
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 2004

Approach to the identification of sex-determining
genes in the tilapia genome by genetic mapping and
comparative positional cloning
Bo-Young Lee
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Lee, Bo-Young, "Approach to the identification of sex-determining genes in the tilapia genome by genetic mapping and comparative
positional cloning" (2004). Doctoral Dissertations. 247.
https://scholars.unh.edu/dissertation/247

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/247?utm_source=scholars.unh.edu%2Fdissertation%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


APPROACH TO THE IDENTIFICATION OF SEX-DETERMINING GENES IN 

THE TILAPIA GENOME BY GENETIC MAPPING AND COMPARATIVE

POSITIONAL CLONING

BY

BO-YOUNG LEE 

B.S., Chungbuk National University, Korea, 1997 

M.S., Chungbuk National University, Korea, 1999

DISSERTATION

Submitted to the University of New Hampshire 

In Partial Fulfillment of 

the Requirements for the Degree of

Doctor of Philosophy 

In

Genetics 

December, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3158676

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3158676 

Copyright 2005 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation has been examined and approved.

Dissertation Director, Dr. Thomas D. Kocher 
Professor of Zoology and Genetics

Dr. Karen L. Carleton
Research Associate Professor of Zoology

Dr. William Kelly Thomas
Associate Professor of Biochemistry and Genetics

Dr. JohH^Collins 
Associate Professor of Biochemistry and Genetics

Dr. Thomas M. Davis
Professor of Plant Biology and Genetics

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I first would like to thank my advisor, Dr. Thomas D. Kocher for giving me 

an opportunity for studying at UNH and for his supports, encouragements and 

patience throughout my graduate studies. I also, would like to thank Dr. Karen 

Carleton for her thoughtful consideration on me. I am very grateful to my other 

committee members, Kelley Thomas, Tom Davis, and John Collins for spending 

their time and for giving thoughtful comments on my work and dissertation. I 

especially want to show my deep appreciation to Dr. Woo-Jai Lee for his 

continuous concerns, and encouragements. My thanks go to the previous and 

current colleagues in the Kocherlab, Todd Streelman, Pat Danely, Jason Curole, 

Michael Kidd, Tyrone Spady, Aimee Howe, Celeste Kidd, and Elizabeth 

Tomasino for helping me in many different ways of work and life at UNH. I was 

so lucky working with such nice and smart people around. Finally, I would like to 

thank my parents, brother, and relatives for their supports and encouragement to 

me and I am grateful to my husband, Minha Choi and parents-in-law.

This work was supported by grants from the US DA (NRICGP no. 98- 

03476) and the New Hampshire Agricultural Experiment Station (Hatch no. 372 

and no. 397) to Thomas D. Kocher

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ACKNOWLEDGEMENT..............  .............         iii

LIST OF TABLES.......................................      vii

LIST OF FIGURES............................. . . . . . . . ...... ........ ..................................ix

ABSTRACT............................             xi

CHAPTER PAGE

I. INTRODUCTION AND BACKGROUND ON SEX DETERMINATION IN

VERTEBRATES WITH SPECIAL ATTENTION TO TILAPIA....................... 1

Chromosomal Mechanisms of Sex Determination in Vertebrates...2

Environmental Sex Determination in Vertebrates.............................. 3

Molecular Mechanisms of Sex Determination ......................... 4

Importance of Sex Determination in Tilapia.........................   ....15

What is Known about Sex Determination in Tilapia ............ .16

Overall Goals of the Dissertation.........................................  ...18

II. CONSTRUCTION OF A GENETIC LINKAGE MAP OF TILAPIA

(OREOCHROMIS SPP) .............    24

Abstract.................     ....24

Introduction ...................     25

Materials and Methods  .............   28

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Results......................        32

Discussion..........................................................................3 5

III. IDENTIFICATION OF A SEX-DETERMINING REGION IN NILE TILAPIA 

(OREOCHROMIS NILOTICUS) USING BULKED SEGREGANT 

ANALYSIS..................        52

Abstract ......         ..52

Introduction ...............       54

Materials and M etho ds................................................. ........57

Results.................          60

Discussion  .........      62

IV. TWO UNLINKED LOCI CONTROLLING THE SEX OF BLUE TILAPIA 

(OREOCHROMIS AUREUS)  ....................     71

Abstract ........................           .71

Introduction..  ...................     73

Materials and M ethods................................   ....76

Results............................      79

Discussion .........        ...82

V. COMPARATIVE POSITIONAL CLONING OF SEX-DETERMINING 

REGIONS IN TILAPIA... ....... ...............................................91

Abstract......................    ...91

Introduction.................................................      92

Materials and Methods  ...............  .94

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Results..... 

Discussion, 

LIST OF REFERENCES

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 1-1. Sex-determining systems in vertebrates ........   20

Table 1-2. Genes involved in sex determination in mammals....................... 21

Table 1-3. Expression and mapping information of sex-determining candidate

genes in tilapia.  ..............      23

Table 2-1. Accession numbers, primer sequences and polymorphisms of Typel

markers placed in the linkage map.  ...............     ....40

Table 2-2. Allele sizes and FOR annealing temperature for Oreochromis

markers...............................................      41

Table 2-3. Summary of Oreochromis spp. genetic linkage map..................  45

Table 2-4. Sex associated markers detected by the Kruskal-Wallis test 49

Table 3-1. G-test of 3 markers in pure O. niloticus families by allele and

genotype frequency  ...........       65

Table 3-2. Genotypic proportions for sex-linked markers on LG1 in male and

female Oreochromis niloticus.  ......................... 67

Table 4-1. Genotypic proportions for sex-linked markers in O. aureus. ......86

Table 4-2. Epistatic interactions of the sex determining loci on LG1 and LG3 in a

family of O. aureus............................    ..............................90

Table 5-1. The results of screening, fingerprinting, and shotgun sequencing of 

BACs for markers in the sex-determining region of LG3. .......110

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5-2. The results of BAC shotgun sequencing and BLAST analysis in the

sex-determining region of LG1.  ..........   113

Table 5-3. Summary of Fugu scaffolds blasted by shotgun sequences, gene

models annotated along the scaffolds, and the most likely homology 

with the human genome...............     116

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 1-1. Postulated cascade of sex-determining genes in mammals...........22

Figure 2-1. Sex-averaged genetic linkage map of tilapia species {Oreochromis

aureusX O. niloticus)...........................................  42

Figure 2-2. Sex-specific genetic linkage maps of tilapia species {Oreochromis

aureusX O. niloticus)  ...........     46

Figure 2-3. Map difference between sexes by linkage map  ........ ...48

Figure 2-4. The result of the Kruskal-Wallis test for sex trait on LG3.................. 50

Figure 2-5. Comparison of a linkage group from different tilapia linkage maps..51 

Figure 3-1. Schematic diagram of the genetic breeding program for the large-

scale production of YY male broodstock.............................................64

Figure 3-2. Identification of allele frequency differences at marker UNH985 by

bulked segregant analysis.......................................    66

Figure 3-3. Sex-specific linkage maps for LG1 in Oreochromis niloticus 68

Figure 3-4. Proportion of males (■) and females ( • )  in Families 5 and 7 whose 

phenotypic sex is consistent with the hypothesized Y haplotype on

LG1  ......        69

Figure 3-5. Schema of distribution of parental genotypes to male and female

individuals..................       70

Figure 4-1. Identification of allele frequency differences at marker UNH131 by

bulked segregant analysis.............................      87

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4-2. Proportion of individuals whose phenotypic sex is consistent with the

hypothesized female haplotype on LG3..............................  ......88

Figure 4-3. Sex-specific linkage maps for LG3 and LG1 in Oreochromis

aureus  ..............    89

Figure 5-1. Fuguscaffold 1833 with viewer of Fugu assembly (ver. 3.0).. .....111

Figure 5-2. A BAC contig identified by screening markers UNH995 and UNH104

LG1 and FPC fingerprinting analysis (t5, e-7)....................   112

Figure 5-3. Diagram showing a putative synteny of Fugu scaffolds and tilapia

sex-determining region of LG1 by BLAST analyses........................ 114

Figure 5-4. View of the Fugu scaffold 670.........................................   115

Figure 5-5. Identification of sex-specific AFLP markers (MCTT/EACG-382) in O.

niloticus sex-determining region using BSA analysis....................... 117

Figure 5-6. Mapping of AFLP markers (green) and the putative sex locus (red) in

LG 1 by CRIMAP (ver. 2.4)......    118

Figure 5-7. Sequence of a novel DEAD box gene in tilapia. Green letters

underlined represent motifs of DEAD box gene family...................119

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

APPROACH TO THE IDENTIFICATION OF SEX-DETERMINING GENES IN 

THE TILAPIA GENOME BY GENETIC MAPPING AND COMPARATIVE

POSITIONAL CLONING

by

BO-YOUNG LEE 

UNIVERSITY OF NEW HAMPSHIRE, DECEMBER 2004

Tilapia {Oreochromis species) are one of the most dominant species in the 

aquaculture market. Genomic approaches may contribute to tilapia culture in the 

near future by identifying genes controlling traits valuable at the market. One of 

the most important traits for farming of tilapia is sex because monosex culture 

shows the best efficiency of culture. In tilapia, however, the mechanisms of sex- 

determination have been poorly understood because of the variation in the 

genetic basis of sex-determination and the lack of morphological differences 

between sex chromosomes.

To facilitate QTL analysis of these traits, a genetic linkage map was 

constructed from hybrids between Oreochromis aureus and O. niloticus using 

CRIMAP. The linkage map consists of 25 linkage groups with about 500 genetic 

markers spanning 2345 cM. Using the information of the linkage map, two

xi
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different chromosomal regions (LG1 and LG3) responsible for sex determination 

were identified in these species (O. niloticus and O. aureus). BAG clones 

containing genetic markers in the sex-determining regions were isolated. 

Shotgun and end-sequences from these BACs identified syntenic regions among 

Fugu, tilapia, and human. A few genes such as a DEAD box protein, Sox family, 

and a LIM/homeobox, seem to be good candidates for sex-determining genes, 

and will need further study. AFLP (amplified fragment length polymorphism)/BSA 

(Bulked segregant analysis) technique was performed to add more markers in 

the sex-determining region in O. niloticus. This method appeared to be not so 

efficient in this study, because, although 3 of 128 selective primer pairs were 

informative, none of them were closer to sex than the markers that were already 

identified in the sex-determining region. So, more markers should be developed 

to further fine map the sex-determining genes within the region.

xii
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CHAPTER 1.

INTRODUCTION AND BACKGROUND ON SEX DETERMINATION 

IN VERTEBRATES, WITH SPECIAL ATTENTION TO TILAPIA

The mechanisms of animal sex determination are diverse and labile (Bull, 

1983). Sex-determining systems in vertebrates have been largely divided into 

two groups: genetic sex determination (GSD) and environmental sex 

determination (ESD). In the GSD systems, sex chromosomes can contain a 

single dominant regulator of sexual development, such as the Sry (sex- 

determining region gene) on the mammalian Y chromosome (Sinclair, et a!., 

1990). In mammals and birds, the genetic constitution established at the time of 

fertilization determines the type of gonad that develops. In other vertebrates, 

environmental factors such as temperature, social environment or hormones 

affect sex determination. The different sex determining mechanisms in 

vertebrates are summarized in Table 1-1 (Zarkower, 2001).

A single species can have more than one mechanism at once, as in the

-case of-the wood lemming Myopus schisticoior (Schutt, et al., 2000). In

marsupial mammals, separate mechanisms can operate in different tissues of the 

same individual. Their gonadal sex is determined by the presence of a Y

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



chromosome, but the choice of female pouch versus male scrotum depends on X 

chromosome dosage (Marshall Graves, 1996). In teleost fishes that show the 

most remarkable variety of sex determination and differentiation patterns, 

different species in a single genus show different sex mechanisms. In the genus 

Xiphophorus and Oreochromis, some species have female heterogamety and 

others have male heterogamety (Kallman, 1984; Mair, et al., 1991a; Mair, et al., 

1991b).

Chromosomal Mechanisms of Sex Determination in Vertebrates

Sex chromosomes play a causal role in sex determination. Major 

chromosomal mechanisms of sex determination are male heterogamety (XX 

female: XV male system) and female heterogamety (ZW female: ZZ male). So 

the genotype of a female mouse is XX and that of a female chicken is ZW.

Sex chromosomes usually pair up at meiosis and form a bivalent. 

Crossing over and chiasma formation may occur between homologous regions. 

In humans, the X and Y chromosomes only recombine at a pseudoautosomal 

region (PAR) at the ends of both chromosomes, which are needed to guide 

correct pairing and segregation of the sex chromosomes during male meiosis 

(Haqq and Donahoe, 1998). The sex chromosomes form a synaptonemal 

complex at their tips rather than at the usual position near the centromeres.

2
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The morphology of sex chromosomes varies among species. The sex 

chromosomes of mammals and birds are heteromorphic, but the shape of sex 

chromosome in teleosts is almost indistinguishable from that of autosomal 

chromosomes. In heteromorphic sex chromosomes, differentiated chromosomes 

pairs in diverse species display certain common characteristics, normally 

comprising one largely heterochromatic, genetically inactive chromosome and 

one euchromatic genetically active chromosome (e.g. the mammalian Y and X 

respectively). It is widely accepted that dimorphic sex chromosomes evolved 

from homologous pairs of autosomes. Marshall Graves et al (2001) suggest that 

XY male heterogamety in mammals, and ZW female heterogamety in birds and 

some reptiles, evolved independently.

Environmental Sex Determination in Vertebrates.

While sex of some vertebrates is determined by sex chromosomes at the 

time of fertilization, sex of other vertebrates is determined by the environment 

after fertilization. The effect of incubation temperature on sex determination has 

been well investigated in reptiles, amphibians, and teleosts (Pieau, et al., 1999; 

Belaid, et al., 2001; Francis, 1992). Higher temperature at a particular period of 

incubation produces one sex (males or females) and Sower temperature produces 

the other. In some cases, females develop at extreme temperatures and males

3
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at intermediate temperature and vice versa. In these cases, the temperature of 

the eggs during a certain period of development determines the sex of the 

embryo. Another environmental factor that determines sex in vertebrates is 

hormones. The administration of steroid hormones such as androgen and 

estrogen has been applied in studies of sex differentiation and showed 

successful masculinization and feminization in many fish species (Francis, 1992). 

An enzyme involved in environment-dependent sex determination is aromatase, 

which can convert testosterone into estrogen. In the European pond turtle, Emys 

obicularis, aromatase activity is very low at the male-promoting temperature of 

25°C and increases dramatically at the female promoting temperature of 30°C 

(Belaid, et al., 2001).

Molecular Mechanisms of Sex Determination

Sex determination and differentiation require a complex set of events in 

the appropriate tissues at appropriate time of development. In mammals, the 

sex-determining process can be divided into several steps; 1) formation of the 

sexually indifferent gonad from intermediate mesoderm; 2) commitment of the 

gonad to testis or ovary development; 3) and differentiation into a testis or an 

ovary (Gilbert,""2000)." There are' many genes"involved in the sex determination 

cascade. These have mostly been discovered in sex-reversed patients and

4
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confirmed by knockout experiments in mice (Table 1-2, and Figure 1-1). The 

primary sex-determining gene in mammals is Sry, the Y-linked testis-determining 

gene. Several other genes are also known to be important for sex determination 

in mammals, such as Sox9, Amh, Wt1, Sf1, Dax1, and Dmrtl (Swain and Lovell- 

Badge, 1999; Koopman, 2001; Zarkower, et al., 2001; Cotinot, et al., 2002; 

Morrish and Sinclair, 2002). Analyses of these genes in humans with gonadal 

dysgenesis and mouse models have revealed that sex determination results from 

a complex interplay between the genes in this network. Although these genes 

are conserved in other vertebrates, such as chickens and alligators, and show 

gonad-specific expression in these species during the period of sex 

determination, the sequence, sex specificity and timing of expression of these 

genes during sex determination show intriguing difference among species 

(Morrish, et al., 2002).

Formation of the Bipotential Gonad

Prior to sexual differentiation, the ovaries and testes cannot be 

distinguished and therefore are called bipotential or indifferent gonads. These 

bipotential gonads arise from the genital ridge, a region adjacent to the 

mesonephros that ultimately contributes cell lineages to the adrenal cortex, 

gonads and kidney (Gilbert, 2000). Several genes are crucial for early gonadal

5
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development, such as Lim1, Lhx9, Emx2, Wt1, and Sf1. These are related to 

genital ridge development and the formation of other primordial having a 

common intermediated mesoderm origin such as kidneys and adrenals (Table 1- 

2). Lim1 encodes a member of the LIM class of homeobox protein. Mice 

homozygous for a deletion in Lim1 have no kidneys or gonads (Shawlot and 

Behringer, 1995). It is clear that Lim1 is involved in maturation of the genital 

ridges, but the precise role of Lim1 in early gonad development has not been 

studied in any detail. Emx2 is a gene that encodes a transcription factor 

containing a homeobox domain. Mice deficient for this gene show impaired 

gonadal and kidney development (Miyamoto, et al., 1997). Emx2 is expressed in 

the genital ridge as well as the Wolffian duct, mesonephric tubule, and coelomic 

epithelia. In mice lacking Lhx9function, germ cells migrate normally, but somatic 

cells of the genital ridge fail to proliferate and a discrete gonad fails to form 

(Cotinot, et al., 2002). Unlike other genes, Lhx9 mutants do not exhibit additional 

major developmental defects. Wt1 and Sf1 arise at several levels of in sexual 

differentiation. These are necessary to make the bipotential gonad. The gonad 

of embryos lacking Sf1 cease to develop and degenerate via apoptosis. The 

adrenal glands also fail to form, but genital ridges begin to form and are 

colonized by the germ cells. Sf1 gene expression is specifically associated with 

the gonad and the adrenal as they arise. Wtl knockout mice die in uterus with a 

complete absence of kidneys and gonads (Kreidberg, et al., 1993). ~ Gonadal

6
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development is initiated but is then arrested at a very early stage, indicating a 

role for Wt1 in early establishment of the genital ridges.

Testis-Determinina Pathway

Srv (Sex-determinina Region of the Y chromosome). Sry is known to be 

the testis-determining factor (TDF) that is located on the short arm of the Y 

chromosome in mammals. It is an intronless gene that encodes a 204 amino 

acid protein encompassing a conserved DNA-binding region of 79 amino acids, a 

HMG (high mobility groups) box protein, likely to act as a transcription factor 

(Cotinot, et al., 2002). It’s an essential trigger of male gonad differentiation. 

Mutations in this gene give rise to XY females with gonadal dysgenesis (Swyer 

syndrome); translocation of part of the Y chromosome containing this gene to the 

X chromosome causes XX male syndrome. Since the discovery of Sry, 

extensive efforts have failed to find its orthologue in other vertebrates, indicating 

evolutionary plasticity in the genes that cause sex determination. There is no 

homologue of Sry gene outside mammals, which indicates that Sry became 

involved in sex determination recently. The best candidate for an Sry target is 

Sox9.

7
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Sox9 (Srv-related HMG box). Sox9 is one of the autosomal genes 

involved in sex determination. Sox9 encodes a putative transcription factor that 

also contains an HMG box. The HMG box region of SOX9 has been shown to 

bind to the sequences AACAAT and AACAAAG, and in some cases it has been 

found to bind to the variant sequences ATGAAT and CACAAT (Koopman, 1999). 

Sox9 is expressed just slightly after Sry expression. It acts during chondrocyte 

differentiation and, with Sf1, regulates transcription of the anti-Muellerian 

hormone (AMH) gene, providing a critical link in the pathway toward a male 

phenotype. High expression of Sox9  is always correlated with testis 

differentiation, independent of the presence of Sry, and abnormal up-regulation 

of Sox9 or an extra dose by a chromosomal duplication in XX individuals is 

associated with female-to-male sex reversal in human and mice (Huang, et al., 

1999; Vidal, et al., 2001). Deficiencies lead to the skeletal malformation 

syndrome called campomelic dysplasia, frequently with sex reversal (Foster, et 

al., 1994; Wagner, et al., 1994). It is clear that Sox9 lies at a crucial step in testis 

formation. While Sry is found specifically in mammals, Sox9 appears to be highly 

conserved among mammals as well as in other vertebrate species, such as birds 

and reptiles.

Sf1 (Steroidogenic factor 1). Sf1 plays a critical role in testis hormone

production. Sf1 appears to be “active in masculinizing- both the Leydig and the -  - 

Sertoli cells. In the Sertoli cells, Sf1, working in collaboration with Sox9, is

8
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needed to elevate the levels of AMH transcription (de Santa Barbara, et al., 

1998; Nachtigal, et al., 1998). In the Ley dig cells, SF1 activates the genes 

encoding the enzymes that make testosterone. The importance of SF1 for testis 

development and AMH regulation in humans is demonstrated by an XY patient 

who is heterozygous for Sf1 (Gilbert, 2000). It is thought that Sry directly or 

indirectly activates the Sf1 gene, and the SF1 protein then activates both 

components (Sertoli AMH and Leydig testosterone) of the male sexual 

differentiation pathway. Knockout mice carrying homozygous deletions of Sf1 

lack gonads and adrenals and die shortly after birth. In these mice, the gonads 

begin to form, are colonized by germ cells, but cease development at day 11.0-

11.5 after mating and then undergo apoptosis (Luo, et al., 1994)

Wt1 (Wilms tumor 11. Wt1 is an autosomal gene that plays important roles 

in kidney and gonadal development. As a stimulating cofactor with SF1, WT1 

induces transcription of the Amh gene by interactions with an AGGTCA promoter 

element. In addition, the Wt1 gene plays roles in regulating sex-specific gene 

expression. Wt1 mutation has been shown to cause Wilms’ tumor and several 

human conditions that involve developmental abnormalities of the kidneys and 

gonads (Kredberg, et al., 1993). Wt1 is a complex gene encoding at least 24 

different isoforms by use of alternative start sites, splicing and RNA editing. One 

of these isoforms, the -K TS can bind and transactivate the Sry and Dax1 

promoters in vitro (Kim, et al., 1999; Hossain and Sanders, 2001). Although the

9
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-K TS isoforms cannot bind to the Amh promoter, it has been shown to synergize 

with SF1 to activate Amh transcription in vitro (Nachtigal, et al., 1998). In XX 

individuals, Dax1 is thought to interfere with the interaction of SF1 and WT1, thus 

repressing male-specific development (Nachtigal, et al., 1998). Another isoform, 

+KTS, seems to be required to allow enough expression of Sry in the testis 

determination pathway.

M33 (CBX2: chromobox homolog 2 ). M33 has been shown to play a role 

in testis differentiation, probably by interfering with steps upstream of Sry. Mice 

carrying a disrupted M33 gene show a significant delay in gonad development in 

both sexes (Katoh-Fukui, et al., 1998). These retarded gonads give rise to adult 

organs although they are not completely normal and the phenotype is variable 

(Swain and Lovell-Badge, 1999). The XY animals showed different degrees of 

sex reversal. This retardation of gonad formation leads to the development of 

small ovaries in XX null mice and to partial or complete male-to-female sex 

reversal in XY null mice (Cotinot, et al., 2002). M33-deficient mice show 

homeotic transformations in the structure of their skeleton (Core, et al., 1997; 

Bel, et al., 1998; Katoh-Fukui, et al., 1998).

Dm/tf.(Doublesex and mab-3 related transcription factor 1). Dmrtl is a 

member of a family of genes that share the highly conserved DM-domain 

involved in male sexual development. This gene is related to genes encoding

10
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the transcriptional regulator mab-3 in Caenorhabditis elegans and doublesex in 

Drosophila (Raymond, et al., 1998).

The evidence that Dmrtl is a male sexual regulator in vertebrates includes 

embryonic expression, chromosomal position and mutational analysis. Dmrtl is 

expressed very early in the genital ridge. In all species except the mouse, Dmrtl 

is expressed at a higher level in future male than in future female genital ridges 

before gonad differentiation. These expression patterns indicate that Dmrtl is 

likely to have a conserved role in testis development (Smith, et al., 1999; De 

Grandi, et al., 2000; Smith, et al., 2002). Chromosomal position also implicates 

Dmrtl in sexual development in mammals and birds. In humans, Dmrtl maps to 

a short interval of chromosome 9 that is required in two copies for testis 

differentiation. In birds, which have ZZ/ZW sex determination (and lack Sry), 

D m rtl maps to the Z chromosome, which is very similar in sequence and 

organization to human chromosome 9. In both cases, therefore, the presence of 

two copies of Dmrtl correlates with testis differentiation. The Dmrtl gene has 

been functionally analyzed only in the mouse. It is required in testis 

differentiation, affecting both Sertoli cells and germ cells. This phenotype is 

similar to that caused by some human 9p deletions, indicating that the sex 

reversal caused by human 9p deletions might involved Dmrtl, either alone or 

with nearby genes (Zarkower, 2001).

In medaka fish (Oryzias latipes), DMY(DmrtlbY) is a strong candidate for 

the male sex-determination gene on the Y chromosome (Matsuda, et al., 2002;

11
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Kondo, et al., 2003). This gene appears to be a duplication of an autosomal 

segment containing dm rtl, which was inserted into another chromosome that 

then became the Y chromosome. In the Y-specific region, the DMY {DmrtlbY) 

gene is the only functional gene. DMY (DmrtlbY) is expressed only in male 

embryos and mutation in this gene cause XY-sex-reversed females.

Amh (Anti-Mullerian hormone). AMH induces the regression of the 

Mullerian ducts, which in the female give rise to the oviducts and uterus. Amh 

gene is expressed at 12 dpc in the developing Sertoli cells of the mouse testis in 

a pattern that closely follows the up-regulation of Sox9 (Swain and Lovell-Badge,

1999). Amh gene has a consensus binding site for SF1 in the promoter region 

so that SF1 can bind and activate the Amh promoter (Shen, et al., 1994). The 

Amh promoter region also contains a consensus binding site for proteins 

containing an HMG box domain (Haqq, et al., 1993). SOX9 is a better candidate 

to bind to this site because it is present in the male genital ridge at the time that 

Amh is activated, and continues to be expressed in Sertoli cells throughout 

development and adulthood (de Santa Barbara, et al., 1998). SOX9 will bind to 

the HMG box consensus site in the Amh gene. Also, SOX9 can synergize SF1 

activation of the Amh promoter, suggesting that both factors act in concert to 

bring about tissue specific expression of Amh. WT1 has also been implicated in 

the regulation of Amh expression. Mice carrying a homozygous deletion in the 

Amh coding region have normally developed testis, but are infertile due to
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persistence of Mullerian-derived structures that interfere with sperm transfer

(Behringer, et al., 1994).

Dhh (Desert hedgehog). Dhh is a candidate factor involved in cell-cell 

interactions between Sertoli and germ cells. Male mice deficient for Dhh are 

infertile owing to absence of sperm. Testis weights were reduced in mutant 

mice, and in later stages histological analysis showed a germ cell deficiency and 

a block in spermatogenesis. However, it is unclear whether the reduction in size 

is due to a block in proliferation of germ cells, or Sertoli cells or both. It is 

possible that DHH could contribute to the signal that makes germ cells enter into 

mitotic arrest in the testis, whereas in its absence, cells go into meiotic arrest 

(Swain and Lovell-Badge, 1999). Expression studies have shown that Dhh is 

present in male gonads at 11.5 dpc and it is associated with Sertoli cells at later 

stage of testis development. Early expression patterns suggest that Dhh is a 

direct target of SOX9 or SPY.

Ovary-Determining Pathway

Wnt4 fwinaless-related MMTV integration site 4). The Writ gene family 

consists of structurally related genes that encode secreted signaling proteins. 

These proteins have been implicated in oncogenesis and in several

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



developmental processes, including regulation of cell fate and patterning during 

embryogenesis. Wnt4 is a member of the Wnt gene family, and is the first 

signaling molecule shown to influence the sex-determination cascade in humans. 

Wnt4 is a potential ovary-determining gene on an autosome. This gene is 

expressed in the mouse genital ridge while it is still in its bipotential stage. Wnt4 

expression then becomes undetectable in XY gonads, whereas it is maintained in 

XX gonads as they begin to form ovaries (Gilbert, 2002). The human Wnt4 gene 

encodes a protein that shows 98% amino acid identity to the Wnt4 protein of 

mouse and rat. In transgenic XX mice that lack the Wnt4 genes, the ovary fails 

to form properly, and its cells express testis-specific markers, including AMH-and 

testosterone-producing enzyme (Vainio, et al., 1999). This gene and Dax1 play a 

concerted role in both the control of female development and the prevention of 

testes formation.

Dax1 (nuclear receptor subfamily 0. group B. member 11. Dax1 is a 

potential ovary-determining gene on the X chromosome. This encodes an 

unusual member of the nuclear hormone receptor superfamily. Duplication of 

Dax1 in XY individual shows a sex reversal phenotype in humans (Bardoni, et al., 

1994). Deletions involving Dax1 do not disrupt testis differentiation, and Dax1 

expression in mice is down-regulated with testis differentiation, but persists in the 

developing ovary (Swain, et al., 1996). Transgenic mice overexpressing Dax1 

have been shown to undergo male-to-female sex reversal, suggesting that Dax1
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appears to antagonize the function of Sry (Swain, et al., 1998). However, 

targeted inactivation of Dax1 in mice does not affect ovaria development, instead 

blocking spermatogenesis in males (Yu, et al., 1998). It is concluded that Dax1 

is a spermatogenesis and antimaleness gene rather than an ovarian-determining 

gene (Swain, et al., 1996).

Importance of Sex Determination in Tilapia.

Maternal mouth brooding tilapia from the genus Oreochromis are an 

important species in the aquaculture market (Mair, 2001). Control of 

reproduction is often one of the biggest challenges in commercial tilapia 

production, because the fish mature early and can begin to reproduce before 

reaching market size (Phelps, 2001). Male tilapia grow faster than female tilapia 

and monosex culture of male tilapia has resulted in the economically best 

production. Studies of sex determination in tilapia can provide an important 

technical basis for the improvement of the cultural yields of this species. The lack 

of genetic markers for sex is one of the problems that make the elucidation of sex 

determination in this species difficult. Genetic markers identified by studying sex 

determination will be useful in tilapia breeding programs.
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What is Known about Sex-Determination in Tilapia

Most basic information on the sex determining system in tilapia has been 

observed from studies of sex ratio in the progenies from interspecific, 

intraspecific, or sex-reversed fish hybrids (Mair, et al., 1991a; Mair, et al., 1991). 

By these methods, the tilapia genus, Oreochromis, has been shown to have both 

female and male heterogametic systems. Oreochromis niloticus (Nile tilapia), and 

O. mossambicus (Mozambique tilapia), have a male heterogametic (XX/XY) sex 

determining system, while O. aureus (blue tilapia), O. hornorum, and O. 

macrochir have a female heterogametic system (ZZ/ZW). However, temperature 

and secondary genetic factors can also influence sex determination.

There are several cases in which sex ratios do not fit perfectly with the 

expectations of a heterogametic system, suggesting the influence of either minor 

sex determining genes or environmental influences on the process of sex 

differentiation. There have been several studies on the influence of temperature 

(Wang and Tsai, 2000; Baroiller, et al., 1996) and hormone treatments on sex 

determination in tilapia (Francis, 1992; Guiguen, et al., 1999). Progenies can be 

functionally masculinized when reared at elevated temperatures (32-36°C) if 

applied before and during gonadal sex differentiation (Baroiller, et al., 1995; 

Baras, et al., 2001). The use of aromatase inhibitors, which block estrogen 

synthesis, caused partial or complete inhibition of ovarian differentiation and
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resulted in a masculinization in a number of fish (Kwon, et al., 2000; 

Bertollaafonso, et al., 2001).

The sex chromosomes of tilapia are morphologically indistinguishable 

from autosomal chromosomes. As there is no morphological difference between 

sex chromosomes, several cytogenetic studies have been performed to identify 

the sex chromosomes in different species of Oreochromis by observing the 

synaptonemal complex (SC) in meiotic chromosomes, because there is the 

region of restricted chromosome pairing in heterogametic fish (Campos-Ramos, 

et al., 2001; Carrasco, et al., 1999). The longest chromosome is considered to 

be the sex chromosome in the species with XX/XY mechanisms such as O. 

niloticus and O. mossambicus. In O. aureus, two chromosomes are thought to 

be related to sex. One is the same largest bivalent as in XX/XY system and the 

other is one of smaller bivalents (Campos-Ramos, et al., 2001).

Not many genes related to sex-determination have been characterized in 

this species. A few genes such as aromatase, vas, wt1, dax1, and dmrtl, have 

been cloned and their expression pattern examined in O. niloticus (Table 1-3; 

Kwon, et al., 2001; Kobayashi, et al., 2000; Wang, et al., 2002; Guan, et al.,

2000). The dmrtl gene has been cloned in O. niloticus and a Sry-consensus site 

was found in the 5 ’ upstream regions of this locus suggesting that one of the 

upstream regulatory genes of DMRT1 in tilapia could be a S/y-like gene from the 

Y chromosome (Guan, et al., 2000). In tilapia, DMRT1 homologues (tDMRTI) 

possess the male-specific motif and expression appears to be testis (Sertoli
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cells) specific, whereas another DM homologue (tDMO) lacked this motif and 

was found expressed only in ovary (Guan, et al., 2000). Interestingly, 

examination of upstream sequences reveals a SRY binding site within tDMRU  

but not tDMO, suggesting a close linkage between Sox and DMRT1 gene 

products in sex determination pathways. Tilapia Dax1 is highly expressed in 

gonads. Unlike other vertebrates, tilapia DAX1 mRNA is also expressed in the 

intestine, muscle, and gill. It is also expressed in the liver, but at a relatively low 

level, especially in females, compared with other non-mammalian vertebrates. It 

is interesting that in tilapia, sex difference in Dax1 expression was found in 

several tissues, but not in gonads, with higher expression levels seen in males 

(Wang, et al., 2002). I/as is a Drosophila vasa homologue gene which has two 

isoforms, vas-s and vas. Prior to meiosis, no differences in expression pattern 

are observed in male and female germ cells. In ovary, compared with vas 

expression vas-s expression predominated throughout oogenesis. In testis, vas 

expression was predominant compared with vas-s during spermatogenesis 

(Kobaysahi, et al., 2000; Kobayashi, et al., 2002).

Overall Goals of the Dissertation

The objectives of this dissertation were to map or identify genes involved 

in sex determination and sex differentiation in tilapia genomes. The first step in

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



these studies was to construct a genetic linkage map well-saturated with genetic 

markers (Chapter 2). As a framework, the linkage map will also be useful for 

QTL analysis of interesting genes other than sex. This genetic map was used to 

scan the tilapia genome to localize the regions associated with sex determination 

in the most important tilapia species (Chapter 3 and Chapter 4). Once the 

chromosomal region of sex determination and markers flanking the regions were 

identified, a comparative positional cloning approach was taken to identify 

candidate genes (Chapter 5).
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Species Prim ary sex-determ ining system Sexes
Male Female

Most eutherian mammals GSD: Dominant Y XY XX
Mole voles (Ellobius )

E, fuscocapillus GSD: Dominant Y XY XX
E. lutescens Unknown xo XO
E. tancrei Unknown XX XX

Wood lemming (Myopus schisticolor ) GSD:Dominant Y; Dominant X* XY XX, X*X, or X*Y

Marsupial mammals GSD:Dominant Y (testis) XY XX
X dosage (2X:pouch; lX;scrotum)

Birds GSD: Ratio? ZZ ZW

Turtles (Trachemys scripta ) ESD:Temperature Cool Warm

Alligators ESD:Temperature Warm Cool

Fish
Trout (Oncorhynchus mykiss ) GSD: Dominant Y XY XX
Jewel lyretail anthias (Psedanthias squmipinns ) ESD: social; protogyny Sequential hermaphrodite female, then male
Dusky anemonefish (Amphiprion malanopus ) ESD:social;protandry Sequenctial hermaphrodite male, then female
Tilapia {Oreochromis )

0. niloticus GSD XY XX
0. aureus GSD ZZ ZW

Table 1-1. Sex-determining systems in vertebrates (Zarkower, 2001). (GSD: Genetic Sex Determination, ESD: 
Environmental Sex Determination).



Gene Product Human Locus Phenotype of Loss-of-Function Mutation
Bipotential gonad formation 

Lhx9 Transcription factor lq31-32 Blockage in genital ridge development (KO)
U m l Transcription factor l lp l2 -1 3 Absence of kidneys and genital ridges (KO)
Emx2 Transcription factor 10q26 Blockage in genital ridge and kidney development (KO)
S fl Transcription factor 9q33 blockage in genital ridge and adrenal gland development (KO)
W tl Transcription factor l l p l 3 Blockage in kidney, spleen and adrenal gland development,

Testis-determing pathway 
Sry Transcription factor Y p ll.3

heart failure, and absence of gonads (KO)

XY Male-to-female sex reversal (human and murine mutations)
Sox9 Transcription factor 17q24 XY male-to-female sex reversal and skeletal dysmorphology

S fl Transcription factor 9q33
(human mutation)

XY-Male-to-female sex reversal and adrenal failure

W tl Transcription factor l l p l 3
(KO and human mutation)

XY-Male-to-female sex reversal and kidney defects

M33 Transcription factor 17q25
(human mutations) 

XY-Male-to-female sex reversal (KO)
D m rtl Transcription factor 9p24.3 XY-Male-to-female sex reversal (multigene deletion in humans)

Fgf9 Signaling molecule 1 3 q ll-1 3
Loss of Sertoli and germ cells in postnatal tesis (KO) 
XY-Male-to female sex reversal/gonadal dysgenesis,

Amh Signaling molecule 19pl3
lung defects (KO)

No XY sex reversal, persistence of Mullerian duct derivatives

ATRX Helicase Xql3
in XY individuals (human mutations, KO)

XY Male-to-female sex reversal, mental retardation.

Dhh Signalling molecule 16q24
alpha-thalassemia (human mutation) 

Loss of germ cells (KO)

Ovary-determing pathway 
Wnt4 Signaling molecule lp35 Testosterone synthesis and male duct development

Daxl Neclear receptor Xp21
in XX mice (KO)

No XX sex reversal, progressive degeneration of

FoxL2 Transcription factor 3q23
the testicular germinal epithelium in XY individuals (KO) 
premature ovarian failure and eyelid defects (BPES in humans)

Gdf9 Signaling molecule ....... I f i l - L __
XX-Female-to-male sex reversal (polled mutation in goats) 

Failure o f ovarian follicular development (KO)

KO : Knonck out experiments in mice

Table 1-2. Genes involved in sex determination in mammals.
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Gonad Formation Sex Determination Gonad Differentiation

Wtl
Sfl 

Liml (Lhxl)

Bi potentialGenital

Wtl 
Gata4 
Dhh 
Sox9 
Dmrtl

Thecal — ► Estrogen
Cells

Follicular
Ceils

Sfl
Leydig Cells — ► Testosterone

Sfl
Sertoli Cells — ► AMH

Figure 1-1. Postulated cascade of sex-determining genes in mammals.
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Gene Expression Cloned in tilapia Mapping in tilapia

aromatase ovary AF135851 FISH (Harvey, et al, 2002)
vasa P6C, ovary AB032467 no
vas-s PGC, testes AB051835 no
daxl gonad, intestine, muscle, gill AY135379 no
dmt testes AF203489 Linkage group 12 (Lee et al. in prep)
dmo ovary AF203490 Linkage group 3 (Lee et al. in prep)
wtl gonad AF534550/1 Linkage group 7 (Lee et at. in prep)

Table 1-3. Expression and mapping information of sex-determining candidate 
genes in tilapia.
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CHAPTER2.

CONSTRUCTION OF A GENETIC LINKAGE MAP OF TILAPIA

(OREOCHROMIS SPP)

Abstraci

A genetic map for tilapia (Oreochromis aureus x O. niloticus) was 

constructed by analyzing the segregation of 479 microsatellites and 14 protein 

encoding genes in an F2 hybrid cross between O. aureus and O. niloticus. Using 

a threshold LOD score of 3.0, a total of 25 linkage groups were identified. The 

linkage map spans 2345 cM with an average marker spacing of 4.76 cM. 

Overall, the female map is a little shorter than the male map (2.3%). Syntenies 

identified in previous tilapia maps are largely confirmed, but some differences in 

gene order among species may exist. The map was used to identify markers 

linked to sex using the non-parametric methods of MapQTL. Six markers 

significantly associated with sex were detected (p < 0.005). All six markers show 

linkage with other markers on LG3.
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Introduction

Tilapia has become an important species in aquaculture and has received 

increasing scientific interest over the past few decades. A major part of research 

for the genetic improvement of tilapias is focused on the identification of 

quantitative trait loci (QTL) responsible for the commercially important traits such 

as color, temperature tolerance, and salinity tolerance in order to use the genetic 

information for marker-assisted selection.

Genetic linkage maps provide a framework for QTL analysis. A genetic 

linkage map also provides good information for manipulation of interesting genes 

or for identification of the chromosomal location of cloned genes. Genetic maps 

have been constructed for a number of fish species including zebrafish, Danio 

rerio (Postlethwait, et al., 1994; Johnson, et al., 1996; Hukriede, et al., 1999; 

Kelly, et al., 2000); rainbow trout, Oncorhynchus mykiss (Young, et al., 1998), 

and medaka, Oryzias latipes (Ohtsuka, et al., 1999; Naruse, et al., 2000; Kondo, 

et al., 2001). In zebrafish, studies of gene mapping are well advanced at the 

highest level and a large amount of raw sequence data exists in public 

databases.

A genetic linkage map gives information on recombination rate difference 

between sexes as well as the total genome size based on recombination rate. 

There is a scarcity of information on sex specific recombination difference in
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teieost species. According to Haldane’s rule (1922), gonochoristic species are 

expected to show sex-specific recombination differences, with the heterogametic 

sex exhibiting lower recombination levels. Current mapping studies in fish 

support the rule (Sakamoto, et al., 2000). There are sex-specific maps for 

comparing recombination rate between male and female in medaka (Kondo, et 

al., 2001), rainbow trout (Sakamoto, et al., 2000), and zebrafish (Singer, et al., 

2002).

In tilapia, a few linkage maps have been published. Kocher et al (1998) 

constructed the first tilapia genetic map of Oreochromis niloticus using haploid 

larvae. For this map, 62 microsatellite and 112 AFLP markers were used and 

map length was estimated to be about 1200cM in 30 linkage groups covering 22 

tilapia chromosomes. Agresti et al (2000) created a genetic map in a three-way 

interspecific tilapia mapping population using microsatellite and AFLP markers. 

McConnell et al (2000) constructed a genetic map with an interspecific backcross 

between O. niloticus and O. aureus using 82 microsatellite including many of 

published UNH markers, but this was a partial map covering only 10 linkage 

groups. They identified a possible chromosomal inversion between the two 

species. They also showed the possibility that the female map is smaller than 

the male map.

The objective of this study was to develop a well-saturated linkage map 

which can be used to identify the chromosomal regions of interesting genes or 

QTLs, responsible for commercially or evolutionarily important traits. I identified
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the region associated with the sex trait on the linkage maps. In addition, sex- 

specific maps made with CRIMAP were compared to examine the difference in 

the recombination rate between sexes.
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Materials and .Methods

Mapping Panel

For construction of the linkage map, an interspecific cross of a female blue 

tilapia, Oreochromis aureus and a male Nile tilapia, O. niloticus was produced by 

Dr. Gideon Hulata at the Agricultural Research Organization (ARO), Israel. A 

population of 156 F2 was obtained by crossing one pair of F1 full-sibs. Seventy- 

two individuals including the parents were used for linkage analysis and map 

construction.

Isolating Microsatellite Markers

Markers labeled ‘GM’ were developed by a private company, GenoMar, in 

Norway. For UNH markers, microsatellite libraries were made with O. niloticus 

genome using the hybrid capture methods (Carleton, et al., 2001). From the CA 

enriched genomic libraries, each clone was sequenced in one direction on an 

ABI377. After sequence analysis, a small fraction of the clones were sequenced 

from the opposite strand to resolve ambiguities in the sequences. Sequences 

that contained perfect repeats of at least 12 microsatellite units were selected.
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Primers were designed using Primer3 (http://frodo.wi.mit.edu/cgi- 

bin/primer3/primer3_www.cgi). All primers were designed to generate PCR 

products between 100bp and 250bp in length.

Tvpel Markers

Fourteen protein encoding genes, including cski, blue-opsin {bluops), UV- 

opsin (uvops), pax9, rasgrf2, cicnS, IGF2 (ifg2/th), wtl ,  insulin {ins), mhcl, 

prolactin (prf), transferrin (tf), myostatin {gdfff), and dlx2, were typed in the F2 

(Table 2-1). Some genes {cski, bluops, uvops, rasgrf2, clcnS, ifg2/th, wtl, ins, 

and prf) have a microsatellite in an intron sequence. For other genes {pax9 and 

dix2), SNPs were identified in their sequences and primers were designed in the 

flanking regions to amplify the variable region. RFLP was performed to map 

those genes in this cross. Myostatin {gdf8) was genotyped by GenoMar, Norway 

and tf and m hd  were genotyped at ARO, Israel (Cnaani, et al., 2002; Cnaani, et 

al., 2003).

Microsatellite Genotypina

All ‘GM” markers were genotyped by GenoMar, Norway. The genotyping 

data were provided to University of New Hampshire (UNH) for mapping. For
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UNH markers, the forward primer in each pair was fluorescently labeled with 

either TET, 6-FAM, or HEX (Operon Technologies Inc., Alameda, CA, USA). 

Each marker was typed in a 20 ul PCR reaction containing 250 nM of each 

primer, 30-50 ng DNA, 2 mM MgCI2, 0.2 mM of each dNTP and 0.3 U Taq 

polymerase in the cycling conditions as follows; 94°C for 2 min; 27-28 cycles of 

94°C for 20s, 50-55°C for 30s, 72°C for 1 min; 72°C for 5 min. PCR products 

were loaded on 4% acrylamide gels using an ABI 377 automated DNA 

sequencer and some of the markers were multiplexed based on difference in the 

fragment size and in fluorescent dye color. Fragment sizes were analyzed with 

GeneScan (ver. 3.1.2). New markers were first tested in parents and four 

randomly chosen F2 individuals to test for segregation in the mapping family. 

Informative markers were then genotyped in the whole mapping population.

Linkage Analysis and Mapping.

Linkage analysis was performed using CRIMAP (ver. 2.4) (Green, et al., 

1990), software to construct the linkage map, hosted at the UK MRC Human 

Genome Mapping Project Resource Centre (HGMPRC). A two-point linkage 

identification by which all 551 markers were analyzed against each other was 

performed using a CRIMAP option TWO POINT. From the results of the two- 

point analysis, markers belonging to the same linkage group were assembled
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and the marker order was identified using the ALL and BUILD options. Finally, 

the order of the markers was statistically confirmed using the FLIPS function.

Mapping Sex Trait

Sex traits were analyzed with MapQTL (ver. 4.0) (van Ooijen, et al., 2002) 

using the nonparametric mapping method. This program employs a Kruskal- 

Wallis rank sum test for handling the categorical phenotypic data. In this single 

marker analysis, all individuals are concurrently ranked according to the 

phenotype and genotypic classes. A QTL of large effect linked closely to a given 

marker will result in a large difference in the mean ranks of the genotypic 

classes. The test ranks all individuals according to the sex trait and marker 

genotypes. A segregating QTL linked closely to the tested markers will result in 

large differences in average rank of the marker genotype classes. Under the 

null-hypothesis that there is no segregating sex QTL, the Kruskal-Wallis test 

statistic is distributed approximately as a chi-square distribution with the number 

of genotype classes minus one as degrees of freedom. Since the test is 

performed on many linked and unlinked loci, I report here markers with 

association at a p-value less than 0.005.
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Results

A total of 551 markers consisted of 182 UNH and 355 GM microsatellites, 

and 14 genes (cski, bluops, uvops, pax9, rasgrf2, clcnS, ifg2/th, wtl, insulin, 

mhcl, prl, tf, gdf8, and dlx2) were informative in this cross. In addition to UNH 

markers used in the previous tilapia haploid map, 156 new UNH markers were 

newly designed for this mapping. One hundred fourteen (73%) were informative 

and of the remaining 42 markers, 17 markers were homozygous. The other 25 

markers were difficult to score because of multiple, complex peaks. The allele 

size in the F2 and PCR annealing temperatures for the informative markers are 

listed in Table 2-2.

Linkage Map

Five hundred forty (98%) of 551 markers showed detectable linkage to 

another marker by LOD score of 3.0 or higher. Eleven markers appeared to be 

unlinked to any other markers. Forty-seven of 540 failed to be placed in this 

map. The linkage map consists of 25 linkage groups spanning 2345 cM with
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average spacing of 4.77 cM (Figure 2-1). The size of the linkage groups, 

excluding unlinked markers and unplaced markers, range from 6 to 264 cM 

(mean: 94 cM). The number of markers per linkage group varies from 5 to 59. 

The largest interval in the linkage map is 36.6 cM in LG10. These results are 

summarized in Table 2-3.

Sex- Specific, M ags

Sex-specific maps were made with CRIMAP and the two maps were 

compared (Figure 2-2). The sizes for the sex-specific maps and the difference 

between the two maps are shown in Table 2-3. The male map is a little (2.3%) 

longer than the female map. Although the average difference between female 

and male was small, some linkage groups show bigger size differences. For 

instance, the female map is 139.3 cM in LG21 while the male map is only 35 cM, 

which is a 291% difference between sexes (Figure 2-3).

Mapping of Sex Trait

Single marker analysis using the Kruskal-Wallis test detected 6 markers 

(GM271, GM354, UNH168, GM204, UNH131, and GM139) significantly
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associated with the sex trait (Table 2-4). GM271, GM354, and GM139 are 

placed in LG3 and the rest (UNH168, GM204, and UNH131) failed to be 

mapped, even though those were linked to certain markers in LG3 by two-point 

analysis. Only LG3 contains a QTL region for sex in the whole genome analysis 

of this cross (Figure 2-4).
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Discussion

The current tilapia map represents a significant increase in resolution that 

will, I believe, enhance the detection of quantitative trait loci (QTL). In addition, it 

provides good information for comparative linkage maps between tilapia and 

other cichlid species. However, there are a couple of things to be considered 

here. First, the number of linkage groups is greater than the number of tilapia 

chromosomes. One of the possibilities for this phenomenon is that the number of 

markers (or individuals) used for the linkage mapping is still not enough. 

Additional genotyping may link clusters of a few markers with the larger linkage 

groups. Another possibility is that, because of translocation between O. niloticus 

and O. aureus, the linkage map of hybrids may be disrupted. Second, in the 

previous haploid map (Kocher, et al., 1998), map length was estimated about 

1200 cM. However, the estimated map length here is nearly twice as long as the 

haploid map. The haploid map length could be underestimated, if the AFLP 

markers were more highly clustered in narrow regions of chromosomes than 

microsatellite markers were. Variation between two sex maps may contribute to 

the estimation because the first map was only female meiotic map. In tilapia, 

female map length is shorter than male map (Agresti, et al., 2000). This 

overestimated map length may also be related to the inter-specific cross or 

possibly to remaining genotyping errors.
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Most published tilapia linkage maps have some UNH markers in common, 

allowing a comparison among linkage maps. In all of those maps, although the 

number of common markers is still not enough to compare complete linkage 

groups, markers in the same linkage groups are placed together in most cases, 

it seems that the synteny of markers in some regions of chromosomes were fairly 

conservative. Chromosomal reorganization or actual difference in chromosome 

structure could exist among different species or hybrids. Chromosomal inversion 

was reported by comparing the On haploid map (Kocher, et al., 1998) to other 

maps (Agresti, et al., 2000; McConnell, et al., 2000). I extended this observation 

to the interspecific map (LG9). The comparison shows that markers in LG9 are 

consistent with M-2, AXR-1, and McConnell-1 (Figure 2-5). The existence of 

chromosomal inversions may become apparent when different species are 

crossed. Agresti et al (2000) suggested that different species have been shown 

to have the same chromosome number, but the number of arms may be different 

because of the chromosomal rearrangements, such as Robertsonian 

translocation or fusions, which can cause different loci to be linked in the different 

maps.

In many organisms, the rate of genetic recombination is not uniform along 

the chromosomes or between sexes. When meiotic recombination rate varies 

between the two sexes, it is usually the heterogametic sex that has suppressed 

recombination (Haldane, 1922). This rule holds for most mammals such as 

human (Dib, et al., 1996), dog (Neff, et al., 1999), pig (Marklund, et al., 1996),
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and mouse (Dietrich, et a!., 1996). Although many fish species do not have 

heteromorphic sex chromosomes, some of them showed different recombination 

rates between sexes. In zebrafish, nearly all linkage groups showed that 

recombination is dramatically suppressed in male meiosis compared to the 

female meiosis. Most of the decrease in male recombination relative to female 

recombination takes place around the centromere and near the telomeres. This 

trend partially explains why the male map is suppressed relative to the female 

map in zebrafish (Singer, et al., 2002). The tilapia sex-specific maps show that 

the female map is a little shorter than the male map (2.3%). The recombination 

rate between sexes, however, varies among linkage groups, unlike in zebrafish 

where the length of male maps is definitely shorter than that of female maps in all 

linkage groups. Of 25 tilapia linkage groups, the male map is longer in 13 

linkage groups and the female map is longer in 12 linkage groups (Figure 2-4). 

The magnitude of sex-specific differences in recombination rate is variable in 

every linkage group. For LG21, the female map is 291% longer than male map 

and for LG18, the male map is 70.3% longer than female map.

A well-saturated linkage map is a very useful tool for QTL analysis. I used 

the linkage map to identify a QTL for sex. MapQTL (ver. 4.0) successfully 

localized the sex trait near 6 markers in LG3. However, three of those markers 

could not be placed in the map by the CRIMAP algorithm. The sex-associated 

markers in LG3 shows unusual linkage pattern between sexes. In the female 

sex-specific map of LG3, GM271 is closely linked to GM354 and GM139 (8.2 cM
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and 10.7 cM) but in the male map GM271 is located 100 cM far away from these 

markers (Figure 2-2). Two-point analysis data provided by CRIMAP showed that 

the recombination fraction between GM271 and UNH115 was 0.34 in female and 

0.05 in male, while that between GM271 and GM354 was 0.04 in female and 

0.00 in male. Based only on the data for these 3 markers, one might conclude 

that the recombination rate is very different between sexes. However, the fact 

that three other markers could not be mapped raises the possibility that there 

might be a difference in gene order between sex chromosomes.

CRIMAP provides sex-specific map based on the difference in 

recombination rate in the male and female parents, but cannot detect the 

difference in gene order between the sex chromosomes. CRIMAP put GM271 

100 cM (not linked) away from the GM139 and GM354 in the male map, because 

it could not figure out the suitable distance in the male map with the marker order 

given by the female map. This is likely the reason that the other 3 markers could 

not be placed by CRIMAP.

Sex chromosomes in other species are known to differ by chromosomal 

inversions. Among fish species, the spiny eel (Mastacembelus aculeatus) has 

heteromorphic sex chromosomes which differ by a pericentic inversion (Liu, et 

al., 2002). This tilapia family used for the map was the cross of two species with 

different sex mechanisms between female O. aureus (ZW) and male O. niloticus 

(XY). If there is an inversion between sex chromosomes, the further study will be
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required to understand that this phenomenon is specific to sex chromosomes in 

all tilapia species, to XX/XY system species, or to ZW/ZZ system species.

However, since I know where the chromosomal region controlling sex lies 

on the genome, I can identify it through positional cloning. Gaps between 

markers can be filled by comparative mapping using many ESTs within the 

region to identify synteny between vertebrate or teleost genomes.

Future work should also include the addition of highly conserved type I 

markers to the map so that the tilapia genome can be compared to other 

organisms with homologous markers. The markers linked to the detected QTL 

could be used for a marker-assisted selection (MAS) to maximize productivity in 

tilapia aquaculture.
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Gene
GenBank

Accession No.
Pirmer

Forward Reverse
Polymorhism

btuops AF247120 TGCATGCAAGATTGAAGGAT TGCAATGATATTGGCACCAG (GAA)7
dcS AF182216 AGGGTGAAGGATCCAGGAGT AGGACAGCGCTGCATAGTTC (CA)l3
cski AJ012011 GTCAGTCACATTCCTGGCTG TTCTATGCTCCTGCGGTTTT (GA)29
dlX2 AFS34538/9 GGGTCACCGTTTGGACAG CAGGCTACTTTGTGGATCGG SacI

ifg2/th AH006117 GGGTACAGCCCAGACAACAT TGGTGGTGAAGCGACAGTAA (CT)lS
insulin AF038123 GATCAGATCATGTCGGCTCA ACAGCCCTGTGAAGAGATGG (CA)17
mhcl AJ577831-6 TGTCCYGAGTGGGTGAAGAAGTAT GGRAGWCTTCTGRAGGAGAGACA Length
gdf8 AF197193 GGAAATGACTTAGCTGTGACCTC TGAAATCTTCACCTCCATGAAC Length
pax9

prolactin
AFS34548/9

X92380
TCCGAAACAAGATTGGGAAT 
AGTTT TCGTGTCTTGTGGGG

GAGTGGGCACTTTGGACG
TTTGAATGGATGCAACAGGA

Mnll
(CA)34

rasgrf2 U63663 CTTGATCACCCCACCAAACC TGGGTCTCCAAACATTCACA (C A )ll
transferrin A3312311 CCATTAGGTGGTGTGCTGTG GAACCAGACCACACTTTCCAG Length

uvops AF191221 AGCTGCTGGGTGCTCTGA CT GCAACCT GCAGAGGAAAC (TCAA)12
w tl AF534550/1 CAGTGCCGTCTTTAAAGTmG CACACACATTCAGCACGAGTT N la lll

Table 2-1. Accession numbers, primer sequences and polymorphisms of Typel 
markers placed in the linkage map.
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Marker Allele size

PCR

T em p Marker Allele size

PCR

T e m p Marker Allele size

PCR

T e m p

UNH719 124, 126 50C UNH890 244, 254, 270 52C UNH951 195, 206 55C

UNH735 168, 178, 182 50C UNH891 167, 172, 159 55C UNH952 191, 193 55C

UNH738 157, 171 50C UNH896 157, 227, 234 55C UNH954 135, 185 55C

UNH773 207, 211, 253 50C UNH898 274,280 55 C UNH957 161, 174, 176 55C

UNH817 99, 119 50C UNH899 146, 166, 172 55C UNH958 143, 153, 155 55C

UNH83Z 189, 193, 195 50C UNH901 145, 159, 161 55C UNH960 130, 177 55C

UNH840 131, 138, 140 55C UNH904 136, 146, 164, 134 55C UNH961 191, 195 55C

UNH841 114, 156 52C UNH905 146, 151, 198 55C UNH965 179, 192, 174 55C

UNH843 109, 120, 124 55C UNH906 152, 154, 156 55C UNH967 116, 217, 161 55C

UNH844 98, 104, 116 55C UNH907 122, 139 55C UNH968 196, 201, 209 55C

UNH845 175, 181 55C UNH908 107, 163, 178 55C UNH970 89, 94, 114, 152 55C

UNH846 173, 203 55C UNH909 238, 246, 286 50C UNH971 201, 214, 234 55C

UNH848 180, 192, 205 55C UNH910 93, 107 55C UNH973 127, 132, 147, 136 55C

UNH849 155, 191 52C UNH911 140, 144, 147 55C UNH974 177, 222, 185 55C

UNH851 117, 122, 111 55C UNH913 98, 109, 115 55C UNH977 132, 152, 143 55C

UNH853 172, 174, 186 55C UNH914 162, 183, 146 50C UNH979 239, 251, 269 5 SC

UNH854 225, 229 52C UNH915 145, 147, 153 55C UNH980 212, 221, 223 55C

UNH855 152, 162 55C UNH916 135, 163, 142 55C UNH982 106, 120, 130 55C

UNH856 189, 197 55C UNH917 197, 222 55C UNH985 133,155 55C

UNH857 147, 179 52C UNH918 105, 134 55C UNH986 193, 204, 266 55C

UNH858 257, 280 50C UNH919 182, 188, 192 53C UINH988 204, 210, 207 55C

UNH860 191, 229, 233, 241 55C UNH920 150, 260 50C UNH989 142, 150, 152 55C

UNH863 140, 164, 169 55C UNH921 199, 211, 215 53C UNH990 150, 155, 162 55C

UNH865 218, 228 50C UNH923 131, 151 55C UNH991 164, 166 55C

UNH866 153, 162 55C UNH925 220, 242 55C UNH993 161, 186, 190 55C

UNH868 216, 220 50C UNH927 196, 204, 229 53C UNH994 204, 215, 223 55C

UNH869 149, 151 55C UNH929 134, 172 53C UNH995 219, 236 55C

UNH871 219, 328 50C UNH931 199, 203, 240 53C UNH996 194, 204, 206 55C

UNH874 209, 219, 236, 225 55C UIMH932 122, 124, 143 53C UNH997 125, 130 55C

UNH875 135, 150 52C UNH933 241, 243, 245 53C UNH998 112, 116, 120 55C

UNH876 217, 247, 249 52C UNH934 221, 241 53C UNH999 108, 110, 105 55C

UNH878 155, 166, 171 55C UNH937 187, 193 53C UNH1000 136, 143 55C

UNH879 195, 203 55C UNH940 153, 157, 189 53C UNH1003 167, 189, 160 55C

UNH880 146, 204, 182 55C UNH942 133, 135 53C UNH1004 166, 177, 185 55C

UNH884 105, 127, 145 55C UNH943 137, 146 53C UNH1005 144, 157 55C

UNH886 163, 172, 174 55 C UNH946 153, 178 55C UNH1007 155, 247 55C

UNH887 155, 161, 172, 178 55C UNH948 180, 198 55C UNH1008 95, 99 55C

UNH888 212, 319 55C UNH949 154, 158 55C UNH1009 148, 179, 189 55C

Table 2-2. Allele sizes and PCR annealing temperature for Oreochromis
markers.
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Figure 2-1. Sex-averaged genetic linkage map of tilapia species (Oreochromis 
aureus X O. niloticus).
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LG No. of Markers sex averaged Sex-Sepeciflc (cM) % difference 
female vs maleUNH GM Genes (cM) Female Male

1 9 14 93 80 104.9 -23.7
2 6 7 91.7 52.5 130.7 -59.8
3 3 10 clcnS 105.9 212.6 143.7 47.9
4 10 14 prolactin 120.2 105.7 112.4 -6.0
5 8 8 cski, bluops 104.3 92.6 116.5 -20.5
6 5 5 20.2 23.4 14.9 57.0
7 11 32 igfMh, wt1 168.8 134.1 201.9 -33.6
8 2 3 23.5 20.9 25.7 -18.7
9 6 15 79.6 99.9 53.6 86.4
10 18 40 insulin 264.4 270.1 263.2 2.6
11 7 14 130.7 138.2 125.5 10.1
12 3 15 rasgrf2 104.6 104.9 101.5 3.3
13 8 12 93.8 80.9 105.4 -23.2
14 4 17 134 163.6 109.8 49.0
15 10 14 117.8 118.1 117,6 0.4
16 2 11 dlx2, gdf8 53.4 50.3 37.7 33.4
17 5 13 uvops 112.5 121.9 106.5 14.5
18 9 13 tf 122.6 56.3 189.7 -70.3
19 5 10 pax9 57.9 44 50.4 -12.7
20 7 12 77.1 61.4 94.6 -35.1
21 1 10 52.6 139.3 35.6 291.3
22 6 18 m hd 120.9 111.7 130.5 -14.4
23 5 12 71.5 90.3 52.5 72.0
24 0 5 6 3.7 8.2 -54.9
25 2 3 18.1 17.9 18.3 -2.2

Total 152 327 14 2345.1 2394.3 2451.3 -2.3

% difference is calculated as((female size-male size)/male size)x100

Table 2-3. Summary of Oreochromis spp. genetic linkage map.
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Figure 2-2. Sex specific genetic linkage maps of tilapia species {Oreochromis 
aureus X O. niloticus)
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Map difference between sexes
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Figure 2-3. Map differences between sexes by linkage map. Green triangles 
represent female maps and blue squares show male map.
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Marker K* df p-value Map

GM271 33.689 2 p<0.0001 yes

GM354 28.875 1 p<0.0001 yes

UNH168 20.009 2 p<0.0001 no

GM204 19.108 2 p<0.0001 no

UNH131 15.298 1 p<0.0001 no

GM139 10.599 1 p<0.005 yes

Table 2-4. Sex associated markers detected by the Kruskal-Wallis test at p < 
0.005.
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Kruskal-Wallis analysis for sex
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Figure 2-4. The result of the Kruskal-Wallis test for sex trait on LG3.
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Figure 2-5. Comparison of a linkage group from different tilapia linkage maps. 
UNH9 - female On (Kocher, et al., 1998); AXR-1 and M-2 - male Oa X ROn and
female Om (Agresti, et al., 2000); McConnell-1 - male Oa (McConnell, et al., 
2000); and LG9 -  OaX On.
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CHAPTER 3.

IDENTIFICATION OF A SEX-DETERMINING REGION IN NILE 

TILAPIA ( O R E O C H R O M IS  N !L O T !C U S )  USING BULKED 

SEGREGANT ANALYSIS

Abstract

Sex determination in the Nile tilapia (Oreochromis niloticus) is thought to 

be an XX-XY (male heterogametic) system controlled by a major gene. I 

searched for DNA markers linked to this major locus using bulked segregant 

analysis. Twelve microsatellite markers belonging to linkage group 1 were found 

to be linked to phenotypic sex. The putative Y-chromosome alleles correctly 

predict the sex of 95% of male and female individuals in two families. The results 

suggest a major sex-determining locus within a few centimorgans of markers 

UNH995 and UNH104. A third family from the same population showed no 

evidence for linkage of this region with phenotypic sex, indicating that additional 

genetic and/or environmental factors regulate sex determination in some families. 

These markers have immediate utility for studying the strength of different Y 

chromosome alleles, and for identifying broodstock carrying one or more copies
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of the Y haplotype. This chapter has been published as “Lee, Bo-Young, David 

J. Penman, and Thomas D. Kocher, 2003. Identification of a sex-determining 

region in Nile tilapia {Oreochromis niloticus) using bulked segregant analysis. 

Animal Genetics 34(5): 379-383”.
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Introduction

Unwanted spawning by tilapia in aquaculture ponds results in 

overcrowding, and eventually the harvest of stunted and unmarketable fish. In 

most culture systems, monosex male tilapia produce greater harvested yields 

than mixed-sex populations. In mixed-sex populations, there is usually a size 

differential between the sexes at harvest, with males up to 50% larger, 

depending on the system (Mair, 2001). Commercial production of tilapia 

therefore relies on the stocking of all-male fingerlings. There are several ways to 

produce all-male fingerlings: manual sexing, interspecific hybridization, hormonal 

sex reversal, and genetic breeding. The sorting of sexes by hand is considered 

inefficient due to the difficulty of accurately sexing fish at small sizes. So, manual 

sexing is now rarely applied to produce monosex progeny. Monosex hybrids 

result from the differences in the sex mechanism between tilapia species. The 

hybrid crosses of most commercial interest are those using O. niloticus females 

(XX) crossed to males of either O. aureus (ZZ) or O. hornorum (ZZ). The major 

disadvantage of hybridization is that hybrids normally exhibit characteristics 

between those of the two parents. Although O. niloticus is considered the best 

species for the tilapia production, the culture performance of O. niloticus hybrids 

is usually inferior to that of the pure species. Hormonal sex reversal is presently 

the most widespread technology in use for production of monosex or near-
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monosex male tilapia, but the issue of legislative approval of the procedure and 

consumer acceptance of hormone-treated fish is a major challenge. Mair et al. 

(1997) developed a genetic breeding program based on a combination of 

hormonal feminization and progeny testing to produce YY supermale (Figure 3- 

1), which can be bred with normal XX females to produce all-male fingerlings. 

However, this method is not entirely reliable, in part because of its technical 

complexity, but also because the sex of tilapia is affected by high temperatures 

(Baroiller, et al., 1995; Abucay, et al., 1999) and may also be influenced by 

additional genes (Mair, et al., 1991; Hussain, et al., 1994; Sarder, et al., 1999; 

Karayucel, et al., 2004), which can cause deviations from the sex ratios predicted 

by simple gonosomal models.

Gynogenesis has been used to study sex determination: if female O. 

niloticus are homogametic (XX), then their gynogenetic offspring should all be 

female. Experimental results generally support this (Penman, et al., 1987), but 

some studies have found a small percentage of males in the meiogynote 

offspring of some females (Mair, et al., 1991; Hussain, et al., 1994; Muller- 

Belecke and Horstgen-Schwark, 1995; Sarder, et al., 1999).

To this point, no other genetic markers for the major sex-determining locus 

in O. niloticus have been described. We have recently constructed a linkage 

map for an interspecific cross of tilapia {Oreochromis aureus X O. niloticus) using 

about 500 microsatellite markers (Chpter 2.). A putative sex-determining region 

was discovered on LG3 in this cross. However, it turned out that these markers
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were not associated with sex in pure O. niloticus families (Table 3-1). In order to 

identify a major sex-determining locus in O. niloticus, I scanned the O. niloticus 

genome using bulked segregant analysis (BSA) and microsatellite markers from 

each linkage group.
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Materials and Methods

Fish families and DNA extraction

Three families of tilapia (Oreochromis niloticus) produced at the University 

of Stirling were used for this study. After sexing by inspection of gonads at 

Stirling, fin-clips from each fish were sent to the University of New Hampshire for 

genotyping. Sample sizes for each family were: Family 2 (12 females and 14 

males), Family 5 (23 females and 23 males), and Family 7 (25 females and 22 

males). DNA was extracted from each fin-clip using a standard 

phenol/chloroform method (Kocher, et al., 1989).

Marker Selection

One hundred and five microsatellite markers were selected at intervals of 

approximately 20 cM, based on a linkage map produced from an F2 population 

from the interspecies cross of O. aureus with O. niloticus (Lee, et al., in prep.; 

Chapter 2). Those markers consisted of 102 microsatellite markers and 3 genes 

(cicnS, rasgrf2, and bluops).
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Bulked Segregant Analysis

To accelerate the identification of sex-linked markers, we used bulked 

segregant analysis (Michelmore, et al., 1991). For each family, we made 

separate pools of male and female DNA. Before pooling, the concentration of 

each DNA was quantified using a DyNA Quant2000 (Amersham Pharmacia 

Biotech, Piscataway NJ) and each DNA was diluted to a final concentration of ~ 

10 ng/ul. This allowed us to equalize the contribution of each individual to the 

pool. For Family 2, all 12 female and 14 male DNAs were used to construct the 

pools. For Family 5, 15 males and 15 females were used, and for Family 7, 22 

males and 23 females were pooled. PCR was performed in a total volume of 20 

ul for 2 min at 94°C followed by 28 cycles of 30 s at 94°C, 30 s at 50-55°C, 60 s 

at 72°C, with a final elongation step of 5 min at 72°C. One member of each pair 

of PCR primers was synthesized with a HEX, TET, or FAM fluorescent label 

(Operon Technologies, Alameda CA). PCR products were run on 4% gels using 

an ABI377 and fragment sizes were analyzed using ABI GeneScan software 

(ver. 3.1.2).

Genotypi.ng.of Individuals
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For those markers that showed a quantitative difference in allelic 

composition in the pooled DNA, I repeated the genotyping on individual DNA 

samples using the same PCR conditions described above. I also genotyped 

individuals for additional markers on the same linkage group. Goodness-of-fit 

(G-tests) were used to assess whether there were significant differences in the 

genotypic distributions between males and females (Sokal and Rohlf, 1995).

Mapping of Sex-linked Markers

All genotypes for Family 5 and Family 7 were used to make a linkage 

map. Linkage analysis was performed by CRIMAP (ver. 2.4) using TWOPOINT 

command with a LOD of 3.0. Map orders were decided by ALL and confirmed by 

FLIPS. Sex average map and sex-specific map were made by BUILD.
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Results

Identification of Sex-linked Markers in Pooled DNA.

Eighty of the 105 markers were successfully amplified from all three 

families. Two of these (UNH985 and UNH995) showed segregation differences 

between males and females in Family 5 and Family 7. Figure 3-2 shows the 

chromatograms demonstrating the differences in allelic distribution between 

pools of male and female DNA for marker UNH985. The 133 bp allele of 

UNH985 was found at high frequency only in the male pools. This result 

encouraged me to repeat the genotyping on individual animals for these and 

other linked markers. Figure 3-3 shows sex-specific maps of this linkage group. 

The female map is 32 cM longer than the male map.

Analysis of Sex-associated Markers on Linkage Grounl.

The genotypic proportions in males and females, and the associated G- 

tests, are shown in Table 3-2. All of the markers on linkage group 1 (LG1) 

showed significant differences in genotypic frequency between males and 

females in Families 5 and 7. I analyzed the inheritance of multilocus haplotypes
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in Families 5 and 7, and scored the proportion of individuals whose phenotypic 

sex was consistent with the hypothesized Y chromosome (Figure 3-4). The 

graph shows a peak around 50 cM in females and 60 cM in males, which 

corresponds to markers GM201, UNH995 and UNH104. Flanking markers show 

a decreasing correspondence with phenotypic sex, as recombination breaks up 

the sex-linked haplotype. However, significant associations are seen with 

markers as much as 30 cM from the peak.
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Discussion

To our knowledge, this is the first report of DNA sequence markers linked 

to sex in tilapia. We detected significant differences in genotypic proportions, 

suggestive of a Y-haplotype, for 12 microsatellite markers on LG1 (Figure 3-5). 

The sex-determining locus appears to lie near markers GM201, UNH995 and 

UNH104. The microsatellite genotype in this region predicts phenotypic sex with 

95% accuracy in Families 5 and 7. The remaining 5% of individuals whose sex is 

opposite to expectation can be attributed to errors in phenotyping, recombination, 

or the action of additional genetic or environmental factors affecting sex 

determination. If genetic, these factors may be identified in larger samples where 

we can genotype large numbers of the exceptional individuals.

Linkage group 1 had no influence on the sex of animals in Family 2, 

despite the fact that all three families came from the same O. niloticus stock. 

Family 2 did not appear to be segregating for the same Y-haplotype identified in 

Families 5 and 7. This result suggests that additional sex-determining factors are 

segregating in this stock, and further reinforces the impression that sex- 

determining systems are highly polymorphic in this group of fishes. Complete 

enumeration of the genes controlling sex in O. niloticus will require analysis of 

many more families and strains from various sources under carefully controlled 

environmental conditions.
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These microsatellite markers have immediate utility for tracking sex-linked 

haplotypes in breeding programs aimed at controlling the sex of fingerlings for 

commercial production. For example, they could eliminate the tedious process of 

progeny-testing males during the production of YY-supermales (Mair, et al., 

1997; Figure 3-1). They can also be used in experiments aimed at quantifying 

the strength of different Y-chromosome alleles from different individuals, strains 

and species.
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Feminization
(estrogen)

Female X Male : progeny ratio 
XX x XY -> XX : XY= 1:1

Male X Female : progeny ratio 
XY x XX -> XX : XY = 1:1 
YY x XX -> XY = all male

Feminization
.(estrogen)

Male X Female : progeny ratio 
YY x XY -> XY & YY = all male

Female X Male : progeny ratio 
XY x XY -> XX : 2XY & YY = 1:3 
YY x XY -> XY & YY = all male 
•Difficulty : the production of few female->

female progeny test w/ XX male

Sexually undifferentiated fry

Cross YY male 

with YY female

Identify YY males 

by progeny testing
Cross YY males 

with XY female

Cross XY females

with normal males

Identify XY female 

by progeny testing

Identify YY genotypes 

by progeny testing

All YY males for use as 

GMT producing broodstock

Figure 3-1. Schematic diagram of the genetic breeding program for the large- 
scale production of YY male broodstock.; Bold type represents hormonally sex- 
reversed fishes.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Family

Population size 

(M/F)

Allele frequencies Genotype frequencies

GM271 GM354 GM204 GM271 GM354 GM204

F2 26 (14/12) 0.375 0.009 0.009 0.267 0.018 0.018

F5 56 (23/33) 0.11 0.58 0.28 0.25 0.7 0.56

F7 49 (23/26) 0.33 NI NI 0.33 NI NI

• N l: Noninformative
• P > 0.05

Table 3-1. G-test of 3 markers in pure O. niloticus families by allele and genotype 
frequency. None of them were sex-associated in these families
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122b p * ^ 28bp

Figure 3-2. Identification of allele frequency differences at marker UNH985 by 
bulked segregant analysis. The chromatograms show that a 133 bp allele is 
present in males (panel A) but not females (panel B) from Family 5. Panels C 
and D show the pattern in males and females from Family 7.
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F a m ilv 2 _______________________ FamilvS............. .........................................   F a a M --------- ,-------------------- i------
Marker Genotypes Female Male G-test Genotypes Female Male G-teSt Genotypes Female Male G-test
GM633 193/195 6 8 0.13 193/193 8 4 5.90 193/202 7 2 6.86

193/205 6 6 193/200 10 7 193/204 4 5
193/204 1 6 202/202 8 2
200/204 4 6 202/204 5 9

GM041 252/240 7 7 0.17 252/252 17 10 4.33* 252/263 19 5 14.75***
252/263 5 7 252/267 6 13 252/267 4 15

GM148 186/186 5 8 0.59 190/186 14 4 17.7*** 190/192 20 4 23.09***
186/180 7 6 190/226 0 9 190/226 2 16

192/186 3 4
192/226 3 5

UNH98S 127/127 5 9 0.82 123/127 11 2 18.04*** 123/133 2 17 26.17***
127/125 5 4 123/133 2 10 123/156 22 4

156/127 8 4
156/134 1 7

UNH931 199/199 6 7 0.16 205/199 9 2 18.58*** 199/218 5 1 19.35***
199/203 6 5 205/240 2 10 199/240 1 8

218/199 10 3 205/218 13 3
218/240 1 7 205/240 2 9

UNH148 150/150 6 9 0.51 152/150 18 3 25.01*** 152/152 22 5 21.47***
150/152 6 5 152/161 3 20 152/161 3 17

UNH213 201/201 5 7 0.16 187/170 1 11 32.42*** 190/170 4 17 20.31***
201/197 6 6 187/201 10 0 190/187 21 4

191/170 2 10
191/201 9 2

GM2Q1 189/174 4 7 0.13 190/188 1 22 45.82*** 190/190 25 4 38.75***
189/208 8 7 190/208 22 1 190/188 0 17

UNH995 206/171 8 7 0.7 165/169 1 11 35.91*** 165/169 24 2 41.38***
206/173 4 7 165/173 7 0 165/219 1 19

169/169 2 11
169/173 11 1

UNH104 169/135 5 6 0.36 129/132 2 11 39.36*** 129/132 23 2 38.98***
169/137 7 5 129/137 8 0 129/179 1 19

132/132 1 10
132/137 11 0

UNH846 205/175 3 8 2.7 185/185 6 0 28.8*** 185/173 5 12 7.32**
205/197 8 5 185/197 14 3 185/175 18 7

185/179 1 11
179/197 2 9

GM2S8 147/128 8 6 1.41 113/113 6 0 28.8*** 113/132 19 7 7.57**
147/132 4 8 113/128 1 11 113/139 6 13

139/113 14 3
139/128 2 9

UNH719 124/101 8 7 0.7 116/109 11 5 15.21** 125/109 8 11 3.93*
124/109 4 7 116/124 1 7 125/123 16 6

124/109 3 0
124/124 2 IP

*P<.05
**P<.01

***P<.001

Table 3-2. Genotypic proportions for sex-linked markers on LG1 in male and 
female Oreochromis rriloticus.
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Figure 3-3. Sex-specific linkage maps for LG1 in Oreochromis niloticus.
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Figure 3-4. Proportion of males (■) and females ( • )  in Families 5 and 7 whose 
phenotypic sex is consistent with the hypothesized Y haplotype on LG1
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Mother Father

-  U N H 148 —  152 —  152 —  152
—  187

-  U N H 213 —  190 —  190

-  GM201 —  190
X

—  190 —  190

-  U N H 995 —  165 —  165 —  169
—  132-  U N H 104 —  129 —  129

—  161

—  170

—  188

—  219
—  179

Y  haplotype

—  152 —  152 — 161 —  152
—  190 —  187

—  170 —  190

—  190 —  190
—  188 —  190

—  165  
—■ 129

—  169
—  132 —  219

—  179
—  165
—  129

Females Males

Figure 3-5. Schema of distribution of parental genotype to male and female 
individuals. Suggestive Y haplotype (bold number) is segregated from father to 
male offsprings. Meiotic recombination was not considered in this diagram.
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CHAPTER 4.

TWO UNLINKED LOCI CONTROLLING THE SEX OF BLUE 

TILAP1A (O R E O C H R O M IS  A U R E U S )

Abstract

Sex determination in the blue tilapia {Oreochromis aureus) is thought to be 

a WZ-ZZ (female heterogametic) system controlled by a major gene. I searched 

for DNA markers linked to this major gene using the technique of bulked 

segregant analysis. I identified 11 microsatellite markers on linkage group 3 

which were linked to phenotypic sex. The putative W-chromosome haplotype 

correctly predicts the sex of 97% of male and 85% of female individuals. The 

results suggest the W locus lies within a few centimorgans of markers GM354, 

UNH168, GM271 and UNH131. Markers on LG1 also showed a strong 

association with sex, and indicate the segregation of a male-determining allele in 

this region. Analysis of epistatic interactions among the loci suggest the action of 

a dominant male repressor (the W haplotype on LG 3) and a dominant male 

determiner (the Y haplotype on LG1). These markers have immediate utility for 

studying the strength of different sex chromosome alleles, and for identifying 

broodstock carrying copies of the W haplotype. This chapter has been published
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as “Lee, Bo-Young, Gideon Hulata, and Thomas D. Kocher, 2004. Two unlinked 

loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92(6): 543- 

549.”
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Introducljop.

Tilapia reach sexual maturity in just a few months and often begin 

reproducing in grow-out ponds before they reach a marketable size, reducing the 

yield and value at harvest. Therefore commercial production of tilapia often 

relies on monosex culture of males. Although it is commonly considered that 

Oreochromis niloticus is the best tilapia species for tropical freshwater culture, O. 

aureus or more often its monosex hybrid with O. niloticus, is grown in some 

regions because of the cold tolerance properties of O. aureus.

Oreochromis aureus has been described as having a predominantly 

female-heterogametic (WZ) system of sex determination (Mair, et al., 1991). 

Crosses of hormonally sex-reversed ZZ phenotypic females with normal ZZ 

males usually produce 100% male offspring, but slight deviations have been 

observed (Hopkins, et al., 1979; Mair, et al., 1987; Lahav, 1993; Rosenstein and 

Hu lata, 1994). Gynogenesis has also been used to study sex determination. If 

O. aureus females are WZ, then a ratio of 1 female (WW): 1 male (ZZ) is 

expected in their gynogenetic offspring. Yet these fish produced a predominance 

of females in the F1 generation. Penman et al (1987) explained this by 

hypothesizing a recombination of sex determining genes in prophase of the first 

meiotic division. Thus a single crossover would yield an all-female (WZ) 

population, while double crossovers would produce equal numbers of males and

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



females. The large number of crossovers suggested a distance of about 25 cM 

between the centromere and the sex-determining genes (Penman, et al., 1987). 

This hypothesis was further investigated by Avtalion and Don (1990), who found 

that WZ females can produce, in all descending gynogenetic generations, 

offspring expressing a male genotype (ZZ) and 2 different female genotypes 

(WW and WZ), thus leading to a greater fraction of female progeny. Further 

studies by Mair et al (1991) confirmed female heterogamety, but also suggested 

the involvement of an autosomal recessive modifier. This study, as well as those 

of Hopkins (1979) and Melard (1995), demonstrated male homogamety for this 

species. A monofactorial sex determination system with two sex chromosomes 

(WZ) in O. aureus was also supported by results from the analysis of progeny 

sex ratios from pseudofemales (Desprez, et al., 2003), who showed that it is 

possible to obtain high proportions of male progeny from successive generations 

of pseudofemales by hormonal sex reversal and progeny testing.

The sex chromosomes of tilapia are relatively undifferentiated. There are 

no gross morphological differences in any chromosome pair that would identify 

the sex chromosomes (Kornfield, 1984; Majumdar and MacAndrew, 1986). 

Campos-Ramos et al (2001) visualized the synaptonemal complex of O. aureus 

and observed incompletely paired segments in the longest bivalent and a smaller 

bivalent, which they suggested could be the sex-determining regions. 

Association between loci with deleterious alleles and distorted sex ratios has 

recently been reported in an inbred line of O. aureus (Shirak, et al,, 2002), but to
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this point, no DNA sequence markers for the major sex determining locus in O. 

aureus have been described. A linkage map for tilapia has been constructed 

using more than 550 microsatellite markers (Lee, et al., in prep.; Chapter 2.). 

Here I used markers selected from this map to rapidly scan the genome for sex- 

linked markers in bulked segregants. I then studied genotypes of individual fish 

to localize the sex-determining regions and study epistatic interactions among 

loci.
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Materials and Methods

Fish source and DNA extraction

A single family of tilapia (Oreochromis aureus), produced at the 

Agricultural Research Organization, Israel, was used for this study. The history 

of cultured stocks of tilapia is typically uncertain, but this stock is to the best of 

our knowledge free of introgression from other species. Crossing males of this 

stock with O. niloticus females results in 100% male offspring, which further 

supports it purity. Offspring were sexed at the age of ~4 months (at a mean size 

of ~25 g) by macroscopic inspection of gonads, or by microscopic examination 

using the technique of Guerrero and Shelton (1974). Fin-clips from each fish 

were then dried and sent to the University of New Hampshire for genotyping. 

DNA was extracted from the fin-clips using the standard phenol/chloroform 

method (Kocher, et al., 1989).

Marker Selection

I selected 119 microsatellite markers, at intervals of approximately 20 cM, 

based on a linkage map produced from an F2 population from the interspecies
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cross of O. aureus with O. niloticus (Lee, et a!., in prep.; Chapter 2;

http://hcgs.unh.edu/comp). Those markers consisted of 92 UNH markers, 24 GM 

markers, and 3 genes (clcn5, rasgrf2, and uvops), all of which are deposited in 

GenBank.

Bulked Seareaant Analysis

To accelerate the identification of sex-linked markers, I used the technique 

of bulked segregant analysis (Michelmore, et al., 1991). I made separate pools 

of 24 male and 24 female DNAs. Before pooling, the concentration of the DNAs 

was quantified using a DyNA Quant2000 spectrofluorometer (Amersham 

Pharmacia Biotech, Piscataway NJ) and each DNA was diluted to a final 

concentration of ~ 10 ng/ui. This allowed equalization of the contribution of each 

individual to the pool. PCR was performed in a total volume of 20 ul for 2 min at 

94°C followed by 28 cycles of 30s at 94°C, 30s at 55-60°C, 60s at 72°C, with a 

final elongation step of 5 min at 72°C. One primer in each pair was labeled with 

a HEX, TET, or FAM fluorescent dye (Operon Technologies, Alameda CA). PCR 

products were separated on an ABI377 DNA sequencer and fragment sizes were 

analyzed using ABI GeneScan (ver. 3.1.2) software (Applied Biosystems, Foster 

City CA).
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egaQtypiDfljandLStatistics

For those markers that showed a qualitative difference in allelic 

composition in the pooled DNA, I repeated the genotyping on individual DNA 

samples from 48 females and 45 males using the same PCR conditions 

described above. I genotyped these individuals for all available markers on LG1 

(9 markers) and LG3 (11 markers) (Table 4-1). Goodness-of-fit (G-tests) were 

used to assess whether there were significant differences in genotypic 

distributions between males and females (Sokal and Rohlf, 1995). Significance 

thresholds were Bonferroni corrected for the number of chromosome arms (27), 

as reported by Majumdar and McAndrew (1986).

Mapping of Sex-linked Markers

Linkage maps for the sex-linked chromosomes were constructed from the 

segregation in this family. Linkage analysis was performed by CRIMAP (Green, 

et al., 1990) using the TWO-POINT command with a LOD of 3.0. Map orders 

were decided by the ALL routine and confirmed by FLIPS. The sex-specific and 

sex-averaged maps were made using the BUILD command.
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Results

Identification of Sex-linked Markers in Pooled DNA.

Amplification was successful for 102 of the 119 markers. Nine of these 

showed differential allelic segregation between male and female DNA pools. 

Five of these 9 markers (clcnS, GM271, GM354, UNH131, and UNH971) belong 

to LG3. The 256 and 281 bp alleles of CLC5 were more frequent in the female 

pool, while the 191 bp allele was present in both the male and female pools. 

Both sexes had a 193 bp allele at UNH131, but females also carried a 187 bp 

allele (Figure 4-1). Alleles unique to the male pool were found at GM271 (121 

bp) and GM354 (129 bp). UNH971 had 230 bp and 234 bp alleles in both pools 

but the female pool had a unique 213 bp allele and the male pool had a unique 

215 bp allele.

Two markers on LG1 (UNH213 and UNH868) also showed a difference 

between the male and female pools. UNH213 showed a 170 bp allele in both 

sexes and an extra 226 bp allele in the female pool. UNH868 showed 220 bp in 

both sexes, an additional 224 bp in the female pool and a 216 bp allele in the 

male pool.

The other two markers (GM210 and UNH129) appear to be false 

positives. I tested another marker (UNH424) located only 5 cM from GM210, but
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it showed no difference between the male and female pools. The extra band in 

the female pool for UNH129 was determined to be extraneous signal bleeding 

from an adjacent lane of the gel.

Analysis of Individual Genotypes

These preliminary results encouraged me to individually genotype animals 

for these and other markers on LG1 and LG3. The genotypic proportions in 

males and females, and the associated G-tests, are shown in Table 4-1. The 

strongest associations were with a female-determining haplotype on LG3. All 

individuals with the 187 bp allele at UNH131 were females. Figure 4-2 plots the 

proportion of individuals whose phenotypic sex was consistent with the 

hypothesized female chromosome. The graph shows a broad peak around 30 

cM in females, which corresponds to markers GM354, UNH168, GM271 and 

UNH131. Flanking markers show a decreasing correspondence with phenotypic 

sex, as recombination breaks up the association with the putative female 

haplotype. All males are homozygous for a haplotype marked by a 193 bp allele 

at UNH131.

This family is also segregating for a male-determining factor on LG1 which 

is epistatic to the locus on LG3. Individuals homozygous for the 193 bp allele at 

UNH131 can be either male or female, depending on their genotype for the locus
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on LG1. All 193/193 (UNH131) individuals with an 189 bp allele at UNH104 were 

males (Table 4-2). Ten of the 193/193 (UNH131) individuals not having the 189 

bp allele at UNH104 were male, but five were phenotypic females.

Although our family sizes are small, there are some clear differences in 

the pattern of recombination in the male and female parents (Figure 4-3). The 

male map shows reduced recombination in the vicinity of the sex-determining 

locus on both LG1 and LG3, and an expansion relative to the female map in 

distal regions. These large variations along the chromosome make it difficult to 

tell which sex has greater recombination on average, and we cannot yet relate 

the pattern to the location of centromeres.
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I detected two unlinked loci which interact to determine sex in this family of 

O. aureus. The interpretation of the data, and the use of the WXYZ notation for 

sex-determining loci (or chromosomes), is as follows:

The first locus is located on LG3. Significant differences in genotypic 

proportions, suggestive of a W-haplotype, are detected for 11 microsatellite 

markers on this linkage group. The sex-determining locus appears to lie near 

markers GM354, UNH168, GM271 and UNH131. The 193 bp allele at UNH131 

is a marker for the Z allele, and the 187bp allele is a marker for the W. Hence, 

the ZZ genotype corresponds to the homozygote 193/193 while the WZ genotype 

is represented by the 187/193 heterozygote. Essentially 100% of the individuals 

with the W haplotype are females.

Among ZZ individuals, sex is primarily determined by the genotype of 

markers on LG1. This second locus is closely associated with marker UNH104. 

An ’XY’ sex determining locus at this position was also detected in two O. 

niloticus families described in Lee et al (2003). The 189bp allele at UNH104 is a 

marker for the Y chromosome and any alternative allele is a marker for the X 

allele. Hence, the XY genotype corresponds to heterozygotes carrying the 189 

bp allele, and all other allelic combinations at UNH104 represent the XX 

genotype. ZZ individuals carrying a putative Y haplotype are 100% male.
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These results suggest that the XY and WZ systems are not allelic. This is 

in contrast to the assumptions of many previous theoretical treatments of the 

system. Most tilapia geneticists publishing in the late 1970’s assumed that 

maleness in the WZ system would be determined by the action of a male- 

determining Z, rather than the absence of a dominant female determiner (W). 

According to a four gonosome model, O. niloticus would consist of XX females 

and XY males, while O. aureus would consist of WZ females and ZZ males, 

where Z=Y. Hybrid crosses of presumptive XX O. niloticus females with 

presumptive ZZ O. aureus males would be expected to produce all-male (XZ) 

offspring.

A dilocus genotype, however, must be considered here. As the allelic 

state for the LG3 WZ locus in O. niloticus, or the allelic state for the LG1 XY 

locus in O. aureus was not known, the O. niloticus female was considered as 

(??XX) and the O. aureus male as (ZZ??). The hybrids are then (Z?X?) and 

expected to be largely male, but may show some proportion of females 

depending on their genotype for additional sex-modifying loci. Pruginin et al 

(1975) observed anywhere from 52-100% males in such pair crosses. This may, 

however, have been the result of using impure/contaminated stocks of one or 

both species. Later studies carried out in Israel have shown that 100% males 

can be obtained when ‘good’ stocks are being used (e.g. Lahav and Lahav, 

1990; Hulata, et al., 1995). These ‘good’ stocks have presumably been purged 

of any sex-modifying variation. The presence of both males and females in the
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putative ZZXX genotypic class of our family is consistent with the influence of 

additional ‘autosomal’ loci affecting sex ratio.

It is now commonly accepted [e.g. Wohlfarth and Wedekind (1991) and 

Trombka and Avtalion (1993)] that sex determination in tilapias is based on major 

(sex chromosome) genes and minor (autosomal) modifiers. The LG1 locus 

identified in the present work may well be the ‘autosomal locus’ suggested by 

Hammerman and Avtalion (1979), affecting sex ratios through epistatic 

interactions with the major WZ locus located on LG3 in O. aureus. This same 

locus, probably inherited by both O. aureus and O. niloticus from a common 

ancestor, could in turn be the major sex-determining gene operating in O. 

niloticus. It should be noted, however, that this notation does not fit exactly the 

model of Hammerman and Avtalion (1979). They based their model on an 

assumption that each species (both males and females) is homozygous for a 

different allele at the modifying autosomal locus, which becomes heterozygous in 

the hybrids. If our LG1 locus is that autosomal modifying locus, then it appears 

to have different allelic combinations in males and females of O. aureus.

The results of this study are largely consistent with the model of Mair et al 

(1991). They postulated a WZ sex chromosome system with an autosomal 

recessive allele inducing female sex. Because the homozygous ZZXX animals in 

our family are of mixed sex (67% male), additional genetic factors may be 

affecting determining the sex of these homozygotes. It is worth noting that no 

effect of the putative WZ locus was observed in three families of O. niloticus
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(Lee, et al., 2003; Chapter 3). This species may be fixed for a Z-like ailele at the 

LG3 locus.

Sex-specific spatial variation in recombination rate has been observed in 

several fish species. Sakamoto et al (2000) observed much higher rates of 

recombination near the centromere in female rainbow trout. Conversely, male 

recombination rates were higher in the telomeric regions. A similar sex-specific 

pattern of recombination was observed in this study, and a centromere will be 

predicted to be near UNH131. In medaka, male recombination is suppressed in 

the region around the sex-determining gene and female recombination is 

suppressed in the telomeric regions (Kondo, et al., 2001). The results of tilapia 

are also consistent with these patterns, suggesting they may be general for 

teleost fishes.

Theses studies begin to explain the variety of sex ratios which have been 

observed in pure and hybrid crosses of tilapia species. These DNA markers 

have immediate utility for tracking sex-linked haplotypes in breeding programs 

aimed at controlling the sex of fingerlings for commercial production. They also 

can be used in experiments aimed at quantifying the strength of different W- and 

Y-chromosome alleles from different individuals, strains and species. Marker- 

assisted selection could then be used to select genotypes which give a higher 

percentage of males for commercial production.
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LG3 LG1
Marker Genotvces Female Male G-test Marker Genotypes Female Male G-test
GM139 193/193 6 1 35 .58*** GM041 232/232 8 18 8.03

193/223 14 16 232/238 26 20
193/218 13 0 238/238 13 5
218/223 3 21

UNH213 170/170 18 32 10.6*
GM354 129/137 4 24 78 .69*** 170/226 30 13

129/169 4 19
137/137 23 0 UNH148 161/148 28 12 9.2
137/169 17 0 161/157 19 31

GM271 121/125 5 28 5 4 .4 *** GM201 165/179 13 10 20.89**
125/125 34 1 165/204 16 1

179/190 9 19
UNH168 158/170 3 22 8 4 .11 *** 190/204 9 15

158/174 4 23
170/174 24 0 UNH104 137/185 16 1 20.94**
170/170 16 0 137/189 14 16

181/185 11 11
UNH131 193/193 5 35 75 .69*** 181/189 6 17

187/193 38 0
UNH995 174/223 16 2 14.54

UNH115 168/182 8 24 66 .04 *** 174/228 10 14
168/184 21 0 219/223 9 7
170/182 2 18 219/228 9 16
170/184 16 1

UNH868 220/216 20 33 9.28
CLC5 191/256 1 18 57 .89 *** 220/224 26 11

191/281 16 0
191/191 13 24 UNH846 179/203 10 8 11.55
256/281 12 0 179/213 15 3

203/213 8 15
GM024 117/142 16 1 44 .65 *** 213/213 13 18

117/154 13 1
125/142 9 22 GM258 130/130 15 2 11.83
124/154 2 16 130/174 14 17

174/174 19 25
UNH971 214/230 18 1 4 4 .4 ***

214/234 15 2
216/230 10 23
216/234 3 17

GM1S0 132/132 32 14 16.6**
132/186 13 34

GM635 226/226 15 22 31 .18 ***
226/228 18 0
228/228 7 19

*p<.05
**p< ,01
***p< .001

Table 4-1. Genotypic proportions for sex-linked markers in male and female O. 
aureus. Asterisks (*) indicate the Bonferroni-corrected p-values for each test.
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193bp

A. UNH131- Male

187bp
193bp

B. UNH131- Female

Figure 4-1. Identification of allele frequency differences at marker UNH131 by 
bulked segregant analysis. The chromatograms show that a 187 bp allele is 
present in females but not males.
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Figure 4-2. Proportion of individuals whose phenotypic sex is consistent with the 
hypothesized female haplotype on LG3. The map spans markers GM139 to 
GM150; markers UNH168 and GM271 both map to 22.6 cM. The parents were 
not informative for marker GM635 (88 cM).
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Figure 4-3. Sex-specific linkage maps for LG3 and LG1 in Oreochromis aureus.
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^ \ U N H 1 0 4

U N H 1 3 1 ^ \
A / A A / 1 8 9

1 8 7 /1 9 3
20 females 

0 males

18 females 

0 males

1 9 3 /1 9 3
5 females 

10 males

0 females 

25 males

Table 4-2. Epistatic interactions of the sex determining loci on LG1 and LG3 in a 
family of O. aureus. TV stands for alleles other than 189 bp at locus UNH104 
(e.g. 137, 181 or 185 bp).
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CHAPTER 5.

COMPARATIVE POSITIONAL CLONING OF CANDIDATE GENES 

IN THE SEX-DETERMINING REGIONS IN TILAPIA

Abstract

A comparative positional cloning strategy, using information from the 

complete human genome and pufferfish sequences, was used to predict the 

candidate genes involved in sex determination of tilapia. BAC clones containing 

genetic markers in the sex-determining regions of LG1 and LG3 were isolated. 

BLAST analyses of shotgun and end sequences of these BACs identified 

syntenic regions among pufferfish, tilapia, and human. A few candidate genes 

include a DEAD box protein, Sox family, and a Lim/homeobox. AFLP/BSA 

analysis identified a few selective primer pairs that appeared to be sex-specific, 

but these polymorphisms did not map in the sex-determining region of LG1 in 

Oreochromis niloticus.
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Introduction

Comparative genomics has played an important role in identifying genes 

(Lander, et al., 2001; Venter, et al., 2001, and Aparicio, et al., 2002). The 

pufferfish (Fugu  rubripes) has been considered as a model organism for whole 

genome sequencing because the Fugu genome has approximately the same 

number of genes as human, even though it has the smallest vertebrate genome 

(400 Mb) (Brenner, et al., 1993). Short introns and a scarcity of repetitive DNA in 

this compact genome simplifies comparative analysis of sequence and the 

identification of genes. Comparative analysis between Fugu and other 

vertebrates has also been considered useful for identifying conserved regulatory 

elements of important genes (Aparicio, 1995). There are several patterns of 

conservation of synteny within genomic sequence between Fugu and human 

(Clark, et al., 2001): complete conservation of gene order (Brunner, et al., 1999), 

conservation of synteny, but not gene order (Gellner and Brenner, 1999), and 

extensive differences in gene order within regions of conserved synteny (Gilley 

and Fried, 1999).

Although tilapia has a genome size 2.5 times bigger than Fugu, it is 

closely related to the pufferfish. The Fugu genome sequence is therefore useful 

for identifying candidate genes by comparative mapping. To identify candidate 

genes responsible for sex determination in tilapia, I took a strategy of
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comparative positional cloning using the results from QTL analyses. This 

approach basically starts with genetic linkage analysis to locate the map position 

of sex determining genes. I have discovered the chromosomal regions on LG1 

and LG3 that are involved in the sex determination in tilapia species, as I 

described in chapter 3 and 4 (Lee, et al., 2003; Lee, et al., 2004). Based on this 

information, I identified the BAC clones corresponding to the genetic markers in 

the sex-determining regions on both LG1 and LG3. I then shotgun-sequenced 

these BACs and performed BLAST analyses to identify syntenic region between 

Fugu and tilapia.

However, the scarcity of markers in the sex-determining region is a major 

obstacle to this strategy. The distances between markers surrounding the region 

are about 10 cM in O. niloticus and 16 cM in O. aureus. So, I also attempted to 

identify amplified fragment length polymorphisms (AFLPs) in the sex-determining 

region by bulked segregant analysis (BSA) (Vos, et al., 1994; Michelmore, et al., 

1991). I also performed BAC end sequencing to facilitate chromosome walking 

of this region. The efforts are focused on O. niloticus, because of the relatively 

smaller gap between flanking markers on LG1.
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Materials and Methods

Pooling of BAC Libraries for PCR Screening

Bacterial Artificial Chromosome (BAC) libraries for Nile tilapia, 

Oreochromis niloticus, were constructed at Tokyo University of Fisheries in 

Japan (Katagiri, et al., 2001). Replicates of the libraries were transferred to 

University of New Hampshire (UNH). A total of 24,000 clones from Library 3 and 

Library 4 were pooled to facilitate PCR screening. Average insert sizes of Library 

3 and Library 4 are 134 kb and 191 kb respectively. These BAC pools provide 

more than 3X coverage of the genome and the probability of finding a given gene 

is expected to be about 95%. The 250 plates have been organized into 10 

groups of 25 plates. Pooling proceeded in five steps using a Biomek 2000 robot 

(Beckman Coulter): 96 well plate -*row pool-* plate pool -*■ superrow and 

supercolumn - *  superpool. In order to improve PCR efficiency in screening BAC 

pools, DNA was extracted from superpools and superrow and supercolumn pools 

by phenol/chloroform extraction.

PCR Screening the BAC Libraries for Sex Markers
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Each PCR was performed in 50 ul reaction containing 1X PCR buffer (50 

ml Kcl; 10 mM Tris-HCI, pH 9.0; 0.1% Triton-X; 2 mM MgCI2), 0.8 mM dNTPs, 0.2 

uM each forward and reverse primer, and 1 U of Taq DNA polymerase in the 

cycling condition: 94°C for 3 min; 35 cycles of 94°C for 20 sec, 50-60°C for 30 

sec, 72°C for 1 min; 72°C for 5 min. Genomic DNA was amplified as a positive 

control. All PCR products were run on 2% agarose gels.

Shotgun Library Construction and Sequencing

High quality BAC DNA was isolated using the Qiagen Large-Construct Kit 

or Psi Big Cloning Kit (Princeton Separations). Isolated BAC DNA was 

resuspended in TE buffer (pH 8.0) and sheared with a Hydroshear 

(GeneMachines) using a #025 orifice, a speed code of 5-6, and 20 cycles of 

shearing. Sheared DNA was end-repaired using the End-lt, DNA end-repairing 

kit (Epicentre), incubating at room temperature for 45 min. Phenol/chloroform 

extraction was performed to remove the enzymes that inhibit the next steps. 

End-repaired DNA was A-tailed by incubating at 70-72°C for 15-30 min in 10 ul 

reaction with Promega Taq buffer, MgCI2, 1 mM dATP, 5 unit Promega Taq. The 

A-tailed inserts were ligated into the ampicillin (Amp) resistant pGEM-T cloning 

vector (Promega) at 4°C for overnight (~15h). The ligation reaction was desalted 

by ethanol precipitation before electroporation into DH10B competent bacterial
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cells (Invitrogen). Transformed cells were grown on X-gal/IPTG/ Amp agar plate 

for 16 hours and white colonies were picked for overnight culture. Inserts were 

then amplified by PCR using the universal primer T7 and M13R. For cycle 

sequencing, PCR products were purified using solid phase reversible 

immobilization (SPRI) (Hawkins, et al., 1994). Cycle sequencing was carried out 

in 10 ul reactions containing 4ul of cleaned PCR products, 0.25 ul T7 primer (10 

uM), 4 ul DYEnamic ET Terminator Cycle Sequencing chemistry (Amersham) 

and 1.75 ul sdH20 . Sequence reactions were cleaned up using Sephadex G-50 

(Amersham) and were run on an ABI377 automated DNA sequencer.

BLAST Analysis

Sequences from shotgun libraries were edited and trimmed to remove 

vector and ambiguous sequences using Sequencher™4.1 (Gene Codes 

Corporation, Ml). BLAST (Basic Local Alignment Search Tool) analyses were 

performed at the NCBI (http://www.ncbi.nlm.nih.gov) and JGI {Fugu version 3.0) 

(http://genQme.ias-psf.Qrg/fugu6.home.html). BLASTn (nucleotide sequence 

comparisons) and/or BLASTx (translated nucleotide sequence compared to 

protein database) were done against both databases. BLAST hits with e-scores 

of 1 e-05 or smaller were retained for further analysis.
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AFLP/BSA Analysis

From each of two informative Nile tilapia families used in Chapter 3 to 

identify the sex-determining regions, I constructed two phenotypic pools of 10 

male or 10 female fishes based on genotypes at flanking markers. The final 

concentration of DNA from each individual in the pool was 10 ng/ul. DNA were 

digested with both EcoR1 and Msel and ligated with adaptor pairs (EcoRl F: 5’ 

CTCGTAGACTGCGTACC 3 ’ and R: 5’ AATTGGTACGCAGTCTAC 3’; Msel F: 5 ’ 

GACGATGAGTCCTGAG 3’ and R: 5’ TACTCAGGACTCAT 3 ’) simultaneously in 

one reaction that contained 1X T4 DNA ligase buffer (30 mM Tris-HCI, pH=7.8; 

10 mM MgCI2; 10 mM DTT; 1 mM ATP), 50 mM NaCI, 50 ng/ul BSA, 1 unit Msel, 

5 units EcoRl, 1 unit T4 DNA ligase, 50 pmol Msel adaptor pair, 50 pmol Msel 

adaptor pair and 5 pmol EcoRl adaptor pair. This reaction was incubated at 

37°C for 2 hours and was then diluted 1:20 with TE/10. The diluted restriction- 

ligation reaction was then PCR amplified using pre-selective primers to create a 

quantity of partially selected DNA fragments. Preselective primers contained one 

additional selective base beyond the adaptor sequence (Eco R  I-5’ 

GACTGCGTACCAATTC[A] 3 ’, Msel 5 ’ GATGAGTCCTGAGTAA[C] 3 ’), which 

reduced the fragment complexity 16-fold. The cycling conditions were as follows: 

72°C for 2 min; 20 cycles of 94°C for 20 sec, 56°C for 30 sec, and 72°C for 2

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



min; and finally a hold at 60°C for 30 min. Preselective reactions were diluted 1: 

20 with TE/10 and used for selective PCR with selective primers (1 pmol EcoRl 

primer and 5 pmol Msel primer). The selective primers contained two additional 

selective bases beyond that of the preselective primers, which further reduced 

the fragment complexity a factor of 256. The cycling conditions for the selective 

amplification were: 94°C for 2 min; 10 cycles of 94°C for 2 min, 66°C 30 sec, 

72°C for 2 min decreasing 1°C after each cycle; 20 cycles of 94°C for 20 sec, 

56°C for 30 sec, 72°C for 2 min. All selective reactions were run on an ABI377 

automated sequencer and gels were analyzed with GeneScan (ver. 3.1.2). 

(Applied Biosystems). AFLP markers that were specific to one phenotypic pool 

were then tested on each individual in the family. The genotypes were coded as 

dominant markers and then mapped in the sex-determining region by CRIMAP.

BAC End Sequencing

For each sequencing reaction, the BAC clone of interest was cultured in 

1.5 ml LB with chloramphenicol at 37°C for 20h. DNA was isolated using QIAgen 

R.E.A.L. prep kit and isopropanol precipitation. The pellet was resuspended in 

12 ul water. DNA was preheated at 96°C for 5 min, prior to adding sequencing 

premix. Cycling sequencing was carried out in 20 ul reactions containing 8 ul 

DYEnamic ET Terminator Cycle Sequencing chemistry (Amersham), 2 ul
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universal sequencing primer (10 uM), and 10 ul of preheat DNA in the cycling 

condition as follows; 100 cycles of 95°C for 20s, 50°C for 15s, and 60°C for 60s. 

Sequence reactions were cleaned up using Sephadex G-50 (Amersham) and 

were run on an ABI 377 automated DNA sequencer.

Mapping Putative Sex Locus

The putative sex locus was mapped in the sex-determining region using 

CRIMAP. Males were considered affected individuals (heterozygotes) and 

females were scored as unaffected individuals (homozygotes).
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Results

Shotgun Sequencing Results of Sex-associated Markers on LG3

Nine markers in the sex-determining region on LG3 were screened to 

identify corresponding BAC clones. BAC clones were identified for six markers 

(GM354, GM204, GM271, CLCN5, GM180, and UNH115) but not for 3 markers 

(UNH131, UNH135, and UNH168). For the 6 markers, each marker was located 

in 2 -4  clones that were used to detect contigs in the FPC database. Each 

marker had 1-3 contigs including the BAC clones identified by PCR at a tolerance 

of 5 and e-value of 1e-7. One of the BACs in each contig was chosen for making 

a shotgun library. Table 5-1 summarizes the results, including BLAST analysis of 

the sequences. Based on the sequencing results, many repetitive DNAs seem to 

be accumulated in this region. Many shotgun sequences hit repetitive elements 

such as SINE, LINE, reverse-transcriptase, and non-LTR retrotransposable 

element. Especially, sequences from BACs containing GM204 and GM271 hit 

nothing but repetitive DNAs. From the other libraries, a few sequences blasted 

to the same Fugu scaffold. Three sequences from BAC clone b04TI056AD04 

(GM180) hit Fugu scaffold 4353 that includes the region of diacylglycerol kinase 

(DGK). Three sequences from b03TI064CB12 and five from b04TI076CC06 hit 

Fugu scaffold 733 containing Tumor necrosis factor family (TNF) genes. Six
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sequences, from both b03U064CB12 and b04TI076CC06, hit chloride channel 

protein 5 (clcn5, Fugu scaffold 5668). Three sequences from b04TI056AD04 hit 

scaffold 4353 and two of them hit the gene diacyglycerol kinase, delta (DGKD). 

Four sequences from b04TI059DG05 hit unannotated portions of Fugu scaffold 

2144. Four hundred fifty sequences were obtained from b03TI066DH01 

(GM354). Nineteen of them aligned with almost the first half area of the scaffold 

1833 that contains annotated genes of phosphoinositide 3-kinase (PIK3) and 

diacylglycerol acylfransferase (DGAT) (Figure 5-1). The other half of this Fugu 

scaffold is annotated as containing HMG group genes such as sry or sox family.

Sequence Analysis of Sex-Determining Region in LG1

More than 35,000 clones of tilapia (O. niloticus) BAC libraries were 

restriction fingerprinted and FPC analysis was performed to construct contigs 

(Katagiri et al., in prep). Since two markers (UNH104 and UNH995) showed a 

strong association with sex determination with 95% accuracy in Nile tilapia, I 

screened pools of BAC libraries in order to identify BAC clones containing those 

markers. According to the result of PCR screening, the two markers were very 

closely linked to each other in the genome because both markers detected the 

same 4 BAC clones (b03TI094AA08, b03TI094DB09, b03TI094DF07, and 

b04TI071CD06). Using FPC analysis, I was able to identify a relatively reliable
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contig containing 22 BAC clones including the 4 clones isolated by PCR under 

the value of t5 1e-7 (Figure 5-2). However, I couldn’t find the BAC clones for 

another strong sex-specific flanking marker (GM201) with PCR screening.

In order to obtain the sequences from the contig containing BACs for 

the markers (UNH995 and UNH104), I chose 4 BAC clones (b04TI073CB11, 

b04TI079DH06, B04TI071CD06, and b03TI094DB09) that cover the whole contig 

and made shotgun libraries. By the shotgun sequencing, a total of 581 

sequences were obtained and were subjected to BLAST analysis. The BLAST 

results are summarized in Table 5-2. An average of 6.1% of the sequences 

represent repetitive DNAs (SINE, LINE, Rex6 retrotransposon, transposase, 

reverse transcriptase) and an average of 4.9% of the sequences showed strong 

similarity to zebrafish repetitive DNAs. Of 4 BAC clones sequenced, 

b03TI094DB09 showed more than 10% of sequences hit repetitive DNAs. There 

were a few Fugu scaffolds that more than 2 sequences are blasted to, but 

unfortunately, the scaffolds are not annotated by genes. Of 581 sequences, 44 

sequences from three adjoining clones (b04TI071CD06, b04TI079DH06, and 

b04TI073CB11) and 22 sequences from 2 clones (b04TI071CD06 and 

b04TI079DH06) in this contig hit scaffold 670 and 1924 respectively. Three BAC 

clones (b04TI071CD06, b04TI079DH06, and b04TI073CB11), seem to be in a 

syntenic region with the Fugu scaffold 670 (130 kb) and 2 clones (b04TI071 CD06 

and b04TI079DH06) with the scaffold 1294. Based on information provided by 

Greg Elgar, (UK Human Genome Mapping Resource Centre), the Fugu scaffolds
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670 and 1924 made a supercontig with other scaffolds, 3165, 2342,1832,10868, 

and 1946. Also, 2 sequences from b04TI071CD06 and b03TI094DB09 hit 

another scaffold 2342, which is one of the scaffolds consisting of the Fugu 

supercontig (Figure 5-3). The 44 sequences that hit scaffold 670 are distributed 

along the whole scaffold, including intergenic regions and predicted genes 

(Figure 5-4). The gene models aligned along the Fugu scaffold 670 are 

hypothetical protein FLJ21918, nuclear factor of activated T-cells 3 isoform 3 

(NFATcS), DEAD-box family, talins, tropomyosin, and F-box protein (Figure 5-4). 

Table 5-4 shows the relationship between the shotgun sequences and the Fugu 

gene models annotated on the scaffolds. Of the 44 sequences, 3 showed 

similarity to NFATc3, 10 to FLJ21918, 9 to Talin, and 1 to DEAD box polypeptide 

28 (Ddx28). Of 22 sequences from scaffold 1924, 10 showed similarity to 

autocrine motility factor receptor (AMFR), 2 to glucosamine-phosphate N- 

acetyltransferase, and 1 to leukotriene B4 receptor (LTB4R). Most of the genes 

hit by the sequences appeared to be located in human chromosome 15 and 16. 

FLJ21918, NFATcS, Ddx28, AMFR are in chromosome 16 and Talin2 in 

chromosome 15. A BAC end sequence (M13F) of b04TI025AC01 in this contig 

hit ISL2 transcription factor containing LIM/homeodomain that also resides on 

human chromosome 15. Therefore, the BLAST result showed that the part of the 

sex-determining region in tilapia shares synteny with Fugu scaffold 670 and 

human chromosome 15 and 16.
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Mapping of Sex locus and AFLP Markers

The putative sex locus was placed in the middle of the sex-determining 

region (6 cM away from GM201 and 5.1 cM from UNH995). Out of 128 selective 

primer pairs, 2 markers (MCTT/EACG -382 and MCAC/EAAC-391) showed sex- 

specific patterns in male and female BSA pools in both Families 5 and 7 (Figure 

5-5). However, neither marker fell in the sex-determining region, and instead 

mapped 2-3 cM away from the region (Figure 5-6). Another marker (MCTA 

/EAAG-425) was informative in Family 7 but not in Family 5. Without any 

information from Family 5, mapping analysis put this marker to the same place as 

UNH995. Comparing sex specific maps, recombination appears restricted in 

males (Figure 5-6).

Identification of Candidate Genes

Based on BLAST analyses, one of 169 sequences from BAC 

b04TI079DH06 hit DEAD box gene family in the scaffold 670. The shotgun 

sequence was an open reading frame (ORF) of 558 bp from which an extended 

sequence was obtained by primer walking on the BAC. The total length of this 

ORF is 1686 bp containing 8 motifs of a DEAD box family (Figure 5-7). The
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BLASTx result of the sequence shows that the gene is significantly similar to 

DDX28 (DEAD box polypeptide 28) of the mouse, rat, and human with e-value of 

e-116, e-113, and e-112 respectively. This might be another novel DEAD box 

gene in tilapia. In addition to shotgun sequences, a BAC end sequence of 

b04Tl025AC01 (M13F) showed a significant hit to potential LIM/homeodomain 

gene.
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Discussion

Comparative positional cloning is a powerful and economical strategy to 

identify candidate genes underlying phenotypic traits. Genes for sex 

determination have been intensively studied in mammals and other vertebrates, 

but have not been as well investigated in teleosts. Some of the candidate genes 

were cloned in tilapia and a few of them were mapped in tilapia linkage map 

(Chapter 1). None of them are located in the sex-determining region that I found 

(Lee, et al., 2003; Lee, et al., 2004).

Analyzing the shotgun sequences from tilapia BAC clones in the sex- 

determining region provides lots of information to identify candidate genes that 

might be involved in sex determination. A BAC contig containing microsatellite 

markers (UNH995 and UNH994) in the tilapia sex-determining region (LG1) 

seemed to share a syntenic region with a Fugu contig containing sequence 

scaffolds 670, 1924, and 2342, which is about 190 kb (Figure 5-3). This region 

appears to be homologous to portions of human chromosome 16 and 15. It is 

difficult to say how well the gene order is conserved between tilapia and Fugu, 

because mapping information for genes in the region of synteny is not available 

in tilapia. By scanning the genes annotated in the Fugu scaffold, potential 

candidate genes for sex determination can be found, such as the DEAD box 

gene in Fugu scaffold 670. The DEAD box gene is a candidate gene for sex
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determination because some members of the DEAD box protein family are 

believed to be involved in embryogenesis, spermatogenesis, and cellular growth 

and division. I was able to obtain the whole sequence of this gene and it will be 

further characterized at the sequence level and in its pattern of expression. An 

end sequence of a BAC in the same contig showed similarity to ISL2 {Islet-2) 

transcription factor, a LIM/homeodomain protein that is also located in human 

chromosome 15. This gene is also a candidate because some homeobox 

proteins of the LIM class, such as Lim1 (Lhx1) and Lhx9, are related to sex 

determination, as I described in Chapter 1. So, obtaining the whole sequence of 

the gene will be useful for further study. The HMG gene on Fugu scaffold 1833 

(Figure 5-1) can also be considered a candidate, because it is likely that Fugu 

and tilapia share synteny at this scale. It would be worth designing degenerate 

primers and mapping this gene in tilapia.

Chromosome walking by BAC contigs and shotgun sequencing across the 

region would be a big assist for comparative positional cloning. Although we 

don’t have information on the precise relationship between physical distance and 

linkage distance, the distance between markers previously identified in the region 

of O. niloticus is about 10 cM, which is probably not small enough for 

chromosome walking by BAC clones. Using the AFLP/BSA technique, I tried to 

identify more markers that are closer to the sex locus. However only 2.3% of 

AFLP selective primer sets (3/128) produced informative markers and none of

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



them were tightly linked to the sex. Developing more markers by this technique 

does not seem so promising.

There are several obstacles to identify sex-determining genes in tilapia. It 

is known that fish genomes have numerous copies of repetitive DNAs 

accumulated in the sex-determining region. In tilapia, CillNE2 (cichlid LINE2) 

and Ron-1 (SINE-like repetitive for O. niloticus) are enriched in the long arm of 

chromosome 1 (Oliveira, et al., 1999; Harvey, et al., 2002). As shown by the 

sequencing results (Table 5-1 and Table 5-2), repetitive DNA sequences from 

each BAC were about 20% in LG3 and 12% in LG1.

A shortage of genetic markers in the region and furthermore a lack of BAC 

clones covering the gene region are a major hurdle in getting more genetic 

markers. Thus it seems obvious that obtaining genetic markers from the sex- 

determining region is a much less efficient way to approach the sex gene than 

typing more recombinants. Although AFLP put more markers around the region, 

it is difficult to identify more tightly linked markers within the gene region. 

Anyhow it is more sensible that a bigger mapping family is required to dissect the 

tilapia sex-determining region. Meanwhile, BAC-based chromosome walking 

could be a useful strategy. However, I have failed to identify BAC clones 

harboring several sex-associated markers, including GM201 that is one of the 

boundary markers surrounding the sex-determining region. So, high-density 

BAC filters prepared may need to be screened to isolate the BACs for more sex- 

associated markers.
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Comparative mapping by sequencing analysis and BLAST search as 

described in this study can help find candidate genes involved in sex 

determination. However, if the genes of sex-determination in tilapia are totally 

novel and do not have similarity to the genes identified in other teleosts, it would 

be difficult to find the genes by comparative mapping. Strategies using cDNA or 

expression difference in developing gonads might be useful for identifying genes 

involved in sex determination.
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Marker
No. of clones 

by PCR screening

No. of 

Contigs

BAC clones 

representing the contig

No. clones 

in the Contig

No.of

sequences

Repetitive 

DNA (%)

Zebra fish 

DNA (%)

Fugu scaffold 

(No. of seqeunces)

Genes hit

GM354 3 3 b03TI062CG03 2

b03TI066DH01 4 450 3.3 2 1833 (19) PI3K, DGAT

b04TI004DB08 singleton
GM204 2 2 b03TI070BF03 4 ■

b04TI071BH02 5 96 19.8 6.3 -

GM271 4 2 b04TI074AA04 4 179 17.9 5 -

b04TIQ56BC05 singleton 77 19.5 7.8 - \
CLCN5 2 1 b03TI064CB12 20 144 11.8 3.5 733 (3) TNF, CLCN5

b04TI076CC06 126 6.3 3.2 733 (5) TNF

5668 (3) CLCN5

GM180 4 1 b04TI056AD04 6 72 11.1 1.4 4353 (3) DGKD I

UNHH5 3 1 b04TI059DG05 9 63 17.5 12.7 2144 (4) !

Table 5-1. The results of screening, fingerprinting, and shotgun sequencing of BACs for markers in the sex- 
determining region of LG3. Genes hit were based on the combined result from BLASTn and BLASTx against JGI 
Fugu and NCBI data bases.
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Figure 5-1. Fugu scaffold 1833 with viewer of Fugu assembly (ver. 3.0). Many data sets have been aligned to the 
sequence assembly to aid comparative analyses. User Blast represents all pieces of shotgun sequences that hit 
scaffold 1833 from shotgun library of BAC clone b03TI066DH01.
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Figure 5-2. A BAC contig identified by screening markers UNH995 and UNH104 
in LG1 and FPC fingerprinting analysis (t5, e-7). Those two loci might be located 
in the area between the dotted lines. 4 BACs highlighted with green were used 
for shotgun sequencing. The orientation of the contig is unknown.
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BAC ID

NO. o f  

sequences

R epetitive Zebrafish

DNA ( % )  DNA (% )

Scaffolds 

(No. o f h it)

Gene

(hum an chromosomal position)
b 03T I094D B 09 168 10.7% 2.9% 4730 (2 )  

4666 (2 ) 
4390 (3 ) 
4 0 7 1 (2 )

b04T I071C D 06 129 7 .8% 8.5% 670 (6 )  

4666 (2) 
1924(7)

hypothetical protein FLJ21918 (16q22.1) 

AMFR (16q21), STYX*

b 04T I079D H 0 6 172 4 .1% 2.9% 670 (21)

2082 (5 ) 
1924(14)

hypothetical protein FU 21918 (16q22 .1) 
NFATc3 (16q22.2)
DEAD box helicase;ddx28 (16q22.1) 

AMFR (16q21)

b 0 4 T I7 3 C B ll 115 1.7% 5.2% 670 (17 )  
2159 (2 )

Talin 2 (15q21)
hypothetical protein MGC15619

Table 5-2. The results of BAC shotgun sequencing and BLAST analysis in the sex-determining region of LG1. 
Asterisk (*) represents the gene not annotated in the corresponding Fugu scaffold.
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Figure 5-3. Diagram showing a putative synteny of Fugu scaffolds and tilapia 
sex-determining region of LG1 by BLAST analyses. Numbers in the parenthesis 
indicate number of sequences.
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Fugu Scaffold 

(N o. of h it)

Gene model annotated Human

Chromososme
670 (44) hypothetical protein FU 21918 *

NFATc3*
DEAD box helicases;ddx28* 
Talin*
tropomyosin 
F-box only protein 22

16q22.1
16q22.2
16q22.1

15q l5-q21

15q23

1924(22) 3',5'-cyclic AMP phosphodiesterase 
ebiP2441 [Anopheles gambiae str. PEST] 
glucosamine-phosphate IM-acetyltransferase* 
AMFR*
leukotriene B4 receptor (LTB4R)*

10q21.1

16q21
1 4 q ll .2 -q l2

2 0 8 2 (5 ) non-LTR retrotransposable element 
gag polyprotein/similar to gag-protease

4666 (4 ) no annotation

4071 (3) no annotation

2159 (2) F U 10 58 1 /C G I-150 protein 
FU 12614 (similar to red-1-gene) 
hypothetical protein MGC15619*

17p l3 .3
17p l3 .3

12q24.13

2998 (2) Kinesin-like protein KIF3A 5q31

2342 (2) SH3 domain-binding protein 
reverse transcriptase-like protein

Xq21.1

4390 (3) no annotation

Table 5-3. Summary of Fugu scaffolds blasted by shotgun sequences, gene 
models annotated along the scaffolds, and the most likely homology with the 
human genome. The scaffold numbers were based on the result of shotgun 
sequences in LG1. Asterisk (*) represents the gene that the sequences actually 
hit.
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Figure 5-5. Identification of sex-specific AFLP marker (MCTT/EACG-382) in O. 
niloticus sex-determining region using BSA analysis. A. Family 5 male pool; B. 
Family 7 male pool; C. Family 5 female pool; D. Family 7 male pool. Only male 
pools show the 382 bp peak.
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Figure 5-6. Mapping of AFLP markers (green) and the putative sex locus (red) in 
LG1 by CRIMAP (ver. 2.4). The sex locus was mapped as in disease loci; male 
was considered to be affected individuals (heterozygotes) and female as 
unaffected individuals (homozygotes).
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-264 ACA AAA CAC ATG AGT TGA ATC GGG ATT CGG CTT TTC TGT ACA CCT CGT CAC GCC ACG CCC
T K H n S B I G I R L F C T P R H A T p

-204 ACT GAC ATC ATC AGC ACT CGC CGG GAA AGC ATG GCG ACA TGA CTG TCT AGT ATA TAA TTT
T D I I S T R R E S M A T L S S I . F

-144 CTG CGC CTT TTT GGA CTT TTA TAT TGT CTT TTG TGG AAT TAC AGT TAA TTT AAT TAG CTT
L R L F G L L Y C L L W N Y S . F N . L

-04 TAT TTC CAA ATT TTT ATG GTT CGG TTT TGC TGC TTT TTC TCG TCA GCT GAC CTT TGG ACA
Y F Q I F n V R F C C F F S S A D L tf T

-24 CTT GCG AGC GTT TAA GTA TTT AAA ATG CAG GCT GTG AAG GTC GCC CAT CTG GCT TTG GTA
L A S V » V F K n <1 A V K V A H L A L V

37 GCG TCC AGA GCT CTC GGA TCA AGA AGA TTG TGT TGC TGT GAG CTT TTT AAA GCG TCG GCT
A S R A L G S R R L C C C E L F K A S A

97 TGC CTT CGG TCT CTC GGT CAG AGT CGC TTC TGT CAG ACT GGA GCA GAG ACC GCG GTC ATT
C L R S L G Q S R F C Q T G A E T A V I

157 CGT ATT CCC CGG TAC CTG CAG AGA CGC GTT GAA AAC GTG AAG GAA ATT CGA AGC AAA AGC
R 1 P R Y L Q R R V E N V K E I R S K S

217 AAG ATC AAC ACC ATC AAA GCT GGA AAG CTC CTC ATC CAG AGC AAG AAC CCA GCT CTG AAC
K I N T I K A G K L L I H S K N P A L N

277 CAG TCT GCC GGA TAC ATA CTG GGA AAA TTC GAG CAG CCT TCT CTT TGC TCC AAA GGA TGG

Q S A G Y I L G K F E Q P S L C S K G W
337 AAA CAT AGC AAA TCA TTC GGT GAC TAT TTC AGC ATC AAC AAC GTC AAG GCT GTT GCA CCT

K H S K S F G D Y F S I N N V K A V A P
397 TAT GTT GCT GAA AAC TGG AAT GAG GAC GGT GGA CAG AAG CCG CTA GCC ACT TTT AAT AAT

Y V A E N W N E D G G Q K P L A T F N N
457 CTC CAC ATC TGC AAG GAG CTA GTG GAG ACT TTA GAG ACT CTC AGT ATT AAA CAT CCC ACC

L H I C K E L V E T L E T L S I K H P T
517 ACT GTG CAG CTT CAG ACC ATC CCC AAA GTC ATG AGA GGT CAC AAT GTA CTC TGT GCT GCi*

T V Q L T I P K V n R G H N V L C A A
577 GAG ACT GGC A G £ GOG AAG ACG CTG AGT TAT CTC CTA CCT GTT ATT CAC AGA CTG CAG GCT

E T G S G K T L S Y L L P V I H R L q A
637 GAT AAG GAG TCT GAA AGT TAC TCT GAG AGT GCA CAC AAG ATA TGC ACT GTG GTA CTC GTG

D K E S E S Y S E S A H K I C T V V L V
697 CCT TCA sSA GAG CTG GCG GAG CAA GTG GCA GCT GTG TCC AGG ACT CTG TGT GCG CCA TTT

P S R E L A E Q Y A A V S R T L C A P F
757 GGT TTC GTT ACA AGG ACC GTT GGA GGA GGA CGA GGT GTG GGA CAC ATC AAG ACA GTC TTC

G F V T R T Y G G G R G V G H I K T V F
817 AGG AGG GAT CAT CCG GAT ATT TTA GTG GCT ACG CCA GGT GCT CTG GTC GCC CTG CGG

R R D H P D 1 L V A T P G A L V K A L R
877 AGG CGT TGT CTG GAT TTG AGT GAG CTG AGG TTC TTT GTG GTC GAT GAG GCT GAC ACG ATG

__R R C L__ D _ L__ S E L R F _ F_ V _._ V__ _D_ _E _ A D T M
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937 TTC GAC CCC AGC TTT TCT GAC ATG CTG GAG AAC ATC CTG CTC CAC GTC AAC GTT GCT AGT

F D P S F S D If L E N I L L H V N V A S
997 GAT CCC AAG GAA ACA CGT GGC CTG GGT CAC AAA GCA CAG CTC CTC GTG GTT GGG GCA ACT

D P K E T R G L G H K A Q L L V V G A T
1057 TTT CCA GGT GGT GTG GGC GAC GTG CTC AGC AAG GTG ACG GAT CTT GGA AAA ATA GTT ATT

F P G G V G D Y L S K V T D L G K I V I
1117 ATC AGG AGC AAG ATG CTG CAC TTT CTT ATG CCC CAT GTT AAA CAG ACA TTC CTG AAG GTA

I R S K M L H F L If P H V K Q T F L K V
1177 AAA GGT GCA GAC AAG ATC CTA GAG CTC CAC CAA GCT CTG AAG CTG CTG CAG CAA GAC AGA

K G A D K I L E L H Q A L K L L Q Q D R
1237 GGT GGA GGC GCA CTT CTG GTG TTC TGC AAC AAA TCT TCC ACC GTC AAC TGG GTT GGA TAC

G G G A L L V F C N K S 3 T V N tf V G Y
1297 TCG CTT GAA GAG ATG GGG GTA AAG CAT GCA CGT CTC CAA GGG GAG ATG CCT GCT GCT GTG

S L E E H G V K H A R L Q G E M P A A V
1357 CGT GCC GGA ATC TTC CGT TCC TTC CAG AAG GGC AAT GTA GAC GTG CTA ATA TGC ACA GAC

R A G I F R S F Q K G N V D V L I C T D
M l? ATT GCC TCA CGT GGC CiU GAC ACA TCC AGA GTG CGC TTG GTG GTC AAC TAT GAC TTC CCA

I A S R G L D T S R V R L V V N Y D F P
M77 GAA TCC CAC ACG GAC TAT ATC CAC C M GCA GGC AGA GTA GGG AGA GCA GGT GGT GTA GAG

E S H T D Y I H R A G R V G R A G G V E
1537 GAT GGG GAG GTG CTC AGC TTT GTC ACC CAT CCC TGG GAT GTG GAG CTG GTG CAG AAG ATT

D G E V L S F V T H P W D V E L v Q K I
1597 GAG ACA GCT GCA CGC AGG AGA TTG AGC TTG CCA GGC ATG GAG TCT GAC ATA CAT GAA CCC

E T A A R R R L 5 L P G M E S D I H E P
1657 AAG CCC ATT ACA TTA AAT GAA ATG GAG TAG ATG TTT TTG TGT GTT TGT TAT TTA AAT GCA

K P I T L N E M E , M F L C V C Y L N A
1717 AAA CAT GGA ACA GAA TAG ATT TTA AGG AAT GGC TAT TTG AGA CTA AAA TGC AGT CAA AAC

K H G T E , I L R N G Y L R L K C S Q N
1777 AGC TAC ACC CAT GTG TCT GTG ACT TGC AAA TGT TAG ATT ATT GGA AGT CTT GCC ATT TTT

S ¥ T H V S V T C K C . I I G S L A I F
1S37 CCC TGA ATA CAA CTG AAC GCT TTA GTT GGA GAA CTA TAA AGC TCA CGT TAA GGA AGA TTG

P , I Cl L N A L V G E L g S S R g G R L
1897 TGT GTG CTT CAC ATC TGA ATG TAT T

C V L H I M Y

Figure 5-7. Sequence of a novel DEAD box gene in tilapia. Green letters 
underlined represent motifs of DEAD box gene family.
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