001b; Thompson and Kier, 2002). The changes in 

the IM fiber systems also significantly affect mantle kinematics during jet
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propulsion and juvenile squid locomotion begins to reflect that of mature adults 

indicating a maturing muscular hydrostatic function ((Thompson and Kier, 2001a; 

Thompson and Kier, 2001b; Thompson and Kier, 2002).

The lack of mature IM systems at hatching, would explain several of my 

results. First, the percent changes observed in mantle length in both respiratory- 

like and locomotory-like contractions, but particularly in respiratory-like 

contractions, decrease with age. The range of ML changes at stage 26 to stage 

30 decreases by nearly half such that by hatching ML changes are minimal and 

approaches zero percent. This is consistent with the numbers found in the 

literature for adult squids (Table IV-1). Past studies have shown that in order for 

the mantle to function properly as a muscular hydrostat, mantle length remains 

more or less constant (-5%-0%) (Gosline and Shadwick, 1983a; Kier, 1988a; 

Packard and Trueman, 1974; Ward, 1972). A constant mantle length allows for 

changes in two other dimensions of the mantle, mantle thickness and mantle 

diameter. If mantle length also changes, the mantle cannot become rigid enough 

to support a powerful jet through the funnel. My results indicate that this is what 

may be occurring in pre-hatching squids particularly during respiratory-like 

contractions. Though my results were not statistically significant for ML changes 

during locomotory-like contractions, there was a trend that was similar to what 

was found for the respiratory-like contractions. This in itself is worth noting, 

because it indicates a maturing dynamic between muscle and connective tissue 

systems yielding a more mature hydrostat and thus the ability to jet propulse.
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With the ability to become stiffer, comes an in increase in locomotion-type 

contractions (starting at stage 27).

Examination of mantle kinematics in loliginid embryos indicated that 

mantle functional ability is a differentiation process much like morphological 

differentiation. Furthermore, respiration type and locomotory type movements 

are not only generated early in development, but are also distinguishable from 

each other both kinematically and through modeling prior to hatching. Based on 

kinematic data, pre-hatching squid mantles are not functioning well as muscular 

hydrostatic systems however, this also changes as the embryos develop and 

differentiate morphologically.
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Table IV-1. Published values of maximum mantle diameter changes compared 
to values from the current study.

Maximum Mantle Diameter Changes (% Change) In L.opalescens
Stage Respiration Locomotion
26 12.90%
27 17.20% 32.80%
28 36.73%
29 18.30% 34.30%
(Hatch) 30 35.00% 36.90%
Maximum Mantle Circumference Changes (%Change) Other Loliginids
Stage L.opalescens L.vulgaris S.lessoniana
30(Hatch) 4Q%-42%* 45%** 45%***
Juvenile 33%***
Adult 30%* 30%**
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Figure IV-1. Measurements for kinematic and volume results; n 
length, mmd = mid-mantle diameter, md = mantle diameter, 
respiratory-like contractions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I = mantle 
Phases of



71

Y
I Volume of 1/2 ellipsoid = Volume of mantle cavity

Figure IV-2. Generalization of mantle and internal yolk sac shape for 
mathematical model.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK 

Conclusions

All embryos must go through several functional transitions from seemingly 

random twitching movements to executing coordinated movements such as 

respiration and locomotion. These transitions indicate that function, like form, 

has a definitive ontogeny and should thus be considered as another “structure” 

that develops and grows over time. As with the ontogeny of form 

(morphogenesis), the development of function in embryos establishes the 

foundation for functional ability in juveniles and adults.

Cephalopods do not hatch out as miniature replicas of the adults 

functionally or morphologically. Although they are more similar to their adult 

forms than the larvae of indirect developers (e.g. gastropods and bivalves), they 

still face an important constraint: direct developing embryos must behave as if 

they were small organisms. Embryos are living entities and must function as 

such for survival, while at the same time building the structures and 

accompanying functions that will carry them into adulthood. To do so requires 

the embryos to operate across a range of environments, each with their own 

physical and adaptive demands.

Hatchling squids encounter a number of life cycle changes as they 

develop into adults, including growing several orders of magnitude, developing
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different modes of both locomotion and prey capture (Thompson and Kier, 

2001b; Thompson and Kier, 2002; Vecchione and Shea, 2002) (Chen et al., 

1996; Villanueva et al., 1997). Unlike other molluscs with indirect development, 

squids do not undergo a catastrophic metamorphosis where they shed larval 

structures and build the adult structures de novo. Instead, the structures they 

use as adults are the same ones that they build during embryogenesis. Thus, 

these structures need to be operational at hatching and fill the same roles as the 

adult structures. Because of this, it is difficult to ascertain whether the functional 

capabilities demonstrated early in the pre-hatching period are of immediate use 

to the embryo or simply a product of the process of preparing for adulthood. For 

instance, the mantle of embryonic squids can contract relatively early (stage 25). 

However, whether these contractions serve a specific purpose for the embryo, or 

rather, are a result of developing neuromuscular connections required for their 

eventual post-hatching roles is difficult to determine.

Regardless of the ultimate adaptive purpose of early embryonic 

movements, functional ability must be established during the pre-hatching 

stages. The importance of the series of studies described in this dissertation is 

the detailed examination of the ontogeny both of the structures responsible for 

locomotion, and of the functional abilities that underlie them. Moreover, doing so 

in a direct-developing organism means that the embryonic stages examined 

represent the first steps in the development of the final adult structures and 

functions, not of a merely larval version. The integrative approach has revealed 

some interesting developmental correlations, such as the relatively early
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emergence of both muscle differentiation and contractile ability in the mantle 

compared to the fins and funnel.

There are also some surprising disjunctions; for example, structures 

appear to be present at the gross morphological level well before they show the 

tissue differentiation (muscle fibers) that is the direct basis of their functional 

ability. This discrepancy between gross morphology and ultrastructure should 

serve as reminder that development is much more complex than what can be 

conveyed in a morphologically-based staging series, no matter how detailed.

Future Directions

The work presented here is an essential descriptive basis for 

understanding the emergence of functional ability and its structural 

underpinnings. This study does not, however, directly address function per se, 

nor can the observed correlations test specific hypotheses about the interrelation 

of emerging form and emerging function. However, several topics requiring 

further investigation have stemmed from this work. First, evidence from other 

organisms suggests that morphological development and functional development 

are interdependent: interfering with either process disrupts the other (Sival, 1993; 

Sival et al., 1992; Wu et al., 2001). For example, when the early embryonic 

movements of chicks were disturbed, proper formation and subsequent function 

of some skeletal structures were significantly affected (Wu et al., 2001). Is the 

same true in squid embryos? Moreover, is the early ability to contract important 

for the proper development and differentiation of the mantle? Perhaps these
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contractions are of significant use to the embryo itself for other purposes specific 

to the embryonic period such as aiding in the hatching process or perhaps in 

forming the neuromuscular connections essential for locomotion. A possible 

experiment would involve the pharmaceutical or mechanical inhibition of early 

mantle movements for varying lengths of time in an ontogenetic series of 

embryos and assessing any morphological and/or functional consequences. The 

detailed descriptive data provided here for squids are critical to the design and 

interpretation of such experiments: it is necessary to know the normal course of 

events in order to measure disruption.

This study did not directly address the issue of growth, which is of central 

importance to understanding the generation of structures in the embryo, and their 

transformation to adult morphologies capable of carrying out adult functions. 

Data from gross morphological and ultrastructural studies presented in chapters 

2 and 3 suggest that the mechanism by which these structures are growing is a 

combination of proliferation of undifferentiated myoblasts and hyperplastic growth 

(although hypertrophic growth could not be ruled out). Therefore, a more detailed 

and quantitative ultrastructural examination of the mantle, funnel, and fins is 

essential to finally resolve this issue. In particular, more comprehensive 

measurements of the muscle fibers themselves as well as myofibril content must 

be gathered. Additionally, some of the crucial remaining questions include: Does 

the mode of growth differ in individual structures at any point during development 

once the differentiation program has been initiated? (e.g. Does the mantle grow 

only by hyperplasia while the funnel grows by hypertrophy?) Is muscle growth,
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like muscle differentiation, regional: are only certain areas of the mantle, funnel, 

and fins growing? Finally, if growth in these structures is in fact a result of both 

hyperplasia and hypertrophy just at different rates what are they? Are the rates 

comparable in each structure? Understanding patterns and mechanisms of 

growth in embryos will ultimately allow comparison with the patterns and 

mechanisms already documented in juveniles (Martinez, 2001; Martinez and 

Moltschaniwskyj, 1999; Peel and Moltschaniwskyj, 1997). It will be interesting to 

see whether such patterns and mechanisms are essentially, continuous 

throughout the life cycle, or whether something qualitatively different is occurring 

in the earliest stages (in spite of being direct developers, whose ontogeny is a 

relatively continuous process from embryo to adult).

I focused on the development of musculature in locomotory structures and 

especially the mantle. An obvious and important complement to this work would 

be a detailed investigation of the interplay between the developing nervous 

system, developing connective tissue fiber networks with the developing 

musculature during the emergence of functional capabilities to determine exactly 

what roles each play during a contraction cycle. Understanding the relationships 

between each of these systems would contribute a better understanding of the 

kinematic changes reported in this study. For example, does contraction 

frequency increase because of the presence of more muscle or because of more 

nerves or both? Can the emergence of two distinct contraction types be 

definitively tied to the emergence of the different muscle fiber types or to the 

development of one of the connective tissue fiber systems?
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This dissertation considered the emergence of functional capability in 

squid embryos as a developmental process similar to morphological 

development. By examining the development and differentiation of mantle 

musculature and its emerging functional abilities, my work provides a basis for 

understanding how these organisms establish the foundation for specific 

functions such as respiration and locomotion.
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APPENDIX A

FIXATION AND STAINING PROTOCOLS FOR PHALLOIDIN AND DAPI

A. P r epar atio n  of  4%  p ar afo r m ald eh yd e  s o lu t io n :
1. 4 grams of paraformaldehyde(powder).
2. 100mls DW.
3. Mix in glass beaker on low heat with stir bar until powder goes into 

solution (can take up to 8 hours).

B. P re p a ra t io n  o f  p h a llo id in  s o lu t io n s :
1. 5x-Stock solution of phosphate buffered saline(pH7.4):

a. 40.0 grams NaCI
b. 1.0 grams KOI
c. 7.2 grams Na2HP04
d. 1.2 grams kh2po4
e. 800 mis distilled deionized water(ddw)
f. Dissolve salts in 800 mis ddw.
g. Add more ddw until total vol. is 1000 mis.

2. 1x-pbs-working solution (pH7.4): dilute 1part 5xpbs with 4 parts ddw.
3. 0.1m phosphate buffered saline(pbs):

a. 10mls 1x pbs
b. 90mls ddw

4. 0.2M pbs-triton-x(pbt):
a. 20mls triton-x
b. 100mls 1x pbs

5. Phalloidin-in dark:
a. 10ml phalloidin in microfuge tube.
b. Let evaporate for 30 minutes.
c. Redissolve in 200ml of pbt.
d. Make three tubes of 10ml phalloidin/200ml pbt.

C. P re p a ra t io n  o f  dapi (dapi is s o lu b le  in dw):
1. Stock solution of dapi (store in dark):

a. 1mg dapi/1ml dw.
b. Dilute 100x for working solution.
c. 10ml/90mls dw.

2. Staining protocol-phalloidin:
a. Fix tissue in 4%paraformaldehyde 2 hrs.
b. Wash 3 times with 0.1 M pbs-20 minutes each rinse.
c. Permeabilize in pb t-1 hr.
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3. Stain with phalloidin in dark-1 hr.

4. Wash 3 times with 0.1mpbs-15 minutes each rinse.
a. Mount tissue on glass slides with gelmount;coverslip.
b. Slides will not fade if kept in dark and in freezer for 2 weeks.

5. Staining protocol-dapi:
a. After staining with phalloidin rinse tissue 2times with dw.
b. Add dapi-20minutes-1 hr. depending on tissue size.
c. Mount tissue as above.
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APPENDIX B

FIXATION PROTOCOLS FOR THICK (1.0 pM) AND THIN (0.1 pM) SECTIONS

A. P r epar atio n  o f a  3%  g lu te r a ld e h y d e  (GTA) s o lu t io n :
1. Stock solution of GTA is 25% in glass vials.
2. 1.5 mis of the 25% stock solution, bring to 6.1 mis with seawater (SW). 

This yields a 6% GTA solution.
3. Mix 1:1 with 0.2M cacodylate buffer, pH7.2
4. Add 2-3 drops of 30% H2O2 per ml of concentrated GTA used.

B. B uffer  S o lu t io n :
1. Add 4.28 grams of sodium cacodylate to 100ml DW or 2.14 grams 

cacodylate/50 ml of water.
2. Above yields a 0.2M buffer solution; it will be diluted before use to 0.1 M.
3. pH with concentrated HCL to pH7.2.

C. T is s u e  p r e p a ra t io n :
1. Pieces of tissue to be fixed are placed in a puddle of fixative on a wax 

sheet. Cut tissue into small pieces -approximately 1-2mm diameter.
2. Place pieces of tissue into glass vials with 3% GTA and fix for 3 hours at 

room temp.

D. R in s e :
1. Rinse 3 times every fifteen minutes with cacodylate buffer solution.
2. Dilute stock buffer by half before use so that rinse buffer will be 0.1M 

concentration.

E. P o s tf ix a t io n :
1. Osmium tetroxide solution:

a. Take stock solution of 4% OSO4 and dilute one to one with DW to 
make a 2% solution.

b. Mix 2% O s04 one to one with 0.2M sodium cacodylate buffer (pH 7.2) 
to get 1% Os0 4 solution.

c. After final rinse of fixative, replace rinse buffer with approximately 2mls 
of 1% Os0 4 and fix at room temperature for 2 hrs.

2. Rinse as described above for 1 hour as 4 fifteen minute rinses.
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F. D eh yd r atio n

1. Alcohol-ethanol only (ETOH).
a. 50% ETOH-10 minutes.
b. 70% ETOH-10 minutes.
c. 90% ETOH-10 minutes.
d. 100% Acetone- one change, 10 minutes.

2. Acetone transition solvent.
a. 100% acetone replaces the 100% Acetone from above-10 minutes.
b. A second change of 100% acetone as above.
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APPENDIX C

EMBED-812 EMBEDDING PROTOCOL FOR THICK AND THIN SECTIONS

A. R esin r ec ipe  (from  EMS):
(If mixing a small quantity, mix everything together including accelerant and
keep frozen maximum of two weeks.)
1. Mix A: 5mls Embed-812 and 8mls DDSA
2. Mix B: 8mls Embed-812 and 7mls NMA

Pour both A and B into a glass jar and mix vigorously. Make sure you get 
all mixture from vials because about a ml will be left behind.

3. Add Q.5mls of DMP-30(accelerant) to mixture-mixture will darken to an 
almost orange color.

4. Mix vigorously.
5. Place jar in vacuum for about 30 minute.
6. Suck mixture into a 30 ml syringe. Try to limit bubbling.

B. In it ial  in f iltr a t io n :
1. Make a 1:1 dilution of resin with 100% acetone. Stir solution until it is clear 

(yellow but clear).
2. Replace the 100% acetone with resin/acetone mix and place vial with caps 

on a rotator overnight.
3. After overnight rotation, remove cap vial and let acetone evaporate 8 hrs.
4. Remove specimens from vials onto paper towels on aluminum foil.
5. New resin put into gelatin capsules with syringe.
6 . Place specimens into capsules with wood spoons.
7. Fill capsules to almost full.
8 . Place under vacuum for 2 hrs.

C. P o ly m e r iza t io n :
1. New resin; use syringe and place one drop of resin at the end of each 

plastic mold trough.
2. Transfer tissue, one piece per trough with wood spoon. When each trough 

has one piece of tissue in it, use syringe to fill up troughs to the brim with 
resin.

3. Place molds in 60° oven 12-18 hrss. Once hardened blocks can be easily 
removed.

4. Mark blocks to ID them with paper labels.
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APPENDIX D

STAINING PROTOCOLS FOR THICK (1.0 (jM) AND THIN (0.1 pM) SECTIONS

T hic k  s ec tio n  s t a in in g :

A. S to c k  s o lu tio n s  (or  can  use  EMS prem ade  s t a in )
1. 1% Azure II

5 g Azure II in 500 ml Dl water
2. % Methylene Blue in 1% sodium borate 

Mix 5 g sodium borate in 500 ml Dl.
Add 5 g of Methylene Blue.
a. Store stock solution separately in glass flasks.
b. Make working solution:

Mix stains in 1:1 proportion in small beaker.
Store in 10 ml syringe with 0.45um filter on tip.

B. S tain in g  sec tio n s

1. Use working solution (1:1 methylene blue: azure II).
2. Drop stain onto dry slide - enough to cover all sections.
3. Waft through the Bunsen burner flame (roughtly 5x).

a. Will see some smoke & the edges will turn a yellow-green.
b. Don’t let the stain dry on the sections.

4. Pour off excess stain down the drain.
5. Plunge cooling slide into beaker of Dl water & swoosh to get rid of stain.

a. May want to run under Dl at sink.
b. Start stream of water on edge and let it wash over sections.

C. D ry  slide

1. Waft stained & rinsed slide under Bunsen burner flame until dry.

T hin  sectio n  stain in g

A. S olu tio ns

1. Boiled millipore-filtered distilled water:
a. Fill 2 L flask to 1.5 L with Dl water or Ultrapure water with 0.2 pm filter.
b. Boil for 30 min on ringstand or hotplate-gets rid of CO2.
c. Cool.
d. Filter through 0.2pm Nalgene filter.
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2. Uranyl Acetate- 5%
a. 0.5g UAin 10 ml DW:

1. Want a saturated solution.
2. Stir for 15 minutes to get UA crystals into solution.
3. Filter 3x.

a. 1x: our pour from beaker - try not to get crystals onto filter.
1. Decant into second beaker.
2. Rinse excess crystals off filter by filtering 25mls DW.
3. Discard into waste rinse UA container.
4. Get rid of excess crystals in original beaker - dissolve in Dl.
5. Use enough Dl to just dissolve crystals.
6 . Discard into waste UA container.

b. 2x: pour from beaker, decant into second beaker 
1. rinse filter if necessary

c. 3x: pour from beaker, decant into cleaned ground glass
container

3. Lead citrate:
a. 25 ml DW.
b. 0.125 g lead citrate.
c. 1 pellet NaOH.

1. Cover with parafilm and stir gently.
2. Want everything to dissolve but NO AIR IN SOLUTION.
3. Filter 2x as above (or run through (2) 0.2 pm syring tip filters).
4. Store in tall flask on the door of the ‘fridge.

4. NaOH stock solution (0.2 M NaOH):
a. 8 g of NaOH pellets in 100 ml DW.
b. Stir.
c. Store in refrigerator.

5. NaOH working solution (0.02 M NaOH):
a. 10 ml stock NaOH + 90 ml DW.
b. Stored in squirt bottle in refrigerator.

B. STAINING
1. S tain  w ith  U r an yl  A c e t a t e :

a. Place square of parafilm on countertop.
b. Put 5 drops of UA on parafilm & cover w/petri dish to minimize CO2 

exposure.
c. Float 1 grid on each drop of UA - tissue side down.

1. Keep track of which grid is which!
d. Cover with petri dish.
e. Cover with box (UA is light sensitive).
f. Heat area with lamp (may help improve stain penetration).
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g. Stain for 20-30 min.(depends on tissue).
h. Rinse tissue 3x with DW.

1. Dry with Whatman filter paper.

2. S t a in  w ith  L ead  c itr a te :
a. Put 5-6 pellets on a new square of parafilm & cover with petri dish.
b. Put one large “puddle” of lead citrate next to the pellets.
c. Submerge grids in lead citrate - put them on the parafilm w/sections 

facing up.
d. Stain for 5-10 min.
e. Rinse grids with DW.

1. Dry with Whatman paper.
f. Return to grid holder.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX E

DEVELOPING TEM NEGATIVES 
(FROM BRYN MAWR COLLEGE-GARDINER LAB)

A . P r e p a r e  S t o c k  D e v e l o p in g  S o l u t io n s :
1. D19-(good for several months):

a. Use hot tap H 20 - 48°C.
b. Put 3800ml hot H20 in 4L beaker w/stirrer (kept under sink).
c. Put stirrer on - stir until get “tornado”.
d. Slowly empty bag into beaker.
e. Tansfer to jug & wash beaker immediately.
f. Cool to room temperature - OK to have flocculant material on surface.
g. Keep stock (& working) solutions in incubator at 20 °C.

2. Rapid Fix (=Hypo)-(good for several months):
Follow circled recipe on instruction package - makes 3.8L.

3. Prepare HypoClear stock solution-(good for several months):
a. Put 3800ml tap H20 in 4L beaker w/stirrer (kept under sink).
b. Put stirrer on - fast enough to get “tornado”.
c. Slowly empty bag into beaker.
d. Transfer to jug & wash beaker immediately.
e. Let cool to room temperature.

B. P r e p a re  tu b s  w i th  w o r k in g  s o lu t io n s :
Arrange tubs so they don’t drain over the edge - push back 5cm from edge. 
Tub 1: 1300mL stock D19 + 2600mL tap H20.

Must be at 19-20degC
Developer is bad when turns amber-brown.
Roughly 100 negatives or 2 weeks.

Tub 2 - Rinse water (room temp).
Tub 3 - Rapid Fix: full strength (room temp).

Use Hypo Check to test for “goodness”.
Couple of drops into Rapid Fix.

Clear - OK, Cloudy / Precipitate - bad.
Tub 4 - 800mL stock HypoClear + 3200mL H20 (room temp).
Tub 5- Rinse water (room temp).

FROM HERE ON, WORK WITH SAFE LIGHT ON
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C. D e v e lo p  f i lm
1. Put negatives into holders every other slot
2. Developing procedure:

Tub 1 D19 
Tub 2 rinse 
Tub 3 Rapid Fix 
Tub 2 rinse 
Tub 4  HypoClear 
Tub 5 rinse .

a) tap holder against edge to 
remove air bubbles

b) agitate up & down constantly 
throughout procedure

4min 
1min
4 min
1 min
2 min
5 min

3. When all film has been processed:
a. Rinse each holder with Dl water hose.
b. Empty 1 rinse tub.
c. Put 2 capfuls of photoflo.
d. Let fill with water.
e. Dip all negatives 2-3x in photoflo.
f. Let dry completely, in holders on top of water chiller.
g. Put in glycine envelopes for long-term storage.
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APPENDIX F

l i s t  o f  l .pealeii spec im ens use d  f o r  l i g h t  (lm ) and  t ra n s m is s io n  e le c t r o n
m ic r o s c o p y (t e m )
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APPENDIX G

NUMBER AND STAGES OF L.OPALESCENS EMBRYOS MEASURED FOR KINEMATIC AND
MODEL DATA

Contractions Contractions
SQ#STG meas. Locomotion Resp DATE SQ#STG meas. Locomotion Resp

2 25 4 0 0 7.16.03 2 28 26 0 26
3 26 5 0 0 5 28 20 0 20
5 26 5 0 5 8 28 14 8 6
1 26 2 0 2 10 28 12 2 10
3 26 6 0 6 7 28 11 5 6
4 26 2 0 2 8 28 18 1 17
3 27 15 1 14 10 28 13 0 13
7 27 11 4 7 5 28 19 5 14
8 27 5 0 5 7.26.02 3 28 6 2 4
4 27 6 0 6 5 28 8 0 8
6 27 5 0 5 9 28 6 0 6
7 27 10 2 8 7.23.02 10 28 10 0 10
9 27 18 0 18 11 28 4 0 4
6 27 4 0 4 13 28 7 0 7
7 27 8 0 8 16 28 4 1 3
9 27 9 0 9 6.28.03 2 29 8 6 2
3 27 5 0 5 4 29 17 6 11
8 27 4 0 4 6.29.03 1 29 12 5 7
6 27 5 0 5 2 29 13 1 12
8 27 4 0 4 3 29 14 2 12
10 27 3 0 3 6 29 8 3 5
1 27 2 0 2 2 29 4 2 2
2 27 5 0 5 7 29 2 0 2
1 27 12 0 12 7.2 29 6 6 0
5 28 16 0 16 7 29 4 2 2
3 28 19 18 1 7.22.03 1 30 14 8 6
5 28 14 6 8 2 30 14 9 5

7.19.03 2 31 9 2 7
5 31 9 3 6

7.25.02 1 31 9 4 5
6 31 7 4 3
4 31 15 14 1
11 31 24 24 0
6 35 10 4 6

7.17.03 1 35 21 8 13
4 35 15 5 10
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APPENDIX H

LIST OF ABBREVIATIONS

Ap anal papilla
bm basement membrane
bv blood vessel
CMP central mitochondria poor
Ci cilia
CT connective tissue
cyt cytoplasm
Ep epithelium
fib.gl. fibrious glial cell
F fin
Fu funnel
G gills
Gl gladius
gr.gl. granular glial cell
It inner tunic
iys iternal yolk sac
ml manlte length
M mantle
md mantle diameter
mmd mid-mantle diameter
mi mitochondria
mvb multi-vesciculate bodies
mf muscle fibers
n nucleus
Ot outer tunic
ret reticulation
rf radial fiber
Sk skin
sg stelate ganglion
SMR superficial mitochondria

rich
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