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ABSTRACT

STUDY OF THE ENHANCEMENT EFFECT OF CYCLOPENTADECANOLIDE 

ON PROTEIN PERMEATION THROUGH LIPID MEMBRANES

By

Zhengmao Li 

University of New Hampshire, September 2004

Intranasal drug delivery has been a topic of increasing interest for a 

decade as a convenient and reliable method for the systemic administration of 

drugs. The low bioavailability of simple formulation of protein drugs, such as 

insulin, can be greatly improved by using permeation enhancers. We studied the 

effect of cyclopentadecanolide (CPE-215®) as a permeation enhancer in protein 

release through lipid bilayer membranes. We successfully designed a novel in- 

vitro membrane permeability model using liposomes and performed a series of 

transmembrane protein release experiments. These were carried out under a 

wide range of conditions in the presence of different permeation enhancer 

combinations. The experimental results showed that CPE-215® is an effective 

membrane permeation enhancer for proteins and a phase transfer agent, for 

example, cyclodextrins, can further enhance the effect of CPE-215®.

Besides the release experiments, studies on insulin solution properties 

(self-diffusion and self-association states), the interaction between insulin and

xiii
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liposome and the interaction between CPE-215® and liposomes were carried out. 

Based on the mechanistic study and release data, we hypothesized that CPE- 

215® can form transient “pores” in the lipid bilayer that dissolve when CPE-215® 

distributes homogeneously within the bilayer and restore the barrier function of 

the lipid bilayer. We performed several experiments that corroborate our 

hypothesis.

A mathematical model was developed based on our hypothesized release 

mechanism. A semi-empirical nonlinear equation involving four parameters 

effectively fits the protein release profiles. The quality of the data fit with this 

model is good supporting evidence for the validity of our mechanistic model. 

Finally we used a neural network approach to correlate the different release 

condition parameters and the four semi-empirical fitting parameters based on our 

limited data sets. Reasonable neural networks were formed for the three major 

parameters of the mathematical model and provided acceptable prediction 

results.

xiv
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CHAPTER 1

INTRODUCTION

Since our research is related to the mucosal delivery of protein/peptide 

drugs, an overview of protein/peptide drug delivery is given at the beginning of 

this chapter, then the topic is narrowed down to our research -  protein transport 

though natural membranes with permeation enhancers. Structure and major 

components of natural membranes, and different in vitro membrane permeability 

models (Caco-2, PAMPA, and liposomes) are discussed. Since liposomes were 

selected as our in vitro membrane model, detailed preparation and purification 

methods for different kinds of liposomes are presented.

1.1. Objective of Thesis

Cyclopentadecanolide (Figure 1), trademarked as CPE-215® is one 

permeation enhancer with proprietary ownership to Bentley Pharmaceuticals, Inc. 

Bentley Pharmaceuticals, Inc is using CPE-215® to help protein, peptide, and low 

molecular weight therapeutic drugs transport through natural membranes for 

delivery to the blood stream. This thesis aims to understand the process behind 

the permeation effect of CPE-215®. Pharmaceutical formulations are always 

challenged with a need for appropriate animal or human tests. These tests are

1
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typically costly and time consuming, and reproducibility is always difficult. To 

effectively develop formulations, it is advantageous to construct in vitro tests to 

optimize formulations, before in vivo testing. The goal of this thesis is to establish 

an in vitro membrane model for protein transmembrane transport, to understand 

the release mechanism of CPE-215®’ and to test intranasal formulations.

Figure 1 Molecular structure of Cyclopentadecanolide (CPE-215®).

1.2. Protein/Peptide Drug Delivery

1.2.1. Proteins and peptides as pharmaceuticals

The use of peptides and proteins for systemic treatment of certain 

diseases is now well accepted in medical practice. Peptide/protein drugs are 

increasingly becoming a very important class of therapeutical agents as a result 

of our gaining more understanding of their role in physiology and pathology as 

well as the rapid advances in the field of biotechnology and genetic engineering.

2
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Many of these peptides are endogenous molecules that play an important role in 

maintaining organ function and metabolic homeostasis.

Peptide and protein pharmaceuticals are different than conventional low 

molecular weight drugs; they are structurally more challenging and complicated; 

they are often unstable, have large molecular weights and have charges on the 

outer surface. The last two properties lead to poor permeability through biological 

membranes and consequently peptides and protein material are difficult to 

administer except by injection.1

1.2.2. Protein/Peptide Delivery- A Booming Research Area

There is presently an urgent need to find new ways to deliver peptides and 

protein drugs and to control their absorption and distribution in the body. In an 

editorial in 1998, Rakesh Jain2 stated that the delivery of therapeutics can be 

considered as the next frontier of molecular medicine research. He commented 

that extraordinary advances in molecular biology and biotechnology have helped 

identify novel targets and develop a vast array of therapeutic agents. However,

(in his view), our understanding of the delivery of therapeutic agents has lagged 

behind.

In the past, when developing new products, drug delivery scientists have 

often em ployed delivery strategies to enhance a property, such as the controlled 

release of the therapeutic agent. However, for the case of peptides and proteins, 

drug delivery systems must play a more critical role in enabling a viable product. 

In doing so, a detailed knowledge of the properties of the compound needs to be

3
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integrated with delivery technology and the relevant aspects of patho/physiology 

and biology.

1400

1200

2- 1000 -

800  -

600

400

200

&  <# c# c# c£>N c# <# ^  ^  rs<̂ rs#
Year

Figure 2 Number of published research papers (journal, letter and patent 
only) on protein/peptide drug delivery every year from 1985 to 2003.

Usually the number of publications on a research topic shows the 

magnitude of people’s interest in the topic. A publication search on 

protein/peptide drug delivery using SciFinder Scholar in early 2004, shows that 

this is really a booming research area. Figure 2 highlights the number of 

published research papers (journal, letter and patent only) on protein/peptide 

drug delivery every year from 1985 to 2003. Researchers’ interest in 

protein/peptide drug delivery started in the mid 1980s; for the first decade, there

4
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was a steady and slow increase in the number of publications. However, after the 

mid 1990s, the number of yearly publications increased drastically, from around 

50 a year in 1995 to almost 1300 a year in 2003. There are several key academic 

researchers in this booming field, such as Dr. Robert Langer (MIT), Dr. Nicholas 

Peppas (U Texas), Dr. Francis Szoka (UCSF), Dr. William Pardridge (UCLA), Dr. 

Jacobus Verhoef (Leiden U, Netherlands), Dr. Andreas Bernkop-Schnurch (U 

Vienna, Austria), Dr. Allan Hoffman (U Washington), and Dr. Lisbeth Ilium (U 

Nottingham, UK), to cite only the most published principal investigators.

1.2.3. Delivery Routes

The choice of delivery routes for drugs is wide (parenteral,3 oral,4,5 

pulmonary,67 intranasal,8,9 transdermal,10,11 buccal,12,13 ocular,14,15 rectal,16 

vaginal,17 etc.). The clinical application, drug properties, patient convenience, and 

required “performance” (e.g. bioavailability), are all key selection factors. The 

next sections (1.2.3.1 to 1.2.3.6) are an overview of these delivery routes, recent 

development and their pros and cons.

1.2.3.1. Injectable Systems

Injections are inevitably associated with some degree of pain, irrespective 

of their route of delivery, whether intramuscular, intravenous, or subcutaneous. 

The inherent advantages of injectable systems need to be weighed against their 

disadvantages.

5
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Currently, proteins and peptides are mostly delivered by parenteral 

administration. Because they are extremely short-acting, repeated injections are 

often required. Parenteral delivery can be used to target compounds to specific 

sites (via blood or lymphatic systems), as well as to provide precise 

pharmacokinetic and phamacodynamic profiles. Exciting developments have 

shown how formulation technologies can be used to provide improved parenteral 

delivery (e.g. nanoparticles, liposomes, PEGylation).18,19 Engineering based 

systems, such as insulin pumps and injection pen systems (for insulin and 

human growth hormone), have gained considerable success in the market. 

Needleless injection systems currently under development should have better 

patient acceptance.20 These include systems employing liquid or powder 

technologies.

Polymer implants and microspheres based on polylactide-coglycolide 

(PLGA) have been very successful clinically.21 Flamel Technologies developed a 

self-assembled poly-aminoacid nanoparticles system for parenteral delivery of 

proteins. However, polymer microspheres are not without problems in terms of 

loading, drug stability and release profiles. Processing, particularly sterilization, 

remains an issue. New implant systems based on alternative concepts are 

currently under investigation including an implantable titanium device.22

1.2.3.2. Oral Delivery

Oral delivery is the most preferred method for the introduction of 

therapeutic agents. In 2002, oral delivery technologies accounted for 39% ($14

6
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billion) of the world market ($38 billion).23 This field has been the subject of many 

peptide and protein delivery attempts, particularly with insulin; but, as yet, few 

oral polypeptide products have reached the market.

Peptides and proteins are inherently unstable in the harsh conditions of 

the gastrointestinal tract (pH, enzymes, adsorption to solids); but, even if 

instability can be avoided, good absorption is not guaranteed. The work of Drew 

et al. on octreotide is instructive.24 Octreotide is a cyclic polypeptide (a 

somatostatin analogue) that is very stable even in the small intestines. When 

orally given to human as a simple solution, the bioavailability is 0.6%. This can 

increase to 3.3% by using a non-ionic surfactant (polyoxyethylene 24-cholesterol 

ether). Therefore, for oral administration, it is important to be realistic about 

potential product performance. If stability is an issue, then enteric coating and 

enzyme inhibitors can be used.25 Absorption can be improved by selecting a 

permeation enhancer that can improve transcellular or paracellular transport.

Also of importance is the selection of a preferential absorption site. The small 

intestine and large intestine have both advantages and disadvantages.

Therefore, before developing a delivery strategy, it can be important to evaluate 

the absorption of a candidate biopharmaceutical. Today it is possible to deliver 

drugs into different regions of the human gastrointestinal tract using “smart” 

capsules.26 This avoids the highly invasive method of intubation.

Various methods to increase the absorption of challenging molecules from 

the gastrointestinal tract have been tried. These include permeation enhancers 

such as surfactants, chitosan (and derivatives thereof), chelating agents, as well

7
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as carriers and complexation systems.27 Some of these strategies use known 

pharmaceutical excipients (GRAS (Generally Recognized As Safe) status) which 

can alter cell permeability, usually by modification of the paracellular pathway. 

Non-covalent complexation strategies have also been reported.28 The 

modification of peptides and proteins chemically by lipidzation or the attachment 

of hydrophilic and hydrophobic polymeric functions has also been described.29,30 

Clearly, such modifications result in a new chemical entity and the associated 

regulatory issues. The covalent attachment of moieties that permit the 

biopharmaceutical to exploit biological transporters is also an active area of 

research.31,32 Here again, there is the disadvantage of covalent chemistry, but 

these approaches could offer exciting opportunities in the exploitation of natural 

pathways. A recent report by Morris et al. could open up new approaches.33 They 

found that a 21 residue peptide that had hydrophilic and hydrophobic regions 

forms stable non-covalent complexes with peptides and proteins. They were able 

to use this system to deliver a model protein into various cell lines. The system 

was claimed to have low toxicity but as yet, no in vivo data have been reported.

Alternatively, one may use nanoparticles for the delivery of peptide and 

protein drugs into the systemic circulation from the gastrointestinal tract. It is well 

known that certain specialized cells (M-cells) in the gastrointestinal tract can take 

up and transport particles.34 The size and surface properties of the particles are 

key factors. This process is important for the development of oral vaccine 

systems. However, the quantities of material transported are low, even with 

systems with specific surface markers that provide enhanced interaction between
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particles and cells. Some clinical phase II trials suggested that particle uptake 

resulted in less than 0.1% of the administered dose being sequestered.35 This 

could be sufficient for a beneficial immune response when developing an oral 

vaccine but will surely be of no benefit for the oral delivery of peptides.

1.2.3.3. Pulmonary Delivery

Patton has claimed that the lung is a logical target for non-invasive drug 

delivery.36 It should provide rapid onset of action and a variety of delivery devices 

(Metered Dose Inhalers (MDI), Dry Powder Inhalers (DPI), nebulizers). Good 

absorption, even of polar drugs, can be achieved, if the drug is delivered to the 

deep lung. Good patient compliance is to be expected provided that the device 

and delivery system are properly engineered. Similarly, good reliability should 

also be attainable. Understandably, insulin has been the molecule of choice and 

a number of different companies are pursuing novel pulmonary delivery systems 

using liquid and powder systems. Reported bioavailabilities, versus s.c. 

(subcutaneous) injection, range from 10-20% and reliability would appear to be 

as good as or better than for injectable insulin (s.c.). Various products are now in 

Phase ll/Phase III clinical evaluation and the results look to be encouraging. 

However, some concerns over safety (lung function, cough) and increased 

antibody levels have been raised recently, but it is likely that inhaled products for 

insulin (and other therapeutic peptides) will reach the market soon. One great 

advantage of the lung is that it is possible to obtain reasonable absorption (i.e. 

50% of the dose delivered) across the mucosal surfaces of the deep lung-
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alveolar region using simple formulations. Long term effect of pulmonary delivery 

has yet to be investigated.

1.2.3.4. Nasal Delivery

The nose is an alternative part of the respiratory system that can be 

exploited for the delivery of therapeutic peptides and proteins. Nasal products for 

peptide delivery are on the market, but with low bioavailability.37 Nasal delivery 

can provide rapid onset of action and good deposition can be achieved readily for 

both liquid and powder systems. However, using simple formulations, the 

absorption of biopharmaceuticals from the nose of animal models and human is 

less than 1%. Therefore, in order to improve reliability and to address cost of 

goods issues, absorption enhancers may be required. Various materials have 

been studied over the years. While many are effective, most are associated with 

problems of irritation and regulatory acceptance.38 Often an increase in 

absorption (e.g. bioavailability) is associated with a direct effect of membrane 

damage. However, some materials such as certain phospholipids can provide 

good absorption with low toxicity; the polysaccharide material chitosan was found 

to provide increased drug absorption with no evidence of toxic manifestations.39

The nasal route also provides a unique delivery opportunity. The olfactory 

region of the nose can be exploited to provide direct delivery of drugs into the 

brain.40 Recent studies by Frey et al. have demonstrated that polypeptide 

materials such as nerve growth factor can reach the CSF and brain tissues 41 In 

addition, exciting clinical studies by Fehm and Born42 have demonstrated that
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materials such as arginine vasopressin, angiotensin II, and insulin can be 

transported from nose to brain in humans, in low quantities. This could be a novel 

way to avoid the blood-brain barrier and to provide a novel means of access to 

the brain.

1.2.3.5. Buccal Delivery

The mouth has been examined as a delivery route for biopharmaceuticals 

by various groups using animal models and also in humans. The pivotal clinical 

studies of de Groot and colleagues using sublingual oxytocin suggest a low 

bioavailability of less than 1%.43 Therefore, the results recently reported on the 

buccal administration of insulin using a spray device (MDI) are both surprising 

and potentially exciting. Reported clinical studies in diabetic subjects have 

demonstrated good efficacy with bioavailabilities in the range of 5-10%.44

1.2.3.6. Transdermal Delivery

The transdermal delivery of polypeptides has been evaluated by many 

groups, but the results so far are not encouraging.45 Good results in animal 

models do not translate well to human (usually because the chosen animal 

model has little relevance to the human skin). The skin of human provides a good 

barrier. Novel approaches to “driving” polypeptides across the skin, such as 

iontophoresis and ultrasound, have been explored but clinical results have been 

disappointing 46,47 Insulin is an interesting case where physiological pH is a
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problem when considering iontophoresis. The charge on the molecule changes 

with pH gradient across the skin. Under electrophoresis, the molecule can be 

forced into the skin; but, as the pH changes from the skin surface to tissue, the 

charge on the molecule reverses and the molecule is forced to back out!

A novel transdermal system using “transferosomes" (ultraflexible 

liposomes with low pore resistance) has been proposed by Cevc.48 It is claimed 

that the system can transport therapeutic amounts of insulin across intact 

mammalian skin but detailed clinical results are awaited. Alternative engineering 

approaches, such as microneedles produced by photolithography, could well 

provide a more reliable transdermal system 49

1.3. Membrane Permeation Enhancers

To minimize the health hazard of repeated injection, there is a need to 

search for another systemic delivery route as a non-invasive alternative to 

injection. Mucosal delivery routes, such as pulmonary, intranasal and oral routes, 

will deliver the drugs through the mucosa and reach the general blood circulation 

via numerous capillary vessels present underneath the mucosa.

In mucosal delivery, therapeutic agents need to go through mucous 

membranes first; but mucous membranes are not designed to let foreign subjects 

go through and into the blood system—on the contrary, one of the critical 

functions of the mucus membranes is the barrier function. Some small and 

neutral molecules, such as glycerin and vitamins can go through natural 

membranes easily. But large molecules, for example protein/peptide drugs,
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cannot go through mucous membranes and into the blood by themselves, in 

another words, mucous membranes are not permeable to them. Therefore, 

improving the bioavailability of the therapeutic agents is the major task for 

protein/peptide mucosal delivery. In order to go through barrier membranes, 

protein/peptide drugs need the help of membrane permeation enhancers.

Membrane permeation enhancers are usually small molecules used to 

interact with the membranes and increase the permeability of membranes. The 

main concerns with membrane permeation enhancers are safety issues: they can 

cause irritations and can break the integrity of the membrane. Many molecules 

have been studied and used as membrane permeation enhancers. Generally 

speaking, permeation enhancers have experienced three generations.50 The first 

generation is represented by bile salts and surfactants. The second generation is 

represented by salicylates, enamines, fusidate derivatives, acylcarnitines and 

phospholipids. Nutrients, hormones and antioxidants form the main force of the 

third generation of the membrane permeation enhancers. CPE-215® may fall in 

the second generation in this category.

1.4. Membrane Structure

In order to study the permeation property of biological membranes, one 

must know the structure of the mem branes. Despite the variable compositions of 

biological membranes, the basic structural unit of virtually all biomembranes is 

the phospholipid bilayer, with embedded proteins (Figure 3). This bilayer is a 

sheet like structure composed of two layers of phospholipid molecules whose
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polar head groups face the surrounding water and whose fatty acyl chains form a 

continuous hydrophobic interior of 4 nm thick. Each phospholipid layer in this 

lamellar structure is called a leaflet. The major driving force for the formation of 

phospholipid bilayers is hydrophobic interaction between the fatty acyl chains of 

glycolipid and phospholipid molecules. Van der Waals interactions among the 

hydrocarbon chains favor close packing of these hydrophobic tails. Hydrogen 

bonding and electrostatic interactions between the polar head groups and water 

molecules also stabilize the bilayer. Therefore, the membrane has a relatively 

hydrophilic exterior and a hydrophobic interior.
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Membrane proteins are embedded in the lipid bilayer. Some may pass 

through the bilayer as transmembrane proteins. Transmembrane proteins are
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amphipathic, which means they have hydrophobic and hydrophilic regions that 

are oriented in the same regions in the lipid bilayer. Another name for them is 

“integral proteins”. Other types of proteins may be linked only at the cytoplasmic 

surface by attachment to a fatty acid chain, or at the external cell surface 

attached by an oligosaccharide. In other cases, these non-transmembrane 

proteins may be bound to other membrane proteins. Collectively these are called 

“peripheral membrane proteins”.

Membrane lipids are numerous and diverse, such as phosphatidylcholine, 

phosphatidylserine, sphingomyelin, cholesterol, etc. The lipid components of 

biological membranes in animal cells consist predominantly of phospholipids. 

The phospholipids have two fatty acyl chains esterified to glycerol and a 

hydrophilic “head group”. In animal cells phosphatidylcholine (PC) is the major 

phospholipid.
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Cholesterol is a particular type of lipid. It is a membrane constituent widely 

found in biological systems which serves the unique purpose of modulating 

membrane fluidity, elasticity, and permeability. It literally fills in the gaps created 

by imperfect packing of other lipid species when proteins are embedded in the 

membrane. Cholesterol serves much the same purpose in model membranes. 

The cholesterol molecule inserts itself in the membrane with the same orientation 

as the phospholipid molecules. Figure 5 shows phospholipid molecules with a 

cholesterol molecule inserted. Note that the polar head of the cholesterol is 

aligned with the polar head of the phospholipids.
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Figure 5 Cholesterol molecules in lipid bilayer.49

Different lipids can have different conformations in water when they gather 

together, and those conformations are usually determined by their molecular 

shapes (Figure 6). Lipids with a big hydrophilic anionic “head” and a small 

hydrophobic hydrocarbon “tail”, for example common detergents, have the shape 

of an inverted cone, and will form micelles in water. Lipids with a hydrophilic 

“head” and two hydrophobic “tails”, for example most lipids in natural 

membranes, have a cylindrical shape, and will form lipid bilayers in water. These 

lipid bilayers are thermodynamically stable.

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



LIPID PHASE
M OLECULAR

SHAPE

CRITICAL PACKING  
PARAM ETER  

(v /IS .)

Lysophospholipids
Detergents

©

Micellar Inverted Cone

<  >/3 (Sphere)

Vi to sh  
(Globular Shapes; 

Rods)

Phosphatidylcholine 
Sphingomyelin 

Phosphatidylserine 
Phosphatidylinositol 
Phosphatidylglycerol 

Phosphatidic Acid 
Cardiolipin 

Digalactosyldiglyceride

p m
. . . . . . . .

Bilayer

w

Cylindrical

Vi to 1

Phosphatidylethanolamine 
(Unsaturated) 

Cardiolipin - C a 2! 
Phosphatidic Acid - C a2 ' 

(pH <  6.0) 
Phosphatidic Acid 

(pH <  3 .0 ) 
Phosphatidylserine 

(pH <  4.0) 
Monogalactosyldiglyceride Hexagonal (H n)

▲

Cone

>1

Figure 6 Polymorphic phases, molecular shapes, and the critical packing 
parameter for some membrane lipids.53

1.5. In Vitro Membrane Permeability Models

It costs pharmaceutical companies hundreds of millions of dollars to test 

drugs in Phase II & III. This makes a compound that demonstrates low 

bioavailability during clinical trials unacceptable. To prevent this problem, drug 

candidates are screened for their absorption potential early in the discovery and 

development phase, when investment in a compound is low, as a filter to remove 

poor performers and identify candidates that need to be potentially modified.
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Initially, in silico methods were favored. But computational models based 

on molecular properties typically fail when large sets of diverse compounds are 

analyzed. This is particularly a problem when conformationally flexible 

compounds are used. Membrane retention is also an important phenomenon. 

Two compounds can have the same permeability but different membrane 

retention characteristics. This retention is often misunderstood or neglected, 

which leads to incorrect membrane permeability estimates and calculations. The 

failure of physiochemistry-based predictions led to the development of simple 

assays to evaluate compound absorption. As a result, two permeability assays 

have become prevalent in the past five years: the Caco-2 cell permeability assay 

and the parallel artificial membrane permeability assay (PAMPA). These assays 

have risen to play important roles in industry, and most companies perform at 

least one of them in their research programs.

Figure 7 Caco-2 and PAMPA. Caco-2 uses compartments of different 
volumes separated by a monolayer of cell grown on a filter. PAMPA uses 
chambers of the same size, separated by a filter coated with lipid in 
organic solvent.
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Liposomes are usually used as model membranes to study the properties 

of pure lipids and lipid mixtures. In the drug delivery field, they are mostly used 

as drug delivery carriers. However, we found that they can also be used as 

membrane permeability models due to their lipid bilayer structure.

1.5.1. Caco-2

First described in the early 1990s, cell permeability studies came to 

industry from academia, where several groups worked to develop cell-based 

assays that mimicked the passage of drugs through the intestinal mucosa54,55— 

the Caco-2 assay was the result.

In typical experiments, a monolayer of cells is grown on a filter separating 

two stacked microwell plates. The permeability of compounds through the cells is 

determined after the introduction of a drug on one side of the filter. The entire 

process has been automated, and when used in conjunction with LC-MS 

detection, it enables any compound’s permeability to be determined. It is 

recognized by the FDA as one of the few means to measure permeability as part 

of the bioequivalence waiver process. Since its introduction, Caco-2 has been 

championed as a standard for measuring permeability, but it is not without some 

shortcomings.

Caco-2 experiments require up to 20 days for the preparation of stable 

monolayers, and the cells must be maintained in protective environments, free 

from contamination, and examined for tight-junction formation prior to use. The
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method requires careful sample analysis to calculate permeability correctly. 

Interlaboratory variation is a problem because of differences in cell line strains. 

Caco-2 cells also contain endogenous transporter and efflux systems, the latter 

of which work against the permeability process and can complicate data 

interpretation for some compounds. In addition, test compound solubility appears 

to be a problem in Caco-2 assays because of the assay conditions.

1.5.2. PAMPA

As a less expensive alternative to Caco-2, Manfred Kansy et al. developed 

PAMPA.56 A “PAMPA sandwich” is prepared from two plates that are similar to 

those used for traditional Caco-2 experiments (Figure 7). One plate contains a 

porous filter disk at the bottom of each well. The other one is a reservoir plate 

that is precisely molded to sit under the filter plate so that contact between the 

two occurs at the filter. The filter is coated with a solution of lipid material in inert 

organic solvent to prepare the artificial membrane. The wells of one plate are 

then filled with donor solution (i.e., drug), and the other with acceptor solution 

(i.e., buffer); the plates are then stacked to create the sandwich and are 

incubated. The drug concentration in the donor and acceptor wells is then 

determined by UV or LC-MS methods, and permeability is calculated.57 The 

whole PAMPA process is easily automated and commercially available.

The lipid choice is flexible and often varies by research group, ranging 

from mixtures that reflect the lipid composition of mammalian cell membranes to
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simple synthetic phospholipids.58 Some even forgo the lipid altogether and use 

non-polar organic solvents.59

With PAMPA, the emphasis is on simplicity. Because the membrane has 

no transporters or efflux systems, only passive permeability is observed. And 

because there is no growth period, the analysis can be set up quickly from 

standard stock supplies without concern about contamination. This allows 

PAMPA to be run without restructuring laboratories to create sterile 

environments, making PAMPA experiments easier, faster, and much less 

expensive to run than Caco-2 assays.

1.5.3. Liposome

Due to the lack of experience with cell culture and uncertainty with cell 

lives, we did not use Caco-2 as the membrane permeability model. As to 

PAMPA, its artificial membrane is a filter coated with a solution of lipid materials 

in inert organic solvent, which is quite different from the lipid bilayer structure of 

biological membranes. In that case, PAMPA will not be a good membrane analog 

for us to study the interaction of our hydrophobic permeation enhancer with 

biological membranes.

Liposomes have a spherical lipid bilayer structure, which is very similar to 

the lipid bilayer structure in biological membranes. Since liposomes can 

encapsulate solutions inside and separate the inside solution from the outside, 

we found that liposome can be used as a passive membrane permeability model. 

By encapsulating the drug solution inside of liposomes and detecting the drug
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concentration in the outside solution, we can monitor the drug transport across 

the lipid bilayer.

The research on liposomes is mostly focused on using liposomes as drug 

delivery carriers,60,61 and structural model membranes. However, no one has yet 

reported using liposomes as passive membrane permeability models before.

More information about liposomes will be introduced in the following 

section.

1.6. Liposome as an Artificial Membrane Model

The term “liposome” can be defined as any lipid bilayer structure which 

encloses a volume (Figure 8).62,63,64 Many phospholipids, when dispersed in 

water, spontaneously form a heterogeneous mixture of vesicular structures which 

contain multiple bilayers forming a series of concentric shells.

Lipid* auikt butUtiny 
tUxte <4mmtmim. andfsptrstii in Kvler.

Figure 8 Liposome structure (half).65
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There are different kinds of liposomes (vesicles): multilamellar vesicles 

(MLV), large unilamellar vesicles (LUV) and small unilamellar vesicles (SUV, < 

100 nm in diameter). Practical applications of liposomes have been explored in 

three main areas of research, namely in model membrane studies, in controlled 

and targeted drug delivery in vivo, and in transfer of genetic and other material 

into cells in culture.

One important property of liposome is its thermal phase transition. The 

phase transition temperature (Tc) is defined as the temperature required to 

induce a change in the lipid physical state from the ordered gel phase, where the 

hydrocarbon chains are fully extended and closely packed at low temperature, to 

the disordered liquid crystalline phase, where the hydrocarbon chains are 

randomly oriented and fluid at more elevated temperature. There are several 

factors which directly affect the phase transition temperature including 

hydrocarbon length, unsaturation, charge, and headgroup species. As the 

hydrocarbon length is increased, van derWaals interactions become stronger 

requiring more energy to disrupt the ordered packing, thus the phase transition 

temperature increases. Likewise, introducing a double bond into the acyl group 

puts a kink in the chain which requires much lower temperatures to induce an 

ordered packing arrangement. This property will be the object of a specific study 

in Chapter 4.2.
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1.6.1. Preparation of Liposomes

When considering the preparative methodology of liposomes, it has to be 

recognized that different applications require different types of liposomes.

1.6.1.1. Multilamellar Vesicles (MLV)

Multilamellar liposomes were first described by Bangham et al.66 The 

procedure used by them still remains the simplest and the most widely used. This 

involves the deposition of a thin lipid film from an organic solvent medium on the 

walls of a container, followed by agitation with an aqueous solution of the 

material to be encapsulated. Provided the agitation is carried out at temperatures 

above the characteristic gel-liquid crystal phase transition temperature of the 

phospholipid and the lipid film is indeed thin, MLV should form spontaneously 

with little effort. However, the degree of agitation required to form a good 

dispersion of MLV (without poorly hydrated lipid globules) will depend upon the 

thickness of the lipid film. With relatively thicker films produced by more 

concentrated lipid solutions and/or smaller evaporation vessels, more vigorous 

agitation is required.

The MLV appear to be attractive because of the ease of their preparation 

and relative stability on storage. However, the disadvantages include low 

encapsulation efficiency and inconsistency of properties.
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1.6.1.2. Large Uni- or Oligolamellar Vesicles

Relatively large liposomes with either one or a few lamellae, as for 

example the reverse-phase-evaporation vesicles (REV), occupy an intermediate 

position between the MLV and small unilamellar vesicles (SUV). Some common 

large unilamellar liposome preparation methods will be briefly introduced below.

1.6.1.2.1. Ether Infusion

Ether infusion techniques67,68 can be used to prepare large unilamellar 

liposomes. The basic principle is the injection of a solution of lipids in ether into 

an aqueous solution of the material to be encapsulated at a temperature high 

enough for the rapid evaporation of the solvent. Large molecules such as 

proteins and DNA have been encapsulated into liposomes using this technique. 

Although the encapsulation efficiency is very low, relatively large aqueous space 

volumes have been reported 69 Additionally, the size distribution of the liposomes 

is heterogeneous.

1.6.1.2.2. Calcium-Induced Fusion

This method, developed by Papahadjopoulos et al.70 relies on the effect of 

calcium ions on acidic phospholipids to form initially cochleate cylindrical 

structures, which are then transformed into large unilamellar vesicles (LUV) by 

the addition of the chelating agent EDTA. Although the preparative procedure 

and efficiency of encapsulation are attractive,71 the presence of calcium ions and 

the sequestrant during the formation of the liposomes and consequent
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contamination of the liposomes with these may be unacceptable. Furthermore, 

this rather specialized technique is valid only for acidic lipids.

1.6.1.2.3. Reverse-Phase-Evaporation (REV)

This method was introduced by Szoka and Papahadjopoulos72 for the 

preparation of large uni- or oligolamellar liposomes incorporating a variety of 

drugs and biologically active materials. The efficiency of drug encapsulation, 

generally around 50%, is very good. The method appears suitable for use with a 

variety of lipids and lipid mixtures and for the encapsulation of even large 

macromolecular materials. The aqueous space in these liposomes is 7 to 10 

l/mol lipid, which is very high in comparison to MLV and SUV.8 Liposomal 

dispersions prepared in this manner are said to be mixtures of large unilamellar 

and oligolamellar liposomes with the size and number of lamellae being 

dependent upon the nature of the lipid mixture, and possibly the exact 

procedure.6,73

The relatively high encapsulation efficiency for a variety of compounds 

and the basic principle of going from an emulsion to a liposomal dispersion are 

very attractive from scale-up and processing considerations. Greater 

reproducibility of liposome size range and drug encapsulation can be expected 

due to the absence of the “dry lipid” stage. O ne of the disadvantages of this 

method is the need for sonication of the mixture of the lipid solution and the 

aqueous drug solution to form an “adequate” emulsion. This step would be 

difficult to operate on a large scale in a reproducible manner. Although Szoka
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and Papahadjopoulos6 stressed the need for sonication in order to ensure a 

homogeneous emulsion, and thus a primarily unilamellar liposomal dispersion, 

other emulsification techniques may be equally effective. Other drawbacks of this 

procedure include the presence of the organic solvent in contact with the material 

to be encapsulated and the temperature needed for the evaporation of the 

solvent under reduced pressure. These conditions may be too severe for 

peptides and proteins.

1.6.1.2.4. Rapid Extrusion through Polycarbonate Filter

Lipid extrusion is a technique in which a lipid suspension is forced under 

pressure through polycarbonate filters with defined pore sizes to yield particles 

with a mean diameter that reflects that of the filter pore.74 Prior to extrusion 

through the final pore size, LMV suspensions are disrupted either by several 

freeze-thaw cycles or by prefiltering the suspension through a larger pore size. 

This method helps prevent the membranes from fouling and improves the 

homogeneity of the size distribution of the final suspension. As with all 

procedures for downsizing LMV dispersions, the extrusion should be done at a 

temperature above the Tc of the lipid. Attempts to extrude below the Tc will be 

unsuccessful as the membrane has a tendency to foul with rigid membranes 

which cannot pass through the pores.

Preparing liposomes by extrusion allows the size of the liposomes to be 

specified by selecting a polycarbonate membrane filters with a specific pore size.
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Mean particle size is quite reproducible from batch to batch. Liposomes made 

from extrusion process usually have narrow size distributions.

1.6.1.3. Small Unilamellar Liposomes (SUV)

Small unilamellar liposomes (SUV) are of great interest in drug delivery 

because of their potential for controlled drug release in the blood stream and for 

targeting to non-reticuloendothelial cells and tissues. The slow clearance of SUV 

from circulation after i.v. administration75 offers these possibilities. SUV also have 

a potential for fusion with target cell membranes. Methods for the preparation of 

SUV are examined in the following sections.

1.6.1.3.1. Sonication

The most widely used procedure for the preparation of SUV consists of 

sonicating MLV using either a probe or a sonication bath.76,77 Electron 

microscopic techniques are used to visualize the unilamellar structure and to 

estimate the size, typically about 50 nm as the mean diameter. In general, 

adequate ultrasonic treatment leads to a homogeneous preparation in terms of 

size. One of the consequences of the small size of the SUV is the limited 

aqueous space inside the liposomes and the low encapsulation efficiency.9 

Application of ultrasonic energy as a means of converting MLV to SUV is unlikely 

to be a reliable and consistent operation in large-scale manufacture.
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1.6.1.3.2. Ethanol Injection

This procedure, introduced by Batzri and Korn,78 is reported to produce 

relatively small unilamellar liposomes. Although this technique is, in principle, 

similar to the ether injection method,3 the size and degree of heterogeneity of the 

liposomes are dependent upon the concentration of the lipids and the relative 

volumes of the alcoholic and the aqueous phases. The basic procedure is 

amenable to scale-up and needs to be examined further. Two major drawbacks 

of this method are the low drug encapsulation levels and the yield of liposomes 

as a very dilute dispersion at the end of the process. An additional concentration 

step is required to produce an adequate liposomal dispersion.

1.6.1.3.3. Detergent Dialysis

The detergent dialysis procedure was developed by Milsmann et al.79 In 

this method, mixed micelles are first formed by dispersing a phospholipid and a 

surfactant in an aqueous solution of the material to be encapsulated. This 

dispersion of mixed micelles is then dialyzed extensively, when the surfactant is 

gradually removed and the phospholipid assumes a unilamellar liposome 

structure. Homogeneous dispersions of SUV are formed by this technique. An 

additional advantage is the absence of an evaporation step and elevated 

temperatures. This allows encapsulation of labile materials under mild conditions.

The degree of encapsulation is, however, very low because of the loss of 

material during dialysis (while the liposomes are being formed), except in the 

case of encapsulation of macromolecular compounds. Another disadvantage of
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this method is the presence of considerable amounts of residual surfactant in the 

final liposomal dispersion at the end of dialysis.

1.6.1.3.4. Reverse Micelle Method

The reverse micelle method was described in a patent by the Battelle 

Memorial Institute.80 In this method, a small quantity of an aqueous solution of 

the material to be encapsulated is initially dispersed in a volatile organic solvent 

containing the lipid mixture. The inverted micellar dispersion is then redispersed 

in an aqueous buffer medium to form a water-in-oil-in-water type emulsion. Upon 

evaporation of the solvent under reduced pressure or by means of a stream of 

nitrogen, unilamellar liposomes are obtained.

Very high degrees of drug encapsulation, in terms of the encapsulated 

drug as a percentage of the total drug used, are claimed. However, it should be 

pointed out that the drug solution only forms the interior aqueous phase of the 

emulsion. Consequently, the final liposomal dispersion is dilute with respect to 

the encapsulated drug, although the apparent degree of encapsulation is high. 

This technique has potential for large-scale application and should be explored 

further.

1.6.2. Removal of Unbound Drug

When lipophilic drugs of appropriate structure are associated with 

liposomes by inclusion in the bilayer phase, the degree of “encapsulation” is
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dependent upon the saturation of the lipid phase. Under these circumstances, it 

is possible to achieve degrees of encapsulation of over 90%, making it 

unnecessary to remove the unbound drug. However, in the case of water-soluble 

drugs, the encapsulated drug is only a fraction of the total drug used. An 

additional process step is required to remove the unbound drug from the drug- 

loaded liposomes in dispersion. Dialysis, centrifugation, and gel filtration have 

been used for this purpose.

1.6.2.1. Dialysis

Dialysis is probably the simplest and most widely used procedure for the 

removal of the unbound drug, except when macromolecular compounds are 

involved.81 It is a technique requiring no complicated or expensive equipment and 

is capable of being scaled up. Dialysis is effective in removing nearly the entire 

free drugs with a sufficient number of changes of the dialyzing medium. Dialysis 

is, however, a slow process. Typically, removal of over 95% of the free drug in a 

liposomal dispersion might require a minimum of 3 changes of the external 

medium over 10 to 24 hr at room temperature. Additionally, the volume of the 

liposomal dispersion will alter during dialysis, unless care is taken to balance the 

osmotic strengths of the liposomal dispersion and the dialyzing medium. It is also 

possible that the presence of the external dialyzing medium in equilibrium with 

the liposomal dispersion might induce leakage of the encapsulated drug.
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1.6.2.2. Centrifugation

Centrifugation at various g values is an effective means of isolating 

various kinds of liposomes from the free drug in the suspending medium.82 Two 

or more resuspension and centrifugation steps are usually included to effect a 

complete removal of the free drug. The centrifugal force required to pull 

liposomes down into a pellet is dependent upon the size of the liposomes, and to 

a certain extent, on the flocculation state of the dispersion. The lowest speed 

possible to achieve pelleting is best since higher speeds could induce 

deformation and/or fusion of liposomes. High g values and conditions of 

refrigeration are required for liposomes in the small to medium size ranges.

Clearly, the use of refrigerated centrifuges operating at high speeds with 

large volumes of liposomal dispersions is energy intensive and expensive, when 

feasible. Therefore, this method may not be suitable for the isolation of small 

liposomes. For relatively large liposomes, low speed centrifugation offers the 

advantages of a short time scale of operation and an opportunity to concentrate 

or dilute the original dispersion to the required extent. It is essential to ensure 

that the osmotic strength of the resuspending medium is matched with that of 

original liposomal dispersion in order to avoid osmotic shock and rupture of 

liposomes.

1.6.2.3. Gel Filtration

Gel permeation chromatographic technique is used extensively both to 

separate liposomes from unbound drug and also to fractionate heterogeneous
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liposomal dispersions.83 The technique is very effective and rapid at the 

laboratory level. Although gel filtration is used in the purification of biological 

materials such as insulin on a large scale, the technique is difficult and 

expensive. Additionally, dilution of the liposomal dispersion with the eluting 

medium may necessitate another concentration step. Much remains to be 

established in regard to recovery levels and lipid losses on the column materials.

Centrifugation is the fastest way to remove unbound drugs from liposomes 

among the three; it works fine with large liposomes, but not very well with small 

liposomes (<100 nm). Dialysis takes longer time, but it is easier and cheaper 

than gel filtration. Gel filtration is a universal method to remove unbound drugs 

from liposomes, but it involves gel column packing and may dilute the liposome 

suspension after the process.
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CHAPTER 2

METHODOLOGY

In this chapter, the focus is on the design and development of a novel and 

valid in vitro membrane release model for protein/peptide drugs. We selected the 

kind of lipid that would be used to prepare liposomes and the model proteins, and 

determined the protocol for the release experiments. Then improvements on the 

liposome preparation, protein detection, and release experiment procedure are 

discussed.

2.1. Release Concept “In Vivo” Vs. “In Vitro”

In a conventional intranasal drug delivery configuration, the peptide drug 

and the permeation enhancer are formulated together to achieve delivery across 

the natural membrane. In our model, we encapsulate the peptide inside the 

liposome, and use the formulated permeation enhancer to “free” the peptide from 

the liposome. This simple permutation of location is illustrated in Figure 9.
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Figure 9 Contrast between in vivo and in vitro formulation testing.

Indeed, our liposome model differs from the mechanism of in vivo 

intranasal delivery. In in vivo intranasal delivery, the peptide drug is in the vicinity 

of the permeation enhancer and diffuses into the biological membrane. In the 

present liposome model, the peptide is encapsulated inside the liposome, while 

the permeation enhancer is added outside. The outside peptide concentration is 

measured to quantify the permeation enhancing effect. In both instances the 

peptide is required to travel across the membrane. In both situations, the 

“assistance” of the permeation enhancer is necessary to achieve faster release 

(or permeation) rates. If the peptide release is faster with the addition of a 

specific formulation of permeation enhancers, then we know this formulation can 

effectively interact with the loaded liposome to let the peptide cross through the
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bilayer. The methodology needed to test the efficiency of a permeation enhancer 

formulation is less complex and expensive compared to an in vivo test.

2.2. In Vitro Release Protocol Design

The concept is to encapsulate the protein/peptide drugs inside liposomes, 

separate the liposomes from the unencapsulated drugs, then add the permeation 

enhancer outside of the liposomes and monitor how fast the encapsulated drugs 

can release out of the liposomes. In the following sections, the choice of 

liposome lipid, protein and release probes will be discussed.

2.2.1 Liposome

In order to make full use of the lipid, obviously unilamellar liposomes are 

more desirable than multilamellar liposomes. During the liposome encapsulation 

process of an aqueous solution of drugs, lipids form spherical lipid bilayers and 

encapsulate part of the solution inside; after the formation of the liposomes, the 

concentrations of the aqueous solutions inside and outside of liposomes are the 

same. To increase the liposome encapsulation efficiency, or to encapsulate the 

maximum amount of solution with a given amount of lipids, one must answer the 

question of how to occupy the maximum total volume with the same total surface 

area. The answer to this question is to make one giant unilamellar liposome, but 

there is no practical value to make a liposome that big. The practical way to get 

high encapsulation efficiency is to make narrow size distribution of large

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



unilamellar liposomes, instead of small unilamellar liposomes. What size of 

unilamellar liposome is appropriate? Due to the structural strength of the lipid 

bilayer sphere, it is hard to make large unilamellar liposomes even at the micron 

scale. We think unilamellar liposomes with 400 nm in diameter should be both 

large enough to reach high encapsulation efficiency, and strong enough to 

maintain their shape. Considering the thickness of unilamellar lipid bilayer is 

about 5 nm,84 selecting 400 nm as liposome diameter can also reduce the 

curvature effect on the permeation study.

CH, O
. I 3 II
N -C H -C H -O -P -O
CH, O*

-CH.-CH-O  * I
m2c - o

Figure 10 Molecular structure of dipalmitoyl phosphatidylcholine (DPPC).

At first we used only one phospholipid, dipalmitoyl phosphatidylcholine 

(DPPC), to prepare the simplest liposome model. Figure 10 shows the molecular 

structure of DPPC. DPPC was selected because of its popular usage in liposome 

related research and its high concentration and occurrence in natural 

membranes.

As seen before, cholesterol is a membrane constituent widely found in 

animal systems, which serves a unique purpose of modulating membrane fluidity, 

elasticity, and permeability. It literally fills in the gaps created by imperfect 

packing of other lipid species when proteins are embedded in the membrane. In
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order to make our liposome model a better analog of natural membrane, later we 

made 4:1 (w/w) DPPC: Cholesterol liposomes for the release study.

The total inner aqueous volume ratio V , (liters per 1.0 liter of liposome 

suspension) of the unilamellar liposomes can be determined by the following 

equations. The total number of lipid molecules N p was expressed as the function 

of the initial concentration of the lipid, C (mole-liter'1),

N p =  N 0 - C , [2.1]

where N 0 was Avogadro’s number. A/j, the number of lipid molecules composing 

one unilamellar liposome with radius r  (A), was expressed as 

N , =  4 x ( r 2 + ( r - d ) 2) / S ,  [2.2]

where S and of were the average surface area per lipid molecule in square 

angstroms and the thickness of the bilayer membrane in angstrom, respectively. 

N,  the number of liposomes with radius r in the solution containing C (mole-liter'1) 

lipids, was therefore expressed as

W =  N >- C -s  ,2 .3 ,
N t 4 n ( r 2 +  { r - d ) 2)

The total inner aqueous volume (V)  was defined as

V  =  N - % 7 r ( r - d ) 3 x l 0 ~ 27 [2.4]

In the case of 400 nm unilamellar DPPC liposomes, where C = 3.4 * 10'3 

mole-litter'1 (= 0 .25  w t% ), r =  2 000  A, S = 58 A2, and d  =  37  A ,85-86 the total inner 

volume was calculated to be 3.8 x 10'2 (liter per 1.0 liter of liposome 

suspension), i.e., 3.8% by volume.
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2.2.2 Model Proteins

This project focuses on quantifying the permeation of proteins/peptides 

through membranes and characterizing the enhancement effect of CPE-215®. 

Insulin (Figure 11) was selected as the protein model for this study because it is 

one of the least expensive low molecular weight small proteins available, and 

also because it is one of Bentley’s target drugs.
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Figure 11 The primary structure of human insulin. The black residues 
designate the amino acids which are invariant among species of insulin. 
The letters indicate the residues involved in association of the molecule. 
D, dimer formation. H, hexamer formation.87

Insulin, the hormone that regulates blood glucose levels, is a small protein 

(MW 5.8 KDa) comprising two peptide chains connected by disulfide bonds, A 

(21 amino acids) and B (30 amino acids). Due to the functional groups on the 

chain ends, insulin dissolves in water only at pH below 4.5 and above 7.0. When 

insulin concentration is high in solution, with or without the help of zinc, it forms
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dimers or even higher association states, such as tetramers and hexamers. 

Monomeric insulin is observed only at low concentration (< 0.1 pM, -0 .6  |jg/ml).87

Bovine serum albumin (BSA) is one of the most widely studied proteins 

with a high solubility in water around 5g/100ml. BSA was used as a second 

model protein for its higher molecular weight, about 66 KDa, which is about 10 

times the molecular weight of insulin.

2.2.3 Release Protocol Flow Chart

The general strategy behind our release studies is illustrated in Figure 12. 

We first prepared an insulin buffer solution, and then used the extrusion method 

to prepare narrow size distribution large unilamellar liposomes to encapsulate 

some of the insulin solution inside, and then separated the liposomes from the 

unencapsulated insulin with a gel filtration column at 4 °C. Then liposomes were 

collected for the release study. After adding the permeation enhancer 

formulation, the liposome solution was held at 37 °C, and small amount of 

liposome samples were periodically taken out and released insulin was 

separated from liposomes. Finally we measured the insulin concentration outside 

the liposomes.
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2.3. Drug Modification

Although insulin is one of the smallest proteins, it is still a large molecule 

compared to lipids. The lipid DPPC has a molecular weight of only 734 Da, while 

insulin in monomeric form has more than 50 amino acids with a molecular weight 

near 6000 Da, not taking into account the insulin that may be present in the 

hexameric form. There is an equilibrium between insulin monomers, dimers and 

tetramers (possibly hexamers) in solution. Since small and neutral molecules, 

such as water, glycerol and vitamins, can go through biological membranes fairly 

easy, at first we suspected the protein membrane permeation process is size and 

charge controlled. We assumed that the smaller the protein, the easier it could 

go through the lipid bilayer. In that case, we would like to use the lower 

association states of insulin, such as monomers or dimers, to do the release 

experiments, then we need very dilute insulin solution (insulin monomer 

concentration limit is 0.1 pM, ~0.6 pg/ml)87.

Such very dilute insulin concentrations make detecting insulin a challenge 

in itself. The UV technique is not sensitive enough at such low concentration.
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Fluorescence is much more sensitive, and insulin has intrinsic fluorescence 

signal due to its tyrosine and phenylalanine amino acid residues, but that is not a 

strong fluorescence signal.

To improve the detection sensitivity of insulin molecule, we decided to 

attach a fluorescent label to insulin. Amine-reactive reagents may be conjugated 

with virtually any protein or peptide. After consideration of many possibilities, an 

amine-reactive fluorescent analog, fluorescein-5-isothiocyanate (Figure 13), was 

selected because it has a relatively high smax (77 ,000  at pH 9) with a relatively 

low price. The isothiocyanate group reacts with basic amine groups at high pH 

and forms a covalent bond to derivatize the protein. Besides the two amine 

groups at the two N-terminals, insulin has two basic amine groups from the side 

chains of lysine and arginine; therefore, there should be no more than 4 

fluorescence probes on each insulin molecule after the labeling reaction. The 

labeling reaction is done in a mild condition: mix the insulin in a pH 9 bicarbonate 

buffered solution using dimethyl formamide (DMF) as a solvent with the reagents 

and stir at room temperature for an hour. Excess reagent is used to react with 

insulin, and labeled insulin can be easily separated using a gel filtration column.

43

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Figure 13 Molecular structure of the fluorescent probe, fluorescein-5-
isothiocyanate.

Based on the manufacturer’s data, the derivative has an excitation and 

emission wavelength of 494 nm and 518 nm respectively. In practice, in the SLM 

AMINCO Bowman® Series 2 luminescence spectrometer, the maximum 

excitation and emission wavelengths are 492 nm and 516 nm respectively. After 

the labeling, the detection limits were determined to be 1 ng/ml_.

Although the labeling conditions were mild, there was some concern 

whether the process breaks the bonds within protein, especially the disulfide 

bonds. Obviously we do not want to see protein degradation due to the 

fluorescence labeling process. We use the aqueous GPC (Gel Permeation 

Chromatography) with the Wyatt® light scattering detector (DAWN EOS) and 

refractive index detector to compare the protein samples before and after the 

labeling process to see if there is a decrease of protein molecular weight after the 

labeling.

When a polarized, monochromatic laser beam passes through a solvent 

containing proteins, the light scattered by the molecules at an angle to the 

incident beam over the light scattered by the solvent alone is directly proportional
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to the molecular weight multiplied by the concentration of the molecule. This 

characteristic of static light scattering is used for determining the absolute 

molecular weight of eluting biomolecules.88 Therefore, light scattering is not very 

sensitive to low molecular weight proteins. Since the molecular weight of insulin 

is small (less than 6 KDa), we used BSA (MW 66 KDa) instead to test the 

potential degradation effect of the labeling process. Since proteins with higher 

molecular weight are more complicated and more sensitive to outer environment 

changes, using BSA to test the labeling process is conceptually more relevant.
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Figure 14 Aqueous GPC trace of 4.3 mg/ml BSA, eluant 100 mM KCI 10 
mM BTP pH 6.5 buffer. The upper trace is from the 90° angle light 
scattering detector, the lower trace is from the refractive index detector. 
Four interesting peaks in the right 90° angle light scattering trace were 
selected and the average molecular weights of each peak were given out. 
The GPC column was TSK G3000SWXL column.
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Figure 15 Aqueous GPC trace of 4 mg/ml tagged BSA, eluant 100 mM 
KC110 mM BTP pH 6.5 buffer. The upper trace is from the 90° angle light 
scattering detector, the lower trace is from the refractive index detector. 
Four interesting peaks in the right 90° angle light scattering trace were 
selected and the average molecular weights of each peak were given out. 
The GPC column was TSK G3000SWXL column.
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Figure 14 and 15 show the aqueous GPC traces of BSA before and after 

the fluorescence labeling process. In each figure, the upper left trace is from the 

90° angle light scattering detector, and the lower left trace is from the refractive 

index detector; the right one is the enlarged trace from the 90° angle light 

scattering detector, four interesting peaks on the trace were selected, and the 

average molecular weights for each peak were computed. In Figure 14 and 15, 

the light scattering traces of tagged BSA and original BSA are almost identical, in 

number of peaks, peak positions and peak shapes. In both figures, peak #1 (from 

4.2 min to 4.7 min) is a tiny bump, the major peaks are peak #2 (from 5.0 min to 

5.7 min) and peak #3 (from 5.9 min to 6.5 min), peak #4 (from 7.6 min to 8.1 min) 

is also a tiny bump in the light scattering traces. The peak after 9 min in the 

refractive index trace is the solvent peak -- the original solvent for the BSA 

sample came out. Because light scattering is more sensitive to bigger 

molecules/particles, while refractive index detector only focuses on 

concentrations, the relative peak area of BSA dimer/trimer (peak #2) comparing 

to BSA monomer (peak #3) is bigger in the trace of light scattering detector than 

in the trace of refractive index detector.

From the peak position and the average molecular weight given by the 

program, peak #3 is identified as the BSA monomer peak, and peak #2 as the 

peak for the higher association state of BSA. In Figure 14, the molecular weight 

of original BSA monomer given by the Wyatt® program is 80 KDa, which is a little 

more than the real number (66 KDa) and may be due to some incorrect 

parameters in the program. Actually the relative numbers are more important to
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us. The molecular weight of higher association state BSA given by the program is 

about 220 KDa, which is about 2.75 times the molecular weight of monomer and 

means that is the mixture of BSA dimers and trimers. In Figure 15, the molecular 

weight of tagged BSA monomer is about 91 KDa, which is more than that of the 

original BSA monomer and means some fluorescent probes have attached to 

BSA. The molecular weight of higher association state tagged BSA given by the 

program is about 230 KDa, which means attached fluorescent probes did not 

affect the self-association of BSA, tagged BSA can still have higher association 

states and that is still a mixture of dimers and trimers of tagged BSA.

Every peak in Figure 15 can find its corresponding peak in Figure 14 at 

almost the same retention time and with almost the same shape, and there is no 

additional low molecular weight peak appearing in Figure 15 that would indicate 

BSA degradation by the labeling process. Based on the analysis, this fluorescent 

probe labeling process is efficient and safe for proteins, no protein degradation is 

detected after the process and the fluorescence tagged proteins still have self­

association ability.

Since a fluorescence signal was used to monitor the insulin release, it was 

necessary to determine the relationship between the fluorescence signal and 

tagged insulin concentration; the fluorescence stability of the tagged insulin is 

also important for long term release studies. Fluorescence measurements of 

different tagged insulin concentrations at pH 7 in phosphate buffer were carried 

out. Figure 16 shows the calibration curve of fluorescence signal verse insulin 

concentration. The data indicate a linear relationship between the fluorescence
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signal and concentration. In order to make sure of the fluorescence long-term 

stability, we stored the tagged insulin solutions with different concentrations at 4 

°C and performed fluorescence signal measurement over 90 days. The result 

(Figure 16) showed the fluorescence signal was stable for at least 90 days.
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Figure 16 Tagged insulin fluorescence calibration and stability data at pH 
7 in phosphate buffer.

2.4. Liposome Synthesis and Size Measurement

The extrusion method can prepare desired size liposomes with relatively 

narrow size distribution by extruding lipid suspension through a fixed pore size 

polycarbonate membrane filter at a temperature higher than the transition
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temperature of the lipid. Due to obvious advantages over other liposome 

preparation methods, we chose the extrusion method to prepare liposomes.

The working mechanism of a liposome extruder is not complicated as it 

only needs a high pressure system, a sample reservoir, a filter holder and a 

temperature control. Figure 17 shows the design of my custom-made liposome 

extruder. Valve 1 is a three-way valve, it can connect either A or B to C, or totally 

closed. Valve 2 is identical to Valve 1, and it can let DE or DF be connected, or 

close the lines between DE and DF. A is connected to a nitrogen gas cylinder to 

provide high pressure for the extrusion. B is used to add liposome samples to the 

sample reservoir loop. E is used to release the high pressure inside the sample 

reservoir loop after the extrusion making the sample loading/reloading from B 

possible (without DE open to air, it is impossible to load/reload liposome samples 

to the reservoir loop from B). The components within the dashed line are 

submerged in a water bath when the extrusion process begins. The membrane 

filter is hydrated before it is placed inside the membrane holder. When loading 

the liposome samples, Valve 1 and 2 are adjusted so that B, C, D, E are 

connected. A syringe is used to load the raw liposomes from B to the reservoir 

loop. After the loading, Valve 1 and 2 are adjusted so that A, C, D, F, G are 

connected, then the reservoir loop and membrane filter holder are submerged in 

the water bath, then the gas pressure is established to start the extrusion.

Multiple extrusions are needed to make narrow size distribution liposomes, so 

the liposomes need to be reloaded in the reservoir loop after each extrusion.

After the extrusion is performed, the high pressure gas inlet is closed, and the
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extruder is removed from the water bath. Valve 2 is turned to connect DE and 

release the remaining pressure inside of the sample reservoir loop. Then Valve 1 

is turned to connect BC and the liposomes are loaded for the next extrusion.

Since the phase transition temperature of DPPC is 41 °C and the water 

bath temperature should be higher than the lipid phase transition temperature, 

we selected 50 °C as the water bath temperature.

1
High pressure inlet ------- —— ----- ——  Add sample

Sample reservoir loop

D
Water bath

Open to air

J  Membrane filter holder
G

Collect liposome

Figure 17 Block diagram of the custom-made liposome extruder. Valve 1 
is a three-way valve, it can either let AC connected or BC connected, or 
totally close the lines of AC and BC. Valve 2 is the same as Valve 1, and it 
can let DE or DF connected, or close the lines of DE and DF. A is 
connected to a nitrogen gas cylinder to provide high pressure for the 
extrusion. B is used to add liposome samples to the sample reservoir 
loop. E is used to release the high pressure inside the sample reservoir 
loop after the extrusion and make the sample loading/reloading from B 
possible. The components within the dashed line will be submerged in the 
water bath when the extrusion process begins.

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Figure 18 Custom-made liposome extruder (without showing the water bath 
and high pressure gas inlet).

We chose a 400 nm pore size polycarbonate membrane filters to make 

large unilamellar liposomes. The thickness of one lipid bilayer is about 5 nm, and 

using 400 nm diameter large unilamellar liposome can greatly reduce the 

curvature effect of the liposome, so that the liposome leakage profile is similar to 

that of a planar lipid bilayer.

We used a light scattering instrument (Microtrac S3000) to measure the 

liposome size and distribution after extrusion. Figure 19 shows one example of 

DPPC liposome size distribution after extrusion through a 400 nm membrane 

filter. This shows an essentially monodispersed distribution: volume-average 

diameter 354 nm, area-average diameter 351 nm, number-average diameter 345 

nm.
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Figure 19 DPPC liposome size distribution measured by Microtrac S3000 
after extrusion through a 400 nm polycarbonate membrane filter. This 
shows a very narrow distribution: volume-average diameter 354 nm, area- 
average diameter 351 nm, number-average diameter 345 nm.

2.5. Permeation Enhancer Combinations

CPE-215® is the permeation enhancer Bentley uses for the intranasal 

emulsion formulations, but its melting point makes a problem for emulsion 

formulation. CPE-215® has a melting point of 34 °C, which makes it a solid at 

room temperature. Figure 20 shows the thermal property of CPE-215® by 

Differential Scanning Calorimeter (Q100 series modulated DSC from TA 

Instrument, Inc). In Figure 20, CPE-215® was equilibrated at -20 °C first, then 

heated at 3 °C /min to 100 °C, and then cooled at 3 °C /min back to -20 °C. The 

top trace shows the cooling process, and the large exothermal peak indicates
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crystallization which starts at 33.5 °C. The bottom trace shows the heating 

process, and the large endothermal peak indicates melting process which starts 

at 34 °C. In order to make a practical formulation, we need to be sure that CPE- 

215® will not crystallize at storage temperature and while in use.
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Figure 20 DSC trace of CPE-215® (exo up). The sample was equilibrated 
at -20 °C first, then heated at 3 °C/min to 100 °C, and then cooled at 3 °C 
/min back to -20 °C. The top trace shows the cooling process, and the 
large exothermal peak indicates crystallization. The bottom trace shows 
the heating process, and the large endothermal peak indicates melting 
process.

We tried to use different additives, such as sesame oil, cottonseed oil, and 

soybean oil, to lower the melting temperature of CPE-215®, and found that 

cottonseed oil could successfully lower the melting and crystalline temperature of 

CPE-215®. Figure 21 shows the thermal property of 3:1 (w/w) CPE-215®:

55

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



cottonseed oil by DSC (Q100 series modulated DSC from TA Instrument, Inc). In 

Figure 21, the mixture was equilibrated at -20 °C first, then heated at 3 °C /min to 

100 °C, and then cooled at 3 °C /min back to -20 °C. The top trace shows the 

cooling process, and the crystallization peak shows that the mixture does not 

crystallize until cooled to 5 °C. The bottom trace shows the heating process, it is 

hard to identify the exact temperature at which the mixture starts to melt, but it 

appears around 5 °C. The mixture only has one melting/crystalline peak at much 

lower temperature compared to pure CPE-215®, which shows complete 

miscibility between CPE-215® and cottonseed oil. In our study, all the CPE- 

215®/cottonseed oil mixture we used were 3:1 (w/w) oil mixtures.
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Figure 21 DSC trace of 3:1 (w/w) CPE-215®: Cottonseed oil. The sample 
was equilibrated at -20 °C first, then heated at 3 °C/min to 100 °C, and 
then cooled at 3 °C /min back to -20 °C. The top trace shows the cooling 
process, and the large exothermal peak indicates crystallization. The 
bottom trace shows the heating process, and the large endothermal peak 
indicates melting process.

2.6. Liposome Cleaning

After the extrusion, narrow size distribution large unilamellar liposomes 

are made, but there are insulin molecules remaining both inside and outside of 

the liposomes. Separating the outside free insulin molecules from the liposomes 

is the last step before release studies.

At first we used gel filtration to separate the outside insulin from 

liposomes. However, after we collected the liposomes by gel filtration and 

preformed the insulin release experiment, at the beginning of the release
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experiment, the fluorescence signals of free insulin in solution at time “zero” were 

much higher than we expected. We assumed it could be due to the adsorption of 

insulin on the outside surface of the liposomes. During the gel filtration, the 

adsorbed insulin eluted with the liposomes; after gel filtration, the outside insulin 

concentration was so low that the adsorbed insulin desorbed from the liposomes 

and went into the solution, which produced the high fluorescence signal at the 

starting points. Further gel filtrations might be a way to solve that problem, but 

that could also further dilute the liposome suspension, and the gel filtration 

process involved more labor and time.

Since it was found that our liposomes had a slightly higher density than 

water, a centrifuge technique was studied to make the outside of liposomes 

“insulin free”. For this to be accomplished, the liposome suspension after 

extrusion was centrifuged at 650 g at 4 °C for 30 minutes, then the supernatant 

was taken out and fresh buffer was added; then the same procedure was 

repeated. This may be called centrifugal extraction, which is similar to dialysis but 

faster and does not require a membrane.

After each cycle of centrifugal extraction, some clear supernatant was 

taken out for fluorescence measurement to detect the free insulin concentration 

in the supernatant. Figure 22 shows the result of the measurement and the effect 

of centrifugal extraction on the free insulin concentration outside of the 

liposomes. After 10 cycles of centrifugal extraction, the requirement of 

“substantially insulin free” outside the liposome could be reached.
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Figure 22 Effect of centrifugal extraction on the concentration of free 
insulin outside of the liposomes.

During the insulin release experiment, after taking out the liposome 

samples from the release tubes and before the fluorescence measurement for 

the released insulin concentration, free insulin molecules outside need to be 

separated from liposomes again. This time the outside insulin is what we need 

and the insulin concentration should not be changed after the separation. 

Therefore, this time we used centrifugal filtration.

The process of centrifugal filtration uses semi-permeable membrane filters 

and centrifugal force to separate molecular species on the basis of size and 

shape. The disposable centrifugal units consist of a sam ple filter unit and a 

filtration collection tube. A sample is loaded in the filter unit that is then put into 

the collection tube. Together the filter unit and collection tube are put in a 

centrifuge and spun at the appropriate speed. Since the size of our liposomes is
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around 400 nm in diameter and the size of hexamer insulin is less than 10 nm in 

diameter, a membrane filter with the nominal molecular weight limits (NMWL) of 

50 KDa can retain the liposomes and let insulin molecules go through without 

any problems. However, liposomes do not have a solid surface, therefore, the 

centrifuge conditions need to be adjusted to make sure the liposomes will not 

break during the process of centrifugal filtration. We did a test by performing the 

centrifugal filtration at different speed at 4 °C with 400 nm DPPC liposomes and 

found that filtration at 500 g not only did not break the liposomes, but also 

provided reasonable separation times. Another concern is that too many 

liposomes might clog the filter membrane. To solve this problem, before placing 

the liposomes into the sample filter unit, we centrifuge them at 500 g at 4 °C for 

20 minutes and only take the supernatant to perform the centrifugal filtration 

process. In this case, fewer liposomes have a chance to contact the filter 

membrane.

2.7. Drug Release with Shaker Table

Once we obtain “clean” liposomes with insulin solution inside, we can start 

the release experiments. In order to keep the liposome samples at controlled 

temperature, we use 15ml centrifuge tubes to contain the liposome samples and 

fit the tubes in the necks of the three-neck jacketed flasks, which are connected 

to a temperature controlled water bath (Figure 23). Both the inside and jacketed 

flasks are filled with water; in this case the temperature inside the flask is 

controlled by the water bath, and the sample temperature is controlled by the
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water inside of the flask. We found that once they reached temperature 

equilibrium, there was almost no temperature difference between water bath and 

liposome samples. A shaker table is used to give gentle shaking to the liposome 

samples so that there is no concentration gradient in each tube to affect the 

insulin release.

Figure 23 Protein release experiment setup. The release liposome 
samples are in the red-capped centrifuge tubes. The tubes are inserted in 
the necks of the three-neck jacketed flasks, and the flasks are used as 
water baths to control the sample temperature. The shaker table is used 
to give gentle steering to the liposome samples.
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2.8. Animal Test Validation

All the experiments we designed and performed were membrane 

permeation in vitro tests, and needed in vivo animal tests to validate the model. If 

the in vitro test results were significantly different from those of the in vivo animal 

tests, then it would mean some of our assumptions were incorrect.

Bentley Pharmaceuticals, Inc. used pigs to perform the in vivo tests for 

intranasal insulin delivery with CPE-215® formulations. The results showed that 

right after the spray of certain intranasal insulin formulations into the pigs’ noses, 

the body glucose level in the pigs dropped quickly, which indicated the insulin did 

go through the nasal membranes with the help of CPE-215® and into the blood 

system. CPE-215® is an effective membrane permeation enhancer for insulin. 

Formulation lacking the enhancer showed no alterations in blood insulin level.

Since the animal test is not the object of this thesis and the test results are 

proprietary of Bentley Pharmaceutical, we will not talk about it in detail here.
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CHAPTER 3

PROTEIN RELEASE FROM LIPOSOMES

In order to study the property and function of CPE-215® as a permeation 

enhancer for natural membranes, we performed some insulin release 

experiments with our liposome model under different conditions.

As described in the last chapter, liposomes are used to contain the 

fluorescein-tagged insulin solutions, then different CPE-215® formulations are 

added externally, and external insulin fluorescence is measured. Different 

formulations provided insight on factors causing release.

3.1. General Procedure for One Release Experiment

First, about 0.1 g of lipid mixture (sometimes DPPC lipid only, sometimes 

mixture of 4:1 (w/w) DPPC/cholesterol) was dissolved in 4 ml of chloroform to 

assure a homogeneous mixture of lipids. Once the lipids were thoroughly mixed 

in chloroform, the chloroform was removed by rotary evaporation yielding a thin 

lipid film on the side of a 50-ml round bottom flask. The lipid film was thoroughly 

dried to remove residual chloroform by placing the flask under vacuum overnight 

at room temperature. Then 8 ml 0.2 mg/ml fluorescein-tagged insulin pH 7 

phosphate buffer solution was added into the flask to hydrate the dry lipid film at
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50 °C, which allowed the lipid to hydrate in its fluid phase with adequate 

agitation. A ten-second bath-type sonication was found to greatly reduce the 

hydration time, making the sizing process easier and improving the homogeneity 

of the size distribution. The product of hydration was a suspension of large, 

multilamellar liposomes analogous in structure to an onion, with each lipid bilayer 

separated by a water layer.89 Typically liposome suspensions were extruded five 

times through a 400 nm pore size polycarbonate membrane filter at 50 °C 

(Attempts to extrude below the Tc of lipids were unsuccessful as the membrane 

has a tendency to foul with rigid membranes which cannot pass through the 

pores).

After extrusion, centrifugal extraction was carried out to remove the 

unencapsulated tagged insulin molecules. To make sure the liposomes were free 

of external insulin, 6 ml of liposome suspension was centrifuged at 650 g for 30 

minutes at 4 °C, then the supernatant was taken out and fresh 50 mM pH 7 

phosphate buffer was added, and then the same procedure was repeated. Ten 

cycles of centrifugal extraction were performed.

The process of liposome extrusion and centrifugal extraction can result in 

some lipid loss. We did one blank run (extrude liposome suspension without 

insulin, after 10 cycles of centrifugal extraction, dry the remaining liposome 

suspension to determine the dry lipid content) to determine how much lipid was 

left after the process of liposome extrusion and centrifugal extraction, and found 

that 70% of lipid content was left after the process.
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After the centrifugal extraction, the “cleaned” liposomes were evenly 

distributed into six 15-ml plastic centrifuge tubes, which were used as the 

containers for the release experiments. According to the requirement of the 

experiment, buffer (most of the time, it was 50 mM pH 7 phosphate buffer) and 

different excipients were added to the tubes. Usually one of the tubes was used 

as blank release (no permeation excipient added). Finally each tube had 4 ml of 

liposome suspension inside, and an aliquot sample was taken from each tube for 

the release value at time=0. The centrifuge tubes were fit in the necks of the 

three-neck jacketed flasks, which were on a shaker table and connected to the 

temperature controlled water bath. The shaker table was set to 150 rpm 

arbitrarily, and the influence of this shear parameter was not studied, though it 

would be expected to have influence on the release results.

At various times, 400 pi of liposome sample was taken from each tube. 

After 20 minutes’ centrifuging at 500 g at 4 °C, 200 pi supernatant of each 400 pi 

sample was taken for the centrifugal filtration process at 500 g at 4 °C for another 

30 minutes. A membrane filter with the nominal molecular weight limits (NMWL) 

of 50 KDa was usually used to retain the liposomes and let insulin molecules go 

through. 40 pi of the filtrate was diluted with the 50 mM pH 7 phosphate buffer to 

400 pi for the final fluorescence measurement.

Finally, 100% release was achieved by sonicating the remaining 

liposomes in the presence of Triton X-100 to break the lipid bilayers. Triton X-100 

(Figure 24) is a strong water-soluble surfactant, which disrupts the bilayer 

packing of liposomes and makes them leak.
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Figure 24 Chemical structure of Triton X-100.

The reproducibility of the release data has been improved over the course 

of this study. Release data were estimated to have a reproducibility error of 10% 

for Section 3.2 to 3.3. This error was reduced to 3-5% in Section 3.4 to 3.6. Only 

a very limited data set was reproduced in Section 4.4.3 towards the end of this 

study and the error was found to be less than 2%. The relative trend of the 

release data (i.e. which sample had the faster/slower release rate) was 

reproducible.

Point #0 for each sample was taken right after the emulsion/suspension 

was added into the release tubes (before that, everything inside each tube was 

identical), so theoretically their signals should be identical. However, practically 

the liposomes release insulin even at low temperature. Only after centrifugal 

filtration is complete, the outside insulin concentration is constant. The centrifugal 

filtration process for each sample took about half an hour, from the time taking 

the samples out to the end of the centrifugation. The signal difference of the
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Point #0 between the various formulations partially indicates the membrane 

permeation enhancing effects of different formulations during the first 30 minutes.

3.2. Insulin Release from DPPC Liposomes at Different Temperatures

At first, we used only DPPC to prepare the liposomes. The transition 

temperature of DPPC lipid bilayer is 42 °C. Below this temperature, the lipid is in 

the rigid gel state; above it, the lipid is in the so called liquid crystalline state, with 

freedom of motion in 2 dimensions without true melting. The liquid crystalline 

state is the structural basis allowing mobility of membrane components within an 

organized framework. The dynamic properties of membranes rely on the fluid 

environment within the plane of the membrane, which means in the natural 

membranes the overall transition temperature of the lipids is below 37 °C. In 

order to make our liposome system more closely resemble the natural membrane 

situation, higher release temperatures were used.

3.2.1. Insulin Release from DPPC Liposome at 47 °C At pH 7

An insulin release experiment of DPPC liposome at 47 °C was conducted, 

which is 5 °C higher than the phase transition temperature of DPPC. Equal 

amount and same concentration of DPPC liposomes in 50 mM pH 7 phosphate 

buffer were put in three 15-ml plastic centrifuge tubes; pH 7 phosphate buffer, 

cottonseed oil emulsion and CPE-215®/cottonseed oil emulsion were added into 

three tubes respectively. The amount of CPE-215® is based on the molar ratio of
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CPE-215®: DPPC = 1:2, the weight ratio of CPE-215®: cottonseed oil = 3:1. The 

tubes were placed into the 47 °C water bath on a shaker table at 150 rpm.

Figure 25 shows that the insulin release from DPPC liposome at 47 °C 

was so fast that most of the insulin came out in 6 hours; and the temperature was 

so high that there was almost no difference between the insulin release rates 

among the three different tubes. At this temperature, the lipid bilayer was already 

too permeable

d)wn0)

S

100 i

80

60

*  40

20
- Blank
- Cottonseed oil
- CPE&Cottonseed oil

10 20 30

Time (Hours)

40 50

Figure 25 Insulin release from DPPC liposomes at 47 °C at pH 7. In the 
“Blank” sample, there were only DPPC liposomes encapsulating insulin 
solution. In “Cottonseed oil” sample, besides DPPC liposomes, there was 
some cottonseed oil added. In “CPE&Cottonseed oil” sample, besides 
DPPC liposomes, there was some mixture of 3:1 (w/w) CPE- 
215®/Cottonseed oil added.
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This was the first insulin release experiment. Therefore, there were some 

flaws in it. I did not expect the release rates to be that fast, and I did not take 

samples in the first 6 hours and missed most of the information at the beginning. 

In later release experiments, the sampling rate was increased at early times. In 

Figure 25, although the trend of the data points was increasing with time, for one 

sample (either “Blank”, or “Cottonseed oil”, or “CPE&Cottonseed oil”), some 

release points at later time even had lower fluorescence signals than the earlier 

ones. Theoretically, since those points were taken from the same release tube at 

different times, the later sample points should not have lower fluorescence 

signals than the earlier ones. That problem might be due to my sample handling 

techniques, which needed to be improved. However, from this experiment, we 

did know that 47 °C was too high for the DPPC liposome release experiments, 

and we needed to use lower temperature for the future release experiments.

3.2.2. Insulin Release from DPPC Liposome at 42 °C at pH 7.4

Since we did not want to perform D PPC  liposome release experiments at 

temperature below the phase transition temperature of D P P C , and 47 °C  was 

proven to be too high, we decided to carry out the release experiment at the 

phase transition of D P P C  (42 °C). This time we would like to see the individual 

effect of cottonseed oil and CPE-215® on the insulin release from D P P C  

liposomes at pH 7.4.

DPPC liposomes were made with pH 7.4 tagged insulin phosphate buffer 

solution. Three different release samples were made -  one at pH 7.4 with CPE-
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215® suspension only, one at pH 7.4 with cottonseed oil suspension only, the last 

one at pH 7.4 was the blank control. In each 15-ml plastic centrifuge tube, there 

was 4 ml DPPC liposome buffer suspension with 0.0076 g DPPC inside; 1 g of 

different emulsion/suspension was added later. CPE-215® was handled in a 

warm water bath so that it was in the liquid state (mp 34 °C). This time the CPE- 

215® amount was based on the molar ration of CPE-215®: DPPC = 125:1.
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Figure 26 Insulin release from DPPC liposome at 42 °C at pH 7.4. In the 
“Blank" sample, there were only DPPC liposomes encapsulating insulin 
solution. In “Cottonseed oil” sample, besides DPPC liposomes, there was 
some cottonseed oil added. In “CPE-215” sample, besides DPPC 
liposomes, there was some CPE-215® added. The amount of CPE-215® 
added was based on the molar ratio of CPE-215®: DPPC = 125:1. 
Cottonseed oil amount was based on CPE-215®: cottonseed oil (w/w) = 
3:1.
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The release tubes were placed in a 42 °C water bath on a shaker table at 

150 rpm. In the “CPE215” sample, most of the CPE-215® was on the top of the 

solution; phase separation was due to its low solubility in water and its low 

density. Oil-water phase separation happened in “Cottonseed oil” sample, too.

In Figure 26, those Point #0s are different, which partially indicates that 

CPE-215® and cottonseed oil do have permeation enhancing effects on the 

DPPC liposome release capacity. The sequence of initial fluorescence signals 

from high to low is “Cottonseed oil”, “CPE215”and “Blank”.

Insulin release in “Cottonseed oil” was the fastest at the beginning, while 

insulin release in “CPE215” was the slowest. But the release rate of “Cottonseed 

oil” slowed down after it reached certain point, and finally was caught up by 

“CPE215” and “Blank”. In this group, it seems that the sample releasing the 

fastest (“Cottonseed oil”) at the beginning had the lowest data point in the end, 

while the slowest one at the beginning (“CPE215”) had the highest data point. It 

seems that cottonseed oil can help make a burst release at the beginning while 

CPE-215® can keep the release from liposome at a higher rate. According to the 

literature90, cottonseed oil is a mixture of triglycerides. 18-carbon fatty acids with 

two unsaturated double bonds count for 53% of the total amount of fatty acids in 

cottonseed oil. Cottonseed oil is a mixture of lipids, similar to DPPC. Therefore, it 

can have good interactions with the lipids in the liposomes, which may account 

for its membrane permeation enhancing effect.
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3.3. Insulin Release from DPPC Liposomes with Phase Transfer Agent

CPE-215® is a crystalline solid at room temperature, and cottonseed oil is 

added to lower its melting point. The CPE-215®/cottonseed oil mixture is very 

hydrophobic and not soluble in aqueous solutions. During the release 

experiments, most of the CPE-215®/cottonseed oil mixture was phase-separated 

from the aqueous buffer solution and floating on the top, which means most of 

the CPE-215® added into the system did not have the chance to make contact 

with liposomes, let alone help the release of insulin. In order for the permeation 

excipient to take effect, how much and how fast CPE-215® can interact with the 

liposomes and be incorporated in the lipid bilayer is more important than how 

much CPE-215® emulsion is added to the system. Only the soluble portion of 

CPE-215®, which is very limited, counts. This is the interpretation of why the 

release enhancement effect of CPE-215® was so small in previous experiment.

Getting more CPE-215® into the lipid bilayer may be the key for faster 

release rate. We need a phase-transfer carrier to transport more CPE-215® from 

the oil phase through the water phase to the liposome membrane to facilitate the 

release of insulin out of the liposomes. Cyclodextrins are well-known for their 

phase transport properties.

Structurally, Cyclodextrins consist of 6 , 7, or 8 (a, |3 and y respectively) D- 

glucopyranosyl units connected by alpha-(1,4) glycosidic linkages. Figure 27 

shows the molecular structure of a-cyclodextrin. The most stable three 

dimensional molecular configuration for these non-reducing cyclic 

oligosaccharides takes the form of a toroid with the upper (larger) and lower
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(smaller) opening of the toroid presenting secondary and primary hydroxyl 

groups, respectively, to the solvent environment. The interior of the toroid is 

hydrophobic as a result of the electron rich environment provided in large part by 

the glycosidic oxygen atoms, which can be used to carry or encapsulate small 

water-insoluble molecules.

HOCH,

Figure 27 Molecular structure of a-cyclodextrin.

Table 1 Physical properties of various cyclodextrins91

Alpha Beta Gamma
Molecular weight 972 1135 1297
Glucose monomers 6 7 8
Internal cavity diameter (angstroms) 5 6 8
Water solubility (g/100ml, at 25 °C) 14.2 1.85 23.2
Melting rang (°C) 255-260 255-265 240-245
Water molecules in cavity 6 11 17

According to the information from Table 1, one more glucose unit in 

cyclodextrin can result in huge cavity volume increase, it is surprising that the
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water solubility of p-cyclodextrin is only about 1/10 of that of a- or y-cyclodextrin. 

y-Cyclodextrin has the largest internal cavity, but it is much more expensive than 

the other two and not economical to use. p-Cyclodextrin is the cheapest among 

the three and has a larger cavity than a-cyclodextrin, so P-cyclodextrin was used 

as the promising phase transfer candidate.

V

N»

Figure 28 Molecular model of a-cyclodextrin (left) and CPE-215® (right) in 
the same scale. Hydrogen atoms are white, carbon atoms are grey, and 
oxygen atoms are red. a-Cyclodextrin is in a rod model, and CPE-215® is 
in a stick-and-ball model.

Figure 28 shows the molecular model of a-cyclodextrin and CPE-215® at 

the same scale. It seems that the internal cavity of a-cyclodextrin is large enough 

for a CPE-215® molecule.
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3.3.1. Insulin Release from DPPC Liposome at 42 °C with Cyclodextrins at 

p H  7

We decided to add cyclodextrins to our release formulations to see if they 

can work as phase transfer carriers as we expected. First we would like to know 

if cyclodextrin can further enhance the permeation effect of CPE-215® and 

cottonseed oil, then we would like to know if cyclodextrin itself has permeation 

enhancing effect, and determine which cyclodextrin is better (alpha or beta).

We used a release tube with only DPPC liposomes inside as the blank 

control; p-cyclodextrin buffer solution was added in one DPPC liposome 

suspension as the “B-CD” sample to see the membrane permeation enhancing 

effect of p-cyclodextrin itself; CPE-215®/Cottonseed oil mixture emulsion was 

added to one DPPC liposome tube as the “CPE&CSO” sample to see the 

membrane permeation enhancing effect of CPE-215®/Cottonseed oil mixture; 

CPE-215®/Cottonseed oil mixture in p-cyclodextrin buffer solution was added into 

one DPPC liposome tube as the “B-CD+CPE&CSO” sample to see if the 

presence of P-cyclodextrin can further boost the effect of CPE-215®/Cottonseed 

oil mixture; CPE-215®/Cottonseed oil mixture in a-cyclodextrin buffer solution 

was added into one DPPC liposome tube as the “a-CD+CPE&CSO” sample to 

see if a-cyclodextrin is better than p-cyclodextrin.

Phosphate buffer at pH 7 was used to make liposomes and prepare 

different release samples. Five different 1 g emulsion/suspension formulations 

were added to the identical liposome suspension in five release tubes, each with 

4 ml DPPC liposome buffer suspension and 0.0063 g DPPC inside: one was the
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blank control buffer solution, one was the p-cyclodextrin buffer solution, one was 

the p-cyclodextrin buffer solution with mixture of CPE-215® & cottonseed oil, one 

was the simple mixture of CPE-215® & cottonseed oil, one was the a-cyclodextrin 

buffer solution with mixture of CPE-215® & cottonseed oil.

The amount of CPE-215® added was based on a molar ratio of CPE-215®: 

DPPC = 125:1. The amount of cyclodextrin was planned to be added according 

to the weight ratio of CPE-215®: cyclodextrin = 2:1, but unfortunately, neither a- 

cyclodextrin nor p-cyclodextrin could be dissolved to that extent in the buffer 

solution, so saturated cyclodextrin solutions were used (a-cyclodextrin is much 

more water soluble than p-cyclodextrin).
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Figure 29 Insulin release from DPPC liposomes with cyclodextrins at 42 
°C at pH 7. Sample tube with DPPC liposomes only was the “Blank”; P- 
cyclodextrin buffer solution was added in one DPPC liposome suspension 
as the “B-CD” sample; CPE-215®/Cottonseed oil mixture emulsion was 
added to one DPPC liposome tube as the “CPE&CSO” sample; CPE- 
215®/Cottonseed oil mixture in P-cyclodextrin buffer solution was added 
into one DPPC liposome tube as the “B-CD+CPE&CSO” sample; CPE- 
21 5®/Cottonseed oil mixture in a-cyclodextrin buffer solution was added 
into one DPPC liposome tube as the “a-CD+CPE&CSO” sample.

The release tubes were placed in a 42 °C water bath on a shaker table at 

150 rpm. Figure 29 shows the result of this insulin release experiment with 

cyclodextrins at pH 7.

All samples showed similar release pattern: insulin release rates were 

very fast at the very beginning (ideal for intranasal drug delivery), followed by 

slower rate after 10 hours, but different samples showed different starting points.
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The experimental data showed that the sample with a-cyclodextrin buffer 

solution and mixture of CPE-215® & cottonseed oil had the highest starting point 

and the fastest release rate at the beginning; the next one was the one with (3- 

cyclodextrin and mixture of CPE-215® & cottonseed oil. The blank control one 

had the lowest starting point and the slowest release rate, as expected. For the 

ones with only P-cyclodextrin or mixture of CPE-215® & cottonseed oil, it is hard 

to tell which one is faster; they have almost the same effects on the release of 

insulin.

All the samples with cyclodextrin show obvious permeation enhancement 

effects, and saturated a-cyclodextrin solution has better effect than saturated p- 

cyclodextrin solution due to the big difference in water solubility. Cyclodextrin 

itself has just a small permeation enhancing effect; it mainly acts as a phase 

transfer carrier.

Finally, CPE-215® is an effective permeation enhancer, but needs a phase 

transition carrier like cyclodextrin; otherwise it can reach the membrane only with 

great difficulty due to its limited water solubility.

3.3.2. Insulin Release from DPPC Liposome at 42 °C with Different Amount 

of Cyclodextrins at pH 7

W e  have known that cyclodextrin can further enhance the m em brane  

permeation effect caused by CPE-215® and cottonseed oil, now we would like to 

know how much cyclodextrin is needed and what the proper ratio of CPE-215® to 

cyclodextrin is.
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This time, we added the same amount of CPE-215®/Cottonseed oil 

mixture with different amount of a-cyclodextrin into each liposome suspension to 

determine the best ratio of cyclodextrin to CPE-215®. In the previous experiment, 

saturated a-cyclodextrin showed better permeation enhancing effect with CPE- 

215® than saturated P-cyclodextrin, but in that case, much more a-cyclodextrin 

was added than P-cyclodextrin due to higher solubility of a-cyclodextrin, so it is 

difficult to determine which one is better. This time we compared a-cyclodextrin 

with p-cyclodextrin at the same molar ratio of CPE-215®.

Similar amount of 3:1 (w/w) CPE-215®/Cottonseed oil mixture were added 

to every release tube. The amount of CPE-215® added was based on the molar 

ratio of CPE-215®: DPPC = 20:1. A 50 mM pH 7 phosphate buffer was used to 

make liposomes and prepare different release samples. Three liposome samples 

were used to see the effect of different amount of a-cyclodextrin on the insulin 

release rate. In “C&C+1x a-CD” sample, molar ratio of a-cyclodextrin: CPE-215® 

= 1:100; in “C&C+5x a-CD” sample, molar ratio of a-cyclodextrin: CPE-215® = 

1:20; in “C&C+20x a-CD” sample, molar ratio of a-cyclodextrin: CPE-215® = 1:5. 

In “C&C+20x B-CD” sample, molar ratio of P-cyclodextrin: CPE-215® = 1:5.
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Figure 30 Insulin release from DPPC liposomes at 42 °C at pH 7 with 
different ratio of cyclodextrin over CPE-215®. Same amount of 3:1 (w/w) 
CPE-215®/Cottonseed oil mixture was added to every release tube. The 
amount of CPE-215® added was based on the molar ratio of CPE-215®: 
DPPC = 20:1. In “C&C+1x a-CD” sample, molar ratio of a-cyclodextrin: 
CPE-215® = 1:100; in “C&C+5x a-CD” sample, molar ratio of a- 
cyclodextrin: CPE-215® = 1:20; in “C&C+20x a-CD” sample, molar ratio of 
a-cyclodextrin: CPE-215® = 1:5. In “C&C+20x B-CD” sample, molar ratio 
of (3-cyclodextrin: CPE-215® = 1:5.

The release tubes were placed in a 42 °C water bath on a shaker table at 

150 rpm. Figure 30 showed the results of this insulin release experiment with 

different amounts of cyclodextrin at 42 °C at pH 7. The shapes of the four insulin 

release curves were similar: the release rate was very fast at the very beginning, 

then the insulin release rate slowed down and after 6 hours reached a gentle 

slope. The starting points for each release curve were not the same. We could
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almost predict which sample would have the maximum final insulin release by 

looking at the insulin fluorescence signals at Time Zero -  the higher the 

fluorescence signal at Time Zero, the more final released insulin for that sample.

By comparing the release curves, we can see that the more cyclodextrin, 

the more insulin released from DPPC liposomes; at the same molar ratio to CPE- 

215®, P-cyclodextrin is better than a-cyclodextrin, which makes sense because P- 

cyclodextrin has a bigger hydrophobic cavity than a-cyclodextrin.

3.3.3. Insulin Release from DPPC Liposome at 42 °C with Beta-Cyclodextrin 

at pH 7

In order to know the effect of p-cyclodextrin on different components of the 

intranasal formulation, such as CPE-215®, cottonseed oil and mixture of CPE- 

215® and cottonseed oil, we carried out another insulin release experiment.

“Cleaned” DPPC liposomes encapsulating insulin pH 7 phosphate buffer 

solution were evenly divided into four plastic centrifuge tubes. As usual we used 

one tube of DPPC liposomes as the “Blank” sample. In “CSO+B-CD” sample, 

cottonseed oil in pH 7 p-cyclodextrin buffer solution was added; in “CPE+B-CD” 

sample, CPE-215® in pH 7 P-cyclodextrin buffer solution was added; in 

“CPE+CSO+B-CD” sample, CPE-215®/Cottonseed oil mixture in P-cyclodextrin 

buffer solution was added. We used 2% p-cyclodextrin buffer solution, which is 

almost its saturation concentration. The amount of CPE-215® added was based 

on the molar ratio of CPE-215®: P-cyclodextrin =1:1, molar ratio of DPPC: CPE-
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215® = 1:5. The 50 mM pH 7 phosphate buffer was used to prepare liposomes 

for these different release samples.
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Figure 31 Insulin release from DPPC liposomes at 42 °C with (3- 
cyclodextrin at pH 7. In “Blank” sample, there was only DPPC liposomes, 
as the blank control for insulin release. In “CSO+B-CD” sample, 
cottonseed oil in pH 7 P-cyclodextrin buffer solution was added into 
liposomes: in “CPE+B-CD” sample, CPE-215® in pH 7 P-cyclodextrin 
buffer solution was added into liposomes; in “CPE+CSO+B-CD” sample, 
CPE-215®/Cottonseed oil mixture in p-cyclodextrin buffer solution was 
added into liposomes. The amount of CPE-215® added was based on the 
molar ratio of CPE-215®: P-cyclodextrin =1:1, molar ratio of DPPC: CPE- 
215® = 1:5.

The release tubes were placed in a 42 °C water bath on a shaker table at 

150 rpm. Figure 31 showed the insulin DPPC liposome release result of p- 

cyclodextrin with different formulation components. There was also a very fast
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release rate at the very beginning, then the rate slowed down and reached a 

plateau. The insulin released from liposomes in “Blank” sample was the smallest, 

as expected. Although the “Blank” here was different from the “Blank” in Figure 

26 , which meant we had some reproducibility issue, the relative trends of them 

were similar. The amounts of insulin released in “CPE+B-CD” and 

“CPE+CSO+B-CD” samples were average; the “CSO+B-CD” sample had the 

maximum insulin release. It is interesting to see that cottonseed oil showed better 

membrane permeation enhancing effect than CPE-215® in this experiment. In 

comparison with previous results of insulin release experiments, we can say (3- 

cyclodextrin can further enhance the insulin release from DPPC liposomes.

Based on the structure of cyclodextrins and the results of the insulin 

release experiments, we confirmed that cyclodextrins increased the availability of 

CPE-215® and cottonseed oil to the liposomes. Cyclodextrins and the 

hydrophobic CPE-215®/ cottonseed oil formed inclusion complexes by 

hydrophobic interaction and when the cyclodextrins collided with the liposomes, 

CPE-215® and cottonseed oil could be released into the hydrophobic lipid 

bilayers of liposomes. The direct conclusion out of this hypothesis is that 

cyclodextrin could greatly increase the apparent solubility of CPE-215® in water. 

However, in a simple solubility test of CPE-215® in (3-cyclodextrin solution, even 

when the molar ratio of (3-cyclodextrin: CPE-215® reached to 10:1, we could still 

see some CPE-215® floating on the aqueous surface. Probably (3-cyclodextrin did 

increase the solubility of CPE-215® in water, maybe by 10 or 100 fold, but not as 

much as we thought (we thought by forming an inclusion complex with CPE-
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215®, one p-cyclodextrin could take one CPE-215® into the aqueous phase). I did 

a literature search on cyclodextrins, and found that cyclodextrins were widely 

used to increase the water solubility of hydrophobic molecules by forming a 1:1 

inclusion complex; but not every cyclodextrin molecule could form a complex with 

those hydrophobic molecules, there were different formation constants for 

different molecules. In one recent paper on the use of P-cyclodextrin to increase 

the solubility of a highly hydrophobic drug, furosemide, the drug solubility was 

increased by 11 fold with the help of cyclodextrin.92

3.4. Incorporating Cholesterol into DPPC Liposome

Cholesterol is a membrane constituent widely found in animal systems 

which serves a unique purpose of modulating membrane fluidity, elasticity, and 

permeability. In order to make our liposome model more similar to natural 

membrane, cholesterol was incorporated with DPPC to prepare the liposomes. 

The fluid-phase behavior of binary mixtures of cholesterol with 

phosphatidylcholines was well studied.93,94 When cholesterol content is higher 

than 30 mol%, there is only one phase in DPPC and cholesterol mixture from 20 

°C to 55 °C. In order to make cholesterol evenly distributed in the lipid bilayer, the 

weight ratio of DPPC to cholesterol in our new membrane model was 4:1, in 

which cholesterol counts for 32 mol% of total lipid. With this adjustment to the 

liposome model, the insulin release temperature was adjusted to the human body 

temperature of 37 °C.
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3.4.1. Insulin Release at 37 °C from DPPC/Cholesterol Liposomes with 

Different Formulation Components and Simple Combinations

After we decided to incorporate cholesterol into DPPC liposomes, we 

wanted to see if the change in the liposome model and temperature could result 

in a change of the insulin release profile. We wanted to see the effect of CPE- 

215® only, cottonseed oil only and with (3-cyclodextrin combination on this 

improved membrane model. Therefore, we did a similar insulin release 

experiment for this DPPC/Cholesterol liposome at 37 °C.

We used a high molar ratio of P-cyclodextrin: CPE-215®, which was 1:1. 

Due to the solubility limitation of P-cyclodextrin, the molar ratio of CPE-215®: 

DPPC turned out to be 4:1. Cottonseed oil is a mixture of triglycerides with the 

average molecular weight of 275. In this experiment, the molar ratio of (3- 

cyclodextrin: cottonseed oil was also 1:1. A 50 mM pH 7 phosphate buffer was 

used to prepare these liposomes.

“Cleaned” DPPC/Cholesterol liposomes encapsulating insulin phosphate 

buffer solutions were evenly divided into six plastic centrifuge tubes, with 2 ml of 

DPPC/Cholesterol liposomes in each tube. We added 2 ml of pH 7 buffer into 

one tube of liposomes and used it as the “Blank” control sample. In the “CPE-215 

only” sample, CPE-215® and 2 ml of pH 7 phosphate buffer were added to the 2 

ml liposomes; in the “Cottonseed oil only” sample, cottonseed oil and 2 ml of pH 

7 phosphate buffer were added to the liposomes; in the “1:1 B-cyclodextrin: CPE- 

215” sample, CPE-215® and 2 ml of 2% (3-cyclodextrin pH 7 phosphate buffer 

solution were added to the 2 ml liposomes; in the “1:1 B-cyclodextrin: CSO”
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sample, cottonseed oil and 2 ml of 2% p-cyclodextrin pH 7 phosphate buffer 

solution were added to the 2 ml liposomes.

In this experiment, we also wanted to see the effect of different oil droplet 

size of cottonseed oil on the insulin release profile. In “Cottonseed oil only” and 

“1:1 B-cyclodextrin: CSO” samples, cottonseed oil was added as droplets. 

However, in the “CSO emulsion” sample, cottonseed oil was added to the 

liposomes in the form of emulsion made with a high shear mixter (Ultra Turrex®).

Table 2 Samp e information in Section 3.4.1
Sample Content Note
Blank 2 ml liposome +2 ml phosphate 

buffer
The amount of 
CPE-215® used in 
different samples 
was the same, so 
was cottonseed oil. 
The amount of 
CPE-215® and 
cottonseed oil used 
was based on 1:1 
molar ratio to P-CD.

CPE-215 only 2 ml liposome +2 ml phosphate 
buffer+CPE-215®

Cottonseed oil only 2 ml liposome +2 ml phosphate 
buffer+ cottonseed oil drop

CSO emulsion 2 ml liposome +2 ml cottonseed oil 
emulsion

1:1 B-cyclodextrin: 
CPE-215

2 ml liposome +2ml 2% P-CD buffer 
solution + CPE-215®

1:1 B-cyclodextrin: 
CSO

2 ml liposome +2ml 2% P-CD buffer 
solution + cottonseed oil drop

Before the experiment, we thought since CPE-215® crystal started to melt 

at 34 °C, it would be in liquid state at 37 °C. But during the release experiment at 

37 °C, in the samples containing CPE-215®, we could see some solid CPE-215® 

floating on the aqueous surface, which further decreased the availability of CPE- 

215® to the liposomes. Consequently, in all the further release experiments at 37
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°C, CPE-215® was added in company of cottonseed oil, in order to eliminate solid 

CPE-215® phase.
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Figure 32 Insulin release from DPPC/Cholesterol liposomes at 37 °C at 
pH 7. In the “Blank” sample, there was only DPPC/Cholesterol liposomes, 
as the blank control for insulin release. Molar ratio of (3-cyclodextrin: CPE- 
215®: cottonseed oil = 1:1:1.

Figure 32 showed the result of insulin release from DPPC/Cholesterol 

liposomes at 37 °C at pH 7. The release data were good and as expected—the 

data curve of the “Blank” sample was the lowest among all the sample release 

curves, and the released insulin signals increased with time in all the samples. All 

the insulin release data points are independent, which means that there is no
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guarantee for fluorescence signal of the next point to be higher than the one 

before, although it should be—any mistakes can result in unreasonable curves. 

Therefore, a reasonable curve (the fluorescence signals increase with time and 

the “Blank” curve shows the slowest release) not only shows the insulin release 

information, but also shows that the experimental procedures (sample handling, 

liposome separation and fluorescence signal measurement, etc.) were done 

properly. The reproducibility of our data was also good.

From Figure 32, we can establish a list of samples from the minimum 

amount of released insulin from DPPC/Cholesterol liposomes to the maximum 

amount of released insulin, and comes in order “Blank”, “CPE-215 only", 

“Cottonseed oil only”, “CSO emulsion”, “1:1 B-cyclodextrin: CPE-215” and “1:1 B- 

cyclodextrin :CSO”. The difference between “Cottonseed oil only” and “CSO 

emulsion” samples was really small, which shows that the difference in the oil 

droplet size of cottonseed oil did not make a difference in the insulin release 

profile. Since adding oil droplets is much easier than making oil emulsions, in the 

following experiments, cottonseed oil and mixture of CPE-215®/Cottonseed oil 

were added into DPPC/Cholesterol liposomes as large oil droplets.

This experiment showed again that adding (3-cyclodextrin could further 

enhance the insulin release from liposomes and cottonseed oil had better 

membrane permeation enhancing effect than CPE-215®. CPE-215® is a good 

permeation enhancer, but needs a phase transfer carrier to increase its 

availability to the liposomes.
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3.4.2. Insulin Release at 37 °C from DPPC/Cholesterol Liposomes with 

Different amount of CPE-215®

From the results of previous insulin release experiments with 

cyclodextrins, it seemed that the insulin release was controlled by the availability 

of CPE-215® to the liposomes, not by the amount of CPE-215® added into the 

release tube. If that conclusion is true, then under the same conditions, adding 

more CPE-215® into the release tube will not make the insulin release rate from 

liposomes faster, since the water is already saturated with CPE-215®. In order to 

test this theory, we designed a new release experiment.

This time, we used six release tubes. One was still used as blank control; 

one was used to see the permeation enhancing effect of (3-cyclodextrin only, 

without CPE-215®; two were used to compare the insulin release rate with 

different amount of CPE-215®/Cottonseed oil mixture; the last two were used to 

compare the insulin release rate with different amount of CPE-215®/Cottonseed 

oil mixture with the same amount of (B-cyclodextrin present.

In DPPC/Cholesterol liposome, weight ration of DPPC: cholesterol was 

still 4:1. The weight ratio of CPE-215®: cottonseed oil was still 3:1. In the “1X 

CPE&CSO” sample, molar ratio of CPE-215®: DPPC was 4:1; in the “3X 

CPE&CSO” sample, molar ratio of CPE-215®: DPPC was 12:1. In the 

“1 XCPE&CSO+B-CD”, molar ratio of (3-cyclodextrin: CPE-215®: DPPC was 4: 

4:1; in the “3XCPE&CSO+B-CD” sample, molar ratio of (3-cyclodextrin: CPE- 

215®: DPPC was 4:12:1. In the “B-CD only” sample, molar ratio of (3-cyclodextrin:
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DPPC was 4:1. A 50 mM pH 7 phosphate buffer was used to prepare these 

liposomes.

Table 3 Sample information in Section 3.4.2
^ I  1 1 O H  iSample CPE-215®:Cottonseed oil 

(weight)
CPE-215 :DPPC:p-CD 

(molar)
Blank N/A N/A
B-CD only N/A 0:1:4
1X CPE&CSO 3:1 4:1:0
3X CPE&CSO 3:1 12:1:0
1 XCPE&CSO+B-CD 3:1 4:1:4
3XCPE&CSO+B-CD 3:1 12:1:4
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Figure 33 Insulin release at 37 °C from DPPC/Cholesterol liposomes with 
different amount of CPE-215®/Cottonseed oil at pH 7. The weight ratio of 
CPE-215®: cottonseed oil was still 3:1. In the “1X CPE&CSO” sample, 
molar ratio of CPE-215®: DPPC was 4:1; in the “3X CPE&CSO” sample, 
molar ratio of CPE-215®: DPPC was 12:1. In the “1 XCPE&CSO+B-CD”, 
molar ratio of (3-cyclodextrin: CPE-215®: DPPC was 4: 4:1; in the 
“3XCPE&CSO+E3-CD” sample, molar ratio of (3-cyclodextrin: CPE-215®: 
DPPC was 4:12:1. In the “B-CD only” sample, molar ratio of (3- 
cyclodextrin: DPPC was 4:1.

Figure 33 showed the result of insulin release from DPPC/Cholesterol 

liposomes with different amount of CPE-215®/Cottonseed oil mixture at pH 7. 

The “Blank" sample showed a steady intrinsic insulin leakage rate from 

DPPC/Cholesterol liposomes. The other samples all showed a much higher 

insulin release rate than the “Blank” sample at the beginning, then the release 

rates decreased and finally the insulin release rates were similar to the blank
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control. The “B-CD only” sample showed that p-cyclodextrin itself also had 

membrane permeation enhancing effect, but the faster release rate only lasted 

for about an hour, then went back down to the blank control rate. The 

“1XCPE&CSO” sample had almost the same starting release rate as the “B-CD 

only” sample, but lasted for a longer time, about 3 hours, then the rate went back 

down to the blank control rate. The “3XCPE&CSO” sample had a little bit faster 

stating release rate than the “1XCPE&CSO” sample, but not much. The 

“1 XCPE&CSO+B-CD” sample and the “3XCPE&CSO+B-CD” sample had almost 

the same release profiles, though the amount of CPE-215®/Cottonseed oil in 

these two samples was different; their insulin release rate was much faster than 

the other samples. Obviously the fast insulin release rate was not due to the 

simple effects of (3-cyclodextrin and CPE-215®/Cottonseed oil, but showed the 

synergy between p-cyclodextrin and CPE-215®/Cottonseed oil on the membrane 

permeation effect.

This experiment successfully supported the assumption that the insulin 

release was controlled by the availability of CPE-215® to the liposomes, not by 

the amount of CPE-215® added into the release tube. P-Cyclodextrin could 

increase the availability of hydrophobic CPE-215® to the aqueous phase, which 

resulted in great insulin release rate increases from “1XCPE&CSO” to 

“1 XCPE&CSO+B-CD”, and from “3XCPE&CSO” to “3XCPE&CSO+B-CD”. With 

the same amount of P-cyclodextrin in the solution, which meant with the same 

amount of “transporters” available, different amount of CPE-215® results in the 

same insulin release rate.
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3.5. Insulin Release from DPPC/Cholesterol Liposomes at Different pH

Twenty different amino acids are the elementary constituents of all natural 

proteins. Those amino acids can be grouped according to the characteristics of 

the side chains, such as acidic, basic, polar, and non-polar. Changing pH 

changes the charges on the acidic and basic amino acid side chains, and results 

in changes in the total charge of the protein: the higher the pH value, the more 

negative charge on the protein. For human insulin, the isoelectric point is aroud 

pH 5.3.95 We wished to see the effect of pH on the insulin release rate from 

DPPC/Cholesterol liposomes. The change of pH could also affect the charge on 

the lipids and the liposome structure, but the charge on DPPC does not change 

in the pH range from 4 to pH 10.

3.5.1. Insulin Release from DPPC/Cholesterol Liposome at 37 °C with Small 

pH Gradient

We wanted to see what the insulin release profile would be when there is 

a pH gradient across the membrane (the insulin solution inside of liposomes at 

different pH value from the outside buffer solution). In this experiment, we tested 

three gradients (inside to outside of liposome): pH 7 to pH 5.7, pH 7 to pH 7, pH 

7 to pH 8.2. There were two samples for each gradient: one as the blank release 

control, the other was added CPE-215®/cottonseed oil mixture and (3-
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cyclodextrin. However, the result was not what we expected. Finally we realized 

that it is hard to keep a pH gradient across the lipid bilayer.

When we prepared the 4:1 (w/w) DPPC/Cholesterol liposomes, 50 mM pH 

7 phosphate buffer was used, so that the insulin solution inside of liposome was 

pH 7. When we did the centrifugal extractions at 4 °C, 50 mM pH 7 phosphate 

buffer was also used. Then 3 ml of concentrated liposomes were evenly 

distributed into six 15-ml plastic centrifuge tubes. In “pH 5.7 Blank”, 3.5 ml of pH 

5 phosphate solution was added to 0.5 ml of pH 7 liposomes, the final pH turned 

out to be 5.7. In “pH 7 Blank”, 3.5 ml of pH 7 phosphate buffer was added to 0.5 

ml of pH 7 liposomes. In “pH 8.2 Blank”, 3.5 ml of pH 9 phosphate solution was 

added to 0.5 ml of pH 7 liposomes, the final pH turned out to be 8.2. In “pH 5.7 

C&C+B-CD”, 3.5 ml of 2% (3-cyclodextrin pH 5 phosphate solution and mixture of 

CPE-215®/Cottonseed oil were added to 0.5 ml of pH 7 liposomes. In “pH 7 

C&C+B-CD”, 3.5 ml of 2% p-cyclodextrin pH 7 phosphate solution and mixture of 

CPE-215®/Cottonseed oil were added to 0.5 ml of pH 7 liposomes. In “pH 8.2 

C&C+B-CD”, 3.5 ml of 2% p-cyclodextrin pH 9 phosphate solution and mixture of 

CPE-215®/Cottonseed oil were added to 0.5 ml of pH 7 liposomes.

The weight ratio of CPE-215®: cottonseed oil was still 3:1. The molar ratio 

of CPE-215®: P-cyclodextrin: DPPC was 4:4:1.
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Figure 34 Insulin release at 37 °C from DPPC/Cholesterol liposomes at 
different pH gradients, inside pH is 7. The 100% insulin release point was 
0.0045 mg/ml. We tested three gradients (inside to outside of liposome): 
pH 7 to pH 5.7, pH 7 to pH 7, pH 7 to pH 8.2. There were two samples for 
each gradient, one for the blank release control, the other was added 
CPE-215®/cottonseed oil mixture and P-cyclodextrin. The weight ratio of 
CPE-215®: cottonseed oil was still 3:1. The molar ratio of CPE-215®: P- 
cyclodextrin: DPPC was 4:4:1.

Figure 34 showed the result of insulin release from DPPC/Cholesterol 

liposomes at different pH gradients. To our surprise, it seemed that the pH 

gradients had no effect on the insulin release rate from liposomes: no matter at 

what pH gradient, all the blank control samples seemed to have the same insulin 

release rate, and all the samples with CPE-215®/Cottonseed oil and P- 

cyclodextrin had the same insulin release rate, too. The samples with CPE- 

215®/Cottonseed oil and P-cyclodextrin showed much faster insulin release rates 

at the beginning, similar to the previous release experiments at pH 7.
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In Figure 34, instead of showing the percent of total insulin release in the 

Y-axis as before, insulin concentration was used as the Y-axis. The 100% insulin 

release point corresponded to the insulin concentration of 0.0045 mg/ml.

After some literature search on the membrane permeability to protons, I 

found that lipid bilayers are remarkably permeable to protons.96 It is clear that 

proton permeability is at least 106 greater than for the other simple ions, and this 

is true for biomembranes as well as for model membranes.97 Therefore, in our 

experiment, due to the great permeability of protons through membrane, there 

might not be a pH gradient between the inside and outside of liposomes, though 

we tried to establish one; the release results are likely to have shown the insulin 

release rates at pH around 6 , 7 and 8 , without pH gradients.

3.5.2. Insulin Release from DPPC/Cholesterol Liposome at 37 °C at pH 10

In order to find out how pH affects insulin release, we performed the 

insulin release from 4:1 (w/w) DPPC/Cholesterol liposomes at pH 10. At pH 10, 

insulin has a negative overall charge of about -5.

We did the liposome extrusion and the centrifugal extraction both at pH 

10, so that we were certain there was no pH gradient from the inside to the 

outside of the liposome. The liposomes were evenly distributed into three 15-ml 

plastic centrifuge tubes. O ne tube was used as blank release control, one 

received a CPE-215®/Cottonseed oil mixture, the other one received a CPE- 

215®/Cottonseed oil mixture and (3-cyclodextrin. The weight ratio of CPE-215®:
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cottonseed oil was still 3:1. The molar ratio of CPE-215®: p-cyclodextrin: DPPC 

was 4:4:1.
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Figure 35 Insulin release at 37 °C from DPPC/Cholesterol liposome at pH 
10. The 100% insulin release point was 0.003 mg/ml. The weight ratio of 
CPE-215®: cottonseed oil was still 3:1. The molar ratio of CPE-215®: P- 
cyclodextrin: DPPC was 4:4:1.

Figure 35 showed the result of insulin release from DPPC/Cholesterol 

liposomes at pH 10. Insulin concentration was used as the Y-axis. The 100% 

insulin release point corresponded to the insulin concentration of 0.003 mg/ml. 

Insulin release at pH 10 showed a similar trend: CPE-215®/Cottonseed oil 

mixture could make more insulin come out of liposomes; adding P-cyclodextrin
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could further enhance the permeation effect of CPE-215®. However, compared 

with the release data at pH 7 (Figure 33), insulin release at pH 10 seems more 

difficult: slower release rate with low insulin blank release rate.

3.5.3. Insulin Release from DPPC/Cholesterol Liposome at 37 °C at pH 4

We also performed the insulin release from 4:1 (w/w) DPPC/Cholesterol 

liposomes at pH 4. At pH 10, insulin has a positive overall charge, about +3.

We carried out the liposome extrusion and the centrifugal extraction at pH 

4, so that we were certain that there was no pH gradient. The liposomes were 

evenly distributed into three 15-ml plastic centrifuge tubes. One tube was used 

as blank release control; “C&C” received a CPE-215®/Cottonseed oil mixture; 

“C&C+B-CD” received a CPE-215®/Cottonseed oil mixture and P-cyclodextrin. 

The weight ratio of CPE-215®: cottonseed oil was 3:1. The molar ratio of CPE- 

215®: p-cyclodextrin: DPPC was 4:4:1.
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Figure 36 Insulin release at 37 °C from DPPC/Cholesterol liposome at pH 
4. The 100% insulin release point was 0.003 mg/ml. The weight ratio of 
CPE-215®: cottonseed oil was 3:1. The molar ratio of CPE-215®: p- 
cyclodextrin: DPPC was 4:4:1.

Figure 36 showed the result of insulin release from DPPC/Cholesterol 

liposomes at pH 4. Insulin concentration was used as the Y-axis. The 100% 

insulin release point corresponded to the insulin concentration of 0.003 mg/ml. 

Insulin release curve of “C&C” was only a little higher than the release curve of 

“Blank”, but “C&C+B-CD” still showed much faster insulin release from 

liposomes. Comparing the release data at pH 4 (Figure 36) and pH 7 (Figure 33), 

we can see it is much harder for insulin to permeate through lipid bilayers at pH 4 

than at pH 7, even with the help of CPE-215®/cottonseed oil and P-cyclodextrin.
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3.6. BSA Release at 37 °C from DPPC/Cholesterol Liposomes at pH 7

Previously we used insulin molecules, which were tagged with 

fluorescence probes, to do the release experiments from liposomes with CPE- 

215®, and found that liposomes are a good membrane model and CPE-215® is a 

good membrane permeation enhancer. To see if CPE-215® is protein kind and 

size specific, we used a larger protein instead of insulin (MW 6 KDa) to do 

another release experiment. Bovine serum albumin (BSA, MW 66 KDa) was 

selected to be the other model protein. In order to improve the detection 

sensitivity, again we used the fluorescence labeling process to attach a 

fluorescence probe to BSA.

We performed both the liposome extrusion and the centrifugal extraction 

at pH 7. The 4:1 (w/w) DPPC/Cholesterol liposomes were evenly distributed into 

three 15-ml plastic centrifuge tubes. One tube was used as the blank release 

control; in the “CPE” sample, CPE-215® solid was added; in the “CPE&CSO” 

sample, CPE-215®/Cottonseed oil mixture was added. The weight ratio of CPE- 

215®: cottonseed oil was 3:1. The molar ratio of CPE-215®: DPPC was 4:1.
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Figure 37 BSA release at 37 °C from DPPC/Cholesterol liposomes at pH 
7. The 100% BSA release point was 0.007 mg/ml. The weight ratio of 
CPE-215®: cottonseed oil was 3:1. The molar ratio of CPE-215®: DPPC 
was 4:1. In the “CPE” sample, CPE-215® solid was added; in the 
“CPE&CSO” sample, CPE-215®/Cottonseed oil mixture was added.

Figure 37 showed the result of BSA release at 37 °C from 

DPPC/Cholesterol liposomes at pH 7. BSA concentration was used as the Y- 

axis. The 100% BSA release point was 0.007 mg/ml. The BSA release data 

showed that CPE-215® can also enhance the release of big proteins, for example 

66 KDa BSA, through lipid bilayers. CPE-215®/Cottonseed oil mixture gave better 

result than CPE-215® alone, maybe because at 37 °C, most of CPE-215® is still a 

solid, making it less available to the liposomes than CPE-215®/Cottonseed oil 

mixture. The BSA release rate with CPE-215®/Cottonseed oil was slow at the 

beginning when compared with the insulin release data, which might be due to 

the larger size of BSA.
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CHAPTER 4

RELEASE MECHANISM STUDY

The experiments of insulin release from liposomes have proved that CPE- 

215® is an effective membrane permeation enhancer. The next step is to 

investigate the mechanism behind the fact that CPE-215® facilitates the insulin 

transport through lipid bilayers. Studies focusing on the properties of our system 

were carried out, such as the insulin solution properties (self-diffusion and self­

association states of insulin), the interaction between insulin and liposome and 

the interaction between CPE-215® and liposomes. Based on these studies and 

the experimental data, a hypothesis was proposed and the result of a special 

testing experiment proved the validity of the hypothesis for the protein release 

profile from liposomes.

4.1. Insulin Solution Properties

4.1.1. Insulin Diffusion Coefficient Measurement by NMR

Nuclear M agnetic Resonance (N M R ) is a common non-destructive 

technique, which is widely used to obtain information on functional group analysis 

(chemical shifts), bonding connectivity and orientation (J coupling), through 

space connectivity (Overhauser effect), molecular conformations, DNA, peptide
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and enzyme sequence and structure, etc. It can also be used to determine the 

self-diffusion coefficient by the spin-echo technique with pulsed field gradient.98,99

Molecules in liquid or solution states move. This translational motion is, in 

contrast to rotational motion, known as Brownian molecular motion and is often 

simply called diffusion or self-diffusion. It depends on a lot of physical parameters 

such as size and shape of the molecule, temperature and viscosity. Assuming a 

globular or spherical shape for the molecule, the diffusion coefficient, D, is 

described by the Stokes-Einstein equation

n  k T

6^ .  1411

where k  is the Boltzman constant, T  the temperature, q  the viscosity of the liquid 

and rsthe hydrodynamic radius of the molecule.

Pulsed field gradient NMR spectroscopy can be used to measure the 

translational diffusion coefficient of molecules and is sometimes referred to as q- 

space imaging. Through the use of a gradient, molecules can be spatially 

labeled, i.e. marked depending on their spatial position in the sample tube. If they 

move after this encoding during the following diffusion time A, their new position 

can be decoded by a second gradient. The measured signal is the integral over 

the whole sample volume and the NMR signal intensity is attenuated depending 

on the diffusion time A and the gradient parameters (g, 6) .  This intensity change 

is described by

r _  j  „ - D r 2g 2s 2( A - s / Z )
1 ~  1 o e  [4.2]
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where I is the observed intensity, lo the reference intensity (unattenuated signal 

intensity), D the diffusion coefficient, ythe gyromagnetic ratio of the observed 

nucleus, g  the gradient strength, 6  the length of the gradient, and A the diffusion 

time. If bipolar gradients are used for dephasing and rephasing, a correction for 

the time t  between those bipolar gradients has to be applied:

T T - D y 2g 2S 2 ( A - S / Z - T / 2 )I =  I0 'e [4.3]

Briefly, a spin echo pulse sequence is used in combination with a pair of 

gradients on both sides of the 180° pulse. The echo amplitude decay was 

measured and the value of the self-diffusion coefficient was determined from that 

signal.

Usually in NMR experiments, the higher the concentration, the better the 

signal/noise. We used low pH to dissolve more insulin in the NMR tube: 

deuterated hydrochloride acid was used to adjust D2O to pH 3, which was near 

the pH value of the intranasal insulin formulations of Bentley Pharmaceuticals, 

and then insulin was dissolved to reach 2 mg/ml solution.
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Figure 38 Insulin diffusion coefficient measurement by pulsed field 
gradient NMR at pH 3 at 37 °C. The X-axis shows the chemical shifts of 
TH NMR spectrum; the Y-axis shows the diffusion coefficient, the unit is 
10‘10 m2/s, i.e. 10’6 cm2/s.

Figure 38 shows the insulin diffusion coefficient measured by pulsed field 

gradient NMR at pH 3 at 37 °C. It is a 2D NMR spectrum: the X-axis shows the 

1H NMR spectrum, the value in the Y-axis corresponds to the diffusion coefficient 

of the molecule for that specific proton. This 2D NMR spectrum shows the 

diffusion coefficients of different protons in the solution; therefore, even if there 

are different molecules in the solution, as long as the chemical shifts can be 

identified individually, the diffusion coefficients of different molecules can be
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obtained from the 2D DOSY NMR spectrum at the same time. In Figure 38, most 

protons have the diffusion coefficient of 1.4 x 10'10 m2/s, the other proton with a 

chemical shift at 4.7 ppm has a much faster and broader diffusion coefficient. 

Based on its chemical shift position and diffusion coefficient, the peak at 4.7 ppm 

should be due to the proton of water molecules. Insulin consists of 51 amino 

acids and should have a 1H NMR spectrum with numerous peaks. Therefore, the 

remaining peaks in Figure 38 should belong to insulin, and insulin diffusion 

coefficient at pH 3 at 37 °C is 1.4 x 10’10 m2/s, or 1.4 x 10‘6 cm2/s.

Assuming the insulin molecule is a globular protein, from the Stokes- 

Einstein equation (Eq. [4.1]), 

kT

The viscosity for a dilute aqueous is approximately equal to that of water, which 

is approximately, 1.0 centipoise (cP) or 1.0 * 10*3 Pa s. Thus, the hydrodynamic 

radius of insulin

(1.38x 10”2 3 AT-1)(310A') ^  1A_9 ^
r  = ------------------- r-------------------------—  ----- — = 1.6 x 10 m  = \  .6 n m

6;r • (1.0 x 10 Pa • s ) ( l.40x 10  m  - s~ l )

We calculate that the insulin at pH 3 at 2 mg/ml concentration at 37 °C 

behaves like a globular protein with a radius of 1.6 nm or with a diameter of 3.2 

nm.

Lin, et al. studied the insulin aggregates with pulsed-field gradient nuclear 

magnetic resonance spectroscopy at pH 9.4 at 25 °C. 100 They found that at 4 

mg/ml, the insulin dimer is the predominant species in the solution, the 

hydrodynamic diameters calculated for the dimer is 3.6 nm, and the diffusion
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coefficient detected for the dimer by PFG NMR is 1.38 * 10"6 cm2/s at 25 °C, 

which is similar to our result at pH 3.

4.1.2. Using the Analytical Ultracentrifugation to Determine the Insulin 

Association State

Human insulin exists in different association states, from monomer to 

hexamer, depending on the conditions.101,102,103 In the presence of zinc, the 

"normal" state is a hexamer. Zinc ions are not involved in dimer formation but are 

involved in the association of dimers to give the hexamer.104 Zinc-free insulin can 

have different aggregation levels, six monomers *-*■ three dimers <-»■ one 

hexamer, or monomer <-► dimer tetramer <-+ hexamer.105 We would like to 

identify the insulin association state under our release condition for the modeling 

work; and we used the Analytical Ultracentrifugation to do so.

Analytical Ultracentrifugation (AUC) is a very versatile and powerful 

technique for characterizing the solution-state behavior of macromolecules. It 

provides a primary method to determine protein molecular weight and size. Using 

ultracentrifuge to determine protein molecular weight can be traced back to 

1920s.106 The concentration dependence of the molecular weight can provide the 

same thermodynamic information as light scattering. The rate of movement of 

molecules provides hydrodynamic size information. The subunit stoichiometry of 

a protein complex can be calculated from the determined molecular weight. 

Depending on the quality of the data, this determination can be very accurate; for 

example, it can be easily established whether the native conformation of a

107

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



protein is a dimer, trimer or tetramer. Information about the shape and the 

conformation of a protein as well as the interaction between macromolecules can 

be obtained from the sedimentation and diffusion coefficients obtained from a 

sedimentation velocity experiment.

An analytical ultracentrifuge can be viewed as a combination of a 

preparative ultracentrifuge and an optical detection system that is capable of 

directly measuring the sample concentration inside the centrifuge cell during 

sedimentation. The analytical ultracentrifuge at UNH is a Beckman Optima XL-A. 

The instrument spins the protein sample at a controlled speed and temperature 

while at set times recording the spatial concentration distribution. Depending on 

the rotor, the speed may be as high as 60,000 rpm (which is equivalent to 

250,000 x g).

One common type of experiment performed in an analytical ultracentrifuge 

is sedimentation velocity. Sedimentation velocity is a hydrodynamic technique 

and is sensitive to the mass and shape of the macromolecular species. In a 

sedimentation velocity experiment, an initially uniform solution is placed in the 

cell and a high speed is used to cause rapid sedimentation of solute towards the 

cell bottom. This produces a depletion of solute near the top solution meniscus 

and the formation of a sharp boundary between the depleted region and the 

uniform concentration of sedimenting solute (the plateau) (Figure 39). The rate of 

movement of this boundary can be measured, which leads to the determination 

of the sedimentation coefficients.
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Figure 39 Schematic representation of the solute concentration 
distribution in the centrifuge cell in a sedimentation velocity experiment.

At their isoelectric points, proteins have the lowest solubility; from their 

isoelectric points, either raising or lowering the pH, the protein solubility 

increases. Insulin does not have good solubility at neutral pH, but the 

ultracentrifugation experiment usually requires a protein concentration of 1 

mg/ml. Therefore, we prepared a 1 mg/ml insulin in 50 mM citric acid buffer with 

100 mM KCI at pH 3.3, which was also the pH value Bentley Pharmaceutical, Inc. 

used for their intranasal insulin formulations. Before the ultracentrifugation, the 

insulin sample was dialyzed for 10 hours with the pH 3.3 citric acid buffer, which 

was used to dilute the insulin solution later on, to make sure the ionic strengths in 

the insulin sample and citric acid buffer were the same. Part of the 1 mg/ml 

insulin sample was diluted to make a 0.5 mg/ml insulin sample (1:2 dilution) and 

a 0.25 mg/ml insulin sample (1:4 dilution). Then we used the Beckman Optima
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XL-A ultracentrifuge at 55,000 rpm and 20 °C to run the sedimentation velocity 

experiment.

0.00035 - 11080

0.00030 -

0.00025 -

0 .00 02 0  -

0.00015 -

—  1 m o / m  I 
 1:2

0 .00 01 0  -

0.00005 -

0.00000
5000 10000 15000 20000 25000 30000 35000 40000-5000 0

Mo l a r  Mass

Figure 40 Result of insulin sedimentation velocity experiment of analytical 
ultracentrifugation at 20 °C. The three curves show the molecular weight 
distribution of different insulin species in 1 mg/ml, 0.5 mg/ml (1:2 dilution) 
and 0.25 mg/ml (1:4 dilution) insulin buffer solutions at pH 3.3. The buffer 
was 50 mM citric acid buffer with 100 mM KCI.

Figure 40 shows the result of the insulin sedimentation velocity 

experiment. Due to the complex nature of analytical ultracentrifugation, the result 

shall be interpreted carefully. Peaks in sedimentation velocity diagram have no 

meanings, and multiple peaks only indicate that the stoichiometry of insulin is
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larger than two, which indicates the presence of higher association states of 

insulin than insulin monomer.

4.2. CPE-215® Interaction with Liposome (Membrane)

4.2.1. Introduction

CPE-215® is a general-purpose membrane permeation enhancer for 

protein delivery, which means it is not focusing on specific proteins but 

interacting with the lipid phase of membranes in general. CPE-215® is a 

hydrophobic molecule, and it interacts with the hydrophobic chains of lipids inside 

the membranes.

DPPC

CholesterolHO CPE-215™

Figure 41 Molecular structure of DPPC, Cholesterol and CPE-21511
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Figure 41 shows the structure of the three molecules that we focused on 

in the interaction study between CPE-215® and liposome: DPPC was the 

phospholipid used to form lipid bilayers and liposomes, cholesterol was inserted 

into the DPPC lipid bilayer to change the fluidity of the lipids, CPE-215® was the 

membrane permeation enhancer.

Lipid bilayers have different phases. The lamellar gel phase is formed at 

low temperature; the molecules are packed tightly together and the acyl chains 

are highly ordered, corresponding to the all- t ra n s  configuration found in the 

structure of lipid crystals. In lamellar liquid crystalline phase, there is two- 

dimensional order, but there is considerable disorder in the acyl chains, 

characterized by g a u c h e  conformation.107 The lipid phase transition between the 

lamellar gel and liquid crystalline phases can be thermally induced, and the 

phase transition temperature (Tc) is unique to each lipid.

Figure 42 Phosphatidyl Choline lipid bilayer phase transition108.

The technique commonly applied to determine the lipid phase transition 

temperature is differential scanning calorimetry (DSC).109,110,111,112 It is used to
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monitor and characterize changes in physical state in polymorphic lipids and also 

to characterize the perturbations on pure lipids by the interactions with other 

materials, such as other lipids, proteins, ions, or small hydrophobic molecules. In 

DSC, a sample and inert reference are heated independently to maintain an 

identical temperature in each. The endothermic gel-to-liquid crystalline bilayer 

transition requires an excess heat over the heat required to maintain the same 

temperature in the reference. Differential heat flow is then plotted as a function of 

temperature.

Modulated DSC™ (MDSC®) is a new technique which provides not only 

the same information as conventional DSC, but also provides unique information 

not available from conventional DSC by overcoming most of the limitations of 

conventional DSC.113,114 In MDSC, the same “heat flux” cell design is used; 

however, a different heating profile is applied to the sample and reference. 

Specifically, a sinusoidal modulation (oscillation) is overlaid on the conventional 

linear heating or cooling ramp to yield a profile in which the average sample 

temperature continuously changes with time. The heat capacity (reversible) 

component of the total heat flow follows the oscillation and can be separated 

from the kinetic (non- reversible) component of the total heat flow by Fourier 

Transform. Therefore, more accurate phase transition information can be 

obtained by MDSC. Furthermore, different from traditional DSC, MDSC can give 

increased resolution of transitions without loss of sensitivity.

113

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



4.2.2. Experiment Design

Earlier, we showed that CPE-215® does have a permeation enhancing 

effect helping insulin go though lipid bilayers. In absence of the permeation 

enhancer, insulin is not likely to go easily through the membrane by itself. As the 

membrane permeation enhancer, CPE-215® is supposed to interact with the 

membrane in order to facilitate the crossing of insulin. We wanted to better 

understand what happens to the membrane in the presence of CPE-215®.

For a thermal study, the size of the liposome does not need to be narrowly 

distributed. In that case, all the liposomes used here were made by bath-type 

sonication at 50 °C for 5 minutes, not by extrusion.

CPE-215® is a hydrophobic molecule, and it must interact with the lipid 

bilayers in order to act as a permeation enhancer. We would like to know if CPE- 

215® molecules formed CPE-215® domains inside the lipid bilayers or if they 

were evenly distributed in the DPPC liposomes and formed a new kind of 

liposome. First, we mixed CPE-215® with DPPC before preparing the liposome, 

and then we compared the thermal property of this new DPPC/CPE liposome 

with standard DPPC liposome. We also mixed CPE-215® with DPPC and 

cholesterol before preparing the liposome and compared the thermal property of 

this DPPC/Cholesterol/CPE-215® liposome with the DPPC/Cholesterol 

liposomes. For convenience, DPPC liposome was called Liposome D,

DPPC/CPE liposome was called Liposome DC, DPPC/Cholesterol liposome was 

called Liposome DH, and DPPC/Cholesterol/CPE-215® liposome was called 

Liposome DHC.
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In our insulin release experiment, CPE-215® was added outside of the 

liposomes containing insulin. Therefore, in another experiment, we made 

Liposome D first and then put CPE-215® together with Liposome D and let the 

MDSC perform multiple heating-cooling cycles. Although CPE-215® is 

hydrophobic, it still has some minimal solubility in water and its solubility 

increases with temperature. With the increase of temperature, more and more 

CPE-215® can go into the aqueous phase; while when the temperature cools 

down, super-saturated CPE-215® needs to come out of the aqueous phase, and 

some will reach the liposomes and enter inside the hydrophobic bilayers. With 

multiple cycles of heating and cooling, conceptually we can see the change of 

the DPPC liposome thermal properties with CPE-215® slowly diffusing into these 

liposomes. CPE-215® has a melting point of 34 °C, which is very close to the 

liposome phase transition temperature; in order to reduce such interference, we 

used 2:1 (w/w) mixture of CPE-215®/cottonseed oil instead of pure CPE-215® 

(Figure 45), which had no thermal transition above 20 °C. We also run the same 

experiment with the Liposome DH.

4.2.3. Experimental Section

The DSC instrument was a Modulated DSC Q100 from TA Instruments, 

Inc. Liposomes were made by sonication. Lipids (DPPC, cholesterol, CPE-215®) 

were mixed and dissolved in chloroform in 50-ml flask, and then dried at reduced 

pressure with a Rotavapor at room temperature for 6 hours to form a lipid film on 

the flask wall. The lipid film was hydrated with 10 ml of 50 mM pH 7 phosphate
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buffer at 50 °C and then sonicated for 5 minutes in the bath-type sonicator to 

make liposomes. Then the liposomes were concentrated by centrifugation at 900 

g for 30 minutes.

The liposomes were sealed in an aluminum pan to measure the liposome 

phase transition. After the DSC experiment, a hole was punched in the pan cover 

and the pan was kept at 70 °C for 5 hours to let the inside water evaporate, 

finally the weight of dry lipid was obtained. Four different liposomes were 

characterized for their phase transitions. Table 4 shows the compositions of 

these four liposomes.

Table 4. Composition of different liposomes.

Liposome
D

Liposome
DC

Liposome DH Liposome DHC

Components 
weight ratio

N/A DPPC/CPE
4:1

DPPC/Cholesterol
4:1

DPPC/Cholesterol/CPE
4:1:1

Weight (mg) 5.9 7.5 14.6 12.9

Weight after 
drying (mg)

1.5 2.8 3.1 3.9

Lipid
content

25% 37% 21% 30%

The MDSC in our lab is a Modulated DSC Q100 from TA Instruments, Inc. 

The following MDSC sequence was used for the purpose of measuring the lipid 

bilayer phase transition temperature:

1. initial temp at 25 °C

2. equilibrium at 5 °C
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3. modulate ± 1 °C/60 sec

4. isotherm for 7 min

5. ramp 5 °C/min to 100 °C

6. isotherm for 2 min

For the multiple heating-cooling experiment of liposomes with CPE- 

215®/cottonseed oil mixture, concentrated liposomes and 2:1 (weight) CPE- 

215®/cottonseed oil mixture were sealed in an aluminum pan and heated from 5 

°C to 90 °C for several times. Table 5 shows the different liposomes for the multi- 

heating-cycle experiment.

Table 5. Different liposomes for multiple-heating-cycle experiment.

Liposome D 
only

Liposome D with oil Liposome DH with 
oil

CPE/cottonseed 
oil 2:1 (w/w) (mg)

N/A 2.9 1.6

Liposome (mg) 23.1 19.2 10.1

# of heating 
cycles

4 25 8

The multiple-heating-cooling program is listed below:

1. initial temp at 25 °C

2. equilibrate at 5 °C

3. modulate ± 0.796 °C/60 sec (heat only)

4. isotherm for 6 min
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5. ramp 5 °C/min to 90 °C

6. isotherm for 2 min

7. Repeat from Step 2

In order to see the effect of 2:1 CPE-215®/cottonseed oil on the DPPC 

liposome phase transition DSC curve, 11.9 mg 2:1 CPE-215®/cottonseed oil 

mixture was sealed in an aluminum pan and the thermal scan from 10 °C to 80 

°C (modulation ± 1 °C/60 sec, ramp 5 °C/min) was recorded.

4.2.4. Results and Discussion

The modulated DSC experiments were done for different types of 

liposomes: Liposome D (DPPC liposome), Liposome DC (DPPC/CPE-215® 

liposome), Liposome DH (DPPC/Cholesterol liposome) and Liposome DHC 

(DPPC/Cholesterol/CPE-215® liposome). Figure 43 and 44 showed the resulting 

curves. The lipid bilayer phase transition is a reversible, first-order transition; 

therefore the figures in this section (Figure 43 to Figure 51) show only the 

reversible heat flow by removing the kinetic (non- reversible) component from the 

total heat flow.
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Figure 43 DSC of Liposome D (DPPC liposome) and Liposome DC 
(DPPC/CPE-215® liposome) (exothermal up).

The DSC of Liposome D showed a phase transition temperature at 42 °C 

(we conveniently took the peak temperature as the phase transition 

temperature), which was similar to the literature value.108 The phase transition of 

highly purified DPPC should be sharp, but in Figure 43, the phase transition peak 

seemed a little broad, which may be due to minor impurities in the lipid.

The reversible heat flow of Liposome DC (4:1 (w/w) DPPC/CPE-215®) 

showed one broad endothermic peak with the peak value of 34  °C  (in our 

Liposome DC, the molar ratio of DPPC: CPE-215® was 1.3). Compared with the 

reversible heat flow curve of Liposome D, the phase transition temperature of 

Liposome D was lowered by incorporating CPE-215® with DPPC in the
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liposomes. Since there was no endothermic peak at 42 °C in the reversible heat 

flow curve of Liposome DC, there should be no DPPC domains in Liposome DC, 

or at least the gathering of DPPC in Liposome DC was not significant enough to 

initiate an endothermic peak in the DSC heat flow curve. As to the question of 

whether CPE-215® formed domains in Liposome DC, unfortunately this could not 

be answered based on Figure 44 alone because the CPE-215® itself has a 

melting point of 34 °C, the same temperature as the phase transition temperature 

of Liposome DC. Even if there were CPE-215® domains inside, the CPE-215® 

melting peak would be covered by the broad liposome phase transition.
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Figure 44 DSC of Liposome DH (DPPC/Cholesterol liposome) and 
Liposome DHC (DPPC/Cholesterol/CPE liposome) (exothermal up).
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Cholesterol is a common lipid in natural membranes. Therefore, we also 

used Liposome DH (4:1 (w/w) DPPC/cholesterol) as the membrane model and 

incorporated CPE-215® inside to see if the phase transition temperature was also 

lowered after the addition of CPE-215®. Figure 44 showed the modulated DSC 

reversible heat flow curves of Liposome DH and Liposome DHC (4:1:1 (w/w/w) 

DPPC/cholesterol/CPE-215®), and the phase transition temperatures were 46 °C 

and 37 °C respectively. Cholesterol made the phase transition of DPPC liposome 

broader an increased its average value, while CPE-215® lowered the liposome 

phase transition temperature. Figure 44 also showed that there were no CPE- 

215® domains in the final liposome, CPE-215® and cholesterol were evenly 

distributed in the DPPC liposome and formed a liposome with new thermal 

property.

Among the phase transition peaks of Liposome D, Liposome DC and 

Liposome DH, the phase transition of Liposome DH was the broadest, the phase 

transition of Liposome D was the narrowest, while the broadness of the phase 

transition peak of Liposome DC was intermediate. This might be due to the 

structure of cholesterol and CPE-215® molecules. Cholesterol is a compact, rigid 

hydrophobic entity with a polar hydroxyl group. With cholesterol in the liposome 

bilayer, it is difficult for the DPPC lipid to pack the hydrocarbon chains next to the 

rigid sterol moiety. In the liquid crystalline state, the sterol results in 

conformational constraints on the phospholipid chain, whereas in the gel state 

the sterol inhibits optimal packing of the all- t r a n s  chain configuration. The result 

is that lipid-cholesterol mixtures behave as intermediate between the gel and
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liquid crystalline states of the pure phospholipid, which explains the broadness of 

the phase transition of Liposome DH. Basically, cholesterol acts as a “spacer” 

and reduces the attractive forces between the lipid hydrocarbon chains. 

Compared to cholesterol, CPE-215® is a more flexible lactone o f  a  16-membered 

ring and can cooperate better with phospholipid hydrocarbon chains. In the gel 

phase, the CPE-215® can change its conformation so that the phospholipid 

hydrocarbon chains can pack mostly as t r a n s  conformation; in the liquid 

crystalline phase, CPE-215® can also change its conformation to minimize the 

interference with the g a u c h e  packing of the phospholipid hydrocarbon chains. 

This can explain why the phase transition of DPPC/CPE-215® liposome is 

narrower than that of Liposome DH. Cholesterol’s rigidity and CPE-215®’s 

flexibility may also account for the phase transition temperature change of the 

liposomes.

In our insulin release experiments, we started with DPPC (or 

DPPC/Cholesterol) liposomes and CPE-215® was added outside of liposomes; 

with CPE-215® continuously contacted with liposomes and went into the lipid 

bilayer, Liposome D (or DH) became Liposome DC (or DHC). From Figure 44 

and 44, we only learned that the phase transition temperature of Liposome DC 

(4:1 (w/w) DPPC/CPE-215®) was lower than that of Liposome D, but we would 

also like to know how the DPPC liposome phase transition temperature changed 

while CPE-215® was gradually incorporated inside (Did the phase transition 

temperature decrease continuously? Or did the phase transition temperatures 

not change, just the old peak decreasing and the new peak increasing?) It is
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similar to the situation that after we discovered the starting point A and the end 

point B, we would also like to know how to get to B from A.

In order to make CPE-215® go into the liposome gradually, we planed to 

seal the Liposome D with CPE-215® inside a 50-pl aluminum pan with a cover 

and heat it from 5 °C to 90 °C for multiple cycles with the modulated DSC. 

Although CPE-215® is hydrophobic and has little solubility in water, its solubility 

can increase with temperature. With the increase of temperature, more and more 

CPE-215® can go into the aqueous phase; while when the temperature cools 

down, super-saturated CPE-215® needs to get out of the aqueous phase, and 

some will find the liposomes and go inside of bilayers. With multiple cycles of 

heating and cooling, CPE-215® will gradually transport into the lipid bilayers, and 

we will monitor this continuous change by the modulated DSC. In this 

experiment, we did not want the sealed mixture to have any thermal phase 

change, except the liposome phase transition itself, from 20 °C to 60 °C. Due to 

the melting point of CPE-215® at 34 °C, we could not use the pure CPE-215® 

with Liposome D. We found that the mixture of 2:1 (w/w) CPE-215®/cottonseed 

oil did not have thermal phase change from 20 °C to 60 °C (Figure 45), so that 

we used 2:1 CPE-215®/cottonseed oil instead.
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Figure 45 DSC of 2:1 (w/w) CPE-215®: cottonseed oil (exothermal up).
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Figure 46 Four heating cycles of Liposome D (DPPC liposome) 

(exothermal up).

Figure 46 was the reversible heat flow of modulated DSC of four heating 

cycles of Liposome D. This showed that the phase transition of Liposome D was 

reversible, transition peak size and position did not change with the number of 

heating cycles if there was no outside interference. In other words, if the lipid 

bilayer structure/composition did not change, the phase transition peak size and 

temperature would not change; if the phase transition size and temperature 

changed, then there must be changes in the lipid bilayer structure or 

composition.
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Figure 47 25 heating cycles of Liposome D (DPPC liposome) with CPE- 
215®/cottonseed oil mixture.

Figure 47 shows the result of the multiple heating and cooling of Liposome 

D and 2:1 (w/w) CPE-215®/cottonseed oil mixture. The reduction of the heat of 

the phase transition and the decrease of the transition temperature are 

interpreted to be due to CPE-215® gradually diffusing inside of DPPC lipid 

bilayers. Since there was no endothermic peak increasing around 34 °C (mp of 

CPE-215®) and only the whole liposome phase transition peak shifted to low 

temperature during the cyclic process, we concluded that CPE-215® was evenly 

distributed in liposomes from the beginning, which was thermodynamically 

favored. If we looked at Figure 47 in detail, we could find that with the number of 

heating cycles increasing, the starting temperature of the phase transition
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decreased, while the ending temperature of the phase transition almost did not 

change. This meant with more and more CPE-215® gradually inserted into the 

DPPC liposome, lower temperature was required to make the system deviate 

from ordered packing state, but the same high temperature was still needed to 

get the whole system away from ordered packing. CPE-215® is a small flexible 

molecule, its gradual insertion into the DPPC lipid bilayer disturbed the a \\- tra n s  

ordered packing of phospholipid hydrocarbon chains in the gel state, which 

resulted in lower starting temperature of the liposome phase transition. However, 

since the majority was still DPPC lipid, each time the same high temperature was 

still needed to get all the DPPC chains in the g a u c h e  conformation to reach the 

liquid crystalline state.

Figure 48 showed how the liposome phase transition temperature 

changed with the number of heating cycles, which decreased almost linearly at 

the beginning and reached a plateau in the end.
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Figure 48 Change of phase transition temperature of Liposome D with the 
number of heating cycles.

In order to see if CPE-215® could only reduce the phase transition 

temperature of Liposome D, we did the same multi-heating-cycle experiment with 

Liposome DH. Figure 49 was the DSC result, which also showed that the phase 

transition temperature of Liposome DH decreased with continuous insertion of 

CPE-215®. Although the phase transition for Liposome DH was very broad, the 

peak shift with number of heating cycles was still quite noticeable. We took the 

lowest point of the curve as the phase transition temperature. Figure 50 showed 

the phase transition temperature decreased with number of heating cycles. The 

decrease was almost linear with the number of heating cycles.
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Figure 49 Eight heating cycles of Liposome DH (DPPC/Cholesterol 
liposome) with CPE-215®/cottonseed oil mixture (exothermal up).
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Figure 50 Change of phase transition temperature of Liposome DH with 
number of heating cycles.

We also looked at the enthalpy change of liposomes during the lipid 

bilayer phase transitions. Since the phase transitions of cholesterol-containing 

liposomes are too broad, it is hard to tell the starting and ending points of those 

transitions and accurately obtain the enthalpy change; in that case, here we only 

discuss the phase transition of the DPPC liposomes. According to the thermal 

data of Figure 43, the enthalpy change during the Liposome D phase transition is 

37 kJ/mol, which is similar to the literature value.108 However, the enthalpy 

change in the phase transition of Liposome DC is only 20 kJ/mol, assuming only 

DPPC molecules in the liposomes accounted for the enthalpy change, not CPE-
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215®. The big difference between the enthalpy change of Liposome D and 

Liposome DC can be explained from the different molecular conformation of 

DPPC molecules in those two liposomes. As we have discussed before, during 

the phase transition of Liposome D from lamellar gel phase to lamellar liquid 

crystalline phase, the conformation of the acyl chains of DPPC molecules are 

changed from all- t ra n s  to g a u c h e , and the enthalpy change is related to the 

energy needed to convert the DPPC acyl chains from the highly ordered, low 

energy level all- t ra n s  conformation to the g a u c h e  conformation. In Liposome DC, 

due to the insertion of CPE-215® molecules in the DPPC lipid bilayer, not all the 

DPPC acyl chains are packed in t ra n s  conformation in the lamellar gel phase, 

which increases the energy level of the gel phase of Liposome DC and results in 

less enthalpy change during the phase transition.

Thermal data from Figure 47 further supported the above explanation. 

After calculation, we found that with CPE-215® diffusing into the DPPC 

liposomes, the Liposome D phase transition enthalpy change decreased 

gradually from 37 kJ/mol to 22 kJ/mol after 25 cycles of heating and cooling 

(Figure 51).
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Figure 51 Change of phase transition AH of DPPC in Liposome D (DPPC 
liposome) with CPE-215® insertion.

Table 6 DSC study summary table

To (°C) Transition width AH of DPPC 
(kJ/mol)

DPPC liposome 42 Narrow 37

DPPC/CPE-215®
liposome

34 Broad 20

DPPC/Cholesterol
liposome

46 Very road N/A

DPPC/Cholesterol/CPE- 
215® liposome

37 Broad N/A
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4.2.5. Conclusion

With the help of the powerful modulated DSC technique, we carried out a 

series of liposome phase transition studies. We found that adding CPE-215® into 

the lipid bilayer could reduce the phase transition temperature of liposomes. 

Adding both CPE-215® and cholesterol into the lipid bilayer can broaden the 

phase transition of DPPC liposomes, but CPE-215® has less peak broadening 

effect than cholesterol, which may be due to the rigidity of cholesterol and the 

flexibility of CPE-215®. When inserted into the lipid bilayers, CPE-215® was 

evenly distributed in the bilayers. With CPE-215® gradually inserted into the lipid 

bilayers, the liposome phase transition temperature was gradually shifted to 

lower temperatures, and the liposome phase transition enthalpy change also 

decreased gradually.

4.3. Insulin Interaction with Liposome (Membrane)

Depending on the surface properties and the distribution of hydrophilic or 

hydrophobic regions on the surface, different proteins interact with liposomes in 

different ways. Usually there are three types of interaction between 

protein/peptide and lipid bilayer: adsorption, insertion and penetration (Figure 

52).
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Figure 52 The interaction modes between protein and lipid bilayer 

membrane.

Understanding the interaction between insulin and liposomes is important 

to our mechanism study of insulin release from liposomes and permeation 

enhancing effect of CPE-215®. Zhang, et al. studied the interaction between 

insulin and liposome by fluorescence spectra and microcalorimetry methods.115 

They found that the interaction between insulin and liposome was weak; there 

was no protein insertion or penetration, probably only weak adsorption; the heat 

effect of the interaction AH= -1.98 kcal/mol, which indicates weak non-covalent 

binding.
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4.3.1. Centrifugal Extraction to Determine the Insulin Adsorption Coefficient 

on Membrane

From our experience in handling insulin molecules during the release 

experiments, we learned that insulin molecules can adsorb on the surface of 

liposomes; otherwise, we would not have needed to perform the multiple 

centrifugal extractions to ensure the outside surface of liposomes was insulin- 

free before the release experiments.

Each of the 20 amino acids can be distinguished by the R-group 

substitution on the a-carbon atom. There are two broad classes of amino acids 

based upon whether the R-group is hydrophobic or hydrophilic. Usually the 

hydrophilic amino acids tend to interact with the aqueous environment and are 

often found on the exterior surface of proteins, but some hydrophobic amino 

acids also exist on the exterior surface, which accounts for the hydrophilic 

regions and hydrophobic regions on the protein surface. Under the hydrophilic 

surface, liposomes have the hydrophobic layer to isolate the inside from outside 

environment. Protein can adsorb on the liposome surface by letting its hydrophilic 

regions contact the liposome hydrophilic layer.

Our insulin adsorption isotherm is based on three assumptions: adsorption 

cannot proceed beyond monolayer coverage; all liposome surface sites are 

equivalent and can accommodate, at most, one adsorbed protein; the ability of a 

protein molecule to adsorb at a given site is independent of the occupation of 

neighboring sites. As one can see, our isotherm is similar to a Langmuir 

isotherm.116
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The dynamic equation is: Insulin + Surface <-> Insulin-Surface 

Rate of adsorption V a -  k xC (  1 -  0 )

where 0  is the fractional liposome surface coverage, k i  is the insulin adsorption 

rate constant, C is the insulin solution concentration.

Rate of desorption V d - k _ x6

where k . i  is the insulin desorption rate constant.

At equilibrium, the rate of adsorption is equal to the rate of desorption.

Then

We carried out a precise centrifugal extraction experiment to determine 

the insulin adsorption coefficient, K,  on the liposome surface. After the normal 

procedure of making 400 nm 4:1 (w/w) DPPC/Cholesterol liposomes in insulin 

solution at pH 7, we performed the centrifugal extraction at 4 °C. We used the 

DYNAC centrifuge at 2000 rpm, which was slow compared to the ultracentrifuge, 

but fair enough to concentrate the liposomes to the bottom of the tube. We 

allowed 1 hour for the insulin desorption and adsorption to reach equilibrium for 

each centrifugal extraction process. We wanted to see the insulin adsorption

k xC { \ - 6 )  =  k_xe [4.5]

k _ K
with ^  -  ,

k _  i

1+  K C  '
[4.6]
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equilibrium at 37 °C, but the lipid bilayer surface is not a solid sphere, and its 

fluidity depends on its temperature. If we perform the centrifugal extraction at 

high temperature, for example 37 °C, not only could the liposomes break during 

the centrifugation, but the inside insulin could come out to interfere with the 

outside insulin concentration. In that case, this experiment had to be carried out 

at low temperature, to ensure the hardness of the liposome sphere and minimize 

the leakage of insulin from inside of liposomes.

Following each centrifugal extraction, we recorded the volume of insulin 

solution in the centrifuge tube (excluding the volume of liposomes), and used 

fluorescence to detect the insulin concentration of the supernatant (before the 

fluorescence measurement, centrifuge filtration with 50 KDa MWCO membrane 

filters was used to separate insulin solution from liposomes); then we recorded 

the volume of supernatant that we took out and the volume of fresh buffer we 

added in. We used the calibration curve to convert the fluorescence signal to 

insulin concentration.
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Figure 53 The fluorescence signal of the supernatant was measured after 
each centrifugal extraction for 8 times. Note the fluorescence signal is on 
a log scale.

Figure 53 shows the decrease of fluorescence signal of the supernatant with the 

increase of centrifugal extraction times. Since the decrease in the signal was so 

drastic for the first couple extractions, the fluorescence signal is shown on a log 

scale, which indicates that the insulin adsorption on the liposome surface is not a 

strong interaction. After 3 extractions, the fluorescence signal was near that of 

the background.

After the ith centrifugal extraction, the insulin concentration, C,, is the result 

of dilution and insulin desorption from the liposomes. Therefore, the remaining 

solution volume (excluding the liposome volume) after removing the supernatant,
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] / „ , and the final solution volume after adding fresh buffer, V,, are two important 

parameters. Then according to the mass balance

Cl_xVri+a0 i_x= C iVl +ae i [4.7]

where a is the amount of insulin adsorbed on the liposome surface when 

0=100%.

Table 7 Centrifugal extraction data

/ C, (mg/ml) Vri (ml) Vi (ml)
0 0.11 N/A N/A
1 3.78 x 10'* 0.33 11.40
2 2.64 x 10'4 0.11 11.28
3 5.39 x 10"& 0.17 11.38

Table 7 listed the information from the centrifugal extraction experiment, 

which were used to calculate the adsorption coefficient, K .

From the equations of

CqV,.j +  u0o — CXVX + <20j

CxVr 2 +  adx =  C2V2 + a02 

1 + KC0

4
1 1 + KCX

2 1 + k c 2
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we can calculate the values of K , a , 0*. 02, 03-

We solved this system of equations and obtained two possible 

mathematical solutions, one was K -  97 ml/mg, the other was K  = 7.13 * 105 

ml/mg. Based on the solutions we got, when K -  97 ml/mg, 0o = 0.914, 9 i  =  

0.268, 02 = 0.025, a = 0.0105 mg; when K =  7.13 *105 ml/mg, 0O = 0.999987, 6 1 

=  0.99963, 02 = 0.9947, a = 18.99 mg. However, the total amount of insulin we 

put into the system when we prepared the liposomes, both inside and outside of 

liposomes, was less than 1.4 mg of insulin; hence, it is impossible to have 18.99 

mg of insulin adsorbed on the liposome surface. Therefore, K  = 7.13 *105 ml/mg 

is only a mathematical solution, with no physical reality, and was discarded. K  = 

97 ml/mg is the reasonable equilibrium constant for insulin to adsorb on a 

DPPC/Cholesterol liposome membrane.

Our calculation showed that if the liposome surface was 100% covered by 

insulin, the amount of insulin on the liposomes surface was 0.0105 mg. In our 

experiment, after the liposome extrusion process, there were 0.067 g of DPPC 

and 0.017 g cholesterol in the liposomes. Since cholesterol has a much smaller 

hydrophilic group than DPPC, we only used the DPPC amount to estimate the 

liposome surface area. Since the liposomes we made were 400 nm large 

unilamellar liposomes, we assumed there was no curvature effect and the overall 

surface area of liposomes was equal to the one side surface of one planar lipid 

bilayer. A phosphatidylcholine’s hydrophilic head group has an average surface 

area of 50 A2,117 the total liposome surface in our experiment S = 0.067 g + 734 

g/mol + 2 x 6.02 * 1023 /mol * 50 A2 = 1.37 x 1021 A2. Therefore, when the
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liposome surface was 100% covered by insulin (0 = 1), the area occupied by 

each insulin molecule was 1.37 * 1021 A2 + (0.0105 x 10'3 g + 5800 g/mol * 6.02 

x 1023 /mol) = 1.26 x 1 o6 A2, which is similar to a square of 112 nm x 112 nm. As 

we know, the diameter of insulin monomer is less than 3 nm; therefore, even at 

100% coverage, the liposome surface was loosely occupied by insulin molecules, 

which is another proof of weak interaction. When 0 = 1, on the inner surface of 

each 400 nm liposome, the average number of insulin monomer is 3.14 x (4000 

A)2 + 1.26 x 10® A2 = 40; most likely, insulin would exist as dimer when 0 = 1, 

then there would be 20 insulin dimer adsorbed on the inner surface of each 400 

nm liposome. This particularly low number of adsorbed insulin molecules 

indicates that insulin has a very low affinity for the outside of the lipid bilayer.

All these results confirmed that there is interaction between insulin and 

liposome, but such interaction is weak, most likely through electrostatic 

interaction.

4.3.2. ITC Experiment of Insulin Titration on Liposome

Isothermal Titration Calorimetry (ITC) is a thermodynamic technique for 

monitoring any chemical reaction initiated by the addition of a binding 

component, and has become a method of choice for characterizing biomolecular 

interactions.118,119 When substances bind, heat is either generated or absorbed. 

Measurement of this heat allows accurate determination of binding constants, 

reaction stoichiometry, enthalpy and entropy, thereby providing a complete 

thermodynamic profile of the molecular interaction in a single experiment.
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Injection of a ligand into the target molecule (which is accommodated in the 

calorimeter cell) will result in an endothermic, or exothermic, enthalpic event 

which will be observed as a heat pulse.

When we used ITC to study the insulin adsorption on liposome surface, 

insulin was the titrating ligand and the liposome was the target substance. Since 

the interaction was expected to be weak, insulin solution with high concentration 

was used to obtain enough signal strength. We prepared 5 mg/ml (0.86 mM) 

insulin solution and two kinds of liposomes with the lipid content of 5 mg/ml at pH 

3.1 in 30mM citrate buffer to study the interaction of insulin with liposomes, i.e. 

400 nm 6:1.5:1 (weight) DPPC/Cholesterol/CPE-215® unilamellar liposome and 

400 nm 4:1 (weight) DPPC/Cholesterol unilamellar liposome. We also sealed 

insulin solution and liposome solutions into dialysis tubes and put them into the 

pH3.1 30 mM citrate buffer overnight to make sure they all had the same pH and 

ionic strength. The dialysis membrane had a molecular weight cutoff of 3500 to 

make sure insulin and liposome can not pass through.

MicroCal, Inc. kindly agreed to perform the titration experiment for us 

using their VP-ITC at 37 °C. Besides two liposome sample titrations, a control run 

was also carried out, i.e. using insulin to titrate pH 3.1 citrate buffer.

Before the titration, the liposomes were placed in the calorimeter cell 

(1.428 ml cell volume) at 37 °C. The insulin solution was loaded in the syringe, 

and the titration program adjusted for 10 pl/injection (2 pi for 1st injection), 3.5 min 

interval between injections, 20 sec per injection.
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Figure 54 The VP-ITC raw data of two liposome sample titrations and one 
control run (endo up). Two liposome samples (400 nm 6:1.5:1 (weight) 
DPPC/Cholesterol/CPE-215 unilamellar liposome and 400 nm 4:1 
(weight) DPPC/Cholesterol unilamellar liposome) were titrated by insulin 
(5 mg/ml; 0.86 mM) in 30 mM pH 3.1 citrate buffer at 37 °C. 10 pl/injection 
(2 pi for 1st injection), 3.5 min interval between injections, 20 sec per 
injection, 280 rpm stirring.

Figure 54 shows the ITC raw data for two sample titrations and one 

control run. The heat effects for the control (upper curve) were endothermic and 

its magnitude decreased quite rapidly as the titration proceeded. Near the end of 

the titration, the heat effects became very small and constant. These data 

appeared to be the result of the heat of dilution of a concentrated insulin solution 

(0.86 mM) injected into a buffer. Due to our dialysis treatment of the samples
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before the titration, the large endothermic heat observed for the control run could 

not be due to pH mismatch. Additionally, a likely source for these endothermic 

heat effects is the insulin dimer to monomer dissociation when the insulin 

solution was diluted into the buffer. The heat effects for the two liposome sample 

titrations are very similar to that of the control, though their endothermic heat 

effects were slightly smaller than those of the control due to the weak binding of 

insulin to the liposome surface.

The integrated heats for three titration experiments are shown in Figure 55 

after normalizing by the insulin concentration (using 0.86 mM). The differences in 

the integrated heats between the liposome samples and the control are small. It 

appears that the sample of DPPC/Cholesterol/CPE-215® liposome has a slight 

larger exothermic net heat than that of DPPC/Cholesterol sample.
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Figure 55 VP-ITC heat data after auto baseline integration, normalized on 
insulin concentration (0.86 mM). 400 nm 6 :1.5:1 (weight) 
DPPC/Cholesterol/CPE-215® unilamellar liposome and 400 nm 4:1 
(weight) DPPC/Cholesterol unilamellar liposome) were titrated by insulin 
(5 mg/ml; 0.86 mM) in 30 mM pH 3.1 citrate buffer at 37 °C. 10 pl/injection 
(2 pi for 1st injection), 3.5 min interval between injections, 20 sec per 
injection, 280 rpm stirring, x, control titration; • , DPPC/Cholesterol 
liposome; □, DPPC/Cholesterol/CPE-215® liposome. Positive heat value 
means endothermal process.
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Figure 56 VP-ITC heat data after the sample runs subtracted the control run 
point by point. • , DPPC/Cholesterol liposome; □, DPPC/Cholesterol/CPE^IS* 
liposome. Negative heat value means exothermal process.

In order to clearly show the net heat effects of insulin adsorption on 

different liposome surfaces, the heat data of the control run were subtracted from 

that of liposome samples point by point, and Figure 56 shows the subtraction 

results. In Figure 56, we can see that DPPC/Cholesterol/CPE-215® liposomes
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have a larger exothermic net heat than DPPC/Cholesterol liposomes. The net 

exothermic heat from insulin adsorption on DPPC/Cholesterol/CPE-215® 

liposomes is almost twice that of DPPC/Cholesterol liposomes, which clearly 

indicates a higher affinity of insulin to the surface of DPPC/Cholesterol/CPE-215® 

liposome than to the surface of DPPC/Cholesterol liposome.

4.4. Mechanistic Hypothesis for the Insulin Release from Liposome

4.4.1. Diffusion through Lipid Bilayer Membrane

Since the permeability of lipid bilayer membranes to small molecules is a 

well-studied field,120,121 at the beginning of our mechanistic study of permeability 

of insulin through lipid bilayers, we started by testing the mechanism of small 

molecules crossing lipid bilayer membrane first.

The ability of a small solute molecule to cross the lipid membrane is 

quantified by its permeability coefficient. For a molecule to cross the bilayer, it 

must (1) enter the membrane, overcoming any interfacial resistance or free 

energy barrier to do this, (2) diffuse across the bilayer, and (3) exit the membrane 

on the opposite side, again, overcoming any possible interfacial resistance. Any 

of these steps could, in principle, be rate limiting. The permeability of most 

nonelectrolytes through lipid bilayer membranes can be successfully analyzed by 

the s o lu b i l i ty -d i f fu s io n  model, which makes the assumption that the rate-limiting 

step is the diffusion within the lipid bilayer and that interfacial barriers for 

membrane entry and exit are negligible. This allows one to assume a rapid
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partition equilibrium between the aqueous and membrane phases (step 1 and 3 

in Figure 57). The partition coefficient, K p, is defined by

K  = i £ n = i s i

'  [C?] [ C f ]  1 1

(1) (2) (3)

Figure 57 Simple schematic representation of the solute concentration 
change while crossing a lipid bilayer membrane according to the solubility- 
diffusion model. The solute concentrations at locations in the membrane 
(m) and aqueous (aq) phase are indicated. The numbers at the bottom 
refer to the steps required for a solute to cross the membrane from left to 
right.

The permeability coefficient, P, in terms of the net flux, from side 1 to side 

2, of solute across a m em brane of thickness of, is defined by

flux = P - { C “q - C a2q) [4.9]

This same flux can be expressed in terms of the diffusion coefficient describing 

the flux of solute within the membrane, D m, using Fick’s first law.
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[4.10]

where the concentration gradient is assumed to be linear across the bilayer. 

Substituting from equation 4.8 into equation 4.10 yields

Comparing equation 4.9 and 4.11 gives

The permeability coefficient is a product of the partition coefficient and diffusion 

coefficient within the membrane, divided by the width of the membrane.

We have already obtained the insulin diffusion coefficient in aqueous

hydrophobic layer of the bilayer membrane is made of long hydrocarbon chains, 

we tried to estimate D m from the insulin diffusion coefficient in decane. Due to the 

extremely low solubility of insulin in decane, it is very hard to obtain the insulin 

diffusion coefficient in decane experimentally. According to Stokes-Einstein 

equation (equation 4.1), the diffusion coefficient is determined by temperature, 

the viscosity of the liquid and the hydrodynamic radius of the molecule. The 

viscosity of decane at 20 °C is 0.92 cP, which is very similar to that of water at 20 

°C (1 cP). In that case, at the same temperature, the insulin diffusion coefficient 

in decane should be very similar to that in water, or at least in the same 

magnitude of 10'6 cm2/s. However, the hydrocarbon chains of the lipids in the 

lipid bilayer are lined up and orderly packed, which is not like the free decane

p [4.11]

solution from NMR, which is 1.4 * 10'6 cm2/s at 37 °C for insulin dimer. Since the
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molecules. From insulin adsorption on the membrane surface to insulin insertion 

into the membrane, the movement of insulin is associated with the lateral 

movement of lipids molecules. Therefore, the lateral diffusion (diffusion is 

restricted to two dimensions) coefficient of lipid should also be considered.122 The 

lateral diffusion coefficient in unilamellar vesicles of DPPC at 50°C was 

measured to be 8 * 10"8 cm2/s .123 According to our DSC data of DPPC liposomes 

(Figure 43), 37 °C and 50 °C are all in the phase transition range, therefore, the 

lateral diffusion coefficient in unilamellar vesicles of DPPC at 37°C should be of 

the order of 10'8 cm2/s. We would use 10'8 cm2/s to estimate the insulin diffusion 

coefficient in DPPC lipid bilayer at 37 °C.

The thickness of one lipid bilayer is about 4 -5  nm. If we assume the 

insulin permeation through lipid bilayer is a diffusion-controlled process like the 

small nonelectrolytes, then according to the relation between the diffusion 

coefficient and the mean-square displacement, <x2>,

< * 2 >D It ’
[4.13]

the time required for insulin molecule to cross the lipid bilayer would be

<=(j^>=J 4 x lO -W  ^

2 D m 2 x 1 0  cm ■ j

This calculation indicates that once insulin is in the lipid bilayer, it takes 

almost no time for insulin to cross the membrane, but our insulin release 

experiment data did not show such a fast insulin release rate. Therefore, we can 

see diffusion is not the rate-limiting step for the insulin release from liposome,
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and we cannot ignore the large electric potential energy increase caused by 

protein surface charges in the bilayer membrane. The partition coefficient, K p 

(Equation[4.8]), of insulin in lipid bilayer must be very low. With both low K p and 

D m, it is not surprising that insulin has low permeability in lipid bilayers (Equation

[4.12]).

Insulin in water is stabilized by the favorable interaction of the water 

dipoles, the hydration energy. Moving insulin between media of different 

dielectric constants, e.g., from an aqueous phase to the bilayer membrane 

interior, is unfavorable because of the loss of this hydration energy.

4.4.2. The Role of CPE-215® as a Membrane Permeation Enhancer

From our release experiments, we know that at 37 °C, insulin has a small 

leakage rate from liposomes even without the addition of CPE-215®; the addition 

of CPE-215® greatly increased the insulin release rate from liposomes. 

Therefore, our mechanism hypothesis should at least explain these two 

phenomena.

Liposome leakage has been studied for decades. There are several 

competing theories, focusing on defects in the packing order of the bilayer. 

These defects are postulated to form spontaneously, like fluctuating holes124, or 

possibly along boundaries between coexisting lipid gel and liquid crystalline 

phases125. Liposome leakage is maximal at the transition temperature between 

the gel and liquid crystalline phases126, which indicates that the leakage is not 

due to a simple increase in molecular motion at higher temperatures, but is due
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to a transient structural disorder of the lipid packing induced by the phase 

separation.

Based on this information, we propose that the rate-limiting step for insulin 

release from liposome is the probability for an insulin molecule to find a 

appropriate defect in the lipid bilayer to cross the membrane, and the rate of

insulin release, V, can be expressed a s V  oc P . • P d t where P,is the probability of 

insulin molecules adsorbed on the lipid bilayer surface, Pd is the probability of 

defects in the lipid bilayer.

Our ITC experimental data show a larger net insulin adsorption exothermic 

heat on DPPC/Cholesterol/CPE-215® liposome surface than on 

DPPC/Cholesterol liposome surface, which indicates a higher affinity and larger 

adsorption coefficient of insulin on the surface of DPPC/Cholesterol/CPE-215® 

liposome than on the surface of DPPC/Cholesterol liposome. Therefore, with the 

addition of CPE-215® in the lipid bilayer, more insulin can be adsorbed on the 

liposome surface, that is, the addition of CPE-215® can increase P,.

Although the hydrophobic CPE-215® likes to go into the interior 

hydrophobic region of the bilayer membrane, there is a hydrophilic layer at the 

outmost surface of liposome and CPE-215® has to cross that layer first to go 

inside of the bilayer. It is clear that the bilayer is a remarkably good barrier 

against both hydrophilic and hydrophobic molecules. However, the defects in the 

liposome surface are perfect places for CPE-215® to enter the bilayer. Once 

CPE-215® molecules go into the defect, they stabilize the defect and make a 

hydrophobic region on the liposome surface attract more CPE-215® to make
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larger defect. As a result, CPE-215® can increase P d. However, the size of the 

stabilized defect is limited by the energy cost associated with the creation of a 

large CPE-215®/water interface.

The above analysis shows that CPE-215® has positive effect on the two 

major factors in the rate-limiting step of insulin release. That is our rational on 

how CPE-215® can facilitate the insulin release from liposomes.

Compared to the totally hydrophobic hydrocarbon chains of the lipids, 

CPE-215® has a better affinity to the insulin molecule due to its polar ester group. 

Figure 58 shows the insulin dimer surface property region distribution. The insulin 

dimer structure was obtained from RCSB Protein Data Bank, and was displayed 

by Swiss-PdbViewer. Those regions are determined by the property of amino 

acid side groups: the polar regions are red, the non-polar regions are blue, the 

acidic/basic regions are yellow. The non-polar regions are ready to be in the 

hydrophobic environment; although the polar regions are not as good as the non­

polar regions in the hydrophobic environment, they are much better than the 

acidic/basic regions; the acidic/basic regions do not want to stay in the 

hydrophobic environment at all, because they can lose the hydration energy once 

they move from hydrophilic phase to the hydrophobic phase within the lipid 

bilayer.
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Figure 58 Insulin dimer surface property region distribution: the polar 
regions are red, the non-polar regions are blue, the acidic/basic regions 
are yellow.

When insulin dimer enters the defect in the liposome, the CPE-215® 

molecules in the defect can cover the non-polar and polar regions on the dimer 

surface, some may even cover the acid/basic regions because insulin prefers 

CPE-215® to hydrocarbon chains of lipid anyway. Then the whole insulin dimer 

molecule can be shielded by CPE-215® molecules and cross the bilayer with less 

energy barrier. This is another possible role of CPE-215® as a membrane 

permeation enhancer, though this may not be the major facilitating effect of CPE- 

215® on the insulin release from liposome process.
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4.4.3. Proposed Hypothesis for the Whole Insulin Release Process

From our release data with different formulations and different conditions, 

we found one similar phenomenon—different formulations can initiate different 

initial release rates, but high insulin release rates only appeared at early release 

time, later on all the release rates were similar and independent of enhancer 

formulation. Figure 59 is an example of this phenomenon that has been 

systematically observed.
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Figure 59 Insulin release from a DPPC/Cholesterol liposome at 37 °C

Figure 59 shows the insulin release from a DPPC/cholesterol (4:1 w/w) 

liposome at 37 °C. In this experiment, three release tubes contained the same
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amount of DPPC/cholesterol (4:1 w/w) liposomes. One tube was used as blank 

control, one tube received a CPE-215®/cottonseed oil (3:1 w/w) mixture, and the 

other received a CPE-215®/cottonseed oil (3:1 w/w) mixture with p-cyclodextrin 

(1%). The release data showed that the insulin release rate of the blank control 

almost remained the same throughout the whole experiment, which showed the 

intrinsic leakage rate of a DPPC/cholesterol liposome. After the addition of CPE- 

215®/cottonseed oil mixture, the release rate was about twice the release rate of 

the blank control at the beginning, three hours later, the release rate began to 

slow down, and finally the release rate was equal to the one of the blank control. 

The formulation containing P-cyclodextrin really boosted the initial insulin release 

rate (about 8 times from the blank control rate, and 4 times from the formulation 

containing only CPE-215® and cottonseed oil). Later this rate also slowed down 

to equate to the rate of blank control release. In Figure 59, we divided the release 

data into three phases: Phase I, when the high initial release rates occur; Phase 

II, when the release rates begin to decrease; Phase III, when the release rates 

are all equal to the rate of the blank control.

Figure 60 shows a molecular level illustration of our proposed hypothesis 

for the whole insulin release process with CPE-215®. According to our DSC data 

(Figure 44), 37 °C is in the phase transition range of DPPC/cholesterol liposome, 

and there are defects existing in liposome. Due to the reason we discussed 

earlier, the oil mixture prefers being inserted into the defects of lipid bilayer. Once 

CPE-215® molecules go into the defect, they stabilize the defect and make a 

hydrophobic region on the liposome surface to attract more CPE-215® to form a
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domain of CPE-215®, probably a few nanometers in diameter, which is not 

detectable by MDSC. As a result, high stress is generated at the outer surface of 

the liposome, and a transient CPE-215® “pore” is formed to facilitate the protein 

transport through the membrane. That is Phase I in Figure 59 and 60.

Defect

CFO OLiposome

Low insulin leak rate High insulin leak rate Medium insulin leak rate Low insu|in |eak rate

T=0 Phase I Phase II Phase III

Figure 60 Scheme of Immediate Impact theory

Large CPE-215® domains are not favored thermodynamically; entropy 

causes CPE-215® to distribute evenly in the bilayers. When CPE-215® molecules 

begin to diffuse out of the CPE-215® rich domain, the transport “pores” begin to 

disappear, and the insulin release rate starts to decrease. This is what we call 

Phase II in Figure 59 and 60.

When all the CPE-215® molecules in the domains are evenly distributed in 

the lipid bilayers, no more “pores” exist and the release rate goes back to the 

blank control leakage rate. We define this mode as Phase III in Figure 59 and 60.
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This hypothesis implies that the CPE-215®-evenly-distributed liposomes 

should have a similar leakage rate comparable to the blank control liposomes, 

and should be able to be reactivated by CPE-215®/cottonseed oil droplets. In 

order to test the validity of the theory, we designed a new release experiment. 

Two kinds of liposomes were made, one was 4:1 (weight ratio) DPPC/cholesterol 

liposome, and the other was DPPC/CPE-215®/cholesterol liposome. In the 

DPPC/CPE-215®/cholesterol liposome, CPE-215® was evenly distributed in the 

lipid bilayers, DPPC/CPE-215® molar ratio was 2:1 (weight ratio 6:1), and 

DPPC/cholesterol weight ratio was still 4:1. According to our theory and the 

release data of Figure 59, after 6 hours, CPE-215® should be evenly distributed 

in the lipid bilayers; if another dose of formulation was added then, there should 

be another enhanced insulin release rate. In this set of experiments, there were 

five release tubes, two of them were used for controlling the leakage rate of 

DPPC/cholesterol liposome and DPPC/CPE-215®/cholesterol liposome, two of 

them were used to see the enhanced release effect of adding oil mixture into 

DPPC/cholesterol liposome and DPPC/CPE-215®/cholesterol liposome at time 

zero, the last one was subjected to a second oil mixture “injection” after 6 hours 

to see if there would be renewed release boost.

Figure 61 shows the insulin release results of this set of experiments and 

Figure 62 is a close-up of Figure 61 at early times. The leakage rate of 

DPPC/CPE-215®/cholesterol liposome was similar to that of DPPC/cholesterol 

liposome, sometimes even slower than that of DPPC/cholesterol liposome, which 

is in good agreement with our hypothesis theory. Although the third point of the
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DPPC/cholesterol liposome release curve was a little low, it was still within the 

experimental error. Release from the DPPC/CPE-215®/cholesterol liposomes 

was activated by CPE-215®/cottonseed oil mixture, similar to what CPE- 

215®/cottonseed oil mixture did to DPPC/cholesterol liposome. Again this agrees 

with our theory. We think that evenly distributed CPE-215® has a function similar 

to cholesterol in membrane barrier. In DPPC/CPE-215®/cholesterol liposome, 

there was already a large amount of CPE-215® evenly distributed in the lipid 

bilayers, the impact by outside oil mixture should not be as significant as in 

DPPC/cholesterol liposome, and the “pore” disappearing process should be 

slower due to reduced driving forces, which explained why in Figure 61 the 

“DPPC/CPE/Chol C&C” curve had a lower slope than the “DPPC/Chol C&C” 

curve at the beginning and took longer time to go back to the control leakage 

rate. The “DPPC/Chol 2C&C" curve showed another boost after a second 

addition of oil mixture at Hour 6, which is a very strong argument for our theory. 

All in all, this set of experiment proves the validity of our hypothesis on the 

membrane permeation enhancing effect of CPE-215®.
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Figure 61 Insulin release at 37°C from different liposomes.

Note that the “DPPC/Chol 2C&C” and “DPPC/Chol C&C” samples were 

having the exact same condition during the first 6 hours, so their release data in 

the first 6 hours should be the same, and they ARE the same in Figure 61, which 

shows the reproducibility of our experimental technique and sample handling.
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Figure 62 Close-up of Figure 61 at early times.

An important implication of this permeation mechanism is that CPE-215® 

is a SAFE membrane permeation enhancer. There are many kinds of membrane 

permeation enhancers out in the market. Some of these enhancers cause 

irritations, but what patients and the FDA are concerned most with is whether 

they are safe to use, whether they destroy the integrity of the membranes and let 

everything flow into the human body at the same time as the drug is delivered. 

Based on our theory, CPE-215® can only form transient “pores” in the membrane 

for a short period of time, and then the barrier function of the membrane is re­

established. In our in vitro study, the time from “pore” formation to “pore" 

resorption was about 6 hours; while in human body, cell metabolism is carried
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out at all times, so the in vivo time from “pore” formation to “pore” resorption 

should be less than 6 hours, which makes CPE-215® safer to use than other 

membrane permeation enhancers.
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CHAPTER 5

QUANTITATIVE RELEASE MODEL

We have proposed a theory to describe the process of protein release 

from liposomes and carried out a set of testing experiments to prove the validity 

of this theory. In this chapter we developed a mathematical model based on this 

theory to quantify the release results. A semi-empirical nonlinear equation 

involving four parameters effectively fits the protein release profiles. Finally we 

used a neural network approach to correlate the different release condition 

parameters and the four semi-empirical fitting parameters based on our limited 

data sets.

5.1. Mathematical Model

Based on our theory, the whole release process is simplified to be the 

combination of two steps: at the beginning it is the boost release triggered by the 

permeation enhancers; after the permeation enhancers are evenly distributed 

inside of the lipid bilayer, it is the self-leakage of liposome.

The part of the triggered boost release can be empirically expressed as a 

simple linear time dependent event

y  =  a - t  +  b  [5.1]
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where y  is the percentage of protein released from liposome, a is the boost 

release rate, b  represents the systematic error of the experiment (theoretically, b 

should be zero, but due to the temperature change at time zero and the sample 

processing time between taking the sample and finishing the separation of 

protein and liposome, b  is always a little bit more than zero).

The self-leakage of liposomes can also be empirically expressed as a 

simple linear time dependent event

y  =  c  • t  +  d  [5.2]

where y  is the percentage of protein released from liposome, c is the liposome

self-leakage rate.

We introduced another parameter, t*, which is the transition time between 

the triggered boost release and the self-leakage of liposomes 

where a - t * + b  =  c - t * + d  [5.3]

then d  -  ( a - c ) - t * + b  [5.4]

and the self-leakage of liposome can be expressed as 

y  =  c - t  +  ( a - c ) - t * + b  [5.5]

Mathematically, we combined both release steps [5.1] and [5.2] through 

the following equation

1
y  = 1 1 [5.6]

a - t  +  b  c - t  +  ( a -  c ) - t * + b  

or alternatively
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which could smoothly link the two release steps and represent the whole release 

process. Practically Equation 5.7 is a better fit than Equation 5.6 to all 

experimental data. Equation 5.7 was used to express the whole release process.

We used the “Solver” function of Excel® to estimate the best a,  b,  c  and t *  

values to make the Equation 5.7 fit the experimental data through a least square 

non-linear curve fit. Figure 63 is an example of the fitting. The complete fitting 

results for all release curves can be found in Appendix.

The experimental data used in Figure 63 are from the “CPE215” sample in 

Chapter 3.2.2, shown as square dots. The lines of “a t+ b ” and “cf+aT are shown in 

blue and pink colors respectively, and the t* value can be found in the cross point 

of these two lines.
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Figure 63 Modeling curves and the experimental release data of the 
“CPE215” sample in Chapter 3.2.2. The blue line is the " a t+ b ” , which 
represents the boost release; the pink line is “ c t+ d ” , which represents the 
later self-leakage of liposome. The time value of the cross point of the two 
lines is t* . The experimental data points are shown as square dots.

Equation 5.7 was used as the modeling equation for all the release 

experiments, and a, b , c, t *  were obtained from the Excel® “Solver” function 

within reasonable range to generate the best fits. Most modeling curves fit well 

with the experimental data, which, to some extent, contributes to the validity of 

our theory. With the values of a, b , c , t* , we can generate the whole release 

profile. Table 8 shows the fitting results with Equation 5.7.
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Table 8 Modeling parameters for the release experiments.

Chapter # Sample a (%»hour'1) b (%) c (%*hour'1) t* (hour)
3.2.2 Blank 1.66 10.41 0.48 6.79
3.2.2 CPE215 3.29 3.43 0.42 6.01
3.3.1 B-CD 4.14 12.93 0.15 5.32
3.3.1 CPE&CSO 6.72 8.68 0.19 3.54
3.3.1 B-CD+CPE&CSO 10.65 9.02 0.33 2.20
3.3.1 a-CD+CPE&CSO 15.25 23.07 0.09 3.47
3.3.2 C&C+20X B-CD 14.68 16.79 0.23 2.12
3.3.2 C&C+1x a-CD 9.94 9.86 0.20 2.51
3.3.2 C&C+20x a-CD 14.08 10.43 0.19 1.94
3.3.3 Blank 0.71 49.44 0.20 10.00
3.3.3 CSO+B-CD 11.83 55.55 0.02 1.00
3.3.3 CPE+B-CD 6.57 51.72 0.16 0.65
3.3.3 CPE+CSO+B-CD 11.87 40.41 0.28 0.94
3.4.1 Blank 0.90 2.14 0.70 10.00
3.4.1 CPE-215 2.90 0.41 0.62 2.60
3.4.1 Cottonseed Oil 4.26 0.65 0.30 5.78
3.4.1 CPE+B-CD 4.90 1.34 0.58 6.47
3.4.1 CSO+B-CD 7.11 1.67 0.83 5.14
3.4.2 Blank 0.91 4.02 0.71 54.29
3.4.2 B-CD 4.17 5.59 0.50 5.01
3.4.2 1xCPE&CSO 8.58 3.21 0.45 4.04
3.4.2 3xCPE&CSO 10.20 5.11 0.20 4.22
3.4.2 1 xCPE&CSO+B-CD 23.96 9.34 0.39 2.35
3.4.2 3xCPE&CSO+B-CD 29.26 13.66 0.54 1.63
3.5.1 pH7 Blank 0.66 -0.07 0.62 2.45
3.5.1 pH7 C&C+B-CD 20.62 -2.33 0.70 2.53
3.5.2 Blank 0.32 -0.14 0.36 21.75
3.5.2 C&C 1.16 -1.91 0.89 9.04
3.5.2 C&C+B-CD 5.02 -2.33 0.79 14.09
3.5.3 Blank 0.36 -0.73 0.23 16.91
3.5.3 C&C 0.46 -0.37 0.20 23.42
3.5.3 C&C+B-CD 4.16 2.15 1.30 7.87
3.6 Blank 1.32 0.29 0.40 49.04
3.6 CPE 2.10 -0.81 0.50 29.68
3.6 CPE&CSO 4.13 -2.36 0.23 18.83

One can observe that the a value, representing the burst release rate, is 

system dependant and fluctuates widely based on the release conditions from

0.32 %/hour to almost 30 %/hour. The c value reflects the leakage rate and 

should be small and reasonably the same for all systems; in our case, it ranges
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from 0.02 %/hour to 1.3 %/hour. Here, c < a. Although t *  has a physical meaning 

in the model, which is system dependant and related to the time needed for the 

liposomes to restore the barrier function, it is hard to find a reasonable 

explanation to the wild fluctuation of t *  values given by the model in Table 8. The 

meaning of t *  in the model may need further modification.

5.2. Neural Network

5.2.1. Introduction to Neural Network

A neural network is an information processing paradigm that is inspired by 

the way biological nervous systems, such as the brain, process information.127 

The key element of this paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve specific problems. 

Neural networks, like people, learn by example. A neural network is configured 

for a specific application, such as pattern recognition or data classification, 

through a learning process. Learning in biological systems involves adjustments 

to the synaptic connections that exist between the neurons, which is true for 

neural networks as well.

The field of neural network was established before the advent of 

computers, but many important advances did not appear until the use of fast and 

inexpensive computers.

Neural networks take a different approach to problem solving than that of 

conventional computers. Conventional computers use an algorithmic approach,
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i.e. the computer follows a set of instructions in order to solve a problem. Unless 

the specific steps that the computer needs to follow are known, the computer 

cannot solve the problem. But computers would be so much more useful if they 

could do things that we don't exactly know how to do. Neural networks process 

information in a similar way the human brain does. They cannot be programmed 

to perform a specific task. The examples must be selected carefully otherwise 

useful time is wasted or even worse the network might be functioning incorrectly. 

The disadvantage is that because the network finds out how to solve the problem 

by itself, its operation can be unpredictable.

An artificial neuron (Figure 64) is a device with many inputs and one 

output. The neuron has two modes of operation; the training mode and the 

predictive mode. In the training mode, the neuron can be trained to fire (or not), 

for particular input patterns. In the predictive mode, when a taught input pattern is 

detected at the input, its associated output becomes the current output.

INPUTS

TEACH/USEX I

X2

Neuron

Xn

TEACHING INPUT

» OUTPUT

Figure 64 A simple artificial neuron in Neural Network.

169

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



The most common type of artificial neural network consists of three layers 

of neurons: a layer of "input" elements is connected to a layer of "hidden" 

neurons, which is connected to a layer of "output" neurons (Figure 65). The 

activity of the input units represents the raw information that is fed into the 

network. The activity of each hidden unit is determined by the activities of the 

input units and the weights on the connections between the input and the hidden 

units. The behavior of the output units depends on the activity of the hidden units 

and the weights between the hidden and output units.

Hidden layer Outputs

Figure 65 An example of a fully connected feed-forward network.

Every neural network possesses knowledge which is contained in the 

values of the connections weights (Figure 66). Modifying the knowledge stored in 

the network as a function of experience implies a learning (training) rule for 

changing the values of the weights. Information is stored in the weight matrix W  

of a neural network. Learning (training) is the determination of the weights.
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Incoming neural activations (A,) 
multiplied by individual 
connection weights (W jj)

Output activation (Ay) multiplied 
by individual connection weights 
(Wjk) sent to other neurons

I » ' r
. 1 = 1

Figure 66 Activation (output) of Neuron j, Aj. W  is the individual 
connection weight; 0j is the offset or threshold.

Since neural networks are best at identifying patterns or trends in data, 

they are well suited for prediction or forecasting needs including sales 

forecasting, industrial process control, customer research, data validation, risk 

management, target marketing, etc. The ability to learn by example makes neural 

network very flexible and powerful. Furthermore, there is no need to devise an 

algorithm in order to perform a specific task; i.e. there is no need to understand 

the internal mechanisms of that task.
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5.2.2. Application of Neural Network Model

One major purpose of modeling is to have the ability to forecast. Although 

we have proposed a theory and mathematical model for the process of protein 

release from liposomes with permeation enhancers, we would like to use a 

neural network to predict the release process, i.e. to predict a, b , c , t *  values, 

based on given conditions.

There are nine major factors that affect the protein release profile, which 

means there are nine inputs for our neural network. These inputs are AT (T-Tc), 

cholesterol content in lipid bilayer, molecular weight of protein, amount of CPE- 

215®, amount of cottonseed oil, ratio of total oil (CPE-215® and cottonseed oil) to 

lipid content (DPPC and cholesterol), percent of (3-cyclodextrin in the aqueous 

phase, percent of a-cyclodextrin in the aqueous phase, and pH.

We listed all nine factors and a, b , c, t *  values for each experimental 

release curve in Table 9. In order to easily trace back to the experiment, the 

number of chapter where the experiment was mentioned in this thesis and the 

sample name were also shown in Table 9. According to our liposome DSC data, 

the phase transition temperature for 4:1 (w/w) DPPC/Cholesterol liposome is 46 

°C, which is the reason why when using DPPC/Cholesterol liposomes at 37 °C, 

the AT is shown as -9. We used insulin dimer for the insulin molecular weight 

because we know at the release concentration and condition inside of liposomes, 

insulin mostly existed as dimers, and probably penetrated the liposomes as 

dimers. Since Table 9 was used for the training of our neural network, two sets of
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data (randomly selected), which were used to test the prediction, are not listed 

here.

Table 9 Neural network matrix

Chap
# Sample

AT
(C)

Ch
(%) Mw

CPE-
215®
(9)

oil: lipid 
(w/w)

cso
(g)

P-
CD
(%)

a-
CD
(%) pH

a
(%*hr
-1) b (%)

c
(%-h
O

t*
(hour)

3.2.2 Blank 0 0 11600 0 0 0 0 0 7.4 1.66 10.41 0.48 6.79
3.2.2 CPE215 0 0 11600 0.25 40.9 0 0 0 7.4 3.29 3.43 0.42 6.01
3.2.2 3-CD 0 0 11600 0 0 0 0.3 0 7 4.14 12.93 0.15 5.32
3.3.1 CPE&CSO 0 0 11600 0.258 54.5 0.086 0 0 7 6.72 8.68 0.19 3.54
3.3.1 6-CD+CPE&CSO 0 0 11600 0.258 54.5 0.086 0.3 0 7 10.65 9.02 0.33 2.20
3.3.1 a-CD+CPE&CSO 0 0 11600 0.258 54.5 0.086 0 2.1 7 15.25 23.07 0.09 3.47
3.3.2 C&C+20X 3-CD 0 0 11600 0.046 8.7 0.015 1 0 7 14.68 16.79 0.23 2.12
3.3.2 C&C+1x a-CD 0 0 11600 0.046 8.7 0.015 0 0.05 7 9.94 9.86 0.20 2.51
3.3.2 C&C+20x a-CD 0 0 11600 0.046 8.7 0.015 0 0.9 7 14.08 10.43 0.19 1.94
3.3.3 Blank 0 0 11600 0 0 0 0 0 7 0.71 49.44 0.20 10.00
3.3.3 CS0+3-CD 0 0 11600 0 0.6 0.0032 1 0 7 11.83 55.55 0.02 1.00
3.3.3 CPE+3-CD 0 0 11600 0.0095 1.6 0 1 0 7 6.57 51.72 0.16 0.65
3.3.3 CPE+CSO+3-CD 0 0 11600 0.0095 2.2 0.0032 1 0 7 11.87 40.41 0.28 0.94
3.4.1 Blank -9 20 11600 0 0 0 0 0 7 0.90 2.14 0.70 10.00
3.4.1 CPE-215 -9 20 11600 0.0084 1 0 0 0 7 2.90 0.41 0.62 2.60
3.4.1 Cottonseed Oil -9 20 11600 0 1.1 0.0096 0 0 7 4.26 0.65 0.30 5.78
3.4.1 CPE+3-CD -9 20 11600 0.0084 1 0 1.3 0 7 4.90 1.34 0.58 6.47

3.4.2 Blank -9 20 11600 0 0 0 0 0 7 0.91 4.02 0.71 54.29
3.4.2 3-CD -9 20 11600 0 0 0 1.7 0 7 4.17 5.59 0.50 5.01
3.4.2 1xCPE&CSO -9 20 11600 0.009 1.4 0.003 0 0 7 8.58 3.21 0.45 4.04
3.4.2 3xCPE&CSO -9 20 11600 0.027 4.1 0.009 0 0 7 10.20 5.11 0.20 4.22
3.4.2 1 XCPE&CSO+3-CD -9 20 11600 0.009 1.4 0.003 1.7 0 7 23.96 9.34 0.39 2.35
3.4.2 3xCPE&CSO+3-CD -9 20 11600 0.027 4.1 0.009 1.7 0 7 29.26 13.66 0.54 1.63
3.5.1 pH7 Blank -9 20 11600 0 0 0 0 0 7 0.66 -0.07 0.62 2.45
3.5.2 Blank -9 20 11600 0 0 0 0 0 10 0.32 -0.14 0.36 21.75
3.5.2 C&C -9 20 11600 0.0084 1.3 0.0028 0 0 10 1.16 -1.91 0.89 9.04
3.5.2 C&C+3-CD -9 20 11600 0.0084 1.3 0.0028 1.7 0 10 5.02 -2.33 0.79 14.09
3.5.3 Blank -9 20 11600 0 0 0 0 0 4 0.36 -0.73 0.23 16.91
3.5.3 C&C -9 20 11600 0.0084 1.3 0.0028 0 0 4 0.46 -0.37 0.20 23.42
3.5.3 C&C+3-CD -9 20 11600 0.0084 1.3 0.0028 1.7 0 4 4.16 2.15 1.30 7.87
3.6 Blank -9 20 66000 0 0 0 0 0 7 1.32 0.29 0.40 49.04
3.6 CPE -9 20 66000 0.013 1 0 0 0 7 2.10 -0.81 0.50 29.68
3.6 CPE&CSO -9 20 66000 0.013 1.4 0.0043 0 0 7 4.13 -2.36 0.23 18.83

The neural network software we are using is FORECASTER XL™ from 

ALYUDA Research, Inc, which is a MS Excel add-in program for forecasting and 

data analysis using neural network method. We used this program to form the 

network and forecast a , b , c, t *  values one at a time. In that case, we have nine
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inputs and one output each time. We have 33 sets of data to form the network, in 

which 85% (28) of the data sets would be used for network training and 15% (5) 

of the data sets would be used for testing purposes by the program; the program 

requires the data sets should be at least three times more than the number of 

inputs, and we barely met this minimum requirement.

5.2.3. Neural Network Model Analysis

For neural network modeling, the major task for users is to form the input 

and output matrix, then the rest is all automatic calculation. We did the 

calculation for a , b , c  and t *  one by one. After each calculation, the program gave 

a report on the neural network formed.

For the network formed for the purpose of predicting the value of a, the 

program gave some figures to visualize the deviation of the forecasted value 

from the actual result. From Figure 67, we can see the forecasted value did not 

deviate from the actual value significantly, except for a few rows. Given the 

limited number of experimental data sets, this is a reasonable network model for 

the prediction the value of a.
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Figure 67 The actual vs. forecast for the neural network for predicting a.
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Figure 68 Input importance for each parameter in the network for 
predicting a. C6 is AT (T-Tc), D6 is the cholesterol content in lipid bilayer, 
E6 is the molecular weight of protein, F6 is the amount of CPE-215®, H6 
is the amount of cottonseed oil, G6 is the ratio of total oil (CPE-215® and 
cottonseed oil) to lipid content (DPPC and cholesterol), 16 is the percent of 
(3-cyclodextrin in the aqueous phase, J6 is the percent of a-cyclodextrin in 
the aqueous phase, and K6 is pH.
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Figure 68 shows that the parameters of temperature, cholesterol content 

in lipid bilayer, (B-cyclodextrin concentration and pH have significant influence on 

the a value, which is the rate of triggered boost release at the beginning of the 

protein release. Based on our knowledge of our protein release system, the 

major factors that the network picked seem reasonable: the temperature and 

cholesterol content have significant influence on liposome properties; (3- 

cyclodextrin is an efficient phase transfer agent to transport CPE-215® to the 

membrane; pH would affect the surface charge character of proteins and as a 

result greatly alter the permeation ability of proteins.

For the neural network formed for the purpose of predicting the value of c, 

the program also gave some figures to visualize the deviation of the forecasted 

value from the actual result. From Figure 69, we can see the forecasted value did 

not deviate from the actual value too much. Again, this is a reasonable network 

model for the prediction of c value.
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Figure 69 The actual vs. forecast (scatter plot) for the neural network for 
predicting c.

K6 19.291%

J6 0.393%

16 18.989%

H6 —  7.446%

G6 1  2.534%

F6 I 0.855%

E6 1 1.729%

D6 j 29.557%

C6 19.206%

o% 20% 40% 60% 80% 100%

Figure 70 Input importance for each parameter in the network for 
predicting c. C6 is AT (T-Tc), D6 is the cholesterol content in lipid bilayer, 
E6 is the molecular weight of protein, F6 is the amount of CPE-215®, H6 
is the amount of cottonseed oil, G6 is the ratio of total oil (CPE-215® and 
cottonseed oil) to lipid content (DPPC and cholesterol), 16 is the percent of 
P-cyclodextrin in the aqueous phase, J6 is the percent of a-cyclodextrin in 
the aqueous phase, and K6 is pH.
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Figure 70 shows that temperature, cholesterol content in lipid bilayer, (3- 

cyclodextrin concentration and pH have significant influence on the c value, 

which is similar to what the previous neural network picked for a value. The value 

of c represents the self-leakage rate of liposomes. Again, this is a reasonable 

pick of major parameters for the similar reasons.

For the neural network formed for the purpose of predicting the value of t*, 

the program also gave some figures to visualize the deviation of the forecasted 

value from the actual result. The value of t *  represents the time when the 

permeation enhancers starts to diffuse evenly within the lipid bilayer and the 

system starts to change from the triggered boost release to liposome self­

leakage. From Figure 71, we can see the forecasted value did not deviate from 

the actual value too much, except for one and actually that one is a “Blank” 

sample. As to “Blank” samples, f*does not have meanings for them, because 

they actually do not have a transition time point. Therefore, this is an effective 

network model for the prediction of t *  value for non-“Blank” samples.
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Figure 71 The actual vs. forecast (scatter plot) for the neural network for 

predicting t* .
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Figure 72 Input importance for each parameter in the network for 
predicting t*. C6 is AT (T-Tc), D6 is the cholesterol content in lipid bilayer, 
E6 is the m olecular weight of protein, F6 is the am ount of CPE-215®, H6 
is the amount of cottonseed oil, G6 is the ratio of total oil (CPE-215® and 
cottonseed oil) to lipid content (DPPC and cholesterol), 16 is the percent of 
(3-cyclodextrin in the aqueous phase, J6 is the percent of a-cyclodextrin in 
the aqueous phase, and K6 is pH.
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Figure 72 shows that temperature, cholesterol content in lipid bilayer, 

protein molecular weight and pH have significant influence on the t *  value. It is 

easy to understand the influence of temperature and cholesterol content in lipid 

bilayer on the t *  value, but it is hard to relate t* to protein molecular weight and 

pH. Maybe this is due to the limitation in the number of data sets.

Neural network training was performed for b , but the result was not useful 

as expected. The parameter b  has the meaning of systemic error; therefore, 

there is no real meaning in predicting b  value. For the purpose of forecasting, we 

used b  = 0 .01, since the b  value can not be zero.

5.2.4. Neural Network Prediction

After we formed the neural networks for a, c and t* , we wanted to see if 

the neural networks can predict reasonable values for a, c and t *  for other 

release experiments. Table 10 shows the data sets we used to test the neural 

network prediction. Table 11 gives out the result of neural network prediction 

values versus the mathematical fit values of a , c  and t*.

Table 10 Experimental data sets for neural network prediction.

Chap
# Sample

AT
(C)

Choi
(%) Mw

CPE-
215®
(9)

oil:
lipid
(w/w)

CSO
(g)

P-
CD
(%)

a-
CD
(%) pH

3.4.1 CSO+B-CD -9 20 11600 0 1.1 0.0096 1.3 0 7
3.5.1 C&C+B-CD -9 20 11600 0.009 1.4 0.003 1.7 0 7
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Table 11 Neural network prediction compared with the math model result.

CSO+B-CD C& C+B-CD
Math Fit Neural Network 

Prediction
Math Fit Neural Network 

Prediction
a (% 'hour'1) 7.11 7.88 20.61 24.03

b ( % ) 1.67 0.01T -2.33 0.01T
c  (%‘ hour1) 0.83 0.68 0.70 0.54

t *  (hour) 5.14 2.39 2.53 2.07
t  The value ol b  in Neural Network is not pred icted, but arbitrarily put as 0.01

Figure 73 and Figure 74 show the deviation of the forecasted model curve 

from the real experimental data. One neural network prediction fits well with the 

experimental data, while the other only fits the early data. Given the fact that the 

neural network forecast was based on a,  c, and t *  values that were from the 

empirical mathematical model, which was not exactly the same as the real data, 

and the limited number of data sets, the prediction are acceptable, though we 

recognize that they are far from ideal.
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Figure 73 Neural network forecast for “CSO+B-CD” sample in Chapter

3.4.1.
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Figure 74 Neural network forecast for “C&C+B-CD” sample in Chapter

Among the three major parameters a, c, and t*, a  is the one that we are 

most interested in to do predictions since it is the triggered boost release rate. 

Based on the neural network we formed, we wanted to know under what 

conditions the highest a value could be achieved. Figure 68 shows the individual 

connection weight for each input condition — temperature, cholesterol content in 

lipid bilayer, (3-cyclodextrin concentration and pH have significant influence on 

the a value. The neural network predicted the maximum a value could be 

reached at 37 °C in pH 7 from 4:1 DPPC/Cholesterol liposome with the highest 

concentrations of phase transfer agents, CPE-215® and cottonseed oil. In

3.5.1.
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practical situations, phase transfer agents have their solubility limit and the 

amount of CPE-215® and cottonseed oil added does have limit. Under the 

conditions of 37 °C, pH 7, 4:1 DPPC/Cholesterol liposome, insulin dimer, 0.06 g 

CPE-215®, 0.02 g cottonseed oil, 1.7% P-cyclodextrin, 2.1% a-cyclodextrin, the 

neural network predicted the boost release rate, a value, to be 31.9 %*hour"1, 

which is more than 40 times faster than the liposome leakage rate (0.73 %*hour'
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CHAPTER 6

CONCLUSION

In our study of the enhancement effect of cyclopentadecanolide (CPE- 

215®) on protein permeation through lipid membranes, we successfully designed 

and developed a novel in vitro membrane permeability model -  liposome. This 

model system can not only be used to perform in vitro protein release 

experiments, but also can be used as a tool to select promising intranasal 

formulations before the expensive animal tests. We effectively labeled the 

proteins (insulin and BSA) with fluorescein to increase their detection sensitivity 

at low concentrations. By utilizing the extrusion technique, we can prepare 

“mono-dispersed” 400 nm large unilamellar vesicles/liposomes; when using 1% 

(weight) lipid content to make 400 nm unilamellar DPPC liposomes, the 

encapsulation efficiency is 10%. We prepared different liposomes with DPPC, 

cholesterol and CPE-215®, among which DPPC was the major lipid component. 

We utilized liposomes to encapsulate fluorescein labeled insulin, fluorescein 

labeled BSA and calcein. We used the centrifugal extraction method to clean the 

unencapsulated molecules and the molecules adsorbed on the outside surface of 

liposomes, so that the fluorescence signal outside of liposome was close to the 

background signal of the buffer solution. We utilized this model to perform a
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series of protein release kinetics experiments from liposomes at 37 °C, 42 °C, at 

pH 7, pH 4, pH 10, in the presence of CPE-215®, cottonseed oil, cyclodextrins.

The experimental results show that CPE-215® is an effective membrane 

permeation enhancer for proteins; because of the limited solubility of hydrophobic 

CPE-215® in water, a phase transfer agent, for example, cyclodextrins, can 

further enhance the permeation effect of CPE-215®. The pH of the solution has a 

huge impact on the protein release profile due to the protein surface charge 

change caused by the pH change. Proteins permeate through lipid bilayers 

easier at pH levels around its isoelectric point.

Studies on insulin solution properties (self-diffusion and self-association 

states), the interaction between insulin and liposome, and the interaction 

between CPE-215® and liposomes were carried out to understand the 

mechanism behind the fact that CPE-215® facilitates the protein transport 

through lipid bilayers. We determined insulin diffusion coefficient at pH 3 at 37 °C 

to be 1.4 x 10'10 m2/s, or 1.4 x 10'6 cm2/s by the pulsed field gradient NMR 

technique. We determined the binding constant of insulin on a DPPC/Cholesterol 

liposome surface to be K  = 97 ml/mg, which indicates that insulin only has weak 

interactions with liposomes. However, we identified that CPE-215® almost 

doubled the insulin adsorption energy on liposome surface by ITC. Based on our 

calculation, there would be 20 insulin dimers adsorbed on the inner surface of 

each 400 nm liposome in our release conditions. By modulated DSC, we 

determined that CPE-215® could diffuse across the aqueous phase into the 

bilayer through limited number of thermal cycles from 10 °C to 90 °C; 20%
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(weight) CPE-215® can broaden the Tc range, lower the Tc of DPPC liposome by 

8 °C and the Tc of DPPC/Cholesterol liposome by 9 °C, and reduce the AH of 

DPPC transition from 37 kJ/mol to 20 kJ/mol.

Based on the mechanism study, our release data and the current 

liposome leakage theory, we proposed a hypothesis that CPE-215® would form a 

transient “pore” in the lipid bilayer at the beginning of the release experiment; 

after CPE-215® evenly diffused within the bilayer, the barrier function of the lipid 

bilayer was restored. We performed one set of testing experiments and the result 

supported our hypothesis theory.

Mathematical modeling approach was used based on our theory. The 

release kinetics was modeled with Equation 5.7,

1

v ( a  • t  +  b ) 2 ( c - t  +  ( a - c ) - t *  + b )2,

where y  is the percentage of protein released from liposome, a, c, t *  are 

adjustable parameters: a is the boost release rate, b  represents the systemic 

error of the experiment, c is the liposome self-leakage rate, t *  is the transition 

time between the triggered boost release and the self-leakage of liposomes.

Most release data fit well with this model, which further supported our hypothesis 

theory.

We used the neural network approach to find the internal connections 

between different release condition parameters based on our limited data sets 

and tried to predict the protein release profile at new conditions. The values of a, 

c, f*were correlated to experimental conditions (temperature difference between
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the release temperature and the phase transition temperature of liposome, the 

cholesterol content in the liposome, the protein molecular weight, the amount of 

CPE-215®, the amount of cottonseed oil, the weight ratio of oil (CPE-215® and 

cottonseed oil) to lipid (DPPC and cholesterol), the amount of p-cyclodextrin and 

a-cyclodextrin, and pH) through neural networks. Neural network predicted the 

values of a and c  within 20% error, and t *  with a 20% to 50% error. The initial 

boost release rate is the most concerned parameter when the model is used to 

determine the promising intranasal formulations. The prediction result shows that 

reasonable neural networks were successfully formed for the major parameters 

of the mathematical model. The neural network predicted the maximum value of 

a of 31.9 %»hour'1, for the condition of 37 °C, 4:1 DPPC/Cholesterol liposome at 

pH 7 with 1.7% of P-cyclodextrin and 2.1 % a-cyclodextrin, 0.06 g CPE-215® and 

0.02 g cottonseed oil, which is more than 40 times faster than the liposome 

leakage rate.
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APPENDIX

In Chapter 5.1, we developed a mathematical model, based on our theory 
of protein release from liposomes, to quantify the release results. Equation 5.7 
was used as the modeling equation to express the whole protein release process.

We used the “Solver” function of Excel® to estimate the best a, b , c  and t *  
values to make the Equation 5.7 fit the experimental data through a least square 
non-linear curve fit. Table 6 listed the result of the curving fitting. The figures in 
the Appendix show the detail curve fitting for each release curve: the diamond 
dots are the experimental data points and the line is the fitting curve. The R2 
value was also given by

where y. is the experimental protein percent release value, y. is the predicted 
percent release value, y is the mean.

1
[5.7]

n

R 2 = \~ —
n
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