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ABSTRACT

GENETIC DIVERSITY AND STRUCTURE OF CALANOID COPEPODS: 
MOLECULAR EVOLUTIONARY PATTERNS IN COASTAL ESTUARIES 

(ACARTIA TONSA) AND THE OPEN OCEAN (CALANUS SPP.)

By

Robert Sean Hill

University of New Hampshire, December 2004

Calanoid copepods are an important part of marine and estuarine ecosystems. However, 

it has been difficult to study their life histories, population structure, and evolution 

because they share a conserved morphology that complicates species identification. A 

primary focus of this study was the genetic and physiological variation of the calanoid 

copepod Acartia tonsa from four estuaries along the East Coast of the USA (Great Bay, 

NH, Buzzards Bay, MA, Narragansett Bay, RI, and Beaufort Inlet, NC). Based on DNA 

sequence variation for the mitochondrial cytochrome oxidase I (mtCOI) gene, significant 

population structure was observed between all pairs of estuarine populations (€ » s t  > 0.9, p 

< 0.0001), except for those of two neighboring estuaries, Buzzards Bay and Narragansett 

Bay. Based on amplified fragment length polymorphism (AFLP) markers, significant 

population structure was observed between Buzzards Bay and Narragansett Bay (0 B = 

0.042, 95% Cl: 0.024 -  0.065). Individuals from the four estuarine populations were 

shown to interbreed with each other in reciprocal crosses in laboratory cultures. Crosses

xi
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between individuals from Great Bay, NH and the other populations failed to produce 

fertile offspring. Thus, according to both the biological and evolutionary species 

concepts, the Great Bay, NH population of A. tonsa should be considered to be a different 

species from the Buzzards Bay, MA; Narragansett Bay, RI; and Beaufort Inlet, NC 

populations. Comparisons of physiological responses to high and low temperatures of 

Great Bay and Beaufort Inlet populations yielded evidence of significantly different 

responses to temperature extremes. Attempts to induce females to lay diapause egg by 

exposing them to low temperatures and short photoperiods produced only quiescent eggs. 

It was concluded that the currently identified group of A. tonsa contains at least two 

cryptic species that are genetically diverse, potentially evolutionarily and taxonomically 

distinct, and morphologically identical. The second focus of this study was a parallel 

analysis of nine species of Calanus based on DNA sequence variation of mtCOI. There 

was significant genetic divergence between all species, which was used to reconstruct the 

phylogenetic relationship among the species. The molecular phylogeny was in good 

agreement with hypotheses of evolutionary relationships based on morphological 

characters. The DNA sequences were also used to develop a PCR-based molecular 

protocol to rapidly identify four of the species of Calanus with very similar morphologies 

and overlapping geographic ranges. Considered together, the results of these studies 

showed that the conserved morphology of the calanoid copepods harbor a large amount 

of genetic diversity, which can be used to identify species and reconstruct their 

evolutionary relationships. These studies have also indicated that the true diversity of 

calanoid copepods is yet to be discovered.

xii
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CHAPTER I

INTRODUCTION

Copepods, a subclass of the phylum Crustacea, may be the most numerous multicellular 

organisms on earth (Mauchline 1998), yet their true diversity is poorly understood 

(Humes 1994). Currently, there are approximately 11,500 known species of copepods 

divided among about 2 0 0  families, however some estimates suggest that this number 

represents only 15% of their actual diversity (Humes 1994).

The order Calanoida is of particular importance to marine and estuarine ecosystems 

because they are a dominant primary consumer and are consumed by everything from 

invertebrates to fish larvae to whales (Mauchline 1998). However, their conserved 

morphology has made taxonomic identification and classification difficult (Bucklin et al. 

1997; Bucklin et al. 1999; Bucklin et al. 2003). This has made it difficult to study the life 

histories, population structure, diversity, evolutionary histories, species interactions, and 

ecosystem dynamics of these important organisms in a wide range of environments, from 

coastal estuaries to the open ocean.

This study has a primary focus - on the calanoid copepod Acartia tonsa. Acartia tonsa 

was originally described by Dana (Dana 1849) from samples collected at Port Jackson, 

Australia. Giesbrecht (Giesbrecht 1892) latter identified A. tonsa off the coast of Chile 

and Peru. Acartia tonsa was identified in the USA at Woods Hole, Massachusetts

1
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(Wheeler 1900), San Diego, California (Ritter 1904), and Narragansett Bay, Rhode Island 

(Williams 1906). It has subsequently been described in estuaries or coastal regions in the 

western Atlantic seaboard from Nova Scotia to Argentina, in the eastern Pacific from 

northern California to Central America, and in estuaries along the east Atlantic seaboard 

from Norway to Spain and the Mediterranean Sea (Heinle 1966a; Uye and Fleminger 

1976; Paffenhofer and Steams 1988; Sabatini 1990; Tester and Turner 1991; Garmew et 

al. 1994;Table 1-1). It is unlikely that the copepod originally described by Dana in 

Australia is conspecific with the copepod referred to as A. tonsa today, which is 

morphologically more similar to the samples described by Giesbrecht (Ferrari 1989). 

European populations may have been derived from American populations via transport in 

ship ballast water (Remy 1927). Acartia tonsa around the world likely comprises native 

populations, transported populations, and/or misidentified populations, and it can be 

difficult to distinguish among these.

Populations of A. tonsa along the East Coast of the USA south of Cape May, New Jersey 

are present in the water column year round, while northern populations over-winter as 

dormant eggs and are replaced in the water column by A. hudsonica (Zillioux and 

Gonzalez 1972; McAlice 1981b; Durbin et al. 1990). McAlice (McAlice 1981b) has 

theorized that A. tonsa invaded areas north of Cape Cod approximately 7,000 to 9,500 

years ago and became isolated from each other and from the southern populations 2 , 0 0 0  

to 5,000 years ago when they were forced into estuaries by changing sea levels.

Acartia tonsa is an ideal model estuarine organism. It is easily cultured (Heinle 1969; 

Stottmp et al. 1986), has a short generation time (about 20 days at 18°C; Stottrup et al. 

1986), produces large broods (an average of 18/day per female at 18°C with a total

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

Location Country State/Region Reference

New Burswick Canada

Inner Bay of Fundy

Saint John River 
Shediac Bay 
Trinity Bay

N orthumberland Strait

Annapolis River
Gulf of Maine; Gulf of St
Lawrence
Great Bay
Barnstable Harbot
Boston Harbor and Cape Cod Bay
Cape Cod Canal, Buzzard Bay, and
Cape Cod Bay
Narragansett Bay

Long Island Sound

Raritan Bay
Navesink and Shrewsbury Rivers 
Patuxent River Estuary 
Chesapeake Bay 
York River
Newport River Estuary 
North Inlet

Georgia Estuaries

Biscayne Bay 
Florida Bay
Fort Myers Beach (Gulf side) 
Phosphorescent Bay 
Northern Gulf of Mexico 
Mississippi
Mouth of Mississippi River
Lake Pontchartrain
Louisiana
Calcasieu estuary
Corpus Christi, Copano-Arans as
Bay System
East Lagoon

Laguna Madre

San Antonio Bay
Chetumal Bay

Bojorquez lagoon 

Urias Estuary
Lagoon complex of Chelem 

South Sinaloa

North America, East Coast 
Canada

Canada

Canada
Canada
Canada

Canada

Canada
USA/
Canada
USA
USA
USA

USA

USA

USA

USA
USA
USA
USA
USA
USA
USA

USA

USA
USA
USA
USA
USA
USA
USA
USA
USA
USA

USA

USA

USA

USA
Mexico

Mexico

Mexico
Mexico

Mexico

New Brunswick 
New Brunswick 
Newfoundland 
North West 
Atlantic 
Nova Scotia

Maine

New Hampshire
Massachusetts
Massachusetts

Massachusetts

Rhode Island 
New York/ 
Connecticut 
New Jersey 
New Jersey 
Maryland 
Maryland/V ir ginia 
Virginia 
North Carolina 
South Carolina

Georgia

Florida 
Florida 
Florida 
Puerto Rico

Mississippi
Mississippi
Louisiana
Louisiana
Louisiana

Texas

Texas

Texas

Texas

Quintana Roo

Sinaloa
Yucatan

(Ketchum et al. 1952) 
(Dabom and Brylinsky 
1981)
(Carter and Dadswell 1983) 
(Citarella 1982)
(Napolitano et al. 1997)

(Citarella 1999)

(Corkett 1981)

(McAlice 1981a)

(Caudill and Bucklin 2004) 
(Ketchum 1954)
(Turner 1994)

(Anraku 1964)

(Williams 1906)

(Conover 1959)

(Jeffries 1962)
(Shaheen and Steimle 1995) 
(Heinle 1966b)
(Storms and Taylor 1972) 
(Jeffries 1962)
(Steams 1984)
(Lonsdale and Coull 1977) 
(Stickney and Knowles 
1975)
(Woodmansee 1958) 
(Kleppel and Hazzard 2000) 
(Gunter et al. 1948)
(Rios Jara 1998)
(Chen and Marcus 1997) 
(Perry and Christmas 1973) 
(Turner 1984)
(Darnell 1961)
(Park et al. 1989)
(Vecchione 1991)

(Kalke 1980)

(Ambler 1983)
(Buskey and Stockwell 
1993)
(Matthews 1981)
(Suarez 1994) 
(Alvarez-Cadena et al.
1996)
(Alvarez and Cortes 1990) 
(Escamilla et al. 2001) 
(Hendrickx and Sanchez 
Osuna 1983)_____________

Table 1-1
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4

Location Country State/Region Reference
South America, East Coast

La Habana Bay Cuba (Diaz Zaballa and Gaudy 
1996)

Saco da Mangueira Brazil Lagoa dos Patos (Montu and Gloeden 1982)
Cananeia Lagoon Brazil Neotropical (Ara 2001)
Patos Lagoon Estuary Brazil southern (Abreu et al. 1994)
Solis Grande Uruguay (Gomez et al. 2000)
Valdes Peninsula Argentina (Vinas 1991)
Bahia Blanca Bay Argentina Buenos Aries (Hoffineyer 1987)

North America, West Coast
Alviso Pond, San Francisco Bay USA California (Carpelan 1957)
La Jolla USA California (Esterly 1920)
San Diego USA California (Ritter 1904)
Los Angeles Harbor USA California (McConaugha 1976b)
South Pedro Bay USA California (McConaugha 1976a)
Tampa Bay Florida USA California (Hopkins 1977)
San Ramon Beach USA California (Jimenez 1989)
Southern California: Cape

T7QA r y n A

Medocino to Magdalena (Baja Uij.A. anu
IVyfpYtpn

California (Fleminger 1964)
California) IV lvA lvU

Bahia Magdalena Mexico (Palomares and Gomez 
1996)

Lagoon of Yavaros Mexico Sonora (Turcott 1977)
South America, West Coast

Arauco Guld Chile (Bernal et al. 1986)
North of the Humboldt Current Chile (Escribano and Hidalgo
region off Chile 2000)
Central Chile Chile (Peterson et al. 1988)
area between Los Vilos and Chile (Rosales and Sepulveda
Valparaiso 1992)

Mejillones Bay Chile Northern (Hidalgo and Escribano 
2001)

Between Valparaiso, Chile and 
Callao, Peru

Chile and 
Peru (Giesbrecht 1892)

Cabo Nazca Peru (Smith et al. 1981)

Berre Lagoon
Venice Lagoon (Northern Adriatic 
Sea)

Po Delta, Sacca di Goro 

Gulf of Riga, Baltic Sea

Black Sea 

Azov Seas
Caspian and Azov Seas 
Warri River

Europe, Mediterranean
France Mediterranean

Italy

Italy

Estonia/Latv
ia
Mixed
(South
Eastern
Europe)
Ukraine
Russia
Nigeria

Northern Adriatic 
Sea

Northern Black Sea

(Gaudy and Pagano 1987) 

(Comaschi et al. 1994)

(Sei et al. 1996)

(Berzins 1940)

(Belmonte et al. 1994)

(Prusova et al. 2002) 
(Prusova et al. 2002) 
(Oronsaye 1993)

Table 1-1, continued
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5

Location Country State/Region Reference

Horsea Lake, England (man made) 
River Tyne Estuary 
Solent-Southampton Water 
estuarine system

Buchan area

South Coast of Finland 
Copenhagen Harbor 
Balsfjorden
Vistula Gulf of the Baltic Sea 
Pomeranian Bay (Southern Baltic 
Sea)

Southern Baltic Bay

Northern Wadden Sea of Sylt 
Kiel Bay and adjacent waters 
(southwestern Baltic)
Darss-Zingst Estuary, Southern
Baltic
Kiel Bight
Schlei Fjord, Western Baltic 

Ems estuary (North Sea)

Netherland
Westerschelde and the Gironde 
Oosterschelde Estuary 
Sluice-dock at Ostend Belgium 
Arcachon Bay 
Harbour of Dunkirk 
Tagus Estuary 
Sado Estuary
Mondego Estuary_______________

Europe, Northern
UK
UK

UK

UK

Finland
Sweden
Norway
Poland
Germany/
Poland
Germany/
Poland
Germany

Germany

Germany

Germany
Germany
Germany/
Netherlands
Netherlands
Netherlands
Netherlands
Belgium
France
France
Portugal
Portugal
Portugal

Scotland 

South Coast

Northern

South West

Western

(Lucas 1996)
(Matthiessen et al. 1998)

(Castro 2001)

(Kiorboe and Johansen 
1986)
(Vorstman 1946) 
(Andersen et al. 1998) 
(Noixbin et al. 1990) 
(Naumenko 2000)

(Schmidt et al. 1998)

(Thiel 1996)

(Martens 1981) 

(Madhupratap et al. 1996)

(Arndt and Schnese 1986)

(Voss 1991)
(Plaga 1983)
(Baretta and Malschaert 
1988)
(Redeke 1934) 
(Tackxetal. 1995) 
(Bakker et al. 1988) 
(Tackx and Polk 1982) 
(Vincent et al. 2002) 
(Brylinski 1981)
(Sobral 1985)
(Monteiro 1995) 
(Azeiteiro et al. 2000)

Port Jackson
tropical meromictic lake in New 
Guinea

South Pacific 
Australia

New Guinea

(Dana 1849)
(De Meester and Vyverman
1997) _______________

Table 1-1, continued: Partial listing of estuaries and coastal regions where Acartia tonsa has been 
described, divided by geographic region.

female production of 46-614 eggs; (Crokett 1967), and has free falling eggs that are easy 

to collect The populations along the east coast of the USA north of Cape Cod are 

restricted to estuaries (Paffenhofer and Steams 1988; Tester and Turner 1991), while 

those along the West coast of the USA reside in coastal waters. Like most copepods, 

their development consists of six naupliar stages, five copepodid stages, and an adult 

stage (Sabatini 1990). Adults are 1 -  1.5mm and they can be sexed during the last
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Figure 1-1: Map of the East Coast of the USA showing the sample collection sites: Great Bay, 
New Hampshire, the dock at the University of New Hampshire’s Jackson Laboratory in Durham, 
NH (43.9075°N; 70.8644°W); Buzzards Bay, Massachusetts, the jetty at Fort Rodman Military 
Reservation in New Bedford MA (41.5963°N; 70.8995°W); Narragansett Bay, Rhode Island, the 
pier at the University of Rhode Island’s Narragansett Bay campus in Narragansett, RI 
(41.4916°N; 71.4195°W); and Beaufort Inlet, North Carolina, off the Fivers Island Road Bridge 
over Gallants Channel in Beaufort, NC (34.7200°N; 76.6731°W).

copepodid stage. Egg production has been widely used as an indicator of fitness to 

measure the effects of various environmental conditions including: suspended sediment 

(White and Dagg 1989); exposure to toxins (Johansen and Mohlenberg 1987); food 

patchiness and perdition (Saiz et al. 1993); seasonal factors (Ambler 1985); and food type 

and quality (Ambler 1986; Kleppel 1992; Dam et al. 1994; Kleppel and Burkart 1995; 

Kleppel et al. 1998a; Kleppel et al. 1998b). However, one study found egg hatching 

success to be a better measure of fitness than egg production (Burkart and Kleppel 1998). 

Acartia tonsa can survive at temperatures up to 42°C and acclimate to temperatures
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Figure 1-2: Mean monthly temperature from September 1997 to June 2001. Reading taken from 
Great Bay, NH (at Adam’s Point by The Cooperative Institute for Coastal and Estuarine 
Environmental Technology (CICEET), data available at http://ciceetunh.edu), Buzzards Bay, MA 
(at Woods Hole by the Center for Operational Oceanographic Products and Services (CO-OPs), 
data available at http://co-ops.nos.noaa.gov/), Narragansett Bay, RI (at T-Warf by The National 
Estuarine Research Reserve System (NERR), data available at http://nerrs.noaa.gov, note that no 
data was available from January 1998 till March 1999), and Beaufort Inlet, NC (at Beaufort by 
CO-Ops).

between -1° and 32°C (Gonzalez 1974). Molecularly, McLaren (Dalhousie University, 

personal communication) has determined the genome size to be between 8.42 x 108 and 

9.37 x 108bp. The number of chromosomes is unknown, but all other Acartia species that 

have been examined have a chromosome numbers of 2N = 12 (female) and 2N = 11 

(male) (Goswami and Goswami 1973).

Estuaries are highly variable environments with special and temporal variation in 

temperature, salinity, nutrients, chemical composition, and other environmental factors. 

The studies presented here focus on A. tonsa from four estuaries along the East Coast of 

the USA (Figure 1-1): Great Bay, New Hampshire; Buzzards Bay, Massachusetts; 

Narragansett Bay, Rhode Island; and Beaufort Inlet, North Carolina. One consistent
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Figure 1-3: Graph showing the mean (middle line), one standard deviation (upper and lower 
limits of the box) and range (upper and lower limits of line) of temperature from Great Bay, NH, 
Buzzards Bay, MA, Narragansett Bay, RI, and Beaufort Inlet, NC using same data as Figure 1-2.

variable among the estuaries is temperature, which shows a regular pattern along the east 

coast of the USA, with ~1°C change in temperature for every 1° change in latitude. This 

can been seen in monthly temperature records from the estuaries included in this study 

(Figure 1-2), as well as in the monthly averages over 5 years (Figure 1-3).

A second focus of the study is evolutionary patterns among species of Calanus, an 

important genus of calanoid copepods found in the open ocean. These species also 

exhibit markedly conserved morphology, with species that are difficult -  or in some cases 

impossible -  to distinguish with morphological characters alone. This comparative study 

demonstrates that the pattern of evolution in calanoid copepods, with significant genetic 

divergence accompanied by little or no morphological divergence, can occur in diverse 

taxonomic groups within the order and in diverse marine environments. The life histories
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of many Calanus species has been describe by Conover (Conover 1988). Detailed 

studies o f the population structure and distribution patterns of Calanus in the North 

Atlantic have been conducted (Daan et al. 2000), many with an emphasis on Calanus 

finmarchicus (Muus 1996).

By examining these estuarine and open ocean populations of copepods, this study seeks 

to address the question: What is the population structure of calanoid copepods and how 

much genetic and physiological diversity is contained within this morphologically 

conserved group? Chapters 2 through 4 of this study examine the differences between 

populations of A. tonsa from the East Coast of the USA. Chapter 2 analyzes the 

population genetic structure using mitochondrial Cytochrome Oxidase I (mtCOI) and 

amplified fragment length polymorphisms (AFLP). Chapter 2 also examines the ability 

of these populations to interbreed with each other. Chapter 3 looks at the physiological 

response of two of the A. tonsa populations to extreme temperatures and chapter 4 

examines the types o f eggs laid by these populations at low temperature with a short 

photoperiod. Chapter 5 uses mtCOI sequence data to reconstruct the phylogenetic 

relationship of 9 Calanus species from the open ocean and utilizes the DNA sequence 

differences to develop a PCR based molecular tool to identify 4 of these species.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER II

POPULATION GENETIC STRUCTURE AND PHYLOGENETIC INFERENCES 
OF ACARTIA TONSA FROM FOUR ESTUARIES

ABSTRACT

The population genetic structure and interbreeding success of the estuarine copepod 

Acartia tonsa collected from four estuaries along the East Coast of the USA were 

analyzed. The copepods were collected from Great Bay, New Hampshire (NH);

Buzzards Bay, Massachusetts (MA); Narragansett Bay, Rhode Island (RI); and Beaufort 

Inlet, North Carolina (NC). The population genetic structure was analyzed using DNA 

sequence from a 713bp fragment of the mitochondrial Cytochrome Oxidase I (mtCOI) 

gene and Amplified Fragment Length Polymorphism (AFLP) fragments from two primer 

pairs. An Analysis of Molecular Variance (AMOVA) of the mtCOI sequence data 

identified significant genetic structure between three groups: NH; MA and RI; and NC. A 

Bayesian population genetic analysis of the AFLP data showed significant genetic 

structure between the MA and RI populations. However, the mean genetic difference 

between the populations suggested there is only a very small restriction on the exchange 

of genetic material between the estuaries. To test the ability of individuals from the four 

collection sites to breed with each other, all combinations of reciprocal crosses were 

established. All crosses produced Fi and F2 generations except when NH males or 

females were crossed with any other collection site. The F 1 progeny of NH crossed with

10
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MA, RI, or NC were all arrested in the third naupliar stage of development. These 

findings indicate that A. tonsa from NH is a different species than A. tonsa from MA, RI, 

and NC based on biological and evolutionary species concepts. Further, this study 

suggests that estuarine copepods (and probably other obligate estuarine organisms) 

harbor a large amount of genetic diversity, and that currently identified species may 

include cryptic species.

INTRODUCTION

The genetic diversity of copepods has traditionally been underestimated, possibly due to 

the morphological similarities that exist even between distantly related species (Bucklin 

et al. 2001; Hill et al. 2001; Rocha-Olivares et al. 2001). Many estuarine copepods have 

been described as having extensive geographic ranges (i.e. A. tonsa, A. clause, A. 

longiremis, Eurytemora affinis, and others). However, growing evidence suggests that 

such species may not constitute a single evolutionary group, or even a single species.

Several studies have reported reproductive isolation between estuarine populations of 

benthic and meiobenthic harpacticoid copepods. Burton and others (Burton and Place 

1986; Burton 1990b; Burton 1990a; Ganz and Burton 1995; Rawson and Burton 2002) 

crossed populations of Tigriopus californicus from several estuaries along the coast of 

California and Baja California and found incompatibilities ranging from reduced fitness 

in the F2 generations to failure to produce viable eggs. A population of Scottolana 

canadensis from the coast of Florida was shown to be reproductively isolated from

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



12

populations along the East Coast of the USA (Maine to South Carolina; (Lonsdale et al. 

1998). Cletocamptus deitersi populations from estuaries in Louisiana, Alabama, and 

California were shown to have large genetic divergences when analyzed with mtCOI and 

m tl6 S rDNA sequence data and are suggested to represent subspecies (though no 

breeding experiments were done; (Rocha-Olivares et al. 2001). Genetic studies on 

another harpacticoid copepod, Microarthridion littorale, revealed significant structure 

between geographically close populations from estuaries off the coast of North Carolina 

and Georgia (Schizas et al. 2002).

Fewer studies have examined population genetics of estuarine species o f planktonic 

calanoid copepods. One study showed that populations of Acartia clausi from the East 

and West Coast of the United States were reproductively isolated from each other 

(Carrillo et al. 1974). A study of two populations of Acartia californiensis (from 

California and Baja California) showed no reduction in fitness in the hybrid progeny 

(Trujillo-Ortiz 1990). Another study examined the population structure of A. tonsa using 

m tl6 s rDNA sequence data from estuaries along the East and West Coasts of the United 

States and the Gulf of Mexico. The study revealed strong population genetic structure 

indicating little migration between estuaries (Caudill and Bucklin 2004). Lee (1999) 

used mtCOI sequence evidence to show multiple freshwater invasions of the estuarine 

and freshwater calanoid copepod Eurytemora affinis.

The objective of this study was to determine the population genetic structure, genetic 

diversity, and interbreeding ability o f populations of A. tonsa from the East Coast of the 

USA. To accomplish this, A. tonsa were collected from four different geographic
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locations along the East Coast of the USA (Great Bay, NH, Buzzards Bay, MA, 

Narragansett Bay, RI, and Beaufort Inlet, NC). These estuaries differ with regard to 

mean annual temperature, tidal influence, predators, and chemical composition. 

Population genetic diversity and structure were examined with two kinds of genetic 

markers, mtCOI DNA sequences and amplified fragment length polymorphisms (AFLP). 

The two types of genetic markers were chosen for their levels of variability. mtCOI 

DNA sequence is a highly variable protein coding sequence of known function with 

strong functional constraints at replacement sites based on analytical data (Brown et al. 

1976; Brown et al. 1982). AFLPs are extremely variable markers representing changes in 

the nuclear genome whose functions are unknown. While the evolutionary pattern of any 

one AFLP fragment is unknown, it is assumed that on the whole they are not under 

positive selection (Vos et al. 1995).

MATERIALS AND METHODS 

Field collections and laboratory culture:

Acartia tonsa adults were collected during the same time period from four locations: the 

dock at the University of New Hampshire’s Jackson Laboratory in Durham New 

Hampshire on Great Bay (43.9075°N; 70.8644°W) on October 31, 2000; the jetty at Fort 

Rodman Military Reservation in New Bedford Massachusetts on Buzzards Bay 

(41.5963°N; 70.8995°W) on November 2, 2000; the pier at the University o f Rhode 

Island’s Narragansett Bay campus in Narragansett Rhode Island on Narragansett Bay
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(41.4916°N; 71.4195°W) on November 2, 2000; and off the Pivers Island Road bridge 

over Gallants Channel in Beaufort Inlet near Beaufort North Carolina (34.7200°N;

76.6731°W) on October 28, 2000. All samples except NC were collected by R. S. Hill 

using a 333pm mesh net with a quart glass jar as a cod end. Samples were collected at 

high tide by tossing the net into the water, letting it sink below the surface, and then 

slowly pulling it up and through the water column. The samples were filtered through a 

2 0 0 0 pm mesh into a clean glass jar and stored in a cooler with ice packs for 

transportation to the laboratory where A. tonsa were identified and removed to a separate 

container. Identification of A tonsa in all cases was based on the morphology of the fifth 

thoracic leg of adult females which is distinct from other Acartia that are found in these 

estuaries, only females were sorted from the collected samples. For the NC samples, net 

tows were made off Pivers Island road bridge and individual A. tonsa were identified by 

Patricia Tester (National Oceanic and Atmospheric Administration, Southeast Fisheries 

Science Center), fed, and placed in a one-quart cooler for overnight shipment to UNH. In 

the laboratory, 20 -  30 fertilized adult females were placed in 2L glass bottles with three 

2L cultures started for each collection site. The bottles were filled with water collected 

with the samples and filtered through a 20pm mesh. Cultures were grown at room 

temperature with a 14:10 hr light:dark cycle. Every other day 200ml of water was 

removed from each culture using a siphon fitted with a 2 0 pm mesh and 2 0 0 ml of 2 0 ppt 

Instant Ocean was added with a mixture of the phytoplankton Rhodomonas salina 

(CCMP1319) and Isochrysis galbana (CCMP1323). The phytoplankton were grown in 

Guillard’s f/2-si media in 33ppt Instant Ocean at room temperature with a 14:10 hr 

lightdark cycle.
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Sequencing of COI:

A 713bp fragment of mitochondrial COI (mtCOI) was sequenced from Acartia tonsa 

individuals from the four collection sites. Genomic DNA was extracted from groups of 

50 adult individuals from each collection site using a phenolxhloroform protocol. The 

mtCOI gene was amplified using the universal PCR primers COI-1490 and COI-2198 

(Folmer et al. 1994). The PCR products were cloned into a pCR-4-TOPO plasmid and 

transformed into TOP 10 Chemically Competent cells using Invitrogen’s TOPO TA 

Cloning Kit for Sequencing following the recommended protocol. Cells were grown and 

plated, and individual colonies were checked for the mtCOI insert by PCR amplification 

with the COI-1490 and COI-2198 primers (Folmer et al. 1994). Plasmid DNA was 

isolated from 30 insert-positive colonies for each collection site using Promega’s Wizard 

Mini Prep System as prescribed. The 96 plasmids were cycle sequenced in both 

directions using Invitrogen’s T3 and T7 sequencing primers with Amersham’s Dyenamic 

sequencing reaction mix and run on an A B I377 sequencer with 96 lanes. The sequence 

data were analyzed and aligned using ProSeq (Filatov 2001). Of the 30 plasmids 

sequenced from each collection site, high quality reads were obtained from 25 NH, 26 

MA, 23 RI, and 24 NC plasmids. Molecular distance, parsimony calculations, and tree 

building were all done using MEGA2 (Kumar et al. 2001). Distance trees were 

calculated using the Tamura-Nei gamma method (Tamura and Nei 1993) and trees were 

constructed using the neighbor-joining method (Saitou and Nei 1987) and bootstrap 

values (Felsenstein 1985). The alpha parameter of the gamma shape distribution used for 

molecular distance calculations was determined using the baseml program in Paml (Yang
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2002). Analysis of Molecular Variance (AMOVA) was done using Arlequin (Schneider 

et al. 2 0 0 0 ).

AFLP analysis:

Genomic DNA was extracted from individual adult A. tonsa using a guanidinium 

thiocyanate protocol which comprised the following steps: 1 . live individuals were 

placed in a 1.5pl micro-centrifuge tube and excess water was removed; 2. 50jil of buffer 

(4M guanidinium thiocyanate, 25mM Na citrate pH 7.0, 0.5% SDS, 0.1M p- 

mercaptoethanol, and O.lmM dithiothreitol) was added and samples were thoroughly 

ground against the side of the tube using a micro-pestle; 3. the solution was incubated at 

65°C for lOmin mixing every 2min; 4. the solution was extracted with 50pl phenol; 

chloroform; isoamyl alcohol (25:24:1) and the aqueous layer transferred to a fresh tube; 5 

50pl of dH20 was added to the organic layer, re-mixed and separated, and the aqueous 

layer pulled off and added to the previous aqueous layer; 6 . the mixed aqueous layers 

were extracted in an identical manner with lOOpl chloroform; isoamyl alcohol (24:1); 7. 

3|il of 5mg/ml RNase A was added and incubated for 2hr at 37°C; 8 . DNA was 

precipitated with 15pl Na acetate pH 5.2 and 300pi ice cold ethanol; 9. the sample was 

incubated for at least lhr at -20°C; 10. the sample was centrifuged for lhr at 0°C; 11. 

ethanol was pulled off and pellet washed with 400 pi ice cold 70% ethanol; 12. the 

sample was centrifuged for 2min at 0°C; 13. ethanol was pulled off and pellet allowed to 

dry on bench top; and 14. the pellet was resuspended dH20. The entire DNA extraction 

was used in the AFLP procedure as described by Vos et al (Vos et al. 1995). Two sets of 

primer pairs were used in this study: MSE-CAC with EcoRI-ACT (Fam) and MSE-CAG
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with EcoRI-AGC (TAMARA), these two primer sets were determine to produce the 

highest yield of bands out of 6  primer pairs tested. Twenty-four samples from each 

collection site were run multiplexed for the two sets of primer on an ABI-377 sequencer 

with 96 lanes. Only lanes with strong signal for both dyes and a clean read of the internal 

size standard were used. This left 18 NH, 15 MA, 18 RI, and 13 NC samples. Fragments 

were identified on the gel image and manually categorized into bins using the program 

Genographer (Benham 2001), only fragments between the sizes of 75bp and 490bp were 

used. Genetic distance and tree reconstruction were analyzed with MEGA, and estimates 

of heterozygosity and 0 B (F st) were calculated with a Bayesian population genetic 

analysis using Hickory (Holsinger and Lewis 2003).

Interbreeding experiments:

To ensure that all experimental copepods were virgins, individuals in stages NV-CIV 

were put in 60ml glass jars containing 25ml 20ppt Instant Ocean and grown to maturity 

in isolation (but otherwise in standard culture conditions). Once the copepods matured, 

they were checked for vitality and sexed. Crosses were established by gently pouring the 

copepod from one bottle into a bottle containing another copepod. Crosses were 

established between individuals from the same collection site and between individuals 

from different collection sites in a reciprocal manner with all possible combination of 

crosses: NH$xNH6 \  N H^xM A^, N H ^xR I^, NH$xNC6', MA^xNHc?, MA^xMAc?, 

MA^xRId', MA$xNC<?, RI$xNH& RI^xM A^, RI^xRIcS', RI$xNC& NC$xNHc?, 

NC^xMAcJ, NC^xRIc?, and NC$xNC<3\ Twenty-four of each combination of crosses 

were established. Each cross was checked every 7 days for a period of 42 days. Once
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NH MA RI NC
NH 0.011
MA 0.155 0.009
RI 0.154 0.008 0.006
NC 0.156 0.014 0.016 0.003

Table 2-1: Mean genetic distance between and within A. tonsa from different collection sites 
based on sequence data from a 713bp fragment of mtCOI calculated using the Tamura-Nei 
equation (a = 0.83).

nauplii appeared in a bottle, the original parents were removed. If Fi nauplii appeared, 

they were allowed to develop and generate an F2 generation if they could. For each cross, 

it was recorded if  eggs were laid, if the eggs hatched into nauplii, if the nauplii matured, 

if the Fi adults could produce F2 nauplii, and if the F2 nauplii matured.

The mating results were analyzed as contingency tables using a G-test of independence 

with either a Williams’s or Yate’s correction. Subsequent unplanned tests of 

homogeneity were done where applicable using the G-test (Sokal and Rohlf 1995).

RESULTS 

mtCOI sequence variation:

The mtCOI sequencing resulted in 19 NH haplotypes, 19 MA haplotypes, 16 RI 

haplotypes, and 16 NC haplotypes. Of these, all of the NH and NC haplotypes were 

unique to their respective populations, and MA and RI shared 3 haplotypes. The mean 

genetic distances calculated using the Tamura-Nei equation with a gamma distribution 

alpha value of 0.83 (Table 2-1) for within collection sites were NH = 0.011, MA = 0.009, 

RI -  0.006, and NC = 0.003. The mean genetic distances between collection sites were 

NH and MA = 0.155, NHand R I - 0.154, NH and NC -  0.156, MA and RI = 0.008, MA
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NH MA RI NC
NH 0.007
MA 0.007 0.005
RI 0.006 0.004 0.003
NC 0.007 0.0Q5 0.004 0.004

Table 2-2: Mean poisson corrected genetic distance between A. tonsa from different collection 
sites based on amino acid sequence data from a 237aa fragment of mtCOI.

and NC = 0.014, and RI and NC = 0.016. A neighbor joining tree including all collection 

sites was generated using Tamaura-Nei distances (a = 0.83; Figure 2-1). The same tree 

was bootstrapped 1 0 0 0  times and condensed to only show branches supported by greater 

than 70% bootstrap values (Figure 2-2, left) and a consensus maximum parsimony tree of 

the same sequence data showing only branches supported by greater than 70% of the 

trees was generated (Figure 2-2, right). The Tamura-Nei neighbor-joining tree and the 

maximum parsimony tree are very similar. Both trees show lineage separation of the NH 

samples. Both trees also clustered all of the NC samples. The MA and RI samples 

interspersed with each other. Support for selective constraint on the mtCOI gene between 

these populations is seen in trees generated using the 237 amino acid translation of the 

DNA sequence data (Figure 2-3). NH had 13 aa sequence haplotypes, MA had 10, RI 

had 7, and NC had 10. There is one haplotype that is shared among all collection sites, 

while all of the others are unique to their collection site. There are no amino acid 

changes conserved within one collection site and not present in the others. The mean 

genetic differences based on a Poisson corrected calculations of the amino acid sequences 

were NH = 0.007, MA = 0.005, RI = 0.003, NC = 0.004, NH and MA = 0.007, NH and 

RI = 0.006, NH and NC = 0.007, MA and RI = 0.004, MA and NC = 0.005, and RI and 

NC = 0.004 (Table 2-2). The amino acid analysis shows a cluster of some but not all of 

the NH sequences and no structure among the remaining samples. This shows that there 

was a high synonymous to non-synonymous mutation ratio and implies that there has
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Figure 2-1: Tamura-Nei (a = 0.83) neighbor joining tree of A. tonsa based on a 713bp fragment of 
DNA sequence of mtCOI. Circles = NH; Triangles = RI; Squares = MA; and Diamonds = NC,
Bar = Distance.
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Figure 2-2: Two trees of A. tonsa from different collection sites based on sequence data from a 
713bp fragment of mtCOI. Left: Tamura-Nei (a=0.83) neighbor joining tree, bootstrapped 
1000X, condenced to show only branches supported by >70% bootstrap values. Right:
Consensus maximum parsimony tree showing only branches supported by >70% of the trees. 
Circles = NH; Triangles = RI; Squares = MA; and Dimonds = NC; Numbers .= bootstrap values or 
percent of supporting trees.
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Figure 2-3: Two A. tonsa trees based on 237 amino acid fragment of mtCOI. Left: Poisson 
corrected neighbor joining tree, bootstrapped 1000X, condensed to show only branches supported 
by >50% bootstrap values. Right: Consensus maximum parsimony tree showing only branches 
supported by >50% of the trees. Circles = NH; Triangles = RI; Squares = MA; and Diamonds = 
NC, Numbers = bootstrap values.
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Comparison «J>ST p-value
All Locations 0.90 <0.0001
NH vs. MA 0.92 <0.0001
NH vs. RI 0.93 <0.0001
NH vs. NC 0.94 <0.0001
MA vs. RI 0.03 0.067
MA vs. NC 0.57 <0.0001
RI vs. NC 0.70 <0.0001

Table 2-3: AMQVA results based on comparison of a 713bp fragment of DNA sequence of 
mtCOI between A. tonsa individuals from different collection sites.

been selection against functional changes in the amino acid sequence.

An analysis of molecular variance (AMOVA) was performed on the mtCOI DNA 

sequence data between all of the A. tonsa collections. All tests of significance were 

based on 100,000 permutations. A significant (p < 0.0001) <Ds t  of 0,90 was calculated 

for all collection sites together (Table 2-3). Significant (p < 0.0001) <I>s t  were also found 

for all but one pairwise collection site comparisons as follows: NH and MA = 0.92; NH 

and RI = 0.93; NH and NC = 0.94; MA and NC = 0.57; and RI and NC = 0.70 (Table 2- 

3). MA and RI generated an insignificant (p = 0.067) <hST of 0.03 (Table 2-3). These 

results corroborate the structure identified in the phylogenetic tree. There is little to no 

migration between the NH estuary and the other estuaries. There is also highly restricted 

gene flow between the NC estuary and the RI and MA estuaries.

AFLP variation:

AFLP markers are more variable than mtCOI gene sequences and are therefore more 

informative when analyzing closely related populations. The two AFLP primer pairs 

used in this study produced 110 fragments, 92 of which were polymorphic among the 

four A. tonsa populations looked at here. The NH individuals contained 90 polymorphic
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bands (mean heterozygosity = 0.42±0.01), the MA individuals contained 8 8  polymorphic 

bands (mean heterozygosity = 0.41±0.01), the RI individuals contained 91 polymorphic 

bands (mean heterozygosity = 0.42±0.01), and the NC individuals contained 89 

polymorphic bands (mean heterozygosity = 0.41±0.01). Each individual had a unique 

genotype. The mean proportion of pairwise differences was 0.364 within NH, 0.343 

within MA, 0.366 within RI, 0.336 within NC, 0.379 between NH and MA, 0.383 

between NH and RI, 0.366 between NH and NC, 0.380 between MA and RI, 0.356 

between MA and NC, and 0.362 between RI and NC. The levels of variation observed 

with the mtCOI sequence data suggested that the highly polymorphic AFLP data was 

probably saturated, at least for the NH population compared to the other populations, 

therefore, further analysis was only conducted on the MA, RI, and NC individuals. 

Neighbor joining trees based on the proportion of pairwise differences between MA, RI, 

and NC individuals (Figure 2-4, left) and between individuals of the two closest 

populations, MA and RI (Figure 2-4, right), were generated. The lack of grouping of the 

NC individuals in the tree indicates that the AFLP data is perhaps saturated at the 

distance between the MA and RI populations and the NC population. The MA and RI 

tree shows some weak clustering of individuals from the same collection site. To 

determine if there was a significant population structure between these geographically 

close populations, the mean 0 B value (similar to FSi).was calculated using AFLP data for 

MA and RI individuals (mean 0 B = 0.042 with a 95% confident interval of 0.024 -  

0.065). While the 0 B is significant (the lower 95% limit is greater than 0), it is so low 

that the differences between the populations may not be that meaningful.
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Figure 2-4: Acartia tonsa neighbor Joining trees based on mean proportion of pairwise 
differences of AFLP markers, bootstrapped 1000X, condenced to show only branches supported 
by >50% bootstrap values. Left: MA (squares), RI (Triangles), and NC (circles). Right: MA and 
RI.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26

N H $ M A $ R I? N C ?
F N f 2 F N f 2 F N f 2 F N f 2
6 18 18 16 8 0 14 10 0 15 9 0

NHo (25) (75) (75) (67) (33) (0) (58) (42) (0) (63) (38) (0)

16 8 0 9 0 15 12 0 12 14 0 10
M Ao (67) (33) (0) (38) (0) (63) (50) (0) (50) (58) (0) (42)

TST
13 11 0 7 0 17 8 0 16 12 0 12

R io (54) (45) (0) (29) (0) (70) (33) (0) (67) (50) (0) (50)

TfcT.T't 14 10 0 12 0 12 9 0 15 11 0 13
NCo (58) (41) (0) (50) (0) (50) (38) (0) (63) (46) (0) (54)

Table 2-4: Results of crosses: number and (percentages). F = number of crosses that failed to 
produce nauplii, N = number of crosses that produced nauplii that failed to develop beyond the 
third naupliar stage, and F2 = number of crosses that were able to produce an F2 generation.

Interbreeding:

The results of 384 matings fell into three classes: (1) produced eggs that were not 

fertilized or failed to hatch; (2) eggs hatched but only developed to naupliar stage III; and 

(3) eggs hatched and proceeded through an F2 generation (Table 2-4). Between 25% and 

67% of matings in every group of crosses failed to produce nauplii (Table 2-5), in most 

cases however, males did attach spermatophores to the females. A G-test of 

independence with a Williams’s correction (to account for the small number of 

individuals in each category) comparing the number of failed to non-failed matings in 

each group of crosses showed no significant difference between groups (p = 0.0513). 

While this probability is greater than the significant cutoff of p < 0.05 set a priori, it is 

worth noting that crosses between individuals from different collection sites tended to 

have more failed matings than crosses between individuals from the same collection site 

(the exception being NC X NC cross) and the most failed matings occurred in crosses 

involving NH individuals and a non-NH individual (the exception being NC X MA 

cross). The second class, eggs hatched but juveniles failed to develop, was exclusive to 

crosses between NH individuals and non-NH individuals. In all of these cases, the
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Group Failed Not-Failed
NHXNH 6 18
NHXMA 16 8
NHXRI 13 11
NHXNC 14 10
MAXNH 16 8
MAXMA 9 15
MAXRI 7 17
MAXNC 12 12
RIXNH 14 10
RIXMA 12 12
RIXRI 8 16
RIXNC 9 15

NCXNH 15 9
NCXMA 14 10
NCXRI 12 12
NCXNC 11 13

Table 2-5: Contingency table of the number of matings that Failed to produce any nauplii verses 
those that produced nauplii (Not-Failed) for each cross. G-test of independence shows no 
significant difference between groups (p=0.0513).

nauplii developed normally to the stage III nauplius then failed to molt to the stage IV 

nauplius, surviving for an extended period as stage III nauplius. The third class, eggs 

hatched and proceeded through an F2 generation, occurred in all crosses not involving a 

NH and non-NH individual. A G-test of independence with Yate’s correction (to account 

for the zeros in the data) comparing the number of crosses that produced only nauplii to 

the number of crosses that produced an F2 generation for each group, showed a highly 

significant difference between groups (p < 0.0001; Table 2-6). A G-test of homogeneity 

reveals that the crosses involving NH individuals mated to non-NH individuals were not 

significantly different from each other (p = 1 .0 0 ) and the remaining crosses were not 

significantly different from each other (p = 1.00; Table 2-7).
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Group Nauplii Only . f 2
NHXNH 0 18
NHXMA 8 0
NHXRI 11 0
NHXNC 10 0
MAXNH 8 0
MAXMA 0 15
MAXRI 0 17
MAXNC 0 12
RIXNH 10 0
RIXMA 0 12
RIXRI 0 16
RIXNC 0 15

NCXNH 9 0
NCXMA 0 10
NCXRI 0 12
NCXNC 0 13

Table 2-6: Contingency table of the number of matings that produced nauplii that arrested 
development at N2 (Nauplii Only) verses the matings that produced nauplii that developed to an 
F2 generation. A G-test of independence (Yate’s corrected) showed highly significant difference 
between groups (p<0.0001).

Group
Set 1
Nauplii Only f 2 Group

Set 2
Nauplii Only f 2

NHXNH 0 18 NHXMA 8 0
MAXMA 0 15 MAXNH 8 0
MAXRI 0 17 NCXNH 9 0
MAXNC 0 12 NHXNC 10 0
RIXMA 0 12 RIXNH 10 0
RIXRI 0 16 NHXRI 11 0
RIXNC 0 15

NCXMA 0 10
NCXRI 0 12
NCXNC 0 13

Table 2-7: Homogeneous sets within the Nauplii Only verses F2 data identified by a G-test as
having the larges sets with p>0.05; for both sets p=1.00.
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DISCUSSION

Population genetic diversity of Acartia tonsa:

At least two cryptic species are likely to exist within the currently described Acartia 

tonsa. One is found in Great Bay, NH, and the other includes populations from Buzzards 

Bay MA, Narragansett Bay RI and Beaufort Inlet NC. Within this second putative 

species, significant population genetic differences were observed between MA/RI and 

NC, suggesting further evidence of possible genetic divergence.

These findings are in good agreement with those presented by Caudill and Bucklin 

(2004), who examined m tl6 s rDNA sequence variation of A. tonsa from four Atlantic 

coast estuaries (Great Bay, NH; Buzzards Bay, MA; Narragansett Bay, RI; and Savannah 

River Estuary, GA), a Gulf of Mexico estuary (Nueces Bay, TX), and a Pacific Coast 

estuary (LaJolla, CA). In addition to finding strong genetic structure among the Atlantic 

populations, they found enough genetic differentiation between the Pacific and Atlantic 

populations to declare it highly likely that they were different species and enough genetic 

difference between the Atlantic and Gulf of Mexico species to suggest that they too may 

be different species. The amount of genetic variation they reported between the Pacific, 

Gulf of Mexico, and Atlantic populations was much greater than the amount of genetic 

variation they reported among the Atlantic populations. Combining these results with 

those of the current study which showed that the more closely related populations along 

the Atlantic cost are different species, strongly implies that the Gulf of Mexico and 

Pacific Coast population are different species under both the phylogenetic and 

evolutionary species concepts (see Mayden 1997).
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The results of this study indicate that the current concept of a world wide distribution of 

A. tonsa as a single species must be revisited. Further genetic and mating experiments on 

A. tonsa will likely unravel a variable number of cryptic species depending on the 

definition of species used by different researchers. More important than renaming the 

different emergent species are the insights into of the evolutionary relationships among 

the populations. Many questions remain unanswered: Is the observed genetic diversity 

due strictly to genetic drift? Is the breeding barrier a result of drift or selection? Do the 

highly variable environmental conditions of estuaries promote genetic diversity or 

differentiation? In order to understand the evolution of the group, it is suggested that 

future studies clearly append the name A. tonsa with the location of where the population 

came from (e.g. A. tonsa-Great Bay NH USA).

Population genetic structure of estuarine copepods:

Acartia tonsa is not the only copepod that is likely to comprise cryptic species. Indeed, 

copepod species have traditionally been difficult to distinguish, even those separated by 

millions of years of evolution (Bucklin et al. 2001; Hill et al. 2001). It might be that 

there are selective constraints on the basic body type of copepods that has resulted in the 

morphological similarity among genetically distinct species. Cryptic species of copepods 

even exist in the open ocean among populations not physically separated (Bucklin et al. 

2001). It is thus easy to envision rapid genetic differentiation occurring among isolated 

populations of copepods that usually exhibit large population sizes and short generation 

cycles.
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Many studies that have examined the genetic relationship of copepod species between 

estuaries have found genetic structure or inbreeding difficulties. Reduced or restricted 

breeding was found in Tigriopus califomicus from the coast of California and Baja 

California (Burton and Place 1986; Burton 1990b; Burton 1990a; Ganz and Burton 1995; 

Rawson and Burton 2002), Acartia clausi from the East and West Coast of the United 

States (Carrillo et al. 1974), and Scottolana canadensis from along the East Coast of the 

United States (Lonsdale et al. 1998). Strong population genetic structure was observed in 

Eurytemora affinis through multiple invasions of freshwater from estuaries (Lee 1999), in 

Cletocamptus deitersi populations from estuaries in Louisiana, Alabama, and California 

(Rocha-Olivares et al. 2001), and Microarthridion littorale off the cost of North Carolina 

and Georgia (Schizas et al. 2002). Taken together, these studies suggest that estuarine 

copepods are more genetically diverse than previously thought, and that this might be the 

rule rather than the exception.

Dispersal patterns and mechanism of estuarine copepods:

The genetic diversity among copepods from different estuaries can indicate the 

mechanisms for dispersal of the organism. Caudill and Bucklin (2004) suggested from 

their data that the genetic structure of A. tonsa is consistent with a northern expansion of 

A. tonsa after the last glacier retreated from the northeastern USA. The results of this 

study agree with this theory. Among the four estuaries in the study, Great Bay NH is the 

most isolated, receiving ocean water that originates from the Artie Ocean. Buzzards Bay 

and Narragansett Bay are in close proximity to each other and intermixing of the 

populations must occur. The small amount of mixing between the NC estuary and the
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MA and RI estuaries could be explained in several ways: estuary-to-estuary transport up 

the coast; residual genetic similarity, or human transport in the ballast water of ships.

The true mechanism cannot be elucidated from the work done thus far, but previous 

research on A. tonsa suggests the answer is complicated. It is know that A. tonsa do not 

thrive in the open ocean (Paffenhofer and Steams 1988; Tester and Turner 1991), but 

how long they can survive has not been thoroughly investigated. Ballast water transport 

has been cited for the introduction of A. tonsa into Europe (Gaudy et al. 1995). However, 

ballast water transport of A. tonsa can be questioned because transport of ships between 

the naval shipyards in Narragansett Bay and Portsmouth Harbor (at the mouth of Great 

Bay) should have theoretically mixed these populations (unless the introduced individuals 

were unable to compete with the established population) but did not.

Whatever the mechanism of transport, is seems evident that the large population sizes and 

genetic diversity of estuarine copepods have left them poised to invade new territory 

when it becomes available. Lee (1999) has shown evidence of five separate and recent 

invasions of freshwater by the estuarine copepod Eurytemora affinis. In laboratory 

studies where samples of E. affinis are transitioned from salt to freshwater, most die, but 

some are able to survive and reproduce. On a less grand scale, most populations of 

estuarine copepods are probably able to rapidly adapt to environmental changes allowing 

them to not only invade new territories, but to quickly adapt to them.

Choice of genetic marker for phylogenetic inference:

The analyses of genetic and phylogenetic structure of A. tonsa have been made using 

sequence data from mtCOI, m tl6 s rDNA (Caudill and Bucklin 2004), and AFLP
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markers. Phylogenetic analysis using mtCOI and m tl6 s rDNA generated similar results. 

m tl6 s rDNA is a good marker because it evolves quickly and can reveal large differences 

even among closely related populations. The disadvantage of m tl6 s rDNA is that it 

encodes a ribosomal RNA for which the evolutionary constraints are difficult to 

determine. Further, the m tl6 S rDNA gene is prone to insertion/deletion polymorphisms 

that can be highly variable but difficult to interpret. mtCOI is a protein coding gene 

making the analysis of the sequence data easier to understand and interpret. mtCOI was 

able to reveal lineage sorting (all NH individuals can be traced back to a single DNA 

sequence that is not shared by any of the other populations) between the NH population 

and the remaining samples. It was a good marker of population structure and 

phylogenetic reconstruction. Bucklin et al (2003) successfully used mtCOI in a study 

comparing the relationships among 34 species in ten genera of calanoid copepods.

Neither the mtCOI nor the m tl6 S rDNA sequence data could detect structure between 

Buzzards Bay and Narragansett Bay, but the AFLP data could. The AFLPs appeared to 

evolve faster than either gene and were polymorphic enough to elicit structure between 

the two very closely related estuaries. The level of structure they detected was small and 

indicates that there is very little restraint on the flow of genetic material between 

estuaries. The rapid evolution of the AFLP markers, resulting in possible saturation 

between the NC and MA/RI populations, is surprising. If the markers were evolving with 

little or no selective constraint, then their level of diversity would be similar or less than 

the level of diversity among the 4-fold degenerate mtCOI sites because the mitochondrial 

genome evolves faster than the nuclear genome (Brown et al, 1976). It is possible that 

the pre-selection of markers for ones that generate a large number ofbands resulted in
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markers that produce more variable bands that are not reflective of the genetic variation 

between populations (i.e. they could have amplified a repetitive portion of the genome 

that was variable within individuals).

Acartia tonsa as a bioindicator:

Acartia tonsa has been much-used as a bioindicator species, especially for determining 

the toxicity of environmental pollutants (Sunda et al. 1987; Girling 1989; Bushong et al. 

1990; Sunda et al. 1990; Table 2-8). However, if the goal is to standardize the results of 

these tests, then an effort needs to be made to ensure that the same species is used for 

each substance being tested. The high level of genetic variation seen between 

populations of A. tonsa in this study implies that the populations have had time to adapt 

to their local environment. Each environment has its own set of pollutants (i.e. there was 

a US Air Force base bordering Great Bay, NH that had known environmental 

contamination problems reported by the US Air Force (1990; 1999)) that the local 

population of A  tonsa may have evolved in response to.

Thus, there may be significant differences in the LD50 of two populations of A tonsa 

tested for the same compound. Schizas and Chandler (Schizas et al. 2001) have 

demonstrated that different mitochondrial lineages of the harpacticoid copepod 

Microarthridion littorale have significantly different LD50 when exposed to a pesticide 

mixture. This caution holds for any comparison being made between populations of what 

is now considered the species A. tonsa. This warning, however, should not discourage 

the use of A. tonsa for such studies. Instead, it should add to and enhance understanding 

of the results of such studies.
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Pollutant Reference
Acid Waste (Rose et al. 1977)
Ammonia (Sullivan and Ritacco 1985)
Antibiotic metronidazole (Lanzky and Halling-Soerensen 1997)
Bis(tributyltin) oxide (U'Ren 1983)
Bromochloride, chlorine (Roberts and Gleeson 1978)
Cadmium (Toudal and Riisgaard 1987)
Cadmium, Copper, and Mercury (Sosnowski and Gentile 1987)
Chlorine (Roberts et al. 1975)
Chlorine (Heinle and Beavan 1977)
Chlorine (Abamous 1982)
Chlorine and Bromine Chloride (Bradley 1978)
Contaminated Sediment (Pedersen et al. 1998)
Copper (Sosnowski et al. 1979)
Estrogen (Andersen et al. 1999)
Exploration and production chemicals (Sverdrup et al. 2002)
Fuel Oil (Berman and Heinle 1980)
Fuel Oil (Hollister et al. 1980)
Fuel Oil (Vargo 1980)
Fuel Oil (Suderman and Marcus 2002)
Gamma-HCH (Chen and Moehlenberg 1991)
Glyphosate-based herbicides (Tsui and Chu 2003)
Fleavy Metals (McConaugha 1976b)
Insecticide ' (Newell et al. 1981)
Insecticide (Tester and Costlow 1981)
Insecticide (Thompson and Tucker 1989)
Linear alkyl benzene sulfonate (Christoffersen et al. 2003)
Metals (Sunda et al. 1987)
Metals (Hook and Fisher 2001)
Methodology (Lee 1977)
Methodology (WenYuh 1977)
Methodology (Ward et al. 1979)
Methodology (Weideborg et al. 1997)
Oil (Girling 1989)
Pesticides (Khattat and Farley 1976)
Power Plants (Heinle 1976)
Suspended Soils (Sherk et al. 1976)
Synthetic musk (Wollenberger et al. 2003)
Tibutyltin oxide (Johansen and Moehlenberg 1987)
Toxicants (Roberts et al. 1982)
Tributyltin and linear alkylbenzene sulfonate (Kusk and Petersen 1997)
Waste (McConaugha 1976a)

Table 2-8: A partial list of pollutants that have been tested on A. tonsa with references.

CONCLUSIONS

This study shows evidence that populations A. tonsa in estuaries along the East Coast of 

the USA are highly diverse, have clear genetic structures, and in some instances are 

cryptic species. This implies that populations of A. tonsa are evolving independently of
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each other and in response to their local environment. These results are part of a growing 

body of evidence suggesting that many estuarine organisms are part of isolated 

populations and isolated ecosystems. These systems could provide a unique model 

system for testing theories of speciation and evolutionary adaptation.
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CHAPTER HI

COMPARATIVE ANALYSIS OF VARIATION IN PHYSIOLOGICAL 
ACCLIMATION OF TWO POPULATIONS OF A CARTIA TONSA TO 

EXTREME TEMPERATURES 

ABSTRACT

This study examines whether the genetic differences between the two putative species of 

the calanoid copepod Acartia tonsa have resulted in physiological differences in their 

response to temperature stress. Replicate cultures from the two locations were subjected 

to high and low temperature over multiple generations (respectively, 31°C for 10 

generations, and 5° and 7°C for 3 generations). The response to the stress is measured in 

terms of number of adults and numbers of viable eggs produced. In the 31°C cultures, 

there were significantly more NC adults than NH adults each generation and there was no 

significant difference between numbers of viable eggs produced per culture. At 7°C, the 

number of adults in both the NH and NC cultures decreased over the first two 

generations; in the third generation, there were few to no adults and no dormant eggs. At 

5°C, the NH cultures declined in number of adults over the first two generations; a few 

nauplii and many dormant eggs made up the third generation. At 5°C, the number of 

adults increased in NC cultures over the first two generations; replicates varied in the 

third generation, from a sharp increase in the number of adults, to a decrease, to near zero 

adults. These results suggest that A. tonsa populations from NH and NC are 

physiologically, and perhaps evolutionarily, different. However, other differences
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between the two cultures (i.e. a detrimental or beneficial microorganism co-cultured with 

one population and not the other) could also explain the observed results.

INTRODUCTION

Populations of Acartia tonsa from Great Bay, NH and Beaufort M et, NC have been 

designated as putative cryptic species (Chapter 2). Whether these putative species’ 

separate evolutionary paths have resulted in physiological differences is unknown. This 

study examines if  cultures derived from these populations have different physiological 

responses to extreme temperature, an environmental factor that differs between the 

species’ home estuaries. It also lays the groundwork to address the evolutionary forces 

behind these differences.

Temperature has a profound effect on organisms (Hochachka and Somero 2002) and 

plays a major role in determining the distribution and abundance of marine organisms, 

especially ectotherms (Dahlhoff and Somero 1993). Temperature was chosen as the 

environmental factor for this study because of its range variation among the estuaries 

from which A. tonsa was collected. Ice core samples indicate that mean global 

temperature has been changing at varying rates for at least the past 65 million years, and 

current climate data indicate that temperature is still changing (Clarke 1996), making it a 

factor to which populations must adapt. The N. Atlantic has experienced significant 

temperature variation over the past tens of thousands of years (Lambeck and Chappell 

2001). Estuarine temperatures also show dramatic variation on interannual to seasonal 

time scales (Wares and Cunningham 2001). It has been shown that temperature affects
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diffusion o f micromolecules within the cytoplasm, enzyme activity, structural protein 

function, and lipid membranes (Guderley 1990). In order to adapt to temperature 

changes, organisms must conserve the structural integrity of macromolecules, provide 

adequate supplies of micromolecules, and maintain the appropriate rate and direction of 

metabolic flow (Hochachka and Somero 2002).

Organisms can adapt to changes in the temperature in a variety of ways and on both short 

and long-term time frames. Individuals can adapt to temperature by undergoing 

physiological changes (acclimation), such as changing the amount and type of proteins 

produced. For instance, the calanoid copepod Calanus finmarchicus shows a 4-fold 

increase in the expression of heat shock 70 (hsp70) in response to 30 minutes of thermal 

stress (Voznesensky et al. 2004). On longer time frames, populations can adapt to 

temperature through changes in the genetic composition of the population, a process 

known as evolutionary adaptation (see Hochachka and Somero 2002) . Since 

temperature changes seasonally in many environments, including estuaries, it is thought 

that evolutionary adaptation to temperature may be occurring through cyclical selection. 

Of interest is whether cyclical selection acting on a population whose life span is shorter 

than the temperature changes to which they must adapt, can affect the phenotypic 

plasticity of individuals. For example, the temperature of an environment varies from 0° 

to 25°C over the course of a year, while the life span of an organism is two months.

Thus, a new generation will face temperatures never encountered by their parents.

Several theoretical models have been proposed to address this question, and they 

generally predict that cyclical selections will favor the maintenance of genetic 

heterozygosity. These models have been difficult to test in real systems because their

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



40

predicted outcome is similar to the predicted outcome of populations evolving under 

neutral conditions (Hairston and Dillon 1990).

The goal of this study was to examine the variation in phenotypic plasticity between 

genetically distinct populations of A. tonsa from estuaries with significantly different 

temperature ranges. Acartia tonsa is an obligate estuarine calanoid copepod with a short 

life span, large population sizes, and wide distribution (see Chapter 1). These conditions 

make it an ideal organism for addressing questions about evolutionary adaptations to 

cyclical environments for several reasons. First, many of the environmental conditions in 

estuaries are variable, some factors vary sporadically over short time periods (i.e. 

salinity) while others vary more predictably over longer time periods (i.e. temperature). 

Second, populations with large effective population sizes (A. tonsa have been reported in 

excess 10 individuals per m in Narragansett Bay (Durbin and Durbin 1981)) should 

theoretically be more responsive to selective forces than to random genetic drift (see 

Hartl and Clark 1989 chapter 4). Third, populations o f A. tonsa are widely distributed 

with restricted migration between populations, thus, there could be many populations 

independently evolving to different environmental conditions.

MATERIALS AND METHODS 

Sample collection:

Acartia tonsa adults were collected from Great Bay, NH (43°54.5”N; 70°51.8”W) on 

October 31, 2000 (NH collection) from the dock at the University of New Hampshire’s
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Jackson Laboratory in Durham, NH (water temperature = 9°C). Samples were collected 

with a 333pm mesh net using a one quart glass jar as a cod end. The net was tossed into 

the water, allowed to sink, and then was slowly pulled up and through the water column. 

The samples were filtered to remove large predators and debris and stored in a cooler 

with ice packs for transportation to UNH, where A. tonsa were identified and removed 

alive. Collections were also done from Gallants Channel, in Beaufort Inlet, in Beaufort 

NC (34°43’12”N; 76°40’23”W) on October 28, 2000 (NC collection) off the Pivers 

Island Road bridge (water temperature = 20°C). North Carolina samples were collected 

and sorted by Dr. Patricia Tester (National Oceanic and Atmospheric Administration, 

Southeast Fisheries Science Center). Copepods were fed, placed in a one-quart cooler, 

and shipped overnight to UNH. Acartia tonsa were identified by the morphology of the 

fifth thoracic leg of adult females, only adult females were identified from the 

collections.

Culturing and experimental setup:

In the laboratory, 20 -  30 fertilized females were placed in 2L glass bottles containing sea 

water collected from the same location and filtered through 20pm mesh (Figure 3-1). 

Three cultures were established for each collection, and grown at room temperature with 

a 14:1 Ohr lighfidark cycle. Every other day, 200ml of water was removed from each 

culture using a siphon fitted with a 20pm mesh and replaced with 200ml of 20ppt Instant 

Ocean containing a mixture of Rhodomonas salina (CCMP1319) and Isochrysis galbana 

(CCMP1323). Phytoplankton cultures were grown in Guillard’s f/2-si media in 33ppt 

Instant Ocean at room temperature with a 14:1 Ohr lightdark cycle.
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New Hampshire 
Collection

North Carolina 
Collection

Collected
Samples

Started with 20-30 2 /bottle
Started with 20-30 $/bottle

Parental
Generation

Started with 200 adults/bottle

Generation 
31°C .

Started with 100 nauplii/bottle

JO Generations

Generation 
577°C ^

Started with 100 nauplii/bottle

3 Generations,

Started with 200 adults/bottle

Started with 100 nauplii/bottle

0 Generations

Started with 100 nauplii/bottle

3 Generations,

Figure 3-1: Experimental setup. Small cylinders = 2L bottles, large cylinders = 10L bottles, and 
arrows = transfer of A  tonsa between generations.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The parental generation for the experiment was started using 200 adult offspring of the 

collected samples to seed each of 2 NH and 2 NC cultures in 10L bottles. These cultures 

were grown at 20°C with a 14:1 Ohr lighhdark cycle. Every other day 1L of water was 

removed using a siphon fitted with a 20pm mesh and replaced with 1L of 20 ppt Instant 

Ocean containing mixed phytoplankton. Their offspring were used to set up four 

experimental treatments consisting ofbothNH and NC cultures at 3 Hand 5°C. Each 

treatment consisted of 10 replicate 2L experimental cultures, each seeded with 100 

nauplii at 20°C. Once seeded, the temperature of the cultures was increased or decreased 

at a rate of 2°C/day until the treatment temperature was reached. The cultures were 

maintained at the treatment temperature (31°C or 5°C), with a 14:1 Ohr light:dark cycle. 

Through an incubator problem, only 4 of the 5°C cultures from each collection site were 

at 5°C, the remaining 6  cultures were at 7°C. All experimental cultures were fed every 

other day by removing 2 0 0 ml of water with a siphon fitted with a 2 0 pl mesh and 

replacing it with 20ppt Instant Ocean containing mixed phytoplankton. During the 

experiment a new generation was defined as the time when nauplii were first observed in 

the bottle.

Observations and data collection:

During the experiment, the numbers of males and females were measured at the 

beginning of each generation by filtering each bottle through a 2 0 0 pm mesh and into a 

fresh bottle. The adults were caught in the mesh and the males and females were 

separated and counted. Experiments to determine the number of viable eggs produced by 

females were conducted by placing six fertilized females from each culture into 

individual egg laying chambers with an adult male (for a total of 60 females per
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treatment). Egg laying chambers consisted of a plastic vial with a 100pm mesh on the 

bottom and the other end open, placed in a 60ml jar. Adults placed in the plastic vial 

cannot get out, while the eggs fall through the mesh to the bottom of the jar. For the 

31 °C treatment, eggs were collected over a 3 day period in one chamber. Adults were 

moved to a new chamber and eggs were collected for another 3 day period. Eggs and 

nauplii were counted on days 3 and 4 (no eggs remained after day 4). For the 5° and 7°C 

treatments, eggs were collected for a 7 day period in one chamber. Adults were then 

moved to a new chamber and eggs were collected over another 7 day period. Eggs and 

nauplii were counted after 0, 3, 6 , 9, and 12 weeks.

The 31°C cultures were maintained and monitored for 10 generations. The numbers of 

males and females were counted each generation. The number of nauplii produced per 

female was calculated at generations Fj, F3 , and Fio- The 5° and 7°C cultures were 

maintained and monitored for 3 generations. The numbers o f males and females were 

counted each generation and the numbers of nauplii produced per female were calculated 

at generation Fj.

Statistical analysis:

Data for observations of both cultures over multiple generations were analyzed using 

multivariate profile analyses (Rencher 1995). Under this analysis, each generation was 

treated as a separate dependent variable and the culture was the independent variable. 

While this method has less power than the equivalent univariate method (split-plot 

ANOVA: von Ende 1993), it does not assume that the within subject factor (generation) 

is equally correlated at each level and is therefore less likely to give a false positive result
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(Rencher 1995). When appropriate, the results were compared using a paired t-test or a 

2-way ANOVA (Sokal and Rohlf 1995). For proportional data where the values fell 

below 0.3, the data were arcsine transformed, where X = s in '^ Y  + 3/8)/(n + %))1/2), 

where Y is the proportion, X is the transformed value in degrees, and n is the number of 

replicates (Sokal and Rohlf 1995).

Only cultures that survived the entire experiment were analyzed for comparisons between 

treatments. Neither the split-plot nor the profile analyses are able to handle missing data 

in the number of within-subject factors (von Ende 1993). Thus, including cultures that 

died before the conclusion of the experiment in this analysis would artificially increase 

the variance of the within-subject factors, without adding real meaning to the analysis, 

while potentially masking significant differences between the factors.

RESULTS 

Population size at 31°C:

At 31°C Acartia tonsa populations in 6  of the 10 NH and 9 of the 10 NC bottles survived 

all 10 generations (Table 3-1). There was no significant difference in the number of 

bottles whose populations survived all 10 generations between the NH and NC cultures 

(p = 0.1307 by G-test).

The mean number of adults in the NH and NC cultures was similar in the F i generation 

(Table 3-1, Figure 3-2). Over the next 9 generations, the mean number of adults in the 

NH cultures remained relatively constant while the mean number o f adults in the NC
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Figure 3-2: Mean of the total number of adults counted at 31°C in each bottle for each generation 
for the NH and NC cultures. Error bars are one standard deviation. Calculations only include 
bottles whose population survived all 10 generations.

cultures gradually increased (Figure 3-2). A multivariate profile analysis found a 

significant difference between the number of adults in the two cultures (p < 0 .0 0 0 1 ) and 

between generations (p = 0.0397) but no significant culture by generation interaction (p = 

0.0505; Table 3-2).

Dividing the results by gender (Figure 3-3) showed that across all generations in both 

cultures the females significantly outnumbered the males (p < 0.0025 (0.05/20) by paired 

one tailed t-test for each culture at each generation; Table 3-3). Further, the females 

outnumbered the males within every bottle at every generation. It also showed that the 

observed increase in the NC culture was the result of an increase in the number of 

females which more than doubled over the 10 generations (X = 20.67 ± 12.88 at Fi,

— 4-

NH
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Population Size Probability -
Comparison Between Cultures Between Generations Culture by Generation

Total Number Adults
NH 31°C vs NC 31°C <0.0001** 0.0397* .0505

NH 5°C vs NC 5°C <0.0001** <0.0001** <0.0001**
NH 7°C vs NC 7°C 0.4018 0.1148 0.2489

Number of Males
NH 31°C vs NC 31°C 0.0745 0.0561 0.0787

NH 5°C vs NC 5°C <0.0001** <0.0001** <0.0001**
NH 7°C vs NC 7°C 0.7549 0.2015 0.7717

Number of Females
NH 31°C vs NC 31°C <0.0001** 0.0923 0.1069

NH 5°C vs NC 5°C <0.0001** <0.0001** <0.0001**
NH 7°C vs NC 7°C 0.3279 0.0954 0.1804

Table 3-2: Comparison of the NH and NC cultures across all 31°C generations and the 5°C and 
7°C Fj and F2 generations for total number of adults per bottle, number of males per bottle, and 
number of females per bottle. Probabilities calculated using a multivariate profile analysis: 
Between Cultures is the probability that there was no difference between the NH and NC 
cultures; Between Generations is the probability that there was no difference between 
generations; and Culture by Generation is the probability that there is a culture by generation 
interaction. Data based on 6 bottles for the NH cultures and 9 bottles for the NC cultures. Only 
bottles whose population survived all 10 generations were included in the 31°C calculations. 
*significant, **highly significant.

31°C Gen Fi f * F* f 4 Fs F« f 7 Fs f 9 Fio
Culture Bottle P? P? P9 p 9 p9 P? p9 P? p 9 P?

1.00 0.70 0.76 0.63 0.68 0.69 0.74 0.74 0.79 0.68 0.67
4.00 0.63 0.78 0.66 0.86 0.73 0.68 0.80 0.67 0.77 0.67
5.00 0.61 0.71 0.68 0.74 0.60 0.72 0.69 0.67 0.68 0.63
7.00 0.68 0.70 0.68 0.64 0.72 0.70 0.67 0.66 0.76 0.62JNHil 8.00 0.63 0.71 0.67 0.62 0.73 0.67 0.74 0.63 0.67 0.68
9.00 0.73 0.68 0.75 0.70 0.64 0.77 0.65 0.60 0.65 0.72

Overall 0.66 0.73 0.68 0.71 0.69 0.71 0.71 0.67 0.70 0.66
sd 0.05 0.04 0.04 0.09 0.05 0.04 0.06 0.06 0.05 0.04

1.00 0.61 '0.74 0.82 0.87 0.81 0.86 0.80 0.81 0.82 0.81
2.00 0.84 0.65 0.85 0.88 0.82 0.87 0.84 0.80 0.81 0.82
3.00 0.61 0.81 0.79 0.88 0.86 0.80 0.80 0.80 0.81 0.92
5.00 0.63 0.74 0.83 0.82 0.84 0.85 0.84 0.85 0.82 0.83
6.00 0.67 0.84 0.82 0.91 0.86 0.86 0.81 0.84 0.79 0.83

NC31 7.00 0.72 0.84 0.80 0.89 0.87 0.85 0.79 0.74 0.84 0.78
8.00 0.65 0.88 0.80 0.83 0.84 0.84 0.81 0.84 0.80 0.84
9.00 0.70 0.90 0.77 0.79 0.77 0.88 0.84 0.79 0.86 0.84
10.00 0.79 0.91 0.78 0.75 0.82 0.80 0.78 0.88 0.78 0.87

Overall 0.69 0.81 0.80 0.85 0.83 0.84 0.81 0.82 0.82 0.84
sd 0.08 0.09 0.03 0.05 0.03 0.03 0.02 0.04 0.02 0.04

Table 3-3: Proportion of females in each bottle at 31°C from the NH and NC cultures. Overall is 
the portion of females from all bottles in the culture, sd is one standard deviation. Only bottles 
whose population survived all 10 generation are shown.
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Figure 3-3: Mean number of adult females and males counted at 31°C in each bottle each 
generation from the NH and NC cultures. Error bars are one standard deviation. Calculations 
only include bottles whose population survived all 10 generations.

X=51,78±19.39 at Fio). The number of NC males and NH males and females remained 

relatively constant over 10 generations. There was a significant difference between the 

number of NH and NC females (p < 0.0001), but not between the number of NH and NC 

males (p = 0.0745). No significant difference was observed in the number of adults 

between generations for either the males or females (Table 3-2).

Nauplii production at 31°C:

The NH and NC cultures produced similar numbers of nauplii at all three generations 

tested (Figure 3-4, Table 3-4). The mean number of nauplii produced per female dropped 

between generations Fi and F3 and then rebounded by the Fio generation. The NH 

cultures produced more nauplii per female at all three generations, but the difference was
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31°C Gen Fi f 3 F10
Culture Bottle Mean sd p-Failed Mean sd p-Failed Mean sd p-Failed

1 31.17 13.29 0.00 14.50 8.89 0.00 27.00 23.39 0.00
■... 2 13.3' 8 S'? 0 00 t l l i i f t s S lS lS flKgsfsiijlfjf!?jjffljfiliwSSSIS

3 '1 *1 t '7i • . i ‘>.58 1' 00 asaastliSSIStl!I l l i S l S l f i t ! # # b IB S®
4 22.67 11.25 0.00 19.33 25.38 .017 18.67 21.99 0.00
5 21.17 16.23 0.17 6.83 3.66 0.00 22.33 15.00 0.17

NH31 6 i) > 6 ■SIS IfifSltllli i i s *
7 25.00 10.20 0.00 17.17 26.38 0.33 24.33 33.96 0.00
8 5.00 6.03 0.50 16.17 18.71 0.00 25.50 16.22 0.17
9 22.17 14.55 0.00 20.83 20.15 0.00 31.83 28.55 0.17
.0 24 o7 13.65 0 00 6.00 8.-7 0 33 SStlljISIIiP l iS i l IS iaB Jii s

Mean 21.19 8.71 0.11 15.81 4.94 0.83 24.94 4.44 0.83
1 31.50 46.73 0.17 28.67 59.81 0.50 20.83 24.84 0.33
2 14.83 16.13 .0.33 11.83 13.57 0.33 13.67 11.81 0.33
3 18.17 15.56 0.33 10.17 13.23 0.33 18.17 22.33 0.33

c ** 'I'l ' ■0 14 0 33 5.17 Sill 0 13 iiias
5 16.17 16.86 0.33 11.17 11.39 0.33 17.33 20.33 0.33

NC31 6 9.67 10.91 0.33 10.50 17.11 0.33 19.67 16.06 0.17
7 15.50 15.91 .017 14.50 20.91 0.33 19.83 24.70 0.50
8 33.00 17.11 .017 13.50 15.18 0.17 21.67 20.50 0.17
9 20.67 20.31 .017 25.00 19.98 0.00 20.83 21.17 0.00

10 22.67 10.07 0.00 • 15.67 19.79 .033 26.17 30.66 0.50
Mean 20.24 7.75 0.22 15.67 6.65 0.30 19.80 3.40 0.30

Table 3-4: Results of 31°C nauplii production experiments at generations Fl5 F3, and F10 for the NH 
and NC cultures. The mean and standard deviation for each bottle are for 6 individuals per bottle. 
The p-Failed is the proportion of females per bottle that failed to produce nauplii. The per culture 
mean and standard error is the mean of means and standard deviation of means including only the 
bottles that survived all 10 generations. Dashes indicate no data available.

31°C Nauplii Production Probability
NH vs. NC Cultures Between Cultures Between Generations Culture by Generation

Mean # Nauplii pre Bottle 0.3983 0.0079* 0.3229
Proportion 5 Failed 0.0020* 0.8212 0.7017

Table 3-5: Comparison of the 31°C NH and NC cultures at the F ]s F3, and F w generations for 
mean number of nauplii produced per bottle and proportion of females who produced nauplii.
The proportion data was arcsine transformed before calculations. Probabilities calculated using a 
multivariate profile analysis: Between Cultures is the probability that there was no difference 
between the NH and NC cultures; Between Generations is the probability that there was no 
difference between generations; and Culture by Generation is the probability that there is a 
culture by generation interaction. Data based on 6 females per bottle, 6 bottles for the NH 
cultures and 9 bottles for the NC cultures. Only bottles whose population survived all 10 
generations were included in the calculations, ‘ significant, “ highly significant.
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Figure 3-4: Mean of the mean number of nauplii produced per individual at 31°C for the NH and 
NC cultures at the Fi, F3. and F10 generations. Error bars are one standard deviation of the 
means. Calculations only include bottles whose population survived all 10 generations.

insignificant (p = 0.3983). A significant difference in the number of nauplii produced per 

female between generations (p = 0.0079; Table 3-5) was observed.

There was a significant difference between the proportion of females that produced no 

nauplii between the two cultures (p = 0.0020) with a higher proportion of NC females 

failing to produce nauplii at all three generations (Table 3-4, Figure 3-5). Neither culture 

showed significant differences between generations (p = 0.8212; Table 3-5).

Population size at 5° and 7°C:

The cultures responded differently to the 5° and 7°C incubations, and all cultures showed 

variable responses at the F3 generation (Table 3-6). The experiment was terminated after 

8  weeks at the F3 generations, because most of the cultures failed to generate any adults.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Generation

Figure 3-5: Mean proportion of females that produced no nauplii during the 31°C nauplii 
production experiment for the NH and NC cultures at generations Fj, F3, and F10. Error bars are 
95% confidence limits. Means and confidence limits calculated after an arcsine transformation, 
data based on 6 females per bottle, 6 bottles for NH, and 9 bottles for NC. Only bottles whose 
populations survived all 10 generations were used in the calculations.

At 5°C, the NH cultures showed a slight decrease in the mean number of adults between 

the Fi and F2 generations (Figure 3-6); at the F3 generation only eggs were produced, 

which hatched when brought to room temperature (Table 3-7). At 5°C, the NC cultures 

showed a sharp increase in the mean number of adults between the Fi and F2 generations 

(Figure 3-6); at the F3 generation, 2 of the 4 bottles produced very few adults (14 total), 

while the other 2 bottles produced a large number of adults (a total of 839 for the 2 

bottles; Table 3-7). At 7°C, the NH and NC cultures showed a decrease in the mean 

number of adults between the Fi and F2 generations (Figure 3-6); at the F3 generation, 

nauplii were produced but no adults. None of the nauplii remaining in the bottles at the 

time of termination survived when brought to room temperature (Table 3-7).
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5° and 7°C Gen Fi f 2 f 3
Culture Bottle 2 6 9 s ? 6

1 25 6 5 4 0 0
2 37 5 1 1 0 0
3 42 18 4 1 0 0
4 34 22 32 22 0 0

NH 5 31 12 11 7 0 0
7°C 6 40 11 13 8 0 0

Mean 34.83 12.33 11.00 7.17 0.00 0.00
sd 6.24 6.65 11.22 7.83 0.00 0.00

Mean 47.17 18.17 0.00
sd 10.61 19.03 0.00
1 36 15 27 9 0 0
2 38 6 56 13 0 0
3 34 21 35 13 0 0

NH 4 29 24 19 11 0 0
5°C Mean 34.25 16.50 34.25 11.50 0.00 0.00

sd 3.86 7.94 15.90 1.91 0.00 0.00
Mean 50.75 45.75 0.00

sd 4.79 17.21 0.00
1 18 10 3 2 0 0
2 17 12 5 3 2 2
3 26 11 3 1 9 5
4 15 7 62 25 0 2

NC 5 14 8 7 3 0 0
7°C 6 17 13 9 7 3 1

Mean 17.83 10.17 14.83 6.83 2.33 1.67
sd 4.26 2.31 23.22 9.13 3.50 1.86

Mean 28.00 21.67 ¥.00
sd 5.62 32.29 5.22
1 35 27 149 92 1 0
2 21 10 138 88 327 18
3 29 18 79 70 12 1

NC 4 33 19 98 75 458 36
5°C Mean 29.50 18.50 116.00 81.25 199.50 13.75

sd 6.19 6.95 32.99 10.44 229.23 16.98
Mean 48.00 197.25 2/3.25

sd 12.94 43.42 245.85
Table 3-6: Number of females and males for each bottle at 5° and 7°C for each generation from 
the NH and NC cultures. Means and one standard deviation are given for females, males, and 
totals.
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Bottle Contents at time of termination
Culture Bottle Adult Adult Nauplii Eggs Observations

?
1 0 0 0 0 Nauplii had been observed in bottle, but1 none remained at termination
1 0 0 -18 0 Moved nauplii to room temperature, all
L i died as nauplii
2 0 0 -32 0 Moved nauplii to room temperature, all

NH 7°C died as nauplii
4 0 0 -41 0 Moved nauplii to room temperature, all

died as nauplii
5 0 0 -37 0 Moved nauplii to room temperature, all

died as nauplii

0 0 -45 0 Moved nauplii to room temperature, 1
U survived to adulthood

Moved eggs to room temperature, many

1 0 0 0 Many hatched within 48hr, 20 separated and
(>300) observed, 10 of the 20 survived to 

adulthood
Moved eggs to room temperature, many

0 0 0 Many hatched within 48hr, 20 separated and
£ i (>300) observed, 12 of the 20 survived to

NH 5°C adulthood
Moved eggs to room temperature, many

2 0 0 0 Many hatched within 48hr, 20 separated and
J (>300) observed, 3 of the 20 survived to 

adulthood
Moved eggs to room temperature, many

4 0 0 0 Many hatched within 48hr, 20 separated and
(>300) observed, 3 of the 20 survived to 

adulthood
1 0 0 0 0 Nauplii had been observed in bottle, but
l none remained at termination
2 2 0 ~ 9

Few (10- Moved nauplii to room temperature, allit y 20) died as nauplii
2 9 5 0 Few (10- Nauplii had been observed in bottle, but

NC 7°C 20) none remained at termination
4 0 2 0 Few (10- Nauplii had been observed in bottle, but

20) none remained at termination

0 0 0 Few (10- Nauplii had been observed in bottle, but
20) none remained at termination

I 1 0 Few (10- Nauplii had been observed in bottle, buto J 20) none remained at termination

Few (10- 
20)

Separated 20 nauplii and moved to room
1 1 0 >100 temperature, 5 of the 20 survived to

adulthood
2 327 18 ~3 Few (10- Moved nauplii to room temperature, all

NC 5°C L i J 20) died as nauplii
2 12 1 -12 Few (10- Moved nauplii to room temperature, all
J 20) died as nauplii

4 458 36 0 Few (10-
20)

Table 3-7: Contents of the 5° and 7°C NH and NC cultures after 8 weeks at the F3 generation.
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Figure 3-6: Mean of the total number of adults counted at 5° and 7°C in each bottle for each 
generation for the NH and NC cultures. Error bars are one standard deviation.
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Figure 3-7: Mean number of males and females counted at 5° and 7°C for the NH and NC 
cultures. Error bars are one standard deviation.
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Females outnumbered males in every bottle at all three generations for both temperatures 

and both cultures, with one exception (bottle 4 of the F3 generation for the 7°C NC 

culture where there were no females and 2 males; Figure 3-7). This difference was 

significant for NH and NC at 7°C and NC at 5°C for the Fi generation (using a paired t- 

test on each culture for each generation and temperature with an adjusted critical p value 

of 0.005 to compensate for multiple comparisons). The difference in the ratio of females 

to males was the largest in the two NC 5°C F3 bottles that produced large numbers of 

adults, bottle 2 had a ratio of 18.17:1 and bottle 4 had a ratio of 12.72:1 (Table 3-7).

Nauplii production at 5 and 7°C:

The NH 7°C cultures produced significantly more nauplii per female than the NC 7°C 

cultures (p < 0.0001 by ANOVA); and significantly fewer NH females failed to produce 

nauplii (p < 0.0001 by ANOVA after arcsine transformation; Table 3-8). The NH and 

NC 5°C cultures produced similar mean numbers of nauplii per female and had a similar 

proportion of females fail to produce nauplii (Table 3-8). The higher variance in the NC 

5°C cultures resulted in a significant culture by bottle interaction on a two way ANOVA 

(p = 0.0259) preventing a direct comparison of the means.

DISCUSSION

Responses of Acartia tonsa cultures to high and low temperatures:

The significant differences in the responses of the NH and NC cultures to high and low 

temperatures suggest that the populations have differentially evolved, however, other
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5° and 7°C Gen Fi
Culture Bottle Mean sd p-Failed

1 16.17 9.20 0.00
2 9.33 11.52 0.17
3 10.83 10.23 0.00

NH 7°C 4 20.17 13.38 0.00
5 11.33 6.25 0.00
6 20.00 5.62 0.00

Mean 14.64 3.01 0.07
1 17.00 3.95 0.00
2 10.67 12.39 0.17

NH 5°C 3 17.50 6.16 0.00
4 24.33 10.21 0.00

Mean 17.38 3.82 0.08
1 2.67 2.94 0.33
2 2.00 4.43 0.67
3 0.00 0.00 1.00

NC 7°C 4 1.00 2.00 0.67
5 1.17 1.94 0.50
6 0.00 0.00 1.00

Mean 1.14 1.72 0.27
1 9.00 12.65 0.33
2 32.00 23.78 0.00

NC 5°C 3 10.33 9.44 0.00
4 18.67 16.72 0.17

Mean 17.50 6.19 0.16
Table 3-8: Results of 5° and 7°C nauplii production experiment at generation Fi for the NH and 
NC cultures. The mean and standard deviation for each bottle are for 6 individuals per bottle. 
The p-Failed is the proportion of females per bottle that failed to produce nauplii. The per 
culture mean and standard error are the mean of means and standard deviation of means.

factors may have caused the observed differential response. The small number of adults 

observed in the cultures at high temperatures were consistent with the reduction in 

population size of natural populations at high temperature (Heinle 1969 and Pat Tester, 

National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, 

personal communication). The die-off of the cultures at 7°C is not consistent with what 

has been observed in natural populations of A. tonsa species at low temperatures, which 

is to reduce population size and lay dormant eggs (Durbin and Durbin 1981; Sullivan and 

McManus 1986). The response could be the result of the unnatural conditions
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encountered in the cultures (i.e. low temperature with long day length and plentiful food 

supply). It is possible that some of the organisms systems were responding to one 

environmental cue, while others were responding to a different cue. The NH cultures at 

5°C may argue against this theory since the cultures’ behavior mirrored that o f natural 

populations, which is to lay dormant eggs. This could be a threshold response where at 

5°C, the organism will respond to temperature, but at 7°C the organism still response to 

other environmental cues. The NC cultures’ response to 5°C may reflect a response to 

unnatural conditions, since the source population from which these cultures were derived 

rarely falls below 10°C. It is clear, however, that the NH and NC cultures did respond 

differently at 5°C, and that these differences were maintained over multiple generations. 

Perhaps the most striking difference is that the NH cultures laid dormant eggs while the 

NC cultures did not.

In addition to the significant differences in the number of adults between the NH and NC 

cultures at 31°C, there were also significant differences in the numbers of adults between 

generations. This suggests that population sizes of the two cultures may not be changing 

at the same rate over the ten generations. Indeed, the NC cultures showed a trend of 

increasing number o f adults each generation, which was not seen in the NH cultures. 

These results do not have the power to significantly confirm this trend, but they suggest 

that selection may have acted on the NC cultures over the 10 generations of the 

experiment.

These findings suggest that the forces that differentiate the NH and NC cultures are 

acting on the developmental (NI to CV) stages o f the copepods life history. The NH 

cultures produced an equal number of nauplii per females and had a higher proportion of
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females producing nauplii that did the NC cultures. In order for the NC cultures to 

generate a greater number of adults, more of the NC nauplii must survive to adulthood. 

Also of interest is that most of the increase in the number of adults for the NC cultures 

resulted from an increase in the number of females. This suggests that selection has 

favored NC females and acted during the developmental stages, although more 

experiments are needed to confirm these observations.

The cultures that produced the largest increase in population size over multiple 

generations to high (NC at 31°C) and low (NC at 5°C) temperatures both did so by 

increasing the proportion of females. These results are consistent with those ofHeinle 

who found that the sex ratio of A. tonsa from Chesapeake Bay was predominantly female 

under density stress (Heinle 1972) and heavy predation stress (Heinle 1970). Durbin and 

Durbin (Durbin and Durbin 1981) found that females made up about 60% of wild 

populations in Narragansett Bay under normal conditions. An increase in the proportion 

of females could be an adaptation to increase population size, as one male could fertilize 

many females.

Additional sources of differences between cultures:

It is not possible from this study to conclude that the differences observed between the 

cultures were due to a genetic effect derived from differential evolution of the source 

populations. Other factors, such as microorganisms co-cultured with the A. tonsa, could 

have conferred a selective advantage or disadvantage onto the individuals in one culture, 

generating the differences observed. This scenario could also explain the large amount of 

variance observed within some of the treatments (i.e. NC cultures at 5°C). It is also
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important to note that even if the observed differences were the result of differential 

evolution between the two cultures, the evolutionary response may not have been a direct 

response to temperature. The cultures could have had differential responses to food, 

salinity, photoperiod, dissolved oxygen level, microbial makeup of the culture (even if it 

was the same for both cultures), or a number of other factors or combination of these 

factors. Indeed, the extreme temperature may have served to compound the response to 

one or more of these factors. Many aspects of A. tonsa’s response to temperature warrant 

further study. A detailed examination of the acclimation of individuals from different 

populations to a variety of temperatures would provide insight into how temperature 

affects each stage of development.

Possible genetic mechanisms:

A major difficulty in detecting evidence of cyclical selection has been that the predicted 

outcome of cyclical selection (maintenance of heterozygosity) is similar to the predicted 

outcome of genetic drift (Lynch 1987). Several models of the predicted heterozygosity 

have been proposed under various assumptions (Wright 1948; Hedrick et al. 1976; 

Kirzhner et al. 1996; Korol et al. 1996; Kirzhner et al. 1998; Burger 1999). Some of 

these studies have suggested evidence of cyclical selection acting on particular 

populations (Hairston and Dillon 1990 and references therein). If the variation in 

response to extreme temperature of the cultures in the present study was due to 

differential evolution, then this suggest a method for detecting cyclical selection: 

examination of the physiological response of several closely related populations that have 

been isolated to environments with different ranges of a cyclical environmental factor. In 

the current study, temperature was examined, which is cyclical in both the NH and NC
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estuaries with different ranges. Indeed, the cultures derived from these two estuaries 

followed the a priori prediction that at high temperatures, the NC cultures would have 

greater population sizes than the NH cultures. There are many isolated populations of A. 

tonsa, covering a large variation in temperature ranges, which would provide opportunity 

to test this hypothesis. Similar methods have been used to find evidence of directional 

selection, the difference here is to distinguish cyclical selection from directional selection 

by examining molecular patterns of heterozygosity. A correlation between the maximum 

temperature range of an estuary and the fitness of a population at high temperatures, 

combined with evidence of high molecular heterozygosity, would offer strong evidence 

of cyclical selection. The study could be further strengthened by examining 

physiological responses of cultured populations to an environmental factor that does not 

vary between populations, or varies sporadically for which no trend is expected. Such a 

study would require using closely related populations or species, which have large 

isolated populations, are easy to culture, and are exposed to a cyclical environment.

The current study cannot resolve the underlying molecular evolutionary mechanisms (if 

there are any) driving the observed changes. It has been theorized that a selective 

evolutionary response over a short number of generations may be caused by genetic 

rearrangements. Thus, selection under fluctuating environments may influence the 

evolution of recombination rates (Zhuchenko et al. 1985; Korol et al. 1998). However, 

studies of Drosophila melanogaster found no reduction in the rate o f adaptation to 

artificial selection on a polygenic trait when chromosomal recombination was inhibited 

(Bourguet et al. 2003). We cannot know whether the different responses of the NH and 

NC cultures to high temperature resulted from the accumulation of adaptive alleles, or
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other genetic mechanism. Additional experiments with more replicates and larger culture 

sizes carried out for longer periods are needed to confirm the trends seen here.

CONCLUSIONS

It is suggested that Acartia tonsa collected from coastal estuaries in NH and NC have 

significant physiological differences, despite their highly conserved morphologies. 

Previous population genetic analysis and breeding experiments suggest that these 

populations are genetically divergent but morphologically cryptic species. This study 

implies that both species have maintained enough phenotypic plasticity to acclimate to 

the cyclical and sporadic changes in temperature that are typical of coastal estuaries. 

Acartia tonsa provides a unique model system for studying the processes responsible for 

the evolution of phenotypic plasticity in response to cyclical selection, an important 

aspect of the mechanisms of evolution.
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CHAPTER IV

COMPARATIVE ANALYSIS OF DORMANT EGGS PRODUCED BY TWO 
GENETICALLY DISTINCT POPULATIONS OF ACARTIA TONSA

ABSTRACT

The calanoid copepod Acartia tonsa over-winters as a dormant egg in estuaries of the 

Northeastern USA. This study examines whether these dormant eggs are in diapause 

(i.e., predisposed to become dormant in response to a non-limiting environmental cue) or 

are quiescent (i.e., dormant in response to a limiting environmental condition). An 

important distinction between diapause and quiescent eggs is that diapause eggs can 

remain dormant for multiple seasons, resulting in a reservoir of unhatched eggs in the 

sediments, or egg bank, which may have the effect of slowing the rate of evolution of a 

population. Diapause eggs usually require incubation in the dormant state before 

becoming competent to hatch. Eggs laid by A. tonsa cultures, derived from Great Bay, 

NH and Beaufort Inlet, NC, under laboratory conditions at 3° and 0°C with a short 

photoperiod were capable of hatching if  brought to 20°C immediately after being laid. In 

addition, 60.8% of NH eggs laid at 3°C hatched during a 16 week incubation at 3°C 

(89.5% within the first week), and 67.5% of NC eggs laid at 3°C hatched during a 16 

week incubation at 3°C (88.9% within the first week). These results demonstrate that A. 

tonsa from NH and NC produced quiescent rather than diapause eggs in laboratory 

cultures at low temperatures with a short photoperiod, and further suggests that these
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populations may not produce an egg bank in the wild. These findings are consistent with 

studies showing high levels of genetic diversity and significant population structuring, 

consistent with rapid evolution.

INTRODUCTION

Danks (1987) defined dormancy as a “state of suppressed development,” the extremes 

being diapause and quiescence. He characterized diapause as a programmed delay in 

development in response to a non-limiting environmental cue. Thus, an organism might 

not be adversely affected by short day lengths, but enters a dormant state when the days 

become shorter than 8 hours. Once an organism has entered diapause, there is usually a 

minimum time that it must remain in diapause before resuming normal development. In 

contrast, quiescence is characterized as a delay in development resulting from an 

immediate response to adverse environmental conditions (Danks, 1987). The quiescent 

state lasts only as long as the adverse conditions persist. Diapause eggs differ from 

quiescent eggs, in that the latter will immediately continue normal development when 

conditions become favorable, diapause eggs must first receive an environmental cue to 

break the diapause state, and require an incubation period prior to being susceptible to 

such a cue (Marcus 1996).

Many animals enter a dormant stage to survive conditions that are unfavorable to them. 

Dormancy allows the animal to focus its adaptive abilities to a limited range of 

environmental conditions. Temperature is a common factor forcing animals into
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dormancy. In marine estuaries, annual temperatures can fluctuate significantly season to 

season. Planktonic invertebrates that can neither escape the estuary nor control their own 

temperature, they must adapt to or tolerate the water temperature variation -  or enter a 

dormant state when the temperature is too hot or to cold.

Of the 1800 plus species making up the 41 families of the copepod order Calanoida, 49 

species of five families have the ability to lay dormant eggs (Engel and Hirche 2004).

The primary environmental cues that induce copepods to lay dormant eggs are population 

density, photoperiod, and temperature (Mauchline 1998). In-depth studies of the factors 

that induce diapause have only been conducted on a few species o f marine copepods. 

Culturing experiments on Labidocera aestiva (which over-winter as diapause eggs) have 

shown that the most important environmental cue for diapause induction was photoperiod 

modified by temperature (Marcus 1980; Marcus 1982a; Marcus 1982b; Marcus 1984). 

Culture experiments have shown that A. hudsonica produces diapause eggs in response to 

high temperatures without regard to photoperiod (Sullivan and McManus 1986; Avery 

1999) and A. bifiosa produced diapause eggs in response to photoperiod modified by 

temperature (Chinnery and Williams 2003).

In research cultures, it is important to distinguish the difference between quiescent and 

diapause eggs, because it can have a major effect on development times and responses to 

environmental factors. In the wild, diapause eggs can influence the rate and direction of 

evolution. Hairston and De Stasio (1988) showed that diapause eggs laid by the fresh 

water copepod Diaptomus sanguineus continue to hatch at least three years after being 

laid and can make up a significant portion of the gene pool over multiple years. This
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temporal migration of alleles can slow the rate o f evolution. The magnitude of this effect 

depends on how long the eggs can survive in the sediment and the rate at which they 

hatch out (Marcus 1996). These variables are not known for most species, but Marcus et 

al. (1994) found viable eggs buried in sediment that were at least 40 years old.

Within the family Acartiidae, at least 15 species are known to lay dormant eggs 

(Mauchline 1998). Two of these dominate the water column in estuaries of the 

Northeastern USA: Acartia tonsa in the spring and summer; and A. hudsonica in the fall 

and winter (Lee and McAlice 1979; Durbin and Durbin 1981; Sullivan and McManus 

1986). In estuaries south ofNew Jersey, A. tonsa remains in the water year-round 

(Zillioux and Gonzalez 1972; McAlice 1981, and references there in). Acartia tonsa was 

the first marine copepod shown to be capable of laying dormant (Zillioux and Gonzalez 

1972), this study, conducted on A. tonsa cultures from Narragansett Bay RI and Biscayne 

Bay FL, did not directly test whether the eggs were quiescent or diapause. Several other 

studies have suggested that A. tonsa lay quiescent eggs, but none have directly tested it: 

Uye and Fleminger (1976) examined the effect of temperature on egg hatching in A. 

tonsa from Northern California - though these samples may have been what is now 

referred to as A. californiensis (Trinast 1976; Trujillo-Ortiz 1990; Caudill and Bucklin 

2004) and concluded that their cultures failed to lay diapause eggs; Chen and Marcus 

(1997) examined field caught eggs and eggs laid by field caught A. tonsa females from 

the northern Gulf of Mexico, and concluded that these populations lay quiescent eggs.

This study examines whether laboratory cultures o f A. tonsa derived from populations 

from Great Bay NH and Beaufort Inlet NC laid diapause or quiescent eggs at low
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temperatures with a short photoperiod. These eggs were identified as quiescent or 

diapause by examining whether an incubation period was needed to break dormancy.

MATERIALS AND METHODS 

Sample collection:

Acartia tonsa adults were collected from Great Bay, NH (43“54.5”N; 70°51.8”W) on 

October 31, 2000 (NH collection) from the dock at the University o f New Hampshire’s 

Jackson Laboratory in Durham, NH. Samples were collected with a 333pm mesh net 

using a one-quart glass jar as a cod end. The net was tossed into the water, allowed to 

sink, and then was slowly pulled up and through the water column. The samples were 

filtered to remove large predators and debris and stored in a cooler with ice packs for 

transportation to UNH, where A. tonsa were identified and removed alive. Collections 

were also done from Gallants Channel, in Beaufort Inlet, near Beaufort, NC 

(34°43’ 12”N; 76°40’23”W) on October 28, 2000 off the Pivers Island Road bridge (NC 

collection). NC samples were collected and sorted by Dr. Patricia Tester (National 

Oceanic and Atmospheric Administration, Southeast Fisheries Science Center).

Copepods were fed, placed in a one-quart cooler, and shipped overnight to UNH.

Culturing and experimental setup:

In the laboratory, 20 -  30 fertilized females were placed in 2L glass bottles containing sea 

water collected from the same location and filtered through 20pm mesh (Figure 4-1).
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Figure 4-1: Experimental design. Large bottles are 10L, medium bottles are 2L, small bottles are 
60ml, and boxes with circles are 6-well plates. Open arrows represent transfer between 
generations, patterned arrows represents time, wide patterned arrows are egg laying incubations, 
thin patterned arrows are egg hatching incubations, solid line arrows are egg and nauplii count 
points. Temperature of each incubation indicated.
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Three cultures were established for each collection and grown at room temperature with a 

14: lOhr light: dark cycle. Every other day, 200ml of water was removed from each 

culture using a siphon fitted with a 20pm mesh and replaced with 200ml of 20ppt Instant 

Ocean containing a mixture of Rhodomonas salina (CCMP1319) and Isochrysis galbana 

(CCMP1323). Phytoplankton cultures were grown in Guillard’s f/2-si media in 33ppt 

Instant Ocean at room temperature with a 14:10hr light:dark cycle.

Twenty fertilized female offspring of the field caught individuals were used to establish 

the parental generations in two 2L glass bottle for each of the NH and NC cultures. The 

bottles contained 20ppt Instant Ocean and were fed as described above. The temperature 

of the bottles was lowered from 20°C to 5°C at a rate of 2°C/day and the photoperiod was 

changed to a 6:18hr light:dark cycle.

The Fi generation was used to seed the egg laying chambers, consisting of plastic vials 

with a 100pm mesh on the bottom and an open top, placed in a 60ml jar with 20ppt 

Instant Ocean. The adults were retained within the plastic vial but the eggs could fall 

through the mesh to the bottom of the jar. Twenty-four egg laying chambers each were 

established for the NH and NC cultures, each with one fertilized female and one male per 

chamber. Cultures were fed every other day by replacing 3ml of water with 3ml of 20ppt 

Instant Ocean and mixed phytoplankton, and were incubated with a 6:18hr light:dark 

photoperiod. The chambers were incubated at 3°C for two weeks. Eggs laid during the 

first week were discarded. After the second week, all of the eggs laid were collected and 

placed into the wells of clear plastic 6-well plates. The eggs collected from each chamber 

were split between two wells of separate plates to form 2 sets of plates, each set
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containing eggs from every egg laying chamber in individual wells. The incubation 

temperature of the egg laying chambers was then lowered to 0°C and the experiment was 

continued for two more weeks. After the first week at 0°C all eggs laid were discarded. 

After the second week at 0°C, all of the eggs laid were collected and placed into the wells 

of clear plastic 6-well plates as before.

One set of plates from the 3°C incubation and from the 0°C incubation were immediately 

brought to 20°C immediately after being collected. The numbers of eggs and nauplii in 

each well of each plate were counted after 3 and 6 days (all eggs had hatched or dissolved 

by day 6) at 20°C. The other sets of plates were incubated at 3°C and the number of eggs 

and nauplii in each well of each plate were counted after 1, 2, 4, 8, 12, and 16 weeks. 

After 16 weeks at 3°C the temperature of the plates was raised to 20°C and the number of 

eggs and nauplii in each well of each plate were counted after 3 and 6 days (all eggs had 

hatched or dissolved by day 6) at 20°C.

Statistical analysis:

Percentage data were analyzed using nonparametric rank tests: Mann-Whitney test for 

non-paired two sample comparisons (Zar 1996, Chapter 8), Wilcoxon test for paired 

samples (Zar 1996, Chapter 9), and Friedman’s test for analysis of variance with 

nonparametric Tukey-type test for multiple comparisons (Zar 1996, Chapter 12). Counts 

were square-root transformed prior to calculations of means and confidence limits (Zar 

1996, Chapter 13).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



71

35

25

§>
20

1
Z  15

10

o
o
o

o
o
o
o
o

o
NH 3°

o
o
o

oo
o

NH 0°

o
o
o
o
o
o

o
o

NC 3°
i

NC 0°

Figure 4-2: Number of eggs laid by each female over the 1-week incubation at 3° or 0°C from NH 
and NC. Open circles are values for each female (24/group), cross bar is at mean, and error bar 
represents 95% confidence limits. Means and confidence limits were calculated using square root 
transformed data.

RESULTS

The NH and NC females produced viable eggs during the 16-week incubation at 3° and 

0°C (Figure 4-2, Tables 4-1 and 4-2). More eggs per female were laid at 3°C than 0°C 

within each culture, and the NH females laid more eggs per female than NC females at a 

given temperature (Table 4-3). At both temperatures, more NH females than NC females 

laid viable eggs with only one of the 24 NC females producing viable eggs at 0°C (Table 

4-3). For the NH eggs laid at 3° and 0°C, there was no significant difference between the 

percentage of eggs hatched during the 20°C incubations at week 0 and week 16 (p < 0.5, 

Figure 4-4 and Table 4-4). During the 16-week 3°C incubation a significantly lower
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NH
Eggs Laid at 3°C

Total wkO 20°C 
Incubation 3° Incubation wkl6 20°C 

Incubation Total wkO 20°C 
Incubation

Eggs Laid at 0°C

3°C Incubation wkl6 20°C 
Incubation

# # d3 d6 wkl wk2 wk4 wk8 wkl2 wkl6 # d3 d6 # # d3 d6 wkl wk2 wk4 wk8 wkl2 wkl6 # d3 d6
? E N E E N E N E N E N E N E N E N E N E E N E N E N E E N E N E N E N E N E N E N E N E E N E N
1 20 3 10 3 7 0 3 9 1 7 1 6 1 5 1 5 0 5 0 5 3 2 0 3 16 0 8 2 6 0 2 7 1 6 1 2 4 2 0 2 0 2 0 2 2 0 0 2
2 15 1 7 5 0 0 4 8 0 7 0 6 0 6 0 4 1 4 0 4 2 2 0 2 5 1 2 0 2 0 0 3 0 2 1 1 0 1 0 1 0 1 0 1 0 1 0 0
3 20 8 10 2 6 0 2 10 0 5 0 5 0 5 0 5 0 5 0 5 4 1 0 3 18 2 9 4 5 0 4 8 0 7 0 7 0 7 0 7 0 7 0 7 3 3 0 3
4 7 3 3 1 2 0 1 4 0 2 0 2 0 1 1 0 0 0 0 0 0 0 0 0 13 1 6 1 5 0 1 7 0 7 0 7 0 6 1 6 0 6 0 6 2 3 0 2
5 1 2 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 7 0 3 1 1 0 1 4 0 4 0 4 0 3 1 3 0 3 0 3 3 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 7 13 3 0 3 0 0 3 1 3 0 2 0 2 0 2 0 2 0 2 1 1 0 0 2 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 6 6 3 0 3 0 0 3 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 0 3 2 1 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 0 1
9 22 5 11 5 6 0 5 11 0 11 0 10 0 7 2 7 0 6 0 6 2 4 0 1 11 1 5 0 5 0 0 4 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0
10 2 2 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
11 2 3 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 3 0 1 0 1 0 0 2 0 2 0 2 0 1 1 1 0 1 0 1 0 1 0 0
12 4 4 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 . 1 0 1 0 0 0 2 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0
13 23 17 10 4 6 0 4 11 2 9 0 3 1 2 0 2 0 2 0 2 0 1 0 0 17 13 8 0 8 0 0 5 4 4 1 2 2 2 0 2 0 2 0 2 1 1 0 1
14 18 3 9 2 7 0 2 9 0 8 0 5 2 5 0 5 0 5 0 5 2 3 0 1 8 1 4 0 3 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 11 17 5 0 5 0 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
16 12 5 6 0 6 0 0 6 0 6 0 5 0 4 1 4 0 4 0 4 3 1 0 2 6 0 3 0 2 0 0 3 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0
17 10 4 5 0 5 0 0 5 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 20 12 10 2 8 0 1 10 0 6 2 5 1 5 0 4 1 4 0 4 2 2 0 2 2 3 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 5 14 2 0 2 0 0 2 1 2 0 2 0 2 0 2 0 2 0 2 1 1 0 1 2 3 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1
21 7 4 3 2 1 0 2 3 1 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 5 0 2 0 2 0 0 3 0 3 0 3 0 2 1 2 0 2 0 2 0 2 0 0
22 2 2 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 7 2 3 1 2 0 1 3 0 3 0 2 0 2 0 2 0 2 0 2 1 1 0 1 8 1 4 0 1 0 0 2 2 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1
Table 4-1: Experimental results from NH cultures. 9  = female in egg laying chamber, E = eggs, N = nauplii, Total is the total number of eggs and 
nauplii counted in chamber after 1-week egg laying incubation, d = day, wk = week, # is the number of eggs at the beginning of the 20°C incubations, 
all numbers except numbers identifying females are counts.
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NC
Eggs Laid at 3°C Eggs Laid at 0°C

Total wkO 20°C 
Incubation 3° Incubation w kl6 20°C 

Incubation Total wkO 20°C 
Incubation 3°C Incubation w kl6 20°C 

Incubation
# # d3 d6 wkl wk2 wk4 wk8 w kl2 w kl6 # d3 d6 # # d3 d6 wkl wk2 wk4

C
O w kl2 w kl6 # d3 d6

$ E N E E N E N E N E N E N E N E N E N E E N E N E N E E N E N E N E N E N E N E N E N E E N E N
1 9 2 4 2 2 0 2 3 2 3 0 3 0 3 0 3 0 3 0 3 2 1 0 1 16 2 8 0 0 0 0 7 0 6 0 6 0 6 0 6 0 6 0 6 4 0 0 0
2 9 2 4 0 4 0 0 5 0 5 0 5 0 4 1 4 0 4 0 4 2 2 0 1 3 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 5 6 2 0 2 0 0 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 3 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 9 3 4 1 3 0 1 5 0 5 0 4 1 3 1 3 0 3 0 3 0 3 0 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 3 2 1 1 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 6 1 3 1 1 0 1 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 8 0 4 2 2 0 2 3 1 3 0 2 1 2 0 2 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 6 3 3 1 1 0 1 3 0 3 0 3 0 3 0 3 0 3 0 3 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 2 6 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 3 3 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 4 0 2 1 1 0 1 2 0 2 0 2 0 2 0 2 0 2 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 4-2: Experimental results from NC cultures. $  = female in egg laying chamber, E = eggs, N = nauplii, Total is the total number of eggs and 
nauplii counted in chamber after 1 week egg laying incubation, d = day, wk = week, # is the number of eggs at the beginning of the 20°C incubations, 
all numbers except numbers identifying females are counts.
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Culture Temp Total # 
Eggs Eggs/? Upper 

95% Cl
Lower 

95% Cl

% $ 
Laid 
Eggs

% ? Produce 
Nauplii

# Eggs wkO 20°C 
Incubation

# Eggs 3° 
Incubation

#Eggs wkl 6 20°C 
Incubation

"NTH 3°C 358 12.71 17.78 8.47 91.7 91.7 108 250 54
0°C 166 5.58 8.29 3.37 91.7 87.5 58 108 29

"NIP 3°C 110 3.60 5.51 2.05 79.2 79.2 30 80 19
o°c 37 0.71 1.73 0.00 20.8 4.2 16 21 6

Table 4-3: Total number of eggs, number of eggs per female, and upper and lower confidence intervals, percent of females that laid eggs, and 
percent of females that produced nauplii for eggs laid over 1 week from NH and NC cultures at 3°C and 0°C (mean and upper and lower confidence 
intervals calculated after square root transformation of data). Also shown are the number of eggs used for 20°C incubation at week 0 ,3°C 16 week 
incubation, and 20°C incubation at week 16.
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Figure 4-3: Accumulative percent of eggs hatched during the 16-week incubation at 3°C from NH 
and NC laid at 3°C or 0°C.

percent of eggs hatched than during either 20°C incubation (p < 0.01 for all comparisons, 

Table 4-4). There was no significant difference for eggs laid at 3°C and 0°C in the 

percent of eggs hatched during the 16-week incubation at 3°C (0.5 > p > 0.2). The 

overall percentage of NH eggs laid at 3°C that hatched during the 16-week incubation at 

3°C was 60.8%, ranging from 22.2% to 88.2% (Figure 4-3). Among the eggs that 

hatched, 85.5% hatched during the 1-week egg-laying period and 89.5% had hatched by 

the end of the first week of the 3°C incubation (Figure 4-3). The overall percent of NH 

eggs laid at 0°C that hatched during the 16 week 3°C incubation was 62.7% with a range 

from 0% to 100%. The highest and lowest values were from samples with 3 or fewer 

eggs. Among the eggs that hatched, 53.6% hatched during the 1-week egg-laying period,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



76
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Days

Figure 4-4: Accumulative percent of eggs hatched during the 6-day incubation at 20° before (pre) 
and after (post) the 16-week incubation at 3°C from NH and NC laid at 3°C and 0°C.

and 73.9% hatched within the first week of the 3°C incubation (Figure 4-3). For all of 

the 20°C incubations, all eggs hatched or disintegrated.

For the NC eggs laid at 3°C, there was no significant difference between the percent of 

eggs hatched during the 20°C incubations at week 0 and week 16 (p > 0.1 for both 

experiments, Figure 4-4, Table 4-4). There was a significantly lower percent of eggs 

hatched during the 16-week 3°C incubation than during the week 0 20°C incubation 

(0.025 > p > 001); and no significant difference in the percent of eggs hatched during the 

16-week 3°C incubation and the week 16 20°C incubation (0.2 > p > 0.1, Table 4-4). No 

comparisons were made for the NC eggs laid at 0°C, because only one female produced 

viable eggs. The overall percent of NC eggs laid at 3°C hatching during the 16-week 3°C
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Comparison Test P Multiple Comparisons (p)

NH 3°C (pre, during, post) Friedman’s ANOVA <0.0001* pre = post (p > 0.50)
pre # during (p < 0.00 T)
post y  during (0.005> p >0.001*)

NH 0°C (pre, during, post) Friedman’s ANOVA 0.0009* pre = post (p > 0.50)
pre ^ during (0.01> p >0.005*)
post # during (0.01> p >0.005*)

NC 3°C (pre, during, post) Friedman’s ANOVA 0.0037* pre = post (p > 0.50)
pre # during (0.025> p >0.01*)
post = during (0.2> p >0.1)

NH 3°C during and NH 0°C 
during

Wilcoxon paired- 
sample test

0.5 > p >  
0.2

NH 3°C and NC 3°C during Mann-Whitney test <0.0001*

NH 3°C pre and NC 3°C pre Mann-Whitney test 1.0000

NH 3°C post and NC 3°C post Mann-Whitney test 0.0949

Table 4-4: Comparisons of the percent of eggs hatched between different groups. 3° and 0°C are 
the egg laying temperature. Pre represents the percent of eggs hatched in the initial move of eggs 
from 3° or 0°C to 20°C at week 0; during represents the percent of eggs hatched during the 16- 
week 3°C incubation; and post represents the percent of eggs hatched in the final move of eggs 
from 3°C to 20°C at week 16. All comparisons are based on the accumulative percent of eggs 
hatched in each chamber over the entire incubation period. All test are nonparametric rank sum 
test, multiple comparisons used a nonparametric Tukey-type test with rank sums. For blocked 
(Friedman’s AN OVA) and paired-sample test (Wilcoxon) only samples with complete data were 
used. * indicates significant difference.

incubation was 67.5% with a range from 0% to 100% (Figure 4-3). Among the eggs that 

hatched, 72.2% hatched during the 1-week egg-laying period; 88.9% had hatched by the 

end of the first week of the 3°C incubation (Figure 4-3). For all o f the 20°C incubations, 

all eggs hatched or disintegrated.

Comparisons between the of NH and NC eggs laid at 3°C showed no significant 

difference in the percentages of eggs hatched during either the week 0 (p = 1) or week 16 

(p = 0.0949) 20°C incubations (Table 4-4). A significantly lower percentage of NH eggs 

hatched during the 16 week 3°C (Table 4-4).
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DISCUSSION

It is assumed from studies on neighboring populations that Acartia tonsa in Great Bay, 

NH over-winter as dormant eggs, while A. tonsa in Beaufort Inlet, NC remain in the 

water column year round. The most notable differences observed between the NH and 

NC cultures were a higher percentage of NC eggs hatching during the 3°C incubation, 

and the absence of viable eggs produced by NC females at 0°C. These findings correlate 

well with the environmental histories of the cultures’ source populations. It is impossible 

to say whether these results have a causative basis. Interestingly, similarities between the 

cultures included a high percentage of egg hatching at 20°C (both before and after the 16 

week incubation at 3°C) and almost no eggs hatching after the eighth week at 3°C. These 

similarities may provide insight into the mechanisms controlling egg dormancy in A. 

tonsa.

By definition, diapause eggs are predisposed to enter a dormant state in response to an 

environmental cue and usually require the egg to undergo an incubation period prior to 

hatching (Danks 1987). This experiment showed that A. tonsa eggs laid at low 

temperatures (0° - 3°C) with a short photoperiod (6:18hr light:dark) can hatch 

immediately if  brought to 20°C or can remain dormant if  left at 3°C. Thus, A. tonsa lay 

quiescent rather than diapause eggs under these culture conditions. Similar results have 

been observed in other studies (Zillioux and Gonzalez 1972; Chen and Marcus 1997).

The current study differs from these by showing that no incubation period was necessary 

to break dormancy in A. tonsa eggs. Another difference is that Zillioux and Gonzalez 

(1972), reported that no eggs laid at 5°C hatched after incubations of 30 to 135 days at
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5°C. In this study, 58% to 68% of the eggs laid at either 0°C or 3°C hatched at 3°C, most 

within the first 8 weeks. This difference may result from the acclimation of females to 

10°C prior to egg laying by Zillioux and Gonzalez (1972), while females were acclimated 

to 3°C in this study. Tester (1985) has shown that parental acclimation temperature does 

effect egg development time. This, and other unknown culturing differences (e.g., 

photoperiod is not recorded in all studies) could explain the differences in the results.

This study, together with previous studies, indicates that the response to low temperature 

by A. tonsa eggs involves active control of metabolic processes. This can be shown by 

Belehradek’s equation (Beleharadek 1926; McLaren et al. 1969) which predicts 

temperature-dependent egg development times, assuming no physiological acclimation. 

McLaren et al (1969) calculated the constants for Belehradek’s equation for A. tonsa 

from Narragansett Bay RI, and predicted a development times for A. tonsa eggs of 337 

days at 3°C, and 45 days at 5°C. In this study, eggs that remained dormant for 16 weeks 

(112 days) at 3°C could have been developing at a non-adjusted metabolic rate.

However, the eggs that hatched within a few weeks at 3°C probably acclimated to the low 

temperature by increasing their temperature-dependent metabolic rates. In contrast, 

Zillioux and Gonzalez (1972) observed eggs that remained dormant at 5°C for 135 days, 

well beyond the predicted development time of 45 days. Thus, the metabolic rate of 

these eggs must have been slowed down or stopped in response to the low temperature.

One possible mechanism to explain these results is a temperature sensitive metabolic 

switch, which responds to low temperature by either increasing the egg’s metabolic rate 

(so it can develop) or reducing it (sending it into a dormant state). Among eggs from the
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same female, it was common for some fraction to hatch immediately, while the remaining 

fraction remained dormant. This suggest that development time is determined by the 

eggs genotype rather than maternal effects. However, it is not possible to determine from 

this data whether such a switch may be controlled genetically or environmentally. It 

should be noted that, if the control is heritable, then there might have been artificial 

selection in this study in favor of eggs that would develop at low temperature rather than 

go dormant, since the parental generations were cultured from eggs laid and developed at 

5°C.

These results only show that A  tonsa failed to produce diapause eggs under the culture 

conditions o f this study. While photoperiod and/or temperature seem to be the major 

cues to induce females to lay diapause eggs in copepods (Marcus 1982a; Hairston and 

Kearns 1995; Avery 1999; Chinnery and Williams 2003), it is possible that A. tonsa relies 

on a different cue, or the cue was not presented appropriate in this study (i.e., the cue 

might have been a shortening of day length or a reduction in temperature, both of these 

were held constant in this study). More investigations are needed before a conclusion can 

be reached about A. tonsa’s ability to lay diapause eggs in the wild. Indeed the only 

definitive experiment might be to conduct in situ experiments on A. tonsa directly in the 

estuaries.

Independent of the control mechanisms, i f  A. tonsa do not lay diapause eggs, then the 

reduced evolutionary rate hypothesized to occur in some copepods because of the 

existence of an egg bank (Hairston and DeStasil 1988) is probably not occurring in A. 

tonsa. In fact, the high levels of genetic diversity and significant genetic divergence
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among geographic populations suggest that rates of evolution are rapid for A. tonsa (see 

Chapter 2).

CONCLUSIONS

Acartia tonsa from NH and NC are capable of laying quiescent eggs in laboratory 

cultures at low temperature with a short photoperiod. Experiments exploring rates of egg 

laying, development, and hatching in response to different temperatures indicate that the 

dormant eggs produced in culture are not diapause eggs. If the results hold for wild 

populations then it is unlikely that A. tonsa eggs’ are capable of remaining in the 

sediment over multiple seasons and therefore unlikely to form an egg bank. However, 

the results of this study are not directly applicable to wild populations, which may lay 

diapause eggs and create an egg bank. The experimental results are consistent with a 

temperature sensitive metabolic switch controlling whether an egg enters a quiescent 

state or continues to develop at low temperatures.
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CHAPTER V

MULTIPLEXED SPECIES-SPECIFIC PCR PROTOCOL TO DISCRIMINATE 
FOUR N. ATLANTIC CALANUS SPECIES, WITH A mtCOI GENE TREE FOR

TEN CALANUS SPECIES

ABSTRACT

Accurate species identification is the cornerstone of any ecological study - yet this 

fundamental step is not always possible for marine zooplankton. Routine species 

identification, especially of juvenile and larval stages, is difficult for Calanus species 

(Copepoda; Calanoida) in the N. Atlantic Ocean, where two or three species may co

occur. A rapid, simple, and inexpensive molecularly-based protocol to identify 

individual copepods of any life stage has been developed. This protocol will routinely 

identify four Calanus species in the N. Atlantic, allowing opportunity for accurate 

understanding of the role of each species in coastal and open ocean ecosystems. The 

DNA sequence of a 633 base-pair region of the mitochondrial cytochrome oxidase I 

(mtCOI) was determined for ten Calanus species: C. australis (Brodsky, 1959), C. 

chilensis (Brodsky, 1959), C. finmarchicus (Gunnerus 1770), C. glacialis (Jaschnov 

1955), C. helgolandicus (Claus 1863), C. hyperboreus (Kroyer 1838), C. marshallae 

(Frost 1974), C. pacificus (Brodsky 1948), C. simillimus (Giesbrecht, 1902), and C. 

sinicus (Brodsky 1965). MtCOI sequences were used to design species-specific 

oligonucleotide primers for C. finmarchicus, C. glacialis, C. helgolandicus, and C.
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hyperboreus and optimize a competitive, multiplexed, species-specific PCR (SS-PCR) 

protocol to discriminate the four species. This corrects and improves a previously 

published protocol for three Calanus species (Bucklin et al. 1999, Hydrobiologia 

401:239), unambiguously identifying individual copepods and copepodites from diverse 

geographic regions of the four species’ ranges. In order to further examine the pattern of 

mtCOI evolution within Calanus (an important consideration for molecular systematic 

characters), consensus mtCOI sequences were used to reconstruct phylogenetic 

relationships among the ten species; the mtCOI gene tree agreed with morphological and 

molecular (based on mt 16S rRNA) phylogenies, except that the affiliation of C. sinicus 

could not be resolved.

INTRODUCTION

Four species of Calanus (C. finmarchicus, C. helgolandicus, C. glacialis, and C. 

hyperboreus) may co-occur throughout the N. Atlantic Ocean (Fleminger and Hulsemann 

1977; Bucklin et al. 2000a). Larval and juvenile stages of the abundant and ubiquitous 

species, Calanus finmarchicus, are not readily discriminated from those of a sibling 

species, C. glacialis, and a non-sibling species, C. helgolandicus, which have overlapping 

geographic ranges (Frost 1974). The ecological importance of Calanus species 

(Copepoda; Calanoida) in coastal and oceanic ecosystems makes routine species’ 

identification, especially for juvenile and larval stages, both problematical and important 

(Fleminger and Hulsemann 1977, 1987; Frost 1971, 1974). Species’ identification based
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on size and collection location - a frequent tactic for biological oceanographers - is not 

sufficient in the N. Atlantic, where three or four Calanus species may co-occur (Bucklin 

et al. 1999, 2000a) and geographic variation in environmental conditions may affect 

individual size (Frost 1971,1974). Discrimination of all life stages of these species is 

essential to understanding recruitment and other population dynamic processes of the N. 

Atlantic zooplankton assemblage.

As a group, calanoid copepods (Crustacea; Copepoda; Calanoida) include numerous 

groups of sibling species; they are among the most species-rich holoplanktonic 

invertebrates in the oceans (McGowan 1971). The subtle morphological changes 

accompanying reproductive isolation o f the species have resulted in difficulties in 

identification (see e.g., Fleminger and Hulsemann, 1977; Frost 1989). Recent molecular 

assessment of several genera of marine calanoid copepods has determined that 

congeneric species, despite their morphological similarity, exhibit significant divergence 

in the sequences of mitochondrial genes (Bucklin et al. 1992, 1995, 1998a, 1998b, 1999, 

unpubl.). Molecular systematic assessment of calanoid copepods may thus help define 

species boundaries, reveal cryptic species, identify morphologically-indistinguishable 

taxa (for individuals, pooled samples, and gut contents), and reconstruct evolutionary 

patterns within speciose groups by molecular phylogenetic analysis.

Useful molecular approaches include: comparing a partial DNA sequence for a selected 

gene portion with a DNA “type” sequence (i.e., a DNA sequence of an individual from 

the type locality serving as a taxonomic reference); population genetic examination to
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understand the systematic significance of geographic variation; design o f rapid protocols, 

such as species-specific PCR, for species’ identification.

The evolutionary history of Calanus species is unclear, in part because they have no 

fossil representatives. Frost (1974) and Fleminger and Hulsemann (1977) hypothesized 

that Calanus species experienced a recent radiation - possibly over tens of thousands to a 

few millions of years - but many questions remain about the evolutionary histories of the 

genus and family (Bradford and Jillett 1974; Bradford 1988). Current understanding of 

the evolutionary relationships among the 14 species of Calanus is based on 

morphological and morphometric analysis (Frost 1974; Fleminger and Hulsemann 1977, 

1987), and molecular phylogenetic analysis of mt 16S rRNA sequence variation (Bucklin 

et al. 1992,1995). These studies agree that there are two sibling species groups: the 

finmarchicus group (comprising the polar and boreal species of the northern hemisphere, 

C. finmarchicus, C. glacialis, and C. marshallae) and the helgolandicus group 

(comprising species found in mid-latitudes of both hemispheres, C. helgolandicus, C. 

agulhensis, C. australis, C. chilensis, C. euxinus, C. orientalis, C. pacificus, and C. 

sinicus; Fleminger and Hulsemann 1987, Hulsemann 1991; DeDecker et al. 1991). Two 

species, C. hyperboreus and C. simillimus, are distinct from either group (Frost 1971, 

1974).

Several protocols based on molecular genetic characters have been successfully applied 

to marine zooplankton (see review by Bucklin 2000). Short (20 to 50 base pairs) regions 

of DNA sequence diagnostic o f a particular species may be used to design species- 

specific oligonucleotide primers and probes and restriction enzyme digestion assays (see
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Griffin and Griffin 1994; Bucklin 2000). Oligonucleotide probes have been used to 

identify phytoplankton cells (DeLong et al. 1989; Scholin and Anderson 1996) and 

marine invertebrate larvae (Olson et al. 1991; Banks et al. 1993; Medeiros-Bergen et al. 

1995; Bell and Grassle 1998). Competitive species-specific PCR (see Gibbs et al. 1989) 

has been used for a variety of marine organisms (Dixon et al. 1995; Fell 1995; Bucklin et 

al. 1998a, 2000b). For Calanus species in particular, Lindeque et al. (1999) designed a 

three-step protocol based on PCR amplification of mitochondrial 16S rRNA, restriction 

enzyme digestions, and agarose gel electrophoresis to distinguish C. finmarchicus, C. 

helgolandicus, C. hyperboreus, and C. glacialis.

We selected allele-specific amplification by the polymerase chain reaction (PCR; see 

Charlieu 1994) for discrimination of Calanus species. Because the alleles are selected to 

be diagnostic of each species, we have termed this species-specific PCR (SS-PCR). 

Typically, SS-PCR reactions are "multiplexed" (i.e., carried out simultaneously and 

competitively in a single tube; Gibbs et al. 1989). Thus a single SS-PCR reaction may 

allow discrimination among multiple species, through the use of an “anchor” 

oligonucleotide primer (i.e., a sequence portion shared by all species) and multiple, 

competing species-specific primers (i.e., each sequence portion is unique to one species). 

The results are determined by sizing the PCR products by agarose gel electrophoresis.

Using mitochondrial cytochrome oxidase I (mtCOI) sequence variation, Bucklin et al. 

(1999) designed a competitive, multiplexed SS-PCR protocol to discriminate three N. 

Atlantic Calanus species, here modified to discriminate four N. Atlantic Calanus species. 

The current study corrects an error (C. glacialis was previously misidentified by Bucklin
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et al. 1999); improves the protocol (the C. finmarchicus primer is now based on the 

coding gene sequence, rather than a putative pseudogene); and expands the analysis to 

include four Calanus species.

Our selection of mtCOI as a molecular systematic character was founded on examination 

of intra- and interspecific variation in the DNA sequence of 10 Calanus species. These 

results are summarized in a mtCOI gene tree representing both the evolutionary 

relationships among Calanus species and the evolution of the gene in the genus.

MATERIALS AND METHODS 

Collection, preservation, and identification of Calanus species samples:

Samples of Calanus species were collected from diverse regions of the world oceans, 

including the N. and S. Atlantic, N. and S. Pacific, and Arctic Oceans (Table 5-1). The 

species were usually identified by the collectors, who are copepod taxonomic experts; 

western N. Atlantic samples were collected and identified by the authors (Table 5-1). All 

samples were preserved in 95% ethyl alcohol as described by Bucklin (2000).

DNA sequence determination for Calanus species:

Individual copepods were prepared for molecular analysis by boiling in distilled water for 

10 to 15 min to evaporate the alcohol. The molecular analyses also used DNA purified 

from pooled individuals by phenol extraction and ethanol precipitation (Bucklin 2000).
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Species Sampling Region Location Date Collector
C. finmarchicus Georges Bank, NW Atlantic 41o2874; 66o47'W 21-Jun-98 A. Bucklin
C. glacialis Arctic Ocean 78oN; 160oW 8-Jul-98 C. Ashjian
C. marshallae Puget Sound, NE Pacific 47o4nST; 122o50'W 22-May-96 B.W. Frost
C. helgolandicus Northeast Atlantic (NE) 49o30'N; 4o25'W 17-Jul-91 R.P. Harris

North Atlantic (NA) 38o4374; 42ol l'W 24-Apr-93 A. Bucklin
Adriatic Sea (AD) 4204574; 17o30'E 21-Dec-95 A. Benovie

C. pacificus
C. p. californicus Puget Sound, NE Pacific 4704674; 122o50'W 22-May-96 B.W. Frost
C. p. oceanicus Subarctic Gyre, N. Pacific 50o0074; 145oOO'W 27-Aug-96 B.W. Frost

C. sinicus Inland Sea of Japan 34o3074; 132o30'E 23-Jan-93 S.-I. Uye
C. chilensis Mejillones Bay, Chile 23o S; 70oN 19-May-95 I. McLaren
C. australis S. Pacific Ocean 44o 00' S; 178o 30’ E 25-Oct-97 J. Bradford Grieve
C. simillimus S. Pacific Ocean 46o 40' S; 178o 29' E 20-Oct-97 J. Bradford Grieve

C. hyperboreus Gulf of St. Lawrence, NW 
Atlantic 48o4074; 68o35'W 17-Aug-92 J. Runge

Table 5-1: Collection information for Calanus species used for molecular phylogenetic analysis.

For C. finmarchicus, complementary DNA (cDNA) was synthesized from purified 

mRNA using the Simple Nucleic Acid Preparation (S.N.A.P.) Total RNA Isolation Kit 

(Invitrogen, Inc., Carlsbad, CA). The use of cDNA for C. finmarchicus was necessitated 

by the presence of a non-coding pseudogene (not found in other species) which was 

preferentially amplified by our PCR primers.

A ~700 bp region of mtCOI was amplified using consensus primers made according to 

published sequences (Folmer et al. 1994):

LCO-1490 5’ - GGT CAA CAA ATC ATA AAG ATA TTG G - 3'

HCO-2198 5' - TAA ACT TCA GGG TGA CCA AAA AAT CA - 3'.

The mtCOI primers are named based on position numbers of the Drosophila yakuba 

sequence (Clary and Wolstenholme 1985). Although amplification protocols for each 

species varied slightly, they were all similar to a standard protocol: dissociation at 94° C 

(1 min), annealing at 37° C (2 min), and extension at 72° C (3 min) for 40 cycles.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



89

Annealing temperatures of 39° or 45° C were also used. For confirmation (since a 

putative COI pseudogene was observed for some species; Bucklin et al. 1999), PCR 

amplification was also done using the primers, LCO-1703 and LCO-1719, in place of 

LCO-1490 for C. finmarchicus, C. glacialis, C. marshallae, C. helgolandicus, and C. 

chilensis. The primers were designed from mtCOI sequences obtained as part of this 

study. The primer sequences are:

LCO-1703 5' - CTA TTTT GAT TGG AGG ATT TGG - 3'

LCO-1719 5 '- GGA TTT GGT AAC TGA TTA GTG CC - 3'

The DNA sequencing was done by direct sequencing of PCR amplification products, 

using the LCO-1490 primer, according to published protocols (Bucklin 2000). PCR 

products obtained using LCO-1703 or LCO-1719 used that primer for sequencing. 

Sequencing was carried out on an American Biotechnology, Inc., Model 373, automated 

DNA sequencer.

The DNA sequence of a 633 base-pair (bp) region of mtCOI gene for each species was 

determined by PCR from individual copepods (sample sizes indicated by N) or by 

purification of genomic DNA from multiple individuals pooled prior to analysis (except 

that cDNA was purified for C. finmarchicus to avoid amplification of the non-coding 

COI pseudogene). Sample sizes or pool sizes for each species were: C. australis (N = 3), 

C. chilensis (N = 2 and pool of 25), Calanus finmarchicus (pool of 6), C. glacialis (N = 

6), C. helgolandicus from the Adriatic Sea (pool of 30), C. helgolandicus from the central 

N. Atlantic (pool of 12), C. helgolandicus from the NE Atlantic (pools of 13 and 20), C.
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hyperboreus (N = 2 and pool of 2); C. marshallae (N = 3 and pool o f 20), C. pacificus 

califomicus (pools of 14 and 26) and C. p. oceanicus (N = 7 and pool o f 20), C. 

simillimus (N = 2), and C. sinicus (N = 1 and pool of 16). For each species, the 

consensus sequence of all sequences obtained was used for subsequent analyses.

Species-specific PCR protocol design:

Species-specific oligonucleotide primers were designed from the consensus mtCOI 

sequences by identifying regions of 20 - 30 bp that were conserved within each species 

(based on our limited examination of intraspecific variation) and differed from all other 

Calanus species by -25% of the bases. Primer sequences were evaluated for suitable 

base composition, temperature of dissociation, and self-compatibility using the software 

programs OLIGO (Rychlik 1992) and Amplify (Engels 1992). Multiplexing of the PCR 

reactions (i.e., simultaneous and competitive PCR using multiple species-specific primers 

and one common primer; Gibbs et al. 1989) and discrimination of the different-sized PCR 

products by agarose gel electrophoresis were made possible by selecting primers at 

different sites along the 634 bp sequence. Thus, the lengths of the amplified products for 

each species differed and were, in order o f increasing size: 117 bp for C. finmarchicus', 

288 bp for C. helgolandicus; 428 bp for C. glacialis; and 606 for C. hyperboreus.

The amplification protocol for the multiplexed SS-PCR reaction was: 94°C (0.5 min); 

47°C (0.5 min); 72°C (1 min); for 35 cycles (see Appendix 1) All sets of SS-PCRs 

included positive controls for each species (i.e., genomic DNA purified from Calanus 

species identified by an expert taxonomist). The amplified products of each species were 

discriminated by electrophoresing the products of the multiplexed, competitive reaction
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on a 2.0% agarose gel. The specificity and reliability of the multiplexed PCR reactions 

were confirmed by examining individuals collected in different regions of the Arctic and 

N. Atlantic, including Gulf of Maine, Norwegian Sea and several Norwegian fjords.

Phylogenetic reconstruction for Calanus species:

Phylogenetic relationships among the 10 Calanus species were assessed using the 

consensus DNA sequences and the algorithms of the Molecular Evolutionary Genetics 

Analysis (MEGA), Ver. 1.0, software package (Kumar et al. 1993). The definitive 

analysis, yielding the highest statistical significance overall, used Neighbor Joining 

(Saitou and Nei 1987), with Tamura-Nei distances (Tamura and Nei 1993) and an 

empirically-derived alpha parameter of 2.0. The trees were bootstrapped 1000 times.

RESULTS

MtCOI sequence variation:

The consensus DNA sequence for a 633 bp region of mtCOI was determined for ten 

species of Calanus (see Appendix 2): C. australis (GenBank Accession No. AF332766); 

C. chilensis (GenBank Accession No. AF332765); C. finmarchicus (GenBank Accession 

No. AF332767); C. glacialis (GenBank Accession No. AF333039); three populations of 

C. helgolandicus (GenBank Accession Nos. AF332760, AF332761, and AF332762); C. 

hyperboreus (GenBank Accession No. AF332770), C. marshallae (GenBank Accession 

No. AF332768); two subspecies of C. pacificus, C. p. califomicus (GenBank Accession
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C.glacialis 0.07 0.21 0.23 0.26 0.25 0.25 0.25 0.22 0.23 0.21 0.24 0.23
C.marshallae 0.21 0.22 0.23 0.22 0.22 0.22 0.22 0.23 0.21 0.23 0.19
C.sinicus 0.21 0.21 0.20 0.20 0.20 0.22 0.22 0.22 0.21 0.22
C.hyperboreus 0.19 0.21 0.20 0.20 0.22 0.22 0.22 0.20 0.21
C.simillimus 0.21 0.22 0.21 0.23 0.23 0.21 0.23 0.23
C. helgolandicus-AD 0.01 0.01 0.20 0.21 0.20 0.19 0.21
C. helgolandicus-NA 0.01 0.21 0.21 0.20 0.19 0.21
C. helgolandicus-NE 0.20 0.21 0.20 0.19 0.21
C.p. califomicus 0.03 0.11 0.17 0.23
C.p. oceanicus 0.12 0.17 0.23
C.chilensis 0.16 0.19
C.australis 0.20
Table 5-2: Proportion of nucleotide differences between Calanus species based on a 633 base-pair 
region of mtCOI. Collection locations are in Table 5-1. Data in italics represents comparisons 
between populations of the same species. Abbrevations for C. helgolandicus populations are: 
Adriatic Sea (AD), North Atlantic (NA), and Northeast Atlantic (NE)

No. AF332763) and C. p. oceanicus (GenBank Accession No. AF332764); C. simillimus 

(GenBank Accession No. AF332771); and C. sinicus (GenBank Accession No. 

AF332769). The nucleotide sequences differed by 7 to 25% between Calanus species, by 

about 3% between C. pacificus subspecies, and by < 1% between geographic populations 

of C. helgolandicus (Table 5-2).

Discrimination of Calanus species by species-specific PCR:

The species-specific primers were used with the common primer COI-2128R (5' - GTG 

CTG RTA TAA AAT AGG - 3'). The sequences and positions of the species-specific 

primers were:

C. finmarchicus (COI-2011) 5'- YTC ATC ACT GCT GTC CTC -3'

C. glacialis (COI-1700) 5'- TTA TGT TGG GTG CGG CGG AC -3’
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C. helgolandicus (COI-1840) 5'- CTA ICC AGA AAT GTA GCC -3'

C. hyperboreus (COI-1522) 5'- TCA GGA ATG ATC GGA ACC -3'

The degenerate (i.e., based on amino acid sequences) primers, COI-2128R and COI- 

2011, were synthesized as equimolar mixtures of all possible sequences. The primers 

differed somewhat in their dissociation or melting temperatures (TM, for methods see 

Breslauer et al. 1986; http://www.nwu.edu/biotools/oligocalc.html). Tm ranged from 41 - 

43° C for COI-2128R and from 48 - 50° C for COI-2011. TM was 56° C for COI-1700, 

46° C for COI-1840, and 46° C for COI-1522.

The competitive, multiplexed SS-PCR reaction was designed to allow species’ 

identification with two steps - PCR amplification and gel electrophoresis - by the 

placement of the competing species-specific primers at different sites along the mtCOI 

sequence. The SS-PCR reaction yielded only one product band (in addition to primer- 

dimer, which appeared as a low molecular-weight band on the gel) in nearly all cases 

(Figure 5-1). An exception was that amplification of C. helgolandicus collected from 

Norwegian fjords resulted in the correct-sized product band and a second artefactual 

band, which differed in size from any product of the positive control reactions.

The feasibility o f using the SS-PCR reaction to identify individuals o f the four Calanus 

species was demonstrated by assaying copepods sorted from zooplankton collections 

from several regions in the N. Atlantic and one in the Arctic Ocean. The results were 

unambiguous. There were several instances of >10% PCR failure (i.e., reactions yielding 

no product; Table 5-3), which were considered to be a result of poor sample preservation.
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Figure 5-1: Photograph of the species-specific amplification products for each of the four Calanus 
species resulting from the multiplexed SS-PCR protocol, with molecular size standards (first and 
last lanes of the gel). Amplification products differ in size, resulting in different positions of the 
bands in agarose gel electrophoresis.

These experiments confirmed the predominance of C. hyperboreus in a sample from the 

Arctic Ocean; the presence of C. finmarchicus and C. glacialis in a sample from the Gulf 

of Maine; the predominance of C. finmarchicus in the Norwegian Sea; and a mixture of 

all four Calanus species in fjords of western Norway (Table 5-3).

Phylogenetic reconstruction:

The consensus mtCOI nucleotide sequences were used to reconstruct the phylogenetic 

history of the genus, and especially to determine the pattern of speciation within sibling 

species groups. With one exception, the mtCOI gene tree resolved species relationships 

with statistically significant bootstrap values and clear resolution of all species, 

subspecies, and populations. The exceptions were C. finmarchicus and C. sinicus, which
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„ , . .. T , x . . .  Coll. Relative abundances of Calanus _
Sample and Station Latitude; Longitude species

C.fin C M  C.gla C.hyp Failed Total
______________________________________________ N (% ) N (%) N (%) N (%)

Norwegian Sea
Stn. 17 NW Apr-97 6(86) - - 1(14) 0 7

Stn. 232 NW Jun-97 30 (100) - - 0 30

Stn. 277 SW Jun-97 18 (100) - 2 20

Stn. 409/410 Bodo Jul-97 30 (100) - - 0 30

Stn. 440/441 SW Jul-97 23 (100) - - 1 30

Stn. 49/50 SW Apr-97 29 (100) - - 1 30

Stn. 44 29 (100) - - 1 30

Stn. 8 29 (100) - - 1 30

Lurefjorden 60° 41.ON; 5° 10.5E Oct-95 4(36) 3(27) 2(18) 2(18) 4 15

Masjjorden 60° 52.3N; 5° 24.7E Oct-95 11 (73) 4(27) - - 0 15

Oslofjorden 59° 48.0N; 10° 34.0E Nov-95 12 (92) 1(8) - - 2 15

Gulf o f Maine 43° 49.8N; 67° 88.2W Oct-97 12 (80) 3 (20) - - 0 15

Arctic 78°N; 160°W Aug-98 - - - 9(100) 6 15

Table 5-3: Relative abundances of Calanus species in zooplankton samples collected from several 
N. Atlantic and one Arctic region, based on species’ identification using the multiplexed SS-PCR 
protocol. Individuals from the Norwegian Sea were copepodite stages Cl, CII, or CHI; other 
samples used females or copepodite stage CV. Percentage values of relative abundance are given 
in parentheses.

could not be unambiguously assigned to either sibling species group based on this 

analysis (Figure 5-2).

DISCUSSION

MtDNA sequence variation, and mtCOI in particular, has been shown to be useful in 

resolving evolutionary relationships among closely-related species groups for a wide 

range of taxa (Brown et al. 1994; Lunt et al. 1996; Harasewych et al. 1997; see Avise 

1994). For calanoid copepods, mtCOI sequence variation clearly resolves evolutionary 

relationships among the most closely related species (Bucklin et al. 1999, unpubl.).
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Figure 5-2: Phylogenetic reconstruction of evolutionary relationships among sibling species based 
on the mtCOI nucleotide sequences, using all bases. Samples of C. helgolandicus were collected 
from three regions: Adriatic Sea (AD), the Northeast Atlantic (NE), and the central N. Atlantic 
(NA); see Table 5-1 for collection information. Tree reconstruction was by neighbor joining 
(Saitou and Nei, 1987) using Tamura-Nei distances (Tamura and Nei, 1993) and alpha = 2.0; the 
tree was bootstrapped 1000X. Branch-points with bootstrap values < 50% were collapsed (shown 
by asterisks). Numbers in italics at branch-points are bootstrap values.
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Importantly, the gene appears to evolve rapidly enough to distinguish even the most 

closely-related sibling species, suggesting that it will be useful to reveal cryptic species 

with this group.

The use of molecular data for identification of sibling species implies an evolutionary 

species’ concept (i.e., species can be discriminated based on the level of genetic 

divergence between them). However, it should be noted that species cannot be delimited 

or defined solely on the basis of mtDNA sequence variation. There is no a priori 

relationship between genetic divergence and speciation, especially for mitochondrial 

traits which (by virtue of their clonal matrilineal transmission) are not directly linked to 

reproductive isolation and speciation events (see Avise 1994). Phylogenetic examination 

of the evolution of the mtDNA sequence within the target taxon is desirable. Following 

confirmation that mtDNA sequence variation is a diagnostic, stable, and accurate 

indicator of species identity, the molecular data are useful for taxonomic identification 

and uniform standards of species’ identification - along with morphological, 

morphometric, and ecological characters.

mtCOI sequence differences among 19 calanoid copepod species of six genera ranged 

from 8 - 21% for the selected mtCOI gene portion (Bucklin et al. 1999, unpubl.). MtCOI 

sequence variation clearly discriminated even the most closely-related species and 

resolved evolutionary relationships among species within a genus and among some 

genera. Several previous population genetic studies of calanoid copepods have found 

mtCOI sequence variation within species of 1 to 2% (Bucklin et al. 1998a, 1999, 2000a, 

unpubl.). Our use of consensus sequences based on analysis of pooled individuals does
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not allow us to evaluate levels of intraspecific variation for most of the Calanus species 

in the present study. The exceptions are C. pacificus, for which we examined two 

subspecies, and C. helgolandicus, for which we examined three populations considered 

by Fleminger and Hulsemann (1987) to represent possible subspecies. The analysis of C. 

helgolandicus was intended only to ensure that the SS-PCR primer site was conserved 

among different populations. Further analysis will be required to determine whether the 

species exhibits significant population genetic structure.

Despite some sequence variation within each species, mtCOI is a useful gene for 

molecular systematic identification and discrimination of calanoid copepod species that 

lack diagnostic morphological characters. In particular, mtCOI sequence variation is 

suitable for the design and optimization of an SS-PCR protocol, which requires 

identification of unique and diagnostic sequence regions for each species (see Bucklin et 

al. 1997,1998a, 2000a). For SS-PCR to be accurate and easy to use, the sequences must 

differ sufficiently among species to allow identification of regions suitable for primer 

design (see Rychlik 1992). For SS-PCR to be multiplexed, the primers must be located at 

different positions along the sequence to produce amplified products of different sizes, 

which can be discriminated by agarose gel electrophoresis (Gibbs et al. 1989). The 

sequenced mtCOI gene portion included several short regions that differed between 

Calanus species by -30% of the nucleotides, and that exhibited little or no variation 

within species.

The primary advantages of the two-step SS-PCR are low cost and increased efficiency. 

This is particularly desirable, since hundreds to thousands of individuals may need to be
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identified to document species distribution and abundance at high spatial and temporal 

resolution - especially for zooplankton species (such as Calanus species) that are 

numerically predominant and geographically widespread. At minimum, a randomly- 

selected subset of samples should be molecularly assayed to confirm species’ identity and 

distribution.

The multiplexed, competitive SS-PCR protocol is rapid, simple, and accurate for 

discrimination of the four Calanus species in the N. Atlantic. It was tested on 

copepodites and adults from regions spanning the geographic range of each species and 

yielded unambiguous species’ identifications for Calanus species individuals from the 

Norwegian Sea, Norwegian fjords, Gulf of Maine, and Arctic Ocean. Frequencies of 

failed PCRs were high (i.e., >10%) in several cases, perhaps due to poor sample 

preservation. Importantly, the protocol never yielded more than one SS-PCR product. 

However, C. helgolandicus from Norwegian fjords gave a second, artefactual band that 

differed from any species-specific product band. This underlines the necessity for each 

set of PCR reactions to include both positive controls for each species and a negative 

control.

The protocol is designed for use by biological oceanographers in routine species’ 

identification of individuals. It can also be applied to DNA purified from pooled, 

unsorted (alcohol preserved) samples, to determine which Calanus species may occur in 

a region. Alternatively, the protocol may be applied to a subset of individuals or samples, 

to spot-check for species’ composition and identification errors. SS-PCR should be 

usable by researchers and technicians not widely trained in molecular techniques and
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requires little equipment and specialized laboratory apparatus. SS-PCR may be 

implemented with any PCR machine, agarose gel electrophoresis and power supply, and 

UV light source (see Appendix).

Lindeque et al. (1999) published a molecularly-based protocol for identification of C. 

finmarchicus, C. glacialis, C. hyperboreus, and C. helgolandicus, suitable for all life 

stages, based on a three-step protocol of PCR amplification, restriction enzyme digestion, 

and agarose gel electrophoresis. Fortuitously, both the Lindeque et al. (1999) protocol 

and this SS-PCR protocol have been used to identify Calanus species collected from 

Lurefjorden, Norway. Although the collections were made in different years, the 

findings were similar - indicating that both protocols provide accurate identification of 

individual Calanus species. There may be some advantage to the two-step SS-PCR 

protocol, which has higher through-put of samples with fewer steps and avoids the 

expense and biochemical fragility of restriction enzymes. However, both protocols are 

appropriate for use by oceanographers and ecologists without molecular training.

Bucklin et al. (1999) published a multiplexed, competitive SS-PCR protocol for 

identification of C. finmarchicus, C. glacialis, and C. helgolandicus. The protocol had 

one important error: the sequence and species-specific primer identified as C  glacialis 

have now been confirmed to be C. hyperboreus. The protocol described in this study 

corrects this error, and includes confirmed individuals of both C. glacialis and C. 

hyperboreus. In addition, the C. finmarchicus species-specific primer is now based on 

the coding mtCOI sequence, rather than a putative pseudogene (see Bucklin et al. 1999).
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A previous study by Bucklin et al. (2000a) used mtl6S rRNA sequence variation to 

examine the distribution and abundance of Calanus species in three fjords of western 

Norway (Lurefjorden, Masfjorden, and Sognefjorden) and one fjord in eastern Norway 

(Oslofjorden). Somewhat surprisingly, C. finmarchicus, C. helgolandicus, and C. 

glacialis were found to co-occur in two fjords (Lurefjorden and Masfjorden), and both C. 

finmarchicus and C. helgolandicus occurred in two l)ords (Sognefjorden and 

Oslofjorden). Unexpectedly, C. glacialis predominated in Lurefjorden; the persistence of 

C. glacialis in fjord environments was previously unsuspected (Stein Kaartvedt, 

University of Oslo, pers. comm.). The SS-PCR protocol was tested on the same samples 

from three of the fjords, yielding similar findings for relative species abundances. The 

similarity in results between species identification based on DNA sequencing (Bucklin et 

al. 2000a) and that based on SS-PCR helped confirm the accuracy and reliability of the 

rapid protocol.

SS-PCR has been used to discriminate two sibling species, Pseudocalanus moultoni and 

P. newmani (Copepoda: Calanoida), which co-occur over large portions of their 

geographic ranges (Frost 1989). The two species are readily distinguished by mtCOI 

sequence variation (Bucklin et al. 1998a, 1999,2000b). Similarly to this study, species- 

specific oligonucleotide primers were designed from the mtCOI sequences and optimized 

for use in a competitive, multiplexed SS-PCR (Bucklin et al. 1999). SS-PCR was used to 

assay thousands of individual copepods in order to determine the seasonal evolution of 

the species’ abundances over Georges Bank (Bucklin et al. 2000b). Patterns of mtCOI 

sequence variation for Pseudocalanus species were similar to those o f Calanus: 

sequences of conspecific individuals differed by about 2%; P. newmani and P, moultoni
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differed by about 30% (Bucklin et al. 1997). MtCOI may be a useful gene for 

identification and discrimination of calanoid copepods generally; preliminary studies 

suggest that mtCOI may contain unique oligonucleotide regions that may be used to 

design SS-PCR protocols for all -2,400 species of calanoid copepods (Bucklin et al. 

2000b; Bucklin, unpubl.).

The mtCOI gene tree for ten species of Calanus resembles in most respects both the 

morphologically-based view of the evolutionary relationships within the genus (Frost 

1974; Fleminger and Hulsemann 1977, 1987) and previous molecular phylogenetic 

analysis based on mtl6S rRNA (Bucklin et al. 1992,1995). This concordance, especially 

with the 16S rRNA tree, increased our confidence in the use of mtCOI as a molecular 

systematic character for the genus. The mtCOI gene tree resolved the two sibling species 

groups, except that the relationship of C. sinicus and C. finmarchicus were not 

statistically resolved (i.e., bootstrap values were < 50%). The lack of resolution of 

species in the helgolandicus group was also observed for the mtl6S rRNA tree (Bucklin 

et al. 1995). It is possible that these species are more distantly-related, making resolution 

of their relationships more difficult. It is also possible that both mtl6S rRNA and mtCOI 

are too variable to resolve this group; a more slowly-evolving gene may be needed to 

reconstruct the evolutionary history of the genus, especially of the helgolandicus group.

In part because of relatively rapid evolution of the gene, mtCOI sequence variation may 

help resolve questions o f the taxonomic significance of geographic variation for some 

Calanus species. For example, mtCOI clearly resolved genetic differences between 

geographic populations of C. pacificus, which are considered to represent distinct sub
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species (Jaschnov 1955; Bradford 1988). Individuals of C. pacificus califomicus and C. 

p. oceanicus differed in mtCOI sequence by nearly 3%. In addition, it seems possible 

that mtCOI can resolve population genetic structure: samples of C. helgolandicus from 

the eastern and central N. Atlantic and the Adriatic Sea differed by 0.5 to 0.8% of the 

mtCOI sequence. Populations of C. helgolandicus were examined in light o f Fleminger 

and Hulsemann’s (1987) conclusion that there was significant morphological 

differentiation across the species’ range. Although the differences in mtCOI sequences 

between geographic populations of C. hegolandicus are small, they may be useful for 

examining the genetic consequences and systematic significance of geographic variation 

in this species.

Molecular analysis of marine zooplankton is likely to continue to reveal taxonomically- 

significant genetic partitioning within species, including the discovery of cryptic species 

(e.g., Bucklin et al. 1996). This maybe especially true for calanoid copepod taxonomy, 

which is plagued by numerous sibling species assemblages that are discriminated by 

subtle morphological characters. Molecular assessment has revealed significant genetic 

divergence among sibling species of calanoid copepods. Sequence variation of mtCOI 

regions is particularly useful to: 1) reconstruct the evolutionary and phylogenetic history 

of a speciose genus, 2) infer the boundaries of species and genera, and 3) identify and 

discriminate species with few or subtle morphological characters. In particular, 

competitive SS-PCR is useful for identifying the species of an individual copepod of any 

size or life stage. SS-PCR may also be useful for the analysis of DNA purified from 

unsorted zooplankton samples to determine the presence or absence o f particular species 

in the assemblage.
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A caution for biological oceanographers is that our ability to understand the community 

dynamics o f  planktonic assemblages may depend on our ability to accurately measure 

species' diversity and discriminate individuals of morphologically- and systematically- 

similar species. The myth of "functional groups" in marine zooplankton may mask a 

complex set of interactions among species that effectively partition the ocean along 

temporal and spatial boundaries that are unseen by typical analyses. Molecular 

systematic assessment using simple protocols may be useful and necessary to understand 

the population dynamics of target species and the community dynamics of planktonic 

assemblages.

NOTE

This study was published as: Hill RS, Allen LD, and Bucklin A (2001) Multiplexed 

species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with a 

mtCOI gene tree for ten Calanus species. Marine Biology 139: 279-287.
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CHAPTER VI

CONCLUSIONS

This study presents evidence that geographic populations of Acartia tonsa do not 

constitute a single species. Even some adjacent populations (i.e. Great Bay, NH to 

Buzzards Bay, MA) are genetically distinct and failed to interbreed in laboratory culture. 

In addition to genetic differences, these two populations appear to show distinct 

physiological responses to temperature in terms of survival, egg laying and hatching 

rates, and production of dormant eggs. For populations that did interbreed (Narragansett 

Bay, RI and Buzzards Bay, MA with Beaufort Inlet, NC), these was significant 

population genetic structure.

These finding raise interesting and pertinent questions regarding the evolution of 

estuarine copepods and copepods in general. Will these findings define a trend among 

calanoid copepods or obligate estuarine organisms, or is this a unique case? These 

findings also issue a word of caution to researches working with A. tonsa. Without a 

good understanding of the world wide population structure o f A. tonsa, special effort 

should be made in identifying the source of individuals in future studies. Particular 

caution should be used when using A. tonsa as a model organism or bioindicator species 

(e.g., for environmental toxicity studies), since the high genetic diversity and potential for
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rapid evolutionary adaptation may result in significantly different responses among 

different populations of A. tonsa.

Understanding the population structure and evolution of calanoid copepods is an 

important component to understanding the dynamic interactions and properties of marine 

ecosystems. However, the conserved morphology of the calanoid copepods has made it 

difficult to conduct such studies; even the identification of species is often unreliable and 

inconsistent. The application of molecular techniques allows rapid, reliable, and 

consistent identification of species. The use of these techniques also enhances the 

understanding of the diversity and structure of populations of calanoid copepods. The 

mtCOI analysis o f 9 Calanus spp. have extended the results observed in A. tonsa 

populations to the open ocean, demonstrating that species in this very different 

environment may also show the same pattern of genetic divergence of morphologically 

indistinguishable species.

The use of molecular techniques to study the evolution and diversity of calanoid 

copepods has been limited and many questions remain unanswered. Has the diversity of 

calanoid copepods been grossly underestimated? Are most currently identified species 

really groups of cryptic species? The truth is probably that some groups are more diverse 

than previously thought while others are not. It is highly likely however, that the current 

estimates of diversity in calanoid copepods, based mainly on morphology, are low and 

that new species and complex population structures will continue to be unveiled. 

Understanding the environmental dynamics and species interactions that control the
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levels of diversity and influence population structure and speciation in calanoid copepods 

will be a key part o f understanding marine ecosystems. It is already becoming evident 

that there is significant difference in the population structures of calanoid copepods in the 

open ocean, in estuaries, and in freshwater lakes. The application and continued 

development of molecular applications will enhance, rather than replace, current research 

in the field.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LITERATURE CITED

Abamous A (1982) (The chlorine effluents in the sea. Chemical aspects of water
chlorination and evaluation of the toxicity for the environment.). Science et Peche 
321: 1-11

Abreu PC, Graneli E, Odebrecht C, Kitzmann D, Proenca LA, Resgalla C, Jr. (1994) 
Effect of fish and mesozooplankton manipulation on the phytoplankton 
community in the Patos Lagoon Estuary, southern Brazil. Estuaries 17: 575-584

Alvarez CJN, Cortes AR (1990) Some physical and biological factors affecting the 
natural populations of Acartia tonsa and Acartia lillj eborgi (Copepoda: 
Acartiidae) in the Urias Estuary, Sinaloa, Mexico. Investigaciones Marinas 5: 69- 
78

Alvarez-Cadena JN, Islas-Landeros ME, Suarez-Morales E (1996) A preliminary
zooplankton survey in a Mexican Caribbean eutrophic coastal lagoon. Bulletin of 
Marine Science 58: 694-708

Ambler JW (1983) Influence of natural particle diets on egg laying and hatching success 
of Acartia tonsa in East Lagoon Galveston, Texas, Galveston, Texas

Ambler JW (1985) Seasonal factors affecting egg production and viability of eggs of
Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuarine, Coastal and 
Shelf Science 20: 743-760

Ambler JW (1986) Effect of food quantity and quality on egg production of Acartia tonsa 
Dana from East Lagoon, Galveston, Texas. Estuarine, Coastal, and Shelf Science 
23: 183-196

Andersen HR, Halling-Sorensen B, Kusk KO (1999) A parameter for detecting 
estrogenic exposure in the copepod Acartia tonsa. Ecotoxicology and 
Environmental Safety 44: 56-61

Andersen HV, Kjolholt J, Poll C, Dahl SO, Stuer-Lauridsen F, Pedersen F, Bjomestad E 
(1998) Environmental risk assessment of surface water and sediments in 
Copenhagen Harbour. Water Science & Technology 37: 263-272

Anraku M (1964) Influence of the Cape Cod Canal on the Hydrography and on the
Copepods in Buzzards Bay and Cape Cod Bay, Massachusetts. I. Hydrography 
and Distribution of Copepods. Limnology and Oceanography 9: 46-60

108

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 0 9

Ara K (2001) Length-weight relationships and chemical content of the planktonic
copepods in the Cananeia Lagoon estuarine system, Sao Paulo, Brazil. Plankton 
Biology and Ecology 48: 121-127

Arndt H, Schnese W (1986) Population dynamics and production of Acartia tonsa
(Copepoda: Calanoida) in the Darss-Zingst Estuary, southern Baltic. Proceedings 
o f the 9th Symposium of the Baltic marine biologists. Opehlia, pp 329-334

Avery DE (1999) Individual variation in and proximal cues to diapausing egg production 
by the Calanoid copepod Acartia hudsonica

A vise JC (1994) Molecular Markers, Natural History and Evolution, Chapman and Hall, 
New York, NY

Azeiteiro UMM, Marques JC, Re P (2000) Zooplankton assemblages in a shallow,
seasonally tidal estuary in temperate Atlantic Ocean (western Portugal: Mondego 
Estuary). Arquivos do Museu Bocage 3: 357-376

Bakker C, Tackx MLM, Van Rijswijk P (1988) Plankton Copepods Temora longicornis 
and Acartia tonsa, and Their Food in the Oosterschelde Estuary (S.W. 
Netherlands). Hydrobiological Bulletin 22: 75-78

Banks M, Hedgecock D, and Waters C (1993) Discrimination between closely related 
Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for 
large subunit rRNA. Molecular Marine Biology and Biotechnology 2: 129-136

Baretta JW, Malschaert JFP (1988) Distribution and abundance of the zooplankton of the 
Ems estuary (North Sea). Netherlands Journal of Sea Research 22: 69-82

Beleharadek J (1926) Influence of temperature on biological processes. Nature 118: 478- 
480

Bell JL, Grassle JP (1998) A DNA probe for identification of larvae of the commercial 
surf clam (Spisula solidissima). Molecular Marine Biology and Biotechnology 
7:127-137

Belmonte G, Mazzocchi MG, Prusova IY, Shadrin NV (1994) Acartia tonsa: A species 
new for the Black Sea fauna. Ecology And Morphology Of Copepod 292-293: 9- 
15

Benham JJ (2001) Genographer: A program for binning and scoring gel images Ver 
1.6.0. Montana State University

Berman MS, Heinle DR (1980) Modification of the feeding behavior of marine copepods 
by sub-lethal concentrations of water-accommodated fuel oil. Marine Biology 56: 
59-64

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 1 0

Bernal P, Castro L, Troncoso A (1986) (Night-day variability in copepod vertical
distribution at the upwelling areas of the Arauco Guld, January, 1985.). Biota. 
Osomo 1: 178

Berzins B (1940) Acartia tonsa Dana in the Gulf of Riga. Folia Zoologia Hydrobiologia 
10: 484-487

Bourguet D, Gair J, Mattice M, Whitlock MC (2003) Genetic recombination and
adaptation to fluctuating environments: selection for geotaxis in Drosophila 
melanogaster. Heredity 91: 78-84

Bradford JM (1988) Review of the taxonomy of the Calanidae (Copepoda) and the limits 
to the genus Calanus. Hydrobiologia 167/168:73-81

Bradford JM, Jillett JB (1974) A revision of generic definitions in the Calanidae 
(Copepoda, Calanoida). Crustaceana 27:5-16

Bradley BP (1978) Comparison of Residual Biotoxicity of Chlorine and Bromine 
Chloride to Copepods. Available from the National Technical Information 
Service, Springfield: 14-34

Breslauer KJ, Frank R , Blocker H , Marky LA (1986) Predicting DNA duplex stability 
from the base sequence. Proceedings of the National Acadamy of Science USA 
83: 3746-3750

Brown JM, Pellmyr O, Thompson JN, Harrison RG (1994) Phylogeny of Greya 
(Lepidoptera: Prodoxidae), based on nucleotide sequence variation in 
mitochondrial cytochrome oxidase I and II: congruence with morphological data. 
Molecular Biology and Evolution 11:128-141

Brown WM, George MJ, Wilson AC (1976) Rapid evolution of animal mitochondrial 
DNA. Proceedings of the National Academy of Science USA 76: 1967-1971

Brown WM, Prager EM, Wang A, Wislon AC (1982) Mitochondrial DNA sequence of 
primates: tempo and mode of evolution. Journal of Molecular Evolution 18: 225- 
236

Brylinski JM (1981) Report on the presence of Acartia tonsa Dana (Copepoda) in the
harbour of Dunkirk (France) and its geographical distribution in Europe. Journal 
of Plankton Research 3: 255-260

Bucklin A (2000) Methods for Population Genetic Analysis of Zooplankton. Chapter 11 
in: The Zooplankton Methodology Manual, International Council for the 
Exploration of the Sea. Academic Press, New York. Pp. 533-564

Bucklin A, Bentley AM, Franzen SP (1998a) Distribution and relative abundance of the 
copepods, Pseudocalanus moultoni and P. newmani, on Georges Bank based on 
molecular identification of sibling species. Marine Biology 132:97-106

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



I l l

Bucklin A, Caudill CC, Guamieri M (1998b) Population genetics and phylogeny of
marine planktonic copepods. Chapter 14 in: Molecular Approaches to the Study 
of the Ocean (Cooksey KC, ed) London: Chapman & Hall. Pp. 303-318

Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular
systematic and phylogenetic assessment of 34 calanoid copepod species of the 
Calanidae and Clausocalanidae. Marine Biology 142: 333-343

Bucklin A, Frost BW, Kocher TD (1992) DNA sequence variation of the mitochondrial 
16S rRNA in Calanus (Copepoda; Calanoida): intra- and interspecific patterns. 
Molecular Marine Biology and Biotechnology 1:397-407

Bucklin A, Frost BW, Kocher TD (1995) Molecular systematics of seven species of
Calanus and three species of Metridia (Calanoida; Copepoda). Marine Biology 
121:655-664

Bucklin A, Guamieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and
systematic assessment of planktonic copepods using mitochondrial COI sequence 
variation and competitive, species-specific PCR. Hydrobiologia 401: 239-254

Bucklin A, Guamieri M, McGillicuddy D, Hill R (2001) Spring evolution of 
Pseudocalanus spp. abundance on Georges Bank based on molecular 
discrimination of P. moultoni and P. newmani. Deep-Sea Research Part I I 48: 
589-60.8

Bucklin A, Hill RS, Mottola NJ, Bentley AM (1997) Seasonal patterns of distribution 
and abundance of the copepods, Pseudocalanus moultoni and P. newmani, on 
Georges Bank: evidence for a dynamic balance between retention and loss. 
Intemat Cons Expl Seas Science Mtg, September, 1997, Background Paper T:06

Bucklin A, Kaartvedt S, Guamieri M, Goswami U (2000a) Population genetic analysis of 
drifting {Calanus finmarchicus) and resident {Acartia clausi) plankton in 
Norwegian fjords. Journal of Plankton Research 22: 1237-1251.

Bucklin A, LaJeunesse TC, Curry E, Wallinga J, Garrison K (1996) Molecular genetic 
diversity of the copepod, Nannocalanus minor: genetic evidence of species and 
population structure in the N. Atlantic Ocean. Journal of Marine Research 
54:285-310

Burger R (1999) Evolution of genetic variability and the advantage of sex and 
recombination in changing environment. Genetics 153: 1055-1069

Burkart CA, Kleppel GS (1998) A new incubation system for the measurement of 
copepod egg production and egg hatching success in the field. Journal of 
Experimental Marine Biology and Ecology 221: 89-97

Burton RS (1990a) Hybrid breakdown in developmental time in the copepod Tigriopus 
califomicus. Evolution 44: 1814-1822

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 1 2

Burton RS (1990b) Hybrid breakdown in physiological response: A mechanistic 
approach. Evolution 44: 1806-1813

Burton RS, Place AR (1986) Evolution of selective neutrality: further consiserations. 
Genetics 114: 1033-1036

Bushong SJ, Ziegenfuss MC, Unger MA, Hall LW (1990) Chronic tributyltin toxicity 
experiments with the Chesapeake Bay copepod, Acartia tonsa. Environmental 
Toxicology and Chemistry 9: 339-366

Buskey EJ, Stockwell DA (1993) Effects of a persistent "brown tide" on zooplankton
populations in the Laguna Madre of south Texas. Deveopmental Marine Biology 
3: 659-666

Carpelan LH (1957) Hydrobiology of the Alviso Salt Ponsa. Ecology 38: 357-390

Carrillo B-GE, Miller CB, Wiebe PH (1974) Failure of interbreeding between Atlantic 
and Pacific populations o f the marine Calanoid Copepod Acartia clausi 
giesbrecht. Limnology and Oceanography 19: 452-458

Carter JCH, Dadswell MJ (1983) Seasonal and spatial distribution of planktonic
Crustacea in the lower Saint John River, a multibasin estuary in New Brunswick, 
Canada. Estuaries 6: 142-153

Castro LE (2001) Comparative observations on the external morphology of subitaneous 
and diapause eggs of Acartia species from Southampton Water. Crustaceana 
Leiden 74: 225-236

Caudill CC, Bucklin A (2004) Molecular phylogeography and evolutionary history of the 
estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast. Hydrobiologia 
511: 91-102

Charlieu J-P (1994) Distinction between almost-identical DNA sequences by polymerase 
chain reaction. Chapter 12 in: PCR Technology Current Innovations. Griffin,
HG and AM Griffin (eds). CRC Press, Boca Raton, FL. Pp 101-106

Chen F, Marcus NH (1997) Subitaneous, diapause, and delayed-hatching eggs of
planktonic copepods from the northern Gulf of Mexico: Morphology and hatching 
success. Marine Biology 127: 587-597

Chen M, Moehlenberg F (1991) Comparative study of the toxicity of gamma -HCH to
Acartia tonsa. Oceanologia et limnologia sinica/Haiyang Yu Huzhao 22: 215-220

Chinnery FE, Williams JA (2003) Photoperiod and temperature regulation of diapause 
egg production in Acartia bifilosa from Southampton Water. Marine Ecology 
Progress Series 263: 149-157

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



113

Christoffersen K, Hansen BW, Johansson LS, Krog E (2003) Influence o f LAS on marine 
calanoid copepod population dynamics and potential reproduction. Aquatic 
Toxicology 63: 405-416

Citarella G (1982) (Boreal zooplankton of Shediac Bay (New Brunswick).). Journal of 
Plankton Research 4: 791-812

Citarella G (1999) Hydrobiology and diversity of zooplankton in the Northumberland 
Strait (N-W Atlantic, Canada). Canadian Manuscript Report of Fisheries and 
Aquatic Sciences: i-iv; 1-31

Clarke A (1996) The influence of climate change on the distribution and evolution of 
organisms. In: Johnston IA, Bennett AF (eds) Animals and Temperature: 
Phenotypic and Evolutionary Adaptation. Cambridge University Press, 
Cambridge, pp 377-407

Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule o f Drosophila 
yakuba: nucleotide sequence, gene organization, and genetic code. Journal of 
Molecular Evolution 22:252-271

Comaschi A, Acri F, Alberighi L, Bastianini M, Bianchi F, Cavalloni B, Socal G (1994) 
(Presence of Acartia tonsa (Copepoda: Calanoida) in Venice Lagoon). Biologia 
Marina Mediterranea 1: 273-274

Conover RJ (1959) Regional and seasonal variation in the respiratory rate of marine 
copepods. Limnology and Oceanography 4: 259-268

Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in 
high latitudes of the northern hemisphere. Hydrobiologia 167-168: 127-142

Corkett CJ (1981) The copepodid stages of the copepods Acartia tonsa, A. clausii and
Eurytemora herdmani from the Annapolis River, Nova Scotia. Proceedings of the 
Nova Scotian Institute of Science 31: 173-179

Crokett CJ (1967) Technique for rearing marine calanoid copepods in laboratory 
conditions. Nature 216

Daan N, Chadwick EMP, Hislop JRG, Ramster JW, Tande KS, Miller CB (2000)
Population dynamics of Calanus in the North Atlantic ICES Journal of Marine 
Science Symposium Edition, Vol 57. Academic Press, London

Dabom GR, Brylinsky M (1981) Zooplankton diversity and species associations in the 
inner Bay of Fundy. Estuaries 4: 253

Dahlhoff E, Somero GN (1993) Kinetic and structural adaptations of cytoplasmic malate 
dehydrogenase of Eastern Pacific abalone (genus Haliotis) from different thermal 
habitats: Biochemical correlates of biogeographical patterning. Journal of 
Experimental Biology 185: 137-150

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



114

Dam HG, Peterson WT, Bellantoni DC (1994) Seasonal feeding and fecundity of the
calanoid copepod Acartia tonsa in Long Island Sound: is omnivory important to 
egg production? Hydrobiologia 292/293: 191-199

Dana JD (1849) Conspectus erustaceorum, quae in orbis terrarum circumnavigatione,
Carolo Wilkes, e classe Reipublicae foederatae duce, lexit et descripsit Jacobus D. 
Dana. Pars II. Proceedings of the American Acadamy of Arts and Sciences 2: 9- 
61

Danks HV (1987) Insect dormancy: An ecological perspective. Biological survey of 
Canada (Terrrestrail arthropods), Ottawa

Darnell RM (1961) Trophic spectrum of an estuarine community, based on studies of 
Lake Pontchartrain, Louisiana. Ecology 42: 259-268

De Meester L, Vyverman W (1997) Diumal residence of the larger stages of the calanoid 
copepod Acartia tonsa in the anoxic monimolimnion of a tropical meromictic lake 
in New Guinea. Journal of Plankton Research 19: 425-434

DeDecker AHB, Kaczmaruk BZ, Marska G (1991) A new species of Calanus
(Copepoda, Calanoida) from South African waters. Annuls of the South African 
Museum 101:27-44

DeLong EF, Wickman GS, Pace NR (1989) Phylogenetic strains: ribosomal RNA-based 
for the identification of single cells. Science 243:1360-1363

Diaz Zaballa J, Gaudy R (1996) Seasonal variations in the zooplankton and in the
population structure of Acartia tonsa in a very eutrophic area: La Habana Bay 
(Cuba). Journal of Plankton Research 18: 1123-1135

Dixon DR, Jollivet DASB, Dixon LRJ, Nott JA, Holland PWH (1995) The molecular 
identification of early life-history stages of hydrothermal vent organisms. In: 
Parson LM, Walker CL, Dixon DR (eds), Hydrothermal Vents and Processes, 
Geol Soc Spec Publ 87: 343-350

Durbin AG, Durbin EG (1981) Standing stock and estimated production rates of
phytoplankton and zooplankton in Narragansett Bay, Rhode Isand. Estuaries 4: 
24-41

Durbin AG, Durbin EG, Wlodarczyk E (1990) Diel feeding behavior in the marine
copepod Acartia tonsa in relation to food availability. Marine Ecology - Progress 
Series 68: 23-45

Engel M, Hirche HJ (2004) Seasnal variability and inter-specific differences in hatching 
of calanoid copepod resting eggs from sediments of the German Bight (North 
Sea). Journal of Plankton Research 26: 1083-1093

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



115

Engels W (1992) Amplify. Computer Freeware. Genetics Department, University of 
Wisconsin, Madison, WI 53706

Escamilla JB, Suarez-Morales E, Gasca R (2001) (Distribution of zooplankton during
opposite tide fluxes in the lagoon complex of Chelem, Yucatan, Mexico). Revista 
de Biologia Tropical 49: 47-51

Escribano R, Hidalgo P (2000) Spatial distribution of copepods in the north of the 
Humboldt Current region off Chile during coastal upwelling. Journal of the 
Marine Biological Association of the United Kingdom 80: 283-290

Esterly CO (1920) Possible effect of seasonal and laboratory conditions on behaviour of 
the copepod Acartia tonsa, and the bearing of this on the question of diurnal 
migration. Ecology 1: 33-40

Fell JW (1995) rDNA targeted oligonucleotide primers for the identification of
pathogenic yeasts in a polymerase chain reaction. J Ind Microbiol 14: 475-477

Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. 
Evolution 39: 783-791

Ferrari FD (1989) Thinking about Acartia. Monoculus 19: 10-12

Filatov DA (2001) ProSeq: A software for preparation and evolutionary analysis of DNA 
sequence data sets. Molecular Ecology Notes 2: 621-624

Fleminger A (1964) Distributional atlas of calanoid copepods in the California current 
region, part 1. California Cooperative Oceanic Fisheries Investigations 
(CALCOFI) Atlas 2: 1-313

Fleminger A, Hulsemann K (1977) Geographical range and taxomonic divergence in 
North Atlantic Calanus (C. helgolandicus, C. finmarchicus, and C. glacialis). 
Marine Biology 40: 233-248

Fleminger A, Hulsemann K (1987) Geographical variation in Calanus helgolandicus s.l. 
(Copepoda, Calanoida) and evidence of recent speciation of the Black Sea 
population. Biological Oceanography 5: 43-81

Folmer O, Black M, Hoen W, Lutz R, Vrijenhoek R (1994) DNA primers for
amplification of mitochondrial cytochrome c oxidase subunit I from diverse 
metozoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294- 
299

Frost BW (1971) Taxonomic status of Calanus finmarchicus and C. glacialis
(Copepoda), with special reference to adult males. Journal of the Fish Research 
Board of Canada 28: 23-30

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



116

Frost BW (1974) Calanus marshallae, a new species of calanoid copepod closely allied 
to the sibling species C. finmarchicus and C. glacialis. Marine Biology 26: 77-99

Frost BW (1989) A taxonomy of the marine calanoid copepod genus Pseudocalanus. 
Canadian Journal of Zoology 67: 525-551

Ganz HH, Burton RS (1995) Genetic differentiation and reproductive incompatibility
among Baja California populations of the copepod Tigriopus californicus. Marine 
Biology 123: 821-827

Garmew TG, Hammond S, Hercantini A, Morgan j, Neunert C, Fomshell JA (1994)
Morphological variability of geographically distinct populations of the estuarine 
copepod Acartia tonsa. Hydrobiologia 292/293: 149-156

Gaudy R, Pagano M (1987) (Copepod nutrition in a Mediterranean lagoon in terms of 
particle concentration and temperature.) Second Soviet French Symposium On 
Production And Trophic Relationships Within Marine Ecosystems. Institut 
Francais de Recherche pour l'Exploitation de la Mer. Brest, pp 137-151

Gaudy R, Verriopoulos G, Cervetto G (1995) Space and time distribution of zooplankton 
in a Mediterranean lagood (Etang de Berre). Hydrobiologia 300/301: 219-236

Gibbs RA, Nguyen P-N, Caskey CT (1989) Detection of single DNA base differences by 
competitive oligonucleotide priming. Nucleic Acids Research 17: 2437-2448

Giesbrecht W (1892) Systematik and Faunistik der pelagischen Copepoden des Golfes 
von Neapel and der angrenzenden Meeres-Abschnitte. Fauna und Flora des 
Golfes von Neapel und der Angrenzenden Meeres-Abschnitte, Herausgegeben 
von der Zoologischen Station zu Neapel 19: 1-831

Girling AE (1989) Acute and chronic toxicity of produced water from a North Sea oil 
production platform to the calanoid copepod Acartia tonsa. Bulletin of 
Environmental Contamination and Toxicology 43: 280-286

Gomez EM, Norbis W, Bastreri D (2000) Wind effect as forcing factor controlling 
distribution and diversity of copepods in a shallow temperate estuary (Solis 
Grande, Uruguay). Scientia Marina 64: 87-95

Gonzalez JG (1974) Critical thermal mazima and upper lethal temperatures for the 
Calanoid copepods Acartia tonsa and A. clausi. Marine Biology 27: 219-223

Goswami U, Goswami SC (1973) Karyological studies on the genus Acartia (Copeopda). 
Current Science 42: 242-243

Guderley H (1990) Functional significance of metabolic responses to thermal acclimation 
in fish muscle. American Journal of Physiology 259: R245-R252

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



117

Gunter G, Williams RH, Davis CC, Smith FGW (1948) Catastrophic mass mortality of 
marine animals and coincident phytoplankton bloom on the west coast of florida, 
November 1946 to August 1974. Ecological Monographs 18: 309-324

Hairston NG, DeStasil BT (1988) Rate of evolution slowed by a dormant propagule pool. 
Nature 336: 239-242

Hairston NG, Dillon TA (1990) Fluctuation selection and response in a population of 
freshwater copepods. Evolution 44: 1796-1805

Hairston NG, Kearns CM (1995) The interaction of photoperiod and temperature in 
diapause timing: A copepod example. Biological Bulletin 189: 42-48

Harasewych MG, Adamkewicz SL, Blake JA, Saudek DM, Spriggs T, Bult CJ (1997) 
Phylogeny and relationships of pleurotomariid gastropods (Mollusca:
Gastropoda): an assessment based on partial 18S rRNA and cytochrome c oxidase 
I sequences. Molecular Marine Biology and Biotechnology 6:1-20

Hartl DL, Clark AG (1989) Principles of Population Genetics. Sinauer Associates, inc, 
Sunderland

Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphism in heterogeneous 
environments. Annual Review of Ecology and Systematics 7: 1-32

Heinle D (1970) Populations dynamics of exploited cultures of calanoid copepods. 
Helgolander wissenschaftliche Meeresuntersuchungen 20: 360-372

Heinle D (1972) Tentative outline for inventory of zooplankton organisms: Acartia 
tonsa. Chesapeake Science 13: S176-S178

Heinle DR (1966) Production of a Calanoid Copepod, Acartia tonsa, in the Patuxent 
River Estuary. Chesapeake Science 7: 59-79

Heinle DR (1969) Culture of calanoid copepods in synthetic sea water. Journal Fisheries 
Research Board of Canada 26: 150-153

Heinle DR (1969) Temperature and zooplankton. Chesapeake Science 10: 186-209

Heinle DR (1976) Effects of Passage Through Power Plant Cooling Systems on Estuarine 
Copepods. Environmental Pollution 11: 39-58

Heinle DR, Beavan MS (1977) Effects of chlorine on the copepod Acartia tonsa. 
Chesapeake Science 181: 140.

Hendrickx ME, Sanchez Osuna L (1983) (Survey on the marine and coastal fauna of 
South Sinaloa, Mexico. V. Planktonic crustaceans of the El Verde coastal 
lagoon.). Revista de biologia tropical 31: 283-290

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



118

Hidalgo P, Escribano R (2001) Succession of pelagic copepod species in coastal waters 
off northern Chile: The influence of the 1997-98 El Nino. Hydrobiologia 453-454: 
153-160

Hill RS, Allen L, Bucklin A (2001) Multiplexed species-specific PCR protocol to
discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten 
Calanus species. Marine Biology 139: 279 - 287

Hochachka PW, Somero GN (2002) Biochemical Adaptation: Mechanisms and process 
in physiological evolution. Oxford University Press, New York

Hoffineyer MS (1987) Feeding studies in the planktonic copepod Acartia tonsa Dana 
from Blanca Bay, Argentina. Doctoral Thesis, National University of La Plata, 
Argentina 1-259.

Hollister TA, Ward GS, Parrish PR (1980) Acute Toxicity of A Number 6 Fuel Oil to
Marine Organisms. Bulletin of Environmental Contamination and Toxicology 24: 
656-661

Holsinger KE, Lewis PO (2003) Hickory: A package for analysis of population genetic 
data, Hickory: A package for analysis of population genetic data 1.0

Hook SE, Fisher NS (2001) Reproductive toxicity of metals in calanoid copepods.
Marine Biology 138: 1131-1140

Hopkins TL (1977) Zooplankton distribution in surface waters of Tampa Bay, Florida. 
Bulletin of Marine Science 27: 467-478

Hulsemann K (1991) Calanus euxinus, new name, a replacement name for Calanus
ponticus Karavaev, 1894 (Copepoda: Calanoida). Proceedings of the Biological 
Society of Washington 104: 620-621

Humes AG (1994) How many copepods? Hydrobiologia 292-293: 1-7

Jaschnov WA (1955) Morphology, distribution, and systematics of Calanus finmarchicus 
s.l. [Russ.] Zool Zh 34: 1210-1223

Jeffries HP (1962) Succession of two Acartia species in estuaries. Limnology and 
Oceanography 7: 354-364

Jimenez PLC (1989) Taxocenosis of the pelagic copepods community from San Ramon 
Beach, Baja California, Mexico. Investigaciones Marinas 4: 165-174

Johansen K, Mohlenberg F (1987) Impairment of egg production in Acartia tonsa 
exposed to tributyltin oxide. Ophelia 27: 137-141

Kalke RD (1980) The Effects of Freshwater Inflow on Salinity and Zooplankton
Populations at Four Stations in the Nueces-Corpus Christi and Copano-Aransas

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 1 9

Bay Systems, Texas from October 1972-May 1975. Proceedings of the National 
Symposium on Freshwater Inflow to Estuaries 81: 454-471

Ketchum BH (1954) Relation between circulation and plankonic populations in estuaries. 
Ecology 35: 191-200

Ketchum BH, Ayers JC, Vaccaro RF (1952) Processes contributing to the decrease of 
coliform bacteria in a tidal estuary. Ecology 33: 247-258

Khattat FH, Farley S (1976) Acute toxicity of certain pesticides to Acartia tonsa Dana. 
Environmental Protection Agency 600: 3-76

Kiorboe T, Johansen K (1986) Studies of a larval herring (Clupea harengus) patch in the 
Buchan area (Scotland, UK): IV. Zooplankton distribution and productivity in 
relation to hydrographic features. Dana 6: 37-52

Kirzhner VM, Korol AB, Nevo E (1996) Complex dynamics of mulitlocus systems
subjected to cyclical selection. Proceedings of the National Academy of Science 
USA 93:6532-6535

Kirzhner VM, Korol AB, Nevo E (1998) Complex limiting behavior of multilocus
genetic systems in cyclical environments. Journal of Theoretical Biology 190: 
215-225

Kleppel GS (1992) Environmental regulation of feeding and egg production by Acartia 
tonsa off southern California. Marine Biology 112: 57-65

Kleppel GS, Burkart CA (1995) Egg production and the nutritional environment of 
Acartia tonsa: the role of food quality in copepod nutrition. ECES Journal of 
Marine Science 52: 297-304

Kleppel GS, Burkart CA, Houchin L (1998a) Nutrition and the regulation of egg
production in the calanoid copepod Acartia tonsa. Limnology and Oceanography 
43: 1000-1007

Kleppel GS, Burkart C A, Tomas C (1998b) Egg production of the copepod Acartia tonsa 
in Florida Bay during summer. 1. The roles of food environment and diet. 
Estuaries 21: 328-339

Kleppel GS, Hazzard SE (2000) Diet and egg production of the copepod Acartia tonsa in 
Florida Bay. II. Role of the nutritional environment. Marine Biology 137: i l l -  
121

Korol AB, Kirzhner VM, Nevo E (1998) Dynamics of recombination modifiers caused 
by cyclical selection: Interaction of forced and auto-oscillations. Genetic 
Research Cambridge 72: 135-147

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 2 0

Korol AB, Kirzhner VM, Ronin YI, Nevo E (1996) Cyclical environmental changes as a 
factor maintaining genetic polymorphism. 2. Diploid selection for additive traits. 
Evolution 50: 1432-1441

Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary 
Genetics Analysis Software. Arizona State University, Tempe, Arizona

Kumar S, Tamura K, Nei M (1993) MEGA: Molecular Evolutionary Genetics Analysis, 
Version 1.0, Pennsylvania State University, University Park, PA 16802

Kusk KO, Petersen S (1997) Acute and chronic toxicity of tributyltin and linear
alkylbenzene sulfonate to the marine copepod Acartia tonsa. Environmental 
Toxicology and Chemistry 16: 1629-1633

Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 
292: 679-686

Lanzky PF, Halling-Soerensen B (1997) The toxic effect of the antibiotic metronidazole 
on aquatic organisms. Chemosphere 35: 2553-2561

Lee CE (1999) Rapid and repeated invasions of fresh water by the copepod Eurytemora 
affinis. Evolution 53: 1423-1434

Lee WY (1977) Some Laboratory Cultured Crustaceans for Marine Pollution Studies. 
Marine Pollution Bulletin 8: 258-259

Lee WY, McAlice BJ (1979) Seasonal succession and breeding cycles of three species of 
Acartia (copepoda: calanoida) in a Maine estuary. Estuaries 2: 228-235

Lindeque PK, Harris RP, Jones MB, Smerdon GR (1999) Simple molecular method to 
distinguish the identity of Calanus species (Copepoda:Calanoida) at any 
developmental stage. Marine Biology 133: 91-96

Lonsdale DJ, Coull BC (1977) Composition and seasonality o f zooplankton of North 
Inlet, South Carolina. Chesapeake Science 18: 272-283

Lonsdale DJ, Hassett RP, Dobbs FC, Yen J (1998) Physiological traits associated with a 
reproductive-resting stage in Coullana canadensis (Copepoda: Harpacticoida). 
Marine Biology 131: 123-131

Lucas CH (1996) Population dynamics o f Aurelia aurita (Scyphozoa) from an isolated 
brackish lake, with particular reference to sexual reproduction. Journal of 
Plankton Research 18: 987-1007

Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I 
gene: evolutionary patterns and conserved primers for phylogenetic studies.
Insect Molecular Biology 5: 153-165

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



121

Lynch M (1987) The consequences of fluctuating selection for isozyme polymorphisms 
inDaphnia. Genetics 115: 657-669

Madhupratap M, Nehring S, Lenz J (1996) Resting eggs of zooplankton (Copepoda and 
Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Marine 
Biology 125: 77-87

Marcus NH (1980) Photoperiodic control of diapause in the marine calanoid copepod 
Labidocera aestiva. Biological Bulletin 159: 311-318

Marcus NH (1982a) Photoperiodic and temperature regulation of diapause in Labidocera 
aestiva (copepoda:calanoida). Biological Bulletin 162: 45-52

Marcus NH (1982b) The reversibility of subitaneous and diapause egg production by 
individual females of Labidocera aestiva (copepoda:calanoida). Biological 
Bulletin 162: 39-44

Marcus NH (1984) Variation in the diapause response of Labidocera aestiva (copepoda: 
calanoida) from different latitudes and its importance in the evolutionary process. 
Biological Bulletin 166: 127-139

Marcus NH (1996) Ecological and evolutionary significance of resting eggs in marine 
copepods: Past, present, and future studies. Hydrobiologia 320: 141-152

Marcus NH, Lutz R, Burnett W, Cable P (1994) Age, viability, and vertical distribution 
of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. 
Limnology and Oceanography 39: 154-158

Martens P (1981) On the Acartia species of the northern Wadden Sea of Sylt. Kiel 
Meeresforsch 5: 153-163

Matthews GA (1981) The Effects of Floods on the Zooplankton Assemblage of San 
Antonio Bay, Texas During 1972 and 1973. Proceedings o f the National 
Symposium on Freshwater Inflow to Estuaries 81: 509-525

Matthiessen P, Bifield S, Jarrett F, Kirby MF, Law RJ, McMinn WR, Sheahan DA, Thain 
JE, Whale GF (1998) An assessment of sediment toxicity in the River Tyne 
Estuary, UK by means of bioassay. Marine Environmental Research 45: 1-15

Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego

Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the 
species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the 
units of biodiversity. Chapman and Hall, London, pp 381-424

McAlice BJ (1981) On the post-glacial history of Acartia tonsa (Copepoda: Calanoida) in 
the Gulf of Maine and the Gulf of St. Lawrence. Marine Biology 64: 267-272

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 2 2

McConaugha JR (1976a) Bioassay investigation of the impact of wastes on the copepod 
Acartia tonsa. Marine Studies in South Pedro Bay, California 12: 215-225

McConaugha JR (1976b) Toxicity and Heavy Metals Uptake in Three Species of
Crustacea from Los Angeles Harbor Sediments. Marine Studies of San Pedro 
Bay, California 12: 49-67

McConaugha JR (1976b) Toxicity and Heavy Metals Uptake in Three Species of
Crustacea from Los Angeles Harbor Sediments. Marine Studies of San Pedro 
Bay, California 12: 49-67

McGowan JA (1971) Oceanic biogeography of the Pacific. In: Funnel BM, Riedel WR 
(eds), The Micropaleontology of the Oceans. Cambridge University Press, UK. 
P p .3-74

McLaren LA, Corkett CJ, Zillioux EJ (1969) Temperature adaptations o f copepod eggs 
from the artic to the tropics. Biological Bulletin 137: 486-493

Medeiros-Bergen DE, Olson RR, Conroy JA, Kocher TD (1995) Distribution of
holothurian larvae determined with species-specific genetic probes. Limnology 
and Oceanography 40:1225-1235

Monteiro MT (1995) Zooplankton structure and dynamics in the superior, middle and 
inferior zones of Sado Estuary. Boletim do Instituto Portugues de Investigacao 
Maritima 1:49-63

Montu M, Gloeden I (1982) Morphological alterations in Acartia tonsa (Saco da
Mangueira, Lagoa dos Patos, Brazil) (Possibly effect o f pollution). Arquivos de 
biologia e tecnologia 25: 361-369

Muus K (1996). Ophelia 44: 1-205

Napolitano GE, Pollero RJ, Gayoso AM, MacDonald BA, Thompson RJ (1997) Fatty 
acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary 
(Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). 
Biochemical Systematics and Ecology 25: 739-755

Naumenko EN (2000) The dynamics of abundance of the introduced Acartia tonsa Dana 
in the Vistula Gulf of the Baltic Sea. In: Matishov GG, Denisov W ,  Chinarina 
AD, Zenzerov VS, Berestovsky EG (eds) Species introducers in the European 
Seas in Russia. Kol'skij Nauchnyj Tsentr RAN, Apatity (Russia)

New Hampshire Department of Health and Human Services (1999) Public Health 
Assessment: Pease Air Force Base Portsmouth, Rockingham County, New 
Hampshire. Superfund Site Assessment Branch, Federal Facilities Assessment 
Branch, Division of Health Assessment and Consultation, Agency for Toxic 
Substances and Disease Registry, EPA Facility ID: NH7570024847, Portsmouth, 
New Hampshire

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



123

Newell SY, Cooksey KE, Fell JW, Master IM, Miller C (1981) Acute Impact of an 
Organophosphorus Insecticide on Microbes and Small Invertebrates of a 
Mangrove Estuary. Archives of Environmental Contamination and Toxicology 
10: 427-435

Norrbin MF, Olsen RE, Tande KS (1990) Seasonal variation in lipid class and fatty acid 
composition of two small copepods in Balsfjorden, northern Norway. Marine 
Biology 105: 205-211

Olson RR, RunstadlerJ, Kocher TD (1991) Whose larvae? Nature 351: 357-358

Oronsaye CC (1993) Contribution to the knowledge of calanoid copepods (Crustacea) of 
Nigeria. Journal of Aquatic Sciences 8: 29-32

Paffenhofer G-A, Steams DE (1988) Why is Acartia tonsa (Copepoda: Calanoida)
restricted to nearshore environments? Marine Ecology - Progress Series 42: 33-38

Palomares GR, Gomez GJ (1996) Copepod community structure at Bahia Magdalena,
Mexico during El Nino 1983-84. Estuarine Coastal and Shelf Science 43: 583-595

Park C, Wormuth JH, Wolff GA (1989) Sample variability of zooplankton in the
nearshore off Louisiana with consideration of sampling design. Continental Shelf 
Research 9: 165-179

Pedersen F, Bjoemestad E, Andersen HV, Kjolholt J, Poll C (1998) Characterization of 
sediments from Copenhagen Harbour by use of biotests. Water Science &
Technology 37: 233-240

Perry HM, Christmas JY (1973) Estuarine Zooplankton, Mississippi. Cooperative Gulf of 
Mexico Estuarine Inventory and Study, Mississippi 2: 198-254

Peterson WT, Arcos DF, McManus GB, Dam H, Bellantoni D, Johnson T, Tiselius P 
(1988) The nearshore zone during coastal upwelling: Daily variability and 
coupling between primary and secondary production off central Chile. Progress in 
Oceanography 20: 1-40

Plaga A (1983) Untersuchungen zur Bestandentwicklung und Nahrungsbiologie von 
Acartia tonsa (Dana), Copepoda, in einem zentralen Teilbereich der Schlei. 
Diplomarbeit Fachbereich Biologie

Prusova IY, Gubanova AD, Shadrin NV, Kurashova EK, Tinenkova DC (2002) Acartia 
tonsa (Copepoda, Calanoida): A new species in the Caspian and Azov Seas 
zooplankton. Vestnik Zoologii 36: 65-68

Rawson PD, Burton RS (2002) Functional coadaptation between cytochrome c and
cytochrome c oxidase within allopatric populations of a marine copepod. PNAS 
99: 12955-12958

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



124

Redeke HC (1934) On the occurrence of two pelagic copepods, Acartia bifilosa and 
Acartia tonsa, in the brackish waters of the Netherlands. J. Cons. perm. int.
Explor. Mer 9: 39-43

Remy P (1927) Note sur un copepode de la saumatre du canal de Caen a la mer. Annales 
de Biologie Lacustre 15: 169-186

Rencher AC (1995) Methods of multivariate analysis. John Wiley and Sons, Inc, New 
York

Rios Jara E (1998) Spatial and temporal variations in the zooplankton community of 
Phosphorescent Bay, Puerto Rico. Estuarine Coastal and Shelf Science 46: 797- 
809

Ritter WE (1904) The biological survey of the waters of the pacific coast. Science 20: 
214-215

Roberts MH, Gleeson RA (1978) Acute toxicity o f bromochlorinated seawater to selected 
estuarine species with a comparison to chlorinated seawater toxicity. Marine 
Environmental Research 1: 19-30

Roberts MH, Jr., Diaz RJ, Bender ME, Huggett RJ (1975) Acute Toxicity o f Chlorine to 
Selected Estuarine Species. Journal of the Fisheries Research Board of Canada 
32: 2525-2528

Roberts MH, Jr., Warinner JE, Tsai CF, Wright D, Cronin LE (1982) Comparison of 
estuarine species sensitivities to three toxicants. Archives of Environmental 
Contamination and Toxicology 11: 681-692

Rocha-Olivares A, Fleeger JW, Foltz DW (2001) Decoupling of Molecular and
Morphological Evolution in Deep Lineages of a Meiobenthic Harpacticoid 
Copepod. Molecular Biology and Evolution 18: 1088-1102

Rosales SA, Sepulveda JI (1992) Copepod community structure in an area between Los 
Vilos and Valparaiso (January 1990). Investigaciones marinas. Valparaiso 20: 35- 
54

Rose CD, Williams WG, Hollister TA, Parish PR (1977) Method for Determining Acute 
Toxicity of an Acid Waste and Limiting Permissible Concentration at Boundaries 
of an Oceanic Mixing Zone. Environmental Science and Technology 11: 367-371

Rychlik W (1992) OLIGO, Ver. 4.04. Computer software. National Biosciences, Inc, 
Plymouth, MN

Sabatini ME (1990) The developmental stages (Copepodids I to VI) of Acartia tonsa 
Dana, 1849 (Copepoda, Calanoida). Crustaceana 59: 53-61

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



125

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing 
phylogenetic trees. Molecular Biology and Evolution 4: 406-425

Saiz E, Tiselius P, Jonsson PR, Verity P, Paffenhofer G-A (1993) Experimental records 
of the effects of food patchiness and predation on egg production of Acartia 
tonsa. Limnology and Oceanography 38: 280-289

Schizas N, Chandler G, Coull B, Klosterhaus S, Quattro I (2001) Differential survival of 
three mitochondrial lineages o f a marine benthic copepod exposed to a pesticide 
mixture. Environmental Science & Technology 35: 535-538

Schizas N, Coull B, Chandler G, Quattro J (2002) Sympatry of distinct mitochondrial 
DNA lineages in a copepod inhabiting estuarine creeks in the southeastern USA. 
Marine biology 140: 585-594

Schmidt K, Kaehler P, Bodungen B (1998) Copepod egg production rates in the
Pomeranian Bay (Southern Baltic Sea) as a function of phytoplankton abundance 
and taxonomic composition. Marine Ecology progress series 174: 183-195

Schneider S, Roessli D, Excoffier L (2000) Arlequin: A software for population genetic 
data analysis. Ver 2.000. Genetics and Biometry Lab, Dept, of Anthropology, 
University o f Geneva

Scholin CA, Anderson DM (1996) LSU rDNA-based RFLP assays for discriminating 
species and strains of Alexandrium (Dinophyceae). Journal of Phycology 
32:1022-1035

Sei S, Rossetti G, Villa F, Ferrari I (1996) Zooplankton variability related to 
environmental changes in a eutrophic coastal lagoon in the Po Delta. 
Hydrobiologia 329: 45-55

Shaheen PA, Steimle FW (1995) Trends in copepod communities in the Navesink and 
Shrewsbury Rivers, New Jersey: 1962-1992. Estuaries 18: 250-254

Sherk JA, O'Connor JM, Neumann DA (1976) Effects of Suspended Solids on Selected 
Estuarine Plankton. Available from the National Technical Information Service, 
Springfield: 76-71

Smith SL, Brink KH, Santander H, Cowles TJ, Huyer A (1981) The effect of advection 
on variations in zooplankton at a single location near Cabo Nazca, Peru. Coast. 
Estuar. Sci. 1: 400-410

Sobral P (1985) (Distribution of Acartia tonsa Dana in the Tagus Estuary and its 
relationship with Acartia clausi Giesbrecht.). BOL. INST. NAC. INVEST. 
PESCAS 13:61-75

Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman and Company, New York

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



126

Sosnowski SL, Gentile JH (1987) Toxicological Comparison of Natural and Cultured 
Populations of Acartia tonsa to Cadmium, Copper and Mercury. Journal of the 
Fisheries Research Board of Canada 35

Sosnowski SL, Germond DJ, Gentile JH (1979) The effect of nutrition on the response of 
field populations of the calanoid copepod Acartia tonsa to copper. Water 
Research 13: 449-452

Steams DE (1984) Control of nocturnal vertical migration in the calanoid copepod 
Acartia tonsa Dana in the Newport River estuary, North Carolina

Stickney RR, Knowles SC (1975) Summer Zooplankton Distribution in a Georgia 
Estuary. Marine Biology 33: 147-154

Storms SE, Taylor WR (1972) The Feeding Behavior of the Copepods in the Chesapeake 
Bay. Progress Report September 1

Stottrup JG, Richardson K, Kirkegaard E, Pihl nJ (1986) The cultivation of Acartia tonsa 
Dana for use as a live food source for marine fish larvae. Aquaculture 52: 87-96

Suarez ME (1994) Planktic copepods of Chetumal Bay, Mexico (1990-1991). Caribbean 
Journal of Science 30: 181-188

Suderman BL, Marcus NH (2002) The effects of Orimulsion and Fuel Oil 6 on the
hatching success of copepod resting eggs in the seabed of Tampa Bay, Florida. 
Environmental Pollution 120: 787-795

Sullivan BK, McManus LT (1986) Factors controlling seasonal succession of the
copepods Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: 
temperature and resting egg production. Marine Ecology - Progress Series 28: 
121-128

Sullivan BK, Ritacco PJ (1985) Ammonia toxicity to larval copepods in eutrophic marine 
ecosystems: A comparison of results from bioassays and enclosed experimental 
ecosystems. Aquatic Toxicology 7: 205-217

Sunda WG, Tester PA, Huntsman SA (1987) Effects of cupric and zinc ion activities on 
the survival and reproduction of marine copepods. Marine Biology 94: 203-210

Sunda WG, Tester PA, Huntsman SA (1987) Toxicity of Trace Metals to Copepods in a 
Polluted Estuary. Preprints of Papers Presented at the 194th ACS National 
Meeting 27: 725-728

Sunda WG, Tester PA, Huntsman SA (1990) Toxicity of trace metals to Acartia tonsa in 
the Elizabeth River and Southern Chesapeake Bay. Estuarine, Coastal and Shelf 
Science 30: 207-221

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



127

Sverdrup LE, Furst CS, Weideborg M, Vik EA, Stenersen J (2002) Relative sensitivity of 
one freshwater and two marine acute toxicity tests as determined by testing 30 
offshore E & P chemicals. Chemosphere 46: 311-318

Tackx M, higoien X, Daro N, Castel J, Zhu L, Zhang X, Nijs J (1995) Copepod feeding 
in the Westerschelde and the Gironde. Hydrobiologia 311: 71-83

Tackx M, Polk P (1982) Feeding of Acartia tonsa (Copepoda, Calanoida): predation on 
nauplii of Canuella perplexa T. et A. Scott (Copepoda, Harpacticoida) in the 
sluice-dock at Ostend. Hydrobiologia 942: 131-133

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the 
control region of mitochondrial DNA in humans and chimpanzees. Molecular 
Biology and Evolution 10: 512-526

Tester PA (1985) Effects of parental acclimation temperature and egg-incubation
temperature on egg-hatching time in Acartia tonsa (Copepoda; Calnoida). Marine 
Biology 89: 45-53

Tester PA, Costlow JD, Jr. (1981) Effect of Insect Growth Regulator Dimilin (TH 6040) 
on Fecundity and Egg Viability of the Marine Copepod Acartia tonsa. Marine 
Ecology Progress Series 5: 297-302

Tester PA, Turner JT (1991) Why is Acartia tonsa restricted to estuarine habitats? Fourth 
International Conference on Copepoda. Bulletin of the Plankton Society of Japan, 
Japan, pp 603-611

Thiel R (1996) The impact of fish predation on the zooplankton community in a southern 
Baltic bay. Limnologica 26: 123-137

Thompson CQ, Tucker JW (1989) Toxicity of the Organophosphate Insecticide Fenthion, 
Alone and with Thermal Fog Carriers, to an Estuarine Copepod and Young Fish. 
Bulletin of Environmental Contamination and Toxicology 43: 789-796

Toudal K, Riisgaard HU (1987) Acute and sublethal effects of cadmium on ingestion,
egg production and life-cycle development in the copepod Acartia tonsa. Marine 
Ecology Progress Series 37: 141-146

Trinast EM (1976) A preliminary note on Acartia califomiensis, a new calanoid copepod 
from Newport Bay, California. Crustaceana 31: 54-58

Trujillo-Ortiz A (1990) Hatching success, egg production and development time of
Acartia californiensis Trianst (Copepoda: Calanoida) under laboratory conditions. 
Ciencias Marinas 16: 1-22

Tsui MT, Chu LM (2003) Aquatic toxicity o f glyphosate-based formulations: comparison 
between different organisms and the effects of environmental factors. 
Chemosphere 52: 1189-1197

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



128

Turcott V (1977) Plankton from the coastal lagoons. 14. Stational variation of the
copepods in lagoon of Yavaros, State of Sonora, Mexico (1969-1970). Revista 
Latinoamerieana de Microbiologia 18: 159-165

Turner JT (1984) Zooplankton feeding ecology: Contents of fecal pellets of the copepods 
Acartia tonsa and Labidocera aestiva from continental shelf waters near the 
mouth of the Mississippi River. Pubblicazioni della Stazione zoologica di Napoli 
I: Marine Ecology 5: 265-282

Turner JT (1994) Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape 
Cod Bay, 1992. Hydrobiologia 292-293: 405-413

United States of America Air Force (1990) Final environmental impact statement for the 
closure of Pease Air Force Base. USAF

U'Ren SC (1983) Acute toxicity of bis(tributyltin) oxide to a marine copepod. Marine 
Pollution Bulletin 14: 303-306

Uye S, Fleminger A (1976) Effects of various environmental factors on egg development 
of several species of Acartia in Southern California. Marine Biology 38: 253-262

Vargo SL (1980) Effects of Chronic Low Concentrations of No. 2 Fuel Oil on the
Physiology of a Temperate Estuarine Zooplankton Community in the MERL 
Microcosms. Biological Monitoring of Marine Pollutants, Proceedings of a 
Symposium on Pollution and Physiology of Marine Organisms, Milford, 
Connecticut 1981: 295-322

Vecchione M (1991) Long-term trends in the abundance of the copepod Acartia tonsa in 
the Calcasieu estuary. Contributions in Marine Science 32: 89-101

Vinas MD (1991) Feeding ecology of Engraulis anchoita first-feeding larvae in a tidal 
mixing front off the Valdes Peninsula (Argentina). ICES COUNCIL MEETING 
PAPERS: 12

Vincent D, Luczak C, Sautour B (2002) Effects of a brief climatic event on zooplankton 
community structure and distribution in Arcachon Bay (France). Journal of the 
Marine Biological Association of the United Kingdom 82: 21-30

von Ende CN (1993) Repeated-measures analysis: Growth and other time-dependent 
measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological 
experiments. Chapman and Hall, New York, pp 113-137

Vorstman AG (1946) Acartia tonsa Dana on the South coast of Finland. Biologisch 
Jaarboek 13: 184-188

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, 
Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA 
fingerprinting. Nucleic Acid Research 23: 4407-4414

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



129

Voss M (1991) Content of copepod fecal pellets in relation to food supply in Kiel Bight 
and its effect on sedimentation rate. Marine Ecology Progress Series 75: 217-225

Voznesensky M, Lena PH, Spanings-Pierrot C, Towle DW (2004) Genomic approaches 
to detecting thermal stress in Calanus finmarchicus (Cpepeoda: Calanoida). 
Journal of Experimental Biology and Ecology 311: 37-46

Ward TJ, Rider ED, Drozdowski DA (1979) A chronic toxicity test with the marine 
copepod Acartia tonsa. Aquatic Toxicology 667: 148-158

Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North 
Atlantic intertidal. Evolution 55: 2455-2469

Weideborg M, Vik EA, Ofjord GD, Kjonno O (1997) Comparison of three marine 
screening tests and four Oslo and Paris Commission procedures to evaluate 
toxicity of offshore chemicals. Environmental Toxicology and Chemistry 16: 384- 
389

Wen Yuh L (1977) Some laboratory cultured crustaceans for marine pollution studies. 
Marine Pollution Bulletin 8: 258-259

Wheeler WM (1900) The free-swimming copepods of the Woods Hole region. Bulletin 
of the United States Fish Commission 19: 157-192

White JR, Dagg MJ (1989) Effects of suspended sediments on egg production of the 
calanoid copepod Acartia tonsa. Marine Biology 102: 315-319

Williams LW (1906) Notes on marine copepoda of Rhode Island. American Naturalist 
40: 639-660

Wollenberger L, Breitholtz M, Kusk KO, Bengtsson BE (2003) Inhibition of larval 
development of the marine copepod Acartia tonsa by four synthetic musk 
substances. Science of the Total Environment 305: 53-64

Woodmansee RA (1958) The seasonal distribution of the zooplankton off Chicken Key in 
Biscayne Bay, Florida. Ecology 39: 247-262

Wright S (1948) On the roles of directed and random changes in gene frequency in the 
genetics of populations. Evolution 2: 279-294

Yang Z (2002) PAML, Phylogenetic Analysis by Maximum Likelihood 3.13a

Zar JH (1996) Biostatistical Analysis. Prentice Hall, Upper Saddle River

Zhuchenko AA, Korol AB, Kovtyukh LP (1985) Change of the crossing-over frequency 
in Drosophila during selection for resistance to temperature fluctuations. Genetica 
67: 73-78

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



130

Zillioux EJ, Gonzalez JG (1972) Egg dormancy in a neritic calanoid copepod and its
implications to overwintering in boreal waters. In: Battaglia B (ed) Fifth European 
Marine Biology Symposium. Piccin, Venice, Italy, pp 217-230

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2004

	Genetic diversity and structure of calanoid copepods: Molecular evolutionary patterns in coastal estuaries (Acartia tonsa) and the open ocean (Calanus spp)
	Robert Sean Hill
	Recommended Citation


	tmp.1521741622.pdf.vf7Gb

